diff --git a/AUTHORS b/AUTHORS index ab97dd934..1a0da80d4 100755 --- a/AUTHORS +++ b/AUTHORS @@ -1,6 +1,7 @@ Alexey V. Akimov Alexey V. Akimov -Brendan Smith +Dr. Brendan Smith +Mr. Mohammad Shakiba Story Temen Wei Li Kosuke Sato diff --git a/CMakeLists.txt b/CMakeLists.txt index e4cfe6677..95862058d 100755 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1,17 +1,17 @@ -# Set the compiler as described here: https://cmake.org/Wiki/CMake_FAQ#How_do_I_use_a_different_compiler.3F -# -# Verify that Cmake is up to date -# -CMAKE_MINIMUM_REQUIRED(VERSION 2.8) -#SET(CMAKE_LEGACY_CYGWIN_WIN32 0) - - -# -# Project name -# - - -PROJECT("libra") +# Set the compiler as described here: https://cmake.org/Wiki/CMake_FAQ#How_do_I_use_a_different_compiler.3F +# +# Verify that Cmake is up to date +# +CMAKE_MINIMUM_REQUIRED(VERSION 2.8) +#SET(CMAKE_LEGACY_CYGWIN_WIN32 0) + + +# +# Project name +# + + +PROJECT("libra") # # User-defined Find modules @@ -28,7 +28,9 @@ MESSAGE("Advice: If this search fails, try setting cache variables: -DPYTHON_LIB MESSAGE("Hint to self: -DPYTHON_INCLUDE_DIR=/home/Alexey_2/Soft/Python-2.6.7/bin/include/python2.6 -DPYTHON_LIBRARY=/home/Alexey_2/Soft/Python-2.6.7/bin/bin") # For Linux and Cygwin -FIND_PACKAGE(PythonLibs 3.7 REQUIRED) +# Adapt it according to your system +FIND_PACKAGE(PythonLibs 3.6 REQUIRED) +#FIND_PACKAGE(PythonLibs 3.7 REQUIRED) IF(PYTHONLIBS_FOUND) MESSAGE("Success!") @@ -50,19 +52,22 @@ MESSAGE(${PYTHON_INCLUDE_DIRS}) # # Boost library # - + MESSAGE("Looking for Boost libraries...") SET(Boost_NO_BOOST_CMAKE TRUE) # to fix the problem of finding python37 libs SET(Boost_USE_STATIC_LIBS=OFF) SET(Boost_USE_MULTITHREADED=OFF) SET(Boost_USE_STATIC_RUNTIME=OFF) - -FIND_PACKAGE(Boost REQUIRED) +# Adapt it according to your system +FIND_PACKAGE(Boost 1.73.0 REQUIRED) +#FIND_PACKAGE(Boost REQUIRED) IF(Boost_FOUND) MESSAGE("Success!") - INCLUDE_DIRECTORIES("${Boost_INCLUDE_DIRS}") - FIND_PACKAGE(Boost COMPONENTS python37 regex) # it seems that it is important to find sub-packages too!!! + INCLUDE_DIRECTORIES("${Boost_INCLUDE_DIRS}") + # Adapt it based on your system + FIND_PACKAGE(Boost COMPONENTS python36 regex) # it seems that it is important to find sub-packages too!!! + #FIND_PACKAGE(Boost COMPONENTS python37 regex) ELSEIF(NOT Boost_FOUND) MESSAGE(FATAL_ERROR "Unable to find correct Boost version. Did you set BOOST_ROOT?") ENDIF() @@ -73,6 +78,38 @@ MESSAGE("Found Boost include directory: ") MESSAGE("${Boost_INCLUDE_DIRS}") + +FIND_PACKAGE(Eigen3) +IF(EIGEN3_FOUND) + INCLUDE_DIRECTORIES("${EIGEN3_INCLUDE_DIR}") + MESSAGE("Found Eigen3 include directory: ") + MESSAGE("${EIGEN3_INCLUDE_DIR}") +ELSEIF(NOT EIGEN3_FOUND) + MESSAGE(FATAL_ERROR "Unable to find Eigen3") +ENDIF() + + +SET(EIGEN3_INCLUDE_DIRS "${EIGEN3_INCLUDE_DIR}") + +# Remove CMakeCache.txt from the previous build, if you get an error finding libint2 due to problems +# in finding Eigen3 + +# Libint2 2.7.0 CONFIG REQUIRED COMPONENTS shared gss e5 g5 +#FIND_PACKAGE(Libint2 MODULE 2.7.0) +FIND_PACKAGE(Libint2 CONFIG 2.7.0 REQUIRED COMPONENTS shared gss e5 g5) +IF(Libint2_FOUND) + INCLUDE_DIRECTORIES("${Libint2_INCLUDE_DIRS}") + MESSAGE("Found Libint2 include directory: ") + MESSAGE("${Libint2_INCLUDE_DIRS}") + MESSAGE("Found Libint2_LIBRARIES: ") + MESSAGE("${Libint2_LIBRARIES}") + MESSAGE("Found Libint2_LIBRARY: ") + MESSAGE("${Libint2_LIBRARY}") +ELSEIF(NOT Libint2_FOUND) + MESSAGE(FATAL_ERROR "Unable to find correct libint2") +ENDIF() + + # # GNU compiler definitions # diff --git a/README.md b/README.md index a500d5cb3..5fc3ae3a2 100755 --- a/README.md +++ b/README.md @@ -10,7 +10,6 @@ The program website is [here](https://quantum-dynamics-hub.github.io/libra/index More: -* [How to install](https://quantum-dynamics-hub.github.io/libra/installation.html) * [Training & Usage](https://github.com/compchem-cybertraining/Tutorials_Libra) * [Autogenerated Documentation](https://quantum-dynamics-hub.github.io/libra-code/) @@ -27,6 +26,167 @@ for all users with the intent: knowledge and skills with others; +## Installation (as of after 5/14/2021) + +### 1. Install miniconda (for Python 3.8) and activate Conda + + mkdir Conda + cd Conda/ + wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh . + sh ./Miniconda3-latest-Linux-x86_64.sh -b -u -p + + Here, + + * the `-b` option will accept the license agreement and will skip all the prompts + * the `-u` option will tell the installer to do all the needed updates + * the `-p` option followed by the installation directory path (will be created), tells + the installed where to install the package. + + To activate the installed base environment of Conda do: + + eval "$( shell.bash hook)" + + For instance, + + eval "$(/projects/academic/cyberwksp21/Software/Conda/Miniconda3/bin/conda shell.bash hook)" + + + You will need to run this script every time you want to use a particular Conda and the + corresponding environments, unless you include this command in your .bashrc or .bash_profile + + Test it is working by doing: + + which conda + + +### 2. Download Libra + + mkdir libra + cd libra + git clone https://github.com/Quantum-Dynamics-Hub/libra-code.git . + + and switch to the correct branch or tag - usually, it would be `devel` branch + + git checkout devel + + +### 3. Create the environment equipped with all Libra needs + +#### 3.1. Simple way: + +Just execute the following script located in the root of Libra distribution: + + sh ./libra_env_build.sh + +This script will create the environment called `libra` and will install all the +needed stuff in it. You just need to activate it: + + conda activate libra + +#### 3.2. Detailed instructions on what the script about does: + +It first creates and activates the `libra` environment: + + conda create -n libra + +Update conda install if needed (e.g. if the output suggests it) + + conda activate libra + +Thne, it installs all the dependencies and tools. + +Do this one by one, and in this order (should not matter too much, but who knows it) + + > To automate the below procedures, you can use `-y` option to accept prompts (sometimes this will override) + > previous packages/conflicts, so be careful + > + > You can also use `-q` to get rid of all the messages to the output, although i'd keep it to keep track of what's going on + +Basic stuff + + conda install conda-build + conda install gcc_linux-64 + conda install gxx_linux-64 + conda install make + conda install boost + conda install cmake + conda install git + conda install -c anaconda h5py + conda install -c conda-forge/label/gcc7 eigen + conda install -c psi4/label/dev libint2 + conda install -c anaconda gmp + conda install -c conda-forge/label/gcc7 mpfr + +More, but still needed because some Python modules require those. +We need to downgrade Python version here to 3.6 to enable Psi4 installation + + conda install python=3.6 + conda install -c psi4 psi4 + conda install -c conda-forge matplotlib + conda install -c rmg py3dmol + conda install -c anaconda numpy + conda install -c anaconda scipy + conda install -c conda-forge llvm-openmp + +You can install Jupyter notebook using the following command. This will be useful and you can set up and access the Jupyter notebook +remotely from a cluster and load the tutorials + + conda install -c conda-forge jupyterlab + + +Used in some of the tutorials + + conda install -c conda-forge/label/gcc7 imageio + + +### 4. Adapt the CMakeLists.txt file according to your system + + Because we had to downgrade Python to 3.6, we need to edit the CMakeLists.txt such that + cmake is looking for the correct Python version + + FIND_PACKAGE(PythonLibs 3.6 REQUIRED) + + and also reflect it in the component of the Boost.Python to be found: + + FIND_PACKAGE(Boost COMPONENTS python36 regex) + + Same for Boost (see the error messages for what version of Boost the cmake can find). In my current + case, it suggest the version 1.73.0, so be it: + + FIND_PACKAGE(Boost 1.73.0 REQUIRED) + +### 5. Create the build directory and make the Makefiles + + Then in the libra directory, create the build directory: + + cd libra + mkdir _build + cd _build + cmake ../ + +### 6. Compile the package + + make -j4 + +### 7. Setup environmental variables + + Add the following exports to your `.bash_profile` file + + export PYTHONPATH=/libra/_build/src:$PYTHONPATH + export LD_LIBRARY_PATH=/libra/_build/src:$LD_LIBRARY_PATH + +### 8. Restart the terminal or source the bash profile and activate libra conda environment + + source .bash_profile + conda activate libra + + And you should be ready to use Libra. + + +* [Old instructions](https://quantum-dynamics-hub.github.io/libra/installation.html) + + + ## Developers and Contributors * Dr. Alexey Akimov (University at Buffalo, [link](https://akimovlab.github.io/index.html) ) @@ -37,7 +197,7 @@ for all users with the intent: Libra/DFTB+, Libra/QE, Libra/ErgoSCF, Libra/CP2K, and Libra/Gaussian interfaces * Mr. Mohammad Shakiba (Shahid Bahonar University of Kerman, Iran) - Cube file processing scripts, Libra/CP2K and Libra/Gaussian interfaces + Cube file processing scripts, Libra/CP2K and Libra/Gaussian, Libra/Libint2 interfaces * Mrs. Story Temen (University at Buffalo) Implementation and testing of the HEOM codes @@ -51,10 +211,10 @@ for all users with the intent: * Dr. Ekadashi Pradhan (York University) Libra/QE interface, delta-SCF NA-M (Libra-X) - * Dr. Amber Jain (Indian Institute of Technology, Bombay) + * Dr. Amber Jain (Indian Institute of Technology Bombay, India) Implementation and testing of the HEOM codes - * Dr. Xiang Sun (Indian Institute of Technology, Bombay) + * Dr. Xiang Sun (NYU Shanghai, China) Implementation and testing of the FGR codes @@ -64,9 +224,9 @@ This code is provided in the hope it will be useful. If you use the code in your research, please cite the following paper(s): - ### Parers that describe Libra and its features + ### Papers that describe Libra or its features - * [Initial Implementation](http://onlinelibrary.wiley.com/doi/10.1002/jcc.24367/full) + * [The initial implementation](http://onlinelibrary.wiley.com/doi/10.1002/jcc.24367/full) Akimov, A. V. "Libra: An open-Source 'methodology discovery' library for quantum and classical dynamics simulations" *J. Comput. Chem.* **2016** 37, 1626-1649 diff --git a/libra_env_build.sh b/libra_env_build.sh new file mode 100755 index 000000000..43a9a3bde --- /dev/null +++ b/libra_env_build.sh @@ -0,0 +1,23 @@ +conda create -n libra +conda activate libra +conda install -y conda-build +conda install -y gcc_linux-64 +conda install -y gxx_linux-64 +conda install -y cmake +conda install -y make +conda install -y git +conda install -y boost=1.73.0 +conda install -y -c anaconda h5py +conda install -y -c conda-forge/label/gcc7 eigen +conda install -y -c psi4/label/dev libint2 +conda install -y -c anaconda gmp +conda install -y -c conda-forge/label/gcc7 mpfr +conda install -y python=3.6 +conda install -y -c psi4 psi4 +conda install -y -c conda-forge matplotlib +conda install -y -c rmg py3dmol +conda install -y -c anaconda numpy +conda install -y -c anaconda scipy +conda install -y -c conda-forge/label/gcc7 imageio +conda install -y -c conda-forge llvm-openmp + diff --git a/notebooks/Example14_QE_methods/.gitignore b/notebooks/Example14_QE_methods/.gitignore deleted file mode 100755 index ca3b05aa1..000000000 --- a/notebooks/Example14_QE_methods/.gitignore +++ /dev/null @@ -1,4 +0,0 @@ -.ipynb_checkpoints -*.UPF -wd -res \ No newline at end of file diff --git a/notebooks/Example14_QE_methods/test_QE_methods.ipynb b/notebooks/Example14_QE_methods/test_QE_methods.ipynb deleted file mode 100755 index be5167f6f..000000000 --- a/notebooks/Example14_QE_methods/test_QE_methods.ipynb +++ /dev/null @@ -1,854 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## QE methods and QE_utils\n", - "\n", - "In this tutorial, we will explore various methods needed to handle Quantum Espresso (QE) calculations - to run them, prepare input, and extract output. All that will be done with the help of the **QE_methods** and **QE_utils** modules, which contains the following functions:\n", - "\n", - "**QE_methods**\n", - "* cryst2cart(a1,a2,a3,r)\n", - "* [Topic 2](#topic-2) read_qe_schema(filename, verbose=0)\n", - "* [Topic 3](#topic-3) read_qe_index(filename, orb_list, verbose=0)\n", - "* [Topic 4](#topic-4) read_qe_wfc_info(filename, verbose=0)\n", - "* [Topic 9](#topic-9) read_qe_wfc_grid(filename, verbose=0)\n", - "* [Topic 5](#topic-5) read_qe_wfc(filename, orb_list, verbose=0)\n", - "* read_md_data(filename)\n", - "* read_md_data_xyz(filename, PT, dt)\n", - "* read_md_data_xyz2(filename, PT) \n", - "* read_md_data_cell(filename)\n", - "* out2inp(out_filename,templ_filename,wd,prefix,t0,tmax,dt)\n", - "* out2pdb(out_filename,T,dt,pdb_prefix)\n", - "* out2xyz(out_filename,T,dt,xyz_filename)\n", - "* xyz2inp(out_filename,templ_filename,wd,prefix,t0,tmax,dt)\n", - "* get_QE_normal_modes(filename, verbosity=0)\n", - "* [Topic 1](#topic-1) run_qe(params, t, dirname0, dirname1) \n", - "* read_info(params)\n", - "* read_all(params)\n", - "* read_wfc_grid(params)\n", - "\n", - "**QE_utils**\n", - "* get_value(params,key,default,typ)\n", - "* split_orbitals_energies(C, E)\n", - "* [Topic 7](#topic-7) merge_orbitals(Ca, Cb)\n", - "* post_process(coeff, ene, issoc)\n", - "* [Topic 6](#topic-6) orthogonalize_orbitals(C)\n", - "* [Topic 8](#topic-8) orthogonalize_orbitals2(Ca,Cb)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/alexey/miniconda2/envs/py37/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: to-Python converter for std::vector, std::allocator > > already registered; second conversion method ignored.\n", - " return f(*args, **kwds)\n", - "/home/alexey/miniconda2/envs/py37/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: to-Python converter for std::vector >, std::allocator > > > already registered; second conversion method ignored.\n", - " return f(*args, **kwds)\n", - "/home/alexey/miniconda2/envs/py37/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: to-Python converter for boost::python::detail::container_element >, std::allocator > > >, unsigned long, boost::python::detail::final_vector_derived_policies >, std::allocator > > >, false> > already registered; second conversion method ignored.\n", - " return f(*args, **kwds)\n", - "/home/alexey/miniconda2/envs/py37/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: to-Python converter for std::vector >, std::allocator > > > already registered; second conversion method ignored.\n", - " return f(*args, **kwds)\n", - "/home/alexey/miniconda2/envs/py37/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: to-Python converter for boost::python::detail::container_element >, std::allocator > > >, unsigned long, boost::python::detail::final_vector_derived_policies >, std::allocator > > >, false> > already registered; second conversion method ignored.\n", - " return f(*args, **kwds)\n", - "/home/alexey/miniconda2/envs/py37/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: to-Python converter for std::vector >, std::allocator > > > already registered; second conversion method ignored.\n", - " return f(*args, **kwds)\n", - "/home/alexey/miniconda2/envs/py37/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: to-Python converter for boost::python::detail::container_element >, std::allocator > > >, unsigned long, boost::python::detail::final_vector_derived_policies >, std::allocator > > >, false> > already registered; second conversion method ignored.\n", - " return f(*args, **kwds)\n", - "/home/alexey/miniconda2/envs/py37/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: to-Python converter for boost::python::detail::container_element, std::allocator > >, std::allocator, std::allocator > > > >, unsigned long, boost::python::detail::final_vector_derived_policies, std::allocator > >, std::allocator, std::allocator > > > >, false> > already registered; second conversion method ignored.\n", - " return f(*args, **kwds)\n" - ] - } - ], - "source": [ - "import os\n", - "import sys\n", - "import math\n", - "import copy\n", - "\n", - "if sys.platform==\"cygwin\":\n", - " from cyglibra_core import *\n", - "elif sys.platform==\"linux\" or sys.platform==\"linux2\":\n", - " from liblibra_core import *\n", - "#from libra_py import *\n", - "from libra_py import units\n", - "from libra_py import QE_methods\n", - "from libra_py import QE_utils\n", - "from libra_py import scan\n", - "\n", - "from libra_py import hpc_utils\n", - "from libra_py import data_read\n", - "from libra_py import data_outs\n", - "from libra_py import data_conv\n", - "from libra_py.workflows.nbra import step2\n", - "\n", - "\n", - "import py3Dmol # molecular visualization\n", - "import matplotlib.pyplot as plt # plots\n", - "%matplotlib inline \n", - "\n", - "plt.rc('axes', titlesize=24) # fontsize of the axes title\n", - "plt.rc('axes', labelsize=20) # fontsize of the x and y labels\n", - "plt.rc('legend', fontsize=20) # legend fontsize\n", - "plt.rc('xtick', labelsize=16) # fontsize of the tick labels\n", - "plt.rc('ytick', labelsize=16) # fontsize of the tick labels\n", - "\n", - "plt.rc('figure.subplot', left=0.2)\n", - "plt.rc('figure.subplot', right=0.95)\n", - "plt.rc('figure.subplot', bottom=0.13)\n", - "plt.rc('figure.subplot', top=0.88)\n", - "\n", - "colors = {}\n", - "\n", - "colors.update({\"11\": \"#8b1a0e\"}) # red \n", - "colors.update({\"12\": \"#FF4500\"}) # orangered \n", - "colors.update({\"13\": \"#B22222\"}) # firebrick \n", - "colors.update({\"14\": \"#DC143C\"}) # crimson \n", - "\n", - "colors.update({\"21\": \"#5e9c36\"}) # green\n", - "colors.update({\"22\": \"#006400\"}) # darkgreen \n", - "colors.update({\"23\": \"#228B22\"}) # forestgreen\n", - "colors.update({\"24\": \"#808000\"}) # olive \n", - "\n", - "colors.update({\"31\": \"#8A2BE2\"}) # blueviolet\n", - "colors.update({\"32\": \"#00008B\"}) # darkblue \n", - "\n", - "colors.update({\"41\": \"#2F4F4F\"}) # darkslategray\n", - "\n", - "clrs_index = [\"11\", \"21\", \"31\", \"41\", \"12\", \"22\", \"32\", \"13\",\"23\", \"14\", \"24\"]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "First, lets prepare the working directories and run simple SCF calculations to generate the output files" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Setup the calculations\n", - "params = {}\n", - "\n", - "# I run the calculations on laptop, so no BATCH system\n", - "params[\"BATCH_SYSTEM\"] = None\n", - "\n", - "# The number of processors to use\n", - "params[\"NP\"] = 1\n", - "\n", - "# The QE executable\n", - "params[\"EXE\"] = \"/mnt/c/cygwin/home/Alexey-user/Soft/espresso/bin/pw.x\"\n", - "\n", - "# The executable to generate the wavefunction files\n", - "params[\"EXE_EXPORT\"] = \"/mnt/c/cygwin/home/Alexey-user/Soft/espresso/bin/pw_export.x\"\n", - "\n", - "# The type of the calculations to be performed - in this case only a single SCF with spin-polarization\n", - "params[\"nac_method\"] = 1\n", - " \n", - "# The prefix of the input file\n", - "params[\"prefix0\"] = \"x0.scf\" \n", - "\n", - "# Working directory - where all stuff happen\n", - "params[\"wd\"] = os.getcwd()+\"/wd\"\n", - "\n", - "\n", - "# Remove the previous results and temporary working directory from the previous runs\n", - "os.system(F\"rm -r {params['wd']}\")\n", - "os.system(F\"mkdir {params['wd']}\")\n", - "\n", - "# Copy the input files into the working directory\n", - "# also, notice how the SCF input file name has been changed\n", - "os.system(F\"cp x0.scf.in {params['wd']}/x0.scf.0.in\")\n", - "os.system(F\"cp x0.exp.in {params['wd']}\")\n", - "os.system(F\"cp Li.pbe-sl-rrkjus_psl.1.0.0.UPF {params['wd']}\")\n", - "os.system(F\"cp H.pbe-rrkjus_psl.1.0.0.UPF {params['wd']}\")\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### 1. run_qe(params, t, dirname0, dirname1)\n", - "\n", - "\n", - "Use it to actually run the calculations\n", - "\n", - "Comment this out if you have already done the calculations" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "os.chdir(\"wd\")\n", - "QE_methods.run_qe(params, 0, \"res\", \"res2\")\n", - "os.chdir(\"../\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### 2. read_qe_schema(filename, verbose=0)\n", - "\n", - "Can be used to read the information about the completed run" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'/mnt/c/cygwin/home/Alexey-user/Programming/Project_libra/notebooks/Example14_QE_methods'" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pwd" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'conv': 8, 'etot': -7.9497569277338, 'nbnd': 20, 'nelec': 4, 'efermi': -0.12376709627891, 'alat': 37.79452265771, 'nat': 2, 'coords': , 'atom_labels': ['Li', 'H'], 'forces': }\n" - ] - } - ], - "source": [ - "info = QE_methods.read_qe_schema(\"wd/res/x0.save/data-file-schema.xml\", verbose=0)\n", - "print(info)" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Atom 0 \t Li \t x=0.00000, y=0.00000, z=0.00000 fx=0.00000, fy=0.00000, fz=0.00000\n", - "Atom 1 \t H \t x=2.83459, y=0.00000, z=0.00000 fx=0.00000, fy=0.00000, fz=0.00000\n" - ] - } - ], - "source": [ - "nat = info[\"nat\"]\n", - "R, F = info[\"coords\"], info[\"forces\"]\n", - "\n", - "for at in range(nat):\n", - " print(F\"Atom {at} \\t {info['atom_labels'][at]} \\t\\\n", - " x={R.get(3*at+0):.5f}, y={R.get(3*at+1):.5f}, z={R.get(3*at+2):.5f}\\\n", - " fx={F.get(3*at+0):.5f}, fy={F.get(3*at+1):.5f}, fz={F.get(3*at+2):.5f}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### 3. read_qe_index(filename, orb_list, verbose=0)\n", - "\n", - "Is analogous to **read_qe_schema** in many regards, it just extracts a bit different info, including orbital energies.\n", - "\n", - "One would also need to specify which energy levels we want to extract, so one would need that info beforehands.\n", - "\n", - "In this example, we have just 4 electrons, so:\n", - "\n", - "1 - HOMO-1\n", - "2 - HOMO \n", - "3 - LUMO\n", - "4 - LUMO+1\n", - "\n", - "Lets try just the 4 orbitals" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "path= Root\n", - " nspin = 2 nk = 2 nbnd = 10 efermi = -0.12376709627891 alat = 37.79452265771 omega = 8637.868266355206 tpiba = 0.1662459230953623 tpiba2 = 0.1662459230953623\n", - " Direct lattice vectors: \n", - " a1 = 37.79452265771286 0.0 0.0\n", - " a2 = 0.0 15.11780906308515 0.0\n", - " a3 = 0.0 0.0 15.11780906308515\n", - " Reciprocal lattice vectors: \n", - " b1 = 0.1662459230953497 0.0 0.0\n", - " b2 = 0.0 0.4156148077383742 0.0\n", - " b3 = 0.0 0.0 0.4156148077383742\n", - " K points: \n", - "0 weight = 1.0 k = 0.0 0.0 0.0\n", - "1 weight = 1.0 k = 0.0 0.0 0.0\n", - " Energies of the active orbitals for all k-points: \n", - "ik = 0\n", - "\n", - "ik = 1\n", - "\n" - ] - } - ], - "source": [ - "info2, all_e = QE_methods.read_qe_index(\"wd/res/x0.export/index.xml\", [1,2,3,4], verbose=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'nspin': 2, 'nk': 2, 'nbnd': 10, 'efermi': -0.12376709627891, 'alat': 37.79452265771, 'omega': 8637.868266355206, 'tpiba': 0.1662459230953623, 'tpiba2': 0.02763770694582913, 'a1': , 'a2': , 'a3': , 'b1': , 'b2': , 'b3': , 'weights': [1.0, 1.0], 'k': [, ]}\n" - ] - } - ], - "source": [ - "print( info2)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[, ]\n" - ] - } - ], - "source": [ - "print(all_e)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [], - "source": [ - "e_alp = all_e[0]\n", - "e_bet = all_e[1]" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "E_0^alpha = -1.86244053 \t E_0^beta = -1.86219594\n", - "E_1^alpha = -0.16462949 \t E_1^beta = -0.16475681\n", - "E_2^alpha = -0.08691250 \t E_2^beta = -0.08650036\n", - "E_3^alpha = -0.04025010 \t E_3^beta = -0.04013592\n" - ] - } - ], - "source": [ - "for i in range(4):\n", - " print(F\"E_{i}^alpha = {e_alp.get(i,i).real:12.8f} \\t E_{i}^beta = {e_bet.get(i,i).real:12.8f}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### 4. read_qe_wfc_info(filename, verbose=0)\n", - "\n", - "Can be used to extract some descriptors of the wavefunctions produced" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "path= Kpoint.1\n", - " ngw = 36889 igwx = 36889 nbnd = 10 nspin = 2 gamma_only = F ik = 1 nk = 2\n", - "path= Kpoint.2\n", - " ngw = 36889 igwx = 36889 nbnd = 10 nspin = 2 gamma_only = F ik = 2 nk = 2\n" - ] - } - ], - "source": [ - "wfc_info1 = QE_methods.read_qe_wfc_info(\"wd/res/x0.export/wfc.1\", verbose=1)\n", - "wfc_info2 = QE_methods.read_qe_wfc_info(\"wd/res/x0.export/wfc.2\", verbose=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'ngw': 36889, 'igwx': 36889, 'nbnd': 10, 'nspin': 2, 'gamma_only': 'F', 'ik': 1, 'nk': 2}\n", - "{'ngw': 36889, 'igwx': 36889, 'nbnd': 10, 'nspin': 2, 'gamma_only': 'F', 'ik': 2, 'nk': 2}\n" - ] - } - ], - "source": [ - "print(wfc_info1)\n", - "print(wfc_info2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### 5. read_qe_wfc(filename, orb_list, verbose=0)\n", - "\n", - "Can be used to read in the actual wavefunctions produced" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "path= Kpoint.1\n", - "path= Kpoint.1\n", - "path= Kpoint.2\n", - "path= Kpoint.2\n" - ] - } - ], - "source": [ - "alpha = QE_methods.read_qe_wfc(\"wd/res/x0.export/wfc.1\", [1,2,3,4], verbose=0)\n", - "beta = QE_methods.read_qe_wfc(\"wd/res/x0.export/wfc.2\", [1,2,3,4], verbose=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "36889 4\n", - "\n", - "36889 4\n" - ] - } - ], - "source": [ - "print(alpha)\n", - "print(alpha.num_of_rows, alpha.num_of_cols)\n", - "\n", - "print(beta)\n", - "print(beta.num_of_rows, beta.num_of_cols)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Orthogonality and normalization\n", - "\n", - "Below we can see that MO overlaps are almost orthonormal - the diagonal elements are coorectly 1.0\n", - "\n", - "But the off-diagonal elements are not quite 0.0\n", - "\n", - "Same is true for \n", - "\n", - "However, there is no any expectation about the orthogonality or normalization across the two sets" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [], - "source": [ - "S_aa = alpha.H() * alpha\n", - "S_bb = beta.H() * beta\n", - "S_ab = alpha.H() * beta" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "S_aa\n", - " 1.00000 -0.08150 -0.04761 0.03307 \n", - "-0.08150 1.00000 0.03712 -0.02467 \n", - "-0.04761 0.03712 1.00000 -0.01177 \n", - " 0.03307 -0.02467 -0.01177 1.00000 \n", - "S_bb\n", - " 1.00000 -0.08093 -0.04785 0.03336 \n", - "-0.08093 1.00000 0.03755 -0.02485 \n", - "-0.04785 0.03755 1.00000 -0.01246 \n", - " 0.03336 -0.02485 -0.01246 1.00000 \n", - "S_ab\n", - " 0.17301 -0.01049 -0.00412 0.00214 \n", - "-0.01635 0.15735 0.00452 -0.00236 \n", - "-0.00102 -0.00083 -0.06732 0.00139 \n", - " 0.01173 -0.00747 -0.00248 0.24420 \n" - ] - } - ], - "source": [ - "def print_mat(X):\n", - " nr, nc = X.num_of_rows, X.num_of_cols\n", - " for i in range(nr):\n", - " \n", - " line = \"\"\n", - " for j in range(nc):\n", - " \n", - " line = line + \"%8.5f \" % (X.get(i,j).real)\n", - " print(line)\n", - "\n", - "print(\"S_aa\")\n", - "print_mat(S_aa)\n", - "\n", - "print(\"S_bb\")\n", - "print_mat(S_bb)\n", - "\n", - "print(\"S_ab\")\n", - "print_mat(S_ab)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### 6. QE_utils.orthogonalize_orbitals(C)\n", - "Can be used to orthogonalize orbitals if they are not.\n", - "\n", - "So lets transform alpha and beta orbitals such they are now orthonormal within each set.\n", - "\n", - "The resulting orbitals are not orthonormal across the two sets still " - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Testing if S is invertabile\n", - "\n", - "[4, 1]\n", - "Det = (0.9881907434095535-8.072456740942809e-20j)\n", - "\n", - "Testing if S is invertabile\n", - "\n", - "[4, 1]\n", - "Det = (0.9883023952546621+8.762301957458487e-20j)\n", - "S_aa\n", - " 1.00000 0.00000 0.00000 -0.00000 \n", - " 0.00000 1.00000 -0.00000 0.00000 \n", - " 0.00000 -0.00000 1.00000 0.00000 \n", - "-0.00000 0.00000 0.00000 1.00000 \n", - "S_bb\n", - " 1.00000 -0.00000 0.00000 0.00000 \n", - "-0.00000 1.00000 -0.00000 0.00000 \n", - " 0.00000 -0.00000 1.00000 -0.00000 \n", - " 0.00000 0.00000 -0.00000 1.00000 \n", - "S_ab\n", - " 0.17301 0.00000 -0.00001 0.00000 \n", - "-0.00001 0.15735 0.00024 -0.00006 \n", - "-0.00001 0.00005 -0.06733 0.00028 \n", - " 0.00002 0.00017 0.00083 0.24420 \n" - ] - } - ], - "source": [ - "alp = QE_utils.orthogonalize_orbitals(alpha)\n", - "bet = QE_utils.orthogonalize_orbitals(beta)\n", - "\n", - "S_aa = alp.H() * alp\n", - "S_bb = bet.H() * bet\n", - "S_ab = alp.H() * bet\n", - "\n", - "print(\"S_aa\")\n", - "print_mat(S_aa)\n", - "\n", - "print(\"S_bb\")\n", - "print_mat(S_bb)\n", - "\n", - "print(\"S_ab\")\n", - "print_mat(S_ab)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### 7. QE_utils.merge_orbitals(Ca, Cb)\n", - "\n", - "Sometimes (usually in the non-collinear case), we want to have a single set of orbitals (many are nearly doubly degenerate), not just alpha and beta components. We can prepare the single set from the spinor components using this function. In this example, we just gonna mimic non-collinear SOC calculations, pretending that alpha and beta orbital sets are the spinor components. \n" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 1.00000 -0.08150 -0.04761 0.03307 0.17301 -0.01049 -0.00412 0.00214 \n", - "-0.08150 1.00000 0.03712 -0.02467 -0.01635 0.15735 0.00452 -0.00236 \n", - "-0.04761 0.03712 1.00000 -0.01177 -0.00102 -0.00083 -0.06732 0.00139 \n", - " 0.03307 -0.02467 -0.01177 1.00000 0.01173 -0.00747 -0.00248 0.24420 \n", - " 0.17301 -0.01635 -0.00102 0.01173 1.00000 -0.08093 -0.04785 0.03336 \n", - "-0.01049 0.15735 -0.00083 -0.00747 -0.08093 1.00000 0.03755 -0.02485 \n", - "-0.00412 0.00452 -0.06732 -0.00248 -0.04785 0.03755 1.00000 -0.01246 \n", - " 0.00214 -0.00236 0.00139 0.24420 0.03336 -0.02485 -0.01246 1.00000 \n" - ] - } - ], - "source": [ - "C = QE_utils.merge_orbitals(alpha, beta)\n", - "\n", - "S = C.H() * C\n", - "print_mat(S)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### 8. QE_utils.orthogonalize_orbitals2(Ca, Cb)\n", - "\n", - "This is a special orthogonalization procedure - the one for 2-component spinors. The inputs are assumed to be the components for each orbital. The orthogonalization works such that it is S_aa + S_bb = I" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "path= Kpoint.1\n", - "path= Kpoint.1\n", - "path= Kpoint.2\n", - "path= Kpoint.2\n" - ] - } - ], - "source": [ - "alpha = QE_methods.read_qe_wfc(\"wd/res/x0.export/wfc.1\", [1,2,3,4], verbose=0)\n", - "beta = QE_methods.read_qe_wfc(\"wd/res/x0.export/wfc.2\", [1,2,3,4], verbose=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "S_aa\n", - " 0.49999 -0.00014 0.00006 -0.00007 \n", - "-0.00014 0.49999 -0.00010 0.00004 \n", - " 0.00006 -0.00010 0.50000 0.00016 \n", - "-0.00007 0.00004 0.00016 0.50000 \n", - "S_bb\n", - " 0.50001 0.00014 -0.00006 0.00007 \n", - " 0.00014 0.50001 0.00010 -0.00004 \n", - "-0.00006 0.00010 0.50000 -0.00016 \n", - " 0.00007 -0.00004 -0.00016 0.50000 \n", - "S_aa + S_bb\n", - " 1.00000 -0.00000 0.00000 -0.00000 \n", - "-0.00000 1.00000 -0.00000 0.00000 \n", - " 0.00000 -0.00000 1.00000 0.00000 \n", - "-0.00000 0.00000 0.00000 1.00000 \n", - "S_ab\n", - " 0.08657 -0.00003 0.00001 0.00004 \n", - "-0.00005 0.07869 0.00008 -0.00006 \n", - " 0.00003 -0.00004 -0.03377 0.00018 \n", - " 0.00004 0.00006 0.00040 0.12212 \n" - ] - } - ], - "source": [ - "alp, bet = QE_utils.orthogonalize_orbitals2(alpha, beta)\n", - "\n", - "S_aa = alp.H() * alp\n", - "S_bb = bet.H() * bet\n", - "print(\"S_aa\")\n", - "print_mat(S_aa)\n", - "\n", - "print(\"S_bb\")\n", - "print_mat(S_bb)\n", - "\n", - "print(\"S_aa + S_bb\")\n", - "print_mat(S_aa + S_bb)\n", - "\n", - "S_ab = alp.H() * bet\n", - "print(\"S_ab\")\n", - "print_mat(S_ab)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### 9. read_qe_wfc_grid(filename, verbose=0)\n", - "\n", - "Can be used to read the grid points for the given PW representation." - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "path= Kpoint.1\n" - ] - } - ], - "source": [ - "G1 = QE_methods.read_qe_wfc_grid(\"wd/res/x0.export/grid.1\", verbose=0)" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "36889\n" - ] - } - ], - "source": [ - "print(len(G1))" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0 \t 0.0 \t 0.0 \t 0.0\n", - "1 \t -1.0 \t 0.0 \t 0.0\n", - "2 \t 1.0 \t 0.0 \t 0.0\n", - "3 \t -2.0 \t 0.0 \t 0.0\n", - "4 \t 2.0 \t 0.0 \t 0.0\n", - "5 \t 0.0 \t -1.0 \t 0.0\n", - "6 \t 0.0 \t 0.0 \t -1.0\n", - "7 \t 0.0 \t 0.0 \t 1.0\n", - "8 \t 0.0 \t 1.0 \t 0.0\n", - "9 \t -1.0 \t -1.0 \t 0.0\n" - ] - } - ], - "source": [ - "for i in range(10):\n", - " print(F\"{i} \\t {G1[i].x} \\t {G1[i].y} \\t {G1[i].z}\")" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/notebooks/Example14_QE_methods/x0.exp.in b/notebooks/Example14_QE_methods/x0.exp.in deleted file mode 100755 index 031f278dc..000000000 --- a/notebooks/Example14_QE_methods/x0.exp.in +++ /dev/null @@ -1,10 +0,0 @@ -&inputpp - prefix = 'x0', - outdir = './', - pseudo_dir = './', - psfile(1) = 'Li.pbe-sl-rrkjus_psl.1.0.0.UPF', - psfile(2) = 'H.pbe-rrkjus_psl.1.0.0.UPF', - single_file = .FALSE., - ascii = .TRUE., - uspp_spsi = .FALSE., -/ diff --git a/notebooks/Example14_QE_methods/x0.scf.in b/notebooks/Example14_QE_methods/x0.scf.in deleted file mode 100755 index a3632ccc1..000000000 --- a/notebooks/Example14_QE_methods/x0.scf.in +++ /dev/null @@ -1,48 +0,0 @@ -&CONTROL - calculation = 'scf', - pseudo_dir = './', - outdir = './', - prefix = 'x0', - disk_io = 'low', - wf_collect = .true. -/ - -&SYSTEM - ibrav = 0, - nat = 2, - ntyp = 2, - nspin = 2, - starting_magnetization(1) = 0.1, - nbnd = 10, - ecutwfc = 40, - tot_charge = 0.0, - occupations = 'smearing', - smearing = 'gaussian', - degauss = 0.005, - nosym = .true., -/ - -&ELECTRONS - electron_maxstep = 300, - conv_thr = 1.D-5, - mixing_beta = 0.45, -/ - - -ATOMIC_SPECIES - Li 6.00 Li.pbe-sl-rrkjus_psl.1.0.0.UPF - H 1.00 H.pbe-rrkjus_psl.1.0.0.UPF - - -K_POINTS automatic - 1 1 1 0 0 0 - -CELL_PARAMETERS (angstrom) - 20.000000000 0.000000000 0.000000000 - 0.000000000 8.000000000 0.000000000 - 0.000000000 0.000000000 8.000000000 - -ATOMIC_POSITIONS (angstrom) -Li 0.00000 0.00000 0.00000 -H 1.50000 0.00000 0.00000 - diff --git a/notebooks/Example9_NAMD/step2_ergoscf/.gitignore b/notebooks/Example9_NAMD/step2_ergoscf/.gitignore deleted file mode 100755 index 571c6064c..000000000 --- a/notebooks/Example9_NAMD/step2_ergoscf/.gitignore +++ /dev/null @@ -1,10 +0,0 @@ -.ipynb_checkpoints -*.txt -*.bin -*.out -*.xyz -*.mtx -*.gab -res -restricted_* -unrestricted_* \ No newline at end of file diff --git a/notebooks/Example9_NAMD/step2_ergoscf/Debug.ipynb b/notebooks/Example9_NAMD/step2_ergoscf/Debug.ipynb deleted file mode 100755 index 2168c33de..000000000 --- a/notebooks/Example9_NAMD/step2_ergoscf/Debug.ipynb +++ /dev/null @@ -1,342 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Other examples (run for the debug purposes)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/alexey/miniconda2/envs/py37/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: to-Python converter for std::vector, std::allocator > > already registered; second conversion method ignored.\n", - " return f(*args, **kwds)\n", - "/home/alexey/miniconda2/envs/py37/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: to-Python converter for std::vector >, std::allocator > > > already registered; second conversion method ignored.\n", - " return f(*args, **kwds)\n", - "/home/alexey/miniconda2/envs/py37/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: to-Python converter for boost::python::detail::container_element >, std::allocator > > >, unsigned long, boost::python::detail::final_vector_derived_policies >, std::allocator > > >, false> > already registered; second conversion method ignored.\n", - " return f(*args, **kwds)\n", - "/home/alexey/miniconda2/envs/py37/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: to-Python converter for std::vector >, std::allocator > > > already registered; second conversion method ignored.\n", - " return f(*args, **kwds)\n", - "/home/alexey/miniconda2/envs/py37/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: to-Python converter for boost::python::detail::container_element >, std::allocator > > >, unsigned long, boost::python::detail::final_vector_derived_policies >, std::allocator > > >, false> > already registered; second conversion method ignored.\n", - " return f(*args, **kwds)\n", - "/home/alexey/miniconda2/envs/py37/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: to-Python converter for std::vector >, std::allocator > > > already registered; second conversion method ignored.\n", - " return f(*args, **kwds)\n", - "/home/alexey/miniconda2/envs/py37/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: to-Python converter for boost::python::detail::container_element >, std::allocator > > >, unsigned long, boost::python::detail::final_vector_derived_policies >, std::allocator > > >, false> > already registered; second conversion method ignored.\n", - " return f(*args, **kwds)\n", - "/home/alexey/miniconda2/envs/py37/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: to-Python converter for boost::python::detail::container_element, std::allocator > >, std::allocator, std::allocator > > > >, unsigned long, boost::python::detail::final_vector_derived_policies, std::allocator > >, std::allocator, std::allocator > > > >, false> > already registered; second conversion method ignored.\n", - " return f(*args, **kwds)\n" - ] - } - ], - "source": [ - "import os\n", - "import sys\n", - "\n", - "# Fisrt, we add the location of the library to test to the PYTHON path\n", - "if sys.platform==\"cygwin\":\n", - " from cyglibra_core import *\n", - "elif sys.platform==\"linux\" or sys.platform==\"linux2\":\n", - " from liblibra_core import *\n", - "import util.libutil as comn\n", - "from libra_py import ERGO_methods\n", - "from libra_py import units\n", - "from libra_py.workflows.nbra import step2_ergoscf\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Define two types of the ErgoSCF execution:\n", - "\n", - "* run1 - do the SCF calculations, for a regular geometry SCF\n", - "* run2 - do compute the overlaps only, for the dimer" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "def run1(EXE, COORDS):\n", - " inp = \"\"\"#!bin/sh\n", - "%s << EOINPUT > /dev/null\n", - "spin_polarization = 0\n", - "molecule_inline \n", - "%sEOF\n", - "basis = \"STO-3G\"\n", - "scf.create_mtx_file_S = 1\n", - "scf.create_mtx_files_F = 1\n", - "XC.sparse_mode = 1\n", - "run \"LDA\"\n", - "EOINPUT\n", - "\"\"\" % (EXE, COORDS)\n", - " \n", - " #print inp\n", - " return inp" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "def run2(EXE, COORDS):\n", - " inp = \"\"\"#!bin/sh\n", - "%s << EOINPUT > /dev/null\n", - "spin_polarization = 0\n", - "molecule_inline \n", - "%sEOF\n", - "basis = \"STO-3G\"\n", - "scf.create_basis_func_coord_file = 1\n", - "scf.create_mtx_file_S = 1\n", - "scf.create_mtx_files_S_and_quit = 1\n", - "XC.sparse_mode = 1\n", - "run \"LDA\"\n", - "EOINPUT\n", - "\"\"\" % (EXE, COORDS)\n", - " \n", - " #print inp\n", - " return inp" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1. Extract geometry and submit an SCF calculation\n", - "\n", - "Here is another example - just to submit the ErgoSCF calculation for a given geometry and run type" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "#!bin/sh\n", - "/mnt/c/cygwin/home/Alexey-user/Soft/ergo-3.8/source/ergo << EOINPUT > /dev/null\n", - "spin_polarization = 0\n", - "molecule_inline \n", - " Li 0.00000000 0.00000000 0.00000000\n", - " H 0.00000000 0.00000000 1.33200000\n", - "EOF\n", - "basis = \"STO-3G\"\n", - "scf.create_mtx_file_S = 1\n", - "scf.create_mtx_files_F = 1\n", - "XC.sparse_mode = 1\n", - "run \"LDA\"\n", - "EOINPUT\n", - "\n" - ] - }, - { - "data": { - "text/plain": [ - "0" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "EXE = \"/mnt/c/cygwin/home/Alexey-user/Soft/ergo-3.8/source/ergo\"\n", - "R = ERGO_methods.xyz_traj2gen_sp(\"md1.xyz\", 0)\n", - "command = run1(EXE, R)\n", - "print( command)\n", - "os.system(\"%s\" % (command))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Using the \"find_last_file\" to determine which file is the last - presumably it would contain the converged Fock matrix" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "11 F_matrix_11.mtx\n" - ] - } - ], - "source": [ - "i, filename = ERGO_methods.find_last_file(\"F_matrix_\", \".mtx\")\n", - "print( i, filename)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can read the produced matrices - in this case the Fock matrices. And we can specify which section of the matrix we want to read" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "F = ERGO_methods.get_mtx_matrices(filename)\n", - "F.show_matrix(\"F.txt\")\n", - "\n", - "F3 = ERGO_methods.get_mtx_matrices(filename, [0,1,2], [0,1,2])\n", - "F3.show_matrix(\"Fa.txt\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2. Run an SCF calculations for a single geometry\n", - "\n", - "Prety-much all of the above in a single step + cleanup" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "params = {\"EXE\":\"/mnt/c/cygwin/home/Alexey-user/Soft/ergo-3.8/source/ergo\", \"md_file\":\"md1.xyz\"}\n", - "i = 0\n", - "\n", - "E, MO = step2_ergoscf.do_step(i, params, run1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And we can print out the resulting matrices into a file" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "E.show_matrix(\"E0.txt\")\n", - "MO.show_matrix(\"MO.txt\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 3. Calculations of the AO overlaps between different geometries\n", - "\n", - "Get a geometry for a \"super-molecule\" composed of two snapshots" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Li 0.00000000 0.00000000 0.00000000\n", - " H 0.00000000 0.00000000 1.33200000\n", - " Li 0.00000000 0.00000000 0.00000000\n", - " H 0.00000000 0.00000000 1.33200000\n", - "\n" - ] - } - ], - "source": [ - "i = 0\n", - "R = ERGO_methods.xyz_traj2gen_ovlp(\"md1.xyz\", i, i+1)\n", - "print( R)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here is an example to run the calculation of the overlap matrix between AOs in the two adjacent geometries" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "params = {\"EXE\":\"/mnt/c/cygwin/home/Alexey-user/Soft/ergo-3.8/source/ergo\", \"md_file\":\"md1.xyz\"}\n", - "i = 0\n", - "\n", - "S11, S22, S12 = step2_ergoscf.do_ovlp(i, params, run2)\n", - "S12.show_matrix(\"S_sub.txt\")" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "#step2_ergoscf.clean()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/notebooks/Example9_NAMD/step2_ergoscf/Debug2.ipynb b/notebooks/Example9_NAMD/step2_ergoscf/Debug2.ipynb deleted file mode 100755 index 21e5d3917..000000000 --- a/notebooks/Example9_NAMD/step2_ergoscf/Debug2.ipynb +++ /dev/null @@ -1,347 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Other examples (run for the debug purposes)\n", - "\n", - "\n", - "This version is to debug the workflow without the Fock matrix diagonalization - the one where we would directly read in the orbitals produced by the ErgoSCF.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/alexey/miniconda2/envs/libra/lib/python2.7/site-packages/ipykernel_launcher.py:8: RuntimeWarning: to-Python converter for std::vector, std::allocator > > already registered; second conversion method ignored.\n", - " \n", - "/home/alexey/miniconda2/envs/libra/lib/python2.7/site-packages/ipykernel_launcher.py:8: RuntimeWarning: to-Python converter for std::vector >, std::allocator > > > already registered; second conversion method ignored.\n", - " \n", - "/home/alexey/miniconda2/envs/libra/lib/python2.7/site-packages/ipykernel_launcher.py:8: RuntimeWarning: to-Python converter for boost::python::detail::container_element >, std::allocator > > >, unsigned long, boost::python::detail::final_vector_derived_policies >, std::allocator > > >, false> > already registered; second conversion method ignored.\n", - " \n", - "/home/alexey/miniconda2/envs/libra/lib/python2.7/site-packages/ipykernel_launcher.py:8: RuntimeWarning: to-Python converter for std::vector >, std::allocator > > > already registered; second conversion method ignored.\n", - " \n", - "/home/alexey/miniconda2/envs/libra/lib/python2.7/site-packages/ipykernel_launcher.py:8: RuntimeWarning: to-Python converter for boost::python::detail::container_element >, std::allocator > > >, unsigned long, boost::python::detail::final_vector_derived_policies >, std::allocator > > >, false> > already registered; second conversion method ignored.\n", - " \n", - "/home/alexey/miniconda2/envs/libra/lib/python2.7/site-packages/ipykernel_launcher.py:8: RuntimeWarning: to-Python converter for std::vector >, std::allocator > > > already registered; second conversion method ignored.\n", - " \n", - "/home/alexey/miniconda2/envs/libra/lib/python2.7/site-packages/ipykernel_launcher.py:8: RuntimeWarning: to-Python converter for boost::python::detail::container_element >, std::allocator > > >, unsigned long, boost::python::detail::final_vector_derived_policies >, std::allocator > > >, false> > already registered; second conversion method ignored.\n", - " \n", - "/home/alexey/miniconda2/envs/libra/lib/python2.7/site-packages/ipykernel_launcher.py:8: RuntimeWarning: to-Python converter for boost::python::detail::container_element, std::allocator > >, std::allocator, std::allocator > > > >, unsigned long, boost::python::detail::final_vector_derived_policies, std::allocator > >, std::allocator, std::allocator > > > >, false> > already registered; second conversion method ignored.\n", - " \n" - ] - } - ], - "source": [ - "import os\n", - "import sys\n", - "\n", - "# Fisrt, we add the location of the library to test to the PYTHON path\n", - "if sys.platform==\"cygwin\":\n", - " from cyglibra_core import *\n", - "elif sys.platform==\"linux\" or sys.platform==\"linux2\":\n", - " from liblibra_core import *\n", - "import util.libutil as comn\n", - "from libra_py import ERGO_methods\n", - "from libra_py import units\n", - "from libra_py.workflows.nbra import step2_ergoscf\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Define two types of the ErgoSCF execution:\n", - "\n", - "* run1 - do the SCF calculations, for a regular geometry SCF\n", - "* run2 - do compute the overlaps only, for the dimer" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "def run1(EXE, COORDS):\n", - " inp = \"\"\"#!bin/sh\n", - "%s << EOINPUT > /dev/null\n", - "spin_polarization = 0\n", - "molecule_inline \n", - "%sEOF\n", - "basis = \"STO-3G\"\n", - "scf.create_mtx_file_S = 1\n", - "scf.create_mtx_files_F = 1\n", - "scf.output_homo_and_lumo_eigenvectors = 1\n", - "XC.sparse_mode = 1\n", - "run \"LDA\"\n", - "EOINPUT\n", - "\"\"\" % (EXE, COORDS)\n", - " \n", - " #print inp\n", - " return inp" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "def run2(EXE, COORDS):\n", - " inp = \"\"\"#!bin/sh\n", - "%s << EOINPUT > /dev/null\n", - "spin_polarization = 0\n", - "molecule_inline \n", - "%sEOF\n", - "basis = \"STO-3G\"\n", - "scf.create_basis_func_coord_file = 1\n", - "scf.create_mtx_file_S = 1\n", - "scf.create_mtx_files_S_and_quit = 1\n", - "XC.sparse_mode = 1\n", - "run \"LDA\"\n", - "EOINPUT\n", - "\"\"\" % (EXE, COORDS)\n", - " \n", - " #print inp\n", - " return inp" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1. Extract geometry and submit an SCF calculation\n", - "\n", - "Here is another example - just to submit the ErgoSCF calculation for a given geometry and run type" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "#!bin/sh\n", - "/mnt/c/cygwin/home/Alexey-user/Soft/ergo-3.7/source/ergo << EOINPUT > /dev/null\n", - "spin_polarization = 0\n", - "molecule_inline \n", - " Li 0.00000000 0.00000000 0.00000000\n", - " H 0.00000000 0.00000000 1.33200000\n", - "EOF\n", - "basis = \"STO-3G\"\n", - "scf.create_mtx_file_S = 1\n", - "scf.create_mtx_files_F = 1\n", - "scf.output_homo_and_lumo_eigenvectors = 1\n", - "XC.sparse_mode = 1\n", - "run \"LDA\"\n", - "EOINPUT\n", - "\n" - ] - }, - { - "data": { - "text/plain": [ - "0" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "EXE = \"/mnt/c/cygwin/home/Alexey-user/Soft/ergo-3.8/source/ergo\"\n", - "R = ERGO_methods.xyz_traj2gen_sp(\"md1.xyz\", 0)\n", - "command = run1(EXE, R)\n", - "print( command)\n", - "os.system(\"%s\" % (command))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Using the \"find_last_file\" to determine which file is the last - presumably it would contain the converged Fock matrix" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "12 F_matrix_12.mtx\n" - ] - } - ], - "source": [ - "i, filename = ERGO_methods.find_last_file(\"F_matrix_\", \".mtx\")\n", - "print( i, filename)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can read the produced matrices - in this case the Fock matrices. And we can specify which section of the matrix we want to read" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "F = ERGO_methods.get_mtx_matrices(filename)\n", - "F.show_matrix(\"F.txt\")\n", - "\n", - "F3 = ERGO_methods.get_mtx_matrices(filename, [0,1,2], [0,1,2])\n", - "F3.show_matrix(\"Fa.txt\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2. Run an SCF calculations for a single geometry\n", - "\n", - "Prety-much all of the above in a single step + cleanup" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "params = {\"EXE\":\"/mnt/c/cygwin/home/Alexey-user/Soft/ergo-3.8/source/ergo\", \"md_file\":\"md1.xyz\"}\n", - "i = 0\n", - "\n", - "E, MO = step2_ergoscf.do_step(i, params, run1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And we can print out the resulting matrices into a file" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "E.show_matrix(\"E0.txt\")\n", - "MO.show_matrix(\"MO.txt\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 3. Calculations of the AO overlaps between different geometries\n", - "\n", - "Get a geometry for a \"super-molecule\" composed of two snapshots" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Li 0.00000000 0.00000000 0.00000000\n", - " H 0.00000000 0.00000000 1.33200000\n", - " Li 0.00000000 0.00000000 0.00000000\n", - " H 0.00000000 0.00000000 1.33200000\n", - "\n" - ] - } - ], - "source": [ - "i = 0\n", - "R = ERGO_methods.xyz_traj2gen_ovlp(\"md1.xyz\", i, i+1)\n", - "print( R)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here is an example to run the calculation of the overlap matrix between AOs in the two adjacent geometries" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "params = {\"EXE\":\"/mnt/c/cygwin/home/Alexey-user/Soft/ergo-3.8/source/ergo\", \"md_file\":\"md1.xyz\"}\n", - "i = 0\n", - "\n", - "S11, S22, S12 = step2_ergoscf.do_ovlp(i, params, run2)\n", - "S12.show_matrix(\"S_sub.txt\")" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "#step2_ergoscf.clean()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/notebooks/Example9_NAMD/step2_ergoscf/RUN_NAC.ipynb b/notebooks/Example9_NAMD/step2_ergoscf/RUN_NAC.ipynb deleted file mode 100755 index 23e7f5e40..000000000 --- a/notebooks/Example9_NAMD/step2_ergoscf/RUN_NAC.ipynb +++ /dev/null @@ -1,459 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step2 with ErgoSCF\n", - "\n", - "This tutorial explains how to compute NACs along the pre-computed MD trajectories using ErgoSCF code \n", - "\n", - "We will consider several options:\n", - "\n", - "1. [Internal diagonalization, restricted](#case-1) \n", - "2. [Internal diagonalization, unrestricted](#case-2)\n", - "3. [Direct MO, restricted](#case-3)\n", - "4. [Direct MO, unrestricted](#case-4)\n", - "\n", - "#### Internal Diagonalization approach\n", - "\n", - "In this case, we would run SCF calculations until we reach its convergence. \n", - "We then read the last - converged - Fock matrix and diagonalize it. \n", - "As a result of the diagonalization, we obtain both orbital energies and MOs\n", - "\n", - "\n", - "#### Direct MO approach\n", - "\n", - "In this case, both MOs and orbital energies are produced by ErgoSCF\n", - "We simply read and use them.\n", - "Internally, this is done via a projection algorithm.\n", - "\n", - "\n", - "\n", - "\n", - "As of now (analyze the output of this tutorial), it seems that the two approaches may give somewhat different\n", - "orbital energies and NACs. This happens for some of the orbitals, but not for all. \n", - "\n", - "Also, we can observe that the two approaches may lead to different degree of the state (orbital) reordering \n", - "problem - in this example, the reordering with the first method (internal diagonalization) is of smaller issue than in \n", - "the second method (direct MO)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/alexey/miniconda2/envs/py37/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: to-Python converter for std::vector, std::allocator > > already registered; second conversion method ignored.\n", - " return f(*args, **kwds)\n", - "/home/alexey/miniconda2/envs/py37/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: to-Python converter for std::vector >, std::allocator > > > already registered; second conversion method ignored.\n", - " return f(*args, **kwds)\n", - "/home/alexey/miniconda2/envs/py37/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: to-Python converter for boost::python::detail::container_element >, std::allocator > > >, unsigned long, boost::python::detail::final_vector_derived_policies >, std::allocator > > >, false> > already registered; second conversion method ignored.\n", - " return f(*args, **kwds)\n", - "/home/alexey/miniconda2/envs/py37/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: to-Python converter for std::vector >, std::allocator > > > already registered; second conversion method ignored.\n", - " return f(*args, **kwds)\n", - "/home/alexey/miniconda2/envs/py37/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: to-Python converter for boost::python::detail::container_element >, std::allocator > > >, unsigned long, boost::python::detail::final_vector_derived_policies >, std::allocator > > >, false> > already registered; second conversion method ignored.\n", - " return f(*args, **kwds)\n", - "/home/alexey/miniconda2/envs/py37/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: to-Python converter for std::vector >, std::allocator > > > already registered; second conversion method ignored.\n", - " return f(*args, **kwds)\n", - "/home/alexey/miniconda2/envs/py37/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: to-Python converter for boost::python::detail::container_element >, std::allocator > > >, unsigned long, boost::python::detail::final_vector_derived_policies >, std::allocator > > >, false> > already registered; second conversion method ignored.\n", - " return f(*args, **kwds)\n", - "/home/alexey/miniconda2/envs/py37/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: to-Python converter for boost::python::detail::container_element, std::allocator > >, std::allocator, std::allocator > > > >, unsigned long, boost::python::detail::final_vector_derived_policies, std::allocator > >, std::allocator, std::allocator > > > >, false> > already registered; second conversion method ignored.\n", - " return f(*args, **kwds)\n" - ] - } - ], - "source": [ - "import os\n", - "import sys\n", - "\n", - "# Fisrt, we add the location of the library to test to the PYTHON path\n", - "if sys.platform==\"cygwin\":\n", - " from cyglibra_core import *\n", - "elif sys.platform==\"linux\" or sys.platform==\"linux2\":\n", - " from liblibra_core import *\n", - "import util.libutil as comn\n", - "from libra_py import ERGO_methods\n", - "from libra_py import units\n", - "from libra_py.workflows.nbra import step2_ergoscf\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### Case 1.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "First, lets define the function to run the ErgosCF calculations for each geometry. \n", - "\n", - "This function essentially defines the core of the input file to the ErgoSCF code. \n", - "\n", - "In this file we define all the key parameters, such as:\n", - "\n", - "* basis - in this case, STO-3G\n", - "* spin polarization - in this case we do non-spin-polarized calculations\n", - "* electronic structure method - in this case we use one of the pure density functionals \"LDA\"\n", - "\n", - "We also instruct ErgoSCF to produce Fock matrix in the AO basis (with the **scf.create_mtx_files_F = 1**), the AO overlap matrix (with the **scf.create_mtx_file_S = 1**)\n", - "\n", - "To ensure we take advantage of some parallelizaiton, we also instruct ErgoSCF to detect the number of available threads \n", - "(with the **set_nthreads(\"detect\")**)\n", - "\n", - "Note the \"Angstrom\" keyword following the \"molecule_inline\" - it indicates that the input is provided in Angstrom units.\n", - "If your input (e.g. in the xyz trajectory file) is in the a.u. (Bohr) units, just remove the \"Angstrom\" keyword\n", - "\n", - "All of the above parameters will be kept constant during the run, only the coordinates and the name of the executable will be changed in the run.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "def scf_restricted(EXE, COORDS):\n", - " inp = \"\"\"#!bin/sh\n", - "%s << EOINPUT > /dev/null\n", - "set_nthreads(\"detect\")\n", - "spin_polarization = 0\n", - "molecule_inline Angstrom\n", - "%sEOF\n", - "basis = \"STO-3G\"\n", - "use_simple_starting_guess=1\n", - "scf.create_mtx_files_F = 1\n", - "scf.create_mtx_file_S = 1\n", - "XC.sparse_mode = 1\n", - "run \"LDA\"\n", - "EOINPUT\n", - "\"\"\" % (EXE, COORDS)\n", - " return inp" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We also define a similar function to run the calculations for the \"weird\" geometry, when two snapshots are overlapped and form a \"super-molecule\". The super-molecule will be composed of the molecular geometries at two adjacent timesteps t and t+dt as extracted from the MD trajectory file. Then, the off-diagonal block matrix will contain the overlaps bettween AOs centered at displaced geometries - this is something we'll need to compute transition density matrices. \n", - "\n", - "Of course, the SCF on such a supermolecule doesn't make sense and will probably not converge. That's why we instruct ErgoSCF to just compute the AO matrix and quit (with **scf.create_mtx_files_S_and_quit = 1**), not to do the costly and meaningless SCF calculations." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "def compute_AO_overlaps(EXE, COORDS):\n", - " inp = \"\"\"#!bin/sh\n", - "%s << EOINPUT > /dev/null\n", - "spin_polarization = 0\n", - "molecule_inline Angstrom\n", - "%sEOF\n", - "basis = \"STO-3G\"\n", - "use_simple_starting_guess=1\n", - "scf.create_mtx_file_S = 1\n", - "scf.create_mtx_files_S_and_quit = 1\n", - "XC.sparse_mode = 1\n", - "run \"LDA\"\n", - "EOINPUT\n", - "\"\"\" % (EXE, COORDS)\n", - " return inp" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Ok, so now we can run the step2 calculations! \n", - "\n", - "\n", - "**IMPORTANT:** before running the \"run_step2\", don't forget to create the corresponding output directory, since this is where the results will be printed out.\n", - "\n", - "In this case:\n", - "\n", - "* we expect to produce the orbitals ourselves: (**\"direct_MO\":0**)\n", - "* because of this, the indexing of the active space orbitals is done in the absolute indexing convention: (**\"mo_indexing_convention\":\"abs\"**)\n", - "* we expect that SCF is done without spin polarization (as setup in the function above): (**\"spinpolarized\":0**)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "params = {\"EXE\":\"/mnt/c/cygwin/home/Alexey-user/Soft/ergo-3.8/source/ergo\", \"md_file\":\"md1.xyz\",\n", - " \"isnap\":0, \"fsnap\":5, \"dt\": 1.0 * units.fs2au,\n", - " \"out_dir\": \"restricted_indirect\",\n", - " \"mo_indexing_convention\":\"abs\", \"direct_MO\":0, \"spinpolarized\":0\n", - " }\n", - "\n", - "os.system(\"mkdir restricted_indirect\")\n", - "step2_ergoscf.run_step2(params, scf_restricted, compute_AO_overlaps)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### Case 2." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this case, we want to perfom spin-polarized calculation on a singlet.\n", - "\n", - "In ErgoSCF we can enforce such type of calculations with **scf.force_unrestricted = 1** \n", - "\n", - "Moreover, for the unrestricted calculations to be really meaningfull, we need to break the initial symmetry of orbitals. This is done via **scf.starting_guess_disturbance = 0.01**\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "def scf_unrestricted(EXE, COORDS):\n", - " inp = \"\"\"#!bin/sh\n", - "%s << EOINPUT > /dev/null\n", - "set_nthreads(\"detect\")\n", - "spin_polarization = 0\n", - "molecule_inline Angstrom\n", - "%sEOF\n", - "basis = \"STO-3G\"\n", - "use_simple_starting_guess=1\n", - "scf.create_mtx_files_F = 1\n", - "scf.create_mtx_file_S = 1\n", - "XC.sparse_mode = 1\n", - "scf.force_unrestricted = 1\n", - "scf.starting_guess_disturbance = 0.01\n", - "run \"LDA\"\n", - "EOINPUT\n", - "\"\"\" % (EXE, COORDS)\n", - " return inp" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**IMPORTANT:** before running the \"run_step2\", don't forget to create the corresponding output directory, since this is where the results will be printed out.\n", - "\n", - "According to our ErgoSCF setup, we also need to change some parameters in the **run_step2** function.\n", - "\n", - "In comparison to Case 1, in this case we change this:\n", - "\n", - "* we expect that SCF is done wit the spin polarization (as setup in the function above): (**\"spinpolarized\":1**)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "params = {\"EXE\":\"/mnt/c/cygwin/home/Alexey-user/Soft/ergo-3.8/source/ergo\", \"md_file\":\"md1.xyz\",\n", - " \"isnap\":0, \"fsnap\":5, \"dt\": 1.0 * units.fs2au,\n", - " \"out_dir\": \"unrestricted_indirect\",\n", - " \"mo_indexing_convention\":\"abs\", \"direct_MO\":0, \"spinpolarized\":1\n", - " }\n", - "\n", - "os.system(\"mkdir unrestricted_indirect\")\n", - "step2_ergoscf.run_step2(params, scf_unrestricted, compute_AO_overlaps)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### Case 3." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we are about to setup calculations in such as way that ErgoSCF would produce the orbital eigenvalues as well as corresponding orbitals. \n", - "\n", - "This is done with the function below. \n", - "\n", - "Note, it differs from that in Case 1 only by:\n", - "\n", - "* **scf.output_homo_and_lumo_eigenvectors = 1** - to request the printout of the orbitals and their eigenvalues\n", - "* **scf.number_of_occupied_eigenvectors = 2** - to setup how many occupied orbitals we want to produce. LiH molecule has only 4 electrons, so we can have only 2 occupied orbitals (H-1 and H), so we request 2. Don't set this number to larger than what can be accommodated, or the program may not work correctly.\n", - "* **scf.number_of_unoccupied_eigenvectors = 2** - to setup how many unoccupied orbitals we want to produce. This number is defined by the basis size. For instance, if using STO-3G on He2, one can not have any unoccupied orbitals, if using STO-3G on H2 or HF molecules, one can have only 1 unoccupied orbital. In this example, we have enough orbitals to have 2 unoccupied orbitals requested. Don't set this number to larger than what can be accommodated by the basis size, or the program may not work correctly.\n", - "* **scf.eigenvectors_method = \"projection\"** - this parameter has to be used, if the above key-words are defined. The default value for this parameters won't work." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "def scf_restricted_direct(EXE, COORDS):\n", - " inp = \"\"\"#!bin/sh\n", - "%s << EOINPUT > /dev/null\n", - "set_nthreads(\"detect\")\n", - "spin_polarization = 0\n", - "molecule_inline Angstrom\n", - "%sEOF\n", - "basis = \"STO-3G\"\n", - "use_simple_starting_guess=1\n", - "scf.create_mtx_files_F = 1\n", - "scf.create_mtx_file_S = 1\n", - "XC.sparse_mode = 1\n", - "\n", - "scf.output_homo_and_lumo_eigenvectors = 1\n", - "scf.number_of_occupied_eigenvectors = 2\n", - "scf.number_of_unoccupied_eigenvectors = 2\n", - "scf.eigenvectors_method = \"projection\"\n", - "\n", - "run \"LDA\"\n", - "EOINPUT\n", - "\"\"\" % (EXE, COORDS)\n", - " return inp" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we need to reflect the type of calculations in our **run_step2** function\n", - "\n", - "**IMPORTANT:** before running the \"run_step2\", don't forget to create the corresponding output directory, since this is where the results will be printed out.\n", - "\n", - "In this case:\n", - "\n", - "* we expect to read the MOs and orbital energies from ErgoSCF output: (**\"direct_MO\":1**)\n", - "* because of this, the indexing of the active space orbitals is done in the relative indexing convention: (**\"mo_indexing_convention\":\"rel\"**)\n", - "* we expect that SCF is done without spin polarization (as setup in the function above): (**\"spinpolarized\":0**)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "params = {\"EXE\":\"/mnt/c/cygwin/home/Alexey-user/Soft/ergo-3.8/source/ergo\", \"md_file\":\"md1.xyz\",\n", - " \"isnap\":0, \"fsnap\":5, \"dt\": 1.0 * units.fs2au,\n", - " \"out_dir\": \"restricted_direct\",\n", - " \"mo_indexing_convention\":\"rel\", \"direct_MO\":1, \"spinpolarized\":0\n", - " }\n", - "\n", - "os.system(\"mkdir restricted_direct\")\n", - "step2_ergoscf.run_step2(params, scf_restricted_direct, compute_AO_overlaps)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### Case 4." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is just a hybrid of Case 2 (how to setup spin-polarized calculations in ErgoSCF and run_step2) and Case 3 (how to setup direct MO calculations to be performed by ErgoSCF)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "def scf_unrestricted_direct(EXE, COORDS):\n", - " inp = \"\"\"#!bin/sh\n", - "%s << EOINPUT > /dev/null\n", - "set_nthreads(\"detect\")\n", - "spin_polarization = 0\n", - "molecule_inline Angstrom\n", - "%sEOF\n", - "basis = \"STO-3G\"\n", - "use_simple_starting_guess=1\n", - "scf.create_mtx_files_F = 1\n", - "scf.create_mtx_file_S = 1\n", - "XC.sparse_mode = 1\n", - "scf.force_unrestricted = 1\n", - "scf.starting_guess_disturbance = 0.01\n", - "\n", - "scf.output_homo_and_lumo_eigenvectors = 1\n", - "scf.number_of_occupied_eigenvectors = 2\n", - "scf.number_of_unoccupied_eigenvectors = 2\n", - "scf.eigenvectors_method = \"projection\"\n", - "\n", - "run \"LDA\"\n", - "EOINPUT\n", - "\"\"\" % (EXE, COORDS)\n", - " return inp" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "params = {\"EXE\":\"/mnt/c/cygwin/home/Alexey-user/Soft/ergo-3.8/source/ergo\", \"md_file\":\"md1.xyz\",\n", - " \"isnap\":0, \"fsnap\":5, \"dt\": 1.0 * units.fs2au,\n", - " \"out_dir\": \"unrestricted_direct\",\n", - " \"mo_indexing_convention\":\"rel\", \"direct_MO\":1, \"spinpolarized\":1\n", - " }\n", - "\n", - "os.system(\"mkdir unrestricted_direct\")\n", - "step2_ergoscf.run_step2(params, scf_unrestricted_direct, compute_AO_overlaps)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/notebooks/Example9_NAMD/step2_ergoscf/md.xyz b/notebooks/Example9_NAMD/step2_ergoscf/md.xyz deleted file mode 100755 index 67bb16aa2..000000000 --- a/notebooks/Example9_NAMD/step2_ergoscf/md.xyz +++ /dev/null @@ -1,832 +0,0 @@ - 30 -MD iter: 0 - N 0.00000000 0.00000000 0.00000000 5.35265036 0.11925028 -1.14252876 0.48406329 - C 0.00000000 0.00000000 1.33200000 3.63100845 -2.84822414 8.43674294 8.09023474 - N 1.15869600 0.00000000 1.99122600 5.47041579 -0.24383831 -3.51583834 1.34637857 - C 1.15343800 0.00000000 3.32371600 3.71838539 0.88537331 9.88469024 3.38388949 - N 0.12258100 0.00000000 4.13125900 5.41049288 -0.80035252 9.84638385 -3.15805938 - C -1.02650900 0.00000000 3.45958000 3.73637893 -9.54333892 -9.38854428 -1.23928837 - C -1.17971900 0.00000000 2.09334300 4.04810899 0.31992784 4.69747029 -5.68132352 - N -2.51701900 0.00000000 1.74589200 5.35674116 0.78945982 -0.05059585 -1.12497675 - C -3.13357200 0.00000000 2.86761600 3.86109978 1.11730412 -1.21563240 -0.62158833 - N -2.29477200 0.00000000 3.95220300 5.15359335 1.02582518 0.50143803 -0.90507054 - H 2.12786800 0.00000000 3.77960000 0.96662045 -1.03790950 -6.52336060 28.59804884 - H -4.19822800 0.00000000 2.98763400 0.93968856 -0.16281743 -20.98134038 -10.12386852 - H -2.54927200 0.00000000 4.91203600 0.78997067 2.90931847 40.57248908 -0.54930081 - H 0.86081100 0.00000000 -0.50695700 0.75932230 -8.48657795 7.76217429 11.72906710 - H -0.86479500 0.00000000 -0.48558800 0.78593426 17.46694152 9.50771109 -11.14550086 - O 2.78374100 0.00000000 -1.33221600 6.55412662 3.50100361 -7.79455191 -5.65077904 - C 3.82239700 0.00000000 -0.72169400 3.46135988 2.31887250 2.05539123 -1.81854485 - N 3.83031200 0.00000000 0.65248300 5.30433068 -2.40999520 -0.03617095 0.06710798 - C 4.92792000 0.00000000 1.46680700 3.36566367 -0.23525235 -9.98574364 -2.25544341 - N 6.12009800 0.00000000 0.79242600 5.22154176 4.35409158 -4.46832124 7.91079800 - C 6.20987200 0.00000000 -0.57883900 3.98225875 -3.92679912 -1.29077472 -1.70362513 - C 5.14004800 0.00000000 -1.37069500 4.15616704 2.57678031 -0.10040655 -5.33674678 - O 4.86530700 0.00000000 2.66226800 6.58627321 3.79858092 1.66544160 6.45637333 - C 5.19280500 0.00000000 -2.87166800 4.18036740 -2.10974240 0.77979737 -0.98196151 - H 6.93540900 0.00000000 1.36050100 0.77424755 -4.97615325 4.63205010 -4.70211173 - H 2.93060100 0.00000000 1.11907000 0.74327387 -21.67871352 -3.08546974 19.23613651 - H 7.21112200 0.00000000 -0.96739300 0.91937130 -8.48252294 11.52169592 0.68273152 - H 4.69216500 -0.87317200 -3.27495100 0.91482771 26.55156576 16.06863542 -4.48185798 - H 4.69064000 0.87230200 -3.27493700 0.91480305 0.65401318 -26.59066404 10.99162685 - H 6.21928800 0.00088600 -3.22100900 0.94097619 -21.71817976 2.55592549 -19.95606889 - 30 -MD iter: 1 - N 0.00011172 -0.00114253 -0.00007028 5.35886914 0.09237443 -1.14157052 -0.37384659 - C -0.00324340 0.00843674 1.34031920 3.62926648 -3.47752043 8.39944841 8.16734049 - N 1.15903328 -0.00351584 1.99222486 5.46560280 0.94757977 -3.49582532 0.73362974 - C 1.15509873 0.00988469 3.32721733 3.71656709 2.52293674 9.84007632 3.65963319 - N 0.12168563 0.00984638 4.12891081 5.41189178 -1.15259508 9.83854110 -1.57841048 - C -1.03676626 -0.00938854 3.45840753 3.73891214 -10.53530354 -9.29978931 -1.14368445 - C -1.17911782 0.00469747 2.08714551 4.04498564 0.69173522 4.67195083 -6.43730203 - N -2.51591473 -0.00005060 1.74362067 5.35467146 1.36728012 -0.05088757 -3.37166474 - C -3.13321587 -0.00121563 2.86804365 3.86510964 -0.43166250 -1.21697308 1.35824676 - N -2.29381169 0.00050144 3.95157893 5.14440031 0.72832056 0.48016961 -0.25460403 - H 2.13089065 -0.00652336 3.81040600 0.96753948 5.50617129 -6.25616895 31.39898155 - H -4.20138252 -0.02098134 2.97777910 0.93855482 -5.68792326 -20.83426898 -9.38161055 - H -2.54784436 0.04057249 4.91515062 0.78955364 0.20708556 40.41315722 5.93095009 - H 0.85543029 0.00776217 -0.49743107 0.76024178 -0.61485626 7.78934685 6.49906938 - H -0.85010505 0.00950771 -0.49874479 0.78600719 10.71214444 9.56913053 -15.42765364 - O 2.78637288 -0.00779454 -1.33830995 6.55504142 1.82291669 -7.78698666 -6.50097501 - C 3.82550864 0.00205535 -0.72343310 3.46241559 3.77479862 2.01986939 -1.68198058 - N 3.82750336 -0.00003617 0.65263674 5.30514971 -3.42202549 -0.04382190 0.37591808 - C 4.92762515 -0.00998575 1.46374254 3.36780747 -0.34526548 -9.93730176 -3.47992404 - N 6.12485642 -0.00446833 0.80017458 5.22269321 4.95220159 -4.48070558 7.29561007 - C 6.20654537 -0.00129077 -0.58032639 3.98699316 -2.66079780 -1.27788867 -1.11078806 - C 5.14218925 -0.00010042 -1.37647455 4.14825957 1.66987158 -0.10669898 -6.10056859 - O 4.86906247 0.00166544 2.66981637 6.59423529 3.70232556 1.65393080 8.36900362 - C 5.19079847 0.00078001 -2.87255841 4.18868752 -1.74656560 0.73881254 -0.66355032 - H 6.93459772 0.00463209 1.35731426 0.77213041 5.02003669 4.64948409 -0.34771448 - H 2.90464045 -0.00308546 1.14024501 0.74345381 -26.14519198 -3.06996562 20.69863795 - H 7.20531178 0.01152183 -0.96772527 0.91980176 -2.69988838 11.41007207 -1.49327600 - H 4.71819718 -0.85784883 -3.27984381 0.91157039 23.59636984 11.75584582 -6.15403915 - H 4.69077385 0.84645453 -3.26435590 0.90992084 -2.27436403 -21.93257763 8.76770339 - H 6.19820146 0.00344191 -3.24143458 0.93966646 -18.64038438 2.89830791 -20.88243293 - 30 -MD iter: 2 - N 0.00018475 -0.00228314 -0.00074769 5.36535777 0.05574466 -1.13626554 -0.86904223 - C -0.00695504 0.01679890 1.34833468 3.62723954 -3.72416500 8.28695012 7.47830685 - N 1.16059116 -0.00699165 1.99269326 5.46008095 2.16912667 -3.43494327 0.30278614 - C 1.15848387 0.01968015 3.33103527 3.71531137 4.31147207 9.70182045 4.04870127 - N 0.12027581 0.01967708 4.12810218 5.41391757 -1.78643568 9.81153387 -0.12610112 - C -1.04757961 -0.01859958 3.45729263 3.74158846 -10.61921372 -9.03212554 -1.12020940 - C -1.17833553 0.00934390 2.08046840 4.04025718 0.64297374 4.59185303 -6.61891105 - N -2.51428444 -0.00010178 1.73914867 5.35338250 1.79031547 -0.05111360 -5.41358051 - C -3.13443533 -0.00243395 2.87033249 3.87069861 -2.01423012 -1.22268219 2.98165037 - N -2.29331536 0.00096034 3.95169379 5.13345117 0.05751246 0.43177656 0.64974255 - H 2.13888034 -0.01251234 3.84239796 0.96837524 8.39364285 -5.41179479 30.73833194 - H -4.20960385 -0.04166854 2.96887078 0.93730630 -9.68348870 -20.36800875 -8.26570073 - H -2.54885783 0.08082631 4.92389790 0.78950056 -1.60090788 39.76418226 9.49789236 - H 0.85958129 0.01557869 -0.49395886 0.76066080 8.75045298 7.86577590 0.69660434 - H -0.84337071 0.01913826 -0.51644331 0.78620468 3.17258853 9.74660429 -19.32560581 - O 2.78738683 -0.01557397 -1.34521795 6.55764554 0.32568350 -7.76252014 -7.24302783 - C 3.82994660 0.00403974 -0.72505796 3.46438980 4.87234523 1.91172174 -1.62339343 - N 3.82346795 -0.00008764 0.65323484 5.30533754 -4.78044136 -0.06800499 0.91457351 - C 4.92722947 -0.01987460 1.45984715 3.37089167 -0.44351342 -9.78640636 -3.85863682 - N 6.13000240 -0.00896141 0.80701722 5.22105783 5.27984236 -4.51659252 6.23577283 - C 6.20455040 -0.00255578 -0.58106058 3.99086558 -1.25121023 -1.23898756 -0.29072980 - C 5.14338774 -0.00021340 -1.38289614 4.13997863 0.75863554 -0.12528794 -6.57914615 - O 4.87271165 0.00330786 2.67900601 6.60264881 3.59047607 1.61473869 9.69166211 - C 5.18931187 0.00147763 -2.87299510 4.19336128 -1.12186737 0.62001217 -0.17343309 - H 6.94544907 0.00929897 1.35980557 0.77075039 16.05476281 4.69234361 5.17396407 - H 2.87831062 -0.00613993 1.16046728 0.74307402 -23.25739239 -3.00573812 17.74594227 - H 7.20572222 0.02282014 -0.97037955 0.92103094 3.13653938 11.06728239 -3.62747576 - H 4.73935774 -0.84966031 -3.28725908 0.90975486 17.47792837 2.84284415 -9.10944514 - H 4.68609127 0.82843684 -3.25740159 0.90687012 -8.40597401 -12.05511298 4.21527372 - H 6.18200723 0.00668262 -3.26277387 0.93901024 -12.61488926 3.93878040 -21.59438173 - 30 -MD iter: 3 - N 0.00022321 -0.00341506 -0.00180837 5.37133561 0.05435332 -1.11529954 -1.28468324 - C -0.01069173 0.02501064 1.35527581 3.62523068 -3.49228513 8.09855818 6.06659365 - N 1.16337153 -0.01038572 1.99283044 5.45556555 3.35939872 -3.33057740 0.07790642 - C 1.16372167 0.02928833 3.33531474 3.71539058 6.14781598 9.46383867 4.57964065 - N 0.11811276 0.02946945 4.12865860 5.41658201 -2.59813407 9.75886682 1.11832228 - C -1.05800469 -0.02745280 3.45616711 3.74421485 -9.78816336 -8.58530822 -1.15412385 - C -1.17783188 0.01388118 2.07390769 4.03424741 0.13253437 4.45102692 -6.21813804 - N -2.51233410 -0.00015282 1.73279351 5.35288013 1.96907079 -0.05027612 -7.05321853 - C -3.13724433 -0.00366100 2.87400695 3.87762520 -3.57830930 -1.23635460 4.05211315 - N -2.29369666 0.00136499 3.95287842 5.12266214 -1.02073191 0.38785395 1.87668578 - H 2.14767793 -0.01734695 3.87188266 0.96807307 7.36928103 -3.93419324 26.59200802 - H -4.22074950 -0.06171736 2.96124770 0.93586831 -11.27007122 -19.52805887 -6.83179546 - H -2.55104618 0.12010085 4.93414641 0.78945731 -2.06977584 38.27588832 8.73533010 - H 0.87293119 0.02349372 -0.49603786 0.76082892 16.01900816 7.92816013 -3.63530625 - H -0.84375987 0.02900092 -0.53739600 0.78650698 -2.22090005 9.97827046 -21.14990605 - O 2.78702425 -0.02331958 -1.35279601 6.56094549 -0.88929794 -7.71663446 -7.81574046 - C 3.83525333 0.00587880 -0.72667989 3.46729082 5.44554075 1.72724472 -1.69363602 - N 3.81794248 -0.00017218 0.65446589 5.30463991 -6.27127991 -0.11028721 1.57682716 - C 4.92673812 -0.02955856 1.45602526 3.37484019 -0.54158041 -9.52310437 -3.34682729 - N 6.13541610 -0.01350151 0.81264613 5.21741324 5.62397561 -4.56860333 5.00363960 - C 6.20404295 -0.00376875 -0.58090785 3.99352661 0.31316431 -1.17221039 0.57347552 - C 5.14370652 -0.00035099 -1.38963284 4.13205147 -0.02839093 -0.15432678 -6.69697973 - O 4.87624342 0.00489492 2.68919969 6.60985633 3.47029560 1.53914327 10.37415818 - C 5.18855473 0.00202003 -2.87290528 4.19238166 -0.39539223 0.45607022 0.22535614 - H 6.96670724 0.01401678 1.36766219 0.76994159 23.75281835 4.67540492 9.05457482 - H 2.85812566 -0.00909694 1.17573690 0.74172327 -15.31071815 -2.87252246 11.58388443 - H 7.21158486 0.03365639 -0.97498022 0.92283842 7.52572197 10.46271343 -5.10581775 - H 4.75315304 -0.85216314 -3.29806270 0.91018143 9.87022892 -7.88989160 -12.20045918 - H 4.67396191 0.82234430 -3.25592535 0.90663654 -15.97161435 -0.13034807 -1.29130241 - H 6.17297168 0.01131947 -3.28462334 0.93926429 -5.27739425 5.64458243 -21.62398179 - 30 -MD iter: 4 - N 0.00029346 -0.00451374 -0.00331706 5.37620500 0.14721565 -1.06034743 -1.84067499 - C -0.01393961 0.03299601 1.36046787 3.62375363 -2.74835131 7.83440425 4.06842523 - N 1.16730996 -0.01365281 1.99284907 5.45355992 4.45140689 -3.17852000 0.06246257 - C 1.17077951 0.03860783 3.34019455 3.71722632 7.83374536 9.12789048 5.21202574 - N 0.11507954 0.03919482 4.13033882 5.41969993 -3.46037360 9.67565750 2.10292795 - C -1.06715593 -0.03577020 3.45498438 3.74666005 -8.16411542 -7.96386114 -1.21367028 - C -1.17807046 0.01824596 2.06803212 4.02738514 -0.79907367 4.24621375 -5.29793804 - N -2.51034630 -0.00020233 1.72504223 5.35305022 1.84458228 -0.04812541 -8.15820619 - C -3.14159194 -0.00490666 2.87843672 3.88543990 -5.04440271 -1.26009900 4.46738919 - N -2.29535682 0.00173605 3.95544716 5.11397610 -2.44591988 0.36972256 3.32917526 - H 2.15361890 -0.02038072 3.89558198 0.96594165 3.51504459 -1.85369169 19.75572024 - H -4.23214399 -0.08072466 2.95520719 0.93415601 -10.33335381 -18.27659876 -5.11370286 - H -2.55299738 0.15737809 4.94136856 0.78902587 -1.33109804 35.73320211 4.18510773 - H 0.89161930 0.03143501 -0.50122947 0.76103402 18.58286479 7.84689988 -5.13728443 - H -0.84781251 0.03909480 -0.55874312 0.78682829 -3.71407336 10.14739812 -19.84384452 - O 2.78560824 -0.03100724 -1.36084943 6.56386135 -1.76228797 -7.64399010 -8.18114650 - C 3.84083768 0.00749423 -0.72844523 3.47099406 5.39786082 1.46320647 -1.91162231 - N 3.81092539 -0.00030822 0.65638849 5.30269318 -7.63197529 -0.17075213 2.23412297 - C 4.92614631 -0.03892081 1.45315350 3.37952252 -0.64423108 -9.14089037 -2.02916138 - N 6.14125035 -0.01809862 0.81702450 5.21292210 6.16205600 -4.62399819 3.81302066 - C 6.20517673 -0.00490020 -0.57991363 3.99509301 2.00531389 -1.07452658 1.32477913 - C 5.14333096 -0.00052205 -1.39629010 4.12509865 -0.58266861 -0.18944656 -6.40141999 - O 4.87965224 0.00638615 2.69975432 6.61446532 3.34610386 1.42070146 10.44375311 - C 5.18852108 0.00238977 -2.87254439 4.18571911 0.21566947 0.30532229 0.21189865 - H 6.99295471 0.01864978 1.37791472 0.76929323 25.25755734 4.44063799 9.48987760 - H 2.84768918 -0.01188498 1.18363504 0.73923753 -5.21228148 -2.67836333 3.84065486 - H 7.22077367 0.04374557 -0.98059119 0.92466972 9.47413508 9.55231895 -5.50868176 - H 4.75909820 -0.86544009 -3.31166000 0.91287021 2.72889854 -16.98603883 -13.97281279 - H 4.65414804 0.82817615 -3.25998420 0.90924882 -22.48089751 9.77343474 -5.95392970 - H 6.17145244 0.01797178 -3.30602183 0.94036914 1.46964409 7.86145956 -20.41918477 - 30 -MD iter: 5 - N 0.00051765 -0.00553575 -0.00548972 5.37945145 0.37473282 -0.95808835 -2.60130513 - C -0.01618843 0.04067945 1.36341266 3.62339078 -1.53799433 7.49465914 1.68596861 - N 1.17227434 -0.01674276 1.99295536 5.45451130 5.38145521 -2.97373817 0.24187247 - C 1.17938916 0.04754411 3.34573879 3.72085586 9.12707295 8.70603657 5.84848038 - N 0.11119201 0.04882077 4.13286446 5.42284511 -4.24600066 9.55946347 2.80472019 - C -1.07433292 -0.04338052 3.45373977 3.74879981 -5.97898049 -7.17597139 -1.24764507 - C -1.17943002 0.02237360 2.06331181 4.02021470 -2.02415948 3.97875557 -3.98706437 - N -2.50864493 -0.00024907 1.71647709 5.35368675 1.39360058 -0.04531545 -8.67049367 - C -3.14733313 -0.00618119 2.88294173 3.89342705 -6.30971534 -1.29150379 4.22747374 - N -2.29858850 0.00210444 3.95953677 5.10888480 -4.07505980 0.37236956 4.78341163 - H 2.15470802 -0.02105433 3.91139410 0.96182146 -1.22417022 0.68758228 11.62076142 - H -4.24141621 -0.09827056 2.95102029 0.93215106 -7.52362983 -16.63409376 -3.14473617 - H -2.55370837 0.19156726 4.94251662 0.78793490 0.04643572 32.25535626 -2.15668737 - H 0.91009692 0.03918752 -0.50631243 0.76145745 15.85356796 7.51299740 -3.66495514 - H -0.85118802 0.04929571 -0.57708369 0.78700615 -1.31125663 10.16705739 -15.45656460 - O 2.78349968 -0.03860756 -1.36915830 6.56566631 -2.27605581 -7.54018144 -8.32663311 - C 3.84604905 0.00880521 -0.73050313 3.47522288 4.70744130 1.11851198 -2.26622998 - N 3.80267853 -0.00051368 0.65893413 5.29958372 -8.61239041 -0.24841778 2.76757561 - C 4.92544966 -0.04784034 1.45196694 3.38466257 -0.74579251 -8.63805343 -0.08073784 - N 6.14774021 -0.02274951 0.82027217 5.20876397 6.87540289 -4.67347519 2.75834167 - C 6.20805358 -0.00591780 -0.57825829 3.99594501 3.74648089 -0.94495751 1.85835000 - C 5.14254118 -0.00072988 -1.40243568 4.11964198 -0.82904114 -0.22456411 -5.67545469 - O 4.88293563 0.00773632 2.71008720 6.61567418 3.22021291 1.25661027 9.97926085 - C 5.18898607 0.00263068 -2.87248148 4.17541894 0.54483408 0.20560810 -0.44483436 - H 7.01722236 0.02289805 1.38664194 0.76841705 20.41838816 3.87806620 6.40202146 - H 2.84770110 -0.01445367 1.18341821 0.73593627 4.26674403 -2.45432316 -3.85082527 - H 7.23053313 0.05276103 -0.98599759 0.92587781 8.79952014 8.31665550 -4.73429244 - H 4.75861084 -0.88613522 -3.32600833 0.91703295 -2.39849051 -21.66941055 -13.29900664 - H 4.62900011 0.84189117 -3.26783321 0.91376576 -25.86445115 14.58966322 -8.39716168 - H 6.17591097 0.02704239 -3.32546171 0.94195200 6.01202616 10.33361662 -17.55440444 - 30 -MD iter: 6 - N 0.00104292 -0.00642992 -0.00851967 5.38064914 0.74799632 -0.80852788 -3.48317536 - C -0.01701560 0.04798533 1.36383981 3.62460496 0.01608855 7.07872439 -0.84365368 - N 1.17807287 -0.01960028 1.99333282 5.45756856 6.09768341 -2.71153227 0.58776554 - C 1.18903365 0.05601990 3.35189151 3.72598687 9.80166450 8.21899723 6.36335766 - N 0.10658754 0.05831374 4.13594826 5.42541651 -4.84591888 9.41024247 3.22719855 - C -1.07911389 -0.05012214 3.45248909 3.75048403 -3.53190349 -6.23236038 -1.19239551 - C -1.18211878 0.02620347 2.06005799 4.01334666 -3.34335172 3.65537880 -2.46233918 - N -2.50755910 -0.00029296 1.70770125 5.35451941 0.62623044 -0.04329854 -8.59895691 - C -3.15421137 -0.00748966 2.88689167 3.90066816 -7.26553465 -1.32279790 3.41861291 - N -2.30350694 0.00248079 3.96501399 5.10814503 -5.71805753 0.36313091 5.96314178 - H 2.15117056 -0.01900556 3.91882350 0.95607200 -4.67196230 3.46274418 3.81186291 - H -4.24719125 -0.11399284 2.94891772 0.92992824 -4.01165701 -14.69412045 -0.98340343 - H -2.55290451 0.22188880 4.93705519 0.78615409 1.30345916 28.30586409 -7.70259033 - H 0.92332644 0.04646101 -0.50855938 0.76205074 9.08330333 6.90399064 -0.11403845 - H -0.85043502 0.05942892 -0.58965625 0.78683898 3.54721513 10.04043470 -9.03675476 - O 2.78105613 -0.04608761 -1.37750270 6.56624380 -2.45015716 -7.40307955 -8.26244485 - C 3.85025256 0.00973125 -0.73297769 3.47955053 3.42384262 0.69520911 -2.72332302 - N 3.79370061 -0.00080505 0.66192364 5.29614949 -8.99352744 -0.34135306 3.07513831 - C 4.92465472 -0.05619692 1.45299202 3.38978115 -0.83278282 -8.01771223 2.27491935 - N 6.15500116 -0.02744557 0.82254118 5.20587996 7.58844916 -4.71661570 1.83417395 - C 6.21266969 -0.00679011 -0.57619693 3.99649054 5.41216339 -0.78714364 2.12829726 - C 5.14167288 -0.00097118 -1.40764101 4.11614523 -0.73292592 -0.25324875 -4.54601690 - O 4.88609267 0.00889937 2.71971285 6.61340298 3.09372256 1.04781554 9.08672549 - C 5.18961075 0.00280098 -2.87343406 4.16464818 0.52426468 0.16710605 -1.79273853 - H 7.03379149 0.02640591 1.39071876 0.76717404 11.32586347 3.00182157 1.07975393 - H 2.85622267 -0.01679362 1.17593339 0.73255902 10.58926480 -2.24966030 -9.94955252 - H 7.23837271 0.06037888 -0.99005977 0.92600475 6.14223800 6.79049735 -3.01302848 - H 4.75430122 -0.90877891 -3.33825801 0.92135845 -4.74951023 -20.70165528 -9.80528408 - H 4.60241914 0.85735548 -3.27677852 0.91870968 -25.13386648 13.15459546 -8.08734411 - H 6.18347650 0.03863901 -3.34113064 0.94346879 7.48339452 12.76447183 -12.93758059 - 30 -MD iter: 7 - N 0.00201364 -0.00715281 -0.01245607 5.37958723 1.25353864 -0.62623065 -4.31696003 - C -0.01615626 0.05483690 1.36172535 3.62757954 1.73788483 6.58521382 -3.28069747 - N 1.18446971 -0.02216583 1.99413089 5.46111088 6.56666679 -2.38882244 1.06242857 - C 1.19899249 0.06398211 3.35846550 3.73199552 9.70204506 7.69135698 6.63944188 - N 0.10150017 0.06764125 4.13931886 5.42680639 -5.17840310 9.22995125 3.39628722 - C -1.08139673 -0.05584524 3.45135498 3.75155482 -1.13409448 -5.14635509 -0.98724718 - C -1.18611673 0.02968436 2.05838713 4.00737152 -4.52321366 3.28775609 -0.92040432 - N -2.50739247 -0.00033567 1.69927918 5.35525717 -0.42045612 -0.04401290 -8.00165327 - C -3.16186420 -0.00882679 2.88977896 3.90619549 -7.82244408 -1.34263260 2.18218968 - N -2.31002462 0.00283070 3.97146305 5.11170290 -7.18371392 0.29303592 6.61903780 - H 2.14536410 -0.01412885 3.91901783 0.94950873 -5.04492307 6.22521638 -2.21987883 - H -4.24943952 -0.12765880 2.94905349 0.92767001 -1.10602597 -12.60411627 1.27338787 - H -2.55110145 0.24817899 4.92711144 0.78391440 1.73956848 24.54766302 -10.12437275 - H 0.92826353 0.05299550 -0.50654050 0.76256059 0.59530721 6.09762955 4.06780320 - H -0.84409359 0.06937658 -0.59515720 0.78620239 8.69064645 9.87251051 -2.19904844 - O 2.77859936 -0.05341372 -1.38568319 6.56599108 -2.33174301 -7.23341631 -8.01605306 - C 3.85289673 0.01019563 -0.73594978 3.48340315 1.65808581 0.19868949 -3.23568287 - N 3.78469147 -0.00119639 0.66508441 5.29380946 -8.61042676 -0.44669045 3.07950200 - C 4.92378410 -0.06387577 1.45651678 3.39420389 -0.88992399 -7.28746760 4.79989445 - N 6.16291711 -0.03218274 0.82394052 5.20486782 8.05892729 -4.76183218 0.98194642 - C 6.21887791 -0.00749209 -0.57400170 3.99695861 6.85378187 -0.60995497 2.13928212 - C 5.14107533 -0.00123638 -1.41152772 4.11505053 -0.30007461 -0.26987601 -3.08364422 - O 4.88912307 0.00983195 2.72826065 6.60819156 2.96692856 0.79847723 7.88348580 - C 5.19003460 0.00296489 -2.87606695 4.15649502 0.18247261 0.18724531 -3.67744631 - H 7.03987408 0.02890169 1.38880145 0.76573844 1.19335891 1.95181430 -4.54770444 - H 2.86887963 -0.01895299 1.16351910 0.72992201 11.58862958 -2.12537512 -13.12503458 - H 7.24281760 0.06634203 -0.99202364 0.92495408 2.72239555 5.06830882 -0.82535331 - H 4.74911182 -0.92753853 -3.34561890 0.92446091 -4.40462042 -14.59193378 -3.98162233 - H 4.57873238 0.86820036 -3.28400790 0.92250861 -20.51634729 6.18317728 -5.34633310 - H 6.19087776 0.05257133 -3.35133687 0.94442725 5.96516460 14.88935371 -6.91982921 - 30 -MD iter: 8 - N 0.00355000 -0.00768238 -0.01715359 5.37637051 1.85464401 -0.43699833 -4.91346371 - C -0.01353983 0.06115576 1.35727841 3.63212664 3.43582037 6.01299567 -5.41175141 - N 1.19120620 -0.02437793 1.99545767 5.46366714 6.77662297 -2.00521062 1.62250335 - C 1.20843774 0.07140262 3.36517039 3.73793861 8.78910312 7.14496171 6.60612349 - N 0.09623073 0.07677365 4.14274084 5.42660776 -5.19135758 9.02217445 3.35542073 - C -1.08138208 -0.06041485 3.45051460 3.75188771 0.94374676 -3.93512645 -0.59310927 - C -1.19116521 0.03277898 2.05821718 4.00279043 -5.34597978 2.89084438 0.45444474 - N -2.50840001 -0.00038098 1.69169794 5.35566291 -1.68923790 -0.04945178 -6.96544261 - C -3.16985626 -0.01017493 2.89125605 3.90917693 -7.93668593 -1.33984839 0.68042297 - N -2.31787437 0.00306686 3.97825206 5.11882034 -8.32538865 0.11864037 6.60697884 - H 2.14108072 -0.00655513 3.91438374 0.94326801 -1.53050591 8.79138766 -5.60098768 - H -4.24940330 -0.13920108 2.95146449 0.92567294 0.15524763 -10.51926298 3.49288307 - H -2.54942537 0.27098413 4.91680644 0.78161877 0.94983738 21.56881848 -8.18367724 - H 0.92451705 0.05865627 -0.50042378 0.76270459 -6.90571696 5.25232459 7.29797510 - H -0.83305373 0.07917394 -0.59405435 0.78516325 11.90358318 9.84416321 3.36898845 - O 2.77639264 -0.06055444 -1.39353480 6.56543016 -1.98742950 -7.03468643 -7.62641259 - C 3.85356873 0.01012863 -0.73944906 3.48610168 -0.43019254 -0.36253885 -3.75098326 - N 3.77647975 -0.00169843 0.66808265 5.29408104 -7.41215295 -0.56143489 2.75587400 - C 4.92287488 -0.07077185 1.46259181 3.39714387 -0.90605931 -6.45929360 7.26671761 - N 6.17111901 -0.03696923 0.82450508 5.20598483 8.05598363 -4.82335914 0.12625031 - C 6.22637726 -0.00801002 -0.57191836 3.99723869 7.92934143 -0.42596915 1.93082243 - C 5.14107273 -0.00151093 -1.41380829 4.11674169 0.42752799 -0.27009610 -1.39294705 - O 4.89202653 0.01049632 2.73547982 6.60091846 2.83952166 0.51529154 6.48933911 - C 5.18997570 0.00317547 -2.88078895 4.15304221 -0.37152430 0.25146572 -5.78159659 - H 7.03617820 0.03030954 1.38162335 0.76447850 -6.60567714 0.95509816 -8.48821758 - H 2.87939993 -0.02104437 1.14968333 0.72849095 6.17913771 -2.13469587 -12.67330865 - H 7.24381750 0.07051550 -0.99171048 0.92300454 -0.04457715 3.28425071 1.24054158 - H 4.74549198 -0.93796278 -3.34622125 0.92534507 -2.11998625 -5.28488508 2.99344599 - H 4.56138645 0.86972183 -3.28747119 0.92400617 -13.33854786 -4.09953985 -1.19780362 - H 6.19540682 0.06841772 -3.35497030 0.94451559 2.37447361 16.53064205 -0.25089926 - 30 -MD iter: 9 - N 0.00572293 -0.00802681 -0.02228299 5.37139083 2.48563529 -0.27127684 -5.12466165 - C -0.00928462 0.06686289 1.35090185 3.63768061 4.94165790 5.36291279 -7.07048990 - N 1.19802296 -0.02617625 1.99737590 5.46450619 6.73570820 -1.56354021 2.22256309 - C 1.21657070 0.07827203 3.37167775 3.74275709 7.16662821 6.59325180 6.26658250 - N 0.09111746 0.08568560 4.14602970 5.42475861 -4.86108523 8.79185609 3.15991814 - C -1.07950924 -0.06371549 3.45016876 3.75143371 2.50756607 -2.62085578 -0.00709649 - C -1.19680869 0.03546605 2.05929602 3.99997960 -5.65581521 2.48038207 1.51879693 - N -2.51077095 -0.00043457 1.68534830 5.35559988 -3.10817478 -0.06121917 -5.58857253 - C -3.17773757 -0.01150649 2.89113980 3.90907359 -7.62990807 -1.30794470 -0.93140083 - N -2.32667539 0.00306798 3.98467701 5.12836933 -9.07270672 -0.17094920 5.94929466 - H 2.14230309 0.00345393 3.90781585 0.93850795 5.32101640 11.10521373 -6.31553732 - H -4.24912903 -0.14869732 2.95603925 0.92431633 -0.66630083 -8.54633829 5.51733053 - H -2.54920178 0.29131662 4.91074409 0.77967865 -1.00091161 19.53871589 -2.41270505 - H 0.91445210 0.06350015 -0.49194455 0.76234179 -10.88863456 4.56947922 8.17399165 - H -0.82028642 0.08906491 -0.58841922 0.78396296 11.57089559 10.15186596 6.40341796 - O 2.77462450 -0.06748309 -1.40093601 6.56486695 -1.49650744 -6.81260548 -7.13902678 - C 3.85203635 0.00947055 -0.74345174 3.48698742 -2.64839665 -0.97717189 -4.21682788 - N 3.76986717 -0.00231926 0.67059616 5.29809512 -5.54178507 -0.68450580 2.17110448 - C 4.92197198 -0.07679435 1.47105022 3.39787231 -0.87696613 -5.54976454 9.47091380 - N 6.17902908 -0.04182946 0.82419302 5.20919313 7.42544258 -4.91631943 -0.79233890 - C 6.23473659 -0.00834403 -0.57014005 3.99684369 8.53693145 -0.24836969 1.55908761 - C 5.14193038 -0.00177657 -1.41431361 4.12141383 1.37721448 -0.25067716 0.40227091 - O 4.89480212 0.01086254 2.74123933 6.59248178 2.71075214 0.20701113 5.02389890 - C 5.18929155 0.00346782 -2.88763015 4.15509075 -0.98493504 0.34139855 -7.71445435 - H 7.02666273 0.03081189 1.37182502 0.76377722 -9.39963503 0.25863204 -9.18892897 - H 2.88123790 -0.02322238 1.13817248 0.72824048 -4.52828964 -2.28706109 -9.10773461 - H 7.24272845 0.07291053 -0.98954256 0.92070718 -0.97048479 1.57498291 2.65809512 - H 4.74487184 -0.93810830 -3.33963200 0.92367884 0.98164062 4.49290530 9.62387514 - H 4.55205528 0.86000128 -3.28640350 0.92276981 -5.57374327 -14.73436911 3.00171620 - H 6.19562671 0.08563262 -3.35183867 0.94362437 -1.86543637 17.62090595 6.09643214 - 30 -MD iter: 10 - N 0.00852127 -0.00822493 -0.02740291 5.36521339 3.05538370 -0.15271556 -4.90664676 - C -0.00365651 0.07188158 1.34313743 3.64342680 6.13758508 4.63943064 -8.14756611 - N 1.20467762 -0.02750501 1.99990280 5.46350447 6.46643711 -1.06988686 2.81919246 - C 1.22277100 0.08458912 3.37770356 3.74563162 5.07093593 6.04030770 5.69862261 - N 0.08650856 0.09435736 4.14906067 5.42151475 -4.19049217 8.54493872 2.87029077 - C -1.07636695 -0.06565656 3.45050041 3.75022765 3.45260858 -1.23044168 0.73329487 - C -1.20247684 0.03773974 2.06125478 3.99919277 -5.38623023 2.07030982 2.18821638 - N -2.51461636 -0.00050342 1.68052079 5.35504986 -4.59466270 -0.08018488 -3.96952610 - C -3.18511608 -0.01279082 2.88939324 3.90572153 -6.99428541 -1.24848307 -2.51999285 - N -2.33601978 0.00272496 3.99015065 5.13918272 -9.43474143 -0.53793246 4.83778996 - H 2.15172275 0.01565530 3.90175267 0.93601638 13.62818123 13.23994686 -5.19503932 - H -4.25073590 -0.15629375 2.96249915 0.92395669 -3.25954483 -6.70071506 7.17350306 - H -2.55142720 0.31006156 4.91198103 0.77835889 -3.59419243 18.00350219 4.85810723 - H 0.90273979 0.06779523 -0.48407579 0.76149752 -9.70443209 4.22708915 5.83706702 - H -0.80991194 0.09947767 -0.58124751 0.78286359 7.32808377 10.90648577 6.54655565 - O 2.77339962 -0.07417965 -1.40781286 6.56430447 -0.94429959 -6.57437997 -6.60167714 - C 3.84827194 0.00817429 -0.74788271 3.48563763 -4.79002298 -1.63141918 -4.58301474 - N 3.76539618 -0.00306745 0.67242485 5.30632493 -3.34994568 -0.81851216 1.48805198 - C 4.92112094 -0.08187138 1.48153364 3.39594780 -0.80667310 -4.58001562 11.23382556 - N 6.18596990 -0.04680187 0.82292040 5.21417973 6.16066959 -5.04871868 -1.77216440 - C 6.24345112 -0.00850676 -0.56880019 3.99502711 8.64389787 -0.08728479 1.07882448 - C 5.14382716 -0.00201229 -1.41300375 4.12896859 2.45270969 -0.20913134 2.17491945 - O 4.89744803 0.01091035 2.74552761 6.58357471 2.57975550 -0.11588333 3.60601196 - C 5.18800583 0.00385827 -2.89621786 4.16221058 -1.49008183 0.43844921 -9.10584611 - H 7.01737893 0.03082680 1.36324550 0.76392653 -6.25044930 0.01613240 -6.16630717 - H 2.87034335 -0.02561849 1.13146786 0.72895835 -16.89080987 -2.52092841 -4.26128058 - H 7.24187653 0.07366547 -0.98639429 0.91872936 0.53625156 0.03823511 3.12194719 - H 4.74745526 -0.92897697 -3.32697350 0.91984777 3.71267930 11.89075316 14.47116598 - H 4.55023896 0.84025309 -3.28146776 0.91917169 0.62510498 -22.72504616 5.91117489 - H 6.19167595 0.10365953 -3.34277743 0.94183211 -5.24569709 18.19274466 11.16569013 - 30 -MD iter: 11 - N 0.01183369 -0.00833224 -0.03209629 5.35849130 3.48238909 -0.08327793 -4.36725207 - C 0.00299055 0.07614175 1.33460672 3.64849522 6.96635504 3.85146592 -8.59145490 - N 1.21095583 -0.02831602 2.00301428 5.46074175 5.99934828 -0.53307283 3.37436220 - C 1.22671257 0.09035265 3.38307500 3.74626291 2.81591395 5.48609217 5.02430897 - N 0.08273647 0.10277548 4.15177028 5.41733619 -3.20801801 8.28768568 2.54488053 - C -1.07260402 -0.06617637 3.45163535 3.74840517 3.75498375 0.20669944 1.55864250 - C -1.20758115 0.03960667 2.06367246 4.00055319 -4.56304767 1.67092008 2.44226432 - N -2.51996027 -0.00059494 1.67740924 5.35404204 -6.05881040 -0.10631255 -2.20328103 - C -3.19172614 -0.01400345 2.88609982 3.89937180 -6.17739398 -1.17151881 -3.97511324 - N -2.34554488 0.00199211 3.99435259 5.15032635 -9.47169160 -0.90892516 3.55127053 - H 2.16955945 0.02993382 3.89742578 0.93595876 20.74242966 15.32256332 -3.55901619 - H -4.25564812 -0.16209875 2.97038626 0.92480265 -6.66782232 -4.90034437 8.27861830 - H -2.55639016 0.32732363 4.92046030 0.77770871 -6.12593239 16.06888431 10.49996747 - H 0.89504323 0.07195433 -0.48027042 0.76029087 -3.47859449 4.27931433 0.40316173 - H -0.80563026 0.11087788 -0.57532611 0.78200397 0.44023336 12.02209133 4.59098772 - O 2.77273590 -0.08063185 -1.41413937 6.56348489 -0.41592837 -6.32801543 -6.06114700 - C 3.84245630 0.00620771 -0.75261777 3.48205449 -6.65494200 -2.30932840 -4.79989114 - N 3.76316727 -0.00395628 0.67357226 5.31850023 -1.27126985 -0.96853579 0.89825032 - C 4.92035863 -0.08595438 1.49351787 3.39142165 -0.70783929 -3.57500307 12.40206242 - N 6.19135042 -0.05192690 0.82064869 5.22042425 4.45336718 -5.21239190 -2.71070727 - C 6.25202439 -0.00851859 -0.56798240 3.99111551 8.30364198 0.05297931 0.53010145 - C 5.14683580 -0.00219484 -1.40996377 4.13893157 3.54278362 -0.14352901 3.80609337 - O 4.89996163 0.01063077 2.74845135 6.57459094 2.44596578 -0.44156385 2.35209122 - C 5.18631139 0.00434472 -2.90584184 4.17278875 -1.73532898 0.52634290 -9.68892053 - H 7.01416183 0.03084416 1.35949240 0.76510671 1.22767421 0.15821749 -0.53846325 - H 2.84745628 -0.02826424 1.12964992 0.73059512 -26.23213729 -2.72423321 -0.40375901 - H 7.24380095 0.07298700 -0.98329867 0.91767436 4.25243784 -1.29654819 2.65281426 - H 4.75229720 -0.91432679 -3.31068967 0.91483371 5.11554449 14.59197807 16.49595172 - H 4.55330549 0.81455119 -3.27458115 0.91428583 3.41620157 -25.69410041 6.52379262 - H 6.18513531 0.12201811 -3.32950729 0.93940112 -6.58859603 18.34069631 14.24726003 - 30 -MD iter: 12 - N 0.01548605 -0.00839149 -0.03613742 5.35196970 3.75110641 -0.03482737 -3.75271119 - C 0.01027620 0.07958452 1.32595452 3.65218172 7.42515445 3.01191984 -8.40387422 - N 1.21667631 -0.02857115 2.00665152 5.45653824 5.36827253 0.03613346 3.85701652 - C 1.22840283 0.09556131 3.38775218 3.74489328 0.70848008 4.93453074 4.36119240 - N 0.08009253 0.11093273 4.15415044 5.41276564 -1.96734889 8.02564662 2.23329238 - C -1.06885698 -0.06524316 3.45361769 3.74616935 3.45281820 1.66193757 2.38478060 - C -1.21160293 0.04108158 2.06613930 4.00403390 -3.28631103 1.28825557 2.31717027 - N -2.52673398 -0.00071605 1.67611423 5.35262381 -7.40741936 -0.13866432 -0.38279275 - C -3.19747087 -0.01513386 2.88144302 3.89066808 -5.34863204 -1.09229573 -5.20259889 - N -2.35496317 0.00090711 3.99725319 5.16120482 -9.25355081 -1.21342432 2.32826861 - H 2.19320761 0.04630043 3.89463464 0.93790378 24.16975062 17.42482664 -2.65479691 - H -4.26407155 -0.16609444 2.97905639 0.92681804 -9.63194638 -3.00583528 8.65188879 - H -2.56367906 0.34219933 4.93298096 0.77758576 -8.06939100 12.92043560 12.12995927 - H 0.89578260 0.07635385 -0.48326947 0.75889163 5.44937606 4.57505703 -6.83858433 - H -0.80903147 0.12352185 -0.57206553 0.78138972 -6.56473995 13.18418729 2.17231367 - O 2.77256777 -0.08683568 -1.41993515 6.56194316 0.01025596 -6.08167610 -5.56026996 - C 3.83496206 0.00355563 -0.75748250 3.47672426 -8.06913641 -2.99328402 -4.81688352 - N 3.76285365 -0.00500452 0.67422136 5.33353460 0.36519527 -1.13816953 0.52666398 - C 4.91970526 -0.08902139 1.50633776 3.38489590 -0.59731164 -2.56183253 12.85020282 - N 6.19487663 -0.05722666 0.81749898 5.22732444 2.65087121 -5.38129251 -3.42007125 - C 6.26005841 -0.00840080 -0.56773998 3.98488599 7.65021329 0.17424351 -0.06435435 - C 5.15091273 -0.00229934 -1.40539157 4.15046154 4.53228749 -0.05276353 5.19204656 - O 4.90233996 0.01002722 2.75023180 6.56563724 2.30931258 -0.75760091 1.37031845 - C 5.18453517 0.00491096 -2.91559570 4.18420378 -1.63332115 0.59675487 -9.36559142 - H 7.01983428 0.03114324 1.36216857 0.76736686 9.28636630 0.36453888 5.20868671 - H 2.81787907 -0.03106696 1.13066034 0.73319578 -29.27193432 -2.79657900 1.02013436 - H 7.25038140 0.07107237 -0.98108866 0.91788999 9.17310084 -2.46977489 1.59666966 - H 4.75768635 -0.89979301 -3.29398160 0.90994765 4.76827883 11.51967616 15.35055352 - H 4.55707136 0.78886489 -3.26842017 0.90960264 1.85340023 -22.59964770 4.47618480 - H 6.17849876 0.14034093 -3.31428291 0.93674872 -5.37838065 18.16569313 15.03625996 - 30 -MD iter: 13 - N 0.01933591 -0.00840189 -0.03960171 5.34650712 3.93450038 0.04093813 -3.34985605 - C 0.01784086 0.08216559 1.31779897 3.65410527 7.54963924 2.13590263 -7.63300652 - N 1.22169238 -0.02824376 2.01072832 5.45185894 4.60740803 0.62597521 4.24258183 - C 1.22812953 0.10022171 3.39179738 3.74210282 -1.03316163 4.39848455 3.77859184 - N 0.07880177 0.11882677 4.15623686 5.40835571 -0.54727509 7.76251682 1.97227757 - C -1.06569838 -0.06285250 3.45640492 3.74374261 2.62924003 3.11036697 3.13104573 - C -1.21415377 0.04218318 2.06830680 4.00943213 -1.70085918 0.92473913 1.88996620 - N -2.53477511 -0.00087227 1.67664366 5.35086460 -8.54926049 -0.17551760 1.39762429 - C -3.20242341 -0.01618804 2.87569462 3.88056209 -4.65818921 -1.02551382 -6.11770958 - N -2.36405198 -0.00043473 3.99900912 5.17150228 -8.83274095 -1.41838078 1.28018200 - H 2.21789895 0.06478348 3.89211618 0.94106215 22.46753274 19.49517621 -3.16671552 - H -4.27491201 -0.16811042 2.98769004 0.92971361 -11.04707191 -0.89070347 8.14369472 - H -2.57252895 0.35316450 4.94472022 0.77773739 -9.28018751 8.28630397 9.13315209 - H 0.90594198 0.08110444 -0.49394759 0.75753577 13.35141851 4.79231581 -13.83758459 - H -0.81875974 0.13724626 -0.57098148 0.78098219 -11.04485413 13.96672352 0.95008683 - O 2.77275642 -0.09279520 -1.42525991 6.55909345 0.27038100 -5.84298984 -5.13434553 - C 3.82631803 0.00022114 -0.76225154 3.47048849 -8.90228492 -3.66487364 -4.58717584 - N 3.76389767 -0.00623262 0.67462559 5.34951319 1.43665147 -1.32668279 0.39184555 - C 4.91916401 -0.09107805 1.51921827 3.37736771 -0.48941555 -1.56721369 12.49256388 - N 6.19665216 -0.06268948 0.81380855 5.23437158 1.10442827 -5.52305408 -3.71726310 - C 6.26732481 -0.00817011 -0.56811111 3.97678725 6.86681817 0.28173601 -0.68894023 - C 5.15590038 -0.00230036 -1.39957968 4.16242683 5.31525370 0.06270167 6.24658808 - O 4.90458025 0.00911557 2.75119199 6.55667461 2.16999088 -1.05233668 0.74850647 - C 5.18304474 0.00553823 -2.92457302 4.19344324 -1.20332722 0.64982534 -8.22742387 - H 7.03273456 0.03157323 1.36990978 0.77053044 13.97852839 0.22439819 8.45705948 - H 2.78891242 -0.03385739 1.13169019 0.73651277 -25.37039448 -2.69658762 -0.08928748 - H 7.26214715 0.06804745 -0.98010533 0.91932934 13.82603986 -3.56093693 0.49686068 - H 4.76183376 -0.89128744 -3.27998857 0.90645450 2.98551080 3.34515685 11.49843524 - H 4.55701229 0.76935189 -3.26562878 0.90657338 -3.68406959 -14.18692134 0.19737744 - H 6.17437855 0.15834949 -3.29943477 0.93436855 -1.91924896 17.71934553 13.67468998 - 30 -MD iter: 14 - N 0.02335505 -0.00830961 -0.04283713 5.34292576 4.14771404 0.18691756 -3.35295737 - C 0.02537547 0.08385632 1.31068851 3.65426314 7.39698558 1.23818501 -6.36656486 - N 1.22589113 -0.02731920 2.01513669 5.44833674 3.74894457 1.22466188 4.51138848 - C 1.22633650 0.10435827 3.39530936 3.73852741 -2.32488096 3.89812401 3.27909598 - N 0.07899798 0.12645776 4.15809499 5.40460808 0.94993183 7.49933558 1.78463577 - C -1.06359850 -0.05902243 3.45987978 3.74132406 1.39949081 4.53238996 3.73444530 - C -1.21500465 0.04293106 2.06991924 4.01637057 0.03289405 0.58050290 1.25985411 - N -2.54383250 -0.00106708 1.67890948 5.34887794 -9.40070619 -0.21450335 3.03946065 - C -3.20678724 -0.01718488 2.86920760 3.87014846 -4.20325284 -0.97991815 -6.64338634 - N -2.37262865 -0.00192965 3.99981356 5.18102511 -8.23828817 -1.53648270 0.38511080 - H 2.23814268 0.08529078 3.88830121 0.94457625 15.72449063 21.37532313 -5.01448077 - H -4.28616569 -0.16787585 2.99534378 0.93300445 -10.35929822 1.49164825 6.68288685 - H -2.58223944 0.35877194 4.95124727 0.77790934 -9.96579565 2.53764523 2.65324567 - H 0.92248543 0.08593849 -0.51094464 0.75652187 16.96947822 4.60667013 -18.70338726 - H -0.83112118 0.15145530 -0.57016536 0.78077339 -11.46069725 14.03920915 1.81025544 - O 2.77310853 -0.09852166 -1.43020384 6.55445693 0.32411622 -5.61824362 -4.80647813 - C 3.81715749 -0.00377412 -0.76665685 3.46431753 -9.08224836 -4.30631597 -4.07946707 - N 3.76572695 -0.00765788 0.67500505 5.36397383 1.99204321 -1.52945841 0.43573340 - C 4.91872643 -0.09215582 1.53132289 3.36994649 -0.38940741 -0.61458840 11.30104625 - N 6.19708549 -0.06827276 0.81006446 5.24128075 0.01248290 -5.61587938 -3.52485535 - C 6.27379204 -0.00783733 -0.56911786 3.96784748 6.13687541 0.37960097 -1.31843370 - C 5.16154323 -0.00217394 -1.39289839 4.17358850 5.80741172 0.19995416 6.90267274 - O 4.90667994 0.00792254 2.75172881 6.54776724 2.02797107 -1.31669976 0.53826930 - C 5.18212852 0.00621061 -2.93205055 4.19806596 -0.58529565 0.70077079 -6.52238226 - H 7.04779134 0.03159203 1.37908269 0.77408009 13.21879899 -0.52306381 7.82706648 - H 2.76713828 -0.03646014 1.13048176 0.73984883 -15.95856735 -2.44210029 -2.90702952 - H 7.27803348 0.06395050 -0.98009494 0.92153609 16.76639462 -4.64015021 -0.11517834 - H 4.76365737 -0.89310270 -3.27098473 0.90521300 0.75545273 -7.56203771 6.05576218 - H 4.54970322 0.76049105 -3.26802542 0.90618291 -11.38509110 -2.97514801 -5.15349402 - H 6.17466026 0.17577962 -3.28693353 0.93270178 2.75449011 16.97227626 10.66773965 - 30 -MD iter: 15 - N 0.02763133 -0.00802806 -0.04630762 5.34173602 4.47677560 0.41826970 -3.78284266 - C 0.03263483 0.08464196 1.30506584 3.65297836 7.03205272 0.33096582 -4.72448049 - N 1.22919026 -0.02579443 2.01975109 5.44754128 2.82117683 1.82108056 4.64776542 - C 1.22347977 0.10801795 3.39835557 3.73470839 -3.21142675 3.45437961 2.80933280 - N 0.08070164 0.13382544 4.15980614 5.40187665 2.40340816 7.23441086 1.68051968 - C -1.06289940 -0.05378772 3.46387381 3.73907583 -0.09839123 5.91355292 4.15666092 - C -1.21408798 0.04334419 2.07082650 4.02433456 1.76220289 0.25477862 0.53143405 - N -2.55357652 -0.00130128 1.68272258 5.34682377 -9.89170225 -0.25276328 4.44084139 - C -3.21082991 -0.01814788 2.86240785 3.86045962 -4.01240226 -0.95580939 -6.71502571 - N -2.38052855 -0.00350770 3.99977935 5.18951741 -7.48351987 -1.61211557 -0.46511103 - H 2.24934793 0.10753412 3.88208722 0.94769671 5.46314032 22.88178234 -7.47667185 - H -4.29563060 -0.16512713 3.00105581 0.93610886 -7.75051910 4.07691414 4.32338082 - H -2.59246054 0.35823979 4.95002671 0.77795214 -10.53596672 -3.51601561 -5.07090267 - H 0.93988094 0.09031778 -0.53135436 0.75610547 15.00491884 3.86889895 -20.48820186 - H -0.84168113 0.16532467 -0.56736097 0.78077363 -7.87993803 13.31952776 4.59230350 - O 2.77340465 -0.10403169 -1.43487287 6.54801404 0.16332871 -5.41163088 -4.58283031 - C 3.80815353 -0.00839149 -0.77041047 3.45909111 -8.60364993 -4.90230448 -3.29135927 - N 3.76788175 -0.00929154 0.67549706 5.37456035 2.16800270 -1.74004386 0.57142499 - C 4.91838519 -0.09230723 1.54182036 3.36360176 -0.29061624 0.27866787 9.32461763 - N 6.19667712 -0.07392124 0.80675884 5.24795715 -0.62737023 -5.65660597 -2.90344815 - C 6.27959856 -0.00741091 -0.57074798 3.95936508 5.59423204 0.46700643 -1.90630028 - C 5.16751520 -0.00190046 -1.38577434 4.18285293 5.95506036 0.35329905 7.11596940 - O 4.90863620 0.00648217 2.75226853 6.53932302 1.88268608 -1.54613195 0.73806558 - C 5.18187415 0.00693977 -2.93761779 4.19715325 -0.01050724 0.78079394 -4.58254576 - H 7.05917216 0.03052711 1.38556391 0.77720913 7.42413457 -1.86843185 3.64112701 - H 2.75699528 -0.03874159 1.12587613 0.74237502 -3.34842631 -2.08565471 -6.33749854 - H 7.29567994 0.05876715 -0.98033568 0.92376944 17.06073335 -5.72743804 0.08081451 - H 4.76334466 -0.90641152 -3.26787704 0.90643486 -0.57200129 -17.75799065 0.44878945 - H 4.53424211 0.76340160 -3.27593577 0.90857940 -18.37871031 7.35216046 -9.96365105 - H 6.17988753 0.19229405 -3.27809929 0.93202474 7.19480220 15.82264124 6.71721855 - 30 -MD iter: 16 - N 0.03230860 -0.00747307 -0.05040281 5.34298604 4.94713621 0.71743060 -4.49632791 - C 0.03943958 0.08451825 1.30123955 3.65075827 6.51833716 -0.57690827 -2.84990929 - N 1.23153348 -0.02367704 2.02443222 5.45005774 1.84886186 2.40501929 4.63949826 - C 1.21991365 0.11126703 3.40092802 3.73109915 -3.82386561 3.08210241 2.28808118 - N 0.08380479 0.14092658 4.16145603 5.40027286 3.68260434 6.96412913 1.66033732 - C -1.06379529 -0.04719532 3.46819310 3.73712662 -1.71254557 7.24283488 4.38365903 - C -1.21148025 0.04344062 2.07098211 4.03273375 3.35690198 -0.05306400 -0.19741733 - N -2.56361591 -0.00157261 1.68779116 5.34489660 -9.97215596 -0.28718569 5.50322554 - C -3.21481205 -0.01909650 2.85577755 3.85229501 -4.05020973 -0.94625421 -6.29095774 - N -2.38759569 -0.00515388 3.99888333 5.19652911 -6.57691793 -1.69990727 -1.40621810 - H 2.24906896 0.13105434 3.87334786 0.94985461 -5.87441559 23.89564368 -9.49871029 - H -4.30166673 -0.15972202 3.00399054 0.93847570 -4.06444617 6.70608229 1.26437504 - H -2.60331137 0.35173991 4.94110546 0.77788752 -11.45280339 -8.93122852 -11.48039595 - H 0.95249527 0.09367628 -0.55192104 0.75633073 8.26549428 2.66111554 -19.34345602 - H -0.84688106 0.17809435 -0.56098075 0.78096343 -1.69596626 11.99607030 8.33670982 - O 2.77343519 -0.10934492 -1.43936950 6.54042631 -0.18224307 -5.22471169 -4.44895637 - C 3.79995019 -0.01357873 -0.77323957 3.45545433 -7.52959515 -5.44180431 -2.25831755 - N 3.77006295 -0.01113797 0.67614790 5.37976800 2.13538049 -1.95167863 0.71030685 - C 4.91814520 -0.09159848 1.54997213 3.35902624 -0.17711568 1.10303308 6.69936235 - N 6.19583075 -0.07958598 0.80425756 5.25429779 -0.96368783 -5.65700480 -2.01433129 - C 6.28498051 -0.00690332 -0.57293046 3.95256777 5.28987146 0.53683840 -2.38600002 - C 5.17345335 -0.00146734 -1.37866645 4.18947880 5.73978669 0.51489549 6.87074524 - O 4.91044531 0.00483028 2.75320494 6.53213470 1.73302864 -1.74174743 1.28282374 - C 5.18210750 0.00777219 -2.94121564 4.19174273 0.32047836 0.90365364 -2.70996217 - H 7.06263961 0.02785517 1.38636494 0.77913860 -1.19512010 -3.57753240 -2.52902404 - H 2.76044143 -0.04063145 1.11780677 0.74356604 9.96031602 -1.69551181 -9.34919812 - H 7.31215495 0.05249562 -0.97993331 0.92522599 14.57856113 -6.77995756 1.08866179 - H 4.76251336 -0.92861868 -3.27008715 0.90959139 0.13862313 -24.01268631 -4.06648465 - H 4.51294580 0.77519537 -3.28795272 0.91291650 -22.03396832 13.58209803 -12.83907313 - H 6.18904987 0.20742490 -3.27349910 0.93239765 9.96625550 14.14277140 2.54342219 - 30 -MD iter: 17 - N 0.03752561 -0.00659320 -0.05530028 5.34635041 5.53378627 1.04315278 -5.25175994 - C 0.04567151 0.08348815 1.29936602 3.64811280 5.91318656 -1.47884261 -0.89836924 - N 1.23288799 -0.02098439 2.02903009 5.45506134 0.85609773 2.96688052 4.47737591 - C 1.21583204 0.11418216 3.40293174 3.72805316 -4.32314551 2.78635680 1.63791433 - N 0.08806685 0.14775370 4.16312681 5.39966238 4.66025079 6.68446946 1.71818550 - C -1.06632449 -0.03930205 3.47264112 3.73558663 -3.28968136 8.51004947 4.42011017 - C -1.20737418 0.04323806 2.07043167 4.04097733 4.71385523 -0.34295992 -0.84273981 - N -2.57352083 -0.00187565 1.69372903 5.34329349 -9.61636100 -0.31471644 6.14375774 - C -3.21893033 -0.02004039 2.84982593 3.84613722 -4.23654261 -0.94085152 -5.36534180 - N -2.39368239 -0.00690751 3.99696691 5.20139361 -5.53230226 -1.84287554 -2.54496603 - H 2.23759910 0.15532541 3.86308980 0.95075395 -15.59544368 24.41635859 -10.03032170 - H -4.30375950 -0.15171496 3.00358456 0.93972294 -0.53097909 9.17634787 -2.16966393 - H -2.61536614 0.34037733 4.92706592 0.77790354 -13.09474995 -12.94080840 -14.43081617 - H 0.95641193 0.09564002 -0.57004128 0.75696746 -1.09460724 1.23709069 -16.21071171 - H -0.84507306 0.18931682 -0.55068755 0.78130057 5.00147600 10.45153174 11.73618332 - O 2.77304016 -0.11448111 -1.44377078 6.53287732 -0.64657084 -5.05628171 -4.36927288 - C 3.79309434 -0.01927510 -0.77492711 3.45373963 -5.98418468 -5.91901847 -1.05363764 - N 3.77215251 -0.01319489 0.67691767 5.37937020 2.08519912 -2.15782067 0.76770761 - C 4.91803096 -0.09010116 1.55521909 3.35658863 -0.02786969 1.85666685 3.63993901 - N 6.19474975 -0.08523525 0.80273018 5.25997075 -1.21318607 -5.63598262 -1.06181480 - C 6.29017831 -0.00633723 -0.57551998 3.94835932 5.18479060 0.57741996 -2.68461712 - C 5.17899478 -0.00087066 -1.37203284 4.19316029 5.17968038 0.67605434 6.18534671 - O 4.91210225 0.00299867 2.75483418 6.52719222 1.57754534 -1.90993077 2.04705324 - C 5.18251511 0.00874708 -2.94303771 4.18417397 0.32852754 1.05675441 -1.09885472 - H 7.05678192 0.02337204 1.38050586 0.77951420 -9.65234482 -5.30109352 -8.55574261 - H 2.77691591 -0.04213262 1.10717774 0.74342505 21.37063414 -1.34787040 -10.98061965 - H 7.32483706 0.04520723 -0.97815836 0.92528710 10.00421486 -7.70985657 2.61248749 - H 4.76362191 -0.95443689 -3.27601001 0.91364632 3.34840574 -24.45053243 -6.74097144 - H 4.49017417 0.79056579 -3.30161392 0.91776349 -20.98055138 14.13449522 -13.06479977 - H 6.19982004 0.22057959 -3.27301245 0.93365470 10.06413964 11.85118971 -1.25847933 - 30 -MD iter: 18 - N 0.04337617 -0.00538677 -0.06090633 5.35133925 6.17397224 1.34362771 -5.78162438 - C 0.05126595 0.08156057 1.29944281 3.64540266 5.26477738 -2.36802572 0.97380427 - N 1.23324568 -0.01774328 2.03338697 5.46063680 -0.12998612 3.49721728 4.15615458 - C 1.21126736 0.11683975 3.40420385 3.72569566 -4.84344445 2.56310650 0.81372293 - N 0.09312530 0.15429552 4.16489240 5.39973970 5.22768735 6.39268183 1.84479033 - C -1.07037465 -0.03017522 3.47703332 3.73454025 -4.68793759 9.70318981 4.28063422 - C -1.20205253 0.04275470 2.06929663 4.04856013 5.75584771 -0.61385027 -1.33715032 - N -2.58284863 -0.00220204 1.70007868 5.34221444 -8.82694007 -0.33282445 6.30985893 - C -3.22328513 -0.02097820 2.84504686 3.84213137 -4.47321364 -0.93021494 -3.97944675 - N -2.39866029 -0.00883963 3.99379340 5.20330856 -4.38223726 -2.05090205 -3.90066347 - H 2.21787807 0.17988706 3.85328722 0.95054506 -21.44559526 24.55945556 -8.32991135 - H -4.30272869 -0.14136932 2.99965121 0.93974718 1.61634678 11.30396980 -5.58694955 - H -2.62950087 0.32585829 4.91224383 0.77828601 -15.59257153 -15.25943169 -12.95493955 - H 0.95030606 0.09615047 -0.58434247 0.75763721 -10.34644208 -0.06960300 -12.45981344 - H -0.83687811 0.19899742 -0.53750839 0.78178720 10.06592889 9.14339271 13.56497643 - O 2.77214205 -0.11945748 -1.44810805 6.52663909 -1.13922418 -4.90284381 -4.29193199 - C 3.78798182 -0.02541676 -0.77534684 3.45392812 -4.13203630 -6.33281786 0.22240165 - N 3.77423335 -0.01545361 0.67768331 5.37430875 2.22018228 -2.35238453 0.66300166 - C 4.91808946 -0.08788515 1.55725200 3.35630305 0.17890872 2.54299473 0.41363704 - N 6.19340438 -0.09085794 0.80213393 5.26434903 -1.59732770 -5.61291744 -0.24495323 - C 6.29535009 -0.00574848 -0.57829970 3.94715278 5.16654940 0.57614184 -2.74220585 - C 5.18381271 -0.00011523 -1.36629576 4.19400929 4.32619064 0.82845033 5.11396129 - O 4.91360041 0.00101042 2.75729905 6.52539913 1.41479637 -2.06028521 2.86269874 - C 5.18276456 0.00988570 -2.94341335 4.17715835 0.05889500 1.21945992 0.18085953 - H 7.04333492 0.01725298 1.36925346 0.77858979 -14.98790338 -6.67628338 -12.32397577 - H 2.80318270 -0.04332719 1.09584553 0.74245280 28.18850236 -1.11897574 -10.28353576 - H 7.33216338 0.03707591 -0.97470833 0.92371792 4.60752902 -8.41919068 4.16644764 - H 4.76921018 -0.97751975 -3.28356909 0.91739155 8.74011219 -18.97639232 -7.40907559 - H 4.47098470 0.80346436 -3.31408232 0.92154658 -15.31471292 9.18420824 -10.65719174 - H 6.20917815 0.23112728 -3.27601605 0.93548232 7.20868130 8.98503208 -4.30660850 - 30 -MD iter: 19 - N 0.04987355 -0.00390594 -0.06686353 5.35744875 6.76359936 1.57029800 -5.85403749 - C 0.05620106 0.07875209 1.30131363 3.64270729 4.60908041 -3.23481463 2.62131219 - N 1.23262802 -0.01398996 2.03734240 5.46471982 -1.07675344 3.98668576 3.67803943 - C 1.20614515 0.11930837 3.40455918 3.72376379 -5.44088265 2.40465198 -0.17434346 - N 0.09852222 0.16053906 4.16681639 5.40018928 5.30939274 6.08848564 2.02921905 - C -1.07570037 -0.01989567 3.48120239 3.73404730 -5.78759237 10.80680026 3.98133024 - C -1.19586248 0.04201036 2.06775737 4.05511857 6.42858515 -0.86350656 -1.63074940 - N -2.59117471 -0.00254130 1.70634875 5.34184859 -7.63733156 -0.34005753 5.99245862 - C -3.22787676 -0.02190082 2.84186704 3.84016393 -4.67160010 -0.90947305 -2.22776784 - N -2.40244686 -0.01100932 3.98916558 5.20157381 -3.19237257 -2.28720537 -5.36038949 - H 2.19470791 0.20444432 3.84642998 0.94992295 -22.27091398 24.48896140 -4.22789680 - H -4.30052680 -0.12910702 2.99241066 0.93875192 1.53131832 12.97610399 -8.60887159 - H -2.64655129 0.30985847 4.90115604 0.77930821 -18.65586663 -16.27761961 -7.85473498 - H 0.93571904 0.09550081 -0.59496090 0.75801543 -16.69363182 -0.92507137 -9.61898960 - H -0.82494121 0.20760360 -0.52355760 0.78250816 11.91206625 8.45514802 13.04815089 - O 2.77076171 -0.12428680 -1.45235464 6.52263871 -1.56409885 -4.75962273 -4.15843968 - C 3.78483027 -0.03194073 -0.77448231 3.45567359 -2.15090147 -6.68483999 1.46061008 - N 3.77659288 -0.01789966 0.67824367 5.36614249 2.71003772 -2.53075680 0.33275237 - C 4.91838878 -0.08501517 1.55604636 3.35783572 0.46173313 3.16659406 -2.69885656 - N 6.19155509 -0.09646108 0.80224027 5.26665224 -2.27766683 -5.60083425 0.28841760 - C 6.30051140 -0.00518495 -0.58100439 3.94878998 5.08232847 0.52339961 -2.52940795 - C 5.18764716 0.00078624 -1.36180492 4.19246125 3.25771414 0.96474511 3.74384157 - O 4.91493185 -0.00112190 2.76055957 6.52728611 1.24384575 -2.20243636 3.54979697 - C 5.18263290 0.01118600 -2.94267599 4.17287328 -0.34248261 1.36915624 1.17568592 - H 7.02680611 0.01001947 1.35585791 0.77707428 -15.07936731 -7.43595445 -12.30362527 - H 2.83329292 -0.04437057 1.08661066 0.74134765 28.16027727 -1.06321209 -6.49809446 - H 7.33405212 0.02836885 -0.96982547 0.92074622 -0.13064951 -8.83508838 5.22830043 - H 4.78110214 -0.99238967 -3.29082816 0.91982963 15.34615587 -9.18255694 -6.44176061 - H 4.45954475 0.80893421 -3.32292830 0.92306799 -6.50317988 0.44765706 -6.31489949 - H 6.21423741 0.23854965 -3.28162566 0.93749306 1.91964340 5.74028321 -6.45806525 - 30 -MD iter: 20 - N 0.05690337 -0.00224617 -0.07261441 5.36419728 7.15868951 1.69406114 -5.32974879 - C 0.06048411 0.07509094 1.30468543 3.63985008 3.96709968 -4.06514055 3.92198631 - N 1.23109217 -0.00976991 2.04074305 5.46608316 -1.94490262 4.42669546 3.05681931 - C 1.20038559 0.12164905 3.40385517 3.72169183 -6.06368996 2.30871846 -1.24913464 - N 0.10374408 0.16647249 4.16895084 5.40077355 4.87349762 5.77437566 2.25882581 - C -1.08194983 -0.00856162 3.48499599 3.73415724 -6.49820414 11.80211741 3.53501158 - C -1.18919536 0.04102769 2.06603513 4.06045650 6.69711832 -1.08848639 -1.69226660 - N -2.59812329 -0.00288216 1.71206360 5.34234565 -6.11080516 -0.33653181 5.23425944 - C -3.23262833 -0.02279715 2.84059133 3.83997378 -4.77550853 -0.87956126 -0.25594090 - N -2.40504504 -0.01341405 3.98307262 5.19585407 -2.06493321 -2.47793318 -6.68955047 - H 2.17333624 0.22886498 3.84483143 0.94993780 -18.45902180 24.29691434 1.71582265 - H -4.29966605 -0.11541712 2.98243347 0.93715735 -0.94234746 14.17378440 -10.94727586 - H -2.66681260 0.29330305 4.89653436 0.78112530 -21.52844405 -16.93340171 -1.57075206 - H 0.91691879 0.09430032 -0.60358045 0.75795076 -17.85059332 -1.07796049 -9.03285234 - H -0.81305397 0.21590771 -0.51141209 0.78356631 10.11583652 8.52664078 10.15057748 - O 2.76901385 -0.12897673 -1.45642493 6.52134467 -1.83813033 -4.62188818 -3.91496021 - C 3.78368001 -0.03878644 -0.77242562 3.45838640 -0.20587340 -6.97718716 2.56067544 - N 3.77965343 -0.02051513 0.67834882 5.35638351 3.59339345 -2.69196563 -0.23331441 - C 4.91901293 -0.08155196 1.55185429 3.36057654 0.83255510 3.72909739 -5.44430829 - N 6.18884904 -0.10205961 0.80271077 5.26617771 -3.27635595 -5.59775827 0.49271054 - C 6.30551474 -0.00470168 -0.58335851 3.95262218 4.78166328 0.41542344 -2.05784146 - C 5.19032814 0.00181426 -1.35880807 4.18909169 2.07037156 1.07862719 2.18472641 - O 4.91608810 -0.00339445 2.76439864 6.53289102 1.06474282 -2.34295251 3.95057067 - C 5.18207959 0.01262402 -2.94106198 4.17247622 -0.68833802 1.48655641 2.01192205 - H 7.01317618 0.00238107 1.34464621 0.77577270 -9.65395971 -7.54403086 -8.23871631 - H 2.85950325 -0.04545361 1.08284934 0.74059958 20.78389482 -1.17515599 0.42007132 - H 7.33190208 0.01940573 -0.96425173 0.91698082 -2.94665157 -8.93225454 5.39713537 - H 4.79990249 -0.99588486 -3.29645262 0.92043177 21.87917652 2.26085225 -4.56762463 - H 4.45797834 0.80435967 -3.32671212 0.92184427 3.15095332 -9.48285187 -1.17390450 - H 6.21301743 0.24260785 -3.28893218 0.93930026 -4.62953340 2.46313288 -7.78222371 - 30 -MD iter: 21 - N 0.06419093 -0.00051782 -0.07752303 5.37111559 7.22096492 1.72084775 -4.21462108 - C 0.06413526 0.07062181 1.30915760 3.63653656 3.34283107 -4.84067720 4.78671236 - N 1.22873821 -0.00513657 2.04345604 5.46452998 -2.68847954 4.81049405 2.31957454 - C 1.19401777 0.12392581 3.40206091 3.71897052 -6.56542873 2.28662281 -2.27368898 - N 0.10826922 0.17208782 4.17133404 5.40134994 3.93602770 5.45499052 2.51716701 - C -1.08869677 0.00370856 3.48827242 3.73492808 -6.76305640 12.66895234 2.95197449 - C -1.18246825 0.03983339 2.06437284 4.06448071 6.54479689 -1.28422605 -1.51027125 - N -2.60339633 -0.00321436 1.71681727 5.34378519 -4.33614239 -0.32421967 4.12899897 - C -3.23742778 -0.02365994 2.84135516 3.84129354 -4.77310501 -0.84579951 1.75088682 - N -2.40657673 -0.01596519 3.97578648 5.18639227 -1.11877621 -2.54766886 -7.61857313 - H 2.15778986 0.25303815 3.84986162 0.95150654 -11.86631743 23.89014907 8.27394101 - H -4.30241150 -0.10075945 2.97051611 0.93540895 -5.15843986 14.95695807 -12.44747406 - H -2.68960817 0.27599167 4.89801454 0.78368306 -23.21726990 -18.22141646 2.94504179 - H 0.90001786 0.09334489 -0.61302661 0.75742997 -12.97613693 -0.46626430 -11.27266264 - H -0.80470953 0.22465688 -0.50325644 0.78497291 5.72658779 9.13784840 5.64700577 - O 2.76708545 -0.13353058 -1.46018456 6.52278814 -1.90411387 -4.48616960 -3.52154326 - C 3.78441852 -0.04589511 -0.76936095 3.46143582 1.56965741 -7.21071572 3.44217453 - N 3.78377966 -0.02328359 0.67777704 5.34623525 4.68687277 -2.84023221 -0.95382655 - C 4.92005389 -0.07755698 1.54515775 3.36386165 1.29381532 4.22694156 -7.62804973 - N 6.18500238 -0.10765660 0.80322569 5.26258196 -4.42411197 -5.58156648 0.45274149 - C 6.31007473 -0.00435410 -0.58512008 3.95773985 4.15998549 0.25504906 -1.38112934 - C 5.19178790 0.00294349 -1.35743547 4.18441860 0.86588466 1.16452724 0.55425507 - O 4.91706133 -0.00580780 2.76846072 6.54172419 0.87882836 -2.48357498 3.95602965 - C 5.18125622 0.01415911 -2.93865215 4.17604802 -0.80250942 1.55735446 2.85335819 - H 7.00749819 -0.00506859 1.33938048 0.77526092 -0.93952639 -7.27743112 -1.56315194 - H 2.87486071 -0.04672088 1.08745081 0.74034910 8.53742421 -1.36456837 9.25146563 - H 7.32815882 0.01050434 -0.95903119 0.91320778 -3.18319549 -8.73575640 4.52282229 - H 4.82486049 -0.98786797 -3.29996341 0.91921481 27.06678921 12.31937826 -2.67106509 - H 4.46584666 0.78996851 -3.32527611 0.91816831 11.09918104 -17.81754277 3.46778077 - H 6.20497834 0.24347592 -3.29719011 0.94058179 -10.90285728 -0.40190750 -8.49808155 - 30 -MD iter: 22 - N 0.07134530 0.00119553 -0.08104365 5.37778804 6.90603583 1.69526113 -2.68270275 - C 0.06716978 0.06540958 1.31425886 3.63259217 2.72295250 -5.54079625 5.16497874 - N 1.22571521 -0.00014892 2.04538220 5.46035543 -3.25818691 5.13417775 1.50521915 - C 1.18725474 0.12622230 3.39930779 3.71556609 -6.76484944 2.36383550 -3.07969844 - N 0.11161614 0.17738248 4.17398517 5.40183440 2.55928382 5.13600734 2.78106585 - C -1.09547595 0.01677628 3.49089993 3.73641060 -6.56303017 13.38826981 2.24456755 - C -1.17610577 0.03845923 2.06301458 4.06713567 5.97326682 -1.44539655 -1.09460765 - N -2.60679557 -0.00353060 1.72032159 5.34613229 -2.41779084 -0.30679999 2.81042717 - C -3.24217454 -0.02448875 2.84409310 3.84394540 -4.69203651 -0.81437875 3.58749508 - N -2.40728259 -0.01850938 3.96783548 5.17405225 -0.45097722 -2.45750009 -7.95850688 - H 2.14960361 0.27664528 3.86137931 0.95490806 -5.14388968 22.97205458 13.87319236 - H -4.30998293 -0.08550320 2.95753852 0.93378810 -9.82578376 15.41734438 -13.07696680 - H -2.71324714 0.25686022 4.90242445 0.78666819 -22.92484685 -20.66155723 3.72124877 - H 0.89096652 0.09336779 -0.62612577 0.75649163 -3.54252443 0.69440691 -15.50121384 - H -0.80160080 0.23418341 -0.50011807 0.78658635 0.90469433 9.76113674 0.83763438 - O 2.76520562 -0.13794907 -1.46346801 6.52664866 -1.73552657 -4.35095915 -2.95706447 - C 3.78681933 -0.05320787 -0.76554127 3.46435303 3.08300879 -7.38439165 4.04912087 - N 3.78902717 -0.02619559 0.67644116 5.33664405 5.62490579 -2.98285717 -1.66536770 - C 4.92160056 -0.07309808 1.53659819 3.36723633 1.83506556 4.65181670 -9.12874001 - N 6.18000082 -0.11322274 0.80361625 5.25601665 -5.41134557 -5.51771543 0.34254618 - C 6.31383471 -0.00419158 -0.58612077 3.96329901 3.19111292 0.05018073 -0.58634661 - C 5.19205991 0.00414331 -1.35769956 4.17877626 -0.26068414 1.21730017 -1.03492134 - O 4.91784575 -0.00836160 2.77231070 6.55284927 0.68880080 -2.62126503 3.51733638 - C 5.18047457 0.01573872 -2.93535526 4.18261177 -0.55890528 1.57279204 3.85572157 - H 7.01129713 -0.01217379 1.34151990 0.77571992 7.06097012 -7.11991621 5.10647739 - H 2.87657810 -0.04818275 1.10135227 0.74058211 -3.66305888 -1.48874330 17.65434590 - H 7.32553569 0.00193422 -0.95520609 0.91014093 -1.03326894 -8.30412379 2.77311847 - H 4.85403607 -0.97124610 -3.30179475 0.91670759 29.92784807 18.28711848 -1.58490706 - H 4.48017670 0.76872459 -3.31977655 0.91299924 15.10978487 -22.18352219 6.42831555 - H 6.19121172 0.24180403 -3.30592835 0.94116050 -15.36615896 -2.39304551 -8.88603592 - 30 -MD iter: 23 - N 0.07800300 0.00287270 -0.08288843 5.38392253 6.31747277 1.68262515 -1.02968564 - C 0.06958117 0.05954022 1.31948756 3.62815434 2.07984625 -6.14561008 5.04563421 - N 1.22222184 0.00513179 2.04646648 5.45397867 -3.60825168 5.39723158 0.66071761 - C 1.18048807 0.12865348 3.39590152 3.71205997 -6.52734148 2.56982455 -3.51060808 - N 0.11338778 0.18235983 4.17689617 5.40220510 0.84435503 4.82307329 3.01893599 - C -1.10182284 0.03048510 3.49276155 3.73859120 -5.91940763 13.94426961 1.43253270 - C -1.17052171 0.03694259 2.06218362 4.06835498 5.00473545 -1.56643438 -0.47702078 - N -2.60823191 -0.00382796 1.72243812 5.34925272 -0.46346292 -0.28907048 1.43214615 - C -3.24681185 -0.02528870 2.84853015 3.84785923 -4.57809978 -0.78864138 5.05255484 - N -2.40747869 -0.02088019 3.95986947 5.16017592 -0.10278872 -2.21777414 -7.66796235 - H 2.14750209 0.29898226 3.87760801 0.95957431 -0.73361386 21.16075350 17.07851518 - H -4.32206307 -0.06992476 2.94436218 0.93232581 -13.41433843 15.62345847 -12.87279033 - H -2.73545787 0.23466855 4.90545703 0.78956428 -20.40232418 -24.11346920 0.59438977 - H 0.89293281 0.09473370 -0.64402903 0.75521284 6.90375787 1.94678336 -19.46736452 - H -0.80290014 0.24417916 -0.50158118 0.78816017 -2.08784614 9.80204637 -2.99620089 - O 2.76361440 -0.14223250 -1.46609869 6.53224311 -1.33441719 -4.21674008 -2.21965591 - C 3.79058454 -0.06066389 -0.76126271 3.46695319 4.28135613 -7.49561826 4.35124814 - N 3.79502948 -0.02924931 0.67444631 5.32831081 6.05389999 -3.12487960 -2.19857828 - C 4.92372402 -0.06825334 1.52690027 3.37058924 2.42938118 4.99305349 -9.89913785 - N 6.17417969 -0.11869203 0.80391078 5.24713833 -5.94153590 -5.37849672 0.32192035 - C 6.31645696 -0.00425374 -0.58629277 3.96877088 1.93515718 -0.18936202 0.22238367 - C 5.19126653 0.00537809 -1.35950531 4.17232373 -1.23042236 1.23210928 -2.48324880 - O 4.91843893 -0.01105033 2.77549539 6.56502927 0.49849684 -2.74960444 2.64265969 - C 5.18013841 0.01730469 -2.93094071 4.19024070 0.08001290 1.53263780 5.11078541 - H 7.02162013 -0.01930842 1.34959343 0.77690572 10.64965242 -7.48645417 9.33308190 - H 2.86753459 -0.04969837 1.12275950 0.74127131 -11.08094385 -1.43436554 23.23919101 - H 7.32609228 -0.00610391 -0.95348496 0.90822565 2.47915449 -7.70046869 0.60715826 - H 4.88471618 -0.95129373 -3.30313323 0.91382138 29.99505255 18.50998901 -1.84828814 - H 4.49606623 0.74560146 -3.31241948 0.90771394 13.89085065 -21.28468270 6.97465076 - H 6.17424602 0.23868983 -3.31496218 0.94107066 -16.86648417 -3.12736626 -9.18291766 - 30 -MD iter: 24 - N 0.08398025 0.00456078 -0.08310302 5.38933372 5.65302366 1.73651574 0.44797666 - C 0.07132947 0.05311836 1.32435013 3.62368860 1.37941460 -6.63912527 4.45501833 - N 1.21849871 0.01064554 2.04670363 5.44620292 -3.70624712 5.60264943 -0.16377903 - C 1.17420005 0.13136195 3.39228657 3.70939605 -5.82917269 2.92158784 -3.46621679 - N 0.11330485 0.18702862 4.18002305 5.40253478 -1.08285576 4.52106809 3.19223724 - C -1.10731476 0.04466482 3.49376500 3.74133728 -4.89487796 14.32530416 0.54765736 - C -1.16609630 0.03532636 2.06206054 4.06807282 3.68480516 -1.64215004 0.28914666 - N -2.60772250 -0.00410874 1.72318589 5.35298239 1.42833151 -0.27608048 0.14296290 - C -3.25133074 -0.02606603 2.85419821 3.85300712 -4.46505554 -0.76721175 5.97532440 - N -2.40748817 -0.02294493 3.95249955 5.14631257 -0.04719737 -1.87302825 -6.84628778 - H 2.14813638 0.31896679 3.89553634 0.96429139 0.00809532 18.18936610 17.05711147 - H -4.33681161 -0.05425628 2.93179294 0.93085442 -14.66836182 15.58796675 -11.88752484 - H -2.75405179 0.20863328 4.90361322 0.79183443 -16.02213806 -27.97355740 -4.96690870 - H 0.90477403 0.09726136 -0.66506050 0.75377050 14.48102259 2.79250193 -20.55041870 - H -0.80577649 0.25378750 -0.50611048 0.78945207 -1.91905071 8.87995274 -5.07812567 - O 2.76253679 -0.14638255 -1.46790733 6.53858364 -0.72437356 -4.08548438 -1.32336918 - C 3.79538204 -0.06819911 -0.75683878 3.46929818 5.14382126 -7.54119974 4.34224389 - N 3.80113497 -0.03244535 0.67204401 5.32149141 5.81807899 -3.26551265 -2.45937389 - C 4.92645932 -0.06311197 1.51679992 3.37405685 3.03128055 5.24049820 -9.95636260 - N 6.16811775 -0.12397974 0.80426009 5.23698796 -5.87170304 -5.15801606 0.45000348 - C 6.31770503 -0.00457031 -0.58567601 3.97398964 0.51550335 -0.45490752 0.94345069 - C 5.18959907 0.00660753 -1.36266606 4.16516476 -1.98579527 1.20463112 -3.70761000 - O 4.91884275 -0.01386081 2.77759602 6.57694172 0.31238482 -2.86076838 1.38307192 - C 5.18063460 0.01880400 -2.92513369 4.19642151 1.03851042 1.44476570 6.59210924 - H 7.03259644 -0.02714670 1.36018607 0.77822907 8.29536986 -8.50281218 10.03517334 - H 2.85441622 -0.05105148 1.14783065 0.74226013 -11.60794169 -1.17554895 24.72041901 - H 7.33049400 -0.01346672 -0.95399177 0.90755492 5.82797652 -6.96704881 -1.35448637 - H 4.91402617 -0.93422613 -3.30549132 0.91162321 27.42951738 13.00058593 -3.46914276 - H 4.50795840 0.72615522 -3.30582725 0.90373996 7.60294787 -15.41448060 5.11813038 - H 6.15747875 0.23554930 -3.32429418 0.94058598 -14.96000011 -2.39815798 -9.47424992 - 30 -MD iter: 25 - N 0.08930905 0.00634574 -0.08199248 5.39379629 5.08843982 1.87362562 1.57571902 - C 0.07234000 0.04626197 1.32839760 3.61981731 0.59253605 -7.01128392 3.45708777 - N 1.21480934 0.01633708 2.04613892 5.43856914 -3.54418619 5.75676109 -0.91968788 - C 1.16882972 0.13449666 3.38896908 3.70842561 -4.77575368 3.41048903 -2.93301835 - N 0.11122207 0.19140197 4.18328065 5.40299908 -3.08860503 4.23401177 3.26129801 - C -1.11161259 0.05913571 3.49385687 3.74438852 -3.59095384 14.52351499 -0.36477306 - C -1.16315210 0.03365829 2.06276191 4.06626682 2.08283450 -1.66838530 1.13063848 - N -2.60537524 -0.00438012 1.72272405 5.35715596 3.17855953 -0.27225180 -0.93563763 - C -3.25574196 -0.02682312 2.86048079 3.85929544 -4.34773487 -0.74484066 6.24169657 - N -2.40757308 -0.02462624 3.94617689 5.13391321 -0.19903841 -1.47714219 -5.68565778 - H 2.14751828 0.33536099 3.91172223 0.96771133 -2.81103817 14.06848563 13.83401548 - H -4.35139979 -0.03874883 2.92058713 0.92915104 -13.03498409 15.27288826 -10.16869699 - H -2.76750214 0.17872144 4.89552322 0.79315383 -10.61840771 -31.50844266 -10.57880352 - H 0.92189485 0.10031871 -0.68512987 0.75247113 16.95513462 2.92400703 -17.17014730 - H -0.80673825 0.26193906 -0.51173743 0.79030452 1.38561600 6.96981341 -5.31983757 - O 2.76216565 -0.15040346 -1.46874543 6.54461579 0.05794020 -3.96011401 -0.29341396 - C 3.80087218 -0.07574629 -0.75257822 3.47155731 5.67210885 -7.51841897 4.03511946 - N 3.80666563 -0.03578033 0.66952756 5.31585237 4.98654961 -3.39920308 -2.44697529 - C 4.92978658 -0.05777235 1.50698754 3.37780136 3.58101848 5.38637028 -9.36926388 - N 6.16243628 -0.12900806 0.80481079 5.22675447 -5.24457292 -4.87164102 0.67608944 - C 6.31748796 -0.00516355 -0.58440587 3.97902836 -0.92603652 -0.74023535 1.49544068 - C 5.18729494 0.00778735 -1.36692053 4.15748096 -2.49185286 1.13156282 -4.64067165 - O 4.91906370 -0.01677187 2.77826153 6.58739711 0.13489828 -2.94724985 -0.18440185 - C 5.18221543 0.02019423 -2.91775649 4.19875169 2.14103149 1.32466111 8.13092492 - H 7.03821087 -0.03631404 1.36966378 0.77897216 0.96703548 -10.00213462 7.67329239 - H 2.84431871 -0.05204947 1.17220034 0.74311552 -6.01476819 -0.76465679 22.18364639 - H 7.33774823 -0.02003800 -0.95619393 0.90788803 7.51620901 -6.11777800 -2.52475048 - H 4.93957522 -0.92529256 -3.31007151 0.91103222 22.93699490 3.55459596 -5.83501552 - H 4.51127212 0.71477250 -3.30218322 0.90217728 -2.03256257 -6.49361494 1.70682980 - H 6.14432602 0.23389351 -3.33391068 0.94015617 -10.09186505 -0.25078426 -9.61493573 diff --git a/notebooks/Example9_NAMD/step2_ergoscf/md1.xyz b/notebooks/Example9_NAMD/step2_ergoscf/md1.xyz deleted file mode 100755 index 25ca4fb52..000000000 --- a/notebooks/Example9_NAMD/step2_ergoscf/md1.xyz +++ /dev/null @@ -1,24 +0,0 @@ - 2 -MD iter: 0 - Li 0.00000000 0.00000000 0.00000000 - H 0.00000000 0.00000000 1.33200000 - 2 -MD iter: 1 - Li 0.00000000 0.00000000 0.00000000 - H 0.00000000 0.00000000 1.33200000 - 2 -MD iter: 2 - Li 0.00000000 0.00000000 0.00000000 - H 0.00000000 0.00000000 1.63200000 - 2 -MD iter: 3 - Li 0.00000000 0.00000000 0.00000000 - H 0.00000000 0.00000000 1.53200000 - 2 -MD iter: 4 - Li 0.00000000 0.00000000 0.00000000 - H 0.00000000 0.00000000 1.43200000 - 2 -MD iter: 5 - Li 0.00000000 0.00000000 0.00000000 - H 0.00000000 0.00000000 1.33200000 \ No newline at end of file diff --git a/notebooks/Example9b_NAMD_adamantane/step1/adamantane.gen b/notebooks/Example9b_NAMD_adamantane/step1/adamantane.gen deleted file mode 100755 index 4035ddf5a..000000000 --- a/notebooks/Example9b_NAMD_adamantane/step1/adamantane.gen +++ /dev/null @@ -1,28 +0,0 @@ - 26 C - C H - 1 1 0.31048000 1.05089000 -0.88212000 - 2 1 1.20028000 0.16877000 -0.00000000 - 3 1 0.31048000 -0.71335000 0.88212000 - 4 2 1.86258000 -0.44364000 -0.61241000 - 5 2 1.86258000 0.78118000 0.61241000 - 6 1 -0.57164000 0.16877000 1.77192000 - 7 1 -1.45376000 1.05089000 0.88212000 - 8 2 -1.18405000 -0.44364000 2.43422000 - 9 2 0.04077000 0.78118000 2.43422000 - 10 1 -0.57164000 1.94069000 -0.00000000 - 11 2 -1.18405000 2.60299000 -0.61241000 - 12 2 0.04077000 2.60299000 0.61241000 - 13 1 -0.57164000 0.16877000 -1.77192000 - 14 2 0.93914000 1.67955000 -1.51078000 - 15 1 -0.57164000 -1.60315000 -0.00000000 - 16 2 0.93914000 -1.34201000 1.51078000 - 17 1 -1.45376000 -0.71335000 -0.88212000 - 18 2 0.04077000 -2.26545000 -0.61241000 - 19 2 -1.18405000 -2.26545000 0.61241000 - 20 2 -2.08242000 -1.34201000 -1.51078000 - 21 1 -2.34356000 0.16877000 -0.00000000 - 22 2 -1.18405000 0.78118000 -2.43422000 - 23 2 0.04077000 -0.44364000 -2.43422000 - 24 2 -3.00587000 0.78118000 -0.61241000 - 25 2 -2.08242000 1.67955000 1.51078000 - 26 2 -3.00587000 -0.44364000 0.61241000 diff --git a/notebooks/Example9b_NAMD_adamantane/step1/convert.py b/notebooks/Example9b_NAMD_adamantane/step1/convert.py deleted file mode 100755 index e3f65f9b0..000000000 --- a/notebooks/Example9b_NAMD_adamantane/step1/convert.py +++ /dev/null @@ -1,14 +0,0 @@ -import os -import sys -import math -import re - -if sys.platform=="cygwin": - from cyglibra_core import * -elif sys.platform=="linux" or sys.platform=="linux2": - from liblibra_core import * - -from libra_py import DFTB_methods - - -DFTB_methods.xyz_traj2gen_sp("adamantane.xyz", "adamantane.gen", 0, "C") diff --git a/notebooks/Example9b_NAMD_adamantane/step1/dftb_in.hsd b/notebooks/Example9b_NAMD_adamantane/step1/dftb_in.hsd deleted file mode 100755 index 6bf2ced31..000000000 --- a/notebooks/Example9b_NAMD_adamantane/step1/dftb_in.hsd +++ /dev/null @@ -1,61 +0,0 @@ -# This file is to run the MD calculations to generate the trajectory -# - -Geometry = GenFormat { - <<< "adamantane.gen" -} - -Driver = VelocityVerlet { - MovedAtoms = 1:-1 - Steps = 5000 - TimeStep [fs] = 1.0 - KeepStationary = Yes - OutputPrefix = "md" - Thermostat = NoseHoover { - Temperature [Kelvin] = 273.15 - CouplingStrength [cm^-1] = 600 - - } -} - -Hamiltonian = DFTB { - SCC = Yes - SlaterKosterFiles = Type2FileNames { - Prefix = "/mnt/c/cygwin/home/Alexey-user/Soft/dftb/sk/3ob-3-1/" - Separator = "-" - Suffix = ".skf" - } - MaxAngularMomentum = { - C = "p" - H = "s" - } - Dispersion = SlaterKirkwood { - PolarRadiusCharge = HybridDependentPol { - C = { - CovalentRadius [Angstrom] = 0.6 - HybridPolarisations [Angstrom^3,Angstrom,] = { - 1.382 1.382 1.382 1.064 0.000 0.000 3.8 3.8 3.8 3.8 3.8 3.8 2.50 - } - } - H = { - CovalentRadius [Angstrom] = 0.6 - HybridPolarisations [Angstrom^3,Angstrom,] = { - 0.386 0.386 0.000 0.000 0.000 0.000 3.5 3.5 3.5 3.5 3.5 3.5 0.80 - } - } - } - } -} - - -Options = { - WriteAutotestTag = Yes -# WriteEigenvectors = Yes -} - -Analysis = { -} - -ParserOptions = { - ParserVersion = 4 -} diff --git a/notebooks/Example9b_NAMD_adamantane/step1/ruh.sh b/notebooks/Example9b_NAMD_adamantane/step1/ruh.sh deleted file mode 100755 index 61e2a31db..000000000 --- a/notebooks/Example9b_NAMD_adamantane/step1/ruh.sh +++ /dev/null @@ -1 +0,0 @@ -/mnt/c/cygwin/home/Alexey-user/Soft/dftb/dftbplus-18.2.x86_64-linux/bin/dftb+ \ No newline at end of file diff --git a/notebooks/Example9b_NAMD_adamantane/step2/run.py b/notebooks/Example9b_NAMD_adamantane/step2/run.py deleted file mode 100755 index 35f49be93..000000000 --- a/notebooks/Example9b_NAMD_adamantane/step2/run.py +++ /dev/null @@ -1,53 +0,0 @@ -import os -import sys - -# Fisrt, we add the location of the library to test to the PYTHON path -if sys.platform=="cygwin": - from cyglibra_core import * -elif sys.platform=="linux" or sys.platform=="linux2": - from liblibra_core import * -import util.libutil as comn -from libra_py import ERGO_methods -from libra_py import units -from libra_py.workflows.nbra import step2_ergoscf - - -def run(EXE, COORDS): - inp = """#!bin/sh -%s << EOINPUT > /dev/null -spin_polarization = 0 -molecule_inline Angstrom -%sEOF -basis = "STO-3G" -use_simple_starting_guess=1 -scf.create_mtx_files_F = 1 -scf.create_mtx_file_S = 1 -XC.sparse_mode = 1 -run "LDA" -EOINPUT -""" % (EXE, COORDS) - return inp - -def run1(EXE, COORDS): - inp = """#!bin/sh -%s << EOINPUT > /dev/null -spin_polarization = 0 -molecule_inline Angstrom -%sEOF -basis = "STO-3G" -use_simple_starting_guess=1 -scf.create_mtx_file_S = 1 -scf.create_mtx_files_S_and_quit = 1 -XC.sparse_mode = 1 -run "LDA" -EOINPUT -""" % (EXE, COORDS) - return inp - - -params = {"EXE":"/mnt/c/cygwin/home/Alexey-user/Soft/ergo-3.8/source/ergo", "md_file":"../step1/md.xyz", - "isnap":0, "fsnap":5000, "dt": 1.0 * units.fs2au - } - -os.system("mkdir res") -step2_ergoscf.run_step2(params, run, run1) diff --git a/notebooks/Example9b_NAMD_adamantane/step3/.gitignore b/notebooks/Example9b_NAMD_adamantane/step3/.gitignore deleted file mode 100755 index 016fed839..000000000 --- a/notebooks/Example9b_NAMD_adamantane/step3/.gitignore +++ /dev/null @@ -1 +0,0 @@ -.ipynb_checkpoints diff --git a/notebooks/Example9b_NAMD_adamantane/step3/step3-1-convert-basis.ipynb b/notebooks/Example9b_NAMD_adamantane/step3/step3-1-convert-basis.ipynb deleted file mode 100755 index 391228d03..000000000 --- a/notebooks/Example9b_NAMD_adamantane/step3/step3-1-convert-basis.ipynb +++ /dev/null @@ -1,294 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# DO BASIS CHANGE (for Pyxaid users)\n", - "\n", - "This file demonstrates how to convert the Hvib files (vibronic Hamiltonians in the KS basis) generated in the step2 to vibronic Hamiltonian files in the basis of configuration interaction (CI) functions composed of Slater Determinants (SD).\n", - "\n", - "This example is specifically taylored to Pyxaid users, since they don't have transition density matrices or overlaps from the step2 of Pyxaid, only the Hvib. So, we need to use an alternative approach.\n", - "\n", - "To start, lets import the required modules" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/alexey/miniconda2/envs/libra/lib/python2.7/site-packages/ipykernel_launcher.py:8: RuntimeWarning: to-Python converter for std::vector, std::allocator > > already registered; second conversion method ignored.\n", - " \n", - "/home/alexey/miniconda2/envs/libra/lib/python2.7/site-packages/ipykernel_launcher.py:8: RuntimeWarning: to-Python converter for std::vector >, std::allocator > > > already registered; second conversion method ignored.\n", - " \n", - "/home/alexey/miniconda2/envs/libra/lib/python2.7/site-packages/ipykernel_launcher.py:8: RuntimeWarning: to-Python converter for boost::python::detail::container_element >, std::allocator > > >, unsigned long, boost::python::detail::final_vector_derived_policies >, std::allocator > > >, false> > already registered; second conversion method ignored.\n", - " \n", - "/home/alexey/miniconda2/envs/libra/lib/python2.7/site-packages/ipykernel_launcher.py:8: RuntimeWarning: to-Python converter for std::vector >, std::allocator > > > already registered; second conversion method ignored.\n", - " \n", - "/home/alexey/miniconda2/envs/libra/lib/python2.7/site-packages/ipykernel_launcher.py:8: RuntimeWarning: to-Python converter for boost::python::detail::container_element >, std::allocator > > >, unsigned long, boost::python::detail::final_vector_derived_policies >, std::allocator > > >, false> > already registered; second conversion method ignored.\n", - " \n", - "/home/alexey/miniconda2/envs/libra/lib/python2.7/site-packages/ipykernel_launcher.py:8: RuntimeWarning: to-Python converter for std::vector >, std::allocator > > > already registered; second conversion method ignored.\n", - " \n", - "/home/alexey/miniconda2/envs/libra/lib/python2.7/site-packages/ipykernel_launcher.py:8: RuntimeWarning: to-Python converter for boost::python::detail::container_element >, std::allocator > > >, unsigned long, boost::python::detail::final_vector_derived_policies >, std::allocator > > >, false> > already registered; second conversion method ignored.\n", - " \n", - "/home/alexey/miniconda2/envs/libra/lib/python2.7/site-packages/ipykernel_launcher.py:8: RuntimeWarning: to-Python converter for boost::python::detail::container_element, std::allocator > >, std::allocator, std::allocator > > > >, unsigned long, boost::python::detail::final_vector_derived_policies, std::allocator > >, std::allocator, std::allocator > > > >, false> > already registered; second conversion method ignored.\n", - " \n" - ] - } - ], - "source": [ - "import os\n", - "import sys\n", - "\n", - "# Fisrt, we add the location of the library to test to the PYTHON path\n", - "if sys.platform==\"cygwin\":\n", - " from cyglibra_core import *\n", - "elif sys.platform==\"linux\" or sys.platform==\"linux2\":\n", - " from liblibra_core import *\n", - " \n", - "\n", - "from libra_py import hpc_utils\n", - "from libra_py import data_read\n", - "from libra_py import data_outs\n", - "from libra_py import data_conv\n", - "from libra_py import units\n", - "from libra_py import QE_methods\n", - "from libra_py.workflows.nbra import step3\n", - "#import libra_py.workflows.nbra.step2_analysis as step2a\n", - "\n", - "#import numpy as np\n", - "#from matplotlib.mlab import griddata\n", - "\n", - "import matplotlib.pyplot as plt # plots\n", - "%matplotlib inline \n", - "\n", - "plt.rc('axes', titlesize=24) # fontsize of the axes title\n", - "plt.rc('axes', labelsize=20) # fontsize of the x and y labels\n", - "plt.rc('legend', fontsize=20) # legend fontsize\n", - "plt.rc('xtick', labelsize=16) # fontsize of the tick labels\n", - "plt.rc('ytick', labelsize=16) # fontsize of the tick labels\n", - "\n", - "plt.rc('figure.subplot', left=0.2)\n", - "plt.rc('figure.subplot', right=0.95)\n", - "plt.rc('figure.subplot', bottom=0.13)\n", - "plt.rc('figure.subplot', top=0.88)\n", - "\n", - "colors = {}\n", - "\n", - "colors.update({\"11\": \"#8b1a0e\"}) # red \n", - "colors.update({\"12\": \"#FF4500\"}) # orangered \n", - "colors.update({\"13\": \"#B22222\"}) # firebrick \n", - "colors.update({\"14\": \"#DC143C\"}) # crimson \n", - "\n", - "colors.update({\"21\": \"#5e9c36\"}) # green\n", - "colors.update({\"22\": \"#006400\"}) # darkgreen \n", - "colors.update({\"23\": \"#228B22\"}) # forestgreen\n", - "colors.update({\"24\": \"#808000\"}) # olive \n", - "\n", - "colors.update({\"31\": \"#8A2BE2\"}) # blueviolet\n", - "colors.update({\"32\": \"#00008B\"}) # darkblue \n", - "\n", - "colors.update({\"41\": \"#2F4F4F\"}) # darkslategray\n", - "\n", - "clrs_index = [\"11\", \"21\", \"31\", \"41\", \"12\", \"22\", \"32\", \"13\",\"23\", \"14\", \"24\"]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Lets read in the files\n", - "\n", - "Adamantante C10H16 has 10 x 6 + 16 + 1 = 76 electrons, so there are 76/2 = 38 occupied orbitals.\n", - "\n", - "HOMO index is then 37 (indexing starts at 0)\n", - "\n", - "Lets choose HOMO-1, HOMO, LUMO, LUMO+1 orbitals, so the \"active_space\" parameter to the list \\[36, 37, 38, 39\\]" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "params = { \"data_set_paths\" : [\"../step2/res/\"],\n", - " \"data_dim\":66, \"active_space\":[36, 37, 38, 39],\n", - " \"isnap\":1, \"fsnap\":441, \n", - " \"data_re_prefix\" : \"hvib_\", \"data_re_suffix\" : \"_re\",\n", - " \"data_im_prefix\" : \"hvib_\", \"data_im_suffix\" : \"_im\" } \n", - "Hvib_ks = data_read.get_data_sets(params)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Prepare the folder for the final results" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Remove the previous results and temporary working directory from the previous runs\n", - "os.system(\"rm -r traj1_out_pyxaid\")\n", - "\n", - "# Create the new results directory\n", - "os.system(\"mkdir traj1_out_pyxaid\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "How, the MOs are re-indexed as:\n", - "\n", - "* 36 (H-1) -> 1\n", - "* 37 (H) -> 2\n", - "* 38 (L) -> 3\n", - "* 39 (L+1) -> 4\n", - "\n", - "We can use the usual Pyxaid notation.\n", - "\n", - "Consider the following states:\n", - "\n", - "* GS = \\[1,-1, 2, -2\\] \n", - "* S1 = \\[1,-1, 2, -3\\] # H -> L\n", - "* S2 = \\[1,-1, 2, -4\\] # H -> L+1\n", - "* S3 = \\[1,-3, 2, -2\\] # H-1 -> L\n", - "* S4 = \\[1,-4, 2, -2\\] # H-1 -> L+1" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "params1 = { \"SD_basis\" : [ [1, -1, 2, -2], [1, -1, 2, -3], [1, -1, 2, -4], [1, -3, 2, -2], [1, -4, 2, -2] ],\n", - " \"SD_energy_corr\" : [0.0, 0.0, 0.0, 0.0, 0.0],\n", - " \"CI_basis\" : [ [1.0, 0.0, 0.0, 0.0, 0.0],\n", - " [0.0, 1.0, 0.0, 0.0, 0.0],\n", - " [0.0, 0.0, 1.0, 0.0, 0.0],\n", - " [0.0, 0.0, 0.0, 1.0, 0.0],\n", - " [0.0, 0.0, 0.0, 0.0, 1.0]\n", - " ],\n", - " \"output_set_paths\" : [os.getcwd()+\"/traj1_out_pyxaid/\"], \n", - " \"do_output\" : 1,\n", - " \"Hvib_re_prefix\":\"Hvib_\", \"Hvib_re_suffix\":\"_re\",\n", - " \"Hvib_im_prefix\":\"Hvib_\", \"Hvib_im_suffix\":\"_im\"\n", - " }\n", - "\n", - "Hvib = step3.pyxaid2libra(Hvib_ks, params1)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAETIAAAo4CAYAAAB0rO+SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xm8/vWc//HHs77tq7SQqBQqS0RUUxRZY4iGMOM3w9h3xjYMkjH2ibFkX0d2ClmiRCVbiCjRIpIpQnuq1++Pz5Xq63vOeV/nuj7XdZbH/Xa7bpZen/frdZ1zPteM83md1ytVhSRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiSNYrVpFyBJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRp8XOQiSRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqSROchEkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0sgcZCJJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRpZA4ykSRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjQyB5lIkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJGpmDTCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiSNzEEmkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkkbmIBNJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJI3OQiSRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqSROchEkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0sgcZCJJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRpZA4ykSRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjQyB5lIkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJGpmDTCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiSNzEEmkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkkbmIBNJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJI3OQiSRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqSROchEkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0sgcZCJJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRpZA4ykSRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjQyB5lIkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJGpmDTCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiSNzEEmkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkkbmIBNJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJI3OQiSRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqSROchEkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0sgcZCJJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRpZA4ykSRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjQyB5lIkiRJkiRJWjCSHJek5njtOe06JUmSJEmSJEmSJEmSFrIk72/owfjnMeY7qyHfNuPKJ0mSJElauFZMuwBJkiRJkiRJkiRJkiRJkiRJkiQtLklWAFsB2wxeNwXWA9YdvFYAVwCXA5cAvwN+C5wLnFpVf5x40ZIkSZIkSeqdg0wkSZIkSZIkSZIkSZIkSZIkSZI0qyRbAvcAdgN2B+4IrDHCeecCPwFOAL4BnFhVl42hVEmSJEmSJE2Rg0wkSZIkSRJJtgHOnHIZ81JVmXYNkiRJkiRJkiRJkiRJS1GSrYADBq89gHH2aWw5eN1n8J8vT3IU8Gng8Kq6cIy5JEmSJEmSNCEOMpEkSZIkSZIkSZIkSZIkSZIkSdJfJbkb8G/A/sDqE0q7NvCgweuKJJ8EDq2q4yaUX5IkSZIkSWOw2rQLkCRJkiRJkiRJkiRJkiRJkiRJ0vQl2TXJscCJwAFMbojJytYCHg18M8n3k/z9lOqQJEmSJEnSkBxkIkmSJEmSJEmSJEmSJEmSJEmStIwl2TTJO+kGmNx92vWsZBfg8CQnJdl72sVIkiRJkiRpdg4ykSRJkiRJkiRJkiRJkiRJkiRJWqaS3A/4GfB4FvbfmdwJOCbJx5JsOe1iJEmSJEmStGoL+RdMkiRJkiRJkiRJkiRJkiRJkiRJ6kGS1ZO8EjgS2HTa9Qzh4YOXJEmSJEmSFqAV0y5AkiRJkiRJkiRJkiRJkiRJkiRJk5NkbeCTwH4jHHM18BPgeOAU4CzgTOCPwCWD15rA+sB6wM2A7QevOwN/B2w4Qn5JkiRJkiQtQA4ykSRJkiRJkiRJkiRJkiRJkiRJWiaSrA8cAewzj8uvBL4EfBT4fFVdNEf8ZYPX+XSDTo6/Xh2rA7sADwYeBWw7j3okSZIkSZK0wDjIRJIkSZIkDePYqtp72kVIWrqqas9p1yBJkiRJkiRJkiRJS1WSdYGvALsPeelFwDuAN1TVeeOopaquBr47eL0kye7As4ADgNXGkUPS5FTVNtOuQZIkSZK0MPiLHUmSJEmSJEmSJEmSJEmSJEmSpCUuSYAPM/wQkw8D21XV88Y1xGRVqupbVfUIYAfgfcA1feWSJEmSJElSfxxkIkmSJEmSJEmSJEmSJEmSJEmStPS9Gth/iPgLgPtV1T9V1fk91fQ3qur0qnoscFfg25PKK0mSJEmSpPFwkIkkSZIkSZIkSZIkSZIkSZIkSdISlmR/4PlDXHIysGtVfbmnkuZUVd8HdgeeClw+rTokSZIkSZI0HAeZSJIkSZIkSZIkSZIkSZIkSZIkLVFJbgwcOsQlJwF3r6qz+qmoXXXeBtwV+Nm065EkSZIkSdLcHGQiSZIkSZIkSZIkSZIkSZIkSZK0dL0V2Lwx9ifAfarqTz3WM7Sq+jFwF+Az065FkiRJkiRJs3OQiSRJkiRJkiRJkiRJkiRJkiRJ0hKU5F7AIxrD/wQ8pKp+32NJ81ZVlwIHAIcANeVyJEmSJEmSNIMV0y5AkiRJkiRJkiRJkiRJkiRJkiRJvXjVELGPq6pf9lbJGFTVNcCzk2w67VokSZIkSZK0ag4ykSRJkiRJ0rwkWRPYEdh28NoUWG/wuga4BLgIOAc4Ezilqs6bTrVSP5KsBewA3JLr7oN16e6Dq4FL6e6DX3HdffC76VQ7nCQBtgJuA2wDbAHcGFgbWAu4iu79XQpcRnfP/wY4e/D6XVW5BU2SJEmSJEmSJEmakiQPAe7aGP6pqvpUn/WMU1VdMOmcSTYGdqJ7PrwNsCHds+G1uO6Z6YV0z4bPoHs+fNmk65QkdZJsQtf3sj1wE2Azur6etQYhl3HD3pffcV3fy6+r6qpJ1yxJkiQtFQ4ykSRJkiRJGpMkGwH3Be4C3A64FbARXePKanQPPP8EnAX8AjgROLaqfj6NeucjyZ2BhwF7Abty3UPd1uvPAI4FPgkcVVV/GXuRE5TkJsC+wB2AW9M99L4RsD5ds9KVwMXAb4FfA8+tqlPHXMNadN+Pvekapm5D99B9fWANuiEaFw1qOGXwOqaqfjDOOpaTJLsCD6X7ut+F4e+DX3LD+2DBND0k2Rp4CHBvYHdgkxGOuyLJz4FvA9+i+8z7mcNNJEmSJEmSJEmSpIl5cWPcpcBz+ixkMUqyGnAPuj6JuwO3pev/aPWXJN8Hvg583Of0i9/gmfp96fpEdgK2pusL2gAIXX/GhcDPgZ8C3wCOrqpLplKwmiVZg+5+/zu6vq8d6XomNqRb+HIZ1y10OgP4HnA88J2qumYaNQ8jyTZ0vSC70i3s2YbrhjFdSffe/kjX03YKcBLw5ar64+Srnb9B/95+wP3pvpfbjnDc1UnOAb5D1/NyInBSVV0xcqGSJEnSMhB7xiVJkiRJ0uBB5ZkNocdW1d69FjNBSd4P/L85wv6lqt4/yxkB/h54CrAP3eCIYf0YeD/wjoXYuJBkQ+DJwL/SDeoYlz8AbwPeNKlNSUm+Ttd0MJt9qurrs5yxCfA44NHAzkOWMOvZw0iyO/BE4B/oNoUM6xzg43Rf/3NmyXN74GVznHVyVb1iHjWsKt9xdI0Es9mrqo4bR75Wg0aHp9B977cb49EX0N0Hb66q34/x3GaDz7H9gafRfY716QLg03Q/e1+vqqt7zidJkiRJkiRJkiQtS0l2Ab7fGP66qnp+n/UsJkk2Bp5B90x+yzEefSpwCPC+qrpyjOfOKMnLmfuZ/0FV9fL+q+mMo3djkpJsADyersfoDvM44krgCOBtVXXMOGubyzh6o4bMdxbdcJfZbFtVZ40h1z8D75sj7ANV9c9znHMn4Nl0/V8bzaOUc4GPAofM1n8zDYNel3+i+/mdz8/uVXSLeg4FPj3bwJYkB9ENe5rNy6rqlHnUMafBcq5nAg9nyIVEQ7oC+BJd38sRVXVxj7kkSZKkRW2YSbCSJEmSJEm6niQPotue8lngPsxviAnA7YE3AGcnecpgqMDUJVln8JD5V8CrGe8QE+i2lryE7n2/aLDZZMFKsnGSNwO/Bl7L8ENMxlXHHZMcBZxA12wynyEmADcHngv8Msl7kmw6Q9wWdNulZnvdfZ41LHhJ1k1yMN198CrGO8QEYFPgpXT3wQsmfR8k2ZNuS9Cn6H+ICXTv9wnAV4Fzk+w6gZySJEmSJEmSJEnScvTExrgr6YZrLHtJ1kjyYuBs4CDGO8QEYAe6gQBnJHnMmM/WKiR5eZKa4/XyGa5dI8lL6PoF3sD8BkEArAkcAByd5Hifky8MSXZK8hXgJLphH/MZYgLd58Rz6Ppv3jQYfDNVSdZK8ly6xWb/w/x/dlcA9wI+AZyW5IBZYu/B3P1Fm82zjhkl2SrJx+h6X/6JfoeYMDj/wcD/Av+X5Gk955MkSZIWLQeZSJIkSZIkDSnJpoMHoEfQNZmMy42BtwJfT7L5GM8dWpL7A6fQDViY74P6VuvSDYj4YZK5NnNMRZIDgdOApwPrTKmGNZK8im5j1r5jPHoN4LHAKXM0HCw7SR5IN6zoJcCGPadbj25g0ElJduw5F0lWT/Jaus05u/Sdbwab0w3KkSRJkiRJkiRJkjRGSdYGHtkY/tGqOrfPehaDJHemG2jwSvp/Pnwz4ANJjkpyi55zaR6S3ImuP+NgYOMxHr0H8O0k/51kzTGeq0ZJVgyG1/wAuPcYj14DeAZd/83UhtUk2Znus+z1wI3GePT2wCeSfDLJ2AeSzEeSRwA/AR4+pRLWYfyLwSRJkqQlw0EmkiRJkiRJQxgM2vgO/T4AvTvwnSQTf9B5veEGRwLbTjj9TnTNGgtmmEaS1QZfj8Pohi5Mq47NgG8CL6K/3+ltTtdw8NKezl80Bk0rbwA+B2w94fS3o7v/9+8rQZJ1gMOB5+HviCVJkiRJkiRJkqSlaB9gg8bYD/VZyGKQ5J+A4+ie107SvsB3k+w14byaRZL96H4ebt9XCuBZwAlJtuwph1YhyUbAF4CXAX0Nkrk5cGySv+/p/Bkl+Rfg23Q9WH15GHBiklv1mGNOSf4d+Cj9L+iSJEmSNE82qUuSJEmSJDUaNI6cwGQGfGwNfDXJzSaQC4Ak6wNfphtuMC3rAR9L8tgp1gB0Q0zoBphM8+tBkm3pfu7uNqGUByX5nwnlWnCSbAgcBTxnimWsD3wyyWPGfXCS1ekaOfYb99mSJEmSJEmSJEmSFozW54G/A47ps5CFLslLgA8Ca0+phM2Bry2kpS/LWZID6RaDrDuBdHcGjkuy3QRyLXtJbgJ8C7jPBNKtA3w8yb0mkAuAJC8C3gusNYF0twSOTzLp4U8AJHkW8J/TyC1JkiSpnYNMJEmSJEmSGiS5E/A5YMMJpt2a7qH26n0nGgxv+DIwsQfos1gNePdg49E0/Q/w8GkWkGQL4KvA9hNO/bQk/zbhnFM32LzzFWDvKZcC3X3wviSPGvO5LwEmvvVHkiRJkiRJkiRJ0kQ9oDHuiKq6utdKFrAkLwAOnnYdwBrAR5I8eNqFLGdJ9gTeD/Tep3M92wJfn+Sio+UoycZ0fVE7TjDtWnR9X1v1nSjJs4FX9Z1nJZsBnx/0Nk3MYBHZGyaZU5IkSdL8rJh2AZIkSZIkSQvd4IHyl4CNGsL/BPwS+DVwCd3vX7age3h7a4ZvdtgDeBHwyiGva5ZkLeCLg1zDuIRuyMbxwA+Bs4HzgMsG/3x94BZ0TQB3Bx4C3LS1LOBdSU6vqhOHrGtkSZ4CPKUx/I903/Pf0H1NADYAtqR77+vMs4Z1gC/QbTGZj3OA04EL6b4n63Hdz+HmDde/JsmPgWXRtJZkbbr7/G5DXnox3X1wAt19cBbd1rKV74OduO4+uEnj2asB7xncB98dsq6/keS2dINMhvFn4Gi69/eLwev3wKV0P++r0302bjj41y2A2w9edwBuQ9d0J0mSJEmSJEmSJGkCktyCbjhCi2P6rGUhS3Ig8Op5XPoD4PN0z1BP5brnp+vRPYvfCbgH3YKJYZaWrAF8LMmeVfW9edSlEQwGiXyWbvjEXC4DTgN+BVxE973bmK4fY2u6npdhbAV8IcleVXXRkNdqDklWAIfT9TDM5Qq6HqCz6b63V9P12mwObEd3nw9jE7rhOPsOeV2zJAcw/8Eel9L1Fl37s7waXf/HtnTvd805rt8a+MxguEjvkqwJvI/hFrtfBXyL7v/e/Zyu7+Vcup6XS+m+x9f2vGxI9z3biev6Xm5H1/sjSZIkaUgOMpEkSZIkSZrd6sBhzD744UfA/wJHAj+tqlpVUJJNgPsB/wjcf4gaXpTk/VX16yGuGcY7GW6IyUnAIcAnquryWeIuHLx+BHw0ydPoGnVeBtyxIc9awKeS3K6qLhyivlFtD7xujpgfAB8CvlxVP50pKMlqwK7A/sDjh6zjEODOQ15zLN0D+y9X1Xmz1LU93QauxzFzo8ZqwLuAZw5Zw2L1bmC3IeK/B7yJ7j64Ypa4698HhyV5Kt0wk5fR1iSzNvDpwX3wpyHqW5WDaf+d8InAfwFHVtVVs8T9BbicbnjLtb5w7b9Jsh5wH+BBwH60DdGRJEmSJEmSJEmSNH/DPGf+el9FLGSDJRDvHvKyzwMHzTJk5M+D1y+AI5L8G92z0v+k/XuyFvDJJHeuqt8PWZ9Gcyhw41n++cXAB4GPA8fP9Bw9yaZ0vUGPA/YeIv/OgxoePcQ1avNKusUzMzkX+AjdIJvvVtWVqwoaLIraG3go8C+0L3W5V5L9q+ozzRU3SnJL4L0MNzznD8AHgE8B357lZ3ltYC/gQOARzDzEZXfg2UPkH8W/0g1YaXEO8Hrg/VX15zlifz94Xevoa/9NktXp3uPf0/W+7NBcrSRJkrTMDTOBUJIkSZIkaTl6PrDnDP/sJ8D9quqOVfW6qjplpiEmAFX1h6r6SFU9gG6QyS8aa1gX+Pehqm40GKrwmMbw84FHAXepqg/NMcTkb1TVNVX1WeAuwHPpBiDMZUvgjcPkGYPX0n3NV+VHwH2rapeq+u/ZhpjAX9/zt6vqhcA2wMktBSR5CPCEIWr+LrBHVe1dVR+YbYjJoK5fVNWbq2pnugaLM2cIvTnd8IslLckzaW8G+h3wiKratao+PMcQk78x+Jn4NLAL3efLbENCrrUVXXPFvCXZCnhwQ+gVwBOqaveqOmKOISZzqqpLquozVfVY4KZ0m8c+RbfRRpIkSZIkSZIkSdL47dIYd3ZV/bbXShagJCvoltXM9Ef5K7sQ2L+qHjTLEJO/UZ0vA3elvUcCYGvgLa15NBYHAA+c4Z9dA7wN2LqqnlpVx872HL2qLhj0EuxDt1ToB0PU8agk/zhEvOa2B11vxqr8HngysG1VPa+qjp9piAlAVV1RVV+uqifSLa756hB1vHKI2CaDARuHARs0XnIlXQ/Q1lX1nMH7ne1n+fKqOqqqHgdsSzdoZ6a+uFcAt2ivft6e2hj3buBWg96ouYaYzKqqrq6q46rq+VW1I3Br4L/pBldJkiRJmoWDTCRJkiRJkmZ36xn++1cDuwyaToZWVV+ie1j+k8ZLHpPkRvPJNZMk2wKvaQw/FrhtVR0227CWFoMHvG8E7kXbQ91/TrLXKDmHNNPX+dXArlX1lfkcWlUXVdUf5opLsi7w5iGOfh3dEJNvzbOuz9Bt9vnEDCG3nc+5i0WS7YH/agw/BrhdVX181LyD++B1wL2Bixou+dcku4+Q8hHM/fvga4AHV9W7Rsgzo8EQl29U1QHA9nSNHS3vXZIkSZIkSZIkSVK7OzXGzbq4Ywl7Jt0z8hZn0S17+ex8kw2ek74RuA9wceNlBya5z3xzamgz9UX8AXjAYIDJnP0eKxv0cdyN4QbTvCnJJsPm0oxuBWQV//2XgB2q6tDZhpfMpKpOBe4HfKTxkp16uKefQDcoqcVZwO5V9dKqav0c+quqOr+qnkz3nld1L6xDN+ykN0l2BnZqCH1tVT1+2MVErarq9Kp6Dt1SomfTfW0lSZIkrYKDTCRJkiRJkoZzNfCYqnpRVbVuy1mlqjofuCdtDzTXoxtEME7vpG3D0JHAvQf1jk1VfRO4L93Gj7kcPM7cQyrgX8fxPW/0fODmjbHPHmz8mHFDSouquoju5+vQUc5ZpN5F11Axl88B96mqC8aZvKq+Dtyftu1bo9wH+zTEHDLf4UzDqqqzBht+jp1EPkmSJEmSJEmSJGkZuVVj3LIbZJLkxsDLGsPPBe5eVWeMI/fg2fADaOuRAHhzEv/mZ3ouAPYZ9Rl6Vf2lqp4OvLTxkk2Al4+SU3N6B7DfqP0fVXU18BjgiMZLHjtKvutLsjHwisbw04A9q+qkUfMOlj/dA/jdqGfNQ0vfy0nAi/suBP660OqQqjpkEvkkSZKkxchfakiSJEmSJA3nSVX1oXEdNhgO8vTG8H8YV94k9wX2bQg9CXhEXwM8qupE4HkNofdIcvc+amjw/Kp6zyQSJdmQbltHi9eO82F4VRXwVGDem6QWmyT7AXs3hH4XOHDUgTEzqarjgRc2hN4ryR7zTDPX1rVrgDfN82xJkiRJkiRJkiRJC8dWjXE/77WKhelZwAYNcVcCD66qc8aZfLDw5SmN4bdhjH0iGsqVwN9X1cnjOrCqDqZ9ucyTk2wzrty6gQ8DT66qa8Zx2GCYyZOBixrCH5ikZdFOi6cBmzbEXQA8oKp+M6a8VNVPgAcDl43rzEZz9b0A/E9fvT2SJEmShucgE0mSJEmSNIx7JKkF8nrWFN7/O6rq3eM+tKo+D3yhIfTuSdYbU9qDG2LOp9tAcvGYcq5SVb0Z+FxD6BP7rGMGh1fV6yeY70nAhg1xJwAvGnfyQaPG/wPG2oy1ECUJbdtpzgMeVFWX9llPVb0ROLIhdOj7YNAIs+UcYT+sql8Ne7YkSZIkSZIkSZKkhSPJJsC6jeG/7bOWhWbQb/G0xvCDqup7fdQxWKRyRGP42PsC1OR5VfWtHs59Bt1CobmsoBu6o/H6EfD4waKfsamqc2nrP1kPGHmJU5K1aV+a9S9VdcaoOVdWVd8GXjDuc+ewXUPM4b1XIUmSJKmZg0wkSZIkSZLanAP8W4/nv60hZgWw26iJktwD2LUh9KVVdd6o+Rq9EJirUeChSW40iWIGLqbbmjIRg8EaLfmuAh47ru0wK6uqP9O+AWoxuyewS0Pcf1TV7/ouZqClCe0fkrQMu7m+jRtiHGIiSZIkSZIkSZIkLX43GyJ2Uv0AC8XDaHt2ehrw2p5reQpwWUPczknu3HMtuqFvAW/p4+Cq+gvwOODqhvDHzaM3QDO7mq7X5vKezn8PcGVD3J5jyHUAsHlD3GGD5Vp9eQvd/TIpc/WMXVxVF06kEkmSJElNHGQiSZIkSZLU5uVVdXGP538FOL8h7q5jyPX4hphTgHeNIVeTqvop8IU5wtYG7jeBcq71xqqa5Aaq3YFtGuLeXVWn9VnIoJHhG33mWABa7oOTgff2Xci1qupk4EtzhK0D3HfIo9dqiLlkyDMlSZIkSZIkSZIkLTybDBE7qYUOC8VjGuNeVlVX9VlIVf2G9mEZrXVrPJ7X12IZgKr6IfDhhtD1gf37qmMZ+khVndTX4YMBGkc2hI6j7+tRDTF/AV48hlwzqqoCXtBnjpXM1fti34skSZK0wDjIRJIkSZIkaW7nAh/sM8GgCeZzDaE7jpJnsK3lYQ2hr6yqlg0w4/SmhphJDTK5nJ427MziEQ0xBby+70IG+t4wNTVJNgYe0hB6cJ8NSjPo4z74U0PMMJvZJEmSJEmSJEmSJC1M6wwRu2z+6DvJJsA+DaG/Aj7ZcznXehPQMjDlgL4L0V8dXVXHTyDPwXT9H3N5ZN+FLCOvnkCOTzfEjNr3tQlw74bQT1TVmaPkalFV3wRO7DvPwFy9L5slWXMilUiSJElq4iATSZIkSZKkuX2w7207Az9siNlhxBz3AdaeI+ZS2oaqjNtxwBVzxNxzEoUAn6uq8yeU61r3bYg5qqp+2XslnS/SNWktRfdj7k0tFwNfmEAtK/sG3Wac2Qx7H/wRmGsw0e6DQUeSJEmSJEmSJEmSFq9hBpnM9Xx+KbknbX8/8+5JLX2pqt8An28I3TLJTn3XIwDePokkg76PrzSE3ivJ+n3XswycWFU/nUCelr6vrZKsN0KOewIrGuIOHSHHsCaV64I5/vlqtA15kSRJkjQhDjKRJEmSJEma22cnlOfHDTFbjpjj/g0xR1bVxDcvVdXlwHfmCNsqyaYTKGdSG5YASHJT4DYNoROrq6quAT41qXwT1nIffL6qLuu9kpVU1aXA9+YI2ybJjYY4s4Dz5ghbC3h+65mSJEmSJEmSJEmSFqRhBplc3lsVC8++jXGTfkb+ica4e/VahQD+DBwxwXwfbIhZAezVdyHLwKT6vk5l7sU1AW46Qo6WxTfn0S2TmpTDmft9j8NvG2JenMS/lZQkSZIWCP+fc0mSJEmSpNn9GfjuhHKd0hCz+Yg5WppzDh8xxyhOaIi5U881FHB0zzlW9neNcS3bmMZp0vkmZSncB3cc8syWJpUXJHnYkOdKkiRJkiRJkiRJWjhWHyL2mt6qWHju2hBzZlX9tPdKbugLwNUNcXfruxDxpaq6coL5jgSuaojbp+9CloGvTiJJVf0FOL0hdIsR0uzREHPkYOHNRFTVH5nM4JSWHLsDhyRJ38VIkiRJmpuDTCRJkiRJkmb3o6qaVPPOhQ3fX/yyAAAgAElEQVQxayTZYD6HJ9kMuEVD6I/nc/6YtGzP2L7nGk6rqgt6zrGy2zfEnFFVLV+fcfo2bY0zi0aSmwBbNoQutfugZTjPCuBjSV6VZP0hz5ckSZIkSZIkSZI0fZcPEbtWb1UsIElWB3ZsCP1m37WsrKr+RNuz6Tv0XYv42iSTDYY/fL8h9M5917LEXQX8ZIL5Wnq/NpnPwUlWADs0hE5iqMjKjp9AjtalVE8HDk+ybZ/FSJIkSZqbg0wkSZIkSdIwjq2qLJDXIRN6zz+bUB6q6irgsobQ+TYT3akh5hrgtHmePw6/b4jZqucaJtnAcK3bNsR8u/cqVlJVlwCT3jjVt10aYq6ibUtOX/q4D46grWlxdeBFwNlJXp3kNkPmkSRJkiRJkiRJkjQ9LT0H11oWg0yAWwFrN8RN/Jn8wIkNMTskWaP3Spa3by3QnLfrvYql7YyqumKC+f7cEDPfz97tG6+dxmfZd/pOUFVnAN9rDH8QcFqSDyfZO0l6LE2SJEnSDBxkIkmSJEmSNLtfTzjfRQ0xLQ02q9LS3HBmVQ2zoWncWgY4bNlzDdMY5LJdQ8y0BsycOqW8fWm5D35ZVVf2XsnMxn4fVNV5wLuGuGQT4AXAqUl+mOQVSXYfbPiRJEmSJEmSJEmStDANM8hkvr0Hi822jXHTejbesmBnDfrvlVjO/sJ0lryc3BCzeZJNe69k6VpKfV8tvUVXA7+Y5/mjmNTn58FDxK4BPBo4Bvh1krcmeWCSDfopTZIkSdLKbDqXJEmSJEma3R8mnK+lqWi+v9O5eUPMdklqnudPSt8PlH/b8/mrctOGmGk0Gkwzb19a7oPbLNH74NXAY4CNhrxu58HrP4CLkpwAHA+cAHynqloacSRJkiRJkiRJkiT17+IhYm8MnNdXIQtI6wCQ03utYmY/b4zbEji7z0KWsTOq6uop5G1daLMVcEGfhSxhS6nvq6W36JwpLe45E7iGnheuV9URg56VPYa8dEvgKYPXVUm+T9f3cjzwraqaRq+YJEmStOT1+j8QJEmSJEmSloDLp13AGG017QLGZJ2ez/+/ns+/gSSrA5s1hP6u71oWWN6+LNv7oKrOBR5J1zwyXxsA9wVeAXwVuDDJD5O8JcmBSbYY4WxJkiRJkiRJkiRJoxnmj7Fv0lsVC0vLH//D9Ia6tH7PWt+HhnfWAs/r937+llLfV8vPwVR6fKrqKuD3E0r3cEb7vF4B3A14DvAp4NwkZyb5cJInJdlhHEVKkiRJcpCJJEmSJEnSXKaxcaUvS6UJqe9BJsNsqBqHDWn7Pd20tuucP6W8fVnW90FVfRF49hjrWB3YGXgqcBjw2yQnJXlFktuPMY8kSZIkSZIkSZKkuZ1L+2KDpfLsdC4bNcRcWFV/6b2SVWsdPNDyPjQ/0+qLaM27XO7VPiylvq+NG2Km1VsEE7qPquo3wP7An8d47DbAo4G3Az9LcnaStyfZN8mKMeaRJEmSlhUHmUiSJEmSJC0f6027gDHp+3daV/R8/srWboy7pNcqZnbplPL2ZdnfB1X1ZuBR9DO0J8CdgP8ATk5ycpJnJNmgh1ySJEmSJEmSJEmSrqeqrgLOawzfus9aFpCWZ/KTXngyn9x9L31Zzn4/jaSD4TktwxjW77sWLQotn2XT6i2CCfYXVdWJwF7A6T2luAXwJOAo4NdJXpNk255ySZIkSUuWg0wkSZIkSZKWj9aBGctd63aqcVmrMe7KXquY2aQHu/TN+wCoqsOAnYEje051e+BNwK+SHJTEBitJkiRJkiRJkiSpX2c3xu3UaxULR8sz4mk9j4f2Z/I+6+7P5Qs8t997QVt/0WL4LBuLqjqZbtHOG4Greky1BfB84PQkH0qyTY+5JEmSpCXFQSaSJEmSJEnLR+vADC1Mtczy9sX7YKCqzqiq/YB9gK/Q7/d6Y+CldI0d+/eYR5IkSZIkSZIkSVruftQYd9teq1g4Wv5uZtILT67v6sY4//6nPwt9+IODTNRqmj0+E89dVZdU1XOB2wDvAi7rMd3qwD8CpyZ5aZIVPeaSJEmSlgR/kSFJkiRJkrR8/GXaBWiVWjeSTGsAx1JriPE+WElVfb2q7gvsAPwncHqP6W4CfDrJW2zqkCRJkiRJkiRJknpxUmPcjkmWwyKIlmfya/ZexcxavweX91rF8jbNv61avSGmddiNlraWz7JpfqZPrb9osMjnCcDNgKcDx9HfgKq1gIOAY5Ns0VMOSZIkaUlwkIkkSZIkSdLy0bJ14vVVlQX+2rvvL9SEtTYbrdtrFQsvb19a7oNXL4Cf87le+477C1NVP6+ql1TVrem21TwD+CRw7rhzAU8F3tPDuZIkSZIkSZIkSdJy1zrIZC1gtz4LWSBanslPc8FHa24HmfRnoQ+y8XsvaPs5mGaPz9T7i6rqwqp6S1XtBWwBPBp4N/AzoMacbg/g6CQbjflcSZIkaclwkIkkSZIkSdLycWlDzE16r0Iru4i2LSCb9V3IAsvbF++DBoOhJv9TVf9QVTcDtgceC7wPOH1MaR6T5CVjOkuSJEmSJEmSJElS58e0PRcF2KfPQhaISxpiNkmS3itZtdZn8i3vQ/Oz3gLP7SATAfypIWaaPT4Lqr+oqi6oqo9U1eOraidgc+ChwH8D3wWuGkOanYBPJlkxhrMkSZKkJcdBJpIkSZIkScvH7xpituq9Ct1AVV0FXNAQukXftSywvH3xPpiHqvplVb2vqh5bVbema/B4OHAocNYIR78iyS7jqFGSJEmSJEmSJEkSVNWVwNcaw+/fZy0LxHkNMWsAN+q7kBm0PpNveR+LxUL7o//Np5E0yQbA2g2hf+i7Fi0Kv22ImUqPT5LVgRtPI3erwWCTz1TVc6rqrsBGwL7AfwLfA2qeR+8LPHtMZUqSJElLioNMJEmSJEmSlo9fNcTs2HsVWpWWZoPte69iYeXti/fBGFTV+VX1iap6clVtC9wOeDnwyyGPCvDKcdcnSZIkSZIkSZIkLXNfaIy7a5Jb9lrJ9LU8jwfYps8iZrFtY1zr+1gM1pl2AStZ6ItlltL3XvPX8nNw8yRr9l7J37oli+xvFKvq0qr6WlW9pKp2BbYEngwcP4/jXpBkw/FWKEmSJC1+i+p/JEiSJEmSJGkkZzfEbJFk094r0cpahj/cpvcqVm2HKeXtS8t9cLMk09q2tShV1SlVdRBwK+ABwHeGuPz+Se7cT2WSJEmSJEmSJEnSsnTkELEH9lbFwnBOY9y0nsm35v31PM+/uiFm7XmePV8L7Xn8tBa83KoxzkEmgrbeotWZzs/zou8tqqrzqurQqtoTuD3wEaAaL78x3RAUSZIkSdfjIBNJkiRJkqTl48eNcXv2WoVW5ZSGmLv2XsVKkqwL7DTpvD1rvQ/+rtcqlqjqfBHYDXjhEJc+sKeSJEmSJEmSJEmSpGWnqs4BvtEY/sQkK/qsZ8p+Rtsfo9+p70JmsEtDzK+q6uJ5nn9FQ8wG8zx7aEkC3GxS+RrdNMmGU8h764aYq2lb2KKl73Tgyoa4ifcXTSlnb6rqJ1X1aGBf4M+Nl9n3IkmSJK3EQSaSJEmSJEnLx3dpa87Zp+9C9Ddahmtsl+SmvVdyQ7sBS61h7TuNcd4HIxgMNHkN8O+Nl9y7z3okSZIkSZIkSZKkZeidjXG3AB7ZZyHTNBgAcmZD6MSXXQyGeuzWEHryCGkub4iZ2CATYDtgzQnma3WXKeRsGf7wi6pqGUajJa6qrgJObQjdq+9aVmFJLguqqqOB+wNXNYTvlmSSn6WSJEnSgucgE0mSJEmSpGWiqv4EnNYQ+tBBs4wm5/jGuP16reJvLbltIVX1B+AXDaEP8z4Yi9fS1lR3tyT+vlqSJEmSJEmSJEkan08Cv2+MfVGSpbbk4vp+0BCza5KNeq/khu4GbNwQ11L/TP7QELPJCOcPa5cJ5hrGNAYx7N4Q07IYR8vHCQ0xD5hkv8vgc3PPSeWbtKo6AXhrQ+gKpjMQSZIkSVqwbAyXJEmSJElaXr7YELMVsE/fheg6VXUu8POG0AP6ruVag6ESD51UvglruQ+2ZjpbapaUqroaeE9D6ArgRj2XI0mSJEmSJEmSJC0bVXUFcGhj+I7AM3osZ9qOaYhZA3hA34WsZP/GuKNHyPG7hpjbjnD+sPadYK5h3H+SyZLsCGzbENoyuELLR8tnwU2Y7GCeh9B9fi5l72yM27zXKiRJkqRFxkEmkiRJkiRJy8tnG+Oe2WsVWpUvN8TcO8kte6+kc3+6YR5LkffBZH2tMW6zXquQJEmSJEmSJEmSlp/XAxc2xr48yc37LGaKjmqM++c+i7i+JCuAf2wIvZTRhln8piFm6yQbjpCjSZLVgf36zjNPd0ty0wnmm8QQGy09XwOuaoh7Ut+FTCnXVFTVT4HzGkLte5EkSZKux0EmkiRJkiRJy8txtDWpPDDJLn0Xoxv4WEPMasDz+i5kYFJ5puEbtDUYPCTJHfouZhk4tzFuo16rkCRJkiRJkiRJkpaZqvoj8NrG8A2AjyVZo8eSxiLJbkke1RpfVT8Hft4Qeu8kt55/ZUN5GLBlQ9xRVXXlCHl+AVw9R0yAO46Qo9UDaHvP07Aa8C+TSJQkwGMbQs8HTu65HC0iVfUH4KsNoQ9Psm3f9STZC9it7zwLREvvi30vkiRJ0vU4yESSJEmSJGkZqaprgEMbQlcDDhk0T2gyTgDOboj71yS36bOQJA8E7tFnjmmqqquAdzSErga8yftgYi6ddgGSJEmSJEmSJEnSEvRm4KzG2N2BN/RXyuiSPBQ4Gth8yEs/3HI88LKhixpSktWHyPPBUXINhqD8siH0oaPkafTCCeQYxZOSrDmBPA8EtmuI+2RVVd/FaNE5rCFmDeA/+yxi0Evzmj5zLEL2vUiSJEnX4yATSZIkSZKk5eedwBUNcXsBz+m5Fg0Mmk9ahsysAN6bpJff7SXZEHhbH2cvMIcCLVur9gae0W8pS97NG+Mu6LUKSZIkSZIkSZIkaRmqqkuBxwKtAxGenqT3YR7DSrJakpcCnwDWmccRHwKuaYh7ZJLd5nH+MJ4M7NgQ93vg82PI9+2GmEf01YcAkORhwB59nT8mNwee0GeCwfCHgxrDWwZWaPn5BHB+Q9wjB4uM+vI0uuFXy0VL74t9L5IkSdL1OMhEkiRJkiRpmamq/wPe0hj+qiT79lmPbuBQ4KKGuD2AV407+aBh5gO0D55YtKrqPODtjeGvSbJ3j+UsdfdpiPlzVf2290okSZIkSZIkSZKkZaiqjqH9+SjAyxfSMJMkWwFH0w2AmNffwVTVWcBnWtLRLReZz7CUuQ9Pbgn8V2P4W6qqZUHHXI5tiLkJsP8Ycv2NJJvR3qcybQcl2aLH858E3Kkh7mfAcT3WoUWqqi4D3toY/r4k2467hiR3BV4z7nMXqiQ7A5s1hJ7Wdy2SJEnSYuIgE0mSJEmSpOXpYNq2QKwJfDrJnj3XM6skuyd52jRrmISq+iPwpsbwFyR55rhyD4aYvBV4yLjOXAQOAv7QELcWcHiSqW6SSfJ3SZ4yj+sOTLJfHzU15F4TeHxD6Hf6rkWSJEmSJEmSJEla5p4P/GiI+Jcn+ViSdfsqaC5JVkvyJOBk4B5jOPKVjXE7Au8dQ74bSLI+8Flg/Ybwi2jvH5jLl4BqiHvDuL/fSdYCPkU3KGUx2AR416CHYqyS3Ir24Q9vrKqW75mWpzfT1u+yKXBkki3HlTjJbYEjgF6GPc2Qc+ckT0+y9qRyruTpDTGXAT/uuxBJkiRpMXGQiSRJkiRJ0jJUVX8C/q0xfAPgqCSP7LGkVUqyT5IjgROAqQ5TmaBXA79pjD0kyWuSrBglYZINgI8CTx7lnMWmqi6ka9ZrsSHwtSQP77GkVUpyzyRfotu2tMc8jrgd8Pkk3xsMNVljvBXO6nXArRvijuy7EEmSJEmSJEmSJGk5q6pLgAcB5w1x2cOBHya5Zz9VzWywcOW7wNuBG43jzKr6Id2z8RYHJhnXIBGSrEf3x/+3b7zkNYNn2iOrqt/Q9V3MZWvaB23MaTB04DPAXuM6c0IeRLcYZWySbAwcTteDM5dfAx8aZ34tLYPPhpc1hu8AHJ/kTqPmTXJv4BvAFqOeNaQb0Q1vOSPJ85NsMqnESR4EPK4h9JiquqzveiRJkqTFxEEmkiRJkiRJy1RVfQD4eGP42sBHknwwyeY9lkWSjZI8IckPgaOB+/eZb6EZNI89c4hLnk/XcLDbfPIleTDwQ7oGtFU5ZT7nLhZV9R7g043h6wAfS/L+JJv1WBZJNk7yxCQ/Ar4G3HcMx94ZOAw4K8nLk9xyDGeuUpLVk7weeEZD+JXA//ZViyRJkiRJkiRJkqROVZ0DPBgY5o+tb0W39OEjSXbqp7LrJLlfkmOBbwK79JDiOcCfGmOfkeSwJOuPkjDJLYBjgH0aLzmVbmnEOL27Me5pSV41arIk2wLHs3h7Pv4jyYvHcdBg6MJXgR0bL3lhVV0xjtxa0t4OfK8xdhvgxCQHzefzLMlmSd4KfBlY1RCRy4Azhz13Hm5KN2zpnCTvSjKfZUDNkjyC9uFX7+2zFkmSJGkxcpCJJEmSJEnS8vZE4LQh4v8J+EWSg5PcbFxFJLlRkkcl+Tjd9qd3ADuP6/zFpqo+BbxniEvuCnwryTFJHpNk1s0nSW6Z5GmDYTGfBWYaaPFr4KVD1LFYPR44fYj4/0d3H7wiyZbjKiLJJkkeneQTdPfBocAdxnX+9WxJt5nnF0m+meRZSbYb1+GDbWzHAc9tvOT9VfV/48ovSZIkSZIkSZIkaWZV9R1gP+DiIS99JPCTJIcneUiStcZVU5LtkvxHklOBLwJ3H9fZK6uq39INM2l1IPCDJA8aNtdgAcRT6JaL7Np42VXA46rqymHzzeEwuufQLV40GFwz9PPwJBsk+XfgJ6x6EM3lwDnDnjslr0zyoVEG2STZlW7YxJ0bLzkB+Mh882n5qKqrgUfR/lm+Jl0P0FlJ3pD8f/buPFzXe7wX+Pfe2ZlFWxJFG4IkVFQpOcRQUwyntIKSYzioYyjiUPSYT8oxlLSqDjWXVpFQlaRyqBQJFSEx15BBIkIikyQyZyf7Pn+8S7PFftdea73j2uvzua7nivX8fs/9u9+932ft6/L+3u9T+1XVNsMmV9UOVfWAqnpXBiElz0pSQ6YfnOSHS+9+ZDsleWoGD346papeXVV3q6ph/S1LVe1ZVf+QQYjJTku45OQkR4xjbQAA2Jqsn3UDAAAAwKpyn6rqWTdxPWd09x6zbmK16u6LqurBSb6YwVMrlmKXJC/PYOPKZ5IcmcGTkL7d3dds6eKq2i6DJzbtk+TuSe6ZweYV/1/VL3puBhtZ7rSMa+67cHRV/TCDcI4LM9gItFOS3ZLcNsmiQScLOoOAjy3+na523f3TTe6DpfzZJMkNk7wiv3wffGeJ98H22fx9MHSTyARUknstHH9dVadm8Bq+kOSbSb7b3Vvc8FJVO2TwOn4/yQFZ3lPRLsrgzxEAAAAAAACYku7+bFU9MIPQkF9dxqWV5A8Xjour6pMZBC8cl8GegSu2WGDwxflbZvB5+H0Wjjss7xWMprv/rqrumeQpS7xkzyRHLjws5J1JjuruoV/ar6rbJ3l4Bg+XueUy2/uz7j5umddsUXdfVVWvTPK2JV7y2CR/UFVvz+AL+l9cCE74JVW1U5L9kjxq4brF3lPPT3Jgkt2X2vsUfDDJI5LsuJmxJyR5QFUdnOT93X3lUgpW1R5JXpzBvoulPoT60iRP6u5525vFnOruU6rqqRkEFS01xOPGGdyHz09yWVWdnEEIyaUZvFd3SXKrDH7vLSWw6vgkb8wgIGsW9kzysoXjvKr69wz2vXwlg3+XzttSgapal8FDoPZP8gdJHpTl7WN73lL2CgEAwFrjyyEAAAAAa1x3n7EQ4vCpJDddxqXbJHngwpEkV1XVGRk8OeeiJD/foLRDBps9bpJBWMrNMt2whlWpuy+rqt/PIFxjuRubauGa5V63qRd19yerav8lzN04wjpzobtP3+Q+uMkyLl2fwQaGBy38vNh9sNNC7ZtmPu+DPReOP174uavqnCRnZfBkrssyCMXZNsnOSW6QwXtsjyx949X1/XF3nztCzwAAAAAAAMAKdPfxVfV7ST6awUMYlutXMgikOPDnJxY+X/xBBg/cuHzh2PTzxZtn8AX5bUfpfUyencHrvvcyrrlTkr9Nkqo6K8lJSS7I4HPhn38efPsMggJW4u+6+00rvHYp3pXk6UnuvMT5N0jywoXjwqo6Pcm5GbzmbTN4D+yR5DZZ2veTDu3ut1XVgVueOlWnJDk4yRuGjN8sgwCb11bVkUn+Lcl/ZLAv4NIMXvuvZvB+uksGDwF5QJb/OfpB3X3qsrtnTevuw6rqFhn+/l3Mzhn8Pljq74Tr+2GSR3T3tVVLylGZ9P6i3TIIJXrEz09U1YVJfpzk7CSX5Lp9PD//d+mmGdy7Swlt2Zy3dPcnVtowAABszQSZAAAAAJDu/lZV3SPJv2ZlG5SSwQe6ey8cjEF3n11VD8ggXOPWU1z6rd19yDLmXzWxTqaou7+xyX1wmxWW2Zrug8pgw8ZyAo6W4yXdffiEagMAAAAAAABbsLBX4K5J3p3k0WMo+esLx6SdleTLoxTo7iur6qFJjk5ytxWUuPnCMS4fTPK0Mdb7JQthA49LcmIGX+Jfjl9bOFbq00mePML1k/bGJPvnuoeYbM6uSZ6ycIzbId399xOoyxrQ3YdU1Q5JXjXFZc9P8rDu/skyrpnF/qKf/+66wwRqfyLJCyZQFwAAtgorfUomAAAAAFuZ7j49yX5Jjpx1L1ynu7+f5B5JTpjSkq/q7oM2+Xm7JVxz5aSambaFP++7Jzlq1r1sxTrJi7r7L2bdCAAAAAAAAKx13f2z7n5MkqcmuWDW/WzB1Ulen+S23X3cqMW6+5IMgis+MWqtEb01yRO7e+OkF+ru7yV5QpJrJ73WJo5LckB3z+1DUrr72gzCfL49g+U/mORFM1iXrUh3/58MwpCunsJypye5Z3d/a5Nza2p/UZIjkjyyu6fx5w0AAKuSIBMAAAAA/lN3X9DdD0/yrCSXzLqf67l41g3MSnefk+SeSQ7JIARiEi5I8t+6++Drnd9hCdduTRsN0t3nd/fDkhyU5NJZ93M9q/0+uCCDDWpvmHUjAAAAAAAAwHW6+z1J9k7y9iQTD9RYpqsz6Guv7n5xd4/tc9zu/lmShyV5Q6b/uq9I8rTuPmghSGMquvvwJE9MsmEKyx2a5AHj/DublIX3wkOSfGeKy74zyX/v7kntBWEN6e53Z/DwnpMmuMwRSe7e3Sdf7/xa2V90bZJXJXlEd28NrwcAACZGkAkAAAAAv6S735ZkryTvynSfwnN9FyZ5R5J7dPczZtjHzHX3hu7+X0n2TfKZMZa+Jsk/JLl9dx+2mfFfXUKNeX8q14p091szuA/ek9lu1Ptpkrcl2a+7n72C60/MbJ4atalO8qEk+3T3kTPuBQAAAAAAANiM7v5pdz8zye0z2C8w6y9pn5vkL5Lcpruf2d0/nMQi3b2xu1+U5F6ZXojFp5P89kLwwNR19weTPDDJORNa4vIkz+/ux66mL/t3948yeB98bsJLbUjyZ939jO6et+AgVrHu/lqSOyV5UZKLxlj69CSP7e4DuvvczYxPcn/Rj5Icm8Eep1k6MYMQl4OFDwEAwJYJMgEAAABgs7r7nO5+epLbJnlTkountPRPk/xTksckuVl3/0l3f3FKa8+97v5Kdz8gg40z/5jBE5pW4qwM/l737O4nDdlkkCQ3W0KtSW1smrnu/kl3PzWD++BvkvxsSktfkOQjSf4og/vgWd19/EoKdffh3X2HJLdKclCST2R6Gw43ZPA6fre7H9fdW+17BQAAAAAAALYW3X3Swn6BWyR5eZL/mOLyVyQ5PMl/S7J7d79kIVxi4hb2JvxOkqckOXlCy3wxycO6e//u/v6E1liS7j42yW8leXfG95CbTvIvSe7Q3X89pppT1d0XJrl/kpdkMp+tfyvJvbr7LydQG9LdV3b3GzLYJ/LcrPx3+LUZBIg8Lsle3X3oInNvuoVa12SFQSbdfWp33zfJbhn82/D+JOevpNYKfTHJo7p73+4+cYrrAgDAqrZ+1g0AAAAAMN8WNs78aVW9LMnvJzlg4b+/NqYlLktyXJJ/y+CJQ1/ztJkt6+4vJPlCVT09yb2T3DeDp2LtncEH97sk2SbJpUkuSfKTJN9eOD6b5KtLfDrIHkuY85Nltr/qdPepSZ63mftgKU+UWYrLknwhv3gfjPXpLd39gyRvTfLWqtohyV2T7LfJsaVNJUu1IYPXckSSQ7t7q39/AAAAAAAAwNaou89L8pokr6mqvTN4EMP9k+yb5IbjWibJdzP4svynk3yyuy8bU+3lN9N9TZL3VtXfJ9k/yeMz+Hx4lNf7kyQfTvKB7v7y6F2Oz0Jox9Oq6nVJnpfkwCQ3WUGpC5N8LMkbu/vbY2xxJrr72iR/UVX/lOSlGbwPthux7A+S/EWSdy/Uh4nq7ouSvDnJm6vq1kkemMHv79sluWUGv9d2TnJ1BnuLLk5yagZ7i76awe/jC7e0TlX9epIdtzDt3FH3wSy8nsOSHFZV65Lsk1/c97J3khpljU38R5IjkxzW3d8cU00AAFhTasx74QEAAABYA6qqktw2gw+3fyeDsItbJLlZBh9w75hk+wwCDX7+YfcFSc5N8sMkp2Xw9KJvJDlZcMn8qqrjk9xtC9Pu092fm0Y/82ThPrhdBvfBHTO4D26ZQSDIsPvg/Fx3H5ye5KQM7oNTZn0fVNXuGdzXe25y/GYGoTg3WPjvzkk2Jrkqg5Cc8zLYdPf9DF7LV5N8ubuvmHb/AAAAAAAAwHQsfIH89knukuQ2GXxWukeu+6x0p4VjfQafLV6ZweeLP0lydpIzMwgv+XaSb3b3T6f6Ahxm7VUAACAASURBVJapqrZJcuck90zy20luncFnw7+SwevdLoPXeFkGgR6nZ/AZ6teT/Ht3f3cGba/IwmvdL8m9Mvj7vXWS38jg8+IdMnidP8vgs+/vZfBl/88l+fxCCMxcqao/T3LwFqa9srv/fAt1bp7ksUn+IIP3wVIfLH1Bkk8l+VCSo2a9LwAmoar2T3L0FqZ9vrt/b8J9/FoG/zZtuu/llhk8pGjTfS/rMtjHc0UGv8vOySBo6OQk30xyXHefP8leAQBgLRBkAgAAAABsVlVtl+SibPmpKbv5AB8AAAAAAAAAmCfjCjK5Xs2dMwhL2CeDh/7cMIOAhMrgAScXZhCI8J0k3xFewtauql6S5LVbmPaO7v6TafQDAADMh6UmgAIAAAAAa889suUQk3OFmAAAAAAAAAAAa0F3X5bkhIUDSB6whDnfnngXAADAXFk36wYAAAAAgLn1yCXM+dLEuwAAAAAAAAAAAOZKVe2a5PeWMNX+IgAAWGMEmQAAAAAAv6Sqtk/y2CVMPWbCrQAAAAAAAAAAAPPn8Um23cKcS5J8ZQq9AAAAc0SQCQAAAACwOU9LsusS5n160o0AAAAAAAAAAADzo6q2S/L8JUw9truvnXQ/AADAfBFkAgAAAAD8gqr6tSQvW8LUk7v7G5PuBwAAAAAAAAAAmCvPTXKLJcz78KQbAQAA5o8gEwAAAADg+t6c5KZLmPehSTcCAAAAAAAAAADMj6r6rSSvXMLUK5IcPuF2AACAOSTIBAAAAAD4T1X1wiRPWMLUDUneM+F2AAAAAAAAAACAOVFVuyY5MsmOS5j+we6+ZMItAQAAc0iQCQAAAADMqap6SlU9ZIrrvTjJIUuc/oHuPnOS/QAAAAAAAAAAAJtXVTtW1SFVtduU1ts9yeeS7LmE6RuTvGGyHQEAAPNKkAkAAAAAzK87JvlEVR1fVY+uqm0msUhV7VZV/5zkdUu85Ookr51ELwAAAAAAAAAAwJJsk+SFSU6rqjdV1a0mtVBVPTLJ15L81hIv+UB3nzypfgAAgPkmyAQAAAAA5t/dknw4yRlV9bqq2mccRatq16p6WZJTkzxiGZe+vrtPGUcPAAAAAAAAAADASG6Q5LlJTq2qT1bVY6vqBuMoXFX3qapPJ/lokhsv8bKLkvzZONYHAABWp/WzbgAAAAAAWLLfSPLiJC+uqtOSfDLJF5KckOS07r52sYural2SvZLcM8nDkvx+ku2X2cO3krx2mdcAAAAAAAAAAACTtS7JgxeOq6rqmCTHJDkuyTe7+6ItFaiqGyb53YUaj0hy2xX08dzuPmcF1wEAAFsJQSYAAAAAsDrdOsmzFo5ksPng9CRnJ/lpkiuTdJIdktwwgxCUPZLsPMKaFyY5oLuvHKEGAAAAAAAAAAAwWdvnulCTJElVnZPkzCTnJLksyVVJtk2yY5KbJPnNhaNGWPdvu/sfRrgeAADYCggyAQAAAICtw/ZJbrdwTMIlSR7e3adNqD4AAAAAAAAAADA5v75wTMrHkjxvgvUBAIBVYt2sGwAAAAAA5t6FSR7U3Z+fdSMAAAAAAAAAAMDc+VCSx3T3hlk3AgAAzJ4gEwAAAABgMccnuXN3Hz/rRgAAAAAAAAAAgLlydZI/7e7Hdfc1s24GAACYD4JMAAAAAIDNuTjJnyW5d3efMetmAAAAAAAAAACAuXJMkn27+02zbgQAAJgvgkwAAAAAYH69OskzkhydZFpPLDkvyeuS7NXdf+lJKQAAAAAAAAAAMH+6+9Ik90zy10l+OMWlj0nyh919v+7+5hTXBQAAVon1s24AAAAAANi87j4/yTuTvLOqbpTkoUnuleTuSe6Q8QUVX5Tkk0kOT3J4d181proAAAAAAAAAAMCEdPdxSY5L8vyq2jfJg5Lsl8H+ohuPcamvJfmXJId193fGWBcAANgKCTIBAAAAgFWgu3+a5P0LR6pqlyR3SbJXkj0Wjlsm2TXJTpsc2yfZkOSKJJcnOTvJj5KckeTrSb6a5Nvdfc3UXgwAAAAAAAAAADBW3X1CkhN+/nNV7Z3kjklulev2Fv1mkl3yi/uLKoO9RVcmuTDJj5OcmeSkDPYWndjd503rdQAAAKtfdfesewAAAAAAAAAAAAAAAAAAAAAAVrn1s24AYJqq6leS3GeTU2cmuXpG7QAAAAAAAABsl2T3TX4+trsvnlUzACyNPSgAAAAAAADAnJmbPSiCTIC15j5Jjph1EwAAAAAAAABDPDzJkbNuAoAtsgcFAAAAAAAAmGcz24OybhaLAgAAAAAAAAAAAAAAAAAAAABbF0EmAAAAAAAAAAAAAAAAAAAAAMDI1s+6AYApO3PTHw4//PDsueees+oFAAAAAAAAWONOPfXUHHDAAZueOnPYXADmij0oAAAAAAAAwNyYpz0ogkyAtebqTX/Yc889s88++8yqFwAAAAAAAIDru3rLUwCYA/agAAAAAAAAAPNsZntQ1s1qYQAAAAAAAAAAAAAAAAAAAABg6yHIBAAAAAAAAAAAAAAAAAAAAAAYmSATAAAAAAAAAAAAAAAAAAAAAGBkgkwAAAAAAAAAAAAAAAAAAAAAgJEJMgEAAAAAAAAAAAAAAAAAAAAARibIBAAAAAAAAAAAAAAAAAAAAAAYmSATAAAAAAAAAAAAAAAAAAAAAGBkgkwAAAAAAAAAAAAAAAAAAAAAgJEJMgEAAAAAAAAAAAAAAAAAAAAARibIBAAAAAAAAAAAAAAAAAAAAAAYmSATAAAAAAAAAAAAAAAAAAAAAGBkgkwAAAAAAAAAAAAAAAAAAAAAgJEJMgEAAAAAAAAAAAAAAAAAAAAARibIBAAAAAAAAAAAAAAAAAAAAAAYmSATAAAAAAAAAAAAAAAAAAAAAGBkgkwAAAAAAAAAAAAAAAAAAAAAgJEJMgEAAAAAAAAAAAAAAAAAAAAARrZ+1g3APKqqmyV5aJL7JLl9klsk2SVJJbkkyVlJvpvk80mO6u7TZ9TqWFTVzZPsl2SfDF7vbZPcKMmvJNk5yc+SXLhwfD/J8Um+mOSr3b1hFj0DAAAAAAAAAAAAAAAAAAAA80WQCWyiqu6c5GVJDkiyzZBpN144fjvJY5K8uaqOTvLa7j52Ko2OqKp2SvKQJA9Mcv8ke2/hkhstHEly1yQHLvzv86rq3Une3t0/nESvAAAAAAAAAAAAAAAAAAAAwOqwbtYNwDyoqu2r6m+SnJDkURkeYrLZy5M8KMkxVfWPVXXDSfQ4qqraoar+qKoOS3Juko8m+ZNsOcRkMbsleUmS06rqzQsBKQAAAAAAAAAAAAAAAAAAAMAaJMiENa+qbpLk2CT/M8sLMNmcxyf5clXdZuTGxm//JB9J8pgkO4+59jZJnpPk61V1tzHXBgAAAAAAAAAAAAAAAAAAAFYBQSasaVV1oyRHJxln+MZtk3ymqm4xxpqrxV5Jjqmqh866EQAAAAAAAAAAAAAAAAAAAGC6BJmwZlXVuiSHJrnjItO+kuTZC3NulORXk9w+yVOSHLvIdbdIckRV7TCebqfiiiT/muTgJH+Q5A5JdktygyS/keTOSZ6R5J+SXLNInR2SfKSqxhkOAwAAAAAAAAAAAAAAAAAAAMy59bNuAGbofyV54JCxy5Mc1N3v3czYxUm+m+S9VfXQJO9Lsutm5t0pyV8mOWj0VidmQ5IjknwwySe6+8oh8y5LclaSryd5Z1XtkeQNSR49ZP6OST5UVXfs7kvH2jEAAAAAAAAAAAAAAAAAAAAwl9bNugGYhaq6ZZJXDBm+LMmDh4SY/ILuPirJvZKcM2TKM6vqLivrcqLOT3Jwkt27+9Hd/bFFQkx+SXf/oLsfk+Q5SXrItFtlEBYDAAAAAAAAAAAAAAAAAAAArAGCTFirXplkpyFjz+zuf19qoe4+KcmBSTZuZnhdktcvv72J+WkG4SJ7dPeruntYAMuSdPdbkrx0kSnPraphf84AAAAAAAAAAAAAAAAAAADAVkSQCWtOVe2e5HFDhv+1u9+/3JrdfWySdw8ZfkBV7bvcmhPw1SS36e5DuvuyMdZ9fZIvDRm7YZKHj3EtAAAAAAAAAAAAAAAAAAAAYE4JMmEtenqSbYeMvXyEuq9MsmHI2LNGqDsW3X1Wd180gbqd5H8vMuWB414TAAAAAAAAAAAAAAAAAAAAmD+CTFiLHj/k/HHdfeJKi3b3WUk+OmT4UVW140prrwKfTXLxkLE7TbMRAAAAAAAAAAAAAAAAAAAAYDYEmbCmVNWdktxqyPAHxrDEsBq7JNl/DPXnUndvSPKNIcO3nGYvAAAAAAAAAAAAAAAAAAAAwGwIMmGtedAiY0eNof6nk1w1ZOzBY6g/z84Zcn6XqXYBAAAAAAAAAAAAAAAAAAAAzIQgE9aa+w45f1p3nzFq8e6+IskXhwzfb9T6q9TGWTcAAAAAAAAAAAAAAAAAAAAATJ4gE9aauww5f+IY1zhhyPnbVdVOY1xn3uw+5PyFU+0CAAAAAAAAAAAAAAAAAAAAmAlBJqwZVXXzJDcZMvyNMS41rNa6JHcc4zpzo6p2SPI7Q4ZPmWYvAAAAAAAAAAAAAAAAAAAAwGwIMmEt2XuRsZPHuM6pi4ztNcZ15sl/TbLjkLEvTbMRAAAAAAAAAAAAAAAAAAAAYDYEmbCW3GqRsR+McZ3TFxm79RjXmScHLTL2/6bWBQAAAAAAAAAAAAAAAAAAADAzgkxYS3ZfZOzsMa5zXpJrhozdYozrzIWq2j/J/YcMn5Hk2Cm2AwAAAAAAAAAAAAAAAAAAAMyIIBPWkl0XGTtvXIt0dyc5f8jwjce1zjyoqh2S/N9FphzS3Run1Q8AAAAAAAAAAAAAAAAAAAAwO4JMWEuGhYhc1d1Xj3mtS5bZw2r1uiS3GzJ2SpJ3TbEXAAAAAAAAAAAAAAAAAAAAYIbWz7oBmKIbDDk/LHRkFMNq7jKBtWaiqh6R5HmLTHn2BAJirt/DTZLstszLbjOJXgAAAAAAAAAAAAAAAAAAAGCtE2TCWrL9kPMbJrDWsACP7Saw1tRV1T5J3rfIlLd199FTaOVZSQ6ewjoAAAAAAAAAAAAAAAAAAADAFqybdQMwRdsOOX/NBNYaVnPVB5lU1W5J/iXJDYdM+VaSF06vIwAAAAAAAAAAAAAAAAAAAGAerJ91A8yvqnpNkm1m3ccWnNbd7xyxRo+lk8nXnLmq2jnJx5PcasiUi5M8qrsvn15XAAAAAAAAAAAAAAAAAAAAwDwQZMJiXpT5DzI5NslSg0w2DDm/7Zh6WUrNqyew1lRU1XZJ/jnJfxky5aokj+juU6bXVf42yUeWec1tkhwxgV4AAAAAAAAAAAAAAAAAAABgTRNkwlpy1ZDzkwgy2W7I+VUZZFJV2yT5UJIHDZlyTZLHdPdnp9dV0t3nJjl3OddU1YS6AQAAAAAAAAAAAAAAAAAAgLVt3awbgCm6dMj5G0xgrWE1L5nAWhNVVeuSvC/JI4dM2Zjkv3f3kVNrCgAAAAAAAAAAAAAAAAAAAJg7gkxYSy4Ycn6Hqtp2zGvdcJk9zKWqqiRvT/KEIVM6yVO7+9DpdQUAAAAAAAAAAAAAAAAAAADMI0EmrCWLhYjcZFyLLIR/7LqCHubR3yR52iLjz+7u906rGQAAAAAAAAAAAAAAAAAAAGB+rZ91A8yv7t7a3h9nLjJ20yQ/HtM6u2X4vbVYD3Olqg5J8pxFpjy/u982rX4AAAAAAAAAAAAAAAAAAACA+bZu1g3AFJ2+yNitxrjOYrVOG+M6E1NVr0nywkWmvLS7/3pa/QAAAAAAAAAAAAAAAAAAAADzT5AJa8nJi4ztPcZ19lxk7JQxrjMRVXVwkpcuMuVV3f26afUDAAAAAAAAAAAAAAAAAAAArA6CTFgzuvvHSc4bMvw7Y1xqWK2NSb45xnXGrqpekuTPF5ny+u4+eErtAAAAAAAAAAAAAAAAAAAAAKuIIBPWmq8MOX/XMa6x75Dz3+vuy8a4zlhV1fOTvHaRKW/q7hdPqx8AAAAAAAAAAAAAAAAAAABgdRFkwlpzzJDzt66qW45avKp2SHL3Za49c1X17CR/tciUt3X3n06rHwAAAAAAAAAAAAAAAAAAAGD1EWTCWnP0ImMPHUP9/ZPsMGTsU2OoP3ZV9bQk/3eRKe9J8uwptQMAAAAAAAAAAAAAAAAAAACsUoJMWGu+luQHQ8YeP4b6w2pcmsVDVGaiqp6Y5B1JasiUf0jy9O7u6XUFAAAAAAAAAAAAAAAAAAAArEaCTFhTFgI5PjBk+B5VdZeV1q6qmyd51JDhj3b35SutPQlVdWCSv8vwEJMPJfnj7t44va4AAAAAAAAAAAAAAAAAAACA1UqQCWvRu5JcM2TsNSPUPTjJtkPG3jZC3bGrqgOS/GOSbYZM+ackTxRiAgAAAAAAAAAAAAAAAAAAACyVIBPWnO4+I8mhQ4YfXFVPWG7Nqvq9JE8dMvzZ7v7Scmsu1H1fVfWQ474rrPmQJIclWT9kyhFJHtfdw8JeAAAAAAAAAAAAAAAAAAAAAH6JIBPWqv+d5IohY2+vqnsstVBV7Z3kw9n8/bQxyYuW395kVNX9kvxzku2GTDkqyWO6e8P0ugIAAAAAAAAAAAAAAAAAAAC2BoJMWJO6+/QkrxkyvHOST1XVk7dUp6oemuTfk/z6kCnv6O4TVtTkmFXVfkmOTLLjkCnHJHl8knVVtcOYD79rAAAAAAAAAAAAAAAAAAAAYCu3ftYNwAy9Lsn9F47r2znJe6vq2Unek+TzSX6cZGOSmyXZL8kTk9xvkfrfSvKCcTY8omckucEi4/dNctGE1r5fBkEpAAAAAAAAAAAAAAAAAAAAwFZKkAlrVndvrKoDMwjY2GfItLsuHMv1oyR/2N1XrLA9AAAAAAAAAAAAAAAAAAAAgFVl3awbgFnq7vOTPCDJiWMse0qS+3X3D8ZYEwAAAAAAAAAAAAAAAAAAAGCuCTJhzevuc5LcO8lbk2wcsdyhSfbt7lNHbgwAAAAAAAAAAAAAAAAAAABgFRFkAkm6+8ruPijJvkk+luTaZZb4tyT37+7HdvfFY28QAAAAAAAAAAAAAAAAAAAAYM6tn3UDME+6+6tJHllVv5HkoUnuk+T2SXZPskuSSnJpkrOSfCfJF5J8vLu/P6F+npzkyfNWCwAAAAAAAAAAAAAAAAAAAOD6BJnAZnT3j5O8c+EAAAAAAAAAAAAAAAAAAAAAYAvWzboBAAAAAAAAAAAAAAAAAAAAAGD1E2QCAAAAAAAAAAAAAAAAAAAAAIxMkAkAAAAAAAAAAAAAAAAAAAAAMDJBJgAAAAAAAAAAAAAAAAAAAADAyASZAAAAAAAAAAAAAAAAAAAAAAAjE2QCAAAAAAAAAAAAAAAAAAAAAIxMkAkAAAAAAAAAAAAAAAAAAAAAMDJBJgAAAAAAAAAAAAAAAAAAAADAyASZAAAAAAAAAAAAAAAAAAAAAAAjE2QCAAAAAAAAAAAAAAAAAAAAAIxMkAkAAAAAAAAAAAAAAAAAAAAAMDJBJgAAAAAAAAAAAAAAAAAAAADAyASZAAAAAAAAAAAAAAAAAAAAAAAjE2QCAAAAAAAAAAAAAAAAAAAAAIxMkAkAAAAAAAAAAAAAAAAAAAAAMDJBJgAAAAAAAAAAAAAAAAAAAADAyASZAAAAAAAAAAAAAAAAAAAAAAAjE2QCAAAAAAAAAAAAAAAAAAAAAIxMkAkAAAAAAAAAAAAAAAAAAAAAMDJBJgAAAAAAAAAAAAAAAAAAAADAyASZAAAAAAAAAAAAAAAAAAAAAAAjE2QCAAAAAAAAAAAAAAAAAAAAAIxMkAkAAAAAAAAAAAAAAAAAAAAAMDJBJgAAAAAAAAAAAAAAAAAAAADAyASZAAAAAAAAAAAAAAAAAAAAAAAjE2QCAAAAAAAAAAAAAAAAAAAAAIxMkAkAAAAAADB9Gzcm3bPuAgAAAAAAAAAAAAAYo/WzbgAAAAAAAFgjzj0z+eR7kuMOT878XnKjmyX3emTy5Fcn2+846+4AAAAAVuSEM07ICz7+gpx56ZlJJTuu2zHPuftz8sx7PXPWrQEAAAAAAMDUCTIBAAAAAAAmpzs54RPJv7wtOeH/JRs3Xjd2zg+Sj74x+c5xyRs+I8wEAAAAWHVOPffUHHjogaltKuu2WZckuSpX5ZAvHpLLN1yeF9zvBTPuEAAAAAAAAKZr3awbAAAAAAAAtlKX/Sx56UOSlz80+dLHfzHEZFPfPT75t/dPtzcAAACAMXjSYU9KbVO/dL6q8pYvvyVXX3P1DLoCAAAAAACA2RFkAgAAAAAATMabnp585VNLm/vJd0+2FwAAAIAJOPvys4eOrdtmXY769lFT7AYAAAAAAABmT5AJAAAAAAAwfuf/OPnch5c+//tfT66+cnL9ADAZ116bfPPY5CtHJ2eelHTPuiMAAJiaKzdcmdqmFp3zV5//qyl1AwAAAAAAAPNh/awbAAAAAAAAtkLf+vzyvsx+zYbk+99Ifutuk+sJgPH6xjHJG56YnHfmdedufpvk3n80OPa6S1KLf6kTAABWs40bN25xzlXXXDWFTgAAAAAAAGB+rJt1AwAAAAAAwFbozO8u/5qTTxh/HwBMxsknJq942C+GmCTJWd9PDnt9ctC+ydN/O/nK0bPpDwAAAAAAAAAAgJkQZAIAAAAAAIzfD1cQZHLSl8ffBwDjd+01yRv/R3LlZYvPO+PbyUselJz4r9PpCwAApmxjNs66BQAAAAAAAJg7gkwAAAAAAIDxW0mQyfcEmQCsCke+NTntm0uff8iTkisvn1w/AAAwI72xZ90CAAAAAAAAzB1BJgAAAAAAwHhde23y45OXf92PTkouu3j8/QAwPhecnfz9K5Z3zYXnJEf//WT6AQCAGdqYjbNuAQAAAAAAAOaOIBMAAAAAAGC8fnJ6suHqlV178onj7QWA8XrnC5PLL1n+dR/9q0HQFQAAbEU2tiATAAAAAAAAuD5BJgAAAACwVBeekxz2+uR9r0g+/o7kqitm3RHAfPrhd1d+7fe+PL4+ABivbxyTfPaDK7v2rO8nX/jYWNsBAIBZ27hRkAkAAAAAAABc3/pZNwAAAAAAc2/jxuTQ1yUffHVy9ZXXnf/HVyb/5+PJXr87u94A5tGZ31v5tSefML4+ABifazYkb3n2aDU+8obk3o9KqsbTEwAAzNjGCDIBAAAAAACA61s36wYAAAAAYK5d9rPklY9M3vfyXwwxSZKfnp28+tGDOQBc58zvrvzak748vj4AGJ/PfCA54zuj1TjphORbnxtPPwAAMAd6Y8+6BQAAAAAAAJg7gkwA+P/s3Xd4VFX+x/F3EjrSm4Um2BBUsIACim1/uth1XcvaV2Utay+ra1t7VxBsiKioCIj03ov0TiD0lpCQAgnpdeb3xxUhJDnnzmQyk2Q+r+fxIbnne8/9GpKZO0PO54iIiIiIiEhZ9myCx3rA4nFl1yTsgPGDgteTiEhVsKccQSYpe53/RESkcpnxfWDmGfl+YOYREREREakEPHhC3YKIiIiIiIiIiIiIiIhIpaMgExERERERERERkdKsXwCPdYfYTfba8QOhIL/iexIRqQq83vIFmQBsXh6YXkREJDD2J8C6eeaa2nXhy7VQ9xhz3bLJsGtD4HqT4Jo/yglyXDQOtq6C1CTnuV9EREQkTHm8CjIREREREREREREREREROVqNUDcgIiIiIiIiIiJS6STshFeugewMd/X7450FfZf9o2L7EhGpClITIetg+ebYshx6XR+YfkREpPwW/GoPq7j9JehwJvR9EEZ/bK799UN4Zmjg+pPgmfQVrJ5V/FjNWtC8tfNfn7/DtY+EpjcRERGREPB4FGQiIiIiIiIiIiIiIiIicrTIUDcgIiIiIiIiIiJSqRQWwDu3+b4If8yn2olcRARgT4y9pmYt8/imZYHpRUREAmP+SPN4zVpwzcPOxzc8AVGW/TTmjYSczMD0JsGVHFfyWEE+JOyA9fMhcXfwexIREREJIS96T1hERERERERERERERETkaAoyEREREREREREROdIPr8Kmpb6ft2UFbPg98P2IiFQ1tiCTiAi49A5zzZbloB2NRUQqh+Q4iF5orjnnCjimsfNxyzZwyW3m+rxsWDw+MP1J8Hi9kBxrrmneOji9iIiIiFQSHq/evxARERERERERERERERE5moJMREREREREpPLKzYbxg+CDe2DQY7DwNygsCHVXIlKdrZ4FI971//zfPglcLyIiVVXsJvN4q/ZwZh9zTdZBiN8WsJZERKQc5o+y11z09+Kf3/ys/Zw5P/vXj4ROZpoTQmPSok1wehERERGpJBRkIiIiIiIiIiIiIiIiIlJSjVA3ICIiIiIiIlKqPTHw+k3On4eM+wxatoWbnoYr/wl164euPxGpfvbHw3t3OLuM+2vRWEjYCcedGLi+RESqmiPv30rT5jQ4tbt9nk3LoPUpgelJRET8N3+kebxmbbjg2uLHTjwDOp0PMUvKPm/FNDiYAo2al79HCY6UOHtNi9YV34eIiIhIJaIgExEREREREREREREREZGSIkPdgIiIiIiIiEgJibvh+ctLXwSbtAe+eBzubAcj34eiwuD3JyLVz4LR8K+z4MC+8s3j8cDYAYHpSUSkqoq1BJm07eQElNRraK7bsjxwPYmIiH8Sd5vDSADO+yvUL+Ux/ZLbzecVFcKCX/3vTYIvOdZe01xBJiIiIhJevJ5yBGOLiIiIiIiIiIiIiIiIVFMKMhEREREREZHK5WAKvHAF7I8316Xvh2+eh1euhaKi4PQmItVPZhq8dye88Tfn8cemdl17zbQhkJNV/t5ERKqirHRI2WuuadsJIiPhlHPNdaWF2omISHDNH2Wv6XNLGcf/7jzem8z+2feeJHSS48zjUTWgSavg9CIiIiJSSXjwhLoFERERERERERERERERkUpHQSYiIiIiIiJSeeRkwkt9IW6z+3OW/GPxiAAAIABJREFUT4HxAyuuJxGpvpLj4N/dYdaP7upr1ob+S6D3Tea67AxYM6v8/YmIVEVu7uPadnL+7HBW+ecSEZGKNW+Eebx2XTj/6tLHmrSCbpebz49eAEl7/OtNgi/FEmTS/AR7eI2IiIhINePxKshERERERERERERERERE5Gj6LSIRERERERGpHAoL4PWbYPNy38/9+U0nOEBExBefPAB7t7qv7/cRdDgTbnrSXhu90P++RESqsj0x9po2pzl/tj7VXJe0B3Kzy9+TiATPnhgY+hK8dSv89KZv91pS+cRvhy0rzDXdr4K6x5Q9fsnt9uvM/cW3viR0kmPN481bB6cPERERkUrE6/WGugURERERERERERERERGRSkdBJiIiIiIiIlI5jPoQVk7379yDKTB2QGD7EZHqLWYprJjqvr7n9XDNw87Hp/eEDmeZ6zf87n9vIiJVmS3IpFELaNjM+biNJcgEFIIgUpX89ik81BWGvwXzRsD3L8O/usKC0aHuTPy10MXfXZ9bzOO9boCatc01s39235OEVnKcebxFm+D0ISIiIlKJeLyeULcgIiIiIiIiIiIiIiIiUukoyERERERERERCL+ugs9itPEZ9ABmpgelHRKq/UR+4r+1wFjw1BCIinM8jIqDrpeZztq6A/Fz/+xMRqapiN5nH23Y6/HFrF0EmcZvL14+IBMdPb8KXT0JBfvHjednw4T2QmhSStqScfh9jHq9TH7r3NdfUbwjnX2Ou2bEWdm3wrTcJjRRLkEnz1sHpQ0RERKQSUZCJiIiIiIiIiIiIiIiISEkKMhEREREREZHQm/ED5GaVb46sg/Drh4HpR0Sqt73b4Pff3NX2vhE+mAMNmxY/3rmX+byCfNiywr/+RESqsj0x5vEjg0yaHgv1GpjrYxVkIlLp/fg6fP9y2eM5mTDus+D1I4GxPx5ilphrelwNderZ57rkdnvN7J/c9SWh4/VCcqy5poWCTERERCT8eL3eULcgIiIiIiIiIiIiIiIiUukoyERERERERERCy+uFCZ8HZq4x/bXTt4jYjf7Yeewxqd8InhsGL/8KDZqUHLcFmQBs+N2//kREqqqCfIjfZq5pc9rhjyMioPWp5vo4BZmIVGrD/gc/vGqvWzKh4nuRwFo0zl7T+0Z3c3X/q3N/bTLlG8jPdTefhEbWQXsIbYs2welFREREpBLxeD2hbkFERERERERERERERESk0lGQiYiIiIiIiITWmjkQu8lc07It/LgH2nU21+VmwYh3A9ebiFQ/qUkwfai5JjIS+i+Gy+9wFtmXpumxcHxH8zwKMhGRcLNvJ3iKzDVtOxX/XEEmIlXXhC9g2GvuaneshaTYCm2n2vF4YPp38Pxf4N894OVrYPjbsG4e5GZX/PUXjTWP16wN5/2VlNRUPvvxR2558kmuvP9+Hn3jDdZv2VK8tlYde+jJwWSY/XP5epaKlRxnr2neuuL7EBEREalkFGQiIiIiIiIiIiIiIiIiUlKNUDcgIiIiIiIiYW7C5/aae9+Glm3g7jfgdcvipwmfw9+ehuYnBKY/EaleJgyy7/Te68aSC+1Lc3oviN9e9vjGRc4C1EhlCYtImEjYYa85OrjETZCJ11t2sJSIhEZSLAx+1rdzlk2Gq/tVTD/VTVEhvH8XzBle/PjSic6fUTXgjIvgqn5OQEhUgP/JNzMN1sw2lhSedQlfjRnPsPHjyc3L+/P4vpQUFq9ezRuPP07fPn0On3DpP2CaJVBwzKdwxb16zK+skl2EEbVQkImIiIiEH6/XG+oWRERERERERERERERERCodraIQERERERHJzoCJX8E7t8N7d8JPb8KyKZCaFOrOqr/kOPsuz41awIV/cz7udT2cfI65viAPxg4ITH8iUr3kZsP4Qfa6vz/nbr7Ovczj6fudBfgiIuEiwRDuBFCjJrRoU/xYG0uQSXYGHNhXvr5EJPAmfQm5Wb6dcyiEQ+x+eLVkiMmRigqdoJG3boG7O8KoDyEjNXDXXzrJuYbBx1vSGDxqVLEQkz/b83j4YMgQ0jMzDx886xJ7eNXO9dYAFQmhlDjzeFQNaNwqOL2IiIiIVCIeryfULYiIiIiIiIiIiIiIiIhUOgoyERERERGR8JYcB49fAAP+5SwSmvUjfP8yvNQXbmnlLAj6/hXIywl1p9XTlMHgKTLX/PV+qFXb+TgiAu550z7v5K8hx8dFdSJS/U0f6oSLmJzZB049z918tiATgA2/u5tLRKQ6iLcEmbRqD1FRxY/ZFrWDQqFEKhuPB2YO8/28NbP02tqN1bPhl3fc1yftgcHPwt9bwrOXwMgPYNcGKM+u8L+PMQ4XAVMKGhtrUtPTmbpgweEDkZFw4xP2a//2iYsGJSRsQSbNji/5PC8iIiISBjwoyERERERERERERERERETkaAoyERGRysnrdXbcFREJR4UFoe4gvHz2MOzeUPZ4wg746Q145mLIzw1aW2GhIN8JHDGJjISr+hU/du4V0KW3+bzMNJj5Q/n6E5HqZ8o39pqbn3U/X9tOcIx5AaeCTEQkrCRYgkyO61jy2Akn2+eNVZCJSKWybh4kx/p+Xl4OrJ0b8HaqlbRkeO8O/0JIigqdr+83z8GDXeCJnrB+gfW0EvJyYPkUY8mayGakRtS2TjV7yZLiBy6/Cxo0NZ+0dJIe9ysr289989bB6UNERESkkvF6yhEiKCIiIiIiIiIiIiIiIlJNKchEREQql9xsGPAQ3HocXN8Q7jkZfvu0fLtHiohUBV4vTPgC/tkJ+taCW4+Hd26HxROcsAepGLGbYckEd7Wblzm7GkvgLBoLB/aZa3pcDa3aFT8WEQF3/s8+/5j+zk7hIiLgBBxtX2OuaXc6nPdX93NGRsLpPc01CjIRkXBiCzI5vpQgkzr1oGVb83lxWtAuUqnM+N7/c5dODFwf1Y3XCx/dCwcSAjNfzBJ4pg98/jjkZLk/b9UMyMs2lsyJOs7VVCuio0nPzDx8oE69kmGlpRnT39X8EmTJcebxFm2C04eIiIhIJePx2v8tyot+50VERERERERERERERETCi4JMRESk8shKh2cvgYlfQmqicyx+G3z5JHx0n8JMRKR6+/Ip+OxhiN3kfH4gAeYMh1evhVtawScPQpIfux2L2eJxvtWPGwD5uRXTSziaPNhec80jpR/vegl0OMt8btxmWDHN975EpHrasdZe87dnnHASX3TubR7fuxVSk3ybU0SkKvJ4IGGHuea4UoJMAFqfaj5PQSYlFeTDzmhIS9Z7ZhJcOVmw4Ff/z182Sd+zZRk7AJZOCuycXq8z70Nnwbr57s75fYy1ZLbLIJPCoiIWrFhR/OC1j0BUDfOJM76H9P2uriFBlGILMmkdnD5EREREKhmFlIiIiIiIiIiIiIiIiIiUpCATERGpHLxe6N8PNi8rfXz6dzDy/aC2JCISNDFLYMynZY9npsGUwXB/J1j4W/D6CgdLJvhWfzAF5o+qmF7CTfp+WDvHXHP8SXD25aWPRUTAjU/Yr2P62RKR8LLdRZBJ75t8n7dzL3vNxkW+zysiUtUcSLCH/h3XofTjbU4zn3co8FGcwJihLzmBl/3OgL+3dIKBd20IdWcSLn4fA7lZ/p+fuFvfr6XZnwBD/lNx88dvh2cvhpnDzHVFhdb3SjZFNCI+sp7rS89esqT4geYnwEV/N5+Ulw2Dn3N9DQkCrxeSLSHLzRVkIiIiIuHJ4/WEugURERERERERERERERGRSkdBJiIiUjlMHQJzfzHXDH0RVs4ITj8iIsE06kN3dblZ8MkDzo7bUn4HU/xbWD5+UOB7CUdLJ4GnyFxzzcMQaXjZevGt0LileY6V07VITkQcO9aYx4/rAPUb+j7vqedBjZrmmg0LfZ9XRKSqid9urzmuY+nH25xqPi9xF+Tn+dxStXMoCHj4W07g5SHr5sHzl+m1ogTHjO/LP8eySeWfo7oZP8geBlVeXi98eA+snVt2zcoZTvCowewax/l02d9XrSIn76jH8JuetJ847VtYPtWna0kFyk6HnExzTYs2welFREREpJJRkImIiIiIiIiIiIiIiIhISQoyERGR0NsZDZ8/Zq/zeODtWyFhZ8X3JCISLEl7YNEY9/UZB2DsgIrrJ5wsm+w8t/hq01LYsiLw/YSbRWPN45FR8Je7zDW16sDVD9mvpZ8ZEQHYvtY83rGrf/PWrgsnnW2u2fC7f3OLiFQl+3bYa47rUPrx1pYgE48H4rf53lN1M+snmPJN6WOpiTD42eD2I+EnOQ7WzDLXnHwONGpurlk6MXA9VRdLxttrLrgOfkmABz6Alm39u47H4wQilRWaMmWwdYo5Ucf6dMnc/HwWr15d/OAp50KX3vaTP3kAsg76dD2pIMlx9prmrSu+DxEREZFKyOv1hroFERERERERERERERERkUpHQSYiIhJaudnw9i2Ql+OuPuMAvH6jc56ISHUwfpDvYRpzhzu76Er5LHaxSKgs4wcFro9wlJsNKyy7Kp/ZBxo2s891zUNQs5a5ZuYPcGCf+/5EpPopLIDd0eaaDmf5P3/nXubxrSvdv+YREamq4rebx5seB3XqlT5mCzIBiNvse0/VSeJuGPiIuWbucEhNCk4/Ep5m/2R/P+KKe+HcK801GxdB+oHA9VXVJcXCzvXmmuYnwNNDoOmxcPMz8P12eGmk89o5IsK368VtgeFvlzx+YB8smWA8NTaiHlsjGvp2PWD20qUlD970tP3ElDj48imfrycVIDnWXtNCQSYiIiISnjxePzZOEBEREREREREREREREanmFGQiIiKh9cUTsHujb+dsXwNDnq+YfkREgik329VOtyXEb4fNywPfTzjJz4OV0/w/f+4vkL4/cP2Em9Uz7Qv6e17vbq4mreCS2801+bnw4+vu5pPqb08MDHwUXv8b9P8X7LSEW0j1ELsZCvLNNR27+j+/LciksAA2L/N/fhGRqiDBEmRyfMdinxbmedm3IZ+ctCJngX7tMkJODokN4yCToiL44G7ITjfXFeTD1G+C05OEH6/XCYk0qVETLr4VelxtrvN4YM3swPVW1S2bbK95+LPiYZ9RNeCim+HDuTAyCf7zE/S+yf01R7xb8n35Gd9DUaHxtIk12vgenALMX76cgsKj5u55HXS7zH7ytG9h2RSfrykBlhJnHo+MgibHBqcXERERkUrGqw0oREREREREREREREREREpQkImIiITOnk3+L66Y+CXs2xXQdkREAsbjcXbLXjEdxg10do794kmYM9wJVDhk1o+QkerfNeYMD0yv4WrdXMjJ9P/8/FyY+m3A2gk7i8baa3pe536+Gx6310z+OrwXv4pj5o9w/+kwfhAsHA2TvoJ+Z8Ckr0PdmVS07WvsNR3O8n9+W5AJwPoF/s8vIlIVxFuCTI5zgkyKCrzMeieVz3rtZdgtiQzsHc/w+1IobHWy+fy4ML6X++0TWDfPXe3EL61BBCJ+2brSHkjd42onbOPcK5xQA5MdawPXW1W33BJkUrsedP9r2eONmsOlt8Mrv8I3MdDpfPs1Cwugfz/nPSxwgmqmmN+rLwLGRrWzz12K9MxMVm3YUPxgRAQ8+Q3UPcY+wXv/gB3r/Lq2BEiyJcik2fEQZfm5FxEREammPF5PqFsQERERERERERERERERqXQUZCIiIqEz9RvnF6T9UVSoRfwiUvnkZDmBJbccC3e2hxevgEH/dhadjfkU3rkdHj3P+cV/rxfGDvD/WvN+cXblFv8smVD+OSZ+ob8DfxQVwuLx5pqTzoaWbd3P2bErnHWxucZTBN++4H5OqX62rYaP7yt9bOAjsHl5cPuR4LItlD2mcZmPO+mZmYyePp2Phw7lpwkTmDtuC5P/m8KI+5KY80EaSZvzoUkraH2K+RrRCjIRkWouwR5k4inyMu7JFFb9lElh7uH3hOJW5LFzp2VxfLgGmexYB9/91319ciwsmVhx/Uj4mvGDvebyu5w/j2kMp5xrrt29wTweLvJzYdVMc023y6BWHXfztT0NPl4INz9rr41eeDi8ZN08iN9mLF8U2YrEyLqljjVu0MB6udlLl5Y8eGx7eOAD67lkpMLzlzvh6BIaybHm8Ratg9OHiIiISCXkxc/fexERERERERERERERERGpxhRkIiIiobN6VvnOnzciMH2IiARCQT48e7ETWHIwuey6XdFOwMni8eVbtHNgn/sduaU4r9cepNGuM5x1iblm305YZtk1WUrasAjS95trel7v+7y3vmiv+X2Mc30JP14vfPW0s+t4aYoK4VsX30NSdW1fYx7vcJazI/xRFq5cyfWPPMIbn3/OD+PG8cGQITwx9DneXv0fxm4fwbRfovnxtkS2zc2BLhear7FxkfO9JiJSHWUdtN/jHdeBxV+ms31ubqnDydknms+P2+x/IG5V9sUTzutNX4wfVDG9SPgqyIe5llDphs2ge9/Dn594hrleQSaOdfMgL9tcc+TX1Y2oKLj3Lece1+ab5yBx9+FAE4PfapQdOPqPa6+l3fHHG8+fs3QpHk8pO9Vf1c8Ja7E5mAzPXwbxluAsqRgpcebxFm2C04eIiIhIJeTxlnKfKyIiIiIiIiIiIiIiIhLmFGQiIiKhkb7fvpjQZsda7cAoIpXHuM9gywp3tbs3wmt+BDUcbc7P5Z8jHO1YZ99F9oJr4dpH7HON7R+YnsLJorH2ml5+/Hyc8xc45//sdYOfDc8FsOFu+VRYO8dcs3omrJsfnH4kuLxe57WDSceuJQ6NmDyZx956iwMHD5YYy6yVQkyTWUxt8yHTm3/GiKd2kt7iAvM1cjLL/xpIRKSycrGoPD65NYu+TC9z/EBhR/MEGalwMMXXzqq2XRvs9zClWT0TYjcHvh8JX8un2H/+LrkNatY6/Hm7zub6+G2QX3qwUVhxE5Dqa5AJQI2a8OTgUsP6isk6CC/1tYaGp1CbBVHHljneq1s3Lj3/fOMcSfv3s3X37pIDERHw1BCoe4y5V4D98fDcpbA/wV4rgWULMmneOjh9iIiIiIiIiIiIiIiIiIiIiIhIlaAgExERCY21c+01V/Wz11h+wVpEJCiKimDsgMDO2aApNC17gQgAC0dDfl5grxsOFo+315x/DfS8zr4IY/UsLUr3hddrDzI5rgO07+Lf/Pe/Z1+ktXERTPrav/mlaioqcnYZd2PYqxXbiy92RsMnD8Jbt8DARyFhR6g7qroOJDi7t5scsVu9x+Pho2+/5Z2vvy59x/ij7Ku3hVktv2TmOBePXQrLEZHqysXz1OSBTcCQJ3egsIP9OnFhFs6xbJL/5074PHB9iMz8wV5z+V3FP7cFmXg8Ctzxeu0/5+27QMu2/s1/6nlw3b/tdbs3QlGhsWR8jTYURpT+z8pNGjXitA4drEEmAGtiYkofaNUOHvjQej4ASXvgi8fd1UrgWEKBEyPqUlhUFKRmRERERCoXrwL0RUREREREREREREREREpQkImIiITGmtnm8agacO9bUK+huW7uL84vfIuIhNLKac4iikC6qh/8373mmsw0WDE1sNcNB0snmMcbt4RTuzvPRW5CtUZ/Epi+wsHO9bBvp7mm5/X2MJKydOwKl91hrxvwLycYQkFA4WHmD7Ar2l3t2rmwZk6FtmNVVAifPw79zoApg2HeSBg/CO47FWb/HNreqqrta+01HbsCkJOby7Pvv8+w8S5Cr45woM4e5sYmk1/3eHNh9AKf5hURqTISthuH8yOOITWtsbHGVZBJuIUeLC1HkMn07yAnM2CtSBhLPwBLLK+j25wGp5xb/Fi70+1z797gf1/Vwd6tEG9+/KTHVeW7xj1v2kNaXRhTo12ZY+efdRaRkZF0PukkmjZqZJxndVlBJgBXPVgyEKcs80fBttXuaqX8stIhO8NY8uH4afS+7TbueeEFPv3+ey3mFRERkbDi8doDsUVERERERERERERERETCjYJMREQkNGxBJqf1gIbNnMXMJrGbnEXRIiKhNOmrwM4XGQVXPwSX3G6vnTM8sNeu7nKyYMsKc02PqyAqyvm474NQs7a5fu5w2B8fmP6qu0Vj7TWlPPcXFBSwbc8e9iYm2hfC3P0G1Kxlv874QfD0RZC4214rVVduNnz/sm/n/PBK6ILystLh5Wtg7ICSY0WFTghPgiUMSEravsY8HlUD2p5OQnIy97zwArOWLPHrMnvqr2VH6nnmougFCmIUqQgZqbBuHowZAB/fDy9eCa9eD5O+hoL8UHcXHiwL8VPz2wHmsLoC7zFkFLWyXGebj41VYZlpsOF3/8/PTtfrRQmMeSOgsMBc85e7SwZSNjse6ptDLcI+yMRNWNF5fct3jXoN4N+DyjXFssjmxEYeU+Z4z27dAIiMjKRbp07GudaYgkwiIuDpIdD7JneNzRzmrk7KLyXOWrIvoi65+fmsiYlhydq1RPgbUisiIiJSBSnIRERERERERERERERERKQkBZmIiEjw7Y93AkhMul7q/HnxLfb55o0of08iIv5KjoOlEwM75yW3Qcs2cGIXaN/FXLtkvHbZ9kXsJvsC8h7XHP64SUu4/E5zfWGBE4oRLPl5sGERxG2BoqLgXTcQbD8rjZrD6T2LHRo2bhxX3H8/f3vsMa7q14/bnn6axWsMoQSt2sF1j7nrZ/My+NdZWuAZKAtGOwvHb28Nj50PU4aE/nt0TH9I2evbOdELYdXMiunHZN8ueKInrJhadk12Boz6IGgtVRs71hqHvW06MWlMDDc//BSbd/ofFBNffwO7c881F6Xvhz2GxZsi4pud0fD63+Dm5vDMxfDF4zB1CKyYBovHQf9+8PgFTrCVVKwEc5BJWmFbV9OkFp5oLginIJOV08FTznsp3edKIMz43jweEQGX/qP04+06m8/dvdH/vqqDZZPN48c0hs49zTVuXHAtXHGv36ePqdHOPH3Xrn9+3PX00421+1JSSEhOLrsgqga88DN0dxHgMudnJ/BRKl5yrLUkMaLunx93OfnkiuxGREREpNLxovBqERERERERERERERERkaMpyERERIJvzRx7TbfL/vjzcmjQxFw7b4R2NReR0Jk6BDwB3GWr2fHw0KeHP7/kdnN9Xo67HXyDKSPVWTA3ZYizKCdxd+V5nHaz23OX3sU/v+EJ+zkTv4ScLP96cispFj55AG5qCk/2gvtOhbtOhHXzKva6gZKaCJuXm2vOvxaiov789NvRo/lo6FAOHDz457FNO3bw0Guv8dWIEXjK+tm77UX7/cMhWQfhndud/zLT3J0jJQ37H7zxN2fheMpe2LQUPrkfPrg7dD//2Rkw4l3/zv3hleD2HbcFHuvh7jFq9o8KsPLVdkP4EbBiTxNe/vkNMgsyynWZ/Khs1kecYC9cv6Bc1xGRP8Rvh+cuhYWjzffj21Y5ASdSsaxBJuZF8Ifr2psLwinIxBZwEBkJx3Uw16yf59yHi/grdrNzb2/S9VInjLU01iATF/e/1VV2hvMzanLOFU6wRyA8PABan+LzaelRdZkVdVyZ46eeeCLNmxx+/d2tUyfrnKs3WgJsataCV0bDmX3MdamJoQmhDEfJccbhImB/RO0/P1eQiYiIiISbMv+9SkRCbkPCBj6a8xGfzPmE5ExDsKaIiIiIiIiIiIiIiAScgkxERCT41sw2j9eqA6ed73xcsxb0vslcH78dtq4MTG8i4p/sjMoTVBFMRUUw5ZvAzdf8BHh7KjRsdvjYxbfaz1syIXA9lNfEL+EfbZxQiE/uh5eugjvbww2N4Ile8OvHkJUeuv72WBbLNGoBjVsUP9a+M5x7pfm8jAMw84fy9VaWtGT48im492Tn+y0v+/BYcqyzgHfb6oq5diCtmGavueDaPz/ctGMHA3/6qczSL4YP5+n33iMzO7vkYIMm0O9j3/qbMxz6nQlbV/l23pF2roe5I2DxBMgtpa/qauYwGPZa6WOzf3K+tqGwcDRk+/l4E7PEvmAzUPJz4a1bIC3JXX12hvN9Ju7kZMHeLcaS+VH78UQUBeRyq+tkkuNpbC6KVpCJSLl5vfDuP+Cgy188n/atExolFaMg37kvNUgrchdkkmqrS9geHq89PR5YPsVcc3pPuPVF+zwLfwtcX1K55OXAht9h0TjYs6lifjZmDrPXXH5X2WPtLUEmCdud++FwtGY2FBaYa7r3Ddz16h4DLwyHGjV9Om1AjVPJj4gqc7zHmWcW+/zUE0+kTu3aZVQ7VsfE2C9cqw7c+7a9zs33aDjLSoexn8Fzl8FTF8KAh62hJKVKMZ+THFGHoojDv3bQ5RTfQ3NEREREqjJvOLxXIVLFFBYVcuXXV3LNsGv4fOXnDFw5kO6DuvPYb4+FujURERERERERERERkbChIBMREQkurxfWzDLXdO4NtY74Zec+t9jn1WJOd/JzYdSH8N++8MIVMPQlLeYS/+XlwMj34eGz4fqGcHMLePs2yEgNdWfBs3yK9Rf5ueA6eHSQfa52neHTxXDiGcWPH3cidDrf0sdkKCq0X6Oizf8VBjwEuVklx7IzYOMi+PppeKo37E8Ifn8Auyy7Pbc7vfTjNz1ln/u3T5xwm0CaOwLu7uDMXZBXeo3HA4OfC+x1K8KySebxmrWg22UAFBUV8eYXX1h3sJuzdCl3PvccsQmlfD/93z1w1/986zE5Fp6/DBJ2+nZeZhq8e4cThPL2rfDqtc5j4tCXICfTt7mqmh3roH8/c82Przvfp8G2fGr5zl82OTB92Ez9Frav8e2cyV9VTC/V0a5o66LezZGNXE0V6alhrdlbL4a4vPPMRevnu7qehAmvF+aNhEGPwft3O8/94bqg2xcLRvsWOOXxwHAXi6HFP4m7rM/1BwvbupoqrbC9uSA7wwn6q+62rrSHnJ3XF3rfaA8lmD8qcH1J6G1fA7+8C89fDjc2gSd7w2vXw/2d4N5T4NsXYc0cSNkLSbHOa5t182HaUOf1yYCHYMh/nOeegynmax2q1EFmAAAgAElEQVTYBxO/MNfUqe98H5alnSXIxOOB2E3mmupq7RzzeESEPVTVVyefDfe94642MortV/6bX6PMAVPnnlH8fayaNWpwpiXEYo2bIBOA0y+A4zuaaxaNcZ4bpDivF2b9BP88DT5/zAnOiV7o/Ez/60xY72O4oiWwLDGi7p8f14qoTcZiS7ijiIiISDXjIQT/BiIiRrcOu5Wt6VuJiIz481hkVCQTt0/kozkfhbAzEREREREREREREZHwoSATEREJrn07IXG3uabrpcU/P+tiaNTCfM78keGxI2957E9wdl0c/KwTvrByOgx/C+47FV6+BlbP0tdQ3CkqgunfOQtkvnketq12jqfvh7m/wGM9/NvZsyJ5PLBuHowfBNO/dxb+BCL4Y5KLheRX9YNrHoIr7i275oyL4OMF0LJN6eO9bjBfIyPV2YU5lNIPwGcPu6vduR6+faFi+ynLno3m8bZlBJmcfXnJkJmj7d3q7nvCrYVjnFAMN0EYq2eGLhzGjaJCWDHNXHNGH2eHaOC3GTOI3rrV1dQ74+J48JVXSEktJUTpjlfg5V+hXgP3vWamwYh33dcDfPEEzP6p+LG87MPPszN/DE2QR0XLTIPXb3SCrUziNsPi8cHp6ZCiIlg1o3xz+LJA3l9eL4z7zPfzNi8//PwrZjvWWku2RDa01tQtbMgVe5/ilLSLjHVptePZUdjFPFlyrP01kYSH9P3wn7/AW7c4jwUzf3Ce+/95mvP6TEpXWODfveSsHyFhR+D7EVdf17Qi80L4P+tsQSYA8dtczVWlLbWEAAL0uAoaNIFul5vr1s+D1MTA9CWhk7IXnu4DD3VzHgNXzyoZdhm/DX55B567FG5vDXe0dYIxn+kDH93nvD6Z+CWMeM957rm5hRNOO+Q/zuvZI3m9TuhJxgFzX71v+vN13JHyMj1kJhWR17yT/f/NFjhaXa2dax4/5Vxo0jLw173xSTjn/8w1J5wMny5ibOOuxrLIyEi6dSr5d9z19DLeW/nDtj17SM908V5HRARceoe5Ji8HFo62zxVOdqxzHi/euwMOlPJeUUYqDHzEt/cpLEHOSUcEmTTJakvypkoQuCwiIiISRF79noVIpZKZl8mqpFWljkVERDB4xeAgdyQiIiIiIiIiIiIiEp4UZCIiIsG1Zra95uggk6gacNHN5nOS9oTv7p1u5Oc6u7NuWVH6+NKJzk6u/+7uBAyIlGXrKnjkHPjw3rJ/gX3vVnjn9sAEhQRCyl7ne/uZi2Hgo/DhPc7Cn+sbwhO94LuXnRpfJcXC8snmmlbtnMUhERHwxNdw3aPFxyMj4ZqH4Z1pzgK0spx/jb2fYIcEHG3oi3DQh53RZw2DVMsO44GWm+0Eapm0L2O36IgIuOkp+zW+fQH2x/ve29E8HvjmOd/OWTqx/NetKBsXQ9ZBc033vgDsT0tjwLBhPk2fkJzM/wYNKv0XRS+8CQausAfRHGnBKPePYVtXwYzvyx7fHw/v3wlPX1T5Qp7Kw+OB9++C+O3u6ke+F9zAtK0r7YsubTYtrfgAmlUz/b+HDWRwUnW2fY1xODGiDmkRtY01TXPbcGXsMzTNa8MJ2ZaQEmBFlIvdx33dAV2qn4MpzkLz0gJLEnc7r8/6/wuyM4LfW2U3+Wv/giw8Rc7ifQm8BPP9QJG3Bokcw4rmo5lxQn9mHT+QmEazKaLk/Vaqm8CTcAgysb3WbN768P2t7T0zjwcW/haYviQ0UhPhyd6wfn7g59622nls/OdpznsmGX8ERM79BRaNtZ//l7uKfZq1v4hp/zvAZ7328sWl8Xx+o4eCGpZ7o91hGGSSfgB2rjPXdL2sYq4dGQnPDSv7NfLVD8Hnq+G07qyIjjZOdVqHDjSoX7/E8a6nnWY8z+v1snaTy9dBl99pr5np23sI1dqUIc57t9GW1xs71/sW/ml5P2PfEUEmzfLa0ah1Dfdzi4iIiFQDXhRkIlKZDF06lIjIiDLHCyIKSM0uZZMMEREREREREREREREJKAWZiIhIcNmCTOo1gFPOKXm8zy32uaMX+tdTdXdoB9XNy+y1W1bAo+fBimkV35dUPWvnwlO9Ycdae230Ahj2vwpvycrjcUJ8tq4sOZaXAxsXwc9vwl0nwuIJvs09+yf7Avcr74eoKOfjqBrwyGfw7WZ4dBA8MxS+joZ/D4JadczztDkNjj/JXLN4XHBDAo4Us9RZUOoLjweWudhlPJBiN9m/Rm0NuwZffBs0aWU+PzsdBj3me29Hi1ni+wLNxePKf92KssyyEBP+DDL55LvvyMjK8vkSC1as4LcZZSzCaX0K9F8CV9zrbrKMVOfvwA23C6Y2/A5PXQg5LnadrgpGfwxLfHjcjFkS3OAGN/cytzxvHs86CHGbA9NPWcYO8P/c2T9Vn++nimRZILolopFxvF3GOfxl7xPUK3ICx44rOInaNczBJ0vqZpHvqWusqZCFyFJ1pCU7ISY7LAuYJ30FD3Zx/5wUDrIzyvc6Y/pQJ5BQAssSbHbA05IJbd9jc+O5JNXdxr56m1nVYgyzTviMvMji930F3mPIKmpuuV41DzJJTYTNy8013fs6YYsAPa+HGjXN9fNHBaY3Cb7cbHjlGkjcVbHX8Xhg/CC4qSk8eIYTUGtzXAc48+LDUxR5GfdECutGZeEtco4V5kJi1snmecIxyCR6gf39iTP7VNz1m7SED+fBzc/CsSdC8xOgx1Xw4Vx47HOoW5/0zEw27TSHwZ7bpfSQvzNPPZXISPM/Qa9xG2RyfEc4vae5Zu0cPb8DbFkJ/R90H8xaWqBeabxeSNptLEmMOPzeZvPc9jQ6XkEmIiIiEl48FR2KLiI+mRBj/zfMHSk7gtCJiIiIiIiIiIiIiEh4U5CJiIgEj9drDzI5o4+z2P9oXXpDg6bmc227DIarsZ/B9O/c1xfkwavXwUofdmSU6q+oyNmZNy/H/TnD33L/C/EVZckEJ6DHprAA3rzZ2Y3U9dzjzeORUXDlfSWPtz4Frn0Y/u8eaNvJ3bUiIuCCa8018dudoI5gKyqEAf/yL0RlUZCDN9wsjmrXueyxWrXhehchJQtH+x6MU9ocvlo1E3J8DwAJCtuO8sefBK1PYfn69UycO9fvy3z47bfEJiSUPlinHjz9Lbw0Cho0sU+2dKK9pqgI5o1w32DiLhj1gfv6yupgCvzoxyLyke8FvpeyrLQEmTRvDX+5xz5PRYYHJOwoX6BTTibMGR64fqqruC3G4S2RDcsc65pyLb0S76aGtxYAUbXgb/2P44KzzzLOubfudvYWdDP3tXpm6ALIJLRSk5wQE7f3nUl7nHoFdzpGfQAHk/0/v7AARr0fuH7EkWAOMtlas4j8qOwSx5Pr7uD3Y7/DQ/HFPmlF7czXswSnVHnLp9pr/ggBBJx7226Xm+vXz3MCUoItcTcM/S+8ej18dJ8ey3zl8cB7d9iDbQJtV7S7un++dzi8FVgzIpO9q/NLlO0vVJBJCevmmccjo6Bzr4rtoUETeOB9+GEH/BwHb0wsFp6yeuNGvJb71bKCTI6pV49T2rc3nrsmJsZ9r5ffaR73ep2gx3A37FV76PKR1s5xV3cwxRqiuS+i3p8fN8ttR6PWUYZqERERkerHdu8sIkGmH0kRERERERERERERkUpBQSYiIhI8e2Lsiya6Xlr68chI+y9vazFESatnw1dP+X5eQR68em3oQyiqM6/X2RH5vTvhpavg/bth+Nsw/1fYvbHyLWzdsND3hSVer7PgJhSLpQ6Z+4v72oI8+Oxhd7/wn5ZsX9x+wbXQ7Hj317exBZkALLaEq1SE8YNg+xr/zl013dldOlh2bzSPN2wGjVuYa65/HFpZFlYCDHzEusijTF4v3gV+BJkU5MGqShhClRQLO9aZa/5YiPnlLz78zJYiJzeX/376KYVFRWUXXfQ3+Gq9E2RhstRFwMT6+XCgjOCUskz4AvJzfTunspkz3L/v72WTfQuM8lfWQftj9LlXOMFStlCbigwyGT+o/M/3k74KTC/VVXaGNfBgR2SDUo+fnno5ndP+QgQRANSoE8GNA1vQ4aK6XHTeecY5PZGFxHhONPe2byds+N1cI9VPQT7890r3C8QPycuB129ynlPD2f4E+PWj8s8zeTAc2Ff+eSqC1wvb18Lwd5zXiU/2dv7u182vfK8Rj2QJFomNrFvmWEK9TaxtVjxALrWwveV629x2VjXZgs5q1oJulxU/dtHN5nM8Hlj4W/n68tX6BXDfqc57HYvHwbSh8NSF8PWzwe2jKvvmOfh9TKi7KN2Ff3NeW/3B6/WyenjprxFSCk8xz5Www7fg3OrAFmRy8jlQr/T71EDKTCoiZnI2q3/JIH5dHl7P4eeaFdHm+5XIyEjOPv30Mse7dTKH90Zv3Up+QYG7Ri/6u/PYZzLrR3dzVVexm929j3Gkbauc1882CfZdymMjnSCTuoWNqFfUmIbHlxJWLyIiIlKNHR3SKiKVX0RERKhbEBERERERERERERGp9hRkIiIiwbNmtr2mrCATgC69zefu2wkpe33rqTpLTYS3/g4ew2Juk/xceOUaJwxFAiszDf7zf/Dm351fsl82GWb+4OxS/ObN8EBnuKsDLBoX6k4PW/Crf+cd2Afv3xWaRXd5ObBkgm/nRC90/i5slk22/z9dcrtv17bp3Mu+4D7YQSb7E+D7l/0/Py8nuIFJtjCedp3B9gtLdevDvz+3Xys5Fr7z82uzdRURSbv9O3dxJXrcOGT5FHtN977sS05m5Yby78S9bvNmPhwyhALTgqjmJ0CvG8wT7Yp2dpA3mTPc9wYPJvsWslQZzRvh/7kj3w9cH2VZPct+/3PuFU5Q3qk9zHWbKijIJCcTpg4x10RGOd+rJltXOgvepXT7dlpL4iLqlzjWpk4Hzsm85s/PjzujFv/4qSXte9YBoPc551jnXVLzGHt/07+z10j18ss7sG21f+emJcH/bgi/hd5HGvk+5FlC8Fq1hzP7mGsK8mDsgIC1FRDx2+GzR+D21vBQVxj6ovOaY8PvTvjEM31gTP9Qd1m6/DzYu8VYElvKY+2RNjaZwe76h3820gotwYHVOcgkNxtWTDXXnNEH6h71PHPBdRBlWTQ+f1T5evPF/nh47Trn5+1ov34IK6YFrxeA9P3wzfNOONBTF8L3r7hbvB9KU4YEJrypIjRqDo8OKnYobkUeB3YWllqeUmAJMvF6IXZToLqr/DLTYLvlfuCsiyu0Ba/Xy+pfMvnmqgQmPrefmW+m8dPtSXxz1T5W/JBBbrrHGmTSqWNHjqlXr8zxrpYgk7z8fGK2m4Ow/tSwKfS42lyze4P9NXx15s+9jcfjhKXZ7LMHmez947m+eW47ataNoF5T/QqCiIiIhBdvZQ6gFREREREREREREREREQkR/RaRiIgEjy3IpGEzOPGMsse7XGi/RvRC33qqzoa95izUKI+8HHipL8z3M8RCSkpNhGcuhtUzzXWJu+C16+G3T4PRlVl5d25eOT34Oz+DszAqN8v38wY/a//ZWTrRPF6jJpzzf75f2ySqBnS/ylwTsxhSkwJ7XZOf34TsjPLNEczgjT0bzePtyt5JuJjufaHP3+114wdCgn0RfQkLR/t+ziFLJ0KRnwFWFWXZZPN47bpwZh/rIimAFjkdqFvY0Fr3y+TJ/PXBB5kyfz7bdu9m044d7E1MxOM5Yke8HpafJzDvZlyQDwv9fH4cOyA0AU+BkBTrLKr215zhkLQncP2UxrYwNjISul3ufNzpfHPtrujyP86VZtaP9sWzF94Ed/7PPtfK6YHpqTqKty+MjIssvviyQf36fNn/eZ5Y0pZ7xx3Lw/OO547hrWh56uEd4Fs2bUqnDh2M886um01mUQvzxeeNgBw/7lWkasrNhjHlvLffuhI+fbDqPoeUR04WTB9qr7v3Lbj7DXtdeUK5Am3FNCfMcsLnTvhDWb5+BmIqKGCrPHath0JDgBywO9Ie7rS41Y+k1nL+/9OK2puLMw5ARqrbDquWhaPt9x7d+5Y81rApnP0X83nr51X8fdghw/5n/jv60cU9TqDsiYFHz3PCkDb87rx3+NMb8ESv4H09fLU/Ab54PNRdlO3RQdCkZbFDa0eVfU+zv9ASZAKwq/yhllVG9EL7c7ktlKucFn2Rzsw3UynIKd5HWmwhc95Po//l29i0w/x+xrmdOxvHbUEmAKtjYuzNHnLZnfaaYIblVibpB/wPSVw3116TYA4ySaMmmRE1AWiW246Gx0dpZ3MREREJOx6vx14kIiIiIiIiIiIiIiIiEmYUZCIiIsFRVARr55hrzrrEWVhalpPOhlp1zHNsUJAJ4Cx6mTksMHMV5MFbf6+8uz9XJUl7nJ1/d6x1f86XT8LIDyquJzc2LTUvqHMjFN8//u42fTAFvn2x7PGCfFhpWSR/Rh+obw9b8NkF15rHvV5YZgheCKQD+2DqkPLPs2RCcII3crOtCy9oZ16EU8xD/aF+I3NNUSH88rb7OcH5O1xQjvCogymwqRItcM3Pswc3db0MatVhuSXIJNJTg56Jd9Mj6XZXl05JTeWFjz/mb48/zq1PPcVV/fpxxf33M2HOH/cjZ/aBOvXNk5hCi1ZO938B7bbVVTd8zd/H1kM8RTBvZGB6KY3Xa32M9p7ancR8D0vXriX1BEuAkccDW1YEsEGcHsd9Zq+7/jG4+FaoZ3k+0f1v2Sw7h+cQxX5qFzv22qOPckKrVkTVjKB5x5rUbxZV6rkXnneece7MmumsyrMsKM/JhN9DEPYmoTFnOGSmlX+eWT9WjrDDYJvzsz0A6qSzncfNMy60LwBP2GG/NwyG7Ax45zbndbeNp8gJhzhazBJ49Tq4ph7c3ALeud1VkFPAbFlpLYmJbGytKYrMZ/6xgymMyCO1sL39uglB/H8Mpmnf2mvKCuS76GbzeR4PfPJAxYch7dlkf624cbFTV9EyUuHlq2FfKYEMuzfAazc4r1kqm5Hvuw9mfeQzeP5HuPpf0LilubZxS2jQBMoTMND7phLfa9mpRWyZkV3mKVmeFuR4LI8Du8MoyMQWHBEZCZ17V9jlF391kEWfpxtr4tmGF/NjxblduhjHWzVrxgmtWhlr1vgSZNK9r/01fHUNMklLhlEfwgtXwMvXwPhBTgD5IVO/gbyyfwaNbP9mA9Z7pr2Rh/9emuW1p9EJNfzrRURERKQK84Zj8LCIiIiIiIiIiIiIiIiIhYJMREQkOLavsS/a6naZebxWbTi1u7lm/QLf+qqu5o10t+ChRk1383m98MUTzg7Qniqym1ByHOzbBVnmX8wPmrgt8GRv2LvV93O/eQ6G+xiGEEgLR5d/jugFsHtj+edxKz8Xlk7w//wpg8ve7Xz9fPsO2edf7f+1Tc65wv5zu6Qc/9+++O0T+4LL4zvCLf8x16QlweZlgeurLHGb7Qv22loCDY7U9Fj453v2uunfQYJ5F+NidkX79zhxpEXjynd+IEUvsD8f/bGj/ApLkEnL3JM4prApJ2R35uSD/i3qSj5wgJf79+fXadOccDTbrvVrZkNOGf3P+dmvHv40dkD5zg+VeSPKP4ebhVL+itsCibuNJb8me7nin/+k36uvcm3/ofY5y3o+8NfSSfbnxJO6wek9oW59OP8ac230wqpzfxZsloX8cRH1ii3k7XzyyVx2wQWupr7o3HOtNbO9Z9snmubie1CqPq8Xxg8M3HyDnwmv175er7Ng1+b+9w6Ho95qCCY8pDIsdp4z3LdgtBVTnUC0Q1bPgucuhcXjnQXNB1OcOR/rYX0+DJit5iCTpIjapERYQmn/kFkrhY1NZpHmJshk7zZXc1Yp8dth7VxzzSnnwgknA1BQWEhaejqZ2X8sXr/gOoiyLB5fOR0mfF7+Xk2++68TvGMz47uK7cPjgffvMi/A37YKBj9bsX346sA+mPSlva7pcfDjHrjuUbjsH/DYFzA8Hr7bBh/Og48XwKeLoP8S+DoaxmXCyEQYfQDGpsMbE6Hrpb711rAZ/PvzEkEoG8ZlUVRgOjGClIJTzHOHVZDJPPP4SWdXTDgusGRwOgs/s79XmljP/L5EZGQk3U4v+z0UT5GXmMnZtMztYJxn1caNFLoNt61ZC7pcaK5ZO7viw5qCyeOBSV/Dfac4j1UrpzuBqwMfhQc6O6GbhQUw1kVQZlm2r4H0A+YaS0BkXEQ95wNvBM1y2yjIRERERMKSx6v36EVERERERERERERERESOpiATEREJjjWz7TVufnne9svKO9fZd2kOB2528O33MUzKgxufdD/vrx/Bh/eA218wD4XNy+H5y+EfbeCuE+HGxvDw2fDFk87i/pzM4PeUkQovXgnJsf7PMfS/8NObgevJLa8XFvxqrml+AvS83j7X5K8D05MbK6fbw0ZMvF4Y8FDp3+tugkJ6+BdkcmBXATPfSmX0w8lMeCaFFT9kkLw1//AuXvUbwlmXmCdZMc0JcqlI6QfcLX57ZCBcfIu9bnEQgjd2uVgU1c6HIBOAvg9A517mmqJC+MWHIKIFAQgOWjy+/HMEyoqp9prufYlPSmJvYqKxrFXOSX9+fHbK9TTIb+F3W+9/8w3bdu8uezf7QwrySr+Hyckqf2DM72MgaU/55gi2hJ324KGe19u/rtELK+5eYsU0a8mEjFp/fpwRUYsdEceYT9gUwCATrxeGv2Wvu/6xwwtEbfe/GQdgjw87mYcT24K7yOI7ul94zjmupz69Y0eaNDQvMN1coxYJ+WeZJ1o7xwnfk+pt42JnkajJCSfDyCS4+Fb7fB4PvPsP3wIwqrKNi2HHWnPNSWcXD0ftegnUa2A+Z9WM8vdWXsun+H7OiD/C9A7sg7ducQJMjpa+Hz64OziLuS1BJjERjX2abkuj+WRSj1yPZRF/fDUMMpn+nb3mivvwer38MHYsfR94gIvvuos+d9zBU+++y9YD6fagPnAWwC8aBzujYeEYGPY/+N+N8Nj58NxlMG6g8zrGHzFLYOFv7mpn/OD/ddwY/raz4N9m3Gfuew6GXz+0v6avXc8JImnZpvjxqCgnUPTMi6BLbzj9AujUA9p3dgLyDql7jHPP/t5MeGkkNG9t76thM3hrCjRpWeyw1+tl7a/2MOX9hQoyAZz3rbetMteceXGFXHr5d+ks6O/uffPEOuYgk04dO3JMvXqljqXFFvLjbYlMfG4/Nbe2M86TnpnJ6o0+BB+ffbl5/MC+4AYpV6Sd0fDUhdC/X+kB8ft2wqPnQd9akBLn/3W8Xie02cQUCAXERTiPL43yj6Wmty6NTojyvx8RERGRKspLNQrUExEREREREREREREREQkQBZmIiEhw2IJMmp/w546yRl16m8e9XtiwyH1f1dGeGNho+Rqc1gNufMJZINvvI7jhcffzzxzm7GhbkYtN/DVtKDzZq/jO2l6vs2P1mE/htevhtuPh14/dLeg6mAI/vAoPdYPbW8Pzf4F1ll/sLs3Q/zq/XF5e378MK6aXfx5fbF1l38m7903w1DdQu665bsb3pS+yqwi28BU3tq+BqUOKH/N67UEmbTs5C4d8vdzcHL69dh+rh2eyY34um6bmMOf9NL67IZEvLo1n2msHSIsrhPOvMU+Ul+0s9qxI4wfaQ4HOugTOuxI6nAUt25pryxsI4cYey0KWBk3xNm7Jwb2FZO13GbAQGQkPfmSvm/6dEwDhxkJzkEmOpzGrs+40zxG3GWI3u7teRTvy8bg07TpDq3asiI62TtUq5/DCtxre2vRMvIsIr38vafMLCnjxk08o6OZioeeySSWPLZng/KyVh6cIxg8qfczrdZ5vxn4GkwfbH4eDZf5Ie83Ft0LPG8w12en2Ben+WmkOMkmnJhsiiy+oXh/ZxDxnzJLALQRfO9eZz6RR8+JBBmdYgkzACYeRkuK3G4cPLbg7pLcPQSaRkZGc3M68MPNgrX1EZ99sn2zG966vK1VUWY/3R7r5WWjcAp4aAh272uuTY+GTB4ITVBFqbr5+1z5yOAAKoEZN+0Lw1bOcUJhQKSyANZZ7pdIsGAV7t8KnDzqBJWVZN8/5ryLl58Gu9caSmEjfgkzyorLY0WAZqYXtzYXVLcikqMj+fFCrDlxyGwN/+omPv/uO5FQnzKjI42H2kiXc9swzTGpxrrvrvXY99DsDXr8Rhr3mhOxtWuq8fzfo306gia9BwV4vDH7Off2BBCeEtCKsmAY/vOK+/qP73L9mq0ipSTDhC3vd88Pg5LPLf72ICLjoZhgSA/e8CW1Oc0JS6jWEJq2gVTs49Ty45T/Qf7Hz8VFil+eRusv+HmFKgSXIZN9OyC3na6yqYMPv9ueeM/sE/LI7F+Yw90N3P9N5kVmk1t5rrDmvS5dSj+9YkMOwWxJJ3FgAQMsc+/tjsxb78B7WkaFlZbG9D1HZFeQ770c/3M3+Hn+grJ1j7scSzh0f6YTaNMtzXh81PKFGwFoTERERqSq8Lt6jc1MjIoGhcCERERERERERERERkcpBQSYiIlLxCvIheoG5puulxRcdleX0ns7CcZMNYb6Qc9pQe81f7z/89Y6IgH99Atf92/015vwM795RecJMiorg62edhSeFBeba7Az4+mn49sWya/JzYeT7cHdH+PF1J9AiZS+sngnP9HEWlbu1JwYmf+2+3uarJ4O72M4SqgA4QSYNm9l3j89Mg/mjAtOXSX4eLB5vrulwprudqr/7b/FdT/fE2ENpbEEjpUiLK2TCc/vxlvFXm5XsYd2vWQy5OoHt+ZbdZ8G8AKG8cjJhTH973W1//IxFRMAF15prYzdB3Jby92Zi2d05u+FpfHn5Pr6+IoHP+8Tz9ZXxLP7qIJkpllCTTj3gvL+aa4oK4Ze37T3GbYFd5kCPbbn/x5Ycy/XA/jMQDGnJzuOnyblXAFiDTGp4atEst3ggTvO89ly47z4ivf7t9Ltl1y6+mDEfTrIsAFw6qeQi8bnD7Rd4d4b9nmXKYMg5alKj6MQAACAASURBVPfygynw2g3O883njzmLlO/u4PzchfqXXOeNMI/Xrgc9rnZ2gLex7fjsj/w8JyjEYGlUC4oiiv+9rItsap43LQn27Spfb4cMd/FYcPVDzkLlQ9qcBg0sPdrutcNRUREk7jKWxEUc3kW+aaPGnN7RtyCyE9u0MY6n10okJudaCr21zBPN+D60YQpSsVITneAJk/qN4JLbnY/r1INXxzihRjYLR/v22qQqSk2yf/0aNCn9tYjtfj/jgBN6GSoxS5zXp77yeODBLvaARXBez1akXdHW1+AbonwLMgHY1HgOaYXmsKhqF2SyepZ1oTi9bmDl7r0M+bX04M7CwkL+O3cdvzc+rfz9rJ8P/+1rD7A80rLJvt+TuHkPy1cpe+Gd2327d846CC9eAcumOB8vHOO8z/T+3TDiPUjaE/g+S/Pbx/bAxC69/5+9846Pougf8HOX3um9o/ReBESwA/aGvopg7/rau/7svbx2RUBQpIhSpPfeCS0EQi8ppPd2ucvd7e+PBZLL3c3sXRIFnccPH3O7350ZLrs7s8N+n4HBEnGgr4RFwqjXdKHJ/BL4swBmpMOvJ+CbbXD/h14F1HF/lHjcXpVsu0Rkomny58d/ApLnFcxmucjbR4qzHSx6Nddw/PGoWDCJr59+VUQmmlNj848FzHosm7LCinFtdHljomwNhWWt2roVp9GxcNse8jGSP5Kw2qSk0P253xtHd8N/L9D775qad2/cBjpIJFd71njfl5kkvZ+efq6qX6b33XWUyEShUCgUCsW/EKe3f+RVKBRnLWaTenVaoTibcDqdfLPuGwZ+PZD+X/bn5kk3czRbvGiFQqFQKBQKhUKhUCgUCoVCoTj7UbPxCoVCoah9DsVCmeRl3V6XGSsrIlp/YVlE/L84kdNeLl/BNyQcLv6P6zaTCR77Cka/abyutTPggzvk4pDaprRIX0l45me+HTfjI5j7rfv2dTPhvo4w4SUoLfR87LjnITfdWD3jXwCnRITgC4kJELu45soToWmw3nOC1BnqNoaug/Wfr35IXubCH6vfLhm7VshXjh5yKzzxLQRJEosLsl2T/7YukNc/4Fp5TBU2jy2kvFSeZOW0w4LPI3E0lSSm1abIZOE4PelTRMf+rqvkDrpBXm5tizcSE4S7Dx1qS3FmxbVakOJgwzeF/HhFKvOeyyYt3ur9YCP3zmU/y1f4Xi8XBx20XE2KbQBlzmhx4JazQGSye5U85lSCcWx8vDCsoaU9ZtyFJS1LejI8+TnqWJv51cSf58whtfUAcVB2ChzbU/G5tEh6Hy5r1hdbp8tgoETiU5QHUyvdY0oK4JVhsHmua5zTCT88bUwiVFukHJInew+8FsIioNl5UK+pOHbP2ppr22l2LJMmfm4KaOS2LT6grrzsA1v8bVWlMrbpfZSIkHC48UnXbUaSGZXIxJ2sZGnyX4o54szPF/Xtg1kmH6pC2+bNhfuLA3MoJYIjZcPEBaUfh+1LfarbZzQNtiyAsc/q8r8lE11lbYraY9F4+TPTsHv1++dpmrSB1/8AswFZ19inpeOcc5olE4x9f6Hh7tv7GBAAyu7LtUl1rvtym7G4uNW1O0dyeIc0ZL/ZVWTSNXcYMVbxOKEoOJOkSvdoj6T9w15gXjpRGuK48m4+GicXpb5sbUuGKaz6bUrYBG9cB2USsQbo/cyk13yvY8s8KMzx/TgRv7whf2b1xMnD8PrVcFMdeOdmfZ5pxWT46WV4uIcuOalNCrI9z1NV5c43jMmg/wJK8xwcXmHg/AByZCIT+HvvyX8Vsuegdr0g0l0AZSt1UprnwFHum9xSc2oseiWH0lxjSZUaTg7FiKWTAWYzvTp3PvPZaddY8FIuG74ppOqC1yZMtCzpKSwvMyeHfUcMyqnMZuh5qTgmbs3fK98+LXL+/H4Y1QJuioGbouHJgfqc2mmJmdMJGYm6BOqPz+DjMfBEfzgWV7PtueG/0FsyJjq2R78HeSLtmLSKFJPeZzc4JTKJbu6fcFahUCgUCoXiXEarOhhWKBQKhUJhGKfTyZDvhvDlti/JsmWRa88lLieOKyZewfy9BqTuCoVCoVAoFAqFQqFQKBQKheKsRYlMFAqFQlH77DKQyCx7Abky3YaI9x/cBjZBwvk/mW2LID9THHPxbRAe5b7dZIK73oJnxhtLmANdcvHN4z43s8YoK9VXzDUil/DE90/q4hLQXx7/7kl471b5SrulhbqUQMaulbB1oTyu20UwJx9eniqPBfjjU2Nx1eXEXj2RR8TgmyDg1PnSaQC0k4iGEjbB8b010z5vyOQrAENGQosOcNtL8ti530DSAf1n2arnUfWgyyB5mZXIT7azb77BlVkBW7FGqmmwOOjAVuOrvfqCrcyYNOiO11wTq7oPhXCJeKOquKEmsVogXZx4kWP3vLq00w4Hl1qYMiqTDd96EeR0HgD9Rojb4LDDbx+IYzbOFu62OqNIsg7GSRDHyiT9ZsImyM8Sx9Q2uySrIAcGQbchnMzIIC1L3NbGlvO87qtna8mI5Bfoljsck+bbI67T6eSttSflgZX7mX0bpQnVm/Zfw3dDU9llvV9e9szP9VWXy0rh/64Ty0LGvwD7a0Co4Q9rZshjTovSTCbocbE4Nn6d3vfWJGvlbdxkdheZHDVFUepBlONCTXzv0yX3AIBrH/G8wrhs/JuZJB+//NswlHBXIT64qG9fn6to26KFOMCkURiUyd7SW+WFfX4vZKX43AZDOOzw/n/0ZPTZX8DSSfC/+2F0a5j46t/fX/yTcdiNifyuf8x9W89L4IGP5cdaLfDhWSCYrA0cDlgwVh537SOet7fsBPUlsrOdf2PS/M5lf009U9+tvbIPbRfuzjSFkG0KddnWxNKBzvnyOaA9oXnigNx0sBRLyzknKMyFTX+KYxq14rfUMg4nJkqLKzIF80Zwr5ppW9waXR5rKxPHHd7hX/J9uQ1WTfOraR4pzodVBudWfKGkAN6+CfZtqvmyTzP7C7kIussgY5Kmv4jDKyw4DHY/pc4GFNglY6cdf9F98e+itEgugKryHJWXVM6CF3P4etBJvhuSytjLU9n0QwHlZcaepWJ/LiJxs/F58pPhCRQFi8eGXdp0JDJcH0drmsby9/M4sNi70KZlsVhkArBikw/XVq/LxftLC+HwTuPl1RRJ++GdW2BkA3jvNl1QlX1qvsHp1OfqvnoYboyGYSa4IRLGtIHXr9Gf9VdOqXkBS1gkXHW/Pq6U4U2yI5lPs2MiwxRGgDOIOrZmBEeYCI1Wrx8oFAqFQqH496E5lchEoVAoFAp/efrPp0m3ui8oZjabeXrh05RKFjNRKBQKhUKhUCgUCoVCoVAoFGcv6k0ihUKhUNQ+cRKRSbP20Li18fJkK9KXW+GwOJnmH4uBFXwZIUmqvuoBeHsuhHhY0doTi8cbk3XUNE4nfDIGEjb7X4amwcd36ithf/WILqwwiixZ2uGAcc/Ly+k6GD5YChExcNkoeP13uUhmz1o4sM14W/1l/Sx5zEW3VPxsMsHVD8uPWWQgmdNfym3yBLA23aBVJ/3n/7wMDVuK4x12GPecniiXIEms6H8VBAQaby+wZVwhmsOnQ4g71F8cYC/XZQs1zZrfIDdNHNO6Kwy8znVbUDBccLX4uNoUb6QclAoTssslq0NrsHlsIYeWe3lBYsyb8nas+BWKvCRk5mVIE0GPll2BKTSU8HpmjpRdKa7L6dTlVn8nstW0Ow+CsAhi98rlRo0t4t9PAIH0zL2W4SnP0bjUs5TGG7FBUKB5EHxVJm51xc/x4tWpNc3EAcu12Ms0VszvQZa9szAepwM+uxeevxj2rhfHOux6QlRNr1pvBFm/Fxap3wNP032oOL4oFxITqt+u01gtUiHSYVMUGeYwt+0Ok5l95rri8qsrMjkeLxc2BQXDyOc875OJTAD2bvC9Xf9k0o4KdzuB1FMikwBzAIN6+Z7w3balZAwBFASnc8I6lCJHY3FgXoaeIG21+NwOKbO+0FeFr0ppIfz2IYxpDT8+VzsStH87m+dBtkRQ0284NPfSd938jL5fxrE9sGi87+0729m6ALKSxTGi789kgt6ShP+962vnupNRkC0d+9UYO5fXnghNkpC/31TH5bNJM9OgrA1tivoRFSQWHe4LMXBPShXf688Z1kzX57IElAy5nR9+MyCWO8XWgEZMC2xb3Zbp7FwOH43W51C8sX2p/+Uvm+T/sVXZOEf6XfpNuRXeuqF2zjtLCcz9Vh535xuu0tC/maStEsFNFU5YJWPa/Vt0acw/ldjF+vOfiErCiYSFJfwyMoP9i0rPzBuV5jrZ+F0hU+7IJPuI2CKTFm9l/dfu36d26r/TmMxw3Wf1ueOXRhyss0b612gQfwG5x/W6N/9YyJ4/xPfr+tZWhNnrCGNWbtqCJrrHVKa3RGQCcrFqTXNiHzxzEWyYLf8dn+avGH8Mv0+fc+46WD5fWXneozISQWS6KQy7yUw9a0vMBBDTPBDTWXSfUigUCoVCofircFLD4naFQqFQKP5FrD7uZV4CIADm7Z331zVGoVAoFAqFQqFQKBQKhUKhUNQoSmSiUCgUitqlrFSe+N/zMt/KlIlM4N+ZyJmTJheKND9ff3FZxoBr4JNV+ovORvj6UX1V0b+Sn17WXw6vLuU2eHWELmTxhaO7IeWQ9/0rf9VjRJhM8N/vIbSSNGborTDqdXn9f3xqrJ3+ommw7ndxTHR9t5ViufxOuQRnxa/6vaE22L9ZX4FZxJCRFT+HhsODBr7LbYvgwa5SGYabwENCfoqdffN9Txo+UTxQHuQtAaE6LPlJHnP7K2D28Jgx6AbxcU4nbKslKZIBWUKO3Zj8Yu3/CnDaPSTXdB4I/UaIDy636jIYTxhI/DtUdhUt+oTQbmgYx62X4NAkSSgyaUJtknYM0o+LY04lFm+XiEwCnSHUs+qygLA6Zh5Z0ZTR0xsRGOKeGFPf2oorUp/kluMfcFXSSwxPfg4T4gQazWRifUBDcVsTNun9BUhFJpn2LpQ4m5z6ZCK26AFx2aD3F0aTmbOS4ZO75PejmiRpPyTuE8dceCOEVJKEVO0fPBHvZcVnf4hdDJZiYciywOZe9+2RiUyO7gKbb4maLkx7Tx4z7F6o38zzvvN6u36/npCJcP5tSBLuMkxhlJt0eVzvLp2JiojwuYqGdeueWY3eG4XBGWgEkFB6s7zAQ9vhy4fEieK+UlYKv30gjrFaYNb/4MkLIC+z5upWwOwv5THXPe59n9kML/wCdRrJy5nxUUVf9XdQVgrLJ8PkN2HO17oEsLrM+Uoec91j4v19JPK3cmvtCABl7FxRs9e6jKnv1nyZNiuciBeG7De7Jq7Xs7YiUAshgCCGdRkmPDbZbOC+nHpEHnO243AYOtd/yA6iuNS35+ivg7qQaJYI+4yyYZb+LO8NmcRQxJFdcDTO/+Mrs2pazZTjjYJseP0aKMyt2XI3ztEFYyI69jcmt/qL0DSNpFjfpDEnrBLZodMBu2thLuNsYf1M8X6TCboNodziZMkbuSx8KZfyUve+wmYuZVfqDt65ZxFLxh/2KAApK3Qy/4UcnPaKbXaTjbh6C/iz9ZvMaPc881u9y/YGs2j/SB4dh4dR1jCD9PCDwiaG2aNpnNaLn65LZ/xVaWz8VnLeAibMtCzuIYxJyUzn0PET0rIAXYreqJU4ZvdfLDKZ8KIu6zybaNQKRp+S7oZFQscLxPF+ikxSTskh61t1UX1Mc4mgW6FQKBQKheIfimExn0KhUCgUCjdKNfHc95cbDfx7m0KhUCgUCoVCoVAoFAqFQqE4K1EiE4VCoVDULpUTf73Ry0eRSf1m0LSdOObfmMi5aqp8xcfh9xlfubXzAPh4BUSKV8wE9KTqia8YK7cmWDiu9kUeRljjZTXkslKY9Jr8+OH3QTsPL/Lf8IQ8WXnj7NpdfTphk564LmLQDRAY5LotIgYuvUN8XEkBbPqzeu3zRryBa3/ora6fL77NmCBJlpAQEOhzUtHW8YUuSSVGsTjrkUNncVBNi0xOHpZLopq2g0v+43lf/xHy1V831ZJ4QyJgsDhjKHEaSBAG8pPtJCzw8hLFmDflBXhbbTx2sfAwuxbMCesQWg0Moc2FIdi0aJJtEqHN9qXVEy9UByOrH/e+HE3T2B4vToBtaGmHGT0R5qr36xHVJJCm3UMY8W49r8eEOqKoZ2tBA2sbrk55kQCTOJFmU6Ckr7Na4MhO/f8HtwlDU6z9XT4nWG4m1dZLXL6vbFsEv39Ss2WKWD9LHnNxlWu/VWeIaSA+RiKF8Ym1XvrkSiwN8C4yiZeJTOzlcDDW11bp7F4NayVyMHMA3Pai9/1BwdBJcs3/G0V+ItLFCXcnTRUCkov69vWrCpPJRJvm3s8rgMKgDAB2l47BroXIC105xZj8wijrZ8olb6dJTICJL9dc3f92DsbKn0sbt4ELrhbH1G2sy0xkZCXDcgNxtcHxvXDPefDp3TDlHfjhKbizJfz0iv8Cw6Nx8vFso1ZwwTXimN6Xy+vaudx4u2qKHWKJnUMLZE7uhJqrb9si49I0o5zYq/ePAhKqiEwaWdqf+fnmK4cTGhzs9dgcQihFkgz9TxCZbJilP2sJKDx/AFNixfI/T5SZAnkhuC/WMIOSWhmT3/T8O7eUVF8ItGpq9Y4HXfAbt0occ35faNOtevWkHIR3bq5ZedRKgSTmNKPfND6n5wWn00lBURElFku1ygHIO2GnNEcsV2zcxXXOKMk6GKcm+WfJHcuq27Szk7JSuYC64wUUFEYx5Y4M4me7S2+LArPZ0nAaM9u+wrqm41nXYBIvL3yBB+/6ksL8it+ppmksfj2XgpSKeWInDtY3+Ym99ZZSGpSHw2yjMDiTg3XW8PayN7jx8ccZ+eST0r/G+QVDCECf28lPNj6h1bKkpzRm4hdr0JwGkj9NJnn/vm/jXzcfkpOm97O1jdkM7XvpUhIZ7XrCm3MgutK8Sc9LxcckJuiypqpIn6t08VhdawsAYppL5v4UCoVCoVAo/qE4tb9QPq9QKGoEdd0qFOcO2RYPcxYKhUKhUCgUCoVCoVAoFAqF4pxAiUwUCoVCUbvsliQQAPSSvETria4S6UDC5r92deOzga0LxPvNAXDl3b6V2aEffLwSoiTJvQDzv/9rVrLevgy+kay6/VexzktS8uLxkJMqPjYkHO72sip2TAMYdq/4eKcTZv1P3kZ/WThOHjPkFs/br3lYfmxtveAvS4pvdh607uK6zWSCR7+qdkIQPS4xJv45RcFJO3vnuiemGOV48SBxwKHtUCJfGdcwy36Wx4x83rusJLKO/h2J2LFMF0XUNIkJwt055ecDxn//m8YW4Cj30Md0Hgg9LhYffDBWT/atjMMhTdY6aetPuRZBm4GhtB4YCsARi3gVe6ylxvrh2kC2Int4FHTsz8mMDNKzxS+dNLZ0AKD7zRG0v7hC8tT56nAGPCBfYb5OWQu6Z4mTnHeYJcIN0O8vB7ZKE3ZTbANcPmsEsCz/I5xaDa9K/PNrtSu0qswGicgkIgb6DsNW6mTn9CLWf13A+q8LKGxwofi4PWtrZrxmKYEt4nHQflMMSWbvCV/xAQbGOrLz2hPlNmPjlkvvkIv6ug8R7z+xFwrPslXA/04k10fyqYQ7gCH9+vldTdsWLYT7C4LTASh0tGBj0TPGCv3pJUg+6HebXFhkYExXmeW/QF5GzdT9b2f2F/KY6x6FAAP9Q/8RMPI5edz0D6T9VI2TkwYvXga5aa7bHXaY8RE82FV6j/bIn1/JY655RP791W8KrbuKY3b6cX+vDppmYOzXjyNlV5Jmkyd+G2butzVXFsDhHdKQ/WZXgUZlkUnbLvW47jKB2NZkcrlXe+SvGgvVFpoGv30oDZtqMzBW9cIhcwyvth6pP6dUFZH6SsYJWOpBzLh3ffXvPRtmVX9cuO53fa5EwIHA0SyL/J2CqN7Vq2vPWhhrsF+XkZMmH2e27yUXX3nA7nAQf+gQk2bP5ol332XInXdy8ZgxXDx6NA+/+Sabd+/2e9XwpFirNKbvaNfntTKtDunlkvvazn+oyGT7Ev0ZXYBj0Eh+fyCL7COugpCiwCw2N5rC/NbvcjRmM5rJ9TzfXrSWZx+YiCVfF5fETiriyCrXuZV9dZeTGuF9biQxVTKPCZi1QM4vHCyN80QjS3tCHOJ7+tYjsfz+YBZFGRV/f82pkXuinANLStn8YyFbJxRyYnMZmkyMbiuDfZv8aqvPSMS0NULrrvD1VvhhF/x8VH9+NFcZA7XrCTc9De8tgu93wvl9XPf3vERez9Hdrp81TdrXpph1QWREuS5NiVYiE4VCoVAoFP9SNP5l76YoFGc56ppUKBQKhUKhUCgUCoVCoVAoFAqF4uxAiUwUCoVCUbvIEqhbd9VXmPYVWSJnUa57ItU/GUsxJEhezu5/lZ7E5Svn94FPVkF4tDhO0+B/D4BNnsjgN0d2wbu3gNMhDS02NeMPx1LmdMwkf+R3tdOeE3vdBQnlNvjjM/mxt72IVq8JJdkO8hLLcTqqvEhxy7P6Spsilk3yvFJmdSnK8y5pOU10fejlZfXTDv3gPElS0I6l0gQjn3HYYf9mcYy3l/bP7wMj7q9e/bc863Fz+l4bWycUsubzfA4uK6Xc4sRu01j5YR5O44vXupFskwgCnA49oawmcDj0xGYRIWFw2Z3imAtvEO+3lsKulb61zQiJ+4S7c+zn+1RcQYqDhPleJDTD75MXsKxK8t/BbXq/JeBY2aWExphp1CmI8HoBNOocxFHrFfK6Ns2Vx9Q0Tqf899jjEggMIjY+XlpcY8t5APS/211actETMbQaECIto3P+5YTZvYuGMsxhpGuSlerj10G8/JpKsV3gti3L3oXY4oekx/qE0wlzvqzZMj2RetQ9makqg24gZY/GhGvSWPl+PlvGFbJlfBGxOyV9QV4GnDxc/TZumS9NClwa2Fy4P8cUSpIsWXrncl9bposMkg/I425/RR7TTTL+hb9GKneuIFs5/FTCXeM6DWknkZGIaNeypXB/YVAmTvQxz7biRzlgEYuVAD0ZfMo7frfpDIkJvp8TTieslYwDFXIyk2HdH+KYkHAY8YDxMu95HxpIztWME7ByivEyq4vTCZ/cBQVZ3mMyTsAb18F/B8BvH0GSgXtiXiasmiqOCQ6Fqx801s4+V4r3H90lfq7StJoVxJzYJxVfnrAOBUysKXwNTaumcPE025fUrPBVIjLJIoQsc4WEDs1EwzJdZBIabSasrpk7r7tOWEayWSYyOWKoqWctsUuk4yxHdEN+zqzeObAyKZsDj02E2fnw456KP2Pj4JdjsNgOk49DQ3GfBsC099znfYyMkQbfJN6fdgyOxcnLEbFqmnC3Qwtk+arLiFsWycSDM1hX+CJWp3fRnZT53+uiyuqyepp8fmTE/Yblqxk5Ofy5YgXPf/IJl4wZw5gXX+SryZPZsGMHJRZdbmF3ONgaF8ejb73Fva++yta4OJ+FJskSkUlotJmOI8IJqOLP0e9vAlKPnvuSIk+snykN2ZsznPxk14mipIhdLGz1Eceit7oJTCqzo3wF39y2l/Vf5bP2fwUu+ywBhSTU9eNZpgptivoS6pDLRE8THGli1JRGvLC3JQPuqUOL4h7C+PyQVPbuTGbs5Wl82i2Zn65L46sBJ/np2nTmP5/Dhm8KWPdlAX88mMXcnw2IvnbXwvySJ2pL1gz63PAdr8J3O/T5VoC6jeCVafDLUV1a8skqmJkNY3fDo1/ABVd5nlPuPEg+11z1PlyUB6ViSfLJU8/REafmXGKUyEShUCgUCsW/FH8lkQqF4u9DXbf/XOxxu8m+/hbS+l1K+oVXUvrj92g1/X6SQqFQKBQKhUKhUCgUCoVCoVAoDKFEJgqFQqGoPUoK4NB2cUxvLyIEGR0MrJp+fK9/ZZ+LxK+TJ1ZdNsr/8tv3ggc+kcclHzC0mrBfpB2H167SpS0Sih2NmJI+ixMZnTmyuozx31xHSteXa6dda2e4fl49DbJTxMfUb0Zqh/8ybUwm31+SyoRr0hl7RSobvy+gvOzUP543aw+DbxaXY7XAgrH+t90bK6foK5eKGHYPBHuRB5hMcMkd4uMLsuHITr+a55Wju+XnhygJ/J735MIebwy6Xk8UqITTrstKfr09g3VfFhA7qYh5z+bwZf+TfNEnhaNrJN+xhGTrBfKkxrjV1arjDDuXQ/ZJccyQkRAh+f4GXS+va3MNizesFmmCo68iE4DN4wpxlHt4uemiWyBcktiz4lfXe7aB1XuPWy+h1YAQTGb9d97mwlAKHS3ILO8iPnDL/JqXBsk4vgcKc8Qxp/r/7XvFfXWgM5R61pa0GRxK/fbuK8ibA01c+0l9IhsHeDi6UhxmmpSKf8/bA7yLTgDYu0F6TeWUt6fU2dDjvk3FT5NvbyWuw1e2LqzZ8jyxYZY0pLzfTSx4KYeSLNdzLcU6UF7+nrX+tqyCqn2xB5YFNJPGbA3w/Ls7w4FtUJxvtFWQmWRMRjH0VmgtuZYBOg90X3W7Kvs2uG9zOmHXKvjpZXhnJEx6DQ6Jk8/PeYry9D8Ckk8l3F3Uty8mg4nBnmgrkaA4zXZKAk/fE00syf+cwohu8oLXTDcmfBCxaLx/x8kEEgo5877VJXsirrwbousZLzM4BG438Ewz/X153TXFzM9h1wpjsQe3wcRX4IHO8GhviFvjPXbhWF0QKeLyMRDTwFjdfSTyN01zl7DlZ8Gf38DTF8INUXBTDLx2tS4hqS47lkpDTif6p9gGsqLgPexasDDeRjQZ5V3FheZl1KzwVSIy2W92HVvVsTUlxKlLpOq1DcRkMtGmeXMu7t/faxnJMslYTYlMLMVwNE4/D47H62PZvyKRwcD8yf5e12M1Sfp/A8xevhxCw6Ft94o/7XpA07YQEABN2ujJ8LLrKisZlkxw3Sa7D7TrCTf89lkg2gAAIABJREFUV97I9ZJx576N+nV4Zyt4rK8+tslI1PedPKLfZwQct15MmVYXADuhbC1+ggmZ69hdMhqn5uc/lf34XPXPlRW/ivcHBMIlt0uLOZKUxOPvvMPw++/nrW+/ZcWmTRSXimV/ALv37+fhN9/ksbffJjNXLNg8jaZpJMeK5zRa9AshMNhE/fNcn+OkIhPwTyB4NmO16M/mArTz+7FlXn2XbfnBqaxvOhGHWdInAppJY0/ZJraML3Lbt6feQuwGypDRMf8Sw7EBQXDT1w1o3kufOxz6dAx9Wsrn85Mj9pz5Ofe4nXKL5+vr8K46FIZ0FBe29vfaHxOV22DnslopuqRuDxZHL2Ta6idZ/nEJxdlVxN6NW+tzkb0u1YXTMsIioJlk/quqyEQihwQ4aQoHzXRGHhvTrPp9lkKhUCgUCsW5iFNTCfIKxbmGum7/mVimTibxyscp2JxJaaKdksNlpL0+nazhNyiZiUKhUCgUCoVCoVAoFAqFQqFQ/A0okYlCoVAoao/tS8HpEMf0usy/slt2kq8gmFgDCUbnCjvlyWNXfDONkU8+yYpNm/xbWeTqB6G7gWSDmZ/5luRrhIJseG2EnnglweYMY3buRIoczSs2ajB9+aOkNB7jU7WyZDEA1syoSFpxOmHGx9JDTpz/KtMeKiF1d0USQUmWk03fFzLpxnSOb9BXyOXWF+T1L/+lZhOsNA0WjZPHXSVZ/bz/CHkZsUuMtcko8evlMSKRSd3GcO/7vtcbEg6Pfe2yyVGuseClHHZOlYt3vNH2olCGPh3jdb9VqyNPVtxdQyKTpRPlMcPulcc0aqWLkUTUtHgjMUF6jWSVd/K52IIUB/vmlbjvCIuAobdJDs5yFVBIRCYF9ubk2M+n9YDQM9taXaAnAx0pu1JcV26aNMm0xjHQJ9FbTyjesU/cVzeytMNMAP3GeF8pPaJ+ANd/Xh+zZNHfxpYOwv3bA+uKCygpkIpMUmwXeN1n18JYVvCBuA5fST8ul8ZUF1lCaVgkOw9eSFG6+5gvy96JMqdEcBS/rhqNA0oKpddQvLkOqeaKROhe2dcRY23qFrfZLBGZOB2+3Vd/eBqskuTRkHB46DNj5YVFwnm9xTF7K/WF6Sdg8ltwd3t46XJ9jLJhFkz/AJ7oB2/dBMkHjdV9rpFmJOFOPycG9RWvDC+jbfPm0pjC4IoxbLkWzp+549GiJYnimgZT3/W/YbYyWDHZv2MPbNUTwhX+YSk2Np6++Wnfyx5xP9Rzv3+5kHoUVk/3vWxfObQdJr3q37FHd8MLl8LP/+c+TrNZYf738jJuesp4fd2H6iIAEX9+pbclbg28eQPc0Qy+fxISNkNZiZ6EHrsYnhoolrAYYbtYZFLiqE9GeYXwaHfpGCZmrmJFwdvsLhnNIcsI8mMugObnY6nfnbjSO/glYwFL8z+S111TIiubVZfXCagqMmlkaX/m53ptK34fo6/3LjtMNktEJlnJ+u/GXzRNlz6NbgWP9oKXroCHe8DIBnBtGDzWB6a8Kxd9+sPeDa79ticiYlgQKX5WCQkOZubXXxMRFiaMW7R2LRarVVxf8/Ng1P+JYwCmvV/xvedlwDHxuUCfK6H7ELkkZeNs7/tWT4dnLtKvw6xkXYw642N9nPPOLfCy5LkI2G+50W1bqbMByws+4KfMNawvfJ6D5TdQdvl/4cXJ0MaAeGzvetg4Rx7njePx7uKAqvS/SvrdHUlM5P7XXmPjTv+FsZt37+bB11+n1CK/pvJO2CnJFj+3t+yvP7M26ug6t5Zm64XVKZF/7qgdMcTfxo5lUvFuTrPrKUx1fabaV8egLOwUx6K24sT195IfnMrR6M0+leOJRpbzqGcTC/wqc/WH9Wl1QcUchjnQxOOfDiZICxUcBcmRuwzXcThnkDgg9Yg+b1ub7N0Ape7yGDdCJf1ZQCC07gpDb8XxnzdYErOQ7/fNZ29CV07utLF7Rgk/XZPGsXXV6PMA2vcU73cTmRyXFplijiDMEUUAet8e01wy5lIoFAqFQqH4h+LX+xcKheJvpeoztOLcx5mZQcYLP4AHaXHR7nyK33/vb2iVQqFQKBQKhUKhUCgUCoVCoVD8u1EiE4VCoVDUHpvnifebTMbEGJ4IDpWvIHhir39ln4tIVirdb4oh2xnAkaQknv/kE/5c4duL8IAujnlmPASFiOPKSuRJz75gKYY3roOUQ9JQTTOxMP8bMso9JaSamL7rXfbWfQVNlsQGWJ2RzMieQXypREiQcrAiaWfzPEg+IAwvDW7JrNlXoXlx/BSkOJj5SDZzn82mpGFf+TWSegQOiFcd9on9W+TXTo+LoaVk1dM23aB+M3HM9hoWmciSwBo011eZFnH943D5aN/qvettfRXUU9htGvOey+Hg0uolF1z4aDQ9RkYQGGryGpNsu1BcyNFdUGhsRWWvFObC5rnimCZt9fPCCINuEO/Py5CupO0TBvqCbLvkfPbClnGF2K0eXkwcfp/84GWT9P/nZeqJwAKOWy8BTDTvU5EA1qxnCCazAZEJwCbJ76+m2bVSvL9eE2jdhfSsLNKzs4WhjS0dqNc2kDYXipOdmvcK4dIX6ghjZCKTnWYDKxhLSLENEO5PtA5lX+lNxgqLrg93G5AYSM6fapGZJL0etQuuYc98z52aRgAptv7iOvasrZ6Qa/NcKBcn5S4NqBBNmDQz7YoG0KbYfTXw2ICGSBR8xleHj11iLKl19Bu65MkoIiEX6OdD6lGY9Drc0x6mvA0ZJzzHbvoTHuisywR+/wRWTdOT67cthi0LYOOfsG0R7NsESfshJ1WXW+zfou9fMwP2bQSH9Fv760k7Kg05nRzfuX17SaSY5k2aEBQoHlsWBLvK+DJympM5coq88DXTIUk8tvTKhtlQVI0xwOpp/h/7b2fZz3Kx44BroYW4X/JIcCj85yV53LT3a/fatBTDB3eAw169cqa9Bz8+59oPrPlNLrDscyW0kQj9KhMeBZ0lyc4Jm+GWevo9cfM87383S7EuTUiV32c8UlaKJpF4JVqHUHXavsDRil0l97K84APm5o3j15OzOXpPHN/vX8iy/I/Jd7Qhu7wTDi1IXH9NCe5O7AV7uTAkwewqZWxUdt6Zn+u1qWhnv27d6NCmjccykkySxG8wJK/yiNMJ3/0XvnwIivLc95db4cgumPwGPHcxWDxIDKvDbx/KY65/gp0nUoQh/bp147xWrbhqqHjuoLi0lGUbNsjrvOYh/dlZRG4aLBir/ywb+wNa78v1JP0L3UUiLiQmeO73MhLhf/d7Psbp0Ps8b+OdU9icYRwVPDvlO9qwpfhJ5mV9w7RNr2AbdCd8ttbYvXrCS1Buk8d5YsWv8pgrxFLeMquVFz/7jIIiAzIFCYmpqUyYOVMalxQrkeJQSWTSyfW+5CSIJKtkLmPXyur3MWcT6+Xf6daDw1w+azhJjfBN0l0alE9a+H6Xbbvqz0UzVT+hsmO+wTkf4NKX6tBpRLjb9jqNQxncs6/w2JzQJIoDxfMEp9H7SwnTa3lMFLtIHvPzEZhXDGPj4PZXYOB1cOkd+nzi63/AhASYXwrj98Lrv7Mw4b/E7+8OuM4H2ko05jyZzYHFElmmiLYSiWPSftf7maSPLSKQAoIIt+ti2NBoMyFR6tUDhUKhUCgU/06UyEShOPfQnOq6/adRNmcWjnLv/2ZXstjA4kgKhUKhUCgUCoVCoVAoFAqFQqGoUdTbRAqFQqGoHRx2+Yu8XS6EqLr+1yFbGfXfIjLJSZP+XbcGNHT5/PH48aRlZfleV4sOMPpNeVxNJT5mJMIzg/WEWQOsLvw/jpQNE0SYWbzvUWaHb8Bx2T1gDvAYZXVG8UfOVFLL+3LAcq284nW/68l3BhKRNmU+iBNJchlwaJmFGfdmYhn2jLz+lQYSXypzNA6+eAieHar/+XCUnngz83N4WpJMAnD1Q/IYkwn6jRDH7N/sOWHMHzRNXwVVRLchertEmEzw3ER9xWMjtOvhshq83aox96lsjqyqnsSkzeBQmvUMIaxOAF2udU/+OE2iLPlH00CSKCll9TR5Utawe3TZkREulIhMoEK8UZirJ+I+0hPu7wxv36yfv74guT+WOupR6nRf3brf3ZFENBD/nQpOOlj0ao77S05dBkELiRxl60LITTe00vRx66UEhZmo37bi3hESaaZRpyAyyrtT5GgiLmCLRCxWk9is8nOu1+VgMrH7gDw5v5GlPX1HR2EyS65doPeoSC58LNrr/kh7PSLLva9knmSKIAcDybICkiUiE4AVBe+RauvtPSC6PlzzMHy3A25+Rn5t1abIZMNsaUhu8xvIT/KeZJhilXwnWclwwrcEvTNoGiydJA1bVklk0qy0C2GOGNoUuYtMikxB7DNLxqZGRSa/viWPadVZ/x37gkxkYi+He87TE/acBlaS0zSIW6OPAz66E14dAa9frUvk3r4JXr9GH4s90AXuaA73ng9PDdL3f3A7PHMR3N0O5nwNZdVIqKtpDCbcBRLEm4tu5eWZtzF50ydsP7GaEmuhS6ymacSnbGHsmjd5e959vLfgQb5Y/jzj1r7N9K1fsStpDS2biu/DhcHpbtt27+8PF90i/ntoGkx9RxzjjUXj/DvuNKumVk8y9E8kIxEW/wS/f6oLfjwlxTocMOcreVm3POt/O656EOo0EsekHDQkF/Cbcc/rQsWaYPYX8M1j+j1L02DOl/Jjbn5aGmIrceJ0VDqH+w2XlysT0JymKBfevAFK/ZAGHNiKSSLgOmGVC1/LCp3MfjwbZ6Uu2EEIWeWSMWhNiUwMlJNgdpXMNbJUiKPqtql4mdxkMnHHNdd4LCPFiMjkyE55TFUcDvjiAZj3nbH4g9tg1ue+1+ONo3G6LExESBiWqx/mSFKSMKzb+brk95ZhorkQnVnL5M8eBIfCHa/J42Z8pF8DkrGRXQtmzZLu+jOTrN8D2OBBjDv5TbBW7xn7SNlwyjXvz9aVyTlqZ/H/5aJF1YW35kKgZA4n9QjM/973Rjkc8vmziBhdeiDgfz//zLHkZN/r98JvCxeSX1gojEmWiExCo8006qB/b1VFJmDgPldaWLPS3r8Tm1Uq+y5v0ZOEna4y4ILgDGwBvo+vj0ZXzKGmhR0gNSLB5zKq0qppU4b0lggqT3HhY9H0GxPldf81IwZLy0iM3GWorhPWoZQ4GoqDkvZ7vq/UFFsXive36AjNTvV/7XrAfR/AO/PglWm61HLoSP258NR95vhGi1CM7LTD/Bdz2DOz2L/2tusp3m8v17+z00ieq06aIsBkOiMyiWnhea5doVAoFAqF4t+AEwPz8QqF4qzCqanr9p9G3tfThftLDpf9RS1RKBQKhUKhUCgUCoVCoVAoFArFaZTIRKFQKBS1w75NckGB5EV8KTKRSeI+Ywmc5zoGEtS2VBGZlNlszFhkYMVIT9z6vP7itYi41ZB90r/yT7N7NTzeF47tMRS+s/gedpR4WaG3CscONmPeyU/QJiTAFXdBaEVyVFrgYCZnLSCtXE8yT7IOptQhSWpeO0Nv70FxkkWpox7xlv8YaiNAzjE7cyb3R5MlKq75TboaNqCvIP3D0/BYb1g8Hvau1/+sng6/f6InJMqIqgcX3WzsL9BfIjJxOmsuwTL5IBRI5Dyy5O/TBAbpK6J2HiiOM5ngqR/PJBtomsaCF3M4tr56Lz+ExpgZ9kbFOdd3tPcEkBTbBTg1SZJA3OpqtYelE8X7TSa48m7j5bXvBQ1bimNmfKSvTH1/J/j5df0+kHwANs7Rz9/fPzGeXH0iXrg7y96JqqvcAvT6TyQD7vcuxTjNwaUW1n5R4LrRZNLlLiKcDlg5BWIXC8McWhCJ1gtp1CkIc6BrO1v0DQFMHBGsLA7A8Xj9HuV0Qvx6+OMzmPwW7Fhu7N7hC/s3g1WSbNXnCgBid4kTqgKcQTQNaUWX64wlHJpMJgY/FsMtPzQgprnn66Jx6fmiAtghk1gIKLA3p8hRIcwIDPEsX7FpUfyR8ysbCp8ln/PQmp0PPS+Be96Db2Ph90x4aiw0bg1hEdC6q7jig7F+t1mKLOErJIwdBy8ShiTbJPdSgEmv+tCoSqyeLr3H7TTXI9McduZz+0K9PZH2ejS0tHOL32yWJMKlHoG04+KY/VvhwFZxDMAT30FQsMsmTdOwlTq9r97YVZ7495eTmQQ/PAVjWsOUd6GkQH5MbZN2VLj7dMJdZEgw5U4raQWJrNw/i29WvszjU4fz1tx7+W3b10xY9y4vz7qNz5Y+xeajSziWtY/DGXvYnbSejUcWsWTvNL5d9SrFpAjrKwjKcNsWP6eE7EGvyP8ua35zTSY0Qsoh2LPWt2M8lVFTwgMjFOXpiZJnozzF4dD7zfs66uKDCS/qgp/Xr9ala5VZOUUu+GjXU7/v+0toONz6gjxu6wL/6xBx8kj1RTlVWTAWPr8Plv0MR3eLY1t08CpM1Jwae+eWMGVUBl8NOMn/eqcw4/5MMhJs+tisyj23WiTug4/H+D7nYEBAdsI6hGs/qedXszLKu4sD/iKRSRYhZFXqf6NsDQlzxJz5XK+tq9jgqqFDqRPl/tyTYQqjBMnzTsImAw2uhL0cPh5tSIbmwtxvPQuM/OFPA8KjEQ+QkF2IU3KOde/QAYDO7dvTpX17YeyegwelYhS97vv1saiI/Ez45f9g5wph2ElbP7bPcLLxu0LodZku5hBRdfx5fC+smCxvs4T9FgNCzUocWmZh28QiaNUJrn9CfsDUd9z7BBl71sjnzobeqstlvLAuNpbfF4ufKX2ltKyMKfPne92vaRrJseJ5jxb9Qs7IKBt1dL/3nrAamJ/ZJhFEnCvsXK6LWQQcN7tLlDNDxeNZb5yMiKfMXIQTJzsbzPGrjMoEmM28/8wzjPy2MZc8H0NojOs/KweFmYhuGkDH4WGM/LEBgx8TX+MX9e1LaEiIMCbJoMjEQQixxQZky9Peq51/I0g7ps9ViRjgWdTlifIyJyveMyBV02DpW3nE/uKHUE0mMgE4VkkgLBGZpJj1+ZoIuy4vi27mfdVrhUKhUCgUin86Xuf0FQrFWYuGum7/aViza2j+VqFQKBQKhUKhUCgUCoVCoVAoFDWGEpkoFAqFonbY4v2F9zPUtsikrERfNfufjmT1Wytmdpnru22fvXw5Fqt4BVWPBAbBDf8Vx2garJnhW7npJ2DWF3oy2O3N4MXLoDDH0KEHLVezqvBNPMkIvHFkdRkH41vAi7/ArFwYG0fCvYlMSZpOvqPtmTgnQRwukwg5Uo/CS5dL69xRch92LUwaV5mTcU6yW4wUBxXmQOwScczOFfBQN32F+Oq8SHXl3cIkGhd6XwFmyXBzu6TdRolfJ4/pLl/Z/AxhEfDuAn1VVG9c95iL7GTfvFIOr6zeKtFhdc3c/G0DYppXvPjf4LwgWg/0nORRrkWSXi4RC+1e5X+DjsbBEUkCSa/L5UlulTGZYND18rhP7vIsp9E0mPAS/O8BKLfJyzmxV7g7u7yD27YWfUOo2yqIHrdGENFQ/sgUO6mIT7sls+i1HFZ+mEfCwhLsF4+Rn/9zvoSt4v4yxdafci2SJt3ck79a9NHPC6nIBPR76ogAeG4ojH8BprwNrwyDezvAvO+rvcL5GYxc0730+2XsDnFifn1ra3qPjCE43LfH1nZDwrhnThP63xuFqUrea2OLQGQC7AjwX2SSYrvgzM+hMWbum9eEoDBvMpNoNhc/zfjUVazvuQ0+XQ2jXoMO/dzPmw79xBUflidE+0VOGuzbKAxx9h5Owgpx35tZ3hWbUyKj2TLfd7FVfhZ8/6Q0bGlAhVwm1B5F85KK8aOn82FLgEQeBtKxF3O/kZdx6SjodemZj9YiJxu+LWD8iDS+uuAkX/Y/ybJ3cinOqvLCXd1G0PNSzkoKsmHyG/BIT0OJ+rWKJOEu+VTCXVi03W2fpjk5np3A4viprD+8gPQCAwnfoeIkwsLgdLcXYjUnLPyxOdrgW8RlaxpMfVfehsos+Uke0/8qeczKqb7V6w9px+HZoXBrA7i7PdxcV+/jT+yr/bqNYCmGd27R+83yKs9OO5bBayMq+tDSIpj4srzMW57Vx0PV4dpHIKaBOKamxtlVWTi2doQzy3/RZSYybnzK4xgrZaeVKXdksPi1XNL26GNEzQlJW61MGZVB/LoY/diaZPNcmPymT4c4EsQCspzy9kR3b0mnq8JpcH6QMNYTUpFJbprex1cXiSxpv7mOy+dGZRWCDZMZ6rR0TXQODQnh5mHD3MrRTCbizRKpiy8ik7xMeOM6XRLlKwVZugi0uhTm6DI2EQGBcOvzxB86JC2u2/kV4xlP32FV1mw1IFsLCoZR/yePm/MVZItlXolWXXq3ZUIh6QeRzwUe2eXaj096tdr3nFJHXU5YfZgPOMW6Lws4ssYCo16HKMlzQlGeLjPxhRW/ymMuH+N1V3ZeHm9+Y2Dc6QfTFywgv9CzfCPvhJ2SbLEUomX/ijmMkCizm2gy39GGfHsrcSNmfAyLJxhr8NnM+pnSkI1x7tduVph/IhOnycHxqFgSI3eQH5IqjX/qrrsYde21DO7Th7YtWhASrM89mM1menTsyE8ffED3Dh0wB5rof080T2xoxuPrm/Ho6mY8s6MFT8e24OHlzbj+8wa0HSyf8wwLCeHi/v2FMbmhyRQFSWTFp9hdOlouoD4eD5vmGirPJ7YZkIRfcLXx4n4qIj/Z/fnEG2s+zefgMolItioNW8jvZ8crScXTxc9VJ026HDy8XC+z8nymQqFQKBQKxb8NJURQKM4u1DWpUCgUCoVCoVAoFAqFQqFQKBQKxdmBEpkoFAqFonaQiEyKopvw7oLVfDJhAjv3uSapaZpG6h4rx9ZbyEss916ITGQC0gT2cx5NkybT7jLXw1o1kxsoLC5m8ToD8gdPXHSLLjQRsXqasbI0DaZ/CPe0hx+f1VcxzzWeWJVsHcDCvC/RZKs0e2Dlh3lY8h0QFIy1YTdWj/VcxkGL+8qovmJzRrCr5C6/jl21zcDqnaumeN7udMIPz8DLV0LGCb/qd+HqB43HRtWFTgPFMduX1EwipCyhLKou5Y07UZRux1JgcBWW6Prw0XLodpH7vov/A49+eeaj5tTYMk68wq6Mem0DuXNqY5r3dpeW9B3tvjr5aZKsg8QFn9hrWArkhpGVr4ff63u5g3xbDdsjSyfCq8PFq14X5UlXuM62d3Tb1u1GPcE9KNTMgPujDTdp39xSdk4tZuFLuUy8x0RxG4lgJPuknvQs4HiZLixo0tVdZNL8lMgk2ToImzPCcDtdyDgB3z4Od7WF3z/VV6ivDrJEnhYdoFFLSkpLSc4XywEalbWj9x2RfjUjONzMJc/V4a4Zjel0VThB4SYCgqBfV3Fy744ASVK4gBTbgDM/9xwZQUzzQPrd7f3aPc3WiUWk7BSIxTqIk7zIPlkzCclV2ThHen8+GXkd5RZxjJMgY7KdH58Dhw+rZP3wtPTeVo6JFYHNznxuVzQAc6XxQoOytm7HxJvrUiIbU+xY5n1fThqs+118fFgkPPQZAHarRuzPhYwbkcbmsYUUnNS/A3uZRtzvJfx8czpH11YRDY16XVz+301GIrx7qy6A+LuQiExOJ9wFN6xe332a0EhxwqEtwEJZgPv9PvNAOfFRz8orWPObb4LGrQvE+4ND4YVf5CKMtb/5dl36StJ+eGqgPo5znkqILinQRSwPdYNXr/JdclSTZCbDMxfpsgpvHIyFT+/W2z/9fchNF5dZrwlccnv12xYWCcMl0o+Th3XhYk1itcDSSfK4ax+Fqx6EIM8yPr+JrANXuj5TWfIdzHsum+l3ZZK+z/M4xmmHJW/ksSH3cbQoiRTDV6a9B7uMiwOdCWLRU0Z5DzpfFY7JZKLnbb6P76QiE4AjO30u14Xsk5ByUBiSUEVk0tBSITKJaR5IYLC7zOe2ESMI8CCpiZOJTI7H6/cOGdsWwcPdYftSeaw3Nszy/9jTLJ0EtjJxzOWjoVEr9kpEJi2bNqVOdMXzyoghQwgLFYtHY/canCe78i5o1l4eJyHROgQAzQGLX8/BMfBm+UEbZuv/37vBmChZwqGya3AinsPKC05lS8NprGj2NRsb/0JKeDya5mTBCzlkpkbCaAPSornf6uejEXLT5UKdxq09z0cATqeTN77+mjwvshFPNG3YkIE9exIRJpdNlFgsTJnv+btP3i6XIrfs53r/b9jR/XlWKpdxOuCLB3Vh1Lm6snleJqz7QxhSGtOVbIv7c0lmqP99+JGYTcTXkwvNbr7ySu69+WZefOABvnvjDeZ8+y1bZsxg3ZQpxP7xB5M//phenTq5HGMymQivG0BkwwACQ/wTsw2/yPN5XZnESGN9VbkWwfYSA3OV096t+fNo60Lx/vAo6DbEUFF5ieVsneD7s8n6rwrQfPl7mUzQrqc45mic/n+HXfoMkmLS588i7KdFJr7PzysUCoVCoVD8U/BpXKZQKM4KnJpY1KpQKBQKhUKhUCgUCoVCoVAoFAqFovookYlCoVAoap6UQ9Kklrml4cxavpxpCxZw32uv8b9Jk3A6nRzfYGHSDelMHZXJrEezmXBNOjMfyaKswMM/IDc/T18lVsQ/XWSStF8q/dgS0MjrvukLFvj3Uk1UXegvWVHy8A5IFp8HaBpMfFVfYdfp+0sCWeUdmJM7HgfiRB1vlOY6WfNZPgBrPs+nNMdzG5Jsgyhx+J/cDvoKoVatjjzQU/353SgOPV8ctGmu5+St7/4Lc7503+4P3YZAq86+HdP/KvH+7JNwYp84xggSkUlO+ADGXpHB2CvS+PaiVP58OpucYwaEDQ2aw6dr4MXJMPI5uOEJ+HglvDxVXyX7FMfWlZGXaHzV1Kq0GhDCnVMaU7eV55VL2w0NpY6XfUm2C+UV7N3ge6McdrmQKCIGBt/ke9k9LoZw44IQr8StgWcv8i4DSZSfW9nlndy+ls9vAAAgAElEQVS2nX95+Jmfe/0nkoYdJOImDxScdLBy+40+H1eVY9ZLAGjSzb2/i6gfQL22gTgI4bj14upVlJcBE17UE7YtJf6VkZUiT9zrNwKAVfP3oZnE9/1u7TsR3bR6q/k26hTMdZ/W5+ltLXh2V0vu++l82jRv7jX+qCmKQvxLuk626iITUwD0ul0XsPS/O4rQGMljtwaLXs3BVuLl++jQT175IXFStF/Irv/AILbuNbayfWzxI2iaJMntWBxcFQhPDoSXroSZn3sXFW1ZYEiYNj+gFTmmijFC+0JX8VODsjZux9hNZmIDGooLjlvlXe6w8EepEKhs4N3sWR3FotdyGDcilTWfFXge6wKWPCezH89m1Ud52G2nxmy9L4NLR4nb+HeTcUL/Lv4Oym2QJRYlJZ8SmYQ0qBmRSUiUfAxQGJzhcfvSiS0p6yHpSzUNNs8z1pjCXEhMEMcMvRXqNNTFbCJy02G3cUGDT9jK4P3/QH6m95jtS+ClK+CTu3WBxl/J0Th48gL93iRj3R/w8WiY/YU89von5M+wRrlA8jwG1RM2eGL9TCgSSORAT7p//Gt4ZhzMzIb/mwn9htdM/dc8rEtcTlGYZmfamEwOLjV2fmz+1Ux8uAF5kK9MeNFYcnRhLkH5x4Uh6fbudByhj0W7XhtBUJhvSeJZ5R1xaJLx0+EdPpXphoH7wvYqcrg6tgqxWL02ntvXpGFDLh/kLmncHSARmWga7N/qfb/VAt8+Aa9fI77nGGHDbL/mLs7gdMKCH+RxI58HIF4iMuneoYPL58jwcI/fYWV279+PrdzAs3BgEIx+Sx4nwOKMIaO8QkKcfcTOlh0DIVQi6dk4W/+9TnipWvWfZk+pWCB1LGorS1p+wtGYzWSEH+ZE1HbWNhvH8uZfkeU4yezHsyke+BA0O09ckdMB3zxu7H4w50solwhBLhsNHuQ+AOu2b2fTrl3yeoBn77mHud9/z6Jx4xj79ttsnD6d1x99VHrc9AULKChyf9ZOjhW3OyTa5PYM3aiT+zO1VGRyminvwP/u1+cozjVmfQ7WUmHIvjz3ebPiwFxKg/L8rrYwOIOiYPH9Liw0lEfuuJ31hxbw9YqX+GDhI/yx/XtyitOJjowkIKD2hBQX9u5NuES6lN06jgsfi2bo0zFc+pJ4PnVXyd1YnDHiSo/sgl/f8rGlAiwlELdaHNPnSkPjPk3TWP5eHg4/vLJ5iXYyEnw8UCYyORan38cyk/X7moCTZn3MEn5aZNKsenM4CoVCoVAoFOcySoigUJx7qOtWoVAoFAqFQqFQKBQKhUKhUCgUitpHiUwUCoVCUfMYWC11bUATl8+T587lxUcmM/ORbHKOub6YfnxDGTMeyKS8rMo/IgcEQkuJVOGfLjLZuVwaskWQjHs4MZHtRlfjrcrld8pjZEnGU9+FGR/5VX2BvTmzciZ7lIP0HhXJvX82Ibqp/KX7vX+Wsu6LfPbM9J64rxHIntI7/GongF0LZnvx/X4fDyZ2ZUqECOVWWF9ldehV02D+99WotwpXP+RxsyXfQfpeGzlHy93FOP1HyMvdLl8lVkhmsnSF0PhDfSgrPHUP0eDwCgu//ieD/YvECSUABATAFWPgoc/g8W/0BPIqCR3bf/Ui0qhCREPX4bc5EPrfE8XIsQ2FsgOT2UTfOyM97ku19ZMnK0pELx7ZuUJPYBZxye0QIl/N2Y2gYLnkxihJ+/XERE8YWA072+6a/FevbSCh0RW/i4AgEzd+3YDwer4/Oh0pu5JCR1OfjztNob0ZOfYOBEeavEpuWvTRpRvxpbf5XY8LB7fB+Bf8OzZ2sTzmVNL1mmVyycywW7pJY/yhf/fuXvdpJhM7zZJkWQ+UOBqQ52gHQNvBoWcELCFRZgY+GCU9viDFwaJXvSSGt+2hJ5KKOBTrU3ulxK2BfRuFIbYuV3J8pzHpS6a9K3sttxqr+8BW2LUCxj0Pd7aArx9zFaPt2whfylfcziWYr4K7nPncuLQD0eWucrcQZwRRNnfh2xazRGRSlOc5CdxmhYVjpW2b8tutLH0rj31zSynJMvaS5I4pxUwdlUFx1qlEsoc/12VSZzPzvvMufKlNMpOkSeYnzeGYtQBCDQhIjBAaYQfEScsFQd771N9WPCKvZNcKY41J2CSPuWz0qf8bGM+v/NVYvb4y/gVD/TQAKybDlLdrpx2eKM6Ht2+Sj4Mqs3q6LtERUa8p3Phk9dpWmS4XQrikj6nuOLsqRgQM931YIfwLi4Qht8AHS/Q//owbT1O3Mdz64pmPjnKNec/lkHvct+t4+a7bKQps4387PHF4hzFx4JGd0pCyxn2IbKA/a4REmelybbjkCFcchJJt7ygOqq7IZNdK4e4yzMSZ67psi67U39Zt6/3Z5Y5rr3XbFm+ui7S39HbvK8iGFy7V+6SaICdVH6v4y/YlkHZMHNPzEmjTlczcXDJycoSh3c93F54O6ilOULfabFJByhkuGwVdBxuL9UCS9UI0XJ+dN/9sx9JRMk+QsBnGPmOsT5MQVzKKjPIeHve1uTAUU8MiYhvOxGlyH7NkhR1jUcuPWWefze9PZWK/y8D81d71sHKqOKY439hczeWjve6avnCh9PCw0FDm/fADd914I62bNcNkqhAj3TJsGJ3btRMeX2KxMGWeq0hN0zSSYsuEx7XsG4I5wFXC1KiTu8zhhPUirE7P8xxuLJ0E74zURWjnCvlZhu498dnu10NW6NHaaJELd994A79se5sJ699lR+IaDqbvYkHcL7w17x4OZ+yp1bpDQ0K4ZMAAYczJ4mSaXV/EgAei6Tcmir6jvZ8rNi2KHUbmXae8A/MNjGWMELdaLiOSScBPcWSVhcTNkrIEHFpuYG6zMjKRSUGWPg5Ol/RXQMopQeQZkUkLJTJRKBQKhULx70WTzA8rFIqzD78WfVIoFH8LJnyTvisUCoVCoVAoFAqFQqFQKBSKswclMlEoFApFzSMRmRQRyC5zfbftKzLmkh520MMRkLm/nDWf5rvvaCNJck78d4tM8gjmoEmc5PqbgeQHjwy41mU1bI+smuZ9JdrfP4XJb/pVdZqtB9Oy51DkbOa2r8+oSC5/pQ4Nzgvitl/qEVZXPtzZ+pNcQrGj5H5sTv8S7/aV3kyJs4nHffXbBzLq10ZENRZLVxIsEpEJuCaaJh+Erx72pZlC8hq0YUZpFDv3VcgHbKVOVn2Uxw+XpvLr7RlMvCGdidens29+CZrz1O/9vD4Q08BLqaeoboKlAUlHiu0Ct23lFo0FL+aw8sM8HOX+v6SSccBG0lZxwkFYHTP3z2/CY6ub8+CSplz9QT2u+6w+DyxsyiXP1yEgSP6P7t1ujCA40j2uXAt3WeXaI/HrpOW7sWKyPOaKu3wv9zSCpCyfWTFZF5pURSKzKrA3x6a5JgA36eqeYFWnRSC3fN+QoDDfXo5wEszWIi+SFQMct14CmGjSJRiT2XPdzU+JTI5bLyWh9Ca/63Jh0ThI9SNxSiYyCQmDHhdjKXCwP8Vzf3+auo4m9BwmkUn4iUhkArAzwHeRiX6P0X9Hna92TTjuc2eU24rknji80sIvt6aTvq9KInxwiC4zEXFouy/NlWNgpeoTJmNJWadZX/i87/2o1aInzd/fCR7uAcNM8MxFhuQCHwX3oMBUcT2fV3ihx7iGZW3ctm0WSODOsGOZ+7Z1f0BehvCwY2WXnpHe+ErmgXL+eDBT77PqNYF7P/CtgGcmwLfbofcVftXvM+nHYduiv6auyqTJ71/JpgiizFGYamhWzBwIwWFiaUthsPdzI8vemSNll4sriVsDDgPChn0SmYI5ALqeuh46D4SmkvNx7e9QKE6k95nN82Dut74dM/Nz38Qi1eGX/9PP35rmgY/l4hFfCAySX8+7V+mSpZrgaJwuFxDRppt36UG/4fD+EvkzpDee+A6iK/ro9V8XkLZHIo/xgJNgVmW+bCw4sg68+hs0aC6Pnf2FPEbSXzs1M+YOvVy2DXk6hvD6vt2sMmzisU61RCaaJhWZ7DbXp9xU8XwbZq9DkBZ65nO9Nt7HRb06dXKTKxSbgjhiiha3y5PwIiNRHzdURzziifUz/T/WiFDluscB2GtANtKtQwe3bf0kY12A/2fvveOjKvbH/Wd30yspQOgt9CbSVAQBK4LYK1awXnvvei3XK3axK6JUFUTpvfcOIfRACgnpvewm287vjwNJNrs7sxvw8736m+f18mVy5n3mDLvnzJkzOe9nduz3UVJgNMJT38ulel7IqBnqtk1zwrZDknsewJ+f+3aQ5u09bnYGRbKh/AVWlr3rddde14VhG70Tu9G7HEMzODkUs4ople8wfX4X6D1M3qYfntNlJd5Y+DWYJfNQfYdD224eiyw1NS5zM9546YEHaNvCs1jTYDDw0G23SeuYtWgR5ZWVtb+XpNulIr42A/Xr3WazkX7qFHaHg2bd3M8hmxbBtko/npe3zodXroKqMt/3+X/J3I+h2rs0GSDfNIAiu/t1nB8qHs8GmExEhPknuqpPTFQUMe3LOHDKvX+sqC7l0xXPkl9+qtH1+8IVQ+SSpBWb6+SagyZEERDsfU5mT9V91Dh9GGd9+ShsOIt+/Aw7fJhPH+TbM/Ou6ZXyIAHHVln8S76TiUwAUpOk42EnkGMIxaiZCHXon31NhPh5WKFQKBQKheKfjBIiKBR/P5yab4sNKP5OKNmFQqFQKBQKhUKhUCgUCoVCoVD8r6FEJgqFQqE4t1SUSFci3mxqjt1T1qBBY3PzqZhNnl9I3/dblfsKgzKRSeYRsNvEMX9X7DY9oVHADlM8mkH8h9q1O3aQnZ/v//GDQ2HIDeKY7ONwdKf79oXfwOQX3Lf7wCHztfxa+DuVHsQgiSND6fWgk39/+SVDx41j5KO3s7LLB5wM39uoY9XH4owlyXyX3/tZnWFsqXjaa/kVb8bSql8wl77SRFhPuaMNmTXuMg4XktbBySN64vd/bgHL2b0If4Z0QzjjKzvy3yk/Mf7VV3nhww/JPFrKzHH57J5RiaPeJVacZmfJy8VMuzWP9K3VeuJT/yvFBziw8ezaKhGZ2JwhQtHHnpmV/HpfPuZicQKyN3ZPl4twzr8zgtgOeuJOk9YB9BwbTrerwohu5ftKpUHhRnrfEO6x7JQHUYsLKXv8+4yrymHzn+KYlp2gx4Uei5xOJ3mFhRzPyMDu8PK5Dh4N5430vU0yPCUFSkQmnlarT+jlLjI5s33Mh3F+J70nm2+h3OE5eUzGQcsNwjYBtO4ffPonA0tKP2Z/lTwZTYrTAb/4KUiwWWHvKnFM3xEQFMLBhZUUBIkTYrq37uqT4KcxDOglHjvs8SBbk5Fp1VeTDgg2kDjCVdZhCjQw+v1YTD7kf+YftjH91jx+f7iAlDWWOslS14HiHY/t9C4O85d9a2H/emGIFhjM5r3DhTEBwQYGja9LJKtyJrCj8pHGtyst2efQtaYEVpjqZGfBjgjaVHqWwbQOdpc4ZBgiyDFIpCtb5oGz3guOmgbz5Am3u6vuk8aIKDxu58iy0+Ph0Q9BlwHynYLDYNJ2GDUBuvSH91fAZ1vgpud0CUK7nhAZc1bt8sr8L/6aekXkiFcOt2MgzxBKeOi5XS08OEIsGSkTiEwAUqsl90RzuW/SIsmzGIn96kQSBgOMuEMcb6uBZT/Kj+srhafgo0ZcBw47rJl57trhjcpSWP7Tua+322AYOe7c1zvgKnF5dRUc3CyO8ZXF38pjxjyin1fe6DMM3l8J4WLZphtDb4KhN9b+mrrRws6f5GNwbxyrHkW2Q9J/RsfDxxtg+K3w5p8QFCKO3zJPKoJzHhFfw8X2TsR2d+2PQ6NN3DG9GW0HB3vZyx2p5LDwlFS85ZVTKVCYJQzZbnIVWUZbm7n8Htvee/9rMBi445pr3LYnyURzR7ZB/eeO1P3w5IUgkee5EBWnC7+athHHbZrbuHFXTqpc/BfXEi66FoADKSnC0MCAALp26OC2vXlcHO1auktf67PrgB/S33Y94JYXfY+vR0bNxR63J50cjtPk+zntkcBgmHESpqfB3GKYmQk/H4cfDsLUVFYPTmN75WNoeDnfDNDuwhB2nfRN7FMZVMiPKZ+TfuF/dSmYiJI87+LearNv4qNbX/ZatO/wYWx28bjjiiFDGDtSPLa4ZOBAunUUC82qLBYWrl1b+/uJ9RZhPEB8H42XP/mEoePGcd2jjzJs3DgmzfuegCj3uYEdlY+ws/IBaZ217F8Pz4+AkkbMY/5fUlbok7RtQ/7jHrfLRCb9e/aUfr8ibrvmKlYf/dVreZW1nM9XvUCNTf59N5aL+vWTyljqi0wimproe6vnOTGAGi3at2ctTYOJ46TPvFL2rRGXJ54PcfK5oJKTdrJ2nZ10riTdTtEJH4SHZ2jXQ96PpSZJn6vyDKHYDCZC7dEYMGIPLeOVxTfywpybmLH1Y5IyN2N3/EP/LqNQKBQKhULhASUyUSj+fqjrVqFQKBQKhUKhUCgUCoVCoVAoFIq/HiUyUSgUCsW5ZedSPQFawHqTu4DiDNUBFWxO+BknnutY9mYx5Tn1XsyViUxsVl2m8U/k8Dbpyp7bTM2E5aALB2YvlSTTeGOkJPERYO0s199PHoZvn2rU4TaUv8Di0knYcU8ii2kXQLv7C7jt2WeYv3o1FVVVaJpGRlEGG1tMISnWh5UyJeysfBCb5l+yzZaKp6h0en5xvdMlIbQ+X68vcWQonYaLk+MOWSTiGNAFJp8+oCdu+Up8K2jVGaKbnpZTXARDrudIr1G8EDSA20KGk2asS0ZfsXkz4595i9zj3sUY+YdtzHmggD8fL8Da6wrx8W1WedKtiOQNwuJs2/k48S6CAMjeZ2XuIwXYqv1bdaey0MGRJWZhjCkIzrulkSvPN+D82yM9LiIjldw4HXBoq+8H2jQXrN5XpQbg0rs8JqruTE7mtmee4cr77+emJ59k+F138d5333EyJ8c10GCA12afu6TelVN1AcsZNA3SxeKDQpvvIhOAxOGhUulQQxwEs73Cj1WmT3OiemStoCahp/c2RbcyEdFcT0DRCGB52UQ2VzSuj3Vh5VRp0ooLBzfLVxUfdDWaprH29+PYTOLza+jInr4f209io6Pp3K6d1/Ijxmgs+Lfq/JkkzY7DQggKd3/MbtoliIuf8D1pO21TNfOeKOTby7JZ93Ep5vh+4h3KCiH/pF9t9oimwfR/S8Mq+99HYW6UMKbzpaH0bdD37ap6kAqH93HguaCCAP4b2Melf+pYPhiTl++0Xx8PK90bDGwzNhUfKGU3/PZ+3e/710slE8X2jqTXDBPX6wMpq04nFJpM8MS3ujTMG0aT3td2q3efMBh0EdWDH8LElfDDAT0BeJFF//+8clhQBYuq4Y8SmJoKX++BD9fqApSfUuC3PHjqe3lj96zUJWv/l+SIEz9zDaHYDUZCmrgmDBrOcpW24Ehx8mB5YK6wPKNmqPwgeyTCKGu1LjYS0bNBUvmld8qPu/AbV0FAY3E6YeKdUFHcuP1X/HzupE3eWP6T9BmrUTzyufhabSwDJMJAgF3Lzv445gpYPUMcExLu2/nU/QKK71+A3SBOXq4lMhYeq0sGr8x3sOSVRp5DtRhYWfQ2DpOXNkTGwvuroENv/feuA3VJiwhNg3mTxCESkUmurQ9Nu7rfr2LaBnLL5Kbc9WtzzrstguAocX+VZ+stbivoosPGsHe1NGRHg3topLW5y+9nBI/euPLii4mNdh03JRklwi1zRZ3E8NBWeHYYFOeI96lP0zbw0Xpd+HWx5Lk7L6Nxn9/Cb+R92NUPQoD++SQfOyYM7dqhA0GBnj/Lgb3F50DS0aNYavxInL/jVX3OwA9OVI+k1NHeY5lNi+BU0OV+1efGtY9Bs9PSmcgYaNpan89o1wNadCB9i1W4e0KPQAqr8zlx0vcxdGVQIV/OPakfW8aCLz2LpJb9qI/dRSSeD/29fz7bk5Kkh39uwgQMErGxwWDg4dvkIswlG+rmXI6vFT/HGaNreGX62yzdsIFqq/4dmKurmbtiBWtbfoODhuMlA+vKX2dN2Rtovo7Fju+F98e5SgUbS1oyfPU4vH8nTH0D8jPPvk6AuZ9IxxPFQf1Iqxnutr3aWEl5kHjc2K9HD66/7LJGNS02OprIVsXU2MWSkqyS40ze+O5fltQVFBjI8MGDhTEnTp7keL1rdPD4KEyC6b1dlfdjMTb3HnAGm1X/zuvPIfmDpUoXe4kYdLVPVR2cLx93RreWSEeAY6vEc5MuBIVAGw/PwfVJTdIF8QJOnR7Lhdn1e7Q1ShcM5ZVnsvLQbD5f+TxWx9lJWhQKhUKhUCj+Tjg5B88oCoXi/xSnpq7bfxzKTaNQKBQKhUKhUCgUCoVCoVAoFP9zKJGJQqFQKM4tWxcIi+0Y2CSRa+SHHicpzrN0oqZcY9ELRTjtp//6KBOZQF0yyz+NXculIdtlSbinmbtiBVWWRqyy2e9SaCKRpaz71TXxcdqb+gvjfpBv687sohlsr3wMjxYHIOymozzy7puUlJV5LD8Qu4zD0ZLVMj0QGGpg9Pv66s9Vzmbsr7rd530LbYnsrhrvudCAS1K7wWDg0ldiCAz1nrhx1HI1dk0s5CAt2bfV6oPD9ITKpXaYlQU/HYM5+foKxp9tJm3CJO7ODGdFQCuqDe4rGBcEprEh4UcPSSiuHF9bze/fSRLwAY5sl8d44vA2yDgkDMmySiQfp8k9aGPL1/4lMez7tRLZ4qI9rwknLFaedOALTdoEkDgi1G37KetA+c4HNvp+oFXT5DGX3eXyq6Zp/PTHHzz4xhscS0+v3V5pNjN76VKu/de/eG7iRJKOHKlLhImKg5dmwJc7YeyjegJaQwwG6HeZLtoRYamE1dPrfi/OgYoS4S6FdleRiTEAmnUTJ1b2uy2SS19pgtH7QvJuJJtvodwuXhW9PlWOpiwr/bD29+YCkYnBYKgVIp3ewpaKZ1hWOhGndhbnndMBv7zne7xsdXmAgaPIPWDlWL44KRPgoiE+3N/PggGC5E67wchOY6zPdaVVD6PYrid2dhvlPSl7wN2RtBngnwzLXORk508VzP2sgzz4qERe4Av71krlUAQGkxzkeeXw+vS6LpwmrQNo2bfu/LVpYWwsf+FsWynks6Ce5Btd+8nE8ou8xl8wIpHQEHeR2FYfZHBMfR32b4DyYvjwHmn4nsr7OBfTMBnbq+vGwl36w53/9h785LcweLRvFQeF6P1wWCSEhEFQMEQ0gRYdILEf9B2uC1BaJUJMM7j6Abj7bXm9C+Sr0Z9TssR9TJZBX8k9qHndPaJ7i/58fdcqnrr8Iy7vcQutmnR02Sc+ogV3DH6K7+5ey+tjJnusNyRCPCYyB5ZiM3hP/i11tKPM3lpYB/skAoFju+Tj7F4NRCZtukLfEeJ98tJhxxJxjC+sngFJ6xq/f/qBxssXfMHhgPlfnPt6L78HuosTdRtN83bQtrs45lyITNbM1MdaIkaOg3Cx5Aog/4iVGe92ZE7Bz75JIh/5HGL0pGSnXWPxS0VYSs7+BfN8ey+WVn+LFhrpWtBlAHy8ATr1dd1+3RNyGc3yKVDl+XmUskJMxRnC3XNtfWjaxfO4z2AwkNAriMtfi+GRNS0Z+3Ecg8ZH0vfmcEa/H8sj61oSEKI/SxbYusvHgSm7xeXekIhMygnksNFV/Bdtq0sqDwo3EB4v/hyDAgO56aqrXLYl+TI2O7RFF7u9Psb79+CJi2+Ab/ZC+9MivYtvlO+zaa7v9QPUWPTzQ4QpQBeZAA6Hg4Mp4iT5zi0S0Zye38yXiUzsdjtJR/wQjQWF6PI0Hymzt2Jt2evCmPX5T6I1VvAUFgW3vey1uOSkndJM8X25/ZBQ1m33fx5iR9laMnu9BLESOZ/TqZ+LJ+pJR2xW+P0j+UFuf8WjNPQMMpFJ53btaBbr2/PMJQMH0q1jR2HMwZQUMrKzMZc4OLVXLCU41Gkeh054FkqftB8lKW6Rx7LdVfezzPotWqCPz0t7V+nyzcbisMPXT8LDfWH+l/p9buY7cE9HmPUfvbyxlBf5NJ5Yk/MknuY4C0LFUj6A83v0oHP79gwf5Nt8V33uuOZqNhz/w6fYHWmrWLJ/ujywkVw5ZIg0ZvXWOilveLyJDkO8S6BrtCbML/zSt/OoMAsWfeNTO904eUgupuo7XFqN06FxQCIyCQg2cMeM5oREifvLYyv9nNfv2FdcnrIHktYKQ86ITMJPi0xs0fku5YnN+xAWdG7EzgqFQqFQKBR/B/4qCaBCoWgk6pJUKBQKhUKhUCgUCoVCoVAoFAqF4n8CJTJRKBQKxbnDUgU7PAtIzrDPGEuFQSJiAA41WUWZl1XLT+21svX707KBZm0hVPJCbPpB6fH+luwUJxOeNISTbfRtleuKqip+Xy4Xo7hhCoBLbhXHlOTVJUWXFsCWeb7V3e8yKp9cwPclO5hasJyMmmEewzQ08get44P5n1FjFSdu7mn6J6mR/iWqDH0ymu6jw4hpr1sLdlQ+gkMTiw7OsLrsHZx4Pt97jA6jWVfXsuiWAVz0iPfkvxqtCSeqL/Wx5RJenA7XPwEm9wQ3p9PJW199hdUmNnTkhB9ma/Pp0hWmTqU1oTSwh7g9jRWZzP5AGrIqtIotzaaxIeFH1id8z564eWSFJePE4Ra78+cKcg+4n0e5BQUsXreO5Zs2UVKu9z+2aif7fpMkdAL974qUxvhD/zvd+7xqLYYCW1cP0fWQyQnOkJchTzLudTG0qEt2slRX8+JHH/H5tGleX9TTNI1VW7dyz0svceMTTzBt3jyKSkv1wi4D4LEv4ZcceG02XPs4DB4Dt78K3yXDxJXwHx8SqOd/WZdMkiaXWBXYXFegjU8MJDBE/oh0/h2R3DM3gUueiabHNWF0vTKU+M7e+wUHwWyrfFRa7xmWlH6K2amLW0KbGIluJU5Ebd3fPUkn2Xw7c4u2iw4AACAASURBVIqmU2Jv71rQ62J47mcYdb+8ISunQk6qb42WJbi37gotOrJnZiUFIeI6o0KiaNuihW/HlaBpGkdz9zJn19fM2PoxC/b9xKaUxSS09J78BDAzUJzMd4YCWzcWl34OQGCYgY5DvddrNBkY9V4sQeE+rjRejzxzIjanuM2k7PK7Xhc0Dab/Wx539YMc3u5BOlSPyAQTbQfr52X3q13HIgctN5Bj7dPYVgrZaGzOH6Z2LtuamzsTZfMsJTEYocOFYfTq3NmtbLupKTWyKROnE567BF6+Qk+cFlDjjOSAxYfEaB+wVmrkJNe7V417De55x3VM3KQZvLPIt2v9bBj9EARKxvYrpzZ+tfPGkCEe+580hmPQDAQmFABgMgZw90XPExYUQb+2Q7nzwmd578ZfmHTHEt645kf+c8MvfHTLn1zZ63ZCAsPo1KwXLaLbu9UbLBGZADhaFghKDWTUSJI5D22BasFq6wc2SdvgJjIBuPYx+X4Lv5LHiHDYYaYP4hsZZ5O0LGPHYshNO7d1hkbA+P82ateGYyqHTcNm8TDuHnCV+7b6pCVD4alGteF0Q2Dh1/K4MQ9LQxw2jYXPF1FToZFlvYB5xT+KRY2DroZLx9X+uuaDUk7uECfRA8R1DODaT+OkwozDBcNJvjkFnp+qj0XfWgCfb6sTWtQnoT0MuUF8YEslLPUsO/JFHFIa0lfaZoDAECNdrwzjkmeacMWbsfQYE05EvIkeo/V7rp0QCu1dxJU0RmTidEqTmneZ4nA2EDBEWetEJrHtAzAIBA1nuPnKKwkw1o2BMw3hFCFJTN+/Ht67DSqKpfUDEBIOz/wIr/+uCxbP0OOiWnmOVzb+Lk9ir8+OJfJ2XXwDxOlj4LSsLMzV3uVXAHmzm/L5BaeYdVceaz8sIf9I3dhgYC+5FHBncrK83fXpNxKuuFcadsQyhpmF8ylxdBLG5VR0xXJj4/pH7vuP63fWgPQt8oT+DkNCWNsIkUl5UB6zJh+FB3wQklSWwkuXQ+ZRXXz36ijpmJHWXWHI9V6LS8rLOZImvlcN7isRFNTDYDBw97XXSuOWbthA6vpqRAsVZ4YnsbtcPBY5HLOanFDPEp0DhaOwvLjcs+DUEwsaOTapKIFXRsG8Se7XscMOP78Gzw6DbLlQxCPzJknlX6Vh55FW41kklx8iPm6AyUTvrvr8z8sPPkhsdLQwvj5xTZoQ1aYUi00sz6jPnF1fczD7HEgzPXBB375ERYjn9fcccpUXd75UPNedWT2YzEunyOVjoH9Xfsq2AUjdL4/pIH/mPbmjhopc97nJ+nS+LJSIeBOdRojnAwqO2ig56fl5RNM0cg9Y2fpdGes/LeXwEjPO9pL2ZR3V+zABR4z6uRdm1wVm1ijXZ53erS8QH0OhUCgUCoXiH4YSmSgUfz80ZTtRKBQKhUKhUCgUCoVCoVAoFAqF4i9HiUwUCoVCce7Y+Lv0Re31JsmKpWcwaBxussZr8fbJ5VQWOPSXktt5SDKqT7o8mf1vR1E2HN8rDNlqalr7851jx0qrnD5/vlQE4pGRd8hj1v2q/3/VdLCL5RgYTfDGXLT3V7B0wQWUWcTnzMFmS1lZ7PtqyNuazSIrzLdzolW/IM6/IwKDwUCXS0MBqHS24ID5Zum+hy3XcNLqORnVGABDHvOcaND/rkgim3uXFuyqfNCHlku47gk9ScoLs5ctY9/hwz5VlRG5h13xv0tf8sgoPU9c0ZHt/iWCgZ4MJBHjmDGxNDKbtKidZEbsIysimcMxq1nf8nvmtX+TpNjFVAbUJZRpTlj6ejEOm96WU3l5PDdxIqMefJBXP/uMFz/6iCsnTODnP//kyBKzdDX49kNCiE/0TXzjK20GBhOfGOC2PcsqWYn3yHawyhM/WTNTHnPpXbU/5hYUcM9LL7Fi82b5fqdJzczkk59/5soJE3jziy8orzx97wgKhmE3w6OT4J2FcN+7dYmkXQZAt8HiijOPwL7T9w5J3+/UTBTbXWUVCT3loq0zxHcKZND4KEb/N46xH8dz358JPLqxJb2vD/cYf8B8C+X2ltJ6t1c8Qno9cVPznkHSZM/W/T23+6T1Yqbkr2JqwWJOXPE7/HIKPtkIV9wDT/8AA0eJG+Owwy/vSdtMfqZUHMDAUZRm2Tm81ExhqDjx7vze3X1KcJVhd9j4fv2/eW/xwyxKmsrKQ7OZu/tbftjwNivSxUlv241NmWcb7bHM6gzlePVlLC75jKkFS7A49STKxBGhBIaKH7GjWwZw2as+JubVQyOAfLtkvHP0LJPLVk2HAxvFMYHBlA59luI0sbChyxWhGE36d9j1yjAMLh+LkYUlX2F2+LZKvK9sNjbj+eABaA3OncRy72KI5j2CCIk20qeruwiqzBDEvIC2vh3ch2TwZPMt2DRxkl5kgonL34hh3EzP4pX6pG+pl9xsMOgyk9n5MHE1fLcfpqfDYM/n8Dklphlccps4xlIJK37+69sCuuRDIqI4YYgkwhmD8fSt9Kped9CySQe3uOjQODo160XrmI4ufZLBYGBolzFu8SE+iEw6jzcL5VQZVg+SkfrYrGJZyUGJyKRVZ8/J+ReOhfjW4n13LYesY+IYEWtmNT4huD5rZzUu4dQX5k2Sx7zyqy4O8pW73qoVE/jKpt27efzddxl88y0Mv+Ne7rlrIh8MO8Qn/bL4bOApvrrkFDPvzGPxy0XsnlGBpcvl8kp3LvOrDS7sWq7LUER0GwyJ/eRVTatwuYek1wxjQfE3WJ3u4ydry366YOT09bd7RgV7Z8klggHBBq75OI4ul4cx4oUmbuUO7GSGJ3GoyWrSInaycboZ54i7YOyjcOE1HkWPtdz4jPT4zJukj6EackwsHHNqRujY1+MYyO5wMGvRIia8+irXPPwwL338Met27HBLkOk+ui65O8/WW9zOxohMUpOkMo7txqZu2+oLxWLa+/Zs1DQ2lssuqncPNxhIMknGUOt/g0Nbfaqfdj3gm71w1fjac6wWk0kurTmV4t9c0/718phr6sSHB1JSpOHxNe2xmTVO7bWya2olU2/KY8u3ZWiaRmyTJnRqKx7H+C0yAfjXJOg60GNRRs1FTC9YyMKSr6lyyscyAJltH4URPswp1efK8fr1KiB9s1gCExRuILidmX1HPAs1ZGw6tZrs+BuhzyXy4LICmNANboqre1YVceuLQgHDzuRkaXLc4D7+SQNHDB5MaIhYkrB0wwZS1niXqVlM5Wxv9qtPx9vafDrVRs/9eXr5APhoA8T6cO9M2Q0n9vl0zFqyjsGTF8DeVeK4Q1vh4b6wcpp/9TvssOR7adiaU08Anp95C0LF46XunToRGqyLnZrHx/P9228TE+VdilyfcWNHs/bYHJ9iz6Ch8dOm/2JznPvxV2BgICMGi+d5Dqak4HTWzb11Gh6CQex6ZXf6FfCYDxK2omz93uEv6ZL+MzYBmrjfDxtyYJ5cKNPrOn2M1OUyuaw8ZbX7NZqTXMNv4wuYflsem74oZ8ePFSx6oYi1v7fzUIN/bDHpfX24Tb8/W6PyXcr7tLrwrI+hUCgUCoVC8XdCiUwUir8fTpGxVaFQKBQKhUKhUCgUCoVCoVAoFArFOUGJTBQKhUJx7lj5szTEZ5EJkB1+0KscwWGFfb+dfum9vWSl2X+iyMSHRLRNprokxXuuu44u7dsL4wtLSpi/erX/bek2GBLckz9dGzNXF5gs/1EcZzDAi9Ph4hs4stQsTT7JDT1KUtRSv5qrGZxsSphCcVCWMC4g2MBV78RiMOqJBYkjQ2vLtlf+C6fm/a15qzOMdWWvey0/75YImrR2F1EAmAINdB/j/eX0bFt/9lbd5bVcSpcBcP8HXotzCgqYNM2/RI2UJhs5HrVFGJNtlSQ2VhRD9nG/jsvvH0nlJwsC2lJt8PxZWwLKOBC7jPnt/s2GhB8oDsoEoDDFxvpv8/hy5kyuf+wxVm3d6vLymdVm47OpU5kya6G0iQPuFietNwaDwUCPse7Jnlk1EsmHtRpSxAmUWGtg+RRxTOBp2Qhgqa7mif/8h2Pp6eJ9vGB3OJi/ejU3PfkkGadOyXcY+5g8Zv6X+v8liSUl9g44cE3WSujlu8jEE2ExJq74dwxxHd3POQfBbKsUtz/b2o9NFc+5bGvhQ5viOwUSEuX50c5JEPm23mzdczHENRCp3P2WtG5WToUcsRSAnT70wwNHsWtqBWbKqQwsFIae16Oby+9OzcnBUzuYu/tbliTPYH/WVmkSlaZpTN0ykS0nPN8vA4KdBIukAwYD3wX24pfCOeyrupPD5rHsrHyQOUXT+DI3iT+Lp3DIcgMadd9191Fh2Gw28oqKyC/2nuTbc2w4w56JliZfNSTXKklITNkNzka+cLd7JXwyQR43+iFOJMkFJJ0uqbtnhsebaDMo2KW8zNGO6YUL2V91KyX2dpidcWjte0On8yDAP/mTDQOfBvbgseAL3Pr7MGc0bSq9f26poat4Y97dBEd7TiD7MrA72YZQj2X+YNeC2F013m17cJSBjsNCGPZ0NLdPa8aDy1tw3i0RtOwbTHRr8QmSvtXDGCk4FPqNhA699Z//r7jucXnMgi8bf376w8nD0rHBCWMkkQF19+fLe9zi92GGJI7C2OAiDgjWMAWJV1TPt+YwfmELrvx3DG0GBruVn6y5SH5wb4m3TicclEjFenkRpZgCYMzD8mMv/EYe4wmHHWa9K48bOQ6u+Zc4prwIti9uXDtEpB2AvZJnofhWugzwjlfhiW8hWJJQOuoBuPFpn5tQUl7OSx9/zGPvvMPGXbuw2m2UmktJqtjK3Oj3sJjKATAXOcneZ+XQQjNr3i/lx1c64wyQXPO7zkJk8tv78pgxj0hDynPsbP223G37iZrL+algJQfN15Nn60m+rQeby5/mu33T2LUgGE3TOL7Wwpr3S31q7siXm9C0sz5+6npFGE3a6PcGDY20iJ3Ma/8GG1pMZm/8PLYkTGNG4L+ZM3mHT3XT40K5WC//JGz6w327RBxSZO9CbFd32aXD4eCxt9/mg8mT2X3wIJm5uSzbuJGn3nuP2555htVbt9YmeDfrWjduzLNK5kkKMqG0QBzTENk1Auw0xbv8bnIGEWavE8rEdvD8bOaJcWNdpVFJxnMkQet1MXyySZc7eWPojfJ6NvouVOWwRLDSvhf0Hlr7a/IxsTgq2BFOhC3ebfvmL8tJXa+PEQb1FstsDqakUGWxiNvVkLBIeH+l/hzRrgeOJq04armaOUXTmF30C7m2vn5Vl3/EpgsWfRAhAbrA5Okf3OUz9dCcGid3igWebQeHsGnvrkYnmWWFJ7Ps6wx47CtdxnuuaNpGvxcK2J6UJCwPCAigf0+JALEBoSEhUplERnY2u3d5Pi81NLY1m0mNSS6bArAElLO92SyPc77pW6uhQy/4dDO07CSvbJlknrE+KXvgicG+i9mqq+DDe2DFVN+PsWMJFOcKQwpNfThhudRjmc1QQ3GweL6yX48eLr8ntmvHt2+9RVSEeP4pPiaG6DZlmK0VwjhPFFScYtUh/wQovjKwl/h+VWk2k5GdXft7aBMTbfq7j6Prk76lGtulD8Cdb8ob8PvH/ouVU/eLyzvIZULV5U5SVon74MgEE+0G6//W9heFEBgqFr4eq1dfcbqN+U8XMuP2fDI99IlHUwT3QB84ZQgjw6Cfc2H20yKTmLrvKTo0ljZxZ3cMhUKhUCgUir8bTpQQQaH4u6EERAqFQqFQKBQKhUKhUCgUCoVCoVD89SiRiUKhUCjODTmpkLROGJJsbMJJo+9J/ZaAckqDsr2WJ82uxG7V5CKT7BQ9gf+fxI4lwuIajOw06kktLZo2pWlsLPfdIFlRGPj5zz+x2eWrybtgMMAlkgTQ8iL45T3IOCSO638FjLid6jKnNFFNQ+Ngq0X+tfU0DqONHQmekybOcNGjUcTWWy26Re8gwuP1oVOZoy1bK70n7a4rf41Kp2dpT0CwgcEPildK7XmNu6SiPmvL3qAk+DxhjEfCo+HV3yDI8wv/mqbx7jffYK72/3rZGzcPs6nMa3mOzYfEpMPbfD9gUQ6sEgtXHMD0AB8SXwwamRH7Wdr2A2YmPs7vHV7mmVWPMHnOHKw2m9fd1tvmCoU4cZ0CaH+ReFXjxtJ9VJjb4r1Z1kHyHZM3ist/fQ+yxav/cuFYiNSTFL6eNavREpP65BcV8cAbb5CVK074YdjNEC1Z1XbbAj2BVCKxKrB3ddt2tiITAKPJwIUPe77Gk823kulFOGN2xLKo5AucuEocmveUt8lgNNDqfHFczn4ruQcbyD+6DoRBV4srd9hhzofiGMk9ieAwqloNIfmPKgpCUsWxwHndu9f+bLFW8c7C+/lg2eMs2PcTv+34go+XP8WjM67gi9UvsillMTV29z5r5aHZbDgmlg2Fx4plKAUhaZy0DmBl2XssKv2SdeWvkV4z3E2AAxAY5WRb+WpG3nsvV06YwBXjx/Pg66+z++BBj3UPHh/FfX8k0H10GAYfn8qliaFVZf4LoQCO74W3b9C/axFBIXDrS5zYIE62Cgo30Pp81/tM5xHuCfbljjYsL/uQyfkb+Sp3L2l3bodv9sISK3y5S0/iDBSf1+mGcO4OGcbUwM5oHhJa++fdiAnvYpTiJgfIKDrK+syfPZZXGIJ4IWgANi+rpfvK5opnKHe0cdk26t1YHl3fihu/bsrgCVG0Pj8Yo6nuOO0vFN8/cpKtVJf/j7wY3WUAdL9AHHMqBQ6JpWfnhAzP11x9ThijCDs91Goe1YaYcPlq6Q1pEhZP79bu/+YQkSAJSMvKIiDIQJ+bIrjtp2Zc/4VrErrZ2ZQCWzcve5/Gm8gk4xBUSkQPPb2ITABG3S8XCa34CSy+JSm7sPYX/RwQ0aQZPP41XHGvvD4fBJp+M/8Lecw1/9I/I4MBxjwEc4v0hP6nvod73oFrH4PL7oIbn4GPN8DT3wuT7euzeutWbnz8cZZt9DxWqzFVsif+T49llspg0isl1+CelfJ+3hOHtsL+9eKYyBj58yCw9sNSbBbPz1/ljtYsKf2caQVLmVqwjC2VT1Ntj2btxFI+6p3Fn4+LJWhn6HZVKH1urHuWMgYYGDQhksqAIta2+IYtCdOoDnBN4LYElPHp0klkZ/t2DG7wQU6z4me3Tc4jYqFgrq03Tbu4X4OzFi9mmxdxwdG0NJ6dOJFbn36ag8ePExJtJDJBlyrk2cQSCwCO75HH1EciMsk3BJNqiHTZFmVrhqHenyDqP2PL6N2lC+0j657nzonI5MJr4b8rap9nvNLnEoiKE8fsX+fbMWsscGKfOOaCa1z6C5nIJK66HQYv45Nd0/VzfKBEZOJwOtnjZawqJDwa7nwDfjjI7lGHWFDyLek1w3F7QPWBvCM2CAmDN/+EaHcxiwu3vACPfgFG8eC5JMOOtVKchNJhSAhrt2/3t7m1aAaN1YfXkGfuDOO8S2z95qbnpONfmcikb9euhIX6L7QbNXSoNOZ4kOd+LCVqM9nhkvm+BmRFJJMStclte8bWGj2JqEUHXTgU7i54cmH1DP0ak1FeDG9dLx8reeLzB+XjmDMsnSwN2ZD/BN6ul8KQNDSDeIx/fgORCUDXDh349t//JiLMu2Tt4dtvZvXR36Tt88aCfVOoqHb9/DRNI7s0nX0nN7E7fX3tfwezd1JuKfGp3l5dukhjGvaJnS8Vn+P2ao20zdX69dmio7jy1CTYt0bahlo0DdJkIhP5PfjIMjP2GnFf1eva8FrBdkCwLsEUkZNkpSLPzon1FqbdnMexld6vjSpnM6ockn5XwGZTs9r71hmRSU1snaC4V6sLMPo62aFQKBQKhULxD0EJERSKvx9O7X/k72wKhUKhUCgUCoVCoVAoFAqFQqFQ/INRbxEpFAqF4tywUr465XxTW7+rzQ477LXMXOzkyFIztJOsNOp0QuYRv4/9P4vdBntWCEN2GuOpNugrHfc+/UL45UOG0CbBs1zjDNn5+Sz3kjwnZPht8pjp/5bHXDUBgPWflmIuFr80kBt6lFzS5XV6oSgok+DhJz2W9boujEH3uiZgGYwGOtVLxN5S8RR7Ku/FqdWtvmvXgllf/hJJ5ju9HrfvLeFExItX7I1PDKRZd+8JXg6CmXPqa7QIPxK5AgLhpZnCF/jX79zJ5j1+JrOdxmaqZne89xWpi+yJ1DgjvZYDcMSPRKJ5n4NNLCFYYWrFKaNYCuOJGlMlGOQvmzkNdjYnTMVu8NyO/ndGYvAxedVfoloE0Hagqyig0plAqV3SzyZv8F6Wul8XDsm49C4AikpLmbNsmTzeR/KLinjg9dfJzs/3HhQUDFc/IK7I6YQFX0mT2QttriKTgGAD8Ym+J1aK6HplmMfV5p0EsqDka1IsV7hsL7B1ZVbhH5Q53L+/hJ6+tanTJfJktb2/eEg+92WF4jUzvCeuV5V5T6o/w3kj2TPbhr1GoyBULDIJDAigRyc9YVXTNL5Z+xqpBe7fZY3dwq70dfyw4W2e/e06NqUsqX1J9MCp7cza/pn0nyUTmdiNNZQGexeqncGBjZ2JU/lwymQqqqpqt+9ITub+117j4ylTqLG6HyuuUyBjJsYxYWECva8Px+h+yriQa5Ov6swxcZK0e6Xp8NrVvokJRj+MNaS5x9Wc69N+SAimQNe+r5MHkUlDUtbWS7Lq0h9emgGzC+A/S+H2V6DXxThM+vVQSDDfBHbltpDhHDY28VjfDQOvo22VWKJV3Uw/HwOCnQSFe07wP2CK5fNA92RBX0mtHs6Oyoddtt0yuSm9rgt3+5zqIxNhaQ44ueN/SNR3rXfBWy1b5v317TgpTqItJogSQzAhcWYAuiWc3+hDDe08xm1bsA8ik/okjgil13WuY5WMGoFsBPRk+DIPwoWD7snADbF2uIjDS8wcXmKmOK2BrC2mOQyTyCiqyuDLx/xbtd7hgFnvSsPMlz9LRnIQ1lbnQzvJNbdjCZQIxgv+smKqLmkRERgMoxqMQYJC4PzL9LHJuNf0BPsXpsFDH0NveUI4gMPh4L3vvuPZiRMpLvMuBQTIiNiNxVTusSyt5hLxgarKYL9gHOiN3ybKY8b8C4LF/fzu5TnM2Pszv3V8nlmdnuSP9q+ytsU37ItdyMnwvdgMZ9+fRbc2ccWbsS7jb03TOBS8gcXt3iMn3PvcQrWhipefmIa52CE/0NAboZlkzL1npet1WpKPsShTuEuetQ9Nu7gKDKw2Gz//8Ye0SSkZGdz38sts3rOnVoaSb++BU5NM/afsltZdi80qfpYAdhqbusl7oqzNXH6PbS8Z8DTg+qGjan8+ZGyC9Wz+nDH8Nnjjd+n5CoApQJeeiDixz7f+8PgeuUio+4W1P9ZYrZw46Xmu4gxxNe28lmXtrsFmcdK/Z0/p8+jOA2L5o4zUDWd37eYfOT1Gbt4OXv8dQrw8v9/9Nkx43yc5lJu80QNN+zq9CoJ85UTUFjZ+W6SLEi6/56zqAqB1F10qJiArN5esvDxhzOA+PjwzeOCC884jJkos3c2I2O22wrjFVM7e+MaN8ZLiFmEzuD5bVOY7KEo9fb3EJsCIO8SVVJbCZs+iLxdmT9SFp43BZoWvHpdf74WnYMdiYUiJvR0nai7zWl4QKhHLAud18yy965GYyHdvv02bFi3cyu6+7jqiW1VSVeN5HOELZmsl8/bWiVoyio7x7qIHeXnurXy68lkmrX6h9r8Plj7GE7NGMW3Lhx7Fo/Vp26IFkeHiubuGIpPEkT48X662gMkE1z8ljeX3j+UxZyjO1YXdIjrIr8MD86ukMT2vdf1culzuXVRzhtX/LeXPJwq9yuPqU2DrLo3xxmZj3f093B6DI8iMPbxOXuNJ+qhQKBQKhULxT0eJTBSKvx9KZPLPQ/XEf0+cTnUtKhQKhUKhUCgUCoVCoVAoFP9klMhEoVAoFGeP0ykVmVRjZHlAa7+rzgkTJyPumVmBJhOZAKSdXXKGG5oGKXtg0Xcw+wM9me7/6g9rBzeDuUIYssnUvPbn3l31ZP0Ak4n7brxRWv2UuXO9/pFQ0zSKy8rIzs93Tcru2FdPujgbouPhgrGcWG9h/+/il7k1NFI7i2UuvpDVdgt3/dacfndE0Or8IBJHhDD20ziufCu2dsXL+nR2ScQ2srr8bX7MX8uC4q9YWPIF3+TuZEflv7weLyDYwKDx4sSQM/QYI36Jv8zamhMX/ODbKu+xLfRE8MGjhWG/LBYnXMg4GbmXsrbepEFGcmx9xRUc3ubbgbJPwMJvpGFTAxN9q+8sKA/KZW+ce9JOUISB7qPlCQZng6f6s6yDxDsd3KwnFDfEYYePx8sT7KKbwsCrAJg2bx7VHuQMZ0NOQQEPvfEGeUWCpJDRD0tX4Wb2B9JVmQvtriKTpt0ChVIBfzCaDFz4kOdr3exsyrySyUzOW8vsohn8lL+UN6rf4ffmS5nX7k3mt3uLJW3eZ0Wrz9jS7kcW715BYYl8JeNuo8IIDBO3/8hSM5bSBt9/t0EwcJTnHWobXQFrf/FctuArqBb32ba+V7H3V12UkS25r/dITCQoUE/A3XtyA0lZW8RtAyqqS/hhw1tMWv0i8/dO4cNlT6D58OKZTGQCkB8iTiSzG6ysb/k9B8s9S6A0TWP6ggXc/swzHDx+3GNMTLtArnonlodWtGTYU95XHC+2d6TGGSFusD9CqGozvD5GT8SSERYJt7xA+pZqnJJuwpNUJ7plAE27iqU8J9Za0JwNXi8Lj9L7nPv+w5HHpnJRxLX0D72GK0Kv5LvAbrXStoZcNXQoI5qIk4+dJhs1cXVSifAm3s+HGQGd2Gjwfxxb4WjOktJPqT/1Et3KRNtBwd53Ok3bwSHIFrBO3/I/JDIZepOebCpiy3z/BBiNIV0ssUo16lK1wARdMNC1hVh2I6Jf26GEB7v29SERYglCZk4ONpurQGTok9Eu/Xe6TGSiaZC01n37AbHIB/YPnAAAIABJREFUxBYSz1fjwln0QhGLXijix7G5LHqxiOqyev3l2EfFxwb9uW/uJ57LHHb3scS6XyHrmOf405i1OL6fdC2z7y/gq0tyOGa4WdwGhx3WzpK3VUZlKbx1A3x0ry6LFDHyDmjS9OyP2YDpCxYwe+lSn2I1g0ZGhOf7TWr1CHkFG+f40zT9eto6XxwTFALXPSEMKSws47mv3yIlehN2YzWawYkloJzs8EMcjF3BxhZT+KPDqxxssgKtka8ZB4UbuH5SPMGRrh3n97NnM/HH772KB+tzwLqNT4Yf58NemXw2MIsvh57it/vzydrdQOBlCpDLmxx22FRPQOKDMCTX0Ye4Tq73tWUbN1JUWirdF3TpyYc//khsov4Z2LVQiuydxTv5I0A7sh1qzMKQHaZ4t21R1uYuv8e0809kctPNwwix63231WDisNH7WElIm27w9GT9+/OV80aKy6vKfBMjHNoqj+k2uPbH9FOncEjml+KqvYtMnHbITrISHRlJ1w4dhPXs3L9f3jYvWKucZO0RC+5kVBU4qSo8fe/scwl8tgV6Dql73mvdBd5dDHe+7tvcB5B7SHy9B0UYOFR0AKtN0u9LqA6oYM2OreQfs8Mzk+Fi+XybV8Ki4I0/IEQ8h7Ddh+9rcF/JvIsXAgMCuHzIEGGMJaCc/NAUl21HozdgNzbuPLCazJyM2Ou2PaP+GPe08FjI0sni8pI8mP+ln61rwK7lsFkibFk5VTo3nGy+FdGfZQuDM4T7d2rbliYC4UzPxETmfPYZz0+YwO1jxnD7mDH8+sknPHPvvew52QihWQNWHZrDqZJUliTP4K0F93E83/s5qaGx+vDvTN/yobBOo9FIr87i+9XBFNfzLqpFgFT6emK9BYdNgyvvgwjP8stadi6FDPFcRS1pyfKYDr2FxUUnbOQkifuq1gOCiWnres/qODQEU5CXHU6TssqC5oOXDXTpWWOwYWCHSR8Xm5yBBDnDqIk5Bae7aQMGerUaLKhBoVAoFAqF4p9JY+e1FArF/zvUdatQ/G+gpEIKhUKhUCgUCoVCoVAoFArFPxslMlEoFArF2ZO0FvLEL1qvNbWgwuD6gnGUNYH2FQOE+xWEpgpXZ847ZONURixExorbmHEORCaaBjuWwmcPwR2t4dH+MOlhmPwivDYaxneF5I1nfxwZ2+WyiY31RCZ9utQJRsYMH06zuDjhvqlZWXz9yy84nU4cDgfJx44xfcECnvvgA66YMIGR99zD1Q8+yBUTJvDVzJm69MRggEtubfy/CeDSuzi8ys68Jz2sMN+AsmYnSDenSONkrN2+HVOLSi57JYY7pjXn+i+a0vXyMIwmzwkybQeHEBjqWlbqaM/R6ms4YrmWak38Ynyfm8KJaGryqW3drw6TJjBv2zsE7nxTHHTJrfB9MvS7VBhmtljYfVCc/OsLuxLmYAz3nBCUY5UkC6cmieUTDgfM/RQe6g1m8Sqy24xNOWKUJCqcI4412UhWmGsf0/OacILC/tqhdpfLw9wSGDJrJIkC5nJI268n7k5+Ee7qAFcaYVSgbyuy3/QsBARSXFbGbz4m3fpLZm4uj739NpYaL8lQzdrARded9XEKbK6rGLfoKckG8ZNuo8KIEaw4X+LoRGrNRfwRv42tzWeSG3aEqsBiKgMLKQk+RUHoCdIC9/H+998z5qGH+GzqVMoqvEusgiOM9BwrFiDZazSS//QgHZH1IwCLvnXfZqmCPz6V7nogexg1FRplgbmUB4lXED+zurTT6WDOLrmwqD57Mtbzx57vfI4PCnMQECLO8CmKSPVaZjVaWNPyK3LCvAmc6kjNyuKeF19k+SbvooGIZiYG3x/FuFnNvEQYybOJE6JkIgMXprwMGT72+09+B3EtOLFeIs4wQIeLQzwWJY4Qr5pdVegk96DnZK7S8nKeef99amw2HAYjTkEi63ndu/PW449TeERsXKmJO4lmqosJixUksxoMvBrSm1KHRNRRD6dmZFHJF1icruOunteGe5SlNSQkykhCb3G/9D8lMgkMko8Fs4/DycN/bTsk53SqMZIwewzOeL0v6pZwfqMPFWAKpHMz19XWgyPF553D6SQz11UeFNHUxAUP1CWkZlkH49AkifZ7V7tvOyi+/tNKBmCvf8pocHixmem35VFw7PS11/0CSPThM/n+OXhmKMx4Gz5/GJ4fCXe00ccTo0Pg2UtgzSzYswq+e0Za3Y7yh7BpevK2vUZj1bbRaLIpy1XT5O1siN0GG+fCu7fAfV3ghhjY/Kdv+3qQddhsNvYePszB48cxW8QCNU/UWK1MmTvXr33SInd43F7qaE+J3bvYAND/7TJpXX1mfyCPuWoCxHi7b+m8+PpXlBjE0iy70cq++IUkx/o/vjSYYOzHcTTt4tpnHs/I4LvffvO5HofRSmqULla0WTQsJU5Obqvh1/vyObG+wfd72d1ysd66X+t+lghDHFoA9ha9CAytq1PTNGYsWOBz+0EXYBRG1knY8my9xDsc3el75fvWSEO2G91lP1G2urmJqBYml3+jL4THBNEprC7Rep9RMvfjiaAQeG02hIrHym509EEIcWKfPEYm7GzR0eU6SsvKEgTrxNSIBWuZO/VnqUG9xWPHI2lplFdWSo/niVP7rNJk+f53SSR8QP7R+pLcPvDpJphbDPMrYMpRGHS1X+3KOygWlCT0CGLdDrn8r815conQseiNbP66XBfkvDwLBlzlcztradkJJm2D9nWS5oo8O2mbLaRutGCrrnuJf3tSkrCq8NBQekqEEPXRNI3SLDuZu6opSrVx9SWXSPdJi6zrz+yGGlKiz24eNCfMfWyYvrXegKXz+dDpPHElSWt14a03fpsoFTH5xLdP6c/AnnA6YdmPwt2dmokD5pu8lmtolESI5Uj9uneXNjMkOJhx11zDi/ffz4v330+3jh1xak5SC8Tj5OZRrWke1UZa/yt/3M5vO77AITNcnmZjyiKO5LgLa+ojE5kcS0+nusEcUeJIsfinplwjc1cNhEboQlwZ3kR9DUmTCIWMJmgr/p6S5sr73V7Xuv/7gsKNdBji+Xm7MRTY5OeTJ/YY47CcloqG22MwYKAmNru2vEPTHkSG/N/MySoUCoVCoVD83VDSBIXi/w51vSkUfx+UyEShUCgUCoVCoVAoFAqFQqH4Z6NEJgqFQqE4e1b8LA1ZENDWbVun8gtoWSVe+c9pcJAXKhZW7JlVCe0lCTq+rJYoIuMQPHkhvHY1LPkeirLdY7KPw/PD9YQ+h49LHzaGnUuExWmGCE4Z9QSdgIAAunXsWFsWFBjI3ddeKz3E5DlzOP+GG7jo9tu564UX+HjKFFZt2UJBcXFtTFlFBT/MmcN/vv0WTdPOWmRy0H4bi14oxpf34NO6rpTGNO1USVw7LwkGp7E7HMxbtcrXJhIQbKDD0Ma9MG4KgsETvK+a2pCIpibaXSg+Vk6yleKLXoLrn3QvjIyBl3+BV3+FKLG8BmBncjJ2u/jDD3KIkwQAcovzMV+7oXYVzvpky0QmDjsc97zKPCV58OxQPRlWJDs5zU+BidKYc8m2ZjOpNtZJJvre7GeSXCMIiTLSabirGCDLOki+47dPwyP99OTUvHRd0uQLHXrDDU8DMGPBArckkoZ0bNOG5ZMns/Cbb7hjzBiaREb6dhwgJSODucuXew8Y+5jPdXnCpgVT5nC9LyX0OrciE6PJ4JKY3hAnDjYl/ERmhDz5sdpq5ec//2T0Qw/xw+zZXj/7frfJEwX3/VaJ5mzwnXcfDF0l587xPe5JuEt/gDKxfErrPJCtf+gJp1nh8hXEL+yn9xObjy8luzRNGn82GAwQHiteBbmieRqDxkcQ085VKmA31LC65ZcUhHoXnTTE7nDwyiefsEcijWrRO8jteGeQ9qOp+6BKLHoCdAnCvEnyOIDx/4URt6M5NVI3iPvfFn2CCI/zLOySiUwAjq9xr1/TNF797DOy8/Ol+7dp0YJPX36Z4KAg8g6Jk1gtzVy/u7AY8blQbgjis+pnqXSIE/bPsKXiabKsF7ht73Wt7/eH9pJxQFmWg5KTfkgJ/moulI8x2TL/rzu+pQpyxf3GCUMk0c44MDppGtmSuIjmwngZbeNcky5DIuTfh6cE9QF3RxLdSr92bFq4XP62t8H4NT9TKpY8ZR3ocXtppp2Z4/I5stSsd4zXPS4+9hkObIJpb8Li7/QE4sLT/y6nA5I3wPvj4KXLoVR87Zodsewz3+2yrcqZQFr1MPHxj+/1/EzmjapyeHoIvHMTbJgDp/yQIvYe5pZE/efKlYy45x7ue/llxj33HFc/+CC/LFqkPxf5yIZdu/wWCBSHZFIW6EkKYuCoZbR457ICSFrn24HyMmDtLHGM0QQ3PisMWbNhF7tzPMtXPJEcu5RTYf7JFS99OYYOF7vfYz75+WdduukHx6I34MR1H80Ji14soqqo3jN+TDM4TyyKZP86KMrRf04Ri0yK7F2I7eo6btx14ADH0tN9bHkdKVV1gsVcq0TEUZhV10YZngRK9ThpCCfX6P68GGWt62dFkj8RQ4fU/TuSGiMy+dck/VnGX9p0hcBgcUyqWCwBwBGJyKSb63ghVSIyCXSEEuoQzy2c3KGLIAZIRCaaprH30CFx+7xwaq/4eRBg4D2RGCQu1/zDHsZs4dG6fMBPnA6NvEPiMV18NyMbdomvybAmVmJaWwiRDF8LQ9PYvCVZl/EFBsEbc/V7hq/0uxQm7aiVHthrNNZ+WMIPV+Xw+0OFzH2kkK+GZbPh01KqK+zs2C9+nhrYuzcBJrk8tzjdxuavyvhxTC4/XJXDr/cWMGVsLvvfbEKzaHchUX0yw/dhN+ifcWrkdqymsxOE5IYdRWvQ72burMFhO30/NRh0aZaM5VM8by/KhkX+CTK9kn8Sfn3Pc1nSWsgRPxueqB5JldO7GLE6oohqTTyP2auerNofcssyqLaJv6ur+9zNHYOfalT9Mhbs8/L9nKa35N9ldzg4kuY6zu98mfz5ctOXZdgsTn18GxAoDl49HcqLpHVK/8bQuosu0PKC1ezkgCfBbD0CQw10vdLzHGzny+Rzs76SXjMMp+abcLs+m+sJ1MPsMQBYY0/Vbuvd2v05WKFQKBQKheL/D/gyL+jP3KFCoTg7fLne/J0/VigUfw1KZKJQKBQKhUKhUCgUCoVCoVD8s1EiE4VCoVCcHVVlsEm8inSuIcRtZV6DZqB9xQBamLuBJl6VPq+JeOX2Y6ssWJuJhShkHRWXi6g2w1s3wBH5iq04nXpC34uX6i+4+0ONRf88RRKU3HRdqiJgU72Xibt26EBwkGty/o1XXEFMlG9CjRqrOAEEYO6KFazaulVfPVYmlPFCRcxAlnzbwqdY44CTHMoRfwYGo0bTTlU0S6wCyUorc1eswOGHeMaXRGxP9Lkpgohm/r0c3vMa+cvph5ZWwyOfwUfr4drH9ASPhz+FaWkw4jafj7V5r3h1VDQDY06+SttKyUq4wPw9i+h8v3tSZo5NkpQLcNjDdVZeDM9eAoe2yvcHDhuiPa4GDhARdu5e+K9PTUAlh2L0pOKW5wW5rQj/V9FjjGtCfKmjPZUOceIR+9frAhN/MBrh2SkQGERpeTm/Ll4s3eW58eNpHh9PmxYteOH++1kxZQoTn3vO5+9g2UbBys59hze6vwEosnVGw/V6PNciE4Aeo8M8CimcONjcfCpZEXKxR30qzWa+mjWLO59/nuKyMrfy+MRA2g4SJ1uWZTlI21TtXjD6IXkDFn9X97O1BuZ8KN3leNNHqSrUXzzJjBAn/ESGh9O/Z0+s9hr+2PO9vD3ngAiJyKSovJQOt1czYVEC9/7RnAsfjqLTJSEc7jaP4hA/7/OAw+nk9UmTqLJ4F4IYDAZ6jPF8nXgTEdTidMJhSbJsZSl8eK+kpacZ+yjc+iIAuQetmIvFLxF1GuY9Yat5j0Aimovvg8fXuZ+ba7dvZ/MeL5KreoSFhPD5K68QExVFVZGDijzxvd3SzDURLjTSjtEk/vftCi3nx/y1rC9/mTxbT69xB803sK3SXbjUdnAw0a18T+Juf5Fcnpax1cP1/P+K3kN1kZqIrX+hyCRT/MwAcMIYRcTpxMKuCT6MSyS0jXVNugwMdUjPI08J6gHBBvrcVJewnVFzsfjA2Sf054IzHNwsbWuWoP+wWTQWPl/Exs9L0UaOg8Sz/2x8ZWfVg9g09z7vgPkm+c67BNKz+mga/OdWOLrTz9adZtzrLr/+/OefvPXVV1Sa6xKCSysqmDh5Mi9+9BGWat+uywUr1zSqOWmRnhPwj1rGyHdeP1seo2m6+M4hFvNUX3Q932/Ywb/eeotXPv2UpRs2uLwcXmO18t5X/t/PtzafTlVAiU+x/e+O8Chy27J3L1tkzzceqAwsItuDSMVaqbH5qwZjr+GSZy1N06U5mobWUAbXgFxrH+I7uyZYT5/fuP5y94l9mE5XlWuTiEwAjvlwXViqpDKOHaZ4j9ujbHUCsNgOkiRyL4y++fzan3eZ4qn2508aw2+DUff7FGoudmApddSdxwGB0M77/R6AExIpYX4mFJ4Sx/S40OXX1MxMYXi0rTkGT+bQeuQkW7GanZzfowcmo/jzSjrauPmyrN1ikUl850AiEwKI6yj+3vOPyOedfKU43Y7NIp4DKo1Lp6JKLBGISqjGYIDYju7PXA1JilvIpi9K9V9CwuC9ZTDmEV1sImLso/CfpRCly3mqCh38Nj6fXVMrcdRzu9jMGtt/rOCD63ZRWlHhpTKdwX36CMvzDluZOS6PH8fksuWbckoyXPv5vIM2mqaJxwA2UzVHo9fjxMmRJuuEsQADeomf22tMVRQHu46NbBaN7KR659fIcXKp0PKfPN+3fnkPrJL7cteBsLjGt75izoeQdcx9+9LJ0l33m2/3WhbTPoCuT5ZK6+iV2Dhpb2qBXFjULaEffdsMoUdLyTNnIziYvYOUPO/zH706d/ZadobkY66fe1zHAKkgKyfJyoJni3BEtYDh3j9/AGxW2LlM2g7SJPM4HcTX4aFFZmoqxP1U1ytDCQrz3Hd3uTyU0Jhz86d9szOeI5axfu+32VR3bz8jMqmJqbvX9fn/2Hvr8LiqxP//dUczcZc2laTuQpVSo7hLcRbfBRYosMDi7stSFlhggaW4lrZUqVA36u5tkqZx94zP749pk0xm5pxJWj4/lu95PQ8Pvecem5l77Oa836fjaL80CoVCoVAoFP8voETYCsX/HspcSKH4faBMhRQKhUKhUCgUCoVCoVAoFIo/NsrIRKFQKBQnx+LPvQYcAubqO+PWfEUWKY29CHfFEOaOIt7WSZi+JG4fHoEZhccFRwszxfUsyvaKrtvDzLfaboSycyXc2hM+eAAqApyY3VDrFTX991F4+iL4UwZcHA6Xx8L1HeGzp6ExwOncm36WFr2mxWbiga1OtKzMdbLy5Qa6FY1v2+eR8OqHH1JdWwvjr2lX+rXZV4UUz2DW2Je6WBovoUs9RrMbU7iLqGTx715UVsaaLVtCKh8gc1yY9ETh1uiNMPL2qLYlArqfacFoEQuUDv1yXEA5cBzc8y787b9wxQPeE4xDxOPxSEXi8bZOWFzRnFY6GYNbLKx2Op0srvyBlL6+gqVGdwJVzs7iyrQWyHk88K+/tKkNfmrs4T21twUJ1s68PvS/rPrqKz547jnOGj0anUTQ1VayojfixsXgq9t+cnR7yRwbRlh0y8+hkWcfceoLmvww9BwGwNdz59IgEegO6NmT0YN9TW9MRiPnnnEGv3z6KSMkJ4MD7Dl8mIqqIEIeTYPJD4VW9wCUOvv41i1SI76dJ8SL0Bk0Tr/b1zjKjZv1KV+RG9V2ce0JDufm8vTbbwfcXDX4Ovnzt/nLWv+046+BcInJ1bJvvIZbAEs+955uLcCd1ouff54AQIO+mvKwHGH8ccOGYTQYWLZ/JhX1xeK6nCIiJEYmANv27kXTNJJ6mjjj3hgGPWZlp2NNu8vMLy5m6qefCuO0NilqSmsfhkdiAMdugQkQwPtToMzfSMGPMZfD3W839adHVsqF+Znjg5t9aZpG9wni8aPskIOqY74CxO8XLJDXFXjpgQfI7OSdU4YiiLWm+J6YrukgIkGcrih8P42eMDbW3c0XpT/zcfFKVtX8nVzbKKqcncizDWdx1cssqHrLzywJoP9lgX9XAJfLxZxly7j83nsZdfXVTLz5Zmbt+RFPlPjk9Jx1vyMjE70BRlwojrN/A5QX/jbl5/ibD7TmiC4KS6TX5KZ36lBJbDldEnr5XGsamCPEJjrZAYxMADLOaG4fR+1j5IXvWN78b0m7d7jDKBGY75zg149r2THDBk//CFHx8jqcJA2uOLbV3xzw3hHrOTg8EtHy5hDEpgArvgs9bmuuewKGntWc1caNvP3FF0GjL167llsef5zC0lJhthXV1azb3r65wLH4zXjw39RZ4uxHpbOrOPHameB0iONMfwPWzpLW476DDt7/9lvWbdvGgpUreXzqVO585hlq6rzr2PenTafMViLNpzU2fT1rUqfhQmyk0utcCxMeivULd7lcvPXZZ20u9wQHYlcFDN/5Yz2lB1uME2Mu9xpdiFj5HRzaiiaZMxU5BvgYIR7Nz2fVZrH5STCOHMvFlOn9DUocfXB5JHUMxeBn92rpc7MxgJFkuCMOg6f5c7V3vt2pQyqJ4V6jlBrNxExDl5DSVceOZFHVq8x/vIIFT5az8OkKlrxYwYZpNWSvaaSm0MmxzVaWvVbJh2cX8N64Av59RgEfnlXIwqcr2LegAWcniRmMzMhEYgADQJ9RPpf79ojN8mLsqdIs3U4o2GEnMjycXpni92U79u+X17EVLoeHwp3ieVP6UO9vn9xL/AwW75f0SW2geI98DphjlxufxaR63yPFd2pE9tqg1JLFmq1bm403zBaY8j78UAKvLvbOpy+6y2vG2X8sjLsK3l4P9/67qQ8pPWjnq+uKKdgRvP7ZNnm9Rw4K/rxu+66OL68VlwGQUTtMWs7euCVkR22k1iQe63p06cJjf/6zNL8ii/8zeHR9i3d5UXFwxpXiTCoKYe1PvmElufDzx9Lyufklr/HMba/KTfmcDq/ZV0tqyr3jq4BaVwrZtgl+4ZoORtwexc0/ppDXmO2fsAWWsDAy0tPF9QtCVql4nhxuiiIluhOapnHdiClSs6T2MHv7tKD34mNj6ZCcHPQ+wJ5Dh3yuNU2jxyS52XTWKitTh+SxIudWeSW3LhHfdzkhV2IKkxH8fZfH42HbN2JDIoABVwR/r2MK1wWc/7SXVTWP4vDIDTRPUKSFcURrfscd4fTWxRbvNTKJMEWTkdQnYFqFQqFQKBSKPzqi/SxtiaNQKP7vcAd4z65QKP7vUW1RoVAoFAqFQqFQKBQKhUKh+GOjjEwUCoVC0X6KcuCzJ6XR5hj8jUoyaptPd+zQIN7cWmErk26O37NVbIaC2w2FR8RxAuFywYK2nyINgMMGs96GP3WF56+A717zGps8cwlcnQwvXQ0//AM2zIfinOZ0lcXwzUtwex9YM9Nr5HCCjWIxbwN6tuoSmq77tzAy2f9zA59fWcSuWfVkFJ2BySXf7B0qFdXVvPnppzCh7UYmdk84+0M5PRxIvaGIzft3CONoOg/J3ZtP103sKhYAA/ywMHRhoyVGT6dhElFlKwZdFUlUSttFW6ZwHT3OEv9OZYedVB49OeFPbmEh+cVi04AT7TTcFcPgcvnvtW77NiIuyfELL7CLT/dl/wbf60WfwpoZ0vKakmsxLNWn+QZ6NIaXXs3Ay6PQ6XSMHjyYfz76KLPefZeLJ06UGppE21PpV3EOerdYgGXT11GReIie55y6tiVDb9Toda5vecdsp/bkU3tcd7YZH2LlW1XMfDyXL2bMk6a585pr0LTAwpcws5m3n3ySIX3Efb/H42GNyGBnwnUQLxfxBeJg4/k+16l9TWi6Uy/UAeh9fjgJ3Zrb/7bEWeREtU+Y2pK1W7eydP16v/AeEy1Epojdlo6ut7H89SpfMxNLBJx9k7hQWwMs/dor3vn+NWkd94Tfh63e277yInZJ408cOZIGex1zt4tNPtrLuJ6X8Jdxz/qEhUU70RnEG2O27fUVKk378ceTrsuMxYuFJlqxnQwYBhSTFbWRAzGryIncTKFlP4WmGkqcvYKmA8SGBqtnwC9fyivYcxg89jXom5+lrFVi47rIFL1UqNp9orx/PLyiuZyCkhI27pI/O7ddeSVnjmoWARfvFY+LHs2FNdFfJBydIjY/c+rslFia55NVrgw21N3L9+U/8HHJWr4tn8GOhj9BAOGfKUKjZ5Axvba+nvtfeYVn3nmH7Lw8rHY7ldXVfDJjOvM7vE65+WjQOh3dYMXtbN/mZ1udG2u1G4/7FG6eHn2pPM6vc09deS2RiAorMFGpmTEmesWDvVIlc5IQSIxKw2L0NagxR4nNF3KCGJkk9zYSkejtMwvtQ7C7w8WFtzQyafnvABQ4huJGYmZwnHUfVONKzPCamehPvclXSzbV34XDE9jgx0mYfE6zdYl3TBJRXw0f/q19Fbzpebj5xabLQzk5PDF1qvSUxgPZ2Vz/8MNCc4CFq1bj8ohNb4JRQzn9n63AFNm6r9Hk66qactgueF62LYNpj0vrsN7ckU0BfDc37trFLY8/zvING/h84XRpPsEoC8the8KcgPeiUvRMeDiGi/6RgE7v39/OXraMQ0eD95syisL3U230NyP1uGH5Gy3mT1FxMOw8cWZ718OXz0nLLHYMJKlncxv9ep58vi2iItlrAukijFJHb3HkAxvlGW5bKo2ySZ/oFxbjSPG5ju8aWj8UiFHDBjb9e6qxP/P0wcX85Y5urK19gGl7v2TnAj175zWwZ3YDu2bVs/37elZNrebHu8r48OxCvrullC1f1VFT2Nwea4td7JpVz7y/l7Pip67iihVlNxv9BWKfxMjEFAYZzZ/xC+9IAAAgAElEQVRt5081FFaJDb+iQzAyATi2yTuvGdRb/AzsOXQIh1PSl7aiaI8dp03cF6af5n1vktzHJIxXedSJveHUbFQvkhiZmKM1duTsFsYxRTgxR3q/D73RQ1znemF8gB3x81j9bqVvYEQMnHY2XD4FpnwAbyyHqavgqR98zGuOrGzk6xtLfJ7BQJRJTCGT4uODmlzsmVPPLy9VEsqwE+NII84mNsuw6xv5NeVraV43XnIJ3Tp3JilebI5WGO4/Xuasb2XWd/4d0vL4/jXfd6hfvwQOiblN/zO8vxNATCLc+qq8nI0LYH+LvnPJF9JydjdcjQffeZUxXOOGr5MZ/2AsxjAdu1sZdbSmb7du6PVtdFY+TlapeJ6ckdin6R1O54SejO15cbvKEbErb72wHgNamXH7pT940C+sz/mS+XILNq3qxjHbSHGkbb/4PkOtyTsof6Za9OmtObbJRtlhcX+b3MdIxyHifrPfpeH0PPvUvHusdXdgY+3dIcdfp0vxMY8Od8bh0VzYY7xzp34dR6DX/bZrCIVCoVAoFIrfK7J3hgqF4veHarcKxe+DkP5W/dts51EoFAqFQqFQKBQKhUKhUCgU/wcoIxOFQqFQtA+3G968FRoDqJdasEWXwDGd7ymCereJTnXNp4SmNfSVFucYKN7MXVTdVZoHxw7I47RmyyLvCZ4ng8PmPdF62uNeY5Nf54LdKk9XlgcvXAlPXwQFR+DgZunJkBv0STi05k3tA3v2xO3ysOLNKuY+Uo6j0fvHP5M7nNHFEsF6G5mzbBnrSuqge9tOt9/fcDEOT/CTJk8w9MYI5hd+L40X37kBY1izCCYq2YbRIt4kvm7bNqmRR0tCEWKfIK6rgTPuiwk5fmv6XijflH9oqVhc3prGKhe/flzDz0+Vs+z1ShbMkYvXWrbTHtVjibdKzIOAbzZ8Tfpw383rhY7B4kQluVB+XLiVfwjenyIt5wR5Wjh/Nw/DpflOcbvVjKJX5+6k9vcVAnTp2JEX77+f2e+9x6ReZ2FxxmJwm4m2J9OtejSjim/gkqPPcFHuEwyuuJjhpVdL61DZcwfGsNCn2BXV1bz39dfc88ILPPHWWyxYubLNG2b6XuQrAN7feDEOd+inqcqYcehVfnnDxsZPavlpzSJsbvHz1qtTN04fIhaHW8LCePvJJzEYxOKG1aKT6E1muPQ+YfpAlDm6+52E3PrZOJXo9Bpj7vH2AcVhh9gfu+KU5f3GJ5/QaPUdT3QGjUFXBRaFt2TLV3Us/0crM5ML7pQXOv8/XkFYkfi0aFd8FxavaTaMyYsUm1CZjEZOHzKEhbu/oc4mEIMep63CmB4pA7np9EcYnnEmEabopnBNg4g4sRBp277m08+PFRby82qBUUgbeP7f/6a61v805pq6Oh57800+b3yJ9SlfsjlpOmtTP2dZx/f4udM/WBEmEU7t3wD2AIYcjXXw73vkFTNb4NGvvP8/TmWuU2oO0m1cWFADoxN0GhGGMVwc5/Cy5j5m/ooV0j5x9ODB3HP99T5hxfvE35EtIQ+PwT9OdLLYyASgIEJyAjfg1Ow06Ctx06wW7X1eOEaL//iQk5/Pn/7+96DGNtWuChan/4uD0asDntZor/NQuEvyTLSiPMvB3IfLeG9sPu+OyedfI/KZeU8pO6bXUVfSPmOFJoad6z3RXsT62SdXRjCOik+az9JFoXcb0aUUEx+RTFJUh5MuUqfp6BTfwycsLFI878zOz8ft9hdsa5pG1zHe8duNkTz7CHHh25d5hZYVRZC7Txg13z5ceL8l9WVustdYYfBEuOfdkNO1lSPWM9lU9xdhnGzbeHEmtZVwYJM4zmdPeb+jNtCgGfhX5hV8GT2YRoe37yutqOCvL7xAgzWEdRxQWV3NA6++SnF5ecD7M+Yua1OdWrOldD3Xf5GMwezbpx4IxSBy1Q/+YbWVMPNf8Ogk71pfwodkBL2XdewYD74aghBcwv645RyO8pq2xWcYGHlHFDd+m8ydv6Qx/JbogCYmDY2NvP/NNydd9sGYVQHDj663kbWqxTMw4Vp5ZhvEpiSN7lgqTf2J6eBdx1fX1jJn2ck9Hzlac38oXX8d3CQWbQNsFxuZHNCiqdT8zT6j7a2MTDLaL2weNWRA07+dmo6nzKcxOWwiL5gG8apxAFNMI/ln9Se8VXiAaaXLWVf7N5yc/Jqo1CF/X0XWzuD39vkbD/rQcxgYTdSVuVj0XAXTnz+IWxOPxTH2FMbcG01id/H3eWyT91kdLDEysdrtHMzJEdezFflb5XOm9KHHjUx6SwxsPFB64OTMWU8gMzKJ7e1mj8QsIirJ1lKjT3L3OjRN3EYqw/JYvWsjeVvk30tLDixpYNaUMhwN8ncAFeZjwvsjBgwIOBc/vKKRn5+uaFO9eldNaFP8QCTGxXH+uHFomsaoQYOEcUstWTg13++uaLcda3WL8WjgeEjLFBd6aEuz8dKhrbBomryiN7/oY8rA+Xd426WMr48bnblcMFs+X9rV4P8+afzfYkgb4G0nTpeLfVlZwjz6de8ur1cAHC47uRXi5z4zqZ/P9ZWn3YnZcOpNemdvD/6b9JcYmeQXF1NR7fuuILm3ib4XhW5mktXqXZAfZfnivx9ky002yQxuZLL1G/HfUQCGXh8pXVdrmsY5z8YRkXRq/sS/sf4urGEdQ4q7Rp/scx3hiMMeU4LH4F0DDUgfFSiZQqFQKBQKxf8TBHp/3544CoXi/w7VJhWK3wduTo3RtUKhUCgUCoVCoVAoFAqFQqH4faKMTBQKhULRPmb/G3askEabY/A3O+hUPxCjp1nkkmjtgtEl3hxdGh/8NGuAWlcaLk2ywTqvHUYm8z9se5pTzcYFcEt3uHe41xRFwBp9s1AoLjqaBEsSP95VyqZP/YXS6Q39GVV8AzrPqTsl8cX338c+5oqQ49vd4ayvkxtVjL0/BseYPdLTSTXNQ3L3ulZhkNBZbLzg8XiYsXixvMLH6X6mJaTTHjLHhXH9F8mYo9o/5eo8MizAaeu+HFoWmpGJx+Nh16w6PjynkNVvV7P7pwa2fFnH3BliIxOjy0KitUvTtQ4dI0qvRfOI63Xk2DHqx/gKswvtIRjd7N8ATge8dgNY5acfA/xo6MK1YRPI9TNOMjK4/GL6XxYRVAjQKS2Nf752D0/2e5Nrsv7JxblPM6r0errVjiLKkYR2/MfOrB1JtD05YB4n2FOzBbsjNBHWpl27uHLKFD6ePp21W7eyYOVKnnjrLe598UXqGhpCygOg4xATlrjmZ8zqiWNR9T9CTi+sY91fyLN7T6x1anYOxKyUpkndMIn3xxUy46+lrP+wmuL9gcVk0ZGRnNavX8B7J1i/fbv4dPAL7wJz6KIVj0djUdUbfichpw347YxMAHqeZSGpl56tibNOab7F5eV8PH26X/jAyZGE4vOx5cs6lr/Rwswkoz/0PV2cKHsXfPW8NO9trr/i9nhFi3ZdA0UW/9OTWzJq0CDMZiPL9s2Q5n3LmEeZes1sBnQMTSAztPM4HjrnLYx6EyZDGGN6XOBzPyJe3GaPFhRQUVUFwKczZwY0IGhJh+Rkzho9Wlqv0spKnn33XZyuZrFqcVkZtz7xBAsFZilb9OITzbFbvSK+1sz/CCpDMO264x/QqZdP0O5ZcsFVt/FyoZvBpJFxhlhUnLfVhrXajcfjYc7y5cK4RoOBlx94wO9k8uK9YhFrY3JgkaAp3IU5Uvw85IcHNsvw4CY/fDfL0z5geuajzMp4humZj7E14SccmpXB1/ibtq3evJkbH3mEnPx8YZluzcmm5B9Yl/wlLs2/fvnbQhPNul0eNk6r4fPJRexf2IjreFZOq4cjK60sfr6SD84s4JubisndGJpZgx/hUTDkLHGcbUulZojtIkdsZHJEF0WMPRVHfCG9UodKBYKh0iXBV3RplhiZNFqtQc0tMs9obkfH7JJ+pCwfCg7DTvnYnGuT90kt2TXr+PzrorvgkhAMkNrIwcbzmFv5bzzohfGyrRPkmW1eKChoC8x9v011y9UiuNE8ls+KXLw5bRrn3XEH1zz4IGffdhulFW0TgldWV/PyBx/4hWcdO8aRErFYWcbitWuJ7goDJ/ual5U6+1DhlAi9l33tnWvXlHvX9Q+eAVclwn8eDKnsNbpktusT2lnztrEx9Vt6vpHF7XPTGPdALGkDzMK2+9msWZRVVp50uVnRG7HrAq+xVvyzCpfj+Nxp9CU+xl/tYV/DZST0sKDpvJ9r9tKlWG1tM0Nozf6y3U1mWoV2iZFJbaXXODUYNeVwZLswiw36pIDhLddOhjCNqBRxmxcxfMAAv7DDumhmGrryvTGTVYZUdpqcOD1t+z0cmpWcyC2sSfmUhelvMK/TK2yPn0eD3iuWL3H0kWeSFcSwz27zmikIsHYYwcJnKvjo7AJ2/lhPtUluvJQa2YFhN0XRaYR4TlW4y469wc2gXr2E8QB27Be/c2tNnsTIJLqDnqhU74JEamQClBxomylbINxODyX7xfO4ug7ZuCRz+chE37qYLG4SM+TvJXYmzGPRi2U4GkPbdJ+1qpF5j5TjCcFDzqarp94oHoMGBDCByN1oZc7fykIqoyVda4cTY0ttW6JWXHvBBZiM3t9+9GBxP+TWXBRbDvuEedz4zkd1OrhAbIAGwPevece4qbeDW/LBB58Jgyb4hun1cN/7vuYmgdgwz9u+18+RmnwetY2h2tXFJyz9NDODr25eH2QfOybt+/v16CG8H4zcikO43OL5aWaSr2lTbHgid014Hk0L7X1mfEQyt499Shpve+5qjpYFfj/fP4TPF+i98JmPx5KQGdq77aO2M+SRtv0S/F62wLgKIDwakjsHvFVT6PQx7QyEJVZH7/NDe8dlidVz/kuhzcfOfzle+B05PRbWO5+U5uNAY2OrMT/cGYctrnk9G+p7GoVCoVAoFIo/IiEdVKE8ExSK3xWyv/kq/geR7GFS/D5xe1RbVCgUCoVCoVAoFAqFQqFQKP7IKCMThUKhULSdYwfgk0el0Yq0MH7Wp/uFZ9T6ni6uQ0+aVSys2JO3l+gM0R+udFQ4gp8KDbTdyKQ0T3p68u+NNbpmI5N+3Xsw655yjq4PvhG+W+0ozs67H4sz9pSUX1hayrSqsJCMBWzEsKDqX9S4/M1uTqDp4Nzn4hh6i4V3vvxSmmdcpwZMFv/nJL5zA0hO0J31yy84JAYUHo+HpevX8+85/2XvsK85ELMSq97fJMZo0TjnuTiueC+R8Pj2i7UA9EaNzLFiMVbBDjt1ZWKBRmO1izkPlbPw6Uqf035dmoNii9ggJq2xF7pWQtMEW2dGp00QVx74evV0OrWIVuLoi9MjMY3Y/yt8+Twc2CTNP59o7jCfzkumwdRp/gKpRGtXwnVR0hNaNU3jnGfiiOsSfGO/hkaXutOE+dRbG1m7VSxWA9iwYwf3vfgila1OkwVYu3Urdz77LNW1/s9WwHrpNLqO9hWx7Wu8jLmV7+LyyEVjgXB5DGyq+zMrap5oCsuK+hWbQSw8j7Om07GhP41VbrJWWVnzbg1fTC5m1pQybHX+bXPsaeLvs66hge379gWPEB0P594q/jAt2FZ/MwUO/zLTh/mfIH8q0XQazkm7qAgTn6J9gvA4O8aw0NRmX8yeTXZenk9YZKKeXueGJn7Z8kUdv35U0xxw4Z0hpRPhjEhl1b7Lm64Lwvfi0cSbT84cNYrs0n3UWquE8VKiOzG25yXEhifyt3Pf4sZRDwU8KbpjbCaXDL6VFy//ivvPfgOLqVkkNrH3ZT5xIxLkwslt+/ZRVFoqNdYAePuJJ3j94YcZ2revNO6KjRt5/M03cTidZB07xs2PPcaR3Fxhmu06iZEJwO5WRigOO8ycKk835Cy4+K8+QW6nh10/icWbBrNG55GhtaPuE8VjmscFOeusbN+/n2OFhcK440eMID7Wdw5jrXZTnScZE5ODiw2jU8QCwlpTCbXG0qZrh2ZlX+wy5nR5kRUdPqQgYi9uzSsUdOqs7Itbyi+9XyfP0zzWejwePp05kykvv9wm46qc6E2sSfnU74S4oj3yZ7gi28G3N5Wwcmo1Lkn0/K12fvhzKXvnhWYm5sfoS8X3HTbYvKh9eQejsQ6Kc4RRjmjRRBOHx+Cgd+qQU1Z051ZGJmFRYqEo4Ndvn6DL6WZO6EWP2iTGUgDbl8MOcb/k9JgpCMVIrgVHVjY2zy3vegsmXtem9MFweQwsrX6W2ZUf4vD4m/u0ptKVSZUz+FoBgE1BjExcLnjnLghxI3K+Fs40Q3euCxtPli66Kby6tpYD2WKBsohVmzf7/d7f/7hUmi7cHSO8X1tfz5otWxh5ezR6n6m1xv7Gi8SZ261wgQkmJ8J798GetSF/T6WYec588u0nzpZOQgjrJI/Hw4v/fYeVG8XGiwC5hYV8NktuGnfP9ddz0YQJwjhOnY1jEYHNKSqynez44fic2BIJIyXft4TdjZNJ6umds3s8HmYuWSJNE5cuHjsa7I2UheUAUOQYKK/EAcH3u2MFSIQ4rUXNJ4h2tDBa7WLA5XGy9egqvtv4DnO3f8auvF9xSsT1J0hJTKRTWpowjmxdewIPHvLDd7Mi7UN+zHyctamfcTRqK+VhuVSbC9kTv4jF6VNp1Ndg90TL+6FgRi9ZO6RmtIun92TXzPomczGZkYnebWTys90xhevoNFw893I7ve8KUpOSSE4Qi93bYmTicXvI3yqeTKQPba6bJUZPdJq4vZfsC80MVER5lgOnVfysFujF5orgITLB/zdL7l6PTi/Ou8ZUwqbidSx6rlIqXsvdaGX2g+WE+PhTYZavI43H0ppMljweD7tm1jHznjLpvC8QOnQMqmh/3xZmNnPVeec1XY8aNEiapijc/xnMWd/KWO+iu7xGESK2LYVXrpUaMAFw8wuBw3sNh3Nukaf/+kWY+ZY02s5633mU3gTnPh/XZGAFgQ06WhOK0Ucgskr3SuO0NjIBGNplPA+d8xZ90sTvbUZ3O4+Xr/iWcT0vZlzPS6RlzdkxLWB4n8xMDHpxX7H7oH8btsTomfxhUkhmWSWO/jS6Je/AtwrG4SyJkUnGgKAmONu/r0OmyRlwZQTGsND/bJ8xJozTbhTPqXtMstDvknAyJO+WN+deiLO7eP2xQxfv9+413BmHLd5rZNIpvjtxEYHnBAqFQqFQKBT/LxCKkUnrd/sKhUKhUCiUqZBCoVAoFAqFQqFQKBQKhULxR0cZmSgUCoWibbic8MbNXvGThJdNg7BrvpuIw5xRpDb4nxI6pKt4U7vVbscwUrxxv9whOXm6rUYmCz+RCrpqXSlyUcv/Ebt1sRTrmjclR1d0oWCHXLGQaOvK+cceIalR/P0lxYcgnAY+W7UR63WCUzjjUijo8wCfFP3CIet5weMB570Yz8DJkXw3fz4FJSXCuJrOQ0qPwCYLxjA3ManiZ7ayupqlv/4a9L7D6eT+l1/moddfZ/rChWyr/JXNST8yq+szrE35nNKwbDx46DDYxM0zUhk0OVJ4Wnhb6HGm5FRpDxxZEfxUz2ObrHx2RTEHF/vHKQk7gksnFg2l1QcW499/x/VEWMR1q6yu5mjPZXD8q3BhpsTRT5iGRZ96T9GVUO+K56aw09kcRDgHkGjNJHOchYgEuaDBFKHjkjcTMFqC/25dauVC4EVr1gjvr9++nSkvv4zVHrx97jl0iNuffDLkE+W7jvE/jXt/46XMrPgUu1tuaFHhzGR+5VvMr/wXM8s/4aPidayoeZoTywU3LvbFyQ0cBlSeh4b/93d4WSMz7y3DafPdoDd22DBpnqu3bBFHuPwB+WnJQI2zA6tq/+4XntTTSHjcyRkOyWi02fhhyw/SeCaXhV6j6uhxRjl9ziqh02CxqQeA0+nktY8/9tsgOf5vMZijQuuD1rxbw6ETJwOPuwqi4kJKF4y1JXfgovmZPBYhFvvodDrGDR/O3sLN0ryvPO0uDDqv4ZBO03F2v6t5+7r53DLmMa4Yeie3jHmM1ydP55Urv+XK0+6ic7y/2KtDbAa9U5vbcnisHU1idjVvxQo+nz0bp1OsNpwwYgQ9unZFr9fzwpQpWML822Zrlqxbx/DJk7nivvsoKiuTxi/RWcjTJO16d6t+aPk3UJYfOO4JImLg4U+9p523IGuNlfpS8Xyox1kWjJbQXi9kjgtDkzS5I6sambNsmTSvS8480y+s5IB87mNNzmr698TeV/jci04WC47Ba84DUG4+ytwuL7I1cRZ1xuC/XYWjjDueeoqHXnuNddu28eCrr/L2F1+EdkJjK/IidzWVf4LCXeLPfHhFI59fVRzSvPAEHhf8/FSFv4A0FEZdLI+zfnbb8xWRKzC9Os4RXRThJq/jQ++0thl7iOgS77u2MUU4pQZ6wYxMLDF60gZ461ji6I/VLRHrbl8mNTIpsA/x6ZNDweOCvXOPG9kYjPDY1/Dgf2H4+ZCY7v0vNQPSe0LmIDj9MqrGXc/R5F5U6gKXVUw0X1R8xdb62yHAXCEwGjm28eIoBzdBdYD29/N/4aB8XFkU3p3xlvO50HI275j6UR/AGO9k+Xb+/KZ/u91uFq5dKYxvcJu5d+wUab4/r1pFZLKegZN9BawHGkNog+3AgcYj5uGUaW17nvzwaPQJ70XayHzMkXLzAqfLxSNvvMGvOwIbi4BXKPLaRx9hlxhTJickcOOll3LthRdKyy22BDc8+PXjmibDACZcK80rGKWOXhQ7BjQZmWzdu5ecfPF4HRFvJ6Wn2FwQoDTB2y9WOLtjd0eII4sMJLeJjXccaGwNYrIWbW82Monq5Oa1n//K2788ws+7vubHLR/wz0X388C3F/L52n9wsGi79NTFwX3EIv5SSzZOTTzWeXCzJuVTVnT4kPyI3U3mY62pN1awJtVrHlbqkJjTZQV5NvetF6cD8ht9x6NqY7EwfnpiB7qP9/6enU6Tm8gd2+gdxwf1EpsHt8XIpOyIA2uN+LdKb1W35N7ivrVkfzvcNlpRvFfenxyoEBs6WKKdGEz+Y7jB7Capm7zd7YxfwK4FVWz7JnjcnHVWZt7jvzYWITMy0TwaB9+L5j9nFfD97SX8c0AeC5+pxNHYfoFcev1AEqxd25X20kmTiImKarqOj42ld6b4nWOhxf8Z3P9zA7VFLdpoRAxcfLe8AmtmyuMMOxf6jQl+//qnQCdZtKz7yd9AshW1rlQOWs/3CRvz1xjiu/q2iT2HDwvziY2KokNysrg+Qcgq3SO8Hx+RQmx4YsB7A9JH8dgF7/P+jUt44sL/cNPoR5jY+wpGZZ7Dmb2v5LlLPuOuCc8Tftw49KJBN6OTLPa25KykvM6/rwszm+nRpYsw7a4ARiYA0WkGJn+URFi0eE3qQU+uzCxwx3Lv3z8CkbNLnDZjQOAsf6xj02dis2JNB4OvkRv9tWbsAzGkDQpsGB3b2cA5z8ahaRqZ42TzN43DvV7xex/Qkq8M3XyuTS4LRo8Z+3EjkwEdR7ep7gqFQqFQKBR/NJRJiULxv0d7/k6nUChOPW6UkYlCoVAoFAqFQqFQKBQKhULxR0YZmSgUCoWiTcz764Wwf4M03kx9Z1brU/3Cu9YNQ4f/hubLrx8pzbMkRnw6ZYWzm/A+x9pgZOJyesVvAtwePV+WzuWVureYp///38zkbaOvuMaxqUPIaS2uaCbl38eg8oswuZqNKXp17sZfr7uO76ZOZfEnn7Dgo4+komyrzcaqLuPgie+ga39vYEQMjLgAnplBzT+z+X7tQ9S7U4T5dB0TRr9LwqmqqeHj6dOlnyEpsx5TePA/biZ2FZ9aDTB9YZAT3YH3v/mGVZv9xZBuzUlO1GYWp09ly/h3Oe2FeuI6G6RltYWMsWHoJZrKw0sDG5nkbrQy/c5S6opdAe8XhsuFvx0aevuFpQ8z02tYErdPnixNP2P1PFIm1TeXaR8sTlBVAu7A9W3JNw0PUK4Ti7eSrZkMuFwi3GsZv7eJS/+ViC7ITxjjSCXWJm5bKzZupNEaWPi9bts27n/5ZWwCE5MTHM7N5dYnnpCa+EBgIxOAHNs4vi//ngZXYHGh1R3NzPJP+KRkBXsbr2Rv4xUcsZ1Nndu3/86N3C4U6YNXqJheH1i0AZC32ca8v5fjdjVvCOrSoQOdO4i/zzUB2p0PHbvD6ZeJ4wCLq1/B4fEXhchOMj8VfPnTT5SUlwvj6N1GBiV1IyzJK27RNIjv1Ej6gGpp/ht27GDJunU+YVEpBi79VyKGsNDE4vMfK6fsiAPMFjjr5pDSBKLelcS2mhuarl2ag4IIsWBwcO/exMfEsK9A/FsnRKQyPMPfuMJiimBi78u5dMhtTOx9OakxnaX1nNC7+ZnR6cESKxY+Lt+wgW/nzZPme8dVVzX9Oz01lYdvu02apj1s0yWII+xd22zG5nbDD/+QZ3rnVEhK9wveNbM+QGRfBl4Zej9ridHTcbC43R1aU8NiiSlUQmwspw8Z4hdevFcuYLYm5QAQH5HMjaP+Rkp08+eOiLejM4g3S5Uk7KXeUMmyDu/TaKgRxm0q1+Nh6a+/8tfnn2fFxo0hpQnGkWjf9l5T4KK+PPC4WVPoZN4j5Titbd+M6XbC7AfKQjKH8SEhDXpL5vbrfoKq0jbXKShH5SfNH9FFYYlyEWNJICX61M3dO8RloG8h2NTpwBwunscEMzIByDjDO6Z70JNnHyEufOX3kBfcbAHgmM1fUBjXxSD1Etk9q755E6+mwfm3w8sL4Jtj3v++yIJpB3C/v5WXU89l4pYGLq3rzSTzOUwxjWSJvgMFmoUDWjQfGnoy2XIGnyUvp95Q4VuQBtd/lUzm2MBzmWzbBHFFPR7YusQ3zNYIXz0vTgds0SfxqKcv1Vpg8eepYs6yZdTUeUXtq9fupNopNqrr2jiEy/88WCrm/XXHDhxOJyNvi/JZK5Q5e1Lm6H7S9W7NVGM/tusl408IdKsdiX3MIvQGD5nxyrUAACAASURBVF2HVaHTyzeo2h0OHnjlFbbtC7x2WbJuHeu2bZPmc9+NN2Ixm+nfowcDJcYOJZYjQe/Vl7k5uOT4+mv4+RAeFTSuiN0NVwEaST29z+CsJUvECYDEjHrMES5M4WJztaJI73flQU+RI/gcHYADgnFpu9jIZI8ujoYABkAGtxmLK6bpeq9zMYeK/c3taq1VLNs/g5fn38kzP/2J/YVb/eJYHQ18tvZ1dlXPFdbFrTkpC8sWxtkdt5jcKPmzAlBiOUxB+B5KnH3EEbN3BRa97wtulApeo8XW664aU5EwTd/+zf1CeLyexB7iFwW5m7wGbYN6+6/pW1JUVkZRaWjjcv5W+bwgfWhrIxNxP1t6yNFsDtQGGm02Zi9dysfTpzNr+SIcWnADNi2ugcN5OcL8IhODG9olZdajN4jr2GCs5EDMSpa+WsWeub5z6MpcBz/dX8b0v5S22WBEZmQSbU/B4DHTUO4md4PclK8lltjAfyLU0Bhc3nZjLE3TuOFi/3SjBokNrKvNRTTofcdHW62Hhc9W+oqKLrsfjCe5htcb4A7J+igtE87608mVA2ytvxk3vu104GT/tdOeQ+J33v169Gi3WXJ2qXienJkk6eOACHM0vVKHMKnvZG4Z8yh3T3yRm8f8nYxWaVOi0xnd7VxhXh48rD8S+P1r/57+5uct2X3oUFCRWWI3I1e8L38HctR2hvA+DbWBDb7qq6H4qDhtxkBcDg8FO20cWNTAtu9qeXtkHoufq8QtHrbpNsFCTIe2v082hum45r9J9D7P0mwYqkHnkWZu+CqZ8HhvYPpQM6YI8Xeze19fuP+jgPd+0aexotXfesKdXhNcW5zXyKRHysA211+hUCgUCoXij0QohgjK7ESh+H2hzBMUit8HHrcaHxUKhUKhUCgUCoVCoVAoFIo/MsrIRKFQKBShc2QH52b/Io1WoFl409Q/4L2MmuF+YUk9jQyakEb3zmLh8b68/UFPGASocIpP96S2IvBp3YHY+DOUBRcYAhyxnkUFUaxK/omnzEO5zTyGzTJh8W/Et4YMNumTmq41NGJr5ULulugx0L/yXCZnv8ZlOS9wzZE3OfvIw9wwaTK9MzPRNI0OyclMufFGaV6bdu2CCdfAR7tgTj3MrISX5sMZV7D5W6tUTGswa5z1pPfEyP989x219WIRtcHkIrl784m3XRJ6EW7yFZNFJNgxR4h3jW/Zs4cjx/wFIrmFhXw5Z44wLcCB/EPc/NhjHMzJkcZtC+ZIHZ1HiQ1kjv5qxV7vu9GiscrFnL+V4xLojAokRiYxtjTCXXF+4RMe8orSbrj4YtKSkvzut8TucLDE8yWe4xtBChxDhfFDYWv9zaw0isvFo9E1unuTIDhUMsaEceFrCUEFvl3qThOmt9psAU1v9h4+zAOvvCI9Kb4lxwoLufu556RtIDJRT3KfwCK2IscgviqbQ7Z2QVOYx6NxsPF8viydxxHb2cK8PXjYGyvv+/tWTkKTLC8OLW3kl5d8hUhjTxN/n1l5eeQXi08m5+q/C2/vbbiMbJu/AQZA5xG/rZFJaUUFn86aJY3XzdMf+6hlfuHxXRoIj5WLBd/96iscTt8+rsvIMK74dyIGs1zw5GjwMOu+MqzVbrjyQTC1rd0AuD06FlS9hcPTLMwqCN+LUycW000cORK708qhEn9xa0v6dRyOTjs1S9hhXScSYY5uuo5MOPlT4EcPHky/7t2paiin1loFwBVnn82YoSff57Vmq0xIXlsJR4+fvL1hHuRKTKtSusLZN/kF15W6OLIysFHWCWLS9XQa1rZ2FMyw4AQHHdupbxSXe+H48Rj0/uZ4xfvEfaw9rhC3yStyHd51Ega9kTN6XNR0X9NBVJL4mc0z7Gdl2kfY9XKTtN+C/Ii92HS+ZRftDvwMb/ikts1i2ZbY6z3M+GsZNYUS5V1rRl8qvt9QC58/3e56+XFUfNJ8OWaqNDOmxGp6pQ5ptxA0EEa9iQ5xGT5h5kjx9xWKkQkgPzE+BHLt/nlc/k6itB2WZzkp3CnvG6fNmMH0hQubxna3prHKkMoj5uFcYDmHaywT+cDUh1rNSLW5iEXpU6k0NX/+QZMj6DjYzMS/xwY0kjtqOx2XRyLq3NRKDLvgY6goFCZxovGysb/XpOU3xmqzMesX71zq0y/lpliTBo3DEqvngvHjhfHqGhrYdeAAUakGBlzRUhStccB6UdB07WGBPp1vDZL1dghYnLF07hiGI8ZrmBAW5SR9kNy0Dbzf430vvsi+I74GI3UNDbzxySfS9L0zM7mwxXc6caTYcKneWEFda+OdFmz7zms+h9kCp18uLb81bo+efY2XoekguZeRmro6P2O61hjMLmJSvWNYVLJ4rCpy5dKo95ptFTnEBgIc2QbOAONnaZ7ULGmDLjFgeLQ9Ba3FgqrUIp7nARyrOMyrC+7ms7Wv02j3ru8PFm3nqVk3snz/TMLjg5tUnKDYEtwMoN5QyZ64xdI8WrIjYR7FDonI32EL/D1JjEwKHL6GbB7cVJvE657MdF/TOZkpY9FuO/YGt9TIBGDHgdDMf/O2ip89S5yO+MzmfruiupqVNXNZm/I5WxJnUhqW5ZfGZYeKnNDXyeA1NDjvjjt49t13ee/rr5lx9Atmd32O7MgABgRAY0aOVFQWmRh83NMbPST3qJXWa0/cYqy6OhY8XsG7Y/L59pYSvru1hP9eUMShIAa0gTjtT5FMWd+RgVdFSI1M4mztM2gb/1AM967pyMM70znzsViMFt8xMbWxJ2kBjG1FnH366XROS/MLHz1YYmgLFIb7P4M5a63s/LHF+5CENDjnljbVyY+r/w6ZIRguXPek16GunTjcYeysv8EnLCZdjyXWdw1js9s5dFRskNGvR4921aHBXkdhtTjvzMR+7co7GBcPugVNsm5fe3hBwPbYX/I5a+vryS0oCHq/42Azkz9IJCIpePk5trHCMgB/kzyAnN3SZDlF3flgYgFfX1/CnIfK+eWlKuz1oa3Fht7gb7wbKkaLjov/mciU9R25/stk7l3TgWs+aTYxAdAbNbqMFs//czdacUy4FV5aAGMup8Icy2ZdAi8aB/GwabjfvLnJyCTea2SSHNWx3Z9BoVAoFAqF4o+AMkRQKP73CMWASKFQ/PaoMVShUCgUCoVCoVAoFAqFQqH4Y6OMTBQKhUIRGg47vHETxhD+ePSMaQj1AU7kTW3oSbzdf3P90Osj0TSNkZLTOfcePky3c4IPXVIjE4C80IQZLPhQGmVHw/VsTZyF1eAVMmzVJ3KHeQx3mkezQ+dv/BCU3iPhoruhe/uEzj/rO/IPo+8JyzGOFExuS7vy09AR4YzD4DFRedTJZ1cUsePHOtwu7x/xr7ngAnplZAjz2Ly7xebusPCmjc4et4cDC+XCjVF/iSaus4FFa9bw3YIF0vgpverQG5s3Gfxp9MNcMfQvvp9Lg4SuYjMIgB8X+p8K+vbnn+N0hibgtdntPPPOO6d800OPM8W/p8sB2Wt8hV0rp1bTWBW8zdYbKqk2i0WeHRr8RVt9LgwnbYBXMGU2mZjyJ/kptbuO7iGv03oACuwnJ+ovc3RnZfWTlIYFPyUdINaexgWPp6E3tl2g2vu8cM5+OnA77lIrr/+iNWt8rp0uF0/9619tMjE5wdGCAt767DNpvIwxwQUJ1a7O/Jj/H/Zdu4svSufxUckaZld+SJWrqzTfIssBKsPExk4WZwxda4dJ8wLYMb2edR/UNF2PHSZPtzqAMYwPfUbB5IcD3ip19GRp9fOB02mQ3kYDhrZgtdl4/r33aLSKRZcmzUTY2ctB7/K7p2nQcUANSE5pO1ZYyLzly/3Cu4wK44r3QjMzqcp1MveRctzxneDRr8AgPuG9JS6PgXmV75BjG9cU5sHD3ji5Cc6EESM4XLIbh8h1CeiTFtozFgpGvYnTu53XdB3XqQHZdywjtWcDd385ifu/vYD7vjmf1xfcw77CLTx3770kxMaeZI192aqLl0fatdr7/+9fl8ed/JD3ZPJW7JlTj8f/sfRh4BWRaLq29bOZ48QCqqzoDdI8Lp44MWB48V7xc9SYnN30795pXgHxmO4X+IitZeJwt9tNpVncL/6WuDUnxyK3+4QV7vL/3I3VLvbMls99ZNQVu5jx1zJstW3YRHa6xMgE4OeP4ciO9lesJRIjkyO6KMKcUXiSi+ma2DZBbih0Sejlcx0WJZ43ZgmMTFL7mbDEedc8J2tk4vCYKbT7CofTTzOT0M1I/8sjgqRqZtdP4uenvKqKj374oU11ajRUszj9bQ5GryIs3sO4B7z9Y3yGka6n+/cNDk8k+XZ/M0wftiwC9/Hn026FH+T93ueG7mTpoqXxZGSkp/Ph80HmGS34bv58Nu/ezfYS8Zwm3BHHlXd6Td4mjR4tzXfN1q0AjLwj2scI5kDjqTMyqUzM4AXToJM2fYm0JzK2+lqqRvkaRMZ1tNKxf2hmJnUNDdz93HMczs1tCvvg228prQhuOHKCR//8Z3QtBOmn9ZMLt0ssh4Pey99qp+TA8b73mkfbLHbPsk2g3p1MYncjpggdC1auxGYXj2FxnRo5oQ2PloxVAIXHTSsL7RIjE1tj4H5021JpGRv1gc0lox3JPtf16XuleZ1g+f6Z3PXlJG7+ZCQvz7+T0lqvQNoY5sYcKV5PtTQyiUrV03mEmW7jw8gYG8bhXvNx6dq2Hqs057PdGMIc8YjvuExFERTnCJMUtloX1xsqcenEz0BmJ993ajIjE7cTCrbb6Z2RgdkU3BgYYGeoRiZbxM9exyHmJsOwRWvWcMndd/PDhh/JidrM/tjlLE5/i53x8/1OoS6RmNG1pKi0lHtfeIHqWl9jEZu+nnWpX7A14Se/ze8lUWJTHjQPERJzw8Su9RjM4smxQ29ld/wiAKzVbvI22zi2Sd5eWzLmnmjOfDQOc5SO0Q+ZqDOJTZkT2mFkMuov0Yy41TsOajqN026M4o6f0xj1l2jCYpr7s0HlF4ecZ3xMDI/++c8B7w3u04cwyTNYGL4/YPjyN6qoymsxt7rqkfYbjKT3ghuepqHCRVWek4psB6UH7VRkO3A7W7X1jt3hzBsC5xMCexonY/X4rgNT+/l/Bweys3G6xM9V/+7d21WH7DKJoSWQmdS3XXkHIy22C0M7jxPGKajKIafM//ce0LOnNP9dB8VtudPwMG6Zmcp5L8Yx+NpI+lwQ7nO/2tWFKqekzWwN8B4jS27INfudDsL3sMFI6GY4JSa7pnAdHYeYscT4G34CdJOsw112KNpjhxHnw7MzuafHrdwRdgYzjF0DzgMjnHE4LdW4LF7zsaSoDif9GRQKhUKhUCj+lwllb4AyTVAofl+4Pco8QaH4PaDaokKhUCgUCoVCoVAoFAqFQvHHRhmZKBQKhSI0bA2QKjcK+caQyeYAQpZIeyKnF9/kF26O1uhzoXdDsUxI5HS5sGfmoQXei0tlKEYmx0IQZpQcg00/C6NUO9NZr0vyF9pqGhv0ydxsHssN5nG8b+zNEn0aOVoELbekH9Si+cAykEMvLod3foUp78P7W2B6KZx7m7yOx1mjS+Zp01A8rTYTJzR2FaYzWjQiEkObBjRUuFn8XCXTLini149qyNtsZ8xAsZg8Oy+PsspKv/CCHXbqSsSb8+MzDAy/NYq9hw/z7DvvSOtnjnCS0Lmh6bpfhxH0SBnImX2uIC2mq0/cuPRGNJ14g9Dc5ct9TAe27NnD0l/FJym3Zn9WFss3yEXYbaHbRAtItIOHljWbxORttbFrplh8mh8uFv0CpLUyMjGYNcY9EOMTdt7YsSGJDTaE/0SdoZwaVycK7EOk8QPh8WjMr3wHO0bKwsSnyo4Y1pcek8KFcUQMvjqSsffH+IVHORNJsHYRpl2zZQu19c3f/7zly4WiZRkzlyxh406xaCLjDLEgAWDe1BiKHQOpcYUudNobF+Ak2lb0rpqAntBNL9a9X0P2Gu/zelrfvoSHieu+essWeaa3vQJ3ToWo4wYPpjCyTZfzQ/l3WD2BTWmSexmDCjxOlpq6Ou5+7jnWhFD35IElaBHBTZ7CYx0kdGkIev8EH/3wQ0CznC6jwrj834noQ/iJctZZ2fRFLYy9Et5cBYnp0jROj4nZFf/hgPUSn/Biy0HKwnKEaXt06UKntDT2FkjMaoC+HU6dkQnA2J7NorywSBdx6aGfkN6aiHgbWY0raXR4273H42Zv4WZe//keZux8m9f+PoWYqKiTrvMJjmqRlCMROu1eDbvXwN514ngxiQHnHh6Ph50zxOOIpoN+l7a9n03sYSQqJXDbqzdUUmQRz9f6dutGj65d/cLtDW4qcsQGEtbkrKZ/90z1GjwkRKbQr+OIpvBQxOG/JekpKdI4OZG+baZot7/wduf0ehyNp2ZjdNkhBwuerAh9o3XnPtBtsDiO2w3/eQBOxeZtiZFJli6KWHsatrh80uNCWDO0kc7xvqfHmyPFz2FldTVVNTUB72k6rcnQo9TZmwZXGwwSW1FgPw1Xq77ihJiz+wRLk2FKMPYvaMDRGHzz4Hfz57fLpM2ps7IpeTpzurzIR3O+ZsuePRzMySFmsNVP2A6QbRsvzrCyGLKOm+L8/F8oLxBGrzDH8rFRPneVMaBnT/7z3HOMHDSIwX38zf9aUlhayh1PPSXNc3DsaJJ7eH+zzmlpdEpNFcZft20bANFpBga0MKcpd/ZkX2Po4vOgDJnEW33/hFXzN7s6gYaOOFvw+UJiYwYji6/nkrJHqT7vC9xh/mNLYkYDqb0Dt4nWVNXWMnnKFD7/6Sfe+OQTvp0/X5rm8rPOYsjx36i8rojpm99ndd5XGI3iNlASFtzIBGDbd17hLl36wo3PhlT/E+xuuBqAtEEmPB4PM5fI59wJnZrngxEJdunatuC4kUmRQ9IfAxzY5B+2fZkwSSN6dgYxcY22N49lDamHcEb6vx9oD5GJYqOJioijTP4mkgc2d+SuXzpwzbRkrngviT4PVbPb1r41+vLYTdjcknlcVitjrkDfZytaG3xWm4qkaTLSfdtapxBMGXM3WjEajfSTGCHs2B/YRKIl1QVOaovE73TSh3qf6Y9/+IFH//lP6hr81zG74heyN9bXKKB4n/i3bcnUzz6jqpWJSUv2xS1lZdqH2HXNZWc1iD9feKwDvcFDn7TTCDMGnt/qDJDaK3i5JzgUs5paQ6k0XiBG3BbF6LuajbYOZGcLYnuJa6ORyeBrIjjjPn8zr8hEPWOnxHDnkjTOeiqOhG4GEmydyagZESAXXyaNGsV3b70V1MDRbDIxVPLetyj8AJ4ABtqOBg8Ln6rA4z7e53XoBuOultYpEHt7/ov/nF/Be+MK+Pi8Qj65uIjPrijmk4uL+NeIPFZOrfKd+1z3ZLuNvLbU+6+xAhmZ7Dl0yC+sNf169JDGCURWqXiOrKH9JiZ/Z/S4QBpn7WF/4+quHTsSGS5eXx45dkyad3icngGXR3L2U3Fc9I8E7l7egYik5jH/qO0McQb71kNjnW9YtvidXK2nI3ZP+0zyRt4e3WQA9VuSMVZuep6/rbkvLioTmyiFO2OxxXnn3dFhcZiN7TNVVygUCoVCofijoExKFIr/PVS7VSh+H7jdyshEoVAoFAqFQqFQKBQKhUKh+COjjEwUCoVCERqRsfDsTL7tcx21BBYx5WgRvGP0F3DFWztxTv6DWFz+hgADLo/EaPEORzLxF8CevP10GRVY8G73RFHnSg54r4m8EIxM1sxoPtE7CNsar+LX5OnBI2gae/RxfGTsxSPmEVxmOYvTLRdxcdgkJlrO42rLRD7UMpjy36+pqG5x+nRMIjz0Cby7EQaIT6/crovnYfNwnJr/cJ5g7SpMe8nUBO5a2qFN4uPKo05Wv1PN97eVcvR9saAOYPPu3X5hB3+RC/EnPR5HVX0VD776KlbJidQAaX1raPkVXDbkdgD0OgPjevqeRG4weYjtKBaq1zU0sHD1asD7x9I3P/1UWodAfPj996d040Nkop4OA8Wn12atasTl8OByeFjyolgo5sbN/tjlwjh6t4lkazefsOG3RBGd5tsHaJrGQ7fJDXhsLisbkr/Bg4d1tfdL4wdiT+OVlDj7U2nOk55WPeGsAe0qoyWj/hzNJVMTiExuFtwnZBq47CJx+7Q7HCxaswYAm93Of7777qTr8vx77/mY7LSmwyAzpoiTFz70uTCc+9Z15P6NHRnzcTVF4eLTbsNN4Vw46mzMUW0re/k/qvC4PRiNRkYNFosrN+3aJfzsABiMcOWD8GMZzKrC9mkxM3LfpsGdGDRJp1Nw4m0gDh89ys2PPca2ffLTj8OiHcR3Ct4vRZi8QpjU3rXoTWLRYGFpaVARbNfRYZz9TGhi+F8/qqGx2gV9RsH7W2HIWUHjOtxhzKyYxhHbOX73dsUvlJZ1zpgxAOwtEIs9O8R2JTY8+G/ZHrok9KRLQq+m69RedVJBcDBSetQFvbf+yEKmbXmEO24dT2w7zEy6xnTzD9Q0tunjxQl3roDPn5YXcOl9EOY/H8jdaKMqV2zGkDk2jKiU4OL2YGiaRmaQ06BzI7eBJv4dLp44MWB40W47ATwQfGhM9opB0+O6E2lunpuO7dE8ZzCGubHEtN2c4WQx6PU8dffdzPvwQ4b17y+MW2w5TIO+qum6cJfdZ97hcnjY+k3w57I9HF7WyKZP5eJdwCv4vOkFebwdK+CeYTDvQ9iyBBpCzL8ljXVQLDY3O6JFEe2Jx21uJD0uQJs6STon+JpihEmMTACy8/OD3ssce6J96DhmH9XueuXaTve51hmg5zlegaHeqNH3IvFawF7v4eCSwGNUo9XKDwvl/byI0tpSps2Ywe1PPsnVDzzAwwvu46cuz3Aweo2PkDnbOkGe2Yb5YLfB969Jo36g6yY05pCRFB/PQ7feyicvv0xKondsuv6iiySpQuP6q33H3DFDhwaJ6WV/VlaTgeTpd8dgCGuejy2rfo6KUMw+W6LTQ78xcNPz8P5WPK8tYfVBsYg+vW4gFxx7lPEFfyG5sTtmZyTx1k70rTyLi44+ybn5f2OAcQzVf3oPa+qRoPmk9KgnuUfofcBbn33G13PnSje4xkZFcf9NXlPVTdlLeezHq5m343M25izGHCNeG5aGi41M9s1rwFpzvPzrn4LTLwup7g2uOI5YJwHQYaCJ3YcOcTAnR5gmIsGGObJ5Lqg3eIiIF6+HCsP34cZNjasj9S7JPOrARt9rjwe2LxUm2aaLxxHEabalkUltN7mpR6hEJog/s8vtYm/FDoxhzS8JPB4Pb06b1u4ya81l5Ho6iiMd2d7qepswustjpNjha+pQYyoWpjHo9XRKS/MJC4/Tk9hD7FaYv937nQ3qLTYr2J+VhdUmNnPL3yo3e0sepOPpt9/mvW++EcbbnjiHoxHN31PhztCMTDbv3s3itWul8Qoi9rIo/U0a9JU06qvJrww+7gJEJno/W/fkAQzoGHzsje/UKB3n3ZqL7QlzpXVszZDrIhn3YIyPocG+I8H7zaY6CcykWnPaTZFMeiJOaJpgCtcx5NpIbpudxr1rO/Due/cxoIe/AZglLIxrL7iA2e+9x5uPPUZyvHh9Mlqy7rfp66gyFQa8d2yzzddk8ZpHhXkF4mjyrcz/qh+1xYHX1S47bJxWy8JnKpvn1Z16wYRr21xWlnUiFU5/86DU/gGMTA6Lx5q0pKSgBjHSepTuFecd2xWLKbJdeYsYmH66z1orEL9mLcbp9m1LOp2OXhkZwnTZ7TAJjkzSc+nURHTHp385trHiBK7/j73zDoyqSvj2c6dkJpNJ74UkhNBraAooVUQBGyJYsGDBXl9WRV1RVtfG6tq7IoqKKCIgAgKC9F5CbwmQkISE9Db9+2NInZlzJ8F9P9/1PP/A3HtumXJPubm/59hhz5qmy3aJ76EWWFonhOl2dZDXPrnL5WLd9u289NFHvPjBB3yxYAGHsrLO616zOVpLeIq4D5y7010X1loslPgQL9ZhsodjiXDXrdHBKu2kRCKRSCQSyV8Ab4JmiUTy58bpkvKE/z7+86JQyR/PX60NPVVyiju+vYPxs8bz4A8PUlL9x4jgJRKJRCKRSCQSiUQikUgkkj8rUmQikUgkEr8py3Pwc1ZfrjUOZ4Mmusk6B/D3gN4egbC46g5ckvsQgQ4vMxIqkHF9w8PSEaGhpLURzyK6c//++lnEvVFsVwkmnvJDZLJ5sXC1w6XjW0MoVfpi9X01wqJoOaUxU6I0BOfzCgt5YuZM7I5mD9F37AczV8PzP0FSR5qzWhvHg4YLfAbwogQik9guetpeZESjVbjs+QjaDfUeJBYRXdsWjVP84PPWzMwmr10u30HIOoLjtMT31fDYyy9TcPas6nkERVoIiW0I0nSJ70uHuIZgRP+2nuH7qBR1mcq8c6HMX9auZb9KoMAXh7Ky+G1z62Z89kX6CPHMlpYKFweXVrNjTgVFR8QB7JPmnVQEnBGWia1pj9bVEIoKitLQ/w7vIfxenToxbuRI4f4A8k2HORqynizLcI77E0pthN0VwPqKRwEoNB5XLe+PHMkfOl5q4p6V8dy1NJ771iRw+8J4Jlw/RHW7D+fOpaa2lnlLl6rOYuoPuQUFvDNnjs/1Wr3iU/TkL71vNDPm5QiMIRr0gQofLPhSdZvrr7ic8TOTeHB9IpMXxHHhFP9moD173E7eXndY7eI+fYRlrTYbm/eIZ7+tR1EgKJSc/XrUnj1K7nd+n1dz9h09yrTXX2f8ww/7Ha5J6FLuc4JnraLlsVGvM673FHQBLmLTq7wXbMSn8+b5DCB2v8ZM75vUQ0rWSleDrCAsGv651B3O1TcNXZXYU5lXPIcTFk+xzxnjUc4EiutPo8HAtaNGUWOtJKtILH3pktBP9bxbw8Udrqj/f4DJQWSK+mfcHHOkBXO0OHhZba1kRdbHXHplPGEh/s/SPHbYMP55w3RSyz3f9hyQiAAAIABJREFU/05NpHjj4ny3JEKEwQRX3u+x+PQeC4umqrfD3ccFqZbxRdoQ721aTlCm1+V16HQ6LhvsXSZ1apt6uLb2nMikY1zTIGXvlCGYAhrauOAYFXnSH0x4aCgfzZjB+FGjABg9RKWdUVxkB2+vf1lb5qQsp6E/eWhZNZVnxPKj+O4BPLwlkamZSfQY7993+fubZZza5udnc+FY6OMpOfLg6A546x6YdimMC4dHBsLnz8C+9e4gvRonxAFNgGOaYEyGAIx6ExFBsarlW0pyRPsmrw3+iEwE7UTqQGP9s5anmslIWsIp64Cm+x1gxBTeIB3ofo369771iwpcTs/vYcGKFZRVtEI8o0K1vpStMXNZF/c5dsVdtxbaO1PpiBZv+OO/4btXoUgcVK8OjeVHEoRlBmZkcM/11xPaTD7VJi6OZ++/n58//JCbr7qKAH1DP3n4hRcSF3V+wq22tX0YOKZpeHegisgEYOMut0DBHKOl780N7Xy1M5rPzyxnZdl0CqwCOZKiQO+R8MRXbiHcG+tg0rOQnsGxU6dUQ6yxNe6gdlJ1d0bmPsz47Je4POdxMs5eRagtDnOslv6vniHHtFH1vcR1rCSqbcvbYhGP3HorYSEhFFXk8cnaF7A6GtoKNSlGub6QGm2Zz/W2Ghf7fjp3vhoNPD4bUrr6LF/HgZqrcOLuVyX0NPCjDxFdYyKTPcexITHids+qrabYcBJQyLf1EB/gUDPZSM5h1etpi9b3dRlia6hry9O2+CzXUtyyCXHb0Hwc/tvmzezYr95WiNgldoXA8d1NXzcXmzSjyNYRB03HIjXhYpFJcnw8ep3nfZg2/cRyxvxMKw6bS1VkYnc4VO9/5GwX/+aUQBvPf/dPFq9eLSxXx4bY2RQa3X2zgv1W7Fbxd+twOHj1k0/82jdAecAZViW8T2G0umAyOMpdH6REdiQj2bfkQNFAXGdxvQhwMngnRYZsf0+VblcHMWJamIdg5MBx8b2PYGsMepf6uNYUoWHcu1EMfzwcjdb/QEdgqJakzsHMevklZjz0ENdccgljhgzhmXvvZdknn/DklCmkJPonMFATmQCcNfqW0617uwxL5blBfrtecMEYv44LYA9JZMHuqX6VPfhLNcfWNOrv3vA0PgftPthedYfX5bGdPUUme48cEe6ra7qnEMVf1EQmadFdWr1vETqtngvSxPcIK2pLyczx7Bu0TRKLeU6cPt2qc0rMMNB/srtvd8o6EJdL5TvdsaLh//nZqnL0Mzb19r8JClz8UCiX/SMcRdP0XGx2O9Nef50H/vEP5i5ZwrylS3lj1iwmPvool0yezNNvvOFVIO4PiRliSfbp3VZcTpd/9+VtDSKTmBApMpFIJBKJRCLxRzr3VwtqSyT/P/HnepPXpETy5+CvJBV6cfmLDP54MKtzVrOzaCdLspbQ++3ezN0x9//3qUkkEolEIpFIJBKJRCKRSCT/MaTIRCKRSCR+UZZr54sbTuEqNXBGE8h9hgG8oO9BDe4g3CxdezK1TWfeTKnozdDT9/h8oL7jpYGEtWkawujTVfzQ755Dh0gdokNn8P6wseqM0yoPHVNV5jnjYjMOWgewKVQcSmkJWzMzefOLLzxXKAoMuBI+yoR/LoNrH4MbnuaHQffzSEB/KhTvDx7rnAGEWuO9rgO48K6Q+mCERqdwxcxIkvqIgy/N0br0RFlShWW2NnugumCfjfLT4kBth0sCeXfOHPYcUhfOKBoXSd2bCgDG9LylSZmo4HjSY7o3WRYYZiMwVCz52H/sGD+vWcPbX6pLHER88O23qjOEt4T2w8UiE4Al04pZPdN32A7AhZPDiephuTZVTT+7ix8KJcDku/v42OTJfgU4t0V/T65pL7+V/x2ny/sM3t7YVTWJcodbdnQmUBzmMZsD+HLbDJ6efyMzFt7Bol2zqLWpS2x8oSgKYUk6giLd5xsbFUXvLuLAR2FxMe9/8w2ffv+96v6vGDaM7h08ZzhuzteLF7P74EGf69te1Hoxh0YHF9zZUD+s3LhR9VoM0Ou5cexYABSNQlS6nosfCuXW72MJMKsHfY6sdMuNLlIRmQBs8Vdkco5TW1WEBgotrvt8cfD4ce585hlumjqVX37/3e/tgmNqCRYIMCb0e4D0mO5c0mUCpgAzkalV6IzierSwpKRexuSNoVPDSL5A/X3vmFNJ1dlzx9Jq4bZ/wFcnyen9POvLH2Vp6at8fuZXcq3eBSN7I5apHmPCZZcRERrKofxdOF3i99U5vq/q/lrDgHaXotM0JFNj21ei0flfb+sMDtr0KvU713aofA2XXhWvOqO2ISCAh2+5hX889BBxnQJpX+4pMtihVRGZ+MPou7AbIji2pobNn5Wz4YMyZk/IZ86NZ6gpEX8OpkgNaYPV2yVfJPc3oG3WlanVVFJoFM86f3GfPoT7kMHkqIhMLOG5OIyVAHSMy2iyLkBnYHAjsU1jUVpLMJtM/P7VV/zw9tt0aaci2DtH57Q0vp45k96N+sGXDBjgNazcmOzgbU1e52W66xOXy8W22eqCif63BxNg0qAoCiP/Hk76MPU2xOWARVPPUlkovmYBd1/2njdA439bj9MB+zfCNy/CoxfBwwOgUEUMdXibeD1wTBOCMdhGUng7j4DwH0GQIYQoc0P/W6t3oVepr7NOnfK5zhShJa6r+wI5YW2dyMTqDCTP2rPJsk7NhJDRHQKI6ypO5xcesnFoeVMZod3h4MuFC1t1Xv5y0ryLXxPfPCeRUMiyDBVvUH4WZj+rut9Z1X2xK+LbodMfeIB7rr+eFZ9/zqyXX+YfDz/M92++yYJ332XcyJFNBCZ16LRaJo4erXp8X2icOq7tOgGNrunvs1+3bqp1wfodO+r/3//2EIyhDe/PSQA7qu5gdtES3svfyi8lMzlQcwUVIT0g4xKY/CJ8eQJeXg4jbgJz0/bJn5BsbE17n+u0AXD95zFsrvLvAUxFgYSu5UR4kXa0hozOnbly+HAAft7zpcd4IEhFZAJQoCJm2zm3skH2YwqG5xZ4fI7N2Vs9EQBDiIIx1sbStWuF5bV6J6HxnhKpYBWRCcBpkzvEnmdVEQhk74XaRp/PpkWq+96i8TH2cymE2NySE0tYHpZI/wR//qALcKl+b+t27KgX+9lsNt7wdr+lhezTqbSRJQVuiVwdKiKTM/amY8muV5rQdxaHxn2F+5MyxH17u8XFmYNWenT0lOQ2Z7dg/OdyucjeKJaZ7Un7nh0H/JfGODV21sR9RIWuCIcNzhwQf7fzf/2Vw9nZfu8foMyQx1qzbyEouO8vmcLdx06N6kTPNoNQBG1FSKyF+ETfkuU6MiN8j8vq0BkVhjzmXWYAcOCYuG8cq01WPUb6MCO3/RhHOx8iQX/QarVcOXw40x94gBcffZTxo0YRYlaXZDamXXKyz358HWcNvkUm1cVONn/SSCLz4PsQHK5+YH0AG4LfweryLub1xpZPGx0ntSuM90+CAlBo60C2xVOGE9FWhyG46e+qoqqK7FyxNKpLejrrj/7C2yuf5MnvJ/L4vPE8Pu9aHp93LTMW3sGcTa9TWu0pzy2uOkNpdaFw32lR/xmRCcCg9ur9ovVHlngsS1UR45zKy8NmV5cGeqPjZe7rtsYZQYGaeGRnI5HJNvX7Gyctg/w+D0OwwrXvRnHhlBCvY5OvFy/22Tc4W1rKz2vWcOczzzD11VdxNJejq5DQS9xm1JY5Kc6yU+CHkNlkD8cS7v79RpnFokCJRCKRSCSSvwJSiCCRSCQSSev4q4hMVh1exSe7PkGjaXqPUKPVMO3XaRwrEt8LlkgkEolEIpFIJBKJRCKRSP6vIkUmEolEIvELc4wWe2weeue5B/UVhe/1bbnOOIz52hQ+0DcEIsy2KPqfmcigglvR4j0YZwzRMHSqZ7hHTQxgsVo5mp9Fu6HeQyTFdpXAaN4xcAgedt6+XLweWKGLBUX9QZTI2mQUl39N7ZcLF7JkjQ+Bik4PfS+Fu/8Fk1/gx8pA4UygkbUpaHw08ZHtdLQf0TS4oDdquObtKKI7qk0x3JTYat+BNYCTp083mb3x8K/qYTRjRjFzFqkHpgDa9CrFGNzwXSWEpdI1ob9HueYzgCoKRKaoz/L99BtvkO/HQ9siDmdne8wGfT5EpOqJTBMHGRtTrS3DptR4LD8dmkmhQxyUMNjNpFY0CAqSLzTQ9aog4TZmk4ln779f9bycioPf4z5ln97OzqpbVMsDWJ1BbK58wH1uoQqVcVnC8rqQMvbnbSWn5BjHCvfy/fb3eXHxFMpriv06nj9cPniwapnZP/2kOot9dEQET91zDy899hhGgzhQ4HK5eObNNykuLfW6PnVQ60UmXcaaMMe4w+Y2u523vvpKdZsrhg0jKtwzOBTTKYBr3opCq1KtHFlZg8vlIjoigs5pYhGVP4KjxpzcIg7ZxXbWYww5v+GQ1WbjnTlzuGnq1BbPhqsLcJDUw7d0qHvihYzqdgMAQYZgRnaZgEbrFm2o8dkPP1Be6b2cVq9w5b8iCU0UiwVsNS42f9r0t+sMieGX3XexofJRMquvx4H332uRIZs8k2/hDrglODdfdRUA+0+LJQQKCp3iM4RlWovZEEqflCH1r3UGFzHt1NsIAI3OSdqFxQSYWvZgzaHS1Vw1MYXLB19MoNF9zUZHRDC4b1+mTJzIG9OmsXLWLCaPG+eWKLXREe9KJ8Qa12Q/h5UQqmiBIKI5Wh35He/n82vymX9/Eb+/Xsb6d8op2C+WfdXR7eogtPrWCyECTBra9GtaZ+UG7cWl0scaOdC71MFudXF6tzj8WpW0r/7/HeM8A92je0wiQOv+XZvCbBiD/fss6gjQ65l0cx/+veoh3lp3D12HVnHTDQMY2Lsn0V7qSp1Wy3WXXcZnL71EfHR0k3UhZrOq5KnEkEOZPq/+dd5ed2g7Z7tF9XsMTdKS3kiQptEqjH01kvju4hm6AaqKnMybUkjOdj9kLyld4Er1voFPDm6GJ0ZAlaAtXf2tcBdFGCjHgD6ynKRw/+QyrSE5sqmQzGAWjymO54iD/XVysmJ7OpWOaGFZb5y29sVJw/epMypepXjdrlEPIa9/twynveHaXLlxI6fPnFHdLqmyu2oZEcXGk/zSZibFAac4Xjv8vPYFUGZPYFZzg1IzMjp3JjbSLYrS63T06tSJK4YNIz0lBa1WXOeOGzkSY4D6NeSNzqXD6HdpG4/lgUajquxz465d9SFWQ7CGC6d4D4lXOWPZWzOBxSXv8sHBxRy9fCHc8BTEeB63DrX+jcFhJrRZ+9SYLmOCILKEHSf8F70pCiT1KCMswXMc0xJ0Wi1P33MPGo2GSksZ647+7FHGFGZF0Yjbnaok8bijJNvOiU2N6sPEdHhqLmi9j9t2V93IGbv7O43vbmDRmtVU14r7reFJNfVOKIOu4To2mO3oA8V1zemgAwDk23oKy+F0wLGdDa83LBAWL0fPQY13YYvZHoHW5R4IVLTbCj66C53j+9S3uy0hNE78edVaLGzavRuAr3/+mVN5ecLyOp2O6y67TFjmkCZU/cTq5CWVpZAv/t00DtBr9TDi6TCycsXtQlob79dqYoZ6vZO7y0pEaCjJCeKguUiaeXq3lbIc34H5IkMWeywbVM+lORZdJWviP8Kh2IR9ufLKSt6dIxaStJagCCsaLZgCgokyx2M2htIh1vc1oygQ1UEsiADIMx3AovE9tugy1sQdi+Lof7t3mUFVTQ0nTp8WHuOKyV2Z9E0Mw58Io/NoUxNhdHRHPWNejuDqt6Lqpaz/P1EUha7txfcSzxpPCtdvm11B2elz9V5MG3hnOwy4Cow+7le160XlY0vYvE1dntqY3J1WcnY0qtsnvwgTHvdL0Lex4iG8VXyxXTyvVTVRDUB2zQY+WvMc27J/I68sm4LyUxSU51BQnsOxwr0s3zeXZ368iayiA022yyo84GOPDaRFq8g8zoO0qC7Eh6YIy+w8uZYqS9N+vi9pUx12h4PcgoJWnVN0Bz2hSe7v8IQX2UwTsvdC7jmZ2XaxyMTqDCLX6t9vLLKdjpu/jfUpBbXabHz2ww9+7WvFhg18+N13fpWtI1FFfgWQu9Pi1z1xkz0Ua4T7/nJMiBSZSCQSiUQikbhc6s+PSNmJRPLnwp/rViKR/Of5q4hM3l3/rofEpA5Fq/DRxo/+l89IIpFIJBKJRCKRSCQSiUQi+d9BikwkEolE4hdavcKoVwIJCdLRrXgUvYuu5oKCG2lb8CDrij5mRM6TXHHi74w//jJXnZhO+/KLUATNzKjnwwmJ9wz2qIlMAHbs20fnMd4fUC+xtxVvbLdBfrbv9SqzDrtcCosD1f+A1rdwPJfl/I3LTz1BVG2qanmAGe+9R05+vrCMxWrlYJY4EBNp8X28C+8K8TrDqzFEw8RPo1skQYit6aBapi745nK5OPSrOIgWFKXhq01f4XCqf74x6ZWEJzYNL43sMtFr8KN/2xEozQIEYYm1aHT/O38I/XDuXJx+vCd/6XS5+qy/J4N2sSzxdX5s+wzftXucH1KfYlvUD5QE5ODCxdG05ar76Fw6HJ3LHbJIHWTk6jei0GjVA+sDMzK4esQI1XJOjZ018R+zwH4lNU7xjOUAW6vuotoZhSFEYfCrTkoqfQsgwB1Eas7J4iP8+9e/YbWLg2/+MnboUK/B9JZy98SJBBoMJMXF8cBNN6mWP5WXx30zZlBR5RmICk3QtUh205i+tzbMTjx/+XJOqgSmDAEB3HXddT7XJ/c30v1acTi6JNvO2ePuENIFPcXhyoPHj9fPrG6tdlKw38q+RVWsfbOUJU+fZfmMYo6tqcHldFFb7uTMQXGIv7lAoaVkHj7M9Y8+yifz5vlVbzVGZ3C4BRg+2hODLpDbBj3ZpE67tNv1GHSBRLSpVg2slpSX89CLL1LjIxQbGKZl+JPqv91d31ZSUdBwrGNraik9pT7z8b5I9dmKx40cSXREBAAH8sQik5SojpgNfoRHW8ngjlc2eR2VVoXOIJ7VWNG4aNuvhMCQ1s0Evf30Ujpd4GDtV1+xY/58fv3sM9565hnuu+EGhl1wAWZTQ12v0SpEtdPTvqypwMOhaNiibbncoI7SrpP4eqqR0pOteA8KdL9GLLfyh7SLm16HOUF7hOV1Wq1PuUf+Xit2i1oYfT8AsSFtCDNFeawPDYxkeOdrAXdANaFruWrAvTFxXYrZePo7jhXuo7S6iMNndrK3cj7VScsZNTGE156fzPvPTWf6/ffz4qOPsuDdd3n6nnsI9CGxGj1kiNfljckKbrh+8jPdbd+22erCoz43BXu06/pAt9yuTmolouiIjW9uPcPbA3NZNLWIpc8Ws/KfJez9qYqasmbXz83PQUik6j59knMYPv6b93UFJ2Cv99nK69ivCcNsi8YenfufFZlEtFBkcuqUcH2dyAQUTlkGtPh8TlqbbtNuiJGAIM/xWZcxJgKCxH284iw7+xe7pYQul4tZP/6oevwBBZO4OP9OOpSqi99E1OhKWZH4FjsdvSi3n19A8mfbFVg14jZ75KBBrd5/aHAwVwxvuXDFaA+mW8VIn2OxQb17C7cvq6hgf6MgdMb1ZkLi1a/jJdPOUnLCd3/J5XKxfd8+n+sBYmrSheP+Pjeb+f3wQpwucbvaHEWB5IxSQmJb329/6OabSU9xB6jXHFrodQyg0bplJiKKgtVD5mvfair7oe+l2J5bTlUzCdHOqlv4rfzZ+tdx3XV8vXix6v4jkhukoOP73EOnePdvQlEgOFoslTprOIFFU6UuMgHYucr9b0kB7BcLKTZoY3D6EKyGWGPr/1+ettVjvYLCQyNe5cnR7/HCuDn178dfQuPURVq/bd5MQVERH3wrll0BTLz8cv5n8mRiIn23VceUYOy+jCz1hc6JTI7vVj3mGVvDva/kC4xUWMu9ju8a4yvcHxynIzhOfM2f3uX+zHp27Cgst/vgQZ8Bjv2LxOe3J+IX4XoRZYY8Dob+xundvr/b97/5htKKilYfQ4Q50l0PpER2qB+DZSSLJQcaczkD+orvYboUJzlBmR7L2/QzMOmbGMa8HOn13mgdh7OyVAM1ndPbEd/dQJ+bgxn7aiR3/RLPYzuTeHR7Erd+H0uXsUFe75X9/6KbisikNOA0dsV3veywwto3G90Pim8Lzy+AH8tgbgF8nQNfHIfPDsH8Enh/J9v39KE1WcEtnzUSbOj0cOcrMOso3PgMRMR73SazegKHaq/wui6um6fIZP2OHcJzUBQ4Xrle9Vwrakv5Yv0rTUIfR894/vYao9PoaRORrrrv1qIoCoPSRwvL2J02tmStaLIsNTFRdd/ZuWI5s+ic6mSOJywXqW+w8kv33xJ2rhAWO2EZ2EQg2JywZB2pA40MezyMW+bFEZ7i2/r72+bNlLWgrps1fz5FJSV+l49sq1OV+ubuspJfKJY1Ge3BKFqwhrjLRZulyEQikUgkEolEChEkkv97/FXkCRLJnx2X86/Rhu46u0u4fv6B+f9LZyKRSCQSiUQikUgkEolEIpH87yJFJhKJRCLxmy6pvTBPWklHpQedS0eQXjGA5KoM4ms6EWlJJsQWg8GpHmrtcV0QHUZ6lzHERkWRFBvrdV0d2/ftI3WAAa2XZ36L7X6EE3MOeV/ucMCWJcJNT9i7UagTh7CiatrSocwdeAi3JjAy51ESqtQFLbUWCy+8Okv4B7pDWVnY7eJQpC9xSlgbHZ0u8y3BCAzTMv6DKK54LVI1BOM+Tgpap+8HrwE2bHEHkgsP21SD0va+R9iwc6ewDEBIbC1xnZo+0G0KMDMw3fsMymGmKI9glFbnIjzpPGf4NjjofEmBqhDlcHY2/3jvPWwq35u/ZNxoxhjqvQtn0VSxLvZz1sZ/SlFgg/CmVlfBobDVLEl+ha/THyKnQjzDbUiQmanTr+LK1yO59ftYrvswGkOw/93Gx1RCYHU4NDZ+ifuaX2puFpardkSwrfIuAIY/Ec5Jy1HVfXsTmQAcK9zLR2ue/0MeSgk0Grl/0qTz2keb+HiuaiR+uWHMGHqohMvALfV4+MUXqbF4Br1SL2q5oKPtRUai27tDF1U1NXw4d67qNjeOHUtctFii0H6E9xlmG3Nkhfta7Nmpk7Cc3eFg4+pDzLu7kLcG5DJ7QgFLphWz6eMK9v1Uze7vqph/fxGfX53PrGvyUfuKk/u1fPZ3cD+I+PF333Hrk09yPEc8a7o3DEF22l90lsBQ33XCtX3uJiq4aTDKbAhlYPrlaLQQ20FdUrDrwAEeeeklLFbv10K7oUavQarGOKyw6aOG8Nb22ephGlebs+SY9grL6HQ6brvmGsAduDpZfERYvkt8X9Xjng9d4vsSGRRX/1qrcxHXUfReXSRnlGKOEgef1Vh18Ae+2PiKX+HuqPZ62lb0R+NsGnT8QpdOa2ozS1AyXy5/FEcr30K/24KJSBX3AfwhbXBDfWVXrOSZDgrL9+nWjRCzd0HSqa3qYfc6kUnHuAyfZcb0uJkArbt+CI62kj7orKqQAiAsoYawNt6vTZfLSWbuJr7a9k9+yX6D4Rf1ZsyQISTFxXktX8fgvn2bSG28kR28rX4Wx4IDNkpO2Dj6m7iPE2BW6D7Oe589KErLFTMjUdS7ggDUljs5uLSGzPlV7Pi6kl+eLmb2+ALy9zb6cQWHwy0z/NuhL5Z8BDu8BAhXfa266UpdPGHWBCwRuSSFp53feQhIiWwazDUGi383eYWFFAhmOo/vHlAfMjxpHeiznC+ay098iSANwRr63hLsdV1jNrxfhsPmYmtmJgeOicUOgfYwUir6oEFD2xQDaV1sqhIuETZtLWvivmRV+TOt3ke5PYHvDBHCMoqiMGJAy6UxjZl05ZXodS2TyvUsHkN6v3AMZu/97YEqIhOAddu31/9fZ1AY9IC6AMxS4WLBI2exVntvSY7n5FBSJpYHxtb4DkAnX2ggukMAm47/qnou3lA0kNKnhODolslMtBoNj9x6K7dcfTUADqedFfvn+SxfJzDwRU5JDpqoamGZ/L1Wtn7RtO+Qpwzg/YLNfFW4gO/PfsH7+ZtZUfYCNldDvZ4XvE9VHmgKt9aL06LM8QzrPI4u8f3q14fEqEg9FBd5pgPUOCMotbcRl13zLbhcsHGh+18Bq7TeQ/wAITb3PR17YBnVCZ73XzJSBtMn1S3rig1pw5OXv8fkQdMwBajXRQABJgeBIWJp4ZotW3jt0099iv3qz9VsZsqECRgNBqZMmOCznFXRkq2IJY0c3Oz+96j6fY3CRiKTdkMDVeVWAGltfH9/ib3E/frcnVZcLpfqmKukvJwTXn6TDpuLg0t99y+KDNnkBR0Q7luNvRHLOLLbe3D+xOnTfPdL60UpapjPCYFSIhvG4moiE4CufUw+Z9Cs41TwbmK76Ok5IYjLZoRz55I4rv88hvju6uPR/SrtLUCnNM++jVavoDMofyqBSR1d08XiDJfipNggHmcf+LmavMxmdZ9WC+ExEJXolpskdQBzGHaLi8z5YgmPL46trqXoaLO6Ji4VbvsHzDkJzy2AkbdC+z5UdbqShcXvsLT0NfAhPYrr2vQ6dblcrNq0SXgO5hAtWr1/QY6sogMczGsQoxzMF0tSUiI7oPN2c/0PZEC7Uapllu39Fqu94fuMi4rCECCu07JacS+mjg4j3O1wrrUfVqfKPatfZ8P+jVAtvheSbfEtoBz7aiR3LYnnuo+i6XtLMLoA8XX508qV4nNqhtVm80uKVoeiUUjoqdJm7LKQLxinAJjs4VjD8uCcJDA6WF1AI5FIJBKJRPLfjssfg+JfI6ctkfyfwa/rViKR/Mdx+vHEQ/MJzP4bcapMxiCRSCQSiUQikUgkEolEIpH8X0WKTCQSiUTiN4qiMCRjFNnjXsAaUtCqfUSm6Rj+eJiwTO+uXYXrdx04gCbARUIvz4f+yxxJOFwqD2Gf8iEyObgJys8KN93APf1NAAAgAElEQVTq6iBcD9DZ2LnJrNQaNAwquJVgqzjwD7Dp+CZeGb+JE5u8h232HPJx7o3wJTLpf3swGp34D3uKotDpchN3LIpj4L0h6Ay+y2vRE1XbVri/det3Y61ycvhXcaDWiYNlxd8JywAYg20kZ5TSPIsxuMOVGPW+g74XpF3isSyqbRWK0voHE+I6VhAQ6CQ6TT0Q8eOKFTwwY4bqDMv+EBiqZeTfwz2W55gyWZz8IieCxUEFf7jxirF0GxlJx0tNBKdZ+XHHxzy/8Ham/XA9sze8Rn6ZigjFbObv997r17HsGisvR+Ry0u772vq94gmsrmDaXmSk65Umdh0QB6Q0OifGEN9h2a3Zq/h+2/t+nZ8aVwwdSse24utAxH033NAk7KrVannugQf8CsDu2L+fv736KtU1Ta+vzpeLQ+/e6HdbQ2jwix9/pFgltBoaHMzkceNU99umr0F1ptcjK93BULXZwQG+emk72etrEXkfzh63U1EgFkMoGkjq03KRSXVNDX977TXe/fprnM6WP0QQHOkifVARASbf59c2qgsju3gPUY7ofC0AEUk1BASpB8I3797NEzNnYrV5Bj0VReGiB9VDznt+qKIs107BASuntomDssYQDaG3Hlbd51XDh9dLcA7kbVcpDV0S+qmWOR80Gi0XdRjTZFlEcg2RqZ51tqJx0aZXGWEJLQtV++L3wwuZuexhqizlwnJR6XoMziCSK5sKOHZpI3ld361Fx3RoAvk260NqnZ5tiT8k9zd4/e1U1dSwfscO3p0zh5c++oh35swht0DcXwxP1hOe6q7v8gMP4dCIQ8nD+vf3ue7UVvHv0xKWh91cDEAngcgkJDCCEV3G1782hdnoOLSQlD4lPkPT5igLST3KPPon3jhx9hCvL38Mmx8WGUNAgKpUoUpfzFlDNgD2WherXi5VfRi6x7VmAoJ8181JvQ0MeVS9fvBFeZ6D7+46Q3FWo89rzBRIV5cxCHn9DqhqdK24XLBqjnATCxpWahMIdUTiMJWTGO6H9LCVNA4/g7vfqsbWzEyf6zRahdSB7rYqyzIEl8v/B/SsThP5th71rw0hCm0ForO+twb7FOXVUZbrYM8Plcya95Pq8TuVDkWLjv333kL+4NkEtyui07BCErqWodW37iG8EkMuK7UJZNeqB8u9sb7qLk4GiduoHumdiPVDxiciJSGB/5k82e/yYZYE0soH0G6Y7+8nLSmJeBV5XHMhZJexJqI7qIeTi47YWDa9xOuMsdsEv886Ymva+1zXd1IwxVVnOF2a5bMMQK82FzURijVGo4W2F5TQuY9eVewE0LV9e+bMnFkvTAPYfmINxVW+26MgFZEJgPFi9cD0+nfKKDrWcN2f3m3FhY48W2+yLMOodHqKP5YeWKq638iUBonKuN5T0GsD6JLQIHkzR1lBZVx72uQeP+VYfbejAJzYD1mZsP5HYTErGtZrY3yuD7G611W03V4fcG5MzzaDmrxWFIWhna7m9Yk/cdfg6VyVcQdXZdzBuN5TGN/3XiZd+D88NeYDPr1tHXGhye5jxIv7YqUVFazYuFFYBmDKhAmEBrvHQlcNHy78nR3QqLSNBze526Zj4lkVS+wpWF0N4692Q4yqgkRFUUhJTKSkqpDNx39l6d5v+GnnZ3y39V2+2fwmFXHiMXLlGQfleQ56qYhMwD3ObM7x32uoLfNdf2dGnL9kxK6xst65gIp8z3HO+998g6MV4y9/0OqdmELd125qVMPnExeaTHxoqnDbrPJt9OkiFhefCTnItV+EcumzEXQfZyY82X9xxIHjx4Xrk2JjfUr+vOF0OTlWuI9Fu2fx+bqXmLnsEZ764Qb+9t21vLD4LtYf/eUPm4n4THkuc7e8zadrX+DzdS/x6/55HMzbQWqKWF4NYEtVr3N/e63Ur9nODy2rpqak9e9p6ywf4zStDgZeBX+bBe9uY0/XLzlUeyW+JCaKBmI6Nf3uj5w4wan8fOHxDeHqMtHGbMteBUCNtZLsIrEksl1My8aRrSEqON5DLt2cvLITLNz1Wf1rrVZLcrxvWRbAidzcVp9TQq8AAsM12DFytNa7FLuegmyYpS7Sy7YM9ro8uqOeTpepC37ryC8sZOMucRvije9++aVF95wTM8T3w0qy7ZzOE4tMguzhWMLd34NW0RIR5LtfIJFIJBKJRPJXwZ8xipQmSCR/LkSTTEkkkv89/qh7khKJRCKRSCQSiUQikUgkEonkz4kUmUgkEomkRQxqPxoltJLscf/Abipt0bbaAPcshPpAcfOjJjKpqqnhcHY2KRd6hr1c6Cixp4hPJMeHDGST+uyFK/ViCYvO4KB89BeUdvq9yfIAp4nB+Xehc4pnPARYVfUDc+88w46vPR9WzzwsDt8F2SIIdIR4OS+FzqP9lxvoAzUMuj+Uu3+NZ/iTYXQcFUhYsqdYQRRcAyijiHnTj3L4V/EM1llxa8ktFs9EDS6SM0o9ZiJVUBjRebyPbdz0TR2ORtE2WWY0O4jtUKlyTO+Ywq1EtHHLI6LTqtDo1P+ounnPHi6+6SZe+eQTNu/ejc2LWMBfOl1mqv8+XbjYHbGYNQkfUatrWcDBG0GBgdw4diwAxwv3M+2H61mw8xOOF+7jdGkWKw98z4xFd3CscJ9wPxf37ct9N9zg1zGtWgd3mNtT4PCcvXNr5RQyq29Ab1K4dHo4iqKoikxM4TbVMPnPe2bz20FxQK+O06XZzNn0Bk/9cAMzFt7O99s+oNrq/u1otVqm3n67X/tpTofUVEZddJHH8rQ2bZgycaJf+1i3fTvXPvQQ63c0CGziuxvoMNL/oERMJz3JF7hDDAeOHeOz+fNVt7lz/Hi/AlNavULaEN/BXICC/TbK8+xEhIXRJs57iLW+rE4chPWX2C4BGIJbNhTKLSjgtmnTWLFhQ6uO2aN7Eqn989EZfD8QpVW03H7xU2g0Wq/r20Sk0yG2F4oG4jr4d72v3rKFcQ88wIoNGzweokwdaCCxt7hdctph7VtlbJutfrx+twWzcpP489FqNE0kOPtPbxOXV7R0iO2peuzz5ZLO12EKaPhNKwokdisnpW8JIbG1mCMthLeppsOQwvr6vzmD0kfz0a1r+OKOzTx8yWuYAoK9lmvOgbztzFh0h1ASFd3eHXpLr/CUWnylb8eHOnURUB2zKu/j+6gNLEiZzrLE19kfthInYvlPHZ1Hm7j2g+j6WaQrqqr4fP58bnniCQbfdBP3z5jBx/PmMXfJEj6ZN48r7r2XhatWCfeZNthdR5wy71E9/lAfIhOHzcXp3eIgelVSQ7vVUSAyARjdfRIBuoa6S1EgLKGW9oOLaNu/mPCkagxmO0GRFuI6lZN2QbHfM6UDZBcdZN7W9/wqO3qw91BcY04HNQSOj68VB7sVDfS+Sb3+7ntrMO0v8b8taY6lwsWPDxVhqTjXR9LqYPp8SDgPkciZk/DJ4w2vj++BE+L+yBptHJWKHpNRR4gxnJDA1gl8/CEiKBazoSHkbgqzoWjEv4stKqKIthe7v4MKRyIHa8f6fS4nLBfjpCEs2+ESk3D2d4NZQ/871OusH18+woY9Ymme3mEkveICjtz8CE5jwxhAo4XotGo6jzhDXKdyTGFWv+Q/jdkbsZwVZc+riyubUWDryi9KZ5yKWALW1nKesp1zXD9mDO9Nn05KQoJq2d5F16BBQ7shvq83RVEYmCGut/YeOUJpeUPYWqNVuPyFCLTqw08O/lLNgSWe47Vte/cKtzM4ggi1eu+7hafoSBtsVG3nAYZ1uoZeyYN8rlcUCEg4ybdvvcS0KVNITfQcM5iMRh6/805mv/wyndLSmqxbtvdb4fFN4TZVEUhp9HE0Kp5Bhw2W/r0Yp8O9r7w9YsGWo20eOw6KP2OdwUFYorvfkRSezoB2owBoG92lXuSp1bsIihC3gXmmA7hwcqhmjLAcAD9/CLtWCots0URRpfi+DkOsblFBefpWr+t7Jg30ujwwIIiL2o9mXO8pjOs9hasy7uCKnrcxsusEOsZloNPqmdjvAQBC485fKpeSkMDEyy+vf63X67moTx+f5TM1EeIdFudDwQlVkckZW4P4IqaznpB4HVkqIpOEmGgW7v6IR74dy3u/PcM3m//N/B0f8vOe2Szd+zVrrOr9itO7LKS1aUNwUJCwnDeRyf7Fvu/pFBmym/RFvKHVaPwSgB4P2czaX5vKF45kZ7Ns3TrVbXucHY3GqS4EbU50u0qUc0PDlMimgtWMZLE8q6gyjx7dxPcgbXY7a7ep14XeOHDsmHB9p3b+96sqLWXMXPrwuXsa77P60AIyczaSW3qcMxU5HCnYw0drnuPTtS/4Fb4TsfrgAp6afz1LMr/i98OLWH1oAV9tnMlLS+7lmYXjMZnFY3FXJ7X7g5C7w0r2evV6YOfc1t33q2P/4mqvcp3m5O8T18OR7fQEmJq+75V+yJZC48Vi6OZsy16N0+XkUP4unCIDLNA53nd990cyKH20apmf93zJiaKG+/Xe2vrGZJ2HyESjVUgf6u537au5Vn2DvWuFq0vsqZQ6Ur2uu/ihUBSN/x3ehatWter6q6yu5rtf/BdKJWaodxBPHD8jXG+yh1MbfQKASHO8z/tYEolEIpFIJH8lpKREIvm/hxMpT5BI/gyc7/1IiUQikUgkEolEIpFIJBKJRPLnRopMJBKJRNIizIZQ+rUdgTU8n+xrXsQR4P9sfyOfCSemk/qDsmqzmQJs37ePlAHeZw8ssas8yO9TZLJIuFmpPYmtRrG8JTjKAjo7OZe9Rd6QWbiUhofGw6zxDCi4WXxuwJnAo5w27WPVK6Xk7236ILyayCSqNtXr8nZDjQQEtbzZN0Vo6TMpmCv/FcVdS+J5aFMiEz+LZuB9bllKbE0HlT3AuvV7OHvM90P/tZpKdoWqP2wdkVxDYKjnfnolX0RMiPgB92BjGF0TPcPPMe0riUzx/zcMYDDbSO1bUh900epdRKf5v49vFi/m7unTGXDDDVz70EM8/tprfDh3rltuYlcPR9Qx4ukwzDFaDoWuYW/Esha9BxETR48mxGxm3ZEl/PPnuympLvQoU2Up581f/0Z5TbFwX3dNmMDt1/oRCgAKNTrGBvXls+rH2Fo5hY0VDzDrzDJWl7tnPh3yWCgh8TrKKipUZ6tWC/LV8cX6V/j9sO/rvtZWzdwt7/DM/BtZvu9bckuPn5u9+HOeXXAzlZYyAPp17+4zXC/iwUmT0Gi8X5e3XXMNfVSkTnXkFRZy/4wZPPmvf7Fz/34cDgdjXo6kx3hxQK2O/reHoCgKNRYLT73xBnaV32FCTAwTR6sHUepoP0I9CH90lTuc01NlhvAiY9Yf8iBgyoXi2WcbY7Pb+XbJEm6cOpXD2dktPtbgvn158++PE9h+n2oAdnSPm0mOEAuiLuniFjeFJdYSFCkOyNaRU1DA1Fdf5fannmryHhRF4eIHVWaWBw78XM3+RWIhlc6oED64TPUzGjloEEmNhDX7T3sPuNbRLqYbBn3rZQr+EhIYzsOXzCRQ33DdKAqExdfStn8J7QYWk9yrDKPZMwymoHDDBY9w1+BnMZyTX/ROGczUy96sDxmrkV92kuk/3cqiXbOw2j0DeVHnRCYxNe0IsnmGaN/Xd+RrXZrH8ubM1nTj7aijnDLvoUpfTFFgFjujFrA86Q1qNeKQX//bgxnzckS9DCE7N5cr77uPN2fPZs+hQzicng/7OZ1OZrz7LrsO+p4NPO3iQJw4yTWJw9yd09KIi472ui5/rxVbjbhuqE50B2wjg+KIChbP8B0SGMElna/zWK4oEBJrITmjjE7DCkkfWExs+6r6PkFLWLbvG3adVA/l9u3WjehwsXwjL9BH39YLHUYGEpqgHvJVFIXL/xFBeErLAsEuXGSZt7Eu9nPmWd7k8Xu/IP/Mudm8Y1Pgw0x46AO45GboPRLSMyAqCb+NFj9/CDtWuP+/ao5q8SXaJACMITaSItJb9F5aiqIopEQ2SIU0WvU+ydbMTOHDeamDGoQ6y0pf4aTFU2bkjS2Vdzd53WWsel3U+wYzQVHiH/OR0HWqwof08kGUZazAEuW9v6bVu4htX0X7i8/SfUwed97fk8/++YJfgrQSQy6ZhlqP9yeiwhHLwuL3ORYslsbgUtCs60zRsdbLBhszMCOD7996i2lT7ibQ6V0S0614FPE1nYjuqFe9Lgf1FktWXC4X63fubLIstksAI//un7xn3dtlOGwN363L5WLbPrEoKKYmHcXHreXek8woGoV9p7cI9xGgNdAloR8923jK/ZpzuHA7E0ePZv7bb/Pe9OncOHYsY4cN4+FbbmHxBx9w49ixaLVNQ7THCvdx9IxYlKXVuTCFib/3zOwD9LlZXfaTt8fKttkVuFzqgq1DkatV9xeVWk3dcOG6vvfWh4R1Gh0dY3vVlwuOFvcJa3UVlBhyybYMpsap0vdb9B7YxOf+m06lHbXF4tRZqEze7bEuOaID4UHe23N/yEgeTGxIG4zBdgJM/o+fvfHklCno9U2FLMMuuMBn+d1aP66nPWtUJVtnbN3q/18nMTp+6pRwm8BgF0syv/K5vjbqBE6dWOqQu8uKRqOhV+fOwnI7m4lMasucHFvtW6aQGaF+P+fKESOY/corpCW1US378fIvmrSN733zjeqD7DE16XQruYxexf5Lv8AtxIlJd9/PCdAZiQtJbrI+I0UsMgEoN4j7sAAr/BBWNKfGYlEV3HTxU2Risdfy2tKHVOtkgHVHfmbT8eV+7dcbBeWn+GrT69gcvusRfYj4HtrxomN+yVn3/iQeoxbst5KnUher4bTDti/VpZ5qIpO4rp73w9VEJkajzu/7W3WU1ZzlaMEeDuaLxXMKiqrc8Y+iX+qwJuNsbzhdDj5Z+wJ2p7teVxOZnDgPkQlA+rn7VCcsg6hwxJ7XvrIsQ7wuT8wIqJd2+oPT6eQnFQmoiDmLFlFr8e8eUVy3ANX7U0UVZ4Xrg+xhVKa6+57RweryPolEIpFIJJK/AjKELZH8ufDnmpTXrUTy58DpklIhiUQikUgkEolEIpFIJBKJ5L8ZKTKRSCQSSYsZ1vFqAGpjsjhx1Ss4teKHqiPa6rjq35F0H6ceTgNIiosjOkI80+2O/fuJ6xJAgNkz9FhsVwnyehOZ5GWphk322vvi0IqDMuboc5+FAmd7Lyb72hnYA8vq1ydX9SKlQn2m752RC3E4nCx5+ix2q/uP50UlJZw+I54N0ZfIZEfkh/zP3Kt5Z+U0jhSIg1wiDGYNyf2NDLovlKmZSQwd3RmtUyynKQg8Ily/L3w5tQ5x+ECjcxLXyXtwYGSXCeKTPseFaSM9likKJHYvJ6qtfyKSoEgL6YPOojc2/SNqdFoVOoN4ptPm2O12jp08yfL163n/m2+4e/p0Lpk8meffeYf1O3aoSk0CQ7Wk3H2GHVE/tui4IowGAzeOHc3Xm/7Nx78/LwyelNWc5ePfZwj/oKwoCg9OmsTNV17p1/FtGng7MosfLLewruJxCu3ugFVSXwO9JrjrDzWZD0BQuH9BDxcuPl37AisP/NB0ucvF1qxVTPthIksyv8ThZRbbworTfL7un/WvH73tNnRa/2cfvahPH+Fs33qdjjemTaNDaqrf+1y6di2Tn3qKEbfdxnMfvIVjWCZjPgmgw6WB4CMf3v6SQDpd7g5wvDFrlmpQCuD+m24iQO97BvbmtB1kRGcUB9SPrHQH43p07CgsV6uroFInDlOooWihx7Xi9shqs5Gdm8sXCxYw7sEHefmjjyirUA8v1aHVaBg/ahQL3n2Xt555hpPWDdTaxPVcuCmaK3pNVt13n5ShhAZGoiiQ0qeUgCD/A5w7Dxzg1iefbDIjeJt+xhaJXXzR9QoTazM3qZa7/OKGMGBRRR4F5eLQZpeEfud9bv7SKT6Dv1/xCTHBSX5vY9SbeHjka1zW7QaUZiKGdtFdmTrqTQw6/0QstbZqvt/+Pk98P4ENR5c2qV/NMVoMIQoKGtIqvIiTFIXX9N1YqPUdDl2nieHfBu99pLPGE6xIfJNqraewTaODEdPCGPJYWP1s0jUWCw/MmEFJWZlH+ebYHQ5e+/RTnF5EJwBJvQ2UhGRj0YlFKkMFweJT29QDW1VJ7lBux7heKiXdXN79Jr+/u9by8e8zKK4S9+20Wi1DVGRZZ40nsGr8m62910T/+uMAhmANEz6JJirdP5mJRVPNyoS32RD3BSeCd5BvOsiayp+49r5HOFYX0DYEwti74fHZ8PJyeG8HfH0K5hXBlJn+ndirt8CZU/Db18JiZehZp41F6wxAG1lCUri67Od8SY1qKuQyR4l/m3mFheTk5/tcb47SEtPZ3ebaXGbmnv2WeWe/ZE/V9ZTZPQOeTpeGZaUvc9rWt35ZaKKWNn3V63l9oIYL7w7xud6uWDkWIq7nFZeGdvbuFF7wverxwN0X33pyKWtPz2bh++8ypJ96nb83YhmbKu+nUhEHXAGKbO2ZU7SAQmcseSbfQiWA6No0Aq2hrJkpFle2BL1Ox5DkEVyR9Sy9iq4gvDYJoz2YyNoUBuXfRo/iMQCkD1Ova/r36KHa1/xm8WKPB6+7X2Om53XqcruyHAcHfm7oqxzPyVGt42NrvMvXDMEK3a4KwuVyqQrLOsT1IkBnoHN8HwJ04rDvrlNu+ZNGo2FgRgaP33knLzz8MJPHjSMiLMzrNr/umyvcZx1BkSrSkawsetymJTxVvT5c93YZh5bVUF3se5xUoy1jT/lm4X4Ujateutkhthc92wxqsr5zQsN1HhKj3g6eNu3HSQCHa/wXEnrDhcJqbZzP9XpHIEZHMJXJe3DpPT/Xnm0GntfxFUWhZ5tBKIpbQtFaRg4cyIBenn2CQb17o9N5/56PKiHUoDLmW/oJOMT98zO2Bnlv+rBAXC4XR0+eFG5TiXg9WgfVcUeFRXJ3un8nvVXkwbkFBRScbRhzHVpejcOH66fIkM3poP3eV55Dp9Vy5/jxGAICmHrH7cKyAFkVR1i6di0Ae48c4bfN4msFoE/ROLeYoXQY0TX+tffB0bUk9y6pd6klR3SolwXVkR7djWCj9/qljsPFm+iUniIss277dr8FA/X7zcry2X+uo1Oa+nt1upx8tOY5sovE7WBjFuz8BKezZfe46li0axY2h/i9qsmjTuXn02uKVlW0kLW+Bqfdd+Bo57fi8QVADz/ayN3zqrBU+v4uKgsdVBaIP6+4bk3voZzIzVW97sPira0SJm7NXsWBvO3CMsmRHQgy+O73/ZEEBpgZ2/NW1XIniw/zyzlhU2qSeExeWlFBSXl5q88p5UID+kAFF1r2V1/T6v0AZNcO9rp80AOhHvcIRGzft4/cgoJWn0dxWRk/rVzpV1l9oEYom7dqarBpxW2sQaejJvYYIEUmEolEIpFIJHX4MxHDHzFZg0QikUgk/21IkYlEIpFIJBKJRCKRSCQSiUTy340UmUgkEomkxbSP7UlCWFsAqpP2kzXhWayhTQN4lrA8uk5ycfPcWG5fGEeHS9RnAa9DURT6dO0qLLNj3z4ULST39ww7FdtVZiQtzoeqZg87b16sel7rNeozxzYPK1a12cexG59oMhNxz7NXoHGJwy9lhjyygjdz9pidDe+6A2S/rl+vevxIS6rHMoehkuzIJRRV5rE1exUv/XwPm4+vUN2XGoqicPn0aFICxbPbi0QmDsXG8VD1UEpsh0r0Bs8/XCaEpfodcu+dMgS91jPEqSiQ0LWc6HbigENYYg1pFxSjC/B8wEird5HSpwRFZYZ6NcoqKvhxxQrunzGDy++6i28WL/YpNCkuLeWNZW/hUv64P+iOH3Up3+x4jWX7vvGr/J6cjarhQEVReGzyZK4f7V9gzqU42RQzp/5BruA4LaNfjKgPz+8+qBa+cWEKF4dimjN7w6t8s/lNnE4H+WUn+deyR3hn1TTVcPm27NX1YaCUhAQm+vkee3fpwgsPP6waaAgxm3n/uedoEy+e8bw5pRUVLP7tN5564w1ufPluPrdMp+LmRYSOyscU4e7+G0M1DLw3hDEvR6AoCmu3beO7X9Rn0u6UltZEROEP+kANqQPFwdRT2y3UlDro2amTsBxAkTGrRcdvzqjnwglro8PpdLI1M5O3vvySx197jbuffZaJjz7KpXfcwQUTJnD1/ffzxqxZnMrLa9H+O6SmMmfmTJ65915SExPJLzvJbwfmq243rs/dGFQCvAA6rZ6hndxCMb3BSbsBZ9EH+i8zqamt5W+vvsrREyfql130YKjf2/uiz83B/Lphg7BMUGAgFzYKjO71Y0bwzvF9Vcv8kSSGpzH9ys/oFC+WjimKhgHtLuOf474hI9n3NdE+tgePXfo6AV7aH18UVxXw4ZrpzFh4B4fzd507nkJ0e3fQqG25d6mFS1F4PqAXn+nSad4y/KJNZKqhH05BvVNmyOfXpH9ToSsiMk1HXFc93ccFcesPcfS+KbhJ2c/nzyenBSGrfUeOsNxHP0ZnUChJEcvkAIb28y3zUBOZWEMKsIUUAfg983hIYDgT+t3vV9nWUmkp48M101WDot6C1o1xKU4KAtVFX+EpOtr0a5m4KCRex01fxzLgnhB0Bt+/nxptGSsS36TA5Nnvq7JXMmXac1TXCGQrIREw/n/ggXfUT6o4DyYlQ5F4JvZfdQnYFQ1h1gSsUbkkhquMEf4AUiKbCrmCo9TlalsyM4Xr2w5q3DYoZFuGsKzsVT46s4FPClazvPSfrK94hNVlT/PxmbXsqb6xyfZdrwyq70ep0XO8mZAE7+OUbPN2rFqxlCu5shelg3/AGdAyucCOE2v4eP3fmf7AfZhN4nHjWWM2p4ynWHF2urDcScuFfF30AxWORPJMh3Aq4rYypdJdNxxfW8uh5eL32RKOrKpB7zLStfRSRuc8wbXZ/+SynKmkVvZBOWeaSx+qLjIxm0yq/aS9R46wZY+ntHL4tHDie4jlk8ZNA4UAACAASURBVAAbPyyvD4Rv37tXtXyMD5FJt6uDCDBpOF2aRWl1kXAfXc+N5QJ0hvr/+2L/6W1Y7P7/tkqri9ji57jXHCG+Vl0uF7uO7OPyf0T4FATW4bDCoqm+xXsVuiI2xH6JQ6XuD0+qRmdwfx8T+t3vMXZoPA42hthVxZqnTQcAOFBzlbCcGscMbTir+O6zhthiUVAo6+C9X9jjPEUm0CBDCWmlyCTQaGTq7d6FGmaTiQt69PC6zqFo2KcRSy3Yu071+AU29/0uc4yW2C56ikpKVMVB+iB1CUZ1ghdpbyMKD9mwVjvJUBGZAOzc3yAn2bfIt/h1b8Qy1X1dMWwYibGxAAzMyKBrhLpU7oX332fngQPM/Owz1bLJlb2IsLjv12nQMKBgEgaduL8TFGEhtW8Jjb0lqVGeUk2NRsuFaZeqnoOaVKfWYmHDzp2q+2nMgWPHVMt0bqfet5m//UO2Zf/WomPnl51ka/aqFm0DYHNY2X5itWo5U5h6/yi3NpveN4kFfJZyF7m7vF8bteVODiwRt+d6k8LQ/wmj7UXicbit2sXRVb77sQX71N9PXNem7fAqPwQ9gdGtk6v9fngRJ4rE9UHneN9i3f8El3W/ieSIDqrlftr5Kbklx2mbqC6sy/ZDxOsLvVFT/73vq7m21ftxuPSctHq2a6YIDcktHHctWHH+9+q/WLAAu8M/CVFihu++YbWuRHV7V3xOfZ9IikwkEolEIpFI3DQXDEskkj8/Up4gkfw5kG2oRCKRSCQSiUQikUgkEolE8t+NFJlIJBKJpMUoisKwTg2zFdbEHeXwbQ9x9MbHyb76RQ7f9gBHbnuQsmE/Etc1oEngxul0sPPkWj5Y/SzTfpjISz/fy5LMr3A4mwbL1GaILa2o4NipU6Rc6PlQcLHdj9lXc5o90K0iMrE6Taz2IrBojCHITkCg5x+6bSFFZF/7D45NfIrCPgvQRZTTvkxdBLA7cgl2xcKWzyvI3V3Ld0uXCstrXFoiLJ4zVpa134RL1/D5OlwOvtz4GlWWCtVzUEOjVbjsanEguEpfTKXOe4Atx7QXq0YcLAgw2YlK9R6cubz7JL9ntzQFmLkg7RKv6xQF4jtXENuxAs/duYhJryQ5oxSNwD9jjrSRdmExWv0f87BDUUkJr3zyCRMfeYT1O3Y0WWd3OHjiX/+isLj4DzkWuEUc3fuGtjjgMnfrO6oz+yqKwuN33sl1l13m1z5LDacpCjpGx1GBXP95DKGJDdPwqolMjCF2tLqGa9VfecDSvV8z+fOBPPH9dWTmbvJrG4CfdjUEqx74f+ydd2AUZeL3v89sb8mmbHrvkAKhh14EEQUpwimeXVHBeoKevpY7xVORs2E7xXI2FBBRQVB6J3QCBAgJKZCQkEJ6NlvfP5aUzc4+z26Cnj99Pn9lZ5555tkyzzwzme/nuflmasC0f2oqFi1YgKULF0Lv49nMtwF6Pf7zz38iKCDA4zZ1pai0FD/s/gXvFryIE+OWYsJXrXhwVziGzfOFTCngRH4+nluyhFmPIAh46t57IQjeX0IkjqMHdO1WoGCrEQlRUVAr6SGiym6KTBQ+BDPeDUTvKSqs274dsx55BPc88ww+/vZb/LJrF7JzcnC6sBAXq6u79aCEVCrFvNmz8eXixU4zY6848C6sdnqQJMIvHsMTPBPhAMDo5KkQiKNDkqtsiM+qYYZXO2M0mTB/0SI0XZYKhPVRIPEqdojaHbEjlGhSVeF0If27GTVoEBTyjrDMiVK6yEQhVSEhKK3b7eouWqUvFkxcgnG9bnBZJxAJhidei5dnfIP7Rv8TAdoQZn0pof3w2NVvQCP3bsbrwqpcvLj2Xry96UlU1J9HYIKjL9RZDDC0iIcWrUTAW/JUzFSOwbLE6/GaLBV/VYzEk/L+MBLGlOYAGmXV2JP5Fka9Y8Et34Rg4vP+CIx3nj28tKICn65iy3m6suSLL2Ayu4qm7HY7zgpHqNtqzP7Qt4qHo6xmO0oP08O9TREdohRPRSYAMK7XDbhp0MOiIrQrxakLh/DZnsXUfmdgejqz772gZom+gIwZGq9mBW9DrhYw/AFf3LUmBL0muUomGqVV+CX8DdQqytzWUd1YjQ+WrWDv7Lr7gT6jvW6jGGsljlCzwRiDVv/ziPDz4Bqhh3QNQat8zRCk9LHhfobIJG6Eu/6Z4JI1Dkeb/4rdDX/D/qZ7UW91FS+mTtFQ6++MREYw9H7XvsoOO/L025nbh2sD0RDPllSJcbw0Gx/v/Sf+Mukadln/n3HGOBFVQ54UXZ/bfD1WVn+OVrtDOFCqYUg57ASRjR3B+nX/rwYXT5tgs9hRcdKEgq0tuFTsnSgPcPRvJ39yLwAAOkQGnjB6kHuhUxtLV650WSaVE1z/WgBUfvR+pPacBblrHddmBxgiE4VVA71J/ByYPt3xmztRtp/Z3tSwjvfUN3I4tazZ2oqTZQeYdbax7+xG5hisDY2/CWDMiLvj4EGEZyow4FZ6sL4rVmJGjeIczuqysT3kI/wY/QLK1fSAOQAY4hzfRWbUCCQGu4o1Iv0ToFU4ZHSEALog+rmwSlkIk9CM86bBaLAGe/UeOrPJRA+X+5iC0Kq/ICoy0Sh8kGDo+dguOSQTCqkKGn8zpHLPx8BtzJk1C8GBgW7X0461o4K/1/vrTJM1AE02x+cfP0oJQgjyioqY2yl92H1Qcxh9LGC3AReOmZAaH+80Jhfj4AnH2Kn2vAWlh8QlDfWyi8z+VSIIuHGyswhkzjW3MOW+TS0tuOPJJ3Hk5ElqOdgJMqqdr6PG/jUOT9x7t9tNVHoTYgddgtBlaBwdIC5ZuDrtpvZrL3fUK9jyp0179jDLdOZYHl1SFxIYCD/GfYWdZ37Cj0c/9Wq/bfxw5FOvwzzHzu9Fs4kuCQYAla8FrD73eF4e+tzA7m8LtolLZPJ+aYbFSN9H6mQ1FFoBg+7UUcsBQN4G9/cuLxyni0wEKWBIdj7mWL8HhULqIsv2FKO5mTnL+28tMpEKUtw94mnmsWS2mvD+1mcRFmJg1llUSpcaskgY6xhjV1uSUW5K71Yd500DYba7jrVjhys9FgkCQENTEzYyfhNShRVyNV3MV3bxIn7eyRZqAUB4X/fXuE0eiEzMsR3nHIOOLZ7hcDgcDofD+TPAGodzOJzfH/y45XB+H3CpEIfD4XA4HA6Hw+FwOBwOh/PHhotMOBwOh9MthiVc4xzqFGwwBp9FY+xhmPzKAQLsPLMWLSZHcKvRWIe1OZ9jwYoZeGPDfOwp+BlltUU4VX4I3+xbgpd/mgtLJ5lJv9RUZht2HDiA6MGugfcaiwezrZ/rFBxqqgNytlKLF5qGoVxFf0C67QHz8b1n4YVpX0AudW5bS1geKkZ+gYKbH4di8lpIGA9vt0hrkeP/E+w24MOn96CQMdOkoSUOErtrCK4uZYfLsgZjLfYU0MUonjKkn/hsxZ2pUOWLLi/0Yc9AGpZaLyoQCdJFYFgCO+jYmTHJ09yuIwQISWrE6Ml6ZA1OgjawFf5RzUgcUYXQXmKCE1e0gSYkDK9iPljuDWfPn8e855/Hvc8+i3Xbt+NYXh4efeklZujVU9RKJa4bMwafvvQStud7H0y32ix4d8vTMJrpQpo2CcYtU6Z4VK9y9nFM+Xcg9JEd6SKL1YpjZ85Qt9N0mk39xkEP4b7RL7TPdv9rcKh4G0pqHG1SKZVY8vTTmDFhAnx1jiBMqMGAWddcg5VvvomPXnwRE4YN81oEEhYUhPf/8Q/4+fr2uL27Dx/Gbc/Ox7znn8fqjRvxzJtv4ub581HDmAEcAO6eORMZya6zVHtC/GglGF0e8jY0QyKRID2JPktvlcp7kYkhSYa/LgtGrnUvpj7wAJ587TXkl5R4XY87Av388NHChbhn1izIpB2/2UPF2zySA80a+AAEmimpC/6aIPSLHtn+WqGxIj7LO5FSUWkpXnj33XZ5wqi/6SHxLEftwoBbdNi42zWs2pXxQztmKrbZbchlBJxTQvtB2t1G9RCpIMWtQxfgn9f/FxPTZmNI3AT8ZeADWDRzJe4Z+SxCfKO8qi8ltB+enfIRgn1chWMs9hdtxlPf3ogm/7Pty+LqB1O3KRB88Eop8JksAcclfvDoJHaZykuXMO+f/0Rtfb3o+tc++URUSMKitKIC36xb57L8dGEhKpsuUreNbMpASbZ4kK/ipAnmZvqDhm0iE1+Vv1ffHSEEE9NnY/Gs7zCl7x3QKOhhUbVchzEp0/DSjK/x37uy8dS173u0ny2nVuGLvf92KzPx0WqRmpBAraNcRQ/FC1Ig9XrPhRai7QiV4rpFAbjl62BkzNQgcqACsvQq/BLxOhrl4tK6znyx5geUXLhALyQIwN8+AhSuwhRvKCMqHLkcNg8wR8CsrUa4/tcXmRh04VDJOj5nIgDaAHq4dV9ODlVkE5ohh1zbvbFM5ACF01jKE9Ku1yB+tPN1TJWyEJcU9GsRX2sgmiesgNiwSyp41pcfO78HDbr9UCnp8qCLqnxUKPNxSHgMeHoF0G88EJ0KZI7DoV7LsLb2LVjhqMMOG8rUudT6AlujobZ2jLPMLXb8d0YFXh9wHp/NrMCqB6qw9NpyfPdgJRrKPR/nlx42oe48XbIQP8rzoOuUsWOhYgjf9h87Jir+04VIMeQetlBrz3/qYTXb2iUG7ghqSQARua0cmi6HIdER1maJTLQKX0QGJLa/zogcSint4HCJ67WtO7ILN3lcViKzQ62nn9t2HjwIu92O4Q/4wi+afVw1S2qx1/AVVsT+HesiF2FP8Bc4pz0CO2GP13QGI5Q6C2QSOf4y8EHRMgIRnILoPgyRiZ3YUK7Kgx0SnG6ZzGyDO9bJ6NckPuYglE54B5C4/vbTw4d4NeZ1h0wiR2rYQBAC+IR4F/SPjYjAXyfT3/8oisgkR/Dzan9dqTT3RltHmTDGEaJnikyIHUodu+9pCaVfKwNA2ZFWyGQypCUmUssdznX0m9kfio8HASDPly248g1vxBvb52LrqdXty/qPjkFy7Wjmtp4Q2zAAvuZQAEBAnBTXvxGA0fP1mD5+PP4+Z47Ltbc+rAVxg2sgkbmed6MDxKWkBl0YhibQpaxytQWGILoYctv+/TB7MYZm3ftgfYfHzu/Fxztf9Hh/XTl/KR9HSjwTIrSxr3CjR+UkUvZv+kR+PvxipNBH0fvbgq0tostPrqPfowKAvjc6RCmRAxUISaWPVQp3GdHaKN5/V5ygj/UMSTJI5R3n+vLKShxnfL8hkTKqTLknECIgKaQvu+AVJjowGddm3MIsV1JzBj8d/4Qp9C3socgkfqSqXWh0omVGt+ooah0pujx2OH281pX1O3ag1UT/HflHtiAokS0K+vz77z2S84Znuh9vN0trqdsSuwBzTMf1p0EnLh3lcDgcDofD+bPhyTisOxMpcDicXw9+THI4vw+4yITD4XA4HA6Hw+FwOBwOh8P5Y8NFJhwOh8PpFhqFDwbFjqOWaWytwxd7/42fjn2BR7+ZguX730ZVo3h4Ma/iKNblfNH+Oi4iAnodfUbMLdnZ8I+TQhvk/GS30e6HZisjXFLcabbUTV8CZvrDwgdtqczAkTbQUcfUzLsR5Z+Iu0c847Ys0dfDkMye3fCUfitq5OdwsGUbs2x8fZbLMrOmGk3h4jPY7s6/MiKTXvHxUDMCdRUq15lkWyT1uKClz66r1JnhEyweTLo+805Iuk6hyyA+KA0RfvQgcI39JJqDtiE+qwaRfeqg1ouHK9zNXqrUWpE4vBpqP/pvyluyc3Lw5Guv4ZbHH8eOA+yZyCWCgOfmzcPh777Dnm++waIFC3Db1Km4c8YMPHXvvXjn2Wfx3dtvY9vnn2Phww+j3lKB85cKutW2ivpz+HzPYmY5Qgj+dscdmDNrFrPsxj270GJ0nlk3v7jYZVlXNJc/dwKCwXHj0T9mFG4e8jfm/nrCD0c+af/bR6vFM3PnYuMnn2DPN99g3Ycf4ql770VCdHSP9hEXGYkvFi1CnxTxcJW37Dp0CP94+238uIUt2QCA9KQk3DNzZrf3p/KVIHIAPZR8dqcRjVVW5nuslZfCTBz9QswwJebnROD+rWHoM0sjKkvpPVmNmz4PxKKVb+HpN9/EOVaI3ktSExPx5eLFLu1ubK3Dp7teYW7fO3QAMiJc+28WV/V2/j6UOgsShlVBqfM8HLd+xw4svyyW8IuSot9f2TNRdyV+tBLRWQqmyEStVCKrb0dYqqQ6D42tdIFOWpj7EOlvRUxgCm4a/DDuH/MCJmXc0qOATohvFJ6d/DGSQzK93tZiM+OX6nfaX0c39oXE9utJXsqrqvDyhx+6LM8+ehSb9u7tdr0fLl+O+kbn8NX3m9hB84imDBTtER8PnDvADjA3RTjCuKnhg0G8kLq0oVcHYEb/+/D6jT/itqFPICEoHRJBCp1Sj/TwIZg1YB6em/IJ3r55PW4f9neE6WMBAMkhmbhrxNMe7WNj7gp8lf2624cmh/TpQ92+QV6JRmm12/WJ41TQBFyZNGRImhxXP+ePqe/7Yovfh2iRug85d8Zis+DVpR+xC4bGAfcs6lEb10kiYL/8XevUcgTqQqGS90zk4gkCERAd4Cz9apMduqOmrg4F5865XS+REcRkeReGbCNtqvfvmQgE174cgOisjvN2ni9bHuGbdh52pXNoONQ3Gh/eth1/m/AaFFJ6wLuN01XZiEthl83124DifSZg5A3Ay78AHx6HdeEG7DowAp1tKtWKEhilDdS6wpvSRJfbulwG5G8x4rNZFTh/0DNxQu6aJmaZxKs8l/b46nSYOZEepgeAj7/9VnR5n5kaqAPot4JrSyzY8vVZVNfSA6zBLeIB+rRpjt+cxWbBqQsHqXX0ChsAgXS0x18T5HL8dOVwyXbYbHQ5DADUNFUg/2IOtUx6RJaTeEjHEIFU1tTgdGEhZCoBE1/wF5X2tGGUNGBT+BIU+O6BVfD+utAQ5/jtTM28G6F699cRvcIGtP/t6GvoD963SX1OtlzvdZsA4KIlHkVS+pgekSVoDneV6QCeyWo8pa0ufai4xEAMQgienDMHrbZmfLHn31iwfAYe+moSXvlpHn4+vgyVDWUAgCB/f7eSiByJf4/aXWF2SHulSoKoy2Le04V0UaNCY/FIaGBVNsLo7/58AjgESwDQnyEPzi8pQc7GKuR8K96PmYkRBSwxLbEjKLERzaYGfLLrJZwsc9zH0BokyFJMgsKipW/PgNgFpNdMAgBc/U8/3LE6BEmd+tQbJ03Cxo8/xj8eeACTr0tHwvAqRPevhVTuepxIBRnCL4/fxLg241amIFXmX0ld39jcjH0eCmlr6+tRUlZGLZNGEYAeKdmJNzbMh7XricxLfjjyiceBHpPF6JVsSu1Hv25tE33Ej6KPgWoKLbhU4lxXY6UVJfvofXpEf0W7eIsQgtQp9DGT1SQuTbHb7ShniEyCU+VOr7dks6XOEr8KZpnuEhOQArW8Z8dfd5nS906E+sYwy/18YhkCA+htLO6hyETpK7T3wydbrofV7t09ZgAoNI52WUYEIGaod2P3X3btYpbxj2qGX3gLpEr6OOjU2bM4IiK164o2SALfcPGTS5OU/j8LBVGASDr+TxKkC2fuj8PhcDgcDufPgJ1xX4bD4fz+4PKEPyd2G//ef29wqRCHw+FwOBwOh8PhcDgcDofzx4aLTDgcDofTbUanTGWW2XlmLb7ZtwQmC10+ADgeUjZbHQ9/C4KArEx60PdYXh5q6uoQNdg1SHPJyphxfb8juA27HVj7PrWo3U6wTcoKq9ihDWxFpH8CtErHDMWD467CpHT3M00aYpuYDx/biQ1bw97HOe0RajmFRYuoRtfZNOuSdwOC+D9hCyqPo7yuhFqvJ8ikUmT27k0tU6E64/LwTlP/o8wHA/wiWyCWNw72iURW/NVet5UQgjEe/G5ZBGpDMXfMQrciFanChvisamQM1sFH+78JBzzw179i2vjxIIRApVBgwrBhePT22/HQLbdg1jXXYFi/foiNiIBM5gjC785f16P97TyzFnsKfmaWI4Rg7uzZzBBms9GIjXv2OC3z5EF8tb8jwJIS2g/+miAAwPjUWfjrkMeY23aXA4Wbcf7SWadlMqkUKgUj5Ocl4cHB+ORf/8KTc+Yw5UFXEpVSiRcffRQyqfehjs4kjqOHku1W4MTqJiSG0meWthM7qpVFiB+lxPS3A0EEAm2gBBOe9cddP4Rg2AM+SBynQsZMDWZ/HoRrXwrA8o1rsX6H56EqT7l21Ch8tHAhgkVmCv5y7+uoa3EvFWjjL4Me7JZYISWkHxKDM5yWKXVWJI2sQlhaHSQyzx7AWfzxxziRnw8AyJrjA7W/55eI+kgprlnoj9KKCuQW0EVIIwcOhLLTMXGidB+z/tTw/73I5EqjVfri8YlLMCrJ+wBxS0Bx+98yuwqRTXSxRU9Zv2MHft7ZMQu72WLBoo88kFBQqG9sxEcrV7a/bjWZsHYbXdYmt6phaInD+YOtsLS6PsR0fj89pGjSVcLs6wiWpocP6UarO1BIlRjbazqembwUH92+E2/f/DPmT3wT1/a5FXGG3qLjghGJ13k8ZvnlxDf4et9bog9rdRYBuaNc7f482WfmlR+PfLxqFYoZIduu7Dh4wCMhGybPBYZ3b2Z0APhJGgEA0Jj9YQsrQYRffLfr8hZXkQlbYrA/hy5ciB3m/XlfpiJIGu+ZPKQrCq2AG94zoP+tWrRI6lGiPUwtL5Ha4RPjKr7oHzMacqkCqeGD8Pg1S6CR+3i0f7vhNKRS+vmoTJOLc2UXUFfWEdIu2mWEsc75/FeqOcHcX3gTPdDfmeYaG7656yIOLWugPlhpNdtxej1dsKAJFBA9xHW8WNtchc92v4qFa+7Bi2vuxZqj/22/nr5lyhTIZXSR1bb9+5FXVOSyXKYSMOgOtrTsp+X0a08ACGpxPaakSoJe1zgkAoWVuTCam13KdCY1bKDLsr6Rw6jb1LXUIK/iKLN9BwrZsr5hCdcgOrDjeHUn0OxMW/8V0U+BrHvd/573Gb5Bvfwisz4xlDoztAYTYgJTcE36zdSynT9DqdzOFAOc0x6FFWaUmzNwyeK9aPGIeTCzTGs/8fM6AemWvM8dGREOkYnWYIJa75ks5sk5cxASocLTq27GhtzluNhwHnUt1ci9cABfZb+B+cun4ZnvbsHG3BUYNcj19wkAl4gC54jnAqKuXLQ4+pvg3jJIFY5rALHjtTMqX89lFM1hp6nry462wm6zM+/hAMCyxe7P12d9smER6Pf59GFGKDQd97w+2/Nqe78Z20ePzOruCXXaiK/Pgs4SiL5/0SBjhhZEcL2m8tfrMfWqq+Af3QIN5fiI8I+HVOK+bw3Tx2BAzBhqe3Qh9D4PADZ1ucfhjjaJB410NyKTg0Xb8NamJ2CxeS64dEdhVS5OlLGv2wDg6LndzH6/M2pfevuqa2tRXlWF+FHssczZbc6/xdM/N7O8Tkid7HwcJ41XAwRokFbitO827A9cgZ3Bn2BT2BL8FPkK1kUswvNfLsbijz/GsjVrsHXfPhw9dQonc86jtraJGlgM7SIy2cCQgMpkUqgD6Z+lWu69hLSNXqH9ur1tT5FLFbhrxP9jioEA4JL1LHV9YQ9FJgCQPMHx+2qxBeCskX6Md6XRakClpZfL8pB0OVR6zwWSxtZWHDlJF31r/Fuh0FghSICgOLYo7+u1az3ad1hf8fuWzQyRiVzV0berZBpoFJ6N8TkcDofD4XD+6PAQNofzfw9+3P5J4SKT3x1cKsThcDgcDofD4XA4HA6Hw+H8seEiEw6Hw+F0m8SgDITrGcIQL2gw1uJAUUfgaPQgeoDZbrdj2/79iB7iGuy7aGaE0c7mABfOArl7gEL6jKilpgE4rbpALaPyNUMqtyMlxPlh8JkD7kdSsHjwVJACIcn02cEBeDTLfUJ9FiRwDV3UJu8UKd2BJ+IJTxiQJj6LeRvNslo0yqraXwf3lqFAy5691y9cPPx3fd873UpEWAxNuAZyac8kENf1uRU+Kn+khbn/jQoSQAg6g5XvvIoPnn8et0yZgtiIiB7t11NGDxqE26dN87i8zWbF3rO/9Hi/n+56GRX15z0qe+O11zLL/LB5s9PrnNP0UJZUYW1/mD4r3lmUMj51Fu4Y9qRHYQlvscOOH498csXrFUMQBPxl0iSsWrKE2UdeKYaNCkONuaDHD/IkXaUGYVx95HzbBNPeUGZdxqgSTP53ACQy5+/TL1qGoff5Yuqbgbj6OX+EZypQUVWFd5ct60nTXQgLCsIr8+dj4SOPOMk52jhSstMjOVBW/ETEBKZ0qw2EENzQ/37X5QJgiG1GytiL8ItgB8nMFgtefP992O12KHQChj3g69H+ZWqCaUsCodJLmEEsABg/dKjT6+OMQJxebUAYZVb0/8tIJTLcOeIpzL/6Ta/kCjZlE8zaDjlOXD07TNxTXvrPf1Bd65ATfPHDDygo6bkAbdnatbhQ6RCLbN67F/WNjdTyUY2ZECCBxWhH6RHnkHlLrRXnDtCD500RHRKDtCsox/FUQEQIwW1DH0eQzrMxwPrjX2HFgXdd+tz05GSmxOqCG5GJPlKKqEFXVq5ltVrx3YYN3dr21Y8/htnMCNcSAiz4FIjLoJcT4ZigR4HgCNMZjHFoijqGcL8rd83CorMYAQCUOgskcrq8cN8x+vVI3GgVvB36Jo1XQa7p/m0/QUow9nE/tFy3EzZCb79fVBMkUtdxQlp4Rz+VEJSOJ699D74qV/lXV2RKG/SR7OukM767ULK3I7x8cp3rea9MTReZqM166E3ezSJvswCbXqzFz89dgt0mPj46u70Fxnr6g5e9rlVDkDj3JSU1Z/DEypnYdHIlzlTkIK/iCFYceBf/Wns/6lsuweDvj+vHjWO2cemKFaLL+8zSMqVlRU151PUyqwp6U5jL8uQJKih0jro9Cb6nOfa+qgAAIABJREFUilxLZUaPZG63r3ATs0w2o4xMIkffyOGICegYh6l8zZAq6L/1HQcPtv89bK4Pkia4BuzL1Lk4p2XLVtwRlloPqUSKu0c8w7zmDfaJhJ/a0P7aJ4gh95I0X5b7EJxs8V4ikQ32uFXmIy63iDOkQqfUe71PdwRogxHpnwBCgOgBl6D0ET+vRIaE4Ppx4/DV4sVI7xuEf625F5eaK93WW1KTh8/3LMaJxtVuy+QILNGte9ruVQX3cogNWk0mFDPC+Co3700MlsiktcGO6rMW9ElOhkRg9AUt4jINO2zI893ObEtgrHPYvqy2CHkVDlFSWB854hoGI76ue3IbwSZFeo1DFJd5E1voUFJN/1yi/ZOp6wFgcp/bqeuVOisUWvp3tefIEY+uq4/l0fthiSCgd7zrdcS+wk14Z/OTsNrY8hu5RIE+EUOZ5X7w8F5HduFGj8q1ofJjC4hOnDmDiP4KyDX0cXfBNud7h2Ljgc4IUiCxi+xNYxBwvvdm/Bi9EAcMK5Gn345i3SGUq/NwSXEeNcpzONVyGF/88ANeWboUj/zrX7jt73/H7OcexIq4x/FdzNPYG/QlLirPukhNgtM6RCbfbdiAQ7m51PZFx/iIjqs6c8fwJ6nraaSE9u/2tleCxOAMXJ12E7McUdGvE0vLy9nXFKy2jFOBXHaO5LZ4J1HMN04ARO4xxg337p5zzunTMFvox6x/ZMdv3D+6GYKUPsbcuHs3KqrZYt3wTLnocpbIRNB3jNMNurBuyXk5HA6Hw+Fw/ojQBIfelOFwOL8dXGTyJ4WLTH532MC/Ew6Hw+FwOBwOh8PhcDgcDuePDBeZcDgcDqfbEEIwMX32Fa1z88lV7X8P69cPMik9uLMlO1t0FusC41j2znZ/D6z9D7PYAeN01Cros823zbTe9WFwQZDgpsEPu93OP7IFag8e3qdB7AQJ9cNdlrfqy2AMLqBuuzt//RX55/zA9HRmmQqVIwSjDZIg7fEG5JcUU8vrDK2QKV3/WRnsE4kh8RO611AAarkWQ+K6v72f2oDhidcBAAbFjaeWtcOOI+e3Y1BGBh6780589/bb+HnpUix5+mk8ctttmDxmDKLCXEOAPSEyJATPP/SQVw+Rnyjbj9rmKnZBBkZzM97b8gwsVnaQwCythNaPHhTcf+wYSisq2l8fPSUe0G5D42cCIYBUkInOljw6ZSruGfksCMum0Q2yz25AWW3RFa/XHSEGA9546il8vmgRZl93HcKCgn6V/fiGtuCibBde3/AYFv/8MBqMtd2uSxskQSwj0FF7zoLcL+3wMYVQy7XGnINM6dn3+OrHH6PFSJ8t3FN8tFo8dscdWP3OO7h6+HDR46yptR6f7HqZWZdarsWsgfN61J6U0H6iIWAAkMrtiOxTB40/+xyTm5+Pw5fDVBnTNQhMdD8bOQCAANctCkBggqPcRsbM4iqlEsP6dYi+TBYjzlTQA76pYQP/8GGY9IgheH7qZ7hj2JPwUfp5tI0xoEMkEtySBJXF+0AwsRP0qb4OQS0JzLK1DQ34f6+/ji3Z2Xjr88+Z5ccPHYrIULqMyGQ248PlywHAIxFGQn1HwLJ4t/OxfPjrRphb6OOYpgjHbzs6IBk+qu4Hj3uCSq7FA2P/BYWUPaM8AKzN+QzfHnzfaYwmk0qZ4rhyVZ7og14ZMzQgwpU9nvYePYrKmppubVtSVoYv16xhF1RpgX98D/gGely3FcBrso7PKbA1Gs1hp7ySBvWUmADnMDQhgDaA3hcfOH4cVqv7cZE2UII+M7VetSNtqsar8mLkFRXhl5Ns8WFgtGtgWC5VIiHI+Roh0j8BT137PvSdxAvuMMQ3QmD8bgt89iB/jyNIaWq2IX+zc5C5WVKLGuU5ah3hzWndFt0dW9WEfR+LC1dy17BlYr0nO39HVpsF7295Fkaz67aFVbl4Z/NTsNgsuH3aNKaA4Jddu7B6o2uoXK4WMPAOeuj/ouosdb3BGAsicks5fVrH+zlRup9ehy4MQT6uApmYgBQEaunnkQNFW2CzuT9eapoqkH8xh1pHekQWVHKNk1COEEDHEIEcy8tDTV2do7xAMOlFfwT37hg3WYkZ+wPFJTIsBIkN0f0vQWcwYUrfOxDpzz5PE0LQO2xg+2tdMHvMW6hzSGa8FZlUmFNxTEI/j8k1FggS8XV9ItnCBG/JuCxhkKtsSBpRhdhBNQhJqUdY73rEDalG6tXl+PCVp/DPBx9Eg1CExesfRou5iVGrgxprAXz14gHvHMGzcVtXTDYVLlkcor42kcnZc+dgZTw4r/RhSynaaA6lCzsAh/RBrVIhOY4u+apUid9PKledRr38InVbld4EjZ/rfYEtpxyCmLA+chAQDK68sVsyk16146C2+iFyoKL9msQdtc3VqGmit7erhMxdmYwIelv1ofRj8EJlJc6VlzP3dfyMuESmjfioKKi6CO7yyo/g/S3PwGqn32dpY86o5zBn1D+glKmp5U6XH0b+RbpwzWhuxtESuki5KyqdBUSgj+OPnzkDiYwgZhj9PsK5A61obXQcR7XnLbhwlD7uih2mhMq3o7Oy2+1Y8sUX2Nb6Heyke6GJFmk9Cnz2YkPE61gTtRAn9BthFBogVRAExjt+o7n5+Xjpgw+YdSkD6RKJ6IBkDIge7fE1ZGcEIkFScB+vt7vS3DDgfkT5J1HLKDX0vs9qs3l0PNFQ6SWIHuz4feUbr0Klmd6m9n3bZchunCu6jnXfqyssoSHgPD6RSO3wj6KPM602G1auX8+sN2ao+Hm9WUq/9ydTd/TvBp13QkAOh8PhcDicPzJciMDh/L7g4iCOW3h//bvD3aQBHA6Hw+FwOBwOh8PhcDgcDuePAReZcDgcDqdHDE+YhOSQzCtWX17FEZy/5AhOadVqDMqgz8KeffQoJD5m+Mc6C09KWofCZGOE99Z/BGz7hlqkxabHVhLLbLcu0PFAcYrIZxFn6C0qVQAcYamIjDqAdP+fcuFNadBaXIO5tb22i00M6cTFhvMouHi82/tuIyUuDlo1PfxQoToDmZpg2luB2HSUPXtv59kmO3N95l3MmalZjEmZ1u1tJ2XcApnEETrKjBoBqUAPzezrMittcGAgRgwYgNunTcMLDz+M7995ByveeANzZs1CqIEd6qShkMux+Ikn4KP1Lui6O38ds8yTk973KOxQWJWLVYfowYzjpdn498+PwDeCPrsqAPy4ZQsAoLKmxklqIoba3/EgfZ/IYdAoxAOawxIn4aFxL0PnReBjVNL16Bs1glrGDjt+OfG1x3VeKdKTkvD43Xdj7X/+g5VvvokHbr4ZA9PTIZcxRBQeoDMYEZVZizaXxPHSbDy3+jYUVp3sdp0ZN3j22zS00PvdMxVnYPNgppzdhw9j4+7dHu3THRJBQFJMDObNno0177+PW66/nvr5frP/bdRSZnlvY/bgR+Gv6bmAZsaA+9yuIwIQ3e8SpHJ2mG31pk0AAEFKMPYJuhxjxIO+SBjtCLxUXbqEE4yg3cgBA6BUdEjHTpcfgdlKD5elhosLWv5oSAQpRqdMxaKZ32Jyn9shk7jK2TrTEtrxWQsQ0PvSOK/2J9ikGFM2F2mXrsbYsrkIaWYHtfYePYpHX3qJ+RCuSqnE/LvuwsO33MKs84fNm7H36FFmaMuvNRz+rZHtr4v2dIRDzUYbDn3JPo80RTrGOWnhg5llf02iA5PxtwmvQy71LNj249FPsfrwUqdlWX37UrcxSZpxSeEsbRCkQOoVEFq4tO/y+bm7fLJqFYytdGEAACAkBnhmJSBhj/1qIMcDiiwclgS0L9NqJLDJjYjwo4e1ryShvtGQdzmW26SH7mhoasLpwkJqmTGP69HrWvp4uw2fMAkiB9D7ExY2mw0vvv8+M2CvMxih0LqeZ3qF9GsfM3cmxDcKf7/mHfiqAlzWdUaussEnlB7SNEmasfXIHtjtdhRsNbqIjco0J6jbA0BUAF2exmLHW3W4VOwc1jfW2VCwVfxapo3ABCmCkp3HEweKtqC01r1E5FT5ISzLfgPhwcG4ZtQoZtsWvvce9h51FYf1/YsWan/xW8LNkjo0yuiCw6AWVzGQPkqKiMu/OaO5GQWM0Htn+UZnCCEYFEs/t9W1VOMMRVSyv3AzdXsA7fuIDezltNyHITKx2+3YfehQ+2uZSsD0tw3QBjsC8bn6jWiUey+I9ItoRsrYSujDjIjyT8R1fW73eNveYQPa/1b5WKDU0aWSpZoTMAoNqLEk4oKJfr+lMxtrFzLlFUqt+9D5rzG26yxHIQLgE9yK4MQmGOKboDOYIJXbseXUd1hz9L94b8vTsNjYws32+gggDxAXduVIuidGq7L0gh2O30pQL8fxf7qoiLmdysd9u7v2pSa/MliU9dT6jnzTCJvVjn69e1PLVStKYCGu569T+m3U7QAgMEa8/z5QtBmNxjoEpcghVRAQCBhceSOSaunX252JbMxARs01AIDMG9nXl8fO06WLgKuEzB2T+95BXa8LZo9t9uXQRUt2u50pMklPch7Dt5pb8MH25z2WmMzofx8Gxo6DVumLsSnTmeWzz7qKsTpzuGQHTFYPxnWdIAKg8qUfk22fQ/woukTJZum4Tji9ni0SS5nkPJ76cPlyfPztt8ztPKVefhFHAr/H6pjncDj2GxSXn8fJggLMnj8fJjP9PUskAuw+F6hlMiKyIAgS9I8Z7XXbYgN7QSW/8tcG3iKTyHH/mBdcxsydUVDOKW0UlZb2uC3JExy/LxvkWF+7GEabD7V8i80XK6o/R7010mWdyk9ASKq4BMsd+xnXxAqt2UX07ehj6dfnK3/5hfl784uSIvlq5+PLDjuapHSZjlzV0dcYdFdW0M3hcDgcDofzfxkuTeBw/u8hNjkA50+AB8+ZcH5bbHb+nXA4HA6Hw+FwOBwOh8PhcDh/ZLjIhMPhcDg9QhAkmDPyOajl3okTaGw99V3732MG00OnJrMZuw8fRnSWcyjUCiXOto6m76j4BGCmP2h/vHkmzqtKqGWIYIfG34QIvwRolb6iZW7ofz8EIj41scrHgqB4z2YFFiOx3jXwYZW1oKYPe+ZFANhdwJZYsJBKJMwQTKXuDG5dHoSAFAE/baeLTCQyG3xEZpMO9olEVtyEHrUVcDy4H+1hUKUzvip/jE7umLlao9AhLWIIdZszFTmoaXIv4CCEIDEmBnNnz8b3776Lh2+9FRoVPaQhho9Wi7efeQbJsWzxTmeM5mYcKN5KLWPQhSM5pC/uG/081HL6DO4AsDbnM2zKXSm67ui5XXhjw3yYrK3Qh7UwZ+D9ccsW2Gw25Jxmzyyt8XOErIbE038j/aJH4eUZ32Bq5j3UGd+jA5LxzOSluHPEU5jZ/37m/g8Vb/N6ti2TxYgNuSvwyc6X8OXe15FbdsCr7dsghCAhOhp3z5yJD194ATu+/BIfvvACpo0fD4ng7ZDfjuDkBsQOvuQyo3p1UzleXDMH2/N+7FY740YooQlktyfQSP8d1zU2orisjFqm1WTyaLZjwCEBGtavH26ZMgUP3Hwznp03Dx88/zzW/uc/yF6xAsvfeAP3zJrFlASdrynw6LPJiMjC8MRrPWobi3hDKjIpoh2ZyoaofvTZdAHgl1270NTiCF1HD1Fi2APi4Z2+N2ox+J6OfoAVsgOAq4YOdXp9omwfc5vUsD+HyKQNlVyDGwbcj1duWI4hlPNcQ7RzID25biSCmxM92odgl2Bk+V0IbUkBAEjsMkwz3OW1/Mod98ycieCAAIzLykJGMv0ca7Facd9zzzHrjK/PAulkZas4aUZLrSM0dXx1M1ou0R9qago7CbOvI3Sdzjhf/xakhGbibxNeowb2OrP68FKsPfpZ++shDJEJAFxQn3J6nXa9BtpA8TFod6lvbMTmvXt7VEddQwN+3rnTs8IZo4B5S9yuboEEH0iTMFl1FfZIOgRRUpsC0vAyCESCUH1Mj9rrDYIgQVSAc8C4TXpIY8+RI9T1EhnBtS/749qX/aH0oZ9LB9yqAxEYRkMGP2zZgqOnTjHLBcaKB4Zp0oJQfTT+Puld+KroMoCAaPY10nHJdlTlm3H8e9eypWq6yIQIdlSN/Aitft0PwdptwMEuUqXTG5phZfgSek/WgJCO78hut2Pdsa+Y+9uYuwLb837AndOnO20vhsVqxfxXXkF+cbHTcrlawIDbxcf0F1X5zDYYjAkuy9Kndbyf0+WHmWF62nl+QOxYZhtospJ9DJGJTCJH38jhAIAgnwioZB2Bbp2hFYQhGd3ZSWQCANogCaa/HQijthon/Dawmu6EyteMhGFViMqsg0xpg0yiwD0jn4XUC3Fnr9AOkQkhgF8EXaJjJzYU6Q4CALbXP8msv16Rgq+qVqLM3B91DJGJu9C5VJB16/qbRUJQOvP6dP3xr7DiwLvdChP5hrrekwCAM8QHLfD+3HrR7LhnIpEDAXEOkUkeQ2IllVshVYiPd+INabhp8MPOCwnQFEEXT9aXWVGwtYV5D8dObKhSFjkta5BVokydy2yzPkz8d2i2mrAr/ydIZAThmfLLTRYwoGomUi6JC4Db8DdGYsSFOzGi/G4IkEAbJEHCWPa9kyPn6OMNqSBDpL9rvyZGUnAf9O50zHVF7WuGIKWPT7NFBFOdKblwAXUNDdQyXUUmKw68i8oGz85lE9NmY3InWdLVabOZMsXDJTuo9zr2MUQnABDh5/oZq/X0k2Vufj5sNhtihyuZouaz2xy/uZM/0UUmUiVBwpiO381/V6/Gu8uW0SvvJlbBjBzLDkx/8EHc9NhjHm3TNyMaUjm9v2q7rnEnzaaREtrP621+LcL0MZg95BG362UqG/Oe4ZUQmSSMU6Htln25uS8+vrgZhxpvR3HrUJSb0lFgHIuz2pthnfk0vq/9AP+pyMY501DRumKGKr0agze3tDDFsGJCRIXGCh+GOOlSXZ1H11sTX/Bv748BoFXSCJtAl8jIuMiEw+FwOBwORxRP/kfMZScczu8Lb5/t4HA4vw78/MjhcDgcDofD4XA4HA6Hw+H8seEiEw6Hw+H0mEBdKG4d+vgVq29X/k9oNTseQB85UHym5s5s3bcPUYNcH7rPN17d47YcbZqNamUxtYzazwRBCvSiPAweqo/GiKTr3K4PTmyAXM2eabIrOpMBoc2ugaBL6RtgVTWKbOHK3rMbYGEl7TxgQFoadX0T6lAvq8TuQ4dwqa6OWlYf1uIiUACAsb1mQBBb4SWEEIxJmer1dhPTb4Zc6izNGRx7FXO71Yc+8ughCLlMhjumT8cP772H6ePHQyphv1dCCK4dNQrL/v1vDExPZ5bvysHibTBZxANabQxNmAhCCAK0Ibhz+FMe1fvZnlfxy/GvnZbtKfgZb258HGar4yF8qdwO3xD6vksrKnAoN5cZpCWCHSpfMyREgvRwugAJALRKX0zrdzdenbUKCya+hcFx42HQhUFCJEgK7oM7hj2Jf0z5BAlBjs80wj+eGRKpa6lB6aWzzH23UVR1Ck+tmo0v9izG1tOr8cuJr/HKunn4bPersNq87w86o5DLMTA9Hc/Nm4dVS5ZgwrBhHm0nVVgRn1WDkKRGuMvGmq0mfLRjIV766X6cLDvg1QM+EhlB2vXs2X8NDJEJwJ619tPvvsO5C/SZjAHgqqwsbPr0U7zz7LN47M47cffMmZg+fjwGZWQgPDjYo+OwjRUH34OdMVuMSqbB7cOeZIaPvWF6/3up63UGEwJj6WFwY2urU8gl614fzHg3EDFDlfCPlSJmqBLXLfLH+Kf9nNqem08PPEulUgzv53x+PFFKF5lE+CVArw6glvmjEqANwX2jn0f/6NGi61tCzsCq6PguCQSMLZuHgRf/Aq3Z/Wcm2KQYXn4Hwpudz9XDb4zAk3Pm9LjdkSEh+OuUKY42EYJHb7utx3UKNiliGroERe1A8d5W2Kx27P+0nllH1YAfAABKmRqJQRk9btOVoFdofzwy4d/MwGgbKw6+h4JKh4whJjwcwQH0Y6OzyMQvWorR8/Xdb6wbftm1izm7t8yqpK4HgOXrHDI9s9GGspxWFGcbUbzXiKI9Rpw/2Irmmk4ihOvuA579FtB0SANbiRQrpDGYrLoK78p7oYnInOoPNMagKfo4gn0iIZN4NzN6T+ka2JdrrJAp6WKHL3/8EQ1N9L6aEILe12lwx/chSBgj/hlHDFAg86aeCYpq6+vxxqefMsup/UzQBYmHKNMY47EwfQweu/pNJ1lRVzT+ZqjV9PNltbIIaz85gaJdzmNKKzHjgpouwtMGtgKaZhRf/7JT3+otx79rgrGu4/yf+yM9RA0C9JqkdlqUV3EEhVV0OUAb/921CHZFHcYypJ8A0NjcjAdeeAGVNTVOyzNv1EJjcL0tXKmkj2UFmxQBxkinZUQAUqd0vJ9sDwLtvcPciwDiAnsjQBNC3X5/0RbRGfpqmiqQfzGHum16RBZUcsd4VCACogM7jleJzA5NgGtguDO7Dh2Cxep8PAelyHBu1A+wCuzraoXWgsDYJsRnVSNxRBU0/h3b3D3iaRcREosAbTCCfTq+E4fIhD4+L9Q5xmIlpmFYe+kNmGxdZBBBUcD0R1G/YAs+KFqHUtMgmIkRLVK6HE+hEb+GiQ5I/lX6YYkg9ejar7uo9WbR+zQWIuCE4P35tU1kYkiUQSJz9G15RUXUbZQ+FrfXZQNix2Bg7Djo1Qan5XUpdHEsABz6qhF9e/VilqtUFji9zvPdDjBkPwHRzaL3c9rYeno17HY7+szqOFcREPSrnoaBF2dCanMeI4U29cK40gcx8fwCRDVltp83Mm7QtH+O7rBYzThemk0tkxLaz+U+D41bhs53O44jAqBl9CH7jx2DjTLr6/G8PGYb0jqJTPLKj2Bj7grmNgBwbcatuHHQQ07Xc3p1AEZS7lcCQGVDKcpqxaU7zaZG5JzfQ90+3pCGa9JnuyxX6+mfVbPRiOKyMmgCJAjLoPchZ7cbUXnGhMo8ej8cP0oJudpx/luxfj1e92C881uh02gQl04/vlQyDeIv36dKCe1PlfOK0Su0f7fb92swOnka+kWNFF1HiHtBVhuF58/3uA1qP4nT/xWabEHYVP88lld/jc+r1mJVzadYVfASTvg9gbzmiTDb1W7rihvheV8CAIdPnnQZU3TFXZ8SGMMeuy5bs4Z5z06uFjDzQwOSxjvGAk3SS8x6O1/XcJEJh8PhcDgcTgdciMDh/N+DyxP+pFDuzXH+N4j9v4fD4XA4HA6Hw+FwOBwOh8Ph/HHgIhMOh8PhXBGy4q9GVvzEK1JXs6kRe886ZjIO8vdHWmIitfz2AwcQmilxmZ3zrHEMrHbPZzLuSnHrUFTaIlErL6OWa3ugmDWr5dTMu92GHQQpEJFOl3uIkVg/HKTL6dwmMaOq/48e19HUWs8MHXiCJxKN/ceOYfn69cxyYrNIyyRyDE+c1K22iTEsYZJT4IuFVuGLsSnTXZZnRg1nhrK25X2P/+5e5PE/XwP0ejw7bx7WL12Kx+++2+0xcFVWFla+9RZefPRRhAcHe1R3V3bnr2OWGdrp2B4YOxZjUqZ5VPeX2a9j0boHkVdxFG9ufBzvb33WRdDhF0mfMRwAVm/ahKOn6UFUla8ZggSID0qDSu55eFcgAtLCB2PumIVYPOs7LL1jJ/7fdR9gdMpUF2nOpPS/MuvLLdvv0X7zKo7i5Z/mis6avOnkSizf/45nb8ADosPDsWjBAix/4w3cPm0a+vXuDR9tF5kIscMvvBnJo6pEZ3sV49SFQ3h53Tz8a+29OFKyEzYbPXzRRvoMtsjExxwEudV9OAQAdh486HbdhcpKfLRyJXM/44cOxeInnoBWTd+XJ5wuP4wjJTuY5W4a/AgCtN07Xt0R5Z/IlCoFRLNDLqs3dgSPCSGIG6nCzA8MuOvHUMz8wIBek1y/uxMMkUlSTAxUyo4wT11LNUpq6DMOp4UPYrb1jwwhBLcOXQCN3Md1pWBDY6SzxEeABEn1wzGl+DlMLn4Gg2pvwKCUTKgsesitakQ0pmPi+QWIbOrjtJ1KLyB5ghoTR4zAVUPFZ5T2BIkg4Nl58yCXdUgkMnv3xtDMzG7XCQBRTX2hsLn+5nJWNiJvQwvqztP7nFa/UjTEHQDgCPlJJTJq+d+S1LCBePiqRR6Fuu12G1Yd/A8Ax29jSN++1PJVykIE9rViyBwf3LoiGArdlb/t88PmzcwyE0sXwMcURC1zIj8fS+7Zh7eGlOLL2Rex/K5KLL+7EivuqcSy2y7inZFl+HFBNVpqL3/Xw6cDyy8C7x5C8ws/YYTyGrwo74MqIh4YDDRFoSXkDKL8E7x+jz0lJtBZZELIZWkGhZq6OnzwzTce1a81SDD1rUBMezsQ8aOU0BgEGJJlGPWYL2Z9aIAg6Zks683PP0dtQwO9ELEjIqNONGCvVxsQpmdLyaIDktA/ZpT7XRDAL54uTgCAH/f84rKsQnUGVoE+pmmbyd7kdwGFM5+FyafCef8euszMLXYc/dYhkaw9Z8H5g/TvOmqgAj6hztep648v82xnACw2M97a9HfMuWkGlHJ2P1JeVYWnXn/dKTgvVwsY/oCvS9lKVYHLss4EtsZAAuf+NGWiGrpgx/u5UFuM3QX0673ogGTolO4lEIQQDIwdS62jtrkS+RddpXb7C9n906DYcU6vYwJSnF77uJHztNHQ1IScLpLFHQcPYt/pQ8x9h6XWIWVMJcLT6qENNDkdP5P73I4h8ROYdYjRWQwjU9qgMzD6G+W59vscuS3T8V7FAXxXsxTmBV8D7x0BPi8C7nsNe3ZmwG53HAj18ovMdrgLnMcH0aWnPSEj0jNhY3cgBNCHiYs3cwQ/r+urMDs+h6BejuPWbrczRSYqH/dShoExYyEVpC73Kerj98Okq6TWW5LdClulGrEREfQ2qzrG7WbSigKfvdTyIHYExNBlTmW1RcirOIKk8SqE9+vowwj6Hfz9AAAgAElEQVQIkupHYmrRPzG2dC5GXLgL0woXYuyFuQhpSXISXwlSoM9M9nX/6fLDMJrp7ekbOZxZT2fC9LGYNXCe2/Ws831tQwP1ez/GEJloVCrEhocDAEwWIz7a+aJHoZupmXdj5oC5okLNQbHjmdsfdnOte7hkByw2ujxkcNxVyIwaAUmXE6taz5Y/5RY4zkvxo1TUcs01Nvz8D7aAoU0kdqaoCK8sXcos/1vywsMPoaTxKLVMavhASAXHOVcqSHHT4IepUrjOSAQpkoL7sAv+hhBCcOPgh92uVzJEJsVl9Hv2npJyNf2ekN0K9u+LADFDvROZsAS9AKANEO9TtAYTU/SSW1CAHMb9VACQKQVM+XcA+t+qRbMHIhO5qrPIJJxZnsPhcH4rCCH+hJDZhJCPCCF7CSEVhJBmQoiZEFJDCDlJCFlFCHmcENL7f93eKwkhJPXy+1p1+X3WXH7fzZc/h72XP5fZhBDvL2a63y4ZISSLEHIfIWQJIWQzIeT05TYZL7evlBBynBCyhRCymBByAyGEn2A4/yfxSIjAnQkczu8KLiD6k8JFJr87uMiEw+FwOBwOh8PhcDgcDofD+WPDRSYcDofDuWLcOnQBcybI2MDeePiqRcy6tpxa1f73GMZM0/WNjThVlgdDknOgqtXui5LW7gdzjzbdjBrFOdgJ/R9mbQ/eJ4fQA7v+miBMSP2L2/W6IBP04WypQxsSmwxx9UNcltf23gKLtuOhY7kbeUpnPJFZsEiKiYFOQxcUfLVmDXYdoge85BoL1H6uYYaBseOgVbiG7bqLXKrE/aNfgL+GHrJt4+q0m6CUuT7YrpJrkR6Rxdx+y6lVmPPfUdhT8DMq6s979FBEoJ8fZl93Hb549VV8/+67WHDXXbhx0iQ8fOut+HbJEix+4gnER3ouY+lKbXMVTjDEG/GGVIT4Rjktmz34EYTr4zzax4myfXhxzRwcKt4mul5naIVUSQ+jr9myBUe7hAW7ovFzBFVTeyhAEIj74XGsoTc1dAmA+XkCwInSfXh1/UNoMbsXS6w//hX2FPzMrMsbkmJi8Mhtt+GjF1/EDbdHoPf4CsRnVSM+qxq9xl1EVL86SBXePyCQV3EUr294DI8tn4bVh5eipokecvSLkjnNdisGgYCgFnrwfN+xY2g1iQeUl61dC5OZHorSqFRYcPfd1DKeYrfbPZLPpIYNwsikyVdkn12Z2u8eaoBJqbO2HyfuyDl9GmfPnfN4n3a7vT1Y5o7UBOfvMbfsALPenh7HfwT06kDMHvKo6LrG6COiywkIfMxBSKwaheFn78X0ohcws/AVjCqfAz+T6yzJ6TM0kCoICCF46t574e/bvXPsk/feKyozmzvbddZ1b4gXGeMAQPHeVvw4v5q5fdWA7wHiONemhdPHkv8L0iOG4MFxL0MqsAUrx0uzcaG2GACQxRCZ2IgVfncUYMRDvu2zzV9JiktLmWG4/qmpyBwaheTaMcz6thRsgo2Svzu1rhnfPVgFq/nyuEkmBxIycVgWDBPlnA0AWq0Au9SCyAC6FPHXoKsYAQB0DDkC4Dh/eTqzPCEECaNVmP6OAXO3hOP2b0Mw6A4fSGQ9k5h8tWYNvtuwgVnOENsElY/4l5cWPkg0KC3GdRm3U9f7RbRAArqcskh3AK2Cc1C9VH2CuW+foA5BgdFQjPxbHkPxlJdQMfQrlEx6DYM+yseC45GY9nYgs65DXzbCarZj9/tsOWXv65yvKcrrSnC4eDtzu87UNlfiUPlPWPjIIx591vuPHcOqLt9r2lQNAhM7+iCT0IxLDImnoSXe6bVcSzDqsY7zx+rDS2FnPHCaGjaQ2V6WyAQQl5bsY4hMZBK5i7QgJtD5eNUFi4srOrOjk1DPYrXijU8/ZW6j9DEj0I3goW/UCEzvfy+zDnf07vKZeiKLPKvb1/63ya5DvnECqkKmAvF9AELQfMmKEz90XK/UyyrEqnHCXeA83pDK3La7DIgZDY1CRP52hXB3jyZH8PeqnnpLGCrMjvFS8GWRSUVVFeobG6nbKd30s9EByTDoHOO7PpFd7nsJNtRkuAqeunLoqwbE6ejnyApVPhqlNQCAQt0+mAX68aEPNUKmZF9Tbj21GoQQjH/az0UapbBpENrSC1FNfaG2io9P067XQGtg26aOnNvFLNOnGzKcq3rPRGqY+DWLzsAWg2bn5Lhdd+wMXfqYmpAAicTx3lcd+gDldSXM/V3f905M63eP2/NFYnC6uESxE4dLdoouzzm3m7odAcHA2HHQKHzQu8t1nlxjhSCl/15OXr7ejBvFFkRcOEr/7BU6gtgRDiHKu8uWwWKhSyB+S+b85S8Ii1YyxTtdr2sGxIzBQ1e94tH90tSwgVDI6EKY/wXBPhGI8BO//8MSdRSe9+z+KouEcSqPBXbuCEmVQ+3vXSX7jx+nrlf6mCFViL8/QoDAGLawdoUHQnEAIALB2Mf9EDGRfs1CBDsk8o42sf4XxOFwOL8FhJB4QsjHAMoAfAngTgCDAQQBUAGQAvADkAJgGoBXAJwghOwhhHhm7f+dQgiZRgjZA+A4HO9rGhzv0w+O962C43MYDMfn8iWAMkLIx4QQz/7J532bel+WqqwHcAnAbgDvAXgAwBgASZfbpLjcvjAAqQBGA3gMwAoA5wkhGy+/vx6epTmc3w6PRCYcDud3BZcn/DnhApvfH/w74XA4HA6Hw+FwOBwOh8PhcP7YcJEJh8PhcK4YarkWc8csFJU9AMCQuAl46tr30C96lEtYqCuFVSdRWHkSADCaITIBgM3Z2aLB+Hzj1R603JUmayDOGK9GtaqIWVatNyHCL4EpOACAa9JvpgZWI9LroPP37J/lfWquhcLm/FnbiRWVA1Y7LZuUcStzRvTDJTvQaGSH7mhIJBL0T6UHlDwJZvpHtIjO7N51luErQayhFxZO+xKT+9xODT9F+CVgYtpNbtcPjr3Ko/2ZrSa8v/VZPL5iBh766hos3f4CDhZtQ6uZHTSLDgvDzZMn4+9z5uCO6dN7JDBpY23OZ8yg4dCEa1yWyaVKzB2zEDIPJDksCHF85z1F7e+QVvyaYXWBCOgVOoBa5lT5IVgoiezDJTvw2i9/g8nCDkh+vONFlFTTZ2PuDttOf4+DxVshU9qgDTRBG2iCXNXzh3Rqmirw3aEP8dg3U7HiwLswW92HiNJn0KVHABDeTJ8U0djaioMnXEPKVqsV67azw8D333QTgvy9CyC641DxduRfpM+kS4iA2UMe9TjY7S1h+hgMih1HLeMXRQ9FAcDqTZs83md5VRUu1dHPHb3jOwLPdrsd205/Ty0vFWRIDqaLGv4sDEu4BhkioqzGGHGRSWcqcukiHyIB/MeX4lxNPux2O/x9ffHM3Llet/HOGTNww9XiY620xESMHtQ9KY3WHIjglu7LJ8zqS6hN6egH0n+HIhPAEZx9YNxLkAh0SQMAbDy5AgAwKCODWfbHzfQgf0/4YcsWZpnJY8diwK06xDYMhNRGD50Waw+hVaAH8EoPm3DgswanZdnZufRG2AkUYVUAgCj/315kEuYX5zLm9w0xQsaQt1msVrz60Uf/swf21m7bhkVLlzLLSZVWBCe7D997Mx6LNfRyGwYHAInUjmCtjlqHVTCjwKcjSG2FGSVael+p9DFDrnYe/9jkRjTEH0Tl4FWoT96Nz44/h8LKk0gYrUJ4ppxaX2OFFTvfrsOJH+jnWqmCIGm88zXcLye+7lbQYevp1Rg2IAOP3HabR+Vf//RTlFdWtr8WJASj53cEnyuVhe0CKHcEGZ1zTqPn66ELdvRh52sKkH2WLcHJimdfo8cb0uCvCaaWOVC02elB8+Kq08i/6F4OAADpEVlQyZ3HobGBvZxeKzRWyNX04PSW7GzYLs/auHrjRpz14Do3Ir0OYv6lMH0M7hv1D6pQkUVKSD+n177BRqYcoEi3HzY490kXT3WMH/I3tcDaaThRL6eLTCQym9uwdXxQGnXbnqCUqTFn5HMQupltm95vjuh4q71+nQUKreu4Kkfi3STmexsfgB2ONgb1cpwf8oqKmNupfMTHdANiOmRhUf6JLhKKS+kbYZPQpQ5HlzehZQvjvgKxo8BnD+ywozBsB7O9gbHsUD0A7C/ajMbWOhiS5Oh3s9ajbdrwCZNg1N/Y99/sdjuOuJFvtBGmj0GQj/eTvQtEwN0jnxGVfyi0FkgV9PP9Pjcik1aTCacLC6nbpiUlAQBKqvOw/vgyZlsTgtIxNZMu8JQIUlchThcKLh5Dfcslp2U2mxXHSvdSt0sM7tMuEB4Y4yypIgRQ+dKvW9pEJoYkGXQhPcuwJo5TQSonKC4rw9Z9+/4/e+cdEMW19uHf2V5YWNil9w4iAmLFhib22FtMMWpu4k033SRfiune5Ka3m95MN83EWGJvsVfsogKCiEqvW+b7Y6UsO3POLmBLzvMXO/POmcPuzsyZs/M+L3sDABqrAUmlAxFf3hfBNUkwNPhDJrDH7p7Qp2tXzJo8GTkn2X1KCXEdY3WNHIB5E7/HgIQx1G3Hdb21zX280GRGDRBdzhKZVFZXM+ck3EHnK2cKd1nE9GPLdlpSWV3d9P2WwstEl4r4htcyr/fLNmxgSrNaooyupK/X2prm7Y06f6gU7Z8b5nA4nLZCHDwGh8RjBhxiDE/oBeBHQshiQsgVZWYihIQSQpYC+BGO/8MTNHC8XzmEkEdIB/xgQQhJJIQ8QQjZCyAHDqnKUADsH4KkuQqO/+8AIaR/e/vI4VwM3JnT5bITDufygh+T/1DsXGBzucGlQhwOh8PhcDgcDofD4XA4HM7fGy4y4XA4HE6HEhvQGXOGv4O4gNSmZX76ANzc7zH8O/tpqBSOh3oHuiGlWH9kEQAgJiwM4cH0Z8iWrV8Pc5rrj8xH6gZ70v0m9tRMgR0q2OJPUuNUOisUagHJwV2pcY0YNEanhJPWyJUCInucxpjhvRDqFyIaQwSCxLIBSBKpcl+euB4W42mnZalhPdFHREbREqvdgjWHF7rxH9Dp1rl9CUqECPALd03+C/ONdfpOdSR6tTcmdrsNr167ENP7zEGIMcppfaeQ7pg9+KWm764Y3aIHSVYPlaKirhRrD/+GN5Y/hDvmD8Fbyx9BQWluW/6FNnHizEEs2/c9NUZO5OgZI34MhfnFYnqfOR3SF1+Rz9xT9L4N0Km8XBIROxpWBfk6Sw2OlYgnV+edPYQ3l8+B1U5P1GmkwVaP1/98qN2SoZYcKd6Dzze+1GHtiWEXbPht12d4efE9qJcQtiRcrYPGm34rElJNF5kAwLpt21yWbcvJQcm5c9TtEqKicO3Ikcz23cFmt+L7re8w4/rFj0SY7wUpctjENenTqeuNIXWQyekPZP22ciUsblam3nfkCDOmU1zzuXHvyU3YX+T6mbUkLjD1sqwSfSkghOCG3ve7LLd4n0G9L318wqI8diNe3jQT//fT9Xj85xtw4sxBDOzZE/fPmAGZzL1pgmH9+uHO66+nxtw2VVoCRiO2ohdIO6Yrznb9HYLC8T32N4Qg0Lv98q8LRUZEP9w56HlmAva6w7+jtqEKfj4+SE+mX+u25eSg4NSpjuwmAIco6jeGyESjVmNwVhbCu6sR0cWAmAq6zMYmsyDXm54ACwAb36tARVHzuWnrzv3UeGNDMOoiHTERfgnM9jsahUyBcD/nsaFMDgQnVzC33bBjB9Zs2XKhuibJum3b8OQbb7gVG5pSAblC+nrCGi+1ZmTaNOp634SzzDZyfJehXuYYU+Z6b0adgv5eewfQE0MBwGKrxxvLH0adpQbdptFlKgCw+aNKsJ57js3WQG1oPr9V1Zdj7aHfmG2LUWepwdrDv2PamDGYNGwYM766thbPvPuuU1JFdB8torIc9zmntfRkWiIQ+Nc2CzIjeqjRZYIegiDALtjx4/b3mQ9+p0f0Q4SJfUwSQqj3zQBwrvq0k0ju550fMdsVk74FeIdBq2zOrSIE8A6kfz+OnzyJ31atQnVtLd79mi0S8A2vgd5P/B7gup73QqvyTOTQGm+tr5O0SaZwjPto1CoqcEp30GlZ/tbm//vISmfZZKmaPvaQSjb30frB7HVhcwLTI/ri39lPeyQzkRE5ZvR9FGMybsb4zFmScYQAvqGu7+U5osFxws7JswtyrCh/ArtqbnC0J3cIGQDgIENkQogAtUH8fc2MbE76l8nkSGo1J2XTVqI8iS7xAIDgmiQQgT7mOuq9ESQrF2esRdQ4rU8DdL7u3etabA3YcPgPAECf232g93dv3KczyTD5Q39ofNjxp8rzcLqSLhlKD+/r1n7F8NMHYHpf1zkRQgAvM10isy0nBxaL63t18NgxWBn3YqnnRSaL9sxnimmVchVu7vd/kMnYx0Z6RD/qegECduWvd1qWW7IP1fX0623XyP5Of7c+TnUMkcmB3FzY7XYQQpA4tH33iUnDHcfsV7/9xkwwJIIM/YpuxoTjzyPz7Hj0KJmCQYV3YHTeE7j26CuYbXwN44ufxMDC25BUNhBqa9vO4yEBAXj+3nshl8ux9+Qmaqy/IVRSvOOl8cHMfo/i8Ws+RKQp0WmdRqnDrAFzEePPnmO5VGRGZosuZ4lMALglE3OHxKHiYnZ3kCmA1PGe5Wlvz8lpkqJJwTqXyBXi8+gtqW9owO+rVrndr1NnzlDXq7TNoiZ/wxWV88/hcP5mEEJ0ABYCeBYOMUd7GApgGyGEbrG/TCCE9ASwDUDbfgBvRgPgeQA/E0LaOyE/H8BcAPRqF20jDsBKQsgrhBC6ZZbDucRwIQKHw+FcIXBpxmXHpSrwwOFwOBwOh8PhcDgcDofD4XAuDlxkwuFwOJwOJ9o/GY+P+hCvT12EN65bhJcn/4T+CaPRsqhTr5jBTslCYuwv2g7AkcQ0sCe9qveZ0lL8evh7oFXdqCp7EAob0j3qvyAQ7K6ZCrU3QTE5To1tTNJIDMpwu/3spLHU9XKlAH3ESfz+8Tt4LPJtjMh7BP2KbkZmyQT0Lr4BI/MeRbczE0UTfEu6/+TcP5UB0eZkt6per9j/Y7urHHRPbZ9sxBhWC6XWtQ/ZSePQAUXBqKgVGgxMGofnx3+Dlyb9iPuHvoZ5E7/HQ8PehL9BXCrTiEKmwM39HoNS3rYqlBZbA7YcX4HHf7oBS/d+c8F/pLXbbfh0wzxm0ktqeBYMGulKx33jR2BG30dBWh94HqLxssHLzE4mlUKltUKpsSM5uBvkso6tjNuaTm4k5u4rdE0+FgQBH617Dja7e4KIRs5UFeGdlf8Hu51e0VkKq92KkspCFJYdR1HZCby5Yo5bfbh1wFP4ZOZGZuVmGgdObceby+fAYnNNvFCoCTqNoieJ6Gy+MNbTj73127e7LFu0ejWzb/fPmAGFvH3VnBtZe/h3FJUfp8Yo5SqMzbilQ/ZHI8IvHl0jpIsTyhUCfEJqJdcDwLnycqzdutWt/eUwRCZqlQox4Q6BhF2w47stbzPbTA31tIDk35tA73CE+ca6LK+M3Nmuds+kNyfN5587gnl/3ImTpbm4ccwYfP3f/zLHXRnJyZh7111M6UlidDQGZ9Gru7dGJpNhZH968joNm6oG51KXNr3uHNrrgo8h2kvXyAHoFTuEGtMoLACAUQPZ789ChnCkLWzeswfFZ+lCiat794ZeqwUhBMOf8UOnenpSLAAc8l4HAfQxiaVWwKqXywAAVpsNR07Tzz9mSzjqAo7BoDHCqDMz+3AhaJ1ECgDG0DrofOkJiQDw7Lvv4uCxYxeiWy7U1dfjg++/x/3z5sFqY483zMEEPsHSgoRIUyK8tX4e9aFTcDdEm6WTaxUhxTA3RFDbaJDXIMd3KeywYZ/xT+Y+vQPpkodGzlUXY8nerxE3SAufsPaPHTJvcBairNz/ExpsbR8HL8v5DgIEPHzLLeibmcmMX799u0sy64D7fQAClGjoIhNjfSiUgiO3SaEhiL+zGK8tewB3fDkEMz7ujW0nVlG3B4DxXW9lxjQiJh1pzfdb3oEgCMg7ewjbT9DHgEq5SlRaICMyRJqdj1dDAPv78eYXX+C9r7/G2bIyapxMYUdwcqXoumhzMjqH0q+57pIc7Jxz5xvGlkUeMzjft5zYWAfBLqChxo4Tfzl/L0tVdJGJ1ltcRhDr3/miXId7xlzttszETx+IR0e+h+zEMQAcn0OXsN6S8cZQ8fHzAkUUdT8lliR8ceZXbKtuvqcyRSug1DjGT4cZIhO1wQqxoZZe7Y0QY7TTsuRg1+P/bPof1PYBQGM3ILy6CzWmVlGO+adfY7Zljq6BJx/15uPLAQBqLxkGPeTLjFd7E0x63x++EUq32t+Zzxa5pLVDZAI4zlMpIa7SNgNjfqOuvh57Dh1yWb774EGRaGdSExLQYK1jnvMAYFzGLS6yXsl2w3ox51N25q91er27YAOz3bTw5nsBg8boIvfUMkQm1bW1yC9ySHS63WiAQtO284neLENkTzXKKyvxy/Ll1FhCCEZqZyCiWnw+mYCgZKsc2kozQmo6IfPMeIw7/gz6Fd2MwJp40W3ECDCZ8MZjj8HHYEBNQxVyJaS4jbhzvYgLTMXcMZ/hmXFf4oZe9+Ouq+Zh3sTvkRXHFp5dSiL84kWlV2o9e2x6/GT7JJ+NJA7WQW1o2/er583e8A72bD5yy969jAgBXib2fYM5in29X7B0qdtzzSyRiVLTQmTiRZ+z43A4nAsFIUQD4FcAHWMqdxAMYBkhxP0fey8BhJBMAEsABHZgs6PhkJm07QfOi4MMwL0AFnaAdIXDuWDwJGwO58qDH7f/UOz8c7/caO+zihwOh8PhcDgcDofD4XA4HA7n8oaLTDgcDodzwTDqTPDRmkQfhNcodciKG07d/mTp0abKngN70Ku5A8CCFYthSTjhsvxIHT0xtDVbqm9FuS0CKTOAU2dLqLE6o+OBYk9EJklBXRHkQ0/EyyncjOKKAox+NhhJcZGIqE5HUnk2Yip7wscSJLpNedwm1JvznZZ1CnGIHUxeQUwBQ0nlSWb1T8DxA6LUj4jxkZEwGtjVyqUIiK12WaZSaNCH8V3pSAghCPAORZew3gjyiXA76SrGvxPuH/IKVIq2F3+zCzbM3/Qq/rf6KdRb3UuubAurDv6C3JIcZtyAhNHMmOzEMfhX/8dBSPuGlf4xrp+9u+jOVzfvqCRAGgHeoUyxzb5CVwnE4eJdOH7mQJv2mVO4GYv3fuV2fJ2lBhuOLMYrS+7FrZ/2xwPfjcMjC6ZgzoLJKKuhJyQAjoT6rNhhkBEZxnW9BbMHvwydqm3H9Z6CjXhv1eOi8pTMGwxQaqWPL42PDAOy6Am5JwoLm5KaAEel2T83bqRuE+zv327pUiN2uw2/7fqMGTe402SYvDry2WJpRqXPoK43RbCTXH7+k50ADgD7GCKTxOhoKBWOMcCm3GXIO+earNcSuUyB3rGXd4LVpSAtvI/LsqrIXW1urzbgKGpCnJMkqxsq8MGap2GzW5EYHY1XH3kE37zyCq7q5SqWGdq3L958/HGoVe4VwLxt6lSm8KQl144YgVEPRUHn17bryrnUZbBrmr/nV4ocZ3CnycyYP/d9D7tgx5A+fZjv/2+rVjErfHvK94sXM2NGDxrU9LcpRomZr6ciqD6Buk2V6gwKdfuZbR9cUovjG+qwZtMWNAj0BGGDXg7I7Aj3i79kIpsos6vIhBAgNLUcYFTnLCktxYxHHsGGHTsuUO8cD+j+sWYNxt15J96ePx/1DexESbVKBXNSMTVRXSyhmwUhBNek3UQJAMJ0Acx2DhpXY5/vclSpGJXkddYmIaU7rDzwEwRiQ9fr236fAwBxg7QIzWjOCxIEASsP/ETZgs3pygLsyl8PhVyOF+67DwEmE3Ob/3z0Ec6Ulja9DkhUIWm0Cmc1edTtAuqaxVoRU4vx9q7bsDN/HaobKtzqa/eoQYg00c8HLYkN6AxfnT815lDxTmw8ugS/7PyI2V7PmMHQqsRlqlGmJKfXXqYGyJX0c2hJaSm++PVX5n4D46ugVIu3NSptRoedozqFOItM9H4WqHR0gWGBfjespPl8WnPOjtMHLTi+oQ7W+ubzVL2sGjXKUrEmmtB4i+8rNqAzq+sdhjsyk/Twvnhm7BeID3SWd9DG0Gq9DVqj6znyO0U01slcz012QY4NlXfj85LfcNrifN8RkNx8/T7EEJlIy2FSXL43ySGuxePrAo6hOoR9fY0rdx1reopCZYORIUxsTe7pHNRZHGO2xGFaRPaSzptUagkmvOOPgET3C7CzRCY6lQHxge2/LxyYNM5lmTui1r9273ZZtvfwYeo2wf7+MPv6Yk/BJtRb6e93tDkZw1KvY/ajEZ3KC0lBXakxewo2ocHa/L/tLqDfe5u9ghHsE9WqX87iMq2RfT3ed9Qh2jIEKdB9etuuxb1u9YZMQfDDkiWoq6d/PoOzsjBxvGdiRTkUiKhOx9WFd2N4/kOIquwGucz1XKSQyxEbEYF/TZqEL196CXGRkQCA/YXbYBfo0o7Ooe6NsQghiPCLx+CUyegWlX3JpH6eQAhB18gBLsvlCgFKLf1alpufT13vLhofGbJu8/F4O2OEAj1v8fx7uVnkHNASrdECuZKdWKX2skFvon+nj+TluSVKAoBihshEpW0hMmHMj3I4HM4F5G0ANPPlIQAPAugGwAzAB0AcgKkAFkJ6UsYI4FdCyGV58SSEBMLRf6kLlgCH4OVaOP5fbwD+ALoDeAgAbbA5BMDrHdZZV44CeB/AvwD0BRABx/vtCyAewFAAL5yPozEEwBfkcrdWczgcDueKgYtM/qFwacZlh8D43ZTD4XA4HA6Hw+FwOBwOh8PhXNlwkQmHw+FwLhkZEfQK7QIEHC52PNTbJTERwf70JCZBELBKNR82OD8Ef7huqNt9KqjvjrUVD8I3UgFZ50JmvM5oQZhvLLy17OqxjRBCkJ04lhm3+uAvUBtkuH5+IAY/7ouAZNqZXisAACAASURBVOmqs1ZtOYoGfuiyvKXY4arkCcx9Lt+/QHJddX0lPln3Au6cPxQzP87C7K+vwTsrHsPyfT8g/9wR2AU7ZDIZMlNSmPsRwzuwDhqD68PpvWIGQ6fyalObF5vkkG54YOhr0Ch17Wpn49HFeHbhLSipZH8HxbALdmw4shgfr30er//5ED5c8wy+2/I2Fu3+Am8un4PPNsxjtpEQmIb0CPeqE/eNH4lZA55yq/p1S/Qqb8waMBcjUm+EIaAeaj09OUEK7/MV01PcTOpoL52C6VKgw6d3o97inFS07vCidu1zwbb/oeAc/RnOkspCvL96Lu6aPwz/W/0kdhVsgI2RCNMaL7UPpvd52CkxLiOiH16Y8C0Gd5oMpdz9xLFGth5fhQ/XPOMiQDKGKzDwYaPoNuHd1Ji+IBDXjGV/puu3b2/6e83WraiqoYs6hvfv75FUgcb2vDUoqaRX/9WpDBiZNq1D9ucOMf6dqOIGna+Feaxt2LmT+T4KgtCUUCZFVHggNuX+iWX7vsd7q56gxgLAoKTxF034ciWRLiIyqQ7PgV3ufhJ+S85mLAJEHvU+dmY//tgzv+l1UkwM/jtnDv744AM8c889eOTWW/HlSy/hxfvvh5fO/etcTHg4Rg5wTUoTo3d6Ou664QZofeQYcL/4+YGGTVmLs11/b3qtVmhdErsvV2L8OyHWnz6GKq7Ix96Tm2DQ6zGwJ13edbK4GDv2s5OX3aWopASrNm+mxgT7+6NbZ+eE9YgeGky/bgSz/a3+P6BexpaaLXv+HN784HtmnDrYkXAf4RfPjL1QxAaIJ0frfKzwc0MqVVNXh9vnzsV9L76I7Tk5OFtWhs27d+OLX37Byx9/jNc//xy7Dx5s04O2Z0pL8e+nnsIjr7yCohK6uLERmUyGayf1hNqrY5JsW9M1sj8CvcMk1+tjTsPQQL8ftBMrdpkWMvflH1tNlbG0prSmBDvz1iN1nB4qr7blyhA50H+2c65RYdkxnK0+1ab2WrJ07zcAAINej/+77TZmfEVVFV759FOnZX7XFMNO6OODgFqHyMTUyY4/fO+D1e7+dYiAYGzXW9yOBwAZkaF79CBm3P9WP4mtx1fR909kGJU2XXJ9lNlZZCKTA+botosWG1FqrZLthPnGIiOSPifiCYlB6U73Y4QAvmF00YFV1oAC/V6nZcc31OHISuftStX08S5Al25cTHrGXI27r54HH62z1EclV+PaHndj9uCX4aVxzftLCEyjShx8Q1xFo/VEjnvVPfCMKg2bZWYcssdgR/WN+KRkKdZXPgA7XO+dAs+LTGrr65HXQsgohidymFBjNLw1rvNSZ9P/oO4DAIJqE+BlaV+upl9kDVo7G8xewdRtbIINB085hF2EEIycZ4Ip1lWErDYQjH3djNB09wvEV9dX4tApuvivS1hvUfGyp2RE9nf9vunsUDHuucQkBnsO0cWPneMd45otx5cz+zWz76Me/3+sedp6ay0OnHLcf5fXnsWxM/SxZmpYbxfpTrR/stNrtd4GmZyePLK/xX1nj5kGeAV4NvcU1k2N9ClesFgs+Ob335nxN44Zg6ShOsilp2Gp+NWHY1DNdCz+8AM8fffdePDmmzHvgQfwwxtvYOM332DBG2/gzuuvR4CfX9M2LLE0ITIkB18Z9zVtJTMyW3S5xot+LB0rKOi4PtzghYTBWmpMleIsDnmvwRbzdzhq2IjM2QKUGs/mmMoqKpgyKy8TWzLYiCmSfW+xYOlSZozVZkPJuXPUGGULkYmfl7hsncPhcC4khJBrAcyUWG0FMAdAiiAILwuCsE0QhLOCIFQIgnBUEIRvBEEYDSALwDGJNsIAfNrhHe8YPgMgNcg+BiBLEIQxgiB8e/7/rRQE4YwgCFsFQXgJQCc43h+pi+ssQsjEDuzvEQBPAkgUBCFOEIRZgiB8JAjCekEQ8gVBKBcEoUwQhCOCICwVBOFRAIkArgdwltLuBADsyQ8O5xLAhQgczpWHHVxo8Y+kgwtBcNqPVDE1DofD4XA4HA6Hw+FwOBwOh/P3gItMOBwOh3PJiAtIBSH0S9GhYkfigVwux78mTWK2ebq2CN/E3YcC3R5YiCP55pw1DuesMcxt99eMxndn58MOFbIfNGJfLr0SKogArY8FiUHpzLZb0zd+JBQy+hPxaw8thNVmgVxJkD7FCzd9H4QZPwehx80GGMMdyQh2eT0qYrbg6NRHYPVyrZDcUmSSEdEPRkZF611560TlGeeqizH31+lYdfBnVNdXQICA0poSbDr2Jz7f+BL+76fr8fhPN2Lb8dUuCazuEhBXJbrcHenL5URiUAYeGPo6tErxat/uknfuEJ7+dSYKy457tN256tN4duG/8L/VT2L1oV+w/cRqrD38G37f/Tm+3fIWth5fyWxDTuS4qc8cyBjHZ0t6xw7FHYOed1vi0jNmMF6Y+A2y4oZhdPoMeGm8YY7xPFlQqbHBJ6QO/oYQavJrR8JKirfZrU3nLgBosNZh87E/27VPq92C99fMhdUmniC48egSPLLgWqw/sggNNnb1ZzEICG4d8JRLEhYAGHUm3ND7frw8+ScMTZkKldz9JDIA2HB0MX7Y+q7L8rSJXrjx20AkDNYiJE2FqCwNxrxqwuSP/GEIUiA9ORl6LT2JZO22bU1/L1q9mtmXEW4KFdzhjz1fMWOu6TINXmrPq/q2h9GUivKEgJlAb7VasXHnTmpMwalTqKgSP283suPMr3hn5WP4cuPL1DgA0Ch11H7/k4kN6Ay92ttpmaCsR03IAY/bsuhKUZ6wXnL9T9s/wMnSXKdlwf7+GDVwIKaMGIHO8fEuyYitKa4owKqDv+DrTa/jlSX34sHvJqDCtBJGP/FESkIIenbpgv88+CDeefJJaDUaAEDKaB3Cu3l2rjk5+B1YvZoTr7ITx0Krat/1+GIyOGUKM2ZZzrcAgNGD2Mn9v65Y0e4+NfLDkiWwMx7suyY7W1QUNWFqX/gZ6NK/KuUZrA/6lPnQ6MHiAzhWSpco6Sy+sEU7Ko5fSpFJuG8cgnwiRNcFJ1VBpnDvobwVf/2FmY89hqumT8etTzyB/37yCb789Vd88uOPmPbww7jj6adxyk0ZCQBs2bMH1953Hzbtoid4t+bx226D1XCCGqNR6pDQhnsjwCGt6BF9teT66rht6Fzb/mu4Qm2DXzg72bM1Kw/8CLWXDF0mtO2c0mWCHqYY5/u/A+cT+GncPvA5GHV0wcC+oq3IP3cEANC/Wzdck53NbPePNWucEmj3FRxkbuNfFwtzghyHR86FRXCVOtDoFTsUYb7se/LWDEqa4LEsUYzeMUMkj0cAiDYnuyzzj62GQu2ZFLA1wUlVLnKHRkalTffofouFVuWFGP9OTst8Q+kiEwA4btjq9PrY2jrkrnb+fEtVrCRxQVS6QYgMUSLv7YUmI6IfXpz4HW7odT9Gpc3A1J6z8erUhRieej11HDMqfbrkOmNILcQKt1uIHAsUUbhV0wfX6jPwY809OGeVvvYEnhfUHjlxgnldlZbDuM65EEKQHJzpsrwibhMseloOIEAgQ1x5b2oMvQEBZpEk+qGdpzI33VfY/P3Tm+SY8nEAes/yhilGgYAkJVLG6DDj5yBEZWk86tKWY8thZ0g900RkgW1BIVOgf8Iol+UGM/2+fO+hQ6ipbT5Gz5aV4WRxMXWb1IQENFjrsSNvLTUu0pSICFMCNUYMd2S2O0449r2ngC7eAIC08CyXZTFm5/MUIYDWhy7GainQVOlk6HeP+/fXSh3BiOf8IJMTLF63DiWlrnOnLUlPTkZqQgI0PjLEDKDPRdAITFHB388PowcNwvWjRmFo376Ii4iAUik+F5xTSH8/Y8ydoFcb2tyfK4GEwC4wiAiZ1BdRZEJkBMOf84N/gvjnlK/fhd8jXsSWgO9xyLgWfwV+hVnv342XPvoIpRUVbu9nW04OM8bL3Cwy6Ro5AH76AMlYn6A6qDX08dLSdetQWU2fdz1z7hxsjGuTUtu83sxFJhwO5yJDCPEG8KrEahuAqYIgzBMEgXrxEAThLzhkJlI3wiMJIZfVD5OEkEkApKp2HALQ+/z/JYkgCFZBEOYBmArH+yXGa4SQ9laWWAZgGIAEQRCeFgSBbutz7qNNEISvAKQBoP1A8TwhxP0KIxzORUIQmTdoSwyHw7l4cAERh3N5wI9FDofD4XA4HA6Hw+FwOBwO5+8NF5lwOBwO55KhVemZyYWHipufUxp39dXITHGvmu/qkPfxfcwcrAx+F8e8tuKvKqkCXQ42VN6D38regA0ahHdXI3aAhlkJVettgUwunkTCwqAxolvUQGpMRV0pduStcVpmjlNiwL1G3PJHMM49+hj23TENeWPmweJz2mX7QO9w+BtCml7LZQqmFESAgFUHf3ZaVlpdghcX3YHiCvqD4QWlR/DG8ocQEEGgUHhW9VXn2wC9n2vigkkfhJiLXMG5I4gP7II5I96BvyG0Xe1U1JXi1aX3o6qu3K34vLMO+cnREvYD8TSGpV7fpkTDblHZeGHCt5jY7TakhPSAWuGa9GH2Csa9g/+L2wc+2yTM0Kr0yIodBt+wWsiVnlXaCE8rg0zmLO250LBEJgCQU7i56e9tJ1aj1tL+iu4nzh7ELzs/clpmF+z4Yeu7eG/VE7C0UWDSyITMf4smGrXEqDPjul6z8fKUnzAh89/MKtst+X3356JVhoNSVBjzqhnXzw/EpPf9kTBYB5nckWCoVCjQKy2N2u7WvXtRV1+PiqoqrGshNREjISoKcRHSSayecOT0Hhw57VpFuyU+WhOuTpncIfvzhISgdHpF+TDxRMyWrN6yhbq+ZTKZFDojPSGtJcM6XwdvrR878B+IXKZAlzDXY7Mqki6bEaO0yzIICuln+a12Cz5c+yxsdnqymBjV9RV4efE9eOj7Cfhk3fNYvPcr7CrYgNOVBSirL0JIt5Pwj62CVieHydeILomJuGfaNCz+4AP87+mnMaRPH6fkYkIIBj/uC3cKydtlFhQMfgcViRublunV3hiTQR//XW50jxokKpNqye6CjThVnoeeXbrA349+zCxbvx61dZ7JBsRosFjw47Jl1BiZTIbxQ4aIrlMqFJg8UirXopki3QHsS/meGpNjpPcDAKLqu6DBdBIAEG66dCITQgiyYoeJrlOo7QhKrOyQ/WzYsQMT77kHv65YQX3Qz26346MffsCsJ5/EGUYSb2vumTYNw7P74EDRdmpc59AeUMpVHrXdkszIbMl1gtwK65Bf4N8Q1eb2AcA/ptpFLDFv4vdO901i7Dn5F4orCtD1OgM8dU8otQRZt7smXbPeT73aG92jBmJQ0gTmPpaelxwBwIM33wyT0UiNFwQB73zlELLZ7Xb8sWYNNd5fG4gpL0fDfs9nKLR6dq8hI3KMzbjZo20aCTZG4upO7SsITYgMo9Pp14MA7zAXEaVcISA4ue3HqdbHAqOESCTQOxw9oq9qc9tSJAc736eovWzQGhskoh0U6vahXtZ8r5K/tR61Zc73ZKXqk9Q2VHob5ArX80+Yb8wlE4rpVF4YnDIZE7v9G8M6T3VLLJgS0kPyHl6ptUNvor+XdmLFVvMP1KSkgCTHObKlSEgKrYgcBoDkHElyiKvIBHIbTmd967q8dZuVvUCEtv1U5BNc55TY3khiUAYi/OgyjX2FzvccepMcfe/ywcxfg3HTD0EY8ZwJhkD355eq6svx0drn8Mn6F6hxhMjQJawd8pZWDEgcAwJnSU5LCYEYVpvNSWawfONGSrSD1IQE7D25CXUWupCrezRbeCeGvyEEYb6x1Jid+WshCAJ2F2ygxilkSnQKdp07CfWLhbKVGJUlMjmQm+sk/kkZpUNQCl0O3chVc4zwCVVAEAR88csvzPhpY8Y47aetBKW4Px4qqSxkzrl2Du3R5r5cKchkcmRE9HNZrjHQ701PnTnjJAVqLyqdDGPfMENrdD4nFmn3Y03QR7DKnO+vLFYr5i9ciGtmzcL/vv3Wrb6w5q5ABOj9ms8hKSHdERuQKhkukwMBkXR5U11DA1P+e+osXXwFACpt835Mei4y4XA4F537AEidfOYKgvCDuw0JgnAKwFgAUj/c/IewKnFcJAghcgAvSqyuBjBGEAS6Ea8F59+nuRKrQwHM9qyHjmbhEJj0EARhiCAIS4R2ZKMKgnASwHAAxyVCfADc0db2OZwLBU/C5nCuPPhx+w/Fzj/3yw274NlzYhwOh8PhcDgcDofD4XA4HA7nyuKy+PGdw+FwOP9cEgLpCerHSvajwepIzpfJZHji9tuhkqhe2RqB2FGo34cNQZ/jqcAd+EtwrQRsFdRYVPoK1lfej8bLYp87vCEIAvYePkxtX+freNC+raKN7CR2Qa+VB34WXV5cUYDC2oOAXPoh5dSwXq77TBzDrGi9+uCvsNgcD0uX157FvD/uRHFFPrOvjSzY9RpuGD3S7XgACIirEl2eEdmPWjH5cibKnIQXJnyDe67+D4amTEVCYLqo2IPF6coCvL3iUVgZSeW7Czbiud9nobSmpK1dBuAQjYxhJPrR8NMHYFTadDw0/E28e+OfmDvmM8zo8wim9pyN+4a8gpcmLRCt8tsv/hrIFQL8IugJOS0xRVbDEOD4rqaEXLykDm+tH8L94qgxLStLrz+8iNnmoyPfc0sK8uvOT7Bw56cQBAGnyvMw7487sHDXp8ztWHSLysY1aTe5He+jNWF0+gy8NGkBZg2YC4XMvfPy+6vnoqLWs+TpvpkiCXktqG9owNa9e7FswwZYrPTjZGR2tkf7prF4z1fMmMEpk6FWeFY9vKMYlDxecp1SY2+6hkmxfts22GzS15icI0eo28vkdmbl5EYMGl8M63ydW7H/VMQkQ1VRnolM7HILznVZyozLLcnB4r1fe9R2g7UeLy+ZjT0npQt/KtV2hHSqRMJVBUgdcgaPzJ6MGePHI9BsltzGFKtEjxn0yuNWTSWOT3gGZZ1XOC0fm/Ev6NXeHv0flxqFXImBSeOYcRuPLoVcLsfIAQOocTV1dfjqt9/a/SDmsvXrUVpOl6pl9+iBYH9/yfXjhwyB0g3R3a76dZgfdxfWB36GQ97rUCtvrmx+TpWPIv1+6vYKuwrmmAqAOCRAIT5RzH1eSHpLiEwAwBxdA0NA+0UzAFBVU4Mn3ngDs59/XrQafH1DA+6fNw9vfvmlUyKwO0wbOxYzxo9HzsktsNrp1460cNcxnidEmZPgpw+UXN8QkIfYfu5Xu2+NXGmHKdJ5rJkS0gNBPhFM4SMArDrwM3xCFUib5JmYoft0A7zMzvdggiDg4Cm6yCQxKAMymRwDk8YxBTEbjy7G4WKHYM2g1+G2G6THAY2s2rwZew4dwtqtW5GbT7/fy8rqjLLY9VhzRPz+lEafuOEI8mm7SG5c11vh0w7ZWa+YwQg2RlJjZEQmOr73DauF1ocuI5AipFMFpG5lr0mbBllro04HkBLa3WWZr4RMpRGB2JHnRR9TlDFEJlpv8XNDW6SvlxJCCHrFDJZcb4pgJ6cX6fcjX79LdJ0xXAG1wTHvdCA3l9qOQm2DQu16vg72iYJeLT42ai2yaaQ0ZQXOdF1I3Z/W5o3w6i7UGCnMUa65n4TIEOwTIfqdbEneucOoqD3Xpv22ZsuxFXjkhylYc+hXZmx8QCq8NGy5jbv4G0LQudUcnJepHix55LINzTKQRQyhlEIuR1JsLLYcX0GNAxxyvLYiJpJoybnq0zhQtA17C1wlpS1JDMqAWuk6B6aQKVyk1joj/b6xqqYG+adONb0mMoKBD/tStwGAuIEadB7nuGZv3buXKRAKDwrCgO7N39mY/lpofNr2E2pgihK78tfjrRWP4o0/H8bnG/6DHXlr0WB1HfuJCV9bk/IPEJkAQGak6/2NO/MKx07Sr1OeYgxTYPQrJjROoVcpzmBd0KcAkT6mq2tr8e7XX2PKfffhRGGhZJzFYsHyv6TvmwGHFLalICzMNw5xFJEJAOiC2fPBC5Yupd4bFp85w2xDqWkhMvGSHrdzOBxOR0MI0QO4S2J1DgC6yU4EQRAOAHhOYnU8ALZV9OIwCYBU5YFnz/8fnvICgH0S6+4hhHhqdLvpvMCEbkf3gPOymdspITd21L44nI6CJjblcDiXJ1xk8s9E4NKMyw4uMuFwOBwOh8PhcDgcDofD4XD+3nCRCYfD4XAuKYlB6dT1VrsFx880JyxGhoZi1pQpHu+nQW7Fbbp4PKXohl2W7jhRn4Ud1dPw0emVyKltrvAc3l2N8G4a5BUVoaqGLlTQGS3QqbwQ6BPucX8AICmoKzOhK6dws2hVzp15a5ntiyUf+Or9RR8Kb0llXSmW71+Ac9WnMW/RnSgqP87cV0uqGyqQmK7CrVOmuCUhUXtZ4B1YL7qOlUBxuaOUq9A1cgCu6zUbj13zP7x343I8PeZzjO96q0viBo19RVvx1V+vSK5fffBXvLr0fmZVXne4off9oskmbUEuUyDKnITspLEY1nkq0sL7SCbsRZoTEeGXAHN0NTUxoBGVzorgTo4K6YTI0ClEPGnrQsESp5w4exCVdWUorS7B3sLN1NhIUyISgzIwa8BTLlWcxfhh27uY/nEvPPzDJBwooifAukOIMRr/6vdEm6RBMpkcWXHD8Nz4r9xKMC2vPYuP1j7r0UNBWV27MmPWb9/OrCxLCMGwfh1zTimpLMTWE6uoMSqFxi0hwYUiI6IftErpRGvvQHryfGlFBfZQhF77GCITrY9FMnm3NWPSZ0Kr8iwp/J9GalgvFxFZnfkELDr3xUAlPX+AVV/mVuxP299HSaV08lVrftv9GXJLctiB5ymtKcG8RXfgx+3vMx9M6jXLG6FdxRP46/wKkDt1DmrCnJ+7D/KJwKDkyyXXwDMGJo2DXEYXfuwvcsiyRg1iJ6m++eWXyBg3Ds+++y7uePppXPfAA3hg3jz8vno16hvcS87/ZhFbyHXtiBHU9QF+fpg5wf3P5LhhK7YEfIufoh7HyuB3scvvd/wR8R/mdtH16ajIXAYACDVGQyF3T7R1oQjwDkVcgHhiOCFAZGYZvIM6RmYCAKu3bMG0hx9GcYtq6vUNDbjvxRexchM7SbY108eNw703OURnO/PXMePFpEueQAhh3qvUBuQgK50uw5TCFFUNudJ5DDLwvFyyf8Io5rG39vBCWGwNGHCfEZG91W7tU2eSoft0V+lAUfkJlDOS95ODHGMgb60vescOpcZabA149rdbMOeHKbj76xFYeOI5t75bb335JT756SdmXKeECHyyzuO8MBh1ZkzsRss7YqNTeWFyd6l8NToEBKPTZ7gVKyYyIQQISfFcnmMIqIOXWfwcq5Sr0StmiMdtukNCYBr0KmeJlzGkDiyZwnHDVsl1NlhRrjoluR5wjPvEiA24skQmANCTIjIxhtZCa5AW/TWyzbwAFuI6xxGQ3HxN2rR7N7UNSTlMgLRIN9A7HH76ANcVBDg14DMcuf5BYPBGxF+lhTlOgZZ+pOAuKsy6wzMhbWM/9X6ufQ0whECl0KBTCF1kAgD7i7Z5vN+WVNWV452V/4e3VjyCijr3xsbp7RRviTEw0fneT6EWoPWmCxiWrluHiqoqnCwuxs79dFlbt86doVAQ7DhBF55E+MW3Sx4lJp5tzRvLH0Z1A/3c2CWst+S6GP9OTq+lziEtaS3/CeuqRtJw6fxara8MQ570a5rnWLyWPY96/ahRkMub77nkSoKkYW2bH1tT8z5eWXofthxbjm0nVmH5/gV4bdkDuOPLIXh92YP46+hS2M4Li3NO0ueMNEodYhkSi78LnUK6Q6N0/lw17ohMGEK2thDRQ4Nr5plAdBasCf4QDXL35lzzi4pw7wsvoMEi/r3euGsXKqrEhd6NGMzO15AQYyTiGNdUjcGK+JgQasyh48ep4vZTDJGJTGFvGkt7a3yhukTiXg6H84/lWgBSP0A8KQiCe0ZtV14DIHUCbN/NbMdxh8TyEgCvt6XB8+/XkxKrzXDIUzxpT0qK0i4EQfgDwEaJ1QmEkLYPfDmcCwAXmXA4lxdcUsKRhEszLjv4NZTD4XA4HA6Hw+FwOBwOh8P5e8NFJhwOh8O5pMQHspPQDhY7VweeNnYsEqKiPN6XQAh+VoXiZkMMPi17D3+WP4sKW5hTTNZtjqSfPYcOMdvTGRsQbe4EGWnb5ZQQ4lbl79UHf3FZtoMhMtEodUgKEk/+v8qNxN6vN72Ge78ZhZNl9CrBUvy5/3vMmjIJ7zz5JPx86FVuA+OrRJPdaf/DlYpMJkekORFjMm7GM+O+xL2D/wuDxujWtsv3L8Dy/Qtclm88ugQfr3sOdoGdUMWia+SASyqP6ZdwDVRaO4zBrKRLAREZZU3VSWPMydCrvRnbdCzuiFP2F23DhqOLmRVd+sY7EsYSgtIxPPWGDumfu+hUXrjn6v+0WyIR5BOBB4e96ZI4KcbO/HV4Zem9opWIxQg0mZjn/K9//x3bcugShW6dOyPQZHJrnyyW7P2a+bn2TxgFL3XHVfn2FJVCgx7RV0uulxJItWTNFvECina7HfuPHqVuqzWyk9EAR/XySyl8uVLwUvsgPrCVDIEAZSkrmdsKsON0jwUo6c5OVG/EYmvA0pxv3IotLDuO33Z95nbbzf0S8MuOj/DlxpepDxMqNTJMeMcfqeP0ICpHToJdXo+SzJ+Re+2jaDAWu2wzpfudUDCEBJcrRp0Z3aPogpKjp/eiwVqH2PBwpMS7J0b7YckSrN++HfuOHMGfGzfisVdfxeCZM/HSRx/hKCXxL+fIEea4OCYsDN1T2cmVt0yejJ5pngkoBGJHoX4f9votZsbKBDl8MnIhKBznn3APpHEXkiyKgEKuEBDVrRRZvTqur/lFRbj18cdxprQU9Q0NuPeFF7B+u2fis/jISLw3dy5m33QTCCGwC3bsyl9P3SbGPwU+2vZfZzOjspkx3fr5QSH37BgnMgH+eJnYPwAAIABJREFU0c4JqD5aP2ScF6d4a/3QLWogtY3KujJsPb4SKr0Mk/7nj2FP+8InVFzS10j2A0ao9K73i+7I6BKDm++FBqe4J/MsKj+OyjqHtCo4qRIsgcWm3buZyfNGgwGn8BdqLdVu9aGRSFMi7h/yKoy69n8v+sQNR4Ibcwet6RkzGCHGaLdixUQmAOBlssAnpNbtfcoVAkIp8pOkoIwLlvgrlymQFtHHaZlSY5eUqjRyWnMU1QpxAUS56hTshH6vKSVriPWXlm5croT7xSHUKF7snBAgNI0tyqhRloletwKTHeaQ/KIi5BXShXFaH6n3VDqRnRCCpOBMyfV1AcdwOP0dXPOqETN+Dsa9W8Nwx9oQ3LcjDDd8FYjhYzIRFhhI7VdrzDHVovM5je9hYmA6UxKVU9j2ou3bT6zBoz9ei025yzzaLiOyf5v3KUV6RB8Ydf5Oy7wC6PdcdQ0N+H3VKrckGyMGDEDOyc3Mc3E3xjiSheN6TpeU1jTQJQwA0IUiN4s2Jzu9VntZIZPT76/FRJpDnvCFOd5VWqfSE4x93Qy92XGNttlsTKGbQa/HaBFJYMpoz+dK5AYL1p8Rv5dqsNVje94avLvqcTz7260oqzmLfYXSMikASArOvGLvbTxFpVAjudV5TKEWIFfRr0O5Ba4ScE8RBMHlvjRxqBZF1/yEUvVJj9rKzc/HF7+4zucDwBI3jnefkOb5Mr3KGwaNLyJNiVDI6JLGxBT2HNSvK1ZIrjt07Bh1W5W2+XMweQUx98XhcDgdjNQPJ/kA3J/0bIUgCLUAPpRYPYAQ0rZKFh0EISQKQB+J1R+c739b+QmA1EXu4v5QRednyjp6tRQO5yLDpQkczpWHHVxo8Y/Ezs/Xlxt2Oz8WORwOh8PhcDgcDofD4XA4nL8zXGTC4XA4nEuKUWdGgCGMGnP41C6n10qFAk/eeSdksrZdxqyyOhwwuib+hmWqEd7dUVmbVp0QcFQgVHvZXKqIekrf+JHMh5DXHloIq605Iby6vgIHT+2kbAGkhvWWrECfFJyJYJ8oj/vqCWeqirAjby16p6fju9deQw+J5FbfsBoYQ8VlBl3CsiT/h78L6RF9MXfMZ4gyJ7kV/8XGl7Hm0MKm1weKtuPDNc90SF/MXsGY1vvBDmmrrWTFDoNCpoR/bBVoSZf+sdVOVZ87h/a8CL1zJjEoA3JCT1xde2gh1h3+nRojJ3KniuzjM29FmG9sh/SRhVFnxkPD32pXteaWhPvF4YFhr0MpVzNjdxdsxC2fDcA7K/8Pfx1diqr6cmp830zphDx3GdG/Y5LVqusrnI5DMQgIhqRc2yH7aw9ZccMl12kMVii19EKVUiKTvKIiVNfSn5HWuVFVGwAmZt72tz/XdxRp4a7PrJd0+wUWr7Oi8Xa5Bec6/4nDN83G6T5fAzLPHgDacGQxLDZ64rMgCPhs/bymauJtYfn+BVi461NqjNpLhvB/H0HOLdOxf9ZM7L/9JhT3/xJ2tWtV7KTgrsiI6Pjk1ItJ1/NiBSmsdguOnt4LABg1kC5eoFFRVYX5Cxdiwl134f9ee020Mvi3ixYx25k8YkRTtXsaCrkc8+6/H6EeJkm7SyiiYInf0/Q6wpRwQfbjKT1irqaOGQgBzEnFeGDmTLfeR3c4UViIq2fMQM/Jk7Fhxw63t/P18cH/3XYbvnnlFfRqIZ05ceYgymvFzzWNpFESlj0hITCNKfo7VrEFU0eO8KhdU2QNFGrn82C/hFFOicGDktjCxxXnxYJERpA63gs3/xaMIU/6whDk/BkTuUOSmTJKPAH6wCm6yESv8nYSa0T4xbsk9rLQGKzwDWtPTpODsUMGYkcBW5wFAP/Ofhp3XTUPz43/Gk+N/qTDjkNCCG7s/QCIBxJRAoIxGTPdjg/3lRYKhSRXgsjYDzf7+hgQ2e0c1F7SCdepYb3c7lNbyBS5hhhDGd8DIuCEl/h3slTNTg7XeruO+7RKPYKNUcxtL0d6xQ6RXKf3tSBUzU7ePmBciSqF83kzMNkx5l3vxnnZ4C8uwIgNkBaZAECnYLpws95ai+MlDnkRkRHofOWQKx3XHplMhvFDpP/31uj96iXPMSG+DoGQWqmlylcAMCUOUize+zVe//NBlNee82i7zMhshFyA76ZcpsCAhFFOy/zcOAf/sHQpFq1ZQ41Rq1QY1KsXthyXFhA00iP6KmYMDRmRoWeM+98DMcxewQj2iZRcH91qLpUQaXlPI2IiTbVBhqmfBiDrdm/4JyphjFAgdZwe130ZgLCuzfMSuw8exLly+pzD+MGDodNqXZYHd1HBN9IziUhl0F7AjSFdbkkO7vl6BKobpOVXANA5pIdH+7/SiTS5zpFqvOjfj1yKmJFFwalTuO/FFzFo+nRkT5uGe557Dqs2b0ZVTQ2effddLN/OFo+I8cF336Hw9GmnZXX19UypjsZgcRKEBflEgBACpVzFnD9Wmkpg0NPlO3+sWYO6evFrzG6GwFKtb+4XF5lwOJyLCSHEBEBqsu8bgWUcZzNfatcA2NUoLixjIT2ykOq3WwiCYAMgZbIeSAjxbU/7HQjNfCg96ORwOBwOxw24gOgfCpdmXHbwY5HD4XA4HA6Hw+FwOBwOh8P5e8NFJhwOh8O55CQE0SsrHz69G/ZWz6GlxMXhrhvaXhDqhNd2CK2qa2Td5t2UPMiqPK8zWkAI2i0yMWiMzMrfFXWl2JHXnNSwu2Aj7AK9EmVGeF/JdYQQXJXMTtJrL0v2Op5/M/v64t2nnsJzs2cjJT4e/n5+CA70RViXMoSllYtW7wWAjIh+F7yPlwMmryA8NvJ/zIQjABAEOz5a+ywW7/kKJ0tz8d8ls2G1uycLoJEa2gsPDX8Lvnp/dvAFxEvjg4yIftAZrQhMEK/wawioQ1BiZdNrOZGjT7xniawdgUapYyaR7S7YiMIyejXTtPA+8NY2Pw+qlKtw64CnmFWr3SXCLx7ju87CPVf/B3dd9SJu6P0ApvS4C3cMeh4vTfrRpRJye4nx74Tres52O35T7jK8u+px3Dl/GJ797RYs3PWpqNSkb9eu7eqXUqHAVb17t6uNRpbvX4B6Kz0hLTNqAAK96ZKui0FCUBrMXsGi6wgBvAPpFcKP5OXhZHGxy/IckWrYrdEZ2eemgUnjqImiHGfSRUQmdk01jlz/IMrjNsGucIjB5KZqlGT+jEMzb0fh4PfQ4Ffosl1qWG/md7Sqvhw78uhJW+uPLGIm47vDgm3vUQVBlXVleH/NXNhVdbDpKiAoxBPZCAim9rinw2QQl4qk4AxmzP7z7/vwfv2gUbMFUix+W7UK0x5+GHlFRU3LNuzYgd9XraJup9dqPZKpGL298cqcOdCoVG3tqjgCgU/3g06LIvykpQQXE4PGiFSG5OPE2YPI6BaMtx5/HNFhl+b6cVWvXvjl7bcxcehQyOXOUo6d+euY26dT7j88QS5TMO8D8s4dxrjh/RAT7l5hZJncfl6U1wwBQXaicz5SYlA6QozR1LYOFe/CmkO/NvdXSZA2yQv/WhSMie+Z0XuWNwY+ZMSMn4LQ5w4f0TYEQcCBIvq5MzEoHbJW0o5RadOp24gRmFgFQtr+AKhGrUZCihcEimQQcEgrXp78E3rHDkW3qGyE+cZAJqNL/zwlwpSAq5Mnuh0/osuNzM+zJaG+MZLrVDobwlKlk+DDg4PxwMyZmPXv3jD40yVgF1pk0jm0J5Ry53OsMbiOKWI57iUukyhTSxXodiBX2aDQuD74HeOf4vIdvlLoGXM1dX1wYhVUNh01xk5s2Ou7pOm1Qk0QnOq4Xm/YTj/+ZQo79H6u3yOVQoMwyvcUgFvCI9rYbdKwYQgwmZhteAfVITKzTHI+p+WxlxLandpWSeVJlFS6jldpFJTm4pvNb3i0DeCQZd3c7zGPt3OXXrFDnV5rDFbo/ej3XEfz8nA0L48aM6B7d2jUSmw/QReehPnGItjY/lzOYZ2nMsWtNLqEZVHH40E+EdAqnWULWoYIc39urmhCg8ZHhj63+2D6giDcsigYw57xg3+88zlw+V9/Mfs8rJ/42IMQgk7X0I/31pQkL/YonkVK6D9NZOIqQVMzRCbHCtjSLTH+2rULk2bPxoq//kJpeTnKKyuxessWzH7+efS97josWLq0Te0CQF1DA17++GOnZWu3bUNNnbjQuxFjiPP6lsd0XIC4KLyR/LKDGDGALvWsqqnBqs2bXZaXVVQgv8W9oBg63+bj1KTnIhMOh3NRuQrSzzXRTfJuIAjCXgBSA7KhEssvFlKT58cFQdjXAe1LvX9yON73ywHXHyiaMVy0XnA47sBzsDmcywrWnDbA5Qn/WNrtweN0NHawPxPijjmYw+FwOBwOh8PhcDgcDofD4VyWXJlPE3M4HA7nb0VCYDp1fU1DFQpKXStvTh83DnNuvRVmX8+LQtUoy3Bak9v0OjRDhYiejqSS+oYGHDp+nLq9zteRVBLjn+LxvluTncQu6LXywM9Nf+/MoycSEiJDmkiyc0v6xI+AXuXtXgfbyKHinTh2xlHpVy6XY2R2Nua/9BKWffwxRk4JhimyFjKJkYiMyDusqvuVgEqhwR1XPY8Ag3uJq19vfh2P/jgVDTZ6QkxLTPogeGt84W8IQVpYFkalTcftA5/Dfyf/jAeGvX5ZSBcAoN/5CsaBCVWIzCyFxtsCudIOld6KwIRKRHUvRcucyGt73I1Ab/eSWDuazqE9291Gn/iRLssiTQkYm/GvdrWrlKtxS/8n8cy4LzEmYya6Rg5At6iBGNxpEkak3oAe0VdBpWh/4rsYA5PGoWsEPXGiNYJgx+Hi3fhh67t46LuJ2HLMudJ0l6Qk+PmIJwO7w4Du3eHt5dXm7Ruprq/AH3u+ZMYN79x20VZHIiMy9IkbLrneO5CeQAMAa7e6JrXuY4hMZAo7VHpn4ZZe7Q1fnT8CDGFIC++D27KfwU1ZDzP3z2kmxBgNf0OIy3KbrgL5o17CvjumYf+smdg17SYU9/8SVq9SybYmdJ2F6X0eYe5zzcFfJddV1pXh602vu9d5N/hk3QvYlb/eZbkgCPho7bMoqznDbOOqThOZVaqvBHy0JoQYo6gxjRIEH4MBt0ya1CH7PX7yJKY99BB27NuHIydO4KGXXoKNUZXsmoEDoRepXk8jMToac+++uz1ddSFA4wt5cInTsstFZAIAWbHDmDH/XTIbdq9CfP/663jjsccwZcQIhAeLy6g6EoVcjgdvvhkvP/yw5LVS7NhsiVHnj0hTYof1KTMymxlz8MxmvPvkk+iSyN5veHo5VFrn73Ln0J4u51RCCAYljWe29+m6F5FT6FwQWKEiiO6rRd+7fNBtmgGmGKXk9sUV+SivPUvdR2Kwq8QtJbQHrvJA5AEAap0NfpE1Hm3TknGDB+PIuW3MuBl9HxW9RnU0k7rfwUzilRM5shPHYmK32zxqW6vSw98QKrneL6IWI0fHIyEqCnKZDF46HbJ79MBbjz+OX95+GzeMHo1DJfT3yqQPQrBPlEf98hSNUoeUEOekd7lSgHcA/d6xVFOAcuUp1+UqushE620VlVnEMaSPlzOB3uGINktLay1huUgrY5/Xc703oVLhuDZ1ukYHjY8M9Q0N2LxnD3U7g7kBYg6YaHMyU3hpNgRTv8cAcOyMdL6jQa/Hfx58EP4i82yhgYG4aexYPPvwTER3L4VSRGDTSJixWbjSKYQuMgHgck5lsTTnGwgeJByo5GpM7nYHHh7xDvTqCzcXFuwT6XIuNLXjHNzI8P79kVO4BTUNldS47tGD2r0vwCHczaLcR7LoEk6XiMqIzGXMzhKZVFZXo+CU6zmKhSAIWL5xIzUm2N8fSTHSkqBOo/Rw1+tSlrkElbHs66a7+OkDEezTfjnNlYTYmFJjoItMCk6dgsXimeh5e04OZj//PGoZYpH2sOKvv7BuW/P3YclauigUAIwhzuLckBbjBta11WJrQPdMuvAKAH5ZvtxlGUvqDjiLTMxeXGTC4XAuKtkSy+sA0C/07rNCYvkAQi6NofH8fqVMr1L99ZQNAKRuFt03F186eBYy57LCLWkCt51wOJcV/Jj8h2Lnn/vlBpcKcTgcDofD4XA4HA6Hw+FwOH9vOqbUO4fD4XA47SAhMI0Zc/jULpdkREIIrh0xAuMHD8auAwewcedO/LVrF/YfPerWj1zHDVsRWBcHAOj9b5+maqEHjx2D1Up/QFpntMBPHwCjzszcD4ukoK4I8onAqXLpCqw5hZtRXFEAk1cQdhdsoLYXH9AFXhp6wr9O5YUZfefgrRWPtqnPkaZEdA7tid93f06NW7r3G8zKnuu0zGJrwJ4C+rOFiUHpFzS55HLES+2De4e8jKd/vRm1luoOa3dIyhRM7XFPh1dEv1CkhvaEUeePspoSGEPqXCqRtmR0+gwM6XztReydM33iRuCXHR/BJtjYwSLo1d6Swp6RXW7EkeLd2MU43sUw6vwx++qXEO2f3KZ+tRdCCGb2ewy5P+1HWU0Je4NWVDdU4IM1TztVk1bI5bhxzBi8/jn9nCPVn+nj2UnJ7rBoz5eoaaiixsQFpCIukJ5gezHJihuOX3Z+LLrOy9QAmdwOu036Wew1W7fi2pHOwp0chshE52NpSmhNDe2Fu656EWqlZ6IDjiuEEKSH98Wyfd+JB8jssOkqmO2khPRAtH8yBEFAiDEahWXHJGP3ntyEs1WnYBJJUvpuy1uoqi93u/8s7IINb614FA8MfQ2JQRlNy//YOx878tgJX2G+sZjS/c4O68+lJikoE4VlxyXXHz29Fw3WOqgUGsycMAH1DQ14/zuJ74YHlFVWYsaj7o8PpwwXT3IVBAE2uxVymaJpjN2SoX37Ir+oCG/Nn9/mvrbEmOksPfTV+TPHwxeTjIi+0Ch1qLNIJzPb7FZ8uPYZnCzLxcRut6N/d0fid15REfIKC1FbXw+DQY1z9sP4c9MabFx1GrU19HsWFmZfX7wyZw5VBlJWc6ZJTihFWniW6OfcVjqFdGe+X1uPr8Tw1Ovx+bx5OHLiBLbl5CD/1CnkFxUh59g+VDWUQa2zISC+Ejqj6/uUnTROtN2suOH4buvbaLBKj0Ftgg3/+cNxvtEodVDIlOgU0h3juv4LIcZo5v+3v4id4Jwc5CoyAYDre92Lemst1h12v+h0YHwVzuXpINg9+4zkMhmmjhyO55bRj9OUkB7oGXO1R223FbVCg/uHvoY/9nyJ9Yf/QHVDBbzUPgj0DkewMRLBPpHoFjWwzffpEX7xKKmUFneozGfx3Wsfw2KxQC6XQ9bCzFlVV45ciiACAFLDenXosSJFRmR/7Mx3FqAaQ2tRfkpD3S7faxd8Spuv+QIElKoLqNtovcUTx+PdmOe5nOkVM1ha+CG3IdBXD1NdFM5qjku2IRA79vgtxtXWm9DnTsc1acf+/airp0tlDAHi559Yf/fkMAmBadTvcW4J/ZyenpSEH954Ays3b8bREycQYDKhW+fOSIqJASEEy/Z9T92egCDI2CxeiPFPYZ7T9xVuQXbiGGq7jdRb67Apd5lbsYBDXHVT1sMI8KYLXjoCQv6fvfuOj6LM/wD+me19N9n0sumNFNIgQBKqtFDFgoAFe69nPXtBT0/Pep6/s6De6enpqXgqYgMFld57CyWEhECAkJC+8/sjR0iyO88zu9lUvu/Xi9eLzDzzzLPZ3ZnZyX4/j4CMiGH4cdunrcusoXVQbnaiudG7+leLyYSC7Gy8v/xZbttB0b4JMgGAyQOvwLJdX3tc0KNSqDEgNJfbLiZgQLvzocHGD6HYumePxyFv2/fuxeEK9n2JMUOHMo/NtggVci83Y9V86SCZiBwtGkb8gs3imx6Njyc/vqhbzhu9ib8xCEatBTX1Zz/bak3sa95mpxP7Dx9GvMMhax+bdu7ErU89xT0e+8Kzb76JQenpaGxqwtI17GtAvbUBWlP7e4yhbY6ncZwwNwBo1h5FYnQ0M6R9+YYNKD96FMEBZ6+XNu3axe5YENsFDvlTkAkhpHtJXVxsFEWxwUf7WAVgrpvlJgAJAHb4aD+eSP7f/t1xTR/3giiK9YIgbATgLn3Q/Y2J7seayUA6yZuQHkCBCIT0LnK+M0bhCYT0DnQOJYQQQgghhBBCCCGkf+uR2UMIIYSQtkKsDph1rrO9trWzfIPkOo1ajUHp6bjtssvw4fPP44f583HvNddw93vAtA7NaMKAyQZED9O2Ll+/jV3UAbR8wZ41Q68nBEHAyKTp3HY/71iAXWXruUX0WVFSE3S1NyhmjFcFvw7/BNw78VUUZVwKjYpdCLWi+Accr2lfMLD98FpmAQsAZDnkPYb+JswWgxtHPQVfTfA2O+8OzBlyV58JMQEAhUKJgoQibrtxqZdgRvb13TAiaQHmUOQnTOI3lDAkdhzUSo3bdUqFCred9xxmZF8Hndogu8+kkCw8NnV+j4WYnGHW2XD9iMcgwLuCm/qmWvxnzRvtll06ZQqSYvjFwR1FJSvwtxU34/Z/TcZzC2/FB8tfxJIdC1BZU+5RPydrj+G7LR9z201Im+3xGLtSiNUhWfSoUALmQPZ3vVdt2oSa2rMzAjc0NmL7nj2MLQD9/4rQlIISN456ikJMfGiEzAJPlikDrwDQcv0xInEqs60IEUt3feWyvPREMZbudF3e0ZiUC/HuVcsxJ+9OqBRqbvuGpjo8v+iO1qLG7YfX4pNVr3O3Uys1uHHkk9zrkr4kOZRdK9DkbMSeI5sBtDyXN82ejVcfeghWs7k7hgcAyMvIQGxk+1qC8qoSvLHkEVw1Px9Xv1uAR764DMt2feP2y6DXXHQR/nL//chJTYVS4f21j58d0NvbF313DEDsaRqVDrnR8iayXbjpAzz6xeXYVb4RAOAIDcWw7Cyo/Y/gvfX34ePVL+KYcg1iC0pg8PO+XifQ3x9vP/UUM8QEADYc5IeqZUYWeD0OdzQqLTIi3Ie9nbH7yCaUV7UELMRHRWFmURHuvuoqvPTHPyJz3GkkjTiK6EHH3YaYmHU2ZDrcj9moNWNo7HjZY61rPI3q+pNYWfwDnvzvNdh9ZBN3mx1l65jrDRoTIv3j3a5TKlS4uvAhjE+dJXuMap0TATGeByVOKCzEKech/me3qOEe990ZBo0JF+TcgL9csgD/d/livDDzC9w78VVcNvRunDfgok6FjUr93s8oOb4HTmcz1Gp1uxAToCV8VBTZk0GnRwz1emyeyHIUuFyHW4LroFCxx3fIuLndz6dVx9GgrJVo3UJvdX2PCYIC8UHyQjd6q8Gx5zE/y9Q4NiHnKD8scZ95FdLvqoUpsOUz+a+cInYAMAe6L6yPC0rlbgsAMYHse1WVNeU4WXuM2cZqNmP6mDH4w1VX4bJp05ASF9caplB6XDoEDwACzeHQtrkmUylUSArOZG6zrXS17MKRNfuWcI9LAGDUWHDdiMdw9/iXuyXE5IyBkfntflYoAf9I/niljB02DIJSwJr9PzPbhdliEO4X6/V+OgqxOjAoZozH22U6CmR9/ovtcM9Ca2qCQsk+Rm3jfA5158fly7ltxgwZwm1TeJsVg68yo+1hQW0QkHmJCXM/D8akN1RYpnzV4/GxmHU2TEzvXfcXuoMgCIiyt78+1XGCTACguIQdvHXGjuJi3PzEE+3uc3jDz2LBU7ffzm13sKwMr3/4IX5euRL1Dexrd1u4a5BVqDW69f/+xiD4G4OZfew+shnTxrDfu6Io4r+LF7dbtmkHuz5fb26CUnX2OB1AQSaEkG4iCIISgFSSk/Qfjj3H6iuLsa4rsS6iu+OxZwi++mNl57Au1jhJXIR0LyrCJqTvcXLu55J+yknPe2/jpOeEEEIIIYQQQgghhJB+rTf84ZkQQsg5ThAEJHJm691Zvl52UYPdZsPsyZNxxXR2OEiD8jTUI4ox/nH/drNbrti4kbmdWt8Etc6JWE5xiCcKEiZxC3x/3rEAi3d8we0rK1J+CEhRxmW4adRTsoqLASAvdiz+OOkNmLRWmLRWFMSzQxyanU34aft/2i3jFV8AQOY5GmQCtMxoPzvvjk73MyP7eoxPk1/g2JuMSbmQGd4xInEaZufd0StmpZ0ycC6UgndBMQWcEBSVUo1pWVfjhZlfYFrmVdCrjW7bqZVa5ESNxO3n/RkPFP0NfsZAr8bjawPCcjF54Fyvt1+z/2ccqy5r/VmtVuOp22+HSqWS3YfW1ARzTAmq60/ixOkKbCldie+2fIT5y57GHz4+H3/96UGXsCUp/13/Lhqa3M+Ofka4LRY5USNkj6+75DPCgSzB7MfU2NSE5evXt/68Yft21HGKb87Mpp0cmgOjtvtCFc4Fkf7xnTpHxgWmIjk0p/XnYfEToVSw31NLd37l8kW+rzf+g/ulXJshABfm3ghBEDAu7RL8YfxL3H0BLWEmf/rmJny14T08v+gOOMVm7jaXDL4NEf5x3HZ9SXIov0ZiW9nadj8X5ubi47/8hRtM4QsKhQJ3XHFFu2VVtZX40zc34vc9i1qftwOVu/DmL4/jxe//gKraSpd+Rg8ZgrfnzcOyDz/EO/Pm4Y4rrkB+drZLQIAUg0lEWI5rMJXDnujFo+pavOCgtkqO78FTX12L+z+9GC9/fw+ufGco5v/6DE43nGpto9KKiM2rhN7qeZhJkN2Ot556ClHh7MJuURSxePvnzDZqpQapYe4m7u2c3OiR3Da/7f7WZVnx0W2oOFXK6XsUVIzj0fTsq6FVeR7CdbqhGq/8cC8zLE0URWw7vFZyPQAkhmQxgwgVggKz8m7HBTk3yB5bUHw1lGrPvgg69/zzsf7gr9x2mR2K9vsyXpBJQ1Mdjpw65HbdxpLfmdsqBSUGhElNJO5bVr0dcUHta/0USsAawr7uO6rdjzrF2ePMcY37x9qWztLosszhnwC9Rmri8L7B3xiEpBDpc3F11AYE1sUgrIZ9X0gURHyzZ0Hrz7+uYwcZaU2N0Bjcv1cTqRDzAAAgAElEQVSlwgk7ig3gh1oWV/ADfKUcOrGXuT7MzzV8ckD4YOY2VXXHUXJcXkiFu5C9jgZG5mPejA+RHz+x2+8bpIRmQ6PUtlvmH+V9kEnRiBHYVroaNfVVzHaDYkZ7vQ8pkwdewW/Uhk5twIU5N8pqGxvYPphHEACdhR1W4U2QyU+/s4/NdpsNGUlJ3MIlpVrAiLtsuPmXMFz4RgAu/VcQbv4lDGMf8kNgggb/3fAe936BJxSCEjePmgej1uKzPvuSqA7X8mq9kxt0U3zwILffk6dO4eYnnkBVNTsknEepUODZu+/G5FGjUDSCfw/ovS++wIMvvcRtZwttH66iFJQI7BDElBAkVcvfYlf5BkwoLIRKyb5X+eXixa1/a3E6ndi0cyezfccARTsFmRBCuk8kAKnkYvbByzO7Get6Ki2XdXOrOx67AUD3JQJKk0qQbAawujsHQgiP3O+yEEK6B4WUECl0vO596DkhhBBCCCGEEEIIIaR/oyATQgghvUJiCHt21sqaI+0K2uWYOJw/M/TRuPVQac8WNTQ0NmLNli3MbYz+LYU6Hb903xlmnY07S3t1/Ums2Ps9s02I1YFQW5RH+86LHYt7J74Ko0b6y/FB5gjcPf5l3DTqqXYFSWNTL+b2v3j7F2hsbvmyc0NTPVbu/YHZPtwWi2BLhMzR90/jUmdiTt6dXm8/InEapmZe6cMRdS9/YxAuH3av24L3UcnnY27+fb0ixAQAgizhyOcEkrgzMGKY7DAkk9aKGTnX44WZCzBz8K1ICc1BTEAKhsaNx40jn8SrsxfitvOeRXbU8F7zeznjgpzrMXngFV6FvTjFZvyw9dN2yxKio3HDzJnyOhBEOLJOQKoO2Ck2Y2XxD3j4i0ux7sBSZldHTx3mFnIDwAU5NzALj3tKXux5kgES5uB6gBNI8fOqVa3/X76BP9njmQKXrHM4lKorTfGwoLCtyQPntjtOWPR+3OfpaPVhbDu8pvXnY9Xl+H3PIu6+5gy5C4Y21wwDwnJx3fBHZY/1k9Wvo7G5ntsu01GIMSkXyu63r7Dq7QizRTPbbHcThhASGIi3583DnXPnIsDPr3V5gJ8fgux2n43v7quuQkpc+/CY9357FpU1R9y233DwVzz0+RzJQn+9Tofs1FTMPf98/PWRR/DtW2/h9ssvR2xE+2tCs9GIpNgo+EWchiPrOOJGlEGldf0yaqR/T9WYSEsMyURe7FiPtjl8cj/WHvhFcr1SLSJ2SKXbIAEprSEmYWHctpsOLUfx0a3MNsmhOdCqPQ/94MmIGAZ1h0Lwjn7d/Y3LlxtXFrM/awBAXsx5zPX+xmBcO/wRCPD8uupkbSVe+eE+yWLm8qqDOHGaHaKWzAhPOEMQBEzNvBLXFD7sEnZn0JiRHJrdbplK03JdJCjkfRm0ICcHCdHR2MAJMgmzRSPQzH8t9RW8IBMAOFjpOuGzKIrYVLKcuV18cEa782JXy45yvR9iCeacVwURpcaz7/nj2hJ2c4UInck1eCCJc3+nrxgSJ33MbvArRYO5AhmV/M+Ci5Ytw+79+3G4ogJ7OYX2liD3z5G/MVh2YGWkfwI3PG4v59jOUnqimLk+3OYmyERGiM+WQyu5bY6eOoxtpexaxSh7Eu4c+0KPBXxqVDqkdHi8OlMzjHb+dW1HIQEByEpJwarin7htB0eP8bh/nih7IgZGDJPVVqc24A/jX5J9T9LfGAyLzq/dsjOBmFI27dyJpmZ+yOEZxSUl2FvCPo5FxZrx4OezcN17I/DIF5fjP2vekLyeBQCDnxIxBXqEpmuh1rX8ebWyphyLt38me1xyzBp8m8vr6FwSZW8fzCgILUG1LLznGgBe++ADHD1+vFNj02k0+PO992JwRgYA4M4rroDJIB3GLJfBr8ElyCrIEukSvhfPCTI5froCTYpqDB/EDho8UFqK9du3AwD2l5ai+jQ7cMngd/b9qVHpYNJame0JIcSHXC8uz9rnq52IolgOoFZidayv9uMhqcdeI4riUR/uh3WB31OPHQAgCEIhgAyJ1b+KoshO+yOkm1ERNiF9D2/SBtJPUchNr+MEPSeEEEIIIYQQQgghhPRnFGRCCCGkV0gMHshts7OcXzzdVlJMDGIi2IEYS1auRG3d2SKzDdu3o66eXVxgDqiHAAHRAckejYdnZPL0TveRGVng1XZJIVl4aMqbLjP8qpVaTM+6BvNmfIj0iCEu24XZopERMZTZ96m641i7/2cAwLoDS1HTwP5eWVYUFb4DwLi0S3Dt8Eeh8DAAIj1iKK7Iv7fXBVp4Kj9+Ih6b9i5GJc9AQnAGhsVNwB1jn8fc/Pt7XVDElIFzPQrqsOj8cEX+/R7vx6g1oyj9Utxf9Doem/Yubhj5BIbEjYNeY+Rv3EMEQcBFuTfhuYv+g4tyb3IpRuH5eccC1De2//7w3BkzkJbAL1APjq/mFkIBwKm6E3jp+7vx/m9/liw6XrD+bTQ52X3FBAxwWzDaG5i0VqSGuS9iUWud3N/T4hUr0NDY0oYXZKI1NUGjb/miSabDu3MSYYsPSkdKaI7H20XZk9w+J8MTp3K3/WXHl63/X7T5X2h2sovIMiKGYlC066zwQ+LGYVbeHTJGK4/NEIBrCh/q8+c8Kckh7Od5z5HNbo9bapUKV0yfjkVvvYWlH3yApR98gB/mz8d3b7+NdZ9/jvlPP42EKM+C79qaWVSEWZPaF24frNyN1fuWMLc7WVuJFxbdgc/XvsndR5C/P66cMQOfvfYaFr75Jv790ktY/P77+OWf/8Q11xTAkXUSfhF1UEjc1XL0wiATALh2+CMYGjfep32qNCLihhyDzsw/56XExuKdefPgCA3lthVFEQvWvc1tl+Xl5w8evcaInCj2DPcVpw5hV5vPiKIoYuXeH5nbWPX+SJIRFDIoZjQuHnyLvMF2UHx0G+b/+ie3xQvby9Zxt+8YQsJSmDgZz170CW4Y+QRmDb4dd49/GS/P+hoPFP0NL13yVbu2luB6JBQehTnQ/fXOGSqlEjfNmoWykwdQXsUOXRgYmS97rH1BoDkcGpXUZN8tDla6TlZ9sHIXTtYeY27n7vN0V3L3/jEH1kMQ2F/OP2Q4G+x6ylLKbKszN0FwcxxODO4nQSax41yCgloJwLHsr2GvdyCiml1ULooiXvvgA/y61jWArCOzRJBJnAdBuhqVlhvKs7fCuyCTqtrjOFV3gtnGXZBJhF8czB1CKzrihUsC/wuw4hSYDE+c0uPXhu7CP+xR7JAAdyYOHw4nnFizfwmzXag1CuF+XVNjOjlzLreNTm3A3eNflnVv9wxBEBDTIdxVb2Vfy5yuq8OOYnaQTls/LWcHTAHACfV6HD65H43NDdh/bAe+XD8fd388HX/96UHsLFsvaz8LN33YGuAsJSZgAJ698BPu+wAA8uOLMDZVZoBrPxVlT3RZ5i44q61iTpDJqZoafPkTPxSIJXvAAHz80ksYPeTsOT3Q3x83zprVqX4BwC/ctXbeXTBQQgj/fbb98FpMHe36ebyjM7+PjTt2cNueCawFgABTSI8fZwkh55RIxrrDPt6XVH8OH+9HLqnH3l2PG+i5x37G04x173XbKAghhPRJckJKKIDoHOWk0Izeht6LhBBCCCGEEEIIIYT0bxRkQgghpFdw2BO5BUM7y+V9gfwMQRAwsZAdilFbV4efV61q/XnFxo3cfk2B9Qi1Rfl8NuXkkGyEWr0vKgWALIf3RfRhtmg8POUt3DPhFVwx7D5cN+IxvDr7G5yffS00KunZ0MelXsLt+6f/zUy6bNdXnJZwW/h8ripIKMKtY/4EtVIjq310QDJuHjWPO/tyX+HwT8Dc/Pvw0OQ3cf3Ix5Hl6J0hN0GWcOQn8GfiBgCloMQtY56B3RTcxaPqXQLMoZg88Ao8Mf19PHfRf3DxoFtkFRHXNFThtz0L2y1TKZV48vbbodVIvy/0lkYEJVZ7NMYft32Khz6/FBsO/tpu+cJNH+CXnf/lbn9h7g29upAjk/H+sQSzA7xO1dTgt3XrUFVdja27XYt32zIHtvQV6R+PQHOY5wMlskwZONej9mqlFlcXPAiFm2rj9PA8+BuDmNuv2b8EVbWVqK4/iSU7vuDu76JBN0u+HyakzcKEtNnyBs6gFJS4edQ8mHW2TvfVW/HCDJqcjdhzZLPkeqVSCbPRCLPxbBG2IAjIGjAAHzz/PCaPHOnxmPKzs3HP1Ve7PL//XT9fdh9frHsLizb/S3b70MBAJEZHw89igSAIWLf/F2Z7ndqAYAs7zLCnqJUaXD/icVyYc6NP+1VpRcTnH4Nf5GkolWefmyC7HQU5Objqggvw+qOP4h9//jMiQkJk9bn18GrsPrKJ2Uar0iMvbmynxs5SIOP6atnub1r/v+fIZhyrKWO2z40eLTsUb2LaHIxKPl9W245+270Qi7Z85LJ8+2F2kIFebUSUv2vxLotVb8fQuPGYkD4b6RFDWj+7+RkDXY4jeksTYoccR0LhUViCXQNNlAoF7rn6agyIj3e5JnKnvwWZKAQFIv3imG3cBZlsKuEXy2eEswNAfS3E6kCoNbrdMqVahNHOLrY/bNgGpcGJwtusaAhn18fpLO5DBxJlFFn3BXqNCSOSpkmur8xYhJqwbcioLOL2tWTlSjz7JjvIS6F0wujv/vmJC0pzu1xKTMAA5vriiq1efTn80Im93DZhfq5BJgpBgQGcIL4d5etRVXtccr0oili662tmHyqFGkPixnHH2NUyIl2DTKwhdVBqmj3qZ+Lw4dhxeC2q608y2w2KGd1ln0UTgwcinRFgrFcbcc+EV5AQnOFx3x1fp1Kv/7bWbpUfwvMjJ8hEqXbCGOC6z2axGSuLf8C8r6/HS9/fjdqGGsk+auqr8POOBdyxXJBzPUKsDvxh/IvQqQ2S7aIDkjE3/75efW+hO4RYHC5/J9Ca2UEm+w8dgpNRiPT9b7+hvoH/GnNHp9XivmuuwVtPPYWoMNf7HDOLijoVFAmIsIa6Xpe5+ztBlH+idMjW/2w/vAb52dnwt1qZ7b5btgw1tbXYtHMns51S7YTWePb4ZTfK+zxBCCE+EsBYV+HjfR2RWG738X7kknrs3fW4gZ577BAEYS4AqfTcQwD+2X2jIUQeOaEJhJDehd635ygnPe+9jVOkcBlCCCGEEEIIIYQQQvozCjIhhBDSK6gUKsQHsWex3Vm2gbnenQnD+cEe3y49O+vr8vXssBStsQkavROxHsyGK5cgCJiaeZXX2xs1FiQEs3+HcsaQFp6H0SkzkB8/EXoZYS1p4XkuBVIdbT+8FttKV2PToRXMdpH+8YiyJ3ky5H4vO2o47pnwCgJMoZJtlAoV8uOL8EDR36DXsL/MTrrGlIFzoRT4RbGXDr1bVoBHfxZsicCkjMvwx0lv4LYxz3Hbf7fl3y5FdjEREXj4xhvdFvdodQIcOceh8OKTTnnVQfzlu7vwxJdXY8n2L/CXRXfio5WvcLdLDs1Gathgz3fYjTIjpb7zC1hCXAtmOlr4yy9YtWkTt+DRFNASZNJbg4f6iwFhg7gFqm1dWfAAogLcn18VCiU3LKCxuQH/WvkKftz6KeqbXGeKbisjYigc/gnMNjMH34qRSdPZg+aYOfhWJIZkdqqP3i45lH++2FbGDkWQolGr8eTtt+Pm2fJDZeIdDjx7991QKduf70pP7MPK4h892v8nq19HeRV71nR3aupPYfvhNcw2A8IGyQ6q6AmCIGBK5lzcOuZZbpCjJ5RqEY7Mk0gZdxjPP3otfv7HP/Dd22/jtYcfxm2XXYZhWVkuzx3LgnVvc9uMSbkQJi27QLIzBoTlwmZg1SwBK/f+gIamlvPYiuIfuH0OjjlP9v4FQcClQ+9GWnie7G3a+mjlK+3Chhqa6rnhIIkhmT59/Q6JdV/Qb7A1ImbwcSSOqMDYMekYO2wYLp8+HR+/9BJmFrWEMmw4+Buzb73aiITg/hFY0VaEfzxz/cHjboJMDrGL5a16f0Ta2efGrpAd5Xo/xBLEDrBrVNYh98XjSJ2jxKEj5cy2ejdBJiFWB6z6Hqt187lxqTOhkPicJ6oaUXzRo2jKW4ZENf+c3djELsI3BTRA6u3v6TVPbGAKc311/UkcrfZ8IvfS48XM9QIEhNlcg0wAYKBD+vMIAIiiE+sOLJVcv6NsPSpOHWL2kRU1vEvPS3IFmsNcfg8KJRAYc1p2HyMHD0ZidLSsa6yuDgS+fsRjbu9JWfX+uGfiq9z7uVI6vk41hmaodOywl3Uyg0wOV1RwQzgtwXXc+wbrDizFqz/eD6fT/bh+2vYZ9/NRYnBm67VETEAKbjvvORg0Zpd24bZY3DbmOZ9eH/ZVCoUSkX7tz8c6E/sYWtfQgMMV0nXdXy1ezN2vNbQWERknYPBrgCCI0OlUmDp6FD59+WXMmjwZCokXjEqpxBO33cYM3GUxBTRArXMt2AmzRbssUyiU3HPC9rK1UCmVmDRiBLNdTW0tPl20iBtkYrA1oO3tN7uJgkwIId2K9eGiysf7OuXFGLqS1H6763GzxtClBEGIAvASo8lDoih6l1Amb/9BgiCkevIPADsVlZwTKBCBkN5FToivN0G/pB+g0Ixeh96LhBBCCCGEEEIIIYT0bxRkQgghpNdI5BRBHTqxlzsLaUeO0FCkJrALhpatXYuTp06hqroaW/fsYbY1BbYU/cR6UDzsiaFx45EbPcqrbfMTiqBUqHw8Ij5BEDBaxkzlf1p4M0TOH4QLEiaf87OOupMUkoVnLvgI1xQ+jKmZV2LywCswJ+9O3DjySdxf9Dr+Ouc7XDfiUeasrqRrBVnCkc8JAhiRNA2jZLxXziXZUcMRySkWLT1RjC2lK12WTx41Cn+5/36kxMYCAJQKBbIz4hEztBw6k2czXXe0p2Iz5v/6DDaUsAt4z7gwx32oSm9iNwXD4Z/odp3e0gSd2bUQta2fV67ET5wZrSGIMNlbvj+c5eAHiRHvtYSfzZXVdlzqJciPn8hsU5gwhdvPb7sX4rO1f+e2m5RxBbeNQlDgivz7MCblAm5bdwbHnIdxqZd4tW1fYtXb3RavtbX9sHdBJkDL6+jaiy/Giw88gCA7uy4hKiwMrzz0EEwG12uN/2541+MvaTc2N+DD5S96tA0AbCz5Dc0i+xif3UeOP7nRI/Hw5De5gYCeUqpE/LL/Y1hM/EBCKdsPr8WOsnXMNhqlFhPT5QfheEOpUGFo3Hhmm9rGGqw7sBRO0YlVnGJvmyEQiSGeBW+oFCrcPPpp7mdVd0TR2S4Qbf3BZTjdwKoPaglH86VB0aOZYXt6SxMs0WX487334q65cxHvcAAAahtqsJ0TlJQWngdVD3z+7GqRnDCuilOlqG2obv25tqEGO8vZoaup4XlQCN1/Gz4jYqjLMkswP8Bu9c512Ma5NwIAeqtrUXlicP8KGbObQjAohhESoXCiPPdTjLvWr9OfB8wSITMGjQkx9mSP+pITeLe3Ql4gRFuHTuxlrg8wh0IrEcKQGZnPDf9cs086aGDZrq+44yvkfCbvTgMjh7ksC4yvht7Gr7eMdzhw37XXotnZhDX7f2a2DbZEco9bnWXW2fDo1PmYkX09ouxJSAzOxIS02Xjmgn8jrhNBzx2DjAUBMPmzfz/rtm6VVdiweAU7SBkArDICPQFgS+lKfLrmDZflDU31+H7rx9ztZ+Rc1+74kBo2CE+d/08UJkxGhF88ogOSMSnjcjw85S3YTcGyxnQucNjb37/QcoJMAGDvwYNul5eUlWEtJwRHb2tAVPYJ2KNqkVBwDOmTypA09iCU0RugNfILnFLi4vDMXXd5dS4Iiq92uzzUGuV2Oe96sbLmCI6cOoSpo/khR3//+GPsKGaHVBn82t8voiATQkg3Y93cYH/A9pxUf64JZN1D6rF31+MGeuCxC4KgAfAJAKmEwmUA3uviYdwEYLOH/xZ08ZhIH0BF2IT0LnL+bkXv23MUPe+9jpPCZQghhBBCCCGEEEII6df637fNCSGE9FlyisN2lW9ElqPQo34nFhZiy65dkuubmprw4/LlsJnNcDrZfxwznwky6cQX9VkEQcDVhQ/hwLFdOHJK/iz1odZonJ99bZeMSY78hCL8e/XraGxmz+7MohSUGMYpVDyXaVQ6FCZO7ulhEIaLcm/C5kPLUVlzxGVdYnAmLht6d68Pu+hugiBg7ICZeGfZPGa777Z83DqDcVuj8vIwcvBgNDW3FLU/+dVV2H+scyEmnsqMLEBCcEa37tNbWY4CHKh0P9OuLbwWZdvVktvWNTTg65/ZRXQGWyOUahE2QwCiAzwrtiSey3QUItwWyywoTQnNwSWDb+X2FWQJx4DQXGw9vLpTY4oLTEMSZ3boMxSCApcNvQcKQYnvt/5b9j5CrdG4quCP58zxNDkkB6Un9kmu33NkMxqa6jo1c/uovDwMz83Ftr17sfvAAew/dAj7Dh1C+dGjUKlUGJaVhdmTJ7sNxiivKsHyPd95td/1B5dh3YGlHl3brzuwlLleEBQYGJnv1Xh6gsOeiCfP/we+2fhP/HfDfDQ2+2Yy2f3HdmBX+QbubO1SFqx/h9tmdMoFsOj9verfEwXxk7Bw0wfMNr/u+gY2QwCOn65gthscM9qrMAmDxoR7J76Gxds/x9r9P6OusRY6tR7bDq/hbruzfAN2H9mE+KB0LNvJL8JPCxvs8fhYTDor0sLzmOFsu49sxNFThxFgDm1dtqV0FZqd7ILhvvRe84SDE7IHACXH97Ze/207vIb7u3IXKNId4oPSoVXpUd9U27pMa2qG1tiE+hrpPwv8sno1Tp0+ze1fb3ENwvMm9Ke3m5g2Byv2fs9ss+7IVxiRV4Aly70PGDtzv6mj5NAcKBTsAJCOwmzR0Kh0aGiSDmooProVebHnedTvoRPsYvcwW4zkOqPWgpSwXGw+JB0wsaV0FWobqqHXtL/mqGs8jZXcsKoAt58Ze8rAyHyX85dCAcQPO4Yju004WaYDGgww6U2wGI0wGY0IstsxKC0NU8eMgV6rxdbS1ThVd5y5n0Exo7vlutii98O0rKswLesqn/Vp1dth0lrbhVYb7Q04UaqX3OZ4VRWKS0oQGxnJ7HsJJ8hEoXRKvufc+Xrj+4gNTEVu9MjWZb/tXoiTtZXM7eIC05Ac4ho6YTeF4JrhD8ve/7koqmOQibEZEERAlH69F5eUoDA312X5fxdLhySdYXecRtvLxDNvq70VW/DgZ7Mxc9AtGJUyg3ktOXrIENx37bX409/5AaBnhKZUwRzo/jNAiESQSUpIDrffHWVrMTxxKgbExTGD22tqayXXnUFBJoSQHqZlrGMnc3tO6qaMxsf7kUvqsXfX4wZ65rH/FcAgiXXVAK4Qqeqc9Fb0yiSkz/E0pJ/0E5zvBZLuR+9FQgghhBBCCCGEEEL6t+6fCpIQQgiREBeUBgVndtadZeyZjt0ZV1DA/VL/wl9+we/r17M7EkSY7A1QKdSIlFHc5C2DxoRbRj8NtVLe98PCbbG4v+h1GDTez7reWUatBYNjxnSqj4GR+d1SDElIV7Ho/fCH8S+3m4VcKShRkDAJ90x4WfZ7+lwzNG4cTFqpyfVabDj4K8pOHnC7ThAEqFUqbCldjv3HdnTFECWplRpclHtTt+6zMzIZYQG2cHmzUbOcKQTLjCzwqlCceEYhKDAr73bJ9XZjCG4aNQ9Khbz80gnpszs9pkkZl3tUSCkIAuYMuQsT0uTt26Ax49Yxz0CvMXo7xD6HN9t2k7MRe45s7vR+lEol0hISMH3MGNx++eV48YEH8OELL+D9Z5/FDZdc4jbEBAC+3vA+nKL3AVIfLP8Ls8i6rabmRmw8KB3GAAAJQemw6P28Hk9PUCs1mJZ1FebN+BCpPgyx+M6DgKC2NpUsx9bSVcw2aqUWE9PneNW/pyL84xBlT2K22VjyO9779TluX4NjPCvYb0ut1GBc6kzcX/Q6Hps2H/cXvY7nL/6cew0DAAs3/RMnTh/FxkPLme0i/OIR6Z/g9Ril5MWN47ZZUfxDu583HPyVu01GZM+Ec3S1CD/+Z/2Dlbtb/7+phP28ChB8+t72hEqpdnseMQezj7v7Dh3C59+zgzs0xiYo1a5fLvY2QKk3iwlMafcZz53q+pM46bcEep13n/m0xqaWIn03BoRJ1fBJUypUiLazgwX3Vmz1uN/S4+wgk3BbLHN9TtRI5vomZyM2lvzusnzF3h/aBfK4Myxuouzr3u6QEDwQerXrNatCCYQkVSNpxFFMmGXED/Pn47PXXsP7zz6L5++9FzOLiqDXttSsrir+ibufwdGduxfXkwRBcLm/avTnh7qt3cp+7VZVV2PNli3MNubABnj6cnnzl8dx+MR+AC2zxC7czA5aA4CijEvPmQBGX+t4/ScoWo6VLMUlrqHgoijiqyVLmNsJChG2MOlzY31TLd7//c94duHNOFJ1iNnXJUVFuOqCC5htAMBg1CAmrxJB8TVu11v1dhi1ZrfrHPYEt8eXtrYdbgnWmjN1KncsPAZb+/el3UhBJoSQbiWdvA2wTwyek+qvp/6wI/XYu+txA9382AVBuBvANYwmN4qiKJ3qTUgPk1OETYXahHQfyr0ipO+g9yshhBBCCCGEEEIIIf0bVZcRQgjpNXRqg8tsix3tLPc8yCTI3x+D0tKYbVZv3sydndFga4RSLSLKngiVkvXduc6LCkjCnCF38dvZk/DApL/BZrB36XjkGJ08o1PbFyRM9tFICOk5EX6x+OOkN/Dniz7Dg5P/jlfnLMK1wx+BRqXr6aH1WhqVDqOSz+e2+233Qsl1oijii3Vvc/uYnnUNril8GFqV9AzPcgkQMDf/fkT4x3W6r+4SHZAMq979+UJraIbBj180xmIKaAkyyWIEphDfSo8YgpmDb3Up2gyzReO+or96FOiQETGMGXbDE2qNRlaU59sLgoBLBt+GG0Y+gQBTqGS7CL84PDZtPvStZMsAACAASURBVML92AWy/U1yaBa3zY5yThhfFzlWXYZlu7/uVB8Vp0rx9cZ/ymq7vWwtahvdF/qdkRU1vFPj6UnBlkjcM+EV3D3+ZYxMmo608DzEBKQg0BwOg8YMP0MgBsech8envYfHpr3LPZet2bcEx6rLPRpDbUMN5i97httuZNI02AwBHvXdGfnxE5nrRYg4dIJdx+JvDEZcEPszoacCzWG4Zcwz3DDONft+xudr34Qosmf5K0yY1CXFztmO4VArWZNYA8v3fNf6/2ZnE9YfWMpsHxMwQPKaoq8zas3cAt0zQSaiKGJjCTtgKTogpUcDltLC81yWWYLrO92v1U0Yis0QgCBzeKf77o3khK45VTWwJxzzqn9bmHRIR6oXQSYAEBs4gLl+39HtcDrlh5HV1J9CVd1xZpswWzRzfXbUcAhgH+dW71visuyn7f/hDQ+FiZO4bbqTSqFy+/5rq/joNpSe2Od2ndPZjDX72fcpA83hcHDuo/Z2EX7tP0/rzE1QqtnnS16QydLVq9HMmVnXEuJ5kGdd42m88uN9qKmvwrr9SyXDVs8ItkQi29F3r017WoRfnMs1ls7Mrtve6ybIZN3WrThUzr4mtobWuQ3n6mj74bV48PPZWLJjAbPA5tZLL8XkkSMl1+dnZ2PqxeGwBEmfj0NtUZLrlAoVEoMHcscqiiLGFxQgIjiY2ZZFa2yCStP+sQaYKMiEENJr+Lrasa9UT/bLxy0IwsUAnmU0eV0URXk3ETvvdQBpHv6b1k1jI70YhZQQ0vdQeMI5yknPe2/j5Pz9jBBCCCGEEEIIIYQQ0rf1ninqCCGEELTMWFp8dJvk+uKjW9HQVOdxKMCE4cOxctMmyfWiKKKunl3MY/5fgXZ6RPfMPD0yaTp2lq3Hb3u+dbs+Pigdd417UXJ2xu4WF5SGCL94lBzfzW/cgVnnh4GO/C4YFSHdTxAEBFnCEWTpn0V8XWF0ygX4ZuM/0CxKF9Kt2rcYM3Kud7tuZ/l6FB9lFzPp1UaMS50Jo9aChOAM/G3Jw9h3dLtX41UISlwz/GFuYXVvoxAUyIwswM87F7hd7xdei9PHvZtkUaF0wujXCABICM7weozEc0XplyLbMRzrDixFVW0lYgNTkRExFFq1Z4E9giDg8qF3Y1vpau6M927HkXEpFIJ3WamCIGBo3HgMjRuP4zUVqKo7jrrGGtQ1noZTdCLcFotAc9g5OZu5VW9HqDUah0/uk2yzs8zzoD9f+GHrp2h2dn4S2K83vocwWzTyYs9jtlu7/xduX329WFQQBKRHDEF6xBBu25FJ07Foy78k1zvFZvy47VNcPOhm2fv/z5o3cKymjNlGpVCjKOMy2X36wpC4cfho5atwMq4TeAbHjPH6GMWSEpqD0Skz8MPWTyTbiBCxZMcXzH4UghJD48f7engAAL3GiMzIfKza95NkmwOVO1F6Yh/CbNHYWrqaG1YwMLJ/f3aL9I9nvhcOVO4CAJRXHcTR6sPMvjJkvJ+7krsgBaN/AxQqJ5xN3r8n/CJdrxUSgzP77bk6y1GAYEsEyqtci+Tb8o+qxrEDWtSelH9NrdE3ISDWfVCXzRCIUKt0MTtLTEAKc319Uy1KT+5HhMyQuLIqdmgDwC68B1rCbuKC0rH7yEbJNhtLfkNDUz00qpYApuKKbdzPbXGBqQizxXDH191yokcyj71AS2Dnhbk3uizfWPI7TtZWMrcdFD26z7/nIv0T2v0sCC3HqKpy6fu+6zhBJotXrmTvVBBhcRPGJEfpiWLc9mGRrLYT02dDoWCHnRFpGpUWYbZolBzf07pMa2J/9iguKYEoiu3eF7zgcgDwizgte1wNTXWYv+xpbC5ZjisLHoBRa3FpIwgCHr/1VgTZ7Xjv889bg3X8rFZcd9FFmFlUhD9+dglzP6HWaOb65NBsbGCEqVXWlKPiVCmCLOG48oIL8OTrr/MfnBsdA28FQQGbMdCrvgghxEuNjHVqAJ1L5nbtzx1f7sMTjQDcpZL6eqYNVn/d8tgFQRgH4B+QnojrGwC3d8dYAEAUxSMAjniyTV+/Lie+QUEmhPQuct6TTlB4wrmIFzpPuh+dQwkhhBBCCCGEEEII6d98/w1+QgghpBOSQjKZ65udTdhbIR10ImV03mColJ378rgpsCXIJMtR2Kl+5BIEAVcXPoT8eNcvyA+JHYe7x7/ca0JMgJbxjk4+36tth8aNh0pB+WqEnKv8jUHIjRnNbFN6ohiHju91u25l8Y/cfZw34OLWApMQqwMPT3kbs/LugF5t9GisKoUat4x+ps+FmJyR6SiQXGcNqwME774kYrQ3QFC0zArurpCHdK0QqwMT0+dg5uBbMShmtMchJmfYTSGYkX2dx9v5GQIxLG6CV/t06csYiCh7IpJCsjAwMh9ZjkIEWcLP6S+D866Pdx/Z5JNAEU+IoohV+/jH3jvHvgCDxsRs09jcgNcXP4jb/zUZP+/4Ekt2LMDi7Z9ha+lqOJ3Nrftbd2Aps58wWzRCrA75D6KPO2/ARRDAfl8s2f4F6pvkFeruKt/IDOM4Y3jiVPgbg2T16StWvR0ZnQyTzE+QV3TsjQlpsyF0MiQlI3IYrHq7j0bkakjcOG6bFXu/BwAs3/sdt23mORBkwlJyfDecohMbS37n9tVdQahSQq1R8DcGt1umUADmQHaQK4ve0gi9xfW8k8g5X/VlCoUSkzKu4LYTBCAi4yTkTmqu1jcjdmglVBr37QeE5Xp9DRQTOIDbpriCHQjRVtlJfpCJnPNwbvRI5vq6xtPYWrqq9eeftn/G7XNE0nRum56QHTUCOrWB2ea33d+6zDgqiiK+XD+f2//gmDGdGl9vEOEf57LMaGfXyx6uqEDpEfd1pfUNDfh17Vrm9kb/Bsn3nBxNzkY0OVk11S2Bze7u5xLPOOyJ7X7WcYJMqqqrcaC0tPXnuvp6fPfrr8xtVNpmmAM9r9Fete8nPPz5ZdhZ7j5UUqlU4rbLLsPi99/Hqw89hLeeegrf/P3vmDV5Mpxw4ggnGCuME2KVHJrDHeP2sjUAgCmjRiHI7t11psGv/WvdzxBI9/AJId2N9cHF14EeUmmEPRVkIvXYu+txA93w2AVBKADwOWMcPwO4UBTF7r35SYg3qAabkD5HFOmNe06i573XEZ30nBBCCCGEEEIIIYQQ0p9RkAkhhJBeJSE4g9tml8QXhDtyOpuxcNMHePjzS3HHJ+NhCHA/w60cCqUTBr9G+BkCEWVP8rofT6mUalw7/BE8MvUdzMi+HrMG344HJ/8dN456EnqNZ8X33WFo/ARoVNKzpkopTJzcBaMhhPQlBQmTuG1W73OdSdcpOrFm3xLmdlqVHhPSZrVbplKoMCFtFp696BMMT5wia4walQ53jfsLcqJHyGrfG6WGD4Za6W4iR0CtdcIc4F1R65li2OhuPEeSrjE29WKPr3VmD7kTKqWvv0NPzkgMHshcX99UiwOVu7ppNC0OVu5CxalSZpv08CHIdBRgRs4Nsvo8cboC7yybh/nLnsa7vz6LZxfejHs/vRC/71mEPRWbUVlTztw+yzFc9vj7gyBLODdgsaahCr/tXsjtq6GpHm8vnced8UynNmBK5lxPhukzBZ0IIhkWNwEO/wQfjqa9QHMYBkWzA9l4CmVcB3VGRsRQbjH98r3foaGpzu31VltB5ghEByT7cni9Di/IpK7xNPZWbMHmkuXMdgaNGbEywiS6kiAISAvPc1luCfY+yMQv8rTb5Umc81VfNzxxCrKj+J8DDLYmBMS4/x21FeBvRdzQY9AamyXbpIYN8miMbQXJCBgsPupJkMl+5nqzzgaT1srtJydqJLfNmv1LAAA19ae44Up6tRFDYsdy++wJWpUOudGjmG2O1ZRhR9m6dsu2lq7CnorNzO0CTKH94lgcYYt1CWYz+vPrZddtdf/aXblxI2rr2CFu1hDX9SatFS/P+hrXDn+Uu285xg642Kv7o6S9jp9LdWZ+/fIva9a0/n/xihWoqa1ltveLqIW3mZnHasrwzNc34vc9iyTbWEwmFObmIjctDXpty72YI1UlaBalj/0AEGqLZq6Psidyr+22H245tmjUasw937vwcYOt/fsxwBTiVT+EENIJ1Yx17ORcz0n1d8rH+5FL6rF31+MGuvixC4KQC+BrAFIntRUApoiiyD6hE9JL8O6tEkK6l5yQEgoyOUc5nfw2pFs5Qc8JIYQQQgghhBBCCCH9GQWZEEII6VWsejuCLZHMNjvK13P7EUURf138ID5a+QoOVO6CCBG2cO+/52S0N0ChaCmQ9HY2XG8JgoC4wFRMy7oKE9Jnc4tZe5JBY8LQ2PEebRNlT+rSwkJCSN8wIDQXBo2Z2WbVvp9clhUf3YbjpyuY241ImgaTzn1RnVVvx9WFD+Gxqe9iVPL58DMEum2XGDwQj055B6nhg5n76u20Kh2zINIWzi76knJmBuP+UEx3rlMqVLgy/wEIAv92gUalwzWFD/eL2eB7s8SQTG6bnWX862NfWrP/Z26boozLAACjk8/3+lqv4lQp3ljyCJ787zXcttnnWJAJAIxLnclt8/2WfzO/jFvfVIe3lj6Jwyf3cfu6OPdm+BuDPBmiz+REj0J8ED/0sqMAUyguG3ZPF4yovaL0S73e1qi1YGBkvg9H40qj0nHDA8pOHsCC9e+grpEdwDA0bly3fybubpEyjlnLdn2DbYfXMNukhg+GUqHy1bC8lubm+tUcVA+vpgoWRPi5uV40aEyI8IvzYnR9hyAIuGHE49wQKQAISToFlU66SD08OBiz5mQyQ0wAYEBYrsfjPEMQBMQEpDDb7K3wJMjkIHN9iNUhq58gSzj3umDdgaVocjbhtz3foqGJ/fkkP6EIWrVe1r57QkE8P4irY+jYgvXvcLfJj5/YL47FWrUeQZbwdssM1kYolOzihbUSQSZLVq7k7tMS4hrkdGHuDbAZAlCQUIQxKRdw+2DRqHSd7oO0iOpwrNCZm6BUs18by1avbv3/Fz/+yN2Hf+TZvxcoBSUyIws8GqNTbMbbS5/C0VOHZW/DC4YCgFBrFHO9UqFCUjD7c+L2w2tbPwecP3Ys/Kz8sKm2BIUIvaV9eIydgkwIId3vGGMdO7XPc1L9scbQlaT2212PmzWGThMEIQPAIsb+1wOYKIpiTwXJEOIxCkQgpO+hAKJzlJOe996GzqGEEEIIIYQQQgghhPRvFGRCCCGk10niFGvuLt8Ip5Nd7LFi7/cuM0lbg+u4X4SXYg5s+ZJ7VhS/YOVcNzplhoft6cv9hBBApVQjO4pdhH6wcjfKTh5ot2zNviXcvvNiz+O2iQlMwdz8+/HSrK/wzpW/4tXZ3+KZCz7GY9PexWtzFuGPk/4PEf79ozgz0yFdmGMNqYOg8OyLIiptM7SmluKWjjMmk74pJjAFYwdczGyTGjYYT8/4FwoTJ3fTqM5dAaZQyZClM3aWb+im0bRYs38Jc71Z54fkkCwALUV2XR0kYdX7IzYotUv30Rslh+Yg0j+e2ebQib34cdunbteVnTyAJ768Civ2fs/dV2LwQIzy8DrflxSCAtcOfxhWvb/sbZSCEjeNegoGja8nK3YVE5iC5NBsr7YdGjceaqXGxyNyNSRuHLfNVxve80k/fV2I1QGbIYDZZvH2z9DQ7FoM31ZGxBBfDstrA8IGQUD7wAO11glTQIPHfVmC6qHSut5XiQ9Kh0Kh9HqMfYVWrcdtY57lBkkp1SJiB1e6LbiPczjwzrx5KD29hdlHqDUK/sbgTo03NnAAc/2Byl1obJb3OuAV3odY5AWZAEA2J1jpVN0JLFj3FhZv+4zb16jknjs3yZEUms19HlcW/4j6/wW2bD+8DjvK1jHba1Q6nMe5Vu9LOl7LCArA4NfI3GadmyATp9OJn1etYm6nszRCa3C9p5zlGNH6/9l5dyIuMI3ZD8uIxKmSQarEMw57YrufBcXZe/RS1mzdipraWhwqL8eKDezPSHprA3Tms0Eds4fciTvHvYC7x7/s0fG3sbkBP2z7RHb7wyfYx1ONUgt/E3//SZxrz2M1ZTha3RKwotdqcdnUqbLHCADW0Dp0zDelIBNCSA9gBWn4OmlVqr/eFmTSXY+bNYZOEQQhGcD3AKRu8mwBMFYUxeNdsX9CelTfz6MkpM+QE1JC4QnnKu++N0i6jlOk54QQQgghhBBCCCGEkP6MgkwIIYT0OgnBA5nraxtrUHJ8j+R6URTx1UbXAiyFyv2sm3KYAhqgUxuQEprj1fbnkuiAZNmFJAnBGRieQAXQhJAWg6JHc9us2vdT6/9FUeQW09sMgYgN9Ky4XalQwaL3Q5gtGjEBKTDrbP1ituszWDMMK9UiLMHsWc87MgfU48yvhzfrO+k7Zg6+FVkO1wA3o8aCa4c/gnsmvIJAc1gPjOzcIwgCEjnXxzvL1nfbFy6PVB3CwcrdzDZZjsJ2Be2JwQMxMX1Ol40pM7IQio5VducAQRAwdgC7mB4APlz+IraVnp2dvr6xFt9v/QSPLriC+bnqDLVSg6sKHuzx33GI1YH7Jv4VZp2frPYX5t6IuCDvC5E9VZR+qVfbFSRM8vFI3BsQNggmbecKq6PsSQizxfhoRL2XQlDIui7lSQvP88FoOs+ssyE6INlleUjyKcDDWUf9ImvdLh8QNsibofVJCoUSc4bchUuH/AEC47iotzYhoeAoAmOrERbqh7yBA3H75ZfjoxdegMWiw94K1yCGtgaE5XZ6rDEB7CCTZmcTDlTu4vbjFJ0oqzrIbBNqjZI9rpzoEdw2X66fj0Mn9jLbJAZnIsIvVvZ+e4JCUGBo3Hhmm7rG01i3/xcAwJfr3+H2OTp5Bix6eefCviDCzzWUzejPDtjZW1KCypMn2y3bvGsXjh5n17pa3XzWdfgnwmawt/6sUqpx23nPItgSyezLHZshANOyrvZ4O+KeUWtBgCm03TJzEPveflNTE1Zs2IDPf/iB279fxNlzmlFjwajk8wEA6RFD8PSMDzEyabrssf62eyGanE38hgBKOMe2EGuUrOtuOSF62w6vaf3/xRMnwmw08gcIQKFyIjih2mW53UhBJoSQbse6CPX1QUmqP/aFcNeR2q+vH3coY53PH7sgCAkAfoJ0gMpOAOeJonjU1/smpKvJCU0ghBDSCzjpeN3b0DmUEEIIIYQQQgghhJD+7dyr8iCEENLrJYVkctvsYMw6v/XwasniSr9w90U3LGpdM3TmJqSF53XLTNn9way82zEu9RLJoh6j1oKxAy7GPRNePSdmbSaEyJMaPhg6tYHZZlXx2SCT0hPFKDt5gNk+J2p4jxde9zZ+xkC3xaxn2KNPe9TfmZCwAFMozTzdj6gUKtw25lncNuY5DI2bgNzoUZiTdyeeu/hTFCRM6lfhPn1BIuf6uKruOMo5Bca+wguQAoCcKNcC5YsH3YIxKRd0wYiA7KjhXdJvXzA0bhw3nKJZbMafFt6MBevexjvLnsadH0/FP39/HnWN8o7307KuRqhNfoF6Vwr3i8X9E/8Ks87GbJcePgQTujA8x52MiGEIt3lWUB/hF4dou/Q52ZdUChUGxYzpVB+8Yvz+ZEjsuE5tH+EXB39jsI9G03nuQlWMfo0ISXItUpaiVDthCXIfeNdbQlu609jUizFnyF3MNlpTM8JSTyFy6D48e99tuHLGDKjVamwvWwen2MzcdkDY4E6PMTaQHWQCgBuoAgDHayrQ0MQOOwy2OmSPK9IvHkHmCNntpYxOkRei29Py4ydy2/y6+xvsObIZW0pXMtuplVpM9DI4q7eK9HcNMjHZ2UEmALB+27Z2Py9esYK7jSXE9XWcHjHEZZnNEICHp7zFDRNsK9wWiweK/sa9RiGe6fj6sATVgxfCtWTlSiz48UdmG0EhtgsyGRA+CEqFqvVnvcaEKwsewF3jXoRFRojeydpKbCr5ndsOAA4c28lcHyrzeBptT+LeQ9vaJszQZDDgoRtv5PZrsDUgbmgldGbXYBa7iYJMCCHdrpixzmcpm4IgBAOQOqiyE6i6jtRjNwmCEODD/bB+jz597IIgxKIlxEQqPGUvgNGiKJb5cr+EdJfuChonhMgj5z1J4QmE9A50DiWEEEIIIYQQQgghpH+jij5CCCG9TpA5Ala9P7PNrrL1kusWbfpQcp05sB5KtdOj8QTG1kAQgCzHuVsg6SmtSoc5Q+7EK7O+wQNFb+CucS/iwcl/x1Pnf4AXLv4Cr81ZhEuH/gFala6nh0oI6UXUSg33WLv/2A4cqToEAFi9bwm3z5zoUb4YWr+TGVkouc4c0AC/CHnF7TpLI6yhLcVgUfYkn4yN9B4KhRI50SNww8jHceuYP2Fc2iXcwATSNeQUUe5kBP21JYoiVuz9AS99fzce//IqvPvrnyRDAN3hBZno1AYMCBvkslwhKHD5sHtx06h5MGhMsvfHYzMEut3fuUKj0mFksrzZ4j9b+3f8vGMBauqrZPfv8E/sdQXTEf5xuHfiazBqLW7X+xuDcd2IR7s9yEwQBEz0MDylu4OhhsSO9XpbAQLyYs/z4Wh6t7igNNiN3hfruiuM70mp4e5DMYISqt0W9rtjC6+FuxxSq96OCL+4zgyvzzov5UIUJEzitqtrPI1PV7/e+vPibZ8x2wuCAimh2Z0en80QAH+j1ETnLfYc2cztp6yKHR4JyC+8B1qOl6NSzpfd3h2zzobcPvJZL9wvlhkkCQAbS37HE/+9mtvXyKRpsBnsvhpar+Du+GGwNUAQ2AUMv61b1/p/URSxZCUnBEbXDL3VNZhB6nht1tlw78TXMCxuArNfABiVfD4enTYfIR68D4g8Dv+Edj+rtE4YbI3Mbb786SdUVFYy21hD6qDSnH2NSQVyDYwchifP/0BWYNfSnV9x29Q31eHQCVZNPuCwJ3L7AQClQsX9nLix5Dc0O8++7scXFOD+666Dn/Xs53pBEJCemIhLpo5G4vAKxBcck/wdU5AJIaQHHABQL7FO3gFTHtdktbN2+XA/nmAlX3XHY68FUOKrnQiCEIWWEBOpRMMDaAkxOeSrfRLS3SgQgZC+h8ITzlFOz74zSLqeU6TnhBBCCCGEEEIIIYSQ/oyCTAghhPQ6giAggfMl3B3lG9z+Ubn0RDE2lPwm3bcCsIXVSq7vyBpai4DYGgiCAgMjh8nejrSw6P2QHJqFgZHDkBg8EJH+8Qgwh3Z7USEhpO8YFD2a22b1vp8A8IvpjRoLkkKyfDGsfifLUcBcH5l5EmPGJCIyVGpyREBnboQj6wTO1F/zivMIId6L8Ivjhn/sZAT9nVFdfxLPL7odry9+EOsOLMXeii1YvP1zPP7llVi26xvu9idrj2F3+SZmm/SIodCotJLr82LPwxPT/4G4wDTu/uS4KPcm5v7OBRPT5sCss/m8X53agGuHPwxVm9npewuHfwIemfK2S/FmdEAyHp7yFiycYMyuMix+AuKD0mW1DTJHYEzKBV08ovYSQzLhZwj0atuk0Cz4G4N9PKLeSxA6F9ySHjHUh6PpvPigdGhVepflggA4sk5Aa2IXhQOAf6T7eympYYO6NZCnNxEEAVcMuw8xAQO4bZft+hrFFduwrXQ1874VAETbkyTDmjzFO9/uPsI+rwNA2Yn9zPWCoECQRaoe0b0xKRci1Brl0TZtFSZMhlqp8Xr77pYfN7HTfagUahRl9K5wMV8IModD0yHoWKEC9Jywim+XLkVdfUtd8+Zdu1Bcwq6ztYTUoeOhSqc2ICEoQ3IbtVKD60Y8hhnZ17ldb9CYccvopzE3/34Ka+4ikf6utdWWYKl6dvn8He3DW9PC3Ad+AYDNYMcfxr/EDapZf2ApqmqPM9scrNwFkVOc40lIbEpoDnN9TX2VS2DVJUVF+PbNN/Hmk0/in3/+M36cPx//eO45jBiRBL21yeV90lYABZkQQrqZKIrNAKQuWPmpv/Kx+lrHWNeVWDf6uuOxbxR5Jy2ZBEEIR0uIidQHgFK0hJiwP3gQQgghHpATLkRBJucmet57H3pOCCGEEEIIIYQQQgjp36iKmBBCSK+UFJzJXH/idAUqTpW6LF+0+SNu37ZweUEm1rBaRGW3FGgnBGV0SXEgIYSQ9tIj8twWWba1at9iVJwqxf5jO5jtsqIKe2XxdW8QZU9iFjILAmCIKMWXr7+On957D0/fdx0iM08gOPEUQpKr4Mg6joTCo9Bbmtr1SQjpGgqFkhuOsLN8A3N96YliPPHlVdh8aIXLusbmBrz1yxNYsfd7Zh/r9i/lfvkzJ2oEcz0ABJrD8MfJ/4fZeXfAbvSuGM6gMeOmUfNQkFDk1fb9iUlnxfUjHofgw7BAo9aCO8e+IHtG+J4QYnXggUlv4Mnp/8CtY/6EZy74CI9NfRf+xqAeG5NSocIto59BKqMYFgBCrdG4ZcwzLoXbXU0hKJAXO9arbYfGTfDxaHo/b39XGpXOJWSnp6mVGiRLBPwpVSJiBh2HSi29vcHWAL3VfahAWnieL4bYZ2lUWtx23p9g0fkx24kQ8c/lL+CjVa9y+/Tl7zQuiB1kUnHqEKpqK5ltyqoOMNcHmEI9DhXRqnS4ceSTUCkYLzyGkcnTvdqupwyJGweFoOxUH4WJk/tloJRCoUS4LdZlucnewNyu+vRp/Pj77wCAj77+mrsfa0idy7IBoblQKdmvQUEQMC3rajw85S2khg2GVW+HVW/HhLTZmDfjAwyKGcPdN/FepH+CyzJzkOtz6QmNoQmmgLOvr1BrFALM0iGuQMs1VEHCJGabZrEZv+/5ltlm/1H2fSzAs5DYjMh8bpt1B5a5LNNqNBiUno60hAT421r+5nGsuozZj1FrgU5tkD02QgjxodUSyzMEQfBVst0gieXVAHb6aB+e2g6gRmJdri928L/fn1Sq2xof7SMELSEmrhd8LcrREmKyxxf7I6QnURE2IX2PnLAT0g/5JquN+JCcc+i5GqZOCCGEEEIIIYQQFyGhiAAAIABJREFUQkh/QFV9hBBCeqWEEH7Rz4q932NK5tzWn0/VncCvuxdytzP6N0JjaELDaenToC2sFo6sEzhTC5gVVcjtlxBCSOdpVDpkRuZjRfEPkm32VmzBJ6v+yu1LTjH9uUoQBGQ6CrB4++eSbQ5U7kJlTTns1hBobbXwj2QHgcV4UGxDCPFcYkgmNpb8Lrm+vOogTpw+BpvB7rJu/YFl+NuSh1HXeNrNli1EiPi/JY9Co9Ihy+H+2nfN/iXMMSoVKgyUUUwHACqFCuPTZmF82izUN9UBogi1Sov6xlp8u/lf+HbzB27HazeGYFzaJRiROAV6jUnWvs4F6RFDcMmgW/GvlS93uq/YwFTcMvpp2PvAjOsKQQGHPbFXBa74GQNxz4RXUHqiGPuObkdtYw0amxvQ0FQPpUKJcL9YpIYNhkal7ZHx5cWO/X/27jw8rrO8G/99tMu7ZcuyZUle5H3fE9tx4hCyb4SQBdKWshZa1tKWpbwFWkpL+7Zv27fQ9u1+taVQmlLaAv2xlS2FAIFQQhKyEGdzNjuxkzheIs35/WGS4Fgzc0bSaLbP57pyXfGc5zxzS2fOc2ZGc38n/vOmj5S0T3NTS2xdeGaZKqpeC2Ytj55pffHQ4/eVtN+q3q0lhzpMhOXzNsX37vvvEbe1TxmO/k3744Eb58WRoyeGByRNafStPxj5Pie8en7h4J5G0DW5J15zxnvi9/6/txQcd8fD+b5M/jlJhmb5UhQLMomIuPORH+S99kdEPHCwcJDJ3OkDJdcVEbFg9vK4ausb4h+u/z8l7bdxYFf0TOsf1X1WyrTOrljfvyO+e89XR7V/U9IcF677mXGuqnr0dy2Ju/bdfMJt03sPx8N3FH6u94nPfz5O3bAhPnvddQXHNbfmRgxGWdu3PXONS+asjV85v3gQEeNrzrS+aGvpiGNDz4WXdE4fipb24Rg6OrpwoK6Bp064pmUNj9q55IK49oY/i7RAw9NXbvuPOGf11Xmba/bsv7XgfcyaPLekMPX5MxZF99TeEQPfn3HjvV+Nq7a9oehc9x+4q2htABXypYh43Qi3d0TE9oj48jjcR74XvF9JCy38ZZSm6XCSJF+NiJFSRV8wTnezMyLyvTnxpbFOniRJd0R8ISLyvWmzLyLOStO0eNIX1ACBCFBdspyTAogaVM5xrza5EC4DAAAAAPVs/L6qFQDG0UDX0qLf8PeV2/79hD8sf/GWf4mnh48W3Gdax8xIkoje1Y/nHTNj/okhJhERmwZOz1Y4AGO2dVHxz+EWCjqJOB6I0ujfDl/Mhv7Tio658cff3LtnX+Fmm67Jc2JaZ9e41AWMbFlP8aC/2x/63km3Xf+jz8UffO6XCoaYPGM4HY4PffFd8YO93zpp2+FjT8bNe/N9Ce5xq3q3xqRRhIu0t3REe2tnNCVN0dk2OS7b9Or43SuujUs3vioWd6+O2VPmxeYFu+N1u389fufKa+O8NS8VYjKCc9e8NHYuuWBMc5y18iXxrgv/tCZCTKpZkiQxf+bi2Ln0gnjhqivi/LXXxKUbXxkXrX95bBzYVbEQk4iIRbNXxpypfSXts75vR0xun1amiqpXkiRxyuKzS97vgrXXlKGasVves6Hg9mlzjsUv/sKlccr69dHW2hqTOjpi9rzmWHb6vuicNjTiPn0zB2PGpNnlKLfmrOvbnun5dTGnL7141MEgI1k4a3k0J4Wb/e98+KaC2x8sFmQyhlCRs1dflTkELeL4+3rXnPqLo76/Srp625tGHXJ05ooXRffU3nGuqHr0zxw86bZJ04eic9rTBff79k03xR/93d/F00Mjr1HPmNl3+IT3eZ+xtu/Ukupk4jUlTSc9PpIkYtqcwn8DyCtJTwppzfreUdfkOUXH3vfYHQXDSvbsK9ynvWD28ky1PCNJkqLXnr0H9mQKZbv30dsLbp83jtcmgBJ9ISJvJ/KYEwCTJFkTEQvybP7sWOcfo8/luX1hkiSrxmH+fL+/XBz/vY9akiRdEfH5iMhX56MR8cI0TX8wlvuBWpNEnpRYYPxlyKoQQNSgckIzqo1QIQAAAACob4JMAKhKzU0tsabIt/o+/MR98cMHb4yIiKeHj8UXbvl40Xnfdu4fxJaFu2Naz9Ho33Agmpqf+wNl0pTG3BWPnxRi0t+1ZFybSAAobF3fjmhrHluD77q+7dHW0jFOFdWnVb1biv6ev3tvtiCTBbNKa7YBSrdo9qpoaWotOOa25wWZ7D2wJ/7iq+8v6cOYTw8fiz/83C/HnY+c2Edw3R2fiaFc4WbSzQvOyHw/xUzr7IoXb3ptvOeSv4rfu+pf400v/GBsHzw3Wppaxu0+6k2SJPGzO98Rg92rS9535qTueMMLPhA/s+OXR91kTW1IkiROHSwtnGPn0rEF5NSyUxaV9rvaPnhuLJ+7sUzVjM3C2SuKPvd7qvm++LP3vS+u+8hH4tN/9ccxf8t90TE1f0CA4MATvfSUN0fzGK5Tbc3tcdmm14xjRccDHgdm5fsC9OMKBZk8PXws9j35QMH9503P1/dZXJIk8epd/yumd84qOnZ177Z476V/U7OBHnOnD8TP7nxHyY1rA13L4uptbypTVdWhv2vJiLd3DRQP4vvkF4r32M5eeOik2+ZOH6jZx1Kj6e9aetJtU3tGF2Qybc7RaO147u8BzU0tsWLepsz771p6UdExX73tP0a8/enhY3H/Y3cW3HfhKN5b2TBQPETrez8Oqc1naPjp2HtgT8Ex/bNOPg4AEyFN030R8dU8m69OkpHiykqSL4kyjYhPjHHusSp0/2NK0EySpDkirsqz+Utpmj46hrmnx/EQmHV5hhyMiHPSND05kRlqmCZsqC5CSsjPY6PaOF8BAAAAoL4JMgGgap2W5YPBt/97RER8/uaPx8HDhT9TtWLeplg4e0W87JS3RntLe3T1H47V5zwUg9v3x+Lt+2PV2Q9Fz9JDkTyvn+Cyja8d9c8AQOnaWztjy6IXjGmOzQt2j08xdaytpSNWFwkNu2Xvt+PJIweLN9vMXjGepQEjaGtpj0XdKwuOue2hG0/49ye+8+dxbOhIyfd1dOhw/PEX3hGPH34sIiIOHX08PvGdPy+4TxJJbFpwesn3xfhqa2mPN571weiZ1pdpfN/MwXjN6b8Wv3vlv8TWRWeVuTqqxTmrr44p7dMzjV0yZ11DP6/q6xqM+TMWZxo72L06Xnnau8pc0ei1NLfG4Jw1Bcfc9uOw2NbW1rh577eLzlnsuWSjmTt9IM5edeWo9z93zcti5uTucazouGLH/Uf7bo5cbnjEbQ8/fl+kaeFvKR1r+O+0zpnx+jN/I1rzBO30TOuPt579e/HL5/1RzJoyd0z3VWmnLb0wXrnrVzOHmSzr2RDvuOBDdR/S2ZcnyGTG/MORNI2tkWFq95Fon3Ly43vt/FPHNC8TZ2CkIJPuo5EkpT82Zi04MRxnac+66GidlHn/jQO7YnLbtIJjvnHnZ+PY0MlBK/c9emcMpyOvtc8YzXsrK+ZuKvozPBNSm8/eA3fFcC5/cFnEyMcBYAL9XZ7b+yPistFOmiRJZ0S8Os/mr6Rpes9o5x4PaZreFRHX5dn8miRJxvIk8bKIyPfmUb7fd1FJkkyNiP+MiM15hjwREeemaXrDaO8DAMaLAKIGlSv8XicTz7kIAAAAAPVNkAkAVWtd3/ai38j6zbu+EA8/fn/8241/VXS+89a8LCIiZk2ZG1dufUNERDS1REyZfSymzj4WLW0n/mGss3VyvGLnO2PzwvH7ZnkAsrl0wyujpal1VPs2N7XE+v6d41xRfdo4UDh0YCj3dPznTf9YvNlmliATmAjLejYU3H73/tviyaMHI+J4M9q37ir+DfX5PHro4fjTL/1a5HLD8a/f/Ytn581nSc/aos/dmRgzJ3fHey/929gxeN5JjZYtTa3RNbknTll8dvzSuX8Y77/sH+K0pRdGa3NbhaqlEqZ2zIjXnvGeoo24q3u3xZtf+MFInp/22WBOWXx20TGzp8yLN5/9u1UfNrBsbuHryP0HfhRPHjm+3v9g7zcLjm1pao3lczeOW2314tKNr4qpHTNL3m9qx4y4cN1PlaGiiCVz1hbcfuTpp+L+A3eNuO3Bg/cWnX/u9AWjqusnrZy3OX75vD88oYm/e2pvvPSUt8QHXvyPsWHgtLpZi05fdnG8ate7i4aZbF6wO375vD+Mye2F1+p6MLVjRsyYNPuk21va0pg+r/RQvp80e9FTI96+tk+QSa3on3VygEZzSxqTZx0raZ6WjuGY2n1iwMia+aeUNEdbS3ucOnhOwTGHjj0e37/vGyfdvmf/rUXnXzCK91ZamluLBvP88IHvxOFjT+bdfs+jdxS9n/48gUMAE+SjEfFYnm3vS5KkeZTzviUiTn4SctyfjHLO8fbhPLd3x/H6S5YkSUtEvDfP5v0R8U+jnHdSRPxHROS7MB2KiAvSNL1+NPNDtUsjQxN2fbyshZqQ5ZzMdN5Sf3KOe7XJFQnSBgAAAABqW0ulCwCAfJqbWmLnkgvi09/P/8VPx4aOxLv+5ep4erjwB5d7pvWf0NR+9uor46ljT8Qnv/uXJzRnT2qbEqvnnxLr+rbH5gW7Y3L71LH/IACUbO70gbh046vi2hv+tOR9tw+ea/3OKEvgy79/76+LjhnNtwYDpVvWsz4+VWB7mubiK7f9e1yw9qfi3278mzF/CPMHe78ZH/6vd8cNd3+56Njtg+eN6b4YX5PapsTP7X5fpGkajx95NJqbWqKjZVK0NI8uJIz6s75/Z3zg8o/Gf9/x6Xjw8XsjTdOY0j49prRPiykdM2JZz/qYO32gboIDxmL74Lnxye/+Rd5gt87WyfHWc36/JsKclhcJxIqIuO2hG2PjwOlx0/2Fg0yW9qyL9ioPbqmESW1T4iWbXxd/fd1vlbTfpRteFZ1tU8pS02D3mqJj7nz4phGb1B88eHfB/dqa22Pm5O5R1/aTls/dGO+79G/jwFP7Yzj3dHRN7qnbNWjXsosiIuIvv/r+EZ+vnbnisviZ7b8cTU2j7cmtPX0zB+PAU/tOur2r/6k4cH/nqOZs6xyKqXOOnnR7a3NbrJi7aVRzMvH6Zw6OePu0OUfjyX3tmeeZNfBUJM/7eo9Sg0wijp+/X7jlnwuO+c49Xz4pHP3u/T8suM+MSbNjxqTRPZfYMLArvrXni3m3D6fD8f37r49ti84acfu9j95ecP7J7dNi5qQ5o6oNYDykafpkkiQfioh3j7B5dUS8MyLeX8qcSZIsj4hfzbP5zogovNiPPOd7I+I9eTa/Ik3Tvyl1zjgeKvKbEbFwhG3vTpLkE2maFr7InOwdcfz3NpI/StN05CS4ApIkaY+If42IfMnpT0XEhWmafq3UuaFWpKnGeKg1zluoDkKFAAAAAKC+CTIBoKrtWnZRwSCTiCgaYhIRcf7al0XT8z6pfOnGV8XuFS+K7917XTQ3tUb31N4Y7F4dzU0ujwDV4IK1PxXX/+jzcd9jxb8Z9hmT2qbEFVt+oYxV1ZcZk2bF4u7V8aNHfjCGOWaP+O3ZwPhb2rMukkgKfqDrCzf/c2zoPy2+8aPPjst9FmqIe8bsKfNi19ILx+X+GF9JktREuAKVMWPSrLhg3U9XuoyqN2fa/Dh3zUvj09//+5O2NSfN8Qsv+ED0zVxcgcpKt2TO2mhOmvOGskRE/PDBG6N76vw48NQjBecaTfN3ozh92cXx5dv+LfNz7DlT++LMFZeVrZ7uqb0xtWNmPHEk35fYR9z5yE2xe8WLTrr9wcfvKTj33OkDJ73fNlajbeSvNbuWXRSzp8yNv77ut+Ohx++NiIipHTPiyq2/ELuWXly3IS759HctiZvuv/6k26fMPhZtk4bi2FOlv187a+FTMdKvcbB7TbS3ji4chYnX2TYluqf2xiNP7D3h9um9h+OBW6dGmit+rrR0DEf34kMn3DalfXosmLW85HoWzloRfTOXFHyv6rv3fDWGc0Mn/J1hz75bi847Wuv6thd9nXjjPV/LG2RyT5Egk4GupQ23JgFV6X9HxGsiomeEbe9NkuTmNE3/JctESZLMieOhG5PzDHl7mhZ40TSB0jQdSpLknRHxjyNsnhwRn0yS5PQ0TR/OMl+SJC+OiPfm2bw3Iv5PqTUmSdIaER+PiLPzDDkSEZekaVo8KRkAxkmWkBLhCY0pTXOVLoHnESoEAAAAAPVtfD9hCgDjrHfGwljas25Mc8ybviB2LbtkxG3TO2fF6csuiZ1Lzo9lPeuFmABUkZbm1njlrndFkrExrq2lI956zu83TOPbeNnQf9qY9h9N4w8wOpPbp8XyeRsLjtn35APxG//+6qIfxNu68AVx9qorx6Wuq7e9MdpaOsZlLoBqdPmW18elG18VTUnzs7fNnjIv3nXhn8XavlMrWFlp2ls7Y8Hswo3SP3zwxkxhWKvnbxuvsupOU1NzvPmFvxs90/oyjX/pKW+OlubWstWTJEkMzllTcMwdD9804u0PHLy74H490wdGXRcRK3u3xAdf8vH4/as+Gb9zxbXxRy/9dJy+7JKGDAzon7lkxNuTJKKr/3DJ8yVNaXQNPDXitmLnA9Wnv2vpSbe1deaie/DJovtOmnEsluzYH82tJzbFrJ6/bVRBTEmSxCmLX1hwzKGjj8dtD9747L+HckNx76OFQ3oXzB79eyvTOmfG4Jy1Bcf8z33/HbncyT35aZrGvUWCTEb6/QNMtDRND0bE2/Jsbo6IjyVJ8itJ8hMv2kaQJMkpEfH1iMj3wugzaZpeO/pKx1+aph+NiM/l2bw8Ir7+458rryRJmpMk+ZWI+Fgc/32N5K1pmj5RSm0//n3/fURcnGfI0xHx0oi4LkmSjnH+r62UWqHcBCJA7RGe0KAc96rjXAQAAACA+ibIBICqd/qyfJ99yubqbW+KFgElADVpsHt1nLPqqqLjWppa401nfTCW9ayfgKrqy9ZFLxjT/guLNMMC4+uslS8pOuapY8V7Di7d+Kp42alvjQ0Du8ZUz4q5m2LLwrGtIwDVrqWpJV686bXx4Z/6XLz7oj+P37r8o/G/r/xELOkp3DRcjYo9X96z/9b4r1s/UXDMlPbpwuyKmDFpVvzmi/8xfnbn22NV79ZobR65x+6KLT8fmxacXvZ6lnQXDm7Ye+CuOHT05OcPDx68t+B+8wSZjFmSJDFrytzomdYXTU0F+27rWqGQpZn9T0WU2BQ4c/7haGkbeZ8lgkxqTn/XyEE3c5c/GfNWPR6t7c+FOHbPnBnbNq6I3tUHY9npj8TSXfujffLJAR5r548+iGzTgjOKjrnh7i8/+/97H/tRDOWeLjh+4RivqxsHCofUPnHkQNzxyMmhVQee2hdPHDlQcN8BQSZAlUjT9B8i4m/zbG6JiA9GxA+SJHlbkiSbkiTpSpJkapIki5MkuSpJkn+N4yEmi/PMsTcifnbcCx8fPxMRD+bZtjiOh5l8IkmSK5MkWfTjn7srSZLNSZL8UkTcHMd/P/n+YP4XaZr+0yjq6o+IQknJrRHxiYg4XIb/iidwAkABAogaVM5xrza5KPzlHAAAAABAbdPVDUDV27rwrPj7r/9+HB0q/ds3V/VujfX9O8tQFQAT5fLNPxc33P2l2PfkAyNub0qa4/Vnvj/W9o2+CaWR9c5YGOv6tsf/3Pf1Ue2/sX9sIQhAaTYvOCO6JvfEo4ceGvUcmxac8Wwz4GtP/7V4zydfHo88sbfkeZKkKV526lsjSZJR1wJQSzrbJsfSnnWVLmNMls/dGP9500fybk/TXBw6+njBOTYMnBZNiYz0Ylqb2+LMFS+OM1e8OI4OHYnbHrwxbn3wO/HkkYPR1tIepy+7JG9z/ngbzBDccNe+m2PN/Oe+yP3Q0cfjiSOPFdxn7jRBJoyP3ukLoq2lI44NHTlpW1tnLqZ2H40nHunIPN+shYfybstyPlBd8gVpJEnEnMFD0b34ULx195/Egu7BmDltWvzTt/44Pv39pwrOuXr+tlHXM3/GouiZ1hcPPX5f3jHfufsrcc2pvxhJksSe/bcWnXOsIbEb+k+Lj3/7wwXHXP+jz50UaHbPo7cXnVuQCVBlXh8RAxFxZp7tyyPif49i3oMRcUmapg+PtrByStP0wSRJLo2Iz0XEtBGGJBHxoh//V6ovRMQbx1AeEBFpqjEeqomQEvJKhWZUG9dQAAAAAKhvPm0MQNXrbJsc2xadVfJ+SSTx0m1v0lgJUOPaWzvj51/wm9HZOvmkbU1Jc7x617tjy8LdE19YHblw3ctHtd+yng1jbrYBStPc1BIvXPmSMc1xyYZXPPv/k9unxRte8FvR2txW8jy7l18aC2YtG1MtAEys5zcwj8bOJReMQyWNpb2lI9b2nRpXbPn5eMVp74xrTv3FCQsxiYhYNHtlJFH4/bE7H77phH8/ePCeovPOnbFgTHXBM5qammOgK//zyrkrnoisb/HOmH84Js0YGnFb99TemN45azQlUkH9RYI0kiTiWNOj0TV9eiRJEjfdf33B8fNnLI6uyXNGXU+SJLF5we6CY/YfejDu3v/DiIjYs++HBcdO7ZgZMyeNvp6IiPkzF8fsKfMKjvnGnZ+NoeGnT7jt3iJBJs1Jc/TOXDSm2gDGU5qmhyPi4oj4z3Gc9qGIODdN0xvGcc5xl6bpNyPivIgYz7CVT8XxAJeT0+SAkmQJTfC5FaguwhMalONedRrhXMzlBOgAAAAA0LgEmQBQE05fdvEo9rkkBjRWAtSFwe7V8fYLPhTr+rZHc9IcLU2tMdi9On7t4r+MnUs1Uo7V8rkbYsmctSXvd9XWN/jgJVTAGSsujbbm9lHtu75vRyyavfKE2xbOXhHXnPqLJc0zqW1KvHjTz42qBgAqZ0rH9Jg/Y/Go9++aPCdWzNs0jhUxETrbJsf8mYMFxzw/yOSBLEEm0/rHVBf8pEUFQjInzRiKxZuORkd74efAM+emMX/NwbzbB7vXjLo+Kqd7am90tE4qOOaZQI4DT+2Pe4qEc6yZf8qYa9q04IyiY75z95cjIp4NNMln4azlY35vJUmS2LTg9IJjnjx6ML5373+fcFux39W8GQtHFXoJUE5pmh6KiAsj4j0RcXSM030+IjanaVo4BatKpGn69YjYHBFfHONURyPif8XxEJOnxlwYAFSZLOFCWcZQhwRKVJ2GCDJJPe4AAAAAaFwtlS4AALJY2rM+BrqWxT2P3pZpfHtLZ7x4s8ZKgHqyaPbKeNu5fxBHh45Ea1NrNDU1V7qkupEkSVy0/uXxB5/7pcz7bF6wO5b0lB5+AozdlPbpsWPJ+fGlH/5ryftesvGVI96+e/mL4o6Hvx9fu/1TmeZ58ebXxbTOmSXfPwCVt3zuxrj/wI9Gte/2wfOiKZGPXosG56yO+x67I+/2Ox65KXJp7tnj+2CRIJOpHTNjcvu0ca2RxrawQJBJRMSU3kfjz6/5nfjh7Xvjrvvui1yaRlOSRJIkMX3q1Fg40B1/9/23R6E8iME5gkxqUVPSFH0zB+OOh7+fd8wzgRw/2PvNovOt6Rt7kMngnDUxvbMrDh5+NO+YG+7+cly68VVxz/7Cf9Mo9tjPaseS8+OzP/hYwTHX3fHp2LzwuRCWe4sEmfR3LR2X2gDGW5qmuYj49SRJPhIR746IqyOilNTfb0bEB9M0/Zdy1FdOaZreFxFnJUlyeUS8PSK2lrD70Yj4aET8Rpqmd5ajPmhUWZuwc7lcNDV5XwWqQSOEJzACx73q5KL+Qz4EmQAAAADQyASZAFATkiSJl+/4lfjtz/xCPD1c/Mu1XrTp1TFj0qwJqAyAidbe0lHpEurS+v6dMX/G4kxNrUnSFC/Z8voJqArI5+zVV5UcZLK6d1ssmTNyAFGSJPHK094VHa2T4vM3f7zgPGeuuCxeuPIlJd03ANVj2dz18cVbrx3VvjuWnD/O1TBRlsxZE1/+4Sfzbj909PG4d//tsWD28oiIeODgXQXnmzd9YFzrg4Wzioc5HEkejpece+6I2769578iuanw/oJMald/19KCQSbPBHLcdN83Cs7T2twWy+duHHM9TUlTbBw4veBrsvseuzO+d+91cazI3zMWzFo+5noijp9DvTMWxd4D+dfvG+/9Wjx55GBM6Zgex4aOxANFQqsGupaMS20A5ZKm6R0R8bNJkrwtIi6IiBdExOqIWBgR0yKiOSIORcRDEXFLRHw9Ij6dpmn+i8roa3lvRLx3vOctcH/XRsS1SZKsjYgLI+LUiFgZET0RMTkihiPi8YjYExE3RcQXI+IzaZruH8ca9kREgRg54PlyaS6aQpAJlF0aRa9QaQi0gGrQCKFCgkwAAAAAaGSCTACoGUt61savXvhn8U/f+uO45cHvRJrnjzynL7skzl9zzQRXBwC1rSlpigvX/XT8v6+8r+jY05ddHL0zFpa/KCCvvpmLY3XvtkzfOB4R0Zw0x1Xb3lh4TFNL/PT2X4pzVl8dP7j/m/HooYfiqWNPxuFjT8ax4SMxc9Kc2LzgjFjZu2U8fgQAKmT53A2j2m/BrOXRN3PxOFfDRBnsLh7gcOO918WC2csjl+bihw9+r+DYuYJMGGfzZiyItub2gqEPd+27NbYuOmvEbXc+XDjFpLW5LRZ0LRtTjVTOQNfSgtsfPfRw7D1wV9HXR8t6NoxbQO6mBWcUDZf8ky/9WtF5Fs4uHuKTRZIkcdqSC+Kfvv2hvGOGc0PxjR99Nl646oq4/7G78v6N5Rn9RX7vANXix+Ecf/fj/xrKj0NZxj2YBShN1kAEjcwwMbKck40QnsAIco57tWmEczGXc/0HAAAAoHEJMgGgpizqXhlvv+BDcfjYk/HAwXvigQN74oGDd8fBw49GR+uk2LrwzFg2yoYcAGh0pwyeE9fe8Gex/9CDece0NbfHiza+egKrAvI5e/WVmYJMOlsnx8/tfl8smJWtcbNnWl/0TOsba3kAVKmuyT14+3U2AAAgAElEQVQxb/qCeODg3SXtt2PJ+WWqiInQO2NRzJg0Ow48tS/vmP+577/j0o2vjPseuzOeOPJYwfn6Zy4Z7xJpcM1NLTEwa1nc8XD+Ptw9+27Nu+2OIkEmC2Ytj5bm1lHXR2UVCzKJiPjYtz4UBw8/WnDMmvnbxqukWNW7JTpaJ8WRp5/KO+bY0JGCc0xumxazp8wbt5q2LzkvPv7tDxds2vva7Z+OF666Iu559Pai8w3MEmQCADCeBJlA9WiE8AROVizQk4mXNQyslg3nhitdAgAAAABUTFOlCwCA0ehsmxKLu1fFzqUXxEu2vD5etetX45pT3yrEBADGoKWpJc5fe03BMeesuTq6Js+ZoIqAQtb374xFs1cWHLNpwRnxgcs/GhsHdk1QVQDUgrNWXVHS+CRpilMXn1OmapgISZLEur7tBcfc+fBN8cSRA3Hz3m8XnW9l75bxKg2etXD2ioLb9+y/dcRGo6HcUOzZd0vBfQe714ypNiprwezl0dE6qeCYG+/5atF51sw/ZbxKitbmtljft2NMcyyduz6SJBmniiK6Js+JVb1bC465a9/NsffAXXFvkSCT6Z1dMb1z1rjVBgBQz7IGIgzlhspcCQAFCbCpOlmuobUePJQLAToAAAAANC5BJgAAADzrzJUvjmU9IweDLZi1PC5e/7MTWxCQV1PSFK/b/esxuW3aSdtmTJodbzzrt+PNL/wd4UMAnOSslZfH1kVnZR6/Zv4pMWOSZuZat75/Z8HtaaTx/fu+ETff/82C46Z1zIy+mYPjWRpExPHXnIUcOvp47HvygZNuv/fR2+PY8NGC+y7pWTum2qis1ua22Lxg95jmmN7ZFX1dS8anoB/btOCMMe2/a+mF41TJc3YuvaDomOvu+Ezc++gdBcf0dy0dr5IAAPixNFfbjdhQK9LIEIyQYQx1yDpcdXJp/Yd8NMLPCAAAAAD5CDIBAADgWS1NLfGGsz4Qpyw+O5J47luBN/SfFm89+/eKfgMyMLHmTh+I37nin+P8tdfE6t5tsWLepvipU98Wv3X5x2LLwjMrXR4AVeqZMKysDdg7l5xf5oqYCKt7t0Zz0lxwzHfu/nLc+uB3C45Z2bslkiQpOAZGY+HsFUXH3L3/hyfddufDNxXdb7B7zahqonqM9Vq0undbNCXj+6fx9f07oqWpdVT7DnQtG3MQyki2LNhd9L2b627/dPxo380FxwwIMgEAyCxrIEIuNDJDtRBk0qAESlSdRjgXczmPOwAAAAAaV0ulCwAAAKC6TO+cFT9/5vvjqq1vjCePHIhJ7VOje2pvpcsC8pjSMT2u3vamSpcBQI1paWqJXzjzN+P/fvGdceM9X807rqN1UmwaOH0CK6NcOtumxLK5G+KWB27IO+Zbe75YdJ7VvdvGsyx41vwZi6K1uT2eHj6ad8yefbeeFNhXLMhkxqTu6Jo8Z1xqpHJWztscMyZ1x4GnHhnV/mv6Th3nio6vq7uWXRT/desnSt73JVteN+7BKhER7a2dsWXhmfG12z+Vd8xjGX6H/YJMAADGXU4DPVSNNK3/8ARG4LhXnUY4FwWZAQAAANDIxv/TUQAAANSFWVN6YsHs5UJMAADqVEtza7zhBR+I9X078o65bNNro721cwKropzW9+8c8xyrereMQyVwsuamlhjoWlJwzJ59t550252PFA4yWTJndSRJMqbaqLympubYPnjOqPcvVwjTZZteE9M7u0raZ8mcdbGuwLV3rE5bcsGY5+gvci4CAPCcrE3YuZxGZpgIWc7JNOo/PKGRpFnX15zjXm2ynIu1fr6mHncAAAAANDBBJgAAAAAA0KBam9viDWf9dpy18vKTtp235mVx9qorKlAV5bK+f2yN83Om9gk6pKwWzl5RcPue/bee0JD0+OHH4qHH7yu4z2D3mnGpjcrbMXjeqPYb6FoaMybNGudqjpveOSt+7oz3RRLZw3JesuV1ZQ3XWT5vU8yaPHfU+7c0tca8GQvHryAAACIiIheCTKBaZA0gokYIiqpZjXAuuv4DAAAA0MhaKl0AAAAAAABQOW0t7fEzO34lXrDi8rjj4e9HRMSyuRuiVxNz3Zk3fWF0T+2NR57YO6r9V/VuGeeK4ETFgkyeOHIgHj30UMyacjyk4dYHv1N0zsE5gkzqxcCsZdE3c0nc99gdJe23ddFZZarouNXzt8VF618e//69vyk+tndbrJy3uaz1NCVNce6aq+Mj1//BqPbfOLArWpp8jAAAYLylufpv1gaoiOHhbONSgRLVpiGCTDzuAAAAAGhgTZUuAAAAAAAAqLy+rsHYveJFsXvFi4SY1KkkSWJd345R77+qd+s4VgMnWzircJBJRMRd+2599v9v3vutgmObk+ZYOHvlmOuieuxYcl5J46d2zIyzV11Zpmqec9mm18TSnnVFx12+5XVlryUi4qxVV0TfzCWj2ve8NS8b52oAAOpbGtmasHOhkRkmQpZzshHCExpKLtv66rhXn6zX0FqWy/j4BAAAAIB6JMgEAAAAAACgQazv3znqfVf1bhnHSuBkvTMXR2tzW8Exe/bd8uz/37z32wXHDs5ZE+0tHeNSG9Vh++A5kUSSaWxz0hyv3/3r0dk2ucxVRTQ3tcTrd78/JrdPyztmy8LdMdi9uuy1RES0NLXEK3e9K/Pv6hnnrXlZLOlZW6aqAAAaWy7VyAxQFlmDIgSZVJ0s4TK1HnZS6/UDAAAAwFgIMgEAAAAAAGgQK+dtirbm9pL3G+haFlM7ZpShInhOS1NL9M1cUnDMzXu/FRER+598KB56/N6CY1f1bh232qgOXZN7YmXGUKWf2fn2WD1/W5kres6sKT3xxrN+OzpaJ520rXvq/HjFzndNWC0REYPdq+Ps1VdmHr9g1vJ4yZbXl7EiAID6lLVBOZe10R4oO8ECdSbr+modrjq5qP9jMpQbqnQJAAAAAFAxgkwAAAAAAAAaRFtLR+YQgJ+0ahT7wGgsmr2y4PYfPXJzHDy8P2554NtF5/K4rU87Bs8rOuaCtT8du5dfOgHVnGjlvM3xqxf9v9i55ILomjwnemcsivPWvCzec8lfxZSO6RNez+WbXxezJs8tOq6tuT1et/vXo7W5bQKqAgCoMxnzEAQnQPVIU+djPUmHhzMOdNyrTSOci7m0/sNaAAAAACCflkoXAAAAAAAAwMRZ37cjvnfvdSXts3r+tjJVAydaPX9rfPHWa/NuTyON/7n363FzkSCTtpaOGOxeM97lUQW2LX5hfPLGv4xHntg74vYtC8+MK7b+/ARX9ZyBrqXx2jPeU7H7/0kdrZPi5TvfHr//2bcWHHfNqb8YvTMWTkxRAAB1JmtAiUZmmBhZzknBQnUm6/raAKEZtSZTkEmNH7Y0V+M/AAAAAACMQVOlCwAAAAAAAGDibFl0ZrS1dGQe39zUEst7NpSxInjO6t5t0dxU+LsYbrz3a3Hz3sJBJst7NkRLc+t4lkaVaG/piFed9qvR0TrppG0b+k+L157x3mhK/Bn8Gev7d8SOJefn3b5l4e44Y/mlE1gRAEBjEmQC1UOQSZ3JGhQhUKLqNMK5mAvXfwAAAAAaV+FPAQIAAAAAAFBXpnfOikvWvyL++YY/yTR+sHtNtLd2lrkqOK6zbXKsmLspfrD3m3nHfHvPfxWdZ2XvlvEsiyqzsndL/OZlH4nP3PQPcc/+22Jqx8xY378zdi27SIjJCF6x853xxOHH4vv3f+OE29f1bY/XnvG+SJKkQpUBANS+rE3YgkxggmQ4JdO0/sMTGsrwULZx1uGqk+VcrPWwE9d/AAAAABqZIBMAAAAAAIAGc9H6l8ek9qnxsW/+3zg6dLjg2DOWXzpBVcFxG/p3FgwyyWKVIJO6N3vqvPjp7b9U6TJqQltLe7zt3D+Im+6/Pm66//pI0zTW9p0aq3u3RlNTc6XLAwBoCGmuthuxoVZkCj1wOtYX62vNqvWQkiwEJwEAAADQyASZAAAAAAAANJgkSeKslZfH1oUviM98/+/j87f8cxwbOnLSuMHu1bFj8NwKVEgjWz9wWvzD9f9n1PtPapsaC7qWjWNFUPuSJIm1fafG2r5TK10KAEBdydqgnItcmSsBaExpmm19FShVfRoh5COX8fEJAAAAAPWoqdIFAAAAAAAAUBnTOmfGVdveGL935SfigrU/FT3T+iMiYnrnrDh71ZXxjgv+JJqamitcJY2mZ1pfzJu+cNT7r5y32eMWAACoKhqZoXqkUf/hCQ0l8/rquFcbQSYAAAAAUN9aKl0AAAAAAAAAlTWtsyuu2vbGuGrbG+PwsUPR2Ta50iXR4Nb374gHDu4Z1b4re7eMbzEAAABj1AjN2lArBJnUmaHhbONyjnu1aYRz0fUfAAAAgEbWVOkCAAAAAAAAqB5CTKgGGwZOG/W+qwWZAAAAEyRrE3YuzZW5EiCrRghPaChZ11frcNVphJAP138AAAAAGpkgEwAAAAAAAKCqLO1ZH5PappS834xJs2Pe9IXjXxAAAMAYaGSGiZElpKQRwhMaSi7j8cw6jgmT6Xyt8eCh4dxwpUsAAAAAgIoRZAIAAAAAAABUlZamllg7/9SS91s5b0skSVKGigAAAE6WtcFacAJUD+djfUmHswZFOO7VphHORUFmAAAAADQyQSYAAAAAAABA1Vk/cFrJ+6zq3VKGSgAAAMZGIzNAmWRdX3P1H5pRa7KGgdWyXLj+AwAAANC4BJkAAAAAAAAAVWdd3/ZIIsk8vq25Pdb37yhjRQAAAM+TsQdbkAlAmeSsr7UqTes/yCQVoAMAAABAAxNkAgAAAAAAAFSdqR0zYnDO2szjz13z0pjeOauMFQEAAJwozZhk0gjN2lArsp631IiMQRHW4erTCOeiIDMAAAAAGpkgEwAAAAAAAKAqnb/2mqJjkqQpLlr/8rh046smoCIAAIDSaWSG6tEI4QkNJTecbZx1uOo0QriM9QYAAACARtZS6QIAAAAAAAAARrJ5wRlx2tIL42u3f+qkbdM6ZsaOJefH6csujvkzF1egOgAAgGxyoYEeqkUjhCc0lFzG9dVxrzqNEPIhyAwAAACARibIBAAAAAAAAKhKSZLEq3f9r1gz/5S44e4vx2OHHoneGQti48Dpsa5/R7Q0+XMnAABQOVmbsNNc/TdrQzVII40kkmKDqCdZ11frcNVphFAhQSYAAAAANDKf7AMAAAAAAACqVpIksX3w3Ng+eG6lSwEAABgVjcxQPbIGEFEb0txwxoGOe7XJci7W+vnaCGEtAAAAAJBPU6ULAAAAAAAAAAAAAKhXw2nGRnug7Go9GIHnyWUMihIoUXUaIeRDkBkAAAAAjUyQCQAAAAAAAAAAAECJsjZha2QGKJNcxjCMBgjNqDWNECo0nMsWZJbLGsgDAAAAADVEkAkAAAAAAAAAAABAmWQNPAHKrxHCExpLxgAIQRFVpxGujVnXG4FnAAAAANQjQSYAAAAAAAAAAAAAZaJBGapI/WcnNJah4UpXwCg1QpBJ1uu/5wkAAAAA1CNBJgAAAAAAAAAAAAAlSjMmIjRCszbUiqznLbUh6/pqHa4+jXAuZn3cCTIBAAAAoB4JMgEAAAAAAAAAAAAoEw3KUD0EWtSZrOur4151GiHIJOv1P5fzPAEAAACA+iPIBAAAAAAAAAAAAKBMGqFZG6AihoazjRNkUnUaIVQoc5BJCDIBAAAAoP4IMgEAAAAAAAAAAAAok6yNzED5CRaqNxmPZwOEZtSaRjgXs/6Maa7+fxcAAAAANB5BJgAAAAAAAAAAAAAlytygrIEeJkQjBCPwPLmMQVHW4arTCNfGXMbHZy4EngEAAABQfwSZAAAAAAAAAAAAAJRJLtWgDNWiEcITGkou4/F03KmArOuN5wkAAAAA1CNBJgAAAAAAAAAAAAClytgXr0EZqkea9cSlJqS54WwDswaeMGGyhHzU+vmai2zX/1zO8wQAAAAA6o8gEwAAAAAAAAAAAIAyqfVGbICqJaCkZjXCtTFrkFnWwBMAAAAAqCWCTAAAAAAAAAAAAABKlLUJO5fToAzVIk3rPzyhoWQMinDcq08jHJOs1/9UIA8AAAAAdUiQCQAAAAAAAAAAAECZNEKzNtSKrAFE1Ijh4WzjrMNVpxHOxazX/1wIPAMAAACg/ggyAQAAAAAAAAAAACgTDcoAZZI1oCS1DlebRggyyXr9HxoeKnMlAAAAADDxBJkAAAAAAAAAAAAAlEmatdEeGJuk0gUw4XJZg0ysw9WmEa6NWX/GRgh1AQAAAKDxCDIBAAAAAAAAAAAAKBMNylA9GiE8oZGkueFsA7MGnjBxGuCQ5NLcuI4DAAAAgFrSUukCAAAAAAAAAAAAAGpN1oCSXE6DMkBZZA4oaYDUjBrTCCFfWYOTBJkA5Jc7cCCGvvvtiKamaN15eiQt2uAAAKrNtd+7Nj783x+OY8PHYmDGQPzuxb8bvdN7K10WUAW8ggMAAAAAAAAAAAAok6yNzED5NUJ4QkPJGgCROfCEidII52LWgBJBJgAjO/iWt8RjH78+ho8db31rnTIUs952dUx+w5srXBkAAM+46C8uilsO3PLsv/c+uDd2/unO+KML/yguXnNxBSsDqkFTpQsAAAAAAAAAAAAAqFe50KAM1UKwUJ1xPGtWpiCTpPx1lFPWsJZU0A7ASR5/5zti3z/c8GyISUTE00+2xIO//k9x5J8/VsHKAAB4xm989jdOCDF5RlNzU7zlU2+Jg4cPVqAqoJoIMgEAAAAAAAAAAAAoE8EJAGUyPJxpmHW4+jTCMcn6Mwo8AzhROjQU+//6K3k2NsX+9/7xxBYEAMCIPnnzJ/NvbI74+I0fn7higKokyAQAAAAAAAAAAACgTHKpBmWoFmnUf3hCI8kchtEAoRm1phGCTIbTbEE7nicAnOjYf34qcsPNebcfeSgifeKJCawIAICRPDb0WMHtH/7GhyeoEqBaCTIBAAAAAAAAAAAAKJNGaNaGapBEUukSmGiCTKhiaS7b487zBIATPfm3Hy06Zuim/5mASgAAGIvHjhUOOgHqnyATAAAAAAAAAAAAgDLJpblKlwBQn4aHs40TFFF10qj/Y5KLbNd/zxMAnicRTgcAAFAPBJkAAAAAAAAAAAAAlEkjNGtDrUgFWtSXrMfTca86jXBtzLreCDIBAAAAoB4JMgEAAAAAAAAAAAAoUdYmbMEJMEGS4kMaITyhoeQEmdSqRrg2Zg0oaYTfBQAAAACNR5AJAAAAAAAAAAAAQJlkbWQGoERZ11dBEdWnAQ5J1uAkzxMAAAAAqEeCTAAAAAAAAAAAAADKJGsjM1B+qUCLupLmBJnUqizXxiSSCaikfLKuN4JMAErnOR0AAED1E2QCAAAAAAAAAAAAUCbDueFKlwBQn3KamGtVI4R8ZQ0o8TwBAAAAgHokyAQAAAAAAAAAAACgTHxbOECZZAyKSAWeVJ1GCDLJev3PRbbHMQAAAADUEkEmAAAAAAAAAAAAAGWSy9hoD5RfI4QnNJRc1vXVca86WQ5JUvYqyiprkImgHYDSJUmNXyQAABpAUusv7IExE2QCAAAAAAAAAAAAUCaCE2BiaGhtQFkDICzDVacRro3D6XCmcQLPAEqXNSwKAACAyhFkAgAAAAAAAAAAAFAmmuygejgf60vm45k18IQJ0wjnYtawlkYIdQEoiWw6AACAuiDIBAAAAAAAAAAAAKBMcmmu0iVA3cvlnGcNKfP6KiiCiZc1rMXzBAAAAADqkSATAAAAAAAAAAAAgDLJ2sgMjN5QbijTuFSgRX0ZzhgAYR2uOo1wLmYNKBFkAgAAAEA9EmQCAAAAAAAAAAAAUKKsTdiCTKD8BAE0qKzra846XG0a4droeQIAAAAAjUyQCQAAAAAAAAAAAECZ5ELAApRbLuc8a0gCIGpW1pCPWpY1oEQQE8AoWDsBAACqniATAAAAAAAAAAAAgDLJ2sgMjF7WwCDnY50ZHs40zHGvTUmSVLqEMcn6uPP4BHi+2l7/AQAAOE6QCQAAAAAAAAAAAECZpKFBGcotzTnPGlH2AAiPj2rTCOEdWQOWcmm2cQAAAABQSwSZAAAAAAAAAAAAAJRJIzRrQ6VlDQwQLFRnsq6vgm6qTtZzMZer3ZCPrNd/6xIAAAAA9UiQCQAAAAAAAAAAAECZ5NLabcKGWuE8a1BZg0wESlEBWYNMrF8AAAAA1CNBJgAAAAAAAAAAAABlkoYGeii3XC5bEIDzsc5kPO6CTKpPI4R8DKfDmcZl/V0A8BNy1k4AAIBqJ8gEAAAAAAAAAAAAoFRJtmEalKH8cpE10KK8dTDBMq+vDnytquUgk0YIawEohyTJ+EILAACAqibIBAAAAAAAAAAAAKBMBJlA+aU551lDynrc5URUnTRjuEwth3xkvf4Pp8NlrgQAAAAAJp4gEwAAAAAAAAAAAIAyyemgh7LLep5lDU+gNqS5jMddoFTVyXpMchmPcTXKHNZSwz8jQMVYOwEAAKqeIBMAAAAAAAAAAACAMtFAD+WXSzWzNiTHve7VchhY1uu/5wkAo2HtBAAAqHaCTAAAAAAAAAAAAADKRIMylF8uly3sINX0Wl8yr6+Oe7XJei6mudo9dlkDlmo5rAWgYjI+9wMAAKByBJkAAAAAAAAAAAAAlIkgEyg/ASUNKmvIhXWYCsgc1uLxCXCiJMOYGg66AgAAaBSCTAAAAAAAAAAAAADKJBe+LRzKLZdmO88EBtSZXMb1VbNz1cl6LtbyNTTrzyiICaB0acbnfgAAAFSOIBMAAAAAAAAAAACAEiWZvipccAJMhKxBJtSXzOurdbjqZA3vqOVzO/PPmDWQB4DnuLYDAABUPUEmAAAAAAAAAAAAAGUiyATKr5bDDhgD62vdq+WQj6zXf88TAEYhZ+0EAACodoJMAAAAAAAAAAAAAMokDU12UG6pZtbGlDXkQlBE1cka3pGL2g0yyRqwVMs/I0DFCLEDAKioWg4eBSaOIBMAAAAAAAAAAACAUiXZhmVt1gZGL2sQgGChOpN1fbUO16xaDinKev33PAHgeZIML7SsnQAAFZU1vBNobIJMAAAAAAAAAAAAAMrEh7qh/JxnDUoTc83KGiqUNaSoGmWt3foFMAo5aycAQCV5LQtkIcgEAAAAAAAAAAAAoEyyNmsDo5dmDLRwPtaZrMdd4AkVkHld8vgEKJ21EwCgogSZAFkIMgEAAAAAAAAAAAAoEw3KUH6aJxpTOpzxuFuHq07Wa2Mtn9uN8DMCVEzOtR0AoJJyOa9lgeIEmQAAAAAAAAAAAACUiQZlKL/M55me1zqT8YA67jWrlhuj0owPvKzjABpGkhQdknqNBQBQUbnwfAwoTpAJAAAAAAAAAAAAQJmkqQZlKLes55nAgDqT9XBah6tOI4R8ZF2XhnPDZa4EoA65tgMAVFSa83wMKE6QCQAAAAAAAAAAAECJkgzfFB5R203YUCtyqW+BbUi5jMdds3PNquVzuxHCWgAqRuMsAEBF5aJ2X68DE0eQCQAAAAAAAAAAAECZpBrooexqOeyAMci6vlqHq07Wa2Mtn9tZf0bfYg0wCjV8fQAAqAe1/HodmDiCTAAAAAAAAAAAAABKkMtl/6C2b6eE8hMY1KCyBkB4eNSsWm6MyhzW4nkCQOk89wMAqKhS3h8HGpcgEwAAAAAAAAAAAIASlNJYLWAByi/rOZlKtKgrWddX63D1aYRzMfO65PEJcKIkKT4ma5gZAABlIZQTyEKQCQAAAAAAAAAAAEAJBJlAddE80aB8+2/dS2u4UT1rWEspzykA+DFrJwBARQ3nhitdAlADBJkAAAAAAAAAAAAAlKCkIJOMjczA6NVy2AFjkDkoyuOj2mQO+ajhkKKsQWaeJwCUTlgkAEBlCeUEshBkAgAAAAAAAAAAAFCCXK6EIBNNdlB2WZsnnI91JuvxdNirT8ZjUsuNUVkDSqxLAKNg7QQAqKhS3h8HGpcgEwAAAAAAAAAAAIAS5KKEIBMd9FB2zrMGlcsaZOLxUW0aIeQja+21HNYCUDEaZwEAKsp7cUAWgkwAAAAAAAAAAAAASpBmbZ6P2m7ChlohCKAxZV5frcM1q5bP7UYIawEoiyTDGGsnAEBF1fLrdWDiCDIBAAAAAAAAAAAAKEEusn9QW4Py/8/e3QddktX1Af+d2QERWMtEWBCEFBjBUlEUNsqL8qaiISYRFCMEg1WaUpGUCZX4SowpiUVKk5gqFRUEFSuoQdGw5QuKgIjyJgjqCsibuwvLzorsCzszu8/tkz9mln2ece4z5zzTfbtPn8+naqp0+u695073+Z3upn/fC9PTPNErQSatKg35aHlul67/zhMAjkDtBACYVcvX68DuCDIBAAAAAAAAAAAAqFDzoHZpszZwdMWBAebjupQ2MdvtzKA4rKUiHA2AswaLOwDAnASZACUEmQAAAAAAAAAAAABMpDRgATg6zROd2pTtd3V4eYrDhxredz18R4DZOPcDAJhVFiwHFBBkAgAAAAAAAAAAAFBhGMob53J4qBumJggA1qnlkKLS9d95AkA9jbMAAPMaot3rdWB3BJkAAAAAAAAAAAAAVKh5UFvAAkyv5bADLkJxfVWHW9Xy3C4d+2bYTDwSgMakVPAiazsAwJxavl4HdkeQCQAAAAAAAAAAAECFml8Az5rsYHLmWZ/yUNg04/BYnNI523IYWOnY1S+AI6i4HgMAYHwtX68DuyPIBAAAAAAAAAAAAKDCEOW/OOmhbphe6a/ACgxYmdL6qg43q+VfeC4OMnF8AtRreH0AAFiDlq/Xgd0RZAIAAAAAAAAAAABQoeZBbcEJMD1BAJ0q3e2Oj8UpXRtrgsOWpvQ7ql8ARzConQAAcyq5P54i7WAkwJIJMgEAAAAAAAAAAACoMAwVQSYalGFyxeFCpuO6lNZX+50Z9BDWAjCFlEoaXi3uAABzcs8bKCHIBAAAAAAAAAAAAKBCaXNy7QX2CaIAACAASURBVGuBoykOMmFdSkOlNNcsT2kGzdDuvitt6tL8BXAEDa8PAABr4F4cUEKQCQAAAAAAAAAAAECFmge1NSjD9EoDgwQLrUzp7rTbm9VyY1RxXXKeAFBN7QQAmFfL1+vA7ggyAQAAAAAAAAAAAKhQFWSigx4mNwyaJ3qkibldPYQPlR6fjmOAI9A4CwAwq82wmXsIQAMEmQAAAAAAAAAAAABUqAoy0aAMkzPPOlUaFNFwGEbveviF5yHW/x0BRufcDwBgVq5lgRKCTAAAAAAAAAAAAAAq5KG8cU4DPUxP80SnSpuYNTs3q+Ugk9KAJUFMAOdI6cKvqbgeAwBgfDX3x4F+CTIBAAAAAAAAAAAAqFATmqBBGaZnnnWqOMhk2mFQrzTkq+W5XRrC0vJ3BJiN2gkAMKuWg0eB3RFkAgAAAAAAAAAAAFCh5kFtDcowvdJQBFamOMjE8cHuFYe1qF8A9aztAACzci0LlBBkAgAAAAAAAAAAAFChJpzEQ90wvc1mU/Q683Fd8mB/rl3Lv/BcHGSiGR+gntoJADCrlq/Xgd0RZAIAAAAAAAAAAABQoeZBbQ91w/SGMM/6VNjErNl5cUrDO1oO+Sgdu/MEgCMY1E4AgDm5lgVKCDIBAAAAAAAAAAAAqFDzoHYubbQHjqzlsAMuQulud3w0q+nGqNKcHecJAAeldMGXOPcDAJiX8zGghCATAAAAAAAAAAAAgAo1D2p7qBum13TYAUc3lO13ZbhdLYd8lI5d/QI4Aos7AMCsXMsCJQSZAAAAAAAAAAAAAFTwoDYsi8CgTtntzeoh5KP0O6pfAEegdgIAzMq1LFBCkAkAAAAAAAAAAABAhZrGag91w/RaDjvgIhTXV3W4VS2voYJMACakdgIAzMq9OKCEIBMAAAAAAAAAAACACjVNx6WNzMDRmWedkmOyei03RpWeK6hfAEcgyAQAYFauZYESgkwAAAAAAAAAAAAAKtQ0VteEngBHY571KZfWYscHMygOMnF8AtRTOwEAZtVy8CiwO4JMAAAAAAAAAAAAACoMURFk4tcpYXKlzRPm48qU7k67fXFK52LLjVHF37HinAKgCyUhJYPFHQBgTkI5gRKCTAAAAAAAAAAAAAAq5IrGOcEJMD3zrFOlTTOaa5rV8twuHbvmL4BzFNRFtRMAYF4tB48CuyPIBAAAAAAAAAAAAKBCzYPamuxgejXhQqyI+tquwl03DO02RpWu/84TAA4qqotqJwDArASZACUEmQAAAAAAAAAAAABUyKUd2GdeDExsCM0TXRIUsXpN77vCoVedUwBwhsZZAIBZbYbN3EMAGiDIBAAAAAAAAAAAAKBCzS9OalCG6TUddsCR2e3tKl0bWw4pKv2O6hfAOUrqotoJADAr17JACUEmAAAAAAAAAAAAABUEmcCy1MxJ1qSwvirDzWq5Mao4yMQBCnBQSVkc1E4AgDm1HDwK7I4gEwAAAAAAAAAAAIAKNY3VGpRheuZZp4qbmB0f7F5xkEnDYS0Akyiqi2onAMCcXMsCJQSZAAAAAAAAAAAAAFQYcvkvTnqoG6ZnnnVKjsnqNR1SVDh09QsAAIDWNH29DuyMIBMAAAAAAAAAAACACjVNxxqUYXo14UKsSGl9VYebNQztzu3Spi7NXwDnKFm3B7UTAGBOLV+vA7sjyAQAAAAAAAAAAACggtAEWBaBQX0q3u8Oj8UpDvloeG6Xjt05BcA5Cupny+sDAMAaOB8DSggyAQAAAAAAAAAAAKhQ2oBd+1rgaDRPdKp4tzs+WjVEuyEfPYS1AEyipCyqnQAAs2r5eh3YHUEmAAAAAAAAAAAAABWGXP6gtiATmJ7miV4V1ldluFkth3yUjt15AsBBRfWz4fUBAGANWr5eB3ZHkAkAAAAAAAAAAABAhZoHtT3UDdMTGNCp0hwTdbhZNcFhS1NabxyfAEegdgIAzKrl63VgdwSZAAAAAAAAAAAAAFSoelBbjx1MTkBJpwb7nfapXwDnKqiLgkwAAGYllBMoIcgEAAAAAAAAAAAAoEJNkIkGZZie5ole2e9r1/LcLh17y98RYBIlZVHtBACYVcn98RRpByMBlkyQCQAAAAAAAAAAAECFmnASQSYwvZpwIVaktLxqdm5Wy3O7dP13ngBwjpJ129oOADAr17JACUEmAAAAAAAAAAAAABWGobyx2kPdMD3zrE+5tInZ4bE4Qj7uUHwcA/RCkAkAwOK5lgVKCDIBAAAAAAAAAAAAqFD1oLZnumFymic6Zb+vXstzu3TsPYS1AIwtD2onAMCchlwe9A30S5AJAAAAAAAAAAAAQIUhyh/U1qAM02s57ICLULrbHR/N6qExSv0COEdRXVQ7AQDm5J43UEKQCQAAAAAAAAAAAECFmqZjDcowvZpwITqkDDer5cao0rG3/B0BJiHHBABg8fLghAy4MEEmAAAAAAAAAAAAABU0HcOyFAcGpWnHwY4VNs2o2cyhtC4JPAM4qKguapwFAJjVJm/mHgLQAEEmAAAAAAAAAAAAABWGYSh/bS5/LXA0ggD6JKBk/Vr+hefS41P9AjhXSV1UOwEA5uSeN1BCkAkAAAAAAAAAAABAhZqmY432MD1BAJ0q3e0Oj2YNsf7GKOcJAEfg3A8AYFauZYESgkwAAAAAAAAAAAAAgGb1EHbAeZQ2MeutaVbLIUWlY9f8BXCOkrI4qJ0AAHNq+Xod2B1BJgAAAAAAAAAAAAAVakITPNQN0zPPOlW82x0frRpyuyFFpQElLX9HgEkUnNc59wMAmJdrWaCEIBMAAAAAAAAAAACACjWNc6WNzMDRaWblUA6PZvWwhqpfAOcoqotqJwDAnFzLAiUEmQAAAAAAAAAAAABU8IuTsCw9hB1wHppmmlU6Z1tujGp57ACLN6ixAABzcs0LlBBkAgAAAAAAAAAAAFCh5kFtD3XD9MyzPhXvdscHC6Z+AZyjpCyqnQAAsxpC0DdwYYJMAAAAAAAAAAAAACoM2YPasCSlczJFmngk7FRhE7Ne53a1vN7mok788tcBdKNk4ba4AwDMSignUEKQCQAAAAAAAAAAAECFmqZjDcowPfOsU3b76vXQGNXDdwSoUlQW1U4AgDm5FweUEGQCAAAAAAAAAAAAUKGm6ViDMkzPPOuU/b56Lc/t0rFr/gI4qKguDtOPAwCA7Vq+Xgd25/jcAwAAAAAAAAAAAABoyZB1zsGSCALgUJprmjU03KleWpfUr3rvvu7d8fxXPz9O7Z2Kz77ss+N7n/C9cfwSrTHQE42zAADzcn8cKOFuDQAAAAAAAAAAAECFmqZjDcowveJm1jTtONit4h5mZbhZPTSq9/Adx/Tslz87rnjvFZGOnSnof3Ltn8TPv+3n41ee9ivxRff7oplHB4yiqC6qnQAAc3LPGyhxbO4BAAAAAAAAAAAAALQkDx7UhiURBACNKQwVarkxqrgutfsVd+7Fb3xxXPG+O0JMbpcvyfGN/+cb45bTt8w0MmBURTkmiicAwJzciwNKHJ97ALBEKaVPj4gnRcRjIuJzIuL+EXFpnLltflNEfCgiroyIP4yIK3LO759pqBctpXRZRDwkIj4vIh4UEZ9x9s+9IuJuEXHXOPO9bzj752MR8ZcR8ZaIeGtEvDHnvLf7kQMAAAAAAAAAAMxjiKH4tR7qhum1HHbARSgOinB8sFzqV7kXvumFkdL5U3D2ju3FK/78FfG0hz1tx6MCRleybguWBACYlXveQAlBJrBPSukLI+L7I+JfRsQlW172aWf/PCQinhoR/zul9KqI+G8559fuZKAXIaX0TyLi0RHxyIh4VETcu/A/vcfZPxERD4uIZ5z9v69NKf1iRLwo5/yuMccKAAAAAAAAAACwRDUPamtQhulpnuiU3b56Lc/t0vXfeUK5a09fe+j2F/zJCwSZQC8aXh8AANagJugb6NexuQcAS5BS+qSU0o9HxJsj4imxPcTkvP95RHxlRLwmpfTSlNKnTDHGEb0uIn4sznzP0hCTw9w7Iv5jRPxFSunHU0qXjvCeAAAAAAAAAAAAizVkD2rDkmie4DB6ndvVw3oryGQ8V9181dxDAAAA6MIwrP96Hbh4gkzoXkrpsoh4bUT8u6gLMDmfp0fEm1JKn3nRA2vPJXHm3/DKlNKj5x4MAAAAAAAAAADAVGqajrMOepicedapwX5fu5ZDPkrHrn4BnKOkLqqdAACzci0LlBBkQtdSSv8wIl4VEV884ts+OCJenVK6/4jv2ZL7RsTvpZS+au6BAAAAAAAAAAAATMGD2rAs5mSf7PX1a3puFw696e8IMAVBJgAAizfEcMHXpEg7GAmwZMfnHgDMJaV0LCJeFhGff8jL3hoRPxcRfxgRV0fEEBH3iYgviYh/ExGP2fLf3T8ifiOl9Iic86nRBj2dmyLijyPizyLiXWf/XBcRN57ddteI+JSIeGBEfGFEfHWc+e7bziQ+KSJenlK6POf8l9MOHQAAAAAAAAAAYLeGfOEHtW+XtdrD5ErnWUoaKFaltLxqdm5WyyEfpXXJeQLAQWU5JmonAMCcnI8BJQSZ0LP/FBFfsWXbLRHxnTnnF59n2w0RcWVEvDil9KSIeElE3OM8r3toRPxoRHznxQ91dEOcCS55RUS8JiLelnPeHPL6j0fEiYh4b0S8KiL+e0rpgXHm+33tlv/mrhHxC2fDTJyVAAAAAAAAAAAAq+GRKFiWmnAh1iTH9t/kY8lKf5W55Beel0qQCcBRFSWZTD8MAAC2cn8cKHFs7gHAHFJK/yginrtl88cj4olbQkwOyDlfERGPjoiPbHnJt6eUHna0UU7m2yPiPjnnR+ecfzTn/JYLhJicV875fTnnJ0fEs2L7naKHRcTXX8RYAQAAAAAAAAAAFqfmQW0PdcP0aubZMLQbjMA5Sne7MsyCOU8AOAKlEwBgViWhnII7AUEm9OqHIuKuW7Z9e8759aVvlHN+V0R8Q8R5I7+PRcTz64c3nZzzi3PO24JXjvJ+PxkRP3zIS751rM8CAAAAAAAAAABYguG8j4sBc6kKMsnm72roh1m9lkM+isfe7lcEmEZJXWx4fQAAWIOWr9eB3RFkQndSSveLiKdt2fw7OedfrH3PnPNrI+KFWzY/IaV0ee17NuZ5EfHBLdsek1K62y4HAwAAAAAAAAAAMKWaB7X98iRMr2aeCTLpkOaa5UllL+uhMcp5AsA5Smp/B+sDAMCSub8GlBBkQo/+bUTcacu2H7iI9/2hiLhty7bvuIj3Xbyc8+mIeNmWzXeKiM/d4XAAAAAAAAAAAAAmpekYlqUm7ECjxXoU73clu1mCTAA6VFIWO1gfAACWzLUsUEKQCT16+pa/f0PO+S1HfdOc84ci4uVbNj8lpfTJR33vRrzmkG2fsatBAAAAAAAAAAAATK2msbqHJmyYm+YJDuPoaNcQ7QYPldYl9QvgHCXXT0onAMCs3PMGSggyoSsppYdGxAO2bP6lET5i23tcGhFfPsL7L9mHD9m29hAXAAAAAAAAAACgI0Nut7Ea1qimeWIYzN/V0DOzel00RnXwFQHG1sX6AACwYEI5gRKCTOjNVx6y7YoR3v/3I+L0lm1PHOH9l+zWQ7bdsLNRAAAAAAAAAAAATKzmQW0PdcP0aubZEIJMuqMMN6vlRvXSuuQ8AeAo1E4AgDmVXK+73gUEmdCbx275+/flnD94sW+ecz4ZEX+8ZfPjLvb9F+5eh2y7ZmejAAAAAAAAAAAAmFjLjdWwRjVzMg/m72oU70r7nOVyTgFwUFFdVDoBAGblWhYoIciE3jxsy9+/ZcTPePOWv//slNJdR/ycpXnElr+/KSLescuBAAAAAAAAAAAATKkqNMFD3TC5ml94HWKYcCTsUnF5VYYXJ6VU9Lqmf7254aEDzKqkfrrGAgCYVdPX68DOCDKhGyml+0TEZVs2/9mIH7XtvY5FxOeP+DmLkc78rwlP3bL5ipzzZpfjAQAAAAAAAAAAmFJNEIKHumF6NYFBQxZksh7q69q1HAZWuv47TwA4gobXBwCANWj5eh3YHUEm9ORBh2x794if89eHbPusET9nSb45Ih66Zdv/2OVAAAAAAAAAAAAApuZBbViWmiCAYRBkshqlu13JXpSaOdhD8JBzCoBzFdRFtRMAYFY1Qd9AvwSZ0JMHHLLtAyN+zvsP2fbAET9nEVJKT4yIn9iy+QU55zfvcjwAAAAAAAAAAABTq2k6rglYAI5GEECn7PYm1YSTtLyGlo695e8IMImSsqh0AgDMSlAwUEKQCT253yHbPjzi55yIiL0t2+4/4ufMKqX0qSmlH4uIKyLiLud5yRsi4jm7HRUAAAAAAAAAAMD0hCbAstQEAfjF2P4o2ctSFWTSwc7r4TsCVCmoi2onAMC8hHICJY7PPQDYoXscsu3EWB+Sc84ppesj4t7n2fxpY33OFFJK5wskiTgTVPIpEXGfiHhoRDw2Iv5FnD/AJCLidyLi63POt4w9RgAAAAAAAAAAgLnVBCFosoPp1cyzPJiT/bHPl6QqyKSDfdfDdwSoUlQW1U4AgDm55w2UEGRCT7aFiJzOOd868mfdFI0FmaSU7h5nxn0xro+I/xIRP5l3cCaSUrosIu5Z+Z995hRjAQAAAAAAAAAA+uFBbViWmiCAmiAilk0pbtMw9BEGlnOOSHOPAmCl2l0eAABWoeRenOBOQJAJPbn7lr+/2PCOmve8dILPmtsQEX8UEb8cES/OOd+yw8/+joj4wR1+HgAAAAAAAAAAQNON1bBGNXNyyIJMYE7ChA5yTgFwroK6qHYCAMzKtSxQ4tjcA4Ad+qQtf3/bBJ9165a/v/MEnzW3GyLi/RFxIiL2Zh4LAAAAAAAAAADA5Gp+TdIvT8L0qoJMBiEKq1G625XhRclDxRqqMQqgPyWl3/oAADAr1+tACUEm9OROW/5+ivCNbe+5xiCTfxAR3xQRvxwR708pPSeldHzmMQEAAAAAAAAAAEzGg9qwLMKFOmVXNmmI8jChludr6dhb/o4AUyi61lI6AQBm5VoWKCFsgK1SSs+LiEvmHscFvC/n/DMX+R5TrJi9rsL3iYgfjYh/lVJ6es753RN/3k9GxK9W/jefGRG/McFYAAAAAAAAAACATgy5jyZsaIV5xqEcHotStYZ2EBzWw3cEGJ3aCQAwK9eyQAlBJhzmu2P5QSavjYjSIJPbtvz9nUYaS8l73jrBZ40i53xzRKRz/z6llCLi0oj41Ij4jIi4PCK+NCK+JiLuvOXtHh4Rr08pPT7n/OfTjDgi53xdRFxX89+c+ToAAAAAAAAAAABHJzQBlqWmeaImRAEY3zCUz8EhzFcAzsPlGADArNwfB0ocm3sAsEOnt/z9FEEm2wI+Fhtksk0+48ac89/knN+Qc/7xnPPXxZlQkx+O7QEx94yI308p3XtngwUAAAAAAAAAANiBql+c9Ew3TK6meUKQyXqUlmI/ErwsNeEkLf/Cc2ld0vwFcI6C2q92AgDMq+XrdWB3BJnQk5u3/P3dJ/isbe950wSfNYuc84mc83Mj4mER8YEtL7ssIl60s0EBAAAAAAAAAADsQE3jnCY7mF5N84Qgkx6pw0uSh4o1VGMUQH9KSr/1AQBgVu55AyUEmdCTv93y93dJKd1p5M/6lMoxNCvn/M6IeFxEXL3lJf80pfT4HQ4JAAAAAAAAAABgUhqroV01IQosnF3ZpCE6CRMqPD6dUwAcgdIJADAr17JACUEm9OSwEJHLxvqQlFKKiHscYQzNyjl/ICK+7ZCX/IcdDQUAAAAAAAAAAGByHtSGZamZk92EKHAHJXtRhlw+B3v4heceviNAlZLzOtdjAACzci0LlDg+9wBYrpzz2o6Pqw7Zdu+IuGakz7lnbJ9bh42haTnnK1JKr4mIx55n81eklD4553xyt6MCAAAAAAAAAAAYX82D2h7qhunVzLOaEAUWTnlt0jBUBJk03Khu/R9XzXEDAADAtFq+Xgd259jcA4Adev8h2x4w4ucc9l7vG/Fzluj/bvn7O0fEF+9yIAAAAAAAAAAAAFPxoDYsiznZp+K97vBYFGFgB6lfZYRQQUdKyqLaCQAwqx6u14GLJ8iEnrz7kG0PGvFz/vEh294z4ucs0WsP2TZmWAwAAAAAAAAAAMBshtBMC0tSFYyg8RVmVRNI0cN81fxVZm/Ym3sIwI4U1cUO1gfq7b3nXfG3T/mGuPrBj4qrH/yo+Og3PTM2V18197AAYJVKrtdd7wKCTOhGzvmaiDixZfMXjPhR295riIh3jPg5S/ThQ7bdY2ejAAAAAAAAAAAAmFBNY3UPTdgwt5rGiJoQBRZOeW2SIBOOYhjUbuiGHBOO4La3/2lc9Zhnxsde96E4/dFjcfqjx+Lvfuu9cfUjnxqbv/ng3MMDgNVxfw0oIciE3rx1y98/fMTPuHzL3/9VzvnjI37OEt18yLY77WwUAAAAAAAAAAAAQDdqwg40WnRIs/OiVAWZdLDzhLWUGULthm4UlUW1k4Oue8Z3xXDb8b/393snj8f1T/vWGUYEAOvWw/U6cPEEmdCb12z5+wemlP7Rxb55SukuEfEllZ+9Jpcdsu2wkBMAAAAAAAAAAIBmaDqGhamYkubvmqSiV9njy5KHPvaIpq5x9XLcAIWUBPYZrvtInLp2e+DVLX99c+Rbb93hiABg/dxfA0oIMqE3rzpk25NGeP8vj4i7bNn2uyO8/9Ld/5BtV+9sFAAAAAAAAAAAABOqaU7WyAzTq5lnQ97e5EhjlNcmDVE+B3tojHKeUKbmuAFaV1AXO1gfKPfxF/xUHBZwN2wuidO/9crdDQgAOtDD9Tpw8QSZ0Ju3RcQHtmx7+gjvv+09bo7DQ1TW4qsP2XblzkYBAAAAAAAAAAAwIQ9qw7IIMumTStymmjko5IPbqd3QkZLSb3lgn+GjH7vga/KNN+5gJADQD9frQAlBJnQln/lfj39py+ZHppQedtT3TindJyKesmXzy3POtxz1vVuQUjoeEU/dsvlEzlmQCQAAAAAAAAAAsAoe1IZlMSc7VbrbHR6LUhMG1kNwWA/fcQzDIMgE2Eft5IB04ZdsNtMPAwA64l4cUEKQCT362YjY27LteRfxvj8YEXfasu2nLuJ9W/FdEfFZW7b92i4HAgAAAAAAAAAAMCVNx7AsghGgHUMuD6TQGMXtNsOFG9BTSSM7AOtz7ML1Pw/OKQBgTO6vASUEmdCdnPMHI+JlWzY/MaX0r2vfM6X0ZRHxLVs2/0HO+Y2173n2fV+SUspb/jy28r3umVKa5O5sSukJEfFfD3nJT0/xuQAAAAAAAAAAAHOoCk3QhA2Tq5mTNSEKrIQyvChVQSYdNEY5TygzhNoN3Sio/T2sD1Qo6pRyzADAmFzLAiUEmdCr/xwRJ7dse0FK6ZGlb5RSelBE/Eqcfz4NEfHd9cObxNMj4h0ppaemlEab+ymlZ0TEKyPik7e85OU557eN9XkAAAAAAAAAAABz86A2tEsz/IrkSX7fj4n1EgbW8tiXSAgV9ENGCbXSsYIWqcGBBQBjKrq2d9sGuifIhC7lnN8fEc/bsvluEfG7KaVnXuh9UkpPiojXR8S9trzkp3PObz7SIKfxeRHxyxHxnpTSj6SUHnaUN0kpHUspPT6l9AcR8QsRcZctL/1oRDz7aEMFAAAAAAAAAABYpqpfANcvBZOrCQzImhhhVgIpDhJ4UmYYHDfAPkon+6WCLunNZvpxAAAABxyfewAwox+JiMef/XOuu0XEi1NKz4qIF0XEH0bENRExRMSnR8QjIuKbIuJxh7z/OyPiOWMOeEQPjIjviYjvSSldFRFviYi3n/1zTUR8LCJuiIiTEXH3iLg0zoS1fH5EPDQinhQR973AZ9waEU/JOX94ii8AAAAAAAAAAAAwl6rQBF12MLmaeSZEYT1K93pN9hTTq5mDVcFhrergK47B+RR0pKj2qwnsc6zkd94dMwAwpi6u14GLJsiEbuWch5TSN0TEayLic7e87OFn/9S6OiL+ec755BGHt0v3O/vna0d8z5sj4utzzq8Z8T0BAAAAAAAAAAAWwYPasCw1c1IzPMzLfD2oh+84BiFUwAFKJ/uldMGX5I11BADG5FoWKFESOQirlXO+PiKeEBFvGfFt3xMRj8s5f2DE92zJOyLiS3LOvz33QAAAAAAAAAAAAKbgQW1YGFOyT/nCTassT00gheAwbifIBDpSUvqtD+x3rKA90joCAKNyvQ6UEGRC93LOH4mIL42In4iIi70yfVlEXJ5z/uuLHtj4boxp/6e6ExHx7yPi4Tnnv5jwcwAAAAAAAAAAAGblQW1YlppwIc3wMK+h4nHtHoLDeviOY9hsNnMPAVgSpZP9UkG43cY1AACMybUsUEKQCUREzvlUzvk7I+LyiPj1iKi90/l7EfH4nPM35pxvGH2AI8g5/1xE3CsinhERvxQRV43wtnsR8aqI+OaIuF/O+X/lnG8b4X0BAAAAAAAAAAAWy4PasCyCTDiUkr0oeSjfIT0Eh/XwHcdQE4ADNK6oLqqd3CGVBJlYbwFgVO6PAyWOzz0AWJKc859GxJNTSveNiCdFxGMi4nMi4n4RcWlEpIi4OSI+FBF/GRF/FBGvzDm/d6LxPDMinjni+52IiJee/RMppXvHmfCWL4iIB0bEA+KO73r3iLhLnAl1ORURH42Ij0TE+yLiyoh4U0S8Ied841jjAwAAAAAAAAAAaEFN07GHumF6NfNMaMCaFDStsjg1YULWUG4nhAo4wPLAfscKzgkH6wgAjMn9NaCEIBM4j5zzNRHxM2f/rFbO+dqI+H9n/wAAAAAAAAAAAFBAYzUsTMWU1Ay/DlkzarOsoRyFJjlgPzWBgwSZAMDOFZyOJQG00L1jcw8AAAAAAAAAAAAAoCUa52BZaoIRzN+VqGlGtcsXpSZMqOX5WlqXBLuUEUIF/Wi49DOXSy7cHtnyOQUALNEQrtGACxNkKbDxkwAAIABJREFUAgAAAAAAAAAAAFBB0zEsS01jomb4ldhsil+qYi9LL0EmjEvtBg6wPrBfKmiPdMwAwKjcHwdKCDIBAAAAAAAAAAAAqKCxGmBmg1CDVtWsoT00RvXwHcfg3As6UjLflQT2SccK2iOdOwLAqFyjASUEmQAAAAAAAAAAAABU0HQMy1IzJ83fldCM2qwhl+8785Xb7Q17cw8BgKU6li78Gs3WADCqoiCTgiUaWDdBJgAAAAAAAAAAAAAV/OIkLEtNMELNa1mwmiATJXtRatbQLtbbDr7iGLo4FoByagL7HStoj9y4BgAAgF0TZAIAAAAAAAAAAABQoaoJW4cyLIpm+HXIm83cQ+CIasKEelhDe/iOYxBCBR0pKYtKJ/uldMGXuAYAgHG5lgVKCDIBAAAAAAAAAAAAqOBBbViWmsZEzfArYT82q5s19MI91VQYwpwH7tDNWkKZYwXtkYMQPAAYk/MxoIQgEwAAAAAAAAAAAIAKHtSGZamZk4JMVmKoqcMSJZakZg7WhBSxbrlqzsPR3fb2P43r/9mT45qHfFl86KGPiZue+wORT56ce1h9Kan9SgL7pFRwruecAgBG5XodKCHIBAAAAAAAAAAAAKCCB7WhXYKIVmKzV/5au3xRrKEHqUllhFCxC6d/8xVx1Vc+O25444k4dW2Ok9cMcd0LXhsffsRXRb711rmHx35KJ7UEYgHAuCytQAFBJgAAAAAAAAAAAAAVNB3DsghG6JBm1GbVBFKY29zOuRdTy6dPx7XPen7k/PfbrE5eM8THvuNZM4yqU0XTXU3gDmXnC44ZABiTazSghCATAAAAAAAAAAAAgAoaq6Fdw1AeosBy5ZowjAnHQb2qIJMO9p5zijJ7w97cQ2Dlbn3Vb8feqeNbt9/yhit3OJq+yTGhWslaKgQPAEZVcr2eUtrBSIAlE2QCAAAAAAAAAAAAADSrJuxAaMBKVIRhaHZeFvOVo3AsMLUbfuynD91+6oQmzJ0x3alVsEZkYYYAMKoegkeBiyfIBAAAAAAAAAAAAKCCZlpYlpo5OYQmxlXY28w9Ao5oqGgk1hjF7Yaa8CI4gtuuu2nuIfAJBbXf9Rj7lRwPjhkAGFfh0lpzDwBYH0EmAAAAAAAAAAAAABU0VkO7BBGthFCDZvUyB1Okotc5pyjTy3EDlFESOKDkgNBEDQCjKr2WFUoJfRNkAgAAAAAAAAAAAFBBMy0sS00QgNCAlRjsx1YNUd7EZL5yO81v0BGln1qCTABg59wfB0oIMgEAAAAAAAAAAACoIDQB2jVoYlyFvNlUvDpNNg7q1TQ7Nd0Y5bAblfMp4ICW1wfGVxBwlzeuAQBgDkIpoW+CTAAAAAAAAAAAAAAqaKaFZWk67ICjqWmEcXgsStUaat9x1maoCS+CI3AusRwlu8LuYp+iawFBJgAwqtKAEkEm0DdBJgAAAAAAAAAAAAAVhCbAstQEI5i/KzFohGnVULHveggO6+E7jkHzGwBblZzfW0cAYFSl17I19wCA9RFkAgAAAAAAAAAAAFBDzzE0awgNFKswVITXTDgM6tWECQn54HaCTJhcSnOPgBqC6divYI3Im80OBgIAnMt9OOibIBMAAAAAAAAAAACAChqrYVmqghE0vq7DoBm1VTVNTF2stx18xTF0cSyweNmvye+EUzWqbQrmZslrAIBipffXckUQLbA+gkwAAAAAAAAAAAAAKmimhXYNBb/YTgM0kzdL8BBHMZjzLIHjcEcuXPstDxxUcEAIMgGAUbk/DpQQZAIAAAAAAAAAAABQoepB7TTdOIAzauakYISV8Iu+zeolTCilshMAzV9l1G4WYbOZewTA+RScF+ZOzj8AYGmGsAZDzwSZAAAAAAAAAAAAAFTQTAvt6iVEYe3yUNFMniVKLUnNGmq95Xaa31iEwXG4EyWl3/rAPkXnC3uCiABgTKXX6+7DQd8EmQAAAAAAAAAAAABU0FgNy2JOdkgzebN6aGIaHJ+j6+G4YWZFQQh7048DqFcyf10vAMAsXB9D3wSZAAAAAAAAAAAAAABdyKGJcRUG+7FVNXOw1fkqdGN8mt9YAsFpC2JXsF/B3MybzQ4GAgD9KL1eH8K1HPRMkAkAAAAAAAAAAABAhVYbq2GtqoIRNCGvRE0jTJpsFNSrmYOtrrd7w17xa1v9jrumdjO5VLBWbMrnNhfBdKdWyRohBA8ARlV6jZatwdC143MPAAAAAAAAAAAAAKAlmo6hXUP2S7CrsLeZewQcUc0cbDW8YhjUmbH5FW8WYWPtWYxG1wcmUnI8bKwj53P6it+Mm1740ojNJu78kAfHpd/3/ZHudre5hwUAwEoIMgEAAAAAAAAAAACo0GpjNaxVzZwURLQOtXU4D0OkY8cmGg01quZgo9NV6Mb4nHuxCEKKdqJouisJ7Fdw0GRhhgfkYYi//ZqvixvedOKOv/zj6+LvXvrlcd/f+tk4/jmfN9/gAGhC6bW962Pom7uxAAAAAAAAAAAAADUqGudSpOnGAVTLg87XVahtRtV8vhg9zMEevuOuDRrQmVpJEMJms4OBUEKV5YCS9JuNdWS/m577AwdDTM7au+V4XPuUb4vs3BmAkbiWg74JMgEAAAAAAAAAAAAAmlX6K7ARfgl2NfY0k7eqZg7WzO0lUWfGl0ua1GFqmjB3pGC+Kwnsk0tCSoSMHXDTb75+67bT16fYe/MbdzgaAFpUeo02CMeCrgkyAQAAAAAAAAAAAKjQamM1oBl+PSr3o8aZxaiZg62ut35xenybLLyIBRCitRtFpb/N9YGpXPh4yM4FDzh17eH/Zjf9z5/Y0UgAaFXp9Xqr1/XAOASZAAAAAAAAAAAAAFSoegA7TTcO4AxNER2qbUYVYLMYNSEfrc5tvzg9PiFULIKQouVQEtiv5HiwNlc5deVVcw8BgJUQ9Al9E2QCAAAAAAAAAAAAUKHVxmpYrYopqYFiJYbKOqx5dTGq1tBGl9sh1h/WsmtqN4uwt5l7BMD5lJwX1p479k6AGAAXIGwSKCHIBAAAAAAAAAAAAKCG57RhUWqCAIQGrEMeKpvJBZksRk2zU6vzNWuWHl2rxwLrUr32cDQl011J4IALHxDZuSAAjKr0Gk0oJfRNkAkAAAAAAAAAAABABc200C6/GLsStUERmlcXo6aJqdX5OoTjbWzCYVgEawksU8n5gnUEAGYhyAT6JsgEAAAAAAAAAAAAoEKrjdWwVjXhQhooVqJyP6rby9HDvtjb7M09hNURDsMibDZzj4CzOlhKqFESUiKI6BOyfwsARlB6bS+UEvomyAQAAAAAAAAAAAAA6EIPIQpdqG0m17C5GD3MwZpwJcr0cNzQAMfhbhT9M9sX3KFkjbCO7OO8GIAdEkoJfRNkAgAAAAAAAAAAAFChpkE5pTThSICIusZETYwrYT82q6aJqdVAkCFr1BrbJleGF8EU9hyHsEwF5wubcc8pTv7iS+LDX/TY+JsHPiKufvCj4sbv+e7IH//4qJ8xmdpAQAA4j9LrddfH0Lfjcw8AAAAAAAAAAAAAoCWCEABmNlTWYY0zi9FD8JBGrfG1eiywLtnc3omi2a4ksF/JeeGI68iN3/e9ceJnX3/2/zvTmnniRW+Ik6//2rjsdb8d6djCf3d+UMsAANiNhZ8ZAwAAAAAAAAAAACxL6S9O3m7QKASLMYT5uAbVzeS1wSdMpmYNrV1vl0KQyfj8m7IIm83cIwDOp+B6O490Tb73Z2+PEy983Xm33fyuk3HzD/3gKJ8zqb29uUcAwAqUhk0KpYS+CTIBAAAAAAAAAAAAmJDmW5hWVTCCBop12FTWVXV4MXqYg1lwzuh6OG5owCDIZCdKpruSwAEFB8RIa/PJX3t5RN7ejnnLq980yudMKQtlAmCH3BeHvgkyAQAAAAAAAAAAAKhQ20zrgW1YjprQExastq4O6vBS1KyJrYZXDFHxHdWkIq0eC6yMkCJYppJld6T5+9Gf+71Dt9/8V7eM8jmTcn8CgBGUXsu6Lw59E2QCAAAAAAAAAAAAUKG26dgD2zCtmjmpGX4lavej5vPF6CG4w7o/vppwGJhK3mzmHgJnOZ1jv5Lz+7GuAfZOHR/lfWZVUMvMMQDG4j4c9E2QCQAAAAAAAAAAAMCEhkHzLSyFgIGVqGwmz/b7YtQ0MbUaeqJRa3z+TVkEa8luFE13NYH9Co4HoXZ3cH8CgBGUXq+7Dwd9E2QCAAAAAAAAAAAAUKG2mXYID2zDpCqmZKvBCBxUHWqgcWYxegik0Kg1Pv+mLMJeXYgWE1r/UkKNknMLQSafkAsCAVPawUAAaFvh0upaDvomyAQAAAAAAAAAAABgQlnTFExKOEmHOgjDWKuacK9WQ082g7CDsWl+YxnarEmwegXX267J9ykIMmn0FAyAHXIvDighyAQAAAAAAAAAAACgQu2D2jVN28C0Wg1G4BxDZV3VvLoYPcxBoRvj0yTHIuwJKdqFomVCSWC/koNmtPOPFRx8tefRAHARergHAGwnyAQAAAAAAAAAAACgQu0D2HubvYlGAtTSQLES1UEmGjaXomYOthpeIchkfGo3S5AHQSbQqjxWqF1awXq0UcsAuHil1+uuj6FvgkwAAAAAAAAAAAAAJjSEB7ZhSjVhB+bjStQ2o2qcWYyqIJNGwyuqxp2mG8eatHossDJjBSEA4yoJrBtpHVnFsi3gD4ARlF6juQ8HfRNkAgAAAAAAAAAAAFChJjQhYsRffwYummb4lagNJlGHF6OHJia/OD2+Ho4bGjBs5h4Bt7Oss0/R+f1Y54Kp/YMvq2UA7JD74tA3QSYAAAAAAAAAAAAAE9J8C8shyGQdcu0vyfvl+cXoYQ5a98c3mMMsgeNwNwqWifWvJFQpOLcY6/QjpXHeZ1Z7gkwA2B1Bn9A3QSYAAAAAAAAAAAAAFWqbsD2wDdOqmZM9hCh0ofIXfe335aiar422qvvF6fGZwyzCxjk9LFLJEjFakklBaMre3jifNRX3JwAYQavX68BuCTIBAAAAAAAAAAAAqFD7oPbg19sBxlXbgKlhczF6aHYSYDa+Ifybvvf698Y7P/TOuOHkDXMPpVvZ3F6O9S8l1CgJKRnrmEkFrzl5cqQPm8hmM/cIAOhID/cAgO2Ozz0AAAAAAAAAAAAAgDXzwDZMq2aOaYZfiaGyrgqUWoxc0mx8hNcuiXV/fK0eC2N49btfHc955XPixuHGiIgYNkNcfu/L46VPf2nc+fidZx5dZzbWElikgjUi1547bpEKgkzy6VORLr10lM+bxEj/FgD0rfS6V9An9O3Y3AMAAAAAAAAAAAAAaEltM60HtmE5em6GXxXBJM2qWRNbDQSp+Y4pCjqi6bZ2v/f698a3/Pq3fCLEJCLi2CXH4q0n3hpPfsmTZxxZp4bN3CPoQ8l077MksE3JGjHWOlISZHLq1DifNZGslgGwQ+6LQ98EmQAAAAAAAAAAAABMyAPbsBy9NsOvTfV+9Mvzi9FqOEmNjQbh0fVw3JzPs3/92ZEuOX/X/JUfuzLe+ME37nhEnbOW7IR/ZaqVHDQjXZKnFQSZxJ7zFABGUHjS5j4c9E2QCQAAAAAAAAAAAECF2mZaQSawHL02w69ObV1VhxejhyYm6/74ejhuzud9H3vfodt/9e2/uqOREBGRhRTBIpWsEaMtIyWdmKcXHmQyVqoLAF0rvb/m+hj6JsgEAAAAAAAAAAAAYELZr7fDpGrCSXpthl+dTW2Qif2+FD3M16pxp+nGsSab3GeAxG3ptkO3v/yvXr6jkRAR1pIFsSs4qOSAGOegSQXrdj618CCTvYI11SQDAGAEgkwAAAAAAAAAAAAAKtQ2Vg9+8RgWwy/BrkRtc+Vgvy9Fq+EkNdSZ8fVw3NCATZ+BOjtnulOrJDh0rKW5JMjk9OmRPmwa1lQAdsm6A30TZAIAAAAAAAAAAAAwIQ3NMDE9Ef2pDjJxkCxFTRNTbnRytzruJfNvyiJowoRlKpibY03fdKwgyeT0qXE+bCpCmQAYQek1mvvi0DdBJgAAAAAAAAAAAAAVaptp/fIkLIdm+JWorKtZ48xi9DAHNWqNz7kUi6D5H5apZI0YLcmk4KNOnx7ns6YyqGUA7E4P9wCA7QSZAAAAAAAA/5+9e4+2rb3rwv6b+5yEGAIREm5R4pUOW1vbFFpBLGixUIEiirZAxYrXFuqQIWqrWLkYi2C5iEbbwvAyVAwtKgYqF0EaVEiFDJRLYlBEYsj1zT0n79l7XZ7+cc5+3/O+2Wuv37PWmms+z5yfzxgO9d3rrHl7bnNl/r4TAAAAgBEpaIZx1RRFKIafh1JbTO66N6OmD/baX3vd75Y5p7SgbK3pm2FI4FGZ9nCqNjPsTzJpP8jEWAbA+fhdHJZNkAkAAAAAAAAAAABAhdpiWg9sQzu8CXYmhBp0axvznxPN+6eXGbuN74xuq42dx/6gCHhU5v78VEvHIVOJeXl1mo2NpDoQEABukP19XCglLNvdqXcAAAAAAAAAAAAAYM56fWB79cofjs2/fW3c+YgXxDN+9cdNvTtwEr32R56m9jp683wzltAHa4JMhkHBfsYS2g0dUPx/Hro71RKN5lTt6mL/vF2uLk+0sZGYUwEAOBNBJgAAAAAAAAAAAAAVSmUVVE1BcwvW//I18djnfWHc++n7cf1G9Ge/8G48/5v+t3jGiz562p2DIymGn4naYJKt696Kmj5YO9+2otf9btmmCJCgBfp2M1wKHpVpDydqM0MqyGR1mo2NRSgTAGfU2+/iwGldTL0DAAAAAAAAAAAAAHPW0wPb5d3vjjd9xu+Oez99GdchJhER733tOt74X/+B2L79bdPtHJyAgIGZqA6k6Wccnrsl9MFNZYHwtjaYZ4GEUNGCstFXz+GMmRTMRWKOONk0kggyidXViTY2EkEmAJxA9t6+p9/FgdMTZAIAAAAAAAAAAABQobYIu6fi23t/6SVx/7Gbi7Ou3nEn3vNVX3XmPYL9lhCMwNNsK6957ecZTc2c2NP8+ahtZXCOwq79jPM0QV+FNmXWCyeaRoZEjkm5bDzIpNP1FQB9ci8XUdbruPc1fzbe/nt+b7zjC74w1q959dS7BGdzd+odAAAAAAAAAAAAAOhKdf18P0WP977j/7317+99+SvjA8+zKzCKXoMReKrq67jtZxyeuyUUMdW2z57WCVMxdjO6TBPb6KtnkbkWhgQedc72MAx7N1iu2g4yKZvN1LsAwIJsF/57zPpVPxGv//TfG6t3Pxnn8LZv/T3xvM/9T+O5X/91E+4ZnMfF1DsAAAAAAAAAAAAA0JPaIuxt9PPA9ntefe/Wv9/7V5dn2hMYR0/9kVts6wowhSC0o+Za9Bp6Urvf6816pD2Zj17bAjOz8CJMaNZ2/xxxsqXgxbD/M6vViTY2EutiAE4ge4+25N9jytVVvPG3/P6nhJhERJRyEY/9zR+Ox//aX5loz+B8BJkAAAAAAAAAAAAAjKgkCquA81hyAcWs1F7Hovi8FUvog7VvnBawtF+q3SRqy2GnTPtZwPgFPUoVUp+x+5arq/Nt7BCbukBAAOAwV//gu+LyrbtiHIZ411/+lrPuD0xBkAkAAAAAAAAAAABAhewbJ69tFdBDM5YQorAItQFRAqWaUTOH1s63ragdZwSe7WfspgVF8f+ZZFJlJBfxiMwcUU7UZhLbKler02xrLJvE7xOmXQD2Sc4VSw7ufNdL/vKtf3/Pq+6daU9gOoJMAAAAAAAAAAAAAEbUayE2zJH+OBPb5RbC9G4JgRS1hVpLLuzKEgpHExYwfnXDpeBRmRyTM24rVo0HmZhTATijJfwGsMu9H3vT1LsAkxNkAgAAAAAAAAAAAFCh9gFsxbfQjiUXUMxJ9XUUfNKMqjChTrurdcLpCaGiCeaS89DdqZWZd0/VrhLbKlfrE21sHMVYBsAJZO/R3MvBsgkyAQAAAAAAAAAAABiRAmUYl6KIBaoOpNFGWlET8tFr366d97cKivcSQsXoMk1MO2yGK0G1MpzmazKZKevVSbY1GusOAM7I/S4smyATAAAAAAAAAAAAgBEpvoV29BqMwNPUjqsKZ5qxhD5YO+9vQ/vcZwnthmmlWthGXz2H1LUwJPCoxLx7siaTmeOv1qfa2jisiwE4o0X/Lr7gQ4drgkwAAAAAAAAAAAAARrTZbqbeBeChRRdQzEltAebWdW9FTR/sNbxiU+rm/aJ97mXsZnSZIATF/9CmzBxRhhNtK/GR1eo02xrLxu8TAACchyATAAAAAAAAAAAAgAq1hdXbougRWqEYfiYqr2MxDjej13CSGrXjzDa0z30y7WaIExWps0yZbmsugSblpt3zzRFlvT7btg4hQA2Ac3K/C8smyAQAAAAAAAAAAABgREso2oZe6I8zURtII8CmGTUhH70GD9UGmAk826/XtnCM7Va7OKtME9u4Ju0QXMSjcnNEOcW4mgkBWW2O386YzC8AnED297Ul3ssBTxJkAgAAAAAAAAAAAFChNghBgTK0QwHFPJTaYnJvnm/GEsKEqtcJCor3WuJaaonH3L75j19NKImQEpeCR2XXeavV0ZvK3EqU9fro7YzK/ALAGS36vsaaFQSZAAAAAAAAAAAAAIxJcAK0YwkhCsvgOvZqCXNiqQzOMS7tlzpHieyDniy64G8CmbGpOkQLOI/sNHqSgJHEWLHenGA7IxKgBsAZLeE3gF2We+TwJEEmAAAAAAAAAAAAADUqn0JWiApwYrXVIMbhZiwhtGMbde3NOmG/JRa/rTenKLgnLdPEFtgOW+VK8BTJvllWqxNsK/GZVdtBJkKZADgn97uwbIJMAAAAAAAAAAAAACrUFmF7YBvascRi+FnaVl5H170ZNX2w19CT2nHGOmG/XtvCMWoDcTiDrWsCXducIGAkMR2VU2xnTNYdAHAey7uNhfchyAQAAAAAAAAAAABgREssvoVW6Y8zUVuAqfi8GUvog7XBJJvWC54bsMQQqs020S6G8fdjMTJNbIHtcBoaNnXSc8RqdZZtlXXj8/omsU4x3gFwIkv4DQDYTZAJAAAAAAAAAAAAwIi2CuhhVDVFEUsshp+lbeV1dN2bUdMHey14qt3vbVgn7LPEsbs2EIfjpJqYNX07irATHpGcIsp2Pe5+XMsEhUxpgXMqAKeXve9d4r0c8CRBJgAAAAAAAAAAAAAVaguUPbAN7eg1GIGnqh5Xa4NPGM0S5sTaYxRYsd8Sx+51puB+eadlPIl+W1oPJ5iBIiyGgyQHw/XmLJsqp9jOmPQzAM7I/S4smyATAAAAAAAAAAAAgBFtwwPb0IolhCgsQmUBZlE404wlBFJstnUFzMal/TLFb8MwnGFPzifVjuZ1yNNKdUN9FZqU7Zqr1Vm21XroUdk0HrQCwKws4TeA3dywgSATAAAAAAAAAAAAgBEpUIZ2LLuAYkZqx1XjcDOq+mCnl6123veG6v2WOHZrFw3aLK8dnl06qExRKI9IzrulMmjs4E2tGx+/rYsBOKOyXfC8s+BDh2uCTAAAAAAAAAAAAAAq1BYoL7H4FmBUtQWYSy6caUzNHNrr/LmNugJmgRX7ZdvNNh2C0L7NCQruqZBqYn2OSV2ZUR/mjLJdc7U6wbb2b6xsGm/HmX5muAPgRGrvj4F5EWQCAAAAAAAAAAAAMKI5FdVC72qDiGiV69irXsNJalQHnhmXTmZOoTBzOpYepHph6+EEc1ATduUei2vZdrM5QUBUYlPNB5lYdwAAcCaCTAAAAAAAAAAAAABG1EuBsmJAlmAJIQpLUDaV11EgQDN6mROPUTvOCKzYL9tu5nQu19v11LuwLJlwggWMX5OruR9x78JD2b5Z1ucZV6vXqefWetAKALOy5DX0co8cniTIBAAAAAAAAAAAAKBCdYFydFIodKbCLji5If/RJRdQzEttkInr3qNeg4dqx5k5hW+MJdsW5nQuy7bP9j9rgjPa4npQa705/jsyQ3Pj43dmnWLpDMCpzOkerZr5FASZAAAAAAAAAAAAAIypm+CEy8up9wBG12swAk9TO642XlC6JN3MiUeoLdRawjk5VvacbmcUbLAuAubOKhVOMJ/21ayac2zs5Fq2LaxXx28q85lN42PFNhHoon8BcCJ+h4Nluzv1DgAAAAAAAAAAAADMWS9vnixXV1PvAoxOYMBM1BaIdjIOL8ESiphqj7GXdcKUsud0kynO7sScjqUHueXB/MevydUEmQiW6VbZbmPz0/8yYr2JO7/sl8fwzGce+YXZ7Z5gXE1sq7Q+fGfW0YY7AE7E73CwbIJMAAAAAAAAAAAAAEbUywPb5fLxqXcBRtdLf+S0XPd2LOFa1B7jNhTj75M9p3M6lwJu2lM28x+/plY1fgoy6dLjf/2vxlv/9DfG5VsvIiLiGe+/jg/6PZ8aH/An/pfxN75eH/8dmSa6bX2saH3/AOhBiRJDDHs/574Glk2QCQAAAAAAAAAAAECFUln4080D25dXU+8BQE5tGMYCwjN6UTOH9hp6UrvfpfmC5wYkT1E3a66EzXYz9S4sS6qN6atNEWTSncvv/I54wx/+xijbiyf+2+re3Xjzn/ueGN7vmfGcP/I/HfbF2Xl3fZ5xtfV5vWz2951e12AAALTlYv9HAAAAAAAAAAAAADhUbfDJVMrV5dS7AKPrpT+yR21xpWLnZiyhD25KXaH0nMI3xpJtN9sZ9XXtokGJ4n+OVNGHBS3057E/+tVPCTF5yt++/tuiHDqGJ5tCWa8P+/5HvyOxreaH79RBjL8bACzDstdsw9Q7AJMTZAIAAAAAAAAAAABQo/L5624e2L66mnoPYHRLCFFYgoMLXZlcN3PiEWqP0bi0XzrIJOYzNmy2dYE4HCnTxBYwfk2uJgHCWqAr5d69uHzT7nFtc3U3Vv/kHx323dl59FzjautNM9N3DHcAnMgSfgPYacGHDtcEmQAAAAAAAAAAAACMaNv8K5kfKIJ7OSOsAAAgAElEQVRM6NRQ8YbTRRdQzEntZXTd21FxKXoN+KgdZ9bb9Uh7Mh/ZtlC2fbaZm8wplKUHqZZjLhlfTR/u5B6LB1b/9IeilNvLGN/zl77psC/PNpvVCebbxLaab5pCgAA4I/c1sGyCTAAAAAAAAAAAAAAq1BZW91KIXS4vp94FGF0v/ZE9aovJFZ83Ywl9sLZQS8DSfttk0fWciuQ2m83Uu7AsqXCC+bSvZtUkQMwouGgRLu7s/UjZHNjHkvNo2Z5gXM2MFa03zcQOWpsAcCrmFFg2QSYAAAAAAAAAAAAAIyq9FNmtrqbeAxidAoqZqC0m72UcXoAlBJnUjjPbmsJ9bjWnc7kpgkyaYw3Rlhn190W4uz/IpHp9dy3bNdfrw76/dlPb4ejtjCkVGGO4A2Cf5HS3hN8AdlnukcOTBJkAAAAAAAAAAAAAjGgbfRTZlStBJnSq7VpBxlBbDaLYuRlLKGKqDTIRsLRftt1sDy2Cb9CcQln6kFhMCMUaX00fnlF/X4Lh7jP2fygTsHGMzQkCohLDQPvTeuYgxt8LACCiWNMyc4JMAAAAAAAAAAAAAEbUTYGyIBOgE9VBEYrPm9HNnHiE2rAWgRX7Zc/pnIJyNtsTFNyTl2k6Cxi/JlczX5vb+3JxZ+9HyqHzYbJvlvX6sO+vVErjKYsbfQeA81nCbwDAboJMAAAAAAAAAAAAAEbUS4FyWa0ynxp9P2BMCijmovY6zv+6r374FfHYb/qt8aZP/I3x2G/6rbH64VdMvUs3qumDvYZSVAftdHqc55Q9p72suTLMV+eVOtuCM0ZXE2RxcOgF07i7P8gkNodd0/RwuT1Fm0mElLQeZJLoO6YgAE5lTvdo1TJrgpOsT6Bdd6feAQAAAAAAAAAAAICe1BYcd/PA9uXl/s8MKprom8CAmagtJp958fm7v/xL481/4fviyeLa98Q7P/UPx4f+j58UH/ClXz7lri1S7bzfzTphSskuPKdzuSmbqXdhWRJtTLjMGdT04Rn190XIFOluxu1jZbU+wZdkPjREubqK4ZnPPH57Y8isiw13AJyI3+H2EGTCzF1MvQMAAAAAAAAAAAAAc9ZLUW1ZrfZ+pvF3S8NeipBnwnV8wtXLvz/e8pLvjfcdoYd4y0u+N65e/v1T7NZOVUVMnV7m2kIt49J+2XPay5orY07H0ofEKldfbcvMQ8pmZ7s/nKkcWsib7ZsnKBTObqrcv3/0tsZSMvOL7gXAibjf3cP5YeYEmQAAAAAAAAAAAACMqJcHtsvV/iCTGPo4FpZlGPIRO94EOxO14+qMAwHu/Y2XRik3lwWUchH3/sZLz7xHt1tCH6wNoBBYsd82cueozCjYYJMo+ueEMk3H29LHV9OHXY++ZK7toffN2X+2WR/2/Ye4//j5tlVrRnMlAO3r5XfxyVjTMnOCTAAAAAAAAAAAAABG1M0D26v9QSYVeRHQpCWEKCxBdVjBjAs23/ZtP7nn7686057kdDMnHqH2GAWZJCRPaTbwpAebIsjknFJNbAHj1+RqCjmNnV0pm/1jWtmMe01P8/25G+Jy//4JtjWSRD8z3AGwz5CcE5ctcY4EmTBzgkwAAAAAAAAAAAAARtRLUW1Z7w8y8Yw6rdlWPvC/hBCFZai9jnO+7p0NzBWXotfgodpxptfjPKfsOZpTKEzt/Mb4qkO0qFfTh12PvmSu7aHjXnbeXa8P+/6nbCv5scuWg0z0HQDOp5ffxSfjvo+Zuzv1DgAAAAAAAAAAAADMWTfBCVeJIBPF1jSmumhdE56H2ut4ZMHm1cv/Yax/+l/HnQ/9kHjmp/5XMVx4n+ihlhDaUXuMAiv2y66lullzJWzKZupdWJaSCYWaT/tqVs18bezsyzoxph24XksP/SdoM+k9vN9ukElqrjTcAXAic7pHG0Mppbd4WqgiyAQAAAAAAAAAAABgRL0UbZfV/iCTQe0+jakOMmEeKgthDi2cWb/6VfGW3/6F8d7Xrp/4b+/3/D8bH/q/f0U88xP/84O+c+l6mROPUdveFHadzpzmBO2iQUeGYnFa+khv9l+vMnYf25wvIKrcvzzbtqpl5krdC4B9kukb1mx7COdj5vzPSQAAAAAAAAAAAAAVaouwu3lge7Xe/xloTG3R+hJCFBahttD1gHCDcu9evOm3/L6nhJhERFw+NsQbfseXxOa1P1v9nSyjD26jrr3Vfn6Jsu1mTkEmm+35Cu6JSFVi9rKm71lNIeeM+vsirBNj2qGFvMm+WU4RZFJyVdvl6v7x2xpLYh1ttAPgVLr5XXwq1rTMnCATAAAAAAAAAAAAgBH1UlRb1qupdwGqbSsLHpcQorAItYUwBxTOvPcb/4+4/9jNxarr996Nd3/1n63+TmIRlbG1hVq9rBOmlD2ncyqSm9OxtK5k1xK1IVpUq2r33l7flZKZ68Ye907SZnJBJnH/8gTbGknmPBvuADgRwZ17uMdg5gSZAAAAAAAAAAAAAIyol+CEslonPjT+fkCN2oKIXvoje9RexgMKQ+697Ptu/ft7vudHq7+Tuj7Ya3+tDjJRjL9Xti3MKRRmUzZT78JyJPugcJkzqOnDij77stl/bcuh1zT5z8r6uHE1HXoUEeWq4SAT6w4AaMeM7mHhJoJMAAAAAAAAAAAAAEbUTdHjarX3I50cCQtSW/DYTX/kVuUMhR7v/vF33fr3y7d7FP8QS+iDtQEsSzgnx8qeo1kFmWwFmZzNJnmu9dXx1QQszKi/L0Lmeo0dTnPsuFoTZHLZbpBJak4tw/g7AsAiuN/dQ8AYM+fXUwAAAAAAAAAAAIAR9fLAdlmvp94FqLaNugf+e+mP7FF7GV13zqh2nKkdx5YoGw4zpzF+TqEszcuugccOWaDOjPr7IiQCg8qhhbzZtpANLTrFv284yMRYBsApDEMu9GpO92ijMC8zc4JMAAAAAAAAAAAAAEbUTYHyOlGY5dlqGqPQe6FqC2EUzjQjG0jRs9pxSWHX6cxpTpjTsTTPW9DbUVPI6br1JTPXHXpJk82mbI5sMxVtrlxdHbetMSWuhaUJAKeyhN8AjlHc9zFzgkwAAAAAAAAAAAAARtRLgXJZJd9GDw3ZKmIlo5NxeAl6mROPUXuMAiv2y57TbsLjErSL8ymbRJhfhOCMc6hp995e35VUPztwjZD+V9m+vss6f79cLhsOMjGWAXCkmt/ilvAbwFHc9zFzgkwAAAAAAAAAAAAARtTNA9vrTGHXMPpuQI3aonVvgp2J2gJMBZvNWEIfrD3GbtYJHSgzCjYQ1HVGyeJBXfUMKk6yt9d3JnFtDx7Ds+3myHE1HXoUEeWq3SCT1Hku7vsB2K0mdFFA4x4zuoeFmwgyAQAAAAAAAAAAABhRLwXKZbVKfGj8/YAatQWPSwhRWILaYbWXcZh5qG1vCrv2y47dczqXm5IvmOdI2XACc0lbXI++ZPrZwUEmyY+lgjtv+4KKOabhIBM39QAca073XZMTYMnMCTIBAAAAAAAAAAAAGNE2+nggueYN09CK2v4l0GIuqpNMxtkNqi2hD9YGJglY2i/bbuZ0LhUHnlG2eNDb0sdXU8ip6LMvmXF87DXCsd9fcb9cWg4ySYxlRjsAblNzrzKne7RRuO9j5gSZAAAAAAAAAAAAAIyom6LtxBuqOzkSFqS60FsjnofaYvJexuEFqCli6rXgqXbe72adMKFsW5hT+MecjqV16TA/fXV8NfO7YJm+JPpZOfSaZv/ZscGdifvlJ6zWx21rTKlQmWH8/QCgW9uKQDn3u3tY0zJzgkwAAAAAAAAAAAAAKtQWVvfywHaqiLOPQ2FBaoonIvoNRuBpXEYaVjvOCKw4nTmdyzkdS/OS4Qa9rOl7VqravT7Sk1T/GbmLlc1xbaZs8+Ek5erqqG2NSsE0AEfaVqzD/A63R+XvmtAbQSYAAAAAAAAAAAAAI+rmge3VkW+ohglUBwv10h+5XW0xueLzZiwhCKD2GI1L+2XP6ZzaV21QF0fInuv5NK921fRhYQx9SQQGlQOvabrZJEOLdqrYv7JaHbetEeUCg4bR9wOAftXM2XO6RxuD88PcCTIBAAAAAAAAAAAAGFEvDySXVGGXgibask0V4rF4nYzDzEN1wJJi/L2y53ROc0LNW845UjbcwFzSFmE/fcn0n4P7WPLfHTtHbNb5zzYcZJI/XfoYADeruVfp5XdxYByCTAAAAAAAAAAAAABG1E1R7Tqxn549pzG1/as2YIA2VQc/KJxpxhL6YG2hlsCK05lTkVw368c5yBbrz6h9NasiOGFO/X0RNolrO/KwVzL7cJt1MvQoIsqqIvTk3LL9bN3wMQAwKfcqJ+RcMnOCTAAAAAAAAAAAAABG1EvRdsm+jR4aUl080Ud3ZK/KC1kbfMJollB4Xh2wtIBzcqzsOZpTQd1ma112LiV7rvXV8dXM1zPq74uQuF4Hz4fZf3ZkkEnN/pWr1VHbGlX6fJmHALjZtiZ8zg9xt6s4l9AjQSYAAAAAAAAAAAAAI+qlQDnzhuo+joQlKZUBFQooZqLyMvYyDjMPtePMpigU3id7Tuc0xs/pWJq3zvXB2jUHh6go5HQ9ulIyRbpjX9JjC4U36/RHyyr/2bPL9h2F1QDssK1Ys/k9Zg9rWmZOkAkAAAAAAAAAAADAiLopRE0WcUJLaoonIhRQzEZtoYfr3oxu5sQj1I4zxqXT2Zb5FF3XvOWcI82o3XSvZn7XR/qSuLYHd8Vks0mFqdxmU3G/vG43yKQkT3SpOV4AFqUm4K/2d7vFcS/CzAkyAQAAAAAAAAAAAKgx1H28lwLl3FuyKw8eRjanonVq1AaZaCecT21Yi3Fsv+xaqpc1V4aCvzPKFut7W3pjXI+uZOa6A8fw9D/bHDmuVuxfWbUbZJLuOpuGjwGASdXcq8zpHm0Uzg8zJ8gEAAAAAAAAAAAAYETdPLB9bGEXTKC2f9UGDNCo2svYyzi8AN3MiUeoHpcWcE7OZU6hMNtMwBynIaCkHdr9fKVCMw/98uQ/PLZ9rZOhR9F6kEnyfGVDngBYnJr7Lve7e1j/MnOCTAAAAAAAAAAAAABG1EtwQhFkQofmVLROnkKYfvUyJx5DkMnpZdvNnOYE7eJ8yjZZrC/wZHRV7V7RZ18S/efgYS/578qRbSY9VkRErGcQZKKPAbDDpmZO5HbuMZg5QSYAAAAAAAAAAAAAI9qUTh7u3mQenB5G3w2oUVu0rjB8Jmqv48ILQ44t3KVObVjLNlyfU5lTUE4368c5WOfO9ZzaV7Nq1nULn9t7kwoBGfuSHttmKtZTJTmuTKEkz0PZtHsMAEyr5rc4a+jblRmFccJNBJkAAAAAAAAAAAAAjKiX4ISyyT04rSCeltT2LwUUM1F9GRd+3VerqffgCTV9ttf+WrvfvawTppQ9R9sZrVEyxYGDgLkTSbab+TSvdlUETSj67ExmHD90Osz+u+T97k6ZMJaHWg4ySQcCCjIBYIeqIBP3u7dzfpg5QSYAAAAAAAAAAAAAI+rlge3sm5lr3kQNY6spnmDBKgqj56hcXk69C4siYOn0sueolzVXxpyOpXnZwAHXpC2uR18SISJjX9Kjw29qwklmEWSyHnc/AOhWVZCJ+93b+Z2dmRNkAgAAAAAAAAAAADCibh7Yzr6h2gPWNKQ2yERh+ExUBpMs/rqvVlPvwRO6mROPUHuMi2+fJ7SN+axRNiVRBD+Mvx9LoA82pOY+Y+EhZd3J9LOxL+mRbaZs8+EkpeUgk3SAqT4GwM3SYdhhrb2X+ZaZE2QCAAAAAAAAAAAAUGGorBrt5YHt9EPonRwPy1Dbv5YQorAE1ddx6eNWQ0EmS1A7LtUGMi1Rts/3subKmNOxNG+TCxyoKdjkUBXn2NjZl0Q/O3jYy/67bHDnLjVF2+v+22dJjo0ALE9NgKT7mn36XzPAbQSZAAAAAAAAAAAAAIyom+CEbGHWej3ufkAFAQALVTusLrxwplxdTr0LT1hCEZOApRFks9ZmdC7Nb2e0da6bUXMtFjCfzElqbjzwkmb/2dFrkG1FsEfDISDpUKaN+34AblZzrzKne7RRCEtk5u5OvQMAAAAAAAAAAAAAc9ZL0XbZlIgY9n9QsScNqXkLLDMiyKTOajX1HixKbaFWL+uEKWXP6baTNcpL/tFL4i+84i/EZbmMEiVe8PNeEF/9aV8dH/9LP/6Jz2gXZ5QNJ1Bk2JZO+jsPpa5X4l70JtmuuTmyzazz4SRl3XL7zAaZtBvGAsC03KuckDUtM3cx9Q4AAAAAAAAAAAAAdKWyvqqXh7uzL9Ps5XhYhvQbxa8/r/3Og+tYpVxdTb0LT1jC25hrxxnj0un0cC6/7vu/Lr7mFV8TV8NVDBdDXFxcxBsv3xif939/Xrz6ja9+4nOZt5wPw4FF/zxFUazfjpp1XQf9nUckrtfol/TIDZTsDXNElGNDU8aU7Wf6GAA7ZO5VrvVwjzYl54e5E2QCAAAAAAAAAAAAMKJuirazD057UyQNqSmeYMFGKgwpvYyH69XUe7AotfP+NjppRxPKntPWz+V6s45v+KffcGMAyXBniM//vz7/if//puTCNba9jEMty84RigxHVxMUURV6wvQyY9WhlzTbhY8dL2vCSVpun9mxbC3kCYCbVQWZ9PK7+FT8rsnMCTIBAAAAAAAAAAAAGFEvb1Ys6Tcze8CadtQWRCigmInacXWscXi9Hud7T6w0tJ9Vc+L7Zj10oTrIRBDFXtl20/qa6ztf/Z1xcWd3Gc+bH3/zE+0heyzrbTv9u1ubXLF+481rHipOclXoCdPL3GuWkSf+Y8NFtvlgj7JuuH2mb/sFmQBws5r7rtbv0SbXcvgZnIAgEwAAAAAAAAAAAIARdROckK21ShZ7wjnUvAU2QgHFXFRfxrGuey/j4dXV1HuwKLXjjHHpdGrnhHP72h/42lv/PtwZ4rH3PBYR+WNZbwSZHC3bB/XV8dUUcroeXSmJ0K7SfJBJfo5Jh4ROIL3uWHeyzgXg7Gruu7r5XXwqgk2ZOUEmAAAAAAAAAAAAACPqpUA5/Qy6B6xpyE3FE0OJeM79IZ59OXIxJNOpHVdHGofLajXK955aWbezn4soYqo8xG06SYx9Wl9zXW32hwpdt4dsX9lsFZofLRtK1XbzWp6GgyK4Qepmc4iyrg9nSmcRHdtmNhXzdc1nzy17wswvAOxQFWTS+D3a9Jwf5u3u1DsAAAAAAAAAAAAAMGfdFG1nd1PRIA15ekHEJ7z6WfE7/vEHxAvf9oyIiPjRX3QZf+UT3hX/4gUPghy66Y/crjbHZKxxa1NfbDuJq/3hCZxO7TijsGu/7DmtKahr1fUxbJPBcYJwjleyQSaMr6YPz6C/L0o22GO1irg7UrnjkYGcpSLYo2wantvT9/36GAA3cw97QuZbZu5i6h0AAAAAAAAAAAAA6MkwDFWf7+Xh7mwtYFE0eJRyeRnv/tI/Ga9/0a+L1/+qT4jHPuOzYv3j/3zq3erWo0Xrv/Y1z4o/8bIPfiLEJCLiRT/7fvGV3/K8+Mi3ev/jso00Dq9W43zviZV1O4ErSwgTEmQyndbbV2YNeR1gkj2WdS+BSi3L9kFhfuOrGQ+NnZ3JXa9yeTniLhzZZirGgNFC9E4huW81wS0ALEtNgGTr92jAuASZAAAAAAAAAAAAAIyolwe203VdgkwOVq6u4g0f+ynx5r/4/fH46zbx+BtKvPOH3hyv/Q1fEJff8fem3r0uXQcADCXiD373c2/8zPtfXcTv+4cfeM7dYmy1hagjDcNl3UeQSVxdTb0HT+pjSjxKTVFXRD/rhCllz9EcQmGujzXbjjYKzY+3yZ3D/ltXB2reSN9yUATvo2yS1/b+/QO+PPmxY9tMzXjb8C1zet2xNr8AcLNtxUQ3h3u0UVnTMnOCTAAAAAAAAAAAAACStjXFdQ9188B2djcVNB3sHV/whfH46973/JXtRbzxf/gz476BfKauC71f+NjdeO7jd3Z+7t9/3TPjYttRf+RW1ZdxrMKQTsbDsl5PvQtPWEJoR+04Y1xKSJ6i2hCZcxti2PuZ62PIHktNESE7ZPugvjq+mnPceH/naZLXtlyNeD907HowGXoUEVE2DY8X2a4jKAuAHTY1c+ICfgM4RrGmZeYEmQAAAAAAAAAAAAAkHVIg28sD22W7v7j24QfH3ZEZe+8/efXOv63v342r7/3uM+7NPFz3r0/+iWff+rn3v7qI573nTjf9kU6sVlPvQU5DQSa8r9bDN1qQHbtbH+OHYf9aa7190F+zATfrjf59tGwhZtvNa3GEQHUmGQharq7qvzvbFI4MMikVoaZtN890Oti4uwFAt2ruu6zZ9nB+mDlBJgAAAAAAAAAAAABJBwWZ9PJAckkGmShoOtj9x24/x+/8uv/zTHsyH9d9ctAsl6V6XB2ngZRO3lRfGgpcqSl4GiI5LzWmNkyj9fCNnpQZrFE2D8eV7JpzU/oYh1qWDifov3m1r6YP93KPxQPZ63V1Wf/V6V04ss1UBJlEyxllydPQyzoXgPOr+X3c/e4eM7iHhdsIMgEAAAAAAAAAAABIOijIpJMHttN7WVPARZXVG9859S50Z1NZYNdNsBC3q84xOeS6J/5NQwEht1qvp96DRakOMjEuncy26crxXDjP9byWbUeHrE15muTaVlcdX6lpz+5J+pLtZ1dXI+7D+YJMWh6a06FfG0EmANzMPcgJOZfMnCATAAAAAAAAAAAAgKTtAQVzPRQol+02ouQeK+3heFgOxROkjPWG204KPMtVO4ErS5hDao+xl8CzKWXPUevtaxj2B5mstw+Ch7Lz26aTcahp6fV92+1rFmr6cOP9nafJXq/LywO++8T7sEvFeDuLWxTzCwA71Nx3tX6PNjnnh5kTZAIAAAAAAAAAAACQtI0Dgkx6KHpcr/Of3VR8FkbWRf/i9GqDIg4pDBn2/5tSM3ZOybh9XpXNTWHX6bQebjXE/iCTzfZB4Xi2XayL/n20bNiVrjq+muAxY2dXSjIwqFxdjbgPx7WZqn9f9o/3k0mPefoYADerue/yu90eB4SmQ08EmQAAAAAAAAAAAAAkHVL81EOBcrl/P//hIwvA4JS2lQ/8K6CYh/phdaTrvp72TfXZouCp9/NgDdcA36Z2nOlhndCLOYzx10Em2eJA7ed4ZdPpGLl07kn6kr1cIwaZHD1FVNx3lJaDTJKMjQDsUnMP4n5lD+eHmRNkAgAAAAAAAAAAAJC0jfq3JHbxwPbVZf6zFW/d5EnpwAGqdNG/OL3ayz5WsfN6Nc73ZiXHlbKaeD8fMYegiX2qg0wWcE6OlR3rW58TLob9JTzrso6IfJDJers+ap+ISE8qbTeveai5z3BP0pf0muWQIJNcaMghoaRPURHs0fR0lN25jT4GwM2y9yoR7d+jjSX9O7BwPmZOkAkAAAAAAAAAAABAUs2D2td6KFAuVUEm7R9Pk9aJQuOh/zd3n1ttuNBSCyjmp/I6HnDdM72xZPr1mLIFtRWFtxyvdt7fFNfnVA5Zp51VYmDZPOyv2Xa02Wo/R0uOkdYQZ1Bxjo8OpeC8soFUlxX3pU/8o9Puw/Ebiohy0WyQZfo0mF8A2KHmnreH38VHkQ1xa/0eFo4kyAQAAAAAAAAAAAAgaXtAMVIXD2xfVrz5utGCrOatVlPvwSzVFBVfdNAVSTrHtcwkmUxd4JktjGlo/OliTjxSbdiBcIT9su2m9XM5JAaW62CbbCiLIJMTyK5t225e81AVTuKCdCV7bcdcsxzZZMqm8j74kFCWc8jOlcKCANih+QDJFmQDZRu/h4VjCTIBAAAAAAAAAAAASNrGAUEmHTyQXK7yRVYl+yA2T5E5b0MmOIGnqAlFGMoyQhQWofYyHjQO7/83kweErNe5zxm3z0qQyXRaP5epIJOHwSTZY1FEeALZYv22m9c81LRnIQtdKclre8jaKt0Sjm0zlcFR5f7jx21vLNkhT1AWADvU3Hct9ne4bFiiNS0zJ8gEAAAAAAAAAAAAIKkc8HBxFw9s3694W3TjRcLNmjrwYKa22cKAiLjQdBdspIu/mTZAIBssNXngyqP0w/fRxTqhE4cEzp3TGEEmG4XmR1Os3ykhPn3J3kdfHbBmyQZzHHsfW/lbQLl//7jtTU0QHgA71IQpth42OZps8Kw1LTMnyAQAAAAAAAAAAAAg6ZAC2R4e2C5XV/kPVwRH8IhN8gF2qtT0r6H9rkhS9bB6wLA17M8biFhPHBCSLTBtqBB1CaEdtcfYwzqhF82fy8S4sikPg0yS7ej68xwh224ab15zUNWHvb2+L8l7yHJVEbBZ69gmU3sfPOaxHCPbd9z3A7BDVZDJQhfR2eBZgeHMnSATAAAAAAAAAAAAgKSaB7WvNV9UGxFlVRNk0v7xtCj9ADtVasKFLrZDF/2RjEaCIjYTF3gmA5LKus/xZ0ilybSntr0ttbCrRvYctX4uM216s33QX7NrzkPWpjxNcixvu3XNRNX46Yr0JTmOrw4Jf0yuF45tMpX3c+X+/SM3OI50N3PfD8AONfddi/0dLnufZr5l5u5OvQMAAAAAAAAAAAAAvdge8Fbi1otqIyKiJsikIjiCR6xWU+/BLNUURFyUiHeu3hkf9w0fF/dW9+LZz3h2fNHHf1F89kd/9oh7yCiqh9UDxuFh/78p60OKbU8nHZA08X4uTe28v9jCrhrJU9T6uRwSxfbr7YP+mg0ouQ4+4QjZ9X3bzWseau61FH12pWyS1+uQe6YzzRGl9reA+5dHbW88JTLhL4I4AdjlkN/HFyc7jwqmZOYupt4BAAAAAAAAAAAAgF4cEkrSelFtRES5qggyWStoOohCsFFkC70jHpTrDXeGePPVm+NeuRdvuXpLfMn3f0n8zm/+naPtH40YaxyeOkAg2f5LQ+N27Ty6hAKpHtYJvaiZE6aQCTJ5Ipgk2SwEmZyAIJMuGTt7k7teZczwx2ObTKqdLoMAACAASURBVGWbK1f3j9zgSLKHsYA1GACHsQ5LSP4O41wyd4JMAAAAAAAAAAAAAJIOKZA9JPzk7C7zb4v2gPVhUm+0HvYXOPNU1+0x0yovdnzoB37uB+Jb/9m3nm6nGF/tMLQdZ9wq6/Uo35uWDSjpOEip9WCKm9TOk12sEyaWPUdzOJeb8qC/biPX9nvsI60pivXbUTN+avt92SSv1wFBJtlWc3STqRwryv38PfZZZU9Yx+tHAMZ1fc+SsdTfkcs2+XvRQs8PyyHIBAAAAAAAAAAAACBprkEm5aqiYEzR4GHGfLv4gtX0yWFHVxyGIV76z156oj3iHM5S55HJFZo6yCRZYFqygSecRO28v9TCrjG0fi6HRGDZ9byWbUc1RYTskGw3jTeveagKMnFBupLtZ2PeMx3bZrJhLNebu7x/3PZGkj8N+hgAN6u55+3hd/FRZAN1hSoyc4JMAAAAAAAAAAAAAJIOCjLpochudZX/bPZBbJ5qq9B4DDUFERdldwH5jz72o6fYHc6mchw6YBzO5JjUFrSeWkkGmWQDT86hdk48ZN7tzWILu0bQ+porE2Syedhft8mCto31xfEUD7aj5j7DPUlfsuPzasSQuCObTPUcc3l53AZHkwyVmXidC0C7svcqEe3fo41mk1zTLPX8sBh3p94BAAAAAAAAAAAAgFnr4HnkqjdfK/Y8zFqh8RhqCiKGDvoiSee4lokkk5ItTBlLcvul4/GnxyCT2kKtXgq7Nj/7M3H/218WERHP+ozPjDsv/EUT79H72kbb7WVIDCybUtdfe+wjzckW6/fRVftW0547GTt5KHm9yvqAtdUtYYVP/Vz9Vz9FZXBUuawICz2n7HkQlAXADjX3sIsN7sz+DmNNy8wJMgEAAAAAAAAAAABIKge8+buHB7bLVU2QiYKmQ5R1xTkmraaA+6L9rkhW7bUcqzBkM/F4mN3+1Pt5hJo3Pbeidt7vYZ3w9v/u8+Pt3/WaKNs7EREx/KlviQ/6tH8vPugvf9NZtp89R62HwqSCTB6us7KhLBvrsqO13m7YwXXrSsnO54cEmWT34dgmkw09ut7e1eWRGxxJ9jxUHi8Ay1ETINnD/e4Y3GPAAxdT7wAAAAAAAAAAAABAL2oe1L7WxQPbq4q3RR8Q5kLkAmCSLxPnSTX9a9B0l+uQApJMf8y+YXcsHQaZ1M6Jh8y7U6stWGq9wOmdX/zF8ba//6+eCDGJiCjbO/G2b39NvOuP/c8T7tn7av1cpoJMyoP+mg3Pu/48R8iGwbTdvGahKjSy8f7O0yQvV1kdEmSSvIk6uslUfsFlxT12i/QxAHZo/b6rCZvkmsbv7MycIBMAAAAAAAAAAACApG2ZZ5BJWa3ynz3gHHBoUR771BS8DkVSzFKNVWRTssXvY0m2/7Lpd9yuKmrvVMvrhLLdxtu/5Qd3/v3t3/zyM+7Nfs0X1CWmoc3DcSXbLg5Zm/I0yXbTeOuaiYqzvNX2u5K8XmU93j3TsVNE7XqqXF0et8GRpOfKhoLwAGhLzT1I8/doY8nOo+7nmDlBJgAAAAAAAAAAAABJhzx83cUD2zUhGz0cT4syD7APgjZqbSP/wP+Fpjsb1cPQAeNWqjuupy3wTAepTLyfx6jp462oDSZpOYhi9UP/ODaXd3f+ff3eu7F65Q+fcY9u13p7GRIDy/ZhsX/2WLbCHI6XPYfWEeOrCK/q4h6LJ2WvV2WQSTnnGFi5rXJ1NdKOHCl5Kc56bs+kXF7Gu7/iy+INH/3r4/Uv+nXx1s/6b2L9mldPvVsA3alahy11yZYMMllCeCvLJsgEAAAAAAAAAAAAIOmQYuMeiuzKapX/sAesD5MNHKBKTf8aNN3lGuvaVxbbnn772cKYfgtRWw75OJWW1wmX3/t9ez9z9QM/cIY9yWn5XEZEDLE/yGRTHvbr5KE88XkOZ23bjpoxv/H+zlNli3RLbfhazRrn2CZTu566qrjHPqfseeh4/XiTcnkZb/jYT4k3//nvi/e+dh2Pv24T7/iB18drP+F3x+X3fvfUuwfQlZr79Nqgz9lI32Ms9PywGIJMAAAAAAAAAAAAAJJmW1C9qijGF8hxkKqwGNJq+uSF2oD5qL2WhxQ7788bmD4gJDseJ98EfA5LKGKqDdNYwjk5lzkFmWTnt4112dHyY3liYuB8Gu/vPF3yetXcl0ZUhW0c3WRq5/erqyM3OLGZ9bF3/PdfEI+/7n3nzLK9E2/63V8WZeqAQoCO1NzDLvV+t2Tv04QqMnOCTAAAAAAAAAAAAACSDimQ7eGB7aoiq6kL93u1cd7GUNO/hva7Ir2ZOCCkJLdfOh5/th3OObXzfuvhGz1pfc01DIkgk8pgEu3nBLLjjFM9vppCTm2/L8lrW9aVa6uadnBsk6lck5SrRoMss+eh4/XjTe794L/Y+bfVe+/G6uXff8a9AehbzT1I6/doo8muaeYamg4PCTIBAAAAAAAAAAAASNoe8HBxDw9sV719WNHgYRKFyYn6Zp6mpnjiTnGCZ6N2GBpr3Jq6wDMbpDL1fj6q8lJso6F9H0nT64RG3g6dPUeth3oMsX8eug7vya45N2XaQKVZSLabtlvXXAgyma1sP6sNMqkKFznuXqDUhqvVhIWeUbbnVB9v4y7fdnsZ7Tu/9i+eaU8A+nfI7+PLkzxHjdxzw1gEmQAAAAAAAAAAAAAkHRRk0kORXU2QiQesD7OqOMek1fTJQdNdrpHG4bKZuF8nApIiIko28KRBpcM5p3be72Kd0InWC+qGRGLZdTBJNrxlkxwHuEW2WF9XHV/NmG/s7Ev22tauWSrCNo5uMpX/vqxWR25wJNnjWNj8snr926feBYBu1IRxLvZ+Nx3OttDzw2IIMgEAAAAAAAAAAABIOujh6w6eRy4VQSal8SLhVpVMIViiwJmnqumTgkzmo3ooPuTaZ/7NZuLxMFu821AYSE3BU0TENvsW44bUHuNiC7tGUHvuW3QdxpJtF3M45snpg82oGg8bmtvYLz2mpYt+H6oIMjl6uKzZVswhyKS/NRgA51ETOLrU+93U78AR1rTM3t2pdwAAAAAAAAAAAACgF9sDQjy6KDCtKRibunC/VxVhMeQ9URCRyIC56KArMo6xCmfKZto31We3P/V+HuOQebcL5dH/Z+eDU0MhXK0XyQ2Jc7UpD/prtl1ssgVy7FSyxfqlnbZO+/2dp8ler8ogk6p2cGwfrr0Pvur8/m9GhdXpcR6AlB4DR88uuaaxpmXuBJkAAAAAAAAAAAAAJB3yoHYPBcrlquJt0XMtKh9bx0ECLavpk0P7XbELZbt9EMxzcRHD3YkeR6++liNd/KmLIrMFtZt+G/926nN8gNsKkT7kXXfi8/7xc+I3/OSz4+52iNd+8Cp+6Nf+XMTvOOMOzljra64hkbp13eazBW2CTE4gOUa23bpmouY+Q9FnX5LXq9SGhWzyYSHHtpjaQuPSaJBl9jBmFf6ROJaGctkAmlczJ7Z+jzae9IQ77m7AxASZAAAAAAAAAAAA3RmG4YMj4r+MiE+KiF8ZEb8kIj4gIp4REe+OiDdFxKsj4hUR8R2llFdNtKsnNwzDr4yIT4uIj42IfzciPiweHPsqHhz7z0TET0bE90XEd5ZS3j7RrsIslQPeStzDA9ul5s3XigYPMqtCsIbUFE9cHPsW9oUr9+7FO77oD8U7//6Pxebqbgx3NvHcX/vC+Pl//mvjzke8YOrdu90Bw1aqaU0dUJQMMDD+tOH97w/xVS99XvzCtz9ZxvHCtz0jXviyiHd+8RfHc7/maybcuyM0tC5o/W3WQ6JKelMe9Ovs+rGHdWb7nMNm1PRhRZ99yd5H166tau7Pj70XqFxPtRpkkjan9ePUa3aAmdlWrMMWe7+S/a298XtYOJYgEwAAAAAAAAAAoBvDMPyyiPiSiPjciHi/HR/7oIf/51dExG+OiK8ahuEVEfHVpZS/e5YdHcEwDL85Iv5oPAgwucndiPh5EfGhEfGrI+J3RcT9YRj+VkS8uJTyr8+yoxExDMMLIuJjIuKjH/7fH/Nwv27y5aWULzvTrsHRah7UfkIPzyPXFFkdEOZC1J1j0moKIgZN9yiPfdbnxrte+ba4fgS9bO7EO17+c3H5Gz8nPuL/+54Y3m/X0qwBIxWGVIVAjSFblLnptxC1x6KnXfv83/7gBzwlxORRj/31V8Rzvvh1cecFv3DMXZu95oNMYn8R/fZh4Xj2WDbJQCNukR0jBaKNryqUou3+ztMkr1dZV65ZzhloUxvssWr0/i/bdeYUZOJeHOCkDvp9fGFK9j7N7+zM3MXUOwAAAAAAAAAAALDP8MCXRMRPRMTnx+4Qk10+NiL+zjAM3zUMw0ecfAdHNAzDLxiG4Xsi4u/E7hCTXZ4VD87XTw7D8MeGzCvA6/fvw4dh+PRhGL50GIZvH4bhDRHxcxHx9yLiT0bEp8buEBPoziEF1T0UYZeaNxR7WP0w3gI9ipqi9Yv2u2Kz7n/LNz8MMXlfj//cNt7z4j911v05S+1yZhsTF1Gnx+6GCmNq58Q5FUj9h6995u4/lou4/23fdr6dmanW20smyGRTHvTrbF/ZzqnQfCKtB+CwQ0NzG/tl+1mpDV+rGgOHKEeNmXVtrrQaZJI1o7Gx6vcOAPaque9a7Fo7u1Zd6vlhMQSZAAAAAAAAAAAATRuG4dkR8e0R8eJ4EMxxjE+JiFcOw/AxR+/YGQzD8Ksj4pUR8V8c+VXPioj/NSK+bRiGn3f0jkXEw+CSn4uIN8SD6/NlEfHpEfHhp/h+aNUhBbJdPLC9zhf2HFf8tVyp83byuKn5e6JPJrrZ0EFXbNXj3/V9t//9n/zomfbkQGONw1MXRY5VFNyQ1oMpbrJr3v+oN90SZBIRb/+GvzXG7hznoo2JKR3qEW23l8xxXLf57PrxOviEI6TXtm30h1mrmq8t7LqSvbbVQSaV7WB9eLhI2VQGmRyxrTFlL0XP68f3sWnzWgD0quq37qUu2bbJ+7Qe/ncDOIIgEwAAAAAAAAAAoFnDMDwrIl4WEZ92wq/9iIj4B8MwvOiE33lywzB8dER8d0R82Am/9jPiQZjJ+53gu14UES84wfdAV3osqM4oFUEmdW+95gmpN3IrkK11XRR+kXjuP/MZbva27/ipW//+7h9/15n25KHaazlSYcjkBZ7ZIJXaIt+GzHXevUlZN3idOms7rYfHZYJMNg8L3rLhLdnPcYuKdiPQb2Q1fbiz8WnxsuEZlX2s1K4TVqu6zz9lY7Xb6jxoqvE5tcrU4YMAM1Nz37XY+5Xs3DOn+RZuIMgEAAAAAAAAAABo2Usi4pNu+ftPRcQfiYiPiYjnR8RzI+KXR8TnRMS3x+5SiZ8fES8bhuH5p9vV0xmG4cPiwf4/d8dHSjwIePnseHC8HxgRHxIR/0lE/NGI+Je3fP0nR8SfO9nOwsIcUiDbxQPbNUEmHrA+TKYoT45Jtes+OSSa5eAEL9chw1bm30xdFJkMUikdF3v3uO8Hz/uGqKM1H2SS2L/r8J7ssWyyb/pmt5pwAkEm46opim28v/M02eu1ruxjleEi5Zi1W2WAXVlngiwnkO06cxrvan7vAGCvbeTniC5+Fx9Bes0xp/kWbnB36h0AAAAAAAAAAAC4yTAMnx0Rv2vHn9cR8Sci4mtKKU+vDHhXRPx0RLx0GIaPjYhvjohfcsN3/MKI+KsR8ekn2eHT+msR8RE7/vYzEfG5pZRXPO2/vzsiHouIHxmG4esi4osj4sVx83Niv38Yhu8tpXzrqXYYlmJb+xbm6KPIrqqgq4PjaVHZNFrI1rnr/pV5u+OFpjsjdYkPh4VQZT40bcFJyQYYdFwYU1MgBa0XyWX2r3atecjalKcqm4p2s9lE3FWKNZqa+co9SV+S16vUrllqA8/OeE9Weg/PmFEfK9vEdR8kygFk1fzG0vo92miya58Zzbdwk8xv9gAAAAAAAAAAAGc1DMMHRsTX7fjzJiI+p5TyVTeEmDzFw7CPXxMRr9nxkU8bhuEzD9/T0xuG4bdFxKfs+PNPRcTH3RBi8hSllHUp5asi4nPiwfm6ydcPw/Ccw/f0Vv8mIv52RPzxiPjkiHjeSNuBszusGL6DB5Jr3nxdWyzGA5Vv8CbnOuRgKPsLzwZNdz6qr+U4F79M3a+TIVTFuH1WiytEaqjwt/Vzn9m/62CS7Pqx9WPuQ8U57DgYana0/a5k1yJVwUIR9X1ytar7/DHbajXIJHHfFNHAOveUWr0WAJ2q+q17qUu2bGi4NS0zJwYUAAAAAAAAAABo0R+KiA/f8bcvL6V8a/aLSilvfBhW8iMR8f43fOSrh2F4WSnTv8p6GIY7EfFndvz5XkT8plLKm7LfV0r51mEYvjwivuKGP/+CiPiiiHhx9Y4+1c9GxCvjwfl9ZUS8spTy1qd/aGiowBGOMde33pfsw9WVn+URmcI3Q2W16wLui8Rz/4JMFuyQa5/5N1MXeGYLajsOMulx3u0iwGym5nDuN+XBOisbUHL9eY5QM5avb81S5UhVwTyKPjuTvF61a5bKe9Nj7mVLZZBJqQkLPaP0GZ5TcJPfMABOSphiQvYew7lk5i6m3gEAAAAAAAAAAIBHDcPw/hHxB3b8+Scj4itrv7OU8i8i4k/v+PNHRcRn1X7nSH5bRPzSHX978cPjqPWVEfGqHX/7g8MwPPuA74yI+OMR8fxSyi8upXxWKeUrSynfc1OICczJIQWyPRRh1xV0ecD6EEXh6yiuiycyISV3tpJi5qK6zmOswpCpCzyTY3dpKMikdh5dVoGUMWqn5Klpvb1k9m/7cFzJ9pXt1OPQHFS0m9bbWPcEmcxXci1SvWapHQNXq7rPP6py15oNAM0ex4zml2avBUCnan7rnkPY5CHKNjn3WNMyc4JMAAAAAAAAAACA1nx2RHzwjr99aSnl0Erwr4+Ix3b87QsO/M5T+8Id//0tEfHnDvnCh+frS3f8+fnxIDzlkO99ldASlqiHUJKD1LwtuqGC+K7MqBCsJdcFxReJZpkJO2GmDioM2Z+cMHVRZLrYt+Nxu8d5d3GFWg0VXrUeMpFpG9dtPnss2+ivjzSnpt1sBNONSpDJfGUv16ZuTKse949Zu9Xez9XcYzdpRn3M2A1wUjX3vK3fo41mqccNTyPIBAAAAAAAAAAAaM1v3/Hf/21E/N1Dv7SU8nhEfNOOP3/iMAwfeeh3n8IwDL84Ij5+x5+/8eH+H+rvRsTP7fjbrvMN3OCQh697eGC71BRldVhU3gRBJqO4LuDOhJR4cJoqmaF76oCQ5LjS87DdY5DJoYb92Tltamh+az1EJrMmrG3z24bOf6+q1sFTj/tzJ8hkvpLXKx3S9uQ/qPv4elX3/Y+q3LdSGcpyPrkFR9nMqI9NHD4IMDc9/NY9uezc41wyc36PBwAAAAAAAAAAmjEMw/Mi4hN2/PmlpRxdyfg3d206Ij7zyO8+1mfG7mqCXfudUkrZRMRLd/z51w/D8EHHfD8syWwLqmuKrBTMHqSsEw+wO7XVrosnhrK/IC8TdkInEtf7qZ8fZzeqxs5Rtj//wpgeC6Ru3Of+DiOtKgRiZK23l0zQyvVaMxvKMtu16TnVtJvNerz9oE7j/Z2nSo/PtUNa7RyUuSfboXaOKetGx+fsYcxpfhFkAnBSNXNi62GTo8n+XmRNy8wJMgEAAAAAAAAAAFrySbH7uab/59gvL6X8RES8dsefP+XY7z/SJ+/47/+mlPKqE3z/rvN3Jx6cdyDhkGLRHh7YrnpbtDfRH2abKJ7y8Hq16+KJi8SpE2SyYAf0rcy/OD5j70jJ4t3S8bg9l5CGzBi1M9JwUokdbynIpPE1lyCTRlWMkUUx/LhqimI7ntsWKXltq69r7efXq7rPP6o2yGTqwLsd0kfR6P4fwtgNcFrbiuSx1sMmR5O9T7OmZeYEmQAAAAAAAAAAAC35dTv++/2I+KETbeMf7vjvnzgMwyTPVD3c7n+248+79rfWD0bE5Y6//foTbQNm75AC2R4e2K4psurheJqUKfR2bqtd98lMSMlFaTIlgANU95RDulbm30xc4FkyAUkRhx0/J9VtkFKmqKqlIJPG59HM/m0e9uvssQgyOYGaduN8j6uqD7fd33ma5OWqDjKp7JNHBVrUznczCgLpniATgJNq/b6rBSUbPOtcMnOCTAAAAAAAAAAAgJZ8zI7//mOllKsTbeOHd/z350TER51oG7V+xcPt3+RHTrGBUsplRPzYjj//x6fYBizBtqFi3ZPaKOAcW1nvL57y7Hq96wf+LxLnrtsgAY52SAhVytRvzk0WyFYXBTekx5CGm9pbZoxqUab4qiYMbWyj9fVTyeTCVLb5HvtIc2rGyMR6rjf3vuHr43W/4uPjX3/Yr4mf+fBfE2/5jZ8Z65/88Wl2puZaNN7deZrsta0d0mpvoFbryg0cvq1m11/ZcMc5/faRDf8DIKUmfKP5e7SxZEO0/BjMzAkyAQAAAAAAAAAAmjAMw52I+A92/Pmfn3BTt33Xi064nRr/0S1/O8ex/6phGDxPBgmHvCWxhwe2q4qsPGB9mEwhWKvFbg27LuDOhJT0GiTADbIFmE98fpyLn33D7miy2++4DnUubye+qG2zrUjNXeMXBw+RO3+tt5fMmvB6XsuuHwWZHK/UnMOZne/3/OkXxxv/1N+Oy7deRNneie3mTrzrR94ar/+03xebN7z+7PtT1YetmzuTu17Vw3jtWuyIOas2mKTUhIU2aPJ17inNMIQKYEqt33c1ITuPzuz+Ap7O//AMAAAAAAAAAAC04iMj4lk7/vZTJ9zOv7rlbx91wu3U+Hdu+ds5jv3ZEfELTrgdmK1tz9Xgt9lUHFfNZ3lS5k2cCgGqXRd6Z0ICMmEnzNQh1z4TPDH1eJgdMzpu+z2GNNwUQJEaf1rMOskUX2XfNH0GrYfHVQWZJPu3IsITqDmFMyqG3779bfHmb/j7N/5tde9uvP33/4Ez71Etbb8n6RCQ2mm/NlxkvarcwKP/uLLNNRhk8iCcJLngmFFYUDlD6BrAkmxKflxd7P1Kdh5d6vlhMQSZAAAAAAAAAAAArfglt/zt35xqI6WUN0XE4zv+/EtPtZ1Ku479XinlsRNu52du+dtUxw5dOeTh6x4e2K56u3QHx9Oikgg8cGrrXfevTEjAhfO7XGN1rokLPEsyQKLnsaXLALEbzndu/GkwySQRZJKZ346WPDWtr7lqgkyyaooI2SH7tvRov43VuHzZ34uyvbPz74+/6g1n3JuHas7vjK4FT6rNL6sOqDgmjKhirIhodLyoOYYW9/9QMwqhAmhBzRzXetjkWNJrlBkFh8FNBJkAAAAAAAAAAACt+Mhb/nbqCppd3/fCE28na9exn+u4I6Y7dujKIQ9fd/HAds3boudU0HROmfPm3Fa77l+ZkIChNBgSwIHGv5aZ3lgqC1pPLrv9hoaW2jmxKmirETcdYyZsqcUck1Qbn7ofPKL1NVem4O86yCR7LLXBJ9ygZv21WY+3H2f29q//a7f+/eqdu0NORlPTnjucHxYteb2qb4dq56D1EX24ct+azJmqOV9z6mO1gTcA3Kr1+64mpAM/nUvmTZAJAAAAAAAAAADQiuff8re3nHhbb97x35934u1k7Tr2cx13xHTHDl3ZNlSse0pVheIzPQej2yieGsN1n8zU/2fCTmjf5OEhj5o6fCh5LnrOOZhLSEO3408m6KyhPlnzZvApjBFk0vox96BqHTyj9dz2foOhLNoz1UEmtQFpR/Th2mCPFoNAKsawMpM1WEREmdHYDdAC9yAJ2XPU4noBTuju1DsAAAAAAAAAAADw0G1BGu868bbefcA+jGnXds913Lftw6wNw/ChEfEhlf/sl42xL/ThkAe1e3i4u6ZGqYfjaVHJvInTqa12XeidCQkYnN95OCQ0YaRxK9Wvx5TdvrY/uaHsj1vKBDKdXWaB0FKQyQwa+xPhPSVSjWIuYT/Tqmg31sHjqijkdE/SmeS1LYn58mlfXPfx9eEBPrXBHk0OzzVz9pwKqzNr5iYXYgBtqrkHWeyaLRs8u9Tzw2IIMgEAAAAAAAAAAFrxnFv+dlsAxyH+f/buPeiWL6/v+rf38/zmAgwlmJDB8kIgBhVMSpBEQQOJZcklMSZGCMFKQA2pJFKiRGJEizGmEiJUEFQulcFwkXKYgeJmJGTCBEEyMgPklxAGQcgAQ8hvhrmc3+/8zjnPs/fuXv5xznPOc/bZvff3s3qt1atXv19Vvyo4z967u1evXmv1nv399NjnvSbxdrzGjr3UcZvNd+xz+1Nm9uVz7wSWY1ALpZZC+dF0RQXLi+Jpt5aKxQq5+cG/JyTAE3aCBSgVZOIppJ254CS4C2My70hGSwymOLbPSx1/Qt87XlPPuqD2IjBPf745Bm/fJ8gkAWX9tT9/TaCUuq93PM09nw9imoR6/+SY10aJm6pxePbM609e3NA1NjB2A0BKS7xPL80957Y03wJHbObeAQAAAAAAAAAAAAAAAAB45JUn/rZLvK3tyL+/IvF2vMaOvdRxm8137MCixBTILuHH3UEpAOMH1nEcxVM0re4mXKhztN1GfsI7qhRRgJrt2po7wMFbIbvgvt9KSIMryKTG0+Tp4wUmr67zNU7tay7P/ql9vvbwlkUQ1sGhkTGpXkq4In1/UbxLFvlzxTFzv1e3cOvNapJJ/Kay6YXjb+kamxJgAwB4hnIPUvs9WjbeNQr3c2gcQSYAAAAAAAAAAAAAAAAAavHcib9NqDSQPm+uMI+xYy913GYEmQAurRRUP0M5LH5gHSX0jnajbWU3xROekABP2AkWQCxYfSjPyZ89QMAZpDL3bk7RyrzrGn+cYR1Fedo/6prMY/Zr8gzP/t0EdHkL/lq5Rmal9JuWiuFrvFwIV2yY83yFjQVhXpHH/SnXsBqaUuPwvNLgptDS2A0AFVDCSWq/R8vGe9xr9CvkWQAAIABJREFUbR+sxuXcOwAAAAAAAAAAAAAAAAAADql/zbeUXweu9bhL+joze5P4no8xs+/NsC9YgJgfXy/hB9tSjdICjqdKnuIpmlZ2c315QgLOhZ0Mw2CbDc+JjBX2e+suC/w8PSY0IeracoRKzP2kevcTfisMyHBawhx6KITwTPfxhC3VyBXC5QzUiTXkLGgvzZNpJo4rBJlMJ/Wbucf9xknnovbrHU9TTtd+b/YKZ9auOgbu4/OC1S4Xalx/9cLxtzTeZV6rAMDaVH/fVQP39zW0JdpGkAkAAAAAAAAAAAAAAACAWuxO/O05M9sm3NZzI/+echuKnZm98si/j+1nrFOfN9exzyqE8B4ze4/ynq6rsBgFxTRbLKr8ZrqlgqaSHD9M57frupunwHpCAs6FnQxhsI0RZBLt+tqsQJBJ1BPVxYsreAtOYkJVEvLuZ1VDi7iMamXe7WosZvZwtH/IfI6UPqA8GXwOnv0b7OHxHgvEif1MnCEFmUTMQQtWLKQsCn1/UZTr7PraH2Qi3pu613hH3yz2uaHCuV9pr5ZuTlc2dgNAbgSZnBe8IVq0JRrHN+0AAAAAAAAAAAAAAAAAanF94m+pAz3GKiLmCvMYO/ZSx2220iATQBVTLLqEAlOlBnlS8deaudqt/r5Sm5viCU9IwLkgk/0Q/4R2mIXdqUy6lBsqMAZ5A0LmDnZyP+G3wkJapyUWSB2b9z1hS2rISxGe4itvgVak1QWZiGNcK2E/sxLG8qgwrSUrfbxSqEy+3UB6yqkN11f+F6v3pvsJ6301NKXC9VdQ7nfmXuemtLaxGwAyU+67ar9Hy8a7+Fngdx6AgiATAAAAAAAAAAAAAAAAALV4+cTfPiTxtsY+727i7XiNHXup4zab79iBRVliQbWHdFgUzEZxPYmzze6V1U1BhCckYHOmmHC3LxTE0apS7RdTVKm+xVsUO3eBp7t4t7MwpXAXk50LUqqWZ4GQeV0gBZlUvk7zFPHdHIO34I8gkwSkhIWW2ttx3KXnDuFc1H6944Bybrenco4PDGJAxZRAC7nPdfWFgO79x9/SNeY7D/UFzwBArVqaI7LxrlFoSzSOIBMAAAAAAAAAAAAAAAAAtXjfib99aOJtjX3eqX3IaWy7pY771D4AuCWmWHQRP+5Wnha9hOOpkad4iqaV3VxfnpCAc6/ZB4Iepgi7QkEmMUXk6ri1lCfnKsWxpc5PYq2ENCw1yMRT+Bv6vAe3H/xjc/VP+3bs3mBan2/lGpmVMpYLIQAtCFNCH6I2KKUrZtsNZKCcruut/7ViqFyYcA1H3dc/eBC9vSyUOWPuwL6USo9lANA45Z5lEd+L5+D8via0NN8CRxBkAgAAAAAAAAAAAAAAAKAWp4I0PiLxtsY+r7Ygk1LHfWofANxSfYFsJKkGlh9Yx3G022p/3D/BTZttHE137jVKsTyO2F6X2U6JIvKFFJwo2y8WNJNYK/PuhScwrBNCxUrx9LHMQRpSP698HvX055vj9fb92o95CbQ2XFl794XXRsq5oO8vi3C+grCmDOocNCXQIqLPhaur+O3loKyjW7rGekK/ACAlZf3cyj29KrjnnnW2D9aDIBMAAAAAAAAAAAAAAAAAtXjXib+9NvG2xj7v1D7kNLbd1Mf9kRH7AOCWmKL1Rfxg21Ng/eTF2XajZcETjEDTym6ur87Rdude0w88qXuKsCtT7CwXrFpEob8zyGT2Ak9l+wsNMhkyh2TkcGze94xRVfIUfGcuDlae9l07z1j0+HidfWaJ10h1lOuzRJhWTaaEPuRGuGK7roRwvFxrvKPvjfgu4PpB/PYykNbEc69zEwo1j2UAsECEKTrQRoCZEWQCAAAAAAAAAAAAAAAAoB7vPPG335xqI13X/SYz+6CRP//DVNsRjR37h3Rd9xsSbudUO8517MCitFRMe5v0HHqeZhyHIJMsboonOkcYz7kfTu/7MkEczSoVlBFTtK9eW94i17mLqIVi3LAVioIr0kqB1MYTtqRkihXiCnDLfI6UoI4W+ot6DASZJCCM5TFhWotWOrhlpSELayCd2u3W/2JxLRamrPcjutzP/PLfj99eDsLxx4S4VmtKgA0A4BmLCO2emzsgN+9uAHMjyAQAAAAAAAAAAAAAAABALX7FzMYqLH9rwu38lhN/+/8Sbkfx8yf+VuLYH5jZrybcDoBbav9xdxgGsyD8pJSiwSiuABiaVnZzfblCAs6EnfSBJ3VPsi8UZBJVVC0WuTrHudmHQyVYqlTQzBmdaWkdiwxpONIvurn7SixHJw+Zi4MHJbCn8onUs383fd57LLUf8yIog/nKAv3CUDjkbfaJFdkI5zbshCATdZ0w5RqO6J/f/vwb4reXQy+so1u6HpXjBgCctbawyShLCcgFMiPIBAAAAAAAAAAAAAAAAEAVQgi9mf30yJ9/e8JNnfqsv5twO4rnT/ytxLH//bC6R0sDcaJ+fF3775HV4va1/gB9Kk8xeIHdaM3NNemJRjgXdrIvXazbmLAVik4nbShiyaJeXN6n1c9ccKIs34qdn8QWGWRyxGKDTDzFV5mvg8HaKZLz7J8aTFL7MS+B1IbDyorho8LDJlDOBX1/WZTTJQWZiP1gH7/ejxlv/693/Z3o7WUhjXcNXWOZQ9cAYG24B3FwtxFtibYRZAIAAAAAAAAAAAAAAACgJj8x8u+/reu6VyTaxieN/PvLZvbzibah+n/N7N7I3/7VFBt41H6/beTPP5liG8AaxBRUqwWppYXra/ENdR9PtTzFUzSt7Ob6OhdSYnY+SKBfW3FyahMKQyUxRZXquOXcRpi7wLMX5iQ1tArRjs37m+CJW6qQp4/3ecdO5Tqrfs3l2D91rdlK2M+spML+lbV35uv7kDSvck/SrHAl3J+K12SYcg1H9LnnuspKN5VwooauscB9HgAkpQSZ1H6Plkvwfl/T0HwLHFPZahgAAAAAAAAAAAAAAADAyv3wyL+/ysz+9UTb+N0j//4jQXmsfUIhhN7MfnTkz78n0WY+xcxeOfK3H060DaB5Tf74ekuQSRG9o91oWtlN8cS5kBKz82EnBJlME/aFgjJKFJF7l4Rzj4fK0rXU+TlHzPNoZd71hC1ZV1/Yief2KHegzz74Q5Ja6C8385r3WHgaegJKEyoBUg0IhYNMFPT9hVHmit3W/1q1H0zp0xFd7qKva25XvvZs6hrzBLjUdaoAoGot3Hdl551H5w7IBTIjyAQAAAAAAAAAAAAAAABATX7IxksDPmvqh3dd9/Fm9s+N/PlvTv38id488u8f1XXdv5Tg88fab7CH7Q7AIaaYp/Yfdwc1yGRtT6JPZKasrObdXF+bcL7ybHPmFOwHf7E8jtiXab+oJ6qrw7B3nJt7eBeGlbAVioIrMjQy57iCTGrkKarKXOis9IHai649+6euGwdlIMBxQvFgU+s5z2H3pddGQv+v/HrH05SzFbZC+Jpa/DsljCii0Piitm6qBLm0dI01sp4EgFoo912136Nl45x7Vts+WA2CTAAAAAAAAAAAAAAAAABUI4TwXjP70ZE//+Gu66b+5unzxjZtZt898bOnOrX9sf126bruwsw+Z+TPPxxCeP+UzwfWZIgoXqz+B8kPrrTX1348tXIUvtG0upvrq3O0XXcm7KSPCcjAY8WCMqIKEcWLy1uoOvOTc6WC+kJBM6nVMIcO73m3feCPf6G965//ZHvXx3yyvftTP922PzSWQXicZ4yqkqePZy4OloI9Km9nz7GofT7wBO8EhDacEoKwREroQQpS2kW2vUAOyti2868p1YC7MCGcJyag9LI/H7ZYlNJeDc0vofRYBgCNqz20uwrutQ9tibYRZAIAAAAAAAAAAAAAAACgNt828u//jJn9gdgP7bru1Wb2n4z8+UdCCL8S+9kphBDeaWY/NvLnP9513asmfPwfMLN/euRvY+0N4IgaCqpTU8MHKJiN5Cn0pmllN8UTG0fbnfvhNEEmE5UKyogZg8S3eANCZp8ThIL6YkEziQ02b2jAcOeO/aNP+YP2/u/5WdveubDtSxf28jvu2bs+93V29cY3HH3PsaKuc0FKD180dW8zcAWZ5L0OlBC5Fgrq1NC8Fo55btLaNiLUcNFKF/9L54K+vyjKqVXWLOocNCWMKOKtl7UNGdI1lm83isscugYAazP7dyELELxrDr5nR+MIMgEAAAAAAAAAAAAAAABQmzeY2QdG/vbfdV13Efm5X2xmv2Hkb18f+Zmpfd3Iv/9Ge7j/sq7rLs3sdSN/fp+ZvTHmc4G1avKH2nJxe4NtUECTfacCN+3aOZr33Gt2/S7BHq3YrlSQiV5ULV9/3kL1uS9r5bj2y+zfc4+dH/iP/oRt7xwpuwgbe+G/+Bp3sbUnbMm6+pJMgqPw1xv8E6ulIBNPf745Bu+xzB320wRlnJkSgrBAoXSQiZR2Uff1jgPKqd0JaxY1/GlKn47ocxdDXXO7dPwtXWMEmQBAUsp9V+33aNl4556W5lvgCIJMAAAAAAAAAAAAAAAAAFQlhPCymf0vI3/+ODP7c+pndl33sWb2ZSN//kUz+86Iz3xd13Vh5L/PVz/vkTea2S+N/O2/eXQcqv/KHrbbMV8bQrgf8ZnAasUUi9b+g23piddm8xfuL5XjCZv8dl13c315QgLOvaYPpYt12xL2pYJMChQiOp+Imzm/4TyhLcJ2oUEmM0869//eu0b/1l9f2vYtb3Z9jidsqUqeiSnzE6RbCjLxUMN7Boqzp1MCFiLCtBateJCJgIVzu6QgE7EfFB4zL2u7hJQ5taVrzBNC1dDhAkBuTc0RuXjbiLZE4wgyAQAAAAAAAAAAAAAAAFCjrzKzd4/87XVd1/1B7wd1XfcRZvY9ZvbBIy/5syHUUbkcQtjbeFDLB5vZ9z46HpdH7fS6kT//mpl9tbSDAJr8oXbYiUEmFMzG8RR6t9e9sru5Jrtw/mnn54IE9kOhII5WqWNJrJjQhGxFrvNetEEZj/d1BJl03flrtSbbly5O/v2lr/5G1+d4wpaq5OljmYNMgvD5ta/TPEErahhLC+Ets1P6TeV9LLnSwS3Suci3G0hPGZ+DEmSizkETwnmU+ejG5VDZumcvHH/m+b0k15p5beM7AEyg3IPUfo+WjTs8bKXtg9UgyAQAAAAAAAAAAAAAAABAdUIIL5rZl4z8+cLMvqPrui/tuu5kZWHXdb/TzN5qZv/CyEt+IITwXfF7ml4I4Q1mNvZo9481s7c+Oq5RXddddF33pWb2HfawvY75z0MId+P31Kzruld0Xfcqz38nPubS+xld1/GbN8wupli0+gLT6yvt9Wv9AfpEMYVvOO/m+joXUvLwNacLCfvSxbqNCfsyQTBBeJL8kzeJr/cWuc6d66TUexc6P6kNM4ZneYpe9+9/2fVZSw0ycRWdZZ7f9sHfd2svkvPsn3oM1a8zl0BpwgkhCIukhB6k0FBwESbYCWsWdV04ZV0R0ecu5l4rHlrr/c5ajxsAMmEddl7onW1U21oBSIz/URcAAAAAAAAAAAAAAABAlUII325m3zLy50sz+8tm9jNd131J13Wf0HXdh3dd95qu6z6667rP6brue+xhiMlHj3zGr5nZ5yff8TT+qJm9MPK3j7aHYSbf3XXdZ3dd95sfHfeHd133iV3X/Rkze4c9bJ/Lkc94fQjhjQn282+a2QPnf2O+TPiM35Vgn4FJWvyhdtgKT7w2a+rJzEW5ngJd2RO7F+DmmvSEBJx7DUEmE5Uqdi5RRO4scp19TlCKcXfiWJ9BTCjJrG2cMERl4xjfuxqnAMecHxUuJJj9OitMDSYhKG06qY+trT8WXhtp1/u6zsXiKZfZdut/rRr+1E8JMtHfctlXNrkrc0ZL84tjTcd8CgB+hCk6OO+T13a/i/UZ+x+pAQAAAAAAAAAAAAAAAKAGf9LM/lkz+90jf/9YM/uqiM990cz+3RDCe2J3LKcQwgtd1/1+M3uzmX3okZd0ZvbvPfpP9UNm9kUTdg9YtSGmWLf23yPv/IViZvzAOpqj3WhZ3U1/7ByNd+41fSDIZIrQ78tsqECRoXucm/uiFdoi7AudnxNi5tBhzscTJwx/8YxRVSaZePpY5mtS6Te1F9R59k9dZ816jbRCafMSYVo1KRVSFqPuyx2HlCCTnbBmUe9Np4SURdwHX1Q2RCvhRC3d97sCbBo6XgDITZkjar9Hy8Z9n7zS9sFqbObeAQAAAAAAAAAAAAAAAAAYE0J4YGa/z8z+RsKPfbeZ/TshhJ9M+JnJhRDeZmafbmYpw1b+uj0McLlK+JnAqsT8+Lr2H2yHrVqoXffx1Mr1hGeaVnZzfW0cbXfuNb1Q2IcjEoY+nBYTKCVeXN7ghJmv2aAEgxQ7P+NigkxmLaKNDH85Nu+7gkwq5Gr/zOeopSATD/UYWjjm2SkBCwXCtIrxHErxtZFyMho6FysgnS5lzSIGk4QJ4TwxXe5yqCykTBnDWrrGPP2kocMFgNy4B3FwB+TSlmgbQSYAAAAAAAAAAAAAAAAAqhZCuGdmn2VmX25m1xM/7m+Z2SeGEH588o4VEEJ4q5l9opm9ZeJHXZvZf2sPQ0zuT94xYMVaeirxY7ut9nrP04zxLFfRWGWFbgtwUzzRhfNtdy5IoA8EmUwRIkMfZDEFqOrQ7SyKnX1KEIpRw67Q+TkhJsgk5j2phH268BdP2FKVHJ08d7CD9LTv2S/K0zz7d/Mab3Fg7ce8CEobiqEJSxf6wmujtYYsrIIwlitrSrUfTLmGI/rcZW23F0o4UUuXmCvIpKUDBoC8pHu0piYUgXfN0VJQInAEQSYAAAAAAAAAAAAAAAAAqhdCGEIIf97MPt7MvsX0QJO3mdm/H0L4t0MI/yj5DmYUQvjVEMK/ZWZ/yMzeLr792h6218eFEP5CCDNWggKNaLFYNGzFIJMG26AIT7vRtLKba9Lzo+jNmbCTvnSxbmsmPOFeETMOy4Uz3kKSua9ZpRi3ryDIJKJ4eNZ5N+GYcC5I6eGLkm0uHc+1kPkcSWE2c1+TZ3jGInW8anFtWprUhGtbK5QOMFROBn1/WZTTtROCxNQ+qgR5JHAxVDa5K2NYS9eYYw3a0uECQG7SPctKx9fg/f6DCQiNu5x7BwAAAAAAAAAAAAAAAADAK4TwC2b2+V3XfYmZfaaZ/R4z+zgz+ygz+1AzuzCze2b2bjP7WTN7q5n9nyGEn86wL68zs9el/twT2/suM/uuruv+ZTP7LDP718zsXzSz32RmH2xmvZm9ZGa/ZGb/wMzeYmY/EEJ4X8Z9+rRcnw3UarCIIuzKf7EdlEKxh+/Ish+t8xQa07K6m+vLExJw7jV9WFlxcmr7QkEZMbls6sXl3cbMF20QntwbdhUEmUTMoVKIRWL6/DjuXJBStTx9LPMTpJU+UPuay0MNJmnhmGcntfnK2rtw6IMWZJJvN5CBcmqVcDxxnRD6CR0n4q2XtcUJK2vHhq6x4Am8aemAASAzJaR0tfcrKz1s4BBBJgAAAAAAAAAAAAAAAAAW51E4x7c9+m9VHoWyJA9mAeDT5FPv1ULt2oqxliJzofda3VyTG0fznntNX7pYtzFBecL7FDHXkhxk4nvD/FOCsAOlgmZOUIJXquDp0858Es8Y5f6wglzrnswXgjI2114k5ws1045hzrCfZigBC55i+JaUmtsjNHlfhoeE8DV5bTGlTw/B1Ln6sq9rbg/K/c7S1m2nuNYz+XcDAFpR+31XFbxhL6xp0bjN3DsAAAAAAAAAAAAAAAAAAACwFC0WzAUxyKTFNijC02yhrkK3JekSBJnsh/mDHmoUvMUXQtHpJFGBM+K4tXduY+7hUCkwVUOrMhgikrBmLZBK2GaeMapKjj6WO6BG6TctFNQ9PgbnkoB1WQJKG64sOKZYSNmTLWZ6LWanXGZS+JrYDyaMmTHvvKhtyGgpnEThuZ9hPgUAtxbuu7LzzrnMP2gcQSYAAAAAAAAAAAAAAAAAAABOMcWi1ReYquEDKyvgTMVX6E2Qierm+uocITDnXtNHBWSsgDPIJPSlgkwixiC5xtX75Fx9V5ISilHLF6M/a4iYP+acQ1O22bkgpWp52j/mmlR2QSm6rrydPQV/ap+niHA6qcn7la2DSx+vsjm6/qJIETVKkIkYzDFpbo9Yk1wOld3fKfc7tX+PoXCMZS0dLgDkptyzrPV+xdtG1f/vBsBEBJkAAAAAAAAAAAAAAAAAAAA4DVJ13TKE7VZ7w1qf4jyVs91C5oLw1twURHhCAs69pg/zBz1UyVvwWSooo8QY5C44ybwf5yhtoYZWZTBEjG8x4SfJ7HbJPsoTtjR/h3qWq6gq834rfaCFIjn1GCh8K2xt7V045E3qz2s7F0unnK69ErYhrhOmrCMj3npZ2+2FEoLX0CXmCils6YABILMW7ruyY14BzIwgEwAAAAAAAAAAAAAAAAAAALcWi0WDWtzeYBsU4W035QnkeHxNdo7mPfeavnCx7mI4+2RQik4nCCXO00IChVxFmTev7ecfW2LCwGYtkErY1zxhS1Xy1P1mDhdS+kDt6zTP/slBJhQRTqf0m4XMD8mUCil7jCCTZimnVrkfUuegKX06ostdDI4gs4KkdXRL11jvWdDk3w0AaIVy31X7PVo23vuGtbYPVuNy7h0AAAAAAAAAAAAAAAAAAABYipgfX1dfYLrbzb0Hq+DuOsULRpft5vryhASce82wtuJkp+Dtk6VCeGJCE9Sx27uNMHNxqtIWZ87jj//yj9vbfvlt9qrnXmV/7JP+mL3i8hUTd+5ZMYEXuUMyTm47cn4MFqyzp/uGJ2xpzmMd5bl2MhdeDUJgTxPE5lxtYWBKSsDCytZpoea1EV2/XVI4nhj+NGGujRluL2u7hJQxrKVrzLOWaOl4AQDzc3+vlHc3gLkRZAIAAAAAAAAAAAAAAAAAAOBUfShJBOmJ12Y8KTKWt91KhUE04uaa9IQEnHtNH9ZVnOzW+/pkkIpOJ4gINdCHLd82Zh8Olacg746fxxcfvGif8frPsBeuXrCuexi+8RU/8hX2Rb/zi+yLP+2Lk+zmjcHZrlPfk0zCwAJP2FKVXEEmeXehH/znofZ1mmf/Hs9r5gtKqv2YFyEEM2d7zz/wp+M6lNLBLUr7NnQu8DRpTakGk0wK59H73MUwc+jdoZVeY6F3zL8NHS8A5MaYeZ67jWhLNG4z9w4AAAAAAAAAAAAAAAAAAAAsRZM/1BaDM6p+MnvNvL9fL10wunA31+QmnC8S7M68hiCTEbud73V9obGhxDjsLoqduThVaYsjY8swDPaZr/9Me/f1ux+HmJiZ2YXZ17zta+z7/8H3J9jJW9uLCKGZVcJgKVeQSYVrDNcuqUXkIqXftLBOU4NJWjjmuUlNuLZ1cKm5/YYyntD1F0XKzxCCTOQxcMo1HNHnLmq7vRCu6aamF89aoqXjBYDMCFN0IMgEMDOCTAAAAAAAAAAAAAAAAAAAANwWV4TtEHZioTY/sI4SvIWZBJloHjVr52jec0EC/UDbH+MO1ynVd2O2k6vIdebhUCneDUdCOd7+rrfbC9cvHH39ZrOxr/jbXxG9b8cMEcXDc4Y0pAyWOhek9HCDyTaXjmPuyn2OpH5eZSM+4TmWx69x5iTVfsyLoDThytbBxQP2GrreMYHS78T1u/ue7Oib9bdcDjOH3h1Svs9oabwrHcoEAI1r6R4tG/f3SittH6wGQSYAAAAAAAAAAAAAAAAAAABOMT++rv4H23KQSZ7daJ73h+m9eD5W7ub6OhdSYna+JjwmZGEVnMWkx4IysogpQBXfEpxFsbMPh0pbHCngfMNPveHkW8ZCTmLFzIezBojtdmdf0jnTJjxjVJUFTJ59yrzfLYbIpTRn2E8zlDZcWzF8zWsj+v6yCKcrKNeZui6c0KdjutxlZZdQUI6/pUvMtZ7JvxsA0Irqv+uugbeJaEo07nLuHQAAAAAAAAAAAAAAAAAAAFiKFotF5fCBBtugCO+DOJUnkONx8UTn6JbnggT6sNy23//cz9r2h/+22WZjr/pDn22bD/vwdB/uDdcpVNwdSoQaeItigy/EIhuheDfsn+3f3//z3292kXKHTosJpJi1QMoZaOPhGaNqnF5d+5R5v5U+UPs6zXMsap+niLCs2vuYxnEsNa9LWzoVeNqRNcso9ZqMCcSL3ZaZXfQzrxUPKdd0Q9eYJ8ClrfEdAPKS7tFamlAUzjUH8w9aR5AJAAAAAAAAAAAAAAAAAACAU9SPryv/PfKx4vbTb6j8gCrlbraaC0YrFCyYBbONnS8SPBckEBOyMLew39v7/oPPtZd+7NcshI2ZmW2+/Fvsn/z8T7MP/Yt/Kc1GnGNESBj6cFKJwBT30+o7C8Ng3WaTdXfGSAUvR0KrNt3Geis35kQFmcw450QHSx0Zjs4FKVXL0f5hSlG4g9JvWiqS6zpf8TuFbwkoTVhqrquFez5MROnP9P1FkU6tstYT+4En0CKleVaIJygheC1dYp7jbul4ASAz7kHO84fw0pZoW3XrYQAAAAAAAAAAAAAAAAAAgFo1+UPtI8XtJ2UuWG6Xs9168XysXAjBEWHy0CacfmUfllec/IEv+I/txf/7hcchJmZmw+7Sfv2v/qjd/8avS7INd0BJiYARM7OYwBl57J4WEFKMcFzHioI33flygqvdlbRLp8QEmcwaMJTw3J4LUjKzOiuGK9jvJtdeJwQLNpQOj1g5qY+VmusqUSyk7PEG13W9Y0TGIJNJ97IRb93UNmRI80tD16PnuBs6XADt2u639h0/9R327T/x7fbO971zvh1Rxsy1jq/eNcda2wercTn3DgAAAAAAAAAAAAAAAAAAACxFTDFtqPwXyUEs1F5bQXEy3poxgmIkIQRfQICdDxLYD8sKkQl379qdH/wFO/5sy84+8LX/u33Qn/hT0ze02/n2p1SgR4kxSCny7GcMwFGa4sj58QQ+TQQgAAAgAElEQVSZ3Hlwx1773GuFDY0LEePbrHNOwnN7LkjJzOosYBqC2bm4qMz7rYzNta9RXGvCoAX41L7ObM/K2rtwcIt0DVd+veOAcmqVfqcGP00Jioroct77lFK0ayzffhTnWYO2dLwAmvSVb/lK+4a3f4PZxcP/f3jLYB//4R9v3/0F322XF2WjArgHSYg1LRp3/ptHAAAAAAAAAAAAAAAAAAAAmFmjP9Teq4XaDbZBAd7fpYc5QxEWauNs23NPRB+mFDbO4MEbvt1CGP85+NV7zIaXXpq+IW+fLFXsHBWGkW8bwRn0koXSFkf690V3cfZtdx7cUfbo9C64E53qkDKcxzVOVVjA5NqlzPvd1NrLVUcdtCCTCvvN4uQKWGhB6bURQSYwk9aU6hgYE6r2+L0R73EFmZU0CPeaDV1iwTGvNnS4ABr0puffZF//E1//OMTEzGyz2dg77rzDPvtbP7v4/ij3aE3dzym862jWtGgcQSYAAAAAAAAAAAAAAAAAAABOLRaLygWZ7TVBGd6+06crnF+DYMH9pPNzQQJ9WFaIzP3ve/PZ1wy//M7J2/GG65Qq7g5KAWbsNoQQgVmvWWFOCkdCqzxBJnev7kq7dIoSznBj1nk3YZ92jVM1zq+O9s99ipSQqdqL5Lz7txfGldqPeRGUJmzwXuCkigP21nYqFk8I9JDWlGpHmBLOE9HnvIGLxUghMRn3ozRPgE1LxwugOX/xLX/Rus3xufT59z5vv/7yrxfdH+5BznN/l9HUhAs8iyATAAAAAAAAAAAAAAAAAAAAp8EafAr7keL2k/iBdRxvs1VcMFqjYMH9pPPOTr9OKZavguewJzx1/jFvnyzVfjFjkPoe5fW7nfbZCUkhH0cKVz1BJi9dvaTs0kkxoSSzzrv7dCE1nkLmKqdXVwBL3h1X+k0LgXPBgvVCYBNFhNNJ3WZpa4WJQunjlbozfb9VeYNMJvSbiLd6AxeLUdqrgTn1Mc9Y1tDhAmjPS8P4fXnXdfZN/883FdybBX5/NgfvvML8g8YRZAIAAAAAAAAAAAAAAAAAAOAUUyBbe4FpUIMz+LF6HIJMsgghuAsEzwUJDIG+fZSzoD6ooUixSoxBQpGrPIampOznkXa73FyefV/KIJOYa2zOYIrg6ftHAoWOhSZ1rsCl+tYLrvbPvNsthch514TKMbcQ3jK/lRb2exQPMlHORb7dQHpaYFC+azKkCPkTXNTWT5V1a237PkHp8w4AKXlCQ970028qsCdxav9ePBvn3MP9HFpHkAkAAAAAAAAAAAAAAAAAAIBTiz8ulsMH2muCItwP4iTIRBJCOBtQcuNc4EkfFtb23flghJAinMU7RpQqdo7ZjjpuOcNbzMxstxM/PCFlTjpyHj1BJnev7yp7dFJUkMmck85+n+yjXONUjfOrZ58yFwcra69WiuT2vb/vtXLMs5ICFtoJ1vFd3zUHmdD3WxV6od+pfXRCv4l5qy/IrJwWv89wcRz3WpsGQP22/XbuXXgG9yAO7omFtkTbCDIBAAAAAAAAAAAAAAAAAABwavKH2kqhmK24+GkqbzMTZCIJFs4GlNw4FyQQE7IwK0eQSQrBG+YgjiXRSjxRXSmKnTHIRAp4OHJMpYNMYuaPWeechH3aNU7VOL069in3KWpp7eXtz4N70YAklOyMUnNdCZ7ru+bjbWdoWAn/ujX0wslV14WFw3m89ynFKMdf275P4Tnulo4XQFP2w/nvZLpC3w/daOkeLZfgXaPQlGgcQSYAAAAAAAAAAAAAAAAAAABOLYZ4BDk4o702qMpAkIkiWDgbUHLjXCHhULiwsYgUY5azTx4LysiiROCMFBAy4zWrnN79s/v53MVzZ992b3tP2MhpMWFBcwYMhd4Z4nPoSA2ZZ5yqcYnh2qfMO94L65QW1mnBgvXCuNLCMS9LO+3t6jul5zilP9P3l0U5XUI4iToGuouKj75Zf8tFbbcXwnq9qSusRBAiAGSy6+cLTx3DPYiHN8iEtkTbCDIBAAAAAAAAAAAAAAAAAABwavKJk3uxuooioCju36UfCRvACcGsC74nz27OvG7OwIQonsNOES7i7ZOFxoaoAlS1METZxm7GoiIpcOXZvvDc5nyQycvbl6VdOmVx15gc9DXu3PjzUIXzq6ePZd7twZSi6wrbMIJyrbRyzHOSpoi+ofb2HEpfeNxuqHnxNOXUSmu9nGu8BM4FKRYnhQXl243SPAX31JEDqNV+iAzYzEmaqlc6wHrXHGttH6wGQSYAAAAAAAAAAAAAAAAAAABOLf74+lhx++k3tNcGRXh/v176yfcLFyzYxtm25woJ+7C0tvcFuEzl7ZMhYejDSTHhLOKwFZTAjVLHfYxUfB9XjH5/ez/qfanMGtKQMFjKVchc4/TqyTHJvC5oae3l7c89a4GKtdMfXYeSIhBNoFzvLY0NOCAFmZS7l415qy/IrJygrAdbusQ8faql4wXQlF0/Y3jqCMIUHbwLB5oSjSPIBAAAAAAAAAAAAAAAAAAAwKnJgrm9WvyVZzea5223hIXzaxBCcD/p/NzrBrUQcglSPHXeG9TRFxocIs6TvGdKIfV+vqcjB+H8HgutGux8W97fpQsyiZlD55x3XSE+na9A2Ru4tEiZj00Zm1tZpylPXaeIMIECoVBV8tT1Fw4ykU4GXX9ZhEAPZX2jpotIn/3Mm/W3VDf/NzJPytZ63ACa4Ak57AoF3d7gHsTB20TMUWgcQSYAAAAAAAAAAAAAAAAAAABOMT/Urv3H3dJTmc34gXUkd7N5CufxFG+QyblCwiaDTBxBFWc5g0yKFTvHFKCqb1G2MWf4kDIeHwma8RTzPtg9UPbopJhrbNZgCs+5de6fa5yqcHp1HV7m/W4lnMTMvyZcY3jLrKTMhHba23UoxYNMFO2cCxxQup26Lix8DXvvU4oR7jUbGu6cY1nZEAAA8Nr227l34RnKd921fy+ei/u+YZ3NgxUhyAQAAAAAAAAAAAAAAAAAAMCppeLFG3L4QHtNUJXgDI3AQ8GC+0nn5woJPU+5rUnXOYrtpjx1/pGw3/temGBbvu3EFFWrRa7CNvY77bNTUorvj4RW9Xa+zycNMokI1ol5TzIJC/g9hcxVLjEq2G8p1KOBRUqwsLj5aFWqDvYQeS6X0utS5RJe/uW+Mv6QCE/Q2q1Xa7sxab2qB11471OKUcaw2vZ9Atf3OA0dL4C2VHlvwJh5XqnvyIDKEWQCAAAAAAAAAAAAAAAAAADg1EKB7DN67ZiCUuCPJ4Kz8O1I2ADGhRCscxYVbs6cA6VYfimSBON4+2ShvhsVKKW+RTgWd9BLDkpbHClc9bTl1f5K2aOTtMLkR++ZMd3DdW6PBAodCxm68MwBNSaZeHYp8343tfZyHsrawlvmJnXhloJMHI6FYOXdoJLQRd9fCjk4U3m5uLaY1G0i3rsJnQ01jRtrLap2HDdDCoBa7foZw1NHcA/i4JxYaEu0jiATAAAAAAAAAAAAAAAAAAAApzkLqnORC8vba4Ii3F2nwTCNnIIF95POuzOvW1yQiSe/JUWQifPpv3KRaqwS50nZxoxPR5bqvY8Uo3vmtOv9tbJLJ8VcY7POuxF9eqxY+dz4UytX82c+NuUJ5LWv07xFalU+dR2P1N3HFL7ru/DxShNbvt1AYuJ8qiwX9JCU+I4T887NUNc9htReLV1jaw1wAdAEz73BsTDNnGq/76qC+3tg2hJtI8gEAAAAAAAAAAAAAAAAAABgzdQnrfMD67xSBE+sjDcg4FzgSU1Fhi6eQpUU4SLePlmqQLDAGKQU5YTdjE9HVtriyPnpw/lze92nCzJZ3JOG946+f3AOxsYRV+DSwpqnlMX1m6k6bT6iiDABKRSqofb2HEqpkLIbUn9u6Fy0Tg0ykbqBGso5od9EvLUzs+1+G7/N1JQ1bsbdKM01V4ayIQAA4LXrZ/zOAdHc92ktTbjAEZdz7wAAAAAAAAAAAAAAAAAAAMBStFhMG3g6cRnewig1WGblQgi+gABrMMjEw/Hk3nO8T24vNpbEXCPqrilFrnNes8pxHTk/nsKabZ+u+DbmGpszpMHT9w/7/dgxegOXquOp+818bMrY0so6zfPUdSQkdZs2+piZ+Q6l5nVpQ6eieWpQY8Ygk2nrVT3oYhMqG9OVUJmWrjFHP2npcI8ZXnjBwn5nm9/4Eda98pVz7w4AwT7s596FZyj3Xa3co8ncQSYrbR+sBkEmAAAAAAAAAAAAAAAAAAAATk0+9b4PJhVltdgGBXhbLdRU6LYAwfxBJueCBBYXZNKdv26DWjh6jPczSgWZlBiDlCLP/YxPRw7+8ftYKIenz88dZDLYjNfl3lEwFtIFmVQ5vXr2KfN+z9oHEvMW8SlF76stDExIasGagz1Ersu79NpIOBlN3pe1SllXmZnU7dR+MKXbRLx3M3R1FaCL56IZKw5vvf7BH7D3/9f/g93/lYf98PLVe/uwz/tU+9C/9BUz7xkAr31f0TzyCOswB5oIMDOzzdw7AAAAAAAAAAAAAAAAAAAAsBQtFouqT6We9hTrFQvOsJgUwRMrs3G27bnXtRhkkqTg2hPmYAXHhoiCGfktyhtmLGqXjuvI+fHMafshXdFUTLHTrAVSnmLfg90bRt7jHadq42r9zKdI6QOtFNQtbj5aOqXbNNLHzMx33IXnuFauYTxNDtZT5ky1z0xYr8a8swtmuzlD7w4p7bXQtctRnuNu6Xgf2f+95+0ff8GffxxiYma2f3Bpv/76H7OX/ss/M+OeAVB47sk7JaA6gRa/H0/OO+ey/kXjCDIBAAAAAAAAAAAAAAAAAABwarG4Tq+Vba8NyvAGmVC8rAgh2MbZZN2ZrjsWQLBow/RgnOBtl0JBJnIx7MN3iS8XghOcQS9ZKPvZHwkycbx/N6Qrvo0JZ5hz3vX0/cMAn8GOv+fc+PPwwzx7VVgF+7S2UI/OOuuFsZsiwsKauhdwrE2LX39KyEJL56Jx4hpbOrViPyjdbS6C2T7MuFY84F7XWxVLgGTWGsb6vv/sz1m/uzz6t/d+y1tt+MD7C+8RgBj7vp555IZ0n77OIdi/5mBNi8YRZAIAAAAAAAAAAAAAAAAAAODUZLGoWtTTYBPkJhWMJQieWBvvc2c354JMRgIIquU58KjQj7jPKFYgWKLIQzmWOa/ZiYW+noAIJVDh/C7o527WedfT9w/6yth1cLHUIBPHQJP7klT6QO3rNNc10InhLXUf8kL4n2CvrOlq5+mOx0KwspLmtfjNXL/5b9i7f9en27t+yyfbr/7WT7E7/+kXUdCfkxiIE4L/mpQnoSmTlrJfj3Qh7VpqskLXWHVc571raow3M7v6h3dG/xbCxq6/73sL7g2AWH2oaB55pPb7rio4v1cixwStI8gEAAAAAAAAAAAAAAAAAADAaXFF2A5y+AC/sNbthaenpgieWJFg4WxAyY3uXJCJWGQ5P0fAQIr+5C3oqznIRH2L0BeCcn2npjwE+cj58cxPKYumYq6xmHk3GU/fP9i/sUCkc+NPrVzNn/nYqioAL0S57mpfZy7CxFCoxXJd30tbG5334Nu+2X718/57e/ln79n2xQu7/sDG3vcdz9s//jd+v4V79+bevTap61EhMES/l9VePtUmmO2HGdeKhxoL6nDznvfG2mf/4PLk3+/8T99aaE8ATLHrd2df03V62FYp3K+cQ/ugbQSZAAAAAAAAAAAAAAAAAAAAODX542u5wD/LXrRtd77o4LHGiqdyCyG4AwI21p3sv7MGJuTST+9PwfsZNQeZqJtQrsMZg0ykpjhyfjzBIimDTJY2h3qCgA7PwVibdo6i7CqHoAr2SRmbl9bHxiwvWGvZpF5Taq4rwlHwmmAdIVEGwpiAyXv37IU/+41m4dlyuqv3mH3gT/5p+TPhIN/fdEJQnNYPYtf7D9eGepH4JnSuAvRilGtaCJSpnnfsXluoaFNzGtCulPfkqTT5/Vlq3jaiKdE4gkwAAAAAAAAAAAAAAAAAAACcWvyhtlwr22Ab5OYphn9sbcVTCWyEIrtTr+yHZbW964m7KY7J+RnFxscSYT9KUV/pIu+nCAEPR3bTc85SBkPEhDPMGujQO479oA2Hkf65WezUOX8AizS2VN7Onuup67rFzUeLp/SbltbBnkMpfbyZr/frv/79NuwuR/9+/+2/oH8ozpLuhW5cXzs/XPzc2C4duf7sQl33GFo4WDvcxz1jQGFqUjAjgKpVFYgFN/eU29L9BXAEQSYAAAAAAAAAAAAAAAAAAABOKQu6qyEeUothLtnt/EUHFBxpggXrhC556rWDLaztPfktKYJx9s7PKNV8MU8Ol4tc/QcT+hkLHpXjOtJunjkt5bwXM3/MOu96rp+D3RsrVnaNUzVOrxXstzI2t7JO2w/+caWVY16MmDmoUq7Lu/S6VMox0c/Fnb/y+pN/v36vPxwPgohQsrB1BpmofbRwkMlm0Mb07NZ6r+lcg0aF7tRK+A4CQN1mDfccwT2Ig/f7D5oSjSPIBAAAAAAAAAAAAAAAAAAAwKnFEA/59/DtNUF+StBBS8VThWyEPnnqtaGh4uQbSQqQnX2y1PhYZDtKX5jzmlUKvo+0m6ctUxYoxRRgzTnvBsf+Ho4bY6EbyjhVE99u5y38b3HtdQ5PXS8s+PtwU/3Rc9w1r40idm3//gfp9wPneUPxbrve+l4nXpPR6/3I9d4mVDamK+0ljI3V8x52S0Ev2/PXUEtTGtAyzzzSZb4nO9TUmjgXbxPRlmgcQSYAAAAAAAAAAAAAAAAAAABOLf5QWz+k9togN+nJzi0VTxUQQrBO6JKnXjsWQFCtzlGokiBkwx2GUqr5Bv2Yso5zMcW5iUhz0pHz4wkp6Tz9zLsLMUEmc845nnN7cA7GjtE1TtU4vXqKmDPvt9IHWnky+HbvLOBHeU3dC3iCTAqvjZpqXzwWM/9vr30vVINJYrvYXgimvGUTOusj1q7ZRJyLFrgDbBoKFZW+gwBQtarmEfixrgXMjCATAAAAAAAAAAAAAAAAAAAAt1YKZJ+iPmm5wSbIbud/Cnfo11lcFitYsE7ow5sTr40JWaheiv7kLGIuFvQUtR3xPUJRbJizqEg4rGPnx9Pnu01nQ6JC9pg5dNYAMU8/OHjJWFudGntGPmoxcp+ilkLkvNfAPsQVzCOO1MMa6Y/+kLLCx6tsLmLXGjl9yxMR+haur3yvU09qZB+InYu6UFcBeuiV4+j8Y0XtvOevb2j+3fu/gwBQt/1Q39i0xrBJlXfqael+FziGIBMAAAAAAAAAAAAAAAAAAACnqB9fizkhpcnZDaULGlugPA25okK3pdgIXbI78drFFQ90jmCEFE/idhc7T9+Ubzsxlcviy5W+EFGcm4xyXEfOj3dOu3t9V9jQiV2IKIad87r0hNQczqFjbeoapyobgh4WL8+/iOmD/xpb3Dg+Yrvful+71sLApJRQv1aK+ve+gthQOORN688Fgs2QRNTYvPWOg9pnR/eAyICLTTDbDTUFSqjhfo2Med5i8hT3TrWY8x4FQFI1BWJB4J1yWZ6icQSZAAAAAAAAAAAAAAAAAAAAOLVSIPsUpXjz4Ruy7EbLpIIogmIkIYST4SSHToUJDMWSOBJxBJmkKD4MvfMzinXdAhtSCrcXUuB5bPryzml3HtxJtA8LG99cff/pYxpG+o4yTlXD27fldYRmcf3mFOehbHt/kAnKCq2s03bOYIXSx6tc7+SYLEdECEjwBpmofTR22RYZcLEJlRWge9f1Nxayzj3LO7Y0FGQS9jUF6ACYwhMI2nm+H0qoqXu0XNxtRFuibQSZAAAAAAAAAAAAAAAAAAAAOLX41PugFiC31wT5eYtFzdopFivoVDiJ8tpmipNvS1GM5yw+LVXH4g5WeepN4uuFbYS9XpybitTmx4JMnA3z4oMXhQ2NiwkLmnXe9YzHBy8ZCzLxjVNli8/Ocs5duc+QUiTXyjptP8w3rqyTcu210cfcIXusS5FCzBrbG2RSagEaeS10oasryERtr0aCPdyHHRG6Uy3POo4gAmARdkN9wUSt3HdlRY4JYGZml3PvAAAAAAAAAAAAAAAAAAAAwFK09sTJMAymFk631gZFKMVrjRSLlRIsWCd0yVOvjQlZmJXn0k1RgOz9jFJDQ4kxSNnGnNessJvH8jXcQSZXaYJMYuaPOeec4Oj7h7s3FmTiGqdqm15nDOm5bXFj8wnea267dxbwYzLPdf6UVkLPvCFlpY9XCuiK2LdGTt/iRAR5hKsr5wu1kxq7rHCH/xy4GCorQFcboJK1wGTe4963cy8e22cB1GfsHvO2rrZQTPin3MzfefS//E679w3faGG7s1f+jk+0V33OH8m6PeAQQSYAAAAAAAAAAAAAAAAAAABr5XlKL6YTCqLkglrYJvgLNh6+9niRwOJCerrzxx0SPAE+9L4+Waz5qgsymfGalQq+j/xTCK5AnJeuXhI2dGoX9HM3a4iF59we9JWxon/POFXbCOQugBXG4Kj9EK7HVp4Mvh8aKRxfAnXdtbS1whj39V06yES43hs5FasQcX8Tdt5AJ7EjxPabyFCIzsz6BOvxVNR7zdD3bZTGO8/74u4HT/F81+O4nwQwv70zgK6kpsbLbLyTT749ePFLvsTe97+91cJw8fAfvvVt9qq/8A32kW9+o21e+9p8GwZu2cy9AwAAAAAAAAAAAAAAAAAAAEvR2g+1w/W1/qZWnkRfUNgLgTEEmUhCCNYJXfLUaz1PuV2cFCEb3j5ZamgocY0ohdQVFhUdM2X6unt1N8k+DDGFzHPOu5757uAlY8ErG89h1Da9uou26wkyacWuJ2iuGDWcoJF1cPCGGTa2Ll3hcFIFdzDWbe4+Ku5LdJBJ3HpvE8z6UE+QidwAkQEu1fGO3QtZ17t4AnQYFIFFqGoegd/MQ+z9//Wv2nu/9cefhJg8cvVCsHf/vj8y015hjQgyAQAAAAAAAAAAAAAAAAAAcAoRv0Luan6G8TYiyAQ65SncjRWMluAKCHC8Nub6nlPneYJ2iv7k/IxiOTAxBXfqW5R2SxEWE0lqiiOv9fb5u9s0QSYxgRRzhlgETz842L1+ZLxXApeqIRTzutoqdjeUwr0ltvMR+0Fo+1YOei5q322lub3hBKWDW5QxP2p+OP+enOPZasXM/9ut86MLXcOR18Jm6OoKp1KPo5GgR3cXbCW4xYTAKgDVU+4NSuEexMHdRHna8qVveIONhY7e/6Wd7f7uT2bZLnCIIBMAAAAAAAAAAAAAAAAAAACnOQuqcwhXVxFvaqsNSgg7oSB5xlCEJQoWpKigU2ECQyOFek9JUYznLugtFNoUUwwrb8L/jrCUgsfw7PnxHufLVy8n2YXB9Gts1gIpR98/3LuxccQXuFRX8JnUt/f5iuuk67GRgrrdQPFxMWLflUMTauUMKqr63idPjgmhgjnsI9ZK174gE31dGDfXxq73ulDZPYbaXjHnrkbe417Kut7D8x1ExUM8gCc884gr6DahNd6jZZOpee698/Ra6uWv+8Y8GwYOEGQCAAAAAAAAAAAAAAAAAADg1NyPr6+v9fc01gRFKAVRQ0PFU4X4AgLOv7aqIsNEQoJiXG/hZrFa5xIbUrYxZ8GzsJvHDsk7p728SxNkElMQP2cRvStY6uAlY+NIdyRI5tkNOnaqJGXuylj4W3WQgsh7ze16gkxKkfvX0Eh/9IYTlD7e3Ne75+NbCjKoRkSQ2c4ZZKL20dgu5gz/ObQJZn1NfUpsrzDkCyorynnYiwko9OB7BaAZ+1bG4pXx3mfMdb9770ffMct2sT4EmQAAAAAAAAAAAAAAAAAAADhFBZmUfSimJGydBWK331NdpfUCKEVEnsJ5PBZC8AUEPHLqtYsrlvc8cTdFyEbvrfybvinXZmKOSd03pS/MWfCoHJdwnRy6d30v+r23LS4sKGHwiidwqboRSCna3ucrrlvjuqOn+LicyHCCpQvePlZ4bSRtLte+zRlQ1ipvcM5tO2egk9gPortNZKjPRehsN9QTTiXf78Scuwq5D7uhIJOwr6ffAZhmqHBtssZ7NFn1TVT9DqIRBJkAAAAAAAAAAAAAAAAAAAA4LS7o4JyIIJOIB2qvXvAW4plRPBnBExDgeW2ThRgp+pMzfCJMCMqQlDhNSrvNeM1K9d5H/833Cfd394UtndiHmGCQOa9Lx7k9PKSxsJZuicOLULwcMhb+Kv2mlXF811N8XIwaTtDKOs27Ni1+vBVcwxmDmdYqav5X7p8kkevVCQFTfU2BSeq5WFoI3RjvcbcUJNZICA0As/1Q0TwCP++UO9f/1lDBshvrQJAJAAAAAAAAAAAAAAAAAACAV2M/8g0xQSatNUIJvb8ALLRSIFtIsCAFBJx67eKCihz7G4S+N/kzSgWZqEXnZvqwpQQnJGjjaFKSybPnx9vnH+weCBsaNxbyccqs12Xv2LYzyMQVuFTqGnIKe6GIPGOQSUy/WbpeKaSuq9ssjxgwsLSlwijnNVt8DBY2F7VrnmG9mZNckYg5Iuyc16Z4vqJP74RQiGEXc8+diXqv2UoYhve8x9xn1IpQJqAZnvuh0usX1ksJzdWUnEIUQpAJAAAAAAAAAAAAAAAAAACAU2jsV75hexXxpvT70TylIJkgE1myIJOFdW5X4UiKp4q7+2ShavoSoQZKEWPGAIe0OguRBY2pgkxirrE5C6SCp68d7N7Y/m4qCylxUfq2GAahWNrYnMJuEEJkMElQx/BGijbdx91SUb85b2MyjmerFXN/4w3cLHRNutYEIwYlGCw3Nfglxb1EBbyHLc8JFYtd9wOoz344fz2v8Z6pdrXfNtS+f2gHQSYAAAAAAAAAAAAAAAAAAABOzf0w3Fsghmm8TxQ3I8hEFCzYRrgsT73W85TbqniqDvoExyT0ySIFcwWKqpXwjJCijWOp4Ri7uELaq31E6NURMaEks4gGtdcAACAASURBVM67jr52+IqxccQXuFRZ2IlQzJuz8FcZm1t5MrinWBGJqHN/I33MfX2XDjJR2jfXuWgsvKUKEWEYwblmkcf92GCxCfNcv60nyCSo/XvfSLCHt580FGSSJNASQBU890Ol74Oa+348B28TzXZ/wTlEGQSZAAAAAAAAAAAAAAAAAAAAOLX2Q+0QU1TVSgFnQdKTrAky0QSzTihIPPXaxRXAuwoRpx+TFNRxfT15e+cUOU/KNmYseFRb4rAo2DunpQoyiQkLmvW69IzHB7s32PH3eAOXQkVzgBROEhmS49qPpY3NCex7gkyKUYv0Wwm5cAaPFb/+cm/O8/lcf+nFXDfecDy5j3Zxc+2EUIihryk8VA1+qWddMon3sFsK/1DCVAFUrXeMTa19X70q5JigcQSZAAAAAAAAAAAAAAAAAAAAOMUU83Vd5FOfS9jpRVUrrCeezluIZxFPyV65YMEdEGBmdnHitYsr/HBcjFIIyeiH+D/jMCgjD/08yeOWUrQ5Z4GnelzbuKCZ632agJqYa2zO69I1Hh+EI429p3MX0FZUMKwEmWQM9GkpyMTbn/eDf93QWcXrzCUQx/BW+qM7qKh4kImwvZhd87yHtXhyUqjjzXu8a8qY0yXcmz02oV/0M4bePUM9jpr2vQQ13KpiruuukTkNaF0fzl/PMaGhUyzu+7M5eMNM52pLTiEKIcgEAAAAAAAAAAAAAAAAAADAqZXixRthGxE60FgbFKEUgNG+MndAwJnXLu769uxvilAEJQxlXyDIJEU4yzlCX0gSFhNNCzA4LAr2Fsxc94mCTJZWHO7Y38OuMlZk5g5cqqlgWCg8d4ciRFAKu1opqPMUKz5Gjsk0atF6G13MP9YsbdxOIAhBQnCK6Efu+9SYtW7EnDVlnhsiwkOzEc9Fzvm9JO/SPiZ0p1oxgT0AqtQ7xqbi32etb4koc5+SDG0ZagpIxeoRZAIAAAAAAAAAAAAAAAAAAJDZUOkPiMM2ojidH6vLpB+QV9pXahUs+AMC7EyQycI6tysUIkV/UkI9dgWCTEoU6ChFnnMGmahNETPmm9muT3NeB9Pbas6AoZjin7EnYXfBmTZR0xygBDz0+YplFxcylcCeIIVi5KL1Vvqj97hrPt5c+7bC8JbsYsIhvCEMMf0gJuBhSpBJTWEganvVtO9TLDFQbqJAkAnQjLF7zNtKf5+1tO/PqpajKR3fK6zxPhvzIMgEAAAAAAAAAAAAAAAAAADAKfaH2p4fnc+iROgAtGK5OUMRFupUOMmhzYkwgeX9iL9MkIkU5hAZlKGJOE/yW4Q3zBg8oR5W2MUVNO6GNHNFzDU2a4GUZ38PxpTxIBPnNisqOpUCHjIW/sYE4Cyd56nrSEQdwxe3VhjhDCpyhaYlJM0TMcsBz3tqCpRqRUSbutcsMf1gH7GumTAuDxXdc8trsVaCfVYYZNLUsQAr57k3WN73WSvgPiUZzp1nDqDLoBCCTAAAAAAAAAAAAAAAAAAAAJxaCzIJMUVV/DheJxQRhUr7Sq1CCCfDSQ6dChNY3BNlPRkLKYJxhALG2KAMRejznyel3cKSigQjC2n3Q5rzGjMXzlqQ5ehrh68Y298L52FUVYDmDDows6zFslW1SSGprjk4qH23kf4YvKFJpY83b46Jz5Lm9aWI6UfO8xA1R8Sc4wkBN0Nf0ZguB5ms7HpoZIw3M20dB6Bqnvvo0t9nKdtb3HdtpeVoHs9an9OCQggyAQAAAAAAAAAAAAAAAAAAcIotpq01yCSmqL2l2p5SglL4liJ4YmVOhZMc2pwKMlla5/b0qxTHpBR7FnnifIHzpLTbnE+qF0J8zMxsu43aTKpQhZgCplmLnjz94OAcjM337nFqQqF0ct6gA8sb6KOsoVopklOOuevEcQBPU+fJNrqYP5yg+PFmTjLxvKemcbgRMXNE2HrXlBFri5h74AnzXFVBJuK6dVGBfSd4h/pWjtesrWMB1q4P56/nxX2ftQKznhLWs6gIQSYAAAAAAAAAAAAAAAAAAABekT9CHir9AXFMERci7ITitVpDbyqm/CD6VJjA4grgPVURCcaeoBQ87guMKSWqQZRtzBo+pAUYhIPz4+3z+5AoyCTi3M1ZkCWFUN28Z2R/T4UoPaWiotPgDTowy7rfayzKU8ODal1nLsJe67vN9EfvNTtnWNdZefZNGvvgE3PdeK/NmG4QM2dNWe9VNLfL56KmfZ/CvQ5raD6tKUAHwCSekMPS32c1syauQYa2JMwKNSHIBAAAAAAAAAAAAAAAAAAAwCn2h+GDVVoQc73V38OP1XVCgXHoaV9FsHAynOTQqTCBpQWZuAJGUhTjCdd82BcomIspqlbfohzzTOFDMSEbto0Y881XOJXrc2a9Ll2b7p46F2PH2AVn6ExNYVZK8VPGwn+pDyxrGB/leer6bWrwCZ6QQyuqDvbw8xY3Fi9SVTaXa9cIBkovopjWvaaM6aMxYZ4T5ue+pkAJtb3Wdj20FGTkCAPiqx1gGXrH2LS077NWwXlKsozFnvAbugwKIcgEAAAAAAAAAAAAAAAAAADAKfaH4a7AgRkUCR2ABaV4raYi9oVQgkw6Gw8TWN4TZc/vb5KQDaWAMTIoQxJxnuR3KNuY68ntEeP3M2O+M1sjVZDJ0q4xd1jMrXYdWye4xylH0WkxSuF5xv1eWr9JYRALx1Ndo6u0tiL9G965q3iQSebteT6eJ9inF3NevechZl0Yc44n9Iua7rnlObWRYA/3YTd0/ctBXQCq5Vnrl75nIjjFw/mFSw6e+YxTiEIIMgEAAAAAAAAAAAAAAAAAAHCK/aH2YHUWSYZdRFEVP3TWKUEHc4UiLFSwYJvgLw7YnOi/iyvEcBXjpggy8bdL2Ec84V5VokBH2cZcQVUxhZaRQTOp5rCY4qpZQyy8h33rXIwVmZ0ae25LEj6UijB+5CyWVfrA4sbxEZ6nrt+2H+opkl8cte9WGk4o8wYrlD5cZXsR++Z6ywrDk7KLWLO471NjztcuYr06YU091BSOITZXVOhLjbzrsJbCrWoKxwMwSR/OX8+t3Ac1xXtKcqw9PfMZXQaFXM69AwAAAAAAAAAAAAAAAAAAAIsR+SNfz9MzZxFTxEVxn04piKJ9ZZ3QZKdeu7jCD1dhwvSxRwpWKPHE+ZhrRH2LEpwwV8FjRFuHyPOT6tqICUSZ9bp09oOw21n36lc/esvx93iDTKICajKRwkkyFsvm7APDCy/Yy//jV9vw8n177mM+yj7oT3+Rda94RbbtBQvWOZ7M3ZvWnmrwCW4Rg0kWt1YY4b2+Q/Hglgral+L/5KKCzLzzYUyXiRgzpwSNVRUGol7TawvZrOlcTdVSKAuwcp7vlEsHgLayJs7J3UIZmrKqtQdWjyATAAAAAAAAAAAAAAAAAAAAp9gfag+VFpGEqCCT9PvROiU8oKmnQBcQQvAHBNiZMIGl9W3H/oY+wUEJBYxRY4qoyDWiFAHNdM1GFSrtnz4/nkCFRy9MIqqQecZwJ3cBf/9kjN8Px8f7TXA2Yk1zgFL8lDFII1cfePkr/7L9+l/5Xhv2F4/+5Xl77mu/0z7yjV9jz33S78iyTS913bjvC4RINUou8qvoEp3EHRJR7+Ioatc8a6daAyiXLKaY1hkoE3O+otarEwI9qiomVi+cVq4H7zqs4jFPFRtgCKA+tX6njDPmnFJqWntg9TZz7wAAAAAAAAAAAAAAAAAAAMBSxBbTDrVWPUYUt7RT2lOQUnSgPiUb1glNduq1i3uirGc8SlF8qPTJAkEmJU6TFJaSIiwmRkRwQWzQTNelSTKJucZmvS7dQSZPioTG9tc9TtVUcKSEGGXcb88TyFXXf+sH7T1f9X23Qkwe2r18aS987hfbcOdO8m0q+qC1Z7XrzCWQ+9fC1gpjvPNc6cOVtpdp52oah1sRE2TmnYNiukHMOZ4Q2FVTkIn8fUZF+z6F+6gbOV4z8x1LQ8EtQMs890PF75sZPhwSJcLGcKz1mQJQCkEmAAAAAAAAAAAAAAAAAAAAmYVKwymC80nXT78p/X40TwoyoRhZtRH65ObE07iXFmTiKkSc8PR4aTs3dgWe/B1VbSEWkAibkEJPUooptDwMr3I2S9d1tt1v9e0diAkDiw0QS8K57dsBMWNPy3YHmVQ0BwSlaDvBWDO6HxnG5rv/8+stDMfLabYvXtjVd74x+TYVanhLP6HAfvXUtfCylgqjgne+LjwG5x/zHRNfpfdtixYzR3ivzZg+ExHmOaVfSPNpbnKQST3rkkmchz3buj4Hz7ljuAMWwRNaWPr7LGl7M+Z5zMrbRDnWvy0Fc2HxCDIBAAAAAAAAAAAAAAAAAABwiv1huOdH57OICh2g2kUlBcbwSExJsGDdiXCSQ5tKL8Uonr6Soj8JhZshpjBUVeIaUYpV57pmI4KobgduqO7cvxP93htqOIPZvEEm7k3fKhIa219v4FJVxc7K9Zxxv5U+4F2nvfhjL5z8+92/9p3ubeagBpPs+wJjb6vEtq41nFDmLNavelkas2+e99Q0DrciZv7PGGQSIop7p8zPMdvLRmyuqtYlkzjvF2s6VxMFz9qg6kEewI2xsMzbZg0AxVGznhHPWp8ug0IIMgEAAAAAAAAAAAAAAAAAAHCK/WF4rQWmUUXt/NBZJxSANVMgW5A3IMDsdAnb4go/PDkmKZ4qrrRLiSCTmGtEfosQnDDTk+rDENHWB+en6/whQHeupgeZlH5K9GTevn9rLh0LLuu8h57imk1F6dsZC3/n6Dcv//yD4tu8TT3mxV1bNVnrust7zZZeG2XenuvTaxqHGxGzHnWvr2K6TMw98IR5rqr7O3Vfatr3KZa4DpvKcQ1FZAwBmEG14dhIIsfyt50gMrSAIBMAAAAAAAAAAAAAAAAAAACn2ELRWgtMw4OriDel34/mKQVRSwvTqIA7IMBOh57Uep2O8vSVFMWHQv8Nu+307Z3bRolrRNnGXNfsXi9MCbsnQSZqwNaLD16Ut/fM9iPaatbr0rnpcKu4eewYN8EZGpMxEEQVhH1RXivvxwrnxV4sPNvHBBvBzCKK/Fop6vfO7TUfbsy+uULg6hmHmxFz3biDTCI+O+YcTwm4qGhul9urkevBe9RzBRTm4FqbrXCNBSzR4JiDSt83L+77szl4vwPIwfF9EVMASiHIBAAAAAAAAAAAAAAAAAAAILOh0kfdDvcezL0LqxCUwIGWngJdQAjhZDjJoW7OQoLUXEEm0/uT9BT5iHANXUwYhkg55rkKHmPmld3u8f+pBh+8dPWSvr0DSwsycff9W6EwY/vrHqdqqiZSxo99viCNporknFOQesx9TUXyS9NKMInIG9YhrQFSqOF0rLRPZBUxRrkDJSJOV4iZsyb0i6GiMVpei1W075N47wEbCW4xM9c6rtKvqQAcGMxxPdd0HwlNjnPnGeDpMiiEIBMAAAAAAAAAAAAAAAAAAIDM6g0yuZLfw2/jIyjF4BRPyjqhyU6FCSyuWN4VZJLgmITPCH2+MIPHYo5JfItSBDRbwVBEaMztJ7Pv9rsTr3xWiiATTwHWoVkLsrzbvlUQPfa0bPc4VSQMyEkpXs4Y6LPGojx13RhzbeERtWi9lf7oHWsqPt5su0aoYAYRJ8s5B0Wt36OCVSbMzzX1KfHCCTXtewlzBRTm4OmzFY/xAJ4Yu8dEvR7OnzMGKbcSRIYmEGQCAAAAAAAAAAAAAAAAAADgFFtMW22QyYPriHdR7CITfkAeKu0rNeu8T9i2M2ECC+vanvEoSX9Sxr1dgSCTIgV3wjZmCh8KMU+M3z0JL9kH7Vzdvb6rb+9AzBw6a8CQ9/K5FQgwdoynQpRuq2oOEArmovqjdzdqapNC1GPuM7Z/88Qiv2Zqvr3Xd+njlRo4Zucca0aup+RCRDiE+z0xF+U+Yr06pYi8pgJ0tblq2vdIUjF5M4O8WfAEVrVzuEDTPKGFpe+b1xg2KVHmzxxN6fqeasagFawKQSYAAAAAAAAAAAAAAAAAAABOsT8MDzMVup8THmwj3pR+P1onFe9V2ldqFSy4AwLMTgeZzBqYEMOzuwn6kzJ+hf3u/IumKlEwo7TbXNespzjxmfc8KdzdDwsJMpmxQMq76dshHmNFZidDlG6r6MnJUjhJxv1e3NicgBpkol7PuEUdwxsp2gzea7Z4kEmm1yrvYS2eXkwgVe+dhPWPdvf/p94UH+gx1BQGoo5hNe17LOUYKlqHTeYJvWS8AxahqnkEPjPPJ657eaYAFEKQCQAAAAAAAAAAAAAAAAAAQGaep2fOYbii8LUIpWCMYiKZ8gxRJfSkep5+laLgRem/MeEaqqhzKD5pVmi3MFdRkRIy8Ui4FWSy67XQmXvbe/L2ntn+0gIAvPt7K8CnHzkvm+DsgzXNAVIIV77rQOk3rYSeqEEmi7u2KiIF9pi1U/DnvGbX2LfkPoHzlPnkEff6KqaP7iPugafMcxUVoMvXdAvBHsIxzLauz8Fz3Osb4oFF8tzj1Hwf1Knfx7RAmU9yrLcd383V22PQGoJMAAAAAAAAAAAAAAAAAAAAnGKL+dSC1FKG65inUaffj+YpBWA1FbEvhBJO0p0IE6i58OMoR19J8pRt5TNiCkNFoch4uoDwoZjQmFvvGQvcGPPy9mV9ewdqDfUa5T21t9p1bJ3QeT+rpgJ6pfgqY6HzKoMUxPloPxBMF22t6y7vNVu4eaS+H7FvrrestU/kFDGOh975npg5IiZYJeI9j9UUjiE2VxPBHsr9SQvH+4inz65wiQUskus75ZrXbGukzD1ZmrK+PoP1IsgEAAAAAAAAAAAAAAAAAAAgs1qLcIdtO4U6NVMK38qENLTFHRBgWuhJExKMPUoBYyjx1PaYQ1Lfo1yGM43vISLwIvRPimm2/VZ67/3tfXl7z2w/ppB5xvnTu+3b52KsyMw99lRUQBuE4quchc5rLJJT+70aTIRb1LZrJOTCvTYtfbg1NC/XU3oxc4S7j8aEpESEP024R3OHspSgtleJtX1m0v1JReuwyTzHXVHXBDDOE2SyxnummilzT5YzFxN8C2RCkAkAAAAAAAAAAAAAAAAAAIBT7A/DXU/PnEHYLauofLGUgqhGCmRLCRZsEzr365XQk9q5rsUUxXjKNb+LKAxVFRiDlHEuzHXNxpzbW+dHDT64v5spyGTOgizvpm8Ffozt74VznIoJqMlG6WMZC51bKsrrzNkPxGMmyGQCse820xudfab4sj/39jxjcUtBBrWIaFPv+iqqj8bMWUIw5aGupu8C5HC/BkY9IbhGCSCtnudYGji9wBrwPewCKXN/htPr6zP+71KBKS7n3gEAAAAAAAAAAAAAAAAAAICliP3xeK1BJkNM5gC/n9cpBcYUKMiUcJJNS83r6Sspjlf4jKgn3KsiCiqzvmOuazYiuOD2U4HV4IMHuwfy9p7ZfsyZmHNMdAeZPGnLo/urHEJNBcNSCFe+dU6ta6ichjBIdWVrbKNU5DGmlXWat1i/5uPNtWstBRlUIsTMEe75MKIj7CPWqxPmudlC745Rr+kWgn2U4JqGgsGCY21Q8xAP4Inba/3X3rmwf/PnXmWXfWc/95E7+6mPujbryoc/SttbY16GFJqW4dx5ts8cgEIIMgEAAAAAAAAAAAAAAAAAAMis1qdnDv1m7l1YhdD7z39VhW5LELRwklOhJ6ULPybz7G6K/qR8RswT7lUlxlNlG3Nds/uItr5VuLvrd9JbkwSZRJy7Oa9L7+6GW0WvxwIlpAClmgpohWL+kLHwv9Y1VE5qv+9DRf1madR5q5Xu6A0nKH68wpo51x4QDJRezPzvvX+K6AhRwSpT5qKK7u/k7Kaa1iWxlDVzS2sOz3E3dLhAy27uDf7oj77GPvetH2IX4UkyyM/8U1v7ss9+n92/5IKuijT3ZNi+Y61Dj0Ep/K9PAAAAAAAAAAAAAAAAAAAATrEF1ccKm+cW7t41CxE/JeWXzjqlSLal4qlCToWTHNqEhh4F6+grKYpxlRCBEBOuoSpxiQgFp3NdsjGFpeHWWLQf9ide+ayr/ZW8vUMxc+GsAUPeTd8KiDm2v8oY5Q4XKEAq9G6h0LkE5xQkB5nQ/vHkqv48u1FaKBE8FiN7+zouwozBTKsVMbe5lwwxC7GI/j/pmqlobpfbq4HrIShr3prO1VSue8UC+wFgsiEM9mnveLX9h3/nNU+FmJiZfdyvvcK+9P/4J8rvFOPHSdLckwP3h6gIQSYAAAAAAAAAAAAAAAAAAACZ1RhkMrz/vXPvwnooFUIVPbF7CYIFMcgk374U5+lXKfqT0n8LFEZHBVuoATZLuGZjQmNuFaPuhp301uv9tb69AzHnTgnSSc676Vv9PhzpD8q4U1W4gFL8lLHQedY+MBP1mGtcZy6G2Heb6Y7OYv2qjzfXvnE9pRfTkbzviekHMWuoCQEXXU33d+quVD0IOAnnOzQQ3HLDtaZs4PQCaxBCsM96/oNG//7Jv/Bq+7B7DYX2tkCZ+zOMxb45gD6DMi7n3gEAAAAAAAAAAAAAAAAAAICliC2mrbEId3hvZJBJfYdSP6XwrcK+UruN8ON7JfSkep5jSdGfhAKMsCvw1NkSxaBCux0Lrigi4gm7Yf/k/PRiYMZ1nyDIZGHjm7uG+la7DvbseC+NOzW1kTJ3TSjwPicqvGhl+hmfuH33wV276q/sg5/7YPugV44XWFZLDq1opD96r9nSh1vDGNhQkEEtYsIh3OuriD4TYsbMCfNcyDhHytT2qmnfYylr3haO94bnuqOIHViEEIL99ne96uRrPvVnT/89Ne7RzugLfDd2Sg1rauARgkwAAAAAAAAAAAAAAAAAAACcYn+oPVT4ZO/hA++Peh8/hdYpxXtLK/SvgRISsDnx2qUVYnj6SoqQDalLlij+LXGNKNuY6Zp1PWH30K0n0u+GnfTWbb/Vt3cg6hqb87L0bvvWuTh2XSphS1KxbWbS3JVxv9c4L6rXSh/K95tffO8v2he+6QvtnXffad2ms6Ef7BM+4hPsm//wN9trXv2a4vsTSw4YaKQ7uq/vmo83175VeN+2eDHjuLeLxnz2PmLMbGQuUg8j5/xeinQMLQWZOO4DG+nWQPOCY23yr/xK2SATnCGsNbKMxa65jzArlLGZewcAAAAAAAAAAAAAAAAAAABaN3grsQoK7//A3LuwHkpBFNVEslPhJIeU0JPqefpKiv6khKE0UOxoJhbFztWnIs7t7ULOftDOVZIgk5h9ntjA2x/7Edv95NstPHigv9kdZPJkjD8WKKGMUVXNAZUU/ip9YGmBVKmUDnu5f33ffu9f+732S/d+ybrNwwK4zcXGnn/f8/YZ3/QZNiypELyReUtWIngsQg1DoBxug/MiwmHcb4npMxHnWAn3OtT1FXTsG+pF1sL10O//f/buPH6Sqr73/6f6+52FAWcYQBSjgsE9alx+ZjHB3agh6uNqFBOU/DTils3dmxiNZrkq8V6ve1xQEZeIQYMoiqBi4oISCYgB2TLDDMMwDLN9916qzv1jZpj+fqe66/M5VafqdPfrmYePB/l2d9Wp7ZxTPf15l/6947C9B+j6MorYgVGQKMag1RM6pY2V7f4swDwhhkk1cMB00w0AAAAAAAAAAAAAAAAAAAAYFb6Fos4SBFCTbI9nkEl8mxI/y/GP8FyJnSWcpOXGqFhLs91VnE+Gfq+Wp7Z7FRgaj7ulr2/qmvXZ1z3/IJNeZigCHaDOIJOFT35cdr3zU9LZOyUiIq2pVI592ZPkbn/7d5K0dM+D1a7Z9RXI5m2jKUAppgJaS1sCtjvzKIAfZhRCCpw4SQz9VhXXp8UbL3yjdJL8cKPtS9vls//xWTnj186otU3erH34uEzTlNfVRNZAjkAfMXJ8QkDU557H3KLn0Wca500r1ljisw0bh07AMGcuE1gTHU1fNgaHF5gIivnqql6833UlSbxtC8YSohVk/STbIB66b+AAAAAAAAAAAAAAAAAAAADgreoi3CpkMzNNN2FimIqmx6FYrEZOnLQMu8wUKBA7zblSwflkWkQvfLFELZeIYR2+AVeleRSm9AfNWIMPulnXvL7D1u9TbOzxmaV/PV9u/8tDISYiIlk6JTs/+m8y87rXW1au07df88Z7Sx/lVewdimXsCtnuqi8xnwL2ioQq4rMGE5X109t+OvT1i35xUU0tqYAxtGJcpmnqYv26t9cSnhaqbeNykKPiMf5rL02fw+UTVlPivEgiGtrN+2scgn0sc+Yxuv41/fz4bO1k2rpnq/zFV/5CzvjcGfK3F/+tdHr5IXMYfYmib1qVTWBYSMxMY0/1q68lZBhQIsgEAAAAAAAAAAAAAAAAAABAyaegusznQsr2eQaZxLcp8TMUgDnFk1axXOL0BRtDAwVGre5Dk2NSxflkKSqupZjesx8OFSjU1CXrExzR9xlrkEkVQQk+oS8+n9nz9x8Ul03lvrb7vMslu3OncuXKTqFvv+a119JHuYiCzyzXjAv4xOnK51Dd8qE8sak7UGlnZ/g1dMUdV9TUkvLM+25citxjDSeIYffGFCg1JtTBOf2f0Z4LPtekT/BemWsmpuvNuL98jl1sTMXc43QvrjnvDHNUxOWsb58lT/j4E+RrN39NfrD9B3LONefIQ/73Q+SyGy9rumkIQXE9r+rVez1b79GymMbCOjQdJDIu9ywYCwSZAAAAAAAAAAAAAAAAAAAABJZFVJh8kJuda7oJE8NUAMaPzc0sP4hOxmj3qgpHqjifLIuoo9jRd5MCBZk01b17hcb0B5kYgydSV74QJxOfQmZjwW2nI0u3tge3oTstC2d/Qrcs7Tr79mVee4cGKK0UU8Fwamh4wHZXHWTS1NOpLcV71m2u4vqcWNa+dFzmEcrzcSKnpRHet408nxNJG7Dgs2iPYupSgR4RnVLmQ1FLSGFglnF/nK5/VShL4nU9IIz05ptk9x++ZvSU2QAAIABJREFUWLY97BTZ9vDHy95XvkqyXbsOe98nL/+k/NOV/yRJa0U/OSXyx1/+Y9mzsKemFqMumu+xVqVxBxPF+L14UE0HYzUdpAL0IcgEAAAAAAAAAAAAAAAAAABAyfeJ9zH+YDubnff63EQWNJZl2WnsXzNLOEkicRd3mGi6lSqKJwzLqCUgwHebAgWZNHbReuzr/uNjDT6oIijBdww1rWP3bsnSqaHv2fXhryoXplxp337NC2sxBSjFNF+wtCVgEWzVQSbS7Va7PKWQc8F0HArNmxJTeFCN1KEMMc9LA7WNov4AfIJD1B/xOBF6tjC3/avxP+GSmG6grW2Jqe2+DGNkqcCayKj7sobmRViud/VVsvXxL5Y9l2yWpR0iS7c72XX+z+XWx/6eZHfsuOt9t+27Tf7+e38vSTLge40pkbMvP7umVqM2iu9ACDKJiyl4NsRQOw7jN8YGQSYAAAAAAAAAAAAAAAAAAACB1VG8bZXNLzTdhMlhKd5r+qmdI6hl2GXD3jt6ISeKDa+g7zEtoldDMb3vNhk+5yzXYVP1OD77oa840xp8UEWYRC1BJr3iYszewrRyYco+oa+Pz9tGSx8VU6iCpZg3ZOF/5efNKASZGIejKoKGJpa5qD9MM2oXazFpDPdMzMWr53NctWOwz+HyGbPKjHMxnVLWtoxDsI/l/mQctvcgbV/W6YRtB1R2nP5nknYOv0fpzk7LnX/w0rv+/+ed8zxJpob3j5f992VVNw8Na6WaIJMaGgK9Or4bG6aOkGFAiSATAAAAAAAAAAAAAAAAAAAAJd9C7hifPOnml5puwuRQFB0cFGPoTewSwy4b+t6xzDGp4HyyBIBEFMJwGFNh4ghcsx6FKa7vM72sZ/tsFUEmHsswf0YZUtG7+irFunVc79C+zGuvKcgkpvmCKYQrkiATRT+uCbsJIeRckLlDCca+dGz2tHa81oZJjBMKP6vnMUaox2CP/s/5HOMS41wSUziONbsp5rm9krOE941VkIluW5qaF+GQdMstsrRj8MU5f91ucVkmb/vG2+SOzh2Fy9u7tLfK5iEGirFuVRr3nC3G78XDMoSCBpgmhAwaBawIMgEAAAAAAAAAAAAAAAAAAAgsxgLTbKHt98H4NiV6zvKD/QjPldglhiJbU6BA7DTnShWFk5ZF1FAs4eooBjUFTwRrxfDV+uzrvmLU1FLUKRUFmfgUGxvXqy3GXDjvPMXClH1L337N20ZLHxVVwVEsQSZVX2SpLcSnKplhHyWJrRDRej3jEHO/NC7zCOV21725psMRrHHjcpAj4nN/41rhxkSf5Za5Rxvl+7uY5iW+epYgkxE+Viuorx9lCCDCmf/gB2VYGl/WnZafX3SunPuzc1XLW+guVNQyxELzPdbqXuRBJuMwnlhYxp4Qc89J29+IGkEmAAAAAAAAAAAAAAAAAAAASr6BJDE+eTJb9AwygZ2lIGp8aqdq4cSZwkmSMdq/qu6ogsJJ0yJqeWq75zZZCjksG93UOZXagwtc3/HpZbYwB2uwQu76PXaWedxVFmMufv9KxbuU29x3buWN96YApYgKjpzleh6hIBPXbSjIxPBUbqvUEWTiLaJrrk5OO4ZEPG+yNk1b1G/q+6DiHUiiGdN9gidKzqGsYrr/sIc3RdR4X4awL1MAaeyU14Y2BBDh9LbtKHzPX37vPdKa0pWCL/YWyzYJkdGMI6vSyINMAt4LxchZgiZDDLUTeo+DOBFkAgAAAAAAAAAAAAAAAAAAEFjVRbhVyJY8C3nj25T4GX5A7sboKdB1sRQHttzg4o4qghpi4xu+tGIh+rd6FIaa+W5SoCCTxuo7fQpq+/aBNfggaSWln6LsdT5aP6IMqVi8ad/QwmpL0bXrHVpn3nhvKmCOqeDIUMzrXaSuWXbVF5ky7KZqlvHdOh5Vvo8mibmoP0wzaqc+H8dobqS99scpyCAWnteNa4cJ3vQas0r0szEFmZjFNC/xZLo/GafxVNvP9whDa1r/vcQgc9Md9fK6GeE04yZRXM+rsnrnbNbvuSfuu86m+9ZJ29+IGkEmAAAAAAAAAAAAAAAAAAAASr6BJFmEBXGu7Rdkwk+h7UwFxuNUPFWTliXIpOBSLBvUUCtNYUIVm2M5JUs8rV7N8xoJdh02dMn6hMb0F+6mlicEHzDbnjV/Ztn6PY6duUBK+VT5tDMt3e99Z/AbLGEXffs1rw+xBZlENAZYruc0YLurXrTyHKlayKeQW4OJ0Mc47o/NNE273XVvb8jxV1EoLiL1zGUmje/8uqMIMvG5KEuGwdk/G1HHYW3KKN0bDWKaz4zB9h6gDg1oKOANfRSBBz3Dlx4h55xoSETDiK/JOy+b/U6plpBhQIkgEwAAAAAAAAAAAAAAAAAAgMB8CsZDyzqT9iPyBlmK18agQKFulpCAomfU9jK/gJ9oVVBxbaoprqPY0XebLG2zrKKpa9ZnX/eyvv+0n+t7F/fa19nHJwzM/JmO/mnli1/+6uAXtQXvIsuDTHIKtCxhS1EVHNku/nDNqPgia2ofhwy1i3GeOSrcGBWtW2gL3MdpWuq0xfpjk1YTEd8QuqUlxZs8Fuxz3Zc4L1qu6A6kRsbNqGVuH5pljByn61957LQhgAjHKYJMTN1Ia8QCWlFoapz6pkmhuK7DUs71Ld97AJ4IMgEAAAAAAAAAAAAAAAAAAFDyLaYNWbzqK+t6/hCe38/bmYJM2MFWluLAokCBXjpCP+LXnCtVnE+WZdTxxHnfVRj6YWfY5sYuWY9xpb9w3Sf4YN/iPvNnlq2/hp1lKcRZ+PHPBy/H8HT6/uLDvG20FTDHMwZYipdDhkFUHWQi3Wb6+ZAFpXVcW2PLuu/GZVdrt7vuAIaQ+1dbrE/xd+W8xwjFWOwVkuYRaFVmnEsi6qPNTYmn6f4Mx3ssglsO0t6XUcTevF61512SJHLn3J2VLhMNG4O+OMbvxUNyTQdNasc+w/cegC+CTAAAAAAAAAAAAAAAAAAAALS8sz/i+9V5xm+Va6N96r0IOSY+EsM+K3qvT7hDU+rKMbF0Xz6FoVbeBfumkBXLRptbUg2fQsu+ItxeZi9a3LdUMsjEp9jY+hnDU+WXtiyJa7fzX7Scy1lRkIl+Uab1hma5ZkKGdBjOgUQUoQuGc6RKmYTbR6mL6LwZNSM07lcqpr7GmzFkpafc5nEKMvCU3blT9r7ylbL1AY+TrSc/Tnac8nRpX/LNEkv0myy5zoAxuuyifY5xmfMipvs76zx6DK4H0/1JHaGMNdHeM1nC+xCG5hw13U+IyKY9mzxbgxi1xmDaFjLUMUqmQOsQ69ftb8YA1IEgEwAAAAAAAAAAAAAAAAAAACXfQJIYf7DtUt+fkdb8ZPZxYDn+JJmYWYp6Wm74+dtzY/ZE6rqL8dIa1ud7jVieANx00Ylmtal9XOl/yrzPE5Hn2nPmzyxbv8+xM37EGZ4qn6VT0v7aBfkvWgp60uFBJpawpagKaC1jV8ggk4rHRcs5Uul6Ax7bUQrhio71uER0iZahPx+TZWNHVMzjg65fj3Z7a+JmZ+W23/4fsuv8/5LO3inpzEzJ3C8W5NbT/04WP3uO30I95iwiItLpFL/HZ2rh054SY1FrlE8p32OX48qtV8o7L32nnPXts+SOmTsqW24hyzaM0/Wv7ee7Y3b/O4KcJmjL2AVt3bPVrzGIkvY7rxi/ez4oZKhjlAz3Z0FuL9RjAEEmCG+66QYAAAAAAAAAAAAAAAAAAACMu6qLcMty7ba4zDPIJK5NGQ2W48/+NbOEBBS9t5eNUCGX5ryqoO8xnb51FM74blKgQKHGunef4IK+Yhaf4IOZpRn7Ovv4hIGZP2MMqVj82sWy9nkvOHy9hr6gvyA6r0DLFmQSUYGXJeAhYEhH5XOohkI/QhbvxTbPHCnGa25s9rTlnMkykVZNz9F2ToKFJmoLNSf8etpz5qukvSvnGLiW7HjTP8mJz3uBJEccYVuo5z51miATryQTnyAT/z7cNA8IzRoAVGK7D+qlPXn6x58um2Y3SZLsP7c+8h8fkd89+XflQ7//odLLL2QZ92MKlCtLuy3KkCeEowkysYS3iohsn9nu2RpESTmOdpcWZM26owI3xk/IUMcopc0GTTrt2EeQCWpAkAkAAAAAAAAAAIE455b9DwAAADZJkiz7HwAAQAx8irBF4nvyZLZrZ9NNmCimH+zzXaJZy+nvF4oKgHzCHRpTT46JreBxXIpTRmEzLE+XP6A/aMbnXJ9tz5o/s2z9Hiek+TPGp8ov/MeNsjF3OYaCnr79mtdeSx8V078nWYqXqyh0roRiV7uGirWygPsodSM0dkXGHMAVzyVajmW701Rkuqbys4DZf05bUBpRP9yEhSs3iUh+cE3anZb2N74ua5/7+7aF+s4PNUEmPov2mUOl/ufFKAeZVDG3f+6nnyub5zYv+zee1lRLvrHpG3LWt8+SNz3lTaXXMZShmDymeVhZ2u8gnDEEEAEo+qTEcD8hInL77O2+rUGEtPeT3b27ow0yie178dDU806RMPcXyvHMEWaFGhBkAgAAAAAAAABABdI0lbm5OVlaWpJOpyOdTke63e5Y/dABAACgKUmSyKpVq2T16tWyevVqWbt2rRx11FEyNTXVdNMAAADUYvueyO3a5f/ZuDZlNBgKwNi/dpaSnqJCwl46ZoVcVZxQpiCTGopTfLcpVKCQsaisjOtuv06+df23ZKo1Jc/vzNsX0LcPfIIP5tpz9nX28Q0DM63DWIzZ3pGK63QkWb16+QuKJ6Pfpa9IKW+8NxUwxxSmZCn09igK16r8vGmoYDcL2D+GDEkZe5M68bKEMvR6ImvWhGuLL+uh04YY1TGXiVh7T36IyUH73ne2OcjE9144WMCC1zEejyATc1NKXg+zi7Py810/l6R1+Hw5SRL51JWfCh5kYgqsGqcxQbstMc09J5RTzKOLAllX2jlHePE40R7/dM8ukXvdN2xjoNP0eKK9P28o5BOThSATAAAAAAAAAAA8OedkZmZGZmZmZH5+PrpiFAAAgHHhnLsrLO6gJEnkyCOPlPXr18v69euXPc0PAAAgJO8irMge357t9g8ygQdTKEJc50rsnDhTcWDRe7vZCP2I3zkpjHGpIsfEcvoGDDO4ax2+/bCl0D+yS7aX9uTUs0+VG/feeFch6OXXr5Z3yHGm5bi+wvVeZi8OnvcJT+lfv8fOMo+fxqJn51qSbrpZph/0kOV/tzyZuK9ANq+9psJDS+BOaKHCf4wq//e3hoJMQs4FU4qQ/ZmL9MfjO0jLmOjStLatDtoDavv1mPrhCPV2e8wFfMOW+v49YPCiPeYWPvPVEnPcmIJMzBdZyevh7B+fnRticlAn6ci+xX2y4YgNpdYzVGoYI8coyEh7bTiK2JvXKz7vrOPw7sXdhe9pX/wN6f3iF9I6ZqOs/YMXSTJNqXmsEuX9UHdmb+CWHOLESWI4MycueNEy9oSYJyjHM9dpB1g5sByjCwAAAAAAAAAAHubn52XHjh3SbvMPOgAAAE1wzsnc3JzMzc3Jrl275B73uIcceeSRTTcLAABgoCyygphsV3FRA6pjKsKOqdBtRFhCAlpueKFFaik2aFiUmTd1FP/6rsJStG1aSfjy7uef83y5aeamZYWgraRlX1Df8fEZl0oHmdTQwbnUI6Qir1Da0Be4/iCTnAvTFmQSz3zBFP4TsN1VnzeuoX4+ZPFebIF5I8U6mI7LrraM1z79qq+A+1d77buI+uGx4Tk/dN3iIBMvPse4xMTbNA+IjGkukOPCX1xY+J5bdt8ij/ilR5Raz1CWEJpxCjLSbktDAW84RBOuZA1E2re0b+Br6c03yY7/8VJZ3H5ooav+5qNy/D++VtY+7wW2FaEWRd9jHdTbV1+QiVVs34sHV0PI71Da/c0YgBp4fHsJAAAAAAAAAMDkyrJMtm3bJlu2bCHEBAAAIBLtdlu2bNki27Ztm7wfQgEAgJFhCrKoQba3zI/bx+NJ9LWyFETFdaqMBEtRT9F7e26EfsSv2e4qivEsp2/MQSam6zCea3Z2cVauvvPqw/7uUxTbf3x8QhXmuyWDTDzGQvNnPApxcovbu4bl9BUppe7wZSXKwrP9jYloEDBcM5oCzGg0VKwVMsiE78NKMO67iK7Qcix9Ta3hPwH3sLZfD3itxs6F6h99x7ZON8yyfearZcbnmDoOa1tKzktaitLVXhZ2XLYEmJUNbomK9thRxN44zT20NchktjObv67FRbn9Wf//shATEZHu7LTc/ufvld5/XWNbEWrRUnZN6exM2IaUMHHBiw2PJ9pgPtdVzLWAkqabbgAAAAAAAAAAAKMiyzLZsmWLLC4u5r6eJImsW7dO1q5dK6tXr5bVq1fL9PS0tFrkigMAAPjKskx6vZ50Oh3pdDqytLQkCwsLuYVMMzMz0u125b73vS9zMAAAEIzvD68ziasgxu0b/HTW4g9X146JYcpPYAdbaZ9Ou/+9w19PszqLdctyUhQsVMXpZFpGLUEmnuuwFKvHk2MiZ//4bElahx9nazGbiCzbdz5Fo4ud/H8fUa/eY29ZP+MsASQH5RS4Oktf0BfikdeHW0JnLMW2wVmu54BBGpUHgIxhkElegA50tEV+hz4Qph11MwWP9Wo8v0z71xiu2FMWao5SMFPVFMWsiU+mpefczXU7ijd5LNdjzPL5zEE+4XOhmA9FyeshUVynwe9/LceujnuZmmh3a7AAI+gprjPLdx4iIgvdhdy/L33x87K0M39ZaWdaZt71Hjnm3HNM60J42qOfzuYH2MQg5L1QjCzzhiDDoHahPt+fAEYEmQAAAAAAAAAAoDAsxGTt2rVyzDHHyFFHHSVTU1MNtA4AAGC8rV69WtatW3fX/5+mqczNzcnu3btlaWlp2XsXFxdly5YthJkAAIDoxBZOke31DzKJa0tGg6lYlB1sZgl0KHrvSAWZaLa7kiQTw1tjLv6zFM5Y9puxqMzqX6/919y/exXF9h0fn0KixV7JIJM6xkKfJwrnFXAaCvdd377MC14xhc7ENF8wBZnE0e5EUWHfVMFuyP4xtnnmSJnUXWcprvQIvqqF8djpA6om9aQQce226n3/8K1/kE9f9WnJWpk45+S41cfJu575LnnyA5+cv1zfEJBQ/bVPe0r04V7hc7EoO74opsnBi9stIXGRzGcqod0Wgkwa59LiY2XtR9ppfn8+9/n8e8uDFq64WY6xrQo10N77E2QSkaYDSrVzHW3QH1ACv9gBAAAAAAAAAEBh+/bth4WYtFotuec97yknnXSSbNiwgRATAACAmkxNTcmGDRvkpJNOknve856HBZYsLi7K9u3bG2odAAAYd3kFyhqx/WA7m5trugmThSCToCyBDkXv7dVYrOtmZ6V39VXSu+5azwVU9J4q1VH851tQaboOLetI/At0S9A84X6l/iAFn9CexW7JIBOPE9Ia0OA8CoZyP2Mp6OkLPclrryl0poFzaRBnmLtY3mtvR8X9SkP7OJNw603dCIVwxcZ6PgQOr6qNZUw0BDtFTVms79J4+uHadYqDTG5O2vLJn31Sstb+/ZQkiezq7pKXfeVlcs1t1+R/yLMfd5pwMo9lex3jEmOHV/hcKOYAoHLXQyspLl0NHiRp2YZxCjJRXhtNBbzhEFWQiXGZPZd/XGf+c+/Qz7V3jck8Z8wkyvlnNj8fuCVQa3o+qVw/YwDqQJAJAAAAAAAAAAAF5ufnZWZmZtnfpqam5KSTTpKNGzeqnu4GAACA6iVJIhs3bpSTTjrpsFC5mZkZmecHWwAAICKVF+GWlM0wV6qV4fhHdqqMBMvTiVsFBSDBC+lkf0Hgvte8Rm558O/ILU/9M7nl8a+QbQ87RZbOP8+2HMV2V3I+GYq2XQ3Ff7VcI9aVNFD84VUU21fL4hN80O4VFzgP4zMWmsNPfI5FTpCJs/QFfed93jaanqAe0yBguZ4jKvzNCgqWXbeZYq2QoXZF24whrGFJgZpRN1N/XOcT5UNm/2kDWWLqh2vmFCFe21fl9zfJVCIv/5eX53/Ic4xwHUOomGnBHu0pcV6Y5gGxKTm+a4L3Qoe+WuZ0vsG1MVLvVorYm6e4zqz3fiED9FC/KeXxz+YXwjakhNgCvoNreHvVc31LgCvgiSATAAAAAAAAAACGcM7Jjh07lv2t1WrJiSeeKGvWrGmoVQAAAOi3Zs0aOfHEE6XVWv4ziB07dkRXMAwAAMaA5/Qith9suzI/bh+XJ9HXyDYtZQ5rktiKeooKCesIMpl53evkzs/9VNLO9F1/W9ohsv1P3yudH37fsCTNhpc/n2ynbw3nr+86DIX+5lXUWeR9kFcN7qEP+ZzrTQSZmPkci7x9YSjqdH1jfF4B7JRl3Gz6yc39LMcrYJCGtai4cM6Vao5t9edqyPN/nAqv6+ZiuubqZAnZa2KMC0D9xPlJDgZqdwrfMiyYYsfijvwXfPu/bnFxrdeiPa77MmF9SUz3z9bNqGHu5hOuZ1uB4XhHFMxWmrqInSCTpmn6F2sgUtJKpNMr7tMxGrTHP1tcDNuQfsahrY7Q25g4y3wyxK5Rft+jnh8DJRBkAgAAAAAAAADAEDMzM9JuL/9h7vHHH0+ICQAAQGTWrFkjxx9//LK/tdttmZmZaahFAABgXPkWisZWYJrN1/jjdtgKwOI6VUaCpTiwKPQkdCFdtnev3Pn5K/Jf603Lnjf9bbUrrOJ8siwjrSPIxPNjpkJM20qcotC2atancouI9D+Y2ydgq52WDDKpoYPzKcTJPX49Q1/Q996888xSeBhTIKul+CpkYZp1nxSe25ZjW6GQoXZ1hHCNL+O5G1MgQRmWa1YV/lONoF2g9onzEfXDdXOdcuN8MpVIljd2eO5Tpz1mVj5jVonzohVRNo55K0oG+yRJcZ/ZTQPPo03F5GN0/Ss3xVRsjyB0QSa2+UeSJLJt3zbfJiEyLeXxzxbi/a43kwnra5oOAtSOZx0CjxAeQSYAAAAAAAAAAAyxsvB17dq1cvTRRzfUGgAAAAxz9NFHy9q1a5f9jSATAAAQi5gKk0VEsoWlEp8ekwLOOoXLT4DYQgKK3tvLwhbrtr92gYgb/BPuhZtn9QvTbHclQSb6az62vm4ZS4iAdTNqLPI+yPpUbpHlx8cnVKGTlity8QkyMZ9TPgVD6eH7whSI0r9fcwq0TMcqpkAKS6F3wGvfet4UnduuoX0cMsgk5LLHXs71PxFMQSYR9Uv9rKEy2mM9yUX9irHPFQxqeXMF77ArTfCUx/jjFdxQYpyL6u7Zmt1UMqislRSXrpadXxay9GFjdP2r59Dd+u9jsILitPPpR27ZfYvHpxAjbYhptqgPJEtv3Sq7Tz9DbjnxN2XzvX9TbnvUE2Xxc5/xbKGibZN2v9L0eKJcv08QLGBFkAkAAAAAAAAAAAOkaSrz8/PL/nbMMceonhoDAACA+iVJIhs3blz2t/n5eUlj/bE9AACYKLH9YNst8sTFOpkKwCLOgYiVtqhj/3uHf7+bBi5w3/ehc4e+nvWm9cWViu2uIljEtIQ6ujrfbQr5NPZu4CfJ59A+lXmZvl3gc653s3LbWUfQjdMUPa+Uty8M+8f1fe+Qt42WPipkIIiZZexqulCrT1bUFp9zpAIhz3+fkCAcYJ6jj8e/E5vOx1q/Ww14nWgLNWPqh2vmOsX3iEV7p9vLmyv47VOnmV/5LNrnGJcY50zzgNiUvB5aitLVbhp2Hu0MfVjUoYxWyk2x7B+EoZmK+PQjW/dutX8IUZpS3vu7Jd13vdme3XLbk14oe761SXoL05K2p2Xx1lRue83HZf597y3T1MFtG6f+VaPp74G16yfIBDUgyAQAAAAAAAAAgAHm5uaW/UNakiRy1FFHNdgiAAAAFLnb3e62LHjOOSdzc3MNtggAAIwb30LR2ApMs8WSxegRFSyPBMMP9uM6U0ZDwYPhTe8NHWQimqDstv4puoVqPqFqCarwXUXAQpKQBYCD9qnlvD+0rEP/7ROw1cvKFbn4jIXmz6Qebcw7fpan0/edW3nHy3SsLOdpYKbrOWC7rf1KVpSo1FCxVshQu8LwFgzmsevGYh5suGbHpshdee2PxfH1pQgyKVxEmrMM3zEiUH/tUvsxNgVTruAzZwvHGMZUdm6vWF3PZ+5mYbmmI5qHlaWedlDE3jzFaefTj2yf2W7/EKKk7bndku67pD2v/DPp7M2PFrjjnV+SbO9e5RoxiLMEowZZv3IQYAxADQgyAQAAAAAAAABggKWlpWX//7p162Rqaqqh1gAAAEBjampK1q1bt+xvK+d1AAAATShT+BRC1i75Q+VJLvDzYdldcZ0qI8HydOKi95YNaiiStIp/vu2UQSaq4v4qzifl039FxKsgvDaWEAFr0WY37JPk83gVAvTtgtTZC9NLB5l4FMOaP9Ozb1dekb6l8Kh/TMwLq2iZrqGILiJLCFfAECNrmE3RnKupUIagQSYBlz3unM++i+k69WW5Zuu8ZkyXuy2QQd2vT/Bc3PWK5zNFQ1o3y1mG5xjhNKFiPsv2ao//iWGaB4Rm3YyS/V2iCHHMDb+pkiW4JrLvbUrRnufjElY1wjRTEct3HgfdMXeH/UOIUkvbjSm/6128avPA17J0StoX/qtyhXoTd7/iEZpWKeX47QgyQQ0IMgEAAAAAAAAAYIDOiicOrV27tqGWAAAAwGLlvG3lvA4AAKAJWWTV/Vm7ZHvGoYCzRqZauTGqnapDcuD/9O8fLnSQiUwp2qoNY9ScK5WcT/r9GzLMoG8lwT9n3o6AQSaDCkB9nsrdv1k+hUSjUHzkFVKRV7xjKOjpf9pxXuiG5VjVcg1pWYp5Iyr8LZxzNTSHCXlsfYKJcIDPcRmDom9TyKIl2Clm2n59ku9zKvgevZvmzIl8xwhFsIrXXNenuLjEOOcTQBCKtcsrG8jaUpSuhr7/cpN6TSsPHUXszVPdYnkxpnvKAAAgAElEQVRcinfO32n/EKLUUn4n45RBJu3dw/vmvf/3nMJlWL6HExmN7xIqZRlwQ8wTtOv3CIIFrAgyAQAAAAAAAABggJUFr6tXr26oJQAAALBYOW/rNvBkbAAAgJWiKkwWEdct+QPyMSjgrJclQCFgM8aUpTiw6L1p4GLdpFX8823XaVe2vrKnk7nwr47aFN+NsmyLucgz3HkzaPzwCTKRskEmJQ+wz1iYFwwylM/4lFfQbFlOX5Fv3jaaCphjKrY1FV+FG7ys503Rue0aKtYKWbwX2zxzpHgFGkR0nfqynDMRFzia5inaYv0Jvp5cp/z36J308DAU3z7KdYuPmdd0yKc9JQI9vOZssSh5PQwK5OuXG35TJcM8vWxwS0zUh47vdprniq+TluI9K+1e3O3TGkQmyzKZ0k53FOOmRjpb/QNCJu5+pen7BeX6XUqYFcKbbroBAAAAAAAAAADEyDl3WMErQSYAAACjYeW8rdPpiHNO9aNZAACAIs45MT50UkTie/JkVrZWqOkfZI8adldQluLApKAAKHWBC7mmFEEm7SXdsjTbXbZWxBoMOTa1KcYNaSBA06cotr92yCe0p+xYZg4l8VmHx1Pl84JoTMvpGxNLB5lEVOBlKuaNaF6QFbVFVayViMsyVfiUVtkgoKHLjmyeOVJ8rjmPfiY6lpyiQGFdbnFR5s56l8ye/11xqZNV91wv3RnjjVaWiSivU3XoyRgFGZj1iuczRbX0ufML37FNE7Dgs2ifY1xifDbNA4IzXmNlg0wU6+tlgftUU5hhVAerHOWmNBXwhkM0p53Pvd9Me8b+IUSnk3ZUfamIiLQrup4D/HP6pN2vuKZDorTjWUXhN8AwBJkAAAAAAAAAAJDDOXfYj02np/laHQAAYBSsnLcdnNsRZAIAAJpUR/G2RdYrOTeKqGB5FJjqoeI6VeKX2IoDiwqAQhdXJIogE+lU+PTbsueTsVi7lto/58QzUcqwDuOyGyhS8Xkqd/92+ZzrZZ+iXMtTmFOPazjv+BnGuf7i+LzxvihAyXe9wRmOV8hja51DFQaGaAt2ez2REXnIwaQVBlbK49x1zoWo76yVKagoQHCL6/Vkx5OfJfM3te/629IdMyJiDA+y9JnKQk03wdeTUwSzFZ053TRnGZ5jhC5UzGNe6BFkUmacM80DQrNuRslgH82/yeSeMxVylrnhOAUZaTdFFfCGkJyij/AJRJrvzC9fT7s94J2IWS/rSUvZjSW9Gucw5qF3wuZXpvv66ucJ2gC/xgNXMBGqi4cFAAAAAAAAAGCM5D4xr8KnrgEAACCcvB/H1lIsBQAAMERM8xHX64nLpsotI6LtGQmW/cWuNbM8nbioACgN/SN+RZCJW1rSLUux3WUvVXNRQw3nr+82mQqTjSvRFdpWy+ep3NJXJOdTSFQYEFG0eo8TxDreeD1VPqfIx1meTNxX9Jr770umMKuIBgFLMW/Awl/zOVDQFm1RV9UBRabgCOuyYzpvRoz6fOg3DkXflnPGp18tMPPmNy0LMfFm2Q7tsR6nIAOrTvlAidxQCt99qjn3PBbtdd2XOC98AghCMTelhiCTXha4T7Uc7zEaT9WbElOI3qRyxd8R+MQcLPYWl69m316PpaBpaZbqx5FO8fWsGgMjyt8aWU1/D5wqF6oIsQPK4hfXAAAAAAAAAADk4Ad/AAAAo4sgEwAAEJJPEbZIXE+edHv3lF8IxS425JgE1TI85bwo/CF1YYNMkilFiFCno1pWLeeKsVi7llsv33WELCQJUORdxKcotn8XNDEueQWZWD/jET6RG1piGef6g0xy2msJnXFpPOOr6buUiAr/CwN3lOeIq7ioK+Q1V+f1nI3bHNDn1I3ofPdm2AaXVT/GzX/nymoWZDgfnXZOM27nuIFmHxVNu3ODTDwniKZQMdOCS06ijCz3KrExBQHmSBTV8L3Q4VCWfmKc/h1JuSleIYConU+IZTtbHhiW7dldUWtQp07aUd/7Jz3FG1UhrNWPW2PVv2o0Pp9U7u8GQnkxeQgyAQAAAAAAAAAAAAAAAAAACCymH2xnO3eWX4hHofhEsxz+eE6VkWEp6pnKhhdkpAGKdZc3oPjn267TLnzP/jdW9J5hrNd6Leev50pMhSTGdfTqf4qtTzFbf/WxT/CBb5jXXZ+vYyz0CQLJOzcMRbX9T7XO20Zb6ExEg4BhV4Y8ttbzrvDc1vZrFRdWl71+hqkzyKSXjVmxm0+RYeii+xqYLtkA8/7FWytapuX4qYv1I+qH69YpP5/JCzLxHiM0x6yuMKIS45zXnC0Ua6hKybbnhc6v1HPxBJmMRVDVQdpN4budRjlliIBPP7IypNXN7LMvBI1Ls1RaBd9jHZRoTqe28vumisUU8F0HS0BpkJFHuX7HGIAaEGQCAAAAAAAAAAAAAAAAAAAQWFRBJrvvLL+QCfsBelm2oz+6T+xuiqWop2jvriz2qVqiCjLpVLfCsl2P8QndtXQNvttkKUw0rsOFDsDJoXnC/Ur9m5V5FO+XDmLwqhu2fcjrWOQU71gKj/rPrbx9ZCo8TOOZL5iKtiMq/C06t9XHtuKirpDFeyFDUlbqjUGIxzIe5+5YFPxZru+Yt9cylim3w8XUD9fMdSsIMslyluF5L6wZ030W7XNv7kqMc1OjfEqV/B6jpShdzQu/qZJpThfR9zZlqbck5j5+AriFBdX7WtYQIhFxK25Csn3jHWTSu/F62f3iP5JbH/xbsu1hp8ju08+QdPttTTertG7aVYcAaIJMnCaENcDXkpklJXMcWMaTAEOPeq7DGIAaTDfdACBGSZKcICKnisgTROShInJfEbmb7B+GZ0XkNhG5TkT+XUS+7pzb1FBTAQAAAAAAAAAAAAAAAAAjIHQ4goXbs6f8QnyeXj/JLLtrfGqnatOyBJkUvDcNHUgxNVX8Hu0TchXbXfZ0UhW5LFNDEI/3RhmeiGstYlQ+SdvHoIACn6dyS18BXBOFRLWELViKVQ/KG9Msx7TvfMk7d2yFhxENApEEmZjDbIr2oXIOU0VB/7LVBgwyqfMJ58HHyZp5hQ2OQ6CfKWCp2u2tMrDNOaeeeegDaCLqh+tWQVBRbtiR7xihCtTzWLZPe0oEXHjN2YIxztVL3vcnSfH6elnggKyGi8kbo9wWU9ALqqcMMvHpR1qtlsy15+SoNUeJiIibmVV9zmWZJC1tdEYcetdcLdt+75XSW5gWORD7sfStTTL7a8+Te192rkydfP9mG1hCL+tJS3mZtlJFH98unoeF+FanTCDYSGr6nkl7z2sMLwZ8jNaIAgSWJMmjkiT5FxHZKiIfF5EXicijReQ4EVkjIqtF5FgRebiIvEBEPiAiNydJcnGSJE9optX1SpLk1CRJXMH/nth0OwEAAAAAAAAAAAAAAAAgBN8i7FqKt5WySoJM4tmeccOetUmSxFTUUxR6kgUO6Ummin++7ToVFs+XPaGMBa1RP8Tc0m9ZgxMqDjzQsAT4HJKIOxDQ4RVGULKiqY6xUF+o3veZvH1h6Av6C0DzAiVMxyqiYlLTZRDRxV8U6qEu1qr46dRegRlKdQaZ9FzggvO6+RyXcSj4M4yJuX1kmVXvurPChRnOfe01HVE/XDfNfKYom6vKAM9gxbVeYXBlgkxqCPpTcB73OWXHriiCTCxzuojmM6Vpz7uK5zuwcfNzqvf59iKbdm06tK5ZXZCJNHBvW9bOl772QIjJcr2ladn5h69ooEXV6aZd9XdemiATVVit4oTT9O/96rxfiULTAeDa8SxgKC9wEEEmgIgkSbImSZL3icgVIvI8EVHE3R/6uIj8johcliTJZ5MkWR+ijTE4sG3/1HQ7AAAAAAAAAAAAAAAAAGDUxFQQk+3bV3oZbtJ+gF6SrRg8WDPGVstQHFhUANLNAhftTBf/RNV12qpF6c6rkoWT1gLSGs7fWrpT6zoaKHr2eSq3iMjcO/+XdH74fa9QEWux0ko+6zR/xudY5J3nlqLOvpMyr72WYxXTfMEUdBCw3dZzoLAgWntsKy7iDFm8V+d5E7zgvG4++24M5sGmza461OfOnRUuzC90avgbI+qH69Ytf31305y+07eYVzMP9bqEPT5UIsjTL3wuAJ9i5Rra3jMGJ5pZ5oZjdP1rN8UnBBDVcUuLqvf53vvduvfWu/47m9MFmbi27vuIWKS3bJKFWwa3eWHzkrj5+RpbVK00S9XfeSWpIi6gguMbOgB4HKjnnSJS+nu73Abo1s8YgDoQZIKJlyTJ8SLyPRH5c7EFmOQ5XUR+kiTJyaUbFqd/FJF7N90IAAAAAAAAAAAAAAAAAGiMZ/FATE+ezPbOlF8IP3S2MZ03cTyxexQcLJ6wFPUUFYCEvlaT6cOfEnyYKovnS9biucwaZFLH+evbEQc8tpqnGlfMtyj2jvdfIluf8z/lDz93p7SMuyRJklJFS7WELfgEmeRsk6mgp2+dedtoOlYxFYVZjleJAu/CZhiv+cICdeU5UnVRV8jzv855ZmodF2Lnc81ZQ75iZDkfKw7rynbvrnBhlu1QhiWMUZCBlVMEXRT1yXlBJr67NFhxrceYVaYPjybIxGcbSo7vmnlj6IAsUwhrLMeqEsr7snEY00aYW9AFbPj2I7fuOxRk4uaUYR4lv4/IZmZk9m/eKntf/Scy+46/ETerC1DxtXDOOSJucJm8y1rS+dH3g7YhpG7aVR//lkvELQ4Px3Ga7y4KAkx97j18Qk1HmmXMDbBrXKpcKN/vowYEmWCiJUlyjIhcIiK/XuFiHyQi30mS5L4VLrNxSZI8UUTObLodAAAAAAAAAAAAAAAAADCKYvrBtpupIMgkpkLrUWA5/PGcKtE7WDxhKeopCj0JXqA9Vfzzbdfu6Jal2O7StbjGwjZXR5CJbzGsqZDEuJKKi7w1fJ/KfeDT8lvXHiEvu2y9+ZNL3SXvtfoUAVs/4zzGp9xCacNy+tuYN96bjlVEBfSmpoRst3HRmQw/duqCZm3ogVLIsJE6g0xiCuerhMepW0soU2iWIbHiuVG2p8IgE8v5qJ3TjMPx9aUIMilcRF4ohe8+1cyvfBbt054Sp0VRkGJtfI5vyetB8z1I8Psvwzy9MAxtlCg3xTVwH4ND3MLw0ImDEs9+ZPvM9kPrqiHIZPGfPydbHvJ0uePDl8muL/1M7vjgd+SWh/yOLJ1/nvcyi7T/89rC97i9e4OtP7Re1jMFkGZ79wx/Q0f5fdOwdXjcD4zdPUSRxr83Vw4CFcz9gCIEmWBiJUnSEpF/FpFHDHnbT0XkTw685xgROVpEHioiLxWR7w353H1F5IIkSdZW09pmJUlyhIh8QnjMAwAAAAAAAAAAAAAAAIAJ5xtIElPBYzarLF4YZtJ+gF5Sww/iHFsHCyEsP24sCj1JXdhCuqQ1Vfymkk9ArpTmab3LRPxT04BPY3cNFH/4FrP1e85Pj5Q1Xdty5rsVjCEh+TxVPqfIyFmW0x9kktPhmwqYYxpfDYNXyHmOde5VWCSnPbYVX9chQ+3qLAwMXnBeM3WwTb+KQ26aYLpkK35Se7a7oMDWtDBLQIHuvT6BWOPCKeagRWNaL+/68BwjcoPGKuDVnBLjnCV0MSifsLeSwR6a8annAveppnuAWA5WeeotiWnuOYHc4oLqfb53fnfM3XHXf2cLunW5TttrXb3rrpUdr/ugpJ3pZX9P29Ny+5+/V3o3Xu+13CLpHYqQEs33MJHqZl1JDGeAm9k3/HVNkEnB6ggyUbDMUUOsXxlSRZgV6kCQCSbZm0TkaQNeWxCRlzrn/j/n3Iedc9c45/Y45/Y5565zzn3KOfdEEfk9EblzwDIeKSLvqb7Zjfg7ETl5xd/G6xtIAAAAAAAAAAAAAAAAAAgoqiAT7VNYhy4knu0ZO7E8sXsEHCyEsBQHJgXvDV5cMV1cQKMqLBFRVjuUO598CkiDh3r4dj+GfsscONBAYX8VPcWqLJEHbl9l+sxCR1cAl8cnyMH6Ga8C9LzPWI5p2hdkktNeUwFzTHVEI9ruwjmX9hzxCcUZttqA40vIkJSVetnoh3gs4zOnHYd5sOXepOJgD7dveIGtieVYaOc0Y3B4vSn20VTB6dDNcsJQfK+ZXvG5V1soSYnrvuj+oy5+wTA1BJkEDodyqWEbIjlWldB+r0ARe6Pc0pLqfb6BSLsXdh9a1/yi7kOewarz//RRSbvTua+lnWlZ+NjHvZZbpLe7+P5UGxgTozRNC8fefkVBJlWENWY+wVgRfS9ei6a3V7v+QKFxQD+CTDCRkiQ5UUTeOuDleRF5unPuU0XLcc59XUR+W0R2DHjLq5IkeYxfK+OQJMljReQ1OS+9t+62AAAAAAAAAAAAAAAAAMCoyiKq8M3mlMULQxcSz/aMBMJJgjhYPJEY9m9RAVAaOJAimVIEmSgLh1RlCWVrJ3yKGjwLn7S860Es/ZZxHSHDWwYVgPoWs630K9tWm96/2PUfQ2oJW/AoxnR5gRWWc7/vpMwr0LIUMLuYnlRtKdoOWKhlPW+Kiqa1T512vWr7spDFe3U+4Twdt2I3r0CDMdgHls2u+Jhne6sLMjH1mdp5wATf57hu8XymaP5RZdiRLnijrlAS/z68Fcu9oM+1XDK4STP2hb7/Eks/0XTheUX2B/vpzju/gBtUxS3q7q18A5H2LO7pW5cuNEUdrLrC3q/8ZOjr+778Q6/lFunNFZ/Drt0Osu46dLOu7X5yZnb4657Ht5/Pd9x13q/EQHvPGa4BupOGMQB1IMgEk+odIrJuwGuvcs59X7sg59z1InKa5OdIt0Tk3fbmxSFJklUi8kkRWfmvZueJyNfrbxEAAAAAAAAAAAAAAAAAjKaYnjzpFsv/gN+NQwFnjWyHPzlQeIQiB4snLEUdRaEnwYsrVuU/oXgZbRCIYrtL9zwe13r4IiHfrQoYyhCw+GNQcadvMdtK3SnbghY6/k+zrmMs9Oo/c/axpfDIFQSZmEJnYpovjGi7C/txdZhBxeENAceXOueZPRcuuKkRPkX6eeFHI8ZyylQ9L81m56pbmOG6UhdqRtSf1U4RzFYUypEXZOI8wzBUY7HHon0Ose82iFQXPleazzhU8nrQjH2pC9ynmuZ0AdtRJ0vIYtPF9hNOGy7ie+832zkUapFpvwv0DPPrLQ7/rqMzUxzqauWyTHpLirBYZWBMjNIsNY0j2ezM8Ddojm8yfKwvMyZOjIYHFPX8fQzuaxA/gkwwcZIkuY+I/OGAly92zp1rXaZz7nsi8okBLz8lSZLHWpcZibeIyMNW/G2viPxFA20BAAAAAAAAAAAAAAAAgJEVU5BJtjC8eCFpKX7ETNBGWOxflYPFE5aijqICoOCFdApOG2SiWljJJ8D7FDV4Fj6p+XanluvKuo6AxR9uQGOqCjKZXWvrbxa7JYrAvIqNraEyHv1n3mcs4TR9hVx5x6soQKmwLU0x7PuQ0xzrOVD0fnVITcXX9bgEmQwKVxpZXv1SRNepL8s5U3FYV6VBJpZCWu21H89tW+00YS+tgt2Y30d47tRAQSZeAUYl+tlogkw8xrWyxepZ7jPDl8sLv6mUKbkploNVkqXfjmnuOYHcki7IxLcfme/MH1qXMsjEWYJwGpZt+m8RKb7X0gbGxKiX9QpDxPq5ueHzLNcp/32Npm8/bL3j0r9qmb5/Kvm9Xe4ydfvbEuAK+CLIBJPo5SKyasBrf11iue8QkUEj+atLLLcRSZI8TET+MuelNzrnbq+7PQAAAAAAAAAAAAAAAAAQg0EF5YWfi+gH29liZ+jrrVWKto7A0ze7P/qB3PGk35VNJzxONt3zcbL9MU+SpfPPa6Yx1h+lV1wwOq4OFk9YAh2KCoCy0CEyimunisKSqjiPgvVKg1hyVxB28T5cGq7Ya1D4gaWYaZjpzLachc6C97p8x1ATn2s47zOW5RQEmURTwGxlaXdE84LCwBDlsa26iDPk+R8yJGWlcQsy8QolGYd5mun6rvb8crP+48hhLG1TFmqORVCNL0XQxVTB7skNpfAcI1yoeblPc0p04S2XhL/HUGji3NYEoYQeV0znUTzTmVIs92PBrjPotHXhIqZgxD5L6aEAj2xp+HeBd+ko3xeB7k//Q/fG9uhs00pplhaGiPVzRYFx3eJ9kRScbj73HnXer0Sh6X8H0M69xuG+BtEjyAST6PQBf/+hc045ezmcc+42ETl/wMvPS5LkCN9l1y1JkikROVtEVq946d8O/B0AAAAAAAAAAAAAAAAAYODztMpQXHt4YW5rWrOQeLYnT+/qq2Tb894gsz+flaw3JVk6JQtberLtVe+TpfP+ufb2mH++PkJPwG3SwUKIKUNRT1HoSepC/4hfcTZoj79qu5NyxWk+52LoIBNfliJaa9FJwOKPQQU/lgCfYValtqK4pZ7/06x9ghysn9EUzB7+mcP3sVMUc9/13r7zJe94mY5VRMWkpssgYKGW9RwoLJLTPnW64sLqkEXsdc4zc0MKRplPwEJEwT3eLENixU9qzxYWq1uY4Z7EacfqMTi8vly3+PouClLr5YW7+e7Tis+9g7xCRkuMc4mLpO/0ma+W7O8041Pw+6+Q9wA1+vxPPy+nfeY0edFnXyTfuPYbw99sCVmkiL1Rbkl3b+V779fNDt2bu7buPt31Ir2fz9H9r/9SvU+7n2PUzbpiuWPP5oYHmVQR1uhzX1NLqGlEqp4/ay20F+T1//p6+eC+q3UfiOj7B4wvzT81AWMjSZJHisj9Brz8uQpW8TkReWHO3+8mIk8VkQsrWEcdXisiv7bib20RebmL6bEgAAAAAAAAAAAAAAAAADAiYvrpVdZOZdiz8FprWiLzBQuJaHvy3Pny10vazfmZrGvJjje+T058Qd5P/QIyPj3XpampUGFSZVlmLoycKnh/8KelK64dyxO0VbJMpOX5/EtDmMNBLtInOFueQm/u4jz2k9agUIZWVUEmxjqmuoNMzHwKhvIKOC0nQV+BbN54bzlWMc0XLB1sTM0u2ofavqDqvjjksa3zvInrHG1IxSE3TTAdxapDfRbaFS7M0lcrt2OSCzoV+6hoTMsP7PDrN1RFwD6L9sox8e/7WplIJ+3I6umVz5qumSXc4qCSfX5huJiIpKH7VMM1HeMQN9eek1M+dIrMZDN3/e1HF/1Ifum7vySXveoyaeXd5xnmMKVCL1GaW9KNiZ5388vChLRBJhLp/Xye7k23qN7n2hXOPWqWpqm0DJepW1gY/oZO+XscnxBFzXgwVkx9azXfAGdZJk/72NPk9vbt8ketu6k+YwlwBXz5jmHAqPqdIa99vYLlf1v2B37keXoFyw8uSZKTReRvc176X8656+tuDwAAAAAAAAAAAAAAAACMg5iKPrPO8B9Tt9YqnpMX8Q+dXa8ni7cMftJ7b2Fauv/50xpbJGL+UbpPkdkEyiQzhzkkBaEywYsrNAW3yutLveklnrLtfAoLqw5iWcm3Ow0ZIhCwAHPQ+FFV2NGq1Lakxc7g/rWQT+Gw8UPOUtR+UF6RkeW6KTi3WpYwK5/2h2JpSsjry3gOFPbj2rCbip+i7VPwp1XnPLPnxmyO4lPAPQ5F35ZTpuprodIgE0NAQarc6Iju2+qmKWadKtjleUEmXmOziGpM9Fqyz4dKXAYtV0NYh4bHcSg7vmg+nx9+UyHLdkd4/T/r7GctCzE5aNviNjnj82fkfsZZ5rEV9/Gw0QZsJL6nZutQWGvWUX7P0BuduV536x2q97kKwjua0nM90/2kmx8eZOI03zcmw9fnM67H9L14LRrY3r+/5O/l9vbtImL4vqjE94WAFkEmmDRPHPD3/3bO6SLYhnDOLYrIjwa8/KSyyw8tSZJERD4hIkeseOlaEXlX/S0CAAAAAAAAAAAAAAAAgPFgLcINKSv4/b4myMRF/CTN7k8ulyydGvqeufd/uKbWeD7hmB+Sq7jMmQt6it4fupBOU7zhuso2aLe9TCGSz7nYC1sk5N2bhixiDBjuNCj8wLuYbQVrkMlSd8l7XV5jofUjHn2uyyngzPvbwM+7/v8+vMGmYxVRgZdpqI+n2cWBIdowg4qLzkMW74UMSVkpHbM5is9hCRleVRvLdlcc3OKWqpsnmK4r5bnrHboxDhTzmaJi6ioDOyxjsWm5Xv2x/3nRcon0IgiqNIVb3PWhcuvUjE+hgyRN311EdvnPtedk89zmga//aNuAEkZLsOQk93kR0AZs+N77JUkid87deWBdyj5glIJM7phTvc8tVRiiVrM0TU0BvtlCwf16BaEuPvcewUODY2PcXq/vjle45MZL7vpvbZ9RxXqBIgSZYNI8ZsDf/6PCdVwx4O8PTpJkXYXrCeHlcnjYixORlzvnOvU3BwAAAAAAAAAAAAAAAADGQ0xPnnS94cVnrXVrFAuJZ3sOoyjayRYWa2jIAT5FIPyQXCWTzFTQISKF74+huEIdZKJdXpmic4/PBn+Cs2/3E7KIMeA1O+icrC7IxPb+dupfBFbLWOhTjJnXLsu537fOvLAWUz8VU/9vOV4hj61x0UUhBOpirar74oDV0XXOM1M3BiEe/Xz2XcDwqrqYLu+Kw2uydoXLs4zt6v414vucwDTHulWwG3NDAX2DEjSf81m0z1Bb4rRIXLUBL9587nNKji+aYKDg44opzDBcM3x85AcfkVZrSPnvlMg1t11z+N8NQSYUsTdLG7BR5t5v055N+9fV1R1r1xmdEtLujDKkrD0627RSN+ua7iddwfedThOsVZB1GsP3ZrFz2vDMgyroi29buu2u/1b3GYFC44B+xZH5wJhIkuReInL8gJevrnBVg5bVEpFHiMjlFa6rMkmS3FtEzsp56aPOuR/U3R4AAAAAAAAAACDS6/Vk69atsn37drnjjjtkcXFR2u22rFq1So488si7/nfcccfJiSeeKGvWKArNAESh1+vJzTffLJs3b5bZ2VmZm5uTtWvXyvr16+WEE06QBz3oQRGc8iQAACAASURBVLJuXezPSQAAAIBFLD/ydlkmWTr8OXitdWtFZHb4gmIudhlW6HNQnQVKlqchH1B1wei4ylxmLugpen/4a1XRYHUQSEF1yUFlngDvU9QQa+FTwEL/kOEtgwIKWk55/AusKgi3WmmpV/CE54pZwx+8ijHzPmMKvukLMsk5XqZ+KqYCWkvBXMCu03oOFPbjyr7AVVx0ngWcO9UaZBJDMX6VvAIWYrpQPTUYsLQ/yGSqooXp26YeH3xDN8aBIqSnqJg6N8jEkyYEoy5l2tJyIp00gvmxTwhTyUOQKVJjQo6PB1agfmtsea2X31JcgnjDzhvk4fd6+LK/meYwEV1nk8gpvy8qc++3dc9W+fUTf12ybib7y1sLhA4mrUi6/TbJurry+KrDYuuUZqktyKQoHEdzziXDzzeffjuW78VrY93eisdCbY/hCDJBDQgywSR54JDXbqhwPTcNee0BEmmQiYh8RETWr/jbdhH5nw20BQAAAAAAAACAibRz5065+OKL5bvf/a5cccUVcv3110tHWfiRJImccMIJcr/73U9OPvlkefSjHy2Pfexj5VGPepQcccQRgVsOQOOaa66RL3/5y3LRRRfJVVddNfT6TpJEHvCAB8gznvEMefazny1PfvKTJSn40RAAAADq4cRJov458PLPxcDNzEjRz5mToxT3kTEXsbYUx6fGCiWvUBKCTFSyLDMX9BQVgMTwRHB1KIb6Cav+2+QT0OF69vAe2wo8P2cpDLH2EQGv2UHjR5mncvdbldYXZGIdC4+Zbckf/mhKtp392yJJIkc+6ZGy/h1vl9axxw7+kPXJxyLicgp7LQU9/cXNedtoOVZ1BlJUKqJ2F51n6mNbcRFnyGOrKRSvytgFmfgcF58wgFFWdZBJt8JrwVKAr732I+rP6qbpH4vm3rmFyr5BCZpj5rHoug9xy9Vwj6HhUUReNkxGM/ZVGX6T2wbTNsR1/bfTgkACEVm/ZmUpoJjCVClib5ZrK38LUuLU3D6zff+6tF8zeITxNqH30yvU73Wd0dimPL2sJ4nhe69scXi/UcXx9fmOO5bvxWtjHT8rnpyovyuNOagcY4MgE0yS+w15bXOF69k05LVfrnA9lUmS5HQR+b2cl/7UObev7vYAAAAAAAAAADBJnHNy4YUXykc+8hG59NJLpef542jnnNx2221y2223yQ9+8AP5zGc+IyIi09PT8tCHPlSe8IQnyDOe8Qx54hOfKOvWratyEwAUuPjii+Vd73qXXHbZZerPOOfkhhtukBtuuEHe//73ywMf+EB57WtfK2eeeaZMTVX0tEoAAADUKpbC5OzOnYXvaa0/UrGgOLYnT9JSzJnr/KG2T5FAOrpPi62TE2cu6CkqAAn+RHBNX6AskFZvepmCa5+C9Vif4Gzoh81ddsACwMxluflTlqcyD2MNMml3iwsqB7GMhffZNS3v/8xxcmSnJQejU5a+eJXMfevZcq8fXyitjcfkr8NnfMq77i3H1PX/5+HrNwUuRTJfEDE2JWCzrUVvhU/71vbzFQcUhQwbKVtobhFFMX6FfObobgyeKG/a7IrHOFdlLbHlWGiv/Yjvc4JT9Hutgt2YF0rhW7wcrG/zWWyJtrRcEjysQ8VnXCs5Lykck6WGMC7LNkR2+bd7xfPu1dOrD/+j5VhTxN6sjq5vKPOoi9tnbxcRw619rPfzK3Sv+bn6vaMSzpIny7LCsbefWyoIx6kgkE/Ttx/2mUnra6zjZ9X7Rx18PGHHBY1oNd0AoEb3GfLa9grXs1NEBs3Y7lvheiqRJMndReT/5rx0gXPuy3W3BwAAAAAAAACASfLNb35THvawh8lznvMc+eY3v+kdYjJMr9eTn/3sZ/KBD3xATj31VDnmmGPk6U9/ulx00UWVrwvActu2bZPnPve58oxnPMMUYpLnhhtukFe96lXymMc8Rn784x9X00AAAADUKpYnT7o9uwrf01p/VPGCYv4Bekvx89g6D4dPKEkFhQWTIHOZuaCn6OzwKcgwURQzuIqPvytTOOlR8Bi6SCiinIe7uIDhQ4PGjzJP5e632niIO6nuqeF5LGPhWy7YKEd2Dr9i23tasvuMM4espKIgE8s417fOvFAE07GK6QS31P1G1OziIBNdY13Fc52QoXZ1zjNTn4CrmPnsunEo+LNc3xVfC1laYSmbJaRMux0R9Wd1c4pze6pg/+T2Eb6nkKK/9upavT5TJshEpJs2X0TvvIJMSq5TsYDgxe2mOV24ZvjQzLvzrjln+c3BJIc3RcB1dH1DmXu/vYt7969LG2A5KkEmN/y3+r1OGRgTo27WLRx7+7n28HOqiu9rfMK5Ygn4ro11bKt4LNQG31Y9zwfyEGSCSXLckNeKHzGh5PaPqncOePnYqtZToQ/I4ftmVkT+tIG2AAAAAAAAAAAwEfbt2yennXaaPPOZz5Rrr7221nW322351re+VTrI5NOf/rQkSTLwf5s3b66mwRPi7W9/+9D9idHz/e9/Xx796EfLV77ylUqXe/XVV8spp5wiH/nIRypdLgAAAMKL5Qfb2S5NkMndCt8Ty/bkahXfR9XZfp+CMTduRcKBZC5T/zj/oKICoOBBJorqOHWQidMWIvmfT15FDbE+7dhSpGftIwIWtQ/qr6r6xmhVz7akdlr8ZPiy7j4zJb+8c9XA1+d/dtvA15xPMWbOZyzn/rJuI2f1lsKzqILCTLsynnlB0RivPkcqLuIMOb5k3ikBHusKPk7WzGdOOBb7wND3Vzgvde22uKzCUjZLn6kcq91YHF9Pijljq2D35Icd+Y0RoQ5F3beyiYskBMqrvyu3szT33akLvG8Mc8PYvufQBJnkBgr09PdjFLE3y3V1803r9x79Ztoz4rJMPf6GDiatSnfL7er3jnKQSeYyU5BNUZCJJqy26OcpPvfcdd6vxMA8nlTcF6vPGcKsUIPpphsA1GhQiEjbOecfDZ5vVkTuaWhDI5IkebaInJbz0l85526tuz1WSZIcLyJ3N37s5BBtAQAAAAAAAABA6/rrr5dnPvOZsmnTpqabAiCQCy64QJ7//OdLN9APvbrdrrz61a+WW265Rd71rncFWQcAAACqF0tBTLZ3b+F7WkcfXbygmAv8VD/CrvF4+NwblAiemCTWgg6R4gKgKAq0qz7+Pk9fL/NZZTGWN8/LN2RhstcT7rXLHrDBiTbIpsAq7ZO5D+j0/H92rR0Ln3jd2qGv9xamJb11q0zd+z6Hv+hRiJN7bngG3+QVaJn6qTimC3YB2+2cs2UuFF3r2iKxiq/rkHPBOueZwQvO6+az7wL2+bVpKGAp21XZM4gPLNCwIdr3jmo/XAFNoEGrYP6RG6rgu09DFdfWnOfRiiXIxOMeo+zwMmge2y/0/ZdpjIzs+s+9nlbIPbcsxzqNbKMnjDbIpMy932x7VtzcnKgn1CPyfVR3x4z+zSOyTXl6aU/WZPrjnxWEtmjOuaJuc9JCSbwY5zDOucrCakX0t88hv8sCDiLIBJPkqAF/nw2wrkHLLH5MRU2SJNkgInmPafuxiHy45ub4erWI/E3TjQAAAAAAAAAAQOuaa66RpzzlKbJzZ8U/1AQQjUsuuUROO+20YCEm/d797nfLkUceKW9961uDrwsAAADlaQp46uBmi38y19qwvnhBMRcBaIot6zwcPj8Kj6HQbQS4zBUWU65UFCgQPMhEc3pWXTxfKsjEvj9cL9KnHYcsYgz4JPNB40eZp3L3W2U8PTRPhh9EOxbefXaqeFkz+0Tk8CATn6dD545pluvG9f/n4es3PUE7hjClA0zFy3FMc0REUbCsPEc0Bf0WIceXWoNMxq3YzSvIJJ7r1JdpSKxwe93OOytbloitz1Rf05EEUDZCcayL5h+5YUee+1TVt/ks2usz/udFK0ukm4b/N6NiHtdyyetBM/aFv/8a7yCTbnb4uWW5H6t6vgMbdZBJiXXMd+bF7d2jfr+r4d+4q9Dd2xNtebx2P8codam0DO93nYK5ek9xfAv6TZ9+O5aA79pY+9aK+2L1dxCEWaEGBJlgkqwZ8PcQs6tB39CvDrAuX/9bRO614m9dETnTxfQNOAAAAAAAAAAAY2L79u1y6qmnqkNMkiSRxz3ucfJbv/Vb8vCHP1x+5Vd+RY455hhZv3693O1ud5M0TWVhYUF27Nght956q1x77bVyzTXXyI9+9CO59tprJ++HAEAENm/eLC94wQuk3W4XvvfhD3+4vPjFL5ZTTjlFHvCAB8iGDRtkfn5etm7dKpdffrl88YtflG9/+9uF1/Lb3vY2ecQjHiHPec5zqtoMAAAABBLLfZrrFBegJ+uO1CypfGMCcZoQkBqPh1eIRMxBMRHJJDMFBIgUP8k4iieCq4+/spwp9S/acT6fjTXIxCfgQitkYf+AZlvP/UFWpbayuDJBJlo9RaWWW1wc8ILHjsn5jCUQpf+6zrvGTYFLMQ2vpgCWcA23hsEV9ePqgt2KCx5DhtrVGZiXG1IwwnzCjyau3KLCwspsd7VBJqY+XxvIEsl9WxM0oTVTBW9Jc+7FvHdpoEvNqz0lTovEifRcBPPjBu4xNfOD4EEmI3xN54WUrJQbMGYJRl2xf1ynIwsf/qD0bt4syfqj5KjXvlZax91dvzyYuK7uWJW591voLojbt1f/gREIrcv27pW0rS+N1+7nGGUuk5ahmyzaVqcYC4rmxz73frEEfNfGeo9R8ViYKL8vJMwKdSDIBJNk1YC/h7gbHLTMKIJMkiR5ioj8cc5L/+icu6bu9gAAAAAAAAAAMO6cc3LGGWfI1q1bC9+7ceNGeeMb3ygvetGL5D73OfyJogdNT0/LmjVrZOPGjfLgBz9YnvrUp9712q5du+Sb3/ymfO1rX5Ovfe1rMjc3V8l2ABis1+vJaaedJnv3Dv8h2D3ucQ/5wAc+IM9//vMPe23Dhg2yYcMGedjDHiYve9nL5IorrpBXvvKVcuWVVw5d5kte8hK56qqr5L73vW+pbQAAAEBYWagqLKul4uC9ZO3a4uXE/ENnzY/F6yxm8niarSqMBfsLOoyHsuj9wQvpFMUbmiJSU7FBmUIkj896hZ9Ylu97+VqOrXNieu51wD5xUMGP9dwfZFXPFmTSTf2fIakteOpNKa6TpQFBJpnx2MmA68lyTPuam7eNpsLDmMZXS7sjqksrLJLTtrXiYxEy7CX82HVIXkjBxNEGYsTMErBUaZDJ7sqWtX+BhrZpC0pHOPSgNMW53co8QgE996lP0JCObZ4gIva5YZ+WGxA2UTOve8ySh0BTuB58XDH0E7Fd/qlLC0+7vJAcZ/kOou86615xuWx//mulO3+o5HjXJ78rx7/5+XLka16nXybUNKESIuXu/ZZ6S5LN7FO/38UaTNqn99MrTO93vdGdu/Wynul+MusWbKvm+BZ0hj73HllM97k1MN/7VTznUfcZIQN/gQMIMsFASZL8g4hMNd2OAv/tnPtYyWWE6G2j7cGTJFknInn77CYR+buam1PWh0XkS8bPnCwiFwRoCwAAAAAAAAAAA51zzjly6aWXFr7vzDPPlHe+851y7LHHllrfscceK6effrqcfvrpsri4KBdccIF86lOfkksuuSSaJ4AD4+aDH/yg/OQnPxn6nl/91V+Viy66SO51r3uplvnYxz5WfvjDH8pLXvIS+cIXvjDwfXv27JHXvOY18uUvf9nUZgAAANQrlvsxVUHLEZogkzi2J5emEKrO5vsUZjXwtOxR5JwzP5m46P0xPBFcVWRTV5CJT7FJxz/oIihDP2ztsjXhM74GFYCWeSp3v1VpfUEmWr2W4k0Dgrm8LuG8Mc0zyCSPqfAwouHV1JSI2l3Uj2uDoKoOZaozbCSk1I3ZHMVnTjsGx9K01VUGmewZHgRuX6BhbNde+5HctzVBs4+KxrTcUArfXao5ZD7L9rnsS5wWLSfSzSKYH/v0dyXv+zXXkybsJHQbDr05XDt8aIJMckNyDEEUBwODsr17Zftpr1sWYiIikvWmZcc7/0Xu/ahHyuonPFm9XOi4rm5eNezez2VOktbgE6WdtsXNzOgbNQJBJt1rrjG9v4ogky9e+UW59MZLZbo1La/4zVfII+/9yNLL1EhdKi1DAJ3rDu/IVOE5Ab43m7j5lflLpWrvL9TfF01YwAyaQZAJhnmzxB9k8j3JD+XIM+iub1VFbdEssxNgXVb/ICK/nPP3VzjnlupuTBnOuTtE5A7LZ5LELwEVAAAAAAAAAABf3W5X3vGOdwx9T5IkctZZZ8kb3vCGytd/xBFHyAtf+EJ54QtfKDfddJN86EMfkk984hOVrweYZDt37pS3v/3tQ99z//vfXy655BK5+93vblr2mjVr5Nxzz5WFhQW54ILBef1f+cpX5JJLLpGnPe1ppuUDAACgPtofbH/+p5+Xs39ytnSzrjzouAfJWc86Szau21hdO9r5hd9975BkuvjnpS7mAk7Vj/Jr/AG9TyhJ6KdSj4nMZeYnE0/5FF9WSVMMqAnFMISTuBJBJj4BHVUX/x++As/PWQoxresoExbjqapfxK4yNr1MkIm2ULVXdKGKiOsMGM+cE/PeySne0Ra871/lofbmbaOpn4opKGxUA1iKxnjtPq44oChkoXadISnBx8lREDC8qjaWgtgKt9ft21fZsvYztE3br0fUn9VOcawL59J5YUee916aj9WUY+I3vzggcZH0nR5tKHvbrBn7go9hIe8BAtPsm9yQHMu9yYH9s/TFz0t3Nr+M1GVTMvuBj8mxBJlUThuwMSzIwjknyZD+qZt1TUEmqqCLhnV/caPp/WWCTPYt7pPHf/jxMufm7vrbxZsvlscc/xj50h99yXu5Wmmamu4nCzMHFf2DK+g3V95vtTKRJ/ziCHn6z9bJqlRk28aefOnX52XrsYe+G8osc7ZxYA0IqThQRBtkUnSsgSposoqBcTHoX19DBJmsHvD3RoNMkiT5DRH585yXPu2c+07d7QEAAAAAAAAAYBJ89atflc2bNw99z5vf/OYgISYr3f/+95f3vve9smXLFnnRi14UfH3ApHjPe94j+4b8AHv16tVy3nnnmUNMDpqampJzzjlHTjrppKHve9vb3ua1fAAAANj4FqEWFaBkWSZP+vCT5K3ffatsnt8s2xa3yXe2fkce84HHyOWbLvdaZx7XGV6AnrScSEvx89KICzidpkCrxt9pu5696L9M8MQk2R9kYisoTAreH7yQTvNUcs3xtxQ5lDmffIouu/E/wbmYrZOossj7sGUPaEvRuay1KrUtJ7dYUkkb6tVTDEODgrl8LuHc4+dZ9Jp3vCzHKmTYhZ2l3eFY90lhP649thUXk4UsEqvzCefaYvxsVJ7u7XNcYg70C6HC8yszFFLrFqhvm/oanOCCTs0+amXDx4a8PsL7FAp1KGpLP9mv5ZJIgkx8+q5yB0FzbxVVkElkNHOgXnb4vZfr6e/HDl73M2efP/R9+/5tq3qZ0FMHbAw5FVoFJeKpSyWbnRv6nmUM509TuptvM72/zP36Mz/xzGUhJiL7H1R05c4r5S1ff4v3crVSZwsyKRpuVEE1Bf3msn7bifzVVzfKX164UR59yxp5+K1r5BnXHCkfO/vu8uhNaxQtHlPWsafisUobZDLKYyRGB0EmmCSDZlxHBVjXoGXOBliXSpIkq0XkbDn8ut8pIq+vv0UAAAAAAAAAAEyGz372s0Nff9CDHiRvf/vb62nMARs3bpTf+I3fqHWdwLiamZmRj370o0Pf85rXvEYe9ahHlVrPhg0b5H3ve9/Q91x++eXy7//+76XWAwAAgHCKClDe8NU3yJaFLYf9PZlK5MXnvVh6aUWFBN2CIJNE+aTpmAs4NU8XrbNQ3KdojSATFeec/sf5BxS9P3ghnUaq2ChLIWKZwkmPgp/wQTyeAR6WY2vtIhq4Zi3FTMOs6tn2Z16xZNV6U4rAn8XFAS/4hBLkfMZy7vcHmeQsy3SsYioksjQlomYX9ePaU8RSBKwxLk8h186hohhPFXxCYNyohLQMsL/9hr6/wu3N9hkKqVULtMyHtMXiEXVodVOMfUVjWpWBHapuxCuUxGMuWSrIpJ75UxGvOXrJy0HTx4YeLyz9fGyXv2bMzb3mLPPYA3PP+U3Dn93uHGXIQSiP1bC+dzqZHvrZTDJxc/rxt+o5cAjd2/ea3u8037HkuHXPrXL70u0DXz//2vNlrj0nZ37xTDn53SfL/d59Pzn53SfLK857hSy0F7zWuVKa2YJMXFFQqeb4Gr43+92r18njrz/isPdMuUT+6qsbZV17f3vqDF6MQdPbq53pjPp9DUYDMwhMkl0D/r42SZJVFa9rvbENdXiriDw05++vcc7trrsxAAAAAAAAAABMgjRN5bvf/e7Q9/zJn/yJrFkzwU8iAUbcOeecI/v27Rv4+tFHHy1veUs1T2N69rOfLaeccsrQ97z//e+vZF0AAACoXtEPmL9107cGvpZNZXLpDZdW047O8CATSZxIS/Hz0ph/gK4p0KqxUNx1PYpAYnhi9wjIXGYOcyh6fwyF15qnBZsKETVP3B34WY/ztyAwqTTPyzdoIUkD5401xGeQVcbTo0whrjYAoVsiyMTrUOQU73gXveZ8zHSsIhpfTU0J2WzjsgvPM+0coOKirpB9UJ1jlzakIIbxVMXnsIx64Jx1bPcINRskMxRSa5iuK+W133ThaZOcYh+1Ck6H1OVcH577NNSh8Mo+KRNkksURZOJ1LZcNMlEsIPg1N8LXtGb/5Z5bln5+hPfPOHA93f4fFkqwemr18HUkTrK5eX2jRmCe090zPHhnJd8gk//zvf8jSTJ473eTrjz1o0+V72z9jsiUSGuqJTIlcumWS+XUs0/1WudKqUullekDuFzWGhpOofkuqahf7n/9129eO/B965da8pBt+8/Pkbk3qECWZXLBwibTZ1zJ/bMyAD3RhrZ5XhuABUEmmCTDQkSOr2olyf7ZyXEebQgmSZJHiMibc1662Dn3+brbAwAAAAAAAADApLjuuuuGBhwkSSK///u/X2OLAFTt3HPPHfr6y1/+clm/ftBzEOxe//rXD339wgsvHNrvAAAAoDlFPwJflPyC7IPe8733VNOOgiCTpCUiLcWPnWN+YqOmEKfOYh2fIhDD/t26Z6t84kefkL/++l/Lj2/5sX1dIyxzmTnMoej9wYsrFOeepojUco64EsE4Xk9njfUJzpbr3hqcUGGR92HLHtAYa4jPIKuKnti8QjcLHFQjIqkmT2tAkIlX/553zVmOqev/z8OXZTpWI1pMGjQnyHhBZgX9lqqPFSkXApUj5Phi3UdlFO3fg1YW00XL5+Qd0ev0Lsa5adnCyn7Z7EJlyxIRU3qV+tof8cNbiibIRJKh+yi3r/Pdp6rP2eYx/vxPjJYkksbQJ3pcy2VDRjSfzyTw/ZclxDS2619xeucFjDnD+abuGxGEdv8Pu59YOzU4SEJEpNVqSTo3q2+TTxhvzXqLtrL4vIwtjR9u+WHhe3Z2dub+fcvCFvnYDz7mt+I+aZYav/dKROaHBNdo7nEKuuX+sf43bxp+/v3B5UeJyGQFxf3RF/5IdreM11HJ+fZiZ/n3I9rvIBgDUIfpphuAeDnnxu382DrktXuKyLaK1nN3GXxtDWtDEEmSTInIJ0Vk1YqXFkTklXW3BwAAAAAAAACASXLDDTcMff3444+XE044oabWAKjajTfeKFdcccXQ97zsZS+rdJ3Petaz5IQTTpDt27fnvt5ut+X888+Xl770pZWuFwAAAOWVLTDdOlPNz8+KChKSlkjSmlIsKN4fOmueLlorjxCJom3Ys7BH3vu998qF110o+9J9dz0h9gvXfUE2TG2Qb7/i27Jx3f9j793j7Cjq9P+nz5nJTK7kAiFBIIRwExAQSRYChOWmi/wUxI2I8BX9esFV8AIqKK4iqwiuq+IiuAICPxFYdrlsYLmpAQTkEpOAhksSIQZCEgK5zGSu59L1/WPmhJkz3dX1qaru6ZN53r7mZZjurqruqvpUVU8/T02yKm4joZRCwXSX0X6KCefnYkdwEwMFSTt3EeNbGJmk3QetqyhNA6YUjUzikJr4xCE1MokSS5pi2r8qBqob1d0Tc0BSov5LIkXXdqLXKDGuqK7yNL4K42teSGxnhs/YyshJl16K6ugshYFVQyWoS6zIPXmba0qRGo55HONUp968UUy/+LKrtwvfuv9buG/lfaiqKsY3j8dXjvoK/s/s/zPgXMP7yFMczhhTY7aCAsKYISKy7ysFK8MRk3HIprpsxjfHZlGplNwS8MEwxC6TsS8PRpJvn5teMWyorfN1VMKImC6p65zd80hDVdxNtkY3jwYShvb29i3mhbIY91WGZqYqDAGVjZGJ63z23pfuxWeP/KxTGqEKxSamYdsWFMePjzxm8r4mKWxKDKh239gns0491ueEUqWEx19/HAepibILHQ1FeqqD348Yz3RoZEIyYHszqiBExyrNsZkAFnvKZ6bm2Cue8pBwIID3RPz++wDWB0Ggtz2LZ5TumCbdkvJpyUsIIYQQQgghhBBCCCGE5JjXX9f7qNPEJF3Wr1+PJUuW4KWXXsJLL72E5cuXY8OGDdi6dSva29vR2dmJlpYWjB49GjvuuCN23XVX7L333nj3u9+NuXPn4l3vetdw30Kuee211/D444/jqaeewsqVK7Fq1Sq89dZb6OzsRKlUwujRozFu3DjsvvvumDVrFmbPno2jjz4a73nPe4w+vGsE7rnnHu3x97znPdh777295lkoFPCRj3wEV155pbZcNDIhhBBCCMkfzjsZ+1KXlMvaw0EBQCFZEJA7s5CBmIguMhQoqoRnHknMPWzs2IjP/NdnsPTNpSj011P9Gqut2objfnEclp6/VJ5vgxGq0M7MQaOlTFtcYRILjHZElZTTRXxjI+TPa3wQ9HtxiEjTJCWmrUpNfOIYVQ20faIeUxODVHTfdwAAIABJREFUKEzHsqqBLk319Eb/3iYmRMRciYnFoDwj8pfUlc18obrqFaiOrSjsuhsKkyaLr48tS2onp0uisM60rJ6NONI0G0nTJKUe0xggETgOJza7kDf6zuXiebzHuVHYFR277RMMEYYh5l0zD5srm/vGsqBvPnzJo5fgxTdexGX/32V955r2wRFsZGIqZi2GQBgzVkf2fctHml5VZG9kEpZzYGRi80Ad79to7ZNyn5PE7Lz1fmsjE4mpRIOPaY2O6RCrW0+MGzUOSPAJa+9sx2jTQtms523ee9liY5piOZVxWfsCwPObn3e6Hujr41IjE9W2Bdh1t+iDHt6ZiubCqvZ/IyPW3LL4FhQKBcisduD8Tqm3PHiObfyudCTPe0lm0MiEjCR0Wx7u4zGfvTTHVnrMx5S4mer3+3/S4EHNsWMBPJJSvoQQQgghhBBCCCGEEEJIrujo6NAeb2219RvPlj322AOrV68WXTNzps77Xc/ZZ5+NG2+8UXxde3s7HnroITz88MN4+OGH8eKLLyZe093dje7ubmzatAkrVqzAwoULtx3bbbfd8JGPfASf+9znsNdeuj8BybAx8XAx/vjOd76DSy65xPr6gWzatAm/+tWvcNttt2HxYv0+AR0dHejo6MD69evxzDPP4NZbbwUAzJgxA2eeeSbOO+88TJs2zUu5hovf/e532uMnn3xyKvmefPLJWiOThx9+GNVqFcViMZX8CSGEEEKIHXn5YFuVEz74LwAomOx8nY/7icREeJxl+W12sY+4h0q1guN+eRw6wo5tJiZxtIfteOKVJ3DknkfK824gQsh3pgX0u8inLrw2EfNVDW5KInJwEKcpm92YsxQxSRD1e9kzk5he5JHmKlA2VBa47kptgsmbMNXTE33Apiqi+ohlv4ka70VxSnBu6Yk/YONXLkHXqr4+V2iqYIfj98GkX12LYJRuz0rTsgjeSeZoWpAkiO4T3hncW8VvW0/TKCttEfhATGNApWohMh0ObJ5dg8d8VGTjtNG8xJCwx7eZg8JXF3y1z8QkgtteuA1nvudMHDD9AHPRbZ7XOSlj+oz6BPXR54YR/cP2kSqDcci2tlQYIjAw8PRFVdjv0sDKjNTVyMQggdTflUgaYI66v+k4GjW/kBny5eimRyCm00OdKcGElgmJ13d1dhobmSgLoxDV69moTIfF+wYV9wIogbSNbk3LIDUxVe3t8cdM1jgJYUHyXLaP7W3MufMvdwIAAqnxrGNb6ykPfj9iamTS6AaNpDHIbsZNyDCjlHodwJsxhw/2mFVcWiGAP3vMhxBCCCGEEEIIIYQQQgghOaea8EHYW2+9lVFJtl+6urpw++2340Mf+hCmTp2K+fPn4+qrrzYyMUnitddew7/9279hn332wVlnnSU2c9me2Lx5My644ALsvvvu+NrXvpZoYqJj9erVuOyyyzBz5kycf/75iYY/eaVSqeAPf/iD9pwTTjghlbyPPvporRFSW1sbFi1alErehBBCCCEE1l9g50UckmRkEhQDGH1emucPnQ0EWplWh43oP+IeLn3oUnSE5muoG565QZ5vg6FCZb7L6AB01+TiI36DMkiEiMrFeMJT+/WLZSC22DXYGBvDIkdsTHziaK6aP1OXXalNx0Kjfl2KFsPbxPfIclm2l6i0RHHKMN/q6lVYd8aF20xMACCsNGHzg69g4+lnCTL0Q06mOQAMBNGGz9i3QVGac8EsDfOiTAqiyML0yAs2jy4HolYnpCY9Hu837PZs5hCGeOxvj8UeDgoBbl1ya/+5popOD+VqVEyNTDRNInqeYOtkYmKwaZc0hEJ91xge5sHoz8ag0PG+Tcan1I0CRLeQH8n9ps5NRudVwoi2nGRgO5AGH9IaHdPmr1v7TWydmHh9d0+3YYlgt7bN0KzJxpTJ1sjEZe3ri2pYFb/3CjVGJj7emUrWHjVDj7y8F0+b2rMRv69xfBfZWx1sJmTcZkZGtZBhhkYmZKQR90XlYR7zmB3z+5eUUp0e8yGEEEIIIYQQQgghhBBCSM4ZPVq/r83q1asb1sQhD5RKJUydOhWnn3467r77bvSmtNOPUgq/+c1vcOCBB+Kmm25KJY88c8stt2C//fbDj3/8Y3R2+vtzV09PD37yk59g//33x+OPP+4t3ax4/vnntc+jubkZc+bMSSXv1tZWvPvd79aeQyMTQgghhJD84Sow9SVQTTQyKQRAwUQwll+1i9nH8Rl+qS0REfUTJcz47crfitJ4vf11cb6NRqhCKyMTnaAgTFvJZVBeIzMVSR90MRaxEQlJBdLiDGyvS7FuUzQyCYLomGzT9uPIysjEFJN7U73RRiZW7SOiz0lMjZKGHZGIyVDgteWr30SluynyWNvj61Be9Iwg04hihCHyIuaVzoESjTZMk/NsypSWeG9iZwGnP1TF6wccjdcPPBpbPvdPCDduTCUvwDwGpD6e+sKmXjyb3GSNihK96/A4xqle+bxYS6iwqaIX+9+y7JZt55owUoS2UZhOlYq6uXRUItaPNIASGo4YI43xjs2iUknnb5gibObCrt3BZE6X9to8TTPDFNnYZTaWR817RKaXIzjm5QFTgw3dWZPHTE68vtxjbjRiE3dVKcMYV7Uon4kxVgSpGy0ZlqEoLIbq2Bp/zGRel3BKpIFSUpI5eJZZsG0NJDYycXs+PeWeQf9t2uJzYeZMtntoZEJGGo/E/H7PIAhmuCYeBEErgMOFeRNCCCGEEEIIIYQQQgghZDtl6tSp2uPlchm///3vMyrN9kcYhl6NNZLo6OjAJz7xCVx44YWZ5Tmc9Pb24pxzzsGZZ56JDRs2pJbPa6+9huOOOw7XXXddanmkwZIlS7TH999/f7S0tKSW/2GH6fdqWLp0aWp5E0IIIYQQO5zFIb6+K04yGCgGQLGYnE6exS4mop0Mi69CCyF0hLBgU4/Zjszbzu+Wnd+IKCgULAQpOpOE9HcEN2h8JkWQiA0cxPhGIheP+ZmQSfcVZqKGQZQj3uFXQ7Nk03aHezUVqpr0ahVnamzzXKL6pURIpAb+c2haEtMZ0/lCz/OvaY933323eaZRSIVUluLANEh6hsZzMs9mFWkYe+zcVsQvr98Jpy0ah54NQM8bwMY7lmHN7A8g3PCG9/wA835csRCZNgpWY2OekBqOeZz3hyW/z85k/A2KffHJWKiZ53VO2hg+o4JGeB9pJuXySMvm4nsJSpquY7MI0zb6M8Emdjm/xkhOIG0jDUn6eer+m7rM1vORhgKSdxA5uucRiamRiaaeTIxMKpKYZzMHTilW+8sriF8/asiD+UY1rIpNTNXWeCMTH+9rJHG1VvbUTatyQu3ZSN/XuI6FvXWGaYHp+pxGJiQDaGRCRhq67QhO9pD+CQBaY4495CF9QgghhBBCCCGEEEIIIYQ0EHvuuWfiOVdccUUGJSE++eEPf4hvfOMbw12MVOns7MRJJ52EX/7yl5nkVy6X8dnPfhbXXHNNJvn54Nlnn9UeP+igg1LN/+CDD9Yep5EJIYQQQkj+cP1g29cH36qsF5UGxQBBYPB5acpGBU6YiC6yVCjZ7CIeITwqK5lYY2tZI1zYTqiEFbGgA4DW/CQPRiZGQluJQNxFcG0hYkqKM8NFqjvNpiRqD8MQQRDdXo2FKQY0V83TykLMZXJvqjc6JtqE90hTAlFCb5c3SoAkMlwyzLbnTX2aG69/xDzPKITjfJ7kT4mGIaZeBp77dRpC7QvvmYiJ3UMN6Mpbi3jrzE95zw/oE1ManadyPFccgFW15EDU6oRQAKw8mvqEJc/9QFKBpufmKaBljGmc0olzqxja913CX7LhiOV8KGOzJbFxSiqFyD52GRmZpN3pUlz7q+5udF37C3RedSXKTz7hNW1TI5PI8VZgnNPoQ1ojo8IQSpnJu3XvPVqbW6NNpAYQlgRtwuJ9nyqVxNfYYlM+AFAdHfJrcjApCFUoNvANdZsBVU0MppLLJCXV9zE5ojaXEr+rdAzGPZWeQf9taqTCMYBkQdNwF4CQjFkK4G8A9og4diaAqx3TPzPm9x3Qm6ikhlLqWVivzOMJguDvATwcc/hYpdQjvvMkhBBCCCGEEEIIIYQQQhqNQw45BMViEVXNxxRPPvkk/vVf/xVf+9rXMizZyCEIAuy555446KCDsMsuu2CHHXbADjvsgAkTJqCnpwdbtmzBpk2b8Oc//xlLly5Fe3u7UbqXX345Dj74YHz0ox9N+Q6yp6enByeddBIee+wx42v22msvzJ07F9OmTcPkyZMxYcIEbNq0CRs2bMCLL76IP/zhD+hN2OVIKYUvfOEL2GWXXXDKKae43kbqrFixQnt87733TjX/WbNmaY+vXLky1fwJIYQQQogcnSgsSXDgtRwJH/wHxQJQMBCQ52mr4npMRA1ZFt9GZFF3TalSEm9f2FuV7zbbaCilxLucAnpBQT6MTAzSEYhAlGRH7iH5WDyPlEw9tmFt4JHibuwpiXIid1jvx6btx5GVkYnp2GEi+lG9cWI5i/YRUS6R0EoN/OfQ60QiJk/jq3MyUhOuHE0LktqZcRP2bWTi+SGN7w5w4Ostsce7XtgIFYYICn73PzaNAXnYwd4Im86S9jiXMuJ5gccxTjOsWSYomQ+ZKjpzFNCyxrBpFzTnRa9tHZ5pKWFNY5u01LDLsVlUqtmJ/OOwMSVyvW+TuV/6RiaSk83nkZ1XXYm3rrgNlZ6aPPe/MG7fMdjpnttQmDRZkmkkW7q3GJ0XaTAmad8jOeYNNwl/Ox+IzsiiGBSTjSDLgnoWGOG8nX6GZk2WeanuLgBTRNeEKkxBlSujqqritb/qiDcyMTKCSchP8k649vgSzSa3M8TNxvFvA6W6eYbxOwiOASQDaGRCRhRKKRUEwW8AXBxxeG4QBO9RSi22STsIgl0AfDjm8B1KqS6bdAkhhBBCCCGEEEIIIYQQ0riMHTsWhx9+OJ54Qr8D04UXXohKpYILL7wQBc8fFfvgiiuuwNatg3dx/uMf/4gbbrgh9prLL78cU6bIPgSpsc8++1hdV+Owww7DqaeeiuOPPx4HHnggxo0bZ3SdUgpPP/00rrvuOvznf/4nOhJ25fnCF76A4447DlOnThWV79prrx3yuwULFuCee+4RXWPKoYceKjr/U5/6lJGJyZ577onzzz8fp512GqZPn649t6urC/fddx+++93vYtmyZbHnKaXw8Y9/HIsXL8Zee+0lKnfWrFq1Sns87fInpd/Z2Yk333wTO+20U6rlIIQQQggh5ujEOTqhusn1Iir6D6ODYgCYrE1z/KGzkUArw/JbCcbqrlm+YTmCQLgDaxAiDMNcvmvwRahC+S6n0AsKUjfpMUneyMhE0K4sdywW5+MjvzQRCbFl7cCmn5tQL0YZiE3bj6NZUGVZCJBMopYqRQvYrLwTotqGRByfcKpIeJaT8VW+0/kwK/wGkGigYfqMPRtx+B5f5r00Wnu8WmpCZfGf0Dx7jtd8q8qsbegM3nOFTbXkpJ9aIxUoexzjVMXzvFTST42NTOyKsj1gavZSzNAUUCUYmVhXl7QfuBp6ZCnyj2MY4rLRe4y0l1+W5nQ6eh/4X7zxL/8JFQ6U5gboWN4NfOAMTP3D/c5GYm09bUbnRb1PEs3jRnDMG25Up/5bhIHo1n7FoIggYS5eqEiMvyzeYZUyNGuyjGWS573tmhzM+UIVejUyMZnXJd12wxgWDgO19yWJ5kJDLnRra0OMTEwvHP4mTkYANDIhI5FrAVyI6Pb/fQD/YJnudwA0xxy7xjJNQgghhBBCCCGEEEIIIYQ0OB/5yEcSjUyUUvjmN7+J22+/Hf/8z/+MU045BcViMaMSJnP66acP+V1TU5PWyOT000/HHnvskWKpBjNr1iycd955+PCHP4xdd93VKo0gCHD44Yfj8MMPx7/8y7/g3HPPxZ133hl7/qZNm/Dtb38bv/jFL0T5fPrTnx7yuzVr1miNTKKuSYMrr7wSt9xyi/acCRMm4Gc/+xnOOuss43Y6ZswY/OM//iNOO+00XHvttfjiF7+IUswHTe3t7fjMZz6DhQsXikV6WaGUwurVq7Xn7LLLLqmWYfr06SgUCjG7G/axatUqGpkQQgghhOQI3cfvlarvrck15SgnfPDfVABM5uIpifa9YCBqyFSMULGo37p7eGH9C+IkCoUC1ratxa6T7NbJjYBSSizoAICibhf5lE0ajHYlN9H7Re28HUfV/p6UxbVyA4SMkIhtpO0qpZhYrsaLXk3emhSaqggrye9vmivm72Bc4qexKZdJH4gxMrEy1Ii6J9F9vp1n1PPxbWTS1Wuwv6ZUOFWPVHCdIwFUYhs1bYaeY5lvwd+UjuS+rbrkgs0kdO8jB1JR2c1vnVAK4riR53mwCZI5BOAsrKyhuruhlG8jE4lBgdm5eRAtDxuGt17QjDGRY73LI+1NRxyvDMxEfRLmYX5s07ZdDVwMEvBm2hqbgcDAwfC8tit+DhVGj8Mdy7sw2YORWHtPu9F5kfMLQXsbySFvuFFdBnP6fnQzlUKhgGJQRBXx9V4QrPfERk8AUM7wvWbFzhhKdXfLr8nBIqcaVlEIhcbGXfH3avSOJ3E5Zf5caiY8I2V+VbtP8btKx7Vib2Ww8Zup8a3I7IsQS7Zfi3VCYlBKrQZwW8zh9wVBcJY0zSAI5gGI+3r0YaXU09I0+9O9MQgCFfPz9zZpEkIIIYQQQgghhBBCCCEkW84++2yMHz/e6Nxnn30WH/7wh7H77rvjK1/5Ch5++OFYswfSx5w5c3D77bdjxYoV+NKXvmRtYlLP9OnTcccdd+AnP/mJ9rwbbrgBa9as8ZLncPPyyy/jm9/8pvacQw89FEuWLMHZZ59tZbZTKBRwzjnn4Le//S0mT54ce94jjzyCW2+9VZx+VmzevBk9PT3ac6ZNm5ZqGYrFInbccUftOWvXrk21DIQQQgghRIbuI++qVEzoUo4EQUtQLAAm8/08f4Bu8hF2lsW3Ea3VCQtWvLXCKusX3pAboDQSoQoTdx6OQrczai7EFSb6BYGIWmR6Uo+NCYqN8EmEpUFDmgKNajpplzUirSRhyg5zdsLMdX/EjEeuTsynuSowMskggJqIflQpWixnpdGN6E8iQY8a+M+h14l2Y9Zku6F9A95/7ftxwJUHmKdni9BkLc1WIW1zSYYhxm3EwQQqMl/PT8lIHFfwb5heVWYxPhfjqQk2xWx0IxPhOK08mfCEG9/yks7gRAXzIdO6bpCmmwamz6igMwWMai8Oz1SVepNPskE6X3VsF9UMzUs1hZBf49ofjJbmaRuZSM41m7NtXbZVe7zzpl8LMo3G1Mgk6n2SyIxyBMe84UZ1dhqfq5v3FYICmgvN2uubBCEoam2UeE05w29aLN83SIxjtl2Tgw4SqtDYlKKGcjYy0cdCG4NG36aOuaW/rqR15vqevVQZ3AeN8x/+Jk5GADQyISOVbwOIG5F/EQTBXNOEgiDYB8DtiO5PIYAL5cUjhBBCCCGEEEIIIYQQQsj2wg477JBoDlHP2rVr8dOf/hTHHXccJk6ciOOOOw4XXXQR7rjjDrz66qsplbTxaG1txdNPP4358+ejUEjnT59f/vKXcdlll8UeL5VKuOGGG1LJO2vOO+88dGk+4DnwwAOxcOFCzJo1yzmvefPm4X/+53+0ZiiXXnqp8e6eWbNx48bEc6ZOnZp6OZLyMCknIYQQQgiRY2OaAOjFnCY71vv6eF5V9PPsoFgETNZYnsW9XjFaS2T3pbaVCKROZPbqZrv3Acs3LLe6rlFQUPJdTqEXAaUvvDbYldykCBKTBZcd4C3EJk7GKYlpu8QeO2MKo9NTEuX0VuPFu4UkoWWh73gwfkJiPqMyMjLx2b9UnIBNYhpSI6o/Cco68Myoe5TEqbhnVKqU8N7r3ovlbcuN3oU6646lccPmuadEYhs1FnV5NjLxPL4YidMszKiTMH1nWwlzINo3wJf5USOhNCZZkXgyAgvfetNLOoOQVKDpfTSKCU8aGDZt3bgWJVR2eqSVhFhiO/4IxznXZiHudykgMmmrXeN633lQSA9Dn26/90/OaXSUOozOizQYkxjn5KCKRiqqJ95soh7dvK8QFDCqMEp7fXNFECtt3veVM4xxlvFUdZkbx2y7JgcdpKqqKErfT/RoTMAMxoKksGmzrsnDs8yC2n2KZyeO64veyuA6T3xf1M9InvaS7KCRCRmRKKVWAfh+zOGxAB4KguATSekEQXAygMcB7Bxzyn8opRZZFZIQQgghhBBCCCGEEEIIIdsNF1xwAWbPnm11bXd3Nx5++GFcccUV+Md//EfMmDED06ZNwwc+8AFceumluP/++7Fp0ybPJSYDueiii7T19+tfu++qNdz88Y9/xP333x97fPr06bjvvvuwww47eMvzqKOOwve+973Y48uXL8c999zjLT+fmPS5CROSRUKuJOXB2EAIIYQQki90H2xnKvRMECQEzUUgMPi8NMc7aRqZKGT5oXbZon7rPmBfu3WtVdarNq2yuq5RsNmZFtCLgFLfJdZkV3ITwYHELMRBECHazbtGmkZHLuIOT0LsLNMuVeN3tk5s+zUjk7HjEvNpTs97xgoT0Y2Kja0WguYo9Y6kThPKK4pTMUqif134r9gabvVWpkRcDJCGmURhnamXgedYNhxGJkEaRiaG42Q1RVMrv1jUS4MbmYjmEIC3+1VpGG+LYjWVmkmYPqJCGD/GRMcIBxO0UvxcyAWxYZcjYR5i4jDELhPhetridlnXz48xW2fJzHQhcrwV1DVD4/ChuiVGJvFts1goorWpVXv9qIq5jNxmDqzK6cTqyLxs43dPj9+CZIRSSvzeK+zS3KtR/epjoeS9WS2l9E2D80FtTBObLju+U9K9O9IyMqqFDDNNw10AQoaRHwA4rv+nnrEAbgiC4AsArgfwGIDX0ecvOh3AEQA+DuBYTfp/AXCBzwITQgghhBBCCCGEEEJGDpWeHmxZvX2LDMj2ycQZM9HUqv9IYiTS3NyMO+64A0ceeSRee+015/TeeOMN3Hvvvbj33nu3/W7ffffF8ccfj3/4h3/Ae9/7XrS0tDjnQ/oIggA/+tGPcMwxx0QeX7lyJV555RXsueeeGZfMH5dddpn2+I9+9CPstttu3vP92te+hmuvvRavvPJK5PHrr78ep5xyivd8Xdm8ebP2+JgxY1BMQSRQD41MCCGEEEIaC90H21kKPVU14QvlpgKCwEBAnqYhgCsmH+Vn+QG9jWCsThSwsctO+Pl6++tW1zUKSim5OAB68Xfqu8SatD2NOPTtcwTtykWoadF+UxWGZiXAlO54nJJ5S7kav9t0YtuvGZmMMzAyEezQ7dJHTK81EWqp8tB2pip2xmBRY5qt6DXqHkVxKubc37/8e0mB3KlKn2UAFYYICsO/126SsM64bj336xB+0zPaZbvgX5BtKlxM3RjMFzYhrdGFmBXZOK08jb3hZv/vq5WgnZmemut1TtoY3npRagro8khTMjJBOX6OFYljs6hK80sDmzn69tAdhDE7L/MZFyMTJYnz20MdNyiqy6yOAf36qFgoYkzzGEATLlsE6z2rObDhOsxL/7IxCwagusyNY7ZdA4VgmA2OqmHVbN4/ANUb3xhM5nVJYVNkZKLk1zQytfcBUvMZyZw2ivp3R8bvIDgGkAygkQkZsSilwiAITgfwCIADYk47rP9HyhoAH1RKyWc4hBBCCCGEEEIIIYQQAmDL6lW48bjDh7sYhIj5xMKnsOO+7xzuYuSS3XbbDQ8//DDe//73Y8WKFd7TX758OZYvX46rr74aEyZMwIc+9CGcc845OOKII7znNRI5+uijMW3aNKxfvz7y+MKFCxvWyGTNmjW4//77Y4//3d/9Hc4444xU8i4Wi/jqV7+Kz3/+85HHH3jgAWzduhXjx49PJX9behJ2bBozZkwm5Rg7dqz2eFI5CSGEEEKIJZbfr+uMTLL8mDtJbB8Ui4CRqCDHXzqbiC0zLL4Si8Ex5B62lrZa5b2hY4PVdY1CqEKxOADQf9Cfen80ENIZ3ZJAZOskQLa5NiVTj7607U1SJDsAi5tVSqL2UiVegJTc9vuNTFpa0HdH8QNYc1UwuGWg47I1MhGLkrclFpGhUMheE+VFtTNRnIppS6s7V4vK41xRQqMDAH3xIgfC30TDHNP68Gyc5HsXcpvxzwem42SWRn1O2DzHNMe5DFDSuvFk7BEmGIRbIelXSj8WEnOzF91cOjLWOTQhlWhkYlmnGccokbFEamQ/cCilhr/bSW+7UgFGjUqlKBK6y2aSxMhxWbBmanRvroZG8Hdc3Qy7GBQxtln/N+OWivkc3cqks2S4DvOxXrCM36rbQuY73PELfWaIUgNf1aMZO5MMrgEgwThl23rLIKkcPMJs6X8mgdB8xjUY91Z6B/236VqRYwDJguF/S0TIMKKUegvA8QD+5DHZlQCOVUr9zWOahBBCCCGEEEIIIYQQQgjZDpg1axaefvppfPSjH001n/b2dtx0002YO3cu5syZgwceeCDV/EYCQRDgfe97X+zxpUuXZlgav9x8880INR/lf/3rXzfajd2Ws88+G6NiPggsl8t4+OGHU8vbllLCh7NNTdnsKZKUT1I5CSGEEEJItuhEtVkKPVXCB+tBcxNQLCYnlOedyo2+ws6w/BYikHrhSE/VzqiwrbfN6rpGIVSheGdaANoddX0LzSMyMDinkGg+IhIhO5h/2PT1VIWaLsYCaZrUpCRqr99VdyBJLT8oBAP+ra/HZkGVuexInWgwsS0Pg7QqQ5+5sjUyiWrn0ligyVsUp3IyvIqNDgC3WOMRlRC3TKvWyQQqMl+/lWskaEwhHm9vRiY21ZL6XCFtpO3Cl5HJlhTmpZKyGZsYNXj9umA4XhXC+PO8mwKm9XcOYT9w7fZW46pnbMwJnO/boOOZzg+tkfbpnMxnuitmpguR461kDjNw8WfMAAAgAElEQVSCQ95wo7rMjTV0pgTFQhHjWsbFHi+EwCiJcaXFHFhVDA18bddrg/KyS0M16AYgYRiiIKySUGNk4mONU/u2xKhV1TxPGn3+bEhtTBObTjrWSzkc3C+M829sf0bSINDIhIx4lFJvADgawM/hHnpvAzBbKfVX54IRQgghhBBCCCGEEEIIIWS7ZOLEibj11ltx7733Yr/99ks9v0WLFuGkk07C+9//fqxatSr1/LZnZsyYEXts2bJlGZbEL/fee2/ssXHjxuH9739/qvmPGTMGs2fPjj3+6KOPppq/DTQyIYQQQgghNujEOZUw+YN/b+KepJ03m4pmu6PmRNwThTIpW5bfz9t8jD5AjBSGIcLA7vPGznKn1XWNgoKSiwOQsIt8XpRcSQIfSbtyEERYiS49i/+9pS0Rzkh3PE5JlKM1MknKckAsTzYyEQjbXPxuDR+TSb+OMjKxFcZF1V+SGcYQ+sV7UTFEsoN2bgReNgYYpgLGlAmTJAHDZGbgu26N+kkKwnlTkwLvZgapYVEvOTAkcELaV30ZmbS1e0lnEIJ2lpv4mmNMH1FR89gj59IOj14njncRY2dtLBJWczBGNkxc9ou46yfESGPDBkd6KmamC1HjrdE7kW0np7eZBdGjes2NNXTriSAIMKFlQuzxURVhHduM+2XDv0n76D+WRn02RiZpbvZiSohQ/N5LlTTP2ah+A+0YW5tTmZSrZoQ6UuZhtfuUvAMA4DzfLlUG90FTM9URUi1kmKGRCSEAlFI9SqlzAcwGcBcA6YzmdwCOU0qdoZTavrcvIIQQQgghhBBCCCGEEEKIF04++WQ8//zzuP322zF37tzU87v//vtxyCGH4L/+679Sz2t7Zdq0abHH/va3v2VXEI+0tbXhqaeeij1+8skno7W1NfVyHH300bHHli5dmnr+UsKEj2OLJrvXeyApn2qOhaWEEEIIISMR3QfbWc7dkoTZwagmoGDysXOOv3Q2ELRl+QG9ldBpwG7Zr7e9joKJuUwEZeW+222eCUO5oAPQiy1SbxuGyavuhN2ZBSIHm93Xt2FzrUt+CTjVj2dTgizSrt9VdyCJwpQBsTzRyEQgbguCYIhIxhRTo6CsjUwifS+kYjFN3qI4lZfh1ULgLRLNpkhynDBs757vJ9FgRYjRzMBS6KmjqszSND1v2LHpcw2u+JMaOChP5geqIwWDPUldmN5Gg9evE4aiV60pYJQ5mG15AL043kUQL42Pjs3CaT7uC5syuN53HiY2wj6dOJ/p7XUojDmlqtl8O3K8TTKwHYBSgOLGCMOC6kpY8w86Of5QMShih9E7xB5vLcvMOGzilel7Ly/rBUsjKhsjkzwQhiGKQsMh1asxATOND5r1bW1dIzHr8L0Wyiu1cU9ugeP2fHQmuHqG36yHbP9ksw0UIQ2CUmoJgNOCIHgHgJMBHANgfwC7ARiPvsjcAWAtgBcAPAHgXqXUyymV5xMAPpFG2h74G4Dvao4RQgghhBBCCCGEEEIIISSBQqGA+fPnY/78+Xj++edx66234s4778SLL76YSn7t7e04/fTT8eqrr+KCCy5IJY8809vbi9WrV+PNN9/EW2+9ha6uLpRKJVQqFSMRzKJFi2KPrV+/3mdRM2Px4sVaweRhhx2WSTlmzJgRe2zZsmWZlEFCU5P+T+2VjHZjS8qnubk5k3IQQgghhBAzdAKeispud+akD9aDpiYgMJDGpmkI4IrDztypYFOeAdcsW+ewLir07co5qmmUfRo5Rikl3+UUerFF1I7WPjE24iglCOQk4h2XHectxLy6nXudcdnNXnIvGe+eG4fOMCTJHCMYEMuTwnpzVSZe6S53pxpXAgMxjapECKUrluKdqLYRKohEPf3v2KL6uChO5URArzNmicWlf3okKY6bPuIk8zcpvo2yAhNBo0v8j0vSMMZXU8g7FWyqJW9zTSlSEbGnvhC2d3hJxxbjvp+PMDwsmN66zkwtUqjs8ExVSTMeORncSWOUm9A3F2ZfVrHLUeBsUkVpa6ilzSShrlTSOs0TxkYmUW1Z1N4CqK4uwfnEF0pgiqOLu8VCEZNGT4o93iIwrQRgFytM1w6267UBWJkFQ/a8awTB8Js8hJAb+KqyJgYYv5MqAS0tMUn0pVEwaCq1smdpKD2c1O5TbLrsON+uHzNM30GMkGohwwyNTAiJQCn1OoBf9v+QCJRSfwNwyTAXgxBCCCGEEEIIIYQQQgjZbjjggAPwve99D9/73vewevVq/Pa3v8Vjjz2GJ598En/961+9/WFfKYWvfvWrGDt2LD73uc95STOvPPvss3jooYfw1FNPYenSpXj11VeNP7KWUiqVsHXrVowfPz6V9NNi6dKl2uP7779/JuWYMmVK7LE333wTvb29aIn5UGY4GDVKL9TJysiknPBRWFI5CSGEEEJItujWdUZCT0/fzid5NATNTYPE77Hp5PlLZ5PdY7M0YrFYiw4Uui3fsNw66yAIsHzDcrxrl3dZp5FnbAQdgF5QkP6u4WbpJ+4WLGlXDjvAW5mSSHe4l+DSd1OMW2mZt5TD+LV/ojCl8PbAERT1pzYLq6yz1Knd9TsO0/5l1K+j2oKFOA1AZNsQN5d+E4+oezQynMgbNoLrlETaCsrI3Gbg+QknGCaUbyMTE3FaGsJ5U8OvtI3BhhPlMK7mAmm78NR2w84UhPKSeQGdTJIxHK90wuXIWOfySMsaMweH+Zc4Pjo2izAPZl82bdvxvtNfWxmUwXJOF0uvmcGIK7p1wECixltJ+1YKQNLak6RC4pp/ALr1UVOhCVPGxv+tvaUsW4vYzHOU6TsAH+8KLOe3qicbEyLfqFBu4BuW4uvQ1KxRVcqxK7BabNcZ7MRds71Tu0+bd5UuVELLecbIqBYyzNDIhBBCCCGEEEIIIYQQQgghhJCcMWPGDHz605/Gpz/9aQBAW1sblixZgsWLF2PJkiVYsmQJVqxY4fTh87nnnouDDz4YRxxxhK9i54J169bh2muvxa9+9SusXr0607y7u7sbzsjkpZde0h5fsmQJ1q5dm3o5XnjhBe3xtWvXYubMmamXw5Tm5mbt8VIpo48YaWRCCCGEEDIspLEbZ6Y71ifpEZqbgaYExTuQ7IgyjBgZCmRoZGIs6BjIgHt4ZdMrTvm/tOGl7dbIRCklEk7U0F2TukmPqYY2YW0pKqeLyYZFX2l7+k1UDj8BrYfsjfEXfg3FmXva51+PS+wRPDNxM0gpppSr8Wv/RGFMMNDIRN9PmquyftTVm+6u7WYGDRHmI5Y7fEeKuZSCxEWslndU35SImEyFZaljMTdRpjuxp0xifDQdNzybgPgW7xm1qxQMl00NSjKd3zpgNe43uNGFErYLX3FJdaQglJfMCxq72lKnr12Yxcei5ln6NjHSji0uc1xhjHduPimZ3kmwMbfKItxJzMrskN1E0nNSpWzMECphBUj2mEVVRZRX0t5UANWd7tx+pLH41cV4bu1zmNA6AacddBoKheiKVAJTHN36qFgoYqexO8UelxqZWK1tDdcBtuu1QVjObyXPO09UURUbmaiKJgZUDde5mlhY7T9msh7J2tBjuKmtLcTvKh3nCfXvjozbTCOarpKGg0YmhBBCCCGEEEIIIYQQQgghhOScHXbYAcceeyyOPfbYbb/buHEjHn30UTz66KO4++678eqrr4rSrFar+PjHP47nn39+uzA76OjowHe/+11cddVV6BmmXaN6bXd8HUZee+017fF//ud/zqgketrb24e7CIMYN26c9nhHR0cm5Uh6LknlJIQQQggh2aITSWa5Y31SVkFzExCYqGWGX4gVi8HzzFQobiPkHfAB+9p2N4PJlW+udLo+zygoK1GE7prUd4k1VQP2JrzfkOyy7SLGtxRTdL7ci86Xl2HLvWdil9v/FaPmHmVfhoG47OCcpoA0JZVnqRovtkoUphQERiYVmXilu9ItOr+GT6OgKM2mtWlDVLGkRdW0TanwLJEshjCbvubZ+MOWpHmVsabL81zBt1GWUbtKoU5M7yNSWJ1HbKolB4YETkjn8Z7abtjl/283kn5lfOoIE9xuQ/A3rkKoMQWMeIAuTUiVUjIyka7RHNuF03zcF3k1YcqXj0ni+4Qkw0lfmI6jUfMeJYrzNDLxxZsdb+KDv/og3uh9Y5sJ8jcf+iYuOf4SfOw9HxtyvhJ806DrJgECTB03NfZ4q3CtZzMHVlXDdZjpedq87OJpoxqZKKW0427kNZX4OlSGhp06I7Gw3yVbUqrUTYNzgu07RdfnU29kYvqudGTUChluaGRCCCGEEEIIIYQQQgghhOSQiTNm4hMLnxruYhAiZuKMmcNdhBHDlClTcNppp+G0007DT3/6Uzz22GP45S9/iVtvvRWh4Yd7f/3rX3HNNdfgS1/6UsqlTZennnoKH/vYx7Bq1aphLUc1Dx8hClm71k0MlxXd3XbimLSYPHmy9ni5XEZPTw9aW1tTLcfWrVu1x5PKSQghhBBC5Jiut6LQfcic5Y71iUYmo5oHid/jE8rxp84mop0sy2/Tbgbcw4bODU7Zv7pZZn7aSIRhaGUQoLsmdXGFYfqJAjlJu3KJXY6mRdXeJrzx8a9j1xWPI4jZiVpUngyNnySkZY5U0Qq99LF64PNONDIRDkNd5XTFjib9Oqop6MRW+sSiRNfCOu1/Nxg13oviVERbqp9/eDdGiUBZzE3mXv8+vNXai0JQwIl7nogrTr4C40ePT6F0ehLrznTXac9mFb6N64zEaSkYz5neR8OIFW2K2Sj3Foe0f3sa48LuFATEkrowNjJp8Pq1RDKGaufSviWxmrmQS5yxnjPY5pcHAySrMri5jJi0h5rhQ2p4NKcDkGw46QnTvhT5nko451CdNDJxJQxDnHTdSdhc2TyoTVcLVVz8u4ux9457Y/aM2YMvEpji6OZ9xUIRO0/YOfZ4S1nYx2zG/bKhQYmLMem2NOzMUBrVyCRUodjAN9Q9ItPwoBkna+OvZF2apYl3HhCv2R2fT6Wu0o3bjOnamBAHaGRCCCGEEEIIIYQQQgghhOSQptZW7LjvO4e7GISQBiEIAsybNw/z5s3DxRdfjPPPPx8PPPCA0bU/+clPcO6556JYLKZcynRYsGABTj/9dPQIdiwib5NkhJEXegU7AWbBlClTEs/ZsmULpk2blmo5tmzZoj1uUk5CCCGEECLD5aNrnciqopI/wg98bVOc8IFyMKoZCAzMBvIs8DMQaKVlOhCZl4VQY6DQra2nzSn/tVsbw8TSBqWUWNABZCy+tCXpXYdEhOwinPTQ10ttRZTuXYCWD57qnJaLuEMkdhWLTlIyMtEokBKFMQONY5oK0N3UqKpsjOkupWs6a9KvVdSu1KYCuvq0ovITVqmqxAu9XI1HOns7vaZnhMXYVQ7KQLFvh+4H//YgFv3HIjz9xadR8GBiJEHX1/vGV1MjE78P2vf4EhiIzmwMaZIwnQ/r4lfDkwdDAhekpuyexriwJwXjCEldGAs6rUrS+JTM/w4jNgV0eKZKN7a79EWp0ZOj0FflYTMEm+eVUX+oVCtoKqYjcxWv/RPqKtFw0hMhQhSQPIeKHJeF7Vt1tIvOJ0NZsGwBNlc2Rx4rFAv49oPfxv2fvX/Q71WPRyOT8f6MTGzelylDcxHdmskYW6O+jA2sfBEquYGv0oQx4/cimudVizsm6/Za68vNu7aUqT1f8btKx7VnORxcXyZrxf4zoSoVBE20miDpke0bIUIIIYQQQgghhBBCCCGEEEJIqrzzne/Efffdhx/84AdGO1itXr0aCxcuzKBk/nnsscfwkY98hCYmDnR3pys68UXedu/ccccdE89Zv3596uVYt26d9jiNTAghhBBC/ONiZBJqtrysZihqUkkfMjc3Dxa/xyfkp0ApYLTbdYZGJlaCsQHC466q2+7IG7s2Ol2fZ0LIBR2AXlCQ+hrUMPlEgZykDdsKfQBvYu2tN/zGSzpOfTfNuk0pppSq8e0gURgz4N1g0KSP681SI5Oy3TslU/GStZGJrTAuom2Ih/x+44+oGGIuIoouy5aewWa2NgZOYiwMMOrLtamyCd/83296KpA5ujmXaAd330YmnmOQUTtIYY5pOh+upmCikgo21ZLjebAJRnPlQed7MjLpTaFNCOrC9NQGr15rJOYMBU0T8i5U1gnPHdbn0nHO9a6yNNKMxcacIIViRFGqpGgOIjYASGgbGRmZmPquVSMcC6TGOWprh+h8MpTbn7tde3z55uVDfqfKgrirWU80FZowrmVcbJxprQiNmGzeH5jOsT3MTVXV0ryyV9Z3Q0/vQiqW5d1WDisjE8363/C2dKYztXWNrl3WqK1Z8va9R9qI31U6trd6E0lRr29Qkx/SONAmhxBCCCGEEEIIIYQQQgghhJDtjCAIcNFFF6FareJb3/pW4vkLFizAiSeemEHJ/LF582acccYZ6O012yFu0qRJOOKII3DIIYdg1qxZ2H333bHzzjtj8uTJGDt2LEaPHo2mpiYUi8XYNG688UZ88pOf9HULuaDMjxKsGDNmDKZMmYKNG+PFgG+88UaqZejq6kJHh/7DwhkzZqRaBkIIIYSQkYiLkYnug+0o4ckQ3DaAfrscUcLvgdm0jEKgWRttI8870RuULVMhmY1QY8A9VFTFaCfmONpL2+/uykopBBadQye2SH2XWEPxhirp33koQTySCpYH4amvdCxag2RbUANcREApCmfSSrpejDKQRGFM8e24ETQXAMTHomahuK2nnK6xsEm/jhrPTHcCH0JUO5dWqkYQLTEeicp2c9fg3d1NBGOuSAWwQHSbfHTVo+6FEd6uViQnuC+n2BmVnufxxWhm4GJkFYPpfLhRxIpWPiZ5ngebII2VnupSlUIABusMUaKSAOv9xO0Lwd+Lirq5dFSduPjQ6crlMk/N0Ex0WPKLIM+xq7faizEYM9zF6CNhvSEx/bElDEOjDUuAmHFZ2DfCThqZuPLUuqcQFOLrLChGrF16zeOubj1RDPrG1rj3Iy1l2WTaZthXFcMYV3Yz9QBgHU9VSfZdhK81b0+lB+OK46yvV0qJ139KFaAqFQRNQ+0DjN+Hap5zLe7I1rkjY35VW/OJzEz7r3ShXB3cviVGKqpcRjB6tFP+hOigkQkhhBBCCCGEEEIIIYQQQggh2ykXX3wxFi5ciIULF2rPe+KJJzIqkT++/e1v4/XXX9ee09TUhDPPPBOf+tSncOSRR6JgsqO4hu3x44qWlpbhLkLDsscee2iNTFavXp1q/ibp77HHHqmWgRBCCCFkJOK0G6dOU5vRjvV9Au8EI5NRowCD9VOeRVBGqosM13jKQkRcu6atuw2For4+wmqoPae70i3Ov1Gw2ZkW0IstUl//myafJJCTtCuHGCMxTNFR7fX02bqLYDUVsXM/KZkj6XZvThINBcEAI5OmIoB44VazsInYxhVTIwczQVQA1duLYOD7Lc2u0dpyReUn3fW6X2gddY+iOBVRmLaetkH/LRGMWWMxdkWVa0Npg4fCyNC1M60gfsjJfh+07/HFpB2oFOaYpkYmRkZ9ecCmWqoN/rcCqQDY0xgXllN4bpKymZ7a4NVrS5KJ3kAKmjAQFYOdHqnOeMfFaFTaDxxNxGzWhN6xeV6u9w0z48my5RzOqAzSBpjUNjIwMmnraXMzMhG2b9XZJTqfDMW0rQ+6RmCsoUu5ZqASZ4ArNTKxGvcN+7CXuamleaUSmqh09Pox+Kk3mJASqhCBkhvBqa3tCCZNjjhgmIDmedXGepN1bm3NEiIH42AGbDN5EV/o9nyc/rbAzY9IytDIxCNBEHzM5Dyl1C1pl4UQQgghhBBCCCGEEEIIIYQQAPj+97+PI444QnvOX/7yF1SrVRRNdtzOAevWrcMvf/lL7Tl77rkn7rzzThx88MHe8m1ra0s+qcEYMyZ+d7MddtgBW7ZsybA0jcXMmTOxePHi2OMrV65MNf+k9HfeeWdt/RJCCCGEEDtcPrrWiWpNBKGmIhYt3cnC86C52cjIJEsjEDEmH39nWXyr7Wz7rlm2blniqROaJ6AjjBdYVNEgQmILlFJWgn6d2MLUaMEW0/QTxfYSIaKLICIlgw5rnAylzO9FfNcpxcRKGC8eStyVeUAoD5r1soHmqmyM8bU7dRym/Vp1dQ4yMlGWorbI+vMoenU1HmnvaR/03zYGTmIsBMWZlMsArWGIQKTlW3Tu28jE6Hlb7livw9TIJO3x1BtWxWyQe4tBbEjoqe2GaWgkBfMh49to7Oq1R2DOII73Lj50FU0c0x1LImNjEV/mgE5Y3bOH9xAGlKopmoN4NjJR5fSNTDZ2xG+kUE/UuKyEazjVRSOT4UBkZKKp0qagb61XDIqR739aKkKDFYt3ANpYPRCXuF3Ly/KdgCrJ1oqd5U6rfOrprZgbhUWhoFC08aFqbwMijExMhyOlWQ/W1jUm69xCRuNIXthmZJKxOW5FDW7forkajUxIyrhtOUbquRnArw1+CCGEEEIIIYQQQgghhBBCCMmEww8/HDNnztSeU6lUsHbt2oxK5M7NN9+MkuaDypkzZ2LRokVeTUwAYPPmzV7TywNTpkyJPdbW1rZd3rMvDjjgAO3x5cuXp5r/ihUrtMeTykcIIYQQQuyw+Zh/27Ua9YzTromSMvQaCM9bWwAT05QcG5mYCI9d6lKMjYi4X5jx4hsvJp6616S9tMcLxQI2d22f67u+nWnl1+muSV14bdp3ehPELpI+6NLePYo8ww1vOKfhtIOz5JkJH1laMUUn6kxs+8HbUoFglN7AWGpk0l1ONsaKxPAxmZZGddaJy6yNTCJ+JRYeVfuvG3qhSEQUcW5bz2CD5UwMQyz6fpBkrpMRWqMNiUjL81zH9/hiNP457uwdmaSh+rGagolKbsjYAME7wrrxZcITVv1L2GTjr1mMyvEyJ1UkZmA6MzXfpk26uO1kDiKeUzqOcXmIG7bi/xTGknp6q25Cfy2+xeQC8wlbNna7GZlI65pGJsODKkvibvyxYqFvrddUiDavbC0L45fN2tZ0DLEwSxyC5RxT8rwBoKM33jBYgquRie17L7UlZpMe07Q0dVqLO5J1qff5QU6xNTJxNTyrN8GV5K8zrSHEBzQySYdA80MIIYQQQgghhBBCCCGEEEJIphx//PGJ57z55psZlMQP//M//xN7LAgC/PrXv8bkyUN3l3Fl06ZN3tMcbnbffXft8VdeeSWjkjQehx56qPb40qVLU81/yZIl2uPvfve7U82fEEIIIWSkEsL+o2KtkYnKyMikJ9nIJBg1CigYfF6a5w/QTcqWoZGJibHKEPqFR69sTF6Xzd1jbuI5L6x/QV6GBkBBWQn6dWL7vIgrVJLYXiDecREf+nwepSefcE/ERUiZZr9PKWmd0VXih+nFAUYmzdGithrNQv+PUsVuJ3pTIwdT0Y3qrBOXCcVpbydk+DtdEpq8dYLvoQkNzbijZ/B92gjZpNiYBmVisGKArp2pUNBGPMcM3+OLkXFMCmYipveR1fzWFZtqyctcwZqK0MjEg4mB6uwEVBoStjRMyhq8fm3RbCBQT1HTJKJjsL2cTmuw4iL6zWguvS2NHMQN6zJkYGRSruZHRJ00B1KlFE1X+pEYkUYamQjfQahOGpk4YzOfEJji6OZ9NSOTlkJL5PEWoZGJTWhVhnMLJ2PSGsJ5zLa8hdd19nYmn2SAq5GJChUKFuNo2NEenZ7pWltjblEb6yVGlnkYB7PAxuQFgPN79vp3RyKTUYnZJyEW0MgkHVTMDyGEEEIIIYQQQgghhBBCCCGZM2PGjMRzurstd1HNmN7eXixatCj2+Ny5c3HkkUemkvf2aOoxc+ZM7fGVK1dmVJLGI8nIZM2aNdiwYUNq+S9evFh7nEYmhBBCCCHpYLoDfRS6D7Z1QnWfqO5kcUowqqXxjUxMhFZZFt9G+NV/zatbXtWfVg1x2G6HJSb34hsvysvQACilZB/n96MTFJgaLVhjKhpJEpNKBPY5Mf8oL3nWPZEMTYhEpFSu+l11B5JkZhEEA4xMRjVrz20KZf2op5psjOWCsZFJ3e7xWrGzLh0fY1q/IDoqhoh2Q444t713sAhNZIxii4UBRhYGKyZo61Mg0vIhXB+IiyFeFDojgRq+7wEwvw+XeXPuyUDUnyZSEXHVQ4wM30rpXblg/DW+jZzEsqxJnHsOoCDtAi7PVDe2O8y/RHMGy/nFIGzMLX1jG7tSMMWqJ00jE3EISzA7SDSc9MCWri3G50aNt0o4BpuY3hL/qLJ539LN/psKfaaVLU0xRiYV4drBZtw3jROWJiQDsTVDkTxvAOgs5cPIxDp2x43rptWrqSvVP/5KzDpGmpGJeG3s+E6p/t2R6B2ExrSGEB/QyCQdgogfQgghhBBCCCGEEEIIIYQQQoaFnXbaKfGcYrGYQUncefnll1HSfEw5f/78VPJVSuHJJ59MJe3hJMns4re//W1GJWk8dt1110SToEceeSSVvNeuXYsVK1ZozznqqKNSyZsQQgghZKQTOogWtUYmWe1YbyBOCVpbEBgYmag8CLHiMPg4PtMP6C1EFjXh8Rsdb2jPK6KIA6cdmJjeKxu3P3NOoE8gIN7lFPoP+tM3MjFMP0EgJxKnuQiuPfaV0ksvuyeSkqHUUIS7VqcUU3SizsS2XzQ3MmkWitt6y+nuRG9aGtVVJy4rm4uwBycU8Sux6LXcn9TQC0VxKuLcehGdWEBug8U4n5aRSeCxP6qyQIzuuV/7jhNGTyUF8bmpQUlWRn3O2FRLowsxhf1beTDrCt96yzmNSCTzgixMoBoZgYhVZ6gVNQ66tCCt4YiTWZ/gWh+xNA9xw7YMDkYupmurNI1MxA0wafwqZWBk0mNuZBI5vxDG+bDbzMgkDYO07QXpfBWQzUt18+wg6Mt7dNPoyOMtZamRiex0AFCmBiU+jKEszVCkRiZd5WQzaBNKFdxFC4EAACAASURBVMs1aj+BZexWvdFrduOpk6auasaGknWub1PHvPK2kYm037k9n/q1lyh3gZkdITbQyIQQQgghhBBCCCGEEEIIIYSQ7ZyuruSPLMaOHZtBSdxZvXq19vj++++fSr4vvPACNm/enEraw8nf/d3faY/fd999I2Z3HBtOOOEE7fG0jGB+97vfaY/vvffeiSYrhBBCCCHEjrQ+uq5msMMxAKgeA+F5S20H14S1QI7XCkYmKxl+P6+qNrvZ9l2zuUe/Fh3dNBpTxk1JNNlZ07ZGXoYGQEFZCed1You8rINVb4KQQCJOy0rkmUD5Vb0xjxEu8VJSt9JmkFKzqd9VdyCJbb9gbmQySvhYeyp2u7abill1AulB6dW999SKnbUJGf5Ol0StbUZcJ4pTEe203sgkLcOQQcWwMKGwMZZKA+18LcEkahA247cG3+OL0fNOQXBseh+mhicNSaPfm7BdhB7abrh5k3MakekK5kPGd5GTWJY1SmDOUMxynqSrY5e+KJlTeoiluTCAsCyDyuB9havQ3ydJ96skcwlL2nvajc+NNMYVGlCpLsO5vQ8TCvI2AkMO3byvKWgCAIwdFf29R6vQyMTKwMywbdisMYZgG8sqsuu6Sn6MTHorbiagga2RdNy4brrW1tRpbT0gWZfm5V1b2mwzMpFe6Ph86scCydo8i3GNjGxoZEIIIYQQQgghhBBCCCGEEELIds7atWsTz9l5551FaRaLRe3xckp/7G5v13+4NW3atFTyvffee1NJt8ZwPc8999wTe+65Z+zx9evX4+mnn04l7+2BE088UXt8wYIFqQhS//u//1t7/L3vfa/3PAkhhBBCSB8uu5HrxNuRwpMUUD3diecEra2GieVAiBWHgagh0w/obdYF/c+3o9yhPW2Hlh0AAEWlX1eu71gvL0MDoEJlJZzPwgQgFtO2l/QuQNAHXYSTPvtKeYMHIZBDHE4zbqWVdP2uugNJ3OE3ePt4kpFJc3VwWuN6Anz4mbH43O8n4MwnxmHy1sGyg3I1ZaGLYTXXG5lY784d0c7FTb9fYBY13psas8RRb2SSiWGIxdgl3nXaOGHZ6dq4JRFPep4rmBr5mGLyvI3M3YSYGpQ0ipGJTTVbmdTlCWH/9mFkojalYxRf1Rh+DS2EoXC3wavXmrK5kURB5y3iOdZpTcpc1ueC+bEPI4/AZQ7rC9s1QQYmLOUwvbmlfE6XUN85MzKJnMcK68zI9LYvM1G6RI8qm8cW3TuM2ncG40aNizzeUpFOpmWnA4I5pwczHFvzSrGRSdmPkUmp6mjUZDl+qJhx3bgbV+JjXW2e77rO3R6pmWqK1+yOY239uyPRe88yTapIutDIJB1UxA8hhBBCCCGEEEIIIYQQQgghw8KLL76oPT5u3DhMnTpVlOaoUaO0x7u7k8VxNpRK+g89kgxBbKhWq7j66qu9pzuQ4XqeAHDqqadqj//whz9MLe9G5+STT8aYMWNij2/YsAG/+93vvOa5adMmPPjgg9pz5s+f7zVPQgghhBDyNrWPkW3QCbp8i71i8+lN3mU3aGkxTCzHn0aafPydpbbW4lnVRCClUL8O3mnMTgCA1qLegGZzdzri0eEmRGhlSqITW6TeHw3bQ+KOqJJ25SK49ijWLm0NoBLe7SShXITxgmdm0WvFV5hQ0Qi0k4QxQWGAkUmL/t3TQCOTA18bhd9cvTPOeXgHnPancTj78Qn4//9jZxz7wuht5/RW3XaVTsJU9KPq3pmpqqUAJyo/aZVqhF6iOBVxbnd58H1mIhizEFJlYrBigM7IRLLbtG/TM9/pGbUrH7ve1ydpamSSgfB9+MhJY7dEasrgo+2Gm9MyMkmhneV5nZMiEmG4fBxyGLe0RiYO9S/pB7bzi4HkwMjE2pjVxcjFsOpTNckTi8n19yuZS9iytbTV+NzIcVlY16rXcI3mwYRieyUwaOz1cyOJsYYu7jYVmgAAE1omRB5vKctisNWS27Rt+NgAxDb2Cw3+ukr5MDIJLO839t2LqbGbpk5r780k69xMDaWHkdp9it9VOj6f+rFAlL/mXQYhPqCRiX8CzQ8hhBBCCCGEEEIIIYQQQgghmdLe3p5opHDwwQeL0x0/fnxivmkwevRo7fENGzZ4z/Ouu+7Cq6++6j3dgQzX8wSAM888U3v8rrvuwuLFi1PLv5EZN24cPvjBD2rP+fd//3evef7iF7/QGvrsuuuumDdvntc8CSGEEELI27jsLK/7YLvq40N+E3qSjUzQ0m+IkfTFcw6EWLGYlC3L4tuIDsIQlWol8UvfXSbsAiBesFKjo9whL0MDoJSyEvTrmndexBUqaUdUSdzIyPwjOa0CKksd3zG4xEtJ3BILHoXnG6IzMkkUphTeDiBJJlXN/bt0T+ws4JI7J2N0eXDwGVUNcP79EzHjzT6RXKliJ8Yy7V/Gvbp+XLPdSTiyWMLY0i+MizJDkhh8RD2ioUYmopLZYdHX8iKY0LYzSRvxPNfxbZRl1A6Egk0TTOfDVZXR/NYVm2pJ4blminBuGvowMmlrc04jCmVo1qPCEPmJUjmlZC5iLUi7gEMTUpX4Onaat0v6gYfxQOXB3Mn2efkwcklAN+fNnKS6ysDIpLO30/jcyPmFsL2pHrN7khphkcHUG1pIjEx0cbRY6NvoZeLoiZHHWyrC8c8mVBi2OS9tSDMuaPOuyG6sp2LwDtWA3oqjCajtEBQzrhsnp5nv1sZf0Tq3wY0ATdlm8iK90HGuUb/2MjFXqiExsyPEBhqZ+OVEg5/3DlvpCCGEEEIIIYQQQgghhBBCSKaUM/iQKYmbb74Zvb36jyOOOeYYcbo77bST9vgrr7wiTtNHvosWLfKa39atW/H1r3/da5pRDNfzBIBDDz0Uc+fO1Z5z/vnno8IPGCL5v//3/2qP33fffXj22We95NXR0ZFojHL22WcjCPhBNiGEEEJIWjjtLK/5HjkroadKWB8CQJBgILmNPAixYlAGAtssvSqUjdg1DLF8w/LE+f3MyTMBAFNGT9GeVwrddoDNK6EK5bucIiMTgBiM257GxLIvHfObsGqDtWs9C/lLi55xS8CpPOlVfFoxRWtkknTxQCOT1lHaU5v7h6E5L7dgQk+0xKClEmDe8r4xwnVX6SRM+7XqHiwusxXGRdafsE51YnpZzBl6cndlsJGJTdyTohOOxzGcsXUgoc5ZSLLbtG8jE8+BwqgdpDBfM70PFwPA3JMT0zNrhPOC0ENfCNvSMWs3bmeSv9c1ePXaosrmY7s03js9Ut145GI0KukHHow8gjzEDcu+nIV5hbPQX4fQ+DLpflUWRiYlcyOTqDgoXcOFpkZGOX4P1AjUt3NJHNLF3ULQt36bNGZS5PHWsrAPWIQK47WDh+8NbI2hVFVoZFL2Y2RScRxDAtvYHRerTGOipq5qcUeyLs2LaXDa1O5TumY3eZeto34sEOUvWSMTYgGNTDyilPq9yc9wl5MQQgghhBBCCCGEEEIIIYRkwxNPPIFjjz3Wu7mGKevWrcPFF1+ceN6pp54qTnu33XbTHn/hhRfEaZowa9Ys7fG77rrLa35f/OIXsWrVKq9pRjFcz7PGRRddpD3+hz/8AV/+8pdTLUOjcuKJJ+Kggw6KPa6U8vbsfvCDH2D9+vWxx1taWnDuued6yYsQQgghhETjsnuk7tqq4U7irqgEYwQACFpa+v4/Ka08f4BuUrYsi28jsggVXngjeS24z9R9AADTx0/XnqcC5WbEk1MUlJVwXndN+rvEmqWfuCOqpA86mTD5fR7lZS86puBwLyIBkHTX6nTajW58SGz7A41M+mN7HM3Vvvs984/jtef9w3NjAADlMF2hi+nTVz114jJbYVzEsxRXaX/eUeOjSEQUcW696DELIxNYiJYzKZcBujmKznBm6Ln5NjIxGf/SEJ+bjpMNY2QiFLj3XZOTxm6JVADso+2q9g7nNKKoagy/BkGj9mQEBlYFTb/xPZfWiuMtTLe2IRkPfMTSPIRE27icQTx3FfrrELfIBHMJVU4uq2vY7Kp0GZ8bOd4K5zCqZPj8MzC1aVQCgxVMd3mwOaGqmPctXerFQhFAvMFti9DIxCqMm5qyOJisbsNyTJcamdTXly2uJqC2RlhR74D73jOZtQelicu194uS9V/DrA0cqc2DdHOl6AvdBo76d0cikxnOk0nK0MiEEEIIIYQQQgghhBBCCCGEkBR55JFHMGfOHHzoQx/K1NCko6MDZ5xxBrZs2aI9753vfCdmz54tTn/atGmYOHFi7PH//d//Fadpwq677opp06bFHn/yySdx3333ecnr+uuvx4033uglrST2228/7fG0nmeND3zgAzj22GO15/z85z/HT37yk1TLMZD169fjySefzCw/Fy688ELt8UcffdT52T355JP44Q9/qD3nE5/4hLZ/EEIIIYQQd1w+utYamaiMjEy6k3cTDVpaDRPLsYDTQBiRafEthNBKhVixYUXiee+a/i4AwIxJM7TnBYUAqzevFpcj7yilrITzwyq2N8xbJe2KLRGRuRiZeBbyl15e45aA5/LEIs0mpWJVNALtIEEYEww0Mhmtj+1NYYBAAdPbmrTn7dTRJ5KzFWOZipuT7m1bevVGJrbiyshiCYVHmrxFIqYoI5PqYCOToo3xghSLuFEIMyiXAVrTBYlIy/Nkwbe436ifpGBiZjofzsqozxWrWsnzPNgEoVjRx+2GHZ3uiUSlazgvUGWBAVeDV68tkmdUlIYWl3FLN7a7iKIlJig+xNd5EHDbzqMdDGNMzB0AoKJSFFFLbztp/KoY9BXH6pYYKETNe8SGVUlrz7cTFqU7kjBp6/XmhBJjDZ2BXVOhbw03ZVyMkUlFFoNtxn1TwyedOYYxlvNbafPtqSS/QzXB1cgEQgOWbUSN65L5kGa+GPYHOck6N33T4HxQi8ni946O77rCuoFH1OtpZEJShkYmhBBCCCGEEEIIIYQQQgghhGTA3XffjTlz5uD444/HXXfdhUqKfwzesGEDjjvuODz66KOJ51588cXW+cyZMyf22LJly3Dvvfdap63jve99r/b4Oeecg9dee80pj1/84hf47Gc/65SGhIkTJ2KfffaJPf7AAw9g6dKlqZbhqquuwujRo7XnnH/++fjkJz+J7m4/OxBFsWLFCpx33nmYOXNm6gYuvjjjjDMSDYEuvPBC3HPPPVbpr1y5Eh/+8Ie1cWP8+PG45JJLrNInhBBCCCHmpGZkYij0DF3FqGWDj+fHjOn7/6QvnvMs4DQpW4bFl4qIAADVMNF4RIVqm4HJrCmzEpN8Yf0L8nLknFCFxuK4gWS5i/zQDAzTTxICSfqgiyDCc18vr21zut5UIBV5bYpxK62kdeNDojBmoJFJa7JJVbPgdWW5KhBAWWAq+qk3MvG5k7C0TnWx3tU8qV70mIUZk7IwodAJLF0IAqH4UhPHZWYGno1MPKdn9LxTMDIxvY80Y65XbMS6KTzXTJEK3D3UZdiZzt8UQtNYZWI80E+DtFz/COKjNv549rRSOpNKl7YpmVM6GHlsIyszPg3K9n2Gw/zblFLFUeivxZ85HQCocvJ80zVsSgwUIuc9wvamSqaxtDFMyoYFg2bmYmSim/83BX1GJlPHTY083lIW9gEb8ykDQ+G+89zbkO07AamHdH192eK6drY1AIha96he83vSxTprs44RQC0mi5+No1FU/d8sRGtzg3GNEBdoZEIIIYQQQgghhBBCCCGEEEJIhixcuBCnnXYa9thjD3zjG9/As88+6y3tSqWCn/3sZ9h3332xaNGixPMPO+wwnHHGGdb5nXDCCdrjZ511Fm688UaUSn4/PjvrrLO0x9esWYPjjz8ef/7zn8Vpb9myBZ/85CfxT//0T0MEgsViUZyeBN3zrFQqOPnkk7FgwQJ34WIM+++/P370ox8lnnfjjTdizpw5WLBggbeP0Ts6OvDrX/8aJ554Ivbbbz9cddVV6KnfUTfHBEGAq666SiuqKJfLmD9/Pq677jpR2k888QSOOeYYrFu3Tnved77zHUybNk2UNiGEEEIIkeNiZKJTxJnO8yuh24fFqjd5ffa22D1hvp9jcaqRuDTL4tus45TC+q3rtacEKkCh36hgv533S0zytS1upp95RCllJZzXCgrSbhumBg1Ju2ILxGnWokX4F2uXNjsKJJzisOCZidOWXmBGVaO2Smz7hbffUwSjDYxMquaCtXKYFyOTOiGWrajNR/31m6hEiUklcSqqLPXP2zQ9J2MXUzHiANIQstm8C9W+sxQ8E+VZdO7bKKto8mgs6jGJ+t2+Y7OWqkUbiRwYErggHdt93G5aRibGcxyJ+L6xq9caVTWPjwVxaHFwN9HVncM8VdQPPAjvgzz4H1mOCS5GgqZVrxP6lx5diPVzT8TLOx2Fl3c6Gmv2PRKdP/+ZeRmk5nRJ92syl3Cs71LV/G/rkfMeqZFJ2ayOXdaV2zsmBqtDjDEEXSvQmIsUC33fMOw8fuehBxXQKjQysVkbGccJH3NTy9gvbb6+jEwk/TmKwHYiFmVQJjB20z3n2rpGts4dGRMsayMTR+r/ZiHJX5kYnxPiQNNwF4AQQgghhBBCCCGEEEIIIYSQkcjrr7+Oyy+/HJdffjlmzZqF973vfTjhhBMwd+5c7LxzxEcmMYRhiKVLl+K2227DbbfdhjVr1hhd19raiptuummb4MmG+fPn46KLLor9mLytrQ2f/OQnccEFF+Coo47C/vvvjx133BFjx45FU1P8nyr32WcfzJs3L/b4iSeeiIMOOkhrVLJy5UrMnj0bX/ziF3HuuedixowZ2nt59dVXccMNN+DKK6/E5s2bhxxvaWnBeeedZ2T0Ycvpp5+Oq6++Ovb4unXrcMopp2D69OmYO3cu3vnOd2LSpEkYO3as1mTl0EMPxaGHHmpUhs9//vN49tlnce2112rPW7ZsGU455RTst99+OO+883DiiSdi7733NsoD6DNmee655/D444/jgQcewCOPPNJQxiVRzJkzB9/4xjdw2WWXxZ7T29uLz3zmM7jjjjtw6aWXYvbs2bHnrl69GldccQWuvfZaVBI+ijzmmGPw5S9/2brshBBCCCHEHBdBq068aioI7S33YlTTKPsyGOy8GYwZa5ZYnneiN6inLL+f1+4iHkcYoq23TXtKc6F5278njZmUmKQvEUaeUEpZiQN0YgvfQvOhGRimnyC4FQkKXcRCnh9HWG5CdfUqFGfMtEzAoUBpdvyUktYZWCW2/cLb74uC1tGJeYmMTBx3lU7CtCT1Bl3Kdpf4qGcp3Ym8v09GxRBRnIpop/XP2zi9chnQvIfVYjHO2xhLJRbDQjCrvUYSOz3fj2/xXiFMbqO+zaj60jS7DycDwEyxMFhodCGmtF14uF/Vlc48NKxWjbb4VhLhboNXrzVlcyOTokH8qeEah7RzXpd5oaBcTkYe2xLJQcOyLUMG8Txuzlt+dgnWnnExquUm1OJ176YC1l9yO6ZVQ4z9YvLfxsR3nbB2Mplvula3xPggaryV9jtVDmE0HvroC9spJkYmpUrd2kVQTbr5f1Oxb74/ffz0ocdCoChd19i0X8N3DhLTrFisjUxkz6G36mfu4rx2thzrVISRiSoJ7klTV7V1jcgsY4RNsMRrY8eBQyk1KIyL3kG4GKASYgCNTAghhBBCCCGEEEIIIYQQQggZZl5++WVcffXV20wspk+fjgMPPBC77747dtttN4wfPx5jxoxBGIZob2/H1q1bsWHDBvz5z3/GsmXL0NXVJcqvUCjgN7/5Dfbff3+ncu+xxx449dRTceedd2rP27RpExYsWIAFCxYYpXv22WdrjUwA4Mc//jFOOOEE7TmlUgk/+tGP8OMf/xjvete7cMQRR2C33XbDxIkTAQBbtmzBK6+8gmeeeQbLli3Tfkj+gx/8AJMmJYvCXJg3bx4OPfRQLFmyRHveunXrcMcddxin+53vfMfYyAQArrnmGmzcuDGxXgHgpZdewhe+8AUA2Gawsssuu2DSpEmYPHkyRo8ejZ6eHnR0dOCNN97A2rVrsXz5cqxcubLhjUuiuPTSS/HEE0/g0Ucf1Z73wAMP4IEHHsB+++2Ho48+GnvvvTcmTJiAzs5OvPbaa3j66afx1FNPGYkbpk6diltuuUVrZkMIIYQQQvxhajgShW5+Vw3NxCCuu3iiZPDxfHO/OUbS9/15EGLFYVQ2h13BpVg8K6UUOsud2nNai63b/j26KdmkwLn95JAQoZVwPuudUW2IEp3UnSFIzEXk6f9hlZ960sHIxEE8l2LcSitp3fiQ1I6DAQbGwWi/Riam41Y9puIl036teuqEWIn9Ji6huv8MDcWcQ66JTrvgOOaUw8H3Zfx8enuN6j4SC6GqiYBTio0Zhq6dKYFIy8XALjI9z+K9oklyLjEzLknD+XDDGJnYVEsKY2OmSAXuPrLsTmceWjVtZ7bjwwgiee75NrpxaMhY4GqoVIm/XrnEGUm5fMSzPKyfbWOXrVGcJIsYI5ONn7+w38SkngAbLv9P7PH5cxEkmbZJTRwSxk5l8l5FmmcdkrV75PxC2N7CSgjA4O+MPkwotlOCILnO681lJaFFF3cLQd+6b/zo8VChQlB4uywtZXlbVBbt19jA14MZjq25lPS+fJkBu76LK9jGkyiDMsFYr1s31eb5kvdxvk0d84qCQtD/PxGO64v6NVogaDeSNTIhNtDIhBBCCCGEEEIIIYQQQgghhJCcsW7dOqxbty6VtJubm/GrX/0Kp512mpf0rrjiCtx///3o7u72kp4pxx9/PM4991xcddVVieeGYYjnnnsOzz33nFVen/nMZ/CVr3wFN954o9X1Eq688krMmzdvWD/kKBaLuP3223HOOefg+uuvN75OarCyPVIsFnH33Xfj2GOPxbPPPpt4/ksvvYSXXnrJOr+JEyfiwQcfxC677GKdBiGEEEIIkZGWINM0XdfdQBN33gzCbcL3AAmixTx/gG4gSsu0+DbivVChu6Jfa49tHrvt36ObDYxMKtufkYlSysqURCe2yMsusYniHInIwUFAmsY7itKzf0br6R+zu9hFDCu5lyx2rTagqmLagYk5RnGAkckYAyMTgXal3ljDO6ZGHXVCUmtRW/0vbIQ8NaGYwiAPFPlOzEN/VVXVujQN26dkx+36Ylj0NRtjqSSsjEx0fV1St57jn+94WjR5NCmIz03vo1GMTGxqpdGFmErYLnzcriqnY4RgajgkGR8avHrtETwjbbyvH6IcjUy045FDZRmL7gEvsTTIQUi0jl2WplhhGBqZOwBAuTp0bqnCEN1/60Cc/DUsN6H0uwfR8g8nW5UvlqS4YjCXcI0jFVUx9tSLrFehIF5VDM9vdCOvFDExLag3tFCh+ZpTd2bNyATof0cCNyMTKyMe01jvY25atWyHqgAVhoMMP3VExSUbnNOxDChRBmWqJHgvqKmr2nsziclKo8+fpYjfVTqunZRSgwKFqBdnYFhGRjZmUZcQQgghhBBCCCGEEEIIIYQQ0vC84x3vwEMPPYSzzjrLW5p77bUXbrrpJhSLBrs0eebHP/4xTjrppFTz+OhHP4prrrkm1TwGctRRR+Hf/u3fMssvjmKxiOuuuw4//elP0dLSMtzFaSgmTpyIhx56CIcddliq+UydOhUPPvggDjnkkFTzIYQQQgghg3H56FpnjlA1FAa57gaatHNwIPjK2lQ0OBwYlS3L4tuILMIwcdfW8S3jt/179KhkkwJXI5w8oqCsdqcV74zqEeM4ErV77kAkgtyszD8MKS9fZX+xS+xJUziTlpFJzPhg1IIHCLSC0WMSTx8tELmZjltDMHxOpoYYQ8Y12x2+6/OzSae/n9WP9zZmS/XUG9qYpikSqtVjETd83OvQYlgYmegamsjIRJx1QnK+jUyS+6xT/I/B1KAk1ohpe6DRhZjC8vsQnqa1djBuZxFiXjKYKMFzHAWB+N56bDa53iXGSeYytvOegeQhbtiKpC0FzhJDq0p16Pgcrn0dYTnaxKTG1p//Snu8bxyUrf1UQn2bGCMpGyOIAUjG0BBDn7M0bivD6ZGtaeBIwMS0Z6iRiSD9mCpVSqEwYN1XqJOLt1Zs2mIgnkOamkMl9S8jXNphZ6fxqUnv5ExxNQEtWBuZRHRskZFJfGCoxRjJ+i8vpsFpU7tP6drYdb5dPxaI6iZiDCbEJzQyIYQQQgghhBBCCCGEEEIIISQlDjjgAHz961/HvvvuO6zlKBaL+PSnP42//OUv+Pu//3vv6c+fPx/33Xcf3vGOd3hPW0dzczPuuusufPazn/WedhAE+Na3voVbbrklc5OWr3zlK7j55psxceLETPON4ktf+hKeeeYZzJ07N/O8Z82ahcMPPzzzfH2w00474bHHHsPHP/7xVNKfPXs2/vSnP2HOnDmppE8IIYQQQuJx2Vle90GyqUgldSOTgV+VJn3xnAchVhwmZXMUFklQNu0mVKhC3y4mtr69bmwqNiV+9F6q+BFh5AmllJVw3tQkwYbe3z6A7ltvRnnRM9EnmBoQJAqBBDfhZP5hf2kcpVfftL7Wqj+9fbHgZKHgMWsjE5P8BhqZjEk2MpnYZf4OrBKmLXQxe/7+jEwG5ycRc2+7Jkb8I403UW2pfv5RMO0GvQ7zBgvRchqxNUqcm4RuPBSJMj0bL/jehbxocispGJmYihAbZtd1mzlho9xbHNJ24eN2UzIyCU3jvkQ43eDVa02Sid4AippnFATBYBMqxziknRO7tCtD0X1fPu6xNA2zLzGSex6A7fxbMl+sRDlpGDz3sCdhrmNTd0lxxWSO5Pi+QfLuKXK8FfYN4+z+H3vvHmXJUd95/iLz1qOrq7u6W61utYSeIMuyDMIyy8GIsT0+WKyx1iyDWT/geBlja/GMX7OL8axf47EPnuOxWdYeZlibwQxrdnbhnPXBrH2wjQEbBB7QGGPZFqAWLG5PYwAAIABJREFUQq+W+t1d7/vIzNg/qm5V5r0ZEb/4ReR9VH0/5whRVZkRkfH4RUQqv98I2YvtcThmqYPv9HTBl3Zz19mJqqY552FWWcHH/I+IH1+EcahMyDsBvbnBvrZbxHmHlgcaACkf87BqxkO/8tnn2oyL+nGnyXdr04533QTuLwbnAq/8PdaAAEiAkQkAAAAAAAAAAAAAAAAAAAAADXHttdfSr//6r9OXv/xleuSRR+jtb387vfSlL62citMk8/Pz9EM/9EP08MMP03ve8x46evRoY3ndd9999OUvf5l+4zd+g26//fbG8hlkbm6Ofud3fofe97730eHDh6Okedddd9GnPvUp+tVf/VXW6UlN8IY3vIFOnz5Nv/iLv0jPe97zxlKGPi960YvoM5/5DH3oQx+ib/qmb2o0r6WlJfqRH/kR+vSnP02PPfYY3X///Y3m1yTz8/P0/ve/n/7oj/6IbrvttihpHjp0iN7xjnfQZz/7WbrxxhujpAkAAAAAAPwIMjKxKOK46QYbUTiMTLzUVQ2JEaPAECuNtPSCutK6cOr4r1m4xivNXr73TqIvdCESTti6uvSU2O5ffpKeueNeeuYH307P/uTv0FOv/p/p3L33Uf7Uk0M5cKg9Pbf89xGJL3UDY713cVN+c4jwaQqF5yajK06/VyVzXrVw0Hn9kQ3+O0ufU+LLcMcXd1wPGplIT4kfyk5yIrGhb8YQLg+aefDrR75u8D2FnagZkbbJzMeG1UDDQ5QZO2TEPoU85YgamzAyYVZM0UDeE8O0P5vnXBpjLDSxniDi90eJQdV+w2cOdc1D3Xx3/pHOzbv32/prwBrXo1yhz0BEpCZ5/+xC+Pw+Ria1e9UI9S5KwxHjNWstoZjXGfLwWDPUXutrZJIz/3u4wOhuL5LlGX3i0U/QJx79BK111oiIZ2RSiY3dLvmYZyqmOc6Mmqn8LDYy8Zw32XuHGOM6oB/q9XX2tbHeofWKsHQS4UKs1sy657E/tLRpf3/qs/+bGpPDUFTlX3wi7y988o+xzgHARmvcBQAAAAAAAAAAAAAAAAAAAABgP3DnnXfSnXfeST/3cz9Hy8vL9JnPfIYefPBBevDBB+mhhx6idrsdJZ+DBw/St3/7t9NrXvMaet3rXkfHjh2Lki6HxcVFeutb30pvfetb6Utf+hJ96lOfoi984Qt0+vRpOnPmDF28eJHW19ep1+tF/4j5TW96E732ta+ld73rXfRbv/VbdOGC38m+Sil6xSteQT/xEz9Br33ta6nVGv5PqcePH6dv/uZvNqYxNzfnXW4bx48fp1/5lV+hf/2v/zX9zd/8DT344IP0xS9+kR577DF69tln6dKlS7SxsUG9Xm8kH368/vWvp9e//vX04IMP0gc+8AH6wz/8Qzp79mxQmmma0kte8hJ65StfSa985Svp5S9/Oc3OzkYq8WTw3d/93XTffffRBz/4Qfrt3/5teuihh7zTuPnmm+ktb3kLPfDAAyMd0wAAAAAAYJim1t7cdAdPb/XOxyFEUF6+mxP8ATpHtBN4QrIXgj1wO+uRSuxlPLF4ovKz1tpqyFkWzewVNGmRcD622D77ypfouTf+HGXt8vsERWuPblL+mv+RTn3uz0j197vcvF1CAp9TukOEk00YmaynpFdXSR065H/zCE4Blxg4NBVTTEZXrD5cjgcHGUYm6+5JIN/OWGIu4QO3NofEWVKjm8H6lAjet/vNoJg08e0bNW2rSVfEkRyhJBERBRiZkKCNTc9aFIXY3FtiImcT/7pMoqoXx41/sdeRKadqmjAyYU5kUsOjUbIV7/3jd1OmHKPCW6wY43Eb2kcV3H7mNfZlZZl6PEwXEoeRUsXAIjQO2eb2EFMFn3LFEPhOQr+StoVw3eezXqwzPdGc/3buqleJmYirvbn9rtMhqvnvzRy00uz1Xt287BtyC445GtFI9mKTzq997NfovV94L9G2Z6TONb3m615DiUqc/bGX7e4x9MaGV77cdxiz6Sx1it13h/OZbJ+qux1SjD3kDjnTWCxGPA1Yh+kNvpGJjxmTjVBDFPH7q5pY5bMX0pZY19/X+Ox1B8059zre7Ra4Vh6cC7zyDzDeAoADjEwAAAAAAAAAAAAAAAAAAAAAGDFLS0v06le/ml796lcTEVGv16NHH3208s9Xv/pVunLlCq2srNDq6iqtrq5SlmU0NzdHc3NzdPToUbr22mvp1KlT9IIXvIDuuOMOeslLXkIvetGLKC2dtjou+sYto2RpaYl+/ud/nt72trfR5z//efrkJz9JDz74IJ05c4YuXbpEly9fJq01LS4u0tLSEj3/+c+nO+64g172spfRfffdRydOnLCmf//999P9998/oqfZRSlF99xzD91zzz0jz7uOV7ziFfSKV7yC3v3ud9PDDz9Mn//85+kLX/gCPf744/Tkk0/uGKy0222an5+nQ4cO0aFDh+jw4cN0/fXX09d//dfv/PPCF76QDh8+PO5HapyZmRl64xvfSG984xvp6aefpo9+9KP00EMP0SOPPEJPPvkkrays0MbGBs3NzdGhQ4fo1KlTdOedd9KLX/xietWrXkV33333uB8BAAAAAABsIxHT9rGJV7lCz1AjCteJwBUjE9e36BN8kiZPKKxIFwUpobA6fnmqLDNMa04dOuWVZqzTZCcJrWVGJq5T5H1Z/c3/fcDEZJfNZ3Jq/+ffpwNverNXmjbRyNYFXkffeuUd7V4jinpf/ALN/qNv8781oDxs4blA5NlUSDQJQFmCoVJ844jQljbc8bA9s21k0rRBAbM+B4VYznFjpFqfEoGdaY71FzDVJVL9kRvDdJCRif84MD1rVmQ0m8jMiyWG2NZ5Nx+fmQHXAIQLx8hEZMzkgLsenopT18X1MwXPZqOBfuHOU5PENMYFu595GCpMeeuK8ZlDXfNQZd8RKlq3rN+C4ozPOIhgXqQmwABJXF/C9VXmMefWGpl0wg8BEa3pHH1DM43zvI0gStgMSofyqWtX3/6mme9FYphQTDHv+av30H/84n8klZYMBlNFH/nqR1j3l9/p6U1PIxPTHwaaei6do9VidffnnnDu9TR2ZK85I6xBdICppt7YZF8b6x1aqCFKIvXqrNuf9jz2h5YY3o877L2unpK9QQT6JlT+hqbhRiYV81Of/CVGrgB4ACMTAAAAAAAAAAAAAAAAAAAAAMbMzMwM3XXXXXTXXXeNuyh7gpmZGbr33nvp3nvvHXdR9jRKKbr77rthsuHJjTfeSA888AA98MAD4y4KAAAAAAAQEGRkYpHEcUW6HYa5hbUMXfuHycrH02MChFhGuB9/93pEc3PNloVIVFcrubutbzhyQ/UXLkFhsfc+TNda+4sDyPODfgZrf/H3RGQeQJuf+PSukQm3f7oEckwBHREFiYWa0poUz56R3RgknmvOyKQJcTaR2TCEJRhKy0Ymi87Lj2y4zZE3Z7cyDpkPOfCNOgbqR9o/BvOTpGPoNzGMkwbFrFwxm/YRqg3e6xNjtjH1y27epdmW0MhEcHK39R6P8R1bbBc7vZQzl+Xxgzj3OZqOE1GQzo+TvA7m4C1wD8+yqe7A3UfpzGMdPOXNK8Zj7nPNQ71yfQc2vnU+Cknby8gk3LxBYr4YHWHsks5fJkM+9rWcdYyrbD4GZjv32Ms9aKRnpCNbh6111vyMTOqCVmObuEnoyOPjNz/9m6QS+b6vU3rPo9fXve417SkG2//AzAGiUgiWGpl4zZtE/L4RwwxHsE/pozf49R5qQNIn1BBF2uPqjEy0j2GFxcSqPy9w97rJPjIy6TeY97wfOb765C8x/QLAh+Zt5AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2AE19dG0Sqg9SPr1VhEtwUxJkuHQzepLFqVxRWjewPrkIPkZfY7T1TUdvqvysHPKGWCKMSaKgQiQKjGEsUKZ71f5J9tU/e3T3B65Bg0uc4xOPQgQRTcW9ixdlNwY9C/c6QR6NaQXr+wGn36tk15hELSw4rz+y4ZYW9NLRGJlwxVpDQlKhqG2oOiUnEm/PPYNrBd94M9j92r32kJiVHfdCTlYWGDyYnjVEvKcFY962Xqs9mdx4sXfWjuQiG5lwmqiBscp9Du76dqyIzY+mW4jpu46P8rhNrSe4scpn7O9T2OYMRE4jwcq+1SKE5qBtbRywLvQx7Ioh8J0MIxPhnCB8/kzz+1TdWkG3GUaurnoVmdO5zFF4aerOpn/eRHRp/ZLovkreDRmO6AimPtPK2ZWzlCVhc0k3K8XGzQ2ve7kx5ODswcrPs7nQBsPTiIcbUyVmiUOEGLV61HustWzouziuieVwxnUGUfx9mW3u6xtHcnuX0vH3QpNIURQ7e3fvkRdq/EYB7yFgZAIapjXuAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABMAyHCbZuolnuSeKiRiUucplLrn6tM8km8zLLpPBefbOqDRES0wRA63HrNrV5php4CO4lorUWmJLZ7fMUVVnFl/5q8bBDB7J8u0aeHIDjIeKgpg46LMoFe0LNwx6JAGNVURDQamXBuTnb7nWq1iFRBpM1mJRwjk/7Y6QuXfOGOL7bYN6uWQyyuHBBkSwTLpjGrHGJvF1c3rw79ziUg3ylTL2DdIBgHpnYLEe9J+prVeM5HUB/byCSykUNSuPtBFLHoYJrM55iKU9elQthJXgdz8O0XER63Mf8rbj/zMtMYxQ5hAvGYQ1NHtfeK3X1HsAFmbsksQMzuZa4ToQNPhJGJNC4L11fc9xxERHlNHrrTFuVbQWKk4yg327BBaJzqa2RSO9821d8CjYmmmY9+6aPBaZTfyegNPyMT7vp/cXaxep8wfOnM8/0Rd22UhxuLcd7BGO9t8+NKXVySEGpkIp0/6va0XnHJUs/9uMN9HxfbTHhSKb+39223pgyoWHk3GNs/+IUP0l8/89e0MLNAP/VtP0VHF442lheYXKbayEQp9fJxl0GC1vqz4y4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARodNvM095TPUiML1YbJKPER7EyxOZQtnfYUZUgQii7ZD6FAUBS3OVQUqyiG6LAsK9wpaa5GoI6aQsHjmaec1yUxp7HHzdgjkvIwWQgQRhaYmBL3F5WFzBhZBsac5I5NBI4xYmMRTLCFQWnWnUkpbq+/IOsPIZNs4IcTYiwPX/GNoXhObNgzk53FS9Q7bbRV0EvJWAhWubFwZuoQdwyTP0UcwDkwCy5D1i6SvWQ1zMr6QMLYRR+z0WpyqCRH5G+AaEjUdJ2IgMS3aujFuOUZOA/3CSUN7B65RgvYY+1PfvkJ8RKwuYXwl7kvH2TZ2YW/IGtdjHEQQ+KoJ2D+LRdLC5+e+5yAiynTNGA1Zx2yjBQYCTmM87npTaGRSt/azUTsvN7SHI6GZ4V6gF+H9UcXkqb3pdzNz+B6eO1z5mWuAMoRn/2XHlxhrkID3G3qTX+8+McxGqJGJ2ASkV1N+n/WQZf7u72u4+/a0UNNhchhIJ+vs/H//dgusn4Gm8Mrfp18wefrK0/Rd7/0u2qTdMff+h99P//TF/5R+6VW/FD0/MNlMtZEJET1I07dF1DT99Q4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOw7igDRhu2Dba7QM1g4UfcRewmVlr56dn2LPskfoDPLpiMIo3gZ+ddVxyGYqBMLKFJWcXEW4eTbSUNrTW7rhWHEYp4aske/7Lwmnd/9/1zxhvOkb59+FSL0aWio51eWhTcGiInYdS/JQ5EuClKJpEeaMc0PLCOLgbKoRJNtujmyyTAycZQrFlyjDp0VAz/L41yl/SSnbxtEeaHGScubw2OFK0ryOnF78F6BKYzpWUNOM5fca4uzXie4R+7mXAMQLmnBmMsaMKzgjv9pMDKR1o+ehmez4DUOiOKotppaT3BjhMc+aoJ3Oc3iYVbhij8VI5PQOGSbj0LS9pnnAuaxPjGNFOXICuE09jDgI96vG8u606m5cvAixzNJTFgiGUpK12FXNsONTLbWQg0YmUQw9ZlWYhjDlmOj3tjwute4Uxto/qX5pcrPqTD2eL8vY75zkOwxhghIw9vIJMIwGpeRSV2s8mlXW1v11/ncsiU6/l5oEun0SvOW7+OGGBDX4NN1xeaOBrI8o1f/3qsrJiZEREma0H/62/9Ed113F73u7tdFzRNMNnHflI4PNWX/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYMoQn2DsSpcpru/mckEyEUPgnfp8VjrBH6Bz22lERiaSftNziPJaavhMPeX4RDVUPDGJ5DpnnwBbxiok9Ewu/9rXnNekC4IzEGMamYS4kTTkZFIsr8luDClP06dEN3CKrckIgGPGo5LqNSq1Xz/fYxiZbBenaRESdxgOGpmEiNrK7ScxutIGYae3cHng+pXOytAlbDFbyDwnqEtTuULWLxIzDGv/jCzS8iG+kQnjoobWrhym4tR1aX8YY71Gwbf8ER63qX0Ue13gE9OmvHml+IhYXfNQxZQiMO5amzjErM+jXJxrc9eEPwn9Slpfwvt8zMhqTTc5RibOQsQzp9thcP1pQmhkcnXzqt8Ndc3TWMidhI48HioGTRHS0Jttr3u5e4qjB45Wfk6k26Oe396WPc8LxqTOssr7zBBDOd3mx5VYpnwhpo5E9UbGLOpilc87C0tb9euG2y8TvT/iRyff7V/eBsqB/U2pgfc/PvlH3iP/6Zf/lDZ0vVmTShS989PvjJofmHwEb8UnkmmJYjAxAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAppSQj9ht4tVc8z4YDjcyseej0t3PHJXji0edT/Cnm9yP40dkZCIRfvXI3tdmk9mh3w1+tD7IXjQy0VqLTqeVnmhbR/bk085r0oPD7eXCeVKxh9lGkGCkoaFerPJPQq7eOILYI431DRgkmOYdlmAorTqXqAhHoMYcOza4giidVS8MOuG71yOa3R6rEUWvvqegD16+3F4euoZdPyHznGAcmMoVIvwUGZlYYp5rLVRNxztrR3oRE9RErcItTwkReprT5D0Hd307VuqE8/sBT8Mub0OmOppaTzD7eNEL20ftCzzio2s9UIn7UoO4nfstMT0kxvmUixH38oQotVSh2EwgJtK2EIrwfcT7dXNG0Dqmn4ZkTee4RzPrUbf9jCr61K39rPnUBNgGpv8txmgIN25ivE+pGpnUi/xNcPdhxxaODdwnkzNr33mzAdNQvblJV//Zj9Pyxx6hvNOipJXT0rfdRsWKX91V2OS/hygc7+W4hPYd6R68Lv7pLj+u2uJnP+5w14hqvxiZ9HaNTLzXz5HfdXnlHzm2/+7nftf69+faz0XND0w+e8XIZBoMQvZ+pAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPYwNjOSELgCvNATYLXj5GCV+qjcJ/ezSO5JsDobkZGJ4GP93HHPgdaBod8px+e0e9LIhLRIXBtFkLtNfuas3w3M/uA0C/LpVyGn1TclPF6TCft0wGnGbOGMsL50r0fqwPDYDCHIyCSpxnSVGq7zoH+qb1Pz4U4+zOuGxkmAWFrn+W6+PidVD+Q9WDfeJ2gPPNJqe3XokpSbpodQbagYAlMYk1Ay5BTy2EYmXsYVsY1MIibIFjSGmPsY4D5HrFPsG0U6P4YaM4yZINMnaZ4NTRvcub2X+Qiyp0GiFh+ffuEy5aiI9QPmACLHmjikY/mMf4bAt0g0UW7uOzH3H2KkZRAKnH32n3VrBd11j1tnDBAYVjmNShzvVXbSERoo1a39vGlsEzfd818IvSL8/VE5Dd3pWK6sgdmkxxePV34Wmyh5GgltvYdjmOwxTbN0UdCF+7+XVh9eob4EvshSuvLxJ73KNZQuI67sXBtpHIXshYjk80etEYlPu1rWBf26SZn9Ky1U4+8QJoHyGPc3oJHXTzfrDplb+/QbH7NPDg9feJgSr//GAPY6e8XIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBRQgSZtg/gC6YYpJsHniTu+DBZtTw+Mp7kkzS5ZZMI1QVIxA+uHrE4uzj0u0TZ229PGploLTqdVnqibR3Z+cvOayrC0Fjicx/xZdB4bWas5xvCeDaKZ5HGeoFQ0kWQkUladS5Rabgwuy9UalqExB2jQ+LmEHF+qf1sp08by2KYY0PjzWpnWMzKFSVpTwFiBYFQ1fSsIUZsXHOyyj22/unzXLGNTCKunbiiwSbWa9znmIZT17VwbTQFj2bH9wFiPG9TmnrmnJ35GApMe/tK8Zj7TMZVfSqC/1DjA9s8IDTYICLSPus9Rj6ZYysdy8hEZxlt/NY7ae0PP06UFzR39+10+Fd+mZLj17rvFa5xJesiIj/xfu1etRP4/oNI1kccfZZt+iNch9Wt/WzUrnuaimOBhgzTTIz3KVl5v7G56XWvKe4OGtoOviuS7kW8jXiYRibcNUj7Q//3tolJXHSbb6gaa8+b6bC+k0qLUWO65BXPbUYm23XjMlTuE/Md3CTTyTwNisoEGBB3esP5etV5wHoKAA57xchkXKHMFmn3SXgFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2B0FGJpbPCrnphgiBiRiCm/Jpia5v0QM+sG4crsA2RODtQwN1tTS/NPS7wdM3B8n13vswvdCFSBSoLOJLrhCjT37JLTSzniRvusfRb5wnhZcJEZA2dOh20Rb2x6BnYbaDNI8GYoppfuCIUlQS38gkVICkSfPGmNBzxmtcDFIW70jasj/3DJTdP0ZV62etszZ8BTfNERuZmMoVsn4pBEHIZqDhc9r0JJtVpAVzPIcaCNTAFXWGrJtHhnSNNsmdg4Nnv7Ctm9g0VGXcuJ91+cLSKW9dMWxzBnKbKVXifqA41mqKFDIWfczPGPnkjkVSjHGkOx167mWvos1ndut07dGH6epHvoee96e/S627XuhIQJqx7EYfI5O6vSprv+4qmqT/OZ6XG3d0V2bEstYdXvv50pSZmNTUZi+QR3j2islT28/wgLv+byVVubjLeMqIp/Eve9nHHD8bf/DHXvlz0R71zt67OvCJhXVI54/aed1jf6gt5e7HGO77gaSYDpPDUDr5bv/yfXcSUj/tnG/QU5v3Po7tYDR4WOdPLGpM/xBtLXdNEcJ0DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKaQpj665hpMVEQPAlziXdUqid5dXz1O8gfoXFFqL/xEXRYSow1HAxw7cGzod4njs+BQ8cQkokmLRB1WQYFnctkyQzBQFpBwx47L/MRDIB4Su5oa6kVnDOJx7r1CYXsT4g+TYQBLUJVWY4JqhUsHdoRwDX8ZzxXcDU2fPqLkQcpzpCReGtrf28hk4Pr17vrQJVxRVJBhl2AcmMoVMv9IzDCsRhs+4zRy/Iu5jmT3gSaMTJjPMRVGJrlwLTjJ62AOYzAkbGw9wUw4l7b1fsLD6MkVg7KiVN+hjW8LJSExzqNcnDVe7lhmqQiD4MqPPFAxMdnJu9Oic9/7Y+4EpPUlXONmmj/u6tYKUiOQShqSsrvWk1yTSuE6rG7t501TYX7a578AQt/HEVVjo4+hBhF/7TeTzlR+dhlPGfE0MmEbCjPnmquffNovfya642HkEWkghb6LE5uJ1sUyn3a1xML+foC71020ilafk0w32523/N8DyNc07d7we8nU512pxxoQAAkt9yUTzXeOKJ85IrqGiI4R0fOI6OVE9M1ENLv993JYUds/v4uIPjKi8gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBhQgSZNtEnN93KydaSMjgENxUjE2dik/sBOlsonIULUThoiRjc8fdrDl4z9LtUpVbBEtcwZ5rQWotEHd6CAgv5Wk6uT7IrY48tPncZmXg8RIhguSkDp57QCSPEqIIrrpLG+hDTCAOm+YHV71WdkUmYsUB/7Cg1GWd8DlZPiGmDLs0J2le4R7snXg8KtLxPYh74ea27NnQN+2T1gD4pGQem2Boi/JQI/6zrqnEamURMkC1KbcCwgvscU3HqulS0NwYjkJj4ju8o66aGqowb97OehyGCwCRvL+Azh7rmocq+NVAca10Th8QZnzUDY/2ZO7oNe+62sP7Z00RUv2dvX1SUPfL31PqGbzQnII1dwvV37jHn1u5VWesxxzMJjExcY4G7v9cdP6OKPhu9Da/ra+flpqapBowbp4WKQZM0jZKplu769Q9uBEmTaoyQmmDort/6nb20aMBkzwevcRlpOTAuIxNdE7t99rk2I6h+3OEbmUzJ3iCQipGJbwcKqJ9Ob6Bf+76DCHnPBgCDqTYy0Vp/fFx5K6Vmieh+IvoXRHQv7Q5vTVvT1I8TUU5Eb9Xit9kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYFJr66JqbbrBwwvFh8pbIffv/u9Ka5A/Q2SfBjuhkdoFgTDmEbicXTw79LlGJ3cgkUDwxiWjSInGt+ETbwfyLgrKOy3ZGZmbjvMdHABRkZCK/1ZpsnpLudEjNzXneGPJZNvNhpAK9BoR9pvmB1e/T+EYmffMEpRQVRUFJ4u7/ErhjVBcDsTJEgFMSFora0jAmXfF8iIFn3+xtDl3Crp+QeU5QlyaRdogRm8REzrau8hHqxw5/MdeR6WDfN9GAWJT7HCEGgKNC2iZTL8T0HN8xjEyaqjJ2f2zAbGzP4dEvEsel5bgfLKmzNXHAGtfL/IzxDLljclaBg6BYWaHuit14dPU33klH3/de8wVSMbxwH+ljpFm3V9VdhgFR5mgbSdld93DHijDu1K39fGlsmpr2+S+AsgmJlLK5n257Gpkwq34mman87IrXRnz3Edy+MXYjE76xmbcRhYFQU+FUaIRVa07hYy5mmWP76y/uvjTRcU0dJ5VuXjIy8X3cgDXNZladN7x7zD42qQKjoZk3h/sArXVXa/0HWut/RERoS7F0AAAgAElEQVSvIKKv0u4Y75uZ/BQR/b/bpicAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYYkIEmbYPtrnphgondO74KLpVEkY5vnqeJAFncfUq5c8+Q3p1dfsXzLJlIxI0CurKJQa4fun6od8Nnrw7yDQIin3RWotMSWyCAqX4n/wXTz9JpBmfY5fGHlu84WouD5HDJI3XMsWzZ7zvkZjC7GbIvU42VnQDMaUwFJojilFpNSaoGXuM4FAWUbV77eD0THBFP3pQ1BUijCuLuiQGIAbRaxo4/OrErOz66QWsGwR1aSpXiJGWJH5Z46yPgUPk0BlTvJcyHyMoZprSZD7HVKw7pGvryZxW+Xj2C29DpjoaMzLh7qN85ug4wuVpo1bwbMC1/q6ItgPXobYmDjJJ8ZkPGNfmji1B8DhimGJ0H3/W+ndxfQnb0Gf+rxP66677mZ391ke038exBuLOrVpoZNLOIqyxm5qn9rHYPdPhRiZlc2Ld8esfbCOTdMDIRGqC0bMbfuRffYzWf+udtPF776Hi0iVa5xoKhxhPRoA7LouiIJVMhpGJ2FCuJlZ5vbOwjPf+ewru3JYUk/teKiadbNegKJaBModuVh2v/iYqkcfl/lxKAwutcRdgL6C1/qxS6puI6N1E9EbaWu71zUy+h4g+rJS6XwfbSAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBcNHV6JFfoWT69VcKWYMCssFIzHp+VTsAH6PkzT9OVt/wUrTx0jnSRkEpzWnrFTVRs8upJj0iEI6kq10fnNx65ceh3ibKr50LFE5OI1lok6nCJLYqioCRxG5Rkj36FlV9F7MY1IHAI5LxEIAHjtcmhXpx9jtJbb/O8KcBQivsw0k++hWJFG6Yys/r9oJFJK9zIhIh2vpJf763TwtxCnDQHYI9rnZDOMlKtrfkrxLRBl8S2kvnBZBbmHaMG4lOIkUlIn9SCsWaKmmXRpi8SMwzbWNc+guYY5g3l5KIamTDL1kAQ5z7HVJy6Lo0ZE7AODmEsQtLI46lPwXyWPMvIZxbURUGKsRbcU/gYmThiUMWAU2IkUcbWxCF92ccUkGHIUTgUy8GCZo6g3rV+kZZBuG/2MTIp6tYdDGM5nblMRyRrOsdYyPuSUUc6QkM5XyOT2vm2qTDfgEHatBBqLDyYhu50LFcOYzIkUQN9cdjIxCubXQyxW2cZXXrt99Hy587umLpe/eXfoyObM7XXDycwZiMThkESUVzTzlBzP7EZTU0s84lLtv1gfy3J7V/SZ5g2yu/t/d8DyOPr4Lzhm/eo3o+D/cs+21U1h9Z6XWv9Q0T0AdpdjfZXpq8ioneNq2wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJ+Tjc5tgkJtuqHDC5WNREbm7vjEfs35Fdzp07rvfSMufu0C62PocVucpXf3LM7TxJFO4zRBGRUHwMbrrI/9bjt0y9LtU2eWZoeKJSUSTFgkiXGKLbm4/fbhP/vjjrOskRibkai4fk4EQwVmDYz0/d9b/plH0Y2l9NSD+KAwdgSUYSgaMTGbiGJn0897obkRJrw6fUa3X1nZ/CDnhu2z6IZkftvvmoJhUfIL2Nu18WETHNbHQIfOcYByYnjXEiE1kZGILXB7jNHb4i2kekXKrJfbp2sR/jqlYdwgE7kQ09UYmvuM7NI4RNVhlbCMTzzjUwNiZdHwMrFJHtVcNrMLq0trEIQZmPjGK0c9yh0IzeBwxntVl6iEeiML1lY+RZp3pmWYYsjlNRyRGOo6xwDbOExrKcfeiNpqKuRJjmL2CjzGPiUyXjEw8+wc3hgwZmQhDsDa8f7z8fW+g5f9yfsfEhIjoyKaHKTIjnujNYSPHWHCNTNY6a+6LmIT2HakZTa3Rps87C0tb9fcD3H6Z6CkxOQykm+3G71EamXSyqjGSd58JeY8CAAOPWQIw+WEieh4RfTttvbvqm5n8T0qpP9Faf2SMZQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICQpk4v5wo9Q4TA2xnZ/97y+Kx0zOK+tV//N7T5bGAZRmZk4n+L7YN3rTXdsHTD0O/TZB8amWgtEgW6PuqvE9LVXvfk07wMK1XPK7CzuXziUUjsalBrUpw7L7gppEDMe4XxLcg0wpSm1rWuHopj4JNWFbVqNo50IC2IiqRhIxMPgyK9sUZ05MjW/w+Zm8qiLomQx3CPr9nSYC8dFCUReYiigoxM/OvAVK6cIZjrfvLPqfOJvyBqpbTwpjdRevOtRCRbe1nv8RKue2c9svT4RibjEwxOxbpDInAnDxH7pOI5rnxisjnPCGnUwO1nha8h5D40MvGZ+1xr6V5eNgcLFP/bihUSZ3zGMWMecxmZSIXoOzCe1WnqIV3jCs36fMT7teZ9Xca4dT6zoOyOGMntdrorMyQJfu9D1NwergHjxmnBx5jHmEapP+qOX//gzqIzSdXIJJXOvzVGK8WlS7T84NNEFGCQyYhDxbNn5Om76PLacbW7Gi3LkDVxURSUetl8VjIe/p3H/tA2p/RNSbhzW1I09059ktgxotJEiW+7BdRPqAGWdJ4PoSgKShLH4gnsGWBkEhmtdaaU+jEi+jvanZX7Zib/QSn151rr5t7aAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoBFCPj63nTzJTTfzFeANlqHuNM4SFZG763vrMX+A3v7MF4LTaMJ0oDafov8ZKR+bGEAXuvZj71TtPyOTggqRKNBlAsAV3eXP8Yw4KlXPLK9ziHmMwRDBdZNDvbh4SXBXiCkL00RG+tChQt0aTHMHp9+rtBoT1Ewc6UB//Gz2mjsp2ydi6o1SORzznDWdknjHdAK5FYMoT2K2VKbOyIQr9wma5wRxw2TaUj59fhC9vk7nX/VPaO0ruxIL9R8+Rsdefw8dede7RHOXbc3lFHlXLo5rvBDzFPK04JUtyNzHlCbXkGsKxIpauDYqpvxEea9xQL6rWEOeEdKoTZfZz/IaQbb9hv0n1vdZL7piUNkUMDQWWG+XGI/18YmPjHwyx+IsdD3AKq+jnPKmkN3oM4cXNc/HWce4+q1InO2qa25FCtdhvaLnF3hrrm1sCp6Cub0pfIx5TFRiI8eop4QphqiBDjDTqhqZJMIwWTf+Nt73XtJFgIkJ8dameYNGJpq5HljvrEfLM8QEJysy8fxRFx/99kKWPdX237hlS7SKuheaVPpjXLR2Dti3tXvtys++ZqpB6ykh3bxL88n8yPMF4wGWNQ2gtf4KEb2XhmPOKSL60dGXCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKE0ZQTBFXeVRQ+ifBzFV62yyN3x0fOYvz9f+cKV8ERGZGQiEfvYaj8xfP7bSuwmBbWnXE85WmuRQMD1UT/XNCg7xzPiEIUO1z0+IocJFZzll/3Hsa/4ugJXoCuN9VmE09MHMM0PrH4/aHgUycikP34aNTLx6bLruyKzINOGstBVIHo15e1ttjQQn3rFcL9iCxIDzHUkBg+mduvl5rFx8XvfUDExISLSRUqXPvi3tP6O3xCJRq3rKo86iR05oxqZcJMao5HJVBioCc0qQgzCJgLPdUGwAQNRdGOgnWS5Ria+Y6GBsTPxeKyxXPNQZd8aagpj6zshRqMe45hjhpE7FJoqdAwwyusyLhXvCYRt6CPer5szWEYmmdOhkl2G3cI4DGGYfYdrmDBIiOnBbubhSdSyD02e+oS+jyOqtq3u+vWPlBlDZtKqkQl7zThIb/h5Vz/4J8LESjDGZPHcc+H5GNA9Xh/e6G64L2ISsibu5l2xGU2tyWdNu5rvN2fc3w9wDTMSPR0mh6F0sy4RydbOIfUz+M7AN/+g92xCeg28PwOTC4xMmuN3Bn7u2+n/9BjKAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEBCBKi2D5K5H7U3bmQytyt4UC4fkz3wATpHGBUFwffgNuH7TDJT+/s0sZ+M2+9n//DcP9DvP/T79OGHP1x78vU0obX2Nwkg90f9XOF8fmmVl6FIxBB6QVj+Ue51UFxZ9r8pZNxy60w4LnSEU7qH0jQ0AKvfD8QENVsfO3zp5y0Rd3HnUR/hjd4onZYdYi5Qbj+JkMdwT6gBQDfvitPUPkK1QQR1aeqXpphanD9HK//1ojG9q7/3EZHwz9rPvEyg4hovRDUyKZhla8Bwg7sGnAojE2H9FON29AvF87lDDRi2jJ4aMjJhjunCUyzJMa7YazhNMEq41iGVfWvgfsMWcoL2pF73uq/NHZUi2bNUSsCIqU4hsrS+hG2Ye4yjWvMOzjrGFc8khmiu5+VWh3AdFsXIpKmYuwfeA0mJ0S6VNbGkfzCqf9DIJOGuGQezqtl352vD+xJvGGuQ/Py58HwMcI1M1rvr7ouYhKyJ8yJnm4UMUjdefd6D2mJhP23uvjQp4u6FJpW+gafoHUBAfG332pWfvfOP/G5YMeaguvccYO8Sx1YZDKG1/qJS6iwRnRz4001KqZdorf/rOMoFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGU2ZPozKyMT5zXirJHhwfnO8Bz5AH5GRieRbdJtgdD6dr/19K7F/Flzogr71338rPbPxDKltp5q3/cnb6F99x7+iN7zkDf6FnAA0aZG41im+1Ly+kS23iXOuZGWIMzuEdjwXV7hLRGFC9iaNTJaZRjCVe1YaKMlgJsKHbiCmGMU+nCKmA0Ymc3GMTNLtrreZbUZJrw4fsa/eKBmqBPT1sumHzgVtacjbX3hWvb5u7menmQUILgVrHpNgyrR+2XjPe8i24GifJ9Jt/35mE9l6xc7IxBT/pszHGKfgeCrEikIDKt2AQcxI8ewXwXL4Btfc3CfJfcsw5WZ/Ijz6hWseqoj1A43erGvikBjn08YMQ47csSUINTZzupISEbnMaISxy2mQYsDH+KHunYhmrGOc8VhiSuSoR64ngdQ4VZNmicD71F7b1DS1D02e+gS/j6NqbOT070EUDTftYPvPprOVn8UmSjVtXWzkFCpH56zFiwtmo8NQuPW+3psMI5Nu3pW3YV22PvHccm3/mbhlk5qxTBu9YsvIRNRmAWuavoFKH+/aFs7zIfTrCuwP3G/OQQifpPpx/12jLggAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADCCBGD2sScozIycWWjZj1E7tMu4CQamZGJREVkE7odnDlY+3uXkYlONZ3ZPLNjYkJElCc5/cLHf4EeevIh7zJOAlprkSjQdU/OFFzm67yxWxZgssOIS+jhY/QQErsaHOr5yob7ogGKq8vyDLkPIxXchphGGDC1HUcIpIaMTGYNV/rRNw/qZJ0o6YWiN3f7UZC5QFmsJxBp6u1JdnC+l4iYygK/OmMlbtyTCmi3yuBfcNOzGo1MPv5X7nKsrXmXwxrzvERaKqrxSUxTkaRgytMaWK9xDUpCRJsjQ9i+4zSIiYFvvw4Wn/aaEypqZj8rfOf2aei/kfExq0gcl1bifmgcsvW/kBjtUy6O8N4xTILHEaO8rrlbHLuE44G7pyIyGJn03OsY7TIdkRhvuJ6XW40BRiZe1PmYNDVNTfn8F4JPfzamUTL30V3//lG7Bxho/5mk+l7PFa9N1I2/vBPBjIIRT/NLV8LzMcA1Mtno+L+rMBGyJs6LXGyEVRcfvfaHlrbqzyfcvW6qp3/9zKFvKCJqs4D6GXw345v/OMw+B81XwN4GRibNcsbw+xePtBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIpqg9zjJCusyP2n1ONK5DO9RVFSMTlz5hD3yALjkBV4Sg29g+Oj80d6j294OCFS5JmtC//Oi/FN07bjRpkUmA6wNqjmmQzjLKOsxPsQXCRecQ8xFfTuh4Ldbb3vfo1YCTkdlGJkJh+8jMkZjClKQZI5P+mNvsbkZJrz4P/pjRG6VyhPT1sjhRMj8YBOAiEVOpD9aJJtlxTyLerSkDF2VoN6Pwk9FehaACbQJgH6E+EY3Q9MyPlPsYY4z/0yBW1EJRcjEFz2ZFYCwRInDUDRqZFMxn8TYzCImf04pHv0g9TAGl42wXi6lUiFmfT59m1E3umJwle5ZqGdzldZqQScvgO3f2b/N4f1G7VuDMwa6iCcruWitwPQk4Rix1lI1HxYQa55gQ9oW9QBQjk3JsFOw36uKIGnh5N9uq7vnEJkr5cP8t8rTmQk8Y8bS4HGBe6kD3eH14M4u31w0xMunlPfH8UTtFesx9trV8f79l2v8NkhQCk6YpZMfIxPlSvYaANU0371Z+9u4zsc0vGY8/WGawt4GRSbOcH/hZ09Yw/IYxlAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhAgybR9ss41MQoUTjg/M1YyHEca0CziJaoUZTSCpKttH50fmj9T+vpW2/DPa5onlJ8T3jhOttcgkwCW2yBni1eLJJ4g071PsSh/gdgid2AWWPmKYkOHalAiOiIp1f+FCsbrWQEkGMxFWWBZfqG2aO1jClFZDRibbXa/d8zeiYePj07O5KzJzCnhtZIGia0PeIuFZKQbViYC5aQYZdgnq0lQujjmUCckzWEVyvmYMEc0MYor32EYmDZyuzV0PT4ORici0iKbk2WxIyh9i6tPA/LgL71ly3/KP4WT6ceMzhyaO6qnE/RjiWJMZTpCBGf9ezrogd2wLRMZm1UK4L3EVU1pfwvHg8/6ibo7kmI85q0X0DsVeT+ztnCBudrMuqcRv/1VnfNLYLBVgyDDthBoLD6YhMbrhxJFEVYORy3jKhNSIx5kuI57ky83t+bmmhhvdjXh5BozIrMjkZjQ1j+q1t8otRibbgZC7L1V6D6yfGewYmUgeNaB++vlK8Tb7jEBomcF0If8vFoCDadY8PtJSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIJggAapNU8sUg4QIgYmItOvj99myyN1x7R74/lwiLJJl5F9Zto/er1m4pvb3M4mHEc0gEQ7WHQdaa5FJgOueTLv7Rnb6K/wMt01JVJL4jZ0sGxiXJbzElyEmTM1RbPqPwWJNfjIyX3wvFHGMUPzBEcaoZNDIZC5K3v3xE/OUalMeHHS7VI6Qvl4WukrMMwyiPJGIqZRW3dqDe/L1xBiZGIzDOGOyEBggWNP1FGPrXo/UgQPeZWiatGD2gQYEg9z1cMjp86EURUHv/sy76emrT9PJxZP0E9/6EwbDN1n9xD60fNSI1gUBpj7aZEIRgabmdh3RxGhqKPpnd7txiaqrRibhdak7nfp1TMhg9ImPjDVe7li8iIzNfHHVh3ROEI4HHyOT2jmj577fObQlZXe1N7caBe8bltvL3vcQba21KvNcQ2aUHBOKvUqMdU15TOjMP72t2OuINUmyZfi6bXDjMp4yMjB2ipUVYUIDMPpQsRLPRGQQnfEG8GYv3l43ZD2e57m4DWuz9YiJtvHe3w9w97qpVvvDyKTYWvOK5vyANU03r5oEe5vfwMgENAyMTJrFZFhyaKSlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQDBFgGgjyARlm5ATYHW3Sy5hmprbNUyoOdS3mt5e+AB9VB9qi4w2zA1wYvFE7e9n0gAjkylFk2YL+su4xBYc0V3+tSf8Mu10iDzF8LrdJmUwMvEagyHjtcGhnnf8x2Cx3pZnyD4+XfbQTZgjadKkamI3SxgzcJq7mo9lZLKV7qBYJiY+o1q3O7v/P0TQXG4/yXxvuEd0gnapLHV9gC2MCjEeEIg1TbHVuH5hPEchGFe2NZe3ANdgwiIhxlqwT8pNaoyOG0XdMfAj4ONf+Ti95cNvoSLdzf9dn38X/dv/9t/S6+5+XfViodnP1K+DJeUPmeMaNDIpmH08923rMRrxjAvtZWRi/3vVyCRCXXY79b8PaCevNQNjzOSJ/e+SPUsFRnmd1SFd4wrv8zF+qLuWYyjkKprIeMNRbqdBbP86wRzT7sn2OlmRGQy7IrMfTZ628THmMVHu5xIjk7q1dt1esYzYRGmgrfOvPCJMaDBdRjxdM8T8CGjme8CYpp0ha+Je0ZO3YU223Offut+yp9oOvtyyJUXcvdCkYjLw5BCyvxg0BfE1Ux2HSRWMTPYXMDJpllOG3zdjawcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDGaEq0yBX4hAgn9Ib7RNOKYYLrS8dpF3ASjU6EI6gqW/WfOlT/eWor2X+fBWutRaIO1z2csZY99bRXnrq9ScrTyMQo2iTyE4UGDdfmPnsuBD4YxUaAqIkt/BeKOCKI2/gw2iVNq3fMz0fJuT9+2plAaMnsTj7CG90ulSPEtCEvn5AuECAZ8pbEKK31TlWFGJlwBMBGBHVpMm0xx1RGHhIjE9saxdfELOJaIeY6spUzB1MDRiZcEWLI8xYXL9Dy//rztPqxvyOdE81cM0tHfvKNtPDDP2q97+zKWXrgww8QpQN/SIl+5k9+hu667i76+pNfXyqjLN5PvZGJoF/oPJevCBo0MuHuSbTvHC00uZlqPIZD4ri2EvcjmEdqQx8KMjAz9B2tdeUfIqI8SahYdKzjD5L1mtYBRVmAIVCe5c4y5LOZNY98bp6KRUHeSSIruyY62DrIunQ+nR/KI5+dcdd7mtufWWt3GgNk6Yw1zWJhgbR2ONcQUZ62vOut3Wmz62zwvpbaeh+gi4KKxQXvNDjkStgX9gAzyYyobcqU+3k+O0fFol8MO5gepLRVvaelh/vZwfQgqW1Ty5m5g1Qs+u8DsyStpNt5/HHvsVRHPjfr7EOZalGxWG/oGpz/vD1O9imyIri9+7QK/1jQp5f1aG52QVb36fCz5q0WO63C0lazySwdbB2k2Tle2Q7MLFCeuNt+2lGk6GDrIB3MlHeb5Wkqrh9d6Ep/PdhirFtKFHNzUdvmYOsgKYdDei/rjbU/KKUq/4Bm2X//xWK0fBvVv11bH3VBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEEbIKZo20ecojEyo7Racq7k5fnrTLuAkoVBdko/gHpuI/4YjN9T+fiadEeQ03WjS3ieNErlNEjgng+bPnvPLtLPt2uExdrRt3PqMwYDx2uRQL7KUdJaRavE/aS82A8TQ3IcRimJHFVOImEYWTRmZbE9ZnV5zJ2X7yEiGjUxkIpSK6YfAzMZ0irEkRlHpJOc6UQ07TcFJ7zsIBr+pXFlhGBuMLIossgEC4xT4MibxvIiI8TRlNm0jhhtcIx1h3np9nZ779n9C7XNEfclTdqagzZ/9P+nEs2fp0C/8ovHed/7lO4dNTLZRqaJ3/MU76D3f957dXwoNFqb9RHlR2wSY+ujY47icNvNZCt+2FprcTDM+/cJkXNWnHPelhkEVTOZ+UvM5IqJCU57ntLa2Ru12m7rdLnW7Xer1ekN1kX/jiyj7tZusyT3/QEHrm2Zzi+fNaTp9+rS4uLrTpu6v/Zj9IkXWPHo//mYq2v519vR1S5QKyv6C1gvoF+7+Bda1qUqHyt774R+iYtMRexzPXNx0C/Vc9TZA+8g8XbCk2Xn7P+elc3jOmk4dm71Ndp2VefrJp3eNTYuCOp7PzOWpG45REtCPp5k3f92bqZOH7X/K/bz71reQ9tw+vu1kj4qB8KtIDY2BX/ym3bXSqZtbtN723x91ji3QuVK6+bXXURahX7UPtuiyow91f/afNzYNq4Rok9GHv+Xot9Cdd98ZJ8+aNuLS6/bo277/Z2j9u93mSTUZ0+nTp0l3OlvzaNqi/Af+B8r/O966bHM+oauGcn/P876HvuPEd9A1z09p/TXusr3+aE568UDQPDgNvPLEK+mlSy+lVBOt3+z3jrZz4rBoriUiuvfovfQNd3/Dzs+tgmj9Nn7+traW8IsvNu/X+iTLCZ1uj78/KKVoZmaGZmdnaXZ2lubn52lxcZHS1LCpBCJgZNIQSqkXENE30NZrGlX6NxHRc+MqFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGQ0dfo628hEBwgIO5vui+ZKJ566dA57wMgkRJDphUCAYTMpuOlovYhuXxqZaM0zdBhAucSXDEVRdv6KV56sMThIxyKU8jFEGdNwTecyyju2z9UVFRfOU3rqenaaRScnqVEFvyKEqqkGYoomTarmeVlGFmm17tWBSEYm23mHCvls+Jh/6PZuObbmaWH/KIvcM0FbGgxwJDGqn1aWZzunqVfT5D2jDjEeEBj6mJ7VuH7hjEmBiZttveYtqI84rmOaX3CNTJqYALjPITUAXP4X/8u2ickwF377T2jhzW82zhsfe+xj1rQ/+cQnq78QmgRKxsdEIWmaPMCsq0GjL25/NJlNGZHMA9OORxW5YlBlfys0DCqju13DHwTGY0lC2T130JXv/Ea6fPp0tD2+M5XQbGIUU5qG8L6m3p9UMwn8u3d+Pgn6Zy42ARvVhm/Kp78QRlbHFiS7HOHOaLitTXE4NN26S8Zf1VHbO2QPELR/0ES9Rx+jYkO4DovcDtNuBMhCD/x7ZNlOX91OQkwl2ipH38yuj1KKDh48SIcPH6bDhw/XmssCP2Bk0hy/Yvi9JqKvjrIgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACIdrOFKHXVTL+3g3F4otiYj0httEQc3Oln9yJCguysSgJ1igaBPx33rNrbW/n01na3+/V+j99UNUnD9H6U03U+uuFxLRtsmDoC+mjntyhnA9v7Tqladut7f+7WPQ0Gmb/+gjog4RCDANE+poLabk8roonj3jZ2TSzUn8CTy3HqSxYYQxhWOOoQZOkFUHDkTKe6tPdPNIYrYaXGZDZXSnVI4QrXRpjvUWvBMZ+5ckRvUNA5Y3l2v/nHCLFyIeF8QN07MaYyojj0JggGAVcvkaUPR4J5ZziGpkwh0jYzTckIrTNv7LI5Y0E9r8wO/T4s/8bO3fl/P6MbNz/+ACQDLWaQ8sgy/YnBkAACAASURBVAVtE2SMFHEcDaXNfJbCs/yTIq4cJT4GPc61dHnfGrCH3sEkoPeMcdntN1Ln9d9BxXXXUHIgpRlmOyfXXEMzh49YrzmaaEoLc2w+LFoQ7KJmZ2nm624JSqN1602i5lAzqfuiGo4uHKVD84dE9xIRtW6+Mbj7qCNHaGZh0e+e1D7HctvBlU4dc605esE1L/C+r5WU9kdKBfcVE9K+sBe4+ejNUddyM8+/xXs6vnWGd0O5D80cIUosscmEaiWVn5PrrqOZa8OfXyXua2ZuvyU4n1BOHjpJ1y5eO+5i0Hxrnq593q3UyuXvZaSj1tZW1x++ngpdUOsIWee+netTTZQyGn/Kue7wdXRCnyAiopkjfm02OOZ8OLl4ko4fPL6blvbLnzMufeDMY5P8DltrTWtra7S2tkaXLl2ikydP0sGDB8ddrKkGRiYNoJS6n4i+n7beT9SN+M+PtkQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIpSlBG/fE+lwHCAhthgjbqPn53f/v+t55L4j7Qk6W90BSVYlBoFwUBS3O1QuxJvkj8BCyv/tbuvCmn6aNp/rtpWnxjoN0/P3/nrTWXoYHfVw6Qs5Yy5bbROTxtX/b4ehRg/H0efKMR0HDNcDI5NgB6lyyx57i/DmvNIsQ7wxmPYhPQm8iphiqn6WFbczIZOvf3axJIxP+tbo0tkLmaV02zJCYZxgMEUzx3Mq2MPvKxpXaP3NT1CFGJgIDDFO7ZYWhPjknsgvGldU8zrNOQswbhtKKKH5lm9mMcb0mHY+bz9nvW37f/2c0MvFGOEamfRnsY1ixQ8hY6DW35ub2M+9nHtE+YaLwqCKXKL4S90Pmom3Ma2Jm+8/NUPsH7qPsnju2fpGmlCwdDi4XmBC0trzAmPKAzUSTJhWwbwOjZ+J75uD8OqrFz7QvsvYSaIp9i86yLcNHpUi1Woz/SLB36XQ69NRTT9Hhw4fp1KlTlCR735CnCWBkEhml1KuJ6ENkD9UfH1FxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEIki4Dhgm3i1YJ4GH5I/ddwmCmp2rvSD/do9cUp5Fk+cbEVQVSYxuM20Yy8amRTnz9Fzr/0x6i6XDRkUrX1lg7L//oeJ3nbLjqmCD657KqfIG8jWC/IxMtHdbUMPn7FjHbce6UgEy2Q2ZuAyc90xotPPWq8pzvkZmehsBAIKaayNaHjggmWOMSCwUAsLkfLe+nc3b9DIxOPairg5ZGoqt5+k72+Ps0EhqY8pSx+9LQBfbi/X/p0d9wLE45LxbzThMowpzlqiEBggWA1DfJ8rpplBxKUT5+RzIqFhhStN5oNwjfp86VyOl64WxvupXwdLyh8yFrKe/F4XXJMyxtquQgNjZ9LxGQ5ea+mQPWwfUx9itJOem6HNf/a9lN96iogUJUcOUXr8CKnW1jpJKUULCws0Pz9Ps7OzNDs7S61WqyJUzc+epezCqjWf5YWCljbMe4PNGU1Hbr/dWV7jc7Tb1D39tPO6OUseva88RkXXv2+3ji5SeuqU933nV8/Txc2LrGsVKbr9RLXs3PLO3nbrltC6hvziRcqeqzeGM5EuzlLrlptr/6azjLpf+hornWShRTO33eqV90p7hZ5ZecbrHiKiW47eQnMzW+9zdK9H3S8/4Z0Gh9a1S5Ree6KRtCedRy88SpkOWxeW+3n3Hx4lzVzP9XniWI/ygTBTN3b+4dw/kNo2HrjuSkoLXX/hfXpojlo337Tzc+9Lp8nkTehDciClmRfcZvx7sb5Ovcft7xBCUEQ0y4jFX7v0NdrMN+NkqoluPymL/6udVVp/9gwdXUvdF0cmmVU0c/sLav/2xOUnaCPboGvWEjqy7i7bucM55Qfn6NZr/GLitNGvlzQnuuXijNe9rWOyuZaI6KkrT9Fab203rZzoZo/8+22tO23KHn+aimx3TlWFpvS6o5QeP85O75HzjzivOXX4FC3NL7HTbIKiKCjLMup2u9TtdqndbtPGxkbtXm9lZYV6vR7ddNNNMDMRACOTSCiljhHRvyGiN9PWf5XQtPsOtdxzn9Ra/9WIiwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBAuMLNpggyUmkzPsCfKxuZOJ1MxGWZFPSoTAciGm20lPnT39nW3jMyWXvnOwdMTHZpn9X0gs+dEZ077TIWcBmZ6Cyj3FMMZD5JXniPh0GBeLRmYUql1o3XEZFdhJRf4IkbibbqvRhUbnnAFp5LxcsNmCOZTlZnmWOk1bETzchkW3DXpJGJj0GR7uyWI0grXTK4EM0Phn4jMVvqp2UyMuGaowSZEQnmeVO5sgDVo6Qt7EYmns8VGAfLxFxHptymHeN6rTGzD6bo97qrKR3ZSGh1vqAzxwz9SGr2M+3LYEn5A+Y4HXEcDaXNDPze8dDX+GQv4NEvEkd1ltfSocZ4ROY1sSvOVExM0oRaN5wkNb+1551TCR2//npaXFykNLWLsFWSkHbsjxOlKLVc01JELYPZBgedJpS79uhkz6NQyrnNr00zSSgVlD1JE1IJL0NFaqjs3PK2ksRoZKIS5Wy7uvRM9aiLgtUORERpzTO58Kmzyn2t3TL7lNGXlpL1hT1BYjeW5VDu5zn5902VKFID2+GEhvtrkiQ7quZUJdbYZKKVVPtvrmnHHCWElBxxqiioaKj/9uGMS5Wq4PbeQcvjf9pLKSH7/NIUiTLHsCRNSBWKEmb/SpSiIvWPiU2h2+2tlwezc6QcawAftsaookSTd5tJ59pyvn1880+UojRJqPe1Z0jlitLKrYro7BVKFhYoOXyYXR5nnpa5dpTMzs7SQuldWZ7ntLa2RpcvX6Z2u125dnNzk5566imYmQgYf0tPMUqpk0T0LUT0/UR0PxEdoK1pvmxisnP59u//3SjLCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDiECDJt4lXuifVhRiYd5zVqft4jQXFRJocRGZlIuo1JDD6bmM1KZtO9Z2Sy/mefs/79xsfWRSYBLkFKru19I3/ia0Ta86N1xhgcRHfalj/6OD0IB2yvJ7tvm/S6E6RUQdpSV8Wly+z09OVLNPyJtg9cIxNZrNVNiJ4Nj8uphUFBTjQjk+1q7OX+/cNkzDKET/fulgTyIcYJ5TlB0Ad0TCOTfOuZljfrjUwS7untUpMGIpGhj+lZjeZQjPaSGCDY1mumdjIS0aAoprEH38gkWpbeSJ6XY/qlHXP40bWEfvLPluje0wd2fvfQrW36d/ct09kjA+0pjNvhtgxjRtI2IXNcFraeiIH2jYcRzDemDZ9ukZCqV85tU1lLx6hLU2xw7I/bP3DfkIlJQkTHkhk6Otui2aUlZgEmYPM7AUUYOdxOabtOVG+29HwS9M9c+s6nMufuAdNZEA/x7rnUj7TWbCO5UPQI1gy6KEg5TAgaM+TzRJMOegMSlrm7DrgGm2N7hgGK5WXKzpylortVcKU0pUcWKL3ppihGPWE0898ceAlo0leukMl/VJOi/PwFtpEJL8vJGGODpGlKS0tLdPjwYbp69SqdP3+eitJadnNzk5577jm64YYbxljK6WOqjUyUUr87yuyIaIGIDhHRESK6g4iOD/ydaDhilH9+ioj+j6YKCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOYIMRKxwRXVhhmZbDqvqRiZuL7fntAPjn3QEcXJsTGJwQ+0DtT/gYjmWnMNlWZ8bDxlF7C//K9n6PRJt+h5EJexgFF03//76a9456m720YmPkMn0EhkN3PhbYFmP2ppiZKZgvKuxcjkar1RQ+21Fy8ElYdfD8IKG2FMYQmG0qpUQC0cjJJ3sj0VSYxM2Hl4GZmUyhEwNemy0FrS9w3zougk7+11wWpntfbP3PrxFu5XbvavTFO/NK5fOFlIBPC2dD3TG4WYUkLKFZMKDGliwTXqK6NX6/t8FfOzz2REv/ThY3TXmaq523/ztXn65T9I6affeHGgkNIJcrrXwaLiB8xxEkMiLgX3YTzbOnQNNJV4DtnEomuvrKUjGJlU5vrKH8ztmt1+I2X33EFEasfEJCWi65M5mlWJn2DZ0X202vpnzyKMecHCai7WPiYog+0Wn3cykqxj1HWjc9R0z38hTILonmsaEYVyXt3u6Fq+19yaYYeiIHIZmUxIX5+UcgwxocWyoTc2qPfEsxVTRK0VZVc2ifST1LrllvA8gl5IBNw6GJ8EaRXL9ndzxYb/u1cbE9u3t1FK0dGjR2lhYYGefPJJykt7g5WVFTpy5AgdPBjnHdt+YKqNTIjoR2h8YW9wi6Fr/qZLP+dE9KNaa/d/CQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDE0dQHyVyhZ5CRSsf9wbGaL5lkKEVT+WW6DyECbx8EqjaT8H1xdtF4T6iRSVEUlDjEHJNIIqpf+98z0zGk/b8//rh3nrrTiXuPjyhUOpTzMBFRcvQIJbNEuSX85Fc4ovUtiguhRiZcsbMwNkQQ6laTK4wiW5aRRZpWfoxmZLKdd5NGJl6jurvbT4P0hSXRnJa0pUEk72PKspP/tkjGZGTCFjHmAac6CwweTDOIK6ZayyEwQLCu13yfy2Fs5UNMsVbK7KJNiG63ToZnjFJJ3796xf+mEi99fH7IxKTPbRdm6B8/UjWE08L2nQAtcxgSA5eQsdCgkQm3Mbz3UVPfyP74PnJaEBWGwJ/rspFJhLrsGRaThrR1klDn9d9BRETJkUOk5ucooV0Tk3EQ6nMy6YLfWnyM6eou5hq36cJcv7Grzas/+2cunre18Ye4TGE3HBX99bnt9US5n+sRuR/FMD/RnXZ4IjuJOf7c5JqhD2OvF3MNHRK/t8oxeU5Zvs8U2g91UZC+epVIF6QWD5Ga83//mT1zxjjusqttSrtdUrP1+wh2Obf7zahbLMYaIVux/3cDzTXSZDIJ5lAc5ubm6Oabb6YnnniCilLsOHfuHN16661+xnj7mGk3MukzjtauGym2crxNa/3nTRUGAAAAAAAAAAAAAAAAAAAAAAAAAADYUUr9IOc6rfV/brosAAAAphOJqHfnXstHxdyPd0OMTHSXYaIw7/EheGTB/lgY0Unrkm+zTR+kLs0vGe+ZSWb8MyrRzbs0n8wHpTEOJIIIl7FA7hDr5k+f8c+0b0riI0QxnT5Pfh/9iwUCgWMkOXYNJfMp0Zr5mmJlnZ1ecelSUHn4RibCk9Aji65s5g+cfq8GjUwinRbbNw/qFQIjE2bXN5k51aF7pXKETE3leU1gdGUyPxGJtrbne5ORCVeCLTJk2bnZv+CmdqsI2j3z0II4FGPNtUMW0cgkolgr5Y6RMQrEJOvWYnUlKM+XnbavY1721YG/T4mALjoSUWzIWOg1aWTCvM7bxGgP7HV88RTVb60H6uu1PP4lcXwQbVoTG8Zwds8dVFx3DVGaUnr8CBERHUtmKiYmfsOfc7FLne+T36QhXBuP6qGt41u0EDP/xafjSAy9YtT1fp3bxsRiW9GxtZTmsq0Yuj5X0MVDBXVbZnOeaRDwl8soMWW1pGz/8yje03GMTGLGrwDluyYdxYxGmPlEkJ87S9m5KztGGoouULo4S+nzb/MykSjaGdkao7hyhdKTJ4PKOi7TscGYwjKdrCQQsTDsLCekgzGYm5ujEydO0NmzZ3d+1+l0aGVlhZaWzO/pwS57xchkXL3WNKJ16e+aiN6qtX7naIoEAAAAAAAAAAAAAAAAAAAAAAAAAAAMfIB435nAyAQAAEAtRZBC2pIuU+gZZGTSdgsP1PyuuNP1LfgU6C6c6ID6bBqTUOHYgWPGe+ZbYSYkvaxH8zPTZ2TiMiWpwyUEMYrut8mePeedp+5un27qo32zGRA1LKIjomABf3LsGkoXZojILGAuVjfZ6RWXLweVh1tn2mFkYySy6LnTM7d/whEbt6pSAXVwMbRI23lv/dtmtBKKj+xG93bbK2RuqrS7wMhkJ/OBwktiVH/srXfrjX4S5mnIOg+pEP9bTM9amMYGJ4/IRia+ZgYxDYpiirVSbhcd43pN8rx6eTkoz1f9/YL179/y2MA6RyqWnfJ1sCRWiudGim/0VUmbPbf7GpmMxvBwkvDtF4klDlVNASMMGFMfMswv2T13EBFRcuQQUZLQnFJ0mNLaa1kwHqHxsBAjA+FCaSR7/7o8uKZLtn19XB+TxvdgUoOLiulEow025RNgAHXrmsW2olNXq3uug52EDvQSeuqaHvVMYWeEZlkBHhq7dLoxUmGhI5oImlhtr9Dhefu7r4kxm5mQYpiI0r8sFFcuU++5q5WcNCnK1npEj3+NWs+/jZ2Wduyh8wvhRiZ7HV0UpBKuraojrUnv3AMcOXKErl69Su12e+d3MDLhE6fXjB81pn/K6NI//TI9R0Sv0lr/b5GfFwAAAAAAAAAAAAAAAAAAAAAAAAAAyOF+DwIAAABUGPeH7EFGJl238EAdsIs/B1IUl2ViGIFAgoi8TzcnMovBjx88brxnrjXnnU+Zbj46cQoHzRT3SE6ndZlAuMZafvGqd566ZzhJ3naP6fR5Ij8xvnC46kCjiuT4cUoWZq3X5Ov8052LK1eCysOuB1+xc5/IMcU2Jln9flBgcuBAWIH6yY7CyMSne/dK5QiZmkrmJSKjK0PeohO0t/M3GZmw05T2ZeG9pnKZzKE44qVCYmRiWa9x55ZSAbzzHwUp18wmpA8EIlk367XVBkpSJcvLMSNcMD6VSMofMsc1aGTCHtHeY3/K21iC557FZtRVifsR6lL3DGuimnbV87OU3XkLERElh7b2t0uqRcrl1BkA5wn340vnkYmUI49Xa2pea0T/cknf+VTqGj4mI+PESr1TSVIQHV+1mCcJjUzq4ohqKrqUzXEE7zIYydYzApOXc+sXndfEjF8hbTRtZg8mlJatn7PnLpj/ttqNa5YXoap3nnHEzTayfjJh9T1KlFJ09OjRyu/W19cplxpj7jP2ipGJnoB/iHY/aFkhorcT0ddprf+8sacGAAAAAAAAAAAAAAAAAAAAAAAAAAASbN9/AAAAAEaCjEQsUw033YIv1RuGYWRC8yWRu0votQdmTp2P5hRcSVWZxOAnD5lPB52fsZ8o66JXxBOnxEBfvuS8JlfaKqI04TIB6OX2uqgYJ3DZPsXYq7gm0SaRlwhZrLcOFCwlx6+l5JDdPKPY5NdlsbwSVB62cEYqIMzjCrVtY5LV79OqeE4lCSkVHveSbQOFJmOGn5HJrnAkyFugLJoTCPZNBhku46RatsUwG90NQ5rcMskrRCI0M5XLuM5hZKEjG5n4ip3jCjfjLZ5S7lAeo+GGRFBXrPKMTLwNaUqsdkp5SIVn074OllRfgKlP7PmxmjivMXzjoST2TCNXNq7QY+cfo/Mr5727tdXIpNxfYtSlIRbXxdXsrtuI0oTU7Ayp2VlSRLRAFkMBFozaadypZIyBR5p1YJHZU5ht7R57Hmx4DyYWo5dva3Tun/YJMB5zPWU1ljvQtQSFEZh17BBh/Iref0izzZvvY4XBZHES0VqPzwiL0xQNNpfWmoquPYPiktuUxiPHaCnJzGtGu3eXZB11bzyF88mhQ4cqxnhaa1pbWxtjiaaH1rgLMKXURZIuEf0lEX2IiP4frXW9/TEAAAAAAAAAAAAAAAAAAAAAAAAAABg3dd9+TN9XUwAAAEZOUx/ZctMN+TBZdzrOa9R8yQjD9c31tJ9ETxRHVMdBIGI3CQNvOHyD8Z651px3PmWyJkWmAopzZ53XdGcKUhHrt0/uEutm/sIj3TcT8jJosIgEfMagdLwKzBzKqEOHKD28SERmU5qizc9DL/ME7sFI6yuyOVInc8dtK8nwmacq0RSq2+qPH+c4CcDLyKQ8HgOmpsppzhIDEEPzS8yW+vlvZpthaQYYmUjuNbWbsa9wsojdz3wfK+K4jrmOTLjFCukDBjRpljhPYgCo13gyHH35Eqnj13qnT0S00l6howtbp2lLDVGmfRUsEteHrJtjnt4+BFd5qcnLaSLAwHIaWN5cph/8v36QHrn8CCVJQlpr+pg27zPq2BLw19d/dfyHjxjjmrimM+c3bhk/qoNbZnoHVEJpnUlnZEMK1yWKtgXpLsNQaQaNIst8ZCJl61wnCXjxDNH8s45R1006CzSX9KQz2J+XNob3WmXSQlGiiWq9TqRzTF3916Wv7H/2zUwL3n+IaXiMERHrHVJMA8J+euL4PzbMddAfD9wnaurJi8vLlJ68rqHU/Qma98Y+zzNaiWFkwh07scfYKEjTlBYWFmh9fXfP2m63aWlpaYylmg6m3cjkWRrdENVElBFRh4iWieg8ET1FRF8hoi8S0ee11oFviwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADCpNPWRLVfoGfJBtO66PjbWpGZnd390fWA/AnFB44zsFFz/T/ZNwoobj95ovGe+NW/8G4deEe9kzRgU5885r+m0ZEYmLpMEl0GDRPi8Y2TCFQgQEXW6xj9pnzEoPdg7goFAcuSQ9e+F+RGHr10NPemUWRFSYXtkc6ReZh6TbiMLTarGyIQSTRRYzP74yYrmhOk+o7pqZBIgkSq1u6jvG9YIPqYsg/lv9DYMafKeM+hEc8Gax1Su3Oie485DZzmRXSdak6pFdOe7fmnQsCeEtFYVO8y06cM080Tr4vw5SgKMTHYTkk6QstsmB8EDBMxxutegkQnXx8R3ag80c5tkiqKgV73nVXShe4GS7bVCItiv2AyVynFfRzCEMvahmiCnT2wZFanZGSIimvOdRCRwqm9EcWM6xfKB2AZ47Hpv2ExS+s6nct+0Tf7TwsA2nmMsaLpEaqS2ZSQ3qmBS+v8hewrfbAtP4zEBHGOp2EZMXCPA2nLs1yHNiGXcquG8zx93NYfkP9hfJe8gWDDMCdlGJmOvcRnz8/MVI5Nu1+Ol5j5mqo1MtNbPG3cZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsD+QnCzfx/Yh7yhOK9Qd+1ltqrGvnCeX2KYDtXlIBSqG5rj56M3Ge+ZnAo1M8gkzMrl0yXlNd0ZTIjAucN3jHOsSQWbfTMhH+2YVCYxgzEYQ8SZH7SeT5llCuijqTTcGKFbXnddY4atcZOlHNkeymQtJDHyIiFQELW+6XT2SOZErrPUZ12UjkyDdZrn9BGPcZJDBETmaytLp1c/d7DQDTMckdZka7jH2FU4eRRHVyMS7TiIaMMQ0xEu5XXSMYmbJ8+r1evOeQYoL573T7rPeKc0lI1gLTiSiuBRQV3lzRibcfqaKgohSn5RF5ZkG3v/Q++lC90Lld+yYUr7HFmrLc2rAHnoH05q4pv2La48QEZGa2ZJMzsQw9XB0B64YN8xkhOvao82mpCPu1sEiZfYjj/DBGs5L+iyV+/Zu+JooJCN5Z0w0bAysSO3kFeNVX1RzEVcfH0H/VXprf5Iqn3VBGFprURVqrRu2dbHkHTEtUT/kxMOI73hi7ApGOh9VMg68nTvfMoxMCmKu+6Z0rpotm8ATUa83We/SJ5UR2AoCAAAAAAAAAAAAAAAAAAAAAAAAAAAwUeiafwAAAAAnTX2QzBY+hUxZrg9rB1TRLn3V2D7OjkmE08GdMD7yrsMkUr9+6XrjPQdmDojy6jONRiadGS0SRLhMAMqnyNchOVleZ/71q7uWezzET+LhGiJa3ia55pj9Ap2QXr7KK856O6ww3IqQCssiC+I7mdmAymlkYRgYMbRaSbE1QbjGSRBehj/l8Rgg8yqPa4kpzXb/GjxpWyTa2h577by+z3PTDJqrBePAVK48yADB/16reZznc+kIcbAJUqbZTzuGgYAQidlRsc4zrCouXvROu89qZ7X0k1QwLs5+MpCUP8TcLIIxmgm28NL3mRss87j54y/98dDv0iKuMWBFxBpjz2Xayw40rFaKimu2TPTUzAwREbWiSMDdHcgVlhVFMPbgENlYj4jkQW9UsdI2t0vKbrvFZ24TZS2clyr3NVjxUz8BxiPIIKSJcRqb7bbWRUFaaKLpn6UeSV5KB+5PBIhNisb5ny7HPdxjxpsRGZmMi5H1E4Y5IdusfewdTMagkUm3290b/42kYWBkAgAAAAAAAAAAAAAAAAAAAAAAAAAA9hPK8g8AAABgpTEjE+5HvgH56579Y2M1qMJwOpmIizIxSMwovBGezFgnitFaU5KYP/2dn5kX5dVn4oxMLl9xXtOdYRg61OASHTlFLbl/pjumJD632sxPfOKBdLxGEPGm117rvKZ49gwrrVEZmWip8D+yIM02Jl192BTBoxiZbOfta2RSeNSPj8hBl8ZjyDStS+XTkrY0iGhtQm9XWiYzm5T7nCFdUlCZpnhs7CuMPERztVWA7PlcQkOy2qwjLp5SZrVsNGFk0uDbE73Bi/PFRbfZmYm1ztpuftK14JSvg30Nfbbuka8JNEP0KIf3LMrXxGiMJkBN8zcX/2bod4ngcW33VOb8CHtobYrFg2m30q1/iIjSrdWE0chkDON4JELXCTJI8Jn3gubIUQqIG85L3EcqPiZTPklNCZzl0NA1/V9EnGMGTRSdZfClHbgH9yHiutuGIrfhXux4LTH4mwaCDH1i0JijnYz+XCaql3HWJbcaGe8IuX19Wo1MWq1W5ectA6bpfJZR0nJfAgAAAAAAAAAAAAAAAAAAAAAAAAAAwJ7gO8ddAAAAANNNEaAItn2gy/14N+QjX93tWv+uBlXjTrXDHvhIdwQiL53LRJ91YnDXh9FzrTlRXn0mzsjkylXnNVoRKYFJgMv8xGVkIjI5EJjaWA2IRmBkom1GKkySkyec1+TPPUutu17ovK7YDCwPtx6kpyVHNkeyjUmJgQ8RkUrDHQj6ohxvI5OGTrAvG5lQyAneZeGcoC1N3UYiYurPHd28fu7mpikxK9i5N6JJlGn+4uQhmUet6yXf5xLO47VZRxQ4cY1MxolkEudUzQAAIABJREFU3ao3NlnXFVfdawQTa91dIxMKMOeYaiRdMWQsRDBGM8EeVt5jfwoGWUTYBlklbGuRyhohwp7LuCYenOdmSo5tydaawCXyHxk61KyDeV0Te9xxbf3Z49v2zHHV5F5zuWQNKN2HlDPbA69qpgHJe4gdhON0pNFsux/pERqZ6J79vWUslB69sYg0/mutxXv/JvGNVaK+G9McgpHW+FcLAXv3gXt9n0Vz4xljfTwKs/ZxomqM36f1WUYJjEwAAAAAAAAAAAAAAAAAAAAAAAAAAMC+QGv98XGXAQAAwHTT1Iep7I98QxQpXfvJpkNGJq7PngPE0RPDKASKAvMKIoMoxlHlB2YOiPLqM3FGJldXndckmmio6zJwmQA4T+fN/fu/dozBWiz9J8SggE0EgXdy8jp3NufOsdIq2qFGJsw6k4q1IwtHe0XA8xo6uUolI6ZK30DBd070EYv5CG+qfiqRBIWS8dWvj4EiiIRn23Vl6gNs4WRIlxSseUzlcplDWYsR2chkK3by+4nIuGoEpAXvGcZ5SrpEIFowxbIcszMT6931UkJSpy9x9tNLgJGJzgRrIH7qvKt8Y9qIBc7jhhtTyiSWeyrjP0YcNayJB9tVJ+V1jir9byCO/qPJ3RPDy8Hsw43MW3IBfhjMWrPkE/0VjleCgj1jjLpuVFC9HyfAeiRrrB1jpRGuP+Rrwa0bdbcjTcCWbD3d0byTUqRGbmQy6vwmDomZF8v1MmJatBVL64wq2Ey68VdoNoz9wF7v6zAykRH+JhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgHxBkJDKGdCt5uAw1Br8odX23vQe+0R2JODmXCTfrPvB1nSYeamSS63DTipgUK2vui7RQQOQwAXCK7gXCI51tjUGvQ7x7tnLwExJ/U5+F94n01A3Oa4qLl1hpFZ3A8kQWuQzdFqG+ynQz84nU0lOZVStcRptsjx9fgYrP9T7P1082VChfnhNE84OhzKK22o4xJiMTbppBehrBvaZyGecXljjNvy2s6yrf+B3RgCHmei9lVsu0aar0Jk8sWyy7zc5MVI1M9rbQzoSoX4QYAAaYoDhhPozyHftNlnkCSQTNm1pDreecqhwmgqZYHMF0LwqKWJ4boxC6TqoBlxN/H89dYhs82pLzaEORl510H1LOrcF+Nm3ripgMruNCdlW6YaG/690Rh/7T6hGZixDtvjNpGqVHb7YQMrajGHI1BLds434G1tyoiTpZmHHPKN7vs/JtqhiM+ZZt1r6fJ5R9CIxMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABg09ZEt+yPfgC+Rdc8uxB06UND5lfke+OA4RJDJhHNaZR0Sc47ZdFaUV59ePjqBCodidcN5TaJlJgGue1ymLloiltsRYHqI32xCnmYPA9+6LUAcOn9y69/qxAlnAdhGJt0RxR2pGDKy6DkrzHHbZcZjOkRYtcLlA/34VJCnkYmPsNbHyKRf7S7DLhfl8klEwIZ+42qr+rS2HsrUB9hGJiHTnGDNY5q7jOscjo+JZK62CpA905pQM4O04PWrJtauXHGsJG/dNhs4lWGZnRlo99qlDKUTpDj7yUBQ/pA1QQxjNBPsJvQNJftMXMk1Rypjm4sqAnFGXZrWLTuYYnFIO0VeS3OSCxI4sw35LI35/7N33nFyVQX7f87Mlmx6wZCEkoRu6CWCdMFXKSJVQECQVwE1ICjyIjaK/KgqggoiaEBQAQ0KRIi0oHQIoQoEAiEkhNRNsm122j2/P3ZnMzN772m3zGzyfD8fNLv3tHvuaffueZ7jmn0NuoPVHKIKG3VftiqXQ/KOlV0Zb8MavxKjapwy+mbjE0ZKGWm7jMK0xJdSEcO+Y9mg+W4ZFSZGJlEbUjgbmdRyPRJp1g7t1Mj00jQp/UJHAOjIur9jVKe1XmLwncS079TK9IXUBhqZEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhMTEdksace2fx+DOG8fgg00/jVXHnoDC/HcrwiSxeVdrZJKu3GatFUOsD/uNoz652Q9H0YefMFD3TFKpVCiRg8o0oRZ4Xd3aMMJzM33RiQq0p/M6tB2Zc6jfoNPnATejBev83YXHI792FABApFJINajTKa5eY5SmF1JDZTzWuro/RHyqc15xw1oji0Ajk7R7garyth1vbIxPUhbmH7I3rMyGOz25vE+5mGcEVYeL2VKpLEGmSsZphtFLRyhq15lDKSk6jLeKG7dttzJCA4YohYimpgOxaB8Nu6fL+tYzNTLp0JudBdGVXxfX1XBuwK+DXcofwtRHFmNcYxrei62g1LltDFDSDqZbKYWhUsVa2mDNKjQL+sB32STe53pKEDoFAZGMID2Wd4QozDXU9HvXtbiPRIX+cWcVhdlMnPUx0Oe/CHH5DgH0jo+OY5fvqKsZvp1MFcuQ+YjnQ5XvkOr7R4QIGHzzidiJIhEjq1oQZ9mMxjJD0wxDQ77y94SBRHX7istIxcTUWdu3yAYJjUwIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCDLDdjHvgmy247s6NsPOiZozpbEAx24A1/1mCjw/9Krzly/rCmQpvQm18151smhLqn6vLUsNTQWVE4qyo0lESoUDW5KTdMM8lX0zwpF0DvE69KYGQbsIcnQmAztRFugjrS6Icm0O8VeYnER1SrsRQ7FFNw6ACWk4+pe/nVJMmm9VtRunKQsit76ZjretpyQ7mFypyhWBBv1445x9ANIaXD6R7hcu2c5KJ6MUFWRJSF8KNYRWGFS5tICCOi8ixJKAPMgAxHfdCTdUOkYPuNXD9ZJCHcBiHlH3Y9rYiNDOI0rjO1MikljIyl7FU5sz6sdeRsU67RCZfFreWp9zXEKfbDjPHxWoKYngztnPQBtY2UhGaVwFV475JXeomy8A2FGqiCxHXISUZdh6Ioq0PoHZt0wej7q/KdUS8dejaRpIwxy3ltKFS/T3G1ShAShm5AWYs9Lb1qN9xlURoIKhCSP33XZPvbza4mjtIyNhMKaLAtGxuxj8RztMm750QyBbCmaP2jcUuRR8Ia0+D9bTx3zgGwv2SyKCRCSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQogBNuKQpjxw5uzhvqdb59aksPpb5zql64ruZFORttwaX8sNx1Gd0pqAkYnrae4pn3YTtZCimnozMilm9OVJSb0piR86EYWnaxsuhgw6MyE/VO3HStxnnzXgdiJyurGAcdMvQWrsxut+16zesu61derL0tkJKcMamZiGc6ywiEVehWJw/bu0ewAQjQ2Opemft+3c5VlYKljdn0xBeh5kPuQYVv7cXZ5lb3QhKsdqp2fVW5YgwZux4DzMCewO5fabu4BwpzJHbYBjXZQkTM8cKBkKaaml8ZxDI5JZs3nH63IXGVYYmTg+Xzcx5sDG9CR737hxCpMN27j1M4vJfKteMTVHKkc1F5WLU/UieAmhWeIFrkmTek4G2ZiUJBHRbhwGCa7FDnO7NuNzksYjMb+DOX8bKotGcXgyuK4FPOnFPnaVv4+E/YrkYuKqSVGRV3JGJqp+Ekcfck6zTrtzIuZJJnOvqceXyZwigbxXX99F6w2/+pZSYm1mLdZm1qJQLBi3jeQMuEg9EP5LJCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQsgGgM3G833ebcFGHenA65nXFtmnG0aPrBEQ9jMy0eVVy/3GEYkbZBLiZEdhvZ8oploc70uI51LwIjKIiQivuwjdmY1CCicBUZDYvkRRqtuYiwjFRcQrFeYniQjUDPrahBvOQnb2U/A6OtEwcRMMvfD7SI0cWREm1dIArA7ub8X2Lm0+3srl+vLqMFe5uKUf8ZiiEtFo231AExeNwfOSKaFEe3Hl0dnpPN72Uf78HMSFQX3Sqb56+17PCdz9H6apOUoYLbPLEBN0r0HP3iQPF0GjUhRleWNSYShkS5TjtqnpgAxjZhOA0XoEjnNlztTIxL2/dxe6yxKqT6Oa2AkxLjkRpzDZ2KTMMt0Qxi0DEd3a2DZOxbhvMhbosg8wMqkrwwbNPQiEfIU2jRzLuOZWcluRspRy3RxjZRiSYDuIOS/XNi0rnUwiKg0p4beWFY5rLAnp/oxq8WiTXCpFbAwahID63TSMCWMQrqYNPe+DAx8B2LffCMcyafhMixGt/5J+ZomZglRl83Hbx1jZubLvhqWUaEo1JVMWMqCgkQkhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEKIATaikrMeH668nltblm4CG45l3tbIpH63ysuwYvUSkZ8s64PjJng/kXpKd1Q54Ct4NyWqDftR4eU86I1MzAX91fGUeWsEgBqfE/84JSMTG02eSvhrJe5zbBcGwuOGSZPR8rtTlGFSQ5oAdAde9zqy2ny85Su0YYTwIKW+n2hxFRBGLBxVmQvp+nrQEC4aw8sHSn3Odu4yOgW5F9sWK6MwMikTzjk9S+l/jy7i8FIbDDIyMTZHCWViYd8PgsbjQDGgiWGMixmGKo5tcgkJKm1JGz7bqNeYNv3YKf2c2QTrZd0NZrrz5UYmA0hIHCFO01yYZx+jkYlpGxe2xXdtGwMUU3OkijiKKqoY93XvGEJqXz1l0FgcQuRsabGhvmw43YYzXjGLq8rDOfeEuoMnPaRFr+mejZFAlPO+Nqv6HBuSE7HX5/3Hjd9zN+n2fmE86Tm7Dfqlp30vdH1ksufbW9Q2GsriJGQwJ2QNjEzCmBTVcbeL88txlOOalJ62rKL3fzzpGX1/9c2nnh9WBEgp+kzHVnSswMqulRWNQAiBvDT7LlOv8ymJhwi+1BJCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYSs/3gWR5GO7kwrr0tv3RZOYwFemC3iBY2ALG25pbSWG46L7uLVcqI2HfBFV+8B+D1p1430pqhME2qBZ7D3PSXdhDk685OizqnERdzq0hZUBkQ2Pib2OfdgIuBvUI91AJAeOkh53cvoH7a3Sm9kkmrUlNd03HI1LojY8CBfCK4XV0GaaApvZJL2ekcoyynJZg61vT/Z2QGpqC+jNMoFay5zXIAgzsVsqU/0H1DHpuYooWbqCE2igkRK0mQsdTBAUK2rrB9thGuFKIVtxqYDocxs+mMj7HS5X5k3S9/Luj+XXDG3Lr+EBLN1R5hxySW7WA2BjB0krFKVdWbwFzd9c7tVnOBrlUYmBnWve80JWkeHeSe1iWriu2UQIBGBcx2Z8Njeb0V4m/tQtgO3NZ1bXuFxbiPl0SgOjxy/9Y/r+5iU0mwNHIJQ3w7LkLmcPpB1oopLCY1foteMIYg4TH6dTRskEK9diC7vCML0hrMe3yLM32bN35XrMg4bKRF6nTkbGJlQ6Pl2vKxjWahk1nfTF1IJjUwIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCDDDdeD52rV7Y75JumL3rOgGhqDIyESl1ZjU9OTGqU90TEEm4Cuv9hO8pg22/YQQr+WI4E4Co8QoG9yvNBf3V8ZR5a4TaTh4HvQJMm7hS1datEjIPWhHNRMCT0o93qeFDlNe9bn0+3qpV+nwaNQFM68z1BOaojUwUbj5ac4yAbiGadJWkp9R/bMcbG2GatZFJV2efoMaZMpG0i+heejI6kaMn4XkehPCvY2NzFJlyN2pwMonyL2+gOZRJm4h6rrZtW2HbVUwYmw5EXH02pmcua0VZMItjYnYWRLaYLcvQrX/EKg6sU0KZvkS1dvfDsJ1ZP7MNzAjAxXQrpRiHKg0pNO+hAAKmu3XpBY3FdfKcTHTmoWXoxnO/or7ro7oCKZ83pM34HLGPSWQV5fLO6NimK/pcnM+5zttQXET5/UtKWTdjlxIJ9/diV5IyMoH6m4+NcZ8pNqae5UjIWtmYQDlzSYMwZikp8oi432korRU7sh0hMnKPOlCQ+RwKxQKNSIgVNDIhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIMcBUvLDzh0126Rpu/hVCwHMUEcqgU6xLaTdUbynVqcmcihEJMh+R4UYYQaZxHm7CTeEjBk8bGEaEwUacHDdeWxsg9ducU55wEhPrxJraE3gdms66PmheYGW/tRJ1OEpfTITHaQMjk5HD1Nlk9ffirVmjz6dZ3WbMfUwcBYQRC55UfVLX7oMEwVEYmfT1H8tmZSPesjZJ6eoKPzeUP3cnt6LoTmuXXhGd2c5AIxOrNB2NOFwEm0FPLUgMaNRlHOZqZdltbyvCtUKUIti0YbGiXq5ZGZk45O4ZG5m4Szpzhdy6H5wNqGonKY0EBxO4MGYkSmO2kBj7Qdo2xzjNV+oQ0zGlHNV6unzcNxr7dMv+oDVxYmYAJvnowyRiBhqLEYDr2tguXkV4i7iJmqzalCvBuaJyzqW4PGqiNLaQSNDIJFQ2MplvZuU5JpSdkOpxIw4jk5qaQTtS+xIna2RSojvfHTq/9dr0MF9Ae7Y9dDIDsU8Qd2hkQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEGKA6SbbXRY2m6XXKy622bybK+b0gfwoaE7CrjYy0WluarnfOCJhoatZgVUeeTcBud+m97TQG0bYiv/LqSsjk2UfG4UTcDxBXiPg/eu8v2Kba7bBgTceiOcWPNfvutN++5IA0yauSmBtUwjXpm5ggHDiP8/FglULlGHSo0Yor5sI0r3Va7VhRFNUZj+OFeYsiPcnXww25nBp9wAgmu2Mtvzz7nleQohKQwANQYKwEV0pHDF3MI5+cQh2f78ZkPbCH9mdARzH2740ysvn+Cz9zMZ0441/QhKtmdbAy1bPP5u1zx9w6gZBzy1wnWMyjjnM1SoDDevxW2MEVyuMTQciXupojb4qsnZ4dobdWHppSMe2nfPKxi1Hge5AFyc6rWPCiJlj7UemLmW2yQ7wh2xJ2rOfq1RzUcW4r2s7QkKk1PnLoHk5KZG9QXMwsjoJ1a5M23oMbTcxz4XydmPzrqMKG3HhYx4bXObO3ohl/46zjBvW2FgiSmMLT3rOz8hvpPT7BlQyQwxtpZOwkYmT0ZprVoq27GogrczP8ZnXq9lDqf5Mn5jTk43w1m1MZ7NFx/fn0NTns+5HIW/1TkgIADTUugDrE0IIky+xUkpp9hdKQgghhBBCCCGEEEIIIYQQskFTKBSwaNEifPzxx1i+fDkymQyy2SwaGxsxZMiQvv822mgjTJw4Ec3N/DMUIYQQQgghhMSJB4ONzxLY5UPD97NsFmiw28qZLWQxqHGQVRxAIf4qka4yABB17GSSDxb3W5GAkYmr6YqfMNDIyEQIZ/FTXRmZLF9mFC7luYmJTeIUU0Us6lqEL//1y7jhsBtwxA5HrLvokKd0EMNIhfDXRtDi2tJNyvxhfikOn3445pwzB4ObB/uGEcOHa/LRt225Vm1kIlJFiFQj1HdrWBOuY0PEY4qqTwqdyCvgsmhuDFGiHsoNFDL5DJoazMxR/ARhh788GN94fASaC+sK/Pb4HJqKdlIn2dUF0RTy22jZPOkiGJPSf53gZHjgFbE2E9zmbdKUuVxiwrEgUXuQ+NNITxaxQZDtfbmM3cFZRzdGpAxNB6I23CgUzdcKTv3IwkzBW7Ec6U03s86j3CSqXsWh9Yj2XSKmuPrEzYJZ94WIjBMHCk7GgIrHWjEfmvQz3btn0POokz5sWgobIbUzMeSRVC1XrBds7iNiH5MofVGklH2mEmYR7NJfF02W/0AiJsr1gpTS/b3RL1pM3h8SSNTIRBYKiTVdIdXmNEbffi0J8x5QSwM96zEsMKHEIgUkZZ5WPX0bdSVOSyBZKKLQGP7ZRPluTOofGplEi0l9socRQgghhBBCCCGEEEIIIYQQX1asWIF//etfmD17Nl588UXMmzcPuZzZqaZCCIwfPx6TJ0/Glltuid122w1Tp07FrrvuipaWlphLTgghhBBCCCEbBibihQmr0/hEu16UDwAyn4eA3ebdbD4LOLzmyYJ6I75orDYy0SVoX4aokBEJC6MUJwfieEqln1ChIaXfpppCyll0YSNOjhtvxQqjcEIKpBy26NuINVOpFM7753k4fMrhSKVSABz1gZo+6ItK+JtEHzToa54Assjihw/+ENcdfZ1vGNGob7uyUIBQGDt5azuU8VMmQgpjlalbH4pqbCqhOuVW24YDjUzCGyGXj0+duU6MaBlhFK96rtv1gyac/cgIpKtMWbb72MwYpSLtri7IocOs41UmIv3/bRwfkD6iRBdxODyJtd3BRiYpi9PKZc7tRGmXKggS2QWuc0xEnE6mMsFxrJOr09Om08npSiuI+/Rtz8LEyFu2tMLIxM8syY+8V2aI57oWNGxHuX8/jjWX/wLd762CSAsM3feTGHHl/0Nq3Di3fKPCYgzpI8yzrwNTEJXphh9+4/n6jMuYUj1/l1MxDuv6mQBESh0kyAxnoD2nUGYIhlHrqU5sRcrSeS0WsZOJMivL9Dyvv2msKnnH8lbGi7EN1E/zSpQoBfee9BIzYQplZiARj5FJ0K3nzfbEmOAJ9TtYSqrHY9M1pQ2u43/NzR6kVJqNxWqyYlJnhmtam/pXmdzUKxISTQWBBk/AwhfSjUIhcq9Rsv5DI5PoUY1qcQ8DhBBCCCGEEEIIIYQQQgghZIAhpcQDDzyAm266CY8++igKBTfRkJQSS5YswZIlS/D000/jj3/8IwCgoaEBU6ZMwQEHHIBDDjkEBx54IAYP9j8dlxASLx9++CHmzJmDF198EXPmzMGcOXOwZs0aZRyeCkoIIYQQUl+YrM92+dBCJF7oEVJaGZkUHQXJGkGTaKg2MtFseazlWjUqw40ERF4yn9cH8sFPGJhO6QVQYU5KLcrai0xLeCtXGYVzMgiAg9giDTy94Gnst+V+PT87CID7BJgWecuC4pnY9EEXwTKgNlKpSvrZRc8GBzIR7+XzgMrIpF1nZAIDAybDOnMcG5TPy4EwJwEHVYVotjcJqaa833Vlu4zjVQuCDn11iFIEbYPMZABDQ+jANMqF9kU3IxM/IymXcUp6RazJBH8zskrT0cjERTOXClBNBYrBTPKIWkhoe18R9usov/MZ952IlzoFaT4uWQvYczlAatwMyvBWrqz4OVc0GwMqxlbHZ2JS+9n7/4GPzrgG0kujJN1qnfkOOv5zDDZ54QGkxoxxyjsKXO5a5kP0hTjNA+NazidheFhHpB1UrypzmIr+r+lnAgBSmvwDx+L4jUF6wmoCC9PldpgGa+pkEkOnUBqE9VwL8x7al1b5PdqsxxP0MbGuX8vwzqYFCfmYbKg4Gxv4PAsJGfvffkVppRIymziMkYJSdP125puWkNpBWWlkEoORRZi+XVNBekRt1ekeovSqtbkP0WP03JB2t16I6359o2WzmLCmAUOz5u9RYZDFIgoRjA3cA7NhQSMTQgghhBBCCCGEEEIIIYQQQmrErFmzcP755+PNN9+MLY9CoYDXXnsNr732Gn71q1+hubkZBxxwAM4991wcdthhseVLyIbO0qVL+8xKSsYly5cvr3WxCEkcIcTetS6DC1LKZ2pdBkIIIfWJycbzXRaaG5nIkrhYwniXs6lIsx8FT5mJqDIa0AmRarrf2NEEtB9J3EOYYyqr2kVDSr/tN6U7zlxB0asjI5PVq43CuYguASDlYJ7wy//8ss/IxKX9y4J9Wwg6fR6ApdmGWz1VGDsEFaPXFWZFbkVw7gqDkr688nmIlpbgfDoyyvipppSBAZO2GLYBK8lHNDaVkisGi7m0RhYBVSGaLcy2gvIu63ddeXcjkwPfDn7etshMBjLs3FDepxw6uZQ9gqdqnE6plhLt2fbAyzZpSleDFxcjk4A4QSIlo2p2EEmp12t246GsUzODtGGxRERmQSVsTqi3NjJpW2tXlpWV806+YCaArTAycX2+OnGs52HpOVdDev3nv1xbGq1fPRMbPTDDLe8aUSi4m0WZrCfcMWtnQUZLwcnWZ98PS3e+2/f3LqZbqjjl475yPQsAAhAaI5PANAaYBjYOU4D+mSRTKbJYRPGDhSh2ZCGlgBAS6ZGDkd50037fFozTLC+7TR9M9ONEvEYmrtiYB4XNaUPE1djCb2STUjpXo196QvWdzy2bdSQ5F0ZqZKK+LqRQrlNjMTJx7JfOBihRUdOPvxHmbXkfHbkOjGwZaZ8NpLJPRo30POTnL8DQfDImJgCAYhGFOn1HJvULjUziwXedkXgpCCGEEEIIIYQQQgghhBBCSF2ydu1anHnmmbjnnnsSzzubzeLhhx/G1ltvHcrI5LbbbsPpp58eeH3BggWYNGmSc/obGpdccgkuvfTSwOs8kaS+Wb16dZ9ZSen/Fy9eXOtiEVIvPIWBt2dCgntqCCGEBKBdm0tg5w+bzBPs3ahvszE95ygi7BFNKTZTN7mJjWpC4IncdiQiJAthDpKSgGdrZAL3zesVwt4a461eYxTOVMhdjYuxwPLOMnNKB2G4VsTpRxgjnOr8PQ8iZdk+DMQJRlXRaLC81giXvC5/4W2JVLPBGGb6fcVxbJD5aIXaqj6pbcNBRiaDBrkXqJdy4XKmoDaYKScOQVgJmekGDE0MAilr707mFRLw0D+ei3ESikV0dAebxFgJziMUBeoIutPAZx+XkYmir1t/Zo3QgCFKIaK5kUlkWQIAijI+Qwq51tLIpMr0zNTsr+IeHEV4ul6dn/0YCl3Bc1/X60uc8o0Mh3FJZa6lJcL1TD8M27h1X1hPBZqd2U7f37uYA6rmt8r5UFf5EkgJdbigsTiJ9zkY3YFZUwyzFjK91QTqRBaLyM+bDy+37huDlAKF1RnI7Pto3Gbr3t9ZGlqVG+DYxE3wrw/W6wjbsaTe/5JS7+WLiSj/Tt+TVrwVGYmRgkRiYywAyAhNQXVTWkqq301jMTJxfOYS7sY3kRBR2xfSoQ4i9TGxS6wz1+lkZJI03qqV8JJ73QfQ820zinfCmpv0kEThpgueMwzPAAAgAElEQVRCCCGEEEIIIYQQQgghhBBCEmTevHk49NBDsWDBgloXhRASEaeffjruu+++WheDkHonuSOoCCGEkBjRbWafuLIBo7rMDUFKG/VtNu9mC1njsBV5aQQIoqFqS6nQTN81NFyUIcxBKkhClBFCjFEtuGxMNWrjpETKebN/XRmZrGkzCuciugTchN2irE9IJ2OC3vHDRpNXVInxLW+iUACaLIyWAKCobxMmj0Ck9VvWZU49tnld6uuplsbIjERcxxgZkclSCZU4RGuOEWhk0hyiRKW81/07kzM3MqmYhyIefmV3N2Qh5BgWQfn85lonIwkp0ZYNHgdtzFFkztEAzaHcQQYrQescI41g1OuN9cTMwHT+i/pjjM1awXae8tosjUxaq4xMDNfI5WOrq6mdrl+3Xf9b5fV8ZwNkJgPR0uKUfxh6jJrsW0YhhJGJk5mbceJmweyNTNZPcWVX3t8ky8UcMKWIU9H/FevZEkJjZBLchgbWc0rk0AJVHhFlX/xgYa+Jic+1riLSq1YhNWaMdboV6wWrulLds8NNK+vQVohvaebianYgXeuOmBCpkUkSxhSlaT5sPjEaUfYj7LtcGSavSqq+FouRSYg2VM9/XI23bFEbCJnTnVcb6QbSWyFuZpL2kbzVZt9OI6XoRdNHOFVtUNDIJB7YjQghhBBCCCGEEEIIIYQQQkg/Xn/9dRx88MFYsWJFrYtCCCGEJM1A2UtRz3sCCSGE1AE6UcnOH1qaBGiE+35ki45GJhoBmWioMmDRzYq1nN0L0Rw36SpetcvD3dggJYHy2CZGJmmRXj+MTNo6jMK5GpkEie2VcUQKgLsA2KW9KYW/tkKYoJPsXfPvxegRVI8vfuTV/drLqK+nBjej2KY21TAWrziKjKIWahcURjI6YYwIMqOKQDRfYWSSNzcy8bCufhoi1obJ7u7Q4jdZJsaRDuYVUlbeYwmX8QbFIjpznYGXrYRReTcjE5e5JKhcQX3PqKu5jJ1KQbPd+B1lv47y1GlT0wHhYryloBiVmZwPss1OiOetrQyf7fY3aOgXr7x/u4pKNdHyS1arAwCQ+XxNjExczXmKYcbYOjAEshWURmacWGcEzS0qU5IgVPNb5XinW7QAIq0Zq4LmgqQMG0zyMRpua2xk4pzmun96ra0otKvXFt7atW5GJuVlt5j/E/BucSdJI4hEqHmN1oTqNb6bSUEPUspI1x9+732id0AKvQpM0NRLOnyvCExLc11I9bcBV9ORrs4ufLToI6xavgqZrgwymQxy2RwaGxsxatgoTB43GePHj8eECRMwxnCMTMQAS10A/19bjgVObdHg3guFAt5++20sXLgQ7e3t6OjoQEtLC4YNG4bx48dju+22Q0tLi3GfE7LndTFXdHuHFgn/ibnYVYPvuF40RiZRvhuT+odGJtHDDS2EEEIIIYQQQgghhBBCCCGkHx9//DEOP/xwYxMTIQT23ntv7LPPPthxxx2x/fbbY/To0Rg+fDiGDRuGYrGIrq4uLFu2DIsXL8abb76J119/Hc8++yzefPPN2m9qIIQQQioZCPspOHkSQgjRonvX2vnDZrsE84V16RrOlrmCoyBZs8dYNFWZZKQ0Barle2chIoFDEvcQ4amyjWm9kUnJbMOFOMXJtnjtwQL+ctKOAm0X4VGfIEFjuBFIr5mQVdYq4ZDtPbi0RYM2YfQI0gZb1nVGJt1FqAbK1OBBWiMTYxwFWzKqsakXlbmQkzkGADHIcp7yzXvdc+jKmxkHAJUnWzcVon1FlNlc+PG23LDCRZcj/U/vdhlvpCfRkQs2dLJ5/jLnuG5wIBUwIPgZvAAwG8ciFlBapxalQVGEt2Jq5BVGaOuHzVrBVpwm222NTNorfi7kusyW0+WmGo7tSydSlDmD8ch1PREWR6GwylxLn2fthfzWfWGA/I2tuHABOn52HbxMBo1bTsKQ734Pojl4ru/M+q+xXdbUqnGo4r1ZU5cC0L57Ftu7UXj9VYiNPoH0+AnrLiQostdhUpJwf7s1ixvP34d732MKBeQXL4Pu40VpDLSeB2DebiojJtgOLPOSUlr9YcRV2O1cd/YZbZBU9yvXd7G+tByfUdJ/ZHMZT4rFIq75/c0oBpqYSTSM+wQOPPBAHHjggeWZOZXRD90yWVePJiYNHe0dmPPsHLw651W89tJrePetd7Fm9RrjMo4ePRrbb789dtllF+y3337Yf//9sfHGGxvHTwzdczF9bC6PNyDO6+/Mw32PP4JZT/0Hr817G3mF2XUqlcLWW2+NA/f5NI7a8wAcMHXPYNNX9LQNCaAoa/B9dICMr9KTkRiZkA0LGplEy58xYIYMQgghhBBCCCGEEEIIIYQQkhRSSpx66qlYtGiRNuyoUaNwwQUX4JRTTsFmm20WGK6hoQHNzc0YNWoUtttuO3z2s5/tu7Zq1SrMmjULM2fOxMyZM9HRYXaKMSGEEEIIIYQQNSpRiZD2RiZSsdk6CFcjE+0e7MbqLaX160MW2QnpSQjfQpwq2yMIX1fGDcrIpCMiQ4oAgsT2yjipnrqV2axTntKhvUmV8NcyPVks2vdqA+GxZ6AM7meU5INuPPRyRai2vouhLQBWazLRFqM3nOPYUIhWzBFKPBPwsNMbfcI9zV5SZbeZLZj3h3IhXHM+YiOT7ixkWCMTL6wAVMDzEew5CR09D125YJOYlE1TczQycamCoOEgUARpMBYLl7FTVXjb8T9CkVaUp06nDYsVtZGJymApLJ7l3zGqTc/ymS40GcRLVfR1t+erq1cv50G7lq6VkYnjmFAMYWQiA8XMEWA4WAnbvl9HBhlBtF/8E6z47aOQXrr3N2+j8bczMf5v16Fx6l6+cYIMyEzHlIo4hlWkXM8CgABESv0O07Uwj4UHnQ0ID8N3GY3RN1+P9OQt6uZQB+PmlUR5Y8yisOADSBMjLcf7tDHAsUg0mnT60rMMn9RYIn3/SSJg0qRJWLhwoVHYS88+D//3tbOUYSRkJM3ykKmHYMniJYHXH3rhIUyasEm4TBwK+uizT+Oym36lDTdr1iw899xz634RYV+RQkK1DhNSvS4PupbtzuKRmY/g4ZkP45knnkEu624Y2draiieffBJPPvkkfvWrX0EIgalTp+KYY47BiSeeiIkTJ1aUt2aYmJEZ4fL+X5n3v576D342/RY8NXeOcQqe52HevHmYN28ebv7Dbdh28hY45+TT8NWjjkU6ne4XvtR0aNTRn2KxiLcXvIeX3/4vHp3/Kv772n/xzpvvKPvBnvvtiVvuucX3WpTvxqT+oZFJhEgpT6l1GQghhBBCCCGEEEIIIYQQQkj9cfvtt+PRRx/VhjvjjDNw5ZVXYsyYMaHyGzNmDE4++WScfPLJyGQyuO+++zB9+nQ88sgjdbOpj5ANnYkTJ2LbbbfFww8/XOuiEJIUtZqAVLvjOCkSQgixRvVONX5NGsO7LU0keoWENpt3c8V4BMmisdJoQHFApVF6sRJWrN5LEvvSwwg3q8UKJkYm6VT/jfim1OTE0QC8LjezEFNchCAp9PbvXEgjE5u8lWIey5twMdUxaL9Gws0Ggy3rGmG11Oi9U8OHGGhjTBW3juLLYrQDY0EhGteaYwTURdP/fB4idU2Z6LmSNS1FLBtRxLZLg+0AyvPuzndrCrKOcjFQcyFiI5NsDiiEG8NkWfmcjIcCBHEuxkmQHjL5YEMnYSEEkzlHswSXcTLIryQgMaOu5tAfA/PzDMwlquOEMCSLE1MDAZu2YoKN6Znt3yJke7tVeK+90pAhn80YGZlUtClH0ayuVmXeA6Bek7kYGkaBa5tWzUlaDIzRnDF8hNamUnGar0RA9z9mYPlNjwGysp3luxqw9MTvYpOXZyE1fHi/eEFzi5VBlkGcynHYoPLThmOVTKHt5TXIffGrmDDnkXDPqQbvs6H+Rhu3IZ+G4soVKHaajQOuRahoNzaJRH3LyvQsM0tIDO9cdyRSfnHb73HGl07EqOEjAsMkulcjTFYSTmPs7ffdaxTu+eefx5tvvokpU6b05helkYn6upDq51BtYrGmdQ3uuu0u3DX9LrSubI2iiP2QUuKFF17ACy+8gB/84Ac45JBDMG3aNGzzqW1iyc+iYJEk4/RG0pv34mVL8Z2rLsfMJx4LXY55C97H2ZdfjFv/dhd+9aNLscf2O1aWs/d2hRDozndjUOMgi+Kuq6v6tQY3Q0qJ9z5ciDlvvoG5/30DL735Bl59+y10ZoLNVglRQSMTQgghhBBCCCGEEEIIIYQQQmIkn8/j0ksvVYYRQuCaa67B9773vcjzb2lpwYknnogTTzwR8+fPx29+8xvceuutkedDCAlmwoQJ2GOPPfr+mzp1KjbaaCN88MEHmDx5cq2LR0gS1GrPlsS6rZp+ZRjoe8kIIYTUANVG91Gd9gYS0sGQI1twNVFQXxdNVSYZOieTWhJSrN5HEgKSEKYr1YLLprRenpsWIYxMLMTJceN1xSvutRazouf7DQBIVyMTh+pVminY3oODANlkjDI5lF0YGJno8vLy6oxSw4ZCu8SPWQAqIxZqq8yFdGY8ImAMFy0tGLb7WLS9uMr3+u37t+Og/7Yo0y435lCZbVRTLghrisHIRIYR2QOVhgYu5gbS/+RmpxO0PQ9d+WCRkNUYlnc9Kdz+GQXda+D6ycTkJcLT2Z0E7xH26yhPnU6ZDL6I/gT3ONcKstNOGJfrrBx/Clmz+OV1Il0F5pp69QoGFZ+vjZGJk7EZgGKIMTaMsV9UWPeFOjcCaL/5DkD6m2jm2tLI/n0GWk47vd+1rpx/P0kbjinlqIy6KsY73TgqAJG2MwTtXirRcfWVyT0ng2yMShKqvG6GfO3d7fi4/WMUvAImQcDSerUHT6KwZCWM1walMth6fsiKAdouclLU6VgS5RpDlxMJZm1HO34+/VZcfu75APx7jIR0bhe2I3U4QzthXc7WtWvwz38/bhx++vTpuPbaawFEa/Cim9IE1H2mVJZisYi7b7sbv7nmN2hvszPcC4PneXjwwQfx4IMPYoedd8BPvv4tHLHvZxLLv4Iaj8VPznkBJ//fd7BidbQGMq+8/RYOPv1k/OLCH+Frxx7f9/vyppPJZ6yMTCq/Bbj0vdrV9cIlH+Gl/76BuW+W/vsv1nbE3OY5nWxQ0MiEEEIIIYQQQgghhBBCCCGEkBi5//778cEHHyjDXHjhhbGYmFSz1VZb4brrrsNPfvITzJs3L/b8CNkQGTt2LHbfffc+w5KpU6di3LhxtS4WIbXkfxLKpxnAGACjAWwKYG8AuwN9h/GWb4kSvT//GsD9CZWPEEKIId6aNei84Zfw1rShYeJmGPzNaRBNRmerJ4Jqo/uQrMMm5d6T2G1EJ3nPUfSo28lfbTSgMzKp4WZ2FwMY33SS0FQ6ikWB/oJLIyOTlLuRScGLpl6jwOsuAG4yOyNcJAUp0VueTLdbpp69oE9lfmIr9JEubdFAeGziQ9BvfPGjEDy2Sc+DV1S3h9SIYfoHa1pnjoJraSJct0BlGKASDwNQ1sVGM/6CBw/aF/vOH9z3Ow8S9+/eiYd26sKBb+qMTNb9u7tg3h/K22zURibI5YB8yDGsXGjtMsdJ4Wtk4mKcBE+itStYrGUjyJc5x3WDQ7mD7jVonWOUhYORSeD46GIckchiwZ60YbGiNjLxa+NB2IqqvY5Oq/Czu1fiwNWLsemoTQEAeUOjsYqVkqNRjU4YLA2GI1djtNA4GpKEMTKJ0hCoH4bNTDtvVicbYg2fBG1z/A3J+q7/4R5/I5MAk6y0y5iveKzWhhSWRiYA0P3My2icNME63jps2oTBPRgkl5zZRA8ft32MlV0r1/1CNDrN7153EdKmvvpeeyzfV1yNTFRho67ymI1MImkjcX6rofBcy4133YlpJ30F4z8x1ve6lDJEPZb+tBU/ErBeh9/14EzkLNbbd9xxB6688ko0NDREal6ofVWWapMWT3qYP28+Lpp2Eeb9t7Z7at549Q0cf863cPBee+MXF/4I20xK9oAUGTT691af6cwgyo+dMGTG/ffjpG+ehUJE34CryeXzOPvyi7Fo6RJcMu28nl+W+7BZuhFXzmERFDBBdj/ui+jM2JlKhiXpNRGpLTQyIYQQQgghhBBCCCGEEEIIISRG7rzzTuX1bbfdFpdcckkyhell1KhR2GuvvRLNk5D1mZNOOgmnnnoq9thjD2y++ea1Lg4hdYWU8rFa5S2EaALwBQDfAbAP1m0dk+jZX3c2gCKA70nnI3gJIYRESdetv8Pyi6ejmCttbXwRjdfdg3F/uhpN++xf07KVUBkHDMnai6/6xMUWe3dzhZx1PoBeyyKaq0wytEYmTsWIBoW434oEzFjCnEBfLQhvatAbmTSk3LcGq0wTksbLeojTyMTFWKBkZCJz8fRB60i2CSZgZOJ5HlKp/s9NNDbq01GYUMjWVdBJZFIjRxoYmWiL0RPMdWyIQHzVnmnHzc/ejEwhg/da3wsMpzUnUNSFaGnBJUe3YqsVHdjzvUHoGOThrQl5zB/XMyd5mq5XLlzOFc37Q7kBQtRGJjKbDy06L3/uTj4mAPxeLV2MJKRXxKpcsEhdJR7vRz65MUsEqAYD+5TUj/MiwrlaOhiZyAgNGKI6aV5IIG1oymBr3qAjzrWC7LITz7UU0vjC9C/gle++AgAoZM2MlSrqzvGZ6Pq1LBrUe0yiTB2uY2UxTF8IsR7WYSWgtaGGpo1R0PFmBzb2+X133r+fWM0rpTimVaRZHwkBCJ/1o462l1oxZtJ463glonzCxmkl0ax6224ml6k0MQmRv5WJSVkZ7PMpX4vVax+0LJftfZT+cmFJUvVVr0+lnsh0d+OqW27C9T+42Pd6KPG+ZdTQq0DLdvXH++61Cr9s2TI89NBDOOKIIyKdd3U+zimpfg7/+Os/8KPzf4RuVxPbGHjsuWdw7LnfxOv3zUo2Y91ziWlQmDVrFk75xjdjMzEp5+pbb8aQQYNxwdfO7DUr7Lkp23HVxvDRFw6wZD2GRiaEEEIIIYQQQgghhBBCCCGExESxWMTs2bOVYaZNm4bm5uaESkQIiYPjjz++1kUghPggpcwBuBfAvUKIvQHcBmAr9OrL0LOP81wAk4UQJ/SGJ4QQUiPyLz6HZT++DV6hcltjvrMBS0++EJvOuR+pjT5Ro9IBKzpW4LJ/XYZ/zv8nRNp/R/zQbgeJQKFHUGsjZMgX7UW4ACA1QtZ+RgPR6l6jJaoT0pPYJK4wZ9DRIwhfV8jmtP77QYNYT4xM3Jq5MSmdssWHtEj3/MPRyAQOmgZZjPB08aJ9W9QJ+ItVquDObCeGtQzrH7BBb2SiMlvwli/TRk+NHtUrOlFhWGmOgmvl8zLgikeuwK1zbw2cZ8rRi4f1aby/cQHvb9zR7/eeRu1dnnc2n9Xm05dumbCnOWI9kszlAQeTigrKhdaOQjq/cdTJSEJKdOQ7Av2cbMyYXMw7XAlqOn7rHGkqSnMZO4P6uktdRGhkEhU2hgNRL+dsTia3FerKroxV+CFZgbZiG5asXYIJIyagkDUbj9JIIdO6EvjnTHQ9/5ZVniV09eoZrDOS7JsVOOZb9NwHbhmB0Vdg2obhrE3sYjRfSQb/G87k/ftZ2mFtrJrfrA0p0o4GhnX0mIyaWBihvrEhX8//L+9Y7p5XSFxvs2LesEhEHTTa8cf63mIc/wKpWxOYDYfpf5+Bc79yOlKf6G+2JKXsfUYJfHQL2RRsjBxem/c2Xp1nv66aPn16DEYm+rREQN/84Q9/iCuuuMIqv8amRkzZaQp23mNnbLf9dthk800wfpPxGDx0MFoGtwASkN0SY5rGYMGCBZg/fz5effVVPPHEE3jzzTeN69mrRd8OyNN2nW/T2t9//32ccMIJyBl8e9tx623xldNPw/4HHYStt94aw4cPR2dnJz788EM899xzuOuuu/D4449r07n4N7/E9ltvjR2O3q/vd7ZGJuV1Us+f1AmpBTQyIYQQQgghhBBCCCGEEEIIISQm3nrrLaxduzbwuhACxx13XIIlIoQQQjZMpJTPCCF2BXATgFNQaWbyRQD/EEJ8Qfodn00IISQR2m+4CV4h7Xst39mAzO23Ycj5FyRcqh7ueukuXPToRUilU0px+ZCsvfjKWMRbRt7B4UF6HiDV5RNNTVW/0Gy7rqE4xqXefNNJQlQUQgRZLbhsbtAbmaRT/v3IBBtxctx4BUcxoyEGupZ+lEQJ0tHIxGmlqSqnbR8sODxfjblNtX61Pdfua2QiGvRb1lWCbm/FCm381OjRerWIaZW5niIfwshkxqszcOvLZiYmgL4N64ZwFTotsyh78N0F81Oqy4VAzYVopT0ylwfCzg3lz91zEBdK4XsKs8t4g6KHvMwHmvMIC3MUmXM0S3AwYAkyCvAVuhmaTgSJDJ1wMHSqRzODBgvDAaf2p6BgY2Zhmbfssjv1fnA2BSEE7nv9Pnxz32+imDOLv//bg/DxzkdAdrvLqbQGRZp1N4BQZnehcDQELIYx9YnREMi0jduMmwDWWyOAoHk77fCIjOPoFsECEI5GJrYiY2e02ZiVw1b47ZJHqe2uza6FCLMgDIMs/Z/tRFD+7xr2wSizTug+wrUtEjX5Qh4//e2vcfHv/l+/axLSuVkk3qMt1uG333evUxYzZ87EihUrMDLKJb/BlOL33nLeeefh+uuvN85n16m74sgTj8RnD/8sho8Yrgw7ePBgTNpoEiZNmoTPfOYzfb9fvnw5/vrXv+LOO+/Ec889Z5x3Ymgaq02bNBmn8vk8jj/+eLS1tSnDjdtoI/ziwh/j6M9+Ds3bbg7RMrjv2ogRI7Djjjtixx13xBlnnIHnn38eX//f0/HGm8FGO1JKnPGTi/CPvf6GkZtvDAC+7/YqEluTrCdw3tqwiPcrPyGEEEIIIYQQQgghhBBCCCEbMO+8847y+tixYzF+fP+TeAghhBASPVLKTinlqQDuxLr9dSV12ucB/LpWZSOEEAK0P6F+f2q766GESlLJSx++1GdiomNI1kFS4HAieq7gYKJgIhZurjQyCRJP91HL/caOAsx+JHAP0kU03Uu1MLOpock/YBmNqUbn/Gw36ceFzGQgvXi3OAeJ7VWUxNsyH87IxEbboHwktrpAjSmJLxrhcbWWviPb4R/QwMhEZULhrW7VRk+NHqN17zAWlrgamYQYU372759BpCzMCXQBNGmpxnidR0K67D5zRfP+UD7GNOUjNjIpFCHDzg1lhhVuz1L4lsFlvMkUskqlh1WaDmsNwG2KDDIU8Ot7KvOiqsjW5Qjq67LgaAYXEVGJtWwMB9IOhjQqii5ziSFeJmMVvrT2Xta+DABQyJuZ45zzyMhQJiYlQrcNh/YYBa5jZTHEmjZe80CztK3H4hjNVxIhYEDuzvsbmWjNeXzjBF+rGO9Mnr+jkUnYF7rIRMcCZmruEPnZxvQzMamRrYkxFc/D5oaV5o+upQlKz/olLOICmOQZZ9oUnptyz6x/4p03+3/rTNLsIHSfNyxrLp/D3Q894JRFPp/HnXfeGWm9FA0m/VRV17zooouMTUx2mboL/jDjD7j9/ttxzEnHaE1MgOD3gLFjx2LatGl49tlnMXfuXBx33HFIpepI8h/VYzFM5/rrr8dLL72kDLPrJ6fg2b/ci6M/+7mepDXrjD333BMP/u0uHPu5Q5ThWteuxZWXXVtWZLubr5dvqkmQTqex9Se3xg677FDropABQvi3b0IIIYQQQgghhBBCCCGEEEKILx999JHyOk1M4mXp0qWYO3cu3n77bbz99tuYN28eli9fjvb2drS1taGzsxPNzc1oaWnBRhtthE033RRbb701dt11V+y9997Ycccda30Ldc2iRYvw1FNP4bnnnsO7776LBQsWYOXKlejs7EQul0NLSwuGDh2KzTffHFtuuSWmTp2K/fbbD7vvvnvtToEjhJAe/hfApgAORM/2uZKZyVlCiFlSyvtrWDZCCNlgKWjEhF0f1Ebo9417v2FkYgIAQ7L2G81lr3DfZnN0vuggwu3q0oYRTVUmGRoRfE3lK1EJC5O4iRBlrdYfDmoYpI3TkHbfGhynONkGb/nS2PMIEturKBmZwNHIBA4CUZUOwloQX7B/vjqxc/UtBRqZNBoY7KiMTFr1RibiE2P1eZjiamQSogstyy6z+l4idO1Jl5Tius5HqFz0ZWVkgnURmwsRG5nkCqFNrioEUF7pNdEOz0fo72Jk8mHncojBwfnbpOli3uFKULl8x6ucmemEiFLs6WLqEqsBgxs2RiZAj+GGiEgQabNWsJ2nZLfd/Do413NPpbGlYNimIsPzgBD1KhXzXqw4GpKEWidGaAjUD8P1le3aL0mheRwE1Up3wd/IxHZcAfqLwAPR1aUARDptXwCTtBOi9IHZKGDc1EOVOJpoVcwbNX220eWtG0uyhSzyxTwa041obmiOJp866RcbOp7n4ZfX/ArX3/Grit9HZWxnRMisTOfCmU/Mxqo1awKv77f7VDz50ouB16dPn45pnz/MunxBFA2WZ+Xz3h//+EdcddVV2jiDWgbh/IvPx/GnHm+918GkLnfddVf89a9/xWuvvYZp06bhqaeessojHqJprya1tXTpUvz0pz9Vhtl64iQ8cOOtGDNy1LpfGqwzBzU347b/dy0y3d148D9PBIZ76J8P49inX8Cn9vmU9VrQ2YyrzkmlUth64iTsNmV77DZlB+w2ZQdsvNfW8EYOwow/zcAbr7zhlvB6VEdED41MCCGEEEIIIYQQQgghhBBCCImJjo4A8UYvgwbpBUj1wKRJk7Bw4UKrOJMnT3bO77TTTsNtt91mHa+trQ0PP/wwZs+ejdmzZ+Ott97SxslkMshkMmhtbcU777yDxx9/vO/aZptthuOPPx7f+MY3sNVWW1mXJwgXE48wxh8XX3wxLrnkEuf45bS2tuIPf/gD7rrrLu1pOB0dHbW538gAACAASURBVOjo6MDSpUvxwgsv4C9/+QsAYOLEiTj55JNxzjnnYNy4cZGUixBCbJBSFoQQ3wTwOoDSLvmSSu1GIcSjUkq92psQQsh6z++e/h1aC3rxfInSqfBWOAgY856DkUlWf8K9aK4Szehup4biGBniRPiKdJK4hRDCzWpBuImRSTrlKAIEUAzjwhAh3vJlseeRgli3AjSkJOCVOTcjE6f2popj27RcBMia9iurVMGduU7fcKKxyff3FWkpjUxWa+Onxm6sDWOMq3FBCJ227bcfrZFFiG9J1c9VlXeuYN4fyo1CmqI2MskXIB3MeirwwguPPB+jDBfjpA87VwCDg69bpZl3nDMdRMhag53y5E0NVhz6VZBAVLrURUiDnIr8I1JrpT3LZ1MoANWGdY7EuVaQGTsjkqaiQGMByOR71rlFi/EoEsKacyRoMlSBY5v2wtxvrIZAZmmnbMe0OjH4cybgdrMF/37mZGRiWqeaRbAAgAZHU6CwbUtKszVTRC+OoeYB06h1IAyW6BV02xoIxWJkEnGF2CYXEL47340PVn9Q8X2nUTS6+OiROmb2o//GKy++gl2m7tL3O5e+sS6yXfDQzclwjL3j/nuV13/8jbPxoxt+gRdef9X3+uuvv465b7yBXbbZ3rqIfpgYmZTeaefOnYszzjhDG37chHG4/rbr8ckdPxmydHp22mknPPnkk5g+fTrOPudsdHXW8M+VurE4wiH22muvRVtbW+D15qYm3Hn1dZUmJoDaAbgvjERDQwNu/elV2POEo7Fo6ceBQX9zzW/wqfs+Bc8k3fIsyirD1c6rHthis82x2ye3x27b74Ddp+yAXT+5PYYNGVIRZumgItrDfABDwqZOpOZEY6tKCCGEEEIIIYQQQgghhBBCCOlHUbMhdOXKlQmVZP2lq6sL99xzD44++miMHTsWX/rSl3DjjTcamZjoWLRoEX7+859jm222wSmnnGJt5rI+sXr1apx//vnYfPPNccEFF2hNTFQsXLgQV1xxBSZPnozvfve7WsMfQgiJAynlPAC/R//9ZOMB6HctEkIIWe/pznfj2qeutYoztNthS6aLkUnRQfSY8T95uxzRXCVw1Qm6arnfOCpRcQL3oDJn0CGqliqDGvVGJo2pRuf8inUi2PSWL08kH1thQcHrfZbORia9OVq0O7VuwrIBu5g8aETLxapKDDIyQaPB2Zu54LHNW7NWHVd4EEOHRmbAZHvyrmXykaAzsgjhY9LvufbPe12AXNG8P5QLgZojNzIpOs2plYnIsn86tgEfYwJr8TyAj7vV5j02aUofcxVtHM+Di/wqaCXkW59Zs7bjYgQTiIMRmozVgMGNlK1mLEIzljjXCl7Wvq0OyabQne9Z5xaydkYooQmoV9nebhQ9zBoxFI7mRmGMTGRY0xdl4mbBrMeSGpo2RoN/+bNF/37iMldpTdVKJdE9fwGIlKO8MexzSvo5h8rP3MmkLt7rikVrkXLFesGmrlRBa92Vfe6j6BUxf9X8fia1eRmRwdWAH78GFv+z977K6zdceUPFz2HE+4n73BgUdcny5Xjk2acDr0+csAn23X0qTv7Ckcp0bv+72gzFBimk1pMx5QG5XA5f/epXkdN845mw6QT88f4/hjIxcXnup59+Ou599F7s8skpzvmGxsSMzABduDVr1uCWW25Rhjn3K6djp22363/BYp05avgIXPO97yvDvPzCy3h1zqvh5jAXajh0/+Rb52DmTbdiyb+fw3/v/xfuuPoX+M6p/4v99/hUPxMTwOF9lGzw0MiEEEIIIYQQQgghhBBCCCGEkJhoaWlRXl+4cCFNHEKQy+UwduxYnHDCCfjHP/6BbEwblaWU+NOf/oQddtgBt99+eyx51DN//vOfsd122+EXv/gFOjsDBEkOdHd347rrrsOUKVPw1FNPRZYuIYRYcHPVzxI9++nOq0FZCCGE1Bnn/v1ceJbHUg/O2m/JLImLbTZHuxiZyO6MPlBzc+XPYVTwcVOMZsd0IvqeEMLNanHgoAYDI5N0CCMTWQeCNwDeylWJ5GMraC2ZMLiYAvRETNkLeVXqG9sTzl0EjZryVhcvyMhENOrbpVQYDMi1alF4Ku31CGCjMmByNbHwkhs3teJhRV14ngehuq65jfLp0cbIpHyua4rayKRQhAxp1lBhWOE4P3g+7djFiGNlVtPmbdJ0MUtwnLuCBE1+6xw/0xf/sthXYKCILMG68CWidUfa1nAgQsMMm5PJrcV/DkYmg7MC3YUeIxMv72Y05kxAvXorV5jFdzRGC4vTegCAF8YYIUZDINPeYDVuAtH2/Toim/f/O5rlqy8AtYi1ov+brKsa0vYFME07IcKYE0SJlOgzeOp/McGCOKzLKuvQprARrysjTax/akvbl0beXhJrf/XRzOuKi874FloGBX+rmfPsHDw9e53Rh5QysXoM3TMMxtg/zbxPebjPlw87AkIIfOmQw9Ck+C5w94MzkY1obSQBeJqXsLQUuPzyy/H6668rw40aPQq3/u1WjNtkXPhCOTBxi4mYfftfcOznDgmXvytRzbOaZKZPn452hRng6BEjcMH/BpxBYbnOPOrgz2HPnXZRhvnT7/9kbUxi855Ub3z7lK/i4L32wajhI4zCu6wbyYYNjUwIIYQQQgghhBBCCCGEEEIIiYmxY8cqr+fzeTz22GMJlWb9w/O8SI01dHR0dOCrX/0qLrzwwsTyrCXZbBZnnXUWTj75ZCyP8TTsRYsW4aCDDsKtt94aWx6EEOKHlPIVAEt9Lm0uhNgj6fIQQgipH95b+R4eXvCwdbyhWQeJQMFe3ONmZBIgZCpDNFcJL3S3U0MBi8rwwC6haJJREkIEWdJdNBSBA94ahMlX34U1Z5+Nwvx3A+M0pkIYmdTDyd0AvNbWRPKxFbT2Gb3kQpyUbWmCotRN2ApKHMYbqTENqja86Mp1+QdsaNBnphDaex3q7z8hmr0/jgIUaWsu0IvnME64mGOUKHjqMdTTdI7yy9UnySvTLavX5nzEgtO85ySYrUwkAiMTnz5uLZ4HsDCrNnSyef5O5kuOdWnVLg2Fiv3SlMDuC5rxg/tG4dIZo3HG7OHYqM1MFuNUFxGaGUQlMrYVjoU1+SknzrWCzNmv74bkUsgWeowZiqbmOBERJG70Vpp9S5cRGsxY4bAeANzmqhIyRiMT026VsjUbi7PMCRDkVxZkQJZ2MGMzjqOrSwGItIuRiQwvsI5IoC0BI8cAW1G0KyWDp2oStSp1mXss/W98okVDlO9gPuE7snEfchJnOxvYY2McTBg7Ft844SRlmBuuvKGi/8ukemMCQ+SdD/xdef2kL3wRADBq+Agcut+BgeFWt7XhgSei2zdT1LweLFuyDNdee60yjBACV/z6Cmw6cdPQ5QnzHtDc1IQ7rvoFvn3KaaHLYU1CXf6OO+5QXv/6cSdi6OAh/hdNvt9UNeZzv3K6MvgTs55Ae5vaXLRfFhvQ+Jhy/PZFNlxoZEIIIYQQQgghhBBCCCGEEEJITGyxxRbaMFdffXUCJSFRcs011+Ciiy6qdTFipbOzE4ceeih+97vfJZJfPp/HmWeeiZtuuimR/AghpIzZ8N/DfWjSBSGEEFI/fP2eryOVtt9eOSRrH8fFkMNGNN6XT9b/5O1yRHNT5c+ijreYRiTITUJHJh3FokCPeHvC6jRuv3lj/PD+0Rj/7zasuvtVfLjPaWj/8Y984zSm3R0dkhLW6fBaVyeSj60RREm8LfPupwSb9MWK8ApxgPXjchGfazKRVZWYyWV8w4mmZn1WeYWRSbvGyKSpp55EkGq3LxPDStMYuASnn4J0EHp35QMMYBQInXAkFXy9oJl7dEmXP3Ybc61yI5OmQsRGJsUIjEzKnp3reCh9jBRcTGdszGS0KPpWII4GC0GCJj9Rl7GpSJXBzLn/GoEr7xmDA99uwafnD8KXXhiK2363MaYsbiwLFlBBDnURqwGDI9YnYEdpZCLjMzLxsg5GJlnRJ9j3MxKKlYCx1FulNiLqo1ZGJo5mNMUwpj510I9s32xc5vOkMCqbpZGJi+lWWhWnPH/dnCoANNgbmYiUF/79xTS+Lpgw1HqHKa5pXIk+g6da4mKiJV2dTKBYu9V6+PEpV85zf58MzqbMJKPW97wB8r3Tz8CIocMCr7/1+lt4ZOYjAOrnu0sUPPPKXLzzwYLA65/acWdsPXFy388nf+FIZXp/vO/eyMqm89r65W9+i26N6fNJXzsJ+3xmn8jK5ITseZ8UQuCs49WGObEVwPe3Pb8XhqY8qlBvv/02Xn75ZWX8048+LvCay5rti585GGNHjwm83t3djVn/nGWVZnnfdvnaMZBGhlQEy+QNyfiFAAb21oQQQgghhBBCCCGEEEIIIYQQF3bZZRek02kUFZu1nn32WVx77bW44IILEizZhoMQAltssQV22mknTJgwASNGjMCIESMwfPhwdHd3Y82aNWhtbcVrr72Gl19+GW1tbUbpXnXVVdh5551x4oknxnwHydPd3Y1DDz0UTz75pHGcrbbaCnvvvTfGjRuH0aNHY/jw4WhtbcXy5cvx1ltv4T//+Q+yGrGWlBLTpk3DhAkTcOSR6o1MhBASIR8F/H6XREtBCCGkbnhl8StY2LlQL4b3YWjWYZuyg6C26CI+zPibC1TQXGU0oPUDqOGG4xDmIBUkcQuOYlGgR+h/2YzR+ER7pbBPemksv3k2mqb+A81fPKriWhgjkzjFyTZ4lqeeutIjuDdvBH31E0Yo3Z2xa3cRnnLqIibUid+rixdoyNFo0C4V9ep1qMewVHNvH9FVl3HdhxgcslmgpcUqSlfWxchEc11RFzpDrKLOI6XswQcJov0onzeaozYyKXhubbw8jXKhvWMT8DMoczmtWPt8LconHcwSXOvSyrTF0BRKlImkPvNWCw5/tf9J3E1FgYv/PhqnnbUc3U2KQrjMyXVoZpDWKTOrcTDOC8IzOfHcEZm3fz6Dsym0945DxaSNQQLMOerdyMTPcMkEL8SaNlZDIMOkU7b9pp6F5kZrUf/yB83b1gZJsDA/0Tx/IQRE2t7IJNUgwz+nxJ9zMvnZrM9iw2HMkDLEWszzAN92FG2dWzeZeh5LSGSMHjES5516Oi698YbAML+++tc4+LCD3ZyjerF9qwj9xqUp6h0a45GTvvDFip8P2Xd/bDRyFFau8Tevfey5Z7B42VJsuvE4q2JWIwVQTEkE1cDiZUtx14y/K9MY84kxmPZ/00KVo6JMjmNRT7xo353tCqApt4XJVhD333+/MurUHXfCpE02VaRtUIiqIOl0Gkf/z+dx891/Dozy2L8ew/nfOl+fdl8xwn9PGCiEGMbIBgqNTAghhBBCCCGEEEIIIYQQQgiJiSFDhmCvvfbC008/rQx34YUXolAo4MILL0QqVX8nXl999dVob68UET3zzDOYPn16YJyrrroKY8YEn2KiYptttnGKV2KPPfbAUUcdhYMPPhg77LADhg4dahRPSonnn38et956K+6++250dHQow0+bNg0HHXQQxo4da1W+W265pd/v7r//fjzwwANWcUzZbbfdrMJ/7WtfMzIx2WKLLfDd734XxxxzDMaPH68M29XVhQcffBCXXnop3njjjcBwUkqceuqpeOmll7DVVltZlZsQQhxZXvVzaVfglBqUhRBCSB1wx5w7nExM0kVgUN7+fc5FXKwToPvmk9OfyCyqhfcO9ZAUMoSQsjKhBO4xhAB614XNGL82YKuvTKHt5tvxiSojk6Z0k3N+Xp2Itb21yRiZWAnusU68LUMYmcjubks9g4DM5SCafJ6rrSjY5VT0orpNVGuCMwV/wxHRoDcyURkneF3qMSw1qNRP1H3aWDwUQnAtu7r6j6caOvOd1vloZxzFGF7QmBrotN7lYufugvoU64p0ywwQmiLW78uiBDTtVZ9IeOFR0cecw0XkozvZ2socxcUswdH4wuZepaGZW/lYve+8QYHhRnWlsf1HTXhpcjawrzsZOERowBDVqdO2hgOFfBbuq4NKVKbt1djer8x7MBjdKhiSFVhZ6JkjPEeDDlfyL89BerPNkZ60BUSZIaC3Zo1RfJf3gEhwNAQMZUYSo5GJ6WhoPRbXybrYD6kxjQcQWDHBRib270Wm5jBGBpgN9kYmogEJCoUjyihUMuaR88Vkx0NfikX7eaAivO3LWpCRSY2phZFJnHlSvB7I2Sefipvu+hOWt/obmn3w3ge47+77cPLJX3bPxLL+bb959M8veJzvymQw45FZgdebGhvxpc8fVvG7xsZGHPf5w/Dbu//kG8fzPPx55n34v6+d5Vbe8rQUS8rb/v43FDTrsDPPOxNDh5ntMTFioPadiMaTHhth/7QeffRRZdxD9z1AnbjjOvPQfQ9QGpk8++Sz8DzPeP9WVO96AwEXAzyyYUMjE0IIIYQQQgghhBBCCCGEEEJi5Pjjj9camUgp8YMf/AD33HMPfvzjH+PII49Euo42W51wwgn9ftfQ0KA0MjnhhBMwadKkGEtVyZZbbolzzjkHxx57LDbdVHEiiwIhBPbaay/stdde+OlPf4qzzz4b994bfJJQa2srfvKTn+C3v/2tVT5f//rX+/1u8eLFSiMTvzhxcP311+PPfw7esAEAw4cPxw033IBTTjnFuJ0OHjwYxx13HI455hjccsst+Pa3v41czn/DbFtbG8444ww8/vjjTgJSQgixJMi1aqNES0EIIaRuWNaxzCne4Jzj2tXBWEAnQPdDZvRCc9FUJQ7WrcdruT87rFi9lyQ0RdJRLAoAR740RHk9O7/aky2ckUkRERnEhMRrszd1cMFW0FqUPfVjKr73Q2bNTR/6yGYBPyMTW1wMgDQi3n5GJnl/IxM06o1MVGYLXpf6VPlUS2/6EX1GMBLcBsXNdAGwM/ftynVZ56MVpSnG8KKmLUhN4uV9pzNn3l/L67WpEO03H1mU4U0Byn1MHJuA5zOvuwgIdXHsDEMc+r7D+gQI7oK+oi4f0xffNMsexn7vqE2Cjp4zBC9NzgavUVzaSIwGDK7YGg5kujujMzKR8a0VZMG+rgfnUn0mf16I+dmFxV++vPdfEqnGIhqGCAzebTJSLc3KeH2EWCOGwtEQMJThXS2E/FVYj8V1UOZAugPWW2UEjRJBppgupluqOBWGXLq6FIBw+JtoqlGEf04RPWcJM4/MRETOUmjXekkgw5oBrS/mQwmNJRuSgL5eGTp4CP7va2fhe9deERjmtz//LY479hgABu/HdYCqVf390X+hvTP4XfCQ/Q7A6BEj+/3+5COODDQyAYA77v97JEYmxYAx2fM83H5f8P4PABg5aiSOOvEoZRhbBmofjXsIy+VyeOqpp5RhPrPnp9WJSLfxf9/d90BTYyNyAWbFa1avwdy5c7HHHnsYpRfmO9JAw8pYlRDY2pUOcIQQmwshjhRC/FAIcYsQYqYQ4lkhxCtCiLeEEO8k8N/fal0PhBBCCCGEEEIIIYQQQgghJDlOO+00DBs2zCjsK6+8gmOPPRabb745vvOd72D27NmBZg+kh0996lO455578M477+Dcc891NjGpZvz48ZgxYwauu+46Zbjp06dj8eLFkeRZa9577z384Ac/UIbZbbfdMHfuXJx22mlOZjupVApnnXUWHnnkEYwePTow3BNPPIG//OUv1ukTQogDQYYlZpM3IYSQ9Y6gE6p1DO12245ZMkSw2dBe8ByMTHL6U7vF4CpxcD0bCzoKrPuTwD2GEFRtskZ9XmG2tX+7C2NkEkqgGiFeh72pgwu2glavJI4IEDkY0W1vZBJofmIrknARTGvaRLV2oTvvX1ZhYsSi6Ndet7rOU4MNReOmVRbGyMThGQfVmwqt4FgxLenmOtXp1QAgyh58pqAXU/elWyYwao7cyAThTQHKDStcm4CPOYeLOFw3PtmMX04GL451aWWwYvrd22Jq2n5xz1gTtK6SDuN3aCF2DNiegN3V3R5Z3nGK4z0HI5MhWdE3pkkHs79oEPDyDcitSWPN4x+i9Z/vGsWqVXml4zo6lMlXjIZARuOhBFK26/46FqMajZ8Bt5sv+o+DtuMKAKRUccrzNzAyQYP9Oe2pxlRiRiaRtYYw5TWMKhGv6ZQxDuajFeOMbV0FhI+8K1sXqwZjSf0OX+s9Z3zpBGw+fkLg9aVLluLPtwWbeOiwmckGZ0WsX7x0ZiAnf+FI39/vsf2O+OR22wXGm//hQjz98kuhyiYBeAEvJk++9CIWL/1YGf+oE49CS/U30lpR8/WIOv+wbez1119HJhP8TaG5qQm7T9lBnYjJOtOnHoe0DMaO2wS3RQB48cUX9WmXilH24upULzV/1uakIyjqQDX3IW6s90YmQog9hRC/FkLMB7AAwL0ALgPwvwAOBfApADsB2BbAVgn8t3nc90wIIYQQQgghhBBCCCGEEELqhxEjRmjNIapZsmQJfvnLX+Kggw7CyJEjcdBBB+H73/8+ZsyYgQ8//DCmkg48Bg0ahOeffx5f+tKXkErF86fP8847D1dcEXxyUi6Xw/Tp02PJO2nOOeccdHUFi8V22GEHPP7449hyyy1D57X//vvjvvvuU5qhXHbZZXUjoiOErNeMD/h9HSu3CSGExEmQsEvHkKzjO4mDuNjFyARZA7Fb86DKn3VGJjXcb+wqwOyfUDTJKInMdMWMxrT7yb51IXgD4HXqjXeiwNZcoGTC4CKELyFzOXvxW4ARkb22z+EdWyMI8arUw92FAEMOAyMTVb16WXXZxZDe8SuqcSuMgCRjb8TTlbePozW6UNSFrq8HnV5dorzvZIvm/bVcqNIUsZEJJCAdBLMVSURgZOL5mDzYmiYBmhdSCaRtTkB2WGvIgts4J2Iol039aQVVLm0kQkFZVGJmeyOTzkjyBeJdK0iHJe7gbKpv/e7la2Vk4kityus4Vob6Vl9jnaKLoVTYOSVWsgZzb8BwHPQumfbs5+WU6ZivbTsCwsHIBA0RGJmYMsC0tr7r/qTvwWHMCCVq3tD/nigDf4gzI1JFU2MTfvSNs5Vhbrrhd2jvjG5tFsTGbQ0YpzHHdWXB4kV4au6cwOtjRo7EofseEHj9lBNPVKb/R41JihYR/E770JP/1kY/5MhDwuXvw4A1bYio2EHviXPnzlXG237LrdHYqPnOGWItsPuU7ZXXX375ZeO0amJcVSOUZnaE+LDeGpkIIY4RQrwM4BkA3wSwBXpexfz+A3qG1Tj/I4QQQgghhBBCCCGEEEIIIRso559/PqZOneoUN5PJYPbs2bj66qtx3HHHYeLEiRg3bhyOOOIIXHbZZXjooYfQ2toacYlJOd///veVz++OO+5IsDTx8Mwzz+Chhx4KvD5+/Hg8+OCDGDFiRGR57rvvvrj88ssDr8+bNw8PPPBAZPkRQkgAB8B/X0f8O0kJIYTUJXnPTbg7NOsmyHYx5HAxMpHdAeYCZYhBlUYmKhE8UOODIiMSKUmZwvKDDsdHU/bFkp32R/ulF0MqTgJ1yiNhEWRTg94wIgjPxegiBopdBsY7EWAsvuylT3gSxsjERHhaTUbff41wOhVdHae6CrOFgPvTCU8ApemPzKnLkRo6uOcf2kdqepS9+wAnu+3HkEzePo7WMEIxhuc1JhW6pMtNFAoWzgPlY0xzxEYm0kN446iy5+7aBKSPOYeVuUdfHMU1y7SczL+KbgYLQeX2E+7JnNlYLyweRqpXiB8oFHQwaKlHMwMrIxsAXZm2yPKOU6AndS5KPgzJir61cWRGdwnhahgUGsd8Ze/6u/jefKw69gR8sOmnsWDCp7Fkp/3R9YdbNXFjfHEwSNrFyKSeZWAy6742DDLudKkjlXmUEGKd+Y3WfA0QjcGm94FIGf4xRTWmCcOiJNWsfO4rcddur2h/v+XhLZ9NpPNTlM8poQ8niZkk1O/QWDecdPgXsd3k4ENBVreuxg133pZcgWLgjvv/ruxzx33+MKX5xClf/rLykJp7H5mFTgeD0BISgBeQ/L+e+o8y7uTJkzFlpynOeUdOrfucbgwLWb5XXnlFeX2HbbbVphFmnbnjNtspr9PIxB/b76m+bDjVRQDEY6tVQ4QQkwHcCuDA0q96/59NmxBCCCGEEEIIIYQQQsiAIVfIYnn7R7UuBiHWjB22CZoammtdjLqjsbERM2bMwD777INFixaFTm/ZsmWYOXMmZs6c2fe7bbfdFgcffDAOOeQQfO5zn0NzM59DVAgh8LOf/QwHHOB/ctC7776L999/H1tssUXCJYuOK664Qnn9Zz/7GTbbbLPI873gggtwyy234P333/e9/vvf/x5HHnlk5PkSQggACCG2AjAFPXtKRNn/A8DHtSoXIYRsiJgKWZPA1chkSNbxXDkfwbM2iouRSV5fx6JlcNUvtKlalyMyIhSqtr/ehtJSIPPrx9E562ls/OQst1PB/Uh4I3tT2t3IpF423cvuApKQ2qmMAvwomTDIEEYmcBCeBo6Rts/Lc+g3BXUcz9DIRKRSqFxu90cq8tINzalhQ0s5qQOaVlkoIxN7s5rugn270LZfRVXozEc8jZq5PG8P5iYP5WNMU8RGJj1qtZCGE+XPPUIjExdxuNLIxDY9TT+OLA4s79VwDSQsHquubvyej5Y6mRvLSVs29UzWXQhaTVHGZxbiVU8qBgzOrTMy8QaYkYlrPwuNozmPlBLeyhVY8rlTkWtLoyRHy3wskbnwdoxbuxZDvnO+f2RPvQYIg0mqTqfGF+uv75cweX8O8jMLepe0HVcAfb0WvAKaUk1aYzwIAI7vXtq09SmEjG+bSpj8zOMKIWouopSehFS53fjFKSu19fRbJ6ac/ajFOqLWD3+AkCvk0JnrhBACIwaN0Jr5mpJOp/GTb30bJ11wbmCY6++YjrOOPwkbjRoVSZ5J4nke7nzgH8owJx3+ReX1TSdMwGc+8xk89thjvtc7urpw7yP/wle+eLRzOYs+26RYMQAAIABJREFULybLVq3E2wveU8Y76KCDICEhIl63uH9vq3WHDnSqBGC+ugsK98477yjjbbXZRH3iJuN/wG1ssal6/8u7776rT7svi1o/q+QQ0uG7BNmgWa+MTIQQ/wPgbgAj4G9gkriBoE8ZCCGEEEIIIYQQQgghhBAty9s/wg/v/XKti0GINf/vmL9g01ED18whTjbbbDPMnj0bhx12mPYP8i7MmzcP8+bNw4033ojhw4fj6KOPxllnnYVPf/rTkee1IbLffvth3LhxWLp0qe/1xx9/fMAamSxevBgPPfRQ4PU999wTX/5yPHNSOp3G9773PXzrW9/yvT5r1iy0t7dj2LBhseRPCNnguSzg9xKAejcjIYSQSJHd7idKR02h6CBwBTA467g9sSS4tIjuYmSCrIHYbdCgql9EZAgQA9JRgGlC5/ws2i68ECN+/vNoEkxYVNscwmDWqxPxVzHrAXA4ld0SW3OBPlFC3m2cAACZzcJ2O7MMMj+x7YMubVEjtqk+hDXIyARAj8pBdWqrwmDAK6jNolIjer8bRLVTPJSRScY6TiZnH0fbfhVjeFFjaqPzEig/fVekBDzPU56o3Zdu2RjTnI9YGOYBMuR4W/HYnY1M+pfBxchEdcKx9djlYN4hXYyPYCdmCmUKFUCpbgKFgi5GJiFO+K4mKnFb2tLww2WMCUI3fpRjc78ylwOkvTHgkGwKRdnTlpyMampJjcrr2r+llFh95tm9Jib9WXb1DEz62hlIDR/uk6dTloYF0wdxOzW+jmVgBiaVQQSZEdmOK4B+PsoVc2hqaDKryrTD2l8i9GOSUkYnNKyVYtEHEZ93kDn5AkZmgcG5XtOjRg9rhngoKob6UPNk0HwdtZGItcFKtNmT8EgpMX/lfGSKmT6zikX/n70zj5OiuPv/p2ZmL3a5QVBRwBMk8ZYoGi9QI0rweIgoRmOiJhrPaHx84uMvGuPjkUQlosYbAS+iHCtBoomo4EkAD0TklPtc9t6ds+v3x+7szvZ019XdM7Pyfb9eq+x0Hd+prvpWdW99P1WzEf0q+mGvrnv5Usf5o87E0Yd9D0uWL3O8Xt/YiD899xQeuOW/tcotBOGA+Z9+hI3b3M8BOGTQYAz//hGSUjguu+wyVyETAJgye4YnIROnaW3p8q+k+U499dT8+89CImAxpnXr1gmvH7D//vJCFGx0u6UH7i8WSqmtrUV1dTV6KogOZT6DFsJYDRqT9xzEnovhEQCFB2NsDIA5AHqg/ZSc9NI7/YOMz2WPLPZ0Oo84Tnl8eEQiCIIgCIIgCIIgCIIgCIIgCIIgOjMHHnggPvnkE4wfPz7Qeurq6vDCCy9gxIgRGD58OObNmxdofXsCjDGcddZZrteXLl2aQ2v8Zdq0abAEJ9bedtttvp1C5cTll1+O4mLnE8MTiQTmz58fWN0EQey5MMbOBTAe7sfCf5pbiwiCIPZwFIO+uWDd6hcJyyyotiJqth3TRJBDJ4C0rR6FU7tRVtbx9wCfAzxjGICpStO7S3wrK0jRFSe8CJm4BTbmGiuem+22uoEF6aAEL4HSPBbT303sIVi1Q90GIg8yv2vZGjGecrdV5lHc7OONjeCS4PZQj+4tdUgFmBQb38t806wvztWc0BcZkLUnC7mnSKTEc11KKmSSUQ9jqGqqkljTQqaQSXHS5zmGM8Crv80IgDU+L9thfvI7wCek+zUdxFUCyQMg7CYW4PSxoi9Nf1+V7+1afxqDPpKL9acuun0gGm/yrW6TdagKvK7WKF+XGEOSt/QlK8ficV7xKr5kjGG9lmWh6cuNrtd5KozY7BkuF/MbSmXkh3O8hteBRwXCcWlc3KHbGDYS3ZKIn7StN2R+lDGwIsNz2r32LR+7plJRivZyzmHt3o3Utm2wqqpankM0bC2EAOpkXQy9G8IoizOUxRl6NYYxcFcEEYEL6iBEpntvczZfa65hc+T/OojA5NnnFjprqtYgloyie1MYe9WF0bcujNIkw7bGbahprvGtnj9cf5Pw+lN/fxmbtjsfoFLITJk9U3j9knN+LC+Ec1x44YUoLy93TbJwyX+wduMGXfNaigccRZM+/+Zrad5jjjmmTeCmIMj3cHbTiNI0zGlesiwLGze6ry0BYO++CuJCKj7PJcnefftK3yPJxFbaq8j3zcotJiJ4xJ7Ld0LIhDF2NIBXARQhW8AEGZ+lvYFd3MSxWJd0KqIm9rwq9REEQRAEQRAEQRAEQRAEQRAEQRB7AD169MDLL7+MOXPmYMiQIYHXt2jRIpx99tkYPXq08h/ZCWcGDnQ/kWXZMucTlToDc+bMcb1WUVGB0aNHB1p/ly5dcNxxx7lef++99wKtnyCIPQ/G2GgA0yHe++F+FBxBEAThO7xZLbiSNzQEbIl5cGZ5zHB7YEJfECFp6eeRCpkwCyxk21IqCIJvKVTbDP8IOPCzaYO5UEUWOQ6A9iJkkikykE8svwUOXNAN2GwLSvAgZIKEvliSa7Cq26njbpgE5ErqsMctiIRMpBGVLu1q7dohzgcg1KOHNA2gHtPHdds2M29cIbjYRjSpL34i7b+CYBzZXCfTgrDXvbFaHHzUVm7GxFHi8zjn3AfhqA7Bs4ZFJLPHOJM1qAOi+xvSLM+oXbyIVaiOs7iiP2wtTxT4rApPGfjvAgwGDmve0lhcXyzJjaDWClaNWeBweSzUblMBC084ki8hE9N1DAfiNWFhktpHp7rmDQoVj2gi0sELcOy3oSJS6dIwaeEfOybBqLJ2bXtula5ZABYp0q6/ZfL3ep9UJ63c9QersRGJZd8gvmEHEttqEN+4E4ll34BriOU53c1CCGgMWwz9aw1Fa2Tk6FlWuycUsi8xoZN/nXgyjnisGYN2RdCvLozuTSH0aAphv6oI+tVFsKVui291jTz+RPxgxHDX69FYDP/35GO+1ZcLaurrUDn/X67XGWMYP3qMvCAOlJeX44ILLhAmm1opFk1xNyRbdBUAlq1aKcxWVFSEgw46yKxOCaYiF/n33cEN+l27diEuWdP0791HXpAHP1tcVIye3boJ02zZouYXPK8dO5l/9Vuwlfhu0+mFTBhjZQBeBlCKjkIlaeziJVsAfAhgBoCPbWky//8igJcA/KM1/TcAmtFRlIQ7/ABAEsBrrWXYf9709o0JgiAIgiAIgiAIgiAIgiAIgiCI7wLnnHMOvvrqK0yfPh0jRowIvL4333wTRx55JP7+978HXtd3lf79+7te+/bbb3NniI/U1tbi448/dr1+zjnnoLS0NHA7fvjDH7peW7p0aeD1EwSxZ8AY68UYexJAJVr2mQAdD8lJs55z/lFOjSMIgtjD4VG1gBzeGLyQiYlICABUxMy2Y6ZPYtc57dMyEMbgMfHGcMd4d8mJlPnEc7B6LvESDC6DZbeDFyGTQgjY5PE4eEocJOsXuuIC6cATnjC/pzymL3LhFqyqfbdM+qLE39ibMG65+xqpS3EJ6OY1tZKMAOveTbESVTwImSjOaZnEkvr9Qtp/BWJUiZRYQMKSRKSEbMHOm2o3iW1Jl5vRn4p9FzJhnoWjOrhAA/ERAODJ7H4s0/BxQnhaq255DjYFkqcV5YAmRVGR9PeNaATZuwYKmgg4pPI/N9rRFRxojvknZGIq+ieD19cZ5esSZ21CJjxfwiCGOPmLnNRr6CtVRL6S9c7zmReBMCkKRZv44VyLEerAE3IhEzcv4TaGdQWSVPK0rTck958xAEUG4hYc3kUifOqaysVIEvJ4HIk1G7KW7VYKSNZqrDELb+pqoyzOEHLpOx3mb93vkINnWbPn5QK+GXsgu5t2Y5+aCCKpbC/ZvSmEikZ/79ct/32j8PqUyplYtb7zHEQz/c1/ICp4p/HDY47DwH32VSippZ0vu+wyYappc2YbvQMFgJTDa9qN27YK8xx44IEIhTt9uL2/+DkkbGVVVVVJs/Tt1VuhXG9GyupQsRMwF6vprLjN5QThREAydjnltwAORraISebvjQAeAvB3znnbUWiMsV8AON6pUM75T+2fMcbCAI4EcCKAcwGMstWVJgzgMAA/5ZzTrjqCIAiCIAiCIAiCIAiCIAiCIAjCkVAohHHjxmHcuHH46quv8PLLL2PGjBn4+uuvA6mvrq4OF110ETZs2IBbbrklkDoKmVgshvXr12Pnzp3YtWsXmpqaEI/HkUwmlTafLVq0yPXatm3b/DQ1ZyxevBgpwQbvY489Nid2DBw40PXasmXLXK8RBEHIYIz1A3ACgPFo2etRhvbDa+y7VdOfP5pLGwmCIAgAUbUAbt7YGLAhQIqbBRR2MRQyMREWcDtFW0hCHLTOHKL7mEwQIJ/7sztRoCrPcQB0acRcjNLK0SnWQht27chZXaanh3KTQPh03lhcPybPLVhVtyCTcSMJPLXH0gsFMiRRxG4CRZaCiFWookKaRgsPw5YrzmmZmAmZSFO4XpHNdTKNBPvY2Var9l4s8/1bic9CJuAM8CpylWGfaSyU5SCIZuJrRPdXt+VMxB24B7EKJ9udBNt4Qk/IpMgh4FQX1To7ZvJvHvcruE1XcCCe8FHIRGetrHHLeJ1ctMqJ8lioXcikgIUnHPGwnvCE4TqacwstoVLuuN7yAJfDKt1MV/wHQE5EEUxREsZz+coWnMeJSTBqSCL6lV4XSn0fY2BFRdr187b/eMFHH6/QzWS1WTt3gpv0Vxus7TW3RuU5pDwWQn2Zzz47SMGkNAZ+IWeuhLv8O9CKOh91dVXokXCfy7pGQ+Ccy9+HKXLEUYfjtLNOw/x/zne8nkqlcPfjf8W0Bx5WKi/fcsNTKmcKr084d6xaQa0D4/TTT8eAAQOwaZOzMOambVvxzicfYdQJJ2rZCTj75M07tgvz7LPPPgXxXqwD+V6PCOo3EorLYPfu3cLroVAIFV26SMvx2kRdy8Xvk2R2thvS/s9cjNV8i1GHO/d0QOSYTi1kwhjrAeBWOIuYpP89D8CVnPMtXuvjnKcALG79+StjbCiAGwH8HO1P5GlbDgPwIWPscs75dK91EwRBEARBEARBEARBEARBEARBEN9thg0bhj/+8Y/44x//iPXr1+Ptt9/GggUL8NFHH2H16tW+/SGac45bb70V5eXl+NWvfuVLmYXKZ599hrfeegsff/wxli5dig0bNhif2iMjHo+jvr4eXbt2DaT8oFi6VHwuw2GHHZYTO3r3dj/pZufOnYjFYigpMT9VnCCI/MEYeyqX1QHoAqArgB4ADgXQx3YdyN5tm/n7BgB/C8pAgiAIwhkeVzxZOBdCJoaBu+Uxsy3KbSexa2Q3EVuRBu46RVlLAjfyul85B4GqPJkEi/iwzTZI0RWHyAwvQiaFcHqotSN3Qia6QRdt7eMl8DgR1x48rsGq3EmbT1COwbiR5bF3QbGQiaQyl7HCFYRMWHm5Wh2q79c8BELyuIvwjIBoUnEeBNC1mWHQriJ8f2OxMB0LuTdG0kFsIxOpkImtW2xvFAeEtZWbDp7mAQiZgHkSGQLgy8TWNq9nYBLgJcqjK2JhJPDi8D1UCXEgK7fT7Va8X+m2iGiY5DqfmfjBfAcPOhBWiZbPIOYmiGVAUMGdvL7eKF+XGGu/R17FjHKMiciQLxi2UyjpYW7M8zAyEq8rtEDmTCQilQDchUy45XhN168A8vkokWy1U9YBGICwWCTHEe6Dj/arczIgFYuhav1GYbLaaqA46t5wiVXrTLROs6ivTSIR6fjdmAVU7dYXjAmCxvIUGhyETOKhEuyqauk3iXVrYWmIukSaqxCu2pn1eWKdfpsyxlHs8FjNUynE12/QKitcFkYk1XEebti1Vs8gBRhC2FXb0l7Jb9chpTn1d997X0SKv/t/hy2XPHaVxRksK4Vw2L+Q6+v/53q89/Z7rnsUZrz9T3x2xXIcOSQ3f5M3ZfmaVVj81Zeu18tKS3H+qLPUCmt1T6FQCBMmTMADDzzgmnTK7BlGQiYAkArxNjEzy7KwbVe2j8ikf//+xu+Fv7v4uYjrWFZ1dbUwdUV5uZqokMJcLnq+7pZ+n+SCqpBJh2dQo2bTfVmY3wV2yAfhNWLPoVMLmQD4GYAKdBQuSf+bA5gB4GLOTY4fkMM5/xrArxhjzwKYCuAQdPQYJQBeYoz14JzncmMOQRAEQRAEQRAEQRAEQRAEQRAE0YkZOHAgrrzySlx55ZUAgNraWixZsgSLFy/GkiVLsGTJEqxcudLTBr3rrrsORxxxBE444QS/zC4Itm7diqeffhrPPfcc1q9fn9O6m5ubO52QyYoVK4TXlyxZgi1bPJ8ZIWX58uXC61u2bMHgwYMDt4MgiEC4EvmLc7bvouIO1zIPz0kBuIpz7t9RxQRBEIQSPKpwojQASyGY3SsmIiEAUBELGVaoHyBnsqmex8RRLI77wn06gTYQciFkUlsLJhBdVC8oyKUQyxJcKS0yFzIphJNnrZ2FK2SSxkvgsWwsOqISrKqCid2SsWbZGlEkkCFzKW6CS1xBxIpVVChWIi1KN2E2bsIzoixJhTwcuHxBV1zwn3KUJRTmHEFbJFMyIRPx97cHhO9q3CW3B+3BxkUBxYbxuMeQgUwBG4OAbgCwHMaZyUnFolvANG3jtrVGausWpFauAOvSBUXHHe+cKWnud5R9q6JvaxMy8SNQStL3HfEgbJSFT0XpitkkVHyMIkEJu1iGQiYhMJSmu1InEzLxJIzmAdN1jIqQiWuKIJfDCj7RaM1XwN2JByFkYvB9ZQIxCSuRrlRaFisyEdjg8Ny5fOybzZs24+VrL/OvQILQZKGHvBc//jJ6DzzAN1sKlS5x+ZyRSsZ9FTI56NCDMPqC0Zjz2hzH65xz/P7RRzD7MYXQ4zzqFrwwa4bw+phTR6KrRBCinfYvcvnllwuFTN5499+oqa9Dj67d1ErOuMVWqH1+a4o2IylZe/Xp0yc40b4CEA42wkez7euxaFSsLNSlVPH9psfnky5lXYTXZXa2m5Hje5xvIRPPS7BOOiYIIzq7kIl9hZ8pYrIMwHjODf+qqAHnfBFj7EgAzwK4GB2fhkIAHmOMbeScvxm0LQRBEARBEARBEARBEARBEARBEMR3j+7du+O0007Daaed1vZZVVUV3nvvPbz33nuYNWsWNmzQOwEqlUrhsssuw1dffYXiYvEJrp2BhoYG3H333Zg0aZLyZgK/iRkEquSbjRvFp8PdeeedObJETF1dXb5NIAjCO/mIhHbaBSWy4zbO+b+CMoYgCIJwh8cUNwQ3yYPZvWK6Yb08ZjbVmQQSGgmZSDbrM6eYeN8EAfzHHpQdSB011YAfQiZBi640NwMZoprFYfNn/IIQMtmlJojgB9qb7tNDIulByCSuL2TC3d436NpvMm4kgad2XQGRkIn0icDFt/Fmuc4gK08LmUiTquEhIMT1fgmIKxyZPv7jCkz4SENAN+TeGDLRLkuikxKyBY1XN4lPUk6TDlQpSQbzeOhVyCQz8Mi4Bzj0Y13hEQBggs6s7bta1xo8FsPuy65A7bvfglthAEDpXkCf+25ByY/P65CFeziJvKV/dDSSMQbLshAKtXcu1TUQa3VdER2TXNpIth5yxE8hE5+IpPT6VCzh33trU9E/GbzBXLCwS3odXoD3SogHYTRv9Zr5ShUhE1cCvDUqo8E+b6nAC2Bd7IrCWoO5PMu5rfdDRkIm4nZNpBRFsRgDTIRMfNAxUS5AkqyTeR+CMCbPcfOeUTE/FY8BJWJhA1XSXvLa316Lf1b+E4m4s19868MFWLh4EU465jhf6vWbZDKJV+a+IUwz4dyx6gVmdKShQ4fimCOOwOLPP3dMGo3FMP3Nf+Dqn1ysXn4rKQakZ5eogqhsaWmp0TtXJQzHjqkAr38EZ0Bc8n4sElGUPvBoYiQcFl6X2dluRo5vVg5EvkWYiOARey6dVsiEMbY3gCPRUbwkjQXgylyImKThnEcZY5ei5XSeSzPs4QDCAF5mjA3jnG/OlU0EQRAEQRAEQRAEQRAEQRBE52Wvrvvi3gtezrcZBKHNXl33zbcJewy9e/fGBRdcgAsuuACPPPIIFixYgKeeegovv/wyLMU/Wq9evRpPPPEEbrzxxoCtDZaPP/4Yl1xyCdatW5dXO1L52njsgS1btuTbBCWaFYKWCIIoePK13c5tRz3PuM4B3Mo5fzg3JhEEQRBZqAZ9NwW/LkzxlFEgfHlUEvXtWmHL85tboJljFpOtkQkDIRNBEDyA/EZr5WCztlVXC/FWdjWCFl3h8XiHLltapHhiqVNZBRCVZFVV5awuXXGBtLCAUSB8mmQS2k4m4RzspHu7TISTZEG89iYUCZlItZFcxgpvbBJnBMDaTn6WVaLYaB6C4U3EamJJ8TxYlAQu+bBCr1BBg8sCi+0CNXbsQho10Rolk9LvLIsTAQmZSOY6eQGZ/zYUKHPwDybBZ6I8ukIm6bFVNf6nqF24FciY3aI7gK2/egADBg5C5Igj2zN5EGxys8/iFkLIWHAo3q90WxRpiHe4BpEZfC/uoziGX8FtYc1iEgl9v+SG6t8eALEgjx3eYC5Y2CXeWk/KQn50dM3IhTCfI4br6FDKw9wY5BJToWyjQMsCWBe7wV3Whh1wGQpufigsm/wdkImftK03JH2OMYCZCJkA3u9TAd9ngiDyg6XiYzUZsP8AXDjhQrzy/Cuuae589GHMn/ySsJx8rXLmLngXO3a7v6vp36cPRh4/Qr1Am+u9dNx/uQqZAMCUyplGQiZWKB12DjQriGiXlpaKxVn3QETTpNf+KBUykQiMtME5Ujt3gjc1AYwh3LcvWFlZhySi52vfhEwyGisnYzXPaxgToUBiz6XTCpkAONXhs/Tmkn9yzhfl1hyAc84ZY78AMATAMbbLXQH8FcCFubaLIAiCIAiCIAiCIAiCIAiC6HwUR0owoOcB+TaDIIhOAmMMJ598Mk4++WTccccd+M1vfoN58+Yp5X344Ydx3XXXIay6EaDAqKysxEUXXYRoVO0Ed6Ij9fX1+TZBiZjBacYEQRQchbCjyb6riwHYCuByzvm/8mAPQRAE0QpXOBUTAKwm8wBHVSxumQmZxEwDnlNaAaGA+ynawnpcTn1tw0nIRENcJefkIPCT19X5U1DAois81lHgpyxS5pJSjknf8htrd3XO6tIVA2jzDR4C/E1ELtx9pOYXMOmLkgB+e8yrUGhJpvfk0q68SUHIpKJby/99clsyARdhXsU5LZN4UpznkG3FKE3qCWYxgRiVTBBLV8ikPqb2fikd2FOSDErIxKPIcIfvZTivO8xP2r4G4kArXWEUnrIQnfFaq4hJNqlEBNW334W+b85q/9DDSeRu9sWTcUTC7eErPKUnZBLREDJxxcQPFmCQu0w8wE4i5Z+QiZGgngKWgmiVGxXx1r9tWO3Bqp2CPAmjmwqohLyYm+dhZCIolYvnDVOUhLsEQiZOIkO6AkmAfH5LC5koudFiAyETDk/ic21lEARBZBCEkAkAXH3T1Zj1yixEm533NHz8+VLMfX8+Rp98WiD1e2Hq7JnC6xedPUZzr0lH53vx2PNw211/QCLp3PaLv/oSX61eiWEHHaJVcubjg8qBNJFIhIRM7Igmcd051JZe9j5ctU+lohZSm9uFdpK71yPSswyRgQOV8svqUT3MyLNopXZ75lnIxOtSuRM9thHeMTwCoCA4SnDtmZxZYYNzngDwMwCZHir9RuQ8xthx+bCLIAiCIAiCIAiCIAiCIAiCIAiC2DMYOnQo5s6di/vuu0/pRO/169fjnXfeyYFl/rNgwQL85Cc/IRETDzQ3B3+ivR8UwqngBEF4hhfAD9Cyf4MBqANwL4BDSMSEIAgi/3CFUzEBgDcFv3412nTMgfKY4XZMy9LeJJ8yCC7mEuEFFnZ6fizcHcU8B4GfvN4vIZOAn2dsQTClRaXGRXnedO8DVo1P7a6Abg9njMGyLOMAYKBVVEhXhMAlmEcbk3Ej6b/2A1hFAe6y11Ru45orvLtgFRVKlSi/XvAybg3EahKW+B6fttxAoEjQFunAYjcsScS3PWClMaEmNGahJWOhCpmk3z9xDwJU3GGONgmgFwWHawujpCxU/9/jwiTRVTs6/O5lnnWzL6ufqwTiI1PIxNikNnjSIDCxAN9LhmVqQzbcgkJN0BLg0zCTN5oLFvZoDiGZSha08IQTuVjPOmIoVBT2ENcb5DBS8bEmglIFjdJaQ89PhDT9ikqetnWhrAMwBhY2PKfdc+f6rnUOgiCEKLg6VbE9Xfrs1QcTrpwgTHPXpImSv4nn/j3djt1VmPfB+8I0E84dq1eo7Tv26dkTZ534Q2GWKRIxFSesjFe1xUXF0vSxWMzonSuhhr33RiLiuT9p8uyWzlvdjNT27WppJWO+qEhRbM0HYVQt8ixGXbh/NSAKkc4sZHJYxr8zh3kcwD9ybEsHOOfLAbwI5/F4Q47NIQiCIAiCIAiCIAiCIAiCIAiCIPYwGGO4/fbbcc899yilr6ysDNgi/6mursbFF1+MWCymlL5nz54YPXo0fve73+HZZ5/F22+/jS+++AKbNm1CdXU1otEokskkOOeuP88//3zA3yr3JAI6VYogCKIAYA4/CQBvA7gKwADO+Z2cc/NIGYIgCMI/FNf1PAcihpbBJuCSJEORQeAXACBladdpYiOXrP1ZKNt+mThmXuN6PQSZK1dRX+9LOV4C4pXKtwUylhUZCB60YtK3/CaXQiYmQa3RRBSQCAMJMXkOj7vk0bXfoC/K+q9d8EIkZCKNcnAJQJeKWDELrKSk9d8+hVJ4cHBcUZwhk3hKHJAsExZxRNAWsrFuSSIMQjYFm+akmtBYOiivOCghk6RHH5ZuZi/vyxwC3/wOoGd2BSEJ8S31aFov/k6pJpuRHgQh3OyzB4ipijiku7/qWitkCYS5DIQjeNCCZAaENW9PUiJepIPQz3uAN5uv8/s0hFEfqy9I0RkhXtYTeag37MXcIIVMFNLY5y0VPmzYqG/0uaBQAAAgAElEQVRMjpA92wHuywA3/6jrVwAgLLmvbcJpUiETAMWKQcIZ8EzpalN86psGXYwgiHygMOZlQsBeuOLXV6B7926u179c9Q1enZfXsOgsXppTKRSU+P7Bh+L7hxyqV6j9PnCOSyRiKK/MfUNtX0OGP05lPEeXlZZIs8ZiMW2x6cDJ9/JWMId7nfqKi8XiMkmPon+pqpq2f4tsTUgEU2R2psm5OHSen1O9vudgJIWyR2EoWVgQDLD9nu65yzjnnt+0MMYinHMvM89jAC7P+J2jxcYLGWNXcc7pWDiCIAiCIAiCIAiCIAiCIAiCIAgiUO644w688847eOedd4TpPvjggxxZ5B//7//9P2zevFmYJhKJYMKECfjFL36BE088EaGQt3MexCcgdU5KSuSbdgiCIDyyBbnbascBJAHEANQC2AFgA4BvAHwG4FPOuVqkPEEQBJFTeEzlRGkAzWqB0l4w2XRcHjPfeMtTKe1N8kZiEwnJ5u+ww3dwEDcpGHKwWZvX+SNkErToCo913I7qRchEt/8/+O8H8dyS5xDjMYADB3U/CI+MfQTD9h5mbIPV2GScVxeTk+ebE83KwfdO8ERS28u4BqtqFsRNThaWjDV70KbQP8lERtyETCQiVsxE5EOGFyET1TktA7mQiYEhAh+ekvRhWX32gBWZ/W3ltvaPkkIXMvFw8jN36Me6wiOAOChIN2AoXheWpkklbGElHk4id7MvYdl8mWI7p4d4RNGkohSD5RIlYxSYWoCvhMOaTsHLaeZ2ghI9sxrN1/l96sOoi9aBpQrwZglw8hc5wXAdE1LI5toz86zyEDJo6k+S2/HoUz/CvKvn+W+QV7yMaZdbYSJkIpuP2oRMZM9ujIEV6QuZtDy95EjJpHO5F4IgXFBaR/s5P9vq69a9G6656ue4/8+PuGa554lHceGos1Dk4BeDePSVMbVyhvC6TIDECfueC25xnHPKqejZrTuq62od8+zYXYV5C9/HmNNGisvOaPRMgc6yklKpXQ0NDUh5eA4KgkJ9M8vB9W2z9V+nPp5JPK7/biUTK55RoWDsyJ6VTIRMcjFW8713yeQ9B7Hn0pmFTPaGg/4WgCU+lV+Mls0tRnDO/8MY2wRgX9ulEgCnAPinB9sIgiAIgiAIgiAIgiAIgiAIgiAIQol7770XJ5xwgjDNl19+iVQqhXBYvqm9ENi6dSueeuopYZoDDjgAM2bMwBFHHOFbvbW1zhtnOjNdunRxvda9e3fU1NS4XicIglCBc24/qIYgCIIgsuAJxQBoDye1q9KyEVtvI2551INoYsrS3iRvEkAqC9xlTkImMtGBPO6XNhJk0K2jyR9BjcCDVG3jp7RIHpzhhs4m+NvfuB1//+bvAANCrGUMrG1Yi7FTxmLhNQvRv1t/Mxuac6c7ZxJY0JxoRqkXsYSE/tZkHvd8vmMLJn1R0ifssfQi/8QkrpK7iP7wqLhPsLDGjVTu4x6ETFROibbRFujrVqZBfAgT+PAsQQkblmRw2AMAk4pnh6Z9THEiSCET8zk5bZ/JPWwjmQJsr1jNTip2byOvJx8r4UGwya372Pu5qqhIqHUARFJq/aY4CTS7+QWD9QP3UTzNr1O6dQUHZD5Gh6CCO2WiVSL61IfREGsA8qQLYozHU+ZNcZtvZaiKCTnWGaDfUlnPmfrNVXWrMPG9ibjxlBvNCggI7iGw1+1ZN2QiuiURVVIV7GQMgGKQcBZeOxcJlBCEHp380A8VX2c6T6ryi8smYPLkadi2a5fj9bUbN2DyrNdx1bjxgdqhwqJlX2D5mtWu18PhMMaPPle7XG5/b8AtFBcV47/O/BGefu1V13xTKmdKhUwyyXx8KC0pQXlZFzQ2u7/r27FjB1I8oLVuZ51wfBzz9tFXUVEhTF/f2BhY3ZnUNTQI88rsTJNzYZE8++OcvJcgvjN0ZiETtx112zXKEM0sFQC8/hXqAwAXIfvRhoRMCIIgCIIgCIIgCIIgCIIgCIIgiJxw/PHHY/DgwVi3bp1rmmQyiS1btmC//fbLoWXmTJs2TXgCy+DBg7Fo0SL06tXL13qrq6t9La8Q6N27N9asWeN4rba2FtXV1ejZs2eOrSIIgiAIgiD2OGJqgVheAhyDpDxmHpDNLQvJlJ6wQTBCJg6B3zIhk3ySgxPsrQafNswHvLHcLvIQCoXAOReKGLiWpRhYUdVQhelfTwcLZdfBwxxXvHIF3rz6Te36AYDHPZwwr4nJpvtoIooSD4HHRgIJLnm0gyRMArIkeezxq8I+JOuTLu3KYxIhk0z35Zff8uBiTIRnZPOAZaLN4TA+08iECGT12QOXLcUGS89fJcmAhExSPgUzexjjVsofIRO3wHzLssC4/2LUoUjHPsgDEDLJCmhXrCNdXkQSMJ+mJMHQXOJy0eR7FWDArq6QieWjYIZOECZjDJZlIRSSOzEvQmZ96sOoj9YDPorO5IQ8CZkYrQcAhBXFhBzJ84ntJuJ16WD3WV/NKjwhEwVhPKd1omVZrpG8un4FkM9vaeE0qSAUY2AmQiYcPgiR6IjcifoxR9mAfXHR314SCrzUlXP03e8Ax2tWbQ0SW/35O+TuihQaSjve1HAK2Le6yJfygyRUBBQdOBjxFeu0bm+kawnC++6T9Xl85VpwxTVEJsWHDsp6prbq65HY7Cw+4Ub6+6RJppJYV71W2x43ejSG0a3Zg7huK9333tcHawofpfkg4PdNXUrLcPtV1+Cm++5xTXPf00/g0jHnoazUXKjWD6bOniG8PvIHI9C/T1/tci37HNX6+yXnjhUKmcxb+B62V+1Cv959XNNklmzZJqp9+/XDym/d98xs27bN6J3rdxrRKx6Pc7BsL080FkMymUQkYi6BwC0LTPIs0tAkfv/r954j38hzX/V6/wEYv78mOh+dWcjEbSbWORJM9LajG4AdGmU5sdLl86EeyyUIgiAIgiAIgiAIgiAIgiAIgiAIZUaOHIlnnnlGmGbnzp2dRshk9uzZrtcYY5g6dWogGwp2797te5n5Zv/998enn37qen3t2rU45phjcmgRQRAEQRAEsSeiHNgvCWb3Aw7uekq1G+UxD0EjKUv7ZHvVgPFMpEImEYfvIAiCzzsBn5ALANyvkz+DttVJ6FMWZ+eCqjDG1P9MdRQxSbO6xv3EXqkNMQOhD0NMNt3HUjFPAf48mdQO5nX1kbr2G9gt6xPc1oiiAHcmcZXcJWCMR8ViVyxT00HWtIpt5ukkXYXg4qwslrjfW0YR2O4NniUoYUPWRe2ByyykJlaQ7h/FQQmZJH0SMjERHEoX4TCnmwXQO38e5mGlk+S1sZeZNBeVcrM9kerYriqB+ECGkImiCysWiC3I1kPOmfSzBE1YMyBbNuZ10A3utLiFEBSETCS+XkTf+hDqY/VgnUzIxG3eCxzDtanqGHQiyDujMhrCJn6z1egN9Rv08waNio92aPR4Ku4aLGokZCLJ0+73ZUImAIoMhEwA72JTPolVcQDhkhL0GniA0EeHulroc6BzSGFqx3Ykiv0RMrG6poDyjjeoKAX03ln4QiYAUHroEESb9cZtpHspIoMHZX0ei8FIyKTkkEOygt+tmhrEI920ygkVAcWHDmm3JxnDTj0tFCF9a8KoiHoXMtlTUBEYZD6K2Dn1PAbg5+ePw8Spk7Fu00bHfFt37sDjr0zDLT+70jdbdInGYvj7P8UCtZecO9aobG5fT7au4Y4/4igctP9ArN6w3jFfMpnEy/94AzdddoV74RmNnrINjX33EguZrF+/PjghE8NHOD/EIrwRnAG9e/eWpqmpr0cfL4fuWBYQCgnf9dfU1wuLULET0BN8dCtBL3l+O4eJYKsdk7/DEJ2TzrxScXtT0aBRhuivmv00ynFjp8NnDMAhPpRNEARBEARBEARBEARBEARBEARBEEoMHDhQmqa5uTkHlngnFoth0aJFrtdHjBiBE088MZC6167174SsQmHw4MHC66tWrcqRJQRBEARBEMSeDHcSYnBK5yHAURmDvbMVMfMNt9yykOR6waVGm+qTkjxht/AKAXncL81zIWTSHPWnoFSwDcXj2VthTTfPq+Z75j9isVRLFtUoyptDIROTTffRRFQ+nkQYiFx4ERTIxGjcSILCtWICZaesGguZZJTr20mu5uNWVZwhE5mQiZFuhaAtLElfEOhAtBRtFzJhDDsa5OeHpgViSvzTVOhYvocg+5YCWv/nRfTBoW19Ex5JAUWhImnguAlZPd6DwIJbIJJdyASKQm7p/lYk65itFCeZ+3xmIkRVgOIYYU2TUh4EuOzI/EdWesV1qxUzX+f3qQ+jMdbga+BxTvDxvuhgJOgDIKI4Bp0rDTBAUeG2m/jNtnViWJgsL6gIgToNvcaYu1CjyVwlE4hJplrnU5kfZQysyOCcdj+GfCG5DZ/W/IBxvHzBYCQqmIs5wAeBA79FEjz55j0QJV8X9OsmDhQVFeHOX10nTPbQ5GdQaxNYyOXdnvXO26ipr3O93rW8HD8+baRR2ZZ9vGb8fsk5PxbmnVo5Q70eW4MdsN/+wvSbN29GXZ37d94j8dG12t8j9OnTR5pne5VTeL4G6fW24HtsrxKrS6kKmWTWYTRWdds6z88+fojseBIRJjoVBiv9gqEOQKnD5100yhAdmbavnjmO2N+mpDXuFb0XQRAEQRAEQRAEQRAEQRAEQRAEQXinb9++0jThcAHuxnRgzZo1iAuCHMeNGxdIvZxzfPTRR4GUnU+OOuoo4fW3334b48ePz5E1BEEQBEEQxJ4Kj6sJF1hR0dll/mByCmB5zMOZcimOlGIgbxqTTb6ygEUWzv4OTp91KFPbCh/JQVCx1eSP4GfWSbM+w2MO48KweVSFTKKpaGBBnTyRu6Bek/EeTUY9CemYiFzwuEse3fscgJCJPQ5M1IeYxFW6tassuD0UaTdCek9V/aeHYAqTe5yUCGcYHCIPFnLPlJIofliSiBQnEYWN1RvRv1t/cbmt/rA4GUwInld323bbFQLEXctwEAAxCfBxElo6du9j8cX2L4IJYLTHEmquTTJxE4myr3dUxRTS7RdRNKmlf7kYYeAHCzG2KqzpFCwP9zOrLM2BlkwlURwplqbjMfMA/rJECNFtW8CC17nzlVwI8zli2B90+12alu8ZXOi1ynrOxA8XtDSAiv90cF5NiSbX5GETsRdJnrb1hqz9GYAiuZ9wxKOTNhWAdC/PQ15DkSEnHPt8Ac5nrhSCkIlTeUZ22Yvw106TsbunwjlXmg+CXk+k55eLzj4Xf5n8DL5a7XyoyO7aWjw85Vnc9eubgjXIhamzxYIhBwzYH6/MfcOobN6tBMU9erX9ntqxA1a0xQcmJUJvy9esxn+++hLHDvu+c9kZ/07ZHkwOP2SI1LaVK1bi+8c4l+0Fk/dPhYHgHY/Hkrt164bu3bujtrbWNc2OqioMO8hDJZL1dl1DA5qjYiFrlUOjAP/XFPIK8y1k4r1Pk5DJnkNnFzLZy+Hz7hpliCSZDtQzxxE3Wyp8KJsgCIIgCIIgCIIgCIIgCIIgCIIglGhqct+cmKa8vDwHlnhn/fr1wuuHHXZYIPUuX74c1dXVgZSdT37wgx8Ir8+dO7dlY5dvJxoTBEEQBEEQhAMCsUKjdF4wWPp6ETLhKUs7INQyOB7WKbA6ExZxUKWQPQfkc6+x5Pv4AW8Sb2RXJmjRFUUhIBVUN5AHuTmfx3MnZOIWbC8imoh66n9cEpTjmMev09lNAvgl/TcrplnkNgTCGgBc21UmdsUyhEykPlz1nnu5xwZBqDIhE6OT1gU+XCqcIpnWQg7B7JtrN+M4HCfMl/YdwQmZeCw33T88BBI7CROY+Bp7kGXvot549qJnMfzR4UblKdTY8VcDX9VWkot9iZRtLCuOs3SAVJHi/S0R9C8TH5zvADEndIOWvQhmrN+9Hre+cSvW7l6LcCisLcCnmp7HvK1nrHXfdjohk1ysZx0x7A8qc1HKaaL1ax3jgZBBoKUfp8wHhZJomoP9DbEG1+Qmc4uTsFkmyVSrnRI/yhgDK9YXMuFcXra8EJ+SMdv/TQryMPfa6fR/0TNqixwMWh/WBLrvf2REvK5/dSlg3yhFcT4K2v+n17ahUAh3/fomjLv5165pJ704Fdde/FPs1at3ywc5av8NW7fg3UWfCNN8/s3XuPae/5cbg2xMnT3DVcgkE/tz7RFDhkrzLF20NBAhk06Lr30uu7BBgwbh888/d82xYesWbzVaFhjc50VZ+YwxZSGTjhXrZ9EmByLfIvx4L5Fz8Rcib3g4BiDvVMPZh+gImWwQXDtczxxHnIRWAKDIh7IJgiAIgiAIgiAIgiAIgiAIgiAIQoktW+R/4O/Xr59WmeGw+OjlhIeTS0XU1dUJr/fvLz751ZQ5c+YEUm6afLXnAQccgAMOOMD1+rZt2/DJJ+KNSgRBEARBEAThFR5XCybwGuAoI56MG4n4lcc8BI5YljSg3I7RaYUmQiYFHP7EfQ7+cayjOeZPQR6Ch1Xg8Ww7TU96Vd1ArpKuLXBR14Zk7oJ6D9lahH614udxO9FkVCoMJCSRgvbYSrr4Pk1XYGS3xN9YtigvkQ9lEiETN/vkQiYZ2+ElPjwnIRIqwcU2ZIH+RSaxnCH3MAFZfbJ4b6eAlW3126QmpYVxREITXvAsZJIux23MqeDQj02sSg+tvUv3xk+H/RQfXvchKkoqwMAchWQ8Y7+nHuYut4Amu5CJqkhTujxVQR+hUI6RH9TPEjQhza+hKz6S5t/f/BunPn0qluxcgppUDaoSVahJ1WiVoSrAZ3kUMuObtoHlOZhPF0/riTzUqzIGPytJYsifhuCxBY+1fxjQ3zbSqAScywQ3HMvVz5IzTIVMmuLuhx6EDeYWmS9KP+dKn18ZA4pLtOsHuNmzsa0MP5L54X389AlO48L0GTEvGPgN33XHHAo06m+2LN77bDshXtiiSwWHYr8KXMgk49/nnno6fnD4ka5pG5ubcP/TfwvWIAemVc6EFfC7LC9MnzcX0ZjLO7uMBrZPbYcfMgTFReKw7kUfLvJonTsm47+gx7imbU7fZfDgwcI8qzeIDzmSInkOWr3hW+H1ffbZByUlamuUnItyFIDgptf+6eecSBQ2nVnIZLXL531UC+Cc1wPYkf414/8MwHBz09pwk5XWe3tDEARBEARBEARBEARBEARBEARBEB74+uuvhdcrKiqw115uGv3OFEtOR2tubtYqT5W45AR2mSCICalUCo8//rjv5WaSr/YEgPPOO094/cEHHwysboIgCIIgCIIA1AOGZcHsXmlOmK27K6IetmJaXDu41OQEX6k4RMThO0hEB/JKDgJVrZj4+VOVoDdl+zku/Nx03xw3G088kbtgmV/O746pf+uHu2b0RJ86tXEcTUaBlHk7qQbud8zj7CO0rTAJZJeMNbvgBWMM8aTL2JEJRbkESsnErlhRxrsgv9yWh3HLE/rtLBO0KlIUcOiAoL1l9cmqcwpW2dGwI/tDG2lBA6HQhAe8Cpm03faUB0EFh3GmKzoBtAQbn7TPSVh43ULcdfZdiIQj7dcCmFayivTQBm72pbitTMWA7XR5EUWTipPMdT5z86ci/JzH/ZpndQUHTAJRk6kkrp51NUJhbyFHqsJmJr4zk/C2aqOxllfyFSBsOL6LFPodB0eCJfCXj/+C5z95vuWzgIVMVDDxm+k83MO6LzAU1pNOrqspIRIy0TcjJFE+axv/UiETgEn+RuYIh3cFEZ9vr6fifBUyKeBneQWMROX8fu52Ks+ojo55/FxXhL1NnXscXHFN4ibK5xf2OekP198sTP/s669i/ZbNLXmDMioDzjmmzZmdg5rMqamvw+x3/uV4LUufMWMpW1ZaipOOPlZY9qIPFyEW9UnY2EbOhS78IOB3msOGDRNeX7l+nbcKWtfbbmvBVevFQiky+zqQUUdOZuGA7w0L2hmik44JwojOLGSywuEzBuB7muV8iXbfkOkjBjHGDjYxDAAYYxVoETJxGk1VpuUSBEEQBEEQBEEQBEEQBEEQBEEQhA51dXX417+cN3KkOeKII7TL7dq1q7TeICgrKxNe37FDHjShy8yZM7Fhwwbfy80kX+0JABMmTBBenzlzJhYvXhxY/QRBEARBEAQBSZB6Gh4LNgiuMd5olK88Zr49macsbSETk02+XCJGwCIRhw9lpeYxOCoHJ9jzqD9CJoGLriSy7TQ+bVv5QHJ5QlNhICuZ+03sI1aV4a6ZvVCs4GJiyRi4h8BjkyB6JFx8pG5TmYwbSWCEU0xzfbTeObFMHMllrMiC2zsImchQbTMvQiYG7SwTqCoyEP5ggvaW1WdJIr7DnGW15c6GnVKb0oGbJYmg5g+P5aa/k9uYUynCwT/IAr2dYBwojZRmfw4WeHAl4Pw9VHH7volURyfLFcUU0t9XVdCnWHT7TL5XAcZWaQsOGHzvN79+E/BBM1x1netVyKxoV0Nhn1jvRA7Ws44Yjm8VX5YWT2CM4d5372350ESQQAMVz2AkKNX6XUIFGHan5D8dxoNofW4yV8nmo4SVcLWlA4wBRUXa9beUXWBKJl7Il7hRIWIg/ujaF/y8xQb9LUtUAf7d54hHEb89DsV+FbJYoIK09rt28rHDMeqEE13TxxMJ3PvkY4HZY+f9/3yKdZs25qw+U6ZWzlBKl7ItEH/0w1OE6Zsam/D+v943tktE0ELHQSCy2PjdYwZHH3208PrnK8QHNkmRzK2frVguvH7Eker7qHItyhF0fxK9U2pL47GOzjgmCDMK74lKHbuQSbrXDmWM6XyvTwTXxDv2xPwMQHoXZaZQCgcgf1NLEARBEARBEARBEARBEARBEARBdHoSBXDS3LRp0xCLiU+NOeUU8YYNJ/r27Su8vnbtWu0y/ah30aJFvtZXX1+P2267zdcynchXewItG0RGjBghTPOb3/wGSZONgwRBEARBEAShgOop3UGf5t0Ucz+hWkR5zMNWTIsjaemttY2ETCTiECySHanKQpLvlce9xlwShO9LHX4J5wQsZMJj/gmZ+LnpvjlpJmSSr1PvD9lWjFNWiMVTgVYhEw82ykQ5HPOYiJ84YRAcKQsqcIp5bYg3OKZlYXG/dBNO4HGJkElxhhATk/V9tXvnJZjC5H6luDhPsUkXEPhwWX0qscz24OXq5mppnrSASrGBMEtOaP1OXFNgrAMO/sFEXIFxoLTIQciEsWDEGuw3XVFkxIl9q8Po0Zjd/+xCJqoiDmkxAVXxjuJkttBOGyb3tgBjq8KagcsyQTsnHl7wsHYeJ1QDtq2Et4YuqY6BdTINABPhK18IUCwhklE0D3Os2L4i8Gc4lTEaNhSUKlgUBLecljKNMXfhTm2BJMgFYtqecyXrKsYYWHGJvgEc3n203/dZ0tVE/crEV5vU0xngRkImfhvhUKDJM4Iti59B25FONu/lG63nNA9rYRlO4/Pu624GEzzLvvSPSqxYuyYwmzKZMltNICTfzP/0Y2zctjXr8yzxINtjybmnnC4te85rczxY5o5MUNSJvD85++iznPq+TMhk/ZbNqKqRv2twpXXd69aOS7/+Spj9yCOPNK87aIIWMonI/97hdb1BQiZ7Dp1ZyOSLjH9n+pJiAEM0ynnX4TPeWuavGWPddQ1jjPUEcDvcl8H+7p4kCIIgCIIgCIIgCIIgCIIgCIIgCpIPPvgAp512mu/iGqps3boVd9xxhzTdeeedp132fvvtJ7y+fLn49BJTDjzwQOH1mTNn+lrfDTfcgHXr1vlaphP5as80t99+u/D6+++/j5tuuilQGwiCIAiCIIg9F9UgFRMBAB1MhRfKY+bbyrnFlU+qb8tjsslXEhTFiiIOH0pEB/St8I+AxUEAwIr5I+boZ0CaIw7BoaIAGBHKQiYKxYtOfBfaEOwwFzJsU7E0TSKZ8Nb/DEQuXH2kphluQiFCJN/VKZa+IeYsZALZaa4uAd0y38+KMoSYZH1ftc0KTMikKGUwpgXtLRPQsgd7OWEPWKmN1krzpH1MSd6ETCTCPOl/JD0E3TuMM7voiwoMQFkkW1yJgSFkEJCvVmMGHoQO/vB6b7wyqR/unNkTe9W2j097P+eKAaLpvqY6DkT9y0Q4ohCDq8K6Jhl8hy0NW7TzOJFMKa7zPQqZldVZRmMtrwQoKCLCaD2gSMS2MHj6o6cd16p+ouIZjASlWv/vp9CfX5iK4Iied+33TgXZfNQuZCIpiAGsWL4Od8Szj/b3/noqzU8hE8XPChYjIROfx6pfQiZZRfhnZ9jkGWEPIpqIYv3u9Vi/ez2qGqsAxTUJgEDnLqe7dvRhw3DeyDNd86RSKdz12MTAbEpT39iIWf9+O/B6/MCyLLz4xixpupRtETB4wH744THHCfO89/Z7WL92vSf7nCjE54p8M2jQIAwYMECYZsFi871Wbeteh6bfsHUL1m3aKMx/wogT1OvyuqbIwTOeFg6i53ZMhbTTFOI6mwiGTitkwjlfCWBb+lfbZfFxYR15F0BdRjmZo6cXgBd17GKMhQFMBrBP+iOHZPN1yiQIgiAIgiAIgiAIgiAIgiAIgiA6L++++y6GDx+O888/P6eCJg0NDbj44otRU1MjTDd06FAcd5x4s4YT/fv3R48ePVyv/+Mf/9AuU4UBAwagf//+rtc/+ugjzJ0715e6nn32WUyePNmXsmQMGSI+qyGo9kwzZswYnHbaacI0jz32GB5+2J+TOFXYtm0bPvroo5zVRxAEQRAEQeQRRYESrnDytBeaEk1G+cpjHrZiWpbRiZy6SMU0ihw2J/slCBAEOTjBnsd9UtQIOEjV6ZR7rxvJZaiUH01EjcrOp5DJ6C/KpWliqZgncRqjwFMDYQznyv0XQeIOkcENcWchExYS+0q3duVJcZux4qKMX4RJ1fHi3wyC8aVCJibCHwIfbkn8kj3Yywm7YEB9vF6aJx24VZwnIRMm+17pyx7GnDc82Z0AACAASURBVJNAgFEAPQfKirKFTAAzYRQVMm1XFZlzIwSGH64swx9f64UurYJviZRtvlL0h+n2iygG6xYnmXtAlMm9zY/WhJCwpk3cYK3p1/pU5t/ScEmXsySOuUsDwArwXokIUlBEiEfRGBFh2+2Op+IFIWRi4jcLWhhHxZc52O+2PjeZpwC5L0oLdkoDtxkDSkrMjPCKT/fZD40xP+ORHe9pIfdpGybCgDnBh5tk+biwiORjGukk/Whd1TqsqlqFungd6uJ12FK/BZubdivnd3rPYoKja3BxGL+/9gaEw+7CAbPfeRufffmlL3a58do/56Ip6i56tVev3qhf9CWal37t6afq21XgnLf9xJY5p5ty/1+E9k59Y1b2HGNr3pTDa4ifX/gTYbmWZeG5Sc8J05hgtL7O95gT1G+6frAzcuRI4fV3Pv7QvHDBO635n4j3oRxw8AHYe5+9jarNyRuPgIVMOrxrc0vjVbuFxH32GDqtkEkr8+E8rpWPjOOcJwFMt5XD0C5qcjZj7GXGWHdZWYyx3gDeADAmIz/Q0WXHAbyvah9BEARBEARBEARBEARBEARBEATx3WDWrFkYPnw4Ro4ciZkzZyLpcTO4iB07duD000/He++9J017xx13GNczfPhw12vLli3DnDlzjMsWceaZ7icSAcAvf/lLbNwoPj1Fxt/+9jdcffXVnsrQoUePHjjkkENcr8+bNw9Lly4N1IZJkyahrMw5QCLNb37zG1xxxRVobjY7WVuFlStX4vrrr8fgwYMDF3AhCIIgCIIgCgPVYFnfhCVcaI6brXMroubbk7nF2wK8lPMY7GKXnXLPIhGHDwv3dN9cbHTmigI78oKCtdVJ4CfEAt4erNA1muJmwkDcKuytzbFkzNNp6SZBeW55tLuWQcC0bKxZDn2hMdbonDgk6TimQiYlmcEVPgkweRi3MnudqxPXV2Rw2rpIOCZpieddlWEYtt38xrjLfc8stzVwqyRfQibSqPQWu7yIePCUbbzyFlEPXRgHuhR3yf6cMd8CxrLI/N4+CYYN2lWEsz/v0lpkx7ZRFXYKtQZ7RhTdp1Ao5zsSKGUffzJMvrZfp2OrBmxyiZ/b3EvcAbo2hQtbeMKJAAVFxPUG90wVsfVNxhh4MlghE5WuatQ3ePp/hdexVOYpp3HfnHB+3tUVR0oja9c2ISPp9MsAp+dRGdyP50J/76+n0vwUMvGvqPxgsg7xe453Ks9sQrUV4Z+duuuBPYWtdVvRkMgW19RqrQw/62kecMjqZsehgw/ApeeOFRZ370MTzW1R4IXZM4TXLzzzbERM/LWNrHHg0sTnnnI6upa7C86u3bgBCxd3PEjIXpTTs+35I8/EPnv1E9o4+9XZWP7FcmEaXUz6Uv5Huct7Gh+/yxlnnCHM98a770jFWF1pzedU98x//VOY9YRTTtASn+nQr43chmam74KQSQGus4lgKOy3/XLm235Pi4eczhiTy6K387jDZ5liJj8BsIwxdidjbChjHf86xxg7gjF2F4BVAM5yqSNd3hTOuVxymiAIgiAIgiAIgiAIgiAIgiAIgvhO8s477+CCCy7AoEGD8D//8z/47LPPfCs7mUzir3/9Kw499FAsWrRImv7YY4/FxRdfbFzfqFGjhNcvvfRSTJ48GfF43LgOt3JFbNq0CSNHjsQXX3yhXXZNTQ2uuOIKXHPNNVkbIkSnIPmBqD2TySTOOeccVFZWmm/UkHDYYYfhz3/+szTd5MmTMXz4cFRWVvq24a6hoQFTp07FGWecgSFDhmDSpEmIRs1O7yYIgiAIgiA6H05CDI7pAj6V1y2wS0Z5zMNWzFwJmUgeIxw3JxewkIlfAdYirIQ/dXAPohdKODxzhwy3B6v2LabQN6JJ/Wc6blkFL2QST8WlwkAijPyYgTCGIybvE0yETFwELZhEyIS72MeTEiGmDCETlb6phId3L6riDB2qkzjpIpPpT9AWsvpUerg9eDmako/59HukkkSe5hdZlE36sua83AGbzzcVVmAAuhQ5CJmABSfWkClu4OP7x8M3lgBwENBRHCvp3lKkGKwrEjLJEppRoBC1T7RFBwy+hF/vfVO2NueWBR6PZwkxWJL7u7mn+HmhLB5GWayA164OuM17gderEZCpS8RWNGOso0hSAKjc9ZBBsH8h9yaltYaWkInZt00LTbnR5vdl/oSxFgE2ptc3edt/PJBrH+9SH+ccXNKeOgQmepYjCna+9qESP4VM7D43NxR+59rdtNvx85BGe3kRNpQhGp+/++WvUVJc7Hr9/Y8+wicLPwnAKmDlt+vwyRfifSsXnzPGl7qy3j25jIuy0lKMPV0scjGlcqbwuuXQ4CXFxfifq64R57Ms/PG//4hEwj9BNq/jv9ll74SP00ewuHz9MWPGoLS01DXbtl078d4iw37vImSyc/du/PuTj4RZzxxzppaQSc4JWsikpCTQ8oHcCJUThYF3Caz88hacXVgJgLMBvKZSCOf8M8bYbABj0S5eAnQUM9kXwF2tPxZjbBeAFIC+aG/HdD5u+3eaFIAHVGwiCIIgCIIgCIIgCIIgCIIgCIIgvtts3rwZ999/P+6//34ceOCBOOusszBq1CiMGDEC/fqJT4DJxLIsLF26FK+88gpeeeUVbNq0SSlfaWkpXnjhBYQEp7PKGDduHG6//XZXYY3a2lpcccUVuOWWW3DSSSfhsMMOQ58+fVBeXi48reeQQw7BySef7Hr9jDPOwOGHHy4UKlm1ahWOO+443HDDDbjuuuswcOBA4XfZsGEDnn/+eUycOBHV1dVZ10tKSnD99dcrCX2YctFFF+Hxx53OYGhh69atGDt2LPbee2+MGDECQ4cORc+ePVFeXi4UWTn66KNx9NFHK9lw7bXX4rPPPsPTTz8tTLds2TKMHTsWQ4YMwfXXX48zzjgDBx98sFIdQIswy+eff46FCxdi3rx5ePfddzu9cMmSJUuwZMkSrTxVVVXSNM8884y2LTr3nCAIgiAIohBQDeznfgXzu9CUaNLOwzhQFjffMc4t3n5SdZDIms7pGU32vJjPnfI52OjMEz7VEbCQCXcIqvBNzMEDsWRMOw9vyD41udCIJ+Ot99SwjQ38mGsgn+5hrUYnm0suOzRDU9zFl4YlPsVlrMiEY1hJRqCX5LYouw4vh24bCN1YEiddlDLob4L2lglopRSiX+1JYin5mE8HqRQHG9PuCpNNa63fycmvKtdhe09qGkgc4gzlxdnnugYqZJIZsGkQQOzGCatbgtKSqY43XtUnpQUIIoomlQiETIyE0AowtkpXdEBTG8BXkrz9vjc+8hB2P/Y64jUhABzlB5Wi1/2/Q9HxJwJcPEBlQiYA0Kc+WCFy3wla7M6NAAUBw7b5KoSQJ5+qhMIziYnfLGghCKV7mN0ubutzneB+nXx2ISNXWPv/DGSXtHMY5VetxvQxzOdxUtD9V4U8CT11wOnBwYd2NRGmdcPuc4mW5w23ZyutuSBPQib7770Prho3HpNenOKaZuL/TcRLc1/y3a4ps2cIrx+0/0Ac973D/anMrmMiSHrx6DGY9sYs1+sz//UWHr79f1HRJfvZCQBSLkvMn513IR6Z8hzWbNzgWvayz5Zh4r0TcetdtwosVMdEFCM9ytdsWI/fPHAvZj/2VFYazgL0+4Jy/fJA3bp1w7nnnovXXnOXAnj8lRdx2g9O0C+87SG/o7VP//1lJAXjfJ/99sGRxx1Z2EIbQQuZCMRl0nh9N+HnnEgUNp1ayIRzvoEx9jGAE5DtFq+FopBJK7cCOANAGZzFTJDxWRiA0+5Rezpk/M4BPM45X6thE0EQBEEQBEEQBEEQBEEQBEEQBLEHsGbNGjz++ONtIhZ77703vve972H//ffHfvvth65du6JLly6wLAt1dXWor6/Hjh078MUXX2DZsmVoatILtguFQnjxxRdx2GGHebJ70KBBOO+88zBjhnhjy+7du1FZWYnKykqlci+//HKhkAkAPPTQQxg1apQwTTwex5///Gc89NBD+P73v48TTjgB++23H3r06AEAqKmpwdq1a/Hpp59i2bJlwo0I9913H3r27Klkvyknn3wyjj76aKkYxtatW/H6668rl/v73/9eS9TiiSeeQFVVlfS+AsCKFSvw61//GgDaBFb22Wcf9OzZE7169UJZWRmi0SgaGhqwfft2bNmyBd988w1WrVrV6YVL7FRWVuLuu+/2vdyrrrpKO4/uPScIgiAIgsg7BSJkEk3or1G7xBhCXrZu84yTqgNEtleeFTlsJy0AMQw3eA4CP33Tlwl4YzlPZPefEAvlPfDaZDzxhroALPGXeCruKZDBxI+ZnEjuXJBBaKhkrDnF0ruJQjGJOJKbAIhsLHY4JVbqt9TawFOwioGQiay+YpEwgxsC1Q6ZgJaloHtsD1hREeVKBxUKhSYCRCZk0hYC4CHIn9sCb40DezhQUVKR9TFjDKGAhMR4KtV+kmsAAcRZfUSxjrRNEcVg3SLBsioIQad8ENb+GibSAP588bR/a/jTA9j+4BwA6YHI0Lg6hugld2CfafdIy9nUS75e7lvfycKj8hWoH+DJ8hFb0YwxwGGt6icqnsEkuJf5Fp7rP0pCoA7fOZp0Xp+HDYe7zBeln3Nl68k2EUbG9dwVR850TFSLkRXn1qv8Fvxx6r+F26MdMJqv/Z6ws8vzI6Ddz6B4u88lxEIROmvoDs/gPnctmRW3/fyXmDzzNTS47P9YtnQZ3nnzHV9tSqVSeHHObGGa8aPH+FZf1jpT0ManDj8e/fv0xbZdOx2vNzY34fW35uHy8y5sKcrWwG76f5FIBH/93e9xzjW/ENo65ckpGHzwYFw44UJhuiD5YOliXHzLDehakf18CKTbs/C9vMjCn//850Ihk7nvz8eyVSvxvYMP0aoz/VybWXd9YyOenP6yMN+Pf/JjMMa0xGcy+3Vu7kbAD6olciETrxS0UAzhK53sSd2RV9EiZJIm7XlPYYwdzTlXOvKKc76GMXYzgCfR/jhjFzNRGRmZfibzWeQTtIilEARBEARBEARBEARBEARBEARBEISQrVu3YuvWrYGUXVRUhOeeew4XXHCBL+U98MADePPNN9Hc3OxLeaqMHDkS1113HSZNmiRNa1kWPv/8c3z++edGdV111VW4+eabMXnyZKP8OkycOBEnn3xyXv9oHw6HMX36dPzyl7/Es88+q5xPV2CFIAgiHzDG4grJOOe8RJ6MIAiC8AulQCwAPBnsOrk5of9cUx5TiPYWwC2OlKUnUmASWCoVMikuzv5MIgiQ163GOQj81LwtrgT+fOdwgmiYhY1ukJ8nYbqd+C6sv7aTCJl46BtGIjxu4ie6RZmMG4m93CEyuCnuIrgbkoRyuNQla+9QaRBLd/OxEDMIvJSNvSKD09ZZ2D2PJekLlsL3D1uZZ4XC9eTzTNL+sChPQiaQTdnpr+NlArD1Y9OTsUNuQiZgAZ62nXEPA5hnE6mOQdqqoiKh1mSq46AkydzHlImgUwHGVoXdIjJdMOkzHNwXIYeklQSPxbDzoVlwCl9KxSPYdeMfpOVs65GCBS4UECxOeVuX55pcCPM51utBrEmGvW8yMCDpr0CDHZVeqi/+0y5EVZAnxSvcQyff5bY+1/UpaUJgEMVOKwt2tj53MmawAvM8jgrk/votZFIgX8sUX/2jB1G57M+MJlRbEf59N9Ox+11G5He0BAYV31OaIBuffXv1wg2X/gz/99TjrmkefeBR6TOdDm99uMBVKCTN+LPP9a2+rLEkaJNQKIRxZ43Goy++4JpmSuXMNiETOynBjT/9+BH4xYU/wbOvTxeae89t9yASiWDsRWOF6WToiGIALc/tj016Co888jhSqZS7kEmQrkDks3TdmSD9j370IwwbNgxfffWV43XLsnDbn+/D3Cef16wzu9L7n3kCO3ZXuWYpLS3F+J+Nb6k3QAFAzwQ41zPGwUIhMMbBBR3M63qjINfZRCB0rid1Z14FYKHl0Sf9g9b//7dOQZzzpwH8KaOMzJFgLx+Sazzj2kYA/8U5D/7YBIIgCIIgCIIgCIIgCIIgCIIgCIJwYd9998Vbb72FSy+91LcyDzroILzwwgsIh8O+lanKQw89hLPPPjvQOsaPH48nnngi0DoyOemkk/CXv/wlZ/W5EQ6H8cwzz+CRRx5BSQnF8hME8Z0iovhDEARB5BDuFqRvT5cKdnOr2wnVIipiHneLGwiZmCDadAwArNhh+pOIDiQZQ31zvRezzMlB4Cc3EA5wJGBbucMp9yGW/+3BJuOJN3QOIRMv99TEj7kFHGuXFMDJ5k6uxVUUKiTply51cUmAHivNEGKSCDAp42HYNpoIJciETEx2oAv8QFKypT2lEI1iT8JCTBpMl/6eJXkSMpG5xrav5OBXlbH5B52T3zNhALqWdHW8phWEqUPmyfMBCJlkBZYq+qS0mIaqEEGxqH+lDNZcvsZS+1OYrihDPgPaU1YKsTfnwEq6v2pp3io3sLHEQnVFAQcSmhCgoEi+6o3YimaMgTuI7vmKQv828sUFHFepJkaT/Z3d1uchD11CNCel0mp0srVz+rlT11nxtv+Y49d99ri04T4L/jiaU8B9OguTPun6/cxujuOcbbTOZ7bffVoLBP8ayZFC70bJlEDIRKdfZawZ/Q60V+mRN/70CvTu0cP1+ppv1mDblm2+2TRl9kzh9eO+fzgO3H+gb/XptujF54wRXv9w6WKsXv+t4zVL8gx43823YeiQIcI0lmXhzpvuxMR7J3oSkNERMlq2bBlOPfVU/OUvjyIleYYp9HGpAmMMt912mzDN/E8/xuMvT9Mr2OIt7d7aSB8sXYyJUycLs/zXT85Drz69AORAnDoDbV2YIG1TnDo9C5kUomooEQj5/0uFRzjn2wGMAjDG4UdTYgngnP83gDvQPvZ5xk8aBndhk8y0DMBnAH7IOd+iawtBEARBEARBEARBEARBEARBEATRuRk2bBhuu+02HHrooXm1IxwO48orr8SXX36JU0891ffyx40bh7lz52Lffff1vWwRRUVFmDlzJq6++mrfy2aM4X//93/x0ksv5Vyk5eabb8a0adPQQ7BBKVfceOON+PTTTzFixIic133ggQfi+OOPz3m9BEHsEXDBD0EQBJEPFINKAxcySegLL5THvG3D5JZBUIRJHI7spN7iYocP5RWd89w5BsZ4JxcbnbkVBvcjkDtgU52ETMIsuOfYpliTUjozIZMG7Ty5JmkljQ7ibsPEj7kFq+rGehqcJCv7rk56P81JZyETFhb7S7eT1y2pkElpxi8Sv6XaZh5ucjyAMV9kIqwkaAtZ8JXK4e72wGXGGLbVi4Pp0r5bKDQRIEwi0JVW5uFeBMZs48w0sIdxZyETxlhwQiYZJ8+rBcnrkdXvFEWh0t9XdRyI+pfRvF6Abwq0hUyCMUMJi1uof3Kq53JiEY6dXfMUtR0QbvNe8BUHV2/ENk4ZY4DPAg12VPq3iS8OZUaFFRg8KR8LTrc5now7ptX1Kap5lQU70zomJo/WBeKj2wIQZf3FzV6/BX8KpF1MMXre9/s7O5XnQx2WwTOZExGVBXsQFHjfyhLOy0BH1MqXd0EuqMxJ3SoqcOsV/u9/cGJXdTXmvj9fmObi0T/2t1LNfnTU0GE4dPABwjRTKmc6Fi17hOhaXo7KV19F7969pXY8O+lZXPbjy7Dy65XStE6ovP/dvn07br75Zhx11FFYsGCBvMygXYGbydxsibSldgs21252XJNceumlOProo4X5b3/oQcxb8J56hdwCb5WUWvntOkz47U1CYZjuFV1x/Q2/avvd2Geb+Ep9JRODStRg6fdJkpvstfv5LRRFFC6dXsgEADjn73LO/+HwM8+wvPsAnApgBTqKlYg2stgFTBIA7gdwPOd8o9k3IwiCIAiCIAiCIAiCIAiCIAiCIDozffv2xQMPPIAVK1Zg+fLluPfeezF8+HCEZCfQ+kRpaSkuu+wyfPHFF3j66afRs2fPwOo688wzsWLFCvzpT3/CwQcfHFg9dkpKSvDkk0/i+eefR7du3Xwpc9iwYXj//fdxzz33tP+RPsdMmDABq1atwp133okBAwbkxYY0hx9+OD744ANMnz4dRx11VKB1de/eHVdeeSUWLFiA1atX49xzzw20PoIgCIIgCKIw4Em1TcE84NjFeMo5sEtEeczr0ctcPcDLUzUSIYDioqzPljSItz4yDmxu3ozKZZWebDMiR4GffghrBB6k6hD0Fg4ZCpkodOfdTbuVioolY9rV8/rCFzJJpBJmJ4S3YiLI5JuggEk5ksAIJ9fiKgolETJxGtc8mQS4OB/rUpbxi7gKZTwEhJjFXYozGQmZCN4/yoJx1IRMshNtrBHPG+l6S/IkZAKZkEm6A3kJJrb1Y9NvygCUl5Q7fM7AAopW45mBnwGsTRJWRzEDVd+W7msRRZOE/cvADxZiaFVYM3jZpM/4FVSWslKwGpwFrnSIFXHs+o4JmeRqPZtdb3DB2XZRi2Qq2TKXB4hKQLiJAFQB6pe0Y9h33J53wx7mFZEwQJuggGRxpBos64RngcscCGRm4voVFcRpvNZT0H3ajtFtcc5kfIcd+4ZZaZn91K/51YsA0XcZ0fs1rbnAJyFlL+PuVxddgn379ffFDhGvvPkG4gl30bFIJIL/OvNsX+vMGgcK89D4s8V7Bl6cM7tVoKJj2ZbCjT9gwADMmjULXcq7SNN+sfgLjD9zPO686U6sW7VOmr6DLYLn8K+//hrXXXcdBg0ahEceeQRJjfVTsGIm/s2TDEBVcxV2N+/Gil0rsK6qY/uFQiE8+uijwv05iWQCF//2RkyZPUOtUouDc46FS/6Ds666DNurdgmT/+8116FvhqiNjs/OTJuTOTfINUz6dZJMyMTzMqwQn7aJIIjk24BChXO+kDH2PQDjAPwcwOlQa69NAF4CMIlzvilAEwmCIAiCIAiCIAiCIAiCIAiCIIhOxNChQzF06FD87ne/Q21tLT744AMsXLgQCxcuxKJFixCN6p9U7ER5eTlOPfVUjB07FhdeeCF69erlS7kqVFRU4NZbb8Wtt96Kr7/+Gu+//z6WLFmCVatWYfPmzdi1axcaGxuRSCSkJ7/q8rOf/Qznn38+Jk2ahIkTJ2Lnzp1a+RljOOmkk3D99dfj/PPPRySS/afBPn364JhjjnEto6SkRNtuEX369MEf/vAH3H333Vi6dCkWLlyIzz77DKtXr8aWLVtQVVWFpqYmJBKJnPyRf9y4cRg3bhwWLlyIadOmYfbs2di2TXzSroxwOIxjjz0Wo0aNwqhRozBixAgUO54ETxAE4TtO269oxxRBEESeUA1kDVrIJJrUfy4rj3oUquTiE2Od0BVcbAkelAmZdFyHP7HwCfxn96f4HdyfKdOblSuXVeLH3/P5dFYZuRIyqakGvIpmBmyrU3BomBkKmShQ3VytlM5EGMhqzK+QSUphB34ilfAUK+CnkIl2SSYnyUoqsRzazE3IhEmEfZ3MUxETYmVlmb+JE6s2moebzCyDeUFidrHB/McEwjEyAS2n+2rHKR5sU80m/GDgD1zzpAN7ivMkZKLiGrllAYITmqXYfL5pkCnjDN1Ks+cfxphRQL4SmUHUXtrACaf1jsb8yDgQURTvEPYvkzm5AN8UhDVtymfwespK+RJkF4t894RMAhe7c603QCETzsB4e0BtPBX3Jg6lhLyH64r/AO3POqwA5R+Unp8doprd1uchD11ClDcdsC11Aa3Pt7rnCnyXYl+530ImnbxtZEKsznkCMMSvSiwLCIdbi/DH0IiJ0OEeQJK7zzk6a+gg/+6uKjBXWlKC3119DX59z+8DswUAps6eKbw+6vgR6BvgfhPO1aQixo8eg7sf/6vr9S07tuPfH3+IE08/scPnKkOFJ5M46aST8Nwrz+HKS65Eg0RkN5lMYvars1E5vRJHHHsEfjT2Rzjh5BMw6KBBwne2mf0qlUph8eLFmD9/Pl599VUsXbpUbqhbucY58wcDQ0OiAZtqNmFAj/ZDfUaMGIHf/va3ePDBB13zRmMx/PKuOzDzX//EndfcgKMPG+aadt3GjfjTg/fjueeebxW6cefU4cfj2vGXYkeGerFMBLYDHLl98PL5xs99fz6272oRegkVhRD+qB+Sm7cK/x6zaJm43+7cthOvv/i66/Xupd3RtaRr1udjxoxBv3791AwnOgUkZCKAt8wO0wFMZ4yVAzgBwFAAAwF0A1AMoBnATgBrACzinC/Pk7kEQRAEQRAEQRAEQRAEQRAEQRBEJ6F79+4YPXo0Ro8eDQBIJBJYuXJlh581a9aguroadXV1qK+vR319PZLJJEpKSlBSUoKePXuib9++2HvvvXHQQQfh0EMPxbHHHovDDz8c4XBwAUuqpIVbckn37v+fvTePt+Qq6H1/q/Zwpp7S3QmZEUgiJEAgPC5guEzKHJALeIGLURS8Is+HXlGRx7syib6HiiPokyFcBIQQhmCASMDEkCAQzNBJSMjcnfTcp8+8pxrW/WOfvU/t2lW1hlq19+7u3/fzaTjn7BpWVa2pdur3ra1497vfjd///d/HD3/4Q1x77bW44YYbsHfvXszPz+Po0aOQUmLTpk3YunUrHve4x+Gnf/qn8cxnPhMvetGLcMopp+Ru/5JLLsEll+S/7acMhBC46KKLcNFFF41832k8+9nPxrOf/Wz83d/9HXbt2oUf/vCHuPnmm/HAAw9g9+7dfcFKq9XC9PQ0Nm/ejM2bN2PLli04/fTT8fjHP77/70lPehK2FA0FTgjvfe978d73vnfcxSCEEEIIOSaRgabIxCKAZkI7aBuvM9cuViYZSWWgvDDNpnIRERMz7tq7Cx/63ofwApH/JlJv/ens/av7i5XPhhGl1uTSIrqPjBbZSMll9YfrT8Wz+15AJ6h5tHFUa1udwFxkItcaxuu4pF3TAJ1+BwAAIABJREFUEJlEfqGwgI1LBFlhVcOAn41EpVt/c4I4KR9lSqFyxBob+0r8aXUlfx0MikxMRU+ZRSkQLq9IIIoieApxS39fnQ6e/uA0NrcrmN8U4vazOkOnvGYj/hDZ+1eFcXSG27Tg8oHlfOGtlBJeBNTHFLzMk7v0CYJUQZQuSUGAblAxiZBIDfQIiEKB81xiwS5dyZwutRBDYmsTmYKQQE2z3tQDAVSAx/x/jwEAnLXpLPzJS/8EFz/2YjuBQ7mvOLfCVMpQsTkGR4cdychJyK5dkziyqTwBx1gYk8gkc17hiGoI+OtJNT/0Ab9ckYlOVbWROky0CELrGgrIKBoQybXD9PtdW+kWkC8G0L7P7c3fbByhRe+1HN+rWW/NsUBs8kauY5GUq2lbX2LrOROZHGdDoivy+h2jOXSJY7RJ+/ylV74af/G/Pon79uwupSy33HUndt1zd+4yr39ZCeLi+OnVnJ//1Bln4pkXPhXfvy1bnPDpr315SGSi5Rldv/+76BkX4WOXfwxvf9Pbcfig+qU5UkrcetOtuPWmWwEA207ahnPPPxdnnn0mTj3jVMzOzWJmZgYSEo21BkRb4NC+Q7j33ntx5513YlVD3KosA1Bqp5/XZZnOldKKudBawJk4c+BvH/zgB3HjjTfixhtvzN3e1Tdcj6tvuB6Pf8zjcPFFT8NjzzobW+Y2Ya3ZxMMH9uGHt9+GH91xu1a/e+rOnbjsgx+C53nY0gCmO93bQE82geHb8gnBbT/1Z5d9HP9+681Ot/nAvQ/gfb/7PuP1vvvd71JkcpxBkYkmUso1AN9e/0cIIYQQQgghhBBCCCGEEEKIM2q1Gi644AJccEH220KIPrVaDRdffDEuvvhi9cLEGiEELrzwQlx44YXjLgohhNgwyXEEQgg58dAM05UtMrERL2xq26StYkggzHu1YQpCCARhgGpF7xFQ2c6QCsSp1/o/fuTGj8DzPO3crh/6egs6pMw3yceJlpcKb6Nsj4lMCb1VhKXgVOOaL7X0zklWUDIPubZmvI5L2lUNkUno28lI1rFZN0tAYly1LHauWiWtn8iSQqkkEmn7kmvqYI+Yi0mXFHVYvz3aN9xaKHDr3ltx0VlqIW3ryi/j4Nv/FH/S2Nn/272P6uADr1rAgW3dtu1FlhKCSvY6qnFHJ+yVFlw+vJof9pJSdiUTY0JUBJTXNgy1w3SpJEKPJm9+jyOkxHRtevjvQpQWrh8YTxyPs/VAIJAJmYFBQLQSdeUIuvsCAG+9z9nb3ItLv3gpvviGL+Jsi1DqJH55YCod8CCMBEuAntxMh1CGTkLb7arEkc0ly/9GzYjEfEOULFCpRAL+essJomJyKB10+kSbvrgvoppAI4S2nC6KgFi7z7pvM5UjxdESmajq+rrIxMpHV9RjUmz1lO3kSwCzduhaIDbRIp4RUmj8SVvXdnMl9PdF2u2xipQS0fwRyEYLwhPwTj55QMoLKEQmBvdURcSWKkzaZ7VaxR++7e34pT94Ryll+fSVX8n9fNPsLF7xvBc436+MNyaD+47Xv+ySXJHJVdf9KxYWF4GTBs0Tkcgfr3pzlUhGuOApF+Dyay7HO9/2Tvzwhh9qlw0AFhcWcdONN+GmG28yWk+X5/4f/yn178dOl59+P970m5ipbQhqq9Uqvva1r+G5z3oW7rjnHuVW737wftz94P3Wpdq+dSv++aOfwKk7TwYAzHY8zPb+E8FaC/7yvaied44zca4zjp0LT4iVr5AQQgghhBBCCCGEEEIIIYQQQgghhJBjFZHzjxBCyBjQDQhI6WkLLGSng5X3vxePPP5i7H70s7D3/Gdj9U8+mBukS4oXTl2s4On3T+FJe+qZb26dKygykXL9TfWGmEhXZKOhXEbU6/2fb9nfDQVoXRU5HpHJqB7WlisrDjZSbmHT6nTFsxSZaLDU1BOZ2IiBdOpqmbRr6msVREG6vUMXi+rgLERlE5BU1N+0/FymxKaiqJcp+5IabygWs3OxX1TXRvNcFjjl1VDg2vuuVS4X/PgOHHjbnyJoDEqpzj1Yx/uv2I7pTvdYbMUfIkdYoBp3dKq4l3LxjzSO5K4TIRqryAQKmQ4ASN+H9O1D9yLRXq2DxBnrCQhrOYqSMHbcZYhMosHzqh3ERzd4Wg316s5UyuUTFYFf+9Kv2QXFJzAgZioyERJo+Rpiu4GVzBbPIi9QrEsECb8CHD7ORCZlhqRz91vEyKZBLXaZ/MgHyhaZaCxjJTIxX2VkaNcdf/A+zY/S79uKjCt5MoW+OE21fW99G6a31i6akO42dJdTVJzMjx2Pu6LI/cqxiusudX170dIS/HvuRefOuxGsmN/jdjeycX1dyL0AoDoat+vEIFst+Hf+BP4j8wiOrsE/sor2XQ8i3Ld3YLm8+xyjebmM/zjeyeBrX/RSXPjTT3C+3Y7fweVXX5W7zCuf/3OYnZnJXaYwKXLeLF77opeiVq1lft7udHDF178+vAvVQLdehl792XHyDvzDF/4B73jPOzC3aS5vzZFw/uPOwTf+/pP46B9+YOgzeSyZqzKKutoe/t5n+/bt+MbHPomnPuH8Uot06s6d+OePfgJPPPe8zGXCZojw4YeNtjuSUXhcUkRCLKDIhBBCCCGEEEIIIYQQQgghhBBCCCGEnCh8DsBnFf8+N7bSEULICYpJkBXNptZi869+PQ79zXfQnvcQNKpoHRY4+OGrsXDpmzLX6YkX6j7wrq9tw2X/cAo+eMUO/Pk/7cQnPnYKnvJQfWiduXaxR5OjCAgNHtrvkSkKSNvHfH6wHADE5o23lTaD7jnWCrLL7EBcmegKbQrvZ9mFyKT4JnIJhs9F1aumLOiG5day1nI2ghvZ0GvfZaHzUusgDAplBayyw1lhVdNy2BRcsUqqyCRI75/yxBpA+rnREpnMmYhMNClwkWuRwM0P/0i53OpffwRhJ72t/tR8DU9/oPt28Zptbj/nXKjEApFGGCotC7bQXMhdR0qZKpkYFUJDZIIwKBYmTtQd21xZVtZOCAFRViwq3te4FpmEAlFymwbtTEj9tlDLkOUs+AsIbKQaLsPgjjaVJhLKXR7Amr9mtI6rN45HMiocsuvUJCCAI8eZyGRsueiSBSpxsYUf+pDhGDv+dTyLdtzrv4VI6b/GjeY1fNJfPAUf+NZG6Dlrfp4nI1GRlw3vzzcUfUBvXLPqdwqHeB21B1Fsa67FRmln8ljKujujUP2QCA8eQOfB/QgbIQp97RErhysphq7g7XhASgn//ocQpQwn/qEVhAf293/Pus8xFTbJkmRANu1QCIH3/eZvOy/L1679Do4u5YtqX/+yVzjfL4DBztJgjN2x7SS88Gcuzl3mn77y1aG/RYrbwJ7sMC4a8jwPv/zWX8aV370Sl7z2ElRUYtYSeML5T8Df/uWHcNPlV+L5z3hW5nKluqty+lHT3WYt3wnTJVGP2rED3/nkZ0urh09/0pNxw2evwEXnX6BcNloyFC+PYsylyIQcQ1BkQgghhBBCCCGEEEIIIYQQQgghhBBCTgiklL8opbxU9W/c5SSEkBMOA5GJXFOH2huf/BiWfnA49bOFb+9G66tfSv2s9+D0O686Cc+/axaV2JPgZyxW8Z6vbMejDw+GzudaxR7DlBKIYB6MyxIFpBEdPKBcpnLyKf2fe+dB90H4IC1NUjYjyhJGq8VFJtIvt7AyGA7q2IpMdIKay209kYmJbKdHNGaRSUXjUvmRXyglIi2Cor1QTVFsBECqXESa8CIrhAKVRCJlZ7KhDt6L2VnlMhsb1F2uWCBk95EHlcusXnd77ucbIhPL+pYjjsl7UzmgJ/VJCwMutfKDcFJK1DMkE6NAVHVEJmFXZmKJTNQd09Bkj6yQo4CAV9awEgt+uup3etR9MTRfMAltexKoavafUxl1zPM87A0MA2gYn2siD53xKo6QQKNjfuwuCKOw8ElsVbsbON5EJq7FBdo4bt9JqrHLFEQBEJR7r6ATCrfpN+M9SebcZkzoikAjEeKy2y7D+65+H4A8kYl9WfLObSh7IhPFRnon2/TWWmps2xklz19ci0wmcfAaB0Xm9J0Ogv2Ljsqx0VCSc0VbirTbYw25spwrkgkOLkI2uvOcrPscm3FAWkiHhzcy+Ktt23zxs5+Di5/6tOLlifGPV34l9/NTd+7EC3LkGa4w/Z7idS+9JPfzXT/+Me758T0Df1PeUq/PjdK+nz3l1FPwx3/zx7jq36/CG9/yRmzavMmovKbUajW8+tWvxjXXXINbbr0Fr7zkZfBUUthSS+SQjIIGOfffM9PTuOyDH8IX/+IjePTpZzgpxpZNm/Cnv/cuXHvZ53DGKY/SWicKTfuEE0c2RYgO5SnXCSGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQhSYhPjkmjrU3rzq27mfN770NUy/6jVDf++EHZx+tIL/fM9M6npzHQ+vvHkOf/PijaD2XLvYg8lSZr8xNg8jkcmRI8plvFM2RCaB7D5ArnNVhByTyGREb52UK2pxjorIj1DmewddikyAbjuY9qYzP19t652TrKBkHrLZMl7HJZ5GSD6UYaG3M9usKzO6CNl/f70mVgHJ/HXSDsdeZJLyJ40+X2yKBYmEo7BIwS5mce2ocpn2fH5ZX3L7HD78sqUxiUzU+0wTdKhER1LKTMnEKBCqOggAQVhI4iES4XLDVtonK2wphLCWoyiJjyeOx9l6mDJfiCR0A16eHJQj5O4rp461LeZc5b7i3I6KoRRLSP3x2zVh1iBmQGddZOJXgcWZENualcLbnAjGJDKRijGgKHHpkB/5kCXfK+i0Bpt+M76OH/iYrmXPj00JH3wAq3/7t5DNNupPOh8zv/4bEIqQ8gCa/aeQ3XHjU7d9Cu9+4bsz79uKjCteTh/Zu89VDiledxvCM+vbJBxIIRyPd7ZbkwZjIsnAcZcaLiw526SUsn91paOt6grenDOGoUsu5wtmpRTwH9yD2hPOyxaZ2Mzn/A5QmSl0zMm9Frlq73/77+Bnf+WNBbawQRRFeNZTnoqnP+nJmctccM55qFRGMOcyFJm84nk/i//nrb+Z2f+3qxJrq4PfI0Seoo9dL0Ne+zzjrDPwzg+8E7/97t/G9677Hr71z9/C9/7te1iYXzAqfxo7d+7Ec57zHLzyla/Ez//8z2Pbtm3dY9H47lcC64acyR9Dskqo873yJc97AV508bPxxau/gY/+02dw8113Gu//0aefgV/7hdfjza/5r9i2eYvx+ggCIKdNSPNv6QrhSoxFyCigyIQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFjw0hkspofYACAxe/uy/184eoHsD3l737o42kPTeWu+5Q9g59vaucHzkIhUckLTIxCZDKvDtR7jzp1Y3lE8OBpPQMvYFf+oozqDfa9t/oWIe/NwU5ICdwXEZmogpqrnRJFJi39el0GFY1qFYY+CgVEpLnUJlOqYNoMDANCOvtI696yrr1QhKDSMhhyTd0GB0UmioV1z1nBQIiQITpBB/VqvdB2AKBmm//OCUSrxAJSI9GcFgZs+PnXK0KEuj/GgFVVHcSTUdANKNmSqDsVS1/AjC/Q+c41QLWC2sXPgah2+3UBYf0mdxUyPp7b9Bc5TPliKFhqEtr2IqEd2M0TmfhRCODYl2DojFdxPCnQ6BSf09ggpSws7GjXNtY/sjmaSJHJ8nSELS2zMb5kn0g2Jc+j4/1eGIWALFl6qBFOtxJ1xNYJHB7D8rv+AEc+8V3I3pzwi7tQ//Bncdo3LkP13J/WK5rmNewdt1fx8NXbv5oZFDaVIw2um/3ZRr+v6O97AjVDkUl/0yNAtZv+54pDyBzDSzgOISfSxVUaMu3kF5jTh2sO+65Ym3UhMvFkTl06DpGh+junyAfC3XsQzWWJTCz26/sQ0zP4/q7v42hr43u1cw7WrM9/kev2M0+5CEfv/DEe2b5RN7c0PTxqyXxe5Hke/uDXfsO+MC4xvO+YmZ7Gu3/9/8z8fGU6woFtg3VG5Qbtj6satydT01N4/kuej+e/5PkAgD0P7sFtP7oN9959L/Y9vA/7Ht6HI4eOoNVsodVsodPpoFqrYmpqCpu3bMaZp5+JM844A+eddx6e+MQn4qlPfSrOP/98iBSZaFyClIkoeSjM2birfkhXkF2v1fHGV7wKb3zFq7Bn/z5868bv4j/uvB13PXA/Hj6wHytrq2i0Wpiq1bF5bg6nnXwyHv/Yx+GCZz4NL3n8RXjiuecVKqcMAwjk/3eDHlbDr+mY5Vhk8q+Xfbb/c/1xZ8DbvBnB/Q8gWMmQFaMrDtqz03683DmzE6dtPc16fXLsQJEJIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCxofBM+suxBJZ+JGPX7xxc+4yZx0dfOxyrp3/aPLyTISTGjlva5TIfGNsHkYik6Oqt4NKiJ0nAwCCMOi/CVsnzyak22CfNiN662SUeIurDTInUO2CtFBPzatZb68TZj+gDkA7CO1bGFzGLTLxNJpiVERwYIl0JcOxCC6ruqe0fiLz2qskEin70unzxaZYv50S/rGiYBdTlx5ueOAGvOC8FxQuSl2VuspAVLID9apxR6f/T2svraCVu46U0vp4XCCqGpIB3y8k8RCJdmYb7nruPXN4+PXvBwDUNofY+c5fxOyvvw1CCLs3yusQxMaTLIGSJfVQDAfUDHbhSaCqWXdqkYAXAVHK5Q6s5g8CMoogcuRAo8ZUkCOkWjRUFkEUFH5beDs2/T6yOcQ5h+znOWVxeHNoLDIZ1Xx2iJJFJvG2GkQBoBFAL4JOz2DTb8bX8AM3k7Hm/7oMhz9+A4DButJZrODAK9+MM26/ri+uykP39jEe3L9j/x2ZIjNb6VZyH0n6+1NVufX7T2EqMpE6G9fZhgN0iy6ARxYfwbaZbdg0FZPxlTC2Cwwe3ongNJFSDsoAxtXPJomVo+iYCACV0btkx4vmuBUstVCrRuikTBN07vWH8Ltz1ygxaS0ib3DdDo9ZoU28HTgWKKad5LT7ggEKnMezH3M2zn7M2VrLbp/ZjjO2nqG9bV3x0bFaDXpkilZzDuzs007HW177Orzlta/L3bZXAdpn7UDtofkCJVxH9X3gcTTQitp6R6qYm1nJAmO4kHuRY4PJ+TaFEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghJxwmHg/ZKC6WyMIPfUz76qeO40GB2Xb+Y5gr04qDkyL7ge0c/FA/TBctLed+7lU3wrl7l/b2gz86DxMLmfPAeZmM6s3ba81i60cRorDkR3VTwua1in3AVyUgWevotUGTOtpDtvMlKmWj9TZ6x+F+HTRfTqtEWkiTVOG/tMxl1rXPE2tk7Uq28sUYAODFRCZpbzG2oWiYohoC199/vZOy1GxlSDnShUgRFos0zmNaYKUT5bdhKSWmNMbZshAqmQ4ABCFkEWFRoiK7CBf6KxUc+J+fRevKL8MTXuGwUCbRxnieJskqQi0QCKPBbZoEeT0J1AyKVM9oN6FtUHIMEqs8tMarGJ4Emn6xOY0tYRQWHjvbtY26cnjzZKa3D2+xKNe4cnsli0ziUowgCiDDctuPTj9r0xeL2CRHJfrTZfkTX0BWyrV9RKBzzdV6G9K8hl6sr9i3vG9YKNVbrkCV8HL6o/58Q7n99W2Yiky0tl36Bga2o7O1hdYCHlx4EHcfuhtSSsgwLKU7OGYFB0WYFHFJEpv7sByqhvOAYx6D63rKokit+zb9XH/8iq1btF0Jx9Ki46KdOxaZpJ0S5f39eh2TJZ9QU5GRlFJ5jSVwzAg0so7FRvCtj7T7LiyNYMLuQ8qsrvV69/8VMs+iTYYikxMHikwIIYQQQgghhBBCCCGEEEIIIYQQQgghhBAyNsxEJuW9TT6IgoE3iGcx09lYZpNCZLI8oxKZYCjYq0Mn0A/TRUsruZ971Y2Hhvcs7Nn4QONBeAFR8gPn6ciSA5j9/bQKikxWV1F2okAGjkUmCgGJbhA6KyiZh2y5edu9LTrhpkKCA0syZTimISibdqNYJUpJLWRee08hkUgTmTQ06tvc3MbPKgGH7iko2MdUI4FdB3YV2kaPmsa4lErO+Vb12zoBLi+l/qnEVhIyUzAxEjREJjIKi4XpEuE0V9IRKT0svP9vIJAeznSyj7i8xHGgcCpImS8Y7EJIaM3RejztoSlcesNmvOF7m/DYg9WNXdq2bcdil6JUDC+PkECzMx6RiZQSkV9QZBKbqx6ZUJGJTblGNZ8d3m+5c/d4wD6MwokIfZq2GWAwmKkS/emyele+ELB55de1tqObg46PQZunNmeO06ZypIF1c8rS25+qvGJdYCJsRCZFGXEzjNerKPCx/6G7ER3YX87OTsRscLJ/mxCxyb7VQ9izsAer7VUnoW2bPu2YxuA6VkOBLc3h++e0excl6/f+8TnsuMUhyf2XJjgcIc4kE3n7UH1NINelIWV/f2fY/nWXH1c1cHW2TAUvJkTS3fZVcr54/RlNX1HOToSQfeE5RP5/9/AK1oIyrz2ZLKrqRQghhBBCCCGEEEIIIYQQQgghhBBCCCGEEELKwUhkslauyKSmEeKaa3toTIUQshvMzWN1WvVArrB6aLcdtrWXjZZXcz/3pjaOYe/i3v7POqUSsuw3Z2Ywogedo0ar0Pry8CFHJcnZR0oYtebZi0xUApJWoHdObAKfUcfN2+5tyQti9hlHGFd6kGtrEHFhhw0lBJfTusysOiRq+Y+tpzXrqJkfvBci2ghYdP+Qv4/cTxWFMaAaArsXd2dvXnFccWq2VS7nXEQKg0SkESROC82ptiulVI6bZSI0RCYIwmLSioSYwOVb15uPtOFFU+UFFgdEJm53Ug/EUN9gInGoREJrjtbjPV/Z3v/5V767Bd948hr+8iVLCC0PS/o+xMyM3coxXIUjTaUDnhRo+Ppz6JZfbP4TJ5QhpB+iyDuY27XjU2QyttRpyfPoauxUBFFQugROpzXYBNjjfa1K9KeDjkBm6eu3YpvOxjSndPEQbTtsZwo0i0gR8sakqH/MKpPJ+vUxFpmIkdwX6tyv95fQPIRTlivY2uj2iz7y79dtGSrKiZAVnlCRSSNso91uYam95GR7JnK34wHT78xmOwJLs4N/8yz6OZly71/0zLuWGxTdnsAEdA2Ov6ewPR4bGa8pxt//an0xa+64dVcGsx2Po+cKBHBg7TAeDfvvSftMmNyytMYbu1Cikn/Vxi13IscOFJkQQgghhBBCCCGEEEIIIYQQQgghhBBCCCFkfBg8cW0S/jalK17QEZkIHIbew7q+yowgkflm7Dw6gb7wIVrJD6560xvB7v3LG2+D1r0s4xGZjGg3TX1hTBrR0aOOSpJDSiq7VrF/QF8V1NQWmVgEPmWn/OBIHp5OMHxMwYVo/ggqBUUmJtKA/jqqLizllGX2aRWFRCJlX7KZX99ELD3759f+OZYWbsIvY2v+fkZANRJY7Cxmfh7NH9HeVs0yqCgq2dKASBEW0+n/08KAwhMIwgDVSnpEIZIR6uMUmShkOgCAKIQMC4xriVVdSkdkVMFUR9q9UV6HWL1w/Wb0eiCGA/QG58Za6LPOy3bN4ZHtgf0bnxVv3x41ptIBTwJNX38OvdxcNixRNmEUQgbFGkK7urH+/KYxzDs1OLLJvJKOLV9fgtgsTly0E8mo9LmTzj1Z0ZBllgDEBHnksHIZoeHbAvTrTlLGkiUcKzKu5M2fQ6yfN1V516V0qrDsENJFO3LbEHW2tnNlQ2JSJsl6f0KoLyZEXJLE9bkvIh86JjG8rmnCN6s5+fr4FZ8/uhCHuKSwJE/Iki0YGjgWKKahPETpRlqmLIdhXZaQyis8grNX/s5F99yIpIzVwfaFhFJ4q03O9wTW95lFKGmfA9fBy5+cFu0Tx3LeyFgof+ZLCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQkoFJVla2yhOZ6AbU5trdRy91wiMqkYmQnlUwrhMaiEzW8mUc3vSG9OLg6sH+z1ov/pTdB+tHzgiCDoALkcm8o5JkI4PhilimyKQd6p0Tm7fZyvZ4g+I6bVqknO9RkFaXjENLNgEBxSpp2dWsa58n1ujua3hjsp1f38R6H/s/vvI/8NH/+ChC0wBsZlmK9THVUEB6EkvN9Leuy3n9vqFmK/7wckQmGUHm/uc6IpOUUySEGBBiJZGQmJpwkYn0/WLSisR5cSkyAYCpoMS3HsfnI0VkLinUg2HxmUkzcyHAeemuOfvpg19+sFEbCVQMA6dC6ovIAGCls2JaqkyklIVFJp2YyKRVm7ywW7sq0ay7H2PLouzAYDXW1EMZAkHJIhONZWz64qQEpCjh7t3KZXRFHrr3z/Fj6ISdTAFlESlC3rlVidP6rB+2yJm7lIZO3XDYZjwpRiIxARwIDo5FknVuUgLSjotR1ZmsH08YXse0ubKdyKRbn+LfeRUVCrqex5d2XzBKXAvWUi6RzmWz+Q6rbKSUWv3HuKqBaWvIq6/toNj3r9n7dDcayhw533El5IhPUzTmZkX6obH8NwUyFigyIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCyNiQBkEA2dQPYRqXw9d7aH2u3S2vzoO6ocZbtaPAPBjXCfRFJmEjf1lvrt7/eb6xEa7XuSwC43noeFTPh0ftYqFFubjgqCQ5+0hJZZcpMtGV6NgIeqRfbtBVRUUKdQLEcbhfF7lwdPB3m7CPzTqK8yFTOsKskCwq+R1iWruWLYXIxAPuOXQPrrzvyvXy5C6un/ApLDLpSj2u+ck1qZ9HR49ob6seliAyUdQFnf4/K8T38MLD2duV0omQwhoNkQnCsFCYTiTWdR0urPvSuRylx0Awy/FAWw/E8LhgcJpd1JuzjlYx17TbTl5obdTYChlavv4ceq29Zr6TDEIZQhY8fe2YyCQsqwEUoF2VCDTm/ElMZI5OKVkIWI2NW2EUQhaRQ2m2DhFTAAAgAElEQVSg08/aVJt4b+FEZLI3e3zs71NXyKZ5PPGxujSRSc66Ya/xK8orxPqcxVBIJwEH45VOQly9jG4ppn1R2jieZBSCAzFhFgU5VMcno3yuZ7/VcY0f48Jw3EprYzYCEtkTmcT6AGNxQ/L3glUyub0JnBZpIeLXw/F9R9rWdPYwCpFJGd+fSsB9JxPf/ojqWLrIpPjOhZvNdMn5PjApix3Jtx4lXZwBCbFKSIxjtx8io4UiE0IIIYQQQgghhBBCCCGEEEIIIYQQQgghhIwPI5FJs7RibFrRC6jNtbuPXuoEIQKNp3kj30JkoimTAIColf8wvjc33f95obkh3tB5DrkXwuh87wYcftErsPusZ2HPTz0Lh1/2KgS336ZdRmNG9CS9LCgyiRaXHJUkbyfD5+Kk/St44e0zuOSWWZxx1CxZqwpq+pHeObEJgYxbZAKoH8AX4Xie0I8WFgf/EFiEbCyCy6qmlvYy8DArsV5VSCRS+lTZzu/rRAX4xx/9I4Toruvq6hTtYmrrJ+Zzt3wu9fOh65lZEKBmmacSeSIThUEi0ggSZwWX9y3vy1xHQmKqeBbcGqGqgwAQhZBBgb4oUXeKvrU9SS0sMZgcD2Y5fjP6VCCG+gaTduZKgLO5aRmfcSUycXAYNsIBIc3ecr7SXjHfSQZhFMLCbTaAHxOZBJXJS8p1qhL7tll01uM6lJJFJvE6GsrQXfvJRGfMMm988ZC1C5FJtP+AeiFNkYeuCDQ+XvihnykyKTJW5a3bC/8r+/v1TeTNXdJ3gOLtyFVzEHqbG6X3YyQh6jH66VJJ9m8TMmS4vu4VW9HhsYrh+Us733nSpUzW58Nx+YRrEUlRCtetCahKaXJe5/tQCk8FgpLFa8CgFEd3eeUl0vDxHguY3KuYIKTDap5zj2x6bSeamLxEeOrvlIv0Q8fVeSO5aHwbRwghhBBCCCGEEEIIIYQQQgghhBBCCCGEEOIe2enA5JFi2dJ/m3zudoJgKNA8t6KXbJhrd8ur86CuztvZZVCyyKQdIu9xUW/zbP/n5dbyxgcal0UAOHO+gr2v+T1EQbW/H/+meay9+K0481/+HtUnXahdVm1G9JxzYZHJUvkiE5kQaxz9b5fi1d95AJXopP7fvn1BA3/2skVEGtlAVVBTV1CSKbPIIfIjjDtJ40nkKh7EmB6yjxYT4guLcpQREEjLBWdJMkQlv0NMfXOyog2KqsDn7/h8/9We6oCS4nPzBVOprFf/2w7dhiiK4CWCudHiQspaw1QjoGYbVMw536qwmM7RZ0l/DqxkB7WllM6EFDaIukZ0IggLSTySfYTr4Grdl87lKH1itgnpWGRSC8VwgH4MIpPQ9jXAFtK5sqhYCBk8KdD09WWAa501431kEckIsmDguh0XmUzgq5w7VYk9OwPMz4XYsWYgkBtTbq/swHA1VkcjGRWTQ2mg08/avCl+QAKiKfLLIzxwUL1PT7OtaPYD8eC+H/oDYfw4NoKk/ro557bf76vmoL15UsWigY9ibm6yjwmQAvRIto0yiiaEmKwA/dBcY6JK54yq22naMYDZdUzr823GgSiK0Ak6A3NY87m9AByKUJKnYpRypNLIkGw53YWiA5Sw+w7LuByGdbm7vLr3Luv2UL1js8Xzipn2Pbcz15ijDeXdIzv5vs1wE2UNcSI+H9OYm3W/n7ArjGmbIMcuE3gbTwghhBBCCCGEEEIIIYQQQgghhBBCCCGEkBMBUzGJbLl5Q6NcWR762+aG3sOzc+3uo5c6z4kHGmkJaRGONXkreKRwnnhbNvV/XumsbJRLY9tCAr/zrZPWJSaDhH4Vh9/027rFNGJUb2yMOsWCDNHyinqhosTCqMvv+gMsXPMQKgljyc/dOYv//q9btDanCm9oi0wi83Mng/EnslQBcS8cTxnlcqLPspEM2LQbxSppgZnM9llVSCRSNibb+R2YqAoEiNdJVwmVYqv35SMV4PJbLh/e/NLwGJTGlC/sRSZedkwgRH77lBpB6iyZxqHVQ9nblRJT4xSZ1OrKZWRUUGSSWNUmNJlHzZfOt9knjNULx6KDKV8MjQsmXZKremMjAQEAGZYfbNTFRjggJNAO9efQa23HIhMdk1oOnbjIJM+aMCY6VQkpgGue1DBab2z5+pJ3XI2NW6EMB/uWEtBp1YVFJgb3XlmEh+eVy0QdvQauezjx4/ajckQmXs66QwKrLMS6KNRGZFKYyetTXDHcNkqYg01aKjUxf5mUgLTrM287n3HCGE6p6bAlUu5TbESATSnxkyM/QSvc+N6yqBDB9ZUr2gRFgQIVqYYDqzq+70j9jkKj4oah3nddRTD9LlOn3DL2v6PGuArkFDN1ruXosJwJf3LqahFp58QR/+5OISQGjhOhEimdSZsyEkIIIYQQQgghhBBCCCGEEEIIIYQQQggh5EShYRj4U4TatbezuDj0t82amc25VvdRbZ1AXKDzUnaLcF9g8IB95Oc/Wl7ZtiG4aAbNjfU0nkTetlbBBXuzg+HNRzqQa+7CsH1G9JC09IsFL+XKqqOS5Owj9iD90uXXZy73kttnMaWoC4A6qKn7llqbt9nKYPxPv+eFMXU+L4soKTIJLEI2BgGh1pevwOJb34qwky8fSesnssI2oqrqEMXQG25lO78+iurgo/DOalDBMFU1lur6xE2fGN784pLWdoqJTLLXUwWo9EQm6X9fbWf3exLjFZmgrpDpAEAQQAYF+v7EuXUd6qmF5QWFBmQdjqVN9VAMjwsGgdK6o1yhdXsaQbBRF5vwsieBdqAvMlntuJu/RK0WisZ24yKTcAITUO318n3qP6/gxnObiqXjjKk/dBwYTlKNdR9SytJFJjpYiUxiP9sI+pKE88P3n0mkr+57ZRQBUq8hxIP7eTJCr0AaPe/c9vt91fnvzTs05h+DiOJeHp31NXYiE/8/ESQLU0LhxiOfyWFCg+Qu525FxEPHLIYNPa0nsRkH0tYpLG6wEKrk7T9N2mK2Qfv1pauKPQKzm85piiZgvpJESqnVf0xIV6ck7zLoSpNtcCYCzRGeJr8HG8ksv6S2I2LyEuGVKzIZlaicjJ8JmzESQgghhBBCCCGEEEIIIYQQQgghhBBCCCHkREG2TcJ+gGy1cj//+p1f19tOUgoAYIumU2Wu3X30UudBXV/jrfGRb/6G706kJ3SR7TZklP/QsbdtW//n+JtmdZ66fub9U/ByFpSRh87116o3ZMqoRCaab0XPIlopQeKSoCcyiQ4cQGc5+1rPdjxc9NCUcnuq8IDuW611Ap/R/Dwan/wYGp/8OML9+yAnICeuarJeOJ6H7JNSHKuH/XVCmM0mDjzz57D31/8K81+6U728yduOqxoSiUR/KDv5lULUBuu8KqCkfdoKhimqsep//9L96ASDfXa0qicJmA6EvcAhJ3Ay9LbgBFoik4xNNP3scV1KifoYRSaiVlMvFITFrn9iVWehqXXqfokB1pi8RCrqiCm1QCBKiooMzo2remMtMrGRR5WEzfUXEkP9UB7Njtn8PHffa2bSwjTaMZGJztx61PREK5EHvO+/LOB3/tsRfOEZK1icyZ8LjSu3l5SGuaYaa2eRjCAdi5GS6NyT2Yg64tt1Ea6NltRj/0EJXPLxS7BvaV/2Qgb3jvExyI/8zDlakWaVd25V840eYj1ILwPDuuKgDU1ej+KOssRngzsR41IypTMkajr+rnDVdi7jjDHs3/AyptV9GyFp2pyr6NzedbscSTvPoIADa/CaOp8QpclW1UQOpGUqdL9PM12+qM9GUQiHZBe0XJGJmxMkc2SAx5WQoxb77q6iFpkU6RdN2wQ5dtH4RpgQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHEPSoxydDy7fTg1u6ju/GKy16BNbmGb+F05Xai5aWhv21p6r0bbq7dfQC6ovHUvs5b46Vv/rC2H+gF2KKDB5TLeNtP6v8cRAGw/oyyzqPEpyyrH0OVHf3grC6jekA8Mg3TJddfcxcEzt5J9//C/XuVi/7MPdP493Pz25wf5tctCQmduFr/DewZLP1fb8fRK25CFHTrkPd/fxJROP7HmrthzOz6Na6g0JAUxyKEnBW66AQd/Nm1f4Yrf3wlLr3Kx0vvn9Mvl4HIROiITDodYGpDuKMUmVQ9rfrYoykkLvvBZXjyaU/G085+mvZ6plRjJ0ZUBP7uxr/Dbz33t/p/i5b1JEdTvrAWL4hK9gCkDBZrvJk7K6zSCrL7mAjRxItMZBQCBd7GLRKn1lVoqkfd13srtxXxepET0rJhKkgZFwzOTd1RaNdeZDI5b2iv2opMQv352FrHoYitUVxk0okNHzpz61HTiYlWIIA7zurgjrM6eHh7gN/95knZK44rt1fyPDoe/I4QFepTddBp1Tb9ZnwdPzIXTyYJl9Ttasb3cNfiXbj47y/G+57/PvzSf/qloWVku629z/gxhFGYebJ07muzyJOg9O7ZlFXO6zZs2bE4z6O4LzxGw8nJq1rKDEyIbkUrNUVvQHKOOyGXrnu/4qYwpQntNJmQU6okWS1tgvZp83hRsK67bimFpYkFClTkVMRXdf39XtrWdMo6EpGJ6bHK/Et0z0MP4tpdP0KnGmFTq6RJsgBqN5029OdHFh/BrC+wWfO79C2bN+MFr3pR5ue68jMbnN0/x7Zz3XXX4b777uv/3vJbONI40v99x2plQHCrg6gA1e8Pn+ssgr37ofjqFQBw3mMei4ufqv/9l6jGvjfREJlMyAyATDjj/8afEEIIIYQQQgghhBBCCCGEEEIIIYQQAEKIswE8FcATAfwUgNMA7AAwA2AK/Wh1qeySUr52BPshhBACAC39IBYAyPZwCLMTdPDyT74cTehLI2SKyGRrQ1dk0l1O50HoQCNVIEMLkYlmmC46eFC5jLdjR//nECE8rAfJNJ5E3tRSLyRiUgJnjCi8Iwu+EFSOQGTSf9ZfQwq0c1Vdx5UiE6EnMskLIay853/iyOdvQfwx5igcxTRPjarJ2rzJ2QXRWiIIbhMKTgnNtPwWnvk3z8RKtIJKCDzvzlPNNplWFbKqh0YAQnY6g6EmhehJ1Aa3qeq3lqoe/ui7fwQpJR419Shc9atXYcemHUPLFQ1TJQMrn7/t8wMiE5m8nhlMBQI1W/GHl93eVccnRC9smb3vrBBfy8/ui6SUYxWZoF5XLxOGkGGBhp44t66lI9VAFg5QZhI/bgtZUh71QAyNCybNzFW9sRWiSE2BnAqhIQlSYSMc8KRAO9SfczcDd/MX2TSTFqYRF4UEedaEMdGuppcpUk27xhX8L/kUxmVekYwgyxaZaByPTbWJB9hV82MV33/w+1hoLOE8TOcuN+N7EBLwKh7ec9170PAbeOvFbx1cqKPfluPz2iAKMufwRea3eeuahpJlx6yuOKnKGoPRansVShXa+qmdFJ8H0JurldzgvQk6YKTNcSdjzHA5H6wWEA8ds8j8+5I0PAnEp302ckEhh4UoRa9l4fUdbw/Crp9w0btEMoInPOcCxTR09iBlNHFGhixJbI8bb/4RfvsDfzii0hTjsWedjZ/9+RyRSYlf9BYW/vSIjTEf//jH8dnPftbRhsvlTa96jZHIBHUzkUmR8zsqUTkZPxSZEEIIIYQQQgghhBBCCCGEEEIIIYSQsSGEeAaASwG8BMBjshYbXYmwOMJ9EULICY/smIUb097SfMVtVxhJTAAgWlkZ+ttWzbdIzrW7w5KWyEQjNScDC5GJZpguOnJIuYx38s7uslEEEQsi6TxKrPPGT5O3hk8aOm+2zCNqln/svXygbKjFCDtW1Q+gB5FCHKEZws4LLi58+tuY1EeYVW+4HtcbsOVaoq+0eVttSkDojZ95I1aibn947sEaZnyzt/im5egyRTdVjWvuD/ZtMsg/TlE3q0e9kgkhcKhzCC/++Ivxw7f/EF5S+lEwS1FLyBIOtA5gobGAk2ZPAgBEmpKjKV+gZtsP5QROtILFydRecvMZ5yhPliClxNQYRSZiSk9kYiUK6u0jcV6chabWqQcoLZMrY28hl44DhWkiE5O091gFOAAwgje062IjHBAS6ITDMsAsmr47kYnnWmRS0svmi9DJGIpUWXM5LuNByYHhuMxLQgJBySITja8Mi4roAgvxZI/f/9rv44qfXIF/6JyitfxMR6AxJeF5Hj5044ew1lnDO57/jv7nUkNe2CMe3A+iIPPb1SLz20pOPe4HsFVVrrIu0vRtRH3mq5hyqHEEZ2gXY3ICuaPoYYQQbowGrkj2b8dhQDopTDwRsLmMyTm5rfAjKUQx3c6QeMSuGBs4Oq6NDdiuJwuLm6Ioglfx3LfTlHLplFVGsvTXKKjEJKnLH3/dWDolHqere/LjcEhJZV9zHgsrDwGi+x3OuaKe29eMRJxGjnkm8DaeEEIIIYQQQgghhBBCCCGEEEIIIYQc7wghXi2EuAXA9wD8BoDHovuYYdo/oPskVJn/CCGEjAHZMhM9yPawwOPLt3/ZfL+ra0N/29rQe2J9rt199FLnQWitsKVFuE9fZHJEuYx3yqMAAEdWjwxIKnQe9N/U1jjAtn5wVpdRPTwehcWSGVHT/bEP0csHNtUik+06IpOcoGaj3SgsMvFvvRn+6mRKTAD1m5qLBmFtiRqJ0GpkUZCUhnProVv7P597QPmu+SGilDSD8ASilPIJjTe5yiAhMlEEWr2EyETVNSSv7kKwgG/e9c20kii2lE8yEOx5Hj583Yf7v0cNvbFvKhCoW/ZDIilniaEKUHnCU2bastpCrsgEEnV/jCKTulpkIoPAThTUI7Fq4XBhgpovnctR+sQFLo4H2nogEMq4KCWCSXJy7CITByKGtH7RhorKjpGCJ/XnjoBbkQkcSN3acZGJhiRw1MRFK3HSxshBxlOvy37zebyOSikhw5InTxqHIyzS1vE1VKK/LL7542/iip9cASEEtmgIIAFgtr2xZ+EJfORHH8H7/+X9/b9df8912vuPj9V+6GfO4/NkJCb7SNK/H1A2he7+pT+mibYCExHUJDHUBZXR9D0BzdvD0ZDs3yZkyHjUUgXnHKzh1MUKavZeJAB284ATkfh9fZF7+OS6Rc++63uDosFwHRlYFqZSjsH9xscItyclbWtaw5xlOYyuqeku5Lhmi+WQeywiZY7qqGrYzANTmZAxpWwWwpX+xRJCKO9pinw/UaQfIccWFJkQQgghhBBCCCGEEEIIIYQQQgghhJCRIYR4jBDiOwC+CODJ2JCVUDRCCCEnILJt9pZ26Q+nPm45cov5fldXh/62ran3SOXcerhM54F/XyNsGQXmSRY/0hSZzB9VLuM96lQAwO6F3QN/13nOe66lXsj0GmsxopmBDL31sLXl+i390LD1PnrZj7VhOU8SnQBlPGie5GhDXZ96RMk0/zrtq6/W3sY4UL2Rvsgb64uQlOLI0DxULxNvKN99dPfAG4dbNfOGldVPNPwUsU5NQ5TiJ0Um+Sdc1GsDaRhlv5VyiF+87Ytay5lQS5GPXHX3VRub1wz2T/kidVtaiOz2niUa6q8KoUxkZX3cCbLDvlJKTI1RSCGmptQLhVGh0L1IhK9UciRTaoH7AGSf+HjnSLrRox4kBEe+2fg4bpGJtJirJRlqdxK4cHcdr/v+JvzCD+Zw2oKeUM/G4yGk/twRAFqBu7mbaBbflh8XmUxgAqqdITIJNcrqom4ZE5U7ka7GqrqEHJQklYBO72ATsIz3tWFkdwwf/8HHu/IQCWxp6FXemc7gckIIfGrXp/DVXV9Fo93AH1z7R9r7jx9DJ8oenwuF/HPOrWq+0UOsz1miwPBCSVE8AK+zusEuJukL7OR8oZSRVHiYKJPJUJ2bnCsiJLC55eGso1VUC3SL1cn0/ZRLwT68SMg+KXoqOg933VoKCxpsVxeacpAc+t89jaCZ6sgSTEVv29Y8POZwFeccrOGcgzWcslRRfl9kKm040SQP7aC4ADENVyJQ6fje/lhBddilfT9BjismV2lOCCGEEEIIIYQQQgghhBBCCCGEEEKOK4QQLwTwBQBbsfGYZPwxp3E9CcZHrQghZFy0zR5Slh112C+ChKcYUqLVYenD1qZegHSu3Q1a6TwIHWgsJCyCcX6oKTJZWFAsISG27wAA7F3am/hEzea2OpAn2yW8wXpkI7cAmk1gbs5q7ahdbnATQP+Jctlsai0+0xZoTmWfwLy6tdBU1acNsoKL0kGguUxUQU7XUgJdZCvRjjSDoYPrDF73+w7fN/C7jcgk64Xgq+1VbJraNPA3UVM/ti47g2NCN9Cafc7FlIYcJb58yt+u33t9SkGKdTLVFPnIUriEw6uHcfKmkxFpSo6mfYGapcAhFBIf+NYHcMXtVyCQAXbM7MAHXvwBPPec5ypDWkII5Z1ZVlvohDkiE0hMjSGz32eqrl4mCoFCIpP834tSCyT8svqhuGzAseigHohBwVXHbG5QH2e9Abr1ougmYv32dEfgA1dsx4UPb8h1fvXftuDyZ6zisueu5G7HRqjlQX/uCAAt36HIxIHUbUAUIrr9WzJYPE46GSKTrDFyAN8HqiOOdRUVPyioJMdAx2KkJKMQmQSRXSd0y5FbIITAbEegplUhgNnO8HJCCLz7W+/GZT+6DMJgYImP1UEUZJ6sIqK+vLlxb76hrHLrt5QyiGD8vvbC1dmxyWRyuqbRFMVTzxlHSrKyTeA3/pVIYOdKBQe22c0tKpp9SZlIKSGXFoEogpidg5ieHneRhoj3+0Xu4ZPfDxQWmTgWoRS+1xiTiEjIjbmxqUDEBq0qYFCOHSsetq9tfIcsJLC16WE6EHhke5A5BzQWmYzg3IwUxeG0gzama+77E5f35DIMISp6//3gWCSt7pYpMjnu6jjJZAJ9pIQQQgghhBBCCCGEEEIIIYQQQggh5HhDCPEKAFcB2IbuM5dy/Z+I/UPs771/WSSXUy2fty5gtj4hhBBHyJZZUFL6+SEyIaGUmACAXBsUmciVFWzSkHIAwFzHgxfpvbna10nN+eYBFt0wXXR0KfdzrxpCeN3j3r+8P/GpuuxzLY1zbRhW1mGUzzlHy/nnMHfdTvkik9650BWEnLqU/8B9Xt062jhqUK70iyQN5UWjRhWMroxpthi1EtfFRjKQWGff8r4CJeqSdbpWW6vDf9QJageDxykVQgmREFM4C1gUvM5pb0oXQuDqu64GkHI9M5gKBOqW3chv3vwRfGrXp7AqV9FCC3ube/ErX/kV/OV1f5kpGuqXFUI5kma1BT/KlhZIKVG3FLO4QNQ1RCZhWCh0n6xjrt7+3KMWyNLeeCxjx+06UFQPBaL49o1FJuMN7Uq/uIwj3u7e8Y1tAxIToDv+vOH7m/GiXTO527EJMAspjEQm7dDdWO0lRVwWJEUh/rgG4wzaGSKwUKMDcFG3TCl7Hh0fAyUkZFjyfFjjeGz64vg6QWgnMhHrAfEtTf3o3kyKyAQAWmjhjqN3GElHBo5BZh9DETFC3j2xar7RR3TPj7SoKqO4LzRRnUxS71TWfGFgH54YmwghlaF7pEm6IhvMdezjvNURuFJVdG6/G52HDqKz5zA6dz8E/577BuaRzikooyoyH0+uq75LUuGuvThp47btV2jKQXLo32847sjTyqWzB93DqYYYkJjEmfIFtjbcxvVH0ZePCtU5bgflfF/o9J48GLdhs1yilJOl6t1Nz28l6t7fT8J4RkbHiNWdhBBCCCGEEEIIIYQQQgghhBBCCCHkREMIcRGALwCoYeO5wfhza8lHnXSeG0wuk/bMeNZ2JugJa0IIObExDbLKFOmHlLIfEtORiwCAbDQHfg/3PGRUjpmO0HqYXCvAGIaA4cscdcOo0fJK7udebePngysHB8ulMVpOBxoP6Jchrhjhg/xycRE47XStZVt+CwdXDqJWqeH0radDdkbwZtn1C6UrBTp1qYoHT8l+8D5PZLLU0pe6ZL1pNpxf1N7GOFCFQ4u8sb4IQ1Icm0BtIiD0yNIjA7/XQ/MpclbudbUzLDIRFfVj68lAtyrQOiQyUXQO2kdYMExVzTiX39/9fVz69EshOxF03kc65QvULAUO81gb+psQAn/1g7/CXGUud10hhDIxlTXe5o1PUkpMjVNkovG2eBlFxYKYZYtM/BKFSnHZgEIiZEo9AMJ4gzaUN4yz3gBwcj56IpctDQ/Pvie7Lr7stjl868nNzM9txiFP6kvwALchQtEuLuroJIaPcMJe55wlVol0yjkGkYmVDM2AanJy4Lg/SaLTO3gFRB1AvqRLB5NQ86xCcGArMsmTirgM+cfpz8tU21+/lzcXmQh047UFrq/GsR+rXyKPpNzCmyiPydAcfkIFAF7Ubcs241kR8ZArZKwMEkDYCID77kftvHPL2Z9FbR4QmRQYhrrne2NjRef2LqUUbkQm9qsV3X1Upvwmic5xah7QnEKCPdf2sDCXfmymskipqP2/8upfwH99w2uwMi2V0uIiTD/l8UN/23VgF3asVrBjVX+/ywolRid0L8IG3LY7GQQQU1P4zGc+g8985jP9vx9ZPYL9qxuC8MccrmZ+L5SFVwHqTxo+11m0d9010B+7IG1zamGwXhm8CDhluYLNrY021JjyIecaELOzJsUkxyAUmRBCCCGEEEIIIYQQQgghhBBCCCGEkNIQQswA+CcA08iXmPT+thfAbgAHAJwO4Jnry4jE/39u/eetAE4CsB3A2QDiTzylPaImAAQAvgogLZ3zgPbBEUIIKY6h5CJNZBJHN9gVNQalD+Ge3UblmGt7WgEGXyOYYiMyCTVTXuHycJA9jje1MSQfXjs8WC5Hz0KbymomDbmslndEUYS3XfE2fOvBb0FUBKSU2FrZis+H0+U/qGsoMjltMb+y5YpMmsVFJtHRyRaZqNp1VSuV7J6u+CKGRQg5GZrZv7x/4HcbYUaUkQhZ66T0PfXa8N+S+IP1z1hkojoEzdNmGjBKkvVm2bsP3zqwCbQAACAASURBVA0AiHRFJoFAzUIwA2RLZryKh0bUgPCyt+sJTxn2ygoD5fUhEhL1cYpM6lPqhYKgUOheJOqO6zdoV8MS38od71ccvxl9KhAD7Up2zOZ/46w3AICo+Ouio/Xg3oV76qjkdFbn76ujFgB+xgTCJsAsTEUmoTuRiedEZDJYH4PSbD52tKsZcx6dSzUOkYnj9p2kEmsuEhKybJGJxuHYBM+9WDs1aT9pbGnqzx9nOvkVxyQUGz/ubhg6fd0iYoS8dfPkKQN43fOz7eUXYv4rd5oVYFK6g/G7JYYobb4Qx/PWRTSTcSGG5/CTUa40bK6PkO4lea4IGyGqzQbEjNswuu19mRdTbbiUNRlft+T69kUZ2p6LbkfYmoiEgCzQyXQ1VOtjxAjqtM73m7pnYptCTqYax03Qqf9SYEQdfnFUxdSVdpviufqCG8iUCqukuqVQwi7TpnWqaaJOHyskcPpidah9zLY9+PfvQe38cyEq5cl4yPihyIQQQgghhBBCCCGEEEIIIYQQQgghhJTJ7wE4F8PCkvjvawA+DOCLUso7eisKId6MrshkCCnlpcm/CSEqAJ4C4GIAlwD4ucS+elQAnA/gUinlLYbHQwghxCGybSa5kEF+GEo3hCWbg9IHf/ceo3LMtQUCjTxaqBO0DCKgrl5sYJWMB6eTRKvN3M+9qY2HhI82jg585up5aNlx/yB6yfnLASINkcmbv/BmXL/3eohKt/4JIbAcLcOPZkfwoK6A7HQgG/nXusepKpFJTt1abi1rlyrrIf5wcVV7G+NA1Yeom3Sat684kZ/Ysc3bixPyk8Org/KimkVOPysPkiYyEVV1a5D+4JigFJlMTyu3qd5p8U0kqWbUo/1rXXmMbh56yrcXmeRldfIkJgAgIKDKtGWFgQKZIzKRElP+GJO+UxoikzC0a1/rJMNZTkNTAGq+hCjLpxQ7bmkhS8qjFojBQLuhvMG2HTjDLyYxADbO6cX3qvutzU0PRzen10NdaV8cT+pL8ACgE7iT0Il28XOXFIUEE5Zxa9fsRSYyGL3IpOx59MAYKFCoT9VBp3ewCrHH1hmlyGRWEYA28fh4sWshRZ7IRH+bQ/vIKU//fkBR5l6Qfua/XAKYikwK47ZBOB72CyJyfnOE5wGKeeVISXZwo/ziwJDuHNGsfNVyu9PChEfmUT3LrcjEdgwRsdWKzMe9xO6L+iIKrx/72YnUxlpkUnC/sisE7v7ce3eBG9JOi86p0r02RQSLNrILnb2V3dNJKe2lNwYUnW9l4VQAFaTfUw1JZyz2KSFxcOUgwijETG0GJ82eZFHAYoQpJ6srLcq+/jptZ7YjMiU/UQhE+/ejcuaZusUkxyAUmRBCCCGEEEIIIYQQQgghhBBCCCGEkFIQQmwD8LtIl5j0fr4awFuklPuK7k9KGQL4j/V/fy2EeAKA3wLwq+jKS3r7Broik+8JIX5ZSnl50X0TQgixIxlaVy6fJjKJjSq6wY6kyKS9f69ROebaHlam1TvTyt1qSkni6D7cHa21cj/3Zmr9nxdbiwOfuQphyXbbzYYGNup+k5m7WskXb+xb2od/e+Tfhh7qFxKY8ctKmw8iWy3t83zqUv6jw3lB5+W2vsgkc/vLesKVcZEMKiWpKhqGEOvRFMcpxmSTl5GNdWSw4RxtDcqLbEQBWSHttfawyAQaIpOk3EAqUuBiRkNMEV9ed8GCocdqxuVphk1EUYRIM/zUFZnYlUHT65WKEEJ5srJCz2FO3RR+gMoYE75iWl1fZBRBFgndF31ru4JaAFRq5ZzDgX7FcfB3KiEykR2z+V+RwKALrPrcBL23zuuc2S2tPJGJ+bkQMr9tJulE7kQmXqd4ILGTFJk4TSMWx88Qq0Q65Sxjnqyi5GD/0P1YWHLyXuNwbELs8cs3IGKyYKuByGSmk7+sSR8QH4M8L3u7RZpUrshkva4pN1/plq3+wpdg5ow/RXOvwfkuWp011p+EELkNQ3OQMgrpefYihDJwECQfFTbtrjJusZuCcGEV1bMcb9RyXh7v8VT3+Hkk711Mr0ByeZf3BsLFfVUBEVGx3W/cGzhvpinl0imry9blyWL34z10xCcS45Noud7t0HfdjiqHy3YnM77DT14rm3PTEsChtUPdX5rA3uW9OGfHOZiuORD4apJWb1V1Wef8bmrlz2/9I6uQ0R4AG99Fidj/iJO2wZvbpN4RmVhG819ICCGEEEIIIYQQQgghhBBCCCGEEELIicibAPSeLkpKTCSALwF4pQuJSRpSyruklG8FcDGAezH8/NgUgM8JIf57GfsnhBCiQbu4yCT+sLBusCtqDe63eeCgUTnm2lnvsx7E13hltojMn6jWFpk089/y7s1thLpXOisDnzl7ztsv403zo3tKX66s5H7+6Zs+nfpm0mnF29QBQHjFg9EAgE4bUrMtnbaYkbZdJy/ovNrOl7rEyQpcRKvuwtFloHojvfKN9UJCuDYXAJBh4pFvi0BX8g2xy61BMY2NyCQrMNPwG8N/1BGZBIN9m4zyH3UXM4OBDlWARzvsVfASZp1Lr+LhJwfuGr6eGUwHAjVbgUOBbtITnjKTmlXN02RIne/dgKOX/jJe96E77AvlAFHXEN+EIWAxLvf3kWiarn0L1UA6l6P0icsGCpyDNKqRGGzfhiKTqTGLTJJ9kw0mIoQtOdID5TiUgpACgdQ/Bj90N3erdIrPdYZFJoU36ZR2Lb296AyrMihjnqzaabmbjwfthRDF5FAa6PQONv1mfLu6915xothx57XpJLOKe4iKQZPSHYNsBEn9feRc3v79gLIc3f2LahWP+tqnMXOafnmS81uyQWnzhfg+PA8iR5Izcobqw+TWD5vroyvuPa4I7eYRAyKnIrKmxDkv2q5czmidtHFbEZEQhVqXQGxu7LiZZm1OtRsnYph1KiGwqSVw+kIFZxyt4pTlCmqBRiESSFnivZ8JWWOtYdlUZ7ioOC4Lp/fkGX1SGfMRCYn75u8bmFOWTdpXcKqmoXN+debCwdEGgqNrCOa7//z5NfhH1rqSk+XiYm0yXjS+ESaEEEIIIYQQQgghhBBCCCGEEEIIIcSKX0r8HpeY3AHg9VKmJN0cI6W8SQjxFACfAPCG9f33Hq/yAHxECPGwlPKbZZeFEELIINJQciHD/Kdjdd+0KtuD++0cOWpUjrm2B09jCAvznRFdAvOhUF9kEiDvUfHK3Ez/5yHxgKNn+JPn2sk2R/ggf7SaLzK5/PbLU/8+46tPoFeTCNtWxRpAtlqQbb0NnbpU7c/IvAh4zU1zePmtc9ixWsHSTIh9z/g2oqe/Fd6WLUPrrnb0RSZZ9Sdshpjkx5c9xRP6qqCnEAAE4Dp/ISMPstOBqNe7f7CRDCTKtOavDfxes8jpRxmpmjSRiajVlduTMVlAt07nn285XR8QCU1CxgfIryfX3nIVXqzZwU75AnXLN69nXRsdROwtuFlktZVk+Kjx/38UB97zGciwgkdDQyRSJjMz6mWiaFDoYUjytLsOntVC93KUPvGAVAkDredvbN9U3lAv7hEphmWINk4vgKbTojfniUwsLo0n80VlSWykDZn7LigyCYUcEpcENiehRJKilR4KF1cXB5IcY6LeV3PlUIt1JUIISIt7HRN0gsd2AqCNn23axEp74x7CqcjEIGitLzLR3mTKutnl0Q71Vja2UTn70Th91/VoffkKLH7o77F2v+IeZ7K6g4kqTvLKlNLqKx7gjVk2FidZ5ybpgiSwmc9VC0iHRkIZ59sywB8/v6p7fN3tAMVlFy7vDcYpMul971GE/hgxqnba+6+SOR+74oyF6qDctCOwpeFh/0klzInECE6hq3tDxWai5JdWjq6K03vyLJFJSVdBQuJo8yh2zu0sZftJ0r5HUgqDRyIbn/DxjyiZIO0dIYQQQgghhBBCCCGEEEIIIYQQQgg5XhBCnAbgKRiUl/SIALxlFBKTHlLKFoBfBPAZDD71JAFUAPyTEOKMUZWHEEJIF9npmC0f5D8YrBvskq3BAG2waCBoADDXFvA0QiRab4y3EBJoi0za+UOtt3m2/3MrbA2u6+hJ71LeND/CQJJcXcv9vBk0U/8+rQghAoBXsyrSMO02ZEuvLU0FAtvXPEACv/UvW/Fr123F6YtVTAUCp6xU8ZRvN3H45b8AmRIYanSG5RSmuBC3lIkqUKYMegpZ2uvP5dGYcMkgkL6xgcFyJdt8zUKYkdXlptaVmkaFj/UXckX9xtVmPSHFUQUsdC9NwaBOLefy3Pngj7S3Uw+ElWAGUIdN8vCEpyEyAaohMNseTE7Fw0fR/DwOvvcfIbWsXuUjpqaVy8gggCxgIkqetiLByTSqQWldzEAoS9rIkhTUOrHzajj/qwfjDS6ljYmm9NqGzrHkSQ9UQq00hEwLBmbjh+7mbnGBjQ1+VQ41LK359QjpZIhVdObSplJHF5Txxvg4lcR8wkSiUxY2woD4UYQWMqPDK4f7P29t6FfamXb+sibSEd3xooggK2/djVCvqt8a/nz61a/Fpte8UF2AotVZZ/0JlmHkUdp8IY7nAWKCOuWh/m1yL57O90lJKuPvTkeO7RwsLhwp0scl512lCQU1iQsDnJTFtv0KUbh1mcxNXaCUMWgekM7tXdp3KwLAqYvegLxVuS+Nsyw1y1SIlLmjsNBXKJcvyUXl8p5cZkhPXcyvs0q50FjIKIz7Cx+mdAmq4Wrc/SI5Npig2SIhhBBCCCGEEEIIIYQQQgghhBBCCDmOeF7K33pCk3+RUt402uIAsvs02ZsBpKUHNwP469GWiBBCiGybBVnbimCtbrAr6gyGBqPlVsaS6cy1Pa2H3NMeAB4ujHkaRTcQGClOr7dlU//nZGjV2XPInRLeNF/6U/qxXTXy5R1eRvBjtqO++F7dzWO8st0yakunLlbwxEfqeOmuudTPV+9uoPG3w9OitU6+1CWOSHmzr2y3EQXVlKUnB1UfogqQixKzfNHRI7FfLEI/iWBFIAfbpo3IJOt0NP1hwY+oqa99PNAtV1aUy69VB49J1W9pH2HBDrCacy73HdytvZ1pX1hdF0AdNslDCKF8OfevXr8F3/iz0/HVvzwNH/vEyfjZO2YADIatVv/fP5moNi+m1SIThFH3n+0+Equ6DvVUA7vgqw4DQdESRAcVPyZKMQjwAeMXmcCwvGn05DB5kpIeW1rZy3gW1bMigchA0BM6dM5WCopM2tXhuhhmiEPGRbuWXh6t+wC/hHnyOjKK0P72v6B1xRcQ3Hl77IPSdgkAqCYuuY0ExASdezJhce8Q366uRDLOkbWNeZtOu+8xq5Ah5s0xkuhKPm0EST3ywsH9OYHiGgkvYxuqyQhcBIfz1w+jUCuq3T8NYx6u4oykKF6lKzOZFI4dj4nVHLFa0hzQGWV8T2MpGIz34TZzpx7J7weKHqHNeDRA7LhcnO3M/le5YrHLLWR5YrWsraqkILoikyKSKE8KRPNH1Av2GPb5jYeSJXh9RDn1wqnYS1NkYq55ySYpIe7v09keNki795KKEzgScdpENARShAmaLRJCCCGEEEIIIYQQQgghhBBCCCGEkOOIp+Z89vGRlSKBlNIH8CYA8SSFRPdRqFcJIZ4+jnIRQsgJi+FbyBc8D1+4+QuDf4w9MKsrMpHtwUCdXDULp821hVbwRCtoaRGYTgoIsogUwV9v2+aNYiARMnT0kHAZb5ofZR4pWs0XmVREJfXvM776BHrTbgL+st2G7Oif59OWqviZe/MD/c3v3DD8txQ5hQnhw3sKrT8KVIIAZR8jtDKXVkQLR2O/mLeCZB4kGUZwKTJp+SlBi2pNvcGYLECuqkUmjfpgAZQiE923LBcMzyRD3HGajWXt7UwF9iKTIkfgCc9oDHj0fA3v/PpJeOmtswMBseYP7ihQCveImVn1QlFk1b76+5D5vxelGpQYAImLTGxkSQqqndg2O2Yiu7GLTByIGHpvndcSmeQsYyMcEIYiExtpQxZeQZFJJ2Wa5U9YCqqTEvgDNIVSgft5MgC0r/469p7/HDzyhj/C3t/4W+x+/ltx8HkvRTQ/X/pEOllHg7JFJhrL2AgD4mFzmzYx35jv/7zVQGQyoxCZ6N7vAvpjUBHpVl55evMp5eYzRBhpYsThnagXKUJS9qlikrwZowgWC8+zFyGUQHIOrxIXjBObdmfS/sdBKWfbck4aP79F+rikPKZou1K1FhM5iBNhou2XF0IUbl+9ual0LcDJ2JxqN1rzCQdtMFpSf8/RQ0IqG5bECMaezO9HzK6dztLtoG20zZGT0ScNtYfJHX4yiQTQrA8XXHVP41reSo5PJuwWnhBCCCGEEEIIIYQQQgghhBBCCCGEHCecH/s5/ihTB8DXR1yWAaSUPwbwWaQ/O/f2EReHEEJOaGTHLBRWCwXedc270kPy0A93ymDwwWPRNHsafa7taQUYwopGeSxEJmGkDgTKZhMySpds9PBO2raxvEiGftwgS3zT/CiQjXx5R9VLl5GoQogA4M1oiB106HSM2tKpixW89qZNucssfe/g0N9aQXq7S0MIgU4wGFSPHt6tvf64ULmH8t46D6zngEp6OlsuLGz8rNEHDK0fC1zMr87DS4RGaxZNNet0NIPhdiOqanGPjItMGvkSIQBYS2zSWQaqYAdYzZGP1Hz9jU/59iKTIi9sF5ZGnl+/dgtqsaq5eteafSHKYDpf4AQACMNCIpvk3MB1qKcalhhMjh23LCBzySJe9+NtXYdxi0xk4EBksh7W3KwhNMhbxibELKQwEpmE0p14omLQ56XRqQ2vryUKHCFpby4HgEijAzBtCzoEd/0Y+9/yR2jPx9qN9LB65yoOvfx1pbTvONVE9QlKECPF0ekT7UQmGz+btJ8ei83F/s86AqMeM538ZU2qv27guogcIe/c9kO9StNcRh+fIThJ7KQQqtVdip10qMy4u5EYychZqQCVCYqmDpkbx1MMHWzmc0mpxgmB5RgSP7+qe3jVduJ9aWGRiYaUQn9bDuqDTj+bghSicCcjpSwsEDXan+JznWvrYgoaNfTHFdl//4JiubK7BlfXSWMzPZHJKOuGCVJXZFJ2OUo4PyvTUWpdKtp23HwncgKOf8cZEzRbJIQQQgghhBBCCCGEEEIIIYQQQgghxxFnJn7vPWl0h5Sy8CtnhRDqJGQ+H0n83nsq8DVCCI2EGyGEEBdIw7eQ10NAVAS+dNuXNv4Ye5ZVN4QVdQYX9Npmj1POtYXWg7iBjsjEIkyoIzKJDh1QLuNtPwkAsNJcGZIauHoQvhSRSelP6cd21cp/G2hFpMti9EQmdasyJZGtFmRHvy2dumg3jTIRmQBA0x+UWYR791rtd5SoAp/KPsYDRElPZ0eLi7FfzANd8a7mvvn7hj63EWZEGYmF1LpS16jvcZHJ6qpy8TVDF5D+ERZLWuSdyzk/XzAVZ9oXVoIZYFhOZYInPKuXc892PFz4cPdWKlo4ar3/shAzM8plZBRZCcb6+5D5vxelGujNP6yIH3cJwahKXCLnd7IXTKFuKfRxRuhAZBJFgAQ2t9SDxJZm9vHaCAc8aRaucyoyCQqKTFISo8GEpaA6WSITnWpreC+kw/L7/xhhO32ut3Z/G50l/XHIhmTQPixZZKKDrtAjTvwodO69kiw01wV00kxkMqu4h6gY9Ie644WuDDR1HznnVrvfyQrS60xGig5XivX90H0bzcVSKpBK4p65FBFapeK2zEUZOsbJDMIDdnKNpCjqhMByDIn3f0XnzvFxreiMVLW+6h4uvr6TNu1ZHpEo1roE1iVhJcwRssqlanI6Z6LIeGm0ox5SY/FR3CZl3Bua10F1YXsik4kl4zv8kYtXHLedRj3C4S3pg4yq2qukSjbz8OGdONgGGSsTNFskhBBCCCGEEEIIIYQQQgghhBBCCCHHEadh+LlBCeBmR9svlPyVUv4IwCMpH00BeG6RbRNCCDGgY5bQrgXdJ1e/eudX+38TsYCT7kPlMhamlSsrqARmgb65tgeh8RRtpLFZYfHwsU7ANDp0ULmMt3MnAGDP4p6hz5w9gu1YZNJ9++XonmCOGvnyDpERsFO9TV14IVB1EySVfgfSoC2dZhlgbYdmgYIhkcm+/Vb7HSUVxQP4qgC5EICwDQMpiJaWYr+Yt9AoFqx4aP6hoc9tRCZZp6vtD9cVUVVbR+JCHrm2plx+pTp4QYrIOwY3VGz1ak490ZEc9Zhte/As+7sividPeNYpg1ffvAlBGKDznWvsC1AKEqhpmG/CsJjEI7FqkTfAp1EJAc9FgC6FgbdLl5DDqnc2NioDs7nBVDDm5JKDoJiExLQvtKQsedIDmwClMBSZRNJdMK7iF6tM7VqKyCRFbjJOskQmOsOqiYhOl+au3c63aUJyrmQjATFBp0XY9MXx4Hsgze9nlprdedtsRwzJXfJQzRNMZEa6x10k5J+7j/52VQnYjM81RCZl9wZBpHfte31s0fK4vI8YycjpeYBXrhzJDJn76yRh0+6cSBSOMaTFfS8wKFgoGqKP97tFbzdV65sMV05ufW0trEIU8wv35qZlyM4yyqUUmeScz56kwkYoWASd+bvECFzPjiQdOsXshB2n+3RORp1NikxK760Lnp/KlEB1cx2VTTXUztiOvdvDzHqkql+q8exEHLvIMBSZEEIIIYQQQgghhBBCCCGEEEIIIYSQMpjN+Ls6Vb1BXtphk8F2srgR6c+UUWRCCCEjQvpm4b2KFPAi4K7DdwEAOkFnQCSRFx4f2G8sjxTuecioDEBXZKITPAk1gkjC4k31WiKTgzoik5MBAA8vPjz0masH4Vc6TfVCJoz4re6ylS/vyHpLtyqE6FWku6Bauw3p64dET1+oWu2mHyjQZK0zKKIIDx622u8oUYWcVA/gi4qwf6uxArm8svGLRSg4jAUd0tp83SJnnHU6UqU3WhKJjc45aqhFJqu6nf46pbyJPoVKzrmc8fXrx+a2fV0q0ocLITIlTSp2rlSw0l5B+4bv2xegDISE8DSiE2E0KPQwJDk3cF3nqqEorR5fdeBmNNqN7i+WodE8qvH5TgnyhjKRYXEpWySjXEFJnFyRicWlMQ1LOxWZFDx1fsoBB0WsCyXQzphWRTrlDNy3hdYh55s0opowuIQl9CdxdPpEqyoTW8dGxrLU6opMtjbMYnuzChmiSroXR3e8KBIwzTu3/QC2ohyZ47POXKTk7iCIArNxt+htgM5cRZP/zd57h1ly1Pfe31/1ORN3Z3d2Ja0CYpVJkkywDMYSwjbxgkEYB0y0jXltXx58ccD4Bd8LEthcywH0kozhGsG1CTIGCwRWBGMhEAZsUFiUVmFX2jC7Ozvp5O6u949zeqZPn+6u0NVnzuz+Ps8zz+50qKruyj31/dYwxr0kBMgbIWnqwDOPVn8Rx7RdGraBwshgOSaJmywVHTbE+zUynGQlr1YamRiE7WQ4ZPntQhIVql2EnvFDUIbZWXrKVOnNy9vIyHo9DBmG9Q0jlyGaiqx+Yx1RIxNbcyUdjEpXwfdD01OonH0WquecjdaW/D+16xgG513ipv9iM5SNzgiNFhmGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYZhjiImM4wsGYeQph2cMwsnivozjT3IQNsMwDKOB9M3VjWM+YdwbBwAsN5f7zgnNReVxLVqwx3zX8ukWae3qKj2N9FgIpkONe8LDh5XXiJN2AAD2Le4bOOdqafau5ryjkHoYmt8URTbzzTs6YYaRicKsgKrQE+dpIDsdSF9fAHLCit2u2VnPmkWz0+z7PTxy1CreYaJaYK9cgC/sNzVWES4uxX4xbzfiO8TuWxqs81XfvDyGGc/a8i2NTGLlWNbrystXEhmiFCfpHiwoCqnmdG2TCoFynImOfWEqorESJKx1IpsbAkvNJbTuvt8+ASWw9jj5eSvDsJiJR+JW134LlYCchxnxjdoDOP8D5+NLP/rSwI7SLqjE6oULY5ChEhRXXxkZmTRzjEwsKjdJaO3oHmFyrYqiRiatymBaghFTQbVT0gjotcM2c6FRJ+kxVsQcSgedGmHTbsbDtTEyWWmvAAC2aNb7iKk25XZVJmJQ3ecuIjDNmxNHbYkyGVlCeh2BfdHmStHfaee9K33tBjIyWW3jhN3cshSS+TmaOngAagPNJJUhGSjQSLgmxLDsQ+JvSxR06Y33a0XH4aqUKJMai99FVpHtxwsqbn4cyrAUo+Ks16JKb+5p6vZppvW2KLpzMh2jiULpyHirpkVAJ5l+OOJj44xncDl/0qJo3YllXr2T/+1Np/vJNTJx8WrYx2TDY2epzqRCRDdmnJIAbgLwYSml460FGIZhGIZhGIZhGIZhGIZhGIZhGIZhGIZhRpI20s1MVgzCyDMy2QHgAaMUDXIo5RgBOK9guAzDMIwuHXNRWDUApqpTAICl1lLfOV0RloztqBrs2WuchumW0BMNCAFfyHzRiYVgOpDq9xYeURuIiJNPBgAcWD4weNLRIuFDflN9kQlDFnyGrXzzjkAGqe9qop3/AkWVrHe/HaDVgrSoS3kIbzA8U0FB0sgkmF8slKZhoNrlXiUgJyKQjoGRBeFKbfX/0kJQG8ZEMHMrcwPnq4F5urPEGu1g0ACIxsbV4cXMDXSMTJZEf/00EX6tposIzU4TE9W1qUtRD4eJHFOYSUXb4IoiwrKukYldAJubhKXmEsTDRzFSe65GnTbJ/JcTBoWMTJI7ebs2HfHSuxwnCAmQR/iDG/4AN4anO8+9ary6todrSlYYB2OPUIbY3NTLvc0N0W2vUi63MRwQkowKjoRc3Xm+KEWNTNrVwUrkO1HDuSPTyESnEh2DRibJsVJQ4s71ALSMCnTNLvvuiYVrZWTS6n7+3GxoZFIJCdUA6GSo/SoG4zXdPqiIMFs1dtZLQMY70hiLlOC71Ydp3hdOjksjE8XvadebpH9VOO+N0Hhv4AFGq7+IkxwzqkiZc32W4wAAIABJREFUnpeDADCsuHSw7ENWv9fJ4oYfJu3uAMm4FWkxMdtwMlaz/CYlKd90SysMyNLNzvrjs7+AQJCQhYy/VqORBBkEIM+NCZQsnhUakZQdwRqr3x3L7uBtyUiXEyNQo07Y3ftpdfL+DK/3bSmvnbUZhzPHHmxk4pbnIbvJeB6APySiPwfwMSllvkU/wzAMwzAMwzAMwzAMwzAMwzAMwzAMwzDMxmYJ6UYmUwZh5CmwTzNLTirJ9RuRVGi7g7AZhmEYDWTHXMha9QkTlW4Xs9xc7junbWQSCsgwBAmB4ECKiYeC6Rbp7epKpNy5kALzlfA6gqrg6IIi4hC0ZSsA4NDKoLeXq90k246FCTIYrqpGWhqZTLXzBV1iTNjvfptAttvOjUy8iRThcOgb+RI0EyY2wWIt48rRQSXkVLYxgnpiPveiC7kSM/awEHTFbzlSPzJw3sbIJKt9a/spy6SrVXWAnbiRiXrvyBVhJgDPEnstt5b7jEyKMplTHYdlZFJEK0Ig2DZPE77AwaXDmBox3yJtX5YwhCxkZJL/e1EqAZW2E3iUViEE7kcDT0idzttT9ddeRty0aCPgQmQpQ4kZTUMDTxKmW4RaSl+sMtRKg6SZ2NWlkUml4PCknaLx9N3oPp3QETLTsCTQ2nZ+Y9UFHZJ5HpZsZKJTVu3a4rVwQ2neBtTa3XHvFkMjE6A7j1ispMdp4uOja5RQxIxEq09SKvMzzjuaKxXB1MixaNNJrowuYVHuhTQaQErqCbcdifHdIHN/HSVMze4ymgTnENFovTZLsX70fl2YCkbfAFyM61U1zGSY58Qw0dY8iaiQcSah136UYGSSla6u+VJ2ovMeJxprODHvAiBbTdDUtPo6yNJMLI3IqoeGZVDnWVbHXCNqZJL9KvpPuP4OoJ0QTeJDr1aQb2Si0y7leWC5MAAqz86VGRbrP6o/NqGMnx0APgDgASJ6ExGN0midYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRjGJUsZx7cYhDGoql7jbINwsshKyyYHYTMMwzAaSN9c3TgWENpBVyS/3EoamegubCXIle4u2cHBw8ZpmGoLrYW4whMIFeoCsljQqyOmCxeyuuIuwusauQDppgbONkx0vXjbNze/KYJs55fRrLyY7OS/QBqvWO9+m0R2OpCB2xctxgeXGAfSrL42Owkjk6VmxpWjg0oMpBKPkkdOBYhxwlrM2MNC8BPGKuNSa7B9qFqIzbN0PO1w0MiENIxMZEzQLZuq8iJRT/gSKnWyGfm31Ey8j4Ki6yk/OyGTneEs3y9iRuUJz8D5Y5D2d24H5IjJFHqZr3os6QeFBHXJMqZlemaAFwrnYUbEw11yoozspxrXglsY2a0rDkSWIUJtIxMA2NxMv9ZGCCbydZuDOCxilZz2UIdWJcVYrYTyaUs7JX0RWQYncf7pga/jp676KZx35Xl49gefjQ/d+iGHqVsfkvOxsASRchwdoaiJ+UdEvJiZjoEBoN7pGtBtqZv3h3mmZyZmVrrPXURgmlcdtcciIl1aRzpjkZKbg1CGWk2iTPmfKQTTxloVXgLVPIbMvgFIdI0IKCP/1oNBXffo9BdJTLsyz8J00gbyRkwsbtmHrBr0abznTk5fDgCVXsVwYmSiGMebROHEKMHSyEQWNbyRvT6i5DFCX5SW3wqAtf7IjSEDgHaK8WsWyhctC5nK6KUhPRFlRBtitI1MsvJDDjm90sJkr5+13OsE+XNzLR/3nItsjDgHIygeBLO+jNgXwmMGmfNDAB4H4G8B3EtEryOt2RXDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMMyG4ijSlxeZGJnsyTl3oVlyUjkp47jGdvEMwzCMC2yMTKoxI5Ok+NxEpCYXjgIAgsNHjdMAAJtaGkswhYBSb2KxcF9HTBcuLeeeF2Nr/19oLAxe4GhloycF9i3ucxMYAFiUmSKEKiMTZBiZ5AgQAUBMVNwtxG61IX3HApCUumRqjND0+40owtroC9dVC+yVAjJBoEo5y7PDeux9hub1IK6rWOmsDJyvWojNs15XUggRhiGOpsQ5QLD2XLKRb2RCIkSj0+g7ZisdWW7mt5emTOaUkylF2+CKImImAVHIaEn+4C77yMti9XEUpSQMC4mmkm/N9U7MQhIqQ+gGRQlKobiRSdy0aEPgYOwRSjMjk6xrbQSUJLsCzLavJ5okh/lfKSi8TjMK8UdIBZVrZKLx6F88eBuOdI4gEAEOtg7i/d99P377mt+2To9sNNQXlUwlUUaHLexMw8T8Y5W4kYnFuCsaB5vU+4i8sYJJndLtg4oYJOiJUxUGj1mSOo2xSNnFS8dANE6h5Djuem3GIL7BBxVJvbmwNzpGJgMFYv2bn0xMjUySbWtpeCPUycK+D4kM+nTaqLai3EdjbydGJorz0iCS9TUyKZ4AKcsxMslKlSq1eXkjSADSkSEDAKlpZKJT/iPBeqkk0mE9ttO4TUKOxNgxC1m6a0xWvMn+zd078sP8ublOu5TXp42QByWzjozW6OLYgTJ+gH5Dk7MAXA1gFxH9yvCTyTAMwzAMwzAMwzAMwzAMwzAMwzAMwzAMUxoPZBw/QTcAKeUygLno19i/BOCn7JO2ykUZx1PU3AzDMEwpWBmZYNXIZKXdL4w3WVQul7smKMHRJcWV6WxqasQlPASKlZoiNF/RqyOoCpdr+fGOrSVsqT34DlytM66EwFd3fdVRaID0h2uGITv5ZTTL3ENpZDI5bi0aGUhDpwMZuF0ZniYcMDUySZpMBI3h7bZri2qBvUpAToIKGUDkIeuttV8s2o14liZNZoCuSZRxmFlGJmG3nn7mB5/Bk//yyTjnr8/BT37smQgVZShubiUbrZwrARJyoIyplGFZ+ovlVsLIpKAopBp2zVvSmNgIRiZCoMg2ndW7H7W/uSRWn0fDXExa1K+IpFi+DNHOuIXpkA7xtKp2i7ehzyyps7GMTKQDkaWUEpubLoxMzPMmEvPW2vljQ6DbdpHDfqwUIxMT58KSaeUYmQQaDUCawcbNe27GrbtvtUqPXFy0us8llUQZLdKm6qCjo7Yx54lnn46JZJJorLXFwshksp19j4mZka6Bi00aV+NQvH+t9jPTOEEj34oWL5W/mQyHZ4bh2sjEIkDVt4s4IfXmjKNkZLKBMPWAUPX/On2ODmLzpkL3OzcgsOxDoverYwDTqiqMTHrv3sXXG1W+mwzBnRirkOVTCSrUNBJ635c0+ghX0xJVOHnvU/Tek5UxWhpt/e+ayscnnYuK4qZe61mfEertevlOZQWQweC40PR7qSkDZiMO30+WQffqeY2My6s/NkaczLEHG5kMlyxDkycA+CwR/ZCIXrZeiWMYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhnHIPSnHCMD5huHcibX1FvElU2cQ0bk2CQMAItqErpFJ2hKrI7bhMgzDMGZICyOTMZ9WRfIrraSRiX44YU/oFyzWjdMAQEuMSkIgVKgLbMQHekYm+Tuyi4k1wVGasNWVWKASEG576DY3gQFAMFzxs+woMijjPU3kCBCBnpFJEaeAGLLdhvRdC4ZS4jEsrC2/34giGJKBQxFUAjGlgFwQqKRdrMPm2q690nB3+O49a/nny8F6VDVvjhFmCOY6QQdf+OEX8Kdf/1O0qAUiAhEhVL2aWP2WzUGzlTjkDRqy2NaCZF9SFBkCEzSRem5qSPWgyGbRgkQhQ56tu/NNaNYF6vsnmzC0FkwCg326k53SE0x0yilD8bSWYcAyFmt2pL+xjEwQWjSQySBkiM0GZgHZRibmcUclRqetq7XUZicmlGJkMkIqqLT0Rei0w1njiqtuvcoqPeHyCBiZJKpL2TpUnRJmIzyOhxtYtAGtoNsXmtT7iKlW9lN5BpM0oXntbK2AkUnOu9UVqWfOiUoyBzRBZ94NxNy3iyTZtZFJckyiuF4C8A0GALJnZEKOzDmdkEz+CAvhdetnhMqQo+PAT0Z4EjSZPofRxoH5Wx8F8pCkehwiKd+ULApHSPM8A8yrtdbT9i5yUvMs668kKv7NUOp911B9UzWILpc8I8fIyMSVIYPuXEjXHKP0li5RD50bFiVYai2NdPuNlPwr+50MGJkUNQqMjb1Uadep6/lGJg4GOI6+nzPrxwiNFo8pZMZPRJahyYUAvkRE3yWiFwwvuQzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMM5JGplEayeeRGZbvX0359xrzJLUx68DmOz9P26UIgEcKhAuwzAMY4D0zVeBVwNaFeEnDThMFpXLpZ6RyXJbcWU6OqI0ITzlrsZksfhYZ4F0WMs3AfAmq6v/b/j5pidFqITAPYfT/M0ssTC/KUKYYxAShiEoYzG1yqyApidArsR5nQ4sNorPJa2MZT1rFnEjk3BhATIc/d26VUJXT+Vr4xGoUpaRSUy4EFgYmcTDosH7qxZi8yw9gh/6eMeN7xgoMyr9guzEjExa+W0zeYNmOSqyol9p94v7VU1sRyHylCHh5OmTU8+pTI5cUURYJkgUEopMNqrqi4bM6uMohHCyqJFJopTZCB5VjPnliHjixboMA5ZqPN0bzcjEwdgjlGGmOUka2UYmFiLaXn6mGdclWW4vG4efhQgBT+lglU+aUUig6oyHSLuSfU4nq7K6k93zu63SI1fcGnPZkBSNy6JCSwU67ZWNOVM83MBioN0OuuOYLRZGJpM584ikUUweOs9d9YHpAmMTZT8XaCQ4S0iv8/m4hH62L3hIPSMCFxpdkFszk4H8Vweu+nbRH7zUFtkzg1BSaapAZcjRcdA3eifNFg5Dq86bYGHgGdE1Msm/xhdSyyDNC4qPj3Xu1zIMWA3PQYNhbWRS0DxD6ptdmT5m5vWKcPJOe9T9lmViJpZH/LtH/oV6JlSlI5O/dg+Y1gndt1dv1wcjHSHKMuXMez8DpnqOjFM6QUf5rbfInAZQf0dljg/YyGS4JI1NkoYm6P1+EYCvDT11DMMwDMMwDMMwDMMwDMMwDMMwDMMwDMMw7rgj9v/4UqcxAE80COffUo5F6y7eTERbTBNGRLMA/gTZq+G+ZxomwzAMY4mFyKHq0+oC3u7i5jUqBuJOudQVaoZ1O6HFpqaO2sFTLvilwHxFr87O0GG9k3teTI+v/r8dDhoGuNgwEegKbg83DrsJDID085/LNTJnfXqtVctc8D3ZyX+BYnrSWjSSRHY6RfQ96STCq7fqxYxM9j7iIlWlozJDUp0nIQCvHMMW2Y61VRYZHukclhvLECllr2phjpDVetX9OnwarDyhSlEb6xNkM9+khDxC0+83bFLpirKENistM+F3R7Frt5SE8044L/WcyuTIFUV2rhYk3BktjQqU+DeLICy0m3LSI8hGPK9iXNG/2BIvMmWkeyzehA3ZlKwoUkNkqQxDSiMjkyzDPJud4KP8TI6b01hqLplHkIEL0500I5POCKmgWjn9gY6HS5awbym0ywe55C7/bEmW0ZI3qNeiqJGJTb8QGW/O1M0L7FSOsYgwmKTpDAVma8XGrUpxqk77mTXH0BiLlF28hmrUIQCXTiamIUkCfAO1saS17xJUxsDBhmRdHYUGKAeT16YyMtM1MiGSqO7Y0pdnJCSqO2bg7TgZhctgUmxflAJ5KKT6G6Hv6RmkVUIqPD7WebMm3+GcGA9aG5lQIR+p7m4CUstA0tW3SVVMee9TkICQ5M7sUdOYVnYdX9TXlT11d9WWagbTClqj7GMCBIPfuvrGCyWk3Q8TcTrKE535IaBTf7ILocowWodj7OvUcckITeGPCfbl/PhYMy6Jm5fE63H8d65fDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMNsWKSU9wE4EP2aOP1sg6D+DUCkxIgMTCK2AfhHk3QRkQfgagCnRodSLvuGSZgMwzCMPdI3X81aDdZ2xU4uuDVZHBuudI1Mgpbdcr3NGvcJQWrhvsWC3lDjprCZv0OkmJ5Y/X/aLuOuFsJXA0IoQhxaOeQmQNc7/CqQOaqJ+cZ85rm8ndQBQGya1hLn6SDbJRiZJIrtfD37WbOIG5kEj+4tmqKhoNpVXiUgg0egSjnLs8M+IxNz0UJ0y/2H7089X7WoWlmvoxE0Uo1vFBuJ9xuZtPJNi8gjtP1+EyZbKUetXes/oHi/yl27pcCFJ1+QekplcuSKIm24IOGsfRoVouKofKog1BLUZcaT/L0EEdNESWUo3v6Vke4+s6TOcE3JCuNg7BHKEJt1TPB6zGRca7OjdZSfjU5DeW2tVVNeo4sLI5M0oxAdwfGwaFdzjEw0KpKJKYUOsje/WU8GROMlGwnotFc27zkuyAwshPnRPVsMDIwi8kzPTIq/juh+tlZs3Jo7/yYAfv6cFAAo0wRQI9+KFi/V/YbhF0qOoWmkVpCGCQoMioOkNZMfMVE1i4gBoG9kQlJ9bUfXk4gA75RTMHb+EzB2zuMwdvapGLvgifBOOXX1fBGk4+81ssi4XAIVxQTUF1I9t0O3bys6Pta532QOt57+QU6+F0ooza5cPqJUZEDeI3nCsxqDZ6ZF08hEK6xhTNsdjeV0kxqEwWgbUaWMbeKmd2VkyaCRScEy1BtzJM2Bs1CVs7z2SPkdVYcSxkjMcGEjE4dIKR8npTw97QfALIAXAbgS3V17QgwamzAMwzAMwzAMwzAMwzAMwzAMwzAMwzAMwxxLfAPp6yIu0w1ASukDuCYRTnfTtu6/LyaizxLRFlVYRLQdwFcA/ELsfqB/TWQbwL/rpo9hGIYpho2RyZhPqzsd1jv9RiYmi2PlSg1yeRlhYLcL9WYNUZrnVZViIGGxODvUWLActvKvEZun1q6ltGvdLBr3QoCIcN3d1zkJb9hGJmGO8OVo/WjmucmcndQBgGY2gcjRMl7fzzVcsSFZLG2MTNrBmslE8OijRZM0FFRiIE9R9cgToEqxne2zkO1Y4izqQXT3Q/MPpZ6vKl1GUsLMEANl7V6vag/jwjfZzjc6EBVCO2wnjirESRmndXehjeikCOuTnL/9vNTjKpMjVxRpEjzhpRrRbGgo8W8GUoaFRFPJMlaGwHDCgTlEGvG05+2obEu8jZEawvaRQiGy1ApChpgxMDSYaaTngY0QLDKp0WnrllvujDDGHWRzuzJ4TEdwPCzaOapWHUOAvDZipbVinB5ZM+vPyqASUn937NpsL4HQkGPZFJl4qGmmjypChICEUb2PyBsrqET5cVQGfQCwtV7QyETRz0mdPjVjzEFapmpF+6v89GWNac1C0YMIaCeFyg5RmShIdE0ddAljRibeaSeDynBBM2SguI2yEB56dRQAKhrtqM78JA4JAbFpE8TmmcS4v2CdcmjQAKBQ5SKQ8t35XlegrxpeVYLi43otIxODBy5a5SQVMMEgKmygISGVdVSSeRHIul6V3rz3KUgovwUZoWnQIyG1a2S5hiYy8Vv399KiJKBTYn9YFNeGTToMmOo56t/iBtR5KI2AMk6bGM4zxzYjNIU/tpFS1qWUN0op/0RK+UwA2wG8DMAHAPyodxmbmjAMwzAMwzAMwzAMwzAMwzAMwzAMwzAMcyzxjcTvkXnIzxHRtEE4H0k5Fjcz+RUAdxHR/ySiJ1FCdUdEP0FE7wZwP4AXZsQRhfdpKeX6b2HLMAxznGCzC2U1yDMyMYi7VkOw52Hj+CM2NVVLMCU84SkFEWSx/llHEBbmewBAbNkMAGj7bQgx+CyuJD+R2O5bD33LSXhDFz9LAdlKX9i90FhIPe4FwJhCZChmNgNa4jw1stOBDB0vCU4UgKONbNOWLFrB2nsLDswVTdFQULUhSgG5J7o/JdCn47DZmbp3y96jewdOiRDwLJQvpnr6UKW28vWNTKgq+sxyAI1dYjOWaQ+I+5U7nqvf/0/MZhmZjP7yfUHCWfs0MkSvXfFYXzh0B/5T1uyjSRTCMjS9Y51y8iYuzizDgGU8bsCyDuKvIrjYNV2229jU1M+7LPMDGxFlVA5r7fSyHR6dR/1jH0Htr/8SrXt/bB5BBmMOTHfaKcJsX6MNHhZp6YvQ6SPzxH13H7jbOD3hirn5SRn0ldMRyC4bEWW8/dYxkUwSIsR0i6zGV1M5YwWTNkCnD5qtFTPgEzkFnUB6RlApc9FuABpjppLLFxEZifwKCcmJsOC7NSMyGYdIdE0dTK6PvsuI6U2onr4DIna/JL0x8/GMbv54GgZGJiY0uRTtupNi+6IUEOsLqTZ/it6bamzhhQQqaB6rc7dOG7Lqz+ggy22DkESFml9C97uuVPQRkqR5mcy4XpXevPfpCc/KTDALi2HF+pKsh9YFR//SZQtDv6HhD7ZzJiZENjg3MukV5+Q3tSxUxT+rC+JhABOR4k/KDAMp5RKA63o/IKJtAJ4L4Od6P09Yt8QxDMMwDMMwDMMwDMMwDMMwDMMwDMMwDMO44UakL08bB/BiAF/QCURK+UMiuhbAy7FmXgL0m5mcBuDdvZ+QiA4DCACciLU1MtF9MvH/iADAX+ikiWEYhnGElZHJ2k6AzU6z75yJsCtcqSHY84hx/BFKIxOS8MhTCvfJYvFxqLG1eajYrl5snQEA7F0YNDUA3O3mWemttd41t8tNgCkLxstGLi6ATtoxcDzLyGRSQ2QuZmayRXuGyEYLrvfRSxbLxeaicRitzpqRSTh3uGiShkKeGBNQtzEkBKhSTBCaRRgThEsb5UsvT/ct7Rs4VdUQx6WmKUt3Sunhqfx24jvbhu180yKqeugEjf7784PPJGmK1a0A2e9ER5S5GRWEQQgRM7bRMTlyRRGdlUfeMWdkklUmk9wnF7DFm7CPRyZ/d/8eswx5XFJGDNV4G9YZ3R22U3FhZHJozijvsoxMVP1U6j29cpkcNwPA8uXvwpGP3Yig0/1scjZJvPXCLfj/XrCobLNVjDs2MgnDEEIId2JtB7SqOWkhICCZa2SRND+Ks+vALjxz5zON0iPr9kZMLqmEhCDqK4eRXfndtpU5Uzy4AfGoZgBbMuqxisl29sOYCEJ15sZb68Uqeu67JegZV2WNOTTGImUWr9V8H1aTIwhtGQBwN5cwbYUDg8oiqd9gVWzbhursLOTyMhCG2O8voVlbwmlHhyhdHUj+6PQXaei+7opGXfa97ney4mPPgve7NqsrINb3QvU7jgxMfAGM5VxXCcyMflLReBST7Cs6J5AoYmRS8JthFLEif4ukcSAslcl0zjmPPCszwcy0SIIMQ5Dim6CUUvkCZOzf0maJWWkwzByT9DU6DZjshDFUXBs2ReS8z0D2xyltzI376OZGJ1C4oEfxqepPRnJs5q4ZMTgKh1kv2MhkRJBSzgP4Yu8HRHTS+qaIYRiGYRiGYRiGYRiGYRiGYRiGYRiGYRimGFLKPUR0O4CfxuAyrP8OTSOTHn8E4PkAJpFuZoLYMQ/AoNp48DrEfpcAPiKlfNAgTQzDMExBbBbeVgNaFSQ3/aSRif7CVllrwN9lv+v85lZ+XASgIioIVH4nNn4EqsX+tRqkQn0qZrcCAPYeLdnIpJcnhxqH3ARY1oLxvCiXlvDD1mN465ffir0r3fc15U3hqSc/NfX6PPFhBM1udWYUIGtud+7uBtr/62LD3MgkvrNncORo0RQNBZU4VNnGVASoUs7ybBkKSN/vhm8jqu8929zK3MCpqmW1ymwnMo4rm+iYUZHUMDLxw/5rtNqtFIXPoJFJfhBtDRGbrDcwRmPwsZZGHZMjVxRpwwUJpahqw9F7HJWfiZBkJXiPSIpHN9IOxPHndinUi+gztXBgDDJUHGybLg8eNLp+c4Zhnk3eRMKyht9v/tT41Ccx96FbEJcVkST8tx9No+MBH36+ed8fZ8yBkUkrZmQS1a+gHL8wK9qKSh5SfjuQd+6Bww8Yp0fWG+qLhkBfOR1COxj/MJh63qJTjLeJOiaScfzABxFhxtIkZCrPyMTAEE3hpwkAmK0V6++V/ZxO+ykyKrWOCVnBSWte8nXFvQDc6GuJlCaoplQC0jYnkQTlt4v+6+XAdwkiAs10DVPlwoqzbwq2FPDAGAr6Rib5LzIylZCkV+9zKZhnMuyv87LRQLBvf3duJwje9lnQ9u3aJoNF+hCdcUhkTtI138q+vhKSlQlxHNJ4uSbzWRfNhbR8wVI3/1QovgnbtCG2nht579MTnkNDhh7tNjChNtDUjVWSdPchNxl24u1Fv5fZxLeCdskx2CNT5rLx/rCMVIeJtrUTGoxRckgapGTGr/EdJQ1n3xVGsygwBhxjXxiPHaSUg38lYBiGYRiGYRiGYRiGYRiGYRiGYRiGYRiG2Xh8PvF7tCr0UiJ6um4gUsrdAH4fa0uW4qvn4sfyfuLXxsOQAL6LrlkKwzAMM0RkYL5ofszvGpm0/XaKkYlB3M0G2nfdYxx/xERH5VDSXeyu2s1eWPkRKESTB/YrwxDbZgEAjy0+lhGHGyq9NdGhCHFk5Ujh8KTvZrG2CXc+8B/45c/8Mh5rPAbhCQhPoIkmbj9we+r1k2318lyxdaszo4Cw5l60mtToLDbNxcxx8V9wdLlokoaCqj6qxGbkeUC1LIU1QS728qGAqP5IfbAeVi3F5llihixhmkpIGReEyE6+oIKqHnyZb3aSel/KsWanvy9RtX+dikYL2ahjU3VT3yGdtsEVRYSwgoQzo6Ukf/yrh3HbucMX2q+WSaUAp5goMHmvYz1yqcSF/jaifxVxwyTpm9fd9UQGxU3U6OBho+s3N9wZmURNb7KtW7jqU8iqFP/th1OYUpj2qXBhZNKOG5lEO4cXcRtyTLuqGJMXmAfsWdhjnJ5SzO0sqMTNNoZhZKI0orMINBamqfnm0cZREBG2ZNRjFXnjBZNnyRKVxpmtFRu35gm7iajPpC73ujQ8nbQVdV3IPmViZCIT/1olpYSx10TMRE8VepR238D4JO+7hIRUmxge5+jUUQDwFNUoyjOt9112nsTmc+H8PNr3PgJ/uY2gFSL9KC8pAAAgAElEQVRoBGg/ehj+7geV5rwRuteloTPHjd6dqtx7ob7xTBY68wKTKIrOMyIzIpsiIUXPOMOSrgGZVLoNuZySqMLKM5qpiIpzo0fZaqmv0SgRQzGMcuQKpWPmE+FrGmysCyWZcua9naThSCcoOJ/uRabdFivrTzqeswLKA4qNDhuZMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMGXyeQAhuiuNoh/0/n27SUBSyo8D+MtYGEkzk3j4UJyLG5vsBfBLUlooIRmGYZhiWBiZVHvCuIX6Atp+u++cyQLZsN5E+4FHjePXR6IiKkoxuc2urqqFxuHcQWUYYvsJAID9S+mmJ67WGke7BxMRvvbjrxUPUEMM55orb/0gYKDxm8zZRT1CbN+ut8u4BmG9qb7IlEQBWG6ZG5G0g7X6GSzWCidpGKjaEJV4hTwPVKk4TFE/4XxPCG8jJOndstBcGDhVDezKoukOzkpxXczcQGlkMlZBELppD5KmWKrH6ngagqJmC9untvcd02kbXFGkDfeEV4qRiS9C3Hl6G5f/4lFc9tb9+J+vLG5upQ0l/s26TBYTKW5kI5P4c5eR7j5TCwfGIEPFhVjt0LzR5dNtsWoGB3QNL87bX8Wzdqt3bk8SGdPEjUxkGKLxWDvrFlRDwkUPjhvHFWe8U7wdiRuZeNQdjAVl+YVZ0FIYW6nmAV5Ox3hg+YBxemRj+EZRaVRiVWYU2kGbdj2eMwHM2qzDK93x2oy1kUl2ucgrM0l0nntrvZisUBWHH2S3M2uBZKTB0VzJFj/sjkuHlQq/BNefcQtDKd02VgII88wV5ZAE9ok4+38fgQYoB11T24qi3vu9PNN5WmWWFK13YfehpO+js/dgapqClQ7Cg+Z9nCljGnNcX/T/m0UlICujv3gfqHO3ThQEd32r7PP/N7iPqHiLJaE2MoFFO5JxvdKIIScpnvCg8QnACNlWG5kA+uYfpba3rp7dIBzTb01DJRxsvPvSW0LSk/1tNEaxh7p/W9AsN+q/baQfd20AxGxcyvtSzjAMwzAMwzAMwzAMwzAMwzAMwzAMwzAMwxz3SCkPEtHzAEynnDZWL0kp305ECwDeg2jztjV05GnJ638I4OVSyn2maWEYhmGKY7q7NQBUe2t15xvzaIX9C79NFsjKRgvtA8swcqgwgbqL3YMCO7FnoVrQHR46pAxDnHgiAOBQTX1tEeJCxlsfvBWvu+h1xQL0h+87Nt+YB2b1r5/UEO7S7HbAc7MfoWxoCARNw0wUsZXWinEY8V3Mg2U9kcZ6o2pDlOLRigBVylNYy/meEN7GBKCXpyvtwbysWnoKmO6yHqqKfEwQIv38zKCxandX2lgatIRfKaLKASMTSORNKXyNLJbNBh438zjsXt69emxqiEYmpnkTR5AAZYmKCzC3xV8Vx9bHJe7f0cm/wSUiMtVSXCYBUUAFlhR0Fwlr2MTFR0V3nE8jbmQi18GUrBB5Qm1NaH7R+J7NDYGjm0Kcv3cM/+OGLdh5pGoXdy8/G37M5KLRgAzzG7MX3TGFbz7J3ixtzEJAn6SVMDIJEMAvo4Ba0lYoslRtcd6jzDfMzG+A7vxmFIiPl2gEBIw2gu+4YD1MEazmMV/v5p2tkcl0K7vgVAySomVkUitoZKJIT7ut0YZkmKfROhuZdEKLcUqBJLdKqCwTBoZSUXHxhcS4xoOEpP4uIYfuZLRxxl2A/nhLNUcNegG5GHY2/GaxL2S99jI8cgQyJ0HB0SV4J5+iDq+AGY1qjhuINRF/oHCpELK4IF+nOujWGWdGJlJ250eG4UkqWN7kWvyqeCyD1j6uc0FFVIyMxLToaPQxdj4zJdCfiCjfymxxdQ1c1gNpOC50waCRSdEGqd/kUoWqLmb1ZzZ/80hldIsDowkbmTAMwzAMwzAMwzAMwzAMwzAMwzAMwzAMwzClIqX8N8fhvY+IbgXwMQBPig5Df1kfAWgD+BsA75ZSulf/MqVDRNsAvAjAzwN4CoAzAWwGUAWwDOAggB8DuB3AdVLKXeuUVOcQ0VMAvATAs9CtAzvQffYOus/+EIC7AdwC4F+llEfXKZ3HbR4x+lgZmfR2VV2oL6Dt9zfhnsaOqxFhrYHOYnkrYQndxe6qJNkIEFSCoeDwYWUY4qSTAACHa+nXutJeV2Iv4O65uwuHJ8Phi58nAg8m/muTbbUgUGzfDpAbo4CwWcJQJmlkkmJ+oSIu/gvrPkozDXKISkymEi/9S2sPXuFd4C5BCcKjXWGsSvCTRyNoDIgAqgZtZxzTdkK1i6sMkkYm2XWExioDYg7bt5LsS1QBdTS2Y5bNBs7cfia++dg3V49NDNHIpEgb7gkvU1RchEOzifwaohiFNJ9HhMWEgUnB1dD1uwWIt39lpHss3s7YmDGtI/G2yRY6umx8z0xDYNwnXPHP27CpZT9miJqsuGmTXFanZ7pAnEAizy3pxBRPggRkKOG791mypl1RjMlVhoY5t690zMdeYdPeeMYllXgVH0I7qGqzbEyl4mEmxxsqjtSPAAC2WBqZ5M0lTITUOm35bL1YhfIU77bT0TDX8TLmCI7mSrYEFvPOIsW9DffC6DGf1kz8FImLTqvardXrKX9OIiFLeKJ8NtCwC4D+eKuiqPdRv9g1wVC1EfnnH6vN4fEF5u2RwF+u5PdhYUvz4QtkakUxDombU+qMLYoatOncrdvEuxirR3XY5qlCokL1bTVOxTdhSe7qtcokJu89dI1MHCUkSk9HbdKs+vbbvab/31LIausNIz1mvCjSTETic+kSokz2t4EsPp+ud+r68Vv+bcOdAdAxU3qOW9jIhGEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhtlwSCm/RUTnA/hlAL8J4OegtxbmUQCfAfAhKeWjJSaRKQkiOhvAOwG8GsB4xmWzvZ8nAngFgL8gotsBXCml/NJQEloCRPQKAH+MroFJGhUAkwBOAvBMdOtGk4g+C+C9UsoHh5TO4zaPGAss1t1G4oGl1hLaQcLIxGARdXvvPKQsURxFElVRRahwRnC2O2GMcF69g7s45TQAwMGVg+lhOFIxx3cNn6vPFQ9wHcTP4wY7WQPApNKsQIK2bHW2y3jYVAsgjEmsUq+1asZBdII1I5OguTFkZapF9qrzB6pt/N3Sj/ArmHSZrFXChYXuf2yMTHp52gk7A54yVUtRVmjYhCqFkbH6LX2F0Gh8DGFSHqnxGGlNWyvUENnG0DEyQauFJz3uSX2HpjRMjlxRpMYJEtrGHybMbev/fZhGJqvGLIosIElKQ6P8+xPRboymD0B/2stId5/4c4MZmcCFkcmieT860xR47n9NFjIxAdbytuWvtXXhSvlGJqbjpzRaMaMQQQISEr7JgL9kWgojE9V4Om8e0JGd7JMZyIZZf1YWcdE9DaGxV8VgIz6Ot4OmRibzte5cbMbSJCRvLmHyLEI1rg2ALY18w4LaWIjpnPGLai7bbuuY62Sk08VYpEAQftibYw2pyekgdB4VyW7/26rqh+xrDgJURibRNcNGSrk2zy5g/jgMdE2WPMWwKejlmVZwOdcsN5d786sCBqQ9gb+/rO7DpO+DKoo/55SYhfGyrjO2qBYdvmo8i9bjSuWURhsdo4zU+wiFfQUkpLKOSshePMUbE536sWr8lEAIoTTuMkbDyATQePKouSuzvc3MphLNwUe5+U4x4LGtS/pRhonfi8ZHfXNDZfyK81n9mTMDIPYx2fCwkQnDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAyzIZHd1dLXALiGiKYB/DSAJwHYCWAGwBiABoBDAHYD+J6Uctc6JZcpCHVXob8DwJ8CmLAI4lkAvkhENwD4DSnlfpfpKxMiOg3AJwE83+L2CQC/AeDXiOgKAP9bqpQGlhzPecTYY6gJAwBUe7uqLjYXu4L8GCYLZNuHfBQSaKig7q6dqs0HbRZnqxZIh0cXFJGGEDMzANZ2DC8LL7YLbkAB/MBHxSuwfNUvwbRDwYShycOkQrgrvBAkhBtxHgDZdi8IT5Ywk506IyKjIRmGCDrru6O6LioxpqqNCQQwX20DJRmZyMXFXkTmeR61NSGFEAnpU1WxW3UWpoZHqmhkbGdbtZFJFRISFFM06KQmLQltv98USxVQR6PrkM0mnnrqM/qOqdoGpxSIyiMPEO7r7NyJ/S9umOLWSM+qMpASEtjUtH/2pIBnpAVYCeJmA1SCUihuZCIdGIMMlbRdtw0RSw3je2YaAk96bKx43L1yGG/rpJaRSbFyMOZgyNZOGJlAAv4IDSnaCiMTlYFXrohdAM1OExNV/am1bI6GkUl8vDSMdlAVR9E0mBqZLDa747UZy/5kypWRieK5t2gYrcxvCjA9n2NkoojDD9RmBuRlDKwcmT7aEoTd8bZOKlyMaXwKSxHqjne6RiZKq83eBYHmJxJJMve7hJRyXYxMEIZAVpkaMXSN4yqKj0p+73FV355UHKodKizFD3tjJiIJqSgAsl4H9b5L5VyFshTsfqyY6IwtVKamKnT6Ii2zDbgxCZNQmxHl3eykey/BDCmrXdL9VpC8LgrPmSFDFO5Gmg8l8snWtGMjzY3zkClGJqXHmXjn3bFpgUkRpXwHy4vf8m8bG8nYlSkXNjJhGIZhGIZhGIZhGIZhGIZhGIZhGIZhGIZhNjxSyhqAm3s/zDEGEU2ha1rzEgfBvRDAD4joZVLK7zsIr1SI6JkArgWwo2BQEwD+HMCziOhVUkpzJV0Ox3MeMcWwWTMf7YK62Fhc2yW5h4mwINRV6FhC6BqZKAWMJaxdD48u5sdZWYt0uZ0uZHUlOqqGtKo9IUH40WM/wjMe/wzlfVlICwOHooyZGpkohL8UiV4dGQWE7QDOTXlkf9oaHfNuI6qfcm5uILxRRbXIvqI0MpHau5jb8ND+3Vh88Ns4p12zur/eqkOklLsxy2pl2k6EinfT7nRwxQ1X4MDyAfyOlJjOuZYmxgeNTDR3WU6SNMVS9U0dhXAd6BqZnHXCWQjDcPWdT+QIk0cJT3jOjJbiHNxR7fvd1AinENHzKB5rsk049ah9e5p8pI0k3Im/mjLSPRZ3MvKH35cXQTowMqEVfaFYxOaGwDlzVfWFqrh7jWMrWDO5kLUV5X3TrWJ997jh+CmNuFGIRx4IhMAbnYqlMjJRTU3yRLFEhGv+6xo8fPRhzK3M4Q0/+QZctPOi3PBkS20aMQziBmnr3g5KQFiI4OPpNhXsRkYmpnOIiMmOAMn0cY3JfFfVzc5qGJkc2RTi9Pns80KRnkBHJJs15qAhzB9y3lFkZGIUXIFmLxDl2DVM+IQljeuicq47lwmhNkFYdyOT9W5/FOgMhXXME6I8K/q+W35xM6zAYMwkGw1AYWRSjhV3l3hZl9Tts8vss1yaIrmaRtkYUlDPxKhoeSNAy8jE+Fkz0qX9rYCSx7oHVP2dKTpGJlLDMSY6XW57m56IjfF1owRUZbKEdiTZ3xbfp4AGvoPlofp2k9V2FjWAWuO4LW3HDGxkwjAMwzAMwzAMwzAMwzAMwzAMwzAjiu/72Lt3L/bv34+5uTk0Gg20Wi1Uq1VMT0+v/pxwwgnYuXMnxsfH1zvJDMMwDMMwziGiCQBfBvDzDoM9BcBNRPRzUsr/chiuU4joGQBuALDFYbAvA/AvPZMQJ9s1H895xBTHcHNrAGvCuOXmcoqRiYtUOYKAildRL/Ytw8hkKV+c6sU0sc2gmeqB4XLdtReu7ez8H3v+o5CRCdZh19LxjqGRSSdfdCei1buOjExkpxy1jfR9UKWb2KbfNL7fD7r1M9j7sMtklYpqkb1SrCmgNC8qwgcfugE3ffFfcMHDVfw1TjS6lySw+8ju1HNVS6GtqSZBdf2n6vfhU3f+JwDgN2hHvpHJ+PiAlsF2Z+BOkBRw5IfT0RDRy3YbQgiImInP1AYxMhEkQI7apzhzO/q/XQ5T3EqaRiZnz1WtBO+r8QwYmWyMPAf6xUdleMxM+AIyDEFCODEGGSoOdt0WdR+mu2bPNNzUwyg/4wJluaI2xCpqRGJr4hAnbhQiSIBA6JTrRWhES2VkolBEqwTTl//75av//9eH/hWnTpyKW37nFoxVxlKvly1zw5wy8GL+DzSEdjCvzbIVpcdTHRpOWpeaXduIIm3pZJtQHx8MwGS+q3r2rTV1ZTqyKd/MQzUk6mgZmWS0dSWYqplgmu9FsRLsazBhOJf1NbseSflj7+hcWc+VSd8YY7SdTHTap0qgzr9o/lm0uQ1kUNge1WSMJ1tOPktb4yceNvAkhIOxSxaq/tCktLowXJGErpEIGUYO+3l3P6Q0qknxFbFGK8UZF8kgcG9yE+gFqHz+3gWltnaJwIubaKgZ5Vl02vPH64Rt2innzmSdK5wDhIG/qeSh6l+y+nlnf6cZ5QLBaLFhjUyI6NcBnADgainl4XVODsMwDMMwDMMwDMMwDMMwDMMwDMMU5tChQ7jhhhvwjW98A9/73vdw7733ot3WW3hKRDjllFNw5pln4uyzz8bTn/50XHTRRXja056GycnJklPOMEwaQRDg/vvvx91334277roLd911Fx555BEsLCys/hARJiYmsGXLFpx22mnYuXMnLrzwQjzjGc/AxRdfjOnpPNkWwzDMccOHkW+QcR+AjwP4BoCHAXQAnAjgIgCvBvBSpC912wrgy0T0tFFcf0REOwB8BdkmJrJ3/jMAvg9gDsA4gDMA/CyANwE4N+PeFwC4CsDvOErucZlHjCMslBaRKHKls4JA9gur3O30BxzY4uPkxQLLLAmoiipChRDIRtSjEg2Ey/niVDG+lqiAAogUYa1LzWElJAQ9ldtdB+4qFFbQGb7YxVT8NakwKxBj3fdNnhuBssEmmmZ0OkABI5Nod89gzx6nySoTlThFtQi/a2RSnqgjKosemVdQkoSH5h9KPVfVEMilYfqkqibao7U6oRLAi8lxUPI96O6ynMBEwAFAS0Qvm922atKbRAMNAMBEu0SXG4dURAVw1D5FiEqAlc0esLx2zPGm1ooERJHlR3ruwWrueWU0oD7F3VCFuwWJp7UMkzUAQK0GbN4M+PnC+JEjKJ5e0QiwXkYmUbfUDtb+1iBraiOTohQ1MglI9gnqPfJAoFL7WVPaKiMTVb9n2BDua+7DS//PS3Hjb9+YHl/LrD8ri0rsuYbRDlKOCtvayCQ2GTI1tFhuLasvUpBlZFIxKDMqM63Zen4bE0Li6HT+s6veb8dvQ9mzZhmZWIx3XRLl+zDMeIDIVMB9uGM+adXD6JJAw7AP6BmZaIjZh25kEk/T6HQXqeiMtyY1vkX4vTzTah5yrnFhThBKCSklpEa90TLfKjEPk+aUvoC6vSqAjiGFzuMS3NUpa0MSB/ETAJWTidR8J3335EaYjwAwMOonAB33RnFSxyixiPuKS4ZgXLKhWIfXMVBXHaQh+TeV3PhtjUw2kLErUy4b1sgEwE4A7wLwXiL6EoCPSym/vs5pYhiGYRiGYRiGYRiGYRiGYRiGYRgjpJT4yle+go9+9KO4+eab4ft2C02llNi3bx/27duH2267DZ/+9KcBAJVKBU9+8pNx6aWX4kUvehGe+9znYmpqyuUjMAwTY9euXbjllltwyy234Jvf/CYWFhaU97TbbSwtLWHv3r24/fbb8fnPfx4AMDY2hksvvRSvf/3r8cpXvpJNiRiGOS4holcB+M2M0z6APwXw11LK5CBqCcBuAJ8jomeha/ZxZkoYjwNwNbpGGqPGpwCcknHuIQCvllLenji+DOAwgO8T0fsB/CGA9yJ9ndhvE9HNUsovFEnkcZ5HjANsNjmOBPcrrZ6RSWxNrLOd/gDsOrVdzMgEQMWrrO6Om4WVAEGxDjhcaeSeFxNdFf7c0hxEhnDM5brsSgC0eoqQB+cftA7njsfuwDu/9R58ACc6Spke44ZCXJWRCY33XBDIkZGJpQmFCtnpgHrzkFZgbiAThN1F8cH+/U7TVSaqNkQlOA5JDuzs7JLJyAjDsoLuOZpuKlO11OibahJU4vP4aZUAPhgfGzAysW23BoxMVKJcHYFnb4fx2YlZNJrdNnlK0TaMCoJEtqjYkuoMQTrKLyt6RiaqZnfKgdmMkGtC0hHyW1DSZ2RSUrrDlWV4mzdDhmU5pZSDltBQgTD3A8NMw02bEeVtn5FJXc/IZKJNaI7ZPb/p+ClJpyL7x/nCgyDRZ26y3rRURiaKtNrUtfsX78diYxFbJgc9T2VnVIxM1v6vMtNwQd58ytaYKR6mStzf7DTxl9/4S/zg0R9gvDKOPQt7lOlSMdUWOILBxJvMd1Xla7aWX0CXpsJVg4TMOBRjY7/TURsDZBiWkIO5UpHSFxmZqN55vJ5bmwKgO3Yoo3kj2TMzUVwXpVy3jVVW7V6AIWTX6G1IyDAYYmzF0GkfVd8WAiFXvzkVaW6llNpGGspwWnrfDmRnfY3t/EQj2f3dbemJh6bqE0zyz0UqJWBnUEHF2rqBNOSdd2jwpPV+U+IiEKTmxkNG6ZEEKeWgOWtfctRlMkryMP0iovy3GeeQtM+LkaGstOWFmzhXPLtptd3XQWWUldWfOTNIXWdzO6Y4IzSFt2YMwK8AuImI7iOitxHRcP9CxTAMwzAMwzAMwzAMwzAMwzAMwzAWXH/99Tj//PPx8pe/HNdff721iUkevu/jjjvuwAc/+EG85CUvwbZt2/DCF74QX/va15zHxTDHI1JKfOtb38Jb3vIWnHbaaXjKU56C3/u938O1116rZWKSR7vdxk033YTXve51OOOMM3DllVei2bRQPTAMw2xQiGgGwPszTgcAfk1K+RcpBhl99Mw+ng3g3oxLXkJEl9mn1D1E9MsAXphx+j4AP51iYtKHlNKXUv4FgF9DymaCPT5ARJsKpPO4zSPGHTq7tCap9kpUrV0b2B3bqZHJacUWqhMBVVFFqFjZ7TLNEWEtXzgipsYAAHcduCvzGpeL4OM7hx+sHbQKY6W1glf+wyshxPAXL49p7IIcR7VrsoiMTDw3zyJVbjm2tNfKUVz8rIvfa/6DA3POklQ2KjGmyr8iEIOCKJdEQjYbUTBJYN/ivtRzVUszHJUxSRKVoHvVKEYCY4o0Nat25T5NxunnD1UGr9cwMonETjs27Vg9prOj+igghAA5bmurOzYPCN6GKbaiyJhlCHHGu31Xu6UPg3i7QiVljlxa7P7HX1/hqjEOjFc8C5OczU03/bsnCefvHcOTvvUY6n//cUjfh6zVte7dpjA6yENlSKUiaRIiSMAjT6sNHhZtheehah5gI+4TQuAzP/hM6jnZHg0jEy/Wh6+3oZOtkUo865Jzzjj3HLwHT7/q6bj6jqtx5/yd+P7c9zHX7o59i9SAqVaWIFQ/VNW731rLd987OhVqCFfzz3d89RyCREY61mHeF2fVyEQ1/u/r+O3jkyUOGsY7Gg4V0TBc8xkk8k1+onHfMMd7AIBOpy8Vo4xO+6gyMmnEzMaKjFYanZ4ZbtH8khKypfl3zEAjxSVmYdKAtExDUkDDyMTgYZ30rZEhiUWeuzAyoW5AinjMi0BWm6MTTtq3AgIl2hWHOAy31NbOxvCmIKP85STtbxnxOlF22kMXpqBkNu5Q9eVpp52ZmDDHBMeCkUlkLUUAzgHwvwHsJaLPE9Hz1jVlDMMwDMMwDMMwDMMwDMMwDMMwDJPC4uIifvVXfxUvfvGLsWvXrqHG3Wq1cOONNxY2Mrn66qtBRJk/Dz/8sJsEHye8+93vzn2fzOixd+9evPWtb8Xpp5+OSy65BB/60Iewb1+6IMwFc3NzePvb347zzz8ft9xyS2nxMAzDjBh/AODkjHOXSym/oBuQlPIAgMsAZG07fSW52OrVAUTkobsGKo0agJdLKbVdAHrv6fKM06cBeKtZCvs4LvOIcYcMQytVSyRur7frg0YmDlUyPz6t4IJyAsa8MaX4iywW9k62BYI9j2SeDxv5aRdT4wCAe+ey/IPcUonplZfby1ZhfPY/P4vQC9dFDDlhKMSdVIiVxUR3X/JVYX1hShKcx0QVndC8PvhhV0wbHj7iLE2m7NtqJuhVlS+V8VB8R+wyiIwwbHKcJHBwJX0IUbUUm5s2uUoxbO/9VjU8DupVu/SkaTUCmYhQUQ5CSohWU5C9nch3bt25ekwlRBwVKqICeG6VfNWdOwbErkMVtkZi6ILf2ca2qAtnvB1ZbwG/CfEiXVYzJldWuv+6EF8Nk5z0+oGPHx/4Mfwgu7+Ry8sQgXmdmmkI1MaKv6sTlz38zWdOwOu+RNj/9k9j73mXoPXt/9C6V2V0kMd4QSOTpElIRVS6RiYjVLHalfy0qHzCbE02frTvR6nHZXs0TIIqsWJbljFSnLwu2ba4xFOdJ9h+9WdejRbSTSSLPHvWmKFi0CSoBKSz9fzW/uh0qC7Dijj8QGMOkWVYss5/G4vyXWUe42rsb+BRY4zOfNbGLEDHzGDYRibxOeyI+5go26cxn9aMHjOIG5loveuMerVqZFIQKdcMHZXXBvlmOAAgS/rWEdLg+zI16TRF9SSSNC4CAOmub5XS/A0TqfNNL3KN/Hdo8KQTVtolRNTfrjhEafqj8firl5TqoClzfz0ekcFwx9zx8tvyW4VbxiAMU417slCZM6addmvcvjG+pTHZHCt/2JWxHwIwBuCXANxARA8Q0duJ6KT1TCDDMAzDMAzDMAzDMAzDMAzDMAzDAMC9996Lpz3tabjmmmvWOykMwxTgtttuw1VXXYXHHntsqPHu3r0bL3jBC/Dud7/bzUIxhmGYEYWIpgG8JeP03QDeZxqmlPIeAH+WcfpcAK80DbMkfhnAWRnn3tt7DlPeByDLQe9/ENGUaYDHeR4xruh0YLMQNRLcNzoNhIk9Zz1H64g7QuLBEztKoXouBFS9qlLYZBLFT98/gX/4yEn4ylWn4uFnvAb7n/5ctK7/6sB1YTPfvEFsmgAAPDT/UOY1LgVHlZqjmgwAACAASURBVJj4xiffavfIG++7EcD6iMLHO6ZGJvnX02TXSAbOjExKoqCRSRB2K2RwZNFZkky5+pJlfPy5S1iY1GscVAvtVUKyQJQrgJqIypZFFATC4frh1HM6xiFpmAoulUYmMkqPOuD6WNouuHYkTbFUSAAdT2Vk0hXwPeHEJ6weU5kcjQoeeQ6NlrpUn3DOQAapxDAuoZ5IuqgmenznrPKauDHBMAT8rog3XWVljVzpmZkFG8vIRIaDL8QPfLzi71+B8/7qPLz0H16K8/76PJz/V+fjj7/8xziy0m/gFTy61yrezQ1Ryrins1zB/Nce0Lp2tmbfFtiaZEUkTUI84XWNTNz6LBWipTAyCRWvzzZ/F5vpYyvpj0bdio/9h7Ebe15JszYyid2X9R3+1t23YsFfsItAwVTGmEE1Fo2T7INm6gK/8c3NeNcXZ/H/fnkrnnd3/qeghekAoeIFKoZDCHwNQwORUanXea4UmXSo5gfxd1SkyS5zVGQ6n9UZvoQkc/9GFb2/Mg1aUukzHBjtv6Gpxls6Joh1UyOTDJodhaGCJiQB6BqZgIBWuhEU4MgsIwM/pfEqe3yhyu9IGK0MB+RkrN6Nzyag4VVqmWI4Yx2WxjWpRiYgwDczyNVGUVdIJ9X2n4i0SVbFqNxYGewWT85okCwTJXc3BFptE1tBq3Ab0JJm33htTINdms0fOwXn+GVjfA1VE/ccixuaELp/1P9zAHuJ6J+I6AXrk0SGYRiGYRiGYRiGYRiGYRiGYRjmeOfOO+/EJZdcgoceyhaKMQzDqAjDEJdffjne+MY3Ihjyjj8MwzBD5FUAtmWce5eU0nb16AcApCt4gf9uGaZr3pxx/BCAq2wC7L2vd2WcPgFd8xRTjuc8YhwhG3Y7vkYC94Y/eL+JsCuPR7f5CDygNm6/Mph6RiYq8ZeuuO5FP5rC5V/chpOWo+3pCfW9Afb/5nvR+c5tfdeGrXy1ldg8DQB4dPHRzGtcCszjBjNCCNx94G7jMA7Xuk2DakfsMnBtZCKmNp6RSWRKYkIgu/ccPHKoUDLqY/YK2EBI/NMzV/DqNx/EL73lAL5zTr5ASygW2quEjIGQ8EvM1sleWbQR5ZIEFhrpYlsd45A0THUJKpOXqH6PaYjf04xMdEhr2pJGJirNnCQoTaqi+nP+KeevHtIRI44CnvAA4TatY0+9cEAoN1SPj6i9LehkMn7BeeqoYsVpPcy3bInXjbLSLVdWuv9uMCMTpBiwXfqRS3HH/B0gr2eSIwgNNPDP9/0zfvIjP4mLP3Qxvv3gtwEAwWN2RiYzTaHsl8pmtm7fqY0XNDJJmoRURAUVUYE/QhWrozAyUfd7dvEebR5NPR52RuPd9I391zlJtlOa+H1J88yI//v9/wvK6VeKPHvWmMFkd/t4/GcfrOCTf3cSfu32zfiZ+yfxsz9W+9kenQo1TOjyL+j4GkLZrDFHUfexovTen9KsxZXIvsTHHfdJqQGOP6bOtwBJeiYIw+7GZCf2OXI0msRMVPVHNXcIRb/pV5FPJa2gayhS+JXJRB6oLq/Xs0+W+PfPtLFEKeOLuFGg6lKD/HOWVAkYOwRo1n2NYJQFziaWrHu0jBjSjhFB+uWURdlW9JEGL0DnUlEdPKZlluKyaiTDGvF2OovFWvpYHEBpzxR9Y23rmMQpaIdmf7rT6V+S7dIwzAyZjUNFfcmGImlmEj9eBfCLAH6RiB4B8HEAn5RSHhhuEhmGYRiGYRiGYRiGYRiGYRiGYZjjkf379+MlL3kJDh3SE+8QEZ797GfjZ37mZ3DBBRfgKU95CrZt24aZmRls3rwZQRCgXq/j4MGDePTRR7Fr1y7ceeed+M53voNdu3aVuksRwzDmEBHOO+88nH/++TjjjDOwY8cOTE9Pw/d9HDlyBHNzc/jOd76DO+64Q7v+fvKTn8T4+Dg++tGPlpx6hmGYdeG1Gcf3AviSbaBSygYRfQLAn6ScvpSITpdS2qnMHEBEZwD4mYzTH5dS2rk+dPkSgMcAnJZy7rUAPmUY3nGZR4xjmnY7vlZ768ebfhMSEnFJjkpkpMsjJ3QX9NbGQ8w0C+xEL6pKYVNyp+w0JtqEX791c+q5oFPB/J+8Bzu+ef3asexNbQEAYks3rIO1g8q4XZA0Sfjenu/hglMvMApjvjEPwF6MWARTIa7SyGR6svcf3bIV7e83XGRMeBgtmDchMj+5Z2UBP4FJ63Q0qxJTluv0o8X2vgcsTYVYnMxfSa8Sh6rMkgIBBK4aohQm2/btEUlgpb2Ses7ayMTwepX5R/TqtIxMUnbMthUnDQqx8p9MEtBR5HMkSrrwtAshpQQRrRrRjDqe8ADPrSNP9aeeBfnoB/uODdWXKhJJC4Ktsqg2FuCUJ5wD4Pu518Ufa70F/CbE011WXytrPbHqhjMy6X8h/7rrX3GglS1DEUJgf3M/XvuF1+INF74Bf3xop1W0Mw2x7tq+2VpKY6uJqRFcknaKkYknPPj2SXJO0mwliaqds92pfKGZbkwm/RCjsN91JfbgwzDjyWuzbI0uRaxVzPpef8vDtwAllcepjPlExcLIpBIA77x2Gza3zMrGwrQ6MpVINQzUQlkSGS+RhlCWc8pO9K1BZaQZH98WabPLrCokzdrkUKjnRSojk6jeSBryXLYkw4EyUI23VN8VGtWEGWOBAVwn0DAd0sHUyCTvu2CKkZwr0sYSpRulOTTtcDFWX63DptXTfjpljFW7mHGP1reClOcSJMozMukUr3erSdZ4Pm/bDCozMwgPHIQMQlClAu/UU9C+9yHI3BeUkeE2BruJ3yuiAj/FD389vv2acLg+j63bTk49p7YOs8MPfFREBe2gXXi03wl9ozGsTf1xZTbfC91hWMx6cKwYmSRNSyhxTsbOAcAZAN4L4N1EdB2Av5NS3lB2IhmGYRiGYRiGYRiGYRiGYRiGYZjjEyklXv/612PvXrXecnZ2Fm9729vw2te+FqeffnrmdZVKBePj45idncUTn/hEPO95z1s9d+TIEVx//fW47rrrcN1112FlJV2kwjBMuezcuRO/8Au/gBe/+MW4+OKLMTMzo7xnfn4en/70p/E3f/M3Wm3G3/7t3+LCCy/E7/7u77pIMsMwzEhARNsBPCfj9OeklEVXMf8j0k0yCMBlAD6Ycm5YXIbsVXn/WCRgKWVARJ8D8Icpp3+WiGallDlbya1xnOcR4xDZsvPmiQTuLb81sAO2q0Wyj5zQXUxeGy+wcpqAaqWqFO6TRo256MFxbMsRkjYeWIQMQ5AQCJeWEPr5y0O9U3YAABYa6SJIwK2QKimCunP/ncZhzIzPYKW5si6icGMjk44i06cmccUNV6C+90a8ScPgQ1QCZZ6WQnvNPcRmx93I/MRrFStMzap9pifLsWp38TGf8Pw7J/GceyYhJHDPKR1c+4walqa6hVgl6PNF96csJnoCRCs9jyTU/XrqzVXDMr4WqNnlqvcfiWHHNLRvyylKXtuSMlC+lSIzqRTSy1a3/mwa3wSEALxiRjTDpEIVkOdOme2N+RAn7Rh4z0PQtq9CPWMWKhDn7hM7OKeaso11gng/NeoCrDjUl+5yMifsfaeWJQpTyyCZ3g9/+8Na95EgXH3H1Xhl45VWdl6Vobr9pLO1Zt9u6bTleaQZmVRFFe0RcghqKcYoqiy03ak8y5jMwneuFOLjJVuzFhPyYihUXHr+C2HGJ46QQogcKWmRPiBrzKAy1UiL/6y5Kh531HwucXQqwJZGfhugHBv7GiJtkfFMWcedkh1H9K1B9YxhX8dvl4rVbC3xkU2MCwPq7iafh0S2yU+cYff4R/w66kcewuNnHz/kmO0QMr2vqAbqcUBjrP/9azUPGXnmhwU77R7UDUz7etnKceEt08gkpXMISjZKU5obGNR/V3MMq41xiKy+D6UnQHGa3Hmm6ISTlgUEKs+E0VfVO8djXhIQ05sgzt5kdl+inET576LLqogKOn5n4Pv+qCPDcNWw1hWqkCKz6E7QQZE/VwCAb/jnO53hfNe8cC1hqvGTERureDApbGQjk48A6AD4TQBn9Y6lmZZQyrnoeBXdP2xfRkR7AHwCwN9LKfeXmG6GYRiGYRiGYRiGYRiGYRiGYRjmOONTn/oUbr75ZuV1b3rTm/C+970P27dvLxTf9u3b8ZrXvAavec1r0Gg0cO211+KTn/wkbrrpJrsFKQzDaDM5OYlXv/rVeMMb3oCLL77YeAHLtm3b8Na3vhVvfvOb8Z73vAd/9md/hlCxWO9tb3sbXvSiF+HMM88sknSGYZhR4ueRvYXwV4sGLqW8q7dWKG1F+wuxviYZL8g4/rCUcpeD8L+KdCMTD933/gXNcI7nPGIckrvzag6RAKcVtAYWsrpaJLtne3cxeW28QIBEGBNjaCkUBp7GNO2N38w3xQvaFaDRAKanEdx/rzK8yuO7xpk1v5a9W6k6WdokBTi7j+w2DqMTdkVw66FdrRiKQlU7J//Vyvfw+Ttvwc97k4CWkQngSFdkhIyJKqIdyU0IZYgwDDHTLKYIKmJkkjTOUBkL/cTecfzE3vHV3y96aAIv/89pvOX1h7B/a6AU4wZClrqTc1S2bKIgAM2wCeENvoTqkITPoeL9i977HdMQWtbSyoXlLsvGRiYE+IrGO15/xsQYOugo24ZRQQgBCHemK9XZnmTB7DW7JXoest9C/IGTfVwctpXXdUXm3TjEMN1aChJPa1nNmGzUu/8JNtg36rA/vXsW92jfKoTArQ//Z+ZEb9SZrRcwMjEQzafRTrSzFaqg6lXRKVlobEJH0Rco+z3fri40g/R51KgYmVR6eT8sM6e8eIqkIWrN0wTb9Va9218q7rdlKmPMYDLfjdr1s+bUJlxpHJ0OsbmZ/4yqfs4PNIxMsszT1lHUHDd1UI7/HSRT9grqevaO8cdsVuWqgaLO9S6uc4UICSudFdwzdw/OlRPDjdwCEQJhShXQMUCsJ4xMirzrUIbdRqtgfpEEpIHpg2znfOgo08gk5Z2H1H2HZfVdqnCz+puBcKBhiqLBanymQZGlAUoyGI0gZC8+E7KC1akfaWkSJCADvQ9yK/UaHtn3GA4ePoxao4F6s4lWu4VqtYqJsXFsnp7GySeciFNOPBHbt85C+oqBm847Mnk/rvrVoiZxCQQJa3Mc3/exe+8e7Nm/D8u1GmqNOibGx7F5ahonn3ginnDGWZiccN8XCAksN5cxM6nexMYV0djED30UfSLfcNIQ6rRNiUt0/t6hz8b5rsKks2GNTKSUhwD8OYA/J6LnAfh/ALwMwBjSTUvipTXN8GQngCsAvIuIvgrg7wBcL3klJ8MwDMMwDMMwDMMwDMMwDMMwDFOATqeDyy+/PPcaIsKVV16JP/qjP3Ie/+TkJF71qlfhVa96FR544AF8+MMfxic+8Qnn8TDM8c4pp5yC3//938dv/dZvYXZ2tnB41WoVV1xxBS655BJcdtllqNfrmdfWajW84x3vwGc/+9nC8TIMw4wIz8043gTwHUdxfB3Ar6ccv5SIhJSGW5I5gIgEgEsyTn/dUTTfBtACMJ5y7mehb2Ty3Izjx3QeMSXQzNl5NYdIcN/0mwPGca6MTB45obiRCQmgWqlCsYk1nrp3Ep//4BimWwJHNgX4/LNWcP2F9T7h46kL6uWestkETU8jeOhB5bXeWd3949phG+SlLwZ2KTiqJNRd+1fM95uLFmwPSxAZxzPY+RxSbWRyeLIr6NMNVoxRt4W15JHtHew8YiFgjO2gLsncyCSQAQ4sH8DWejHFcaOAkUmyHKsExWnMNAX+9NpZvOX1h5XXhqLcnZxXRa02RiYSqSYmQHGxuS6qaKI2vOqr07OS0uBblxSLx/dVZam9Vn82Vzdj3p/fMEYmnvCAjLJiQ/WUrQBShHlDfB0UPU+BOHfv6OCupUdSnfbixE1A1qPPsiWe1rKMTMKVGoDuDtYbiVtbB7H3m1fhsgsuw85tO7Hir2SOn9JYXFgEMFVeAktkdsW+UxtTiOBVtBP9f8WrYEyMIVgPV7sMVKYqSUO1JKcEY1bxBkgXH8oh9ecqKr0qLkagqhcxlCLZHUumiWtvuf8WrfttyRozJA0i84iqypmH7KSDC9MhTjuqF0cWgY4bY4awuvuZrFyykt+JGbCoynHcKNE2y02mm8NgaSrE1hwjq1alZ7yiIbkctpFJNEUIEWIhbGEm04dZnzLNLbpt1GDgqnlDSEAr0U9qlaOM57CZ76dBEpChhO6gO8/IoczxYpYppS/kqnmyCyjj/2lIXSMZ6WqsLrt12NDoUVVOgiDAlf/nYwgU+Xfuzz8dZ5777PwU0nANngiD78ITHhAOmnItrazg1h98D9+944f47h0/xN0P3IcjCwvacW3bsgVPPudcPO3ZP41LLrkEz3nOc7Bjx46ij5CPyMg7RRE42FnBwoG7MT02jdO3nl4oCckUUGQCHrZyr4tz53334tqv34Trv/XvuOPee9Dxs03ThBA45/E78fxnX4yXXvpzuPSiZxpvQpMargQWmguYojE0js5bmT+bEoTd9jKQAYp+TAmg1742G008eN+DePDH92Puvx7Cj3ffjwOHD2NheQmLy8tYrtdQrVQwOT6BmW1bcMLJJ+LxZz4e5z35PDznCU/FpWddAC/LsI45rtiwRiZxpJQ3A7iZiE4A8BsA3gjgvOg0Bk1LKOVcdLyCriHKywA8SkSfAPD3UsrHynsChmEYhmEYhmEYhmEYhmEYhmEY5ljly1/+Mh5++OHca97+9reXYmKS5JxzzsH73/9+/K//9b9w773qHboZhlFz6qmn4p3vfCfe+MY3Ynw8TRNejOc///n43Oc+h1e84hUIguwFfddccw2uuOIKnHvuuc7TwDAMsw78ZMbxO6SU6i3Q9fge0k0yNgE4F8B6DJb+f/bOOz6LIvH/n9ndp6UnhJDQOyogCopYwFPPxllOEBuenl8Lds/Cod6pZz317P707hREbChnwQbYQAULKKig0qSHEEJIffK0fZ6d3x9PNnnK9t3nSQLzfr14kezOzszOzk7ZzOczB7Smr8T3TiRAKQ0TQlYDOFzh9GgTUe2vz4jhMDRizZlBFhUEo8G0dbumDCdUiHIUVcVxwVXAY28LbzfvThI2qVHcavRQ0SjgLx8VoWe9gJnHNQEAilqMCW9oOAgAiG7dphuWHzwE0VgUWpoeR41MUtZHN0YaTcchG5nYESNaxYxBjjuqv2u3bMxhtHZxXh5oMp6HVJp81gRAVGwXHlpZ6C9RCVW/fIdinZ3c9UgVaJnKQ6qRiUUF2pDdblQ06C++j3E0owJrb+vO3FYEEhxaVUAKlzop1tJC0ikb+bQRYxU/b2xX5FSUYiaEQJIkcJzB9paoi9/awiQYmZTmlKKusesYmQic0G784QDuAb0AKItdY4TqtpmOIIu2bIiWNpWJWNuyU9fIJLGZIVLnMVzQI/H1zFQzJgbiRiboQuUCADu5MJ767ik8ueJJjCkbY8rEpKKeR/+qrvHuK1GsIWTXw2PAlEqLSEq36+JccAkuRDuTFk7nFvXmASO4QkjSHsP9jwzHcwiEA8jxJBvkSJ3EDUGek2XLc4aoGAHYzYPcniv1X5//9rn1iA3giyjXCTPzEvnea/OtzQXqc2K6Y2c9k4+H17yIWSjTDqQmcFUTXDvMb7W/QYyJcPNulOaWotBXGJ8rw5gZjxNj/w6Y4moSFihEgaqaC7Z44wWjZPIjI5/LupFJQoIxhywQpAyOVxNfMVcUyA9x4ChBgY4jbtCtYOpoyAQjvUwi0Ujb/NJuiREQU+M8GtMIm0kjE5XijfLt5skywyaegO27qgzFe/e1f8FfL52meE7vU4TW+6QUl16+1n34Kfr17KWeXqtRF/EISSac+olr5/XTb77CPf9+Wjeag1eMxLkv6BmZGDfFMYKeKZHSOSqKbeY8oXAY73z6Ed7+5CN88s0yhCPW/wxS19iIZSu/x7KV3+Ppp58GIQSHH344Jk2ahPPOOw/9+vUzF6GB6mPVwIOSuDlUc6QZ62rWoXdh73h8lmJLx+fyIRzWNzv/aNmXeGT281i2yvifyiRJwoatW7Bh6xY889rLGDZgIK6bejH+/MfJtgw2OErgDzahdsfeeNmXZX6CIn8XlyTJtrmWpGJEJooi1qxag+XLlmPFshVYvWo1RJ32IRaLIRQOo76pEdu2bsfKb1cCAB4CUJRfgIkTfoc/nXEWfjd2nPUMd7JxEsM8+4SRiQyltBbAvwD8ixByLIBpAM5CfAcRJdOSxCqsZHjSB8A/ANxJCFkA4DkAC6gRy0AGg8FgMBgMBoPBYDAYDAaDwWAwGAwGA8Arr7yieX7YsGH4xz/+kZ3MtFJcXIxx42z8oZjBYKCgoAD33XcfbrzxRuTkZHZH1dNPPx1/+9vfcM8996iGkSQJc+bMwX333ZfRvDAYDEamIYTwAEaqnP7JwaS04joUHWOScYjGOafvXcnI5GBCCEcp1Vwlvp8/I4bD0JD+ImUl3K1iGlESgZR1wmaEXWpUFkfbBJL2tP0EHsFjyTjhnBV5WD4ohDV9Ixi13dhO7TQQNzKJVe7SzhUngetRjvV7NmguYndyoaSQUpAiRFOmAYC842T2BJGJmNn53Cfq35MsOqIG6wbnFQBYM20AANHqenoxLsoIhAOWjUwavlmGYovJy4QURFpGSRVzGTEWUuPkNfpzvxhRF0U5gU+0JwxWk/m6rFcvU+i9SrLw2W1A/O7n080+jbxTSkEIIQiJoXZBuK7IDBD1jEwSjIB6F/bG9tqNcTOZLgDP8QDnnBDHddBQ1XMa2nNHIa39DbEoihY5iu2lUWypr9ENm/h+5ts0csgm8rvhigJeA32ZFaKBAACAxjInTM0EctkQQrBqzypD1wypduGaTwpxUJWxcVxnpdigoZ4SRtpyLcJCcuNQv3Ytaut3gQ70Zc8EySZ6/V4PSQBHrZXxL9t+QOFve7Fzxbco6N0HfcYdDViMy2mu/qwQJ6/OSRODZwq5mEv8HI7/xQefyKG6MIolBwUNGVGowVEgBmXB9k/V+p8/7IhMc8PKlceMcafcH4VTXSUN0pAr6Y6d9UwmjeT2x5dmYdiwA1DUt39K5Pbrs5FHEIy2GoJGo9jeuB1cIwev4AUA6Az3AABSYjYtNktOeBDFOGrL2DX1VquKYuhTJ6S9Q0E3xd7c1vmsAXlltv2VEr8JWTF/VEIiaZ+eHEN+TwsDHMqajKcSdKeXvZGyVnpiATFgOF09CAWoiXKnEkGoUYQ7XwCXOk7PpJGJysst2TTOeOzFWbh8ynkoLihMO6cXq5lhjV0TA5mGwF7ATVFopoYTotm4znn3bUPRrP5hDdZu+g0HDhqsGkYi5s2QtMLrPV2lchWbW7C3Poj/vP4a/jtvLmrq9prLkEEopVixYgVWrFiB22+/HaeccgrOOPc09D/4OO3rWv83UkxiVILUUI9g3V5IogjB64W3qFj32sRykSChqqkqOXETpKZFQJDnyUNDuEE1zcrd1bjxwfvwweefmU8whfVbNuPa++7CzDdfx9N/vxuHDVf7M5c2nAREISmWgVPvZyrh1vGKBAlEy5ncAIlj21AwhKWfLcVH732EpZ8tRbD17wtO0NDchNc+fA+vffgeDh56AG69/Cqc9fuTLMTU+ed9DG32KSOTRCilXwD4ghBSjPjOHJcCOEg+jfR2miick4/zAE5r/beTEDILwCxKaWXGboDBYDAYDAaDwWAwGAwGg8FgMBgMBoPR5YnFYliyZIlmmGuuuQYejydLOWIwGE4xceJETJw4MWvpzZgxAzNnzkRVlfruWvPnz2dGJgwGY1+gDwCvyrkNDqbzm8a5IQ6mYwZ1hWd27j0HQC8AO3Su35+fEcNBftm5Ai0bP0M3C9cKEgGh8Z0IU3dP5BxQyWwvbRefGzWaUIIQwC24LQt3zl2ehzV96zBqu7E5Y2Pdbiz/+jf0XP0D8jXC8V4JhOPwS/Uv2hE6uEY4VTvHcRw2127G4DJ1wUIqspFJphaEa2HGIMcX0S84WXRktG5wPjfsGJkIkBASJHhNOmx8eu8e7Li/CjXRSsDC9EeiEiK/bjR/YQpBl/WHnipisdNE9Nmrv+w6xgHRDLrt+CIkfaWzCQhVFva47Lk2GUbSFcPG/zdirNJE0nc/tlPyTeGmNiMTvXgo0TfFqVy/G0+cPQdECKCytAbe7l1HeEFDYcCi4YcSrkMPjcerULLZEre2NX8Wd6HeXho3OdsdaQDg0wwr12MpJmG42HW++7pjBOd9k4ezV+RlLI1tO39B1fZlKMugMDUTEJMKyl51PO6fV4KiYOZ35s40PpGDN0IQUhBM62HXyCSSYmTSvHUriJsA8CHKA3yGTLhq82KYPaEJ0xdYt2KTDfv0DA3rqreDi0qQePNixBdvuxTl2+oQ6JkH4asIuj8cxh9wgNUsO86gPa6spUUocOIaH25cVJRkQHjRsnw88/tG2/GLoogmvx8FeXmglIIQgp3NO3XnS3ZMFNTmFGbmJfLcWM9sRIlmj4Qob8SETicPBpqOrV8uwfd/OB5nzn4dvcbEfXd3fBfG1pnN6GUwv2pYMRWVICEQjRs7GDEGiSWkYXUs6oQvU9BN4Y2YM+FMIuWyiECxrZuIwgAHnxhvz/xeiiav1BZWHtvJ70Ui1ERfHxYoPA6Zv9kxc1Ejk+NVjgJ5IWLKxASwbmQCCjQFm1DVXIVILAICAkqoY6YvVmjZ0YxGLg+uHAkiV4+Q2AKJUhRBb9RtDa25nB3jUwBo9Dfj0dkzcd8NNyskrJ8vI20IgTMGvxSARGMIeAUUcpL+ZF2+ToohqjIGq2tswIdfLDach5feewf/vHG6Zh6dhKp9EGkl9UwsFsMrL72Hpx5/BI3+Zodzo44kSViwYAEWLFiA5w4cjr9deQ0mTlAxNDHx6tY01iPQ5IMvWgiXRBCNtRUf/AAAIABJREFUBBFq2IFi8KYiilIbg/CUhxqNRSBJ6d92ZJZ+vwJT/3oj9tTXWU9TgR/XrcUJl0zFYzP+jksnn2P6eo7GTVJjPKDgsZsRmsNN2NNcFTcRs/tyEIIfVqzC3Nlz8eUnXyLQ4pyhlRqrN6zDBdNvwAnjjsIzd9yDfj1NjPK6zuc0hgr7rJGJDKW0HsDjAB4nhBwN4AoAZ6N9LJNqWpJYrZUMT3oDuBPA3wkhiwA8B+BDvZ1IGAwGg8FgMBgMBoPBYDAYDAaDwWAwGPsfa9euRWOj+iJJQgjOPvvsLOaIwWB0VXJycnDVVVfhjjvuUA3zyy+/YM+ePejevXsWc8ZgMBiOM0Dj3FanEqGU7iaEBKG8HnqgU+mYRO3eWyiltQ6ms0Xj3EDoG5nsz8+I4SBLfnwX/oWfYQqsCdxcUUBS2KHZ4mbTSWzr1r4g2+A6fkWaQhQvPPoajrAYx9jNXvStFTBqu9tQ+FuuvQeb3Tm4uyqIfKhfE+QErPxgOZZv/tpaxiwgKJgkvD1/Hk7s83vF8DFRQu3GeuzaUI3t26uxq7EBkeMjQJEzgg2zKOVfDUNGJq3GHEYFa3sjPOxI4Xvu5bC+OIZRe8xVxsotW1CJfOwt2GYt4QAQ/rUWdlecK4m0jJIqXozZqEBG6kGMo4hlULfOUwJXzHqJchRQaiazZWSil4y847sR8ftni5YDI1IOGriNuCFBej34+Lkv4akqQ+0mEb+PcLqL7EWVXbxlWpo9EH/KB0geinuMgH/CWv3MdRIW/+0R9K/KxyAU2Y6LgmL282/C/eE3CLpagBRfACeEu0Z4pXkLNl9xM65qjiLHwvW/lYkAgIZgAHqSStn0Ind1Cfx1UZRo9Mmdid//YqVkzLF14168de+duLU+gHxbPVt20Xnd05j0Xd4+YWIiUxTgUO02r9CzK0pPNTLhY8dAoE0AtiPKUXgcVLTV5sVw91l1kDhga6kIUYAtIxMuRIAc/blEczQf7gYJoR4R8DHguLU+nLw6B+4oQWVJFPOO8GNbd2Wx6G++nvDFboK4UUDUFUC0ZBtQ/63lPHdlDqxy46aFReBTOpUeTQLueduKdWYcTh4zBIHJZ1yEHv3D8BYGUewtQ6QwDAjaddCOAaMvolx5zBiZyOlbyUdDbvydl3TGzk7MzTYU9cN3QjHevOF+uFxe5EW6oazpAIwIhm0bmdiFM1Dedo0PAHsGqm1xUGBvvoQejc71P1E+HqfyDAIItYSwxb8R4GLgIEAgXhAIiEYiiPARGO3qAx4Jnqgz+SZU3bzRKpkcr7qiBCUt5ioRJUBISK8zkqRfjyQKbGvYBhC0mc90pIkJAIikFqJE0RxoQZSTDQ0IglIsI0YmWt8EnDCtefb1V3DNBX9CRfcyJE5Q9V5zM62AIwa/BBD8eXCFCxDm6uGRjJlThEWKUDCiaHP++oIPEBFFw1mY++F7uPe6GyEIyrPv+Lvn3EdAvXc5sVx/W/8bbrvmNqz/Zb1j6Vth1dpfMPmGq3HCuKPw2Iy/Y2h/rT/N6BAjoJyIANcIAW54pFxwXB4kqVqzFXCyhYi3N+0FHQtR+FuC8fqU0hS+8+nHuOi2mxFVc86xSUQUce19d2FHdRX+cc1fTF0rNyNBFw9fzKFWVKeqE5HAvycI+Jx5JvPfmI9F8xc5EJM5Pvv2axx5/mTMvPef6gY9KdBYB/wxgOEo+7yRSSKU0q8AfEUIuR7AnwBcBuBg+TTSTUuIwjn5OI+4v/xEALsIIbMAzKKUbs/cHTAYDAaDwWAwGAwGg8FgMBgMBoPBYDC6Ehs2aG9IX1ZWhoqKiizlhsFgdHVOO+00TSMTAPj5559x3HHGFn0wGAxGJ6WPxrldDqe1C8qGGH0dTscoaveeiftWw8i978/PiOEgLb8GcdiKBgDWTNhcMYKIggeKE7vvbi9tX3RvJ7pYJIbTf/oO1b3yLcdx+ZIC9KkzZvZyXs1WRPgYioIlmuGCoSCqbrgA/IEAfqcejo/FBehOLMdWEty1vD0LlRtnaV5X2voPANaKQCWs7ShuFzOCQSNGJgGPOSOT5p1V8MB6PXKFYsijjQDKTF03IPYiKngRlW7gIwvploWi6L47AsMKNhVCLusL1lPL2M47bcTsI8YB0Qy77fginGXhktp12TIy0RfDxvPh1smPBIrjG+rwTspxoztYK/LSbchpiQ8ypFgZ0lQ0iemTuLBTC3ekBkfz8d2lD60FZka6zrL9oymPHId2FRZJDD2/iYtjhk4AalONTECRje11w7kUW3LmI9JcjBwLkshNPeJjA86l3yFwFBi+Fbjs2wa4Itp98v5GjxoRUxdvAwlYNxboCMy2uWO2dh2TFiMUt3CoLjLXKBCq35brEU7p/49u+hnRFuB/cMY4IJGQi2J9T+PCWz1G7SL4aZB+PgW/iPGVEXxaBvz93WIcvbG9fTpwlxvH/+rD36fUYeWAcNq1h9Vvw7imh+K/RAChmQNQ7tg9dCVOWuNLMzFxAvnd7x0Brt/2E9Dq7VdTuA24QD89O0LzHJU5hZn5rjzssjI0rc+N93d6yenNzYykPbaxGYfwDSlHP4I7xgPooR+BXTSGIkbK2475aVscTlRfAjT5JBQGOHjF7Izt88QYCgJy/yACCLadk3KBZhh7DwJuiuIWY2lKhOrWO16Kj9WdKgVHno8K3ZvNG7gEXZLizbmofmFTAs2C6QipeG5MRIxUIT8GIGG4EX/Ozs+hRI0iTzVCtUIwFMKDz/8bT95+V9JxvWpkuBujzpjPUAB5MT98kh8hAXBHXYZiJVRCQVSC0lY+L737tqk87N5bi4++Woo/HKv8d+1UQbdd9OKSH/8Hb36Ae/56D0LBkIOp2+Ozb7/G5Buuwpp3k40nzJRPKE9ETIibBcUQRBiNoATI3yvAreUVopKIE01jnhhDQbAZUQ4IJJjjfPnFMlxx+y0ZMzFJ5KGZ/0WuNwfTL73C8DWyealLIMgjBKFIfO5iZ46iV555YYq8YAB+J/xHO9a/CvVNjTjnpuvw7B334KIzJ+mG9ze3oDA/Lws5Y2SKrvNF1EEopY0A/h+A/0cIGQtgGoBzAOTKQRKCpw7RlAxPegL4O4DbCSGfAPgvgPcppQ7s7cBgMBgMBoPBYDAYDAaDwWAwGAwGg8HoquzcuVPzPDMxySzV1dVYtWoV1q1bh3Xr1mH9+vWoqalBc3Mzmpqa0NLSAo/HA5/Ph9LSUvTu3RtDhgzBoYceiqOOOgojR47s6Fvo1OzYsQPLli3Dt99+i40bN2LLli2ora1FS0sLIpEIfD4f8vLy0LdvXwwaNAiHH344xo8fjzFjxrTt8sUwxyGHHIL8/Hw0Nzerhtm8eTMzMmEwGF2dUo1zexxOqwbKJhkdpapTu/dM3LcaRu59f35GDAehe4phZ9WsO0rgaiGY/F0uhla7IRGKLw4IOSLY2VHSvkjarmCFk+zFccRmhS1OVZCFDIKOkipK4sqQRp31vwUBw0nromSSsKcw/r/fC6wcAlR2BxpzgMFVwOHrkSZkksUmGfaIUERQWQ1KKFDWxCNGKPbmS6AE8In6q9ZDLmPCQBm7YhpKgDAfhZ8PIy9mTlwdcAOvnGAt3RgHFIbsL1UOK+w2bZTUMrYjNFSrB4nEOHvCBSP4RGJZGPvOExWoKYhh/hg/FhwSaDPjcFnQhlQXmL9IT9Mumwa5o9oBKaiikYgR8Zda2UVNVFVKjBjWtGfGFwEKTe603pFw1DnBWJhvrydKcWbLm0rigA29gU09gTHbzF+/qSxucBB064f1hYEpX7aKENjGwUnIwuOu9mWQM6kKKbUgSu7MFLfwiAvUjaPXjhtB5JNfoERjudRzdnFCuJzIkJ3Amv768RIKFLYAp/2Qk2RiIsNTgtvfLcaFV+1G0JMcV1OKiNGhveC7JEpl5wTy40sdT1Ya9OK080QUzREp4LJgZGKletfntM5XdIYvuu1jF+gHCdSzqdfUpJaP1duVx0N2ikuOY09BDH32di25aIyLC8A9Br7niALg0emSeIkg6mA/QQlFk4+iIKj+QuzNi4GXCIoCmR/zB93K92ZoXK0XqAO6EkJJVtPVmsc5YUwEALPfeQs3/OkSFB/Qu+0Y0Sl7M6YdTg1b4vNaoLYQ4Jsk5IUMFoDCraxevw4/rV9rOg8vvfe2upGJjvGOYngb5wmAp/75FGY+NdN4ogBcbhdGjDgIR446FAcPOwC9+/RCwcByePJ9ODBQAAqK5pYW+AMBbN1ZiU07tmH1hvVY+v0KrN28CdSACREASAbDqRHjqWId78iuWn4k7iggf4au3FaJ666bjoioP/8YOWQYzj/tDBx96BgM7tsPBbl5aAkGsaN6F1as+RH/+2ghPl/xrW48dz3zBIYPGYKJE4ytsXBHgW5+DkUBDpxE0Ks+frwxR0KzNzOWApS0t1F22wArl3vcbowYMgxD+vVH/569UFRQiByvFy3BIOoaG7C5tgrfrFqFqsoqQ/HFYjFcefffkZuTg8knnqIZts7fCF+kGG63gQ8yjE5J1xqZZgBK6QoAKwghNwC4EMBlAEbLp5FuWkIUzsnHeQAnt/6rJoS8AGAWpXRrxm6AwWAwGAwGg8FgMBgMBoPBYDAYDAaD0Wnx+/2a571e44K0jqR///7Yts3cCv8BAwZYTu/iiy/Giy++aPq6pqYmfPzxx1iyZAmWLFmCtWv1F8sEg0EEg0HU1dVhw4YNWLx4cdu5Pn364JxzzsGVV16JwYMHm86PGlZMPOwYf9x11134xz/+Yfn6ROrq6vDCCy/g9ddfx8qVKzXD+v1++P1+VFdXY8WKFZg7dy4AoF+/fpg6dSquu+46lJfvnztE2qG8vFzTyKShIXXnQgaDwehyaBlUNDmcllqD2lEmGWrpZuu+tfJgNEyXfEaEkDIABqVIbQxyMg/7I/Vf9bClUxi4x4W/zy9GbqR9BfaYrc7MsXYXtm8Ba0fUSEHBU+d3jNdDoNri2Wir2qwxVzMYCg3uiGwEXmEN9xcHA7u6AT/3A6SELG/oEz933XygPGF4K5sWmBUTO4HSTtzj13nx56X56FPnAgBsKRUx83dN8BgQ7srCI2qwfkk2ZQXy9ZU5dXC5izFor7F3RSLArFOB6hJr6eaEOeRobXdskLCLQgIFZ6HVSH10MRtOOIKeCwfi77udNIzgi1iXKrtjBL3rBVz7aREG1rjwxCmNAFE2G9Jjba+I6Wt0xbCtRaeXH0qo4k7adkreXFVVNlJJhKT83L256wjMndTzR7gEwxuFIsjkDvdK6TRb1LpvbjUykQy83yeuBIoc7EP3LbrOe5AIZ8Jxh4/F29p9iWILRkyau7obJNXIjJPa2yen+1ql/mnmsU247IsC1WuWDg2qnisIAKM2G2njCIr8QP/d6mOz/DCHg3a6sXJgOOl4c4qRiZl6yjBGm3gs1chEy97VIXIi6ZXSbLVvN48yXzfqc+NzYr3mTC9PdnwVnKjSdlsKpXlsIrHUQZPFPDs5xQ25KJp8kqbphhJWysqpllgiFEGDRiZRjsKjU9C8FP+XE3amXZQIEPBol2nATRFyS2jMkdBrbzzdmkKK7s28pbmWFgEVIxMjdMaegkO8LqXmLVN51ZrHOTU3EaMi7v3P/8NjTzzYdszAkMDQTRM4ZPDbmlbAGx8HNfpMGJkoMOfdty1dt/DLL7Cnrg7dS9I/PFHirMmGXlx33vcgZs15xXB8Rx4yGhedcRZGnXcc8orTx4ycBLjE+DfDbkVudCsqRr+evXDs4Ue0hdlZvxtvf/oxXl/wAVb9uNpw2m2QpP80Ub1/q/5GFh6O2rcG2VxXFEXccsUtaG7WXmdVXlqKx2bcgbN+f1LaucL8fBTm52PEkKH4v0nnYMWan3D9/XdrGu1QSnH5nbdh+Rvz0buH/vqVnAiHHIVPYoUBzrG+JxVeIhAkgqIWOGLkboTho4Zj/O/H4+jjjsaJvUaiEOrm2DGOglCCLdu24d9vvIoX33kLLUFtl3RKKS6741YM7TcAI4cOUw0XRQyVu3djQO/ebMOkLkrXsXbOMJRSP6X0P5TSwwCMAfAcAD/ahwEU6cYmiUME+Zx8rALA7QB+I4QsIoScRQjZt6x1GQwGg8FgMBgMBoPBYDAYDAaDwWAwGJrEYjHN87W1tVnKyb5LIBDAvHnzcNZZZ6GsrAxTpkzBs88+a8jERI8dO3bg0UcfxdChQ3HhhReaNnPZl6ivr8fNN9+Mvn37Yvr06bomJlps27YNDzzwAAYMGICbbrpJ1/CHkUz37toa62BQfQE9g8FgdBHyNM5pGXBYQS2+fIfTMYravWfrvgFj974vPqOrAfxs8t+7Dudhv6J5VxU2RVfa2jX87rdKkkxMnKLZI6HF276q2q6IgZOc3+FdDYL4Cn+BapdLlMTnqg1ZNDJREu6EPMDqgckmJjItPuD5iclr4mWxSZaKMwkhZXp/1AYv/vZucZuJCQAMqHXh7rdLcNhm9UXdABDh2w0QjNSvNHGcBWTDFIlQvDOqDpdeWoMXJuh7T30ymmBTT+vpVjQ6s99iWFDeNdYIqbst23mnBQMKwxhHEc3w6mxvhOju5myEiatzMXprvL6aFddFeIq3DzPfSOi1h1zrA9ITwEugEJWqlxHhl0oWEgVtetFQaO/kHU8nOZZuTdkTW6zuE9YPpAFH42ZcThAl7S+OUozZ0t3Ldc+ogVQiuwqjbWMDI23IqM2pNjb7DmGB4qsh1r89yYZUdsaAHYGZapMtUVk2sWZkYr8cIilGJrzUPibTM5Myi1I3uEanLf2xn/p5jgLnfw7khrTTJQCK/MDYzdomc5O+Tx+4N6UYmXS196orIL/7Vo1M7AzjfZH056lnqqGWvhXBe2NOPDG9sRuvozK3Y7DTAdO+NDidjt8p01Knx0O1+bHsmMU5lAYlQNBtrIIbKfNe9QIG1rgcMxChBGj2UgRU8tjokxBqNRcReYooJyHKSYgI1PHnEBZoW1pp+TRwfUd8T9FD5AkquwO7SgB/UneYmUqsNY8zYlpolHmLPsTa9RvaftcrezMpO1EycnotrWUe8FBEeWO5SA0VESN4Y+H7lvIhRkXMXfCeSjrOVlittvaOpx4zbGIybtSh+Pj5OVg8+1VcNOlsRRMTvfRkupV2w+TLz8dHr83Fl/PexJknngSOM965mCkhVeMw3SuVL3TyDZWNTF6d+Sp+Xf2rZthDDzwI38x9W9HERImxI0fh8zlzMfmkUzTD1TU2YsajDxmKUwunzatAgfIGHt1aBHhifEYMshIpKy/DtJum4f2v3sfcRXNx9S1XY9SYUYDPpXkdLxFwFBjUtx8emX471n7wCU4df6xueqFwGFfcdRuiUfUPgZQABRzPTEy6MMzIRAFK6Q+U0isRNyO5AsAKKJuWyCidk01NOAAnAngTwA5CyP2EEOvbzzEYDAaDwWAwGAwGg8FgMBgMBoPBYDC6DD6f9haf27ZtYyYONohEIigrK8O5556L+fPnIxy2J9JQg1KKV199FSNGjMCcOXMykkZn5rXXXsMBBxyAxx57DC0tzikZQ6EQHn/8cRx00EFYtmyZY/Hu6wQC2jvXeL3GdlZnMBiMToyW+lt0OC2FPdMAAG6H0zGK2r1n674BY/e+Pz8jhkPUUWCPsNuWgCJTO93vLkx2rLArKOIl58RNulACnnK6IkZZVJ4qfkylsMU58ZhZ0R0A7C2MC1lkZMFqR+w2z6eojy7/vKBNjJ2IIBFMXK3tEBNytZeqkfKNEWpJeJ9IoviDA7CjNIpFB2vPLQDgt162kkXPBmeMTOwIwGIpQueYDWGSYKDdiXEwLP6xik90Tqo8ps3IxPg19TkxPPyHeqzvab7b12sP5aLTE8BToixit1PyycYoRtLXMTJJ+b3En722a01vreGePk4KHCNcghhFoQiyIrIF2syQrHQhlSXt96BnYAMkCzT4DuizMsXSoUFc8X81+LWX9folt15O1rHVfcK45uI9ePXIZiw+UL9vs4KZrkPJfKCrUxww7xriccTIJPl3Xmrvr4y8i2ZQEi6v7Sni4xHKdWp9eQQfj1Q39SFS3JRrYJV+X1Fk4JP7gD3pwsHmlLF8R4yR93XkEk3sqyiASm2v8bTrreCSSJuoVyZ1TqKHXK2ttLn1ua1GJgbmspqvo41X9fuh1q81g1ap6s1jnTI9aDOMsVFpEnMS44C6PBMDfItpG7l7I8auFEBQxZwjPb7sjR9l5Oa1piCGgDvW9l7EOIra/Bj2FLSXdeLtEmrsHTKTj5oCk8+1CyAL8qM8UJ8PNGsvr7CN1jzOyU+NkiThoceebPtd1yzTRGPt1FiaInle3eS18PEOwAefL8HehgbV8+PHHK55/cvvvaN43OzQRq9Y1OJ79f35eGT287rx53h9ePK2O7F49qsYf9hYAECLxTKTEV0cejYIyAtzOHzIcLz+8JP4du7bGDd6tLmIMvgZysm5m9oj5SlQV12L5x5/TvP6If364/1nZ6K81OBgrBWvx4MX7/8XJk74nWa4tz9ZhC++W24q7kxT6ueRH8r8HxcOHHkgHv7Pw1j03SJcM/0a9BvYL+m8KJirCN1LSvDWk//GnVddpxv2x3Vr8cr781XPc0RANKTjyM7o1DAjEw0opQFK6UxK6TgAowA8C6AR7cYliaYlSDieamoiHysHcCuAjYSQjwkhkwkhzvyVhsFgMBgMBoPBYDAYDAaDwWAwGAwGg9HpKCsr0zwviiI+++yzLOVm30OSJEeNNfTw+/3485//jBkzZmQtzY4kHA5j2rRpmDp1KmpqajKWzo4dO3D88cdj5syZGUtjX6KyslLzfHFxcZZywmAwGBlDa1sv9S25rKEWX0eZZKjde7buGzB27/vzM2I4xKw33wRI59w1fHdhcrWzIzqhALgsGpkEPYBA9ROLcnHhS6PO+t9CB6dbRgwglNieMK2WTQYc1q0aQkjQJVTU8+hVb33pZ+IuzkYEWDHO/h60iddzkvG07fpx9K7X3q2zuiCKkKAv+ogbmVjLTKrQ2Y7oTTCgGYuRzL/zvgjnmJBkyoo8AIBLR3D+5bAgHji9HndNqsPF02rw5YEhS+nplb8sFtXbXZaCphiPGEctZiVjFC30wqf2cYWB7HQGO4ujeHOsPeNkQu0beckE+XbTC6Vqa9eoyShia4NmpQ2IJAh2jNS7RDMBgZo3gOiMvH9oC+49qx67imO6RkNaZOJxRzlgY7mIOROa8dxxTc4nAJNGJuK+J9EpajF/T3bqiUwkRSzHS+19sdk2Ww/FvpsAT53UgNeObEZL6/hN5Cg+HhHAnZPrEHapVwwuUWGkCUGugS5VqU1uShF6d8a5VVdHbrMS+476PCBg0EvcbpuXE0mumGbNIeVxvxVTyTYjEyNzBo34rc7d6vKAzw61dq1pNPKol3+nTA8y4UPUkCNl3GBRC/me/D7tPEgkbj4Z49rHa3rYMae0gvweSBzgd0vYVCZiY7mIzWVR1OdKSc8vycgE9sa6LR4JYReFyFNEBAl7c6MIaRm+dNFugKPt7RUANORldk6tNYZw0ngGAD5e8jl+/O5HAPp9QqJAWQ8nxtRKUTTl6HcYNFE53crL772tec0dV16LsSNHqZ7/eeMGrPr1l7TjEuds+6h0zz+s/QVX33un7rW9yyvw2exXcMU554OQeKYkAtRqmEYZeUxKBhUjhw7Dklmv4sn770NejrYLtZkvhp3R8y6xLs955kX4m9W/ZXjcbrzy0OPoVmRtLYQgCJh574PoU16hGe6efz9tKf5MQGhmviUl1psRh47AM688gzc+fgOnnHkKBEH5o0fq3MwIhBDcdsXVuP7CP+uGffiF50CpchoSH0NRBdvMpyuz730lyRCU0jWU0msB9ARwCYCvkW5akoiSoYlsasIBOAHAPACVhJAHCCEDMnsHDAaDwWAwGAwGg8FgMBgMBoPBYDAYjGwzcOBA3TAPPfRQFnLCcJKHH34Yt912W0dnI6O0tLTg1FNPxXPPae964xSiKOKKK67Av//976yk11XZsWMHamtrNcMMGjQoS7lhMBiMDsHpVeodt5rfHF3pvrtSXhN5FsAIk//OzFLe9kkG9O4NAUKn1FjsLkxegG7VPCEOBUftxmGcxjxiSDAtEgkiD7To7HIbNzJxJu+CRfeISMLa6WjritcsFWcSibufH7HJ3sLpROGRERGBRMwJE5RIFE+17SxvQPxldtf3VHrXaSv+t5VGETawED4sUMuComjKdXYEUUbqcYyjGd8h3CcSx98DPeOQTWUiPj8oiG+GhLTFczro1TvZAEJPAE9BFQVohoQ5KlkQTYjiKYmL2bUgKZnJCzlfMeaP9qPBF++3JFB8OSyI26fsRYvXXgWJ35r9StbChxFNUCUqGpnYTsUYcn9i5f1MrBtGBLZtZgLUmMFYV6Aut318ZMeggmstGycNFxKfidPiUxnOhOrPG+mMI1x7FHeQkUnqGIFLMDJxWsSu1jZEXMCLE5px7rXVOOfaaky5vhqP/KEB9XnaQl+j2SPUmO5caSzYnKJrNVNPGcaQ+/LEpryye/bS96W0J2bH5nL+rYwb63NaxxcGKrNW3bMyNKMA5h0bf/+yQTc/j/IGHt2auSQzBUC/zJXmFlZexUzMHygB9uq0VUnhnc8CgHhbrtVmBxOMPoMG5hk0C8aR6WnStrT1nm/SaWr92VYXxlBVHMP2blFs7R5FiyuWZtKZlk8D8WbbBMYoJS180vsXdhlpu6zdi9Y8zsrzOvGoYzTPP/XPpwDot4dG2w6C9LmmJRQMSUQeCOi8hxKkpJKvqqnBJ998pRq+X89eOGbM4Zh6mvan9JdSzFDihraal6SjFz6lUkXECK6463ZERFHzsr4VPbF49qs45ICDko7vKopqm+vZfEyXnTYZ37z2Fg498CD9wAYSU3uyVquTpTmdSiYam5rwv9eI9cY3AAAgAElEQVTf0rz0hj9dgoOHHWA+zQSKCwrx8C23aob5+oeVWLJ2la10nCInQjJm6N23f1/867//wmsLXsP4E8brhjfzzSyVB2/6K446dIxmmC2VO7B05XfKJwUJ3hyP9QwwOhzrlvD7KZTSEIA5AOYQQg4EMA3AhQBK0G5Ukkji74nmaPLxMgAzAPyVEPIBgMcopV9mKPsMBoPBYDAYDAaDwWAwGAwGg8FgMBiMLHLIIYeA53nEYuo7sXzzzTf417/+henTp2cxZ/sPhBAMHDgQBx98MHr27InCwkIUFhaioKAAoVAIDQ0NqKurw+rVq/HDDz+gqcnYrp0PPvggRo0ahfPOOy/Dd5B9QqEQTj31VCxdutTwNYMHD8ZRRx2F8vJylJSUoKCgAHV1daipqcHatWvx5ZdfIhwOa8ZBKcU111yDnj174swzmS5YiQ8//FA3zPDhw7OQEwaDwcgoWqtGXQAiGufNoiaJcDINM4gAlFbjOS3d0IrPyL3vc8+IUloDoMbMNfLOiwxrXDJpEhqeqwSwrqOzkkZ1mpGJvfg4KTOiJCWacoB+e7QVPRQUMSKhSXtDTwCykYkzCOrTYk2iCcJzqXXBdEfoboQEQU1u2N4DDboSBNcGVIVOCI0SZSak9V6M7B6eKuRLpHsDcORa4L0j1cP03atvZDJsl/5S5ohg3coltfzslKee2QfQKqJvNblwWXz5Qy4JXlH9XfZGCMIuZ18Et869Gd0dXQ+9IuFb65yeAF4iVFFEYSSXajFrCpAU0onphE9NJ8dm26HEnPHNeP64JuSFOEQEatvARIZQ+2LWMC9htzflO5tCEWRLdy8bIlgyMkkwUzCyC7Es6BIo56hhh11q8kWUNVubWiSWmx2DCkdElylEE9qnTIlzzZgA+ETj97izOIpvBodw9nd5FnKVPYoD5lVrHgeMTFLfNz7ByMSOkE4JvTFZxAVEXMYNAeToDI1gDARRarvCbiAsAJ5oa5qGc8cwitykJJZ/Zanx6+22eTkpRiaC8SoIAJCbRyv5aMiNJ2Z3zmCs/UwO9N0wYF1foKzRyLX2KQpwCT/z2FkSRah1rM3rlLkRoxcjONI9KsTR5JNQ0sLB5UCbrITRfNcUxFDRkD7vkwiwJ7/9Y0HQTVEQ1I7LHZX7++y1enIbQGHAyCShShBYG3u2eCQ0+5Irn1HjqxiRwGsY6Rkxt8lu6cYpbuFQFODQ5JWwpyBmaG7Wai9jerytNY+zYkR82+VXY9mq7xEMhRTPf//N9/hqyVfoP+JY/cgMuj858XwSRc6J7CmIoe9eQbH9jhEp7R149YN3NdfCnD/xdBBCMOWUiZj+yD9VTUPmLfwQD900Ax63GwBQnyO15dMoeuOu1LMPPv8f/Lxxg+Y1pUXFWPTci+hTXpF0fG9eDAFPZj9QchIwuF9/LHlxLi69YwZ+WPtreiATlcG6YYlahM7F9eq778LvV/8QXVJYiOn/d7n5BBX44wkn4YiDD8Hy1T+qhnn6jZcx4Z5DbRs82yU3lCHnLgJcet2lpi6x812QEIKHbp6BCX86F5Sqx/Pekk8x4bCxacd5jtlgdHXYE7QBpXQtIeRGAEsB/AfqZiYy8vHUvl72MDsdwOmEkK8B3EUpXZyRjDMYDAaDwWAwGAwGg8FgMBgMBoPBYDCyQm5uLsaNG4evvlLfhQYAZsyYgWg0ihkzZoDjOt8unQ899BCam5uTjn399deYPXu26jUPPvggunXrZim9oUOHWrpO5rDDDsMf//hHnHDCCRgxYgTy8owtBKeUYvny5Zg5cybeeOMN+P1+zfDXXHMNjj/+eJSVlZnK3/PPP5927L333sP7779v6hqjjB492lT4Sy+91JCJycCBA3HTTTdh0qRJqKio0AwbCASwYMEC3H333fj5559Vw1FKcdFFF2HlypUYPHiwqXzvD8ydO1fz/EEHHYTu3bO4JSSDwWBkBi3nK6dNMtwqxzvKyCSM7BiZqN03YOze9+dnxHCQIYeMQtOGIwBoLxjPNtWF0aTf7QiKiM+F1WWXQeK0x3FOsbY4Dwfu7AegWjWMxMfwSM+RaO6+RzMcALyROwCnk6AjWzMLFhd+f1aRg6qiMiA3BDm/HbHbPJ+g4LMrzE00oDByK2GBYnV+MXppPy5N/K6DsQIXAABW+p4BsC5uuKGDli6vz1dn4aeS7QBWKp4vDHAoCmqrj7aViohw+jtqRgTru26nipTsaBCMGPLIu2RLHACTYlOZgJvCq2Eb5osQQ2YKZnDp3Jvo0IpzvedIWvPhjmqHi3kIfixUKmQDJhMqQd7pVYJv3OWAEMMTy+sBjTKhRHsnbwBw+dwI3PxPgBBwHEHOzCeBPbrZM4XIU4gCUG9AkGiG/5b1w1RRRB8dIakSYYFixcAQ3q+IwrvpHBSHe0OQPOAoh59zngDQkBQ+W7og+Z2hFsSJiYIdI+YJtfyJWI3DMIQuwVBsNJ1eJmjIiWFjt6hlI5PE/sqIqZNqPG4Xvu13EQavW2i5jUwlyin/7CRmdOq+iH75rKuI4IsDgvhkRBAn/uyzkTNAFKKIchJ8Ea1pnj2KWswXrNuEoYsaqX3dy90rwIkcgJ2Om9YYGReZ4aPccdjqOQ5To28AorKwGQAkF4cny4fjv831mvGpjRmf6TMKffd6EB21C6f/TNB7m04HyrBEnYvikYqDAQA7+/0MoxMkC11OEr5IcsXUM9VQS9/K69LQKiA30k9rxW+kDOYXjwUiY1HMlaBq0FIsG/spCEjWzM4S4SjQs57H1tIoJA7gdTJho0tMQk4mE5L4vXkxlCuYiDhBgBPAcSWgXBSUUHCEgICAUB4Brg5AvE3yeyl2FUXRzc+3GaIF3BJq86WkeUbQJQHQHmxZnRfaoe35EMAvEGg9KZEADXwpXDEfwmSnpbGuX8GcsE4QIPEx7bQ5IMhzyNPoCgIeAw2J9i1mDEKBwiAHAqDGKyGf5yBo3Ashrdk0kdeojhDfynigZ1kZrjz3Ajw+5wXVME/98ylMfWUCtFwnzLR5dvsXmQYhfU4dESiqC6Po3sQnfcuLchRVLhck4kaUD0Eu+Ffef0czjQtOOwMAUFxQiFPH/w7vLv5EMVx9UyPe//wzTD75VNTnxtDU2g856aqTWMY7a3bj8ZfUnxkQN1944f6HMaB3n6Tjfq+EOofn4Fp43G68/OBjeO5/6d+X5apgupiiaHMW0K1OGWwPGgUOfpcHr36wQDPcZWefh7ycXMVzokAREijyTZh+3PCnS3DB9BtUzy/56HNsfKAJw8RCx943K+iZDmcTSuJtqGAxT4cNH4ljRh+GpSu/Uw2z9Hvlc/1L+igeZ3QdmJGJRQghvQFcCuD/APSWDxu9POHnRFMT+fjRAD4hhCwCcD2ldJPN7DIYDAaDwWAwGAwGg8FgMBgMBoPBYDA6iHPOOUfXyIRSittvvx3z5s3DHXfcgTPPPBM87/CWgjY499xz044JgqBpZHLuueeif//+GcxVMoMGDcJ1112HyZMno3fv3voXKEAIwbhx4zBu3Djce++9uPbaa/H222+rhq+rq8Odd96J//znP6bSueyyy9KOVVZWahqZKF2TCZ588km89tprmmEKCgrw1FNP4cILLzRcT3NycnD22Wdj0qRJeP7553H99dcjElHWHzc1NeHyyy/H4sWLQUjnWZzR0fzwww/48ssvNcOcccYZWcoNg8FgZBQtJ7E8AOrbsplHze2sWeV4pvEDKFA47vT23FrxGbn3/fkZMRyk/IC+EN36BgbZZndhsnLdznrh7t08uOOL6bj5Iu0xtlOIJSEM7hWBuF49DHGLaCwFGsqbdeRBwAnlF4En/4HGRomGMWIAoUSfUX1w68m34YOf3sD36xcCcE6wYQaXRNq2ufPYFOaGE0S5RkRNxC1hyAG9gOqdltMcelgpep4/AbndeaxfMwu7AsZ2GtYyjckfGUFl0WbV831r9Zcoby2NgjNgyBF2UUs7IwPtxiIydoRvRnZileOnNvaxDrqpZm/qEzk0UWdFM3q7tNvZeTURvecoJ6NnlFBelgsU7U07bkT8pRZEGOHHIX18KPAUw/VdHSQdIxO9XcLzXRTnXn1O2++rX30GspjTKZwymEmlqVgCaRKBanOmF0+e1IAPDw0AAIo3HYBz110OcIj/AxD1PJV2TbZEyuE2IxPz10aSjEz034WT/68HJpw+HA33/A/Q/pSTFSRQPHFyI477xfq4K7H50zMa0iLPTXH/4ruwvd8iqGzGbppEQarT5hYynIkm14iRyQ1/qm2ri3bNfB4f7sOgcAiT19mLR4vcCAePSJLM2PSwa/wGpBuZNBfEwLW61ei1wWZx2lTp9OuORei7H+BZUA1sLlINV+gD/nLLxcC0JzTjU2u7KqQfMeOOBxEpElD3wN+AbaV2ss1IQR62SIKEQO8YxBAPsSgKQXcm1Xq9zfRTjeaMjEUTkZtEK/kIuWVzPiNzBvVzxEDqR5SNww8jV2LXsHVYtnsniEs2ZuoY5TAvEeRECPxeqtv+K80trMwCrM51jNDspSgWqCPtciqch6BvnzJQQrG3uRr+cGPbOUkUkVgSfi+F3xttqy9K1dnI2DYsUMtGqVZJTI4KErSeMOEI+h1YjkgLRX1TlSUTvYjCeDMmAJSj2nWLAPl9K0B27IKkMM6qzY8ZMuXraAqCHBp9Enii/TYRUEgEICYG+Hr3b7Vq3XLJ5Xjhrf+h0a/8yXrtmrWY//FHmPL7UzXjMVJbnKz9VOWd83spWjxR+CIEHAVIWEAL3z43lPh4Xfz6x1XYsHWLavxjR47CkH4D2n6fetqZqkYmADD7vbcwZurvk8Z5TraOiXH987lnEQpr+bUDV59/IU486pi047V5xj9yUuLMd0xCCKadc4HqeZGn8JmoHT7OhQAirf203rvmHKlx5RbkYs8v1fh17S+a111y1tlJv0sE2N4t3tCJApAbJqaMTM447gSUlXRDTV36dyUACIVC+PDTT+E++wwUt3DIDXNtRlzZxM7c2ypUoiCc8r1GbBiZAMCpE36naWSybssmxGKxtDVIXCdaO8ewRufbzq0TQwjhCCFnEkI+BLAFwJ0A+iDehmq9gVThX1u0CdemmpqcCmA1IeQax26CwWAwGAwGg8FgMBgMBoPBYDAYDAaDkVUuvvhi5OfnGwr7448/YvLkyejbty9uvPFGLFmyRNXsgRFn7NixmDdvHjZs2IAbbrjBsolJKhUVFXjrrbfw+OOPa4abPXs2KisrHUmzo9m0aRNuv/12zTCjR4/GqlWrcPHFF1sy2+E4DtOmTcMnn3yCkpIS1XCff/455s7Nzq71XQW9ZwMAU6dOzUJOGAwGI+MorxyMo2TyYQe1+LTykEnU0s3WfWvlwWiYff0ZMRxk1Hl9wMcWdXQ20kg1MrEiOmmDEAi8gFiWBFhRRPFtVNvswl3oxdxHH8WR40ZohpMkCQ+8eJFjq9WtCo0iMRGH9h2PP46Z1nYsQxplXaRd8SW3XptGJmKiKNeI6YKLwzFHj7WVZukBeRg5KQ8Dx/uQV1wIwJihh5pwj1KKi689EeMOPUr12v4GjEx2dIsaWskc4alls4PU+7QjEhQMCNnb0rNRTQJu7YS8ESOSUHPoGYc4ZWSiV+/kMtYTiBAXD5cr3WTDWC6V4x7Z+yg8cO483PrH/6qGaU+H6u7mTaXk8/khZxsvkbP+Xujxzxtvxvlnnmn6usQyKR5KceS0Ahw4MQcVI93wFXOKDXi2jExkQwQr3VGikE7igJhOO8LFwigfNRrlPTpm1+BQQmO1qUzEvWfV4+uhIUs7zMsktp22BFyxVkMZB1+HREGq0+YWMlrGXql4Re2CDrqkpHpv13zlrBNPxGlHqffHTlHcYq4COSG6C6cYmfBEAGmtyKlGZXZxWhNfWOrFzXc8jVxB25fU43Lj1MMO041PrQoWnzEGB006B4ccPwkj+xxpJasMDRKb+1tvPhP33nYVBJfxhsaucDn1et6kj53cdtl5XYzMGbQMVoyUwUVP/h733XQ/juSPBdzt47sOmvYBAIpbeEMmVk4ZaGXal2Nvvr7o3sq3D0Lixh0c4dC9oCcqivqhwFeCXG8BOE658khE+34bc7QLPuCxbnJplcSy4TjtNoAQAkIIPHkceJ5Yeraigtlnt4IiuN1uhdDJeAoK4Ro2GCjyICJQRDmKkItiV1EU9bnOmmFmkvwoD6/e/RKAmtwQw8j4wcozKykswl8uukQzzL3PPI1YTP1dzJU4Q2NOp4ZAlAB5OTma5wMeCr+XwhsKorsYRv8ePTC0f394Wp/NzA/f0kzjgtOSN+A45ZgJKC0qVg3/+TffoHJ3tYm7SM+zkfOVu6sx5131zWwAoEe3Utx51fWK5+zMqzJFg07bmWpI6MvJByd/kLPYB1m6LKX+chyHJd9qu38ePvJg9O+VvAaIEgpRaDfAMvta8DyPs048WTPMF598gRgH1OZL2FYaxaYyETuLo6gzYWRjGpr8s1kTOyvJpMJpPFm7ZrrHjNae90RE0VYbwOi8dMJms/NBCOlPCLkPwA4AbwM4BQAPtFlOpZqTyKQakyT+S71O6RwA+AA8RQh5gbDtxhgMBoPBYDAYDAaDwWAwGAwGg8FgMLochYWFhgwIEqmqqsITTzyB448/HkVFRTj++ONx66234q233sL27dszlNOuh9frxfLlyzFlyhTVBXF2+ctf/oIHHnhA9XwkEsHs2bMzkna2ue666xAIBFTPjxgxAosXL8agQYNspzVhwgS8++67mmYo99xzDySp6yyqyyQLFy7EokXaIt8TTzwRI0Zoi1EZDAaji6BlUFHmcFpq8XU2I5Ns3bdWHoyG2defEcNBXF4Bfcd2LrFdk1dCwJO8FNDO4nR5yV+2Ngt2gYM7rJ1hX1khDhw0CHVh7deIp/GxulNZ5y2u8Q7H4rujNofad7U1IijLBEcfOAoA4LFpZJK4u7KRukEFAhgQLGlBcnxtP/OtwisjaauKJSXg2KGnoyy/QvXafrXpJhOJVBdGEXJTGJnORwRq+V1MNZswIsZUw8iuo7KY0Y62KOTSvjonQkztOq0LBdxZMjLRq3ey/4KesQpxCZCoQgU1Yg6kciuhaEj/4lYo0RfB0VjyeXfI2cZLSeDoFP0qeiEnL9f0ddGE94v4ojjmukKc9nA3XDi3B65d2guFvdJVL9kSosrCLUti0pT6r1f2NBTvu6K7aswn5gB/m1KHP9xchTNu3IWr/rwHXw2N120745HEJkevvdCk1dzCSSOTqMl+1QpmBKO+iHYmgm7nxpoAcMLvfof+Q4bai8QARaaNTOw/jFSh3GN/vQ2z730IgPOmNU6ZEcgIvACO41BS0lMzHI1R0JYW3fjUchepKGpPsyNdH/ZR5FpMCMHkwy9DfonH0vVWSRW0mxWzyvMms13tLz3bN1gwkqTW62MobY5DYUUvLHPtRKJsLltmZ0p4RQIjw1/FNtxCvjN9ry0eqjvH0DuvBE1pnbyuHHTL64Gy/F7gOWtq57rcmGp5BNwUEYHamtNZIfE9SL3nVFKln2bHJhJRnrN6PR64eGNlSgQB23NEbCuNYktZFDu6ReH3dq1OgpP0XyXCcaAm64KRea1kcUxw7dSLUFbSTfX8xq1b8PJ776iez/fkghj4QOLctwDj91nQqzdKhwxDbn4+XEK8HgYDQby36CPVa9wuF6acPDHpmMvlwtkpxxKRJAnv/+99w/kyi1x0L77zJqJRbde9GZddiYI8ZUM6M+91pt88+Z7CLqo5nm3xJH+PcPEuuLj4d7uObB0ICD799FPNMKcec6xuPFZeC714V3y1ImmtisTFzX325kltRqlOk3gbtubdNnAJ6t+gIza/DfboVqobprG5Of0gs1Xo8jAjExUIIQIh5GxCyMcAfgNwG4AKKJuNyMeAZIMS+XgDgCcBHALgzwCWqVzTlnxKGgTAxQC0t3tjMBgMBoPBYDAYDAaDwWAwGAwGg8FgdEpuvvlmHH744ZauDQaDWLJkCR566CGcffbZ6NevH8rLy3H66afjnnvuwcKFC1FXV+dwjhmJ3HrrrZrP7+WXX85ibjLD119/jYULF6qer6iowIIFC1BYWOhYmscccwzuu+8+1fPr16/H++9nbrFSV6GpqQnTpk3TDXfHHXdkITcMBoORFXZonCt3OC21+LTykEnU0nX6vtVV58bufX9+RgyH8ebmd3QWkthdmL6I3ZYglotfbHXH+KdPbMD80X4EXcZcQIQYQYlfW9XJl8bFjnUB7Xmkl/fGf3BonbDLYkGKMREA0BJpF3gSx+xVzFHEx0X9XpvCXDHhEemJoACACATEZW/LS+L1tv3MkfYdV2M6ykK13YB5xG/Czasvbu+7VzvPW0vj7xvP6ZdnRKCW38VoykppO4JxIyICWXRmR1uUKnJXyoeT3g+CAX8Nu7uuyuiZVsh50RPAE7eykYmdYglHw6Yi0hPRp2aPhp3dtdcpcxklOMKB6Ow2r0SicCoiRdLOUwX3imyJpmShkRXjlNSyjug9+3D83mM1jabTcgJK4u9syE2T+nE7pjGJbbAdgwrS+hoo+RBZJcmwykDfZgUzUfp0DM+CKUJx2+YrggBDrmA2KQ6YaxM8DhiZhFMEgl7Bi7KiuPjN6vhaDadF8S6+1dCN14mYUtCAASMTleLc7d/d9rMUDCsHYliGS1SMAYhJJvtym9U0te1RNRnUuV5tTK/Gr70TjUz0b0LNaLJ7E4eRlfqGjPKYY13tuqTjjrzlNpoiI8YxSn2OkTle2jUOTHH1Ut1ToF5/YxxFQGcO4niGVIjywM7iaJohZcBNsas4Pod02nxKj8Tno2tkklDpCCGm559q4vhUgxQt/GE/wpL1PqFTWJ6kKm2VIObHUUaM0Kx6B+Tl5OKvl2r/Pff+555FOJI+T4pjLGGnhroUUDYHVSCntDs4of2jAAXFJx98gha/+hjmlPHHoqSwKO341NPP1EzrvXnvJefTQdMQirhZypx339YM162oCBefOUk9nk7qqVBVFFMsg5CLoi43+Vm7BTdyXDmG4nVyepVadBExgmXLlmlec9wR6UboqVmy8kyOGXMY3C51E+bG+kasXb1W8Vw22km7RtpWoKAQNIzIrBjqRnmK6qL4GKR7cYlu+GDYuMkwo+vg0GflfQdCyBAAlyFuHNJdPtz6f+qbltgapBqRAMAKAP8G8AalVH6DVgN4iRAyFMAVrel0Q7oxivx/opnJdYSQdymlS6zdHYPBYDAYDAaDwWAwGAwGg8FgMLoK0TBFww7tHSAYjM5IUR8BgqeT/uW+A3G5XHjrrbdw9NFHY8cO+5rL3bt344MPPsAHH3zQdmzYsGE44YQTcMopp+Ckk06Cx2NuZziGOoQQPPLIIzj2WOVdWTZu3IjNmzdj4MCBWc6ZczzwwAOa5x955BH06dPH8XSnT5+O559/Hps3b1Y8P2vWLJx5pvaCpn2da6+9VrfdmDJlCsaPH5+lHDEYDEbG2aJxboBTiRBCegBQW6mp3DFlHrV7zyOElFJKax1KR6scjdz7/vyMGA5DRbGjs5BEdWG6sMeWuJTYi2NjuYj3Rwfw5dm98OaI27D9jFs1wwsSUNKirZIRyuPiT7/o19RI5LtlkxlnlmbzCpqpIr4IoiSihaoLH0QpXkf8YX97XA6Kn81QxMebpJywPaWrLEwq4ArQXWOXSxlJICBue3P8RCMTPsGcQCLQ3Glc7ZyHj+fHI6jnq3+t9hLlbaXxZ+vSE/giLmS2KsBPFbnZEfKbSc9OKno7u7qiztr5CAaaYru7rsroCcWFVvWJW+fTOOd2QYK1xkCt7EJR42IJSgwYiaRkT4pIcHIPUtG8z4hhOMIBgvkEEoWBshFVIkrCz2yJwGRDBCvppRr56D17GooLR6P1ATjmCGYCtXbOzpgmUYS75KAgxm72qgfWgLQqQ2NwrmTElNcqygO8w39eM6OX9ka07yzkTu2XrOSoHSK4QPgMNgitFOuMMVOxY3gjk9ofegRP2xjVaeMRp8cHAok3HETHZIZKAA0FdeNTE87XBdvNCamqMJphneR6LM9NrF1tIfWUxy6YbDDktsts9f78wPY6acSEIdUopcTP4db3i3HIdoNzmNb3pC5cB8InxJUFcw8t1AxaEnGqLbJtamWAkItid2EMPRqT+wyJUNSWmDfcALRNPawYusgE3RTbSqPwiASuGEHQJSWNx5zuA/RIqgqywlOFJCMTENP9i5aRiVEzkx0NndP/WSIUUd7EGEHBBDE9TnN5SDXIUYzTRv26fMq5eOqVF7F9V5Xi+crqXfjvvNdw/YV/Tj9p8F4c8/Ehxo1MlJj/+nzN81NPU/77/mHDR+KAAYOwbssmxfPbNm/DquWrMPqI0ZbzpgYlwNKV36GyepdmuIvOnIQcn081DnNp0oxOehOrQ8hNsb00iuIWLm6CQYAmr4TGHCktC27ejXxvPhrCDZazZ2n4nHLN+l/XIxhUHwt73G6MOWiEQuIp0Vq4h1xfDkYOPQArf1mjGubnn37G8EOGm4/cAZwwhjQLodp9jZVvg/FvMfHrAgbmPV62zm2fhBmZACCEuAFMRtxYZIJ8OCGIkkmJ2nE/gNcA/JtS+pNampTSDQBuIYTcDuA8ANMBDEeycYkcb+KxhwFY266PwWAwGAwGg8FgMBgMBoPBYDAYXYaGHVHM/mN1R2eDwTDNJfPLUTpYfdeK/Zk+ffpgyZIlmDhxIjZs2OB4/OvXr8f69evx7LPPoqCgAGeddRamTZuGI49M36GEYZ7x48ejvLwc1dXKbfPixYu7rJFJZWUlFi5cqHr+iCOOwPnnn5+RtHmexy233IKrr75a8fyiRYvQ3NyM/Px8xfP7OrNmzcLLL7+sGSY/Px+PPvpolnLEYDAYWWE7gDAApdVqQx1MZ7DGuY0OpmMGrUHiUABOGUxqJrAAACAASURBVJmo3XsQQKWB6/fnZ8RwGCp2LhPX3QpGJtSOqLF14a9VYWTb4mCeh+vIo8G5o5Ai6ss+80IcfKlq3hT4XhXxuKUIoKF57ZbTzXR+tRgR8aGIJ2iINMDH+3Dq0FPx0GkPYdzT49AiqhuZRKV4HQmIgbZjGfahUKWIywUQL2c7iDyFFJPw2oWv4euXHgOwTjO8xyUAHn3DEy2IL8HIhCQYmXBIM1tIRE28l+fOAwB4BWUhe2GAQ1FAW1S9rTT+bN06Al8AiLioZXFf6o7LmRa9yfHb0anomSS4Y86+By4D4ghd0w6D6InChNY659bZBpt4XKCgSLV0MVLuamUXiRoXgFPo16VUTZhJ7bMuTj0TJQghAG9eZhBNUNVFYsbKMxvCXcCmkUlKWesambSaCUSbY+gIuYZamdpplxLHMqv6hS3Hw7VmjlLnjExSBalxQylnKxYxofHUG4sFXcmRpRpumcYlAAZMwezSGYxMvIIXeZ74GMTpNtCOaFkJXjaX0Xs2lIIGAtphoP7+Nkea28OEOpdJ5L5A6usZkxTcGTWwO15LreZmDR1lgxGjzYwEiidOacTG8va6pDMkS4u/2M/hyZdL0aPJRP/HEWyo2ZBsYgKnLDWtwxsYpCi1HVHe/LNq++6Q4XFRk09CwC2hIMiBowRRjqIlh4Djec15YUcgkbihSVChJmTbyCSxDaYkfQ6SSKIAnBBieqyr1r9xxNhNNwYbEaX639pKc0pRG3DqU7Mxgm6KquIYvCJBn716bQTVNzIhpNXc0nghGzGDjI97rb2Mbpcbf7/yWlxx1+2qYf416zlcctYU5OfmJh0nhLR9R9TCqW8BFAA1YBajxI6tO7Dy25Wq54uKi3DqMcobxADABX84A3f+v8dVz89/fX6bkYmpHOoUHwXFwqVf6EYz5eSJqucybY5rl4hAFb9vp+Lm3fAKXkOmU052Talx/fzTz5rhhw8aApdLf/2ZZHHUMOag4ZpGJuvWpH+zpaAOWtSq4xEzaICjEjUhRLO/sWKom/injJ27d+uGL8ovUMqY+YQZnYosD906F4SQAwkhjwHYCeAVxE1MCJLNQ+RWTD4OleNrAFwDoCel9EotE5NEKKURSulLlNKRAM5B/A/9cvptWU34eTQhZKypG2UwGAwGg8FgMBgMBoPBYDAYDAaDwWB0CgYNGoTly5fjvPPOy2g6TU1NmDNnDo466iiMHTsWixYtymh6+wOEEJx88smq53/44Ycs5sZZXnnlFUiS+grFv/71r4Z3+bLCxRdfDLdbWZQniiKWLFmSsbQ7M6tWrcL/Z+/M4+Qo6v7/qe4598puNpuDXCRBCOG+L0EgIEcIEDQCggcqPPrTKOCF4oGIBz4qyIOCIhANCoKQEELAAFEOBQyXQAICARJykWs3e83O0V2/P2Zmt6enu6r6mt1Nvm9eebEzXV1VXVVdVd1Tn0/NmzdPGu66667DxIkTa5AjgiCI2sA5N1Bch+PEASEmJYprsAb2lwTHanHtL3Mu34ZxF68jImSGg5FJEIF1eQd2vyKbsgGDVlrqKfN7GNMpX00cmzwJpmlKDVrGNY5TyqMqM3gDnr/seaz+5mq8+rVX8b9n/i80TUNcEy9GLxuZ9GQHzE5C233WI816cTfWhr5gz0e5GMcn9v8E9h67N86ccpw0/G7JBjCFRfsiWN2AQCamDawglwkw3MR7TcniovJkzHmXzElb5cLFNa3Fuk3F5O02p3NfAmMTvGpxftSmCeX4/TZTE1wqDIgXRNI576QUdM92Qxi/yNpcv5GJRABfNjKxE6R7yJlW4w1JCTMFMwvbrIqHvJuu227tYaAxDUz3XunW8a7cf1txEspFuDl1BeXy8tMHVBmZSLo4ns2BFwooZAdHquFWpkH0ydY42xtMPLqP3HjBCWaUjUzCq/gqw6oI2lSjZMpqbdvpnDgDmURlewpsoBGPAz7uV6/IDMrshLGDeNZuZBJPIRVPgXMe3ADGRtjzg/45rmwCzwFk+qTxud0ymcLAruY8S0YmYTPgLVGsAIN7NDIJnH5lDJrHhtqff4Xb5a4jujDvk1vx8AGV/bupcK+VzQ91A/jO/S3eTEwAQI/h/lfvr/q6VnMEN2R+SW79d86H0VLQZwgvFHRge4OJrY0GOupNmBpKZhA+qPGzeXm8DXsMkGF9hpE9iVUYmYB5bsduc3xW+k/G+91ykTgDw9jGse71F9G9VyjdM31xjmxcXIes6LIhDsO8j992Azwngs4JPj7rTEyfMs31+NaOdtxwx3zf8Yfpo6F679uf4xbetVBognLaWacJzSfOP+NMaII50rIHlqG3bPTmoT5kRcMZ8LennhCGmTRhAg7aex9hHF6IvLfy2V5jegyapkGDNqjGYateWSU8vu+eezl+b8+z3znDfntOFx5//dVqI5OUlkKyBpOU5CD8bKIzXWycpfAuzE4uNvD27qXXxfWdiMcxYcxYT/ETw4NdzsiEMZZijH2SMfYUgFcBfAVAK6oNTGD5zs3YJIeiAcoHOecHcM5v4px3+80b5/yvAPYpxWk3M7Fyht80CIIgCIIgCIIgCIIgCIIgCIIgiMGlubkZd955J5YsWYLp08U/jIfBihUrcNppp+H000/HO++8E3l6OzOTJ092Pfbqq+LdYoYyS5YscT3W0NCA009333UoDOrq6nDYYYe5Hn/8cfnOSDsbmzZtwllnnYVMJiMMN3v2bHz2s5+tUa4IgiBqynMu3+/PGHN2v/KO2+DTDeCNkNLwyusAelyOHRpGAqXy29/lsPs2itXsqnVEhE1hqBmZVOcnkIBBK4l1faoMygKL/gXEkhWfbQpGJvrUqVjTvgZME1/YpJZJxT9CWpfNDWfRX0JPIF4AZr1Uh1/8qRXXLxiFSx8egd3ai9dSFgv25gcEddogKdpGanUAgMa+YEtv42C4+rSrAQBNaYddJm1oyThY0tkwRBVWl+7/W9cG2onMZMdNHzaqbhSAoqA4nWXYY1Mcu20fiHd3BSOT91oL4Jyj6RD5u5F8zN+96GS+EaXozWC8/57x3UwVRAFxg4UqXqpXaNNehQpuyAT7eqng4hInApZKOvdPCuXuVnZ5wyIAl1wuh1wExy2NlpsmzJC3jvezE64qGtMABZMhO9YyUdkJHvA/RnqlvAuwPyMT+2dJ3efyMN5ZDfDBkWq43WdBDDPsfdqvTtmBp/asfG/VnTTx7FSxIYPGNfBcLlRFX8HWrxsh9VdWWiX3b5zH+42iZUYmfTbhblDjFRaL95vnRcnIbm9pyAypZBiMV81TUvFUUfTKwzPYKhO2kUnZOI5J+lJucvCM3BjILX/Wvpbnhtaz1c4As6rHABguzzTu5wdrWPZpa8yj10S5O5QNta9MyOK247vw5rhqMxyVe6M8f7vk703Yb52P5xaN4V/v/sv7eRGjScrbcClYP2Zzg23aIjIkEJ5XY/l7Y6IRgH+zWL94qR+r2QhjzPP4knN5lGZMbmTCwZEtZKVpjG0YC8YYRqRGuMYTBdY5mkoK0mbpsXxNReOToCZzuq7je//vy8Iwv1pwO7a2t1d+qbipSJjvxFTvfdPi0mmaJhbdvUgY/sy5s4XHJ4wZiw8derjr8d6eXjzywCPFPIbYHjdv24rX31ktDHPMke75AnzMGSPu332VjuUkmcE0EK55jr043l79tjD8HhPd1+dY8XtbTJ0g3ixm7Ttrq77TNC3yeo0Z7ubSkaarxaQbHHmd51jNKR96UrzuZ/qUadCdTDoj3HSJqA27jJEJY2x/xtj/AdgA4HYAR8HZpMRqXgLL97B8vxrA1wGM55x/knMe2hMT57yXc/5JAPdY8mbnyLDSIwiCIAiCIAiCIAiCIAiCIAiCIAaHWbNmYeXKlbj77rtx9NFHR57eQw89hAMPPBD33HNP5GntrIwd6777x7vvvlu7jITIjh078Mwzz7genzVrFlKpVOT5OPbYY12Pvfjii5GnP5TIZDI4++yzsW7dOmG43XffHX/4wx9qlCuCIIia8w+X71MorvkJgxNcvn+Ccx5ks3LfcM4NAE+6HD4xpGSOAeCmKvmHh3jcwu7UdUSEDy94E4JFzaYR1fkJJGAoLbL1K1AtC6XLC4hla3ZVjEy6JozFqk3i3Q8BYFprcffYsJYJ84LzbZtCDD+6pxVf+Vsz9luXxIwNCZz+n3r87tbRmL4+7mhkUiPNexUjtTR0A6jPBVt6+9GRMwY+OC3OtsGScSAezCOKpesGkrQYmcjWxLt5foxpGAPe04MJ1/wBf71hLH7zhzbMv2UMfn9LG6a9H8PkrWIhxMYRBfQlOLjJ0fD//kcYduX4HDir3AVbFSfTkih1AGEI6jiAvEQUELaRSUNWXiiyPKki6w/LglGZAJ4lE47iCpVcusWcN6vFu26YbGBHcTe4RUnD29sFKfsjLHMZJxhjYDG5IZEda5mU+28rTiK0WnXpZbGNn77EXtZKRiavveY5nbBwu0Y/117Gfu9m4xxXz2nH5y/ajJ+e0Y4fz96OC77wPpYc5ObLOADv6gpVsW03FYpC3Nxq6ki6PkYBZ00/q9+wIJUXX1smUZnfIPUCAEgmlOYTQWnu9VawyYBGJrkYr+o20/GiMRsHl5pJecUM2egsrpfmQrpssAC4xMy6FMwZDSgYRQOTMIxMMnF61LZib8VOY5uX8z2nb6t43WP1lM+Xid5F82OVubNmAjNXpjHn+QYPuRuAaTGsbq8Wlg+2uYesvN3GGz9GJoN65/FojCuiiHNc07j+v4OaTXjByzNkvxEtiqYmXsd5t3mmxhSF87LnLWgY1VA0Jh3dMLqmZjSy5ycrDJA7mTBv5as6dwg8NwMw56QP4+AZ+7oe7+rpwf/e9rvKLxmkZjWlYKHAmbqRiWEOjH+PPfYYNq7f6Bp292m7Y/+DD5DGecEZZwmPL7pLbJbih5dflb8PPfrwkI1Mhjh18brITTkqsA3u7615Txh86qRJzgdsefZ7106bJDZK6ersQmdHZ8V3Oov+2Svos5Rf4nq8Yhxzwqupbnle1NHViWX/dPv5s8gHD3Hf/IgY3nh/wziMYIzVATgfwCUY2JXEehdb+yi378vHCgAWA7iZc/5oyFl14ssAzkaxjsr5KRut7FGD9AmCIAiCIAiCIAiCIAiCIAiCIIiI0TQNc+fOxdy5c7Fy5UrceeeduO+++/BaRAvdOzs7ce6552Lt2rX46le/GkkaQ5lsNos1a9Zgy5Yt2Lp1K3p7e5HL5VAoFJQW6qxYscL12KZNm8LMas14/vnnhbsIHnrooa7HwmTyZPdFIq+++mpN8jAUMAwD5513Hp599llhuFQqhXvuuQctLS01yhlBEETNeQwD62TszAIg3rZLAmNsXwBug8+yIHGHwCMATnX4fnfG2AzOuXy1rZhZLt+bKJa7KrtyHREhMtSMTDY3ORiZBBAwMK14i/gV2JQXBpcXEDNdvIh5jMTIpDtp4s+vLFBKe8aYktlGWOumDWdp1mnLduDAtdXC4ITB8P1FI3HhJZsBAJn8gMAzZJ2pMiP1ejRkg6ulRtZbdj3WFIxMEnGwlI+dza1x1A0YmcS0gaXDMtGu2y7k40eMx7YLL8Lop3bA2kgmbY/jF38eVbHbphNrRhWFtho0xA88GFvG5tG2ydn85NF9iiY2fsQiTkKpKAVvVuMUHqDvkIkC4oaawEkVlXbtVajghpO5TCUMpmEiLhkeCnHd2chEpdxdghTMAQG4ip5LKoTjGrhpgmkazK2b5RF6JCxzGSc0pvkyRrDWr1XsJqJWQrBsvJg3P6Jo70YmBRRWi3f6jhK3awxS1m731tujC3h79MC9I+v/AYB3d/abfoSBvX8qRDBR4Jzjt3N+i4v+ehG4rf6nN0/Hj2f9GPe+di8AIJ3zaGQScFxisbjSfCIoLT3e0oiHYWRio2xkAu5NDK2CX+NBN8pGJkzSl3IO8GxWGp/bLcMYw5r2NZg2ahrMfPBnq+0NJsa37zL7ZUspd32MMZimqTy29ROwO6o2MvHWULVSeNn0SNQlq/RRe26KY96yEfKAbmmAo6vQBc1m/DNIj339tBgxocmD27NUzo9ScxCF8bzoZDLk4eBIxpIY3zge67vWw2AcWo0Kzsu0xfqMwhjzNM4XdC7s72XPgE7PR3ZG1o3s/zsVT6E+Vo/eQq/gjPCofF6WBFZyqGSe5reqRiZhmeJdPe9SnPGFz7ke/909d2LehZ/ChDHljVSYUl8QpqmpqpFNwSwggaLB7u233y4Me8ZHz1CK8+yTPoyv/OSH6Mk4t7/nn3ke7737HqaPdTGycEB2Na+ukq/BOXCfGcLjXp+phmL3au0rGlONyKHLexw+L8xafKZpYsP6DcLw49pGO35vT97v4+W4tjYwxoRrhdatXYcZzQPtQo/w2WvKlhg0Hq55sRNu0Sf0hNTIxIthW94yrt123z3o7RMbOJ7xIZe9DRTGN2Jos1MamTDGDgFwMYomJg1QMy9xO/YegN8D+D3n3N0uLGQ45+8zxh4BcDqq+wZajUYQBEEQBEEQBEEQBEEQBEEQBLGTsc8+++Caa67BNddcgzVr1uCRRx7Bk08+iaeffhpvvfWW8o44Mjjn+NrXvob6+np8/vOfDyXOocpLL72EZcuW4ZlnnsGLL76ItWvXwjSj2dcsl8uhq6sLjY2NkcQfFS+++KLw+IwZ4sU6YdHa2up6bMuWLchms0gmgwn3hgOXXHIJFi9eLAyjaRoWLFhQM5MZgiCIwYBzvpUx9iSA4xwOn8cYu4JzHmRQv8AtaQALA8QbBgsB/MLl2AUArvQbMWNMB3Cuy+F/cM63q8a1i9cRESZDyMikM2WiN1n93BVIYF1aZOs3jrJQun8BsSaOKJ0XLzRurzfw4OsPYnzjeGE4bnLMGBvuswA3nJ9p933T/ZzWbh3T3i8uDh8KRiatWh0aM8EXTjPrs00hrxA+AcQTwdJsGNgd3bogXSbaddu9fc91fdjx1AY4qWzqchrqcuJ43x1VvO7yLqZrf3we+r52FyZurzQzeeDAHjx4oH8jE8NBqCQ30vCPVfDkNxXOgJxEYJUohCtqqO9TMTIJJ0FZPXIO6ND7hbduZF10I0p6N5fvrUYmMjjjKKhoV7JZIJ2GuW2bctyqhFUnTmjQgJh3mYHVUMJE9VTQ6f1miH4WruQs4hlfRiYx8Wc7PFdAQbKzdJS43T5Bylq1D1YRb/POzlD7MLsoNSzxaQUcOHbasXj2i8/i6keuxssbX0ZjshFz9p2Di464CEDxvjFhSudjmXjlvRE4v/E4oEdvPNHS4y2NpHqX6ohTW0rqxTkUAwvdsCbsdhPTSxcgqxsT4Jk+aXwio643Nr+BaaOmgQc0MumLm+hNRPP7yXDFWuwFswCDeyvjoEOcvZnHPFZPufXJbhdRH69yr319aTCJ23MbX64yMQGCGQOGASuY4IJadHuW8jpHC8vULcg4r2pmENZ5fmCcgTGGkfUjEdfjMLe9F74LlQteytb6vM3APJ0reg6UCctVaUxW/o49tXUq1ravxY7cjlDNMp1Qen6yIvfA9HT/iKZoGjS0pFuQLWSRZDmFxOXMPPIYHHPE4fjns/92PN6XzeLHv/01fvO9Hxa/KL1DdHMOLxNW18ihfg+bpdf8HR0dWLjQ/dU8YwxnfOQMpQGwPl2Hs048CX9+0P138fv/cj+mXzpPKY/FDIgPv/5fwUtIAPFYHNMmTQYE81jPY1PE3ZSfvt/anzQlm7AVYjORqIbj9u3tyOXELxDHto5SisvvGJiIJ9DS3Izt7e2uYba8v6Xis9UgOmy8mtaFTSKWkK6n8jLPKZuedHZ24br5twrDjmsbjQ8ddoRy3MTwYqcxMmGMNaL4A/bFAA4sf20J4sXAhAN4GMDNAJYE/FE9CM+haGRiZ3itfiQIgiAIgiAIgiAIgiAIgiAIgiA8MXnyZHzuc5/D5z5X3KVnx44deOGFF/D888/jhRdewAsvvIA33ngjkLnJl770JRxwwAE46qijwsr2kGDjxo245ZZbcNttt2HNmjU1TTuTyQw7I5PXX39dePyFF17Ahg3ixSthsGrVKuHxDRs2YMqUKZHnYzD56le/ittuu00a7qabbsJHP/rRGuSIIAhi0FkAZ5OMiQDmALjXT6SMsTQAt60Qn+Ccr/UTb1hwzt9hjP0TwDEOhy9mjP2Qcy5XOTkzB8AEl2MLfMS3S9YRES58CBmZbGp2XqUeSGBdMh7xG0dZ5FEWk7CAGz5uazDxft8WZAri3Q9jiCERC2acYYcbzsswJ28WGxae9WI9AKCvMND1DZaerZkl0KBg+CCDpQeumWfEdQEUjU9YQGNHVlff/7d1wb1sd2jdZfXstIUrEESN8fbo4v2W0IrtbMzeB+Hiz/wfPvR6GntuiqOgAY9Pz+DNcQNGL247nosoOFxflFq3CpMUn+lwAHnJ7qZxI2Qjk6w8szJzFVWkO5JzhqSedG17Zfo0lwABdrAucA9GJlAT9vK+DFg6Db49CiOT0KPsh2kMzIeRidU8yFRcfl8LnY51x2A/6dmFOjLhDs8XUFj/vveEQsLtGoOUtbqRify+MDvDFcra+/qojEwAoLWhFb+a8yvHIBorGpmkcuJr60tUlpEZsENnsTiYHmGHUKI+pyFekBv5lEkWgtWxU1tKxVMASkYmIV9y0HqwE9eK5mxMsmM75wDv8/uIX2T1ttXFuPImBqwrvNNeZ9bEXGo4wSwFUjAKMEyPRiYBmxWzVYhXcWt5uiSbsohE2WHfa048vPqx6BPxgWwq4zbecFacK8QVHzwG27BluKBb+tPGVCNyTIdZAyMVr/1ihZEJY57mXyJDOI1pYCxYJ83BUZ+or/iOMYbJIyfD5CZ6c71gjCH2/tpIStb6/CSNn8sDMebNKMZufmePa7cRuwEAjOx65Du71CMWcOXll+H0c893Pf7HxQtx2ac+gw9MngKw0vs/xoXXHpqXGysZTSqUYXn8u/POO9EnmLccetSh2G3ibspZuOCMs4RGJovvXoyvf/mLyvHJ2LBxo/D41IkTkdBjQiMTr89UQ7GHt/ZTmqYydwxxgmgpkB3bd0iDt4103wwnLNraRgmNTDraOyo+x7RY5AY1g4XOdOm1yd5ZWsmWwt5ww03Y2uFexgDwxY9/QrE9EsORYW9kwhg7EkXzko8BqIN/8xIA2AzgdgC/5Zy/G25OfbHZ8nfZYKX8N0EQBEEQBEEQBEEQBEEQBEEQBLGLMGLECJxwwgk44YQT+r/btm0bHn/8cTz++ONYtGgR1q71puc0DAOf/OQnsXLlSiQS4QrUBoPu7m784Ac/wI033ihcQBMl2Wx2UNINwnvviXeH/e53v1ujnIjp7Owc7CxEytVXX41f/vKX0nDXXnstLrnkkhrkiCAIYkhwF4CfAXDa1vUHjLFFnHvcCrfIpQDctnG7yUd8UfAbOBuZtKGY/596jZAxFgNwlcvhbQDu9hondu06IkKCF4bOjt/vNzk310AC65LIxK+gtiyULi/iZbId3SVsrzegaRq6zW5huLZ028CHsHaHNvwt3R+3o7jMtS8/8JynDZLCUs8ZaMgET5ulLEYmPb3S8FoqCZZKBUuzvqH/b6uRiSERzTmVNeNA+l9bwOFf1bh6dNGgJBUrXteklkkwdGD5Phks38fZ3MXPvehkNBGJwN0hbr99R1n4KCJeCHchcWNWXihehAoiZG0OYGiINUiNTHpZ+ONHpfGGuIQ5UxP28kwv0DIS5rbtwTLngIphhF80pgE+jEyshhJOu3s7fleDLj1bYWTivdy8Gpkgb6CwuUMYhOkGuBGNOtytTIOUteq5Ku2SC0RifrDXhxGaunMAbsrjjGkxFFBAOi8urEzcbmQSKGtAIgHUwMgEAFp6dGweofaIl5CUg4ysrS1xzgfmxGCh17PUaMsjcb1oZALZ/J0DXOF3BdH8d2178bchXghWJh11JgmVbFjLI2/mvRuZBEzf3szdfNxc0+fl/4tzIuqHVIzbgvLcxhcdvx9sYx0uKzdB2eRi6kYm1vJ3mitFDQdXNjPwGLH8uIc0rc+xQPn9SPTmuF7njhUGAaW/OVMzNhI9c4VhAsfAXM1QNKahIVl8bxDVr90Vz+JM3ACKIlpJI2HMU/0oGzPp4cmtDzlgf5xwygn4+9/+7njcMAz84Dc34I5rr+t/hyhD1qer4qVlG6VX/Lfffrsw3Oy5swGot9fjDz8S48eMxfr3Nzke37RhE5566hmct5+Tl3o1smvatElsNjmubbT0nWMtjDijRrc5ZcumwdZLjhlFw0K/5WA9bUeH2MhE0zQ01NU5HnOqa5P5M/ppbGoSHu9sr1ynYh+PhiWC+pOZieR19XEtF+f4z/P/wfzb/yQMN6q5BZfMdTd9Uu0fiaHLsL1rGGMzAVwHYJ/yV5bDXg1MngBwM4B7Oed5DB2G30pHgiAIgiAIgiAIgiAIgiAIIhSaJ8Zw0aKxg50NgvBM88Rh+/PTsKO1tRXnnHMOzjnnHFx//fV48skn8bvf/Q533nknTFNtNeNbb72Fm266CV/5ylcizm20PPPMM/j4xz+Od955Z1DzYRhDZzd5VTZs2DDYWVAio7BL+XDl+uuvx/e//31puCuvvBLf+MY3apAjgiCIoQHnvJsx9msA33E4vA+AbwG4xkucjLG9AFzpcng1gL96ymQxzqsAuHXkF3HO53uNE0VTkR8B2N3h2HcYYws55//1GOcVGFhnZecGzrlcSW9juNQRMcQpDJ059CYXUWaQ3dnLxiNc877Y1mC8X1BZFr8w3bofmnfa69WeFT/Q+gHfabji08ikXPxZY2A5pVcBX1jwXBZNvcFVriydHvig0DZYU0NRpBwkzfqBXZetO1nLRLtOZhIz1sTATf+C6b6YifUji9vbpmPFspjYPBGcc+EO0360Ok6mJUHuaWl6FSJE4P21fgAAIABJREFU/+QlxRs3mJJgQJX6rLxwZXlSRUUo3pJsgm6K3wNkXIxMVIrFTVRlWP3XVISGMjMLALy3eB1mh9jUwg8q6ftFY5ovYwQ/Ymce4T1Zxmqu4acvqTYyEYfneQNGp9hoOVbHkQ9no/cq3Pq5IP2fqlBNxcgk7PuhUGVkEmr0RRSKLqbFABNI5yRGJgmbkUnQ/MbjgFYbI5M6ybVZSSgK+N2oakuWj4wxdTGyImGLUgeMTGQdBsD75LIhXfDYtLFrYzGqgEYm7fUGWnpq05aGC9ZhLWfkbKZnCgQc4uzDasxjQy2LsWXDs2hstPexUbC2ex0Qr/6+9pYe3rB3cwUjj47e4n7mRlZDU0atg8/rwNau4vNRzAASGX+/tXeCo92HsQcD821kwsCwLuksMt/StQ4m3O8ZBubJuKU+Xo91FqO9Qt8GmJnoJaAFbaB+lMLnegCeAwBs7tyErlwnUn0xqVEjALwfN9Dn8u5kQzyFzd1b0JXzv/FDjMWwrr3e8djoxvFIxJKOx8LA1Cr7GqWal/VdGvPUT4ien6zPiCwW7lg471vz8Pgjj7uu37jvkb/hpYtW4bBxTr7m1QyGnN80TaxcuRIrVqxwDZNKpXDyGSf3f1Z5g6lpGs477Qz8Yv7vXcPce88iZSMTEaZpYvPmrcIwY1pHSd85en2eHGxTLifsRhy6Qqtq6GNo6dGRCmhWaKVzh7g/a6irc39P6PA1Z9xXgTdJjEzshiv98/xhjNu9yRiDJrW2KfaniYK8rLdne/Gdr3xHun7tqi9disZ65/GpnC9ieDOcV5J+EMC+ls9ezUs6ACwAcDPn/LXws0cQBEEQBEEQBEEQBEEQBEEQ/oklGUbtMfx//CIIojYwxnDcccfhuOOOw5VXXonLL78cDz/8sNK51113Hb70pS9Br9GujWGzePFinHvuuejrE4sDCGe6uiJSTIRMVmFXyuHILbfcgssuu0wa7stf/jKuucaTDpwgCBcYY8tcDnEAjwD4Ned853VPGn78HMDFAMY4HLuKMbaKc36fSkSMsdEAFgFwWw33Tc75kHBU4JwXGGPfAnCnw+F6APczxo7jnG9WiY8xdg6Aq1wOb0BxMym/7JJ1RIQHNwbJkcKB90c4C1MCLTgvLbL1I9K2ijP7d/QNuOPw9ga1cw+beFj/32GtE+amTxkaYzBNE9nCwDNBDTTvjvBcDo19IeyCnEr1/50840zgq7cA3H2ReP1nPlMUKQfBshjcKliQaSGdRI8nr3QWqqnybluhX7TdkCju+BzTY+AmL5n1OONHD204XEBgwbgoPaswymdT4YwLd+IGojAyURMphIGK/nZMchQ0/p4wTJ+Lukipz3a5FM7Vr5GzoqhRSrb4vsrcId5p2A+5CIXFOtPBYt5lBoZl7HIa+5zKuBbCrqzlnvJjVpCP2T+Ly54XDBhdeYikGrERSeS7opnaupUpDzCoq5qgKBmZdIb7PtJuaOHU99eCuBYHM4B0Xtw59MUr+69g+eVgmlaaI0ZPyouRiYKwTYS9LVnF7ho0X8ZJIsyQ4ysLHGViaM6Lc0xpfILOa0vPFgCAGbBL6agzMaJ3eP5OVAvyRh4FQ93MAAguNrd3vSpGCFbKzVrWhYvGRqX5TkB60Qc4iGaHovjbit04q6N3M+Y/ITetJ4ihyI/OuRMTWqYWPwTz0HUk7HEbKPZdXub2ysZMsXDXae2x1x6YNWcWHrj3AcfjnHN8//+ux9ITjwFjRYMf0WWFVZQcxWc2N6NPKwY3cNtttwnDnHDaCahvKL57Yv2NSB73hbPPFhqZPLJsOTq+3onmRrHZBCAeN/oyfSgUxON4a3MLZM0kSnNcr/jNid3IJMF0QGA8lc4xpHPh2BBYq0i2/qPO8v5UBb/lUV/nbqABVOczpg9nSwY5uoJJpqqRyXeuuAprVq8Rhjl03/1x0ZyPKuePGJ7U5o1FtHAM9DMMlf2Z07HnAHwOwHjO+VeGkYnJ0BnlCIIgCIIgCIIgCIIgCIIgCIIgiCHL3nvvjaVLl+InP/mJ0s4Ua9aswfLly2uQs/B58skn8bGPfYxMTAKQyQwPrb4XMdFw4c9//jM+//nPS8N95jOfwfXXX1+DHBHELsNJAGY6/DsJwLUA3maMzWOMJQYvi0QZzvkOAF91OawD+Atj7BuMMeHKOsbYEQCeBjDdJchDnPN7/ec0fDjnd6ForuPEXgCeLl2XK4wxnTH2DQB/QbG8nLiMc+5bSbgr1xERDrwwlIxMnJV/gUwPtOIzmSkwZ3DDahpQNjIRmTyosL1BrbxP3utkeSCPcIddhblkN8ZiIKAr24WsMbBofJD0yUA+r7yrtghWN2AEorWMRKrNPc5EswF92h5gCf87IzNmFkXOJSqNTMSFqdtUQfECcNwbad95AYDVowd2zW5MNvb/Ldvx04/A2C5uB6IVuFvFjP5TYVKDikRBRWqkToPEyMQErxJq+kWlHndLt0GXKFd3QC76dsMtZuuO8bJccqgJ4Xhv8b2LuSN8I9l8hG1Z0zRfAj6rQFG1lfoxFvFKLj6QLz+iaLuRj8zYhxdMFCTjRWxUo/B4ENzK1I+x2sC5auFUjEx4yMY+dmFsFKJ7lVeTCT2BpMIO5ZlEZWR+jLr6KdUpq5FJedrDDuwqZSEia29Llo8a0xzH+CCE3Rcl9NJrJanJDAPPysc0XWBS0tHXAQAIavvZUW8G6id2RqzFkTfyMDwWshbQicM+1Hs1MinnXzZlED0TKAv/A8AiNGOKMveDZZxFEMMR+3xN1j0yqyLYBaPC5kwlD4L0rGsq4uGbFHzpa/8PCYFB7bJ/PYknnnlGKa7Qhmqm/syWy+dwxx13CMPM/ujsirhVX1pMnzoNB++9j+vxbDaLux96UC0yAdk++aYpqWQCmmRS6PU9caQjhc9pht2II8FqaDFgnVvl8u7hAOgCwxCncvU77YpLzKPt+UzoifCcv4cYDGzAUF2Aiq/NjXffgYcWPSQMk0om8furf1J8B0Xs1OwsNWwd3jiqDUx6AdwK4FDO+eGc89uG2e45DJ6GcIIgCIIgCIIgCIIgCIIgCIIgCGJXhjGGK664Aj/84Q+Vwi9evDjiHIVPe3s7zj//fOlOLWVaWlpw+umn49vf/jZuvfVWPPLII3j55Zexbt06tLe3o6+vuAsP59z13+233x7xVdWefF68QISIhoULF+JTn/oUTIlw87zzzsMtt9yiZEpEEIRnmMu/MQCuB/AWY+ximfkCET2c8z8B+IPL4RiKBjQrGWNfZYwdzBgbyRhrZIxNZYydyxhbhKJBxlSXODYA+HToGQ+HTwLY5HJsKopmJgsZYx9jjE0pXfdIxtghjLGvAViFYvm4LSv8Pef87qCZ3MXriAgIN4aBkUmAqVh5Hsd9zOcKjkYmwZZ8bq+XC++4wbHn6D0DpeMYr1NVKz6PdGQ6kCsMCDyDCgL9wrM5jOgLwcgkXbmjaNsN3wPTquuGaSbafv614gePu5BWxlO5vN+6s6bMnEKz1dvhq1NoyAWbHq0eM1Dvzanm/r9jTLwK3k+1O+36HKVpgmFRFPkVq3BwqUlCwmBgId4H9X3iuPIxhLaCWUWwv3tqtDTMulyH4/cq5R6G8IszRSOTvuJydd7VIwzXnfQ+HsraSRA0pgE+jBGsfQrTWNV7DyepYS0kwFZzID99gL2sZWZDhe48uEThFhvX6j0jirgbmfi/kVXLTVY2APD+Lx/2nQ8n7IYWkQjLFaJM6kmkc96NTIKY5vWnprBrdhik8uqZVdmhW0ReYIqjM91xjA9CIEMZB+J6URDJYpL5DYeSkUlMcBN257qLcQWc5HTUmb4FoDsrFUYmBe9GJkEHOft8T9QOnCh3ybK5j6jewzYN8pL+ULcJCWR6ShC7GFH0JQbjynNUQ+PCvs5q6MF8GDrKmDBpAi46Z64wzJXX/EjJWGQwPJSWPbQMmzdvdj0+avQoHPWho3zH//EzzhIe/+Pihb7jLqNkZJJISst3Z5grxTVbGx+kdQiFfEF4PObxnURkRia299d6jZ69BguV65O9j1r+zL/wrf+9VhrPNV/+Kvaa4vazILEzEb5F2OBhbf3lbmclgJsBLOCcd9Y+S4F5EsDFg50JgiAIgiAIgiAIgiAIgiAIgiAIYnhy5ZVXYvny5Vi+fLkw3D//+c8a5Sg8vve972H9+vXCMLFYDBdccAE++9nP4phjjgm8kwdX2XpzmJFM+t/Vm/DH0qVLcd5556FQEC/OOfvss7FgwQLagYYgokPUqTMAE1Bcc/JNxtgPANzBd8aBYPjwBQCTAJzgcnwvAD/3Ee8OAGdyzt1X4Q4inPNNjLGzADwCoMkhCANwdumfVx4DMC9A9uzsknVEhMAQMjLZ5GpkEqD710pGJpr3ldR5y5rhfiOTWLCF0tvr5eVdH6uv/CKstexOSefkok0A2JHZgZw5EHawNornuRyawjAyqa8s48TMkzH+tgy2f/869K7NAZyhbmIMLVd8Eamzzimek077T9CmwohpA0uHZeI7u4Bj5qoA+Sjx1ugBAcDIupH9fyf1JArc/TnJjzbXyahFZt4ShIq4/d47rGQcIiHuUUcroj4nLpQwDTNUBJ9TFIxMNhacl4WrCFfcglSYbEgi4ky8o3d/uGwfAMDsFhuZtNebaMh6a5xhi/itaNDAfOxEbjd36cp2YUR6hPCcKM2FymRjViMT7+WW18Wf7RS65XUZm7gbgNWe86ICd7lGM0CbURVrq+zMHDb2PiqSfl7FyCSWRCGvYGQStxmZBJnYlM8NOEdURcWopUxQI5OszcjEKuzVmY6CHuJAiPANcPoFojIBJgcg2Y0eAGKCaXyf0QdumlIDJRkddUZN+uThhLU4CrwAw/TW7oIWp71Z2k0GpemX5jMyI0hRvXNWNAvQI1Ruu919Q10sbgzWgylBDEPszy6yu4cB0k7AkAfpRzZ/r0BiQuYHxoErPvd5LLh/IXpLZpd2nl6xAn9f9ndcuN9xwgIKq+vxEs1f/vQX4fHTzzkdumXOU5y3qadw7mln4FvX/Qx5l9/On1/5Cla+9Qb22UNsvCxKsWCIf5cH1IwzvM6VohzL/DaFRCxR8bmWw601LdmGL3qNjExk6ZiW3y929p+JGRh0hf09cgLTyTfefQcXfvNy+VqYmR/GFz/+Cc95JIYnO8uKp3LLZwDyAO4EcBznfD/O+a+HqYkJOOdvcM5vdfo32HkjCIIgCIIgCIIgCIIgCIIgCIIghgc/+tGPpGFeeeUVGEa4C3+jZOPGjfjd734nDDN16lQ899xzmD9/Po499thQzCB27NgROI6hRl1dneuxESNGgHM+JP4df/zxtSuUCHnsscfwkY98BDmJYPPUU0/FX/7yF8QiWCxHEEQ/zOUfUFyHwkufpwKYD2AVY+xjtc8mAQCc8wyA2QDC3Lr7fQCncM6fDzHO0OGc/xvAqQDCNPJ4EEVzkL6wItyV64gIBjeHzuLfvoSL6DfIau7Sc4g/I5OB/PQLN2PBnmu2N8if+yY0Tqj8IqTV7NxhbTovyEWbDEUhfN4YCBuip4I38nk0ZcI3MgGA5KwzMe65v2Pa5n9i2panMO6FfyD1sfMGAkh2BxWmZ8tyTLcYmUgUMFatUWOG4fDVKd/5AAATHO+2DSxkH1U/qv/vdExskuLnXrSbKhTjia4BWcXz3KekhAPIKTTyuBGe1KQ+K44rTCMTFcHntESbNMxW09kYJEhOmYddiDmc21cVfSUjkx5nsVqZnqSpVO9WChG+MmAaA3zsRG43d+nsq1zC73RfuJluhElOtwiPfNw69nsgLxDtAADnCkYm06Lbddite+ABdtpWriem1oeFiV0YG7YhBQCo6NVSsRRSCkYf9jlnoLlm6VxWo13BUwpGLWWSAY1McoJL0jVdyUzKCwE9QKooz7eYRBjJOQPPyufEumDcN2AAmQyCTtzb680hbxxRa6wGIHkjLxXc2glanPauV/fYYZSNT2RduKzew5wLOjJM212UBokEsbNh2IdD2X3P5c92BuPK45bs2c36LMg0DSzQk6UzY0e1SUX7v/zxL2E6vUCzwMIarBXn99u2bsPfH/m7MMyZc88MlJVRLS2YedyxwjB/vH+hQkzu15RIJFyPlcnm5YbLUb5TqhUJ3VYWAZ4TgyAzEBEZYTjdBn5rpiBZJxWzmLyy4TppseFaVqz4rCXDbW64cctmnPnFi9HeKV5X9YHJu+O3V8nXsRE7DzvDtLm8kOQdAN8EMJ5zfgHn/KnBzRZBEARBEARBEARBEARBEARBEARBDD5HHnkkpkyZIgxTKBSwYcOGGuUoOHfccYfQCGLKlClYsWIFDjjggFDTbW9vDzW+oUBra6vrsR07duyU1zxYPPXUUzjzzDPR1yfWjB9//PG47777lBZUEQQRCW6GJnsBuJMx9hJjLNiqTMIXnPMeALMAfB9ANmB0jwI4hHP+bOCM1QDO+dMADgGwPGBUWQDfRdHEpDdwxmzsynVE+IcbQ3/xdxBxKSsbKvowMrGKcrWSE4VMCCkip3N0peTlve/YfX2nIcJRh5GXizaBohDeamQyWJoBnsuhqS/4gnUmMJR0PUfTAOZxC/YS9vXnMW1gAb5MfKdZboBj/5tGIqB5xvqRhQoB9+iG0f1/NyQbhOf6EYs4iZyjFBxaxfN+tUWcqYlFkx7E5DIasuJCCVO8qiIU301vlIbZxp2NTFQ0Ja5Nicl3BB6AK+3qzctGJr3idwGZBEdf3Fs5V4kBQ0SDBubDXNUuELQbmTipZWohmre2Oz/jut24JPA9wUzEpuweLA4BbmUapKy9lFtWYvQSNvZ7MZJ+XuGS0rE00nl54pl4ZT8TJL/9msNYbYxM0gpGLWUS8k3vheRsfaJVNBjTYqEb1gQylHEgrpXMoGR1wxm4wpw4JhiemMbQs32Th9w501Fnhl4Owx5LM8sbeRjc44YAAZupvZnHPCZfPl92u8jqPcr5sykopFDmCBG26bANkAhiZ8ZuPCfrHlVuXQNc+T2BzACtypwg5L6jHN3ln/4sWppGuIb776r/4p6HHhTHFdIUSDWaJX9dIjSU2HPGnthzxp6B8zP3LPHPbnctfQB52ZxJUG+plNyYN5uTz8m8zpUifTLy2U6rjExqiLX9xhNi81SZwYgdv/MGWbuKW82ly0aSw33O7JJ/BqZk8lvQq9+LdHR14qwvXoI1G9YLzx09shULb7gZTQ3i98CSrBLDjOE+bTYA3A/gVM75Hpzz/+WcbxvsTBEEQRAEQRAEQRAEQRAEQRAEQRDEUGLmzJnSMFu2bKlBTsLh/vvvdz3GGMOCBQswcuTI0NPdvn176HEONpMmTRIef/vtt2uUk52bf//73zj99NPR2yvWjB911FF44IEHkE6LdyInCCIUuMu/Mm6GJvsDWMgYe5Yx9uHaZZcAAM65yTm/GsC+AP4A72YZ/wbwEc75yZxz8Wq6IQbnfB3nfCaAjwJY4fH0LIrltQ/n/BrOJds6BmBXriPCJ8PAyCSQeKpsYKJ5X6qZt+jHtdL5LO5fpNpebyit/D12auUOqKEtFnYoSF5QMzLpznWjYA6IJkLbfdYjPJdHQ1/wZbesXm2hdtV5fhPUK8+sMDKRRKpbRoyZK4M/p6weXSl+Gds0tv/vEUl3MQ/gTyjoJHKOUnBoFXn6NjJB5f3vRqIQ3n1Ql5MYmXj3s3BFRfSj9cmnD3aBexkeQCbEGENvvvzcLs4oZ9ViPMdw2eK18F7xzs6ZhImNzd5U/1yPri/UNA3wYZ5lFwh29XVVfHaqn1p06VpsIBE/6dmNMlRMbETEkiYQoYGt2zUG2T3ci2AvV2MjE7uBjsq96RmFKOsSdUpGH5lEZWRmoPyWXQpqY2SSUjXR4kBKphiWkLPVq93IpBDyJQe5P5xIxEr3uC4bRBl4Tt7/64KbkDGG99a/4SF3zrTXm+CD5Rg4RLHennkzD9Pj65SgQ5y9OnSPg1g5vOwsWb2HaWpXnbbgWLTy70CQ6Q9BeMPruK0yHBngynN7z/1YSO8N7NlrbmzCZZ/6rPCca37zf0JjhVp3P4vuWiQ8Pnvu7KrvVIwQ7Hz4hOPR1Nzkenzz9m14+KknhHGIajmZSkrz0NPrYphqTcPrpUU4t/IzTnLw/vfM/QzSmBaTmKdKjWts+J3HSo1MLIYrVaZHOykqbWtH3cC8uCfTi7O/9D945c3/Cs8Z0dCI+3/9O0ybNDlwHonhxXA2MnkAwGTO+RzO+bLBzgxBEARBEARBEARBEARBEARBEARBDFUmT5b/EJzJZGqQk+Bks1msWOGu3T366KNxzDHHRJL2zmjqMWXKFOHxN998s0Y52Xl58cUXccopp6Crq0sY7uCDD8ZDDz2EBsXdZwiCiAy7sYnd0ASlz4cBWFrz3BEAAM75W5zzTwMYD+CTAOajaO6xBUXjjAKAHQDeQHGTpCsA7M85P4Jzfl/IebmKc85c/s0PM61Sevdyzg9H0VTnWyhe3xsoXm8BxevfgmJ53A7gEwDGc84/zTlfHXZ+BPkcMnVEDG24OTSESZsb3cWDgcSlpYXhfsTmVpGFxkpLPWU7ugvYXi8X3XHOceIHTqz8MqT12dxppb/CgnTGi0J4q5FJhDo6MYUC6rNhGJnU+zvRZ1tktvYX1wYW4Mvad/lwOsuw3zq56EPG6jGVdT6uaVz/3y3pFuG5fsSCjkYmEYpIrOkFScUu3nYiTCOThCExMgnxpnOqEzu8V/6OSpJlIaKS6+jtUIqDo9o8wTFcycjEzIiNTHoTHC9N9ub/xmPRCWg0pgFx8e7IdgzGqwq3Kyt+FwLURgicig8IpPz0AfZ7IOg9EWvQARadjCOKMvUi2MvX3Mik8nOQ/sENlSuqi6sZmfTZjJiC1FdZI8pi3u5Xv6gamcS9bZ7uSNZWTlZBbNHIJNx2FrbRWaxkYMIU5u88J58TxyRlum3LOqV8uWEwjq60SeYMNqzFUTAKMLi3xh102qnZOl/djy0tlz9GyPr4sI2DVNMeJP9KJVTmtARBDGA3mpPdQSoGtga48rglmzfYjTf8GHE4UkrWOh588fwLMXbUKNdT3n7vPcxfdG846QtQ6WNfefEVrP6v+08Kuq5j1jmzQslPPJnAKWeeIgzzx8ULfcefTCWRrhMb9G5W2NTG61xpqI0WzvdW7QZca0p19XXCsF0CYxmncvVT1pwBnZ2dwjB1dQP51CJ8jh8K9Pd9CoXZXm+iK20im8vh3Mvn4dmXXxKGT6dSuPeGm3Dg9Bkh5JQYboTokV1bOOcvDHYeCIIgCIIgCIIgCIIgCIIgCIIgCGI40NbWJg2j+9hldTBYvXo1cjl38cfcuXMjSZdzjqeffjqSuAeTgw46SHj8kUcewXnnnVej3Ox8rFy5Eh/+8IfR0SEWQu23335YtmwZRowQ70BOEEQobID7EqzRAKzqH+4Q1mpmMoSX0+8acM63AVhQ+rdLwTl/BcArg50PGbtyHRFqcGNoLOe+45hu12OBxHylxb/cvtOlAk5GJipCSDfaG+SiO83U0JCMxliPOxQkz8t3nweKQniraHCwNorn+QLqssGfnVlDo7/zmL89yZnN7KAsrAXk7bu8i/uE9nCWG68eXSnUndA8of/vUfXuQh7An6lQweHWi0Lg7hR3EOGliglAMkQjExlhGpmo9Kk80ysNY7h0BErlLricrmwXuKlg/MSc21dVuL6SkUlW3AdnEhxLDurFR//d0H/fyWCS3YuDoEHzbIzgJHLuzlaOr069WC1Eys2JVP/fXs0KDMarzglq1KG3pMEifBfr1l8GmdN4MYDJ1tjIxN5HRdLPK1xSfaIeeYnRR07nMOzGK4HmmqX/B5gjeiGdUyvcMMy27PVq3f08rsWV+mAvhGngwbkl7wr3utknNzLRwKCZ7n1YR/v7GOd8SImOOhOcDW3jiMHA2vXljTxMhTlCxfkB07d357qPDkPjckMAWfu3GxCEiTDtIeys4zTWNNeNxqeP+0HxAwc+0DgJuXc3SOPSG5LQJ4wvfujLIPfuRl952lFnoqPOj9uNfzjn2LNtL8djb21903HuVyauxTG6YQzWd8qNmNrq2tBcV218mX/jbXDJJfckObY2Vs/FG/o0tHbLB5MdaRMdCsawZaaNnAZNK/b93X1d2Ni9ESN6NTT3itNaM0rwfoQDH2jbE1u7t6K9T2604MTk5slIxNzNSUc3jh/4EMGtV3XPSNJQmXqazFQet/KS4ZjZM6QxRGVBUZdO44qLv4BLf/JD1zA/ueUmXDj7bKRTKdcwtWDRXYuEx4887kiMGl39LoeBFevYQxFyAGfOPRP3/PEe1zAPP/U43t+2FWNaxe+P3Bg7bgzeWf2u6/H3t22VxjHs50qD62NSwYgW8bqIvmwWhUIBMcd3H07Gxf7yIduMxppPDeXOLLo+wg5ntX8XXtUnurClCfjWZVfgsWf+JQwXT8Txl1/8H4456BAfuRkavx8RwRi2RiYEQRAEQRAEQRAEQRAEQRAEQRAEQajR2ysXgNT73RG6xqxZs0Z4fMaMaHbwWLVqFdrb2yOJezA54ogjhMeXLl0Kznl4O0/tQrz55ps46aSTsHWreNHT9OnT8eijj6K1tbVGOSOIXRvO+QS3Y4yxOgAfBHAigBMAHAzAusSVVksRBEGETW01No4UNI5/faDP9XgQ7RTTSifr3pWWVkG4zoofghiZdCXlw1hrymFOGtqjAAM3TTCrqUteLtoEgN58Lwp8QNQzWJtfm+07lA0GRLB6f2Yxfh/LWKyy/ZXbEyAX9GulezQekmmG1ciEc44RqQExwOiG0cJz/dyLTjulR6mHtMbtt5lypmYckpB7E4VGLkR9vIqJBFd4j+VmVKBS7qIm0JntBBRFyrJdvQEAJTPeopGJe0H2Jky8P8LA49MzOPE18a7EZbR4dDIApjEl8b0VJ5ETly+aAAAgAElEQVRzV1YsCAJq85C1R8MocL4WjDHPwjOn6wpq7hNrG1ESR0aDWz8XZAjz0nfmamxkYu/rnfr+wCgUXmOyEdmcOFwmUd2/BMpvOTmtNkYmKYlRS5kwzLbshjjW3c/jejx0Y4WojM5UTKd4Tm1OrAuMTLra5cJbEWXzgyHsGzEoWEWjhmlUmCt6PT9o+gDgZ/gpGpmIw8i6OCezslrwkelzADwzOIlLcDINi+lxjCqbQXBg/Ni9kdvMwCUFHGtKI9YyuXhaby+yaX8Fnqo3EGuovZHJhJapjsc6sr1CI5OElsC0UXsgy+UNe+rIaahLVM+Rc/U5mBJ/1PZ6A2isLpcRuobRdncxB5IN3sp14sg9+n9T7errQp5pqEsw7Mbdx4OepIlRDmYr/XBgQstUxGP10HvSynnpP51zTG3bWzl82PJ8Q+NV/YwsfpVh3vCQS9mzm/138OLn8ErB3gt8Zs5c/GrBfLyz7j3H8Bu3bMZv7roDX/3050LLgx3Z1WX7snj4/oeFYWbPnR1efhjHAYcegMlTJ2PN287rQQqFAu588AFc+smLXOIQpzFGYmSydqPcfMqLwaNKnoLgJ+4BIw4rNZwAWoqvuaVZGryjqwujWqqNrJyy7Kc8OCDdkMZqZNLfV9SwyHoTJuqzEboyW1A1MAEA0zRx5bwr8cBDDwnD6bqO6274GU4+4oNBs0cMY2rTggmCIAiCIAiCIAiCIAiCIAiCIAiCGDQ2bJAvuhgzZoynOHWJmCGvKEjzSmdnp/D42LFjI0l3yZIlkcRbZrDKc+rUqZg61XmRIQBs2rQJzz77bCRp78y8++67mDlzJjZt2iQMN3XqVDz66KMYPVos2CMIojZwzns558s451dwzo8A0ArgTADXA/hPKRjDoO1PRhAEsfMh2zm3Fiw4pgudgl2LAy04L5l2MB9GJlaRdFm4yeJx31nJK4iKp42c5jt+JTKZys8F+XMOA9CT7YFpaSzaICksjS3hmFuyBn9GJn5X/NqNTGL6gIBKJsDQS8UeC+Fe3V5voN0iAOMmh2YxthnXNE54vp9qdxJdRiJwd4rbZzPlkO8WDQAJRTF5GKj0H6oYCqIfnnE3l+qPx60eFYqFCTr27r5uJSMTztREvTybBQCYefF19yaKx+8+olseaQk96X9MkKFBAzyOOU4mAD25norP3EGo6lUI5ocR9Y0Ylyr2MV67M8NB9Khyj4qIjWuL1HjCrUSDDJ/ejEz8p+MHe31EYUih0kobkg1I58WJZ+IO90CA/PZrbgOY3XkhLTFqKZMIwcjEbohjFdUltEToxgqh9kXWqBRMp3hOzRwjbriXa1d3sHlqR30xD1GKbYcj1naXN/MwFc3O+s8PWKD26Y7uY07OuNwQQBatknmbT9zuvYPbDsY1s66JLN2gCG7HfhhjYLpCQKvZ53C7B4MYv4JBV5wPpeMu5h0KxnAKXiVCvMyBOCo3hii/y8kkuNCAa0da7eb2IjC3YjUDGwwKPpJXGZZND0YjsvlhVdmq3LtesGU1Ho/ju5//kvCUX87/PXZ0yY0ho+LRpY+ia4d7+vUN9Tjx1BMdj/nZIKU8ZJ7xkTOE4RYsvs9z3GUm7D5ReHzD5vfR2S1+Jh/upm+O/UENr8maVPNIuZHJ+9u2OH7vdPf7m61w6XoOq+GK6rgVJoPS5iRpcs7xw2/8EA/c94A4GsZw9XVX45TTToosL8TwoMaviQiCIAiCIAiCIAiCIAiCIAiCIAiCqDWvvfaa8HhDQ4NnI4VEIiE8nrEL1EIiV9rJ1g2ZIYgfDMPAb37zm9DjtaJSnvEAokURZ599Nn75y1+6Hv/Zz36G++7zvyhoV2P9+vWYOXMm3nvPeRetMhMnTsTy5csxfvz4GuWMIAivcM47ASwp/QNjbCSA4wGcWPq316BljiAIYidBYePd0CloHDGT4b2RBdx7cBeWHix+dlER3btSFtX4eE6xisX6BQBx/887KuKzQyYcUv1liIuFeaYXrL5+4HNBsnVyid58b9HIpLzp5SC0GwAwOtQNBtxgzATT/ImIfOhAiufFK9OL6wPPljIxj1ZSksRUlHoSVo+uNK6x7wI7sVksKPFlZOIgFotC4O4Ut99mylmlkZEbiRDqRBW3/HDOPQuUVAT7vE9uZOIWj0q5i3Lcle1SGpw4K/4zGIcuECmXr8WU+DZlSkYmb48p4Lnd+3DouylpHuKJpDSMXzRN82ye5TTO2I1MnKiFaJ6lk1h00SIc85tjPKdnOvQjKveoiNjkCZWi5ZBxu0YeYAD1Um5dqdo61dnbnkgo7BuFKJtSTeiUGH30JZzMfPxmCv0mZ6xGgrqUoolWTM2XQ4jdEMcqukzEEsiEXM9hzg+4pcEwXS7ZMhWNTEQmFpmeYPPUjpKxY5B+YmfEWhx5I4+CKX9+MU2zwqwvWPqV95yfObluMunzk6ze/ZgQKGO7JM45ztrjLFw35zpwye+BKkTVolX7DBbXgYL4Hq98PvQ/KAy7u9fDpbo+cyjM2w0XQwrV8vI0d7RFWh67OAM2thgYvz1WZSy0vd5AT0oxNz6bR1yLzgBRBSdjQFm5qpi2BHpfZ0/P3sY0DUAIExoB5552Bn4x//dY+dabjse379iB6/54K6764qWRpC+rg/v/cr/w+MTdJ+LB+x50PJbQEmjZYXhykexOmehJchQM8Vi7avVbeG7lKzh0n/2qjslaxF77yH/SW7X6TRx5wEGux70+T0bZN/uJ29nIpJZOEQNpNTQ2YERDI3Z0uxvmbN62DfvsoRazn3cLO3q6peuaxk0YMF7WWe2NTMJ+ZyKKr9wXMrCKZxo71373Wtz7p3ulaX332u9i9tzZQPApHTHMISMTgiAIgiAIgiAIgiAIgiAIgiAIgtiJ6ezsxKOPPioMc8ABB3iOt7GxUZpuFKTTLrtuldi8eTNmzJgRapoLFy7E2rVrQ43Tjkp5NjU1RZL2BRdcIDQyWbhwIZ5//nkccoiDqJGoYPPmzZg5cybefvttYbhx48Zh+fLlmDx5co1yRhBEGHDOtwO4r/QPjDFvLmAEQRBEFby2OldkYxyzL9+IZIEhG+No0Buki+qDLBZmJQMTP+LSvGVdeXmROYv5X/KZV8jCyXue7PBteKulq8wJChJlf4lMPlM0MikRhT5ZhcIOubmCDBYg8343UWaxysq3iphk4ulydv3s/m5n9ZjK+o6xyvY8qWWS8Hy33dpFOIkuo9zJ1LDUb5C+Ix9TMDIpDL6RCTg8dxEq+lsVIxM38ahSuQuKtyfXAyiYLJWjyCQ4GrLuiRpbthfDSxTAvYmBm+zuI7qVjEySKXkYv2hM82zC5VQnvfle6Xk1MTJJpdDW0IanPv8UfvwFjzsBO/TbOYV7VERs6pRIjScMl7EmSP/npQ9+bbccjlwdXfu0Y7+9IjGsUmioTakmpCRGJpm4k5FJgLlBObnYEDMyCWGwtd9nFUYmegLdIV9ykHoQolA3PGcAkDfcoomFcz6zvXLjKBHt9cVxaFB2fB/CWJtFwShUPJM4wTnHt4/9Nn7y5E/ANLmBiAx7d+7HR4vxopmJCFm9q5hi+sWatmmauPzIyzHvuHnFLyI0/QqKk9GZEywRBzISM4QhfJ0yRGYTIgG0FZ3pMLh7GdkNMCtQeE414zocDSkU+zsv/aK9PKymRn1xjnfb8mju1RAvMJgM6Eqb/YaGfuJXJRWr3bzMCedHIfF1q/SfYb5StJct08O9L51qTtM0XPXFSzH3si+6nnfjnxbg/53/CYwe2RpqfmRsXLcR/37q38Iwr7/6On7wtR/UKEeVLLj/PkcjExnT95suDfPMf15yNTLhqM3za5ToNTJAdMN+b0/ebTxefuN11/BrN25QjttP3cjiZ4xhtwm79X/uL78amr8Mtfn5r370K/z51j9Lw339B1/HRz/xUQDD0GyNCJ3hO9slCIIgCIIgCIIgCIIgCIIgCIIgiCFOPq8myoqSO+64A9lsVhjmQx/6kOd429rahMdlRg5+kaW7YsWKUNPr6urCN77xjVDjdGKwyhMADj74YBx99NHCMJdffjkKirul76ps374dJ598Mv773/8Kw7W1teGxxx7DHnsobh9EEMSQhXO+ebDzQBAEMeyp8epvQ+MAA7Lx4v/3Hb2v9BwzyCrL8qJmHwIIq5FBv5FJ3P8uuq5GBCVMw8S+46rLI8x12TxjE7RLdqYuk8lnKkRQg2VkYvQEfyYKYmTid8Uvi1cahsT0gc8yAZ5WUgaFYmQyuvIdiX1X6PEjxoMLdtT2cy86ifndBP5hYBXPqwr37HDGkVMQiyYVxeRh4GaE5OcaVUSfPKNiZBJA+C841pPtAUx5gy8PX2XhtxvGlu3g2Sw4Fzdgq4Dxpck5bG6U9zepdL00jF80poHFvI05TuNMb66y3zcd5Ia1EOWwdFG8ObppNL43ZZanc2MOVadiDiZC32s6oEV34W7TqyDTLi/19Lf9etFRF+0O9lbsbS+Kfl4lxqZkE9KSvtlJrBxsrln6v16b/Y3TObXMxlVcqyRkbUYm1t3Pk7GkdG7rlUD1YMeaNYW64QW1a4kJhpy8ggmYiI66YuQkMqzE2pILvCA0Wyhz8VEX457z7sHezXtDE8xtldK3G5n4GDRLj8BCZOND2PdbRdrlPwzghtNvGDAxAYa0wYdqN8cSCvMpw9KuhphYuRbUxet8H2cJeRvhiWBjJA/gSKTZ3EgNDdjWYGJTs4HNIwxPJiaAfyOT+oTX54ZwG2LBYW4WRq8SpG7sMPvLL4+mjgopOH57xvEn4oj9D3Q9qyfTi5/ecnPIeSkiKr37774fpsJz8WBx98NL0ee0/kXSdPeasRcSknerTz7vbuDi53kq0lffPuKOaQ59Yg1NOexMHj9eePyttWscv3fq/f30CW+tcY6/TNvYNiSSif7Pg2EEE2ZfJ6M8zriNNzf94ibceuOt0njmXTEPn7jkE6HmjRjeDN1ZPUEQBEEQBEEQBEEQBEEQBEEQBEEMc/75z3/ihBNOCN1cQ5WNGzfiyiuvlIY7++yzPcc9ceJE4fFVq1Z5jlOFadOmCY8vXLgw1PS+/OUv45133gk1TicGqzzLXHHFFcLjTzzxBC699NJI8zCc6erqwqmnnoqXX35ZGG7kyJF49NFHsffee9coZwRBEARBEEMbyYbWoWMVG3GT49gpx0rPCSSwLhmYsJh34YxV6NG/SFpFBOWCTHyW1tMVuwX3E+ZadpvAkiuaJWYKlUYmNVy/XYHRFzxhFmC9O/Mpemc24ZbVQEQmwCuLJWMhOA3YjUzSsXTF55geAzcFRiY+suAkmIrSNMEqng8iVskrdBmJEETiquRjLvXi45ZQKX+ezUnDGC4r4FXKXdSH9OR6hIY6/emULl5m1mBs74S5Re5/2GsVMTLgdyd0Ss+JWXYFDhuNaUAiIQ9owck8IlPIVHw2HQb+WniasboBAWxc9zaWJhz6Xtd7QgmO2F57RyCOHMDtPgvS/3mpp+2NJq6a0471zbUxRbb3B279QyAUCqA53Sw1+uhLVN8DgfLbb5pXG0FdStFEKxaCj03Odp9ZxeAJPRF6PUc1P7AbyjmmrWhkIjKxMCRm9jLa64uVNtR2fB9srENb3sg7jmNOHDLpECz53BI0BrwX7EOr7iM+jcufn2T1Hkm/2g/HyZNOxiuXvoLZ+86uOMKGspGJYtZYY4M8TMlwrfTJX4aGIWWR9NjGsUKDxHFN41yPaU2N4jQ0jpjHuZ+dIP2i3cgkKFVmG4o0pZpCzYdXCk7TlBCaernV9CTFffO2BnnnaS9bFvLcStQPXz3vMuG5t977F6zZsD7U/ABwrQPOORbfvTj89EKko6sT9y9/tOp72YwqlU7hmIMPFYZ54rl/O5ukADAH64WkC35y42hkMojMmCbe+OWNNc7rdGIODdhPf/3W2neFx/fYszJ/g1F+NZ2fl9JyGm9u+/VtuOnnN0mjuPgrF+Pir1wcds6IYc7QndUTBEEQBEEQBEEQBEEQBEEQBEEQxE7AP/7xDxx++OGYM2dOTQ1Nuru7cf7556Ojo0MYbu+998Zhhx3mOf6xY8eiubnZ9fiDDz7oOU4VJkyYgLFjx7oef/rpp7F06dJQ0rr11lsxf/78UOKSMX36dOHxqMqzzOzZs3HCCScIw/z617/GddddF2k+rGzatAlPP/10zdLzS29vL2bNmiW9v0eMGIG//e1v2H///WuUM4IgCIIgiKEPr4V62YJVZK1Dx+SWydJzAi1SZ/6NTKxGBmXxi9Juzm7xSTQYbek233GrwvtsQoBC3jmgBcaBbCFbIWzSatxuypgq7hISghiZICQjE90iyJEJ8Mq3jB6C6dCGlkrxUDqergqjCZY1+1m473R9ZoQrpwuWuP32HBxFvbyTCYuVRKGGRiYuRkh+dgRXKX+eUzAyiUhA1JvvBVR2ni5dekedOKyxo0fJyCRjMzd4aq8+rG927yP1ZAHx/feT59MnmqYBkp2q7RQc6rYvX2lg5WxkEr0YTKuz9De6t04gpbGq3chl5mAi9IQBlk73zxGiIAqhk9e+c9WEHC757GZ8e+42vDcyOkOTnM6rRJjRCu7daUm3SI0+MnEngy3/7ancjMIW27qRVjYyCd4IRUYmyVhSOk56Jcz7pmJ8VHgO4Iq3iMgghmeD3Wfl8WyQptlDF0szM0yjajwQhXf46Bn7c4/IzEYUh+x2kdV7kHFPRqMJ3Pyxm1GXrJMHHkI4Gbg5wRoawST9PGsaEUaWBg1XE0DFZpOKpzC+cXxVPJxzjGsYh1Q85XImoLW2CuPW6hKuonPVVu2pX7SFDdvIxBccSMS8GRSG7afjNGaH0auU6yaTEMfWnZKnVvVsG9LcSqUojzv0cJx01DGux3P5PH7021+Hkh8VVvxrBdatWVez9PyyYPF9vs479bgPCY939/bioScfdzzGfdzSQ8v6xMXY06dJkh/sKR04fYYw/H9ef83x+7jD+0M/89j/vCbeTGj6fpVrePrHlBrOmcN+vhe1yXJfaO8T/3zrn3H9NddL477w4gsx74p5ThETuzhDYEZEEARBEARBEARBEARBEARBEARBEDs/ixYtwuGHH46ZM2di4cKFKCjuPO2HzZs348QTT8TjjzsvsrBy5ZVX+k7n8MMPdz326quvYsmSJb7jFvHhD39YePx//ud/8N577wVK4+abb8Yll1wSKA4vNDc3Y88993Q9/vDDD+PFF1+MNA833ngj0ulqIZmVyy+/HBdddBEymYwwXBDeeOMNzJs3D1OmTIncwCUouVwOc+bMwZNPPikM19DQgKVLl+LQQ8W7PBEEQRAEQexKcNP0twI8AFZha2uqFeNHjJeeE0TMx/TiyZoPAUTearpScr9Q2dHdjYJEfLb/WBfDvRAXGvO+yucIrvhcnC1kK/IRsm61ppTbhK9zfd4udiOTuDYgWpCJp8vNJhZw1fyq3XJVIviGRPXu5DHm3sb9CL2djBU4A8yIpCQV4nm/RVY6TyYYTUT3WqkKmRGSF1QMSHhWwcjE5X5QqVlR1fTmewEHsw23dKRGJl05mNu2SuPrTVbm3NSAn5/aATDn+Fs/fzpaG0ZJ4w0C07x1Ok7jTF9BbmRSi92FWUP9wAfNW4NmMQ0j4yMrvssFMTKpK5WrT3MqJVyiDmKY4efcfAx4bmoW9x3W7TtdGU7tTlVc7g1WnLsKaKlrQTonMTJxENoGMl4pJ6fXZmfwlOT6ysRCMEDL2oxMdIsbXCqWks5tvRJNuwGYQt1wReMX0XyM5wUuJwp01BcrLZCJ406I1UikYBYcxzEhAYvTXh1+mj3j1fHYMSXtP1qDKNlFDc02qWrwxTQNemPS9bie1MA8mscNNTzfFw601rfiA6M+gOZUM5J6Es2pZuzRugdGSea7LJFArNnZ6IRpHLHdxjmL9gHl5zUvc1W78JuFbA7gJ76hYKZiROS3Vu6iO+rMKgO0Mp1p92NW7GXLYuFmWlZzP/jSZcL6/fODi/H626tDzZNbqSy6a1Go6UTF3//9DN7btNHzeacdL97YBSiWtxO+nl2HmIGDU59YQx+TqoZ30N77CIOv2bAe2zraq77XHQrWz2j04iqJkcm+lUYmrmNKhAyG0aB1PPvrHX/Ftd+9VnrO3E/MxTeu/kaU2SKGMYM/G/EJY2wMY+zjQ/jf+YyxuYyx2YyxkxljBzPGdmMskJ8+QRAEQRAEQRAEQRAEQRAEQRAEMcxZvnw5zjnnHOy+++741re+hZdeeim0uAuFAm644QbstddeWLFihTT8oYceivPPP993eieddJLw+IUXXoj58+cjp7CTrhcuvPBC4fF169Zh5syZePnllz3H3dHRgYsuughf+MIXqnbX0yPe2VJUnoVCAbNmzcLixYvlu/75ZMaMGfj5z38uDTd//nwcfvjhWLx4sftOax7p7u7GggULcPLJJ2P69Om48cYb0dfXJz9xECkUCjjvvPOwbNkyYbh0Oo0lS5bg6KOPrlHOCIIgCIIghgn5fM2TtIqNprZMxcSWidJzAm0oXxKMsJj3Rc4Fy+NHv5ghgMBJJrqe+YGZvuNWhWdtc3xFI5OckasQdAxnfWUgIxOf57JEZbuxLrqXCfC0kkpDD6aNxTN7VD/fNSWbqr5L6u4iP1WxoBXDpd37iUsFqwjUbzMtnyczD0kWaqdkcDNVqdq1WgGVsud9WWkYVyMTlSwJKieTzwCmgtmKRTQnwug1wLdXi26q0nUwN3h9oomx35mLeMNAXxlLFdD2uWPQ+J3voq2+TRqvHyrf9ai3ZKc6sRuZcIf4atGls/oBIxOme+sAWEzDpR+8FNzSLoKY+2ip0skRGU+IzIKCCKCCnNvj0L7Dwsmwyum7cBITz1tGpEcgnZcYmcSryyKImU///Cji99ZlUnmmdNPGAk2gi9hFx7rFhCgVT4Vez5GZKsXk97qpmLguGHK0QrDfDDrqipO9qOZIwxVrzRTMAgwunhQ7jXNBsPuL+Lm3NLPSkMUJWeuRGeztingxP9J33x16sroONB2ITdu98suaqsnDwW+7t5s2pONpTGyeiD3b9sTE5omoS9QpxaNPnozYyDowyxxITzLEp04Aq6sTiM7V8u1lDuT0fBRmv+Dn+StsMxU/FBzulzCE+eU4OAPWtxTQlRrozUxWHNveH6H2MkOzS6x9vMcLwsEz9sFHzj7b9bhhGLjq17+KPB893T149MFHI08nDEzTxJ8eqDRdkVtjcUyZOBHHHnKYMNzSJ/6Ot9a8W52mj3Yb5QjqJ+6EnnD4tnb9hD2lybuNx/gxY4XnPPm8w7onhyx77VfWbtyAd9eJN0c66PCDKj4PmEPXrsxqYf5apjxmlP//wD0P4JpvXiNdEzTn3Dn4zrXfiTx/xPClNtar0bAvgDswVO0V3SkwxlYDWAngGQD/APACD2uFH0EQBEEQBEEQBEEQBEEQBEEQBDEsWL9+PX7605/ipz/9KaZNm4ZTTjkFJ510Eo4++miMGTNGOR7TNPHiiy/irrvuwl133YV1/5+9M4+To6j7/6e6e669stlsQg4IR0ggCYcJcgcUeIgCEXhABAEVlUs5lEdFFAXvE1FQAUVFHgEFH0XwAfnhASqonHKEAOEOD4Tc9x5zdP3+mJndnp6uqq7qY2bJ9+0rsjvddXTdPVufT/3f/4UKl8/ncf3118PSPF3VywknnICLLrpIaKyxYcMGfPCDH8QnPvEJLFiwAHPmzEF/fz86OzvhSDbwzpo1CwcffLDw+uGHH4499thDalTy3HPPYe+998b555+Pc889F9tvv730WZYtW4brrrsOV1xxBdataxaY5HI5nHfeeaGMPkw58cQTcdVVVwmvL1++HMcccwymTJmCAw44ALNnz8b48ePR2dkpNVmZP38+5s+fHyoPH/3oR/HYY4/h2muvld63ePFiHHPMMdh1111x3nnn4fDDD8fMmTNDpQFUTUAef/xx3Hfffbjrrrtw7733tr1xiZ8LLrgAt956q/K+Y445Bs899xyee+65FHIFdHd348QTT0wlLYIgCIIgiCjwwcHU0/SKJ+ZPm4/xHePBOZcKOyKJK2rrdNvAgMQrFqu/t7Gc2ORBRQcT58F2bRy929GB12IVvQz7zAlKaiMThqoQ3psPO80d3DHDnAh5twyNTHKNIoUGIxNFlPUu4yhu3JJ1sbargu3WNrezLVkXd7xlS9Pnvfneps86Mh3YUmy+FzDri0GCKaBquOAk4BHqNXIwHTvq4UqKU6MzaRqZCPLCwLSFeWG6Ly+qja5coXg0xGnbkmuDpUEgxKny9VTWd8qFcZUhBjfgeyY/A9nmNBkYOs//ODrO/ijKjzwEXhxGZp/9wQoFAMDE7mSMTBozwUM35qD+FmRk4hdgpnG6MOvqGv1F0/CBORbet/f7sGLTClz10FVgNlP2TxlWtpp+UqJSWXlGmT6jhB0MaN9xUQ4Q14vHh4hU5P3dsR3ki/KCGgowddERwzdRm3dYSkYmNmfIloGiYmmbScLIxHOecCFTCKz7KIgMsqLiN5QLhIdLXGZiYUX0iKwbc7XixPe2xtPMypUy3BBrhEaiFajfm0pmZiPC4mojSFW9x93fGkihzSXRrnXMlJhlwdl1FqzVq+Gu3wAAsDo7YE2eDBbhb7R+WtV/Wy2HZIzBmT4d9rZu1XSMMTDPdzDBov3wuG3kpGqyfmwy6GgBiZnMedOwgTd6K1jJK7Dc6rxuW06odzsgoGxDGJHpEKYZfenSS3Hr7bejIlhz3vaXP+Lhp57EW+fuHkuegsaMu267C0OD4r/XT5o0Ca+99hqWrFoibY/d2W5MfX0Ibjj/YgBVM5qBXGNB3XXbXbjw7AuFYX7x+9/h06efPZoXRRdhnIEz4EPHvyfYHKOG67q47Lprcc0Xvtr4eRuNBwCM5tDAMbHF679D9tkPN/hMabz85Sd4V+wAACAASURBVF//wLGHLWz6vCfbg43FjSO/c836ueeBf0qv7zRzJ2wzpXHf1sh3qmmWGav219ianyTv9e9rGGO4+/d345ILLlEesnTiiSfi0u9dijLEHb7Neg7RAsaykUmdsfaqnAGwK4BdABxX+2wFY+xXAH7GOV/cspwRBEEQBEEQBEEQBEEQBEEQBEEQLeGFF17AVVddNWJiMWXKFOy2226YPn06tttuO3R3d6OjowOu62Ljxo3YtGkTVq5ciSeeeAKLFy/GwMCAVnqWZeHGG2/EnDlzIuV7hx12wLHHHovf/va30vvWrl2L22+/HbfffnuoeD/wgQ9IjUwA4PLLL8d//Md/SO8pFou47LLLcPnll2P33XfH/vvvj+222w69vVWx1Pr16/Hiiy/iwQcfxOLFi6Wb7b7+9a9j/PjxofJvysEHH4z58+fj0Ucfld63fPly/OY3vwkd76WXXhrayAQArr76aqxZs0ZZrwDwzDPP4JxzzgGAEYOVqVOnYvz48ejr60OhUMDQ0BA2b96MFStW4PXXX8ezzz6L5557bswZl/h58sknQ91XNxlKi+23356MTAiCIAiCGBu0YD3oFSgesvMhAKA0MokihmV2NUHHclBhHLaGssgrFqsLN0MJIQWcNHUf3Fy5G8xuzIPrurjooIsimVyGhfvqnJfDKRr8QvixtmnUC3PMy7nanvTVizIjE5V4ui6WVIkmSzbHhSetwaW39mHX5aPpregp45Lj12JToTmdvo6+ps86s51YVVwVmEbFYMe+SDBVFZ/E35K85Wk6ctTDFRWCUZ3xJColgT7eYhYqCHfCdZ0wgv0wRiYiLXeYcpc1paHyEKAQaQCjoq+68Ft4n2uj8vpyZXyDAeYGbq2/s2wWmf0PbLq+TXd4I2RTGMK35XJAOymWiw2/BxmZpOFN1WBkojnf1cftTx76SZx/8Pn49WO/Bn/xZQB3meUlUysoJxnjCVl5Rhk2otSTX5AYJ0EGOkFtMQ54qTRiJCRCZWQymGkeM6KU7cgaNmaxrYx8yUIx4Dm8OHpTQyBF3yM51ugHeTsfuyg6TmFqwzgXY93IjOWcinn+hx2OUi2bydkOCWBuaCOXVuAdYsqugZFJxGbVZGRiEB8Dg2r5pRqHkjQhUA6BGqZqaVGxuDpLvuuMMdgTJ8KemIIRXcrU/7ZacSt4fePr2DBUNWtRGgrE/D7GLAvINgv0s06wkUnY7qTT/AK/W4rx1dOkzJIyzwtLxeKBzx951hXM2y4D3Npa0LZslCvhvnfylxMzMCSOyq677op3v/fduPmGm4X3XPr97+KOa36WWB5+9yuxmQRQNSyQHVZTx6StBvW1ty98Ozq7OrFlc7Dh7YuvLsN9jzyEg966T/h0APznYQtx8aTL8PrKFcL7fvH73+GsE0/GvNlzpXlsJSb9yPud4CitfbBD9ztAamTy+3v/gu995pKm764ndU/CxjWjRia671W3/un/Sa/v/7b9mz6zrXQMJBvh8RqZhODeu+/FRedcJDRWqnPEoiNwww034MV1L4Yeb4mtkzeDkclYNeTxDo2TAXwMwMcYY3cC+Bzn/PHWZIsgCIIgCIIgCIIgCIIgCIIgCIJoNcuXL8fy5WqRgwmZTAY/+9nPcNxxx6lvDsE3v/lN/OEPf8BgyqepH3bYYTj33HPxgx/8QHmv67p4/PHH8fjjZn+CO+OMM3DBBRfg5z//uVF4Ha644gocfPDBLT3BzLZt3HLLLTjrrLPw05/+NHQ4XYMVgiAIgiAIYuuGD6f7DgE0CujnbTsPQPU0ThmRBNbMY2RiAbaGqNMr3rRq8bAAUU5YZvRthz9++I94/y/fjzcG3oALF/25fnz+Pz6Po3c7Whwwxr3svNgoaEdYI5OKz8hkrO4ahUfAbhLWNqsMv5GJ9/RVVfu2av3DVtxYsYA13S4+fupq7LjKwcw3slg2oYylU4pCQfmEzglNn/XmeoHNwfeb9EWRaUYlITGm11zDWOBSC1cyUaomhCgvZkYm6nt4UT02iOo2XLmLbxoqDYErhBrA6Ob19Z1qQXPphVek14s2D+wnFS7PR1euS2nGFRnGQ+/UD6qTYsU37geJGFMY1K3untEs2HrjsHfczjpZnPLWU1CZ8CJeNjUyydVPcE5mIJKZMURZ00QR7Q1kk7NGCDJaMjG+CkUIYVahJK/XQNOiKE3BqlWMZruOQqHEsFFxTyYGh6Ki01hWXtFgIVtoMP2Lg0j1ICNOIxPJtOCUzct8yGNMk8aY7IUxoIV/CtGiXCkrT6SPW91m+QZfy6Bv2a76/Uk1xsfd3xpoM1F4GJIyzAJQ7RRjDJe7cLmLZ1Y+M2LE1044lhNophcWnW4XlEYchi08wuBiJbTmDIvQCClisYQpkbopcBia6ilmk7hwr6kMF1x4AX53y60Y9n9/VuMvD/wT9z74L7x9n/0i58nfrl56/iU8/rB8L8Wpp55ay2vk5JvzExBnvpDHYUcehttvER+W89+33zpiZKJsF6yaTi6bxWfO+AjO++oXhLe6rovzvvpF3HPdjcjUjG1Mlrhxmp8MDg2hkM8bhxd+f5Di3BO0Jjnq4EOQz+UwNDwcGOaN1avw14cewCH7eoxFGEMhU0DOzmG4Ug2nU9ar1q7Fnx/4p/Sehe9a2PB74t+/COAAXHBYMXU82ZzCGMMf//hHnPfh81Auyd9/DzzkQFx7/bVwHCd2czLizUf7WlfqwcbQvzrc969+/UgADzHGvsMYS9++jSAIgiAIgiAIgiAIgiAIgiAIgnjTMm3aNNx9992jm0xiYOedd8b1118PO8XN0nUuv/xyHHHEEYmmcdJJJ+Hqq69ONA0vCxYswHe+853U0hNh2zZ+8pOf4Hvf+x5yuVyrs0MQBEEQBEG8CeFDQ+qbYsYroK+f4qjaaBtJh1kznnAsB67qGGwfZc/9I8LNrPmWQpbNYkb/DNx/3v144dMv4KVPv4SHPv6Q3MQkbnwb0nkIQTDjQMktNXxmt582KjRRjExgmW359RuZeE9fVYl2rVpZy4SzwKiBgWsBL2xTxl17DmDJtmITEwCY1DWp6bPxhfHC+03EH6L0Y9BXB+IdY6IKgUttdFSlzMhElzBlH87IRBA2RB5kWRiuDAM8xCBTi2R9Rwgjk1dXSq+LTB7CtCHuJqv+1tHoBIkU/UYmQXNuGqdas+7u0V80x1LmNA8krLPTOC9Wrta5A+KNA1l5RhmXZAYpKgYCzDviIkhcn5RZFUol6WXuuiiU5A16KKAsIvWBupFJzGJbGYWiOsOqdUMYZEYmHZmO2Os5zrWBd6xjmfgkQY4kk9mK+QMMZUbLOqk1kpA2dyj0vsJVeEVpMuYn6tP5i8ekbzHe+BxBqMb4RI07UiDuVlbWfLd/s8PBsWztsrY0MamjMrCVoRM0aYG7SfxGRiYxPobICClqLwpTL44Vfn3kLydm2/EUg86DMoZp203Dh048SXrb57//3Wh5Gkmv8dfbbr5NevvMmTOxzz77hIvaoK2KimrRcYuk4W79093YPLAlVBoMbCSd0449HjO2my69/5GnnsTnrrx85HezdVI8c8YLy17BSZ84P1Icwu/AW+xB0dPVhSMOerv0nqt+dWPg5zP7Z6LTqb6f69TPtb/+JcoSg+2p203FW/Z+S8NnDeWXsqFJGt+bAMB9f78Pxx57LIrDwWZKdfY+cG9896ffRT5XNdbpyHSkkT1iDPNmMTIZS4jMTbyGJg6AjwP4G2NsSisySRAEQRAEQRAEQRAEQRAEQRAEQURn7ty5uPDCC7HLLru0NB+2beP000/Hk08+ibe//e2xx3/CCSfgzjvvxLRp02KPW0Ymk8Gtt96KM888M/a4GWP43Oc+h5tuuil1k5YLLrgAN9xwA3p7e1NNN4iPfexjePDBB3HAAQeknvaMGTOw337RT5QiCIIgCIIg2pSh4FMWk6RutrBD5w4jn6lEHVE2CrOaWNqxHOhqC0se8WY9jyxnfuomCgWzcDFulOb+kzUlG8a9+AWDba53lBLFyIQ5hkYmvtNavULgiqIw6xo9W9ERTMSNk7snN302oXOC8H6V6UoQIpGhrrFQWCoxxFuPQWQe0gr8YvI6Oidc1wljhhDGyETYHkKMWbIsDFeGgRDmIPU71neoFcXllZuk1wcFJg9WCMONxE+91Rhwg0SKXiMq13UD6ycN0Tzr8hiZ2JpGJgHjNuvsMs9LvmYuZSIqDYGsPKOUdZSwA7kkjUyCPksmPV5R9PctW6RGEwAwmAnOm2o+FlHXzzFDszMT8gqzFgBwIphq1Bn2zT1eMXJHtgOuVT2ZPC6SWhvEaTIjM/OLYmTibZdpiSTrsDZf2HuLo+yW4YYxO4sR/3CmWpMHYXG1iYMq2kSNOxRpt1hbHUhpjBu7xA3nHJtLm7XDJb6OVZDEeGclLNM1KTPv+38rCDI7jAPVqMTBQ71P1Qk03ohhjqrHGioqxsAYwyfOOBNdHWJTgIcXP4Hb7/lT5Lx5qVQq+P2vfy+95+STTx75WdUWGZj2AC7qk/sctA8m908UhtsyOIDf3H2XNI7GdKqV4TgOrvzspcr7r7zh57jut79uCKtDHDPo/f9+BIecdjKef/WVxrg1y1hsMJPeeOxNyVucHzjmOGm4O/92DxY/t7Q5PsawU/9OmD1xNrYpiL9T9LJpyxb86JZfSu85+j1HN5dXi6YtjnTW6IsfW4xjjj4GAwMD0vvm7T0P3//v7yNfyI/8zWJSd7NZdQNR8t+Oi0FCmzeLkQkP+Kd7v86/uOKu4zU18Rqa7AvgXsZY819rCIIgCIIgCIIgCIIgCIIgCIIgiLZn4sSJ+OY3v4lnnnkGS5YswVe/+lXss88+WhtnopDP5/H+978fTzzxBK699lqMHy8+2TgqCxcuxDPPPINvf/vbmDlzZmLp+MnlcvjRj36E6667Dj09PbHEOXfuXPztb3/Dl7/85cRPzxJxyimn4LnnnsPnP/95bLvtti3JQ5099tgD999/P2655RbMmzcv0bTGjRuH008/HX//+9/x/PPPY9Ei+SlLBEGkD2NsFmPsGcbYUsm/s1udzzqMsTxj7E5Ffq9pdT4JgiC2RnhxKPU06ye3n7nvqBmiw+TiQlNhKQDAa2Si+RroFXvUzQJYLmucFb+ZRfiA8b0Tcd9pjrwUzsjEf7KzlbbCMkZYJoKY1TJ7bn/dZ+3RdqQSptu1G1Snv+u2bwCYOm5q02eTu8TbZU36oihfJvnVTc+0mbajkYlIrGlkZBKi7FVjQ4VxYflGLbViuQi4apFyXcC0Oc+V4t7SBnkHGhAYmYQhEbGkYXaCRIpld7Quh0pDgd+zpdHSWc+40Z9tvXE4cNw2NQcDwPK5Wj6SEZUmZQwTZeodyCYn/A8aK02Mr0KhMDJx165WRjEoKAvjealhbZDOvJEvqhtDJgYjE3+ZeI1MOrPVU9dNjNSE6cXYd7ziXuZkYotXZhCTi7C4GfLMQ2mYS3lp0Z9fQuM1AKm4FaWRSdzGDP7lr8zMRoTFmVJArzQyIeOOBsIYZhm3hXbvFAFwzsFN5qAUH9X0b73xmQTEg0n8Ju9scVIR9JeoX+uowjPOtN6Vgo1MNDMVFcbAwDChrw/nn3qa9NYv/vAKuDza2s8b+v577seqFauk95/03pPCR25QdiKTEMuycMI7jpSG/e/bbw2fjufnQ/c7AB8+/j3KMOd+9Qv4xe23mq2TophJui6++ZNr8I4zPoBV69aaR1RD2CdaNPV4q3zhgQdhzoydhfe6rosLL/u6J3Djdcd20F3oRhi+8ZOrsXLtGuH1fD6Pk05rbu8Na/xQKcVH0mv0pUuW4uz3no1Nm+RGvLvN2w0/vPGH6KiZLdWNTDJ2Rvo3lvb5hpNoFW8GIxMm+BeEzEAkzD9RPGHyExRXUDzeawAwE8AfGGM5QXoEQRAEQRAEQRAEQRAEQRAEQRDEGGD27Nn47Gc/iwceeABr167FHXfcgc985jM46KCDkDcVlAXQ2dmJo446Cj/+8Y/x2muv4frrr8ecOXNii19GV1cXPvnJT2Lp0qVYsmQJrrnmGpx55pk45JBDMGvWLPT19SGXyyVi5HLaaadh2bJl+MpXvoKJE8Wn8ohgjOGggw7CLbfcgsceewwLFixouqe/vx977bWX8F8uF++f9Pr7+/GlL30Jy5YtwyOPPIIrrrgCH/zgB3HQQQdhxowZ6O3tRTabTc1s5YQTTsCjjz6Kv//97zjrrLMweXL08xhs28a+++6Liy++GPfccw9WrlyJa6+9NrD8CYJoG74PYBaAnQP+zQDwKOe8bYxBOOdDAM4H0Itq/oLyfQZj7O2tyiNBEMTWCh8YTD3NCgOmd0zHifNPHPnMK4oMIpK4om5kYjtwNU0YvMLc+pqfZSMYmRTM3jvjfNvgxUYjE1TCGZkwn4FHkgeCJw3LmhuZMMdMgFQXzdfJWKOCWpXmtV7WtmLHfMWgUrbtbTbtnNIzRXi/SV8U5SspAYA3PeNmWstb0Wmfhi4yVTERxYXRWfOy3CwgqhGNU4GwgoqVIqAQKcMTnDNgfYf8/kpJ3u9FxgZhSFqYqPOVU5BI0Wtksnl4c2C4NLypmNf8WPN7yaBxm1kWGDOrN6uQM8pHWGTlGWXsixK2ZAOlhCbvICOhOA0pGiiVpJfdtWpx4WBGMC8Zlk/DGimK+Z4G+ZK6gFUGaKHwJeNdvxQyVTOhMGYCYYlzbdDwfb0TwcTOh8zEIls2f4AhT7tM3S+wzRVt3m5VdstKI5MmIhZok5GJwQBnuer3J1X7T9JgT7nWiKNNxtyug8zbtmaMTExSpi601iUWI5OEjLLCYlutNTJJqr+EaXU6fz8PaiP+76KiEComT34/9r4PYkJvr/DWJS88j/97Y3n0jNX43a9+J72++/zdseOMHUPHZ9JWZXX63qPeJQ37j38/gudfeVkRSw1f1r5+wYXYdccZ0iCu6+LMSz+Lr132XbghjE+9mI6QTz2/FAtPfz++8MMrUBEYKurGLRwL0zTR8mTamypjDP/1gQ9Lg97z4L9w1S9vCAhd+yTEeHf/vx/BFb/4ufSeY997LPr6+5o+bzCCSbHMphf60RHjZOJvNy89/xLOPPFMbFy/URpu1912xTU3XYOu7q6Rz7xtauf+nWM39SPePMT3Vpw+96Nq8uFnGoArAeyBar9iaDYv4QBeAPA4gMcALAWw0fPPBTCu9q+nls5bav9moNlsxBvvE6hugHm99nkB1c0wvQDGA9gTwL4A5teueeNhvv/W878HgCsAtM2JRQRBEARBEARBEARBEARBEARBEIQ548aNw5FHHokjj6yeHlMqlbB06dKGfy+88ALWrVuHjRs3YtOmTdi0aRPK5TJyuRxyuRzGjx+PiRMnYsqUKdh5552xyy674K1vfSv22GMP2Amd6KnD7NmzMXv27FTTHDduHC6++GJceOGFePDBB3HPPffgvvvuw2uvvYY1a9Zg7dq14Jyjq6sL48aNw4wZM7DLLrtgv/32w8KFCzFp0iRp/IsWLcKiRYtSeppRGGOYP38+5s+fn3raQSxYsAALFizA1VdfjSeeeAIPPvggHn30Ubz44ot45ZVXsGbNGgwMDGBoaAj5fB7d3d3o7u5GT08Ppk6dil133XXk3+67744er5hkDHHvvfe2OgsEkTqMsaMAHI7gQ1s4gEcBvC/tfKngnD/PGDsOwD0IlkgwVPdl7JlqxgiCILZyeHE49TR7XI4/n/3nhs8yVgaQiC3dKKKL2rtZ1s5qx+MVi40ITyKYJ7JCQX1TYEDjJJsZ9hmZKMwKRrLg2xyekk43ESIZmdhmjdFvYpN1Rg1xVMLpumDWUeg0dMVJ3OUYVxjX9Pm03mnCMCYCY1G+TIxXwuA12DDVrdaFgKXWf7Uzgki86liOdPwMIky58JK8wcnabZj4v3VzP1Z3VXDjAZvwhz0HGsbnYqUIuHrip/UdLvo3m1fYYNa8PWasDMoIZwplhEY7DupvXiOTTcXgk32TPlmYMRfMaxqi+b0py2aCP7c4uIFZA6sbmST0/a3MOC2Knl7XkK0BVm3nmaH4K7scUIxxmlt44QIB4cj1EEYmQ4L+bmy+EqPANiyFknrSdxLo2F7zwc5sJ4B4xdGmZjIqmBM8hpggK9dcTEYmkfq6AWnqZk2IbGQSEcs3cJsMbwzq9yfV/BDVRC4a0dskH5HmxUNS80xUWpUr036RptjZYhYqvoVbmPLSNWkJNMMAi2724lebatByIxNBf4naXlXjFmNMy8gksD3G6uwbJhOjee7p6sInP3gmPvPdb8WYCV+Was+3bs06/PWPf5Xeu+j4Rai4cTjVqfMTxFtmz8UuO+6EZ196UXjPf99+Kz4+53x1Or7fuzs78dsrr8ZB73sP1qxfLw171Y9+ivsefgiXfPsSzJo9S5mWCSvWrMZl112La26+CeVyvO/64sOG0huPvSn5l9/vPepo/PCXv8C/n14iDH/R5d/CTttuh6PecVjzRcU79tKXX8Ipn/q40BgGALp7unHWf50VeC2tw4Wa07Vqi+aYZnrPY7z26ms488QzsXa1/F12xi4z8KNf/Qg9vY37erzzXsbOYO42c7Fi0wpsGq5+/zOhYwLe2PwGqnYNxNbMmDUyqZ2Y84L3M8bYuwFci6r5yIjZNUa712IANwC4kXP+mkm6jLGpAE4BcCqA3X3pAFXTkdsBnME5/5+AKH5Ri8cBcByAcwEsqIX3vx0xz2dnMMau45w/YJJvgiAIgiAIgiAIgiAIgiAIgiAIon3JZDKYO3cu5s6d2+qsvCnIZDI48MADceCBB7Y6K29qGGPYc889seeepPsniK2IL0iubQZwEudcfkRxi+Cc38cY+wKALyN4t9dujLETOOe/TjdnBEEQWzHD6RuZzES+adN2zs7JjUwi7FGuG084lqMtUPUKc21W/YXl84K7Q+TFNGyMm7R5sdHIhFfUG/JZgJIhIZ1pKrBcVn2TCMfQyCTfaGLj2KNbh1Xtuy6etBU3aov5BLfv0LeDMIiJqZDIsMRYMK5ML3oc9SYvMg9pBSXBbnNTUVyFcdgSlRIvywUOcdRf/2YbH7u7F70DFm48cPPI52W3DIQ4YdlbO+s7KgDMheoDAmODmT1B5302krWzGKwMGqcdRIPQUsvIpPk5vILRLcNbgtNLWDTPbF99CsVbgvACIxNYXNvIBwBYR0fth2RU4bKxMsqaJqovxUDORc9Q/M8c2O6SEtyX5F93uOvXKaPwGkY0hI3ByCRGaZuUQlGdWScBnWvGHu2LXbnqKeBxmgnE2W4axNCZ+CRbsnLNRjAyuWfO6DwiMttJjJYaZKjxlmrFrRgYNkQbPP1TpH9KC4Plqt+fVAY2ia5L29zMJohEjUza3d0ngKTNDeLAZjZK0P+zhe78bCU8qJmYv7TcyETomxCtH6neIRiYVn0EmtBY8a2uwtQcY6yhjs8+8WT84Kb/xmsr3oglDyLu+O0dKBXF/cNxHLzj6HeM9HXO1WXCGNM2XpCa0zDgpCMW4YtXXSm85cb/vQ3nfeocyEpb1Id23HY73Hz5D3DMOWdiy+CANJ9PPPIETlp4Eo46/ih86JwPYceZO0rvD2sm+cyLL+CaW27C9b/7DYbCfmeu2Y/q3y83x9Migw5f4ViWhe9c+Dkc9qFThO2sVC7hvZ/6GL6/5Qs4/aKLGi9KjEzue/RhvO/TF2DFmtXSPH3kkx/BhP4JgdeCxolUYMlU0co3VuLM95yJFa+vkN63/Yztce0t12L8hPFN1/x/Z2GMYXLPZEzG5JHPVmyWx09sHYxZIxM/jLGLAXwRo6+y9dGKAXgewPmc87uipsM5fx3AtwF8mzH2DgBXApjpS28cgJsZY5/nnH9NEE8ZwC0AbmGM7YeqwckMNJuZ1GG1dA+O+gwEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRA6MMaOALAXGvc11H/mqO7LeEEQvF34GoB3YPTAGe9OSgbgEgBkZEIQBJESvAVGJsxu3pqXd/JAMeDmGpFOJa9t5s3YGe1T3r1isREjk1zOOCus0GEY0DjJJvxGJiibCZ78J5OPJYSC+DBhFSeLCsN1Ntc95xyMMbWRSU0saSuqStdYQiQemdIzRRjGpC+KRFO6/TEs3jxGTaHktJGRSYBYk3NufIp6xZK3qaqRiThumdhcd3g49f5u/HPnIby4TdVYqeyWQwmzvOms74x2suxALjj8wTuqt4yrzLiioiOWqQQMUV4jk83Dm5tvgH6d6eLXaumOpSIDKlMNEyvkjfIRFll5RjGNiVpPIsOeqJQDijHI3CQWFEJtd8MGZRSDgnIQGW+pYF7hGOOpOJnkSyGMTKI63wTFaY1Kn+pGJnGaj8SZ5YbT2rPm63c/MmO5rNofMJAK43hop6GR31d1p2tI0O6eDd5hs8IrcEOYncWJf2hwDNzcLM6U70+qMT6xcRUYm0YmbW7AkzZl12wAYikOALZlG62Zddc/Qc/EwBqNAiNgUmbe+VMjIcS1qBCNH1FjV43GFrO0yivwXstCoi9bAurtLp/L4bNnfgTnfPnSZNKp/fe2m2+T3rf/2/ZHX3/fyLtdKCMTg8FdFetJR75LamTy+soV+Ns//ok9jjxAlblADpy3F2774Y9x3PlnY+Pm4HfXOuVyGbfdfBtuv+V27PnWPfHOY96J/Q/eHzvsvEPodlepVPDo00/hrw89gN/c/Qc89szTocJ50e1HwvEgxbnYm1TQ6+n+b5mHCz7wIVz+858K4xgaHsYZn/kMbv373/GlL30Je+21V/VCgGnpK6+/hst+di2u+93/oFKR9+d9FuyDkz98svB6gzFU2uuXGMdloNqPzzrxLLz68qvS+yzLwhHHHoG//vGvgde36dqmwXAyiOUbl4NVXEzYFG4BNWvHnXDgvL1C3UuMHd4URiaMsU+hemIO0LjB2EjLFgAAIABJREFUhNc+/yrnXPKnRjM45/+PMbYbgM8C+LwnzXr6X2aMlTnn31LE8y/G2DwAPwZwEho3/TDP7wcyxvbmnD8U97MQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEFIOMf3u9cI5D7O+fXpZ0kPzjlnjH0UwKMAbDQ+AwMwhzF2KOf8Ly3MJkEQxFZDk6lFCjC7ecPslO4pWDawTBgmknC3tsE5Y2W0xZFe44CR0w1zeeOssI5O47BxwX0nvPKyoeCpffwdtBEJ4kOFNTUyKRSE11TC6fqp7ypBckXzVHKHBW9fdmzxtmYTgbHo+Qw0oCHTG/3ZVBBdz3GxtQdnNxBkZAJuLj50LS6tBF4WnQlZRdZudYcHmzMc/3AXvn3UegBAmZeBinpsajAy6Ygmag4yNsjwDM4/+Hxl2EKmIDXjioxGFQeJFF0+WjZbilsCw5kM6RXGYYecoJsOnXY0jUwywaIc0WHWKqyu2nwcILKKA1lrjGLU4EbM7kA2GfF/0PgUNa9CFAZsfMNGZRSDmeByMM6zlb4DQKGoTjMTcaJ9alrzwJaxRvti3cgkTnOFSOaFPrziXZaJT7LlSLpRLoTBTBB/mjuIzfnRZ1/dna5RR5DRZDvRYGTiVuAqpPPeuucxmJ74m6VtEKXF1e9PqvkhyDQqNWJoInG+PlYsnqwJW7u7+wRgamSSJoHi/RBFrVvXVkLruzom5hBGRiYxEmR2CETvl6q60TUysYJcCmNcZ6nG4RERsS/P7z/6OHz3+p/h+WWvxJYXb6JLnliCZ596VnrbUccfBQAjZl5hjHmMjExkhowAdpi2Lfbbcx7+9fi/hffd/JtblUYmsnZx4Ly9cOc11+HdH/8o3li9SpVlcM7x2EOP4bGHHgMA9I7vxcw5M7Ht9G0xedpkdHR2oM/uQNcgw+bBAWzavBmvLH8Nzy97BU+/8Dw2Dwwo04gTseFEinOPp6JFqX7xnI/jn4/9G/987FFpVHfeeSfuvPNOzJ49GwcddBB23nlnFDZswZbBIbz6xut48MnH8fDiJ0OZ70ycNBHf+OE3pON44ziRpvsLi3U84qga6bywVH02ieu6uOY718SWdhhOO/Z4MjJ5EzLmjUwYY0cD+AYa1zAMQBnAqZzzW5JMn3NeAvBFxthiAL9EdaMLMLrJ5euMsWc551J7Ms75ZgAnM8Y6AbzLE97P6QDIyIQgCIIgCIIgCIIgCIIgCIIgCIIgCIIgiFRgjE0H8E6M7s3w7tFw0Wxy0rZwzhczxn4I4GMI3i97NgAyMiEIgkiD4eH00wzY9Hv+gvNxym9OEQYpRxCgsdrm54yd0T4x3isWq5/4KDOkUOalwzBsnCc++o1LFCdhAsGbKK109ZWxwvI588AZUyOTjuYPaztUVcLp+untMuEsoH8qedbWN3QxEXmLRJdJidwbDDZMNQa1cIHmIS0iKC9RThVX6dt5RR63bDzlBkL0wxd34Cdv24h1XS4qbgVw1XF474hqZDLsUyV3W934xUm/GBHqyyhkzOeFUGgZmTR/5m0nIiMTE3ONsg3YITWzluNLQNMUSmRAZWpkwjpqY7KTjIxD1geiCK+jmjwM5JIZ04LGA5VJlym8XJJedzfKjUwqjKMoqHZTkxnmWdsyFq9YX0QYwwxHscQbyrjIl8SD+WPTm98TvMLLzmzVEKgc41wZ59qgQSArMEMywZFMoFnF5Lqmq4LOYdZQ7n+fNYgr37G+4b7V3er1eawkq/mPjHc4qbiVBoMuJTEYmfiHs7AmXv44VMOiKto4+5oflc9ALG+jcb7StpHZYLtQcVMeNwzwmmHVCdMkdJtNkBkGi3GCNjGSbKWRiWhNxsBgR5wAwhiZBJqTCAgq26qZbFpGPdWy8huAOI6DSz56Pt5/0ScSSfG2m6VyZ3R0duCQdxwCAKjwal8PYwoBpufLpJzeauP4SUcukhqZ3P2ne3Dhug0YN36cIBp1pvaauxv+9avf4rTPfgr3Pvgv5f1e1q9bj4fufwgP3Z+M9Pttb90nUniReXCaHlrepESvmI7j4H++90O844wPYPFzS5VxPv3003j66aeN89TX14fr/+d69E/ql97XMJ6mWmaaHYog2pA2f+2TwxgbD+Aa+MYwVOfS85M2MfHCOf8NgHN9eambkVzDGOsLGdUpAJ7yhPfHdUzErBIEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQehwEkb3mDDPfzmA33LOF7ckV+Z8HcBQ7WevOQsDcDRjrKcluSIIgtjK4MPNJ60nDbObt0zut+N+YBLhX1+u1zxBe9TIRFcA7DUOsGtqaZYzN8FgHZ3GYeOiqc7LIYxMAootIX0yyklF7CGKkUlQ+w0VrqPZyKRuLqASTteLxFLcqCsaz9t5rfsBQ7MDQb6SErl7jRxMjT7qoUpOGxmZBGlduNkpy4C6LtVGJvGXzbv+XR0jK7wChBApe4VW6zqjiTfPmbIfrjziSlx04EW49uhr8dh/PYbdp+4eKmxnJtmxXUcrU1EY3gyUgk+bNjHX0Bmvmc/IhFmaRiZ5kZGJWftn3TWDmoSESDIzhihGJlHCAsBANpkxLWis1DXXCo1CqO1u3Cy9PpThQsGbsVGM98TwiGYzYSlIDEjqyAw3AODZySXcu+tg4LVVXRX8fn6z8ZHXBC3rZME5j7WuVSZbOlgemRZz4jMysSVNMFuWP8At+2zGqWevxDcXrcPl71yPMz60El/+z3VNc/yqlI1MTET56TKav7JbDiferhOLkUlj+cjagAjG1cODam2W2Lg6Biml8M5oTIu6k6mRiem7hAki8b4K3XdQHeMMHeplZVJmXiOwtBEZUE7snBh5bakKb1u21hwTWHeG38F4Yb7/Km8M4N0Lj8Ceu8yOnBc/pWIJd956p/SeQ484FIWaMXLdzCvMdx26bVUVYz3Ndy88AhnJ2mq4WJQ/EwOsEO1imwn9uOPqn+LrF1yI7s7Wf586Z8bOuPOan+GqS77c8LluPxKaCrdoPSZbn/SN68X/Xv1TzJs9J9E8bNPfj7vvvhu7zNlFea/d8F1Cuu4v7b9mJgg5Y/114nMAJmN0vqpvkrmDc35N2pnhnP8YwO/RPBJNAvD5kHFsBnCBLw7vzxMZY3tFySdBEARBEARBEARBEARBEARBEARBEARBEIQGx0mufS21XMQE53wlgJ8heB9pBnTIDEEQRCrwUvpGJrCCN/1edsRlcAOEZrzCcfWiy83Ts6sbnDNWRvuUd6+RSX2zMsvpmz+MxFFoNrMIFS7GfdK83HiSLa+oT7a1AvR/SQmehlMwjohiZALHTHzFurqE10TCojr18ncUOkxVPH46Mvrt0UTkLcqXiSlKuPRG82gqzKqHKwaYQrSKUkBeGJixkMJVCUAjtDfTcl/07w5kyjVxVgiRsveO9R3RhMpWTyeOmnsUztj/DBw661CtsN257khpK9EozyBvgwYjk2KwkYlJ3w5qkyJYxpcxXUGiwETM1FzKqgvhDMd0FbLxLcqoEnXcHMhGF/QHESQoT8qsSmXAxrc0m294GZSYueiuE0cQrG2TJF9Up5lRaNpLNsd3jlyPO/fY0lCHT247jM+dsAZru5rbi1+IzTlHOca5Ujk3mZKJT0DuSMo1V5LXSzHDsbHDxZ/nDuKuPQfwysTgdfiGDjddowZDU6i08BZFhVdGRNwiGt5TdExPRPH5orANBmOLM6URpEqUHmdfa0L1SDE0kThzX9bzQ9NnDAqVKzxdAyQThOJ9BVxznVo3ofUSx/cXdfNCk/evpMxVwiAasiZ1TYoet+K6zWytZw+6l9kxdviQTYkx1nQrYwxfPPfj8eWlxp/v+gs2rNsgveeo444a+XnEyCTE/KZtZBKyr03oHY/DDzhQes/vfvU76fWw/ciyLHz8/R/EY7+9EycfdTTsONtDSGbvNAPXf/0yPHTLbThk3/0jx9d2RiaK69tM6Meff3YjTjryXYmkv/fue+DPv/419tprr1Dt2mGed/hUi4w1GlgSxBhkzLZgxlgvgDPQPJVzAJ9MP0cjfAqN66H6iT2nM8bGh4mAc/4nAA9i1JjFzz5RM0kQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBKGCMTYJwN4Y3b9Q3wfBAfyLc/54q/IWkR9Irh2dWi4IgiC2YvjQcOppikTHx+5xLH509I8wOTcZvMKBCjCrZxbu+MAdmDFppnl6tU3GGSejbfRQ8uyPHznxsRDByMT0BNE4N7OXfILJilrwFKSZCzI3iYPhTHsbmbCMoZFJR4BpSO1RVQYCdbGkU5G3A11xY0+uR+t+wExELxKz6/bH8OlFj6Oe41L6GhkhcZuqqOpSpYVMov56B20cuqQAFy4QYGzVzGiZRDcyMTcjMelLOjANk4RKUDvxBB8sDQaGMzGfqWj0D+b4jUz0OhfLB8+9zDGbH1lPtc5YQkIkWXmamMaMhjUOCkBu4hGFIEF5UmO835DNj7s5uI3XkZWBaZ4b2lFKYrqCwjADABxFgynb1XXX947YgFM/sgLnfGAVPvzhlfjEKWvw0qTgcm4SXnKgHGNdx2ly5hVDMycdI5OMYq0W1rCPM2B1d3qmBDrzTCvw5q7iVvQMG0KtJ+T4l7ImSzKLA0wx2arMlMppmts00T7mfkD4956kzDdltKqkKq7ZmGFqimhCkHg/THnprlMDzTBiaAt9HX1GcXHOjco5rqoJeh+fUJhQzVPUNBThHdvRMjIJLFsnvpfysI/LBFLidyw4GAfO2yu2/ADA726WG370T+rHfgfvN/J73QBaZX4FoPrAGg1Jp6+deMQi6fWnn3waS5csFV7XNfeZOmkSfvqVb+Kp2/8fTv3wKejqFpsFx0HGyeCYQw/HHVf/FI/8z+/xnnceBUvw7qg77ucc0XeS6Y3H3lfSMK+nhXwe1331W/j1d3+I7adOiyUPPV1d+PanPoN7rrsJU7fZBgCUZnVAdVxpCQzxGli29/K7mbGWXyKQFvWeWHgPgC6Mjrn1mfovnHPxbJMwnPOljLE/AViIxvmgA8CJAK4JGdUVAG4UXHuLeQ4JgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiBCczBG92T4d1He0JIcxQDn/BnG2L8BzEOzScvBLcsYQRDE1kSplH6aAiMTAFi460Is3HVh0+fu6lUR0quKHnJOTls87BVI1U/1ZYUAQ4qwmBqZxAgvNtY5L6sFT1aAqjQpHd1QGkYmhYJ5WEMRDesUiyxUwul6WduK/fy6QmLZCcxuxYUV0FdNzA5EossoYn4Z3vI0ya+XUkjBcRqUAnabs9r/TFC1O65Qk8vqL0qp/efDXbhrzgDgqmPx1u/6zohGJuPGGYftzpuboAjxPr5GFQeNA17hZJxGJiWNiYBlG8dO5ujJJ0QGVFWDFP26Z13eOqu/gsaHtH9ESCrqmDaQS8rIpDleE3MLZrngKiW/QqjtbpEbmQxlxO3FeF6yRysmLT14oRjCyETDAG1dl4t1Xeq+lLEbDUEYmLaRmow4DXAaROPZZvG8KSIjE8sFsooy1zElW91dwZQN6UjNmC06+7lN8GTN5S54iDXCaIDoRib+oUHVt4KwXPUJ6CojnyDTqNhIY/CKMYlEy2KMEkb83WqyjtlYrDs6BZoNRBzmbGZjXL76vqBrStIKQx0vTUsrDkzpmVL/MRKqtalj6RmZBN6raYAYyMiDhqwLyW1fOv+/cNgHT4maIwBVU5J5e8/D7vN3F94zc9eZsD1lUO/rnKtrT9t0R3XdE9273n4YPnf2uYH5GMi6GMxybNm8RZgvy9AQYvup0/DpL38aH/vcx/GPe/+Bu39/N/7x139g3Zp1RvF56e8djwPnvxWL3nYoFh1yKHq74zcs5eCjRtl+WjRU6LwCLXr7oVh44AL8+q47cdUvb8CjTz+lnd72U6fhjBNOwoePf89oGdcyEaZdO5Z3fZxmoTEgRiPUNl55E29ixrKRiej0m9tTzUUwt6NqZOLnaIQ3Mvmz5NpO2jkiCIIgCIIgCIIgCIIgCIIgCIIgCIIgCILQ5yDPz9z3869Tzkvc3IyqkQnQuKW4nzE2m3P+dGuyRRAEsXXAi8XU02QSIxMhUYQLtU3GGSujLY4seY1MahvNWd7QBIO5YKYbnmPcl91kXFJRG5kEaS6TMjIJe1J9FFghbx44Y7bll0lMbFTC6Xr5q4xMXM1KmdI9RXht4Y4L8adlf2r6POg0ZxUiMbtKq26KN4/GranW50oxirOjEpQXBmZ8irqq3amMTGQnQEcxW9hpVQZ7vpoFDyHG9OZgfYfZKfR1rF5zI5Px+fGR0laiUZ5BfZQxhqHSEPKZvNjIxCBbOiJiK+sbOzXnddG4XTWX0hfuWj3m9R0GWfdRCdXl8UYbkwayyYicg8Yn3TkJCGdkwhUmfHxwWHp9MCvOl4E3AQCYr+8ikC+pM5tRDIsmZjNBIvQ4zUfiNDmzvLYRmYz4Rk0ygoaSLavrpKhh2LeqO9q8poXV3kYm3uGk4lbgKsZ9r3Cbh3jXqTAOW7J48TdL1ZpcFIeqeavWT3GaBvlJ2seEs3hbmI6ZmhFpuVLFSBjxdxBpmmzYlg0O3phmiOR11051E1ovoZ8zwN/OYQ5m9s8cee9qtTGJLv5pq7fQa/wO6UfV6hzL0SqvoHzVDRCfvVMm8Y0XBiZsmwe8ZT4G/x3Pn6wsy8KZF5ypFUbLyESznnXe4wv5PC4+65zAa6u6K0qj0ep3rGWN3I3CGZDL53DIOw/BIe88BACw7KVlePzhx/HcM8/h9Vdfx+uvvo7VK1djaHAIQ4NDKBaLyDgO8tkcuru6MLl/IqZOmoSZ03fA3J1nYs9dZ2P2TjvH1jdEMFkhpzj3eFOS5imAbCaLU951LE5517F4ffNq/PGpp/DQQw9hyZIlWLZsGTZu3IiBgQHkMll0d3ZiysSJ2GXHGdhjl12x8ICDsNvMWcK4VWs8wGesmKqPCQMzNOAR4TgOnlj+RNPnu0+umhtV3AqWrFyijKd+v4ylK5eiUhrGjqvM3ovG1sxHiBjLRiYHI3jd8a+0MxLAA77f68vJBWEj4JyvZIw9C2AWmk/+2S6OTBIEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQSh4i+/3+p6hJZzz1WlnJmbukVybB4CMTAiCIBKEF+Vi0CQwMTJhTgTxYS29rJPVFsB4RdojYphczigbLIowM8bN7LzsEwqEEPdZAfvIrShOBRKGNASeprCODvOwhqY6rLOr+bPakk5l6GHVGq6jaMC6guTpvdOF1z6074cCjUxMBPgVQZHFKXz24i1P02Zab4Vtb2TCmLGQTtXuOJffMD7BQ9+Pe6QLOD1E2XseveQAW7IuOotmDYuNNzcjGd+RrJGJjphKZC6yaXiT1MjEpG/rCKpZ1jePi06hFoXPCYxMMob13eM5XZvxaO47Aciii5JUFBMUABiQmHhEIWj+MRnjWRg9Y0U++LgqIxPJOsPYYMtrZJKSwiuMkYmtaDAmc1zWbjQyYWCxzpVxmpx5x86q2UyAOt2ArKBcwxiZ6Bj2re5OcKL1UX0/Sy+9KFR4ZUTELcRbFa76uSoWYEteiXYqZcE5H2lTJk3e5kxpBKky8ikl6Zmkar5tpl5N0tRlrBJG/N0OMC42iBChu3ayA9aZYdfTtmVj9qTZWDe4Dq7ropApoDPXaEqqa3SQtDGCiob+woGpPVNHf42YNa4YtzJ2BhYLP3gFllWU7wNHY67+f8ihg4GlYu9lksaIkUmI0DJDlsD8KO4Nnd8QadqWBRPLNlGbm77jdEzfUfwdV/eQhcnrI5hkS/OkcbPs3haNFVG+rp4+dRrOWrAAZ511VsPnxSXPwi3qR5yxMii58r9VNBqZpFhmDI3vfQnh7ds646eSNlvLEa0hfQvWGGCMTQdQ/8uKvym/kHJ2gnjR87M3f52Mse014nkQwV213yhXBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQesxF8z5BDuDe9LMSO48A2Fz72f+Mu6WcF4IgiK0Pxan2ieAYbBx3zM+LYzURS9bOoqJ5crNXmGnXDCyYZQFMXyTEkj41OizFRqkAVwiCAQSeUB5lo7uM4TSMTAoF87AZAxENc8GyWeFllTC93nQc/1HKPsqabWxG/wzhtX233xf7brNv0+cmQieRwYpKrGmKt58bG5nUwhXb6KjKQCOTCEoERXNS0s9siJRHUWt2vxfycN9YrrzP33fWdZhIoapY/ebbwid0TjAOGwqNuhKNAxsGNgAABsvBRiYmfUXHvIDlfGOnpqkZK4iMTMw6KevtNQoXFtm4HkUwGlVsOpBLRuQcJCjXnZMAwApTna68n/NB+dp2UGLmortOrMM8gra0tHT5EI4GGcWQaGIEkHMaDf0YWKzGZFHNerw0Cf9iWnfkBBNoVmXCA2BYY8ha3W0+p2ljt7ey0ds1K24FnMvrsmF9pDI9AeAq+v4cdOIrh34FvXYvWIXBNlhEMa5ugqoxvkLmHSPoGjjq0mrjCRNU/UJI2o/qSy9MrnXXP0HC77DvTQwMjDH0dfShv6u/ycQESLN9xJPOZs/6b1LXpECjF1NUdZOxM7AiCv9N1/tmidX+k1YdGyQzYmQSps8zvUTimmVU8TCweA0aQtEec6glsxFIc+7xFEekVAWBmaUZa+32/k7F9zIccEK9NCYBS8XIpCHFGNtElO8PiTcPY9LIBMDOkmsbU8uFGFkeZHn3s0rwuflfsgiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIELAGOsD0Ff/1Xf58ZSzEzuccxfAUwje8jYr5ewQBEFsdfBiCMVdzDDbQDRhYh5Rp7bJOOtktcWRXpG2d8MvMxBCRtmjr70BXAKv+ESR/t8DsAL0f0n5sgylYWTS0WEeOKu/YV7VXlTCabtW/qoyr2h2rVmT5EutG065AcfPOh62a8N1XfAKx7ZWj14iEAul4xQ+N8Tr1a4ax1INqWPUkDSlgKZnMctY2KAS7aqwLAvv3/P9gQIq141mlmCBYfBP9yjv86e8vsM8XavP3MhkYudE47Ch0JgDRP1q43B1W/1waTjwuomxkI6ImOUb53HdtQArBI/bLGMmxGTdo2NZEnIe2XojiolTVJOHAYmJRxRKAdVgMsYzJ8QDluRrV3dYfn0oIx4njMu3BSYQhaI6TaUBmkH38RuZWMwyMkQREefawC/Wi6uWsoKGki2rUyg54ctqVU96RiYsZVGmLsyjlK+4FbjQmO9ddZkrfUk4x8l7nYxHLngEz3/6eUiGESEWb3yOwGQU+Qgaa2NDkXYc/SeukaJi8fTNN8YA3LCE0xY2m6Sn+2xBRh2tNKeRGhfIiCHLJYej5FRNL8blxmGb7m1iTUNVM1k7G9qwQljPToTvA328GYaOejmF6Re6/U21Fo5qqjgCg9Y7bhx5aJdvduT9Ib0W6k0pmtefyMnE7Fl68j3Sysra2daN5wxAnEZQscVEEOFp77c+MeMk15J8RQqLrFxlefezVvC52B6fIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAgiHqZKrj2fWi6S5TnB59NSzQVBEMRWCC/LT61PBMdgy2QUcV3t9NasnYWrGY1X4Ok98dFkzzRrh12VALhPANxkbBKAHaBmSMrIZFhD4GkK62w+VTl0WMfAyERQWHVRiUosYtWUGo6iqlSGKF4455g2Tr7UsiwL3zr6W1h64VK8dOFLePHTL+Ij270tdBp1RP0uqiBfRBwi6HpJtouRSdnigYIdi1nG4kOlaFcBsxgufeeluOTgS2C7NrjLwV2O8c54XHH4N6NFDmBwlegcSm8mGn+NZGQy0dyMRHlqcER0zKxEhgKbhjcBAIYrwUYmJoIwHfMCK9dofqArSGQdweePmpzQzphrNJbrwCVqMFPxnYvowu2BXDJjWlBbKBssFFiINSJ35ZOhOyy/PigxczE3MvHkOyVdXRxGJiWDOsrZAUYmMaqhohj9+GkSisYUd1aw0MiFMDLRWeeu6k7RyMRub0mbt+oqvAKuMCdpWBtx9dpAKdz2pMfLZZh0dIur359UOTUZV8OTgpNJTMQ55ryZCDIXbEfCmlp40V07BRqZhGzESQjkW2miUhyfw8SOiZgzaQ6mj5/edD1qq1HVjW3Z4Z9flBkTM+SIpFVnJuXv1ua1MH2eMaY1fsveYWLH0O25HY1MdOIOGp9GaJU/RxKFo9uHavczxjC1R/AncQ7s2LdjtHSiwFjbm//JaOVcRLQPyX4TlhzdkmvjAaxIKyOSPIjo0ohHZGTSgr/gEgRBEARBEARBEARBEARBEARBEARBEASxlTFFcu2l1HKRLC/7fueobtuTPTtBEAQRB0X5qfVJwAxECNWNwvXpwSRs1cikorE7u8J4gwFDw2ZziwOa2kLDPfq1wBHC+uBln0SurH6QIM1cUvqGoUwKRiYd5kYmyOifBqyqe5XBjlWrMkehstQS9blVoxJdmKPff0UGK25CYkxveqZCnLo4ptQmO7xFhioWLOPxQdfYqTnxasKn7XsaTtv3NJQrZWwpbsG4wji469biJVwZKfqhDRuV9/hLZX2Hqeibg/VNMAyL5pPN40ajjkXjwBsb3wAADJfjNDIJfy8r+IxMNNcCrNAR/HnWwMjE9s2DjMeubJMN16ZJxXEC+mDW3OxHRtAYZTLGsEx9vSehLF+78pIL2Zm8UiMTw3GxQdCWkj4sX2LKpXFGUd06fbhO1m48C9hilpapkYo4Tc78YnnG4unqecFUkw1hZFLUMDJZnaKRiZHRZIp4S9blLlyF5UeDUNMNYWSiWpN6xeKDg8r4AvPEmfL9STXOx9nX/KSibY0pDZ1yMDX8i8LYsBMZJe0yspiFCh8d38K8rmkbmQS4yLZSwG1i3hI5TQewt+nDhImTFHdGKxdp3dTqNurzx1F39RjCfj3AwGJZe4dISJu6gQkPMdo24PQIAAAgAElEQVTo9m9VjGHHN9V9DGzk+wRdjOslyfrUiNtrkt0cT3rjlLcvROqhoiwb1i8ATOicAMdy8PrG11F2q+9+hUwB247bFlknqwidJKzRwDKG6AJJcCERbVwjI5Q3A23yNbc2MiOPWWi9kcksyTUdExLRX50GNOIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIwQXbQzKbUcpEsIpViT6q5IAiC2ArhpRac52V6mirjZjtua+nlnbyWQNUvyvWKYUz2ljM7yobfGDcLVxpFkbyiFvcFafusOJWmHoZTMDKxOnXOwmuEZUxE8/LrFUVR1svfr733o3NKu8MMty4bmJ+IjBVUz21KxZNe1NYkMhBJm5KgDQWJ9MIStQsznzDFsR2MK4yrX4wWOYDi5gHlBnu/UY2pkQmz3Ugn63YXusE5j1Ug2SA6YwxhW7NI3Pv86ucBAMVKMfC6SUvXGXNYvtHIRNfUTGRAxbIG5lIpHOouW66Y9r1KDJqpAYmJRxSCxiiRiZUMK2sDUJjsVeT93C3J05UZprmmLm12tDWiUZKcIVORG245ionWxBQh5zT2ZZvZekZqCiKbbHloEk7H5MKXE2QybiOT9R0uyhZXGtnFQbufLu+tOpe7IyLuULjqe5VF7ImCF4PnURWWG/xO1ZgP+Q1x9rUmxpA2taIzj4+h54oKZ9zMlCTlMrKZjZJH0hkmed1hMGhNboWU6octQ47w5Z2miYozvgB72jQwJ+T7fsSshRmNwxqZyMrTzluoDIm/EBnIuugoxjBI1rKQVp2FMSMRhQkzF1afI/yzKL9yDRtVmPsMvzMwNWJoj292gIwleX8N8f1sEkRbIgdXiG4f8t89rjBu9PslWbg05zAGwErhy4SEaIW5G9F+tPdbnxjZZpgFqeVCjCwPOht5xgs+36IRB0EQBEEQBEEQBEEQBEEQBEEQBEEQBEEQhAl5ybU3i5HJZsHnsmcnCIIgYoCXFGLRBGCO2aZf4+22NWFezslpCWD8olzbs1nZZL99JCOTGPca87JvY7xCEAwAdkDBGeiTQ5GGkQk6gwXxYWBZ/dM/RaL5+iZylWjR5gzgwfXgRUf8W3AK4W9uyIy+AUpZ8PxxiPKD4x0tz6gil7YxMhEIn23LNhYjmJgMeIlmzqSmPKAWCvufYH2HmfDH0hCWC/MSQihtit80RobIXOTldS8DAIrl4HI10cnr9A9W8L3aaQqAWGdH8Oc5/TG5KekEmrLMP8J4XIohn1tyyYjjggwxTAT3LKtuF9yVP4OrWNoOSsxcTOelZEwg1P0rX5I3ioxiiWcyx+UzjX3ZZnbk+cRLnHE1CShj6us5QQfPhTAyGdaYb1wLWNNpZtCljdPekjZvyVZ4BS6XjwPetRFX3Auo+753jufFYWV8QVhcLRRWjfOJrkvjEq9LiCv3iRq6xEEC64owZgem7wRpC5sdq/F9Msywr7MGEpVVWFF9EuVhbD5pkhVmhTcxiQFZ3cRpBmJP7BNe25JzpcZuXsIOdVHbAUvQNqNuYBJ6XNB4lLSGVwYGaLzj+gK3HTq1nbHFRiasoP6eLq6W5S1GFuVFUxRU9/3IOAspNgjGADu+XtIe3zZq0IZ9j9Cn3ZfRIl4RfM4AvDvNjAg4XnJtmUY8fiOTerd7s2wGIgiCIAiCIAiCIAiCIAiCIAiCIAiCIAiifZEps8bcXicBoufQP16bIAiC0GIsGZkYb5i1q+llnayWONIvym2lkUmcApAmIxOFIBioniDe9FlCq5ChFIxMrK5u88AGoiBV3YcRTlsccBRaVpGBQRDdWbMyMOm/oudzE2pEsRik1KqsGIPBRRyIhKsWs4xFVibGFY2JSwo6BlG/O1RS3+R7hnXGRiZGwXxZSVDVoSHyErX/5ZuWAwCKbrCRCTc4hlmnrzUZmWiOJawgMDLJ6r8yskxjeSZRc7LyNO17JnXkR2biEYWg+cdkLGa5EPVZlq9duULhPpgRjxPG46JX0BZTg7KzagOLQlH+rI7MUQdmdZRzco1pWE6s5gqR5yYPlm/BHtdyOifIZDaEkYnuumJVdzrvasxu79PlvcOf67pqIxNvZYcwbVSZCoJ7rg8NKeMLwuKApRAKq9p/JdFqGjvq1Ep6Hg3tAw9nWjAW8BuZhJmLdN5zRYL80N+pJNAV/PNReAwyoxkkqlGe1MjEayoVsf1aE/qRmdgN5huvB7Icb/RqmH6FzAZjEa1IQparSRo6Zan7juoo2mrYlJX3MYAZ9gtu2J3iMIWMg6wt/nMvy2bBJOtqxjiKkncZUxIpGm2jmjapICkMTNOQtZ2I828LxNhlrBqZLAVQn+05qiNGfbR8C2PsoJbkCkAt7b0C8gUALoBnNaLbLuAzDj0zFIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCBNkO+Q7U8tFsoiew+yYU4IgCCI8CjFoIhgL5cxkBPVNxjknpyWOLPuy2XCKrsmuzygnnce415hXXN/vatFHkG4oBj11IGkYmbBO8yUUy8o85gRhBEYm9U3kboimYbuArWjA/jYroy8vPtFYioFBhUh4ptBXG+M1LDI2DKj9t9QmGgWRSNyxHHMjk4i712UGPXEIJPiQWqDjL5X1pkYm2ehb+a0E5QA6xek34aqzemA1AKBUCTaIMRF26ZgXWB2NRiS6J8WLxm2WMxiTneQFPLLyNDUkiWPMLNtAMUbTiTpBY6WOeVwdK4yRiWTdwoeHwRXqRpmZi0meAfiMTOJpX1ZOHU+hKL9HZWRiYkCSdxpNiRzLicdArEacRiYNa3cgtvV0TtAEVUYmLrj2umJVd/xi1SDGkpFJhVeUIu6GtVEI00blmsiTHC+afVXJOFMaQarm4lJSTpKIz+gnDSoRDELHKkka5qUtbHbsxjXgUIYr1k3xGLGFfc7QZa2RJTtF4XvavUM2HjcYNsQwfNnTpiE7Z2dkJvUgM7ELy/rKeK2vDJfF6fYfUwmGjcYgOV4z1+Jc/dSMMa0BPudfO5kSJklto4sqvA0nLJ13ab8poB9n4njhNXt8V3wTtqf5RPp+V5Qf3e8OTR8rzfbAWIS/aRBEezAmjUw458MAHkbwUMEAfJcxlrrXYS3Ny4Mu1f77SC3vYakbovh5WTNrBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQugxIrnWnlotk6RJ8Lnt2giAIIgZ4WePk0pjQFS+PhDPdm1wTl+acnJbQ0i/09Z6iKxPwi2CRjExi3JjtMzJp+j0AmzcrQ1QniptiIqrVJm0jk0xw3ddFUspT4FEtb1tRVToC7IldE0Pf68VE6Crqd3EKn0XxmjbTerhU2mMIioJit5ltLPgI0+6k2JIKNDC88cOG1fnz16+pkQnLRRejNAnm40RD5FUWFP2m4iYAQMkNNjIxMQ/QMU9inY1GJroCINYZ/MrI8nIhWGCYjN/cIP5+Lhvfoo5LURnIxm+MEGSgYzLGsxBGJrK1q7t2jTK8zDDN1ETDOzfGtWSzO9R9JF+SJ6Y6sF2nD4+kmWk2MhEZKJlgbCYTgHftDsRXN1lBE8wp/CGLDtees1d3pWQ6GeU9JQW87x0ud+FyeeNuMCJQ3AuEGK+8YvFiURlfEDZXTzeqMaiSpHZWkXYc/SeueaySgiEZkL4hhJL2eC2JTMZqnus358T9dHPOjaXthDUdTMLYJdH3BD+6+Y/4vLK66e/sjxR3ECyTgT11Kuxp22LIYE2rfFpW/0/EdpDgAFI3jwltZKKBo3iPD98XQxiOmX5n0HaDsx4qIxN78mRk+rvAPIsGxjic3gKc6dvFlg9vMSZhVM2063cMVCxDKkYm2uNPyPpjYG+WpQQRgfZ+65PzB9/vDKPNfx6A76SbHQDAZRg1H/H3XA7grrARMcb6AGxf/9V3+WXD/BEEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQYRli+Ta9NRykSyi5yAjE4IgiIRphZEJsobno5nuaa4Zp+ScHFwNcaRflOk9RZcZnBwaycgkRniF+34PJ/7wF11SB4IXnWS3VTPmGmyo95BRi6yb0hQYPowamajjsFzAURqZhM/T1J6p4W/2omtExFxh341spCEgDoOUes5KCbfHsIjyYVu2sdguajlJ+1EMRiZ2Uf1c/lLZYGhkYhWin9sZJMqMDY05R2QCMFQZAgCUKsFGJiYCUR3zgqhGJigUguPN6ZtLWdnkxUey8jQ1yzAN52cgF/+4FmSIYWJIwQohjGkq4rUrD2FkMpgV58vYRMM7z8dlZNKlLouCwsjErsivmxiQFDKNfdGxHKGBkglxtXMgQLwbl5GJIJPZsjyBosFUs6o7nXc15oyd0+Vd7oYSb3sCKG8ZV5bfwz1x8CGdM7VHYbxmDilLR7E2TtRgLwHzhqSoyMz0fEQ2I2gXEnyMtMsoazev3VaOqwR+D1CyOVaO0xwHBY8T9p0pifLwfpekxRhovsJhjQO9hd6RX0OVaxrPG1bwz1ik/IRtb1FGdR4ytNZjMBba9EdGqJwZfmfADb6PBZL2ggoXOweHY6sXhPa22yI7Z2dkp09CZtsJyM6dCWeHmrw9gX4SLUpBaM36NV6GpLh+YWCxGpmE/Q6m4AR/F1KnOxfuvJMkjLqIsUd7/HXKjOsB1L/1rY+6dTMTBuBcxtjX0soMY+zLAM5Ho4mJdzbgAH6uEeUBkmuLtTJHEARBEARBEARBEARBEARBEARBEARBEAShzxuSazumlotk8T9Hfc+H7NkJgiCIOGiBkQnTNUIYwWzbOattMs45OSj0nA2UfHuTG8QntoGRSSbCZucY9xr7jUzghhP+277bEvKgSFagB4BFdGAxEc2zjMDIpLaJPIyhhM1DCJI1nm36eEM/PA3hIFBtuiLRkpvQ7mmvED3q6d1Jt8ewiPLhWI6x2C6yWFzWFuIwMgmhjPfX76YCh8lcYRX0+7WfIFFmXOgIToIMJQDAZS5c10XZLQdeN+kr/nlSBuvqavwghIBrJKzEgIrlQxhf+MP4jUwS0PPIWqHpuBSX+dOAxMjDlKAxStQWZVgh6tPdsEF8be1aZfjBrHjdYzovMe8aMab2ZHXLBWsAkFcYmWQUS7ySwZoo6zSOdRkrY2SIIiLOtYHFGiOLS7uXFbw+qYxMhg3M0VZ3mxl0adPmRibepupyVynebpg3Q7zrjFd1XE9yvFRUxheE/10qCNXaTGetr80Y0ra2uxA3iVpitf+9Gcg4zeZ/LgOWTShjZU8Fm/MutuRcOBM6sWIbW/udRVRO/jkhKjr1YWxkYoJm/4j6vixq7x2ZDu2+mmQbry+jw6bAwKL15fAJaVOfA8OYelUNWTQSsRgmdk6UpB0P1XyZLrwN20mCQ2jYcmEaHY5lMrD6+mD3T4zwPbokfk+BRHrNFD2S5neHY8JQjVXbbto57e/sF17j4NLrBOEn/tEkJTjnrzDGbgdwLBrHXa+ZyacZY3MBnMs5fzWJfDDGtgXwfQBHi26p5ed2zvnLGlG/W3LtXxrxEARBEARBEARBEARBEARBEARBEARBEARBmPCy5NpbANyUUj6SZA807/fjkD87QRAEEQO8BUYmxqcXmu4UrqVXyBS0RDB+UaZjjW71ZCZGJlEEgjFu6G4yMqmENTJhKHmma9WJ4qYEncQcJyyq2DbTLLxSpimo+/r2dzeEKNFyGRxFVVU0mthOfTuFv9kD0zAfANCoPPURxsDFBG+8YU8pbqLWvIttssNbZBgRxcikEtXURyZMiWHMckI0kKYnYAx2toKKZsVZBX0zDD85OwckNaVqnDotEjlbloXXNryGCg/OpImxjY6g2upsNDJhGmsBmQEVy+dDxzMSJqs/jusiMx0x7XlxTbsyIw9TgtoCZ4ALDktjjGIFdX2u+PYd2PjLu9B38UeQf/eJjWmuW6cMP5gR14CxwZNnPIxLYG/3dABYB9kCOF+Uj5OOygDNYGlayDQarGTsTKzzeZzLS5slY1qUEZRrTmFkYrLGXd2dzruazpjcCrxDqstdpXjbuzYKLfSW4Y3D2MhE3QBV7d+kz4ZGVQYx9J843vJYUm6agXjPV28tVVOFZJ49bUl2zg5ed3MGbOhwsaEDyFpZTJi0HbD6eSCmZUvY+TkJo5xUjUxSRjRubdO9TQqJI/4uWosvcjtgdRmzHKNerRFIu38zCxO7JmLllpWCMSdcoYfKoqH5Kdd4N24IZxQqHM+/9BL+8uTDyvsYGB4Y90CktAaXL4dTMg/f092N4w9/Z0OBRJlaRV1FZEQaN/f+859Y+viSVNJyJk8Ay2ZRenW5UYOateNOOHDeXtrhegu92Di0ERuGmw09JxQmoCvXFRCqGQbWLssaooW0ydfcxnwGwCIANhpnJK+ZySIAhzHGvg7gSs75pjgSZox1ATgPwGcBdPjSBBqHhUrtvrBxZ9Fo0OKN6znOudqylyAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIIgKc8y2MsTUA+tC8PeqAFmQpVhhjuwCYgNH9Ht5nfLkVeSIIgtiaaIWRCcuYbZk01hHURCNZO6sl3C/5DC+84pOqgF9PUcMy5uKVWMU0buNz8RCnlAONfhRJ6sdEhg1xEfUgZpbVNzxgWXmbV+iMAVTLXyWADBNPnV0m7RL+Zi+ahjwysaFM6B+Fijdew65Tj8E/DrQKUT4cywkl0A3CWLBfR2bolJJoJah+7QJDRVNjbHXqm2H4yTt5wEzbrERHBCQTOS9evhhltxx4zUQc6zf8ksG6feIaHVOomI1MrHxj2kkc/uxKqsx07IvcZ2tsycU/ronm7ooFWBrLJdZRUN8EYPD/Knj93Csw1bKRP2703Fp3w3pl2KFsEkYmngKIqZ5YIQ9mueCuuFMXiuLEGAccxQOZzHF+I5OsnY1trtQxRwqD5R87Y5qaHMHrUzYBI5NVaRmZGL6ftQKXu8o5q+HdiYcYhBRtw7vU4kPD6vgCsENkQzUGuaw6X6dtPBEf8fTxJIwmtmpSLk7LspReCH0dfdV7DQZuUf+wQn4RkET/ylimJnoGedHtHyENN0QEhWRgoYX1aRO2dKKOM8yKVq5hCPP+xpimcYHFwBjD9r3b4+X1LwdEGDIepTcWMze6MDQySZIHHn4EX7z4i63ORih22m561cjEQ7RxTxBW08DJtM/97KabcNNvf2sUNm1OO/Z4IyMTAJg+fjo2DW3C8o3LUeEV2JaNqT1Ttcba6AZN0YIT7cHYeesLgHP+LGPsawAuQfMs6zUW6QDwJQAXM8b+F8ANAP7GOVd/Y+SNkLFxAA4GcCqqBil5NBqX+LtFPQ/f4Jw/o5HUUQB60LhRpv7f+3TyTBAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEEYEnAbwdjYexMAB7McZ6OOcbW5WxGDhccu3J1HJBEASxldLzkfehsHgJUCrhklfuhA0Ltls9adx2gWnrHPzHUx3xJuoYbpk0FpdWN8dblqUlUPWLchuNTPQzE0kgGONmYV7xbfOshFMYe8V3SRqZbCrEdOSyABbRKIXlsvphBCY29U3kMsF7HcsFHEXRhDUV4C7H1HFTQ93bhK0pRpA8WyUhrwtvvKZNldcaedsYmQjEzxk7g1LF7DjeMO1OBtNsC0ngF28xMNidGWCD3jhidUWf5zqyHcBA5GiC0RBryYwAnlnxDCo8WBQvOk1dnlb4e1lXT+MHGu1HNo6YGJmwnKmYNDyy9YZJWavi1GEwG/88K5p/KjZHRiPjrBC+PnnFxppLr8S0BiOT5lOq/QxmJEYmhkYazEnAyCSbgeVwqTFTviROTGS24UVmfCQiyMgkrvk8rjZex0bjA8ZlfmC7HJzzpvhURibDkrYnYl0nR4Xx/8/em4dLktZ1vt9fROR6lqo6tXf1SkMj3TS0ICibiI0OCI7gBopcbLiPo9dx1OujjMswgM6d61wdXHEenHtlUBwHuYqgIlzGBUF0VEDaBnoUUHq1q+nuquo6VedkZrz3jzx5TmRkxLtHZp6q76ef8/Q5mfEu8e4R9X6/L1LfgcOWJZjTdRS7Zq5y5AZzkilBroVpo7FtFJ1MBn6uZSZDQsDC6EqAUaKMJkU+GLtHjCQjxbF/jVz8EZHGPBEWUZ7ttI3tvLovKahdIxOfcbsujG1cTRjlpI6C/nkS2qyqpqe19trshxbFOpe2aHnDwXmxfH7zKf/JM7CNoen4PhzW4jvtf627hhuP3Yh7z96LreEWBIKN/gbyh+/zyHENnkYmyjfc5Td1aCkWR2QvwTFLvrZcBlyLfa27hrVuxfhKiAP72shkhzcCeO7OT9lMpGgjJhgbj3zDzg9E5C4AHwfwdwDOADgL4NxOmPXCz+MA3ALg6lLcKMWP0mcKwAcBvN7xnn6gIq4J73KMixBCCCGEEEIIIYQQQgghhBBCCCHEl49gbGQCTO/DaAP4egBvnX+WovFyzXcfmVsuCCHkMqX38ldgIkd8z0/+vyjp/fDUz3aiG5n4Gnr46kmKYnujOKxAWZQ7dYJvmgBwOyE97KTzeDvuy1oHZSHuA4BE7S1BGtnkDuCeQ0M8uNrsyfM+JjRTtH2MTKrrfnLCtE27TJUYBZDWpgJq5yRsDyR1bMeaLDegwQQwbWQSmkbZ0GhR1BmqtJIWhvnQK85RaEdONW3I93RlR8piJBFBut4F7nVzFJG1leC8rLTC4ygyJZ5zMDIZadrs5x7+3Fj8XRGdT1+xNU8CAFmfFty4GOHoDKhcjC/2wnRKHzhHYUQnlPMV0alILmKb7fiTeJ0hxsjxXpNVt3508f4co7vvQnrlVQAAdeacMYzOTMLbkKM4HkYSQEu3A8kAaDwTelojE3M+dMZHdbTT9szfLmOBDl8jmTpm1jqxpqYclUYmHYORiY85Wp4AZ3tDHNps1oBJfI0m58Ze2eYqN4q3p41MLMrd1DYKUahtPwO51OKRy2Z+yBMFNOH72IB5Q5kYPTxpuXXkIDOC4ht413CRudTMW645dA3+7sG/qyyrI70ju8Yfic7Nroa6srKNq4mybqWeY7hPVlz7cuDtVq1Pj68dr0hGZkwoF4HxdnfKT0TCcmtbD151PP6fTXmKiFsahbVTmqS46uBVu38PRgPYnqZgypmI+L8zcHg2BqrXbLHZ7yYpQY+ZdWWre19UGc0+L8R9wHgcJpc7y/7UZ0QplYvI1wH4UwA3o97MpMpw5GoAV8GO8qikar4rpnM7gJcoZbDdLEYk8hwAz0T13HkOwPts4yKEEEIIIYQQQgghhBBCCCGEEEIICURn6PFq7FMjExF5PIBnYPqwmgmnlVKfnX+uCCGEFIktKAQAyZoV4s1QSM9FsFkWGxZP0RXHDdkAIO2AraIx93OXd1KOLI1M8urfY/InX3ShVgwdC8nCClPaHfNFM2Gq635ysraNcDobjc1MdNgaU7QkoA9mbhWk04s1Mb4AEQw6UBCiCLCdKrRd1fiRqTNUaSUtXMRFrzhDTV5046DMy8ik4rP00CoANyOTZG01OC+r7fA46nApT908d+/ZezFSo8o5xUd85WL0I2ulk4MdTJF044j0evVf1pB03cdxV3SmI759L5b5UxNGJnUGDa7GINJ3Nc8TDP/2E7tGJvk5vZHJxVaOXJMn36G+aAIRS4MnvQ6Slj6yrs7IxGKtVqy3PM+NJmdKqZlrOlnH3kjNQOypNi25IMUSSKockIpBs7+lj38rc+97AsG51RyH3KY1d0KeU+ZAcWpTShnF21N1nZtNEo1tY8rIZMsYXxWZxSBuM843tX42sSzy4uTwQYictw+wLBkPxMfQw5ZFiMe7rS4ec/gxuPuRu7GVj/tUggRH+kdwYv3E7nVeRiY192NtZNJAeWTJHMfYOVdneURKkKDbcjcaBC4twx7b5zc/r6RxOZlMvfaudShXTfuPboLgbWTiZ2jVpJHOfjSHKD6uNtHzXIxLxwF8H8T287gx35ZDsxgCXAJGJgCglDorIs8D8B5MbzKR0v+LhiYofWdMpuKzOnMTAfAXAF6slDpjGf+EbwdwT81371FK+dloEkIIIYQQQgghhBBCCCGEEEIIIYS48ycAtgC0sXe4zOT/zxKRZyulPrTA/PnyWkzfS/H/719gvggh5LJEQc0IBxo5VbLluWXSV7tT2DztIgIuC7SL4hNxNHMAAGkFmEc4njiqY+ZIuNzOlaR4injSQMP4y+su4m3PPoeDm80aIEgWFr+02+5hOtVhJv3Npl22LNS9toLxXuYu/N/FUYwgSf3py015gxTLwbepFnM7WAojk2qBQytteQu+gk0RXIUpTSDlPwXpkUMAHnCKJjmwHpyVte6a+SJfHOYA3TjwwPkHkNecC+rTV1xMg5K1A9MfOLQfnQGV9FyNLwDpTYsrm9Dz6IYM73EplpFJJ74bWZ2BzrBm7KpD+j1AckDZz9X5F76w9/ujenH7hZY+P7nvceTF9hypQUm3i6SlL4fudn1aVuuGYrZtGlhF8XSyjnM91xHLrGfCjDFLpCWmysdC7fLa5ob79Wv9R7t+5fToGlynNWeKZjzLSLFr5io3irenDAtsnnUM8+xUegM/KVlqkQ2bbqgzYwrCtNZYAu2riEJy+AjkkaadfUJpwAz2EhQfr7RX8Phjj9de43PfraR6LLY2Monc2BXUnOvPMS2Z/FOMH+Vx62D3oHdcIUUf+xWViISNew0be9Y905VxbnuafDuViXFKkTAjEz8HmObY50O07yPQOHDNzSeO7w73eRl6cTneM1k4y/3U54BS6iERuRXALwK4DdOmJWVDk91gcJtC6rqpKl3zNgDfpZS64BD3OCKlXuMahhBCCCGEEEIIIYQQQgghhBBCCCGkCZRS50TkfQD+OaoPj/k/AHz53DMWgIg8EcC3oX7PyG/OMTuEEEJqaEK772vo4ZsV8TYymZ6ipk519zDDkE6AkUnE3c1lvYPK7bZvFs1LQg8Cf2BtiLc/81HceE8bSoAP3zy30LMAACAASURBVHABf3H9FiDAsFm9R7CRCbrupwtLWyOmUnYnq7fMh8ljkNiJWVbbq1bXVeEsdNWIIpsSYhbNFWLICAeZArYjRBSahwraadvfyCSwI5sNnSYehc1RHtNFBOnxIwDudIonOXDAfJGBA93wOGpxMDLRGQqcuXim9iRqHwOHOoOdWRSwsjL1ictaQFLN/ffdjZnEI4wrOjGlr1lGrDFzsx1fYD2sGQ5c15HS66F7NMFFB9OG/AsP7f6uHtWL2y8Y7t23jKdOHE/CBMG7cfZ6kE4KoH5u723XZzizKPxBYR6oMuYoU/V9N+viTKS2GTovlZlauyOiEUA+NjgcYM/QYn0zwVUP6ce1zx7zM8C4eGAOcrNlMCfTMGNkYmirU2sjm2cdU78tfKV8jUws+qSdkUn8MXxehOY8O7IOSdPoRhP7AUGgqYIp7iXF1nykSDerfl63NjKJrKa3MgqrDewRds7VWe7Xx9eOV15XZ25avsYFn7ZrWoZPijy4X6R27c23eYzykbE8AY+xQ2MukkhiPY6brhMR776m0gQYOgQQuzyFsH9n5jFBRiZ1OK8tl3cuulS4FE3RiDuXjJEJACilLgJ4jYi8F8DPALgCs2YlUvO7V5KluO4D8P1KqXcExksIIYQQQgghhBBCCCGEEEIIIYQQsiz8JsZGJhMmu+wFwLNE5DuUUm9ZSM4ckfGOqbdgvGdmcg/F/R9nAbxvAVkjhJDLGgU1s1m/EaOBGlMHI747DQunQI4chF9lMXiW7m31NAv4K/C9byDqfm5VVkqM7MwvikUXusl9K1N47y2beO8ts4JjnQg/BqFGJtLpuIepqftJf7Mx2OkMzBfZCsY3eht2F1bhaGQiCWrbr0t/dGFUqGJfYVAx3GAJtL11eWilLe/xYRQ4vssSip4FgvTkCedwycah4LQPdcPjqEMcTqvWmUFtDjcr53rAr6/UmVeUkSSfvQeHsUQ3bkt/pfa7+jAlI5MG9Dy6cd13XHIxY9NhMvPwoc7UZuQ4p0uvh9XnPwUXf/2j1mHyhx/e+/28/vzbCy19frzHxcK6MJY+LOl1kXQy6Jy0upq1QWaxvCv24VbSwraHa1c36+KhSPN5rDY+IS2fBO9gCqVDqXF5DdSeocWN95jX+Z885eeKNtjooWlHtbq16rJQrLlc5VBqr82JAo6fGdf1A+sj5Mm0UFOVXRyr4ncwMsGWX13YDIc2RleqISNAidQ/9In4BUsyID1yAOmJk0HxzIsmnnB8DD2sWeLy9LnvXqvasM5WwL3/hd7u+VcS8I6nmJyafm+2nxGRoL7c9Jg6ykdTc2FtPkSgXNqEJt9N9A3ZeTp1wuHZeJyG2UQnlJe9/Bvwom//euN1p9ZPYaMf8D4OwOAzn8XoXNx1YZBxT127cHxf5Nu+3vZLb8b//WM/4RXWlc4THwvJMgw+dSdGW+Ftat4GOMtsXEbmx6UxS5dQSr1TRH4fwA8B+JcAJiNt2dQEsF8pVfXRSdhHAPwCgJ9USp13zC4hhBBCCCGEEEIIIYQQQgghhBBCyDLzTgA/DeAopo83n/z+0yLy50qpTywofy78OwBfhtlj2ifKgV9RSi343HtCCCGAnZjKFcnmbGRSEJe63E9ZoF0UQ/oYmUin7RxmN2xMwUBJJapsTikHkBY0gKF6VZ2IO9RcwYS0As0X2h5GJjV1P6lXm3tuW7iUDC0r5tjKMavrqpCyKNh4fX2+YwuWm4p3u2FzHRvqTALaWdt7fLA1vqnFx9ApMuWxRESQXnmlczyyESYmAoBD/eaMTFzEWjqDoCGGteIVH3ONunZZRqry5CBsEs2J5tLvW8czIVlxD+OKbr3hO6LEEuCd79gZmLlQZ2rjOqdLv4/1N70J25/6Opz92CNWYfIz5/Z+37yovfaiwcTFe91bFO2KwRDBEun3Id02dAYWPZ2Ric26odCHO2kH27n+NUzV+NHJOtZjgYnYBoqpVBmZRBAd5oJ20sbmaM+Q78Z79Ov8YaJw58mB9poqBIL82AEAp53DOqXjaFQ3b4pdU+38BwDP+LsuXv0na7jmC+Pny3sODfHW55zFHU8qtFULobfJ5KYoFlcD93oE7PqkzVycN2QEaGQB2tf2lUcghw/PrHVdhLiXimg3kaQxMf4yl5GPkclKp9rkzjYu6/KwLbZ5F++c07NtkSJivLjJtmgd8854E5wXSWac+6vw7dEjNbLLhojTc56LgaYO033tlq/P0kzzbFiXloLyNpO0wTbuTur+PrFMTJMcUYFGRrq4RZyqd1+YSE3yGOl5b96M+0JIBPugjoiRhv/ZZXEopTaVUq8HcDWA7wbwkZ2vpPAD7JmbmH7KYQXAnwP4HgBXKaVeRxMTQgghhBBCCCGEEEIIIYQQQgghhFxqKKW2ALwZs8YfwHhPxQqA3xGRK+adNxdE5FUA/jWmd3oVfx8B+Jm5ZooQQsiYiv2ojRgNtPyMTHw3axeNF1zupyzKzJI9gd+8jUxioso77HM7QXNSKLwkUAGg2zitE+HHQNphQk3pdp3DpKdOVn4+EVONLFQDrWE8I5OT69X5saLlWH6p1IqAmjCtGYmaGsuUpyKjGCqWQDuEWiOTtO0tsgo1qjKOg02oYUrMnqopaH3J0yq+0ZNsHA7Oy8ZKuBlKHS6CsjpDCQBI0qS2T/hYW9j24bKXwDgz9vckmcbIZKVarKqNrxymgbWObpr0nUJjmTxcMJh5+FA3RtnMb0Wk34ckCY78we/g1C98F9affsQYJn/k7O7vanNLe+2Flr6l+657p8bDSO1J+n0kPf3asas1MjGnUay3XtazyNTsR71WL9p87tpeTKQl87Vo2jsl6GbT68GbDEYmf398gK2Wx/0JkF5x3D2cK67ruzkzZWSiFJRSePI/tvG63z60a2ICAKcezvDD7z6EL/5kwWzE4lnH+Jw5tTD0MzJJLSZamzFINeUjt4zi1EQqhc37QuwcGR9DD1uW2sjE0VRBQaGTVRsFzJhb1RC7fYWUr+cbMMerw4TtUWfuOTRF26VGcDuwNk/zK8E8z6dMtuoQiNv4buhzTZqBWONgiAnMZ86wrcVOK9zIJHpHCe3Euuw4rO2962mea4IpI5N9SNHJgVy2XLJGJhN2DE1+SSn1LIxNTW4D8F8AfAJjm9iyOUndzwDA3wL4VQCvAXCNUuqZSqlfpIEJIYQQQgghhBBCCCGEEEIIIYQQQi5xfgHAmZ3fiwfCTP6+BsCfisg1886YDSLyGgD/GbN5n/yuAPy6Uurz884bIYSQapowMpG2n5GJ92bbgrjURQRcFuVOiYdaHkYm7QAjk4gnbgICtb2992dut7G8WByhOlNduxo2vKNWPOpuKrxHPXae+YzquHYatU27bFuc4m4rJL7mUMBSMXMTukpan+9QI40qymXgK7Qphhtkizcy2a4p9k7a8TcyCe1rHoZOsSnXr0CQXn0NusfcyiQ5YjZLMHGkHx5Hkal6tZwDcjGfNF0nCPXpK7YmP0lF+x2bs9iF143bXkYmq9NhmtDy6OY537VVrDXZZtvHtqaeHKo2bzpjnSqk3x//P0nQfdm34ujv/Tba63pHjvzcnoQkv7itudJs4uI9LhYFlZGEbbLSh/T0Ysfedn1aLYt1Q7F+VtrmvlQlMOy1ehhGMvyKZdYzYUa0Hmk9rZSg19ozfmkNgcffp18ffvIKfdvU0bn+Ou+wtgQ9p8wBKUxSucqRDnL80O8dQloxeSUQ/C8fKNyPzbOOg5GJatDIxGYuVk09K5nSXoTwtWY8XWbjjaZwNfRwYomL09XARdc2bOOybV+xr6sJvLxhHMPalENY347/zB4UY5LYlY3nLY/UCMoih87mELHGGkOyu/nyuH9xHBeSHdl+k291rOZvqCmDbG8immgIIpgaxMqPZzxzncImeYz6jn5+XI7rJzLLcttXRkYpdQ/GJib/BQBEJAVwCsAVAI4B6AOYvHXZArAJ4AEA9wG4Wyll4Q9LCCGEEEIIIYQQQgghhBBCCCGEEHJpoZR6SEReB+BnMb33bmICogBcB+B/iMgrlFIfWEA2Z9jZG/J/AvjfsZfXogHLhHMA/vV8c0cIIWRC1YbWPIm/1Vta8zYy2dui6XLS+6CkfSye6i6OZg4AIN2Akzcjn/aoLl7cFSwqi1PKASApXBbaLJSuHmRcT1XCxBh4G+lM6PbM1xTTkxytZ3955XcTMZWNOL09tDEysauYxxx+jNV1VUjiePqtZoO/rfGKC+Uy8G2qxXDlsWAR1BlGtLO298m1oaYIsgRGJuUanvSpo29+I+7+5h+Fyu3ymBw5FpyTY6vhcdSSWnaWAHMg7bhcg61JhWQ1jU2UlepL19akv2qXiQJJ2fykgelGd1s+ZW2K04XNTty13SBDbRnazksTpD9rppF09O0/f/TC3u8Xh9prLxqMTFzWiUWK60LdvOcU58oKkhX9mqM7qC+bzGKQHxTqZ72zDjxqn78JYyMT93BVWHivOJGW1iyx6gYQrKZ7dXP9P7WMhnN3XOlnZCIQrD7uiwC8xyu8NR7PNvOkWLoKCl/5N4Kj5+ob3vGzLQw/+bfIbnwiAPOzjrFtTBmZ6MeZOmz6pM3aLG9IPGteTy5A/FojVvdd++5nXA09XFhmYfOMIVXA9bZlGLusw9qrl8uDcxA19U81zdC8kYltPkwXTM84/gnZtSPfFEa5nZHJTmbsIzYYmdimaLrOt65FlHNTFZFmXUxg95wmsR7mIq8Dwv2FNfmZ/EuwTSy+Y+8C1gSx1iHztky+HNdPZJblfuprmB1jks/v/BBCCCGEEEIIIYQQQgghhBBCCCGEkHp+EcBrANyMaUOQopnJUQB/ICI/C+DfKqU85ChxEJFbAPwnAE8r5LG8Y2ry+RuUUvfPN4eEEEJ2qdjPGip0r6Tld+K394bbdG+LpnKIo3y6fPHkTB8Bv3S7zmH2AvsHreTiBWB9ffy7zSnlwJSxSGLnfVKLaf/+MAVSP42gEWmHbdmVjpshTetAfZg9IxNzHbQtysNWAHzD0RvsLqzCVeiqMWBwFbjbUC6DGFqR7Wze8oJZ6oxMulnXWwQUXP5LIHou38Fknmg/93m44he/F/f9q59BPtDnM8lGkLKxhQfH144Hx1GHWJ6MnQSokHzm+6FlG6o1MrFEWhojk1V3IxOZzH8NohvXfddWNnOFDZsGMw9XdO3A1bCq0sikmwGoPwc3P39x7/cLQ+gWTRda+nvPfbXLaaGNxjqUvL+CpG8wMtmuT6xlcXRw0YDkUO+Qbdam6Lf71mOBCe/yr2FGjB5R+Hkg6e/+ftM95mebO075GZkAwOFDp7zD2uJtNDknik1Mhjn+tw8cMIYZ/f3fj41MhhadwdA2plr4cGCOr4LU4vnJSpTelI+coXvE0L46r8tr6mWZjTeaIpUUAnEwLrg0cDUVaSX1Y5nt+6TYQu8mTWiqmGfvcOrTNoYGTWbep+sE5CeeeVo1ucrt78khK67Gtd5I6f+u4VyC7PTphrySx3E75COciDeiIhiZ6HxMHDxk/Of2+Y16u3UYq3/XRdPQLV2O6ycyy3xXJYQQQgghhBBCCCGEEEIIIYQQQgghZF+ilMoBvALA5Njh4l4wKXyWAPg+AP9TRL5LRALU0+6IyPUi8ssA/hLTJiZFVOHzP1RKvWmeeSSEELJHnueVm6qbMDKRtqdQzjMvUhCX5g5Cy7JxwJSRicc9uBpglEIHhJ1FXdjc+93SyKRoXhK6+dmUYixBbBXS8TPS2cVR6Nm56mDtdxNRk43Qu2XhUjKy0JyoXOGKA1eYL6zNiNv9i8bIpInxZTubVol6t6RC3upMROZJXR7aadtbEBNa/mIwMpmHRKIsRkoKW/K73/gynHrn/4Wsr3cB6l3b135vy0on3AylFkuhTCIK+cjPacpH2FU2/KqjzojENkmdAZVkGSBu9yyra34ZcUDXv3xFdLHGzM1OoBtZCd0Y6WxkUmEqlPT183a+uWcQkV/UGxac7env3dYQbIbieBhJpCirq5A1/fjUG9SnlVncTLEPb/Q37DNXoN/qYxhJDRXLrGdCWhLj2ppC2XAg3WurJiOT+9eHeGjNr98JBBsrfnXjhIdJ46L48r+xu04Nx/O/UuZ2ZWwbhSjUtp+RSWYxiNuM8yptSt26hOLWujy5iPIXINpt4smhSTOM2MYdMSmP4yY6Wf07F2sjk8htJpm3ZNijPn3Xpi5t3aZcQ8re2ixhXmYqlmsO7+eCPDcaG02+d2oSxnzHGeEmde1z+z7tpGkTKJt6jDW2xJwOBDGavMHJxDYWX3OQRUxhEZ8p5skyz/dkfuzP1ksIIYQQQgghhBBCCCGEEEIIIYQQQuaOUuoOAN+J6m1aRTMTAXACwC8A+LyI/HsRuaWpfIlIW0ReKiK/BeDTAF6N8VmhE7OS4t644u7B+wB8a1P5IoQQYmaYVwu9mzAaQMvTSMJ3w+2UkYl9sEFJMzMlHmrpBfxVSM/fUyz2XmN18eLeH5ZGJsVTxEN9RpRBPeIqfHbB20hnEj5JnETz7Ruvq49rp2Jt2mV7aGFkYlNuCkgCNt0XjYGsrs+SWsFGE+PLZrtUN96irL02uhRGJjVDTrflP664jIeVOLaFJigLhsrCjPYzn41T//1t6GxU91mRHAe/79VR8hLSr4xoDIGKSAKk8KsXPyMTu+skq8m/pWmBGOZccTQ/SNYPlCJwCm6Frjx9x75Yp4hvtuOOabp2MHJcMMjK6sxnyYp+nMsv7pkKjLb08ZuMTFwM74oU58ZYAjHpryBZ1RskdQf1x5xnek8XANPz29GVoy7Z26Xf7lubGpmIvS6YEcDHOj0dwMFkx2RGATcajEw+eeW29nsTR1eP4jef/mhQHCbG5mSLX+/UMemaSQ58419YGpDtGJlAWazbTfNssWiGeoO02iQssmEzzqumlhumtBehfa1RazuJwReS7/hRuhp6XCq4Grh0s3Af99hC76BnBK+suAWal7DdyshkKUT2e3kImhWTtNHxZ6QsFnq7OGTE0F5tn0dM1+22B8c6FxHndiKoXy/HwsYoJdo4HrmfSOhDpi64y3TtfV8LGDf2q5FJaFktwxBNgtmfrZcQQgghhBBCCCGEEEIIIYQQQgghhCwEpdSvAfj32DMJKVI0C5kYiBwB8EMA/lpE/l5E3iIi3yoijxfxO8dLRFZF5EtF5PtF5HcAnAbwTgBfh2kDk0kedrNfyOcZAP9cKXXaJw+EEELisD2qFtj5Cjp1+BpJeJ86WThh3OVuiqJMpdSUAGUs9nNDOvWnAxuJvUn64p7SV1kamSSFze2J36Hyu5iEqq7CZxek62mkU4zDYfN252lPrf1uIszKLUT4NkYmucUJ7S0JM3KBa9vXiIabqOcLJYG+bwpFLUfZ1GgR1Jmp6E4dNzFyNH8oYzKXmIfIYfYhaDbR7LGPwxV/9m4c+NKjUyZEaWeI4z/89ei+bDn9FIv3IrZzgAC9rOeVno+BwMCyDyftsE5kWjeIq1nG+vr03w2IJnXl6asVG0XKZp4AF7PAibyAzsRi6Lp86c2232RF36bzi2Mhp9raQm5w1zEamfiWcXE8jGSWIWtrkLU17TVZLmjV6FhbFg2maIC21tGnVcdKe8W9nmsINtgqkUlpnopoZHIoHZtpnHwkxcZ5fbu741SYkclqZxUfuPE8hg2uj5G6P9vMlZ1bf96nerjijN1aVo12DEdsnnUMbUMVolADF/H4HqlFn7QagyzW+16Y5sJFiFdr6mU5zA7mS5qkjd13sLC5QVyF//22pdGRhuhGJt4vsgCvjucRxP+ZuRQy0NBgPm1xTmOd5fObb9nnKodSDawL5mVWKqX/2+LZnQQSzRSyCpu4U1k+IxNR1t6iulg0X9nn1fOfqOe2PikmE2uemLuFIH1MCIAlf+qrR0T+E4Cvrvn6nUqpH5pnfgghhBBCCCGEEEIIIYQQQgghhBBCLheUUj8qIisA/hWmzUGK/1cV3z0GwHUAXrPz90BEPgPgXgD3A3gQwMWdnyGAzs7PKoBjAE4AuAbAqVKWqsxK6j4XAI8CeLFS6qMWt0sIIaRBtgbVR9jHPhkdANDxPCXXc6OwJHtbNF0EknXGAQAgLXczCKkQ5y4KdfHC3h+WRibFU8RDN7qbgscSxFYh3QBDmUkcYnPe6pj2rc+v/W4iahpZ3G/LxsjEIh5fk4MJkrm1fcnqxRqxBcsAcLEzLVKPIQwYZHOXF8ywXZOHXtbzFlEEl79R5NR8uZUFQ3VCweTwYRz53d/Cwb/5OAYf+2sAQPdbvi3MYGqeWArhJAEOdA5g8+KmcxI+tTWy1GJJu1oqIbaHYxtMc1w1T3LwoFsAD3T9K5pYNIALbYXuME5cOrMnF8MqkbzStCdZX9GGy7fHaeR33wWTvMpkZGIzH1chRROISGtnWV1DcmDdeF13IJXzVGpYxI9ETbXTbstvfb7SXsFIs2Z2IbbBWVkAb20KZcGGjMXyN91jNsgLMTKZzPGfOTrAf3jRI3jt7x5EWpj8zvRG+Ldf/xBe964No6GKNp0sHS/wm1T5BiAYGyl+y5+t2gcaToxMzMZNxrZRNDIZDuzzUMCmm9iYiKqsmQeleZiDuPbwOlHzMhtvNEU0AXwFy1yervcdw8jE1nhEILB5K9Bk3VUzH/MT9yTMiTTZFn19M7yJbUZcIle5uf3t/iucw10b8h1rpTapa2mlgItBmMhSjlk2y6csiWQfEGSONM3axQRboe+74viY+K9D5mZuViinhvt3U218GfsOmT/71sgEwNMBXFvxuQLw6/PNCiGEEEIIIYQQQgghhBBCCCGEEELI5YVS6vtE5AKA12LPtGTqgKjJpag3F2kDeAKAL3JIumrX0+yh6NXfC4AvAHiJUurDDmkSQghpiK1RjZFJA3tzpWUW/FWSCLy2zRdMR1zuZ6jTm7R9jEwCRDWRN2arixcLf9iVaVFXlwaKHE3BYwliq5COZ/ubisQuf1l3iPTKq2q/n4ikbAyD2hbajtzihPa19po5Ih0aY5IqJE1qBQm+gnEd26Xq9W2qxXDbDbZHW76wWt0AOlnHW4wwCj2NNVu+7e8m8Uv25FuQPfmWOeUmkOKtpPZGJkf7R3Hfxfuck/MxydAZfhWRTs2caZlmbfjJ9476UFkrmUM0oOfRlaevIUlMf4HNjsIhd7+bSoYa4b3LOC818SRreuOCfMdTYHT3XcY0TEYmua9ZTHFujLRmk9VVJOs2RiYJzvVm54iWYd1QXuf6Gp2ttle1ZjYuxDZQnBGMWqyTbNnIxu3yprv168rz7Rz/cDSCa5AC/vjGC/jbK7fw/Dv6WLuY4PTaCO+7eRMXOgrvv3kTL//zgDXeEs7pRRIlePadXVz9kP0zmBpMyt2iX1vOswD2DFIcySwWXjbjvERsx9MRm+KNkK5rFDVCYRex86Ui2k2TtLl7WeIiSlzE4srehERH7HJ2uocyPlnxWIf4m+zZX2vVb+fRFk03G2sdlyRWpo2+6/tcmU26fIhlamUyWZn0s2RtFaPNM9bx+ptd+AWzxaYPtVL398iVRHw/fORc+CJeO2Y6vMevMy+zycHcadjIpCkm/UdJuEE52b8s91OfnitRvQnlc0qpjy8gP4QQQgghhBBCCCGEEEIIIYQQQgghlxVKqR8WkU8BeAuAFqYNQ1Dxe9nUZPK9y66vuq1OdXEU8/QpAC9WSn3OIT1CCCENsjWsMTJpYGertP2MJLz3aqd7G7OVQyQ68wLxMDJBz++k+3GC/kGrUNt79a1ySyOTgro0vFnoIxg2uCdcugH1MInDMn/t4/q0JkKrkcXp6+2huRHkFiLMjf6G8RotrkJXjfFJE+PLoDP9t7dhQDHOJdjl/eBatVCp1+55i3lyi3anpRVJiBNAWfgVQ7y4jEhqKTBKBFesX4FPPPQJ5zR8DAR0BhZFTEYk5vD6dYNLtYvksyY8DWifdNJCX7OGmOZPm+144sehZr1kM7/tUmdkclBv5pEPU6g8x+i+e41JGI1MPMu42KYkidGgFCTLIAcPGa/sbVenZzJNKPffbstvfbTaXXWrZw2hBltl0mR67JSIosPD6QoA4MZ79OPTp6/YDjKGLItDH1zP8RvPeHTmurc+5xyuOp3iWZ/xNE7MMnhaRs4HBTz/Dsd7G+0YjuTm8U4Ma+ii76MaWrgLVpBaDLtW80OaQD/LeGJIO7Kvph01ic7NnGSJOkV5PIvJspu9KCirPMZ6Doj9PJG6Ou6FMsfqnP3HpfrEreoQzZu+xPjHLysaNjpQFobEu2VuOYCLzbsT2wK09MZKjh+HnH4EyvYBKRHnMUtkHEZBNWbgYGNIs4xGJlHQZcclr0tqUlOZjosB3hKx7PM9mQ/7s/WOKb8ZmizV/2wBeSGEEEIIIYQQQgghhBBCCCGEEEIIuSxRSr0NwDMB3IG9bVVVhiXAnmmJVFxr+1MVT9VOqMn1k+/fAuBLaWJCCCHLxWA0qPw89snoAABPIxPfTc1FAbhyOWy7qDcpzaY+RibS9xQWAvE3ql+4uPe75Sb+ok45VK9q2uRvK473IYaRie3e7/b1V2i/n4ikbPqZjZGJshBPH1s5Zk5Mg2RubV80RiYxRfkThp3p9GK0pIFGpD8PtlOFMzXi+27W9RYjhI7v0lq8w0u5Zi4lI5OperUUykgKXLdxnVd6PqeBD239VeqMSGwFhyYjk8w+81KpJI+/2NEZF/ievO4brorNdrxxbaBpBy7jfF33TTZMZh4CdeYR5Pfdb0zDaGTiW8ZFc5woa7adU+oPHjRe2R3UGJkYfA7Kc1u/7bdOXWmtRDOgCzbYKpElpXkqisnMmA3pYuWi4JoH9XPhJ09VP2O50hL9+itPgD/+3ifjiv/4GvzG087iHU9/FK992YN411NmTU+qmDF4WjISBTzxbsdnyInhiI1po6ltTDncDd3ysUNqVVELugAAIABJREFUMcBY9YCsobVOxP5Rh3MPrzEC8DXxmxdNPDk0aYax7OVpW6AzY74nscsjLF8+eXE0eYD4t1knjwLzxcvQFqeyEJKdNA2MQE+uHAytImYj1vg2edaVJEF2WG9aOEUiXvfTtIGDzXNaO/V8F15mDvO1G5r8OBmZNJB+U0QyKor5fG9D+Bi7bG2P+LCf35rWzUF3zjUXhBBCCCGEEEIIIYQQQgghhBBCCCGXOUqpjwJ4KoCfALAFs6HJhCpDEpsfbXYwbXjy9wC+Sin1nUopOyUFIYSQubE13Kr8vAkjE/E1MvHdrF0Q5jkZmRTElKo8jbbc70G6Pecwu2EdNhuLmAUNanuvvpWNuA9AUoi2aSOTUYOHFksv3MjE1iuh85Qnar/fNTKxiK89MreB7cRc9yfXT5oT06ExJqlCZ2TSiFFStyQUi2AYsGgjk9Nro9r76LV73qKcUCMZo+h5DhoHVTpOedFGJk89+tRmIra8L0kENxy7wSsJHxGNbd+QbvWcaTu1GY1MUhcjE/98uKArT9+xL+ZItNmJF9tQ0w5GDguGpGa6SA6ZzTzy++/H6IHT2msGiTIauLjkd4rieBhRXCgbG8ZretvV6bUM64ayEVGv5bdOXemsaNuAC7HXBbNGJvHmiKNJDzfe00ZimOzuOLUdlM7kGaCb6tevaqTwppe8Cb1Xfjt+5bnn8Z+fdxYfu3Yb27b6+SwDZLHrHR2doWB1y63+1GhsOKLykfFacWgbamiOr4pKH60SNn1At7YOw5D4IrSr+9TIpAnSJL0s7xuwNyCIZRJgW862+UrrFjh2iXiE8XJ58MJl1kgspNNzaePGTEfKQ5JYReU78+Yqn31PWcv8xw5Tzop1nZw8CbFcg0uSeL3/mKS3yJVOJ+vEiWjZ5gKdj4nL2tv3vhZQHhIyri+QYEOfJWt6xI/9bGRSt7HkkbnmghBCCCGEEEIIIYQQQgghhBBCCCGEQCk1UEq9DsBjAfwygBFmDU2a2LOnSj8Ts5N7AXwngCcopf57A+kSQgiJwPawWmRnY7DgTMdv87b4CkPTvQ3GymGD8yCrny5NourKMP0V5zB7gV1E2hZGJlsF4xpLI5O0oMoO1TkajUxCnVI0zNPIpP2c52i/n5gu2BgItIbmiy7IwHjNtYeuNSemzUjL7fosrd0snzdQz8nK9PgSI4WFG5ms1wtme1nPW/CVh3ZkQ1tYiN51wUYmr376q6FU/PYiqaWRSSq4+eTNXmn45LpshFCHdGvmfWsjE/26QTL7eq/UHDXQWHX9y/fk5Zhz44W2wynuBoaa4td9N0ONIU1y5IgxaP7gaYwefEh7zdlebqxr33XvlLFTRDFdsmG+9+6gOr3MaGQy3Z76rb59xgokSYKBhYmeDbGfO8ricdux1Ib+KMGTPq9/HhiJwqevCDMymXDzcf3Yfuu1t+JA7wCA6blwW/M8U8RoTrZgDp33qLuJ4YjNs46pbRQGbl8jk8zCpaRs0FYdUTNrHe9n7SapGU9dhLiXivlHk/cRLGxeErpZ+HM+4PA8YVlsM6ZaTeNRnb4rTJdwNm14Hm3RmEKsLNgaOHibyCj7507bNBY0FEiSIDtqNi4E4GVKJzv/LZpYRiZLN6/p8uOytvA2MvELFkTEZ4p5snRthyyE/dl6x9QZlpj/NYQQQgghhBBCCCGEEEIIIYQQQgghhDSCUupepdS/AHAdgDcCuBt75iLArPGIrcmJLowUfv4EwCsAXK+UeotSym+nPyGEkLkwGFVv+QsWulcgbc+Tcn332xaEecphE/VAI9D2uQdZCTEycbjUQlg+ZWRiWcVJQaOa+KqwLZN0Ej47Ij0/oe50JBaXJCO0nv5l2mvSQmUNDQL19tCc5tBCSPyYw48xR6RBMjcjE92p8QaNtRfp6nT9+jbVYrjBgrW9D67VL6P7rb6/kUlgPxNXU5sGKNfvoo1MXvCEF+DF1784fsSafjRFmuCaQ9dAWRpUFfGZ703j1gTphwlLa41QJt87iLqlNR/xjm7s8V1bBU69U2y2463vdGZPI5dDuOuMTI4eM4bNT59G/tAZ7TVne+Y50nteKsyNMQVicuCA8ZrednV6LcMbmPI6t9/u41hbX9bXrV5XHVckk53Yzx0z4vGYosPBALf8o35s+oejQ2x2wu5pIrz9sef/GNSoOq62auNNL3nTTBjA3sgES25kcvC85TxYQA13Fs/K3Pcl1cc/pRUfWizKK7DwmoSF1wmSRdVVhKHNdR6rG08vNyHuxKygMSH+JVKcvXYvSjyxyznMyMQnL3OsUCePAgsjk4C+HW8FEV5+gp17sYjK20TGyTzT1j3SIl3LqEy5K/ez5MQJJDYGsol4tZNJGCvDMEds4ywb7Hmz4Hces+iMTFweBn373gImMcO6cVmZ9LvFWjWTRbNsI4gLn0F1j1+dd0YIIYQQQgghhBBCCCGEEEIIIYQQQsg0Sql7lFKvB3AtgK8E8NMAPo1p05GiwQlgZ3JSDjsA8AEA34+xecnzlFL/VSkV5/hZQgghjbI12qr83EWAak3b8xRKz1OipbBx2s3IpH5rr5eRST/AQMNhQ7eNkQm29qZnWwFEUXyXWAjxdJg2+o8iCWKrkH64wKlObF2kfSgxnm6fFNqmSbjYHhoukNxqN/INx24wX6TD0bxCZ2QSaqRRRXd9bervGKdLb9sIahrktMbIpNvqeovtbMSyWkxtYQ56kvI9LMNJyz/39T+Hn3vhz+HK3pVB8RTvRSzFSpIIkiSBeDhe+JhkDC31O0mv2sjEdmqTTkQjk6wi0Qaaja5/+RqSBPfZAhda8ca1odbIxD6dyroBkBw5agybf+FBjB55VHuNjZGJr5HG1HzvuV6ti1cSvSNJd1Dd/jODK0vZiKjf7uPZ1z5bG+Y51z6n8vPAZeFePJH7Ylk8Li5iSgOju+/B4/5JPw/+zdXVz1cuTOaCJ5x4An72RT+LNJ8eeFdkBb/zqt/BamdPvlUU+OqeZ6bIMn/96Bw4uOlRd6OdvmPzrONgcqNGfi3exsjEZn7Qra2DMI5d820gutQWbVw3b5pe3y7D+lmLZfZW23FkrLHbV5bO2XzIYzD3Nv8sJ62pLJt21mRbtI65cKH3arkBs4wyTkYm1j4mEcvf9Pqq1E5FBOmxQ+ZoW379adHjnIppHRHxWSMK2gl7DkYmCygOiWVKM2cuNyM4Us1y21fquRPAV1d8fvW8M0IIIYQQQgghhBBCCCGEEEIIIYQQQqpR492Nf7zz84MicgzAUwF8MYCbMd7rcSWAk9DvZTkP4O6dn88A+DiAjwH4G6XUxYayTwghpGG2h9W+U01svzcJkmvDeW24Ld2Bw4bvKWFuuSA87kFWAoQ1Dvee1AiBi6jtQn1bavGSgrqlaV2GrTjeh6S/Eh6JRX10rtkwXpMWXGfyRAEa0XHLIEgWGZsYmDixdsJ4jRZXIVYrqxWNNGFY0984PP1BhH36g2yxRiYPaoxMVjor3mKE0PIXo6nN/MstiShSD+FFN70IL7rpRfg3v/9v8Ouf/PXwCC1P/J0YenSSDrbgJqD3MRCwFchLt9rIxFpUVxd+8n0rBTC0i6tVUZYNCHq0RibeccbrU9sRx7WBpnm6GOLVGdIkx44bw+YPP4LRuQvaa6yMTHyHkIaMTAAgSRV0vgndQXV6meF2ywY0/XYfP/L8H8G7P/1uDJPZ/tRBBz/4vB+sjCuWKC62geKMeNzBrMLEhQ98GIlhEPvYNeFGJkW+9olfixfd+CK842PvwIObD+KGozfgq79oVspVFOHb9nXznL5YDvkYmQx31k+5xcOOaf1QVPkP9eZCdaQWE62VkYmniNscsUl1HiMRF+G9xlTUITOLFq/HpCkB8rKXkUDMJgAqnmGIrZGJbbmVTbWc8KkaxzAh9e9kgGIzvs1BZG9jpxIvMYFp3PM3kVH25hjW7pF+efGhqt0lx44jOf0Ics1jXXLoEMTjaapRAyybtu1b0ZWRLduYrTEwcnku8r6vBZSH5fsZE3Utual5ednnezIf9rORyZ8B+J6Kz2+ed0YIIYQQQgghhBBCCCGEEEIIIYQQQogdSqkHALx352cXGe8Y7QPoAuhhvK9lC8AFABeUUnGVGIQQQpaC7VG1kYm3oFOHp5GJlzC0LIByiEMnzJVO2z0vvvcNOG3oFhsjk6296dz2INfiKeKh/hOmPfzDBgwuJshKuJGJGuQA9J2jfdNjjfEUxRQGnxJ0hiYjE7syCzV6cBW6Sla/Rdp0zz6sHjkOnNv728ecoYytWUNTnNYYmfRaPW8xQvD43l686LlcMymW62TcaGI8W/F9Ok5vrb2GrYHbY5uPtsq2f8lKv+YLy/AmI5PMvt6T9uy1Tch5dOXpLViMmNGtVrxxrWyIUcTFMKnOyETW1iCSQ6n6fpA//Ajy8wNt/DZGJt5GGoW5MbYIV1oANLfW265Oz2SANizd60prBf1OH7/1yt/Cq/7bq/DQ4CGICJRSON45jl99+a+i36npy5HII6//ioZxACARza42P/UAdDKwkSjcflX185UL5faUJAle/tSXa8MkcDcyQZYtRAdqS3/bve7UaEcJbfGwY5pHijEobyMT8zU282qyICOTZWoe8zA7uKy4BIozZpuI3b7SZN7PJ85OJjuGGItvCHMR2ZumhMUXgxVKKSjbl3nWD13e2ZnBWMwV/UxEkF15AoN/uL8yfNpLIb0+sH3eKS8isrs2ivk85ZqHeJEth3nrLrpbcxn/fMtoXmuCYjKRjEzmDddPBNjfRib/H8Z+/JOWPFm9fJmIdHnSDiGEEEIIIYQQQgghhBBCCCGEEELI/kGNd0Ce3/khhBBymTAYVSskc0tzBHuUv4jQY8NtOYRyOIldZ14gjqYkInmQeNJls3GdELiI2i7Ut6X4oagtTUJ3/xuCewuJbZLuh4twB+fN2347X/olxmuKoibTPbcMRiYQhbZqY1vCRbP6jDgambTrhbFNGCVtnLhqysjE+pTiEqow9ulMjebB6fVqwaxSCu207S1GCDWScTW1aYLyUBRq1BObxGB4pKNYr7ZGHbIzx230NvDg4EGn9LyGdVtNXM24a304eL+n/75l30mlwsjEyyjNgG795GuwFMOYacLFmEYmGvOJslmGDt36JclyjAYaI5NHzmK0OYROlmNjZOK77pWisUDkcSgxGNR1B9Xfp4YGUzag6bbGhkE3nbwJf/V9f4Xb770d9529D1cdvApPOPEEbVyxhMe6eUkp5TzfZWmpPTg8B5gYburXgneeHGCzsxgjtESSXQXxtqVSTbIWzLLjfcZoZ/2UW9yXQ9tQIwtHkgoyi0FcWYxB0pCRibF7RejmsVrYXMwOQoicvcnY19R9L3t5CsT4TFc2rgohiWgSYG80UYPPc55XGPcgwOyzdmhb8n12t4zcjmL5+d6OzEZVj+f7CpdwtvdhkeGmjUCSgweRXbGF4f0PQRXmzbSbIHvsYwD4tbMmDRxsyiTqONvAs2sQurJ1eS7yNjLxCxZELCOTOed9tx0K/IYeGqFcEizXW1MHlFIPAfgjzHadLoCXzj9HhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIcWGQVxuZxDaUkABjFC8jkNLORnHY8K0T5krb0cgk9IR5l73CiQBiENhtbe39bpm1oiA21N/GFHwUWl4aZHW1sbiLtJ93q/GaosmBSTzdNhz+Lgnw3Gueq73myt6VxjwZce2HWb3ZxSi6URJw+KrHTX/gLcraQ2dqNA8eXKvvz0mSeItigo2qlsDIpExM4WEMogmmLPvdxPDk5NpJ5yRcW4NL/5XVFcfYS+F7BiOTtr2oW9rzabdavfoSGJlsZfHGNZ3Zk8t8rjOkSdr6sPm58xht6a+xMzIxXlJNca6LLPCStr7/92qMTFqGdUOx3pRSM0ZQN19xM776i77aaGIChJk2FdGWv0eTzZLS2DBHs6uPX2NokJb4zPFFQf+27Rom289nc1ejhuNOoJS574tJkLqjUs4ffgjbn3/IKz+poU8CdmNQ4jGPienZEDD3j5CxTUr/D6RJQXoM9psl0LKXp8042Erjre9sy8MmXwsxifFI0rfNzhg4aNJupCwa9mzx7ssy80v0NNTOf7Hy4XJZjLh0/Sw9dhztJz4e7SsPo3XFBtqPuwqtL7rBPFdrmKyNFjU+R31PsWTvPLSV7bD29h0jFjHOLvu8Wcck342aRpGlZ9lGEFd+vuIzAfDaeWeEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghbmwPtys/j37aZohw3uvUyen0lMMm6kFBzzezMbrXdctGsJGJ/b1LIkbDGDXYM66xPSS4eAvBvg6G2xk2uKtW+mGCeluSY8eN16TJnhAjN9xza2hSggCv/JJXQmlOnf/mJ32zMU8mxoZCDsL0dqtWWGC6Zx8OX/P4qZOvY4iyBhEF/65spwpnasT3k/v0FVGElr+0Dc4Cc9B2lOeomKexxyCawMVStDUxMrli/QrnJIKNbTQkKzXjrq2mzmRk0rIX4CfdCqFrA23VtH7yMXKKuSbbasWr76FmUeAyzuiNTPQR5WcfRa5zVIGlkYnnuChFE4jIp6Qnbf19dberM52N9Pko1puyXQzWEEucmWvWyz6Cu7KRiaSXh5FJsT62LdcwkrUWc6J9k4x2nENs2rexbQjyL3wB9335S7D1kF87yixcSmzG+bRlWH9VkGQWRibLhk4X7TDmLMRIIjKTe2hKOL3sZWQz/ncyN6PZKCxpsbnW57LX/9yJ0M92y9QmqnkUv7WPSbzMmHqtKS1JEiRHjiI9dmzmWdJ1LBTI3rzRRHnbzN0R31O4GHTPBZ2Bkcva2/e+9qmpCDB/Y539asBC4rLfjUzeA+Cjhb8n/ehmEfmXC8gPIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCLNkezcfIJGjPrM+m5nKQzMHIRCPMlbabUCZY3+liZJKKMb2ikQksdW1J4bpgvbtJ4B3slKJJem0tOI6V6/X131oZWsUzZWRiKJOOwchEEuBZj3kWvu5xX1f5/U0Hb8J3P+e7rfJlxKEB6AwGRqEGPzMopIc2ohiZFNleoDfG6bVRfX/ZuTlfwdEodFxqxTv53JeysDFxMKuaByFCkWK9Wp8+vTPHHewddE7Pdb630GPvIqurNV9Ynnjf7+u/b9u3RelUGZnEF/SYysdnfRXTbCaukYnmO4dxXjdfJF19Hxg+cAamxcWZvnnB42MwAwDI9tqVRB6Hko7eqKc7qL7vbKSPd8qAJrA5RDMy0VWhRx5bSam/z8nIZDtV+OQV1c9WrvjMI8X6sDZja2WXnpR9YmQyMnQGAJKY59n7vvwluHi/f2dJLZ65bOZWlzlvQmLjfWJ61o7QQGLNPE794hJo2JP7vVwNJ3Jl7jy9lt70blGEi8Z93oG5h/F97xfd+HgeGAeiCDclpf9r8DZeVcoY2NkEaY7GK/M2VJi8J2jiTaNNnKnFOsOaSOvuaOjq0um+fY1M/IJdjlyu6wgyzZKNIG6o8Rv/78T02KswHgr+g4g8YyEZI4QQQgghhBBCCCGEEEIIIYQQQggh+w4ReSL3mxBCyHwZ5vXGC96izioC4vLZ6F4OYS0Gh8HIpNt1y0foLlEXE5ckgRjKWW3tGZnYHFIOAGlBWZeEKlYMwYcN7qqVlRpBvQOdJ16n/f7AN9gtY4qnspoE6m0LIxMAeNNL34Sf+qqfwpHWEXTQwYH0AL7rKd+Fd736XVZ5ssGp9rOsdrO8ixGCDUk2giQJpNg+I4iyrEXADXB63UJ86ykCCjVFkJZeFTsPiUR5KEqWbEt+tPxYiu8nc9xGf8M5Cdf+6DINyGq1gZS1pq6rF6c6GZn0Zo2omtDRmfqXz/iXR2zeFyMamejWSy6GSVojk56+jgdf2DTGf7ZrYWTiW8ZFY6fIp6SL4d5729XptUb6fAwK9xoqaotmZKKJxiePWTrdpiTTm8LE4o4rt7G9QK+volh229YcsNW65ISgarTT520edjLzM+LFB8Lyk1oM/DZza9pxM9QEgKRt0UfnLCo3osnO5SbEbfp+520o4ErZuLCKlfbKHHIyjU29BNedT3AfIxOPZKrCLbJv2j6bGC+LcQsy80sj2PQNJ6zWsHHuKaStuIYVSLS1ahU2bS9LIq5Bl8y8VdsmHN7B+69DlnsOWyaC53sW9SXBfJ6IG0Qp9Vci8kMAfgp7axEFoAvg90XkJUqpP1lYBgkhhBBCCCGEEEIIIYQQQgghhBBCyNIiIgcBfCuA2wA8BcAbAHxkoZkihJDLiO1h/anhowRIzVp6K4L2jvucol4SEo9P4bQ4DhsGMaujgEyCD9+03y0sqZiP1xvuGZnYah+SwnWJXRFq0N/PMGnKOEIBvfDTmte+57vxyO99F/Lh7PbfJBti7bWvtYqnKDQ1iadNguRinb/0yS/FS5/8Uqs8eCHm0393L9UYDEQ3MtlJKkGyK+qJIcrSifSb5sG1+sF394RlTzVBaPlLW29kMg+RQ1k0FPWk4wjEEoZKaic1kB0h9qHeIec0XP2pnIxM1terv7Cc1qWvF6dKx94xIOm6C8B9MJWPjx9YzFPvP394YL7IEt0YOXTRrrU1Rib9DoD6tergnDn+s33z4sV3XJwyYYlsZJJ02wDO137fHVSnlxluZhhxbkvDF7oAIpsnokI06vMs4cHHr96KFpfPHF+sj21LpZpkC3ReaYrRzhoqN7crF7NLX1KL5ycbk7nUtP6qIOmmMK2KjW1NxBhHTHS5cRGkBxkrLIlgd7KeXHbDkUXSzdyMZucF62z/EaXKJpFYxBVzfV+LtXtkvMyY7ivIyMQ1n7K3NmpkFrPITieL+Ay6bOOKLj8ua2/f+5pXecyx2JsyhbrcjOBINctmheSFUuo/AvhFTHdNBeAAgA+IyE+JSPi/ABFCCCGEEEIIIYQQQgghhBBCCCGEkH2PjPlqEfmvAO4F8PMAnrrgbBFCyGXJYFQvaLURVFkTsmfWZ3NyOYilSG0kSn8qvKMZhqRhm4WdNuonYjSMUdvDwh+W0RaUCMFbnw0RjBrSEoooSITTS7Mn34LjP34b0vZw6vO0PcQVb30dkmPHreIpCk117Q0A2gYjE4ksnNYn5nCpRmw5imxYk7THGSuWawxh0PYCjUxO2xiZeAo3TG3OyBKInss10+RJyz6EiBenRCaZ5aDYGl93ZPWIc3quBg4uJ4DLWo2Rie1gsqI3MoGDqFt6FULXBsRPpvL0OUE92EOswOn1HP8YycxEZ1bisobUGV8lK3qBsrJYOJztWRiZ+M5Lrb28S+RxSPp64WOvzsjEYEI4KBRZqKgt1inz2rW3Rx5b6XSbkjmZXX3smohGJh7jU9HUazuzbNOt1tKYNsRCTYxMlMXouTRGJhbxdNwNG5KexZptDs8STiOspu1fbuYQyY7k9HIVNvdbfeM1y9omQsvWK7RjWYiI9zOzSzib57Qm69H+bZZU/uqXWHP3o3b+syOikUmkW5p3n91dGzWQbMuibR9eORwvwQjvNKOiKVOntfey3VeJJlps7RjaUPdY1rmSzJfl7mkOKKW+B8AbMWtmkgL4fgB3iMh3i4i71TMhhBBCCCGEEEIIIYQQQgghhBBCCNn3iMj1IvITAP4RwHsBfDOALi452QQhhOwfhvmw9ruYJ4SG7JkVj1PUy8mJpRh8UBL9lQUo0nUTkIUamTgZR6SJ2chksCdeVpbah6L4LtR/wtQOYhtc7KYb0ZCi/79+B67+m3fj6L/4cmy8+AYc/4EX4uo73ovOP3uhdRxJYaN+qGHQPI1MnFJqtWoFNsFGGiXGp80DrWRPrBlDlDWYj+65kgc1RiYTfAVyof1MZ1IzL8r1WzSxWQaCxIvFoJaiHsnGZgJHV496JOjWHpyEi+vVRibWh4MbjEyk42Bk0q8wImtg+DSVj8/YpGIaywH4rS85HyWeoWYsGbkcwq0zMlk1i5h1jEThfMdcfq6GPhOkaOwUYT4+/E1P2ouuqs0W6G1Xp9cyGKANC2uiUKF1rLHXkGUo20XrDmUjE6dT4T05387xP0/GMQnypWgsY2tkIktgThad4XgNZdNupBXWhtPOEJ3D+nQyiwHGZm5Iunpzoxkkh3Qs6teQ9jJpX+clxF2WW57cb1P3vezC5tX2qvb7TurYJyJhU27BJoteZr7zq8/yqKdbTxxZMRstHu67mT34rF+My+lC+fmuvHfz1WRVuMRt7WMyx3dKsQw/La+fGJk08aYxgWjzlCCZXZMGJbhcNgTa+sgczA5928SSz2HLxKTf+fcDlvWlQBwL0iVBKfV6EfkfAH4ZwInJxxi31msB/ByAnxKR3wXwpwD+GsDHlVJx3oYRQgghhBBCCCGEEEIIIYQQQgghhJClQkT6GBuW3Abg2ZOPC5eois8IIYTMiUFeL7jzFXVWEaTj8BJxlP60PG17YMindPSi0pnrszkKWNLELKIdFM0R7OKeMjIJbRSG4MOG9uVLZIOU5MhRrP/Ev/MOXxT+msS75szMcQnlIKaXdhvYrv7OReBuQ9Idi0M6aQcXRhcAxBGqlI2N5snp9Xojk4lgxFcEFNzmTEYmC1jVpy4n/s6BYPHiDmIpAJqYdR1fO+6chuuw7mLEIWvVRibWoroVvYA13MgkfmM1GQX5TKOxzZ/ee8smNs4nePmfr6EznAguc0C5JTTQmIQNHQzEtEYm6/o2YOJcL7dqs97zUqtoZBJeUb2v3TNFq2yzBbo1i9bM4IM1ZWQS2AeKxhkhxG7jM/myfA4I4fartqPeh49Iu7i+3Lbtg61Lz8hEjXYeXmwMcALaRpKOcOq334SHf+iN2PrCudrrbIxMbOaGVqeHegvSWUQA6Vj00SUTRuuavku/WIRJR+wnh1jryf3KkdUjOH3+dG2bOL5qv+5VUMHmXS4spO482rx3m52LmX0PAAAgAElEQVRxDq6/tJ21IZBak1OBoJ0t3igzCpNqt6iLILMUQ+A9QxXLNmHzTmmf/stdo4anAlx76Fp89qHPzs45Crh249q4yTn28bO9HOe6OdYuJli/0MCYpMuOy/pq6Y1MZOavxb0p9GMuJktk6dnXRiYi8oc1Xz0A4CT2+mVxw0kHwNfv/ACAEpGHAZwBcHbnp/DPXtFRSqlbG4yfEEIIIYQQQgghhBBCCCGEEEIIIeSyR0Seg7F5yTcCmBylPdkqtd/2ehFCyCXLYFRvZBLVbCAgLvERV5U25yap3XZNo3FBt+uWjTRwl7DDvUuSwLRHXw335G+2h9snBQWwg49FJaaN98PIhiO76S6ZBqwosA3tZ8FtzCkxh0s79UYmeWhDKpH0x8KnbtYFdgTcyjONouDdWgTcAKfX6pXoE2Gcrxgv2I/IZGQyB8rGBMtmZBLtpGlbAVBrPKYc6B6AUsopfRdjEsDtQU56NUYMlvmTfl//fbdjnZdkZTauJrRPpvJ0LW8grrHchLc/61H87hdv4hV3XYnvuOYr0X3hC3DmjT+JM3/2T9ZxDDXN08UwSWdIkxxcs4+ogrNdO1mK77wkWcEEIrBBrd28jvY/+5rdv5O1Fc3VQHe7Oj2TaULRNC4JWaBjvJ4ZiULq07AL6MpfIMhV7jSutdJpc46J2VOTfPyarajx+cwjxfWltRlbq3XpHWg/2llD5Rb9P8DIJO0qtJ72ZVEmE5sulHUdDTVFIbFZs5nSFn/JbllQGMrlZuwxGQeaMuBYhNmLC1mS4dpD1+IfHv6HqXaqoHB85TgO9A5Yx3WwcxBnts7Ufu9kkmNx7b5pq55NwLVPn1o/hbvO3jVTdgoKVx24yi8TsYnRH3b7rM21/snUmcJ4J2J173HGi6DnZI+wyc471cClajUiWO2s4vrD1+PuR+7G9mj8AqyTdXBq/RRWOvq1vFeSsO9/CsBmR2GzM8IgVTj8aOz1cH2hioh9XpfeyKScrorQoOb7rnHZ53syH/a1kQmAr4C+55RPz6k6QUcAHN75AZrtifvR9IgQQgghhBBCCCGEEEIIIYQQQgghZF8gIqcAvArAtwO4fvJx4ZLivo26zwkhhMwRnZFJTLMBsTnhs46QsJMoLAWMJiMNk6h65vos1KXC4dosMZazGhTO8bas3rSgAWzIZ2SXqOY5BZo8hNWHoulCHlio8zQycdr73qoXTsau52RlbDDUa/WAHR2xb6kWRUHWIuAGeHCtXnw7EYD5ihFC2xw69uYRTVG+g0ZPWvYgmuA0s5MaSHss2k+SxNnIxNUkI4YIzErbKTnEcP/iYC4mKxVCsgYEPaby8TElaUR4B+BMP8d9L34q1r7u34w/cFxvDTRmTyOHcUZnSJMcsBcpV3Gmb2lk4jsvFUwCfNe6koyw/sxTOPy2/2fKvK/KfKdIZ1hjZGJwkRkW6i1UaN1KW1CyHfxGJ7ZZTyuZNjJB2rygPLqRicc8UjQy2bZUqkmrZb5ovzExMLFwbQwyuZlUUYS1uM1zd1ZnDlZHoiBdc/3KshkuaObmy02IO1nfNnXfTRmkxGStu4Ynnngi7j93P7aGW0iTFCfWTswYVpnY6G9ojUw6adznm+BnE586dwwjkGj/IGNqS4f6h6CUwn3n7kOO8RidIMHJ9ZM42DsYKReBRDQysYkrpOyVrSux7T35mEd7EjLuuIYVkdk1YUx2ynelvYLHH3t8c+lMoeBjKtOEMaaxfVkafiz93L7k2ZsLLINLgv1uZDLBxXqraGhSdU1TTZsbXgghhBBCCCGEEEIIIYQQQgghhBBCIiMibQAvBXAbgFsBJLAzLyGEELIEjPJR7Xfeos4qQuLyEB+W90EnmcVp1AAGpV2d5Y3y0m7DZeN48AnwDhu6JUmMphZqWKhvS2V0UYsc6n9gEvkONaLooHSz5VqCTBmZhGYtgtGPNQ5JSadde1JwbBFFsjYWe6+0C0YFvmkUwg0W5I2xnSqc6dWL70OF56HlL2278bRRSvdQ7FPLQNBJ04WbE8v5r2j4IY6uF64mGVH6r0X5iIWoW2eAMXPtapWRiXVwawweElAeJnGjiMZyZY6sHNn9XRxFjENNtxs5dEnp1I8pycYhhxzNck4zlhYx1VstRRMIh/KTdISr//RXoM6eRXrV1UiOHZ+9xmDU0x5J5ZI0q1/aAwAGhWzGMDLJZTsoDsDimcOxC5QF7pI2P0fctTE0X9QwRSMTndHQFK3Wgt/U+QlytTGOdjrByKL/h7QNCTOWK2IzF2ddR0PNBJCeheGXKe0o836EOJyTXEiiUZmM0U3dy9KLx3cQEZxcPxkUx2pnFZ20g61RhemUAq4+dHVQ/GWSORpD7DLH+vRZz26sbGBjZaOB3EQi5jNOw3VR955lBtts2OQ30i3Ne9xpZ21ANSQqX8QQKrC/mUL+or7f341/wXPIotMPoN5YYf/eE1l+LhUjk6r+U9dzyp+rmt8JIYQQQgghhBBCCCGEEEIIWSjD4RB33XUX7rvvPjzwwAO4cOECtra20Gq1sLKysvtz5MgRXHPNNegswYm0hBBCyLwQkadibF7yLQAmR+cVD7qZurwmmqrruH+EEELmyCAf1H7nKm7WEbRZ3es02uk/U0uR2sDGqcPyVEkAQBa2W9yp3NJkx/RFcw+DPZGl7YSbFlTrrgL5MqbQo4b0PiaDl3lTFJoGm0p4GP14p+ViZNKqF6aPQh1xSiSrY2Hnant197MYKViLgCNzem2k7Sy7okbPcTW4n7X1778WoScJFeMvLamd1EAKZgoJEntxG/yEiMHYaOUsxgkrgfYOyepaRQTxG6upPH2m0ZjrsTLHVo/t/eFqZKKpIxfzFZ0hTXL4sFOeyuhMoYrkXvOSmjZ/cTAWE1HIHqc/ud3GqKc1mjXhaxkWFkXTuNCxs520AZwPigPQtxcfQV/ZyARZs7Ktkajo5mc+c3xWmDNsBauSZQs1MhFRULEHuYmBiTL3f7GcZyvDTrIdwbDA5nkg61cYcmkYG5lY/JulKf8xjFocrt3HuuToTIz69ovhyLLz2COPxee+8DmcH5zfLdNUUlx96Gp0srj/vr8Qk8V5GpmUk15m8b0av8IzE34Pu33VIqqQJzDTs97emGFpwGy1ho1TxyFtxXcs7GZdQAaIveCxK7flIF/UM78h2aAl4KLmxn36L9jK6S0RuRS5VIxMgoaNaLnQw75GCCGEEEIIIYQQQgghhBBCtJw+fRrve9/78Ed/9Ef4y7/8S9x5553Y3rY7UVBEcPLkSVx33XW4/vrr8ZSnPAVPe9rT8MVf/MXo9XoN55wQUsXdd9+N22+/HXfeeSfuuusufP7zn8ddd92F06dPY3NzE+fPn8fm5iaSJEG328X6+jpOnDiBq6++Gk94whNwyy234DnPeQ5OnDix6FshZGkQkaMAvg1jA5ObJh8XLinuz7AxL5lcMwDwPgBvB/A74TklhBBiy3BUf3p4qMHCFAEbvL2MGkrJFUXeOoYWepOx4M4yG63AbaIOwjhJ0x3DjvrMqWFB0Ge5YzwpBAn2dTC0g9gGFxMk0FAmNkVhU+jJqPM0MnGiMz75tmpFGNuwJjm4DgBY76zvfuYriCi2wFEC5FBI5izMOr0+0n4fejp7qIhFFmzkWyV4X4hYUEOCOI1cMsv7au/NNYkkGEHfhoq49pUoIigxq39s/BWka//OVdZWKz60Dm6Nae3ks7Zq0sjk5PrJvT8cxfg6syeb9dQE6dYb0oQamZy1NDLxmpdKfUFcys/GzKffN17TGgkG2XQ+MkP3LxqZpBI2drbT9s6YENZItWshcTfSK88JYmlo6MvFloo+nvjM8ZnsQ3laouAwZVmhdoxMVG4xX4U8q03abQQhs00Tz7rmMaGIJECiGV/3LlwyIbYhPwpqDqYJy1Em7bTeGJK4k0iC649cj2E+xGA0QCop2pl7GSuLl0Gh86tXE/Toy95rzHK4BXaZaG+QiuXnez+T+cCmLgLKTCnLdYdtm7B68LKLyhjNHOecyVzxmMOPwZnTdzaQwHLMFXUU+0bU9/sTDPcvQjF/LcvddMglyj58UqyE4wohhBBCCCGEEEIIIYQQQgjZlyil8J73vAe/9Eu/hA984AMYDutFfKZ47r33Xtx777348Ic/jLe97W0AgCzLcOONN+K5z30uXvCCF+ArvuIr0LfYhEwIceP+++/Hhz70IXz4wx/GRz/6Udx+++14+OGHrcKORiMMBgOcO3cO99xzD/76r/8av/3bv737/ZOe9CR80zd9E2677TacOnWqqVsgZGkRkRTA12BsXvIijPe71JmXANXbsOqu+TOMzUv+m1LqofDcEkIIcWWQD2q/052O7srYYMMTj1Ouy/upU0sjk7Iot0okJYmyOeB7fG17juL6LNkxtajPnBqNlYIqz2G7c7roLRLaJEyGEMOGPDmWzsikIGwKNm+Z5725aLQ1ZhexRRS7RibdgpGJZ1xTYi4BBplCZzhflcGDa3pF76T9+IqAQs1zYDmemnikN8LBC3HGyGCxYGRCBFpTYS3F90WzrlbScjIyce6PYifg1EZho+2zMRbrWQi0J9eur89+1oD4zCQI9Sm5UYND0KkDe++5XE8V15mVuBiDaI1Mjh1zyNEstkYmPvPSTBAX8zmbPmDRvttDwWanbGSij3xQqLfQsbOVtqIY7eiy7GNY0EpL85StKZQnF1vx5VQ+49PMfdum5RUqDiINnA6fT/q9OWZbs8vKsDt1JDYCcAM2ZSB9twMTJBVIP9zIZOl02pbeSfMUyzdFJxs/T10K97JMZEmGLPGX8+aa9y3FNMJovs7Fwliwjv0kIrYuyRhFvttXzZHNpQxt7ymCIZctIUZUzmF3Lk+TFKtIkccu9Qjzv3ua8Go8izAysVlABNXIvObGS2UKDilsrkMuCS4VIxO2RkIIIYQQQgghhBBCCCGEELLv+IM/+AP8wA/8AD75yU82lsZwOMQnPvEJfOITn8DP//zPo9Pp4LnPfS6+93u/F1/zNV/TWLqEXC789E//NN785jfjs5/9bGNpTPrwG97wBrzsZS/Dj//4j+O6665rLD1ClgURuRFj85JvAzBRD9UZmLiYl3waY/OStyul/iE8p4QQQkIY5fVi52Cxe5GAjfFOJ9zXkFqetDssGZlUzXAu+3clC9wm6pCYpKnRsEMNdup7UG9gUyYt7HgPNTIx3c5M+UdCWstlZFIUNoUKCmL0D+u0XNp+p4M6aWqweUuJ5OBBAMCh3qHdz3yF1eWcDROFekuWZjhta2TiuX07zBRBmcc1y/gfWcm9jEyq6jZcLBiXaIJTyzmkKMRuJ21czC9aJ+HaG3N/zeMeiTkSq4PBe/Zm0cnqrJFJE4Ic05juMzbFMIqo46pDV+39YWmcM0E3Z7uM81ojk6PHnfJUxt7IxKNRl8M4TZIWl/RXjNe0KqaLlmGQL9ZbmoQZfHSyThRhZG5oL67z3YyhR9rsHNGIkUkMAxf7xBZGIxrg0U6/zy3qxXHcm2JSbiGGncB4vWwzJnTdjEyQiJX5iXHNMm/xKsWyu+wamVCyuVTYGPqFzq8++Dx/RDH/xPK3UavcxRh7Ju9mbKIKSE5Bact87zvLRGzeKQUY30xHE8nw0zmsd9A5R9oMUd/v29JwP1iUyZdIeE/YT2ZQ5NJhud6auvNBsO8QQgghhBBCCCGEEEIIIYSQfcaZM2fwHd/xHXjHO94x97S3trbw/ve/H4973OOCjEze+ta34rbbbqv9/nOf+xyuvfZa7/gvN17/+tfjDW94Q+33oSfNkub4yEc+0qiJSZHhcIi3v/3teOc734kf/dEfxY/8yI8gDdnsTMgSIiLrAL4FYwOTp00+LlxiMi8pXze55j4AvwHg15RSH4uQVUIIIZEY5sPa72IKZyXkhE+fsKUgacvOyGRQWt5VigMcNoBLO3CbqMu9p8n4R8dE2Le9bZ+FwuyfBqpVE4NAYuS6uV5yQJkDSWu51u1FYVOwANhgXrMwOvXC9NinwSaHNwAAh1cO734W6yk+lrlO1hvi0Cufh9Nv+VPjtQ8ajEySHdWvr3AjyEgm1M2owMMrOa590D1cVQ4WIRbUkQQos4vzjtiK79t7c1wn6wD2Q7xzf1SI8J7Mou1KZnGNhUB799qDByo+tA5uTRNGJl4mGxaoXOFQf88AynW9VV4zFXGZz6VXP1/IkSMYtzq/yjpja2Ti02XLWTKtwYpBbfSiFu27NZwtl8xwy8NC2qEmUJ00jtVX7HVBK5k29JCs2TmiCSMTH8r3vR9owshE5fnkF/PFIaaTk7ks0FTQel7QmD5VISkgfbPhlxrp150xcOohJl+VeRgmRDJEDGViTtSEWLvOcJKYsSm7YJPFeQn0948PQxhWzT1CYUzqzaL+gvqgbVZt29E8zXHn2OgaTyvkPfccKK4vGnmetDJC06e7P+ei5uq98Ta73E2WNMy+NjJRSn3FovNACCGEEEIIIYQQQgghhBBCiAt33nknXvjCF+Jzn/vcorNCCNmnbG1t4XWvex3e//73413vehcOHz5sDkTIkiMiz8fYvOQlACY74yfbmsq7yWwNTM4B+C0AvwbgDxVdoQghZCnRGZnE3OgsISdV+2yqL22oTtu2Ribme3YR3ElrfgIWSVOjUFPtGJmo4cA63qSgAQxtEqbbGToaLCRZjnxgYWQSaigTmaKwKchUAs2Lc6dwafudenFz7NNgkyNHAQAb/Y1CBvziKotJc8/6+eALO3jFq16LwR13QPp99F75KuR332VlZHJ6XS8onbQfX1FjSPmLzSBgma1H+n7C2SrB77IZmUQTnFoKrKW9J153NRZQjgO7knCBjY25mdU1PbNAe/fa9SojkwaEwYby9FlbNXaCdikr4mjWq5uzXeY26dUbdkiWIUlz5CO/Pn62Z5cPZyM1zDYfcVgg2jQ9m/bdHlUYmVR8VqS41g02Msk6UUxIdG1cdv5zETq209K6v2Ej6iaMTHwMsSamB84sUNTYhJHJrnFjbvFcF9A2JnmXYAG4XftxmfMAQNIEsrJiTn3b8FwYo324xBFpbp6nWL4R1N56ct/fyyWGzT9xZLZmhAvGd/aa+ceieRmveGKTu6lb8LydIANnl3RsM2h7mcVkLBamFHZp+ZdRUDuLlP/ZOOeLiN9dxDYNBGC8/yUfFvxJADTvARedkLXEpVqVlxv7Y2VCCCGEEEIIIYQQQgghhBBCyCXA7bffjltvvRWnT59edFYIIZcAH/rQh/CMZzwDH/zgB3HixIlFZ4cQZ0TkOgDfDuBVAK6afFy4pLgnzmav0uSYZAXg5QDerZS6GJ5TQgghTaIzMjHoIN0IEHiJwwn3u2FKQVotuxOsB9n0lvCqjb5ORibtsJPRXUSxyCyMTIY7wr6BvZFJWtjxHirTM4kyXXXKaQvILW4l2FAmMtNGJmFx+fQP77RcjHU0p8YrAXIoJJG2wydHjgAAjq0e20vDU6RSDpVbmBtVISJo3/pVaN/6VXufHagwUqjg9JpeFTEx7Ug8e2SIiCWmGOWRfm6+yJLgU88jEyYSKYS17N9SMOvqt/rABfv0qoxhtNcjgqDWxsQhszAy6ZsF2rvXrq3PftaAusrUv1zLG4guudtlZgxxLA+d+ZvL3GYS5ycthfz/Z++8w6Qo8v///nRP2LzLLpIkSFA8FAEFRYTTU88AZoxwiufJz4DxzAnDoV899QznnRmMgPlQFCMYwQhmkooIKoqshN1lw8zU74/d2e3p6VDV3RMWPq/n4WFnurqquit2T73f5VEstrFQ7kRv5n2mc1TEqxL3h0pKXMOEY6Y0hbW5iZFYgEYmBeECT3XajNv9VzUyCYdS598kaQrllYYMGJl4Ic3ARZZcqhMz4DEjEsn5hUS5+HlGSLZ5n8J12TakbmRC0GSMTBrcHqZYvpoTDLc9300itjZkxqOw5u89kGqz81JD/Mzngxj7AyOovATjZCJ9fiZnDsmyle478vSdku+0Mjx+5aZvVkmzrZblwshExjzGbzvIgD2NRSImo/ROlUj8WJ2htDITLdA8duXHEwuTK/LrrSnDMAzDMAzDMAzDMAzDMAzDMAzDbKH8/PPPGDNmjLSJCRFhxIgR2GuvvTBw4EDstNNOqKysRFlZGUpLSxGPx1FXV4dffvkFq1evxtdff40vvvgCCxYswNdffy21IxPDMNmBiNCtWzf0798f/fr1Q4cOHVBWVoaysjJomoYNGzZg48aNWLFiBT799FMsX74ciYScoGr58uU48MADMX/+fBRLLAxmmFxDRIUAjgHwVwB/TH5tCCJjXuIaRgjxpNc8MgzDMNkl7qAMddodXRXSfazG9WKCYkpOj0alTovJJKUgVqOoR0Fha1ryQUnXQSHnE0S8eRgXMXkjE80w8ms+fQc0l4XucUUhsRbVgDr3cBTJr+W6xh2avYmnUyLzmRsFVJpx1Nk8KKH5r09JtM7NxpKdSzu3fheYuMpjP6hZ9FtWRgpWrC11vjFJ4blX4YyvOue3vhrY4NHIxKpsk+Yu+YKbaZMjRuGqrPjeMMYVR9TeTSgbmZAAgVA5uh+qX/rGNlzlITvYRyIxjrqNZwBAxXKibqKE9b3MgFDITSTmRUSWEeEZLEwsdLV2FHMIHtMU+oqiQsfDWoQAjxapGwvl8uHFvC+tC1aYr5JMGyhyr99hU8ZlbrtxruvXyCSqR/3PY+Bcx4lIWYga1k0CcsW6rUp9JDhjriRexnjj/FIxNY/n+cfXM6Id8ebyEHH3ciHP9wxtnUCWBOBOJoGW4UMaqETCyKTJ3ti0OSKlZK3TUAgbmDA8n4wWPGA0G8u0GJ9RQ0YK7v/ZRLXMPZp4BtbcsltHVQ3OpKYqhr7H88wmOb+TuR2ZvGWU9oczMnPYgPrmrNaVTCfl08jMEwpJptRjam7vAb7OcUfm/rTD4U3rUAn6sbr9mYL4udftsJyYdPLrlxGGYRiGYRiGYRiGYRiGYRiGYRiG2QIRQuCkk07CqlWrXMN26NABF110Ef7yl7+gR48etuFCoRCi0Sg6dOiAHXfcEfvvv3/rsXXr1uHll1/G7NmzMXv2bNTU1ARyHQzDyFFVVYW99toLI0eOxKhRozBw4EAlk5ENGzbgySefxEMPPYT58+e7hv/8889xzjnn4MEHH/STbYbJKEQ0AsApaDYxSW7rm1x+ZF5zZbUsSSYMwzAM0w6JJeyFS4EKZ/0IvDydm5r5UETOyKRJTx3yrIRUpKBJobDPnXhVhtxQyN3UItFyfU3yRibGW+J30bubcNdJFG0ZX0SublDEbzkEi26oRH4NgyirRiYKJj6RiKO4KK4BoaCMTDo1G5gYjUy8kibm8np7rfoOSUOljYXONyYpjPMqAor78dgIUIuyOSxQH06goEktQ1b1SlfpmLOAHxFuSrmG5PouirSZZqkamaiO9YKajVqKjh+L6pduhN3jY9HxR9vGIXN/5IxM5K6VdJs2lYFdtN0EoV4EowkVUxAFIlqq2ZqqoUBMd+7jZaEi53LUot46rQQEagrkBhpPY7EPIxMZkywqKXUNEzH5EZqNTawwllua4YciheHCQETQbvVFdbyL6CYjQVlTKI/Uh4Nvo17G+GhIbp6RllYO3/DJmPookzQoFxLt38c8OnnfyI95GSD/gFXobPqUhq5J9SOiMfNGJkpxtEexfAYwmuIFZu5ipN0psPMHnXTEhb0hMJChMnNMMEvntBCYaWgABFeVyeIvRRTmgllpgrL1UCLfQdXpbLaNlHEgE+n6Hf+zTIIE9CAbr9s9lbjn/tuBQLZ/qqZQCKGOJWj6zfv6r3zqQ+VodxlmLGhfPRbDMAzDMAzDMAzDMAzDMAzDMAzDtEMefvhhvP76667hJk6ciOXLl+Oyyy5zNDFxo6qqCuPHj8eMGTPw66+/YsaMGTjggAOyv3CJYbYiBg8ejKuvvhqLFi3C2rVrMWvWLFx00UUYPny4kokJAJSXl2PixIl477338Oyzz0r1B1OnTpUyPWGYbEJE3YjoUiJaAuAdAH8FUIrmVUeE5lVeybViZPiXRNiE+QbAZADXGcIxDMMw7ZR4wl6AIQLcqpFUxJ3pJ6ufYnr8CoU9GplYLNZVEdxRNOIeyDEChbR0DRR2FmqKWMsO5W47bxvQDCp3zedqa93lemKKYm0K6yCS2G09ml9GJiHD7u9+DYOyaWSi0hTddo1PBNS/kBZvNXEojZZCCNESfyDRQ1cU9ree50fU4pJkWGuuz17fM/kyzwlwd+nGkEBt1EM9sIg/pOXX3qJaUBIBSSMv41hTGnUXLRtR7dYFNQs4owcfgqrjBluG6Th+KKIHHmwfiZSRiXvfRsUlrmEABwOyDLyrdevbvPRNmRI6FYZMonhNbTxpcgiuMp5TUZHjca3AW/uuKRDS/Z2nMcN0DikY70mZ+Ui8zwzHTMZ9zrpqAKmmccnxxCsF4YJAxtu4Q30hUIqgXwbzmOA2P/ZLRoxMPPRPXUu7ekzM22lBIGNapYpIGjcK93KhsI9nteQzoV8zFsnTSdMAieee1vAhDVQqYWTS5GLIEEgFUWgj/DsqgFSTvvZuyrKlUVVU5Xg8kPLKUpF7Hb3SHO/zvN1K5c4QyPPc2897zwBprYMBGpm0ezJRRTNhxuaGkjFY6sdAzcrh3u5l3p37rnnZKAKLNPTu3RHuVAYy/IYQxCupTI73PJdgtoKenmEYhmEYhmEYhmEYhmEYhmEYhmFyR1NTE6699lrHMESEm2++Gffddx+qqpwXIKlSWFiI448/Hq+88gqWLVuG8847DyUlcovsGYZxZ9KkSfj++++xaNEiXHPNNRg8eHCgi+aOPPJILFy4EIMGDXINO3ny5MDSZRivEFGYiI4mopcArARwPYAdkG5eIgzfmRuNlXnJegD3ABghhOgvhJgCYFWGL4dhGIbJAk47ybrtjq6EgqkW+roAACAASURBVLjTjIowtO2k1I+RiLOpQpKYhIaXVIwNIj4NNFTmtqGQq/C7VdjX1CQdrW7Qyyn6jKThJkRVrXMU0kASmSK/5RAwRoGtbzFBFo1MlNa9FzjvGh+UiEIziIc1TWut417FR2YDp5DHvsuXeZMLyfrj2cjEh4lMkJsON4YE6iLygtwkVnVHVzRgyDQqhldp5xp3Aw/L9V1JMx8AKC8oV0pPtS0KtIlrK+66C9veey5KdixC4bYaSv5QjG3vPRflt9/uHInE/aFwcEYmtqKiTBiZuLYR9fYXtOgsSXHEZJSh2G85mZWoGCa5GXZoRd6MBjYWyvcvTkYadqRVH5UOUqYNSNTvSDw1nnDcPV6jaV9Y9zc/KgoXBSIgdKvjKuOdEAKauS7r7dDIxMON3bnrzoHnI9MoPVfJEm9p+wmJcvHzjJCslz6ecwG1UYEU5nAU0qGVu88J3IxMgmjjSi0kzw0RHAkw68a5bb6bRGxtVBZVQjjU6oKQ3LsnZzJf5gTybtixJVZJQzvzfFta5oLt7faQxLM090MW5MIAxkc5ZOqZ0haJZ6P8eotjjd1t07t1Q2TnHRHdZQdEB/VHaLvuWc2XF3hHkq2b/LJ/ZhiGYRiGYRiGYRiGYRiGYRiGYZgtjOeffx7ff/+9Y5hLLrkEF154Ycbz0q9fP9x2222YPHkyli5dmvH0GGZr4E9/+lPG0+jYsSPmzp2LIUOG4IcffrANN3fuXHz77bfo27dvxvPEMGaIaAiAvwIYB6BD8uuW/9M2ybOIQlgcbwIwB8AjAF4QQsgrnhmGYZh2QzxhL1wKcpGzJzOSJF4Wh5sWd4dDUcRJQHdRahjFnc3RWCrmIbv8lwqiUuFsUbh2CoVcRe+tvjUx+WHdqO314X/QHJfL9cR0tQQorDfvgOmmv/NbDgFjNDLxIp42QqHsLUVWEa9QgbOAKyijJM1U5f3uMmoujahHo5hMCn3CLRft9VoldO72BHhZjSGB2qh6/bc6IxTE9rcBEthut7LtO9rWx1UUVigl4STEtCJBqfe74KijUXDU0UpxSLUPCSOT5utOenQ6pBeyOZ6BZup2N73MrTIlOiuNlqZ8djNDM9MUsr9alT7e3cgkCmCzfIQtbFAwMvF0j83XqGDIIGXeUFgIt/odjqUeC7nMh4BUA5qI7s0kJklhuBDqdlTpON1/IoLmc/9oCmd2jNicCSMTD/OIwd0Ge0zM22mBoGtwncgr0mrcKCTMDn3Mo5OmZb7N61TMSTRASDY6Cumg0jLXcCLmEmG2xetuyUlmJ7C5mAJB9gRGo6lcXAtjT1gPo2NhR6zbvC7tGIGwXYft/CeS50Vufn7I5zpKILnGaejrPLfl5HiQ49vRWh6y/bfMOBbAWKD63GkXh1N9q6utw4+rfsS6X9chFA+hAAWor6+Htq4aEYRRWlyMLh23QddttkFVRQfbeGTId3MX891WMZpUIRaL4ZtvvsHKlSuxadMm1NTUoLCwEEV1m7FNYRn6b9cHhTbvB/P7DrpDRK1tQ+R5fWCY/HpryjAMwzAMwzAMwzAMwzAMwzAMwzBbGI899pjj8f79++Oaa67JTmZa6NChA4YPH57VNBmG8UdlZSVuv/12HHXUUbZhhBB44YUXcN5552UxZ8zWDBFVAfgLmg1MBia/NgSxMieBzXFjmE/QbF4yXQiRviKXYRiG2aKIJWK2xxJ+XSuM+DAyIV3dSMC88WMkFEFcA3QXnZzZyMQ6boK8kYm/3XiVjCPCurvwu0XYJ2L25W5GN6hLNc9b9rbE5WZkolhNKByS2eQTFPUn1A2asMF9w6+YINPi3BQ02fIXoIjzPU/4NHBJokVTb6AOHQkkAttduiCkI+5BYGtn2kNaHCJh304X9mpwjTukN5e5V+GMnzon095k1SiNIaAuEkw9yDcjE03qRlljLFeZ3bEBgPwYmahWIwrgfkv0JSRhZEKaBiIB4XIRFLJpjxkQG7kZYnjpm0SQ8zEDFQWmuqIoxncas2MKfTwVlTge10qKAKyXji/JJhUjE/+eeWpmBjJtQKJ+h03DU0jCkaXJ0LSCMDKZuvdGXPKiPyGo05yAQM1tVbZKWbpdZXaMqA9oLDPiRRReWliKRDwBTfm5K3fCy+b+OVgjEyRa2r6EkYmvupFsx76NTBSCqowHIR1UVu4azNXIJNu4jM0EkhPD54lxn1dSjEwyMF/JZ+OJ9kC38m6I6BH8UvMLEi3uQkXhIvSo6NH6rNYe8Dp6pf2olOcCfqn6bnwG89o+WseD3N6PeCKOf/zjH4g1NiK+9nfbcH8cujv+OHR3qXEsH/uMmk01+HjBx/js48/w+SefY/ni5Vj/u/wzQ2V5Of7Qpx926f8H7LXrbhi561B0ruoonwG/478H/DS15nf8wZTjl8uWYvb/ZuKll17Cp59+iqYme7NsTdPQr2cv/HnESByy977Ye9gerX1G/tUqK6Qd1KSR7Xvj8TiWL1+OL774At9++y1WrVqFH374AatWrcL69etRV1eH2tpa1NfXIxwOo6CgAJWVlejSpQv69OmDAQMGYNiwYRgxYoR85qxoHwXFuNB+ZicMwzAMwzAMwzAMwzAMwzAMwzAM086Ix+OYN2+eY5hJkyYhGs2vnZkZhslPjjzySOy000746quvbMO8/fbbbGTCZBQi0gAcjGbzkkMAhGFvXgKkLzGyO74awOMAHhZCLAkmtwzDMEx7IC7shWM+PStSIB9GJp5MUEyruyN6pFkkGXe+qJhJN221WL9ZcCcn+PJtoCFtHAEgFHLdVbx1B++Y/SLztCwI67+9oLuI++OqRiYRHSSh86c8e+43iptcqqRMZD4jUEDWxKdFZCmEsF3wrlrWtlkqSK3zutZiZBJA3EIIFIQjqMVm9XzZiFqKty9FzdI62/Oe37XWNe6k8NyrmCjupyEHOC406gJ1UXXxrNXYlG+CwcDEfKGwexgAFGnr4yqLKpWSUB3rE5RqxuQJKSMTuTIlXUC4eHNR2KbDyYDo0u1+SvhMBHKODGbTG9W5mpP5m0ofTyUuRiZlxfKRGdigYmTixSzGXC4KxnskOb9zq98R0yQiLDGpiBnKza+RSVGkCJ/3dDfgcsOtjmukSSv+rAwOKMNjRH04A0YmHvunMIWVDdhyqT+3M5ryRYtxY6aNTFrLyM9zrioqfWtYB5WVuYYTTS59ZQD1Q6mFBFQh81F0r4Kxf853k4itlY4lHdGxRMH0QInMlzmBvCeT5Sq53XbbYeXKlVJhrz3rPFz8t9PavpDugMjyTyf6j94PP/z8k+3xJS++jl7dtnVLLQ0B4asPe/fNdzF58mTXcK/OfwdvP/KE3Bw2T/qhhvoGvD77dbw6+1XMf3M+GhsaPcdVvWED3lv0Cd5b9AnunvkYiAi77TQQh++7P445cLRt2bWSAyOT5prjbd4ZxDPlK+++jVum3Y93F34sn24igWXfr8Cy71fgP9MfRf/efXD2+Ak4+Yix0DwYl2cdaR8TfzdYCIHvln+Hd55/B/Pnz8dnn32Gr7/+GvX19VLnNzQ0oKGhARs2bMCKFSuwYMGC1mOhUAjDRgzDCfuNxvg/j0FRYaFi7vKj/TP+yK+3pgzDMAzDMAzDMAzDMAzDMAzDMAyzBbF48WJs2LDB9jgR4eijj85ijhiGae8cccQRjkYmS5aw/wOTGYhoRzSbl5wIoHPya0MQ4+o1q1VFVsdrATwL4BEAc4WQWeHPMAzDbGkkhL1wKSijAQAgP2YLnoxMUj9GQ1EpwwizKNfSyEQhP1RQIB3WOgKFxcK6Doo6i8uTxS2aXFTfxmgNVcSLzjclLpeF/qoGCxQOgXQJQXyhz3IImJDWtnzYk3jagJt5TZDIVkeZ3eKDEuZrRaki7IgWQZNo8mzEZMy5SAhoEW/3l2xMe0rGHoCaG/5neWxDYRwf9XEXKSRNJDQXYyA7/Nx7WfG9DI0hgbqIev23OsPYpvIBPyKWlHMlzTxQ0GZk0rFYTVCpXh8Ewj7ND2Q6E4pImrhIjBtaxGYOkgE9TsIlP176pkwZmaTVFUUxntM8UXo8p4TrOKaVOhud2LFRwcjE05zXXI9V7p+skYnLfQzHUuMJSfhXGE37/BqZFEeKsbYsgaeH1eDoj7yVEwAkHG4dgaCpuDdYkeG5Un1Y3ZTLDa/GBSXhEmyI2/8mlm/4eka0QSRayiPhXi4U9mHM1dKOSfN5DQpFrTL1o3AIJNEvibhLf51t8XqeiOVzTYqRCQuItz7yvMjTnfLzJ8P/euhBTDzmeHQoK2/9Tip3edT3UPKBwWOWnp3+rFS4j774HIu//QZDBu8okalsu1qlsm7dOvznP//BHf++A9W/VfvPiwVCCHz85ef4+MvPcfVdt+OAESNx2rHjcNCova1PyIWRiUIxmJ87/TxTrv5lDc6/cQpmv/mG90haWLriO5w15Wo88PRM/GfytRgxUKL+tQd8tJGLT78Y77/9Ptb/vj7ADLURi8Ww4O0FWPD2Alx96y04/bhx+PvJf0NJkTfDUKZ9kgvrJYZhGIZhGIZhGIZhGIZhGIZhGIbZKli2bJnj8U6dOqFr165Zyg3DMFsCe+65p+Pxn36y332LYbxARHsT0XwAXwG4EEAXNC9XS269lfxHhn9JjMdhOOcNABMAdBZCTBBCvMEmJgzDMFsv8YS94jFQ4awPkZqMACv9pNTMR0NRqeuJmY1MrBYiK+wc7t9AQ74QKBwCQi5ivKSer6lJOl7NsPpd96nT1F3Ud+b77wZFwnJGJn4NZQJGNwge/RoG+RJgKicmK7x2DxP364rTglYUTfkc1ZOfvcVvFHto0EBhb32XZnOvis+/ABWjuqV9H9fjuGpsNZoktNZJYaNXkbOvvl2mvkrG3xQSqI2qdypWRhD5ZmTi1WTGjGz7pkhbH9eppJNSGqrGGgnyb34gU3fljUwkwtgZmQRozJPErX15Ma/yaszkRufizqlfKOyI3agLx7YuO7bJGF9pFWWSuUplY5F8/+KlX0yrewrzVZm5i2UaJsIml76QhGuf0bQvGoo6hHSnONosfntgn42Yvucm1Eba7vnCXg1Y1KtBKh63bPvtUzNt+lYfDv6VmldReIfCDq1/vzSo1jGsFo4lE8sZmTAyQaK5PISEkYkvk5vkGOJzLFE5W8nIRPLeuhqZBIDKOOZ1frulYeyf+Z4wrnipIuR9jpmpuWkQbKjZhFunPZD6pUw3l0ftjIigk7fxccPvG/DGK/JmE488/5x0nnJBPB7Hv//9b/Tt2xdXX311xkxMzCQSCbz87ts48pzTsde4o/HS2/PSAwX0zK+Ej3JwMg504p2PP8SIE8YGYmJi5NMli/GnCeNx3333BRpvzlApG1PQ9+a9lzETEzO/b9yA/7v/bgw8/CDMfnOu3En50z0yPsivt6Y5gIjCALoBKANQCCAKQ/UWQrydo6wxDMMwDMMwDMMwDMMwDMMwDMMw7Zwff/zR8TibmGSWNWvWYOHChViyZAmWLFmCpUuX4tdff8WmTZuwceNG1NbWIhqNorCwEB07dkT37t2x/fbbY8iQIRgxYgQGDhyY60vIa1atWoV3330X77//PpYvX44VK1bgt99+Q21tLRobG1FYWIiSkhL07NkTffv2xbBhwzBq1CjstttuvPDRB507d3Y8XlvrvECcYTywD4Dhhs/pG96lYnd8MYBHATwqhHAeIBmGYZitirhwMjIJTtREuo8F3grC2tb0TCNkRI8g7rKrPQA0mZKyEhGqXItvAw1JoSsAUCjsKvxutS6LxaTjLWsEEvEENF2D3yqhu4h8VU09KBqWWlCt+TaUCZaw3lZOXsUErUSyuBRZVqjZUlGEg2LIr4FLEq2kMOVzNBQFYt43+zWep5Pu2ShGd+i3qp59AsVPTMfG+6cjUdeAyHZdMP/YoVjyzZ1ScSfrj1eRs586R1J1QC5fjSGBukgw44zRHCgf8PPeJeVcyeuiorZ20LGko1J6qmO9gH/zA5m+RNrIROIWUdQuruDfj7kJO70IP4OcjxnpUt4l9QsFIw434zGZORcAkEQ4rbKDaxgrNhYoGCVR833WlNT2po8q80PJe+1WvyOm6VxI4pJjWnBGJiWREgDN48pDf9yEJ/aoQYdaDU0hgbVlCUycW4YhK93TcKovRNTcx9s/sqRiFVW4/RmZaB73zO5W2g3f13wPAHht580Y/Zn9Tuule3Rv/iOXRiYeDeOcEC1GJpDwbCY3E0inc5NjmV8zFpVuR+XZUHIOW37EcMfjWf8tySU9Ajk+Y7RF075/AzM+LwZlkMe0I7JWf4MZv/Ktvf135mOYNO5EdN1GweDReA05vh4NGqKhKOpidcrnvvjsi2hqlDcunvHi87g5FkPIxdgriDJWfX/x1VdfYfz48fjss898p+2HhYu/wthzz8R+w0fgX5dciR226918wIvptl98FIOXZ8rnXn8VJ112AWIK75BVaGxqwmmnnYYffvgBU6ZMyUgavslAd5APu4qs+e03HHP+JEwadyL+ecGl0HJRn5msslUZmRBRMYA/AdgbwBAAOwPYxuEUga3sHjEMwzAMwzAMwzAMwzAMwzAMwzDBUVNT43i8IM92ZLZju+22w8qVK5XO6d27t+f0JkyYgIceekj5vI0bN+LVV1/FvHnzMG/ePCxevNj1nM2bN2Pz5s2orq7GsmXLMHdu284fPXr0wLHHHovTTz8d/fr1U86PHV4W2/hZoHP11Vfjmmuu8Xy+kerqakydOhUzZ87EJ5984hi2pqYGNTU1WLNmDT788EPMmDEDANCrVy+MHz8eZ599Nrp06eIYB5NOWZnzLrBFRUVZygmzFWJc22TVKVkd/w3ATACPCCE+zlTGGIZhmPZNQtgrHn0bLBjxI/DyspjWNIeP6BGp62kyCXMtjUwUroUKC90DOccgHzQcAkUjjkFEy00QCovQd4pF8PGkj/He9+9h2/fvB+B9l0gncwcgVVwrg6zQHb7LIVjCmsHIxKdAnfzsJK+alqSRicwjdFD9i1aa+gxWFC4C6n3sEm04L6JFPBvFkIvgsOC4cSg4blxb+K9eBL6RizspPPf6rkLWYMASGQMKyWw16gJ1UQWjgRaERZsJafm13DwwwamskU607R1nVVEVhBAZExQKAqK6XyMT9/sjb2Tifp2ajZGJbJ+mQsIlSrfjludkSFO0bdm2KZ9JwTgu5pInt+OtaUqE0zpUyEVmYmOhWv+SIECle0xrYyrzVdnx1KV+h+Opx0Nx93hjhmL2bWQSLUn5vDkqsDna5jiSkLyhTu2CQP77VI+mZLJkwsjEq2iyV0UvzP95PgBgSddGfN2tEQN+Sn8+ID2OsvPObPmQQ8G2XxMQKxSMTBBxfnZypKXNu8353CCVZwGVcatlDls6uBybPt1gG6zwmCOd48l29cgzQ4ScIPLPGILZ8mg2BfJGupN+ftXXzfX1uPH+u3HH5VcDkOzGsn0JDjc/rIdREi3xZGTyv5n/Uwr/y7rfMGfOHBx66KGO4fyOdao89thjOO2001BXp34PMsUb78/H2HPPwBezXgYgb0wYLN4rquo7slffewcnX35hxkxMjFx//fUoLi7GZZddpnYiIQuuILKGzvnVD8ryn+mP4qdff8WjN97q8M6+fV4bk0p+vTXNEER0KIC/ATgIgPEtQKC1mIiGAxhtc/h9IcRLQabHMAzDMAzDMAzDMAzDMAzDMAzD5DfxuPM2fb/99luWcrLlUldXh9mzZ2PGjBmYM2cOGhoaAot71apVuPXWW/Gvf/0L48aNw/XXX49evXoFFn974vfff8eUKVNw7733ora21ldcK1euxA033IB//etfOOOMM3DdddehpKTE/UQGAPDrr786Hu/YUW3nY4ZRxG6dhTAcawQwG8AjAF4SQmR+lRnDMAzTrnE0MglwhZ+KODaQc00ir2goipjE9aQZmVgtRFYxMvFpoKkisqZwGFRsv+s60GxkImIxICa/Q6tIAFUlVThs58OwTn8C630YmYRdxA8xxaJ2M25JohXll5FJSG9bPuy7nWVYnJuC5MJ8GY1L3KeBSxKtNPV5tjjc3Aa8GpkYc1UQKpA3yzHnS1HUEtHlhbTJHdq9Chz91LkgjR8awkBdVL0eWJWt0RwoH/AjPjUKASksJzUwjjWapikZmajWB0HNbcMPMvVItn+XMTKhApu4pPu0OERCboDya05lhWdjJhd6VPRI/UKX77fM8yUzsoZJJHFbNY/v2jYWqRqZGF+tSGC+XZrC/FDyXlPIOT8R0+TWbGxiRcxQdn7bclHE2dBZtn9xMushEHSZimIIn/ZdOzQy8Wre0r9Tf6DFXz6uA9ccVY1rn6nEH35u6wdj0Ri6Xz4ekb3/BCCH0kRKZEQYLRSMTMiXkUnLnfPxnKuKQlNoncOWX3AGaiZcbzmOFW9fgPCeI91iUshhAAQkBM6FsYIISk1t9snKsoEAk3uyVX89G5mYs5eHGvdpzz2Dc0/8K7br2VPqQrNtHuSUWmG4EB0KO+DXWuffo80s/Woplny5RDkv06ZNczUyyaZJwxVXXIEbbrhB6ZxwJIwBuwzAoKGDsONOO2Lbntti4PYD0btrbxQXF6Pp2+/w+5pq1NTV4fsfV+PbVSvx+bKleOfjD7H4u28hZMzPACSM4XJhZKJQDOYrknhMaGXF6lU48dK/o7HJ/d3xLrvsghNPPBGjRo3C9ttvj7KyMtTW1uL7L7/Ee6+8gademYM3P3zfNZ4rrrgCAwcOxCGHHCKf0Xwiw20kFAqhd+/e6N+/P3r37o2ysrLWf42NjdiwYQM2bNiAJUuWYNGiRfjpp5+k437u9Vdw7v+V464rr83gFTC5Zos2MiGi4wFMBtA/+ZUpiFMv76X1rgBwIQAra9hvALCRCcMwDMMwDMMwDMMwDMMwDMMwzFZEocuOyytXrkRNTQ2bOHiksbERnTp18m2s4YYQAo8//jhmzZqFu+66CxMmTMhoevnG9OnTcf7557saaKhSX1+P2267DU8//TSmT5+OkSPdFqwyALB69WrH43369MlSThgGQJuBCQF4H83mJTOFEN7VxQzDMMxWh7ORSYCiPD+7bXtYHG4WSUdCETRIiGpljDRIxcik0Fng6R6BwlJKXYdW4mxkAgBi08ZmMxNZjAv1JRf32xHSnJfNxhWLWlZ8SC7vB7KN0XTBSbwrg1ejDU9pyZpYSFyT3+tuTaqiLOVzabQUgA9RluHvonARNDsDBLd8KQoOC8LyYvJoqHmZtCZzoy3wZZ4jUwck42/SBWojHoxMLL4zmgPlA17LJg3J6zKbZpGC84WqSYZAs7jOFxJjWz4ZmWi6QFzSE8Ptfnppf2p2HHIIIdCxJNUghBTaUczVyEQuHpmuUqvyaGRSoHbn4hoAZ1/0FMyCV6Vd2aWNTJzDmY1LQhKXHDNEmRxPvJIcc+2Q7V+cnjmIyL+IP5TZMSITRiZeRewDuw5M+by+OIFzT/wNO/0YQdf1OurDAoOOGIe/jznLmFhOoOQbzaBRMDLxUzda+wCJcUgqHpmwCoZT1HJt0YPGoPPkb/HbjTMQq2+73uJ+UXR6frp735Xt+uEy1yQi7xP9doJ5HpkLUxYmx2SryANKJx/raFOsCf+45y5MveGfcrnLspFJk8NrxZJoCSKhSOr2BRI8N+M5T3mZPXs21q5di2222cY2TLaMXs477zzccccd0uGHDBuCw48/HPuP2R9l5anvhjoXd0ZFaQUAgKJRVFV0QFVFB/Tqti32HrZHa7hfq9fh2ddexowXX8CHX3wmn9mcGJkolIMpqJA0mmxqasJfLj4fG2tqHMN16dIFd911F8aOHZt2rLy8HAMHDkT/4iqcctSx+PCLz3DO9dfis6WLbeMTQmDChAn47LPP0L17d6m8ZgXZWx5wG+nduzdGjRqFkSNHYq+99sIOO+yAkMK8dcWKFXj00Ufx0EMPYcWKFa7hH3zmSYzabXccd/CY9IP518UzHtgibfGIqA8RvQHgcQA7om3RjDD9g+GY8Z8nhBC/AHjQJs5+RDTCa9wMwzAMwzAMwzAMwzAMwzAMwzBM+6NTp06Ox5uamvDGG29kKTdbHolEIuMmJkZqampw8skn45JLLslamrmkoaEBp512GsaPHx+4iYmRVatWYd9998UDDzyQsTS2JF5++WXH46NGjcpSThimdRmjAPAmgEuEEPewiQnDMAyjSjxhr9gMymgAAMjPTtVeBGamlYjRUFRKTNlkEuZa7uquYmRSlD0jEwqHQWXOglIAENXVgIKRSeuu5gCQ8Cen1jXnexeXXFifhArlBLhU7G7wkk3Cepv5iOo1m/G1k7wqkkYmMnpjv9edROtQkfK5rKBZvKJqzmBFcbgY8Hh/3eq6mUhIPp2o3lzvPYuJyLtRlbSZjQSNIYHaqHqfYlW2biZJ7QljuVJIzqiIoiYjE4Xl+KrGGoKAgpC88Y4lEvVI1sgELkYPAKAV2uRX8tpJoXq53U8vfVMioP4yJR8JAc0svlMQyLsZv0kbmYTcb4jWqbNcZCY2FKn1L8r9orkeqxgMBGVkYprOmY1NrDDOdQtD/kyJ3Ey4ZHd+d2s3qmOqGdm+1Cv1Hky5MsWALgMgzAYeBHzVvRGv77wZ7/avxzebfzQdz5WTiZCeWyqRvP6ERLn4MUJracdKJkYWKGmSFUxTjONo8aRz0HPZXHSdMg5drhqLHk9fhy4LXofW0V607imDQZCr+phHmM2bsmUgwGxdEMi7+aepSuajkQkAPPnyi/hy+TLJ0IZryHCbi2sCDQ4maEmjOJVn3KbGJrz07Eue8tPU1ITHHnvMMQz5NZWT4LLLLpM2MRk8bDCmPjMVDz//MI4ad1SaiQmA1Gc9hyLtVFmF048bj7cemYkFM57BkfsfmP6cZEUOjExUxgNzDZOdl98141EsXPyVY5ghfxiARYsWWZqYM5tj5wAAIABJREFUtGL4HWD3gYPw5sMzMPaAgxzjra6uxt///ne5jOYbPsoGAELhEPbaey/cdddd+OGHH/Ddd9/h4YcfxsSJEzFgwAAlExOg2Qhl8uTJWLJkCaZMmYKCAvd3OJfceiNq6rK39ovJLluckQkRHQrgEwD7oK2bdzIuCZo7YW2YAgAnZSA9hmEYhmEYhmEYhmEYhmEYhmEYJk/p06ePa5ibbropCzlhguSf//wnLrvsslxnI6PU1tbi4IMPxn333ZeV9JqamvD//t//w913352V9NorNTU1eOGFFxzDHHSQ8yIchgkQ45qLvQG8SUTfEtE1RNQvV5liGIZh2h8JYS/yVBU3O+Jnt2svi8NNC4gLw4XQJPSsaUYmFguRKaxwLYX+BKJKC+PDYWgl7kYmiY0blIxMjKswRdyfkUnYxQQmpljUFG2fRiZGQa7vduajbSkjbWTiHi6o/kXr0CHlc3lBua/4jKKs8oJyeTMFE5qieVPSnEQqbMinkQmAuFcjExkBrWS2GkMCmz2Iv63OMJoD5QOBCU7DktdlGmt0kq9/qsYaggSKIv5MumSEcFQg2b9LGJnYxSUryNPCwRnDeDERCnQ+1oJmJWNR6Lea3MxVSK6fkelTvBqZbCpQNTJRTMA81qnM2QIyMomYFIkhe3/CVowmM25GJH6RNeFxMk8kkFKfZimmzvBcqd5BjOwVKQGtBZFQBHCp+qs3rE79Ilc+JiQyIhZPmjCmGbqkh/Rlttk63/Vj2AnF269imBRJnUNQYSGKTjsDxeech8jef5JPM4giUokjoDrhay7mwywwCMzmTWxkshWiWuZeqkiQ1SpPq2gikcA1d90ulz2jmWTGctTMpgKH8Um09QGFYfn3ifNenYf1v9vvcTBqt2GO50+bNs3xeKb7oUceeQQ33nija7iCwgJcceMVeHjWwxg6YqhjWJJ1MjEweMcBmH7z7Xh/xrMYMWQ358A5MDLxUzllnnXW/LYWN97vvFZk+17bYfbdD6BLly6O4cxzrIJoFA9dfzNG/3Efx/OeeuopzJs3zz2zWUPW/dR74Vx323V468u3MO2paZg0aRJ69OjhOS4zkUgEV1xxBe5/+n6UlTr/ZvDLut9w98zpgaXN5Bdbjv0zACI6HcBdaDNoMZqXwPRd2ulB5EEIsZyI3gCwvyGt5C5ExxLRWUIIhV/gmFxARF0BjEHzYqsBAHoCKEVzOW4C8BOAxQDeAfCiEGJFjrLKMAzDMAzDMAzDMAzDMAzDMEweM3jwYOi6jnjcfgXvggULcPPNN+Oiiy7KYs62HogIffr0wS677IJu3bqhvLwc5eXlKCsrQ319PdavX4/q6mp8/vnnWLRoETZu3CgV74033ohBgwbh+OOPz/AVZJ/6+nocfPDBeOedd6TP6devH0aMGIEuXbqgsrISZWVlqK6uxq+//orFixfj7bffRkNDg2McQghMmjQJ3bp1w+GHH+73MrZIrr76alRXV9se32OPPbD77rtnMUcMAyB1vUVvAFcBuIqI3gfwCIAnhBD2KxgZhmGYrR7hsAdrkMJZcjGwcMTDueZF9lE9Ck1CrR0zJWUphgwriCn9GmgoLISmcBhU7m7iINb/DqFgZJLideMqCHTGbUfZmK4Wv7TQvSi/jEyMpguyu6LaQRFvRhue0pI0MpExPAnMyKRjVcrnDoXNxiaq5gxttNXBioIK70YmiqKWpDlJ0GHt8Hz/AxLrCAjEtHTzKCksu+X8MjLxKkAHTOOOpJEJmUT6IS2EOCQcDaBurCFITVRniUQfQRI7BgMAhTXA5Vqp2Ca/spokJSMT5/vppW/y3p/ZE6L08VjFOM48X7IirgG6SzWUMqIpLQVRAkLI568uEkdccfooFNtC2piocP9I1sgkrAOwn7OFY2YjE+fK0qiLlHpfGPHZll2QHWucTG+I1IxMLOMIZXaMyISRieUziCRRLYpGNNoeX1u71nPcQUIEpWcdaVpVZBLl4seEJNnmfc6NVG5Bc58pN75Lm6G5p+o7BpUW4mYy5qdttBfMY7QmabzGbL14bRVe55jmOVM+t8uX3pqHkz/+FNv2cTa9yMR4ZDHdRm00gbWl9v240cioLFqGTY2bpNKaNXOW4/GrTj8LV975L3z4xWeWx7/44gt88skn2G03a/OOTBqZLFy4EBMnTnQN16NHD9zywC34wy5/kIo3pV4qZn/gDv3xxtTH8MisZ3HBP69HTV1devy5MJnykabMo9RtD0/Fxpoa2+PRSASP3XQbqjpUuEdmMccKhUJ44B83Yo/jjsSqNT/bnjp58mSldTIZJRPFbIpzv9H7NX+dwTo1aLdBeOLuezDmpBORSNi7Hk577ilcdIq5PeZvH8/Is8UYmRDR3wD8B801083AJNO191E0G5kk00qmXQ5gBIC3M5w+4xEiGgLgCgBHALB7K1DV8m8ggGMB3ElErwG4QQjxVlYy6gMi2gdANqzBrhdCXJmFdBiGYRiGYRiGYRiGYRiGYRgmbykuLsbw4cPx3nvvOYa75JJLEIvFcMkll/gSGmSKm266CZs2pS5UmT9/vuPuODfeeCOqqqpsjzuxww47eDovydChQ3HEEUdgv/32w84774ySkhKp84QQ+OCDD/DAAw/giSeeQI3DQgkAmDRpEvbdd1906tRJKX/3339/2nfPP/88XnjhBaVzZNl1112Vwv/tb3+TWpzRp08f/P3vf8dRRx2Frl27Ooatq6vDSy+9hGuvvRZffvmlbTghBE466SR88skn6Nevn1K+t3Sefvpp3HnnnY5hrrySf55jMk5yIxer75Mkjw9v+Xc7Eb2IZlOTF4UQkqvdGYZhmK2FhLBfvKoqbnbCvCO0El6e00zi0mg4CplN4c2ieqtFxGbBuBNUWCQd1joCheWWkTC0sjLXYImNG4GYwpQgYbgncZct3l0Iac5iwbhiUVOhnACXJJ9Ls4XRdCEhUzEd8Gq04S0xufqY1No5GSXFfV53Em2bbVI+VxVXuabthFHMVVVcBXLaLdkB807qbkRC8uVYEG42ePAjckgo6GCNkB7MEvCE1iymV23zgLUY1s0kKdv4EfMZy9W8i7EsES2ChoSzoW0SoWhQJQCURPz1qcLBdDqJtJFJSAfQ5BzGbqyQNGfSIjpkZdhuglAvJkKZMDKJ6BZ9jsL8RsZ4LKYLRFyMNWT7FC2UQLxJvsOoiarPV5T7I1P9UWqvSkYm9pjvb9jlfpvLrSAk1868Ilt3ne49gZTH1DTCmRsjEhBoCAVvZKLB++9UpZFSrGtaZ3t8Q+OG1C/IKLnKIhrUnnUkEclnF4fn3Fb8mG229AFex+ok6kYmkmGDekbItnZV1jjRhXw2VnAjpKf2We35Whiv5HeZm0eMnBg6GPjziJF4bf67tsdv+ecdOPSeR50jMV5DQONiePs+CJeUoPr3tYhRs4nJ5ohzvMY5enlhOX7c9KNrOr+u+RXz35xve7xXt20xcrdhGH/I4bZGJgAwbdo0eyOTDK2faWxsxMknn4zGRnsDNgDo1asX3nnnHawPedyzwWMdPenwozBi8K446bILsGjx123R5WLeBPiaN7m941+/aSOmPfeUY5hzT/wrdum/I6Tah838qENZOf554aU44cJzbU999913sWDBAuy5557OaeRTV5njflCGPYYMwcSjj8O9T86wDbNi9Sp89c0y7NTPsF4s/y+NkSC/3pp6hIj2AvBfWJuYmBfLNAL4CMA7AFYCWAdgTwDnw37BjSrPArgXQBTpPeP+YCOTvIOIogD+CWAS7A1MbE8HcACAA4jocQBnCiHktupjGIZhGIZhGIZhGIZhGIZhGGaL59hjj3U1MhFC4PLLL8eTTz6Jq666Cocffjh0n4sPg+S4445L+y4UCjkamRx33HHYbrvtMpirVPr27Yuzzz4bY8eORffu3T3FQUQYPnw4hg8fjn/84x8466yz8Oyzz9qGr66uxuTJk3HPPfcopXPqqaemfbd69WpHIxOrczLBHXfcgenTpzuGKSsrw5133om//OUv0vW0qKgIRx99NI466ijcf//9OOecc2wXBW3cuBETJ07E3Llzc774LB8QQuDee+/F2WefjZjDrvUnnngiDjnkkCzmjNmKSCq8kmsyrDaXMa7RMB+PAjiy5d86IpoB4DEhxEcZyzHDMAzTrnA0MglynboPkZiKcUjbSakfo6EodAktW5Mpm1aiIVIQQ1JxsXRY6wjk5+Skh0AVHVzDiY0bIeL2c9v0Ewx/J3yabugahBC2zxoxRXMLKpQUuhf5LIeAMRqZeDFySI0sqN3WJZAUr8gI04PqX7SONkYmXneXNvzdsagjqEBuB2Qzqu+VonpUOawfkbN5F21ppMSlEmFaOmQZMwQzVmf4FrkHTGDvUzy274geASR9HOKKIixBQFHEp0mXhJmWmpGJM1qJzRgga84UDcHNLCWJW9/jpW9y8abwRIFucX8lzTWAdOM3K2Ty7WbUkUSLAHG5IgAA1BaqG5moGviRuT9UEHjKGh+4zTnDpulcyOWyY6YsFoV9tmUXZOc4TnMCIlIyq7IU/GdwrtQQFlnZqV2FjkUdsW6DvZFJQzzV6CpXPwEQZUj8nnxecTNgJAHyYYTWKur2Ke5WMjJRmF9SVH5u6RhPtiuIS3pElBPfnWxifFYEMlQG/NNffqNcPuoFSgFaMeTabOeyiWfi3YUfY3N9veXxDz/4GK/Nfxd/HjHSPpIMtDMigr7NNliP9aiPW+fNTGG4zYBR1/SWcnIuqReeegFxB6PIE0YfCiLCMQeNxkW3/B8am6wn1dOnT8ett96KqMX4QZQZI5MpU6bgiy++cAzTsWNHzJ07Fz169MD6nxWMTAIq0n69tsO8h2bgb1dd0mZmkqsqr1BPzbXGzVDzkVnPYlNtre3xyvJyXHTKROn0ncxvjtjvAOyxy2B88PmntmHuvPNOVyOTHFnxWdNO1tRccurpuO+pmY6Gtu8u/DjVyITZIsi/7dwUIaJiANMBhGFvYkIAVgA4E0AHIcQoIcTlQoh7hRBPA/gaASKEqAXwJqyHhf2DTIvxDxF1AvAWgHOgbmJiZjyAD4mor++MMQzDMAzDMAzDMAzDMAzDMAyzRTBhwgSUlpZKhf30008xduxY9OzZE+effz7mzZvnugPM1s7uu++OJ598EsuWLcO5557r2cTETNeuXfHMM8/gtttucww3bdo0rF69OpA0c823336Lyy+/3DHMrrvuioULF2LChAmezHY0TcNpp52G1157DZWVlbbh3nzzTcyYYb8by9ZAIpHA3LlzMXLkSJxxxhmOJiZDhgzBv//97yzmjtnKuAHAaADPoFk5RUg1NTFvMGN1PPldRwBnAXifiL4mokuJqEeWroNhGIbJUxyNTAJcg+vJjCSJF3GYaQFxRI9Ak7ggszDXUjSkIIak4hLpsJbnqyyEjoRBFRWuwRKbaoAmeSMT49pmIbOzuQNEmuMqc1VTDyoolFq1TpLvBbKFcZddv+2MIgHtti6TluwO6RJieN8GLi1onbumfO5U3AmAdyMT48rjTqWdpM1y0vKlKPSJhuXFpoWRZnGTH1Gj13pHEmUrky3REo0ngwarblnLoqGPBH5MZlKEgB7HzoKQfL1VFf4IACURf2ObiLmPJdJtz0GA0xpXkY1Zg2SfpkXl65dbnfYitPJsPORAcSTd3IV0+foWk3gtGZcwO6GQXFvRImptamVnL0YmiieYOzsFIxhIXjdFXIxMTBUu5FIBzfNco1g2E8iaw7iFUzGrsjQhzOBcaXMkM/JJ1XmEkW3LtnU8LkggkfA3pw8C0iDdDysh0v6wx4fZZmve/TznQm0+J2v+BARnZJJ1ghLLtw89sSXGZ0XAX3/AtFeyVIG9mn/mWfvq1qkTTj9unGOYq++6zVG4nzKvy6Ehgfk5S+Y5d9YTsxyPjzvkMABAh7JyHDxqH9twv//+O2bNso7LyZRCGtNt/fHHH3HzzTc7n0KExx57DH369PGQXHBlGo1E8OiN/8I5f5ngKx7fKLmfpX50e9aZ8eLzjsdPPfp4lARoEn3uiX91PD5r1ixs2uTNWDhQZM1PfZjMtMaRhb6/6zadMHTngY5hlq5YkfF8MNlnS5hNXgegB1JNS4wLYRIALgOwgxDiHiHE5izl62XT52R+hhKRv7enTGAQUSWA1wDsEWC0/QHMJaKeAcbJMAzDMAzDMAzDMAzDMAzDMEw7pby83NUcwsxPP/2E22+/Hfvuuy8qKiqw77774tJLL8UzzzyDH374IUM5bX8UFBTggw8+wDHHHAMtiAUsFpx33nm44YYbbI83NjZi2rRpGUk725x99tmoq6uzPb7zzjtj7ty56NvXv6f/H//4R8yaNcvRDOW6667LiwXNmSaRSGDDhg1YvXo1Pv74Yzz44IM466yz0KtXL+y3336YP3++4/lDhgzB66+/jvLy8izlmNnaEEIkhBAvCyGOAdAVwLkAPkWbOQngbGpiPp78fkcA1wNYQURvENFJLZvZMAzDMFsZTjt7qu5M74gfgZcHgZl5kb2madAkLidmNjKxEkOGZa9F+BdOKjxrUTgMraKDazixaROEw26t6ScY/k74rBOay26yBMQV6p2s0N2voUzQGHfZ9tvOKJJFkaKk2LTV8MTh0gLpXygBKitL+Wqb0m3ckpama1lXz0YmOqn1Wypi8mioucz9GJmotLMUVIT6DlBLXxuX6ZhNWPUh5p3rc42fskmJx+P7tqKwjXGHBUIxrwkCSqI+jUziEu+bCiTbnsS4RCV2+ZXs0wrlx3I30xEvpiRBGsslsTSjUahvMYm2K2NYJSvK1wrU+tTPdlaff6mKctPMvVTMNiQNqt2MTCIxs5GJc3zmeW5RRL6v8IJs3XUKRyCENIXnCKu4FEwIVakPZ8bIxI+QsXdlb+e4NcKytcsMX+RIsK1lJu1WobrL+EAAEPJRN1rmRH7F3Uq3QOW5OBJQvQ+gjJRaicvzhmzbyIYY2ExQvUFyrp8kqHkl045QNlfzlozXOms+Lx/q6IV/nYjyEnsD20WLv8azr79iH4HhGoK+GpX7Y37OcpurLfpwEb7/9nvb47sPHITte7XNC8YfcrhjfFOnTrX8PhOGStdddx3q6+sdw5xzzjk48MADfacVRB0lIpx2bIthTq6qvI/rEGT/vLN0xXf4dMlix/P/euTRntO24rA/7YdOlVW2xzdv3oznnnsu0DS3dpJ99x67DHYM9/PaX1O/yIM+nvFPuzYyIaLOAM5AuolJ8u91APYRQtwk/Nrwq/Ou4W9ja9EBONsGMVmBiDQAMwHs4hDsEwCTWsJUAqgAMADAKQDecjivJ4BZROTtFySGYRiGYRiGYRiGYRiGYRiGYbYoLrjgAgwbNszTuZs3b8a8efNw00034eijj0avXr3QpUsXHHroobjuuuswZ84cVFdXB5xjxsill17qWH6PPvpoFnOTGebPn485c+bYHu/atSteeumlQM0yRo4ciSlTptgeX7p0KV544YXA0ssVsVgMRGT7T9d1VFRUoEePHhg2bBhOPfVU/Oc//8Hq1atd4z7jjDPw3nvvobKyMgtXwjCAEOJ3IcS/hRC7AhgM4N8AqmFtWpKEbI4nTU00APsAmAbgFyJ6lIgOoHxYfcowDMNkhYTD0r4ghbPkw8iEFIShrVgIoOSMTExpWwyJJCkKIw8C/TRUdimPRECFhQA5L9cUNbVALCYdbcqmtX7NDjXNVS1jLgMnqFjShy3PdiQ37qqb8LuSOOrTLEcFSaEmhdzDBdG/aHoiTTzaubRzSya8xWmsnt3KuzW3KQ+EFPu8gpD8ctfCUHOe/Ag0hcd6JyXWlciWpjcHinvo3q3qTr4Zmfgx/A3iUUzFyMSLULKsoMw9nBMSZlqybc9xZ/UWNBsjkzQjCrvzFYxM3Po2L31fJoxMygss3jFKG7UBTbqEkYmEaYusOZxWIN/GIxVxLN/JXshqR0J13maqP6Ri9CRtZOJ83eG4ycjEpbKY51gZNzKRvCVO4YgIuopJjJUJoR+zChcyZWTiRzD8h05/cA3z2Y+ftX3I0RtA0kjtWUeWlscVmfFB1lTI8tzkWO/BdDMlHoVxnxTSomhAUqogikgljgyI5dsbZiOTTJALoxdGhcyXj686QOaPua9PleUVOO+kvzqGue6/dyJu9xySwZ/DpO+PQNqcx3LObuB/T/zP8fi4Qw5L+XzQyD+io4MB8muvvWb9+3gQRiCG+7B69Wpb05QknTt3xnXXXRdIelsKKnMGq1mQnaHw7LfmOsY1bOAu2G7b7tJpy6DrOo78s7NJjfs6lWz0le0lUmciWts7jU6VHR3D1m3enOnsMDnAxxYDecHZAArQtrjFaGLSAOBIIcR7OcrbZwDqAUSR3vfuCGBB1nPEmLkYwJ9tjtUBOEsIYbV93gYAiwFMI6IxAB4CYNWDDgZwC4Cz/Gc1K7wD4IAA45P/pZlhGIZhGIZhGIZhGIZhmDQaGhuxas2aXGeDYZTp0aULon53e94CCYfDeOaZZ7DXXnth1apVvuP75ZdfMHv2bMyePbv1u/79+2O//fbDQQcdhAMOOADRPBNJtWeICLfccgv23ntvy+PLly/Hd999hz59+mQ5Z8Fxww03OB6/5ZZb0KNHj8DTveiii3D//ffju+++szz+4IMP4vDDnXdn2hrZe++9cc0112CfffbJdVaYrRghxOcAziWiCwEcDuBkAAeieYMXKzMT4/8whUl+XwRgXMu/NUT0GIBHhRBfZuIaGIZhmPxAOLhK+DZYMOJnJ3Qv4jCLxd26hBLYLMy1FEPKGplICHglIpEP2vI+QNMEEg4a8URtHbRKdxF52wltf8oIAh2REPfHNIGo7E7bhUWgiHucfndKD5qQ3rZ82K9AnbL4HkhapK27X1Q8gCLRLC69JFoCkXDq2Zwx7lDbvaK7ZyMTTdGAKaSHIISQEqYUhJuFqX5EznYCFlckTGpk0EItRiZe8tEOjEz8iKaCEFyVRKyNO+zTS0oB3EmQQFnUn5GJiLmbYlGRpMFCQkKoXmZjaiE5xlKhvBjcbpdr2eNBneNGh8J0AaPKWCljOiYThsJyfaVWHAXQKBW24qSDoOkfSIU1Ele9z2YDBoX7J2tGQC5mZRGTWsBsbGImZjJrUTI98oDsWOM0FhAIIU1edmXZh/p5DnEhU0YmfkytdtnWaZ/hZpauXWpMzHNavtCATCg5W59X3J5bCIAPs83WNu/3OUPhFsj2mQBABQH9RumjfnhqHS7pybaN9ixgV+nzmC2UbFRf8j7HTGvbedLczhp/Eu6e+Th+rV5neXzZ9yvw6PPP4eQjj047ltK35GhctDJuc3qu21y3Ga8+/6rt8UgkgmMOHJ3yXTgcxtEHjsY9TzxueU4ikcAjjzyCyy+/POV7P+8erHjggQcQczFYvvLKK1FW5uO501iMAZdpzraB8Jlwgpp/QDYz7wNnmf3BI01rdAK6/oNH7o17n5hue3zu3LlIJBL2RrFZ6SsV3stDdu6TmecHJ0qjpQDWAyCUlTibghcWBGSGx+QV7X12OR7pLSfZ5s4RQryb/Sw1I4SIE9FyAANhbWTC5BAi6gXgKpvDtQAOkqk/QogXiWgkgLcAdLYIcgYRTRNCfOI9t1kjIYSoz3UmGIZhGIZhGIZhGIZhGIZpZtWaNTj6nHNynQ2GUebpO+9Ev549c52NvKRHjx6YN28eRo8ejWXLlgUe/9KlS7F06VL897//RVlZGY488kicdtpp2HPPPQNPa2tk1KhR6NKlC9bYmEzNnTu33RqZrF69GnPmzLE9vscee+CEE07ISNq6ruPCCy/EmWeeaXn85ZdfxqZNm1Baqr6L6ZZGz549ccQRR+CEE07A8OHDc50dhmlFCNEE4GkATxNRVwATWv71TwaBs6mJ3fGuAC4EcCERfQ7gYQDThRC/Bn4RDMMwTE4RQtgu/PVrsGCEwj6WS3rYKZssdvfWJNYJm41MLBfrS4ohSSZB90jkw7YI8SgkAAefElFXB+EiGEgJb7yMuL9rIiJXUZmKwQUVFaFi4lFYM+VZ2zDh4vzbEyystdWhuM96QpEsGqnKCgdbDE+cjZL8tw8tYp0fIXwYmbT8n0gkUBItQb1HIxMrEVJQJIXnfkTOXvt3kumPJeIOtZjdeDG0sSrbfDMyCVropUqzSEUODep5LS3w955IJLJsZGL3XktSfK4VyQt57EzgSrQSCCHQMaZ+vz0bDznQschiD1EFQX9Md8+TTPsmyTmVVlwAYJNruFBBDCUXXwLt0XSBqhtCsWjSjF8U5qvSRiYu5nlm45KQi0+d2VymOOosYvOL7FjjZJ5IpGhkYjE2Uqj9GZn4oXdlb2fRJ4Dvq79v/TtIMW59KIECyX6ONLJ8ZvNNcohxNWAUnp4zW2m5v74NE1WMTBT6aQpKhJpttXYm6oQqucyCsO7HBES7NmdhMkyWq0a6kDg/6mZJUTEu/ttpuPBm+81Drr/vvzhhzGFZ3RhI9v5E9fR3O5qm2XpOvjb7NdTW1NrGN2bMGFSWV6R9P/7Qw22NTADgoYceSjMy8fPuwUwikcDUqVMdw1RVVeGUU07xlU7KfQ+8iuaozquUg0VQq7l5Y1Mj5n+60DGqP+2Rut4pqKsfudtQRCIRNDZaG1ZWV1dj4cKFGDp0aEApZho5g1i7GWom+9LOpZ2xAesBAGurqx3DduyQbnrKtH/yy+JdASLaDUCv5EektrQvhRD35yRjqSy1+Z6NTHLPtWjeycmKM1RMcIQQSwEch5R9H1rRANyknj2GYRiGYRiGYRiGYRiGYRiGYbZE+vbtiw8++ADHH398RtPZuHEjHn74YYwYMQK77747Xn755YymtzVARDjwwANtjy9atCiLuQmWxx57DAkHAcfFF18c6AIhMxMmTEDEZsFWU1MT5s2bl7G02xN9+vQgZOUkAAAgAElEQVRB9+7dUV5enuusMIwtQoifhRA3CiH+AGAkgKkAatC8nsPJuMTquDB8PwjArQBWE9GLRHQsEWVRMcswDMNkkkwbDSRREV2lnat7ONdiDq2566bRZNKyWYohXUSlreGC8DFQ2fmxZV7v5p+QqKsH4i5K19SY2/50FQS6oLsvm5URRyehoiIUHHMMnHazLNyxk3R82SISansGcxLvShHUbusSyAo1Zcwu4gE85moF1n2DBs3z7tLJ6k4tEVChpJmCiZCXfkuy6heEm4WpfkQOnuudRBuWEW7o4eY6otLek1iV7ZZkZBLEO6DyAvl3FxppgIJRRoLU4rdEwhSLiuQMFoSEkYlWZpNfyVutuexYbMRKHBYREXz298/w+QWfY2dSN46Y1P0A3DX6Lhy1w1HK59qxTck26V8qCPobJYLGZepVRK6v1Erk+uLyw4eColFP7UjZMEZPTUPJzEDyXpPLGJ9uZOJ83WbDvuJInhiZOIQjKBqZWDXsDIqV68MSDxge8DOOaJoGzcWZ58dNP7b+HaQVS4OCsQtp5Mkko8ntGTV5WOa5xdczquY7juaIFO6BgjloUGaH2fYxIZe6Lzv/9TOfyqklQ374QTC5JksNz7P9J5k/5k/FnXjMcejZtZvt8dVrfsa9T05P+c6c+8B/k5eMrjBsbaJql5//zfyfY3wnnXSS5fdDdxqIHXv3tT1v+fLlePfdVFlvkGX81ltvYdWqVY5hTjnlFBTJGlvKkKMyDRyl60hv31bvUr5cvhyb6+ttY4lGIthtwM4K6cpTWlKEQYMGOYb56KOPMpK2NCq33G+9yGC90jUdRS1WFj/+Yr1xVJLttu1u+iZ/+njGO+3WyATAKJvvBZpNKvKBnyy+IwD2MxIm4xBRDwDjbA6/IoR4VDVOIcRbAB6wObwfEQ1TjZNhGIZhGIZhGIZhGIZhGIZhmC2TiooKzJgxA7Nnz8aOO2be//6jjz7CwQcfjNGjR2PFihUZT29LplevXrbHvvzyyyzmJFhmz55te6ykpASjR4/OaPpFRUUYNsz+57S33noro+m3F958801cfPHFGDBgAPbbbz+88soruc4SwzgihJgvhDgVQBcAJwNINmYrwxIYjtmZnhCAEICDAMwA8AuAMzOUfYZhGCaLCAeBl6z4UIqwD5G5lHDehMVOzprEwluzqN5qsT7JiiEDWCFKKtcebs4XhZ2vU9TVQ8TkjUxEwvi3T6mjprkKIFQMLqikBHq37qg8YifL43okhg63TlHJYVYwmlz4NfSQro9BoEtmVqLexgNoH7ZGJqRBqArSW0iepbU0YFIwMEjJg5ujkGXacnkuijQLevwIrJQF+y0o9UkOaGEdIiE81QOrnKuI3LNBJg1pZSgrKJMOq5HM6NiGCMDIRMTdhf8kK1yTEKpTmfX9cBNLt4aTNNEArNtxyrjnoc4PquqHgwccjKqiKvWTbehS1iXtOxXjOBkTorhENyhrDqeVlbiHCcVQds1kAIDuwU1Odd6bZlyiYAQja/BHUWcjgkgsNdNunhoxgwGEECLFWC0TyJoixh3CEQVgZOLnOcSFegXjDhX8jiOFurUYOsm6unUAgJmfzMSboRpfaRlRuh86ASoGQC00hpzTEApGJkoGRGaScyKfcyOVoiZJ8ycAQGGBemYsEw1gTqMShUuZ5HqOlWk0u4lCZroaZiuGQIFp0/OpXUbCEVx5+lmOYW5+8D5sqq01fGNuYMFej6wJSEnUer5rNa9dvXI1Pnn/E9u4qqqqMGbMGNvj48Yc5piXqVOnpnz2Y7Bm5sUXX3QNE8SmRKn1cuszMrEaNqzm3J8u+coxnp36bo+wx7m0XuJ8nl5ZiqFDhzqGyf1mRvnTv/kl+ebn9ffnO4bba4ipTLacW7BV056NTIwr2Yy9WAOAl7KcFzt+MX1O5lP+7SyTCf4fALuR6Eof8V4LoMnmGC+eYhiGYRiGYRiGYRiGYRiGYRgmhTFjxuCrr77Ck08+iREjRmQ8vTlz5mDw4MF46qmnMp7WlkqXLukL7JN8//332ctIgGzYsAHvv/++7fExY8agoCCgBacOjBplt49FPiwQyT/mzp2Lgw46CH/+85+xevXqXGeHYRwRQmwWQjwihPgTgH4ApgBYBXvDkiRGUxOj6UnyuzIAgw1hGYZhmHaKk3A+SCMTivoQSnrY5ZosjExkMO9UbyXIkDWO8KChtYhE/jqS+aKw89JUsbkRiMdUMtH2Z8LnrvMS1xOXEEe3RlfcLPSouPduVB03GHq07bqKeobQ9eFrENppoHo+s0DSRMiroUQSimT+mbEVSbEnhdzD+b1uANCKrAXeIQp51vold6gNa83LXKnIm5GJriBob0tcLlhyp2ZboaMEnvt3meuSiJvCOgSEt3xYadT1zInUveBH6BXEbteVhZXSYXXSlZ7oBASKo97aRWsccQlxebG7cUVzZBJxlXewOSCXhFYimRcACYuiN84lvAg9kwZCQRr2dC3tmv6lghhfyshEwsSCopJGJhWlrmHK9+4LreM2zeE9tEGrsnPOlKksVQwRJO81FTjPOcMmX7qQiztazNiFZ0EUL9vHO4UjkFIfbzl31zRk6oIzZWTiZ4wHgPKos+HUpsZNeHP5m7js9cuQkDWqk6DBxWTECGneRPQNbvc8edjtuaU1bY/mbi1tXsUEyjoihec9hediKnA2s5GPyH/9ULrDLunJzpOCmE+pEkRvEKRZANOeyU799VJnhUXWctHenBg35jDs2Luv7fHf1v+OOx97qO0Lc/ZzdDklEetnDqtngFlPzHI0pj7++OMRDodtL+WEQw6D5jB3feqpp1BrMHsJwqwmWU9eeslZdt67d2/suuuuvtNLTTxoI5McVRKf6VrNuT9fusTxnJ136G+VEan09Cqb53AARAJaVSUGDRrkGIfjOpX86np8k42+9N2FH2P1mp9tj1dVVGDoTjtnPB9M9skv+2c1zCN6cuHK20KI+hzkxwo7a1D3N1lMJhlv8/18IcTHXiMVQvxERM8AsLJdG0tEZwohNnuNn2EYhmEYhmEYhmEYhmEYhmGYLQ9N03DMMcfgmGOOwVdffYUZM2bg2WefxeLFizOS3saNG3Hcccfhhx9+wAUXXJCRNPKZhoYGrFy5EmvXrsVvv/2Guro6NDY2IhaLOS62SfLRRx/ZHluzZk2QWc0an3zyCeJx+53Q3XahCYpevXrZHvvyyy+zkodMoes67r//ftvjjY2N+P3337F+/Xr8/PPP+Oijj7B8+XKpOvn6669j4MCBePjhh3HYYc67VzFMPiCEWAFgMhFdDWA/AKcAOAJAUv1qrPhW25WZDU9sV1UREQmZhsQwDMPknGwZmfjZCZ00D4YAHnfXjpmSslxELGnKQkGIAlUWqUeaTR20iA7AXriXqG8AYvbPIWZSRnSfwzvpGgjkWO9iCkVHxc1ietI0VNz1b5TfVIv4T6tB0QLoPe2fc/KJuF+tWoG1mUcmkN21nkLubdb3dQPQSqxNXCJ6BILk67hdHABARUWezg9l0FijONxS732IWKwEaDLIlK1M1BQJAULODMGM1RlJ45l8wY8AJQiRWGWxopGJgoxRAI6iNykSEgYXhXJtT8jEVWazB6psn1YuLz2wmjul1Acv5dsikg/SsKdHhx7pXyoI5Jskbp3MeC5rdBfedTAwzd4MmiiBsn9c1frZSx1VNtgyp6FgYCVrRkCFzmZlkVhqfXIzMjEa9jnNxYJC2sjEobiISKmPt+1/SXgf/BzIlJGJ37GgU3EnrGmw/82kSTRhyhtToOlaoHXB1WTEiK5Jzy2NNLqYpbQ+rrg8t7TeYa91I5l3v2OiQtKy5k9AgEYm2cbv/cwlAXQxus27j3wzimAyjGpxexkzPFYpy541z6qnruuYfOY5GHfRubZh7nh0Gk47dhw6dkg3Wgi6vUmN6cJ+/hrRI6iPt0m1E4kEnn/yecfoTjzxRACAVqQjXpf+bqR75y7Ye+jumPeh9fy6pqYGTz31FE4++WT5a5Dgl19+cV2Hs++++waSVuozWCBR5h4F026rtmo1N1++8nvHePr1sHi3KmsI2qESoU21iFXXpnxPAELdqkAFhejb1950CACWL18ul1imyIBpTa5+OI/H47j4lv9zDHPq0cchbPoNZ0tpPls77dnIpCes201mVnV6w85QhY1McgQRDQbQ2+bw4wEk8TisjUxKAewP4IUA0mAYhmEYhmEYhmEYhmEYhmEYZgtkp512wpQpUzBlyhSsXLkSr732Gt555x0sWLAA33zzjZSpgQxCCFx44YUoLi7G6aefHkic+cqnn36KV199Fe+//z4WLVqEH374AQm/u3fb0NjYiE2bNqG0tH39FOi4iwyAAQMGZCUfVVVVtsfWrl2LhoYGRKPZE8cFCRHh1FNPVTpn/fr1mDNnDu655x68/fbbrmHHjh2LmTNnYuzYsX6yyjBZo8Vg5HUArxNROYBxAE4GMCwZBNaGJcb1SskwdmuYfiKimQAe97OpCcMwDJNbElpwS2vJh5GJirC2LUFvy2zNGjarHZEpnJ9GJhRuvk/kYmQiGpogHAwV009oy4OMYNwRTQORm5GJwk7uxSWmz8UIbW+1W2ge0jKTchLvykAFziLnQNElMythdhGEUZJWYi3QjOpRAHWe4kzWzcJQc9zmOiaLbrFrshuygqnCSEvefAgq4h77d5IR6ktkiyL/n70zD5OiuN/4W909Mzt7wLIsLPcpCnggggeIKJ4xivFCJBiQiJpDTdTEnxGNUWOUGDEmXhEVvPAWxAM8YjwxQAQPNAiCAeQQ5T72mKN+f8zMbs9sH1Xd1TOz6/fzPPvs7lR1VXV3Xd1T71sGGJgnQxsrrXHGeKZYsBo78kl1WbVwXF3TpZQpKtouTyQBOF8jVi7W9tr8+GTU3vayc1p2omjBNqRV2BihWGC5Sz3zKaJLl99qN3avdG7TudlnQu07jYgJkUg/I2pkUnLG2dCuuAvJmPU1aHN4p6zx30sblPUxYDljopTxXkjQyMRljNc5g5ZsmkuEXKZ3WYZ9iqb5nHPb8Uh0juNkIsPAYOjidd+uLJldm1VTFw5Giuh3HOnWths+2fqJQwbA6h2rU88rCtWJMsYuqbzlM693MTLJ3GjX5xbW9MvTXczMdwXbs305ZJ73xOc7TJXZYQACXkdcjEyE578tVHWrcqx3goxRip3g7w8DU+bvVYz16YzjT8QhAw/Aks+tN+vYtWcPbnvofky98v+aByo+HZHr49T2I0YEaGj6f+G7C7Fx/Ubb+H379cXhhx8OANBrOiL51UbLce68H/3I1sgEAGbMmNFoZKK5PLuJ8uGHH7rGOeaYY+wDZcy//JpJOqVdqCovk7FFVKs2/78N6x2T6dOjh3ieFhg9ukNrtwuJbzYDiSRYSIfepUvjc84+++zjePyOHTuwbds2tLMwHWqxFKj+/GbqLVj6389tw9uWV+BnY8c3Dyi+Lp7wQEs2MrF7O7g5r6Vwxs5CMo/f2hA5nOgQ5vwWWYx/AqgHYPXUfRLIyIQgCIIgCIIgCIIgCIIgCIIgCAF69uyJyZMnN5of7NixA0uWLMGHH36IJUuWYMmSJVixYoUvc5NLLrkEgwYNwrBhw1QVuyjYuHEjpk+fjoceeghr1qzJa961tbUtzshk+fLljuFLlizBhg0bAi/H55/bL1oAgA0bNqB3b7v9CloflZWVGDduHMaNG4elS5di8uTJWLJkiW38eDyOc889F6+++qqynaIIIl9wzncAuBfAvYyxgQAuADAeQMdMFDSt5zcvV7JaumQ2PKkBcBmAyxhjKwE8BmAW53y12jMgCIIg/MLBbRfVqxArN+LHyETUPMGMxC6VTlgJpURFt8xQsNBfZpF6OLVsTouEAMRsoyXr4oCMkQkYeDKZEoL7NTJhDBo0JB2MVhKiOmCWBAsXl3mBDJm25yTeFSKcR9NJwXbFBIxMvBppmNHaWC9lLjFKwJk3I5NMd1gWKkv9W1bmKRlDRtAuAee8UdDtR+TsWbQmcG9F+q2MkQlnQBIcmoQywsoIKWT4GGMCwI/JjAohYPsye8PaXAzNkBRx+2+7XGAIYoKGutGxY4HbXoKduqasr0M6on1aW3EjE6s+3a+ILmMwEjbUjXmWxhASxnFxga5AxKhIeE4ViaDmjxdg49UzAJ6dcLgygarHZ2R9pjP5Plh63ptbfyTmqyLjJACwqJ0cpolQgqE+PabqLidhNotTJjp2sLgVneMkHIrCGENIE+/jbYW2jAfiZCJj3CGDn3EEAPap3gf4yiX9dDVU+cwnZ2SieeoTG1yMTJq+tnMrSzrco5MJS8/DbM2yhNORiByWkCBGS6XLYomS+iEjvHaOK9p3+evjgrI+ckemvyNaMUUsGudWc92CuTo4c+Olv8apP7ff6OL+Z57ApedNRPdONTkh+T8fJ2POaCh7PjjnqTmOaZ099uzGv7W2bWF0rkV80zZw00sALQSc87OLcNmf/og9e/ZYpvPOO+9g1apV6Nu3r7J77LbBCwAMGTJESV7Z32aqdqcpTJ33ex9yDcuTySS+3mRvigMAnTt0dAwXQauogGazhqdLly4pw2uHdVdfffVV4YxM8nirg+pLd+/ejV/96ld46PHHHOPdftU16FTdwapkgZSLyC8t2cjE7q3I1ryWwpkqm8/r8loKwswxNp+v5pz7XsnKOa9ljH1gk88ov+kTBEEQBEEQBEEQBEEQBEEQBPH9pG3bthg1ahRGjWr6umHLli14++238fbbb2POnDlYu3atVJqJRAITJkzAZ599hnALFl5l2L17N2644QbcddddqKsrzNdx9fX1BcnXD+vWrXMMv+666/JUEmd27txZ6CIUjMGDB2PhwoX4wx/+gJtvvtk2Xjwex8SJE/HJJ5+0rl2BiO8VnPPPAVzJGLsKwGgA5wP4IVLrW8yGJoD7yiWzlGVfADcAuIExthDAowCe5pxvUVd6giAIIgicRIWyMB9GJkxCWNt4jKLFv5bplIjtpca8GLDkpiEhjGNpQwtW4nyteUMcPC5jZAIgFgMiEbMy0Bua5npv4oIGF8yvAUiR4Fc8ygTrowpE66OIQDupwOfHzsikLFQG7nE5c6ZWVURSIgtWZrfvozOGhz5PSHBpqvZ++jmv119UfO+aTiSUMjIBR1wHwhJdkpUJi5PwqxD4MZlRMX7VlOeK8ewxNENKl6Jk53a/Y4kJvWdvtDmsA3Yu+q55IEui8jcX2h4req21tm2Fy2PVp5vrA/NitJZud047tStBF2/fMd39HooYVoka1gBA6U8no2tVO+z4yz9Qt24XNIOh/Kj+aPvnW6C1yTab8dIGZfvFZmOizHxVMC6Luo/x4ThQnx5yQi59qch9k0WFKaLTtWdg1sY7dvFt2jVjwdgSBGZk4lMwOLBmoHBclWcgdT08GpnUuxiZNJ6QcFE8XoHMs56HZ9UsJK6BjIkjK3U3QhJLyE9dNJnFCGenxsikpRLSyciEAPIlGlfV/xdruzzuiCNx9KGH4+3FCy3D6+rr8ad/3I17r78x63PVZgINiQbXOKUhe/Op0nBT2M4dO/HmvDdt4zLGcNbYs7I+02s6QWtfjeR33wKJJFhpFFq7KoQBnHnmmXj00Udt05s5cyZuuukmJdeEgeHTTz91jBMKhdCvXz/feWXyM/+nlEKZ90g841i179y5+Xfbt6EhZm+EDQCd2lcL5+mFcDiMdu3aYetW+3d4GzZswCGHHBJoOewpzv5NhL179+KZZ57Btddei6+//tox7gVnnYPxo0/PU8mIQtCSjUwaAFi9GRG3HA4eu9VhHm3WCQXY2aL9R2Eei2FtZNKfMVbKOaf7TxAEQRAEQRAEQRAEQRCEK907dcKzf/tboYtBENJ079Sp0EX43tC+fXuceeaZOPPMM/HXv/4V7777Lu6//3488cQTSCbtd5Y28+WXX+Lee+/Fr371q4BLGyz//ve/8eMf/xhffeWwxV8eSEjtKF4cbNiwodBFEKK2trbQRSgohmHgj3/8I8LhMK6//nrbeF9//TV++9vf4oEHHshj6QhCPZzzBIA5AOYwxjoAmICUqcn+mSgQMzWxinN4+uevjLHXADwG4AXOOW1KQxAEUYRY7bTqFRbyITKXENY24kUobJWMxa7uGcMQN5ihwqlBxsgkdY21EudrnWxIAgmx59ZGGhqASAQ86a9OME2zvKZmEoKnzAQNT4qWdPFFz9cOVqJIpCiCaFtMCzq5gzTK73kDgFZqLfYpC5d51hpkSty2JGVcwMJhgCUBLldgnakx/MjFfE39CMaSXvt3ESMTgWKxcBga05BAIrUrsIRzVm7JOefQJPrKfOBH6KVCCFhdXg3OuVA5UuYYzuIlMyp6Xr9jSS7Vz84CTh+LnUu3NLZVPRJH9a/PQMnZY+0PFDVnqhQ3rLUyesm6p17qRrrvDdqwR8Y4TsR0TMTEgpWIG5kAQMnpZ6Hk9LNc4+XDyAQ5hnVMYr7KQqJGJu5jfCjBkGmZhktfGjcVMR+iY2EjE4d4jDEpYb/tvQ/IAC8oIxM/hlgAcHC3gxWVRA6Z68F0zdMzW4Nb88l0xKJjjdemkGnzXp5VzUhcAykjk4iaZ4R8GhQI5SRYHF+i+wJqlovNnI8oEJJ10Et1Z2Ce6rrlXLdQpg4C3Hjp5Th6wrm24Y/MnY0rzv8pDhg0ILAyiFyf8oi9gWpIDzU+282bMw/1dfYbuwwdNhQ9evZoXgbDgN6pc7PPJ0yY4Ghk8vDDD+OGG25Q87zN4LoxUN++fWH4NQizylp1FS1Ulff5rjt3zr11+3bXYzpUtW/+oeLz79ixo6ORyZYtNntisKbnoMCQOVfB4qgucTwex86dO7Fz507873//w0cffYRFixbhxRdfxO7du12Pn3TG2fj7lD8oLhVRbLRkI5M9sDYyqcp3QRzoYvM57ehTABhjXQB0tAn+WGFWdmlpAA4C8G+FeREEQRAEQRAEQRAEQRAE0UqJhMPYp0fzL3gJgiCsYIxh5MiRGDlyJKZMmYIrrrgC8+fPFzr2jjvuwCWXXALd72LHAjF37lyMHTsWdXWkP/fCrl27Cl0EIerr7RdFfZ/4/e9/jy+//NJxUdcjjzyCG264AV27ds1jyQgiODjn3wK4HcDtjLFDAfwUwFgAlZkoaFp3ZbfFmVWcEIAfpn92M8ZmA3gcwBucK9yemyAIgnDFcRd1lbrwsI+dhb0sYlckarcSHLCImLiIhRQ858msto+kxMAs6iwK5vEkIGkEyeOxVC3xO0xrmquIIyFoUBKQT0TeSfo1ZInIicB9ISiaEBFoezbSMOdjs9N8RaTCuzAgfYpV0abl0Ixx6apv6PL9FgNzNH8BkKV48CNythKgicBEjEwE0ErC0JmOBBIyHibpQigpQqD4FaD7zl/ThI1MQnoIYPk1Mmlz4iBsee4zBSmlYNEoOrw6F+0+/RgNCxYAoRCi48YLmUAIpV9ejtSZu19PK0OGrPrgQXzGtLSRiRGwuFkTb99xgagi/QwrsZKj+EeXOJcM0v1i7lxT5v2+ITYvZqVlrnHC8aaCh9yMTDQ1ZlhZOHQKos8STnM/BoaQJv4cYXteAY0dQRmZ+BWFdyjvgGQiCU13vwmihjMiSF0PXQM8jJf1Lnk0zdlcysKafnm5iyx9bZmHOV9WOhLXX8rIxMbwTxo/9UN6jud+J/JprFIIAh/riRZCfuq5l77P6phibpeHHTgIJx1/LF59403L8EQigRvu/hueOe3kxs9UG7OUh8tRG3feMKQs4jzny5TphSdfcIw3esxoqftx7LHHolu3bvj6668tw9etW4c33ngDJ554onCaTtjlk6FLFzspeAqhdyaZuOb7qNrJpFDmPT7fM+TOzbfu3OEYX9M0lKuaTzjQpk0bx3Ank5PWhF3bnT9/Pk4++WTLMD+URUtx6xVXYbKT+WuqYEQroCUbmXwHwMJSCcW0zd9wNN/dhwNYU5jifO/Z1yFshcJ8vnQI64fiNTIpYYydDGAEgGEAuiLVxioBNADYDWA9gK8ALAXwHoD3OOfi3x4QBEEQBEEQBEEQBEEQBEEQBBE4AwYMwCuvvIKpU6fimmuugZsWe82aNXjzzTdxwgkn5KmE6nj33XdxzjnnkMmFD2prnRcuFQvkKdDEbbfdhhdeeAE7d+60DI/FYrjrrrtwyy235LlkBBE8nPPFABYzxn4N4CwA5wM4FqmNRcxmJYCzqUnu5xUAfpL+2cQYu4RzPltt6QmCIAgvqBS1sZB3QY7MDveNxwRoZCJqHMEMFTuWStyEtOGLVuosCk7GOLikkQnqG1K//T4a6FpK0O2Qjog4GvC9fr9okDZxyIIrq+siiLZFEbMLFf2LnUlBm5I22O0z/aoyk5GJxsGTcsfrIXnzJhFRjlnY4Edg5dmoSsQcQGBXXBaNQE+7EcV1uY6lJbyh8GNkosoEhQm6MoS1MBj2iqfrtUAmSn/yY2x5boptePlA+x3JnTAOHATjwEHiBwgI/AGAGSEwLQmedK//rrvUe2m36fHdYAFLTyT6rZhAu9UE+s2gjEy8tCNZgy2WW38kzFNEDL8Ae8MuM2bzEsPlmpvnWPkwXBK9pk5zAo1piOjipm125xWU3rQuLDlBEETF/TFgIAn38nk1N7PCzWTEDDN0T3OZesMtj3Saot9peDXXy8yLBccS+/xljCslnqlVmR2qaDwq3ys4lCfRAOzdkLof28qTiJd4k1rF1zEk6uULvXOv5tsMdvcODXV683Lv+lZTeh01aPhuN0nRionK7gaMiMlhSQoPlcNrfXKb6xYhV11xGV5/8y0kk9Zj4nOvv4qlS5di8ODB6U/Unk9ltBLf7v3WNtxghuu4r0HDii9WYNlHy2zjlJSU4IRTT5AqvqZpGD9+PKZOnWobZ8aMGUqMTJLJJDZu3OgYp4yR7LMAACAASURBVFOngGTprcXIRMYU0yJq7tx8u4uRSXlpaV7ad1EbmRR5/+YFwzAw7oejcc1Fv0Cvrt0Ejmh91+D7SEs2MvkKQH80vQ/O2AwPL1iJTDDG9gHQGU3lMve0qwtSKKK3Q9j/FObzlUNYH4X5qOZwAK/YhEXTPx0AHAzgjPTnOxljswDcxTlXZ01OEARBEARBEARBEARBEARBEIQvGGO4+uqrkUgkcO2117rGnzt3boszMtm2bRvGjRsnbGLSrl07DBs2DAcffDD69u2LHj16oKamBlVVVSgrK0M0GoVhGNAdRFEzZ87EpEmTVJ1CURCL0ULBlkZNTQ0uueQS/OlPf7KNM3fuXDIyIVo1nPN6ALMAzGKMdQcwCcAENH0nbzY1yV3hxCzimD/vBOBAAGRkQhAEkS8c1qImVOobJXaPbobgrvVZyCzudkoGzS+CnXlCs3iCIlXnRETPo8nQgkWdRcE8DiApZ2TC46lnF570aSHAtJR5gZORiSa4u6q8v01RkTGk8GPowbwKL70iKtQUqPsq+he7tti2pC12e7S7yBxVU1bTlI+HsuoeDAdkBSJW/ZMoXuudkn4NKfMCXdOBpHxdaCa4bgnOJjIo0oiI7sQdNsJSeXIF/U5o2AiU9gph7/8s3ouxJNpeer7vPIQQbXORsLChkZVxg1mY6EkIlu57w4aPuZQJZuOgJWMcJ2JApAm4I7jNWbyie5gkSIvPc8dEGTMDQ9DIpMzd1CdkmtIZLu5o5vsm2ke44TQWiY41jteeASGJZwHbNhaUkYmEcYcMKu5PWagMu5K7FJRGHJnrwXTN0zNbg4uRSca/hCecO22/V7jRzMiD6WZ2QuIlYSWC5iQsqc7sUEnbUdcAndrG3g0a3p+cEUPvSf94IZixSYT3scUmxFnk7YV3sUl5moR3Js3phOp9PLz7Ajz6mDBPj1FWx6iaUwRF/3774NyTT8Wsl+dahnPOcc0112DevHmpDxQbF5SESlCil6AuUWcZXlNRY/m5GUMzMOeJOY5xRp08CmXlZdL3Y+LEiY5GJnPmzMH27dt994x1tXWIx+OOcaqrq33mYoPie1ow8x6Jl1NWbTV3bl6XMa22oTQg08lcysrKHMPr6qzbTpF3PfYUqNyDBw7Eacccj3GnnIaeXboWphBEwWjJfvArTX+bm88+jDH3ETR4nFZ6LslbKQgz3R3CnC3V5PgWgN3MpofCfIqBNgB+BuATxtijjLGOhS4QQRAEQRAEQRAEQRAEQRAEQRBNTJkyBccee6xrvPfffz8PpVHL73//e6xfv94xjmEYmDhxIt555x189913ePnll3HzzTfjpz/9KY4//ngceOCB6Nq1KyorKxGJRBxNTIDUQqLWRkTVrnhEXjn99NMdwz///HN8+6397loE0ZrgnK/jnN/IOd8HwLEAHgNQi9RakszGM7mmJTCFm41NCIIgiCKDK+yehUVXVngRhykSblktTmdhwYXchgKnDUFRrNnQgpWVOsblCeYq7GtGxoTRp5EJ0zTXnWZFTQ2Y3lJXrGeTFDRuscTPsV4QFE0wAYG2r/NOExo61PLzqmhVc7MLQTLHdaxoWo7pxchE82D4ISI4MsdhPgybuNcuUkW/htSYYKTNXqSNTJr9X3yPEn7EfKqEgKJGDmFdzhxDRemYpqHmxVmIdssuo2bE0fGyH6Dk7LEKchEqiVgsIyRsnmVl3JB1Tz2I3jIGIyHdo7g1hzMGnGEdIGiuAQBxgesh0s2LmsPJ4jbXsELWyCTXJEDGCIaFxO4lK3We0wFAON5Up0IuPnUxk5GJl2tkxbgDxtmGiV5TKwOgDBo0hDXxfsruvILSmwZlZKLi/rQraScUz+n6y1Ivcz0M3dONqXcxMmmaBLrEYzm/ZcmYSEr0nZbFkJjPsZBYW1BqdphPsbZIVq3jEZAgHMmbMYiHbCx7l2Jvlxy47ueXIuww/5o/fz7eeecdAMF0e33b90WJnvMukQOdyjuhqrTK9XjGGV567iXHOKPPHp2KK3lDBgwYgCFDhtiG19XV4YknnpBK04qGOmfTDAAoUWic4fcZzDnxAlV6n6bduc+qDXHnDXd0XY2RrRuGy1yqocG67uTnLqjPxW6WFqRBTmlpKXp3644uHWsQzZNBDVFctGQjk387hNm83corl8K+XS/KZ0GIRpxs0ZSt4uOpFazf2QS3V5VPkaEBOA/AZ4yxkwtdGIIgCIIgCIIgCIIgCIIgCIIgmrj55ptd43z66adIJOR2wy4kGzduxP333+8Yp0+fPvjPf/6DmTNn4qijjoKmQES4Y8cO32kUG6UOi9Hbtm0LznlR/BxzzDH5uygtgKFDh6JjR+c9Bv7zn//kqTQEUTxwzt/inE8A0AnARQA+QHOzEjtTE4IgCKJAOC2Sld6Z3glB0ZUVzIMhgKpF5VYiQlFTFhZWsOBbVMRoEqtp5c6i12SSAXG5Z1DeUJ/+w6coTnc3MonrYnkwo3VMIWRNHMwoFSmK5CdqrBN2F2gnfN6+UFkcoSGHWoZVlVZ5trbIHNe1rWl3Ui/3yItZgcAxWUYmPqbRVmYLIoiIdUVOnUVLYGgZIxPJu9UCmr4fAboq4WLGKMaNiB6Ru6aKrr/WqRO6LH0LXaf/Gh1/MQo1V/wAPZe9hIprr1OTgQDChljhiLCRiZWJUlZ98CI+S7c7WdMZK5KJJH5x5C8sw5ghbpQSE2i3hTQy0TV50yVpA6xc4xKZPIWNTJx3JweAkGlANVwG17ipKoqaHblx3tDzbA3IRQ0ynOZCDAwhibpp24e2MCMTFULGzhWdBTPznVUjriYj5mx1Tdi00UzMNY/0CQkaMHq+1Jk+wIvpphkZIxNB4SlTaXao4rlaYR3Lm8EDQRSSYq7mbqZ9RQgD0KtrN0w6c4xjvN/97nemI9SiaRr6deiHfu37oWtFV3Rt0xUHdDoAHco7CB3/7hvvYut3W23DqztWY9jRwwB4m0NMmDDBMXzGjBnSaeZSV1fnGkepkUnWdVB8T30ainiF+TS6yzUUjsWcjUwMuzmOYsMNr0YmeaEA70qCYO/evXj+tVdx8R+moN8PRuHiP0zB8tWrxA4u4vMixGnJRibvWXzGkaqaV7IgLYBcYIyNBtA/8y+yF8Bs4px/mv9SEbA3EannnKseUXZJlqG1UA3gRcbYz/KRGWOsI2Nsf5kfAH3zUTaCIAiCIAiCIAiCIAiCIAiCKBaOOOII9O7d2zFOPB7Hhg0b8lQi/zz22GOOCwZ69+6NxYsXY9CgQUrz3bZtm9L0ioH27e2/vtqxY0erPOfWAGMMvXr1coyzefPm/BSGIIoQzvluzvkDnPMjkVq/8WcAm2BtakIQBEEUMV6F7lawsA/xrQcxqtXO1k8ebresLMWSnvXNs7Za5ikqIFNgZCK6FNMcjZWXO0fmGni95JK9eDx1qN/RW3M3MhE1uGBGS16C24Sfdpb3lbqGYFsUMLvwa5TU5uTBtmEdyjvIC9IzpI/rWtlkZOJJK+LhIMv+JjdZk4LAj1mG53oncG9F+gkWjSKkp4TpsmY+zYTxRfhUYTUGCR+rSCWSub5uRIxIwTaUBoCS089CxQ03ovx3U6A5vCcLBsExNhQSbtJWbSurrXq52GkBmayRSTKZbPb/Lcffgt7tbd5Vi/bxAOICUUU8LJiDybMfvPSPsuNGM3MviesnatLHKipc44TjJiMTl87dbBbnZwwx07+mPw6vOdwyLCloJOFUbKYxqbpvd15B9XNBGZmouD/7ddhPKJ7KM5C5HilzNPkbI2KWwuNx9wkJy/ktCcuIewXmRkLlECEi1hYUNe90YgrTUkABpYoEkUdkJyVeckgdJDsGWMUv/naZKt/Vk3+G0hJ7E70FCxbgpZdeCvR8SkIlqCqrQlVplVQ+zz7xrGP4D8/8IfT0uOTlefLHP/4xQg5Ge4sXL8ZnX66QTtdMMpF0jeNmaOEZ1cYjharzEvlatdXcOXfu82Iuul+zNkHc8rHfECr4+yBzq/2WJl+mUA2xGB554XkccvZoXPWXW1FX3/z7kNySES2fgHrX4OGcf80Y+xDAEDQZmGT6uD4AxgN4LN/lYoyVALDa1i5TvhfyWyLChN23o87fDnvDLk33t3mF4XMAbwH4NP3zDYAdAOoAtEPKgGUAgKMBnAigl0NaOoB7GGN7OeePBFdkAMAvAFwfcB4EQRAEQRAEQRAEQRAEQRAE0eI57rjj8MADDzjG+fbbb9G9e/c8lcgfL7xg/5UbYwyPPvooqqqqlOe7dav9TkMtlR49emDRokW24atXr8aQIUPyWCJClJqaGsfwLVu25KkkBFHccM5XALiaMXYNgB8A+CmAUwFkVt4XoeyQIAji+0MymXRcOJ9QuZNzOOL5UCaxC3sjWnP11n97JoGF9ocs6tt8d1ArMTqLiolumYMIQBjRxfYmtbDmZmQCILl7r1QxeGaXTr9OJpoGnbksUNcFd0/3sIN7McHBwcCamzLIkOdLwARFDCzsXve9nzdH2yM7o+3dd9nG6Fje0WPaabc9ztGpolPjZ0z3Yjwgf3NEhEyqRFVejWSYiJFJPAk3oQMrjSKkpepJXOVYUySImNLYIn2Lra9fRI9gd3K369ERQ258Ln6hogQWcwVLIhEww/28k+DWu9SbrpkXkxuWNnQTNacBUkLBeefPw42v3Ygd9TvQtaIrbjz5RnRq08n+IAnhYExgrNYEHJMCMzIRvbcmpPvFnDyYhPGe6ByRlZW5xgmZdH2GncYvTcxURLf5mAyPn/c4fv7sz/H6V6+D6Qycc9REajBlwA8AvOGegENV0aAhbPg3MglKfxeUkYmKvvaQbofgkWXuchKV5pVS18PQPc3nGwSMTBCLKXBgdCHdB8i0fUsYQzKZdOy3KvXKVFRRQ02lzwgKKohofRaIli+RL0EUFOkxwI87KqS+obEyfiv2dpl59dCpugN++eOf4LaH7reNO2XKFLz21rw8lUyMzZs3441XnedTp405rekfD7ejuroaJ598MubOnWsb58GXn8e0X11tG765jfNENCxgxlXvaqggTna9VG1kUqD3kTLPOBannDvnM1ze8cXTptZB45aPrclOXrqewvdvBxxwAKZPn24bvmfPHmzfvh3bt2/H6tWrsWjRImzatMk1Xc45/v74w3jjg/fwzB13o2+PniqLTRQZLdbIJM1TSBmZmMmYmvydMfYe5/x/eS7TPQAOMJUjl7ybqxCN2L3pjgWQl912ET629VDOMgDTAcx1aSe7AKwFsBTALMaYDuBsANciVdetYADuZ4wt45wvUVdkgiAIgiAIgiAIgiAIgiAIgiC80LOn+5e+tbW1eSiJf+rr67F48WLb8OHDh+PII48MJO/Vq1cHkm4h6d3bZgfUNCtXriQjkyKlTZs2juEtpU0TRL7gnCcBvALgFcZYewDnATgfwKBMFJCpCUEQRN5pSNgts0qhUtTGwj6WbknscN+IhSjuv30N/LtvHY5Y1VwAtrYqhvkHNTf3sBJkCAvIBMwcBFIRi2WKxioEjExqJcUBsXRdSdotzRSDMQbdRewXF1yXz0It28gkcxm9GkoABdBOCGYoUvcTgmXvcMFwRI4/FnXzXgU4UDp+HEJDDnU8pmNFR0uBlTDJbBG8J+MBDzdHY5rrjNgs0PYjcvZ8fQTE9ykjE+d2zkpLEYql0hKtC43p55S9GIVztkJ6AXLva/l+Uez+wv4dQ/WEwy0/LzFKhFZolxglUt16C+95sxFq2xzMMMAM9zO3a1dZ9cFLu00bjMiazvSv6Y9ZP5klfoAuLm2JCxiZiPiSBWVkYjB5mY70vDd3fiozXxU2MnGf04XiTQU3Es4nYb5vbvMxGTRNwz/O+Qca4g3YVbcLkVAE5ZFy1D75ODaIGJm4kDG+EiqLXf8bUOcVmJGJgrFteK/hopkpoy6UFI7LDN1Tn1gvYGSSMmEUNEf0ev4Z8ycJEyjL/DWGQdWD8OnWT23jjD1obCqu4HOoyvqeTwMzkZxalaEaQRSSdFPy94YnhZ9nn3xzxfkX4IFnn8K2nTsswz/55BPMfm4Ozh96bJ5LZs+jjz7qaPSw78B9se/AfRv/9zqHmDBhgqORyTMvvoipv7jS1lRib9h5DlAiMIapNDLJ9jFRO3Z4eUekJmN/+eY+r9oahKSJJ2zMaRSffizm/OIi7Oc7hbzi88LYHN6tWzdMnjxZKql169bhySefxP33348vv/zSMe5/V6/CiRdOxKv3z8Q+PXsJl4toWbSckdqaBwHsSf+dO3dpC+BpxlhFvgrDGPs1UotczGXJ/M0BLOWcL8hXeYhm2I1uQdhz2aVZDCPXVwBGcs4P5Jz/Tdbsh3Oe4Jw/BWAoUsY9dkQAPJQ2PiEIgiAIgiAIgiAIgiAIgiAIooB06NDBNY4uuKtxoVm1ahUaGuzFjmPGjAkkX845Pvjgg0DSLiSDBw92DH/99dfzVBJClj179jiGlwnsmEoQ31c451s453dyzgcjtYHO3QC2gZZDEQRB5J36uPMCcV9GADmwsJz4NgsP4jBmsUsl0zTcOnobXj1gL+Jak7BtUZ86XHf2VuyNNBe7WQkyWETQyCSkYK870WdFUzG1Nm1do/O9ziY2zeLHUkvyfG9sruvQXZa0me+NEyzUMp6j7ciIS2RNHLLSyPfsycIgyJKQ+1JN0fNmoRAix5+EtrdPQ9tp01xNTACgpqLGc//FGUeI5Sx39SJS8XCMJrCs3BzHj8iZe6x3Iv0aT7i3Ya2sDBE9NS4kBNt8Y/pSsQuDH5Ft7n2NjnB6d8QRPesMy5ASQ2yskjUyaU0CYiHDofQW7iJGJnZGGFnjnpf+JG2QEdJVGKTZIzNviQsMwUzIyCSY92eazG7laWSNxVjumChhDMIExkkgbQTInEWhYZN5iZuHRMxkZGJo6vdkDhthtC9vj/JIyoCF+TR4AFL3UsbEx05MHVTfVR+QkYkKUXj78vZCY7LKM5C6HoYOeGirQnnEYoBLe2isEh6rBsuYF3kx3cwpyG+P+S2SSesCswTDBYdfkPo7ItYWlHoKKGk6gokItNNiNLAjCOXIjlkemoXXtsRbxNNYNuYzraxog8snXuAYf+qfbnM1VsgnM2bMcAwfPWZ01v9e5zyjR49Gu3btbMO/27IVcxe+bRm2pTyBmMu0T8TIZPfu3Y7hMvU2K67qeWChnokl5k0iLTVkOD9f2rUD1Wdf1EYmMvdaMKrdvVE5x+nevTt++9vfYsWKFXjqqadc16tt2PwNTrrofHy7datlyYiWj/qn/zzCOd/GGLsfwOVoakPM9PcQAO8yxn7IOd8QVDlY6i3iXwH8Es797C1BlSEIGGM3w82SvPCs5pzf7zONIGaxRTsz5pyvAbBGQTr1AH7JGFsL4FabaIMATALwgN/8bLgHwDOSx/QF8EIAZSEIgiAIgiAIgiAIgiAIgiCIomXv3ua7eufSUkwP1qxx/ppj4MCBgeT7+eefY9u2bYGkXUgOP9x619wMr7zyCjjnrUok0lpYt26dY7jTYi+CIJrgnC8FcClj7AoAZyC1gU0QG6IQBEEQFtTHnI1MpHemdyLiY9Gx7mGppcUcWmMa9kY4bj9lOx46eicq92qoDXNsqrTZYRI2IsJoVKwIfs65qQBieZnX57dt4xo/WStnZILMonLuc79eTXMVziYEV00qMYopJOnLmBBRetuR5+0UmaBQU+TeJEXP28N9DhthJLiLetUGDqAslP2Ohuke6rwHw1qNaa6rX819kh+Rs9f+XUSUzu271KZ0ysoQ3pvqI2XNfFSabAWFn3uTK16puPEm7Hn9JOxd2/wxqepHAxAePsIyndx6bEdJqESqVy/U5tOBIHAyjTp3QwPgXLntjDDM9UHIPCW3DGmDjLARsIBLYr4VEzAgEvEoCsrIxM00zQppg6dc4xKZfj8sbkrDGHc0kgvFm+qxkXCu03HTOQZhZNIMCXMXOxiYnJGJncAzgDlTnZEMbExS9X1AiV6CeuTvma9OwsiEGYanx4oGQ8zIhIs6MHo9/3RdYy4iYPd0GI7scySuHHYlpi2YljXvZAmGh8c8jPbl7VP/lwg+h3qZu9ompiAtpcVpTRMRgigCzCpgAazGvaJvlznn98tx5+GeJx7Bpu++s4z+v6/+h5lznsOFY87NQ+GcWbRoET777DPbcF3XccqZp2R95tUMIRwOY+zYsbjvvvts4zz00vMYddIotK3VoHGGuM6xtSyJnVH39y+RkgjKysocNwrZvHmzp7K7orqOFuqh2IMBnBPlpaWO4bv2Om/qooqdO3c6hpeXl1sHFHnXY0sey80YwznnnINRo0bhJ2edhVfffdc27obN3+AXN/0ez9xxV/4KSOSNFv4tCgDgJgDjAXRAamhnaJrGMAAHAVjEGLuSc/6U6swZY4MBTAMwMidfmP7mABZwzp9TnX/A/B+K38jkbQCiRiZ29lhB2EPbpSn57WvxwzmfyhjbF8BPbaL8BgEZmXDONwOQmiUW/QMKQRAEQRAEQRAEQRAEQRAEQQTAhg3unv81NTVSaeouC6OD2inIbSFBp06dAsn3pZdeCiTdDCLXMxRS/7VWnz590KdPH6xevdoyfNOmTVi4cCGOOOII5XkT3onFYvjvf//rGKdPnz55Kg1BtA445zEATwN4mtEXywRBEHmjIeG8nCohokAVhIXFBYjNjvViWKE3X9xtFrVuK09iW7n7QnurYSkl5Hc39GAl3s/ZlIpYNNPpsraVrtGT9QJOAyZ4LF1XvHlDNKFrruLiuGC9Y6FiX17pTKZu2QnfhdJQKVIUQVA0wdK7pXJwWxGNqHkF87jzquZVWcyAdtFsY8rUdZbsDz1MaUXML7INEbzff8/1TuDdiKiRSWRbqo+UNTJpCfgxMsmFhcOoee1Z7Pi/q7HztWVIxgCjXEPlhJNQPuVa2+PKIzZinxyioaiUkEblLsEFR+Q+pU2XtJAONyMTbmPQlNVWvYje0iL5sC7eH3q5TzJi/LjAEKwJuCOwgMy9dQ8GGlyyT2U575Nz/3c8VsAUqjGuxuHkzRUyVUvDpf+N6011NB9GJjLnaYcGTcrIRLeR3wTxqknGtEMWL2Y8VlSVVGFj3UaXWOrOQ9bIhHkQ5NYLVCsej8Gx4ZjLIV2CNJk279ewJ103LznqEkwcOhFT35yKHXU70KeqDy4deSkMs8mUqKGmSoF1Pl/TCmTlNL6VdkniyAdS32F2b9sN0ZCzQNuO+FdrkJB8XgaAte3jjuZG3dp0Q5InsWnXJiRND9YGM9CjsjsM3X4cXvXdKiRc5iEyGMxAn/b0HVYxUdnd1Nal2533dsoF3m255l7kX+fklq40GsXVF/4cv77lJttjbpl+L84bfTqiJSXBFs6FGTNmOIYfMfIIVHeszvrMz/2YMGGCo5HJO/98FyvqvkX7ju2l02Zg6NatG7744gvbOJs2bZJO1zY/03VQXkcVPu9LZav4PNq1besYXldfj3g8DqPZnF5tOXbt2uUYXlVVZROSh76nyPs3UTp06IBn774XP7rwQry58APbeC+99U88Pf9lnPMDk0FS67gE33tavJEJ53x7elecx5D9BGt+a98FwCzG2GUA/gxgHufcl6EEY+wwAFchtRuPOT+ziUmGegA/95MfoQQ7K9cgjEzs3tS2OiOTNJcDOB2A1ci8H2PsUM754jyXiSAIgiAIgiAIgiAIgiAIgiCING6GB+Xl5ejYsaNUmmEXIU9tba1UeqI0NDh/3eJmCOKFRCKBe+65R3m6ZkSuZxBGJgBw+umnY9q0abbhf/7zn/H8888Hkjfhjffeew979+51jNO/f/88lYYgWh9ceMtUgiAIwi/1ifztzo2ID1MP3cNSS4tF5V6E5XbHMMbBXYwSWNj/M4SoCC1LIy1sZCLx/BaPAwD8jtJM013FxeIGF8E8o+UbX+0s3wvqRZ/5Be5N0kbwnwvz+Cwe8riPIAdQU5ZjNqtrcDMwaIbC/iarKCZhsx+zDO7xUJH7IaIbZuXlKDFSojBZ06zc2MVorOFHYGR1rNa+Pdo9MB3tLOLbURGpEIona2SitxIhDwAhU5HM6YqYZ9n151lt1cvlM1J5R3QVBmnu+YgQ093brUjTZhVthPOUwYuRibTBU+6YKPNePCRhSqMDiNuHh+NNlSqUcK5gZgOafBiZwIsZYQ5MY1ImPpqdMUYAXVddyK/Dnz2qhKo92vZwNTLx6v1mhZS5S9jwNJdtMATyiMWApEs8lvNbkkajHom+0zId0zWoiFbgj6f80T5uRFBQr9LsUEVdVDh3cGobehio6JVql+2rQij1+LwYS3Ik9so/+G6rSTq2p/btDJRFytAL7bCrbhdiyRiiRhTRsLtBzeaKJBICk2wGljamcCbEOKprWsfzNAFP/ZjXccaqjhfj85gbPz1jDO58dCa++nqdZfjGbzfjnicfw5XnT85zyZqoq6vDk08+6Rhn9JjRzT7zcz+GDRuGfv36YeXKlZbh8XgcLz33Eib+bKJ84gyuRiZr1qyRT9c2O9N1UP0Mq9IwTBJhm12BIrYXeH+8fdcuVLfLeROh+PS3b9/uGN6+vbxxTksk6L40Eg7jmTvuxmFjT8eqdWtt4/3loenZRiZEq6BVeEhzzmcBmI7mfaHZVIQBOALA8wC+ZYzNYoxdwRj7AQDHbdkYY20ZY4MZY+cwxqYzxtYD+AApExNmyje3tWY+/z/O+TJfJ0moYLfN52KW33LYpels0dVC4ZzvBDDVIcpp+SoLQRAEQRAEQRAEQRAEQRAEQRDZ7Ny5E2+88YZjnEGDBkmnW1HhLEbYuXOndJoiRF12fNu8ebPyPGfPno21a+2/TFdBoa4nAIwfP94xfPbs2fjwww8Dy5+QZ+bMmY7hAwYMQIcOHfJTGIIgCIIgCB80xJ2NCqUFnQ742pHdg2EisxBveRG1anbLPAXUX/CQ6AAAIABJREFUucyPeUtjIqKuHqY/29ntVNlEskFSmNUQS//h08lE01yFs3FBUwMWbvF7CQIQN/Swgqn3EnXJTyxD5mIWCogb1iAiLl42U+pR8M8Z0K1tt6zPmO6hM/RwjEgfZY7jR+TsWbQsZGQiYA5RVo6IkbpHcclLpVJwHRR+TGZUiddFjUxKQ6VSQiStNRmZiJxLuo8WGXPsqr7ZgAh2JgtORUi3+0goaCMTcUGzKiMTX0Z3DugeBkjpviW3n5eYr8qYsbmdSsa8REsCustJmOdYIS0PAnY/8/80DKxxvBDB1oQwAMFpvYihhkf8jCNm+nd0N9tWOa4KmYykYYbhqU8Uue48HnN3YPRpZJIpu6/nXEBKDM1K3Q0vAOtnYc+o8DERjigwh2yBhglWVJRUoKq0SsjERAZhk6rWcRlbL3mcb8uOAVY9q6oxKyisXrmEQiFc97NLHI+bNvMB7NhVOBnq888/72jwUFZehmN/cGyzz/0+T/7kJz9xDJ/z5BxP6TIw9O3b1zHO+vXrg1mTodzIpJB1XmyuJRKrfaW7Veo3W74Vys8PmzZtcgy3NTLJR1cpU3cEo9remzycT2k0iqlXXu0Y59OVX+BfCz8wfUKThtZA6/gWJcWlAPoBOAbZpiIZMxHzZxUAxqZ/zDSr1YyxrQDaOsTjDp9xAA9yzv8uehJEoGyx+byEMRbinMdswr1gZ89sV4bWwJOwNzMZns+CEARBEARBEARBEARBEARBEESxEIvFEPK4c68qHnvsMdTXO+9yfvTRR0un62aSsHr1aowYMUI6Xb/5Ll68GMccc4yy/Hbt2oWrrrpKWXp2iFzPbt26OcbxyiGHHILhw4djwYIFtnGuuOIK/POf/4ShYPE34Y8VK1Zg1qxZjnFOOumkPJWGIAiCIAjCH7GE85ItkZ188wHz8lxnIaTwImq129WdMYGro0KcK2iGYBZnsjZtYL03XBNJydV6PB5PHyh3XDM05iquEjW4kBEBFzPChh4WeDLY8INofQy7130Br4tUWiFvRiaVoTJ4rbD7tN8nuwyGB+MBD2IuEQGYOY6t0ZIAXo2qRPpjISOT8gpEQynhZkLQvKgx/dy0ilBU4cvIRNH5VEbdd1cGUkYmMmI3vQivt1dEjA0yl8aPkUnWXMKLiM5IzV+CNp4QNasCgLhAVJGmzQISAdrN35yQ7ReZkXMRdIn3tgKGX435uJQrFE/VKV1gyDMb0OTDyIR5MBHMRWMawob49bKd7wdhZBIK7llJlanVkG5D8PCnDzvGUXUWDTqXmteykOGpT2wQue4xiYcdr9c6812NB9PNLGSMTKKlYvGUPiOocDLJ3TPdT1Ji5SnG+aGfIomeT9SIItagUppHtFaKso0EhN2Zjj35VNw+8wF89uVKy/CtO3bgjkcexB9++evgCufAjBkzHMO79+qOl59/udnnHUo7+DJAjGfe/9mw6otVWPbRMhxw8AEAUnXJYAZiArLggw8+2DXOZ599hmHDhokV1oGs8UKxkYmqeZq3zKFs8tamvBxtyyuwY7e9Yc/mLVuw/z62wb7ZuXMnamtrHeP07NkzuAK4kcdbna9++ZSjR2HoAQfhP8s+sY3z0tv/wqjDh2UKRrQCWs0qM855A2PsVADzAYxAtsFIprqau0mnKmw2QbF6i+qUjjnf5wBc7FxyIo84mYh0BLBeRSYsNRuo9lCGFg3nfC1jbDkAK9vcgfkuD0EQBEEQBEEQBEEQBEEQBEEUA++//z5uuOEG/PnPf8ahhx6a9/w3btyIKVOmuMY7/fTTpdPu3r27Y/jnn38unaYIbjvlzJ49G7/97W+V5XfZZZfhq6++UpaeHSLXc+TIkYHlf/XVV+O0006zDX/nnXfw61//GnfddVdgZSDcicfjmDRpkusirgkTJuSpRARBEARBEP6ojzubLvoxWFCKF3GYxTFeBJt+FhGzEgVGJqKL480aaU0D05LgSfvrlpS9uek5sNvG5q7oOnQXUWtcF8uktRiZeDWUABCIKNcJJirSjrgLjoXNKzwa1FaHKwDs8HTsfjX7Zf3vSQzq4d6ImF+YjYD8iGdkd95uRKTdcffzYBVmIxO5InCrLbWLDD/3RpV4pV3UfXdlACiNiImiM+h57ncCRcTsIh2Fhdz7P7u6qaNp3BMxT2lGWiwvY+bgCQlzDZGxWvPc0fjHzTTNCi57b3LmmjJGMEzGyMRwLlcokfntXn6zAU1Iz8M8SoEpNwNDxBCfU9ua2GgKVZ9p6o3gxiM/hlhmjuh5hGscVU01rnPheTyAVP2QHC8TjCMuMoeMxV0fXBpFax7Pv7HN+9xMQWrOUBIVS9ODCZ9tWnkUa4tkJVyeIpyu5EOgXBouxc6GnYHnQwSMbLvz81woG98iq4KaOvhA0zT84Ze/xpjLf2kb567HH8Uvxv0EHava57FkwNq1a/Hmm286xlm+bDlu+M0NeSpRNq8++ypGDhuJqBFFVVkVVn670tUsGwAGDx7sGmfBggVKjEyyUF1HAzJjzAecAebH1p5duuKTFctt46/duKH5hwqv55o1axzDGWMORib56HtaZv9mielUTjvmOEcjk/c+XJyHAhH5pOX2WhZwzvcCOAHAE7A3LzF/bv6xTdYmrjktc9xM2HQAYzn3/bVZweCcG5xzVuQ/x0ic0jqHsE4+L5eZDrA3CXIqQ2vgU5vPOzHGFHwrThAEQRAEQRAEQRAEQRAEQRAtj7feeguHHXYYzjjjDCxenL8vXHfv3o1x48Zh+/btjvEGDBjgyWSlU6dOqKy031n15Zeb78Cjgm7duqFTJ/uvdj744AO88sorSvJ68MEHMXPmTCVpudG/v5VXfBNBXc8Mo0ePxqhRoxzj3H333bjjjjsCLYeZTZs24YMPPshbfrIsXLgQmzZtylt+iUQCkyZNwoIFCxzjjRgxQmghFkEQBEEQRDHQkGhwDE8WyVpdZngwILEwHvAiAPYjImTREs/HNhVALP9cYTRzExEKGA1kRY+l64rPJZlM01wNZURNDZiAWUZLIOnDlMGTIN4PhphIm4XdlyuKGrh4vc+do96ERhzAQV0Oyv7QixjUxbDHCp25H2OOYyvWFiDpse4wn2LdxnQq2qAklOojhU1t0uSK54pxN3FfY4ei82lfJtYGykJlUtocQ5G4vigQEGBlorCIe923MwPIaqte2m3aRMrQDYhKIzzVIwkjjpiAWcHa9s5GwEEi0p/mIjvvbWZcImO8F5IwMnEx0wrHUwU3hIxMmu5bXoxMFIwZjMkZmdjd+yA01vWh4KRKysaC8vbgCedyKjMy0QCBatgIC4ek+8SYzoXaKo/H3J9bWM5vWdJtnnmY82UhcQ1YidjzpScTPtvEVCQhaj7iHk90juWvDRXf3FLofDhcTUOJ1omvGit5cEsU6Tq9cjn1mGNxxMEH24bvqd2LW6ffF0CpnJk5cyaSyWTe8xXlhedeQPtIe1SVVQEQM7NhjGHQoEEIuxj6vfXWW/ZpSFTYrLjfQyMTbtNacz/t2bWrYzpfrnU2GvHLypUrHcO7dOmCSMTmWYB8TDzzg6OOdgxf9uUK1DdkvjdqpRfhe0bx91qScM7rOefjAVwOoBapmmpnQmL+ccItfiZtBqAOwC855xdzzot3xP5+4rRVXm+F+TiltVphPsXItw5hbfJWCoIgCIIgCIIgCIIgCIIgCIIoQubMmYPDDjsMxx13HGbPno14PLiF1Js3b8axxx6Lt99+2zXulClTPOdz2GGH2YYtW7YML730kue0nTjxxBMdwy+++GKsW+fPX/6+++7DRRdd5CsNGSorK7Hvvvvahs+fPx9Lly4NtAx33XUXolHnHfWuuOIKTJo0CbW1tYGVY8WKFbj00kvRu3fvwA1c/DBv3jz06dMHv/nNb7B58+ZA89qwYQNGjx6Nxx57zDXuzTffHGhZCIIgCIIgVFIfr3cMFzUaCBwvu7lbCJwiuvxeULZCKQHFH4soMDIR3nE6O57m4ZI5Ek+kfvtVrei6q3BWaJd1tB4jExnBZy4qd1sXQtRYJ+wuXBYVjDM7wYILPcs7ejouyTnalbbLLoOggUsWHoQthkDDNcfxI9D0LFr20h9bwAwDpaFSAOLmRbZpFeEO4JofiYCi06mKVgnFKwvLGZnoRXi9PSPSThuNTNzHHLv+PMtYwYOJUDPDjIBgEu07LnDp5gzZ7Rge7RxcXfIi5Jb0eGtu7iUxVjAXAWdWXMP5OoXSFc8QUM7ETEUM68HPo1jI/5ihMU1qDm87d5doe6Eyse+OYgEamfgxxMqlRHd+JlF1FjGdZ5nluGKEpMfwuC74jBqPCxs/eR13G+eHfg17JK5Bqu8QOC+VzwiKxn1VPX4xGthlCNTgQeC0dU3Pk9ELETiy7c7D7czUAel62wqrzo2/utwx/MHnnsKaDevzVBqAc46HH344b/l5Yfv27Zg9e7bUMQwM0WgUI0eOdIz31ltvoa6uzi4R8fzM7ag1GZn4PBWe4+wzsO8+jvFXrHGSg/tnxYoVjuH7779/oPm7I1XphKLZvY/L59jcq2s3x/BkMonvtm9L/dMK+/3vI8XyNZ9yOOd3AhgEYD6yzUdyTU3csKvq5nQy6f8LwFDO+b0ei00Ei9PIYr8qVB6nEdTZpqvl47Slo4JvxQmCIAiCIAiCIAiCIAiCIAii5fPmm2/izDPPRK9evfC73/0OH330kbK04/E4/va3v2G//fbD4sWLXeMPHToU48aN85zf8ccf7xh+3nnnYebMmWhocN5lXZbzzjvPMfzrr7/Gcccdh08++UQ67e3bt2PSpEn4+c9/3mynIT3gRftO1zMej+OUU07B3LlzA9sBaeDAgfjLX/7iGm/mzJk47LDDMHfuXPHFuC7s3r0bjz76KE444QT0798fd911l/0ioSKitrYWt99+O3r37o3JkyfjtddeU2pSVF9fjzvvvBP9+/fHvHnzXONfcMEFrguwCIIgCIIgiol40nnulLu4uWB4EYfpzZceyuzmnsGPiJBF/S/ZEhX3sZzzZYqNTHgiXVf8VglNczVrEDU18GpwUWz4MgyyqOdBIixyF7g3CVHDmrC3+9y3orOn45jFc7Y3IxP5e5NldmBDlpGJDzGOtGA/k6dfsa6JJiMTuY7FswlLHmEe7n/jsYpEVh3KOwjFK4uUSeUZUiiuLzhCO4enfwsYmdgKkkz5MC/Xz9zuAp+aiWUgYlbw3y4x7IrYv0ctHR6cKE2kP82Fy7ZbPXtMZDIuchJjGws5n0ujkYmAM5rZLC4fRiYw/I8ZjDFEQ87m32bs5u7i/TJHqErs/jSoGxKbodLIpDpa7RieVPTMF9e5lDkZC4ekhcBxnSMhUF4ejwGC3514Hncz82Iv80Qzkn0PEzh/t35DMkP/SYgqYIXGZcHn40IYrxV4jhrSQkr7DqIl4cnJBID81DI3Pg9+cuobt27zmMMPd9zEpSEWw83/uFtxqex56623sHr16rzl55UZM2Y0/i1jwHDKKac4hu/evVv9Riuqx4SW0NfanHJdjhHfwf0HOibz8fL/CqfthSVLljiGDx48WF1mXsjn2B54Xk0ZVJSVobTE+Rlr63YnmTrR0lDteV9UcM5XAfghY2w4gGsA/ABN5i0yZiZ2ZFrPAgC3cs6D2VKOUALnfD1j7FsAVm/GBynMyi6tJAD51bIti0qHsOJfaUoQBEEQBEEQBEEQBEEQBEEQeWT9+vW49dZbceutt6Jv37446aSTcPzxx2P48OGoqakRTieZTGLp0qV48skn8eSTT+Lrr78WOq6kpAQPP/wwNB87towZMwZXX321rbHGjh07MGnSJFx55ZUYMWIEBg4ciOrqapSVlcFwEB/tu+++jmYMJ5xwAg466CBHo5KVK1fi0EMPxWWXXYZLLrkEPXv2dDyXtWvXYsaMGbjzzjuxbdu2ZuGRSASXXnqpkNGHV8aOHYt77rnHNnzjxo340Y9+hM6dO2P48OEYMGAA2rVrh7KyMkeTlUMOOQSHHHKIUBl+8Ytf4KOPPsL06dMd4y1btgw/+tGP0L9/f1x66aU44YQT0K9fP6E8gJQxy8cff4z33nsP8+fPd97dqAWwd+9ePPjgg3jwwQdRXV2NM844AyeddBKGDx+Ozp3lxGu1tbVYtGgRZs2ahaeffhrbBRdpDBw4EHfccYeX4hOEK4yxHoUuQ77hnK8tdBkIgiC+D9TH6x3DBfSQ+cHDcxOzOKbEkDcWsRMCiSx+ZCUK9p4SNXTMEcBpIcWL6mMxAMJ6QHs0DSHdWfUpupM7K8mDADcPyJo4mLGq54EiWB9FzEeSov2LR8OaslAUOz0cZ1jtUelBoMo0+WN0gWPMRiaaj/00E171rWF17a4sXAYAiEueRm6LKcYd5X2ZYCk6n44VHYXilUfKpQQzRksQbQki1Iemo/gxMslq215Mbkx9LwcXqiOe6xHjQm5BcYE+pC7M8acfbcPNz1RBy0mztLuOtn+701sZBTB0eZmOrLFYM5MribGCSfSlzNAAJGzDw2mvOcM+SiMx0xwrbAQ/j/IyFuaiQZMqq62JjWDbM6IJsHAJnK55hniAl1ClCUP3tt2xvna9Q2Zq8onrEvM7pAzyZA2EYppgW43H3R/YWM5vWdJ9M/Np2CN7r5nGwV2qJ1O5KYCyupjZw9wpL/dURMc3X/OpgKaWfsqU5O4bLERDUTIyaS3k04in+B6lAsD9JP/0pz/h9ddft91AZNbLc3HFxAvQv09f1YVrhtkgpJj55z//iXXr1qF79+5Sx5122mm4/PLLHeM8+uijOOuss/wUL7vPVdym8v4uLitzf4dvL02irL6p/IMHOJtLrtmwHlu2b0P7ynb+Mrbhww8/dAx3NDLJS1+Zv04y3++2KsrKsLeu1ja8tj6zduh7MVC0elq1kUkGzvkCAKcyxroCOA/AqQCOAGD1dGQ14lvV9tUA5gB4nHO+VFVZicD5EClDm1yGKszjUJvPl3PO9yjMpxixs0/ngKfv5AiCIAiCIAiCIAiCIAiCIAjie8GqVatwzz33NJpYdO7cGQcccAB69OiB7t27o6KiAqWlpUgmk9i5cyd27dqFzZs345NPPsGyZcuwd+9eqfw0TcPjjz+OgQOddzhxo1evXjj99NPx/PPPO8bbunUr5s6di7lz5wqlO3HiREcjEwCYNm0ajj/+eMc4DQ0N+Mtf/oJp06bhwAMPxLBhw9C9e3dUVqa82bdv347Vq1dj0aJFWLZsme3iIAC45ZZb0K5dMAskMowcORKHHHKI684vGzduxHPPPSec7vXXXy9sZAIA9957L7Zs2eJ6XwFg+fLl+OUvfwkAjQYrXbp0Qbt27VBVVYVoNIq6ujrs3r0b33zzDTZs2IAvvvgCK1eubNHGJU589913mD59eqMZTE1NDfr374/evXujU6dOqK6uRklJCUKhEPbs2dPYpjds2ICPPvoIK1asQCIhsPLfRNeuXTFv3jxUVFQEcUoEAQD/Qx72XS4iOL4na2oIgiAKTUOiwTFcRogWJKkF4gLCJzNWRiYhdUYmIiMzKy2Vzq95IoJCrRwRIFNsZMLjaZWszxkJ07QsIwYrRHdyZ1EFRjFFgJ92lhI35xFdLD8REx/h+xz2KA71YhYAIGLR5puJ1YXyl783IkYmIa3pevgROcdD3o6VEd+7URZJGZmI1oUMuR4LKsXeqigGI5PqsmqheG0ibWAvXWlOuJCiLdUI9BOZ8VWkX0vabPeeZazgob4qFaS75QX3oT6ucRGvEwDAh73rcfOFDFPfLUNs0y4wnaFi9DBUXPd7pf1JLrZmFg5w2XuTe18k7pOI4Vdj3JAOIGYbHko7D4YEHAjNBjQR3ZtRmBQh/692GGMwdAOcc6H+3nYsFZwXhCpDwvMrr2OpCF7qsB39O/bHvzf92zZc1QvHmMYBluojDJEJbiQM7JU7z7jOhebOPBYDbDYAaIbHeQTLGCZ5ME7KQnB+3ZSx+x1L9RuKUFXNRQYYgXtRjPM+YXwUPZFMuB5fFi4TnoMWoxEg4QMPtzNTB2THAC7QBxUbIhaAQ4YMwVlnnYVnn33WMkYikcAf7r4TT97+N9XFy2LXrl1SaxAKSTKZxMMPP4xrr71WzGgx3X/36dMHRx99NN5++23buC+++CJWrlwptYmLXX7pfzynY0kBn4lFhlM4xKkNcyQ1QEtPk3p26YquNZ2w/ptNtmm9++FinH7ciTml8M/atWuxevVqxzgjRoxQkpdnZEz6WtjQuqfWeY1bWTSa+qOFnRdhzfdq0QXnfD2AqQCmMsbaABgCYDCA/gC6A+gCoAJAFEAIQD2AvQC2AFgL4CsASwEs5Jx/lfcTIFTwFqyNTPowxnpyztf4SZwxVoKUSY5d3q2dA20+/4Zz7rx9CkEQBEEQBEEQBEEQBEEQBEEQjWzcuBEbN24MJO1QKISHHnoIZ555ppL0pk6dinnz5qG2VkZy4J/jjjsOl1xyCe666y7XuMlkEh9//DE+/vhjT3ldeOGFuPzyyzFz5kxPx8tw5513YuTIkY6mKkGj6zqefvppXHzxxXjwwQeFj5M1WPm+8M033+Cbb75xXBDlhwEDBmD+/Pno0aNHIOkThAlaKkQQBEEoJxa3F0UCQFIrIoEC483V605YiEmjRlQ6W19idCVGJoL554gztYgBIO4//wxxObM/W3QdYd1ZuBwXrHciovKWgC/DoDyK2wGAGYLLniPu4mjh/iXi8T57bLulrPk5Mi9CbA9GKkJGJnqTkYnmQzwT82p2FFJoZBLOGJn4G2uKUYjpa+xQpH4xBIXVFSUVqJXIMyRQT1sMIm0ofWlYVKBfs7mMWW3bi8lSyGToFPTUjHHXPOK6XCE29SxDzc3zfRRKHtH6b4bLegnkjokyeUbE+1K3MSgcT9UpQ8CzwTzHChvBGck0EvJoRmZCtj+1G0uZ4Jhp1LQBbxCb98bDwYlYVZo1DO02FDM/mWkbLvOI5UTGKEfUyISFQtKKz5SRiUAfFI8Dbt/xpPP2fKkzfYDf+bjkuCDSJITn7EIZeq8gQQxZom2jRRueWMDBXee8FZEKxJOC7wBa1+VpfUjX3/zd0GbtuoheG9rhOmykL99NN92E2bNn22528cKbr+M/n32KofvbSTf989RTTzluoFNVXYU3lr4Bw6Gf79+hf9Z7A7/lOffcc23DZ86ciSlTpghVQXMfdtFFFzl+b59MJnHrrbdKrZNwzLsVGZn4be+cARsq4+i61WhMadRhR+CxF+fYHvPmvxdkG5koupxvvPGGY/iAAQPQtWtX2/D89HytaMA0ncr2XTux22Wzrso2bQMuEJFPWpElsRyc852c839xzqdxzi/inJ/MOR/EOe/DOe/MOa/mnHflnPfjnB/BOT+Hc/5/nPMnycSkRfO6Q9gpCtI/HoDdt1avKUi/aGGMdUfKFMiK/+azLARBEARBEARBEARBEARBEARBWNO1a1e89tprOO+885Sluc8+++Dhhx+GnmfxEgBMmzYNJ598cqB5nHvuubj33nsDzcPMiBEjcPvtt+ctPzt0XccDDzyAv/71r4gICMCIwnDuuediwYIFZGJC5Av+PfkhCIIg8kgs6WJkUkRrdaWLYrGoPBqSNzKxX+wuIM4rkc+vGYLCNpYTj4XVPiPyWKqu+PZ81HRXQUVCsOitxsjEx0piZuR5GbKgSJsJmI8kBBs18/pM7MUsAECF1jw/T2JQD2YPhoWJSrM4pnvgx8Aj5lF8zRQamVREKgAACcmi5Aqui1Go6ufe5NuYJWyEpbSSYdaKjEwETjwzvrISH0YmpmsmaqaQnYB8HxRkPYrJGn4UQPyle6inSdlxI+d9PJMw7WBh8bHNbU4XSg+oIYGBNW5KKmIE/86ZGeqMTESNx23vveD9DXWrEZ5fJRXPt834MSvL5YhedvsEp1D1Mi6WNjkSHtdDYTBd7jxjuuDcOR53PbHGIcDjnBHpssu0fetyyF0DoegK66aKeZZK8xGtBcsw/YyHIqashm4IGSMSrRAPVctz2y6+Ry9l9O/fHxMnTnSMc/3f7wi0DA899JBj+GlnnOZoYgL4M9Vslt9pp6GiosI2fNWqVXjnnXek+7ezzjrL0aACSJmkLFmyJOszmXwCfU9QSCMTwdNymgbVhjnWVMfASnVoIeD4EUc6pvXiW28imRRwTZTk2WefdQw/8cQTHcPz0h9J5SEWmdvcnXw+N3/6xXLH8JJIBF06dMxTaYh80HJn0AThjaUA/mcTNl5B+nZp7IaziUprYJxD2IK8lYIgCIIgCIIgCIIgCIIgCIIgioj9998fV111Ffbbb7+ClkPXdUyePBmffvopjjnmGOXpjxkzBq+88orrgg/VhEIhzJ49GxdddJHytBljuPbaazFr1qy8m7RcfvnleOyxx1BZWZnXfK341a9+hUWLFmH48OF5z7tv37444gjnRc7fV3r37o1nnnkGTzzxRFHUE+J7BWvlPwRBEESeiSVajpGJ7EhhJYorDZdKZ2srABBQ/LFS+fyapSEqRNKzL5BWos5sAACQ2ZHWr9JR11yNTOKaWCasVIFRTBGQEDxfK2TFn74RFGuImMyIGrh4N6zx1oFV6hbC7pCH9xIehC0iwsOw3tS2/QiU4mFv14eFgzAykWsDubELYZLghh8BekGMWSRE3GHNg7FPsSIyxqYvDYu6jzm5JjsZstq2h7rBTO9Gheu7V22qwHFxXa7NFkJU7aV/5LJmBrkiUpl32BImXSzsPG8KpadohpCRSdO9KzHyYAin4L2+bJ9oV99ETYSMvr3ADLFy85Lg+kOVZg3tStuBJ+zbrV3fJUtc0siEhUNinU5OHiLPqDweFza/8dxfZvoAL4Z3ZiT7HpHuzZMJn21iCoxMhMcuAYMxUVOUIpwf+sHtXUbGEFGlgQFROOSfB7zXd9kxoCU8i+XiWkLT9b7++usdNxgyl72cAAAgAElEQVR5c+EHeGvRv9UULIcvvvgCH3zwgWOcn57/U8dwBqZ07h2NRnHmmWc6xpkxY4ZQWuZ6HYlEcN111znGTyaT+NnPfoZYzPndtSgqamptXV3qj0IamYjicsIxA9D69kJ4//4442cXocSh3m/67lu8vXih0uJ9++23eP11Z6n3mDFjXFIJvv+R6uP8FieP3ekb/3aWmu/bs3dTmy1C82BCnhbQaxGEOnjqbcDjNsHDGWNDvKbNGOsC4Cyb4Oc453u9pl3sMMbaALjKIcrL+SoLQRAEQRAEQRAEQRAEQRAEQRQTHTp0wNSpU7F8+XJ8/vnnuPnmm3HYYYcp3c3OiZKSEkyYMAGffPIJpk+fjnbt2gWW14knnojly5fjtttuQ79+/QLLJ5dIJIJ//OMfmDFjBtq0aaMkzf333x/vvPMObrrppoLtqjt+/HisXLkS1113Hbp161aQMmQ46KCD8P777+Ppp5/G4MGDA82rbdu2mDx5Mt599118+eWXOPXUUwPNzw/jx4/Hddddh6FDh+atngwcOBD33Xcfli9fjrPPPjsveRIEQRAEQQRJQ6LBMVzUaMCN8v3LFaQiafZg8dxXGlJnZCJSGlZaJp2fRQGEouWKM1nE387gufBYPP2Hv3SYrmcZMVghLH4UEJW3BHwZBgkKbVXBQoKiSAHzkQQTrEwejTOYR/F0e4vdzr2IQYVNiEy4mfwAQEhriuNHqBgLezxWoZFJWSTVR8Yli8Jz6k5LEM8VPRKXMNyKBLIi75NYehwWMc9K2vRrOjP1B17eYYXkx3TP7UKgb45Ldm+FEFWL9Ke5cMliNhtnhMcKLjWusLBz3HA8da+NhHtaMZORScQQN1PxjIe6m0tj/RGcNmS1t+wAoeNDAwcIz6+44vm2GdXfYUV1+z5MlZFJLH3ZRA3KWCgkLQSOaYLPCvE4XCtN5ry9frdgpO+/33oue69FPLhE5+wi5PM7OoG8hMeUVjY9rC6rdjTnqS6rBiB+fWj+3MrwcTtlX/GoGjPyisRJ9ujRAxdedKFjnOv+fofPAlnjZgjSr18/HDX8qEbjIisqS9RvvnHeeec5hj/77LPYu0desnvBBRdgn332cYyzePFiXH311dJpW+PvheaqtWtw7pWXARA3yAuEANpgmzZt8MNjRjnGuedJkxxcwdzg3nvvRTwetw3v1atXQTb6aUYQfZ5Nmvkam+PxOJ54ea5jnCMPGZqXshD5o/W8ySMIcaYDsBtpbvaR7vUA7N4C3Osj3ZbAXwC0twlbBSAYuz+CIAiCIAiCIAiCIAiCIAiCaEEMGDAA11xzDRYuXIitW7fi5Zdfxu9+9zscddRRKPG8u29zysrKcMopp+D+++/H+vXr8fDDD2PgwIHK0neivLwcv/nNb7BixQp8/vnnuO+++3DRRRdh1KhR2HfffVFVVYVIJBKIkcv555+PtWvX4o9//CM6dOggfTxjDEcddRSefvppfPTRRxgxYkSzONXV1RgyZIjtj9MOSV6orq7GjTfeiLVr1+LDDz/EnXfeiUmTJuGoo45C3759UVlZiXA4nDcTjTFjxmDJkiV49913cfHFF6NTp06+09R1HYcffjimTJmCf/3rX9i8eTOmT59uef2LjX79+uHGG2/E4sWLsWnTJjzyyCO46KKLMGjQIBgKdxzcb7/9cMUVV2DBggX47LPPcPHFFyOsULhFEJLwVvBDEARBFBHxpP2CYcBekCtL+ekn+E5DetptYSKQEc1LJePn+alU3jilGaI7Tus5RiZRxeLURKquiG5sbgtjruLiuKj4kYxMwPJsZCIq0mZh9/onbFgT8fjORnJ3+wydQs2Nl5gXgaqH/A3N/fqajYD8vI9IhLzVHabwebhNScoQV1TwnCE3djHuPO+nTAUx9ZXIM6Rwh++Cowvcp4yRSYmIkYldNrr5H5GSZWPqewMXNwkkbzbDEMHWWCJAvOTJZfvtHKMAYUGj5Pzard8NJVjWbyfMxlElhrrvROzwNH7mpiFZ53WbPkr0/oQGHSw+vyoNzgxGdVtvH7WTmqh7WRdP9w2iczxEItIPeXGdCz2j8nhc+MS8DrsZQyLfYmbJAjABUx4WDs5kxwvCcxsRgzHR52M/bahAGyw4ETEi6FTeCdyiYpeFytChPPW9bKE2hyAKjZ/73vq/snG9OjkRrrr6KpQ7vM/7z7JPMPdfb/gul5lEIoFHHnnEMc748eMBAP2q+0GzkKRHjSi6VarfnOXYY49F586dbcP37NmDl1942TWd3H7ZMAzce6+73HfatGl44IEH3AvqXgDPvL/0Q4w6/8f4ct0asEK3mf9n787DJanq+/G/P1XV211nhtkcZFgFBkQQQURAhSDKElBEEdmUILiR+I3GILjhgibu35+GiAtqBDVqgoGgXzc04BJQxBUBmREUUGSTWWDmdtf5/XG77u3uW8s5p9bu+349zzzM3Ftddbrq1KnTTX3eleE433vNeGnCA1yu+Z9r8cvbb8tkuxs3bsRHP/rR2GXOPPPM5GtaEZe8Ubqudt/LZ776H/j9H++NXfTZTz9k/mW5NoqKkmHMIdFwUErdKSJfABAWyfYcETlNKfU5k3WKyDMAnB3x62uVUv9r2s7uej8N4MyIXx+ulPquwbqWA9iolNpq05aY9b4OQFzc3/tUXPQmEREREREREREREdEiND09jWOOOQbHHHMMAGBmZga33XZb35877rgDDz30EB555BFs3LgRGzduRLvdRqPRQKPRwNKlS7FixQo87nGPw2677YY99tgDBxxwAJ70pCfBtXzqb5bWrVuHdevWFbrN6elpXHjhhXjDG96AG264Addeey2uv/563H333XjggQfw4IMPQimFiYkJTE9PY9ddd8Uee+yBpz3taTjqqKOwcuXK2PUfd9xxOO644wp6N/NEBPvvvz/233//wrcd5tBDD8Whhx6KSy65BD//+c9xww034KabbsL69etx55134oEHHsCWLVvw2GOPodlsYnJyEpOTk5iamsKaNWuw5557zv3ZZ599MDU1VfZbSm3lypU4/fTTcfrppwMAtmzZgptuugm33HILNmzYMPfn/vvvx+bNm7F582Zs2bIFIoJGo4FWq4UVK1Zg5cqV2HHHHbHHHntg7733xsEHH5zYL4lIG+91IiKqoJn2TOzv0wQsBKYPXY3x1/59+hWZFn2GFJSN182DTCILYTUeQyvjCwMRjOkWxg0URjtZB5m0O9msx3X7ghjCaAdcZBEUU6L9ttsPNz9wMyBARxRci0cbS4Yhjlrb0+yPohEY6+seZ9vwWctigyVeSFiBTTGoRVGrTpBJbxBQmrCMmYaL6GcSxsgwRHayMQlAvy8EBk+VKj5RPqywTFcV308vsQwJqiSdcaK7iIwnX3OihvHec1UszlubInnbfqTzKt3AsUAZYUOea359NA0ykdBtKCTtRdMjI434a1C9PbtG109eV7snhKZVKyAQzksfphD0H90+HRVkohMwJk4Hzs67aAeZZB4c2CPr82bt9Frc/ejdob9TGYVXBv1LO5SwVjMe32aDTHQWbCcnMAbrEYFVIX9fP0k+9yObYTr26Cxfy/AzQgYFvNrXJK3L8vDOQ9KGjKycXInJ5iTu/svdmOnMwBEHK8ZXYNn4sr7lFNRQ7yeyYHG4gz5i+jXEaBYn9u+EFStW4LzTX4p3f+xfIl9x0Uc/DD/DUs2vf/3ruPfe+GCBIMjEcz3svXpvPLjlQTz86MNwxcV249thopHBd5AhHMfBi1/8Ynzwgx+MXObLV3wZR7/w6Nj1hI2BRx55JM455xxceumlsa8999xz4XkeDjr6IL1GZ8T3fbz3U5fiHf/6EXQ6HUxOTAzN/+nU6Z2914rnPOMZ2GvX3fDrO34buqzv+3jD+96Naz52WeqpwTvf+U7cd999kb9vtVp49atfrbGmQpJMDBbVWzby2BTwdu669x686cPvj11m1XbL8eyDex56NEphLosYg0xosXoLgBcACPsG7F9FZL1S6gc6KxKR3QH8OxD6rb8P4B+tW5mtQwF8VETeC+BjSqlH06xMROoA/hnA38Us9msAn0yzHSIiIiIiIiIiIiKixaBWq2HvvffG3nvvXXZTRkKtVsMhhxyCQw45JHlhsiYi2HfffbHvvvuW3ZTKGRsbmwt8IRoRd2E07hF1AOyANHf3ExFRpmb87INMGssVvOkmpFHD1DmnoHXqGZatS8ldeDuZzU39aYoIMwna0L1ZeKCgTcYswx8iqHY38MAibKOP6/YFMYTpLbKNI2PmwTRVcuI+J+Lm794MYDa8xbXJitEstM2MbnBKa/bW0Lgiuo5u0WzTstDa8kb7sOIaq6faRxVSx9AJMml480XTaQoU2w27sU3q8UFEALDkGWvw8P/cE/n76aevAgA0a00opYxDERa0qYJFFWnCPsp4P0abtAjVqCyN9xIcS51retS8qS9Ywbhv9J8fAoHS+HrAuh9pvGzGcHhzSugzkUF0MUyDTEKvwaKS50qm4XyN+HG31gn+m9z+dk+Te68neZFadkEmuiKvpRr9sDbRDQ7SnO+4E/nNRbMOMlm3ch1++Mcfhv4u7fQ+MNNtsm4oIRoN42tK29EMQNMJMgnYvv/efqJz7kcx3AfiaoTyZHDuzSkywEzj2qV7favi/DALrVoLuy3fLfV6RnX/jBLLiCWzDVjI6ppRpMSp18B7csTBeWe8FJd+8Qo88PDDoS+JCnuwddlll8X+/qCDDsJuu/Wf+8vGlmHZ2LKIV2TrtNNOiw0yufFHN+LO9Xdix112NF73+973Plx33XW45ZZbIpfxfR8ve9nL8PLzXo5Xn//qQj5f/Oq3t+HvLn47vv/Tn+S+LRNZDt+93ymJ4+Dvz/wbnP2WN0Yuf+0NP8K/fP5z+NtzzrLe5vXXX4/3vz8+SOOss87CihUrkldWsRwTU9+/9vs48OkHot79vJd3CNmfH3gAz3vNOXh44yOxy738hS+GV3BwNuVvhL7JI9KnlNoA4F0Rvx4H8A0ReWnSekTkWADXA1gVscjHlFI3WjUyH2sAfBDAXSLyLyLyLDGM1hYRR0ROAnAj4kNMtgE4SykVf7cBERERERERERERERERERFVmlJqJ6XUzsP8B8BrAcTfHUVERIWb6SQEmVgUly+/6DVY/aNvYdX3vpZpiInxjdruwuLSibp5kEmaAh/J4qbfkPcRuq2B4BZnPIMQlV6d2SrZtA+cFcdNLJxta95RN+xBJqcecCr2WrIXAMA3LGoOSEWDTESjqESrCBWANC1DeTIsbBGbp9pbFH26GuEndXe+oD1NkXO7YTk+1ZML31tHPiP+98951tzflVL6Bc/Ba0IKzarGSVEikHfxSvhGTZ4ynF8zCqfzvsUgyCRi3tQXrGA6r7C8PljTaF4QOOb7vtYqbUJF0vJc8zHONMjEdp5nOmRJI37cDQJMvIQEwraj+sbPyeakWUNsZDAXDubiumNj1LV0cK4cxttuds6he933xvObi2YdMvCUHZ4S+busRplgbOhofoaUWt08yMRVWvNm1e4Avl7lum34mHjzYSGpjpbp9jX6sk7wnLYM+qKI6O0kjW3pzvtKmU8lKKxNoxCHTmYsztOgP7K7LCQimJqYwOtfdk4h27v//vtx1VVXxS5z2mmnFdKWKPvvvz/23HPP2GWu/MKVsb+PGgMnJydx9dVXY7vttktsx8f/v4/jjOPPwG233Ba7nE7wY5Q/PXA//uF978bTTnlBeIhJ6ZcXzQZofdTtCTIBcMqxx+PJ6/aKfc35H/hnfO271+q1YcCtt96Kk046CZ1OdJLz9PQ03vKWt2iusYCDkeN3JZd+8FIcc/Ax+MKnv4CZbfmWf//v//4vnvGiF+KW9XfELrfdkiU479Qzc20LlaN635wSFefdAL4T8btxAJeJyI0i8goR2VtElojIlIjsISIvFZHvALgaQFTE1i8AvC6HdmdhOYBXArgWwL0i8lURuUhEnici+4vIriKyXEQmRGQHEdlXRF4sIpcA+C2ALwF4Usz6FYBXKqX+N/+3QkREREREREREREREREREFK77gI8fAvgPAMEdcKXf6kdERLPafjv29wn1kOHyemKfad1vSFHcZMO8YDO6UKqgy5nuE6cHCtpkrJVpM1TMTeZGvOQgE+3ix6zDWkrwny/7T5y696l25xosAzZSEM1gHR3a79l2TLEtugx7nc1T7S2CVHSKG5POH122QSZJBfUA0Dr3lZjYK7y4e2LPMYy94lXzP1AwDzIZbFMFP16keUJ0lu+npjT7rlERdfX2ty2tMa37dmU8OQwt6gn1fcEKGgXoIZuf/7fuvMDyOOmsXsHHGw95I/Zfsb/WOssIG+oLj9GkTJsZcn3S2uuG4TTSiA8kqLe7QSYJU7UgZCIw3Zw2aocVm+vnANP+ExmcozHO1R63DIBBkMnUlHa7TGUdAHTwTgdH/i5q7DI1022y7nVdmk3j+dqMq7n+ThsqIYFxbtO2c8besT1F6JROAGDf8m5ye6WR/tzrWVuG60ralMZ7yzjkJ3QbFq+pUhiEzhygivNnGlRQrzLsClldM4qU2OSIceUVJ78E269anXl7Bl1++eXYtm1b5O89z8PJJ5+cezuSnHrqqbG/v+rLV8UGVMQdiF122QVXXnklxjVC4n7+k5/jxUe9GG9+7Zux4fYNicvr+s36O/Da97wDex57JD5y+WfRbsd/Z14azXPQeAQRgeM4eP8b3hR7rZ1pz+BFr341LrvsMqPVX3fddXjWs56FP/3pT7HLXXTRRVi5cqXRuvOV76B337334eI3XoxjDj4GF190MX72s59luv4///nPOPfcc3HwwQfjjrvuSlz+A//4JkxNDH73MYQDPy3AIBNatJRSPoCTAfwqZrEDAFwC4JcAHgLwFwC/AXAZgMNjXvcHAMcrpR7NprW5WgngeABvAfCfAH6C2bCSPwPYCOAuADcD+DyAVwDYOWF9HcyGmHwqrwYTERERERERERERERERERHFEZGniMj/A/BtAE/F7J1OcXc7Vel+byKiRWOmE/+0P5twBdun0yev2HD5kOJkmyfPZ11EaEp0izcH3q+z4KbjlNrdYoTUVSuCuhtfkKtd/KhR4FB1nuvh7Ue/HROJT4yPkGGwiJYMz2/twBrLQAjrIseQQmepmxeDimN+bHSeGlz35s+fNIWctkEmOkXp4jhYcdW/Y9nz9oJbbwPiw623sey43bHiv7/Ud0wFot0XAoPDUBkhCUnStCnLAt0X7v3C2N/vNL5Td5v66xSj0JOK03nj3WUcjSCTqHlT71xC+7o+94L+80O38Ni6QFnjZfuhhbMPPlu7r7oW42FaNttUptebsGuiRpiB6SkurWbs72sd6ftvlJmBt1dEkIntNbxvHd0dptunI0NsNHZ8be2a2UU1A1jqS5ZqLWcj67CG6Vb08c7qC7kgLGcwNCdSvW4YpDW7bp3PqKrdRuI7Sxtk0ht4k+ZwmQaZeBrLZxAiNLe9DPqi9rUrw35fROBJ/waL3RxRnxT93fQaMIz/E8c0ayoYP5qNBi4455U5tKhfUiDEUUcdhRUrVuTejiRJQSb33Xsffvi9H0b+PulacOihh+LrX/86pjSC4trtNr76xa/iec98Hs44/gxc8ckrsOH2DfEhZgOb73Q6uPGXP8f7Lvs4Dj7lRDz5BcfhY1+8Ao9t3Rq/8bLH+7yuld2/Hrzfk/F/zjwr9nWPbd2Ks846C8ceeyx+8pOfxC77u9/9Dq94xStw+OGH449//GPsskcccQTOO+88rbb3tjlXRtvQWzisl/7pnj/hQ+/7EPbbbz/sscceuPDCC/Htb38bGzduNGkAAODBBx/El770JZxwwgnYfvvtcemllyYG/AHAGSeciBc999iFvyi7z1Mmio1CJ6oYpdT9IvJXAK7GbGhJFm4HcIxS6ncZrW+Y/BHA6Uqpb5XdECIiIiIiIiIiIiIiIiIiWnxEZA8A7wRwYvCj7n/VwL8R8fPrALwxtwYSEVGfGT8+yKRj82RpzSeYmzK+TzukIGyqaf7U9NIL5DWL+8Ttb6dMZBvyobpPVU1dtOK5aHiN2EV0ix9lwvx4VpblU9ylXvBtyBkGmdgEJRmxDXkJGWykEd9nQ1kUb+sUFjTd+YL2NONTu2lzLJV2WJUzNYWlH/8Ykkq8Z4NMLJrSu46iC1U1OCmedZrl+znn4HPwuV98Do67sD1KKZy2/2nBRvVXWsH9bU3jvcwFt2iEZ0WdwX3BCiHHwoR2QIntYdLJdtEpou9RRihcZJhFDOWa7TTr8D7TIJNmfJBJoy2AArxO/Ho6A/OrpWP5hXBkKbjWCUQr8Cvq2Hce2pT82j12nf2L5vyquXQ5sEFrUWN5BAA10cRjeGzBz1PnFHYFc3jtUMJGAzB8n21HwdeZN7c7+h9cLIfl3sAbQYrPSYbX1cHPfaHL2Mxdo2TwcVh7blOVOUZFmkGLXKqBRWf1+YXeDZvBoWd2zjHrjONPxAc/8yn89q47c9n2TTfdhJ/97Gexy5x22mm5bNvUzjvvjKc//en4wQ9+ELnMV7/4VRx6xKGhv9Ppc4ceeii+/e1v4/jjj8e9996buLxSCjffeDNuvvFmAMCSpUvwhL2egO3Xbo/99tgPExMTGB8fh1IKD99+Bx7ZuBl33ns3fnvXnbjljt9i05YtidtY+D5KllsD5ld80atfix/e/FP88OabYl9xzTXX4JprrsG6detw2GGHYbfddsPU1BQ2b96Mu+66Cz/60Y9www03aH3XtXr1alx++eVwjL5Lq1iSie6iCcvddtttuPjii3HxxRfDcRzstNNO2GOPPbB27VqsXr0aS5YsQaPRgOM4eOSRR7Bx40Y88sgjWL9+PW6++Wb8/ve/129z15EHH4KPXPg2uwbTUGCQCS16Sqk/ichhAN4H4JVI91H3CwBeoZT6SyaNGx5bAXwcwJuVUg+X3RgiIiIiIiIiIiIiIiIiIlpcRGQHAG8DcDoAF/oBJsHvbgZwgVLq6zk2k4iIBrQ77djf+zYrzaHoDoD5PbMhBV5WQSYZPEk+Fd3tDwaZTE5m2452tzo2ZaWjOC7qXj12Ge3ix4mJVG2pEuuaPS+7p63rENtwkBAdJ+dnOVvv1JAgk3p8nw2lGULUy1fJo26t55inCbxo24TgWAbuxK4SYtwXBguYSw+cCiEWx3/utRkWieywdAdcdPhFeOt339p3PVNK4ZmPfyZedtDLgo3qK/u6mCWdUJHuvnEmkq+rfsTq+oIVDPffgsJKzfPeth/prD4ootdtSx6BDHlsU5metyHXYJHkmmPTIUuayYEEng/UOvHtnxnY7rLWMrOGlGQuyESzv0XN3dsPbEFSmUptn31mt6U5v2ouXaG1nI0srwWBfVbugxvvu3HBz7O6us90TzvtgLJ6w3guM+NGj7V92m0gqWi2u2nr+VTvOJNmjmQacKUxVknDYu4avbYM15W0qaoUyubTjiqG79FosOpa3deYfsWzIFRsCLp18jW1//ciMvcjz/Pwllf9Lc44/3W5tO2yyy6L/f3ExAROOOGEXLZt49RTT40NMrn2/12Lvzz0F0wvnV7wO90x8IADDsBPf/pTvOQlL8F3vvMdo/Y9/NDDuPH7N+LG79+IK3Gl0Wt1PPOAp1bgWpXT9nvel+d5+PKHPornvPxM/PL22xJfesstt+CWW26x3vSyZcvwjW98A6tXrzZ7YcVyTPLg+z7Wr1+P9evX57aNE5/9XHzqnf+EWq3Y75ipWIsuyEREpgE8HsBKANMAGgDqKPC0Vkp9tqhtkR6l1GMAXiMinwLwJgDHY/bGJl3fAnCxUuraPNqXkW8CeD6AZ3b/PAlm7zHMHQAuB/AxpdQ9KddFRERERERERERERERERERkRESWY/b/85+L/vs/dANMbsfsQzv+Pc92EhFRuLaKDzLpiHmUifXT6RNXbLh4SAHrWG0MSimjAiJXii++7aNZiDsYMOFMZRtkojqdYEvpVuS5aHrN2EXamqEGmT5pvGy2D0OuF3yTeYbBKVpFqGlYhluEjg82+9k1Hwt1nlLbOyalCfBoN83fUx71OiKCtunbCHlidtU4KZ7pmHWR6xlPPQOH7HIILrjmAty78V6M1cbwhme9AUfsfkTvRg0amGnzyqWV2jG7jE5A2GDITqAvWMH0+A6sU7e/W58XOrvEc4y2UUbYUM0xH+NMg0xC57z6XUp/O2NjicvU2gLPj19x253vS0opjDfGzRpSkmBM1O1vfcFBPdqbfCQFmXj77j+7LY2wL3F8TI4tLNLNSh7nzVuPeiuO/eyxC8K2VEZBZTPdPqYbUCbNpnG4U9tVSOjqALqfXRLnVXNJJkZtmNNb7Jni2ig5HOtMPydlMC/RntuUXhw+IrSuRdzXo8X8eNrOFXOOI82H5uVg/p/9PzjpqKPx/ss+gZ/dah/UEGbbtm244oorYpd5/vOfjzGNuWBRTj75ZLz2ta/FzMxM6O+3bd2Ga/7zGpxy1imptrNq1Sp885vfxAc/+EFcdNFF2LhxY6r1pbXXrrvhff9wAQ4/6ODyPw9rbt84h3pg+WXTS3D1JZ/E8887Fz+95deGK9O3evVqXH311dinGyhYOUbflZTdOczUvBre/Mrz8LqX/k18kPtwvS2KMPJBJiJyIIDnADgUwL6YDTApG4NMKkopdROAE0VkewDHYjbwYy8AOwCYxOzQtwnAPQB+DeD7AK5WSt2RU3teCuClGa1rM4Aru38gIi0ATwSwH4B1ANZi9n2uBjABYAyzQT/bADwK4D4AdwP4DWafRPVdpVRyrBkREREREREREREREREREVHGRGQSwD8AeC2AcZgHmPwBwNsBXKaU6oCIiErR7sQHmVgFDeQUZGJ8L3DIDbiO48xekQzWFXUj7/iuDWy+Y6thoyzoFtV6/UEmMmvUdowAACAASURBVJ1xYWW7A+WbB9ss4Liou/FPCG+XnB1TCtt6c6/YnZVlUJFOEWoqhgXpcaRu8VR7i+37Kvkc6y06TFPkLK4LER9KGawjo0LnXq642gXPgcGlywhJSBJbBJIgj2CWXZfvii+e8cXobRpcZPMouC5LWOjZgmWCfdNqJS4bVSzWG6wgbrr9l3t/1woymd1vuv2mjFA41zXfpmmQSficV2M8MzyE0owPgAOAekfgJXyzMhhkkmacKlLQf3T7flSQydjuS7Hxl/FFsM6SJbN/0Xgaubg+JpoTWm2ykcd5s271Opx/yPl49/XvhtMzFhkXukYIwgg7ml1L6nXj+VLb1ZxDdjr6heuWc0ap9YztVmtIt/04VnPXyJVlEGSiu4dy2BeLkUCghjNugmylOHWMe8oQhEoOSm5h/xKDc1wRwUWveS2ed965mbbryiuvxIMPPhi7zKmnnprpNtPabrvt8JznPAdXX3115DJXfuHK1EEmwOxn6te97nU45ZRTcP755+OKK65Ap1Ps/0pct8uuOP/lr8RJRx1dnblzRmEZC64TIetdtd1yfPtTl+NV73gLvnDNVZlst9dBBx2Er3zlK9h+++3tVlBIcEj226jCFfqZBx6Ef37d+XjSHntqLF39cZ6SVWQEy5aILBWR80VkA4AfAbgIwLMBrMJszy3zDw0BpdTdSqlLlVKnKqWerJRarpRqKKXqSqllSqknKqVepJT6cF4hJnlTSj2qlLpRKfVxpdTfK6VOUkodpJTaUSm1nVKqpZRylFJNpdRSpdQeSqkjlFKv6u4bhpgQEREREREREREREREREVGhRKQhIq8HsB7AhZh9UIdg9t6rsBCTwZ8/COD1AJ6glPoEQ0yIiMrV9hOCTGxWWnCwQqRaeBGjSnwydz8n4jbPqTOfH/u6qf2XGm0nkmbR5mBhtDOVbZCJ6nSAdnx/0eK6aHrxBbmmoQajwPree41C20wZnt8v2utFkb/L/Tjb7tSQU06niHzhi8xvEdcpOOwdk9IUjYkIxDUb5SWHIBNHHO2C58BgwXUlg0zShMyU8RRfk8LhUbobX+d9d5cRx4FI/DkTVVzfF6xgWgBnWSxq2490Xic116gtrkZgTNZqjsX10TRkJuwarBMEY1io74yPJTelDdQ68eud6T0MQzTVCvqZdnBORH9rPevA2Ne1Hj//Oqkn9x/HBSbq+QWZmPYTXecccg7+6/T/wom7n4jdp3bPdN1BGGFbd47XbAGGoUMzrgIE6CTMSVS7AyR87gv2sPW+dnvG9jSHK4/Pz41GduvKoC9qz1nLmAMVqEqBD1VqC2UhxfE0fOkQTSH0heyDwff5nEOfgUOe/JRMN3vZZZfF/n716tU48sgjM91mFpLCVW75xS247dfZlbyuWbMGn/3sZ/Hb3/4WZ7z8DExM5jf/AoCaV8MJRzwb/33JJ/GTL1+FFz332P4Qk5KvVbl9XxCx3lazicve9c/40gc/ih3XWAaODJiamsKHPvQhfP/737cPMSlKjl+VvOb81+Dkl56M7dcWsw9EBEcefAj+66Mfx9cv/bRmiAlG6zugRSyfRw+URGZHwtcCeDOAacQ/XacMPG2IiIiIiIiIiIiIiIiIiIiIDImIC+BvMHtPyBrM34PRey/IYIBJ7883AfgAgPcrpeIfgUtERIVJDDKxCBoQL6dgBdO634hCYdOCnagnbjZf9GJ47/4c2o+G3QaqMPHS6AAHE9o3qA8UwEnwRPmsdHxgZib1akQcNGtJQSapNzN8LN+zTqFtpgzP7xOfdCK+fOuXQ3+XUG+dmlgHSSxsmM1T7cWwMBcAfJUcLNJbbJsqLAMCcQGY5BPlcMxccdFxzAJVBq9MIxdkUsbt7iabrMqTqLOg8156zjlxFVTMORMVZNIXrGBYeDa4uCOOVkWGdT/SeZlX/SCTvvAYTb5hsb6EhOZprcF0TttKDjKpdwRJ2VRtd77jDFMBezAXjwoXHBR17FsnnQT56LegVPh6Jo87dO7vOtd98YCp5pRWm2y4kt95s8+affDe498LANj7fXtHjl2mZrp9THcuL40GTCcXQUiKL4AbNxa228kBlnNJJpbBT73z4jQZAjnMY6RlEcIXvbbiVlGVIBOLZpRdLNlLIFoBibS4Bd81mfaUwVDJYZCcx6n3pt7+t3+Pv3pZfIiHLt/3ccghh+Cggw6KXGafffaBa/G9Qt5OOOEEvO1tb+u7zj7y2CN4tP3o3L83b9qc+XZ32mknXPjOC3HeBefhB9/9Ab5x1Tfwg+/9AA898FDqdS9fshSH7H8AjnvmETju8COwZDJ6jlf6paqk7R/3rCNw1CGH4ktfvwb/8qUrcNMvfmG8jp122gmvfOUrcc4552BJJt9bF7EzTJJMzNpz4NMPxIFPnw1b3HD7BvzqR7/Cz37yM9xwww3YsGGD0bqieJ6HAw88ECeccAKef9DTsHbJqkzWS8NnZIJMRGQVgC8COAzhN6vMLVpYo/pxFk5ERERERERERERERERERERkSEReDODtAHaFeYDJVgCXALhYKXV/nu0kIiJzHb8T+3urAgUvn9sijZ84mdHN/lFFhM5222H1J9+Ke868CP5M73tWWH7qAWidclom29ctGB8MTXCml2az/UDHh+rE9xctnotGQh9pj1CNvC7bQojcgoMit2d2fh+040HYZ9k++MWDCwsc/Lzv6rV9enzYwbB5qr1F2ENiwS36xySxfY+YHVMdFzA5q/Mo2PHEQ8fZlmodIxdkUkZllMk2S6/cypDGceo9HpIQ8KYiqiT7ghVMxwbbIBPrC0vy66TmGm0jz0CGyG3ahKe4hscm7BqssUtMj42MjycuU2sLagkJYTO9D5IfpiCT7nkqIlp9PyrIxNt7Hyz/m8Pw5098f8HvxndtYOKCC+d/UEueX4knmGhMJDfIUlHXAlfczIrS293TrqMbhlmrGQe/BdvwHQAx4T2q0wESg0y6b9x2PtXTT1IdLtOxR+ca0MguyCSLvijQO3/zCHWhcMN0HSANozQ/D/G73/2u/98P/A4bZ2az8hszgrUPpPweUnP3PX2//fHoT29Z8PPGHjtCWi2jTTqOgze96U1Gr6mKVquFt771rX0/+8PDf8BDj6UPFEkkQKPZwOHPPRyHP/dwAMBdG+7Cz378M9z+m9txz+/vwT2/vwf333c/ZrbOYMuWLdi6dStqtRqa9TomxyewevkKrFm5Ek9YuxP23u0J2HfPdVi3y27617uyz7e8tq+x3nqtjlP/+nk484xTcI8Ivva1r+HGG2/Er3/9a9x111145JFHsGXLFjQaDUxOTmLNmjVYt24d9ttvPzz3uc/FPvvsk3Gbs11d+DZy2EjIKnd+ws447CmHYenY7Pf5f/7zn/HjH/8Yt99+OzZs2IANGzbgzjvvxMMPP4zNmzdj8+bNePTRR1Gr1dBoNDAxMYGVK1di1apV2HnnnbHnnnti3333xUEHHYSxsdlgzPb6DWg/sjWbBtPQGYkgExHZEcC3AOyC2Z4ZdbMKEREREREREREREREREREREQ0BETkGwLsAPAnJASa9vxPM1kR+BsBFSqnf59lOIiKy1/bbsb/3LW7WzS1YwbQpEYXCDhyjpxPHFaM3nv1c7Pirp2LjO96JmQ1/gNNqYPJ1f4vaUw40bGxcAzSL+7z+5WRptkEmqtMBZmbSr8hx0azFF9a1Yx+vPqJs77StFxtkElq0neDLZ34ZZ33hLFz/h+shrkApheX15fjwc/4RuORDOTSyK8MifrEJMrEoxNQZm3qLaxykCMuAQGqGxfQ51JZ6jnmQyWDBtWMRGpO3NG0qo7DUqEg5RYBO5egcp74gk/hF/Yhd0xusICn7q27/sO1HOl1Bal53Wc0gE5tQkZRqrvn1Shn27dBwL51VmG6nW3gWp9YReAlBJr3zqzLCZWwFfVk3xKfmRB/7qXe/B7W9P4OH3n8Z2g9thVN3MHHU/pj+p/f0FSBLvZ7cLkcw2ZhMbpCloo7R7PiUQVgh5vtYR2eYE392PDQ8H2a62/BFIfaE63SS+0vwcts5Y28IS5pLYw7zGGkk92FtGVz3ta9JlZlj5FUkns9qF2xGJ/ipKruasmFxPIPz0jTMqhLf1mTef0NWaLKNjIKUyc7anddi7c5r+3+ogH0e1x+ase2Xv0HC1+B6yh4/NeYtWuf1wMls9J2ACNauXYtzzz0X5557rv7rMlbIoTDZSMoG9R6DFStW4Oijj8bRRx+dbqVZKLvPUyaGPshERKYA/Ddmn7qj0H9TyqBKzFeIiIiIiIiIiIiIiIiIiIiIKJyIHArg3QCeHvwI+gEmCsCXAbxZKXVrnu0kIqL0koNMLG7583K6gd/0ptmIQgIRMQoySSoidJYuw/QHPmDUNCOaxVwyGGTSaADiAyqjwriOD3QyuOPfc9Hw4kMhtIofR4xYFu3pFNpmyuL89lwPnz31s9iydQse2PIAGm4DK6dWonPvPfgdcgwysS0mCjkWUrcIMrHY/mn7n4br77k+dpkjdz9y7u9xQUtJRATiGfa7HIoXPMczDi8aXNrFaBWOGRUQZbdRg0VHp4pFa+ztWSYpVyAqyKQvWMGwYH1wd+ue99aBODrZLkGQieY2yggysdmmMg0TsAzvE9c0yGQ8cZl6G/ASsih6x9o014+iBcdSN7zLc+NLtFqnnYnWaWfGLqMTYCaeA8/1oJTKZVwsaqz1HA++ZBNkMuPM9rG2oxPM1v2L4XnX7p7aUePtnE4HUHrzC9t9LbWeMSDN4TLdvk7gVLOVvJD29jLoi7qrGKE5RpgywuposUjTtww/iw1saiT6dchbMNorDDLRMhJ9BSj/WpXX9ofx8BRwLMz6rd6yUeNL7ufIMB5jyszQB5kA+BCAvRAdYDJ4brHLExEREREREREREREREREREVWMiOwL4GIAzw1+1P1v0j0hwc+/AeACpdRNuTWSiIgy1VHxRWu+TbhC2NPpM2BaYCYRBayuuPDha6/HyeEJ2UZ0tx+y3x3Xh9/Opv3K96E66YscxXHRqsUX1ukUP44cyztriw4yEcuibQAYa4xhrDE2v66a/bq0WBdphxyMlkUxqMXY8Ve7/xX8jg/HDX+t67vYYekOc/9OU+QsEEjNhUmJVh517zW3ho7pU8AHgx3KHqcj2Ba3l1LgZXK9r+j+tqJTdNhzDJPCf6KefN3XRyPO7+jtD6xLN8jEdnzQeN1ckInmNjyn+JKZumt+fVSe4bEJuY5p7RLD+bVMTCQ3pSOoJSQ7zPR0d0+Gp4wpGBN1+34W/U0ayf0nCKTJK8ikqAAgz/GgZGsm6wpCRrRCCYPATOMgE6W1Da3PLcFxswwU7B0D0nQBMb0u6EzdbOaukdL3b+25zRCFLFWZzv4emUABmmVxOINr1yL89mWhtNfxUfp8ZMkkMDqNVGNXVsPeqAaZ5BDYMRJM9nfld0t+3xFQ9Q3PNwAhROQgAC+F/g0rtwD4EYCfA7gVwF8AbASwCZz7EBERERERERERERERERERERVORHYD8A4AL8TsPR6mASY/xGyAyffybCcREWWv48cXeEUV5MZJE3QQv2LD5SMCVUyfQF9UEWEkzZuFJeT9igugnVE72h1gZib9ehwHDTf+KfdaxY8jRjIooCxEltvLa6wI2O7TENKI77Ohr7G40d9xHBy/+/G4+o6rF/xOKYVzDjinf/kUxZ4iAqduOEjkULtQc2vouKZPAe9fftQKMfMoiNfYaPHbrAKd0I6esSQILojiS3hf7gtWMJ1X2AaZWJ4XOtcjqdeMtpFmrLJlNX8zLEINAl36f6jxOsNDI+PJQSb1tsBLyG3o9ATF1ZyC5w8pBEFAruMCGtkUnptBiZbOdT8In8ipCspBMefNbF/I5k3MzIWMJK9PuuOlGJ53M911R423czo+oDTfl+2cMasAzxwK4G3mrpEymFNrz20ynL+nYtOMijQd6O5vVmgOP4HBcSwu3MHme8KsVenznyCfQDOqsLKPt8b2dYaOBefRMAZ2FHEsjDaRrj1VGtto9Ax1kAmAC3r+3num9N6wsg3AvwD4tFLq50U1jIiIiIiIiIiIiIiIiIiIiIiiicgaAG8F8DIALvQDTILf/RLAhUqpq/JsJxER5aftxxewWxUo5BWsYFrUFPFka088bFX6Tx0v+yZi0S3+DXm/jgd0snnAOpTvAzpPNk/iumjWmvHLLMb7tm0fitmoZ9uOJK5OYbhetVWmBZahG7As4g95nTQT+mwYy+LWDz//w9j4+Y249q5r4XTPa9VReMG6F+D1R7y+b9m0QSZiGGRiHbgTo+7UjcOLBntY6YFTGSvjumN0bCOur0NJZ0zrGROkFv/eo+ZNNXd+biSG+29wSNIOMrEt6tJ5WRBkormNviCXgvTuc10qIahmgXrIdUxnFaZ9YHIycZlaR+B14jc+09PdyzgmtlyZbbhu37c59oOknjy/Cs7lvMbsooqia24Nfkabanf7mM51fe7tGc5lgm34CS9T7U5ikEnQBrt9rfpDWNJcGvMIMmm1MlxZRuvRqqoeoTlGiKLmeDrbYfDCiElxOJl5g9DvDorIkKHhVPb4mdv2Dda7uC4hBQa8VHa/VrZhZGB4vgEYICIrAByDhddmhfne+X0AZymlbi+ybUREREREREREREREREREREQUTkSWAXgjgFcBaMI8wGQ9ZgNQrlBK9/GmRERURR0VH0yhbO5M9vIpKDd+en1EcbLneFpPcw+UXiCvuT8lJDRBahneaOwrqCyCTDwXjuNAKT61to9lQIROoW2WJMugorxCj7q0Q4AGhR2LhkWQSYqi1E+d8in8edOf8e1bvw0AOO6Jx2GiMbFguTTnkEAgjRoAg7SjHGpL614dHTH8SGEZ7DAsKj82Vr19JnTeS8+YIJ4DwI9cNCoMoC80wnRssA0ysU7IEiSVbgbXAt1tlBGaYbVNw2MTdk3U2SPGoVAagQS1zmyYSZy2O39c627BQWgpBGNiEGiSxJP0/U0nbG12PMgvmKCozyBZ9oWZbh/TCigLljEM9gm2kRi+0ukk5Zj0tMViHjEwd0l17c4lyGQsy7WlX4Pu/skhNM+OeTuUTuxBQW+v7DBWKoHFGGTbT1SW418WMth8qrfA0214aHzO0V9PiSoQZFKZjl9EM3LY31G9MPfrt+3qK3K4KZ2hDTIBcCxmn8bTG1wS/F0B+A6A45VSj5bTPCIiIiIiIiIiIiIiIiIiIiIKiMg4gL8H8DoAk1gYYAL035I0+PM/AngHgI8rpfQf3U5ERJXl+9HFuADgmz6ZHoB4OYUTmBY1jUqQie4N0yFBJk4tu6I41ekAMzOp1yNBYXHvnadkXtQcqBVciKxzfmuGUoSF72TKdp+GnHPStAgySVnssGJiBV78lBfHLpMmwENE4DTMxmvrfhqj4Taw0XCYHexhusXtw6KU4lODY2sdElRBonON7zmXxXNhFWTi9ox3xsls/f/UnZfYFpXqvCwI0dLdRhlzKZswC+UZ9u2wa6LOLjGcX4vjQMSHUtHtq7cFXsL8tu3Mj54NLzmooyqCMV73mtd3vtnSCjKZbZdA9AIMDBVVGN5wG1AZbSoIy+nta1Hm3p7hNaXdHU78pPlmx0disXLQiCzmNylWIYZhLlrrzDDIJIv2zc5tknfSKM0xSqVzLeeH8RFjfzxNrwGjmWofshN4imQvk9CZChyYstug9YEtp/VWTgFtNtkvussO466moTfMs+xDBv7dOxf5I4DnM8SEiIiIiIiIiIiIiIiIiIiIqFwiUhORvwOwHsDbAExh/kE1wf0evXeUD/78YQBvBLCrUuoShpgQEY2Ojh9f8ahsbmIOeTp9JkzbElE0W3PM2ld6gbxmMVdYKITUMmx7RwEJ/UVLt+gzj4LPoWZZQCmNYoNMJCIgqG+ZAtqhxfrp9iFBJjbFoHkHtSBlkAkE0jTsPzkEmTS9JjoaBc+9BovtSg+cylgpxVkmx3aYqx8Gabzv3gAfb/lk7LIPTIRfJ2tuz9zDcGwa7A+65731+KCzT7ohSLpF0GWcozWLYD1lemzC5rw6dYUW1ydJGCdrHYEXlaTTNdNzGBru8ASZBOeAbj/qO99st1nXCDKpmQWsmCrqM0jdq0eGMJkK+lhHY5fM7TbDuUUQkuInbEP5HcDXDNezOIYLLtVp9qH1nDWGTQhflCzmJaIZfpDDXLNKigoPYUjJImRxyCsRCJGBTL5ZSrEvRmQ3LgqZHauyr1V5dbo8AjvyVpFmZCX/cdl2/SO2oxepYf4qb6+QnwU3uVyglNpUcHuIiIiIiIiIiIiIiIiIiIiIqEtmvQzA7QA+AGAFzAJMHgXwbgC7KKX+iQ+0ISIaPR0VH0whNjdnZ/EU9BDG9/JGPDnatLgxr+JEgwboLRdSTCuN7Aogle8D7QyCTIL9yRyTPtb3qjcKLkSuawRfSEUOrm3hfMg5JxbFoDaF6sbbSFnkYBpkYnVNSNDwGloFz70Ge1jp43TGyigqNNrmKO1vnXGi51xuPeug2EV/scO20J/3hqjpBEL1GQzu0Qw3sC5i1ugL0r0W6PYbT/IPdlqwTcdim6bHJjTIRGP/RcxRY1+TEGRSbwu8hGla251fR9PLMOQggYgf+/ur99sc+/tgjNft+1kEgOhc9/MOMnEKmEcA2faFIGSk42rMBbtvTwznazPddXeSTrWOn/x5I5jXWM1v+lee6tptuA+CMKnYZcYsQvgiV5Z+XqJ9TarKHGPI63W1xqUhf480yP6Amn56HwyVLCM4p4jPS9r7pSqBDlScso+5zvZtvpYbyq5cQKOHMeAlCnNMFrWKzLKt7Ij5Ya13eNsC4PPFN4eIiIiIiIiIiIiIiIiIiIiIAEBEXgDgVwA+AWAt4gNMMPDzGQAfBbCrUupCpdRfCmk0EREVLinIxIED07ufQ59OnwXDm4GjCoXrjlnhvu7T33OjWcQo3sJ2OhpFbto6PlR7Jv16TIuEFwvLgAhpFFeIDCC8aLuqsgzdaLWMFvcLSupJUzwtInBahv0nhyCTptc0DjKxDXYonGU3KKMYUPdaA6D6xTkmdPp0zzLjf/d/0Hpc+Gt+vNNj+OETHgv9XV+ohmk4wcDmdM972wJPrcCiboiWbl/1cgq5y3qbyjRgxFu4Da3dbhNkkjDM1TqA58dvvN2zjiKDTKYO2T7299fuFZ+ZG8zFdcd609DCUDpBcbXZ45/XNaioa1vTay4oSrelHTKCnrHGcG4R9GM/4TRSnQ6gNC/EFvObBed6in1oGn43/arTY3/vNtpzgVOZyCLIRHcdozTHCFFUWJ3OdkqZb1J+CjycFYktzVaac5OnUqHSjV3ZHKwygkf75PC9DGAabppLE8wV0Y6yj3clcB+MgmEOMpke+Hdww8u3lVLhccJERERERERERERERERERERElBsRebaI3Ajg3wHsCb0AE9Wz3L8B2FMpdZ5S6k+FNZyIiErhq/gnpIsIIIZlCnkFHZjeqO2Ft6PumRV15fWUdV3aTykPK6ZtZngsfAX48cE3OqICZhY7rcLxsNdlWaSosz2dQsuq3N9ue+6GtH/2fRuMhQXtAyfFbegiAjEMMrHtp3GatSY6jtl1ZvDKVXrgVMZKKYwy2aZpEEeF6Vxje4+HtFpYdfW/YXK/aWzrFuxvcxWu2m8z3n38Q5GF9X191DDEYrA/6PZ32yI/5Sefj9KYvfbo9tW+IJcCKd0Qg4DRsVHh10SdAIccgkzqbUEtIT0iCJkAgLH6mHEbbE29/jVw3PA55G9XPYZfr4kvPQr6sm7fzyTIZKaduIjkHGRS1GeQhteAb/p5L0IQMtJ2NdYXvD3DzwbBuhPb3In/nAv0XPps5jeD208zRzIcExrHnQBxoj+XtXYdLPVLKYsgE91r0gjNMcrEkJLFx+aYB68xDrMaxe6VKshkFHeIubFa8tyyVTMLiM1cVocqpyARbVphVfmsN+UWclBAO4wCXtK1h9dvylM538pkI+rb698U2goiIiIiIiIiIiIiIiIiIiKiRU5EngbgYgDPDH7U/a8a+Dcifv5VABcqpX6dWyOJiKhyOgnBFAKBiP7DrAFAQgI1smBcQB9RFNdwNZ6w3ruagp6GHkmzmEtCAmScptl7jaM6PpRGUWeinPrH0LMthGhkd4yzUpU6HvswiPDXiaOgfL11FvWU6jTBIg4cyJhZkEkeBTutWgsdw5rVwWK7sgOnslZK8YpRbU5FTvIs6PTpgWXctTti5TevxpEX7YZWR7ClobClEX/W9wUrmAbvWPZ36+OkE2TSDUHS7aulz6V0eQbtjApR0NklVkEm8SuudQReQt5cuyc0SqfYNCv1Q56BVRedjvve8Vl0ts7PA5vLFT52WgudhN0e9B/dQBzPTT/XdJYvT1ym/sTdZ7fneED6rL8FigrpatVa2JrRuoKQEZ3r+twcxnCsmpkLMklYsOMnhxl1ty0284iB7ae6NBqGd8j4OFa86tm47yPfWfA7t97Gdv/3PSkaE7bBDIJMdNdRmSCT4Z7r6OxvFkuPGJvDadkFBkfWMvpS5ttkjklqy8aW4e5H7o4efxQw3cw4aKssZQde59XpCgzsyExFmpGVyn7XUtFmkZlh/j8yWwBMhPz8vqIbQkRERERERERERERERERERLQYicjeAN4F4K+DH3X/qxtgci2ANyqlbsitkUREVFm+in9S9WyxrElJfo7l+4Y380pUkIlnGGRi+JTwzOkGB4QEmUgrw5ALXwGdDKo0M9qf408wDGCoOLEs2pNGFfdDUTEeCWz3acQ5J6K035nxU60tpQnwEBE4Y2aF7EmF9DbGamN9xfV6+pcvqtjblIKyezp6CcUrRkXcFiEMlaVzTYoYSzY3FTa7en235sxfo8V0/w30B0/0yk9sxwelE2TSDdHS7atZBEtYUTArujI4NlGr1Soezy3IJH6Zdk93URxYMwAAIABJREFUH6sXF2QCAGPnvhI7vuQ0bP7YJVAbN8Hbc3c0T34JNl36XGBT/GuDfao71veeb7bcnXdBbbyNmc1RfVdh/NWvBpBfkElRheFjtTE8ltGmZrqHqKNxXZ+bbxl+NghCUvyE00j5vv6U1CKobcEr0oS9WcxZJ996EeB6eOiT12Bm02w/Hd+ljmUXvwXevvvZtyVMmnlJkFej25+rWsA7ZLT2N3d19ZkcI4tzJ+gn6T6JYUT60sI3ob1fOG4BmJ2vtbwWHus8Fvr7Vq1VfkhDVtvvuebfeuutuO6667JZryZ/0yZ0HtwYu4wCcN90/wR1cmoSR/31UdEvKvv4GPrud7+L2266CZ2HN+e6He+GVdrf2foPPYTOxoXnwO4774JDnvwUACV/Y5px4DMNl2EOMvkLwoNMHi26IURERERERERERERERERERESLiYjsDOAiAKcAcGAeYPJjABcopb6VZzuJiKjadIJMRExu4M/xdlzT+q6IYsemZxb8kCYoIBOa25fawttRnbHsQi6UrwA/gypNT++22av224y/vnk88vdTZ5+cvi1VYln8KM0KBplU5f5224LSqBv7jca3ioS5xBAIZNwwyMQyHCZOq9aaK0rWNRgU40o1g0xslVLgZXS+VOUkz4DOvs7geNTcnmAFw/NocPO6YQ7WIQhKI4Cge+3R3YbnDEfJjDIJRYq6JujsEpsgEy8hyKQN1BKmab2hURONsDKgfMnkJCZe/4b+n2mMPUGf1+1HfedbChOH7Y6Hvr4+9HfjOzfgPm7N7PYyCE4JU9RnkFatlVkAW9DHtK7rQTiP4Rg70w2Q8pPmZZ0OEudjwaZtAroGmy2SvL2oVWl+Pho0+aY3Y+L8N0JtfARwPThTU1brSZLFvER3HaUXuQcsmlGl2b/O+FFUWBLZMxtV0gcOFbGpygp7T7rvM02Q1YjZdbtd8Zs//wYd1T8p9cTDrtvtmsk2tK8TeR6WnjH2uuuuw8tf/vIcN5adHXbaISHIxGA+VIFu/4lPfAKXX3552c3Q8tLnvWAuyCRu31X22lzRZpGZYY4kXo/wbriy6IYQERERERERERERERERERERLQYiskpEPgLgFgCnAnAxf19r8Lzh3vs5gp+j+/NbAJyklHoqQ0yIiEgnyMSkeD/f+8QNb7f0IoJMambBD6UXyGu+b6ktLKKUVoYhF74PNTOTejW6x/GbT9wSWaBYG2+jedKLUrelUmyLXxr1bNuRgarUH1rfoh3xBkxqOooqZExT5CwikInosKBQbvYHd7w+jo5jtscGl9YNdhgWThnlBSZjUA79oDRuct+JClowKTLqC1YwPW8Htq/b363Hh45GkEmjG2SiOeB7bjlBJsp0NDYIM4h86zrZOBr9bsFrvPi21TsCz4/feLtns5P1SeM25EFnvAv6sm7fzyrIZOknP47xXRbOs+pTHay48jOZb29QUde2sfpYZvOWdjdkpK1xXQ/GVtPzIejHSWEpyvc1JmTdNtiMlwOnW6r5b4qgOPE8OEuX5RZiAiBVkf78F9IjNHcYBtzdi4/FMQ/mcWmvAaWc31lvMnQQ19wz1fkCpHSO42CvVXth+6ntMe6NY9wbx+OnHo91q9ZVI6gqqyaMSnjNglC2NC+mTHC3Uo6GI1423C8BPCPk5wwyISIiIiIiIiIiIiIiIiIiIsqQiEwD+EcAfwughflbmnpDSnr13mkpAO4E8DYA/6ZUQtU6EREtGnpBJgYrNAg9MWZ4M69EFP+1vJbRekovkNct7gt5krczMZZZM5SvgE7aKYR+//jN9jO448Q12P0/7oZS88V9XrON1Ve8N99ivRIYB/UEr2uY9edFxba4JIsgk4KKD1IHmYyZBZmIQZG/robXSCxGXtiQ/n+WPk5nrJQiL6PzZYSqa3T2dYoC80Bf0IHp+iz7u20/UirIR41Zd9MsyKT0UDhNKmQuFSlqzquzTxJCSUJXW3MBtCN/X2sLvE78tmfc+TZPNCaM25AHnT4UXOs8R+/4ZBUsIvU6Vv3wm3j005/Clq9cA9XpoHXYgRh//T9AGo255epOPqFyRV0LxmpjSMjA0TajGTICYD44yHBMnOmGpCS2ueMDfsJnj2AdFnPGBYdHgoxpCznMr7KVQQcZoalDpAq9RwbHLEJprhkGLy3qc64J4+C6UAvfmO5ao0IPF7NlY8uwbGxZ2c0Ikc2xsv3+rvJMvl+qQjDNCMr/+m23fs4rRsMwB5n8D4BXhfz8iUU3hIiIiIiIiIiIiIiIiIiIiGhUicj5AN4AYBoLA0yA/ruPBn9+H4B3AfhXpdRMnu0kIqLhoxNkYnRvco73tRrfKF4Lvz2zVTMLftAtmsyL7hPCpbawaFPGsgsyga8Av5Pd+jT85ZwXYO3/eRI2vf/D8Lc8itquazHxhvMh42bhC0PBsoAxKCavlKrc364bAqSrgrUqaYoJBAJnatLsRTkU2tacmnGQyWBR2bCEJOgqo0hE91oD5BNoUxbRGScyKE6sOfPXaK1t9hqYiOn2d+sQBJ3MslY3yESzr3puSXMp07pWk2MT8dZ1drtxHwAgCeEntY5gbFv8xrd58ztkujVt3IY86ARyBX1ed05ed7MLFhHHwdhZZ2PsrLMjl6l52QSnDCrqM8h4Pbt5dRCWo3NdF7fbXw3DyNrdxf2kAM2OQtIgMDdO2hQkD55uKa4VUQGclZHBdZAFsMXSmQPMBpfR6LA/x0yCQMKWLOWzS9bbTLO6FOGiZC7Vsc+q24zqMTf5/MjLurVSr762x43HeyQMc5DJ1wBsAxB88g7id58mIlNKqUdKaxkRERERERERERERERERERHR6LgY8/dlRAWYoOd3AuAvAN4H4ENKqc25t5CIiIaSn1CtqlNc2CvXBzKarjyiSHSsbhbuUdTT0CPpFo7VFhZtyuREZs1QvgJm2ulWklRwOKDu1uHtsQ5LLv3XdNsdAtZP8W00sm1IBrI9Zexv8TcJZhh4YfiPDVZX1JOqnRRPAhYRyOSU2WtyePKw53roOGbHeXD/lh04lbVSrjtGoWUjVMWi0aejxhKBaBd+ur1zEsMgmMHrg25/dyzTl3QKm6U5Gwqn21drbj5BD5lLCAvpFfnWdfaJTZBJzcNs6U646UcdeH78tje25uf9082KBJlo9NPgHNDt+0X3t4abz1ysqMLwicYElOEcPUoQYKJzXZ8LxTKcA7e7YSl+QtdRvp88jQw2bTEPHzzVrefygF2QSpEyuO4PXZDJkM91dPa3SXgFlWVIQgWG+3SZleaczyDsibKX63Wn6tdtTQv2UVWSzBex0v8fRKSqtotMDO3IpZTaCOArWNgTPQBHF98iIiIiIiIiIiIiIiIiIiIiopHWG1QiAz8Pgk4eA/BeALsopd7FEBMiIorjK40gE6N7VXMshnENb5p1w4sdx2pmQSbBU+BLo3mDvNQXFm06GQaZQAHK76Raheltz81aM9X2hophYfssBfGGO8ChuTq+Vyw/9UD7ldsWFEUGmZisr5jCQNOwqV4CgUxOmr3IoMhff5XeXOGzrsG96zolj9MZK6V4xaQYa0QKtwAAfvw8CED0WGJwmGpOzzXaNMTCMrjHuh9p7JK5IBPNndD3/itMmRybyCATjZdaXPOlFt+2ZZuS17mxOT96TjXMgqzyonNtDebi2kEmBfe3urswTDALrkXgjY3x+jgSMnD0ddejdV3vngdieA2fCYJMktrs+8nBTN1x0iqobXD7afZhQcfaWor55twqWABbKJ05gE5wGQ2RFJ8fTEI4swq+qppUn79G6bPREEh1Pcnqc/aohteY7J8R3QVl43yJ8jTc/wcBeA+AUwZ+JgDeLCL/rjizJSIiIiIiIiIiIiIiIiIiIspK2F1MQYCJAvB1AG8HcA+ASRExrEysDqXUXWW3gYhoMUi6xc8RByL64RW51l4brlwiCsLGG+NG6ym9QF63cKy2sIhSprIrUlW+AjrpgkxM5VUYWkU2T3GXihYRTTx1rfayrSeuxWN/vDP69ycca98Q24KiqLHG4BiZFIOl4aR4nqYjDpzpaaPXRI2radTcGpQAHVFwNXfc4GJpAl1yZXmKllK8YjIGVfYpweaUznUtYiwxOU691zPjgvmB/a07L7E9L5Sf3HFlrBtkotkXyppLmZ5LJmNc5FuX4OuZGJ75/pBGfDjHsk3J69zUmE+pWTK2xLgNedC5jgX9rObqBZQUPX9sevkE76W5xpuYbGT/1WHb0RhHgrHQcEwMQlKSgkyUTlDVXGMsrmuDL0lT1Fz1IvgMrvuVnauNKJ3rnyooeJFSMDr1ypufl/HZpW+bmWx+4Up0P9NbhWGRvTQ5Jlm1oeeYn3322Tj77LOzWrMW9eij2Hpr9PdogdtXzxitt5RA1RQ+97nP4bMf/hC2/f7+3LYhUGjst057+c4f78XMH/+SW3vSsj7EQ9Y3KNxQB5kopX4hIpcBeBn6n+6zDsDZAD5eYvOIiIiIiIiIiIiIiIiIiIiIRp30/Pc53T/DTmHI76khIhoWPuILvFxxAccgvCLH+1qNiwOigkzqQxZkollUK97CS6czmWFhoq+AdjvdOgyDN5q1fApDK8nqSfDlFJ9N7DmGTb/ZEv37V7xMe13T73kHNh72ErQfXdh/p/Zfitozj7BqIwD7G+0jXiclDwVhbAJw5l4rApk0DDtysy/SCgrTOw7gal5uBovKPGe0PjqUUUAkJgXGo1Ssp3Ndy+CJ2zWvJ4DBMBBo8DzX7e/WRaUalxZpmgWZDMs5OjuXCsphkhaO+LHOSy1CoaQWvw8ntyaflxtb8/P+Za1lxm3Ig064gdu9ANccvSCTvvOtAHkFmRT1GWSyOZl5AFtH5zIRbNPgfXZEwXeCbSQMVh0FJD2XO2iDTbjQwNic5tqdR1BcljKZlyyC+tcqxYLoHDM+t37EpDjHTHpCUYGdhUszzo3SZ6NRl9Xn7LKPeV7fFwxjuGne7TBefbr25P9dUEWOG5ViFK5WrwNwb8+/g29vPiAiB5TTJCIiIiIiIiIiIiIiIiIiIqJFR0boDxERFSCpeMURx+ye4DxHcNNC4oiCtLHamNlqyi6+1b1Bvr7w6fMyvSSzZijf8MnmGai7C9/TqLIqai7pDuSpc1+CqHKn5iqgfviR2utyd9wZj7v8PRhbO3+eidPBksPWYPl/fD7d040td1BU4YAYhHgUVeDlpLwNXZYsNVs+hyCTYIxNLEjuMfgE+dIDpzJWxlPNTa6xw/ak5lid5PScqHHI5DgFgT0AjIr2ZzfUvx3d/u5Yjp9adc1js3Mp3TGo7/1XmED0Q8KiDr/O+RESPpe4uUb6fbixOT+PWzKW3RwxDZ3xJOjznqu334qeuzdqjVzWqxPykoWJxkT2QSauQVm8wfVnpme9fsLLlO8nV+d3+59RmNfcawf+nSb0Kof5VaYyCPQqZW6ziGkFmVQqeoVSK2h+HtZrSvlskPUm06yv7FCLRSbV9SSjfpPqe6os5LV9g/lQda7rVWlHV8WaQ9RrOOJlYyilHhaREwB8D0AQJ6oAjAP4bxF5hlLq1tIaSERERERERERERERERERERLQ4jMIdyLzVi4ioQEnFK6bF4bnWLxiuXCKKGCcbk0brCZ4CXxbdohAJCTJxpqaza4hSQLudahWm/aNZy+cJ95XkWpw8usXWGWuddiZW/OJXuP/T10P58+dHY6mP1V/9DMSwQLt+2DPxuJ9ci/avfwm1eRPcHXaCs3p1+oZmUHTZS1yB/nS7mGNjG1QAzBaeyMQE5p9fqcEicCdJEHDQMXkrA80tPXAqY0UVr/cxGaDLLtzKUkcjoCuD99sXzGU6Ng1svuboBVpYBx1p7BJpzQaZ6M5RdNtcNpHZkjydETzyrWscX4kI24t9TT3dPtzqKcx0h0qlFOpeNcLidMa7oJ/p9iPdwJOstLxWLust6low1ZzKfNbSMRnmDOYW7Z5F/aTd4+cTpjJn8CVpPgjnML/KVAYf8kVkyL60zv6LjSKDQ3TmAEmhtjRs7PusUZjVqP6fmzTj3Ch9Nhp5mSWZZLMeW7kFmRjsn6qMBVVpR0BjH8YtUZ2AmAGjFGa7iI3EN6dKqR+LyMkAvgQg+FZDAVgB4EYROU8p9ZnSGkhEREREREREREREREREREQ0+ob9biLeQU1EVDBf+bFXD9dxFxTQxsrxSiSmT6quhRc7TjQnjFZjGuaSOd0b1EOCTGTp0syaoXwAnU66lRj2j4aXzxPuK8niSexl1k5M/dM/Y/xVG7Dp/34Eaus21PfdG62/OSfVk2m9vZ6YYQsB2BYyRxWzug6AlOdAxtIUOYsIxHEgjt8XSBP7Govi+yRBYXrb0f8oMLjkqAWZlPJUc5Mi7oxDgsqkfI1zOmJ8NjlOvX1UTEPiBsZV3XmJbT/SqWuWsW6QieaFvay5lGkhmIjMhoRpJZlErUPjpYaBXwAgjXTBIxub8wk1VSpe17mOBQX5OgElZby3sfpYLust6rwZq43Bz+DruP/ed/Pc39uu/vrEYC7Tu14/KdDP9xPDTObGSYv56+AYKymujWnmz4XIIsgE2QaZjNfGsXlmc+TvrcO8AkM+1dGZAxQZrEIFsOyzyiTUEuFTpDIK73u3mUlPDjlndNdr/F0llSerrlp2AFlG3xcsOHeN1luVC2VV2hFI2Z68307VdhcVamS+OVVKXS0iRwP4KoBJzF6zFYAJAJ8SkZMA/JNS6voSm0lERERERERERERERERERERERERESC5eccU1K4TN84ZY0xu1I24sn2pMGa2mqKehRzdAb/sSFmSyJLsgEygF5fvJy8WvxGjpVi2fJ9xXkU0BY9kPxHR33BnT739/uY2IYR8GEf46cQ0KvAo6NmmKNIP9I66aDSrSeU0OBTs1dzbIpGPwVgZHktIDpzJWSjGgyRg0SvtbI6DLpMg+jFIKTu/+NS12HOgOusE91vMXnSCT7pxDd5wNzvOqc+BARDPHJCq0QGef1IoPMtnUE2QiRV2kNJj0U51+VEYQVF7z1aI+gziOkzrQ4DHPx1VPng+VMLmmm4RjzfSs1094mfJV8vtKEWSyYAqWJoyk7ILoJFkEmWR8bi5pLYkNMml6zUy3N2x09ncZ800yZJQpYH88Ta4AIxt/k2aMqnoY1YhJdT3J6lpU9jHPa/tV+f7fRNlfjA5KnWNS0SSTqu1nsjJSVyul1HcB7A/gJ5jv2UE82zEAviciPxaRC0TkmSKyeP4vExEREREREREREREREREREVE6asT/EBFR0RJGX1dco7sc87yv1TToIargfrIxabSe0gvkdQvbvIVFsTIxgcwusT6AmXY269LUcBuFbq9UnkU/G6k7kHNgW9wRUVArBseoqBrxyEJ6DUEIitEQl8PTpoPCdN9k1ZbBDsOijEJ8o/NlhIpYZCo53MxZuV34a22LgEwL1gf2t24oiG37lMG0YdSCTEQEEM0dEPXWdYrHLa750kw3J9rYG2RSmcpDvbCOjpoNHKo51exHY7WxXNZb5GcQk08Lrcf3t+vB8Q7effzDWL9q/nOCUZCJwZjYdudbmrgNXyW/se6pIDbzm8FzPVUR/OIIMhEnu69+l7aWwpOI+Z8CdliyQ2bb0ladoRXTzenEZVZMrCigJVSUVNd2o8CUkB+NxGeDFO+h6mFUi1T4OZFRXy25z+d2zhl9h1aR874izZhXuQYRzRnqb05F5DsRv9o28O8gzASYDTp5cvfvHRF5EMBDAB4EsDXzRi6klFJ/VcB2iIiIiIiIiIiIiIiIiIiIiIiIiCor6SnVswV0FXkio2nBfkiwB6BX1NOr9CATzRvJpb6wwFUcB+L4UH7696AUAN9PXC6W4SHM6wn3VWQa1DP7mhwaMkpsQz4iikJMilyLSuhzUqTZBMUvYjA82BTfJwkCDtoGxa2DSzLIJJON6i+aQ6BNWeqHHwnHuwh+O6oPKYy/+tXpNjLYYQ2LHQevD7r9XScgIpRBEpNu0WxZQSYCSZzr9i0voj9XiTpndHZ7xBw1dnMpg0w2Nef3w9AFmfjdIJOKBuKM1fMJMklzjTdlMm9Z89PvYut/XYmZX/wSr9vwJXxvt02YGejSHZPACoOxqjfIxE8IHVK+rxFkEiSZ2MzDJfbfRqp+Xc1oXuItm8TM/Zuifz+hf46LCJ6w4glYf/96POY/NjeuuXCxw9IdUPfqqdpanVHSjuu4cODAR8TndwWM18eLbRTlK0WnNbkGVCWJPvO5TNg4p7uJsr8zJH2Z5ZgM+1Uigsn7qsw+MG+HIL+xLO1uqdLntD6VOd6UxrB/c/osxJ+7vb1U9fws+LkHYGX3TxHzmTzHGiIiIiIiIiIiIiIiIiIiIqI83AXe70BERDlIKu70HM+srivPG1tNC7wiCoXHG2YFO6UXyOsGXDTCi7UcV6GTMn8EAKAA1S0ktWXaPVr1xRNkYvMU31QFk4uBbRF/1Os8gyCTgg6NYxGAE5gLMqkZNDaHp03XnNmi1Y7BW/EHmlx64FQE2yKUIovX55hcY0eoiEU8D2O7T2PTrzeH/r652oH7uDXhr9XcD4NzLTHtrwNjvW6Yg22BnTKYM+huo6rn6CAR0e7eUZcKnX0iNYsgk0a6IJONzfkD65okWOVMK8hEzc4/G166fZCXicZELut1c7jmRjGdtzSOfx4axz8PN3zgK5gJGTO0runBuWIQkjbTs6iftA1f42vU4H27FuPl4EtSzMulwGNtI6uCbWe7ZZAHNkJFdDhnu6VG6/McD7uv3B3b2tuwtb0VruNmFyw0AlOdx08/Hnf+5c7Q+ejKiZWjW4i/WBV0PMNO31IK77PeZMj+0/2fcaMU8jgMUvU3jnuxjK4LVdmVVu1Q+i80XX/KPpb7tbkqx41KMexBJgGdbhwsE3Utz/tU4A09RERERERERERERERERERENHSUUjuV3QYiIlqcXMc1ugnXNjdAb+WGtxhGPO3ecRwoX2mHQJRdfCuaQQVSDy/uFA/ATPp2KAWgnS7IxJTnjsottsmsil9YLxPPNuQjYqypYpGpTgF4lKBAwjEIaJGIcTWNmhcEmRjc5j1wiEoPnMpYOYWlBttMEaBTRcs//wlsPfiFmNnS34/cWhurPndJ9hs0KNoHsGBM0u3v9uODwbxPc9m6Gx62ljeBJIb29XLg6L/9qPNU5/z19MJo+lbbahq/ptem3iCTCgXLaAWZdIP06k45/SjJRD2fIJM01/j86J1PbaNruv77bLvz6x0MNVvAVxrnYzfUzWaON7juNNfGCs4x+2R03ZfWGLzHLcPMPQ8t+J23bAzO0mVW6617ddS9rMcH87lY1QoWp1vTeLz/eNy78V74mL8GrBhbgVWTq0psGeXD/vND2hDOUoJMspbmLVRoXkVkIt25W5Xz3jKMLreLdlX2S5Sqt4/yNCrfnIadvlE9u/fnKuLvRERERERERERERERERERERERERJQjBRV747Irrlk4SY73w5oGPcQFgCS9715VKvaMFRlkktFBUQD8kEeum+D90tEsCgR1w3gWrYz3jxgEfigp5pboNEXOTjcJR2oOtG/hNg1g0FBzZwv62wZvZbC1oxZ6VEaQibgmT18erbHHXfN4bP+jr+CRC96MLT+6FQpA60lrMf2ui+Dt9oTI11kXfhnOKwbH+pqjF4JhOz4og+FLdxvBeV44w0MkItrdO/Kta1x7pGY+ZkmrZfyaXht7gkw8qc6YqdOH/O78s2YRAFOEsfpYLustMsjEdlSPCgrqGDTdJERkpme9fsJcS/kq+doW/DqDeXiqeXkOQXGZyvC6765cBWdiEp177oVqdwDHgbt6BZyp6cy2QfOWjS/DsvFlaPttCASOOCUF5lHubI+r4cfW0HF/FLpUmvOi6mFUoyZV9sYodNYMhewO7YyPquzKqrQjoNOemB1c2Wt0VdtFRir+iUObbW8sshczKIWIiIiIiIiIiIiIiIiIiIiIiIhIk+d4RmEAud5wa1RgFn+7oBg8craaT0NfSGrhxZ1OLZtjohSgOp1M1kUhLAoYjYIHFiFx7G7RjhzHDArPi7phOc34FLxPqXsAZvReY1F8nyQIOPAd/b02GBTjWR7rqiqleMWgL8UFhQ0r93FrsPSyT2KpwWu0g0wGu7ZpsfvA8rrBPbbjQ2MJsPUhvWV1+6pu+ErWTMNmRES/uiXqOOokwdhc85tN49f06g0yKet4hNHppx01O/+su/W8m2NlsjGZy3oLDVO0vO6oiP7eNrimm4yJbXd+vX5S1/EVkNCOuTHM5ro22O4U10apenBmxvMSGRuDt9uuma5zKJRY0Thqc+VFQ7QjBVKdp1GhVKHLhgYflBDCmPE2w9anvVcYZFKoNMeeWQwaRIWf6AuWq8jOrEo7AhrtKbXFFdtdVKxR+SZPDcEfIiIiIiIiIiIiIiIiIiIiIiIiIupKKljwHM/spuAcb4g1KpxOeEK3iaEp+okIMpF6RkUVSoCUQSZVu7+8SsTNoICS+tnun4jXiad/LhlkJaXipCma7Z6QTsNgjDPYB7qCwvSOwVsZHOGHZpzW5JRRXmAyBo1gkIkN28AZ44L1gTEpCP9JfpndcVpy9l/H/n58t8bc33ULCXXDV8omEP25StSCGlPQqPC52NeMjxm/ptem5nzDdPtQEYyCTLxqBplMNaa0losK/YhSaJiibscf+IwV9VkyMWSkl8H40Btk0kloslJ6uUIArK5rC3ZZmnl5DvOrTC3GD3GL8C3TIjbk/T2Tb/9SjHOlhFCSJR6r7FRlX1alHYGqtWeQZfs4zo2EUfkmT4bkDxERERERERERERERERERERERERFp8BzP7F7VPIMVDNadtKTJEzwLfRp6CuKFFwE6GQWZKAXA99OthHdxRrMoYLQKP1lMbMMWIga9KgaZpBGMg1LXLyCOGmfSqDmzBfVtx6AEbWD/BusYFWUUw4loCLdeAAAgAElEQVRJwTyDTIwsmHMYjveD/SEI/0liG4LQesFJECc6uGzsiKdGti1KWeeo6RPbHXG05yoSNS/1NcYymyCTVsv4Nb02NufncLp9qAg6gVwdf7Y/VnWsn2hO6C1oWGld5GcQx3KSHhVkYnRNN/iMN9OzSxLDUnyNJJPuGJZFoGCqa3fVP28uyvDExfieaailGINMLk9hn3NLD/LIYvNh70FnvRmGKJMe3fl96HJl99VRUpVdWbVjWrHmEPUajnjZaP+DjMLLiIiIiIiIiIiIiIiIiIiIiIiIiKhACTfYuo7bLVzSu00wsqgzC/8/e/cdL0V19w/8c2bbLdx76YKPSLUXFCViLzGJisZYEJ4IqImIXRSJscRCDGpMbFF5LKHY8IdREyWoqBB7C2BFwEoRFRGFeyn33t2d3x9wYe/emZ1zZqec2f28Xy+fPDCzM2ennDmzzPczKgVmDs0whIEs5EI54iLaj3mKVBxAuvgFmQJm2r6wWa4xxTejVImYmyATbtCCXBbx2xZCKIR4BPlgtWmarorHWkIORIVCQbsPQSbJ+Kb1ZxR2V/72jcei3U/nC6UYUOkay74HUA/J2EK1YD0v6CFuyB3vboNMYn37oeulx+PbP89oM63dTpWo+eP1W/4se6y2nOdBUz2XhBDyBfs285lOwQlwec2vqlL+TK7cIJNULFXUsrzUqaqT4zy1FbUAgFRcn3bnqk3VSs1nwlTqN4wA35nt9T2cyjVdSPZpAJCObT2/sk7F41nTeUDW8r3dBHTlb7NiAgZd9AmB4nWfSH8BnadW3arrMXERPF+ny+3H3jEEshvdaj7usFaKOo90GRu4aYb8P3OoL1+X7WLHbfN0/14kJdK/nJqmeVjYbSAiIiIiIiIiIiIiIiIiIiIiIiIi78WNuFphm4/PtQqlArPCTyQbkA8yCfJt6H4wUgkAG4tejmkCyBYXZJJ7eMQRl94HZSHu4jgrpmCyHLgtyrV5QF8kI/3IdxstBf6iIiH/GR+CTFpCSJSCTPJrh0W0++l8YRQDKl3A2fcA2HwOuUktUi1Yz+vLkjG5UBC3QSYA0G7cZUjsugt+nHAnmletg0gYqD3pcLT7/eWtxmOyQQthhQ2pnksCQjoDy3Z8LBFkgoR8v7tlfVXVyp/J1ZATZFIRryhqWV664KAL8PBHD9uGzmSzWQzdaygA+WM/aBUJf7ZnkOeN29AUu+AelWu6yngtnbPcrMPHTNN07gFaZnBxv9fmmC0iDMZNuFGgirielBO+IZ5CVUSRef69lfq6i/y8Duu02H5S5zRr+yOGO8w7emxLv387UV+6HtuFyEpp/apNRERERERERERERERERERERERERJHg9MBvIpZQK8ry8w19KkEmDs2IGTGkkZZaVFjFt14RFR4VfZoCyBYZPJKzX0bsNQJTP5hqO2sF9CmyDYKbAkbBMIHCPC66VAnxyIrolDIaFSn5mV0U38swTRMZw/02i3o/na+YAArXYirXevY9gPuiKdX+XuRtb9njvdjjKDX4l9hm8C8LzmMXPqEL5SATIRTe8m4XZCLx0WQYQSZbG5aKK/T7Puta2xUVogKNaLScXhevQ1WqCoB/gSHFMmTvURQvc27DRdyQ/Q75R71p86XSMYUvq3ANz11u1qnJWUgEC20OdXMTKJh3j6wWupm/LL2DTHTv64lKVgCnnupYySr0JJwQRo+57edK4KtHTVHHG69nzgTkxqy6bEpd2tGimFCpQCLRdNtgFCT+kkdEREREREREREREREREREREREREwZMI/FB5CNf27fReUAhtcGpyTMgXi8U0LyxzIlJeBQ8ImOmMR8sCTt3nVNu3uAPAbl1282xdkcAgE++5LSi16UCESohHBGoDWgqAhEKQiUj4FxiSUdhd2bztm4j5E7ASljAKhlUKsNn3bCJbRNdmPtX+Pi9kJhmXCygLIhBH5lgtdK33neKpZMCQPv/sxrxm1vn7Kl1PWj7Trp3yZ3LVV2wNo6tKVBW1LK9NHTIV2UzbsDwzY2Lar6dt+XMy5lE4X0hUC2+DvAeRDmORlH+dLrxy+ZnTOaFnGYfQOJm+Z8vp7uL7t7luFrMN3QSpBMnPe3xdleFXJv0oHYZFFc8XN295B5mUwHcvJ9xdHtJlY+rSjs00a04bbtvHvq4k8Jc8IiIiIiIiIiIiIiIiIiIiIiIiItJOwkiohZP4WOQklIr5CpdixIV8MX6Qb0P3g3dBJgCam4v7fM7h0bdzXxzX7zjL2eLZOP5+yt+LW1fUuAgyQTzax6bfXIdB2H0uKd9vhFi2L61l+4jqSvnPxH0KMjGBjCG/1fLnTBh6Bpm4LeoLpRhQqQCbRSxAEX2Man+ft29kwxx0CTIJk+oYTgghX91jN+aVCW5JqAdyiOpq5c+0WJ/MIpNz2OkWZDKw50A8eeqT6FvTF0bGgJExsHP7nTHz9JnYpdsuW+ZLxeWDt0qB1+EihcQVQh5z2b05XuaaLlrGVTH5sUVzTjOzTpvHlDgdW/owN9s6v/8rYn+p3eeGQe++3h8uvnM5bibSRzFjMpWPWs0bwrHv+f2Sy+2n+VC4JBW17z3YYfG60hmPFrMttbkPdNMOtZQoxWVrsl08ps3+pqL4F01NRERERERERERERERERERERERERGQhnUk7Pogaj8WVwkl8fa5VJSTFYda4EQfavvjdel6F4jodiZR3b683m9LFLSDvALn9hNvR7YVumDp/KhqzjRAQ2L3z7rj9V7ejprKmuHVFjHARZOLmM2XFZeiGXb8o4vJhGVHYMy0F/kaVfJAJEv4EhpgwkS4iRyPq/XS+UIpEVAqwfQwtK0VtCsRUi93zjgfZ4J4gQhCiHvaWTwghH+BnG2QisZ6kel8qqtspf6ZFQ6r1oLcqqVeQCQDstd1emDV6VsF5knHvxrRhUC0WDSKMqEVMNkgj7yuYpml539UcA76vzqDTOvvl1p57+qZFKlzz0rGtJ1jW4WOmzL1eS6ibm/4y1roBSuGf+eKajxx53fdEKEF1VDaKuX9QCeG0mrckjm3L7SczqPO8JeREcptbHpdF3mcLAEanTkUtQyvFBBNF+NgXUOj3lL+n7htG9/aRn0rrl1MiIiIiIiIiIiIiIiIiIiIiIiIi0t7G9EbHeRKxhFphl59FTgoFXk6tSMQSgGQmR9yI9mOe3gaZNBX1eauagcuPvByXH3l5UcstCW4CImKlVUDuObdF/DafEyn5fdTR1H/ftBS7iUr5IBPhU5AJAGQM+RI6M6/sRDbYISpCCYdQKepiiBIA90WbQjYwoGX+vL5eNswhiBAE3d/MbAhDqTrXEIb0WNZ2fGxKrDChPjYT7dwHmdRXtm5TdbLa9bLClIqnwm5CoIK8B4lL90uSJ5QA3t++EYd/bB2aY8QySA0+bvMf5PuqdE4zs8KhLaYpdz4Crq5rbfqAYq6NiteFwAUYqkNEuZTK7UMTSpBJzio92UIWY1pT5mtpPhYuRcUdb8Xtr3iXGhi1tUUtQ3fyvY4mx75u56Bu7SHKwRE9EREREREREREREREREREREREREQWqOdPsOE/ciKs9hOtjkIlQKaByaIZK0bvhNgxBEyLlXdGn2ex8zBTE57ltCRdvYnfzmbLitoDA7nMKIR6Bxmq4rNzaEmTSTqGg3a9jzgQyCovOLypLxEoryCSUcAilax07c0B+P7UptlM9j/L2jewYRpsgkxDrb1ULHYUQ8teOmPV8MrkJIqneZ20az7nbmPUV2VZ/ZpBJOFSPxyDvQWIugzTyg8Vy/f3QetRXWCdHdrngmK33KHH5wJbm2Nb1ZZ02jwnnU6blfHezrfP7imLug3Uf0/sZVqqrMvzKpKGAjkOpwI4t81p0rKHkmHi7Urf3X7qH+lEehd2V7LkN4rUpxKriiNckkdyxB2L/8z/+tU0bkhtJl2PfVTt8bHsxiw7ivlmT3UbhiPa/cBERERERERERERERERERERERERFR5DSmGx3nSRgJ20JNK7Zvp/eCyluuHZqcjCWlFmPKvsVbYyIl912lNFsXI0qL/ub0j5s3wete9Bg2t/2RTSGESuF5FAqaWkIORLV8QbtQCHNRlbEqipPEIBMP1hmTP1+Ei/6qFMkWULbZnzH5ov3NC2j1x2Rc7roeE/7vJ6+LSL2mei4JCAjJgn3bMa/M2DHpbmwmjKzzTBYa8oJMalI1rpYTtlSsfIJMgr4HSRiK/ZKElXUZ3DLSQFXvrdfoRE0G24w9Gu2uvGrrjArnadrICTJx+JjUJmw53xWugVvk3SMXc20ULoNkgqN3X+8P9e/MW10KS5BnqNVxrvt40FcRuO+nrVTuDUQqhXif3kjs2A/xvn1gVOkVBBivKXw/saom47gMy3M3aoe0m3PQ1xwT3Teg7u0jP3l/x0dEREREREREREREREREREREREREVIBUkEksoRZO4ufzsAqBKk5ki4BLgais8GxZZlOzZ8ui1oTC2+i3iPNdigV5HKwkXBae66qliMeoaSf/IZ+CTAQEMgq7K/+t4THtC4DVtITMBLtShXVKBj2UOteBM4rF7vkhM7LBPUEcRzLrMEMs7VYtJDOEIX98280n8XXdXk+EYcJ0kWVSnxdkUltR62r9YatMVIbdhKLoHHKWiMcBON8b5jNNs+D939c9qtD97eeR/fFHwMxC1NS2HfMqjIHTOd2n47ghi81pJvYNbOkj3ASJtLlHLmb/ah5OKBvwRERlwCr3QOPrmwy71kuNYNk/Bq6ooAiVY1XzfWt0aA/Ur7Sdvj7l8z1YxM97aapfs1y2C0USg0yIiIiIiIiIiIiIiIiIiIiIiIiIKFDNaedQimQsqfTwtlLoiSKVt1w7PTcc9Te6qxAVHgaZNKc9WxblSag/Tuwq/KSMuO6PbDoQoRLiEWDtggnTVTHPluLdavkgE5HwL8wlrVDDm1+SIxvsEBWhFAOqFHH7eK2PEtnzLn8+lfEMgDbbOxWXG8MYAewn3QtXVdsnhJAv2Lfbvg7BCQAAl32p22yahorWvWZNqsbdgkIW9SBCnd/QnjAkr6OKX2FLaFr79vbzKPRVzbGtx3JWFC7QNU04V6G3fB83QSL5/UusiD43pvmYPoyANSJSUHxggSkAh27VozV5Q5drqu5j4ZIkucktjxGl/aX3vjU6dkR8zVqk12xsM+2Hmiwa4y7PVtmvrcuxr0s7WujWnnwumqf5NyIFHNETERERERERERERERERERERERERUaAaM85v3Y7H4moFy36+sVKlHV4FmehSpVEEo5JBJlEgXBQwCs3f3h5Zdv1YhUIAUgSe9Dc2F6WKWoWC9qR/gSEZmcq5zcy87atrkInbArswCvOUgn8YZAJAvnCxzXyq/X1enyQdZBJA4bkuRaR2VLeBAUN6LCtsQgtMia5MJF0Gmbi87NdXZFv9uX2lfaiEzuK6hz04COKcdCspeR3NPztMh5sl+QJvuTFAbuhZ1mnRpsRSW9qnGjAFtAkusesTZIi4nuOYLfy8x9dVGX5lirAgQzStsiHCPmGKXn0RP/yVY/8YMunjzXI2hf2leyAFgFivnkhs1wlGSsCIA7GUQLJHF6ytkRvXFHXu6rJ93LRDk6bnC70vpZIX7btpIiIiIiIiIiIiIiIiIiIiIiIiIoqcxrRzkEnCSMi/mR7wt7hZpcDMockVCe/CPbRXWenZohhk4iM3oSQJPoLszIRylYJNIYTbwnNdtRQXG3V18p9J+FNoKyCQUbh85BfQJWOltW9CKXZXuNYrhZ6UMNlCozbzKRbMi7z5ZYN7Ym5TLxTo/hZ61WIwYQj5ca/dfKbEdSepEIyVo9yDTKJO6XwJOEwxKRmQpMrw+L3f6djWDZN1WLRpwnk7bt4lbq5rbT5TzLVb93DCIvr6EsgFJQpPkAElRawulPGgl6u0W5bMOnhfFC0qv29rfp8DbDr3Yp27INa5S+sJK1dJLsD7NpU97Y8b3dtHfuK/IvhECLENgJ2sppmm+XLAzSEiIiIiIiIiIiIiIiIiIiIiIiLSRlO6yXGeZDyp9GC+UuiJIpUCM6fnhivickEmTm8ZjwKjyrsgE6QzRX3cjP7m9E9M/XHi/OJ28ohNIapQKjzXvzigpbhYtKuV/5CPYS6ZmHwHkT+nbLBDVIRSDKhShBdG0IqGZPdTm/lUCx7zPp+KyfVFQQTiSIUUhHjtVz2XBIR0gaPtuFTi+7oNxhJxd31DQ16QSV2lfIAVyalEJTZgg+30pJkMJ6RKUiruU1CZ7DkozLYpZRaajZwgE+Fwspkt/6fAclva52ZMHcvbn8WMy3Uf02tflOuHcvzOpB/9jkOrnlc1OM4LQaxTagjLIJPgFbXrNQnq9llR54cQkLuh0aR/8rsdqsvXZbvYcdU8/phfKkIPMhFC3GIz6VHTNN8OtDHeOhbAvRZ/b0KD7U5ERERERERERERERET6S6fTWLZsGb7++musXLkSGzZsQGNjIxKJBKqrq7f817lzZ/Ts2ROplD9vriMiIiIiIvJac7bZcZ5kLKn2hmofg0y8fFN1ZcLDcA/Niapqz5ZlNhcXZEL2RMJFkEmitMIbfCFZGNvqI3aFByn5wnPdaxeArcFTon17+c/4GWSisM3yd2nCKK1zQSocwvOVKqwzv3i7TMkWiOXPpxxClbe9kzG589AIoPgulNAdBarBEYYwIGSPb7v5pIJM3P0bgoi5DTJp3aiOVR1dLYfsDd5pMP6x6B+20w/a/iC8tfwtbesAU5L9Sn635xT66HUfkc7pPrNOp6opnLd3S/vc9Jciv28vos91EWgYqAgXcxORHFPyvtlqFt3Hg34q5+8eluJDOnyYN6IC25Z+ctMO2bAWN3TZLjb0bh35TYc7jjGwPvs+BOBJkIkQ4hCbSYtM0/zWi3XYrdrHZRMREREREREREREREVGJ+e677/Dcc89hzpw5eOedd7Bo0SI0NTm/pRzY9LBK9+7d0bt3b/Tt2xcDBgzAwIEDsffee6OysnyK5IiIiIiIKBqa0s73OnEjDqgUTfpZ5GQoFP46NLm8gky8+65mutggE02rN3XgJpQkqcMjyOVDVFQozOxfO7zSUrRi1NbJfyjhT5CJgEDGUOkfWs8rG+wQFcLPUDDbdSpcvxXDIUqVbOFimwKxuFrfnV8cn0rIhWDEhHcBcHZ0L95ULc4TQsiPZW3mM02JvsxlEJmIuzv31lZkt/z/pmmiJlXjajlk76JDLsI/FvwDsDjtzIyJcYePwykPnSI9FHYKCPFahWS/0uYLODRTNphLtpy0ObZ1LqcANNOUWGjLMlQDpmARXOJiGVuX5X9/XRTN+3pflOFXJoqqUH9lYtCTtizvAxhk4kj6a2uyfbS7H9WtPW24CX7xvhUUDp3+FSH3sPL6Ov4fm2WOAjDJ43Xly10vTx0iIiIiIiIiIiIiIiJqxTRNPP3005g4cSJeeOEFpNNp18tZsWIFVqxYgddeew0PPPAAACAej2PXXXfFoYceiqOOOgqHHXYYqqqqvPwKROSh5uZm7L333vjoo48c5z300EPxn//8x/9GEREREfmgKeMcZJKKp+zfOG/Bz+JrEZcv8HJqR1VC8p6sBHI3RHW1Z8sqPsiE7AjFwna3nyEJNv2HSMkW+SJaTytXVmJTZ+fcaOFjkElaoYY3v2tOxN2FAuiqqDcju6VSRK0wLihlsvvJyA9+US1Yz/t83JDr+40ACivbfDfNqLZPQNheA9rMa3ceSIwdRdJdX7opyCTrOF++hrwgkyCOjXKzbd22uO+E+zD6ydHIxnL2UQa4+aibsWPXHbU+X1JxhbC2HE6BK14Xl+aOFbJCNqWkwByb94lQCcxskd8HFPNdNR/Ta1ckrCmTm4m8FuAxJfvTl9VxHkYfEcr9khXeFwWuqH2v8tEoX/si3PRA+Ll9dD9uNG8e+UunO46WcYevp6PF+oIgG9JJREREREREREREREREZeTZZ5/F2LFjsWDBAt/WkU6n8f777+P999/H3/72N6RSKRx66KG46KKLcMwxx/i2XiJy54YbbpAKMSEiIiKKusZ0o+M8yVhyS4GXFD8LI1WW7fAUpHSQSQkQVd4FmSCtXjxLktwEmSR0egRZT+4eHrYJMkkqBJnoWHWWx9hSvGtAGFmYWeciXrfF984LBjIKXXx+AZ1ssEPQBIRjkbeVUIrdFa6xSuOCEiZbtNlmPtWxUl6BpGwIRUy4KMxXJLMNwiw0VS2sNYQBIbt/iggygUowVo5NoX7FBZmwosY/R+x4BBaNW4R7Xr8Hy35chq7tuuL8g89HPLbpGhXEOelWZdJdkIkT6XNQmFLHZtrYOlPW4VQ1zU3/FV7v5v91UYiefy1UCd1sQzXgKmhled1npS+VGclD3qpb1SZUxC2b5jvmZQH+/gZK1oo53BSuZ+UQ4mX5HYXkr2gR3j5KLY/u1yRqQ6crVhCnlgn+/EFEREREREREREREREQhW7NmDYYOHYqjjz7a1xATK42NjZg1axZmzpxZ1HKmTJkCIYTtf19++aU3DS4T1157bcHtSeVh4cKFmDBhQtjNICIiIgpEOpt2nCceiysVdkkXf7qhUuDlMISvTnoY7qE50a6dZ8syMwwy8Ytw8yb2RML7hhBg2HQgFQqF5xH4GSH3tw4jJvlot09BJgICWalKMWstReKlIpTfoeyOeyt88zgA+cAZI69cZNNYSf54Fy4L3IMIxNG9cFV1GwghpI9vuzGvY3AC4Cq8DABEUv1YyMLEutTWRum+z6LOMAycc9A5mHDsBIw5bEyr61MoIVWSKuP+BJnk93/Fas4Zr2SdDmVTohC35Xrr5pzM7yuKuQ/WvRBeZYxARB6SDYMqfk3SI1PL3IMQ+ogAVilze+rrb6BkqaixLJ/38Ey0n52Rb7vyt9R+u+jePvJTaf1y6sxduDkRERERERERERERERGRRxYtWoSjjz4aX3zxRdhNISKNmKaJUaNGobGxMeymEBEREQWiKdPkOE8qllIrrIr590CsWiFv4XZUp8ooyKTKu++abXQOvymIT4/aS6gHRAgGmTgTpvpxZ1NoLJLyRb7a1y6gdQGQiANolviMj0EmaYUuPrd42ZRKDQiJy+MglKABQ2EHsGAPgPx+KrrIy2X4QUxln7qkczADoH4uGcKAkA3qsR2XOvdJboteRUJ9n65LmcjmrI5BJuFROl8CvrRJB5nkHT6mQ0Ol+z/J2XLHCs4BaBIL3dw+V4FRngWZmPoXwkdhYOu1MvzKRDKs+v0wxhZBrFNqHQGMt8kdy/0XXDZQJFhvo+h9e+WwAj+/ou7bT/Pmkb/KLciEiIiIiIiIiIiIiIiIKDQffPABfvrTn+K7774LuylEpJmJEyfi1VdfDbsZRERERIFpSjsHmSTjSfmCTsDf4maFAjOn54ark3LhHqVQ7ClqajxbVnZjBgALNfwg3LwJnkEm/rB567yoqpRfhu7FC2hdUC1kT+tUype2CCGQMeRLT0z9N29RwgiHULvW8zoAyBfoWxeImfIHskVInGmajusP4jjS/U3cqttACGF7DWgzr90542MAhUiqjxUaKrKt/qx7+EwpCyJcyK2qiipflit7vMkWoKZjW+fKyCzaMetk8/nuIsgkP3xExPXdv0Vjv0EUjgCHWbLDUqtutRR+N7OSlNkoKvdQ5Anp480yo0P2WNU4LJUsmPCvw1Rbru73x0wyKW8MMiEiIiIiIiIiIiIiIiIKwNdff43BgwdLh5gIIXDAAQfgwAMPxB577IHddtsNHTt2RG1tLWpqapDJZLB+/Xp8++23WL58ORYsWIAPPvgAb7zxBhYsWKD3G2GJqJWvvvoKl19+edjNICIiIgpUOpt2nCcVTymFk/j6NmmVAgGH53JrUt6Fe+hO1NR6tqxsI+9zfeMiyEQkGWTiD5sOJFURbDN8lltgYSQkC42TSX/aAoGM23oKjbslt0V9oRS/qFy/JYMeSp3sfio2OEK4KLAHAAP+F1YGsY5iqG57A4b8WNZuPj+DTBLqY4X6ytZBJjHp5Cryms7bvipRKXXoqvb+Xl/PmnOCTLISizazDt+qZRluQmby+wC398FC44FMi7K87pfjdyaSUFQ4hKZsml8hFWSi77W9ZBVzuMneG0T8kC6KxHeP/OZR+QKR/7JEWzHIhIiIiIiIiIiIiIiIiMhnpmli5MiRWLZsmeO8HTp0wLhx4zB8+HD06NHDdr54PI5UKoUOHTpg5513xpFHHrll2vfff49nn30WM2bMwIwZM9DQ0ODJ9yAif5x77rlYu3Zt2M0gIiIiClRzptlxnkQsYf/GeSs+vo1UqAQ9OBRStKtoV2RrokOkUvDq7ZTZNJ/g9k1CPZTEqCmfQB7XPDxkRYVCkEkETpXcAn8hGWSCZMqXtgghkI7JF/Lm1pSZOieZuFRs8IUrCkV4wk3BdwmSDaqxKu4UUMi7cFkcb/gZLreZkChudxvo4wXVwlohhPxYNm5zHvjYJcXq2gH4XukzDanWDYoLli+FJW7ou+3bJatQ78Nypc9/yTCPdM7pmZU5VbNOM2xun5t72PzrZszd/o3AkNHx3po2Kb0RKZUT2ePXar4wgky8XKfdkmKmQNZhy/C+KHhF3VuUyfWsmPvUSG4jpZvrlg+UqTL+6gTNY2iJiIiIiIiIiIiIiIiISsDUqVPxwgsvOM43atQofPLJJ7j88ssLhpg46dSpE0499VRMmzYNK1euxLRp0/Dzn/88+m8lIipB06dPx1NPPWU5rU+fPgG3hoiIiCg4TZkmx3lS8ZRaAa2fRbMKy3aqAa9N1RbZmGgRhmMVn5RsmkUafhEJ9eLHeP/+PrSktLj5FcauMF8tyET/339yf6OSDTIRLgJ3pJYLIVeQvFkphpfkCuf3Q4V1SoRXlANDsgzEMphGsmh/0wLcja1iARRWhhlSIkM1FMgwDAjJUB+7oD8/e6fk3icLZgsAACAASURBVLsrf6a+ovUYUOcwjVIXE/qOo6tS1XIz5p3yTtdjr4O5mnNCz7IS/ajpcAvUcr2VPe9bfTYm8v7s8rvq3Y0CAESR+1H3a4WlCDaZylgxx6vI+18Hpobnhm9jL1NiyS6uHxQMy2tPBH6niYaI/x7Dw4DKFINMiIiIiIiIiIiIiIiIiHzU3NyM6667ruA8QgjcfPPNuPfee9GpUydP119ZWYlhw4bhueeew+LFizFmzBi0a1c+b/8m0tkPP/yACy+80HJanz59cOmllwbcIiIiIqLgNGeaHedJxVP2b5y3YBcA4AmVt1w7PJxek6opsjHRIgxNHjLXpBlaSiTV5hdZJPYZ6E9byp1NsaZIKQSZBMhtcWhuCINISvbzqZSrdTkREEgr9FOtCuhKsF+RDcjwklIRN988DkB+zFNsIb/lvpGpqwwgNMHrkAKvqbZPQACyYQQ250G8yr/tXjF4sPJn6itbJzkkDH8CqciZSrhQ0MEPibjiOFSS9Dko+XVzMxWzMp9x6itb+nE317X8z7guZo/AQIYBZkThkAxd8OIMLaYnCv0lLkWvvogFMMgkcEUdb2Efq5pxHfYS+c2o8AVK7Zgpte9DSvT+9YaIiIiIiIiIiIiIiIgo4p566il8+eWXBee57LLLAgks6NevH2699VYsXboUw4cP9319RFTY2LFj8e2331pOu/vuu1FZWRlwi4iIiIiCk86mHedJxVNqb5f28SF+pSJrh+dy6yrqimtMxGheZ0wAREKtsDhRnYXwKVSipLh5Rt+uWFPh/jAKtQG5BUBGUub4MyHiCoFSCgxhIFOC/ZTbQvRQigFVrvVGCe4sF2T3r1Uhv9Iudrm9gwgyCb1w1YFykIkQ0tvbblza/vxTCn6uYhulJrUS320PxFLO4/dcDRWtg0ySMX8CK8hZ3PDnGuoF4dPNgtd9RG7oWVaiyWbWYYaW9imOwwGLPsDttVHvbnSToorGvWuG/iIQSkNUJKujPOjwLc/XabcomVOaQSbRovm9iw7KYguVxZckaou/5BERERERERERERERERH56KGHHio4faeddsK1114bTGM269ChAwYNGhToOomotdmzZ2Py5MmW04YNG4Zf/OIXAbeIiIiIKFjN2WbHeRKxhFIKhlLoiaq4SpBJ4aeSq1PVcospkaebA6hlpmIpBkQku1T51JBS46Kg0Kb/2BTiIbm8CBTIGDkFt6JCooBX+FecKYRQCjIx9d+8RTHCCApRKcJjwR6A4oJMlIYXFmMrU6IvCuI4ktkGYY6lVINMDBjyY1mb86DihBMhDPv0hKp9+im1qc3yt2+nNH99RetjJepBJl2TXQtOP2jbgwJqibqYoXHfKXufpXg6y56DssOmdE4zMxLjEtNpls0rVgrMbJHXV7gNe4vEkKYsr/uR2DNEnpG9v7KaT/dgO9ccLyIl/N01VtS9hez+KpPdarkteUyHJ5BNz/1bzhhkQkREREREREREREREROSTTCaDOXPmFJznvPPOQ4pvMSYqKxs2bMDo0aMtp7Vv3x633XZbwC0iIiIiCl5zxjnIpCJeoVa45GfRrEI7nJ67NgwDZrZ83pjMIBP9ibjam+ATPQsX8lIRCnQgwscwj6DlFq2IlPPx52c9iwEDaUN+2+bOWSqBU7lCeau5wvWbBXubyAaFWBfyK/QlLsMPgghNUA0KCZpq+4QQ0oEOImE9X2zb7dDlvJ9ZTkt1MtH+zjuU2pSvYk+1IJT6itahKql4tP8d5KBehYNKfrXbrwJqibq44S7oIhj+9OteX8/Ssa19Z1bm9HYMMtn8v276y/zQI7f3wVEYW2re1/vCzaHL4RF5TP6QCvfgC+XeJYB1SuSYkMYs71l5H9ua1eYoh02kchyU2vbg+KasleGInoiIiIiIiIiIiIiIiCgYH3/8MdasWWM7XQiBk08+OcAWEZEOrr32Wnz66aeW02688UZss802AbeIiIiIKHjpTLrgdNM0EY/FIWTf0A20LejykNJbriUeSjZViogjTsT41LH2FANWEzv29qkhJcbrQ182bMPQ/5zLLewxKpISH/CvzxRCyBUkbyb7xvCwuQ38CCUoRCW0TGVcUMIMyTIQ6zddy69HaRyWIxZAipnuoTaqQSaGYUDIngsF5qu5+lp0v/7XqOgmEEumEa9Io8PPe6P7C9MgamqU2pSv4vCDleZvyAsyqYhXFLX+sN0w+AbUGNbbcNf2u+KE/icE3CJ5WgeZ+BRGKX0OSnYlzblBJhKfMZ0GDC19mIt+tk1foXKv2mpB7j4WqAiMa4lKkuw4q4hTtGWcKnunZ9WthjIe9HKVNsuKdyxuzEb+KOp40/zeJWjWgUDcRq1xe1Dp0PhulIiIiIiIiIiIiIiIiCjaFi9eXHB6165d0b1794BaQ0Q6mD9/Pm655RbLafvvvz/OOuusgFtEREREFI50tnCQyRYK4STCzdusZaksW6LYSkhUwofxZlk/iHhpfI9SJuIJpfmT/ff0qSVUqJhXiNKMQBIVzkE6wscgE0MYyMiGxEC+0C6qZAMyPKVU1MX3uALyYwSj2IAAl5+P+Tkm20wmpCDMsZRqmIuAkB/3OgSeVI0+B1Wjz1Fav4zk0ccC4i7AlGtnfpBJZbzS8zYFKR6LY9aZs3D+k+fjv9/8F6YwYZgGju53NG453vr3Xl1oHWSiEmalQDVMyEkmZ3FZmXGJw/1eSzG0q3vYvL5ZuAz0jMRdWhkWfru5dpX6+JRKnDDhtkcqld/N8okOHYBVDbbTY1UMd9TR+nXr8dWyr1D/fT0+in+E9evXY+PGjUgmk6ioqEBq5Y/o1rkLunfpgk7tO4TdXF8EHfaSTqfx6aefYsmSJaivr0dDQwMqKytRU1OD7t27Y+edd0ZlpY/3IAJKF2Hdwzj9Vc7fnTS+GyUiIiIiIiIiIiIiIiKKtq+++qrgdIaY+Oubb77BvHnzsHDhQixcuBCLFi3CypUrUV9fj7Vr12LdunVIpVKorKxE586dsd1222GHHXbA3nvvjQMOOAB77LFH2F9Ba8uWLcOrr76KN998E5988gm++OILrFq1CuvWrUNTUxMqKyvRrl07bL/99ujbty8GDhyIgw8+GPvss0/ZPqSRyWRw5plnIp1uW7Qbj8dxzz33lO22ISIiovLjGGSy+SFg6TfTA0qhJ6qEwluuBd8a3YqIs+hcewm1IJPEoP19akhpcdUTFLgnlK3HjcJtZW5YhqiqcP6Aj99JQCCt0E3l1iWXYuFcKL9LqFzr4yzaA+THGjG03V5quTEWJ4dEoZZqiIcbUsdqiKeo6rlkCEM60ECEdB4YtbVIdQAaV8vNvzY/yCQR7SATAOha2xXTT5sedjOUJWJqY70gyZ4r+bOZMAteh90u10pGmMjmBplIjBtMp76yZcVuzuf866bb0KoIDGOEx4E0kRCB/ULkJdkMANMiRCqMe5cg7gFFVRVilTFkNmQs1m8i1q2r721wK5PJYMKECchk2rY912GHHYbDDjssmEZ5JHffN9Q34L9v/Bfv/fc9vD/3fXzy8Sf48YcfpZfVsa4Ou/Tphz132gUHDtgHBw3YF9t06hyJ33N8I/nd33//fTzxxBOYOXMm3n33XTQ3N9vOaxgGdthhBxx11FH45S9/icMPPzw6z2IE2MxAftuKyGYnfzDIhIiIiIiIiIiIiIiIiMgnDQ32b8oBgIoKiUINDfTq1QtLlixR+kzv3r1dr++0007DlClTlD+3du1azJo1C3PmzMGcOXPw8ccfO35mw4YN2LBhA1avXo3Fixdj9uzZW6b16NEDp5xyCs4++2z069dPuT123DwcUcwDFddccw2uvfZa15/PtXr1akyaNAmPPvoo5s6dW3DehoYGNDQ04JtvvsHbb7+NadOmAQB69uyJU089FRdccAG6devmSbui4pZbbsG8efMsp40dO5bhOURERFRWmjP2DxkDmwrTAKgVZfkYZKK0bKm62tJ5eleIbOHpcQNA4XkoZApBJkYijdj2PX1sTAlxcZoXuv+XruOMQFFG7vc0JH4f8/MrGcJAxii999i7vc4YbouhiyAb3rBpZv2P7yDkhgEVnK/I/akS5JYrphJO45LMNghzvGUoFt8bwpAfbwawfe1U7LANGt/6TmrehorWfWtVssqPJpGEuKEQyhj0eePTdUf1HCykOdb6WM7IbCLTYf0t1zOVa2DLR/PDT2IuSwOjcEllSCgRbWZ1xxbENUvlOYnrzh+D3/12tPzCbe5thBCI9+0NfPZFqzATYZiId+8Eo7bOsV1ffPEFevXqJd8Wj8yaNQtXX32143zPPvss3nzzzQBa5J3GxkbM+McMzJoxC6//53U0NTa5XtbqNWvw2vy5eG3+XEx89CEIIbDPbnvghCOPxKljLkTPnqX9u5vlb18O9/rPvfoy/jLlPrw697/S68lms1i0aBEWLVqE22+/HTvvvDMuvvhi/Pa3vw3knrWNMhjWLF68GP3798fGjRsd573m3Avx+1HnBNAqClsZRhMSERERERERERERERERBcPpTTOrVq0KqCWla/369Zg+fTpOOOEEdO3aFUOGDMHdd98tFWLiZNmyZfjrX/+KHXfcEcOHD1cOcyklP/zwA8aOHYvtt98e48aNcwwxKWTJkiWYMGECevfujUsuucQx8KdUfP7557aBMr1798Y111wTbIOIiIiIQpbOpuVmVHioWPj5AHJc4S3mEkXWMoV1uoSdVPUs/N07n3lIwekiEV6xLckRCkEmyQ58h6KvCvUN0kEmnrTEV7nhCqK60nF+D2uR27ZFGMgoLD/3TeC69NNeCuU7KYSF+XqtjxDZ0GPL8YbKLnYZMOBlgIAd3d+kHRNqx6oQQjo4RrgNLfBAar+9pOdtqGgdZFedrPa6OSQpEVO4lwmaiyAPGdLXM4nZ0nlNzHoZgJYfSiIjr28u6WtjsUE3el8qiPQle+54cI6ZRSxDt/HgLVP+jh/WrvFkWSIeR2KnHZDcoQcS23VCskdnJHffCbEuXT1Zvl8mTZokNd9bb72FBQsW+Nwab3z//fcYP348dt1xV1xxwRX4z3P/KSrExIppmvjvh+/jyttuQZ8+fTB48GDMnDnT03Voz+Z8Xv7tNxhy8fn41QWjlUJMrCxcuBCjR4/GwIED8c477xS1LHcU+izN+jcZpmnirLPOkgoxofLCIBMiIiIiIiIiIiIiIiIin1RWFi7EWLJkSdmEOPihqakJXbt2xdChQ/HPf/4TjY2NvqzHNE08/PDD2H333TF16lRf1qGzRx55BDvvvDNuueUWrFu3zrPlbty4Ebfeeit23XVXvPrqq54tV1ejR4/G+vXrLafdfffdjv0FERERUanJZAsHP7a8arXN26YL8bOAS6XIWibIRObxTU2eV64cuHOBqSYqTzi+4OcZZBIBCkEmie51PjaECr11Xr6GQZPOo4Dc4mJRLVHY7uNXMoSBtEJBsoely1oKIoCiDZXrd7EFzSVCdj9ZhWko1UMpjH+c1us1Q/NjQbV9hjDkzwU3wQceqTjqKKn5MsLE+mTrHpNBJuGJGxoH0RUY+xS3WO/6iHSs9bGc9aLJm/tXoRKYueWzefvTZZ8QjfrYSDTSYz5853LcjFQk/Q4aq8AT3YJM1jTU46+T7/d0mUZ1NWKdu8Do1BlC8/Hv6tWr8dRTT0nPP3nyZB9bU7xMJoO//e1v6Nu3L6655hp8t/K7QNabzWYxc+ZMDB48GPvuuy9mzJgRyHqDJBs498p/38YB/3sSZvznRU/XP3/+fBx00EG49957PV2uI836LK/dd999eOmll8JuBmlI76sXERERERERERERERERUYR17Vr4jTjNzc148UVv/9G9nGSzWU+DNZw0NDTg9NNPx2WXXRbYOsPU2NiI0aNH49RTT8XKlSt9W8+yZctwxBFH4P77vX2wSyeTJ0/GCy+8YDntlFNOwVGSBQBEREREpSSdTcvNqFDcLFwW28otW6XI2vmh5JjEm8el3yLus7o/34RUZ+vS/Y6Dd0Ri4KCCnxcJjQsnCcCmN/3KxjMk+2znb2NKiZtTuEBRg4hJLjACT4fnFhcbVRLBnj6mhwghkFXYZrkFdLr0017SP8iE4ViAfNFmsWEfm64PeX8ncdzLjHOKJdOOMM9R1TAXASEfHONneJ+D+D77IpZwHsfXV2TbXAdrkjU+tYqcJAwXYRlBke2n8k9nh9Nbuv+T6Caa8xblSZBJSz/u4nxuE/bptk+IwjBG86J9X0RhvxB5SPZWz2o+He/H7n70IXz9ndy/q5dapsHDDz+MpqYm6fkffPBBpNOSvw8H7KOPPsI+++yDCy+8EGvWrAmtHXPnzsVxxx2Hn//851i0aFFo7fCc1bGfd0I8+cIsHHPOb/HdD6t9aUJTUxNGjx6Nq666ypflW1I456PWPXz99df43e9+F3YzSFNlOKInIiIiIiIiIiIiIiIiCkafPn0c57npppsCaAl56c9//jMuv/zysJvhq3Xr1uHoo48O7C00zc3NOOusszBx4sRA1heklStX4tJLL7WcVldXh9tuuy3gFhERERHpwSnIZEsxgkohrJ9FTipvypZ40li1uDVMoqYG3Z99EHUHdYcRywAwkahKo8sZg9B+knMgoUhq8l19DEIoCUJuAyV228nnhpAtiZAkINhiLrfryg3LEO3aOc5vZl2tRrotGbeXD40rS9zum1Deaq6yTsnzoNTJ7l/DqlxEZRO6HFvFDf9DzGSO1VCO581UQ4EMYbQNJ7BhFTATFGEYSG3nHEDVUNF2XFFTwSCTsCRi+gaZCJ+Cj2T7SZm50rHWx7NKAJrjmiXP+1by+mbXfUIULqm87hOFQ8dTz6JNYY717GzYuBE33ld6/94tY9KkSUrzf/vtt3jmmWd8ao17Dz30EH7yk5/gvffeC7spWzz//PM47rjjwm6GI/nxV9v5cs/nWa+9gtOvuDSQoJs//elPuOGGG9x92M8uSL/uraDzzjsv1NAf0htj7omIiIiIiIiIiIiIiIh8stdeeyEWiyGTydjO88Ybb+Dmm2/GuHHjAmxZ+RBCoE+fPthzzz2x7bbboq6uDnV1daitrcXGjRvx448/YvXq1Xj//fcxf/58rF27Vmq5N954I/r3749hw4b5/A2Ct3HjRhx99NF45ZVXpD/Tr18/HHDAAejWrRs6duyI2tparF69GitXrsTHH3+Ml19+GY2NjQWXYZomzjvvPGy77bY4/vjji/0a2rjggguwerX1m4JuuOEGdO/ePeAWEREREekhY9rfJ+WSLegE4O/b6RWWLSSKfuMi7hisodObZWM9e6Pzk9PR2cVnRVKPwknmmBQmILeNEvvu43dTSoarmqoChe/S+Uf6dB22cgtURLtqx/n9DDKJiRiaDfkeIpuzfXXqp9tw2TTV8AUvCJXrd4zlD4D8fopZBQSoHBsux1aW6/WYZUiLRlS3gRACkA0jcBN84KGK3ftg/Rfqb4SvSTHIJCwqQSaBX9tkgyoUmyV9PZNYbn6QSUYyALDgajePhYSL4Kc2102Xfa7Go5itihiXmNB8rGYrim2m0iPbNxd/vJqSi4jSbzqTn3wcF404A316bO8wZ+mc7++99x7effdd5c9NnjxZq4COK6+8EhMmTFD6TCKZwK577or++/bHzrvtjL59+mL/PfZHTU0NqqurYZom6uvrseqt+fjyq6/w2bIleH/xIrzy37fx8eefwTTlju5s1scfRnSwuT/5YvkyjPj9JWhqbnb8yJ577okRI0bg4IMPxg477IDa2lqsW7cOS5cuxZtvvolHH30Us2fPdlzOlVdeiT322APHHnusWpOh2Dcp9ZnR6R+efPJJPPnkk2E3gzTGX/KIiIiIiIiIiIiIiIiIfFJdXY1BgwbhtddeKzjfZZddhnQ6jcsuuwyGn28Qd+mmm25CfX19q797/fXXMXnyZNvP3HjjjejUqZOr9e24446uPtdi3333xa9+9Sv89Kc/xe677452Em/2BTYFabz11lu4//778f/+3/9DQ0NDwfnPO+88HHHEEejatatS++677742f/fUU0/h6aefVvqMrAEDBijN/9vf/lYqxKRPnz645JJLcOKJJzqGcaxfvx4zZ87Eddddhw8//NB2PtM0MXLkSMydOxf9+vVTareOZsyYgenTp1tOGzRoEEaPHh1wi4iIiIj0kc4WfqPiloIjlQARH4NMRELhcUuJh5LjRhwo8efPW+gSZEIOhOn89L3IIjFgYCDNKVsFinlFTLYgV/9ih9ziYqOm1nF+U7a6zWVbMio/x0UlyMSlUL6TQgG2jm9dD4Nsgb7VfEqlUy6DY2LSyUvuyRwLYZ6jqqFAhjCkA/zc7hevVBx6IPB04SCT7X5o28a6yjq/mkQOkvFk2E2w59O/iXn5b23Neadm1otFtyzDTTBRXuiRkA1ByheBSyqv+3KiFPBA5FaUjvPmdDP++H93YvKf/lx4xhLq4iZNmuTqczNmzMB3332HLl26eNwidWPGjMHtt98uPf/eA/fG8cOOx5GDj0Rt3dbfNdol2qFHpx6t5u3UqRPa/c//oOe22+HQgftt+fuVq7/HE88/i2n/fhpvf/Be8V8iIuzu05qbmzH8dxdjrcNzOt26dcOdd96Jk046qc20uro67LHHHthjjz0watQovPXWWzj77LMLBu2YponTTjsN7733Hrbbbju1L6OiBMc1a9aswfnnn+/Pwktvc5UtBpkQERERERERERERERER+eiUU05xDDIxTRNXXHEFpk+fjj/84Q84/vjjEfPzTeKKhg4d2ubv4vF4wSCToUOHolevXj62qrW+ffviggsuwEknneT64QIhBAYNGoRBgwbhj3/8I84//3w88cQTtvOvXr0aV199Nf7v//5PaT1nnnlmm79bvnx5wSATq8/44fbbb8cjjzxScJ7a2lrccccdGD58uPRxWlVVhZNPPhknnngi7rvvPlx44YVoamqynHft2rUYNWoUZs+eHemHVOvr63HOOedYTovH47jnnnu0DC4iIiIiCkomm5GaT6koy8+306u85VrireKJWAIonOUS6fFwrkCCTEQWMDm+LoYQzoVBieosRGVlIO0pW4XOe0PyXa8R6Dpyi1ZEjUQAbdbvIBP5srjcOXXup90GOKiGL3hC5frt57U+QmT3k2WgiMqhIRug1OZj/u8n3X9XUz2XhBDyAX4hnwepwccClxYuVl3Wse0b1GtTzsFV5I+EoXGwoMv+wuk6Z0A2AM55lnSs9TjBm2GJenDnFvl9s8u+OgpjRr+CbrTmZr9EYV9StAR4TEnfieW1ydQ82mT6s//G2NPPxO47FPcClyhoamrCww8/7Oqzzc3NeOihh3DxxRd73Co1l19+uXSIyV4D98KFv78Q+x6wr9pKLH7S6dqxE84eeirOHnoq3l24ADdPvhf/fOF5ZLMlnn5t1ccIgTunPYh5H39U8KMDBgzAv//9b3Tr1k1qVfvttx/eeOMNnHbaabYvoAE2PftzySWXFJwnUBG5to8bNw4rVqywnNa7d2988cUXAbeIdFSGI3oiIiIiIiIiIiIiIiKi4Jx22mmoqamRmvfdd9/FSSedhO233x4XX3wx5syZYxv2QJv85Cc/wfTp07F48WJcdNFFnr0hpXv37nj88cdx6623Fpxv8uTJWL58uSfrDNtnn32GK664ouA8AwYMwLx583Daaae5CtsxDAOjR4/G888/j44dO9rO95///AfTpk1TXr5OLr/8cttj4+KLL8aee+4ZcIuIiIiI9JLOFk7xEG4Ku3wsmhVxheI/icJ2rYsJPWZU+P8GeCNW4g/4B0E4FwElujDERImLogNRoPBdxGULcvWvdsgt8Be1dY7zm6aPQSaGgYzCE/W5TXEbFqKzMMJZhMr1O4ygFQ3J7ifLQBGlIBN3Y6sggkxkzr8ww4ZUt4EhDIiYZICf7Hw+MTp3QbK2cCjhO70b2/xdh6oOfjWJHCRiGt97SIRAAurDKukwIYkFN+ctKisxbnZeb8v9rvr53KavcPtihCgMYySPDyIKiRenaIme5tlsFtfeeVvhmSJw7y7jqaeewvfff287/dBDDy34+UIvzwnCAw88gBtvvNFxvqqqKlx545WY+q+pBUNM3P5OsNfOu2Larbdj/vz5OOigg1wtIyqsttE3332HG++bWPBzO/TshVmzZkmHmLSoqKjAww8/jGOPPbbgfI899hjmzJmjsGTFfa10zgfXP7g9Zl9++WXcf//9ltOGDx+OAw44oJhmlerloSzxlzwiIiIiIiIiIiIiIiIiH9XV1TmGQ+RbsWIFbrvtNhxxxBFo3749jjjiCPz+97/H448/jqVLl/rU0uipqKjAW2+9hSFDhvj2Bs4xY8ZgwoQJttObmppCf7jGKxdccAHWr19vO3333XfH7Nmz0bdv36LXdcghh+Bf//pXwTCU8ePHR/ZtQ2+88QYmTrR+0KZXr1649tprg20QERERkYacxnpbg0zkx/rCz7fTKyxbSBRbJWPO4R4lUyCfDCDIROPazMiQONySPbr4345yV6D/EDHJQt8IFEPltlHUtZf5hG9tMWAgY8gXJOfOqXM/7bZt0oXfXlK5fvt5rY8Q2f1UbJCJdLBG/nqF//splGNVgWr7DGFIH98iEW6QCQBU/6RPwelzGWSilVQ8JT1v4Nc22X/byW+WQzPlx0PO86VjrccJWS+6n83tE25CSPL7iri7PiEKY8byLHv0fr/oPGYlXfkTMtX6s5s+LXMn5mOupa/+/fIcvPHu/LCb4TunZyWuu+46DBo0yHb6Bx98gLlz53rdLCnz5s3DqFGjHOfr0aMHXpzzIoaeNtT5+lnk8brnnnvilVdewaRJk9CuXbviFhYhf5k4EWsbGmynp5JJPPyXW9CpUydXy4/H43jggQew/fbbF5zv6quvll+oVTh0bAAAIABJREFUn32T5v3exo0bMWrUKJhm2168Y8eOuOWWW0JoFemqHEf0RERERERERERERERERIEaO3YsBg4c6OqzGzZswJw5c3DTTTfh5JNPRs+ePdGtWzccd9xxGD9+PJ555hmsXr3a4xZTrt///vcF99+DDz4YYGv88frrr+OZZ56xnd69e3fMnDkTdXXOb0mWddBBB+H666+3nb5o0SI8/fTTnq0vKE1NTTjzzDNtC3PvuusuVFVVBdwqIiIiIv2kzXThGTY/rCtUirLcvolahko7JArCkvHyCTIxKuQLJ12vI1ka2ypMZsZ5GyZ2Kly0THk8PiyFbLBTBE6H3AJ/o7Y2xJZsCnrIKD1Rv7VIIxoFwGrC+U4KO0Dz8IqgSAeZWASKKO1ji35HZnxSKLzYKzLbIMyxlGWITAECQn7c6zK0wEt1N/4RwshYTlveIY13e7YNMmlfKRNcRX5IGgrBggGfNkLxXJEl20/KdIltgky82EYtAS4JF4mMeX2sqzAUIBJjxkIhfyWrDL8yaUiz49Ay7EQ+i9JXRx5wUMHp19x5q/1EzbazGytWrMBzzz1nO71Xr1445JBDMHLkyILLCePFMU1NTTj99NPR1NRUcL6ePXvitddew94D9va9TbnjkjPOOAPz5s3DgAEDfF9v0PLvSX/88Uf8/eGHC37mohFnYM+ddi5qvR06dMCttxY4JwG8+uqreOONN4pajx21U17vDmL8+PFYvHix5bQ///nP6NKFYdi0Vfi/YBARERERERERERERUVtNG4EVn4XdCiJ12/YFkhVht0I7iUQCjz/+OA488EAsW7as6OV9++23mDFjBmbMmLHl73baaSf89Kc/xVFHHYWf//znSKX8LxQrF0II/OUvf8Ghhx5qOf2TTz7B559/jj59olvQNWHChILT//KXv6BHjx6er3fcuHG477778Pnnn1tO//vf/47jjz/e8/X6acKECViwYIHltCFDhuCYY44JuEVEREREesqY1oWPLbYUnsYUHnOUfZu3G0rtcH7QOBWTuGfT+3llaaJCoXDSJSMlUbynSZGLrsys8zZM9t8jgJaUDlencKFqWukgk+A6DwEB08XJlVu0IurCLWw3hIG0If8dct8GXiqBU7lkC789FZcvwHZdrF1iZI89y/2pcti63N5x4X+ZikwgS6hBJhYhMoUYwpAOKBEq41KfxHr2xrZ3j8G3Y25FeuPW9izt2IzLhn2PZosmViT4b0dhScTlwzICP298uoeTvp5JfN3mvNM5ozBusF1tSx/mIpioTR+gsH9bL8jdxwLl5z0+EXmg+I7EjEJfVMAVZ52L1+b9Fxs2brSc/srcd/D866/iZw6BJ1H1wAMPIJOx/413+PDhEEJg2LBhGDNmjG1oyCOPPIK//vWvgT7jcv311+ODDz4oOE/nzp0xe/Zs9OjRA03pwoEnLWzHUi6O9R122AGvv/46Ro4ciblz56ovIGCy48j8+SZPnoz6hgbb+TvW1WHcb0Z58tvuiSeeiP33379gWMkdd9yB/fffv/iV5VM5BjTuG99//33cfPPNltMOPvhg/OY3vwm4RaS78H/BICIiIiIiIiIiIiKitlZ8Bpy1e9itIFJ374dAr93CboWWevTogTlz5uCYY46xfTNFMRYtWoRFixbh7rvvRm1tLU444QSMHj3an39gL0MHH3wwunXrhm+++cZy+uzZsyMbZLJ8+XI888wzttP3228//O///q8v647FYrj00ktx7rnnWk5/9tlnUV9fj5qaGl/W77UFCxbghhtusJxWW1uL22+/PeAWEREREekrky0cZNJSeCZUipt9fDu9SMgvW3gUZFIqBfKiwv+iVaMyDiDt+3rKXWIQf2NQ4uYULlCsKRKS/WGAQSZeECGH8cZEDBmFGtncuplQQj8kCSFcFfmE8Z2EoRD4wIJmAPL7KWa1bRW6CLdjK8v1ekw1KCRoqttAGEI+1MfHMa+KipNOQY8DD8GqJ6ZhwquT8Ok2zVi4bXPkC5JLUSqucfC9xL2Tu8V6F2SSjrW+oGa9aPLm7y3cXNfy+wqXoVMygVChi0IbPaf+nZnZSaHx5BR1PoJN0XYeXX4z696lK84e+mvcOnWS7TzX3Hkrjtz/QIt+V4/vUIwpU6YUnD5ixAgAQIcOHXDsscfiiSeesJzvhx9+wL/+9S+ccsopXjfR0ldffWUbxNBCCIGHHnrIs2dABGSO9rbHRCqVwqOPPoqJEyd60g5fuTykH3zwwYLTzzx5GNpVVcOrK97YsWNx8skn207/17/+5dMzKtE/57PZLEaNGoV0uu3v8MlkEvfcc080xpgUKD1+wbB2gBDC739V8nMdB/i0XCIiIiIiIiIiIiIiIoqovn374q233sI555yDRx991Lf1rF27FlOnTsXUqVMxcOBAjB8/HkcddZRv6ysHQgj84he/wNSpUy2nz58/P+AWeeehhx5CNpu1nf673/3O14cNTjvtNNs3MDU3N2POnDn45S9/6dv6vWKaJkaNGmX7JqkJEyage/fuAbeKiIiISF9Z034MCuQUJKgUZSmEnijLf+t1IRLFaDJvpNelKKNYwQSZJMEgE//FevYOuwmlr8D9t5DtDyPQdegUABIzFINMcravTt/DK6Fce1Su3y6LtUtNUUEmKvvY5fYOIshEZhuEWUCl2j8YMKSDY/wM71NldOuGyjPOxNPr7wy7KVRAMpYMuwn2ZO+z8k5np/Pby2t0Om9RngSZtGq/CZW+Ob8PUAndbP1Bdx8LkihyP5bKPTVR4AIcQ5VCEM+lZ4zCpMcfw5qGesvp8z9egCdeeA4n/SzveY2Id1GvvfYaFi1aZDt90KBB2HHHHbf8eeTIkbZBJgAwadKkwIJMxo8fj40bNxac58ILL8QvfvGLLX8u/t5C4vM2swghbF8ME0W51+eFCxc6Pmtzxgn2oSNu/OpXv0LXrl2xcuVKy+kbNmzAk08+iZEjR3q2TvWjx/sOYkOy+B739ttvx9tvv205bdy4cdhll12KXsdWEe8kaQt9fsHYROT87xmb//Nj2X6to9B6iYiIiIiIiIiIiIiIiNC+fXtMmzYNw4cPx6WXXoqFCxf6ur533nkHRx99NI4++mjcdddd6N2bRUdu9ezZ03bahx9+GGBLvDVjxgzbae3atcMxxxzj6/qrqqowcOBAvPbaa5bTX3rppUgEmdx11114/fXXLaftt99+OOeccwJuEREREZHeMtlMwelbHg5XKNQUKmEjikQ8oTCz82ODFXH/wz10IaoqfV+HUV0BYL3v6yHyXYFiTRGXLOSMwJtPdQoAMYQBCCAjTMRM520XlSATt4W7oXwnldALjbd5kGSL6GKi7bZV6iIs9o2AgOlQcho3/C9TkdkGYRawW237QgxhAAnJ8abb0AKfBBFcQ8VJxVPS8wZ+3hjq6ysUzL5lsRLhkoBcX9Ica93nZT25FOWsV5itBxhO8kOm3J6D+g8ZXR0fkVeGX5nKnMQxr9JFBs0E0LGuPcaMPAPX3X2H7Xzj774DvzriZ4iVUDDj5MmTC04fMWJEqz8fc8wx6Ny5M1atWmU5//PPP4/ly5dju+2286yNVpYvX45JkyYVnGebbbbB+PHjXS3fdmyh8XEcuJxt8dRTTxWcdeAee6LX/3h7TMRiMQwZMgR33XWX7TxPP/20c5CJ0j5VDBFxcbzEa5JI11u/dAcAfqyy/vcY2fH/l19+iT/84Q+W0/r164errrpKajlUfnT+JU94+F8Q61BZLxEREREREREREREREZW5wYMH46OPPsL06dNxwAEH+L6+Z555BnvttRcee+wx39dVqrp162Y77csvvwyuIR5as2YN3nzzTdvpgwcPRkUAb08/+OCDbac5vYFHB8uXL8cVV1xhOS0ej+Oee+6RfnCaiIiIqFxkzMJBJsbmxxuVwkn8HHPFFQoNJIqtKhPO4R7Fv+lTD8EFmRBpxs0pXKj/kOyHotB3hBkukK8lcCEjeQnJLT3ROcjELRFGwbDCOkUJFf4VQ/bYswwUUdjFQiFQLlcQwRYy2yDUIBMX20B63Otyv/iFv3vqTyXIJHCS/Vnu9TedTTvOb3hYLpfODzIRxb/NvqiAjrw+QCl0s9UH9RmP2WL/QqQ3D/oRmR7Vg17Xd+efOhJdO3aynb74yy/w4FNPtv7LKPTDNtavX4/p06fbTk8mkxg2bFirv0skEm3+Llc2m8UDDzzgWRvt3H///UinC48lrrrqKtTW1rb6u0DuLSJ8TKjI3ZYvvPBCwXmPPuhQX9owePDggtNnz54tFZ4nTXXXujgWjC6dIWx6zHTMxPpkcb3p2WefjXXr1llOmzhxovfPFZXH6VAW9PoFozUvxxh2h6zf4xieKkRERERERERERERERGTLMAwMGTIEQ4YMwUcffYRp06bhiSeewMcff+zL+tauXYuhQ4di6dKlGDt2rC/r0FljYyOWLFmC7777DqtWrcL69evR1NSEdDoN03T+p8N33nnHdto333zjZVMDM3fuXGQy9gWk++67byDt6Nmzp+20Dz/8MJA2FOOcc85BfX295bQxY8agf//+AbeIiIiISH9OY/AthfgqhZp+vp1eoThMJkRAKsikRB5BFBUBBJm0q/J9HaWuqkcM65fZ3x92GrJngK0hK0IlUElzOgWAtIQNpGMmkhmJfjdnFp2+Rz631xAvC7+l6RJaFiGyx55lmIbKoeGy3wkiyERmvBVmsFNMqG0DIYR8YJVmQSaWgTmklWQsKT1v0OeNbEBVNqdZ6YxEkIns9ULi66bzFiUbfia7XgG14rY2fYDLvjoStdKRaKTXyvE7k340Ow41a46VdlXV+N1vR+PSmyfYzvOne+/G/w7+JVLJTdflCHwtW//4xz9s/20c2BQS0bFjxzZ/P3LkSNx55522n5syZYrty0O8kM1mMWnSpILzdOrUCb/5zW/aTojyDtNUU1MTXn311YLzHL7f/r6s+5BDDkEymURTU5Pl9NWrV2PevHnePi/j8zFk1NYi3m0dmr79EcLcurKMYWJF+wyydmNYiXY9+OCDeO655yynnXrqqTjyyCNdtJjKhc6/GATRtfPyQURERERERERERERERFrYbbfdcP311+P666/HkiVL8Pzzz+OVV17BG2+8gU8//VQqaEOGaZq49NJLUV1djbPPPtuTZerq3XffxaxZs/Dmm29i/vz5WLp0qbdvTcnR1NSE+vp61NTU+LJ8v8yfP7/g9F133TWQdnTqZP+Gqu+++w6NjY1IpfR8a+Sjjz6KGTNmWE7r2bMnrr322mAbRERERBQRj5/2OH5Y/wMa041ozjSjKdOExnQj0tk0GtONaF/ZHoBaoab0W+xdkC2wAyD1du2qhHPwRtb05/4laKLa/5ARqXVE4RW+IarYZyesX7bAZqqJduefE2h7SoKbp5QLFGsK2bAmiT7IKwICpouTSwTYRictYQMyGSZA665E5yAT5arozcL4TkrXWM0CHMJSXJCJwvln8XmZ8z6IYAutzz8AMZXjGpu+j/S4VyFgLwi67wsCKuIevx3dS5KBI7nX6Syc75OkA1lkgkxirfu8rCfDmNwkE1Ptmp3fv7gNj4pCSEix/UsEvmIbUWwzlR7Z49CD49WUWEZUfs4ZNWQo7nhoCpZ+vcJy+vJvvsY90x/BhcNP3/QXUeiHbTiFgYwcOdLy7wcOHIhddtnF9sU+n3zyCV599VUcdNBBRbfRyksvvYRly5YVnOc3v/kNqqra/s4oGxZqO5/Mx6N7SABQ2Eabj/0PPvgAGzZssJ0vlUxin11396Rt+aqrq9G/f/+CLzN65513PH7xj/87ONatO1aIeiQbmmGYQDoG1FdkpfpaO6tWrcIll1xiOa1Dhw645ZZb3C+cygJ/ySMiIiIiIiIiIiIiIiLSTM+ePXHmmWfizDPPBACsWbMG8+bNw9y5czFv3jzMmzcPixcvLirc5Pzzz0f//v2x//7+vMEkLF9//TXuu+8+TJo0CUuWLAl03Rs2bIhckMnChQsLTp83bx5WrLB+2MpLCxbYFcttsmLFCvTu3dv3dqhavXo1LrroItvpd955J6qrqwNsEREREVF0dKvthm613ZxnjCkULrl8E7WUpPxbzGXaXFZBJpWVvq/DqOG4u1jtb/kL1r18FBpXtz1+O/yiL+I+FQ6UMukC2lafKdB/yBa4R6AYyoA+Re8tQQ8ZQ+53ttziD52L92ULiNp8LozjRyXwIQLHdxBk95NVoIjKJrQM1pD4fEtAkJ9kzj+354EXVLeBIQzpfl4l6C8IhmQQBYUnGZe/lwn8vJG8lubeGWWyGcf5pc9BiU4xnb8oAWRhwihiW4nce0bVxeT3AQmX4UZRuKRqFH6nNW4mKnFRCTJJJpK46uzzcdY1V9jOc/Pf78UZJwxBTYT//fjzzz/Hyy+/bDu9U6dOGDx4sO30ESNG4Ior7LfRpEmTfAsy+fe//+04z7Bhw4pbSVF9cnl06C3jzXnz5hWcb7e+OyDhdpwjYd999y0YZOL0UqBN40ifeqgifvvIGgI/Vnv37woXXXQRVq1aZTntpptuQteuXT1bF5UmnX7BiMqYgoiIiIiIiIiIiIiIiChQdXV1OPzww3H44Ydv+bvvv/8eL730El566SX885//xNKlS5WWmclkMHLkSHz00UdIqhTkaaqhoQHXXXcd7rzzTmzcuDGUNjQ2Noay3mI4vXHoD3/4Q0AtKWzt2rVhN8HS2LFjsXLlSstpJ510Eo499tiAW0RERERUglTeOK9SCK1KYdkFgwg2q046FyzIvGk8CkS7dv6vI2KhkjoSNTXo/vwj+OGiS1H/5nJk03EkazOoO+lA1P755rCbVz4KFGuKhGyQiUdt8XFd+QEEVT3jWL8kbTt/+0O2dbciCS2FzhnJbt7MeeRd5yATt0L5TipBZJoFOIRFtkDfcn+qFES5DImLx/zfTzJhC6EE82xmFSJTiBACIiH5O73K+JgIQGXC/2BB1yTvs7Ji6/VXJvBR9nom00s0x9qWu2UNwCjmdi2nf1Itgc0PMxJu74OjEA5WlkFJ6vuFBZnkNfnuoYhAp82flTp+I9Bdtfj14F/ilil/x8IvPrOcvurHH3DHQ1Nw5ejzotEPW5gyZUrBF+4MGzasYPjEiBEjcNVVVyGbtb6QPvbYY/jb3/7my8tCZs6cWXB67969MWDAAMtpgdxbRPOQcO3dd98tOH33HXdq/RceX/D69+9fcLpjkImPijkUvDxWn332WTzyyCOW0w488MAtL+ciKoS/5BERERERERERERER6WjbvsC9H4bdCiJ12/YNuwVlo1OnTjjxxBNx4okn4rbbbsMrr7yCe++9F9OmTbN96CPfp59+iokTJ+Kiiy7yubX+evPNN/HrX/8aX3zxRajtyGSc3wKomxUrVoTdBCkbNmwIuwltvPjii5gyZYrltNraWtxxxx3BNoiIiIioRKm8cd7Pt9MrLVvirdHVKYkgE4kCvSgQVVW+r8OoZZCJF2Lb90TnJx9DZwBmUxMQj0OUZfGgR9zUDRTY3rJBJmEW7svKb2PVoQOw/oG3beevOGSQb22JGZuDTIRkRUxO02XDJMIgE/JgJYwgE6EQ+MA+aRPZ/WQZpqFyaBhtj3GZY8uA//tJZhu4PQ+8oHouGcIAZAOrZOfTSKFiV/JfMi4fZh/4eSPZr+feGaWz9uFnWxYrew5KfN20YRFkUuxmyh0LyY5BWuT3zQWKxWWboK0SDI0jigbJDqKoSntsCiWQWIbWo4i89sdiMVx97oX49Tj75y9uf3AyRp/ya3Sr6+Zz47yXzWYxderUgvOMGDGi4PTtttsOhx9+OF588UXL6Q0NDXjsscdw+umnu22mpW+//RYff/xxwXmOOOII22myYyTb+YREdFkkLs7Fa/lNaPHixQXn69ejp6/t6Nu38PNtn3zyia/rL0iDY2HdunU4++yzLaclEgncc889kfgNksKnwy8YS6H5eIKIiIiIiIiIiIiIKHDJCqDXbmG3gogiQgiBQw45BIcccgiuvPJKXHLJJXj22WelPnvrrbfi/PPPR8zPN5f76KmnnsLQoUOxcePGsJsSSfX19WE3QUpjY2PYTWhlw4YNGD16tO30P/3pT9h2W//eFk1ERERUVlQCRHwMMtlEssJCohivOllGQSbV7Xxfh1FX5/s6yo1Iyhe8kpcK9DGyfVyARQRehWXUjBuHtf88EU1r2/4+VdFNoOos68IJL2wJMpGsk8196D2M0A+/hVKEIhEAtglLDlrI7ifrIBOJArqWWePuiuNjFgEoXhMSx02YRVWqQUeGMKT7eeEytCBMDDIJVyqWkp854NNGSP7bVG5wSCbrHCovH2Ti/IXTFk3MGiaQKWJjFdM/5fcBbv99LwKFp8X242EGWrkWwSYTFUNmhGBanRcanysnHPlzDNh1d8xbYP3yqvp163DzpHvx1/HXBNyy4r344otYunSp7fSddtoJ++23n+NyRo4caRtkAgCTJ0/2PMhk7ty5jvMcdthhttMY2OA9pxcV9dl+e1/X369fv4LT16xZgx9++AEdOnTwZoWaHkJ246UrrrgCS5YssZw2btw47LYbn2slOaEHmZim2SvsNhARERERERERERERERGVil122QUzZ87ETTfdhCuuuMLxAeElS5Zg9uzZ+NnPfhZQC73zyiuv4JRTTtEu5CJKNmzYEHYTpOj2oPvVV1+Nzz77zHLawIEDce655wbcIiIiIqISplCoKfwumhWmTfVE/nzO89SkahznMUukYFu0c/6uRa+jPYNMSENuChQKBCGJlGR/GIHimvziYqNbN3T7x9+w6rdjsX5ZS3GyiXY7VaHz1LshKit9a0tL4IJVkbKV3ELqIMIaghZKOEss9JKGyJHdT1bHqFIXEbf4vETnFg9gnxpw3gZhFrCrbgMhBIRsYJXv4X0+KI1hbWRVJuSvo4GfNxIhkACQG10iE/goXWwsMVtzrO0BXEyGyab15ixAcVkiEc/7s8twI+kgsRBJHh9E5LEIdA+6sPvtbvwFY3DsOWfafu7ex6bh4nPPQq/evfxpmE8mT55ccPqIESOklnPSSSfh3HPPxbp16yynv/zyy/jss8/Q9/+zd+dxV5T1/8c/15ztvrm5b/ZFQASBEgkXTA3EBRdy1yhTgvCrXxXLtJTy4W6llqaZmrmkdoNimpmQC/lz/wpqQZriCggmCiguICDcwDlnfn/ArQc4M3PNPnPu1/Px6Pst57pnrjNn5pprjvN5z4ABrvto5T//+Y9jmz322MP3diznUsH8pJxouvNIJUrK5bK89957tu2269Y9iG5Z6tWrlyilbJ9FeeeddyyDTNx/Xy7+IOZjYfbs2XLjjTdWXbbjjjvKRRddFH4nUn4+4EvM6AEAAAAAAAAAAIAao5SS8847Ty677DKt9g8++GDIPQreihUrZOzYsdohJp06dZLDDz9cLrjgArnjjjvk8ccfl7lz58r7778vK1askJaWFikWi2KapuV/nB7MSaONGzfG3YXUeemll+R3v/td1WWZTEb++Mc/isHDtQAAAIHRfUO3iIjkwi3q1H12VmkUhLWva+/YpmaCTBqcP6tfRseA3owJJJjK1k6QSbXi4tzue8h2Lz0jfWdcLX2afyo7PHGj9Jj1mGQG2L8h16+s2nTtKCn3Y26Sg0y8vi06niCT5O7HpNL9nrJGlbmRm2PD4zEexbmhsw/ifGu623PJUIZIPq/VVvt6kCBxhspApJArxN0Fa5q/pVcGiZXKJeuGm2WU5jikMU5UCzsrBxhk4nqo2nqM9XgdTcGUMR1hK4Fri58ZyaMbBuX/eNW5C6v2+1jS5xYHfWMf2X/PvS2Xt6xfL5ddf0OEPfJv5cqVMm3aNMvlSikZP3681roaGhpkzJgxtm0mT57spnuOXn31VdvluVxOBg0a5H9D3nNMtFsllvbQoeTjjz+WDRs22Lbr2aVrAJ2yls/nLUNKWi1dujSYjYUZerLNX/o7jjZu3CinnHKKlMvVwwNvvvlmqQ8xcBi1h6enAAAAAAAAAAAAgBp14YUXyoEHHujY7rnnnougN8G65JJLZMmSJbZtstmsnHjiifLss8/Kxx9/LI888ohcccUVcvLJJ8vBBx8sQ4cOld69e0vHjh2lUChIxuFhT7s3saRVoZDgB5gT6txzz5VSqfqD0j/+8Y9lt912i7hHAAAANc7NG+fDfju9bpG7RjFeU6HJZ2fSQ7WPIMikc+fQtwG456FwwKZYU+U1x7gU1L3YFfjn9vyGFI48RrK7RnN/3Rq4UNJ8qt6s2L9GDT6KH0c4i3ZomYewmVrlL8jExYay2343OuEgVbcbMJ1+xFngmjPchY0YYugHlOQIMoE7ddk67baRf1ea14ByxTWgWC46rzbA61kxs+31p2z4vCb5KP7feqzwHG6UhiSTOALW4paCrwUIlMYxb6b0vPjlmWfbLp9y/19l/vz5EfXGv3vuuUdaWlosl++///6yww47aK9vwoQJtsunTJliGaTgxeLFi22XDxgwQLIB/LZsPZfSOJBTeqx78cknnzi26da5S+j96N69u+1y+36G+IXFeCxcddVVlsE/Y8eOldGjR0fcI6Rd+L8QAQAAAAAAAAAAAIjNFVdcIcOHD7dt8+qrr0qpVHIM8kiKZcuWyR//+EfbNjvuuKM88MADsuuuuwa23c8++yywdSVFu3btLJd16NBBVq5cGWFv0uHjjz+u+s+z2az07dtXbr/99sC29fzzz9suX7ZsmeP2hg0bJsOGDQusTwAAAFFzU5Slwg4y0ZVxLrZqLDQ6tqn2xtk0UoWCbHrHbnhPYKtOBJkgeTzVhtoVa+oWrkdYlFoLhemtgQulKkXK1VS2iiKswSuv300s4SxJuX6niHaQSaZakIn+sVFtHqZzbEVxbujsA52wk7AYGsF+XAiBAAAgAElEQVR2lZSh9M8FgkzgUjaTFdM0Yz0nLGmeK5VlzGXTuahZ97PqNNtYJbSk7HNXbtE/t+vKbTVW5PNeO+Ht76LkcixFdYzBCEsQR1Zt/PJV3V5Dd5UjDzhIHn7myarLS6WSXHzxxfKXv/wl4p5509zcbLvcKZhkawceeKD06dNH3n///arL33vvPXniiScCC02w2k6rXr16BbIdS1onTNsYr5VS8umnn9q2MQxD2ts8yxKUpib7sHHbfrr9uly1j+dYmDdvnlx++eVVl3Xs2FF+97vfRdwj1AJ+9QMAAAAAAAAAAABq2De+8Q3p37+/vPPOO5ZtisWiLF26VLbffvsIe+bd1KlTZcOGDZbL+/fvL3PmzJHOAb+Re8WKFYGuLwm6dOkiCxcurLrss88+kxUrVkinTp0i7lU6FYtF+clPfhLpNufPny+nnnqqbZtLL72UIBMAAJBuWxdp2QnwrdvVKKVXYKE0iq061HXQWJHGxlJCGWUxy+F9P4ZGkIlZy9UxSCYP57Bd0a0q6BWpJrJIeSu6IQxRyGy+dpR0d1tFu0zI1504KCOG40czXDn5R3Z0dEMyMmrbfevqO/YYfB3FOa4VZBLjUeM2zMVQhnaAn0phkEnOSF+f26qo5xE6904iIqXK/14uWbZrVW38q94BJU53ecUqqyr7HeYqPrfrXb712Ox1TEjOdMyaj3lJ1Ld/6zdskPc++MD3esy1a2Xj8g9d/c2aQlk++dz6vDDEkMIG5zBVtF3b9+wphcpQJN2BKYhrhsYqzBTfCPziRz+WGc8+LeVy9RCuv/71r3LeeefJ7rvvHnHP3Hn99ddlzpw5lsvr6+vlO9/5jqt1GoYh48aNk6uuusqyTXNzcyBBJuVyWZYtW2bbpmfPnr6341sKfs8JghLl+OxN+3btIpmX+goyCVOEh0LrfbNpmnLqqafK+vXrq7a76qqrpEePHtF1DDWDIBMAAAAAAAAAAACgxh100EFy++2327b56KOPUhNk8ve//91ymVJK7rrrrsBDTERifEghRH379pXZs2dbLl+0aJHsscceEfYIAAAA2IqbAtqwizqVZimUxkPWDYUG59XUUMm2MkzReHG6x5WXRTU4708gFWyKeVVeL8gkDYUvSQpbaQ0bKBl6Y3xlK7dBBVHyuo9jCZnRLGKvocuib7oF+tlMlWPUzX7MVglC0ViBbtCKHzrHeJxjjdugI0MZ+gF+moEnUTJKhpQz1pO9U75+SoS9QTWmaeqdN7EMtqY4DU7lisVljRsL7SATDRsz284Ryn53U2VAh8t1bR16pAxDRJVFTHdjr26ITKz8zEsiPpTf++AD+c5ZZ0W7USAg999wgwzs2zfSbX5ROK8RO5TmXNqdBwySEw47Uv78yINVl5umKRdccIH84x//iLhn7vzpT3+yXX7sscdKY6P7wKQTTzzRNshk+vTpsnLlSunYsaPrdVdau3atFItF2zZdu3b1tY1WlvMtnXuTNnTP29LSYru8XV1dJP1ocPhN2amf7rj5giNNMhERkVtvvVVmzpxZtcmIESMcX7ADWEnBXQcAAAAAAAAAAAAAP3bYYQfHNuvWrYugJ/6tX7/e9m0/I0aMkH322SeUbS9atCiU9capf//+tssXLFgQUU8AAACA6nTfTC8ionSLP73SfX444/xoplaBbw09vB5gHeE2DJui2Ur5zskr+kWN83IO27x1XumGNfl4c71bqQrLsNAaRlLUHKfMilCrJH2OoCQ6yCTVJYzB0j33qobtuDhvq87DEjI/0TlW4wyF8xRkki9otdW+HkRohw7W/w7CLJsyYc8JEfYGtagyOKRULjm2V5rzIbPsfG2pNkco6YZcWlHeg0yqBXgqL/1JyHhuR/mcl9RSOCgQKd1TJ8ZTLE3n98U/OFPyNvO3Rx99VJ599tkIe+ROsViUqVOn2raZMMHbXG/w4MG2L1VpaWmRe+65x9O6t16Pk7qIgjPspee4rkb3vFRKyYYNG2zbZKqFcoYgm7XfjlM/QxPxobB06VI577zzqi7L5XJy6623JiqUGOlSe7+eAgAAAAAAAAAAANhCt27dHNtk3LzlPEYLFy60fVjguOOOC2W7pmnKCy+8EMq647T77rvbLn/88ccj6gkAAABgwU2hZshvp9d+VDegIvBaejg4zLr41hrt+j7297UdzxofXieAqgI+hwt5zc0mf+wwEvQIe2vYQFlzt1WWCVcNiUgIr4V9cQSZKMMQQkrcyWgmhFU7Rl3NL6oUjyWlaFQryCTG8TCXcTcvVaL0Q/kSGGRyx3fvELHIljhq0FHSrb3zv6NAyDSH2aTeg5QrPoBOkInuOCk6QSbGtm3Kfi+XFWOY6z2e3fazefraEvpdbyHCgD4AlaJLMjHbwGner3cfOWmM/TMM559/fkS9ce/hhx+W5cuXWy7v2bOnHHLIIZ7X7xSC0tzc7HndrXRe6hNUkInl/ZLOsd4GzgeRTfvIKSAkW+35pRB+NvAVZOJmLuX6u/V+MHi5Zz/jjDPks88+q7ps0qRJ8rWvfc1zfzxLw1wVWpLzKzAAAAAAAAAAAACAUKxdu9axTUNDQwQ98e/dd9+1Xb7zzjuHst033nhDVqxYEcq647T33nvbLp8xY4aYJoUkAAAAiJGLQk1lhBzQqPnsrMrwkO3WdOsIPa178yHSsL91UKORLUrdsd8KrxNANZ6GAutHu1VON8jEy3ajpRJUlNoa9FDM6P3+UVlol+QgE6+SElJRDTUsXzIMvTKQnFFlHuVmP1YpHuverruLFYRHJ2whzuPZbSiQYRj6816HYrs47NB5B7n3hHtlu7rtxNwcDGGUDBk7eKxc/63rY+4dRPTPh1jOG+V8Da4MHCubZedVal40zJLztjdWmSPoBqBZquyfy3WpagGeVcJWHNeToPmYJc3rnaUUfEQg1TjHtJ13yunSrq7ecvnzzz8vDz/8cIQ90ucUJDJu3DhfL8353ve+JzmbefCcOXPktdde87x+EZFisejYxinQwj+NE6aN3PQqpaRctp/PRfUiJqftlErOAXo61Bf/x80f+NmYvv/30P+T6dOnV1224447yiWXXOKjMwBBJgAAAAAAAAAAAEDNW7p0qWObHj16uFqn07/Q37hxo6v16Vq1apXt8p49e4ay3bAfHIprf+64446y4447Wi7/4IMP5F//+lco2wYAAAB0KDdvnNd9i71Xug8Bhx2okkIqG96D+EZu06OwTddcLQ39qwU9mNLjiv8Vo2u30PoAVOMtx8T6r5Tm24GVy+J5P7wWO7st8A9TaxhJSbNLlUEmmQSP97oF3FvTDcgInEYRO76ke+5lM1XmRi6OjWrzsHP2O8f2b3Kmi7mbDzrjiNfzIAi5jLv9YCijejhBFSqu89TBnjvsKbN+NEsWnbtIFv50ocz72Ty5/IjL4+4WXEpqoFVlqWup7FxQmtFNUiw7X3+KVVZV9nndUj6CTKqFHnka7tJQLJ2gOSPQpmgPD/7HkbTfBej2v2fXbnLG975v2+bCCy9M3AtGli9fLjNmzLBtM2HCBF/b6Nq1qxx22GG2bZzCVJwUCgXHNuvXr/e1DUdap0sKrs0BcQqOqR4+E/z+cQq5sQvZCffriuZYWPXZKrnigissl990001SX28dwgToYEYPAAAAAAAAAAAA1Lg333zTdnn79u2le3d3b9LM5+3fArxu3TpX69O1YcMG2+VhvJmlVCrJTTfdFPh6K8W1P0VEjj32WNvlv/nNb0Lbdhq9/PLLYppmJP9xeihr//33d1zHz3/+82h2DAAAQFjczPHdhJ54oF3nldDi0jipTHj7xChsOkZUNis9Zs6Q7j86UOq3U1LXzZTGXZpk+/svk3YnnxLa9gFLXmoO7MaPgv1vB762G7FEBZlkWoNM9ArGKlu1hqDUkiR9N9sg7OQLuiE6VY9Rm8CkbVew7d8fNvgwEZsMgWE9h+mvP2RxBjJohyhsZoghkncusEyT2IKRkDo6Z2q5olHZLFs33Ex3nDS1gky2bVP2e3gbPoJMqoRUebp8u7kexCUNfQRqUoTnnsdNJTV4y845//O/0qmpg+XyuXPnyj333BNhj5zdddddtkEPu+yyi+yyyy6+t+MUhjJ16lRfL37RCWIIKsjEV5hi+g5rT5Qox+djiiXn4LogOB1XTv10x8UXHNGx8Ntf/lY+Wv5R1WUnnHCCfPOb34ymI6hp/DIAAAAAAAAAAAAA1LBVq1bJE088Ydtm1113db3exsZGx+2Gwekhk+XLlwe+zWnTpsnixYsDX2+luPaniMi4ceNsl0+bNk1efPHF0LYPAAAA2NF9M73btp5oPkAcZmhHWqlcePtEFbIV/70gjZf+QnrNfVZ6vzFLuj/5iOT3HxXatgFbXopXbP5G6Ra4+ymaiUiSwjJagx6Kul2q2L1JDjLxWthnxFRekPyjNll0z6FqhfyuCuuqBMplM1m58agbpVzeNkigQTXI5LGT9dfvg06QQZxjTS7jbl6qDCUq5FA+tG261wVfxbdeaWyy8owvlZ0LW3U/h8ZQIhurBJmU/O6miv653edVxwovw10K5ozeEloA+KY7PAQwjGhFFVbbTlKGMBf96NjYJGef+L+2bS655BJfgR1Bc3rphlMAia6jjjpKOnXqZLl8+fLlMmPGDM/r1wkyWbNmjef1a9G47sYyD4uDEsk53PtUOw/CiDb1F2Ti5vty+d36OBZ05/1znp8j0++ZXnVZx44d5Xe/+53nPgCVmNEDAAAAAAAAAAAAIUnCQyZTp051fHvM/vvv73q93bp1s12+aNEi1+sMYrtz5swJdHurV6+Wc889N9B1VhPX/hQRGTZsmIwYMcK2zTnnnGP7tiUAAAAgNG7eelil2DZQ2oUcPJq5NZUNb58YdRT9IqE85ZhYnyuqoDkeGtGNQV7DMpL09uzWMJKyoVcSU9kq0UEmHotelBHTd6M09n9yDpvY6QbOVA3TcHFsqGz1Y/ywnQ+TGRNmyOCOg6VBNUij0ShjB4+Vf//435LPBvnGamum6XzMxFkImFHu5qWGGCIEmSBE2kEmsQy2zuezWdGtkukcZKJ9Dpadt10t7Ex33mCpcnxyu8urjBVebkFTUSztc16bpDknUJvCL7QXCSe8IC5njB0vPbt2tVy+cOFCueOOOyLskbXZs2fL66+/brk8k8k4vjBFVz6fl+OPP962jVOoip26ujppaGiwbRPUC3Osjm2tIz7lly3duYUSJe3bt7dts3rt50F0yZHTC4Wc+qlNSaK+3/Ut6+WXP/ul5X31r3/9a+nZs2fEvUKtSu6vpwAAAAAAAAAAAEDKPffcc/KLX/xCfvOb38iee+4Z+faXLVsmF154oWO7Y4891vW6t99+e9vlb7zxhut16hgwYIDt8mnTpsnPfvazwLZ31llnyTvvvBPY+qzo7M/99tsvtO2fd955cvTRR1suf/bZZ+UnP/mJ3HjjjaH1AQAAAKjKTUFnyMWf2nVeGb2GdVInLdJiuXz3rrtrbjD5VM4QEeeCQy+M+mgKpoFI2IVIFAp664iyMMLjtowIw1actIaRlDS7VFlIneQgE690AzIQL91zKGdUmRtph9XYl4wO7jlYHj7lYc11Ba9Ydg5djjXIxHAZZGIYIhbBMUAQlCgxU1wKXq7oe9ksO7bXPQc1MpFkY2bbRmW/w0vlOO52XVWuAZ6CyOIKL3MhFWErm23fs6fcf8MN/lfU0iIb/rvM1Z+sqivLivbW99uGGDKg60C/PUMN236bYnXNcy+AUzS9VyZv2tXXy3mn/kB+8uvLLNtcdtllcuKJJ0p9fX2EPduWU3DIIYccEmjQwYQJE+SWW26xXP7II4/Ihx9+KD169PC0/j59+si8efMsl3/wwQee1qtN65qWnuueH0qUdO7c2bZNy/r1UiwWJRvyPdLq1attl9v2M8yvK+Q50C2/vUXeXfRu1WXDhw+XiRMnhrp9LW3jdGgT+KUDAAAAAAAAAAAACNEzzzwje+21lxx77LFywQUXRBZosmbNGhk7dqysXLnStt3gwYM99alnz57SsWNHy/U/8sgjcuWVV7per5M+ffpIz549LR8keeGFF2TGjBly+OGH+97WHXfcIZMnT/a9Hh077bST7fJHHnlETj/99NC2f9RRR8moUaPk6aeftmzzhz/8QQYMGCBnn312aP2o9MEHH8g777wjw4cPj2R7AAAASCZlGLKprMH5yVUV9lvsdes4NIuL9+69t/zfkv+zXD5qwCi9DaaAymZEZGM4625XF8p6Ad+UkiDLspR2EVPyn/Q3VHLCMnKZTdeOoqH3XVW2ymaS+yi+mzecV4orZEYp57MlRbXModMt0K96jOruSJXsstJS2Tkgzet5EITWsUWXoQztOSTghW4gRCzBERqbrAwS0zr/dT+HcyaKFKsMuboBaJYq+udun5vVx4oaDTKpFtqSVIV8Xgb27et7Pea6dbJ+rcaBWWFlu7I0NNkHmQzs6b9vaEN0hwc/14zW22WPq4hznufXyd86Tq6/a7K88/57VZcvXbpUfv/738u5554bcc++1NLSIvfee69tmwkTJgS6zeHDh8ugQYNkwYIFVZcXi0WZOnWqTJo0ydP6nYJM3n23eqiDa34OzbZy06tEunTp4ths5erV0rVTp1C74vQ8lU4/9el/v2EeCfNenydTbplSdVk2m5Vbb701EWFy8fcAQUnPjB4AAAAAAAAAAABIsenTp8tee+0lBx10kEybNk2KRec3Rnq1fPlyOfDAA+X//s+6IK7VhRde6Hk7e+21l+Wy1157TR5+OJw3co4ePdp2+cSJE+W996o/+KPrlltukdNOO83XOtzo2LGjfOUrX7Fc/uijj8p//vOfUPtw4403Or7Z6ZxzzpGTTjpJ1q1bF1o/5s+fL2eeeab0799fHnnkkdC2AwAAgBqU0Svq9Uz36VnNYqtfHvpLUaXqK200GmXiiAS8+TAgKh9esb9BkAlqic34ofJ6x7qKsCjVc1hGgh5hzxqbxif9guQvwx1yRsgBWjGILWSGChVXMkpvzlPtGNUdI5L+ldTlnMfE7g3dI+hJdbrfUaskjYuoTbrX7DgKw3W2WHYZZKJ7DppaQSbbBjuVfYY9bVEc6maXW2zX5ZCzbR+SKkVBJoFJwdeCtiC6AzHZ0XnhyOVycvHpP7Jtc9VVV8lnn30WUY+29cADD9gGPDQ2Nsqxxx4b+Ha///3v2y5vbm72vO4BAwbYLl+yZImsWrXK8/pbWc6ldK67beQaoERJ165dHdt9+MlHoffF6gVKrYINMnHBxzzNbj5fKpXk55N+bvm82qRJk2To0KGetw1Uk9wYaAAAAAAAAAAAAKAGPfXUU/LUU09J79695fvf/74cf/zxsttuuwWy7mKxKDfddJNceumljm8OERH5+te/LmPHjvW8vYMPPlgee+wxy+Xjx4+X6667Tr73ve9JPp/3vJ1q673zzjstl7///vty0EEHyf333y+77LKLq3WvXLlSzj77bJk8efI2yzKZjJRKzg/IenXwwQfL/Pnzqy4rFotyxBFHyC233CJHHnlkKG/H3XnnneWaa66RM844w7bd5MmT5d///rdcccUVctRRRwXysOuaNWtk2rRpcuedd8qTTz4pptkWH1sDAACAJWVu+Qpuq2bZcAvKtee+moEqfTr1kTuPu1N+MP0Hsqa8RkRETNOUXvW95N5x90o2UzuPeBohBpmohnahrRvww9Ptss0fqbpCiBuOVpRhK05ax1rdIJPKy1GSx2mvv9fEF6ag8VtQcg6b2Ol+v7mMj7lRwvf3Tj12ErNkispYd/T8g86PsEdbcrvvkzQuojbpjhtJDbeozBspa6SP6P47FJ1/FbGxWpCJ38tlZf9c7HKrpirjoUNpCAlJQx8DF/w5GEdAEVIuykPG47bSflwff9iRcu3UZnntrbeqLv/000/l6quvlssvvzzinm3iFBgyYMAAufvuuwPfrtPLgF5//XWZM2eO7Lnnnq7XrfNMzuuvvy7Dhw93ve5Kvo7NhM7DgqaUkqamJunQoYNtYM/yTz6RIQPD68eqVascX+Czww47WC90830pcTne+TmOrBdNvW2qvP7K61WX9evXTy655BLv2wUsJPfXUwAAAAAAAAAAAKCGLVmyRK688kq58sorZcCAAfLNb35TDj74YBkxYoT06NFDez3lcln+85//yL333iv33nuvvP/++1p/V1dXJ1OmTPEViHHcccfJeeedJ+Vy9YdGP/vsMznppJNk0qRJMnLkSNl5552la9eu0tDQINms9b+q/MpXviL77bef5fJDDjlEdtllF5k7d65lmwULFsiee+4pZ511lvzoRz+yf8BARBYvXizNzc1y/fXXy4oVK7ZZXigU5Mwzz5RrrrnGdj1+HH/88XLTTTdZLl+2bJkcc8wxst1228mIESNk8ODB0qlTJ2loaJCMTaHksGHDZNiwYVp9+OEPfygvv/yy3HbbbbbtXnvtNTnmmGNkp512kjPPPFMOOeQQGTRokNY2RDY9hPTKK6/IrFmz5NFHH5VnnnlGWlpatP8eAAAAbYtSegVmEmCAYvWOaLZzcZ81YscR8so5r8icd+fIx59/LP279JedeuzkrX8JpnLhhcwYjQ2hrRuInLIZP+rqNNfRNgpfgtIaNlAy9EJVtwgyMZL7KL7X4inCFNIhY+iFplUN09D+jpMfNLxD4w6yeO3iqssy5YwM7RXfm6R1v6NW8YUIoa1I9DGm3IVZlUznwPmM0jwHy85jYrWwM40/s1c5X3NVBGuxrwwlrsftNMwZffYx7UEHQOIFMI54nnEm5PT22n/DMOSyC86Xb0040bLNddddJ2eddZZ0797d41a8Wbx4sTz11FO2bV5++WU59dRTI+rRlpqbmz0Fmey+++6ObZ5//nnfQSb+JOTA9kj3utvarl+/fvLKK69Ytlu8bGkg/bLy7rvv2i5XStk+ZxTqtxXCyteuXSt/+M0fLJffdNNN0q4dgeEIXnJ/PQUAAAAAAAAAAADaiIULF8pNN930RYjFdtttJ1/72tekb9++sv3220tjY6O0a9dOyuWyrFq1SlavXi3Lly+XuXPnymuvvSZr1651tT3DMOTuu++WnXfe2Ve/+/XrJ8cee6w88MADtu0+/fRTefDBB+XBBx/UWu+JJ55oG2QiInLttdfKwQcfbNtmw4YNcs0118i1114rQ4cOleHDh8v2228vHTt2FBGRlStXyqJFi2T27Nny2muviWlTGfnrX/9aOnXqpNV/r/bbbz8ZNmyYvPTSS7btli1bJn/729+013vppZdqB5mIiNx8883yySefOH6vIiJvvfWWnHHGGSIiXwSs9OrVSzp16iSdO3eW+vp6aWlpkTVr1siHH34oS5culXnz5smCBQsILgEAAIALmmUBIYZliIh2gYaXt2HvuYP7B/DTRBUIMkEbpDwUlNoEDKh6zWKCCIMovBaHJqmYOme0Bpnota/8RquGRKRcbN+NxqGUhnrrqOgW6PsJMknD/r5vwn0y4g8jpJzZMmi7XC7Ln8b8KaZebeJ2fPATOA7oMOzC0jy0i1rlWW7373Ja6YYJ6QRmbsxs2yjIIBNXIWIWTVUm2HlnYvgdG1PwEYFk0g0jgB9HHXaYDB8+XF544YWqyz///HO5/PLL5YYbboi0X5MnT7Z8kU0S3HPPPXLttddKnW7Y62a77rqr5PN52bBhg2WbZ555RiZNmuSvg35OjDTchAVAbf6c/fv3tw0yeXuxfdCIXwsWLLBd3qtXLykUCtYNXH9dbv4g+GNh/br10rKu+jM6/fv3lyVLlsjtt98e2PYWLlxou/ylN1+X5gf+arncyBly7GmnuHoRGJKJIBMAAAAAAAAAAAAgYZYtWybLli0LZd25XE7+9Kc/yZgxYwJZ31VXXSX/+Mc/ZN26dYGsT9dBBx0kP/rRj+TGG290bFsul+WVV16xfQjCzqmnnipnn322TJ482dPfu3H99dfLfvvtp/UgblgymYzcd999MnHiRLnjjju0/85twAoAAACgSym9kiwVcgGo9rPkFKJuQ+XDK/ZXjY2hrRvwxUvNgc34oXSLdFJQ+JKkgv2sselx+pKh91uMWbF7W0NQkkh5PA7i+m5ScNgmiu73W62QX/vYSMF30q19N/nnGf+Unz70U/nn+/8UU0zp16GfXH3k1TK019BY+6YbotAqqeERqB1K96YqoSqvv8Vy0bG97jllms6DXbWwM915g6XKsdhNjollkIkhW8a96KwrBQN9guaMkfHwvTgexin4qpEwuseMj3GkNRTT1Lg4VWvhNVQzSZRS8qtf/UpGjRpl2ebWW2+VSZMmyQ477BBJn0zTlClTpkSyLa9Wrlwp06ZNk7Fjx7r6u/r6etlvv/3kiSeesGzzzDPPSEtLi+uQlEq+js00XJsDNGTIEJk+fbrl8vnvvhPq9ufPn2+7fMiQIQ5rCPH7ivhQeOedd+TUU0+NdJsPPf2kPPT0k7ZthozanyCTGtAGZ/QAAAAAAAAAAABA29S7d2957LHHZPz48YGtc+DAgTJlyhTJZNw9mB2Ea6+9Vg477LBQt3HCCSfIzTffHOo2Ko0cOVJ++9vfRrY9K5lMRm6//Xa57rrr7N8yAwAAAERB6RSJRVCVp/vEpcvC1bZA1eVDW7fRoSm0dQO+BFyAogp6hTRpKEpNUsF+LrMpjKSo2aXKq01rCEotSdJ3s43kH9qRySi9uUbr8b0F7aLwdCQedGnfRZrHNsubP3tT3vrZW/LoaY/GHmIiIpJV7saHRJ97qAm640YsheEam6wMaiiVS47tdT+vcwKESLnK6Vn2u5uMyiATNyurPjZvCjLx0YeECjusFEB1kY4OyR+KQnXAAQfI6NGjLZdv2LBBfv7zn0fWn2eeeUYWLVoU2fa8am5u9vR3RxxxhO3yNXY1fUIAACAASURBVGvWyCOPPOJp3YFI+/mgnZm5qeGwYcNs273y1pt+e2TrpZdesl2+++67B7cxpdx9vwEERQFJwYweAAAAAAAAAAAACMmQIUPk3HPPla9+9aux9iOTycgpp5wir776qhxwwAGBr/+4446TGTNmSO/evQNft51cLifTpk2T0047LfB1K6Xkoosukj//+c+Rh7ScffbZMnXqVOnYsWOk263mxz/+scyePVtGjBgR+bYHDBgg3/jGNyLfLgAAABJI59lbrbATnzQfIKbYalsqH2aQSfz3TkBg7ArZ6+v11hHhGOQ1NMVI0CPsrUEPJUPzOlLxkauGRKRcbGEK1Nm4ktEMTctnqlx/dc9bvhNfcll34wNBJgib7jEWRyCazhYrr9Km6XzN1v8c3j5vtXATVyrGcVe73Kpt1kOHvISfpEQ6oriABNOeL/q/ZrTp83Xz/vvVr35le92666675M03ww10aOU1ICRqTz75pLz33nuu/+7oo492bHPXXXd56dIXfIVIpCCYNgitx7tTkMm7S5fIJytXfPG/M/XBPrfz4osv2i53DDIJ9etqG8cC2obavesAAAAAAAAAAAAAYtatWze56qqr5K233pI33nhDrrjiCtlrr73EiKigpK6uTiZMmCBz586V2267TTp16hTatkaPHi1vvfWWXH311TJo0KDQtrO1QqEgt956qzQ3N0tTUzBv4R4yZIg8++yzctlll8X2FuNx48bJggUL5OKLL5Y+ffrE0odWu+yyizz33HNy3333BfvWmSo6dOggp5xyisycOVPefvttOfLII0PdHgAAANJBZ1oexdRd6b6xuoYLwrxS9YXw1t2JIBMkk5dxye53CJXNSq2UeWmPpxHIZrIiIlLSHLorv4F8NryQJr+8Fk8lOkwhOYdN7HR/s6watqN5/rWRGrrQZJS7Iruo/p0B2i7tIJM4Blut4Mov/2vJLDk21w188qrsM0hzi3HcxYBr1VR5uAdVSb7mb8H7vo7lePaLCzCwrSqnRVz/Dj9Qmz/DHnvsId/+9rctm5VKJbnoootC787q1avlb3/7W+jbCUK5XJYpU6a4/rsdd9xR9t9/f9s2Dz30kCxYsMBr13zdt6byuuVB6+fs16+f47MwM1+c88V/N7oE9xvw4sWLZdGiRbZtRo4c6bCWEL+vtnEooI1Iy10HAAAAAAAAAAAAkGqDBw+WCy64QP71r3/Jp59+Ko888oicf/75su+++0pdXV1g22loaJAjjjhC/vjHP8qSJUtkypQpsvPOOwe2fjvt27eXn/70pzJ//nx544035JZbbpHTTjtNRo0aJV/5ylekc+fOUigUQnko+3/+539k8eLFcvnll0u3bt1c/71SSvbdd1+577775OWXX676UELXrl1ljz32sPxPoRBsYV7Xrl3ll7/8pSxevFhefPFFuf766+Wkk06SfffdVwYMGCAdO3aUfD4f2YNaxx13nLz00ksyc+ZMmThxovTs2dP3OjOZjOy9995y4YUXytNPPy3Lly+X2267TeOhEAAAALQpWlPeCIr7dafemXCL5tJIFcIr9jc6dg5t3YAvXu7XHX4zUTpFsxEWdHkOy0jQI+w5Y1PQQ8nQu46YFd9B698mkdffi+IKU9AKLQu/G6mhG5JR7RitiaLPFMhnkht0hLZJO8gkoWNE5VW6VHYOMska2fA6IyJlv7upMlTKzbqsgkyyHu5BExQsF7ga/mhANDRPogDONTPt56uf/ldccy+77DLJ2Pye+MADD8icOXMslwfhL3/5i6xdu9Zyeffu3WXjxo1immYk/7n33ntt+zt58mQxTfe/B5922mm2y8vlslx55ZWu19vKVxhJQudhunQ/e+V886CDDrJt+9Q/nxcRESNjitEpuN+An3jiCdvlgwcPlt69ewe2vU1cfL8pPxaASuHemQEAAAAAAAAAAADYRocOHeTwww+Xww8/XERENm7cKPPnz9/iPwsXLpQVK1bIqlWrZPXq1bJ69WopFotSKBSkUChIp06dpFu3brLddtvJwIED5atf/ap8/etfl1122cX2IZeoDB48WAYPHhzpNjt06CAXXnihnHvuuTJ79mx5+umnZdasWbJkyRL55JNP5NNPPxXTNKV9+/bSoUMHGTBggHz1q1+Vb3zjGzJ69Gjp3r277fqPPPJIOfLIIyP6NF9SSsmwYcNk2LBhkW+7mpEjR8rIkSPl5ptvlrlz58rs2bPlpZdekkWLFsm7774rn3zyiaxdu1ZaWlqkrq5OGhsbpbGxUZqamqRXr16y0047ffGfoUOHSlNTU9wfKbF22203ufTSSy2X9+vXL7rOAAAAJFwkz/YqJTqBKSqmIvAkU/XBBXhuzehMkAlqiFNBqWGKONXuZpI/BsUVllFNLtMaZKLXvvIq0Pq3CIDOdZw6ni9kDL3ff6uGaehOmtjfvuh+RyLiqQATcEs3ACkWLq8BOueMryJiDbrzBmuVQSb6fbVsmvXQoQTNx+AX1xEETHtYim/CGPY4H40vP8NOO+0kJ554ovzpT3+ybH3BBRfI448/Hlpv7LYtInL88cdLNhtdOfrRRx8tjY2Nsnr16qrLFy5cKM8++6zsv//+rtb77W9/W84991xZsmSJZZvJkyfLGWecEf3zGW0wvOKQQw6RKVOmWC5/6Jmn5IaLLpbsgH6iAnwO6v7777ddPnr0aOeVuA2jc/X1ej8WkhpMiLaLIBMAAAAAAAAAAAAgZrlcToYMGSJDhgyJuys1IZfLyT777CP77LNP3F2paUop2XXXXWXXXXeNuys1a7fddpPddtst7m4AAADETuvZWxV+4Y72M8AJCJdMGlVfH966u3QNbd2AL17qBpR9QalSpk6ckocNe+O1eMxw+JxRch1kUvGR89kqIREJ4eW7iTVMgTobV3QDCXLZKmE7ToFJm1H75E/VEBkgRrrhOkm6RlcylZINxQ2Sz+alZDqluknogf9lv/efFWOx0hyXNzW2+MdePm9aBnplbjkB05DqWI+0fC+ocbrBdz4K7WvkBsDXeLPV/rv00kvl7rvvlvXr11dt/sQTT8hTTz0lBx54oJ+tVjVv3jx54YUXbNuMHz8+8O3aqa+vlzFjxtiGXDQ3N7sOMikUCnLxxRfL6aefbtmmXC7L6aefLs8995zkcu4CTH2FSNj86bp166Q+xN9Xo1S5j4466iipq6uTlpaWqm0/+PgjmfXRMjl41+Cepfroo48cQ4GOO+44jTW5CKPTbun1D5x16tJJ5i6bu80/b5dtJwO6Dgh8e+PHj5e7777bcvmlPzxLzjv1B5bLM/UZyX11UOD9QvSSeYcJAAAAAAAAAAAAAAAAAAAgovekYxT1D7oFZrzZehuqri6kNZuimppCWjfgk5fiFYfxQ6e2ONI3r3rcVJKKpFuDTIqGXglaZR1tznBX0BSltL2BV6u36fpIodL9frNGlffe6s5n2N++6IZGAFFJ0rV3a7qXrNUtq0VEpGyWHdtmVbjv/S773Z2V34eba7ZVkEnW/ZjjKkAFAGJUqhIelbb7naq2+gx9+/aVH/zAuqhfROT8888PpSvNzc22ywcNGiR77bVXKNu24xSecv/998uaNWtcr/d///d/ZeDAgbZt5syZI+edd57rdftiMV97++23ZcyYMdH2JSJNTU1y5JFH2ra58cYbA93mzTffLMVi0XJ5v379ZMSIEc4rCnMYqoUxDtgsuXeiAAAAAAAAAAAAAAAAAACgzdN5bjeSR3t1HyDO8Gjm1lRIbww1MmVRBMcgqcIYmHTWGWFRqte3aCepmDqfyYuISMlDl1pDUJIodW841+luyj5SmHRDMrKZbQv5le75x/72pdq+B+KUUXrjRpKu0VtbtX6ViIiUyiXHtmEXuJf9rr5yvuZil1t+rJyH8KSU3Ef52dU1EXSgQS+OD3BB99Txc45t/tOSIVJyCJVcVe8cYJVKVXbfBRdcIO3bt7f8k9mzZ8v06dMD7UapVJI777zTts24ceMC3aauAw88ULbbbjvL5Z9//rncd999rtebzWbl5ptvdmx37bXXyu233+5q3b7uxav86axZs2TEiBGyYMEC7+uNiNfPfvLJJ9suf+ihh+TVV1/1tO6trV69Wv7whz/YtjnxxBM15xBuPq/bvdM25jBoG9Jx1wEAAAAAAAAAAAAAAAAAAGAlgmd7dd9YrTSLi9sS1S6cIBOVpWQLyeWpgMNhnNGqQU5BwaaRoMLZ1jASp+K5VpWtWkNQEI22UoysI2v4CMnQnc+wu33x9R0BIdA9JpMahGUqU1a3rBYRkbLpXNAe9jlYVn7vQ77cz66ubxZNVdbD540w/A4uhHABTup5jSTTPGYCOrTW5q3H1GLGlI1VhriaOK6rnO/dunWTc845x/bPLrroIimXgwt3efTRR2XZsmW2beIKMjEMQ0444QTbNs3NzZ7WffDBB8tpp53m2G7ixIkyefJk7fX6CzL58m/L5bJcccUVcsABB8hHH33kfZ0pcOihh8qQIUMsl5fLZTn77LMD2dbll18uy5cvt1xeX18vZ5xxht7K3OWYuPsDX3k4biNTamA8RaIl51dgAAAAAAAAAAAAAAAAAACArek86RjF87a6BUVZgky2ptq1C2W91Agj0byMS8p+wNMahjLRPR5eC8UOhWxBRDa9CVyHWfGR89nkBpmkLvQjZd2Nm6/vN0FBQrXMMAwxTQLXkByZJIctagxppoisXq8fZBL2dbDscyhVmYrvI5AgE/ffr0rL9cDDV2kyrwD80T6HgjnZPmoqSTGz7bzJFJEPOpQC2UYiWYz/kyZNki5dulj+2euvvy7vvfdeYN1wCgLZe++9ZeDAgYFtz63x48fbLp81a5YsWLDA07qvueYaGTx4sG2bcrksJ510kpx//vl6ATIBnBavvfaaHHDAAXLRRRdJqVRb54Ap257rSik599xzbf/uySeflN///ve+tj1r1iz57W9/a9vm5JNPlm7duvnajiVXx0aEk5mkzpuS2i+4lpK7DgAAAAAAAAAAAAAAAAAA0BbpFKFFUq+t+8RlJsFFgjEJK8hE5XgMFgnmYWBSTkEmGZ11JvtJ/6QV9ucyORERKRl6/apsVcgUQuhRMFIXMqNzvqTsI4Upo3zMNXTHJvZ3dJI1LKJGZTUTAA2HuUgodIJMVEWQiUYRse7nbRhUZ7v883z1bZX8jpGGqv7fHVjeG+c8JDymJciEQRKIQbTzxZIh8l7nonzWriwlw5SSYcrnhbK836Uo6/LVx4DU3e9UYzGmNzU1yfnnnx9JFz7++GN56KGHbNs4BYmEbdiwYbLTTjvZtnEKY7HS2NgoDz/8sG1wTKsrr7xSJhw9Qea/Od+2nZ9j88Ply+Xss8+W3XffXWbOnOl5PbHxcVqOHz9ehg0bZttm0qRJMmPGDE/rnzdvnnznO9+xDYbp0KGDXHLJJforDfFfSKQunBawkZa7DgAAAAAAAAAAAAAAAAAA0BbpPOkYwbO9um+sTs2brSOk2jWEsl6jwL5GjXEqZNU45KMsdqiFwop8Ji8iIkXd4aTiI7eGoCSSl68mxjphrUMp/YdbYDKG9yATpVkwr9sOQDpojxsJPvXXrF8jIiJlcQ4y0f28jd8ebbv8r3uvqfrPy35vQyoufK7mUxbbVVkPQSY1MI+rSV6+F75KBE37mPJ+8G0d9lDMiCxvKsmi7kVZ1L0oSzuVpCVnc4NSA8e9XeDFGWecIX369Am9D3fffbds2LDBcnk2m5Xjjz8+9H44GTdunO3yO++80zagws6OO+4o06dPl4YG598u5744V04YfYJc/JOL5Z0F73jaXjVvLVooP7nyMtlx6C5y3XXXSbFYDGzdaWEYhvz+97+3nRdt3LhRvv3tb7sOrpk5c6YccMAB8uGHH9q2+8UvfiHdu3d3tW5tbscsP2Ocy7+tiWAoJBr/BgcAAAAAAAAAAAAAAAAAACSWTmFXJDVYutvIeC8urlWqfftQ1msUPBTsAVHxMi45BCGpjMZKMzwe7kbW2DSOlAy9FA+zIu0jn82H0qcgpK4QRau7KftMITKUj/Ncd9LE7vYvxnAgYGtZpTdvNmIoM9MdllqDTEpl50Jl3c9R/z8nS66x+vpW1ZXlqZ3XVV1WVj5P8MoP7epmtnpblfdwX8ScEYCl5M8XU3e/U43N+F9XVyeXXHJJ6F1wCoQYPXq0dOvWLfR+OHEKMlmyZIk8/vjjntc/cuRIefTRR6WpqcmxbbFYlL//5e9y7P7HyoSjJ8if7/izvLPgHTHNTXMDnd+xS6WSzHltrlzTfJsMHztGdv/2kXLrX/4sLS0tnj9DEvg9L0eMGCE/+9nPbNu0tLTIySefLEcccYS8+OKLtm3/+9//yumnny6jRo2SDz74wLbtgQceKGeeeabLHrudw/mf8+n9ZQ2MjyLCjxK1g3+DAwAAAAAAAAAAAAAAAAAAkkvnmdUInmtVDgEDX9Bt14aods5vNfW0XoJMkGQhJCwprYLT6B70r4XiCMMwxDRNKWkO3eWKj1zIFsLpVABS991odDeS0LKUyBg+QtN05ynsb99MMbXORZPEE0Qgm9GbNyf1+mEqkc83fC4iImWz7Ng+oxkuaXTpIj2n/kY+/P65smHVl3/zSfuSXHnkCvmgY/WQk7Lf3VQ5Fhv6K7PMscrmXHdB+QnFilIyD0mgtumedzFO0JNyvfI1i3PYfyeddJJcffXVsmDBAj9bsfTSSy/JK6+8Yttm/PjxoWzbrf79+8uIESPk+eeft2zT3Nwshx56qOdtjBw5Up588kk5+uijZdmyZY7tTdOUl+e8LC/PeVlERDp26iiDdh4kOw3cSQb0HyDt27eXhoYGMU1T1qxZIyvfXSzv/PddeXvxu/Lmwrdlzdq1nvtay6644gp57rnn5LnnnrNtN2PGDJkxY4YMHjxY9t13Xxk4cKA0NTXJ559/LosXL5Z//vOfMnv27C8CZuz07NlT7r77bjHc/qbvdhhylWOSjDEOCAL/BgcAAAAAAAAAAAAAAAAAACSXzoO7UTzbq/sAsWbRXFuiGhtDWa9Rlw9lvUAQdN7Cu+0fORRNGEocS6VcFMPiS7pBJpXXm1zGfdFwVLwU9sUbppCQa31KZJSfIBO9HelpDAOQWFlDM8gkjnmExiZNEVm7cVPBr06Qie7nFRHJjxgpfeY9K2v/eIuUFr8nZ334kPzzq+tlo80qyn4zQCrHWDf73GJsVnkPc5KUzBk1Zr/bMCXF0wYP11/isBA8zfliyL1I7sYD4nC+Z7NZueyyy+SEE04IZfPNzc22y9u3by/HHHNMKNv2Yty4cbZBJn//+9/l008/lc6dO3vexte//nX5z3/+I9/73vfkqaeecvW3K1eslDnPzZE5z83xvH07o0aNCmW9kXO4aGWzWXnwwQflgAMOkFdffdVxdW+++aa8+eabnrvTuXNneeyxx6Rnz56u/9bVMOQ69CTCkGLu/RGylMQnAgAAAAAAAAAAAAAAAACAtkjnRdGRFNxlNAs5DIJMtqYaGkJZr1FfCGW9QCC8DEsOY5nSGYcodnDPFCkZeiWgla0K2QSPQSn7amrlUIpKxkdomtJ9yzTfCVBTcoZe0IWXIKwomEpk7YbNQSZl5yATt59DZbPS8MMfSdOVV8nMnexDTERESspfdETlHMrNfMqqqcp5eM+57vUgjZJ5GAO1J8ZJfFKvV65o7L/vfve7sttuuwW+6Q0bNsif//xn2zbf+ta3pF27doFv26vjjz9ecjnr+cz69esdP5OOHj16yOOPPy7XXHONNIYUzOzGkCFD5IknnpDbbrst7q5EpnPnzvL444/LsGHDQt1Oz5495bHHHpOhQ4d6W4HrMbAGxq0osbtqRg3fdQAAAAAAAAAAAAAAAAAAgNTTCSmJ4sFW3YeTsx6KyGqcamgf0nrrQlkvEAwPA5NDcpPKOD/6HUmwU40xxZSS5lP1ZsXuLWSSG2SSupAZne6m7TOFyPBTBqK7H9nd/vnLOQAClTX07lFiKQzX3OTajZuCTEpmybFtNhPuPVnZbzVe5ZzPzdzNqq1NYbdlF3yEYkWK6xEQPe3zzvsJmrr7FSt+PobGPlBKya9+9SsfG6lu+vTp8umnn9q2GTduXODb9aNLly7yzW9+07ZNc3NzINsyDEMmTZokb731lnz/+9/3FSTp1c477yz33HOPzJ07Vw466KDItx+3Hj16yKxZs0I7Dvfee2/597//LXvssUco69+Wy8HCxxhZE0FPqCkEmQAAAAAAAAAAAAAAAAAAgOTSeXA3ggIIpfvGao2ggbZG5fMiyvnN6W4ZDfWBrxMIjJdhyWGcUVmN8SXCgjBPxREJLewvGu47VsglOMgkbYUrWtf68LuRFhnDRyGd5jylZopLAYiIiyCTGM593W2u27hORDYFkDnxE/ikcw0t+91NmWCDTFTefZBJeu5b3c/REjrd1BPCOZi6eSHil4Lgu5qYq2p+hsMOO0z23XffQDftFPjRs2dPOfjggwPdZhCcQi1eeuklmTt3bmDb69Wrl9x5553y9ttvy49//GNp3xhOUHOrXC4nY8aMkccff1xee+01OeGEE8TQ/T06AYK+3tTX18vUqVPl73//u/Tr1y+QdTY1Ncl1110nzz33nPTu3dvfytx8XOW2fcJ/2wNcIPYfAAAAAAAAAAAAAAAAAAAkVkJyTLQLzFLzZuuIKWWKGXBFmWpoF+wKgSB5GJgci7F0Ck5TVOSSGKZISXO3mRVfUT6TD6c/AUhbIUpirvUpoRtIUJXSPNjdFNYjMHXdRVqWWy+v78M8E97kMnpBF0ktDDeVSMvGFhERKZVLju39BD4ppRzDUsrK541NxVjsZp9bNVV5D3MS5owAfIvvmpG2+52qXIz/v/71r2XkyJGBbLZcLss+++wje++9t2WboUOHSiaBv28ec8wx8vOf/1xMmx8YV69eHfh2+/XrJ9ddd52M/8l4ef6Z5+Wxhx6T5//veVnxyQrf6+7aqZPsO3y4HPPd78oxxxwjHTt2DKDHMQnptDz66KPl0EMPlXvvvVduuOEGefHFF12vo1+/fvKDH/xATjvttAD3cULHoYR2C20XQSYAAAAAAAAAAAAAAAAAACC5DCWO71SOoAZL6Rb0JvBB/yRQhilmOdh1Go0Nwa4QCJKXwgGHglKV1RhfElqAnHQlQ68gubKVrzAJbEnnsOXY/oKfoAGV0fxbdrdvXgpsGw/fW1om/8t6+dH7+ekS2jDdIBMjihurrWmcKqaY0lJs+eK/O8lmvF+jdc7dst/dVHlv6SZQxGL8Vzm971dnXYhXUsOE0Nbozhdr/3j973//u80/e3XZq1/sor6fZEU2ely5i/23zz772IZ3uGEYhlx00UWBrCtq9fX1cumll8a2/UJdQUYdOkpGHTpKREQWv7NYXvn3K7LgrQWy9L2lsvS9pbLyk5Wybu06Wbt2raxfv15yuZzU1dVJU1OTbLfddtK7d28ZNHCgDBk4QHbfZRcZsudeYvBbsqN8Pi8TJkyQCRMmyOLFi+Uf//iHzJkzR9544w1ZvHixrFq1StauXSuFQkEaGxulV69eMnjwYNltt93k0EMPlaFDh8b9EcTVTXYNjK9jxoyRgQMHfvG/ix9+tEU68MhhX7dfQQ3sA2zCr6cAAAAAAAAAAAAAAAAAACCxdAJEIin20S0w8/H271qmMiJSDHadRlNjsCsEghTCuKQyGuNQhA/6exl7dYqP41DSHOJbay5M0xTDTeFxxFJXBKvT35R9pDD5C9GhMDVxKobFhrN/IivvO042rt32O861L0rDGWdE2DHUEt0gEy8BPL5phVnJF0Em5bJzOqKfQBatIBO/u6lyjHUz3lrdGxfy7rugM69MAi5H/rEP4ZbuMRPjsZW6+51qauEztHF9+/eVvv37bvHPBnUZJHW5uph6lHxBzDX79u0rEydOlIkTJwbQIx/cnMNKuRsz/YSXutzHYY2nY8aMkTFjxnzxv9fPfVNM35NopFFK7joAAAAAAAAAAAAAAAAAAECbpBFkotUmin6IiKSlICxiKoR8F0WQCRLMUyGAUzBGVuNESnC4RlIpUVIydANWzC3+X02J8zNRy+JKxk9omuYYQV1lPDK9+kjPyZdJvuOWQQ2FzmXpeffVYnTvEVPPkHY5QzPIJIr7Ko/Wl9aLiEjJLDm29TNOGsp5nNQNQLOiKrahXMzdrL4flXMfZFLLc8ZanKbZMZN72iK1wk8yiSU4KwR+xpuaCGMB2rIwT2HGB9QQP1G8AAAAAAAAAAAAAAAAAAAA4dJ5cDeCZ3uVRkGbiIjK6RUJtjVhBJkYHToEv1IgTg4FpSrnfCJFWQxVK8VnIvoFya0vjzUTXiKbuqI4pcSxDDBtnylEhp/32eoWrrO/Y5MfdbD0mXegtPzlz1L+4EPJ9O4the9811XYAbC1XEYzyCSWa7vzNk0RWV/cFGRims7XYMPH+aJzDS0rn/OAykASN+ExFn1ThdoNMvF0RHIJA/wJP8fEt9Td76DNaMvHZi39RqRH//Mql+3B3qolBJkAAAAAAAAAAAAAAAAAAIDE0nkreCRvDs9obsPH279rmcoEXyhndOwY+DqBwHgpXnH4G5XVGF+iGA83q6UCnaLm0J3s+JIvpa2ASCuzLF0fKVSZjPe5hvb1OMKxpFb5OQ+VYUj92PEB9gZtXT6rF3RhaIY3BklnfDeVyIbSBhERKZklx/ZZw3u5nE5YVNnvEKm8BZlY3vcWCu77kJIgk5RNaYCaoD2HiXGCnrb7HbQdHJttiJuv2u146WN8dXsMcswibCm56wAAAAAAAAAAAAAAAAAAAG2STmFXFMUTuoVePoqLa5nK6n1HSpX119mpk9fuAOHzMiw5jDMqq1GUm5ai1ARRoqSkNCNKWr/XhCeapK4QhSQTV/wU6ItmSEEkIXEAIpMzclrtdwublgAAIABJREFUYrl+6ASZyJdBJuWy8/2Cn0AWnb8t+51uVc7X3Iy3Fm1VXi+oZou/CSFoMjkSPlEDagbzRa/Yc0AtcBtO4qKpn98/3P5pUgekpPYLrtXyXQcAAAAAAAAAAAAAAAAAAEg5pVOUH0GxrVY/REQRZFKVyjrvP2WUpPOYodrrNDp19tMlIFxeig6cxpmcxvgSYdhD6sIybJQ0h+60lMWm7rtJWXfjljF8zDUymjub7wSoKYVsQaudr6LJkBXLRRERMTWuxoaPYDetIBPdADQrFftZuQldsQoyKeh9v1uuq3ZLCtMyXwMSS/daEOMlI8nXKz2MVLUq/ccmtPFVu+N6f7GDa0Xt3nUAAAAAAAAAAAAAAAAAAID00wgpUREEmWiHpfgpLq5hOkEmokQ63HCDFLrqFXQYnbv67BUQohCGJZXLaTTi8XC3lCgpGXrjjqm+/JtES3j3tqFT7BXFtT4ldIrsregGs7G//Uv8OIE2JZfRmENITMW3mtvcWNooIiKlcsm2nWn6Kw7XCjLxO92qDL90Md5a3vd6CjJJyX1rGxxK2+BHRtLoHoQ+rhl+50mpn2elvPtANak/L11z8XmVy/YRanvfG6LGL9UAAAAAAAAAAAAAAAAAACC5dAq7oii4y2g+cplNSUFYxIyc835RSkTl89L9j1dorNEU1bmz/44BoXE/LjkFDKhc1vc6glRLbxou1c5HEZH0fTeRBJLVkIyf4nPNMSJtx1CaUTiGKOQzea12sRyPGps0lUjRLG767+IvqMSJTpCJ73lD5RjrZu5mMTarvPsgkyjnjIgX1xm4p51kEv4mLP+c4xrJxLHZhrj6qpV2e9/TzIQeg8nsFaLAXQcAAAAAAAAAAAAAAAAAAEgsnQKrKAqglUZBm4iISsubrSOm8jr7ZVNRYn7f/aXLt4bYtix03RR6AiRVKONS1jnIRCv8KSCeiiPCrT32RImSYkavY2ZKKi+8fDexFrskJLMsLbKGxlhgRXdHssN9S2oBGdqmQlYv6EInxCNoOmeKKSKlcklERMpmOdT+ZJTzfUtZ+ZvQbHFv6Wa8tbg3VnV17juhG9QJAFbinC8yzUJCtelAyDb30V18YFf7JtofzrhvRdi46wAAAAAAAAAAAAAAAAAAAMmlU5QfReG+bqFXzkdxcQ1TGvul8ln/DjfeIHXdrB/cbvrWvkF0CwiP6+IV50IFldUIBNIIf8KWlFJS0txtrd9S0gs9kt6/beicL225IGwrvoIGdMeICEORalWbLmJE4uSzegGAsVw/NMYbU4mUzM1BJmWHIBOftZ86Y2zZ73Sr4jMrF4EilkF5Bb2gmi37kI45o5ehNC3Bc9bcHcQJzAlE2mkH34XbDftNp/5EB5B2roahBI9ZSe1aUvsF19Jx1wEAAAAAAAAAAAAAAAAAANomnQKrKIptdbeR0QgaaINUXiPgpWIXq3xeej5xrxS6bF2oaEqHkdtJ069+HWj/gDRQWZ3zKLon/WupSL+s+VFMtalUNOmFc6n7bnS6m7KPFKaM4WOuoVm4blksDyCVckZOq52R4HCL1iATM+TYBp0xVnfeYKlyP7vZ5xahJ6pQ568PAOCBn3siv/dTSbnfSX9wEoKW9N8KECQX37Vy0Z5DaDN2RK0g9h8AAAAAAAAAAAAAAAAAACSWzhuqoyi2VboBJRkezaxG5dwFmYiIZHr1kd5zn5Z1zbfLuqdmidHQThrGHS/5gw4Jp5NAkMIorNI6j3jQ3y0lSrs+Ii2FamkrntIqROTY/kLW8D7X0JlXbWrI/vYrbechaltdTi/oIpbjVnOTZXNTwGFroIkVv0EnGaUTZOI3TKXiQ7u5l7UYm1Wd+yAT7ftbAG2P7jwwxvli6udZKe8+rCUlZCcOqT8v3Urox3X7PUT3vSV0hyF0/NsyAAAAAAAAAAAAAAAAAACQXDoPgEfxNmnNB9EpCKtOFZzfAl9tF6t8XtpN/KG0m/jDEHoFhMjt8/kaBbEq6zy+qCjGw9Zt1UgRgptCo9ZvKenFSUnv3za0gkzC70ZaGMrHea47RkQ4ltSq1J2HqGn5TF6rna/xxSulRBzCR0xlfhFQUi6XQ+1OxnCeb5X87qaKMdbN3M0yjMpDkImk5b61LQ6lzqcEkAxxznXiHBva4riExJk3b57MnDkz7m5sYVXLKlm1ftU2/7yxqVFGHzU6hh6F45lnnpG3335byqtXS2nFGq2/MdrlRbVvJ6XlK50bK5HcnO0896/ye+g/sL8M23uY53XFirG2ZhBkAgAAAAAAAAAAAAAAAAAAEkursCuK4gmNAAERSU9BWMRU3jnIRKiZRi0JY1zKajz6HWWQSY0U6bsJZDGV+7+BBsN5f9bK8RaErOGjDESjQF9ERGl8J7DHOIEkqcvqBV0kdaw1Rb4IMjFDTnjIKOdxsux3N1WOsW72ucXYrDwFmXDzVTOSedoizRJ6LajEPAtJFdVcaubMmXLqqadGsi2/tu+3fU0Fmdx+++1y9913x90NLd/63rccg0wYTxE27joAAAAAAAAAAAAAAAAAAEByZTSKmyMotlW6byfXDTxpY1RdwbkNz02jhoRRCKByvMMyDF4KjZJe6JHUQnQrWv1N2WcKk+EjsEgrIE6E/Q3UmELWeS4uEs/1TWu4UV8GmJTNcqj90QmLKvusxlOVoVIuAkWs7klVXb2/PiSZh0PS5BIGRMPHfNHv/Ura7ncAILGiGk5db4dxvlYQZAIAAAAAAAAAAAAAAAAAAJJLp7ArirdJa25DaRS+tUWqkNNoFH4/gMiEEbCUcS44NYvF4LdrwUuxcxIDQAwXj9Sbm/9/0gvnkrifbWkFmYTfjTZBd86kESQHe0kfJ9C25LN5rXaGbnhjkHTPlc3NTNO0b+ew2ElGI+CjrHxupDJUys0+txqbC3pBNZZ9QKo5HY2pmxciftrjcnzHFsc1AADpwF0HAAAAAAAAAAAAAAAAAABILKu3Tm/VKPyO6Bb+5jQCO9ogVVen0YhCFNQQl4ezTnOlM75EGWRSI+esm89hbm7qJvwkDqn7brROgJR9pqTS3I+pO4YSiAJbJEl9tl6rXVLPfVO+7FvZLIe6Lb0gE58bqQi8U26CoyzuSZVhiCiX+0UjIC8JknlEAhCReINMEnq90pXy7gOoIYm9b01ot+Besn9BBQAAAAAAAAAgJmn/l94AAABtWbW3cjK/AwAgxTQCRJRuyIgPSrfQKyUFYVFTdc5vCY/jBfBAaMK4B9EIMjE3bgx+uxYSW+zgkpfPkfR7zNR9N4Zzf5O+z1PD0LzY6raDJd3zMHXnK1KpkHOei4uIGHFMyDVOAVNtug60bGwJPcgkZzjPt8q+d1PFCjSCU1rZhXy6vkymZZxniPSPfQi3UjDvjnP+VLntbf9tJAAAqJSSuw4AAAAAAAAAAKJV7YHYcjnch6IAAAAQDIJMAACoMToFVhoF0L5pFvVpB560MaqgUTzJlA21xO09iEZzlc06N9pYdLdduCraNpX7v4mDp3CWOAdhnfOFa0QglHaQCTvcL36LQpLU5eq02sVyLdA4V1p/7V29fnXV336DlNEIFikpn32oHGPdBIrYBHgql32q5ftWggWAiPiY6/i93qQ/CC7t/Qc84tBPnPSPp0g6jV+zAQAAAAAAAABoe5RSopTa4kGoYrEo+Xw+xl4BAABAR7G4ZeFe69wOAACkk7Ip1vqiTRRvk9boh4iI6AQNtEGqXX3cXQCiFcYtSM55fDFLpRA2XF2t3Ge5Kdooby4STnqhR9q+G63+puwzJZZm4bpKeFhPGiR9nEDbUpfRCzKJI6hLa3jf3GZVyyopm+G+fCRrOM+3yn53U8X9q879brW/24bbcBU3200hxmDAB915d4zz87Td72wj5d1H/E455RQ55ZRT4u7GFj5a85F8sOaDuLsRuqlTp8rUqVOlvHKlbPiv3ufNdW0Q1amTbFjwvmNbZZhS2GWw5/65/h4SOx4ltmNwqbbvOgAAAAAAAAAA8EgpJblcbot/tmHDhph6AwAAADe2nrfl8/n0P9QIAEBbplNgZYR/rdcuMKvhN1v7oeo0iifDrUkEIuZ2XHIuPlXZnGMb2SrYMUy1UiDqpWg7jkJvN1J3D6xzHU/bZ0oq3fC3COZWtS7p4wTalkKuoNUuluuHi22ublktpsOcye/8JGc4z7fKfndT5Wd2MVYom7HZ9ZCTlvtWL/uaSxjgTwqCTJLDZYgUUMNq5Tciba4+rnL7B2B31Qx+GQEAAAAAAAAAwEI+n9/ifxNkAgAAkA5bz9u2DqgDAADponQKbqN4m7RuoVfW+Q3ebZFqV+/YxixTAILaEUohsMa9jVksBb/dGufmuzI3NyWgIGAEmURHd85EkIlvba6QD4mWz+bFNJ3n2rFc3zROldaer16/WspmuOmHWcP5fq6s/N23qMr9nHExVtjck7r96rTuswEgoVIX3Aig9iR0HHJ7HxrZfWsydxciwF0HAAAAAAAAAAAWtg4yaWlpiaknAAAAcGPredvW8zoAAJAyGgVWkRRhaW3DpCDMgqp3DjKRcGsSgWiFEAKg8hohjRuLgW/XUo0UIbgp2m4tW056kEn6AhR0gkzC70VboAzNYDbmM75RYIs0iue4dd5m6/V3zfo1yQgy8TtEZr8ci93cPyq7MCq3fdIN6oybh0OSeEzAH+1rgY9rht/rTfrud7aS8u4DEHF1IivFeY82i1+XAAAAAAAAAACwUFdXt8X/Xrt2rZRKvM0SAAAgyUqlkqxdu3aLf7b1vA4AAKRMVqPAKoIiLKXTD1hS7Roc24RckwhEy21hlk6OQ845yMQsRhdkkvrisc1cBZko938Th7QFKCiN4J+0faa4maZFGbdmwbzOdwJ7tTJGonZYjgsVYjluNTbZev1ds2GN1ufwI5dxnm+V/O6mymuam+Aom7auL5O6wVaxYyx14nRGcD1CWOKcnyfm3iAh3QASQSuftIZOmrA+iu95psvmSRlPt5bUfsG1ZP+CCgAAAAAAAABAjNq3b7/Fv6wxTVPWrFkTY48AAADgZPXq1Vs8zK6Ukvbt28fYIwAA4JftW6e/aBTBg606BWaKdz9bUQ0aQSbsPtQSl+OSVuts1rGJWYwujLtWClC8fI7EB5mk7bvROV8oYgmGbkCJm8J6VKVbEJa68xU1zYjh3Nc7VzbdKKxZv0bKIacf6gSZlA2fNy6V8wg3oZw298Yq43Is0bnPTgAu/wCqSWzhPdCGtbn7GjfjkFLa+8d/jkkb+x6QeOm46wAAAAAAAAAAIAaZTEYatiqw+PTTT0N/yxMAAAC8MU1TVqxYscU/a2hokIybh8EBAEDyaBSLa4Wd+JVxDhDgMWFrql0750bh1iQC0QphQFC5vHOjYjH4DVuoleIIN6Ek5uaPnFHJvs/0UtgX6/epE66hG8ABe7q/kRBk4lvSA4/QBmn8K24jjjIzF8P75xs+Dz3IJGs43/eV/V6SKq9pLsZbZdiM4S6/OsVv5rWDKRLaoKTci3p+eowgFqAG1MZ5nJTxFLWLX0YAAAAAAAAAALDR1NS0xf9uaWmRlStXxtQbAACA/8/encfLUdV5H/+equ6+W3Kzkg1CCBHZHLYICDqCOMAoiwooEZKwCeqgUfF5FBBEZHnwYR7FUcA1N0BYBpBtILgAIkRwiKAMICKyBMIWEEI2bm5udz1/ZLtJbledqq7uPlX9ec+Ll8Ot01WnqrtOnSr6922EWbJkiXp7ezf626bzOQAAkEE2BVYNCDJpSFhKjpkhQyLbkB+MfEm/EKCw666RbdoPPiD17VaVYBddLJDww4qCN7FumHL9F8BdPM5hjE3gQ7Z2yVnGsmDeEBxTs6ydh4DUpAAei2vquiCxlX0rFUSUjdd67hX9YmSb2oNMNhznWPeZIWNz7HE7K0EmCY41t5WA+2odq12/HwPQAuIMQ8bwTAMti/+qBgAAAAAAAABAiO7ubrW1tW30t8WLF2vVqlVN6hEAAAAGs2rVKi1evHijv7W1tRFkAgBADphCdIGVbVFuTWwKvfhCclWmszOyTRBwAJEfsQurLJr7kyarNLxcfRVeWe2fOCredmuQl+KxWEXba3fZN24X/2buvbHobub2yVW2heuNmFvlXFMCIYAQNkXjTRlrLTa5LphiZd9KVYJKXbtT8kuRbSq1nt4Dx4c4423IvbHxY753MYLcMocpA5B7BMYBaL6445Bt+xqDnuK+3tnh1NmOISaejAAAAAAAAAAAEMIYo7Fjx270t0qlooULFxJmAgAA4IhVq1Zp4cKFqlQ2/hL72LFjKXQCACAPbH6huhHFthT01sQMHRrdqOafNgccEvvjbPfb8cNnHFR92UHbyWwSzF1PeSkeSxI24Dte/Ju598azSjKpfz/ypNqQYjufsZl/IRTPpJBFTQngsTlX1jZZuXqlgsBuzpRU0S9Gtimb2vqw0fgQY05hwsKoYo7bplCI1b5pWnEobcV9Ruup8XOe+XlWxrsPDCZzzyFqFWd369U2BQ173+oQ+Ixs4OkSAAAAAAAAAAARurq61N3dvdHfyuWynn/+eb311lt1/7IUAAAABhcEgd566y09//zzKpc3/lXy7u5udXV1NalnAAAgTaHFWuuE/DJ1av3ISqGXo0znkMg2PGVDrtSpsGroN7+lkR/fScYbcA9kKhq21xYa0fPzumyzmrwUqSQKMjGOB5lkrbDPJlwja/vkKpt5lSRDgFvNbMeWvIylcJ/NZ83V68e6+4R3Vr/jRJBJpdYhcsAYG2u8DRlXjE0o2EANuIcGgHrJ+vwp270HIMUchxo5x46dF8KIhPriv6oBAAAAAAAAAGBh/PjxWr16td555531f6tUKnr11Ve1ZMkSjRw5UkOGDJFv+QVQAAAAJFcul7Vs2TK99dZb6u3t3Wx5R0eHxo8f34SeAQCAurAo7DIxf326Xv0giaM6MyQ6yEQBRdPIkTqGAIz46Y/VffZCvXPN1ZKktoMPVnH3qXXbXt4lCTLxHA95SFKI0tTiFZuiHkeL67PGeJb/HYvjXTMKwpBFzfjcxgng6O3vVSWohK+vxn0o+aXINpVaD9PA7xTEuZcNaWsKnqTwY7MR2+tB08U/2K12Wx61v64GFKG11TpWN/NzbWQU1DzScF4ih1rtYx1rHDKtd3xqxOHKD4JMAAAAAAAAAACw4Hmett56a73wwgsbhZlIUm9vr15++WUZY9TZ2an29naVSiWVSiUVCgUZY/hyCAAAQAJBECgIAvX396uvr099fX3q7e3VypUrq/7yZkdHh7beemvni8oAAEAMNsGxCYrQYyvwlctaGI4fWk3cR8Ix2/tbT9KQ08+MuZF05eW5t2/iF/ImeU0jZe29sSpij1HoDlUvrrQtmC+4/RnPAuvzkI82GsSm8NpvSrhF9EkQrG3S29+bQvF4OLsgkxr7MPDZdYzn2CZkbI4d7pmRH2jJ2JQGQINkPjAu490HoHjnsYn7guRij4+ujkeu9gux8V+FAAAAAAAAAACwtC7M5JVXXtHSpUs3Wx4EgVasWKEVK1Y0oXcAAADo7u7W+PHjCTEBACBnwoq11mtAEVbswjAAra0Fqi6zFpZRzbp7yLIJ5Ad2+1Qwbn8NP1FhXzPfTov7+MwXK7rCMvzNNCIkLudcDzxC6zEmOsikKWOtRVDVul739veqElTq2p2iX4xsU6l1iBywzybOvWzY9bIQr1OxtgsAjsnLvSiALIudZJL+alPg7rMWV/uFuNx+ggoAAAAAAAAAgGM8z9OWW26p4cOH67XXXtOqVaua3SUAAICW19bWprFjx6qrq6vZXQEAAPVgUWBlFXZSK8LSAMTQCoVV7hY7xONrzTWk7El+2e41rgdoZu7zZ9Nfi0J3WLANZuN418z2PMzLWAr32XzWmnJ9szkF1rZZ1b9KQVDfMJa2Qltkm0qtp+3AsKg4gSIhbWMHb3oZCTJhiIzGMUIG1TpWZ+5+B2gBNud1ru594oxDDdxtxke4hiATAAAAAAAAAAAS6Orq0uTJk7V06VItXbpUK1asiPzSFAAAANJjjFFXV5e6u7vV3d3Nl3IAAMgx41t81TFu0VYSNv0AgHVi3qNk8Y4mSQGKi0Ur64q2K14gle36V/DcviZk7r2xOV/c++g0VaVckRcy/9lr3F6D/t3YFsw3IiQu5zzjduARWo9VkIma8bmN7te6/wrfV+6r+zW45Jci25S92r4XYAaODzHCY8LG8Njhnjke5wPD9zYANAajDdDC4n43wdHvMjTsOxZu7j4awO0nqAAAAAAAAAAAOMwYo2HDhmnYsGEql8tavny5ent71dfXp9WrV6uvr49wEwAAgBQYY1QqlVQsFlUqldTe3q4hQ4bIj/NrlQAAILusQkrq/01Y68JfAJASFDTUpxv15GIoSRK+WTO+W2aYrHmN5/Y1IWthn8az6G+MQu9WMGXYFD23/Lmqy49/7/GDL7CczxhCOGrWnEAIoDqba4PXhLHW6hqwVl+5LzokqMZLoE2QSaXWy+zAfY4TyhnWthDvvTOOz2XWy9aUpkn4TgoyKC/ndl72A0B9ZewZTT3EPgIcstwgyAQAAAAAAAAAgBT4vr8+1GSdIAg2+gcAAADxGGM2+gcAALQoi4LbOMVviVn8YjVPgAC0lJzcpq0r2o5TlFzw3P4afubuoW0K5zO2S/V2/sHn69PXf1reIEXtIwsjdfAOBw/+QtvC9TiF9RhUMwIhgDA2AWSuXj+Ctd3qK/epzW8LbVtr0Fp7sT2yTe1BJhvGhziBIsavPv+IHbxpcX/rBjc/k1mSl/BBIFc4LZFDrs4j6ybG/sa6Ftd4HONe992dJ7jaL8Tl9hNUAAAAAAAAAAAyjIJbAAAAAACA2pmCI191jFsYBqC1tUAIQF6ef/tmzfhe8ezjqNa9xlXuFqJUYRFIZkz+z6k43jf5fTpn/3N0wb0XqOJXJK0J2B/TNkZ3nHhH9RAN27GpBcawerM9DzN3viKzbK7bTbm+WfQrWBsZ2V/pX///10vJL0W2qdQ6RA68psUJPQoJHzFxg0liBKg0FUNkJAJVkUW1zH/qfR1oDAa3LAoUMHfHBnGeiZmY7YEcceS/7gEAAAAAAAAAAAAAAAAAAAzCIkAkqNS/iMGZQJUcax/T7B4AKYpboJDBeoa8FPD4awt5KzF2p+C5fU1IEjLTzPfT2BRx5+Pjlqrj9z5eM/ecqev+dJ1W9K3QbhN2056T9gx9jbEMZrN6TxCqapgM0CQ243xTQsoswqzWdX11ebUqQSWiaW37UCpYBJmYGu8/B+5znMDMsLbFmMEkcYNPmiTJu5mHiAMAgHtGtI3QklVLqi73xPwf1bj7QCMvIcVwl9tPUAEAAAAAAAAAAAAAAAAAQGvzHfkSeFZ+sdphwz84QUvue7nq8u5PH9TA3gD1lv9CgCSFwi6Gn/hmzfhejnG5cT7IxMHjHMqmcIZQiEF5nqdjph4T4wWW8xmOd818MXeEW6yCTJpx/Yixyf6gv+4pFe2F9sg2ceYMg/IHzCNijLdhYVRxgzdNVu5vbYJuALSWJqcVZe5eC6kZ0RkeZGIzh0COxAkAaeCwEXeMatyYZhRrAGeozQ2eLgEAAAAAAAAAAAAAAAAAAGfFLciqF1f6kWVDTjhGMoP/grpf6lfnjOkN7hFQP63wi6Z52Ud/bSFvxdgXVPiOF/9m7r2x6W/W9slVtgXzIcXysGMsi+8zd74iszwTff435/oWfQ6su0KXK2VVNPj9xPq11XhOtRXaIttUajxtB/bRFGPcZ4YGmcR87+K2z5KsD6tZ7z9goeXDQFp897NqSNsQdRQ6qi6fNGJSA3vjnpY7r2PNOY11+5pvD119G2L3y9UdQVwEmQAAAAAAAAAAAAAAAAAAAHfF+IXquvId6UeGtR36MW1x8n6bhZl4fllj/98X5E+a3KSeAXXQAkNGoiIVB+sQfLOmkLcc4z0rePkLt2pqmILNNZawh3TYBpS4Mv/KsHVjC+AKm3G+GQWoNqE/64NMgrKCOL/knkCpUIpuZKRKLf0YOMbGGW/DwjXjBKJIkp+RuQyXfyCfsnxuD+h7fa9IcNGUUVPUXere6M0veSW9a9S7VMjKtRXpiPOMwuExj2BN1BsjIwAAAAAAAAAAAAAAAAAAcJfFL4c3RKHY7B7kQvcFF6rzU3/W0ou/p8rylSqMG6Wh53xT/vgJze4akLJ4hQBZrBvIS7GD760JG6jEuNwUfbevCZl7byyu9ZnbJ0cZyyATQ4BbzTxX5rDAWp5FylpTAnhsxve1TcpBWUEQXjZeaxhLR7HDql3Fk7xKdLtBDQwvsQ2YUvjYbMJCTgYTY7toLCPCEYAwzQjdAtYxxmjSyEkbzUe4V7XXsudvrM9IbccoN8c4J7sBgkwAAAAAAAAAAAAAAAAAAACiUdCbmsKuu2nk3Cua3Q2gvihkGZSLBRXrg0yMfclowXP7a/g2xeouMb7F58Jz77OTSZ5l4ToF7jWzDTJxcVxEPtkU2bpaiLvuCl0JKpFBJrVqK7RZtavUcqgGBJkY23FZkvzq8w9Tijc3MUW3Q9nWM/FjPQgB2RjXGcBFnJdZ5+qcqZmsrjc5OmzxPgPG/jlhjo5RbTgQeZGtJ5QAAAAAAAAAAAAAAAAAAABNYFXoFfAFWwBrUdSSGb5ZU0C8oi0/QSZJiqqaW+RqU/DEOZWKgmXBfJzCegzKNsgEaBSbz6TfjHM/RlBVsPb/wtR6PbMOMvFqiMsYeE2LEZhpwsbwQsxgEgKrciPyk8gUCg4iYAdAS2ngkBf3eRDjMeqNJyMAAAAAAAAAAAAAAAAAAABRKOgFEIeX/69p5+UXiNeFklz1/mWh7f46vm/Da3zHg0yyVohic77EKHRHdcZyPmNiFNZjcASZwDU214amXNsttrkuLzJQoEpQiVhfbd1p8+2CTMq1bGfgdS9OoEiTcK82AAAgAElEQVRIW1OKG2Ti9lxmnZxMN+uLYwRkD+ct8ojPdXUuT2hc7Zqr/UJsPBkBAAAAAAAAAAAAAAAAAACIYArZKPQC4IbYhcAZ/IJ+5sIyqvDXBjs8sVWf+vzqv2n/PxM3BJkU/ZjFwg2WuZAZmyCTrO2TqwqWBfNxCusxKN82NCYnYyncZxOu45vGn/s250Cw/n8DBUH1a7Xt+sK0F9ut2lVSCjKxDZiSJIXck5pivPtVk+dxnmEVAAA0gP2Uw9g/02jwPKZh96M802lZBJkAAAAAAAAAAAAAAAAAAAB3eY58ydW28BcAJHfGrjrKXFhGFevCBla2BfqPg5YM2mbhqNW6et9l6/+94LkdbpXkvWlmmILxo8sajE3YCaLZFsxzvGtmExohiYJ7NIzNtaEp13abOZPZ8L+B6htk4nleZFiKJFW86DbVbHRNixFAYvyQtsWYIWtZCepM8JlM/s4AaBSC3ID8ac3z2nLWEevQtOJxHAzHIS8yctcBAAAAAAAAAAAAAAAAAABaUsWRMqRCzMIwAK0tbtFlBr+fn6RIxcXCloGhJL/e5R29Uwr06QeHatIbBa0uBLpr53d0zT7L9E7bhutR0XP7mpDoODfzrbEJfMhJcE7TWYYsGZ8At1r5hmMIt9iE63jN+L1si2Fp3RXYGGMVMlKzQJH9qiS+LG3Sf9uAKUkKCf4ypZhzE8Z5hzHnQQvI8Md8o3utDO8HgEZq3GAR93mQsyHFjnYL8RFkAgAAAAAAAAAAAAAAAAAAEMHEKTADgBb4xr2LoSRJ+JuM7/fv0Kv7d+gNfU3RdzzIxNVClGp8i/5mbZ9c5VuWkHhNCDPIGZvQCCk/YyncZxVk0oxzP8b4boxROShHtqlVoCDy3KykdahCwkk2U6g+hptSKd52szLOJ3w7m/JZdhTXGaB+EkdrcW+DFpW7a5KR3UBgZH/e5+wQAczKAQAAAAAAAAAAAAAAAAAAohT57TgAMXgxfwG1Tt2op8yFZVRR8OKP7yU/ZrFwgyUpDmpuQZHFtmOeUxic8S2D2QoEuNVq05AkoNmsgkwsA3hSZTG+B2ZDhejq8urQto26nlVS2oz1uCzJhAWZFOOErAUyWQn6SDDfDCQVPbdD59KUOEgByCpuCwBkTgMHrpibatizoNibYbDPi4zcdQAAAAAAAAAAAAAAAAAAgJbkSuFyjAIzAGiF79snCTJxMfwkSZBJwXc73Kopheg1ML5FfzO2T86ynM8YQjhqZnse5u5XyeEs30Sf1825flgEmQz4/1dXGhBkYpEMUTYJ4yM2fV2c8TZsDG9zO2StkXy5Oee0luGuA7aY/wD5k+lrb73FOja1Hce446uz75uj3UJ8PM0DAAAAAAAAAAAAAAAAAADuqtgUiNX/N4hNweYXnfmGLYA1Yv/KfQaHj7wUnyUJMil6NteE5kkUMtPM99PifHG2uCZrCpYF83HHMGwma4FCyD+bcbQZn1ur8X1Ak/5Kv3XbpGyuiZW0DpXtuCxJhepzFlOMEWSSNISlCZJc/kd4bel3BIAz8nAfmv09ABBL43JMAOfwZAQAAAAAAAAAAAAAAAAAADjLGzkyso0/Zov6dyROgRkAtEDoQl6CJXwv/vheKsQoFm6CzBX32YRmeBnbJ0cZ2+CeYvyAH2wsydgC1JNNSElTPrcW4/vA2I2+Sl9o24JpzPhVSemyZGIcc1OsHqRm2uznJpm6omYtnM1BHA84qdU/lq2+/0CLMTLOPids3Dwh7nbcPF6IjyATAAAAAAAAAAAAAAAAAADgrLZDD5fnl6s3MBV1fuaU+nckpGgMADbjaIFCmpIUO7hYSFmwDXYYoOi7fU3IXMiMTZBJ1vbJVZbBbMbmPUEo31geaz7baBCbIJOmfB5jbrOskHtDSZ3Fzlp6Y61iguhGg9hsb+MEZoaFnrS11dCJnMn7/sXF8YCDXLwvbKxW33+gxTRwjp2b8TUnuwGCTAAAAAAAAAAAAAAAAAAAgMNMqaTOdw2purxjQkHeqFH170eCQncALSxukUIGv6Cfl+L7REEmXv6CTJr5fhqfIJOGsQgykCT5MQrrMSg/LHAAaAKbcB3bAJ5UWYzvwYAmXsQ1Y0ip+r2jLZsC0ErSirxNV12wn1OYQvU5iymVYnQiWQhLUyS6/DNnAFA/uQkJAFJmc2607PljYjxzqfXZR9zHkTxrQZ0RZAIAAAAAAAAAAAAAAAAAAJw2+rqfq9jZv9nf/VK/xlxzaWM6UXS7aB2AY1qgECAvBShJQknaCm116El6vMyVCVh8lrys7ZOjbANKQorlYcezDI3Jy1gK93kW46hNm9SlPGca1j6s5nXYnJflxN3eOETExAk9Cgk9MW0x5iaZGnYy1dnm4BABANAc1tfgxl2s495fNux+lPlKy+JpHgAAAAAAAAAAAAAAAAAAcJq/1URt9d83a+THd1T7GKl9jDTioMma+MA1Kuz0ngZ1ogm/Tg4gu+IW5WbwC/1JfrXVxYL9gh8/sKHkl+rQk/Rk7r3xo8sa+JXgdBjL+YwhOKZmBY8wGLjFV/T534xrgc34HkS22GB4+/DknVnL5jhUvDi9ClGIE2QS0jZGkEmmrqiZ6mxzpPRJBBqqlutN0+8pGZeA5Fr1/InxPKNVD9FmeAaUGzwZAQAAAAAAAAAAAAAAAAAAzvPGjdOIn/5EI5q0fVOs/uvXALCZFvjCfaICMgcPS5KwgSThJ42UudAPz6KI2yLsBBYKlp9dAtxq5hm7z2zTi3HRMjyLgCLfNOHcT/kUGNU1quZ12FxHK2n12+YauJYJGcNNyT7IRCZD0RdJjjPDKoAGSTyaMk4hj/hcVxfnGU2Dn+dk7vkRMoeneQAAAAAAAAAAAAAAAAAAAFFsC38BQJKxKBbe5BV16Uc95aXYIUkoSZsfo1i4CZK8N80MUzBWISX5+Lw1nW1ACfOemtmERkjio42GsQkpacq13eJcCWJ0a3Tn6Bo6s4bNNTFxkMmmryvECI8pVA/XNO3tyfvgMMKeascxhJNa/mPZ8gcAOcT1xg15eVaXj72ARJAJAAAAAAAAAAAAAAAAAABAtGL1ojEA2IwX7yv3WawzyEuRStGPP76XCqU69CQ9XpIygWa+nTaBDzHPKVRhGVBivBiF9RhUwbM81jkZS+E+m3CdIAga0JNNWEyC4vRqbPfY5H1Zy6YAtJKwIm/TNccab8NCT9rsQ9YyNeok6mym9nBzGe8+YIP5D4CWEuehX4OHx4aNx3EffGbxQSkGRZAJAAAAAAAAAAAAAAAAAABABGNTZA0A6+X/C/dJfuXVxYK1grELGxgoSfiJ65r63th8lipNKK7PIev5jM+8p1a+IQwGbrH5TPYH/Q3oySZsLj8xLlETuick7so6nokeAysmpetSWDjJJkyh+vzDtLXbb9O96Vh1SYpYs7R/AGJz6p4yaVcc2gWgkZw6fxsp1nymtmMU9xgnebYHxBH/qSsAAAAAAAAAAAAAAAAAAAAAoDov7i+N1qcb9ZSXApRSoRT7NW2Ftjr0JD2ZK0QhLMw9IcXysON7BJnALTafydXl1Q3oycZsApYC2YeGTBiWQpCJxe+Gl5Neuja9RPsxSvuKIUEm7TkNMgGATTV5DEvnPpiBOG+WL1+u559/Xq+++qpWrFihlStXqre3V6VSSe3t7Ro6dKjGjx+vCRMmaNSoUc3uLgA0DEEmAAAAAAAAAAAAAAAAAAAAAJCmrAVJJJAkLMPF8JOiHz+wIY9BJs18b4xP4INzfMJlamUbZOLiuIh88k30Z7K/3N+Anmwi5TnTVsO2qnkdxhhFZadUEnd74xWbOMFRYdfLOEEmWZLoODOuAq5j/pNP5XJZF154ocrlcmi7/fffX/vvv39jOlUHS5cu1e9+9zs9+OCDevDBB/XYY4/pH//4h/XrR44cqZ133lm77bab/vmf/1kf/OAHNXbs2Dr2uDFa8by2mDJuaKg1M5TI9g0+jNWeH/X19emvf/2rHn/8cT3xxBN6/PHHtWjRIi1ZskRLlizR0qVL5fu+Ojo6NGLECE2YMEGTJ0/Wrrvuqj333FP77LOPSqUNwcFJnlIhHwgyAQAAAAAAAAAAAAAAAAAAAIA0mfyHAOSlSKXgxf9KvfNBJll7b7z8ny9ZQ7hM7QqGch24xSZcp7/iZpBJYHlZq1Qq6mzrrLFDkmc8iyATq7LVaAX78dYUq4eemBhBJpnK20sSzpal/QPgtG222UYLFy60anvuF76sr530WbsV1zhORfXrueee0zbbbFPbRhL49a9/rW9+85uR7X75y1/qD3/4QwN6lJ7e3l7deOONuuGGG/SrX/1Kq1atSryuN998U/fff7/uv/9+/eAHP5AxRnvuuaeOOOIITZs2TZMmTUqx5/mycOFC/fGPf9SCBQv0xz/+UX/84x/19ttvV23v+776+5swv91UrMlJbQNEkmBbac08+pFHHtE999yju+++W/Pnz9fKlStDX9Pf369Vq1ZpyZIleu655/T73/9ec+fOlSR1dXXp4IMP1nHHHadDDjkkfoeYz+UGT0YAAAAAAAAAAAAAAAAAAAAAIE1xCwf4gn7TFP3qRcFVX+PFf00jeQmCdJIWu6TCt+lvSgXjsFNw+zOeBZ5lQE9Tzz20FJtrQ3/ZzSAT61XZJp5E8E10uEglaQbXpl2MExwVMjab9o7kfUCmRc2QuM7ASTV8LF0NbfzunJ/r5E9O04juYc3uStPMnj3bqt1///d/6y9/+Yt22mmnOveodv/4xz906aWX6tJLL9XixYvrso0gCPTQQw/poYce0plnnql//dd/1amnnqqPfvSjddlevQQp37O/8sor68NK1gWXvP7666luo2HiXIsbOMStXr1ad955p66//nrdeuuteuutt1Jb94oVK3TTTTfppptu0rbbbquvnXSSZvzrx63vk5mw5gdBJgAAAAAAAAAAAAAAAAAAAACQolYoGEyyjy4elyShJG3Ftjr0JD0uHudQXowibjRGnMJ6DMrncw3HFLzoErLVldUN6MkmvOhrlm0+iaek6SKbrMci9KWS1qXWty/tM2Fjc1uMuUmGpgmZm9MAOWFMoCBk8K0119HVMJJavL18mf5fz890/pe+2uyuNMWbb76p2267zbp9T0+PLr744jr2qDblclmXXXaZzj77bL399tsN226lUtG8efM0b948TZ06Vd/61rd06KGHNmz7zfLmm29uFFiyYMECvfTSS83uloW4Y1lg8Zraxkeb8fXpvz6tuT+dq3vuvEdvv1X/z/ezzz6rz33jG/rJ3Gt0+Tnna5ftd6j7NuGOdO7QAAAAAAAAAAAAAAAAAAAAAABr+HG/pp29Qq68FJYW/fhVeO2F9jr0JD1JCgObWUxo9VkK0v11Z4QLLZaHFZvQCCmfhbxw06jOUZFthrYNbUBPNmERGmJ7BUgSTjYYqyATL9l1adMzPtZ4WypVX6/nSaaSqA9OS9LZnMxRgWbyh3WELx85rEE9yZbLrpurV15fbNEyf+PU1Vdfrb6+Puv2V111lfr7++vYo+SeeOIJTZ06VbNmzWpoiMmmHn74YR122GE66KCD9NRTTzWtH7YCixlbtXufmTNn6uCDD9ZZZ52lW265JSMhJvZiPT9rwPDw2zt/q5uvubkhISYDPfLkE9rvuGnquemG6Mb5GyZbFkEmAAAAAAAAAAAAAAAAAAAAAJCmmAWUWay3zFpYRjVxg0yCIFDBtwsoaJbMhcx4lDU4p+D2ZzwLfI8wGLhl1gdnKQgJhapUKvrU7p9qYI/WSPOa1ea3pbIe30Sfv+Wk3d70dXHG22L4nMX6UGZqmpCpzqYj7jnRgocI9eePGSNjBr9mGC+QN3p0g3s0YPsO3+u809uri356eXRDd3chsdmzZ8dq/9prr+nOO++sU2+Smzt3rvbaay89+uijze7Ker/5zW902GGHNbsb0Wwy3vL22Xdxf1zs0wC9q1bp3877pi788aURLR3fEVjj6RIAAAAAAAAAAAAAAAAAAAAApMnh4qq0uFxAFkfcIJMs8BL83mlT30+fwAfn8J7UrODZlevkZSyF+8Z1j1O7adcqrRp0+fDCcLUX2xvcK1n9RHdgeZp0FDpq68tanonuVCWtU9d6vA1kIoK/jAmsaogzVReapb4COWI6O1WcOEarFy1WMGDAM36g4jZbyUQEK0WuP8fzn56bf6EvzThB207cutldaZhHH31Uf/7zn2O/rqenx6mAjm984xu68MILY72mVCpp6tSp2nfffbXbbrtp8uTJ2nrrrTV06FB1dXUpCAItW7ZMy5Yt03PPPae///3vevTRR3XvvffqL3/5S2jI3ECVSiXJLjWU5SyktRlFB77UOD7WI0C4UCho55131g477KDJkydr9OjR6urqUm9vr9544w298sormj9/vv72t79Zr/O8H/1QnR2d+vLMEwZvkN/LRMshyAQAAAAAAAAAAAAAAAAAAAAA0tQCv6SepDiiHgUVtSp6MYvwMlCbk7nCwIjCbDSeIcikZr7hGMI9PZ/s0bTrpsnzNx53g3Kga6Zf05xOWYSG2OoqdaWyHt+LPn8rXjoTAlNIsbTPWPYpS9OEJHOarM2D6szF+TeywRs5SqXhI1RZ/JrUX5ZKRXlbjGn6vYbrn+nV/at13o9+qJ4L/m+zu9Iws2fPTvS622+/Xa+//rq22GKLlHsU35e//GV9//vft27//ve/XyeccIKOPPJIDR8+PLTtqFGjNGrUKG2zzTb60Ic+tP7vixcv1g033KC5c+fqD3/4Q+K+w21uj1jV7bjjjjrssMP0kY98RHvvvbc6OqIDA19++WX9+Mc/1g9/+EO9+eabke2/8f1/187v2k4H7vuBQZZm9chhUzzxAwAAAAAAAAAAAAAAAAAAAIA0tUABZaICNgcPS7EQL8gkC78ynOS9aWZBoFVoRsX9454rMc8LbK7g24UTuF6Mi3zZe9Le+sUxv9CUIVNkykZe2dP2w7bXvOPnacdxOzanUxbXrMDyNOlu666xM2vYBBFVkp66g77O4hpnEVJimwnT7BCCWDLUVSCPjOfJHzde/lZbyR8zNrXxI+/zn+t/eYcef/pv1RtkaRyO0NfXp6uvvjrRa1evXq25c+em3KP4zjjjDOsQk3333Vf33nuv5s+fr5NOOikyxCTMmDFjdOqpp+rBBx/UI488oqOOOkpehkM+bYLgSn4pte1ts802Ouigg1JbnzuaNz6MGDFCX/nKV/TII4/oL3/5i77zne9o//33twoxkaQJEybo3HPP1cKFC3XCCSdEtq9UKvr8t8/W0uXLa+06HJbdUQ0AAAAAAAAAAAAAAAAAAAAAHJSpAtGEshaWUU3Rz19gg2dbyewKP2P9bQUFi3AZhLIJQgCaYY+Je+jXn/u1/v71v+vprz+teSfP0w5jd2hehzyLIBPLVQ1rH1ZbX9ayKcStpHnpsgkpsZhCWV/+3ZuOhchUZ5uCqDfAPZVKRd/64SXN7kZD3HbbbfrHP/5Rdfl+++0X+vqenp60uxTLlVdeqYsuuiiyXWdnpy677DLNnz8/cp+S2H333XXDDTfoT3/6kz7wgQ+kvv5G6Ch2RF6Uxg0dl2jdW265pT72sY/pvPPO05133qk33nhDzz33nC699NJE60uN1TQl5pW6xqlPkudu7373u/WTn/xEixYt0ne/+13tvvvuNfVhyJAhmj17tmbPnh0ZzvPSa6/qe1f8fPMFTAFzwy7iFQAAAAAAAAAAAAAAAAAAAABgJ+6v6GbwC/peTn5TM3aQSQaqRROFzDQzfMdi20GQgQOfI8aiiB/hbIIQpNYIvgLCmBTDt0Z2jExlPTbnbznhqZv8lLe4DuYxyCRJXxlXN8bhQM64GI45mDvu+60e/POftM9utQUCuC4qiOTcc8/V6aefrj/84Q+DLn/sscf08MMPa+rUqfXoXqhHHnlEJ598cmS7iRMn6tZbb6053MHGLrvsovvvv189PT2aNWuWli9fXvdtpqmt0KZV5VWDLjMyai+2R65j7Nixmjp1qt773vfqve99r/bcc0+NG5csAMUJMYesmqcxMV4/+V2TdcG3L9DRRx8dGTiSxAknnKDly5dr1qxZoe0uvfYqffWEz2hIZ1fqfUDz5ePpMQAAAAAAAAAAAAAAAAAAAAC4InYBQDaKsQbKS/F9yS81uwupy0pxHxxWjBnwg80UPH53GLDiWYRZWV7WRnWNqrEza9icvxWTXsCWze7ZTLvsp2bZmSfkZb4JYGM13a84NCzs/4H3hy4/54ffq7LEoZ2owcsvv6xf/epXVZdvs802+uAHP6iZM2eGricqDKUe+vr6dPzxx6uvry+03aRJk/T73/++ISEmA51wwgl65JFHtMceezR0u7WaMmrK4Od3IG07ctuqr5s+fbp+8Ytf6IUXXtCrr76qO+64Q+eee64OO+ywbIeYJFLb+GAzvo4aM0pnf+ds3XjPjfr0pz9dlxCTdb74xS/qmGOOCW2zbMUK3XzXrzf+I3PA3CDIBAAAAAAAAAAAAAAAAAAAAADSFPcL9xn8fn6S4jMXAzaKXrzABhf3YVOeiV8mkIX9QgMV/Gb3IPN8z+4Ycu6h5VnNmexCQ8YMGVNbX9byTfT5W0mzIs8mFMWijfHtxpME0wRkGNcZOKmmHBN3PtNf+cLn1dHeXnX5/Q8v0G8emL/5And2oSZXXnmlyuVy1eXTp0+XMUbTpk1TqVQ9QPSaa67RqlWr6tHFqs4//3w99thjoW1Gjx6te+65RxMnTmxQrza23Xbb6YEHHtCnPvWppmw/Cd/ztdOYnTS8fbh848uXr65il7bfYnt1ljqrvm7atGk64ogjmnasW82Rxx6pT878pAqFxoRvXnTRRaFjpSTd9tu7G9IXNB63HgAAAAAAAAAAAAAAAAAAAACQJi9eZVIW65hMTn4dtVSoXlCVVUnem6a+n3X89V8kY7zGFDTlWdG3C0nKy1gKJGZxDbCLMZHGDh1bW1/WKliMgZWkp249T3nby2mWhp0kY2TWx9WMdx9oJePGjNHnjj4mtM05P/yegsD2SpYtc+bMCV0+Y8YMSdKIESN06KGHVm331ltv6dZbb02za6FeeuklXXzxxaFtjDGaO3eutt122wb1anBtbW267rrrdNpppzW1H3F4nqeJwydqp7E7aadxO2nbUdvm8rmLpPrMOWpcp4v3lxMnTtRRhxwS2mb+wws2GSvd2w8kwxM/AAAAAAAAAAAAAAAAAAAAAEiTg4UDactcWEYVBT9eYINLvwBejZfLMoF8Fv85q+A3uweZ5xuOIWDF4rIaWF56txy2ZW19WcsqyMRL77pkMz2yamMbpOfgfKyqDHU1LS24y2hBWbinsvW/TjhZw4YMrbr8T0/+RTfd9auN/paHvf/973+vp556qury973vfXr3u9+9/t9nzpwZur7Zs2en1rco3/72t9Xb2xvaZtasWTr44IMb1KNwxhj927/9W7O7AdTkkAMOCF2+ZNlSLXrt1Q1/yMNACUkEmQAAAAAAAAAAAAAAAAAAAABAukzMr2ln8Av6eSo+y9svZFsXMg98TTPfzywVVLeKQrHZPci8om93DPM0lgLJpHcOTBwxMZX1WAWZJO32YK8zFvMQmyAT365TmbrsJulslvYvDa22v2h5roVjjhw2XF+eeUJom29f9h8ql8sb/uDYPiTR09MTunzGjBkb/ftHP/pRjR49umr73/zmN1q0aFEqfQuzaNGiyNCUsWPH6tvf/nbd+wIMqoHjQyPvRf95r70i2zy/6MUG9ASNRpAJAAAAAAAAAAAAAAAAAABACtq3yFchPIDkYhdXZbCQKUkBWR4K9rOwD1noI9xmfL/ZXcg83+MYAjaMn05pWxAEGtU5KpV12QSZlBt9qbXZnu2xzNK8M1FXM7R/KeApBLKoljASF+91vnDsTI0ZWf0a9Lfnn9NVt93cwB7V18qVK3X99ddXXV4qlTRt2rSN/lYsFjf720CVSkVXXnllan2s5mc/+5n6+/tD25x11lnq7u6ue1+AVjJ65Ej5Ec8ZlixbNuDf3BvrkQxBJgAAAAAAAAAAAAAAAAAAABaG7josdPnwzx7ZoJ4AcJ6X/y/cu1hAlljOKkA9E79MwLVfNkeTFaKL+BHON3ZBJpx7aHkW50BgcZoElUCel06ZnE2QScVLNnkYdHct9s9mqDC2889MDTuZ6qyTcjVnB5yz5lowpLNLXzvps6EtL/jJZVrV19eITtXdjTfeqGUbBQ5s7JBDDtHIkSM3+/vMmTND1ztnzpxauxaqUqlo9uzZoW1GjRqlE088sa79QH5Y3crFvQzn9P7Q83yNGjY8tM07q3o3/Es+D0NLIsgEAAAAAAAAAAAAAAAAAADAwpBPHlJ1mV/qV/unjm5gbwC4LeY37jP4Bf08hWUEMZJMXN2HWjlf5FrJWdqM64rFZvcg84q+3TF0/twD6s0myMRiNV6KJXI2528lxVM3rSJYU7A8BhmayyTqaob2D0B8rs6dTv7k0dp6/ISqyxe9+op+fP01a/7FzV2wFhUGUi2wZM8999SOO+5Y9XVPP/205s+fX1Pfwvzud7/Tiy++GNrmxBNPVGdnZ936ALQsI63sfSe0SXtb28YvQC4QZAIAAAAAAAAAAAAAAAAAAGCh87Of14h/3XazvxuvrHHf/aL8kIIFAC3G95vdg7rLa6BHFFcL5wbK2nuTtf62BI9Sk1r5Xv6vA0AqUhpvCqaQynokqeBFryvNIBMrNtvz7TqVqctupjqblpT3uRUPIfLN0c90qVjSWZ/7Qmibi3/+Ey1bsULO7oSFZ599Vvfdd1/V5aNGjdIhh1QPgp4xY0bo+qNCUmpxxx13RLaZNm1a3bYPWMnu8BBqydtva/nKlaFtRgztblBv0Eg8XQIAAAAAAAAAAAAAAAAAALA08qortNWVX1f31JKRENQAACAASURBVJEa+p6hGnHQZE164Eq1H31Ms7sGwCVezMqDDBZpJgn0cDYEJLBv6uw+DJDovXH9MxjEeJNQM0OQSc2KftGqnfPnHlBvFudAYHGalPxSCp1Zo+BbBJkkHSYH2xeL/bMZKoxv2aksjTtJ+pqh3QNaVS33VC7dj216h3LMIYdrh8lTqrZ/Y8lb+o+5c+rap3qbM2eOgpB7s2nTpqlYrD4PnjFjhryQe40bbrhBK1asqKmP1cybNy90+eTJk7XHHnvUZdvIqzqMR1map8Xw5yeeiGwzeeLWG/4ln4ehJfF0CQAAAAAAAAAAAAAAAAAAIIa2jxyqLX55q8b8dp5GXn2l/CnvanaXADgn/9+4b9Xie8+4/xX8LPQRyLuCFx2EAECpFWu2++2prEeyC0WpmPQCtqwOgVWQiW+3wbiBe5mT8f3LePcBKzn9nPu+r2/+26zQNt+/qkdvvPlmg3qUrkqloiuuuCK0zYwZM0KXb7XVVvrQhz5Udfny5ct1ww03JOpfmNdee01PPvlkaJsDDjgg9e0i5+oyluVzgJz329+GLh/RPUxbjhk74C/5PA6tiCeUAAAAAAAAAAAAAAAAAAAAAJAik/sC0WRBJq6Gn8T5VW9X92GgRO8NRSJAqope9V+iH4hzD63O+NGlbYHFadJZ7EyhN2vYnL/lpBV5SU95m2t7wa5TGZjKbJCpzrqJ6wxcVMvn0vX7sU/8y0HaY6f3VF2+bMUKXfTDHzawR+m5++679cILL1Rdvv3222vvvfeOXM/MmTNDl/f09MTuW5SHH344ss3++++f+naB2Nwe4hIpl8u68Y47Qtu8f/epG4/vOTwOrYogEwAAAAAAAAAAAAAAAAAAAABIk4n3NW3Ha7EG5bXoV9GzUAzqxfz8SU0uCEzQX8B1vu9btXO9GBeov+hzIFAQ2WZI25A0OiNJKviFyDaVxKfuIC+0uAzaXCpNwW7cydTEM0FXs7R7AOLLwv3Yt7/45dDlP7rySi1atKhBvUlPVMDIjBkzrNZz5JFHqqurq+ry++67T88880ysvkX505/+FNlm6tSpqW4TkJRgLlP7GGczd26km266SS++/HJom0P2+1CDeoNG44kfAAAAAAAAAAAAAAAAAAAAAKTJc7+4CskkCQlptCTBCM4XBAZuFeIAUQpedBACAKU2ZxrWNiyV9UhSm98W2aZikl2XBrtEWx0Bi0b5DDJJ0tcM7V8KXCtWBiB9+H3v13577l11eW9vr84999wG9qh2S5Ys0c0331x1uTFG06dPt1pXV1eXjjjiiNA2c+bMidO9SI899ljo8mKxqO222y7VbaIFWMxTmpBj4pT+/n6dc845oW3a29r08X85aKO/Of+MCtbcf4oKAAAAAAAAAAAAAAAAAAAAAFkSt+gySwWla+UyLMOCl4Gv4CfpY5L3MzUE/yCHin7Rql0exkWgJl50+EZgcZqM6BiRQmfWsDl/K0mnA4Pti01IiU2hrG8ZZOL+VGY9xkggn2o5t5t637KpkK58+4tfCX1pT0+P/va3v6Xcofq59tpr1dvbW3X5fvvtp0mTJlmvb+bMmaHLr7jiClUqFev1RXnhhRdCl0+ZMkWFAkGEcIFDY1wKLrvsMj355JOhbWYe/gkNH9q98R/zdRhaWoZuPQAAAAAAAAAAAAAAAAAAAAAgA2wLSTMsUZCJS0VnA8QppPOM+1/Bz2fITNDsDgCx+BbhDJK74yLQMCmdAyM7R6ayHkkqehZBJmmeujbrsmlTzOG4k6SrGdq9RnB/joeW1AIfy73+aVcduv+Hqy4vl8s6++yzG9ij2vT09IQujwom2dQBBxygrbbaquryF198UXfddVesdYZZtGhR6PIJEyakti2gJjkaH5977jmdeeaZoW3aSiWddvxnBlmSowPR4oiIAgAAAAAAAAAAAAAAAAAAAIA0ZalANKFMFcGmKAv77Xnuh60AeVfyS1btKDBHq7O5rgYWp8mYIWNS6M0apUL0+Vv2EgZsDbYvNsOAF93IFCyD9CzW5YxE864m7F9fr/TyM+ms65XnZVZVrJuX+voVNvUrtP9DeuvN2vuF/JowRSq1N3STtcx/sjR3OvcLX9K8+36rSmXwc/qGG27Q6aefrt13373BPYvniSee0IIFC6ou7+jo0FFHHRVrnZ7n6dhjj9V3vvOdqm16enp00EEHxVrvYCqVil555ZXQNuPGjat5O2hBVsPRgEYW08csjXFhyuWyjjvuOK1YsSK03azpx2vShC0b1Cs0A0EmAAAAAAAAAAAAAAAAAAAAAJCi2GEXGaxT8BQ/LMPVggwjo8CmokSSZ9wPCUlynJsZ0OKNHx/ZpjB5UgN6AqTH9ywDBYBW56dzXW10kEklxcumzTXY5jJtCpZlghkIZVsvIzkmevkZ6ZT3pLKqYsz226ayVbS0nzwubbNzs3thLQvBkuvsNGU7TfvIobrmjtsGXR4Egc4880zdeeedDe5ZPLNnzw5d/vGPf1xDhw6Nvd7jjjsuNMjklltu0ZIlSzR8+PDY6x5o5cqV6u/vD20zevTomrYBpCY7Q1yos846S/fff39om63HT9DXP/PZwRdmaKxHOPefogIAAAAAAAAAAAAAAAAAAABAlsQNu8jgF/SzVECWpkwEmSR4b5oZMlPc5wPy20IKy0xFnadUKW4BHFXyo4MQpNYdS4H1UjoHJgybkMp6JKnoRUdJJA8yGeSFNuvyLBoV7QKUjM26XOElmXdlaP8AZJpNFObZn/+iSsXq15Vf/vKXuu+++9LrVMr6+/s1d+7c0DYzZ85MtO4dd9xRU6dOrbq8t7dX1157baJ1b7qeKO3t7TVvB63IJmkubvsU5jF2Ob11c9ttt4WGFElr7oN/cu6F6urobFCv0CzuP0UFAAAAAAAAAAAAAAAAAAAAgCzJUoFoQonCMhwt2I/TrywEmXhJygSa+NYYz9OQPaoXoHdNbpc3YmQDewTUruAVrNo1M0QIcEJKc4Othm+Vynokqb0QXcxc8ZJViA66uzaHwOI4mYLduJOpAL0kXc3Q7gGtqpb7wqzNnbbZciudcMQnQ9ucccYZDepNfLfffrsWL15cdfm4ceN04IEHJl5/VAhKT09P4nWv884770S2IcgEidRlOGrgGFeHTT322GOaPn26giB8rvyFY2Zqvz33Tr8DcI77T1EBAAAAAAAAAAAAAAAAAAAAIEtiFmZlqZ50nSQFZK4WncXpl2/8OvYkHYlCZpr83oy6eo7ax27+9+KQfm1x8xUN7w9QK8/zIou3JFFwD3jRpW3G4lTactiWKXRmjWKhGNmmkuK5a3Pdtrm0m2J0vyVlLHAvS30F0AiuhmOGOf0zn1Nne0fV5Q888IBuv/32BvbIXlSQyLHHHivfT36PfMwxx6gYcv1asGCBHn/88cTrl6T+/v7INgXbMDCgBlYxeNkb4tZbvHixDj/8cC1btiy03V7/tKsu+NJXw1eWwbEegyPIBAAAAAAAAAAAAAAAAAAAAADSZGJ+TTuDX9D34u6jw+KEeGRhvz2LovBNNTvIxAwdqgl//q3Gfu1QDX3PUA3ZeYi2+Mz7NfHxu+RP2KqpfQPqqdnnHtBsaRSkVyoVlQqlFHqzRsmPXlcl6XRgsN21OQQ24SMlyyLsDM07k30+srN/QKtqtfnPuNFb6NRjZoS2+cY3vmEXgtdAixcv1rx580LbzJw5s6ZtjB49Wh/5yEdC20SFqURpa2uLbLNq1aqatgGkJ5vj4/Lly/XRj35Uzz//fGi7LUaM1Nz/+73QACPki/tPUQEAAAAAAAAAAAAAAAAAAAAgS/z8f007SWGpq7+eHadfvpf816YbJUlhoAvFhKZQ0JD//XWN+e08jb33TnX/n4tkurqa3S2grlw494CmShC+tSkTpHsetRfaI9uUk24yYZCJsQgyMQW7glBX52ODIscEwCYyNYYNcNrxJ2lE97Cqy//nf/5H1157bQN7FO2qq65Sf39/1eW77LKLdtlll5q3ExWGMnfuXK1evTrx+js6OiLbEGSCRGzGo7hDVgbHuFWrVukTn/iEHn744dB2ne0duuGSSzVx3PjolWbwOGBw+X9CDgAAAAAAAAAAAAAAAAAAAAANZEz+v6adp+L7OPviZeC9TdTH/LydgDuC6CZ5GkuBRCyCTEzEueQr3ZCxUqEU2aYS1amqBjnnrYpgLYJMSgW7LliEojgjURFrhvYPaFG1hJFkde40fGi3vnLcSaFtvvnNb9YU2JG2np6e0OVRASS2DjvsMI0YMaLq8sWLF2vevHmJ128TZLJ8+fLE6wdS1cAhLo3xtFwu65hjjtFdd90V2q5YLOraf/++9t5lt5q3iWxx/ykqAAAAAAAAAAAAAAAAAAAAAGRJ3ALRDNZiJSk+c7XoLM6++CbdYul6SBJkktVfNgdcFtglmQCtLYXrT9EvptCRDdr8tsg2laQVeQlzTKzmlkXL45D3IJMM7R6A1nLqp6dr3OjRVZc/88wz+vnPf97AHlX30EMP6Yknnqi63Pd9HXvssalsq1Qq6eijjw5tExWqEqa9vV1dXV2hbRYvXpx4/Whd9Zly1L7WRj17C4JAJ510km666abQdp7n6aof/EAHvf+f7VfOM6rcsIxaBAAAAAAAAAAAAAAAAAAAAABYif2F++x9Qd9L8JuaroZlxCny8D33g0zyFDID5J2r4yLQMBahGlHXqDYvOngkjlKhFNkmSHjqDvoyi3HA2Bynkl2QSabGnUR9bcL+TZgi/eTxVFa1euFCVd4pW7dfNLJf5ZBp+ciOkRrdVT04AdCEKc3uQSyZGsM20dnRodNP/ry+/H/Oq9rmvPPO03HHHaeOjo4G9mxzUcEhBx54oMaNG5fa9mbOnKkf/ehHVZffcccdeu211zR27NhE699qq6301FNPVV3+6quvJlovWlw9xqMMDXFf/OIXdcUVV4S2Mcbopz/9qY46+GCtfn1Zg3oGlxBkAgAAAAAAAAAAAAAAAAAAAABp8mKGfGSoUGGdLBeQbSpOiIdn4ge4NFqSPhJkAjQH5x5ankVAmAnCl3cWO1PqzBodxeji8UrSU3ew19msyyrIJDqAZc263J/LrJeVIbLULm2zczrr6mtTsLLfuvmqLVarHHIalbvGSEOTFf4D9VLL/MeluVOSUKsTP/FJ/cc1V+rZhQsHXf7yyy/rBz/4gb72ta/V2Lvkent7dd1114W2mTlzZqrb3GeffbTddtvp6aefHnR5f3+/5s6dq69+9auJ1h8VZLKwyvsB1CynQcdnnHGGLr300sh2l1xyiU488USVX36pAb2CizJ05wEAAAAAAAAAAAAAAAAAAAAAGRC3UCEbdQobyVOQSZzgj4Jx/7dEXSruA1paRPiCxPkKpDGf6Cp2pdCTDUqF6ECQICpdpZpB9tdYhJRYzS2LxcR9cFeCvmZp99LQavuLlpf1+9Bisahzvh4eUvKd73xHb7/9doN6tLmbbrpJS5Ysqbp86NCh+vjHP576dmfMmBG6vKenJ/G6p0yZErr8pZde0tKlSxOvH0hNBsa4888/XxdddFFkuwsuuECzZs1a+29xn5O6fxxgx/2nqAAAAAAAAAAAAAAAAAAAAACQJTGCMaRsFrLHCf9Yx9X9NMZYBQ5Iku+F/OR9hmW9IBAAkFFe7b/R3d3enUJHNmjz2yLblNO8bBqjqImIsThOphQdwCJJsglOcUSi+QlzGsB9LX6afvrII3XxZZfr8ccfH3T5m2++qYsvvljnn39+g3u2RlRgyJQpU3T11Venvt3+/v7Q5U888YQWLFigPffcM/a6d9ttt8g2TzzxhPbZZ5/Y60YLq8ecw/Hx8Xvf+57OPvvsyHZnnHGGzjzzzAb0CK4jyAQAAAAAAAAAAAAAAAAAAAAA0pShAtGkkhSWuhqW4cm+iDoLQSaJQmYcfW+AvOPcQ8tLYc40rH1YCh3ZoKPYEdkmSNrtwV5nsy4/upFpswsyydS4k6GupiblfXY1SBCtrZbPZR4+077n6YILLtDHPvaxqm0uueQSzZo1S2PGjGlgz6QXXnhB99xzT2ibP//5zzr55JMb1KON9fT0JAoy2X333SPbPPDAAwSZwAHujnGXX365TjvttMh2X/rSl3ThhRdu/Me4u5Wl+SpC1R5bCQAAAAAAAAAAAAAAAAAAAABYz8QNu8jg9/OTFJC5WnQWp6A3C0EmiUJmHH1vgCyzOa8yFSgA1EOC8K1NjewcmUJHNmgrtkW2SRxkMhibccCmTdEuyCRTgXuJxsgM7R+A2HIxdzJGhx9+eGhoxooVK3T++ec3sFNrzJkzR5VKpeHbtXXttdeqt7c39ut23XVXlUrh18l77703Ya/QslKawtX2gsaYM2eOTj311Mh2p5xyii655JJBlri5X6g/gkwAAAAAAAAAAAAAAAAAAAAAIE1xC0QdLVQI46VQeOyKOPtS8Ap17Ek6krw3BJkAzcG5h5bnRV+zTBC+fIuuLVLqzBrthfbINpWoTlUzyJzPWMwbjc1xarMNMsnQHC7JHJlhFXBeLfOfPM2dLrzwwtDlP/7xj7Vw4cIG9UYKgkBXXHFFw7aXxJIlS3TzzTfHfl1HR4c++MEPhra59957E4WkoJXVYTxycIi79tprddJJJykIwue/06dP1+WXX57ORjP4nBSDy9CdBwAAAAAAAAAAAAAAAABIxpjxxpjPGGOuMsY8bIx53RjTa4xZZYx5wxjzP8aY/zTGfMEYM7nZ/U2bMWZPY8w5xpj/MsY8bYx5yxiz2hiz3BjzsjHmfmPMZcaYTxhjuprdXwAAWlKWCkQTSvJL2K7+enacYrgsBJkkem9crJYBWgDnHlqdVYhHxPIthqQbZFLwC5GFmkHCU3fQS7TNunyL49TWZteHLM1TE80dGVcB59Vwmrp6TxnPmn3Yf//9ddBBB1Vt1dfXp29961sN6tOaII9nn322YdtLqqenJ9HrDjnkkNDly5cv1x133JFo3WhRdckxadwYZ7Otm2++WTNnzlSlUgltd9RRR2nOnDnyqs0z8zB0I5EM3XkAAAAAAAAAAAAAAAAAaGXGmN2NMTdKelHSTyVNl7SHpNGS2iSVJI2S9E+SPiXpB5KeMcb8yhizX3N6nQ5jjGeMOdEY87ikhyR9S9Khkt4labikgqQuSeMlfUDS5yXdJOllY8z3jDFjGtzfycaYo4wxFxlj7lobthJU+ef4RvYNAIDGiPkN/Qx+od9L8FV0Vwv2PWO/L77x69iTdMTZn/XcfGuA3HN1XAQaJsk1axPju8en0JF4ymmeuhZF+TaF+6ZkF2Qii/AYZ5BjUjuOBxzU8vOfAbt/4YUXho7xV111lZ588skGdCp5QEij3X333XrxxRdjv+7www+PbHPVVVcl6RJQXdzwJYfCmubNm6dp06apv78/tN2hhx6qa665Rr7v/vMyNB5BJgAAAAAAAAAAAAAAAACcZoxpM8Z8X9ICSUdKivNtOCPpIEn3GmPmGmO669HHejLG7CjpvyX9XNLOMV/eLenLkp4yxpyYdt8kyRgzyRhzhDHmwrWhMW9IelbSDZK+LunDWhO2AgBA64j7S/cOFSrYMkmKYB3dzTjBHwWvUMeepCNJkEk+ftkccItVkS6nHlqdH33NMkH48gndE1LqzAZBEL7RIOm5O8j11uoabDO3bLMNMslQOSHzk0gRpweBEcgdl+5bos6/6jbsw9SpU3XkkUdWbVkul3XWWWcl3pKtZcuW6Re/+EXdt5OGSqWiK664Ivbrtt12W+23X3je/X/913/p6aefTto1tJw6jEeODHF33323jjzySPX19YW2O/DAA3XjjTeqWCxGrDG7gS6oTYbuPAAAAAAAAAAAAAAAAAC0GmPMGEm/kzRL8QJMBnOspIeMMVNq7liDGGMO1ZoQk/fWuKrhkn5ujPmRMSn83LEkY8yPjTGvS3pe0i8knaE1oTGj0lg/AACZlqVfuk8oSVGkq4WUsYJMfPeDTPL03gB551IxLtAUKZwDE0dMTKEj8VTSPHVt5o02gS/tlkEmGRp3koyRmR9Xs95/wEIt52ke71vOO+88+X71//Rx0003acGCBXXtw3/+539q5cqVVZePGTNGq1evVhAEDfnnuuuuC+3vnDlzIkPHBnPKKaeELq9UKrroootirxctqi7DUfPHuPnz5+vwww9Xb29vaLv99ttPt9xyi9pswvRi55g0/zggHQSZAAAAAAAAAAAAAAAAAHCSMWakpN9I2jvF1W4v6R5jzNYprrMujDEf1ZqAkKEprvazkn5m0vkW4N6SRqewHgAA8ied3LDccbXoLM7UqOC5H2QSJ5hlHVffGyDvOPfQ8rza50wjOkek0JFNRNRGByZ+8bSkwYs4LYJMbOYqpr3DrgtZCtxL9PgqQ/sHILZcFLdvsgs77LCDjjvuuNCXnHnmmXXskDR79uzQ5UcffbQKhcbdCx9++OEaOrT6fxZ55plndN9998Ve75FHHqktt9wytM2cOXP0yCOPxF43WlA9xqMmj3ELFizQIYccEhpsJEnve9/7dPvtt6uzs7NBPUNW8YQcAAAAAAAAAAAAAAAAgHOMMZ6k6yTtEtLsYUmnrm0zUtJwSTtJOlHS70Jet7WkW40x7en0Nn3GmB0lXS+pVKVJv6S5kj4uaZLWhJ2MkfQBSedKeilk9SdI+npqnQUAAJsxIb+mPGj7DBZj5SksI86+ZCHIJEmBchY/g4DrbMY8V8dFoFGMRZBJ0syQegqSnrqDXG+trsG+xVylrc2uDymExzQM8xMAm8jH3GnzfTjnnHPUFjKO33XXXbrnnnvq0punnnpKDz74YGib6dOn12Xb1XR0dOiII44IbdPT0xN7vW1tbTr77LND21QqFX3uc5/T6tWrY6+/Xt55551mdwFJxZ3LNHHu8+ijj+rggw/W0qVLQ9vtscceuvPOOzVkyJAYa8/D2I0kMnTnAQAAAAAAAAAAAAAAAKCFfE3SgVWWrZR0YhAE7w2C4LIgCB4LguCtIAjeDoLgySAIeoIg2F/SoZLeqLKO3ST9e/rdrp0xpqg1ISZdVZr8WdI/BUEwIwiCW4MgeCEIguVBELweBMHvgyD4lqTtJH0vZDPnG2P2TrfnAABgvbhBEhn8Pn+i4AtH99M39sEzWQgy8RKUCeSjIBDIHkKE0PISBKMN1KGOlDqysajrYiXNU9dmHLAJfGmzzOtNEHiWKa02rkbsLnM85E0u5k6D7MLWW2+tz3/+86EvO+OMM+rSnahAkO2220577bVXXbYdJio85cYbb9Ty5ctjr/ekk07Su971rtA2CxYs0Omnnx573fXw97//PTLUBajVX//6Vx144IF66623Qtu95z3v0a9//WsNHz483gZyMHQjGYJMAAAAAAAAAAAAAAAAADjFGDNJUrWfxVsh6eAgCCJ/bi8IgjskfUDSa1WafN4YMzVZL+vqy5LeU2XZ7yV9IAiCv4atIAiCd4IgOE3SV6o08SVdZkyNFUNVNi/pb5KukfRVSftL2qUO2wEAwGFxL7HZ+0Z/nooivRhToqJfrGNP0hFnf9bJRUEgrHiFcrO70DJsxsk8jaVAIhahGkEQVF2278R90+yNtaRBJmaw/bU4BoO+btM27XZBJsYiFMUZOQrOs5Xx7gN159TcKXFXBn/hmWeeqSFDhlR91UMPPaRbbrkl6UYHVS6XdeWVV4a2OfbYY1Pdpq0DDjhA48ePr7p8xYoVuv7662Ovt1Ao6PLLL49s993vflc/+9nPYq8/TfPnz9e+++6rp59+uqn9QBX1eI7SwGcz68bTZ599Vh/+8If1+uuvh7bffvvtddddd2nUqFGN6B5yIkN3HgAAAAAAAAAAAAAAAABaxLmSOqss+3wQBPNtVxQEwVOSjpZUGWSxJ+k78btXP8aYYZLOqrL4VUlHBEGwwnZ9QRBcIml2lcV7SDomXg8334TWhJZcK+l/aU1oybAgCLYPguDYIAi+GwTB7yQtq3E7AABkS9xfuneoFstWnsIy4uyL7/l17Ek6XD3OcMPIY94XunzEhyc1qCctwOJU5HxFy7O4rr6/OGHQMJNur1uXHXVZPXoVWShfMdXDVeJvzGIc8C3mH5ZBJspSkEncOTWA3Mvz3GmLLbbQaaedFtrmrLPOUqUy2H/qSOaXv/ylXnnlldA2zQoy8TxP06ZNC23T0xOZdz+of/mXf9Epp5wS2e6zn/2s5sz5/+zde7wVdb3/8fd31lp7b0EQ3NzECyBesQuipgkSaqllRl5Sjgi/SMlSy+6lkWVesqyOp06eThZbTc2ijkZeMy8JoqlIBl6xQLygKIbcBGSv7+8PtBD3rPWd2bNmvjPr9Xw8eDxqzayZz8za853vWq7Pe10eax/dUa1WdcEFF2jcuHF1wyXguahDVppjnJGeffZZHXrooXr++edrrjp8+HDdcccdGjhwYPydoSnl6J0HAAAAAAAAAAAAAAAAgKIzxuyo8HCNW621v4y6zTeCNMJ+Ou9QY8x+UbfZQJ+W1Dtk2eettctibPMLksK+7fpVE//b3x+X1OeN0JITrbU/sNb+2VpLaAkAAFEbRHPYjBVnCuHVr2dvJojwelVKlQZWkowihcwgeT1O/A+ZoDNkqVXPE49LtZ4i83XMA7ziEFQxdushuviwizWodZBK1ZJa1arxu4zXPaffo3Kp3JCy6l2/Nu7l3cXzjMM5MA5zFeMaZJKne36cWvN0fF2JWH7dSJ2cnw5gS4WYX9U4hC9+8Ytqb28PXf7II4/omWeeSayUekEg+++/v3bZZZfE9hfVSSedVHP57NmztXDhwljb/v73v68999yz5jrValVTpkzRWWedlWiATC0LFizQuHHjNG3aNHV2hr1vgw/cphxRg47TG+NefullHXrooVq8eHHN9XbaaSfdfvvtGjx4cCp1FWCUx2YIMgEAAAAAAAAAAAAASpgxeQAAIABJREFUAADgk09KCusOndaN7Z4r6fWQZad1Y7uJeSNQ5NMhi+dba6+Ns11r7auSvhey+B2Sxsbc7l+ttSvjPBcAgMLLewOlg1hhGZ62IwQRvlZfCQoaZOLpa4PkVfbZTwO++BF11frcb+K+av3IR9MvqqBcritChND0HK+BY999rO75zD168itP6tEvPaoffvSH6tHao8HFhYsdZNLVuOAQZOKyjmnbyq2EUp7aCeOc6LyPq8nWzxwPhePRn3TdIKFQ4QfRu3dvnXXWWbG3HMXLL7+sP/zhDzXXqRck0mijRo3SHnvsUXOdemEsYXr16qUbbrihZnDMmy666CKNHj1a8+fPj7UvFy+++KI+//nPa++999asWbMath8kyaMBKaKVK1Zq6vFT9eSTT9Zcb/Dgwbrjjjs0ZMiQ7u0wv6cK3ZSndx4AAAAAAAAAAAAAAAAAim9iyONzrLUPxt2otfZ5Sb8LWXysMcax26OhxkraKWTZj7u57cskrQtZlu23kQEAKCATNUgih1/oL1LzfSkoOa9bKfkfZBLntSnS64n6tv7K17TTLf+pbQ4cqK1376He+2yrHa89R9tccknWpTUdGswBBzZ+q3hc9e6L1biXblfPcwkycQkfaW11KyFG4FlWmJ8A2FIh5k51DuH000/XDjvs0PAyrr76am3YsCF0eblc1gknnNDwOuqZODHsPxltcuWVV6qzszPWtnfeeWddf/316tmzZ91177vvPo0aNUpTpkzR448/Hmt/XXnsscd0xhlnaOjQobrkkku0cePGxLYND0QdslKY+6xZvUafOvFTevKx2iEmAwYM0O23367hw4c3vCYUVznrAgAAAAAAAAAAAAAAAABAkowxIyUNC1l8dQK7uFrShC4e7yXp/ZJq//xg4x0d8vgGSb/tzoatta8aY26UdGwXiz9qjDnVWlvtzj4AAMBmyu7BGJvkrxkriPGbmr42owYRGnrLgf9fwY9yPG8qREMgIqnss5/6/b5bbzNQh8uY5+u4CKTF11CNevfFqokZrtLFZp3GilL9uaUJAslUJVvnnLoEp/gizp8H4yqQC1Y21nuQYsydah9DW1ubzjnnHH3yk59saBUdHR01lx922GHq379/Q2twMXHiRH3jG98IXf7cc8/ptttu0xFHHBFr+2PGjNEtt9yiI488UitXrqy57saNG3X55Zfriiuu0Hvf+15NmDBBH/jAB7T77rs7/212dnZq7ty5uvPOO/XrX/9a8+bNi1V30cydOzfyuXjppZdqLrfW6uc//3nkWvbdd1+NHDmy/oqNGI9SGOO+9MkvacG8BXXXmzBhgmbPnq3Zs2d3e5/VVavU+c/VNdcZPGCgDh8zVlL6IYZoHP8/RQUAAAAAAAAAAAAAAADQLA6rsezGBLZ/u6T1krr6idrDlX2QSdjxz7HW/jOB7YcFmfSTNErSgwnsAwAASNEbD3LYixWngczXprOScQ+eaSm1NLCSZBBkAvjB5bri2gP8FJhAneoMXV6Neel2ec0HDvdtxzmUMZKt1/vpsj9vxDjRDKtAoTXL3GnKlCm6+OKLtXDhwoZs/6GHHtLDDz9cc52TTjqpIfuOatiwYTrwwAM1Z86c0HU6OjpiB5lIm8JMbr/9dn3kIx/R0qVL665vrdWcOXP+VVN7e7ve9a53adiwYdppp5209dZbq2fPnrLWavXq1Vq5cqUWL16shQsX6pFHHtHq1bUDHZrRddddpwsuuCDRbVarVU2dOjXy88477zy3IJOcWvi427jyox/9qMGVvNXB7zngjSATFAlBJgAAAAAAAAAAAAAAAAB8MS7k8X9Ya5/u7satta8ZY+4N2c/B3d1+dxhjBkraM2TxHQntptZ2DhZBJgAAJCdikISvAR+1BDGaYH1tOisF7kEmlVKlgZUko0ghM0CeuVxXvo6LQGoCh2ugmv6vste7Nm3cS7er57ncg8tucxVjbP3fsM9TkEms+Qnj6ua4z6BoCvG+xWXYL5d13nnnacKECQ0poaOjo+byrbfeWuPHj2/IvuOYOHFizSCT3//+93rllVe07bbbxt7Hvvvuq3nz5unEE0/UHXdE+08yy5cv15133qk777wz9v5rOfjgTP/zFcK4jEcRx6xExri8D5N5rx9vkaN3HgAAAAAAAAAAAAAAAAAKbp+Qx5MM2Hgg5PE9jDE9EtxPVGHHLiV0/G+EwbwUsnhUEvsAAABvcGnKzbk4TZG+NlIGEYJnWkotDawkGVGO502FaAgEPOMy5nHtoem5XAM2/SCTevfS+EEmXTzRYd5oSo73dlP/XDlvywdxxsi8D6t5rx9oMF/fU0bjdgzHH3+8Ro4cmfjeN2zYoGuuuabmOkcffbR69MjyP5e81QknnKBKJTxUdP369XWPycXAgQN122236fvf/7569erV7e1111577aU//elPuuyyy7IuBTEVYcQCuiNH7zwAAAAAAAAAAAAAAAAAFJUxZrCkASGLH05wV2HbCiS9K8H9RFXrG8lpHP/eCe4DAABE/aX7HDayx2m+97XprGRKzuuWS+UGVpIdX18bIM8IMgHyq16QSTV2kEkXD7mMA44hZU6rldznPZmLFQ7YXONq3eia5jodaAZF+Jt2PAZjjC688MLEd3/99dfrlVdeqbnOxIkTE99vd7S3t+vwww+vuU5HR0ci+wqCQF/84hf1+OOPa9KkSSplcN8cMWKEfvWrX+lvf/ubDj300NT3D0dOc7jGlwH4jCATAAAAAAAAAAAAAAAAAD7YrcayJxPcz1M1lu2a4H6iCjv+Ndba5xPcT9jx72xMhA5eAABQm2OzaZ4Fcb6K7mkDRylwnwa1lFoaWEky4rw2hCkAyXO5rggRAvxU715qTd34iK51NS64hHU4NlE7TUFzdc+PUWueDq9LuT8AoKGKMXdyP4YPfvCDOuiggxLde73Aj0GDBun9739/ovtMQr1wlYceekh/+9vfEtvf4MGDdeWVV+qpp57SmWeeqd69eye27a5UKhUdc8wxuu2227RgwQJNmDBBQdSQXADwTDHjoAEAAAAAAAAAAAAAAADkzbAayxYnuJ9FNZbtnOB+ogo7/sUJ7yfs+CuSdpD0dML7AwCgKUUOhchhL1ac4AtfwzIiBZmU/Q8yMS4N0Vs+J49/hIDnXK4rX8dFIDUuDbo2ZmhINwQmkGrstjPJS7dU/xyYsuNcxeF0Gof9+SLeGNlk42qdw2WOB29Zxcwq8udvOq2703e+8x2NGTMmkW1Vq1WNHj1a+++/f+g673znO1VyDNBK0/jx4/Wtb31Ltsa8YNWqVYnvd+jQobrkkkt00UUX6dZbb9WMGTP0xz/+US+99FK3t92vXz+NHTtWH/nIRzR+/Hj16dMngYqRGn+GI8BbBJkAAAAAAAAAAAAAAAAA8MGONZYtTXA/L0naqK6/O7VTgvuJKuz4kzz2etvbSQSZAACQjKi/mpvDRvY4vwzsU9PZ5krGvUmrElQaWEkyAhPjtcnh3yDgO2NM3Q5XX8dFIDWe3n/q3UttzLK7ut8al/u247zL6XTGmMNlJkY4m69/UwCSkeb7lsWLF7/tsaUrl+rltS9LknqvDaSVMTYc8RhGjx5dM7wjiiAING3atES2lbatttpK3/zmNzPbf1tbm8aPH6/x48dLkp566inde++9mj9/vhYvXqzFixfrhRde0Nq1a7V27VqtX79elUpFbW1t6t27t7bbbjttv/322m233fSOd7xDe++9t0aMGMF78Tecf/75Ov/887MuI6J8vnZ/euhPkjZ9vrXHgD1S2Wf1leXasKT74T/IH4JMAAAAAAAAAAAAAAAAAPigX41liX27zVprjTEvSxrUxeL2pPYTQ9jxJ/3NvmU1lmV5/AAAFEvUXy/OYe9DnOZ7Xxv2S4H769VSamlgJcmIFWTi6WsD5JnLdUXjIuAgoebtKBoVZNLlsOAQ1mFKjkEmJYfC8hRk0oxjZBMeMhAFcyf4YpdddtEuu+ySdRnIkqfjkZGRrZeomTo/zxUaL0fvPAAAAAAAAAAAAAAAAAAUWFiIxnpr7YaE97UqYg0NZYypSOoVsjjObzrWEnbsEkEmAAAkJ3KDaP6+0B8nLMNXJRMhyKRc0CATTxtwgDxzuRYJEULT83Q+US/krBr70u3iiS7zRteQPJfTmacgkzhjJHMaAA30lrlbkqFWAPKHaxmoq5x1AQAAAAAAAAAAAAAAAAAgaeuQx2sFb8QVts2wMJFGCzt2Kfnjr7W9rI4/U8aYAZL6R3za8EbUAgAokCBaN0Me+y2LFJZRr1l5c3kIMokTjECYApA8l+vK13ERaHb1Qs6sifkr911d8i7jgGOQiXGYg5pSjoJMIs6piyHZY+Y+A/iH915AUbhcy1zvkjgNTYwgEwAAAAAAAAAAAAAAAAA+aA15/PUG7GtDyONZdaWGHbuU/PGHHbuU3fFn7TRJ38y6CABAwcQI+cibOE2RvjZsRQkyqQSVBlaSjCAoTsgMkGcu15Wv4yKQGoegCmtjhoZ0Q73AtmrcS7eL43UKH3G8t5uSQ2Ex5gmZiXOemdMA8B3DFFAMOb+WeS+KNOTonQcAAAAAAAAAAAAAAACAAgvrCN3YgH2FbTOrII9a3bBJH3+t7TVrkAkAAIkzUYNMcthwWa/Btyu+hmWUA/ffB20t18qg80Os14YGFiBxLteVr+MikBqXayCDIJN6IWexg0y6GhdcgkXKjqFrJYdtRQhwy16c4Lycy/0BAG6a+/1HMx87gKbE+96m5f6JKwAAAAAAAAAAAAAAAABvGGMukOR758E/rLU/6+Y2GtGtkn4HTHxJ15qnYwcAIL+CiF/Qz+EX+ovUeFavWXlzraUcBJnE+L1TwhSA5LlcV0UaS4GGyeCTjHpzAxv30u3qeS7zxpJbC6AJjOqdMOMSnOIJE3VOLeVyXt1I3GdQJNaDj7a5pgD8i9OcI/txC8gSQSYAAAAAAAAAAAAAAABAPn1V/geZ/FmSa5DJ6yGPVxKqxWWbGxqwLxdhxy4lf/y1tpfV8WftUkkzIj5nuKTfN6AWAEBR5KhBNE2+hmWUjPu0ulJuxPQ0WXGafmnIA5IXmPr3Al/HRaDZ1ZsbVE28ptSurnmXYBFTcptbmpJLKEqO5qmMkQB8k8SwxNgGFAJXchQRzhYntlAIMgEAAAAAAAAAAAAAAADgg/UhjzeiU7Ql5PGsgjzCjl1K/vjDjl1q0iATa+0yScuiPIdmQwBAXaWIeXM5vLe4NOhvydewjHLg/rX61nJrAytJRqAYr00O/wYB37mMeb6Oi0BaTIz5RBrqBZnYtC9d17mlS5hZngL34sxPcj+nyXv9QPOIF2kFoDByPudI9b1ovk8VuiFH7zwAAAAAAAAAAAAAAAAAFNjqkMe3bsC+wra5qgH7chF27FLyx19re1kdPwAAxRO1KTeHX+iPE3zha1hGpeSeHZeLIJMYDcqEKQDJcwl88nVcBLxi028VrwS15wbVuJduzGveEGSCLhCigKbjwR99Iu+bGNuAguBaBurJ0TsPAAAAAAAAAAAAAAAAAAW2POTxNmOMe2epm94Ra2goa+3rCg8RCas1rlrby+T4AQAopKgNojlsZHJp0N+Sr2EZ5aDsvG5rKQdBJnFemxz+DQK+c7mufB0XgdS4BG9kEGRSCmoHh1TjduR1cbjW5fgcg0yMwxzUORTFB3HmJ3mf00Qp32Fd7jMAADRI3m+xqdaf95OFuAgyAQAAAAAAAAAAAAAAAOCDWiEaA5LaidnUSdYvRg2NFrbvxI7dYXsEmQAAkJBmCIWIc4y+NlLWa1beXEu5pYGVJCOI0SbQDH+zQNpcQoW49tD0ooa/paTe3CB2tEpX17xLkEnZca7iMqR4es67xBjZfZxCoHHiXl+MbUBBuFzLXO+SOA1NzD06GgAAAAAAAAAAAAAAAIA3rLVF++7PMzWWDZL0XEL76a/w703VqqHRnpE0tIvHByW8n+3q1AAAAJIQsUHU14CPWlwa9Lfka8N+OXCbWltrVS75Pw03QXFCZoA8I8gESIhL0EfC6s4NjFSVVRD1/tnV6g6HZxznH8ZlDuoaiuIDxkgAm/HiPYsHJQDwBONBBJysZuX/p6gAAAAAAAAAAAAAAAAAmsGiGsuGSZqb0H6G1Vj2j4T2EcciSQd18XiteuMI295GEWQCAEByov7SfQ6/z9+MQSZ5Eag4rw2QZy7Ntl405AKZ8vMaqJQqddexRk4hJJuLfb91nVs6hJmZgCCTZsJ9BkgW1xR88MQTT2jWrFlZl+Fkm2220cc+9rGsy0jM3LlzNW/ePElSde0adb68sub6QVtZpQH9JUmvL1lad/uVB2v9FoGb5159TlZWAwYN0EGHdvWfHTdhPEMaivWJKwAAAAAAAAAAAAAAAIC8erLGst0S3M8uNZYtTHA/UYUdf09jzGBr7fMJ7Sfs+P9hre1MaB8AACBykEn+mgfiNDz42iRRLjl+rT5is3JWgqh/f/L3tQHyzOVaJEQIcJDB/dcl5CxOkEnsOV/Fca7iMgeIMU/ISlOOkc14zEBuxbxBcZ2jm2bNmqWpU6dmXYaT4cOHFyrI5LrrrtMFF1yQdRlO9j9o/5pBJqli2Gta+XnnAQAAAAAAAAAAAAAAAKCwrLXPSXopZPG7E9xV2Laqkv6W4H6i+muNZUke/7tCHp+X4D4AAEDUxqQcfqE/MDHCMjxt2HJpVpYkm5MkkyK9NkCeBQ4tO4QIodmV93pH3XW2OuqwFCp5K7cgkxjzgq7ut7b+doxj6JoJHMaUUslpW15wOR4AAAB4jjldsyLIBAAAAAAAAAAAAAAAAIAv5oY8vm+C+9gv5PHHrbVrEtxPVA/WWJbI8RtjhkgaELI47NwDAIA4ym7Npv+SwxAJp0bZnHANMskLgkwAPwSBQ5AJ1x6aXNCvv1rbq6HLTdCptuNOSLGiTSqlSt11qmleviXHe7vLeg5jkz+KHw7YHfmI2AOKZfMQutjXIPM/AM2GYa9p5emdBwAAAAAAAAAAAAAAAIBiuyvk8Z3fCOHoFmNMm6QDIu47FdbaFyU9HrL4kIR2U2s7dyW0DwAAIMnkqkE0niDGV9GNp50LzkEmBe4WjfN6AqjN5boiyASQ+n7mBIXdZPsetZdMa2u6BcltbhBrWtDVNW8dtuQYkucSNGdKJadteaFAwXlZ4T4DAAC64u0cwdOyEA+fNgIAAAAAAAAAAAAAAADwxW01lh2ZwPbfL6ktZNkfE9h+d4Ud/4HGmL4JbD/sHL4iaW4C2wcAAHH52jxQQ2BiBJl4epyVUiXrEhJVpNcGyLPAIdSKECFA6nn6Z9X/5NEKKhv/9ZgJqupz8I7q87P/zaSmSlB/blA1MaJMurrdOgSZGMcgE7mE6ZVyNO4wPwHgmySGJcY2AE2Hca9ZOb6LAQAAAAAAAAAAAAAAAICGmydpsaShXSybKOnSbm5/Ysjjq1U7RCUt10n6TBePt0g6TtJlcTdsjNlG4UEm11trq3G3DQAAwlg5f1E/h9/njxN8YTw90HLg9rV6X+vfkkt4wpbycmxAnriElBAiBGzS+6LvauuvvqJ1v/utZKtqPeT9Kg3fJbN6XELObJzLN+41H5Tc1nMJKSk5bssHMcLZ8o/7AuAz3jcBQAwRhk5G2WIhyAQAAAAAAAAAAAAAAACAF6y11hhztaSvd7H4QGPMPtbauXG2bYwZLOnYkMW/s9aujbPdhN0l6RlJO3ax7DPqRpCJpKmS2kKW/bIb2wUAAInI39f0gxiNpb427JdLfK3e19cGyDOX64pmWODfgr7bqscpn8y6DEmNCzLp8pq3Ds8rO4auOYSZuazjizzVmhhuC0Dx8d4L3XTKKafolFNOybqMpnT++efr/PPPlyRVV6/Shqeeq7l+uVeLysN3liSt++vjdbffNnKPbtf4yAuPqKr6v12Q7ntRxr1m1YSzeQAAAAAAAAAAAAAAAAAeu0zSxpBlF3Rju9+UFNaF8j/d2G5irLVW0k9DFr/TGDMhznaNMdtI+nLI4kcl/TnOdgEAQHLyGCIRK8jE08YFl2Zlyd/6u7Jpaukuj3+DgO9KplR3Ha49wE8uc4OqiXavlSQFMa/5imPoWslhflaqPzZ5I+75AgAAaDjmKUA9BJkAAAAAAAAAAAAAAAAA8Ia19mlJ14YsPtwYc1LUbRpjxkoK+3m6O621f4m6zTe2e7kxxob8Gxdnm5IulbQqZNkPjTH9Y2zzB5IGhCz7ro3a5QoAANxEaW7NYe9DnOZ7Xxv2K4FbkEmR5SmkBcgLl8AnX8dFoNm1lFrqrmPjXL5xL/nALXzEBA6tgo7b8gJjZG0Op4c5HgrFgz/nRK4pxjagifCf3yR5MX4jGwSZAAAAAAAAAAAAAAAAAPDNOZJeC1n2U2PMga4bMsbsJuk36vq7UlVJX41eXuNYa1dIujBk8XaS/s8Y09N1e8aYMyWdHLL4r5KujlYhAADAJi4N+lvytZGyHJSd1vO1/iQQpgAkL3AIFCjyuALkWaVUP+QsXpDJ25/kki9rym5zFZUc5mcu6/iiCecnzXfEQM5sdpESTwAgz9J8L8r73uaVo3ceAAAAAAAAAAAAAAAAAJqBtXaRpAtCFveU9EdjzMfrbccYc6Sk2ZIGhqzyv9baB2IV2Vg/lPRoyLIxku42xuxeawPGmK2MMT+QdEnIKp2STrPWdsYvUzLGtBpj2ur9k9RaYzMVl2288Y9vOwIAciPSTSuHt7hYQSaeHqdLs7JU7MaLIh8bkBWXcdLXcRFodi2llrrrVBMKMnFqhXcNMnEJUCqV3Lblg2YcIyMcsnX522nCUwikJub1xfwPQCM5f77j7VDkbWGIwfFdDAAAAAAAAAAAAAAAAACk6juSDnnj35Z6Suowxpwu6ReSZkl6TlJV0naS3itpsqSDa2x/vqQvJllwUqy1G4wxx0u6X1KPLlYZJWm+MeZaSb+VNE/SPyW1SdpV0mGSpkravsZuvmmtvTeBcp+QNKSb2/jZG/9cDJO0uJv7AwDAPzlsZIrTfOVrWIZrkImn5SciTjANgNpKpn5YgK/jItDsWku18lg3cQqR2FLcS77sFj5iSg73c4JMPJfsMXOfQZH48PfsQw0A8iSDMcPIKScvVQydTYsgEwAAAAAAAAAAAAAAAADesdZWjTEnSLpL0l4hq+37xr+onpX0EWvtazHLazhr7SPGmAmSfiepq87aiqRJb/yL6peSLuxGeQAAwEWUxoEcNmnGCb7w9ZenyyW3r9UXuWnN19cGyDOXcZIQIcBPlXL9kLNqrFtnF09ymS+6jhWBw3p5uudHrTVHhwY0Pa5XAGgiEQZ97g+FwiceAAAAAAAAAAAAAAAAALxkrX1Z0qGSHkxwswslHWytXZzgNhvCWvsHScdJWp3gZn8haYq11rffYwMAoIAi3G5z+CX9IMZX0X0NAqkE9ZuVpZwFDkSc7fn62gB55jJmECIE+Kml1FJ3nWqMaUGX13yCH9GYkkNRnZ2J7a/RGCMBAAAaI9XPgZjSNa0cfZIKAAAAAAAAAAAAAAAAoNlYa1+UdJCkn0iqdnNz10raz1r7VLcLS4m1dqakAyTN6+amVko61Vp7irU2Px0rAAA0jfx9o98E0Wv2tRm1UnILMily2Ievrw2QZ6WgVHedIo8rQJ61llvrrhMrfqTRl3xQv1XQbtzY4CIS5HA8m2NEBdBovG8CgDgYO5sVQSYAAAAAAAAAAAAAAAAAvGatXWetPUPSfpKukxQ1iONPkg6x1v6HtfbVxAtsMGvtI5L2lTRV0mMRn75K0o8k7Wat/VnStQEAgGTQDJUt5yCTAr9ORT42ICuBqd+yw7UH+Kml3FJ3naqJEWUSMZjjTc5jRbl+gJLyFGTSjGNkwodMYBbgF65IoDhMuVx/ndZ/f95U7tNWc91yL7fPppLCHAFpqH+VAAAAAAAAAAAAAAAAAIAHrLUPSTrGGLO9pCMlvU/SCEk7SuqlTd8DXi3peUmPSrpH0g3W2r83qJ6PS/p4I7bdxb6qkn5ujPmFpPdI+qA2BbvsIamfpJ6SNkh6VdI/JP1NmwJcbrXWrm5gXUMbtW0AAPLOGClGe2tuuDTob8nXhn3XIJMgR78jamUjNaXk6diAvHC5Bn0dF4Fm11KqH2Ri41y+XV3z1mHG6BiAYkoO6xFk4rnEk0wAJIjGfwBvMm1tMoGVrYaPC8GAgf/+3337SCteCF+3zzaJ1ldXmsNZU87pIBFkAgAAAAAAAAAAAAAAACBnrLXPSfrZG/+airXWSvrLG/8AAEBR5PD7/LGCTDw9UJdmZanYgQNFPjYgKy7jJCFCgJ9c5gY1elbDNfp2G5TqrmIJMimMIocmoviMjGzEv2Lf3k/Guwa5coEiKfVs0cZVr3e5LKhIpuXfc8pgmz4q91mhjSvWvW3dcq+KgvZ+DasTyAqfeAAAAAAAAAAAAAAAAAAAAABA0qL0WOWwSTNWkImnx1kpVZzWK3LggK+vDZBnLtcV1x7gp7ZyW911YgWZdDVBtA5N7YHbzoJt+9SvYKseTtvyguNxI5xvwQ8AABRJadgwBV18pGQCq8rwoW9ff8gQVbbfVkGLUVCyCipSZbs+Ku28c+OL3bJG5ghIQXE/SQUAAAAAAAAAAAAAAAAAAACAzET4peUcNrLHaXjwtUmi0lXXSRfihLfkBWEKQPJcxjyuPcBPreXWuutYE2Gu94aurvkexxxZ93mlXXZz2n7PT31KteagJuhU65FHOW3LC4yRtXF6gNR1+z0t1y1QKCYIVBmxuyqDtlGpLVCpLVB52x5qGbGrTNvbg/GMMSr1H6CWEbur5Z17qmWvPVQaOCjR94VefvYW5fg8LB/xFfeTVAAAAAAAAAAAAAAAAAAAAADIgxw2aQZB9K+i+9qw31JqcVqvyEEmAa0FQOJcxklfx0Wg2bWU688NqnE211reAAAgAElEQVQu3y6e03bcCTJBZ+hT2vpbBX23ddp8aYcd1doevnyrHdtkWuuHtHgj6tyrCENqEY4BKDKuUQBbMMaoNGg7VfbYTZU9dlN5p51kyuWsywK8wKeNAAAAAAAAAAAAAAAAAAAAAJClHDZDxQn18LVhv1KuOK3na/1JKPKxAVlx+SVsQoQAP21V3qruOvGCTN7+JNPaqr5H7RXyBKu+Z54YaRcDfnGhgtLbg1FKLRvV/8ofRdpW1ppzftKMxwwAANKW6jyrKed0kAgyAQAAAAAAAAAAAAAAAAAAAIDkFfw7+nGa731t2G8ptTitFye8JS+as1EYaCyXMYNrD/BTa6W17jo2oSATSerzs/9Vn0N2kgn+HUBSatmo/qe+Tz1OPS3SLlpGj9UO112sXiP7qNxjoyo9Nmqb/ftrh1t+qvKId8QoOkMBY2R3cZ9BkbiExDVDDQAA5EU56wIAAAAAAAAAAAAAAAAAAAAAoKnlsMHQxGgs9bWRMggCWWvr1lcypZQqSh8NeUDyXMY8X8dFoNm1luoHmVTjXL4h8ycTBGr/9dXqs+gfWn/nHTKBUesxH1PQu3eMnUiV947WgNv+EOu5fmnCMbIJDxlwxvUBAPnE+96mRZAJAAAAAAAAAAAAAAAAAAAAACQsynf089jIHiiI/Jy8h2UEJvoxZ8ZGWz1XxwbkhEv4Ud7HRaCotqpsVXedqol4s5XqThBLw3ZWj2E7R99uUcUIzsu/ZI+Z+wyQrLe8d+fyApBjzBGQBj5tBAAAAAAAAAAAAAAAAAAAAIAs5THIJIgRZOLzcTr0Ihc57MPr1wbIKa4rIL9aK61116nGuMQZFyIq8NwrCTGidAAkiGsQAIDamM0DAAAAAAAAAAAAAAAAAAAAQJZy2NQaJ9TD5+Zd69CGVgpKKVSSDX6JF0iey3XlMvYASF85KNddx8a5dXo8F/JSwPkC8G+8ZwGA+pzHyjSH1ChzYObLhUKQCQAAAAAAAAAAAAAAAAAAAAAkreDfuw9ifBU9741nJVPgIBMaRYDEBUH9cbJaraZQCYConK5fgkxSEPF8FeH0JnwMzPEAAEBX8v4ZHfKBIBMAAAAAAAAAAAAAAAAAAAAAyFIOGwxNEL3mvDdSFjnIJE4wDYDaXBrDqiLIBMgr7pyNF2e+CQCNROM/AO/5OEzl/PNAxMd7JgAAAAAAAAAAAAAAAAAAAABAJIULvrD1VwmCgh3zZvIeMgP4KDD1x4xqlSATwFelau0Asx1tOfpGud9G4zCOFg9/I2gOBIIAQLYYh5GGZpzNAwAAAAAAAAAAAAAAAAAAAEBDRepTzeGvzccJ9ch7k0QpqN3QnGcEmQDJcwkysdYhRQlAJkb0GxG6rNpZ1YCgJfpGczjnyxTnqzZOD5qMD+9Zul1D9ocAAOnzYPxGNggyAQAAAAAAAAAAAAAAAAAAAIAs5fAL/S4N+kk8Jy0uISslk58gk6ihMT6/NkBeuVxXnbYzhUoAxPHL//ilKrbytsettTp77NkqxZm/5XDOl6lmPF8JH3LegwQBAECDMEVACvi0EQAAAAAAAAAAAAAAAAAAAACSFqkhIH/dA3GCL3z4Be3uyFOQSVR5f20AH7lcV1VbTaESAHH02qqX7j71bo0ZPEalakmm06i90q4ff+jHmvreqbFCNgzBYdFEPcdNNp2xWRcAAAByK82ws0ifOTXZfK7oylkXAAAAAAAAAAAAAAAAAAAAAADNLI8hErGCTHLejVAKChxkkvPXBvCRS/iRtbShAz4b0HuArjjxiq4Xxpm/kWMSTdCMJyzhORlTPBSID+9ZNq+BWRwAH/kwVnZHvqvHlppxNg8AAAAAAAAAAAAAAAAAAAAAjRXlm/c5/FZ3EKOx1OfAFpdGj3JQ3N8RjRNMA6A2lzGv03amUAmAhoh16/R3LuQlj+eOeZH3ZmbAO1xSAAqCOQLSwKeNAAAAAAAAAAAAAAAAAAAAAICG8znIxEWRg0zy/toAPnIJfLLWplAJgEYwMULdCOaIJvr8pADntwCHAAAAcoA5B1JAkAkAAAAAAAAAAAAAAAAAAAAAJCxaP0A+uweiNuAHHn993eWXaEtBKYVKsuHzawPkVcnUHzOqtppCJQAaIs70jSCTaEy0+QlnFyg2l/dszVADAAB5waeNAAAAAAAAAAAAAAAAAAAAAJC0KP1NTdLUanJ+nOWgnHUJDWOCfL82gI9cxryogVAAPBJnXsP9Npqo56sQp7cQBwE0hm+Xh2/1AEAE/gYz+VoX4iDIBAAAAAAAAAAAAAAAAAAAAACylPOAD1c+B5m4NHAUOsiERhEgcSVTqruOFUEmQF7FCwHjfhuJx3NHH7jcQZjjAcny+T0tAPjMefRkmC0UgkwAAAAAAAAAAAAAAAAAAAAAIGlRvngfqxE2f3xu+nKprRTUDyXIq8DQWgAkzWVc6bSdKVQCoCFizGt8ngt5qRnnJ0n/ifAnB0/FCdkpRDBPAQ4BQDEUYkyF95pwNg8AAAAAAAAAAAAAAAAAAAAAPmmO5oEg519fLwflrEtoGBqrgeS5BARZa1OoBEBDxAmiK+V7LpS6Jgn7aySalOGtnP5pck0B8J3zOJX6cMZ732bEux8AAAAAAAAAAAAAAAAAAAAASFqEhoBmCZHw+ThdGj0qQSWFSpIRtcGOhjwgeS7hTVVbTaESAI1ggjhtedxvI/F47ugFTg+QO1y2AIBmQpAJAAAAAAAAAAAAAAAAAAAAACSOFqUteR1k4lBbuVROoZJsBIbWAiBpLuOKtfwqNZBbceY1gb9zIR+ZqPOTQpzeZA/C5/k3EJVvf8/M4gB4yXGoJNAWaeDTRgAAAAAAAAAAAAAAAAAAAABIWKQeq7w2tRaoc8ulgaMcFDfIxLemQKAISkGp7jpVW02hEgANEWf+xu02mrzOkbujCQ8ZyBPeNwFATAyfTYkgEwAAAAAAAAAAAAAAAAAAAADIUpM0Q/n8a68utVWCSgqVZCMwtBYASXNpdLW2QIlQQLOJNX/zdy7kpSaZIwNw4/P7SQDIG2+DmXytC7HwaSMAAAAAAAAAAAAAAAAAAAAAJC3S9+6b40v6PodlWNUPE6iUihtk4m0DC5BjJVOqu47L2APATyaIfu+M85ymFkSdO+b//Ob/CIBi636YClc5AKB5+PtJMAAAAAAAAAAAAAAAAAAAAADkVZT+pJw2tUZtwM97WEYpqB9KkFcBrQVA4lzGvKqtplAJgIaIHLIhfmE+qqY8X+7HTBQWAADYkmvgUveDmYD6+LQRAAAAAAAAAAAAAAAAAAAAALLUJL0DeW+SqJQqWZfQMHkPmQF89ME9P1h3nYmjJqZQCYCGiBNEx/02GhOx9bEIp7cIxwA4iPPe0Iv3LN0twYNDAAAgLeWsCwAAAAAAAAAAAAAAAAAAAACA4qFDaUteNJ51Q0upJesSGiYI+I1UIGlDth2ioBqoGlS7XG47rcYOH5tyVQCSEmtew/02mjhhMQDQQHkP50RjrF69WosXL9YLL7ygNWvWaO3atVq3bp1aWlrU1tamXr16abvtttPgwYPV3t6edbnAJr4OZ77WhVgIMgEAAAAAAAAAAAAAAAAAAACAhEXrbW2Ob+kH8rd518rWXadSqqRQSTKMjNMxbb4+gOSdtt9p+vGDP+4y8OBjIz5GiBCQZ3FCNnIe6pY6zheAzXj3nsWzcrLW2dmpCy+8UJ2dnTXXGzdunMaNG5dOUQ2wcuVK/fnPf9a9996re++9V/Pnz9fy5cudn7/ttttqr7320siRI3XQQQdp7NixGjhwYAMrBroWNqZaa7Vo0SLNnz9fCxcu1DPPPKMlS5bomWee0fLly7V27dp//SuXy2pra1Pfvn01cOBADR06VCNGjNCoUaM0ZswY9e3bN+Wjgm8IMgEAAAAAAAAAAAAAAAAAAACADJkm+bX5rhr586QcFPfr93l/bQBfff7gz+vF1S/qN4/+Rqa06TqrdlZ1+LDD9d2jvptxdQC6JU4QEffbSIxpxrAn/kYAXwwdOlRPP/2007rnnvE5feXkUxtc0Sb16lq0aJGGDh2aSi2b++Mf/6hzzjmn7nq33HKL7rvvvhQqSs66dev029/+VjNmzNCtt96q9evXx97WK6+8olmzZmnWrFn68Y83BR7ut99+OuaYYzRhwgQNGTIkwcqL5emnn9aDDz6oBx54QA8++KAefPBBvfrqq6Hrl0olbdy4McUK82nRokW65557dM8992jevHlasGCB1qxZ4/TcDRs2aMOGDVq5cqWefvpp3X///f9aZozRe9/7Xh1//PGaPHmyejTqAOC14n6SCgAAAAAAAAAAAAAAAAAAAABZidKD2CRNrXkPy2gptWRdQsMEasZGYSAdFx11kc457Bzd+vitkqRxu45T3x78MjWQe3HmNTmfC6UuathfEc5vAQ4BaBSf30/+8PJfaOrHJqhv722yLiUz06dPd1rvL3/5ix599FGNGDGiwRV13/Lly/WTn/xEP/nJT7Rs2bKG7MNaq/vvv1/333+/zj77bB1xxBE6/fTT9aEPfagh+8uLpUuX/ius5M3gkpdeeinrsgpl2lenaeZ1M/X88883ZPvWWs2ZM0dz5szR2WefrY+PP1pfO+U09d922zrP9HesR3QEmQAAAAAAAAAAAAAAAAAAAABAljxuyEpSYPIdllHkIBOfmwKBIujR2kNHv/vorMsAkCBTij6v4X4bUZDvuSOA5vHq6lX6QcfPdf6ZX8y6lEy88sormjlzpvP6HR0duvjiixtYUfd0dnbq0ksv1Te+8Q29+uqrqe23Wq3qpptu0k033aR99tlH3/rWt/ThD384tf1n5ZVXXnlLYMkDDzyg5557Luuycst1vjn77tkNCzHZ0tq1a3Xpr67W1X+YqQs//yV94pjjU9kvssdsHgAAAAAAAAAAAAAAAAAAAACSFqVRNa9NrTba6j4371pb/2DKpeL+jmhAozAAANHEuXcG/s6F/NSM58v9mG0znh40NeP5mHDptVdp6UvLaq/k9yHEdvXVV2vDhg3O6//yl7/Uxo0bG1hRfI888oj22Wcfffazn001xGRLc+fO1VFHHaXDDjtMTzzxRGZ1pGHy5Mk6/PDDNW3aNF1//fWEmBTYq6tX6fTzvqmJX/m81q1fn3U5SAGfNgIAAAAAAAAAAAAAAAAAAABA0qI0KHkc8JEk3xvP6mkpt2RdgrOo5zrvrw0AAKmLNX/jfhsJQWtAYRXx/cdr69bposv+J+syMjF9+vRI67/44ou6+eabG1RNfFdddZXe85736OGHH866lH+57bbbdNRRR2VdBpCo/7vtFh356ZO15rW1b19YvNtDUytuJDQAAAAAAAAAAAAAAAAAAAAAZITv3b9dYPLdjNpSyk+QSVR5f20AAEibCWLM9uI8p5lFPV9FOL0JHoOVTW5jgAdMDgJAO677nc6cNEU777hT1qWk5uGHH9Zf//rXyM/r6OjwKqDj61//ui688MJIz2lpadE+++yjAw88UCNHjtSwYcO00047qVevXurZs6estVq1apVWrVqlRYsW6amnntLDDz+su+66S48++qisdRunq9VqnEMCui0IAg0ZMkS77babhg8frm222Ua9e/dW79691dnZqZUrV2rlypVauHCh5s2bp8WLFztve868uZr45c/p/370UwWE1xUWQSYAAAAAAAAAAAAAAAAAAAAAkLQoPVY5aMhCzoJMIv5JEWQCAEBEcRoug1LydRRZU85PeF+AJmGkImbtvL7xdZ330/9WxwXfy7qU1EyfPj3W82644Qa99NJL6t+/f8IVRfe5z31O//Vf/+W8/ujRozVlyhQde+yx6tOnT81129vb1d7erqFDh+rggw/+1+PLli3TjBkzdNVVV+m+++6LXTuwJdONucTgwYM1ZswYHXTQQRozZoz23HNPtba2Oj//hRde0DXXXKOOjg4tWLCg7vq33jNLP+j4ub588idj1wy/NeNsHgAAAAAAAAAAAAAAAAAAAAAaK0o4SZMEmfj8C9ouv1hfKVVSqCQbPr82AAB4qRSjLY/7bSTR5ycFOL8FOASgUbrTnJ+m39xyoxYsfDLrMlKxYcMGXX311bGe+/rrr+uqq65KuKLozjrrLOcQkwMPPFB33XWXZs+erZNPPrluiEktAwYM0Omnn657771XDz30kI477jgFcULSmtTQoUN12GGHZV1G7gVBoNGjR+t73/uennjiCT333HP69a9/rTPOOEMjR46MFGIiSYMGDdIXvvAFPfzww/rpT3+qvn371n3OhZddqiVLn497CPAcoxoAAAAAAAAAAAAAAAAAAAAAZKlJmlqDnH99vaXcknUJzqI2+QUm368NAABpMzGajQkOiyjiOebsAgWXk4u8Wq3qW/99SdZlpGLmzJlavnx56PL3ve99NZ/f0dGRdEmRXHnllbrooovqrtejRw9deumlmj17dt1jimPvvffWjBkzNG/ePI0ZMybx7efd9ttvr/Hjx+u8887TzTffrJdfflmLFi3ST37yk6xLy7Vzzj1HS5cu1ezZs/XlL39Zu+22W2LbDoJAp556qv7yl79o++23r7nuuvXrdfEvfvbvB5gvFwqfNgIAAAAAAAAAAAAAAAAAAABA0iJ8775ZmlpNkO/jbC1F+yXaPMnLr5sDAOCNOPO3nM+FUheUoq1fiNPrfhC2gVUAPsrTe5Yb775T9/51XtZlNFy9IJJzzz1XBxxwQOjy+fPna+7cuUmX5eShhx7S1KlT66634447avbs2fr0pz/d8M9u3vWud2nWrFmaPn26tt5664buy1cDBw7Uhz70IZ1zzjmaOXOmli5dqmeffVbXX3+9pk2bpiOOOELt7e1Zl1kIhx9xuAYMGNDQfey6666666676v49//qWG7TmtbUNrQXZIMgEAAAAAAAAAAAAAAAAAAAAALLUJE2teWo860qlVMm6hIYJDK0FAABEUopx72yS8LrENMkcGUA+jXnfgTWXf/O///PtDxboPvD888/r1ltvDV0+dOhQjR07VpMnT665nXphKI2wYcMGffzjH9eGDRtqrjdkyBDdc8892nvvvVOqbJMpU6booYce0qhRo1Ldb1ZOOukk/e53v9OSJUv0wgsv6MYbb9S5556ro446SoMGDcq6vOJKaTjaZZdddM4559RcZ9WaNfrzA39JpyCkik8bAQAAAAAAAAAAAAAAAAAAACBpBWpQChM1mCTvYRmtpdasS2iYRv+yNAAAhRNnXsP9Npog33PHWPgTQZOIE3Lp23uW0z73KW3V1ha6fNbcB3TbnNkpVpSuK6+8Up2dnaHLTzrpJBljNGHCBLW0tISud80112j9+vWNKDHU+eefr/nz59dcp1+/frrjjju04447plTVW+26666aM2eOjj/++Ez2n6YJEybomGOOyexcN6s0w4bPPPNM9d5665rrzH7oQUlMhYqmCWfzAAAAAAAAAAAAAAAAAAAAANBY0XqsmuNr+r41nkXVWslPkEmzhcwAAJA2U4oxr8n5XCh1kc9Xs51fm3UBQKrSbLp3MWBQf33qhBNrrvPN//5PWVvMa/Xyyy+vuXzSpEmSpL59++rDH/5w6Hr//Oc/9fvf/z7J0mp67rnndPHFF9dcxxijq666SjvvvHNKVXWttbVV1157rb7whS9kWgfyxbexUpJaWlp0+OiDaq7z5KJFKVWDNPFpIwAAAAAAAAAAAAAAAAAAAABkKfCvyaARfGymeJN1aARtLeUnyCSqvIfMAACQuqAU/TncbyMxUYPWCnF6EzyIYmYnAF750pSp2mbrXqHL5z32qP7vT7emWFE67rnnHj3xxBOhyw844ADttttu//r/kydPrrm96dOnJ1ZbPd/+9re1bt26mut89rOf1eGHH55SRbUZY3TaaadlXQbyxHEqkfbnQPu/e2TN5UtfWrbpfxRiPoc3EWQCAAAAAAAAAAAAAAAAAAAAAEmL0hDQJE2tQdRmVM9UypWsS2iYvL82AACkLohx72ySOV9imiTs7y2a8JABVz4GY267TR99bvKUmut8+9IfqbOzM6WK0tHR0VFz+aRJk97y/z/0oQ+pX79+oevfdtttevbZZxOprZZnn322bmjKwIED9e1vf7vhtQDNZsC27TWXr1n32hv/y7+xHvHxaSMAAAAAAAAAAAAAAAAAAAAAZKlJQiTS/rXXpLWWWrMuoWEIMgEAIBpTin7vNKVSAyopsDhhMc0k31NrIDpP/+bPmDi5ZoP+k4sX6Zczr9v0fzw9hijWrl2r3/zmN6HLW1paNGHChLc8VqlU3vbY5qrVqq688srEagzz85//XBs3bqy5zrRp09S7d++G1wJkLe1wqN69etZc3qOtLaVKkCZm8wAAAAAAAAAAAAAAAAAAAACQtCj9ADkP+HDldViGrb9KS7ml8XUkJGpojI+/bg4AgNfizGuaZM6XmKY8X814zIAbX9+zbN2jp75y8qk117ngZ5dq/YYNnh5BNL/97W+1atWq0OVHHnmktt1227c9Pnny5Jrbvfzyy7tbWk3ValXTp0+vuU57e7s+8YlPNLQOoNGcx8qUB6Rlr7xSc3l7n74pVYI0efxJMAAAAAAAAAAAAAAAAAAAAADkVITGy6ihE3mV9+Msl8pZl9AwXofMAADgo1KMeU3O50Kpizo/abLz65DDB3jL11CSKDa/Bqd+7ATttN3g0HWffWGp/vc31zS+qBTUCwMJCyzZb7/9tOeee4Y+b+HChZo9e3a3aqvlz3/+s5555pma63ziE59Qjx49GlYD4JO0x+HnX3yx5vJh2++QUiVIE582AgAAAAAAAAAAAAAAAAAAAEDCmqyP0knA19e9ZQL+YAEAiMIEMeY1TBCjacb5SRMeMuDK52DMlkqLpn3qjJrrXPyLn2nVmtUpVdQY//jHP3T33XeHLm9vb9eRRx4ZunzSpEk1t18vJKU7brzxxrrrTJgwoWH7B5rdH++pHVR04Kh9N/0Pf4d6xMAnwQAAAAAAAAAAAAAAAAAAAACQtChNVk3SpOlz41nRRP1lXUJmAACIqFSK/pwmmfMlJk5YDIB8iDEcRn2Pk7YTj/yI9hg2PHT5yyv+qUsuvyLFipJ3+eWXy1obunzChAmqVCqhyydNmqSgxtg+Y8YMrVmzpls1hrnppptqLh82bJhGjRrVkH0DPkpzTF28eLHue/ivocsr5YoOfs8Bb/w/v8d6RMNsHgAAAAAAAAAAAAAAAAAAAACyRMBH5qzCm7GaQWBoLQAAIJI4IRvM+aKJOj8pxOktxEEATalUKumc0z5bc51LLp+ul19+OaWKklWtVnXFFbWDWCZNmlRz+Q477KCDDz44dPnq1as1Y8aMWPXV8uKLL+qxxx6ruc4hhxyS+H6BLDgHlKQ45TjzzDNVrVZDlx972BEa2N4vvYKQGj5tBAAAAAAAAAAAAAAAAAAAAICkRWkIyGlTa9Rfb631y8vIVikoZV0CAAD5EivIhLlQFCbyHDmfc+q3KMAhAI0SfUxI39HvP0yjRrwjdPmqNWv0ne98J8WKknP77bdryZIloct333137b///nW3M3ny5JrLOzo6ItdWz9y5c+uuM27cuMT3C2TCOccknTH1+9//vmbOnBm6vFwu64sfP+XfD/g/1CMC3v0AAAAAAAAAAAAAAAAAAAAAQOIifPM+Bw1ZSUirSSKOg3Y6KOsSEhU5ZIbGagAAIjGl6PfOPDThe4UQvG7xee4NxJGXv+lvf+ZzNZdfeumlevbZZ1OqJjn1AkYmTZrktJ1jjz1WPXv2DF1+99136+9//3uk2uqZN29e3XX22WefRPcJNLvXX39d06ZN05e//OWa6511yqf0jl13S6kqpI3ZPAAAAAAAAAAAAAAAAAAAAAAkLUqPVZM0tfrcvDt1/6k1l/dv6Z9SJQmJeKp9fm0AAPBSnJANgjmiCZpxftKMx4xmlJdQkjgOPWC03rff/qHL161bp3PPPTfFirpvxYoVuu6660KXG2N00kknOW2rZ8+eOuaYY2quc/nll0cpr6758+fXXF6pVLTrrrsmuk/Ad436HOj111/Xddddp3e/+9264IILaq57xJix+srJp25ZWUPqQjZ49wMAAAAAAAAAAAAAAAAAAAAASeN7928TePz19QOGHqD2SnuXy2zV6ktjv5RyRekKjL+vDQAAXiqVoz+nKYM5uiHq/KTJTq/NugAgZb6FL9a6Br/9mc/XfG5HR4eefPLJZAtqoF/96ldat25d6PL3ve99GjJkiPP2Jk+eXHP5FVdcoWq16ry9epYsWVJz+fDhw1Uux7ivAx5yDYrqbqBUZ2enVqxYoSVLlmjOnDm69NJLdfLJJ2u77bbTMccco8cee6zm8w8ffZCu/cGPufYKjk8bAQAAAAAAAAAAAAAAAAAAACBhkZqsPGvIahTfGs82FwSBbj75ZvUt95W1/25Js51WU0ZO0XEjj8uwuuiiNqQQZAIAQDSmFOPeyf02miDq+fJ3ruksyiEU4HCBKLrbdJ+m97zz3frwuENDl3d2duob3/hGihV1T0dHR83l9YJJtnTIIYdohx12CF3+zDPP6E9/+lOkbdby7LPP1lw+ePDgxPYFFMXjjz8uY0zov3K5rL59+2rIkCEaPXq0Tj/9dE2fPl3Lly+vud1yuaxzPv0Z/e6//ketLS1vXyE/Qz0cEFMDAAAAAAAAAAAAAAAAAAAAAEmLENrhc8BHkoLIzajpat+6XQ9+7kHd/sTtuu/p+9RabtWp7z1VvbbqlXVpDdcsf4MAACQmzrwm4H4bSU7O17rX1+nvy/6eyLaqr63V68tfcFp3bavVS+s7a64TVP2efyN7wwcMV1ulLesy3Pg2JNSp59wzztRNd9+parXa5fIZM2boa1/7mvbee+8GFJecRx55RA888EDo8q222krHHRct+DMIAk2cOFHf/e53Q4Qfxw8AACAASURBVNfp6OjQYYcdFmm7XalWq1q6dGnNdQYNGtTt/QB5k/bnQMYYfXjcIZp26hl61+57pLpvZIcgEwAAAAAAAAAAAAAAAAAAAADIkucBH0nJyy9oH7r7oTp09/Bfz86DqOc6MM3xNwgAQGJizd/yMRfyRtT5SUan9+/L/q53fOsd2ewc6KYF31qgvbbfK+synOTl/eSbRgzfVRM++GFdc+PMLpdba3X22Wfr5ptvTrmyaKZPn15z+Uc/+lH16hU9/PP//b//VzPI5Prrr9eKFSvUp0+fyNve3Nq1a7Vx48aa6/Tr169b+wAQbo899tDRRx+tE/Y/ULsP2SXrcpAyPm0EAAAAAAAAAAAAAAAAAAAAgKRF6bFK+VdQk0JYRnEEtBYAABCJiRFkYoJ8zvmyYpg7AoVlYrwHjvOcrH3j059RS6USuvyWW27R3XffnWJF0WzcuFFXXXVVzXUmT54ca9t77rmn9tlnn9Dl69at069+9atY295yO/W0tbV1ez9A3qQRDlUulzV8+HDtsMMO6tmjh+Oz8jfWIxyzeQAAAAAAAAAAAAAAAAAAAABIWpQmqxw2ZMVBkIm/aKwGACCiUin6c5gLRRN5fsJ8BoBfhm6/g6Yc87Ga65x11lkpVRPdDTfcoGXLloUuHzRokD7wgQ/E3n69EJSOjo7Y237Ta6+9VncdgkxQJM6hTylMmzZu3Kgbb7xRp59+unY/4gP6jy+dqQcW/C3zupAe3v0AAAAAAAAAAAAAAAAAAAAAQJaaJMgkj7+gnVdRzzUhMwAARFSOEWRCcFg0QbT5CVNNoNhMTrvbv3bKp9SjbavQ5XPmzNENN9yQYkXu6gWJTJw4UaU4wV5vOPHEE1WpVEKXP/DAA1qwYEHs7UubghTqKZfL3doHkEdpj6nValXX3/5HjZ10gqZ8/StasWplqvtHNhhdAQAAAAAAAAAAAAAAAAAAACBhhHa8HWEZ/uK1AQAgoiBOkAn320iYnwDYTF6DTAb166/TT5yki6f/LHSdr3/96zryyCO9+hxh2bJluummm2quM3ny5G7to1+/fvrgBz+omTNnhq7T0dGhH/zgB7H30draWned9evXx94+kFf1xtTttttOl112Wejy1157TStWrNCKFSu0ZMkS3X///VqyZInTvq+96Q+aNfcB/X/27jxcjqpMHP97+iYhQMIWCCACCSACKrIqu6gIDgg4uJAxEERWhXFUfoMDRAUJDIpfFHcUSWRRFAVEYViURdYBwo4agyyy74YshJDc+v0RdATSfbv6dvetqv58fPI82uf0OW9V3646Vdb79k+/dmps+daNc8VNuShkAgAAAAAAAAAAAADQbnnyj2rFSVbqpLImnpVR3n2tkAkA5JP6Wjh3KmSST4+skYHmFKnIR16f+/gBcfovfhbPvzBrie133XVX/PSnP42PfexjXY6svrPOOisWLlxYt33jjTeOjTcefAGCSZMmNSxkcvbZZ8dJJ50Uw4cPb2n8pZdeesA+CpnQkwY4pC6//PJx4IEH5hryqaeeivPPPz9OO+20uOOOOxr2ffTJJ+IDnzwgLvrOD+OdG2/yT3GV91jP67n6AQAAAAAAAAAAAABotzwP3ntInyGmyAwA5NRKURJrvnzyFlqzf6E0qnD9keXou8Lo5eKz+x3QsM8Xv/jFePnllwcXVBtNnTq1YfukSZPaMs/uu+8eK664Yt32p556Ki655JKWx2+mkMmcOXNaHh+KptnjayeOw2PHjo1DDz00br/99rjiiiti/PjxDfu/MGdO7HHYQfHnBx9oeywUg0ImAAAAAAAAAAAAAADtlquQSTkf686b9FAr6Xb2glorydgA0Mv6+nK/JSm0kY/1CfBPyn4MPezf9onVVlmlbvtf/vKX+NGPftTFiOq7+eab4957763b3tfXFxMnTmzLXCNGjIi99967YZ+Biqo0MnLkyFh22WUb9nnqqadaHh/KqtPH1J122inuvvvu2G+//Rr2e2HOnNj/mCNj4cKFHY2HoTFsqAMAAAAAAAAAAAAAAKicPHVMSp6Q1axe2c4iUGQGADor9bWQlud8m0tZ1o7rjl037jn2nraMlS2YHwvuf6ypvnOXyuKZ0Ysa9ll/5fXbERYVtu7YdYc6hKblvcYpmmWWXjqO/tRh8enjjq3b5/jjj4/99tsvll566e4FtgQDFQ553/veF6uttlrb5ps0aVJ8//vfr9t+8cUXx5NPPhmrrrpqS+O/8Y1vjBkzZtRtf+KJJ1oaFwqpQIfKZZdd9h/Hkx//+Md1+932h3vi62dOjf/8xEHdCo0uUcgEAAAAAAAAAAAAAKDtcmQO1AqUZZBHzrAVy+iiFBFZ891r4bMBgFz6Wjh3lnXNN1RqOffxEBU+GTl8ZLxljbe0Zaxs/vx4adayTfWdPbI/nlihQSGTLOItq7cnLiiEChxCD/joR+MbZ50Z999//xLbH3vssfjWt74VRx55ZJcj+z/z58+Pc889t2GfSZMmtXXOrbfeOt70pjfFzJkzl9i+cOHCOPvss+OII45oafyBCpk89NBDLY0LDCylFD/60Y/iL/fcE9dNn16337fP+XH8+8RJMSqaWwdRDu42whKklFZPKR2YUjorpTQ9pfR0Sml+SumllNIzKaW7Uko/SykdnlIaP9Txdkpa7O0ppSNSSj99ZV88kVKam1JamFJ6IaX0WErplpTSuSml41JKu6WUVhnq2AEAAAAAAAAAAACGVAWSrNotDVFyaS/K+2vlSWI1AOTT15f/PdZC+eQtZNJr/DnRY/Je4xTR8OHD47jjjmvY5ytf+UrMmjWrSxG93vnnnx9/+9vf6raPHj06PvjBD7Z93n333bdh+9SpU1see911123Y/uijj8YLL7zQ8vhQJEU8Vvb19cUpRx0TtQZru6eeezbOveTX1jcVM2yoA4AiSSltGhHHRMQHI6LeHYUxr/x7W0R8NCK+mVK6IiJOzLLsmq4E2mEppRUj4pCIODAiGq3SRr/yb/WI2OI1Y9wTEZdExDlZlt3VoVABAAAAAAAAAAAACilf0Y5yPqWfNzmiliSjFlXNb6QCQC6plSIb1kL59GIhkxzXEFkHw4BOayXRvnDJ+S2G87GPfSy+8pWvxD333LPE9ueeey5OPvnkmDJlyiCCa91ABUPWXXfdOOecc9o+78KFCxu233vvvXHLLbfElltumXvsTTbZZMA+9957b2y99da5xwaa8/YNN4p/3Wnn+OXll9btc/E1V8WBB+7XxajoNIVMICJSSktFxFcj4rCoX8Ck7tsjYueI2DmldE5EfCrLslKWX0sp9UXEZyPi6IhYcZDDvfWVf8tHxKGDHAsAAAAAAAAAAACgumoFS8jqEIVMuid3kZleTBQGgMHoy5t+FBF9zre55CoM2EJ/YOi08HXNVyy0oFKKWq0WJ5xwQuy55551u33jG9+IT3/60zF27NguBhfx17/+Na688sqGfe6444446KCDuhTRq02dOrWlQiabbrrpgH1uuOEGhUygw3bfcaeGhUyuv316RKZUW5W4+qHnpZTGRsQ1EfHpyF/E5LUmRsTNKaV1Bx1Yl6WU1omI6yLi5Bh8ERMAAAAAAAAAAACA3panOEmPFPgo3C9o8w+KzABATrX8KUjJ+TYfhdaAitpjjz0aFs2YO3duTJkypYsRLTZt2rTo7+/v+rzN+ulPfxrz58/P/b63v/3tMWLEiIZ9rr766hajApr1/u12aFiU6vkXZsV9Dz3YvYDoOKt5elpKaaWIuCIi3tnGYd8cEVemlNZq45gdlVJ6R0T8b0RsNdSxAAAAAAAAAAAAAFRCnl+LzlP0pMQUy+ievL9WXpNaAAC5pGHD8r+pR9Z8bdOLhUxyruGgl+S9xum0bJDvP/HEExu2n3baafHQQw8NcpbmZVkWP/7xj7s2Xyv+9re/xQUXXJD7fUsvvXTssMMODftcffXVLRVJgaJppohwNugjWGuWHz06VlxuuYZ9nnrm2S5FQzf04GoeFkuLy5ieGxEbN+g2PSIOe6XPShGxQkRsFBGfiIhrGrxvrYj4VUppZHui7ZyU0lYRcWVErNyg218j4tSI+Egs3herRMSoiFgtIjaMiF0i4r8i4ryI+Fsn4wUAAAAAAAAAAAAohVw5VsVKyGpWM8kRr+ovebewfDYAkFNfC2l5BUvCL7qUt5CJ/QulkfdastX3FM0/b8GOO+4YO++8c92+CxYsiGOPPbbjMf3d1VdfHffff3/X5mvV1KlTW3rfbrvt1rB9zpw5cfHFF7c0NtC8sSs1SmWPeO7557sUCd2gkAm97MiIeF+dtnkR8Yksy7bIsuy7WZbdnWXZ81mWzcqy7I9Zlk3NsmzHiPhARDxTZ4xNIuJr7Q+7fVJK60fEbyJi2Tpd/hARH4yIcVmWfSbLsl+8si+eybJsbpZlT2ZZ9qcsyy7PsuwrWZZ9NBYXOXlPRPwgIuZ2ZUMAAAAAAAAAAAAACqf5JKteKSJR8/h61+RN8vPZAEBOfX3535O3MAcA/5CqUKzoNZtw4oknNtyus846K/74xz92OKjFWi0Q0m2/+93v4uGHH879vj322GPAPmeddVYrIUGxFPxQOXpUvXT2xV6cP79LkdANrn7oSSmltSPiC3Wa50bELlmWDbjyyrLs4ojYLiKerNPlkymlzVuLsrNSSiMj4hcRMaZOl29FxGZZlv0qy7Ks2XGzLFuYZdlVWZYdEhFrRMTpg48WAAAAAAAAAAAAoFyqkGPVbrXk8fWiqkmsBoB8WilkYoHYgqZTmgqfuNsUfyNQV95ijcX06m3YfPPN40Mf+lDd3osWLYrJkyd3OqiYPXt2/PKXv+z4PO3Q398fP/7xj3O/b5111ol3vetdDfv8+te/jpkzZ7YaGtDIK4e/eS++2LDbMssu04Vg6BZ3G+lVx0VEvaPZJ7Msu67ZgbIsmxERe0dE/xKaaxHxlfzhdcVJEfG2Om1HZVn26SzLXhrMBFmWzcqy7NbBjAEAAAAAAAAAAABQSnmSEEta4CPvL2JX4he0SyLvvlZkBgDySbVWCpk433ZWb601c5R4gWqo6Ff8+OOPj74GxbHOP//8uOWWWzoaw89+9rOYN29e3faxY8fGyy+/HFmWdeXfueee2zDeadOmRZblPwoefPDBDdv7+/vjpJNOyj0uFElRiz79PapHnniiYb8Vl1+h88HQNa5+6DkppTUj4mN1mi/LsuysvGNmWXZNRJxep/m9KaUt847ZSSmljSPi8DrNP8yyzGoLAAAAAAAAAAAAYDDyFJKoFTPJoN0Uyygunw0A5DRsWP739MiaD2AgrSTaFzU5f7A22GCD2G+//Rr2OfroozsawxlnnNGwfe+9945hrZz3WrTHHnvE6NGj67b/5S9/id///ve5x/3Qhz4Ua6yxRsM+06ZNi9tuuy332MDAHnrs0Zg1Z3bDPuustVaXoqEb3G2kFx0cEcPrtE0exLjHRcTLddo+NYhxO+H/RcSSyvTdHxGf6XIsAAAAAAAAAAAAAL0tT9ETaELeJD+FTAAgp2FLSstpLNXyv6fnpSxH3wqsqauwDdCMFv7UUxW+H3U24Utf+lIstdRSdd/229/+Nq688sqOhDRjxoy48cYbG/bZZ599OjJ3PUsvvXTstddeDftMnTo197hLLbVUfOELX2jYp7+/Pw499NB4+eV6qcLd9+KLLw51CNAWv7vp+obtK4xeLlZfddUuRUM3uNtIL5pY5/Ubsiy7tdVBsyx7LCJ+Waf5QymlpVsdu51SSltExE51mj+fZdm8bsYDAAAAAAAAAAAAUEm1HElWJU3IUiyjOmo1nw0A5NFSUZI860MYiD8nekze688yWWutteKTn/xkwz5HHXVUR+YeqCDIm970pnjHO97RkbkbGah4yi9+8YuYM2dO7nEPOOCAWG+99Rr2ueWWW+K//uu/co/dCffdd9+ARV3gnxX5WHnWRRc2bN92082tbyrG3UZ6Skppk4gYX6f5nDZMUW+M0VG/eEi3fa7O6zOifiEWAAAAAAAAAAAAAPLIU5ykR4pIVOIXtEvCvgaADhvWSiGT3ljzDRnLH6i0alzj1N+Go48+OkaNGlW3/eabb44LL2xcBCCvRYsWxZlnntmwz8SJE9s6Z7Pe8573xOqrr163fe7cufHzn/8897jDhg2L733vewP2O+WUU+L000/PPX47XXfddbHNNtvEzJkzhzQOSqagh8orrr8+brrz9oZ9dtpm2yjsBtASVz/0mp0btF3chvF/FxEv1WnbpQ3jD0pKaVREfLBO8/ezLMu6GQ8AAAAAAAAAAABAVRX5F1CHSi15fL2IPEIMAC2otVDIxPowt3x7rAL7t52FGiqwO6iuKlwvt/sqapVVVonPfa7eb9gvNnny5Ojv72/bnJdeemk8/vjjDfsMVSGTWq0WEyZMaNhn6tSpLY290047xcEHHzxgv0MOOSSmTZvW0hyD0d/fHyeccELsuOOO8fTTT3d9fmi3WbNmxeHHfalhnxHDh8dHdtm1SxHRLe4E02t2rPP6/VmWPTTYwbMsezEibqzT/O7Bjt8Ge0bE0kt4PYuI87ocCwAAAAAAAAAAAEB15cnLKukvS+dNPlPIpHuqkBgIAIXW10Ihk5q1EEBltHLJNcB7jjjiiBgzZkzd9nvvvTcefvjhFiZesoEKgbzzne+M9dZbr23z5bXPPvs0bL/uuuti5syZLY39ta99LTbccMOGffr7+2P//fePo446qq0FZBq55557Yscdd4zJkyfHokWLujInveXm62+OOS/M6dp8c+fOjQ9+8IPxwCOPNOy39798IMassKJCbBXj6odes3md129t4xy31Hl9g5TSMm2cpxXvr/P6HVmWPdrVSAAAAAAAAAAAAACqLEdxklTSQiZ5kwtKu50lZF8DQGel4cPzv6nm/Jxbjl3Wa8ufbKgDAFrQ+EC13HLLxVFHHdWVSJ555pn49a9/3bDPQIVEOm2zzTaLDTbYoGGfgYqx1DN69Oj4zW9+07BwzN+ddNJJse2228bdd9/d0lzNePLJJ+Ozn/1sbLrppnHttdd2bB6qb6DCthf85ILYdatd48QTT4zZs2d3NJY//elP8a53vSuuvvrqhv1GDB8exxxy2Cv/q8cWdBWnkAk9I6X0hogYW6f5zjZOVW+sWkRs3MZ5WvHuOq9f1dUoAAAAAAAAAAAAAKouz3P3qTce6671yHYCAD2g1pf/PdZCLchTrqMCia+9Vo0FmpT1UOmeww47LN74xjd2fJ5zzjknFixYULd92LBhsffee3c8joFMnDixYfuZZ54ZixYtamnsddZZJy688MJYdtllB+x70003xWabbRb7779//OlPf2ppviX54x//GIcffniMGzcuvvGNb8TChQvbNjbUM+v5WXHMMcfE+PHj4zOf+UzccMMNkWXtO87Onj07jjnmmHj7298e06dPH7D/5EP/PdZ+wxptm5/iGDbUAUAXrd+g7c9tnOe+Bm1vioib2jhX01JKa0ZEvSP5rUvov1RE7BIR/xIRm0bEOhGxfCy+qp8bEY/F4m29OSIuz7Lslg6EDQAAAAAAAAAAAFBOeZIQa72RsFjzO5wAQFUMy1/IJClS0Vl2L5RGzx4Pm9jskSNHxhe/+MU4+OCDOxrK1KlTG7bvvPPOscoqq3Q0hmZMnDgxvvCFL9Rtf/TRR+OKK66I97///S2Nv91228Wll14au+22W7zwwgsN+y5cuDCmTZsWP/7xj2PrrbeOCRMmxPve975485vf3PTf9KJFi2L69Olx1VVXxc9+9rO4/fbbW4q7aqZPn557Xzz99NMN27Msi9NPPz13LFtssUVssskmud9XRs8++2yceuqpceqpp8aaa64ZH/7wh2OnnXaKrbbaKlZaaaVcY82ePTuuvfbaOPvss+PCCy+MF198san3veedW8fn9vvE/73Qo6eHqlLIhF4yvkHbg22c54EGbeu0cZ683tag7a6//5eU0tIRcURE/HtEjK3Tf4VX/m0UEXtExJSU0v0RcWpE/CDLsvltiRgAAAAAAAAAAACgrPIUJylpElfKmV2QeqRgSxHk/WwAgHxSLX8hk6gp6gbAwPbff/84+eSTY+bMmR0Z/7bbbos777yzYZ999tmnI3PnNX78+Nhmm23ihhtuqNtn6tSpLRcyiVhczOR3v/td7LHHHvH4448P2D/Lsrjhhhv+EdOYMWNi4403jvHjx8daa60Vo0aNimWXXTayLIs5c+bECy+8EA8++GDMnDkz7r333pgzZ07LsVbVBRdcECeccEJbx+zv74+DDjoo9/uOP/74UhcyafV+0MMPPxxf//rX4+tf/3pERKy55prx5je/OcaNGxerrbZarLTSSrHUUkvFsGHDYvbs2fHCCy/E7Nmz469//Wvccccdcf/990eWZbnmfPubN4yffu2b0dfXwrqaUlDIhF6yZoO2gVcXzXs6IhbGkr9fa7Vxnrw2rPN6FhH3R0SklLaJiJ9ExNotjL9OLC5k8pmU0iFZll3RUpQAAAAAAAAAAAAAlZCnkElvJLXWemQ7SydfngkAEBExrJVCJpI0c8uVi1uBQm4lLXAIHVeZa5bmvuPDhg2L448/PiZMmNCRKKZOndqwfdSoUbHnnnt2ZO5WTJw4sWEhk1/96lfx3HPPxUorrdTyHFtssUXcfvvt8bGPfSyuvPLKXO999tln46qrroqrrrqq5fkbefe7392RcamoNi0lHn744Xj44YfbM9gSbLfZFnHeN74Ty40a9ZoWa6EqcSeYXrJyg7an2zVJtrhk1DN1mse0a54W1Cvk8lSWZS+mlCZGxNXRWhGTfzY+Ii5NKR0zyHEAAAAAAAAAAAAASiv1QBJi3l95Vcike3rh7w8AhtTw4fnfU3N+zqvX6pi0U961OlAsH/3oR2OTTTZp+7gLFiyIn/zkJw37/Ou//msss8wybZ+7VXvvvXcMb3DefemllwbcpmasuuqqccUVV8TXvva1GD169KDHG6y3vOUt8dvf/jZ++MMfDnUo0DYppfj3ifvFb773o1hh9HJL6ND9mOgcd4LpJfWKiLyUZdmCNs81O2cM3bB6ndefSil9KCLOjIgW7qIsUS0ipqSUTmrTeAAAAAAAAAAAAADlkufB+x5JalXIpHskrgJAZ6XasPxvqlkLdVb51z+K0dErevZ6Jcdmp5TixBNPbHsIF154YTz33HMN+0ycOLHt8w7GmDFjYpdddmnYZ+rUqW2Zq1arxRFHHBF/+tOfYt99942+vr62jJvHRhttFD/96U/jrrvuive+971dnx86ZZMNNozLfjAtvvr//VcsNWLEUIdDF7j6oZeMqvN6vaIjg1FvzKEsw1aviMryETEtlnw8mBERUyJi+4gY/0rfcRGxbUR8KSLuHWDOz6eUDmoh1qaklMamlN6S519ErNupeAAAAAAAAAAAAAD+IU8SYo8kLPZsslrBZZENdQgAUD7DWkhs7pE1X1vl2WV2L1RWr15L/su//Etsv/32bR1zoIIfq622Wuy0005tnbMdBiquctttt8Vdd93Vtvne8IY3xJlnnhn33Xdf/Md//Ecst9xybRt7SYYPHx577bVXXHHFFXHPPffEhAkToqYAGi0Y6Hi578H7xqRDJsWGG27YpYgittpqqzj7lK/H9ef8Irbf4h0D9O7N431VtVD6EUprqTqvv9yBuRbUeX0oS0QtXef1tZbw2uyIOCoivp9l2aLXtL0QEQ9FxA0ppSkR8YmI+GpErFhn/FNTSr/PsmxGCzEP5FOxuKAKAAAAAAAAAAAAQLHkSFRNqZzJKSmlyFMDQxJO9ySJ0gDQWX35C5mUdc03tBRcqyez3KPM/P027b//+79ju+22a8tY/f39se2228Y73/nOun3e9ra3RV8L57hO23PPPePYY4+NLKt/Xpg9e3bb5x03blx84xvfiJNOOikuu+yyOO+88+Lyyy+Pp59+etBjr7zyyrHDDjvEHnvsEXvuuWessMIKbYgYGtvo7RvFhhtvGBuvvnE89NBDcemll8YNN9wQN998c8yYMaPhd6xZtVotNt5449hjjz3iwx/+cLztbW+Ll/88MxbNe226+hI4P1SKQib0kuF1Xl/YgbnqjTmUhUzqFXJ5recj4v1Zlt08UMcsy/oj4vSU0s0RcUVEjF1Ct6Uj4pSI2K3ZQAEAAAAAAAAAAABKL08hiZqn9AEASqWvhbQ8a74Os3+B9nnwwQeX+Po9T9wT2d+LLD2Rc9AWCk5uu+22bSksELG4uMDkyZPbMla3Lb300vGlL31pyOYfOXJk7LnnnrHnnntGRMR9990XN954Y9x9993x4IMPxoMPPhhPPPFEzJs3L+bNmxcvvfRSDB8+PEaOHBnLLbdcrL766rHGGmvE+uuvH29961tj0003jY022kgR0ldMmTIlpkyZMtRh9Jy11147DjnkkDjkkEMiImLWrFlx6623xowZM+KBBx6IBx54IB588MF4/vnnY+7cuTFnzpx48cUXo6+vL5ZaaqlYZpllYuzYsbHqqqvG2muvHRtssEG87W1vi6233jqWX375Id46ikAhE+pKKZ0QEcUrnfZq92dZ9oNBjtGJ0pxFLPfZzIomi4i9mili8qo3ZdldKaXdI+KGWPLfzK4ppS2zLLslz7gAAAAAAAAAAAAApZUnGaWkiSspZ7JoLdU6FAmvlfezAQDySX0tpFzVrIVyy7OksfyB0nC9Qtmtt956sd566w11GPB6gzi8Lr/88vHe97433vve97YvntycH6pEIRMa+XwUv5DJNRHRbCGTl+u8PrxNsTQz5oIOzNWsetv/z76dZdnVrQyeZdnNKaWvRsRRdbocGhHtLmTy3Yg4L+d71o2IX7U5DgAAAAAAAAAAAIBX8au6r1cLybvd4u8PADpseAvpSM7PHWb/At2VhSMPUCzFLRTVZFxFn//SJgAAIABJREFUDZ+WKGRCL3mpzuudKGQyos7rQ1nIpN72/93CiDhpkHOcHBGfiYill9C2Z0rp4CzLFg1yjn/IsuypiHgqz3v8nzIAAAAAAAAAAABAV+R5ZLFWzgIfeZMjUs1znABARQxrIS2vr+i/N108uVaPPbfUzIY6AOhJKVJkf//+pcj5Vey5AxVQQMUtdkLVlPOON7RmTp3XR3Vgrnpjzu7AXM2qt/1/9+ssyx4bzARZlj0fET+r0zwmIjYdzPgAAAAAAAAAAAAApZHnx9fK+kNtOcOueXy9aySlAEBnpVYK0ZW0eN2QUskEqBKHKQB6iKsfesmzdV4fmVIa3ua5lssZQzc8M0D7FW2a57cN2rZo0xwAAAAAAAAAAAAAxZarkEk5H+vOWyyjJnm3a1Kev79cvyAOAPyfnCfRkq756C51DugFCi8CdEZhj6/NhlXWYs8skasfekmjIiJj2zVJWnzXf+UWYui0gQqZ/G+b5mk0zpvaNAcAAAAAAAAAAABAseV58L7WGw/p1yTvdk1hE1cAoEpSvkImuQqNkV+P7V616Ci1Hvu+/l2PbjYAPWrYUAdAcWVZVrW/j4cbtK0WEY+2aZ5Vov53q1EMnTbQ3Pe3aZ77Y/G18JLW1W9s0xwAAAAAAAAAAAAAxZYnQ6mkSa15i2XU/A4nANDLatZCufXAmhroIY5TQKeV/DBT8vB5DVc/9JIHGrSNb+M8jcZqV7GQVjSauz8iXmjHJFmW9UfE7DrNo9sxBwAAAAAAAAAAAEDhSVB6nVSzT7ol+fsDgI7Lfbq1FqIp2VAHAB2XtygmAM0p/fHV/axKUciEXvLnBm3rt3Ge9Rq0zWzjPHnNaNA275UCJO1Sr5DJUm2cAwAAAAAAAAAAAKCwUq35R7VTKudj3XmLZdQ8vt41pU9cAYBSyFlwoqRrvvKw/oHK8vUGKDcFSnqSqx96RpZlj0bE03Wa397GqeqN1R8Rd7Vxnrz+HPULjCyb2vv/gI2u8/r8Ns4BAAAAAAAAAAAAUFx5HtCv9cbD/LUcxV0YpN74kwKAoZX3fGstlFuunNeqrH+a3Y6qbC+UWM5yVr63APQUVz/0mul1Xt+ijXNsWef1P2VZNreN8+SSZVkW9bc/RcRy7ZjnlYIo9QqZzGrHHAAAAAAAAAAAAACVUtKk1pQzC6vW1t/do5G8nw0AkF/us21fXyfC4B+sf6Asevd6pVe3G+iW8h9fyx4//8ydYHrN1XVeXyeltPZgB08pjYyIrXLO3U1XNmhbt01zrBv1zxQPt2kOAAAAAAAAAAAAgGLryZ+Pb0whk+7Jk7hS/iQXABgiKcvX3VqosyxpXsUaj0LL+efp7xmg3Jo+ijvcV8qwoQ4AuuyKiDipTttuEfHdQY6/U0SMrNN2+SDHbodLI+LLddq2iojpbZijXiGXiIg/tmF8AAAAAAAAAAAAgOKr5XjyvlbOpNaUq1gLAEDF5F0K5VkfsliOXabQAdANgzrWOEzRBjNmzIhrr712qMNoyvLLLx8f+chHhjqMtpk+fXrcfvvtQx1GQ3MXzI3nX3w+xq42NrZ/7/ZDHU4LHCirRCETes3tEfFgRIxbQtvEGHwhk4l1Xp8Ti4uoDLVbo/72vy8ivtOGOd7XoO2mNowPAAAAAAAAAAAAUHx5inz0SFJrLZWzYEsZSeQFgM7LfbYtafG60uix5U821AEALeixAxUdce2118ZBBx001GE0Zd11161UIZMLLrggTjjhhKEOoynv3P6dxSpk4vDXk1z90FOyLMsi4pw6zduklDZvdeyU0hsi4kN1mn+ZZdm8Vsdul1e2/6w6zR9IKa0xmPFTSmMiot6q4oEsy/40mPEBAAAAAAAAAAAAysMT+q9Vk7zbPf78AKDz8p5vFXXLL9c+tgCCsih14cUShw4wdJo8eDrGVoqrH3rRDyNiYZ22wZTC+lJEDK/T9r1BjNtup0XEgiW83hcRRw9y7CMjYmSdtp8OcmwAAAAAAAAAAACA0kh9OZ68L2lSa6mTzyouJZ8NAHRc3tNtzfm5o+xeoNtyF7TqSBQAFeJAWSXlvOMNg5Bl2UMRcW6d5l1SSvvkHTOltENEHFin+aosy/4375ivjDstpZTV+bdjK2NmWfZoREyr0/zJlNJ7Wox1q4g4ok7zy1GsYi4AAAAAAAAAAAAAHdb8g/e9UHQiy7KhDqGnKDIDAAVU0uJ1Qynfisb6Byg6xymAhhwmK8XVD73qixHxYp2276eUtml2oJTS+hHx81jy96k/Ij6fP7yOOzYiZi3h9RQRv0wpvTPPYCmlTSLioojoq9Pl21mWPZIrQgAAAAAAAAAAAIAyy1OcpFbOx7p7oQBLWSlkAgCdl3spVNI135DKs48tf6A08l6vuL4B6BWO91Xi6oeelGXZAxFxQp3mZSPi8pTSxwcaJ6W0W0RcFxGr1ulyWpZlt7QUZAdlWfZ41C+wskJE/DaldHhKqV5hkoiISCnVUkoHRsRVEbFKnW4PxuLCKQAAAAAAAAAAAAC9I1chEw/pAwCUTs4lXOprmKbDoFlTQ2lU5OuaRZbvDRXZboDcHP960rChDgCG0H9HxHte+fday0bE1JTSYRHxo4i4NiIejYj+iFg9IraOiEkR8e4G498dEUe0M+B2yrLstJTSuyLi35bQPCoivhUR/55S+llEXB4RD0fEcxGxYkSsERE7RcTeEfGWBtO8GBF7Z1n2QjtjBwAAAAAAAAAAACi8XMVJyvn7lH4Vu7hSnkI6AEBr8p5ua+Vc85WG5Q9QeA5UDN6BBx4YBx544FCH0ZOmTJkSU6ZMGeowGpr14qz466y/DnUYS9Dk8c9hslIUMqFnZVnWn1LaOyKujvrFOLZ45V9ej0TEHlmWvdhieN1yQESsGksu5hIRsX5EfOGVf3m9FBEfzbLs5hZjAwAAAAAAAAAAACix6j95r1hGcflsAKDzcp9uFTLJL9c+7q31T9ZbmwsAQMm4+qGnZVn2TES8NyJubeOwMyPi3VmWPdjGMTvilUIru0fEhW0e+tmI2DXLst+0eVwAAAAAAAAAAACAUshVSKImC5H2SjkSefP0BQAGQaExgIjIfw1SpGuWQcVSnM0AKCbr5UpRyISel2XZkxGxfUR8JyL6BzncuRGxZZZl9w06sC7JsmxeROwVEZ+LiDltGPLiiHh7lmVXtmEsAAAAAAAAAAAAgHLqy/Godq2cj3XnSuDKOhcHr1ekRD8AqKy8p9uSrvmGVJ59LPEVqqsyX+/KbAhQUIW9H1TQsOgsVz8QEVmWzc+y7PCI2DIiLoiIRTmH+G1EvCfLsn/LsmxW2wPssGyxr0fE+hFxakTk3Yb+iLgsInbKsuwDWZY92u4YAQAAAAAAAAAAAMolxxP6ki5ps8ImrgBAhaRazvOtQiYtyLOm7lwUQJv5vgJ0RmGPr80GVtgNoAXDhjoAKJIsy26LiL1SSmtExG4R8a6I2Cgi1oyI0bH4CDgnIh6LiD9ExPUR8Zssy/7SoXg+HhEf78TYdeZ7PCI+k1I6OiJ2euXfxhGxXkSsEBFLR8SCiPhbRPw1Iu6JiBtj8T54oltxAgAAAAAAAAAAABRejsTWlMqZ1JoUYCkuHw0AdF7O821SyCS3fMtNC6B/prAdRdazf589utkATXOcrBSFTGAJsix7NCJ+8Mq/npNl2byIuOiVfwAAAAAAAAAAAADklefB+xxFT4okT/JZFlkHI+G1FJkBgC5wui2WqnweKcLSGaqqKgcqoKgKWyiqoGHRWco4AgAAAAAAAAAAAAC0XY4n9Gse66a9Cpu4AgCVkud8qzJFS3Itaax/XsXuoEKKen2T+8hezM0AKBAHyipxxxsAAAAAAAAAAAAAoM1SrfoP3qdU/W0sq6Im+gFAlVgKFUyPfR5K41BmrlcAOqP09+pKHj6vppAJAAAAAAAAAAAAAEC75UkcKHuSAYWTJ3FFEiEAtCjPKTQpO9GSXMsUaxqg81w/AbSi2WOnY2yVKGQCAAAAAAAAAAAAANBuuQqZlPOxbglcxeWzAYAuqDnfForigFAeOb+uhbq+SXX+e1PvLdB2AHSTw19PKucdbwAAAAAAAAAAAACAIqvleFS7pEmwSRJWYflsAKDznG67wU6GKspdmMShAKA3ON5XikImAAAAAAAAAAAAAADtliezNU/REwAAiiHHek9OZmtyFYvptcoyPba5UAW5C7gA5FT+40zZ4+efueMNAAAAAAAAAAAAANBueRIpUzkf6y5/cgQAwCBYCgGQh/MG0KuavU/qOFkp5bzjDQAAAAAAAAAAAABQZD3wi/ApzzZmnYuD18vz2ShIAwAtylW4rnNhVFqe/dYD62+oirzXIK5ZAJrkcEmBKGQCAAAAAAAAAAAAANBmuQpJlDTpUjJZcflsAKDzUi3P+VZVt07rtdWPvygoo147UgHdVvb7QWWPn1dTyAQAAAAAAAAAAAAAoN3yJLbWPNZNe+UqjiNHBABa4xzaeXn2cUmLA3aKRGAKrSJ/nrkLClVkuwE6xnGyUtzxBgAAAAAAAAAAAABouzyFTMr5lH6uYhl0lcRVAOgChcO6wI6DKsp7vVKd65uqbAdQVMU9XjYbV1HjpxUKmQAAAAAAAAAAAAAAtFtfjke1k8e6aa88iSvFTXIBgGJLOYrROdu2KM+OU2QPqsvXG6A5RT1eFjUuOsodbwAAAAAAAAAAAACAdstTnKRWzse6FcAoriSRFwA6z+m243pyF/fkRkOP8P0GaMz9rEop5x1vAAAAAAAAAAAAAIAiy/Pgfa2kD+mXNOxeoJAJAHRBnvOtU3Nr8uw36x8ojbzXK9UpolmV7QCKqqjHy2JGRacpZAIAAAAAAAAAAAAA0Ga9UEiiqMkR+GwAoBtSrmJ0WcfiqLSm19TV2b9WcVBhvuBAr3L860kKmQAAAAAAAAAAAAAAtFuexNZUzse68xTLUFiju/IU0vHZAECLeqBwXWmk6hQyaVbvbTEUUO7TgPMG0KuaPP5ZX1dKOe94AwAAAAAAAAAAAAAUWZ5CEj1QyITu8tkAQBfkKVxHa+xiqKS81yt5CjUC9DLHS4qknHe8AQAAAAAAAAAAAACKLE/iQFmTYEsadi+QuAIAnZfrfOvU3FE9uXt7cqOhWLK8b/C9BWjM/axKUcgEAAAAAAAAAAAAAKDdchUyKedj3YplFFeeXzj3OQJAi3KcQ51tW9TsPraDoVTyXK+00r+4qrIdQFEV9nhZ0LDorHLe8QYAAAAAAAAAAAAAKLI8xUlSOR/rLmxyBIqTAEA31HKcb52aOywb6gDaqD1/LNbqFFqv/nn26nYDNHsAdD+rUsp5xxsAAAAAAAAAAAAAoMB6oZCE5Mji8tkAQBfkKWRCS3pgSQ00oTrXN1XZDqCoeuF+JOWhkAkAAAAAAAAAAAAAQLvVcjyqLQmWNsuTuFKdpEAA6C6JogXio3g9+4QCy30NUpW/56psBwA0QSETAAAAAAAAAAAAAIB2y5PYmsr5WLfk3eJSnAQAuiBPMTqn5tY0ud6s1O5tcmOyzkYBANA+zS7W3GuslHLe8QYAAAAAAAAAAAAAKLI8D97XyvlYt0ImxeWzAYAuyFPIhA5T1gPKJO/1SnUKNVZlO4CiKu7xsqhx0UnlvOMNAAAAAAAAAAAAAFBkORKzylp0orjJEeT5bHyOANCasq7hSsUuBqK41yy5SygVczMAisP6ulIUMgEAAAAAAAAAAAAAaLdajgfva+V8rFuxjOLKlVjtowGA1uRYw8nJbFGzO64X928vbjO9qzJ/75XZEKComjnMDMWhyOGvJ5XzjjcAAAAAAAAAAAAAQJHV+nL0Ledj3YqTAAA9LU/hOlqijgkQUaFrz4psBlBcxT1eNruoK2r8tKKcd7wBAAAAAAAAAAAAAAos9cKD9z2wiWWVJ3GluEkuAFBsKeVIzXO6bY1KJlBJvXsN0qvbDUAvUsgEAAAAAAAAAAAAAKDdajkSlGrlfKy7J4q1lJTPBgC6IM96D9oua9jau4UiKIWq/Hnm3Y6qbDdAXo5/Pamcd7wBAAAAAAAAAAAAAAotxxP6JS06ITmyuPIUMvE5AkCL8hQycbptTbP7zf6FUsl7DaJQI0BzSn+Px/G+UhQyAQAAAAAAAAAAAABotzyJrbVyPtZd+uSICvPZAEAX5Fnv0SL7uJ5sqAOALqrK9U1VtgMosMIeZpoLTOGqainnHW8AAAAAAAAAAAAAgCJLOR7VLmshE8kFheWzAYDOSznWcM7MLWpyx1Vq6VOlbQFezfcb6LDCFkwqaFh0VjnveAMAAAAAAAAAAAAAFFmt+Sf08yTBFklhkyPI9dkoegIALcqzhnO6bU2z+83+hVLJfS1Zme94ZTYEKCj3eCiSct7xBgAAAAAAAAAAAAAosLIWJ+kURU+6S+IKAHRBjsJ1tMYaEioqdx2TYh4LsrxvKOZmAHSBA2AvcnccAAAAAAAAAAAAAKDdUvUf1VYso7jyfDZFTQoEgKJLedZ7TretaXa/2b9QadW5ZqnKdgDk5PDXk6p/dxwAAAAAAAAAAAAAoNtqzT6hn/s3nGFANakCANB5Ta/3aFmTxdnU14NyyV2YxHccAEpn2FAHAAAAAAAAAAAAAABQOT2QTZl6YBvLKs9nU51fNweALuvLUTjM6ZY2G6gcojUeVVKZv2fX0JU0Z86cePDBB+OJJ56IuXPnxrx582L+/PkxYsSIGDlyZIwePTpWX331eMMb3hBjxowZ6nBhiI6pjn+9SCETAAAAAAAAAAAAAIB264EEpcokk1VQrs/GxwgALUm1HIVMnHBb0+xu68Xd24vbTGUoilk9ixYtihNPPDEWLVrUsN+OO+4YO+64Y3eC6oAXXnghrrnmmrjxxhvjxhtvjLvvvjueffbZpt+/0korxVve8pbYZJNNYvvtt48ddtghVl111Q5GDAXhsN+TFDIBAAAAAAAAAAAAAGi3ZhNb00C/pV5ceZLPFD3pLp8NAHRBjkImcvZb1OyOs3+h0oai8Mm4cePioYceaqrvcYd/Jo484JCBO7ZhOwaK64EHHohx48YNep68Lr/88vjiF784YL9LL700brrppi5E1D7z58+PX/ziF3HeeefFZZddFi+99FLLYz333HNx7bXXxrXXXhvf+ta3IqUUW265Zey1114xYcKEWHvttdsYebU89NBDceutt8Ytt9wSt956a9x6660xa9asuv37+vpi4cKFXYywtz377LOx4YYbxtNPPz1g349/8EPxvS9N6UJUDDWFTAAAAAAAAAAAAAAA2q0HslUVwCguv3AOAF3gfFsgPovXsUsosKpdS54y7Udx0EcmxIrLLT/UoQyZM844o6l+//u//xt/+MMfYqONNupwRIP37LPPxne+8534zne+E0899VRH5siyLG6++ea4+eab4+ijj473v//9cdhhh8Wuu+7akfnK4vHHH/9HsZK/Fy5ppkAGQ+ezn/2sz4jXUcgEAAAAAAAAAAAAAKDNeqGQRK7ks+rvjkLJ89lULYkQALqmr9Z8X6fbljS7pq7U0juliMiGOgoolKJfs8yaMzv+39TTY8p/HNG4Y6UOVv/nueeei4suuqjp/lOnTo2TTz65gxENzqJFi+K73/1ufOELX4hZs2Z1bd7+/v645JJL4pJLLonNN988jj322PjABz7QtfmHynPPPfeqgiW33HJLPProo0MdFjlcfvnlcdZZZw11GBRQjqslAAAAAAAAAAAAAACa0tc31BF0XC8Uaykrnw0AdF5KUvM6rtkljaUPlEre65WiFzKJiPjuuWfH408/NdRhDIlzzjknFixY0HT/s846KxYuXNjBiFp37733xuabbx6f/vSnu1rE5LWmT58eu+++e+y8884xY8aMIYujGyZNmhS77LJLTJ48OS688EJFTEpm3rx5ceihhw51GBSUqyUAAAAAAAAAAAAAgHZr9tfjOxxGJymWUVx5Ev18jgDQor4cqXlOty1qcsf14P7NhjoA6KYSfMdfnD8/Tvrh9xp3qui11xlnnJGr/5NPPhn/8z//06FoWnf22WfHO97xjrjzzjuHOpR/uOKKK2L33Xcf6jCgrsmTJ8cDDzww1GFQUMOGOgAAAAAAAAAAAAAAgMpJ1f/NyVzFMsqQeVYhtR74+wOAIZenkIm1UGua3m32L1RZWa4np17wy/iPffePddZca6hD6Zo777wz7rjjjtzvmzp1aqEKdBxzzDFx4okn5nrPiBEjYvPNN49tttkmNtlkkxg/fnystdZaMXr06Fh22WUjy7KYPXt2zJ49Ox544IG477774s4774yrr746/vCHP0SWNVeSqr+/v5VNgo679dZb45vf/OZQh0GBKWQCAAAAAAAAAAAAANButer/enyq6K9JV0Gez6YsSYEAUDQpR+Ewy6YWNbnj7N/Xs8ajyHL/fZbkz/nlhS/H8d//dkw94atL7lDBg9UZZ5zR0vt+85vfxNNPPx2rrLJKmyPK7zOf+UyceuqpTfffdtttY//9948PfehDscIKKzTsO2bMmBgzZkyMGzcu3v3ud//j9aeeeirOO++8OPvss+Omm25qOXZoRV/qG/QYCxcujAMPPDAWLVrUhoioKmWWAQAAAAAAAAAAAADarekEpeZ+gbeIJEcWl88GALqgT2pexzW7pLH0gUor0/XNzy+9OO6Z+eehDqMrFixYEOecc05L73355Zfj7LPPbnNE+R111FFNFzHZZptt4uqrr47rrrsuDjjggAGLmDQyduzYOOyww+LGG2+M2267LT784Q9HrWZd0axx48bFzjvvPNRhFNZAx8xVR6066Dm++tWvxp133rnEtnXWWWfQ41MNjmoAAAAAAAAAAAAAAG2WUvUf1U4V/DXpXuRzBIAW5Uk4drptkR0HlZTzq12mQib9/f1x7Le/MdRhdMVFF10Uzz77bN32d73rXQ3fP3Xq1HaHlMuZZ54ZJ5100oD9lllmmfjud78b11133YDb1IpNN900zjvvvLj99ttju+22a/v4ZbfGGmvEnnvuGccff3z8z//8TzzzzDPxwAMPxHe+852hDq2wlhm2TP3GLGL5pZcf1PgzZ86M448/folt22+/fUyYMGFQ41Md1b87DgAAAAAAAAAAAADQbbXyJFq1Kk8yWZkSz6pAcRIA6LzUJzWv45pe0lRo7VOhTYF6cl8flux7cfHvr4ob77j99Q0Vu04bqBDJcccdF1tttVXd9rvvvjumT5/e7rCactttt8VBBx00YL8111wzrrvuuvjkJz/Z8evsjTfeOK699to444wzYtSoUR2dq6hWXXXV2HXXXeOLX/xiXHTRRfH444/HI488EhdeeGFMnjw53v/+98eYMWOGOszCGzdmXNTqlJB4w3JviL5aX8tjZ1kWBx10UMyfP/91bSNGjIjTTjvNPSn+wdUSAAAAAAAAAAAAAEC79bWeFFAWEhOKK89no8gMALSoliM1z+m2Jc2uaaq0LK3QpkDbFPGaZZsdt2nY/qVvf71LkQyNxx57LC677LK67ePGjYsddtghJk2a1HCcgYqhdMKCBQvi4x//eCxYsKBhv7XXXjuuv/762HTTTbsU2WL7779/3HbbbbHZZpt1dd6hss8++8Qvf/nL+Otf/xpPPPFEXHzxxXHcccfF7rvvHqutttpQh1dKtVSLDcZuECsstUKkV/4zojYixq84PsYsO7hCMD/84Q/jmmuuWWLbkUceGRtuuOGgxqdaFDIBAAAAAAAAAAAAAGi3ZrMpi5eP1bQiJpOxWL1f3gUA2ihPIRPrps6q9eD+7cFNpjryXksW8drz0M8dGkuPHFm3/drpt8QVN1z36hcrVHXpzDPPjEWLFtVt32effSKlFBMmTIgRI0bU7feTn/wkXnrppU6EWNeUKVPi7rvvbthn5ZVXjiuvvDLWXHPNLkX1am9605vihhtuiI9+9KNDMn83TZgwIfbaa68h29dV1VfrizVXXDPeutpb462rvTXePPbNMWqpUYMa8/HHH4/Pf/7zS2xbb7314phjjhnU+FSPu5MAAAAAAAAAAAAAAO2WmntUu8xpTClHElaevgyezwYAuiBHIROn2xbZcXVlQx0ADEber3YBDwWrrLZKHPhvH2vY50vf/npk2f99W6t07TVt2rSG7fvuu29ERKy44orxgQ98oG6/559/Pn71q1+1M7SGHn300Tj55JMb9kkpxdlnnx3rrLNOl6JasqWWWirOPffc+NznPjekccDfHX744fG3v/1tiW3f+973YmSD4k70JoVMAAAAAAAAAAAAAADarQd+Fb6Iv4rNYlVKkAOAoko5CplYNrWo2f1m/76O9SBFlvdasqjXnv9x4IGx/KjRddtv/+Mf4vzfXtbFiLrj+uuvjxkzZtRt32qrrWL99df/x/+eNGlSw/HOOOOMtsU2kC9/+csxf/78hn0+/elPxy677NKliBpLKcWnPvWpoQ4D4sILL4zzzz9/iW0TJ06MnXbaqcsRUQYKmQAAAAAAAAAAAAAAtFuziYPFzMdqiuTI4srz2RQ1KRAACi9XIRPn25Y0vaa2f6HKinrtueIKy8dnJu3fsM+Xv/vNWLRoUZci6o6pU6c2bN93331f9b933XXXWHnllev2v+KKK+KRRx5pS2yNPPLIIwMWTVl11VXjy1/+csdjgTKZNWtWHHbYYUtsW3HFFeOUU07pckSUhUImAAAAAAAAAAAAAABtllL1H9XOUwBDsYzuquVIFShqUiAAFN6wYUMdQfX1ZB2TSm0MLFGVrkEOnzgpxq40pm77nx98IM666IIuRtRZ8+bNi5///Od120eMGBETJkx41WvDhw9/3Wv/rL+/P84888y2xVjP6aefHgsXLmzYZ/LkybHccst1PBYokyOPPDIee+yxJbZ99atfjbFjx3Y5Isqi+nfHAQAAAAAAAAAAAAC6rdZsYlbW0TA6qUrJZ1XjswEEHw/iAAAgAElEQVSAzku1HKl5Ts0t6slKJsBrFLkw5qhllo0jDzikYZ8TfvDdeGnBgi5F1Fm/+MUvYvbs2XXbd9ttt1hppZVe9/qkSZMajjtt2rTBhtZQf39/nHHGGQ37jBkzJj7xiU90NA4om9///vfxwx/+cIlt2223XRxwwAFdjogyUcgEAAAAAAAAAAAAAKDd8iS2QpvlKWRS5KRAACi0Puu9Tmt6SVOl5UyVtgXapLCFGl8J66CP7B1rrf6Gut0eeeLxOO3nP+lSUJ01UDGQegVLttxyy9hwww3rvm/mzJlx3XXXDSq2Rq655pp4+OGHG/b5xCc+Ecsss0zHYoCyeemll+Lggw+OLHt9Eebhw4fHaaedVtzjM4XgagkAAAAAAAAAAAAAoN1qfUMdQccpgFFcPhsA6II8heskebam2f1m/0KlFf36ZsTwETH50MMb9jn5Rz+I2bNndymizrj//vvj97//fd32MWPGxG677Va3fd999204/kBFUgbj4osvHrDPhAkTOjY/lNGXv/zlmDFjxhLb/vM//zM22mijLkdE2ShkAgAAAAAAAAAAAADQbrVmky47G0Yn5fnV1aInnlVNLTWfKpCnLwDwT/IUMqE1Ta43e7GOSTZAu/U3VZLn2rOb/vl7+LHd9ogNxq9bt+8zf3s+TjnllM4H1UHTpk2LLKt/9JkwYUIMHz68bvu+++4btQbnzvPOOy/mzp07qBjrueSSSxq2jx8/PjbbbLOOzM3/z96dhstRlvnjv7v7JCQsISGBREAJBFxAGBYVEZBNUGQABxQyhEQRAzqgKMyMgASUnXFDUdwYToCwSFTQAYQBBEkkDvwhYhIRwxL2nV8giyHLOf8XM+Ow5PSpqtNd3VX9+VwXL8jzdNVdVX1OPXWuvr9NEc2ZMye+/vWvr3Zs3LhxMWXKlJwroog8LQEAAAAAAAAAAAAANFoHhEOkaiZrz76z0mrXRj8AKJNKrZZ8rltzcznBQIvVarU49Z++UHfON7/5zXjhhRdyqqixenp64pJLLqk7Z+LEiXXHN95449hjjz36HF+8eHFMnz49U331PPvss3H//ffXnbPnnns2fL9QVD09PfGZz3wmVqxYsdrxH/zgBzFkyJCcq6KIyv/XcQAAAAAAAAAAAACAnHVCkIRveW9faa5NJ7xXAaApUgSZCNrIKOl5c3qh1Iry7PkPH9ontt/y3X2OL1q0KM4555wcK2qcW2+9NR577LE+x9/xjnfEjjvu2O92Jk2aVHe8u7s7dW39ueeee/qds/vuuzd8v1BU3/nOd+Kuu+5a7dhhhx0We++9d84VUVSCTAAAAAAAAAAAAAAAGq2a7KPaxWjHWr00ARhFaTwrC+EkAJCDmta8pku6pOnEtU8HHjIdrEDv99M//8W64xdeeGE88cQTOVXTOP0FjEycODHRdg4++OBYa621+hy/44474qGHHkpVW39mz57d75wddtihofuEonr00UdjypQpqx0bMWJEfPvb3865IorM0xIAAAAAAAAAAAAAQKNVy//t8cJJ2lc1RauA6wgA2VSqtRSTm1dHqSUMKBHiBuVWpGeWvd6/c+z23h37HF+2bFl87Wtfy7GigVu4cGFcc801fY5XKpU4/PDDE21rrbXWioMOOqjunKlTp6Ypr19z5sypOz5o0KDYYostGrpPKKrPfvazsWTJktWOnXvuubHBBhvkXBFFJsgEAAAAAAAAAAAAAKDhyv9R7TQNo0VqPCuDVNdG4y8AZFNNsd5zv82kI9eQHXjIdKbe6E08t2jPLKd//kt1x7u7u+Mvf/lLTtUM3JVXXhnLli3rc3y33XaLTTbZJPH2Jk2aVHf8kksuiZ6ensTb689jjz1Wd3zcuHHR1dXVsP1BUU2bNi1uvPHG1Y7tvPPOMXny5JwroujK/9dxAAAAAAAAAAAAAIC8ddVaXUHTFa2ZrJO4NgCQg1r513stl3RJU6q1T5mOBRqjaKFG79v67+Lvd9+rz/FVq1bFlClTcqxoYLq7u+uO9xdM8kZ77rlnbLzxxn2OP/7443HLLbek2mY9TzzxRN3xDTfcsGH7gqJ64YUX4ktfWn0I06BBg+JHP/qRvzWRmogoAAAAAAAAAAAAAIBGS/rh/gL3AFR9r2bbqlaSX5uiNQUCQLuopAiu0/eZUdITV23dCV62bGU89NDChm1vxSOvRM+rPf3Oe/qFlbF8UN/jQ2urYtmIFxpWF+U0btzwGDKk/duMi9g8/7Vjj4sb7rgtenpW//M8ffr0OPHEE2O77bbLubJ05s2bF3fffXef40OHDo2Pf/zjqbZZrVZjwoQJcd555/U5p7u7O/bZZ59U212dnp6eePrpp+vOGTNmzID3A0X3xS9+MV54YfXrhn/+53+OrbbaKueKKIP2X2EAAAAAAAAAAAAAABRMJUWQRFGlaSYrYuNZkbk2AJCDWvIgE0kmGRXgtD300MJ497untroMyGTu3E/FVluNanUZ/WrX8MXeOmNbjtsixu/793HF9b9a/Wt7e+Pkk0+OX//6180prkEuvvjiuuMf+9jHYp111km93U9+8pN1g0yuvfbaWLhwYQwfPjz1tl9r6dKlsXLlyrpzRo1q/58BaKabbropLr/88tWObbbZZjFlypScK6Isyv/XcQAAAAAAAAAAAACAvLXwW+Hz0q7NZKS7Nq4jAGRU1ZrXdAkDYDogQxAooCmf+3wMHjSoz/Ebb7wx7rjjjhwrSmflypUxbdq0unMmTZqUadvvete7YocdduhzfNmyZXHllVdm2vYbt9OfIUOGDHg/UFRLliyJo48+us/xCy+8MIYOHZpjRZSJJToAAAAAAAAAAAAAQKN1QGNrJWFjaYSwDACghGq15HNTrJt4jaTnzfmFUkvz7Jmrfsoau9HGccRBn6g756STTmpgQY113XXXxXPPPdfn+JgxY2LvvffOvP3+QlC6u7szb/t//fWvf+13jiATOtlXvvKVePTRR1c7Nn78+Pjwhz+cc0WUSfn/Og4AAAAAAAAAAAAAkLek3x7fpv1YSbRtMxlRrSRvFXAdASCbSjVNkEnz6ii1pOfNegaKpzf51CIHY574mc/GmkOG9jl+5513xnXXXZdjRcn1FyQyYcKEqKUJ9XqDww47LAYNGtTn+N133x1z587NvP2IiJUrV/Y7p6ura0D7gKK666674oILLljt2PDhw+P888/PuSLKRpAJAAAAAAAAAAAAAECjpQiSKKoiN5OVXZpwEtcRADKqpVjvud1mlPDECTKBUity+OKYUevHMYdNrDvnK1/5SvT2pkh2ycFzzz0XN9xwQ905kyZNGtA+Ro0aFfvuu2/dOf2FqfRnjTXW6HfOq6++OqB9QBGtWLEiPvOZz0RPT89qx88999wYPXp0zlVRNuX/6zgAAAAAAAAAAAAAQN66sn8rcVEIy2hf1TStAi4NAGTT1ZV4qrVQNonXm04v0MaO/9SRMWLYsD7H//jHP8aVV16ZY0X9u+yyy2LlypV9jm+zzTaxzTbbDHg//YWhTJs2LVasWJF5+0OHDu13jiATOtF5550Xc+bMWe3YTjvtFEcddVTOFVFGgkwAAAAAAAAAAAAAABqtkvCj2gVuukzVkFvg4yyiSlXIDAA0W6WWIrjO7TabpDkmKQL2gOKpJn2+blPD1xkWx3/qyLpzTj311AEFdjRad3d33fH+AkiS2n///WPEiBF9jj/33HNxww03ZN5+kiCTxYsXZ94+FNEDDzwQZ5555mrHurq64kc/+pG1FQ1R7Ls3AAAAAAAAAAAAAEAb6oQP/KdpJhOWka8059u1AYCMUgWZuN9mkvS8pQhxA2iFYw47PMaMGdPn+EMPPRT//u//nmNFfbvrrrti3rx5fY7XarWYMGFCQ/Y1ePDgOPTQQ+vO6S9UpZ4hQ4bEWmutVXfOc889l3n7UDS9vb1x1FFHxauvvrra8RNOOCG23nrrnKuirLpaXQAAAAAAAAAAAAAAQOlUy/+dk50Q1lJUQmYAIAfVFEEmZJN0vdnCdem4ccNj7txPNWx7KxY8Fj3LVvU776nhK2NFne7QNbvWjI2Hb9SwuiinceOGt7qERNr12bM3xdw1hw6NKVOmxDHHHNPnnDPOOCM++clPxtChQwde3AD0Fxyy99571w1lSWvSpEnxwx/+sM/x66+/Pp599tkYPXp0pu1vvPHG8cADD/Q5/swzz2TaLhTRj3/847jjjjtWO7bpppvGaaedlnNFlJkgEwAAAAAAAAAAAACARkv6rfDt2Y+VSJoADGEZ+UrV6OfSAEA2tRTBde632RQgyGTIkK7YaqtRDdveikELY9XSlf3OW2vUylje1XeMwtqD1o5NRzauLmi0TnxGnDx5cnzzm9+Mhx9+eLXjTz31VFxwwQXxr//6rzlX9n+WLVsWV111Vd05kyZNaug+d9ppp9hiiy1i/vz5qx1fuXJlTJs2LU444YRM2+8vyOTRRx/NtF0omqeeeiq+/OUv9zl+4YUXtjxIiXIpf8w3AAAAAAAAAAAAAEDeKuX/qHa7fis2KUNmXEcAyKQyaFCKye63mSTOMSnR+W3QoXRiSAS0u0GDBsXXvva1unPOO++8ePnll3Oq6M1+8YtfxMKFC/scX2eddeJjH/tYw/c7ceLEuuPd3d2Ztz1u3Li6408++WS88sormbcPRXHsscf2+fvl0EMPjY985CM5V0TZdbW6AAAAAAAAAAAAAACA0qkmCzIpcnthmobRUjWXFkA1RZCOJlcAyKhaSzzVWiirxEkmzS2jiJwSaKpRQ0dlet1hhx0W5513XsydO3e14y+99FJ8/etfjzPPPHMg5WXWX2DIuHHj4vLLL2/4fleuXFl3fN68eXH33XfHe9/73tTb3nbbbfudM2/evNhpp51SbxuK4uc//3lcc801qx1bd9114/zzz8+5IjqBIBMAAAAAAAAAAAAAgEarJm26bG4ZdKZUITPehACQTS15kInbbTaJ1zSCTKC0eqO31SWs1qi1R8XwZctjVfSkel21Wo2zzjorDjzwwD7nnH/++fGFL3whNthgg4GWmcpjjz0Wv/nNb+rO+cMf/hCTJ0/OqaLX6+7uzhRkst122/U758477xRkQqmdcMIJfY6dc845MWbMmByroVMIMgEAAAAAAAAAAAAAaLBKtfwf1a5GNfFcYRn5qlaSXxsAIJtKmiATa6Fskp62pCGCAG3ggAMOiJ122ilmzZq12vElS5bEmWeeGd/97ndzrWvq1KnR05MumCVPV155ZXzrW9+KIUOGpHrd3/3d38XgwYNj+fLlfc65/fbb6wY9QNG98MILq/334cOHR61Wi4suuqhh+/rDH/5Qd/wvjy6I7l9MX+3YoP/vLRERsccee8S4ceMaVhOtUf6/jgMAAAAAAAAAAAAA5K0Dmikrvvm+baW5Nq4jAGRUTRFk4nabTTVpOFvnneDe6G11CcAAnH322bHHHnv0Of6jH/0oTjjhhNhkk01yqae3tzcuueSSXPaV1cKFC+Oaa66Jf/zHf0z1uqFDh8YHP/jBuOWWW/qcc/vtt8eyZctSh6RA0S1cuDCOPvroXPd55+x74s7Z99Sdc9lllwkyKQExywAAAAAAAAAAAAAAjZa46bK4hGW0r2qKVgHXBgAy6koTZOJ+m0nS81amEEHvFXi9smT2vOFHe/fdd4999tmnz+nLly+Pr371q82t6TVuv/32ePjhh3PbX1bd3d2ZXrfffvvVHV+8eHFcf/31mbYNwOqV/6/jAAAAAAAAAAAAAAB5qyT8qHaB+xQFYLSvVCEzRX4TAkALVbq6UkxuXh2llvS8lSnIpEGs8aC9rO4n8uyzz6777HbZZZfF/fff37yiXiNrQEjebr311nj88cdTv+6AAw7od85ll12WpSQA+iDIBAAAAAAAAAAAAACg0TqgmbLq4+htq1pNfm00uQJARrVaisnut5kkDWfrxNPbiccM7WaAP4c77LBDHHzwwX2Or1q1Kk455ZSB7SSBRYsWxc9//vOm76cRenp64pJLLkn9us022yx22223unP+4z/+I+bPn5+1NADewF+OAQAAAAAAAAAAAAAarZLwo9oFbkCs983Rb5pb5AMtoDTn27UBgIxSBJlUOiDkrhkSrzdTrEuBYin788oZZ5wRtTr3k1/84hdx9913N7WGn/70p7F06dI+xzfYYINYsWJF9Pb25vLfVVddVbfeqVOnRm9vb+rjPOqoo+qO9/T0xLnnnpt6uwCsniATAAAAAAAAAAAAAIBGqyb9qHZxm7LSBJmQr1TXxmUEgGxqXa2uoPwSrmnKFBRTniOBTjDwn9h3vvOd8clPfrLunJNPPnnA+6nn4osvrjt+6KGHRldXfve8Aw44INZZZ50+xx966KG44447Um/34IMPjo022qjunKlTp8a9996betsAvJkgEwAAAAAAAAAAAACABqvU+UblskjzzdhCT/JVTdEq4NoAQDap1nvut9kkPW/OL1Bgp512Wqyxxhp9jt9yyy3xm9/8pin7fuCBB2LWrFl15xx++OFN2Xdfhg4dGgcddFDdOd3d3am3u8Yaa8SUKVPqzunp6YnPfvazsWLFitTbb5a//vWvrS6BEli8eHH09vbm8t9XvvKVurV86mMHx19n37/a//53G3n/3qE5BJkAAAAAAAAAAAAAADRaNdlHtYvcc1mt+Dh6u0oTTpImkAYAeI1Bg5LPdbttrjKtSxO+V3r720yRHzSglPr+mXzb294Wn/vc5+q++qSTTmp0QRHRfyDIFltsEe973/uasu96+gsx+NnPfhaLFy9Ovd0jjzwyNt9887pz7r777jjxxBNTb7sZHnzwwX5DXQDaVYlW6AAAAAAAAAAAAAAAbSJhkEmRCcsoB9cGADKq1ZLPFSqRTdLzVqrzW6ZjAZI6+eSTY+211+5z/K677oprr722oftctWpVXHrppXXnTJgwoaH7TGrPPfeMt7zlLX2OL1myJK6++urU2+3q6oof/OAH/c771re+FRdddFHq7TfSzJkz4wMf+EDMnz+/pXUAZFX+v44DAAAAAAAAAAAAAOQtcdNlc8topjQBGL4RPl/VFEE6rg0AZFNJFWTSvDpKrZrsxFnPAG2vn19T66+/fhx//PF155xyyinR09PTsJJuvPHGePrpp+vOaVWQSbVajfHjx9ed093dnWnbH/rQh+Koo47qd97RRx8dU6dOzbSPgejp6Ymzzjordt9993j++edz3z9AowgyAQAAAAAAAAAAAABotBRBEkWlYbR9pQqZ0VkNANnUulJMdr/NJOl6M2HgCUA7O+GEE2LkyJF9js+bNy8ef/zxhu2vvyCQHXfcMTbffPOG7S+tww8/vO74zJkzY/78+Zm2/Y1vfCPe9a531Z3T09MTRxxxRJx00kkNDZCpZ+7cubH77rvHKaecEqtWrcplnwDNUv6/jgMAAAAAAAAAAAAA5C1pkEmBey6rKT6OLiwjX9VKimsjkAYAsqnVEk91u80qaZCJNkmgBRr8u33YsGFx0kknNXajfXjhhRfiP/7jP+rO6S9IpNm23377eOc731l3Tn9hLH1ZZ5114rrrrqsbHPO/zj333Nh5551jzpw5mfaVxLPPPhtf+tKXYrvttosZM2Y0bT8AebJCBwAAAAAAAAAAAABosEoHNFMKwGhfaYJMAIBsKimCTARtZJN4vWlZ+iaCBKGYjjnmmNh4442bvp/LL788li9f3ud4V1dXHHrooU2voz8TJkyoO37ppZfGqlWrMm17s802i2uvvTbWWmutfuf+/ve/j+233z6OOOKI+POf/5xpf6tz//33x7HHHhtjx46N888/P1auXNmwbQO0WlerCwAAAAAAAAAAAAAAKKfeKHNXZZogE6En+XJtACAHgwe3uoLyS5j/UqoQQUsz6GhDhgyJU089NY466qim7qe7u7vu+D777BPrr79+U2tIYsKECTFlypQ+x5988sm4+eab4yMf+Uim7e+yyy5x4403xn777RevvPJK3bkrV66MqVOnxiWXXBI77bRTjB8/Pvbee+94xzvekfi5etWqVXHPPffEbbfdFj/96U9j9uzZmeoum3vuuSf1uXj++efrjvf29sZFF12Uupb3vOc9se2226Z+HfBmgkwAAAAAAAAAAAAAAFqmuJ2K1UryhlHfCJ8v1wYAclCrJZ8rOCyjhOetA89vb6sLAJrmiCOOiK9//esxf/78pmz/3nvvjfvuu6/unMMPP7wp+05r0003jQ984ANx55139jmnu7s7c5BJxH+Hmdx6661xwAEHxNNPP93v/N7e3rjzzjv/VtPIkSNjm222iU033TTe9ra3xdprrx1rrbVW9Pb2xuLFi+OVV16JBQsWxPz582PevHmxePHizLWW1TXXXBNnnXVWQ7fZ09MTkydPTv26M844Q5AJNIggEwAAAAAAAAAAAACAFilyz2XSbxwmf2nCSVxHAMiomjw4TG5YRknXKaVazyQ95uZWAW2jrd/rKYpLMbWrqyvOOOOMGD9+fPqSEuju7q47vvbaa8eBBx7YlH1nMWHChLpBJr/85S/jpZdeivXWWy/zPt7znvfE7Nmz47DDDovf/OY3qV774osvxm233Ra33XZb5v3Xs8ceezRluwDNluJpCQAAAAAAAAAAAACAxCrl/p70NGEZ5KtaSd4q4DoCQDaVajUiEq73ShW0kaOk563q/L6JU0K78x6t65BDDoltt9224dtdvnx5XHHFFXXn/MM//EOsueaaDd93VoceemgMGjSoz/FXX32132NKYvTo0XHzzTfHN77xjVhnnXUGvL2B2mqrreKWW26Jn/zkJ60uBSATQSYAAAAAAAAAAAAAAK1S4OatVGEZmndzleZ8CzIBgOZzv80oaUCJtSaUVqf+/qxUKnH22Wc3fLvXXnttvPTSS3XnTJgwoeH7HYiRI0fGhz/84bpzuru7G7KvarUaJ5xwQvz5z3+OiRMnRq1Wa8h209hyyy3jyiuvjD/+8Y+x11575b5/gEYRZAIAAAAAAAAAAAAAQGrCSdqXkBkAyEmlN+G85pZRXslOXCXF2qftNei90qnhD1Am++67b+y6664N3WZ/gR9jxoyJD33oQw3dZyP0F65y7733xh//+MeG7W/DDTeMSy+9NB588ME47rjjYtiwYQ3b9uoMGjQoDjrooLj55ptj7ty5MX78+KhWS3RvAzpSV6sLAAAAAAAAAAAAAAAoo0pEJGxtLaRqiu/V1EiZrzThJIJMACC7xOs999tMEq9Tqs4v0AI5/Oo555xzYpdddmnItnp6emLnnXeOHXfcsc85W2+9ddRqtYbsr5EOPPDA+OpXvxq9vX3fdRctWtTw/Y4dOzbOP//8OPfcc+Omm26K6dOnx3/+53/G888/P+Btjxo1Kj74wQ/GAQccEAceeGAMHz68ARUDtA9BJgAAAAAAAAAAAAAArVLgnstKioZRYRn5qlaEzABALiq9yZJM3G6zSbreLNVas0zHAsW1YMGCfuesmP9g0+vYeeed64Z3pFGtVuOUU05pyLbyNnTo0DjttNNatv8hQ4bEgQceGAceeGBERDz44IMxa9asmDNnTixYsCAWLFgQzzzzTCxdujSWLl0ar776agwaNCiGDBkSw4YNi7e85S2x0UYbxdvf/vZ497vfHdttt11sueWW/lbyP84888w488wzW10GDbLnnntGV9ebIyxWPvNCRERs+84t8y6JFhFkAgAAAAAAAAAAAADQDIkaWzWt0Hipgkw0TgFA81WT35t5jaTrlFrnnd/GxBpA61SiEr2d9E723FUqm2++eWy++eatLgPa0p577hl77rnnm/592R/+3IJqaKXOW6EDAAAAAAAAAAAAALSLAvcyVVIUn2YuA+faAEA+Evelu91mlOzEVVKEuAEAAM1nhQ4AAAAAAAAAAAAA0CJF7mmtpmgYrfj26Vy5NgCQk8S3UffbTKoJz1vSeUXQoEMRVkdZeC8DQDEJMgEAAAAAAAAAAAAAaIYk/VYF7slKE4Ch+SxflRTNvK4NAAxEb6JZgsMySnraUoS4AQAAzWeFDgAAAAAAAAAAAADQBGVvVxWA0b6qKVoFNFYDwAAkDtpoahUllvDEpQhxK43+DrkDTwkAAO1DkAkAAAAAAAAAAAAAQKsUOESimuKb74Vl5CvVtdHlCgCZJV7iWAtlUunEgBJrMygOv9sBoE+CTAAAAAAAAAAAAAAAmqHkPU1pwkmEZeQr1bXRfAcAzed+m03C81apaZN8I+tvaDN+JAHoMFboAAAAAAAAAAAAAABN0dv/lAI3M1UrKT6OXuDjLDtNrgAwAElvo4JMskl63qolapP0VoHXKcvzSjmOAgCSK9EKHQAAAAAAAAAAAACAvFRSNOSWpfmsKNKEzKS5jgDA6yW+jbrfZpP0vHXg+U0QmQjl0Hk/3gBQCoJMAAAAAAAAAAAAAACaIUnDVYGbLqs+jt62UgWZ6AwEgOwS52y432aS9LxVrUsBAKCdWKEDAAAAAAAAAAAAAJBamoZcYRn5SnVtNFYDQHZJb6Nut9kkXKdUBJkALZDuV7sbAQCdxQodAAAAAAAAAAAAAKAJyt6mVE3RMCrIJF/VimsDAHlIfBcVHJZN0vNWLdH5bdB7xRoP2owfSQA6TFerCwAAAAAAAAAAAAAAKKUEjUpF7mlN1RxZ4OMsolRBJkV+EwJAqyW9jbrfZpM4yMT3vb+JtxxtrhKV6I3eRPOA//PAAw/EjBkzWl1GIuuuu2584hOfaHUZDXPPPffE7NmzW11GIhtttFHsu+++rS6DDifIBAAAAAAAAAAAAACA1NIEYAjLyJdrAwA5EWTSVInXKSlC3AAaxq92WmDGjBkxefLkVpeRyLhx40oVZHLNNdfEWWed1eoyEtlrr70EmdByVugAAAAAAAAAAAAAAK1S4KbWaoqPo/sW7XxVUzTzukbJwNwAACAASURBVDYAMACJgzaaW0ZpVZOeXycYaAW/ewCgL4JMAAAAAAAAAAAAAACaoeQ9TZUUDaPCMvKVKmRG4y8AZJb4Nup+m1Gy81aplalNMtkx9za5CmgXniUBoJjKtEIHAAAAAAAAAAAAACiWAvdkVas+jt6uKlUhMwCQi4S30Yp1UzZJ1zRlCopJHI7T33CJzgmdrSxv5bIcBwAk5AkIAAAAAAAAAAAAAKAJytRPuTppmiMrZT8ZbaZaSd4q4NoAwAAkDp1wv80k6XkTFAO0PfcBADqLFToAAAAAAAAAAAAAQKsUuKlVWEb7cm0AIB/uo02WdE0jyAQAANqKFToAAAAAAAAAAAAAAKmlCsvw7dO5SnNtqtoKACC7pEscgSfZJDxvZQqUKc+RQGN4loTX+8xnPhO9vb2F+O/BBx9s9elqqDPPPLPl5zTpf7fcckurTxf4iyMAAAAAAAAAAAAAQFMk6Lcqcs9lmoZRzWf5SnO+y9T4CwC5S3ofrbrfZpF4nVKrNbeQPDXorWL9DTnwYwYAfRJkAgAAAAAAAAAAAADQKgUOkahWkn8cXSNlvqpV1wYA8pB4KVfgNV9LJQ2ASbEubX8NSzIB2omfSQA6TJlW6AAAAAAAAAAAAAAA7UOj0v9xLnKVKmRGYzUAZJc0aMNiKJuk6xRdklA4SQMV2/t5pZ1rA4DWskQHAAAAAAAAAAAAAGiCRC1NBe57Stp4Rv6qKVoF2rsxEADaXMLbqPttRomDTGrNrQNovI77tdhxBwxAhxNkAgAAAAAAAAAAAADQDCXvU6pWhGW0q0o1+fkWSAMAA5A4aMP9NpOE57dS0yYJAADtxAodAAAAAAAAAAAAAKBlitvUmiacRFhGvqopWgWEzABAdolvo+632SQ/wU0tI1cNOhTrb8qiNO/lkhwGACQlyAQAAAAAAAAAAAAAoFUK3MxUraQIyyjygRZQteraAEAukgZtCDLJJul5q9WaW0eu+j/m3hyqABLwqx0A+iTIBAAAAAAAAAAAAACgGZI0NRW48amSoiE3zVzylSaQBgB4g2rCNU7SebxO4jVkihA3oFg8SwJ0htrQMgXTESHIBAAAAAAAAAAAAACgZSoFTjJJE4BR5OMsolTXRmMgAGSW/DbqfptJwoCSjlvPlDwwEYrDDxpAUrW1B9UfHzUip0rIiyATAAAAAAAAAAAAAIBmSNJQWeC+J2EZ7auaolVAyAwADEDCNY61UEZJz1tNmySUlecVgHKojV4/KtG72rFqV0RluCCTsrFCBwAAAAAAAAAAAABogrL3q2ooa1+VavJro7EaAAYg6X00xb2Z10h8fkvUJtmgt4q1Ou2u496jnruADlddZ1h0vWW9qFReH2ZS7YoYNG6TqNRqLaqMZulqdQEAAAAAAAAAAAAAAB2rwM1M1UryhlFhGfmqpvjOU9cGALJLHB7mfptNJwaZdFq4AwDQMWqjR0d15Mjoee65iJ6eqAxZIyojR/nbVEkJMgEAAAAAAAAAAAAAaIaSfwY/ceNudOC3bbdYNUUzb5rQEwDgDRKvh6yFMqklW6dUShVkArxWWz9LpiitjY8CIFeVrq6obbhhq8sgB1boAAAAAAAAAAAAAACtUuBupjQBGL5ZNV/VimsDALlIehutud9mknRNU6s1t44CauvwB0jDWxkACkmQCQAAAAAAAAAAAABAMyRpuCpwiESqsAzdZ7kSZAIAOUl8H3W/zSLxOqVM65kEh9Lb/CqgbZTmWbIkhwEASQkyAQAAAAAAAAAAAAAgtTQBGKVpPisIQSYAkI9KNdl9NOk83iDpeavWmltHrrxXoDjS/Lz62QagswgyAQAAAAAAAAAAAABoiv4blYocIpEmLIN8VavJr01VWwEAZJf0nlvgNV9rJQ2KsZ6BsiryMzMAdDIrdAAAAAAAAAAAAACAJih7v1WaIBPNZ+3LtQGAAUh6H3W/zaaa8LwlnddJnBLaXMWbFABKTZAJAAAAAAAAAAAAAEAzJOnLKnDvVpoADGEZ+evt7U00z7UBgOwqSQM03G+zSRqcV6s1t448NeitIiSCsmjr93Ka0tr4MACgGQSZAAAAAAAAAAAAAAC0THG7mapJG0ujzZvPOpxrAwADkDSgRJBJNkmDYqolCjKBTtFxvxY77oAB6HCCTAAAAAAAAAAAAAAAmiFJn1KBe5lSBZlo3m1baa4jAPAGSYM2rIUyShpkUqbzW6ZjgYHzLAkAxeQvjgAAAAAAAAAAAAAATZGg4arATVlpGsoqGjLblsZAABiApPfRqja+LCoJA0oq1VqTKyke628AAFrJExAAAAAAAAAAAAAAQDMk6R0scH9htZL84+jCMtqXJlcAyK5SS7YeshbKKOl6s0znt0SHAo1QmueVkhwGACQlyAQAAAAAAAAAAAAAoAnK3qdUTfFx9NI0n5WQxmoAGICk99Gq+20mSc9bVZsklFY7//pM9SzVzgcCAI1nhQ4AAAAAAAAAAAAA0AyJGi87o5lJWEYL9CabliaQBgB4g8QBJdZCmSRdQ3bVmltHrhr0XvGWo80lDbsUigkAxeQvjgAAAAAAAAAAAAAArVLgnqxK4sZdzWftTMgMAGSX+D6aYt3EayQ9v5UStUl6q0A5+dkGoMOUaIUOAAAAAAAAAAAAANBGEjQqFTlEopqiYbTIx1l2rg0ADEDSgBL322yqCdebtVpz6yggQYKUhfcyABSTIBMAAAAAAAAAAAAAAFJLFWSi+axtpbmOAMAbJA3acL/NJmkATLVMQSbWzfA6pfmRKM2BAEAinoAAAAAAAAAAAAAAAJohSeNl0ubMNpQqyKTAx1lUvdGbaJ5rAwDZVRIHmbjfZpF4nVJ1fqGsShOKWZLDAICkBJkAAAAAAAAAAAAAALRKgZuZ0jSUlab5rIRcGwAYgIQBGpWaNr5MkgbnJQ2UKYIGLc2E1UEe/JwBQF9KtEIHAAAAAAAAAAAAAGgfZe8drJapYbSDVZM2CAMAb5Z0PVT2hWGzJA6KqTW5EKDRkgYqtnUoTxuXBgCt5i+OAAAAAAAAAAAAAACt0s5NWf1IE4DR1s1nHc61AYABSHofdb/NJul5E7AHpZU08KTtuQ8A0GGs0AEAAAAAAAAAAAAAmiFJo1KBe5mqKT6OXprmsxJKcx0BgNerVAWZNFXS4Lxqrbl15Mp7hQ7hrQ4ApeYvjgAAAAAAAAAAAAAAzZCoMau43VuJG3cjoqJ5t22luY4AwBvUEgZoWAtlk3Sd0lWiIJMGvVUECVIWniUBoJgEmQAAAAAAAAAAAAAANEOChqsi92RVU3wcXfNZ+9LkCgADkDRow1oom6TnraJNEsif3+wA0DcrdAAAAAAAAAAAAACAVilwU2u1miLIRItX/nqTTatq/AWAzCoJ10NC3bKpJFynJL0OReCdAq/X1s+SaUpzHwCgw5RnhQ4AAAAAAAAAAAAA0EbK3qeUJgBD8277cm0AYACS3kdLFLSRq2rC81urNbeOXDVmbdbW4Q8QKd6jbf1WbuviAKClPAEBAAAAAAAAAAAAADRDksbWAodIVFN8HF0jZftybQBgAGoJ10OCTLLpxKAYSzN4Hc8rAFBMJVqhAwAAAAAAAAAAAACQl0o1eUNZpcCBLWVXrWgrAIDMkt5HrYWySRpQUqs1t44i8pajJMoSZOI2AECn8RdHAAAAAAAAAAAAAIBmSNKpVOBupmqKj6MLMmlfrg0AZFepJVwPpQiA4zUSrlMqgkygvErz67M0BwIAiQgyAQAAAAAAAAAAAABohiR9SgXuZapWk38cPU3oCfmqVlwbAMgs6XpIcFg2SdcppVrPNOa9Uinygwa8hvcyABRTmVboAAAAAAAAAAAAAADtI1GQSXGbstIEYFQKfJxl59oAwAAkDjLRxpdJNeE6pVai82tpRodI+hzS1kEmbVwaALRaV6sLAAAAAAAAAAAAAAAooyQNV23dlNWPVEEmBT7Ookp6zqu+HxUAMqskDNAQHJZR0vNW0yYJpdXWvz5TFOc+UFqLFy+OBQsWxDPPPBNLliyJpUuXxrJly2Lw4MExZMiQWGeddeItb3lLbLjhhjFy5MhWlwuQGyt0AAAAAAAAAAAAAIBmKHmfUqogE01bbcu1AYABSLoeqrrfZlFJeH7LtZ5pzLGU65zQyYRiFsOqVavi7LPPjlWrVtWdt/vuu8fuu++eT1FN8Morr8Rvf/vbmDVrVsyaNSvmzJkTL774YuLXr7feerHVVlvFtttuG7vuumt88IMfjNGjRzex4uJatWpV/OUvf4l58+bF3LlzY968ebFgwYJYuHBhLFy4MF5++eWoVCoxdOjQWHfddWPDDTeMsWPHxtZbbx077LBD7LrrrrHmmmu2+jAKp7e3Nx555JGYM2dOzJ8/Px5//PF47LHH4vHHH48XX3wxli5d+rf/urq6YsiQITFixIgYPXp0jB07NrbccsvYfvvtY5dddokRI0a0+nBoMUEmAAAAAAAAAAAAAADNkKR5sMA9WdVq8iAT2pfrCAADUEt6Hy3woq+VkgbAdGmThLJqVSjP2LFj49FHH00092vHfjH+9cijm1zRf+uvrkceeSTGjh2bSy2v9Z//+Z9x6qmn9jvvxhtvjN///vc5VNQ4y5Yti5/97Gcxffr0uOmmm+LVV1/NvK2XXnopZsyYETNmzIgLLrggKpVKvPe9742DDjooxo8fH5tsskkDKy+eefPmxa233hq33npr/Pa3v42XX36539csX748Xn755Xjsscfi97//fVx11VURETF48ODYY489YtKkSXHQQQfFkCFDml1+IT3yyCPxu9/9Ln73u9/F7NmzY+7cubFkyZJEr12+fHksX748XnnllXj00Ufjrrvu+ttYpVKJnXbaKQ455JCYNGmSUJMOZYUOAAAAAAAAAAAAANAqHfJN6b4Rvn35hnMAyK6SNMgkaSAHr5c0cK1MwWzeKvA6RXhe+dbUf4/JnxgfI4at2/ek9j+MAbn44osTzfuv//qv+NOf/hRbbrllkysauBdffDG+//3vx/e///147rnnmrKP3t7euOuuu+Kuu+6Kk08+OT7ykY/EMcccEx/96Eebsr9209PTEzNnzoyrr746fvGLX8TTTz/dsG0vX748brrpprjppptizJgxccIJJ8TnP//5WGONNRq2jyL70pe+FFdffXU89dRTTdl+b29v3HnnnXHnnXfGySefHEceeWRMmTIl1l9//absj/ZUohU6AAAAAAAAAAAAAEAbSdKwWvJmpv9VhOazTiVkBgAGIGmARq3W3DpKK+E6pUxBJglYvVEGZXpGfHnxovhm90X9zCrP8b7RSy+9FL/61a8Sz+/u7m5iNQO3atWquOCCC2LcuHFx2mmnNS3E5I16enrihhtuiP322y/e8573xHXXXZfLflvh0UcfjeOOOy423njj2G233eL73/9+Q0NM3uiZZ56Jf/mXf4mtt946br/99qbtp0huu+22poWYvNHSpUvjggsuiC222CJ+8pOf5LJP2kNnrdABAAAAAAAAAAAAANpJwUMkent7E80TltG+qtoKACC7xAEa1kKZJD2/pQoy8V6B1yrKs+SFV02Lp5/PJ/Ci3Vx++eWxfPnyxPMvu+yyWLlyZRMrym7evHmxww47xBe+8IV4+eWXW1bHPffcE/vvv3/ss88+8cADD7SsjmaZMWNGfPe7321qeMnqzJ8/P/baa68444wzct0v/+3ll1+Oo446Kg455JBYtmxZq8shB2VaoQMAAAAAAAAAAAAAtI1EDVcFacoaqDJ923bZFKUxEADaUsIAjUrV/TaThOetUqYgkwa9Vay/KYuivJf/umxZnPuTH/Q9oRiHkcnFF1+cav6zzz4bv/71r5tUTXbTpk2L973vfXHfffe1upS/ufnmm2P//fdvdRml0tPTE6eeempMnjw5enp6Wl1OR5o+fXrsvffesWTJklaXQpN1tboAAAAAAAAAAAAAAIBSKnGjUlrVSomaS0umWqbGXwDIWaWW8D5qLZSN8wYdr0jBi93X/DyOm3hEbPbWt61mtDjHkcZ9990Xf/jDH1K/rru7u60COr7yla/E2Wefneo1gwcPjh122CE+8IEPxLbbbhubbrppvO1tb4t11lkn1lprrejt7Y1FixbFokWL4pFHHokHH3ww7rvvvrj99tvjT3/6U/T29ibaj7CN//498I53vCO22mqr2HTTTWODDTaItddeO1asWBEvvvhiPPvsszFr1qyYM2dO4vN60UUXxZAhQ+KCCy5ocvXFVa1WY5NNNom3v/3tMW7cuFh33XVj2LBhMWzYsFi1alW88sor8corr8T8+fNj9uzZsWDBgsTbnjlzZnziE5+I6667zt+lSkyQCQAAAAAAAAAAAABAUyRoVCpnL9ObFKn5rNMU5RvOAaAt1WrJ5lXdb7PozDVkg465E08dtNiKlSvijB9+L7rP+rdWl5Kbiy++ONPrrrvuunj++edj/fXXb3BF6X3xi1+M73znO4nn77zzznHEEUfEwQcfHMOHD687d+TIkTFy5MgYO3Zs7LHHHn/79+eeey6mT58e06ZNi9///veZay+zsWPHxv777x/77rtv7LzzzjFs2LB+X/PSSy/F1KlT49vf/nY88cQT/c7/3ve+F9tss01Mnjy5ESUX3oYbbhi77LJL7LrrrrHLLrvEu971rlhjjTUSv/6ZZ56JK664Irq7u2Pu3Ln9zv/1r38d5513Xpx00kkDKZs2JqIGAAAAAAAAAAAAAKAZEjUPdkaHobCM9lWtaCsAgMyqCYNMOjKQowGq1ilQVkmfEYv2LHn1jdfH3Pl/efNAsQ4jkeXLl8fll1+e6bUrVqyIadOmNbii9E466aTEISYf+MAH4vbbb4+ZM2fGkUce2W+IST0bbLBBHHPMMTFr1qy499574+Mf/3hU3fNizTXXjMmTJ8eMGTPi4Ycfju9+97ux7777JgoxiYhYb7314vjjj4+HHnooTj755ESBaMcff3w8+uijAy29kKrVauy8887xb//2b/HAAw/Ek08+GT/96U/j2GOPjW233TZViElExJgxY+L444+P++67L374wx/GiBEj+n3N6aefHo899ljWQ6DN+a0GAAAAAAAAAAAAANAMCRomOuVb5jvlOItIkAkAZFepJbyPWgtlU+3A89agQy5a+AMdKOFbtGjPkj09PfHV752/mpFiHUcSv/rVr+LFF1/sc3y33Xar+/ru7u5Gl5TKpZdeGueee26/89Zcc8248MILY+bMmf0eUxbbbbddTJ8+PWbPnh277LJLw7dfBBtuuGF84xvfiCeffDJ+/OMfxy677DKgn/3BgwfHWWedFTfccEMMHTq07tzFixfHKaecknlfRXX22WfH008/HTNnzox/+Zd/ibe//e0N23a1Wo2jjz46/uu//is22mijunOXLVsWZ599dsP2TXvxF0cAAAAAAAAAAAAAgGZI0nNR9F6m3mTTitZ8VgaJv+HctQGA7KoJ2/OSzuMNnDegeK6/47aY9YfZrS6j6foLIvna174W73//+/scnzNnTtxzzz2NLiuRe++9NyZPntzvvLe+9a0xc+bM+NznPtf0Z+dtttkmZsyYERdffHGsvfbaTd1Xu9h4443jBz/4QTz88MNxwgknxPDhwxu6/Y985CNxxRVXRLWfddgVV1wRDz/8cEP33e4++tGPxgYbbNDUfWyxxRZx++239/t+vuKKK2LJkiVNrYXWsJIHAAAAAAAAAAAAAGiGJE0uHRIiUfXR9bZVrbg2AJBZwoCSiiCTbKqdsVZ+vU48ZuhbuwYvfvjDH647ftr3vv36f2jPw8jsqaeeiptuuqnP8bFjx8YHP/jBmDRpUt3t9BeG0gzLly+PT33qU7F8+fK68zbZZJP43e9+F9ttt11Olf23I444Iu69997Yfvvtc91vntZdd90455xz4i9/+Ut89rOfjTXWWKNp+/rYxz4WJ554Yt05PT09cemllzathk62+eabx6mnnlp3zqJFi+K2227LqSLy5AkIAAAAAAAAAAAAAKAJ2rXhqhWci/ZVKVtHHQDkqNLVlXCiNr5MOjEApkFLM2s82l3S92i7vpdPPfXUGDpkSJ/jM+65O26+c+Zr/qU9jyOrSy+9NFatWtXn+OGHHx6VSiXGjx8fgwcP7nPeFVdcEa+++mozSuzTmWeeGXPmzKk7Z9SoUfGb3/wm3vrWt+ZU1ettscUWceedd8YhhxzSkv032/777x8nnnhiDB06NJf9nXTSSTFmzJi6c6699tpcaulExx13XAwbNqzunDvuuCOnashTB67kAQAAAAAAAAAAAADaRMEDPnqjN9E8QSbtq6qxGgCySxq0UbUWyqQj15ANSzKBUmjXZ8kNN9ww/unTR9Sdc9r3vh29vf/zzNyeh5HZ1KlT645PnDgxIiJGjBgRf//3f9/nvP/3//5f/PKXv2xkaXU9+eST8fWvf73unEqlEtOmTYvNNtssp6pWb4011oirrroqjj/++JbWUQZrr712HH300XXn/PGPf4yXXnopp4o6y+DBg2PfffetO+fPf/5zTtWQJ39xBAAAAAAAAAAAAABohiQNV23alEXnaNfGQAAohFrC9jz320wqAteg41XaOAHky8ceG+uuvU6f47Pv/1P84pabcqwoH7/73e/igQce6HP8/e9/f7z97W//2/9PmjSp7vYuvvjihtXWn9NPPz2WLVtWd84XvvCF+PCHP5xTRfVVKpX4p3/6p1aXUQr1AnUiInp7e2PevHk5VdN5dtppp7rjTz31VE6VkCcreQAAAAAAAAAAAACAZkjSb9W+PVkNJSyjfVU1CANAdtVasnnut9lUO3AN2YGHDPW087PkeiNGxBcnHVF3zukXfjdWrVoVZfrh7u7urjs+ceLE1/3/Rz/60Rg1alSf82+++eZ44oknGlJbPU888US/oSmjR4+O008/vem1kL8ddtgh1lxzzbpzHn744Zyq6TyjR4+uO75kyZKcKiFPnoAAAAAAAAAAAAAAAJohUcNVeZqZ6qn66HrbaufGQABod5VawjVOJwZyNELVGjKrSoc8Z1Bc5XiPVuLYCZNig/VG9jnjLwseict+dU1pHv2XLl0aV199dZ/jgwcPjvHjx7/u3wYNGvSmf3utnp6euPTSSxtWY18uuuiiWLlyZd05p5xySgwbNqzptZC/SqXSb5jGwoULc6qm8/T3c9VfyAzFZCUPAAAAAAAAAAAAANAMCRqVOiVEolOOs50kbQysVrQVAEBmSYM2rIWy6cjz1onHTEdK+FZv98CTtddcK/71yKPrzjnrxxfGq6++mlNFzfWzn/0sFi1a1Of4fvvtF+utt96b/n3SpEl1tzt16tSBllZXT09PXHzxxXXnjBw5Mj796U83tQ5aa/311687/te//jWnSjrPc889V3d81KhROVVCnvzFEQAAAAAAAAAAAACgCRKFd7R3T1bDCDJpX7VKrdUlAEBx1boSTasIDsumE8+bZTO8Tls/S/5PaZM/cWi87S0b9jntiWeejh90T82npibrLwykr8CS9773vfGud72rz9fNnz8/Zs6cOaDa6vntb38bjz/+eN05n/70p2PNNddsWg203tKlS+uODxkyJKdKOs8TTzxRd3yzzTbLqRLy1IEreQAAAAAAAAAAAACAHLRzw1XO2v1btDtZtRMbhAGgQSq1hIFgNffbTKrWkFm1dfgDpFCEZ8nBgwbHKZ89tu6cc7/znVi0aFFOFTXHww8/HHfccUef4yNHjoz99tuvz/GJEyfW3X5/ISkDcf311/c7Z/z48U3bP+2hvzCNESNG5FRJ57nxxhvrju+66645VUKePAEBAAAAAAAAAAAAADRDkubBojcY9iabJiyjfVU0CANAdkkDSqrWQpl05HmzNqMzJA0oKUooz2H7HRDv3HRcn+MvvPhifOtb38qxosabOnVq9Pb2/UeA8ePHx6BBg/ocnzhxYlTr/F6fPn16LFmyZEA19uWGG26oO77pppvG9ttv35R90x4eeeSRWLhwYd0548b1/TNMdgsWLIhZs2b1OT5o0KDYa6+9cqyIvHTiSh4AAAAAAAAAAAAAoD0UpClroIrSfNaJqtoKACC7Wi3ZPGuhbIThZZY0JALaXXs/S/5fbbVaLU79py/Unf3Nb34zXnjhhWYX1RQ9PT1xySWX1J0zceLEuuMbb7xx7LHHHn2OL168OKZPn56pvnqeffbZuP/+++vO2XPPPRu+X9rL9ddfX3e8UqnElltumVM1neW4446Lnp6ePscPOeSQGD16dI4VkRcreQAAAAAAAAAAAACAZkjScNXWTVmNo5Eyf0nPeVWDMABkVqkmvI+632ZSSRoUUyaWzVBY//ChfWL7Ld/d5/iiRYvinHPOybGixrn11lvjscce63P8He94R+y44479bmfSpEl1x7u7u1PX1p977rmn3zm77757w/dLe7nyyivrjm+99dax3nrr5VRN5/jGN74Rv/rVr/oc7+rqii9/+cs5VkSePAEBAAAAAAAAAAAAADRDkibEDmlUbO9v0e5srg0ADEDSoI2q+20mHXneOvGYoaBW8+N6+ue/WPclF154YTzxxBNNKqh5+gsYmThxYqLtHPz/s3efcXaV5d74r7Vn0hsQSkILISBFQzEiTYomgIASmsAhMTwcpB2OCvLHIx0ehIMHLMCjR47A0HuXHgLBcAImoRkiRBBSIEAwkF4ns/4vEGv2njV7dpvZ3+/nw5u5r33f15o1mVlrs+7fPuyw6NWrV97x3/zmN/HHP/6xTb215qWXXmq1ZtiwYSVdk9oyefLkmDhxYsGagw46qELd1IdVq1bFOeecE2eccUbBunPPPTeGDh1aoa6oNEEmAAAAAAAAAAAAAADlkCUgok5CJHIeXa9ZucS5AYCiNTZmq6uTa76Sc50CnVZnDVQcvsvusddOHc8IfwAAIABJREFUO+cdX758eVx44YUV7Kj95s+fH/fdd1/e8SRJYvTo0Znm6tWrVxx66KEFa66//vq2tNeqqVOnFhzv0qVLbLnlliVdk9py9tlnt1ozatSoCnTS+a1atSruu+++2H777ePiiy8uWHvAAQfEWWedVaHOqAZX8gAAAAAAAAAAAAAAZdBZN2YVw/eiCjJ+ywWZAEDxklxDtjp/b4uTq8PvW4kum11/Q/X832+fVnC8qakp/vCHP1Som/a77bbbYvny5XnH99prrxg0aFDm+caMGVNw/IYbboiWlpbM87Vm1qxZBceHDBkSjVmDyehwHnzwwRg7dmzBmv333z+23nrrCnXUOaxevTrmz58fs2bNiokTJ8YvfvGLOO6442LgwIFx6KGHxmuvvVbw9fvvv3/ce++9/u11cs4uAAAAAAAAAAAAAEA5ZNg8WC8bDOvlODsi5wYA2qEhY9BGzt/bovi+QV1LI612C61Y8++oLw7dPr629/B4aPy4NY6vXr06zj333LjjjjvK2VzJNDU1FRxvLZjkH33lK1+JjTfeON555501js+ePTuefPLJ2Hfffds0bz751vnUhhtuWJJ1qD3z58+Pk08+udW6c845pwLddCyvv/56bLPNNiWft7GxMc4777w466yzoqEhWyAgHZcgEwAAAAAAAAAAAACAcsiy77JOQiRyScZNvpRMkukH0LkBgHbJugEzZ6NmUTrAdcrqFSti6cyZJZsvXb48Vs56r3BNErFySXPBmkXzG6JLzvZRCus5aFA0dOtW7TY6pQv//bvxyG+ejpaWljWO33XXXfGDH/wgdtxxxwp31jbTpk2LyZMn5x3v0aNHHH744W2aM5fLxahRo+JHP/pR3pqmpqaSBJm0tLTEe+8V/p06YMCAdq9DbTrllFNizpw5BWv+5V/+JXbbbbcKdVS/kiSJkSNHxgUXXBDbb799tduhQlyJAgAAAAAAAAAAAACUQ5aQkg4eZJI1LIPaJcgEANohc5CJv7fFSDrAdcrSmTNj/P77V7uNf1J42zZ8Yu9HH40+n/lMVdbuFPeSBQ5h2yFbxlH7fy1uffjBNY6naRpnnXVWPProo2VqrjSuu+66guMHH3xw9OnTp83zHnPMMQWDTO6///6YP39+rLXWWm2e+28tXbo0mpsLBz+tu+667VqD2nT11VfHrbfeWrCmX79+cdlll1Woo/q09dZbxyGHHBKjR4+ObbfdttrtUGG1fyUPAAAAAAAAAAAAANARdfCQklJKfC9qlnMDAMVLGjN+znjO39ui+L5BfUur3UD7nHvyt6Nrly55xx977LH4zW9+U8GO2qa5uTluvvnmgjVjxowpau5tttkmhg0blnd8+fLlcdtttxU19z/O05ru3bu3ex1qy5QpU+LUU09tte6KK66IjTbaqAId1afGxsYYMmRIbLzxxtG7d+9qt0MVCDIBAAAAAAAAAAAAACiHLPsu6yREolN82nYnlUtsKwCAouUastX5e1ucnO8bdFp1cIu42UYbx7GHfqNgzZlnnlmhbtruoYceirlz5+YdHzBgQOyzzz5Fz99aCEpTU1PRc39q2bJlrdYIMulc5syZEyNHjmw1xOaQQw6JY445pkJd1afm5uZ4+OGH45RTTonBgwfH4YcfHpMmTap2W1SQK3kAAAAAAAAAAAAAgLLIsDOrTj5lXlhG5WUNj8nZVgAAxWvMFmSS1El4Xcm5hgQ6uB9866To2b1H3vGJEyfGQw89VMGOsmstSGTUqFHR0JAx0GsNjj766OjSpUve8cmTJ8err75a9PwRnwQptKaxsbFda1A7li5dGiNHjow5c+YUrNt8883juuuuq1BXRES0tLTEPffcEzvvvHOMHj065s+fX+2WqAC/XQEAAAAAAAAAAAAAysCG1b/yvahdSZ2E6QBAOSS5jBu4cwI5iuI6BTqtLMGLWcMZq6f1/gasu16ccvQ347Lr/idvzdlnnx0HHnhgTd03z507Nx555JGCNWPGjGnXGuuuu27sv//+8eCDD+ataWpqih//+MdFr9GtW7dWa1asWFH0/NSO5ubmOOKII2LKlCkF63r06BF33313rLXWWhXqrGMaOHBg/OpXv8o7vmzZspg/f37Mnz8/Zs2aFZMmTYpZs2ZlmvuWW26JZ555Ju6555744he/WKqWqUGCTAAAAAAAAAAAAAAAyiHLxssa2qhUTrmwebdW5RLnBgCK1pg1yKQ+rvlKznUKUMsy/mr/3v85Lq659874eP78NY7/7ne/i9tuuy2OPvroEjbXPjfddFM0NzfnHd9uu+1iu+22a/c6Y8aMKRhkcvPNN8ell14aXbp0KWr+Hj16tFojyKTjS9M0jjvuuHj44YcL1jU0NMStt94aO+64Y4U667j69esX3/rWt9r0mrlz58a9994bV199dbz88ssFa995553YZ5994vHHH49ddtmlPa1Sw1zJAwAAAAAAAAAAAACUQ6aQkvrY1JrYvFtxWT/NW5AJALRDLmOQiW18xcn5vgEd31p9+sYZ3/1uwZrzzjsvVq1aVaGOWtfU1FRwfMyYMSVZ5+tf/3qsvfbaecfnzp0bjzzySNHzZwkyWbx4cdHzUxtOPfXUuPHGG1utu/rqq+Pggw+uQEf1af3114+TTjopXnrppRg7dmwMHjy4YP3ChQtjv/32i+nTp1eoQyrNlTwAAAAAAAAAAAAAQDlkCJLIGjbR0SV1EtjSEQkyAYDiJY1dshUKdStKvVwrAx1TW35DffukE2PAgAF5x//4xz/Gtdde2/6mSmDSpEkxbdq0vOMNDQ0xatSokqzVtWvXOPLIIwvWtBaqUkj37t2jV69eBWvmzp1b9PxU33nnnRdXXnllq3WXX355HHfccRXoiIiIESNGxNSpU+OYY44pWLdw4cIYPXp0NDc3V6gzKqmx2g0AAAAAAAAAAAAAAHRKWXY11UmGhLCM2iVkBgDaobEhW11Dxjr+Xq72ryF7DhoUez/6aMnmS1eujJVvvVu4JomY1b/wht8t+m8ROUEwtKLnoEFVW7tz3IdkP4aePXvFueeeG6ecckremosuuiiOOeaY6NGjRymaK1prwSH77LNPwVCWthozZkz88pe/zDv+8MMPxwcffBAbbLBBUfNvvPHGMX369Lzj77//flHzUn2XX355XHTRRa3WnX/++XH66adXoCP+Vq9evf7y++SGG27IWzdlypS4/PLL4wc/+EGlWqNCBJkAAAAAAAAAAAAAAJRFlk1NnWHzVusSmygrLuvGwFwH2CAMADUrly2gJBHqVpwOcJ3S0K1b9PnMZ0o2X7piRaxoLrztM00ium6wqmBNnw22FCZIbau3W8Qk4vjjj48f//jH8dZbb62xZM6cOXHVVVfF97///Qo391fLly+P22+/vWDNmDFjSrrmrrvuGltuuWW88cYbaxxvbm6Om2++ueggitaCTGbOnFnUvFTXL3/5yzjjjDNarfve974XF1xwQfkbYo2SJIlrr7023nrrrZgwYULeup/+9Kdx6qmnRvfu3SvYHeXmShQAAAAAAAAAAAAAoAzqIbwja1hG5/i07c7JBlcAaIfGbEEmkXMtVJQOEGRSq1x/QwW08Z9Zly5d4sILLyxY86Mf/SgWLFjQjqba595774358+fnHe/Tp08cfPDBJV/3m9/8ZsHxpqamouceMmRIwfF33303Fi5cWPT8VN5NN90U//Zv/9Zq3afhQVRXQ0NDXHnllQWDdOfOnRu33HJLBbuiEgpH8wEAAAAAAAAAAAAAUJwsm5rqIOwkQlhGLcv5fFQAKFqSyxpk4u9tUerkWvnv1OMxU5fqLmznz/+2jz766PjRj34Ur7766hrLPvroo7jsssvihz/8YSW7+4vWAkOGDBlSlrCB5ubmguPTpk2LyZMnx0477dTmuXfYYYdWa6ZNmxa77rprm+em8u6666449thjI03TgnWjRo2KX/7ylxXqitbssMMOcfjhh8edd96Zt+bBBx+M4447roJdUW6CTAAAAAAAAAAAAAAAyiHLhtU62aiY1Mlx1pKsGwOTnHMDAEXr0iVbnWuh4giAKZrrb6hNuVwuLr744hg5cmTemp/97Gfxne98J9Zff/0KdhYxa9aseOqppwrWvPzyy3H88cdXqKO/19TUVFSQyY477thqzcSJEwWZdAC//vWvY9SoUbF69eqCdYcddljccMMNkXMdUVMOPvjggkEmEyZMiDRNXcN0Iv4FAgAAAAAAAAAAAACUQ5YH7+skRCKXeHS94jL+aOVsKwCA4jU2ZKtzLVQcG5CBmtaW+/m/1h500EEFQzOWLFkSP/zhD9vRV3Guv/76aGlpqfi6Wd12222xfPnyNr9u++23j65duxasGT9+fJFdUSlPPPFEfOMb34hVq1YVrDvwwAPjtttui4aGjNdoVMwBBxxQMKTk448/jjfffLOCHVFuruQBAAAAAAAAAAAAAMoh056m+ggyoXb5hGIAKF6Sa8xWWCfhdaWW1ON1SpYwROgEks5wL1xcjklERFxyySUFy6+++uqYOXNm23sqUpqmccMNN1RsvWLMnz8/7rvvvja/rkePHrHnnnsWrBk/fnxRISlUxjPPPBMHH3xwrFixomDd8OHD4+67744uXbpUqDPaol+/frH22msXrJk7d26FuqES6vBKHgAAAAAAAAAAAACgAjJsQiz0SaSdSb0cZy3JujEwl9hWAABFa2zIVlePgRwAhdTdLeLfH/Dee+8d++67b97qlStXxgUXXFDmnv5q/Pjx8dZbb1VsvWI1NTUV9boDDzyw4PjixYvj4YcfLmpuyuu5556Lr33ta7Fs2bKCdbvvvns88MAD0b179wp1RjE22GCDguPz5s2rUCdUgjsgAAAAAAAAAAAAAIAyyBTekauP3Vs5j67XLOcGANqhIVuQSZLLGHgCQOe0hlv/Sy65pOD7BjfddFO89tprZWzqr4oNCKm0cePGxezZs9v8uoMOOqjVmptuuqmYliijF154Ifbff/9YvHhxwbqddtopHnnkkejVq1eFOqNYffv2LTjeWmANHYt3HAEAAAAAAAAAAAAAyiFLkEkHl2T8GO1MoS5URVInYToAUBYNjdnqcrbxkZHrZuhA2vfvddiwYXHYYYflHV+9enWcc8457Voji0WLFsU999xT9nVKoaWlJW644YY2v27zzTePvfbaq2DNr3/963jjjTeKbY0Smzp1auy7776xYMGCgnXbb799PP74460GZFAblixZUnBcGE3n4g4IAAAAAAAAAAAAAKAcsmxCrJONijmbdysua8hMzrYCACha0qVLtkLBYQB/J+v9SmeR73gvuuiiaGhoyPu6e++9NyZPnlyutiIi4o477oilS5fmHV9//fVj1apVkaZpRf67/fbbC/Z7/fXXR5qmbT7OE044oeB4S0tLXHrppW2el9J7/fXXY8SIEfHRRx8VrNt2221j7Nixsfbaa1eoM9pr9uzZBcedy87FO44AAAAAAAAAAAAAAFVTH5u36m2TWkciZAYA2qHA5vO/k/h7S0Z1EnQInUJb/rnmqd16663jmGOOKfjSs846qw0Ltd11111XcPzII4+MxsbGsvbwtw466KDo06dP3vE//vGP8Zvf/KbN8x522GGx0UYbFay5/vrr48UXX2zz3JTOW2+9FSNGjIi5c+cWrNtiiy3iySefjPXWW69CndFeM2fOjAULFhSs2XzzzSvUDZXgDggAAAAAAAAAAAAAoBwaMjyunauPjYqJDZk1K2djNQAUL+vGbsFhAG3XqW4j8x/M+eefH926dcs7/uSTT8ZTTz1VjqZi+vTp8dxzzxWsGT16dFnWzqdHjx5x6KGHFqxpampq87zdunWLc889t2BNS0tLnHTSSbFq1ao2z18uy5Ytq3YLFTN79uz4yle+Eu+++27BukGDBsW4ceNi4MCBFeqMUnjiiScKjq+11lrOaSfjDggAAAAAAAAAAAAAoByyhHd0qo1Z+eU8ul5xWcNjBJkAQPGSrAEldRJeB5BVUi83w58qcLibbrppnHzyyQVffuaZZ5a4oU+0Fgiy5ZZbxhe/+MWyrF1Ia+Epd999dyxevLjN8x533HGxxRZbFKyZPHly/OAHP2jz3OXw5ptvthrq0lm8//77MXz48Jg5c2bBuo022iieeuqp2HTTTSvUGaVy/fXXFxzfY489KtMIFeMdRwAAAAAAAAAAAACAssiyMas+Nm9lDdWg8gSZAEAF+HtLVq6bqRed4ke9LQdRuPass86K3r175x2fNGlS3H///W1Yr3WrV6+OG2+8sWDNqFGjSrpmVl/5yldi4MCBeceXLFkSd955Z5vnbWxsjP/+7/9ute4nP/lJXHPNNW2ev5SeffbZ2G233eKNN96oah+VMG/evBgxYkSrx7rBBhvEuHHjYvPNN69QZ5TKE088ERMnTixYs99++1WoGyrFHRAAAAAAAAAAAAAAQBnUQ3hH1k/RzuU8ul5pzg0A1I5EkAlA51PCW/711lsvvve97xWsOeecc6KlpaVkaz722GPx3nvvFaypVpBJLpeLo446qmBNU1NTUXOPGDEiTjjhhFbrTjzxxLj++uuLWqM9Wlpa4uKLL4699947Pvzww4qvX2kLFiyIfffdN6ZNm1awrn///vHkk0/GVlttVaHOKJUFCxbESSedVLCma9eurf6bp+NxBwQAAAAAAAAAAAAAUA4ZntZOcp0/7CQie6gGAECn1NhQ7Q4AqKYMQaenn3569O/fP+/4tGnTYvbs2SVrqbUgkJ133jm22GKLkq3XVqNHjy44/uyzz8Ybb7xR1NyXX355bLPNNgVrWlpa4thjj40zzzyzpAEyhbz66qux9957xznnnBOrV6+uyJrVtGTJkjjggAPixRdfLFi31lprxdixY+Nzn/tchTrrvJ5++ulYuHBhxdZbsmRJHHzwwfH2228XrDv66KML/v6jYxJkAgAAAAAAAAAAAABQFhnCOzJsZqppGdvPJR5dr7Qs4TFpmlagEwAgXAuRVQnuD9JwjUfty3K/UvuBmKXtr2/fvnHmmWeWdM58/vSnP8Wvf/3rgjWtBYmU2+c///nYeuutC9a0FsaST58+feKhhx7KFJxw6aWXxu677x5Tp04taq0sPvjggzjttNNixx13jAkTJpRtnVqyYsWKGDlyZEycOLFgXZ8+feKxxx6LHXfcsUKddW7XXnttDB48OC655JJYtGhRWdd6/fXXY6+99orx48cXrOvatWucf/75Ze2F6nAHBAAAAAAAAAAAAABQDlk2IXb0IJOMBJlUQX38aAFAx5DzhxmgrmW89z/llFNi4403LnMzEbfcckusXLky73hjY2MceeSRZe+jNaNGjSo4fuONN8bq1auLmnvzzTeP+++/P3r16tVq7fPPPx+f//zn49hjj43XX3+9qPXW5LXXXot///d/j8022yx+9rOfRXNzc8nmrmXNzc1xxBFHxLhx4wrW9ezZMx5++OHYeeedK9RZffjoo4/i7LPPjsGDB8epp54aEydOLGnQ7aJFi+Lss8+O7bffPl544YVW6y+88MLYbLPNSrY+taOx2g0AAAAAAAAAAAAAAHRKDRnCOzp4kEntf0J2/XJuAKCGCHUjo6SD3x9AZn7U16h79+5x3nnnxQknnFDWdZqamgqO77vvvrHeeuuVtYcsRo0aFeeee27e8XfffTfGjh0bX/3qV4ua/0tf+lI89thjceCBB8bChQsL1jY3N8f1118fN9xwQ+y6665x1FFHxT777BNbbbVV5t/dq1evjhdeeCGefvrpuOOOO+Kll14qqu+O7tvf/nY8+OCDrdYdfPDBMX369Jg+fXoFuoro169ffOMb36jIWrVg3rx5ccUVV8QVV1wRm2yySRx++OExYsSI2GWXXWKdddZp01yLFi2KCRMmxM033xz3339/LFu2LNPrRowYEWeccUYx7dMBCDIBAAAAAAAAAAAAACiLDBtZ6mSjog2ZAEBdywkyAfhbnSJ4sS2H0IZ74mOPPTYuu+yyeOONN9reUwYvvvhivPLKKwVrRo8eXZa122rw4MGx2267xcSJE/PWNDU1FR1kEvFJmMm4cePioIMOivfee6/V+jRNY+LEiX/pqX///rHddtvF4MGDY9NNN43evXtHr169Ik3TWLx4cSxcuDBmzJgRb7zxRkybNi0WL15cdK+dxdSpUzPV3XrrrXHrrbeWuZu/GjJkSF0Fmfyt2bNnx09/+tP46U9/GhERm2yySWy11Vax2WabxYABA2KdddaJbt26RWNjYyxatCgWLlwYixYtilmzZsXLL78cb731VqRp2qY1d9hhh7jnnnuioaGhHIdEDRBkAgAAAAAAAAAAAABQBpnCO+ok4COX2LxbaZ1iYyAAdBJC3QDIqrGxMS666KI46qijyjJ/U1NTwfHevXvHyJEjy7J2MUaNGlUwyOSBBx6Ijz76KNZZZ52i1/jCF74QL730Uhx99NHx1FNPtem18+bNi6effjqefvrpotcv5Mtf/nJZ5oVCZs+eHbNnzy7b/HvuuWc88MAD0bdv37KtQfV5NxgAAAAAAAAAAAAAoBxyNqx+SqgGAFDXcrbxAXQ+bbjPbWOg1RFHHBE77LBDG/tp3cqVK+PWW28tWHPIIYdEz549S752sY488sjo0qVL3vEVK1a0ekxZbLDBBjF27Ni4/PLLo0+fPu2er70++9nPxpNPPhm/+tWvqt0KlEySJHHaaafFE088EWuttVa126HM3AEBAAAAAAAAAAAAAJRDlo1KbdzMVGuyBpTkEo+uV1qS5WcrLX8fAEAIMgH4B50i7LKMh5AkSVxyySUln/f++++Pjz76qGDNqFGjSr5ue/Tv3z/222+/gjVNTU0lWSuXy8Xpp58er7/+enzzm9+MhoaGkszbFttuu23cdttt8bvf/S6GDx9e8fWhXHbcccd4+umn4yc/+Ul069at2u1QAe6AAAAAAAAAAAAAAADKovMHmWSVKVQDAKCzqsJGaABqSBH3xPvvv3/sscceJW2jtcCPAQMGxIgRI0q6Zim0Fq7y4osvxu9+97uSrbfhhhvGjTfeGG+++WZ897vfjb59+5Zs7jXp0qVLHHrooTF27Nh49dVX46ijjoqcEDTK4LTTTovTTz89ttlmm4qtucsuu8Ttt98eU6ZMib322qti61J9jdVuAAAAAAAAAAAAAACgU8q1vlGpXgI+cokNOJXWKT7hHAA6C5uRqaS02g1ABm5XMvnP//zP+NKXvlSSuVpaWmL33XePnXfeOW/N0KFDo6EGw7dGjhwZF1xwQaRp/l9wixYtKvm6m222WfzsZz+LSy+9NB5//PG466674oknnogPP/yw3XOvu+66seeee8ZBBx0UI0eOjLXWWqsEHUNhw4YNi2HDhsXll18eM2fOjMceeywmTpwYkyZNiunTpxf8N5ZVLpeL7bbbLg466KA4/PDDY+jQoSXonI5IkAkAAAAAAAAAAAAAQDlkCSnJEHZSy7IGsdRLYEtHk9rlCgCVIcgE4O/UevDijBkzWq1pWbgw+4RF3hPvvvvuJQkWiPgkXOCcc84pyVyV1qNHjzj//POrtn737t1j5MiRMXLkyIiIePPNN+O5556LqVOnxowZM2LGjBnx/vvvx9KlS2Pp0qWxYsWK6NKlS3Tv3j369u0bAwcOjI022ig+85nPxOc+97nYcccdY9ttt63b90qeffbZardARAwaNChOPPHEOPHEEyMiYsGCBTFlypSYPn16vP322/H222/HjBkz4uOPP44lS5bE4sWLY9myZdHQ0BDdunWLnj17xvrrrx8bbLBBDBo0KLbeeusYOnRo7LrrrtGvX78qHx21QJAJAAAAAAAAAAAAAEAZJJlCSupj00ousXm30up1QxQA1KJEkAkAdBpbbLFFbLHFFtVuA0qqX79+MXz48Bg+fHi1W6GTcAcEAAAAAAAAAAAAAFAOgiT+QpAJAAAAnUpbbvm9PwBAnfFuMAAAAAAAAAAAAABAOWTZqJTr2JuZkow7t7LWAQAA0PlluUd0HwkAHZcgEwAAAAAAAAAAAACAcsgSZFInn8qcSzy6Xmk2/QEAANSGpE7u/QHgU94NBgAAAAAAAAAAAAAoh0xBJvXxSHeSs2kLAACAP+sUt4id4iAAoCzq411vAAAAAAAAAAAAAIBKyxRk0rE3PiUZN27lPLpecT7xGwAAqFVZ7yVrWic4BAAoF+8GAwAAAAAAAAAAAACUQ4YgiQ4fNtHB2697abUbAACg1DpFQAQAAB2aIBMAAAAAAAAAAAAAgDJIchke187VxybDXOLR9UqzgRUAAKCc3HMBQD7eDQYAAAAAAAAAAAAAKIc6CSnJIkl8LyrN9xwAAKhV9XS/Uj9HCgB/JcgEAAAAAAAAAAAAAKAsMmxX6uCbt5KMW7JyiUfXAQAAAADqgXeDAQAAAAAAAAAAAACqpYMHmWQlyKTysobMAAAAUITMt1xpObsAgJrk3WAAAAAAAAAAAAAAgGrp4EEmWcMykg5+nAAAAJRO5whe7AzHAADl0VjtBgAAAAAAAAAAAAAA6ladBHzkEp/BWWnCYwAAgI6sc4SdQGlNnz49JkyYUO02MunXr1984xvfqHYbJfPCCy/ESy+9VO02Mtloo41i//33r3Yb1DlBJgAAAAAAAAAAAAAA1VInYROCTCovy6Y/GwMBAIBq6BT3IlkPoRMcKrVjwoQJcfzxx1e7jUyGDBnSqYJM7rvvvrj44our3UYmw4cPF2RC1Xk3GAAAAAAAAAAAAACgHHKdf7dSkjGIJWsdAADQirTaDUAJZLlFdBsJAB2WIBMAAAAAAAAAAAAAgHLIEN5RLwEfucSj65VWLz9bAAAAAEBt8W4wAAAAAAAAAAAAAABFSTJ+RHbOo+sAAAD8WdZ7yVrWGY4BAMrFu8EAAAAAAAAAAAAAAJQP6c69AAAgAElEQVRVkrPBq9JsqgMAAAAAqkGQCQAAAAAAAAAAAAAARckalpFLPLpeaUkiyAQAAKhNneJ+pRMcAgCUi3eDAQAAAAAAAAAAAAAojo1bAABUUUPX5mq3ANQtN8RU3re+9a1I07RD/Pfmm29W+9tVUj/84Q+r/j3N+t+TTz5Z7W8XCDIBAAAAAAAAAAAAAKiWNE2r3UK7JBk3buUSj65XWtZzAwBQy3oO7lJwvP9J+1eoEwAAICvvBgMAAAAAAAAAAAAAlEOW8I4OHmSSlSCTyksSQSYAQMfXc9eh+QeTluhx8MjKNVMjXOVRL4QzAkDH5d1gAAAAAAAAAAAAAACKknVjmQ1oAAAUo+9//Vf0GLjma8l1v7lLNA7dvsIdAaXQKe4RO8EhAEC5CDIBAAAAAAAAAAAAACiHxK6mT+VyHl2vtCwbAzvF5kEAoFNLunWLAU/eFet8fato7NkcDV2bo/u6aQw4+5Do9+MfV7s9oK65nwKAfBqr3QAAAAAAAAAAAAAAAB1TkjGsJZcIMgEAoDi59TeIta+7JtaudiNAyWS9l+wU6uhQAeBT3g0GAAAAAAAAAAAAAKCsch5dr7i62hgIAAAAANQM7wYDAAAAAAAAAAAAAFRLmla7g3ZJMn60dJITqlFpWc8NAAAARRAeCQB5CTIBAAAAAAAAAAAAACiDxKamv8h5dL3y/PgBAAA1SvAiAHRu3g0GAAAAAAAAAAAAAKAoWcNacjmPrleajYEAAEDNynC74p4GADou7wYDAAAAAAAAAAAAAFRLmla7g4rIJR5drzSb/gAAgA7NLQ0AdFjeDQYAAAAAAAAAAAAAKIecXVefynl0veKyBJkIOwEAAKqhU9yLJJ3gGACgTLwbDAAAAAAAAAAAAABAUbJuPkuEulSebzkAQKe0pFtLtVsAAICCBJkAAAAAAAAAAAAAAFBWOY+uV1zi08EBADqkhh4NBcc/7iXIhI7P/QoAdG7eDQYAAAAAAAAAAAAAqJY0rXYH7WLzWe1KwrkBAOiIGvqvlXdsVUMay7t07HsIiIhIO/i9cJu4NQOgDgkyAQAAAAAAAAAAAAAoByEff5HLeXS90gSZAAB0TLl114vGtXv809eTJI05azVH2tplnstAqIyM9/z+SQJQjxqr3QAAAAAAAAAAAAAAAB1T1rCMXCLIpBYJOwEAqE2NgwZFrv/iaPlgbqRpGknXLtGw4Yax8k+vVbs1qBj3KwDQcQkyAQAAAAAAAAAAAAColjStdgftkmT8BGpBJpWX9dwAAFCbcr17R65372q3AWWRRse+FwYACvNuMAAAAAAAAAAAAABAOQiS+AtBJpWXKcjEjygAQIci/IHOIslwM1Lz95Hu+QEgr8ZqNwAAAAAAAAAAANAWSZIMjIgDI2KviNg2IjaNiD7xyTbMRRExJyJei4gJEfFwmqZvV6nVskiSZKeIOCAivhARW0fEuhHROyJWRMTCiPhjREyNiLER8USapksq1FePiNglIobGJ+flsxExICLWioh+EbEyIj7+83/vR8TkiHg+Ip5L0/RPlegRACi9LJvPIiJyuRrfgNYJZT03AAAAldatsVtEGgXDFQf2HVixfsrLvRkA9UeQCQAAAAAAAAAA0CEkSbJjRJwdEQdHREOesv5//m9oRBwREVcmSTI2Ii5J0/SZijRaBkmS5CLi/0TE9+KTgJA1aYyIXhExMCK+FBEnR8TCJEmui4j/TNN0bhn6+kJ8EqrylfgkxKRbgfIuf+5v4/jk/Ozz56+vTpLk1xHx/9I0HVfqHgGg5rX4RHXKI0uQibATAACgGpIkiS65LrEqXbXmgjSiV9delW0KACgZsdYAAAAAAAAAAEBNS5KkW5IkV0TE5Ig4LPKHmKzx5RGxb0SMT5Lk5iRJ+pajx3JKkmSbiPhtRFwb+UNM8ukbEadGxPQkSf61RP18PkmSHyVJ8lZ8ck4ujIi9onCISSEN8Uk4zZNJkkxJkuRzpegTAGpC0vlDIpIMx5imwlqqQUgJAABQywb3HxyR53Zxo34bZbrf7BA6yWEAQFsIMgEAAAAAAAAAAGpWkiTrR8QzEfGdaFuAyZqMiohJSZIMaXdjFZIkydfikxCTL7RzqrUi4tokSX6ZJEl7nxt7IiK+HxGD2znPmgyLiBeSJPlB0mmeUgeAzk1YRg1zagAA6pJrdDqKbo3dYot1t4juDd0/CTRJIxqTxtik3yaxTs91qt1e67yFDQB5NVa7AQAAAAAAAAAAgDVJkmSdiBgbEduVcNqtIuKpJEn2SNN0VgnnLbkkSQ6IiHsiomsJpz0xIromSXJcmqZ5Puuy6rpGxH9GxNZJkvxrmqYt1W4IAAAAIJ9u66ax4k82swMUo0eXHrHleltWuw0AoMTa+8kaAAAAAAAAAAAAJZckSS4ibo/CISYvRMQpf65ZJyLWiohtI+JfI+KZAq/bNCIeSJKke2m6Lb0kSbaJiDsjf4hJc0TcHBEHR8SgiOgTEetHxJci4sKIeLfA9MdGxH+UrNl/9mpEXBURYyJil4jYKCL6RsS68UmQzMiI+ElEvN/KPMdExGXlaxMAakPtZotlk/gE6pqV5dwk4fwBQHutfdJhBcf77rhWhToBAACoDYJMAAAAAAAAAACAWvT9iNgnz9jSiPjXNE2/kKbpL9I0nZqm6cdpmi5I0/S1NE2b0jTdOyK+FhF/yjPHDhFxeenbbr8kSbrEJyEmvfKUvBwRQ9M0/Waapg+kaTorTdPFaZp+mKbp/6ZpekFEbBkRPy2wzA+TJNm5hG2/EhH/X0Rskqbp0DRNv5Om6U1pmv42TdM5aZouStN0Xpqmf0jT9ME0TU+PiM0i4jvxyfnM53tJkhxYwj4BAOqGkBIAqIzuRxwZDV2b8473OuqgCnYDAABQfYJMAAAAAAAAAACAmpIkyaCIODfP8JKI2C9N06bW5knT9OGI+FJEfJCn5OQkSYYV12VZnRoRn8sz9r8R8aU0TV8vNEGapsvSNP1eRJyWp6QhIn6RJEl7niFriYi7ImL3NE13SNP0x2mavpP1xWmarkjT9KqI2CkiZhUovfLP4S4A0PEknT9IQlhG7XJuAKAyGgZuGAOuODWS3Op/Glvna5+Jnv96fBW6otNKq90A8Bd1cM8PAMUSZAIAAAAAAAAAANSaCyOiZ56xk9M0fTbrRGmaTo+II+OT0I1/lIuIH7W9vfJJkqRfRJyTZ/j9iDg0TdMlWedL0/RnEXFdnuHPR8TRbeswIj75Xt4REdumaXpEmqYTi5jjL9I0/X1EfDUiPs5Tsnl8cg4BoHNKO/ZOxCTLxq2OfYgdVpZzk+n8AQCt6n74kTFo0i2xzgFbRJ/t+0W/L64XG996dqzddG21WwMAAKi4xmo3AAAAAAAAAAAA8KkkSTaJ/OEaj6dpelNb50zT9JkkSa6JiBPWMDw8SZKd0jSd3NZ5y+TkiOibZ+y0NE3nFjHn9yLi6xGx3hrG/iNJklvStE07qPf+c/hIyaRp+lqSJGdHxC/ylHwzIm4u5ZoAUBFCIqiiJPz8AUAlNQwaHGvf0FTtNgCoNW7NAKhDuWo3AAAAAAAAAAAA8DdOiIguecbOace8F0bEqjxj/9aOeUsmSZIkPgkyWZOpaZreXsy8aZouiIj/yjP8uYjYs43zlTTE5G/8T0TMzjO2Z5Ik3cq0LgDQDsIyalciSAcAAKB83HMBQF6CTAAAAAAAAAAAgFoyKs/XJ6ZpOqXYSdM0nRMR9+QZPixJkh7Fzl1Ce0bEpnnGrmrn3L+KiOV5xka3c+6SSNN0dUQ8lGe4e0RsVcF2AICMhGV0bIJoAAAAAIBSE2QCAAAAAAAAAADUhCRJdoiIwXmGbynBEvnm6BMRI0owf3sdkufrKyPi7vZMnKbpgoh4OM/wwUmS1MqzZJMLjA2qWBcAQGZZgjDSSCvQCf9IyAwAAAAAUA218j+fAQAAAAAAAAAA9i0wli+Eoy3GRcSKPGP7lWD+9sp3/BPTNP24BPPn+x6uGxGfL8H8pfBBgbE+FesCACopbal2B3RSWUJmAAAAKI7wSADIT5AJAAAAAAAAAABQK/bO8/W30jSd2d7J0zRdFhHP5Rn+cnvnb48kSTaIiG3yDD9VomUKzVPV48/ILm8AOpxMm5rStPyNUJey/PwJOwEA6FhcvwEA0BEIMgEAAAAAAAAAAGrFsDxfn1LCNSbn+frWSZL0LOE6bZXv2CNKdPx/DoP5MM/w50uxRglsUmDs44p1AQClkuv8j2v7BOralWmTq9MHAABQXu6bAahDnf+dcQAAAAAAAAAAoOYlSbJhRKyfZ/iVEi6Vb65cRGxXwnXaaocCY5U4/h1LuEZ77FJg7I2KdQEAZOYT4WuXcwMAAAAAVIMgEwAAAAAAAAAAoBZ8psDYH0q4zpsFxrYs4Tptle/4l6RpOqeE6+Q7/s2TJGko4TptliRJl4j4Wp7hD9M0fauS/QBAKTRuvVWrNV222aYCnZSRrIyalWT41G9hJwAAAABAqQkyAQAAAAAAAAAAasHgAmMzSrjO2wXGNi/hOm2V7/hnlHidfMffJSI2LvFabXVURKybZ+zRSjYCAKXSdb8DItelOe94rnF1dDv08Ap2VHqCMGpXliATAAAAAIBSE2QCAAAAAH9j8fvvxR8eeTDemfRcrFq2tNrtAHQKLatXx/L5H8eSP31Y7VYAAIDatkmBsfdKuM6HEZFvN/GmJVynrfIdfymPvbX5qnb8SZJ0jYgLCpTcUKFWAKCkklwu+u42KO94n50GRtLYWMGOSi9TkEla/j74Z1nOjSAaAIDOxzUeAADV1rHf9QYAAACAEmlevjye+P534/f33P6Xr/XZcOMY8Z8/iSEj9qtiZwAdV5qmMf3Be2L8/z03Fr8/JyIiBu2xd3zpP86LgTsOq3J3AABADVq3wFjJkhHTNE2TJPlTRAxYw3D/Uq1ThHzHX+pUyLkFxqp5/GdFxOZ5xqakafpUJZsBgFJa55YbYtUeB8SSt1f+3dd7btoY/e+4uUpdlY5NkrUrSZwbAAAAAKDyBJkAAAAAUPdaVq+O+487OmaMH/d3X18055349YljYtTDT8d6W29bpe4AOq5pd94aj33v3/7uazMnjI8Ppr4cox56KtYePKRKnQFQbisWLYxZ//ubmPmbp2P+rBkRaRpb7HtAfO7I0dHYvXu12wOgduUL0ViRpunKPGPFWhQ1FGSSJEmXiOiTZ3hhiZdbVGCsWsf/hYg4u0DJ98u8/voRsV4bX+amFoDMkm7dYsCkcbHs9lti2f2PRkREj6/tEz1GH1PlzkpEVkbNEjIDAABQfTImAahHgkwAAAAAqHsTL7/kn0JMPtW8fHk8dc7348i7H6pwVwAd2/L5H8f4/3tWnrH58eipJ8e/3P+4T4ME6ERWr1wZv7/3jph2560x54VJ0dLc/HfjM8aPi9cfuCcOuf726Na3X5W6BKDG9c7z9ULBG8XKN2e+MJFyy3fsEaU//kLzVfz4kyRZOyLuivzPst2SpunTZW7j3yLi/DKvAQDR46hR0eOoUdVuo+S8z1u7spwb5w8AAKB4SUSk1W4CAGqQIBMAAAAA6tofxz4Wz195ecGa2c9NiA+mvhwbDN2hQl0BdHx/ePiBWD5/ft7xOVN+G7OefSYG7bF35ZoCoGxWLlkcdx99aMyZ8tuCde/8dmJM+vnPYo8z7RMGYI265fn6qjKstTLP17uWYa0s8h17ROmPP9+xR1T4+JMkaYiI2yJiszwl70bEtyvWEABQlCQEYdQq5wYAAADKa/HixTFjxox4//33Y8mSJbF06dJYvnx5dO3aNbp37x59+vSJgQMHxoYbbhj9+/evdrsAFSPIBAAAAIC6NX/m2/HId0/IVDvlf34eB171qzJ3BNB5vP7APa3WPHfFZYJMADqJZ390UashJp96+cZrY/czzo5co/9d3dG89dTYWLloQfQeuFH0HjAwem8wMBq7Fdp3D9BmXfJ8vbkMa+Wbs1pBJvmOPaL0x19ovkof/xURsV+esdURMTpN048r2A8AUARhGR2b8wcAAEB7rV69Oi655JJYvXp1wbq999479t5778o0VQYLFy6MZ555Jp577rl47rnnYurUqTFv3rzMr19nnXXis5/9bOywww6xxx57xJ577hkbbLBBGTvuuFavXh1/+MMfYtq0afHqq6/GtGnTYsaMGTF//vyYP39+LFiwIJIkiR49ekS/fv1iww03jM022yyGDh0aw4YNiz322CN69uxZ7cOAuubJMAAAAADqUvPy5fHgCWNixYIFmeqnP3hv7HnmBdFnw43K3BlAx7f4g/dj1sQJrda989yz8c5vJ8bGO+9Wga4AKJfVK1fGq3fckrl+xcIF8cGrr8TAHYaVsSvKYfJ/XxGz/+FvfI/+60afAQOj98CNYssDvh5Djxxdpe6gPiVJcnFENFS7j1a8labp/7RzjrQknZR/znIpda81cexJkvx/EXFKgZIz0zQdX6F2fhERd7XxNUMi4oEy9AIAUDJJIqQEAACgGJtttlnMnDkzU+2F/35qfP+4EwtUlO7erLW+3n777dhss81Ktl5WTzzxRJx33nmt1j322GPx/PPPV6Cj0lm+fHncfffdcdddd8Xjjz8eK1asKHqujz76KCZMmBATJkyIq666KpIkiZ122ikOPfTQOOqoo2LQoEEl7LzjmTZtWowbNy7GjRsXzzzzTCzI8Iz3ypUrY8GCBTFr1qx4/vnn4/bbb4+IiK5du8aXv/zlGDNmTBx66KHRvXv3crdf1+bNmxfbbLNNfPjhh63WHnfccXHNNddUoCuqTZAJAAAAAHXpt//vJzH31d9lrm9pbo4Xr/tl7HXORWXsCqBz+MPDD0Sk2fbFPX/FZXH4rfeVuSMAymnuq7+LlYsXtek17zw/UZBJB7T4/ff+6WvL5v0pls37U8ydNjX6f2arKnQFde8/ovaDTJ6JiKxBJqvyfL1LiXrJMufKMqyVRb5jjyj98RearyLHnyTJ/4mI/ypQ8j9pml5WiV4iItI0nRsRc9vyGpuCAeCv/F2sXUmGzXJZagAAAMjvJ9dfG8d/46hYu2+/NRfUwW3Xddddl6nut7/9bfz+97+Pbbfdtswdtd+8efPi5z//efz85z+PuXPb9L8QMkvTNCZNmhSTJk2Ks846K7761a/GKaecEgcccEBZ1qs1LS0t8eyzz8add94Z9957b7z33j8/k1CslStXxuOPPx6PP/54DBgwIE4//fT49re/Hd26dSvZGvzVaaedlinEhPqSq3YDAAAAAFBpK5cuiZearm7z6353yw1t3qAJUI9ef+CezLUznnkq3nvphTJ2A0C5zXlhUptf887z/1uGTiinNE1j0XtzCtb0GbhRhboBOrF8H2FXjiCTrnm+Xq0gk0If31fq48937BEVOP4kSQ6PiGsi/6Pbt0fEyeXuAwAonSxBJsIyqiNTyIxTAwAA0C4LFi+KHzddU+02quajjz6KBx98MHN9U1NTGbtpv9WrV8dVV10VQ4YMifPPP79sISb/qKWlJR555JE48MAD4wtf+EI89NBDFVm3GmbOnBnf/e53Y+ONN4699torfv7zn5c0xOQfvf/++3HGGWfE0KFDY/z48WVbp1498cQTcdNNN1W7DWqQIBMAAAAA6s6cyc/H8vnz2/y6FQsXxNTbby5DRwCdx4J3ZsWcKb9t02ue+1mhD+EGoNbNeXFym1/zzqSJkba0lKEbymXFwgXRvGxpwZreAwZWqBugE1uc5+u9y7BWvjmrlWKb79gjSn/8heYr6/EnSXJgRNwaEQ15Sh6MiG+maepCAQA6ECEltSvLuXH+AAAA2u8Xt98c731YmcCLWnPLLbfEypXZc9JvuummaG5uLmNHxZs2bVoMGzYsvvOd78SCBQuq1scLL7wQX//612PfffeN6dOnV62PcpkwYUJceeWVZQ0vWZM33ngjhg8fHhdddFFF1+3Mli5dGieddFK126BGCTIBAAAAoO7MeXFK0a994ZpfREuN/g8UgFow/cF72/yat558LD549ZUydANAJcx5oe1BJisWLIg/vf77MnRDuSx+v/UHiPoM2LACnQCd3Lw8X++eJEmXEq/Vt409lFWapqsif4hIvl6LVWi+sh1/kiTDI+LuiMh3Lh+PiCPSNPXmGwB0MIIwaleSODcAAACVsGz58rj0V/9d7Taq4rrrrmtT/QcffBCPPvpombop3s033xxf/OIX45VXauc5trFjx8bXv/71arfRqbS0tMR5550Xxx9/fLT4AJ52O+ecc+Ltt9+udhvUqMZqNwAAAAAAlfZeEZ8Y/6mFs2fFm088Ep854KASdgTQebz+wD1FvW7qbTfFBhdvX+JuACi3xe+/F4venV3Ua2c//7+x3rafK3FHlMui995ttab3QEEmQLsVCtFYPyJa/2WUQfLJbs51i+ih3OZFRJ81fH39Eq9TaL6yHH+SJHtExIMR0T1PyfiIOCRN0xXlWB8AKC9BJrUry7lx/gAAAEqj6b574rvfPDY232TTardSMa+88kq8/PLLbX5dU1NTTQV0nH322XHJJZe06TVdu3aNYcOGxW677RY77LBDDB48ODbddNPo06dP9OrVK9I0jUWLFsWiRYvi7bffjjfffDNeeeWVGD9+fPz+97+PNE0zrSNs45Og1q222io++9nPxuDBg2P99deP3r17x6pVq2LevHnxwQcfxHPPPRdTp07N/H295ppronv37nHVVVeVufvOa8qUKXHllVdWuw1qmCATAAAA/n/27js8qjJtA/h90iCNNFKBVLqAAnYsqFix7WJBEZRVLGtZF1dXBOx1VSzrh+K6BKkqioqCIB1D74QAIaT3npCeTOb9/kBRlpz3TDlzZjK5f9fldeE8z3nfB2Mmk5lz7kNE1KUIIVC8d7dda2SsXM4gEyKiDlQdz0DZoYM2HZu3ZbPO0xARkRGK7AgJLNi+BSP+8pCO05Aj1ZcUS+uKhwf8w/W+zp6ItAgh3O3cH1k6VhR0CjIBEA7186ZsS+jSRz6A+A4ej9J5n2iNGXSlKMqFAFYA8FNp2QrgJiFEk957ExERkUGYg+GyTmb4ERERERERkRHaTG145ZOPkPzav04vuPGvZnPnzrXpuB9//BHl5eUIDw/XeSLrPfnkk/jggw8s7h81ahQmT56McePGITg4WNobFhaGsLAwxMfH44orrjj1eFlZGZYuXYqFCxdi+/btNs/uzuLj43HTTTfh+uuvx6hRo9CjRw/NY6qqqjBv3jy89957KCgo0Oz/6KOPMGzYMEyZMkWPkbsUk8mEBx54AO3t7c4ehVyYh7MHICIiIiIiIiIiMlJNdhaaa6rtWqPkwD6dpiEici9Hl39j87E1OVlob2vTcRoiIjJC0Z6dNh9bsGOrxXfCIeerL5YHmfhHRMLDy93yFIjICbIltQQd95GtlaXjPtZS+/vr+XeXrWeCzkEmiqKcC2AVgECVll0ArhdC1Ou5LxERERmLYRmuS7Hgajl+/YiIiIjcjyWvA4nIMb5atQKHMo79z6Pu+T3Z2tqKRYsW2XRsW1sbFi5cqPNE1ps2bZrFISYXX3wxNm7ciJSUFNx///2aISYyERERePTRR7Ft2zbs3bsXt912Gzw8eMm/n58fpkyZgl9++QVZWVn48MMPcf3111sUYgIAoaGhmDp1KjIzM/Hcc89Z9J7H1KlTkZuba+/oXc6//vUvHDhwoMNaYmKiwdOQq+KzGhERERERERERdSmW3DF+4C3jpPXq7Ey0NjboNRIRkds4unyZzcea29pQm8cPBImIOpviPdqvr9U0VpSjOvO4jtOQI9WXFEnrAVHRBk1CRG7uf8/s/aP+Ou7TV1LL0HEfa6n9/f0VRYnRcR+1v3+WEEK326YpijIcwM8AglRa9gO4VghxQq89iYiIyDl4kaTrYkgJERERERGRscxmM1786H1nj2GI5cuXo7KyUrV++eWXS49PTk7WeySrzJ8/H2+++aZmn5+fH2bPno2UlBTNv5Mthg8fjqVLl2Lfvn245JJLdF+/M4iJicE777yDwsJCfPrpp7jkkkvsek/Dx8cHr732GlauXAlfX19pb319PWbMmGHzXl1RRkYGXnnllQ5rl156KcaPH2/wROSqGGRCRERERERERERdSrFGkIlPYA8MGX+PfBEhUHHksI5TERF1fg0V5ajKSLdrjapM2TWLRETkatpbW1Gaut+uNfK3p+g0DTlaXbE8yCQwWs/r64moqxJCFAIoVymfreNWamuZARzUcR9ryX6w6vn3H6by+D69NlAUZQiANQBCVFrSAFwthKjWa08iIiJyHgaZuC5LLvrh14+IiIiIiEhfKzZvwLb9ur3l7rK0gkheeuklXHjhhar11NRU7NmzR++xLLJ3715MmTJFs69Pnz5ISUnBI4884vCw0GHDhuGXX37B3LlzERAQ4NC9XEXv3r3x8ccfIysrC0899RSCg4N1Xf+6667D4sWL4eEhj1NYvHgxsrKydN3bXQkhMGXKFDQ3N59R8/HxwZw5cxisS6cwyISIiIiIiIiIiLoUrSCT6OEjETFE+7qQ8sOpeo1EROQWqjPtv2l5lQ5rEBGRccoOp8LUwYkJ1ijYsVWnacjR6kvkQSYBUQwyISLdqJ2xeq6Oe5yn8vhRIUSDjvtYa7ekpsvfX1GUOAARKmVdzhZWFGUggHUAwlRa0gFcJYSo0GM/IiIicj5enOC6GFJCRERE1EXxZSCRw1177bXS+gsfvff7v7jh92RRURFWr16tWo+Pj8dll12GSZMmSdfRCkNxhNbWVtx3331obW2V9sXFxWHLli0YPny4QZOdNHnyZOzduxcjRowwdF8jBQUF4Y033sCxY8fw8MMPo1u3bg7b69Zbb8Wzzz4r7TGbzZg/f77DZnAn//nPf7Bp06YOa8888wwGDRpk8ETkymrLFNgAACAASURBVBhkQkREREREREREXUZbUyPKDh+S9kQPPxd+oWGaF+GVpTHIhIjoj6qzMzV7guLipfWq48d0moaIiIxQvEceEggAkUPlIYEF27ZACKHXSORAdSXF0npAVLRBkxBRF7BR5fHEX0M47KIoSncAarf/U9vbEEKIUgBHVcpX6rSNbJ2N9i6uKEo/AOuhHpaSCeDKX/+uRERERORgloTMMIiGiIiIiIjIes8//zx8fX1V67/s2YU1W1MMnMhY8+fPR3t7u2r9nnvugaIoGD9+PHx8fFT7Fi9ejJaWFkeMqOrVV19Faqr8HOCePXti/fr16NOnj0FTna5fv37YunUr7rjjDqfs72g33XQTnn32Wen3kJ6mTZuGqKgoac93331nyCydWXFxMf75z392WOvbty+mT59u8ETk6hhkQkREREREREREXUbpwf0Qkg9OACB6xMkb8oYPHiLtK9cIRCEi6mqqs45L6wFRMYgcIr+Yvep4hp4jERGRgxXtlQeZBEb3wsBbb5f21BUXojY/V8+xyAFMLS1oqqyQ9gRG9zJoGiLqAtZIamN1WH8MgO4qtZ91WN9ean//ixVFCdFhfbX/hlUA9tizsKIoCQDWAVBLt8rByRCTInv2ISIiItejuOOtpd0EvzZERERERESOERMTg8cee0za88JH77ntjT3mzZsnrU+cOBEAEBISghtvvFG1r7q6Gt9//72eo0kVFhbi7bfflvYoioKFCxciMTHRoKk61q1bN3zxxReYOnWqU+dwBwEBAXjooYekPQcPHkRVVZVBE3VOjz32GGpqajqsffzxx+jeXe0jWOqqGGRCRERERERERERdhtaFlgAQPeJcAEDEWUOlfeVH0iDMZl3mIiJyB9XZmdJ6SEISQvv2l/ZUHU932w/viYjcUdGendJ69Ihz0fvCizXXKdi+Va+RyEHqS4s1ewKi1K5ZJyKy2j6cDLzoyAQd1ldbox7yEBWjfKvyuA+A2+xZWFGUIKgHmXwnhLD5zS5FUfoAWA9A7daE+TgZYpJn6x5ERETkuhRFOyyDgRrOwa8NERERERGR4zz77LMICghUre87chjL1q4G3Oz3ri1btiA9PV21fuGFF6J//9/PE5s0aZJ0vblz5+o2m5aXX34Zzc3N0p4nnngC1157rUETySmKgr/+9a/OHsMtyAJ1AEAIgbS0NIOm6Xy+++47LFu2rMPahAkTMGbMGIMnos6AQSZERERERERERNRlFGsEmQTHJ8IvNAyAdpBJW2MDanKydZuNiKizq87SCDJJTNQMMmmuqUFTVaWeYxERkYM0lJXiRL78OuSYkecjcsjZ8PYPkPYV7Nii52jkAPUllgSZxBgwCRF1BeJkuuEilfLFiqKMtHVtRVFiAIxTKX8jhGi0dW0dbcTJ0I+OPG7n2lMAqN0KbYGtiyqKEo2TISbxKi1FOBliwjfTiIiIiAxmSZAJERERERER2SY0NBRP3jtZ2vPy7A/R3t5u0ETGSE5OltYnTpx42r/fcMMN6Nmzp2r/mjVrUFBQoMtsMgUFBZqhKZGRkXj55ZcdPgsZb+TIkfDz85P2ZGVlGTRN51JbW4tHH320w1pISAhmzZpl8ETUWTDIhIiIiIiIiIiIuozivXuk9ZgR5536c/hgeZAJAJSlHbR7JiIidyDMZtTkyD/EC0nsi9C+/TTXqsrM0GssIiJyoCKNkEDgZJCJh5cXep13gbSveJ/8dTo5X31xkWZPQHS0AZMQURfyHwAmldprdqz7AgBvldrHdqyrm1+DXD5RKQ9VFGW8LesqihIE4GmV8mEAm2xcNxzAOgB9VVpKcTLE5Lgt6xMREVHnwLAM1+VhweUC/PoRERERdTJ8+UbkUh6fMBERv95AryPHcrIx/9tlBk7kWI2Njfjqq69U6z4+Phg//vSPMry9vc947I/MZjPmz5+v24xqPvvsM5hMah8/nTRjxgz06NHD4bOQ8RRFQWRkpLSnpqbGoGk6l2eeeQZFRR2fN/Kvf/0LERERBk9EnQWDTIiIiIiIiIiIqEuoKypEfYn84rvokb8HmQTHJ8Dbz1/aX5aWqstsRESdXV1xIUzNzdKekIQkhCZZEGRy/JheYxERkQMV7dkprXt4eyNiyDAAQO/zL5L21uZmQ5jNus1G+qvTCDLpFhQEH43fn4iIrCGEyAXwhUr5WkVR7rF2TUVRLgPwgEp5gxBih7Vr/rruPEVRhMo/o21ZE8BsAHUqtVm/hodY610AamcRvvVrgIpVFEUJAbAGwCCVlnIAVwkh0q1dm4iIiDoXhVdSuixLQkr49SMiIiIiIrJdgJ8/nrn/IWnPqx/9Gy0tLQZN5Fhff/016urUPsIAxo4di9DQ0DMenzRpknTdefPm2TualNlsxty5c6U9YWFh+Mtf/uLQOci5wsPlH7E1NTUZNEnnsXnzZvznP//psHbJJZfg/vvvN3gi6kwYZEJERERERERERF2CJXeMjx5x7qk/e3h6oufAwdL+8sOH7J6LiMgdVGdlavaEJPaFj38AAqJipH0MMiEi6hyK98hfX0cOORte3bsDgObralNzM+pLS3SbjfRXX1IsrWv9fCcistHzANTOFvxEUZSLLV1IUZT+AL5Cx+dKmQH80/rxHEcIUQPgdZVyNIBliqJYnCClKMrfAKidRbgfwCLrJgQURQkEsBrA2SotVQDGCCHSrF2biIiIOh9LwjLIOSwJKeHXj4iIiIiIyD5Tbr8TsdHqn5nmFxdj9uzZBk7kOFphIGqBJeeddx4GDVLLRQcyMjKQkpJi12wymzZtQn5+vrTnL3/5C/z8/Bw2AzlfY2OjtN791/Nc6KSWlhY8+OCD6Oh+CN7e3pgzZw7fVyIpBpkQEREREREREVGXUKwRZOLVvTvCBw057bGIs4ZKjylLS7V7LiIid1CddVxaVzw8EBQbDwAI7dtP2lt1PEOvsYiIyEGEECjTCPWLGXn+qT//9jNApjYvx86pyJHqS4qk9cCoaIMmIaKuRAiRDeA1lbI/gJ8VRblPax1FUcYCSAEQqdIyRwihnYBrvFkADqvULgGwWVGUAbIFFEXxVRTlXQDvq7S0A/irEKLdmsEURfEDsALAeSotdQBuAnBMUZTuOv/jbc2sREREZAxLwjLIOXgxCRERERERkeP5ePtgxsOPSXtef/111NXVGTSRY2RlZWHz5s2q9bCwMIwdO1a1PnHiROn6WiEp9lixYoVmz/jx4x22P7mGgoICaT0kJMSgSTqHl19+Genp6R3Wnn76aQweLL+xERGDTIiIiIiIiIiIqEso3rtbWo8cNhye3qdfBxE+eIhK90n1JUVorKq0ezYios6uOjtLWu/Ruw+8unUDAIT27S/trcpkkAkRkaurLy5Ca90JaU/U8JGn/hwUF6+5Zk1Otr1jkQPVFcuDTAIkdxcjIrLTGwDWq9T8ASQrirJLUZSHFUU5S1GUYEVReiiKMkBRlPsURVkP4EcA4SprpAJ4ygFz200I0QrgDgBqt4YbASBVUZT5iqLcrChKH0VRAhRF6akoykWKorwAIAPAVMk2Lwghttkw3vkALpXUAwFsAdDkgH/+Y8O8RERE5GAMMunc+PUjIiIicj98jUdkvLvH3oyBCUmq9YqKCsyaNcvAifQ3b948CCFU6+PHj4e3t3oe+cSJE+HhoX5Z+9KlS9HQ0GDXjGpWrlwprSckJGDEiBEO2ZtcQ3Z2NmpqaqQ9SUnq38NdTWpqKt5+++0Oa0lJSZg5c6bBE1FnxCATIiIiIiIiIiJye+b2dpSm7pf2RI8494zHIs4aprl2eVqqzXMREbmL6uxMaT3kDx/SawWZ1OblwNTSostcRETkGBXHjmj29Bww6NSfffz84R8RKe2vyWWQiSurLymW1gOiGGRCRI4hhDADuBNAmqTtXAAfAzgEoBpALYCjAJIBXCE5rgDAzUKIJn2m1Z8QIg3AeABtKi3eACYC+B5AHoA6AOUAtgJ4EUAvyfILALyu16xERETUtSmK9kWSvJDSOSz52hAREREREZH9PD098fxfn5D2vPvuu6ioqDBoIn2ZzWZ8/vnn0p6JEydK671798YVV6h/dFNfX4+lS5faNJ9MaWkpjhyRn+dw5ZVX6r4vuZYVK1ZI64qiYPDgwQZN49rMZjMeeOABtLV1/BHlxx9/jO7duxs8FXVGDDIhIiIiIiIiIiK3V1dUAFNzs7QneviZQSY9Bw0GNE7uKz98yK7ZiIjcQXXWcWk9+A9BJmFJ/aS9wmxGTU6WLnMRkfMIsxnHf16JbyffhW8m3o51M5/RDEKgzqPyWLq0rnh6IiSx72mPBcXGS4+pzcuxcypyFGE2o75U/v0bGBVt0DRE1BUJISoAXAVgt47LZgC4QgiRo+OaDiGE+AHAbQDqdVz2vwAmC9ltE4mIiIiswLAM12VJgAy/fkRERERERPr405hrMGLwENV6XV0d3njjDQMn0s+6deuQl5enWh8wYAAuuOACzXUmTZokrScnJ1s9m5Y9e/Zo9owePVr3fcm1LFmyRFofOnQoQkNDDZrGtX3wwQfYuXNnh7W7774bV199tcETUWfFIBMiIiIiIiIiInJ71dmZmj3hA8864zEfP3+E/OHi+46UpaXaPBcRkTswm0yaF5+H/uFi9hCNIBMAqDp+zN6xiMiJ6ktL8OVtY/Hd5LuQ+fNKZK//GfvmzsFnl4xA/vYtzh6PdFB5TH6nopD4RHh163baY8FxCdJjanKy7Z6LHKOxsgJmlbvs/CYgKsagaYioqxJClAK4FMD/ATDbudwXAM4TQsgTGV2IEGI5gAsB7LNzqRMAHhJCPCCEaLd/MiIiIqKTLAnLIOewJKSEXz8iIiKizoWv34hc28uPPymtz549GwUFBQZNox+tgJGJEydatM64cePg7++vWt+8eTMyM7XP+bXGvn3aH6+MHDlS1z3JtezatQtbt26V9tx8880GTePacnNzMXPmzA5rISEheO+99wyeiDozBpkQEREREREREZHbq86Sf6iheHggKDauw1rEWUOlx5YfPmTzXERE7qA2Pxdmk0naE/yHUKjA6Bh4+6l/GA0AVZkZusxGRMYr3LUdC66/HAU7zvzw39TUiJ+efBitDfVOmIz0VJF+VFoPGzDwjMeC4zWCTHIZZOKq6kuKNHsCoxlkQkSOJ4RoFkI8BuA8AN8CsDaIYy2AK4UQdwkhanUf0MGEEGkAzgUwBYA8VexMdQA+BNBfCPGp3rMRERERWRKWQc7Bi1yJiIiIiIiMddWFo3D5eReo1pubm/HSSy8ZOJH9ampq8O2336rWFUXBPffcY9Fa/v7++POf/yztmTdvnjXjaUpNld+w0NvbG/36ad+cizqv6dOna/ZMmDDBgElc38MPP4yGhoYOa2+++SYiIiIMnog6MwaZEBERERERERGR26vJzpLWe/SJhaePT4e18MFDpMdWZhyFqaXF5tmIiDq7ao3nWAAITfw9yETx8EBoUl9pf9VxBpkQdTZCCOydOwdf3jYWDaUlqn0n8vNw+JsvDZyM9CaEQGVGurQnrP+gMx4LjpMHmTRVVaKl7oRds5Fj1BcXa/YEMMiEiAwkhNgrhPgzgDgADwFYDGA/gEoArQDaAFQDSAOwFMCTAPoKIa4WQmxwwDz3CSEUlX826ryXWQjxGYCzAFwI4CUAKwFkATiBk+EuTQBKAGwF8AmA2wDECCH+JoQo1WmOjZK/s6P/uU+PvwMRERHpi2EZrstD0b5cgEE0REREREREdujgV6qXH/+79JDk5GQcO3bMQQPpb8mSJWhublatX3755YiL6/hmgh2ZNGmStP7555/DbDZbvJ6WvLw8aT0pKQleXl667UeuZfny5VizZo205/rrr8fAgWfetKerWbhwIVatWtVhbdSoUZgyZYrBE1FnxyATIiIiIiIiIiJye9XZmdJ6SEKSai3irGHSY80mE6o0LuQkInJn1VnHpXUPLy/06B172mOhfftLj6nK7Dwf1BPRSVv+9SrWz3wGZpNJs/fQlwsNmIgcpb64CK0agSM9+595ckdQbLzm2rW5OTZORY5UV1IkrXv6+MA3NMygaYiIfieEKBRCfCqEmCCEGC6E6CmE6CaE8BFChAohhggh7hBCfCCEkL851MmIk3YIIV4UQowVQiQJIYKEEF5CCD8hRLQQYpQQ4hEhxDdCiHpnz0xERETujUEYrotfGyIiIiIiIuOdP/Rs3Dj6KtV6e3s7Zs6caeBE9klOTpbWtYJJ/teVV16J3r17q9bz8/Oxdu1aq9aUKSgokNZjYnjjDndVU1ODRx55RLNvxowZBkzj2ioqKvD3v3ccwuTt7Y05c+bwfSayGiOiiIiIiIiI/kddcRHSvlqEwt070VxTjfaWZphaWgBFQVi/ARhyxwQkXX2ds8ckIiIr2BNkEj54iOb6ZWmpiBgiDzwhInJXWs+xwXEJ8PifO1aEJmkEmRzPgBCCH3wRdRJFu3di+4fvWNxfsn8vyo+kIXzQWQ6cihyl4tgRzZ6wDoJMguMTNI+ryc3m62oXVF8sDzIJiIrmz2wiIiIiIqIuTuno9tM29JD++LUhIiIicrwWUwtya3IN2y+vJg8CQtrjqXjC09PToImoM4sLjkM3r27OHsMtvfTY37By8waYzeYO60uXLsWzzz6L4cOHGzyZddLS0rBr1y7Vuq+vL2677Tar1vTw8MCECRPw1ltvqfYkJyfjmmuusWrdjpjNZhQXF0t7oqKi7N6HXNOjjz6KoiL5OQ933XUXLr74YoMmcl1PPvkkKioqOqz94x//wFln8Twvsh6DTIiIiIiIiP6gcNcOfP/ABDRWlHdYr8pIR8bK5Tj/0Sdx2XMvGTwdERHZwmwyoTYvR9ojCzIJiIqGb2gYmqoqVXssuZiTiMhdVWcdl9aDO3iODUnqKz2mtb4ODWWlCIjkh8REncGBRfOsPubQl4twxYuv6z4LOV7lsXRpXfH0REjimc/zfj3D4e3nj7bGBtVjazRet5Nz1JXIT+oKiOLdqYiIiIiIiLo6Bly6Lku+Nvz6EREREdkntyYX18+73tljENnkp/t+Qv+e8hsSkW0GJ/XD+OtvxOIVyzusCyHw3HPP4aeffjJ4MuvMnTtXWr/11lsRGBho9br33nuvNMjku+++Q01NDYKDg61e+48aGxthMpmkPT179rRrD3JNc+bMweLFi6U9QUFBePvttw2ayHWtXr0aixYt6rCWmJiImTNnGjwRuQsPZw9ARERERETkKtrb2vDTkw+phpj80c7/ex9Fe9SThYmIyHWcKMiDWeNDiI4usv+NoijoOXCw9PjaPOPuqEFE5GqqszOl9Y4uZg/rq30CRNXxYzbPRETGEUIgd/N6q487vOxLtLe2OmAicrRKjRC/kIQkeHU7845diqIgKC5eemxtTrY9o5GD1JfI704UEBVt0CRERERERETkqhRYEITBrAynYEgJERERERGR88x85HH4eHur1letWoXNmzcbOJF1TCYTFi5cKO2ZNGmSTWsPGjQII0eOVK03NzdjyZIlNq39v+to6d69u937kGvZvXs3nnzySc2+Dz74AL169TJgItfV0NCAhx56SLU+e/Zs+Pr6GjgRuRMGmRAREREREf0qY+Vy1FhxwczuOf924DRERKSX6uwszZ6QhES76rW8czwRdVGmlhacKMiX9nT0HBqckARonDzNIBOizqEqMwP1JcVWH9dUWYGsdasdMBE5WkX6UWk9rP8A1VpwXIL02JpcBpm4orpirSCTGIMmISIiIiIiIlfFsAzX5cHLBYiIiIiIiJwmvldvTP7z7dKeadOmGTSN9X788UeUlZWp1qOionD11VfbvL5WCEpycrLNa/+mqalJs4dBJu6lqKgIt9xyi2aIzZ/+9Cfce++9Bk3luqZPn47c3I5v6Dl+/Hhce+21Bk9E7oTvTBIREREREf0qa93PVve3NtQ7aBoiItJLdXamtO7h5YWgPnHSHq16bX7Hb+ASEbm7mtxsQAhpT0hC0hmPefv6IqhPrPS4qswMu2YjImPkpWyy+djUL+R37SHXI4RAZUa6tCes/yDVWnBcvPRYBpm4Jq2wosBoBpkQERERERF1dQq0g0ws6SH9MWSGiIiIiIjIuZ594GH4+fqq1rdu3Yoff/zRwIkspxUkMmHCBHh6etq8/t133w1vb2/V+q5du3Do0CGb1wcAk8mk2ePl5WXXHuQ6Ghsbccstt6CoSH7DlsTERMydO9egqVzXzp078e9/d3yD5+DgYLz//vsGT0TuhkEmREREREREAITZjJxN66w6xtTchKy1qxw0ERER6UUryCSoTxw8ND6ECIqNl9ZbamvRXFNt7WhERJ1ejcZzLACEJPbt+PGkftLjavPzbJqJiIyVl7LR5mOz1/+sGZBArqW+uAitdSekPT37D1StBcclSI89UViA9rY2m2Yjx2htqNf8mgdERRs0DREREREREbkqhmW4Ln5tiIiIiIiInCuqZzgev+8+ac/06dMhNG4mZbSysjKsXLlS2jNp0iS79ujZsyeuv/56aY9WmIqWbt26afa0tLTYtQe5BpPJhDvuuAO7d++W9vn6+uLrr79GcHCwQZO5pra2NjzwwAMwm80d1t98801ERkYaPBW5GwaZEBERERERASg9dACNFeVWH3d0+bcOmIaIiPSkFWQSnJCkuYZWkAkA1ObnWjoSEZHbqMo6Lq17de+OwOiYDmtBfeKkx9YXF9o8FxEZw9zejrytv9h8vDCbkfbNFzpORI5WceyIZk/YgEGqtaC4eOmxor0ddYX51o5FDlRfrB02pPaznoiIiIiIiLoOBQzLcFUMMiEiIiIiInK+fzz0EEJCQlTrBw8exJIlSwycSNuCBQtgMplU68OGDcOwYcPs3kcrDGXhwoVos+OGKL6+vpo9DDLp/IQQuP/++7FixQppn6enJxYvXozhw4cbNJnreuutt5Camtph7aKLLsKDDz5o8ETkjhhkQkREREREBCBnw1qbjsvesAYtGnelJSIi56rRCDIJsSTIROOCSwCoyc2xcCIiIveh9RwbnJAExaPjjyJ6xPSSHnuiiEEmRK6uNHU/Wmpr7Voj7ctFLndXIVJXmX5UWlc8PaWvr4PjEjT3qMnNtnoucpw6C4LFAqKiDZiEiIiIiIiIiGzhwcsFiIiIiIiInC64RxCeeeYZac/zzz9vV2CH3pKTk6V1rQASS910003SkJeysjKsXLnS5vUtCTKpr6+3eX1yDU8++STmz5+v2TdnzhzceuutBkzk2tLT0/Hqq692WPPy8sKcOXMYjku64DuTREREREREALJtDDJpb2lB5s8/6TwNERHppb2tDbX5edKe4IREzXV8Q0Lh7R8g7anNz7VqNiJyroaKcuyc/T62znoTBxfNg6kT3FVBCIFjK5djw0vTsfLxB3Hk26VobXDuh6hVWVphUerPsQHR8iCTpsoKmJqbbZqLiIyRl7JJsyc0qZ+0XpWZgarMDL1GIgerzJAHmYQkJMGrWzfVeo/esVA8PaVrMCDQtdSXFGv2BEQyyISIiIiIiKirs+TCBgW8+MEZeNEJERERERGRa3jiiScQFRWlWs/MzMR///tfAydSt3PnTqSlpanWPT09MWHCBF328vHxwZ133int0QpVkenevTv8/f2lPWVlZTavT873/PPP48MPP9Tse+edd3D//fcbMJFrE0LgwQcfRIvKObNPPfUUhg4davBU5K68nD0AERERERGRszXXVKNoz06bjz+6fBkGj5O/eUZERM5Rm5cL0d4u7ZFdZP8bRVEQHBuP8iOH1PfiBZdEnUbqlwux7rl/wNTcdOqxHR/NwnWzZqPPRZc4cTJ1rY0N+Pkfj+Po99+ceuzwsi8RPmgI7lj6A3xDQp0yV012lrQekthXtRYYIw8yAYD6kiIEx2s/TxORc2gFmQRG98Kl017A9w/cI+0rPbgfYX376zkaOUhFujzIJKz/QGnd09sbPXr1Rm2eeghgTW62TbORY9SXFEnrfj3D4enjY9A0RERERERE5KoYUuK6GGRCRERE5HhxwXH46T7jbop4vOI4BIS0x8vDCwmhCQZNRJ1ZXHCcs0foGhTAz88PM2fOxKOPPqra9sorr+Dee++Fr6+vgcOdSSs45Oqrr5aGslhr0qRJ+OSTT1TrK1asQGlpKSIjI21av3fv3khPT1etl5SU2LQuOd8777yDV155RbPvhRdewFNPPWXARK7v008/xebNmzusJSQk4IUXXjB4InJnDDIhIiIiIqIuL/eXjRBms83H52xah+aaanQPDtFxKiIi0kN1dqZmT0hCkkVrBcXGyYNM8tUvxiQi11F66ADWPvt3tLe2nvZ4bV4uvp7wZ9z0cTL6XjvWSdN1TJjNWPn4gzi+6sczauVHDuG7v9yN8d+shOLhYehc7a2tqC8tlvaESEJIAqNjNPeoK2aQSWfV3tqKo8uXoTYvBz7+ARj0p9vhH2HbyQTkmkzNzSjctV3aE3vJ5Ugccx18Anugte6Eal/54VTgz3foPSLpTAiBygz1E3sAoOeAQZrrBMXGS4NMahlk4lLqiuVBJgFR0QZNQkRERERERK6MYRmuiyEzRERERI7Xzasb+vc07sYNraZWzSATbw9vQ2ciIstMmTIF7777LrKyOr55VFFREf7973/jmWeeMXiy3zU3N+OLL76Q9kyaNEnXPS+66CL069cPGRkZHdZNJhMWLlxocxCFVpBJbi7P/+2MPvnkEzz99NOafVOnTsWLL77o+IE6gaKiIvzzn/9Urc+ePdvpQUrkXow9q5mIiIiIiMgFZW9ca9fx5rY2HF+9UqdpiIhITzUaQSYe3t7o0auPRWsFxcZL67W5ORZORUTO9MvrL54RYvKb9pYWfD9lItKWLjF4KrmUt17pMMTkN4U7tzll5vrSYkDIT4yRPccGRvfS3KOuqNDqO1EbjgAAIABJREFUucj5qjKP47NRw/HT3x7C1nffwMaXp2POeYNx+JsvnT0a6aho9w6YmpulPXGXjoantzciBg+R9pUfVg+LI9dRX1wkDaQBgLB+AzTXCY6T3/mthicIuZT6EnlomSU/z4mIiIiIiMj9WRJkwrAT5/BQeLkAERERkbthWB1RZ3Ty+9bb2xsvvfSStPOtt95CbW2tEUN1aNmyZaipqVGtBwYG4tZbb9V934kTJ0rrycnJNq+dlCS/4WFhYSFOnJCfD0GuZcGCBfjrX/+q2fdbeBCd9Nhjj6k+v9x555247rrrDJ6I3J2XswcgIiIiIiJyJiEEcjauk/YExf16p2DJRZpHf1iGIXdO0Hs8IjJQY1Ul9sz5CMdWfA8hBCKHnYMLH38K4RoXXZJrq9YIMgmOjYeHl2VvkQXFxknrJwrzYW5vh4enp8XzEZGxKo8fQ86m9dIe0d6On558GC0najHi/ocNmkxd2tdfYMdHszT7Nr/xIvrdcBO6BfYwYKqT6oqLNHsCY3qr1ry6d4dvaBiaqirV9ygqsGk2cp7W+josm3TbGV87s8mEn558GP4RkYi7dLRzhiNd5aZs0uyJHXUZACD8rKEo2LFVta8sLVW3uchxKo4d0ewJGzBIsyc4XivIJBtCCF7c5CLqSuQ/7wOiog2ahIiIiIiIiFwZL6R0XXyPhYiIiKhr4mt0Ihfzh2/Ju+++G2+99RYOHer4pi9VVVV4++238eqrrxo03Om0AkOSkpKwaNEi3fc1mUzSelpaGnbt2oXzzjvP6rXPOecczZ60tDRcdNFFVq9Nxlu6dCkmT54MoXETtgkTJuCTTz4xaCrX98033+Dbb7/tsBYUFIT333/f4ImoK2CQCRERERERdWkVR9I07yw75I57kJeyCfnbflHtyftlI5qqquAbGqr3iERkgIaKcnx1x02oTP/9wryanCwcX70Cd371I2LOPd+J05E9NINMEuQp638UFBsvrbe3tqK+pBg9eqlftE9EzrUv+VOLe9c//0/4BAQ6NayucNcO/Pz04xb1NpaXYfsHb+PyGa84eKrf1RUVavYExMRI64ExveRBJhaEpZBr2fnxh6jJye6wJsxmrHn2Sdy7dhu8fX0Nnoz0lqcRZBLab8CpgIMIjXDAxopyNJSVwj8iUrf53E3Jgb1I/WIhivfsREvdCUSPOA8XT52G0KS+hs1QmX5UWlc8PRGaqD2P1uvqtoZ6NFZWwL9nuDXjkYNovW8WECX/WU9ERERERERdA8MyXBcvYCUiIiIiInIwK3/t8vDwwGuvvYZbbrlFtef999/HE088gYiICDuHs05eXh7Wr5ffKGz//v2YMmWKQROdLjk52aYgk+HDh2v2bN26lUEmncAPP/yACRMmoL29Xdo3btw4fP755/Dw8DBoMtf31FNPqdbeeOMNREVFGTgNdRUMMiEiIiIioi4te+NazZ6EK8fANzRUGmRiNpmQuXYVhtxxt57jEZEBhBD46W8PnRZi8pv2lhZ8P+Ue3P/LHvgEBDphOrKXVpBJiFVBJnGaPbX5uQwyIXJRLSdqkbZ0iVXHbHhxGgbc/Cd4+/o5aCp1zbU1+H7KPWhvbbX4mD2ffYyhd91r2EXtdUUF0nr34GD4+PlLewJjeqPs0EHJHtphKeQ66kuKsXvOR9Kempxs7PhoFi55erpBU5EjNNfWoOTAXmlP3CWXn/pzuEaQCQCUHU5FAoNMTtPa2IAjy77CwYXJKE09cFqtNi8Xx1evxLiFX6PPhaMMmafi2Jm/M/1RSEISPH18NNcJjk/Q7KnNzWGQiQswt7ejsaJc2hPAE1mIiIiIiIgIDMsgIiIiIiIissbNN9+Miy66CNu2beuw3tDQgFdffRUffvihoXPNmzcPZrPZ0D2tsWTJEsyaNQvdu3e36rizzz4bPj4+aJWci7dx40Zp0AM5388//4zbb78dbW1t0r6xY8diyZIl8PT0NGiyzqGioqLDx4ODg+Hp6YnPPvtMt732798vraenp2vud8UVVyApyfLz/Mk1MciEiIiIiIi6tOz18iATv57hiBxyNgJjemPd9H9ASN6YK963m0EmRJ3Qoa8WIWfjOtV6Q1kpds7+AJc8M8PAqUgPppYW1BXKL7IPSUi0eL2gPrGaPbW5OYZdSEpE1jn01WK0NdRbdUzLiVrkbFqPftfd6KCp1O36+EM0lpdZdYy5rQ0bXpyGcQuWOmiq02mFjARGawc7BUbHyPcoZpBJZ7LlnddgamrU7Nv5f+9h0J9uR1jf/gZMRY5QsH2L9PdjAIi7dPSpP4f1HwTFw0N6TPnhQ0gYPUavETu9wl3bsfKJB1Gbl6vaY2pqxM9PP4H71m2zKEDEXqUHD0jrYf0HWrROcJx2kElNbjZiRlp/FyXSV1N1FYTGXYz8IxhkQkRERERERICiaAeZMOzEOSz52hAREREREZGDdfC72euvv44rrrhC9ZA5c+bgqaeeQlyc9k349CCEwOeff27IXraqqanBt99+i7vuusuq43x9fXHZZZdh7Vr1a0c2btyI5uZmq0NSyBibNm3CrbfeipaWFmnfVVddha+//hre3t4GTdb51dTU4KGHHjJ0z5SUFKSkpEh7FixYwCATN+Dh7AGIiIiIiIicpbW+DoW7Ok4x/k385VdB8fCAf89w9LnoEmlvWar8gh4icj31JcXY+OJzmn2753ykebE2uZ7avBzNC2xDEix/g9Pb1w/+EZHyPfPVLzQlIucRZjP2JX9q07EFO+SvFx1BmM049NUim47NXv8zstb9rPNEHdMMMonppbmGVg9//nYe5UfSkPrFQot6zW1tWPPs3yGEcPBU5ChFe3ZK64qHB3r/IdzN29cXoRrBNWVpqbrM5g7qiouwdPyt0hCT31RnHUfWesc/77c2NqDiaJq0J3zwEIvW6hbYA76hYdKemtxsi2cjx2ksK9Xs8Y+IMGASIiIiIiIicnUMy3BdHrxcgIiIiIiIyKFs/Y149OjRuOaaa1Trra2tePHFF21c3XobN25EVlaWYfvZKjk52abjxo4dK63X19djxYoVNq1NjrVt2zbceOONaGpqkvaNGjUK33//PcNoiFwI35kkIiIiIqIuq/TQQZhNJmlPwpVXn/pzzMjzpb3lRw5prkdErkMIgTXP/h0tJ2o1e03NTUh5+zUDpiI9VWdnavYEJ1qX1BwUGy+t1+bmWLUeERkje8Na1OTY9iGrVvCdI5Sm7kdDaYnNx++c/b6O06irKyqQ1i0KMomW9zRVVaJN4wNIcg2bXnsesCKYpGBbCtKWLnHgRORIWqEjkcPOQfeg4NMe0wq5KD98yO653MW2996Eqdny577DXzv+e6ks9YBmSGD0OSMtXi8oLl5a5+tq19BQbkGQSbg87JGIiIiIiIi6BoZluC6GzBAREREREbmu119/Xfp724IFC3DkyBFDZrE1IMRo69atQ35+vtXH3XzzzZo9CxYssGUkcqA9e/bg+uuvR319vbTvvPPOw8qVK+Hv72/QZERkCb5rTERE1AXw7rZERB2rzjqu2RN32RWn/hw57Bxpr6m5GZUZ6XbPRUTGOPLtUmSu+cni/rSli1F26KADJyK9VWfJg0w8u3VDj5jeVq0ZFBsnrdfm51q1HhEZY2/yHJuPLUs9gNbGBh2n0Za5drVdxxds34LGqkqdplF3oqhQWrcoyMSCnvqSIotnIufI3bwBORvWWn3cppeno6XuhAMmIkcSQmi+Lo4efu4Zj2kFmVRlZsDU3GzXbO7AbDLh2IrvrTomc+1qNFVVOWiik4r37dbsiTpnhMXrBcclSOsnCq0/6Yj011BWJm9QFPiF9TRmGCIiIiIiInJploRlKDbfo5rswSATIiIiIiIi1zVy5EiMGzdOtd7e3o4ZM2Y4fI66ujp88803Dt9HD2azGZ9//rnVxyUmJuLyyy+X9vzwww/IyMiwdTTSWWpqKq655hrU1spvWnr22Wdj9erV6NGjh0GTEZGlGGRCRETkxhoqyrFu5jP4vyHx+KB/L8y/9lJkb7T+ohIiInelFWQSGNMbfqFhp/49YujZmmuWHtxv91xE5HiNlRVYP/MZ6w4SAhtfns6QuE6kJlseZBIclwDFw7q3x4Ji4+V75uVYtR4ROV5V5nGbAhZ+YzaZULJX++JtPWVZEbSlpvTAPh0mUWdqbkZTZYW0J9CCsKjA6BjNnjqNwBRbtbe1Ye9/P8HKJx7C9w9MQNrSJYaH1riLX9562abjmqqrcPibL3WehhytoawUjRXl0p6Is4ae+djgMx/7I9HejopjxtxFyJUV7d2F5poaq44xt7Xh6HLHnlBUvG+PtB4cnwjfkFCL1+vRS/4zwlHP/Z2NMJuRvWEtNrw0HZvfeBH527cYun9Deam07hfWEx5eXgZNQ0RERERERK7MopAS5mk4hYfCywWIiIiIiIicThIy+corr8DT01O1vmzZMuzatcsRU53y5ZdforGxUbUeERGBtrY2CCEM+eeLL76Qzjtv3jybzud+8MEHpXWz2Yw333zT6nVJf0ePHsWYMWNQpXFjn8GDB2PNmjUICQkxaDIisgbfmSQiInJTzbU1+PquP2Hf3DlorqlBW0M9yg4dxDcTxvECXCKiX1VnyS9wD0lMOu3fe/Tqo3lRTumhA3bPRUSOt//zz9BcU231cXlbNiN7/RoHTESOUJ2TJa2HJCRJ6x0Jio2T1htKS9DW1GT1ukTkOOnLl9m9RsHObTpMYpm64iKUpspfUyZdcwMUyYfXAFC8X37Bub3qS4o0ewJjemn2BERr99QVa+9lrcaqSiy4/nKsf/6fOPzNF8j46Uf89OTDSB59AXI2r9d9P3dWkX4EJfv32nx85tpVOk5DRig7dFCzJ2LIsDMf6yDc5H+Vp6XaNJM7yVq32qbj0r5eovMkp9MKMokePtKq9bSe/+tLirr8e9htTY348rax+Oaecdjz6UfY+dF7+HLcDfhm4m1orKo0ZIaGsjJp3T880pA5iIiIiIiIyPUpkguyyLn4tSEiIiLqmiwKGyQilzBw4EDce++90p7nnnvOoTPMnTtXWr/zzjvhZeBNLm6++WYEBgaq1jMzM7F582ar1x03bhx69ZKfrzBv3jzs3Wv7uVBkv6ysLIwZMwZlGucs9O3bF2vXrkV4eLhBkxGRtRhkQkRE5KbWP/8syg93fOL/7jkfYe20qRBms8FTERG5lqqs49L6/17grigKIoaeLT2m9OB+u+fqatpbW1F66ADyUjahuda6u04T2ero97bfrXzHR7N0nIQcqSYnW1oPTki0es3g2HjNnhMFeVavS0SOU7Bzq7Tu4e2N7sHyNP5CA4NMsiwIdRh610T07D9I2mNPsIQlThQVavb0sCDIxKtbN/j1lH+QWFdUYPFcltr08gxUHEk7c6/CfHx915+w+unH0XKiVvd93VHBDvn3mJbCHdvQ3tam0zRkhDKNAE8PLy+EdfAc5R8Rqfn9Xnb4kF2zuYPsdbYFJ5bs24PK48d0nuakhrJS1BXmS3uih59r1ZpaPyNMzc1oMiisw1X99LeHO3yOzV6/BgtvGI0yA4J/GspLpXX/iAiHz0BERERERESdgyVhGbyQ0jn4352IiIiIiMj5tH4ze+GFF9CtWzfV+tq1a7F+vWNuzpSeno5t2+Tnx91zzz0O2VuNr68v/vznP0t7kpOTrV63W7dumDlzprTHbDbj4YcfRpsLnc/U1IVusJifn48rr7wShYXy8xPj4uKwbt06REdHGzRZ51dfXw8hhCH/TJ8+XTrL/fffr7mG0c875BgMMiEiInJDJQf24rDGHTgPLJiLVVMfhdlkMmgqIiLXYm5vR22u/AL3kMS+ZzwWOewc6TFlaakwt7fbNVtXkr1hLeZdeSEWXHsZvrrzZnw8vD/WzXia/w3JoRrKSlFlxwV+hTu3oaFcnvBMztfe1qZ54XtwXILV6wbFxmn21OblWr0uETmGMJtRvG+PtKf/2FvQf+wt0p6iPbsM+/05c408yMSre3fEXToaUcNHSPtK9u+BEELP0U5TZ0GQSUBUjEVrBUbL++qKiyxax1K1+blIW7pY2pO6eD7mXXmR5v8/zlCRfgQbX56OhTdeiR8evg+Hvlzk0K+1ltJU+8Ic2xobUHpgn07TkBG0whPC+g2El8rJNeGDh0iPLe/iQSYnCgtQfsT2/waHl8rfE7aVJeFYUeeMtGrNQAvCruqKtX/WuKvsjWtxbMX3qvUT+XlYfMs1SP/hW4fO0VAmDzLxC4906P5ERERERETUeTAsw3V5KLxcgIiIiKhL4kt0Itei8T0ZGxuLRx55RNozbdo0HQf6nVYgSL9+/XD++ec7ZG8ZrRCDr7/+GvX19Vave//996Nv3zOvE/mjXbt24dlnn7V6bUc4fvy4ZqiLuygpKcFVV12F3Fz5edi9evXC+vXrERsba9BkRGQrvjNJRETkZoQQ2PCCZb+cpi1djBWPPcAwEyLqkk4U5qO9tVXa02GQyZCzpceYmhpRlZlh12xdxd65c/DNxNtQnZ156rH2lhbsS/4Ua6dNdeJk5O7yt6XYvUbZoYM6TEKOVFdUAGE2S3uC4+KtXjcgKgYe3t7Snpq8HKvXJSLHqDh2FK11J6Q9CVdcjV7nXyTtaWtsQFma45/725oakbdlk7QndtTl8Pb1Q9TZ8iCTxopyzUAne2it7RvWE17du1u0VmBMb4299L2QPf3H7yzqqysuxNLxt6Di2FFd97dH/rYULLrxKuye8xFK9u1B+g/fYtXUv+LHRybD1NLilJlKD8qDTHoOOktzjbytm/Uahwyg9XwYMWSYas2SIBNnBvM4W/b6n+06/vA3XzokGLR4325p3cPbGxFnDbVqTa3nfkD/5//Oor2tDRtefE6zz9TUiB8evg87/u89h82iFeLpHxHhsL2JiIiIiIioc1EU7askGXbiHJZ8bYiIiIioc+FrayJXY8n3pHbPc889h4CAANX6zp078d13lp33ZKn29nbMnz9f2jNhwgRd97TUlVdeiejoaNV6Q0MDvvrqK6vX9fLywscff6zZN2vWLHz22WdWr6+nlJQUXHzxxcjIcP/rUyorKzFmzBjNv2tkZCTWrVuHxMREgyYjInswyISIiMjNHPvxOxTu2m5xf/oP32Lru284cCIiItdUnXVcsye0oyCTYedoHleWesCmmboKIQRS/vUq1s98BlC5QO3gonnIWr/G2MGoy8jfvsXuNUpT5RfskvPV5snTuAEgqE+81et6eHqiR68+du9NRMYo3rNTsydm5HnofYE8yAQACnda/ru2rfJ+2QRTc7O0J+nq6wAA0eeM1FyveN8eXebqiNbF5T1ielm8VkB0jF17WSt9+TKLe1vr67Dj3+/qur+tThQWYNm9d6KtseGMWvoP32LttKmGB0CYWlpQkX5E2tP/hpvRo4/87hf5W3/RcyxyoJYTtajJyZb2yAItIs5SDzn5bf0TBXk2zeYOstbZF2RSV1zokO+n4v3ynyfhg4dYHF71G9/QMHh26ybt6apBJgfm/xdVGekW9//y+ovIXLvaIbM0lpdK6/7hkQ7Zl4iIiIiIiDofXkjpujx4uQAREREREVGnEB4ejqlT5TcDnTFjBswaN/mzxqpVq1BcXCztcVaQiYeHB8aPHy/tSU5OtmntMWPG4MEHH9Tse+ihhzBv3jyb9rCH2WzGa6+9htGjR6O8vNzw/Y1WW1uLa665BmlpadK+sLAwrF27FgMGDDBoMiKyF9+ZJCIiciOm5mZseu15q4/b/Z/ZaNG4QzURkbupzsqU1j28vDq82C4oNh7dgoKkx2rdkbwrM5tMWPPPv2H7B29r9q6f+bTmhbxEtsjfliKt975wFHoOOkvaU8rAIpdXm5cjb1AUBPbSvgt8R4Lj4u3bm4gMU7Rnl7TuGxqG4PhE9Ogdi4AoeZhGwc6teo7Wocy1P2n2JI45GWQSNmCQ5kXjJQf26jJXR7QuLg+Msfw5NlAj9KS+WL8L2auzM61+vZ7x049ob2vTbQZbCCGwbvo/0NZQr9pz6MuF2PvfTwycCqhIPwyzxn+byKHnIPbiy6Q9hbt2wNTSoudo5CDlR+QnDABAxBD1sJLwwUO09zh8yKqZ3IWpuRm5KZukPd7+6nde+k3a11/oNRIAQJjNKNkv/3kSPfxcq9dVFAWBmkFWBVav29k1VlViy7uvW33czv97T/dZTC0taK6pkfb4RzDIhIiIiIiIiE7yUHhKuqtSPBgyQ0REROR2+BKPyG099dRTCAsLU62npaUhPz9ft/20gkAuuOAC9O175s1hjXLPPfdI6ykpKcjIyLBp7XfeeQeDBg2S9pjNZkyePBnTpk3TNUBG5tChQxg9ejRmzJiB9vZ2Q/Z0poaGBtxwww3Yu1d+bkpwcDDWrFmDIUO0zz0iItfBd42JiIjcyJ7PZuNEvvV3LDU1NSJ38wYHTERE5Lqqs45L60F94uDp7X3G44qiIHLI2dJjSw8x4KAjQgis/sfjOLjoc4v6a3KysXP2+w6eirqahopyzTtb975wlOb3eRm/z11ebV6utB4Y3QteGneAVxPUJ86uvYnIOEV7dkrrMSPPh6IoUBQFvc6/UNpbuHM7hBB6jncaYTYjc+1qaU/k0LNPXfTt6e2NCI2fVyX7HBhkUlwkrWuFk5zWGy3vbaquQltTo8XryRz78TurjzE1NaL0wD5d9rdVxsrlyFyjHXSz8eXphr7HY0koTOSwc9Dn4kulPabmJhTv263XWORAZYcOavZEnDVUtRaa1A+ePj7yPbpokEn+thSYNJ7rLnvuRQT26iPtyVi5XNdgoOqsTLScqJX2RJ8z0qa1A6PloVdaoVnuaOs7r6OlVv7fuyOFO7ehvkR+lyxrNVaUafb4h0fouicRERERERF1XorCKyldlcKrXImIiIiIiJzPwt+be/TogWnTpjl4mJMqKirwww8/SHu0gkQcbcSIERg4cKC0RyuMRU1gYCB+/PFHaXDMb958802MGjUKqampNu1lidLSUvz973/H8OHD8csvvzhsH1fS0tKCW265BVu3ym8yFxgYiFWrVmH48OEGTUZEemGQCRERkZtoqCjHjn/Psvn4rPU/6zgNEZHrq87OlNZDEtWTgyOGagUcHIQwKHG3M8n8eSXSli626pgdH81CTU6WgyairqhgW4pmT+xFlyBS4/u8Ni8XzTXVeo1FDlCbLw8TCYqVh5FIj42Ll++dl+PQsAMiskxTdRWqjh+T9sSMPO/Un3tfcLG0t7GiHNVZ8teQ9ihN3Y+G0hJpT+KY607796izR2iuaXbQXRnqigqkdauCTCzorS/W5+Lso8u/tem4/O3aryEcpeVELdbNfMaiXtHejh8euU/z9x29aAWZ+EdEIiAyCrEaQSYAkL+1a3wA39mVpclPyAiKjUO3HkGqdU9vb/QcIL+bTflhx5304cqy1snDrAAg6errcNa4O6U9bY0NKNy5Ta+xLAoZih5+rk1raz3/a4VmuZvyI2k4sGCuzcdnrPpRx2mAhjILgkwiInXdk4iIiIiIiDovS8IyGHbiHB4KLxcgIiIiIiJyKJ1/3X300UfRu7f8xiB6WLRoEVpbW1XrXl5euPNO+TkKRpgwYYK0Pn/+fLTbeI5cYmIivvvuO/j7+2v2bt++HSNGjMDkyZNx9OhRm/bryJEjR/DYY48hPj4e77//Pkwmk25ruzKTyYQ77rgD69atk/b5+flhxYoVuOCCCwyajIj05OXsAYiIiEgfBxcko7W+zubjszeshRCCHxgTUZdRnXVcWpcFmUQNO0d6bGt9HaqzsxCapL5GV5T6xUKrj2lvacHaGU9j3IKv+TOKdJG/fYu07uHtjeiR58HD21tzrbK0VMSOukyv0UhnNXk50npQHzuCTDSOba2vQ3N1NXxDQ23eg4jsV7zXgguvR55/6s+9zrtQs79w1zaHvcbLWqcdMJp09elBJtHDR0r7W+vrUJWZgZ795XelsFZbU6NmoFdgjOUfplsSZFJXVICQxCSL1+xI1fEMmwMS8rel4ILHptq1v602v/GSZsjNHzXX1GD5g/di4qpN8PD0dOBkQOmhA9J65NCTvzsFxvRCSEKSNGAlb+svuHjqs7rOR/or0/iaRwwZprlG+OChKE1VX0crLMUdCSE0g0x6DhyMHr36YPBtd2H7h+9Ie7M3rkXcpaN1ma14/x5pvVuPIJufnzWDTDRCs9zN9g/fsSsY99iK7zH8vim6zdNQXqrZ4x8eodt+RERERERE1Lnx83zXxa8NERERUddkSdggEbmm7t274/nnn8eDDz7o0H2Sk5Ol9WuuuQbh4eEOncESEyZMwMyZM1XrhYWFWLNmDa677jrVHplLLrkEq1atwtixY3HixAlpr8lkwrx58/D555/joosuwvjx43H11VdjwIABFv/+3d7ejj179mDDhg348ssvsW/fPpvm7uwef/xxLF++XLPv1ltvRXp6OtLT0w2YCggKCsLtt99uyF5EXQGDTIiIiNxExqof7Dq+obQE5WmpFl1sQETU2ZlaWlCbnyftkV2EEzFEHmQCAKWp+xlk8gdmkwn522y7i33OhrXI+OkH9L/hZp2noq5I6//D6OHnwtvXDxFnDdVcqzT1AINMXFhtXq60HhRrR5BJXLxmT01eNoNMiJysaM9OaV3x9ETUOSNO/XvPgYPRrUcQWk7Uqh5TsGMbho6fqNuMf5S39Rdp3T8y6lQoxG+izh6h0v27kv17dQ8yqSss1OyxJJzkNwGR0dp7FhdZvJ6a9B++tfnYwl07YDaZ4OFl7Mcqhbu248D8/1p9XPnhVKQvX4ZBf3Lch6rtra2oOJIm7Yn8Qwhkn4svlQaZFO/ZibamJnj7+uo2I+mrvbUVFcfkd5SJOOtszXXCBw+R1mtzc9Da2AAfP+273biLqswMzdeviVddAwAITepHT2VWAAAgAElEQVSLsP4DUSn5WmRvWIvRM1/VZbbiffJgsKhzRkDxsO2uvppBJsVFEGazzet3JqbmZhxfvcKuNQq2b0FjZQX8wnrqMlNDmTzIxNPHB92CgnXZi4iIiIiIiIgchxewEhERERERuQArfzWbPHky3n77bWRkZDhknL179+LAAfnNbO655x6H7G2thIQEXHzxxdi6datqT3Jyss1BJsDJMJN169bh5ptvRnFxsWa/EAJbt249NVNYWBiGDRuGhIQExMbGIiAgAP7+/hBCoL6+HidOnEBOTg4yMjKQlpaG+vp6m2d1F6mplt3oaPHixVi8eLGDp/ldUlISg0yIdOT+Z30RERF1AfWlJSg7dNDudbLWa9/9mYjIHdTkZgNCSHtCE9VDSEISEuETECg9vjR1v02zuauSA/vQWidPKJZJ+derEBpfMyItjZUVqEw/Iu3pc+EoAIBPQCBCJM8DAFCWZv/rL3KM1oZ6NFVWSHuCYuNtXj+oj3YIitaFqETkeFpBJuGDzjrtInkPT0/EnHu+9JjCndt0me1/mVr+n737Do+jPNcGfs+qWL33YjXbcrflblxwxXQHQg1J+JJACkngJAFCckgggZyEAzmhhGqaKQZjY0wzuPci27JsWZYsWb3XlVYraaXV7s73B5GRLe37zOyM+vO7Lq7L1jzzzouknZ0Z73O/naghGsWTV17Vq5E7KCkZYwIDhfvVnM7QPL/LmasqyBr/6BjF47mPGQOf8AjNx6Sc/3yLy/t2tbWi9qz4H+/7w/4nnK8mQjm3+QMdZ9JbQ34u7FarsCZy2rehFmMXLRHW2q1WVBOvWza4GvPPw9HVJaxREghIBZkA34SZjCbFu+nnsskr11z8c+KyVcLaxrxctFRqP2/aOjpQn5MtrImeOdvl8f2jxUEmjq4utDfUuzz+cFJz5hTsnZ2axpAdDs1hKD211dcJt/uER/KKzowxxhhjjDHGLlJyj8iBGoPDIHG7AGOMMcYYY4wNPnX3xO7u7njiiSf6aS7fBH+I+Pn5Ye3atf12fLXuuusu4fZPP/0URqNR0zHmzJmDzMxMrFixQvW+jY2N2Lt3L9588008/vjjePDBB/GLX/wC9913Hx5++GE8+eSTeO+995Cenu5SiMny5ctV78MYY0MBP5lkjDHGRoDifbvImhteXQ/fiEjxOHt26jUlxhgb0pqKCsiaoKQUp9skgwERU6cL96/N4iCTnsoO7dO0v/FCHuqyB75xlI0sFccOkzXxCxdf/HPPxtu+DEYzM1PGVF5G1gSOpcNInPEKCoanf4CwRo+Ge8aY6xx2O6ozxQEeMbN7h5bEzl0g3Ke5pIhs6nVFbdZp2Do6hDUJi6/s9TVJksgG8pozpzTNrS8t1ZXiAkmCX5TyIBOADj4xVxHHJDTk5ZKBZpTyY4c07a9WQ/55MpBHpOLYEfL3Sgsl9zyR02Ze/HP8QnGQCQCUHT6gaU6sf9UqCPKj7pUBcXBot+aSIkVzGimo17pXUNAl71vJy8VBJgBQsn+35nnVnTtLhtdEp81xeXz/GHGQCQC0jJLr6op05ytHdbv9420wuLsLa/K3fabXlNBWVyvc7hshDiFjjDHGGGOMMTa6GPgj6UMWB5EyxhhjjDHG2PB02223YebMmXShSlarFRs2bBDW3HTTTfDx8dH92K66/fbb4eHh4XR7Z2cn+f+kRGRkJHbu3IlnnnkG/v7ihW8HwpQpU7Br1y6sW7dusKfCGGMu4afGjDHG2AhABZC4jRmD5JVXIWn5amFdVcZxWJq0JVAyNhKZKsqQ9f7bOP/ZFpjKSwd7OkwHVJCJu5c32UjZsyGvL3XZWZBlWfXcRqrSQ/s1j1G4a7sOM2GjWTkRZGLw8ED0nG+bA6kmTGNBPqztbbrMjenLVFZC1gTGux5kIkkSAuLihTUtlaOj4VKthrxc7HzkN/jyV/dg72N/QEtl+WBPiY1QjXm56GoTr1zQV5BJ3PwryLFrTusfDFJxnG5ejp3X99yiZswS7lefkw1bZ6dL83KGChXxjYiEm+AfjvviHxMnPmZ1larxLpf3+Sea9geAiqN0KJqetIZ62DosmoJQKFSom09YOPx63Ff5RkQiZHyqcJ+yIwd1mRvrH3XZ4iAT75BQ+EVFk+P4RkbB3ctbWNM0yoJM6oiQmISlKy4JsIidtxDu3uIPDBXv1R5aXXniGFkTNVP8PiSiJMikVeP5f7igvtfBSSmIX7AI8VeIQ6HKDu1Hh6lZlzm11xNBJuHi4HTGGGOMMcYYY6MLh2UMXQaJ2wUYY4wxxhhjbNC5cN8sSRL+53/+R/epbN26FUajuHfsrrvu0v24WoSGhmLNmjXCmrfeekuXYxkMBvzud7/D+fPn8YMf/ABubm66jKvG5MmT8cEHHyArKwsrV64c8OMzxphe+MkkY4wxNszZu7pQemCvsCZ+4WJ4ePsgaYU4yER2OFB6YI+e02NsWGsqLsSWH96GdfOnYcfDD+CLX/wIb145F0effZoDKoa5puJC4fbgpBRIBvHtUuS0GcLtnS0mmEqLVc9tJOqy0A2U49ZchzGBgcKaol1f6zktl8gOBxw222BPg7mo/Ogh4faoGbPg6eN78e+RU8Wvc8gy6s9l6zE1pjNTmTh4zG3MGPhFRmk6RgDVcM9BJr2cevNVvL1iAc68+yZyP9mEjNdfwhtLZiPj9ZcHe2psBFIS3hAze26vr0VOT7ukUbwv1aczXJ6XM5XpR4XbA8cmOA3ai0qbLdzXbrWiPlff96vWanGQiZLG9F77EEGCVHgK5cJXnwu3jwkMROoNNwlrKo4fhcNu1zQPNcqPaAsyAUA+M9Ki9uxp4fbI6TN7NS+MJRrwa05nwEqEELHBU3/urHB7xNTpihpWJElCUFKysKa5ePQEmXSaW9BcIn5+EDPr0vcsdy8v8vVUenA/7F1dmuZWvGeHcLt/bDx8I1wPs/AKCiYDWbSe/4cDh92OyhPpwprYeQsBABOuvVE8VlcXCnfq8/ykra5OuN03PEKX4zDGGGOMMcYYGxk4yGTo4p8NY4wxxtjII4Gv8RgbLa655hosWSL+fIBaVOBHVFQUVq1apesx9UCFq5w6dQpZWeKFZNSIiYnBO++8g4KCAjzwwAMICAjQbey+eHh44Oabb8bOnTuRnZ2NO+64Awaip4UxxoY68SeyGWOMMTbkVWUcR2eLSViTvOIqAEDi0uWQ3NwgC5puinbvxMS1t+g6R8aGmy5LO9Kf/ydOvPI87FbrJdvsnZ04/PSTCEpMwqTv8GtluGoqIoJMklPIMSKIIBMAqDt3FkGJ4uas0aDqxDHYOzuFNak33ATvkBCc/eBdpzU1p0+hra5WU5OUqyrSj+Dkay+ieO9O2Ds74R0SisCERATGJyAkZTySV65BNNFEzAaXxWhEQ+45YU38wsWX/D2CCjLBNyunx86dr2luTH9UkElg3FgysIriHysOMmmpLNc0/khTlXEC+/7yx15ft3d2Yu9jj6C1thpL//iXQfsgpbW9Dee3bkZLeRn8Y2KRsvoa+EVFD8pcmD6qMk4It3uHhiEwIanX1z28vRE+aQpqz55xum/NmVOa59eT7HCg8uQxYU3svCucbouaMYs8Rs3pU4ieqd+1SgvRVO4f7UKQCRF+YibCU0SsrWY0nM8R1oy/+gbEzJmHvM8/cT6OuQX1OWcROW2my3NRSnY4UHH0sLBmwnVr0ZCXC2NBvtOakoN7seQPj+k9Pdi7ulCfIw7I6SsUbuyipTi9/nWn+zhsNlSeOIakZUPvwxCjnexwoE5BkIlSwYlJwuvz5pLRE2RST9ynAH1/bxOXr0LR7u1O97GaW1B96gTi5jt/DxHpNLegIv2IsCZ2zjyXxu4mSRICYmJhLLzgtKalauQHBDbknoPV3CKsiZ3/TZDJuKuvx84//BYQhCxf2PYZptxyh+Z5tdXXCrcPxvMZxhhjjDHGGGNDF4dlDG/cCMsYY4wxxhhjQ9ff//53LF68mC5UwOFwYNGiRZg/3/lnn6dNmwY3NzddjqentWvX4vHHHxcuSmw2m3U/bmJiIp599ln84x//wPbt27Fp0ybs2LED9fX1mscOCwvD0qVLceONN2Lt2rUICgrSYcaMMTZ0cJAJY4wxNswV791J1iQtXw0AGBMQiNh5C1Fx9JDz8fbtguxwaG7sZGy4qso4gc9/8SOYiebjfX/5IyZctxZuHh4DNDOmp6aiAuH24ORx5BghKePh7u0Dm6XdaU1jfh5wnerpjTilh/eTNWMXLYW7t7cwyAQAivbuxLTbv6/X1IRkWUbZof04+tzTvd47LcZGWIyNqMnMAAAc/ddTmHLr97D6H/+Cu5fXgMyPqVORLm4EBoD4hYsu+bt3SAj8Y+OF7wm1Z09rnhvTn6msRLg9YGyC5mMEEEEm5sqR33CpxuFn/gaHzeZ0+4mXnoOlsRFX/e9zMLgP7CPL6swMbLn7NlgaGy5+bfefHsa0O36ABfc/SIYrsKGpKuO4cHvM7HlOP1QdNXO2OMgkMwOyLOv2oeyGvFx0msQBpXH/aV7ui19kFPyjY4VBHzWn9Q1fMRNBJgEx4nNkX/yJfTqam9BlaYeHt4/qsRvz88iaCdetVRRoWH7k0IAEmTTk5cLSZBTWxF+xBL6RUcIgk9qs07AYjfAOCdF1fo3558mwwsjpvb9PcQvpD1XUnM7kIJMhyFRWAmur+MMeEVOUB5lQoZ9NJcWKxxruqIAYAAifPLXX15KXr8IeYr/iPTtdDjIp2b9HeP0GAEn/CdDWwi86RhhkQr3njAQVJ8SBZgAQN++bawHf8AjEzb8CFcec3+OW7N8Na1srPH39XJ6TLMtoq6sT1viGR7g8PmOMMcYYY4yxkccA/qzZUMU/G8YYY4yx0YnDBhnTrqSkRL/BNLwkFy1aJAzvUMNgMODRRx/VZayB5u3tjcce039BJ6W8vLywdu1arF27FgBQUFCAo0eP4uzZsygpKUFJSQlqamrQ3t6O9vZ2dHZ2wsPDA15eXggICEB0dDRiY2MxYcIETJ06FWlpaZg8efKoPV8fOuS8t5ENfytWrIC74PPgs2bRC/ixkYGDTBhjjLFhrni3OMgkKDH5kkac5BWrhUEmlsYG1GRl6rpSM2PDRc2ZU/jothtg67CQtW11tSjeuxPjrrp2AGbG9NRpbkFbnXhF2eAkuoHR4OaG0PETUJvlPMSg8cJ51fMbicoOiYNMQlMnwTciEglLlsHN0xN2q9VpbdGurwckyMRcVYmv/uvnKDt8QPE+5zZtgKXJiLXr3oWbp2c/zo65oiL9qHC7wd0dMXN6p4tHTpshDDKpEzS6s8FjKi8Vbg+M1yPIJF643dJkhLW9DZ4+vpqPNdzV52Sj9MBesi5743tob2zAja+uH7BQqNaaamz54a2wGBsv+bqjqwtn3n0T2R+9jxnf/xHm3/8gfMPCB2ROTDuL0UgG18XMnut0W1TabJx5902n2zuam2AqLSab8JWqSD9C1sTNEzehR81MEweZZGWqnpcI1VTuSgCQf3QMfdzKSoSMG6967Prz58ia6LQ58AoOhl9UNFprqp3WlR87jDk/+5XqOahVfuQgWRN/xRIExMQh881XnRfJMsoO70fqDTfpODugNpu+BuoryMQnJBRhk6agIdf5z6Q+hw51YL3JsozG/G/uQQPi4jUFGPSl5gx9HomYql+QibmqAraOjlERFFl/Lku4PSB+LLwCe6+4E5SYjKDEZDSXFDndt3jfLiz5g2sf4inatV1cIElIWrHapbF7ooKsRkOQSSVxLeAbEXnJa2bCtTcKg0xsHR0o3rNT07nf2momn5H6RkS6PD5jjDHGGGOMsZFntDbdDAf8s2GMMcYYY4yxoYDvzUaacePGYdw4egFdxkajFStWYMWKFYM9DTYEcMQyY4wxNoyZq6tQn5strLn8w+RKVsks3iMOR2FspDr4j78qCjHplv3he/04G9ZfmooLyZrgZGUPlEInTBJub8jnIJMOU7Mw7AUAEhZfCQDw9PVDPLFCe8n+vbARK79rZSwswLvXXKkqxKRb0a6v8cUvfwx7V1c/zIxpUXtW/HsYOT2tz2bPyKkzhPs15OX2++8kU0eWZZjKxEEmQQmJmo/jHytuuARGR9OlEidfe1FxbdGur7Hzkd/042wute+JR3uFmPRk7+zEqTdewfpVV6DyRPqAzYtpU3XqBFkTM3ue021RM+ik9+rTp1TNSaTyuDhsyycsHMEp4uvTKCKMtLmkCLLDoXpufek0t8BqbhHW+CkIJbmckvATUViLSMP5XOF238goeIeEQJIkxC1YJKytPH5Et++lSPlRcZCJT1g4QsenIv6KxTAIVi4AgNKD+3Sc2Teoa3zv4BCn4QTU9VXdOQ4yUavs8AG8tWwe3l6xAG+vWIBX507GseefgcNm0+0Y1ZkZwu3u3j6KQkG7BVNhULJMhtONFHXZ4iCTiCnOA2KSlq8ix6bCXPvisNtRtGeHsCZm9jz4hISqHvty1PnfXF2l+RhDmSzLqCCuBWLnLrik4Wj8NTeQ4xZSQTSEtro6ssY3nINMGGOMMcYYY4x9i8Myhi6DgdsFGGOMMcYYY2zQ8W0zY4yxUYifTDLGGGPDWPFeOnAk+bLgkrDUSeQql0W7tX3ImbHhqLW2BqUH9qrap3DX1y41g7DB1awkyIRoFO0WljpRuL2p8IKujWPDUfnRQ2Sj59j/BJkAQPKqq4W1XW2tqEh3vuqwVuaqSmy68ztob6h3eYwL2z7HVw/8DA67XceZMS1kh4NsDoydt6DPr0dMEzfaOmw2NOaLm6PZwLIYG9HV3iasCYxP0HycACVBJpXlmo8z3LXWVCN36yZV+5zbtAGNBfn9NKNvlR3aj/NbNyuqba+vwxe/+BGsreZ+nhXTAxVeJbm5IXJGmtPtoeNT4eHjKxyjRqcgE1mWUZFONC/PW0B+ADyMCNizd3aitaZa9fz6oiSkKYB47tAXv8hogPj/dDUgquH8OeH28ImTL/45nggy6WhuRn2ueDytZIcD5UfF17zxCxdDkiR4+vkjetZcYW3pQXX3ukpQQSaR02c6/b0NnzxVuG9zaTGsba0uz220qUg/gi0/vBXGHu+dnSYTDj31BDbd8R20NzbocpzqzJPC7VHTZ8Lg5qZ4vKAkIsgEQHNxkeLxhit7Vxca8sT3ExFTpjndlrR8tdNt3Yr37VY9r5rTp2AhfndSVq1RPW5fAoggk9aaqhF9f20qLUZbbY2wJm7+FZf83T8mFtFpc4T71JzRdq3SVk8/8/SJiNB0DMYYY4wxxhhjI4vEHVlDFv9sGGOMMcYYY4wxxhhjg4GDTBhjjLFhrJhYFdPdy7vXSsKSJJErddZmnYaVaP5kbKShXk99ke125GzZ2A+zYf3JWCQOMvEKCoJ3cIiisULHi4NM7FYrmkuKFc9tJCo7tF+4XTIYLmkWTV55laD6G0W71L9elbAYjdh81826BA+c//RjbH/w15BlWYeZMa2aS4rJ8IHIaTP7/vpU56ufd6s9e8alebH+YSotIWsCx2oPMvGLjIZErF7WUlmh+TjD3am3XoWjq0v1fvlffNoPs/mW3WrFrkcfUrWPuboSWRve6acZMT3VEefl8ElT4CkIKjEQQScAUHM6w6W5Xc5UXorWmiphTezcheQ4gQmJZE1zqT7XpUrCRPyJpvS+uHl6wjdc3BBtrhZ/r5yhQgJCU78NMolbuJgcr+JY/wXrAUB97jl0NDcJa+J7zDNhyTJhramsFM0l+gVCOGw21OdkC2ucXVsB4lAGAIAsoyE3x5WpjTqd5hZ8+eufwtbR0ef28qMH8e7VV6ImK1PTcexdXajLFp9bo9JmqxrTPzoWbmPGCGuadPy9HaqMBfmwW63CmgjBPUncwkXk99GV0OqiXV+TNVQQqVJ+0eL3DNluH9FBwhXHj5E1sfN7XwukXHWNcB9jQb6mZ/xKvufU+zZjjDHGGGOMsdHFINEfSZfB/34+GKiwdMYYY4wxxhhjA4HvzRhjjI0+HGTCWB8kSYqWJOkeSZLelSQpQ5KkekmSOiRJ6pQkqUGSpCxJkjZKkvQrSZKSBnu+SkmS5DWI//H5hjGd2a1WlB4UN4fHX7EEHt7evb5ONYnLDgfqz53VND/GHDYbMta9hPWrF+OlGeOw6Y61yN/22WBPyylXmjoA4OyH73FQwTDTVFQg3B6cNE7xhzhCU8VBJgDQkC9umtTCYbej7NB+ZLz+MnI+3ohOc0u/HctVpUSQSdSMWRgTEHjx70EJSQidIP6+Fu76SvfXnbXVjI9/eAsa88/rNua5j95H9kfv6zYec10t0XQJAJFTZ/T5dd/IKPgQzVkcZDK0mMpLyJrAsYmaj2Nwd4dfVIywZrQHmVjbWnHm3Tdd2ldJ86wWGW+8DOOFPNX7ZW1Yz9d+wwB1Xo6c7jxgoVv0zFnkMewuhPRcrjL9KFkT10fz8uWUnNd0CzKpFgeZSG5u8I2Mcmlsv2jxedVcpf682tZQj/aGemFN+MRvg0xCUsaT7/0V6UdUz0ON8qOHyJr4K5Zc/HPCkuVkfcmBvZrm1FNzaQlsHRZhjeh1Fj55KnmMunNZquc1Gu1/4k9kEKO5qgIffGcNcrdudvk49bnZTsNSukWnzVE1pmQwkOcuPQN4hqo6Bc9gReE/nj6+iJt/hXD/wh3b0FZfp2pehbvEz8n8Y+MR1uPcqYWS8CslIVrDVeVx8XuKp58/wif1Pm9GzyTCg2RZ0zP+duJ3xtM/AB7ePi6PzxhjjDHGGGNs5OGwjKHLwO0CjDHGGGOMMTb4+LaZMcbYKMRPJhnrQZKkNEmSNgMoB7AOwPcBzAIQBmAMAE8AoQCmAbgNwAsACiVJ2i5J0pWDM2tVLIP439IB+P9jbFSpPHEM1lazsMZZYEnsPLoJquaMtpVa2ejW2WLCh9+9Fnsf/wPqc86ivaEepQf34bN7f4DMt9cN9vR6sXV2ouTAPpf2NV7IQ/Wpk/pOiPUrOsgkRfFYgXFj4U40bTTmq2+SVsJcXYV31izBR7ffiL2PPYJt9/8U6xZMR9aG9f1yPFeYq6vIJvGxi3tfRievWiPcx1RaAmPhBU1z60mWZXz5q3tRk5mh25jdDv3jr5pWQGb6oFaP9/DxRXBy3699SZIQOa3vkJNvx+dG26HEVFYq3D4mMBBegUG6HCsgNk643TzKg0yyN76PTpPJpX2rT2eobrhVylxViaP/95RL+xov5KHq5HGdZ8T01N7YQIZdOAuv6imKaA62dVjQmKc9sK6CaF728PVDxJTp5Dge3t7wi4oW1jSX6BRkQjST+0VGw+Dm5tLYAUQzu7m6SvWYDbnnyJqwiZMu/lmSJMQvWCQeU4efvQgVZOITHoGQcRMu/j06bTY8/QOE+5Qe3KfH1ADQ91SAOHjBOzgE/jHi99D6nGzV89KLLMuwNBnRYWoe0uFVJQf2IOv9txXV2js78dUDP0PFcTo8qS9KnnuoDTIBgODEZOF2DjIBvIKCyNdL0rJVwu12qxVn3ntL8ZzMVZWozxHPK2XVGt2ak6hz/zdzGrnX1RVEqFnMnHl9vq9GEPepAFCbddrlebXV1Qq3+xKhX4wxxhhjjDHGRh+JO7KGLA6ZYYwxxhgbnfganTHGGGOMDTYOMmEMgCRJYyRJeg7ACQDfBaDmk/YSgKsA7JMk6T1JksSfGGeMMZ0oaUBJWt73h9i9g0MQmJAo3LeWg0yYizpbTNj0vZtQdTK9z+27H30I1f0QFqBFZfoRdLW1urx/9sZ3dZwN60+yLKOpqFBYE5w8TvF4ksGA0PEThDWN+fo3OXaaW/DRrdf3asrsaG7Cjofux/aHfk2ulj0Qyo8cJGsS+ggySVl1NblfEbE6tBrnP/0YhTu/UlYsSQgZn0queN2tra4WmW+8omF2TA9U0EjElGmQDM4fkVAN7w15uUO6yXW0MZWLg0wC4xN0O5Y/EWTSUlmu27GGG4fdjozXX3J9AFlG8Z6d+k2oh31//W90aQiZGkqhYaw3KrwKACKnzSRrombOImtqzpxSNCeRSqp5efZcGNzdFY0VlJAk3N5cOjBBJv4KGtKd70sERFWLj90XMnREkhA6YeIlX4qeNVe4S3NJEexdXarnooTscKDimDjIJH7h4ks+eG5wd8fYK5YI9yk/cgAOu12XOVJBJm6enggg3m/DJ08Vbq8bwCCThrxc7HviUWxYexVeWzANz6ZE4sWpSfj35AT8e0oC0l/4J2ydnQM2HyU6zS3Y/rtfq9rHYbNh2/0/del3l3qO4xsZ5dJrP4gIMmkaBUEm9efE9yrhk6eRjSbj1lxLHufMO2/AbrUqmlPRbvp+O3mlOIBUjTEBgfD08xfWuBJkNRy01deR59Q4J6Hk3sEhCIgfK9y3RkuQCREq6BsR6fLYjDHGGGOMMcZGJg7LGLoMgn8LZ4wxxhhjwxOHlDA2HPHrljHG2OjDTybZqCdJUgSA/QDuh7oAk77cBeC4JEl9L+U9urneHc4Y6xO1Om9IynhhE1PU9DTh/jVnXf+QMxu9Os0t2Py9m1EjanCRZex97JEh1fBdtHuHpv3Pf7oFVg3NsGzgdDQ1obPFJKwJTlZ3KRc6fqJwe2N+nqrxlNj96MNoKnYeyHJ2wzv48JZr0VI5uCsWU8297l5eiJkzv9fXY2bPg1dQkHDfwl1fa5pbN7vVikNP/VVRbcKSZfh5xnn8eN9x3LHlK9y96wi8g0PI/Y6//Bw6mpu0TpW5SJZl1J4VN7VTK1lTjbZdba1ob2xQPTfWP5pLS4TbA8fqF2QSQASZjOSV4ymlB/fCRPwsKIW7FIZMqWAsuIC8zz/RNEbeZ1vI6wk2eKhzvuTmhrBJU8hxAmLj4RMWLqypPq0toLGtoR7GwgvCmrh5ysLTACBwwIJMxOc2LUEmftExmo7dl4bz54Tbg3MmXyMAACAASURBVBOT4eHtc8nXQsenCvdx2Gxo7qeAhfqcbHQ0Nwtr4hcu7vW1hKXLhft0NDejVkNDe09U031QYjIMbuJH7RHE9VV97jndgldEzn+2Be9duwwnX3kBVSfT0VJeBnuP0JJOkwkH//FX7PnTQ/0+FzX2P/GoS6+HlvIynN+6WfV+1adOCLdHp81xqVElKFF83mopL1McvjEcybKMOiLIJGLKdHKcoMRkJF65QljTVleLvC+2KppXIREc6u7ljXgiPEkt6r2DCtFyhSzLKNy1HQf+5zHsf/JPyN/22YCHFlWeOEbWxAqCVKlwtloNz/jb6muF233DI1wemzHGGGOMMcbYyGTgj6QPWdzkyhhjjDHGGGP9TElrDN+aMcYYG4X4qTEb1SRJCgGwE0Dv7knXpQLYI0mSeBm00aUAgLbODsbYJaztbaghGqaoBpbI6eIPORsL8mFtNaueGxu9ukNMqjNPkrVVGcdx/tOPB2BWymgNRLC2mnHhy890mg3rTy1V5WQN1Uh1udBUcZCJsTAfDptN1Zgi5z/djJzNH5B1NZkZePeaKzU1rWhlLMgXbo+ZPQ/uXl69vm5wd0fislXCfatOHNMlQOjMe2/BVFZK1kXPmou1b7wPv8ioi18LnzQFt3y4FWMCA4X7dppMOP7Ss5rnylxjrqqExdgorImYKm4ODEoSrxQPAM3FI3+1+OHCVC5+TQeOTdTtWP4xVJBJJWSHQ7fjDSelB/ZqHqNk/17dm0m1hpgAgK3DgtxPNukwG9YfqCCT0PGp8PD2JseRJAlRM2cLa2oyxaFtlMrjR8ma2PkLFY8nCjMFAJNeQSY11cLt/kQYiUgA0cjeaTLB2qYuL7nhfK5we9jESb2+FjJ+Ajlu4wX9AwsBOrgWQJ8BAglLxM+BAKD8GD22EkYiyCQ4eRw5RviUacLtNks7mkv0+Z11prWmGjseuh+2jg6yNuv99Sjet6tf56NUVcYJZL2/3uX90//9f6quTzqam8jwmug08fnSmWDiOlt2ONBSQd/HD1fmqgoyuIi6V+mW9uOfkzWn3nyFrOmytKPs0H5hTcKSZYreS9Wg3jv0Dgi0dXTgk7tvxyd334bjLz6LEy8/j8/u/QFenTMJB/7+OHlPoZfKdPG1gMHDA1EzZjndHkU947+Q5/Kzk/b6OuF234hIl8ZljDHGGGOMMTZyuRJ0ywaGQeJ2AcYYY4yxEYcvvxljjDHG2DDATybZqCVJkgHAhwBEnwLNAPDL/9SEAAgCMBnAjwGIPsk5FsCnkiT17socnd6QZVlJtiBjTKGqk+lkUzy1KmbU9DTxQWQZtdniFUEZ62nHQ/eTK/T2dODJP6PL0t6PM1LGWFhArqSdtGI1OU7uVm5mHQ7MlXTjS0Ccujy6sPHiIBO71Yrm0hJVYzrTUlmOnY/8VnG9pbEBm+/6LjpbTLocXy1jobjZLXyS81XYU1ZdLdzXYbMpav4VsbaacfTZ/yXrQlMn4eZ3PoKnr1+vbZFTZ2DFX54ixzj1xiswV1e5NE+mDbXCOfDNz1GEagwHgGadmsOZNg6bjTzXB8Yn6HY86j3DbrWivaFet+MNJ3XEvYRfVDSu/NOTwpqutlZUpB/Wc1oo2LmNrFn5t2fImrMfvKPHdEYN2eFA1cnjKDt8oN/fD+uyxUEmEcQ5v6doIsikIS9HU7Ba2eEDwu0GDw9Ep81RPB4VyNfR3IyO5ibF4znTSvwM/aPFYSQifgr2VfM7JDscaMijgkym9PpaQEwc3L19hPsZ+ynIpOzIQeF234hIhKSM7/X14OQU+MfGC/elzs1KNRUVCrcHJ6eQY0RMFgeZAMqu47TIfHudqhDf4/8eGuGEGa+/pGl/Y0E+Lnz1ueL6aiJMGYCqc1VPQYkKAgNH8HV23bmzZE0EEfrTLXnFavL7WZOZgepT4gDi3C0fwdZhER9r1RpFc1LDnwiyMldV6nq8g089gaLd23t93WJsxPF//wvrFs7AF/f9GO1EKKZWVRnHhdujZswShsZQYeWyw4H6c9kuza2NCjIJj3BpXMYYY4wxxhhjIxcHmQxdHGTCGGOMMcYYY0MB3zczxhgbffjJJBvNHgbgrCu5HcCPZVmeI8vyS7Isn5VluUmWZZMsy7myLL8ly/IyANcDaHAyxkwAdOfLAJJlWeqv/wDkOzmsDcDbA/d/ydjoUHGUbuaLW7BIuD1iGt28VZt1WvGc2OhWemCv6tXtzdWVOPHKC/00I+X6alq43Lz7/gtRxOrCVRknVK1orJUsy7jw9RfY+/gfsePhB3Dhq88H9PjDVQvR3O7u5QXvkFBVY4amioNMAKAxX9w8qYTDbse2X/9UdSiJpbEBWRtcX63bVV0WC1oqxStnB6c4X6k94coV5DGo5l/KyddehKXR2eX8N7xDQnHL+1vgHRzitGbSzbchNHWScBxbRweOKQhNYfqrPStuaHfz9EToBPHreIx/AHzCwoU1VCgWGxjm6koy8C9wbKJuxwuIjSNrqPeekUiWZbIxd8J1azH+muvJsYp20ddqSpmrq1B7JlNYM/6a65H2/+5F7LyFwrras2dQe5bvl5QoP3oIry2Yjg1rV+Oj227Aq3MmYc+fH4Gto0P3Y3WYmtFcIm54j1RwL9wtKm2WcLvscGgKhig9sFd8/OlpwublyykK3iorUTxeXzrNLWTwg190jMvjU43sANCqopndVF6KLiJsJqyP6zjJYEDouN5hIT01Fjh7HOo62eEgA5ziFy7usyFAkiTEzVsg3FePIBNrWytaa8RhMiHJzq/zuwUlJsHDx1dYU5/jWvO9Eg67Hec2faBqn/KjB1GdSYd69CeHzYaSfbs1j5P+wj+hNHuc+n+WDAZEzSACk50IiI2Hwd1dWNM0gNfZssOh+PuiB+p6yc3TEyHjJigaSzIYMOvHPyPrMt542ek22eHAyddeJMdIXtkfQSbi62pztX5BJuaqSmS++Yq4SJZx/tOP8c7qRbAYjbod+5JDKAjbipsvviaNmCYOMgGAWiLkrS+yw0EGmfhERKoelzHGGGOMMcbYyMZhGUMXh8wwxhhjjDHG2BDAt2aMMcZGIX5qzEYlSZISAPzJyeY2AGtkWX6LGkeW5S8BLAZQ66TkF5IkibueRwBJkq4E4OzTtF/IslwzkPNhbDQoP3pIuD1s4mT4EI34XoFB5CqdtVniJj/Gup15j3zb7NPxF5/VfUVVtaggkzEBgYiZMx9Tb7tLWGc1twzYKsEWoxEf33UzPv3JXchY9yKy3n8bn97zfbx3/QpNK8IPpPbGBnRZ2gf8uFSwhn9MnOoPcATGJ8DdS9xg2ph/XtWYfTn56guoSD/i0r7nP9ui+fhqNRcXAkQDmKghyyckFOHEKu1agkzaGuoVhSkt/M3v4U804xrc3LDk985uL76V9cE75Or1I11zSRGaigthbWsdsGPWEUEmYRMnw83DgxyHag7nIJOhwVRWStYEDXiQifi9ZyQyV1Wgo7lJWBMxdQaCEpLIIKHCnV/p1lBcuPMrsmbyLXcCAKZ/726yNuv9gQ8KG25qzpzClrtvh/my18GpN17Gxz+4BXarVdfjUQ3hgMogk+niIBMAqHEx1KClshxNRQXCmrGLr1Q1pqIgEyLohWKuFgdYAIB/NB1G4oxfZDRAXI+3qGhmpxrEASBs0pQ+vx4yPlW4n/FCnuJ5KGUqK0GnSRxcGL9wsdNtEVOnC/c1Fl7QfM/YXExf8wQrCDKRDAaEO/ned+vPIJOyQ/vIQJa+HH/p2X6YjXK1WafJcMuombPgFRQsHufsGZTsVxaIUn3qpHB7aOokePr5KxrrcgZ3dwTGJwhrlPzOadWQl4uvfnMfXp6ViudT4/D+DatQduRgvx+3/pw4XCgsdZKie5VuU277HvmzyP9iq9NzefHeXTASIU2R02eS98iuoIKsWmtrYO/q0uVYp9e/ToYfXjxuTTUOPfVXXY57OVNFGRm2FTldHBLkExIK/9h4YY0rYeWWJiNku11Y4xvOQSaMMcYYY4wxxi7FYRlDF4fMMMYYY4wxxtjg47tmxhhjo5F4mTPGRq6/APBxsu0XsiyLEwJ6kGU5T5Kk2wHsQe9wIAOApwCscmmWw8c9gm2vD9gsGBsluiztqD4tbpQSNbX0FDUjTdh0W0OsVs4YAFjb21C0Z6dL+9os7Tj497/g2hde03lWylhbzWQwROKVK+Dm4YGxVywlx6vLzkJwUope0+tTW0M9Nt2xFg2553ptqz2TiV1/+B2ufY5YVXaQyLKM7I/ex+H/fRKtNdUwuLsjfuFirP7Hv8hgJb2YKyuE25U0pF9OMhgQOn4CagVhCQ0ag0w6W0xIf+H/XN6/9kwmmstKdG3epyhZoT4kRbzK/dhFS1Gf47whue7sGXQ0N5FNen059tzT6CLCNALHJmDG93+kaLyUq65F9Ky5qD51wmmNbLfj2PPP4Jpnna+APVJVZZzAvr/8EVUZxwEAnn7+WPib32PWT36uqjHPFXXZ4uZAquG3W1Bi8sX590VrYzjTh6mcDjIJiBM3+qkxJiAQnv4BsJpbnNZQ7z0jEfW6A4DI/7z2UlZfLQz8MpWVovFCHsKIwBMlqCATdy8vJCxdDgCYcP1a7Pnz74XN4rmfbMKyx/4GD29nj5hGN4fdju2/+7XT99vyIwex/Xe/wjXPv6rbh5up8CoAiJgiDkrryTskBEGJScJzPHV/7kzpwX1kTcKSZarG9AoOJs9JJo3hi0qCH7Q0uLt5eMA3IhJttc5zkVurlIdP9HXfdMnxxoxBsJN7kVBB6B4ANBZcgOxwQDLo9wFwJWE8sfOvcLotYgpxXSPLaMjNQczsuWqndpGRCOABlAWZAED45KnC6ysl3w9XZX+0waX9Lnz1OZqKChGc3L/3/s6UHtxL1qz554so3P4lDv3vk8K69Of/iaRl4n+6kGUZNZniIJPoNG1Z7oGJSWgqdh742J+BgaaKMhx55u84t/mDS4I4q0+dwEe3Xo9rX1iHyTff1m/HryWumcJVvGcBwBj/AEy9/S6cesP5cyGHzYZdf/wdvvPmhl7vvydfpcM+Z/zgx6rmpBQVZAJZRltdDQKI0A5Kl6UdWe+/rWqfc5s/wJV/esLlwB5nGvPoZ0VhEyeTNVHTZ/QKjeup9qz6IJO2OmfrN3zLNyJC9biMMcYYY4wxxkY2iVuyhiz+2TDGGGOMjU58HcjYQJJBR5Xwa5LpJy8vDwcP9v8iPXoIDAzErbfeOtjT0E1GRgYyM4dHv2VsbCyuueaawZ4GG+U4yISNOpIkxQP4npPN22VZflftmLIs75ck6XUAP+1j80pJkubKsuy8o3EYkyQpEMB3nWyuBPD1AE6HsVGh6uRxOIjVJ5UGmUROT8P5Tz92ur2pqACd5haM8Q9QNUc2uhTv2Qmbpd3l/XM/3Yylj/4VfpFROs5KmZIDe8nXU/LKNQCA4OQUePj4CldKrc0+g9QbbtJ1jj211dXio9tvFDb75mz+AHN/9iuET57ab/NwhcNmw46HH0D2xvcu+VrpwX145+orcesHWzU3PynRQjST+7sQZAIAoRMmCYNMGvO1rdZesOMrctVtyoVtn2Huz+/XNIYaTYXiBkdPP3/4RohX7x27aCky1r3odLvscKAi/QjGrblO1dzM1VU48+6bZN2ihx6Fm6enojElScLSPz6OjbeI55KzZSMW/vb3AxoqM9iMhQXY8sNb0dHcdPFr1lYz9j/xKCrSj+CGl9+Cu5dXvxy7vbEB5upKYU3k1BmKxgpKEgcu9WeDJVPOVCYOMvGLitb99y0gNg4N53Ocbqfee0YiqvHczdMTIeNTAQDJq67G8RefFdYX7fpac5CJta0VZYf2C2vGLl4GTx9fAICHtw8m3XQrTq93ns9qbTWj7OB+pFzFD/n7cnbDetTnZgtrcrZsRED8WCx++FFdjlmbLQ4yCU4ep7oJOWrmbGGQSeXxoy6FWZQeEIcRePj4Imb2PFVjSpKEoIREYZhQs8YgE3O1OEREMhjIazyKf3SMMMjEXK38vNqQlyvcHjpuAgzuff8zSfd5yhmbpR0tVRUIjBureD4U6vzp7uUtDAMkg0wA1GWf0RRkQl7n+wfAJyxc0VjUfWtrTRUsRiO8Q0IUz0+JDlMzCr7+wrWdZRknX30Bq58Sv3f1l9KD4vcy/9h4hKVOgn90DI6//Lww2Kgi/Qgq0o8gThCOYyothqXJKDxmdNoc8aQJwYnJKBFs74/rbHtXFw4/8zdkvPYi7Far07q9f/49klesdik8k9JhakZLeZmwJkLhvUpPaf/vp8IgEwAo3LENWe+/fUlwZ112FsoOHxDu5x0ahsk33656Tkr4RxNBJgDMVZWag0xyt3xE/k5fztbRgcKdX2PSTfp+qKYhz/k9BPDNNbOzsK2eIqfNxIWvnJ/TGvPPo8tigYe3t+K5tdUrCDIJ1/Z+zxhjjDHGGGNs5DFI+oU+M33xz4YxxhhjbJTizATGhhZ+TTIdHTx4EPfee+9gT0ORlJSUERVk8sknn+Bvf/vbYE9DkZUrV3KQCRt0/GSSjUY/BeBsyW8tXRN/AeCsE/o+DeMOdd8H4OzTj2/KsmwfyMmw4a3LYoGdCBRgQPnRQ2RN3IJFisaKnD6TrBE15o9UssOB1ppq/n1UKP/LTzXtL9vtKNm3W6fZqFO0e7u4QJKQtGL1N380GMjV25WsAO8qc3UVPvzutcIQk24n173Ub/Nwha2jA5/97O5LQkx6sppbsPmum4QNl3oxV4mbHl1tiAmdIG5yNBbmw2F3/bKo4OvPXd63W/4X2l6rahmLLgi3B6eM67X68+Xi5i8km4LLDqtPEj774btkiFH45GmY9J1bVI0bv3AxEpetFNbIdjuO//tfqsYdzmRZxvYHf3VJiElPhTu2Ycvdt8EqCInSoo5oaAe+afpSIighSbjd0mREh6lZ0Vis/1AN+oH9ECLkHyMOwTJXOV8dfaSi3tPDUifBzeObRzMxs+aSzcGFO7VnpJbs2y1sVAaAcZcFkkz/3t3kuKVEOMpo1dHchENPPaGo9thzT+PsB+/oclzq/jVymvqG8OiZ4rC91ppqVGUcVzWm7HCg9OA+YU3cgkWKA9V6ot6vmktKVI/ZU2uVOMjENyLSaTCIUv4x4mb2lipxSFlP9YKgKQAImzjF6baQcRPI8Y0X8hXPRYn6HHH4T/ikKTC4uTnd7h0SQr4vUWEplKYicZBJcHIKeZ3fTUnwSn2Otvn2Je/zT2Dr6HB5/+xNG9BWX6fjjJSxtreh8uQxYU3CkishSRK8AoOQdvc95JhUmFjVqZPkGFqDTIKIoIbmshJN99OXkx0OfHL3bTj+73+R1waWJiNyt27W7dg9Ua93AORzqL4EJ6cgacVVZN3ex/4AY8G39+0nX3MeItot7f/d228hlNS5H6Cf6VBkWUbG6y+7tK8oDNxVVNhWyLhURe+pkdPThNtlu13R71tPbXXEOU6S4BMapmpMxhhjjDHGGGMjn9Lngmzg8c+GMcYYY4wxxhhjjDE2GDjIhI1Gdzn5+hFZlulP5Tohy3IVAGefZPyuJEnKlzobXn7i5OsyAHqZezbq2To7cez5Z/Di1CQ8Ny4KL88ch13//SC6LO2DPbUhiwoyCU2dpPhDxEqauGqzMhWNNdx1WdqRu3UzPv7BLXh2XBRemT0RL81Iwa4//g62zs7Bnt6Q1WWxoGgXEQaiANWI018qjh0Wbo9Om3PJ6yliqrjJqjY7C7Is6zK3njpbTNh0+41kw1i33E8+QqtgBfOBZG014+Mf3EKudt1pMmHTnd8hmzi0sFut5PfFP1bc9OdM2IRJ4mN3dsJUWuLS2F2WdhTvFYf9BCYkXgzdcaY68yRaKgeumd5YIG7qDE2hG0PHBAQicoa4IafsiHjF6Ms57Hac/eBdsm7pHx8nQ1T6suSRP5M12R+9D7OKBtzhrHjvLlQePyqsKTu0H5vvvKlfQkCohnbJYEDYpMmKxlKyEjYVoqEXWZZRcmAPdv33g9j13w8i95NNkB2OATn2UEe9VwbGJ+h+zADivaOlYvQFmdQSQSY9r6kM7u5IJpptq06mw9Jk1DSngh1fkTXJq66+5O8RU6cjfLK4gVjt+9BoceT/nlL1M9vx+/9C1Ul1YSCXs7a3kdcfES4EmcTMnU/W5H3+iaox63OyYTE2CmsSlixTNWa3oEQiyETje5W5WnwN4xcdo2l8APCPFp9XW6vFYSrd7FYrmgrF4Xqi64DgxGRIgtAQAGi8kKdoLkpRISNKQg2o+9a6c9oCJI3F4vfakORxiscKmzQZID5ArzV4pS/ZG9/XtL+9sxOZb76q02yUq0w/SgYyJi5dfvHPs+69jwydKNq9HcZC5z/T6kzxP5l4+PohdMJEYQ2FCjJxdHVpDrDoKXfrZpTs36O4Pmfzh7oduyclv9vhk5yHLYnM+ekvyRpbhwVf/voe2K1WmKurcP5TcWCL25gxmPFDZ/8cpJ2nrx/GBAYKa9QEWfWl9OBeRQHBfSnet8tpQKerGolnYGGpyl5bSq5vas+eVjRWt7b6WuF2n9AwzcFljDHGGGOMMcZGHgN/JH3IMkj8s2GMMcYYG2kkcFgdY8MOh0wyxhgbhfjJJBtVJEmaCcDZp/m1fXpZPIY/gFU6jD+kSJI0G4CzztKdsiyXDOB02DAkyzJ2/eG3OPTUExcbnDqam3H67XXYfOdNHGbShy5LO9lAEL9wseLxxvgHICRlvLCm5szIDjIxlZfi69/+Ei/NGI8vf/kTFO/ZCft/gks6TSacXv86tvzwVnKF1tGqZN8udLW3CWuWPvpXxF+xRFijtWnRFR2mZjSXiJv4kleuueTvVGOApbFBcVOdGsde+CeMRANeT46uLpxe/7ru81Cry2LBR7ffiPIjBxXVW4yN2HTHWjQVFfbLfMw1VQARNBNArF7uTOiEVLKmId+1kJaS/Xtg67AIa2b/5BeYepuzvL5v5X/5mUtzUEuWZWEzHAAEE+8/3cYuWirc3pB7Dm0N9YrnVnpwL8xEoEv8wiVIXLZS8Zg9RU6biZTV1whrHF1dOP7ycy6NP5zIDgcOPfVXRbVVJ9Ox6fYbYW016zoHKsgkZHwqPLx9FI1FNVgCQHNxkaKxtGhvbMCmO9Zi85034fTb63D67XX48lf34J01S/vt/DlcKDn3hKQob65WigwyqdSv8XY4sDQZyfNsxNRLr6mSV61xUvkN2eFAVcYJl+fksNlQvFscvhedNgd+kVG9vp60XPx+oPZ9aDRoyD+PzLdfU7WPbLdjz+OPaAoFrD+XTV7rRU5VH2QSNT0N/tGxwpq8L7bCYbcrHrPk4F6yJqFHGIEaQQniIBNzdaWmsE4zcb/jr0eQSYx4DKWBcMbCC3DYbMKasFTnQSZunp5kkBkVnqOGxWgkwxrClQSZEDUN53PI74szsiyToWHBKoJMPH18EZyUIqypy8lWPJ4SjQX5qD4lfk/x8PElx8lcv27An12WKjh3xC+68uKffcPCMe17d5P7nHrjZafbqOeQUdPTYCACfyiKAgN1vM4+884bquqrM0+S15iuaDh/Trg9MCERY/wDXBo7YckyjFtzHVlXm3Uaby2fh/WrFpLnhcnfvR2+YeEuzUcpf+KZjFnjdfWp119xeV9HVxcubP9S0/EvGc9uRyPxHhKWKg7N7eYbFk5eq6gOMqmrEx8zPFLVeIwxxhhjjDHGGBtcEjfLMcYYY4wxxhhjjDHGBgEHmbDRRrTErx6fQNwNwFkngLgrZ3i6R7Bt8Lun2ZB3YdtnyN74Xp/bKk8cw97H/jDAMxr6qjNOkCuvxi9YpGrMyOkzhdtrs9R9yHk4Kdm/G28tm4fsje+hq63VaV3Zof04/MzfBnBmw0feF1vJmgnXrSWDTBrzz6tasV0PdURzOwDELbjikr8raXyszabHVUOWZeR8vFH1fmfeeWPQA6EO/O3PqDl9StU+bXW1+OTHd8JOnOtcoaThJSA23qWxA+IT4O7lLaxxddXfC199QdaMu/o6JK1YTc4h/8tPXZqDWm21NcLzKqA8TIAKMgGgOCwHALLeX0/WzL3vAU0f5Flw/4NkzdkN69FWJ17heLjL3/YZ6rKzFNfXnj2DPY89ouscqONHTpmueCyv4GCMCRCvEN5c0r9BJsbCAmy4cRXKDu3vta0+5yw2rF2N6lPiZtORrK2uljz3qGmuVsqfeO+wGBsH/T15INWfO0vWXN5kn7hsJSSiCbo6w/Xgu8qT6eS1ZspVfYdQKXofOtz7NTlaybKMfY//AbKKUI9uNZkZqDmj7tqxJyXX4RFTlZ/3u0kGAyZc/x1hTVttDSpPHFM8ZtnBfcLtvhGRipuXL0cFmUCWYSovdWlsAGitqRZupxqplaDG6GwxKQo/azifQ9aET3QeZAJ8E3omomeQSX2OgvPnZAVBJsTvua2jQ1VQZk8WYyM6TSZhjdrQsPDJU4XblbyvqHFu0wayZuWTT5Pn/06TCcV7d+k1LUVKD+wTbg+fPK1X0MTcn98Pg7u7cL/sjzago7mp19c7zS3k9z961mzhdiUC4sdCMoj/ubJJp+vsdmMjqly4psj5+ENdjt9TPXGOiiBeG5Srnn4ePuERZF1zSTE6mpvJutn3/lLTfJSgnsm0VIjD8kSMhQUoIoLtKHmfbdG0f0/NJcUXw7SdCVVxLUA/41f3vLK9Xvy8wjeC/t1ijDHGGGOMMTb6SAYOyxiqDBK3CzDGGGOMMcbY4OP7ZsYYY6MPP5lko80yJ18vkmXZ9U/w/4csyxYAR51sdm0Z1SFKkiRvAHc62dwAYGC6ZNmw5bDZcOipJ4Q1We+/jfM6fjh4JCg7eoisiVu4WNWYkdPThNubS4r6bGYY7tobG/DlL++BraNDUf3xl55D+bHD/Tyr4cXW0YHCnV8LayKnz0TQ2ETEzplPjleVIV4R0cFX0AAAIABJREFUWW811EqkkoTIyxrAQidMhJunp3A3NU37SjTknkNbbY3q/SxNRuRs1r/RRqnmshKcXu9arpnxQp7L+4q0KAgy8XNxBXmDmxtCxo0X1rgSZGLv6kLRrq+ENZHTZyIgNh6evn5IWrFKWFt1Mh3m6irV81BLSWNkSIr4+9Utdu4CGDw8hDXlhw8oGqutvg6FO7YJa/xj4pB45QpF4zkTPWsOEpaKL/9tHR04+dq/NR1nKHPYbDj8tPoQsJzNH+oWbNXZYiKDRSKm0QFV3SRJQlCiuDm8ubRE8XhqVZ44hg03rkJzSbHTGouxERtvvR6FO8TnjZFKz3OPGgGx4pXjAcBcWan7cYeqWupaSJJ6Na17BQYhfNIU4W6uNB13o879AJBy1bV9fj123kLy+q+0j3Ch0ar8yEGU7N/j8v5azl9UUGFA/Fh4B4e4NPbEG28ma5Q2N9s6OlCRfkRYk7B4mcuhaoHEexUA4XsJpbVafD7zi4p2eexu/jF0GIqSa1oqyGRMQCB5/R86boJwe+OFPHIeStVRgR2ShLBJ4uAVQFlgj6v3rU1FBWSN2tAwKqyhsSAPdqtV1ZjOOOx28j7Zw8cXE65fi7n3PUCOV6rhfKdWW30d6nOzhTUJS5f1+lpAbBxSb7hJuJ/N0o6sDb0DH/M+/4T83kenzRFuV8J9zBj4E9dTegUGFu/eAdnhUL1fzscbXdrPGdnhQGOe+BlB2ETxtRHFJzQM1/zrZU1jdEtasRphEybqMpZIQFz/BZlkvv2ay/t2Kz24D+2NDZrHAYCGPDpsS02oWeQ0cZBJY36u4ufgANBaI34W6RPGQSaMMcYYY4wxxnqTuCGLMcYYY4yxIYWv0RkbYvglyRhjbBTiIBM22jhbHlDPJauddWFPlCTJR8fjDLbbADhbjny9LMv6fLqcjVjnNm1Q1Gi44+EH0FxW0v8TGiYqiCCT0AkTe628SomaIQ4yAYBaoiFsODrx8nPqGqVlGdvu/xk6W8QrD48mJft3o6utVVjTvXJ59Kw5kNzchLVVKlYw10NtljjIJCR5HDz9/C/5mpuHB8KIFbv1fr0U73N9heeTr72oa6ONGplvrdN07LMfvqvjbL5hrhQ3vPiEhcPD29vl8cMmiBtMXAkyqTh2mFwZefzV11/8c+p/XnMiF7Z9pnoeapEr00sSgpJSFI3l4e2DmNnzhDVlCoNMzm3aAIfNJqyZesf3YSDOV0oseOAhsub0+jfQXEo3EsuyDFNFGWrOnNK1WbY/5Xy8kf496IPDZkPpAX0aQutyxI2eABCpIsgEAIISk4Xb9WqwvFzB9i/x0e03KgqXs3VYsPUn3+uzGXWkU9JcHZQk/hm6gmq8BYCWKtebLoebeqIRPzgpBZ6+fr2+HkME31WfPkWew/siyzIKtouDTAITEp02inp4+yCaeh/iIJOLsje+r2n/AgWhM87UZYuvw9We83uKSpuNgLixwpr8Lz+Fw24nx6o8cYxsJKYC0UT8o2PJEDiTguuPvnRZLOR9tH80HUJCURRkUkWHFNYTQSZhEyeTgTEh41OF2y3GRrQbG8m5KEFduzg7f14uIDYeXkFBwhoydMoJo5IgE4XX+d3Cp4iDVxxdXbpdA1eeOIbWmmphzYTr1sLT1w+JV65EGBGyVbx/N2RZ1mVuFCX3PAlLlvX59Vn3/ILcN/PN12Dv6rrka9kfvkfuR92rKRVMXme7HsDUU+FO1wKzWirKUHHcWYa9eqayEnS1twlrqOdPSiQtX4VZP/m55nHm/PRXmsdQggwyIZ7rOCPLMvK/FGfvG9zdseC/HhaPY7fr9kyFCrJx9/ZBYHyC4vEip4uDTBw2G+pzzykez0wFl0VrDy5jjDHGGGOMMTbyGCT+SPpQpeRn42rAOmOMMcYYY4wxxgbePffcA1mWh8V/BQX0Z86GkyeffHLQv6dK/9u1y/V+NMb0wk+N2aghSVIMAGdLhOnZcexsLAMAejnM4eMewbbXB2wWbFjqslhw+Jm/K6q1mlvw5X0/6fVB+tGoy2JBdaY4dyluwSLV40ZMnQ4Q/xBZe1Yc+DDctDXUI/Nt9acqc2U5dj8q/kD7aJL3xVayJvW6tQAAT18/cpXlypPpusxLKSrIxFkDALW6tasrWztTvNf1G8emogIU7d6h42yUsbaacfaDdzSN0ZB7Tvcgq5ZKcbOjkkZ0kdAJ4iZHY+EFRc2tPV34+guyZtw1N1z8c/LKNXAbM0ZYTzXv6MFYKH7YFBAXryo0ZuyipcLtTcWF5M9XlmWc3UD8XkoSpt3xfcXzEolfsIh8X+5qb8PnP7u7z2Zma3sbCnd8hZ1/+C1ev2IG1s2fhveuXY63ls3DhrVX6dpEpzdbZyeO/N8/XN6/aPdOXeZBnecBIGLKNFVjBiUkCbc39UOQSXNZCbbd/zPYOzsV7yM7HNj5yG9QeWJg31sHG3Xu8Y+Nh4e3/vmifpHRkAziR2xm4hw1ktSeE18LOXvdUY3QXW2taCBCCfrSXFxEhgyNW32t8MOZCYuuFO5vKivlAE58815bfuSgpjFcvQa0dXaiIS9XWBM51fUgE0mSkHqDODCuvaGeDB8FgNJD+8iasYvFv3MiBjc3svFZSZBaX1prqsgav+gYl8buyTciinxOYa6m50KFqikJCQgdP4E+jk4hG1QQlNLrFkmSED5ZXFtPnKudoULDfCOjegWCUqhnBYBroZB9qVRwDT3ltu8B+Ob7OL7HvVZfWsrL+i3I7nKlB/YKt7t5eiJu/hV9boueORuxcxcI9zdXV14S0NBYkI+qjOPCfWLmzIdvRKSwRikqMFCP62y71YqS/a6HJuZs/kDzHLpRQUsAED5RHKSj1NI//kVTKErk9Jma3pfUCIgRP5fpbDG5FDJtKi9FW22NsCb1xpsx68c/I4OYz3+6RfXx+9KQJ/4dCJ2QSt5j9EQFmQBAbVamorFkWSbf8/UILmOMMcYYY4wxNvJwEMbQJfGy34wxxhhjjDE2+Pi+mTHG2CjEQSZsNBF96lz9UuHOiT7NPV7H4wwaSZJSASx2svmQLMv6fLKcjVin169T1PzSrTrzJA4/87d+nNHwUH3qBOxWq7AmfqGzl6Zznr5+CBknbsypOaPsQ87DxYmXnoXN0u7Svjkff4jzn+nzgfXhzNbZicId4lVsI6ZOv6QRJYZomqk5nTFgoUWdLSay2ShyWt8NAFQDpLmqAu2NDS7PrSdrWysqTxzTNEbm+nW6zEWN7I82wGpu0TwO9TumVguxanuA1iCT1EnC7baODlWrSMsOBwq+/lJYE5w8DqE9Von39PNH0rJVwn0qjh9FK9HAo5Wx6IJwe0iKustiKsgEANk4XXHsMJqKC4U1SctXISBWvAK0GgseeJCsqT17Bnv+/PuLf+9sMeHA/zyGV9JS8cmP7sCZd96Aqaz0kn2qTqZj43evxdFnn1YdjjMQcrduQktFmcv7F+/bBdnh0DwPKgAuMCERYwICVY0ZlCRusGyrrYGVWFldrb1/fgTWVrPq/WS7Hdsf+rUu38vhgmquDklO6Zfjunl4wC9SvCI5FbY0UnRZLGRwgLNQuJjZc8nxqYbqvpQd3k/WpFx1jXC7kubdskP0cUa6looymKsrhTVKml5duQasz8mGw2YT1kQ4ub5XKvWGm8iavM8/IWuoMILQCRPhrzEMJChRHLyl5pq0p9aaarJG69yB7vNqlLDGXCX+XbNbrTCVlwprQidMJOdCPS8BgEYdgkxsnZ1ovCB+pKomgC2CuG+tO5cFWZYVj9eNeq8NTh6neky/6BiMCRRfk+kVZFJz+pRwe0DcWMT3CCNMXLqCHFNLMIZSsiyj9OA+YU3MnPnCwLbZ995HHidj3UsX/5y98T2yXq8QSIAOMjGVFmu+ri0/dsil6+pueV98ii6LRdMcujXkikMs3L28yHsPpdy9vHDdC+vg4eOrel9P/wBc9fTzA9aEFBA3lqxpqShXPW7VSfoacuYP74FPaBgSiOu+8mOHFL0fUqgAtrBUdeEzvuER8IsS35MoCdABAEuTsc/A1Z78YzjIhDHGGGOMMcZYbxyWMXQZJG4XYIwxxhhjjDHGGGOMDTx+MslGE9En+Et0PI6oE0CfT54OvnsE214fsFmwYanD1Iz0F/6per+M117U5QPCw1mFglVjXQkyAYCo6WnC7bVnT7s07lDUVl+H0+vf0DTG7kcfgrWtVacZDU9lh/aTzR8Trlt7yd9j58wX1ts6OlCX7dqq0GrVKjhOxLS+G7+ohjAAqMs+o3pOfSk/fBAOjeEuZYf2w9bZqct8lJAdDpx642Wy7pYPPoGHr5+wpmC7OMRDLTPRRB4Qoy3AIkxBI2R9jniV9Z5qzmSSwV/jr7m+V0PR5a+9XmQZJft2K56HK5oK9Q0yiU6bA3cvb2EN1diXtWE9eZxpd/5QzbRICUuWIyptNlmX9f7b2Hjr9dj265/ipZnjcfzFZ8lzrOxw4PDTT2Lznd/p92AatZQ0cYtYGhtQo3ClaJGa0xnC7dEz6Z/N5YKJBksAMJWWqB7XmZbKChTt3u7y/sYLeQPSXDtUkM3VKs89avgTYVijJcikIS8HMhGw5CzIJHBsInzCwoX7VmWcUD2nMiLoytM/ALHzFgprombOIq9bOMgEqDh2hKy57qU3yEbqwh3bVB9bSfhfpJPfPaUip6chMCFRWJO/7TNhoEpbQz1qz4rvFRKWLHdlepcIHJso3N5c6lqQibmaDqWlgp2UokJvqNAcU1kpeT4KSaFDNzx9/eAfIz7HGy9oz8huvHCeDOMJn6wiyIQIPelobkZLpfowgKYicTCgK6FhkiQhdLz4XqpBhyATWZbJoLv4hYshGb79Z7PotNlk8N1AXGs1FRXCTARzJixZJtw+bs11ZEhEdeZJlB0+AHtXF85t+kBY6+7toyjgSalgIrTD1tGh+dlw4c6vNe1vNbe49B7Vl/rz54TbQ8enwuDmpsuxACB88lTc9tHn8A4JVbxP6ISJuHPrdjLQV08BcfRzGdeCTNKF2z18/RD9n3v31LXfFQ8my8j7YqvqOfRkt1rJe5ewVPoZ0+UipoivdZS+X7USYWGAPsFljDHGGGOMMcZGHg7LGLokA4fMMMYYY4yNNEqCBDlskLGBo2w5IX5NMsYYG334qTEbTUSfgNQzHaEegLNPndPLyQ1xkiR5AHDW4dkCYNMATocNQydfeQEdzc2q97NbrYpWAh3JKtPFTWEh4ybANzzCpbEjp4tXpjaVlqCzxeTS2EPN8Zeeg61D2+qplsYG5G75SKcZDU9KGnUmXPedS/4eQwSZAMoaEPVQm0WH8zhrdAyfPOWSxqY+x9cpkKV43y5xgSQh7Uc/FZY4urrQmC9e5VVPRbu2kyu8R06fiYQly5F4pXh164r0I7A0GXWZlyzLZLML1YROCRybSDY51+dkKx7vwtefkzXjr76h19dSVl8NN09P4X41Z8QrkWvRZbHAVF4mrFEbZOLm6YnYeQuENYW7voLdau1zm6XJiPwvPxXu7xMegZTV16iaF0WSJCx+6L8V1ZYfOYicLRthVxk8VHb4ANavXoTivcT5YoDIDoei1a4pxXt2atq/vbEBprJSYU2UC0Em1ErxANBcUqR6XGeyN76neeX5jHUv6jSboc3e1QVTWYmwJiSZblh3VQDxHmJ2oVl8OFISSueswVKSJPJ6sSpD3flFlmWUHz0krIlfsAhuHh7CGjcPD8QvWCSsKTt8ALKs7J8jR6qK4+J7Vg8fX8TMmovEZSuFdeXHDqOjuUnVsStPiIM//WPj4RsRqWrMy0mSRDbtW4yNKDvsPNQm+4N3AOL3hAojUCIoQZTnDJjKS116f6HCQ7xDQuHu5aV63L74EQ3SZqLJ2lgkDtYDgGCF7wsh48TXro0FeYrGEak7RwceUuEkl9QqCO6pV3DMnmSHA03F4iATpd/Ty/1/9s47PI6r3P/f2VXvXVr1atmSLVvudlzint5ITyCFFAhccu8PLnDhXi69BrgECISEEAgJ6b26t7jbcpWt3qVVL6su7c7vDyGjsnPeM7O7tmy9n+fJ80R73jlzvNqdOTOa7+dQgf1WN4hMbPW16GlqFNZYJkgITV5eSF6xSrjNqPjDk1Tt2UHWUBIkk5cX5j/4KNnPx//vSzj3zhvobW4S1mVffzN8goLJ/mSRmWe3uzDPVlUVZVs+Mrz9KIVvvOJyHwDQcq5Q2B41M9ct+xmLJX8BHth1GHn33Aco4oej5n72Qdz74Q5Ez8xx+zhEBEbHkPczOg3MqymRiSV/AUxeXgCArE3XwkTMDcu3uibFaSsvJeVVUdn63/tI6lhaIncspc6xABBECMcYhmEYhmEYhmGY6cnERViYqYOJ4wIMwzAMwzDTE56iM8zUgr+TDMMwzDSE70wy04koQVuzu3aijqRWWjSa5Ze7m7rcAEDLlPCiqqq9F3IwzKXFYLcNR5/9g+Htaw586sbRXFo4hofJ1ccTl4hXERchFXA5K14p9FKgp6kRJ/72Z7f0dfrVl9zSj6cY7Lah/uhhVO3egaE+9x+aqRBN1KzcSatbhyQkkitZXzCRySmxyCQ8LUNz1WVv/wBEZGULt28iVlmXQVVVVOwQB/lj8+Zh0RcfJ/uSCRW7i6PPPkXWLHjoMSiKgsxN1wrrVLvdZZnBKP0d7Rjq7RHWUCF0CsVkIkM+TTpEJqUfvS9sD4qzIG7e/Emv+4aEIpEIW1tPFkiPQy8dleVkQFevyAQAkq8QBwgHOjtRudv5senMa/8gBSGzb7+bDLIbIXX1Osy5W8sD6B76Wlvwxr2fwa4f/o/HQ5QULcXnMGjrEtas+d5PERQnDieXb9/s0jisx2lZz8SgqgyBMbHw8g8Q1rgSsByLw27HqZddF/lV7tqOlqILJ7S6WHRWV5FhwPAMz4lMKBlWV12tx/Y9laCC+IGxcUL5YvyCRcLtOyrL0dMifwuntaSIDGJT5xfZut6W5mnxXRNRd1AsE4lfuBgmLy9kbrxGWKfa7boEXaqqou6wOKCcsIiWKsow8/pbyJrDf3jSqdTGMTyM4397TritycsLScvE8zgZwlLFIhP7wAC6rfq9zt0N9cL2YEI+oocQ4trRRoylvbxU2G729SX3MUokcf3XWlIs1Y8ISiriHxmFwNg46f4iMrJg9vUV1ugVcHbV15JzaqMik8gscfi+o7Icw/39hvoepaHgKFljmb9w0mupq8QCzqGebjQcE9+zc5WafXuE7b6hoaSkGADm3PVZUr7ZVVuNjx6nhSdz7ryXrNFDaHIqWeOKMLCl6Cy6COHmosceR+ycucKaip1bXZY9D/f3k1KgKA8JRAIiIrHx50/inve2IXZu/qR2v7Aw3PDMC9jw01/Dm7ju8QSKyUTeO+yqFf8eJzLYbSPva4+V6fmFhSPtyvXC+oaCo3DY7brGMZZWiTlj5AzxcdHpNsSxtLelGb1trWQ/lLjM7OODgEjRn1wZhmEYhmEYhmGY6YpJ4UfSpyr8u2EYhmEYhrkMYSECw1yC8BeXYRiGmX7wnUlmOqElERlQVdX50u3Gsekcw6XEQ4K2Zy/YKAAoihKjKEqunv8AZFzIMTLjKd/2CRkiF1F/9DAZTrxcaTx9gnzvEhYvN9x/TM5sskZmdeCpzqGnfoPh/j5hTfyCxXj0cCF8Q51LLEZpOHYYbaX0Cs8XGlVVceKF5/DMsrl46Yb1eO2um/D7ORnY9j9fR197m1v2YauvI1dDTl+30enrVICw/sjBC7KSfeNJsciECgDF5orlP+4Qh3RUlKOzukpYk3blegTHJyAgKlpYpzegZpTmwtOo/nS3sCYwNu78SvbpazdCMZuF9aWffOCWsdkkAuRUCF2GaOJ42iwpMumsrUZbmfgYk3nVdVBMzi/pLPPEgobmwtOwD7p7CjwCNW4ACDcgMsnYcDVZU/Tum5NeGz0uUsy503OykbXf/zlicud4rP9RDv/hSbx881XoqK70+L60aDh6iKxJX7sR6es2CGusx4+ht1XLDykxjoIjwnbFbEbMbHFI0el2ikKGwzsrK3T364yq3TtgI1YbT1+3CQse+TLZ17E/G5cJXiq0yxx7DIarZQhJSBK22xrqoDocHtv/VIGaA8UQc6j4BYvJfegJi1PBbwBIWr5Sqq/kFavJmuq9u6T6uhzpaW4i5wCJ/7xmTV+3SXMOM4qeOWBnVQUprElYtFS6PxHRuXMQnia+tVS1Z6dTGV/p5g9hqxfPSZOvWAWfoGCXxggAYSnicxUAdFTpP191W8XykCBLgu4+tfsSS1Fs9eKQNSUyCU/LID+Ho0RkzhCPpa4Ggz3dUn1pQQkPY3Ln6FrN1OztTYoQ9F63Uu8p4ILIJFscvlcdDqn9i6Dmh15+foiamTvp9ZTVYpEJMCKO8xSqqqL24D5hTfLylTAR19bAiPTSHQKSsNR0JCw2LlR2hre/P4KJY4iR49Yo5Vs+ImsyNlyNnM/cKaxR7XY0uiivbS0tgkpIMKJneUZkMoolfwHueW8bbn7+FeTefg9m3XwbVn37e3ho3wnMuOYGj+6bIiRRPK/uqhVfI02koeAoOQ9PWDj+fmXW1dcL6we7beS9URGU/M4nOATB8frPqZEzxOItAGgrKSJrqHNskCWeV9hmGIZhGIZhGIZhnMLXi1MX/t0wDMMwDMMwDMN4GJkIDF+aMQzDMNMQFpkw0wmtpQa1pCOuoNWn60mEi4iiKEkAnCfTgWOqqtLLnruXxwCc1vnfOxd4jMwY6o+6tjrpUE83ms5cmDC+M/o72nHkT7/H7p98F0ee/p3bpBAy1B06QNYkLjEeIPANCUVoSqqwxh1ihotJf2eHVJB9+df+C8HxCVj1re+RtWdee8kdQ3Mb9qEhbP7Pf8OWb/4H+sasrjnc14uC557Gn1fMR8Hzz7gsBKras5OsSV25xunr8USAsKepEZ0eDuAP2LrIABQlMokhVuhtryjDgK1L99jGUrFrG1mTtmY9FEVBzGxCrOJiyEaWY8/9kazJv+8hmH18AAD+ERFk+Kli5zYME6t+y9BFhEYBOoQuAyUysdXXSp0/avd/StZkXXWdZpuzlZXHYh8YQEsxvQKwESiZgHdgEILiLLr7jcqeRa5IXLr5w0krtdfs20N+55OWrUR4uud8d97+/rjhT3+Db4hYkuUOGgqO4O9XryZXnPYUdUfEIhP/iEiEpaUjba3WZcU/UVVU7qSPg1o0HD8qbI+elQtvf39DfYcTIpN2F1aKH8vJl54na+bd/zAWf/Er54+rWhS+8YrUytuXMm3E99zs6+uW47wWIcTK8faBAfS2NHts/1MBh91OHntiiTlLbF4+TF5ewpp6CWHSKJRgzT88AtGzJofWnRE9Kxf+EWI/7XQWmdQd2k/WJPzzmlVqDrhjq7R0re7wQXrfC8VCRVkURUH2DbeQdTu//23Yh4bGvVbwlz+R2827T+QPlic0OZWsMSIEsDWIRSbBBuZ4mn0RAe5BW5fwmqutvEy4vZ65X2SWRDBcQqilhaqqaCbksUakeNQxV6+wtp14TxWTCWESnz1nRGaJ5/kA0OKCNAAArAXi+WHM7Lkwe3tPej0sORVhqenCbSt3e05k0lZWQs4hkq6gZVujLHjkSzD7+ro0pjl33uuR4AP1PndUGJ9nl235WNjuHx6B+AWLMfOmWwHi3+aqyKTlbCFZ40yq425MZjMyNlyFq3/9FK793bNY/Ni/wy80zOP7pSBFJoTscSL1xDUqAFjmLxz3s4wATY9cbyKUyCRqxkxD37FIQrwFQErAQp7v3SguYxiGYRiGYRiGYS4vTPxI+pTFpPDvhmEYhmEYhmEYhmEYhmGYCw/fmWSmE1pP5w5pvO4KWkkLcbps6vMgtI8bz17IgTCXJg3HxCufyoR7ZYQenqBq9w48vSgXO7/3LRz63a+x8/vfxp8Wz0bB889AVWXUma5Rd0i88mqwJQEhicku7YMKxVxMiYw7KPnoPQz39wlr4hcuQco/BRyzbr4N3gGBwvrCN16Bg1hB9UIx0NWJNz93G0794wXNmv6Odmz79tfwt00rdQeWxlK1Z4ew3cvPX1NYkrCIDhDKBAxcQUbKEzuHEJkQgTBAfyhsIpU7tgrbfUNCYclfKDWepsLTHv+sDg8MoOi9t4U1Xn5+yLv3gXGvZW68RrjNUE83avbtcXl8XXVikYnZ1xcBkVEu7ycmhw4YyggmavbvFbZ7BwQicekVmu1xeWKRCQA0nigga4zQVioOcUZkZBoOvVHB4UFb16QQ4fG//Znsd+7nHjQ0Hj2Epabj6v/7g8f3AwD9HR14495b0d/ZcUH2N5YGQjAQv2AxFEVByorVMDkJio6lfPtmQ2NQVZUMqlrmLTDUNwCEpohFJh2VxleKH6WnuQllm8WrxgcnJCF19VoExsRi5o23CmuH+/txUkLodinTXi4+9oSlpsNkNnts/8EJYpEJoH/1+EuN9ooyDPf1CmuiiWsOb39/cl4jK8hUHQ7UEufTxGVXQDHJ3R5VTCYkX7FKWFOzf6/L0kARqqqi6P238frdN+OPC2bitznJ+L9MC36VEonfzEjAi9evR+knH3hs/yJqD4pFJiZv7/NzV4CeAw5221CzX24OWHdYfJ/AJygYUZLCGhlm33EPFOJ40lZajJMvPn/+5+ZzheScNiQxGenrr3LDCEe+S5Q4zsj5igo2B7kx2CwTkhaNhxLZhadnSo8lQkZkUlIs3d9EumqrMdDVKayJlrjO0LuNra4GfW3ykl7qPQ1NTiHlaloExVnI+4Iy4XstHMPDsJ48LqwZe4yaSOrqtcJtrceP6Xov9UCdywAgacly6f5CE5Ox4uv/bXg8ismEnFvvMry9iLA0ap5tTGTS09KMekI6kbZ2I0xmMwKjYxCeJhYdNZ12TWTSfE58T8A/PAKBMbEu7eNShrrHrXdOXXcWrNrxAAAgAElEQVRULDyLzJ41SeASlpYO//AI4XauSNtbKZHJzFmG+vUJCkYwIW9sLSki+7E11AnbKdkYwzAMwzAMwzAMM33xhPyWcQ8sMmEYhmEYhmEYhpkK8HUzwzAMM/3gO5PMdEIrJeeJhIlWn5esyERRFBOABzSaewG8dAGHw1yCDA8MkCKMuZ99AEFx8cKaWkLo4Qk6KsvxziOfw1Bvz7jXh3p7sO3bX8MHX/o8BrttHtu/qqqoJQQuCYuXuvzH4JjcucL21uJz0itiT0XOvvUaWXPFV//r/PvoExiErGtuENbbGupQ/enFX3W9q64W/7jlalTtFgtGRmk5V4iXbtxoaDVj1eFAJbGfxKXL4aWxum/0zFxSEEMFEV2lkQgvAUDsHPH3QWY1bBlhihbD/f2oJoKOyStWw+TlBQCInS0e73BfL9orxKtnu0rV7h3ksXDWLbdPkoVkbhKHWAG4JZBrI1bsDbYkSAeZRciETZoLT5M1NQfEYbWERUucrhY+SpAlHgHRMcI+rJ4SmRAygYiMLMN9Z19/M1lT9O6b5/+/p6kRpR+/L6wPiIpG1lXXGR6THjI3XYtFjz2ue7uomTlkeHIi3dZ67Pnxd3XvyxV621rRVib+/ccvXAxgJGCVuHiZsLZy5zZDEqaOynL0d7QLa+LmawdVKcKJleJt9bUYHhgw3D8AnHntJVKGMOfOe8+LORY89EWyz4K/PntJz+Uo2srF57mIDPnAuhGoleMBoLOm0qNjuNi0SIi6YiVkcPELFgvbrQVHYR+inbQt5wrR1y4OlSctF4tJJpK8YrWwfbDbhqZC12R2Inb98H/w3qP3oXLXdnRbGzDQ2Ynhvl44hocx1NONhmOH8faDd+PYc097bAxa1B78VNgeN3c+vP39z/+csfFqss/STz6U2nfdEXFA2TJ/oVtFRmEpaci7536ybt8vf3JeKnb8+WfI+nn3fd7t4xTRUaVPZGIfGkJPU6OwJtgivqejB5mQtK3euaxwsNuGnkarcFs9IpOAyCj4hYULa2SC4VrISDBlrkEnQl0njuxb/rqVmufpeU8noigKIglhTGuxOPgvoqXoLCnbsuRri+7IubiqomrvTgMjo6k9KL4X6hcWhqiZObr6XPjIl5Gy8kpD40m9cr1bv+tjCSPm2e2VFYaE0hXbtwDEdhkb/iWSou4JNZ5yTWTScq5Q2B41M3dah35CCBFHb3MThvv7pfpSHQ40EMKRhIWT556KosAyf5FwO0qOo8VQXx/aCSlPVLa+7/RYImdQx1L6frCtnhCZeOgYwDAMwzAMwzAMw1z6mNzwzAXjGabz/SaGYRiGYZjpjMLSBIaZWvBXkmEYhpmG8F1jRhNFUX6kKMpPp/h/j7jhn6r/ydeL0+fFZgOAFI2211RVFS8b6hmeAjBb5383XoRxMhgJbVPBSUv+QiQuEQdaaw/uN/TAuivs/sn3MGjr0mw/984b+Ps1a9BMPIRulLayEvS1tghrEoggsAxUKMY+OOhSMOdi0t1oJVe/tsxfhOQJIY7Zt99N9n3m1Yvrcepta8Wrt18nFRwdy3BfL7Z8/XHd36fmwtPk5zF1lXbAx+TlBQsRHqeCiK7SeEosMglLTSdXgvYLDUNYqjgY6Eqwpe7QfjJklbZm/fn/j5EIBTe5GLShKP7wXbJm/oNfmPRaWEoaGboq2/IRVIfD8NiAEeGPiJCERJf6H8UnKJj8bFAiE1t9HTqrKoU1iUuvELYrioK4vHxhTeNJ94tMVFVFW5l4pfZwF0QmkZkzED1rtrCmdPNHGOrrAwCcevkFCRnEZw2vHG+Eld/4Dubeq+UHHE9IUjKue+o53Ld1H2596S3829lqKZnLKCf+/hfUHBAHy90JFRADxgsK0tZuFNb2d7TDWnBU9zisx4+RNZZ52kFVCipgqToc6KqpNty/qqo49dLfxEWKgtl33Hv+x5jZeUhatlK4SU+jFUXvvWV4XO6g4fhRvPvI5/DHBTPx55UL8M7D9+LUP/4GW0O9y323ezBcLYNfaBh8Q8Xzh87qKo+O4WLTQQQyvQODEJqcSvYTv0AcGh3u70PzWVoKRknhACB5ufh7M5EUQmQCAPWHPTOXrdi5FUf++Fup2h3/+00pcZq7GLB1kfubeK0fnpaByBkzhduUbf6IvF7pa29Da5FYbuCO6+WJXPG1b8EnOERY09fWik+f+DH6Oztw5vWXhbVefn6Yc+fn3DlEhBIik65asehvIj1NjaQIwJ3B5qDYOFI02K1x/pCROEaky89JZSQblORDBCUyMfv6GpIBRuXkAsTD6TISlVHay4l5fppr59rIbPExobXY+D2phoIjZE2cQGSStHzleZGoFlW7t+seF4WqqqjZL57PJyxerlvKqZhMuPr//gj/8AjdY5pz5710kUEoYeBQTzd6W5p191tHiLFN3t5IvXLd+Z9jCJFJW1kJBnu6dY9jFFJkMsu4xOJyQEYQSN3jGaW1pAgDXeI/XcUvWKLxunhO2lZSRAo0nW5XVkyeT6k5knDbLOJYStzfV1UV3Vbx9VlwvHvuoTEMwzAMwzAMwzCXHxySnLqYFI4LMAzDMAzDMAzDXHz4uplhGIaZfoifvGSmO98A4L5lQD3DLgB/kqzVWq5Xeyl742j1eSkvf/2QoO3ZCzaKMaiq2gSgSc82bJa/eMgEBiz5C9HdaMW5d97QrOlrbUF7WSkiMo2HoPXQcPwoit9/m6xrKyvBi9etw2deeA1Jy1a4dQx1xMqrAJC4ZLnL+5FZ3bfpzClDqwBfbIree4uUIMy+455Jx4ikZSsQkpiMrlrtMHLJR+9joKuTFF94im3f+io6KvWtpD1K3eEDqNi+BenrxEHysVTu2UHWpKxaI2xPWLQU1Xt3aba3nCvEgK0LvkQw0CiNJ8Uik9i8eVL9xOTmCd/7FomArRYVO7eSNamr/xWyCUtJg09QMAa7bZr1jadPYNbNtxkekwj70BDKNn8grImalYvoWblO2zI2XC0M8nRbG2A9WeCSeMBGhFyCiRV/9RCdM1v42WguFIcFZcQTMuea2Ln5KN/2ifY4zhViuL8fXn5+ZF+y9DY3CeVfABDhokwg+/qbhAH2oZ5uVOzYgsxN1+Lki38Vd6YoyLv3fpfGoxeTlxfW//TXyLr2BhS99xaaz55BZ2UF+trbztcExVmw4OHHkP/Ao/Dy9T3/um9IKK77w1+QsvJKbP/ON6RWod7y9cfxuc173fp71qL+6CFhu2I2I27e/PM/p6/biF0/+G/hNuXbNyPeyQrZIhoI+Yl3YBAiMmfo6nMslKwIANoryw3PV2v27yUD2Glr1k8SMC145DHU7BeLG06/+iJyPnOHoXG5Ss3+vXjtzhvHyYXay0tR8uF7AEbmoou/9B/IvuEW3ddtA7aukYC9AD2BdaOEJqWgqfOkZntnzWUuMqkSz0nD09KlgtaWBfR3vv7oYVLYRYkMA6KidYdEQ1PSEBgbh55Gq2ZN3eEDmP/5yfI2V1AdDuz5yfd01W/7n6/jjtc/uCD3QeqPHCKvtxKXTJawZWy8Gq3F5zS3sTXUobnwtPAatF5CopWw0HlA2RUCIqOw9PGvYfcPvyOsK3juaRQ89zTZ38ybboV/hH6hgAgqCG6rlwuBj6IlDRlLkBtFJiYvLwTGxAnD1F31dU5fp4QbABCeoW9OGpGZhbrDBzTbXRGZNBMykaiZOaREwxk+AYGISM8Ujq3pjPZ5ayxDfX3oJERt4ekZusY3ESp8315ZjuGBgXHzY1msx8XzQ//IKIQmaTm8Ad/gEMQvWIxawT26yl07oKqqW4+7ndWVpFAgiZBcahEUZ8HGJ36Ldz5/j/Q20TlzkLHxGkP7k4ESBgIj4rTA6Bhd/VqPiyWeiUuWj7sHFTtbLDKBqqK58AwSFuk/v/S1t6Hb2iCsiSZkr5c7ciKTakRIHMfrJWTJ8RrzhHiJOWlDwdFxomEZWs6JBWwASOGvcNsZYvFWt7UB/Z0d8AsNc9re395O3mtwp7iMYRiGYRiGYRiGubzgZzOnLiwyYRiGYRiGufxgkSDDXILw15ZhGIaZhvCdSWY6MaDxuidEJlpLul+SIhNFUaIB3KDRfE5V1b0XcjzMpYmVCJQGWxIQFGeREnLUEqtougtVVbHnx9+Vrh/u68V7X3zApRU5nVF7cL+w3S8sDFHZs1zeT5AlHv4RkcIaKlwzVTn39uvCdpO3N2Zcc+Ok1xWTCTm33incdri/D0USshtPULb5IxS995ZLfez56ffJ0OFYqnaJVxgOjIklH7Yngx6qKvVQvxEGu21oI0JtscTKu6NQUp/WkiLYh7Q8amLqDmkH5AAgMnvWuAC7YjKR42k6LRdQM0LN/j3o7+gQ1sy4RmsqAWRuupbcR+WObbrHNRZqtd6JQgBXiM4R/y5ais+NC/JPpPaAeGrl5eePuLnzhTUAyIC3Y2gIzefOkP3oobW0mKxxRSABANnX30LWFL33Fip3bhOKqAAgbc0GYWDRUyiKgtRVa7HpF7/Fve9vx5dOV+Dfzlbjvm378cCuw3jk0Bks+sJXnIY0FUVB3j33454PdkgF8NvKSnDgt7/0xD9jEvVHxCKTmNw58PYPOP9zROYMhCQlC7ep2L5Z9ziooGrc3HyYzMadncHxiTB5iy8jOwmhg4izb71K1uTdfd+k19LXbSIlK7UHPsUAIRvyBANdnXj30fuEx76mM6fw/mMP4qPHvwCVWKF8IlKBdRclSjKEJouPJ53VnhWZDPZ04+RLf8W+X/8Mp15+Af2d4nOzu+moqhS2h6XQEiAACElIQlCcRVjTQIiTHHY7aojzadLylbofqFUUBQmLlgpr6g4f0P0Zpij+4B3dc7naA5+i6F1tSag7EQX7AQCK4lRKlbmRngOWb/1Y2F4vEEsAIxIty/yF5H6MMP+BR8nvvSz5Dzziln7GQs1vuxutsA/K36q0NTiXhozF3cHm4PgEYXu3xpjaysTnBb+wMPiH6xPHUHPYjooyOOx2XX2O0kSIDl0RysbMzhPvW/LY0l5eChDHtogM16RhkUT4XrXbpc75zqBEd5b8heQ5IWXVWmG7rb4W7eViGZ1eag9IyI2XGpcbZ111HfLuuV+qNiAqGlf/+imYiXmwK0gJAyvKdfU51NeLlmLxPabECTIY6nsDjMhijSCSuI4SNdO5BHa6EGxJIOV3XbU1Un3VEdeo/uERmhKmuHnzyXHUH6OFahNpJT6P/uERCIiK1t3vKJQUCgDaSrTv3ciIztwpLmMYhmEYhmEYhmEuL0z8SPqUhSUzDMMwDMMwDMMwUwG+NmMYhmGmH3zXmJlOaJkFgjywL60+bR7Y14XgPmjLWZ69kANhLl0aCo4I2+PyRwLZUdmz4BsaKqylxB7uomr3dlR/ulvXNr3NTSh8/WW3joMSt8QvXCq1sjmFoihkOKZRcqXeqURHZTn5+UtdvU5z9etcQmQCAGde+4ehsbnCgK0LW7/1VZf7aS48JS1DGerrQ+0h8fcvZcWV5B+/4+YtIPfVUkQHO4zQdOYUGb6KnTNPqi9KVmEfHDQUshoeGCBXxU5dvW7SazHEisFNp0+6PVQ7SskH75I1WQKRSdzcfATGxgm3t544pntco9iHhtDdKF7x2J0ik5ic2eLxDAwIV0Wv2f+pcPv4hYth9tGamv2L2Dz6s9x4QrwytV46KulQmasrtYenZ5DBsqJ338Tmrz9O9jXvsw+6NBZ34hsSiuiZOYjMnCEl2YiemYN7P9yBxGUryNpDv/81Woo8I4gaxTE8jAZCIDJxpWtFUZC2ZoNwm8bTJ3XJGOyDg2So0JJPn4dEmMxmhCWnCmvaJb4LzlBVFeXbxPKWgOgYpK+/yum45j/4BeG2juFhVO3eYWhsrnD8b39GX2uLVG3hGy/j3Dv65AsyoWFXw9UyUGKkzhrPiUxqD+7DnxbPxub//Ar2PfFjfPLVL+OZZXm0YMKNkCITiXAyMHJssMxfJKypO3xQ2N5ceAoDnZ3CmuTlK6XGMxFKZNJtbSBFWnpwDA/j01/8yNC2O7//P24XbTqD+pxFz5oNv9CwSa9b8hfAPzJKuG3Z1k+E7XVHxJ+FmJzZ8An0xK0/wMvPD6u+9T2X+0lYtBSxxFzeCCHxxPxWVWGz1kv3Z2sQ1/oEh8AnKFi6PxkoMYqt3rnIhLoOC0/L1P3QdkSGWGRiHxxEl4HjfH9nB7pqxMcM6tpTBDVvbistxlBfH9lPW2kRWROZJRaRUETNoCW9rcXndPc72G0j58IWifsUqavFIhMAqD0ovpbTS80BcX8+QcGIyaWlGyKu/O6PhWLpwJhYLPriV/Dg7iNSgg9X8AkMQmBMrLBG5ppzLE2nT0IlJEMTf//+4REISRQLF5tOGROZNMuITLJpEcXljNnbG0GxYqmdrMiknpgnxC9conk+8AkKRlS2WNZMyfWcQcmbI2fmuBQsisii5bGtJdrHUup8D4zIPRmGYRiGYRiGYRjGGSzLmLqYFI4LMAzDMAzDMAzDMAzDMAxz4eE7k8x0olXjdT9FUdy9jGCIzjFMdT6v8foggL9dyIEwlyZ97W1orxCHCy35IyskKyYTEhYSK1wTYg93oDoc2P3j7xratvCNV9w2Dlt9HRloSVyyzG37iyZEJs1nTnlMhOApZIKws26+TbMtPC0DCYvF73Hdof3kZ9zd7P3ZD6RWxJbh01/8CPahIbKu7tA+2AcGhDUpEsEev9AwBFvEK2t7KnDfePI4WRM7Ry5EGJ1Dr5DbXHhaqq9x25w5Ra6M7ux7TwWK+jva0VUnF/TQg8NuR8nH7wtrwtMzEZWtHUpTTCakrVkv7MN60rhwo9taTwpsgt0oMokmRCaA9meju9FKBi+TltLiCgAIio1DUJw4/OnK++oMKkwUbEmAt3+Ay/vJvv5msqabCOYGxycibd1Gl8dyMfH2D8CmXzwJLz8/YZ1jaAg7v/ctj46l+expDPf1CmviFyye9Fr6WuJ3oKqoO3RAfhznzpDnKhmhFkVoiljI0FaqvcK1iKbTJ9DTaBXW5N52F8zezi9hZ950K0A8IEiJUtzNUF8fjj7zlK5t9v/fz3XNOUVyKADwCwvXlNa5k1BCcNNVVwsHEaQ1Qkd1Jd66/070d7SPe32gsxOv332LofmIXoYHBsjV28OI781YnB0vxtJVWy0Uw1R/uofcR9LyVdLjGUvCoiVkDSVa0UPhG6+Qn3Etuq31OPDkE24bizOG+/thJURWiUudB+QVkwnp6zYJt20oOIKelmanbfbBQXLf8YR4xlVmXHcTKbehyH/gETeNZjzBCUlkja1O/L0dCzm3IqQjRqCC0l0aIpM2SmSSnql7LDJCrNZS/d9VmWM0JZ11ZVvV4UCLhFihtUQ8t/EJDiHllBRBlnj4BGvdVh+hxYDIxHryOHk9aJlPzw9j8+bBN4SQLx9w7z1LSowSv2gJTF5eLu3DJyAQn3nxTSx46DEExsRCMZkQHJ+IvHvux+2vvodHj5zF6v/+gVMhlScIS00XtusVmTQUiM8TABA7N3/ya3PE91gaDYpMWs6eEbaHJqe4XQp1KRKSKD6HdUmcv3rbWsn7K/ELxXPO+AViuV5DwVGoDgc5lrFQ9zyjZrgmsvELDUNQnFgE01KsLaei7jebfXwQEBFpaGwMwzAMwzAMwzDM5Y/JDQtxMZ7BxHEBhmEYhmEYhmGYiw/7PxmGYZhpCN+ZZKYTIolIjLt2ooxo5bWWk73kRCaKoqwAoPXk5DuqqjpPkzDMGKzHj5E1oyITAEggxByd1VVSKwO6QtF7b6Lp9ElD29YfPYS2MvFD0rLUHd5P1iQu1l41VS/UKq4DXZ1uXV3c06iqirNvvy6s8fIPQMbGq4U1ubfdRe7rzOsv6xqbK9QfOYSC558h6+Lmzcf9Ow6SAYj2ijKcee0lsr/K3TvImpSVV5I1ABA5U7zScutFEpmEpqTCLyxcqq/g+EQyxNR8Vn9wuP7YYbJm7DFzlFiJlZGNHtdE1B0+gF6NcOkoM665gVx5J27ufGF7T6MV3dYG3eMD5AIuIfF00FOWkMRk8rPRVHjK6eu1B/aS/Scuu0J6LHFOAlljaTxBy330QIlMqDCSLDIiE4q8e+6HyWx2w2guLuFpGVj2/75J1lXu2q479KeH+qP0sctZSCxx6XIoxANtela2t0oEFZ0dQ/USniYOWDYZlL+Vbf2ErBF9/gMio8h/X/n2zbrDdq5w+pW/k+eJibSVFKFqDz3vGIUKKMqEz91BaFKKsN0xNESKAIyw4zvfxEBXp9O24f4+vPvofRjstrl9v2PpqqkmQ+KU6GUsCQtpWUj13l2abTX7xCKToDgLwtMzpMczluicOfAipFx1h+UFTCKGBwaw71c/damPI0//Du3lnpMuWk8coyV8AjFkxnqxyASqiortW5w2NZ46geH+fuHmMp8lV1AUBWu+/1OYfXwMbR8cn4isq69386hG+xbLIwG5efIo1H0YKjRtBEqO0u1kTKqqkp95IyKT0OQUmDREYqMYEZk1nXF+XTCW6Fm0RFNzW+I+DzAiUqNoLdEOvQNAZOYMl1dbVRQFkVnZ4nEYEJk0FBwha6jrUQAwmc2kuKj2oPtEJrb6OnRWVQprkpa4556gt78/1nzvJ/jC0XP49/ImPHr4DDb+/DdIvmLVBb9mosRn7TqvaawnxPelQ5NTnEoZYmbPE27XWnyWPAc5gxIHRc00/n2/nKBFJrSot+HIIbImnpgnWAi53kBXJ1p1HPsHu23kvXWRCFgW8lhaon0stWlIwkYJirOQ1/AMwzAMwzAMwzDM9EXhRBbDMAzDMAzDTClc/Ts+wzDuhr+TDMMwzPSDnzRiNFFV1UtVVWWK/3eljn+S6MlG15aLHE80AK1lEOmnK6ceDwnanr1go2AuaajAgGIyITbvXw+Hy4g56g65d4XTsTiGh7H35z90qY/CN9wjtag9KBaZePn5j3vvXCXmIokQPEXL2TNkyCVz0zXwCQgU1mRfdxO8/PyFNWde+8cFCQXbBwfxyde/QgZFfUNCcdNz/0DUjJlY+OiXyX73/+pnZACjavdOYXvUzBwESa7ATK0uSq1OahTrKbG0IXaO/PdJURQyUNZMrLTrDOqYGZyQ5PR9jsjKhtnXV7itJ76/JR++S9ZkXXsDWUMJNwBaRKOFzErzwQl00FMWVz4bNfvFwgazry8s8+jVwkeJzRO/ry3FZzHU1yvdHwUVJnKXyCQsJc3pqtmymLy8MOeuz7plLFOBhY98GdE5c8i6qj07PTaG+iMHhe1BcRaEJEz+/fsGhyBmzlzhtnpWtqdWXA+Ks5ChaBmic2YL2/taW5yGqynKt4lFJoExsYidLX6/0teJpQC9zU1oJM6H7sIxPIzDf3zS0LbHnv2jdG1bWYmw3Uhg3QihyWKRCQB01rhXCli25WOUbflIWNNeXorNX3/ckFxHlo6qCrImLFUcTB5L7Nx8eAcGCWu0jmnDAwOoOSA+nyYtX2n4D/Vmb2/EzxcLg9wlMjn50l9dFkk6hoaw8wf/7ZbxOKPukIR8UxC0T1m1hpRDlG/92Pm+Jd5nSjrgDuLy8rHpl7/XHepVTCas+9EvDEtQKLz9/REQFS2ssUkEwUehzmvBFvfNp8/3SchYBrttk0ROvS3NGLR1CbczIjIyeXkhPE28XXu5+HzkDEpkEpaaBt/gEN39jhIYFU1KZmRkKpSkJYIIzcsSOcP9IhMrcY0dnp4pLTSlpJJdtdXodJMAWEaKkrh0hVv2NYpiMsFMHJM9TViqWBjYUVGua05DCba1JDaxxDWKY3gYLUViKclEVFUl73e5Q2JxOeDs2nEsMvOjuqPia1STlxd5Lyp+/iJyPw1HaWHKKK3FYikUMHJ/1VUiifuuonFQ4rLg+ERDY2IYhmEYhmEYhmGmByaFH0lnGIZhGIZhGIZhGE3YY8IwDMNMQ/iuMTOdEKVq5NM0NKK+PLcEugdQFCUEwG0azVUAtl7A4TCXMFSgNCo7Bz5jQmpxc/Ph5ecn3IYSfLhC1d6d6Kikg3giCt94xS1Si1oiFGbJX+jW0FNEeib53ssEXKYKZ99+jayZdeOtZI1vSCiyrr5OWGOrq0HN/r3SYzPKoad+g1YJyceqb3/vvOxiwcOPwT88Qlhva6jDyRefF7TXo7lQ/LtPWbmGHNcoUdnih/J7W5rR09Is3Z8Mgz3dZPhKrxgoipJVFBoQmRw7LGzXCs6avb3JsEPjKXqlbT2oDgdKPnxPWBOSlCwliImamUuGWCkRjRaUXMM/IhLe/gGG+taCkhw0F552+joVvLbMX0Qep8dChXJUux3NZ5yPxQhdtYTIhAgj6SHvrs8Z3nbBw49Ji5cuBcze3tj0xJNkgLr6090eG0MdITKxzF+kKQ1IXCIOhFpPFmCwp1tqHA3HxfPOOB0iIBGUTAQAGk/rO+b2NDfBSsyb09dtJH/P6es3kvsq37ZZ19iMcu7dN9FlUNxRvu0TtJeXkXWqqpJ1ERkXRmQSkphM1nRWV7ltf8P9/dj+v9+Qqj33zhs48cJzbtv3RCiRicnbW1fo0eztLZRfAEDV3l1Or7lqD+zFEHHMSF6+Unoszogn5Bgt5wrR39nh0j6G+vpw8MknyLqIjCyypmzzh1KyGSM0EqK88LQMBMbEarb7Bocgaan4PFC5azvsg4OTXq8/IhaZBCckkSIMd5Fzy+34zItvwC8sTKrePyISNz33D2RuvMaj4wpOEH/vuiSEf6NQweYgN4jCJiJz3Jg4rvbyUnKbCIOCq4hM8fetrVS/yKT5jPg7JCOro4jJFUtrKeGlY3iYfF8js2boHpczomaIJQ7tFWVOjwciGgrEIgtLvlhONZYkYt4KAHVuumdJ3WPy8vOXEoJeaoSnif9UM9DVif72dqm++jva0VEp/pNM3DxjIhNAvyy2q7Yag902YU30LJdaXcIAACAASURBVNclFpcDlAS1u6EeDrtdWNNwVCwxipmdR94LCs+gRUf1xH28sbQU0/d0KQmJDBGZ4mOyra5G87PY3VAn3NYdYlCGYRiGYRiGYRjm8oVFJgzDMAzDMAxz4TC6iBPDMBcPhU0mDMMwzDSE7xoz0wlRctk9T1qPIHoSXv/T7BeXuwFoPcn5Z1VVXbc0MJc9qqqSK5/G5Y9/YNzs44M4IkRACT5cQWtlbz101VaTYXSK/o52tJwTr+yZsGSZS/uYiMnLixQh6H1I/2KhOhw4+/Ybwhq/sDCkXrlOqr/c2+8ma06/+pJUX0ZpKy3Bgd/8nKxLXLIceXffd/5n3+AQLPm3r5LbHXnm95ohgKJ33yS3T129lqwZJWomvcKsjLBFD01nTgHEqr1xEsKNsUQTIpNuaz362tqk++tpaSYDzqKQVexs1wJqerEePwYbEXDIuvoGqZvlXr6+iKZELCcKdI1vFBsR0AwhAp5GoEQmPY1W9La2jH+tpRltJeLVeamg70Rk5DzWk8be14k47Hby80CFkfQw5+77dIUOR4lfuARXfO3bbhvHVCFu7nykr79KWFO9b49bRGsT6W60krKKhIVLNNuSloplBardjnqJVa4HujpJYZUl3z0ik8gZM0mZXONJffKliu1byBrqdwyMhJWD4izCmvJtn0iPyyiqw4FDv/+1S30c+8vTZE23tQFDvT3CmnAJ0YM78Pb3FwobAKCzxn0ik0N/+A06qyql63f87zfRaFAKRkGJIEMTk2Eym3X1mbLySmF7X2uL0+ulsi0fk30nr1itaywTSVikfUwDAKgqGo6Jr4MpyjZ/gJ6mRmFNYEws7v1op2YIeyylH3/g0ni0aCZEl5b5i8g+qGPbYLcNtQf3jXvNPjiI2gP7NLYYIXGxWDjjblJXrcW9H+xAZLb4Wifzqutw/46DyNhAH9NdhZrndtXLiUxUhwPdjQ3CGk8Em2X6nCjpkRGZhKVnGBpPRLr4fNJKzEMmYh8cRCsx/49xh8iEuE5sPntGKATorK4i5SGRmdmGxjapHyLAr9rtaJP4HY/SbW1At1Us4bFoyEKdETNnLrwI8UHNAfdIbice9yYSv2CRW+XGU4Ww1HSyhpKTjCJzraslOgyMiUUgIb/UK4uVuScTNVN8n2m6QAkCHcPD6LZqn5dUh4MUS8YvWEyOQ1EUci5Tf1SHyOSc+F5nYGwcKaOWQUaGonXOstWL7+t4QlzGMAzDMAzDMAzDXD5wkHLq4gA/6sswDMMwDMMwDMMwDMMwzIWHRSbMtEFV1ToAzRrN9PJ68mj15QBwaaT//8VDGq/bAfzlQg6EuXTprKpAX7s4xO8shJy4WCzoaDlXiP4OudU39dJAPHzsHxGJG5/9O9lP4esvuzSO2oP7SOmCJ4JZ5Eq9RFBtqlCzbw9sdTXCmhnX3igd+ki+YjWC4sQPapd8+C4GidXfjaI6HNj8jcfJ8JDZxwcbfv4bKKbx07y5n/s8Of6ummqUfuI84Hj27dfI/SYSQfSxRGTRIaeW4nPS/ckgEyiPkVhxdyzRs8SyCgBoPndGuj+rROBVFKCgvr/d1vpJ8gxXKP7wHbJmxjU3SPcXmydeTdp6sgAqcVx0BhXQDE5wn1xjFKnPxoTjaa2EAEuvyCQgMooMAFkNCmIm0m1tgEqsiEyNRQ8msxnX/fEvCE1Jld4mNDkFNz33Erz8/Nw2jqlEChHM1wr9u4qMZEQUEksg5n0AyLA6AFTu3kHOnSwaQUW9mH18EEXIrPQGG8u2iuULZh8fUuwAjDwgmLZ2g7DGevwYepqb9AxPN+VbP3H583b6lRcx0NUprJEJrIeni3yj7iU0KUXYTgnLZOmorsSh3/1K1zb2wUF8/B9f8ojQqLO6Utgempqmu0/qmAYAVXt3jftZVVWUbv5IuE1k9izy90QRP38RQDyMW3f4gEv7oP4dALD08f+ET2AQ1v3wCbo/jXm+Kwx229BOhMkpgQIAZKzfRNaUbx0vYCrb+jF5ryFeINHyFGGp6bjn3S2Ycd1Nk9p8Q0NxzZN/wo3P/h2BUdEXZDwh8eJ5LiX8G6W3tQWOoSFhDXW9aYTA2Djymn2iCISSXARbEuATEGhoPBGZYhd2X2sL+bkcS1tpMXmNH5PrBpEJ0cdwf5/wfNpaKpatAEBElns84VLhex33CmTuA8jIoEYxe3sjYaFYfiAzb6XoaW4iBX2JOq8NLxXCUug5A3XuGcV6/JiwXTGZECu4D0TdY6FEGRNpIGTfZl/fCzpvncrISFC7BPd9O6srMWjrEm4vK0aNJ0QmrcXnyGuWUVqKxNdHURLHQBlkjqVtJZOPMaqqwtYglj8Fx7tfBswwDMMwDMMwDMMwDMMwDMMwDMMwDDMtYAEowzAMMw1hkQkz3Tiq8br+pdy10Xqq8ZyqquJloqcQiqLMBaCV8vtYVVW5pAMz7Wko0Pra/QunIpMlRKBVVVHv4grXzrAPDpKrdebccgcyNl6DYEuCsK7o/bcx1NdreCw1+8QruCpms9TKkXqhAi62+lr0tckHcy4Wp199iayZedNt0v2ZzGbk3nqnsGaotwfF79NiByOcfOmvUpKDpV/5T0Q6CVd5+/tj2X98ndz+2LN/mPRaW2kJGf5JvXI9vIlVicfiExBIygda3Ry2p/4NIUnJulc9jZo5i7yh1HJWXmRSf0wsUjJ5ewvDoLFz5pH7aNIZtBFR+smHwvagOAviF4gDH2OJzROPv7e5SbjirhZdtWKpEbVSvRGiZs6aJBSaSFPh6XE/U99xs48PLDrez1Go97VRYpVqGUQholFkwkh6CE1Mxp1vfISIjCyy1ic4BDf/9VUEREa5dQxTiaQrVpE11Z/udvt+rcfF8z2zj49QFOUfHkFKQWTOgcXvvy0uUBTy+6CH2Nli+ZWe4619cBBVu3cIa5KWrYBPYJBUf+nraClAxfYtUn0Z5fAfn3S5j6Gebpx+5UVhzcQA+yQUBeGp6S6PRZbQZLEgo6vGPSKTnd/9Fob7+3Vv13z2NMq3bXbLGMbSUVUhbJcJJU8kamYOAgjZQ/UEkUnL2TOkzDBjw1W6xzIR35BQUlpWd8i4yMQ+NISKHeLvaEhSMvLuvg8AYMlfgKxrrheP5/AB9LRo+X2N0Xy2kBRIyUgYwlLTSUFE2daPxgntTr70V7LfxCXyokV34hMUjBue/ivuensz5t3/MHJuvQtrf/gLPLz/JHI+c8cFXZEymJjndtXVSokCbQ119L4s7heZmMxmhBPzvIlB7PbyMmF9eHqG4fFQn1MAaC+jBVujyIhio90hMpEQCjWd1vZvU+das68vQpNT9Q7LKcHxCfAJChbW6BKZnBF7xU3e3ojJ0fceJy4RC0Tay0vR09Soq8+JyMx9L1eRiV9YOHlvpsNNIpOIrGzh/FokOQGA5sLTsBOSp7FQ98ljcvNg9vaW7u9yhjp/AeJ7PTJSSVmZMXlfS1XRQFwTj0Idv6Kyc6T6oQiIiIQ/ce+jtWTyWPo72jHc3yfczhPne4ZhGIZhGIZhGObywaTwI+mXMgo4UMcwDMMwDHO5wXM8hmEYhmEY5mLDd42Z6cZOjdfTFUVxbTleAIqi+AFYqnPfU5WHBW3PXrBRMJc81EqT3oFBTlcItMxfRAbAW87JywFkaTpzCvaBAWFN/MLFMJnNmPWZ24V1Qz3dKPnofcNjqdm/R9gel5dPhjuMQK02CgBNRBDEKKqqor+zA62lxaj+dDfOvfsmyrZ8rFucMmDrQvEHYqFIsCVBd7At97a7yZozr/1DV58ydDdasftH/0vWRWbPwuIv/btm++w77iUFPLUH902S+Zx9+zVy37NulpfCjEI9nN9SdFZ3nyIaT4lFJjISkIn4BAaRwdymQjqcNgp1zIzOmQ1vf3/N9qhZOeSxUybMIUNbaYlw1W4AyLzqOnI8Y4mbm0/W6JVuqKqKzppqYY0nVpP19g9AeJo4JNk8QWRSNSGMPZG4eQt0CYPOb0e8r60lRRjs6dbd70QoYQwgF0bSS7AlHne88aFQhKGYzbjhT3912+rGU5Wo7Fl06N8DIpPms2LxVOycefDy9RXWUOfkhoIjQmnDUF8vyrZ+Iuwjbt58+IaECmv0QAUbu60N0iHW2oP7MNhtE9bIyElGSVl5Jcw+PsKa8m3i98sVepoaUXtwn7DGLywct7/yLtnXsb88DYfdrtnecFQsAQtJTIKXnx+5H3cRmiS+tdBZ7brIpLW0GKWffGB4+7ItYhGZXlSHA53VlcKaMAMBd8VkQjIhaKo58Om4AHHp5o/IfjM3XKN7LM5IWLRE2N5QcERXuHksdYcPYKCzU1iTf//D477nM669SVivOhwo3/qxofFoIXNdGJ0jFr6Mkr5efIzrqKw4L4joqqtB5c5twvrw9ExEzXRPGNgoCYuWYP2PnsA1v/kj5j/wCPxCwy74GChh31BPNwY6O8h+uhvqyRrqWtMozkSdY2ktHS/ZaCsrEdaHp2caHktEBr1ta1kxWTMKJTLxCwtHcLzr72tocip8gkOIsWh/nyfKYiYSnp4Jk9lsaGwTURQFkVnZwho9IhORoAUYmT9Tc6aJJC6l7yVR8yCKqj1iwZ3Zx8epGPpyIYyQ0HVUSIpMTohFJnFz5wvbqfm+fWAAbaVy33mH3U4Kdi35Wl756YdPQCD8IyKFNV212vd6GgmppHdAIHnPZpS4/AWkxLieuCYBRiQhlJw3Mtt99yyc/c1lLK3FkyVVtvqLIy5jGIZhGIZhGIZhLh84JMkwDMMwDMMwDMMwAi7gAlgMwzAMM1VgkQkz3RAtZ3utG/pfD0ArIeX+JY89xD+FLPdoNFsBGDczMNOOhmPiUH5cXr7TsINvcAgiiOBCS5F8cEGWhmP0Q8fxCxYDAHJvvYusLXzdmNSir70NTRMC7hNJWr7CUN8UUTm55AWyzKrBeuhta8Un//lv+MO8LPwuJwV/Wb0Ir95+Pd7/4gN46/478PSiWTjw5BNSK0UDQPH7b5OrR+bceqfuoE1EZhYs88WrcNbs34MOIsipB1VVsfVbX8VAlzjICEXBpl/8VhjAMXt7Y94DIk/VCEefeWrc/s++9aqw3jswyNDK9lHZs4TtLUVnpX/nFIO9PWS4JC5Pv8gEAKJztOUJANB8Vk665LDbydWC44nPn7d/ALlKOBXkkqVsKx0UzrrqOl19RmXnkCEy6wl9IpPelmYM9/UKa0KTXfbZOYUK7o4N1rRXlKGNWOk8yeCK23F5hCBGVSdJVYwgChEBgH94BHwCAl3ejzMCo2Nwx6vvOz1Gm318cNWvnkLqqrUe2fdUQlEUqdC/Y3jYrfulwqQyK11Tn2/74KBwleuK7VvI7/qMa28kx6EHmX+XrDyqnJCwAED6uo1SfQEjoq1E4j2t3L3DsGSBovbQfrIm/8FHkbxiNTm36qyqRMWOrZrtdUcOCLeXkfS5E+qcYrPWY5gQJ1KUfEgLYERU7NjmtjkWMCLdE4mGACAsVSx+0yJl5ZXC9qGebljHHBuo+Yl/ZNRIGNUNJCzS8tiOMNzfZ1gAWbaFFo5krL963M/pazfA5O0t3Kb0Y+MCHGdQ/76QxGT4h0dI9ZWx4WqypnTzyPhPv/IiQHyG59z9OSj8h18piVxXXS1ZYyNEJl5+fvALD5celx6oe0NtJcXnj2kOux0dlWLBgSsiE9+QUATGxIrHIyk1AOjvUEzuHLd8jhVFQUzuHPFYBNeJE2UxE6FkM3ohw/fEddNYqOvfmNn65wmW/IXkdasrIhNVVVG5SywyGZFcaktOL3XC0sQik3biew6MSAUpaYRlnlhk4s75fltZCSkujJvHIpOxhCQmCdtFMtUm4vcSkztH+r6wb3AIKUej/gYCAC0SEiZK+qwHUgpVMnk81Pke8IwMmGEYhmEYhmEYhrl8MCn8SDrDMAzDMAzDXChYJMgwDMMwDMNcCvBdY2a6UQCgUqNNS9yhB60+uiGWqEw1bgWgtUzs86qqujf5yFy22AcHyVBGXL72A+OU5KC1+KyhcYmoP3pI2B5sSTi/Gm5kVjbiiAfeq/bsRHejVfc46g7tJ4NZSctW6u5XBp+AQEQQwZ7GU+IVRPXQ19aGF65ajVMv/Q29Lc1Oa4b7+7H3Zz/Avl/+RKrP06+8SNbMvt3YYT/3NhmBzcuG+nbGwSefQOnHtD8q//6HEb9AHAQGgLy774OXf4CwpujdN8+HPazHj6GjskJYn3X19fAm+nQG9R0f6OokQyeyNJ85DdXhENbEGhWZzBLLKlqLzsJht5P9tJUWk6EWmRWXY2eLgzZuE5kQAVvfkFAyRD8Rs48PomaJxTB6jz+dVZVkTVhyqq4+ZaFEJq1FZ88HR0s/+ZDsL2mZMYGVzGdbz6rmWohCRAAdQnIV/4gI3PXWx1jz3Z8gcdkKhKdlYNYtt+POtz5G7q13enTfUwlKZDJo6yJXAtfDgK2LlNhQx3sASFwisbL9/k8124o/eIfc3t0ik+iZuTB5eQlrpEUm28Qik4isbHJl+omkr9skbB+0daHusFgCYpS6Q+J+zT4+mP/AowCA+Z//AtlfyUfOxR3djVZ0VlcJt01YtITs352EJCaLC1QVNglpgAiZFd9F2OprdYXAKTqqxHNFAAhNMSYySV6xmqyp2rMTANDT1AhrgbbwCBj5XuiVGWqRsFgsMgGA+sMHDfVdvlU8zwpPy0BEZta413xDQsm5QtWeHRjs7TE0JmdQgktKnDCWhIVL4BsaKqw58qffo7+jHaf+8YKwzuTlhdzb7pbe9+VMSAI9/5I5JnUTweagOIvHxDFUEHuw23Z+fF211XAQki5XRCYAEJEhlna0l5VK9aNKyASjc+S/QxSU2Kvp9EmnkitVVdFWIpazULIZvUTOEPfXXl4K++Ag2U9fWxs5T40hrp+d4eXnR16b1x4wLjLpqCgnx52yao3h/i8FqHmvzNzDekIsigVA3tcNSUiCX5hY0iR7j4WaowCAhUUm4wghZFxddc7vQaiqSl6HyUhqxhI/X/ydtx4/SooCW84Vkvuhjn96oKRQHVWVGOobLwLvbqgTbmPy9kZAZJTLY2MYhmEYhmEYhmEuX1gwzjAMwzAMwzBTDJ6iMwzDMAzDMBcZFpkw0wp15ElCrXT7ckVRDD8pqihKPIDPaDS/oaqqeHnwqcVDGq+rAP58IQfCXNq0FJ8lgwWiB/+jZlAikyJSTKAXKhRomSCKyLlVLLVQHQ5UbN+sexw1+/YK2xWz2aOhzGgicGY9TocBZNnx3f+CTePB84ns//XPUEysQN9eXkaGchMWLUV4eob0GMcy84ZbYPb1FdYc/sOTaJMML4ko/uAd7P35D8m6YEsCVn7zO1J9+odHkDIWx/AwCp5/BgBw9q3XyD5n3Xyr1L4nIhNsbymiH/KXQUZ+ETsn31Df0YR4Y7i/Hx0V9GrBDcfoULKFCE4A9IrS7RVlGLB1kf2I6GtrGxEuCUhbsx5mb2/dfcfliX8P1hMFZDhkLB3VlWRNaHKKdH96kBGIlG4eEZiUbRaLTHyCgpEgIXpwhl9YOIItCcKaViKcKINWiGgUT4tMgJHg8oKHH8Odr3+Az+89hmt/+8y0C4NRIhMAqP50l9v211pMyxCo1asBIDAmFhEZWcKa2oPORSZDfX2kXCk2b57bpUVefn6IJOarTafp809bWSnaK8qENenrNuoam+w2RuapMtQdEc/F4ubOh39EBIARwUxQnEVYX7lzm9Njv4yIJWEhLZtwJzLnlM6aSsP9q6qKBgn5IkXlzm2GxzARmTBxWEqqob5Dk1IQliqWoFTvHTmmlRHyDwDI2HCVoXE4IyQhiXyva4n5kjPaykrRXi6+lkjfcLXT1zM3XSvcbri/H1W7tusekzMcw8NkIJe6rhyLycsLaWs2CGt6m5vwj1uuhq1eLN7I2HgNAqOipfd9ORMQGUVev3YR7ydAz/OCJI47RqFEJgDQWjoyH2kvF59PAZDiVnL7TPF8pa1Ubl5tq69Df0e7sEaPDIiCuk7sa29zKqzptjaQws3ITLHcRS/U/MoxPCx1r4CSKwO0CFQLSsLXfO4M+trbDPVduZs+TqeuWmuo70uFcEJk0tfagoGuTmENde/S7ONDimkVRUEsIbxoOi0nLmwoOCJs9wsLQ1iaPnHh5U5IglgQqCVTtdXXoa+tVbgtdUycCCUv6mtrRSdx/4kSyAYnJME3OETXuEREUedPVUV7Wcm4l2z1YpFJUJwFiokfLWAYhmEYhmEYhmG0MSl83ThVsQSL/x4LAOsz11+AkTAMwzAMwzAMw0xjWADKMAzDTEP4rjEzHXkGwLBG249c6Pd/AWildf/gQr8XFEVRMgFopR93qqrqejKfmTa0lZaQNaJwcWS2eNXA4f4+8gFhPXQ3WskVT+MXLB7388wbPwMTEdQv3/aJ7rHU7N8jbI/Ly4dPULDufmWJmytekbSjstxwIGMsbWWlOPvWq7q2+ejxL6D57BnN9tOvavmq/sXsO+7Rtc+x+IWFI3PjNcKaod4evPeF+zHc3294P42njuPDx78gVbv+x7/U9XlY8PkvkjUnXngO/Z0dOPfuG8K6gKhopKy4UnrfYwnPyIJiNgtrWs6dNdT3RBpPioPkIYnJ5wPVeqFEJgDQfFa80jYA1BMiE//wCHJVYkAujEGt/E1RsWMLKZLKIL4nWsTNFYtM+lpbyPDqWDqrq4TtfmHh8A0Jle5PD4lLlsPLz19YU/rx++htbSHD+GlrN8CLCKGKiMgShwtHw5+u0FUn/r1QISTGPYSmpCEkUfxeV3+62237kwmRRhErQY+SuFQcCK07cgj2oaFJr1fu3Iqh3h7htjOuu0lqDHqhgo2Np+gAbenmD8iajPX65QvhaRkIJ8LatQf1SxYoBnu6yZXpExb/Sy5i9vbGnLvvE9Z3WxucChPqDx8Ubmf29dW92rqrBMcnkuE+6twkor28jJyHL/nKV+EXFi6sqdy51fAYJtJZVSlsD4yNg7d/gOH+k69YLWyvP3oIgz3dpNDI7OOD1NXuDX7HE3LJusMHdAnYAKBsy0dkjZaQhbpOAYCSj+ljjgxtZSWwDwwIa/RKGDI3Ohe0jKW1iL4+yCOOKdMJxWQihTuUpAQAOmvE90pCEjwnrAtPzySPq6NiNUoCZPLyQkiSa3PSCELa0VFV4XS+MpHmM6fIGreKTCT6cnb+biuhrxNkZDN6kLnGbjxFyyNIkYmiIDqH3pczqHkrVFVKuOaMqt07hO2+IaHkdfOljsy9D0qkZj0hFplE58yG2ceH3A91j6Xx1Ak47HayH+vxo8L2uHkLeMXiCVAy1K7aGqfzLBm5jF6JUZyEIJX6HVP3OGWEz3qIlLgOb55wjWVzIrQaS0h8oktjYhiGYRiGYRiGYS5/+P7G1CXYPxg+qvb9MFVV8diKxy7giBiGYRiGYZgLgQKeozMMwzAMwzAXFxaZMNMOVVWrALys0bxJUZR79fapKMoqAA9pNO9QVVWcrtLu93lFUVSN/6400qcEDwGaV6vPemifzGVKKxF28A0NRZAlXrM9KjuH3EcLsZKhHuqJlc0BIH7+onE/B0REInmFOFhXuWsHhomA11j62tvQREgGkpavkO7PCJZ8iYeziUCADAd/+0tShjCRod4evP3gXehrmxzgdNjtKHxd6xA/gpefv8th5tzb7iZrmgtPYecP/ttQ/42njuOt++/CcF8vWTvjupuQIRH4G0tEZhbS1m4U1vR3tOOZpXnobW4S1mXfcAtMXl669j+Kl68vGbBukQgqytB4Siwyic0zHnIOTU6Fd0CgsEYk3xmloYAIteQvlHrow2hATQ+lmz8UtitmM9KuXGeo79g588gaSkwzFkp4FZqSKt2XXrz9A5BKvA81+/ei8PWXyWNh5qZrXRoLFS4cDX8aRVVVzdWQR6FCSIx7UBQFyVdoeQlHqDt8QNfcRERrkXguFhRnIYUKoyQuuULYPtzX6/T7X/zBO2Tf2dfeKDUGvVCSjK7aaqdzlrEUvfeWsN03NBTxC8WyBC3SifN946njGOrrM9S3FtaCo1CJMGfCwqXjfs5Yv4nst3LXtkmv1R0VX2rH5eW7JIEygtnbG8FEwK+zxrjIROaaJWHxMlLYUXPgUwxJzDVloILEYSlpLvWfsvJKYbtjeBiVu7aTwe+kK1bBJzDIpbFMJGHRUmF7b3MT2kqLdfVZtlUsZPENCdXcb3B8AuLmiaWU5Vs/gmNYy+8rT5MHJAyZV12PoDh6RUARwQlJSFm1xqU+LjeoOZiNkNEBIKWvoS7KQUR4+fqSx5FR2QZ1Hyo0ORVmQkZLEZGRJWx3DA+TgieA/g6ZfXxIaYoeIrOySWlDoxPxRytxDFNMJvK6Xi9BcRYEREULa2REJlRNRHqm4fNC/ILFpJi19sCnuvu1Dw2R0sHkFasM34e5VAhLo0Um7RXlmm2qqpL3LSmJ8yiUuHCotwetxP3pob4+8r6QjChjukGdv4b7+9DX1jrpdeq7b/bxkZJ8jCVyxkzy3l/DMUJkQkhAowipu14ComPgFxYmrGkuHH8usjXUCetFf8thGIZhGIZhGIZhGAAwKfxI+lTmvnxtEfyM0BkID5D7uz7DMAzDMAzDMAxjEBaAMgzDMNMQvmvMTFe+A0ArrfVHRVGIJRX/haIoMwC8CuffJweAb+gf3sVBURQvAFp/rWgH8OYFHA5zGUAFtiIzs4Wh/LDUNJiJ4KHMasyyUKFAs4+P07Bqxnrnq2GPMtTbg9qD8uGFukP7AWLV7qRlK6X7M0LMnLnkisfWAtdEJh2V5Sh88xVD23ZWV+G9L94/KYBXvXcn+cD1jGtugG9wiKH9jpK6eq2U/OD488/g79eugfXEMSlhy2BPN3Z891v4+zVr0G0Vr4AJAAFR0Vj3g5/LDHkSCx+mV9EY6Ooka3Juvt3Q/keJIoIDrcWuDx9N/gAAIABJREFUf8eH+nrJUImMPEMLxWRC1EyxeIkKrAx229ByThxomChS0sIvLByhySnCmkYXRCb2wUFU7pwcJh9L4pLl0uKCiURmzyKP/dYTBdL9dRAik7DkVOm+jEAJSFS7HTu//21hjcnbG+lrN7g0DkpkYqurwWBPt+H++9rbSPkSi0wuHJTIZLi/X0qGIAMdxpJfVTpxqVhkAgA1B/aO+3m4vx9lW8Sh/5jZeVKruhshTka+dFpbvtRRVYFG4piWduV6w6HrxGXi99QxNOQWOd1Yag8fIGsmilli58yDf0SkcJuKHVvH/TzU14smIqQYv8iYAMZVQpPE5+HOauMikwbiu+sTHIKoGTORulos0rIPDKD2wD7D4xiLp0UmScQxDQC2fuurGO4XS3mo6zYjJC5eRtbU7Nsj3V9/R/vI9aCAtDXiYwI19+jv6EDtQdd/901OhAdj8Q0JRUiiPrmFl68vVn37+64MC3PuvBcmQi4w3QhJEM/BugiRyfDAALobreJ9eFBkAgARlJTvn/efrMfFIXJ3CDciMsUiEwBoK6MFRk2F4u9Q5IyZpHhEDzLB/WZnIhNSDpMCLz8/l8Y2EUVREJsnnmNRslKAFnjGzM7TNa6x+AQFk2OsMSAyaSg4gsFum7AmdZVYVnY54B8eAd+QUGFNR6W2yKSjshz9HR3C7WXFITLCk4aCI8L25jOnSImYhUUmk5C5h+BMtEWJTKJm5eq+vjKZzYidmy+sEX0OelqanUpXxo1LQuquB0VREDVrtrCmeYJM3VYvvq8ezCIThmEYhmEYhmEYhoBFJlObb67/JtYnr4djzDNsqqrC4mfB2w+8fRFHxjAMwzAMwzAMwzAMwzDM5QrfNWamJaqqVgD4kUZzIIDNiqLcT/WjKMq1APYCiNUoeVpV1cOGBnlxuA5AnEbbC6qq9l/IwTCXPm1lJcJ2amVZk9mMiAxxTYsbRSYNR8Vf15jZc52u6J6+TrzSPQCUb/1Eehw1+/YK2xWzGQkeDmX6BAQikggeNxABIYqDv/sVVLvd8PbVe3dh1w+/c/5nh92Ofb/8Kbnd7DvuMbzPUUxeXljz3Z9I1VqPH8Pfr1mDp/Iy8OL16/HBlx/C3p/9AEee/h1OvPAcCt94BQeefAJvP3g3npyRgKPP/F5KemL28cGNz/4dgTFapyAxySuvJOUbFGGpaYjLdy1oQY2hpeic1PshovnMabIPKoBEEZOjLxgwEeuJAlJgZJkv/15TgSwq+C2i5sBeMliVseFqw/2bvb0RkzNHWCMTWhuFCovLSIlcIWP9VaQYiiJp2QoyxEVBhT8BWkAmwll4aCLBCYmG+2f0QYlMAJArvctCzcUiZ8iLTEISEskg9MkXn4d9cPD8z5W7tpHHpOzrbpIeg16icnLJ77goSFf0Pv1A2Ixrb9Q9rlEmCkOcQUkT9FJPiEwisrLhHxEx7jXFZELqlWLxRt2h/eOES9bjx8hAaMKipcRoPQMlFOuUOGZqUU9cs1jyF0i9n8BkOYxROivFIhNXz7UBEZGIyRXPDXqbm8h+XJmfaBGdM5tc6b5ah8ikYuc28hqJ+ndkXnUduZ/STz6UHpMWlCAgOneOUFyqxaybb5M6djlFUdxyvXe5Qc3BbITIxFZfS16rhBKyFFeJzBLfG2otKcJQXx8pkKSOJTKEJCSR4o5WiXl105lTwvZo4prICNR1ojPhZVuJ+N8SkUlfZxghdvZkkfBYmgtPwz40pNk+2NtD3pd0JivWQ+ISsQu96dQJ9He06+qzavcOsiZl1RpdfV6KKIqCsFSxCK29QltkIiM/jZtHC0oAIDQljRTuUSITqh2Ay/fXLkdCEmhJVlvp5O85NUehji9aWIjfUePpE5rHpVZCXgwAkdli2ZQRqPtrTYWnof7zHK+qKmwNYrF2cDzf12EYhmEYhmEYhmHEKOCVpac6T9/+NPY8vAefm/053JN7D174zAvY++W98PN2r7CaYRiGYRiGYRhm2iF+vGoEA8/TMQzDMMylDotMmOnMTwBs12gLBPAXRVEOK4ryBUVRchVFCVOU/8/enYdHVZ1/AP/emUz2ZJLJZJvJMtk3CIQlEMIOsoiIuCDiXrdarfuC1Wq11bbWLtatVau1avUnVay7gAKCbLLvIQkJ2fcdsuf+/kiDIcyc987MnQSS9/M8fSpzzj33EGbmLrnv90j+kiQlSZJ0gyRJ3wL4DECwjTEOALjfBfN2pZsFba8P2izYsNDT3Y3643nCPkpWsTUSD/DW5By1a162dHd0kIXxpvGZVl/XR0aToR/56746/VAwpXiruNAtNH0s3H39FI3ljHDigf6KvbsU/50GaiwpwqFV7zm0bX+7Xnvp9Dg7X30RZcQK9X7mSEROmeb0fgEgft6FyLjxVsX9W+vrUL77BxxZvQrb/vocNjz1KNauvBdf3HUrNv/+18j7+nO79j/v2b86VZwrSRIm3Hqnw9sDQPIlVzhUnNifkfjsdLWeQmOxOIiCUqEg9CJ0tHNBJsaUNGF7U0kR2psabbaX/rCd3IfS1YIBICRNXJRRm3sUXe3tisfrL3/tV2SfuAsWODR2H3L17X17FH3/dHd09BZeCugjxcXmzvIyGGAmCtwo8fMXOT0PavV1AKglihRFmkqKyT7+EXQRElOHb1g4GRhXrEKQSWtdHU5WVQr7GJOVB5kAQMSkbGF744lC7HvnTQC955t736IvUxIXuS7IxN3bh/xZi8Kjjn26WritztsHMbMvcGhuAOBjDEZgbLywTykRPGKPnu5uMmgjItP6+UvMzLnC7bo7Os4I/FMyb1vn765GHVuokC1bOlqaUZMjLoLs+zv7hoaRRfCFG5wPMmlvakRrfZ2wT0C0uBBZiahpM53aPiRtNPxdEKglaTSImDxV2Kd462bF1035a78U70+rJUNqghKSEBgTJ+yT9/XnDl/LAb2FrtVECENomjgwwRZJkjDnN8869EvbmFlz4e/iQI3zEfXeb6ksFwZCNBXT4UtUEJmzghLE57KttTU4sWk9GXAVnjHB6blIGg0CY8X3s6wV1vfX3tyExhOFwj5qhK6cNSZRvN9UXIRTdbVnvFaXL75GoEJmHEWFjHS3twuDGGsOHyIDeBz9nuoTSZy3yj09OLFpg11jFm609euKXgGWGFWOq+eDAEussL021/Y94fLd4vNRnY8vDHH0fWmg97hE3Y8p3yMOe6bCoP0jo+BjtPVrppHLMzCQDIwbGMB0sroKLRXiMI5QB0OMqGNId3s7qo9YDzKuOUb8DkOSEKQggNZewWni4OXW2prT1/TtjQ3oaj0l7O8XblJtbowxxhhjjDHGhieNxI+knw8iAiPwxIIn8NTCp5AdK77PyRhjjDHGzl0cJMgYY4wxxs4HfNeYjViyLPcAuBKAaKnOCQBeAXAQQD2ARgBHAbwJQLT0YQmAi2VZblVntq4nSZIZgK2q4+2yLIsrVBgboKmkCN1EkTxV9AnQIQd1+cfIQhUlqg4fQFdbm7CPafxEm22xc+YJt208UUiuBAv0hl1UHbb+wHOfyCxxoZxaqIf0T9VUo6mULly3ZseLf1bl3w0A1jx8Nw5+8G98/4enyb5pV1wFSaPe6c+Mx35NrmjsCpl33IO0K65yepzUy5c7vto5eldLdxYVAgQANTlHnNpH5X5xkImfKQLeQUan9hGcKi4MAIBqweqrJzaJV102JCTBUy8u3uiPKsro6eoiC6GtkWWZLLA1KCiepYSOyRC2t9bXoamELqhsKikmi9cCoiz2TM0hCU4GkcTPu9DpOXgbgshVpEWFYBQqyMTNyxtegQaHx2f2i8qeLmwv37MTna3OXa7UHKO/n41JqXaNaVGwwvzWP/8e7U2N2PDko2SxZ3DqaATGOvedRKFW9K60EWRSX5Bvs61P3AULoPPydnhuAGC2ERzSp2znDvR0dzu1jz41Rw6ho6VZ2Mc0wfp8omfMJscv6Be8UbZTHGAXGBvv9PHdUfoocZBJa20NOk622D1u+Z5dkHt6hH36h7dYZop/pnX5uU4HxjWcKCD7qFFwnbBgsVPbx16w0Ok52BJFBCW21tYoOp/t7uxEwfq1wj7miZPJ46kkSYhfID73aCopQmNRITknW1rKy8gAm2AnQhhCR49F+orr7d5u9FXXObzP4czfJA4ykXt6hEXf5HW/JMEv3OzI1BQzKAjLOLTq32Sf8HHOB5kAgCFOHBJWT9z/qT4iuh3dyyVBJgrGLNn6Y2hYW2MDGVpncEHhPUCHWwK2z7EAoPKg+BwLoINdKBGTp0DSaoV9Cjd+o3i8toZ6VBCBF9HT6fOl4YIKdajNOWrzvKiMCDIJS8+Ahvi364/67qjNOSI8t6P+XcPtCK4dSSRJIoP5qg+dGWRSNSDYxBoqKMkWJf9O5bt3Wn29RnBPEOg9X3b2us+aECX3K//3u4jmslKyry8HmTDGGGOMMcYYI0gaLqRkjDHGGGNs0Cg4/eawE8bOMU4uIswYY4ydjzjIhI1osizXAJgDwPrThY7JBTBLluVCFcccDDcCsPX0Lr3MOWMDUKvPAoAhji5EoUIOutvb0VBIF89RyomV4wHxiu5xc23lAP3o+LqvyT6lO7aSRfeRWeJCObUoeTi7glhx1JrmslIc/L93yH4r/rsW0QqKmbvb2/HVvbeTwTmSVotRV16teJ5KuHl6YvEr/4TOx1fVcUXi5y/CtJVPqDKWRqvFxX9/Cz4hoQ7NI0hBGBEl0BILrbu7sE+ts0EmB8RBJkoKpCjByXShfpWNIqv25iaU7dwu3NY8wfb3jzVKAnaUFHcMVHP0MLkie9wF9PchJSxdHGQC0AE1ANBQRB8f9NEWJVNyStx8x4NIQsdkwM+kTmFoUKJ4Jfu6XPFq6yJUkIl/RCQkvvk6qKggk56urtMFS46iirEAICjRvuLW+IUXkaE7rXW1eCElCrv/8Qo5XuKiJXbt3xHUcaSh8DjamxrPej3n09Xk2EmLlzo8rz7mzCxhe3tTo9PH2j6lxPEMACJsBKv4GIPJn2Xhht5iYLmnB2W7iGPnRHGAiytRQSYA0EgcT60pU3DN0r/QNmbmXLJ/38/UUUquxQIszgeZmCZkImLSFIe2lTQapF56pdNzsCWSCDIBgOJ+wQC2lO3cjvbGs78r+lN6nhWvIEStdMc2RWNZU3WIzrp1NoRh6srH4aHXK+4fMWkKEhZc5NQ+hys/cyTZp6m0xGYb9X3lF2Yir+mcpeTaM/eLT4Xt+qho1QKuqGDeuvxjkAX3dpR8hpSEZdorZFQ6NG5uwj5F3393+r+VXB8ExbsmyMTfHAnPgEBhH9G1fhURZOJnjoSXwbmgRQ9/PUzjbIceA0Dhhm+F74X+irZsIgPLlIT+DRfU9WvnqZNotBJw2tXWRt7vCB9vX6hReIb4Hqnc04OKfXustrXW1ZHnS1SY9EgWkia+v1V1aP8ZnzHqHqCk1SI4Oc2hufiZzPANCxf2qdi72+rrVKgdFebuqKCEZDJwqep/YTDN5bZDzfpQ4WiMMcYYY4wxxpiGH0lnjDHGGGOMMcYYY4wx1g/fNWYjnizLlQCmAXgJgPhJYdr7ACbKspzn9MQGkdRbVfoTG80t6P17MWaX2twcYbtGp0OAguJxI/HQOgDUHHO+8LJsl3hFd98wk7CQ3DQ+E54BAcIxlASZFG8RF7hJWi3MEyeR46ghKCkFbp5ewj7lxIqi1ux963V0d3QI+1hmzYVpQiYuevkN1UIGxl5/MwKi1Bmrv8DYOMx79nnVx7UmMmsaLnzhVUga9U7hfMPCseS1d+wqPAtOGYX5z72oyv41bm4wEIVPSlawt6WztRW1x44K+4SOdj7IxMNfD/+IKGGfwu/WW329eOtm9HR1Cbe1d9Vl39AweAeHCPuIVq+2Je+rz8k+8fMcD+3oE5SQRH7/KCn+ayw6IWyXtFr4DUIRRkCUhVxF2Jb4eXQhslJUASj1WRFpLqODTNjgMiso+K/YZ73ISinq+9k/MgrudoZ9uXv7IOueh5yZ1hmSLrpEtbFsUbKid6WVYsqcTz8WbqPz8YVFQRAFJWKiOMgEAEp2bHV6P8D/QvkEvINDoI+2HWphmTFHuH1D4XHUF+SjNu8Y2hoahH1NdoaAqUkfSQeZNBHHKGuo8JagxGR46n+8JjFPnAydt49wmwJng0yKCoXt7r5+ZDiREpIkYd6zf4XWw8PubdNXXA9DXLzTc7DFmJQCr0BxMXzxlu+E7QCQv/ZLsk+sggBNAAjPmECGLZbs2KJoLGuo8zCNToegBOfCDbwNQch+8DFFfU0TJql+nTScKAnFaxYEmZCBdZHi6yA1uPv6OX3eHp5hX3CBCBVk0tbQgFO1NTbbbYVc9vGPjDrj+1wt7t4+5M+hf5BJbZ743h4ABCU4H3BqjSRJCCXOsUQ/RyrIIlRB+KcS1LlLc3kp6vKUBUae2PitsF3SahWFZw0XRgWBsbVHz74eqTp0AD2dncLtqACagZSEPZfvsZ6Vr+SaiwpKGcmooN62hgY0l/14DKPudRkTU+Dm6enwfKjQGWvvA1mWyfstrgoycfP0JM/J+gJO+/8crdHodPA2Bqs2N8YYY4wxxhhjw5NG4vv0jDHGGGOMnVN4/UHGzi28KChjjLERiO8aMwZAluU2WZbvBDARwGoA3XYOsQ7AbFmWr5JlWbx87rnJCOBfAJ608r/bZFluGcK5sfNUXb74If3AmDhyFVgA0EdZyGL22hzHC6/7UKubm8aLH3DXuLmRhaYlO7agrVFccNm/YMSa0PSx8PDzF/ZRi1anI4tGbK0yKZL71Wdkn6y7ewuYvQINuOSN98gCTEqAJQbTHnnCqTFEUi65HBk/uc1l42vc3DD5rgdw2bsf2l0QroRpQibm/u7PivrGzJ6H5au/dHrl4v6MyeKH9WusFKYoVXPkEORu8WE9NN35IJPeccSfl6Lvv0NXW9tZrxcSxUqQJERPnWn3fKhiD6qwayBZlnFk9QfCPl6GIITbWRBkjcbNDcEp4hVylcy/kSiu9jOZodXp7Jmaw+LnOxbw4uh21lArWjecKEBXe7tDY1MFrnozB5kMNh9jMPyIn7utVcOVooux6OJDa8Zc+xNVgsySFi+FIT7B6XEoIWl0UFHOp6vP+HNdXi6qD4uDAOLnLYTOS3werERATCxZcFb6wzan99M7jjhowzxxMiTBL2JiZtHBLYUbv0WZgvmaJ04m+7iKT0goGbjRWGxfkInc04Py3fZds2jd3RGVPV24TdHmjegmin1FGk8UCNsDoi3Cf3N7GOITMPUhZcEWfYJTRmHmr55RZf+2SBoNIrKmCvsUb9kMuUecnZu/9ithe4AlFoY4Zd9pGjc3mIkwn9LtjgcYVR0Sn4cZE5PtCkq0Zex1NyF5yWU2200TJmHRi69j+Udfwp/PNWzSeXnBK8go7NNUavtcrqmkSLjtYAXWORuYoW6QCf1ZrM/PtdlWsl0cJBTiYAiiEpHEcaEu7xhaKisA0CHFPqFh8PDXqza3gaiwuKpDB9Bj5Xq/u6ODDNyjrpeVsswUB5kAQKHC0LDC78T3BsIzJrgk4OZcFWiJJY8lNTmHz3qNOl8C7P8+8AwIRGCsOBStwkaQia2Akz6SVqsoGHGkUnKt1T9greqgOMjE2Z81FTpTl3cM7U1n/oqwpbzsrNcGCnJRkAkABKeOErZX/S/IhAoo9A0L59A4xhhjjDHGGGMktX4nxBhjjDHGGGOMMcYYY2x44CeOGOtHluXdsixfCiAawG0A/g1gL4BaAB0AOgHUAzgEYBWAewDEy7J8gSzL610wnxtkWZZs/G+DivuplmX5Vzb+92+19sNGlro82wUbgLKiD6C3KCwoUbxqoLWH1u3RUllBFuaYxtMruscRq2PL3d3CwIL64/moPnJQOEYkUSCnNmqVyYp9e9DT1aV4vIYTBeRKtFFTZ8A8cdLpPwcnp+LCv/5d8T7OIklY8OdX4O5kGApl9lO/x7SVj8NDr24Rj2nCJFy3ZjOmPvxLuDmwAr1So6+8BuNu+qmwz/ibf4al/3xf9TAdIxGuUJuXg+6ODofGLlew8q1aQSbUSsxdradQsv37s16niprCxo5zKDgmdJS4OKP68EGrRV+2VB3ajzpBMR7QG3Sj0WoVjylCBrEcEgcAAEDDiUJhe0CUxY4ZOSd+wSK7t9FHWxStQq2UgSj+lHt6UF+Q79DYVJDJYBW4sjOFjckQtitZHdwWWZZRc1R8DmZMEn+/26J1d8e0lc4FkPmEhGLm4087NYZSHn7+CIyJE/Y58O+30NAv8CHns4/JcZMWL3V6bkDvA4PmTHGoBxVAokRTaTG5ijcVLhI+biLcifOMgvXrULpzh7CPZ0Cg4sAHV5A0GugjooR9GovsCzKpO56HtgZxKKK1axaqwLqjpdmhcMI+DYXiIBN9dIzDY1sz/pY7FIemufv54+JX/wWdl7eqc7CGCoxpa6gXfmfW5eeh/niecIy4Cxba9QCwOXOKsL0uPxcna6oVj9cfFcQUnKZOQIBGq8XC5/+OyXc9AP/IKECS4B8ZhdFXXYtrv/4OK/67BilLr1Dt/HM48zdHCNubS21/fzcWi++XUN93ajHEi+8NUaj7G/agAg0AoPKA9WL6lopyNBQeF24bmi4+h3NG1JRpZJ/iLZsAAFU2/g59XH2sDR0tvlbvPHXS6ndn7bGj5D0EtYJMQtPHwjMgUNinYCMdZFKXn0eeG1hmzLZrbuc7jZsb+bm3FlhTRgSZ+EdGwSck1O75UOEnZbt3Qpbls14v37NLuJ0xKdXl9yzPZ4b4RDIgsC/otq2hnvwchTr52VcSgjPw3LrmGB3QbBzCIJP6/Fx0traiYo/4msDfJD6XYIwxxhhjjDHGAEAj8SPpjDHGGGOMMcaYTRwAyhhjbATiu8aMWSHLcqksy6/Ksny1LMsZsiwbZVn2kGXZXZZlgyzLo2RZXibL8vOyLDtW7cnYMEeFVRjilK+kG5QofpC35thRxWNZ0/ews4iSIBPLzDnkqoTH131tsy3ns9XkPiInD26QSXjGOGF7V+spcoXe/grWryP7TLz9rrNeS1i4GFn3rVS8n/7G33IHIjKzHNrWHpIkYdLP78dPdx3F0n/+H9Kvvh4+oWEOj6ePisYFv/8Lrlr9lUsfZu9vxi9/g9RLrzzrdY1Oh7m//RNmPflblxQJGpPThO09nZ2odfBzXrpDvNK8X7gZPsZgh8YeKGbWBWSfgm/P/Aw0nCggi9gs0x0rVqIKs7raWslgkv6OfPQB2UetonuAXnW3paIMp2prhH2aisUFLPpoi73TclhIWjr8zPaFecTPW6TqikVBCXSohCOftY5TJ9FaXyfs4z9IBa7sTFSQSV3eMXS0NDs09smqSrQ11Av7GJMcD+JJWrwUYWPF5yG26Hx8cenbq+BnMju8f3uZJ4nPNXq6urDlj78D0BsCk/PpR8L+7n7+ZECWXfObKJ5fc2kxmkrFgUQUJWEoVKCKVqdD9LQZwj5F33+Hou+/E/YxTZg05KuF+0cSQSbEMWqgsl3i8BYACLdyzRJDBJkAQDlR8CtChoapfKzVaLVY8KeXyIJWAFj455cRGCsOGVJLpIJggKL/BQNYc3zdV+T2cReIgzMHiiC+lwD6XNma9qZGMsCGOo+zh1anw9SHf4lbtu7H3bnluHXbAcx/7kUytI+diQoyabIRRNXd2YmWijLx2MT3nVqokFsRjZubasEVAODu7UOe35bttH5cLN52drjlQJFZ2Q7NSwnT+EzyO7To+41ob25CCfEdEZTgXLgMJXQ0/Tm3FhhTeYi+z6fWd4hGq0X09FnCPiVbv0dXW5uwT96az8l9RU8T72c4MiYT94SPnh0QUb57p3Abk8JAtIHCx4kDLE5WVqC5rPSM1+SeHlTsEc+Huvc60ml1OvK+aF/QrZJ7/CEKvldEQtPHkg+WlQ/4N6/ct0fYX9JqFQVkOSqECDKRe3pQc+QQGXSq5nGUMcYYY4wxxtjwxUEmjDHGGGOMnVskcGgCY4wxxhgbWnzXmDHGmOpO1dWita5W2McQrzzIhHpovT4/l1xpVYQK4tC4uSl6yNkr0ADThEnCPse/+drmXHM+/Vi4rc7HV1GBnJqUrFhcsVe8smh/Bd+uFbbrfHwRNcX6auZT7n0Y8QsuUrwvoHd14KkPPWbXNs7SeXkj7oIFmPfsX/HTnUdw3debsPAvf8OU+x9B6uVXwZyZhQBLLHxCw+Du6wdJo4HW3R1BiclIu2IF5jz9HK7+/Fvc/P1ejLnmxkEtwtXqdFj4179j0Uv/QMKFixGVPR1jrv0JfrLxB4y97iaX7VdJoaOSQqSBZFkmizPDxqq30rW/OQLGZHHR/vFv15zx5xPfrSfHdXTVZSWrzCop8gCAnu5uHP3vh8I+XoEGVVeIDlFQWFZFvC8aigqF7QFRFjtm5BxJkpCwYJE9G2D0iutUnYNvWDjcff2EfaggMmuaSujwAz+ieJa5RtgYoihOlq0WfypRa2X184GcCeKSJAkzHvu1/dtptbj41bcGvcB91LKryT6HP/o/1OQcwYF/v4Wao4eFfePnXQg3T0+1pkcGiADKgkiE2xPHXDcvb4Sk0cemmJlzhe1drafQTISumCfQIYSupo+MFrZTq8UPVE4EmXjo9Qiyco0VYIklQwYGFlsq1d3RgWYb4Qen9x8d49DYIkEJSch+4BfCPhNvvwsJCxervm9bghKS4E2E4xULgkzy14qDTDz89TDbGc4YNnY8NDqdsE/pjm12jQkA1UcOkX1cUegqSRJ0Xl6qjztS+JnEgXpNpdY/y83lpZB7eoTb+kfYF9bnKGdCM4JTR6n+/gnPEN8vKdtp/Xu7hAgy0Xp40OdwTnDz9ISZuHdVtGUTTny3Hj2dncJ+4Q4GQigVEB0Ddz9/YR9r57LUda6XIQi+4San5tbzK6MoAAAgAElEQVQfdR3c1daKkh1bhH3yvvxM2O7hryffc8MRdT1Rl38M3f3epy2VFWgqKRJu4+j7VsnPf+A5VcmOrWTop5J7ryMddd+w7zNfsV8cGAJJIkM9KB5+/ghKFIfElu89MxCECmEMjImDm4KQPkcFp9L3XY98vAqdp04K+4RniMN8GGOMMcYYY4wxAKou1MIYY4wxxhhjjA07fN3MGGNsBOIgE8YYY6qrz88l+xjiExSPZ0wUP7Te09WF+oJ8xeMNVJcnDjIJsONh4tg584TtbQ31yLey2nZdXi6qDx8Qbhs/b+GgF27poyzwCjQI+5TvURZk0tnaSj64bZk+E1p3d6ttkkaDC5//GxkU0b//gj+/MqTFbpJGg5BR6Ui74ipMuW8lLnz+b7hq9Ve4+fs9uH13Du7KKcF9RXW453gVbly/HQv/8goybrgF4WPHD2qAyRlzliSkXHI5lrz2DpZ98Cku+N2fXVKA2p9vuIl8nykN3OivsagQLRXlwj7mzCl2jysSM/sCYXv98Tw0FB4//efCjd8I+7v7+jlcZKOPjoGHv17Yp+qgsgCDkm3fkz/LxMVLoSWKZe1hTE4hPwd9q+5a09ZQj/bGRuH2+ihxkbnaRq+4XvENyKx7HoKRKI6xlyRJZAFo7bGjdo+rJMjE3zw4Ba7sTKHpY8k+1KrLttQQQSaSRmNXcJ01kVlTETt3gV3bzHv2eTIIwxUiJk1B9PRZ4k6yjM/uuAnrfyUOYACApMVLVZpZr5C0dLh5eQv7UEEkFCoIJTxjvKLjhGXmHKfmAQCmiXRwi6tRx5iGokLIsqx4vLJdPwjbw8dNtHncNBHnEmW7HQsyaSwuIgMOXHUeOeHWO21+TuLnL8K0lU+4ZL+2SJKEyKypwj7F2zajp7v7rNfbGurJAnfLzDl2n2fpvLwQli4O7aP2a03l/r1kH2eLhJn6qLCRppJiq99JSs7z9BGDc05tcCLIxBXF11SQbXN5KZqsBG8VE0Em4eMmqhpmZk1UtvUA2T6NJwqx55+viQeRJMTMcu05V989FZEqa0EmRFBfyKh0VQsqLNPpQM/Cjd/abGuprEAZEVgWM/sCaNzc7J7b+c6YJL4H2N3RccY9FiXhbI5+HwSnjCI/mwP3n/PJRy6bz0hCBd02lRShraEeJzZtEPYzxMaT4a5KhBPhM+V7dp4+pna2tqJ0p/g6yTxRfDxxlk9wCHxCQoV99r/7T3Kc8HH8XmWMMcYYY4wxRtNI/Eg6Y4wxxhhjjDHGGGOMsR/xXWPGGGOqq80VB4MAsLpauM2+SXQhN1VMK1Kbe0y8/wTlc1VSbHvgvbfPei3ns4/J7dQuaFVCkiSEESuOVuxVFmRSsu17dLW1CvvEzBKHQLj7+uHK/3xOrnYLScL8P74E03jXrg6sBkmSRvyKJJIkkcVJ1YLACltKttMF2RGT7FvZnkK9hwHg+Pp1AHpDmE5sFof7RGVPdzgcRJIkBCtctZZy5ONVZJ+UpVcoGkspnZc3AuPEoVei+TcUFZL70Ee5NqRnoODkVEy47U5hn9AxGbjo5TeQ/QAddOAIqgC0Nk98TLSGWvFa4+YG37Bwu8dlzvPUByAwJk7Yp2Kvo0Emh4XtAZZYVYpwZ/7yN9D5+CrqO/WhxzB6+bVO79NRUx/+Jdmn5sghcqVrD389HYpiJ61OR64iX7pjm8Pjd7W1ke8Js8JwEX9zJLnKuYhGp0PYmHEOb68WfZRF2N55soX8/uzT3tRIXu+YxmfabKMKZJtLi9FSWaFoLv01KjnWWlxzrNW4uWHRS/9A1n0rERgbDwAIjI1H9oOPYcnr7wxJsXfklGnC9vbGRlQfOXjW64Ubv4FsJeCkv7gLFjo0JzNxrlt1cD86TrbYNWbF/j3Cdn1UNBmmxwafvzlC2N55sgXtTWeHADYV099Tfiazw/Oyh7chCF5BRoe2dUVQgJLC87IBxesna6pRR9wzi5yc7dS8lIicIg4yAYDiLZuE7eEZE+Dt4L+HPUJHi4P5Kg/uOyNUq7ujA5XEdS51/8FefiYzgpLEIcyiIJP8NV+Q+0hYcJHd8xoOjMninysA1Bz98RyUCjLRurs7/O/fu604UKOiX9hzT1cXjn3+X2F/P3MkjMR7hwEhxL0tACjduQMlRFCUkqBPJajrqlPVVWguKwEAlO/age72dmH/qOwZqsxLJJgImetqaxO2exmCyOsbxhhjjDHGGGMMUBZkYk/QP2OMMcYYY4wxNpyM9LohxhhjIxMHmTDGGFNdHVEE7Rtmsmv1Q39zJFnAWnvsqOLx+pNlGXV54iKSoHjlq/4ak1LIIvHCDevQXF52xms5n60WbuPu6wfLDOdXp3dEGLHKZPXRw+hsPUWOc/zbNWQfJSEQXoEGXP7v1bhp827M/+OLmHL/Ixh91bWwzJiNqKkzMGr5Nbj2yw0YtWwFORY7d5CrLB86cEZxkhKlxArzOh9fhKSpW8BknjiZ/H4r+N9noXzPLnQ0Nwn7OlvIHkr8/SoP7iMfEulqbyeLb/wjomAmViR3RKiC94UtjUUnyPH10RZ7p+S0GY/9GvP+8FeEjh4DrYcH/EwRSF5yGRb8+RX8dHcOrv1iA5KXXOay/VPhXPX5uejp6rJrzObSEmG7b7gJGq3WrjGZesLGigMdKvY5GGRyVByqoKToUAlDfAIWv/KmsCg+PGMCLn71X5h894Oq7NNR4WPHI2Gh80Wmo668Bm4eHirM6EzmTHGgQfXRQ2hrbHBo7Nq8HDKIQRS0MdCoK692aB4AED/vQui8vBzeXi1KwlhqjojDX/pU7t8LEMdrUYBf+Dg63I8q/LWm4USBsF3j5gZ/kzg8wRkarRbZ9z+Cmzbtwj35lbhp0y5k3fMgJM3Q3O6MUhIM8P3ZwQD5a78SbiNpNIiZOdehOUVkThG2y93dKNu1w64xK/eJg0xC0zPsGo8NDj8iyASwfk7XSAQu+YSGqRJcplQQcb/FFiqg1RHBqaPh5uUt7FP6w5lBJqXbxdeowOAEmYSNHQedt49TY8TNna/SbMRCR4uDIzqam844HpX+sA1dxD2qUCKMwhHUPbuaI4fQUlFutS33q8+E22o9PBAzy7HjwPlOyT3h/mFv5bvE5zMhaelOnWdToUgV+/eevp4u3roZp2qqhf2TFl8yZOct55PglDSAeJhr9+svo7ujQ9gnepo6YZFKwrGKt/aGqhR9Lw4wBugwPDVQQSaU8IwJ/EAdY4wxxhhjjDFF+PqRMcYYY4yxc4sEPkdnjDHGGGNDi5+QY4wxprq6vFxhuyE+wa7xJEmCkSgEpFYot+VUTTXaGsQFm1QwSX+SJGH08muEfeSeHhz+z3un/1ybm4OaI4eE28TPu3BQi4P6CyeCTOTublQRq90CP4Y32BKcMsqulZwDY+Iwevm1mHLfSsx/7kVc/u/VWPZ/n2DBH18iV+xl5x5qVduOlmayWHag0h3bhO2m8ROhcXOza0yKVqdD9PSZwj7FWzahs7UVhRu/IceLmelcgBEVENPe2IgmojixYP1atDeevTp7f8mXXOaS4ptgYtXd+vxcm0FKjUWFwm11Pr7wCjQ4OjWHSZKE9BXX49qvvsO9x6tw2w+HcNHLb2DUshXwDQ1z+f6DEsTH0+6ODkUhMP01lRYL2/0jouwaj6krbIw4yKSx6ARa6+rsGlOWZdQQIXJBieqtLB47Zx5u2bYfc55+Dln3PoxpKx/H4r+/heu+3oS7jpXi6s++QeKiJartzxnZDz5GFtmJ+ISEYvJdD6g4ox9FZE4Wd5BllO36waGxqw+Lz2UB+pjU39jrb4ZvmMnueUgazZAH2vQxxMZD6+4u7FN95KCisaoOE/0kSXjOHpI2GhqdTjiEQ0EmheJzM/+IKNXPtWwZqmul/gLj4uETEirsk/f152f8uaerCwXr1wq3MU+cDC+DY+cs5ol00FzJ9q2Kx2tvbkJdvvh6nwrQYkPD3xxJ9mmyEmTSVCI+z9MP8nleULw4lM8aD389DLHxqs9Fq9OR90vKdp4ZZFK87Xthf41Oh3BBMJVatDodIiaLg44osXPOjSATAKg8sO/0fyu5znbFzzhm5myyT+HGb896rb2pkQw6iJ46065A6OFE0mgU3xPu6eoiQxqVhLsJtydCkbpaT6HmaG9QXc6nH5HjJV98qVPzGSncff0QaIkV9jmxaQM5jlqBQMbkVLh5ioMTc7/8FAAdZGJISBqUe0EhqeL7axQl4S2MMcYYY4wxxhgAaCR+JJ0xxhhjjDHGGGOMMcbYj/iuMWOMMdXV5R8TthscKDwJShI/tF7rYJBJbW4Ove8E++abetlySFqtsM+B99+B/L9V1XM++5gcM2nxUrvmoCYlhWglRDFO/fF8stAxZs4Fds2LDS9KipuVBOb0OVlTTRZZUivUOyp29jxhe1dbG4q3brZaxNSfPtqCAKJQgxKioOiL+rkeWb2KHCPlkisUz8keIUSQidzTg5ojh622NZ4oFG4bEGUZkasBKTmm1eaKAyoGogpclRTOMtcJHZNB9qnYLy74G6iptBidJ1uEfYxJ6gWZAICnPgAZN9yC7Ad+gUk/vx9JF12CkFHpcCdWaB9sxqQUpF623OHt5//xJYcDCyjh4yaSoVMDC66VqiZC+bwMQWTAQ386L29Me+QJu+eRfvUN5LFjsGjc3BBEBCJWH7V+DDurHxFkEhgTBw9/vc12N09P8lyrfJcDQSZEyFxAtMXuMc9nkiQhcso0YZ+S7VtQl593+s+lP2wjgzVjL1jg8Jw8AwJhTE4V9indoTzIpH9YgC1h6fRxhw0+7yAjtB4ewj7WwumaisWhh/4Rg3ueF0QEGlgTNnacS0IXAcA0IVPYXnX4IDr6nTOVbBXfOwkbMw46L29V5kahvq9EfMNMZOikWgJj46Hz9hH2qTyw9/R/F24QB5kY4hJcEsBjzpxChmrlfvXZWa8d/3Ytejo7hdvFL1jk1NzOd8Zk8XVF3z3hmpwj6Dx1UtjXNN65MIbwcfT25Xt2oruzE8c+/0TYTx9tQSgfMxVz9jsnZFS6XdcjIho3N/K9ULB+LVoqK1C+d5ewX/TUGarMieLszy98nDjEhzHGGGOMMcYYY4wxxhhjjJ2jRt5j0owxxhhj7BzDQSaMMcZU1dXWhsaiE8I+jgSZGBPFD63XFx5HV3u73ePWKQgyCYxLsGtMn+AQxM0VF5s1FB5HyfYtAICcT1cL+3r46xE9g17Z1VW8g4zQR0UL+xSsXydsP/7tGnI/MbM4yGQkC4yJgxtRsGVPkImSgkzzpCzF49nDMpNe4XX36y+jgihmsEx3/nMfFJ9IFlMVC4rp2hrqcXzdV8LtjSlpCE5Jc2h+lJA0BQE3h6y/LxqLxcci/Qgrru7jHxlNvieUhHz1RwaZDHKBKztTyKh0sni3Yu8eu8asOUoHyFGF88PZlPtXQqPT2b3dmGtuROxs150Pefj5Izh1lLCPw0Emhw8I24NT0uwOj0q9dJmiIJ4+Hno9sh96zK59uJoxRfzzpgJgTvejfr7EvysAmMZNFLZX7NuNnu5uRfPpQwWZ6KNj7BpvOIieNpPsc+D9f53+73ziPAsA4i5Y6MyUYM4Un/OW796J7o4ORWNV7qePF6EKgvTY4JM0GviFm4V9rJ0/N5aIz6n9I9UPhBAx2Bk0CwDhGc4FF4iYJ04Wtsvd3ajY03vd11pfh+qj4u/9yMnZqs2NEpU93eFt4+bOH7RQSI1WS4aUVezpDeU7WV2FqkPiY6Zl5hzV5tafzssLEZPEYanH13111ucs98tPhdtIGg3i5l3o9PzOZ8Yk8XVFfUE+utraUL77B3KsMCe/D/wjouBtDBb2Kdz4DYo2b0RbQ72wX/LiS0dkuKqjnA0rVPu+c8KCi4Tt3e3t+O6ZX0Emzq+d+S62hyE2ngw0Ewkby0EmjDHGGGOMMcaU0Sh4JJ3viTDGGGOMMcYYY4wxxtjIwUEmjDHGVFVfeBxyT4+wT5CdwSAAvfqm3N2N+vxcu8etzTsmbPePiII7sfKrNaOWX0P2Ofj+O6jJOXJ65VBb4ucvgpsTDxqrwZwpLsYo3bkdbY22VxIvIIJMPPz1MI0Xr2TMhjeNVkuGYVQRRbz9lW4XB5lodDqXFbT5hZsQnCousCjc+C35XWlRIcBI4+ZGhgkc/OBddLQ0W23b/uKf0NXWJtw+5ZLLHZ4fxTvICN8wk7CPrUK1hhOFwu30URYHZ3V+02i1CIwVH4drc8XHxv66OzvRUlku7KPnIJMh5e7tg6DEZGEfJYXp/dUcOShs1+h0CIyJs2vM4SQgyoIx1/7Evm0ssZjx+G9cNKMfmSZMEraX77U/zEKWZVQfFr8nqOOiNZJGg1lPPKO4f/YDj8LbEGT3flwpOIUovD2eRx5nuzs7yYCpEAVBJtR5T+epk+R1SX+yLKORONYGjMAgk4QFF5GBYYc++De6OzrQ09VFFrAHWGJgcOD6uT+qsL6rrRWVB/YpGqtin/h4ERgbDw9/veK5scGlJ0JHGgrPDCfq6epCS3mZcBt/8+Ce55knToa7r59d27gyyCR8HD126Q/b//f/2wBZFvaNyBq8IJOQtHR46B37vMbOma/ybMRCiICkkh1bcLKmGoUbvyXHssxwTZAJQIeayj092PvW66f/3NXWRgYDmydOhg8RnDHcGZOIe8I9PajLO4ay3TuF/byNwdBHioOaKZIkkd8puV9+hu+efoIcK+niS52ay0gTMsq5oLQYlQMjExYuJvsc/s974g6ShIhBCrDSuLmRnyVbDPGJ8NQHqDwjxhhjjDHGGGPDlaThkBLGGGOMMcYYY4yNTC0tLTh48CDWrVuH//73v3jvvffw5ptv4t1338WHH36INWvW4MCBA6itrR3qqTLG2KByG+oJMMYYG17qiCI7ADAkJNk9blAi/aBtTc4RRauR90fN15HVfgEgdvY8+ISE4mRVpc0+Rz/5EHUKwleSFi91aA5qip09V/jwtdzdjRObNiDpokvOaus4dRLFWzcLx4+ePgtanc7pebLzW8iodOEKulUH9yseq2THFmF7WHoGdF5eisezV8zsuai2I3hlIEmrVW1V1vCMCajYu9tme0dzEw68/w7G33z7Ga83FBVi9z/+Ro6f7MIgE6B31d2WCtsFlNbeFz3d3WgqLRaOq49yroDpfBaUmCR8f9bmHlU8VnN5KRnK42eOUDwec42wMeNQc/SwzfaKfba/I6ypIkIrDPGJI/64Pv0Xv0Lpjq2Kjl2SRoML//oq3H18XT4v0/hM7P3nazbbO0+2oOboYbtWPD9VXYXWOvFNdSqszJaISVOQuGgJjn3+X2G/oKQUjL3uJof24UrU31vu7kZtXg5CBYWZdXnH0N3RQexHQZCJgmL78j07FV9PnaysQFdbq7BPgGXkBZl4BgQicdElOPzh+zb7nKqpRv66r9DR0kKGwcTNXej0yoQRmVlkn5IdW2AaP5HsRwVfhY3JUDwvNvgCLLE4sWmDzfaGwuNn/Lmlshw9XV3CMZ0NBbCXzssbGTfeiu0v/FHxNmEZ4102H69AA4ISk1F7zPb5c+mu3iCT4q3fC8eStFqYicAxNWm0WkROnoq8rz+3azs3T09ETZvhollZFzZmnLBd7u5GzqerUb5rh7Cf1t3dpWExiYuWYOOvHxNeH+3/91vIum8l3L19cGLzRnSebBGOGT9/kdrTPO9Q4axA7z3h8j3iIJPwcRNVWe3XNH4i8td+KexTTQQ/GuIS7L6HPdLZc30ykIdeD9M4+jzHHn4mM0zjM1FGfO+IhI5Kh1egQcVZiQWnjkLl/r12b+fKQDDGGGOMMcYYY8OPRuK1NRljjDHGGDuXSOCwQcbY4Oru7sYzzzyDbmJRxZkzZ2LmzJmDMykXaGpqwsaNG7F161Zs3brV7oASg8GAtLQ0jB07FtOmTcP06dMRGhrqwhmfv0pKSrB//34cO3YMRUVFKC4uRlFREWpqanDy5EmcOnUKp06dgkajgaenJ/R6PUJDQxEVFYWUlBRkZGRg2rRp/PNlbAhxkAljjDFV1eWJgzl0Pr7wDQu3e1zfsHB4+OvR3tRos0+NHSuI96nNPSZsD4q3P3QF6F3lMPXy5fjh5edt9ulubxeGNgC9D1pHT5vp0BzUFD19NiSNRliMUbB+rdUgk+LN35HFl7Gz5zk9R3b+Cx2VLmw/WVWJk1WV8AkRX0B2tDSThePmSXRBpzNiZ8/Djhf/7PD20VNnqLaafdLipdjz5qvCPrtefxkZN9wCjduPlwebfvsk+dk1Z2ZBHyFe2d1ZIaPScfybr222Vx85hJ7ubmi02tOvtVSUoaezUzhuQJRFrSmed6hjW13uMcg9PZA09ENGTSXiwBgA8De79j3CaGFjMnDw/96x2d5SUY6WinLF52jVRJBJiIJQheFO5+WNqz5egx0v/wV733wVrfV1NvtOue8RRQECalCyn7Kd2+0qFKQKNQEgONWxIBMAmP7ok8hf+6XwmDT7yd+dcQw7VygJGKk+fEgYZEJ93gAgOI3ejz7KAi9DkDB0pmz3D0i/+gZyLKA38IwSED3ygkwAYPSK64RBJgCw963X0ajgZxh3wQKn5+NnMsM/MgpNxUU2+5Ru3wrcfrdwnLaGejQUFgj7hKZzkMm5LMASK2xvKCw44xxQ0Xle5OCf50196DG01tVg/7tvkX31UdHwMQa7dD6mCZnCIJPyXT9A7ulByXZxkEno6DFw9/VTe3pCUdnT7Q4yiZwyHTovbxfNyDrLzDmQtFrIggccDn/4PhkOZc7Mgru3j8qz+5G/OQLxCy5C7hef2OzT3tiIIx99gDHX3IjcL2336xO/gINMvIND4BVoEJ5PF2/dRIZVmxSEuimRcOESbPrdU06NkXTxpaqEqowkPiGh8DYG41RNtd3bRk+b5ZJrhcRFS5wKMolUKcBYqZBUx8Jgwl0YCMYYY4wxxhhjbPjhIBPGGGOMMcYYY8ONxWLBiRMnFPV98s578NBNt7l4Rr2oeRUUFMBisQzKXPpbs2YNHn/8cbLfV199hW3btg3CjNTT1taG//znP1i1ahW+/vprtLe3OzxWXV0dNm3ahE2bNuGFF16AJEmYOHEiLr30UixfvhzR0SNz0d7y8nJs3rwZ33//PXbv3o0DBw6goaFB0bbd3d3o7OxEc3MzSkpKsGvXLqxevfp0+5gxY7Bs2TLccMMNMJlMrvorjHjHjh3DmDFj0NbWRvb99a9/jccee2wQZsWGGt81Zowxpqq6fHEwiCE+waEHtSVJgjEpRdhHVDhiTUdLM1oqyoR9ghIS7Rqzv1FXXuPwtn0SFiyG1t3d6XGc5RVoIFdfLNzwDWRZPuv1Y19+So4fM2uuw3Njw0cIEWQCAJVEQAkAlO3aIQzdAYCIzCmK5+UI0/hMeOgdDyKZdNcDqs3FnJmF0NG2C6QBoKm4CLlffXb6z2W7fkDOJx+RY4+/+Xan50ehium72lpRX5B/xmsNRAEbAOijLU7M6vwWlCgOMuk8dRItFeWKxmouLSH7+JsjFI3FXCd0DF1YXrFvt6KxOltbUX88T9hHSajCSKDz8kL2/Y/gtl1HcdErbyJ6+qwz2jU6HaY98gQm3/PgoM1JH2WBd3CIsE/ZLnHQ3kBVRNCGpNUiKCHZrjH7C4iOwaSf32+zPWXpFedE8J813sEh8DIECfvUHD0kbK86fEDY7qHXw89Ef89KkoRwYiX68j27yHH6UIEWwMg91kZMmoLA2Hhhn6LNG9FYJP7lprcxGOZJ6pyzRkwUh/iV7NiCHmIFhMr9e8n9hCk43rChExgjDjLpamtFS2XF6T83CsJv+gzFeZ6k0WDes3/FhS+8Bnc/f2HflKXLXD4f84TJwvb2pkaU7foBVQf2CftFTM5Wc1qKxM1bqCi8sL/YOYMfROtjDD7rPGqgij27hGFdQG8giquNu+mnZJ/db/wd1UcP4/CH/yfsF5wyasSGgvUnSRKCklOFfQ689zY5DnUepJQhLh6JVoKc7ZF08aWqzGUkkSRJ0X1Da2JmX6DybHolLLrYqe2jp85UZyIKBdsRVtlfuEohQIwxxhhjjDHGRgYOMmGMMcYYY4wxNpL96Z//QL1g8e6R4I033lDUb/v27Th8+LCLZ6OO2tpaPPXUU4iOjsa1116LTz75xKkQE2tkWcaOHTuwcuVKxMbGYtGiRfjiiy9U3ce57Nlnn0VsbCxMJhOWLVuG559/Hps2bVIcYqLEvn378Oijj8JiseC6665DYWGhamOzXrIs49Zbb1UUYsJGFr5rzBhjTFV1eeIgk6A4x4NBghLFBZA1OfZdxNQScwUAQ4K42FskKD4RpgmTHN4eANKWrXBqezXFzBI/9N1SUX7WivFd7e3I6xeOYE3o6DHwCQl1en7s/GdMSoWk1Qr7VB+ig0xKtm8Vd5AkmCc699mkaNzckHrplQ5tO+6mnyJSxSI2SZIw/tY7yX67Xn0JQO/F44Ynf0H2N43PRMKFzhVtKKGkUKVqQMBNY1EhuY0+YvBXjz9XGOLpY3Fdfq6isZpKioXt3sEhcPP0VDQWc53glFHQ6HTCPhX79igaqybnMBkWFZzKQSb9uXl4IPniS3HFex/jp7tzcPl7q7Hk9Xdwx/58TLrzvkFdjV2SJJjGZwr72LuqeM1hcRCHIS7B6e+BrHsewuirrj3rdcuM2Zj/3ItOje1KkiQhOCVN2Kf6iPjnV0O0B6eOVvweooIJa48dRXtzk6KxGk6Ig0x8QkLh7u2jaKzhRpIkjF5xndPjTLjtTmiJ726lzJPEQSbtjY2oPiIOJarYTxwnnCgwZoMjwCIOMgGAhsLjp/+7iQgy8TYGQ+fl7fS8HJV66TJcv3YzzBOtB4kEWGKQ8RPXr3Ci5L7P93/4DXn+FDlp8INM9JHRVo+vIrFz57toNmKpKoTSxMxwfZBJxKQpCE4Vhy7F2yAAACAASURBVAXU5hzBW3Oy0NPZKewXv/AiNad2XqPCrSmSVqtq2NbUh35J3r+yxZicCiNxj5tZRwXd2hIz0zUB2vqIKISNHefQtho3N5gzxUFYagsdPQY6H1+7tnHz9IQxWXw9wxhjjDHGGGOM9Sdh8H7vyRhjjDHG2EjH59+MnXsaW5rxxzdfH+ppDJm6ujp88sknivu/+eabLpyN87q7u/HCCy8gLi4OTzzxBKqqqgZlvz09Pfjiiy+waNEiTJgwAZ99Jq7JGw62bNmCggJ6gUU1dHZ24u2330ZycjKefvppdBOLADLlXnvtNWzcuHGop8HOQRxkwhhjTDVyTw9q88SFz4b4BIfHpx5abzhRiM7WU4rHq8ulg0yC4h0PMgGA0cuvcXjbuHkXqhpm4KyY2fRD3wXr157x58KN36CdSBSNnbvAqXmx4cPN0xNBRHhQ5UEFQSY7xEEmxuRUeAYE2jU3R2Q/8AtFxYL9haSNxvRHn1J9LkmLl8I3zCTsU7ZrB/b88zWsffhuRUXsMx9/elCK7/WR0eRK61UDAm4aTxQK+/uGhY/ocI0ASyy58rriIJNScYGrf0Sk4nkx13Hz8CDDRSr27VY01sDQMmuo4s2RzDc0DJbps5GwcDE8/PVDMgfTePFq9A2Fx3GyplrxeFQQBxXkoYSk0WD+cy/iujWbkf3gY5hy/yO48sMvcNm7H53z3+dU4V/NUXEYYxXxmQuxIzjIRK2mLsuo2Kvsu6CRCDLRR1kUzmp4SrtiBTRubg5v7x0cgowbb1VtPpGTp5J9irdsFrZTgVdBCUlwt7M4lg0uJZ/LM4JMzoPzPH1kNK78z+eY/etn4f+/oEKtuzuSl1yG5R9+CR9jsMvnEBgbBy9DkLBP0fffiQeRJDJwyFXmPP1HJF9yuaK+xpS0IQuEjJ9/Idw8vRze3ic0DEYVzkkokiRh3E3qBOgkzF+kyjjDgbPBH1HZ0+Hu66fSbABDXDzSr3IstCxp8aWqzWOkcSTIJDh1NHxDw1wwm16Ji5Y4tF14xoRBP29y9/HFKDtD00NHj1UtWI8xxhhjjDHG2MigIZ5DYIwxxhhjjDHGhruX338H5dWDE3hxrnn33XfR0dGhuP/bb7+Nrq4uF87IcYcOHcL48eNx1113obFRXBPnSrt27cLixYsxb9485OTkDNk8hqP29nY89thjmDNnDurq6oZ6Oue98vJyPPTQQ0M9DXaO4rvGjDHGVNNcXoYuIkjEQIQUiARRD63LMury6HCSPrV54pN4L0MQvAwGxeNZk7TkMviEhNq9nT4qGgv++JJT+1Zb6Oix8CaKgArWrzvjzzmffESOm3QxP8DPfhSSJl7FvYoIMulqb0fFnp3CPhGZg1Mg5hkQiCtXfYbA2HhF/XXePrjo5Tfh5uGh+ly0Op2iYqpvHn0A+999i+yXtHgpTBMy1ZgaSdJoyCLtge8LKoRjpBdXu3l4wD9SXIBYfzxP0VhNJcXCdn/z0Be4sl5h6eIVyMv37ITc00OOQwWZ+ISEDkrRMHOcaTz9/V2++wdFY3V3dJDn1GoEmfQJSRuNrHsexJT7ViJycvagBGo5KzhV/Pc/WVVpMzjmZHUVThG/0KJCivoLGzsOIH5mSv/tGwrFQSYB0TGK5zUc+RiDETfvQoe3n3zXA9B5eas2n8C4ePgQRbzFWzYJ2yv37xW2hxLHGTb0dF5e8As3C/vU9wsyaSymgkyGJtBiII2bG8b95DbcsnUf7s4rx8+PFOOil9+Ab1j4oOxfkiSYJkxyaoyQ1FHw1AeoNCP7aHU6LHrxdcz+9bNkAFOKwsATV3D39UP8fMe/Vy3TZw/aeUPyksvhFejc/cTwcRMR7EBow3BlTE51avuUpctUmsmPsu592O5wHY2bG1IvU38uI0VYBhHKZ4WSYG5nJF54sUPbRWZPV3kmyky++0G7flcRTgUhMsYYY4wxxhhjA2gkfiSdMcYYY4yxc4mEc//5OsaGm9a2NvzutVeGehpD4o033rCrf2VlJb788ksXzcZx77zzDjIzM7Fv376hnsppa9euxeLFi4d6GsPSxo0bkZ2djaqqkRlApJY77rhjSEN/2LmN7xozxhhTTR1RxAgAhvhEh8dX8tB6Tc5RxePV5YpDT4KcCF3p4+7tgwuf/zu0dgQTuHl545I33nM6REVtkkYDy0zxw9+lP2xDe1PviWdn6ynkff2FsL8xOdXpVVXZ8BIyShxk0lB4HO3NTTbbS7dvQVdbm3CMiEFc6drPZMbyD7+gg5gAzPnNH2CIT3DZXNJXXA+dt4/T42jd3THtF79yfkJ2oN4XVYcOQJZlAIAsyyjduV3Yf6QHmQCAIU78XqtTK8gkgoNMzhVhGeOF7e2NjahVEAhHBZnYE6rAhkZoegZZqFxGfI/2qcs7hp7OTmEfY8rIfk8ouoY5csjq69WHD5Db2vOZ8/DXk9c45Xt2KRqr4QQRZGIZ2UEmAJB+9fUObednikD61TeoOhdJkhCZNVXYp2T7FvR0d1ttO1Vbg6YScahF2NhxDs+PDZ4AS6ywvaHgxyAT6t9cTwTjDTZJo4HOyxtunp6Dvm/zROeCTBIXLVFpJo6RJAnjfnIbln/4JXzDTFb7+JkikHHjrYM8szOlXHKFw9vGzJqj4kzEdF5eTn2PSxoNZj/1+/MisG2wKLmnYoubpycSFl6k4mx6+YaFY/wtP7Nrm8yf3QN9ZLTqcxkpAqIsiLIzACRm1gUumk2vAEssec/KmuipM1wwG5pPcAgWvfAaGW7YJ9yB8BjGGGOMMcYYYyObhh9JZ4wxxhhj7NzCv3ZmbEi8ufpDHCcWkRpu9u3bh717xYulWfPmm2+6YDaOe/TRR3Httdfi1CnxIu/9ubu7IysrC/fffz/efvttbN68GUVFRaivr0dHRwfa29tRU1ODgoICfPvtt3j11Vdxxx13IC0tza7ng3oULFg6nEmShIiICMyePRu33XYbVq5ciaeffhovvPACXnrpJTzzzDNYuXIlrrzySiQmJkKjUX6f6ujRo1iwYIFd/+7sR6tXr8bq1auHehrsHMZ3jRljjKmmLi9X2C5ptU6tzO1tDCZXNK3JOax4vNpccfCKM6Er/UVPn4UrV32ueLXDhX95RdWV69UUS6xiKXd348SmDQCA49+sQeepk8L+yRdfqtbU2DCh5OF/URH9kf/+h9zenDnFrjk5yyckFFf+53OECFZTTll6BdKWrXDpPDwDAjFq+TVOj5Pxk9sQMMhBINRK1K21NWguKwEANJ4owMnKCmH/0NFjVJvb+SowJl7YXp8vPqYDgNzTg6b//dxt8TdzkMm5wjQ+k+xTvmuHsF2WZVTbCFzow0Em5z6dlxd5vC3b9YOisaj3A4Bz9rx2sBiTUshCwZqj1q9hqojgIEmjQVCCfYW91KrqZbt/OB0OZkt7cxNa62qFfZy57hsuoqfNgp8Dx8Gsex6Emx1BmEpFTZkmbG9vakTVof1W2yr3079gDEvPcGhebHAFxIg/mw2FvUEmck8PmkqJ87yIcyvIZCiZJjgeZOIZEICx19+s4mwcZ5qQievWbELasqshabWnX4+cMg0rPlkLdx/fIZwdYJk5B54BgfZvKEmInjZb/QkJjLnupjN+hvYYf8vPEE6EEI40XoEG+IaFO7Rt7NwF8PDzV3lGvTJ/drfi92TWvQ8j+6HHXDKPkWT2b/4An9AwRX3d/fwVXQc7y94wKjdPL4SPm+ii2dCips5A1j0PKepLXTswxhhjjDHGGGMDSRqukmSMMcYYY2ywyBA/48UYGzqdXZ349d9eHOppDKo33njDoe0+++wzVFdXqzwbx9xzzz145plnFPfPzs7G66+/jsrKSmzZsgXPPfccrrnmGmRnZyMyMhIBAQHQ6XRwd3dHUFAQLBYLZs2ahVtuuQUvvvgiDh48iIqKCrz44ouYPHmyC/9m5yej0YglS5bgD3/4A7Zt24aWlhYUFxfjm2++wd/+9jf89re/xS9+8Qvceeed+NnPfoZHHnkEv/3tb/H+++8jJycHtbW1+Pvf/46sLGULYe/Zswf33nuvi/9Ww09jYyPuvPPOoZ4GO8dxkAljjDHV1OYdE7YHRFmcKsiSJAlBSSniOeQcVTRWd0cHuYo4tVq5PUzjJ+KaLzYgdIy4uGvyXQ8g6aJLVNuv2qKnz4ZEpBIWrF8LAMj55CNyvCQOMmEDhCgogK86dMDq611tbcj94lPhtoExcfALt77CtCt5Bxmx7INPETt3wVltyUsuw/w/vjQoqy2Pv/l2xauuWuMVaMDkux5QcUbKiEJg+vSFKJVs30r2jZik7GbEcGaIEweZNBYXoautTdjnVE01utvbhX38IzjI5FxhiI2HZ0CAsE/pzu3C9qaSIrQ3NQr7hKTSn1c29KiCvoq9u9Hd2UmOU31EHLThGRAAP5PZrrkNNzovbwRaYoV9bAXCiMLbACAwLgE6Ly+75kOtqt5aW3M6yMCWxhOF5H44yATQaLUYe+2Ndm0TYIlB2rKrXTKfyCxxkAkAFG/ZbPX1in17hNtJWi0HWZ0nAojvo/rCAsiyjJbKCvQQxwEOMvlRWHoGdN4+Dm076ecPOBbO4SLeQUYs/PPLuH3PMVz39SbctvMIrlz12ZBcRw+kdXd36J5Z2JgMeBnEwchq8zdHIGHhYru3C7DEIvvBR10wo/NfxCTHQmlTL12m8kx+5OGvx6Sf30/2Wfrm+8h+4BeDct9nuDMmJmPFf9cgetpMsm/qZVdCq9O5fE6Ji+z7Xkq97EqXhNbZI+vehxGRNVXYx88cCT9TxCDNiDHGGGOMMcbYcKFR8Eg6FajPGGOMMcYYY4wNBx989TkO5opr7IaLjo4OvPvuuw5t29nZiXfeeUflGdnvkUcewfPPP6+o75QpU7BhwwZs3rwZN910EwKI5/NFQkJCcMcdd2Dr1q3YvXs3Lr/8cmiImr3hLCMjA08++ST27t2LqqoqfPzxx3jggQcwadIkeHt72zVWQEAAbr31VmzZsgWrVq2C2Uw/z/7qq69ixw7xwrDsTA8++CDKysqstsUQC++xkWPkfqsxxhhTXR0RZGKIT3R6H0YiyKTm2BFF49QX5EPu7hb2MSQ4P9/+/MJNWP7hl0ix8QB96uVXYcoDv1B1n2rzCjSQxY8F69ehrbEBx7/5WtgvNH0sAmPi1JweGwY8AwLhHykuiLNVSFmwfi1ZYJ+0eKnDc3OWZ0Aglv7zfVz27ofIfuBRTLrzPiz/6EssevH1QStgCIiOQcLCixzefsYvfwNPveM3WhxlTEyBm6e4ULtg/ToAQOkP4iATd18/BHPQAgxxCeIOsox6opC9qbSE3I+/mYNMzhWSRoPwceLwirKd4htvVKgCAC5kP09QQSZdba2oPmw9OKw/WwEcfYwpo7hgE4AxJU3YXn3URpAJ8fNVEgA3kEnB6u+lO7YJ26lASADQW/jmMwCMv/VOMoyzvyn3PeKygtuAmFj4homDCIq3bLL6euV+cZCJMSnV7lAdNjSoYKXOky04VVONppJiciw9cd02krh5emLU8mvs3s4/IgoZN9zighk5zzvIiJBR6edEgEl/tu6piVhmzHHBTGiT73oAGjc3u7aZ/9wL0HnZ90v3kSJ9xfV2b+MZEICYWRe4YDY/Gn/z7bDMmmu1zZicims+X4+4eQtdOoeRRh8Zjcvf+xiL//4W/MKtP2Tiodcj696HB2U+hrh4REzOVtQ3MCbunAgr0mi1WPTCa/AyBNnsM/6mn/K1HGOMMcYYY4wxu43kQhvGGGOMMcbORRL49z2MDZWenh786sW/DPU0BsUnn3yC2tpam+0zZswQbv/mm2+qPSW7/Otf/8Lvfvc7sp+3tzdefvllbN68mfw7OSIjIwOrVq3Cnj17MHWqeHGS4eauu+7CiRMnsHv3bjz++OMYM2aMqs8sXH755di9ezdGjaKfu3788cdV2+9w99133+H111+32nbNNddgyhTHFq5iww/fNWaMMaaauvxcYbshniiaViAoMVnY3lRchI6TLeQ4tbk59L4SkhTPSymdlxcu/OurWPrWB4icMg36qGhETM7GvD/8FQv/8go0Wq3q+1QbVQDQUlGOD664CF1tbcJ+SRdfqua02DASOipd2H583Vfo7ug46/Ujq1eRYycvvcLhealBkiTEzJyLrHsfwrRHnkDEpCmQBvlBjplPPAMPf71d22jc3DD9saeQtmyFi2YlpnV3R+QU8c2Yos0b0NPVhZLt4iAT04TM8+K71tUCqSATAPXH84TtTSVF5Bj+ERxkci4xTxCHV9TlHUNrXZ3N9ioiyETr4UGH5LBzgol4LwBA2a4fyD5UuE0wEeAxUlA/h9qcI+gZELLY1d6OOuKaxZHgoKCkFLj7+Qv7lO50LshE5+0D7yCj3XMbjtw8PHDZ2/9B/AI6SC4iayqSL7ncZXORJIk8nyrZsRU9XV1nvW4rSLBP2JixTs2NDZ4AIsgEABoKj6OBCLQD+DxvoGkrH0dImn2BiVMf/iXcPD1dNKPhyTxxMvxMEYr7a3Q6pF1xlQtnZFtI2mjMfur3kBRef4659ieIzBpZDyHYIzJ7uqLjaX+Ji5ZA6+7uohn10ri54eK//RMTf3b36XMsz4BAZD/wKFZ8ug6BsRzi7AqSJCHpoktw48YdmHz3gz9+L0gSorKn47qvN8HHGDxo85n5+G+E3+dehiBM+OnPseKTdfAJDhm0eYn4hZtw6VsfwNvKz8kycw7Sr71xCGbFGGOMMcYYY+x8p5H4kXTGGGOMMcYGC4eUMHbu+/y79di6V/zs3XBABZE8+eSTmDx5ss32AwcOYNeuXWpPS5Hdu3fjllvohagiIyOxefNm3H777S5fFCQ9PR2bNm3CG2+8AV9fX5fu61wxe/ZsREW5dmG1kJAQrF+/Hmaz9UVz+qxZswaFhYUunctw0NbWhltuuQWyLJ/VZjAY8Kc//WkIZsXOVXzXmDHGmCramxpxsrJC2MegQjCIUcFq1rXH6JCSutxjwnadt49dhRH2kCQJcXPn48pVn+GWrfux/MMvkL7i+vNmhcOY2dZXGe2v6tABsk/S4qVqTIcNQ6GjxYWQbQ31KPxu/RmvtTc34fg3Xwu3C04dDSMRhjQS6COicOm/VpHBUH2ips7A9eu2IPP2u4f0e4paRbutoQHHv/maDN+IyMxSc1rnLd+wcOi8fYR96omAsqbSYmG7u58/PPUBds+NuY5pwiSyT9lu2+EV1YfFx3djYrLdq86zoeFnioBvWLiwT9muHcL2kzXVOFlVKezDQSa9qJ9DV1sbGgrPDAepy82xGihxxrip9hXMA72rr1NBNqU7iCCTQnGQSUB0zHlzbTMY/M0RuOQf7+K6NZsx6c77oI+2nNUnJG00lrz2tsvD1qKmTBO2dzQ3ofLgvjNeayw+gZaKMuF2oekZTs+NDY4ASwzZp77gOCoP7BP28TIEwd1nZPySVCl3H18sfesD+IaZFPUPGZWOFBeGFw1XkkaDlKXKf27jb/kZAmOGLkhi7PU3Y8UnaxE1VbwKi585EtMffXKQZnV+kiQJc59+jgxk6y9l6TIXzuhH7r5+mPHoU7jzYAHuLajGHQeOI+veh+BOXHMz57n7+GLqQ4/h1h3/z96dx1VV538cf98Llx1kBwWVVUHANffdXCrNrSzTpCzNZiybyampRtts35umvQkzy7afY3umlalZaVluqYHlvqCiouAG3N8fMzVTcs+By1248Ho+Hj0G7vdzvuetjCyXe95nvSZ/tVZ/Ktqri954V02at/RojsR2HXXJ2x+rWacu0n++Dw5Paq6OV16ti958T3/47kf1m3mXgqOjPZrLTNOOZ2n8+5+qyzV/VlLnbso873ydffdDGj3nTf7/CwAAAABwipWXpAMAAAAAGpkhQ4YYrt/2j0c9lMQ7du/erYULHV/Hk5KSoj59+ig/P99wH7MyFHc4deqULr/8cp2q5ibL/6tly5b64osv1KGDZ18nOXHiRK1evVodO3b06HkbstjYWD36qPG/Sbvdrvfee89DiXzXnXfeqR9/rP7a3AceeEBxcZ67ARHqP541BgC4REmR8cXOkhST3qrO54mpQZHJgR83ms6UbDEuMonOyOTiOwcS8torNCGxTns0O6urmiS7ty0RvivtbOMncyRp04I3f/N+0Ufvq+LECcNjskZeUKdcDUlS567K/3i5RhW8pqwRF8g/KPiMmfBmyTr/2Zc05rW3FeOCIqq6Su1nXqK0/IG7TGeSKDKR9O+LwMzuDF2yxbgUpnSncZFJRHLzWueCeyW272h6R/g9BuUV+39Yb3isM6UK8A6LxfLvi+wM7P7GuMjkwMYNpueJa5Nbq1wNVWxWG9OZ/Rt/+++r2OTfmyTFO/n3m3SW42Z7SSop+lHlBw84XD+8zaTIJCXFmVgNXnxOnnrffJsmffG9Lv3gMw1+4HH1unGGLnrjXU1YuEzBUe6/sLV5916mMzu+XP6b94s+et/0mMR2FJn4ioDQMIXGJxjOHN76k4rXGxeZ8Pm9euFNm2n0nDdkq0HJS98Zs2Sx8usZZ3SaPFWBEU0MZwKbNNGQh55Qn1u8Xw7StH0nXfT6O7r4rfeV3K3nGeuh8Qm68NX5CqxFQUdjFZbYVH1n3Fmj2fCmSUru2sPNiX7L6u8vv4AA/m17gcViUZPmLeUfFOS1DAm57TTunUW6ZsNWTSvcrSkr12vAnferRY/e9brws0lyC/W5+XZdsmChRjw/Vx0un+z2cj0AAAAAQMNlsfJaOwAAAABA43LrrbcqOPjMazF+sezbVVq0YrnDdV83Z84cVVZWOly/9NJLZbFYNHbsWAUEBDice/XVV3Xy5El3RHTorrvu0rp1Jjf5jI3Vp59+qubNvXNdRGZmplasWKGLLvLMzXwagzFjxigry/im0EuXLvVQGt+0du1aPfjgg9Wu9e7dW1dccYWHE6G+49V0AACXOFhkXAwiSVHpGXU+T0h0jELi4g1nDmwyLzI5WLjZcD0mw/sX7ddXFqtVHS6fXKc9soaPdlEaNERxOXmKNinOKPzofZ0qL/v1/Y2/KzapTtYIikz+l5/NpvTB52rYUy/qj2uLNPQfL6jLNX9W2/GXa/hzc3TF0m/UetjIelPqFJWeoQiTAqQDm34wXLfabEps38mVsXxadHqm4XrJFuOSMtMikySKTOqbgNAwxWXnGM7s+ubrah8/deyoDm81Li/gombfYlZkUrpzu47t3eNwfb9ZkYnFotgalBA2BpEtU+UfHGI48/u/T7PioOCoaKfLBZO6GBeZSNJuB58LJPMikyYtU2udqTGxWCxKbNdRbcdfrm7X3aAWPft47PutJi1TFd4s2XBmx4plv3m/cKFxkYl/cIjisvn870siU9IM1w/9VKR969caziTktXNlpAYlPidP5z8z27A8LqXf2WrZu5/nQjUwoXHxOu/vzymwyZllJs06ddE5jz6tq7/dpLxL8uvNz7PSv8ukLn7rfY17e5G6XPNntb9skgbc9aCuXL5aMRl1L39uLNqOu6zaQpjfyxp5AYUi8IqgJpEKCAn1dgwAAAAAALzCykvSAQAAgPql/vzKHGiwmjVrpmuuucZw5rZ/PCq73e6hRJ41e/Zsw/UJEyZIkqKiojRs2DCHc4cOHdLbb7/tymiGdu3a5bCI4RcWi0Vz585VWprx6+3cLTAwUK+99pquv/56r+ZoSEaMGGG4vmnTJg8l8T1VVVWaPHmyKioqzlgLCAjQs88+W69es4f6gWeNAQAuUbLFuMgkJDbOZXeYjm1l3Hx38EfjIhN7VZVKiowvzo7O5AICI50mT1VUarpzB1ssajVspGsDoUGxWCzKHjnGcKbieLm2LPxAklS2v1jbli0xnE/q0l1NTEowGrOA0DBljxqjPjffrsEPPK5WQ0fIZtAM7A0Wi0Wp/c6u0x6J7TrWuz+XN0WZFJkc+qnIcN20yCSZIpP6qNlZXQ3X93z3raqqeWJp/0bjoiCJIhNfY1ZkIkk7vnTcAm9WtBGVmi6bSXlHY2GxWhWbZVzqsm/td795f/8Pxi3vcW1ynX6it2mHTqZ3hd+58stqH688fVpHd+00PDaSIpN6y2KxqHn3XoYzO7/+8tevA+UlB7Xr6xWG86n9B8rP4E4JqH/Mikx+XvKJTpcdM5yhyMRY2oBBGvzA49V+ro1MSdW5jz3jhVQNS/qgc3T54i/V/4771Hb85eo7c5YuW/SFxr2zSLkXjau334NYLBY1O6uL+tx8uwbe87A6TrxKAaFh3o7lUyxWqwY/8Hf5BQYazmWP4k40AAAAAAAAnmalWBYAAACoVyw0mQAecdNNN6lJWLjD9e82/qD5ixd6MJFnfPHFF9q82fFNxrt166ZWrf57bV5+fr7hfi+++KLLspm58847deLECcOZadOmaciQIR5KZMxiseiPf/yjt2M0GN27dzdc3717t4eS+J7HH39cK1eurHbthhtuUHY2N0HFmXjWGADgEqbFIC68s2iMyZ3dD242br4r3bVDFSeOG58js3WtczUmtuBgDX7oCaeObdGjt8KcvHs8Go/skReYzmz815uSpM3vLZC9stJkvwtdkgveldJ/YJ2OT+5q/IRDYxOdlmG4fuLwIZWXHHS4XrrLpMgkKdmpXHCvJJMik4rj5dq/8cyCCrNSBUmKp8jEp8TntTMtH/h5yScO1/Z8/63hsXHZOU7laqjM/j62LVui44dKJEl2u920KCauTZ7TWWzBIUrIa284s2vlV9U+Xrpzu+xVVYbHRqZQZFKfNe/Z23D9dNkx7Vv7vSRpy6IPTT/emec4vksC6qcok3+jp46Wmu4Rn2v8OQRS3tgJGvfOIiV16a6gyCgFNmmituMv15jX31FoXLy34zUI4c2S1GnSHzT4gcfV+epplOo1ItHpGep14wyH621GX6z4HOe/MmkunwAAIABJREFUVwIAAAAAAIBzrBZekg4AAAAAaHyio6P1p/yJhjN3PvV3VZpc8+JrCgoKDNcnTJjwm/fPO+88xcbGOpxftGiRdu40vtGeK+zcudO0NCUhIUF33nmn27PAOxISEgzXy8rKPJTEt2zdulUzZ86sdi0jI0MzZjh+PRcaN541BgC4REnRj4brMS4sMok1KTI5umeXTpYecbh+sNA4qyRFU2Riqnm3nmo34YpaH9dt2l/ckAYNTWRKmpp2OMtwZuvnn+jIjm1a/cLThnNWf3+1On+UK+PBS1r07FPtXc1rKqkzRSb/KyrduMhEkg5tqb6o7GTpEcOvtZIUkdTcqVxwr2ZndTGd2fXNmS25ZqUK4c2SFRQZ5XQueJ5/YKCamRTbbFv6qex2+xmPl5ccVEmh4xZ1qW5FGw1RYtsOhutVp0+r8IN3JEl7v1/9a6mJI3W9WDupSzfD9X3rvtfp4+VnPH5428+me0e2pMikPmvevZfpzLZln0mSij5633DO6u+vtLMHuyQXPCcyJa1Ox9tCwxSVWrc9GovEdh11yb8+0jUbtuqa9Vs1+IHH1SS5hbdjAQ3CWVOuVddrp5/xeIuefdTvjnu9kAgAAAAAAAAUmQAAAAAAGqtrx+crPjrG4fqPW3/W7NmzPRfIzcrLy/XGG284XA8ICNDYsWN/85jNZjvjsf9VVVWlOXPmuCyjIy+88IIqKioMZ2bMmKGIiAi3Z4F3mH1sQ0JCPJTEt1x99dUOS16efvppBQUFeTgRfAXPGgMA6qzy9Gkd3vqT4Uy0B4tMJOnA5k0O18wuurT6+3PxXQ31+dsdCm+aVKNZi9WqQfc9qha9+ro5FRqK7FFjDNerKir0fLe2pp9/WvYZoBCDJ4XgOwLDI0wvunfIYlFSZyePbaCi08yLTEocFJmU7jJvO47gIs16KSK5hULjjVuE93x7ZpFJsUmRSV1LFeAdKX0HGK6XFe/TgU0/nPH47lVfme6dVIPSnMYkffB5ksViOLNxwVuSpE3vzDfdLz6nbkUxSV2My72qTp/W3u9Xn/H44a3GRSYWPz+FN0uuUza4V2SLFNOv0WtfnaOTpUe0bemnhnPNu/eixMoHRdaxhCQht60sVn6tUFv8nQGuZbFY1PumW3XF59+o119nqvfNt2nU7Nc15vV3eA4IAAAAAADASygyAQAAAAA0VmEhobrxyimGM3fccYdOnjzpoUTu9dZbb+no0aMO14cOHaro6OgzHs/Pzzfc191lL1VVVXrxxRcNZ2JiYnTFFbW/6Td8R3FxseF6bGysh5L4jpdfflkLFy6sdm38+PEaOHCghxPBl/CsMQCgzg5v+1lVJm2EriwyiWmVZTpz8MeNjteKjItMIlPS5Gez1TpXYxQYHqGB9z5iOhcUGaULX5mvdhP4YQ411/r8US652MusEAW+xeyie0dis9pwoe3vBISFKyyxqeHMoZ+Kqn28dOcO0/0jkps7lQvuZbFY1MykYGLXN1//5n17VVW1ZRb/K54iE5+U0u9s05mtn39yxmM7V35peIzV31+JHc9yOldDFJaQqBY9ehvO7PhyuY7u3qXNJkUmIXHxis1qU6c8SZ27mc7squbjfHjbVsNjIpKb87OUD2jevZfheunO7fr4xutUceKE4VzGOcNcGQseUtfi1vjcdi5KAgB1F52RqW7T/qKu11yv9EHnyGJSHAcAAAAAAAD3sVLoDAAAANQrFvH7U8CTJo+5WC2aNnO4vmPHDj311FMeTOQ+ZmUgjgpLOnfurOxsxzc3Lyws1PLly+uUzcjnn3+uHTuMr4O44oorFBIS4rYM8L6dO41v6puWVrebxTU0Bw4c0PXXX1/tWlRUlB55xPy6UjRuPGsMAKizkqIfTWeiMzJddr6gJpEKS3T8w50kHdi8yeFaSaFx3phM15WuNAbpg85RzphxDtfj2uTp0g+XqGWf/h5MhYYgND5BLXr1rdMeAWHhyhhynosSoT5I7e9cU2dyl+4uTtIwRKVmGK6XbHFQZLLL+Ak8v4AAhcbFO50L7tWsU1fD9dId23Vs755f39+/cYNOl5cZHhNHkYlPim+Tp+AY49borZ9/esZju1Z+ZbxvXjsFhITWKVtDZFquZrfr09v+qmN7dxuOtR42UlY/vzplCYmJVXS68c9oO1ed+XE+su1nw2PqWpAAz0gbOMR0ZvO7/zKdyRjM99m+KKhJpIKjY5w+PiGPIhMAAAAAAAAAAAAAAAAA+F8BtgDNuPoaw5l77rlHR48e9VAi9/jpp5+0dOlSh+sxMTEaOnSow/UJEyYY7m9WklIX77//vunM2LFj3XZ+1A8fffSR4Xrv3sY3rmxsrrvuOh04cKDatfvvv1/x8Vw3BGMUmQAA6sysyMQ/KEgRSc1des7Y1lmG6wc2/1Dt43a7XQcLNxseG53R2ulcjdXgB/+u1ueP+s1jFqtVeZdM0Lh3PlZkixTvBIPPyx51UZ2O7zL1TwoIDXNRGtQH8TltTS+6r04SRSbVik43KzIprPbx0p3bDY8Lb5YsC3dbqreSzjIuMpGk3d+u/PXtoo8/MJ2Pa5NXp0zwDovVqpS+Awxndn69QqePH//1/dPHy7Vv3feGxyR15nNudTLPPV9Wm81wpvCDd033yRpxgUvyJHXpZri++5uVqqqs/M1jh7dvNTyGIhPfkDFkqMKbJtVpj8T2HRXerG57wHsiU5y/Y0A8RSYAAAAAAAAAACdZLNwRHgAAAADQ8Nj/87/jhg5XVmq6w7kDBw7okUce8UwoN5k9e7bsdrvD9bFjx8pm8FrZCRMmyGpwncGbb76psjLjG3A664MPjF8Tn5qaqo4dO7rl3KgfSktLTQttzjnnHA+lqf8++ugjvfrqq9Wu9ezZU5MmTfJwIvgiriwDANRZSVH1Fzn/Iiot0+UXM8e0yjZcP7B5Y7WPlx88oBOHDxnvnUmRSW352Ww6/5nZyv94ufrOnKWz735IEz9bqSEP/UO24BBvx4MPyzx3mPwCA506NrlrD3X5459cnAjeZrFaldr37Fofl0yRSbWi0jMN1w9v/UlVFRVnPF66c4fhcRHJri0wg2vF57WTX0CA4cz2Fct+fXvLQuMn64KjYxSV6vwF0fCulD7GRSaVJ09q59df/Pr+nu++VdXp04bHJHflc251giKjlNp/UJ32CG+apGadurgkT7POxkUmp46W6sCm/xZEnj5+XId+KjI8JjKFIhNf4GezqeOkP9Rpj8xzhrkoDbwhyskiE/+gIMVktHJxGgAAAAAAAABAY2F0oRMAAAAAF6NHEPAY/7B/F3f4+fnp1j9OM5x9+OGHdeDAAU/Ecrmqqiq99NJLhjMTJkwwXE9OTlb//v0drh87dkxvvvmmU/mM7Nu3Txs3Vn+t4S8GDDB+TTV838yZM3X48GGH6z179qTM5j/Kysp09dVXV7tms9n07LPPUlqMGqHIBABQZyVFPxqux2S6/iKX2NZZhuvl+4t1bO+eMx4vKdxsune0G/I2FvE5eep89TR1uHyyojOML44HaiIwPELpA2vfZhkcE6thT70oq7+/G1LB21L61a7IJKJ5C4U3S3JTGt8WbVJkUnX6tEp3bj/jcdMikySKTOoz/8BAJeS1N5zZ/M58VZ46pdJdO7Rv3RrD2fRB57q8tA6e07KP418G/GLr55/9+vaulV+ZzieZFGQ0ZtkjL6zT8a2Hj3LZv7fkzuaFM7tW/ffjvefblao8edJwPtLJcgR4XtvxlykgPMLp4zMoMvFpkU4WkMVl5/IzFgAAAAAAAAAAAAAAgA+w0GQCeIw1NvrXt0cNHKyObXIdzh49elT33nuvJ2K53CeffKLt28+8tuAXrVu3VteuXU33yc/PN1wvKCiodTYz3377relMv379XH5e1B+vv/66nnzyScOZv/3tbx5KU//dcsst2rZtW7VrN9xwg3JycjycCL6KK40AAHVit9tVsqXQcCbaDXfrjTP4oe4Xe9d+d8ZjZqUrknvyAnBe12nTa3fBrsWiYf94QWGJTd0XCl6VNnCIAiOa1Hi+9bCRbkzj26LTM0xnSrYUnfFY6S6TIpNkikzqu6QuxkUTx0sO6qdPP1bRwg9M98o4Z6irYsELwhISFZdt/L31tqWf/vr2rlVfGs5Gp2cqJCbWJdkaovTB58oWEur08a2Hj3ZZlsjUNIXExhnO7Fr534/3tuWfm+7ZrGPnOueCZwSGR6jt+MucOjYqLYOfm32cs6VD8XntXJwEAAAAAAAAAAAAAAAA7mCX3dsRgEbDEtFE1oD/lgfdee2fDOefeuop7dy5092xXM6sYGTChAk12ueCCy5QaKjj19IuXbpUW7ZsqVU2M999d+Y1hr/XqVMnl54T9YPdbteTTz6p8ePHq7Ky0uHcxIkTde6553owWf21cuVK/eMf/6h2LS0tTTNmzPBwIvgyikwAAHVSVrxPJ0uPGM5Ep2e6/LyxWTnyCwgwnNm75swfMg4WGheZhCc1V0AdLiwE4HoJue3U52931rjMpMf0m9WyT383p4I3BTWJVNdp02s0awsN01lTrnVzIt8VkdxCVpvNcOb3hWUVJ0+qrHif8b5JFJnUd63OG2E6s+HNeSr66D3DGf/gELXszedcX9eyr/HH8MCmH3R0z25VVVZq9zcrDWeTunZ3ZbQGxxYc4nT5T5OWKUps19FlWSwWi2mp0c+fLVbFiROSpO1fLDWcjWmVpdD4BJflg/t1vOJqWf39a31c5rnDZLFwxxZfFuVkkUkCRSYAAAAAAAAAAAAAAAAA8BsWq1W29JRfy0zO7tZTfTt3dTh/4sQJ3XHHHZ6K5xKHDx/Wv/71L4frFotFl156aY32Cg0N1ejRxjf2mz17dm3imVq3bp3hus1mU2am669/hPdUVVVp8eLF6tGjh6655hrDEpNOnTrp8ccf92C6+uv06dOaNGmSqqqqql1/+umnFRwc7OFU8GUUmQAA6qSkyLgYRJJb7tTsHxio2Owcw5l9a88sMikp2mx4TEwmd5UG6qPOV1+rSxZ8rJT+Aw3nUgcMUrdpf/FQKnhT56unaeA9DyuwSROHM9EZrTT+3cUKjYv3YDLfYvX3V6TJhayHfldkcnS3eftzRDJFJvVdYodOpmVzRR+9Z1pckNpvgGw8EeXzUvuebTqzbeln2r9xvU4dO2o4l9SZIhMzWSMudO6480e7vDzC7ON1svSIiha+r5NHS7V3zWrD2RY9+7gyGjwgIilZWcMvqPVxmecOd0MaeJLZ93+OUGQCAAAAAAAAAAAAAAAAAGeyBAYqoE1rBaQmypbYRPfccZvhfEFBgX780fyavPpi3rx5OvGfG+NVp2/fvmrZsmWN98vPzzdcf+mllxwWKThj+/bthuvp6enyd+LGcPC+qqoqHTlyRDt37tQ333yjF154QVOnTlWLFi00aNAgffXVV4bHd+rUSYsWLVJ4eLiHEtdv999/v8Pin0suuUSDBw/2cCL4Oj6zAgDqxLTIxGJRVFq6W86d2LaD9q05s6zkF3u/Xy273f6bi/0OFhrnjclo7bJ8AFyrWafOunDu/6mkqFDfvfS81r/+ik6XHft1PXfspRp4zyOy+vl5MSU8xWKxqP1lk9T20ok6uHmjyg8eUOWpU6o4eUKy2xXbuo2i0tJlsdLdaCY6PVMlhY6Lvkp+KvrN+6U7d5juSZFJ/WexWJRz0Tgtu7dubd4ZQ4a5KBG8KalLd/kHBanC4BcMW5d+qlP/83XXkeQu3VwZrUFK6TtAwVHROn6opFbHtR5u3D7vjJZ9+pvOrH/zVdlCw2Q3aCKXpBa9+roqFjzorCnX6If5r9d4PqXf2WraoZMbE8ETgqKiFBqfoLLifTU+xmqzKaZVthtTAQAAAAAAAAAaum7J/C4RAAAAANCwWZtESk0i1ePcphoxYoTefvvtaucqKys1c+ZMvf56zV+/500FBQWG62bFJL83YMAAJScna+fO6m+yumPHDi1evNhlpQmOzvOLZs2aueQ8cL0TJ04o2A03XrVYLJo6daoeeOABt+zvizZv3qy77rqr2rXIyEg9+uijHk6EhoAiEwBAnZRsKTRcj0huLltwiFvOndiug9a87Hj9eMlBle7aoSbJLSRJp8qO6ehu4x88ojNbuTIiADeIzsjU2bMeUJ9b7tCBTT/o2N7danZWV4XGxXs7GrzA6uenuDa53o7h06LTMwzXD/6u5KR0l0mRicWi8KZJdY0FD2gz+mItu+9OyW536niLn5/Szh7i4lTwBv+gICV366mtSz5xOPPT4oUq319suE9oQqKatEx1dbwGx89mU6vzR2nNnH/W+JjojFZu+XoXl9VG8Tl5Kt5QfXO2JG37/FMFhkcYb2SxqHm3ni5OB0+Iz22rlr37aduyJaazCXntNPiBv7s/FNzOYrGo9fmjtPqfz9T4mNjW2fIPDHRjKgAAAAAAAACArwuzhulYleObI/y57589mAYAAADwnKoTJ1WxdbfHzmc/vFOWinLDmcrQ0zoVfNRDieDL/FOayRrE64Lc4e6779a7776rqqqqatfffPNN3XTTTerQoYOHk9XOhg0btGrVKofrwcHBuvDCC2u1p9Vq1fjx43X//fc7nCkoKHBJkUlVVZX27NljOJOYmFjn88B39O/fX7fffrv69Onj7Sj1ht1u1+TJk3Xy5Mlq1++//34lJCR4OBUaAopMAAB1UlL0o+F6TGZrt507oa35D2r71nz3a5GJWVbJvXkBuJYtOPg/d4PnjvBAXUSnG5d4le8vVvnBAwqJiZUkle40LjIJS2gqv4AAl+WD+4Q3S/r3xetLP3Pq+OQuPRQcHe3iVPCWlL5nGxaZnDp2VNu/WGq4R1LnbrJYLK6O1iB1u3a6fnjrNZ0uL6vRfOvho932d5szZpyKN9zscN1eVaXN78w33CMhr52CIqNcHQ0e0vvm27Tjy+Wqqqiodj0oMlKd/3CdOl75B9lonW8welx/k4oWfqDSndtrNJ+Q187NiQAAAAAAAAAAvm7SWZP06NePVvt7rRhbjHKa5nghFQAAAOB+FVt3a0fvfI+e0+xVPMf+8x9gpvmyOQrI4iZ27pCTk6Px48fr5Zerv4u33W7XLbfcog8//NDDyWrnxRdfNFwfOXKkwsPDa73vZZddZlhksmDBAh0+fFiRkZG13vt/lZeXq8LB6yN/ERsbW6dzoP5r2bKlRo4cqXHjxqlLly7ejlPvPPvss1q2bFm1az169NDkyZM9nAgNhdXbAQAAvstut6v4h/WGM2YXR9dFTKss+QcFGc7sXfvdr28fLDQvMonOcF9eAADqo9isbNOZA5t++PVtsyKTiOTmdc4Ez8m9aLzTx2acM9SFSeBtKX0H1HmP5C7dXZCkcQhvlqRhT71Yo/IPq82mnAsudluWrFFjZPWvW9dxi540kvuyxHYdNei+R+Uf9NuXN9hCw9TtTzdq0oo16nrN9ZSYNDBBkVEa8c+5Z3zcHYnPpcgEAAAAAAAAAGDs2j7XakjKkDPuNB1mDdOHV9bvi7IAAAAAAHCHO+64QwEGNwn96KOPtHSp8Y0GvamiokJz5841nMnPd67IKTs7W506Ob6x8YkTJzRv3jyn9v79PmaCTK5PhG+zWCxKS0tTcnKyIiIivB2n3tm9e7duuummatdsNpueffZZbnYKp1FkAgBw2rG9e1S+v9hwJqZVa7ed389mU3xOW8OZfWv+W2RSUrjZcDY4KlohMTQoAgAal5hWWZLJkwq1KjJJSnZJLnhGxjlDFRBW+wZsScoYcp6L08CbYlplKT7X+HtrM0ldKTKpjfRB52jiZ1+ry9Q/GRaadJ5yrSJT0tyWIzQ2TmlnD6nTHi169XVRGnhL3iX5mvj5SvW79W51mjxV5z7+rK76ep163fA3BTWp290MUH8l5LbTkIf/UbPZvPZuTgMAAAAAAAAAaAieHvO0lkxaolGZozQsfZjuG3if1ly/RjFhMd6OBgAAAACAx6Wmpmry5MmGMzfffLOH0tTee++9p+Jix9cOJiYmatCgQU7vb1aCUlBQ4PTevzh+/LjpDEUmDZvdbtdnn32mG264QdnZ2Ro0aJAWLVrk7Vj1xtSpU3XkyJFq16ZPn67c3FwPJ0JDQpEJAMBpxevWmM4k5Ln3jr0J7ToYru9d+53sdrsk6WDRj4az0ZnuK10BAKC+sgWHKLJlquHM/k0bfn27dLdJkUlyc5fkgmfYgkPU+vyRtT4uPidPTZq3dEMieIvFYlHPv/zN6eMDwsIVl82TlLUVGp+gPrfcoSnfbNSQh55QQtv2v5ZLBTZpon633aNef53p9hw5Yy5x+lirv7+SulBi0xA0SW6hs6Zco/6336OcC8cqOCra25HgAdkjL1TnP15nOBMUGaX4nDwPJQIAAAAAAAAA+LqW0S310IiH9PioxzWm/RhvxwEAAAAAwKtmzJihkJAQh+srVqzQe++958FENWdWJDJ+/Hj5+fk5vf+4ceNks9kcrq9atUrr1693en9JqqioMJ3x9/ev0zngWxYvXqzBgwdryJAh2rVrl7fjeNVbb72lBQsWVLuWlpamW2+91cOJ0NDw2RUA4LS96743XLfabIpt3catGRLbGheZnDxyREe2/azIlDSVFG42nI3JbOXKaAAA+Iy47DY6vPUnh+sHNv4gSao8dUpHd+003CsiiSITX5MzZpzWzXu5VsdknDPMTWngTWkDhyi5ey/t/HJ5rY9t1qmzrHX4RURjZwsOVt4l+cq7JF+njh1V+YH9atIiRRarZzqI084eouCoaB0/VFLrY5t27KyAkFA3pALgKb1vuk37N6zT1s8/rXa93YQr5M8dJwAAAAAAAAAAAAAAAACg1hITE3Xdddfp3nvvdTjzt7/9TUOHDpXlPzfDqw+Ki4v1wQcfGM7k5+fX6RyxsbE699xz9c477zicKSgo0MMPP+z0OQIDA01nTp486fT+cC+bzabnn3/e4fqpU6d06NAhHT58WLt379aqVatUVFQku91uuvfHH3+svLw8vfzyyxo6dKgrY/uEw4cP69prr3W4/tRTTyk4ONiDidAQUWQCAHDavrXGRSZxWW3kFxDg1gwJ7YyLTCRp75rVCm+WrEMGF2hLUnRGa1fFAgDAp8Rm5ajwQ8ctzgc2b5S9qkoHCzeryqSROKJ5S1fHg5sldemuJi1TdGTb1hofk0mRSYNksVjUb+YszT2vf62PbTV0hBsSNU4BYeEKCAv36Dn9AgKUPfoirf7nM7U+tkXPPm5IBMCTrH5+Gv7cHH345z+o8IN3f7OWPWqMuv/pRi8lAwAAAAAAAAAAAAAAAADfd+ONN+qZZ57RoUOHql1fu3at5s2bp3Hjxnk4mWMvv/yyKgyuHWjbtq3atm1b5/Pk5+cbFpnMnTtX9913n2w2m1P716SIgSKT+svPz0+TJk2q1TGHDx/WBx98oKefflrLlxvf4PPQoUMaNWqU3njjDY0cObIuUX3OX/7yF+3du7fatbFjx2rIkCEeToSGyDO3dQUANEjF69cYrie0be/2DNHpmbKZ3P1775rvdHjbz7JXVhrOxWRSZAIAaJxis9oYrp8uL9ORHdtUvGGd6V5x2TmuigUPsVgs6jR5ao3nM4YMVVybXDcmgjcltuuorJEX1u6Y9h3V5sJL3JQInpIzxrmPIUUmQMMQEBau4c+9rNEvv6Vu192gbtP+ojHzFui8J56Xf1CQt+MBAAAAAAAAAAAAAAAAgM+KjIzUjTca31Dq1ltv1enTpz2UyFxBQYHhen5+vkvOc/755ysqKsrhenFxsT744AOn969JkcmxY8ec3h/1T2RkpMaNG6dly5bp22+/Vfv2xte4nj59WhdddJE+//xzDyX0viVLlujFF1+sdi0yMlKPPvqohxOhoaLIBADglLLifTq2d4/hTEKe+4tMrH5+poUpe9d+r4OFm033is5s5apYAAD4lLgs8/KRA5s3qnj9WsOZ4OgYhSU2dVUseFD7/CuV3K2n6Vxih04aeO8jHkgEb+r115nyCwio0Wxcdq5Gz3lT/oGBbk4Fd4vPbafYWpZR+QcFq2nHzm5KBMDTLBaL0gYMUq8bZ6jXX2eqZZ/+slgs3o4FAAAAAAAAAAAAAAAAAD5v2rRpSkxMdLi+ZcsW/fOf//RgIsdWrlypDRs2OFz38/PT+PHjXXKugIAAXXzxxYYzZqUqRoKCghQaanwT9eLiYqf3R/3WsWNHrVy5UjfddJPh3OnTp5Wfn68jR454KJn3nDhxQldddZXsdnu16/fee6/h5yqgNvy9HQAA4Jv2rv3edCY+r50HkkgJbTto51dfOFzft/Z7Hdy8yXAP/+AQRTRLdnU0AAB8QmRKqvwCA1V58qTDmQMbN6j4h3WG+8Tn5HGxq4+y+vlpzLwFWvXM37Xpnfk6umun/IODFRafoJC4BEUkJatln/5KO3sIhRWNQGSLFLW//Cp9+9w/DOfic9tqzLy3FRwd7aFkcCeLxaLci8ZryR231PiYpC7d+JwAAAAAAAAAAAAAAAAAoFHzT2mm5svmeOx8Ow/vVHlFueFMXEicokKiPJQIvsw/pZm3IzQaISEhmjlzpqZOnepwZtasWbrssssUHBzswWRnMisOGTRokEuLDvLz8/XMM884XH///fe1b98+JSQkOLV/cnKyNm92fJP0vXv3OrUvfIPNZtO9994rm82mWbNmOZzbvn27/vrXvxr+f7EhuOOOO1RYWFjtWvfu3TVlyhQPJ0JDRpEJAMApxevWGK5b/f0Vl1W7u3k7K7FdB8P102XHVPTx+4YzMRmZslitrowFAIDPsPr7KyaztYrXr3U4s3/jBu3fYFxkEpeT5+po8CC/gAB1m/YXdZv2F29HQT3Qbdp0/fB/r+n4wQPVrie066Axr/5LQZH8orMhaZ9/pda8/KIO/VRUo/mWvfu5NxAAAAAAAAAAAAAAAACFSUOvAAAgAElEQVQA1HPWoEAFZKV67HyWg5L99DHDGb+wpgoIi/VQIgA1NXnyZD388MP66aefql3fvXu3nnjiCd14440eTvZfJ06c0GuvvWY4k5+f79Jzdu/eXZmZmQ7LFSoqKjR37lxNnz7dqf3Niky2bdvm1L7wLXfeeaeKioo0b948hzMFBQW6/fbbXVrUU5+sWbNGDz30ULVr/v7+evbZZ7m5MVyKK7YBAE7Zt+57w/XY1tnyDwrySJbEtsZFJpK0b61x3ujM1q6KAwCAT4o1KSDbsnihTpYeMZxJyG3nykgAvCg4KlqjX3pD/sEhZ6w1795bY+YtoMSkAfIPCtLw5+YoLjvXdNYWEqrcsRM8kAoAAAAAAAAAAAAAAAAAAMD32Ww23XHHHYYz999/v44cMX7dvjvNnz9fhw8fdrgeHh6ukSNHuvy8EyYYvya1oKDA6b3T09MN13ft2qXS0lKn94fvePjhhxUWFuZw/dSpU3ryySc9mMhzKisrNWnSJFVUVFS7Pn36dOXlcXNjuJa/twMAAHyTWTFIfJ7nLmSOTElVYEQT04urjcRktHJhIgAAfE9cdhvD9Yrj5eZ75PCkBdCQNO3QSfkLl2nN3ALt+XalgqNjlHHuMOWOGSeLlW7chiouO0eXfrhEm97+P22c/7q2LVsie1XVb2as/v4aeM/DComO8VJKAAAAAAAAAAAAAAAAAAAA3zNu3Djdf//9Wr9+fbXrJSUlevDBB3XXXXd5ONm/mRWGpKen65VXXnH5eR2VK/xiw4YNWrVqlTp37lzrvdu3b286s2HDBnXv3r3We8O3NG3aVH/84x/1wAMPOJx55513NGvWLA+m8ozHHntM33zzTbVrKSkpuvXWWz2cCI0BRSYAgForO7BfR/fsMpxJyDP/Bt9VLFarEvLaafsXS53eIz7Xc8UrAADUR7FZxkUmZvyDghSdluGiNADqi+j0DPW/7W5vx4CH+dlsyrlwrHIuHKtj+/Zq09v/p10rV6h0107F57ZV3th8NetU+18EAQAAAAAAAAAAAAAAAAAANGZWq1V33323RowY4XDmscce07Rp0xQfH+/BZNL27dv16aefGs58//33mjx5socS/VZBQYFTRSYdOnQwnVmxYgVFJo3EyJEjDYtM1q1bp0OHDikqKsqDqdyrrKzMsKjkqaeeUkhIiAcTobGgyAQAUGvF69aYzniyyESSEtt3dLrIJDCiiZr36O3iRAAA+Ja4rJw6HR+b1UZWf37EBICGJiwhUWddNVVnXTXV21EAAAAAAAAAAAAAAAAAAAB83vDhw9W9e3d9+eWX1a6XlZXprrvu0t///neP5po9e7aqqqo8es7amDdvnh555BEFBQXV6rh27dopICBAp06dcjizZMkSTZ8+va4R4QO6du2qmJgYHTx4sNp1u92ub775RoMGDfJwMvc5fvy4ysvLq11LTU3Vrl279MILL7jsfFu2bDFc//bbb03Pd/755yshIcFlmeAdXGUGAKi1fWu/M1y3+Pkprk2uh9L8W0rfs7XyycecOjZ71BjZgoNdnAgAAN8SmpCooMhInTh82Knj43PyXJwIAAAAAAAAAAAAAAAAAAAAAICG55577lH//v0drj/77LOaPn26WrZs6ZE8drtdL730kkfO5azDhw/rX//6ly655JJaHRccHKw+ffpo8eLFDmeWLFmiEydO1LokBb7HarWqZcuWDotMJKm4uNiDibzr559/1uTJkz16zgULFmjBggWGM8uWLaPIpAGwejsAAMD37Fu/xnA9plWWx4tBmnfvpejM1k4dmzv2UhenAQDA91gsFsVm5Th9fFwbikwAAAAAAAAAAAAAAAAAAAAAADDTr18/DR482OH6qVOndPvtt3ssz5IlS/TTTz957HzOKigocOq4oUOHGq4fO3ZM77//vlN7w/eYFWQYlZwAqDmKTAAAtbZvrXGRSUJuOw8l+S+L1arOU66p9XFxbfKUkNfeDYkAAPA9sVltnD7WG1//AQAAAAAAAAAAAAAAAAAAAADwRffcc48sFovD9ZdfflkbN270SBZnC0I87ZNPPtGOHTtqfdzw4cNNZ15++WVnIsEHRUREGK4fP37cQ0mAho0iEwBArRwvKVHpzu2GMwltvVMMkj36YoXExdfqmLyxlxr+wAcAQGMS52yRicWi2GznS1AAAAAAAAAAAAAAAAAAAAAAAGhMOnXqpAsuuMDhemVlpWbMmOH2HEePHtX//d//uf08rlBVVaWXXnqp1selpaWpb9++hjPvvvuuCgsLnY0GH1JWVma4Hhoa6qEkQMNGkQkAoFb2rf/edCYhzztFJv6Bgep4xZQaz/sFBCh71EVuTAQAgG+Jzcpx6rio1HQFhIa5OA0AAAAAAAAAAAAAAAAAAAAAAA3XrFmz5Ofn53B9/vz5WrVqlVszvP766yovL3e4Hh8fr9OnT8tut3vkv9dee80w7+zZs2W322v957zqqqsM16uqqnTffffVel/4nh07dhiuR0VFeSgJ0LBRZAIAqJV9a42LTCxWq+Jycj2U5kztJlwhW0jNGu8yhgxVcHS0mxMBAOA7YrOynTouPifPxUkAAAAAAAAAAAAAAAAAAAAAAGjYsrKydNlllxnO3HLLLW7N8OKLLxquX3zxxfL393drhv81fPhwhYeHO1zfsmWLli5dWut9L7jgAiUlJRnOzJ49W6tXr6713vAdJ0+e1ObNmw1n0tLSPJQGaNgoMgEA1Mq+dWsM16MzWimghkUi7hAcFa28SybUaDZ37KVuTgMAgG8JDI9QeFLzWh9HkQkAAAAAAAAAAAAAAAAAAAAAALV32223KTAw0OH64sWL9emnn7rl3Js3b9aXX35pOHPppZ69Bi84OFijR482nCkoKKj1voGBgZo5c6bhTFVVla6++mqdPn261vu7y/Hjx70doUFZunSpTpw44XDdYrGodevWHkzkfrGxsbLb7R77b/z48YZ5Zs2aZbpHr169PPS3A3eiyAQAUCv71n1vuJ6Q195DSRzrOOkPsliNv8SFN0tWy979PZQIAADfEZfVpvbH5LR1QxIAAAAAAAAAAAAAAAAAAAAAABq2Fi1a6A9/+IPhzM033+yWc5sVgmRmZqpLly5uObcRs/KUt956S8eOHav1vldeeaUyMjIMZ1atWqWbbrqp1nu7Q1FRkWmpC2pn9uzZhuu5ubmKjo72TBiggaPIBABQYycOH9KRbVsNZxLy2nkmjIHIFilqNXSE4UzOmEtk9fPzUCIAAHxHs7Nq/yRjQi5FJgAAAAAAAAAAAAAAAAAAAAAAOOOWW25RWFiYw/WVK1dqwYIFLj1nZWWl5syZYzgzfvx4l56zpgYMGKCmTZs6XC8rK9Mbb7xR6339/f319NNPm8498sgjeuGFF2q9vystX75cPXr0UGFhoVdzNCQbN27U66+/bjgzZMgQD6UBGj6KTAAANVa8fq3pTELb9h5IYq7nDTNkC63+h7ewxKY666qpHk4EAIBvyB59kfyDQ2o8HxIXr9D4BDcmAgAAAAAAAAAAAAAAAAAAAACg4YqLi9P1119vODNjxgxVVVW57JwfffSR9uzZYzjjrSITq9WqsWPHGs4UFBQ4tffAgQN11VVXmc5NmTJFs2fPduocdVFVVaW7775b/fr10/79+z1+/obq9OnTmjhxoiorKw3n8vPzPZQIaPgoMgEA1FhcmzwNe7pAXab+SS1791NQZORvBywWxefkeSfc70SnZ+i8x5+RLST0N4+HxMXrvCeeV1BklJeSAQBQvzVJbqEhDz0hWSw1mq8vX/sBAAAAAAAAAAAAAAAAAAAAAPBV06dPV0xMjMP1DRs2aMeOHS47n1kRSNeuXZWRkeGy89XWpZdeari+fPlyFRYWOrX3Qw89pOzsbMOZqqoqTZw4UTfffLNLC2SMrF+/Xv369dOMGTNMCzd82VdffaXi4mKPna+iokKXXXaZvv76a8O5fv36KS+Pa2QAV6HIBABQY8HR0coaPlp9brlDY157W1PXb9Xkr9Zq+HNz1PWa65V78XgFhIV7O+avMs89X1etXK++M+9Stz/dqAGzHtCkL75Tix69vR0NAIB6LXvkhTrv8WdlsZr/yBjXJtcDiQAAAAAAAAAAAAAAAAAAAABEBkeazoQFhnkgCQBXi4iI0M033+yRcx04cEDvvvuu4YxZkYi7dezYUVlZWYYzZmUsjoSHh+u9994zLI75xX333aeePXtq3bp1Tp2rJvbt26c///nP6tChg5YtW+a289QX7733nlJTU3XjjTdq//79bj3Xrl27NGzYMM2bN8909u6773ZrFqCxocgEAOA0i8WiJs1bqtXQEep982065+EnvR3pDMFR0ep89bXqdcPf1PGKKQoI5ckYAABqos0FF2vYUy/K6u9vOJc5ZJiHEgEAAAAAAAAAAAAAAAAAAACNW2RwpOx2u+MBuxRkC/JcIAAuNXXqVCUnJ7v9PK+88opOnTrlcN3f318XX3yx23OYGT9+vOH6nDlzVFlZ6dTeaWlpWrBggUJDQ01nv/rqK3Xs2FETJ07Upk2bnDpfdTZu3KhrrrlGKSkpeuyxx1RRUeGyveu78vJyPfjgg0pNTdXkyZO1aNEipz+W1Tl58qQeffRRZWVlaeHChabzU6ZMUY8ePVx2fgAUmQAAAAAAHGh9/igNf26OrDZbtevJ3XupaafOHk4FAAAAAAAAAAAAAAAAAAAANE4Wi0URgREO12NCYjyYBoCrBQUF6dZbb3X7eQoKCgzXBw8erLi4OLfnMGNWZLJr1y4tWrTI6f179eqljz76SBERjj+v/qKiokKzZ89WmzZt1LNnTz3xxBPatGmTcbnU71RWVmrlypW6//771bFjR7Vp00ZPPvmkTpw44fSfwdeVlZXphRde0ODBg5WYmKgpU6Zo/vz52rt3b633On78uJYsWaKrrrpKiYmJuv7663Xs2DHT4/Ly8vTwww87Ex+AAeNbawMAAAAAGrWMIUN18ZvvaeEN01RSuPnXx9POHqJhT/1TFovFi+kAAAAAAAAAAAAAAAAAAACAxqVlVEttObhF5RXlsujfr+W12+2KCIxQsybNvJwOQF1NnDhRDz74oAoLC92y/+rVq7VmzRrDmUsvvdQt566t1NRU9ejRQytWrHA4U1BQoHPOOcfpc/Tq1UuffPKJhg8frj179pjO2+12rVix4tdMMTExatu2rVJTU9WiRQuFhYUpNDRUdrtdx44dU2lpqbZu3arCwkJt2LChRsUajdWBAwf03HPP6bnnnpMkJSYmqnXr1kpLS1NiYqJiY2MVFBQkf39/lZWVqbS0VKWlpdq9e7fWrFmjH3/8UZWVlbU6Z/PmzfXBBx8oNDTUHX8koFGjyAQAAAAAYCipczdd9vFyFf+wTsf27FZC2/aKSGru7VgAAAAAAAAAAAAAAAAAAABAo2OxWJQRm6GTFSd1+PhhSVJ0SLRsfjYvJwPgCv7+/po1a5bGjh3rlv0LCgoM18PCwjRixAi3nNsZ48ePNywyefvtt1VSUqLo6Ginz3HWWWfpu+++07hx4/Tpp5/W6tiDBw/qs88+02effeb0+Y3079/fLfv6gr1792rv3r36/PPP3bJ/Tk6OPvzwQyUnJ7tlf6Cxs3o7AAAAAACg/vMLCFDT9p2Uee75lJgAAAAAAAAAAAAAAAAAAAAAXhboH6iE8AQlhCdQYgI0MBdddJHat2/v8n1PnTqlV1991XBm1KhRCgkJcfm5nXXxxRfLZnP8Oe7kyZOmf6aaSEhI0KJFi/TQQw8pPDy8zvvVVU5OjhYvXqznn3/e21EapHHjxmnFihVq3pzrYwB3ocgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOoBi8Wie+65x+X7LliwQCUlJYYz48ePd/l56yImJkZDhgwxnCkoKHDJuaxWq6ZPn65NmzZpwoQJ8vPzc8m+tdGmTRvNmzdPa9eu1dlnn+3x8zd06enpmj9/vl555RVFRER4Ow7QoFFkAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAD1xLnnnqvevXu7dE+zwo/ExEQNHDjQped0BbNyldWrV2vt2rUuO1+zZs00Z84cFRUV6brrrnN74YXNZtPo0aO1aNEirV+/XmPHjpXV2nArAPLz8zVjxgx16tRJFovFI+fMycnRc889px9++EGjRo3yyDmBxs7f2wEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP917733qlevXi7Zq6qqSj179lTXrl0dzuTl5cnPz88l53OlESNG6Pbbb5fdbnc4c/ToUZefNyUlRY899pjuu+8+LVy4UG+++aY+/vhj7d+/v857x8bGqk+fPho+fLhGjBihyMhIFyT2Da1atdKsWbM0a9Ys7du3TwsXLtTy5cv19ddfa8OGDaqsrHTJebKysjR06FBdeOGF6tatm0v2BFBzFqNP2gDQ0FgslhxJ6395f/369crJyfFiIgAAAAAAAAAAAACN2YYNG5Sbm/u/D+Xa7fYN3soDAKgZXoMCAAAAAABQf1RUVKiwsPA3j2VmZsrfn/vAAwBcr6ioSF9++aXWrVunrVu3auvWrdq7d6/Ky8tVXl6ukydPymazKSgoSBEREWratKmSkpLUqlUr5ebmqkOHDmrTpo0sFou3/yj1TllZmVavXq2NGzfq559/1s8//6ytW7fqwIEDKisrU1lZmcrLy2WxWBQYGKjg4GDFxcUpISFBLVq0UOvWrZWTk6MePXooLi7O23+cRmn+/Plau3atw/UBAwaoT58+HkxUd770vWZ9eg1K/fvbAQAAAAAAAAAAAAAAAAAAAAAAAAAAAACgnsnIyFBGRoa3YzRIoaGh6t27t3r37u3tKHDS6NGjNXr0aG/HQD1g9XYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL6PIhMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdUaRCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA6o8gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ1RZAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgzigyAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBnFJkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqDOKTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUGUUmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOqMIhMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdUaRCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA68/d2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4NjmzZu1bNkyb8eokSZNmmjMmDHejuEyS5YsUVFRkbdj1EhWVpZ69erl7Rho5CgyAQAAAAAAAAAAAAAAAAAAAAAAAAAAAACgHlu2bJkmT57s7Rg1kp6e3qCKTF544QW98sor3o5RI1deeSVFJvA6q7cDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPB9FJkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqDOKTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUGUUmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOqMIhMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdebv7QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCxSZMmadKkSd6O0SjNnTtXc+fO9XYMwGdYvR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgO+jyAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAnVFkAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDOKDIBAAD/z969R0t61XXC/+7udKeTbjoYQjoXEggIARQEAQeVm6CgBAGFhTCjM8w7wAg4g+IgIjokjsjIyAyjA6IojsPl5VWRiyASBiXcHYiAviC3kAuSkIB0SNJJd6e79/xRlU7O6dp16vLUqTqnPp+1erH62XV+zwbW+j7Vu37nVwAAAAAAAAAAAAAAAAAAAFMzyAQAAAAAAAAAAAAAAAAAAAAAmJpBJgAAAAAAAAAAAAAAAAAAAADA1AwyAQAAAAAAAAAAAAAAAAAAAACmZpAJAAAAAAAAAAAAAAAAAAAAADA1g0wAAAAAAAAAAAAAAAAAAAAAgKkZZAIAAAAAAAAAAAAAAAAAAAAATM0gEwAAAAAAAAAAAAAAAAAAAABgagaZAAAAAAAAAAAAAAAAAAAAAABTM8gEAAAAAAAAAAAAAAAAAAAAAJiaQSYAAAAAAAAAAAAAAAAAAAAAwNQMMgEAAAAAAAAAAAAAAAAAAAAApmaQCQAAAAAAAAAAAAAAAACwIZVS5r0FAAA2qVrrMde8/1ybQSYAAAAAAAAAAAAAAAAAwIY06BdJjxw5MoedAACw2RhkMhmDTAAAAAAAAAAAAAAAAACADamUcswvkx46dGhOuwEAYDNZ/b5y0HtPjmWQCQAAAAAAAAAAAAAAAACwIZVSsm3bthXXDh48OKfdAACwmax+X7l9+3aDTEZgkAkAAAAAAAAAAAAAAAAAsGFt3759xd8NMgEAoAur31euHqDHYAaZAAAAAAAAAAAAAAAAAAAb1upBJvv375/TTgAA2ExWv69c/b6TwQwyAQAAAAAAAAAAAAAAAAA2rB07dqz4+4033pjDhw/PaTcAAGwGhw8fzo033rji2ur3nQxmkAkAAAAAAAAAAAAAAAAAsGHt2rUrpZSjf6+15oYbbpjjjgAA2Oiuv/761FqP/r2Ukl27ds1xRxuHQSYAAAAAAAAAAAAAAAAAwIa1devW7Ny5c8W1b37zmyt+8RQAAEZVa83evXtXXNu5c2e2bt06px1tLAaZAAAAAAAAAAAAAAAAAAAb2u7du1f8ff/+/bn22mvntBsAADaya6+9Nvv3719xbfX7TdoMMgEAAAAAAAAAAAAAAAAANrTdu3fn+OOPX3HtmmuuyYEDB+a0IwAANqIDBw7kmmuuWXHt+OOPN8hkDAaZAAAAAAAAAAAAAAAAAAAbWikle/bsWXHtyJEjufzyyw0zAQBgJAcOHMjll1+eI0eOrLi+Z8+elFLmtKuNxyATAAAAAAAAAAAAAAAAAGDD27lzZ3bv3r3i2uHDh3PZZZdl7969qbXOaWcAACyyWmv27t2byy67LIcPH16xtnv37uzcuXNOO9uYjpv3BgAAAAAAAAAAAAAAAAAAunD66afn5ptvzk033XT02pEjR/K1r30t1157bU4++eTs2rUrW7duneMuAQBYBIcPH87111+fvXv3Zv/+/cesn3DCCTn99NPnsLONzSATAAAAAAAAAAAAAAAAAGBT2LJlS84+++xcccUVK4aZJMn+/ftz5ZVXppSSE088MTt27Mj27duzffv2HHfccSmlpJQyp50DADArtdbUWnPo0KEcPHgwBw8ezP79+3PjjTem1jrwZ0444YScffbZ2bJlyzrvduMzyAQAAAAAAAAAAAAAAAAA2DRuGWZy1VVX5brrrjtmvdaaffv2Zd++fXPYHQAAi2737t05/fTTDTGZkEEmAAAAAAAAAAAAAAAAAMCmsmXLlpx55pm5/e1vn6uvvjoHDhyY95YAAFhwxx9/fPbs2ZOdO3fOeysbmkEmAAAAAAAAAAAAAAAAAMCmtHPnzpxzzjm57rrrct1112Xfvn2ptc57WwAALIhSSnbu3Jndu3dn9+7dKaXMe0sbnkEmAAAAAAAAAAAAAAAAAMCmVUrJSSedlJNOOimHDx/ODTfckP379+fgwYO5+eabc/DgQcNNAACWQCkl27dvz7Zt27J9+/bs2LEju3btytatW+e9tU3FIBMAAAAAAAAAAAAAAAAAYCls3br16FCTW9RaV/wBAGBzKaWs+MNsGWQCAAAAAAAAAAAAAAAAACwtv9AKAADd2TLvDQAAAAAAAAAAAAAAAAAAAAAAG59BJgAAAAAAAAAAAAAAAAAAAADA1AwyAQAAAAAAAAAAAAAAAAAAAACmZpAJAAAAAAAAAAAAAAAAAAAAADA1g0wAAAAAAAAAAAAAAAAAAAAAgKkZZAIAAAAAAAAAAAAAAAAAAAAATM0gEwAAAAAAAAAAAAAAAAAAAABgagaZAAAAAAAAAAAAAAAAAAAAAABTM8gEAAAAAAAAAAAAAAAAAAAAAJiaQSYAAAAAAAAAAAAAAAAAAAAAwNQMMgEAAAAAAAAAAAAAAAAAAAAApmaQCQAAAAAAAAAAAAAAAAAAAAAwNYNMAAAAAAAAAAAAAAAAAAAAAICpGWQCAAAAAAAAAAAAAAAAAAAAAEzNIBMAAAAAAAAAAAAAAAAAAAAAYGoGmQAAAAAAAAAAAAAAAAAAAAAAUzPIBAAAAAAAAAAAAAAAAAAAAACYmkEmAAAAAAAAAAAAAAAAAAAAAMDUDDIBAAAAAAAAAAAAAAAAAAAAAKZmkAkAAAAAAAAAAAAAAAAAAAAAMDWDTAAAAAAAAAAAAAAAAAAAAACAqRlkAgAAAAAAAAAAAAAAAAAAAABMzSATAAAAAAAAAAAAAAAAAAAAAGBqBpkAAAAAAAAAAAAAAAAAAAAAAFMzyAQAAAAAAAAAAAAAAAAAAAAAmJpBJgAAAAAAAAAAAAAAAAAAAADA1AwyAQAAAAAAAAAAAAAAAAAAAACmZpAJAAAAAAAAAAAAAAAAAAAAADA1g0wAAAAAAAAAAAAAAAAAAAAAgKkZZAIAAAAAAAAAAAAAAAAAAAAATM0gEwAAAAAAAAAAAAAAAAAAAABgagaZAAAAAAAAAAAAAAAAAAAAAABTM8gEAAAAAAAAAAAAAAAAAAAAAJiaQSYAAAAAAAAAAAAAAAAAAAAAwNQMMgEAAAAAAAAAAAAAAAAAAAAApnbcvDcAsM623/YvX/rSl6sCF0MAACAASURBVOa1DwAAAAAAAIBBn1luH/Q6ABaOHhQAAAAAAABgYSxSD0qptc7r3gDrrpTy+CRvn/c+AAAAAAAAABqeUGt9x7w3AcBwelAAAAAAAACABTe3HpQt87gpAAAAAAAAAAAAAAAAAAAAALC5GGQCAAAAAAAAAAAAAAAAAAAAAEyt1FrnvQeAdVNKOSnJw29z6StJDs5pO5vB3ZK8/TZ/f0KSS+a0FwBmS+YDLA+ZD7A8ZD7A8pD5sNi2JznrNn+/qNb6rXltBoDR6EHpnPesAMtD5gMsD5kPsDxkPsDykPmw2BamB+W4edwUYF76YfuOee9jsyilrL50Sa31M/PYCwCzJfMBlofMB1geMh9gech82BA+Oe8NADAePSjd8p4VYHnIfIDlIfMBlofMB1geMh82hIXoQdky7w0AAAAAAAAAAAAAAAAAAAAAABufQSYAAAAAAAAAAAAAAAAAAAAAwNQMMgEAAAAAAAAAAAAAAAAAAAAApmaQCQAAAAAAAAAAAAAAAAAAAAAwNYNMAAAAAAAAAAAAAAAAAAAAAICpGWQCAAAAAAAAAAAAAAAAAAAAAEzNIBMAAAAAAAAAAAAAAAAAAAAAYGoGmQAAAAAAAAAAAAAAAAAAAAAAUzPIBAAAAAAAAAAAAAAAAAAAAACYmkEmAAAAAAAAAAAAAAAAAAAAAMDUDDIBAAAAAAAAAAAAAAAAAAAAAKZ23Lw3AMCG9vUkF6z6OwCbk8wHWB4yH2B5yHyA5SHzAQBYdN6zAiwPmQ+wPGQ+wPKQ+QDLQ+YDIym11nnvAQAAAAAAAAAAAAAAAAAAAADY4LbMewMAAAAAAAAAAAAAAAAAAAAAwMZnkAkAAAAAAAAAAAAAAAAAAAAAMDWDTAAAAAAAAAAAAAAAAAAAAACAqRlkAgAAAAAAAAAAAAAAAAAAAABMzSATAAAAAAAAAAAAAAAAAAAAAGBqBpkAAAAAAAAAAAAAAAAAAAAAAFMzyAQAAAAAAAAAAAAAAAAAAAAAmJpBJgAAAAAAAAAAAAAAAAAAAADA1AwyAQAAAAAAAAAAAAAAAAAAAACmZpAJAAAAAAAAAAAAAAAAAAAAADA1g0wAAAAAAAAAAAAAAAAAAAAAgKkZZAIAAAAAAAAAAAAAAAAAAAAATM0gEwAAAAAAAAAAAAAAAAAAAABgagaZAAAAAAAAAAAAAAAAAAAAAABTO27eGwBg4yilnJzkh5M8Ksl3JDknye2SbEtyfZKrk/xDko8leWet9bNz2ioAEyqlbE3ykPTy/ruTnJvk25LsTHJTkmuTfDHJp5K8J8lf11oPzmmv5yR5XH+/90pyRnrPpZrec+mKJJ9N8v4k76q1fm0e+wSWRyllW5IHJvmu9N4vf0eSM5PcPslJSY4k2dv/8/UkF6f33vmjtdavzmnPch9gTP28v2eS70wv6++c5E79P7vTy9AduTVHv5XkyiR/m172f2QeuS/zAZZLKeVBSR6b3r9R7pnklCS7khxIcl2SS5L8fZL3Jrmw1rpvTvs8Pcl5SR6e5N5Jzk4v80t6mX9lep87fDC9zL90HvsEAKB7elAAloOzaYDJ6EGZ+V5lPrAQ9KCsy15lPsCU9KAAkyq11nnvAYAFV0q5W5IXJ/nnSY4f40c/luTltda3zmRjABtIKeWM9P7R/oD+fz4wyamNl19Qaz1/nbaWJCmlHJ/kuUn+fXqH4KO6JslrkvxmrfX6WexttVLKI5L8UpIfGuPHDid5a5KX1lo/NYt9AcuplHLv9D7kemR6H3TtnLDU+5K8Ksk7aq2HO9pek9wHGF0p5Q5JfiDJ9/f/3C+9X6iZ1JH0cv8Pk7xl1o0aMh9g/ZRStiT5SJJ/NuRlF9VaHzHD+z89yfPTa3Qc1XVJXpfkZbXWa2awtWOUUu6f3ucOT0yydcQfq+k1vfx6rfWiWe0NAIDZ0oMC0A19KN1xNg0sCj0osyfzgXnTgyLzAUalB2V0elBgcRlkAkBTKaWk9w/3X05viuuk3pPkX9dar+pkYwALrpRyWo5tFjltjBLr2kBSSvn+9A6w7z5FmSuT/Nta6zu72dWxSiknJfmdJE+boszhJL+d5IXzmuwNbHyllHOT/ESSp2S8g9lRfCnJv6m1fqDjukfJfYDxlFJ+McnLZlT+C0l+utb617MoLvMB1lcp5flJXrHGy2bSRFJKuVeS/5XeOdSkrk3y87XW13Wzq2P1mxtfnl6D46jNI4O8Mclzaq3XdbIxAABmTg8KwOT0ocyGs2lgEehBSSLzgSWiB0XmA4xKD8ra9KDA4jPIBICBSiknJvnjJOd1VPKqJI+vtX6io3oAC6eU8pIkz0pyxpSl1q2BpJTyjCSvznTTvG9Rk7yk1vqfOqi1Qinl25O8K8k9Oir50fSeS9/oqB6wREopn0ivSXBWjiT570l+sesPweS+3AfGN+Mmklu8NsnPdJn7Ml/mA+urlHLXJH+f5MQ1Xtp5E0kp5XFJ3pTkdh2V/N30GjSOdFQvSVJKOTXJOzL824LG8fkk59VaL+moHgAAM6IHBWAy+lCcTQObnx6Uo2Q+sBT0oCSR+QBr0oOyNj0osDFsmfcGAFg8pZQd6b2R66qBJElOT/LeUsr9O6wJsGjun+mbR9ZNKeWZSX4v3RwqJ0lJ8qullPM7qtcrWspdkvx1ujtUTpLvTe+5dPsOawJ0ZUuSn0vy56WUE7oqKvflPrDQnple7m/vopjMl/nA+up/s/xrs3YDySzu/dgkb0l3DSRJ8m+T/H7/v1cnSiknJ3lvumsgSZJzk/xVKeXsDmsCANAxPSgAU9GH4mwaYFp6UGQ+sHz0oHRH5gPrTg/K2vSgwMZhkAkAg7wqyaOGrH8hyQuSPDDJKUlOSvLtSZ6W5M/Tm5A6yO2TvKOUckp3WwVgEqWURyT5nfQOgwe5MclrkvxwkjPTO4g4Pckjk7wiyd4h5V9SSnlaR/s8Ib3GxjsNedn7k/w/Se6V3rPmDkm+K8nPJPnbIT93vyRv6vJABKDvkvQ+uHtGkockOTu9fPq2JHdP8pj0vlVhrYnNj07y+i5ySu4nkftA9z6X5A+TvDDJE9PLorskOTnJ7iRnpddk/i/TO2u5Zo16j07v+TEVmZ9E5gPr75np5ei6KqXcK71vtW81IR5K8ob0nlN3Ti/zT03v3ykXJPnqkPL/Or1nXBf73JLkzUnuO+RlFyd5bv81J6eX+/dO7zlw0ZCfOzvJ2/u/HAsAwGLSgwKwBJxNJ3E2DcyGHpTJ9ynzgY1ED8p0+5T5wGaiB2X4PvWgwAZSam19zgfAMiqlPDXJ/9tYPpTkl5O8otZ6aEiNByd5U5JzGi95V631cVNtFGABlVLeluQJHZS6oNZ6fgd1BiqlfFuSzyY5rfGS9yX5l7XWK9eo8ar0GggHuSHJfWqtl02x1ZRSXpPeBNZBvpHk6bXWdw35+ZLk6Un+R9oTaV9Qa/3NafYJLJdSyieSPGDV5S8leX2SN9davzBina1JfiLJb6X3oVjLc2utr55kr/37yP2V5D4wllLKL6bX/HdNek0P707ywVrr18esc1ySn0zy8iR3HPLSJ9Ra3zHhXmX+SjIfmLlSyplJPpPeL1ve1uEkWwf8yEW11kd0cN9t6TXUfWfjJZ9K8rRa6+eG1DghyUvT+zbOQQ4n+f5a699MuddbnqWD3JjkZ2qtf7hGjfOS/M/0frF1kFfVWn9m4k0CADATelAApqMPZQVn08CmpAdlIJkPbFp6UI4h8wFuQw/KSHvVgwIbiEEmABxVStmd5PMZfNBwOMlTa61/OmKt09KbWHpu4yU/Vmt92yT7BFhUazSQXJbeVM+Lk3yi/5//1HjtrBtIXpXkOY3lt6SX981mwVW1XpnkeY3lt9danzjBFm+p/T1JPpbBU7yvSfKwWuvnR6z1kCR/mWTngOV9Se5Za/3HSfcKLJdVTSTvTe+bAy6sEx6y9A+d35ne5P5BvpXknFrrsG8nGFZf7q8k94Gx9H9ZZluSD9daj3RQ79T0mjlaH/r9Q6313hPWlvkryXxg5kop70jyo6su/58kB5I8dMCPdNVE8oL0GhMH+XCSx9Ra941Y62eT/LfG8t8medCkz8BSyp3Ta3Ac1PC3L8kP11o/NGKtc9P7Zpw9A5aPJPmeWuvFk+wTAIDu6UEBmJ4+lGM4mwY2HT0oMh9YLnpQBpL5AH16UNasrQcFNpgt894AAAvl+WlPS71g1AaSJKm1fi3JE9N7EzjIy0spnkPAZnV5kj9L8ktJHpPklFrrObXWJ9daX1ZrfW+t9Zvz2Fgp5W5pT5z+TJKfGvVQue/5Sf53Y+0J/QPdSb08gw+VjyR5yqiHyknSP4x4dmN5Z5Lzx94dsMxqes0j31NrfXSt9T2TNpAkSa31q0l+JL1mw0FOSvLcSWrL/YHkPjCWWuvHaq0f7KKBpF/vmiSPSu8bXwa5Vynl+8etK/MHkvnATJVSnpZjG0gOJXlmepk2q/uelN431w/ytSQ/PmoDSZLUWl+Z5HWN5e9O8s/H2+EKF6T9rWXPHrWBJEn6z4efyOD/bbck+Y3xtwcAwAzpQQHojj6UHmfTwGakB2UwmQ9sSnpQBpL5ANGDMiI9KLDB+PAOgCRJKWVnkn/XWP5MkpeNW7PW+rkkL20s3z3Jk8atCbDgfim9ZpG71Fqf1G8WubDW2vrGm3l4QZKtA67XJM+std40TrH+QfqzkuxvvORF422vpz9x/OGN5dfWWi8at2at9fVJLmws/1T/2ygARvGv+s0jH++qYL8Ju/XtBUnyUxOWlvuDyX1grvqNJL8y5CXnTVBW5g8m84GZKKWckuS3Biz9l1rr38349s9Osrux9nP958y4np/k6421F5ZSBjX/DVVKOSvtBpT39PN7LP3nxO83lh9VSnnQuDUBAOieHhSAzuhDOZazaWCz0YMi8wGmogdF5gMbnx6UtelBgY3JIBMAbvHUJCc31l4y5rTU23pl2tNdhx2SA2w4tdbPLlizyAqllF1pfwj5rlrrRyepW2u9NMkfNJZ/pJRylwnKtr714WCSX52g3i1e3Li+PckzpqgLLJFa62dnVPfdSVpZfI9Sytnj1JP7SeQ+sNjelF7ODXK/cQrJ/CQyH1h/v5XklFXXvpTpsmxN/WaO1reA/X2t9c2T1K21fiu9bysb5DuTPGyCss9Ksq2x1vo2n1FckOTmxprPHQAAFoMeFIAO6EMZyNk0sKnoQZH5AB3Rg7KSzAc2Gj0oa9ODAhuQQSYA3OInG9e/kuStkxbtT1ptTaZ7eH8aHgDr40lJTmysDZreOo7fblwvSf7FOIX639D2xMbyn9Zarxyn3m3VWj+R5GON5bH2CTAjbxuyNtYHipH7ch9YaLXW65J8srF8pzHLyXyZD6yjUsqPJnnagKWfrrW2vkWsKw9L0mowb2X2qF6b9regtT5DGKaVvx/p5/ZE+s+LtzSWn1RKOWHS2gAAdEYPCsBycDbtbBpYbHpQVpL5wKalB+UYMh/YMPSgjEwPCmxABpkAkFLKHdKeZPfmWuuRKW/xxtat0z44AKB7P9a4fnWSv5qmcK3180kubiz/+JjlfijJrsZa65kyjlaNu5dS7tNBfYBpfHzI2p3HrCX3h9eQ+8AiuKpxfdwPv2T+8BoyH+hMKWV3kt8ZsPRHtdb3rcMWWpl/MMmfTlO4/40472osP7GUMvJny6WU+yU5p7E8y8y/XZIf7KA+AAAT0oMCsFScTQ+v4WwamDc9KCvJfGCz04NyK5kPbAh6UEajBwU2LoNMAEiSR6X9TGi9YRxZrfX/T3JFY/kx09YHYG2llOOS/EBj+d211sMd3Kb1zLh/KeWOY9R5dOP6/kx5AN437NnmuQTM29VD1m43ahG5v4LcBxbZwcb1b41aQOavIPOB9fCbSc5cde3rSX5+ne7fytKP1Fr3dlC/laWnJPnuMeq09jnsHuN4X5IDjTWZDwAwX3pQAJaAs+kVnE0Di0oPyq1kPrAM9KD0yHxgI9GDMho9KLBBGWQCQJI8onF9f5KPdnSP1kHAw8eZoAfAxL47ye7GWheHtcPqlLSfNYO0XvuRWuv+cTY0SK310iSXNZZbh+8Ai2Ccb6mU+31yH1hwexrXvzpGDZnfJ/OBWSul/ECSZwxY+rla6z+tw/33JLlXY3nWmZ+Ml6WPaFz/cq318jHqDFRrvSntzy9kPgDAfD2icV0PCsDm4my6z9k0sEHpQZmAzAcWnB6UHpkPbAh6UPSgwDLwoR0ASfLAxvW/q7W2prKO6+ON67uS3L2jewDQ1sr6JPlER/e4OO0POEeallpK2Znk3MZyV/tM2s+lcaa6AszCWUPWxplsLfdXkvvAwimlbE87hz48RimZv5LMB2ailHJiktem10B3WxfWWt+4Ttt4wJC1TrK03+Dx9cbyOFna2ut6ZP49+/9/AQAwH3pQAJaDs+mVnE0Di0gPyq1kPrCp6UFZQeYDC08PShI9KLAUDDIBWHKllK1J7tNY/nSHtxpW6/4d3geAwe7XuL4/yee7uEGt9YYkX24sj5r135X2v1PW47l0WinltA7vAzCuBw9Z++IYdeT+aLXkPjBPj01yuwHXa5J3jFFH5o9WS+YD0/q1JHdbde3GJD+9jntoZX6yPlk6UuaXUs5IcuqYtSfRqrUlyX07vA8AACPSgwKwVJxNj1bL2TQwT3pQbiXzgc1OD8qtZD6wEehB0YMCS8EgEwDOSrKjsfaFDu/zpSFrvg0HYPbu0bh+Sa21NdV6Eq28HzXrW/tMPJeA5fDjjeuHM97UaLm/ktwHFkopZUeSlzeW/6LW+rkxysn8lWQ+0LlSyvcked6ApfNrrZeu41ZaWbqv1nplh/dpZeld+7+YuhaZDwCwvPSgACwPZ9MreTYBi0gPyq1kPrBp6UE5hswHFpoelKP0oMASMMgEgHOGrF3W1U1qrVcnuamxfNeu7gNAUyvvL+v4Pq2Dk7NHPGRYl+dS2vtMPJeAOSmlPDTtic0frrVeN0Y5ub+S3AcWRr+B5K0Z/OHWvgz+kHIYmb+SzAc6VUrZnuR1OfZz1U8m+W/rvJ15Z/62JHca4edlPgDA8tKDArA85n1O4WwaYAg9KMe4bPztNMl8YGHoQRnosvG30yTzgU7pQVlBDwosAYNMADhryNpVHd+rVe/sju8DwG2UUrYkObOxvF5Zf1ySM0b4+dZz6eYk/zTRjgYb9t/bcwmYl18fsvZHoxaR+wPJfWAhlFIemeRvk/zwgOVDSZ5ea71kjHoy/1gyH+jai5N8x6prh5M8s9Z6aJ330srS9cr8ZLQsXa/PHb6e3vNzEJkPADAfelAAloCz6YGcTQOLRg/KrWQ+sCnpQRlI5gOLTg/KSnpQYJM7bt4bAGDuThmy9vWO73VNBk+gu0PH9wFgpdsnaU2nnkXWt9whyVfW+PnWc+kbtdY62ZYGWmufAOuqlPL0JA9pLH81yRvGKCf3jyX3gZkopRyXwefsW5LcLr1MvleSByR5cpJ7Nkpdn14DyZ+NuQWZfyyZD3SmlHKfJC8asPRbtdaL13s/aWfpemf+Wtblc4daay2lfCPJaQOWZT4AwHzoQQFYDs6mj+VsGlgYelCOIfOBDUEPylEyH9iU9KAMpAcFNjmDTAAY9kbquo7vdf0EewBgeouQ9WvtY63XdLrPWuuBUsrBJNvH2APATJRS7pzklUNe8su11oNjlJT7q8h9YIb+c5Kfn7LGu5M8t9Z66QQ/K/NXkflAV0opW5P8QZJtq5YuT/Irc9jPtvQaFAfZKJl/YMx/24zi+mgiAQBYJItwVuG9IMDsLULer7WPtV7jbBrYlPSgDCTzgY1CD8ra+1jrNTIfWEh6UJr0oMAmt2XeGwBg7nYNWRv2RnESrXqtN74AdGMRsj4ZLe9be+16n0lyQ+O65xKwbkop25P8SZKTGi/5UJI/GrOs3B9M7gOL5Ookv5fkgbXWx07YQJLI/BaZD3Th+UkeNOD6c2qt+9Z7M5H5LT53AABYLIvwvtV7QYDZW4S8TxbvnMLZNDBXelBkPrC09KCMVndSMh/ogh6UwRYt833uAB0zyASA44es3dzxvVpT7gZNJwWgO4uQ9cloed/aa9f7TDyXgMXwqgw+mE56H4D9q1prHbOm3B9M7gOL5NIkX0m72WFUMn8wmQ9MpZTy7UkuGLD05lrrX6z3fvpk/mAyHwBgsSzC+1bvBQFmbxHyPnFOAbCaHpTBZD6w2elBuZXMBxaOHhSZD8vMIBMAtg1ZO9TxvVr1vJkDmK1FyPpktLxv7bXrfQ6r6bkErItSyn9I8owhL3l2rfXLE5SW++PVlPvAPDw4yX9K8g+llLeXUu47YR2ZP15NmQ+sqZRSkvx+khNWLe1N8rPrv6OjZP54NWU+AMB8LML7Vu8FAWZvEfI+cU4BcJQelCQyH1heelBGqzspmQ9MTA/KmvVkPmxyBpkAMMy4U7fXux4A09soWT+Lup5LwNyUUp6S5DeGvOTVtdY3zODWch9gsZQkj0/y8VLKC/sfXHZF5gNM5qeTPHzA9RfUWq9e782MSOYDALARbJT3rQBMZ6PkvXMKYNPQgzKXujIfWER6UGQ+sHj0oMh8WGoGmQBw85C1YdP1JtGqd7Dj+wCw0iJkfTJa3rf22vU+h9X0XAJmqpTy6CSvT/tc5i+SPG+KW8j98WrKfWBitdb/UGstq/8kOT7JniT3TPKUJC9P8sUhpbYn+c9J/seYjSQyf7yaMh8YqpRyVgY3e1+U5HXrvJ3VZP54NWU+AMB8LML7Vu8FAWZvEfI+cU4BoAdlJZkPbGh6UI6S+cCmoAdlpHoyHzY5g0wAODBkres3dNsb172ZA5itRcj6ZLS8b+11FocMnkvAuiulPCTJW9POoIuSPLnWemiK28j9weQ+sG5qrQdrrdfUWj9fa/2TWusLk5yb5FFJPjXkR5+T5PwxbiXzB5P5wKRek+R2q64dSPKsWuu8v3VF5g8m8wEAFssivG/1XhBg9hYh7xPnFMCS04NyDJkPbEp6UAaS+cBGoAelR+bDEjPIBIAbhqzt6vherXrXd3wfAFZahKxPRsv71l673uewmp5LwEyUUh6Y5F1JTmy85G+S/Git9aYpbyX3x6sp94F1UXv+KsmD0vvmm5YXl1K+d8SyMn+8mjIfaCql/GSSxw5Y+rVa6xfWez8DyPzxasp8AID5WIT3rd4LAszeIuR94pwCWGJ6UAaS+cDS0IMi84HFpgdl5HoyHzY5g0wA+Kcha7s7vler3rA9ADC9Rcj6tfax1ms63Wcp5fi0p6V6LgGdK6XcN8l70s6zTyX5kVprFwedcn8VuQ8sklrroVrri5K8tPGSrUl+Y8RyMn8VmQ9MopRyapJXDlj6TEbP5Jmqtd6cdmPERsn8HaWUrr8Rx+cOAACLZRHOKrwXBJi9Rcj7tfax1mucTQMblh6UsV8j84FNSw/KWHXHJvOBSehBGaueHhTY5AwyAWDYG6lTO75Xq543cwCzdW2Sw4219cr6ZLpDhjuWUsoE+2mZdp8AIyul3DPJe5Oc3HjJZ5L8UK11b0e3lPvHkvvAIvqVJP+nsfbQ/reorUXmH0vmA5P47SR3WHWtJnlWv3ljUbRybKNk/lq1x9J/fpwywR4AAJgdPSgAy8HZ9LGcTQPrQg/KUDIfWGZ6UHpkPrAI9KCMXk8PCmxyBpkA8JUha6d1fK9WvWF7AGBKtdYjSa5sLHed9ac3rh9KctUIP996JmxL+8PXSbT2OWwPAGMrpdw9yV+lfVD6hSQ/WGv9Rlf3lPsDyX1g4dRaa5JfGPKSx49QQ+YfS+YDYymlPCHJUwYsvabW+pH13s8aWjm2Xpk/bA+jvqbLvd4xyXET7AEAgNnRgwKwBJxND+RsGpg5PShrkvnA0tKDcpTMB+ZKD8pAelBgiRlkAsClQ9bO6eompZQ9SU5sLH+5q/sA0NTK+86yfo16X6m1Hhrh59flubRGLc8loBOllLum10DSOoD9cpJH1lq/NoPby/3Ra8l9YJ4+mOTqxtrDRqwh80evJfOBQZ4+4NrVSc4vpeyY9E/an8NuGfJz29fY67wz/1BGa86Q+QAAy0sPCsDymPc5hbNpYKnoQZH5ACPQgzK89iRkPjCupw+4pgdlMD0osAQMMgHgiiQHGmv36PA+3z5k7Ysd3geAwb7QuH63UkqX/y5o5f2oWd/aZ+K5BGwgpZQ7p9dAcqfGS65Ir4HkqzPagtxfSe4DC6n/bTYfaiyP+iGbzF9J5gPjKgOu7UmvkeSmKf48tHG/hw75mQvX2GsrS3eWUs5Y42fH0crSL9daD4/w8zIfAGB56UEBWB7OplfybAJmRg+KzAcYhR6Uo2Q+ME96UI6lBwWWmEEmAEuu/4bv7xvL39XhrYbV+mSH9wFgsE81ru9Icm4XNyil7Epy18byqFn/6SRHGmvr8Vy6utZ6VYf3AZZQKeXM9BpI7tx4yZXpNZBcPsNtyP3Rasl9YBG0cuiUEX9e5o9WS+YDm0Er85Nus/S+jesjZX6/Wf7rjeX1yPwjSf6uw/sAADAiPSgAS8XZ9Gi1nE0DU9GDkkTmA4xDD4rMBxiVHpTRaulBgSkYZAJAknyicf2+pZTtHd3jQY3rN2T4ZDwAutHK+iR5YEf3eEDa/8a4eJQCtdZhz4Wu9pm0n0sj7ROgpZRyWnoNJK0P2q5Or4HkkhlvRe6vJPeBRXZD4/q2EX9e5q8k84HNbOaZ3/9mz1Mby+Nkaeu165H5n6u17uvwPgAAjEcPCsBycDa9krNpoHN6UI6S+QCj04Mi8wFGpQdlJT0oMAMGmQCQJO9vXN+R5Hs7uscPNK5/oNbamoQKQHcuTnJ9Y+2RHd2jVacmuWiMOu9vXP++UsqOsXY0QCnlLknuMua9AdZUSrljkvcluUfjJd9I8qha6+fXYTtyv0/uAxtA64O6VnPJajK/QtsoJgAAIABJREFUT+YDm12t9eokn2sszzrzk/GytPXau/YbVabSf248eMx7AwCwPt7fuK4HBWBzcTbd52wamAU9KEfJfIDx6EGR+QAj0YNyKz0oMDsGmQCQ9A66a2PtvGmLl1K+M0nrTeGF09YHYG211kNp/wP6R0opWzu4TeuZ8ela6zVj1Hlv4/qOdHMg8rgha55LwERKKScn+d9J7t14yTeT/GCt9TPrsR+5v4LcBxbd2Y3r/zjKD8v8FWQ+sAxaWfp9pZRv66B+K/O/mfG+Dae1z2H3GMcPpvf8GETmAwDMlx4UgCXgbHoFZ9NAp/SgrCDzAcajB0XmA4xDD0qPHhSYEYNMAEit9RtJPthYfmopZdrnxb9o3TrJW6esDcDoWpm7J1Me2JZSzk3ygMbyn41Z7j1J9jXWWs+UcbRqXFJr/XQH9YElU0o5Kb1Dyvs2XvKtJI+eQ8bI/eE15D4wd6WUnUke0lj+hzFKyfzhNWQ+0FRrfWKttXT9J+1vC7toyM89YoQttzJ/e5InT/K/wS36/7ZpNXi8bcxvtv9kkssaa7PM/BsyvIEFAIAZ04MCsFScTQ+v4WwaGJselGPIfIAR6UFZQeYDc6EH5VZ6UIDEIBMAbvX6xvWzkvzYpEVLKSckeUZj+QO11ismrQ3A2P40yU2NtX8/Ze1/17hek7xhnEK11n1J3tZYfnIp5fRx6t1WKeWBSR7cWB5rnwBJUkq5XZK/TPvDteuTPKbWOs7U6K7IfbkPLL4npz3Jv/Xh4yAyX+YDy+P9Sb7SWGtl9qiemfZzqfUZwkC11prkjY3l7yultP4NtaZSyhlJntRYfkut9cZJawMA0Bk9KADLwdm0s2mgQ3pQjiHzAcajB+VWMh9gNO+PHhQ9KDBDBpkAcIs3J9nbWLuglLJ1wro/m+SUxtrvTFgTgAnUWq9P+/D0vFLK905St5RylyT/prH8nlrrpROUfXXj+vYkL5mg3i1+rXH95iS/P0VdYAmVUk5M8s60P7Dal+Sxtda/Wb9d3UruJ5H7wALrNyL+emP5SJK3j1pL5ieR+cCS6DdnvKaxfJ9SylMnqdv/JpwXNJY/m/GaG2/x2iSHGmsvnaDeLV6SZFtjzecOAACLQQ8KwBJwNp3E2TTQET0oA8l8gBHpQTmGzAcYgR6UJHpQYKYMMgEgSVJrvSHJqxrL35HkRePWLKWcm+TFjeVL0pvUCsD6+i/pHUivVpL8bv9bzEZWSilJfi/tSakvG297PbXWjyT5UGP5maWUh41bs5Tyk0ke01h+Q631H8etCSyvUsrx6U3zb+XRjUnOq7W2smy9yP3B5D4wklLKqTOqe3ySNyU5o/GSd9ZavzpmWZk/mMwHNqNXp/fNm4P811LKHSeo+Yokrefeb/SbV8ZSa708vV9gHeQx/fweS/858YzG8l/Pq4kfAICV9KAALBVn04M5mwZGpgdF5gPLQQ+KzAdYUHpQBtODAh0wyASA2/rNJFc31s4vpfz4qIX6hyxvS7Kz8ZIX1loPj7k/AKZUa/1iepNIB7lPkv815jegvSLJDzXW3llr/cA4+1vlF5IMOqDYkuSPSyn3GLVQKeX70p4Ue2OS88feHbC0SinbkvxJ2vm3P8nja62TTIvulNwfSO4D4/i7UsqrSylndVWwlHJGkj9P8rjGSw4n+Y/j1pX5A8l8YFOqtV6b9jeqnZ7kz0oprbP5Y5RSnpf2t599Kskbx9vhCv8xyU2Ntdf0c3wk/efDH2fwZ9xHkrxw/O0BADBDelAAloCz6YGcTQMj04Mi84GlogdlMJkPMEd6UPSgwCwZZALAUbXWbyX5+cby1iT/XynlF9Y6cCil/LMkH01yz8ZL3l1rfcvkOwVYXKWU7aWUHaP8GVLmuFFrlFImeU//S2k3DT45yV/2D7aH/fe8fSnljUl+rvGSfUmeN8Hejqq1fjTJHzSW9yT5UCnlsWvVKaU8PcmFaTc2XlBrvWKiTQJLp/9e+A1JfrTxkpuTPC3Jh8fI8lH/bJ9w23J/JbkPjGNHkmcn+VIp5e2llJ8qpZw0SaFSymmllBcl+VzazRlJ8vJa66cnuUdk/moyH9jM/muSzzbWHpLkA/1vrG8qpZxQSnlFklc2XnI4yXOm+YXQWuulSV7aWN6Z5MJ+ng9VSjkvvW9T29N4ye/WWj8+0SYBAJgJPSgA3dCHcpSzaWDT0YMi84GlowflWDL//7Z379G2l2W9wL/P3htQLiqKF7ylEqJiJmIoKhGoJKCV2kXHOSU61BxmnY557DiGZhe10mFmdvNSB05qnMqUvKYIeAVJxEsi5SUULEGQq8T9OX/MhW1wrTnXXHOuOddc6/MZYw7GXu87n/fZey1+a/NbX54fwMYgg3JLMigwJdW93MA5ALayqjo+yTOGbPmXDKarnprkvAxulN85yY9kcMP8J5LUCu/99yQHdfdFU2oXYEOpqtOSHD7DI4/o7tPGfVNVPTaDm60rBVCuTnJ8kpOSfCHJFUn2TPLAJMdkMCH1jkOO+Pnufuu4fS3T5x5JzkzyoCHbTk1yQgYBxm9l8Hu6Z5LDlvo8eMh7P5jk6O6+adJega2hqu6T5N/mdPxHuvvH1vJG1/3vcd0HxlJVlyW5dWjkuiRnZfB0gM8m+VKS7yS5fOm1PcleS+/bP8lDkzwqyRFLa8O8L8lPdvcNE/Tsmj/gmg/M1ZB7RGv+e/0yZxyYwbV09xW2XJ/kxCR/l+TsJJdmEJDcP8lRSZ6T5B5Djnhpd68UABmnz21JPpTkyCHbPp1BwPBjSb6ZwdNt9k1yaJJfyOD76Eq+kOQR3b3SU3cAAJgjGRSAycihfI9708CmI4OyItd8YFOSQVmWaz7AKsig3KJPGRRYIAaZAPB9quq2Sd6b4X8pW4vLkzy2u8+acl2ADWNRAiRJUlXPS/Jn020nSfKK7n7ZtIpV1X5JPppk6NTuNfh8Bn9+35lyXWATW9QQSeK6H9d9YA1WCJGsl39I8rRp/ADMNd81H5i/WYRIls55UpJ3JNllWjWX/FWSZ/SUfphcVfskOS3JgdOot5MLkhzW3edNuS4AAFMigwIwGTmUJO5NA5uUDMqyXPOBTUsG5fu45gOskgzKLcmgwOJYaRoeAFvY0s2KJyX5wBTLXpjkxwVIADaO7v7zJM9LsuZJ27cumeS3pnlTOUm6+6sZBBu/OsWyZyZ5nJvKwFbiuu+6D2xYNyR5eZKnTGuKv2u+az6wdXT3u5P8dJKrplj2L5I8c1oBkiTp7ouTPDaDp95My5czCA2eN8WaAABMmQwKwNbh3rR708DW4Zrvmg9sWDIorvkAayaDIoMC02aQCQDL6u7vJjk2g5sY105Y7uQkB3f3pyZuDICp6u43Jjkyk9+0/VaSJ3f3b07c1DK6+1+TPDzJ30xY6qYkb0jyo9397YkbA1gwrvsAY7tsneu/N8lDu/u3u/vGaRZ2zQfYOrr7H5I8MsnZE5a6Iskvdvezp/19KUm6+8IkhyX5kwyu25M4McmPdPdXJm4MAIB1J4MCsHW4Nw2wdbjmA4xNBsU1H2DDk0EBpskgEwBW1N03dfdvJ3lwkhMyfpjkzCRP7e7Hd/c3p94gAFPR3R9LcmCS/5Xk/DHf/u0kr0hyQHefNO3edtbdl3X3z2UwOfXDY779xiTvTPLw7v6V7p40IAmwsFz3AcZyvySHJvmtJJ9Mcs0Uap6f5PVJDuzuJ3b3F6dQc1mu+QBbx9L3k4cneU6SL4359iuT/FGS+3f3m6bd2866+5rufkGSH8ng+j1uWOXkJEd299O7+/KpNwgAwLqRQQHYOtybBtg6XPMBxiKD4poPsBBkUIBpqe6edw8ALIiqulOSYzKYpHpgkvskuV2S7Um+m+TCDP5yenqS93X3F+bTKQBrVVXbk/xokickeViS+ye5Y5LbZnDD/LIkX0ny2SQfTPLhed2krar9kjwxyWOSPDDJ3ZPsmaQzuPlxfpJzkpyW5L3d/e/z6BNgI3PdBxhPVe2S5Icy+CHdAUnuu/S6c5I9ll7bM/gfca7KIIjxzST/kuTzST7R3efMvnPXfIBZq6rjMriHfmvndffx63x2JTkkydEZhDUekGSfDL5PXZfk8iRfy+B708lJ/rG7r1rPnob0eo8kxyY5PMmDktwryV5JKoPvpf+ewTX/E0ne092TPuUNAIANQgYFYGtwbxpg63DNBxiPDMrMenXNBxaeDMqqe5VBgQ3GIBMAAAAAAAAAAAAAAAAAAAAAYGLb5t0AAAAAAAAAAAAAAAAAAAAAALD4DDIBAAAAAAAAAAAAAAAAAAAAACZmkAkAAAAAAAAAAAAAAAAAAAAAMDGDTAAAAAAAAAAAAAAAAAAAAACAiRlkAgAAAAAAAAAAAAAAAAAAAABMzCATAAAAAAAAAAAAAAAAAAAAAGBiBpkAAAAAAAAAAAAAAAAAAAAAABMzyAQAAAAAAAAAAAAAAAAAAAAAmJhBJgAAAAAAAAAAAAAAAAAAAADAxAwyAQAAAAAAAAAAAAAAAAAAAAAmZpAJAAAAAAAAAAAAAAAAAAAAADAxg0wAAAAAAAAAAAAAAAAAAAAAgIkZZAIAAAAAAAAAAAAAAAAAAAAATMwgEwAAAAAAAAAAAAAAAAAAAABgYgaZAAAAAAAAAAAAAAAAAAAAAAATM8gEAAAAAAAAAAAAAAAAAAAAAJiYQSYAAAAAAAAAAAAAAAAAAAAAwMQMMgEAAAAAAAAAAAAAAAAAAAAAJmaQCQAAAAAAAAAAAAAAAAAAAAAwMYNMAAAAAAAAAAAAAAAAAAAAAICJGWQCAAAAAAAAAAAAAAAAAAAAAEzMIBMAAAAAAAAAAAAAAAAAAAAAYGIGmQAAAAAAAAAAAAAAAAAAAAAAEzPIBAAAAAAAAAAAAAAAAAAAAACYmEEmAAAAAAAAAAAAAAAAAAAAAMDEDDIBAAAAAAAAAAAAAAAAAAAAACZmkAkAAAAAAAAAAAAAAAAAAAAAMDGDTAAAAAAAAAAAAAAAAAAAAACAiRlkAgAAAAAAAAAAAAAAAAAAAABMzCATAAAAgA2kqp5QVT3k9ch59wiLrqr2raqfr6o/qapTq+orVXV5VV034t+/p827dwAAAAAAAABYDRkUWH8yKAAAAMvbMe8GAAAAAABmoap+PMmLkhwZQ54BAAAAAAAAAFgDGRQAAIDhDDIBAAAAADa1qrpLkrckedK8ewEAAAAAAAAAYDHJoAAAAKyOQSYAAADAQqiqfZMcO+8+pujE7r5q3k3AZldV90lyapL7zLURAAAAAAAAADYEGRRgLWRQAAAAVs8gEwAAAGBRHJDkzfNuYopOTiJEAuuoqnZP8v4IkAAAAAAAAADwX2RQgLHIoAAAAIxn27wbAAAAAABYJ69I8oB5NwEAAAAAAAAAwEKTQQEAABjDjnk3AAAAAAAwbVV19yTPX8XWbyT5WJJzk1yR5Oohe8+cQmsAAAAAAAAAACwIGRQAAIDxGWQCAAAAAGxGz0yy25D1i5I8L8lJ3X3TbFoCAAAAAAAAAGDByKAAAACMySATAAAAAGAzesqQteuS/Hh3f3ZWzQAAAAAAAAAAsJBkUAAAAMa0bd4NAAAAAABMU1XdPslBQ7b8tQAJAAAAAAAAAADDyKAAAACszY55NwAAAACwGt19WpKadt2qOj7JM4ZsOaG7j5v2uSvp7g9kHX6fsMX8UIb/e/T3s2oEAAAAAAAAgI1FBgUYgwwKAADAGmybdwMAAAAAAFN2vxHrnoQDAAAAAAAAAMAoMigAAABrYJAJAAAAALDZ3HXE+oUz6QIAAAAAAAAAgEUmgwIAALAGBpkAAAAAAJvNnkPWru/ua2fWCQAAAAAAAAAAi0oGBQAAYA0MMgEAAAAANptdh6zdNLMuAAAAAAAAAABYZDIoAAAAa2CQCQAAAACw2dS8GwAAAAAAAAAAYOHJoAAAAKzBjnk3AAAAAACwFVTVXknul+T2S6/bZXCP9uqdXpck+Xp3Xz6vPgEAAAAAAAAA2LhkUAAAgI3OIBMAAAAAVqWqdk1yeJLHJXlwkgOS7J1kryTXJbk0yQVJzkzy0STv6e5rp3DuXZM8KcnDkzw0yT0y+AH87hn80P3CJP+a5JNLZ35u0jOnqaoOSPLoJIck2S/JfZPcIckeSXZJ8t0kVyT5epIvJ/lUko9095fm0vCCqKojMvjzXM5Dhrx1e1U9e8zjTunur435nlTV3ZI8LcmjkhyUQb+relJPVV2W5Lwkn09yxtLrC919w7h9AAAAAAAAAMBGIoOyNjIo60MGBQAAYPqqu+fdAwAAAMDcVNXxSZ4xZMsJ3X3cbLpJquoJSd4/ZMuh3X3GLGtX1b2S/GqSZ2fw9I7VuiTJm5K8qruvGqfXpXMfl+TXkxyRZPsYbz0rycu7+73jnjktVXXvDP68npZk/zWW+WKSE5K8sbuvmFZvm0VVnZjk52Z03NO7+8TVbq6qY5K8IMlRGe9rd5TLkpyU5G+SfKi7r59ibQAAAAAAAAAmIIMyurYMyvhkUNafDIoMCgAAMH3b5t0AAAAAABtTVe2oqpdk8KSZF2a8AEmS3CnJS5KcW1VHj3HuflV1SpIPZfDknXF/CH9wkvdU1d9W1R3GfO9EqureS8GkryZ5WdYeIEmSA5O8OsnXq+rFVbVjCi2yjqrqB6rqXUnem+ToTDdAkgyeovSMpfpvnnJtAAAAAAAAAFgXMijjk0HZ2mRQAACARWeQCQAAAADfp6rumOSUJK9KcpsJy90jybur6gWrOPfpSc7O4Ak4k/rpJB+vqrtPodZQVbWtql6U5JwMfsg/zcDHHZL8fpJPV9X9p1iXKaqqn8rgCUY/OaMjhYoAAAAAAAAA2PBkUMYjg4IMCgAAsBkYZAIAAADALVTVvklOT3LYFMtuT/KGqnrWkHP/R5K3J9lriucemOQfq2rcJ/msWlXtneQ9SV6TZI/1OifJDyc5s6qOWsczWIOqemqSd2R9P/8AAAAAAAAAsFBkUMYjg4IMCgAAsFkYZAIAAADA91TVXknen2S9nrryZ1X1yGXO/eUkf7hOZz44yZvXo/DSk3Y+meTo9ai/jNsn+YeqesKMzmOEqjowyVvjXisAAAAAAAAAfI8MynhkUJBBAQAANpMd824AAAAAgA3lhAyeurKcTnLW0uvCJBcl2T3JXZMcnOQxGX2/adckb6yqh3X3jUlSVUcmed2Q91ya5JQkX18686okd05yryRHJbnnyN9V8rNVdWJ3v3MVe1elqu6W5LQk+6/yLZ3kC0nOTPLtJN9JcnWSfTL4/TwsySMyeHLQMLsleUdVPaq7Pzd+50zZW5LcZhX7LkjygQxCR19Ocl4GX8vfzeBzfrsMQkJ7J3lQkock+aEkhyytAQAAAAAAAMAikUFZJRkUlsigAAAAm4ZBJgAAAADc7FlJnrzMxy9J8sokJ3b3f6z05qraO8mLk/xakl2GnPOQJM/N4Mk4+yY5McsHJ96X5NVJPtHdN6xwZiU5PMkbMnjqzTC/X1XvXqnWOKpqtyTvzOoCJGcneW2S93X3pSPq7p3kp5P8RoaHY3ZP8s6qOqi7L19d15tLdz8tydOWW6uq30vy6yu89druXk3oY6SqOibJ9z3d6Va+kMHn86Tu7hX2XJ/kmgxCUskgaHTzGbtm8DX+E0l+KqsLTQEAAAAAAADAPMmgrJIMyvzJoAAAAEzftnk3AAAAAMCG8ZxlPvamJPt39+uGBUiSpLsv7e6XJDk0yahgw/9cCoC8PoMnwezs/CRHdfex3f2RYaGPHjgtgyfJvHXEmftn8EP4afjDjA4PXJDk6O5+WHe/bVSAJPnen+GbM+j1FSO23zfJ76+qW9bLs0es/3WSQ7r7XUMCJEN193Xd/aHu/uUk90nys0nOWEstAAAAAAAAAJgRGZTVk0EhkUEBAAA2GYNMAAAAAFjJS7v7F1cTfthZd5+V5NgkNw7Ztn+SP0jyM7f6+LlJHt3dHxrzzOuTPDPJB0dsfe44dZdTVUcm+cUR296X5KHd/YG1nNHd13T3y5L89yTXDdn63Ko6eC1nMJmq2pHk8UO2nJXkuO6+ZlpndveN3f233X1okhdOqy4AAAAAAAAArDMZlGXIoJDIoAAAAJuTQSYAAAAALOfl3f3Ktb65uz+R5C0jtv3qrX59QZLDuvv8NZ55Q5LnZ3jo4oiquuNa6idJVW1P8mdJasi2DyT5ye6+ZK3n3Ky735bkecNaSvKbk57DmjwwyZ5D1n+nu4d9LU6kuy9ar9oAAAAAAAAAMEUyKMuQQWEnMigAAMCmY5AJAAAAALf2ySRrDpDs5OVJbljl3k7yzO6+eJIDu/urSf5yyJYdSR43wRHHJbn/kPXPJvmZpUDLVHT3/0lywpAtT6yqB0zrPFZtvyFrN2TwRCQAAAAAAAAA2MpkUFZ2XGRQGJBBAQAANh2DTAAAAADY2Y1JjuvuGyct1N0XJvnIKrf/ZXefPOmZS04csf7otRStqkryv4ds6STP6e6r1lJ/hF9LcvWQ9Wetw5kMd4cha//R3dfPrBMAAAAAAAAA2HhkUFYgg8KtyKAAAACbjkEmAAAAAOzsXd395SnWe+cq9/3BFM/8WJJvD1l/6BrrHpHkB4es/1V3f3qNtYfq7kuSvGXIlp9dj3MZqoas7ZhZFwAAAAAAAACwMcmgrEwGhZ3JoAAAAJuOQSYAAAAA7OyPp1zvM6vYc0p3nzOtA7v7piSfG7LlgDWW/oUR669eY93VevOQtR+oqvuv8/nc0neGrN21qu42s04AAAAAAAAAYOORQVmZDAo7k0EBAAA2HYNMAAAAALjZpUk+MuWaX1rFnpOmfGaSDAul3LWqdh2nWFVVkqOHbPnn7v7iODXX4ItJLh6yfvg6n88tXTRkbVuS58+qEQAAAAAAAADYYGRQViCDwjJkUAAAgE3HIBMAAAAAbnZGd/c0C3b3ZRn+1JAkOX2aZy75yoj1O49Z7+Akdxmy/o4x641t6XPz8SFbDlrvHriFzya5bsj6r1fVsbNqBgAAAAAAAAA2EBmUlcmgcGsyKAAAwKZjkAkAAAAANztjnepeOWTt2gx+GD/LM5Pk9mPWO2TE+qfHrLdWXx+y9uAZ9UCS7v7PDA9A7ZrkpKp6fVXtM6O2AAAAAAAAAGAjkEFZmQwKtyCDAgAAbEYGmQAAAABws/PXqe5VQ9Yu7O7rZ3xmkuw2Zr1RT5o5Z8x6a3XJkLV7zqgH/stfjljfnuRXklxQVW+tqmOratyvPQAAAAAAAABYNDIoK5NBYTkyKAAAwKayY94NAAAAALBhXLpOdb+7wc5MBk8qGccDhqx1ksdV1U1j1lyLBw1Zu/sMzueW3pbkZUl+cMS+3ZL8t6XXVVV1SpLTll6f6+5ZfO0AAAAAAAAAwKzIoKxMBoXlyKAAAACbikEmAAAAANxsvQIdvcHOTJIas969RtR645j11sNuVbVbd18770a2iu6+sap+IYMwyGqDSXsm+YmlV5JcWVVnJvlEko8nOb27Rz3NCQAAAAAAAAA2MhmUlcmg8H1kUAAAgM1m27wbAAAAAGDDmEf4YFECD/vOu4FVuu28G9hquvv0JM9JcuMaS+yV5LFJfiPJB5N8p6pOraoXVtW9p9QmAAAAAAAAAMySDMrKZFBYlgwKAACwmRhkAgAAAABDVNVuWf2TTuZtt3k3sBV19/9NclSSS6ZQbpckP5bktUnOq6oPV9VTq8q9XAAAAAAAAABYYDIojCKDAgAAbBb+wwMAAAAAhlukJ8zUvBvYqrr7lCQPSvInSa6fUtlKcmSSv0vyz1X1xCnVBQAAAAAAAABmTwaFkWRQAACAzcAgEwAAAAAYbpd5N8Bi6O6LuvsFSR6Y5DVJvjXF8g9M8u6qentV7TnFugAAAAAAAADAbMigsCoyKAAAwKIzyAQAAAAAhrt23g2wWLr7q9394iT3TPKEJK9L8rkkPYXyT0/y0aq63RRqAQAAAAAAAACzI4PCWGRQAACARbVj3g0AAAAAwAZ39Yj1T3X3I2fSCQulu29M8o9Lr1TVnZIcluQxSR6d5GFJdl1D6YOS/L+qeuLSGQAAAAAAAADAxieDwprIoAAAAItm27wbAAAAAICNrLtvSHLFkC33nVUvLLbuvqS739XdL+ruQ5PcPsmRSV6Z5DNjlntCkl+ado8AAAAAAAAAwPqQQWFaZFAAAICNziATAAAAABjtG0PW7lJVe8ysEzaN7r6mu0/t7pd298FJfiDJS5L82ypLvKSqdl+/DgEAAAAAAACAKZNBYepkUAAAgI3GIBMAAAAAGG3UD/X3n0kXbGrd/Y3u/r0Mvp6eneTyEW+5W5KnrHtjAAAAAAAAAMC0yKCw7mRQAACAeTPIBAAAAABGO3vE+uNn0gVbQnff2N1/keSIJJeN2O5rDwAAAAAAAAAWhwwKMyODAgAAzItBJgAAAAAw2qdGrD9xJl2wpXT32UleMmLbYbPoBQAAAAAAAACYChkUZk4GBQAAmDWDTAAAAABgtI8luXbI+qOrap9ZNcOWcnySq4es7zujPgAAAAAAAACAycmgMC/HRwYFAACYEYNMAAAAAGCE7r4yyYeHbNme5IUzaoctpLuvSXLWkC23qao9ZtUPAAAAAAAAALB2MijMiwwKAAAwSwaZAAAAAMDqvG3E+q9U1V1m0glbzcUj1nebSRcAAAAAAAAAwDTIoDAvMigAAMBMGGQCAAAAAKvzt0m+NWR9jyS/O6Ne2Fr2GbLWSa6cVSMAAAAAAAAAwMRkUJgXGRQAAGAmDDIBAAAAgFXo7uuT/MGIbc+qqhfMoh+2hqraLcmDh2w5f+lrEwAAAAAAAABYADIozIMMCgAAMEsGmQAAAADA6v1RkvNG7HldVT1pBr0kSarq/lV14IQ1zqiqHvI6d1r9bhZV9dyq2n8GR/1ckr2HrH96Bj0AAAAAAAAAANMlg0ISGRTsxWuPAAAICUlEQVQAAGBzMsgEAAAAAFapu69N8vwR23YkeVdV/WZVrdv9t6o6pKrenuScJAet1zms6ClJvlRVb6+qR6zHAVV1vyR/OGLbe9bjbAAAAAAAAABg/cigsBMZFAAAYNMxyAQAAAAAxtDd70/yhhHbtiV5eZJTquox0zq7qvapql+qqn9K8qkkT0+yfVr1Gdv2DD4HZ1TVPy19bu40jcJVdUSS0zP8STiXJ/mbaZwHAAAAAAAAAMyWDAo7kUEBAAA2lR3zbgAAAAAAFtCLkjwoyWNH7Ds8yceq6vQkf5rk1O7+5moPqarbJjk4yWFJjk7yqAiNbFQPX3q9vqo+nuS9ST6a5DPdff1qClTVbkmOTPKCJMes4i2/293fXWO/AAAAAAAAAMD8yaBwazIoAADAwjPIBAAAAADG1N3XVdWTk5ySQXBglEOXXqmqr2XwJJuLknxn6XV9ktskuV2Suya5V5IDkuwX9/AWzfYMwkOHL/362qo6N8m5SS5IcmGSqzP4nO+eZM8k907ygCQHLf16Nf4pyeum1zYAAAAAAAAAMGsyKAwhgwIAACws/wEKAAAAAGvQ3VdW1ZFJ/j7J48Z46/2WXmwNuyX54aXXtHwjyVO7+7op1gQAAAAAAAAA5kAGhVWSQQEAABbGtnk3AAAAAACLqruvTHJMktcm6Tm3s5428+9t0Zyb5IjuPn/ejQAAAAAAAAAA0yGDwhzIoAAAAOvGIBMAAAAAmEB3X9/dL0ry+CT/MocWzk5yzoQ17jti/eQJ6zO5m5K8Ockju/tr824GAAAAAAAAAJguGRRmRAYFAABYdwaZAAAAAMAUdPeHkzw4yS8lWe8f8n8rgyfwPKS7H9bdn1lroao6MMldhmz5zySvWmv9TeyXk7w4yUeT3LDOZ52R5BHd/dzuvnydzwIAAAAAAAAA5kgGZcuRQQEAADadHfNuAAAAAAA2i+6+IcmfVtWfJzkmydOX/nmHCUtfk+STGTyV5uQkZ3X3TRPWvNmRI9b/tLv/Y0pnzcrlSb65wto10zigu7+c5DVJXlNVeyc5KslhSQ5N8pBMfu/1wiQnJvmr7j5rwloAAAAAAAAAwAKRQdkwZFAAAADWoLp73j0AAAAAwKZVVbskOTjJIUkemuQ+Se6V5I5Jdk+ya5Krk1y59LoiyTeSnJvkS0v//Ofunkr4YZn+/j7Jk1dYvirJfbv74vU4e7Oqqj0y+Jw/MMl+SX4wg8/7HZLslWTPDEImV2Xw+b48ycVJPp/k7CSfzeBzfuOsewcAAAAAAAAANiYZlK1HBgUAAFhUBpkAAAAAwBZVVduSfDuDQMtyXtndL51hSwAAAAAAAAAALBgZFAAAAHZmkAkAAAAAbFFVdVCSz6ywfFkGT8K5bIYtAQAAAAAAAACwYGRQAAAA2Nm2eTcAAAAAAMzNkUPWXitAAgAAAAAAAADAKsigAAAA8D0GmQAAAADA1nXECh+/OMnrZ9kIAAAAAAAAAAALSwYFAACA7zHIBAAAAAC2oKranuSwFZZf3d1XzrIfAAAAAAAAAAAWjwwKAAAAt1bdPe8eAAAAAIAZq6pHJDljmaVvJblfd//njFsCAAAAAAAAAGDByKAAAABwa9vm3QAAAAAAMBdHrvDxVwmQAAAAAAAAAACwSjIoAAAA3IJBJgAAAACwNR2xzMfOT/KmWTcCAAAAAAAAAMDCkkEBAADgFgwyAQAAAIAtpqp2SfLoZZZ+p7uvnXU/AAAAAAAAAAAsHhkUAAAAllPdPe8eAAAAAAAAAAAAAAAAAAAAAIAFt23eDQAAAAAAAAAAAAAAAAAAAAAAi88gEwAAAAAAAAAAAAAAAAAAAABgYgaZAAAAAAAAAAAAAAAAAAAAAAATM8gEAAAAAAAAAAAAAAAAAAAAAJiYQSYAAAAAAAAAAAAAAAAAAAAAwMQMMgEAAAAAAAAAAAAAAAAAAAAAJmaQCQAAAAAAAAAAAAAAAAAAAAAwMYNMAAAAAAAAAAAAAAAAAAAAAICJGWQCAAAAAAAAAAAAAAAAAAAAAEzMIBMAAAAAAAAAAAAAAAAAAAAAYGIGmQAAAAAAAAAAAAAAAAAAAAAAEzPIBAAAAAAAAAAAAAAAAAAAAACYmEEmAAAAAAAAAAAAAAAAAAAAAMDEDDIBAAAAAAAAAAAAAAAAAAAAACZmkAkAAAAAAAAAAAAAAAAAAAAAMDGDTAAAAAAAAAAAAAAAAAAAAACAiRlkAgAAAAAAAAAAAAAAAAAAAABMzCATAAAAAAAAAAAAAAAAAAAAAGBiBpkAAAAAAAAAAAAAAAAAAAAAABMzyAQAAAAAAAAAAAAAAAAAAAAAmJhBJgAAAAAAAAAAAAAAAAAAAADAxAwyAQAAAAAAAAAAAAAAAAAAAAAmZpAJAAAAAAAAAAAAAAAAAAAAADAxg0wAAAAAAAAAAAAAAAAAAAAAgIkZZAIAAAAAAAAAAAAAAAAAAAAATMwgEwAAAAAAAAAAAAAAAAAAAABgYgaZAAAAAAAAAAAAAAAAAAAAAAATM8gEAAAAAAAAAAAAAAAAAAAAAJiYQSYAAAAAAAAAAAAAAAAAAAAAwMQMMgEAAAAAAAAAAAAAAAAAAAAAJmaQCQAAAAAAAAAAAAAAAAAAAAAwMYNMAAAAAAAAAAAAAAAAAAAAAICJGWQCAAAAAAAAAAAAAAAAAAAAAEzMIBMAAAAAAAAAAAAAAAAAAAAAYGIGmQAAAAAAAAAAAAAAAAAAAAAAE/v/uRQRtF+W2scAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "T = []\n", - "nsteps = params[\"fsnap\"] - params[\"isnap\"] \n", - "\n", - "for i in xrange(nsteps):\n", - " T.append(i)\n", - "\n", - "states = [0, 1, 2, 3, 4] \n", - "nst = len(states)\n", - "\n", - "\n", - "plt.figure(1, figsize=(18, 10), dpi=300, frameon=False)\n", - "plt.subplot(1,2,1)\n", - "plt.title('Energies')\n", - "plt.xlabel('Time, fs')\n", - "plt.ylabel('Energy, a.u.')\n", - "for i in xrange(nst):\n", - " st = states[i]\n", - " En = data_conv.unpack1(Hvib[0], st, st, 0) \n", - " plt.plot(T, En, label='State %i ' % (st), linewidth=2, color = colors[clrs_index[i]]) \n", - "plt.legend()\n", - "\n", - "\n", - "plt.subplot(1,2,2)\n", - "plt.title('Couplings')\n", - "plt.xlabel('Time, fs')\n", - "plt.ylabel('NAC, a.u.')\n", - "cnt = 0\n", - "for i in range(nst):\n", - " st1 = states[i]\n", - " for j in range(i+1, nst):\n", - " st2 = states[j] \n", - " NAC = data_conv.unpack1(Hvib[0], st1, st2, 1)\n", - " plt.plot(T, NAC, label='NAC_%i_%i' % (st1, st2), linewidth=2, color = colors[clrs_index[cnt]]) \n", - " cnt = cnt + 1\n", - "plt.legend()\n", - "\n", - "\n", - "\n", - "plt.show()\n", - "plt.close()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/notebooks/Example9b_NAMD_adamantane/step3/step3-2-X-NAMD.ipynb b/notebooks/Example9b_NAMD_adamantane/step3/step3-2-X-NAMD.ipynb deleted file mode 100755 index 2603e6758..000000000 --- a/notebooks/Example9b_NAMD_adamantane/step3/step3-2-X-NAMD.ipynb +++ /dev/null @@ -1,1187 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# NAMD study of adamantane\n", - "\n", - "This notebook will do the NA-MD calculations and all the needed analysis for you. You just need to generate suitable input data, place it in correct places, and select appropriate parameters for the simulations below.\n", - "\n", - "------------------------\n", - "Import all the definitions" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import sys\n", - "import math\n", - "import copy\n", - "\n", - "if sys.platform==\"cygwin\":\n", - " from cyglibra_core import *\n", - "elif sys.platform==\"linux\" or sys.platform==\"linux2\":\n", - " from liblibra_core import *\n", - "\n", - "from libra_py import units\n", - "import libra_py.workflows.nbra.step4 as step4\n", - "import libra_py.workflows.nbra.decoherence_times as decoherence_times\n", - "from libra_py import data_conv\n", - "from libra_py import data_stat\n", - "from libra_py import data_outs\n", - "from libra_py import fit\n", - "from libra_py import influence_spectrum as infsp\n", - "\n", - "\n", - "import matplotlib.pyplot as plt # plots\n", - "import numpy as np\n", - "from matplotlib.mlab import griddata\n", - "\n", - "%matplotlib inline \n", - "\n", - "plt.rc('axes', titlesize=24) # fontsize of the axes title\n", - "plt.rc('axes', labelsize=20) # fontsize of the x and y labels\n", - "plt.rc('legend', fontsize=20) # legend fontsize\n", - "plt.rc('xtick', labelsize=16) # fontsize of the tick labels\n", - "plt.rc('ytick', labelsize=16) # fontsize of the tick labels\n", - "\n", - "plt.rc('figure.subplot', left=0.2)\n", - "plt.rc('figure.subplot', right=0.95)\n", - "plt.rc('figure.subplot', bottom=0.13)\n", - "plt.rc('figure.subplot', top=0.88)\n", - "\n", - "colors = {}\n", - "\n", - "colors.update({\"11\": \"#8b1a0e\"}) # red \n", - "colors.update({\"12\": \"#FF4500\"}) # orangered \n", - "colors.update({\"13\": \"#B22222\"}) # firebrick \n", - "colors.update({\"14\": \"#DC143C\"}) # crimson \n", - "\n", - "colors.update({\"21\": \"#5e9c36\"}) # green\n", - "colors.update({\"22\": \"#006400\"}) # darkgreen \n", - "colors.update({\"23\": \"#228B22\"}) # forestgreen\n", - "colors.update({\"24\": \"#808000\"}) # olive \n", - "\n", - "colors.update({\"31\": \"#8A2BE2\"}) # blueviolet\n", - "colors.update({\"32\": \"#00008B\"}) # darkblue \n", - "\n", - "colors.update({\"41\": \"#2F4F4F\"}) # darkslategray\n", - "\n", - "clrs_index = [\"11\", \"21\", \"31\", \"41\", \"12\", \"22\", \"32\", \"13\",\"23\", \"14\", \"24\",\n", - " \"11\", \"21\", \"31\", \"41\", \"12\", \"22\", \"32\", \"13\",\"23\", \"14\", \"24\",\n", - " \"11\", \"21\", \"31\", \"41\", \"12\", \"22\", \"32\", \"13\",\"23\", \"14\", \"24\"\n", - " ]\n", - "\n", - "\n", - "def plot_map(ax, energy, X):\n", - " \n", - " colormap = \"plasma\" # \"Blues\" # options: plasma, viridis, binary, hot, etc.\n", - " \n", - " npts = len(energy)\n", - " \n", - " emin = energy[0]\n", - " emax = energy[npts-1]\n", - " \n", - " extent=(emin, emax, emin, emax)\n", - " \n", - " xs0, ys0, zs0 = [], [], []\n", - "\n", - " for i in xrange(npts): \n", - " for j in xrange(npts):\n", - " xs0.append(energy[i])\n", - " ys0.append(energy[j])\n", - " zs0.append(X[i][j])\n", - "\n", - " N = 30j\n", - " xs,ys = np.mgrid[extent[0]:extent[1]:N, extent[2]:extent[3]:N]\n", - " zs = griddata(xs0, ys0, zs0, xs, ys, interp=\"linear\")\n", - "\n", - " #ax.xticks(energy, rotation=30)\n", - " #ax.yticks(energy, rotation=30) \n", - " \n", - " ax.xticks(rotation=30)\n", - " ax.yticks(rotation=30)\n", - " \n", - " ax.imshow(zs.T, cmap=colormap, extent=extent, interpolation='Lanczos', origin='lower')\n", - " ax.plot(xs0, ys0, \"ro\")\n", - " ax.colorbar()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 1. Get Data \n", - "\n", - "Read in all the data sets. Form the sub-Hamiltonians for all data set (active space)\n", - "\n", - "The data in traj1_out_pyxaid should have been generated by another notebook." - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "params = {}\n", - "\n", - "# Folders with data sets\n", - "params[\"data_set_paths\"] = [\"traj1_out_pyxaid/\"]\n", - "\n", - "# How many files in each folder\n", - "params[\"nfiles\"] = 440\n", - "\n", - "# Prefix of the files with energies (re) and couplings (im)\n", - "params[\"Hvib_re_prefix\"] = \"Hvib_\"\n", - "params[\"Hvib_im_prefix\"] = \"Hvib_\"\n", - "\n", - "# Suffix of the files with energies (re) and couplings (im)\n", - "params[\"Hvib_re_suffix\"] = \"_re\"\n", - "params[\"Hvib_im_suffix\"] = \"_im\"\n", - "\n", - "# The number of lines/cols in each file\n", - "params[\"nstates\"] = 5\n", - "\n", - "# Select the active states\n", - "params[\"active_space\"] = [0, 1, 2, 3, 4]\n", - "\n", - "\n", - "Hvib = step4.get_Hvib2(params)\n", - "T = [i for i in xrange(len(Hvib[0])) ]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Visualize the couplings and energies of all the states (SD states defined in another notebook)\n", - "\n", - "Also, compute the distributions of the energies and couplings to see their variabiability in the MD" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABWYAAAO0CAYAAAAmlu+ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XdYleUbwPHvc9ggICo4c6/U1NTcszTLmZpWpubKtLKs1J/aMitHQ3NlmXuv3Jp75t5b3BsEQWTP8/z+eA6CBoimoHl/rutcZ73j5nDO4eF+7/d+lNYaIYQQQgghhBBCCCGEEBnHktkBCCGEEEIIIYQQQgghxNNGErNCCCGEEEIIIYQQQgiRwSQxK4QQQgghhBBCCCGEEBlMErNCCCGEEEIIIYQQQgiRwSQxK4QQQgghhBBCCCGEEBlMErNCCCGEEEIIIYQQQgiRwSQxK4QQ4g5KqSlKKa2UGpjZsQghhBBCCHG/lFIXbOPZunc9Xtf2+IXMiUwIIe4kiVkhxFMtWRIyPZdemR2vEEIIIYQQD0op5aqU6qGUWqaUuqSUilRKRSilziulFiil2imlXDI7TiGEeFrYZ3YAQgjxmIgDgu+xTERGBPIY8AN8gRuZHYgQQgghhHg4lFJNgfFArmQPRwBWoKDt0goYppRqr7XekNExZoBIzDj3amYHIoQQIIlZIYRItF1rXTezg3gcaK37A/0zOw4hhBBCCPFwKKU6AhMxZ836At8Bf2mtg2zPewL1gQ+BukBt4D+XmNVa7wZKZnYcQgiRSBKzQgghhBBCCCHEf5RSqizwGyYpuxJ4XWsdlXwZrfUt4E/gT6VUG+CZDA9UCCGeQtJjVgghHoBSapOt72xHpZSLUmqgUspXKRWllApQSs1RShW7xza8lVJDlFJHlFLhtv5eR5VS3yulsqWyzu2JDJRSeZVSvyqlzimlYpRSB+9aNnlc0UopP1tcZZRSBRN756awj3tO/qWUaqqUWqKU8ldKxdp+5mVKqYZprFNOKTXN9jPEKKXCbLGvUkr1Ukq5pvV6CSGEEEKIB/I94IQ5fb/t3UnZu2mt5wHDkz+mlHJSSn2qlNqllLplG/P6KqWGK6VypbQd2zhUK6WmpLav1Madd0/SZRt7blRK3bSNm3copdqm42e/e3+pTv71kMb3TWxx3lJKhSqldiql3rl7+ymsJ+NkIZ5SUjErhBD/jgewDXgeiMH06PIG3gAaKKUqa63P3r2SUqomsARITMDGAglAadulvVKqgdbaN5X9FgfmAzkwvbLi7tq+J7AeqJhs+662uJoA3R7kh1VKOQCTgbeTPRyK+ZmbAE2UUj9qrfvetV4jYDHgYHso8bUqZLs0BFYBJx8kLiGEEEII8U9KqbxAY9vdUbbK2HvSWt8+eK+U8gZWY8a7YMZxsZjxaHGgo1KqkdZ650MLPBml1MfAL4AGbgEuQFWgqlKqmta650Pe5YOO778AvrXdTYz1BaCKUqp8ajuTcbIQTzepmBVCiH/nG8ALeAVwA7JgenJdwSRdh9y9glKqALDM9vwETJ8rF9v6ZTADr2eAhUopu1T2+zNmkq4aWms3rXUW4PVkz4/CJGUjgPZAFq21p237R4CxD/jz/oBJyl4A2gLutu26A+9hkrR9lFJv3bXeaMxgczlQQmvtbFvPE/N6/QFEP2BMQgghhBAiZXUBZbu99AG3MQ2TpLwJtAHctNYemKTjEcxYeLFSKse/CzVF3sCPthhya629MIUJP9ue//BBKmfv4UHG9/VISspOBnLZYs2G6efbC0gtOSvjZCGeYpKYFUIIo7rttPy0Lh4prOcENNBar9ZaJ2itrVrrrZjBF0AzpZTjXet8D2TFVC28q7X2ta2ntdbHgObAIaAU0CKVeONt+92e+IDW+gyAUqowJhkL0E1rPUNrHWdb5hhmkJnmKWwpsZ269REQAryktZ6ttQ63bTdcaz0eeNe2+OfJ1vMBCtvudtVan0oWc6jWeqvWupvW+sL9xiSEEEIIIdL0rO06BjPp131RStXCjB3BtEGYr7VOANBa7wUaYBK2OTHjxIfNFdgEdNRaX7ft96bWujcw1bbMN0oplcr6D+JBxvcDbddrgC5a6wBbrLe01l8C4zCJ1jvIOFkIIYlZIYQwHDADyrQuKX1nLkhMiN5lKeYUJiegaOKDSikXoLXt7vAU1kNrHQsssN1tkEq80xIHpylogamMuAzMTmH7tzATQNyvDpjXYLHW+lwqyyzEDPxLK6Vy2x4Lw5yOBZA7xbWEEEIIIcSjkN12fTN5e4L7kHhG1l6t9aq7n7SNRxPHlW0eYPvpMSSV2L+3XRcFyj3E/d3v+D4HprIV4IdUYh2Wyr5knCzEU04Ss0IIYWzWWqt7XEJSWG9PShuzVagG2O56JXuqEpB4hH1XatW5QB/bMqnNiLsjjZ8lsf/XtjQG4FvTWD811W3Xr6cR9xWS+mM9A2CbYGKz7bHVSqkvlFLl02jTIIQQQgghHg8VbNcb01hmg+26uFLK7SHvPw7T7/UftNanMa29ICnOh+F+x/eJLQqswHZSoLW+CFxK4XEZJwvxlJPErBBC/DthaTyX2AvKIdljyY+Ep1Wdm9g2IbUZWAPT2G9ify+/NJa5lsZzqUmMPQvpqyxOHntX4ATgg+m/dQAIUUqtUEq1U0rJZJRCCCGEEA9fkO3a6wFP9/e2XV9NY5krtmtF0jj0YblhO5ssNYlxeaexzP263/F94s98y5ZoTU1q428ZJwvxFJPErBBCZKzE792b6ajQVVrruqlsJyGNfTzMHlvJJcb+cTpj35S4oq31QVlMm4XxmMFnFqARMB1TPZzlEcUthBBCCPG0OmG7dgJK/IvtOD2EWB6FRzXuvR//KgYZJwvxdJPErBBCZKzEvrBeSqlcj2gfidW0afWpepAeVomxl3qAddFax2utF2ut39Nal7LF0AdTeVAB+PpBtiuEEEIIIVK1GdMXFaDZA6yfOK4skMYy+WzXGriR7PF427VzGuv+Y0Ksu+RIYaKt5BLHtGmdTfaoJe7b0zafRGpSHX/LOFmIp5ckZoUQImPtJWmQ2vIR7eOA7bpGGqes1XqA7Sb2tW2qlHJIc8l00Fr7a61/An6xPVTn325TCCGEEEIk0VpfAVba7vZUSnmktXyiZGPI/bbrOmmMK1+0XZ/SWkckezxxfoZ8pMC2vYr3CMUBqJbK+kWBPHfFmRkO2q4tJM3JcAelVH7STm7fQcbJQjw9JDErhBAZSGsdBvxpu/uFUipnassqpewf8LSlxZiKhWdIYXZc24C8+wNsdypmUoM8QP+0FlRKeSW77XCPnmaJvbge11PkhBBCCCGeZF8AMZgE6SylVFoVrCil2gCf2u4usF2XBpqnsGxOksaV8+56+ojt+gWlVErVom+T+kS3yfVPZSyZOB49DRxKx3YeCa31DZIm1u2dymJ9UnpQxslCCEnMCiFExusHBGNOUdqulGqhlLo92FJKFVVK9cL0l6p0vxvXWp8FZtruTlBKtU2cNEApVQr4i9QnFUtruydIOmr/jVJqrFKqcLK4syilGiilpgPzk61aGjiqlOqllCqeOPi0DURbkTTwX32/MQkhhBBCiLRprQ8CH2AO3DcGDtgmlcqWuIxSylMp1VIptRGYC7jb1t0KrLItNkkp9bpSys62TkVgDeCFaXk18q5db8NMeOUIzFZKFbKt56qUeg/4A7h5j/AjMRW5E5VSPrb1syqlhgGdbcsM1Frr1DaQQQbZrl9RSk1IFquHUuobzOt/K4X1ZJwsxFNOZvcTQgijulLK/x7LzNVaf/xvd6S1vqCUegVT2VoYWAjEK6VuYRr9Jz8i/qCDzJ5AGaA8Jkk7SSkVjenjFQ50A2YBac1ym5K+gAvQA3gfeF8pFYaZjMyTpMkPNt21XilghO0So5SKALKSdIBwL/DdfcYihBBCCCHSQWs9USkVBPwOlMRMKoVSKhwz3nRPtvhFYEOy+x0wCdjymIPv0UqpuGTr3ARaaK2D7tpnvFLqQ0zVbR3gnFIqFFMgYA9MAuyAd9IIPRBTGDAC6KiUCsGMORPHkGO11rPS+zo8KlrrdUqpgcBAoAvQ2RarB+Zn/AmoDNTGVC8nJ+NkIZ5iUjErhBCGA5DzHpd7TU6QblrrPZhB8f+A7UAYZgAWhRl8DQNe0FpvfsDthwA1gG+BM5iEaTQwGzMoTJyhNyTFDaS+3QSt9ftATWAGZuDuiEnWXgIWYQbXryVb7QTwOvAbpv9t4iA1FPgbk0SuobUOvd+fUwghhBBCpI/WOrEo4ANM39krmASpPXABk0BtC5TQWm9Jtl4gps/rZ5hxahxm/HcakzQtrbXeQQq01ouAl4GNmPGuHaYna1etdZd0xv0LZuKyzZgcRjSwE2intf4w3S/AI6a1/gbT7mELEIF5XfcA7bXWfUj6XyL5+FvGyUI85VTmV/wLIYTIaEqpLsAEYLPWum4mhyOEEEIIIcRtSqm6mGTuRa11wcyN5t9TSrkBQZgz4wpprS9kbkRCiMeFVMwKIcRTRinlCCS2ZFibmbEIIYQQQgjxFPgIk5Q9LUlZIURykpgVQoj/IKVUfqXUZKVULdsRepRRGTN5wHOYCQgmZmacQgghhBBC/BcopYYrpToqpXImeyyXUmoQpr0YwM+ZE50Q4nElk38JIcR/kyPQ0XbBNvmAs+0CpjdXO631vSY8E0IIIYQQQtxbZeATANuku9GYOSQSTQfGZ0JcQojHmFTMCiHEf9M1zAQNq0maoEtjJmn4HSirtV6eeeEJIYQQQgjxn/I9MAUzoVcU4AYEYCZae11r3UHLJD9CiLvI5F9CCCGEEEIIIYQQQgiRwaSVwX3KkSOHLliwYGaHIYQQQgjxWNu3b98NrbV3ZschHi4ZCwshhBBC3Ft6x8KSmL1PBQsWZO/evZkdhhBCCCHEY00pdTGzYxAPn4yFhRBCCCHuLb1j4Seyx6xSyqKU6q+UuqCUilZKHVJKtUrHeh5Kqa+UUtuVUkFKqRDb7dcyIm4hhBBCCCGEEEIIIYSAJzQxC3wLDATGAK8CO4H5SqlG91gvP/A+sBloB7wBnAIWKaU+eGTRCiGEEEIIIYQQQgghRDJPXCsDpZQP0BsYqrX+yfbwRqVUUWAoZsbD1JwHCmutI5M9tlop9QzwP2Dso4hZCCGEEEIIIYQQQgghknsSK2YbAo7AjLsenwE8p5QqlNqKWuuIu5KyifYCeR5eiEIIIYQQQgghhBBCCJG6JzExWxqIAc7c9fgx23WpB9hmbeDkvwlKCCGEEEIIIYQQQggh0uuJa2UAZANCtNb6rseDkz2fbkqpbkBVTM9ZIYQQQgghhBBCCCGEeOQyvWJWKVVfKaXTcdmUuApwd1I28fH73XddYBQwXWs9M43luiml9iql9gYGBt7vboQQQgghhBBCCCGEEOIOj0PF7Hbg2XQsl9gbNhjwUkqpu6pmvZI9f09KqReApcAGoEtay2qtxwPjASpVqpRSUlgIIYQQQgghhBBCCCHSLdMTs7bJuO6nv+sxwAkowp19ZhN7yx6/1waUUs8Bq4GDQCutddx97F8IIYQQQgghhBBCCCH+lUxvZfAAVgGxwNt3Pd4OOKq1Pp/WykqpYsBa4BzQRGsd9UiiFEIIIYQQQgghhBBCiFRkesXs/dJaByilRgD9lVJhwH7gDeBFoHnyZZVS64ECWuuitvs+mKSsI/A1UEqpO1rTHtBaxzz6n0IIIYQQQgghhBBCCPE0e+ISszafA+HAx0AuwBdoo7Vedtdydtz5M5YCCthuL09hu4WACw81UiGEEEIIIYQQQgghhLjLE5mY1VonAN/ZLmktV/eu+5sAleLCQgghhBBCCCGEEEIIkUGexB6zQgghhBBCCCGEEEII8USTxKwQQgiREbSGC8dg72pISMjsaIQQ4j8rPCac8dvGEx4TntmhCCGEEEKkSRKzQgghREYY2R26lYEBr8DCEZkdjXgUdi6HucPg+I7MjkSIp1qvRb0YtmMYny35LLNDEUIIIYRIkyRmhRDiSWW1wqFNcO1sZkci7iU2BjbMTLq/4ndTQSv+G7SGif3gq6bmuld1+GtCZkclxFMrICLAXIcHZHIkQgghhBBpk8SsEEI8iY5sha7PQp960PMFuHomsyMSaTm8GaIjoGAZyJEXrp2BI1syOyrxsGycbSpl7eyhdmvz2KgecPTvzI3rbotGwbhP4PzRzI5EiEdK2w58WbFmciRCCCGEEGmTxKwQ4t/btQK6PQdv54cxH0JMVGZH9N91/ggMfgv61IUrp8DBCcJuwsDXIC42s6MTqdm13FxXawYNOprba6dmWjhPrJgoUyn+OIkIhfG206V7/gpfzINWn0JCPPzc+fH6Ptw0Gxb9Ajf9MzsSIR6pxISstsqZCUIIIYR4vEliVgjx76yfCV82gQtHIfAyLB0Lg1pJkvBRuHoaeteFTXPMqdNv9IPZ1yBPUbh4DLbMz+wIRWp2rzDXVZpA3TfN7T2rpJ1BekWEmh69zd3hp46Pfn9WK5zcDWcPQWx02stOHwjB/uiSVTlZvB5Xr1+HzkNMdfTV0zCp/6OPNz3i4+DsQXO7WMXMjUWIR8xqO4AjFbNCCCGEeNxJYvZJdGiTmWBE/qF/vESGwfLfYfdK8w9wRrFa4dvW0L6QuQ4Nyrh9XzoBv3Qzt9t9DSP+Bs8csOcvGPOBvEcfJqsVBraAsGB44VWYdh66DAGPbNCmr1lm8Uh5zR9H/hfA7xxkyQolKkPB0pAtNwT7wcXjj2afCQkQHflotp0ZRnQ1fXmtCbBuOhzb9uj2deuGmaDtoyrQozy09II+L8KMQWa/yT9j54/A4lFoZaFPZH7e7N2bNz75hOuhYfDpRNPaYNFIWDPl0cWbXhePmSRzniLg7pXZ0QiRIaxaErNCCCGEeLxJYvZJojWM62V6Sn7V1FQlPk6nSD5toiLMpEtxsSYJ8l1rGNUdvmhsLhl1uu36GbB1AVy/YK6/f9OcQpsRfvsEYiLhpXbQ/msoXQO+/wscnc3EN38Oz5g4/q24WDiw/t6VcZnp2DaTWMmRz5wqnbMAYPro6XptwT0b+O6BEzszOVDxD4c2muvn6pBgtRB4Jg79fH3z2P61D39/J3bBO4WhYxHwO//wt5/RNs011eDOblCtuXlswv8e3f5+6mh+L+5ekK+E+V44tBGmfQ2f1ITv2kBUuPne+KkTWBM4WLQu627EYLFYCI+MZNS0aVCyMnww2mzz584msZuZZxKc2muui7+QeTEIkUFutzKQg5VCCCGEeMxJYvZJsm2RqbyxdwBXd3N/xjeZHdXTac8qeDMXdCxqLgObw97V4JHdXPavzZgZuWOiYPIAc/udbyGrDxxYB5M/f/T7PrTJ/MyuHtDjFxKsVvMPUPFKplIMYHxvcwm49OjjeVAxUaYVw//qw+eN0p+cjY2GdTPM65ARNs0x1y+25VpYJD/8MZGab7SnTvNu9Om0jNi6Xc3zi0ZmTDxPEq3hZgBE3Mqc/dveI5EFajOj7XWmtLjOufAa5rmHnZi9esb0Hw64BMH+8O3rj/cBh3sJ8oPR75vb7w2H/0033znHtpkDYw/b4c2mZ7ZLFhh3ECadhAU34KuF0Lyn2ffWBfBxNfihPZzeR4L3M/QJ8ADgh969cXRwYMXmzZw8dw6adDdtDcAkdt8rC9cvPvy408OWmD2Q4EZoeHjmxCBEBknsLSutDIQQQgjxuJPE7JNCa5g92Nx+9ycYsgaUgvk/mVMpH6XjO2DVJDPR0JPGdw8sHg0Xjt3femE34cwBCA/553OBV2BYO1Mx5e5l+qruWmGqRL+YDx+ONctN6GtOiU2vHcvgy6YwtF36f6e7VsCNq1DoOXhrgNm/nT3M+wHWpD6xkPbdQ9yAliR0KpNURXU/tE7qm9i6D6eDw2jaowcvd+nC5IULia/zBnw0zjy/4GdoX9BUeEeG3bmdK6dg6lewb+3DqTC+7Auf1oZ3S0PA5fStM/r9pOTYoY0wtue917l43CTkf2gP/RqYCsVHKSH+dv/Yr1ck0Pjd7sxasYzwmDBCLYGsi5rLb8tqoi12JmkUeOXRxvOw3LhqkttXzzy6fYQGmyrHN3JCm5ywcc6j21dKtIbDmwDYsKYsV0+az8CG1bYen4c3P9wqyilfmERstWaQqxCc2Q9zhjy87T8sQX6w9FeY2B+W/wZbFsCOpbD7Lzj6N8TGmO+LYe1M+45KDaHRu0TFuaJfaGS2sX3Jw41Ja5hkO9DVui/45De3PbJDzRbwwSgYtctU0V44CpvngZ09f1boyI04Tc2KFalfvTqtX3kFgJnLlpn13+wHg1dDvuJwxddWZfuIkkUnd5tq4nXT//mc7x4Axuw+yV+rpLJe/LfJ5F/35h/qT7VR1Rj397jMDkUIIYR4qkli9kmxby2c3mcqIhu9C89WhSY9TL+9Wd89mn1arTD6A+hVHYZ3gc4l4OvmcO7wo9lfSm5eN6d/ju8DG2bd3yn6c4dBz8rw60fwQQX4a2L61ouOhJ4vwPsVTDJn9eQ7nx/b0/RxrfQKzL1uqrje+B9MOgXl60GdNlDxZVOdl96K5mXjTNXtruWwYaZJRiQk3Hu97YvN9UvtwWKBsrVNPGBOx5334z/XCQ0m9pNXcdi7CLurx4j6ptv9Jwl2LDWnzGf14VrNtnQaMIBrAQEEBgczcto03vvqK/YUqIH/54ux1nnDJIv/Xgizv0/aRmy0eT/N/Bb6v2x6SP6bUw6vXzS/76NbTeL0qyYmeZ6Wi8dh7VRThd5/tnkN106FkMDU17l1w1TY3rhq+ukmxMPgN0xri0fl2Ha4FcgVsrLEehqAgmGVaB3Xj/ol64PS/MU2AnI0M98JM799dLE8LMt/S0pudyoGg98yB0Qepsgw6Fcfjm8HJ1eIi4EfO5jE3/3w3WOq0GcPTvoOio1O3+fG7xwEXCLOxZMfbs1hQeF+XC2/nuBIb8JcSkJ0BJzYcf8/W0pO7ILNc8HBCT4YA31sB2fmDoXzR++9/vEd5veQngNDt26YpPqDVCGvmQpdSpg+1HOHwqgephXM183hi0bwaS1onQPa5YeDG0xi9JMJXNgRw7h619hxuK7Zzo6HnJg9ts28V9yzQatPUl4mf0niftzBjWc7E1CiK9c+3cjIveYz2a1NGwDeatwYpRSrtm4lKMR2cK9iAxj+N3h6mwNAq9L59+herNak9+HaaaYv7rwfzPe/37mk5aIj0ecOkwCc0bkom03aGYj/tsQWBhpJzKZm0q5JBMQG8MeePzI7FCGEEOKpJonZJ8UcW7Vsy0/AycXcfrM/WOxg65/prw68HwtHwLJfwcERqjY1iY0dS81kKIPfur8qt1s3YPo35h/u79qYU+DBJEG3zDdJjyC/O9f5exF0KGxO/1zwEwx9G7qXT99p8dfOmvXAJEnjYmFkt/Sddj77e7O+q7tZ7+fO5h9dreHIVpMMdXKFzyaahF6rT6DLUAKCc7LooxusHnSToAZDTJJv2bh7n267aa6p2tQa3vrcVGmdOwxrJqe9XnycSeQC/lkbcWxpBLeuxUPzD6Hbz6aiekJfWDr2jtUif+mPU3wQ/rFlAHAJPIB19bR7vy6JEhKS2ie0/YKpq9YSHhlJnshnqXOtG87xHuw7dox3v/ySV0ZM5nW/HFzpa6o9WTQy6b06ezBcPok1R360k6tJgCf2pPU7Bwt/MYn59Pr1I4gMNb/vfMXNa7hkTNrrTPsatGadZylqTVhGQOEq5nVNbaKeuFhT+et/3rRsmHwaCpczSeG1qVco/2u2isut9l54OGTjtz5DGT2sN/0WV+HzAR1wdXLBz/Uk80+3Qds7wsrx6asm9DufsRPVJdqzyrznY6OhTE3znbZpDnQvZypIHwatzWf3zAHIUxQmn4LXPjI/7/je6T8IcOkk+uNq5v06+XNzYGb1ZGjtDb3r3jshv3E2AOvjPAh1uoFVJbApfDH7vf/kVJCtncG+h9DOICrCJJ2BhNc+YviKdXy6YhvXKjQx79tPa5pKzW9awo8dzcR9yR3fYaq/N80xy6R1UOPwZuhWxiTVu5eH9TPN7/R4OhLM62aYpGFkmKmCbT8QXu4INVuavzOVGkLBMmb/4SFQoDSM3EG4ys2KfkEkxMKe4zWxKgc49rdpUfGwzLcdyGr2AbhkIT5W/6M/5cVd0Ux6M4rJ6wcydeNX9Pn+IBFRUVQpV46yJUpw9WAM+36wpzDPERcfzx+zFyStnNUb3re1Gpn1XforpaMizJkN54+a18X/gumJPaoHtPExk5MNej1pIkYwydoFPyfdP7EDZY3HV3mSM6IahSq53//rI8QTJDEhK60MUhcbb76DZIK09LkYfJExW8cQn1HzOAghhHhqSGL2SXBsm/lH2M0TmvZIetw7H9RubSrklv36cPd54VjSqepfLIBBS2HaOWjxsUlGJiZRti1OeztWK6z8AzoXh+kDTaXalvlmxute1U3F3HdtYPZg9LD2ScmSrX+aCqqYSHTlxuh3vjWn5V48ZiY+u/uU+Lv3ObK7qY6r3x6GrDYJT6sVhrSFiNDU1w24nPTP+eDV8P4oc3vC/0wy46eO5n7rPpA9D3FRVuKirQSeimV+t0DObIji8PwIZn2Rk5iqb5vfzcIRab/OP75jbncdBp2+gy7DzP3Jn6cd6+HNEHGL+FylmNnXg5UDgpnQyI9T66Lg9U+hl60CYmxPOLzF3L54HJe/J2DVdlyo8RubHczPl/D7gPRXfK6fYSpNcxYktE5bFq1ZD8DzN16jetlKNLvej1I3G+CVkJssjlk4d+UKrw+fx4mYV0wibt4wCA1G25IGc04OZ0PMT2bb43ubVgRdS5mJxbo9Z6pF72X7EnPQwNWd8A5/4F/nB/P4ktGpJz/2rYWtC4jBjh8ichIWEcHQy/bmuRW//bNiOS4WfugAR7ZA9jzwzRLIktW0kABYPPKRnZ4cs3MDAHstOfi0Y0eq1CzOM5WcsXNQeHl48GK1KuZHcojmsHs/s9KgljDly9QTkLMHmwmiWnqZdh8Z5dpZGPKWiavDNzB8K/x2GEpUNm1B+r5kWnSkx55VMOp9cxDn7gM7838ybR1NEJLIAAAgAElEQVRcPeDb5ZAjL3QabKqcT+66MxmaRpI2ctRXKGsCl2OqEK8dTaXvz51NguzoVhj8Zurraw3rzEGPpXZ5yRNRig8rf4KDvT2+nlvYgbdZ7t/2mdXaJOWunEIXLENff1emLVnChp07aXVCc7lwVVPZumaK6U2+dqr5bK2fadZPiDffQ9ERpiXLtTOpT64VEmgOTty8jtXJw0w6OKwdfP6q+U4f2MK0j0jJ2YMwvLO53fUHM1Fg+6+J/Xg8ZzqOYEOjAaxu9AU3hm2Buf4w4yL8fhjyFmP7r7eIDLaSq4wjVkdPzkXVMZ+3hQ9pgsETO813iIMTgc++y5xOAfSpuYYuLcYyfeQ2okIS2DoyhCnvnWaldQKHi87jUqUVHPNcD1pR+NTLLPwwkFntAji1JoriF19BacXcVStZ8ccJAk/FcvVADAE5W6DzP2sOMKbUbuBuF49Dh0Lw4Qvw3nPQ3N3c/199814MDTIHpP7+0/zNa/o+/GFr3bN60u12Otp2wGOfXQ4qZa2Ns4cM/8R/2+2KWZn8K1UJ2oxzHueqYuuNQHRYGmP+DNRuVjtG7BrBpJ2TMjsUIYQQ/zH2mR2AuAetkyo/m31okrPJNfvAJEk3zoLOg02V5MMw5QuIj2Ozd3l2HvWnb1WN8soJPX6BVp/CH31Mf71vW8FPm03VW/KYg/3g9H5T6WuroroYU4N94Z0o9Mw5ysWPxGJ7PNiuDC5xV3A5uN78o5qnqKmOtSZw/plPWLL6E5x22FGhSTsqH26IOncYxn0MnyUbGF06YZI0Fju4cMRMgOWR3fzzD9BhoHns5C6TKG3/dco/95LRpqKuzhtQqpq5eHqbSjRbgoWizxPf7DO2/hjCgdlhaKvJv6Ihf1UnLBbFhe3RrDzQhRZMN/8ctx9oEkLJxcWairO4GFMx1rqPebzuG7BklHndJg8wsZw7ZFon5C2atL6tjcHRwAZY48GrgD03L8azvG8QLw2wUqROR1zbnMUyb4jZz7iDxP3+JQ5YORzdjjIfV+XynnL4/TiB3BxGT+qPev0zU6VauKxJ0NwtNgamfWVuvzOISdPXE5sQS67IkrQf/BwlX3El+LwXK7/Ijt+hZsSrGNbnHcMN5wvMtFbnO1Zh/WsyFidXVEwk56NrczW2MlevQUKWMBp4DkAd3Wq2n6+46UE75gMYdyDVtypREaZaFohtPYhpPeyIuPE8HX1K4B3kC8vHmQMKyQVdQ4/sjgJ+dyiOl1MNHEJi2eR6BD/tRW6/c+Zz9dLbZvmEeHOa9d5V4JIFPXAx4XE+uMRq7Gu2BO9nTKwzvjGJx8ObQFmgTC1Tee3gZC7aamaWr9Dgzs9MWmJjsDtj+ww5laJevovsvbARNycPLgadQmsrz5UqyPJN4OdxlDXHepKnSSTeB4ebqjytTcI/uSNbYeqX5nZ0hEmCl6oOxSumHUtIoKmgv/t7KDVam4TXrUBTDRkeAt+0MNfVmkHbL8xyeYvCiL9NYn7xKHNQZvQeKFg69W3PGJT03bjc1h+vVHVzgCM8BCbZEtR9p6HzFSf4bBxhAXbkb/EZlin9YeR7ULWJSeqHBpmzEd7+Ehydbu8i/uxxXA4vIF47ssl+NK7Bx6iZfQxZssZyJLAhFZz+wHHXclPNWCKFU8NP7ISrp7lhcWGXxZsXb75M89bVyFE5joFjxjAr2wm6R9ljd3ov6mYAePkkrRvsbw4SbV0Aji7mO6Temym/FlO/Mn8DnN3Y13QA6yfOxdPdnddeeompixfTMjAPiz6cSD5HzKRW+9fBX3+YZKy9g/nOu3qaKLdCWL6ah9OAauY1bdjZvCc2zDKJX5/85ncaGkRwtjpMPfoHz7nNpoTHenIUApeAA+Z76doZ0wc9e+6kGONizcGt+DgzIVYb833315YtfP/bb4RHRt5e1M5i4fMePWjZoAEAEUEJHF1sDhw1+j4b2369xY4NH1HUeZ2pin+l653fjfcrId5UnwIxDXsxr4+Fw7Gb2JVnFgCH1m/Gd0pfHK0urMs7mjBHW5VuCKCgYkRTLGfzc5Zo7ByhUgd38lV4Hv/RdTgQt4lfFvxBg5Efo2zHwps1/oQSl7rBhD6mLVFa7/MJfc3nJ1ch8/0R7AeePsS55OTY5apc8WxFhXZZyONy3LwGpaqbcUClhubMlK1/QpP3iN63DhfgKPmpX/FfvFZCPCESq0AlMZu6x/010jExXCrfDHs3C/l8t2V2OITHmjNJroQ+IX38hRBCPDEkMfu4270SDqwn3sWdzrv9KXxpMsUvNsTRyYGXv/LCo1R1yJbbVN+cOQDFKvz7fZ7aC9sXE4Udg8JzErRiBZ7u7nR/05YU8MkPA+aY/S4aCSPeNYkzR2eTjB374R2ntEZYfVgf8hXHdX1uufpx+kx9tjm1pX6TQ5zfpTh6uTqlXf6kkddnWIe/h8XJAeJiOOXcgSW7egEQF5XAlol2hFabRH2Hl1CrJ0OVplCuLozqbpLEdzna4kvyRnlxdnoYHrnsKNR+KA6f14M/fzan+3tkv3OFqHCTrAB23erKha4BlG2ZhZKvvoEqXNZUsLpkQX84ljWDYzm2xJZIUKaFaunX3KjXJys6AWa0vc6Zs4W5XvwlcoavNxXN7b66c38zvzW/s5wF4f1RJFit3AgJwdvLC0v3X0yvwKVjk1oRKAUdBsHbX5jkiC0xe9i/Pl4F7XlnQU62/nKLfTPCWfPNTeAmLh7v0j73KjwDDkDPyjhcO0OcdiKgQl/K+dhRoqEby0YOpDktUUtGm8Q0mFYNPceahHFyK34377WCZbhVuhXzR70PFmj+QiNKvuIKQLZCDrSd5oPv6ijOborCXbVggu8ItuY5yzm/WhRm6+2q5L0R3Wg8LBuBp+LYPfEtLkdXomLty3jVrUjO2kVwfi+fqbI7exCKlP/ne9VqNafEB1xCFynPX7veJOJGHC5eduwM7UnTbB+if/sEtXmeSYyXrAp2drBoJCroGr7Kg5XZqlLz0BvYecQy3+0EvzsWZGDcTfT0Qajqr4Gzq6ke3LuKWMccbMk+l7M98xJ6zQ9nTwvVu3tQ8Z1B5jTxGYPujG/jrH/GDGa5bj/B65+l/Hxyp/Zgb43ljHLHml0xf9/YfyzioN2wWLIS4HSOWEs0U5Z/RK0q5ahypSNq9vemvUPZ2mZhrc2BDasV3uhnDgwsHGGqwUftMj/v3eLjzPt//o+mRceL7aD3ZHM7NVERMPA1c0AEzEGO8BBzECVfceg77c717R3MgZ/QINNneVJ/U6mfks3zTFLWYmeSh5dPwrmDpj/op7XMZ0VreGsAQbkasapdANcOmcppr5ytaV9gAU5X9t3Z6mL292ZCp68X3o7r1vjfyI7mjKU1rf+syJyOzzDt1EtwzRayRwiVskwwlagpJWZt1fLLLXnxiMlPIc9i5CjqwGvF6nPi7Fnm/vUXOy05qWm9ag7gvNnPfIfOHmw+39ZkVdujupse1l4579zHjqUmAW+xgy/mM33tfgA6tmhBp5YtiYiKYsHq1Qw9dJUxX9qS8XXamH7ls7+H799AO2dBAZuufMCVz/PSoUFPnFaNMAekar1utm+13m5/oJ3cWHTmO+Jx5oxPB4bFhhB/OYYm+drwacIY1IWjpnXCkDWQp4j5XYzqbg4w5S5sJrAEVv/9N/2Hm4rXfDlzUiBvXqxWKzsOHuS7cePw8vCgXpUq7J8ZTkIsFKnrxOW4s+SplxXf1eW5Yl+ffNHroOuzUL+DOeCWOGHX3bRO+cCl1qaX+tmDaJ8CzN/SjYigeE4VXwdWyJs1L1dDrrIlzx/YO1gII4BiBQuQq6AmJkpTtUQd2tZvwZmN0egETf4qznjmNUOrX8p3pdl7BwjkHIFF91HWuQbXT8SybEUDclVvjOeFFfBZbXj3R2jY6Z/xHdlqqsddssDInbcT935HYpjbOZC4KA3X4ORX0GFeOXxKOCatW/dNk5jdMg9e7ojjmX0AXImtQHju41itVbFY7FJ+rYT4D7jdykBO009VgjXh3gtlImtQIAkx9ljjHo84b7+nHtXkjUIIIZ5adgMHDszsGJ4o48ePH9itW7d7L/gwJCY2woIZ7fAsq8MdOenvy8XAS3geL8exJZEUruOCW8wFk0zN6gPlX/z3+x3eFa6dYaZ9Eexrv86Fq1fZc+QIhZ95hiL5bf/0KmWSolsWmFmmlQVyFoCPq9r6s3oQ6VmK7dc7sfLmz5yqFMEaj9857rCVoLzHcL9RkktHyxAQmh+fZx3J2/IFgvddJLf9QYiL5ZJLcxaeG4p7LkfemuJDsZdcObc1mitnPMhdwR2voE3mH87Fo03SztkN6r4FZWri71OCQSFe/HjUn2WLdhGxNi8XVtpxZFsOShc9jEPgScji9c8q31/eg5O7OOtQmL5XXTl+8xCHNl7nyp4YwgvGMS/WgxO5y6FPFmb3HxE4uCjenOJDvT5ZqdzZgxIvu2LnoLB3UhSo6syxpREEBntTxnWBaVnQ/EOTfALTH3Ck7X00cAlrLgbyyeDB/DprFrNXrGCv/03ylK5ELvsElIu7ifXqaTi4HvKXMi0BFvxMpF1uNt78nFo9s5K3vBMFaziTvYgDwedN/6uoEMWpkNqUzvoXDrcuolFsDP2Sop80xSu/A8qiCEvIy57NhcnpfhZn13hUzoKmKmvnMihYFvI/a+KMDINvX4eYSBJ6jmfw9xc4Gr+D7JbcjBjTg8s3T3Ep+DRO9q64OLnikPcWBzwnEZ3/MNcuxBMUeovszjWpGL8RgCsxL+Bfqy/ZG4ZQrkEOnNzs8d3hxtlzhTi20Zl9MyMp+UIwLv57TbXpC6/e+T4NDTbJnnXTwcmVq83msHlqFhzdFB3m5eLY4UIEX3OgoNNWc4r8FV/z+u1fB1Fh7Ldk42PX6rzq1gvLlRwUbBUKuULZ4B9O89hgsoRfRm+Zh9q7CtZNJ0HbMz9gCqculSUmTOPgoogN15zfFk3x96rhVqqoObW9Ziv4fI5JGJasAhUbwvP1zeelYkN4piT47jYJy+fqQK6CaX4cI+f/ioPvNtba5eVCVTtql3mZbG4+uDhmodwz1XGwc+JG5BUSbnkREZ5AzfoliDueg0tXCqJI4BmnXRB0zbT1ADi40bSTyOoD3yyGcvVMe5HLJyHwClRrfmeCKCHBnKq+crxJWCoLnD1gPkPPVk056Pg4+LkT7FwK7l7m83nllDmtOl8JGLoOvHzQWrNr/1HGjV3GlQ2KwO1OhPtUJefZCaiLx0yVuHe+O7d9/qiZKC8u1rQa6fgtNOzE1aKdObE6Fh91BDviCKvfn8NufVnW5ya3ribg7GHBPZcdFwMCWB6Ti8ol4nB9tqxJEL/UziRCzx0CbN9tCfFYRnTCXkdyo9EIctUpgsOzQWwLWY1zvjhqNCnEyd1ZKe86A331DKrlx+YITaJLJ2HMB8Rb7OnnUIG8oS9Su3ZZir1oEt9Vy5dn65bDnI28SeOEK+Y7ISrCvG6XjptEa43XzJkBQddM0jj0BlR/LWkfUeHQu475PugylOsVmzL4t9+xYKH8qbeJuGRHk3fKMvevvzh3+TL1qlQhh5eXWbd8PZOE378OFR/L+ejabAnrR9QtRWzBKhTWy81n5vBm8/3Y7ivTZqVWK7aHfMipo3ko0dCFkPob2Xp6G9H2YRyOPEeQWwdq+fihLh43B7r8z5sq6G2LTC/hb1fcfs9/PXo0gcHBdH/zTX7u14/GdevSpG5dLEqx+8gRdh06xIvP1WHD1xHEJsRyssI8RsycxJbTW8gWmw//gOaUrReG/bUjcGa/+XvUoGNSH3YwSfNBrWBiP7jsC89WM1Xsieb/BHOHoh2c2ew+Gd/DeblV4CSHLZvI7e3NnFE/sXn3bvwj/IginCLPPEOl+nZcjd9JgttVohwuUbFoTQqXy4FboSii7INxtnfBYrHD2ckRnxxebNi5k7Bslxk65U08fOw5sykG37AGVHjhFJZLR01yPau3aeeR3NQvTa/s1n2gWlMAYiOtzO92g8ggK882dsWnpAOBJ+MIOhtPmeaunNkQxd6pYUTY5SPXyTHm9Xdxx7J3Fb7Kg+1R7ThbZDxZvFwo7F0qta+dh+abb77xGzhw4PhHviORoTJ0LPyAJu6eSHh8OO4O7nSq3Cmzw3ksrT21luNBx3FQDrxf/f3MDucfdHAQIeMXoZTGq0+XzA6HcTvGEatjKeNdhpeKv5TZ4QghhHgCpHcsrB7X01ceV5UqVdJ79+599DvS2vRJXTmeCw5etLavQe7Y5/GzP0WcXTTtvHqj9xQg6zP2vNP/MI7fvWImSfkjhZm3D282kyoF+5vkVp02JtmWEG/6A4bdNJOtOLuafp6f1CACO17P2pQFU2cxd+lqRs2egpOjI683bIjVauWSnx9F8+fng7L5cez3kkk45i0GF48TW7Yxq6NGc3KzSVJYm+xn9kkzkZWjox2xsQl4u+egq/eXeLi681L/rDi4Kma9fY3C54cSq7OwO7w7rtntaTvNB68CJpl59UAMszoEoJSV99r9hvuGH0wVV/kX4ePfIW9RgkNCaNK9O5HR0dhZHUiwxOFscaWZeh8H3wIUctrI69nfMVVbk0+bRNOOZTB3CBzfQbRy4B2n6vhasqb6q/GJLkq9qz1oPjQXpRq7pbrc8eURrOgXRIecTchpdwQadTOv06UTJoEXHwev92ZD2VZ8NmwYWmucnZyIjom5vY2KpUvz2zff4GBvb6qTx/Uy1azlX4Rdy9kf8Q6bo7+jx8Y8KfYMvHowhgXdA3GNOsPz+YYwK96F3U7ZKF4mFy9WrcqbjRuTEKmY0NiPyGArVbq6U+tjT9TMb01FoksWGLsPchcxp5dvW4R+thpL7Bcy/MRAQh396fP2exSr5Mi4jV9i1QkoFAVzlMTv1kWi40xVcfAlFy4fykqhnPlpcfQ1YsIdOObtx/6cSwmNCCeruzs927enRp66nFobyaW9MfgdiiVf1qO85drIJPdmXkmq5jyyFb5vY97TDo5Yv17C1CHluXE6jrp9svLCO+7cOBPHlJb+ZLc/RcvvrXja+xGwZwP7dm1jXYIXO1zy0/Otd7k6sBRaJXDi3S6ERVo5vd2TknGa0ZEn8HYws63HKxdWBv1IZJnWPP92FrIVsCfG/SaH/rByfF48xRu40HxEjtSr8u42aQDMGWKSlOOPJCXsU3CjVRFyhJ2jv8OrVB/chqblOt7xfGjUTQYsfIuzR2PxO+FBk3r1+LT5+5xeF8We0Rfp5l0NR0sEjN5tqjq/bAK7VnCt/Ocs3N6D/FWcqNPiEp7DakJMFBSrCDnymRYH3vnMd8ShTcRZ3FkWNZUiFSIpd6ydSZZPPHlnYnnbYpOMO3vQJBNdssCoXez3C8Jv5XTKFivKMy26md68wOBh05m3408AXOI9aXxpAE5WV+rl+IFKjmNMouqX7abKGcxnp39DCLxMROVmnH57KOVKlmT+rK38OPdX4izRFI7MRd3gusRE17gdVunmrrz4v6xMWDqbCQvMZExOCVloHd2PPLm8efX77HgFbIAvXgUUjNlD3JVLOAx+jaC4IjjNOUm8SyRvffYZfoGBALzZqBEljrSg+pEXyel4FL6YZ3p+J/rhHVg3jRVZSvK5tQSvXO5DpyHPU+LlpIrkwBs3adGpF7Ni/yS/Nqfqa2Uhpv6HxDfrDV55CPWPx9NyAbfepUyydu5183kAWDHetGR4tir8sp3fpyxi3JJpPBNentr+5p/YNhO8mXt0BrOWL+eVWrUY+tmdVdpxxw8zq2soAaEFeKl/VtYPCcHZw8L7K92wmzYArp6C1n2h0stm+Sgrv9a9RmyEptEkOzr9+BGxcfHk8XHjWkAESlv4oGQ3urhPRm1JdiaDSxYiu8/kwLk6WOwVlLhGj1/64e7mxppJk3BxcuLmxThOrY8izC+eadeHc/jSUUq4lKfCkY4cLDuNE5H7b2/OweJIs7MDKVffh2af3jTtb3z3mEnEvlxgPofzfzJtd5LLWRCGrjWn/fvuQfeqjkqIZ3HweE5Hv4Kjm+Jo3Qns8T3Ipx070uG114iKjmbG0qWcvXyZOi8WZM7+H3Bz9CBbFh8uB5/B3dmL3J4FOH39EBpNdrdc9G88Dm/3PGitadmzJ+evXGFE//7UrVyZuZ0DubwnhiK1nahfYR4e83qa3+3Pm6G07X0bGwNv5DS9gSf5Qr7iaK1Z9eVNji6OIEcxB9rPzUl8lGZiU/P9nTW/PSGXkial6dmgB87Hkvo1f+H4PKER/4N3p/Jjm4U42afQruYhU0rt01pXeuQ7Ehkqw8bC/0LNMTXxi/Yjt3Nu/v7w78wO57HUZ2kfFp5aiAsuHO2dwv8PmSzh7BkuVO2EslgpfD3zWxmU/bksETqC1iVaM7Tp0MwORwghxBMgvWNhaWXwGIoMCSL+py547F5CvLKjr105vOwKUuNyZ66W38CW8KUc8VlOvZIfE3gynrXLy9HY1d1MjBVw6c5TOS/7oj9vjIqxTezkuxtmfIPV0RmL1uY0ZjDJvoovm8pbYIZ9EarVbsCO4dHc/LMCxTzPcNrzb2YuW3Z709v27+fgyZJMfPVd7P/6Ay4eJ94zH5O3DSE0zB57Z4Vj68NM2DkFgLzP3SJbvkgu7MpJYPANdjw7kxH9+6OUIj4hgfiGR5j168vkiipB1uz2tJngfTspC5D3eScqdXBn79QwlhzoxdvjO6IcHIh2K8jBueFc2B7AdqcFREZHU1CVpvL5jhx+biYnIw+y2GEk77TuzoX5tbkVnxdPv3Owbw0c3HD7tPoY5URfh/JcTihI76Ydcc4fw849Rzmw9yx2Ua5kj8nPhSz7CHA+w/Ua6yjV+D0AboWFMXnhQo6cOkWbV1+lQfXqWCwWnm3syslVkWzb8TEts3c1FYfJ7IvuyoKJjViT82e0RVPduTEtnmtJ/qaxHLt+lLEzZ7Lv2DEWr1tH61deMTPKn95vet3uWo5WdhyLbEWxl11Sncglb3knWozJTp9+cxnr4AIOAMHsPx7M/uPH2bxvB6MHDKTJD9mZ3y2QXRPCuLw3hpe//B/eF4/D5rlmpvYceeH4DqyuWdkQ9QPLjq0l1Nuf3NlzUqVWAQav7IpVJ1Agewmu3jzH+RvmlOdy+apT2Kc0fyb8gf9JD85fv0Su710JvBjJpkWzIAKyZ81KUEgI3/76Ky/XOESTunW54LyXlVHb0DF21LIUI1/YaTPpWONupuL1i0YmsV2mJvQaz76N+bhxOgTPvHY8/1YWAHIUdeC5lm4cXlCcDX+58NLgarSfs5nrqjQVy5Vm9gcfELjenSvWEEKL7MPOPR4X52icPVw5GerAIKe+1LkRT5zbNjbZZyMqh5Vu3fw4nxDKdxOWceTUKVydXSiZ42VYW5+gc3FkL2zer1f2xbBnahhBZ+PIVtCeyp09yFcxqXcp7QeaKtUrvqZVRcteKX8Z+F8gR9g5IrDjsndhXizZ6h+LeLh4UatYYwID5+B3wnwuB/W0o0pXD7QuwMHJ7aic5Xf07MGozoNh1woSLM4sXPU6UVYrvqujuHYoF52/Wojjr53g9D5zSSZWu7EwYAKXYytxdi14l2lJnuCFMHNQUq/nBT+bHrE215yysbRkS45NX8jWxH/gDwfQzS4f77dty98bjzF/+0IUCk+LNyH2Afi9uIIaQW+z7WAPSuacTxbf3TC8i6nuPX/E9O6NjeZ6zuK0PGEhon9/vFy8uBl1EyygUJxz9eeS2588nxBKXZ9XqfJ2DgrVdmTI+PEsWL0aO4uFbI4+BEb7s8oykZcPfMLsd67z1tQX8Wre0xwA+akjOth8Z17yaks5bws9v/sFv8BAsngqIkI181et4odWL3Fkd2uTmF09OSkx63ceNsxEW+wYG58PZ+1O9vh8OJT0Z5PvEfJkLUgR79J45/CidYPGDF17ii4xV3CLKsf+iI5cnVqFkNnXOOe+mGi7MJ4LfoVPS9Ui643NprK3YSdzEGDFbwCcy9aZPV0CWXh1B7hAKdcKlH8zCwfnhLNvehjtBzZn7sqVrNu+nYBOnfDJlu327+nIgUIEhIaQr6ITFd5259CCCG6cjuPCQSeKfHTnpJIxsbGcXhdDbIQmd1lHFu37k9i4eLLmicK7oh+u+8py5log405MJKbYR7w7tBeOl/YSEWbHvguN2NPfDmu8mdBwp/cS8ITq+Wrht9vK2c03ObwgHKstr1jIvhXH85/BN+ogVwoOIiIymCyurkz47jtGz5jBtv37OZFtHc5rWnC1XX7yDpgLPcrB3wtN6xF7R9OqAeDDsebv29C2Jnnbrz58tRC+a41KiGdveGfOxL5C+TezkO/VaKZ8dwgHe3uavWjOQHFxdubdNm0AGLyiOwCtX+hB1cIN+WVtb0767ycs+ib2FgdcHN0IivDnx1Uf8XWzybg5udOifn2GT5nCorVrqVelCi8NyMrMtgGc3RLD2S3NqZf1CJVcx6MnfY76eZOJ+eB6k5Qt9BwJOYsRdSOBQ3PDObo4AntnRZNh2bB3VNg7KhoNycbST4MIuRSPo5siLlqjE2DjzX686rUXbl7nnHJnpSU/dfME8Gr5ThmSlBUiM8nkX/f2uJ+SrxNbLTwmv8LEVgaP82RpQgghnkzSyuA+ZcTpW+fHfkWeLZOJxI5+jhU4ZJ+XWhe74ZMjO93HPM/Sv9dx8do13upZhesbXbl+IoFy5U7gGORrTnMvZpvA5//snXd8FNX+/t+zNZtsyqb3QHqlJISS0AkJVYpIU0BRQAUFLIgoCoqoKIqCcBUVsCBSpPdeEloS0nvvPdn0stn9/bEYxX7v9Xsv9/fK+x/C7szZM2cmk9nnPOf5dGrQrhyDqKqAtJYINksCaZTUY6Frw6izDbSddFg4ILZ20rvbCtOguZ5UiQXrpL0YLMwl77AUnVbAqcMPu3of5Foj/M0DGew2mPC0mUgAACAASURBVMLmXPLKCrEaMRU/H3/agqax69xLqBvMcRkhomTEMb69+j0Att71RIwIwkJpTbM8h7piI3IKijGQy/F1c+PlDzay++whCozvUOYYw4tbwnBw/bVr1aGvjKRDTdTkajBytUZub8H3j1WQfrqF/KpCLgjfohO0hBTMx97Wipe3R9DY0UBiRgZ3ym/jPlCFIssCF3kUuiv7EJKu0qmTcLnhRRYZOZImlTHb63EWvDQcPw8PwoeGMHvSWJxK+yPcdsO61Y1sk+sUNmfTPyAArVbL3Jde4lpMDKWVlZyLiiIjL4+h/fohk0qx9Zdx4Vsb8ttDcfSHtOJgrtU/x63Gp4hqD+G83TY6xK24qQfhnzeZ8iQN2cd0DA7zImCQA2cjI0nJyuKhiAikUql+aXfiFXQtTRyq+ZSC5gGMeUOFsc2v51hq1GquxsTwydEvSFRHI9ZJ8LK1wXJADoaqdhqr5BSVVBOfkcLMmSOx6CmjOLaNmlwNCT80YTZ5HFZ1Z/VL0CuLaEXFvtLtXC9Vct3ma7RCJ+uWL+Vq4W5K6nIZ7jWZ5aM3Msp3Gv4OA5gSuIAw34fwtguksqGIgtosGivlXI65ydVkfQZx4CBzfEM68HB2Iz9XTUZeHievXiUlO5sOXTsacRs1nR2EaUv0UQ42PWD9TGhrRjfhSTqWf0dOkiln36hBp4Vxb1tg6faTmG/rJyN+byNVmR2cqP2GxNxUAjw9+fytt1CZmHD2zWqaq3SUh3zH4lnPoTKyIq8+lrpiBVXKAuJMajkrr6FYrqZcksuJyEucu36diupqDGQyWtraKDVIx6LVBXORDT1CDChNbGPPoxVUZ2toVWupzdeQdKiJljotjkFyxFJB7wC16aEvMBZ77m7BvDJ9pqjKpst123zkM6Rx57gsssNw2gOE9hn6m/cMEwMVV3IOUFdkRGNjO4ODgrCxsMDGV8r5PY4EiHYiLkqG2LNQX01C0wwy2iYS9oqK5hotNTka6jQueG58BsGzHykOA1iT2USyyJRLYlveEYdS3dMY45EV1BVoqCoJJdDka4ScOOg/Xr9MfZteXL7k9QAvNdmxWeRBdHUzBSUlSCQSwkNDyS0qIjopic7OTj78chftQhuhZhFseH8hP5w5Q15NLs+8PRLUFmSl2uKtOKaPF0iJ0heU6tRQHTyJyYVmNOlEGAiGNHY0INJJGGg6HNNhN+loE2iuF1MiZJIpv4HWtIEvDxzg/PXryGUy3nlhOd79JSTEl1Crq8DX2YvOHBWFt9vwWxWO+Nr3UJiOuLWWig4fGmb9g2Ppx/jh7FnEUi2ugyro7BDRrJYgMmtFkzCWQMUXCKWZCOMW6JfJ71gF6bfJ8RjGFw3GODX2wcvJhT3i+dwpuMLVjKNcTDtIZNZJ0tpPkJDnwEGJLXXtT2Eg60e1ZTqnzDdTociiTl5MoTIBx+JeeMuvQHuLPpYiMxa+eYNWnRlf33yLitIWblvtQyQIbNmyFI9QY2K/baA6R0PwQ5YU1RWSVVCAQi4nOCAAAG2njuMra2it19JrcSc7L3zLweKvaNW0YN7ogk/ET0v+bycmMvuFFzhx+xyCRsLg6Y58fHorWq2OoGEKzM3MaFNlYNMSTFlDBfHV0eTu7U1a5GBuXPCkOFmETgfeYw0x89VwRL0DnaDFN3YWOUcEypLa0enAZ7whHqMU0GCAUVEPCo3v0CpuxEAm4/2XXqKvry+ujo4cOHOGOsNi3OpCyDiqQeVvheXoILi8B5IjIekqOpGI/OBNXEydSWWJEofnHkWUdFEfLXPiM2hSUyH05WjVR0Sss2bQQhMORZ7iVkICYYMGMTK0H41tauRSBYIgUKYuYM+tj5FJDFgw9DUUMiWh7mPp5TiIQJehPDzwOSL8Z5JQdJ2SulzqmqsI6jEcJzs7vj12jPySEh4MD8fKQYnXGAVNVZ3otJBd3os+Rt8grczQR4vY9ICv10JuInWBi/hilRc3Pq2nMFo/kTrmDXN6hCi4FhNDak4Ozr4q+j5gjtxIIOxVFSFPmxC/r5HSPFPcVs2kXVTD8goT2jU9sOutZsHUZxH/h/Jlu6MM/v/kfyHK4PObn9PU2YSRxIjHB/z3l8Hfj5xKPUV6bToSJCwOWfzf7s6v0JaXod55HAQd5vdJlEEHHXhbeBPuFf4vt9Pa0cqGCxtwVjljpvj9FXrddNNNN9387/NXn4W7hdl/kv/Ew+jO01VUFKfxoTCKitYRhJTNxVpuz9Qtlth6GtLc0kJsSgptNDM+bCh5Ua1ItWqctef0S6KHzdA3dPpLhJOfodY4stbkQS7IC4kUuXG2fSL/MLBku6wnn2p60un1GgEvr0Xi5kOMbV8ezZNhZ+GO9ZUwfY7qDmuGLjPDoM0M4bYryrIekGmDvElFgfEdEhKLmfLMei4f9qQwUYpdiJbTpp9wMfoGggD2fmqGD/Fl2ej3Geg2mpiiM3RIq6krUXAzPp49x4+TnpuLSKLFQKmlobGNyzG3MDYyQiaVYqhQILm7lFksFTA0F5N5voWo2wnsOP0dcVykwSaXFLuTtGia8eoYSKAqBJ81ubi79+gSSW8mJJBanUSCsYzAZgEroRCNTsax5i9IH9yH6+prKAzEtAcfIjL7BCojK+zNeiKWinAdosB6WAMhM20QGUB8WhpnIiM5cuEClbW1+Lq5MWfSJJIyM0nPzeXk1asYGxnh4eVAW5VAZqI1sQXh5LSOwGmSH24vyvkibyONHQ2E9g1i45rncR9miE4LFWkdFN5uY9JSb24k3yG/pAQTiTnVx6yI29dKgWomSeKFZKU749xfzsCFpl3Xjqazkxvx8WzatYt127Zx+to1SisrUShkOAVXYOhRyEDPYayZ8TGVohiyM+soKqnmSkw0vgNsiHi6B5pGgbKkDjKvaDF5fBGKfv24ejWYk1XvUCmz4pzLJtpoYcKIEYwaHsDumx8iFctZGvYeCpkhMokB1sYOGMl/EnX87INJqj1JbV0TTXViBEGHrVcjCsdi6ltrqCcXM4dmrJUuOFg4MrRff15fsoSsUx3cEFXwgK4EpboULn4HHW2U2I9mx603ifqojbSTzei00GeGEc4TOriVkEBbezuWKhUyIxGdGh13EtI427IHmVTKP9aswdzUlKLoNm590YhGoUY5+xYP9l+Il21fMusiKSmto1ENLdomTJUKevh1YmgiQilX4mLrzILp01m/fDlKQ0NuxsdTYZCFRWIw/hNM2begkrZ6HX6TDBm7zhxDczEl8fpohjvfNZJ/o5Wcyy0YD/DG2BxIvKx3gl47oHdAFqVD8Dhob6X1jZnIO5r5XhTC5OefwtzI+jfvGSYKc6LzLlBZXU9LnQxjIyMG9emjF4ENlJRHFmIni9cX1gKO1XyM/1wXBi00wTlYTuLBJirSOmhqkNLgZsWCL78mVySlunUwqRIVNdJ6StrySSlOJdvoJkWyOgaa9sC8NU7vFL15DIAjmpd4qbWGOrEhbyx9lpDAQEYNGsRLCxYwedQojBQKou7cITYlhQ7asNd48en25dhYm1NXX09iRgYVNdUseS2C9BQX4tP70SA4IRkwEuMFy2D+O6xKriWzpIzRThPoGzsfL3E/nlo0nmjbt0Dcibe3LRiXI263oLKqgfj0dL3T1dCQza++SnL9US5k7KNd00ZjlRxjr1bcWvpTnaOhNBXcXn8UbUkeDYWNHG/ahuShFtZ/vg3Q0TO4lpnD51DUGktVroLsokL6eQzFrCwPS0mmPmPW0lFfEBEdG60iyFQ34lc7mvLQHXSYVNLHeQg6nZaapgrqW2sQi8XoxB00VBrQ4pxL+LNOfB63FY2ug7CQEJSGhhTVFpEvEjGdOCjPQRi7AE58CqnXiW+aSb3zOJTTsrmZe5NAP18GDnYhu+4OErUltRkCOi30n2THkQsXyC0qYtaECYjFYmK+aSTtZDNyxxZ2Vr7LzYQEWjWtVCiySClNIXxYCEpTOdfvxPPMG+toaW+ljRZKjJK5VnCZ1rZ2TGxbWTZrEQPdwonKOoGBYwXeilFkl+dRYpBKj6oQDI1leI4yZPzb5gTONuZOyxWu3YnG18aPsX5jUZiKcB2qYOBLWjQDbiH1LCPiCR9GzetJ+PBBDA4K4sXHH8fN2ZmEoihadFVUVrRSUFpCTz9z5DkuZJ5rwXSgD9ZhvfQZ2fZuZHi/z8F9o6jJ1VB8px11uQiP12bp84sr8tGY2PN13teIzc0Zt86c1vY2Vn/8MU0tLUwaH8yWyGc4nfQduZUpDHKL4Fj8LrIqEhnkFsEA19EACIIIc6UNdqYuyCQGSMUyfOyCuJxxhLzqNBQyJf5OQSRmZJBfUoKbszPerq4oTMV4RRgSONsYc08lWafqcJbfoDM9DlHvobBlMTpBxJ47b1LfYIrcRMAuQM6ol1V4jzHkTGQky99+m3NRUew/fZqwEf0IGmuPwkyM1EBEW4OW4jvtdEhUxPqYcTw1BfsWb3yntDHEe9zf+cjyh3QLs/9/8r8izDZ3NmMkNuKJAU/8t7tzX3Ii9QSZtZmIEd+fwmxZKepdJ+4bYXZr1FY0aPBSeRHhHfEvt/P2+bfZkbCDa1nXmNNvzt/Yw2666aabbu43/uqzcHeUwX3IU6smsn5dLm7nxyBrU+HcT4HtY5nc6DxBaP04Zowbx86DB7l06xaLP6zD5BsxycWDGWyD3n2n6YC2FjTbVyMBzrc9S6zZddDq6DmkGLtiV0yjl5EkjSLb9DrbYz8h+8Y8lr47m7dOr0IrCNjnDACgatwOzjbJmGeyghEvqhi0yJS8qFZq8zuoLRpEwp1jqCln9fQTONf0QyTTclH1BXFpaRgpJTgEluLkYMXikeuRiKWAlEdDX+bd+sU4BTRQnWlJY3MzBiYdOPWuQ27USe4NS0orK3l982YABEHA1tISr549GRwUhIOzDXkjLxBZcKVrzCrIgmYI9PWl17BaIoumE5kA16v6s2j4Gh6fNg0Xe3s27thBcWUZc0zsWK5+CFOTuQzfMYYXP10DgMqtBrlUTlVjKZ9cWIW7dQBuVv4kl9ymqDYLI5kJL038hFq1muOXL9PS2kofHx82v/oqxkZGDA0OZsV775GRl8drH3/M65s3Y2NuibKXDaaVPfFxcyXXu5zX3j1Ae0cHA3v3ZuPKFRjI5Vi6QI8QA+rLNBTHtnN9Wz1zHniAlRs3suPrY4wrCEDgp/xSnURD6+BUVn+USlVtLY3NzeSXlFDf2AiAWCRiQK9eWDqIydedRCzVManPfKYELkQQBF55cANV9fOIudhOek4uy9avx9zUlNcXL2aogzdXNqk5taYBmdFA2hsH4BWh4IbDNzRdaaCfvz+vL17MZ1deB2C41yTMDC1+95pWyJQsHb2BbeLVJKeWoDDpwKenN6N8pqEysiIq6yRRWafQuiSgA5pUxSRW65g9YirrT6WzSNqf90zycVXns1PiyT9qDcDoNQKsRjNAFkHQLBPUHilMfHIj7R0dALz61FNMi4ggcK4ha0/8AMCEPuNwcXAA4OaX+iXVNb1PM6uvfjJDIpbyfMQmWtoXkZlbTEerCBObMsQSHT8u/LUxacbTzxgDuZy5kyZxJjKS1Oxs4rRX+HqGgsaKTux6y4hYY45YKmDjI8NjtIKzb9RSmtBO+u0K7lgcZk1WLGG+Ybyz8ltECZf1hZ1izuhdtNlxYOmIcXMlySJTMs2DcbX8/UI9giAwyD2CjNzPqc4z4sDp0zwxbRomSiW9HlSy+8vlGLeUYm2URXr9aARnL0KXmOiveRcpkzZZcnBJJdH7ajh9fSOt8mbs2jxwGlJAi202LQ1iWusMcTDyJTmxklJSebHWj92BD6KIO4BWbsq58hf5yLwCBB2eNcMxvtMXlx4SjKzEWJnpR+/hiRMxMTDly48uIG425JUlCzE2M0Cn0/H4tGn8cPYsV6KjOXjhDJPfD+fM2lFcOzKIa8dghK8ZVq4NXL59G6lYivGVQcjEMh55rxfHGt6is0bDUM8HmNRnPisPzMBQlcNC1xepLO/AwtSU0aGhxJdeICr7FFKxHMserVRkGnMjMY65L6i587ox+Tfa2PmEGJHDem623UTkl0TcJ9fQ6cDWq5Elk5cz0mcq6uYayrMuUpVrRLTBMYwbn8RDcQph/0b9OezUoO43j5PJlQgIOHsYkuKYykjvB5kXugKdTkepOp92TStWxg7sv/0PtuZfprSihlc2bQJg+tgIHpk2GiOJiulLXyCXUuLVfekrvQ0nt6M9vwcRkNo6mXFvmfPhyTgAfL0defPI4+jQYWDugjsbST7cxMIlXnj26EFGXh5nrl2jn1UoVz9So6WTm+47KSoqx9nRisUz5/LWhzuoNMhlzksvMHb0IHYfOYFG14GbehAuYm9uWOyhsbkZuVKDS0ArQS7DUMiU9HUewp2Cq9j0SiCg2YPE9ExEi67wzNOPI9x1get0OvafOgXA/HnjCQuxoF3TxrmUvWy48zntmlYA+jgP4dlR7+Dq5ISrkxMA1zJPsP3KWgA0RpaAlCQiWblkPJFbGjj7Ri0uJx5EOWw6pYltHH2kAoCQp0y4vauBlONNWAcYE/zmMQRNBxfW1dKU0k7wRCNEEoHP9+ynoroaHzc3khv0kw0CAglF17mYdpBL6YcACPP5WZbwb2Bn5sKsAUv5KmoD393cRH51OoP69OVaTAzXYmKYNOreojGeYYZkHX+Wuvj9mOXH6Qu6aTvJVsymqskF34mGjHvLHEGkH8Py6mrWbdPHTFhbmVBRWc+y9ev59v33u4q79Z6h5NaOBtJPNxOdrs+ONDTpxNPR7w/73k03/7/QFWXQvez8d9Hq7kYZ3KdDpNPczbbR/YXs/v8Af1eUQUWD/m9TQ1vDv92nbrrppptu/v+gW5i9DzGUG/P4s1N5s+cTdGo7SRWJ6EzV5yzdyD7D2km7mDhiBD+cPcvmb79i3mPPcn69E7Uib1TNaXBiO5qYy0gayyhp70NksAGdeVpM7VtZNfNtjGQmfH55HWaFTbhnOJJVXsZ5+Q6iV51ALSlHJdjgVB2M2v0Ghc7HKEwDD5tehLqPxcBEhPeYn4rXqA9M5d2vt5FodBa39n4wNZaYqAQUCinOA4pRmRmxfPRGlAY/uTp97fsR7jeTM+zB2kVLQ0M7CuNOloxaz42c0wiiSyibAxDUjhSWllFSUUFpZSWllZVcunWrqx2pRMrssMn06+dFaWUlKlNTWg2y2X9nCwZSQ8QiCcklt1h9cA7zQl5i1KChBPf25Z2vPuDk6QTeV3WwY507NbpSbicmIRJr8fW35q2HdhGVdZIDMf8gqyKRrIpEAESCmKb2ej489xxvPPk144cPx1Klwt3Zmeb2BrIqEnGz92f3xo0cu3iRQ+fPk5ieTll1JVAJRknElAF36+E4e0gZPcEJdVsFcpkjgiAgCAKjXlbx9YxyYr5tJEjqg0GnMXWyUhTDi4iY3IfqbA2NLc3sKf2M3UcSf3X9uNjbM2HECB4YOYIzGTs5l7IPMTAjeAnjev00M6+QKXnloXdZK11AcaZAR6UtVVVqlq5fz/srVjB0mT9XNqlpb9ThOsQAx3mVnHjtEnKZjNcXL6aysZDbueeRiKSM6/XIn17XTubuvPXgbgpqMjExUKEysup6z88+mIm9H+Vo/E6i8y5SVJtFUW0W9uIkQsvmcdJ5A9PbjJHIfdEIIgw7VDRLa7ljehRpQB41bY7s33garVaLn4cHyZmZrNu2DbFIRGVNDRWSPBQaExwSRqLT6cg830Lu1Ta04jakQ1Po47y8qy9KA1PWTtlJUtFNStS5mBta09PKh6a2BnZFvUthTRYfnHkOX7t+zAl5kWceeYSn164lVXUez7whmKgUTNpooXer3sXGW8Yju22ozG3lyXc+ILc8F4AzqafRSoezYc02OppAVJqM9N3p+liRwjRaEfGGZCCjxjh3CVu/x0DXcPartmFs1UFDJXxz5AhPz56NWCrQb5k7h1Z8DrUgiGD2NnOkBj/lEvcMNWDsRwpe3PQxam0pJmIzrMPj8PXvQ4T/c5xK2s2dgqu0cJ2gMHduHFOQq0zm1coHePutZ/n2FWtihAyqDb7EWG5CQO0Ybn350xcOS3cJ0z+3xshSjOxqAKH5rtj1ktF3ihmppTF8cuEVvGx78+y8WWz4bCfrP/2U8qoqnljzEI6Bck6vqeXihjpKEg6h0+lwbQpG0WlC6FJTxO5l3PzhHGKRhMl9H8dCacu4gIc5HPclSQ1HeX3mDkSCCHVLNXtvbwHg8SGvEJ13gfKMGCpzlHx16Ts2fL+aI89Vk5yewwWDT2izaoRaff/NHVt5ef6zDPOaBMD43nM4n3icmgJDYgpiMDHoh2/TPAKNdkJ2HFpDMzZGRaA1+x57SU+yQjYiIDAmYBagF9LtzXp0jc/0/k9zPvoCqTcETJUm+AfYkmewl9WHdiITy5k8fgZffHuWLw2N2dwBfPU6IqBO44TJ8BBM3HRcvn0bgBIi0aHDxsSJcvJp6ZEEef7c3N7IrPHjWfvJJ2zfdYSMJHc0bTqygw+SXJSC1ECL0juJZsN03pu/lhVb1lNJKV8dPgyAR0MoKx5biO84JXWdA9l57lPSm48z0H00Cpk+13n+4FdYd+wJCmoyUHlqEGUI7D9/grnTJuJgYwNAdFISOUVFWKlUDOvfn+zKZLZeeIWqxlIAAhwHkVORTFzBVQ7EfMr0YL2Lq6G1ju9u6kVrM0NLarVVGCmdKSgpQfpUIe4pdmRdaCFqq5pRq1Sceq0WXScEPaLEc1Ynewv3cjUlit37NUgOSjAyVCCuMcXCqgc2dv6890Ux3x3XF8qaMK4XZ/KuYam0Y1zAI3x1/T12Rb17917Vn55WPn/4uwgwyudBlHITPr+6jqiskzgZlQBwPS6ODo1GX9DxZwx5yZFTUzYyTTkDQV2FVmLA+bwlKMxEhL2i6hJlAb7Yv5/6xiaMrVux6VeKLMGHoqJqnnvnHba/+SZymQxTewkeoxRknG2huD0fZKDtcwsPm/F/2vdu/rsIguAEfAiMBgTgHLBMp9MV/IV9DYA3gUcAMyAOeEmn01352TaewGJgBOAKNAC3gdU6nS7+7z2a/x5dIlp3xuzv8qMwe9+K15rO/3YP7uHHcerU/Xv9uu/HvZtuuummm/843cLsfUpPKx+eH7OJbRdX09Bai5uVP03t9ZSpC/jmxkaenv0Mp65e5fLt24weGIuhuTuXq5Yz2XwRbFmMBGjXGhFl/gHXSvXOmuAB9vR20ld8fvWBz3j35GI6TO8QVOVP7I0a1JJyxFoZIUXz0ZrUUjpqO2MDHuZk4rd8e/0DvG37YqG0vaefDz4wki+PfU9lbQmaRy/w/Tl9cTBr3woURrAs/H0czd1+dXwzgpdQXJtDcsktFCbw8MDnCO45EnfrAJKLb9MsTsTctoLwwb5YGPpiKXOnrlIgJimZ4vJy/Dw8eGjMGNydfyp0llh0g4/ObQfgqeFv4mzhyT8uvUZ62R0+Pr8CU4UFLR1NtMtasXIzpjJbyfL33iTAwxsAlWMLC0asRS4xYIT3FAa4jiau4Bpl9QW4WfnjadOL904tJbsyiXMpe5kapC/+dTZlH/ujt9La0Uwfp8HMH7KKyWFhTA4Lo0OjIb+0mNi0O0QnJhOXFUe7UI+5UzPGVu0cSdjOkYTtmBlaEuAwkEl9H8fGx55BT5oQtbWemB0tuJuHkmR+iiSL0zwTFoJulI5l6zcTk56Iuakpj0+bRg8HB5SGhliqVDjY2KDT6dgVtYGLaT8gFct4bPAqQt3H/uo8OJm78/zY99koWka7WzY+6sFcvZrNG1u3sm/TJlQuehesR5iC1R/vBvSuR1trCz488zw6dAzxnIC5kc1fuq4FQcDFwvM337M1dWbB0Nd4NHQlaaWx7IveSn7VbbztpzOq+BlqfWOorWrGtWII3qPFKEeXsm3nEW4lJnIrMRFBEHhq1iwWTp/ON0eOsHHHDtZ+8klX+8Ob51KTJ2L/oiqKYvSuvIpBe5kxZDYi4d7iaXKJAUE9hhHEsHtef/2BHZxL2ceRuB2klEaz4eQS1kzaSS8vLxLS0ykbeI7Hnn0MY9vfvrXuu3GQ7PJc7KysGGU2le/Sd3Au4RLPhNvSoywUsdSM0EWX6T/xew7tPcMXja1IdYGMDB/4p2NrZWyPh00vGt3TaKi04LO9e5FKpcydNAmfcUYYWohJO9mMfS8Z9r1/KkRW39jIxZs32fbdd5Rpq7BQmWLVJwOJiYhHBr2AhdIGb7tAsioS+fTSGioashg8NIRzF/K4UHOU9R8sQlymJcFV7yZUeZdQ4P8GttHT6WnrQWuOCVVZGg4tq6LnYAMSDzYhlsHYdeZUNpaw+fxKmtrqic67hKUynQUzprL9+x/Yvm8f1+Pi+PDllwnTmHF8fTFXMq6ACDzKh2PfX0A04jabzm5Dp9MyxPOBrvvT+F5zuZJxlLyqNM6l7GOUz4N8cfUtmtsb6eU4iIGu4cglCm54XKa2UMmN+Hgup13F9xUbtq7dTFtHM2YqCQrbGpxcTHl+8jt42fbpGjMbEycG+4yktiiSkhQTbtvtwTZ7GfYDLbDubcLBA2EkC1cBcA8Ro5bVEeQyHBsTp988dwqZEfPHLGKH8dtABbVkgQbMjWyoaSontmE3Xi7BXMvLpazdAltBH0mR0DwL/ylKImNiaGltxcXJmqr2eMyNbHhj8ld8cmEVmQO+w63gTaJ3NeBZ449ca0R+XS5Zkmishmq4VXIZQaSjR78apAoth+O+4OUx/Vhkt5orqZHUyyqwbnFj3nOh9J2pjyfpbJFS0HkRQcQ9BelMFCqej/iIjaeXUl6fg7WLHWV5OnYePMgrT+qLZu2765adEh5OdmUC759eSkdnO44qd2b0X0Ivx0Gkl93h7eNPcSppN8O9JmNt4sDB2O00tqm7JkReur1EtQAAIABJREFUPfgwSrsamjKNOXDmDC8ue5bsyy3E72+iMrODqswOTB3F+D8G81aupKSiQl8gTieg6dSgbmgAaQM1pkV8sE9fsV0QBBbPnkV8zT4AJvWdz2CPCaSWxXI79zwAE3vP+9PfxR8Z4Doae7OebDi5hMKmeGytfSirqCM+LY1+/v73bGtsK8H5iQi+2XIEc5MKqpo8qO90ZNjjxsiVP92fquvqOHz+HAD2vg2IxQImvulYtXiTkJ7O+19+2TXWo19ToTNqpT6xHAEBmX0tblbdjtn7GUEQDIELQBswD72XcR1wURCEXjqdrulPmvgCGA+8COSgF2BPC4IwSKfTxd3dJhy9KLsLiEUv4K4AbgqCEKrT6WJ+3ez/Ht2O2T/nfi/+xY/Fv7g/HLPoAOHfF/u7hNnuSYNuuummm27u0i3M3sf42QfzzrTvqWuuxlHlSmldPq/8MIvIrJNM6buAJ2fO5IOdO1m9ZRO+XgFoMyzpIwmkhyaWNq0x1ww20TlXQ9vODgzN2pk9/NGutpUGpiwP38jqg3NotEriuaWP0XzZl6Y4UzAXkxqxmiC/YGYEP0NpXT5xhdfYcmEVS8M2kFWRyKE7n1PTVIGHdS+mjw/nk2/28M2pgwA4eGgxs29lWvAzeNr0/s1jk4ilvDjmYyobSmhqr6enpd6BpDKyYuno9/gqagMldXnUNJV37eNk7s7Ceau6vlimlkTz3qn3KajOQCQSo26uRoeOkd4P0sd5MAAvjd3C+dQDHI3bgbpFL2Z42PQizNuXbdvPUlsHV27HIAg6Bg5ww8u2b9fnGcqUhLiPuaffMwc8y1vHFnI2ZS9jAh4mtyqVb66/D4BULCeu8BqvH5rH9OAlGEgNuZlzlpj8S3R0toMp2AWBytCKRcM+pEPbwZWMo6SVxlDXXMXVzGPcyDnDjP7PMmLBVGrzNKiLNYSOn8yKY1e4GR/Pjfh4qmtruXz7NkpDQ3a98w5Odna/Gt/jCV/dFWXlLB/9Pn4O/X/3OvOxC+LpEevYfP5l1KbX6O0bSnxKDu9/+SXvrVgBQFNLC+eiogDI057iuT3fUt9ai1JuysTej/5u2/8KUrGMAMeBeNj04uUDMyjovwPXfW9gFdtT3xfHJC67voGQB0ueepLmCjMKy8p4YORI/NzdOZ+6n1LZFXoPMCX+phqloSGLZsxgsEUoh5dXkxelF2Vr/M+iHJNOvx4r/6m+jQ14mCGeE9h09gUyyxP47PJaXpi/hEdffpmrVacZXuaGp0EPDGQyejo6Ir6bj3w9Lo7te/ciCAJvPPssQT7+CK/o+Dr9MyKNvqfSrhDrBk+qPrPmiK8jx5skICgJ6dOAq/VfE1MGe0wgszwB975asu6I+OTbb9lx4AB21tY0t7Tg7+HBdI+xQADZhYV8uX8/ZyIj6bi7XNDXzQ3fUA2ZtZ2M9HkIC+VPgru7dQDPR3zI2iPzqVRGMdj6Ya5VXuBw82cYOatopAaFaQdmjg1YWtqQa7+OYokBK1fs5OxCOSVx7ZTEtQMQ9ooKC1cpW85voamtngCHgTS01ZFXlYa5zTXeWrGADz/fS1JmJvNXreKL9eupjT5PZ1YH9s2+eAyTc9l/Lmcu6zUKZ3NPpgcv6eqrXKpgZv9n2XZpNd/e+IDL6Ycpqs3GSGbC3JAVCIJAL8dBqExMsfFSU5xkyuqPPura36mnIWY+2bjZ+PLS2C0oZEa/GusJvedxPfsM6jIFjTVqblicxCzhOYL6GJOVXU2xWwIAapn+37EBD//huRvuPRkThYpzKfsxM7Qkwm8mzhae7L65iTPJezD1zUbIl7LawItFaCkrm0G+4kEGDzJg60a9CGxipx+PSX3mYyA1ZHrwEl4tepiKobuxvvQIGUc19DaZyC3rPdx22E1nmf5Lr1PvOtx62BPoMozjCV+xL/YTXtr6Kap1o6jKbCd0sSmuQxU0tzcSnXeRC6k/dE1Eedv1vec4bEwcWTNpF++eXExrjyzK8qw4dO4c8yZPprOzkws3biAWiZg4chibrzxLR2c7Qz0nMi/kpbtxN+Bl25cQ97FEZp3g25sfMnvAMi6lH0JA4OGBz2Fv1oMhHhM403iU8kxjzl+/zsoFCxj+vJneWR3XjtRQIOJNFS9/vI6Sigp83dx4bf5yzjwBzQ3tSCzbKWssxWRsEYXSeFTGZkwPn0SrrIBrVwqxNnYkxH0cIkHEkpHrqWwoobmtARdLrz88j7/Eydyd6cFL+Pzqm0hU1VAh5lpMzK+EWYB+c40pvD2AhMh64i2OUeOzh+ZGXxwrHsLeWp8vvfOHH2hr78DEphWfnh70tPTlQtoBwsc78/3uBvadOkVoYCDD+/fHUCXGfnoNJOlQmLXTw8oDuVTxT/W/m/84C9C7WL10Ol0WgCAICUAmsAj44Pd2FAShNzAbmK/T6Xbcfe0ykAy8ATxwd9M9wCe6n6lCgiBcAPKApcDcv/eQ/jt0O2b/nL9raf7/FTpNx08/a7UIItEfbP1/z4/j1BUB8S/S7Zjtpptuuunml3QLs/c5SrkpSrk+BsDOzIX+rmFczz7N+dT9zJm0hE6tlo+//prkygRQwRydDY+rVyGYzWPaLjfmr18KgJOHhD5Og+9p29zIhgVDX+PDs89zMfcrVj31KXKpgtWH5iBCYErgJgRBYMHQ13jt0FxyKpNZ+t29yyDjCq/hb6/h6dmzOXrxIqYWAiKXGFwsvBjjP/sPj00QBKxNHACHe173sQvirSm7yatOp7y+kOLaXK5lHqOwJos3jzxOoMswNNoO4gsj79lPLIgZ12tOl5MVQCySEO43gzCfaVQ3lSMVyzAztASgubmVz7+MRNcp4BKk5rFR6/70fHja9MbbLpC00li2XXyVwposAKYELmCo50S2XnyVzPIEPr38+j37WRnbIxJEeNkGMrP/MxjJ9fmevRwHodPpKK7N4VjCV1zPPsU3199n3+1PsA/tQZDLcAb1nsej0ils+fZbXnj3XVrb9eLWYzPGIzPqRKfT3bPM/Xr2afZHbwP0zuE/EmV/JNBlGA/1e4rvb29B4ZaOPMuIs1FRxKel0dvbm7ORkbS2tWFk3ka1phQ0YKqw4IWITb9yUf9dGEgNmRq4iM+b3qTJ/zqmhf2otr1JyfAv8XboQ1ppLEdStvJ8xCbmOE5Cq9Oy49rbXM7QL73GGvzHCFiaWuHmJ8fFTY7fuhwuf5NNjWskZgFNLA/f8iu37F9BKTdlyci3WXVgFsklt5gc2MrjDz7I9n37eONnLl0TpZKpo0ejMjVl+9696HQ6Fs2YQT9/fwprs1jy1kiM9jTx2Q/fkWEUSYbR3Wu6ERDAQ+7OoDF2f7mPQz0mcCX9MNkkE2LpRXGqAflFFWQX6FfAllZWcjYqCkcbG0oqK9FqtQiCQJCfHxNHjMDHz4r1JxYilyh+0xloa+rMtKAn+er6e8hGXGR8yniOJx2nUVKN3FBHz/41TOgzl4f6Pc1nl9cQlX2KLbeXEvbyQqoOudCRb8GA+SYETFFSXl9EdP4lxCIJjw95FR061hx+lIzyeDLK47HpJ6LpporCsjKmLllCY3MzErGYJWsG832qvuiMt20gDqqeTO674J5icwAD3cJRt1Sz++YmimqzkUsUPBf+AVbG9oB+cii4xygaWg/gYRXEpYtZGMhkDA/pQ4nRYQzlRiwPf/83RVnQC24DXcNob7pI5hUbck1ukVoSSP27fpQZptMqNGFjbYrOoBQP6wA8bHr96fkLdBlGoMu9Lu2Z/Z8hszye3KpUhvYN51KsjtuCjgADBY+NU5JbWsSFmzcRi0VoTHIwkRoy0C28q499nIcQpztEn/5eeAmjmeL0AJ9FF3Hm2jUEQWDoUFfUppH0dgplYu9HuZR2iMzyBLJr4xi7LrCrHyV1ubx1bBGNbWoAjGQmzOi/hN/CUKbk6RFv8Zp6DmYOLdQVK3hp40YkYjGazk4mjxpFbMlJyusLsTfrcY8o+yPT+j1JTP4l4gquklWeQKdWQ6j7uK4VGEO9HuBS+iFUtp3UlsGxS5d4ZO4DGJiIyLrUwpBnTbmcfYmY5GQsVSo2vfIK1ubmtD/fyOk1teiqpDgZedDU6zDt9dcpB3Yn3u46vkl9H0ci+ukRycrYHu69xP4yoR7jOJX0HQ3mBYAFV2NiWDbvp9+vDo2GPSdOsO/UKcxMjcnzK6W+tR464OD5Yq7GRvPRK68gFonYfUyffWvj2cAwr4V4WPfmQtoBshqv8NSsp9j89W7WbtmC36ZNWJmbc/HmTf05MW/Hw/rPr8Fu/us8ANz4UZQF0Ol0uYIgRAKT+ANh9u6+HcD3P9tXIwjCHmClIAhynU7XptPpqn65o06nUwuCkMEvH8j+h+l2zP45/67A+H/Oz6MMNBqQyf57ffkZ/+64dd51AndPGnTTTTfddPMj3cLs/xij/WZwPfs0l9IPM7nvEzw2dSoRgweTkpXFiRM3uJB0hR12pezZYEdmZSbp2UWIJFqmjBqDSCT+VXt9nAcT4TeL08nfseGUXjDU6bSM9J2OnZkLoHfXvjDmI/bc/Ij4oijszXoy0nsqPvb9ePv4kySV3GBy3wA+DV/Ba4fm0dEJswcs+5cErx8RicS4WvniaqUveDSxz6Mcit3OmeTvicm/BIBMLGd877mEuo9DJIgxUaiQin/7oU0kEncJMj/y2IjlVLUW0dbRyIwBq3G3CfhLfZsz8AXeOr6QhKLrALhb92Ji70cRiySsHLuVC2k/kFB0Ha22E1crP0Z4T/5D8VIQBBzN3Xhy+Fr6Og/h+1ubqW4qI7cqldyqVESCiDmTZpKUmdmVsesVoORy5cdc2fcxVsYODHILx8euH1kViRyM3Y4OHdODlxDUY9jvfu4vGeM/m5j8K2RVJBDYz53rUfls+OILdr79NjsO7gfA3LmV5aM34qByxczQ8nfH++8i1H0s1zKPkzZ6Y9dr43vNZXrwYo7G7WR/zDY+v/IGq8Z/yqX0Q1zOOIxMLOfhQc8jE8s5lbSb/Op0Pr38Ol9ff5/m9gYYrhfAHh+ysWvS41/BzNCSkT4PcjR+B6cSd7Nk1tvYWVtz+Px52trbqW9spKSigp0HD3btMzokhIXTp7P39hZOJH6DQmrE+N5z2R3yPqeuXiW3qIi8whI6GkQoFVoMBl4luOc//nKfRCIxTwxdzbpjC2kiHbO+oPQV09EqQhDpaCwzpirHmKLyciRiMQ+OGcOjU6bgYGNDTVMF644uACDcbyYmCvPf/Izh3pO5lH6IgppMRo+vZ8FTn7D76j9IUZ/F3dabqUGLEASBeaEvUV5fSHZlMnub3oS+YD+iJ2OHrweUHE/4Cp1OyyD3sV15w68/8CUHY7eTVnYHC1sbpJIUMq5D492s19VPP82dGn1I8xj/2cwasPQPxyPCfxYBjgOpbarEydz9V8fUv+dILqQdQGafy7kdOzBRKtlw+mmEchgTMBtTxe8XtAOYHryE2IIrWHuqKU01IdbyEHYF3tT5xIMajGzUCAJ/Okn1R4hFEuYPXsWaw49S63iG8LRlnG3eS6LFSVLsjPlhZzZarZZefWwQFMWEuI3FQPpTDvgYv5nEFVwlWraDWdMnIRKJeWvwMh6dPBkHGxvePbMQdR30cQpFITMi3H8GB2O3cyDmH6wa/ymCINCuaWPbxdU0tqnpYenNCO+pBPcY0TXB9FvYmDgyodc8Gpv+QZvakOTMTAAsVSoemRbBO6f1Fbbnhqz4lSgL+onDJSPf5sMzz9HYpsba2JEHg57set/V0hcHM1fUjsXUlpnzw5kzPDxxIv6TjfCfbER9YyOb134DQL9QCz669AxuVn5MCJ/HaK2Kzg4t1yRbSK+/jqnCHEOZMaXqfAAGuY0hxO1fr7j9S0SCiFCPsRRUb0YqFZFdUEBJRUWXC3bdtm0cPq+PSvgxRNTb1ZWnZs7km6NHuZ2YyJwVK5DLZHRqtdi4tWFopqGXYwgWSls8bfqQUR6Hg6eWgb17cyM+nlc3bWLjypUcvXhRP56OLXj8zgqWbu4r/IDDv/F6MvDHVef0++bqdLrm39hXBrjf/flXCIJgDvgDO/6p3t7HdDtm/5z7fkm99mfCbOd/P2/277qmuh2z3XTTTTfd/JJuYfZ/DDcrP9ytA8iqSORa1glG+TyIvbU19tbWDA3ux6wXcsjOL+Kr83vIKtQXGLLq2cwov8m/2+b04MXUt9ZwPfs0bZoWnM09mNz3iXu2sTfrwXMRH6Lp7LjnS/STw99g4+llHL7zOVcyjtDR2cZgj/F42wX+8mP+LeQSA2b0f4Yw3+nEFlxBIhJ3fSn9V5FJDHhl4id/vuEvcDR3Y3n4B+yK3ECA4wCmBi5EfNdZJRFLCfebQbjfjH+pTwNcwxjgGkZjm5rY/Ct8cXUd+6K34mnbhw9WruTIhQvcKjxBsTYSQ5kSsUhKZUMxR+J2cCTup+9TE3s/xvifFfr6K4hEYuaGvMjrh+bSbBaDpcqd5MxMlq1fT35xGVKDTiaNCOuKifhPIBKJeTbsXd4+8RTl6kIe6vc0o++O7fhec0guuUVqaQwrD8xAp9MiFsQs+1l0w0C3cCIzT7A/Zht1zVXIxHJmDVjGCO8pf1pM668Q5vsQJxO/ITb/MpWNxUwdPZqpo0d3vR+Xlsbpa9dQNzQwJCiIMUOGcCn9ICcSv0FAoKWjif3R2xjgmkVE+BTkkmCczN05Fr+LQ3c+x8XCC0/bf05MsTfryXsPHeBy+mGisk9RWJOF1ECHnakzJcZ5qHqomdl3JcP8wzA20rtBS+vy+fDsc1Q3leFm5c/EPo/+bvs/OlzfODKfsyl7qW2uJKPpElKpiMcGr+pyGRpIDXllwmdcSP2B7MokcipTKKnL5f3Ty5gW9CSX0w8jEsSMC/ipcJyF0pYnhq7u+v/5lP3sEr2HvNOSp4e9Q6dBNT+cj8NIbsKkvo//5fGwN+v5m+952fbFxEBFeX0RTZ0VlJSnkVmegFJuSoTfzD9t29LYjnC/mRxt/4qGInPqG8pomX+SxEi9S1FmWYGVsQNBLn99guS3cLbw5JFBL7Ar6l0qhm0lpGQgUYlZfH5QL1LLZTKwSUVAIMx32j37etsFYWPiSHl9EYnFN+jtFIpUIsHX3Z2qhlKK63IwkBp2iXbhfjM5l7KfjPJ4buScYZBbBPuit1JQk4m1sSMrx279XRfxLwn3m8G51H10BFagqOmHncqZh8ZE8EPcZjo62wlxG4OPXdDv7h/gOJAXx26murGcga6j7/nbIwgCoR7jKKrZgsJQQk5REXFpafT10cfibN+7l1q1GnNrMSVcRaiFotosbuaeZUKveRTWZhGbcxZDmZIXx2zG3qwH17PPoJSb/J/c4wb0DOP7W5tRWrZSWyrjSnQ0M8eN42xUFIfPn0ck0uEcWIsgBrmBQEiAFEsH+OS11/joq6/47vhxWlpb6e3rRqdLJI4qt66/fxH+s8goj+Nsyh7WPLOdWc+/wM2EBOasWEFjczNKlQaFqeYvuba7+a9jTlfZwXuoAVT/xr4/vv97bEYf5Lnp9zYQBGEhsBDA+Wf5/vcr3Y7ZP+d+Fwh1d2OWALgP8nB1Oh0If2OUwf0qiHfTTTfddPMfp1uY/R8k3G8GWRWJnE3eywjvKYgEES3tTbxz8mnELllQYNlVXVok1jJu5IBfuUV/jkQsZdGwtfTvGYZG20E/l+G/6a79cdufE+A4kCmBC/kh9lNqmsqxMnbgkYHP/X0H+wsslDaM9v0z08j/PZ42vXlr6rf/Z+0r5aYM9ZxImbqA4wlf8VXUBtZM2omHrykH8yORSQxYOW4bTio30srucCP7DGX1BSikRoT7z8TPPvhf+lwXC09CPcZxLfM4fUONOXusjsjYWACsPRqZ2PevF775uzCSm7Bm0i40ne33OAFFIjFLw95j28VXiS+KwlRhwcMDl98T3SASRAzxnECI+xga29QYSI2QSwz+tr6ZGVowyC2Cq5nHOJ20h7khL3a919TWgL29MS898dMkh7qlmu9vbQFgwdDXUMiUbL34KjdzznIz5yygFz47tfovI7MHLP+XnOdGchPG9ZrDuF5z0Go70eq0SMRSDsZ+zqE72zmS9iEiRT0KmRGpJTFE51+iU6vBxcKL58I/+NMx6mHpzbTgp/n+1mai8y4iIDA9ePGvCruJRRJG+01nNNNp07Sy4eQSsioS+ezKWgAe6DMfB5Xr737OCJ+pRGWfJqsigeul35NWqr8WpwYuxFCm/KfH5ZeIRGL6u4ZxLmUf+6K3Ut+q1zTG956L4i+2Py7gEc6n7sfCs5LGGBWHrpwGoKePDLmykwj/Wb97P/1nGOkzlcY2NUfj/h97dx7fVJX+cfxz0g2KFFr2vSyCuIAK4gAKiBvuMLSCGxYRHMFBHRkHHVEQUBz3ZRAFBeZHxVFQFkUEhYKIqIyKiAgCxYICUhFKqV2SnN8fbcJNmrRZbrb2eb9evGyTe889uU1T881znzOXwnbr6Vi3Pvu/SaVD67acdX5dfjj+Ez3TB1Y6n0op+nW+lrc3zyRnx1LnApAAW/aX940+s1Uv52t7cuIpZPYcy+sbpvOfjf9i96/fsfr7t4hTcdx50VSfQ1ko7/V7Q6+7eTlnEnUaf8utl9zC+h8Xse2XL6iXlMKwXuOrHaOq4Pa89IG89eVLNGxdyB8767Bo5UrO6dqV3P37Wfj++ygFjU47SJP6LRjR537W71zK5r05LPpfeauXhLhE7r7kSdqkdQLgglOv9Pmx+avRKc05tVk3fm++k98PJPJ/S5dyYY8eTJtZvjhni9MLOP+cM0hKqMu3+z/jfz/l8L+fchjd72H+PmoUIwYPxmq1si53IR9u03Rr3ds59rltL6R5g7YcPJbHnqP/44V//pPRDz1E7v79AKS2K6TxKS1Iq9c0ZI9PmMpTWuPLJ4kqkH2VUg9Q3pt2lLGFQqVJaf0q8CpAz549fU6USkpKOHLkCMePH8cWxqrHp/s+jR07Fixs3749bMeNJbedehs3dbgJNFF5jnSjplizHwVg+969PvWYjYuLo379+qSlpZGUlFTt9gHNSypmhRBCmEyC2RjUI/0iUpObcODYXjbu+oDeHS/nlXWPsDf/B5o0bcCxTkUc+rEelng76d2LuPnC6t/8KqU4t12/gOZz3Tm3cWbr8yksPkqX5ue4hGciONedM4rP96wm78iPvPbJdHYf/g6Aa88e6QzBTm/Zk9Nb9jTtmEN73MHnez7iV9sX3JU1jo1ff8NPx7ZyXo+ONEtpbdpx/BFviXfp9+hQN7Ee91z2NAeP/UTzlLZeA7A4S3y1l6UHatCZN/LJj+/xyY/v8eceY6iXmMKSr+ewYusCSq3FdGvdm1t6/53G9VuQvelZ/ig7QffWfehbEQI9Ovg/fPT92+Tmb6e47AS/HN1L3YR6XH7mjZUWVgqExRKHhfLzct05t3H4+M98umsF//3yJec2CkWfjoO4te8/fP79vfKsm+nS7GzW7VzGnzpcVu1zMCm+DuMveYLX1k/jwLE82jXuUmVlLpQH67dd8ACTltziDK5PbdaNgV2H+jRHX1zTfSQbd61k68+bgPIWFRd3zahmr5NOqdOAS07P5L2y+bROacbXnx2jUaP6nJL+LQ3qNqJ/52tMm+u1Z49kQJfrWLDpGT5nNV0uKeSstq3Yun81CsU1Z4/0uN8Fp17NO/97hW/yNnC0KN/ZZ/vbfeXBrDGsBbiw89V8u38jm/euZfX35VW5Q3ve6Wwt44/zO1zKl3vXsHnvWmZ8MA4ob0Pzt0ufoWFycL+TTVNa0a5RF0pa7+LQrrq8v24dl/bty8w33sBqs9Gig53kBlaG9xpP9zZ96Na6N9/9/Dnrdy7nlKQGXNx1qLNnbTj8qcNl7DzwLcf2JvLzoUPc/Pe/c6ywkPpNimnXJYF7Li3vaXzkxK+s3vZfVmxdwP999hSdm51Ns0atsNttfL7mIwB6tBvgHNdiiePKs27h9Q3TeeerV3h86H+ZPW0a3/zwAwV6D58fXsipzQL7+y7C7nc8V7am4rka1ugI4KmUNdVwvwul1F+Ax4CHtNav+zFPn5SUlJCXl0dqairp6ekkJCSYcrWKL+wH7c5gtmvzrmE5ZqzZ89seTpSVLxoZjefIfvQopZaDACR16YSKr/ptq9aasrIyCgoKyMvLo23btqaGs6Yv/iUVs0IIISpIMBuD4i3xDO3xF+Z8MpX/++wpPv1xBd8f2ExyYn0mXTOHAxfm8cp7/6ZRkzr8udd9Liurh0rHJr6tGi/8kxRfh9sueJBnV9/Hp7tWANCiQTqXn3FDyI6ZVq8Zg868keVb5rLbtoJWZ8djO1JA/9NCV00WDIuyeL1UPRxap3XkzFbn893Pn/OfjU/S+JQWvP/tf4DyAOrb/Z8xacnNtGrYgd2HvyMhLokb/3Svc/+WDdPdKm0LqJtQz5QqS3cWZWF0v4c5p+0FfLl3LfGWBNIbn8Y5bS+ssqrem45Nz6Rj08qry3vToG4j/nb5s34do1VqB7L6TuTTXStITqzPDb3uDqp/tbuGyY248fx7mPPJVFo17MAd/Sf7XVV96enD+GBrNidO2cLCF7N5OWcSBwrg6m4jSDSxQhsgpW4adw6YSuvUjiz+3yy27v8MheL2fpMqVSw7NExuxNltL+R/P+XwyY/vcU33LEqtxXz/y5cAdGvdx2V7i7Jw18DHWb9zOXlHdtKtde9K2/hKKcWYfo/QtH4rNvz4Pq1SO5DZc6xfz5uqnJc+kJ9+28G5vZqyedMh7nnsMQAaN0qhUeedtGvUhZ7pFznnclbrP3FW6z+Zcmy/59p+IAs2PUOjzoc59nkDfi8oIKmuos3Zx7iq253OauS0ek25/ry7OHz8F77cu4YFm57mb5c9w/cHNnO06DDNUlpXOn8XnHolK797g1+O5vLR929zxVk3cVbnzkzDqjNgAAAgAElEQVRdPhqlqLT4p4ha2yjvFevudOB7H/YdopRKduszezpQCrhUwyqlbgFmAk9rracHPmXvjhw5QmpqKo0bNw7F8KLG8y+4VEqRmJjofL4dOXKEFi1ahGBWUjErhBDCXBLMxqgLTr2Kb/ZtYPPetc5QdsLlz9G8QVuaN2jLrHHyJqymOKNVLyZeOZPsTc/SsckZDD7ndhLjQ3N5lsNV3W7hfz/l8MvR8j7Fjeo15/wOl4X0mLHsxvPv4dHlo5xVnaoi2OrcrBv/2fgkX+5dw+7D35EUX5e7L32S5g289+erakElMyilOK/9xZzX/uKQHsdM/TpfQz8TK0/dXdj5ak5v2ZMGyY09VmZXp2FyI/7U4TI+3bWCZz66m6NFh2l8SgsGnOa9t3cwlFJce/ZIzmr9J/bmb6dtoy7VfjjWv8t1/O+nHNbtWMoVZ93M979sptRWQrtGXZwVtO7H6N/lWlPmm5RQl2G9/sqwXn81ZTyj8ztcWt6aoNkPXNjzYr749jtaNm1Keo9jHLFrLjtjeNgq9KrToG4jTm/Rk236C/4yKoPkhBQ+zP03qSkNuditN7BSilv6TOC7nz9ny75P+SZvAxt+LG9R1LvjFZUeU5wlnuG9/sozq/7GO1+9yrnt+hNvSWDXr9+SGJcU1t7gIijLgKeUUh201nsAlFLpQF9gog/7TqF8kbD5FfvGA8OAVVrrEseGSqkhlC/0NUdrPcHkx+B0/Phx0tPTQzW8CJZ2+2+0MVaU+lldmpKSwt69e00NZqViVgghRKhIMBujlFL8ZcCjfLHnI4798RvntutfZdgjYlunpmfxyLWmX2XoVd3Eevztsmd4/P07sVjiuH/Qi6b09KypWqV2YEy/ybyc8xAtG7bn2rNvo2f6AADGDXyMPYe38XtRPh2adCWtXugr2IX/gllIEODq7iP46qd1HC06DMDt/SaZXi3rrn3jrrRv7Nvlp2e1Op9mKW04VLCPT3Yu44s9HwPlVZyxrGlKKzo3O5udh74ha1gPXnzoYXIPb2fysizqJabQK8oe3wWnXsW2X77gu4LlNKibRnyi5spuN3tsIdKgbiOuO2cUb37xAi98dD82bSPOEu+1F273Nn35U4fL2LRnFS+vfYhOTc9y3i4thmLGbOAuYKlS6iHKI7OpwD7gFcdGSql2wG7gUa31owBa62+UUv8FnlNKJQC5wJ1Ae+Amw779gIXAt8A8pZSxhLxEa/21WQ/GZrORkJBQ/YYiIqK+YjOI6SUkJJjf07hiPqYFs9F+/oUQQoSNBLMxLCEu0dmnUgizNanfkicy38aiLMQFUEVY2/RI78/sW9dXqmRTSpl22baIXi0btmdGxlus2vZfmqW0qXLRqkiwWOLI6Hkn/17zIPM+fQKAugn1GHiaef16I6VvpyvYeegb1u1YxgWnXsWH294sv/3UK0MejvvrTx0v45Ody/n+wGaOF/9OWr1mXFzFz+DSM4ax//fdbPjxfZSycOeAqVW2HbmlzwR+PPQtufnbyc0vX8znwhBWmwtzaa1PKKUGAs8C/0f5wl0fA/dorQsNmyogDnDv6zISmA5MAxoCW4BBWuuvDNsMBJKAc4BP3fb/CUg35cE4JholFesiFgVeMRuK550jSJXFv4QQQphN0hYhhFcJcYmRnkJMkTegtVvD5MZcf964SE/Dq/PSB3Ja83P54WB5RnPJ6ddTL6l+hGcVvF4dLuG/X77IzkPf8PH2xWzas4o4FcflZwyP9NQqsSgLt134T1746H5aNGjHDeffQ1JCXa/bx1viGd3vYfp0HERifB1ObdatyvFPSWrAQ9fM5oWP/sGhgjyy+k6ke5vA+gOLyNBa5wFVfmKitd5LeTjrfvsfwN8q/nnbdzIwOZg5ChEWQbQyCKVgK2Ydwa60MhBCCOEgwawQQghRCyiluO/y59i6fxOHC39h4Gl/jvSUTJGceApXd8/irS9f4j8b/wVA71OvonF98xd9MUOT+i2ZOmSBX/uc0aqXz9um1WvKI9e+js1uJT5OLiMXtZOzulGqEr2K+nMTpdOTxb+EEEKYTYJZIYQQopZIjE+iR3r/SE/DdJeensm6HUs4VLCfJvVbMfic2yM9pYhSSkkoK4SIaTqIVgah4Fz8yx5kj1kkmBVCCOFKglkhhBBCxLTE+DpMvm4+hcXHaFK/pbQVEUKIWBeluWWwgaq2a8dAQgghBFB50QAhhBBCiJiTnHgKTVNaSSgrhIgqSimUUrRr147i4mKP26Snp6OUwmq1eh1n+vTpzrF27NhR7XHtdjuLFi1i6NChtGnThjp16lCvXj26du3KmDFj2Lxpc8CPCWDjxo1ceeWVpKWlkZycTLdu3Xjuueew2WwBj1lWVsbzzz/PyJEj6XHRRaSc142653RlztzXg5qrmYLtMSsVs0IIIdxJMCuEEEIIIYQQIZSXl8dzzz0X0L5aa1577TXnB0+zZ8+ucvuDBw/Sr18/MjMzWb16Nb169WL8+PGMHTuWLl26sHDhQm645gbeeO2NgOazdOlS+vXrx/r16xkyZAjjxo2jtLSUe++9l+HDA1948cSJE9xzzz3MmzePg7/+SrPGjcvviKIMM+hgVnrMxhRttaKDbF8hRE30a8GvWG3eP0wU/pFgVgghhBBCCCFCJDU1lbS0NB5//HHy8/P93n/VqlXk5uZy66230qxZM+bPn09paanHbYuKihg0aBCffvopw4cP56effmLx4sX861//4sknn2TJkiX8/PPPjPvbOAqPF/o9l4KCAkaPHk1cXBw5OTm89tprPPnkk3zzzTf07t2bRYsW8eabb/o9LkBycjIrVqzgl19+4eetW7n1uuhZpNKsIFVHQb9c4Rttt/Pz6f35pfuASE9FiKiS+1su5886nz4v9Yn0VGoMCWaFEEIIIYQQIkSSk5OZNGkSBQUFTJkyxe/9HRWyo0eP5qabbiI/P593333X47bPPvssW7ZsoW/fvmRnZ5Oamlppm5SUFMZPHE/WnVl+z2XRokUcPnyY4cOH07NnT+ftderUYdq0aQC8/PLLfo8LkJiYyBVXXEGLFi2IqjJZA9NaGUhAG/V0QQElv1soPhR4ew4haqKv9n+FxWLhSPGRSE+lxpBgVgghhBBCCFFjOKobo+ly8XHjxtGxY0deeeUVdu7c6fN+hw4dYtmyZXTu3Jk+ffowcuRIAF599VWP2ztunzRpEhZL1W/1EpMSfZ6Hw5o1awAYNGhQpfv69etHcnIyGzdupKSkxO+xXWjjl9Hzcww2UHUs/hVNj0l4EWQIL0RNFewHVKKy+EhPQAghhBBCCFF7PNWqQdiO9WEQ+074+Zhp80hISGDGjBlkZmYyceJE3nnnHZ/2mzt3LmVlZWRlZQFw5plncu6557J27Vp27dpFp06dnNvu27ePvLw84uPj6d+/v2lzN3IsPNa5c+dK98XHx9O+fXu2bdvGnj176Nq1axBH0h6/jDRHxWuk9hdh5FjITsuiokIYBbPIo/BMKmaFEEIIIYQQIsQyMjLo3bs37777Lhs2bKh2e601c+bMwWKxMGLECOftWVlZzvuMDhw4AECjRo2oU6dONYP7P3+AY8fKw+oGDTyH647bjx49GtgBHLTXbyLKUfEa8P5aKmZjhnPRLwlmhTCyaQlmzSYVs0IIIYQQQoiwMbMS1ZOtB7eWf6HhrBZnhfRY/nr66afp06cP9913H5s2bUIp76HPmjVr2L17N5dffjmtWrVy3n7jjTcyYcIE5s2bx9SpU0lISABOhn5VjekQqmDQnzlUM5LHLyNFo1GooM+b8xLgKHhMohqGEF7b7ahqWoMIUVvY7OXBrHzAZB55dRFCCCGEEELUHFH8XrF3795kZGTwxRdf8NZbb1W5raNfrKONgUOjRo245pprOHToEEuXLnXe3rJlSwDy8/MpLi72aT7+vrF2VMQ6KmfdFRQUuGwXsCj9GQbbiiAa+x8Lz7TdevIbq9X7hkLUMlIxaz4JZoUQQgghhBAiTGbMmEFCQgIPPPAApaWlHrc5fPgwS5YsAeCGG25AKeXyb/HixYDrImBt2rShbdu2WK1W1q9fH5K5d+nSBcDjAmZWq5Xc3Fzi4+Pp0KFDcAcKcpGtUAl28S9ZNCeGGNtWSE9NIZwcFbPCPBLMCiGEEEIIIUSYdOzYkbFjx5Kbm8uLL77ocZv58+dTWlpKjx49GDVqlMd/TZo04aOPPiI3N9e535gxYwCYNm0adrv3EFCjKS3xHApXZeDAgQCsXLmy0n3r16+nqKiIPn36kJSU5PfY3kVPSBtsMBvs/iKMbIYq2Sp+l4SobaTi33wSzAohhBBCCCFEGD388MM0bNiQ6dOnU1hYWOl+x8JeM2fOZM6cOR7/3XHHHZUWAbv33nvp3r07n3zyCSNGjPC4CFdhYSH/fvrfzHt5nt/zzsjIoHHjxrz55pts3rzZeXtxcTEPPfQQAHfeeaff41aio6vHrGP9p2ADCWllEEOMPWalYlYIJ+kxaz5Z/EsIIYQQQgghwigtLY0HH3yQ+++/v9J9OTk57Nixg7POOotevXp5HWPUqFFMnz6duXPnMmXKFOLj40lOTmblypVkZGSQnZ3N8uXLufTSS+nUqRN2u51du3bx8ccfU1BQwIOPPej3vFNSUpg9ezYZGRkMGDCA4cOHk5aWxrJly9ixYwcZGRkMGzbM73EdZsyYwQ8//IA+cYJvvv0OgPnZ2Wz83/8AuOCCC7j99tsDHj9YwbYikIrZ2OESxtqkx6wQDtLKwHwSzAohhBBCCCFEmI0fP56ZM2eyd+9el9tnz54NUG0AmZ6eziWXXMLq1atZvnw5Q4YMAaB58+asX7+exYsXs3DhQjZt2sR7772HxWKhbdu2ZGZmcvGQizmzx5kBVTwNHjyYdevWMX36dBYvXkxxcTGdOnXimWeeYfz48Sil/B7TYeXKlaxbt87lto2ff87Gzz93fh/JYFZ6zNYixp+VVMwK4SSvY+aTYFYIIYQQQgghQqCqIC8pKcmlP6xDdnY22dnZPo2/atUqj7dbLBYyMzPJzMz0eP8Ph36gTJf5dAxP+vbty4oVKwLe35ucnBwArPv2Yf3tBACJ7ZtjadDQ9GMFwqxWBiIGWG2evxailpOKWfNJj1khhBBCCCGEqEWiPiDUXr6OEFXRZNasxb+i/vwLl4pZLRWCQjjZtASzZpNgVgghhBBCCCFEFImy4NLkxb9EDHDpMStBlBAO0srAfNLKQAghhBBCCCFqoc0bN/POt+9Uu13Dhg255557/Bo7JyfH2ZoguLGjJ8w0q2JWxAC74Wcli38J4SStDMwnwawQQgghhBBC1EJfbvySWU/Pqna7du3aBRTMTpkyJbCxjQFmFGWZwVaKSaVZ7HBpXyA9ZoVwcryOyRUA5onJVgZKKYtS6gGl1F6lVLFSaotSaqiP+85QSn2rlDqqlCpSSv2glJqklEoO9byFEEIIIYQQItIcb6jHThiL1rraf3v37vX7GJMnTw58bO31m4hQqqLHrLQyqD0M7Qu0VAgK4SQ9Zs0Xk8EsMBWYDLwEXAFsAt5WSl3pw74pwFzgRuAaIBv4J7AwJDMVQgghhBBChJ2EYLEseipm7XbjIlCxs/jXrE9nceoTp7J4y+KQH6tGMrYykIpZIZyMr4nCHDHXykAp1RSYAMzQWj9VcfNapVQnYAawoqr9tdZj3W76uKJadqJSqrHWOt/0SQshhBBCCCHCQqNRjtWaRGyKoopZY/uBWKqYXbJtCfY4O4u2LGJod58uLhVGxipZaUEhhJNUzJovFitmLwcSgQVuty8AzlJKtQ9gzN8q/lsWzMSEEEIIIYQQQpgowhWzVvvJhZ+CrpgN44NxVLVJ5XiAjFWBNgmihHBwVszK55+micVg9gygBNjldvu2iv+e7ssgSql4pdQpSqlLgL8Br2utj5k3TSGEEEIIIUTEyJtG76I+q9Nevg4/YzAbLGewG4bnpp3y8EQWHAuMsa+slmBWCCd5TTFfzLUyANKAo7ryx5VHDPdXSSl1JrDVcNN/gDHmTE8IIYQQQgghopexilJr7VzcKmpEUXBsMwR0wQYS4axedbxdlhAlQMYesxLMCuEkrQzMF/GKWaXUJUop7cO/HMcueP5T7c//TewCzgMGAA8CQygPZ73NcYxSarNSavPhw4f9OIwQQgghhBAirKIsY4x20Xmpu3HxrwhXzNoMrQyC7TEbxsfiCGTDecwaxdhj1i5BlBAO8mGP+aKhYnYj0NWH7Yoq/nsESFVKKbeq2VTD/VXSWhcDmyu+XaeUOgDMVUq9qLXe5GH7V4FXAXr27Cl/2YQQQgghhBA1gyb6wmzt8cuIcLQEiDWOEFlClAAZe8zaI/0s9F3Bgw9QtjOXRovejPRURA1lt8tritkiHsxqrYuAH/zYZRuQBHTEtc+so7fs9wFMwxHSdgIqBbNCCCGEEEKI2KKiLm2MTtFZMWsQ4emFopVBOJ6bjrnGarAcaca+srHUY/bw7A0AnLJ6JUmXDorwbERN5Hhtkb+x5ol4K4MArARKgZvcbr8Z+E5rnRvAmP0r/rs7mIkJIYQQQgghhAiSjqLFv2wmLv5F+Bb/clxcKq0MAqRju8esPlLthcRCBER6zJov4hWz/tJa/6qUehZ4QCl1HPgKGAYMBK4zbquU+hhop7XuVPF9N+Ap4G1gD+WVt/2Au4EPtNafhe2BCCGEEEIIIUwnVTz+icbgLppmZAwhgj1XWuuwtY1whMDR+PONCbbY7jGrreZ9oCCEkfPKAflTa5pYrJgF+CcwjfJA9UOgL3C91nq523ZxuIbPh4B8yhf8eg/4P+BiYALlC4AJIYQQQgghhCmUUiilaNeuHcXFxR63SU9PRymFtYogZfr06c6xduzYUe1x7XY7ixYtYujQobRp04Y6depQr149unbtypgxY/jqi6+c2wbSymDjxo1ceeWVpKWlkZycTLdu3XjuueewBVFZ+OOPP/LEE08wcOBAOlx4ASnndaPdxRcw5JYRrF27NuBxg2W1m7f4VzjVhFYG1h93UPT6nMgc3BhoW2MvmI3JOYuYIH2rzReTwazW2qa1nqa1bqe1TtJad9NaL/Kw3QCtdbrh+0Na6xu11u211nW11o201udprf+ttS4J64MQQgghhBBC1Ap5eXk899xzAe2rtea1115DqfLypNmzZ1e5/cGDB+nXrx+ZmZmsXr2aXr16MX78eMaOHUuXLl1YuHAhI64bwRuvvRHQfJYuXUq/fv1Yv349Q4YMYdy4cZSWlnLvvfcyfPjwgMYEmDRpEhMnTuTQoUMM6t+fu2/J4k9nn8OKjz5i4MCBvPDCCwGPHQxjj9mgK2YdPWZV6EvNHHON5YV68m8Zx4F/zKfkww/Cf3DDedOxWDEbg+0XRGyI5deUaBVzrQyEEEIIIYQQwhda67CEYFVJTU1FKcXjjz/O7bffTuPGjf3af9WqVeTm5pKVlcUHH3zA/Pnzeeyxx0hMTKy0bVFREYMGDWLLli0MHz6cmTNnkpqa6rJNQUEB90++n8LjhYB/YWNBQQGjR48mLi6OnJwcevbsCcDUqVMZOHAgixYt4s033wwooB00aBD/+Mc/OOeccyj7cRe2E+WVqhtztzNo2DD+/ve/k5mZSYsWLfweOxjG6rBgK2aNrQzsdjsWS+jqpJytDGKoyted7Xh57ZRt374IHNwQPtlj8Bya2BtZCCOpmDVfTFbMCiGEEEIIIUQsSE5OZtKkSRQUFDBlyhS/93dUyI4ePZqbbrqJ/Px83n33XY/bPvvss2zZsoW+ffuSnZ1dKZQFSElJ4a777yLrziy/57Jo0SIOHz7M8OHDnaEsQJ06dZg2bRoAL7/8st/jAmRlZXHOOeeUf2PIwfr36c2AAQMoLS1l48aNAY0dDFuIqiWNLRJCwdnKIIZDFO0IRCNQ/amN5y0GK2YJYVWjLi0N2dgi+jleU5RSUj1rEglmhRBCCCGEEDWCe/VntCx8NG7cODp27Mgrr7zCzp07fd7v0KFDLFu2jM6dO9OnTx9GjhwJwKuvvupxe8ftkyZNqrYaMzGpvOLWn4rKNWvWAOXVre769etHcnIyGzdupKTE3C5xCQkJAMTHh/+Cz1C0MgCwhrii0THXaPkdCIjjMUTisnxjxWwMtgUI1eJfJ2a+RG6bAZx4IbDWLCL2GV/HYvmDn2girQyEEEIIIYQQYXPra+dHego+mT/qc9PGSkhIYMaMGWRmZjJx4kTeeecdn/abO3cuZWVlZGVlAXDmmWdy7rnnsnbtWnbt2kWnTp2c2+7bt4+8vDzi4+Pp37+/z3PzJ7hzLDzWuXPnSvfFx8fTvn17tm3bxp49e+jatavP43qYlfOrn/L28fHHH5OcnEy/fv2CGDMwoVr8K1SVuA41oZWBc92yEIWMVTK2sIjBYNYlWHZj3f49cad2RgXwQUfJhs/R9jiKP/2SeuODmaCIVcYwVoJZc0jFrBBCCCGEEEKEWEZGBr179+bdd99lw4YN1W6vtWbOnDlYLBZGjBjhvD0rK8t5n9GBAwcAaNSoEXXq1DF38hWOHTsGQIMGDTze77j96NGjwR2oIkssKS3llnHjKCkpYfLkyR5bM4SaS8VssD1mjRWzWipmq+Oce8QrZmMwfPJyzopemclP/e7g14uvCWhY7TgXcgl7rWUMY0Nd+V9bSMWsEEIIIYQQImzMrER1Z7Pb+P7X753fd23Slfi46HnL8/TTT9OnTx/uu+8+Nm3aVOXCZGvWrGH37t1cfvnltGrVynn7jTfeyIQJE5g3bx5Tp051XubvCLH8XezMzIrKQOfgic1m47aH/sHGL79k2LBhTJgwIegxA5qHia0MjKc61D1mHT/XmK5oqzhfobosv+pj2z1/HSO8nbNjcxYBUPh9Ic0CGdgRyMZiWC1M4VIxizwPzCAVs0IIIYQQQogaKdou4+7duzcZGRl88cUXvPXWW1Vu6+gX62hj4NCoUSOuueYaDh06xNKlS523t2zZEoD8/HyKi4urHDvQ8+KoiHVUzrorKChw2S5QNpuVkf+8n3dWryTzmmtYsGCBKWFvQHPR5lVrGs97yFsZaHNbGcz6dBZzP59ryli+cuY/kVj8yx7jFbNeKlpVfJARUMW50FIxW2sZg9lQv47VFhLMCiGEEEIIIWqEWLhse8aMGSQkJPDAAw9Q6mV188OHD7NkyRIAbrjhBpRSLv8WL14MuC4C1qZNG9q2bYvVamX9+vU+z8efc9alSxcAjwuYWa1WcnNziY+Pp0OHDj6P6Wmcm+/7G29/uIJhV1zNgn//OyKLfjkYQwgzg/6QL/5lYsVscVkxT3z6BI/mPBr0WH5xhMvWCIQ/huBRx2L45OWcqbi4oIbVjudTJH4mIirY7dJj1mwSzAohhBBCCCFqBPfgLNCgVpeWYs3di73ohBnTctGxY0fGjh1Lbm4uL774osdt5s+fT2lpKT169GDUqFEe/zVp0oSPPvqI3Nxc535jxowBYNq0aS5vnj0pLfEcCldl4MCBAKxcubLSfevXr6eoqIg+ffqQlJTk99gApaWlZGRksHjlSm66+jpen/YEcUEGScEys5WBS8WsiZW4Ho9lYo/ZEyUnsFgsKEuYq5YdU49EH0uXitnYCyG9VbSqhCB/n6RittYzti8IRUsWXVKCLikxfdxoJsGsEEIIIYQQokYKtMLRumcv1mPFlO3KM3lG5R5++GEaNmzI9OnTKSwsrHS/Y2GvmTNnMmfOHI//7rjjjkqLgN177710796dTz75hBEjRnhchKuwsJBZT89i3svzAP/OUUZGBo0bN+bNN99k8+bNztuLi4t56KGHALjzzjt9Hs+opKSEIUOGsHTpUkYOzeDVKY9hsVggwu0oQnWpbrh6zJpR5VtmLwPKewdXF/ibyZkpR6Ri1nDeYiSEdAlLrWWeN4oPNpitOC/26L86QYSGy1UEJj8PtN3OT+0H8FPHAaaOG+2ipxO+EEIIIYQQQgTBvTow0GpBe6kNUGh7aCoE09LSePDBB7n//vsr3ZeTk8OOHTs466yz6NWrl9cxRo0axfTp05k7dy5TpkwhPj6e5ORkVq5cSUZGBtnZ2SxfvpxLL72UTp06Ybfb2bVrFx9//DEFBQU8+NiD5QP5cYpSUlKYPXs2GRkZDBgwgOHDh5OWlsayZcvYsWMHGRkZDBs2zN/TAcBf/vIXVqxYQePGjWnZtBmPvToTAEtyIpaUFAAGDBjAgAEDAho/UMbKVjNbGYS8xyzmVcyW2U6GfFa7lURLYtBj+qQi/9GRqFg1XqIdKyGkYcEvXeo5mFWJwUVAjvBXx2LfXWEK42uKVZv8AVNZGbay2hdT1r5HLIQQQgghhBBVCUMOM378eGbOnMnevXtdbp89ezYAt99+e5X7p6enc8kll7B69WqWL1/OkCFDAGjevDnr169n8eLFLFy4kE2bNvHee+9hsVho27YtmZmZ9L+2P2f3OhvwP2wcPHgw69atY/r06SxevJji4mI6derEM888w/jx4wNepMvRkiE/P5/pL//b63ZhD2btMRrMmrj4l7G6t9RWSmJ8eIJZZ/4T4cW/IhIMB8I4T6vnwEwlBBkBOc6LBLO1lrFi1vQKekPfdW23oyy14yJ/CWaFEEIIIYQQNUKlHrMRvgy+qmrFpKQkl/6wDtnZ2WRnZ/s0/qpVqzzebrFYyMzMJDMz0+P9Ww9s9Wl8b/r27cuKFSuCGsNdTk6O8+uy7TuwlZSfu4QmpxDXqrWpx/KHS8uBIJ9OGo1CVR43BEJVMVtSVsIpSacEPaZPHFOPRCuBWGxlUFZm+Do0wayzYjZGzokwnzGYNbtXtja24LBaITFM1fkRVjviZyGEEEIIIUSNZ1YrAxFZLj+2CP8IjeF+TFXMmtlj1hDMOvrNhkXF1CNy2byx+jSKKma13U7B/X+n5IP3Kt9pWCRNhyCN2VYAACAASURBVKpiVnrM1nrGYNb0D5gMHy5E0+9dqEkwK4QQQgghhKgRTAvOdJhXn48gCa+rZgtROBDqYBZnfhZ8qOkSzNrCF8xGspWByycCUVQd+sfsWRyeu4n9I56ofKfxPJVWH8wGUvXq3CeKzokIL+PfDNMX/zK0MvDWjqMmklYGQgghhBBCiBop0NCxtkSVX278kje+eoOk+KQqt2vYsCH33HOPX2Pn5OS4tCcIfGxzfhrWHds5eN3tNLh5EPUfmuTzfqFa/Mv0RXPchKqVQamttIotQyMSPV6NVbo61CG6H8p27PJ+p9XwXPUh1NKFhaiKhfV8VhHEyeJftZcdQ8VsCBb/ctBaU1s+IpVgVgghhBBCCFEjVGplUGsi1sB8ufFLZj09q9rt2rVrF1AwO2XKlMDGNv4cPfwIbQcPYv+9gPhTO6DifXtL+/vdEyn5zcKvz6/yL5gNUShndqVZpfFD1cogjBWzzsp1awSCUWOlcRRVlavEBK/3aXv1rQy0MbwtOAZ+B7OOitnoOScivIwLfpl9xYVLj1lb7amYlVYGQgghhBBCCFELjZ0wlqNFR9FaV/lv7969fo89efLkasf1ZWxPb/vLDh7FVmLHtn+/z/PRJYEFii4Vs0GGEMaQ1OxFcyodS5tYMWuPbCuDyPSYtXv+OsJUgvdg1iXA9rL4l/Gx6IJjfh/f8YFCqD9YENHL+DomPWbNIcGsEEIIIYQQokYwe/EvJRW3UU37U0kZF9hb31BVzJoeaISQ1VC5FpGK2UgENDo6e8xWuUq94Tx5C7ONfWX18eP+H98RyEowW2sZ+1ab3qPc+IFCJCrlI0SCWSGEEEIIIUSNYHrrglrQ4C7q2z2Y9MZfWQL7YRqDWTPPVagX/zK1lYGxYtYexopZxxeRCEaNAWYUVe5V2crAGMx6rZg9uY39eIHfx3cEu1IxW3sZw1izP2AytjLQMfThVbAkmBVCCCGEEELUSFEfOgrPfP2x+RPaWgJ762vqc8iQDYc6mHUwffEvaxgX/6qomI1IMGoMg6OoYlZVWTFrCLK8nDOXitnCQv8nIBWztZ5x8S/TK2ZLDa8vteg5JsGsEEIIIYQQomYK9n1dDa2YNYaNpr+xjlbRVjEb6h6zQVbMPvT+Q5z25GlsP7jd5RyEq5VBeYDoaGUQ/mDUGGBG0+JfJJxc7K7SAl/Gillvl4HbzGllIBWztZdLxaw2u2LW+OGCVMwKIYQQQgghREyp1GM2RipmdVkZ1t17sBf4f2lxIOLsitZH4jmlOAaS56pCMT9+vCrAilm7S0AX0BAehbxi1rFwVoCh4sLtCylTZdyx+A6Xy5XD1hvXGNBEIgSM1h6ztioqXo1Vst7CbJvhQ5nCE34f3hnIRlNYLcLK+JpiekBvaGUgPWaFEEIIIYQQIsa4B7GxEszaDx/GerwU24FDYTle3TJF3VJFyh+WmDlHnvkx90AX/zKxslUZSrCjvWLWocRaEpnFv8qMvSYjEIwaw6cIVOx6ZQisdZFrMKt9qJg1nkv7Cf+DWWdIbovl1w0RDOPiX2a/jhkrZnWY2r1EAwlmhRBCCCGEEDWD2Wt/haug1BGWhKkKTRkPE435SijmFGDFrDF4MLWVQZj6pgY7Z412XfwrXK0MDMGst36pIeXSYzZ6AiKXHrHurQhcgllvFbOGbYqK/D9+kJXYIvYZX1NMr6B3qZSPog9EQkyCWSGEEEIIIUSNUKliNujwIDzJrHOeYco6HI9KaThYeJDvD30fZUGL9vhlVZtVRwVaMWtmKGdc/CtcFbNB/ly11hFqZRDhilnjJdrRVDFrDFbdWxnYq29lYLz0XBf94f/xnYt/+b+rqBlcWhmY/HdDGxf/isQHMhEiwawQQgghhBCiRgq6wjFcFbPON7fhDkcVNm3Dpm2cKA3gsuawMOmcBBjMhiqwDiTw/WPhAvZ16kPxksUhmJFnGrdgNkwL8rhWzEZ48a8oqtwztiioFMwa7/MWahl71P5R7P8E7OYE/g7W77/DuuUbU8YS4WH8u2p6r2yXxb8kmBVCCCGEEEKEkVKqjVJqkVLqmFKqQCn1jlKqrY/71lFKPamUOqCU+kMp9ZlSqp+H7f6mlFpesZ1WSk02/YFEUKUgNjYKZp3BbLhiWUcrA+PDM/YNjBl+hENKRVkrgwAqZoveeZ/SY3EUvbPc532CbmWgtUsYW2orrWJrE7kEs5FY/MsQYEZTNbnN2GPW9cMUl56cXs6ZsWLWXuR/MOs8Fya9XPx8+Wj2XXGna6WkiGrG3wfT/24Ye8xKMCuEEEIIIYQIF6VUMrAGOA24FbgFOBVYq5Sq58MQrwGjgYeBq4EDwIdKqbPdthsNNAWWmDT1qOIeoAQSSpl52bRSCqUU7dq1o7jYcwiSnp5OQno6VqvVazI7ffp051g7duyo9rh2u51FixYxdOhQ2rRpQ506dahXrx5du3ZlzJgxbN78dfn8jB0D/AifNm7cyJVXXklaWhrJycl069aN5557zmvfVG21UvbDTmwHD3odc9++fYwdO5bzzz+fthddSINe3Wh/aT8GZGYyd+5cysqC7G0aYMWsWcGD3W5HKUWCFV74T2NaPTrf7zGc1ZI+VJCatfhXpYrZcLUyiPTiX7borJg1zqVSj1iXilkvczbu7+U1qerjV+xrVsVscRz2snj0icLqNxZRIVyLf4Wr53o0kGBWCCGEEEKIyBsNdAAGa62XaK2XAtcC7YA7qtpRKdUduBG4V2s9W2v9MXA9kAc86rb5GVrr84G/mv0AaowQhDB5eXk899xzAe2rtea1115DVaxENnv27Cq3P3jwIP369SMzM5PVq1fTq1cvxo8fz9ixY+nSpQsLFy4kY9gIZi5c4HocHwO8pUuX0q9fP9avX8+QIUMYN24cpaWl3HvvvQwfPtzzYzj6O7ZiO7bfjnodd/fu3WRnZ9OgQQOuuehi7r5lJFf1v4i8n3/htttu47LLLisPr03gT3WeWZfqOsKMlr/Hc9qBRNK2HvN/kIrg23g5e3VM6TFri0ArA+N5j0gwajhvURTMurQycA9mDefMWBnruo2hP2ix/1WqzqeTCaekPHCvqNsP9oMXETbGvxWmV5MbX9v8eJ2LdfGRnoAQQgghhBCCa4FNWutdjhu01rlKqU+B64Bnqtm3DPivYV+rUupNYKJSKklrXVJxe/QkDCFQafGvQKoFTQ5hUlNTUUrx+OOPc/vtt9O4cWPvG3t4k7tq1Spyc3PJysrigw8+YP78+Tz22GMkJiZW2raoqIhBgwaxZcsWhg8fzsyZM0lNTXXZpqCggIf/+Q+Onyh0aWXgyxvsgoICRo8eTVxcHDk5OfTs2ROAqVOnMnDgQBYtWsSbb75ZKaD1ZXGzPn368Pvvv2OxWCj5djvaXj47nWzhyjvuICcnh3feeYfrr7/eOHC1c3Yy9tY8UYhKTPNpN7MqZh2VpnFBtBN2VkGG8RJfjcaqT4axZfYwBWghqJi17d+HpWkzlIffHXc6Witmbd6DWZdLv70u/mXsMVvi//HNXKjQ+DO2SjAbK4x/K8yuoNfGD37M7l8bxaRiVgghhBBCiMg7A/jOw+3bgNN92DdXa+1WPsU2IBHoFPz0YoR7WBBIeGAMN0wIH5KTk5k0aRIFBQVMmTLF7/0dFbKjR4/mpptuIj8/n3fffdfjts8++yxbtmyhb9++ZGdnVwplAVJSUrjvnru4Z8RtLo/Pl2B20aJFHD58mOHDhztDWYA6deowbdo0AF5++eXKO/oQ5iQmJmKxVH57mhCfwODBgwH48ccfq52jN66BlPuvindm9Zh1BrMVgbMK6LlZ/hi8XqbugRmtDIxVw+FrZWBcBCj4X0Trtq3sPXc4hy8f7NsOxpXnI7D4mFcurQz+cL3P+OGDt3Nm7DFbEkAY6vhVNuG1UZcYguES6TEbK1wqZs3ujG4M66XHrBBCCCGEECKM0oDfPdx+BKicrvm+r+P+WsGMitlQ9LMcN24cHTt25JVXXmHnzp1VHNz120OHDrFs2TI6d+5Mnz59GDlyJACvvvqqx90dt0+aNMljyOmggKTERNfFv3y4NnnNmjUADBo0qNJ9/fr1Izk5mY0bN1JS4laJpwMvE7XZbKxYsQKAbt26uQ7rz0Aul4D/UcWGruxmVWtWhJtxjuECqph19JgNbyuDSASzLhWUJqSAZd98DdpC6QEfW0i4/Nyjp9eltlXxPPahlYExsNWl/gezznHNOCWlJ18npGI2dhhfU7z1FQ94bJces1H0gUiISSsDIYQQQgghooOnt7rKw22etgl03+oHV2oMMAagbdu2QY/35Jn7gh6jag0NXxcDgRyvHn9dcKL6zXyUkJDAjBkzyMzMZOLEibzzzjs+7edY9CorKwuAM888k3PPPZe1a9eya9cuOnU6WQy9b98+8vLyiI+Pp3///n7P0ZcAz7HwWOfOnSvdFx8fT/v27dm2bRt79uyha9euxsGN/6lSfn4+z738EtoO+b8fYc0Xn7Hrp5+48cYbufrqq90mXf14zk2NQZsfFbOmLXJUcYmupaJiNqBgy+p7xaxGo0x4CXBf/MusnrvVMq7ObkY47qjE83Uo48/dhIpd0xh+9vY/3Ctmja0MvMzZ8Ljyigtp5u/xzayYNfaV9aPvs4gs4weevnyg55da2mNWKmaFEEIIIYSIvN/xXNmaiudqWKMjVezruD9gWutXtdY9tdY9mzRpEsxQtVpGRga9e/fm3XffZcOGDdVur7Vmzpw5WCwWRowY4bw9KyvLeZ/RgQMHAGjUqBF16tSpclzHZfTGy+l9CSCPHSuvNmzQoIHH+x23Hz3qtsiXHylOfn4+02fN5LFXZ/Lq22+yOy+PCRMmMG/ePOcCaAGpatGkKgSz6rjtl/3OUNG9YlZp/x+Ls1oxnK0MtGswG5GKWROCUV1xqbzXRbEq7WD85Yieyj2Xhd/cKtNdqmm9/M4ZH/+P9mL/jx9Ej+RKjBWzsvhXzDA+t8zqwe1krZ09ZqViVgghhBBCiMjbRnmvWHenA9/7sO8QpVSyW5/Z04FSYJfn3SLj79+1CdnY+YX5HCg84Py+Wb1mNK3f1K8x7EeOUJr3a/k3JhfKPf300/Tp04f77ruPTZs2VQ4aDcdbs2YNu3fv5vLLL6dVq1bO22+88UZnUDl16lQSEhLKd614s+xPeOmy+JcJD9brHPxYMOi0006j+JvvsVrt/PzrId7buJYpL7zAhg0beP/990lLC6wzh0uP2WI/WhkEGDyU/e9L8q64h5QeTWjywRLnAlong9kABnX2mA1vYGGski2zhSlAM7li1hn0+nrejc+XKO0xa3dfvMulx6y3/U+egERbAB90OH6VTTgl2lglWyYVs7HCpWLW5NY/Lh8u1KIesxLMCiGEEDVUSUkJR44c4fjx46b3gBK1S1xcHPXr1yctLY2kpKRIT6emWgY8pZTqoLXeA6CUSgf6AhN92HcKkAnMr9g3HhgGrNJaB7D0dmwyo8dsKHtL9u7dm4yMDBYtWsRbb73FsGHD3LY4eTxHv1hHGwOHRo0acc0117B48WKWLl1KRkYGAC1btgTKK06Li4u9Vs1qrT1e4O5LxayjItZROeuuoKDAZbuTg1c7dCVxcXG0bdGS8VkjaXnGGdxwww08/PDDvPTSS8ZJ+z6gIZDS7peAVyHQS/fLNm8u72m67zeXceKCaGXgDCh9qSB1Hib4xb8iUjFrrKD0tcq1KhWLiflaMeuyXQj6TgfM2EfWvZez8bnqrces4fYka+DBrCmdcowLPZWFaVE5ETSXHrNBXFHgkcvim1HUQiTEJJgVQgghaqCSkhLy8vJITU0lPT2dhISE4C4BFbWW1pqysjIKCgrIy8ujbdu2Es6GxmzgLmCpUuohyt/+TqW8Qeorjo2UUu2A3cCjWutHAbTW3yil/gs8p5RKAHKBO4H2wE3GgyilegLpnGxpdrpSKqPi6xVuFbexL5jwK0RmzJjB0qVLeeCBBxgyZIjrsSv+e/jwYZYsWQLADTfcwA033OBxrFdffdUZzLZp04a2bduSl5fH+vXrueyyyzzuo9HOA7m0MvDhZHXp0oXNmzezc+dOevTo4XKf1WolNzeX+Ph4OnTo4HbQYN5ga6644goAcnJyAh/Fy6JJvxf9Tmqy9/X1Aq2YdVZoVoSojkAzznnuA/ibbPO9x+zJifh/GNfdXRf/ikSPWTOCWR1Mj9koCmaNP3td7F4xa2xl4G0AQ8VsAMGss/jdjB6zLhWz0sogVhj/Vpj9euDygUwtKiqRHrNCCCFEDXTkyBFSU1Np3LgxiYmJEsqKgCmlSExMpHHjxqSmpnLkSFDtSoUXWusTwEBgJ/B/QDblAetArXWhYVMFxFH5/+NHAnOBacD7QBtgkNb6K7ft7gLeBv5b8X1mxfdvA/5d8x+F3Ks+g6+YNV/Hjh0ZO3Ysubm5vPjii653Vkx3/vz5lJaW0qNHD0aNGuXxX5MmTfjoo4/Izc117j5mzBgApk2b5vUSU8eiUCVui+34UjE7cOBAAFauXOm6r9VKzocfUlRURJ8+fSp9eOMcO5AwUsPPP/8MlC8wFjDjavQl5b01n1zzJD1n9iTrjSyvuxmDWb+eTxUr3jsqFB1XrjgqZgNpZaAdjyHcPWZ1+CtmjcHsr3YTiv4rxvM5UHQJg6Oocs/YK7nENcx0+VDJ21PE8LjqBFMxa8YpMbQv0NLKIGYY/1aYtTiik8sCdhLMCiGEECKGHT9+nJSUlEhPQ9QwKSkpHD9+PNLTqLG01nla66Fa6xStdX2t9WCt9V63bfZqrZXWerLb7X9orf+mtW6uta6jtT5fa53j4RhZFft7+rfXfftaySWIC42HH36Yhg0bMn36dAoLCyvd71jYa+bMmcyZM8fjvzvuuKPSImD33nsv3bt355NPPmHEiBGVF+ECCo8X8sxLM3nuP6+jDJcj+xLgZWRk0LhxY9588002b958cszvvuehBx8C4M4776y8Y8Wb96qO8Pnnn1PkYVGu4ydOcPfddwNw1VVXuY1b7ZRPbmqsNPyjPJid9eUsAD755RPv+wUYPDiqAR3BrHuP2YCeXBXBmy9V3cqMS80rRKJiVhuC2RMmHNNZiefreTe+Dpiw+JhpjKFYqVuVqbFi1stTxHh7fAA9Zk9WzAb//HKpmLVKK4NI+XTPp3T+V2dmfDTDp+1dKmZNbmXgsrhdNPV2DjFpZSCEEELUQDabzbkgjBBmSUhIkH7FIqqZ02PW5fr+kEhLS+PBBx/k/vvvr3RfTk4OO3bs4KyzzqJXr15exxg1ahTTp09n7ty5TJkyhfj4eJKTk1m5ciUZGRlkZ2ezfPlyLr30Ujp16oTdbmfXrl18/PHHFBQU8OzEh1weny8BZEpKCrNnzyYjI4MBAwYwfPhw0tLSWPr2InbuzWXotdd66JvrStvtKEvl+qDHH3+cnJwc+vfvT6vkU6hbpy77Dx5k1cZPOFpQQJ8+fXjggQeqnaNXLot/lQezFmXBXs217QG3MnD0zHS0hXX2mC3/PpDgNJCK2WC5tzIwVs+GlHHxLzOq8pw9Zn3c3uV1IHoCIpeWHCXuwazhOe7tlNk1jv6wcYE8LGfFrAnBvzGMdQ+ZRdgs/HohNouNZduXMfGS6lrau/5dDWXFrI6i37tQk2BWCCGEqKGkfYEwmzynRNQzo+9hmPpJjh8/npkzZ7J3716X22fPng3A7bffXuX+6enpXHLJJaxevZrly5c7+9U2b96c9evXs3jxYhYuXMimTZt47733sFgstG3blqEZQ/nzpRdzyWk9XE6XryH24MGDWbduHdOnT2fx4sUUFxfTsXUbnrjvH9z7j795fp3Q2vPXBqNHj6ZevXp8+eWX5Bw4QFFxMan1Uzj3jDMZlnUrt912W3CtDIxBW8WiSfEqnlKqvoQ64IqwMteKWffFvwJqZVAxlk8LWJm0+Be4htORqJg1I5/RfrYycAmFoqlyzxi+uoWZLqvYewlOjUFavD2QVgaOfcytmNVSMRsxZbby55GvH0KFbfGvaPq9CzEJZoUQQgghhBA1QqWK2UCqeUysAKrq+ElJSc7+sKXf78BeqkFrsrOzyc7O9mn8VatWebzdYrGQmZlJZmZmpftKraX8vmcXFIFbMuuzvn37smLFipNjbt2O3aaI81AJWz6220JKcXGVNrnqqqucrQpKvvnBOZ24evEknNrJ98l54dLKoCKYTbAkUKqrDmZdwgo/sij3ilnn4l+OitlAKg4dgawJi2H5SusoWPzLjN9Jx3iB9Jj1cHzb/n2UrltLnRtu9lgBHiouz+NStzDTWBXuLdMyPJQ4u8Jut2PxY/4un7FYrahgPixxWfwr+B6zJe8t5de7n6DxpFHUzRoV9Hi1hSOY9fV326Vi1uTXIl1mmEO4XmuigPSYFUIIIYQQQgiHKFqBPRQ02lmtqdxuD3zMiv96C9CMN/twfn2eiT9TNgQIjmA2MS7Rh90CfD5U9DR1nBL3illLAMGss2I23K0MDFVxYVv8y5fL8v3gDHx8Pe/G56mHCezvcz2/3DObouefDX5y/jD2mC1zC658qZg1PKw4O5Ta/AxEjeOWBLcom7PvL+ZUzBa9s5zSgjhOvPtB0GPVJo7faV//BoSyx6ws/iWEEEIIIYQQMcz0HrPhYnafvioP5flYQfUKPJnMejvoya9NDb59n7N26TFbHiglxSVVu589wPk6QjNHEOYMZl1al/o5to8Vs3a73dTWMxFZ/MtmrJg1YTyra1Duwx4nv/Lwc7L+UV4pWvTRhmCn5h9jD063YNal/6y3ANpwAuLs8EfZH34d3qXIvizIvrDGMDbYsTC0q7DWnkDPDP62MjA+CQL+4Mrb0C7P4ap/Wf+YPxfrjztMPX6kSCsDIYQQQtRYNpuN119/nQULFrB161aOHz9OamoqzZs3p1evXlx77bVce+21zu3nzZvHyJEjmTt3LllZWUEff+/evbRv355bb72VefPmBT2eL9577z2eeuopvv76a2w2G2eccQZjx47l1ltvDcvxhYgqgQQ6LtfqmjaTqOKIbNZv/oJ3t38GqjykbFi3ocftGzZsyD333FP9wIZzl5OTQ05ODgD2I79jL60IJtNSUIknK1WrHdusn4GxYrbiEuo68XWgoujParMSH1f57XGglcSOINCxu6OyzGLMMcrKIKn6cNg5pt3x32qCWUNYEmyPWfeKWdMr5LwpMzeYxdlj1teKWePX3icQ7t7rLh8wuFfMuoTmynOrAcNDibcrSqx+Vr0az581uDDVtWLWhOeV4zkjwaxfyux+9pg1PInMDmZdnsNVVMwWvT6HA/+Yj7LMpsOhjebOIQIkmBVCCCFEjWSz2bj66qtZuXIlDRs25KqrrqJ169YcOXKE3bt388Ybb/DDDz+4BLOx7qWXXuKvf/0rjRo14uabbyYxMZFFixaRlZXF1q1beeqppyI9RSFCyr3CJpBQyvRVpn06qNt/Q3oo7TzO+s1fMOuVWdXu065dOx+D2ZNf5uTkMGXKFL/H9uf8+3O6tM3YyqCietIwwsGCg7RObV1pP2PwoPxpMlvR/1NX6jFrGKO01K9g1hl8VxPMmtpuQEeqYtbYa9KE8az+tTJwWfyrqspmS5gXxTR+wGB1m5d7i4uSEnALZrVbMFtc6nvFbHkofPLxBl0xa1y8zBb8c9bR4kMqZv3j+J2OhmDWpU1LFb93xTnlleraXrlfeSySYFYIIYQQNdLChQtZuXIl3bt3Z926dTRo0MDl/qKiIj7//PMIzc58e/fuZcKECaSlpbF582bS09MBePjhhznvvPN4+umnGTp0KL17947sRIWIdpFoZeAU+pBHa+08ykN/uYsbHrkDu4J6CfXo0KhDsIM7v5w8eTKTJ08GoGzXbmyF5SFMYocWWFIaeNrb26AB3VXV3HRJecWsMWT8ueDnaoNZfzh7ZlYEgSd7zBq2sdn8+ok7e8yGM5jFtUo2Eot/KVMqZh3zVmi7vfoFu4zPl6rOdxgX/gJce+9a3eblFmTp4mJUvXpu27h+W/pHoe/Hdu8DWxpkj1lDGBt0yAvOBfckmPWP4/UikNe6QFu9eJ+MbxWzysMCkrFMeswKIYQQokbauLH80qasrKxKoSxAcnIyF110kfP7AQMGMHLkSABGjhyJUsr5b+/evQD88ssvPProo/Tt25fmzZuTmJhIy5YtufHGG9m+fbvL+JMnT6Z9+/YAzJ8/32U897YGH374IVdeeSWNGzcmKSmJjh078ve//52jR4/6/Hhff/11SkpKuOuuu5yhLEBqaioPPvggALNmVV8ZJ0RNEtBl3BGsmA3bkbWHr804uE89Zqs5UIjOv0u4VhECGQPHX47+4nE/l7DCjxTV2e/Sy+JfgP+Xgtvd/uuFo2ekJ7Zf9vP7bbdj3bbVp0NqtEv4ErZWBi4LWQU/nEtY50sIaKzcq+I5WW3AazJjKwO7WzCr3YIs7SE4dX8oxUUFvh/c7bzpsiA/ADCOZ0aY6hjDvZJYVMnvxb8MTyKzXw9cesxWFfrG1awoUypmhRBCCFEjNWrUCICdO3f6tH1WVhYNGzZk6dKlXHfddZx99tnO+xo2LO+7uH79embMmMFFF13E0KFDOeWUU/jxxx9ZtGgRy5Yt49NPP6V79+5AedB79OhRnn/+ebp3787gwYOd4xnHfvTRR3nkkUdIS0vj6quvpmnTpnz77bc89dRTrFixgs8++4yUlJRq579mzRoABg0aVOm+K664wmUbIWqqSm8sg+0xGzaacFTLlh9JuxxJGW4PYtCK//owRnUVVu5jmNpjtvzR6opLqI3Vn4cKD3nZLcCQpyIkcvQ0PdnK4OQm/lYJOk5NMBWzhU89w5HlO7Aff4xGby/06bjG8MX0npJe6JBVzIIuKUEF0kLCkzB3MnD5YMPmNi/3363i4sr7u+1S8scJFVbdrAAAIABJREFUnw9d6fkaZJWrS49ZUxb/qvidc2/pIKrkeB0MpI1PsD2sPUzm5NdV9Xa21KyKWQlmhRBCCFEj/fnPf+aJJ55g1qxZHD9+nCFDhtCjRw/atWvncXvHYl9Lly5l8ODBHhf/GjhwIIcOHaJ+/fout2/ZsoW+ffsyceJEPvjgA6A8mE1PT+f555/n7LPPdl7Sa7R27VoeeeQRevfuzYoVK5wBMJxciOyRRx7h2Wefrfbx7thRvjJt586dK93XokUL6tWrx/79+ykqKiI5Obna8YSISWZU1kXgTb3LemNah3ZBIW9FraacPK+DG772M5itdHeAi3EZA9HSyovd/Fr4q8f9Am9l4NrT1FMw63ew5di3mlNgDJzdf672guPl/y3yENp54F4xa3abBK8MlXNmBLMu1aS+nHdjyFllj9kwV+4ZK2bdixXdWxn4UDFb5kcwW6nCO8jFv1wWeKvisnVfOYNZaWXgF8cHL3YfmzkbX1NMb21i/Ptb1XNCKmaFEEIIEcueauVPb7/ImfDzsaD2P+ecc1iwYAF33303CxYsYMGCBQCkpaXRr18/brvtNq655hq/xmzatKnH27t3787AgQNZtWoVZWVlJCQk+DTeCy+8AMDs2bNdQlkoD4qff/55srOzfQpmjx0rP1+e2jY4bj9x4gTHjh2TYFbUWO4hVEBho6GyMiLsdghh/zyNdgm6TKlG9OGozq+CbWXgkmL7MQVjxWxFIGSsBM0/ke9lt+AqZkGhrVbPrQz8DKN8rpitYiElRyjtz6XjxsDG156ShSWF/HLsFzo3rfxhoS9cwjWTWxl4CiwrbR+lPWaNc6n01HT/UKnYw+OsVDHrT49Z91YJpb7v64GxKjrotgjgfPzavZJYVKnp/hM8+t+mzO973O99za6Y1b5+ICLBrBBCCCFEbLj++usZMmQIa9euZcOGDXz99dds2LCBJUuWsGTJEkaMGMG8efP8qk57//33mTVrFps3byY/Px+r22IY+fn5tGjRwqexPvvsMxISEnj77bd5++23K91fWlrK4cOH+e2335ytGQLleJMZ0ko8IWqAMF2pXcUEwhEqVH4dCLQS1W0QL7cbv/b3BJtzPlyCtrLKi90c/cNzT2/jfp5eP63bv+fQ0DE0uO1aTplw/8n9jH8bSkqcIXCcMVcOUY/ZKvs+OhZI8qMy3FgVZ8O3QPeCf19AgbWAVVmr6NS0k8/HOnkgQysDM34njSG4L4tWGcPYKnvMhvlvqnHxL5vrsd17cupST60MyvcpidckWRVlxUU+H7rS89V9MTB/GfcPdiwMVdFR0MqgZPVKEs77E5aGDVn0zSLe/OZNXsl4hUanBPf/cqGQudJK82N1+ceKVJ+2N4axpi/+5dJjtvYs/iXBrBBCCFHLBFuJGmsSEhK47LLLuOyyywCw2WwsXryY2267jf/85z8MGTLEpf9rVV544QXuvvtuUlNTufTSS2nbti3JyckopViyZAlbtmyhpMT3VYp/++03rFYrU6ZMqXK7wsLCaoPZBg0akJ+fz7FjxzxuW1BQvsCHL/1qhYhVlSpm/Qwbtd3u7AlaMWB4uASXoT2o1iHoMXty8Opv97di1n3zQM+PMWfzFMwWew5m3Stm7XY7FkOVZOHzL1J8WFH8xHKSbx+DpeLqB/cKTcc4LhWzgfaYreYUVNVuIJDLvQOqmC0rRMUpvjv4XWDBrGF+yoQKdmMQ7VOlp8tzNnpaGbhUzGq382KvvqLV8bDK4iqC2ZI/fD+4++JfQbYycOkxa0Iw61j0K9IVs8VL3+Hn25+l/tkNeeGe7izcXt7L+bGPHuPpwU9HdG6e2Px9Cht/NXxsf+Dz0D4uuhfKq0oiwbRgVinVBfge0FprCXyFEEIIEZXi4uK4/vrr2bp1K9OmTWPNmjU+BbNWq5VHHnmE5s2b89VXX1Wqiv3ss8/8nkuDBg2w2+0cOXLE733ddenShfz8fHbu3Env3r1d7jtw4AAnTpygdevW0sZA1GzBvh+vqKRTziWyIlBhHupgtlIrAwVocy4X92UMf1oVVHe/H3N2CbTKKnoqGkLXwlLPl3RXCma1HQsnkwxL/XrOr48/8ggNnn++/BtjEFhcjM3maGVgGMzfy7crgrjqio5d+j66PYWdAZiPVYXuPWZ9XYXdEfQH2pNWm9xj9mjZHyd/av72mK3q+CGomLXu2M7xJ54m5ZF/EteuveudLs9/C7q0FJWYWP59pcW/PH1QXD7fsorSbaunBcK8+H/23jxOiuJ+H3+qZ2ZvWHZRwAMBARO8NURF+Rnx5KNRvDWSbwIajQkfJWriEYOKoKJoBI8oQQMoBJVDxGjwiAiCikYREA8OuWFZ9t7ZnaOP+v3RV3V1dc/M7iyIn3per4WZ7qrqd1dX924/9dTzzlYxu3rHasRTcZx6+KnhDebbY9axMti3ilntq68BAHptM1768iXA4hDX16zfh1EFo7UgxwnMDlXMGuLPHMgPzMog32dDOqBNCQkJCQkJCYm8w07gxSrqItYMvC54QaipqUFDQwNOPfVUHykbj8fx+eef++qEtQcAp5xyCurr67F27dq2nQSDM888EwCwaNEi3z47IZldRkJCQgxqK96tN5p9orvqaCuDjkj+RX0fuP1Zqg/5shn20yyI87GLxuKkySd5hbqan5htSYuTIPHELE802iQvADS98am7XfMunbcJTYXl1XJMnOOceg7Jv3xQc89cz/ZBrp67YX63ocgzMbsy5U6AZqeYZT6HZYfvAOVe09gHUff6t2h++FEYhuElv3i7ghZ3QoG/plQNVsymo+aHdHsUswEE9yWzL8H/m///0JgIX6HlSciWV2K23U21C3aCPapTj6K0qqXK+Zyc+zLqR1zbbp/efCCRIzHLIi8WOGx739ekex2MvJ0NpfRbSqlCKf1h9ZCEhISEhITEfonZs2fjnXfeEc7mV1VVYerUqQCA008/3dluWwBs3brVV6dbt24oKSnBZ599hnjcfRFSVRWjR49GTY0/cUxFRQUIIcL2AOCWW24BAFx//fXYuXOnb39LSws+/vjjsNN0MHLkSBQWFuKpp57C5s2bne319fV48MEHAQA33nhjVm1JSOyvaG/yL/slmUT2oRdzB5vcUoitDLKBvmMHtI3fhTSeRX/vFQ9dFy+teQm1ai2a2QRk1pJnljRJamLlIE888L9TWGLFSDHH4BWzouRfuS4FtxWzGbpQ1YPbdQjjDiZm7XtPNdq43J3pZ4Vfst8GeC0kMpNhlDlPGnbOHeDbbjSbvq/ppiYcMfEInPTESW4sHElMW5gJBX5siqyVqK2YNb/q2fjt2uAV3hmUx1vrxX/7OPAk/8oDm2qP6Ux2KR0MGrd8e7kbtTHlEtU7fvcU6t5Yj5bHJu7N0IQII2b1XTv93sXMszRbBX3W8Hgoh7TNTIjw8e2PkJYDEhISEhISEj9IrFixApMnT0aPHj0wePBg9OljLgfctGkT3njjDSQSCQwbNgyXX365U2fQoEEoKSnBpEmTUFdXh+7duwMAbrrpJpSXl+Pmm2/GhAkTcMwxx2DYsGFIp9NYvHgx6urqMGTIECxevNgTQ1lZGU4++WR88MEHGD58OI444ghEIhFcdNFFOPbYY3HWWWdhwoQJuOuuu9C/f3+cf/756NOnD+LxOLZs2YIlS5Zg8ODBQhUsjz59+mDixIm4+eabMXDgQFx11VUoKCjA3LlzsX37dtx2220+iwMJCQkOVsZ6ElEAdS++7O1Fj1n/8ez/Mh9X3WMqwZSmRiidy5k9xN8uewhPHqX8esxSSkOTGhrUMMPzeMzqbixW1ZQhJqh4IpJXo3p8Mj2qXKZeOu0m/2JXyOdoZeB4irbHY1a3FbPZjzOWfMlZMdtmKwP3OPlI/hXxWFmEx0RbWrJWzHZEdng7vppEM2iEojZVGxgLq5j1KQx5hathwB7wtmJWS7XDyiBDP4ZNEJjt5VsxSz3/7ysYcZMs50n0NPVPCGg7qnzb9jYSMXbSSgOJmjRh+sNl2HbxHSgfdBAOeG2usG6+FbNeC5GQttlyqRRQXJzfOPYy9kt1KyFEIYTcRQjZTAhJEkJWEUIua0M7hxNCWgkhlBDSBkdyCQkJCQkJie8rbrvtNjz11FM45ZRTsHr1ajz77LOYNGkSli1bhjPOOAMvvvgi5s+f73mhr6iowLx583DkkUdi2rRpGDNmDMaMGYP6+noAwLhx4/DYY4+huLgYU6ZMwfz58zFw4EB88sknOOyww4RxvPjii7jggguwaNEijB07FmPGjPHYHtxxxx1YunQpLrjgAixfvhyTJk3CnDlzsGPHDtxwww0YP3581ud80003YeHChTjqqKPwwgsv4O9//zt69OiB6dOn49FHH21jT0pI7D/gXxJzTv5lEw0M2dKeF09CCAgh6NWrF5IBXo69e/dG0QlHQrPUY6LjPfDAA05b3377bcbjGoaBuXPn4rLLLkPPnj1RVFSE0tJSDBgwAKNHjcaKle4zyHkC5nCaHy5fjvPPPx+VlZUoKSnBwCuH4clZM6Bnk8AnB2L2xvvuRsGRPwIhBBs2bBDXz6CWcohE9n3fVswyJGPQ8n+esPYlu2HJKZb8ZbOLp9NO+0obk3+xpJov6RMH9lx8ibOcBEltU8yG2iQwcBSzbU0QxfRfPhSz0SwVs/FHH8F3vYci/vEmd2PYmCUdQMymzTGl2WOLPX2emG1tZfZlUMzazxhQaJbHrJGFepiv77Sf4X7PqJZm75E8JP9yrAz2LS8Lo9V61hvU8/xQIgq212/3lGU9qnMFTSSgfft1m+s77TCfjapdzmf1008BqiC9eU9g3VwnajLGwo7vsGc7O3bYe2A/xf6qmB0H4I8A7gbwGYCrAcwhhPycUvpmDu38DUAjgP2bXpeQkJCQkJDwoWfPnhg1ahRGjRqVU72hQ4di6NChwn3RaBS33norbr31Vt++6dOnY/r06b7t/fr1w+uvvx56zMGDB2Pw4ME5xRmECy+8EBdeeGFe2pKQ+L8GmxwgsSiAPGQJt7B161ZMmjQJd955ZxZB+Mnl559/HoQQUEoxderU0ImWqqoqXH755Vi+fDk6deqEc845B3379gWlFOvXr8e8OfMwY9oMPHb73fj9L36Zk2IWAF5f/B/84k+jUVRUhKuuugqVlZVYOHcebn90AlasXYW5bwpex7yS2fDTt+J4Y8lizHhtPspKShAPe/E2jNAM3c55MeReYqeBhhtvBD2cSWITkF3c5zHLeabSNKOYZYsyqj2aSjnteJJ/5eIxy5K4ORCz/uRf1r4sl3tTUM9kQa5ETFutDKiHmG1TEx54lMohvp67H14IgEBLuFSJzz7AUz//LKB9jTSL1GbJdV8sra6Vgc9jNsWdpzWGDALoVpOayO4gMK7Myb/Y+yOthZO+HuVyPhJ26RQA2eces9QiZtlbxdANKBEFK7auwCGdejjblbIyX32jvg7xxx5D6Q03IHJYr8DjVJ8zDPFvEzj0n3ej8Bzx363ZgL03jB3bETm0pxm/NZkYNonTkVYGYcSsxyom0Qqga37j2MvIenqHEGIQQvQsfvL3F4w4jm4wSdkJlNJHKaWLKaW/BbAYwIQc2rkGwAkAHu6YSCUkJCQkJCQkJCQk9iVyTmhlESIkFmMayZ14oZoGo9b0na6oqEBlZSUeeughoRe1v7L3eG+//TY2bdqEX//61+jevTtmzJiBdACx1NraiqFDh2L58uW4+uqrsWXLFsybNw+PPPIIJk6ciAULFuDL9V/i9t/+Ds3WEuhctIhN8ThGjbsHkUgE77//Pp5//nlMnDgRK156FScfezzm/fvfeOmll8IbyUQIUmBPXR1GjbsHl5/7PzjxqKO4/bzVQXZEL59AqnbeWnSvJ75yvvpc+34rA1Yxy7THEgxqgJVBDipBVv2YaUiGkSVtyVzfruRfbbUyYPo1H8SswoYdmnBJdEdwZCirfs8HocgfzTp3XaSY5Sdu2EkLfmAEJOuixFXM6jmotn2KWYHalvVqTqgZEotp7VPMxlNxz3eHtN7Xitmkda8yVilFShEAYM3ONTCqw+0L4hMmYM+UpWi84+7AMtQwEP/W7N/4cy+2K1723tAZxaxLzAZ7t3dk8q+wZ1R9stktF7AaZX9CLrr7pQE/qwEkYQ651QA+yHOMPM4DUABgJrd9JoBjCCF9MjVACKkA8FeYBG9D3iOUkJCQkJCQkJCQkNjryJmI5evbL4LtJGa19RuR3maSsCUlJRgzZgyampowduzYLILwHs9OVHj99ddj+PDhqKmpwauvviqs+vjjj2PVqlU47bTTMGvWLFRUVPjKdOrcCWNG3YQ//Opa72Gz6LtX330Le+rrcNWwYRg4cKAVLkVRYSHuGzUaAPDMM88Izin4/PxlKUaNvwcAMOmuMaIC3q8ZrAyCiFkAKGJ4JSoqAL+SVo83eckDhkD0CINZT1OPxyyb/CsHMopN0pRBMRtKhtretzkkSPIQMdneY7Yis43ErM4oZklerAzczzmTgHxfJRnCsQMSD1HL39ruA0KIk3TOr5gNsTLgiVONUcxaTJCRi50GX1bzTwCwvrKt6fAl5p7rkGM/zv1iLo578jhcOeNKtz2rbzo4f2JG0ITqi6NrsanoXFezDsYO185ARCrqe+rM/5tafPtsqB8scT5HD+0RWC4beBSzVbvd2GzFdYhnb76tDDzHCvhdMfrV0XiyboW7IbH/WxlkTcxSSs+glA4R/JwAoAeAfwAoBHBpRwVr4SgAKQAbuO1rrf+PzKKNRwB8Qylt39SChISEhISEhISEhMT3F7lyqtaLPSksyElJykNPeQ88atQo9O3bF1OmTMG6devCKzMvo7t378bChQtxxBFH4NRTT8XIkSMBAH//+9+FVe3tY8aMgaIEvOpZzRcWFAAQE5ZBeP9T82X4vDPO8MU7+MSBKCkuxocffohU2PLoDMTs9Jkz8fri/+CJu+9F1y5+YjlTMjB/cZuY9V/RorS7LSiBmMEQRgc0KWg9biSqh1zgFmCzybPHYNVeqZSjtI2w4eaQ/IuyxCxIKLkY5gPrKGZzIGbbo5jN1pPWV0/vQMVsLipRwO/rypBpoZnj2wjbykBnEsi1qq3iWBIMScwrDFVe4WoTsxS61al6Lh7AvGJW94/BlOaO06SaQcnoUUfm1o9j/2NOcn225zOmPastg7V+2PssrZG0+pRSx4aiZ2fTHmBH0w7oO3a48QnU2449ioD4tpF4daFbviWYwM0GLDGr73FXddgq/bBnRUcqZoOsXhauX+h5JtBkBmX2foC8eMxSSpsJITcA+ALAAwB+n492A1AJoIH6R0Adsz8QhJDBAH4F08YgK1jndgOAwMQeEhISEhISEhISEhKZcfzFF+/rELLCivssl7Q8vHjGYjFMmDABV1xxBe68807Mnz8/uDDzEjxt2jSoqooRI0YAAI4++miceOKJWLx4MTZs2IB+/dz8xdu2bcPWrVsRjUbxs5/9LLB5CiomY7M4zXWbzYRI/fv0ZuqZFaPRKHofeii+Wr8e3333HQYMGCBsO+xFfsuWLbjljjvwiwsuxEVDzg44Ad6D18iKRBedczHDiRBCEE/FUVbo9XxkFaJDvjZTk8S/iqO7vV9jFbNiL1CaVh2CN+IhjdroMWt/j4pf5z3Jvyy1pU3Uu1YGWR6XtI2YtYnutitm3Xr5UMyyxKxP+ZkBvqSCqQ62MrBUg5Qh5lpTrebY9FkZuKQU5a6Nj/SzrQwUVjGbw/XhJwMEdVliNqGFE2bs+YWRkCKk9bRPZugsubfGS+2V1yC+YhN6rngVSo/2qUpzgZ28jbr5+tCnsg8+qf4EjalGGLtZVap/LDqWEyFjK/HxGuezEff3887GnRj58kiMOnUUTjnsFDQlm9CvmzjfPZuQ0Kir98UmImaHrirBxm4qjL75Hf8q+0wMINUJId77uXX/J2bzlkKQmk+BxQBy+kuLEHI2IYRm8fO+XQXiPxsyPq0JIQUApgB4nFL6VbYxUkr/TikdSCkdeOCBB2ZbTUJCQkJCQkJCQkJiv4X9kp8fRdDll1+OQYMG4dVXX8WyZcuYw/gkoACARDqBZ6Y8A0VRcN4l5zl7R4wYAUopnnvuOU+tXbtMb8CuXbuiqKgoMA5+KToJ2C5CU9z09etc1kkYf3knc3tDA+8Wl3l5qmEY+PWvf42y0lI8dnuIt6LPyiBD3NYJisi9krT3dbi+td5XhiUikzH/sSirmGWUrB5fxgCPWZ7oSi1cgDSzRNlzHI5koyGqZJ4MZc/BJa9ysDJgyuaqkMsHMZvv5F9GQN8FJgWjFNvqt2HI34Zg3qp5ALv8PAflcbagml/VbJOc9jZCrDIhfreUV8xa52cQCk2xyd8cVNu8YlagtlWZbRkVs6zHbI7KVo3646bO0Dbv9YbF26C1RhGfPCmnttsLI6U7AdkTFP0P7A8AaNVaoVf7VaksbGI3jPRP7XBVskaLn5gcPms4NjRtwC2LbsEpU07BeS+ch+qmamFbnnujzn12O1YGXBiH1EVw66IuGPVueWDSxLbg66qv8R5pco8fcP6EECjsJFg6+wR231fkRTHLoAiAYL1JKD4EMCBjKcA2jqgDUEEIIZxqtoLZH4Q/wFTUPkEI6WJtK7H+70QI6UQpbRZXlZCQkJCQkJCQkJBoL75YsKDD2t5Uuwlx1U0IUxItQd8D+gIA1lS5CqNjehwjrJ/64htQAIVH90N67XqTT8zjUs3HHnsMp556Km677TZ8/PHH4uXzFvEy519zsHXzVpx6xqmIdXE9b6+55hr88Y9/xPTp0zFu3DjELD9c+9UoaEm+A+rN8p6LlYHbhphozSqGgOM9/vjjWLJkCV6f8woqOpdnXz+DgtOORayY9cZZ21KLnhU9A4+XigqIWX4Jtq1ktTLEAyYhZpOjQcm/jOrd2H7dYwCAvnsEaVt40jBkCTpPhmqGhmjEevXXTRkfn9AnDCyx+9MvNWzpOQg9nr0LhRdcJC5vGO1XzDLL+COUgBoGSJA9RxZgFXaqKiZy9K1bxJUp8OQHT2Jr61b8delfcdGpLtHXEUvlqWaOHZaYchJpWZeNRAxQTQFYKwP+XuCtBlS/x2xOfrt8WYHKNaVnb2XguXe4thKzXoD69bfoPP4BcV1Qz3MMAEMgEg/JTizblr0FQ7VIb+YWO7KH6bipUQ1GTa2zXajethW3ISpi9raiCf943tWyy52Usu7Fz3d8jqGdh/rKsip+vYGhw6w+5NX1JdZzszRFPFYv7cWyTctQwk6ghfzu9UzWJP5vJf8KBSHkxwCugN/7NRSU0lZK6TdZ/Gy1qqyF6WXbl2vK9pYNU8IeCdMPdweAeuvnaWvf5+j4xGUSEhISEhISEhISEh0EXk2ZSzIwSpnSkUj+gmIwaNAgXH755fjkk0/wyiuvBEUCAPjnjH8CAIZdNQyAuzy9a9euuPDCC7F792689tprTq2DDz4YAFBTU4NkpizVgm7Jpq9spWxjY5Nwf1PcJMXLy73Equf9WvCyvX79etx9990YOXIkzj/nnAxRcPVDXt5ZgtBernvANSciWmyyGsWq4pQDgIaEPy80qwhLZVTMMr6MLGGtqqHJv9bsXINBkwcHngcgUMyGqMR4X1eWHHUVs8HHYskWAuIZG39a2BlaMorqP0wIrM8er+0es1y9XBN2cSAey1/x0md900ZxZYM6xGhaT3tVjh3hMWtbGTBNOySnrZi1HlE0mfLVc77zVgOi5F/tUMyKrgmb/CupZ3gOMcQzT3DvufsZ7JmyFNrXYnpHlKyP5aVZJTEpKQ6PI8+gNjFre95SiqN6HGV+UYB0rasldPxk2fqO6j6E9GQITKPV/yzQBV4lQUS5x2OWSThmx8Y/Ym21alQnOf2OzYSWVIuXcA0hfSMB13p/RdbELCHkHwE/LxBCFgNYDaAcwF87LFoTiwCkAQzntv8SwJeU0k0hdScAGML9PMzU/01+Q5WQkJCQkJCQkJCQ+D7Ap67iYWdAB6f4zHNykwkTJiAWi+Guu+5CWrR0mlJUV1fjvUXvAQDu+N0dOPagYxGNREEIASEE8+bNA+BNAtazZ08cdthh0DQNS5cuDTy+qTRzkbFfGBzRuw8AYP1333niBQBN07B5+3ZEo1EcfvjhwY1Q6iMZ165di1QqhWnTpiHSpQLFJwxwfpZ++ikAoH///iCEYMHC173thSwltxMmEQoo1nl2fvxxlJ1inoet/LJtDkRWBizByipmHSJJ48gDizD18CIq6zHLbLeIl5sX3AyDWcsqVGHyYyUVsOweflKGJUezyVzvUblyHrNuQ8H1U4wita2KWYMndHNN2MWBJWaTQcTs5s3iypQ6fWpQA2A8ZnNJopYt4lZ/JxjStzXdaoViHk+xxosRppj1WQ+Y3w3FTf7lG79h8CX/ClfMpgKUycL6XByGvYq+ejdEcDyTPYp9pgCTEIqEWLvkA42JRs9khuE6GTgoKyyDoZsTRbV1rmLWVseyyMbKgG3bSPqfBaJ7VjXE91CUVcw2M2PbJma5puxnWNTIPRlgGBJawpukL4SY9VgZpPZ/YjYXK4MRGfZ/A2AipXRa28PJDEppNSHkcQB3EUKaYSpdrwJwJoBhbFlCyH8A9KKU9rPqfmPFyZbpbX1cQSnNSe0rISEhISEhISHxwwYh5HAA7wKglFJ+xZbE9w3t4UhskoBXYuWZmO3bty9+//vfY/LkyXjyySd9+ymleO4fz0FNqzjy2CMx4OgBMGCgUClEaWGpU27hwoV49913sWnTJvTpYxKNN9xwA/7yl79g/PjxOPvssx3ywtO+1UmpdBqFBQU59dkZPz0ZL735Ot5a8j5+OfpmO2AAwLLP/4vWRAKnn346CgsLA9vQkwaMr75DrH9PKKXm+fTu3RvXXXed2Vw6BaPZJVUWLVuCqpoaXHEGXMwDAAAgAElEQVTFFejcuTN69+KSMYcQA60pk8xyX/YpiKJAKTUVdLZiVoECCoqGpEAxy7bP8vWNDSAVlT5Vm0M6s8m/Uq7HLJtox85q36JySrFEAigtBQuezD7vxStQfPDBeP03HFHNxwxAY5e0O5nrfdUC64tUcUQJJvTTuhtrWxWzhq57VGRUVXOYQvCDva0DFbPbdwi3U0qd8zCo4VXMdoCVQQMh6A4gyfRxUrMVs+Z/JGrt86h3wz1mRYrZnJKXZZH8ix1rTsyB7QUrZql1n9DWFoTBQ4yz91ai1fnckcTshuoNOO+F81BCSrDmNtMuh2o2aWzFYidIRBQGDDQ1xdHVjlOomDXHWpjdiCfRYFJA7gqsHtKaeDKHnSzSWt0yDkHM+XO7xCzJ2XM6DAk14SFcQ4lZVjEbMkm1vyAXYrZPwHYDQD2lNB6wvyNwN4A4gNEwrQm+BXAlpZT/rRRB/n10JSQkJCQkJCQk/u8gBqA32kf5Sewl+KwMcklwZBMKPvYn/5f+nnvuwYwZM/DAAw9A4f1YKcU//vEPAMCYCWPw05/+FK1aKwqUAvyo24+cYmPGjMH48ePx3HPP4YEHTB/GW265BXPmzMEHH3yAX/3qV3jqqafQpUsXT/MtzS146tmnEYlEcMdvbsyJ7Lrk7PPwl8mP4ZV//Quj//tfDBw4EKAUyVQK9z09GQDwu9/9zl+R57oB6LuqoPQz5zqOP/54J5mZUV+H9BY3Sc151/8KVTU1ePDBB9GvXz8YzU1Ib9zp6a8gNKdNv0SH9LTYOaVzGQBXMRtTYkgjjaak36KBHVOe7OU1e6BUVDqJmhw4VgbMNlYx69lujrmUnkIpS7S0xEE4YpZXzDbpTdhYK06vwtsAeBSzWVgZsCpXQohYFRcycFjVZJuJWb5eiKduNmAVs+m0mDDUdoqTI8FwiVmd6pyVQf6J2ZjhLhW3kdK844pELfKPVUvy9wI3Dmyi1iBwk3/lYMXAe55S3sOWiRPwEvTC9ljijSeVHWK2FWFgyUePirSOuTc6yJoGAKaumAoAaKWWojmdBqVeYtZGcbQYLbQFqdY0zD8tBOQ5mH4OI/1ZK4O0/xoKidmA6xFh2tKTzLPCis2nmLXKR/T8KmaTatIzQRWmRveU+wEoZrO2MqCUbgn42baXSVlQSnVK6XhKaS9KaSGl9FhK6VxBuTMopb0ztDWdUkqkWlZCQkJCQkJCQkKAjTAFCiFrsyX2B2RrZeBDB1DylZWV+POf/4z6+nrU1nnJtfeXLcPG9RvRf0B/nDjwRJQWmAQdvwz1uuuuAyEE06ZNg2Yp2UpKSrBo0SKcdtppmDVrFnr16oXLL78cd955J26//XZceumlOO7Hx2Hcs0+hvJPpF0scni4bj9kyPH3P/dANA2eccQZ+85vf4PY//xknX30JVqz+Apeedx6uuuqqrPqApgKItkxh+JJ/hVgZWMu/bV9XYp0s6WQTswqKUwSPzSjDpZ+WoinlJ2ZZ4sFDBtSYmdWDFbPMNk1jPGaZ7daYS+tp7/Zmfz5qqnpJlYhBAslR3sqA9cl1VHwhfApPporIlzDFLOsz2nYrA94vtZ3ELKuYDUr+tScgj7jPyoBRFXaAYjamWcQs07Rty2FfQKXAIv9CYvF5wtrJvxTqKmZzsTLgiVjBM5Ml/1iSVtweO2HgVc865KaAmG1OuPeHwlBarIrU2F0VHHceURDxJhajDYwdCvdo6lzY2fyQZM5VRMyq5v4gxaz5jGGJ2ewmTtSAyY2o51nFxmERs3tRMeuxesk2+VcywzjbD5C35F8SEhISEhISEhISPzRQSjVbkLCvY5HoYFjEAC9gzbeVgY2bb74ZvXv39m1/fuYsAMCl11yK0lgpOheZL/M8Oda7d2+cffbZ2LVrF15/3V042KNHDyxduhSvvPIKzjrrLHz88ceYNGkSnnrqKXz11Ve4cNiFeG/aP3HjVXzKjuxw0ZCz8Z8XZ+H000/HvHnz8NQzzyAWjeLh2+7ArMce9/rzhoCqAuLI3JOppvdbFh6zrmLW/E8pN/u0WCX4+Rcl+NHuItz4Xjmak35ClAVL7hk2AcOTJ3Ymc5bsSKvO9fMk/7IIUM3QPNuFy7e5Jc8RI3iywZf8S2BlwC9PDiyPAFVcJLg+S8iJkhBlA4NXoraTmGXVzmpA4jS9VpzUDtTtUwOGN/FaB3jMxmziS6CYtYc/KTBVoB6LCz6WgGRdBgH0iO01nD0xy9+vvIIW8JLyLElbc9FlaLjRq6b3TGowcdC4q/sTEbOb6ty0Qp4JJZaY3bMnMO58oijqtUkwal3/WOdXh/V/1xLTwCCaYu51QR/a/RL4bEt5xy8V3Bqi53BCE1t4eJ49TDhObFTxjJOIo+jOr2I2paU892m4lQETs8irfT+DXOYvISEhISEhISEhIfGDgM/KIBe5q+Mxa73wEQDUXhLaNiRXfoXC4wcI9xUWFmLTpk2+pfsvPv007nrqPoAApYWlKIwWWmH5o3j77beFbSuKgiuuuAJXXHGFb9/uxl0o39TofHdaFXSV0VAPfVc1Ij0PgVJW5mw/9cQT8eYvTGUsbW1Fat1WAEAkREXJg8Jcbhzp1o3b4Q3knekvoOCoHwfuDyPOE2mTiLBVWLZiVulSDgAoTis4oNld5tyS9hOiLPHAqrnspdKmqs1PEnjC0lSH2PMowiziQ4eOiMEo/wRkFE8uRQwEKmZ5lSpLjrqZ4sV1AYFiFiJFXnaK2bZbGeSXmGVJ9SCvTSMh3k4pdcYB5ZPXdahiVmBlYJF1pCAKQPP6a/oUs7yVgVnWIIDN+SohPqY+8GS5gPBkyVj7s77pOzR+VA0luhNdnmXiYVWy7OcWlpj1k4nf1X7n2+ZTkdYwCbYE5Gd7sWTDEjy57En8+MAfe7Z7FbPee+TgTgfjy7ovUZJynzliKwOrLwJsMvil+yJRuv37glLqfE6oWRCz7ISSyvSbqgKWd7htxxI1AmxO2oiUnvJavYTYhLDlfgjEbN4Us4SQHxFCdEJIx01HSEhISEhISEhISEhIZIAwWVEGepXaBJJPMZunoAIPzPviGk4MpQWlUIj7ytZWkivseGHnl968G3qKQt/GJUXyZELPooMCigj9I31WBZm+B7+820SEQzzYZFRFBQDTY7ZLi9u/ImKWPT82MY3R0GAdnl9yb5EErGesqgkVszbZSkG9VgZxgVOgwMqAEOInMOFXqbJErUvMBt8PPBErusbZWhm0dcz6l+XnUTEbQPL6/IKdHd7kXyxJHKbYbgtoOu14eMaYruMVs0qh5VHKKql9ilnep9ccB7pCodnMVi4eubxnrYDwZNXWdsy2utzQOfrJk7iLeabEXeU6Tfr9Q7c3bnf3Wx3Cl9NZ/+UOIM9HzB+BlTUr8dKXL3m2Gywxa8H+3XNYhZm4sDjNTMKogvtDC1bM6hs3OM9NYhkn+/qVBdNEUhV7sbITANDZ5xYzoZNwSV1HMWsQ0DYq4kVIaSmvXUyWVgZhyb/eW/ceBk4aiLe/EU9ifl+QbysD0gFtSkhISEhISEi0CbquY+rUqfjZz36GyspKxGIxdOvWDcceeyx+85vfYOHChZ7y06dPByEE06dPz8vxN2/eDEIIRowYkZf2wtDQ0ICJEydi+PDhOPLIIxGNRkEIwbvvvtvhx96fQQj5Lsufjfs6Vol2IpOY0yYoeMKpXVYGWShIufbTuu3rRxGLxEAIcciHfBCz/MtuNhpXXxdQ8ZfgrhIfxcn67WktR5PZMI9ZzsrAEUNbCdGKOWLW8fEMiMdDBjSZ5JHPB1L1WxlAZa0MmO0WYUQU4iVsE4I4ODLRjkVEtvDjxPPdJmRzsDIQTnSEWRkwyb/a6jHrW2KfQ5IqEVjFrBZEzAapR6lLdlNQTqWaZ2KWUYtGGJLMuc72WHaIWYZ0dwadRVbyilnWysAe9gHxJ+e9gqpTzoa2do2vvgMBqcsqZm2CnjZZFhFU8aob2fqsYjYerpjd1bTLHzBnT2E0uKsCOsLKQFHMDjQUbx8YjY3MF+890quiFwj1JtsSefza45DnPFv/MRWbTxmJml/+FgDQWEjNrHZUAW0R2J/Ae++KrAwMw+CeSa5tgWeigiG+FU/8eSZm22JlEELM/u3Dv6Feq8fTHz6dlxg7CnmzMqCUfgtJykpISEhISEh8T6DrOn7+859j0aJF6NKlCy644AIceuihqKurw8aNG/HPf/4T33zzDS666KJ9HWpesHnzZtx+++0AgEMPPRQHHHAAdu/evY+j2i+gQKznKwdgp7PfCaB9ci2JvQKHdLRXl+fCmdgkmd9kNusmtI3eJbbZ1OSJ0pSV5ItVytrn01a/Tu6Azsel//0Ei1Z/jEQBBSjQvVN3t5hhQK82VWcVXctx6/jx4pgDiNH3338f77//PgBAq6rx7iQUoAQkAnTt3w9/+MMffO0FXr4ckn/ZZJbDndiK2a4HADCTf7G1RUt92XP1eMw2mmSTzYURYiYscogn6lWeGXYmc5ZrsMhGQohXMSsgo6jPY9ZdnlxSWAIASC1cgOgxx4YSs65SloBqGkjUTwnw40yU4R1K8Ks/S+y22WOWJwwFS75zAUvk6EHqW13sD0GNYCuDfCf/Ykn5GNO0TXjaw5EUm0mnPEvhbZsDhYIaJEQx6wojSQAZvePGJ80mh/8vDv5iibmRJ8cFZDlLxDvELOOZTJsaQQ440PzMJfxyPrPlBYrZ6rhr/RKkmDUaGb/odpL6YWCtApJqEpQlZjmUFZYhyoXC9kH9yOvwxTdfgxIdvVDge7bVT5wBgCD+tdk/WgSgEQNEU2DU1iBSWioI0P2Y1Px9mVSTHsUsATE9bIuLPcQsTbGKWbc+aed9ySJtpL1JvULuLfZZzPtvs7DJ6CD7ku8LpMeshISEhISExA8Ss2fPxqJFi3DcccdhyZIlKC8v9+xvbW3FihUr9lF0+UevXr3w7rvv4oQTTkBlZSVGjBiBGTNm7OuwvveglPYO2kcI6QfgCQClAM7bWzFJ5A+sWiiTlYHzEsgTs1nystQwoDW34eWPI6BUi9iIENeH0I69tqUWTckm9K7sjZKCktyPBfiI2cenPJOxSq9DDsGt48YJ2/D0D7P9/fffx9ixYzO33auXkJi1yVs/uAsSolh0rAysdghHzBanCWKaSzCKFGXsGGJVrUaTpeqzh03EANUUN/kXS8xqGnQry3zEs91laTIm/1L9yb/Yc1RXfobt1z2Gkp4RGJMu85T1WBmw3ZVKAQJille5iojZMCsDT/Kv742VgfuZVwQ7x+D8glnY50FBvdci74pZ99p7kn/pvJWB6ffpUZ07k0vmqPX3oa2YpU7yL5IhfrWeIaEDFLie8sx1Uq1JJtrsKmCNhgYoNjHLxscQxDTu9oGR8Cdqq2lhJnpsAThPzDYx5G4HeMy6jbsfm1PNKG5iCGH7uWMFWRQt8lxTAI5dAE2nUfevdTgMEQBWYjfu2mhxHSyFpyuAEQUiGmDU1SJyWC9feOx9m1L9fZnSU4jwZHFzE0hxsaXmtbxqmf5liVlFZMXQRqiayql3g8emx2M2xH/aHo9tVe7vLUiFq4SEhISEhMQPEh9++CEAYMSIET5SFgBKSkowZMgQ5/sZZ5yBkSNHAgBGjhwJQojzs3nzZgDAzp07cf/99+O0005Djx49UFBQgIMPPhjXXHMNvv76a0/79913H/r06QMAmDFjhqc93irhrbfewvnnn48DDjgAhYWF6Nu3L/70pz+hwfIwzAYVFRU466yzUFlZmXUdiXBQSjcAuBTAIQDu3cfhSOSAjCSsAA5J0FYrg7ZaHnD1NEuZF4vEfEXrk/XQoWNz/eY2HIaa6k/meH+58X+xY/2XWL1rNVbvXO2UoZRC274diZVfI7Hya6x/bzHXWHD8Nu677z4zaZKuO+3YP+qWLUis/BrJlV9h06ZN3oq2+inoEvoOF6KY1TjFrPX2qxxoJhwrThN0SbgEOEso2mCT23isDFpMZaOjmLWaoapqEVbscl/V8YL1Jv/SHJLQo5hN+JVtPDFpl7dVwfr69WaTTWkfGWqrfqlhLnt2tgvUiICATBVdixArA5YEESlm1U8/wZ7zLoL62afOtjFvjkHfh/vivXXvWbHyfqntVMwyhLgW0FagX6xBvVYG6Y60MmCJWXe7Taq5ilmLmGUUi+4zzCoUoJhlrQyUDLya5/LxhLbIysBgrAwMgWK2kfm7hvWVZT8zqmHRMvWmdJM/UD4hVjMzyRJAxOcbTckmx+IEMH8PscrOwmgholyX2bYF6kfL/A3yudaSEc93XaEwYta9XesmOwtSh7IWIzYSasJrrQBAXf0FWqc847H2sD1mDcNAlClP8knMGqrnPqUh/uHsRAu/moCFPR6/78SsVMxKSEhISEhI/CDRtWtXAMC6deuyKj9ixAh06dIFr732GoYNG4bjjz/e2dfF8iNcunQpJkyYgCFDhuCyyy5DWVkZ1q9fj7lz52LhwoVYvnw5jjvuOAAm0dvQ0IDJkyfjuOOOw8UXX+y0x7Z9//33495770VlZSV+/vOfo1u3bli9ejUeffRRvPnmm/joo4/QuXPndveHRNtAKU0SQt4B8AsAd+3reCTCEeZPSggJV7/yVgbO+2GWxEtblzRzxKZNBBZGC92NHAfWlkzY6lffmqfSvZg7vv0fFwdLDhpeQjfIY1YIUeKokmKQ+hZTVZpOO9m+AVf9RCLEJD0zEbFZWBnYJKZzaYuLQRUDEYNJ/FVgIKWHqzJZYtaIe4lZJQroKZgq1JSXAKGaDoOapArvoWj7ZbLLiYWEKbdk2CZTbJWvTZxQhkS04ZASfFxpP1ED+IlZ0UQHiQRrvDIpZpv/+gSaPq+H8sgkdH15FgDgnY9fxsXrSnGb/r9Y+eev/EnV2quYZZrTA5a2B3vMMlYGoB4iKO9WBkxCPHZMON6tNjFbat7HnuRRjpWBVZQ/T8bKQFNsxWyGeFiFJ6+YFVxbVo1sjzuDIZs9ib3Y/mYTCrLlU/4xyiaXs5/XPsVsC/O9AxWz7L3RnGzGAS1ef2jFAAyrTEmsxK+Ytcjt1JKlvrb9vLe3rqYAepQgBm/SMY+imIHIjzqhJnz2CjU3jUOyhksfZV0HgxqeZxgJ6FtqGCCc3Ul68btIvvUOOj34kG8fYBGz7DkLnu32BJeHwFVVtDz9BOoefwndp96PgiFnu21aY8WeJPi+IidilhByEIC/wFzKdQiAAkExSimVhK+EhISEhITEPsWll16Khx9+GM8++yyam5txySWX4Cc/+Ql69fIv9QLgJOh67bXXcPHFFwsTdp155pnYvXs3OnXq5Nm+atUqnHbaabjzzjvx73//G4BJzPbu3RuTJ0/G8ccfj/vuu8/X3uLFi3Hvvfdi0KBBePPNNx0CGDATkY0cORL33nsvHn/88bZ1gkS+oAHosa+DkMgdQUStYRhO8hZmo/m/td3xOM1WEJcnxaz9tTjmEqgEBDnZMvCH0DQ476Xc236gMDXFvMiGZf8KJGyD6gKksBBEMdV4NJEA8RCzlu9qRAFUAWvE91cIsWSTls5LPMuJRrzELIGX8HEPF+AxaxE/1CIpSNQiiFTVT6xqujD5F9V1bKvfZsaYyWOWT/7FKWadYxp+4t5Zht/KJRULIGZ9xL9gkOghVgYsOSeaRNDrTXJO213nbLv6ozJc+EUpGorMbSYxy5KC+fOYNYKIuoCxRClHMHeQlcHqHauR3rYKFdb3qEEcRw9nbNpWBiUWMasFE7N8Yim7rEcxmyF+lpj1Eb0CxSxLgNnELDueaSOjdmVVsqzfbGu4YlZ0nyLtLae3MuR5B3nM9qmOYtzcSvx9SBOWDkiiJd0CGueIWQpQizwuihV5yHYzNrMPUivX+tpvYRMreiYAzHtDUyiqCg30RhSzVr2G6y67EgBQE69hSro2JGxiNhtpLe3EpCoUMYNAbfJaJgDu80UzNI+NgMjKYM+5FyKxvgaHrnoLCiMs2HalaW0T6f44Sm+5zVdP1VVEGEW/aHw1p8xnh2f1QlpD/OU3kW6MoGXWy15i1hqP+Uic2ZHImkAlhBwC4BMA3QGsBVAIYAuAFIDDrba+ABDsdiwhISEhISGxz/Hr50/e1yFkhRnXtc//9YQTTsDMmTMxevRozJw5EzNnzgQAVFZW4vTTT8e1116LCy+8MKc2u3XrJtx+3HHH4cwzz8Tbb78NVVURi/mXIIvwxBNPAACmTp3qIWUBkyiePHkyZs2aJYnZfQhCyAEALgGwbV/HItE+sASbTnUonKubo9DzKXn2rmLWRmlMkMiljaBJhujzHc9PWgLwkFSUeut5msjUPYJ+IYVFQEQBdOonMe2EWLEokExncYDg/fbyb/slnvVFNWIUEYbfiepEqKoK9JhNeL1kScwcNzSt+pSoVNWgG1GrDWaHrmNn007fdqFiliMm7Vhsuwa7DjX8JIRDzKa8hG+2Vga2KpElptcYTThYWNtLAImsDOxl5nq9S2J1Spr9V5KyCG6OmA3zkcwEqmlQmLaMAJImME8ZpTDAKGYFZGg+cMnsS9CvKoa/4UBnW1QH1CiT/MvaToptxSwzcDIpZq0+NBQKPVvFrIcoy+wxyy4Zd4lZ9zobLa7frEcV7bEycMelZ4LIAnufEkLMpfvcPWckNdherR2V/Ov2f1WgW3MUf1lYiXMH7ERzqhkGp5iNGASGNWlTUlCCmC/5l3ne6Y3+ZK0qM2b1jevdHRZbryvA7hIDvQEs3v0FrrN2izx4ATExm1ATziRPooAiliTQVb+a1X6maYbmeQ4SQd82rWwAEEVi5gso/f3/+va/9cEbuFRAzGqGBsVgtJ+C341NSZPY9yhrNQ2a9SzRdu7xtQnkKXFmByIXZes9MJUC51FK3yWEGACmUUrvJ4QcCmAqgN4Azsp/mBISEhISEhISuePKK6/EJZdcgsWLF2PZsmVYuXIlli1bhgULFmDBggX41a9+henTpwuysAfjjTfewLPPPov//ve/qKmp8XnV1dTU4KCDDsqqrY8++gixWAxz5szBnDlzfPvT6TT27NmD2tpax5pBIr8ghNwTsCsKoCeAYQDKIW0M9g9w73HlTQZ0dQcihxzi2S60AnCI2X3rMWsjFnUneNqrmAVDwBHueDbZ5m+TIcb4GAOsDDRQ/5JKqy6xtFsAgFgMJBoB0prXrxPM8uZYFIDAK9EXSwgxa3kqOqQnc4p6ARBjOJSIAWjUTzSxhL5HpZVIW56tZqNKTAHsxFAc4Uk9illv8i/bysCzXbB8mycmeY9Zu46QmLVJCd67Ni32ogzyY4wxm1tCFGhsfUNAzOtxi+Rpco9ve28614q7rnqAujcrcP1pCJR4gkN66zDn4bEyaOt9z8H2BeWJu4hBoIL6rQzKzIkbj9LUGmPE8v+l3HlS3bUycBWz4niIYoAa3OQVrzQWKWYZNaur1GYUs2xyrECPWaa8wD+UH58pNYWCJHeNU0x7HWRlUJbyPjNb0i0wWr33GPvMKI4VI+IokK3nq26qYVN7VPD0HDsRoq36wv1ikeV6hCJZYBYqSbux1La6frPsc531/3W2aWkUOMSsgc5JBawPtQPrHtINnUv+FbZkwa/8B4Cv07XC7TrVvRYFgmeHQ8x6rAw06M1m/2nV5v6djTvRlGxyidkfimIWpn3BIkrpu/wOSul2QsgVAL4EMBbAzXmKT0JCQkJCQiLPaK8SdX9DLBbDueeei3PPPReA6S03b948XHvttXjhhRdwySWXePxfw/DEE09g9OjRqKiowDnnnIPDDjsMJSUlIIRgwYIFWLVqFVKCF+og1NbWQtO0jJnL4/G4JGY7Dvdl2N8EYDyl9JG9EItEO8GSl6VJgoq4AjXejIiXlxW/pNkEoqOYtUnJLI/dBt9X9rg27NfNCHETvfj8cXPkZT3LgUMUfnWtdSgvKkdEifhVsUEEFLNd2APWfoMAykHliEULzESIBVGgVfMRL7ZSkhQUAGj1NxdyfB6216m9jJ1VzGoxbydGKBEqKSkoIjpwYHPEQ2IZSdVSIJqmFyQaAaCDan7FLHSxlQEoRXW82redCjLR86o/ezkxr5gF9avDHOUilyCJJrPzmLVRwC5rD+n3jIrZhAZAgZ5w27O9N51+4AZTMtmKksAjhsOnYA4iZoNuYcpM5hAAWv6tDGyVI+9BGtOBJFgrA2sioKzM/MraFdiKWTsxG3+eFkGpE9djNhdilm9P1I+ixG/sOPPYFLCqaHbSgyVy0+GqXMBUfRbw5Dv7WMkTec6jOO3tn5ZUi+/ejRguOVocK0bMdsyJGDD0iDmRsv5bGJqfmmPtN9Svvvbt1wmQsJJ/FTHEbH2L6zfL/q4QWUAktSRKrDGXKAjuJ3viR9M1LzEbcC8BnE8521bALzBTjcsW9MfTmDAX6Huel2kNmvUs0RrNYw7++2AQQhCjMZP//gEpZnsAeIX5rgNwjI8opXErMcIwSGJWQkJCQkJC4nuKSCSCK6+8EmvWrMH48ePx3nvvZUXMapqGe++9Fz169MDnn3/uU8V+9NFHOcdSXl4OwzBQV1eXubBER2FIwHYDQD2AbygVyOgkvveobPFmsGZJ21DFrJ3UKOfkX/lTzFJQj5KfV7Pm7DHLqC19ilnm846mHahvrUffA/qGxxhkZSD0mDX72iDAJlqPIyuPNI8biwFIehLzUEpdz1bGdzY0lpB+t1WIIsVsocCAT9H844JSirHzK3HSd0X4rLdLNBgp3ck2Twi1LDB0M0kXR3jaillC4VlSD1131G2e5F8CX03KJ/+yytvks01+UcOvUnWtDHiLBbFiNoiYjWmsmi243z2KWZHHbMoAoMDQIzBq9kA54EAUWG3b/cATv+m02/fN945B/Yx3cdDLf0Xs5EGBcThI8arsADLJCLivDOo5D5YsDOuHXGD7ghZwxKxJ1FJn+b7dLaSTRcyKEpQKqz0AACAASURBVGgFKWatFT4GoZkVsxGY7uos+GXr1jhLvvISWl56FV2eeszjL2yPI1ZFasRbmPouMcueBztORcSsTnXPvZzQEujMWxlozPO/g6wMWJUqALSqrY7FiQ2FEiiWt0RpQalDvJMotdSygFFdLWyfJWa177b69msRilaLTC1mYqlLuH9Tsr9HhB6zetqZ5LFJXhHsiR9TMcv8bgpRzAZZpUQNgq+rvsaAHgM8203FLLNBcG/R517EI2919RCzelMrqGFeby1OUd9a75x32kiDREibEmbuTQSnUvSjCd5kX/UwE4CxaAQYQxQJCQkJCQkJie8p7ARe7MtfJGL+YSfK2FxTU4OGhgaceuqpPlI2Ho/j888/99UJaw8ATjnlFNTX12PtWn/SB4m9A0rpkoCfDyilX0pSdt+BqmqbM54XagRFajB5KVpe7TwLlAi3I8uDtlGVxRNQhAKEckRsDnYrwmOwpB7/sst9dfwbeb6H9Zj10LkZkgdZ9SivWhKdk0XIEEIdgjxjr4a8cNtEhLPslVHMNnczP3/aKwGqmHGJSCoKipO+KwIA/GRzkbPdUA3QhKn+Iwp1l4+rqs+ewU7+FeHap7qO+lZT3eZVgAkIU842x47VIWZt8pESnzrMGWM8URJEzAaoy7yKWWERM1Q93MrAYEikzf9dDMC1Moja14prP8UQs9V/ex9qSxR1t4evNnFi5RWzAWQqpeL7jDIqZEKI11u1jfd9w403YtdJZzrXuq7VJNN4KwO7X1xSzSL2LMVsuiGCXQPPhPrRcue8AhWz1t8irJVBJICMVjgJ35INS7CqebtnG9V0NI+7HztGPY2GD3ai5cmnPP6vjmI2FaSYZRtjni/JcGKWJ9kSakLgQRyStCxPYJNmAaaVAU1yxCyjmC2IFiBihUKs/qUGQOvrIQI7WaNV+yfwdQWOlUEx4wtrL/fnIbIoSWpJx14hXDFrnpdGNQ95qoT1bcAKsqgBTPtkmm+7QQ0PGS3yJ+8x9Uscv7UQx2x3J+60GsbDWIvisy/fd+O2/CC+74rZXIjZLTB9tmysAnAmIaQEAAghCoBzAWwX1JWQkJCQkJCQ2KuYPXs23nnnHeFLYVVVFaZOnQoAOP30053ttl3A1q1+ZUK3bt1QUlKCzz77DPG4m7xCVVWMHj0aNTU1vjoVFRUghAjbA4BbbrkFAHD99ddj586dvv0tLS34+OOPw05TQuIHCaqqSH+1Aeo36zMXhqni+bb6W8dDr5AjZU0vUKa86CXNUZu1MflXBy2XBQSK2VyJWkaVSrgwfc6yWZ6HQ5pnKm+RRdT5x4JNkrKEjL3UXmEi45vneWUByaYbOvo/3B+Lt5mkn016slYGX//v/4epZzRiwqUtDkccCVAvi0BVuJ6tikskQ9NA02KPWR/xq+nY2rjVipEhkpICxSznkxkJIGYp9avDHIKMJygDrAyC1GWsx2xY0iiPlQE4kjidhqG599j4NyZYbVvkla5g9xn/g27bvcygqvpjJQXZLQD2+RgHErNBDbiKWUKI136jjYrZ2nlr0bpJRWLGP8zvlnKaVSUDrrWBTXY780ed3Gz3rVtU7PntXc5OYk9q8H//WGPIIHCSfwUqZqNssjQD1y64Fv9q3eAtZBion/Zv56u+u8ajtrb7jB3PrE2B595nPWaZCQR23G+q3YSNNRt94zOpJgNJQACe518+YPs627AJzaSahJHile3e53XU2k1jdpI7AqOxQXgclgA1WvznpysU8UKzLzon3HuqMSlYDgAxMZtKJxCznj2thSE3tTWJ41PMamEqW/HET9Qg2NKwxbfdgOH18c7y3lKbvXFvWLnE+axY1kTfd8VsLlYG/wFwAyEkRilVAcwA8AKADy0Lg8EAjgLwYP7DlJCQkJCQkJDIDStWrMDkyZPRo0cPDB48GH369AEAbNq0CW+88QYSiQSGDRuGyy+/3KkzaNAglJSUYNKkSairq0P37t0BADfddBPKy8tx8803Y8KECTjmmGMwbNgwpNNpLF68GHV1dRgyZAgWL17siaGsrAwnn3wyPvjgAwwfPhxHHHEEIpEILrroIhx77LE466yzMGHCBNx1113o378/zj//fPTp0wfxeBxbtmzBkiVLMHjwYCxatCirc/7jH//oEMTLli0DAEycOBEzZ84EAFx88cVZ++lKSOxL0ESrqV4LSyxil6UU31R/42RNB1yVGVMos5WBvUTYp5jNlpht44sf9/JJYCp+tU2bEDnsMJBIxFkK65bJ0cpAtNw5qKzdEax6UOQxq+vm8n1mM0/6hh7POid2t00uEoUE++hmYWWQUBMwIgYUS4dkL9VlFbON/Q/FnPoWFKEIRKGgOhDjPTURTFQbGgFNmiQTIa43MVVVv5WBbliKWe9JvVy7BrtbdwMRJkZAmPAIvJWBdX0cEjTtLnXXDR09GiK4cGUp5pwUd60MeCI2RysDVjErvNYWwpJ/GVW7wF7caNyMIWodctD6IsT3xMEjpfqXRUfKy4KD8FTm6oqWSBsGhEmPAIB6x4HOKGbbOx9jq9lt78yoEUDM2n1qXXfSudxTzkjqrsdsVAFgCDxh7eRflFHMiuMy2zCxcvtKAIzynFh9pRswmCFlNDZD1Yvd79YzmbXmMFj/WPY6eJ4DTHI163eAYRg46zkzzzz//EvpKaH9h9NGiA9qW9CQ8BKprVb2rFa1FTSlgx3fCiWeeO3+poX284/AaBQTqRFqqrNJNAqa8J+frgDVnc0bp1uT+3srnvbfP4D4vk6nzOthgCIVzUIxy/nARgT2L3wdHhHdfEb7ylPqeQ5mOynK+/PWbVgHdOfK/ICI2edh2hccAGAXpXQmIeQnAG4CcKxV5iUAD+Q3RAkJCQkJCQmJ3HHbbbehf//+ePfdd7F69Wq89dZbSCaT6Nq1K8444wxcc801uOaaazxKhoqKCsybNw9jx47FtGnT0NJieqH98pe/RHl5OcaNG4cDDzwQzz33HKZMmYLy8nKcc845GD9+PO69915hHC+++CJuueUWLFq0CLNnzwalFIceeiiOPdb88+mOO+7AaaedhieeeALLli3Da6+9hvLychxyyCG44YYbcM0112R9znPnzsWWLV4Vwttvv+187t27tyRmcwQh5HAA7wKglNK+mcpL5Ak5LD1tSjZ5SFnAn0CHb09MzFp+h7zHbDutDPQ91SCFRVA6dxbu90tAgcNqo9CQAqmqQuSQQ3wK2SAVZ2BouuvlyFflCTZKqfmTqVFdB2KxzLEwVgaUPZhAMQtL2WiSQoHMrLB97ybvNlHyLycxGFGgEDOBSpQS7GzciYPLD2aO5raVjBkospYMGzpx1H9EgTtuVM3v3WoTs1yom2kzaMSvXBQRszSTlYGtCqUKDEPH+V+U4IpPylBfokO7zKrLe8wGqAyz8ZgNU8yySYb4e83Y5V0d0rXBbDNm3bPFARYkRWP+hY33LESno7s425SKcmFZHiLFrL5lE1qfex6lt94KpaIyMIO86Dw0NX/Jv0jMpGTqE+Zy9hgnarSTRblkt03MdvKUi5TFXMWsRap6JmQA5zloENOfFPBmt2ehFCiw77V31r1jHsNWnhMKSoEN6UZ01RRnGbbe1GqOKetx4yhmWaKVTY7Fjnn2M2tloLmkp23RYOjmpAulphd3Uk0G+iWz590ebKrdhD5dzQl+3irAVswm1AQM1QDgkqQKNZ8x2to1qP3dnzCg0nQHNezkg1SBUS8mZgGY92w0aiYb5KApFNXlFjHbyBCzKTExqwmcmdIJ8+9cLQKkw4hZ6x7Sdd3zrFL4MSaowyNqEKR0/7OHgnJWBm27t9TddT5iNtffmXsbWROzlNL1AB7mtt1CCHkQwOEANlNKd+c5PgkJCQkJCQmJNqFnz54YNWoURo0alVO9oUOHYujQocJ90WgUt956K2699VbfvunTp2P69Om+7f369cPrr78eeszBgwdj8ODBOcUpwubNm9vdhoQPMQC9kT09J5EPWCo7Sonz8h0E0fJMn2KWV+0JiFmHy4sEJw0LheAlsvgEM7lJzx4HYd2m71BUVOQr02/wYGzZsQPNn65BNBr1qKtsb8RnHn8Gf33wrwCA1z54Df379w8PxTAwf/58zJ49G5988gn2VFcjokTQ86CDcNJJP8GIoRfj1ONPBCCwMgD19RelBKAUqqpiypzZWP3tN1i9aQO++uYbqKqKv425HyMvvUIcDEOSErjXk3Aq4C+++ALzp03HO0uWYvPO7ahtaMABXSow+CcDcecD43DiiSfaAXqbF/S7h6inQGnK7zFre2EqRLHFu4gaBJ9t+8xLzDLtJ6MURTY/QhXQuEnQkAizfFzT/Em2dF2omLWX7Sq64plM4BN9me3yVgZexSxL5lJdR1nKjKdzQnEVs7yVgc+X00Q2HrO8D7KnvmA5u7OPJ2bj5v1me6vqnGhVVaiz1BpUQfMalxTL2tKDI4iIQdFw+91oeG8bDtQ0dH5oguMXLAKl3uRfrIduuyWzEZOSaU42A3AJame39V01vJ7bvGJW6VzsesxGI8LY7HGlK4B9mAhzqalhoOb8S6CUFoHE3Oxfn2//zDyGs6rAJFI/U+sx1Ch16mu7G/Hb22twdP8umHhBQwAxy9gUsOGxVgZseYuYZclQe4LFfpaktJRPUe5BG73KbYy9dxh+Or8K0y/uhrHjXneulQ07AVdSS4Kq/KSQOU6rf3kTEtt1jIR53bSogijRTGK2NjgBLE2nQEpLYaR08E6kugLsthSzPRhitlUVj2XRfa1Zqn9doUiHsYOMxyz7HFN4VTbT18FWBu6EkqcuqFfBneN1UyI6DD2Cgnp/2993xWwuHrNCUEr3UEpXSFJWQkJCQkJCQkLiB4iNAPrAFCJI7CV4lp5qIS/cEKv7eHID1MjeyiDS1uRfwS9+26p2YdKkSaHViXUgNvkPiURAKcWcWXMcEmrerHniw1ssR1VVFU4//XRcccUVeOedd3DST36C3//il7jhyl+gf68+mP+vN3DWyOH42+yZwcHodqIjj+EfWpIJ/GniQ3hx4auo2r0bPXr04M5BGJj5n7XTIdIdxaz534033ohxT0xGOp3Gxeedhz+MGoWj+vXHnEVv4uSTT8arr74KtoITm4AYY6/vTe+UY8xrlZ4YACCtWYnBoDhvxREd+LLqS09bxSmWWOaOU2cRKqxiVtMAnvB0rAy8m+3vB5UdxCX/0tD6j6nY2mcQWh6b6LbL1qXe8/AQs+mUk/yuNKUIkzABcMgWHtkoZpWQ+yJUMbvbSxsc0GITsxbZxt1wGi8zZhBELPvK8co9Cuh1JtGn7zbtf4IyyNvlvYpZ91q0toHw8RCslmK2KWXGwz+7HMLa0JlxRaGUcYrZijL3XnAUswHJvwiFbvVrhLkp9K/XoumzOjQs3emZxNi25zsArkqbWBe/U8pLJyWrdJSkojhqewEUAyhvsa4pk8CLsspPT/Iv5iM7li0PUw8xaz0L7cmB9K4dUDduQhDam/yr4NMt+FFVAUr/a6ZT4j1cE5aVQVJNwn68tVjbIgaBAgXpPd57T48S5xmm15nWCETxx2mPSyPtH2e6AjQVG0jGDJSmFeg7zfha1BbheYh+76kpm5gF0mH3Wpr1mHW3+zxmmXtS3VWLmmGXI718KXTmHozqJJiYZcZjth6zNgq7xwAAnQSC4e+7YrbdxKyEhISEhISEhITEDxWUUo1SuoVS6s9UIdFxYImhTMSsQAXk+PjZ3B/3ghea4CrCy4ay9ZgVl6voXI7K8nI89NBDwiSBDqxYi9il3JTi7bffxrYt23DRlReh64Fd8forryPFKR93Ne3Cmt1r8F3Vdxg6dCiWL1+Oq6++Glu2bMGc6dPw4B/+hIdu+RPmPP4Uvlz6Pu66/ndobjHfXn1WBpxi1iaMqW6gpKgIC56cgu/eXoKd69bh2muv5SsL+sXw7HLUhpYnq71j+PDh+Ortd7D8n3Px5IMPYsL4cXj9b89h2oMPQ9M0XH/99Uin0/5jCI7JXt8jdsWcz0bE7VubPOQVsxtqvAmOShi+jifNjHqLUIkQVzGr6gLFrGH6J3K8iN33vbr08iwPTm1twK47XoAaj6Jp9r+tNrzj3LEysJYEsypbmladcVSWIoxykVvSH0BsilToAFDAhBC0BJ6v71PM7jGTXO3oYpbpVRuDYRiOYriQS36lcvMkLIRevCIIFLM2QWgrOMMUs6BeYkdn1MvrYjpuXeBfRRMKgYWEvfw8xj3ObM9ZzdDc8yAUKC31lFPKShiPWavT+OeenfxLcZXJ7LjT1q5lCrt1Ey0mEWlfc/t+6ZT00knU8ugtSyq4+e1yzH62O9LLl8JgiFmDGYMef+kgYtZaKs+rVAHXa7bXjVNQ+/Iq334H7fSYrYyb53Vgs9mv8XTc89xMWorZlJ6CYY1jW0UbsawM+F9TesQluI1689wiRYJJJpuYFQx1XaEAAaos1Wxi5X8BuCS/ry0BMatZ/suaQqGGWRlYzwrd0D2TMhHOyoB99sW/iqPxw91oemgSWhprne1FKnFWLLDwP1FyJGb7mhOF/LjcH7D/RSwhISEhISEhISEh8cMGuxwyR8UsoaZKicJ82eTbA4KsDOy1vRapQbyKzkwIInuLi4pw5/W/Q1NTE8aOHZuxHc+SdsPA1KlTAQCXDb8MF1x6Aerr6vGfN//jqVPTWgMCgscnPY5Vq1bhtNNOw6xZs1BRUeFbFt+5tAz3/P5m/OFXJqlamlLQtZl5LaQAZfvUDkfXUBArwHmDT8dBB3bzkudh4PrFIe0cKwNz/0033YR+hx5m7opEnAP/4oIL0b9/f9TW1mLNmjX+uDJ4zJak3f5kOT+bGIgoEWdpdNQAtjdt97RVmnTb4r2LjQZb6UYcpTUVKGaDkn8plKCElODB8x/07EsziXwinSz7C87KoFNSQUxjFbPMddY0FFnnXZZUoNukLu/DGUDMBqnLWMUsfy4AsKF6A/o93A9z1s5xtvkUszWmynhNzzRUheLQuigatqxz7EeKOI/ZcMVs+LPBLccTs25/PV//JR75zyNAa7DHLOUUsx+rLsmkUGDBtwuyisNpr9klzmyy3E7YxJP/bPIvm5wncJPN+QKFq8L1KQ4tglIn7rORvY7axo1MW+7HIuu6O4ScdejOCfMDiXjHZmmKoO/uGCKUIL38Q1DV3c/aFHiGGfOZJXJtQrM55SdmIySC4hRBSV3Mt49FW5N/GYYBTddQaam6D7Tuy3gq7txfgOnZCwCpdALUYrxbC81jKtRU+FKDH9fEeQTqTeakQKTYf00bGk2FOdX895tmFbd9ZuvXmuR0QhOPZdHvPd22MsjgMWs/K8zkX4xynh9jaf+kg97cipZmd1IyiJiN8JM9OSpmC044CgDQOeWfzZGKWQkJCQkJCQkJCQkJiVzAEqkZiFn+ZdMmePQIdZeu8+QQ951dWgwf4dE+xSwA3HjlNejbpw+mTJmCdevWiQsJBIi7d1dj4cKFOLzf4Tj+p8dj2NXDAABzZs7xFwYwb6ZpczBmzBgoCrO0XoCCwgLnc2VLBAXsi7/dH2xMPLkh8P/js6UD8FkZOC/kjk8kW9Reih3xHDsWM4mXaDTqVFDtXFv+I3qub3HavZ46877OKmbtWCI6QU2LV9VcmnQDKfARs6aSkESIs3wcmubPRq5TGDA86kQAiKkUa25bg54VPX1qWhs2ucaTSyM+6IxHZh/gnIdnAiOteawMbM9dn2I2IDmPHrD0myUNRVYGoxeOBo1QaIpfMdvyxCSkl7zn9Fl9qY5N3VQoIKhe9JpD+rLXC2AmVwBUlXvHcrbELDhlLaGAkTbPMUIVvLLmFdB0iJUBqIfsTzByScUgqCyszC4Ou7VmhmS0CC/bFzTGEXDO84zqgKa6J8DDcGN0FLMByb90hTqKWZb31ra4kxIsqVtsMYCulYH5v61MJJ28x4lQgu6W56m+uxpUZSbaUgzp6nVKccESudZHm7hm41OIgl41WaRNaqMP8ImTTsSARwc4PsiOYjYZd32r4V4O03aAIB2hjtJbMYipmDW4cc0Qs0bcHHuRsgLwqG3cA2oYMKwLZrDKbevi2T6z8Q2m5YRKs59w0axxrxMabmVg+xNzVgY+xayAmDVa0z7FLK/K13QNEf73Rw7ELFEMFAw0fcg7Jfw05/edmM06+ZeEhISEhISEhITEDxGEkFIAvwdwHoBDABQKilFKad+9GtgPFedmTtgTAZvXOhyHZVnu6JB9BACflqtl0loUQ8HuZAMO5lM8ixDy8h+LxfDgPffgqpEjceedd2L+/PniIDjMmPMKVFXFVddcBQDo/+P+GHDMAHyy/BNs2LAB/fr1c8pW7ajCrh27EI1G8bOf/cxtRPcrigGAEipM4OSxMnCIbf9SepplYhZeSewonEWKP3spdsRNgvbJ6lX46quvcMghh+Doo48GLI9SVaGIggTYJ4gVsyyvahOaERIBsQZb1ACaVa8yrzTMerTRKhtRXMWsrjMKTQqAgBoU1KA+lWmM6f8gYtYhxAVkad/qKN5xkn+5+4mmochirktTBGvqNqO6qRol6eysDAKTf7GKWUpgGIY7AQAzKz0PCgp15WeoGjcPhZVzUDTATKwWLzKwroeKI6oK0PLxZyiz+oYnvzXmQfBtDxU9GhkKo42KWcWAo+IstNR71FHMmteMOwlPQjmPYpAC5UXeRFwZ44m7JKNNjjvErM9j1vxuUMO9XqJHqGG4RFaAYta+hw1iLYOHa5UAANrOaqawW9cm+W1FI7EsQWwCzCgvABp0T2BdEuaFM2rqrQReVlmGdPWYPrOKWdaWw4rPtnpwi1MoUNBnTxa/KdrgMavpGpqNZiACRzFbGVdAW1rQkm5BCTOB4JxFi/mwSMQMGI4i2Zr84S6aFnUJbr1FNfeXlwDw2hA0xGtB6+sBEKgRA5oCFFvXQ+cUs6md1TAMI1B+KSInbe9XLYNi1raXMIlZ91wa1Fb8/LmfY+6v56IoViT0rTaSGlqa61BmfS9KExS1aKCG4Si/m1PNfhV+DsRstJQicvChAKSVgYSEhISEhISEhMR+BUJIFwArADwMYCCAHwGoANAdQG/rpwDy7+b/c7DfEZMicz8RMqiyLjv/fzBo0CC8+uqrWLZsmW8/rzallOIfL78MRVFw9fCrne3DrhoGSimee+45T/k91XsAAF27dkVRkUszUy2AmPUdn/lgka4ExHF08FkXiBSzISSpTQrYSilisxJCxaxJLNU3NeLa/5+9946zpKjX/9/VfdKknbBxNu+Sw7IgKAiKZJScxEuSBUW9GLjCvaCil6jCRVD4XsMVA3hRQFDJOcdlicuybGJznjxz8jndVb8/qvM5M7sgCP5uP7yWmdNdXV1VXdVn6qmnns/F3wHguuuuwzTNmnYWSoQIQbunm7YByVGvNyIUIQLFquMxaxqm5w+bkKJGbRZUzEYhs45Pb8LQKl/QZKFDLAlXYmhLJJKoIC2hhKd0NaMB6xy4BLhHjAu/3TOW4W1FDlkdWHbAY9bgt/N/y96/2ruWNBmOmK1jU6GUCvmfmhL6C/2hNBW7DimjJPbSJbpYeYl0tm1nM4pl4/X95dKNIYIwiKBidmlnxCLC2jrCLUpAaysD3Y5py7EJcJR+IiprBr0wEeh3iUASQw0fLA3AWrYEa/4boWMy75OM33vrFtb1r6NkaVIvEcnKdQkIBv8SdZpKSeVbGaRcYjaSSG7BY7YrENRK1hKz7vh2iVmXRLcaExjRgjuwewe9AF4QXkAIlk8psNetZeNeB1JYGQge5/SLfCUS0MqxCJgRUcwKUfv8tnYRKXf1j1k99ZMMXXQha/q0rXyq6gc5MxBYi9+mUC3QGFDMul3UKOr+X0opbxHIUC4xG0bVFOC0oyw5Sub2xpp0g9leZI8mzEtJ6dkXgD82XMWs3Z1jdf9qhNCLJjXtUI+YdTxhbUNRGUG26XnMKjv0HhPCYNHAIr56x1d1ujqKWVW2Keb8Ba+pfUlu/flY+r5wmncsV87VqPDfjco1OTqDMXkKAM313tlbXg/+UBErZmPEiBEjRowYMWL8X8b3gZ2BLwE3ATbwU+AKYG/gv4E8Wk0b4/3AI1uebFkrVmAN6UlucmwL5qRJgA4sUl60EoD07B0QQrBm3WLG9UDVVKwaa9GRMxidM+lvkmSqgoaKIDV5DAurG73JWVOiiZljZnr3kwP9VFZtxjAVqVk7saRrCaN7fT/HrcKWtstWLa699lr23XdfLrjgAubOnauji7uXmSIUpfypeXNZvmYNhx9+OJMmTWJDdgMARxx/BNdefi033XQTV1xxhbfN39vGHGVthlXMRsvvnEf4Kk3h/a/WymArSbGolcHIilnnZzLB5sFuTvq3r/POmtVceOGFnHzyyeGkAeJjc7aLaR3T9H2ymsDZaUOKx3cOKzjtIKnhEMSmMMGwAYVpgWEadA11MW7UOGCYSb5bhpwmGUPBvyzbU0EKQ6GkJs20x2z4+mNebWbVlE8z+cGfD6+YdQkyy/GsNFSIIzcHdX2DPp6i6hOzTSXBZ+c30tNiI8dEgpL9PYpZKegt9DK6ebR3rF7QMKUUthP0TlkCO6efSTYj2ehYEzSsrwL1fUKDitll46OK3620MogSs0ogHbIwbQldXycImPvMwjcK22OEPTaHD5YGsP6QOcgKTF/6CKKlRWcXIGaHZInvP/h9L0p9jWLWuZet7MBYrvOuUQErA+edEH0nKc9j1rcySCiD3S/bnltX7kXjhjwuRaTqELOelUEiPHarjUkaUlCvGeyBfJiYrQYbN6iYFfSedS6F1ZFMlMHpN5/C2FETQocF2iJgene43whToqzIu2UrPWbz9z6JVUzQ/bsX6c5uhJm+WtaFtXgR+dY8TeWwLzeAUaoCKUpJhetcYChRl5i1TDylvhO/D6tjFLAplC5bW/pgcgAAIABJREFUGET2ahuAYlKRClgHuM+wp8X5rspWWdK1xLlvnfdrPULfWRiyDUYM/uUuNkXfYy4f/8YmZ/Ghjj3KJsvi6Xee4aTAMVMJSovXe59z5VztOzCq+K4TNM9FsrMd0d6ObUgylkGqCpVA16j5XvyIIV75jxEjRowYMWLEiPF/GccAzyilfq8CkiilMRc4AtgRuPjDKuD/RQRJgZC3ZpBocJWGVWdLrh1WdUmhPMWNjCjagtuSITDhc8g1S1qhSay9YQPVxUtrtvOHMxmZmFW2zSc/+UlOOukk5s2bx5///Gf3jC63GZ6a/fav+vycOXNIdw94gXbaOto44NAD2Lx5M3fffbeXftx4TST29PRQKvn776NqMa99IuULql299hL47RDJZzhSLKgsVErVqDRHJGYdZItFjjnhJF54/VXOO+NMrr766uAd9P8DzydbHvLydYmGlqJBQyU8GR82+JejXEs4BNKr61710oUImAikQzKKhOkrZi3baxuXeMHWpFm9gFnSSlB5/PEaNa1X26hiNiIrM7IF53zg+dg+MZuxDM5/qI0f3TGa7ojCdTgrgLqB7FSYNDQl9OTCfrz1CEqJRPbqgF/SNpB53e65jGRDq/69oTh88KZg8K/eZhnymVXWVtppRIhZQ4JyCK50VROznmK2zs54RVi9FxSHGkoMq5i116zGKiSQVoL8W75qVuV99aepBArlqY1rg3/pn1JJlLUlKwPn9DBWBtJpB2kEg3/B519uJHX/WqxiQLcXuNQdR27XE2a4AJXGBEam/jipZouhhQQZeGZhf2morov0TwevbJzH3e/cHTomEJiYzOiOKGaDz89Vz0a9dodBsD/J17Vfa0cuXK/75t7Nc6ufC1mkGM7LKFHS7VtMKaTzQjVkfcVsxRReO0pL18EaW2uJkS8MofocYjYlPW9t8J9hIeWUuwrv9LwDQNpI14zjeh7gttPvLYOt9pg1Au8xV+meq+rFhnq+1UqaPLK+dpeInffHpVbMRi1EIsRsLmxnEURy2iSEYVB22qI5YmcwnIr4o4L3jZgVQkwVQkx8v/KLESNGjBgxYsSIEeMfgCnAa4HPkoDHrFKqC3gQ+Bdi/OMQnJA5s/pitcji3mV+Esc3MuEQswJNMrhTu/GJJo+8i07IohNWNyiSqwSLBgerdg1hlyTS8TfdYpnrwVGYXnXVVSSTSb773e9SqVQ8/sML2AN09/Vx75OPA3DKKafQMmNbps/cld06d2O3zt149P5HAfj1r3/tlXXCpAl0TurEsiyeeeYZ7HXrKM9fhHLIAn/VwfkRmQMHP0pv27zw9k3XbAceLiibk25Z9zJ6liyi2psP3c9rW5eYdcujFEoJsvk8Rx57LC/PfYXz53yJH19wEQs3LfS3Mge7hpOnULCqb5VTLp1/S9EIkSegfWndvuApZgNWBhmpCRIvL7agmC04ZF7CQDj2C8q2wembhvNIldTBv4ZTxcqBQczhOH+XXHOI1yjHk3ACBwUVs1h+8K8gNuT7Qp+HVcxKG1S47goVCkxlKOgvhom04RSzsm/A+SSwcjpNLiOxklv2Bw0SUfmM5JojBnhzch37hpHgjG83cJKhQDlFTVlCk57OYkY9YhYVJmajHrP1FMZSSr7+3/5W7S/cdg4H/+pguoa6mLvqFe94wta2Gu5CQcrJqpSUznmHvEOOaGVA0Mog7RDdkf52c98CAOyE8BWzNkzur91IXU8x63rMEllEKjWlMBqHUTwXLILNo4JdJOQxK7AK9Z/nwQsbaYoEhTMw6MhBazH8wIxAVVKjnEWcrSTkZClgoeCUJaqYfW3DMtYX19ddsEmU9X1KyUBwNemrnoOomrWLceV6xGwpi+zX46yQUl7AL8BT5ZaSTr+2YE3/GgCakk2gNLHs2i4Io5aclM4Yskw1sses5ROzQf7WW6Rwm6kOMdtYFl4/DsIObGjIlrM1wRFrFgPzwxOzyyakOfH3J5LLuO//2vvVs1r5qOD9VMyuAtYKIZ4WQsRbvWLEiBEjRowYMWL8M6CAti9wMQhMiKTZjA4KFuMfhaDSyyGkBooDYQ9TJxhJ0PdST/5ctk54VIqKKNpqvOtchWMyoQlC4acIqYxG2g65BV7WVTxus802nHvuuaxcuZIfXvND/7qUT2zcct9dVKpVPrbLLpx95pnMOe5E5hx3Ip//wgkcf+rxHH/K8YwdO5bHHnuMpcuWeteddLreLHrllVdSHciilEC6xE5EaVmKBEQSoSa3ver6HrORSfJw6mGlyc+SXaobhMUjsRxiVrnta1kMZrMc/a9f4vnnX+Ar3zqHH57370ihSamoOlMBSvhEW97Ka69Qp7+MKomQvyxA2VBsf832fOL6T3gkYsJIBIhZ/bOn4N8rGH09Cul4SpIwPV9cFVTMJlxSu37wLy+fgaFhPVZdZadbLyNCHCZzlVA6ALNYrZtfbzEcWGg41bOtbL781CjuuGECMzf7TFfYY1bQV+iruS4KqSRywL+v5Si/82lFKpkZUaUHYcVsLi1ZMLXCPbtrRufdesy6xJOhBMoZF2lLK1Y9+wmzznN4Dx6z97x1D3b3gPd5dNFkVW4VX//b1/nvJX/zjptSUKgWPGLWJbAKKWcngPSDf3kK53pFVNInZpMp51g4zZDhkGsioJhVwrtXCCFi1vFY9RS5UWI2idmUqs0DsIvKC+AFeCStJvoCx5XAHiZo0/kPtXH+g22hY4YwmF5nnUwk/TxT43W4qeqGftbM+CTZKy6vm78LWQ7YgZR1/V3FrO28a8Zl9XhoquMxmwwQs26VTSVoLta2bzVRawlRHttek65QLCD7dT8qpFRdj9mS8/xMS7BhSFvetGXaaCkIfnvjOP7zbx1+fk6QOReed6wYOfgXzsKPrcLBv4K/W7ZVVzGbsQzSVm2nlVbCU4/nK/kaj1lbKh58+0GPTA4qzaO4YPAu3uh9g64mnUlLwb9fuiq46N42Bm64Dnv5O1jLloxoi/Bh4P0kZtcA64D9gAeEEK9uIX2MGDFixIgRI0aMGB821qJVsy7eBvYXIqSb+hRR47cYHywCjELeUbnY0g6RpO6EMqjiS8gAwSjE1itmXSItlaRslUP3CcW0GYmX3ZJiNrDV/HsXf4+W1hZ+9pOfkS86PqVJnwC76W93AnDD9y/hxhtu4JeXXMkvL7mS66+4gh/912X89uIrOeeM03UQsN/6QcBO/8rpzJ49m2effZazLrqQgWyAEHNmfvl8nh/9z8/5f7//Xah4wap5RHaQma0hZofbe69qA/Xg88+eYlYESRlFf1cXR3ztbF5aMJ+LLr6Ib130zVC5PNLPbWcR9JkVCATduW5P6ddSqlXMrqGAMhW91V4sO+Ax6xAk228y+ez8Rvpzvcj+Ptbt9CkOWdTMcJAll4A1fcWzHQjSlHDbjpEVs9k6/oreyYhiNhGuU6rgKKID27DT+fpK2IFIZPvhVM+2tJm1NoWpBLus9wm3sMcsDJYGa66LQqGwBwP3dbwvcxlJc7KZ8khkEGHnBjc4kasm3ZKVQfXluZT+eqf3PNzrDekHlUpXHWK2pIkaI1F/kIcUswH1nyFrFfYAK3tXMimgRG3P63ov71tOOuD/aUooWSWvf7tWBsWka9Gi00klvXHpDp3x/xbQw6nAazNVXzHrEqvS8D1QTVk/in1dj1nnkNncEEpbaExgRI55+VQMlPTzdxeKagPPiVC6KPZfEs7fFCbTNuu8hpr8vIwA2ZmcrtdYixsk1VyCrhseHTZ/XVa/wVIO8eoqZleO1WNl3JD+3BhQzLrfOUmnGFox61sZ1CNmK2YtMZsf11aTrlQuIAf1ezyflqFgeK4q1+srlqC7oINAjmkcw8zuJE0Vg13XpTjulSZ+e+NYBt98JZS/Z1FgbiH4V1AxG/SYDfz+0uqXvJ0sUbhWPFHYK7T1QqFSqFm4erraxTce+AaXPHSJLsMIVgZd7bog2Qbl3M//E+4Lc5s5+O1G8lc9yIbDvsjqfb9M5Zknh83rw8D7FvxLKTUdvMi2+zv/YsSIESNGjBgxYsT4KONp4GQhhHA8Zm8HbgDuF0LcCxwA7AP88sMr4v89BEnOspKUrTKWtMKKWctCSRnaIhndLllDBnrHI8SsS5qm0jWkYpCMKlbLDEvTbcljNkB0NLU28eVvfZmfXvFTP4GzR/2ZV+axdNVKdt1uez4+a1aIPGusCBoqCTJVwRcPPpIf//Rn3PKHWzjtm6eRSCRoaGjgoYce4qQTT+S2B+7jgWee4qC992WbKVOpCMnq1Wt4at5chnI5rr44bJsc9piVWsETJE+d8l/zuxtZumoFQsCbq1cC8Id7/sYLb2hHkP2POJyjTz2utv4RK4NQMBYpOfGUU3jt7beYOWUKlm3x82t/QUfeRAF9zTYJkeBLp32JXUfrYFMKn5htECkqlBkoDtDh1KOlaITIE4BSoJKWs6c6aSQRpibljpunn+6dLQvIv3UD5Z76JJ1lKBJSOMSs6RCzrpWB9Il+R1mo5PAeswAym69zTgGCd1SJl+b/jX1dYjai6EwVLe8e/rH6xGyxWCIYZGs4xayUks4BTWx0DiS84oQ9ZgWDxQgxq+yaxQuF8oKkBVFIKSZm2ignB2kZQbwWsmRwfrVdJfIWiNlN/3I+laxgzBn7ADpAIEDKFh5BnLaEztdVzNYhZpWrmHVOhRWzoq5SeEN2A9v3++RQe07/nq1kSVo+2W1KKFtlJBKBIOk8ElcF6ba5QkHEY7b54u9jrdtA750LHI9Z18qgvmLW5fSk8JXIpi28bd/th82g/5GVTqX96zKux6zTR1M7TIMFC7zzxaYURmszEFZQAwiPhNb92VXPeopFIb1nEUUxKWmo1j9nGiZTu/W5dZNh5yVO3Sx9H4DEpPHAyrrX14Os+pVucN4dHc5zmz+1zLZdSab3OIrZwKKP+1pJV/QvxZSkoaKvMxQ0h2MQAvWtDEqtTVQNFbI+qFTKSGecFVIqFAzP/b3sELMpy2SwoNW1E0dNpNyvn1HKFpz+fAujSgaFP90OHz/Ay0PZfvCvkT1mHcsDaYWI2eAixTMrnmGv6qy617cW6j9Ha8VyErNmU6gWahSzeWdcvbXpLV2GQu2CX8NEg9KUVipJrRTOOlYGHSW/obbdHHjnuWMkuvXgQ8b7Rsy6UEoNAPc4/2LEiBEjRowYMWLE+CjjZiAFTEarZ38FHAQcBxzmpHke+P6HUrr/qwiQTIbSxIUt7RB5qCwLVciHeKBEkBcSwvugosRsTbRyPZkXmTSlajZ0LkjM9lfz75mYDdapalc57Uun8eeb/sz6tev98gK/++sdAMw57iStgrN98iwdIKmmTZzEIYccwqOPPsrTjzzNwUccDMCECRN46oEHuP3Xv+fPD93PvAXzefDZpzAMgykTOjn+0MM585gT2W3v2RAgxLRKOOLJKPxyueV/9IVnefbVl0NVmzv/debOfx0As7WZQz4/vLOdUopcOcfm7GYmCaUZWylZuWoVACvWruXaq66te+2eu+zJrgcd7OflFK090cSgKmPbVZTSpJSpBKMjgXuCAbJCHrOJ8CR90uIhci89PWwdiklFS1mQsyQpTK12dhXPtvTUZSJpArZWzKoRFLP5Us05M2VjVxL0JhT//ui/87y9jc4zQhymC27QMxU5VkuEaA/NgBfocFYA/QO0OYqziQN+26QiHrND5bA1QjSoHjges7lS6Fg+JZEGjGkaQzk5UHNNEOk6XrkuqViUNjtfszMf6/wYt5x+S026ah5QBtZqPcbcqPNBsjdlCYQQHlGoVYyRsRzxmA3aRAhVXzG7ObuZAwKK2dGOYtYSFinLszEnIQUlq4RCIRDelm83oJPpCcWVT6QHm8Ql90Iesymv3C6klD4xa+it6wCm8hWzzWefweDjlyBtM0T0N0QUs0ZHG10tlretP99kYra31LRBEMKQWhGrDFSxCG6wNaGc93Htc86nFQ0OFx1VVidEgik9um+u2a6RnZc4KvXgUE68O7oraJHcUDUxpK+QfXNqhaNfV0wYTNBYFqFFHzdoVSqgmPUVyYKmgiQ6Hium+35woShmTMpJRTJgk1Cplv3t/ikVsvZwA4xJA0oJScYyqOSzkIYpbVPID/j1H+U84+qyNaFyuHYglqG88VEPbjqtmPXLlwwqZte8hBq9Q93rh1XMrl2r61bJ13jMup7QAyX9jlDF2gWecX+4nv/X9yS8uhAIErN+3ccPBtrZrWLin5SYFUIklVL1l95ixIgRI0aMGDFixPgnhFLqNeBfA58t4AQhxJ7Atug4Ci+rKLP3AUAIMQX4KXAoepb6GPBvSqk1I16or80AVwCnA23AG8BFSqlnIukM4CLgq2gv3SXA5Uqpv7yPVfn7EZgfGlITmbayCU2lLBuVD0/UQoRJyGNWecSHzt6/gVLKk16KTAOlQb0V1J1GBsko12tS1POarTOnLb6+yD/tEB2FSoGKVSGVTvH0sw8xqT+BkQQzmaAK3PSja/jdtddguKTpMF6uwlA88sgjrO1fy0B5IFQvUSpx4qGf5cRDP+ulH2iUtBUMpNAESy5CooUUs0G7gYiVwaO/u9lTvaVn70B29QpSA/40Mb3jNJYMrR62eaSSrOpfpZWUJHQ7S8nyV16huqEPIwkbOxvIlYfYZnMSKWD5+CoJkWCn8TthrVnj5ec+7kYjCVYgOJEDl1RxkQoQ0e62+6SZ9KwMXEzcKCj0VHWj1FHzlZKKljKULUEKIGBl0F0t8GbPIj4OGA4xqxxibzhBWl1itkFgV3wPxzV2gdGIGuIwVdK/B8Wj6TpEEICoRBYohgn+lVmx3vu90yEXBSLiMasjqQNYC+ZTuu8+pJA1t1UoZD68vTmfliilGNs0llJiGSOhnjdl1XmsK1SFsijzwvoXatKochll64RWj1YcuorAoPdwuqqJ2aob/CtpAnWCmIWsDPzj5jDEbE+hh4khKwNHQWkYEeUx2l/WOeTaH6zrsJi1Lu1ZGShU3eBfwlHa6+B5zrG0Jn6DxVo7sNZTvErhb7VP2MIjZu3xYxlKQLNNyAbBD/7llMUwWDk2SMwmSe0xC/6ykJVjy8zo9olnr5ymAiFRtokaHEQ5LKgQjle0M3ZtobxxHNy2HyVmk5hM6tOLDKt2aof7ugBoPmAWmbVdNB5zCPa6DTXlAFCVCmqgH2Pc+PBxx+9FCIlSBi0lw1NbvjO+yqqxVbbflGJmV5JRdYICuu0UsjJQ0FTXykCFyEHDlJRllXJC0Rx4T1WrFWROE7OFlPTsC4CQeraUUmQsMMoWpGF6x3T6B2rJR7U+rHJ3XxyWMXLwL3cRx1Z2SNkaVMy+1f0WjKr/ThmWmHWeUbFarHl/u/05W9GLpWs3r6yl7xMmz6561vuYbXCI2cD9xg/VIWHfJWn/QePdeMyuF0JcLYTY9gMrTYwYMWLEiBEjxvsI27a58cYb+cxnPkNHRwfJZJJx48ax22678eUvf5l77glv8LnpppsQQnDTTTe9L/dftWoVQgjmzJnzvuQ3Et544w0uvfRS9ttvPzo7O0mlUkyaNIlTTjmF11577QO////foJR6VSl1u1LqpX8QKdsIPAHsCJwJnAFsBzwphGjaiix+C5wD/CdwFLAReFgIsXsk3RXApcB/A58D5gJ3CCGOeB+q8f4hSMwqQdWuIpUMK2ZtG5XVxJA7oQwSHtpj1lGARtWswY+Vit5kKxQimfSC8BiEVWLu79257mHKvAXFrNIRs5f3Lac7r/NwiWRhGiG2xVNwKjU8MetsabeCMi9XIVwq1aSXAaIAIDIHDrVt1vH1HVJVv1yuGk+AR3lXq9SqC1W4TOGiaaLOGVJeGaQERxksDFHfqzTavkJ5zxdbkjSSNQGvxg+GJ9/pwPbjcPCv8MR9Wk8aEDROSfGzQ/oZyoRfAe4285RL5KQS3kT/aauHN60e/ziaINOK2WGsDIqVGlLCaNDXuiqydTJIHPrIOEGKcoH2yZTqv7LMiIfncAHcGlb7UZU6B01QcNK8Jg5a1BjIS5Cr6PG3/qivsfm6hzhsQaYmL6UUshS+Ty6jQEF7Y/vIZBD1FbMu6VXFHT+CN9e/GUojN/u24Ha/XsBxPTRDxKyrUC3qukTbV1eCUDcPPitDirpKYau3z1Mpgu8xC5AKDA9TCip2BcMwaCkKOvImxaRkY5tus4TlFkGB5/0cuFE9xWzSUUUHyvn2prc9YlVbGbj390mzxwqLkc54zwUqvMOGlFdXgIKwWTnWJ+CGmkwav3ouUx+6jj8dUr/vGSYYznOTg/1Qdsh6oQjG6NvQ4ZP4rQFyraksQorKSb2ClG3Q1WLRM8HvlyKTYcz9f6Xxq+fyx+6wst9F36lfZOWuJ1B+9CHvmCoWUUovepgOubfdpiSjSgb9jTbdLTYrnDrP6E4wKrA1332nun21mPKDfxmyPjFbNlSor4mEolQtebYELmzLQua1F0IhrTw7DvDHAfg+s+mqLvvM0TOZNFBLPpq9kXez8w6wxRasDJzdBtH3WNDWQ5mKF9a9Uff6YYnZTfq7sFgt1lHMahQsPX7f3LiIGiQSvNP3jvexnpWBO96lafuLFx8xK4N3Q8wawH8AS4QQjwohThRCfLRo5hgxYsSIESNGDAe2bXPUUUfxla98hTfffJMjjjiCCy64gOOOO46xY8fypz/9if/6r//6sIv5vuFrX/sal112GeVymRNOOIFvf/vb7Lrrrtx2223svffe/O1vf9tyJjE+TJwDzASOU0rdpZS6GzgGmIZWtw4LIcRs4FTg20qpG5VSjwMno4PzXh5INw74d+AqpdRPlFJPKqW+CjwJXPVBVOq9IkjCGUqTaFFiFltiF/QkfqBRT8YSdjD4l8+lKClDZEZIMVtyDACdmZG3xb2OKlYoGCjWbr1WSjFg15Kh4TSCwbJWK7lEjqeSTJghFa7h+pUqf0JcQ2CJWmJWIDQRVq4NwLIF2jjE9bi/lw1JCdsri19A/WNp11JydvheWrmnws8KPLWlQpEwnPo5N1rWt5INxX4nbwNb2QQeIxDYJu8UJKiYRUoakg01qtPQFlZ8r0wIKGaNZI2VgYvGz+zBg7uX+P3+4S37rnov7RKzyaQXvM0QBtMcH0pzzCivyBtyG2qIBxeyaNX4IxsZJz+nIRwb0Fpi1ul2RlAtXqzvHesGQyu5bMowHrOZ9X4fz1QNxg+ZfPWZcGAiU4Lq7kNls1gFXdb9l9YGgFIo7HK44q5itr2hvYaIqilLlJi1fa/YIBF/6q2nsvNPdmbDoFbgyc0b/UtymlBzr2uoBIklgWlDoewE4UvVUhyKiJVBgGc2IorZrqEurnrsKpJ9WuXoBirryAWJ2bBituS8O6b2akJ1zWjLX2wK1NG1yAhJZg0nXy3L1sikvUMulnQt8fqYbfhjx1SChBQUk5L7Vj3pbY/PB26xTXeSmV0Jry/22UVWj/X7TrZB98nknh/3gi8BDDb4DSVMcNkjNTSI8qwM/MCEABs7/LYM+suaSoTIvR3X6PusHGtRCQwsl8QEmFdaSxSqUiH/6mpQBvk/3Opf16sXUwxTYmb0ffZcqdtx6QStaF4xTtd5m65kXaIxHVDMBtu3sQ4xWzVV6L1jJHQQuKgy2LYsZEH3j0JahcjYYLuVnHGUcQ5Ob5vm+0MHkCwmkV3+wourmLWNLQX/cghcOxr8S1e0WWiTn3vXPF/3+tZhiFmrW7/3S9VSzY4CtwtWnO+Y5X21m4eUaZK1fPshl5htLziLNoE8q80yYGUQsHT5CODdEKsTgZOArwAHo723uoQQvwN+o5Ra+QGUL0aMGDFixIgR4z3h1ltv5aGHHmL27Nk8/fTTtLa2hs4XCgVeeumlD6l07z9OO+00brnlFrbdNry56Y9//COnn34655xzDkceeSSpVGqYHGJ8yDgGmKuU8qQfSqmVQojngWOB67ZwbRUduMy91hJC3AZ8RwiRVkqVgcPRfrpRM8ZbgN8JIWZ8FP+md4lZTfYFFI8VCyEF0tCTsXFDpjNJdCUxQY9ZZ4LmfJ7QL6j0LSG50/ZeNHZhCKSSXhCelDCIhjUXCMp2baSi/kI/FWUDI6twDAlB0aKrPBIJk75K1vOvNVIpbMq6Kg4xW0hJkrbpTzQd1iUaeMhWNgWrSiaiwYkqZKum4oE35/LaC694+duGPt5QETRUDX1PYTIm1cx5c870rq0Y2lvQkGBHKN+qpUmMJx94gtvm+dvUbaEYaNITY1OY2Ni05Q1mdk7m02cf5QcJMg2kGnkreU2dpE1rQytDA+Go3dEtrI0Bosdtt4SRgHoqSaDxC59HPXU3UaFrKRnpF8mEN9FvLAt2X6MJncZTT2Dw+V8wJLSazKzW1gFAlm3MCKdpNKaBqtdHPJVmpCwNjh+lCBayUv8+DY5yrJKAjAVFJ4L6pQ9eys1v3kxKpLhgvwuY2RUOsjO1p47yTgkuuXKANdcehksrjMnXIzUVMrJOkE9rW5ExjWM8Qmk4ZKxwPx6dGU3V0MRxQkJCJrAMiyKakLv+meu5+uirkZt98qlcVDq+l0N6GZFGTFuCYrFAE/WJ2S15zAYXkg789YGUKDHDaZOeZsnkfkNbGTjvoFQ0YKFlcdVfx3gB19aMsbxt/MEFDTcQoAg2SdBqxPFqFWlHuRwY9Kv7V/MxhxzubdZm3G4QO9Dv0JfXv8xXhL7WdtpocEyV1p4khy5o9IlZWWRNhz9G8ym//tlAP17XYdO6XtdJJASGKbCKcOMD13PaUd/SiQywAm27vmOY1QugrWB475DDXtZ1eX77ElXbV+8qZ9v/ok2LkHUCuVWXLKLqBPQqzfe/7lRvr1NOhWhMQp9kz1UOMdup818xTv/UVga1itmGelYGkrrEbNkM9zUjZVC2yjULFUpKlLMAWUypEBkbUsw6z6CxaiBllcYNm2isGiFrCBeVF56SLYucAAAgAElEQVQjc9yJur52fSuDtoOmMvDEapp3biH3ds77HrKVHQn+pX8eucOR3L74dtYWu4CxNfUdNUzwr4f61nCalI5iNrI45fRB21kc3JztIUphLhpYgREIouYuDLQ6K1mjs4F3vsk/v8esUqoC/An4kxBie/TK/ReB7wIXCSEeAf4HuPcfsd0rRowYMWLEiBFjJLzwgvacmzNnTg0pC9DY2MiBBx7ofT7ggAN4+umnATjrrLM466yzvHMrV65k+vTpbNiwgd/85jc8/PDDLF++nL6+PsaMGcMBBxzAD37wA3baaSfvmksvvZTLLrsMgJtvvpmbb77ZO/f73/8+ZG/w8MMPc/311zNv3jyy2SyTJ0/mhBNO4OKLL6atLaxSGg7f/OY36x4/7bTTuOyyy1i2bBkLFixgzz333Kr8YvzDsQtwd53jC4HPb8W1K5VS0cgYC9FE7LbO77ugwz29UycdwM68mxDWHxBKlWLEY1ZQKBaxhY0IEJ/CITfcQEKgiVuXyMjni1426bzNtvkUm1stpICmsoFEsWnjWlqyBT0pSiToGxrwVKfUifhuSEBAz2APKZIoKamWbQasQbbGb8JQYarXVd5ttgsULEmzMz2zpPSoo2q5hEAr3EpJ5an9lFQMrCthGVZoH2RvdzfNdXw5o9SAAh598yV+9T+/2mK5p3ZO5FtnfBGctqmakESQkDU8IesGNkAKnnjoCe66Y8vxoD+958fZ/+yjPXKjUq1i1dlirxQM9ORIl6pemDJ3Hl/MFslWEjWK2Y58hJgN7Jnu6+2DRuhZvJah7vq+iPctfRspZYgAAWrIk9s3z2cfLFqAfd/RzNTizgp/Wvcqp+JHpt8916HraKoQOWeV7JqydxcGacDEULDv0gwfX6kJs6GBIUx8D890Ca6+6hqOCZAaw0Wyd/tOOaE9aP9QWMrvfrgdEomRNrCVhfruL5ixSAdyyqYlLWWDKX3D0wZW0T83to6XY7VSRVrh47mMRNmKZ3/1IHtuwcogisJggaTjd5y0YNvsTPLVFZgKVo21mLdoLhff9T0OKGxipnONqOoyDmeb8PXHWjHWLgZSbOrvoymywKIUNBQkZ73UxkOzCmFiSkHVtvjNz/+btskmJRzLCedW5aTy2rG5KMg1qrBiVsHM7gQfW+0/09WjLc9qIOl0TcM0OObB8/kF47GsCj/9weWI5Az2enEFncDbG/uYXJRAgpvmPcvhaHJ1myumg0ogTckRA+MA2OTYJNiGvxU926AYsAaQYoJTLl3Gd2Z3sOfjWY59rYn+Jp34pSVvs+oTVQYbbDa02by+6HWu/MmPmNC8DZsqQ4C2FnhpmxK7rNeLwQVpYTUkyQALli/gsD+ezp+YqBX+pt8eK5qLMMzbdHTO5NOLGzh5XjNpSzCUsXh8lwIdq9biUlt9vZs453+OY3Nvlpl1nEOeve5KpjtvrdImiytP+Q2F5nXsXFzJJwFlSDaXhmilmek9erFl6QRNjLr2DdN6EqFn6D5rdxGhlJTeApyhIDlUQX8V++gaGuStPospzmfbsnnonkc4O6qYrVTID2aBBMV0OPhX0G/WXeBoqBooS3Hbl37EJ9H+3JP6EjRVDBZOrLDLhhSP/b/ruO2ux5k0eiyyWATS2CJMzP5ADLHhcxM4ttDL/sCz1QH+40cz2De1J3NCVgbOwtErAtkgMUX9d0+QyA6ipWTyve9/kfkbXyLdER53rie8MAT/9cvr6c8OAqNDaa6/71poBlmVGEnDU8w25HUf7wzY2ZSkjaFMMkBfeYiww/CHi/dkRaCUWgpcIIT4LlpFew7wWfQq/EYhxG+AXyul6rstx4gRI0aMGDFifMAYPVr/8bZ06dKtSj9nzhza2tq4++67OfbYY9l9d9+a0yVHn3nmGa666ioOPPBATjzxRJqbm1m2bBl33nkn99xzD88//zyzZ88GNNE7MDDA9ddfz+zZsznuuOO8/IJ5X3755VxyySV0dHRw1FFHMW7cON58801+8pOf8MADD/Diiy8yatSov6stko7fXOIjFuwgRggdQH+d431A+99xrXve/Tmgasw6a9J9qOjdNMjooIejgraCTVsx6fnoBZHPuFt49TXehLlQxEy72xn1zwmRrZ0NvYMIaQIG5XKZyub1MEpv+barEjOiOnVJjI2FjRhKfx7XD41pIuHA60MoTe5O6k8w1OB79ZVNGSJOK/0DpEmilECWdTlaiqCwcadwtoTByjJUY/geqe5eTJmgamo1XNDaIVqXc//9XH7wtW/QkTNRQpdvqEGiBLQWDLpG2TSUoaVsIqVWHcqAKrmeZ+qkPoPuUYprfvJDbv3e1d7xbMZmU5u2o2goQyHjExw9JctTS6mKTaoqKbs7TZ3ymwrYuBJbGiQcwlL6bC4tVg+Wo3yNqoNdLJ3gE7C7ri3y8g6w09zFdK1sYSzhqPIVYZG49EeMO9UgYs1ao/JcNqpCeeUrHBUYQk/tVKTw0l1AJ6aE0x6H3d8aBNqwIsRspWLSGFHTbhgosA0tmBIueMBfoHt6nM1BPX669kKCnW/8FQm70zvW7ESMX9RZYaeNPiHU6mzvbXTsDxJKINM+yzix3+SQRX47vDm1zH7LGpjSO/J3h0RhIGgpGzWq8JmDCaKdL5eWTMoafHLuc2TH1F98vPZz/bywXYlzH2vl4LcbeWQXrYTc650ik/r1c27LC066Zym7DYzHtAWf/9YmOlasY5+nbidZzRB9pVWH8dA89C1/EJU2FWnytOsalm1wwWMd7L+0kYMWhgecIQUTCgbjf/tTXtkOOMQ57nRCKRT9TbZDcJssarRIBolZW2BEyKw1Y6rM3KiP7bw+sN09qY/liybb/kkv9r4zupFO2lgwrohRTDIRmFd9mcMZi6EE6USCckI/nwmOtcemVq12tQxFGl8xGwyY6LoDvFZczrK9G/iXl1oYm9XXj13TS3VfOPXczSgBR78Isxf8FoAZh/kBvB6eVeDsZ/TfL4lsmnu3y3L8phZ2XZfiqDc0+Vq0BHZgV3lfiy5bb5PNnR/r55QXm1gx0WD3NWl+/OcwKffmxALVBMx+owu9wRvmDfTxRnYlpGC6Uet5nHxqOS7xq5SJ0X8dHevLjF+TBMaSL0PWFASX85c4itlsRlFMypqFD/cd6x4vpRTu8DalYFxfLSk5eVOJB0YP8VX0uC3kBPu9upBKItxnv/5EO8rJtxBRzFohxax+YJmKYK+1KT62ZCmQYPVoi1v3ydFWMBidM9llQ4oxi/N8uvwccrmi5LR92ta7T6RQGErw6vaL6RklySxPsz+jkaaBmTIY9errmNJXxLqLi7vddhv772NQrW1yQH+fBFFKSDKWwax1aWb8YSVftMdzw2FhmyDhvfsFn/rxzezUHh6XAK3zV8J+sN9Sgxd3cdTgQONQijOebeGMF/z3WV/KRFkGmTL8/C+/5/J9DqzJ78PC3/XXuVKqIoS4HxiDDk4w0fn3n8B3hRC/REeDrd3vEyNGjBgxYsSI8QHihBNO4Oqrr+ZXv/oV2WyW448/nj333JNp06bVTe8qWO+++26OO+64ugG7DjroIDZv3kxLS3gCP3/+fPbbbz++853v8OCDDwKamJ0+fTrXX389u+++O5deemlNfk8++SSXXHIJn/zkJ3nggQdC6tibbrqJs846i0suuYSf/vSn760RgJdeeom3336bSZMmseuuu77nfGL8Q1CPNRiGYqpJszXXbm268EkhvoK2M2Pq1KlbUZy/DyJQHNd9oMPZIt1Uri1qMSkd+tTZxvsuBHiVBCSrwtuq7HrsJetbb/rekkKrNSuG3h4pBYwk/LMNhSkFAkF7QZCpCjJV0/MTjAgKhyUWpVCsHW15RNmQwxG15iGf0fkY+JP4lpLfnsMVz+NtVfine04atVe6ClJT1i9rc0kgnK215aRic6tNqs72epf8SVqBGGNO20b55Jr7CGosBtznFlW43rdrPz3tJvft7ovKXbWZIfGDiDl4Z1wFkR8IlSeIqGK2lFQsmaw4aqF/bOXYKsvGKc5/QivpPr4EUlI/t42tNtt0B/0zjVAQHYAVYytsM6AJPneL9JxzNnPM62E1YcYSDBrh7fkuMbtwcoXvfKGX/7yrnT1XZRgzpI+bUpd/2/V+PqMH0dvtHTy3fZH1rVWgIeSnuaa1yKShTDgAVuDe4wdNNrb7iuegn6uLQlqRtCBTgZ5hBk42o8g2KH5+yCDP7lBiwWTNJickfOotfU3KFozJQltBlztlCTZ2OH2zTsccbNzyxl7l/Ccir8Xd1mpF66iSQTFgZSGU35de247QcdD9p79JMrUPxg0aLJoctjIwJTVq6VVjLLZxAm61BPZBRD2KH9sDqo2KT6/Ui08uadfV7pOj917XyfzJBa48fojGikEuLclmdOGCXrlDTsAr9x7uAle2Ee74WBZpwKkv6r99XDLPESLrLeIOpAEP71Zg/IBBf5PkqR0KHLCkkc2jLJZOtOA1+OwCvw9XzXDQxs2tkv/dcxN37K/Y4x3FusYK69tHefYgxaTkus8NsNtyxcrRmmayDcgmSrRYGf76Cd9jNjquAUZVdLu6z/gLr47mrj2ymA5lJYUil5HguKJ0tVjaPgH0bokWyZQI0er2FTeQXNlUnlevqfwggUFUTcXGDsXX5nTxwz+3U5Z5bMNf9LHRC3Iu2VtMWKwcV8XegmI2UxUcsLCJtEywrr3KLftlvfH4+Zc0sWmbBocsaaGQkjy2w5DTVjqfiqnIWIJiStHZ65O/rjK2q42QF6x73JCwxzvw2s7+s9zYWuWVGRWOfqPJU8yubi8z1CD52eeyXPq3dqb0Jb331Xabwr6v7mv8wEUNjC82Mb5IDdaO04lmbIKXdoLeFsn6dotJ/QlOfTFM5BrK79/bbbNjbWYfIt4zMSuE2AdtZ3AykAGGgBuA3wEfA84HvgmkgX/9u0saI0aMGDFixHhfcM2utcEQPor4j7embDnRCNhjjz245ZZbOO+887jlllu45RZtq9nR0cH+++/P2WefzdFHH/2u8hw3blzd47Nnz+aggw7ikUceoVqtegrVLeGGG24A4MYbb6yxLJgzZw7XX389f/zjH98zMdvf388ZZ5wBwHXXXYdpfrQ8tWKE0E99xWo79dWwQfQB9RjT9sB592e7EEJEVLPRdCEopX4N/Bpgr732enf7jt8Dxo9vp9qnqywdQnM4WKbSpKbSxJ5SOvq3sqFpwjhy2Z5Q+sEGSYeRws5rBq+/GUb1OpPq7WaSG1wBKJKjR5OSBS+di5RhgLJJGkmoVklIgTFtIpXSAIne4YN/2YYmX6Ykx5DL+83sTjxtoWgRaVyjg9Zdd6U8fwkAyaSJrCgax43GnDCBzWsXOBc7mSiYMmMXlq97G8tUJJwZdq5B0lI1wY3qHmlGmdQeutHjQbsFJaCSNqAIhtO+ZkJQTkJLSavBoiSol4ejXrWF0oq9dAPYRZSAcoN+SMrUVc60tVEd0ARB49gOKvTULBcoAc077wRr1mINlrGFX6d0Y5rm7bYl+5aO2h0lupd+rJWHOjeFjq3cqR2sfoa+cizb3t3P0APa4aO72eZrZ3bx+ulLyHcpeh7eqaaOUcXsUNqimgwXuJhS5BrxFHZHvvA8Gw89mdImxapxFbbp9r8nBMJTDH/35F7Wt1sc2PFx+PEaTOmTHxvbbeZPrXDCK9rCo6likLIERy54mZXbH+vl11Ryt1QrimnlLQCkdPeltT1BuRf2GN+JlAMYhsHM7T5O+lndt9ZOq3L58f0ekeMG4Eo0WOzw+J1k9zm1tpEdTOtJhIjZUh2fz1xasmFMkul33sHyC8+om4+rbh1K2bywfUl7TCPYeMCO7PvdK+g54DxSpuKIxx9l1SfOBCBdgU3tiv3nv0rxW98mf+/yUJ4rxw6z4hIs/8dnkn9hc2jAJAxFW9Gvb3Abu6Ggp0my7+sv82+/3Dt0HJwFHKf9i0n3ev9+CSlCJPLizgqbW202tOpROGFyMy3FQf718VYOcdS6TR0JZj/xMN/630M5fKF/v6pzHyk0wejmO3tdI50DWnG8sc3yxlZDUiIdds/dAm4KCZi42tnVk1IgLG76dJZ8WrLfkjRvnLkb5F72yrz26D046s472Dy0lu/eeARvzRikM90JZfjJkQNs6LB5awbkzDrtL0RowW3NWFj4hdmUel+nZ5/tOOq3D/KD42d751+eWebpnUrk990bI6Ggex6rPrMNlx+QYfOaxWwYVWWnpp1Zkl+MXeero6WiH8Krn0iy1zxdnpndSXY/92T6f/IgHeNTvLpTIzs+rvuw6y/roqfFrrH2cPlfl+g+f+oRvLLocf1cJIh0bUHW7tzG4mkWfVYf539TceuJf+O+Bb/h4QfvYVQRPqFaKK/T5ZMofnPDnuRWP0hQrOuStFJKbzdJQ1XQ6DDlv99vKDQWXZLVnNgEy7W1S1e7YwnkkPV3fKqAUZLkM4r7z32KC/7zc/oa50th/vRwoEE3oNznFiwgt7aXDT8+AYBnty9yxfH9HPFGWGG+dLrNjYfBABbnfKmb0TmD79zdyqwNDew1FGlX9GLbvkuHkeEC86fpBdlZ3/k+t8y9HAOD16aXmdSfwFSCiqn4075Z5jw7CkP5z+rUQ08eNs8PA/WNHoaBEKJFCHGuEGI+8DxwJrAIvYI+USn1b0qpN5VSNwF7AE+grQ5ixIgRI0aMGDH+4Tj55JNZs2YNDz/8MD/4wQ846qijkFJy1113ccwxx3DmmWdSu6t7ZNx///0cffTRdHZ2kkwmEUIghODee++lXC7T09Oz5UwcvPjiiySTSe644w4uvfTSmn+VSoXu7m56naAU7wb5fJ5jjjmGZcuWceGFF3LyyR+tP0Jj1MD1gI1iZ+Dtrbh2hhAisqmdnYEKvqfsQrRoYps66diK+/xDYDhzvhH4WA+hCNaetNL9LGpIx8FGSXK7bbGd61xPwKqp6K8OIR1Ksq2xLRz53IGpYFbnLHYcvyMTBxJM7ktgVUpIJUeUHbt1SZtm2J/S+X2bjhl0Jv3FGSGER4xgu/s5w9v0vS3HwsB6ZwWT+xJMGDAxbU2WVtImicnjqSQUG9qtGsVswqi/7d9QIqBSVcg6Wlu3PnU4WV1UJXxiylWmGv7UM6pGbDKTnpJJGsO3pCXDxI7XR5Sr6nLSRQrW1Fq75uG++5szTSQbfH/PSkJhGAaZsZJJu6fD93EQJWZlOhlSrwHkHJam4CiHZfdmKt26/P+y9yE15WlxyNShjGRTm01JaELI3fZuC4US8OK2JS44pYezvtIFaHJFZbOhvJoclapbTlcJrhzCRjhb4huVwem7ns6khkn8+Mgf0+ZsNy616HSOwNcjZoUJE6dNR4wgS5/WG16YdEm3YD/KZRSpRJK9Zs0aNviX66Xp+Uw64zFhJGgZO0nXRwpkn//9mK7o7+OnVz2Lla9dKHE9QkdCuq6vu98BultsTCWwPUWklnePHjUmfIWrmMVXNjYo3aAhj9mAYvaNKSW+9cUelAAjk3TOG/zH/e0eKQvQZdr87KVfYBiGN26ECqt0jcgz+qrcA4BNrT5Rl5nh2yRlHcXsKOUqIN29+MJrgjv2zvP9ORU2p7XnqjuGqrKKEIIJrVO957TnZO1nX0nCTftn+eJXfsjEbWp37TRXTI9ALiUkCkXR1s+uJd2CEILBBv+l+coMrWxtbxlFJqUJO0tavNH/FpvabL7x8W9w31fvZVLDJCYkhvfov2WfIued3g1AqipIOkEgky1NbMj4/cS1PzGkQWemk7EZ3xok59iAeMSs02Yf23bvgMesIOOMR2EESNKUH0jSSgmmzNgWW1nM26bM1WeapCf4Zgrdo2ze6l0MEFbMBr7zis77pqEiaHMsS4Yaw33AHVOlQLA0N3iXywzeuXeVmz+TQ9qSKR1T2HvcLk6+BnuuSHPw4oaa/guQSqQYt+0UfjD9aKdsbtDKcBkSmRSjGnW/kwbsvuvB7NuhRQ87psJWFZ9a2sD9107k00sjkREDUAnte37Mvqd474rXpvkb9u/aM89z2/u+z95Xwz9r8C/HN/YLaCfnMvC/wC+UUvPqpVdK2UKIp4CD3odyxogRI0aMGDHeJ/y9StR/NiSTSQ477DAOO+wwAGzb5i9/+Qtnn302f/jDHzj++OND/q8j4YYbbuC8886jvb2dQw89lKlTp9LY2IgQgrvuuov58+dTLm+9g1Nvby+WZXlBwoZDLpfzPHO3Bvl8niOPPJLnnnuO888/n6uvvnrLF8X4sHEP8BMhxEyl1AoAIcR0YD/gO1tx7WXoIGE3O9cm0H+7PxKwFXsITdSe5qR3cTrwllJq5ftSk78XUs8UlUNEjYRyvW3Q7pZ8IWrIVXdra8KhPd0Jczmp6Cp0IZz/GlON1KVwArdzJ6R2tYpEjmihoO0ABEgVImZdH8pkugFSGcSmXoy0M0VzjCeUG2ndmUi6t3HXlFoqJnZBE34uuZfLKBJGklRbB4uL6xBC0BLhqVwFfbTYhgIZIHjqrV25pNRwxKwRIJt8fsefCHsR7l3OR/kWFHlZQYnareQAVbvqWUaoQN5IpRWVHjEbvq5tzAQohNcd3DKYwoSETyaWnG3qG4c2MmP0DJ39FjxmJ4+bwrKeFeFEqSRQ1tHS81B+8kmkbWKmLBLTpwEvhpK7z85V5xaUJr/cYHYe8StgwVR9zg0itm6/fyE4tXeDnLl1qUbGiZFJAFWUZXPFEVfoOkpJa84hh1v0T1cU2+DkJxzSfCRKIxgFHXxbhd5mydicvjKfliQNTXqXo/v4Hbj3jvaDpJGEjCZqlBLIfl+BPkY20UWW51c+zy5DuZo814zesmKWZMJT37tQgQ6QT0vGZk2qpsS0DF1Cb7HE77dBxaz7TDPUIWZtnwS1Ay8RV4GtKjbb9YTJ7o2mzb1L7wUDds50AiVHDeiQ4EIRXd/Yb41kAD/wF0DToftSWPQYoBWz0pYk0CJ7M5BXELa0GSo729+lQpiCilXxzksnDvzMjpmopfq8tCWH73g4R+5yJMsv/TTDIZ9RKKHIVfSza8u0Ocf9PvLqDP0ia0g2ePdal12HMAXKVnz7M9/GMAye+fozFH7zazbe9r819zESFouSPWxr6ueRkCCH9OKGaEixMV3CDWC2pFPXLWWkeO4bz9H79CkMLFkH6IW+5rI28pjaOJVtig4BmE57312G1MQvgJlSWM57uCIkFVkBASXnYMXW9zINE2H6fa6QUqzPrgcRfrcFA4FVvUUUg1bHemQwQsxWnTFlVf32dK1G3IWzgl1AmIKU0AT06TsdSY4b2bYryY/vqP07NCE1MWpaNoP/cSH2Jk12p50GKKTD41skDFIJn9ye1jENTN2eqrIV4zMC1/I8k8xgChOJ5PUpJVxro+e3L/rPQgnfDsT8aMVceDeK2bOBTcCFwGSl1JzhSNkAngIuf49lixEjRowYMWLEeN9hmiYnn3wy3/72twF44okntuo6y7K45JJLmDBhAgsXLuT222/nmmuu4bLLLuPSSy9l/Ph3H9+1tbWV9vZ2lFIj/hvOF7cestksn/vc53j66ae58MILufbaa991uWL4EELYQoiyEOJmIcQHaUp2I7AKuFsIcawQ4hjgbmAt8D+B8kwTQlhCiP90jyml3gBuB34mhPiyEOJg4DZgBnBJIF0X8FN0LIjzhRAHODEhDgK+9wHW7V1B2Xrm5AjRRoS7/bKelyBC1GyHd4k8l0hxPQErpk+oNCb1hLwuJxxga9xbSml5BMFw8M5Ku8aaQQDCNBGJBKlZO5LcYTv/RLDQTvC+KFndlqutezYjSZl68usGFqpJ5UzEo/mJAMGjoL5iNuDPWq+dDBUmpvTtaqeeXs5KeiR1n5WrS8qCVuYRIHW9564UWBagVdKWqUI+oOMmTK+9t/MsDcNApHziq+KQHRsHN3rHtmRlcMisw2sUs2NGTwag4ATlKT75PADpzozX9kG46m03n6LSSwOuH2k9ywj3nFWqTzJ4itlI0Cuz2dkabPttZBgG7Xl98y7HAtR21JK+YtYhmEZYMHH9Xl24xGzXKJ8QzKcVCUOXuTIMP1J1t11HguoljSQi45RfGag+3+llkqlVhu/0vIOVDxtSZtN2jTdwPYhkkpHePC6RFSTFot6vCZnw+rMSyhsDjY5iNjmMYjbY7asp3W6yIr32d2EnBNLQROpxE7QSVqjAK8OgRtVcfFuTXxvbNPmllKLprLO986PJcM8Z93iZeDYrTlu440UqSb6ibRFMh6IPKtndBY+UmaI1qZ9HW7KNRIQISzRa3LTvIN852Vc851MSwzC8/NsaNDHb3xJQLI/SjdWQbPDytB0l6oxRM8LK/GFUkWqMiTSlZ5eRsAUqq818jaYMm9L+AvsyRzHr9tfEJP9vPVfJKxSMbx5Po9vFMxl/QUpqJTeA2eCXrWwor91c5WzVUbKawoSkX/ZCSlFSmry16njMCgTS6S+ZiqDFIWaHAp7K0pb+tYFVx0ZnBSThLNS5Y7w17Ty7lpFFAa59w9BFF9Hzvy/T/+gqALY1m7yyhy8wySR8a4Ltx27vLfioqs27ge10erfPJQ39Hs+lJR1Hbs99u+VYPLEaWkh0x6VIbJ3l2D8K74aY/ZxSajul1LVKqbr+U1EopZ5XSo0sAYkRI0aMGDFixPgQ4AbwCloZuAoy267947Cnp4eBgQH23XdfOjs7Q+dyuRyvvfZazTUj5Qewzz770N/fz8KFC+uef7cYHBzksMMO49lnn+Xiiy+OlbLvDwSQBM4A3hJC/OWDuIlSKo8mSJeid6b9EVgJHKSUCkq/BFqwFv07/izg98CVwP3AFOCzSqlox7zYSXMe8DBakXuyUure97VCfw+c8TKSlUF/k03vGMMjnkRAteYxjXUUsx4x60wE087QTAT8l8c1j/Ovj1wXVNG55KGUcouKWY/8lNLb7tfIlO0AACAASURBVOpnFCB769gneM4MEWLDTelu33ejcluGophSpBNakegRs9GshU++BmEECJ7hyHHfymCYBEErA1GfYAtVQirc+bvF8CS3Ja3Q/VxiQtkK5exWsAyFNODKo5wpq5BMnTGrtohORkIIRNJvW1eFvTm72UsX9aqMErMHfeJ49m7fKXRs922132jJeUClhRsASO84FZLDq7VcArbkErOulUGdmft9u+eHzSdYzkpUMTtKLz4oO9zWLjG72Yls7gZ18ojBwLb24dAWib7uEpm9Lf73YC6wcBBV87pw7x3tN6lECpFK4XYEO2AfNB5NBvUUerDzldB1gw2ybhtGIVLJei4mHppdZbPpeweYkQa5+rNXM1o5bSz8Z9ekNBkU8pi1/WBKwftaaWfcVmuJWaUko5Oj+fWxv6Y1rf+WMQKqc0XNq49yr85vY8DKwJzs76D62m5HMWviLO86I6KY9YhZJEVLk94ZUxNsesGEULqkmWT/GfsDcNh2h3nnMw6vOergXbjzU1Vem+GToHlHXZmtavXq6EZNCr4zzeCqo/o55+wuL21DqoGkGSbXTtj1hHClE/XH2YqJCYQQHjGbtAUyp8eS0ZhhY7PuO/2tFXJuoDThELNTJnn5uMHkDOW8Z11biXQGFbAySDqLLmazX96yqTzrHLf9XGI2YSQQge+kQlp6hHNIMRv4PZHWeTeXBQ2VBKDINQQWADB9j9nAwoA7PpORGAQTmiboujQMbyMAvmK29Nri0PEZKd0v8xHFrJE0aUj4ec7qnOXb9DhKXjvyZXrdZwdY3Bkez1D7N0LaUeELBO03/Y5ffbakgze6i3Dyo2tlsNXErFLq4Q+yIDFixIgRI0aMGO8nbr31Vh599FGkrJ3kb9q0iRtvvBGA/fff3zvu2gWsWbOm5ppx48bR2NjIq6++Si7n82TVapXzzjuvrrdse3s7Qoi6+QGeavecc85hw4YNNefz+Txz584dqZoe+vv7OeSQQ5g7dy6XXXYZV1555VZdF2NkKKUMpZQB7I4ObrtlydV7v9capdSJSqlRSqn/j703D5Ojqtv373OqqrfpWTMzmeyQlTVhkx0JSEhEBEIAEVACIioKyOKCKIviT3hBMah8QbYAibxIkAACiYLsqIRF4AUEDAQIYFayztLTXef3R22nqqt7ekJCotRzXbkyXV116tQ6U3c95/nUK6WOUEotisyzSCkllFIXRaZ3KaXOVkp1KKUySqk9lFKPxKyjpJS6RCk1QimVVkqNV0rN2VTbtEHyowxiYKKrgglNbUNiM6L9KVKUgU5/WK47XbhPds2pOgQCS1jk0+FKzuBFERA6+oFjtuQWJqosPxe20FsOcCssWAaH3KKCPnd2f/Cgzuo6x520ot6552UsB5p4YKuyYzYC7WwRyqqMZvfaaI7ZKleDl13ozRsCbNHllPLbCjJ0Vdn80ZdcHnBUJQU9QYV2gAVjCwy+4mQGXXoSY4aXg1nP5ey40wJg0uuC1GXrnCG5Qog+ogwUsmMQZ+98gj9FCJvvTDmf7Zu2Z4gLjwqrXQg0angZZNflO2bdqm0eyI/m5gJcNXk1Vx+wqmJb3S7tjkZ+GE317soiYNaFqv/OOusuRsCs56YTMRThPdeJ2RgBs96yK/MamE3rYLaCO9pzM8rwvvJcccLdH/ayZf53HcoBs2t61mB3h4dFr87aZcPy4yRSVlXwXFcIwKznSjWVxLZt/5zdZuA2/GaX05z+aVEG9e7wcB3MGrbwXfSGdtH3pt2c34IKFQcD2FvlefrMp5m0zST/HqdnzNrl76R8vevFObjzDr/nUlqP24X8efGDJjzHrH/9K9t3eOZTzr2yt9TLQ689xJj/GUNBOADNlCZXHn4ld33xLi77fPCSeODcG2k/82CafnsNTelwBux69+VSwXba8F6SWdLiL9t38XZb0b/n56ycfw55OnrC0eHOVwCzz3Z4INk5lqYtsDvdGIK6HO839XLxEStZdt4h/jIeBDZGjfSnrc4G57QUEm/ghMikfWholcAqSUAh67Qsa1ny770eoPWiDExpIrS+d2muU90x6/1eEghyOefcb1/jnDfSKqE0a7slLT/KQI/SyLlgNhVxkHoxLiKVppq8+7zqDV9v0jQ5cuyRrMvYZdP1e/vo1tF+bIP3oihaV7AklV+cTpd/X3ab85y40juu7r3DG/URzpjdshyzW1awQqJEiRIlSpQo0UbS3//+d2bMmEFHRwf77rsvW2/t/JH51ltvcd9999HV1cXhhx/OUUcFdUr32msvcrkcv/zlL1m5cqUfT3D66afT2NjIGWecwaWXXsqOO+7I4YcfTqFQ4OGHH2blypUccMABPPzww6E+5PN59thjDx5//HGOP/54xo4di2EYHHbYYYwfP57PfOYzXHrppZx33nmMGTOGQw45hK233pp169bx9ttv8+ijj7Lvvvsyb968Prf3yCOP5JlnnmHUqFHYts1FF11UNs8RRxzBTjvt9BH26idXSqkXgReBqzZ3X/7rpTlmjQocxRIGdem68JD3KIkQHph14R0aD4zMKw2THToihWm0WUoyGLIJYae9Usp90KxMc3zHbU95cm1Fd170Cy/KQO+etlElQ/BeS/Bw7EUyGNIg1oQqBdjl8DsUQ4BC4jlrg6HZShsaWqn7PpiNiTLwHsyVH84ZdFAHxUo4D9MjVpgsaSxRzOhDpp3jIoRyskbXO443D1YYtkH2xJMAGGHbDjzX9qnXBynCUQZeVuPyzuV093YjpChzcOlgVho2wjRdF6cjYdpkrAz3nHIPS2ZOZh2dKNsFJm2tVd1aHphdZ3ehP65XcnuuqKs8/NfrZ2/kqV82O8OUVSm8XR6YXZJzIbcLdjxXnQdQ4s7ZVfVFhqwyY8Cs83ltWvmZuJ1pRbvhAJ9iKv4M8kB0SqboLHX60z1AJoRzBO3lQZTBYBxQ2FnshJ4wUHpheDdFI3xOx6qPKANPtrZPhQqgGkDaTKPcl8K2DI5dPZ5jNli/WQqiECwtGLaUcofp95Qf+ND+944JWgSJmzEbveyVVfQjJfzh33vtQ+Ne+2iNR7ZTBPAPHDBrKxsMaMw0sqywjJIqcfo9p2NrmQ4pM4WUkvFDxofaM0ePof6HPwJgUP0glq4IXLBe7If3AqAt3+a0ZaTAA4Burm1dqi4EZm3bpr2hPbyfKoDZv7Q4ML+jcRBQxCqB7RaLW50VSCl5fEwnPzj0C3DrLUEfAHNc4Ixf5TtmRQTMZn0LpOewloaNSGuOWRm4YL17nu6Y1e8RnVZwjesvaDzHrEDQ1NAMLKNjtbPNRjqcz5wzcxQN1+ncG5xTXn501gxDbv/3YSaIHegxbdKRAG/TdkZNqGLkbDMklx92Oa+POwr+37n+ZJkyWdO9Jvgspb+tjmNWUpSKtNb3HVKD2MUsAtHij+HrNJfKQSF4CXjizidy+4u305QKnM3+u1ljy3LM9qf4l03fdygFrAFeBf4A/ForNpAoUaJEiRIlSvSx6ZxzzmHMmDE8+OCDvPjii8yfP5/u7m4GDBjAxIkTOe644zjuuONCD+rNzc3ceeedXHzxxdx0002sdx/0TzjhBBobG/nJT35CW1sb119/Pddeey2NjY1MmjSJSy65hAsvvDC2H7feeitnnXUW8+bN47bbbkMpxdChQxk/3nlY+d73vsc+++zDVVddxRNPPMHdd99NY2MjQ4YM4dRTT+W4446raXvfeustABYuXFixmNhWW22VgNlEW7w8oKFQAbiLaGDGAUtDGoeweM1i13nVGZ4pEmWgpPagGq2ME/uQpkESP8qgPNPAy4KuJcogNkMv2pfy1SPQoKLvmA3Po7ejUD7AsqRFF13l7mPpDL2N63bUvarLJtgfDoeJ77+Xm+m1YcjqUQYRY14IKqSKgmErTJamChEy7UAcVQTlZorWGRYpmeKWo2/RNtUdZqybdt1jaEgjBFW9IfQrO1f6rtlSZC/pWaXSc7Nprlvd5ClzKfRz02gfiLIrw1TPXflhcS3Q7E+PunY9eQ7pOFWMMhjQApRHGTR2ORu/JONAxpK7HZ5j0wNmceNuWwbUw7u9NHZJhAqOu+eY7U4pHtp2PY3dBqtyNkNdEGSn4gGJ55qzDMuHckBQOEgqKEHpw9X+d0NtZ4h0r+pFupz0h0etYPd3s8zaax1KCJY39dK+ymljfcr2HbCeRDpV1THryTac24tyu9LV2+UvlzbT/gsm5wWCs/8bcWBxWgeztggq22svL4oZE7BRKmZn6/cMdxmhgsNio2KPkeyo7gZ2Ggp/9M594b+gUX6Rs9ZcK/9a8y+KdtFxuWqHMhozEKeRLSN5YcUL/ufOdPg8HdwwGIC0EUD2lEhRpMiI5hH8e82/g27H3axiwGxJKN5pL2HYBodt/3ngLqySQHU5J8zbpoOvpJIMqAvyVQPH7GjcsAjWaBmzOph1Mmad/nhgVpgqFJmyXsNkUkoKxYIfaeA4ZoOdqTvedTepd14JIRg8YDCwjI5VzgxGnRn6+7Y+Xe+D2awGZj3HrBnZV7sO3dVpOx3s+3c7ehm9OPzCw4vSiYJZ7yXOmDGf4g1pY7g3MMNKs7awPHZe70VRMfJG9sQRn6b73WdYQzhR1Y8mcs9Nz8HtOWXPPfBczj3wXKb91Ck4J5XwIzoquak3l/rTm8eARmACzq3xXWAJMBAnw8rAcRGYwM7AnsAXhRD7u5lZiRIlSpQoUaJEH5uGDRvGN7/5Tb75zW/2a7kpU6YwZcqU2O9M0+Tss8/m7LPPLvtu5syZzJw5s2z66NGjuffe6vGd++67L/vuu2+/+hnVokWLPtLynzQJIb4JNABXKKXKbYzOPCngHGCVUur/fZz9+0RLK/7lANCYB24XRrTkWmjOOpEhhffDGXcIgZASj+ro7ppoxIFeATtOtkZBlW2DHpGiPHBRWZ4jynnwLHf2xkpz++qL6PxBIoJZNFjjZO46nwc3DmbtsrWkZcQJWKH4FwRV4lXM9/o0J9cynkgHjll3uLeIefT0OXfQxqB8B+90fUDWyBIickBudQElw84uYRlQLGEXbEBgmCZt+Ta23Tqc+RotKOYNH5ZCugWf3OluNz/s+pClax03X9Qx22UEx1+mXWhpBf2SlnYs6gLHGYAcOBB72VIqyXNXdqoudDAbV/wLanPMRot/eWAWW3vBsH49+R6DklCszDi3xFL0ujA9i175SdPa0ow0PoCSQb5bsDbrtJ1xIWS3ZTN7ao6lBWfbvWHHKhWPJLwoAx3KQeBc9OIU7FVr/e+GKHdfSzBc4Pp/Qwu8tW0DHjddNVDS7qY/rMvEgdl01YxZT8rEt995YNY7x9JG2r9H2EL5x/TTdVsxKLOKVq36vGUH4DunEX07kwK641ceA2Z1N6CNit2G1LghwHtVtyt6b/SvdSQ2tvvCzAGzg+oHwb+hZJfC0SMEkRPVtH3H9tz1xl3+5+5IoahBjU6ef8bKgFvL7VeH/Yq/vf03PrvdZ3n+veeD9Yny9YmYl0FvthdQpsVdJ9zJwjeeAdwog24HzL4rHXSVNbI0Z4PrzzsPRSqFkS5R6jH9jFkPzHqkUGRzfsZsvseZJi1CjtlOGf6z44M1H/jFwExphnKoR2QbAOc8L8U4ZiWSrQeNAl7wzyUjnw7d85oyTfQaTm62/mIg5/ZPB8G2bTN+sOt01qIMlg9PM3pxqNuYJYFAxDhm3WJiUtJj2eRc57eZTnHshGO58u9XkhdubJDnmC16YDbclLBMZEMdVACznryCZdFzz3HHlsJRBtaWFWXQn+JfX8QBs/8LjFJKjVRK7aWUGgmMcqc3AJNwYO2NwC7AdzdulxMlSpQoUaJEiRIl2nAJIfbGiSRIV4KyAEqpAk7hr18LIfb4uPr3iZcPNKrMo1fergg2JUILwwy1JyOPQXGZnxEYKoKg0zIwq3SLoKbsztuS3Xlbdt9/Et09PYHjVtPYSZ9BCEGxGB6mqW/Wpddf4xSpEoJF/1qkgVFtO7RtlUoyZ84cpk2bxsitRrLbVruxzbhd2OnIz/HNn1zAU/94LgCz5VsePLxG9m1vby+/ufVWfnjWj9j9C1Np+NR4Bo3bnpv+cEdZG56Dzc+Y1SBJFOKgFP/3+ut84+IfcsD+k/jMjp9hh6E7MGbyARzytZOY+9CfUEphFsPLKRQik3KbcPtaobCWjASj+o5ZYUA6gKqWCwoXrlzI0nUORIw6t72CXgAy48yvu25lSjsWdblwP4YMrerW8sBLrwyDjmKFJ/cV+cpgtsvtp+6YFdJG5hxnqV0o+Q710tvOqIvVOZuicIt/RbrpRxnE9GVgUxuGWyipqTM41r5j1lIMzAcV7b0CQDITBu2ePJjpFbHz5AMy9/vS2sCNnO1R2LaNoQRmyYHMXSkVihkojWr1f467x4hUbY5ZDOHPJ5Wgs6fT/5wyUr4bWSlFyX0JUIfBE996ggatmJdhB1EGed1lmrZABOeAYQX3B/2e5w3JdjJmRbBdMccov9duwYdKDv8KUQZ+EUEUUkqUUn4GbFEVy8FsDY7Z3YY5/fFeHLw2Quue1r4H8QEOGnsQF0y+ACAUZZAzw9eZ04nwCdxyxHZMuu92/vmdf7L9oO0Rbi6rWRLYPc45/2DXGwC05dowDRNll78gaDpkAsuHl1jY7vz54DtmvZdkmYwPz+tcICnTMgRmu43w/f69Ve8FYNYIF//6dPtY/+de3TFrBI7Z4UOCeQCMpnDUT2Omkd6YlztelIHU9pWJien+TjSGDEXIEtIsIgc2lS3v3wqjjlkN9Ba0AmBmKs239vsWNx5xI09+60lnXq/4l3sri+ZpC9NENtaXrduOzNecc0B69GWO6ebJGkofNdMfFLrp1Z/eXAasVEodp5QKVbBwCxUcB3wIXKaUWgt8Haeq7LSN1ttEiRIlSpQoUaJEiT66TgTWAVfUMO/PcawqJ2/SHiUKJAQl6bjMKhX/EnEPVXEZs3quaTUwG5v5GSyQJoAwlIphMIvrUI3vKgDvvf8Bv5p9S/yXlRZ0t0cpxcy7/uDDmDtn3+kjECmEDyS9bV2+dDknTj2Ro48+mj//+c/svvvunHHGGXzj5JMZM2Jrfj/vPj5z0vH89robnfardTyyT9d3d/H9y37G3bffzZIVyxjY2lphwUAe/DKkUQ5k/YxZxXOvvsK9jzzEkCFDOOaYYzjnnHM4cM+9eOn11/jiuWfylR99z3HyuvTDZ8fZsCNVVHBChYqPoRX/kkbI7Tow47i4Plj3AcvXL4/dDzroNHLu+vSM2XSwLpkPAyNjyNCK2ZegZcmaMjI9nqRFYwp0xUUZSMP23WI9ywXvbbMfyrYpvfUm4ORmeu7rUiRmw4MtIiZ+w2huxMg63zdpObNenmWPqRjaONSf7gHX6PHz5Dlms1a4KrwXZeA7ZtcFQ8JVZxdSSX/4+Pq0Qomg6j1A/e47B/sibtfV6JjFCpJqpQ1dxa6gCSvtFzHcy67jyPRwp39ugSSlsXSzFBT/0sGsKU2k1kGjTnfJxjlmhRZlEH+M8p89tO/tikYZCO0FBiC9Yee28o+NreyyaztamCtO23dsD8DJX11K8/c+xyvjg8KLSikfDnrQVdkqlFWtQ/v6dDm4i74ASe2wDcaIrYOvs07/LVtgdzsHZWm6C9u2+emUn/r9gDAcbvrtNbz065N9Z6fAA7OaY9bdj/VexmzaDGVZ25Gidx+s/cA/T1NGKnQfSzU28I1dvoEoCfTL3btXSCExmltC7RnN9aGXUaY06RURVyuBo1ePWWhKBQBWZLOM+MccRrz6APX5hrLlDTfXJppXrYPlYjrYVivt7Mf9R+8fFNo0I2A2+us4ncJoaSxbd/TFytf3+jpNRhOn7H5KaLp0+yL9BVT83xCbUf2JMpiM44Ktpj/j/tGqlCoJIR4Djt/AviVKlChRokSJEiVKtCm0H/CQUmpdXzMqpdYLIR5yl0n0McgYNIj3zXV0l7oZtrJCgY4aHqpEBMyGHbNR4FTdMZuVJrYoOkVOSqXQEFm/mEgE8ki3qFFjYwNCCK646becNPUoWpub0UIKqm0AAA/+9UkWvbeY6dOn88ADD3DP7+/hylPOImukMZX0WxKGQdfaLr5x3Dd47eXXOPbYY7n66qtpbnZcRPaa1RTe/IA169bxy1tuZO065/SvBmaFlCgtTiCXyXDHNdfQsucY9hCD+NnVv+Gn1/6m6mZ4+92U5fvYX7dtc/TkQ/jSYVNJTxjnQ+ieF15l9dr17P/lY7ntvnv52hePZ+/dd9UaAFGXx/EHuX1OxQMhU5j0EgA6DyQJIZxcUVdj6tuBRfTSy5K1ztDfaNRFydIcsblgiLM/LaPlzTYEsEnIEiKbrZBp7LbtNq1EuFBVpeJfskoMR5dZAqQPOQGEBdbueyDktShb0vOhxH7/PUqLnTHKq3K2v//17QTNBReXX9rUiFGfhuWFUAEwPWN2qDY0vKvXAZlWrg4oEJUHZ6JOSB/4efB4fS/exWp3d5M20uyx0Fn/e80OCC3axSAX9aApcNHDQOAWDG1jhfOnbD5Tgusslgo6ezuZ8lKOUUstjDOg13XMpqTEstKsBii6ubPazciwgzzmlObct6SFMJSf5mHkLFjlunB1d6LnYlYE+ZmC0MsEaRap/9RgzDHjtA2ouGWhT/qLlVASCtIHsyVVKmsvZfa9H6WU3HD4DXQXu2nZdgq5a/7if2cRXEN1KcfZGoW/ujOyJRsGkxBzX4+8tDGNFL1SOWC24BSe6rEUu7Ttwt4j93bacDcs+oLAedHkbocX6euNYMhm/fMz3+1GGWQtRMbpb0kolBHeYUvXLvUds5a0Qm5f2djg56X+7IS9/Omes1QiES0RMNva4lzHbicNYcTeQ/y8We0F0rDGYeG2BjlZvy0NA4CQRxPTdvZRFMzqLzvtTLCtqUx4P4LmmHVPtqizV1hWEL+iyRuN4R2jbTu25dmzni2bz3BfePju3mqB8JtJ/cHE9ThRBdXU6M7naWWlGRMlSpQoUaJEiRIl2kwaDrzRj/n/5S6T6GOS/wBeCR7EgNkyl5sUkSgDfTh3DVEGoepbumM2GP7tzBXfSc+xls5lOP1bX2fNunUBxKzgfgw34Cx/oxsT8NWvfpXjjz+eD1d+yD0PPeR0212359i69be38trLr7HXXnsxe/ZsH8q6HQKgIZ/ngtPO4Fvf/lafXZCR/ZSyUhy03360DWyr7rTV5O33+OJfrtvKVmTSaZcnhRtuyOc5aG+navybb78TFF4TrlM5l8PIBcdP5GKGNFOeO+idY06UQQB4musboeQcv6fefsqZJ3J+SA34+MOTdTCb1dyzDcEjtOFlaGrLSzM8pFl3xuogpZJjtpJsFAV3NQWt+zIlMMeMY6tX7sHMuODyn69QfPtdAD7UMmujjlkPtsTFh8jmZmSjs+9Djlk/Y1bRkAn2RWevE0GQro9HDB5MzqXCx9NzLnoGaM/pCKC6esibeY541gF5f9zZyQstKi3TtTlwea/OlcdAiEy6JkpiWEYoykBd/mvOeaCZI57NU3ryscBVL0QAnty4EqVVcpMqKP5laeeFaZjoscxCK5Jmd2kJPO51FcqYFeG4ibazj6D1njvD21npvhWZ7F0n0YxoQxj+sbGVXXZO1JIxCzBxzESmbOvk+nsAFmBk00j/57q0Mz1a4Msyg3W017WXN25GskYj0QaGNOh1Lai2+26gx1QMbQqc3d5+ylhhZ7chDD87HARm1I3pg1nXMZtN+YW04gDpsvXLKLkua8uwQn2VjYFbVI8I8NoxhIFsCY9ekAPbkNqJbEij6gshoYHZbdq2iZ2nvTHYx56TOlUUtKyX5Y5ZrZ8iFxyHdCbm/uye97a7D8scs5aFjBmdUTXuKNS8C2ZLNS6wGdQfMPtP4AtCiMFxXwohhgJfAF7VJg8DVmx49xIlSpQoUaJEiRIl2ugyqMGwqMmx0iT62BQUg6rwIBUH+cqKasmQm7BqxmwfjlmEFlZQKhGU367smNV1wpe/wMhhw7nhzt/zxttvhYcZV8zIhSUrlnPfow8zdvRo9t57b0466SQAbrrz9063/bLUClvZ3DnLgS8XXHBBGVTVXcJCKDLukFJVoeNCKExZXsXdmzuuWHycStLNgtW2swy8+xCrvC+dXV08+vTfAdhh9FjfLRjE4AqssaNJjR1GauRgJ98xRmMGjAlvh5Yxq7skRS5Hc9oB2v9c4RSUMyNg1tLcgF7GrdCK5Ihc8LNsCsCjXyhMO98icYghaGPL+Om1SC+kFIoycAGfHDAAq9kBFqWFC+ld+DYA7zcFsNKOOmYt97ozYsBs6wCMFsejFeuYtZRfnAegp+hEEGTqy3MrbZR/veqwDrQIBLcPWnwsqrvArostxixJsTpT4tFtHFeurV2vlmHx9S8t5ZeTV/G9o1ewtL3AXbsGgydEKl3xfVAoWzhl+pduXY9gwB1vBv1Yuw5VcvajECIAYraN6ulBv6gMO6gUb0Ycs1Ib7i61fFIvD9VvH9yMWW9iOMpA1IX3oTdPrCLTQ45ZTSmZ8nOClVJlYDaaDVyL9DiCA0cdGExPxcQURNYxuKEcU0Uds/o1Cs42ednNtnuBFUwVimHw4GbOypUtG2R9g9nrOvC9Fyhexqzryha5tO/M7zXK73MrOlcEjlnDCr+8aQlesMkQmA3yf0VzM5k2LfpicEfomBjSQFYpeCXqg3PkU8M+FTvPwNYh/s/ePcVQgtnXDKR3feR3qNZPmQ/2ezpXfi76ENf9pVKM7B9hWRjtbWXLeXC4epAQmO792gjelWxx6k+Uwc+BW4HnhBC/Ap4EluAU+toXOB1oAn4BIIQwgYOAxzdmhxMlSpQoUaJEiRIl+ohahlO8tlaNBpZvor584iS+ugU+FcWo94eL/J+FEM4zYwko2U4VEe+7yP/aQv6PZsriJ6efzfHf/TY/vOoXHpm4LQAAIABJREFUzPnNb8qKpUSluovccvdd9BZ7OdEFsjvssAPbjd+OxxY8zcJ33mZAa3AaL168mA/e+wDTNJk4cWJZeyKuYhNVagBJgWVYRD2F/vw1HMYey8n4DGhudDn3gx304l//+hezZs2iVCrx/iuv8cDjj/LBsqWcfcpX2XHsOGf/x6xcxjzw67rhmBs46faTeH7586HpUkrfyQYgshlGt4xmwdIF9ODAQzMyLDuluef8GAQtDkHWBcN1ZVMAHmXWffzWnHxGzqDXMXY6Q5y1TXPAS/UoA4C1aZv6nvAMXr4sRMBsRoPCzXXwwTqKi96huNi5xb3fHLhL7UjObThjNnzmyNZWjLYW4N0wmC1oYDbbyK5tu7Lg3wv4yZSfAJBvinHCSeUf4nwqH/ouALPOOmytGpLqKfD5R3qBNPft1EnB3c2KoD1Tmhx86CnMf30+dx83izmT5/Dnu3/N1Ged9YhMpuK5vTaryKx120kFLy2GrTCRGkVXhZ7gZYMU/n5TxRK9TzwW3m9alIG0DB9ymtJEaGBcZDUwW9AzBbSMWd8xK0LwXMaB2UqKUCtbg186gM2aWd/JalN+L6ul+FdUOvw9bpfj/J+9LNIogNPB7IiWEZQp4pglFYkykGYASVUFMCskNnaZc9txzLofFJi2F43igdnwtSPzWT9POQoeAVZ3rQ47ZnUwq418cIp0OW8jfMesNBBS0nHvTBYf+CWKXZLUnnsh/3Rt0F9p0CXD7nxdxVwW3PvQvqP2jZ0n1Rj0o9eArGvcNmKGT+iO2VR9DugGIJsrh+xRgB4t/oVlIQcOKl8utpfl8sGsfsC2MNUMZpVSs1237E+BH0e+FkAROF8pNdud1gRcAPx9Y3Q0UaJEiRIlSpQoUaKNpAXAJCFEo1JqdbUZhRCNwCTgwY+lZ4m2HOmAQgj3s0LZJUSMY7aalIAjJ01mj/E7cc9fHuTJfzzPnttMqLqMbM4zc+4cpJSceOKJ/vQjjjmCV158hZvumsP3d/6e2wkQ65z+Nrc0k4lzjYZcuoHTrmIkgSlImSm6IpN9l1gNtqNus4KjyeONXp6qB2aFA2Yvvvhif9aUZfH/nfUdvnrKiVAImZX7pfpsPXOmz2Hry7ZGGjKIMpDhKAOZyzF+0HgWLF0Q9CGVwXncdeTkTTpwRMY4ZkNgVoMqRp0LfLQhxUY+DcvCoMWT7vKuFmXw/FY9fPq1cHZjt6X8/V4wdDCrFZhqb4JX1lF879/0LlsPyBCYLUXBrDe8Og7MtrVjtDuQtakz2D7dMduSa+H3J/4e27Z9R3dDY6uf81mUNqYtQ9tanwmDHG9IueOYDZP+7oUrGLcmTbdpM3e39f503RVuGRbfOfA7fOfA7wAO+O3UqsaTTlckPuvSNm1rnW2zUin/FrHV8khMRne35gIPIFVh4Xss/uJFOCe+03fTDop/CSn9TbIMC5kKMqSlBv6VlmSgn0u+e1+IEDwX+RiXYoXrNzrZB7MiDGZzVi4o/iXs0LB5qC1jNqreUrBhQ5uDOIHGjOO0lpGXS3pBrpEDRlKmSHRBtDCgIYwy92rBDANfU5oUKZY7Zo1wxmyqqIIPUFZ8TdblkG6xsaK2Gd4+Xd292snqxcnODWVWDwheXjiu14LbTuCYBTBGjWb4//2J0rtvY263A+JP2stBYbJelGc5e+qpS/lgti1f7k4FEPXBSxJbKLosO8iojUqDremmRryU00xdTHRJ5DhFowyEZSGHlDuiPad5X45Zy4qci1vgu+H+OGZRSl0uhJiDU9BrJ5xM2TXA88DvlFJvavMuB66NbShRokSJEiVKlChRos2n24CpwG+AE/qY99c4NRRu29Sd+qRIXdc3yXxlySuUVIlhq00yXeVPUentR5U9ZPe+9galrsDfmd5xDOsL6zFfex+AlXUlVtYrdujYAXvlCgrvLAOcoafp8duWraP4jlbkRIoAWJTsALpQJcpA67Y396Vnf5cDph/Hdy/9GY/edJsDOSoAkkdefZU3332HyZMnM2RIMIT00CMP5YqLL2fWvXP57vlnOysSwTDo2CxXZ0NjJ1cCs8Iwqg5HNmsowNZj9XGsvW3XHLNTpkxBKUVvby9vzHuY/73/Xi781ZU8/I+nmXPZVaTch2wFG+UB24ky0Byz+Tq2ahkYmidtZYG1/ue6dB4PNIisu6wOZjUQJlsGaNNdqBjKjwwgrx2BrzqgLHORaZoxeRWTOramrrmFlXNfASKOWe1nkQsghTm4HVhMaclKetc487zfrGXMmhEA68IWHTqZ2SKp1jTG2G0wBnUA0NilRxlIvz8tOaeAjx6z0ZJrocdSWD2ComljFmQIUFdyzDpFr8J+7sIa59yfP76LVXXaNaoVQYpmn9Zn6lmf1vZPJlMG1Tzp53NKc9YOXx7GKqpQcJ3dOOe4C08LS9ajlEmqoUTrRafy/tk3kC8GjllMwy9SZhmWmyvrgHKRCyCkrZM9WV78SwlC8FzkA7gdFzsQUmTbg3QEEToV8um8HzNRFpvChjlmf3HYLzjkxkM4fkK4fvwuw3ZB/VVRb4Uhve5sHdc+jqhEJFM1LsqgJ3K77DXCjtmDRh3EvDfmcfROR4fmk0Ki11ozSx7A9hsPz9+Q94t/6Y5ZYQswYG1hre+YTRmpEKwUWr6qkUrhEVQ9Y9aft74ec7sd/D7q29pSV+5O93T4btO44Ym/svuw3SvOI/IBVC1JOO+YlXzl0Xp2XFz+e0J3weYGtFLkLefnmOiSaHHFKCwXVgrZ3lHeIe1FRDWJaNbwFghm+52VpZR6Syl1iVLqKKXUJKXUNPfzm30vnShRokSJEiVKlCjRZtedwFPAF4UQjwohDhJC+E9iQoiUO+0R4DjgSaXUnRXaSrRJVeEJKg4KRp+2hMCQwcOhntepZ9RWfkiLc8ziQFlVDsliBnP6P3kP8HtO2JmpB01mwQsvMOdPD1RaMQDXXX89ANOnTw9Nbx7QzJSJB7BkxXLmzX/QXZNg8GDHUbR8+XK6u7vLG9T2mdAycytGGVhmyJGmS6HKYEwhpZxc2ubAuenDwYp5lu4XKgI1AMuyGDlsOD/42je54LTT+fPDj/Kb22Zpy1Zos0bpjlk9l1bU1TGmNZxHm4tUEq/PNoTmB8JxCA0BTAxBlQYX2OpRBs0a7KiQ7+l8VxnMrk6VGDrnDlLbB3CqomNWA3zGMAf497y9ErtkgFFidTYAmmVRBinPMRtMb/vRiQx67hGEafrOvlxP0HHPMdtjKVrqyiure2AWoOT9r0HotJHWMqeDrE9hVkYZbwwMOwOFVrwvmhfckG5gveaYrRRl0CtVCBilssF8I1ZEwGx3j18gUMgAzHo1yKzWLOYOOwIwoCg41HBqSwrDCACyYYVyZWU2DcLNV9YCnj34qBf/QooQ7BL1GtDs5yhupTlmdWfi8MbhfsRAnNLR8OQa1N7QzjPffoazDjgrNH2PEXtw09SbmP/V+aHp6wuBK7o933fxr2iUgSGNECTtlQpbhvs+Y+oMXvvua4xqDacf6VEGQoFZ9Jyy7rRolEFjvV+YUOfqGSPjb4uXhZwyU2HHbFvwosiygr4VqxVWJAxmTWny26OuiZ0PwGxtY96p8/jxZ6OD4wOJhuA8siW8MrTAg9tHx1S40qB4vQZVc/XN5fNGogzKYltSVlncAdQOM3tCFnPYEqMMagazQoiSEOJ3m7IziRIlSpQoUaJEiRJtainnKX8a8BKwHzAfWCuEeF8I8R6ONW4+8GngReCozdXXT6pUDKgLKRbMRj8LpPZwGHoU0x06VYpvhdbnOsmU3X/HrO5KveSMs7Esiwt+dSWF3kLs+pctW8bcuXMB+OIXv+hAEffftgO35Z4//wmAm2+73V/XsGHDGD58OMVikccee6yszXA0Q3zfQrOnLNJmOijUpc0vlChzORXqTNITtkU2BqCxJxJlUDbk1ItT6CO4dsp++wHw+DNPhxffADobXcYQkSiD+jxj28eG5sllwgCqIddEy6FjSTfb1P/gB85EzcEttSG/sjUYFiwb3axMPT8yn/OBWzR7UgcU1QqKG7jnuQZzwhmzwbx6zII50hn+3bNCuP0m7PQ2I45DzzGr5ZeKrBbbMMABrzk3V1bakCoJbBQ9pqI1V+7Ya6tr8yMvSm4/bW0/mIYZArPRjNk4rc6V5114rrqoY3Zo09DQ0GlVKMSehgVT+eczQDZb5ztrvSiDlXWug7dQgGLRW3GQMesZfA0ZgDcbxpqN3sb656clLYQGZkUuizRicjwM3THrTtPuVwBSA7PR67lMkW33zrvodbPz4J3Lhvfr0l2nG0P7j96/bIj9dh3b+T/HuXaJjKoQkSHtlmGFYLv3cy0xDJZhodVexCx6IN6dFgWzDQ2xGbNtOWeblncv96MMUkbKKTLp9bshuKeabqRFSSj/WEbPaX+dEcfs1kPLR4b462iKAabReRqC4n3ey5OV+WgKuTuv5vjNDg5GfOQbBpTPG4GubXbkhZB73FqO2Jb6CUEf/N+9ffwe6Cr1RFZYdfbNov44ZtcCb2+qjvRHQggphDhPCLFICNEthHhBCDGtxmVnCiFUzL9fbup+J0qUKFGiRIkSJdoypJRaAuwF/Ah4F7CADmCQ+/O7wA+BvZVSSzdXPz/xioGWggpDFyPThBChIZ4hAKkPca0wbDkcMRt2zOqgSCrXQVqlAVujtqOGDecbp5zCovcWc/Vts6NLAXDzzTdTKBTYdddd+cpXvhL6d9RxR3HCtGm0Nbfw8FNPsei9xf6D5qmnngrAJZdcgm1HII4OCgQUCpXzBgFIpSoOEZVChlzH+vaK+gakAUad6fer4oOz75gN+hWn95Y6l6Bh9CuJr6o8qCGEQKQ1x2w+T2O2MbT/8rnG0LItdS0033QDQ19/EjnAAQ06iPGccQCisQk/J7TFHcarOflEOuUDt/KM2eC8icYc6PJcdzoM6bbswDGrF//SYhbMceHh32ZbGLQ5bkxt2LUHCnU3plZ0zYPQObcSve6WVSi/WJSu1nwrD0zo5OmR3XS2uQBTOw9MaYbeqngubmFWiOyAkOs3qih027ZjW1RJ2z+DBsee9z2WCu3HVDZXdr4uanVgrOqJFv9yjotyKacwDXDPOaVAubEH+tD7lJFCZIO+ilyW7FbO/rPyWhEnzzFrB90RRByzjeXDxysqsu36sdCv4/1G7VeW/6srbfXfMdtfjW0fyzWHXsMfT/hj7Pcikl2qv7gAr/hX8Nk7vtUiXDw5LlX3HqKE75j1fhFEHd2iucm/VnTH7BfGfwG7ZGNLm7VFJy4lY2awu4JRD/q9xUp7cNdffc2OWQdUl99HioYdcuhWkgyBWef/lfkK15oGW42BmuM3H3PORI7ThFT4fusdt+brfkv7g8Gx1jOVq6nLDoPZLTHKoD+/2Z4Htutzro9HPwHOBc4HngWOBe4QQhyqlLq/huWXAYdFpn2wcbuYKFGiRIkSJUqUaEuWUqoLp7DtT4UQQ3GgrADeV0ot3qyd+4QrgGYxX1YY0i1ifjak4ZdscmrquGBEA3w1RRlI4UKTIhRLoUzUASJNR8doepa8WtGLFoLCQnHB+edzy6zZ/M8N17pVtsO63o0xuPrqq9l993Dm3+vLXmfA8iJXNP+KS6+/hpvumsNPznaG/p511lnccccdPP7443z5y1/m17/+NU1NTaENXde5nl/97mbstkaO+dox7pY6yZahrXfzEON2kCnNsgxFHwoZBqkdt3E+/Pslt4m+wKzgyeefZc+dxxPFA8tWruSHM34BwGf3+7Q/XT+eH0VlUQYufJDacPGGbATM1scXx/Hb0OCnkBJp2NglA6PVHcqvQUWRTiMtsIvlrlg9vqCaY7Yh7Tjq9AxNL8pAEQaKoj7omzF6LHoBrdSQVnCzIJ2+C4RUKK84letcC0NozTHb5gwn96IM0lrhL6XK4y8ABtYP5Pd7ruP3e8It9wwBVJljVj/OuZQbZWBVAbMxjlm/jzFZy02pJk49eSmfM7fj7NFjKjpmdeexkQ+D2bWZIqtzjntQFXr9KAOE8MGT7e1H3TGrhHNPATCDbU0ZKb+wHDhAve2Om0h973zqzz7dny5k345Z3enYp2E2su1OlIFAColNUORrXPs4f+h9nGqBmxtDk7aZVPnLqGM2U54xq7tXPUe0V9SsmgxhBI5ZwPIyZl03uTNaI3CTypYWzB3Gg7R5u80ZWm/bNifsegJz/m8Oi9YtQrr31LSZRnUuiV1vyo1VKYkgqsSU8VgvCmaFlM6JEhkmUTJrrKiYLd8vvks8olCOtuaYFdlyl3U0L56oU78CNK7VMdtT6qEkFEbFSpebX/0Bs5cB9wohJiml/rypOtSXhBDtOFD2UqXUFe7kh4UQo4FLgVrAbEEp9bdN1cdEiRIlSpQoUaJE/1lyQWwsjBVCSODzSqm7P95eJXIeuGrMgwsRhcANqTUWKOSYrWEQoZD+w6Iq2Qg9YzYmbzbanTCYhZb2dr7zlVM5/5dXlC33yCOP8Nprr7HjjjuWQVmnMee/6VOP4rIbruWWu//ARd8+A4BcLse8efM46qijmD17Nvfeey+TJk1i9OjR2LbNa88+zyNP/40169ZxxZXaumN2s3ABgIw89M647jpeee8d8rbBP15wwOst99zFY6/+g3RdPfvuuy+nnHKK21UHHkQfnL3pfpQBcPall7BkxXL22f/TDB8+HMMwWPiPl5j/5GN0dXdz0OQDOfFwbZDkRnrGNoQBOph1h32nZZoeHKdVU114mO/ApphCNJp0xyyAMBWUQLa1uZ91x6yFTAvoCmerAmj1qyoZuwEYkHWHB6fDUQbe+a8P15aNgWPNycUNGs5PPgBWLQi+RyCENvjdy5gNRRlo7mC30Fm2VyLtwDHbbSlEBSiSsYJ9X/IuS+2StAwrdP7481dzzFYAs5Xg8NgBY1lQWsAf61ZzNtAto68poNtU9OqAO5sN3V+WN5V8J6TumBVSBu5eD/abwcsAZYNyh60LQ/owPWWm/KHvAKI+jzF0GC2zbwl3LJQx60JBaYQKmOlD4ft8mSHCNwM/R1UIHxx6+1EiKxYT29hRBhuiaNEnIlEGhjRiowxqdcz6Rn8FppdcIb1jEIkyaG7BHD2Gtqdv5n9unwzAgNQA6rP1nLnvmZw1L8jVdcBsTE44kEq7ObXa6V8LmPVctUKosl9Zyqztd6z+QsZwt/fDuvhrTd/3xuChwReZGOgdiTIoc8NXALNesbu+HLPjO8ajxMN9jszYnOoPmG0H5gEPCCHmAguAfxPzl5JS6pbotI2oyUAKmBWZPgu4UQixtVLqrfLFEiVKlChRokSJEiWqXUKIEcApwEk4btrKJCDRRpVSCjezoPzLSg9VlSCs16YInIG1RBmE2pMyyMEr2Q5N8RuO/B/TCf3RVQjHIXTGKdO5bs7/smhx+H3AddddB+DDzahsbJSAEYOHcOBee/HQU0/xx0ce5ugdnMGNHR0dPPbYY9x5553cdttt/O1vf+OPf/wjUkqGDezgyIMmc9LRR7HTkYfw9qrKSXWeiynqMPzL40/y1IIFoWl/e+F5/vbC8/5nv+/uLu/TMQuc+aXp3PvYQzz//PPMnz+fQqHAgMYmJn5qD46fegS7HP0ZjOX6JagQ/a9lra3b+c8wwo5ZWe9ArJyVo6fogNnmiEN2UOMQqknmw5m0RlpQ6gFjkAt0NYeYyKSRaWe7PDDZaDTyq8N/xYBfn4tXtubTZgv/M+kHnDvvXB+Qeeqod9rVnWd6xqw+XFvPGwXIDITuJdC4Rxt1p3wNdfll/vESCIf4uaY4z7kWdsxq7mDTpGCWSBUNMr2CdCHoSy3u5kKEXwKYwvRhJUBdyi22psMbYQcLCZt1Zsl3dtai/bbejwVLF7B47WLO+MMZfCZdZIfI7b7HUqEiaiKbDQHkdRkVuC8LWna0FPHgyXM3KwFuPimmiRSSEiXHMau7kesrFNryjpVW/EtIA1XUcrBrefnkrygaZRATJ6NVpasEZmMzXz9uRR2zGznKwIfWgOnHUXhxFeFjLjucazQ/bKRfiPIzoz4DwKHbHcqZ950Zcsym990TZj9D9BdLxr3eSrIGx6wMO2YB1wEfni9n9p9UNrs3JrvSYdYcs6K+nlRDCaVA5MvP46hjNgpm9cKKoel+ekT1c+3iKRfzBn/Bu+n/p0cZzCQY53Ck+w/CZ4r3emVTgtntgR7gX5HpL7v/b4c+/iJe7UKI5UAT8CZwA3CFUireh50oUaJEiRIl+o9UqVTixhtvZNasWbz00kusXbuW5uZmOjo62H333TnssMM47LAg3WjmzJmcdNJJ3HTTTWWV0DdEixYtYuutt+bEE09k5syZH7m9anrppZeYMWMGzz77LIsXL2bNmjW0t7czbtw4TjvtNKZOndqnqyARCCEM4HDgVOAgnEdvBTy4Ofv1SVW/ztk+5g1FGYjAi1sTtJAC3Adbp/hXnGM2sn4Bry19jZ5o4REXfOS335633n23bFWzZ89m9uz47FlndYGD8f5rb8AugpGLQAApOfroozn66KND07v/8U8AjIyks4LTNyrHaRU8yc+9ZSZiaDst3VBYvNyf3tWapnno1qFlKxf98joaTD/u0MP50lFTsbYJCm/5/c1bvCnDDjKlt7MB8vpkCMN3BwN+EZzGTCMfrvsQgJaGMJgd3DqiatvGNuEEwOavHUb3Y0+TmnyIsw7dMZtKIzMmUPSjC0xpss/IfXhH2z85M8W0CdP4zrzvlK1vXJuTFasDjO6UCrKQ9f0UgRxtv/0Zhcceo+6733cmaO8vpJToXF54Ve21/MwoaCmZCopQ1yPIuFmz3ZaqCZTahgRKIUeuaQSwEgLHrB5lYFg2JXddhpatW6YKp/zU8VP5+d9+TlEUue/N+zhQlBcoihb/ErmwY7bbUoFjtlAM+idEWdapMA2/aJpSInDMamDWMqxQTITueg3JfckkCKIMhGH4ubX9VVmUgbtN+guarKG5HrV9atv2lgFkXUUds3qWNDjXvh5l4IFZL8e4mkxp+mBWKjB7ba9R579IHrYc5LzM0ffPafuc5k9rsppYY68BHDCbOeooBq/vxNp9j1A7abcQoQdmFaoimDW0lwsBmC2fL1UlFqSSZB/kLApbh772GNh2/O/b6PVRlg0cD2b9872P3/1SSkLpulvgn8L9AbMnbbJe9E8twCqlyv6SWKl9X03/wMmlfRnIAFOBnwFjcBwRiRIlSpQoUaL/ApVKJQ499FDmzZtHU1MTn/vc5xg6dCgrV65k4cKF/O53v+Of//xnCMz+J+vZZ59l7ty57Lnnnuy99940Njby73//m3vvvZdp06ZxwgkncOutt27ubm6xEkKMxPlbcDrgVapYDlwL3KCUqmwtTLTJFPcQV/EZrML0klQYtnAchKFIATdrrxJI0FYkpAxctrYKxxe4P5czHxF2m3rr+4gvSBTKBwLOI5GoPs69FrmUWqYElGxkPgAvljSBcKGwXCoHvdGCKpX7EJfr6S5U/bM3WcYfpw3JmPWX8Ryz0gjBSi/KYEB2AIvWLQKgPRJd0NzQHtv20Nt+iL1kCeboMaHp+e9+n/x3tQl6xmwmjcymgKJfUMcrWhfaba6bTt/mA4YewMtLX+bb+3/bmZAOZ8zalMO5qGswtfe+pPbe1//sx0zgONHCYNZpXy9SJerCBb2KKQXdkC1IMq6rrjulKhYoAtitfTdeXvoy47OtrGdJWZSBDma9/E8d3pgNBiX3HYGRCUdn6I5OVYHMDm4cjLQlyoV0dsxp1W0pCobmQs3nQ9ddlxU4ZlWhAIa7r6QIFXtzOmxobk4NzFoGaSNNr93L4MbBiHxQdzLqdPb7IfUoA3dew3Cc/XHz1xRlECgugWKH9h2Cfmnu7RarhVWlVdXb/zgVHQIfeSlhGmYoysBzROvxGpVkiMAxiwLDc5W7+0Nq14iSNlID69cceg2FUoERLcELnnGt41iw1BmJ4J3j2RPLEVxmyFBKQrEqa/tg1pJW2XwQccwalcGsSPcfzFaKJvFV9jKiMnosi5yoMWPW/76m3wPatf+fDGaVUjdvig4IIQ4CasmsfVQpNZHAlVvWVC3rU0r9MjLpfiHEOuDbQojLlFJvxPTxVBzXBMOHD69lNYkSJUqUKFGizazbbruNefPmMWHCBB599FEaG8PFWzo7O/n73/++mXq38XXsscfGunzXrFnDnnvuyaxZszj99NPjMys/oRJCmDgv6U8FDsDBAQXgD8A04G6l1AWbr4eJZGyUQQ3RA5oWtRaRysnki338NGpweAnpP+QrG3SPiFLhz3p/QoAI54FFfESIqpQKhhf79YX62WYlAGpKrO3GhaY57rEAzCoccKCMYnjZDQKzkemVmjAMF9LXmDfcDxnCabvj+85LOg8CDMwPdEpGA+0tw7wfsVEYFSBD+qDJta1UBxHZLLIuA3T6YNZ3wOkvB2LO0+uPvT70WQcY3ZYKQVZ/nnQf2Z86vxAifIg8x6yeX1oXdsza7iy5HuFnzPaYClNURg+3f/l2AFY8fZzTpuaYtaSFIQx63VCHnOUV/wr2YW6nreh50Hl3JnMmhjB8kKtsFWqvkkY2jmThuoXONsScrgVT0atlAItcuPhXV0pzzPYWg2NRyTErJV4Egyq415JpcvURV3PfK/cxbfw0OucFaEI0NsV33AP2SvjFjaRhoEobeK1UeFkiheSygy5j9nOzufELN5YvVhJkM9ktC8wa1QGfJa1QVmt/HLOGNLBdEi6VwCx6rmfXua3dI5QVhuRxBcsmjprog9lq69925wOZfuwFFPKWf89NmRUyWCPFvyAezMpMPNitJhn39kJTWUGvaiqLnIhcL304Ziv+ftHbEFrE7H8ymN2EegrYtob5Ot3/VwLNQggRcc02a9/3V7cB3wZ2A8rArFLqt8BvAXbbbbeN/9dAokSJEiXDXUH/AAAgAElEQVRKlGij66mnngJg+vTpZVAWnCI5BxxwgP954sSJPProowCcdNJJnHRS4FR466232GqrrXj//fe5/vrrmT9/PgsXLmTlypW0trYyceJEfvSjH7HttsGfNBdddBEXX3wxADfffDM33xy8445GJcyfP58ZM2bw9NNPs3btWoYOHcqRRx7J+eefH1RU70OZTPwf8g0NDUyePJlXX32VN954IwGzgBBiDPBV4ESgFefx+jmc6K7fKaVWCiE2bBxooo0iv2hUDQ9cvipkzNoyGIgfglSu3aNilEE0Y9bSqqiXVU+JA7ORB0bPXvJRway7d0Lqb5vCaWfBUwtY8NQCWtdLlBIIS2IMCA9ALBV6aOiF048/0VsUIQQqAgqjYHbu3LnMf2I+ACmZojnXzJK1S0LHplHmGJVv5UuHTfUaie+ulO65EIyfdczHG74vhQacAOrOCUcEtNa1+j/X55t9MLsxCnuLaMas61D2in/FQRThD1kXFZ2fOsCIgtnSIIW5xCZ9yOdr7qcUMgQ1vaiEkGM2EmVgp5z56wqSjJYxW0sxKC9bUndhmoYDWlGR4l0avMlM2h8edNIUZdrAkpYPZmvNmj1ozEEsfN4Bs3F7t8dSoTxSUVfnvmRx5u7UHLP09gY51JUyZnFhkSIAs4bBPiP3YZ+R+zjf5wM3sqz0t4B7LDQzL4Y0K0YZVDt/nBUFP9oEowwEgqN2OoqjdjoqdrHRzaMplAqx320ulbk0UzGOWQ22e1EVuVS4eF+cdAe4UGAU3Xa8KINQXEnffT1yxyO5/K+XA2BHQ2A1teXbuOmSx2nINjDhygkAFR2znvMetJc9MW8nxQaAWaGdQgtGdvKpNyP7rB9g1o9I8T5Hj1uFl0nC/7+Gm7Ko8PMWon6DWSFEG46DYFugTil1ijZ9a+AlpVRXre0ppTqBf/ajCy8DaWAU4ZxZL8jnlX605UkzoSdKlChRokSJ/hs0YICTEff666/XNP/06dNpamri7rvv5vDDD2ennXbyv/Pg6GOPPcall17KAQccwLRp08jn87zxxhvMmTOHe+65hyeffJIJE5w/lCdOnMiqVauYMWMGEyZM4IgjjvDb09v+8Y9/zIUXXkhLSwuHHnoo7e3tvPjii1xxxRXcf//9/PWvf6WhUrZcDers7OQvf/kLADvuuOMGt/Nfptdw/u5bClwJ3KSUern6Iok+VnkwQIiyP9CFWQNIDTUVDyJ8B41RwzBOKX24ogBKWsCeUn4F9uiaYx2/HzGD0ck2tN1Vezuqv206yy14agHX/PyaPucePmiwD2a9NYmoGy0GzOovpCppv10/5YPZiqDVMt1iO6UQENiQKIOoKg2xz6cD4CikpCQUhhKxw9z7LR3MZrPIegfAeY5Lv086cK8lB1J7QddtKQwM/9w3HpzJ1nWDyqIHotL3qUDEgtnQ/NFpGaef2ULgmO227NrArAtodDBrScuBSqWIU70ngICZw4+E73lg1iJtpOkuOZnEpjAp4oLPKk/7X/7Ul7nmuWsQQviAXFePqejVCqrJ+gb3nuOC2ZSN7e471Vv0wagQstw96DlohRd94EUZRHJJ64Pf/ZUds2EwWxJu5miphzgC5dxTK++IkMtff49V4drsSHfwfuf7/PzzP+fse8+u2O7mUxCa7OX6ejKkQa+2ywvuz7VEGViG5d8LBFrxLxe6m6GXL33fn9sb2smLPGuLa9l9RPUX6O1ulIr3Uskyaogy8F72xLjHZbbvYmdRCa1C3w1HZ/hc98Gsm/swnW87zvb+OGbLin9FQW0Fx6wXp1CLY/a/JsoAQAjxFeAqnGxW7y7k5bIOBP6KMxTsho3Yx6jm4YylOR64WJt+AvB/Sqm+Cn/F6TicbVnQ14yJEiVKlChRov8MHXnkkVx22WVcc801rF27lqlTp7LrrrsyYkR80RbPwXr33XdzxBFHxMYCHHjggSxZsoT6SNbbCy+8wD777MP3v/99HnjgAcABs1tttRUzZsxgp5124qKLLipr7+GHH+bCCy9kr7324v777w+5Y71CZBdeeCFXXnllzdv9r3/9i1mzZlEqlViyZAn33Xcf77//Pueddx7jx4+vuZ1PgBRwPzAngbJbnvyMSyl9j6QQCmvrwYhsvJupEjio6BDz5q8EZqOOWSEQQjnFenp1MEtNjlnhM9SPBma3at6K1avfDE/cEMesUpx27mmcdu5pjFtuYRfBbEhhjhwZmlV1ddHz2tv+Z9MPZ424ACPOxJkzZ3LupeeiUDRlmhjWNIyXPngp9FA8rH4omTeWaI2Et8NszmKv70a2D8RY9a7jkv2IYDZ6PlQCswePO5irn73a/6zcjGA7Btr1W5ojTKQzyAYHAttljtnyKIPqjtkAfralG9h10PY8s/QZALLpXJ9QNiopZKgQlxeDoEqVK/+IjAmUyPUIsh6YTSmyZrbiMr5cMGloL18sIwCzunr++V7QzwFBsS6RccCsN3/KSFFU4diNOHU0dJAmTYFCrCu6x4oU/4pkzHaaCtOFo6q3GLyskaJ8qLZ7/IVwjqR3PykrVqX9rSGb40vpeBmzhksJlXCcoMruJhbM9nXNaNtUC5h98vQn6e7tJmNlSMv+A75NLi/bG8qOgylNitr17EUZeBmv1aQX/9Ids951qjtmZbY27Pb8Wc9TKBVqAsMQHJNKYFZ3zHrzxEXpyFw/jpsbv6GrN2dRf+6P6HzwKXAjR/rjmMUKv7Qpg7oxL4Qg+F1Q08iJGs7lzamawawQYhLOcP4XgQuBycDXve+VUv8nhHgZOIJNCGaVUkuFEFcC5wkh1uIMO/sCcCBOBV29zw8BI5RSo93PI4Bbgf/FcdumcXLFpgPXKqUWbqp+J0qUKFGiRFuKdtKcm1uy/jF37kdafuedd2bWrFmceeaZzJo1i1mzZgHQ0tLCpz/9aU4++WQ+//nah3QCtLfHF3yZMGECBx54IH/605/o7e3FqvEP0quuugqA6667riyyYPr06cyYMYPZs2f3G8x6EQoAqVSKyy+/nHPOOafmNj4B+hFwMk5x2+lCiNdwYgxuVUp9sDk7lijsiotCTNlQHksSzBz/sxTSHxqqP5CJlAHFUmVYpT/Iuf0QElSJsGMW4h2zIlr8y/2/lkzbKspYGUwjS5Gg+Fa/Ya8Q1KW07fb6FtdO5CHW8rapD8es06wDEXVAEPpeSncOd9kINDC1F2mGNLBRSM+VqPf7I6hS33YcvCO/+dxvGNY0DAgKQm0Mx6x+vETKQjY4AM7LmPWHJmtD5fGHv1fpgFZ1/oJPncSp8lH/cy2wCSKOWRF2zPqOXLsynHYKmXWR04t/WYr6dHzxqtC6XWApzTBQ8odha6tt+NLn6LrsXho+NUBvAplJO0PRXUNt2kjTWeykFl1y8CVc+fiV2KKn7LseMxJlkM+HIFdXSpF1tzcKZssyZlMemHXnL9qAKCuYJP0YJgWV7lPuvvJSFGzhQsMKx6jv4l/Bj/q5Xm05DyRWyjrdnPLiIkCV3SdNGS7+5blna7lWDGkEmaVoYNZzzGr7QtbVtl+klGRkbVAWgpiOSm50/fePd2ziRpyIutruDaDvz0B+sULt/O2XY7YsckJfVlUsHOaD2Rp+EYgKfx9sKeqPY/Z7wAfA/kqpNUKInWPmeRHYa6P0rLrOB9YBZwIdOMPRjlFK3RuZzyC8jWtxMmi/h+PwVcCrwBnA1SRKlChRokSJ/qt0zDHHMHXqVB5++GGeeOIJnn/+eZ544gnmzp3L3Llz+fKXv8zMmTP79fb8vvvu45prruGZZ55h+fLlFIthJ87y5csZNGhQTW399a9/xbIs7rjjDu64446y7wuFAsuWLWPFihV+NENfmjJlCkopent7eeedd5g9ezY/+MEPePTRR7nzzjtJ9VHd9pMgpdRPgZ8KISbjZM1+HrjUnfYnoO/x14k2mfR8vQ3NmNWvaClk7BBmc8xozEIhdnh2WSveA70UzpBqvbCOU/3L7YLS4gVExDHrxDJEIwA2SNF7Vj/BrAAsM8XI5pFOte6ViwBVUzsWHqSOQPOY+2hdqo61PWtpzMQDdYFwshH8EODK69cdaqHlP6KMKsdjyrZT/J+9Qj9V8zk3RFYK2eTsn7KMWR2MValq7s+jRRnIhgZkT7A/awWzupyM2eAAeUOKqzlmZV0aB8yKEJhtzjZXXMbvvwtkzAiY9UC1frzz536X9H77Ye68a7iNugx1VvB7OWfl+LD4YdnycZo2YRoTR03k/tnlRdwKJqFh7yLfELpFdFo2Vsntd28xgNdSlEMqz03pFQsrOsPty4Z0uy+ihGFXefniZprqjllpOi+QYtTnsG/tpNOvt1qyetPmFuiYJbg3RyWFDMH2/jhmnWgVtx0FZtG9iXlgVvtby8z3nVm7IfKylyuBWX00gFd8z3nREt4Xsq72/nku77J+QKhol7D68bdmWXSB9jnmuHnqT/Gv/6aM2d2A/1VKrakyz2IcULpJpZQqAZe4/6rNNzHyeSWOozdRokSJEiX6xOqjOlH/02RZFgcffDAHH3wwAKVSiTvvvJOTTz6ZW265halTp4byX6vpqquu4swzz6S5uZlJkyYxfPhwcrkcQgjmzp3LCy+8QE9PudOmklasWEGxWAw5XOO0bt26msGsJ8uyGDVqFBdccAGpVIrzzjuPq666inPPPbdf7fw3Syk1H5gvhGjHcdCeAnwWmILz5LKTEGJXpdSzm7GbnziVbLeaOipCpvpYsIIlJgRHI27ASkMky9bnFV5yHYyOG80FIYqg0E9k8XIwq2rLtO1LHxHMesvXpR0XXsGfHLOTy6q06z8Hw4TjIPpWLVv10Q9C1bKrRTLEgtkNGJIajQLwgEVf8ta9MYp/hfqTskh/9rOsm/EHntvK+f1hejERRlDwzC8YVeVC0KMMRGMjammwnbVkvHrte/tHCuk67Fwwm3XBb7FycSKZzwGryPVIUgWnnW5LMSDX9+8wa5uxwHNYQ9sBJ67DMqyKQ7WtPco9YeagNurTwT6qs+qg5go40JxrjnVF95gqDGbr60Pna5elqOt14X2xhFJBxmx51XkXNHsu7KINyLJ7gzFiBELamNW4mVcwzT3USigHZFdyzPZxzYhQlEH/cjnTxpYHZv37SxyYlZKiVjWtYCqUqq1QXeh+pMCIZMxaVrAvzMZ8dPGNopSRgiI0ZePzh0PFv2LuKZ68jOuaFLMfPQCsg9kobK3aZDTKQFu2llt8bRmzWvtbYJRBf7YgBazvY54mytJfEiVKlChRokSJthwZhsExxxzDWWedBeAXxupLxWKRCy+8kI6ODl5++WVuv/12Lr/8ci6++GIuuugiBg4c2O++NDY20tzcjFKq6r9Kubi16rOf/SwAjzzyyEdq579VSqmlSqlL3firScAcnKC03YCnhRDPCyG+uVk7+QmS75hV9C87tQLErTRUvYYGgx898OnFEETIjT9sOAQtRaj4itFQhzCU7478SIrul36D2chHb9/VEGVQscl+5vw5H0VoW6q1YRphMKvEBjpmI4tUypiNKuvCylxcnvBHUSqFud0O3PzLPbhjD+dx2wNDoTxIo4Yog0zg9JNNTRRLgXNU1niOhOI+EH5mJmiO2SpRBt6w6FxBUFdw2uq2FK11rX2uO/eNbzJ83i/I/fIyf5plWMH+qHK8B549hfzYLA2XXEJDOiiaVUuEgi4pJXaMK7rH0sCssBGpVMjF2mXZfvE2VSxBSYsyiLidvSHfHk/y3K1Rx6xsH8iQWT9i0B9+XbG/Qcas89kWThRGzLsip82+EJDumNWXqwF+1ZqN+rHKBYmVut+rTfccs7VcK4YICutJJTBcKC+s8igDq3HDC7hW048P/jG7tO3CN/b+RnwfZdh5DhWiDOprv0bi9mMAZjWg2i/HbATMprXPVRyzRj+Kf23pUQb9+Q2+CNi1j3n2wIkVSJQoUaJEiRIl2qLlFfDS8yy9Ia2lmGGay5cvZ9WqVey9995lUQXr1q3jueeeK1umWnsAe+65Jx9++CEvv7xpa0+9955TJMWsYSjsJ11KqYeUUl8AhgLfBV4HJuAUwE30MajkUgrh2SlrVYWHM/3hdIOHvnsZs+41XfaoGFv8K4gyUCiMoUNJ77htxeJl/VJkv9SaMWu4TkLZ3haaLpvySEMhmmOcV2XHIB6Ab2hRsxB8rNKGRJbt9w11zIbardFt5UWtmhvdMetAiBDI8TJmdUjqFYyq5pjVogxEU7N/LfWrP7rbXErQQY5X1T4uU9lbxi1klisIWtc618v/z96Zx0dR5Wv/OdXd6ZAEQtghJJABURAQl8FhERBB0VHRIUEBYcIi731B8SqMgMoSTJQ7V2WVGRZfEocMjoAGkFUwYVN0xkFwRgcHZfGOwhDRGyOQrc/7R3dVn6ru6q7q6u50Or/v5xPpVFedOl19qmI99Zznd7FpHdo1NTax1nHzz9E02TsOHZJDcWIG+uwpc59F2yN7wZo2VUVniK+tRF9cSK1VhFnmnUOtvH81gaPW5nXMejNmJZ/iRoqDVhFyNcsFnMNHwNHnJv2OyVPn5SgDuEU4PWG2aUIQEU74TEYzZmUMFXiLNnK3dQQ+MWO22q7+f8JAaB8USYpj1j1IHELes71l8BiPULi7x93Y9OtNaNrE/3eqKv4l6Quzcsa1EYwKs1qxNWCbWmE2wes29hdB4bO92YeCDdwxuxXAbYyxHH9vMsYmAugNYEs4OkYQBEEQBGGFjRs34t1334XLzw3k+fPnsXbtWgDAoEGDlOVyXMC5c+d8tmnTpg2SkpLw8ccfo7KyUlleU1ODJ554AuXl5T7bpKWlgTHmtz0Aimv30UcfxTfffOPz/k8//YSjR48G+pgKhw8fRk1Njc/yixcvYs6cOQCAX/7yl4baIgDOeTnn/CXOeXe4i8xurO8+NRbEc1bl3jMTZSAaDUVHpJn7MbEImdy23Y+7UhNloEpAkPcdZpOlz42owYJi9uu6wXl9F0gp6htxW/sOSOjVHVKSiSmtgNpUbHI6KeD5HKIYG+BLliTJZ4p5WDJmDTpmI+WysnXtBsCbKwsI7jax8JZSMCpAR4SHb1JaC1Ves1HE71FikuIABADmEWZ5nX67Ge06AwBSLzO0rXD353xqHTqkdjDchySH9+GF3Wb3Fi4y+CWILlnRPWsc7wnb/oVx+HxAAo52qUKtw/NgQ5JzS4UogwQXauVDVVsHLl/HGFMLVhCiDDwiqPw1mSmYpODHMZtgS0DaaHfMQ/Pb1Md9/UPr0Uxqhqdufcp/ezoZs0bEr//T//8AAJKZyetIBJG7rdf9WpUwa/xCrc2YlYt/wXO+JCR4RWpbK3NRVOFClTHriTJgfv6GSWYcvX4u80p+reB01YqtAdGuGzTKQJORazJjNoQ/VRHHjG3itwAeBrCRMZYNIBUAGGOPAbgNwK8A/BPAinB3kiAIgiAIwiwffvghli1bhnbt2mHgwIHIysoCAJw+fRo7duzAlStXMHLkSGRnZyvb9OvXD0lJSVi6dCkuXbqkxBM8/vjjSE1NxYwZM7B48WL06tULI0eORHV1NUpLS3Hp0iXcfvvtKC0tVfUhJSUFt956Kw4dOoRx48ahW7dusNlsuP/++9G7d2/ccccdWLx4MebOnYtrrrkG99xzD7KyslBZWYmzZ8/iwIEDGDhwIHbv3h308z722GM4f/48BgwYgMzMTNhsNpw5cwY7d+7ElStX8MADD2DSpElhPMKNB855GYCyeu5Go0ElJqnuoIIIAzp33qLgZUrI8+Oc0i3AJK/LAPdNo9vtqxRFCbeqF2LGLGPMryvP1L40+rdSmdzIdFJNvisAz1R5j7MzwOdgjHkyL41FHxjFqDCr7CpMX2Xn4xvBf/oJUloLn34omapizINn7AWais4kCc40F1y1LrAWLZW8ZjOoHLNMUgk5SqG8AFEG9jS3O3DA5Sb48Uf3ev9OrUNG8wzDfVBFgEg2JNrd7kOj37c4pT4pwZpDPenR/8Dfsn4APlmrFIpSjIgqxyxQK8mOWZdyjJjEfByzimglO2ZdnhcmcjkVPC5+yfPUwiVxOGwOpL7yCpLG/dmnONp1ba/DsaeO6TYnHmPxQYgR8atbm274y7S/6Bb7qxdkYVYvykAQZmvs3PBDNLtkV44PEzNmPddXh+D6lFoHj/GIBP4ds8L5bKsDr7OBNfefUeuPwI5ZYZxbccyK2e8G/rQZiStSRxnEnmPWsDDLOf+eMTYYwOsARNesPK3rEICxnPNgObQEQRAEQRARZ+bMmbjmmmuwb98+nDhxAnv27MHVq1fRsmVLDBkyBGPHjsXYsWNVNyFpaWnYsmUL8vLysH79evz0k/t/ax555BGkpqbi+eefR+vWrbFu3TqsXr0aqampGD58OPLz87FgwQK//fjDH/6AJ598Ert378bGjRvBOUfHjh3Ru3dvAMDs2bMxYMAALF++HIcPH8bWrVuRmpqK9PR0TJ06FWPHjjX8eUtKSnDs2DHs2bMH1dXVaNWqFYYOHYrx48dj9OjRMVnwoD5gRhQkP3Aegv2MMI1KmJU0KmAA9Ma3KMyawt+UVn/CLIdXhIHHZcYBMIYUZwpszBb+7EWtgBmOgmJ6BLhuuAuaeV6byQOWtwHzuJA9bv9AUQZMUmfMAiEJ3tptjBb/UgSeMF1GbR06qvshjFNl6r7ohBYzZgOIR+nH97nXk6SQogx8HbPCgw1PDAcPFGXQwu0OrPm+Fg6XHd8n1aHKwZHZPNNUP0Z1G4Ufq35E65TWyvEw6soWHbeiMGt0vEia9WSBu6Kp++S2JXvON2G8ViVAccy6hVnPMbLZfB2zDq1j1v0vs5m/VsnxKnLeJmdeYd9x889Nt6eX62302KUlRWbafqgEe6BSLTpmbdzw5xQL0jHBMSufL06nkPccQg2CcOA3Y1ZwwCe2T0DV+Wo4bulrvM0UB2oq1Rcg+drFEoUIAguOWVGY9Xu9FYpOAuYds6ay66OEqTOfc34OwBDGWG8A/QC0BPC/AI5StVqCIAiCIGKJjIwMTJ8+HdOnm6vZNGLECIwYMcLve3a7HU899RSeesp3CmBhYSEKCwt9lnft2hXbt28PuM+BAwdi4MCBpvqpZfz48Rg/frylNhoRvpkPweEw+f/ORGgowiyDuaJWKhHX+9ouiB2mHk74dcz6CqAcTFhX8JAy9/56tO1hfJ9G8cmYjaAwGwhJ5Zk1vz3zCkve9vR2pcmYZRbiEwRsBkVtZbMITYP1F2Ugjn+lYFSQ4yzHDQAIPcqAe1+rxrycYRuo+FcrtzuwzhPIeiHVLWrq5WDq8dv7f+vdrefBhtHvu1WK16GYkpBiar+A71dc63KHwFY0tSH9d4/Dfs21ANQPI646uNcxW+d1zEJivu5Bp7a4m+dfS45Z968uBjjtzgAbBEHlmPUT59LQCOKYrRWGt5koA9ExK4FBqlU7ZhMSvQ8EbG2M5SuHG78ufOFBS7tdbwCJiZBMOGbb/L+X8O9Js3B+8u1A7QYAgjDrDJNjVsjK9ne9Ff/qACFEGcTgUA7pfy455ycAnAhzXwiCIAiCIAgiGnwN46mfKXCbEYgoIYtJPsW/zGTMCiiFlBBc1FLhzzGr52hzCWJykP6EBa2AWW+OWfGXEJoGU7mQAxUQ0zpm3fu3fowNO6o9XYvUtyqKKAk2j3BnE4VZ9zgWhdNghBJlILbPwFRCjuKYrdPvgNRSfbk8n2q+D1qaONxic6AYB5FRvUdh6aGl+FmLnyE5wZt3atwxq0YWZiUmITH7Ie8bwvircniLf6HOBXmCBZMkX+FJjjawMc3yEIRZjyglu3w5846fkLCQMRuTBHmgIovpAFBlN+6YtUt21cVAks8JTxZ0otM77qT0dMPdDSf+HbPC+ZycDNbU3AMTx8/7Iv3Tg/ifsx8CmzTCrOiYdZqYJZKgeZAgZtUa+DokAw9wVeM3BsdyDMbeEgRBEARBEETk4Jx35pxnBfoB0A3u2gny/y+fqbcONzJ0M2aD3UwJ64qrilNOTWE0ygAAr6l2v9C4dpnnp1OnTrh69arfbTt37gzGGGpra/2+DwAFBQVKWydPnvS1f2n65XK5sHnzZowaNQoZGRlITExEcnIyunfvjqlTp+LIkSO6+/JBOJg1NTVYUVSEiRMnok+fPki+oRea3Ngd69/aFPrNriAUiA5RzjmGDx+ufG5Xncs3yiCEfWqFF+PFv2TrneldGkIVZeDwCBXieDLomBVxIQTHLDRRBgmiMOsWSG0p+o5MW4eOAPPu90Kq/rg2ShN7E6U/RpAkCUceP4I/jPuDWpg1OF5sOlEG2u15rVd05kyIMqjjXscs85Mx6+OY9WBm+reMxsXPYU2YFfukyphtoNKRctrquPHVGbMmxHvPWHR5nmIojlnPd9ipSWtvH1rUz7NdMabFnzALwV1vpW2vMOsVY5lWbA2Adt1gjlkw9d9mQ2MzxqMMTJ1djDEHYyybMfZbxthaxtj/8/PzWqQ6SxAEQRAEQRCRhjGWA+BzAP8N9//OPw2ge712qhGhcsyauYFSres/ysAM3ETxL17lFmaZjQm79vbh3LlzWLp0acj9eO211xRRaO3atSqRQbKr4wDOnz+PQYMGIScnB++++y769u2LGTNmYNq0abj22muxceNGDBw4ECtWmK/Z/NPVK5hZkI/CwkKcP38e7VqJRW1CEEkZA7MLwrkgzK5cuRKlpaVITPROY3dpdhGOompGxT5ltQjpU+IDBH8Zs0ouqQkx2hUgC1YPUah2Z8zK/eJK4biWa5YgKcOG9i/6xuewpk2Rcq03PuBCGByzv+zxS/A6jp+nm89MTXGajzKwa46x6JgV4dVq0blGFWUgZ8z6OmYhZ2ja1O2ZyuWUt9E8WHAxHrYoA5UjNBZL2RtBSYvQE2a9r6tNOGYlSQLnXHlYZKuRoww8GbPtvRnSgWYCROMNwtMAACAASURBVJKAjlnm0i9maQDxOiT/jVUJqs7wRBkYyS439HBN6G8MGmaNRxkwxjoAeBfAdQj8V5cDmGyxXwRBEARBEAQRVRhj/QG8DKAvgFq4i9wu4px/X68da2TIgqjbKenfBesXA4ICN5xgAdjatEHdpa8gJQnCoc5UY17jEWhsNgB1qj6kpaWBMYYXX3wRU6ZMQatW5ip07927F6dPn0Zubi527dqFoqIi5M+apbwvJXtvYi9fvowRI0bg+PHjePjhh7Fq1SqkpamL8VRUVOCll15CRUWFof2LN+BJiYnYvu413HzP3Wjfvj3mPT4D+StXyCua+lyAPFXeV5g9efIkZs+ejVmzZuGNN97A2bNnPYXGNE6pcGTMmnTMRmpKt+iYVRyPoqAjRhkYxHLxL0ko/sW4IjDZu/dA+7+W6bbR7D/GofI/1wIAyptaF2Z/3unn+Gr2VyFtKwqzhgs7adR32THrI8zWqD9bneCY5YpjVvKZqq2I7JooA62z1hAax6xL8gr7ISE6ZoXFDTXKQBb2mM5pLkYZVNu46c8pF3uUi3/J56mtYwbSf/cYpNZtTPc5XKhyqz2RPnIhOsaM/y0M1rZVxyycmvNDdPL6+z40i4xcE1XNNHDH7MtwOwXeADAUwDUAsvz8/CzMfSQIgiAIgiCIiMEY68oY2wzgEIBbAWwB0J1z/iSJstFHFWWgchoZjzLQW9VMMSTmdCKh93VwXNPVu0wvy9UzpVl0IMk3+ElJSZg3bx4qKiqQl5dneP8ya9e6Ba5HH30U48aNQ3l5Od7euUN5X0rzFm5ZsmQJjh8/jgEDBqC4uNhHlAWAZs2aYdGiRZgliLtGSXAkYMSQwWjfvj0Azc1uiPe6oluKSTbU1tZi/PjxyMrK8jleqigDFp4oA6MZs8rwitA9vZiFLDsexfHGQhBmQyn+ZWMax6zTvJCTOOYRSHb3w4ov29R4Rcp6oKnTm6FpdLw4NOupXPwCWmFWmRbvghKFwmzM1xGY4OuIBjTTzI2imRFQx4AEu4UoA/FBVlwV/woeZVBt56Yf9igFwGTHrCAyJmY/hITBt5tqL5z4y62WhWOrBmhxPCiib5IgqDpNCLMa564o6vrrp/abtOmp7nobxeBYNvN13AngIOd8HOe8jHP+Jef8rL+fSHWWIAiCIAiCIMIFY6wFY2wZgL8B+BWAowD6c85Hc85Ds2cRlglP8S//K5sVqvyJEf4EKl4rTGP1M3V2+vTp6NKlC1avXo0vvvjC8P4vXLiAbdu2oVu3bujfvz8mTpwIAFhX9Lq3P6mpyus1a9YAAObNmxe0IIrTzI2zCv9FVIy4EbXrMMbUN+UMyM/Px7Fjx1BUVOTTR+2RD8f0ajErMSBKWGWEHLOCwJbo8DjPREelLKiYyZgNQZhVOWaZpBSqYpJxcZVJEjLfL8aUyf/GxWYuv7Eg0aKZs5m3XwaPXYJG6NGLMnDVqI9vnedtd8asXBBQ8nUP6kQZhOSYtflxzFqJMtDJmA1HbEi9IHdbR5it1UQZmMrSFYY18xT/kh2psYDKMeuJjAnlQUuwtpUoA/Ehm4mYBLcTX+hPkCiDtOybAQAb+v8IwOCsB6GdWHzIYOaRTCKADyPVEYIgCIIgCIKIBoyxBAD/CWAugFQAXwKYwznfUq8dayQw9lI99+AdQ2txruMo9UxdVa3r4u43HA7v26KjyOHA4sWLkZOTgzlz5uCtt94y1If169ejpqYGubm5AICePXvipptuQumhQzjzvxdwzfU9lJvMr7/+GufOnYPdbsfgwYMNtW8UPx/Z84Z/kdZ4u54CaeDgYPjz8RMoKCjAnDlzcMstt/iszzW7CCnKIMTiX/K080hFbaqKf9l9hTvZTRlxx6xwPBhjSpV5s5/blvUznGvlETTrsXBUs8RQhFlNlAHXK/7lAuA9XrL7krvgLf5lk3zyNuXq9T6O2VAyZrXCLONo4gi9qJO6gKG4uGFmzMrfmZ5jtlblmDX/OV3Mfe2Xat3/spAfeIUflTArZ8zKYywCjlm94pjG2uPgngs8SxTGrzbuA0DzlStwf/Me+FdqFYDGF2XwNwCdItURgiAIgiAIgogSJwG8CHeO7H8CuI5EWcIo/vRH7rGWuW96/Tsrs7Oz0a9fP7z99ts4fPhw0P1wzrFu3TpIkoQJEyYoy3Nzc8E5R+GuXbC18lb+/vbbbwEALVu2VApmhQ8dd5VFYVYmoec1cGW1x4TcXPTo0QPz58/3u562+Fc4MmYNF4cLUkTIKmI//EYZeFyX0YwysDEbmFN2zJpuSolbzmiaEcLG4aFZE68wa9T0magR63UzZmvV50Wd5BVmvVnZvo5ZJcpAkw+rzaI1hGb8ulhkHLMNVZhVFC+tO9lDtdYxa+JzcnBlTEkexyxCENcjhb8oAyVj1mC0th7iTAOlcKEFYRZibIYQiaAnqH/XnCnH3liUgWowh9TFSGLmyP03gNcZYz04559FqkMEQRAEQRAEEWE6wa00MQCzAMwyMLWNc87JpBAGdJ2oftflqDp+EgBgS7LD0a2r/rpVVaj6/LR73WS7Khv20/OfAnA7965vd30o3fYiMW99L8HlA7iFWal5MlDxE1izVJ9NX375ZfTv3x8zZ87E0aNHA06pfO+99/Dll1/irrvuQnp6urJ87NixmDVrFgoLC/H888/D4ZniLhZNiyhhzOpT3Gx2O2Y/9xy++uorfPTRR8pn0iJmXnKYz4MErGTMun3DkTq8irgBIMmR5H4hikkeQWVK3ynIP5SPZlIzBCMUYVY8Hu6M2dAddn98+I9YcWgFljywxPzGYUKJhQB0ny/4bAOhiB+8wqxWANLWVquR39Y6ZrXj2fPgRJ5WLhOKY1YrMlmNMlBnzIrLY0/MMoJyjfHjvASAOtExa+Owh5gxy2rlKIPYEWb9Fuiy8qBFQBRMFTeuJces9/RkTtEx67+j4nXceJSB5ztq4MLsvwFsB/C+J4vrYwA/+FuRc34wDH0jCIIgCIIgiEjBALTw/BAxikoMCHYvJWaqakSEtMQ0fH/le2Q0D4Nzj+lO7AecTtgz9PfRr18/ZGdnY/PmzXjzzTfx0EMP6a4r58XKMQYyLVu2xH333YctW7Zg69atyM7OBgB06NABAFBeXo6rV6+G1zWr95HD5Jg9cOAAXn31VSxcuBB9+vTRXU8VZcDC4+ILlsXrXdFzECJ0Uy860AIV/5p460T0zeyLa9tcG7TNn6f/HDtP73RnnhpEFDncwqynLyEc6ls73YpbO91qfsMI4YIxobqJ1jHLdRyzGmFWccxyphT/giT5FjeSj2miRsTTeSAREB/HLPcK+6EgDO/4cMzKUQb++18rLK62czhNWkkVMVF+WJcYe1EGnHPlOuctPGftOuYvJgF2C/m6YuZtkIxZwPP/BvIpZjbKIAYfMpg5u8oAZANoBmAegLcBlOr8EARBEARBEERMwjmXQvmp7343Vph89xXsZkpViEpNx+Yd0at9L/W05lD7o5PByBj3yXv0x+LFi+FwODB37lxUV1f7XefixYsoKSkBAIwZM8adwyr8bNniTt6QxVsAyMjIQGZmJmpra3HwYCR9MjpibIgZswBw7NgxcM6xYMECn8969qy7trTD4cDPsnrh+MnPle2tRhmYKUqlfO8REmYT7F6RLtEuF/8SMmaFae7Xt7/eUATDkgeWYFLvSdiZu9NwP3yEWaWKe+yJGWYx6iBOEkRyl8ulH2WgydaQHbPcBfA6ufgXc4uCzLtv5pQds5rs2RCiDLTXnDpJ4xI2iyBgcuFpTIMt/iWPW7tOlIHnq3YxjjrJeOY0AIB7HxZ5i3/FjjAruvAVFMeste9TPBfkjFl7t+APi/QQTy3WRHDM6vxdMe2YjaMog0UwbP4nCIIgCIIgCIIIAx6jYtCptAEcs2FFkgCP806cfmlUt+jSpQumTZuGZcuWYcWKFX7XKSoqQnV1NW6++WZdB+m2bduwb98+nD59GllZWQCAqVOn4rnnnkN+fj6GDRsW0A1aVVUFZyiFavScRwaOuY+44/m1Z8+emDx5st9t/vSnP6GyshKTJk3Cjz/9gBapzQG4j7tht2ugPhhFkgDURSXKQBbWVFODQ6j2brfZ8eydz5rbRnDC2SQbkBgeh10sYFSId0g2XPW8/v7y917HrM9408mYFRyzcoEvlem8ifv7lZpos2dDmAZv982YVYT9UBBEK67Sshrms0n5fNVzzFbZOX5KcKHKUQcwg3mlAr6O2XDne4eOUpRLGKYsTOezKIbK1y5b1s+Q/rvHILVtZ75BsTuic1xn2KmEWSPfmTCu9cZCfWJYmOWcL4xgPwiCIAiCIAiCIPQJdh9pJvbASjck/2KkGQfS/PnzUVRUhIKCAr/i4rp16wAAq1atQt++ff22MW/ePOTn52PdunUoKCgAADz55JPYtGkTDh06hAkTJmDlypVo3ry5arvKykq88sorsNlsePZZc6KdFr1job8B1CKB54saNmwYhg0b5neTffv2obKyEqtXr8aZb/6BjpcE4TCECjahCrPKZ41U8S9BEE1K8M2YZY7oZFeKkQoMTHF3+quO3tDgBn1m4ld8/sfzXsesRiVq98p0/HvOq/jP+74HANTKw5FLgOyYlc9vxpWxL2do+kx7D+VBicYx62LcO35CIN4yZpUIEp2sUpeN4T8fKUfbJm0AmHTMQnDMyu7pUL7DCCG76lXO50TP2HNYEydFoV7l9s/Wj+cJhHd4cZVwqjfuxCgDI99ZrEcZWCibRhAEQRAEQRAEESWC3Ewxi9PqDWOzAahxvxYLipgQrlq0aIFnnnkGTz/9tM97ZWVlOHnyJHr16qUrygLA5MmTUVBQgPXr1yMvLw92ux1JSUnYvXs3srOzUVxcjO3bt2P48OHo2rUrXC4XTp06hf3796OiogIrV64086kVfvu73+OLf18AAHzy8ccAgNe3vY0Pz54CGMPAgQMxZcoUQ22ZFUm5ZvWQHLPi2DAzHzTCUQaiY7aJwyOe2AXBIUpFhcSIBEmSYPcU0bM3jx0nYKgYFWbF68eFHy8ojlmtANRkzCPoNOYRHP/tz8DAwJlbGJU4A6/1WCg9wimT3BEHgNdVyZKbqNoLqaq95hxwWY4y8H72uMiYVYp/6ff/bOta1DWRgCvmHva4v3PPmIpBx6y/woaJo7KR/NqbSBl1p6W2xXPBaAHFgMjPL5jmHA1XlIHE/L+OEQKeXYyxQYyxTKONMcZuYIxNsN4tgiAIgiAI69TV1WHt2rUYPHgwWrRoAYfDgTZt2qB3796YMmUKtm3bplq/sLAQjDEUFhaGZf9nzpwBY8yneE804Jxj+PDhSk5jbW1t1PtAEGFBvocyNFXe91XYEW7wbc2SvctNioQzZsxA586dfZavXbsWAIKKm507d8awYcPw7bffYvv27crydu3a4eDBg3jzzTdxxx134OjRo1i6dClWrlyJzz77DDk5OThy5AimT59uqr8yew4eQFFREYqKinD8b38DABw9fgxFr7+OoqIiHD582HhjJr8mrnkdVcesPCU9UsKsJAizdo9gJwgO0SoqpIoyYDYkDB6K9HVPovWm9VHZfyQxLMwK/PvHf8PlciuqeuKkGJGgxBnUuJU6JjpmZTwZmqosTY1T0Cjubbxtu5hX2A8Jyb9jtqEKs/L5ynQyZuXrQY3L/bDNrMioHCOPih1Twqz8kEUYelJaC7T7YB9SZvk+FDTVtnCcEmzWHxopf961wmyg4l8eDP0dCHF2S7QINupKAeTBnS8LAGCMzQbwNOe8pZ/1HwAwH8DrYeshQRAEQRBECNTV1eHee+/F7t270bx5c/zyl79Ex44dcenSJXz55Zf44x//iH/84x+4//7767urEWHlypUoLS1FYmIirl69GnwDgoh1DE2V91RjiaBjVhRPpPR0ONg3qL1UAalFqs+6gTItnU4nTp8+7bO8uLgYxcXFhvqyd+9ev8slSUJOTg5ycnIMtWOG/W+8AbtHUHZd/gnVX3wNAHD27mZaWDIikp45c0bYQL1+KNOrVcW/zAh1UXTMJjndU9GZQ7hdj1KUgSgQy47kxJG/isq+YwZhjJRfLvc6ZnUEIHEcuyQO1HmFWVno9DdVW0r2Rg74OAVDpE7iSHYkB19RDzFjVljc4It/6RVm9LxdU+cWZk1HGcjNyAptDEUZ+C3+FSb0ogwsNAjA90+3nogqjkcjYrrqb0UDzJj1dxQSATT3s5wgCIIgCCJm2LhxI3bv3o0bbrgBBw4cQGqqWjS5fPkyPvzww3rqXWQ5efIkZs+ejVmzZuGNN95QqpoTRIPGjAgXSQ1Bk39nS0+HLT09gjuMATTZsMpiUcSwKJIaQRtlEArWin9FLmtTJcw65IxZwTEbrSgDyVqGbywTimP2u5++UxyzRkQ7l8YxqzjslYhiIe8zSciCtSLMyg+k4HHMJoTumGUqx6y3Tw3eMasTZSBfD2Tx3ayYqcQ9cM/1oYkFt3KYkfOiIyGqq4p/SdYFYGV4GY0yEB2z8R5lQBAEQRAE0VB5//33AQC5ubk+oiwAJCUl4fbbb1d+HzJkCCZOnAgAmDhxohIBwBhTHFvffPMNFi1ahAEDBqBdu3ZISEhAhw4dMHbsWHz++eeq9hcuXKhUSi8qKlK1p41K2LNnD+655x60atUKTqcTXbp0wW9+8xv88MMPpj93bW0txo8fj6ysLOTl5ZneniBiDe8URzPCbARvvGLQbRNdhGMrCoeGoiYsfi8qt2uoTViLMojUTb1LDiCF16kqiklKEa4IIwpTDVWM08XoVyd8xz9c+QF1ngBRveMhFgVzeV7yOs8IlbwZs+7fBWG2aYr3dZiGVR1T5wSbRuiImDHbsIt/AXAEFu9qXe64J9N5qVqHZyxGGUQAccw77WFwCctZwNpTzIBj1qwwy2LwukbFvwiCIAiCiEtatnSnLn3xxReG1s/NzUXz5s2xdetWjBw5En369FHek6uaHzx4EIsXL8btt9+OUaNGISUlBf/85z+xefNmbNu2DUeOHMENN9wAwC30/vDDD1i2bBluuOEGPPDAA0p7YtuLFi3CggUL0KJFC9x7771o06YNTpw4gZdeegk7d+7EBx98gGbNmhn+3Pn5+Th27Bg++OADOGNoSh1BhI48xZGE2XBTVlaGsrKyoOulXK7CY2N/7f5FPLQBihWVlJTgk08+US27WHkRLngFyLYpbdG5c2fDOdwqx2y0dSK5uFuEhNk6V53vQvH4Rul6LgpT8SbMGn4wIFw/frj6g9cxqxdlwJjixpVdprzGBUDyZhP7ccxKyULkgAXHrGhod0kWIxFsomPWu7ihjgWmPOQIHEOhOGZNuD8ZmHA18yxzxo5jNpJRBqLoG5aMWcUxq12u43QWzlFDUQYx7pglYZYgCIIgiLjkV7/6Ff7rv/4Lv//97/Hjjz/iwQcfxM0334xOnTr5XV8WBrZu3YoHHnjAr1AwdOhQXLhwAU2bNlUtP378OAYMGIA5c+Zg165dANzCbOfOnbFs2TL06dMHCxcu9GmvtLQUCxYsQL9+/bBz505FAAbchcgmTpyIBQsWYMmSJYY+85///GcUFBRgzpw5uOWWWwxtQxAxjxnHrEehiKQuG6i6d0OjrKzMkLM+s0MHrzArwBiD8/oufrcpKSlBUVFR0LYHDx5svEBiGG6oVQKTCQ1LEXgiJMy3SG7hu7AeogxEkaWhinG6GNVlhRV/rPrRmzGr48yzMZvywIF7VvE6ZmWntadt0YWaEibHLOPKWK6zeorouNIbvGNWT5j1fC4XdwHMumMWMeSYDUfEgB7hzphlOhmzulEGZh2zYjsx+DechFmCIAiCaGzc2UD+53qvNdfHjTfeiA0bNuCJJ57Ahg0bsGHDBgBAixYtMGjQIEyaNAn33XefqTbbtGnjd/kNN9yAoUOHYu/evaipqYHDYex/hpcvXw7AXYVdFGUBt1C8bNkyFBcXGxJmr1y5gvHjx6NHjx6YP3++of0TRIPClDAQweJfySkAyiPWfjRZuHCh34dGWqpOfA5lpr22AJfO9a6wsNAntuXzC5+jltcqv/dq18tMd8OiuIccpxDhKIOslll46LqH0DLZW2NbVfwrIUqOWVv8ZswaFheF1X6s/lGJmdATgESRissZsxphVnHsCZoQSxEe8oZJK3JZLCImTvMWowwarEgvH3974LFcx+sAFkrGrPp46zlz64Nr21wLl8uFZJuFYnA6iOMhLAKwzff8UC3XYNYxq7pux+BDBiPCbHjKAxIEQRAEQUSZ0aNH48EHH0RpaSkOHz6MY8eO4fDhwygpKUFJSQkmTJiAwsJCU06QHTt24Pe//z3+8pe/oLy8HLW1tar3y8vL0b59e0NtffDBB3A4HNi0aRM2bdrk8351dTUuXryI7777Tolm0OPpp5/GV199hY8++siwMEwQDQL59DQjiEXwxoslJiKhS7quIEnoYzVjlulVITPTRqgZs1JkhVkAeOHeF9QLBJE0WkWFVI7ZOInt4JyHHIVyufqyItbpCdV2ZkcVr3LvyzM+PCZbYdzIvwu7EfLvrVyyGBOiDKwOT2F8i8W/GqpIrzgxHf6lL/maJIvvZqblMzDfgoRRcrYboWNaR+z69S60b2bs/0nNIF4bwhGZ4P6euM95oHfein9LjEUZCHndDdQxu5AxtlC7kDHmJwSHIAiCIIiYx6ITtaHhcDhw55134s477wQA1NXVYcuWLZg0aRJef/11PPjgg6r810AsX74cTzzxBNLS0jB8+HBkZmYiKSkJjDGUlJTg+PHjqKqqMty37777DrW1tUGnEldWVgYUZg8cOIBXX30VCxcuVOXXEkRcwIznEygCRYQdMZImzoQwDw9RYD3XqhaMe4ssmUW8oTclFNvlIk7Ru6lXiUlRehAgiiyGpgg3AMwLs96XV2uvKu5AveNhl+zw1AcDV4p/ed70OCjl/YvCrNRUyI+3MqxEM6BVX50wvkXRscFHGeg4ZuXPJV+PzLo/fY52DDlmAeC6ttdFfB9hybL1CLM+D750rreiY9eQY1YcvzH4wMmIMGv2DGxcd3sEQRAEQTQobDYbRo8ejU8//RT5+fl47733DAmztbW1WLBgAdq1a4e//vWvPq7YDz74wHRfUlNT4XK5cOnSJdPbihw7dgyccyxYsAALFizwu47soj127BiJt0SDwtYsCfz7SkiCu0wfpcJORPvU6AjX4bRoeGWMocrOPU2F6Hy16pjVmVobERSRh0dNEBYdg1Ydzg0WYYxcrbuqZMy2TWnrd3VRmIWcMStbVzWOWUTAMSueVCNsra00pCvMxmuUgTzGOTgYWAhRBpr2AhREjFfC8QDH7WJ1wWeY6cxQEK/jhvbfkKMMOOcN9OwjCIIgCIIIjFzAi3Nhqp7nJriuzndiUHl5OX744Qf86le/8hFlKysr8de//tVnm0DtAcAvfvEL7NixA3//+99x/fXXh/ZBAPTs2ROTJ0/2+96f/vQnVFZWYtKkSWCMBY1EIIhYw9YxA7aOBlc2UyiMMIxKT63HYxsOodBqxmw0nYNyXAazmBtqhnh0zJp+GCB8xzWuGlTVVQGSO7PTHyqXpRxlICt28riRp9QLAhFrJjxsslT8S+yLte9MnObtUmlZDfOaqnweu3/BVSvMmo0yUH9vjdOjGD7HLHwzzHUeCJiPMhDOuwYaZUAQBEEQBNHg2LhxI1q1aoU77rjDJyfv/PnzWLt2LQBg0KBBynJZtDx37pxPe23atEFSUhI+/vhjVFZWIsVTTbmmpgZPPPEEyst9iwGlpaWBMea3PQB48sknsWPHDjz66KPYvHkzOnTooHr/p59+wqeffopf/OIXAT/rsGHDMGzYML/v7du3D5WVlVi9ejXsjdDJQTRSGqiIQARGFIei7piV3avRnAYru/yiKMw67d4iY/EizF6Xdh2+qPgCqTYjrnuoxLZaVy3qUAcJEvqk+59tohKmPI5q2ePG5GPoT5gV80jD9RVbFZ1YfDlmE67vAnz8HRJu6h14Rc9nNSUyMo1jNornaSwRPscsQnLMGiv+Jfl/HSPQ/50TBEEQBBGXfPjhh1i2bBnatWuHgQMHIisrCwBw+vRp7NixA1euXMHIkSORnZ2tbNOvXz8kJSVh6dKluHTpEtq2dU9bfPzxx5GamooZM2Zg8eLF6NWrF0aOHInq6mqUlpbi0qVLuP3221FaWqrqQ0pKCm699VYcOnQI48aNQ7du3WCz2XD//fejd+/euOOOO7B48WLMnTsX11xzDe655x5kZWWhsrISZ8+exYEDBzBw4EDs3r07egeOIBoy5JiNEMzPq1BaEbYOQcMIOR9Wrw9mkAWvKLqtmMflF01NLEHyioUNteCTlk2/3oTfH/k9ft331wa38I6ROtRBskngnKN72+5+1xaPGdNGXUiiY5brRmF4ak+FhHi5Y1aL0wn946rFDXMspL78CprOvQiplf+IB+YJJpevCwl2k45Z4Sg1tr86Du5AjasGndI6WW/Mz4MLALrXW/FBgaFcYPGhHjlmCYIgCIIgosPMmTNxzTXXYN++fThx4gT27NmDq1evomXLlhgyZAjGjh2LsWPHqp66p6WlYcuWLcjLy8P69evx008/AQAeeeQRpKam4vnnn0fr1q2xbt06rF69GqmpqRg+fDjy8/N1s13/8Ic/4Mknn8Tu3buxceNGcM7RsWNH9O7tdm/Mnj0bAwYMwPLly3H48GFs3boVqampSE9Px9SpUzF27NjIHyyCiBOUys46FbiJMFCfUQYqBSq0NkJ2/imOrije1MvjOIpOPFGYaqguSS0pzhTMGjrL8PriOJPk793FYLf5v66Ix8xH9JG/Q5sEoM5XuPVgRZhVYXF8MlXGrCA6NuCHXXqiLCA8qPH8k2hPNNwuA2vUjtnPZn4GF3fpnhdmUM4b7fmhM+7EB2za6KioxAAAIABJREFUWXF+1yfHLEEQBEEQRPTJyMjA9OnTMX36dFPbjRgxAiNGjPD7nt1ux1NPPYWnnnrK573CwkIUFhb6LO/atSu2b98ecJ8DBw7EwIEDTfXTKGfOnIlIuwQRi9g7Z0D63wqw5mn13ZX4IkY0mbA4ZkOMQ/BGGUQxY9YjeERTExNFxniJMjCNn+OdaNMX7Jw2b/wD7BoXpcoxq+9otSTMik1adQMKopUoOsaLSK9Fccx6TjIzGbOAxvgfI9fJaCFJEiSEaVxosphl9M4XcTwaizJowMW/CIIgCIIgCIIgGgqsSRJsTZLquxtEhBBvxkPOig1xOym1mfvfpskhbR8SCdGPMhAzZuNVjAuKnzGS6tTPp1UdM48zVkEW9GUnoJ5wykMXi9RRBlYzZoUogzgo/hUMrbAofpfBYIxpjlG4etX4UMatVojVGc/ieDSUCyyed7bYe+BEwixBEARBEARBEARhDAvig1XHa1iKf4W4XdM5swH8F1IeNzcLwwqyYzaaTjzRMdhQc0Ut40dha5vcVnd1cfq7ZLNBJcxK6ggMvXzLsEUZRMgxG69jQSs4q9zPwbYF0+jpjSvKIKzYdM4PHWFWFNQNOWZVGbOxp6A30kdgBEEQBEEQBBFbMMYkxthcxtgZxthVxthxxtgoE9s/wBg75tn2LGPsOcbUd9OMsYGMsULG2N8YY7WMsTNh/yCEAmMMjDF06tQJV69e9btO586dwRhDbW2tbjsFBQVKWydPngy6X5fLhc2bN2PUqFHIyMhAYmIikpOT0b17d0ydOhVHjhwJ6fOcOnsGv311FYYOHYqMjAwkJCSgbdu2GDlypE/xQ78EuB/+9NNPMWXKFNx4441o3bo1nE4nMjIyMGzYMLz11lvgnKuF3VCdryHeAkvt2iF16RLYunQNafuQqAfHrCgy2mLQWRYV/IytjOYZuqsnOrzHzEdY8hxDpeq8XUeYteCYRTgdswYcivGE9kGNmeJfgMboHJ+HKCoo543BKANxuZGMW1U7MTgTIPZ6RBAEQRAEQRCNk+cBLASwEsDdAI4C2MQYuyfYhoyxuwBsAfBnz7bLADwH4AXNqncAuA3A3wF8Hq6OE4E5d+4cli5dGtK2nHO89tprijCydu3agOufP38egwYNQk5ODt5991307dsXM2bMwLRp03Dttddi48aNGDhwIFasWGG8E5572rxVy/HMiy/iwoULuOeeezBz5kwMGDAAO3bswNChQ7F8+fKQPiMAfPzxxygpKUF6ejpGjx6NmTNnYvjw4Th+/DhGjRqFCRMmhMcxK1lvI1owu0dwiOJdezwW/zKNn2HRKrmV7upN7E2U1za7Wsxmck6vniNQhls41mJ/7dbEdLF/LqGYVWNxzDZxNNFZ0/+2XPV7mDrVCGGaBxgKOg+HxAdsxqIMbP5fxwgUZUAQBEEQBEEQ9QxjrA2AWQAWc85f8iwuZYx1BbAYwM4gTSwGcJhzPlXYNgXAc4yxJZzz857lz3PO8zz73AAgMlXnCIW0tDQwxvDiiy9iypQpaNVKX+Dxx969e3H69Gnk5uZi165dKCoqwgsvvICEBF9n1+XLlzFixAgcP34cDz/8MFatWoW0NHUhtIqKCrz00kuoqKgw/VnuHHAbZs98ArfceZdq+YEDBzB8+HD85je/QU5ODtq3b2+67Ycffhi5ubk+yysqKvCLX/wCGzZswMMTH0Zmj0wA0XfM1ge2n3UBwGFvas7FZwXR/RmvYlxwvGPr2tRr8c9L/8TUflN11xbFPB+XsVaQ9XHMcli1WqpMm2F0zIpuUCkGK9mHAx/HrIniX+4oAy4uIELF7t8xq1dsUZUxKxkQZlVRBrE3lmOvRwRBEARBEATR+LgLQAKADZrlGwD0Yoxl6W3IGMsA0MfPtn8A4IDbQQsA4DxsSYaEQZKSkjBv3jxUVFQgLy/P9PayQ/bRRx/FuHHjUF5ejrffftvvukuWLMHx48cxYMAAFBcX+4iyANCsWTMsWrQIs2bNMt2X8fc/iBt79vJZPnjwYAwZMgTV1dV4//33dbcP5FBNTPRf9b5Zs2a46y63EHzmqzOG2jJKrDtm7T16ouPrc9D2rdeitk8xY9MmNU5hVhR9dj66E/+c/U+0a9ZOd/2kBG/BQV9hVuuY1ThqWRhyScVhbDlj1ts/MWM21s+VUNE+4BEfTATdFlT8K1zoOWa154uM6OY3kjGrijKIQccsCbMEQRAEQRAEUf9cD6AKwCnN8r97/u0RZFsA+Ju4kHN+GsDlINsSUWD69Ono0qULVq9ejS+++MLwdhcuXMC2bdvQrVs39O/fHxMnTgQArFmzxu/68vJ58+YFdbg5ncaL3BjB4XC7luz28E7KvHz5Mt577z0AQPce3ZXloU6zVx2XBiCkOO++N6q5tqIwRVEGxkhyeIVZSSfKQBGctMKTFFvCrJ7jNl5Feq3g7LSbKP7FmEq8bgjXk5jFrn6AoaCjdluKMohBBZ2iDAiCIAgiTuGcx22xBqJ+4JwqDkeQFgB+4L4H+ZLwfqBtAeB7P+99H2TboDDGpgKYCgCZmZlWmgIAbO/SxXIb0eC+L78MW1sOhwOLFy9GTk4O5syZg7feesvQduvXr0dNTY0yxb9nz5646aabUFpailOnTqFrV69g9/XXX+PcuXOw2+0YPHhw2PoOwHMjy4XXas6ePYv9+/cjKSkJgwYNsrSrU6dOYcOGDairq8OFCxewY8cOfPPNN5g7dy569uqJCz9d8HTDepRBvLoArSAKU/EqxgXF5NhKdiYrr+12O6rFN5WiRnLxL80xDbNjVs9haBhVxqy4i/g8V7QPH0wJs9pjEp+HKCowvQxmnQcNogPWkDArZotTlAFBEARBENHAZrOhpqamvrtBxBk1NTWNt0q3SRhjwxhj3MBPmbwJAH936EZu9eR1Qt0+IJzzNZzzWzjnt7Ru3dpqc42W7Oxs9OvXD2+//TYOHz4cdH3OOdatWwdJkjBhwgRleW5urvKeyLfffgsAaNmypW4sQCSoqqrCuHHjUFVVhYULF/qNT5AxIqaeOnUKeXl5yM/Px9q1a1FeXo7//u//RkFBgUpECdXNSQ8sA6MSZhtpxixzmPOvJSd4hVmbXSMSaaZoa4XZcJiSVWPacpSB/4zZeB0L2uuB2YxZlXhNl5bQsetEGeicIOIDNrvNQJQBFf8iCIIgCCLaNG3aFBUVFaaLzBBEICoqKtC0adP67kZD4X0A3YOu5Y4aANzO2DTGGNO4ZtOE9/UI5KptHmTbqBNOJ2pD4+WXX0b//v0xc+ZMHD16NKBI+N577+HLL7/EXXfdhfT0dGX52LFjMWvWLBQWFuL5559XIgTkYRNx4VFovq6uDuPHj8eRI0fw0EMPhZRbq2XEiBHgnKOmpgbnzp1DcXExnnnmGRw4cABrXvdGOIT6OUmYDYyqkFUjdcw2e/F5VB4ejaZ332Ro/RRnivLaJ8pDFoHsmn89hCUtQhQHrX5nkuiY5cLi+PT0WY0yUD0NpUtLyDD5vNEpnqdFfDBntvgXYnAsx16PCIIgCIKwTIsWLfD999+jvLwc1dXVNAWdCBnOOaqrq1FeXo7vv/8eLVpYmhXfaOCcX+ac/8PAzznPJn8H4ASgnecv58N+FmB3cg7t9eJCxlhnAElBtiWiSL9+/ZCdnY2PPvoIb775ZsB15bxYOcZApmXLlrjvvvtw4cIFbN26VVneoUMHAEB5eTmuXr0a3o77oa6uDo888gg2bdqE0aNHY8OGDWEVPR0OB7p06YL58+dj0aJFeOedd7D2d2uV90POmKUog4BQ8S/A1qEjMr58H81XrjS0frJDiDLQuPe0GbM+btwwC7OWM2aZKr9AIV7zhq0X/xL+/5oe+oSOjmNWN8qAmYwyENrxiROJAcgxSxAEQRBxiNPpRGZmJi5duoQzZ86grq6uvrtENGBsNhuaNm2KzMzMsBcMIhR2A6gGMA5AnrD8EQB/8xTy8gvn/Bxj7LhnW3F++yMAagDsCn93iVBZvHgxtm7dirlz5+LBBx/0u87FixdRUlICABgzZgzGjBnjd701a9YgOzsbAJCRkYHMzEycO3cOBw8exJ133hm+TjP1L7W1tRg7diw2bdqEsWPH4vXXXzcUcxKqEHr33Xdj7ty5OHLoCB6c5D5mIQuzwnbknvWFin+ZRzxmzKERiTROWZ8oA1s4xmAYK84L27sagTBrKWOWMVXcA11OQsfW0j05SEpzz8qyJdSirtqOJvfe7Xd9lWPWgDCrEnxj0DFLwixBEARBxClOpxPt27dH+/bt67srBEEEgXP+b8bYEgBzGWM/AvgrgIcADAUwUlyXMbYfQCfOuViq/RkA7zDGVgPYCOBGAM8BWMY5Py9s2xqAXBkqE0ASYyzb8/tnnHNy10aYLl26YNq0aVi2bBlWrFjhd52ioiJUV1fj5ptvRp8+ffyus23bNuzbtw+nT59GVlYWAGDq1Kl47rnnkJ+fj2HDhgWcflxVVWX4QYuoN1TXVGNMdja2bt2KCRMmYP369RGf5vyvf/0LAOAQ8julEK2GJMYGRvwua+ooq94IokvWx43nccwm9v85WNkZOAf8XPV22+Wz8e1/LEar6feGvH+VydWqG1AnYzZehVlLUQZQC7M0Hz10UubMhdR0JZpMmgQAyPz4bdSe/AwJg4f6Xd+sMKvKDInBmQAkzBIEQRAEQRBEbPAsgEoATwBoB+AkgNGc8+2a9WzQ/H8853ynR2BdACAXwAUALwAo0Gx7PYBNmmXy73kAFlr6BIQh5s+fj6KiIndBKz+iplzYa9WqVejbt6/fNubNm4f8/HysW7cOBQXur/nJJ5/Epk2bcOjQIUyYMAErV65E8+bNVdtVVlbilVdegc1mw7PPPmuq31XV1Rgz8THs2r8fkydPxpo1a8Imyh4+fBi33nqrkpkrc/HiRcyZMwcAcNfddynLQxVYVY5ZijIISK2rtr670CBIa+IteMc0GbPy78lPPIms/zsdLEFdXMp570h0/h/VszfzhDHKQNzeJS6O0+JfVh2zLs1sAiI0pObNkfLsc97f27VDQrt2+usL35uhgm0UZUAQBEEQBEEQRDA453UA8j0/gdYborP8LQBvBdm2DHT3WO+0aNECzzzzDJ5++mmf98rKynDy5En06tVLV5QFgMmTJ6OgoADr169HXl4e7HY7kpKSsHv3bmRnZ6O4uBjbt2/H8OHD0bVrV7hcLpw6dQr79+9HRUUFVhrMz3TDAHA8XrAQu/bvR6tWrZCeno5Fixb5rDlkyBAMGTLERNtuHnvsMZw/fx4DBgxAZmYmbDYbzpw5g507d+LKlSt44IEHkDsxF2f+9wyA0B18oqBLwmxg6lwUg2SEbm264cZWN6JFkxbANxqJRRCBtKJs2BAdsxajDMTiYapp+lJ8nis+wqzNnGNW9Ts5ZqOG+SgD4bygKAOCIAiCIAiCIAhixowZWLVqFc6cOaNavnatu8DVlClTAm7fuXNnDBs2DO+++y62b9+u5NW2a9cOBw8exJYtW7Bx40YcPXoU77zzDiRJQmZmJnJycjBp0iT079/feGc9+sOZf/0PAHeBMX+irIyeMKtXWAgAZs6ciZKSEhw7dgx79uxBdXU1WrVqhaFDh2L8+PEYPXo0qmqrlPVDdeqqIhDiU2sKGzUuijIwyubczQCAio9/o34jGtOmWRgzZlVRBt7CVvHqmLVU/EvrmKWYlKihEmYlk1EGVs+RCEDCLEEQBEEQBEEQRATgnOu+53Q6cfq0b0234uJiFBcXG2p/7969fpdLkoScnBzk5OQY66hB9q57HY4OLWBr0yas7QLA+PHjMX78+IDriDfjIRf/kijKgIgg2uJfURCBVHpgGIt/NYaMWfFBDefc1AMf9zHxBj6QLhs9LEUZxKAwG59nF0EQBEEQBEEQBBF+LIgPVoVQ8WY8VAcfZcwGp1uzbkhhKbin+z313ZUGh0/GbDREIDGeI4yOWVcjEGZVEQ36z9H8bwsGl+AqRpzGPcQiqr8FBlzpTMxepigDgiAIgiAIgiAIokERI3pDOByzJMYGZ9fUXfXdhYZLPThmVUPabk3iEYVdUac0In41RFSOWZPKLGNM5SomYTZ6qByzdgOOWVGMpeJfBEEQBEEQBEEQRCxQVlaGsrKyoOs1ra7B9NFyzIAx8aGkpASffPKJatn3l79Htava0wpDm5Q26Ny5M3Jzcw21KeZBhpwxKzpmae4xEWaYQyOxRM0x6xYVLVect4kZs+Iu4vNcsfK5GJjmGIWhQ4QhxOu43WZA1hTOQxaDDxlImCUIgiAIgiAIgmiElJWVIS8vL+h6nTqke4VZg+JDSUkJioqKgq43ePDgkIRZijIgYhFtlAGMiEZW9xnOjFmhMVcjKP6lct6bjTJgTL0JKbNRQ/7eAuW4izAptqMMYq9HBEEQBEEQBEEQRMRZuHAhOOdBf/5ZWqpsY1TMLCws9Gnn9HenceLbEzjx7Ql8+u2n4Jwbcuyq4O6b8VCnVpNjlogomiiDqGfMaqMUzKJT/CtuowwsPKiRmERRBvWE6RkT4vpaV3sM0CCFWcaYxBibyxg7wxi7yhg7zhgbZWL7JoyxhYyxfzLGqhhjFxhj7zDGDIRTEARBEARBEARBNFLqsfgXAFzT6hp0bdk1ZKFIFGPJMUuEGx9hNNoZsxb3J07zFr2I8foQw0pRM58oAxJmo4byvRl1OQtOdhaDjtnYk4qN8TyAWQCeBfAxgIcBbGKM3cs53xloQ8aYA8AuAFkAXgTwGYDWAIYDiM/HQARBEARBEARBECETO4JDoiPR0vYUZUBEFK0wG41CQ6JoarH4l5gx6xIds40hyiCEbbkQ90BRBtFDiTIwqMyqxFir50gEiL0eBYEx1gZuUXYx5/wlz+JSxlhXAIsBBBRmAcwEcBOA6znnXwvLt4S9swRBEARBEARBEHFFwxYfKMqAiCRaxyyTopAxKzg1LUcniFEGgugVarG9WMdylIHwOzlmo4fpBwXiA5JouNhN0hDPrrsAJADYoFm+AUAvxlhWkO2nAdikEWUJgiAIgiAIgiAIfzCd12abiQEhlByzRERJqA/HrPDaYn6mGGXQGByzVqJNGGOqY0QZs9HDdJSB8GAhFqMMYq9HwbkeQBWAU5rlf/f820NvQ8ZYJoAMAF8xxtYyxio8GbX7GWN9ItNdgiAIgiAIgiCIeKFhiw8qISYGhGIivqifjFnRMRu+KAMxP9XKlP9YxlKUgVZOI2E2aph1cMd6lEFDPLtaAPiBc67Vxi8J7+vRwfPvbAA/gzubdgzcGbNlHuGWIAiCIAiCIAiC8EeYtIf6cquSY5aIKD7CbBSiDFQZs2GMMhDyU0MtthfriOKqWZGWSWrHLEUZRA/5uzJ8DRfFWIoy8IUxNowxxg38lMmbwL9h2cg3In/eywDu45zv5Jy/DeCXAJoAmK7Tx6mMsb8wxv5y8eJFcx+QIAiCIAiCIAiiIRMmZ2ksCKHilGxyzBLhhiUkqH/XCrWRQMyYtVz8q3FFGYiCs+mMWUgqVzEV/4oepsej4AS3fI5EgFjo0fsAuhtY77Ln30sA0hhjTOOaTRPe1+M7z79HOOdye+Ccf80Y+weAG/1txDlfA2ANANxyyy1GUywIgiAIgiAIgiAaPCq5wYr4EAO6RbxOySZihPqIMhCxKDqJGbOqwlZxKjpaKQbIGFO5ihGD2aXxiunruBTbxb/qXZj1CKT/MLHJ3wE4AXSBOmdWzpb9LMC2XwG4An3HrctEPwiCIAiCIAiCIOIfpvuLyWbqX9wRxRcSaYlwwxxqx2xU8izFKfRW9ye0JYomcRtlYCHaRGJqxyxFGUQP0xmzohgbg2O5If4l2g2gGsA4zfJHAPyNc35ab0POeQ2AHQBuY4wly8s92bLXAvhz+LtLEARBEARBEATRkIkfwYEyZolI4hNlEAUXpaqgnWVhVsyYFRbH6UMM8XOZ/YwSJLXjj4TZqCFHGRi+hgvCbCxGGTS4s4tz/m8ASwDMZYw9xRgbwhj7HYChAJ4R12WM7WeMndI0sQBAMoAdjLH7GGM5AHYC+AHAysh/AoIgCIIgCIIgGgOMMTDG0KlTJ1y9etXvOp07dwZjDLW1tbrtFBQUKG2dPHky6H5dLhc2b96MUaNGISMjA4mJiUhOTkb37t0xdepUHDlyJKTPc+rsGfx22VIMHToUGRkZSEhIQNu2bTFy5EiUlpaG1KYenHMMHz5c+dyBjo8ZrExdJoigqITZKKUgqop/Wcy0tYsZs0LxrzjNmLUizGqLf1GUQfSwS+bEVSYWxbNaIC8CNNSR8yyAfABPANgDYACA0Zzz7Zr1bNDENXDOP4NbxOUA/gRgHdyRCAM45xci3G+CIAiCIAiCIBoZ586dw9KlS0PalnOO1157TRER165dG3D98+fPY9CgQcjJycG7776Lvn37YsaMGZg2bRquvfZabNy4EQMHDsSKFSuMd8IjPuStWo65C/Nw4cIF3HPPPZg5cyYGDBiAHTt2YOjQoVi+fHmQZowLoStXrkRpaSkSExON99MAVor9EEQwVI5ZFiVhNozFv1hjdsyalMdszKaaTEBRBtFDjjIIxTEblXgRk8RejwzAOa+DW5jND7LeEJ3lHwG4Pfw9IwiCIAiCIAiC8JKWlgbGGF588UVMmTIFrVq1MrX93r17cfr0aeTm5mLXrl0oKirCCy+8gATNlGkAuHz5MkaMGIHjx4/j4YcfxqpVq5CWlqZap6KiAi+99BIqKipM9MJ983vngNsw57k5uPm2Qap3Dxw4gOHDh+M3v/kNcnJy0L59+0DNeF7q31CfPHkSs2fPxqxZs/DGG2/g7NmzJvoaGHG/5Jglwo6f8zLisDBmzNrF4l+CYzYGcznDgaUoAyapixSRYzZqmHZwC98Ni8GxTCOHIAiCIAiCIAgiQiQlJWHevHmoqKhAXl6e6e1lh+yjjz6KcePGoby8HG+//bbfdZcsWYLjx49jwIABKC4u9hFlAaBZs2ZYtGgRZs2aZbov4+9/EDfe0Mdn+eDBgzFkyBBUV1fj/fff192eqZVZv9TW1mL8+PHIysoK6XgFQywaE68uQKL+YAlO7+to7VN0ajosRhnoOGbjVZgVP5fpKAPGNMW/6HoSLeTvyujDNZWTnKIMCIIgCIIgCIIgGhfTp09Hly5dsHr1anzxxReGt7tw4QK2bduGbt26oX///pg4cSIAYM2aNX7Xl5fPmzcvaNVqp9MZ8H0VTOe1gMMjCNktOvby8/Nx7NgxFBUVmeujQeI1K5OIEZz1EGUgFv9yWHTM2hpxlEEIjlkufscUZRA1rBT/spzDHAEaZJQBQRAEQRAEQRANky4vdanvLhjiy1lfhq0th8OBxYsXIycnB3PmzMFbb71laLv169ejpqYGubm5AICePXvipptuQmlpKU6dOoWuXbsq63799dc4d+4c7HY7Bg8eHLa+uwmszJ49exb79+9HUlISBg0a5PO+d8vAN9F//vOfUVBQgDlz5uCWW24JtbMBIccsEUlEx2z0diq8tig6MZtY/Mu7PF4ds+L1wOxnlCCpy7vZ6HoSLYI9ePTdQMgWj8GxTCOHIAiCIAiCIAgiwmRnZ6Nfv354++23cfjw4aDrc86xbt06SJKECRMmKMtzc3OV90S+/fZbAEDLli3DXjArkC5bVVWFcePGoaqqCgsXLvQbn6C3rciVK1cwfvx49OjRA/Pnz7fU3UCIBX6o+BcRdsQog2gNL7H4l9WMW9Exq9pFfEpHooPetGNWkijKoJ6QRXSj1/BYjzIgxyxBEARBEARBEFEjnE7UhsbLL7+M/v37Y+bMmTh69GjAfLz33nsPX375Je666y6kp6cry8eOHYtZs2ahsLAQzz//vBIhwLlbRolMQSv/ymxdXR3Gjx+PI0eO4KGHHgqaW6sqvKW5oX766afx1Vdf4aOPPlI+UyQgxywRSZgYvxElYZaFs/iXKsqAin8F21YUZinKIHooUQZG/96Jbmar50gEoL9EBEEQBEEQBEEQUaBfv37Izs7GRx99hDfffDPgunJerBxjINOyZUvcd999uHDhArZu3aos79ChAwCgvLwcV69eDW/H/dz71tXV4ZFHHsGmTZswevRobNiwIWRR+MCBA3j11Vfx3HPPoU8f3+Ji4UR0yEVGxCYaNaqHClHKmBUrzlvNzxTaEkVHO4s9MSsciGKsXTL3GX2EWYoyiBrpzd0PK5vYmhjbQDwvbLE3lmnkEARBEARBEARBRInFixfD4XBg7ty5qK6u9rvOxYsXUVJSAgAYM2YMGGOqny1btgBQFwHLyMhAZmYmamtrcfDgwch9AMZQW1uLMWPG4I033sDYsWPxxz/+0VLRr2PHjoFzjgULFvh81rNnzwJw5/QyxvDJJ59Y6r7KIUe3w0SYUU9nj5pl1vvaottczN/kosM9Tt2g4vXAbGFAiakzZinKIHrc2+Ne/N+b/i/Wj15vbANBNLdcIC8CxF6PCIIgCIIgCIIg4pQuXbpg2rRpWLZsGVasWOF3naKiIlRXV+Pmm2/WdZBu27YN+/btw+nTp5GVlQUAmDp1Kp577jnk5+dj2LBhAQukVFVVwek0WKhIEH6qq6vx8Lhx2Lp1KyZMmID169cbLsSi51Dt2bMnJk+e7Pe9P/3pT6isrMSkSZPAGEPLli2N9dlAH+JVbCJihCgZZlVT6K3GgNj9RxmYdZM2FMSIBrPCrI3Z4BKOEUiYjRqSJGHW0MDROSJiUbtYdMzGXo8IgiAIgiAIgiDimPnz56OoqAgFBQV+RU25sNeqVavQt29fv23MmzcP+fn5WLduHQoKCgAATz75JDZt2oRDhw5hwoQJWLlyJZo3b67arrKyEq+88gpsNhueffZZU/2uqq7GmDFjsGvPHkyePBlr1qwxXx3bD8OGDcOwYcP8vrdv3z5UVlbDTWOhAAAgAElEQVRi9erVlly5MqooAyr+RUQQHiVhVvWwwaowK4hWLuH0iNc8ZpUwazJHV2KS2hRNUQaxiyrKIPbykkmYJQiCIAiCIAiCiCItWrTAM888g6efftrnvbKyMpw8eRK9evXSFWUBYPLkySgoKMD69euRl5cHu92OpKQk7N69G9nZ2SguLsb27dsxfPhwdO3aFS6XC6dOncL+/ftRUVGBlStXmu734wULsWvPHrRq1Qrp6elYtGiRzzpDhgzBkCFD/G4fqPhXtBDFFxJmibhAdMxazZhVFf8SFsdp8S/xQU0oGbMu4XcWg4If4UH4biw/vIgAJMwSBEEQBEEQBEFEmRkzZmDVqlU4c+aMavnatWsBAFOmTAm4fefOnTFs2DC8++672L59Ox588EEAQLt27XDw4EFs2bIFGzduxNGjR/HOO+9AkiRkZmYiJycHkyZNQv/+/Y131uPIO/Ov/wHgLjDmT5SV0RNm1W0a3304UWXM0tRjIpLw6GfMWhWdmI4wG6+OWfEaYFZ8zkzLBGcfehdQMcGYRR1lEHsCOgmzBEEQBEEQBEEQEYAHmMvsdDpx+vRpn+XFxcUoLi421P7evXv9LpckCTk5OcjJyTHWUYPsXfc6nNd2AmtisBK2Br2M2UBohWuriOILFf8iIkm0ImbDmjErRBmI/SfHrC9PD30aHy4pBXDV01h8HqO4QIjBYVZd5RGA/hIRBEEQBEEQBEEQuqj01AZuChPF2FCEYoKIPcQoA4veO1FcbATFv0QnsFnx2W6z41pnmvI7o4zZ2EUc12HIKg83NHIIgiAIgiAIgiCIAIRHmY2FTFdx6nK8Ts8mYoRoRRkI3lZmMZ5DnPLtEh5cxOu5IoqxDsm8k1L1cIeiUWIWijIgCIIgCIIgCIIgYo6ysjKUlZUFXa8ZA6aNfNhU2yUlJfjkk09Uyy5XX8aP1T8CcE8hbpXcCp07d0Zubq6ptq2gijKIU7GJiBWiJMyGMzNBcBM2huJf4jUgJFewECNBxb9iGDG+IAYds7HXI4IgCIIgCIIgCCLilJWVIS8vL+h6nTp29AqzBqf/l5SUoKioKOh6gwcPjq4wy0iYJeKMAFnWptFxfcZrHrMoxoYkzDKVeh2GHhERwS5f97llV3kkiL0eEQRBEARBEARBEBFn4cKF4JwH/fny6FHTbRcWFvq0U15ZjhPfnsCJb0/gHxf+Ac65IcduOKFcWSLyRK3sl2d3YdyfKspAyJi1xaenT3QCW3XMkjAbuygFv1iUz02D0MghCIIgCIIgCIIg9BHFTAvCZixkzFKUARFxoi3+hHN3gpuQC+d6vBb/Eh30Dpv5jFkxroKiDGKYGP9u6C8RQRAEQRAEQRAEYQwrjlNR360nkZaiDIi4I4yOWfc0b3d7XFXXKj7PFavCLJOo+FeDwBNlUP+PBv1DI4cgCIIgCIIgCILQJ0zT/5lama0XyDFLRJpoD20ezigDdcsRbr/+EQVn6xmzse3KbMwwZxP3v1JsjuX49KMTBEEQBEEQBEEQ4aeBZ7SKGbMkzBIRgSG6MbPhFk4ZBziDq4Gf60YQH9SEFGUgCLvMTsJsrCK1bIm0O7MgpaXWd1f8QsIsQRAEQRAEQRAEoU+Y9JlYKLxFUQZE5ImyK88V3v0punL9n64RRxVlIIUgzIrHiKIMYpoWxa/Xdxd0oZFDEARBEARBEARBBCA8xb/ULdZTxixFGRCRpqELmp7+80ZwethtXq9igj3B9PZMFGNt5HskQqMRnGoEQRAEQRAEQRBEyITLMRsDipWYIxkLDl4i/oj6qAp7BiwX/ouoG4CjidXiX+KDKooyIEKFhFmCIAiCIAiCIAgiAOFxzMaCMEsZs0TEYVFWMsOeMav5N45RZcyGFGUgHCSKMiBChEYOQRAEQRAEQRAEoU+4nKUxIPRQxiwRb0RKl+VypEEcW2bD6pi1kWOWCA36S0QQBEEQBEEQBEHoIwqqYXLM1leMAGXMEhEn+lkG4W3O039XI4j6sAliqtPuDKEB4Rpip4xZIjToLxFBEARBEARBEEQEYIyBMYZOnTrh6tWrftfp3LkzGGOora3VbaegoEBp6+TJk0H363K5sHnzZowaNQoZGRlITExEcnIyunfvjqlTp+LIkSMhfZ6vz3+LadOm4dZbb0W7du3gdDrRoUMH3HbbbVi/fj1q/j975x3W1PWH8c8Ne4niAkUEceDeCzfFbd2rta3W2mV3a4e2tdpqq62tbbW2Vuto3dZR9957I25BtoIgCrJJcn9/XBITkgAiCPo7n+fhab33nHNPkpsE3vOe95udXahxzSHLMl27dtU/7ryen4dBCLOC4uax65lFbmhVBnz6ZVljx6ytVSGKfxl+hliJzxNB4RB3jkAgEAgEAoFAIBAUI5GRkfz888+F6ivLMn/99ZfeYTpv3rw828fGxtKxY0eGDBnCzp07adWqFe+++y5jx46lTp06LF++nPbt2zNr1qyCTyLn2mHRUSxbtgxXV1f69+/PRx99xLPPPktERASjR4+mW7dueQqohi7Z/PJmZ8+ezd69e7G3ty/4PAuAoRgrhFnBU4G2eByz8v/B28NwoaYwwqyhoiZZCcesoHCIO0cgEAgEAoFAIBAIioly5cohSRLfffcdY8aMoUKFCg/Vf8eOHYSFhTFq1Ci2bt3K4sWL+fbbb7G1NRUR0tLS6NGjB0FBQQwfPpw5c+ZQrlw5ozbJycnMmDGD5OTkAs9BJ6G2adyEu3fvospV5CY7O5tu3bqxb98+1q5dy9ChQx/qMebm6tWrfPrpp4wbN44VK1YQERHxSOMZIjJmBcXOY3fMFq0wmztj9imOmDUq+GVjXZiMWcMoA5ExKygc4ptIIBAIBAKBQCAQCIoJR0dHvvzyS5KTk5k8efJD99c5ZF999VVGjBhBQkIC69atM9t25syZBAUF0a5dO5YuXWoiygKUKVOGr7/+mnHjxhV8EjlOV1sbWxNRFsDGxob+/fsDcP36dcvDFECxUqvVvPjii/j4+BTq+coPw0zJksq5FTzdPPG3lW7+T/wDyR9Dx6y9dSHc+YbPkSj+JSgkQpgVCAQCgUAgEAgEgmLkrbfewtfXl7lz53Lt2rUC94uLi2PDhg3Url0bf39/Xn75ZQD+/PNPs+11x7/88kuzAqohdnaFKHRjAY1Gw5YtWwBo1KiR5YYF0HmmTJnC2bNnWbx4cZHOUYe19GDTqKF7ViB4UpGL2DGrjzIo2lFLJY8eZfDgc1ZEGQgKi7hzBAKBQCAQCAQCwWMjtGKHkp5CgfCNP1hkY9nY2DBt2jSGDBnCZ599xtq1awvUT1dQa9SoUQA0aNCAZs2asXfvXkJCQqhZs6a+bVRUFJGRkVhbW9OpU6cimztg4pxLSEhg9uzZyLJMfHw8O3fuJCQkhOeff54+ffpYHoa8M2ZPnjzJ1KlT+eyzz2jRokXRzd9wDgaPRUQZCIqFJ774V86w/wdvD6PiX9aFKf5l8GKLKANBIRHCrEAgEAgEAoFAIBAUM4MHD6Zt27asW7eOQ4cO0b59+zzby7LM/PnzUalUvPTSS/rjo0aN4syZM8yfP59p06bpj9+6dQuA8uXLF3nBLJ3SpJMgEhISjGIGJEli3LhxfPvtt3nGAxiJsbmapaen8+KLL1KvXj0mTpxYVBM3wVr14E/g/FzFAkGheOwJAEWcMauPMnj63x+G0SZ2VoVw6FsZPEciykBQSIQwKxAIBAKBQCAQCB4bRelEfdL48ccf8ff356OPPuLYsWN5iph79uwhNDSU7t27U7VqVf3x559/nnHjxrFo0SK++eYbbGyUgjW67czFkpuqH1K5hp+fH7Iso9FoiImJYd26dUycOJFDhw6xefNm3Nzc8hnHlE8++YQbN25w4sQJ/WMqDgy3LgvHrKA4eOzRrEXtmNVFGUi6fz69WbOG0Sb2NoVZ0DLYBWAt5DVB4RDfRAKBQCAQCAQCgUDwGGjbti2DBw/mxIkTrFq1Ks+2urxYXYyBjvLly/Pss88SFxfHf//9pz9epUoVQHGzZmRkFO3ELQgzVlZWeHl58d577zF37lyOHTuWp9vVUpTB/v37+e233/jiiy9o0qRJ0U3b3JwNhFmRMSt4KijqjFkdT68eq8fw88DOujCOWYMnSSU+TwSFQwizAoFAIBAIBAKBQPCYmDZtGjY2NowfP56srCyzbeLj41m/fj0Azz33HJIkGf2sWbMGMC4CVq1aNby8vFCr1Rw4cKBoJy3prXMW6dmzJwD79u176OHPnj2LLMt89dVXJo81IiICUHJ6JUni3LlzDz2+IYYuWeGYFRQLj90xWzzFvx6/9ffxY2P1wJ1fmIxZ4ZgVFAXizhEIBAKBQCAQCASCx4Svry9jx47ll19+YdasWWbbLF68mKysLJo3b27RQbphwwZ27dpFWFgYPj4+ALz22mt88cUXTJkyhcDAwDwzVDMzM7GzK6BDrAD6TExMDADWeYgThjELho7ZBg0a8Morr5jts3LlSlJSUhg9ejSSJFG+fPmCzdkChg65Yol9EAie8CgDSR9l8PS/P4wcs4XImJUMM2ZthLwmKBzizhEIBAKBQCAQCASCx8jEiRNZvHgxU6dONSuezp8/H4A5c+bQqlUrs2N8+eWXTJkyhfnz5zN16lQAPvjgA1avXs3Bgwd56aWXmD17NmXLljXql5KSwk8//YSVlRWff/55AWesCDQngoNoXqs6jo6OJmO+9957APTu3TuPUcwX/woMDCQwMNBsn127dpGSksLcuXPzFH0LimHxLxFlICgOHrfgLxdTlIH89OuyRhmzDjYODz+AJKIMBI+OEGYFAoFAIBAIBAKB4DHi5ubGhAkT+OSTT0zO7du3j6tXr9KwYUOLoizAK6+8wtSpU1m4cCGTJ0/G2toaR0dHtm3bxuDBg1m6dCkbN26ka9eu1KxZE61WS0hICLt37yY5OZnZs2cXfMI52sMPf83jwNtv0KlTJ7y8vHB0dCQqKoqtW7dy7949/P39GT9+/MM+HY8VQzE2L0exQFBonpIoA0n19CuzVlYGjlmbQmTMGnyGiCgDQWERd45AIBAIBAKBQCAQPGbeffdd5syZQ3h4uNHxefPmATBmzJg8+3t7exMYGMjOnTvZuHEjAwYMAMDd3Z0DBw6wZs0ali9fzrFjx9i0aRMqlQovLy+GDBnC6NGj8ff3f4jZKgLN6IFDcKnizsmTJ9m3bx9paWmUK1eO5s2bM3ToUEaPHl2oKIPHiaEYKxyzgmLhMd/azgMCSf1hM/aVi2jAnPepLsqgpN6rjwNDB729tf3DD2DomBXCrKCQiDtHIBAIBAKBQCAQCIqBvLYY29nZERYWZnJ86dKlLF26tEDj79ixw+xxlUrFkCFDGDJkSMEmmh852kPPjp3o/84bjzDMwws8uYXrR8Vw67JwzAqKh8crZDqN+wTPxo2xaduuSMbTZ8wWyWhPDtZWhZDHDD9DrMVCj6BwiG8igUAgEAgEAoGgFCBJkkqSpPGSJIVLkpQhSVKQJEmDHqJ/f0mSzub0jZAk6QtJemAJlCTJSpKkcZIk7ZEkKU6SpPuSJJ2RJOkVSRLl6QV5UFSZmaXAeGdY7Ec4ZgXFweOumSWpVNh174mqTJkiGc+qjC0gc7/M0//+UGvVj9TfaBeAtc2jTkfwf4r4BUwgEAgEAoFAICgdfANMAmYDPYFjwGpJknrl11GSpO7AGuBkTt9fgC+Abw2aOeQcuwC8BvQH9gLzgOlF9SAETyNFozQZOmYfd4EkHYauOJVYjxAUB6VgAeJRqPzfYjyXf0lSuadfaHRzdHu0AYwcs2JDuqBwiDtHIBAIBAKBQCAoYSRJqgSMA6bJsjwj5/BeSZJqAtOALfkMMQ04JMvyawZ9nYEvJEmaKctyLJAO1JBlOdGg325JksoB70iSNFGW5fQie1CCUs++ffvYt29fvu1cHR14s1u/hxp7/fr1nDt3zuiYVtYSnxoPgL2VPa4Ornh7ezNq1KiHGvtRMHTMlpQ4LHi6cR3RlduzduPSwKWkp1IorLyqY+VVHenKlJKeSrHj6uDKtwHf4mznXLgBDAukWT39DmNB8SCEWYFAIBAIBAKBoOTpDtgCS3IdXwIskCTJR5Zl00BSQJKkakATFBesIf8Ak1EctAtlWdYAiZhyEngZqABEFfoRCJ449u3bx+TJk/NtV93Lq1DC7OLFi/Nt16lTp8cqzKoQxb8ExYvLxEnY9+6NdeOmJT2VR0L6Pyj+BTCs2bDCdzZc6LF5+h3GguJB7N0QCASCJ4y0Owlc+W8N6oyMkp6K4CFIS7xD5JGDeRaCETwdZKWlkhJ7q6SnIXjyqA9kAiG5jl/M+W+9fPqCElGgJ0fITcunL0An4B4gbtz/MyZNmoQsy/n+hF27pnR4iL8eFy1aZDKOVqvl/K3znL91nsjESGRZLpBjtygxjDIwdM8KBEWJTfOWSE/41vanXZAtCiQRZSAoAoQwKxAIBE8QUUcPsSigDZvGjmbTW68ga7UlPSVBAchOT2d5366sGtKHoz9/X9LTERQj+6dO5NdaVfijuR+X160u6ekYEbxyCUd//oG7N0JLeioC87gB92TT1ZtEg/N59QW4a+bc3bz65mTTDgVmyLJstgqKJEmvSZJ0SpKkU/Hx8XlMQ/C0ItnZYVPFDRsvj0cbxzA6oIQ0H2uVyJgVCAqCeH8UAKMoAyHMCgqHeKcJBALBE4JWo2HLe2+QlhAPkkTItk2c/OPXkp6WoAAc/Xk6d8MUMezIjG8J3bW9hGckKA7S7iRwZv7v+n8f/eWHUrV4cnHlUg7/MIV7EWZ3wwuKGEmSAiVJkgvws0/XBTBnqS+IfKVr81D9JUmqBywH9pFH8S9Zlv+UZbmFLMstKlasWIDpCJ5GrCpVQuVatsjGKyk3nsrA4SYcswJB/gjnbB4YfJ5INkKYFRQOIcwKBALBE0LY3l3cj4nCtbo3/eb9A8DZRfPF1vhSTlZaKqfnzQFJonaf/gBcXruyhGclKA4urFyCJisL704BuHhUJfH6VcL27irpaQEga7XEXTgPQKWGjUt4Nv83HAHqFuDnpZz2iUA5ybQaUTmD85bIy1Vb1lxfSZJqADuBMKC/JbfsoyC+nwQlQUHuO10bIcwKBJbRO2aFLmsZw69skTErKCRCmBUIBIInhPNLFgLQaMQoanbvjbN7Fe7HRHHr9MkSnpkgL6KPHkaTmYl7k2Z0+HQiAOH7d6PVaEp4ZoKiRJZlzi9dBEDT0W/Q9JXXAQhenn/hm8fB3RuhZKem4OJRFacKwvH4OJBlOU2W5SsF+InM6XIRsAN8cw2ly4e9lMfldDm09Q0PSpLkDTjm7itJkiewG0gGesiynPywjy8/rKysyM7OLuphBYJ8yc7OxqqA1dFF8S+BwDL/L8W/HglDx6xKOGYFhUMIswKBQPAEkJF0jxt7dqCytqbBsBeQVCrq9B0IwJUNa0p4doK8iDiwFwDvDl0oV8OXst41yLh3j1tnTpXwzJ48Ig7sZf3o59n9xcelKiIA4PaFIO6Fh+FU2R2fLoHU7q1UL486eqhUzDXuQhAg3LKlnG1AFjAi1/EXgAs5hbzMkiPuBlnomw1s1R2QJKkioLNyd5VluVhCY11cXEhOLnK9V/AUUVxiT3JyMi4uLgWbg4lBXSAQ6FAJuShfJOGYFRQB4p0mEDwlHPp+Cr/Ursqsel6E7SsdW2cFRUfU0UPIGg1VmrfSu938+inC7PUtG8V20VJM+EFFmK3esQsAPgFdAQjbs6PE5vQkEnloP6uf60/I9s2cXfgnZxfNK+kpGRGyQ9G9anbticrKCtdq1XGpWo2Me/eIv3wxn97FT1zwOQAqN2pSwjMRWEKW5dvATGC8JEkfSpLUWZKk34EAYIJhW0mSdkuSFJJriAlAJ0mS5ub0/QD4AvhFluXYnH4OwHbAG/gc8JQkqY3BT5miejxubm7cvXuXhIQEsrKyxPeUwJQi1ERlWSYrK4uEhATu3r2Lm1tetfLQpzELx6xAkAdi3SJ/DN35BXTqCwS5EV5rgeApIDE0hOOzf0LO2Rq9Y9y7vLzvOLbOBXMLCEo/EQf3AeDVobP+mHujpjiUc+P+rRiSIsMpW92nZCb3BHJ14zo0WVnU6TsQq4dY3U6JvcXF1cuo3bs/5Wrk3m1spn1cLHeuXsbG0YkqzVsB4N0xgLML5hJ9/Eih519cpN6Ow6lS5ZKehlmO/DQNAK/2nYg8tJ/9U76kVo8+uFSpWsIzUwjdvhkA3+69AcVBUa1tey79u5yoo4eoVL9hSU6PuPM5wmwD4Zgt5XwOpADvAe7AVWCoLMsbc7WzItfv8bIsb5EkaTDwFTAKiAO+BaYaNKsMNM35/6Vmrt8FpRDYI2NnZ4eXlxeJiYmEh4ejEfEtghzikuJAghSbFJIdis5VbWVlhYuLC15eXtjZ2RWsj8iYFQgsosuYFVEGeWDgmJWEY1ZQSIQwKxA8BRz58VtkjYb6Q0eQcOUicefPcWzWj3QcP6mkp/ZEkRJ7i+0fv4uNoyM9fvoNWyfnkp6SnsgcYbZ6+876Y5JKRdXW/oRs20T08aNCmC0gl9etZvPbYwA4/ttMnlu3DfsCVJkOP7CHja+PIjM5iVNzZzNo6RrcGzfLs8/N0ycAqNKiFVa2tgC4N20OQFxwEFqNBlUpWF2XtVp2fPoewcv+pt6g4XSfMUs/39JA1LHDRB8/gp2rK/3mL2HLu68TumMLVzaspeUb7xT59TTZ2QT9/RfRJ47iG9iD+kOey7N9UlQEty8GY+PkjFe7jvrj1fwfCLPNx7xZ5PMsKLIsc/uiUvirsogyKNXIsqwBpuT85NWus4Xja4G1efQL5zF6oOzs7PDw8MDDw+NxXVLwBNDr+16oVCpGNhzJxO4TS2QOMjISknDMCgR5IATZAmBlsAldCLOCQiKiDAQWyU5PZ++kCRz+8Tsy7t0t6ekILJB+N5GrG9ehsram3bgJBHz9PQAXVixBqy7yAstGaDUaEq5dKRX5iY9KakI8S3oHELZnB9c2rWfNC4PRZGWV9LQASI6JJjH0OrbOLrg3MRYCPVv7AxB9/HBJTO2J415kONvHKUKeQzk37ly9zPll+Rdnyk5PZ/tH75CZnISzexXS7yay+a0x+W7NjQs6C4BHk+b6Y04VKuJStRrZaakkhlyz2PfO9avs/OwDrvz370O/l9WZmWSlphS4/cHpXxO87G8ALq1Zwa4JHz7U9Yqb4KXKa9R01GvYuZSh/uDhAFzdaFF/eiQO/zCFPRM/5dqm9Wwf97Y+BsASF1cvB8C3aw+sDVxa1dq0AyDm+JEi38YtyzLnly3m8IxvSY6JyrPt/ZsxZCYl4eBWHqfK7kU6D4FAICgspUEULWiRMIHg/xFVTmErkcWcB4bPjbXwPQoKhxBmBWbJTk9n7UtDOD3vN47+NI1Fz/iTnphY0tMSmCHy8AFkrZaqLdtSpqonVVq0wq1mbdIS4gnfv6fYrhtz8jiLurRmUZfW/DfmBbLT04vtWo+D8/8sJCX2JpUbNcHZ3YOYE0cJ2bGlpKcFQPQxRXT1bO1vsu3es3XbnDalb1t8aeTconmoM9Kp3bsfPWb+DsDZhfPyFT7P/PU7929GU7FeQ8YcPouzexXuhoXqXxtLxAadAaBy46ZGx91z/h177ozZfprsbDa+MYqgfxawaewr7P7i4wI9PoD4Sxf4q0Nzfm9ah6B/FuQrCGanp3Nu8V8AdJk8DZW1NRdWLeNeZHiBr1mcZKencT0nJkDnXPUJ6IaNkzOx585wL8JiPaRCcf9mDGf++gMA704BaNVqtr7/psV7RKvRELz8HwAaPfeS0TlXL28cK1Qk/W4iSUU8zwPffsWOj9/l6MzpLOjYgltnT1tsm3D1MgAV6tQTf1wJBIJSQ2n4PNJt1RYIBKYIx2wBMPg9W1KJzxNB4RB3jsAsZxb8QdSRgzhVqkzFug1Iib3J8d9+KulplRhatZroE0dJDLle0lMxQV/xvZNSWEiSJOoNGgbAxX+XF8s1NdnZbH5nDImhyvMRsn0zW99/o8D9s9JSSU9MLDVOW61Gw/nliluw4/hJtHhdcVReXruqJKelR5dF6tnG3+RcpfqNsHFy5l74DVLiYovl+tnp6VzdtJ60xDvFMv7jIjs9nQsrlUjFVm+9T41nulHOx5f7MVF5ivDZ6Wmc/P1XADp9+TXW9vY0GPo8gF6QM4csy8SeVxyz7o1yCbM5zmedcJubU3/OJuHKJVyqeCKpVAQv/5v7N2PyfYypt+NYMagX92OiyE5NYednH3Bt83959gndsYWs+8lUbtyU5mPexK//EGSNhlNzZ+d7vcdB6M5tZKem4N60OeV8lFxfGwcHanbrCUDIts1Fer0Tv/+COiOD2n360++vpbhW9ybhyiWLn6dhe3dx/2Y0rtW9qebfweicJEl4NG0BwM0zp4psjlHHDnNyzi+orK2p2qot6owMdo3/AK2FDM+Eq5cAqOBXt8jmIBAIBIUmR8coDaJoaXDtCgSlFRUiYzZftKKwpeDRKflvw0IgSZJKkqTxkiSFS5KUIUlSkCRJgwrQz1uSJDmPn+GPY/6lHXVGBqfnzQGgx8w5dP9J+eP87MI/CyQMlFZkWbb4R2teJMdE81fH5qwY0IO/e3QkMTR3EeSSQ5ZlvSu2eqcA/XGdMBu6YyvZ6WlFft0r6/8lOSoSN99avLTjENYOjlzbtJ6Yk8fy7Bd17DArB/dhdl0vfmvow+9Na3N20bwSF2jD9+/hfkwUrtW98WrfCb9+g5BUKm7s2VEqnOJ6YbZ1O5NzKmtrqjRvCTzIMy1KtBoNG157kY2vj2Re64ZcWrMy3z4hO7Ywq64XCzq24NzffxX5nArLtU3rybh3l8qNm+LeuBmSSkWTkUrWbHCOMG+OS/+uIOPeXTyatsC7o/I+azBshKgWNFoAACAASURBVDLm5v8svseSIsLITErCsWIlnD2qGJ3zyMmm1Qm3hshard6x2e2HX6jdux9atZozC+fm+xhPz59DZnISXu060v6TLwA4OnN6nu8x3Wtaf7DiRm019j0ALqxcSlZaar7XfBQy7ydzaPo3BC1ZaPF51C2Q1O0/xOi4T5eugLJroKjQqtVc3aDEI7R+50NsHBxp/7HyPB75aTrqjAyj9rJWy5EZSl2lxi+ONuuU8MjJFL51tuiE2TPzle/oVm9/yKCla3DxqEpccJBF8Tjhsk6YrVdkcxAIBIJHpUQLb+nEYeFwEwgsIqmEIJsvRRxVJfj/5En9JvoGmATMBnoCx4DVkiT1yqffLaCtmZ/dQCawo5jm+0RxYdVS0uJvU6lBI7w7PYN7o6bU6tUXTWYmwSssu8NKMzd272Bhl9b82aoBcReCHqrvoe+nkBQRjrW9Per0NLa8+2qxZ7cWlHvhN0iOjsShnJtRpe0yVavh0bQF6ox0wvbustj/8rrV/NG8LmtHDss3Q9GQE3N+BhRRoFL9hrR4/W0A9k+ZaHHb9NGZ37NyUC+ijh5ElmVsXcqQlhDP7s/HsWvCR0Wev/gwnF+6CIBGz49EUqlwruxO9Q6d0WZnc31b7kLYj5fUhHgSQ65hbe9gsWhPlRatAbh56niRX//YLz8QtmcnVnZ2ZKelsnP8h6QmxFtsH7JjC/+9MoLM5CQSQ6+za/yHhO7cVuTzyo0mOzvfNjrRqvGIUfpjdQcNw8rWlrC9u0iOiTbpI2u1nJ6vRB40f/VB8aay3jWo1KAR6ox0bp0+afZ6sTn5su6Nm5ls16yU81rGXww2yTK+deYUqXGxlPH0wrvTM7TIKW51YcWSPBeXMpOTOPf3AgA6jJ9EizfexcWjKglXLnF92ybzfe4nE75/N5KVFX79lPXNCnXq4tGsJer0NG7k89rJWi0n5vzM2peGsnfy5ybCZV6kxN5iWd+uHPt1Bjs/fZ/Fgf4m99b9Wze5sXs7Khsb/PoPNjqnc6dGHTtcoNe/IEQfO0xaQjzlatSkUv1GAPj1G0SFuvW5HxPFnomfGLW/tHYVccFBOLtXoemoV82OqXPM5iXMqjMzOb90ESHbN+e7mHYvMpzr2zZjZWtL05FjsHV0ot3HnwMPsnhzo3fM1hHCrEAgKD0Ix6xAULrROWVLQ+xIqUUIs4IioOS/DR8SSZIqAeOAabIsz5Blea8sy68De4FpefWVZTlTluVjhj/AeaAVsFGW5ZK3xuVDxr27RfYHqDm0ajUn/1C27LZ66wP9h3DjF18GFGGjKAW0zPvJpN8t3qf91plTrB05lMTrV0mJvcmqIc9y90ZogfrGX77IpTUrUNnY8Nz67bhU8ST23BnC9uzMs19c8Dn+fX4AiwL9SYqOfKj5Jly9zI5P3uPkH7PyFTlunlIckp5t/E2cWrV6PQvA9a3mhcUzC+ay+e0xpMTe5Maubawa1pe0Own5zu/ujVDuXLuCfdmy1B2gONhavfkuDm7luXnqOFFm3Gsn//iVwzOmIqlUtP3wM96+EMY7lyPp8/tCrO3tCfpnAQenTc732g/DnetX2fLOa1xauypPMSsl9hahO7eisramwdAR+uO+3ZR1nshD+4t0Xg9LzImjAHg0a4GVra3ZNlVbtAIe3A9FhSY7m7OL5gEwYNEKajzTnezUFI7+ZP6jNjs9nd1ffIKs1dLq7Q9ol+M03PbBm8X6Pg/duY3fGviwpE8Aty+cN9vm/s0YIg8fwMrWltp9+uuPO7qVp2b33iDLeoHekOvbNpEYcg2XKp7U6tXP6Fy1toowGHnkoNlr6mIK3HPlywLYu5alXI2aaLKyiL9y0ejctS1K9ECtns8iSRLujZvhWt2b9MQ7FjNpQREJs+4n49m2PR5Nm2NtZ6cXdS1FLkQe2o9WraZK81Y4lq+gP64TafMrrnV20TwOTP2KG7u3c/rP2Wwf93aBvyMOfT+FO9eu4FarDm616nAvPIz/Rj9v9Ll3YcUSZK2Wmt1741SholF/F48quPnWIjs1RV9kzRy3Lwaz5Z3XWNa3qz5r1RJXN64DoM6zA/Tff5JKRc+Zc7C2t+f80sXs++YLNNnZxF+5xK4JHwHQ7pPPsXFwNDume5NmIEnEXwxGnZlpcl6WZXZ+9gE7PnmP9aOfZ3m/bmbb6bi8ZhXIMnX6DMCpUmUAaj/bHxtHJ26ePmHy/aZVq7lz/SoAFer45fn4BQKB4HGiKgV/ipaoa1cgKOXoFk9ElEEeCGFWUASU/Lfhw9MdsAWW5Dq+BGgoSZLPQ443EHAB8i/LXcKE7d3FH839WNCphcVcwkfl2ub1JEWEU9bbh9q9H4gQXu064exehaSI8Hy3qxeE7PR01o9+nll+1fitYQ0Oz/i2UDED+aFVq9k5/gOQZRq/OJoaz3QnMzlJLz7nx9mFc5W+L7xM5YZNaPLSaACubFhjsc/9mzEsH9CT8P17SLh8kfUvP1/g7cCX161mcaA/55cuYv83X7CkT0CeRbVunlGceh7NWpqcq9VTEWZDd24zceSlxMVycNrXAHT6cgrV/DuQmZTEgalf5TvHsH2KA7d6xwB9ISpbZxeavaK4CY/PNs4ijjp2WD9uz1/m0u6j8diVcUWSJPz6DuTZPxajsrbmxOyZHJr+DVqNBlmr5c71q4Tu2s79WzfznVNuEkNDWDmkD5fWrmTLO6+y7f03Lba9sHIJskaDb7deepEDwKtdR0AR3fISmqJPHGVJnwBmVHXlv1dfeGghPj8iDu4DoFrb9hbbeDRtAZJEXPC5h3Is5kfkof2k30nArWZtqnfoQsfPJ4MkcX7ZYrOu2TPz53A/JoqK9RrS/pMvafPuR3i2bU/63UTOLvyzyOZlSNTRQ/w3ZgRZKfeJPXualUP6mJ3b5f/+BVmmRmAP7F3LGp1r+vJrAJyaO8uokJSs1XJ05veAkkmbu/Cal86xefSQ2bnFnldc6JUbmQqz8CBn1lBUlGVZv5iiW1yRJIkaAd0AuLHH8sYO3Rb8Rs+P1B+rO2AIkpUVEQf2mM0IDturLDL5dH7G6HidPv1BkrixZyeZ95PNXu9eRBgHpk4EoO0Hn2Lj5Mzldau5uDr/bOvkmGgurVmBpFIxcNEKhq3aiEvVatw8fYJtH72FLMtk3LvLuX+UKAxDl7MhXu07ARBhYQElMzmJ1cP7cWntSm6ePsHmt181+TzUoVWrubZlw4PHb0Dlhk3oPmM2kpUVp/6YxR/N6rCkZyeyU1Oo03eg0aJObuzKuOJWs7Yiwl8MNjl/cdUyLq5airW9A87uVbh9MZiTc36xOF7IdsX9XKffgwQnW0cn/Xf2xTUrjNrfDb+BJjMTlyqe2JVxtTiuQCAQPC50Ik9piBEQjlmBwDKlwdVe6iklNVMETzZP4jutPkrsQO6gT53l6GH36Y0EbgPFv9f2EYi7EMT6VxQnUVJEOKuG9i1wIR5NdnaBigLJsszx2coW9ZZvvofK6sEvKiorK+oNGgrApUcsKKXVaNj05suEbN+sdwAenTmdQ9O/fqhxZFkm4sBeglcusSjeXfx3ObcvnMelajU6TZxCpy+/UR7D2lVk3Lub5/jZ6elc3bgegMYvvQJAnb4DAQjZvsXidtNjv/yAOj0N704BlKtRk/hLwQTlbC/Oi9jzZxVBQqul/pDnKVPNi4TLFzk97zfLfXK2xuq2yhpSzseXinUbkHU/2US0ODT9G7JTU/Dt1ouWb7xDt+m/YGVry4WVS/J1E+uiEXw6BxodbzpqDLbOLkQc3KcXE9MS77D5rTF6B2W9gUNNxvPt2oOev8wFSeLYrzOY17YxfzT3Y2HnVqwbOZQ/W9Vn3ajh+iJnBWH35x+RFn8b96bNsbZ34NLaldwyU3hH1mo5v0zJFm38wiijc241a+NUqTJp8bf1brPc3A0LZc0Lg4nNqYZ+fctG/n1uABlJ9wo81/wI378bAO9Oz1hsY1fGlQp16qLJyiIu+OGiOvLi8rrVgJLtKUkSFerUxTewB9rsbC7kijXJSk3h5B+zAOj85TeorKyQVCrafTQegDN//U5Wyv08ryfLMpnJSQ8lLp/8/Ve0ajWNXxyNV7uOZCYnceTH74zH1WoJznmd6w82jRL3bO1P3YFDUWdksPW9N8hKTQHg3N9/EX8pGGd3DxoOf9GkX9XWbZFUKm6dPWXyeSBrtcTlCLPujZqYnbt7Y9MCYImh10mKjMChfAWqNG+lP17jme4AhO3ebnas5Jhooo8fwdregZrdH6T6OJavgHenAEV03LTeeI6yTNienPdzQFejc87uHni2aosmM9NiHMq5xfNRZ2RQp+9A2o2bwDPfKCL20Z+n57uz49Tc2WjVauo8O4Cy3jVwqlSZgYtWYOPkzJX1/7LxjVFsfudVUuNiqdK8lV6AzY1+AeWweWH2+OyfSE+8g0ezlrhW9yb+UjCn/jRf1CzqyEHSE+/g5luLCnXrm5yvO2AIw1Zvws23FumJd9BkZ1O7dz96/PRbvlv8LMUZyFqtfjHrmW9n0GuWsoBxbNYMUm/HmYyTFB1JXHAQNo5OVM/1nOg+X3MXe9Pdh5UaNMpzjgKBQPC4KUm3qk4cFo5ZgcAy+t1DwjFrkZKulSJ4OngShVk34J5samFLNDhfICRJqgoEAEtlWbYYGipJ0muSJJ2SJOlUfLzlbMXi5NQfs9BkZlJv8HN4tm1PVsp9zi9ZmG+/zOQkVgzowR/N6rBq6LMkRUVYbBu2dxfxl4JxquxO/SHPm5yvl1MY5sqGdXm6OPPjzPzfCd25Ffuy5Xhx+0EG/r0aSaXixJxfiM7Ztp0fyTHRLHs2kNXP9Wf7h28xr01DE5eWJjubY7/8AECHzyZi6+hE+Vp1qN6hM+r0tHxdXaE7t5KZnETlxk2pUFvZ/lm2ug/uTZuTnZbKjV2mAklSVATBK/5BUqno8vV0Ok6YBMDltXkXTNJqNGz/6B00mZk0GjGSHjPn0GOGIh4cnz2T1PjbJn2y09O4fekCkkpFZQvCz4M4gw36Y8kx0Vz8dzmSlRWdJ04BoFwNX/xyCutYKh4DSmG4qJxt2965HHb2ZcvR6q33Adg1/kPSExPZ+t4bpMTepErzVrQb97nFcev2H8ygJf/iVNmd+zFRpN6Ow9m9Cp5t2iFZWRG6cyurn+vPoenf5LtN+k7INSIO7sPawZHBS9bQfIzilj3w3SSTtuEH9pAcHUmZal5U79DF6JwkSQaij2k8g1ajYfPbY8hOTaFWr2d55dAZKtStz90bIWwf906ec9QhyzJHZk5n45svc+avP0yyi++GhZIUEY592bJ6d6UldCLezdN558ymxN4iMeR6vnPTqtWE7NgCPNjWDuiLZQX9s9DI5R687G8y7t2lSovWeHXorD/u2aYdVVu2IePePYKWLLJ4vcz7yawa+iyz6noxu4EPF1Yty3eOKbG3CNu7E5WNDe0+/pyAKT8gqVScX7rISEwPP7CHuzdCcPGoqhc4c9P5q29xquxOzMljrBjYk0M/TGXvJEVU7jxxKtb29iZ97F3LUqlBI7TZ2SY5s4k3QshOTcHFo6qRE9sQXcRB7LkHjtmInGJ+3h27GC2OebZph7W9A3HBQWYX2nRb8GsEdsfWydnonK5o1pX1/xodT7h6mfu3YnCsWEmfp2qILs4jdOdWk3PqzEz9Z2iL15SM6XqDhlGuRk2SIsLzXMBLS7zD+WXKJpVWY9/XH69YrwH95v2NjZMz1zatJ2zPTmycnOn161yzRbXgQZzEzdMnTL6X0hLv6POBA76ZTuDUHwHl3jX3S/TVTcpzWNsgxiA3nq39eXn/SV7ef5LXT16i759/W4wwMMRSAbCIg3uVe7OKJ/UHDcfLvwO+3XqhyczkwqqlJuOEblfekz5dAk3uSc+27bFzdSXx+lXuhj1YYNM5st0tOLcFAoGgpCgNYo8QZgUCy5SG96hA8P9AiQuzkiQFSpIkF+Bnn64L+jqaxkMV4vIvojwHecYYyLL8pyzLLWRZblGxYsW8mhYL6XcTle2VkkS7ceNp886HgJLtZ2lLJiiiz7rRz+v/EIw8fIBNb462WLjqRI5rp/mrY7G2szM5X6G2H5UbNyXrfjKhOYLNw5IYcp1D3yuu1Z6/zKVCbT9qBHSl1VtK3MDW99/I11UXG3SGpX0CuHX2FE6VKuPdJRCtWs22D8caOYUurPiHpMgI3HxrGQlLjXK2xF7N5R7LzaV/le2gukrlOvz6KmOZizMIWrIQrVqNX79BlK9ZG5+Abti5unL7YjAJ165YvFbw8r+JvxRMGU8vukyeroiC7TvhE9CV7NQUfdV0Q+KCg5A1Gir41TcRYnTo4gxCtm3Wv+6n5/+OrNFQp09/yvn46ts2GKqI8RdXL7e48nfr3GnUGelUqFsf58ruJudbvvEubrXqcDcslDmNfQnbswM7V1d6z/nLZBt4bnw6B/Lq0fOM2ntcET1OXWL4mi28fuoy/h+NR1KpOPbrjHwF9aC/la3P9QYOxb5sOVqOfQ87V1eijhw0cc3qFjcaPfeSWeFH59K7YUaYuvjvcmLPncGliifdZ8ymnI8v/Rcsw8bJmetbNhB9/Eie8wTFKX5kxrdc3bCWPRM/ZX+uKInwHJHOq31nI5HOHAUpABZ55CALOrdiQeeWisidxwpvXHAQWfeTKetdg3I1Htwn3p0CKOvtQ3J0pP79lp2epnfLtjbIpgZF4NaJb2cWzDX7+aNVq1k3chhRRw5iZWuLOj2NbR+8afa+N+Ti6mXIWi2+XXviWL4CFWr70ej5kcgajVEsh06cazLyFVTW1mbHcqpQkeH/bsGlajVuXzjPsZ+/R5udTfMxY40+P3Kjf97PGAuzuixY9yaWxbBKDRohWVmRcO2yPu5E95rndkjbODjoFwp0cSKG6D6PzM21ZvdeWNs7EH38CMkxUfrj4fseuN/N3f81c4TZG7u3mzhgQ7ZvJj3xDhXrNtAvGqisrWn7vlIc6+QfsyzeX2cXzEWdnoZPQFcTF6d3p2d4ccs+Ggx/gaajX2f4ms2U9a5hdhwABzc3KtVviCYz0+Tev/TvCjSZmfgEdMWjSXO8OwVQxtOL5OhI/QKTDk12Nte3KBESdZ4dYPF6oNzT5WvWxsWjSp7tDPFoZt4xe25xTlTDC6P092bjF5XInPPLFps8h9e3KjEGus92Q6xsbPDpojifDQvu6bOO81ncEQgEgsdNaRBFrVXmfy8QCAQGGbOi+JdlRMasoAgocWEWOALULcDPSzntE4FykumnQzmD8wXlJeCcLMtFt/e3GLi8dhWazEy8OwXgWq061TsGUL62H6lxsXnmDUYfP0L00UM4lK/Ai9v24+JRlVtnT3Fy7iyTtjEnjxF9/Ah2ZVxp/MLLFsfUOWnzclXGnDzG5rfHsOH1kfot7aA4DLd+8CbqjAzqDx2Bb+AD55r/h59RsV5DkiLC2TX+I7PbYGVZJnj536wY2IvU23FUa9uBUXuOMXjJGvzHTUDWatny3hvcvnCelLhYvUPS/6PxRqKWT0BXrOzsuHn6hNmtogCp8bcJ27cLlbW1idBR59kBSvbi7h1G2YuarCwurFCij3WuQms7O33u3+W1q8xeKyPpHoemK2J1py++xsbBQX9OlxVpznF787RS6EnnxDJHBb96lPPxJT3xDuEH9pIaf1tf4Kjlm+8atfVs7Y+rV3Xu34y2mJmpu2bVHDEqN1a2tvSduxj3Js2QtVrcatZm8NJ1uHp6WZyjIdZ2dlSo7Uf5mrX1vwA4VaiI/4efEfidsnBwfNaPFvOINdnZXMrJV2ySEz9h71pWf08b3vs3T53g+tZNqGxsaDDsBbPj1ezWG5WNDREH9xndK9npaRz+fioAHcZ/pc8sLevlTcucYksHpn6Vp7s3NugMR378DkmlotXbH6Cytub0n7MJ2b5Z3+baJkX49OkSaGkYPbrXJObUCbPXvX8zhrUvDiHrfjLIMsd+nUHwCvMFoQCijirClVe7DkbHJZWKlm8o986xX2cga7WcnjeHlNibVKrfkBqBpo7UGoHdKefjy/2YKH2GpyHBy/8m+vgRnN09eHn/SX3kyN5J4y3GQsiyTHDO+80wZsB/3ARsnJwJ3bmVK/+t4eK/KwjfuwtrB0caGmSvmqNcDV9G7T5Cl0nf0WjEKAYsXEHnSd/m2adKTr5zbtE/7rziUrSULwtg4+BIpQaNkDUaoo4cQp2ZqS8kVr1jF5P2NZ7JyZnN5da/eyOUuKCz2Dq76IU5Q2ydXfDt2gOAK/89WFDSFTG0dH+Vq+GLW606ZCYlEZNroUG3QNLwuReNflmv03cgLh5VSQy5xg0zRRIzk5OU7G6UApPmcKtZix4//sYz33xP5YbmdwMYoltAMXS2y7Ksd+XqPkcllYr6Q5SFtgsrjd2oN3ZvJ/1uIuXr1KVCnbr5XvNhqehXH2t7B+6Fh+mLLKYl3uHG7u1IVlY0fO4lfVvvTgG4VK1GUkQ4EYf26Y+nJyYSffwwKmtrk+gJHb5dewIQukNZTNKq1cTlFMSztLNCIBAISorSIMwKR6BAYBlR/KsAiCgDQRFQ4sKsLMtpsixfKcCPrqLORcAO8M01lC5b9lJBritJUksUwbfUF/3SudJ0xUUkSdJnyYVs22yxn845qCtc1W2GUvDq2C8zTIrjnPhNyZZtMnIMdi5lLI7p128QKhsbwvftNitq3jx1gtXD+3N53WqubVrP6uH92PnZB6TdSWDvpPHcOnMSZ/cqdMkldljZ2tJr1p9Y2dlxae1KFgf6s2nsaPZP+ZIjP01j9xcfs7BLa7aPewd1RjoNhr3A4GVrcSinJFe0ff8T6g1+DnV6GssH9mTFwJ5kJiXhE9BNnwurw9bJGe+OASDLRiKYIVfW/4us0eAT0M2oUjkolcA927RDk5lp9Pxf37aJtIR4ytepq3fRAdQdoLxWl9evNiuYHZ35PemJd/Bs086oWjxg5LiNv2J8a0cfU4QSz9b+Zh8DKPdKg+GK6Hjw20kc/G4y2akp1Himu4ngIalURhm65tBt1zbMvsxNhTp1GbFpDyN3H2XkzsN5CscPQ4NhL1Cmmhd3b4Rw3Yy4BxB15AAZ9+5Rvk5dIyde05dfR2VtzfUtG4g8cpCU2Fvs+ExxcbZ8412c3T3Mjufg5kaNgG7IWi2XDbaBH//1R0WIbNCIuv0HG/Vp8dpbOJSvwM3TJ/IslHdm/h8ANHvlTTqOn0THz5WM5QNTv0KrVpNw9TJRRw9i4+hE7V59831+yvrUwMGtPGnxt0mKDDc5H7R0EeqMdHwCutH9JyW3+OjM7y1Wf9eJ87qt4obUHzoCZ/cqJFy+yPaP3+H47JmAsuXfnPNSUqlo/upYAE79OdvofZCVcp/DOZmwXSZ9R1kvb1q8/g6erf1JT7yjjyPJTcyJo9wLv4GzexWjWA2nipXw//AzADa99QrbPlCiLJ75ZrrJe9kcdi5laP7qWLp9/wu+3XoWIDv0wRZ1w8elW8TIz6Woi1a4sWsbEQf3oU5Ps+hI14lxEQf2Gi1eXckp+lWze2+jhR1D6g5Q4gwur1U+h7JS7hN94iiSSmVWBNZRq0cfpd9/D+7/tDsJhO/fjWRlZVSAChTXZtNXXgfg5O+mBazOLPiTjHv38GzTLs/ProfBq52uANg+/bGbp06QeP0qjhUrUSOwh/54/ZydAde2bCAzOUl/XJdB3HD4i8XiClFZW+uFUZ2z9+qGtWjVarw7BRjFXaisrPRictA/DyKLQnduRdZq8WrX0aSAnQ6fLoGorK2JPn6YtDsJ3Am5hjo9jTKeXgW6/wUCgeBxUpKFtzwcPZA0Eo2qivxtgcASImO2AAjHrKAIKHFhthBsA7KA3CWQXwAuyLIcZtrFLCMBNZB/kGEJknHvLjGnjisOGQNXU82cP5Zv7Npmdmtw2p0Erm3ZgKRS0WiE8geeT+dAajzTnezUFI7OnK5vGxt0htCdW7G2t6fZGMvV6wEc3cpT45nuyFotl3I5QLPSUvnvtRdRZ6RTd+BQ2n7wKSobG4L+WcCcRr6cXTAXlbU13X+cZfaPyop+9RiyfL3ebXXlvzWc/P1Xjvz4HWcX/qn/I7v37Pl0/3G2vnAYKF8a3ab/TO0+/clOTeFe+A1cq3vTddpMs39k1+ypPH+66ueGyLKsz7esN2iY2efBL0fAPLNwLrIsKwVcflXyC5u89IrRNau1aYezexWSoyJNttrevhisuMckiYDJ00zmam1nR50+yrbay+sePN9ajYaYnDxezzZ5ixvNXnmTMp5exF++wIWVS1BZW9N54lSzbX0Dc9xWu7aaiMiyLOvFpryEWVBej4p+9Yxeo0fFysZG79Q8u2ie2Ta6RQydS1mHi0cVmr78OrJWy7/P9Wde20YkXL6Iq1d12rw3Ls/r6u6BM3/9QUpcLHHB5ziRIzg9M2WGiRBp6+yid+ieXfin2TFTb8dxZeNaJJWKZjkiVtOXX8O1ujeJode5sGopZ/5Stt/XGzy8QJXUJUkyiDM4YXROk51NsD7T8z0aDHmeCn71uH8zmuDlf5uMpcnOJvq4cn9Va9ve5Ly1nR2dJ36DpFJxYcUSslNT8Os3yGKBJlAEMfuy5Yg9e9pofid+/5W0+Nt4NGupX5iQJIkukxWx9tzfC0i/a7oRIni54vatP+Q5k5iHFq+/jf+4CSDLOc/xGzQwU7yrKHCt7qMI4gnxJEcr64fZ6WncvnAeSaUyW5jPEJ2T9cau7frXKLfYr79WteqUr+1HVsp9vaNZ1mr1ea55RS54dw7EoXwF4i9fIPLQfm7s2Yk2OxuPpi30C1zm0N3/1zb9py/KdnXjOmSNRhEUK5jG+zQeMQo7V1eijx0m0qDwYMa9u5yep2Rn+3/4WZEJoJ5t/LGysyP27GlSYm8B6N2yDYY+bxSjUtbLm2ptO6DOSNfH2STHROmzHHED9AAAIABJREFUiuuZKQ5XVPjkLCDorqvbRVFvoOn3TMPhLyj52ju26BdBdd9XNbv3tngNe9eyVO8YgKzVcm3zf3qns3DLCgSC0oRO5CnJ7dGH3znMtY+v4WxnPg5MIBCIKIMCoRXCrODReeKEWVmWbwMzgfGSJH0oSVJnSZJ+RyniNcGwrSRJuyVJCsk9hiRJNsBwYGvOeKWW8AN7kTUaqrZsayTOuNWsTbkaNUm/m2jWlXdj13a02dlU79iFMlWr6Y93mDAJSaXi3OL5RB07jFajYednynbSJqNeNftHdm50W0Evrl5mJN6dmf87qXGxVG7clJ4zf6fduAm8uHU/nq39sXZwxNWrOkNWbsCns+Vt2Z6t/Rl98BTD/t1Mz1/m0uGzibR5/xM6T5zK4OXreP3kJeoOGGL2y8Ha3p6+cxczYPEq+vy+kNH7T1GmqqfZ69Ts2guVtTURh/abuIdjThwl/lIwDm7l8TVwWhlSb/BwnCpVJi7oLNe3bODqpvXEX76As3sVk+rtkkqFX39FMDHMzNRkZ7P9o7fQqtU0HfWqxYrZOmHk8trV+rzBhMsXyUxOokw1L6PX1xw2Dg48M+UHrGxtcaxYiYBvvsetZi2zbT2atcDBrTxJEeFGxZMAkiLDSUuIx8GtPGV9LGc+Fif1Bw/HxtGJ6GOHuRNyzeicVq3meo6D2ZzDtNOX39BoxCi0ajWarCxqdu/NsH+35Fu4x7drTyo3bExydCR/d2vP8gE90WZn02jESKq2NB/p0PiFl5GsrLi+ZYNeKDLk4r/L0WZn49u1J67VqgOK8Oz/oVJsatf4Dzm/dDFIEk1ffi3/JyYH3XwMI0RAcdql3o6jfG0/paCaSqXPAj278E8TEf52cBDZqSmUq1HTopvYr99gBv69GvcmzegwYRK9ZpkXy3XYODjq4yWO/foDsixz/9ZNTuVk03aeONXofV25YRO8Oz+DOj2NoH8WGI2VeT9ZL241GJZ7jU755dH/g0957cQF3rkSTcDX04vtF0pJkvTi662cnNnYoLNo1Woq+NXPcwcCQOUGjZWid7diCNm+GZW1tX53hDl0+ac6J2Xozq3cDQuljKcX3p0CLPaztrOj+StvAHD05+85kuNS9rMgAusoX6sOlRs1ITM5idBd25C1WuXe5MFugNzYlXGl5etKpMfB6d/oo0cO//gdGffuUc2/gz4vtyjQ74JAyb7NTE7SF0NrOPwlk/Y61+yFFUuQZZl9kz9H1mqp3bsfjm7li2xeudEJ5yHbNhNxYC83T5/AxskZ3+69TNo6u3vg27UnWrVaWZgMDSF01zZUNjb6hVmL18lZOLy6YZ2+gJgu4kAgEAhKEyXpmAVQWSgsKRAIFHTCrMAy+RWmFggKwpP6TvscmAK8B2wH2gFDZVnObX+0AswluvcByvMExBjoMwCfMc6TkySJmj0U14y5OIPQXUrhj9x/jFX0q0frtz8EWWbTmy+z5oVBxJ0/h0sVT/323/yoEdANx4qVSLhySR8FkJoQz8nflaiEThMm64uYVKxbn+Frt/J+yC1ePXqeam3a5Tu+jYMj1dq2p/7g4bR+5yPaf/w5LV5/G++OAfkWkALwDeyOX9+BebZ1cHPDu3MgskbDtVxFwE7PU7Z5N37pFbOV2AFsHZ30wtbW999k63uK67H1Ox+a7VN/kOLCCl7+N5GH9pN5P5lNb44iLjgIl6rV6DD+K5M+Oqq2bEMZTy/u34zWF5TS/dezdf7PJyiuvPdD4xh77rpeHDOHysoKnwBdjuU2o3M3c2IMPJq1LLFVU1tnF73IrROHdEQfP0L6nQTK1ahJBb96Jn1VVlZ0+/4Xxp4P5d2r0fRfsMyicG+Ila0tg5ato3KjJqQlxKNOT6PuwKF0mTzdYh+XKlWp1aMPWrWaoCULTc7rREXdIoeOeoOG0XzMWMUFL0kEfvsjFWr75TtHHb45xZpCdmw2KgyoyxVtMGyE/rWr2aMPzu4eJIZcI8ogmxMgMseNac4ta4hPl0Be2LyX1m99kG9xMlBcwbYuZQjbs5MTv81k05svo85Ip1avvmZFbp24d3bhn0aRC1c3rkOdnoZn2/ZGBexyU6ZqNYtb+4uSKs2VnFmdy1jnjLck3Bui7GoYpf+3b9ceRtvac9Po+ZGorK0J2b6ZpOhIfQxN81fHWixspqPJqFexdXYh+thhEkOuUaaal9G1LVEv5/PryE/TuLJhLfGXgnF29zBbgEpHs1fewKF8BW6dOcnh76cQtm8X5xbPR1KpCJg8Ld9rPiz6XRDbNhG8/B/U6WlUa9vBqHCdjtp9+mHrUoabp0+weng/rm3+DxtHJzpOmFTk8zKkrHcN3Js2JzstldXPKe7w5q+OxdbRyWx7XV71ybmz2DPxE5Bl6g95zmzMhSE1u/fCytaWqKMHiT13BjtX13wLmgkEAkFJUBoyZgUCgWVExmwBEMKsoAh4IoVZWZY1sixPkWW5uizLdrIsN5Jl+V8z7TrLsuxt5vg6WZYlWZbX5D5XmpC1WsL2KsJsjRyxzJCa3RRh9vr2TUYrNZqsLCIO7FX6mSnE0/bDz/Bs7U/q7TgiDuzF1qUMPWfOwdapYFt5rGxtafOusv370PRvUGdmsm/yBDKTk/Du/Eye25lLE7rMRUMXa9yFIEK2b0FlY0PTnAJelmj4/EjqPDuA7LRUNFlZNBk5Rl9NOzcV6zWgxRvvoFWrWTWsL7Pre3N96ybsXF3p++fiPJ97SaXSz1VX7EgniFfLJ8Yg9zgFQbe12rCqN2AQY9CywNcsDnRC0qXVy4zEOl1Rqdq9+uYpHDuWr4Cts8tDXdPRrbw+N/eFrfvo9euf+Qp+Oqdr0JKFRiLpvYgw4oLOYuPkjHcu97gkSXSe9C195vzF0JUb8hTRzVG+Zm3K16lLZlISkUcUsTUrLVVfLMpQnLGysdE/l2cXzzcaR58v62+aL/soOFWqTNdpSh7twe8mE3PyGC4eVeky6Tuz7b06dKZi3Qak3o7j8vrV+uO6GIOGFoq2PW6q+SvuT922/ZiTijBbxUKRvNz4f/Apg5auoeXY9+iSj2jp7O5BrV59kTUa/unegZunT2BfthwNh+f/XNi7lqX3rHm4VvcGSaLzxKlY29nl26/RiFGU8/HlztXLBotQH+X5HrB1dqHPbEWIPT77J9aMGISs0dBs9BtUrNcg32s+LL5deyKpVEQePsChH5SolhavvWV+bo5O9Pz5d1TW1vrXrOPnk/PdfVAUGBbXtC9bjpavv22xbdWWbag3+Dk0mZmE79utFAp88/18r2FXxtUolqjeoOGPZYFCIBAIHhaxPVogKN2UhtiRUo8sin8JHp0nUpj9fyEu+BxpCfG4VK1GeTOuOY9mLXCsWInkqEjiL13QH48+foSslPtU8KuHq6eXST8rGxuGrNxAnzkLaPH624zaffShxdRGI0ZRppoXd65dYWHnllxeuwpre3sCp854+AdaQvh264mtswu3zpzk+taNOdECbyNrtTR5aUyerjVQnsdn/1jEC1v3MXztVgK//TFP12DHCZNpNGIk1g6OyFotnm3bM2zVJjya5F8cS5c3eHndKq5v3Ujk4QPYODpRqwBFoR4W704BqGxsuHnqOOmJD7I9bxUwX7a4cW/cjEr1G5J+N5GQbYpJXtZq9fmLtXoX/XMCiuO2ol893Bs1LdAvJ55t2lHBrx5p8bf1Dll4kIPr27WHWbFEkiT8+g0u9FZvXb7ulfXKutONXdtRZ6RTpXkrE+HJ0H15/2YMoERsxOSRL/uo1O0/mICvp+PetDmVGzZmyMoNFp3LkiTRIke4OjVXKRoWc/IYt86cxNbZhdp9+pnt97hxb9IMGydnEkOvczcsVC9sV23VpkD9JZUKn86BdPr86wKJg+0//oIy1bzIuHcPG0cn+i9YVuDFBt9uPRlz6Cxjz4cWqKgcKHEo3X+cjWRlhVatpmqrtjR8zjQiIDfVO3ah+4+/UaaaF0gSrd/+kM5fmc+3flQc3crTauz7yBoN6vQ0avfpj283y9v3a/Xow4DFK2n68muM2LibpqNeLZZ55abh8BcZ+Pdqmox6ld6/zc83P7rzxCl4dwrAu0sg3WbMMusANkfHCZPp+ctc/PoNUnbJCAQCQSlCJ/aUdJSBQCDIG+GYLQAaIcwKHp289z0KSpQbe3Ru2a5mhSCVlRU1u/Xk/NLFhGzfTKX6DZV+Oe44c25ZHVY2Nvj1G5RnsZi8sLazo//8pawdOZSkyAhU1tZ0mTyNst4lkz1aGGwdnWj/6Zfs+fITdnzyHi4eVbh9MZgynl60//SLAo/j3qhpgdopW+l/JfC7magzMyxuXzVHWe8aNBj6PMHL/2Hjm4rjqsGwERYrcz8Kdi5lqNamHREH9xG2dyf1Bg0jKy2V25cuIKlU+VaZL24kSaLRiFHsmvARQf8swq/fYKKOHCQ1LpYy1byo3LB0FLmRJOl/7N15fFTV/f/x14eQQCMSElaVJSxaxQqoqAWpIIooVVHBDTewSO2Cy1dr1aqAglKlisrPqqCCVdEKFXBDRQFls3UBlSpuRNywIvu+5Pz+uHfCzWRmMklmS/J+Ph73MZl7z733c+feyXzmzLnncMRvLufVP13BkvvGcXD/AZhZSRcMlX3vleeQ/gNZMv5O/jv9aTpfOIQl93k/lvzc73cyqEGL/ehw8ql8+sIMPnhqCsdeeyM/fLCUXVu3UND+wHJvma6sI35zOUf4/Z2W5+D+A3hr7Ch+WvExS8bfxeevvOBtY+jvyu0fOFWysrNpeUx3Vr7xKm/ccj27tmymxeFHRvxhLBHy27VnyNy3Wf7sVA7oekyFW6BanToV7ku15THduXTef8C8/0fxtpz4xTmDOPTs89m1dUvcd2VU1q9uGEGjtu34euFb9Bp5e7nl2/Y6MWaf58nS7oSTaHdC2btgIslt3ISBTz1X4X2YGYcOPI9DkziYmYhIVakrA5HMpsG/4qGuDKTq1GI2g618/VUgcjcGIR1O9vr4+2Tm9JLuDL583a+YPSF6xWwiNPtFJy56eT4n3Xkvly35sNQtmtXF4YMvo/Wxx7Ft7U/8b/mH7Lt/y3K7FqiqOllZFaqUDfnlVddRt/7PKN61izrZ2RxxaXwVW5UR6pv4i9deBuCHZe/j9uyh6SGHJr1yJR6HnHk22bn78PXit/j0xZnMv93ro/cX51yQUYnDoQPPp2Gr1qz9bAWfzJjGl6+/yvqiL2nYqnXS3p8FHQ7kiKG/xxUX889zT2PNx8vJa1MYtS/RLn6XHUsff4Rt69by4dOPA15rx0yQlZPDCaPvAmDhuDFev8z7HcDRfyj/lu5UauPfdbDyDe//dqhf1mQJDaaWjG4Boslv1578tu0r/B4zs5T93zjsvIvod//D5DZukpL9iYhI5WVSziYiZek9Wr6fXeTdRVY/9s22IjGpYjZDbV79Pd8vfZesnBxa9Yh+S3ObX/Uit2kz1n7+Kavff5e1X3zOupVfUL9RPvsfkfy+QPdp1pxOFwxm3/32T/q+ksHq1GHAE9MZ8MR0+v5tApe8toAWndPbIjSavJatuWTOQs76xzQufnVB3Le0VkaotfXKea+zZ+fOkv5l90tzNwYh9RrmlQyY9sLvL+WHZe/ToMV+Jbe9Z4qsnJySQeJeu/5q5o70Btg7fPCwuAbLqqxj/3QjzTsfzu7t28GMPmPvidrHZKtuPTjg6G5s+2kN0wadyYdPPQ5mHD7kt0mLr6IOPOU0et48mjrZ2ex/5NGc9tCUSv24kUwH9x9Q0v2J1anDwRFaKIuIiAgcmH8g7IFftU1sX/YikljqyqB8dTscSNtPZrD/0rnpDkWqMXVlkKE+nvEsOEe7E/vGrIDIys6m41nn8M5DE/jon0+WjFDe9vgTyx2hWzxZOTm0PT71t7NWRn7b9jFHoU+URm3a0vigg/np00/49t+LS7rHqMhgY8l2+ODL+PKNVymaOwfMOH7kHRnRmjfcL865gK8XL+S/06ayvmgljQrbcdj5FyV1nzm5+3DhC2+wZsXHuOLikm5OIjEzTrnnAab06cEPHywF4OennkFB+w5JjbGijrp8eMko9ZmoQYv9uOT1xfx7wt0UtD9QLTZFRESieHnYyxQXF1MnzoFpRSQ91JVBfOo0rlgXYSLhVHOXoZZPexqI73bYQ8+5gHcemsDyZ58q6XOxQ99fJzU+qfna9zmZnz79hPenTOTb/yyhbv2f0e7Ek9MdVgmrU4ezJj/DptXfUT+vEfX2bZjukCKyOnU4+e7/R5ODDyGrbjadLhyckr5RrU4dmh5yaFxlGxW2Y8CT01k6eSJb1/zIr66/JcnR1Uy5BY3pdUtyBrcSERGpSVQpK5L51GJWJDVUMZuB/rf8Q9Z8vJz6jfJj9i8b0vTgjnS6YDAfPDmZ3du307pHz5KR2UUqq92JJ/Pv/zeez156HvAqajOtRWqdunWTNsBSItXJyuLo312Z7jBianl0N1oe3S3dYYiIiIiISAYItZRVi1mR5FLFbAba9N233mjpfX9NVk5OXOucMPoutq9fx5pPP+GU8Q9i+hVaqmj/I4+meacuJbe3H3zGwDRHJCIiIiIiIqlQv259AOrWUbWRSDLpHZaB2vc5mba9l7Nry+a418nKyeH0hx/HOadftCQh6mRlcf5zr/DBU1PYvn4d7fucku6QREREREREJAX+0OMPvPvduwzvnrnjPIjUBKqYzVB1srKo1zCvwuupUlYSqW79+hxx6W/THYaIiIiIiIikUJuCNrx++evpDkOkxtP97iIiIiIiIiIiIiIppopZERERERERERERkRRTxayIiIiIiIiIiIhIiqliVkRERERERERERCTFVDErIiIiIiIiIiIikmKqmBURERERERERERFJMVXMioiIiIiIiIiIiKSYKmZFREREREREREREUkwVsyIiIiIiIiIiIiIppopZERERERERERERkRRTxayIiIiIiIiIiIhIiqliVkRERERERERERCTFVDErIiIiIiIiIiIikmKqmBURERERERERERFJMVXMioiIiIiIiIiIiKSYKmZFREREREREREREUsycc+mOoVoxsx+Br1K0uybAmhTtS9JH57l20HmuHXSeawed5/i0cc41TXcQkljKhSUJdJ5rB53n2kHnuXbQeY5PXLmwKmYzmJm945zrmu44JLl0nmsHnefaQee5dtB5FkkNvddqB53n2kHnuXbQea4ddJ4TS10ZiIiIiIiIiIiIiKSYKmZFREREREREREREUkwVs5nt4XQHICmh81w76DzXDjrPtYPOs0hq6L1WO+g81w46z7WDznPtoPOcQOpjVkRERERERERERCTF1GJWREREREREREREJMVUMZthzKyVmU0zsw1mttHM/mVmrdMdl5TPzFqa2f1mttjMtpqZM7PCCOXqm9ldZva9mW3zyx8XoVwdM7vBzIrMbLuZLTOzAak4FonOzAaa2XQz+8o/fyvM7A4z2zesXL6ZTTKzNWa2xczmmNlhEbYX1/UgqWVmfc3sDTNbbWY7zOwbM/unmXUMKxfX/+x4rwdJLzOb7f/vHh02X+9nkRRRLlx9KReuHZQL1w7KhWsn5cLpoYrZDGJmucAbwMHAJcBFwIHAXDPbJ52xSVw6AOcA64C3YpR7BLgMuAU4FfgeeMXMuoSVuw0YCUwATgGWAM+aWb/Ehi0VdC2wB7gROBn4O/A74DUzqwNgZgbM8pcPBwYA2Xjv5ZZh24v3epDUKgDeBf4InATcABwKLDGzNhD//+wKXg+SJmZ2PtA5wny9n0VSRLlwtadcuHZQLlw7KBeuZZQLp5FzTlOGTMCVeB9yHQLz2gK7gf9Ld3yayj1/dQJ/DwUcUBhWprM/f0hgXl1gBTArMK8ZsAMYFbb+68AH6T7W2jwBTSPMu9g/r7395/3958cHyuQBa4H7Kno9aMqMCfi5f76u8Z/H9T873utBU1rPbSNgNXC+f65GV/T86f2sSVPVJ+XC1XtSLlw7JuXCtXdSLlxzJ+XC6Z3UYjaznA4scc59HprhnFsJLMR7M0gGc84Vx1HsdGAX8Exgvd3A00BfM6vnz+4L5ABPhK3/BHCYmbWtesRSGc65HyPM/o//eID/eDrwnXNubmC9DcDzlH4vx3s9SGb4yX/c5T/G+z873utB0udOYLlzbmqEZXo/i6SOcuFqTLlw7aBcuFZTLlxzKRdOI1XMZpZDgY8izF8OdIwwX6qfQ4GVzrmtYfOX4yWfHQLldgCfRygHuh4yTU//8WP/MdZ7ubWZNQiUi+d6kDQxsywzyzGzA4GH8H5JftpfHO//7HivB0kDM+uB19Ln91GK6P0skjrKhWs+5cI1k3LhGkq5cM2nXDj9VDGbWQrw+mQKtxbIT3EskhyxznFoeehxvfPb/8coJ2lmZgcAtwJznHPv+LPLO8/5cZbTeU6/t/G+GH4KdMK7Re9//rJ4/2fHez1IiplZNt6XjHHOuRVRiun9LJI6yoVrPuXCNYxy4RpPuXANplw4M6hiNvOEJx8AlvIoJFmM+M5xvOUkjfxfB2fi9aM0JLgIneea4iLgl8AgYCPewBaFgeU6z9Xbn4GfAWNilNH7WSS19D6q2fQ/tQZRLlwrKBeu2ZQLZwBVzGaWdUT+FSGfyL88SPWzlujnOLQ89Jjvj4AYq5ykiZnVxxudsh3Q1zn3TWBxeed5XZzldJ7TzDn3sXPubb+/pROABsD1/uJ4/2fHez1ICplZa+AvwM1APTNrZGaN/MWh51no/SySSsqFaz7lwjWEcuHaQblwzaVcOHOoYjazLMfrlyNcR+C/KY5FkmM50NbMcsPmdwR2srcfreVAPaB9hHKg6yGt/Fs+pgNHA/2ccx+GFYn1Xl7lnNscKBfP9SAZwDm3Hu+chPpHivd/drzXg6RWO6A+3kAy6wITwLX+34eh97NIKikXrvmUC9cAyoVrJ+XCNY5y4QyhitnMMgv4pZm1C83wbxM41l8m1d8sIBs4OzTDzOoC5wKvOud2+LNn4/3zuiBs/QuBj/zRLiUNzKwO8CTeL8b9nXNLIhSbBRxgZj0D6zUETqP0ezne60EygJk1Bw4GvvBnxfs/O97rQVJrKXB8hAm8BPV4vARS72eR1FEuXPMpF67mlAvXXsqFaxzlwhnCyvanLuliZvsAy4BtwE14/XPcBuwLdNIvSZnPzAb6f54AXI43suGPwI/Oufl+maeBvsCfgJXA74BTge7OufcC2xoLXAXcCLyH9w/tt3gJ0PMpOSApw8z+jnduxwAvhC3+xjn3jZ+wLgBa4Z3ndcANeB3md3bOfR3YXlzXg6SWmT2H9777AK8/rYOAq4EWwNHOuU/j/Z9dketB0s/MHDDGOXeT/1zvZ5EUUS5c/SkXrvmUC9cOyoVrL+XCaeCc05RBE9Aa77aQjcAmYAZQmO64NMV9/lyUaV6gzM+Au4HVwHa8kS57RdhWFt4H3Fd4I2F+AAxM9zHW9gkoinGeRwbKFQCP4vWlsxV4He+DK3x7cV0PmlJ+nv8MvAus98/fCrwRSwvDysX1Pzve60FT+if/vTy6MudP72dNmqo+KReu3pNy4Zo/KReuHZNy4do7KRdO/aQWsyIiIiIiIiIiIiIppj5mRURERERERERERFJMFbMiIiIiIiIiIiIiKaaKWREREREREREREZEUU8WsiIiIiIiIiIiISIqpYlZEREREREREREQkxVQxKyIiIiIiIiIiIpJiqpgVEUkSM5tnZi7dcSSCmbUwsylm9o2Z7TEzZ2aN0h2XiIiIiGQm5cIiIuWrm+4AREQyXSUSyiHOucnJiCWNJgMnAVOBzwEHbE9nQCIiIiKSfMqFAeXCIpIk5lyN+AFLRCRpzGxkhNlXAXnAvcD6sGUznHNLzaw1kOuc+yTJISaVmeUA24DXnXMnpTseEREREUkd5cLKhUUkeVQxKyJSCWZWBLQB2jrnitIbTXL5SfVXwBTn3OA0hyMiIiIiaaZcWEQkMdTHrIhIkkTqV8vMevl9Uo00s65mNtvMNpjZOjObbmat/HLtzOxpM/vRzLaZ2Vwz6xxlP7lmdoOZLTWzLWa22cwWm9n5CTiGIrxEFOASP3ZnZpP95TlmdoWZvecfw1YzKzKzmWZ2YlX3LyIiIiLVk3Jh5cIiUj71MSsikh5HAX8G5gMTgcOAs4DDzOx0YAHwCfA4XmuEs4DXzKydc25zaCP+oANvAIcD7wGP4v3o1hd4yswOdc7dVIU4xwOFwJXAMmCGP3+p/zgZOB/4yI91G7A/0AM4GZhThX2LiIiISM2kXFhEBFXMioikSz/gQufck6EZZvYIcCmwCPibc25MYNnNwK3Ab/D68goZj5eI/tk5d2egfH28xPFGM5vmnFtKJTjnxptZIV4yutQ5NzKwjzzgPOBd4Bjn3J7gumbWuDL7FBEREZEaT7mwiAjqykBEJF0WBBNR3xT/cQMwNmzZ4/5jl9AMP9m7EHgnmIgCOOe247VCMGBQooIO4/zt7wCKyyx07qck7VdEREREqjflwiIiqMWsiEi6vBNh3nf+49LwX9yBb/3HloF5RwFZgIsyWm62/3hIZYOMxTm30cyeB04DlprZdOAt4G3n3NZk7FNEREREagTlwiIiqGJWRCRdNkSYtzvaMufcbjODvQkmQOj2qKP8KZoGlQkwTufitUYYBIzy5203s2nAtc65H5K4bxERERGpnpQLi4igrgxERKqzUNJ6j3POYkzHJysA59w259xI59xBQGu828kW+I/TkrVfEREREan1lAuLSLWnilkRkerr33j9Wf0q3YEAOOe+9vsK6wt8BvTQoAciIiIikiTKhUWk2lPFrIhINeWc+x/wJNDVzG42szLd05hZezNrGzZvnpk5M+tVlf2bWVMzOybCon2AffFuR9tZlX2IiIiIiESiXFhEagL1MSsiUr39ETgQuBWzYSxkAAAgAElEQVS4yMwWAD8A++MNdHAUcD6wMrBO6Ee53VTNAcASM/sYeA/4GmgInAq0AO5zzm2q4j5ERERERKJRLiwi1ZoqZkVEqjF/NNiewDC8QQcGAPXxEtLPgKuB10LlzRs14VCgCFhSxd0XASOAXsDxQBNgLbACuB54uorbFxERERGJSrmwiFR35pxLdwwiIpIiZtYJWAb8wTn3QLrjERERERFJFeXCIpJp1MesiEjt0hOvBcGj6Q5ERERERCTFlAuLSEZRi1kRERERERERERGRFFOLWREREREREREREZEUU8WsiIiIiIiIiIiISIqpYlZEREREREREREQkxVQxKyIiIiIiIiIiIpJiqpgVERERERERERERSTFVzIqIiIiIiIiIiIikmCpmRURERERERERERFJMFbMiIiIiIiIiIiIiKaaKWREREREREREREZEUU8WsSA1nZr3MzJlZUbpjCWdm8/zYBofNz9iYIfPjSwYzO9/MFpvZJv/YnZn1Sndc1ZWZTfZfw5HpjkVERKSmyOQcTXlv9aG8t3yB16UwbP5gf/68tAQmUg3VTXcAIhKZmU0GLgmbvRvYCKwDPgL+DUx1zq1MUUyNgKsAnHMjU7HPVPOT5UJghnNuaXqjyQxmNgh40n+6C/jB/3tneiISERGRmkR5b3oo7y1Lea+IpJpazIpkvlBC8AOwFsgF2gP9gTHAF2b2rJk1jbL+VmAF8EUCYmkEjPCnRFiFF9uGBG0vEQbjHV+XGGUS+ZpWB1f7j/cAuc65Fv60KJ1BVXPf411Da9IdiIiISAZR3ptag1HeG055b9VswLteVqU7EJHqQi1mRTLfIudcr+AM/xf8X+IlU2cDA4FuZnaMc+7bYFnn3L+Bg1MTasU45y5OdwyVkcmvaZIc6j8+6pzbndZIagjn3A3ADemOQ0REJMMo780wmfyaJony3ipwzj0HPJfuOESqE7WYFamGnHPrnXOznXPnAb8GtgMHANPTG5nUUD/zHzenNQoRERGpdZT3Soop7xWRlFLFrEg155ybDVzrPz3GzE4LLo/VYb+Z1fE7aJ9rZj+Z2S4z+9HMlpvZo2Z2cqDsPGBl4LkLm0YGy4YGNzCzRmb2VzP7xMy2mtn6SOViHaOZnebHuM7MNvud8Q+KUrYwFFOM7ZV5TUId1QM9/VmPhR1fUaz1I+zjeDP7l5mtNrOd/uNzZtY7xjolneibWWszm2hm35jZDjNbaWbjzKxh1BeqHGbW0MxGmtky/3XcbGYfmNkoM8sLKxvpdVwZiHFyBffdwMxuNLP/mNkGM9tuZp+Z2X1m1irKOsHr6Gd+7CvMbJuZ/c/MnjazA8vZb1Mzu8PMPvSPd4uZfWRmY8ysIMo6Rf5+e5nZAWb2gJl96Z+HpWFlg3FtN7Pv/bh+EetatDgG//Kv+5mBa+h/Zva8mfWNsU5nM3vcP4Yd5g1a8aWZzTazq8wsN9brJSIiksmU95Ypq7w3+vbTmffuY2bXmtkiM1vr54hfmtksM7vAzLKrEm9gnXjyyWiDzpUapMvMLjGzJWa20bxc/fXge6ICxx518C8rnWMXmNnd/rneYWbf+tfAfuVs/xIze9u8nH6t/145NXz7EdbraWbT/Gtsp3+Mn5nZDDP7rZmpbkzSRl0ZiNQME4GbgebAIOD5ONf7h18+ZAPQEGgCdPSn2f6ytXj9YTbxn/9AaZF+VW4KvAu0A3ZQiU7zzexKYDzg/Ph+hnc72y/NrJtzbnhFtxnFNrxjKgCy8Qab2BZY/mMFYh4N/MV/Goq7GXAGcIaZjfVvZY+mM/CoH8smvB/RCoFrgJ5m1t05tyveePyYOgBzgDb+rK3+42H+NNjMTnTOfebP38Pec9zcf1zjz4cK9I9mZocALwf2vRvveugADAcuNLPTnHMLo2yiIbAQONxfrxjv2joX6GNmRzvnyvR7ZmY9gJl4ryN4198evFvUDgUuMrM+zrkVUfZ7EPAs3jW/Fa/fu+D284DXgSMD28/14zoVGBZluzH5yfpjwAWB2RvxjvlU4FQzu8s5d13Yev2AGXjXL+x9rdr6U1+89/MnlYlLREQkQyjvrTrlvcnLezsCL/rHAF7eu5m9+dhpeHltURXiTSgzuwdvoLtivGshD+gN9DazPznnxiV4ly2ByXjHuxXvutkfGAqcaGZHOOfWRYhzol8GP9adeD8u9DKzq6LtzMyGAQ8FZm0FsvC+i3TA68N6Cl5rfJHUc85p0qQpAye8DysHzIuz/FN++W/C5vfy5xeFzT/On78H74N4X3++AfvhjYw7LmydQn8dV04s8/xym/A6fj8ZqOMv6xCh3OAoMW/B+8CdAjT3l+UD40JxAIMqGmO01yRWTBVY/7xAbPcDTfz5jYH7AssujLBuaNk6vAq/X/jz6wGX4iULDvh9Ba+lHGCZv+4qoI9/ng04AfjKX/YRUC9GXIWVuI7z8FqcOLz+pg4H6gbO1eP+stVAoyjnYp2/jb54SVQd4FfA1/7yf0bYbxt/PYf3Be7n/nqGVyn7sr9sOZAVtm4Re6/fD4DugWXB63eKX24zcCGQ7c8/FFgc2H+Za5G97++REZbd4y9bCZwPNPDnN8Cr7N3gLz8/bL0v/PnPAwcF5jf0X6+HK3MONWnSpEmTpmRPKO9V3lsz8t4Cf58O+BKvwi/HX7Yv0AOvErplIuIlRj4Zx3U32J+/3n8cC+T5y/YDnvDnFwM94n2dAtst815mb469Dngf6ObPrwuczt7c+c4I6w4J7PP2QKzNgEl4750t/vJegfVy8d6bDngEaBV2vk7G+3+SU9HzrUlToqa0B6BJk6bIExVPUG8IfFhlB+b3InKCep0//+UKxFQY2kc55UIJwE78JKuccoPD5vcKHMurgMV4fT4LLo8nxmivSayY4lkfL4H6zF82Ncq6oS8SRfhJe2BZ6JijJYr3+8vfqOC1dJG/3q5I5wOvInGnX+bSCMurkqCO9tedEek8+mVe9MtcG+VcbCXwxSawfIC/fHt4MsXeZPLeKPvMAZb6ZQaGLStib9LYPMr67fAS1TJfkvzlecB30a5FoiTSwIF4XxrXAe2i7Puc0HUSmNcscJ4ixqxJkyZNmjRl6oTyXuW9Zdetjnnvnf66PwIHJDteElMx64CJEdYz4A1/+Zx4Xyfiq5hdDTSOsPwaf/mXEWJZ6S97OMpxvhiIqVdg/tH+vM2ENcbQpClTJvWjIVJzBG/3iNh3ZpiN/mOzJPap87Jz7qMqbuMO55yLMH+M/9gB7xaoTNAFLx7wKiQjGeU/tsFLFCK52zm3I8L8Gf7jLyoY18DQ+pHOh3NuOTDNf3pOBbddnkv8x3uinEeAqf5jnyjLpznnPo8wfxZeolWPva87ZvYzvFGbAe6OtEHn3E72HnO0/T7unAu/dTHkTLwk8etA/MHtbwAejLJuLBfjteyd4Zz7MkqZf+HdInlooB+uTXgVxeC1chAREanJlPemn/Lesi7yH8c5576Nc510xhtye4T9OuAO/2lvizI2QyU97Jz7KcL80Dlva2b7BOYfwd6uIe6Mss2/Rpkfeu9n47XkFsk4qpgVqZmiVYAFzcH79fUIYJ6ZXWhm+yc4jsVVXH8XXh9MZTivj6Xv/adHVHE/iRKK40c/iSrDef2ZfhtWPtx/oswPrZdfybjmxijzRjkxVZh5g3q19J8+a95AEGUmvFvdACIOAkaU18N5/Y39z38afE264rWIBXg7xn7/VM5+Y12/h/uPC2NUOL8VY/1ouvuPA2PE/Q17+5FtBeCc2wbM9+e9YmY3mVkXM8uqRAwiIiLVifLe9FDeG2BmhUAL/+lLFVg1LfEGrHLOrYyybAHenVyGVxGfKOWdc4BGgb9DeffqKI01AJYQNh6E7zN/ygEWm9nVZnawmVlFAhZJJlXMitQcwaSlTGfp4fwPtd/hdfT/K7wBEb71R8b8u5kdHnMD8Yl74IAo1vgtG6MJfXg3reJ+EiUUR3m/kH8TVj7cpijzQx3SV3TgxnjiCsXUOIGJSrDlZlO8wRQiTaFrNzfKdqK9HrD3NQmObhvcb7R9NsfrezXWfmNdv6HBQL6PUea7GMuiCcXegNixhz6/g7EPBT7G69bgNry+u9ab2Yv+F1AN+CkiIjWF8t70U95bWvPA36sqsF664g2Jul//h//Q+yuR113Ec+6cCw6+Fczty827/fdOmVa4zrk9eIP+fYvXFdndePnyGjN71sxOVyWtpJsqZkVqjsP8x29cnCOXOucexRsd9Cq80et/wrtN5HLgXTO7sYox7Sm/SJVk6odovXQHEEWq4wp+xuQ556ycqTDB+10Xxz7NOdcrynZiXb/JuvZCsV8ZZ+zzQiv6XR90wutm4WG8pLMB0A/vC+jbZtYgSXGLiIikkvLezKG811PV85Opr2MmXHdVisE59w7eOA4X4g08/CVeFygD8f4XvKi7zCSdVDErUgOYWQ7eqJ1QwdunnXM/OOfudc6dgfdL6NHAc3gfgLeZWaeEBlsxTfxjiybUujDYQmF36A8zqx9lvbyqBhZFKI7W5ZQL3d5f1ZYV8Qrtp02MMqGYfopxa35FBftn7ZigbVZkv/lm1iJmycoLvaax+nOtTF+vodgr9Xo553Y752Y4537rnOvox/AnvFYnRwAjKrNdERGRTKG8V3lvOdKV964O/B1r3+GqEm/o/Ec791D++Y/apYd/TYW6FEjV+Yuk3Lzbf+9E7UPWObfNOfekc+4S51x7vNazd+B1hXIK3g80ImmhilmRmuEyvNuXAZ6s7Eac5z94Ayd9g/c/okegSGhwIVJ0y0c20C3SAjPrwN5E4r3AovWBv1sS2VEx9hk6xsocXyiOfcws4gAHZnYQcEBY+WQL7ef4GGV6h5WtMr+/qlBF41mJ2m4c3mFvopqs/b7vPx4b473wq0psN9Q/3Wlmlh2zZBycc6udc+OA8f6snlXdpoiISJop791LeW9Z6cp7i9hbOduvAqtWJd7Q+Y947v0BtA4pZ/9t/P5xI+kBZOFVXi4tZzvJFMq7W5hZ+yhljqF09wcxOedWOuduBJ7xZylHlrRRxaxINWdmfYG7/KeLnXMvxrle1F/k/b54QreFBW+r2Rj4O9ghezLdECUZvsF//AxYFprpnNsMFPlP+4evZGaN8frijCZ0jJU5vqVAqEP6aLfDjfQfi4B/V2IflREayfWUSH2omdmh7B0R9p8J3vdk//H3ZhY1MTRPQlp0OOc2AdP9pzeZWfNoZc2sbiVv75+Bl6S2IsIIuWbWkMr98j4F70vS/uy9xiMys/zA39nlfGnc5j9m6m1yIiIi5VLeq7w3DunMe//hP15jZgfELLlXVeL90H88KUqL6auJL/crk3P61+H1/tPXnXNr49hOsrwHfOX/fW2UMtdFmllOK3RQjiwZQBWzItWQmeWZWV8zm4o36ufPgK/Z+6Edj9vNbJqZnWFmBYFtNzez+/D64HLAa6Flzrn17B3QaEhVjyMOW/F+IX7EzJr58TUys78Cl/plRka4BSmUtNzkd+he11/3l3ij8sb6gA6NKntWRSsK/Thu8p/2N7P7/YQYM2vsv67nh2JzzhVH2k4SPAN84P89w8xODCX9ZnYC3jWUjXfslW55EsVYvH6c9gHmm9klwYpQM2tlZpcB7+L1jZoo1wNr8W55WmRmZ5pZScJlZh3M7Cq8fli7VnTjzrkv2PtaTTKzQYHrrCPwMtEHFYu13Y/Z27p1lJn9PzNrF4i7gZn1MbN/AM8GVj0U+MjMrjKzgwLnN9vMBgD/55d7paIxiYiIpJPyXuW9FZTOvPeveINMNQHe8s9Hjr/vBmbWy8yeNrNgC9eqxPs8XsViU+DxwHWTZ2Z/wasY31BOzBuBYWZ2e+gaMK8rsCl4XYY4YFQFX4eE8q+12/ynl5vZbX4jCMysqZk9DPTFew+F62dmi83sMjMr6S7CzHL97yAX+LOUI0v6OOc0adKUgRNeS0MH7MS7LSY0bfHnh6ZivA/0JlG208svVxQ2f3zYdjbgfTAH590YYXujAstDv9IXAVcFyszzlw8u5xgjlgvGjDdAQ+g41+INrBDa/4Qo280HvgiU2+7H6vB+bb0w0mvir3swsMNfvgsvuSoCFpT3mgaWjw7se0+EuO+Isl5oeWGU5YWhMpW4njr4xxHax5awa+kr4KDKxBXnvv8b9pr8hJc8Ba+3S+K5PsLKhI6pV4RlR/nnL7T9XcAa/3oI7rdnvNsMK9cI79aq4HW23v97E96XEQfsiPH+HhlhWRbwQFiMG/FGxS0OzJsbWKdLWPnt/mscvO7+AzSszDnUpEmTJk2akjmhvFd5b9nlhaEylbie0pn3Hob3w0FoOzvxcjgXbdtVjPeKsG2vC7z+t8S47gb78+cB9/h/7/bPXzDfvLYir1NwuxHWCR1jrxivX7TtGvBoYHkw1mLgj/7r5IBugfXOCHt9tkY4xheBupU535o0JWJSi1mRzJcNNPenJnjJ05fALOAvQHvn3LnOuTUV3O49eB/kM4FP8T7s6uElEs8Axznnbo+w3q3An/F+2TW8jurbkKRbvJxz44HTgfl4rfy3A0uAC51zf4yyzjqgO97I9N/56/0E3I83ANI3Mfb3CdAHmI2XtLfAO75o/XZF2sZNeL8wz8SrCGzg738WcKJzLuYt6sngnPsc6Ix3/j4KLPoI7xfoTs65T5O478OB3wNz8ZKhhngJ1Qd456Une2//StR+/4P3hePPwCK8ytJGeC0L3sFr1XCUc25+Jbe/HjgW7/X7HO/9sB2YijeYyMd+0fURNxB9u3ucc7/H69frCbwkMwevhdAqvEFKLsFLNEM+xms59CBeZfF6vNd4I7AAGA4c65wL3pYpIiKSaZT3Ku+tsjTnvR/i3cl0E16+uQ1vcK4v8brCOp+wc1KVeJ1z9wHn4l0nW/HO/0LgTOfcrXHGfDVeheq7QF28iv25wCnOG6sg7ZznUrzW4//B+99geBXLv3bOTcDLfaF07v0GcBFeC+AP8V6jffGu0Tl4OfVpzrndiKSJOefSHYOIiEiNY2a/ASYB851zvdIcjoiIiIgIAGY2GHiMGpKnmjco2Od4LZT3dc7tTHNIInHL+BazZtbS769msZltNTNnEUYNNLP6ZnaXmX1vZtv88sdFKFfHzG4wsyIz225my/z+90RERBLC70/sSv/pa7HKioiIiIhIlYQG/3pTlbJS3WR8xSxefyvn4PWV8laMco8Al+H1o3Iq8D3wipl1CSt3G14n2BOAU/Ca/D9rZv0SG7aIiNRkZtbazB4zs1+Z2T7+PDOzo/EGEDgM77bAR9IZp4iIiIhIdefn3QNDg8z589qa2QPAMH/W39ITnUjlZXxXBmZWx/kjOJrZUGAi0NY5VxQo0xlYClzqnHvMn1cXb+TCFc650/15zfD6ERrrnBsRWP91oKlzrlNqjkpERKo7M+sAfBaYtR6vD7H6/vPtwNnOuRdSHZuIiIiISDTVsSsDM/sGOMB/ugVvAK99A0XG+H0ei1QrGd9iNlQpW47T8UaRfCaw3m7gaaCvmdXzZ/fFG0DlibD1nwAOM7O2VY9YRERqie+Aa/Bax4YG6HJ4lbUP4Q3UoEpZEREREZGq+xNenc+neIMI18fLx6cDJ6hSVqqruukOIEEOBVY657aGzV+O90W5g//3oXij930eoRxAR2BlEuMUEZEawv/MudufRERERESqBefcZGBymsOoEOfcVGBquuMQSbSaUjFbgNcHbbi1geWhx/WubP8N4eWiatKkiSssLKxMjCIiIiK1xrvvvrvGOdc03XFIYikXFhERESlfvLlwTamYNbzbRyPNr0y50gvNhuF3Jt26dWveeeedysQoIiIiUmuY2VfpjkESr7CwULmwiIiISDnizYUzvo/ZOK0lcmvX/MDy0GO+mYVXxIaXK8U597BzrqtzrmvTpmr4ISIiIiIiIiIiIlVTUypmlwNtzSw3bH5HYCd7+5RdDtQD2kcoB/DfpEUoIiIiIiIiIiIi4qspFbOzgGzg7NAMM6sLnAu86pzb4c+ejVdRe0HY+hcCHznnNPCXiIiIiIiIiIiIJF216GPWzAb6fx7pP55iZj8CPzrn5jvnlprZM8B4M8sGVgK/A9oSqIR1zv3PzO4BbjCzTcB7eJW3vYH+KTocERERERERERERqeWqRcUs8GzY8wf8x/lAL//vIcAYYDTQCFgGnOycey9s3b8Am4ErgRbACuAc59zziQ9bREREREREREREpKxqUTHrnAsfrCtSmW3A//lTrHJ78CpvRycmOhEREREREREREZGKqSl9zIqIiIiIiIiIiIhUG6qYFREREREREREREUmxatGVQXW1Y8cO1q5dy6ZNm9izZ0+6w5FqLCsri3333ZeCggLq1auX7nBERERERERE0kJ1LZJqyayTUcVskuzYsYNVq1aRn59PYWEh2dnZmJXbVa5IGc45du3axcaNG1m1ahWtW7dW5ayIiIiIiIjUOqprkVRLdp2MujJIkrVr15Kfn0+TJk3IycnRPwqpNDMjJyeHJk2akJ+fz9q1a9MdkoiIiFSRmfUyMxdhWh9WLt/MJpnZGjPbYmZzzOywCNurb2Z3mdn3ZrbNzBab2XERytUxsxvMrMjMtpvZMjMbkMxjFRERSRTVtUiqJbtORhWzSbJp0yYaNmyY7jCkhmnYsCGbNm1KdxgiIiKSOFcA3QLTiaEF5n3bnAWcDAwHBgDZwFwzaxm2nUeAy4BbgFOB74FXzKxLWLnbgJHABOAUYAnwrJn1S+hRiYiIJIHqWiSdklEno64MkmTPnj1kZ2enOwypYbKzs9WHjoiISM3ysXNuSZRlpwM9gN7OubkAZrYYWAlch1epi5l1BgYBlzrnHvPnzQeWA7f628HMmgHXAmOdc+P8fcw1sw7AWOClxB+eiIhI4qiuRdIpGXUyajGbRGpSL4mma0pERKRWOR34LlQpC+Cc2wA8D/QPK7cLeCZQbjfwNNDXzEIdofUFcoAnwvbzBHCYmbVN+BGIiIgkmL4XS7ok49pTxayIiIhIguzcWsyOzcVlFxQXe5NIWU+a2R4z+8nMnjKz1oFlhwIfRVhnOdDazBoEyq10zm2NUC4H6BAotwP4PEI5gI6VPQgRkXTbuX1nukMQEakwVcyKiIiIJMCqf2/n/u7fct8vv+X9pwN9TzkHQw+ByzunLzjJRBuAvwFDgd54fb+eCCz2uxwAKADWRVg3NOpEfpzlCgKP651zrpxyIiLVyqsTnmNWx8OY9peH0x2KiEiFqI9ZERERkQRYvXwnxbu9v79btpPDz/MX7NoJ33yatrgkMznn3gfeD8yab2ZvAv/G6zv2JsCA8EpU/PnhzxNZrvRCs2HAMIDWrVvHKioikharFr1Lc9vN1/95L92hiIhUiFrMSlLt2bOHiRMn0rNnTwoKCsjOzqZZs2Z06tSJoUOHMmvWrFLlJ0+ejJkxefLkhOy/qKgIM2Pw4MEJ2V48XnjhBXr16kVeXh4NGjTgmGOOYcqUKSnbv4iIpIcrjvw3u7YHFkSqExPxOOfeAz4FjvJnrSVyK9ZQS9l1cZZbG3jMt7IdpIWXC4/rYedcV+dc16ZNm8Y+CBGRdNDnq9QyZoaZ0aZNG7Zv3x6xTGFhIWbG7t27o25nzJgxJdtasWJFufstLi5m2rRpDBgwgFatWlG/fn322WcfDjnkEIYNG8bChQsrfUwAixYtol+/fhQUFJCbm0unTp0YP358lQbc2rVrF/feey9DhgyhS5cu5OTkYGZMmjSpSrEmilrMStLs2bOHU089ldmzZ9OoUSN+/etf07JlS9auXcsXX3zBU089xSeffMLpp5+e7lATZsKECQwfPpzGjRtz4YUXkpOTw7Rp0xg8eDAffvgh48aNK38jIiJSLZWqjA1+P9wZSJaLiyErK1UhSfUUbNW6HDgpQpmOwCrn3OZAuTPNLDesn9mOwE729im7HKgHtKd0P7OhvmX/W/XwRURSzxU7/1H9uUvtsmrVKsaPH8/1119f4XWdczzyyCOYGc45Jk6cGLPOYvXq1QwcOJCFCxey77770qdPH9q3b49zjs8++4ypU6cyceJE7rvvPoYPH17heGbOnMmAAQOoX78+5557LgUFBTz//PNcffXVLFy4kGeffbbC2wTYsmULV111FQDNmzenRYsWfP3115XaVjKoYlaSZurUqcyePZvOnTszf/588vLySi3funUrb7/9dpqiS7yioiKuvfZaCgoKeOeddygsLATglltu4aijjuJvf/sbAwYMoFu3bukNVEREkiL0pTD871IVsxHvIhfxmFlX4CDgn/6sWcAQM+vpnJvvl2kInAY8FVh1FjAKOBuY4perC5wLvOqc2+GXm41XUXuBXz7kQuAj59zKZByXiEjShVrM6mNWapH8/HzMjDvuuIOhQ4fSpEmTCq3/6quvsnLlSgYPHszLL7/MlClTuP3228nJySlTduvWrZx88sksW7aM8847jwceeID8/PxSZTZu3Mi4cePYuHFjhY9l48aNXHbZZWRlZTFv3jy6du0KwG233Ubv3r2ZNm0aTz/9NOedd145WyorNzeXl156iS5durDffvsxcuRIRo0aVf6KKaKuDCRpFi1aBMDgwYPLVMqC9+Y4/vjjS5736tWLIUOGADBkyJCS5vRmRlFREQDfffcdt956K8ceeywtWrQgJyeH/fffn0GDBvHxxx+X2v7IkSNp27YtAFOmTCm1vfCuEl555RX69etHkyZNqFevHu3bt+dPf/oT69evj/t4H330UXbs2MEf//jHkkpZ8P5Z3njjjQA8+OCDcW9PRESql1JdGcRqMSsCmNmTZjbazM4ys95mdg1exem3wP1+sVnAYuAJMzvPzPr68wy4M7Qt59xS4BlgvJkNNbMTgKeBtsCIQLn/AfcAN5jZ/5lZLzP7O97gYzcm+5hFRJKlpAUoa4oAACAASURBVKWs0+es1B65ubncfPPNbNy4sVIVjRMnTgTgsssu44ILLmDNmjU899xzEcvec889LFu2jGOPPZYnn3yyTKUsQMOGDbn11lu59tprKxzLtGnT+PHHHznvvPNKKmUB6tevz+jRowH4+9//XuHtAuTk5HDKKaew3377VWr9ZFOLWUmaxo0bA/Dpp/ENeDJ48GAaNWrEzJkz6d+/P126dClZ1qhRIwDefPNNxo4dy/HHH8+AAQNo0KABn332GdOmTWPWrFksXLiQzp29Ua979erF+vXruffee+ncuTNnnHFGyfaC27711lsZMWIEBQUFnHrqqTRr1owPPviAcePG8dJLL7F48WIaNmxYbvxvvPEGACeffHKZZaecckqpMiIiUvMUB7q+KvW9cKf6mJWIPgLOB4YDucBq4F/ACOfcGgDnXLGZnQqMAx4A6uNV1B7vnAu/B28IMAYYDTQClgEn+/3WBv0F2AxcCbQAVgDnOOeeT/gRioikTKjFrD5npXb5wx/+wIQJE3jooYcYPnw4Bx10UFzr/fDDD8yaNYuDDjqI7t2707BhQ+6++24efvhhzj333DLlH374YQBuvvlm6tSJ3cazXr16FT6OWPUpxx13HLm5uSxatIgdO3ZUavuZTBWzkjRnnXUWf/3rX3nwwQfZtGkTZ555JkceeSRt2rSJWD40QNfMmTM544wzIg7Y1bt3b3744Qf23XffUvNDv9xcf/31vPzyy4BXMVtYWMi9995Lly5dGDlyZJntzZ07lxEjRtCtWzdeeumlkgpg8AYiGzJkCCNGjOCee+4p93hDHWVH+ke43377sc8++/DNN9+wdetWcnNzy92eiIhUM4HvgtErZtWSRzzOuTuAO+Iotxa41J9ildsG/J8/xSq3B6/ydnTcwYqIZLhQi1mnz1mpZbKzsxk7dixnn302119/Pf/617/iWu+xxx5j165dJfUuv/jFLzjiiCOYO3cun3/+OR06dCgp+/XXX7Nq1Srq1q1Lz549k3EYMetT6tatS9u2bVm+fDlffvklhxxySFJiSBdVzKbBuAPK3tafia79dkOV1j/88MN54oknuPLKK3niiSd44oknACgoKOC4447j0ksv5bTTTqvQNps1axZxfufOnenduzevvvoqu3btIjs7O67t3XfffYDXhD9YKQteRfG9997Lk08+GVfF7IYN3usVqduG0PwtW7awYcMGVcyKiNRAxXsCfcwGG+zsUotZERGRpFIfs0LtqWsJN3DgQLp168Zzzz3HggUL6NGjR8zyzjkmTZpEnTp1uPjii0vmDx48mPfee49JkyYxduzYkvnff/894N0VXb9+/YTGHhJPfQpQoe4mqwtVzEpSnXPOOZx55pnMnTuXBQsW8P7777NgwQJmzJjBjBkzuPjii5k8eTJmFvc2X3zxRR588EHeeecd1qxZw+7du0stX7NmTdx9hyxevJjs7GyeffbZiCP87dy5kx9//JGffvqppGuGynJ+slCRYxURkerDlWoxG2XwL7XkERERSbiSz119zkot9be//Y3u3btzzTXXsGTJkpj1Dm+88QZffPEFffv25YADDiiZP2jQIK699lomT57MbbfdVtLgLRPqMjIhhmRRxWwaJPrXkUyXnZ3NSSedxEknnQTAnj17mD59OpdeeimPP/44Z555Zqn+X2O57777uPLKK8nPz6dPnz60bt2a3NxczIwZM2awbNkyduzYUf6GfD/99BO7d+8ut6PszZs3l1sxm5eXx5o1a9iwYUPEsqGRCePpr1ZERKofpz5mRURE0kMtZoXaV9cS1K1bNwYOHMi0adP45z//GbGf2JBQf7Hh3Uc2btyY0047jenTpzNz5kwGDhwIwP777w94jeC2b9+elFazoRaxoZaz4UL1KdFa1FZnsXvsFUmCrKwszjnnHK6++mog/gGxdu/ezYgRI2jRogXLly/nmWee4a677mLUqFGMHDmS5s2bVziWvLw88vPzcc7FnKL1ixv085//HIg82Nn333/Pli1baNmypboxEBGpoZyL0pWBWsyKiIgkV+jzVZ+zUouNHTuW7OxsbrjhBnbu3BmxzI8//siMGTMAOP/88zGzUtP06dOBvZW3AK1ataJ169bs3r2bN998Mymxx6pP2b17NytXrqRu3bq0a9cuKftPJ1XMStqEBvAKfpHNysoCvFa14dasWcP69evp3r17ma4KNm/ezHvvhQ86HHt7AL/85S9Zt24dy5cvr9xBBPTu3RuA2bNnl1kWGpAsVEZERGqeuFrMFusLo4iISKKFBv9SxazUZu3bt+f3v/89K1eu5P77749YZsqUKezcuZMjjzyS3/zmNxGnpk2bMmfOHFauXFmy3rBhwwAYPXo0xeXksxW5izkkVn3Km2++ydatW+nevTv16tWr8LYznSpmJWmmTp3Ka6+9FvFNu3r1aiZOnAjAcccdVzI/1AXAqlWryqzTrFkzcnNzeffdd9m8eXPJ/F27dnHllVeyZs2aMuvk5+djZhG3B5S02r3sssv47rvvyizfsmULS5YsiXWYJYYMGUK9evWYMGECRUVFJfPXrVvH7bffDsDll18e17ZERKT6CX4XjN7HrO6xFBERSbjQx6s+Z6WWu+WWW2jUqBFjxowpVW8SMmnSJAAeeOABJk2aFHH67W9/WzJAWMjVV19N586deeutt7j44osjDsK1efNmbr31VsaNG1fhuAcOHEiTJk14+umneeedd0rmb9++nZtuugmA3/3udxXebnWgPmYlad5++23uvfdeWrRoQY8ePWjbti0AK1eu5MUXX2Tbtm3079+/pN8S8PpFyc3NZfz48axdu7ake4Lhw4eTl5fHFVdcwdixYznssMPo378/O3fuZO7cuaxdu5bjjz+euXPnloqhQYMGHHPMMbz11ltccMEFHHTQQWRlZXH66afTqVMnTjjhBMaOHcsNN9zAgQceSL9+/Wjbti2bN2/mq6++Yv78+fTo0SPirzbh2rZty1133cUVV1xB165dOffcc8nJyWHatGl88803XHPNNXTr1i2Br7CIiGSS4O+Qpbsy2BZYoJY8IiIiieb8z1enilmp5QoKCrjxxhu57rrryiybN28eK1as4LDDDuPoo4+Ouo3f/OY3jBkzhscee4xRo0ZRt25dcnNzmT17NgMHDuTJJ5/k+eefp0+fPnTo0IHi4mI+//xzXn/9dTZu3MiECRMqHHfDhg2ZOHEiAwcOpFevXpx33nkUFBQwa9YsVqxYwcCBA2P2m1uesWPH8sknnwCwdOlSAB577DEWLFgAQI8ePRg6dGilt18VqpiVpLnmmms48MADmTNnDh988AGvvPIK27dvp3HjxvTq1YtBgwYxaNCgUqPq5efnM336dEaNGsVjjz3Gli1bALjwwgvJy8vjtttuo2nTpkyaNImHHnqIvLw8+vTpw+jRoxkxYkTEOP7xj39w9dVXM3v2bKZOnYpzjpYtW9KpUycA/vznP3Psscdy3333sWDBAmbOnEleXh4HHHAAw4YNY9CgQXEf8/DhwyksLGTcuHE8/vjjFBcX07FjR0aPHs0ll1xShVdTREQyXalWshr8S0REJHVKBv/S56zIFVdcwQMPPFDqTl6g5K7l8iogCwsLOfHEE3nttdd4/vnnOfPMMwFo0aIFb775JtOnT2fq1KksWbKEF154gTp16tC6dWvOPvtsLr30Urp3716puM844wzmz5/PmDFjmD59Otu3b6dDhw7cfffdXHHFFaXqjipq9uzZzJ8/v9S8RYsWsWjRopLn6aqYNf2iVDFdu3Z1wWbV0Xz88ccccsghKYhIahtdWyIimemVkWtZOm0jdciiVdd6nDe5mbfg8ZHwxCjv72dWQ37FB6usjszsXedc13THIYkVby4sIpJKD5x0Oa2+eI2iJl0Z/vYz6Q5HkkjfhyXd4r0G482F1cesiIiISAJ8suFDpna4ii/2XVy6wc4utZgVERFJCX3Oikg1o4pZERERkQSY9vWjACxp/lSMwb/Ux6yIiEiiuVBH76qYFZFqRn3MioiIiCSYUx+zIiIiqePK/CEiaTRv3jzmzZtXbrlGjRpx1VVXZcy200EVsyIiIiIJUByodC1V/xqsmC1Wi1kREZGEC/0iqjtTRDLCvHnzGDVqVLnl2rRpU6mK2WRtOx3UlYGIiIhIAjj2fhmM2mJWLXlEREQSL/SLqD5mRTLCyJEjcc6VOxUVFWXUttNBFbMiIiIiiRD4Mhi1j1m1mBUREUk4pxazIlJNqWJWREREJAFKtZgNttjZpT5mRUREksr/eLX0RiEiUmGqmBURERFJgGCVa/TBv9SSR0REJOHUYlZEqilVzIqIiIgkgAsO/hWtYnbZPHjx4ZTFJCIiUiu4sEcRkWqibroDEBEREakJgl0ZlOqyYOe2vX/fM9R7PPhoaN8lNYGJiIjUdGoxKyLVlFrMioiIiCRAXF0ZhKxdnexwREREao+Silk1mRWR6kUVsyIiIiIJUKorg+D3wkgVs2rRIyIikjhOfRmISPWkilkRERGRhIijj9mSAvriKCIikiglP47q81VEqhlVzIqIiIgkgFPFrIiISHr4n6umz1cRqWZUMStJtWfPHiZOnEjPnj0pKCggOzubZs2a0alTJ4YOHcqsWbNKlZ88eTJmxuTJkxOy/6KiIsyMwYMHJ2R7saxfv5677rqLCy64gI4dO1K3bl3MjDlz5iR93yIikn7Bwb+C3RqwSxWzIiIiSaWuDESkmlLFrCTNnj17OPXUUxk2bBgffPAB/fr145prruGMM86gadOmPPXUU9x5553pDjNhioqKuO6663jqqafYtGkTTZo0SXdIIiKSQhEH/youhl07yyktIiIiVaKuDKSWMTPMjDZt2rB9e4RGAEBhYSFmxu7du6NuZ8yYMSXbWrFiRbn7LS4uZtq0aQwYMIBWrVpRv3599tlnHw455BCGDRvGwoULK31MAIsWLaJfv34UFBSQm5tLp06dGD9+PHv27Kn0Nj/77DP++te/0rt3b1q1akVOTg7Nmzenf//+zJ07t0rxJkLddAcgNdfUqVOZPXs2nTt3Zv78+eTl5ZVavnXrVt5+++00RZd4bdq0Yc6cORx++OEUFBQwePBgpkyZku6wREQkRSJ2ZbBrR+TCxRr8S0REJGFUMSu11KpVqxg/fjzXX399hdd1zvH/2bv3uKrqfP/jry9Xh1QumpEm6nhp6qRY+qsUB1HTcbyC4g3Lwetp8qiZVloZYFA0mYo5pmJHnCCchARMRC1B83qmTOs45S3UZkyPaIZo3L+/PzZ7u2FvkI0bAfk8e/AA1vqu717LR8Dan/3Z7+8HH3yAUgqtNbGxsSxZsqTS8RcuXCA4OJh9+/bRrFkzBg4cSMeOHdFac/LkSRITE4mNjWXFihXMmjXL5vNJTU1l9OjRNGnShHHjxuHl5cWWLVuYO3cu+/btY9OmTTbPCbBo0SL+/ve/8/DDD5uKvsePHyctLY20tDRiYmKYPXt2jea2B+mYFbVm//79AISGhloUZQHc3Nzo16+f6fuAgAAmT54MwOTJk02v2iilOHPmDADnz59n8eLF+Pn54e3tjYuLC61btyYkJITvvvuu3Pzh4eF06NABgA0bNpSbr2JUwvbt2xkyZAgtW7bE1dWVjh078uKLL3L16tVqX6+npycDBgzAy8ur2scIIYS4m5gVZo1fWsuXLTdACCGEELevLGNW3pEiGhFPT0+8vLx46623yMnJsfn4HTt2kJ2dzZ/+9Cfuu+8+NmzYQGGhtXd6GRrrBg8ezL59+xg/fjxnz54lOTmZv/zlL7zzzjukpKTw73//m0WLFpGbm2vzueTm5jJ9+nQcHR3Jysrigw8+4J133uHIkSP06tWLpKQkNm7caPO8AIMHD+bw4cMcO3aMNWvW8NZbb/HJJ5/w+eef4+zszIsvvshPP/1Uo7ntQTpmRa1p0aIFACdOnKjW+NDQUDw8PEhNTWXkyJF0797dtM/DwwOAPXv2EB0dTb9+/Rg9ejRNmzbl5MmTJCUlkZaWxr59+/D19QUMhd6rV68SExODr68vgYGBpvnM5168eDFhYWF4eXkxbNgwWrVqxTfffMOSJUtIT0/nwIEDNG/e/Lb/PYQQQjQeurTsiWFxUWUj7ti5CCGEEHc941tV5IVP0Yi4ubkxf/585s6dS0REBO+9955Nx8fGxgIwffp0vLy8WLp0KZs3b2bcuHEWY5ctW8bRo0fx8/MjISEBBwfLPs/mzZuzePFiCgoqecdYFZKSkrh06RKTJk2iZ8+epu1NmjQhMjKSAQMG8P777zN+/Hib565szaG+ffsSEBDAzp072b9/P6NHj7Z5bnuQwqyoNaNGjeLtt99m9erVXLt2jaCgIHr06EG7du2sjjf+sKSmphIYGGj1h6d///5cvHiRZs2aldtu/AWxYMECtm3bBhgKs+3btycmJobu3bsTHh5uMV9mZiZhYWH06tWL9PR0UwEYDAuRTZ48mbCwMJYtW1azfwQhhBCNj1Y3owx0JZEF8sRRCCGEsB/5syoaqZkzZ7Jy5UrWrFnDrFmz6NKlS7WOu3jxImlpaXTp0oXevXvTvHlzli5dytq1a60WZteuXQsYYgGsFWXNubq62nwdu3btAgzdrRX5+/vj5ubG/v37KSgoqNH8lXF2dgbAyanuyqNSmK0Df/rgibo+hWrZMPX28l8fffRR4uPjmTNnDvHx8cTHxwPg5eWFv78/U6ZMYfjw4TbN2apVK6vbfX196d+/Pzt27KCoqMj0w3UrK1asAAyvFJkXZcFQKI6JiSEhIUEKs0IIIapNoW4+QSytZKGCygq2QgghhLBd2d9VJX9fRSPj7OxMdHQ0Y8aMYcGCBXzyySfVOm79+vUUFRWZGuIeeeQRHnvsMTIzMzl16hSdOnUyjf3xxx85d+4cTk5O9O3btzYuw7TwmLXCspOTEx06dODYsWP88MMPPPTQQ3Z5zLNnz/L555/j5uaGv7+/XeasCSnMilo1duxYgoKCyMzMZO/evXz99dfs3buXlJQUUlJSmDRpEnFxcSilqj3n1q1bWb16NV9++SU5OTkWKwzm5ORw//33V2uuAwcO4OzszKZNm6wGSRcWFnLp0iUuX75simYQQgghbsX0vLCyRb6kY1YIIYSwm+o/mxR3s8bSBFdRcHAwvXr1YvPmzezdu5c+ffpUOV5rzbp163BwcGDSpEmm7aGhoRw+fJh169YRHR1t2m7MX23RogVNmjSx67kb/fLLLwBW1ycy327LOkBVKSgoYOLEiRQUFPCXv/wFT09Pu8xbE1KYrQP2/iGs75ydnRk0aBCDBg0CoKSkhOTkZKZMmcLf/vY3goKCyuW/VmXFihXMmTMHT09PBg4ciI+PD25ubiilSElJ4ejRozblmVy+fJni4mIiIiKqHJeXlyeFWSGEENWicLh1lIEQQggh7MeUMSt/d0Xj9O6779K7d2/mzZvHwYMHq2x+27VrF6dPn+YPf/gDbdq0MW0PCQlh/vz5xMXF8cYbb5jeiazLGgpsaaizN3ueQ0lJCc888wz79u1j3LhxzJ8//7bnvB1SmBV3nKOjI2PHjuXbb78lMjKSXbt2VaswW1xcTFhYGN7e3hw+fNiiK/bAgQM2n4u7uzulpaVcuXLF5mOFEEIIq/TNm8fKowykY1YIIYSwG2PRRsJmG7XG1gRnrlevXgQHB5OUlMTHH39sNSfWyJgXW3FdnxYtWjB8+HCSk5NJTU0lODgYgNatWwOGdyfn5+fXStessSPW2DlbUW5ubrlxNVVSUsLTTz/Npk2bGDt2LPHx8XVacAaoOrFXiFpkXMBLmz05dXR0BAw/LBXl5ORw9epVevfubVGUzcvL4/DhwxbHVDUfwJNPPsnPP//MsWPHanYRQgghRAUKJVEGQgghxJ1k/Lsqf15FIxYdHY2zszMLFy6ksLDQ6phLly6RkpICwIQJE1BKlftITk4GbhZvAdq2bYuPjw/FxcXs2bOnVs79wQcfBODEiRMW+4qLi8nOzsbJyYnf/va3NX6M4uJiJkyYwMaNGwkJCeGjjz6q00W/jKQwK2pNYmIiO3fupNTKk9ILFy4QGxsLUC5k2RgXcO7cOYtjWrVqhZubG1999RV5eXmm7UVFRcyZM4ecnByLYzw9PVFKWZ0PYO7cuQBMnz6d8+fPW+y/fv06Bw8erOoyhRBCiHLKFWYre0ulvNVSCCGEsB9Tx6z8fRWNV8eOHXnuuefIzs7mvffeszpmw4YNFBYW0qNHD6ZOnWr149577+Wzzz4jOzvbdNyMGTMAiIyMtFrjMWdLvKRR//79AcjIyLDYt2fPHm7cuEHv3r1xdXW1eW4wrB8UHBzMpk2bmDRpEh9++KGpka+u1X1pWNy1Dh06RExMDN7e3vTp04cOHToAkJ2dzdatW/n1118ZOXKkqT0eDO33bm5uLF++nCtXrnDfffcBMGvWLNzd3Zk9ezbR0dF07dqVkSNHUlhYSGZmJleuXKFfv35kZmaWO4emTZvyxBNP8MUXXzBx4kS6dOmCo6MjI0aMoFu3bgwYMIDo6GgWLlxI586dGTJkCB06dCAvL4+zZ8+ye/du+vTpY/WXgzXz5883FYj37t0LwDvvvEN8fDwAgYGB1c7TFUII0VCpmw2xEmUghBBC3AHyd1UIgNdff50NGzYQFRWFg4NlL+a6desAWLVqFY8//rjVORYtWkRkZCTr1q0jKioKMDS1bdq0iS+++IJJkyaxcuVKPDw8yh2Xl5fH0qVLcXR05NVXX7XpvIODg3n55ZfZuHEjs2bNomfPngDk5+fz2muvAfDnP//ZpjmNCgoKGDVqFOnp6UydOpW1a9da/bepK1KYFbVm3rx5dO7cmc8++4xvvvmG7du3k5+fT4sWLQgICCAkJISQkJByeR6enp4kJycTERHB+vXruX79OgBPP/007u7uvPHGG9x7772sW7eONWvW4O7uzsCBA4mMjCQsLMzqeXz44YfMnTuXjIwMEhMT0VrzwAMP0K1bNwBefvll/Pz8WLFiBXv37iU1NRV3d3fatGnDjBkzCAkJqfY1JyUlcfbs2XLbduzYYfq6ffv2UpgVQoi7nNIKXWrMmJUoAyGEEKLWGTtm5e+raOS8vLx45ZVXeOmllyz2ZWVlcfz4cbp27VppURZg6tSpREVFsX79eiIiInBycsLNzY2MjAyCg4NJSEhgy5YtDBw4kE6dOlFaWsqpU6f4/PPPyc3NZeXKlTafd/PmzYmNjSU4OJiAgADGjx+Pl5cXaWlpHD9+nODg4Cpzc6vy7LPPkp6eTsuWLWnTpg2LFy+2GBMQEEBAQECN5r9dUpgVtaZt27bMnDmTmTNn2nTc4MGDGTx4sNV9Tk5OvPDCC7zwwgsW++Li4oiLi7PY3qlTJ7Zs2VLlY/bp04c+ffrYdJ7WnDlz5rbnEEII0dBVI8pAOnuEEEIIu7lZkJW/r0LMnj2bVatWWdQnjHGS06ZNq/L49u3b89RTT7Fz5062bNlCUFAQAN7e3uzZs4fk5GQSExM5ePAgn376KQ4ODvj4+DBmzBimTJlC7969a3TegYGB7N69m6ioKJKTk8nPz6dTp04sXbqU2bNn13iRLmMkQ05OjtWirJEUZoUQQggh7gKqXJRBJYXZW2RzCSGEEMIW0jErGhddxf/rrq6u5fJhjRISEkhISKjW/Obv/DXn4ODAmDFjGDNmTPVO1EZ+fn6kp6fbdc6srCy7zmdv9SdUQQghhBDiLlBu8a/KMmYr2y6EEEII20nHrBCigZLCrBBCCCGEXSnQZZ0MlUUZSGFWCCGEsB9jxqwUZoUQDYxEGQghhBBC2JHSZflXmiqiDKQwK4QQQtiLFGSFqF+ysrKqFSHg4eHB888/X2/mrgtSmBVCCCGEqAW6FJREGQghhBC1T0vGrBD1SVZWFhEREbcc165duxoVZmtr7rogUQZCCCGEEHakMHTMak3lUQYlUpgVQggh7E8Ks0LUB+Hh4Witb/lx5syZejV3XZDCrBBCCCGEXZUVZkuRKAMhhBDiDlBlL4RKpIEQoqG5qwqzSik/pdQOpdT/KaVylVKHlVJTKoxpopR6Ryn1k1LqV6XUAaWUf12dsxBCCCHuLsaMWV2qKy/ASmFWCCGEsCNZ/EsI0TDdNYVZpVQ34DPAGZgOjAb+AXyglPqz2dAPyva/DgwDfgK2K6W639kzFkIIIcTdSCnpmBVCCCHuKGO2rGTMCiEamLtp8a/xgCMwXGudV7Ztp1LKF5gEvF/2dQgwRWu9HkAptRs4BiwGRtz50xZCCCHE3cWsMFtZxqwUZoUQQgi7UdIxK4RooO6ajlnABSgCfq2w/So3r3NE2Zi/G3dqrYuBjcAflFKud+A8hRBCCHEXU+UyZiuLMqikYCuEEEII25XVY1XdnoUQQtjsbirMxpV9XqGUaq2U8lBKTQcGAMvK9v0HkK21vlHh2GMYCrud7siZCiGEEOKuUlJiVoAte1aotZYoAyGEEOIOUMjiX0KIhumuiTLQWv+vUioA2Aw8V7a5CHhWa72x7Hsv4Gcrh18x2y+EEEIIYZOSEvMCrOFJoUQZCCGEEHeaFGaFEA3LXVOYVUp1BpIxdL8+iyHSYCSwWimVr7VOwNDDYu03dZXveFBKzQBmAPj4+NjztIUQQghxFyguulmA1eaFWemYFUIIIWqd0pIxK4RomO6mKIM3MXTIDtNaf6q1/lxrPRv4GIhRSjlg6Iy11hXrWfb5ipV9aK3Xaq17aq173nvvvbVx7netkpISYmNj6du3L15eXjg7O9OqVSu6devGtGnTSEtLKzc+Li4OpRRxcXF2efwzZ86glCI0NNQu81XlyJEjhIeH4+fnx/3334+Liwtt2rRhwoQJHD58uNYfXwghRN0pLhdlUFaY1VSRMSuFWSGEEMJ+jIVZIYRorVVUUQAAIABJREFUWO6ajlmgK3BUa11UYfv/ACFAKwzdtEFKKbcKObMPA4XAqTtypo1ESUkJw4YNIyMjAw8PD4YOHcoDDzzAlStXOH36NB999BHff/89I0aMqOtTtYtnn32WQ4cO0aNHD0aNGkXTpk05cuQIGzduJCkpiY8//pigoKC6Pk0hhBC1oKToZqH1ZsesrjzKoEQKs0IIIYS9mDpmtXTMCiEalrupY/YC0F0p5VJh+xNAPoZu2DTAGRhj3KmUcgLGATu01gV36FwbhcTERDIyMvD19eXMmTPEx8cTHR3N2rVr+fzzz8nJyeGNN96o69O0m4kTJ3Ly5Em+/PJL/vrXv/L222+zfft24uPjKS4uZvr06RQWFtb1aQohhKgFRcUSZSCEEELUHV3hsxB3N6UUSinatWtHfn6+1THt27dHKUVxcXGl80RFRZnmOn78+C0ft7S0lKSkJEaPHk3btm1p0qQJ99xzDw899BAzZsxg3759Nb4mgP379zNkyBC8vLxwc3OjW7duLF++vPxCuzb68ccfee6553jiiSfw9vbG1dWV1q1b8/vf/57169dTVFSxv/POupsKsyuBDsAWpdRIpdQgpdRKYALwvta6UGt9BPg7sFwpNU0pNQDYWHZcWJ2d+V1q//79AISGhuLu7m6x383NjX79+pm+DwgIYPLkyQBMnjzZ9MtBKcWZM2cAOH/+PIsXL8bPzw9vb29cXFxo3bo1ISEhfPfdd+XmDw8Pp0OHDgBs2LCh3HwVoxK2b9/OkCFDaNmyJa6urnTs2JEXX3yRq1evVvt6Z82aRadOnSy2T5w4kc6dO3P58mW+/fbbas8nhBCi4SguNuuYVYZirEQZCCGEEHeGQjJmReN07tw5li9fXqNjtdZ88MEHKGUIAYmNja1y/IULF/D392fMmDHs3LmTxx9/nNmzZ/Pcc8/x4IMPkpiYSJ8+fXjvvfdqdD6pqan4+/uzZ88egoKCmDlzJoWFhcydO5fx48fXaE6A06dPk5CQgLu7O4GBgcybN4/hw4dz9uxZpkyZwqBBg6osXte2uybKQGudpJQaArwMrAOaAKeBmcAas6GTgSggEvAAjgKDtdYSAmpnLVq0AODEiRPVGh8aGoqHhwepqamMHDmS7t27m/Z5eHgAsGfPHqKjo+nXrx+jR4+madOmnDx5kqSkJNLS0ti3bx++vr6AodB79epVYmJi8PX1JTAw0DSf+dyLFy8mLCwMLy8vhg0bRqtWrfjmm29YsmQJ6enpHDhwgObNm9/Wv4WzszMATk53zY+cEEIIMyVF5p2xZh2zlUUZSGFWCCGEsDvJmBWNiaenJ0op3nrrLaZNm0bLli1tOn7Hjh1kZ2cTGhrKtm3b2LBhA2+++SYuLhXfiA43btxg8ODBHD16lPHjx7Nq1So8PT3LjcnNzWXJkiXk5ubafC25ublMnz4dR0dHsrKy6NmzJwBvvPEG/fv3JykpiY0bN9aoQNu7d29+/vlnHBzK96YWFRUxaNAgsrKy+OSTTxg7dqzNc9vDXVUl0lpvA7bdYsyvwAtlH6IWjRo1irfffpvVq1dz7do1goKC6NGjB+3atbM63rhAV2pqKoGBgVYX7Orfvz8XL16kWbNm5bYfPXoUPz8/FixYwLZthv8FAgICaN++PTExMXTv3p3w8HCL+TIzMwkLC6NXr16kp6ebCsBgWIhs8uTJhIWFsWzZspr9IwCHDh3in//8J23atOGRRx6p8TxCCCHqr+KSm6+yS5SBEEIIcWeZMmalY1Y0Im5ubsyfP5+5c+cSERFhc6eqsUN2+vTpeHl5sXTpUjZv3sy4ceMsxi5btsxUd0lISLAocgI0b96cxYsXU1Bge0poUlISly5dYtKkSaaiLECTJk2IjIxkwIABvP/++zUqzForNIOhgS4wMJCsrCxOnjxp87z2clcVZhuKdx75sa5PoVpe/N+2t3X8o48+Snx8PHPmzCE+Pp74+HgAvLy88Pf3Z8qUKQwfPtymOVu1amV1u6+vL/3792fHjh0UFRWZOlRvZcWKFYDhF5J5URYMheKYmBgSEhJqXJj9+eefeeaZZwBYunQpjo6ONZpHCCFE/VZcZJkxi9aVF2Bl8S8hhBDCjiRjVjROM2fOZOXKlaxZs4ZZs2bRpUuXah138eJF0tLS6NKlC71796Z58+YsXbqUtWvXWi3Mrl27FoBFixZZLcqac3V1tfk6du3aBcDgwYMt9vn7++Pm5sb+/fspKCio0fzWlJSUkJ6eDkC3bt3sMmdNSGFW1KqxY8cSFBREZmYme/fu5euvv2bv3r2kpKSQkpLCpEmTiIuLM2WaVMfWrVtZvXo1X375JTk5ORZZIDk5Odx///3VmuvAgQM4OzuzadMmNm3aZLG/sLCQS5cucfnyZVM0Q3Vdv36dESNGcPLkSV566aU6a4sXQghR+4rNCq1aogxEDSilMoA/AFFa69fMtnsC7wCBwG+AA8BcrfW3FY5vArwBPI0hrusI8LLWek+FcQ4Yor/+E/AGjgOLtdbJtXRpQghR64ydsnfTIjpCVIezszPR0dGMGTOGBQsW8Mknn1TrOOOiV8Z3Kj/yyCM89thjZGZmcurUqXLr5/z444+cO3cOJycn+vbtWxuXYVp4zFph2cnJiQ4dOnDs2DF++OEHHnrooRo9Rk5ODitXrkRrzaVLl9i5cyenTp0iJCSEYcOG3db53w4pzNaB2+1EbWicnZ0ZNGgQgwYNAgyvSiQnJzNlyhT+9re/ERQUVC7/tSorVqxgzpw5eHp6MnDgQHx8fHBzc0MpRUpKCkePHrWpbf7y5csUFxcTERFR5bi8vDybCrPXr19n6NCh7N27lxdeeIG333672scKIYRoeIqLzAutEmUgbKOUmgD4WtmugDQMC9XOAn4GFgKZSqnuWut/mQ3/ABgKvAj8gGGdhe1KqV5lC+AavQHMB14FvgLGA5uUUsO01ul2vzghhLgDZPEvAY3n3ckVBQcH06tXLzZv3szevXvp06dPleO11qxbtw4HBwcmTZpk2h4aGsrhw4dZt24d0dHRpu0//fQTYFhHqEmTJnY9d6NffvkFwOrC8ebbbVmgvaKcnJxytR+lFPPnz+fNN9+0qVnQ3uQFJXHHOTo6MnbsWObOnQvcbFm/leLiYsLCwvD29ubYsWP8/e9/55133iEiIoLw8HDuu+8+m8/F3d0dT09PtNZVflSWi2vNtWvX+OMf/8ju3bt56aWXePfdd20+LyGEEA1LSbF5lIHha62pvAArhVlRRinlASzD+voHI4A+wDNa60StdUbZNgfgJbM5fIEQDJ20sVrrz4GxwDlgsdm4VhiKstFa6yVa60yt9X8CmcDNZ2BCCNHQaIkyEI2bse4wb948tK7652DXrl2cPn2agQMH0qZNG9P2kJAQXFxciIuLo6ioyLTdOF9dFi/tcQ6/+93v0FpTXFzM2bNnWbZsGWvXrsXf358rV67Y61RtJh2zos4YF/Ay/6VhzGAtsZK9l5OTw9WrVxk1apRFVEFeXh6HDx+2OKaq+QCefPJJtm7dyrFjx/iP//iPml2ImV9++YXBgwdz8OBBXn31VSIjI297TiGEEPVfcbFZlIEydsxq6ZgV1fEX4JjWOlEp9VGFfSOA81rrTOMGrfUvSqktwEhgttm4IuDvZuOKlVIbgQVKKVetdQGGqAQXIL7C48QD/62U6qC1zrbnxQkhxJ1gijJQUphtzBrbu5PN9erVi+DgYJKSkvj444+t5sQaGfNiKy643qJFC4YPH05ycjKpqakEBwcD0Lp1a8BQk8nPz6+VrlljR6yxc7ai3NzccuNuh6OjIz4+PsyZM4f77ruPCRMm8Prrr7Ny5crbnrsmpGNW1JrExER27txJqZUnpRcuXDCtAOjv72/abowLOHfunMUxrVq1ws3Nja+++oq8vDzT9qKiIubMmUNOTo7FMZ6eniilrM4HmLp2p0+fzvnz5y32X79+nYMHD1Z1mSY///wzTz31FAcPHiQiIkKKskII0YiUlFgu/iUZs+JWlFJ9gEnAc5UM+Q/gf61sPwb4KKWamo3L1lrfsDLOBehkNq4AOGVlHMDD1T97IYSoP+quj0+I+iM6OhpnZ2cWLlxIYWGh1TGXLl0iJSUFgAkTJqCUKveRnGyInDcWbwHatm2Lj48PxcXF7Nmzx+q8t+vBBx8E4MSJExb7iouLyc7OxsnJid/+9rd2fdw//vGPAGRlZdl1XltIx6yoNYcOHSImJgZvb2/69OlDhw4dAMjOzmbr1q38+uuvjBw50vQqDBhe5XFzc2P58uVcuXLFFE8wa9Ys3N3dmT17NtHR0XTt2pWRI0dSWFhIZmYmV65coV+/fmRmZpY7h6ZNm/LEE0/wxRdfMHHiRLp06YKjoyMjRoygW7duDBgwgOjoaBYuXEjnzp0ZMmQIHTp0IC8vj7Nnz7J792769OlDRkbGLa931KhRfPnll3Ts2JHS0lLCw8MtxgQGBtK9e/fb+FcVQghRH5XrmDUWZquKMqjknRyi8VBKOQNrgCVa6+OVDPMCzljZbny/nSeQVzbu5yrGeZl9vqot3+NYcVzFc50BzADw8fGp5FSFEKLuSMasENCxY0eee+45YmJieO+996yO2bBhA4WFhfTo0aPS2kRaWhqfffYZ2dnZpjrOjBkzeO2114iMjOSpp57CwaHyPs+CggJcXV1tOvf+/fuTkJBARkYGEyZMKLdvz5493LhxA39/f5vnvZV///vfgGGBsboihVlRa+bNm0fnzp357LPP+Oabb9i+fTv5+fm0aNGCgIAAQkJCCAkJKZcR4unpSXJyMhEREaxfv57r168D8PTTT+Pu7s4bb7zBvffey7p161izZg3u7u4MHDiQyMhIwsLCrJ7Hhx9+yNy5c8nIyCAxMRGtNQ888ADdunUD4OWXX8bPz48VK1awd+9eUlNTcXd3p02bNsyYMYOQkJBqXW92tuGdf6dPn650MbH27dtLYVYIIe5CJdYKs1Ut/lVZJ61oTF4GfgNEVTFGYT0wsWJzmL3HlaO1XgusBejZs6dUPYQQ9ZCxMCtE4/b666+zYcMGoqKirBZP161bB8CqVat4/PHHrc6xaNEiIiMjWbduHVFRhtuUuXPnsmnTJr744gsmTZrEypUr8fDwKHdcXl4eS5cuxdHRkVdffdWm8w4ODubll19m48aNzJo1i549ewKQn5/Pa6+9BsCf//xnm+Y0OnToEF27dsXNzc3ifOfMmQPA0KFDazS3PUhhVtSatm3bMnPmTGbOnGnTcYMHD2bw4MFW9zk5OfHCCy/wwguW62PExcURFxdnsb1Tp05s2bKlysfs06fPLVcuvJUzZ87c1vFCCCEaruIS80KrNvxXqiXKQFillPIBXgWmAa5KKfP2D9eyBcGuYehktdbF6ln22dglewWw1srqabbf+NlTKaUqdM1WHCeEEA2KdMwKYeDl5cUrr7zCSy+9ZLEvKyuL48eP07Vr10qLsgBTp04lKiqK9evXExERgZOTE25ubmRkZBAcHExCQgJbtmxh4MCBdOrUidLSUk6dOsXnn39Obm5ujbJamzdvTmxsLMHBwQQEBDB+/Hi8vLxIS0vj+PHjBAcHV5mbW5W33nqLrKws+vbti4+PD25ubvz4449s27aNq1ev0rt3bxYuXFijue1BCrNCCCGEELep2CKaQJdFGUhhVlj1W6AJlotwAcwv+3gUQ/brICtjHgbOaa2NofvHgCCllFuFnNmHgUJuZsoeA1yBjpTPmTVmy/7T9ksRQoi6p0yfpTArxOzZs1m1apVF85hxnZ9p06ZVeXz79u156qmn2LlzJ1u2bCEoKAgAb29v9uzZQ3JyMomJiRw8eJBPP/0UBwcHfHx8GDNmDFOmTKF37941Ou/AwEB2795NVFQUycnJ5Ofn06lTJ5YuXcrs2bPLvdvaFtOnT+eee+7hH//4B1lZWdy4cQNPT0969OjB2LFjmTJlikQZCCGEEEI0ZCXF5Quwho5ZJGNWVOYI0M/K9kwMxdoPMBRO04DJSqm+WuvdAEqp5sBw4COz49KACGAMsKFsnBMwDtihtS4oG5eBoVA7sWy80dPA/2qts+1ydUIIcYcprUGBg2QZiEbCMi7+JldXV1PUormEhAQSEhKqNf+OHTusbndwcGDMmDGMGTOmeidqIz8/P9LT0+0659ChQ+s0quBWpDArhBBCCHGbSioUWk2FWYkyEFZora8CWRW3l3WCnNVaZ5V9nwYcAOKVUi9iiC5YiKE57C9m8x1RSv0dWF62qFg28GegA4YirHHc/ymllgELlVLXgMMYirf9gZF2v1AhhLhjbhapSktLq1yYSAgh6hMpzAohhBBC3Kbi4gqFVqUNzxElykDcBq11qVJqGLAEWIUh/uAA0E9r/WOF4ZMxLCQWCXgAR4HBWuvDFca9CuQBcwBv4DgwVmtddSC/EELUY+YRBqXFJTi4SGFWCNEwSGFWCCGEEOI2lZRYizLQlRdgpTArrNBaW7wJV2t9BZhS9lHVsb8CL5R9VDWuBEPxNrLmZyqEEPWL+S/P0lLJmRWirmVlZZGVlXXLcR4eHjz//PP1Zu66IIVZIYQQQojbVLFjVhsX/5IoAyGEEKLWVeyYFULUraysLCIiIm45rl27djUqzNbW3HVB+vuFEEIIIW5TiUVkQWnZ4l9SmBVCCCFqm3lhtuK7WIQQd154eDha61t+nDlzpl7NXRekMCuEEEIIcZtKKnbMqrLFvyorwJZIYVYIIYSwF/MoA13Zi6JCCFEPSWFWCCGEEOI2FZdYizLQN6MMVIXoUOmYFUIIIexGogyEEA2VFGaFEEIIIW6htLTEUGitbL/Vxb+4GWXg6FTxADufoRBCCNGYmRVmq/h7LYQQ9Y0UZoUQQgghqlBUUshLSWN47/MFlY6p2DFLxSgDB8fy+6UwK4QQQtiNgzLvmJUoAyFEw+F06yFCCCGEEI3X5bwLXLr2b64X5FY6prTUSses5maUgXTMCiGEEHeELpWOWSFEwyEds0IIIYQQVbhRmAfAr4V5lGrrXThWM2arijKQxb+EEEIIuymXMSt/Y4UQDYjdCrNKqaNKqT8rpZrZa04hhBBCiLp2o/AaYCi25hfdsDqmuKRiwbbU0LEjHbMNntzjCiFE/We+xGapdMwKIRoQe3bMPgysBM4rpWKVUj3tOLdooEpKSoiNjaVv3754eXnh7OxMq1at6NatG9OmTSMtLa3c+Li4OJRSxMXF2eXxz5w5g1KK0NBQu8xXlW+//ZZp06bx6KOPcu+99+Lq6krbtm156qmn+OSTT6pcNEYIIUT9ZeyYBbhRcM3qGIsoA1UWZWAswEphtiGTe1whhKjnpGNWCNFQ2TNj9gFgKjCt7PMUpdTXwBrgI631dTs+lmgASkpKGDZsGBkZGXh4eDB06FAeeOABrly5wunTp/noo4/4/vvvGTFiRF2fql189dVXpKSk8OSTT9K7d2/c3d25cOECW7ZsYfTo0Tz99NN8+OGHdX2aQgghbGRejDV0z95vMaak2DLKAPMoA4cKt1yVRCKIeknucYUQop4zL8xKxqwQoiGxW2FWa30ReBN4Uyn1B2AGMBxYDSxRSiUAa7XWR+z1mKJ+S0xMJCMjA19fX3bv3o27u3u5/Tdu3ODQoUN1dHb2N378eKudubm5uTz55JPEx8cza9YsHn/88Tt/ckIIIWrseuE1q1+bK7G2+FcpZlEGjhUOkG6ehkLucYUQov5zMMsyKLWIFxJCiPqrVhb/0lpv11qPBtoCi4Ac4D+Br5RSB5VSoUqpJrXx2KL+2L9/PwChoaEWRVkANzc3+vXrZ/o+ICCAyZMnAzB58mSUUqaPM2fOAHD+/HkWL16Mn58f3t7euLi40Lp1a0JCQvjuu+/KzR8eHk6HDh0A2LBhQ7n5KkYlbN++nSFDhtCyZUtcXV3p2LEjL774IlevXq329TZpYv1/6ebNm/OHP/wBgJMnT1Z7PiGEEPXDDbNi7I2CPKtjSioWWpU2RNiUSJTB3UTucYUQov6xiBOSjlnRCBhrG+3atSM/P9/qmPbt26OUori4uNJ5oqKiTHMdP378lo9bWlpKUlISo0ePpm3btjRp0oR77rmHhx56iBkzZrBv374aXxMY6khDhgzBy8sLNzc3unXrxvLlyy3vtW/T1KlTTdd96tQpu85tK3tGGVjQWl9USr0FHMOQzdUGeBz4f8A7SqkorfXy2jwHUXdatGgBwIkTJ6o1PjQ0FA8PD1JTUxk5ciTdu3c37fPw8ABgz549REdH069fP0aPHk3Tpk05efIkSUlJpKWlsW/fPnx9fQFDoffq1avExMTg6+tLYGCgaT7zuRcvXkxYWBheXl4MGzaMVq1a8c0337BkyRLS09M5cOAAzZs3r/G/w40bN9i1axcAXbt2rfE8Qggh6oZ5Mda8SHs8O5u0Xbtowj1kf1W+k9aiY7ZilIEUZhs0uccVQoj6o7RCnJC9CzhC1Gfnzp1j+fLlLFiwwOZjtdZ88MEHKKXQWhMbG8uSJUsqHX/hwgWCg4PZt28fzZo1Y+DAgXTs2BGtNSdPniQxMZHY2FhWrFjBrFmzbD6f1NRURo8eTZMmTRg3bhxeXl5s2bKFuXPnsm/fPjZt2mTznNZs2bKF//7v/6Zp06bk5VlvuriTaq0wq5Rqw80srjYYktbSgP8GHgOeBd5VSrXQWi+qrfMQdWfUqFG8/fbbrF69mmvXrhEUFESPHj1o166d1fHGGIDU1FQCAwOtxgL079+fixcv0qxZ+YWRjx49ip+fHwsWLGDbtm2AoTDbvn17YmJi6N69O+Hh4RbzZWZmEhYWRq9evUhPTzcVgMGwENnkyZMJCwtj2bJl1b7uU6dOER8fT0lJCRcvXmTr1q2cP3+ehQsX0q1bt2rPI4QQon4o1zFr9vV78fHs/eorAJoXtgKXm8doSitEGUhh9m4h97hCCFG/VMx5Ly2WKAPROHh6eqKU4q233mLatGm0bNnSpuN37NhBdnY2oaGhbNu2jQ0bNvDmm2/i4uJiMfbGjRsMHjyYo0ePMn78eFatWoWnp2e5Mbm5uSxZsoTc3FybryU3N5fp06fj6OhIVlYWPXsa1lp944036N+/P0lJSWzcuJHx48fbPLe5S5cuMX36dMaNG8eFCxfYvXv3bc1nD3YtzCqlFPBHDG/p+mPZ/MZcrrVa6x/LhqYppd4FPsdwU9uoblq7m3Vu1mdHUlJu6/hHH32U+Ph45syZQ3x8PPHx8QB4eXnh7+/PlClTGD58uE1ztmrVyup2X19f+vfvz44dOygqKsLZ2bla861YsQKA2NjYckVZMBSKY2JiSEhIsLkwGxERYfrexcWFd955h3nz5lV7DiGEEPVH+cLszVfVfzV729g155wKR2m0RqIM7hJyjyuEEPVXxegCLQtsikbCzc2N+fPnM3fuXCIiInjvvfdsOj42NhaA6dOn4+XlxdKlS9m8eTPjxo2zGLts2TJTQ1xCQgIODpbJqM2bN2fx4sUUFBTYfC1JSUlcunSJSZMmmYqyYIiMjIyMZMCAAbz//vu3XZidMWMGAH/9618ZPXr0bc1lL3YrzCqlXsPQPdAWUMAeYBXwidbaItBCa31NKbUFCLfXOYj6Z+zYsQQFBZGZmcnevXv5+uuv2bt3LykpKaSkpDBp0iTi4uIwPN+pnq1bt7J69Wq+/PJLcnJyLPJScnJyuP9+yxWzrTlw4ADOzs5s2rTJalt8YWEhly5d4vLly6ZohlsZPHgwWmuKioo4d+4cCQkJvPLKK+zevZvk5GSrrz4JIYSov8yLseZFWvMFv7SqkG+ntOGJonTMNnhyjyuEEPVbSYXFvipGGwhxN5s5cyYrV65kzZo1zJo1iy5dulTruIsXL5KWlkaXLl3o3bs3zZs3Z+nSpaxdu9ZqYXbt2rUALFq0yGpR1pyrq6vN12GMfxw8eLDFPn9/f9zc3Ni/fz8FBQU1mh8M74pOSUlh8+bN1a7v3An27JhdDORiuFF9X2v9z2oc8xXwNzueQ4Nwu52oDY2zszODBg1i0KBBgCHzJzk5mSlTpvC3v/2NoKCgcvmvVVmxYgVz5szB09OTgQMH4uPjg5ubG0opUlJSOHr0qE2vzly+fJni4uJyHa7W5OXl2fyD6+zsTMeOHXn99ddxcXFh4cKFrFixgvnz59s0jxBCiLpVWcdsxcVGzJkyZo1jHBzLD5D8u4ZE7nGFEKIe0xUX/5K1v0Qj4uzsTHR0NGPGjGHBggV88skn1Tpu/fr1FBUVmSIkH3nkER577DEyMzM5deoUnTp1Mo398ccfOXfuHE5OTvTt27c2LsO08Ji1wrKTkxMdOnTg2LFj/PDDDzz00EM2z3/27FnmzJnD008/Xe36051iz8Lsn4F4rfX16h6gtU4H0u14DqIBcHR0ZOzYsXz77bdERkaya9euav1gFBcXExYWhre3N4cPH7boij1w4IDN5+Lu7k5paSlXrlyx+Vhb/PGPf2ThwoVkZWVJYVYIIRqY6wXXzL6+mZlVcqvCrOZmZ6x0zDZkco8rhBD1WMUO2VJ58bPRaiyxkRUFBwfTq1cvNm/ezN69e+nTp0+V47XWrFu3DgcHByZNmmTaHhoayuHDh1m3bh3R0dGm7T/99BNgWOC9SZMmdj13o19++QUw1GisMW6/evWqzXOXlpbypz/9iaZNm5riLOuTqvuPbfMdUGVLoVKqrVLK346PKRow4wJe2uwlTUdHQ0eRtZU0c3JyuHr1Kr1797Yoyubl5XH48GGLY6qaD+DJJ5/k559/5tixYzW7iGr697//DRhe6RFCCNGwlI8yMOuYtfK3xUmVZZwrXX7xL6cK2edSmG1I5B5XCCHqsdIKLbIVM2eFaAzeffddAObNm1euxmLNrl27OH36NAMHDqRNmzam7SEhIbi4uBAXF0dRUZFNaZssAAAgAElEQVRpu3E+WyIo7e12zmHZsmXs3r2b2NhYiwXL6gN7VokygQgMb/eqzKSy/Y5VjBF3icTERFq2bMmAAQMsMkguXLhgCpr297/5PMYYF3Du3DmL+Vq1aoWbmxtfffUVeXl5NG3aFICioiLmzJlDTk7FhVdurlJobT6AuXPnsnXrVqZPn05SUhKtW7cut//69et8++23PPnkk7e83r179/LEE09YLDx26dIlFixYAMDQoUNvOY8QQoj6o7C4gKKSmxE5lWXMGrk53UNu0dVbRxlIYbYhkXtcIYSox0qLK2TMlsjiX41VY4uNNNerVy+Cg4NJSkri448/tpoTa2TMizXGGBi1aNGC4cOHk5ycTGpqKsHBwQCmOklOTg75+fm10jVr7Ig1ds5WlJubW25cdZ08eZJXX32VyZMnM2TIkNs7yVpiz8JsdcrWCpCXrxqJQ4cOERMTg7e3N3369KFDhw4AZGdns3XrVn799VdGjhxp+mEHwy8TNzc3li9fzpUrV7jvvvsAmDVrFu7u7syePZvo6Gi6du3KyJEjKSwsJDMzkytXrtCvXz8yMzPLnUPTpk154okn+OKLL5g4cSJdunTB0dGRESNG0K1bNwYMGEB0dDQLFy6kc+fODBkyhA4dOpCXl8fZs2fZvXs3ffr0ISMj45bX+1//9V9cuHABPz8/fHx8cHR05MyZM6Snp/Prr78SGBjIlClT7PgvLIQQorb9WpRX7vsbBTe/r7owW2p4Zb+yKAOtDR912Hkgqk3ucYUQoh6r2CFbMXNWiMYiOjqa1NRUFi5cSFBQkNUxly5dIqWsgD1hwgQmTJhgddzatWtNtZq2bdvi4+PDuXPn2LNnj2n9IHt68MEH+fLLLzlx4gQ9evQot6+4uJjs7GycnJz47W9/a9O8x44do6CggPXr17N+/XqrYzp37gzA5s2b6yR/9k6/r9oHuHbLUeKuMG/ePDp37sxnn33GN998w/bt28nPz6dFixYEBAQQEhJCSEhIuVZ0T09PkpOTiYiIYP369Vy/bohze/rpp3F3d+eNN97g3nvvZd26daxZswZ3d3cGDhxIZGQkYWFhVs/jww8/ZO7cuWRkZJCYmIjWmgceeIBu3boB8PLLL+Pn58eKFSvYu3cvqampuLu706ZNG2bMmEFISEi1rzclJYWvv/6a7du3U1hYSMuWLenfvz/PPPMMY8eOrdPWfyGEELYzFmKbNfHkWv7PXC80vFoft+9tfrp6BvNUKAfthIuDYZVYrTSYRxlULMyCoWhrbbtoiOQeVwgh6kjFaCHpmBWNVceOHXnuueeIiYnhvffeszpmw4YNFBYW0qNHD7p37251TFpaGp999hnZ2dmmBrsZM2bw2muvERkZyVNPPWXxrmhzBQUFuLq62nTu/fv3JyEhgYyMDIti8Z49e7hx4wb+/v42z9u+fXumTp1qdd/WrVu5cOECY8aMoXnz5rRv396mue1F3Sp7osqDlXrd7NtwIKvsoyJHDDes44G9WuuBNX7QOtazZ0/95Zdf3nLcd999V6OV4oS4Ffl/Swgh7pyzl0/wesoz+Hh15qdfzlFUUsDqZ3axeMtUdn2SR8H1m4XVJsXN8PZoxZm80wz811zGz3mMHidC4NCn0GsEHEgrP/mn+eBi281lQ6KU+kpr3bOuz6MmGuM9bnVV915YCCHulIvZF/ifp/xM3/u8/3d8BzXIPz+iGuT5sIFSijZt2vCvf/2r3PYrV67QsWNHlFI4ODhw+fJlioqKTOvd/O53v+P48eMcOnSIxx9/3OrcixYtIjIykldeeYWoqCgAbty4Qe/evTl69CgTJ05k5cqVeHh4lDsuLy+PpUuX4ujoyKuvvmrT9eTm5tKxY0dyc3PZt28fPXsafobz8/Pp378/Bw4cIDExkfHjx9s0b1UCAgLYvXs3J0+epFOnTtU+rrr/D1b3Xvh22zTCzb7WQEDZR2X+DSy4zccUQgghhLgjSsuiCBwdnGjZ1JuffjnL5bwLFJUUUvG1befS34A2dg+UGvbrSjJmQXJm67dws6/lHlcIIeox6ZgV4iYvLy9eeeUVXnrpJYt9WVlZHD9+nK5du1ZalAWYOnUqUVFRrF+/noiICJycnHBzcyMjI4Pg4GASEhLYsmULAwcOpFOnTpSWlnLq1Ck+//xzcnNzWblypc3n3bx5c2JjYwkODiYgIIDx48fj5eVFWloax48fJzg4uMrc3Ibsdguz/co+K2AXEAdssDKuBLgMHNday29JIYQQQjQIJboYAAflSMtmrfnpl7NcyjtPUUmhRaKoS6kblBoiawyLf1WRMQtSmK3f5B5XCCEaCMmYFaK82bNns2rVKs6cOVNuu3EB9mnTplV5fPv27XnqqafYuXMnW7ZsMeXVent7s2fPHpKTk0lMTOTgwYN8+umnODg44OPjw5gxY5gyZQq9e/eu0XkHBgaye/duoqKiSE5OJj8/n06dOrF06VJmz55910ZD3lZhVmu92/i1UmoDkGK+TQghhBCiIbvZMetIy6b3A5Bz7SeKigvQuvyKtC4lv0GXdelopQ3NsqW3yJgV9ZLc4wohRMNRsUNWOmZFY1BVLKmrqyvZ2dkW2xMSEkhISKjW/Dt27LC63cHBgTFjxjBmzJjqnaiN/Pz8SE9Pr5W5K8rKyrojj3MrdltxQms92V5zCSGEEELUByXaUDx1cHDkXmNhNu8nikoKAENh1gkXiinEpfQ3UHqj7EhdPsrAamFWnjg2BHKPK4QQ9Ztlx2zN19ERQog7rfJl1IQQQgghGjlTx6xyomWz1gBcuna+XMZsE30PYMiYLavjlkUZIFEGQgghRC0rsciYlb+vQoiGo8Yds0qpUqAUeFhrfaLs++q8NKW11nbr1BVCCCGEqC3mHbMtmxk6Zi/8cg6NNt31NNH3kKd+xqX0NxSUKHCwEmXgIIXZhkLucYUQomEpLa4QZSDvSBGizmVlZVUrKsDDw4Pnn3++3sxdF27n5nEPhpvUGxW+F0IIIYS4K9zsmL0ZZfDTL2cB0NqwAIFr6T3gUJYxW6zABTSlhuwvU5SBo5XJpTBbT8k9rhBCNCAV116UKAMh6l5WVhYRERG3HNeuXbsaFWZra+66UOPCrNY6oKrvhRBCCCEaupLSmx2zzZp44uzoWpYviynKoFlJC3ACt2JPmrZ0glxAogwaLLnHFUKIhqW0uPzfUy2LfwlR58LDwwkPD29wc9cFyZgVQgghhKhEqS4GDB2zSimaOLvd3FlWmPW9MZg+P01h8qx+tOzkUrarQpSBo7Pl5JKBJ4QQQty2iovTV7VavRBC1De1XphVSrVUSgUppf6glLLyPj4hhBBCiPrJvGMWwNWpiWmfMcrApfAe2l1/lK7D3HFyMtxaaVWWQWt8e6WDRBncbeQeVwgh6oeKi32VSsesEKIBsVthVin1Z6XUIaWUl9m2HsB3QBKQDuxXSt1jr8cUQgghhKhNxsW/HMvqbi5mhVkjXWy4nXJwBqWUcash465EogwaOrnHFUKI+q1ipqyWxb+EEA2IPTtmx2FYjfaK2bZ3AE9gPYab1v8HPGvHxxRCCCGEqDWlFh2zvzHtM71TsthQjHVwVDiUFWZNUQamxb+kMNuAyT2uEELUYxU7ZKUwK4RoSOxZmO0MfGP8RinVEugLfKC1nqa1Hg78Awix42MKIYQQQtSaklJjxqyhsOrqbNYxWxZlUGoszDqBciiLMkAbCrdSmL0byD2uEELUYxULsRU7aIUQoj6zZ2G2BfB/Zt/7lX3ebLbtC6CdHR9TCCGEEKLWGKMMKnbMmq8rorQDqAods6q0/OJfkjHbkMk9rhBC1GMVO2ZLpWNWCNGA2LMwewVoafZ9X6AU2G+2TQOW4WzirlVSUkJsbCx9+/bFy8sLZ2dnWrVqRbdu3Zg2bRppaWnlxsfFxaGUIi4uzi6Pf+bMGZRShIaG2mU+W2itGThwIEoplFIUFxff8XMQQghxe4xRBo4OjpSWluLs6GrYUVaYNUbKGuuuDg7GWyttWBW6tIqM2RIpzDYQco8rhBD1mNYVM2alY1YI0XBYeZZQY98Bw5VSrwIlGPK4/qG1zjUb0x64YMfHFPVYSUkJw4YNIyMjAw8PD4YOHcoDDzzAlStXOH36NB999BHff/89I0aMqOtTrRUrV64kMzOTJk2akJ+fX9enI4QQogaMHbMKB0Y+9xz5OpfWj9/smDUu9uXorMp9r9HoEm52zEqUQUMm97hCCFGPWWTMlkjHrBCi4bBnYTYGSAH+BRQDbsDLxp1KKUegD+W7C8RdLDExkYyMDHx9fdm9ezfu7u7l9t+4cYNDhw7V0dnVruPHj/Pyyy8zf/58Nm7cyNmzZ+v6lIQQQtRAaVnGbFGh5scLhrpba0BrYyHWMM6h7I7qZpSBLP51F5F7XCGEqMcsMma1dMwKIRoOu0UZaK3TMKxGeww4DszXWsebDXkKw1u8ttvrMUX9tn+/4flJaGioRVEWwM3NjX79+pm+DwgIYPLkyQBMnjzZFAGglOLMmTMAnD9/nsWLF+Pn54e3tzcuLi60bt2akJAQvvvuu3Lzh4eH06FDBwA2bNhQbr6KUQnbt29nyJAhtGzZEldXVzp27MiLL77I1atXbb7u4uJinnnmGTp06EBERITNxwshhKg/zDtmy7GIMigr1JaLMuAWUQYScdMQyD2uEELUbxYZsxIVJIRoQOzZMYvWei2wtpJ92wFPez6eqN9atGgBwIkTJ6o1PjQ0FA8PD1JTUxk5ciTdu3c37fPw8ABgz549REdH069fP0aPHk3Tpk05efIkSUlJpKWlsW/fPnx9fQFDoffq1avExMTg6+tLYGCgaT7zuRcvXkxYWBheXl4MGzaMVq1a8c0337BkyRLS09M5cOAAzZs3r/Z1R0ZG8vXXX3PgwAFcXV2rfZwQQoj6xzxj1pypGaeyjlm0IeOuqigDKcw2GHKPK4QQ9ZdFlIEs/iUaAWN8lo+PD8ePH6dJE8uo+/bt23P27FmKiopwcrJe/ouKiuK1114D4Pvvv+fBBx+s8nFLS0v55JNPSExM5H/+53+4dOkSjo6O+Pj48Pvf/54//elP+Pn5VTmHNUVFRaxatYojR47w9ddf889//pOioiJiY2OZNm2azfOZO3LkCCkpKezcuZMffviBy5cvc++99+Lv78+LL77IY489dlvz3y67FmaFMDdq1CjefvttVq9ezbVr1wgKCqJHjx60a2d90WLjAl2pqakEBgZaXbCrf//+XLx4kWbNmpXbfvToUfz8/FiwYAHbtm0DDIXZ9u3bExMTQ/fu3QkPD7eYLzMzk7CwMHr16kV6erqpAAyGhcgmT55MWFgYy5Ytq9Y1/+Mf/yAqKooFCxbQs2fPah0jhBCi/rrZMetodX9ZXdbUMVu+MMvNKAMHK8dLYVYIIYS4bRZRBrL4l2hEzp07x/Lly1mwYIHNx2qt+eCDD1BKobUmNjaWJUuWVDr+woULBAcHs2/fPpo1a8bAgQPp2LEjWmtOnjxJYmIisbGxrFixglmzZtl0LtevX+f5558H4L777sPb25sff/zR5muy5tlnn+XQoUP06NGDUaNG0bRpU44cOcLGjRtJSkri448/JigoyC6PVRN2L8yW5Ww9iKFzwOqzGK31Hns/boMySN16TH2w4/b+oD366KPEx8czZ84c4uPjiY83vOvPy8sLf39/pkyZwvDhw22as1WrVla3+/r60r9/f3bs2EFRURHOzs7Vmm/FihUAxMbGlivKgqFQHBMTQ0JCQrUKs7/++ivPPPMMDz/8MK+//nq1Hl8IIUT9ZuyYNY8y0PpmxqyRQ9mfHVOUgSotF2WgHRyx+OsvhdkGRe5xhRCifiq1KMxKx6xoHDw9PVFK8dZbbzFt2jRatmxp0/E7duwgOzub0NBQtm3bxoYNG3jzzTdxcXGxGHvjxg0GDx7M0aNHGT9+PKtWrcLTs/wbhnJzc1myZAm5ubkWx9+Km5sb6enpdO/enfvvv5/w8HC7RUNOnDiR+Ph4OnXqVG57QkICTz/9NNOnT2fo0KFWr/tOsGthVim1CJgLWAaKlme97UTcdcaOHcv/Z+/ew6Ms7/yPv78zOSBV5GBbkCXCQu3WikvVnxVki7WgWOsBDR4ri4jsrlarhVIQQXBJTesRpWyBdCFVShU5CIooyklU2lWRWlsRLIhVoVCskWOSee7fH8/M5JnJ5MgkmSGf13XlSuaZ+zlMr8rc853v87mHDBnC6tWrWb9+PRs3bmT9+vUsWbKEJUuWMGzYMObOnRtvw6+PZ599ll/+8pe8/vrr7Nmzh8rKxA+2e/bsoUuXLvU61muvvUZubi4LFixgwYIF1Z4vLy9n9+7d/P3vf49HM9Rk7Nix/OUvf+H3v/99vQvDIiKS2SIpCrNA9YzZnBo6ZqMfDp3lqDCbxTTHFRHJXMkdslr8S1qLtm3bMmbMGO644w6mTJnCo48+2qD9Z8+eDcBNN91Ex44defDBB1m8eDFXXXVVtbEPPfRQ/E7lefPmEQpVX7KqXbt23HPPPRw+fLjBryUvL48LL7ywwfvVR03du9dddx1Tpkxhy5YtvP3225xxxhlNcv66pK0wa2ZjgSnAZ8BjwIf4K9dKsiPsRM02ubm5nH/++Zx//vkARCIRFi5cyIgRI/j1r3/NkCFDEvJfa/PII4/wwx/+kA4dOjBo0CAKCgpo27YtZsaSJUvYtGlTg/4R+Pvf/05lZWWd38Ts27ev1sLs2rVr+cUvfsHkyZMT8mtFRCS7eakW/3KBjNmoWFJBbJKaHGXgEa6+4qoKs1lBc1wRkczmkjNmI+qYldbjlltuYfr06cycOZNbb72Vk08+uV777dq1i6VLl3LyySfTr18/2rVrx4MPPsisWbNSFmZnzfKj9idOnJiyKBuUTWvtxJrqasrgbQ7pPPNNwEfA6c653Wk8rhxlwuEwV155JW+//TZTp05l1apV9SrMVlZWcvfdd9O5c2fefPPNal2xr732WoOv5fjjj8fzPPbu3dvgfYM2btyIc467776bu+++O+WY2H/wGzduVPFWRCRLRDy//maB6ALngOQog2jHbOwOEGcer+xZyXn7y8nH75it5sN34cmfw6W3Qv4xTXL9khaa44qIZLDkDll1zEprkpubS3FxMUOHDmXcuHEsWrSoXvvNmTOHioqK+No+p556KqeffjqrV69m69atCbf9f/jhh+zYsYOcnBwGDBjQFC+jRfzud7/jT3/6E127duXUU09tsetIZ2G2GzC7pSesZvZdYBxwOuAB7wFjnXOros93AO4DLgOOAV4D7nDOvd0yV9x6xRbwCr5xhsN+y1EkEqk2fs+ePfzjH//g8ssvr1aU3bdvH2+++Wa1fWo7HsDZZ5/Ns88+yzvvvMPXv/71xr0Q/H/EbrzxxpTPPfHEE+zbt48RI0ZgZnVGIoiISOaIdcy6pCCC2FtXbGs4OqOKRRnsOPYtXt+5lTHl+8gHvFRTrjl3+r/3/QNG/DTNVy5plBFzXBERSc1L6pBNfiytSCtZzydZYWEhffv2ZfHixaxfv57+/fvXOt45R0lJCaFQiGHDhsW3Dx8+nDfffJOSkhKKi4vj2z/55BMAOnXqRJs2bdJ67S3l008/5frrrwfgwQcfjNeOWkLt/ccNs4smWEysIczsP4CngTeAIcBQYAHQNvq8AUuBwcCtwBVALrDazP6pJa75aDZ//nxWrlxZLYwd/NX8Ynkm3/rWt+LbY0XLHTt2VNvnS1/6Em3btuWNN95g37598e0VFRX88Ic/ZM+ePdX2iYVhpzoewB133AH4mSoff/xxtef379/Phg0banuZAAwcOJCSkpKUP7HXNHPmTEpKSujWrVudxxMRkcyQKmPWOYtnzMYqsxbrmI3e2vWPPP89JbaXqy16dGv1LxYlo7T4HFdERGpWbbEvdcxKK/TAAw8AMHr06Dq7xletWsX777/PoEGD6Nq1a3z7tddeS15eHnPnzqWioiK+PXa8hqwNlMn279/PJZdcwpYtWxg7dixXXnlli15POieZTwJDzCzfOdfwpN8jZGbdgYeBHzvnHg489Xzg70uA/sB5zrnV0f1eA7YBY4HbmuViW4nf/e53TJs2jc6dO9O/f3969OgBwLZt23j22Wc5ePAgl156KYWFhfF9+vbtS9u2bXn44YfZu3cvX/7ylwE/rPn444/ntttuo7i4mN69e3PppZdSXl7O6tWr2bt3L9/+9rdZvXp1wjUce+yxfPOb3+Tll1/muuuu4+STTyYcDnPJJZdw2mmn8Z3vfIfi4mLGjx/PV77yFb773e/So0cP9u3bxwcffMDatWvp378/K1asaL7/4UREJGPEOmZxid9lV3XM+hPUcNLiX5VW7j+OVnA9V0thVh8gM12LznFFRKR2yYXZVI1B0kq0svV8gvr27UthYSFPPfUUTz75ZMqc2JhYXmwsxiCmU6dOXHzxxSxcuJCnn346Xqs58cQTAf8u5kOHDmV11+z+/fu56KKLWL9+PT/60Y/42c9+1tKXlNaO2UnAJ8BTZtYjjcetrxH40QW/rGXMJcDHsaIsgHPuM2AZcGnTXl7rM3r0aKZPn87ZZ5/NH/7wB375y1/y8MMPs379es4991wee+wxFi1alPCtS4cOHVi4cCGnnHIKc+bMYeLEiUycOJFPP/0UgP/+7//mgQce4JhjjmHmzJksWrSIM888k9///vcUFBSkvI7HHnuMiy66iBUrVjBlyhQmTpyYEHvwk5/8hHXr1nHRRRfxyiuv8PDDD7NgwQI++ugjRo0axdSpU5v2fygREclYVR2zgQ4B528Jbo8v/hV9T/NCfjZtrDBbWa7CbBZr6TmuiIjUwnlJ76PJj0VaieLiYnJzcxk/fjzl5eUpx+zevZslS5YAcM0112BmCT8LFy4Eqoq3AN26daOgoIDKykrWrVvX9C+kiXz++edceOGFrF27lrFjx8a7jFtaOjtm38GPBTgR+K6ZfQb8I8U455zrmcbzxvQH3gWuNrOJwEnAduAh59wvomO+Dvwxxb7vAMPM7Fjn3L4Uz0sjdOvWjVtuuYVbbrmlQfsNHjyYwYMHp3wuJyeHH/3oR/zoRz+q9tzcuXOZO3dute29evVi2bJltZ6zf//+deawNNb27dub5LgiItL04h2zCVEG1TtmQ0lRBjGxcu7hg4H9Q2HMS519Lhmppee4IiJSi+QO2WrRBiKtRM+ePbn55puZNm0ajz76aMoxpaWllJeXc8YZZ9S4KPnSpUt58cUX2bZtW/zO51GjRnHXXXcxdepUBg4cSChUc5/n4cOHyc/PP/IXlEafffYZgwcPZsOGDUyYMCGjGvDSWZgNAZVAMMwzVQBFU4VSnBj9uQ+4E3gfP2N2upnlOOemAR3xi7XJ9kZ/dwBUmBURERGgqmMWV8PiX9HNoaTFv2JiHbOH9gcmr+E88A5WP5hkqpae44qISC2SO2brytcUOZpNmjSJ0tJSioqKUhZPS0pKAJgxYwZnnXVWymNMnDiRqVOnUlJSQlFREeCvz7NgwQJefvllhg0bxvTp02nfvn3Cfvv27YsvpDVhwoQ0v7LG+/TTTzn//PN5/fXXmTJlCpMmTWrpS0qQtsKsc657uo7VSCHgOGC4c25RdNuqaPbseDN7BH/CnOpf6Von0mY2ChgF1Hi7vIiIiBx9PFcZ/SsYZWCBQm1ix2zyBDhVYdbl5GEVgcJsyqmJZIoMmOOKiEgtXMSr9bFIa9KxY0fuvPNOxo4dW+25NWvWsHnzZnr37l1jURbgxhtvpKioiDlz5jBlyhRycnJo27YtK1asoLCwkHnz5rFs2TIGDRpEr1698DyPrVu38tJLL1FWVsb06dMbde3FxcW8++67ALz11lsAzJkzh/Xr1wP+nc4jR45s8HEvv/xyXn/9dXr27InneUyePLnamMsuu6zGDuKmdjStMPt34CvAyqTtLwCDgS74nbEdU+zbIfr701QHds7NAmYBnHnmmfr0JCIi0gp4XiRlx6wj0DHrYoXZ6ONox2zIOTyzqsLsvkDGbCg38UTq7BEREWm05CgDLf4lrd1tt93GjBkzqsUqzp49G6DO4mb37t0ZOHAgK1euZNmyZQwZMgSAzp07s27dOhYuXMj8+fPZsGEDzzzzDKFQiIKCAoYOHcqIESPo169fo657xYoVrF27NmHbq6++yquvvhp/3JjC7LZt2wB4//33mTJlSsox3bt3P/oKs2bWATjWOfdhU50jyTvA2akuJfrbi445P8WYU4AdypcVERERgI8+/Qt3Lf5+VcasS1r8Kx5l4G8Pxzpmzejq7WfhoVX8OqcXsXLsocAMw4XzEk+mwmxWaYE5roiI1KJapqzeV6UVqC2yIz8/P16MDJo3bx7z5s2r1/FfeOGFlNtDoRBDhw5l6NCh9bvQBlizZk3ajwmZv+5PzWm9jWBmx5rZA2a2E9gDbAs8900zW25mp6fznAGLo78vSNp+AfBX59xOYCnQ1cwGBK6rHXBx9DkRERERlr41J7DwV+JnvG//y+Wc1PFfgKqOWYtWYC0U4vrK92mDx6jK9+L7HPo80HEbTuqYlYzXwnNcERGpRXJhVot/iUg2SVth1syOB14D7gA+Bv5MYnbr28C/Adek65xJlgOrgZlm9p9mdr6ZzcLvkJ0YHbM0eo2Pm9nVZnZBdJsBP2+i6xIREZEsEwqFEx5bYMp08WnDufqsHyZsD3bMHiBxX8+FOfR5VWXX5SSvUqvOnkzWVHNcM7vAzFaZ2U4zO2xmfzWzJ83slKRx3czsKTP7zMzKzGyRmVVb9MDMOphZiZntMbP9ZvaimfVOMa6Nmd1nZp+Y2UEze83MvtWQaxcRySRa/EtEslk6owwmAF/HX3zr12Z2NxBf6sw5d8DM1gLfSeM545xzzswuA+4FpuDnxr4LXOec+010jGdm3ynnGPEAACAASURBVAPuB2YAbfAn2t/W7WgiIiISE7LE765dIMrAcy6eX2fR+pzlxPYzDlri9MoR4lBZsGNWUQZZpqnmuB2BN/DnpLuBAmAcsMHMejvnPjCztsAq4DDw7/hV/KnAajM7zTm3H8D8TI2lQA/gVvx1E8ZHx/Vxzv01cN5fARcBPwb+AtwCPG9mfZ1zbzXwNYiItLhqHbNa/Eukxa1Zs6Ze0QTt27fn9ttvb9CxlyxZEl8crDbdu3dn+PDhDTp2S0hnYfZy4Hnn3K9rGfMB8P/SeM4Ezrky/MnlLbWM2QuMiP40KedcPHtOJB307a+ISPMIW81TJOccXvTf41hhNtYxa6EQB0lVmA18SExe/EsyXZPMcZ1z84H5wW1m9nv8xoJC4AHgJuCfga8657ZGx/wB2AL8B/BgdNdLgP7Aec651dFxr+FHLowFbotu+1fgWmCEc25OdNta/HUY7okeR0Qkq1T7jKTPTCItbs2aNTUutBV00kknNaowW1paWue4AQMGZEVhNp0Zs/8E/KGOMfuA49N4zowVDoepqKho6cuQo0xFRQXhcLjugSIickRCoeSO2aq/Pc8LdMz640IJHbPJUQYhDpYFjpWcMasPkJmuOee4f4/+jk0iLwE2xIqyAM65bcArwKWB/S4BPo4VZaPjPgOWpRhXATwRGFcJ/Ba4wMySczZERDJecoesMmZFWt7kyZNxztX505iFuebOnVuvYzfVYmLpls7C7OfAl+oY0wN/wYSj3nHHHUdZWVndA0UaoKysjOOOO66lL0NE5KiXHGWAlxhlEIkVZqMRB6Fw9HcolCIyNkTFIUUZZLEmneOaWdjM8szsK8BMYCd+oRT8CIU/ptjtHSCYRVvbuAIzOzYwbptz7kCKcXlAr8a8BhGRlpTcMau7DEUkm6SzMPt/wPfMLGXVyMy6AN8F1qfxnBmrY8eOfPrpp+zZs4fy8nK9OUijOecoLy9nz549fPrpp3Ts2LGlL0lE5KgXSup6Db6Lu4SM2cSOWTMjh6TOHUIJGbUulFSY1eJfma6p57i/w8+QfQ84DT+O4G/R5zri58Um24u/ngL1GEdgbF3jNMkQkazjqWNWRLJYOjNmpwHPAcvNbFTwCTP7GjAbf7GtR9J4zoyVn59PQUEBe/fuZfv27UQikUYdp3z/PkI5OeTkt0nzFUo2CYfDHHfccRQUFJCfr7sMRUSaWnJhluDiXwlRBtFO2WjGbMiMnKRCq0cIF/guXB2zWaep57jXA+3ws2THACvNrL9zbnv0+VT/B0lexMDSPC7xSf91jwIoKCiobaiISPNTx6yIZLG0FWadc8+b2WRgMv6tVBUAZrYH/1t6A37inHs1XefMdPn5+XTp0oUuXbo0av89773L3EsHAjDmo8/SeWkiIiJSi3AoqWM20HyTGGWQ1DEbChEm+QNiiGDdy4XS+b24NLWmnuM65/4c/fN3ZvYcsB0YB/wnfndrqi7WDiR2vu6tZRyBsXuBVJXVDoHnU13jLGAWwJlnnqmKh4hkFM/zCCduaKlLERFpsHRGGeCcuwf4DrAUfwIYwf9Wfjkw0Dl3XzrPd7Q78LddLX0JIiIirVIouTAbKEW5FIt/hRM6ZlNEGVBLlIE6ezJec81xnXP/ALZSlfX6Dn4ubLJTgD8FHtc2bodzbl9gXA8za5tiXHn03CIi2cVTx6yIZK+0FmYBnHOrnXNDnHNdnHN5zrkvOucuds6tSve5jnZ6QxEREWkZVsud3Z5z8Yii2OJfseSDVFEG/nRLGbPZrjnmuGb2ZeBfgPejm5YCZ5vZPwfGdAfOiT5HYFxXMxsQGNcOuDjFuFxgaGBcDnAV8IJz7nC6XouISHNJzpR1nt5XRSR76F66TKbCrIiISIuIeInZ8MEog8TFv/yKbEKUgUv8gFg9YzY36WSNy6GX7GZmi4E3gT8AZcDJwB1AJfBAdNhs4AfA02Z2F34V/7+BD4GZgcMtBV4DHjezH+N39Y7H/0bg57FBzrm3zOwJ4GEzywW2Af8F9ACua5pXKiLStKo1NOlztIhkkbR3zEr6OHXQiIiItIiIV5nwOPgZz/O8eMZsOFqY9azcfxwKpeyYrTXKIFKRnouWbLMBuAwoBZ4FfgSsBfo4594DcM7tB84D3gMeA+bhF1PPC8QT4JzzgO8BK4EZwGL8uIVvO+c+TDrvDcAcYGr0vN2Awc65N5vmZYqINC0XSe6YVcasiGSPRnfMmplH4+69c845derWh77pExERaRGeS+qYDbwne4GO2VB0KlWBX5i1mjJmXdV34Z4ldcxWqjCbSZprjuuc+xnws3qM2wFcUY9xe4ER0Z/axh3ELwL/qH5XKiKS2bxqUQYqzIpI9jiSAuk6qk9aOwCnAR7+LVY7gc7438SH8G/V+hQRERGRDFZZS8escy7QMRsrzB4CIJSiY9ZZmMSMWRVmM5zmuCIi2URRBiKSxRodZeCcO9c59+3YD3AtcDywCPiKc66Hc66vc64H8BX8W6raAdek48Jbg2B3jhYCExERaT7VowyqCque51XrmD1U+bn/OEXHLGa1RxlUlqfrsiUNNMcVEcku1Rf/UsesHP3MDDPjpJNO4tChQynHdO/eHTOjsrIy5fMARUVF8WNt3ry5zvN6nsdTTz3FFVdcQbdu3WjTpg1f+MIX+NrXvsaoUaN45ZVXGvV6KioqmDZtGjfccAN9+vQhLy8PM6OkpKRRxwt6++23GTlyJN/4xjf44he/SH5+Pt26dWPgwIEsWrSoxett6cyY/RnwqXOu0Dm3LfhE9HEh8Bn1uGVLfF5F1X88Xi3/IYmIiEh6JUcZeF7qKIOw+YXZ5X8qZevf3sbMCCd3zBIi2DHrqWM222iOKyKSwZKLKi1dZBFpTjt27ODhhx9u1L7OOX71q19h5s9TZ8+eXev4nTt38q1vfYuhQ4eycuVKzjrrLG677TZuvvlmvvrVrzJ//nz69+/Po48+2uBr2b9/P7fffjtz585l586ddO7cuVGvKZU33niDJUuW0LVrV6688kpGjx7NoEGD2LRpE1dccQXDhg1L27kaI51ZrxcA/1vTk845Z2bP4y84IPUQqajqoPEqKwjn5tYyWkRERNKlesds4C6WwOJfbcJfAMALV/DBns1845Rz2HxMG/AbaPmMXP4SvjRanI3ur8W/so3muCIiGSx58S88FWaldejQoQNmxr333svIkSM54YQTGrT/Cy+8wLZt2xg+fDjPPfccpaWl/PSnPyUvL6/a2AMHDjB48GA2bdrE1VdfzYwZM+jQoUPCmLKyMu6//37Kysoa/Fratm3L8uXL6dOnD126dGHy5MlMmTKlwcdJ5eqrr2b48OHVtpeVlXH22Wfz+OOPc+utt3LWWWel5XwNlc6O2ePwb/OqzfHRcVIPXkXVBzV1zIqIiDSfiJe0+FcNHbNtQsf6z4cr8JxHQZcuDDrr/wEwIe90zjv2e2xqMzahMFt98S9FGWQ4zXFFRDKZOmallWrbti0TJ06krKysUUXMWIfsTTfdxHXXXceePXtYvHhxyrEPPfQQmzZt4pxzzmHevHnVirIA7dq145577mHMmDENvpa8vDwuvPBCunTp0uB969KmTZuU29u1a8cFF1wAwJYtW9J+3vpKZ2H2z8BVZtYt1ZNmdhJwFfCnNJ7zqBYJFmYrVJgVERFpLskds5FAXl1w8S8i/q1fLqe8Kv4g4u8bwfCcI5xnCRm1zpIzZtUxm+E0xxURyWDVMmWVMSutyC233ELPnj2ZOXMm7733Xr3327VrF0uXLuXkk0+mX79+3HCDf+PPrFmzUo6PbZ84cSKhUO2lxPz8/HpfR0s6cOAAq1atAqB3794tdh3pjDK4D/gNsNHMHsFf0XYX8GVgAHArfjfBfWk851HNC3xQ8yIqzIqIiDSX5MKsF/iQ53levBvHRQuzXriiqkMn+v5dSQjnHJZDwuJf6pjNOprjiohkMGXMSmuWm5tLcXExQ4cOZdy4cSxatKhe+82ZM4eKior4Lf6nnnoqp59+OqtXr2br1q306tUrPvbDDz9kx44d5OTkMGDAgKZ4Gc1i69atPP7440QiEXbt2sWzzz7Lxx9/zPjx4znttNNa7LrSVph1zv3WzLoA9wJ3Jz1tQAUwxjn3RLrOebRLiDKoUDeNiIhIc4kkLf5VGal6HPE8ItHHLt4xWxHomPXfsyPRhRRyciG4+JfT4l9ZRXNcEZHMVq1j1qljtrWym6zuQRnAzU7vlweFhYX07duXxYsXs379evr371/7+Z2jpKSEUCiUsPDV8OHDefPNNykpKaG4uDi+/ZNPPgGgU6dONcYCZIOtW7cmRD7k5eVx3333MXr06Ba8qvRGGeCcewj4KjAJWAysiv6+Czg5+rzUUzDKIKIPbSIiIs2mto5ZF8iYjUcZhMvxYh8Eo3e5eBYGwHJdUsZsUpSBcxBJLARLZtEcV0Qkc6ljVgQeeOABAEaPHl3nfwOrVq3i/fffZ9CgQXTt2jW+/dprryUvL4+5c+dSEahHxY5nlh2F75oMHjwY5xzl5eVs3bqVCRMmcOedd3LJJZdQXt5yd7ClM8oAAOfcB0BRuo/bGgW7ZF2lPrCJiIg0l7qiDGIZsy7iF1y9nIqqwmwsyiDkF2bDeclRBtVXuqWyHMLHpO36Jf00xxURyVDVMmZVmG2t0t2Jmk369u1LYWEhTz31FE8++SRXXXVVjWNjebGxGIOYTp06cfHFF7Nw4UKefvppCgsLATjxxBMB2LNnD4cOHcrqrlnw4x969uzJpEmTyMvLY/z48TzyyCONWrQsHdLaMSvpFamoqtirY1ZERKT5RLxI0uMaOmYrqzpmXVLHrLPoNCsHglMuLznKABRnICIi0kjqmBXxFRcXk5uby/jx42vsAN29ezdLliwB4JprrsHMEn4WLlwIJC4C1q1bNwoKCqisrGTdunVN/0Ka0YUXXgjAmjVrWuwa0t4xK+njVVR167hKLf4lIiLSXJI7ZiOBqAHPuUDHbHTxr5xglEEsYzYEDkK5rvbFv0ALgImIiDSSS+6QVcastFI9e/bk5ptvZtq0aTz66KMpx5SWllJeXs4ZZ5xBnz59Uo5ZunQpL774Itu2baNHjx4AjBo1irvuuoupU6cycOBAQqGa+zwPHz5Mfn7+kb+gZvDRRx8BkJPTcuVRFWYzWLBLVh2zIiIizcdzNXfMep4X75h1lSkW/4q+Z8cyZkO5DucChVlSRRnofV5ERKQxkhf/qlaoFWlFJk2aRGlpKUVFRSmLpyUlJQDMmDGDs846K+UxJk6cyNSpUykpKaGoyE9xuuOOO1iwYAEvv/wyw4YNY/r06bRv3z5hv3379vHggw8SDoeZMGFCml9Z461fv55vfvOb5OYmNkfs3r2bcePGAXDRRRe1xKUBKsxmNC8QZRDsnhUREZGmVe/Fvyr9Ca8LV1TdOhlb/CsUhgj4yQVVhVmXKmM2osKsiIhIoyRHF6hjVlqxjh07cueddzJ27Nhqz61Zs4bNmzfTu3fvGouyADfeeCNFRUXMmTOHKVOmkJOTQ9u2bVmxYgWFhYXMmzePZcuWMWjQIHr16oXneWzdupWXXnqJsrIypk+f3qhrLy4u5t133wXgrbfeAmDOnDmsX78egP79+zNy5MgGH/cHP/gBO3fu5JxzzqGgoIBwOMz27dtZvnw5Bw8e5LLLLmPEiBGNuuZ0UGE2g0UCxVgvosKsiIhIc6l18a9AlIERwnIjYKSOMsAvzLpgxqylmH5VKMpARESkMZI7ZrX4l7R2t912GzNmzGD79u0J22fPng1QZ3Gze/fuDBw4kJUrV7Js2TKGDBkCQOfOnVm3bh0LFy5k/vz5bNiwgWeeeYZQKERBQQFDhw5lxIgR9OvXr1HXvWLFCtauXZuw7dVXX+XVV1+NP25MYXb06NEsWbKEjRs38vzzz1NeXs4JJ5zAeeedx/XXX8+VV16JmdV9oCaiwmwG8wK3NXoV6qQRERFpLsmLf1UGM2YDUQbmQliu/wGwWpRByI8ysBwvMWOWFBmz6pgVERFpnOTFv1BhVo5+tS1yl5+fz7Zt26ptnzdvHvPmzavX8V944YWU20OhEEOHDmXo0KH1u9AGaKoFuK6//nquv/76Jjl2OtSc1ttAZqlWspAj4QVW0fOUPSciItJs6ooyqOqYNUK5Xny7v3M0ysBihVmX1DGbIspAHbMZS3NcEZHMVr1jVlEGIpI90laYBT4ys5+ZWa80HrNVCy745VVGahkpIiIi6RSp5+Jffses/3dNHbOhHAhmzEaUMZttNMcVEclgsS9GI7GFNmvpJBQRyTTpjDIIAT8GxpjZKuCXwNPOOYWjNpJXHizM6gObiIhIc6k1Y9bzqKz0nzdChPJihdlYxqz/nAvlAOXVF/9y4eon1Pt8JtMcV0Qkk0UzZT2MMK7WW7xFpHmsWbOmXtEE7du35/bbb2/QsZcsWRJfHKw23bt3Z/jw4Q06dktIZ2H2RKAQGAV8BzgP+JuZ/S9Q4pyrHnAhtUrsmNXcX0REpLkkF2YjgYzZu6ZNi/9tLkQomjHrkhf/Cvk3JlmOB1QVY50zCIUSb7WsVJRBBtMcV0Qkg8UKsfE8dxVmRVrcmjVrmDJlSp3jTjrppEYVZktLS+scN2DAgKwozKYtysA5V+6c+41z7lzgX4CH8Qu/44EtZrbczC41s3TGJxzVEhb/UieNiIhIs4nFEnzpuH/i+2ePTogyCDIMy4st/hUdE33PdtGM2VBSQqnzgHDSd+N6n89YmuOKiGQ4L3bnSvSfYRVmRVrc5MmTcc7V+bN9+/YGH3vu3Ln1OnZTLSaWbk0ygXTOveecGw10Bb4PvAwMBhYBO8xsspmd2BTnPppEAlEGkQp1zIqIiDSXWMds0eXzGPT1KxOiDIKMqo7Z+JjY4l/R4qslJRc4LBY8W0Uds1lBc1wRkcziPEf5wWhhVh2zIpKFmvSbfedcOfAssBj4GD9g7URgErDNzB42s/ymvIZsltAxG1FhVkREpLlEPL9jNhwtoNbYMetChPNit1AmRhl40QZKy038gKiO2eynOa6ISGbYMPtzPn7rEFBVmI1HC4mIZIEmK8ya2dlmNgd/svoQ8AXgEaAPMALYDNyKfzuYpBApr+qe8Sr0gU1ERKQ5OOfiUQahaLtrzR2zVn3xr1iUQSgaZZCTVJh1qDCbxTTHFRHJHGUfV2LEviBVlIGIZJ90Lv6FmR0HXA/8B3AqfvfAm8D/AL9xzh2MDv2DmT0GrMBfTOG/0nkdR4vggl9a/EtERKR5xGIMwhbGzO++CS7+FWQuRCjP/9vzIv6HwViUQSgWZVCfwqyiDDKZ5rgiIpnJv8ElGikUizLwVJgVkeyRtsKsmZUAVwFtgcPAY8AM59zvU413zkXMbA3+yraSQrBLVoVZERGR5hFxiTEGUEuUARaIMnCxT4gQCmGhaJRBcsZsBHXMZhHNcUVEMpfnOaoVZlFhVkSyRzo7ZkcA7wO/BOY45/bWY581wD1pvIajSqQiEGWgD2wiIiLNIt4xGyjM1rr4V15s8a9IvFuWcC6hWGE2N3Ef51z1wmxE7/MZTHNcEZEM9ffN7xErxFbG6rHqmBWRLJLOwuyFzrnnG7KDc+4V4JU0XsNRRVEGIiIizc+Ldr2GQlWtrrUv/hXdz3lVna/hnHgMgoUT93XOqhdmKxRlkME0xxURyVCHyj4nYocB8Fy0Y1aLf4lIFknn4l9fNrPTahtgZqea2bA0nvOolrj4lwqzIiIizaEy2jGbU+8oA//vhMJsTi6heGE2cZ+KUHt1zGYXzXFFRDKU5zn25+72/1aUgYhkoXQWZucCl9Ux5lJgThrPeVQLxhd4ERVmRUREmkMsyiAUqKh6NSz+FQos/uWclzrKIMf/gDj3byv4zZ4FVOQcX1WYzY3uXMPxJSPMRXNcEZGM9Fb+H6m0Q0BVYdYpykBEskg6owzqI4y+vqq3YJdscCEwERERaTpegxb/SooyiKSKMvCnPrsrTwHgix6BwmwbP8bA0xewWU5zXBGRFvC30N/oHP1bHbMiko3S2TFbHycDnzbzObNWcPGviBb/EhERaRYNXfwrJ16YjaSOMshJ/IDoIg5ix85rEz2pOmaznOa4IiItwOEIRQux8cKsU2FWjn5mhplx0kkncejQoZRjunfvjplRWcuaRUVFRfFjbd68uc7zep7HU089xRVXXEG3bt1o06YNX/jCF/ja177GqFGjeOWVxkXsV1RUMG3aNG644Qb69OlDXl4eZkZJSUmjjlcb5xyDBg2Kv+7a/vdpDkfUMWtm/5u06TIz655iaBgoAP4NePZIztmaBKMMXKU+sImIiDSHynhhtj6Lfxnh/Oitk85VRRnk5GLRKIPkr8GdI9Axm+//9vQ+n0k0xxURyQ5eoDtWhVlpjXbs2MHDDz/MuHHjGryvc45f/epXmBnOOWbPns39999f4/idO3dSWFjIK6+8wnHHHcegQYPo2bMnzjm2bNnC/PnzmT17No888gi33nprg65l//793H777QB8+ctfpnPnznz44YcNfk31MX36dFavXk2bNm1qLGo3pyONMhge+NsBfaI/qTjgd8AdR3jOViNSXlWYVcesiIhI8/BSdMzWGWXgJUUZhHJq7pj1gJxc/0GsY1aF2UwzPPC35rgiIhnK4eIBBlWF2dTv2SJHmw4dOmBm3HvvvYwcOZITTjihQfu/8MILbNu2jeHDh/Pcc89RWlrKT3/6U/Ly8qqNPXDgAIMHD2bTpk1cffXVzJgxgw4dOiSMKSsr4/7776esrKzBr6Vt27YsX76cPn360KVLFyZPnsyUKVMafJy6bN68mZ/85CeMGTOG3/72t3zwwQdpP0dDHWmUQY/ozz8DBjwc2Bb8KQDaOef6Oef+coTnbDUSO2aVPSciItIcIl71jNmaFv/yLEJOG/+DoOciCR2z8cW/wikKs+HkKAO9z2cYzXFFRLKAcwSSZWOF2Ra7HJFm1bZtWyZOnEhZWVmjipizZ88G4KabbuK6665jz549LF68OOXYhx56iE2bNnHOOecwb968akVZgHbt2nHPPfcwZsyYBl9LXl4eF154IV26dGnwvvVVWVnJ9ddfT48ePZqk6NtYR1SYdc59EP3ZDkwBlgS2BX/+6pzbn5YrbiWcc0Qq1DErIiLS3CIu2jFrdUcZVNih+OJfzrmqjNng4l+hpMKsc9ULs+qYzSia44qIZAeHw1xyxqw6ZqX1uOWWW+jZsyczZ87kvffeq/d+u3btYunSpZx88sn069ePG264AYBZs2alHB/bPnHixHjzQU3y8/PrfR3NaerUqWzcuJHS0tKMusa0Lf7lnJvinFuXruO1di4SScjG8SrUSSMiItIcUi3+VVNhNmKVhHMDHbOpFv8KJ+6T0DGrjNmMpzmuiEjmcqkyZtUyK61Ibm4uxcXFVFRUNChnds6cOVRUVDB8+HAATj31VE4//XRWr17N1q1bE8Z++OGH7Nixg5ycHAYMGJDOy282//d//0dRURHjxo3jzDPPbOnLSdDojFkzK4j++ZFzLhJ4XCfn3I7Gnre1CHbLAni6xVFERKRZxKIMQoHFv7wUhdlOhwroeuDr5OT7iwZ4zoNoUZdwVZQBIce/DD6Gd1ccBKKF2QFXwN8/hq/1hT+uV2E2g2iOKyKSPfyM2eSOWRVmWyuzmheuyiTONfxW/9oUFhbSt29fFi9ezPr16+nfv38d53eUlJQQCoUYNmxYfPvw4cN58803KSkpobi4OL79k08+AaBTp060adMmrdfeHA4ePMj111/PKaecwqRJk1r6cqo5ko7Z7cA2oGfS47p+lL9VD15SdIFXoSgDERGR5hDvmLWaO2bbVnRg8F9/TI7Li3fMOueljDJwznHx/Sdw0c86+o894Ls3wcw/QMdojpa+gM0k29EcV0QkKzjnsGhBVoVZac0eeOABAEaPHu3HZtVi1apVvP/++wwaNIiuXbvGt1977bXk5eUxd+5cKgI1qNjxYnPbbDN27Fj+8pe/UFpaSm5ubktfTjWN7pgFfo1/j8BnSY8lDap3zKqTRkREpDnECrM5wcW/kgqzRtXENBSPMvASF/+KTl5j+4ZC0UKtF5guxbpy1TGbSTTHFRHJEg4CHbM+U2G21Up3J2o26du3L4WFhTz11FM8+eSTXHXVVTWOjeXFxmIMYjp16sTFF1/MwoULefrppyksLATgxBNPBGDPnj0cOnQoq7pm165dyy9+8QsmT55Mnz59WvpyUmp0YdY5N7y2x3Jkkjtk1TErIiLSPDxXPcogkvQFachVPZeTE4rul9QxG4ptj3YZRO9TSvi8GA7HTpCuy5cjpDmuiEj28Bf/AgycOmallSsuLubpp59m/PjxDBkyJOWY3bt3s2TJEgCuueYarrnmmpTjZs2aFS/MduvWjYKCAnbs2MG6des4//zzm+YFNIGNGzfinOPuu+/m7rvvTjkm1kW7cePGFineHknHrDShSEV5wuPkaAMRERFpGvVZ/CvYMRvO8yuuznkQiRVmqzpm47eTxQqzwUOpY1ZERKTRUmbM6iYHaaV69uzJzTffzLRp03j00UdTjiktLaW8vJwzzjijxiLk0qVLefHFF9m2bRs9evQAYNSoUdx1111MnTqVgQMHVq2lkMLhw4fJz88/8heUBqeeeio33nhjyueeeOIJ9u3bx4gRIzAzOnXq1MxX51NhNkNV65itVPaciIhIc6hMUZitFmXgqiaj4ZyaogxCCfvGYrkSCrPh6DlUmBUREWkwV9Unq4xZEWDSpEmUlpZSVFSUsnhaUlICwIwZMzjrrLNSHmPixIlMnTqVkpISioqKALjjjjtYsGABL7/8MsOGDWP69Om0b98+Yb99+/bx4IMPEg6HmTBhQppfWeMMHDiQgQMHpnzuxRdfZN++fcycOZOcnJYrjzb6zGb2v43cxwslPgAAIABJREFU1TnnUperJS65EKvCrIiISPPwokXSsAWiDKp1zAYKs7mxyIJIYpSBixVsY1EGKT4wxjpmtfhXxtAcV0Qke7hAd6xnKsyKdOzYkTvvvJOxY8dWe27NmjVs3ryZ3r1711iUBbjxxhspKipizpw5TJkyhZycHNq2bcuKFSsoLCxk3rx5LFu2jEGDBtGrVy88z2Pr1q289NJLlJWVMX369EZde3FxMe+++y4Ab731FgBz5sxh/fr1APTv35+RI0c26tiZ7EhKwsMbuZ8DNGmtQ6Q8Ocqgkg9eXsO+XTv5euHVLXRVIiIiR7+Ia1jHbE5eqozZXEKR2GJf0Y7Z6C4JzbGKMshEwxu5n+a4IiLNLGWUgfNq2UPk6HfbbbcxY8YMtm/fnrB99uzZAHUWN7t3787AgQNZuXIly5Yti+fVdu7cmXXr1rFw4ULmz5/Phg0beOaZZwiFQhQUFDB06FBGjBhBv379GnXdK1asYO3atQnbXn31VV599dX4YxVmE/VI21VINV5S50yksoIFV18KQLe+59Cua7eWuCwREZGj3uHKwwDkhPMAPyO2WmE20DEbW/wrMWM2h5BLXPwrlGrxLxVmM5HmuCIiWSJllIFIK+Bq6QzPz89n27Zt1bbPmzePefPm1ev4L7zwQsrtoVCIoUOHMnTo0PpdaAOsWbMm7cesTXLhuqU0ujDrnPsgnRciieLdNeEwLhLBq6gq1B7+7DNQYVZERKRJ7N23E4BOx34ZqB5jAElRBnmBjNkKv6hL/jFYJHHxL9PiX1lBc1wRkezhcFi0PhV7ezVFGYhIFql5GTVpWZ7/ZhLO9bt1Ejpoa1n9TkRERI7M7s8/BuCEY7sA1WMMgHh+LEBObmCRr/JD/sa8NoSiWXfx/S0WbRD4wBhb/EsZsyIiIg3mzEE0ysDFMmZRYVZEsseRLP5VEP3zI+dcJPC4Ts65HY09b2sR65gN5+dReeggXkVF/DlTYVZERKTJ7Nn3CQBfPPZEoO6O2Vhh1uHB4YP+xrw28fdrL7ljNlWUQUQds5lCc1wRkezhcPF35KqMWRVmRVramjVr6hVN0L59e26//fYGHXvJkiXxxcFq0717d4YPH96gY7eEI8mY3Y7/VdTXgPcCj+vijvC8rYKL3ucY65hNWAxMbzQiIiJNJlaYPeG4aGE2RdE0FFj8K5QTWPyrItoxm1vVMZscZUCwzhtWlEEG2o7muCIiWcEF3lTj/1Dr87JIi1uzZg1Tpkypc9xJJ53UqMJsaWlpneMGDBhw1Bdmf43/b99nSY8lDWIf4mKF2YoD++PPeZW63VFERKQpHKo4wOeH/kFuOJ/jj+kI1BBlEO3PCeVAOJQTHRdJjDIIhRL2j91h6SljNtNpjisikiX8xb/8f6K96But6Z9skRY3efJkJk+e3CTHnjt3LnPnzm2SY7eEI1n8a3htj+XIBKMMILkwW5FyHxERETkyez6Pdsse2xmLfsBLGWUQ7ZgN5xohi0UZuITCrJm/X7UoA2XMZjTNcUVEsoerCjCo6p1Vx6yIZJGjNqzUzFaYmTOzqUnbO5hZiZntMbP9ZvaimfVuqeusSawwG4p2zFYeOhR/zqtUV42IiEhTiMcYRBf+gpo6Zv2PgaFc4oXZmhb/ir2nWyj2OHAgdcyKiIg0mrOqjlmHFv8SkezTJDlYZtYN+AZwPP5tYBudcx82xblqOP81wL+m2G7AUqAHcCvwKTAeWG1mfZxzf22ua6xTUpRBkDpmRUREmsbupHxZgMqUGbN+QTWcY1isMOsSowwsdDi6vR6Lf6kwmxVaeo4rIiKJXKAcG48yUMesiGSRtBZmzewrwAzgvBTPrQJucc69l85zpjhPe+Ah4A7gN0lPXwL0B85zzq2Ojn8N2AaMBW5rymtriFh3TU6bNtWe8ypUmBUREWkKBw6XAXBs/vHxbakW/6rqmE2KMogt/pV3DCHzj5VcmEUds1knE+a4IiJSncPDXOzvqq0iItkibYVZM+sFvAp0At4H1gM7gc74xdDvAOvNrJ9zbmu6zpvCz4F3nHPzzSxVYfbjWFEWwDn3mZktAy4lkwqzrpbCrHLoREREmkSl53/5mRvOrdqWsjAbzZjNCUYZRGqPMoi29ChjNrtk0BxXRESSJCz+hTpmRST7pLNj9l78CesPgV84V5WgZv49frfid7L+FLgyjeeNM7P+wDBSxBhEfR34Y4rt7wDDzOxY59y+pri2hopnzObkEMrNTeiSjVTow5uIiEhTqIwWSHNCVYXZisrq77uxxb9CucEoAy8pyiC2PdYx639g9NQxm21afI4rIiKpOfMSowwcqGNWRLJJOhf/+g6w3Dn3aHDCCuCc85xz04DngIFpPGecmeUCM4H7nXObaxjWET9XNtne6O8ONRx7lJm9bmav7969+8gvtj6i7yUWCpGTn9g169RVIyIi0iQqvXIAcoIds6kKs8GO2Whx1bkaFv9KzpgNzpLC0cJsiq5cyRgtOscVEZHUnHNJHbPxJ1rsmkREGiqdhdk84K06xrwF5NYxprF+AhwDFNUyxkj99Zml2BbnnJvlnDvTOXfmF7/4xSO4xPqrWsE5RDg/P+G5iDJmRUREmkSqjtmUUQaxjtkcIxSdRiR0zOa2IRTrmI2/p/tPOXXMZpuWnuOKiEgKLuJnzMYfxxb/UsesiGSRdBZmNwG96hjTC/hDGs8JgJkVABOAiUC+mbWPLgJG4HEYvzO2Y4pDxDplU3XTtggXv8/RqnXMeik6d0REROTIVXXM5sW3pYwyiHXMBqIMHA5XftAfkNcGs1jBNmnxL5ciY1aF2UyW9jmumRWa2UIz+8DMDprZZjO718yOSxrXwcxKzGyPme03sxfNrHeK47Uxs/vM7JPo8V4zs2+lGBcys/Fmtt3MDpnZJjO7or7XLSKSSTzPjzIIxTpm42HuKsyKSPZIZ2H2p8DlZnZhqifN7CJgCLV3tDbWPwNtgMfxi6uxH4Ax0b9742fJfj3F/qcAOzIlXxaIv5n4UQaJHbMqzIqIiDSNyoh/V0pOqCqGP2WUgfM//IVywKyqOFvr4l+h2OPAgWIds4opymRNMccdA0SAO4HBwP8A/wWsjObWYn5lf2n0+VuBK/C7cleb2T8lHe9XwE3AJOB7wCfA82bWJ2ncfwOTgenAhcAGYIGZfbcB1y4ikhG8Sg8X6I6tam0SEckejV78y8yGpdj8HPCMmb0ErAN2AV8GBgDnAcuAExp7zlq8BXw7xfbV+MXaXwFb8Se3N5jZAOfcWgAzawdcDPymCa6r0WIRZhYKEW6T3DGrKAMREZGmUOFFC7N1dMyG8Auq4dxogRYjAikX/4rECrOpGnkUZZBxmmmOe7FzLrhwwVoz2wuUAucCq4BLgP7Aec651dFrew3YBowFbotu+1fgWmCEc25OdNta/IaEe6LHwcy+hF8QLnbO3R8972oz6wUUA8sbcP0iIi3Oi3h4FolHF7h4RVYds3L0i92ZVVBQwObNm2mTVDcC6N69Ox988AEVFRXk5KQu/xUVFXHXXXcB8O677/LVr3611vN6nseiRYuYP38+v//979m9ezfhcJiCggL+7d/+jX//93/nnHPOafDr2bJlC4sWLeL5559ny5Yt7Nq1iw4dOnD22Wdz++238+1vpyr51c/bb7/NtGnTeOONN/jrX/9KWVkZX/rSl/jqV7/KzTffzJAhQ+L/e7aERhdmgblU/xcv9koGknoBhEvwi6C/PoLzVuOc+wewJnl79H/YD5xza6KPlwKvAY+b2Y/xO2nHR6/75+m8piMV764xq94xq4xZERGRJhGJd8zWsfhXvGM2+jsUJhKJNHzxLxVmM9FcmniOm1SUjfm/6O+ugWN+HCvKRvf7zMyWAZcSLcxGx1UATwTGVZrZb4FxZpbvnDsMXICfl/t40nkfB/7XzHo457bV5/pFRDKBVx6JLv4VfRz9yxRlIK3Ijh07ePjhhxk3blyD93XO8atf/QozwznH7Nmzuf/++2scv3PnTgoLC3nllVc47rjjGDRoED179sQ5x5YtW5g/fz6zZ8/mkUce4dZbb23QtUycOJEnnniCU045he9+97t07NiRzZs3s3TpUpYuXcq0adO47bbb6j5QCm+88QZLlizh7LPPpl+/fhx//PHs3LmTZcuWccUVV/D973+fxx57rFHHTocjKczekLaraCbOOc/MvgfcD8zAjz94Dfi2c+7DFr24JFUf4oycNsckPOdp5WYREZEmUdUxW33xr5xwOP53LGM2lnhQW5RBcsasFwl8YFRhNhO11Bx3QPT3n6O/vw78McW4d4BhZnZsNIbr68A259yBFOPy8PNvY3Feh/HvIkseB360lwqzIpI1Kg5XgFUVZtUxK61Nhw4dMDPuvfdeRo4cyQknNOwG9RdeeIFt27YxfPhwnnvuOUpLS/npT39KXl5etbEHDhxg8ODBbNq0iauvvpoZM2bQoUOHhDFlZWXcf//9lJWVNfi1DB48mJ/85Cd84xvfSNi+du1aBg0axI9//GOGDh1Kly5dGnzsq6++muHDh1fbXlZWxtlnn83jjz/OrbfeyllnndXgY6dDowuzzrnSdF5IU3DOVetFds7tBUZEfzJWfPEvS5Exq45ZERGRJhHvmA0UZmNRBnm5udUKs/Eog1jVtSJamM1tQygaZeAlZcwmfF6MLf6ljNmM0RJzXDPrih878KJz7vXo5o7A9hTD90Z/dwD2RcelWsA2Nq5j4Pc/nKvWSpY8LtX1jQJGgX/LpIhIJig/fBggHmUQW/zLVJiVVqJt27aMGTOGO+64gylTpvDoo482aP/Zs2cDcNNNN9GxY0cefPBBFi9ezFVXXVVt7EMPPcSmTZs455xzmDdvXnyeG9SuXTvuueceDkf/22yIVIVTgAEDBnDuueeycuVKXn31Va64ouFrlqaKeQD/ei+44AL+/Oc/s2XLlhYrzKZz8S9Jo6qFQkKE85MyZvXhTUREpElUeOVA6sW/8nKrirXmEjtmQxbCPIdVVvhhsrl58QlrrVEGYXXMtnZmdizwNFBJYreukbrtK7nxIN3jqnHOzXLOnemcO/OLX/xiXcNFRJrF4Xhh1hdvy1KUgbQit9xyCz179mTmzJm899579d5v165dLF26lJNPPpl+/fpxww3+FGTWrFkpx8e2T5w4MWVRNig/qbnwSOVG5+A15eQ21oEDB1i1ahUAvXv3TuuxGyK9r0rSxyljVkREpLlVRr/8DC7+FeuSDd7WVRVlEO3OsRC5sbtd8tqAWXwRAS958a9UGbOKKWqVzKwN/uK0/wwMcM79NfD0XlJ3scbuG/w0MC5VG2uHwPOx3x3MzJK6ZpPHiYhkhfJD/pep8Xos6piV1ic3N5fi4mKGDh3KuHHjWLRoUb32mzNnDhUVFfFO1VNPPZXTTz+d1atXs3XrVnr16hUf++GHH7Jjxw5ycnIYMGBADUdsGh988AEvvfQSbdu25Vvf+tYRHWvr1q08/vjjRCIRdu3axbPPPsvHH3/M+PHjOe2009J0xQ2X1sKsmX0BuBl/cYGuQKoyuXPO9UzneY9GsemyhUKEchPzPSIpFiERERGRI1cZ75hNEWUQ+JY+1jFbFWUQJjeWHZvn3+lSY8ds8POiMmazQlPMcc0sF1gInAUMdM69nTTkHeD8FLueAuyI5svGxg0xs7ZJObOnAOVUZcq+E73uniTmzJ4S/f2n+l67iEgmKC/3G5ZihdhA2mwLXZG0tGU9s6PUdPH776f1eIWFhfTt25fFixezfv16+vfvX+t45xwlJSWEQiGGDRsW3z58+HDefPNNSkpKKC4ujm//5JNPAOjUqVONsQBN4fDhw1x33XUcPnyYn//859UybRtq69atTJkyJf44Ly+P++67j9GjRx/ppR6RtEUZmFl74HfAz4Azga/ifwP/ZaB79Ccvnec8mgWjDKp1zKowKyIi0iRiHbO5wcW/UkQZhKIf/mL125BZVcdsbpv4Nggu/uU/dl7gA6MyZjNeU8xxzV8tbh7wHeBS59yGFMOWAl3NbEBgv3bAxdHnguNygaGBcTnAVcALzrlY0NsK/ELtdUnn+T7wR+ecFv4SkaxSUZHUMRvLmFWUgbRCDzzwAACjR4+mepx8olWrVvH+++8zaNAgunbtGt9+7bXXkpeXx9y5c6kI3KkdbzKwOtOP0iYSiXD99dfzyiuvcNVVVzFmzJgjPubgwYNxzlFeXs7WrVuZMGECd955J5dccgnl5eVpuOrGSWfH7F3437jfCMwFIsBDwH8D3wSmA/vxOw2kDlWLfxk5Sd9IeJWKMhAREWkKsY7ZcKqO2WCUQVLHrFmY3EggygAaFmWgjtlM1hRz3F/gF1KLgP1mdnbgub9GIw2WAq8Bj5vZj/GjC8bj1yB+HhvsnHvLzJ4AHo524W4D/gvoQaAI65z7m5k9BIw3s8+BN/GLt+cBlzbg2kVEMkL54dRRBuqYbb3S3YmaTfr27UthYSFPPfUUTz75ZMoFvGJiebHJC2516tSJiy++mIULF/L0009TWFgIwIknngjAnj17OHToUJN3zUYiEb7//e+zYMECrrzySh5//PG0FoVzc3Pp2bMnkyZNIi8vj/Hjx/PII4+kpfjbGOnsXr0EWOecmxPMrXK+DcB3gX8BJqTxnEev+DcSIcLqmBUREWkWlRH/y8+EjtlYxmxw8S+qL/6Vl1SYrdfiXyrMZoOmmONeGP09Ab/4GvwZGT2+B3wPWAnMABbjF4W/7Zz7MOl4NwBzgKnAs0A3YLBz7s2kcROiY34IPA+cA1zpnFvWgGsXEckI5YeTogyib7TKmJXWqri4mNzcXMaPH19jB+ju3btZsmQJANdccw0WXRch9rNw4UIgcRGwbt26UVBQQGVlJevWrWvS11BZWck111zDb3/7W6699lp+85vfpH3Rr6ALL/SnZGvWrGmyc9Qlna+uG/BM4LFHIH8r+i39c8DVwMQ0nveolBhlkNQxW6HCrIiISFOo9PwPecGM2ViUQW6qjNmcWMZsqHrGbHKUQbQGq8Js1kn7HNc5172e4/YCI6I/tY07CPwo+lPbuAh+YXZqfc4vIpLJYoWn6ot/ibROPXv25Oabb2batGk8+uijKceUlpZSXl7OGWecQZ8+fVKOWbp0KS+++CLbtm2jR48eAIwaNYq77rqLqVOnMnDgwHgDQiqHDx8mPz9VHH/tysvLufLKK3n66acZNmwYc+bMqfU86fDRRx8BNGnxty7pPPMB/G/xYz4DOieN2YW/YILUwblAlEG1jllFGYiIiDSFWMdsTrgqtiAWZZAfjDIgOcogVI8og2jGrFPGbJbRHFdEJANVRBuW4h2yypgVYdKkSZSWllJUVJSyqFlSUgLAjBkzOOuss1IeY+LEiUydOpWSkhKKiooAuOOOO1iwYAEvv/wyw4YNY/r06bRv3z5hv3379vHggw8SDoeZMKFhN8sfPnyYyy+/nOXLl3PjjTcya9astBVl169fzze/+U1yA3e/gd89PG7cOAAuuuiitJyrMdJZmP0Qv6Mg5k/At8wsHP12HqA/sDON5zxqVXXMGuHkjllFGYiIiDSJSs9/j80JVU2RUkYZuGinbCDKoNriX/WKMohtdP5PMy6qIPWmOa6ISAaqjBdmfZ4pY1akY8eO3HnnnYwdO7bac2vWrGHz5s307t27xqIswI033khRURFz5sxhypQp5OTk0LZtW1asWEFhYSHz5s1j2bJlDBo0iF69euF5Hlu3buWll16irKyM6dOnN/i6//M//5Ply5dzwgkn0LVrV+65555qY84991zOPffcBh/7Bz/4ATt37uScc86hoKCAcDjM9u3bWb58OQcPHuSyyy5jxIhab05qUukszK4FrjQzi+ZvPQE8AjxrZsuAc4Gzgf9J4zmPXvEPcaEUi3+pMCsiIpJuzjkqI/5tkamiDIKF2RB+BEGsYzZVlEG1jtlUhVkzvzjreX6cQbjlbqOSGmmOKyKSgWKrxldlzFrCY5HW6rbbbmPGjBls3749Yfvs2bMBGDlyZK37d+/enYEDB7Jy5UqWLVvGkCFDAOjcuTPr1q1j4cKFzJ8/nw0bNvDMM88QCoUoKChg6NChjBgxgn79+jX4mrdt2wb4C4ylKsrGNKYwO3r0aJYsWcLGjRt5/vn/z96dx9lRV/n/f33qbt1JOp3VQCALgigI/lQQhzWoCaKIICashm9kyTg44IYsQiBAAswMCkhgBoiSjERAQCCMy0AgDYigKAS3IWxZWAKkSUh3p5e71Of3Ry13q9tL+obc7n4/fcTuW7du3bqBB1V17qn3+V/S6TTjxo3js5/9LLNnz+b444+v6nCxvqrm2f9SIAnsitdZ8F94U16PBY7w13kSb7Kt9CDsmDURGbMqzIqIiFSda3NYLI6J4QTZr+SjDLrrmI2KMijrmPXP94oKs+DlzLou5FSYrVE6xxURqUHZjHfTQr6cortOZOiw3UR2pFKpsNBZaNmyZSxbtqxX23/ooYcilzuOw6xZs5g1a1bvdrSXtufwrdmzZzN79uzttv3+qtrZvz/19V8KHmeB44wx+wF7AGuBZ6wtuxyRCLYgjy5ep4xZERGR7S3Ml3XiJcu9C7/CXKogY9YJh3/FyguzpcO/HD9j1i05kY7FIZvRALAapXNcEZHaFHxxmu+YdYoei4gMBNu9LcNa+2fgz9v7fQab8NsPxynLmM1lVJgVERGptqxbPvgL8lEGqW4Ls4aE28sog9LrxaA7VwPABhSd44qI7FhBxmyeogxEZODZLoVZY0wC2AtoxJtc+3/WWlUT+8AWZsyWFGZtTh01IiIi1Zap0DEbHWXgd+X4xdbiKIN6oJfDvyBfmFXHbM3TOa6ISO0IogwcZcyK1JympqZexROMGjWKb3/7233a9v3338+qVat6XG/q1KnMmTOnT9veEapamDXGjAWuBk4GCquJncaYnwMXWmubq/meg1ZBlEEsVRxloI5ZERGR6stV6pjtJsogyI11TIxkUJhNpPxlpVEG3tMqzA48OscVEak92WzxcTNfmBWRHa2pqYnLLrusx/WmTJmyTYXZpUuX9rjetGnTBkRh1qnWhowxE4A/AKcDaeBx4Bf+z7S//Gl/PelB9x2zutVRRESk2jK5NABxJ1G8PCrKwAatst4PxxhSWb/iWjfce6o0yqBg2mvRwAYVZmuaznFFRGpTcHwOOmZRx6xIzZg/fz7W2h7/rF27ts/bXrJkSa+2vT0HilVT1QqzwJXAB4HrgCnW2s9Ya0+y1n4GmAJc7z+/sIrvOWjlh385xNUxKyIist1lXe8CLx4rLswGGbPFHbPF/TjGxEgGUUN+YbY0ygAqdM3G/BuY9MVrrdI5rohIDQruaAmPyBr+JSIDUDWjDL4EPGGt/W7pE9baFuA7xpj9gaOr+J6DVlCYxXGI1RV3zLpZXbiJiIhUW7ZCx2xw4ZdK5iMOnCBjNnhsnB47ZsG7ZrSuX5iNBS9Wx2yN0zmuiEgNyoXXxUHHbNEPEZEBoZodsw3A73pY5wlgRBXfc9CyNuiYpaxjVoVZERGR6sv6GbOJWHSUQTIiYzYfZVBQmE0N85ZFdcz66xd3zPqFWQ33rFU6xxURqUE5P9s9jDJwFGUgIgNPNQuzLwA797DOzsDqKr7n4NVNxqybVZSBiIhItWVz3vE1VtoxG0QZxPM3GgUZs6awMJsr7pgtHf4FYGLeMusqY3YA0TmuiEgNCgqzAWu846kKsyIykFSzMHs9cIIx5mNRTxpjPg4cj5fPJT0IM2Ydh1hpx2xGHbMiIiLVlu+YTRYvj4gyKO2YNcYhmS3OmI2MMgg6ZguvGZUxW+t0jisiUoNy2ZKOWUzB/4uIDAzbnDFrjDmsZNEa4GHgj8aY/8abVPs2MAGYBswGfgOs3db3HErCjFljiNfVFz3n6sJNRESk6oKO2bhTfHrUbZSBz3Fi5R2zvR3+pY7ZmqJzXBGRgSHnFnfMht9+qmNWRAaQ/gz/aiL6v3gGOAM4vWQZwDHAl8mPu5BKgigD4xBLFnfuuBlFGYiIiFRb0DEbi/UcZRAM/3L8aAIHUzb8KzLKQIXZgaAJneOKiNS8MGPWBMO/TPFjEZEBoD+F2cvRV1HbTZA9ZxwHYwx7H3cCzS/+H+/87S/qmBUREdkOMrk0AIkKGbOFUQYf2DPFTrkkex7h3dVinFhBYdYb/hUdZWAAq4zZ2qZzXBGRAaCsY9apZlKjiMj7Y5sLs9ba+VXcDylhbT7KAOCLN9xCyxuvc8sBH1XGrIiIyHaQc73ja2nHbMbPmE0URBns+5URfHHmhPCxE5Ex2+soA2XM1hSd44qIDAxhxywlHbP6bk1EBhB9pVSjgos4U/Ctn+PfQpnLKspARESk2oKM2YRTMvwrImM2HivJmDWmLGM2smNWUQYiIiJVUTljVkRk4NguhVljzCHGmLONMfOMMecYYw7ZHu8zmAXDv4oKs/4Foc2qo0ZERKTaMn7GbDxWfENRGGVQUJiNxYvXMSZWnjHbXcdsYTNPTIXZgULnuCIitcP1Y4HyHbPej5gyZmUIMMZgjGHKlCl0dnZGrjN16lSMMeG5bJSFCxeG21q9enWP7+u6Lvfccw9f/epXmTRpEnV1dQwfPpy99tqLuXPn8uSTT27T53nppZf4t3/7Nz772c8yadIkkskkEyZM4JhjjmHlypXbtM1KrLXMmDEj/Nzd/f28H/qTMVvGGPNJ4Hbgw8Ei/IwuY8xq4FRr7Z+q+Z6DVlCYNfnCbCzsmFVhVkREpNpyfsdsvLRjNiLKIJ4o6ZiloGM25WXMRg//8pZFZszmVJitVTrHFRGpPUGUQaDw2tl13fALUpHBbP369Vx33XVccMEFfX6ttZaf/OQnGGOw1nLrrbdyzTXXVFz/rbfeYubMmTz55JM0NDQwY8YMdt99d6y1vPTSS9xxxx2LcX8SAAAgAElEQVTceuut/PjHP+bss8/u077MmzePu+66i7333psvfvGLjBkzhtWrV7N8+XKWL1/O9ddfzznnnNPnzxhl0aJFrFy5krq6uopF7fdT1Qqzxpg9gEeBkcDv/N83ADsDnwEOBR42xhxgrX2pWu87WIUdswV3Yxi/MOuqMCsiIlJ1Gdcb/hUvzZiN6JiNB12uviBfNpdIEvMvBKOHf3k/FWUwcOgcV0SkNrn+wdQEHbMFhVjrWgU3yqA3evRojDFcddVVnHHGGYwbN65Pr3/ooYdYs2YNc+bM4Te/+Q1Lly7lyiuvJJlMlq3b3t7OkUceyfPPP8+JJ57ITTfdxOjRo4vWaWlp4ZprrqGlpaXPn+XII4/k/PPP5xOf+ETR8scee4wZM2bw/e9/n1mzZrHzzjv3eduFVq9ezfnnn8+5557LnXfeybp16/q1vWqo5n+q5gEjgBOstYdZa+dba2/2f04DjgcagIur+J6DlqU8YzYW9y4IXWXMioiIVF3WH75VWpiNypiNlXTMJvzCrJusC5dp+NegoXNcEZEa5OaKowyMgZz1vgHNZfVlpwx+w4YNY968ebS0tHDZZZf1+fW33norAGeeeSannHIKzc3N3HfffZHrXnvttTz//PMcfPDBLFu2rKwoCzBy5Eguv/xyzj333D7vy5w5c8qKsgDTpk3j8MMPJ51O8/vf/77P2y2UzWaZPXs2u+222zb9fW0v1SzMTgfut9beHfWktfYe4AF/PelB0DFLxPAvN5MpusgTERGR/ssGHbNOSWE2KsqgZPhX0i/e5pKpcFl0lIH3Ux2zA4rOcUVEapBbek1ccLepLR0MJjJIffOb32T33Xfn5ptv5sUXX+z1695++22WL1/OnnvuyUEHHcTXv/51AG655ZbI9YPl8+bN6zEmJJVKdft8XwXn4PF4/276X7BgAc899xxLly6t+j72RzULs+OAF3pY5wV/PelBPsogf3QxjhN20OpAIyIiUl3ZMGM2f9JnrQ0Ls8mijNmSKIOMX5gtOMmLijJwEt6ybFdExqwKs7VK57giIjUoFwz/8od9GQyuX511c7pelqEhkUhw9dVXk8lk+pQze9ttt5HJZJgzZw4A++yzD5/85CdZuXIlL7/8ctG6r732GuvXrycejzNt2rRq7n6P1q1bxyOPPMKwYcM47LDDtnk7zzzzDAsXLuSCCy5g//33r+Ie9l81h39tBPbuYZ2PAM1VfM/By5ZHGQA4iQS5ri7cTAanJN9OREREtl3O9aMMCjpmgxiDeCxW1B0Qi5dGGfiF2URBx2xElEHDTjE2r83S+laWcXv476PCbK3TOa6ISA0qGqRJcVOT6+oO06Fo92t239G70CuvnPtKVbc3c+ZMDjzwQO677z5+97vfccghh3S7vrWWxYsX4zgOp556arh8zpw5PPvssyxevJirr746XL5hwwYAxo4dS11dXdn2tpeuri5OOeUUurq6+Pd///fI+ITe6OjoYPbs2ey9995ccsklVd7L/qtmx+yjwJeNMSdGPWmM+SpwDLCiiu85aAUHmcLJkgCOn0PnKodORESkqrJ+YTZW0DEbdMvGY7EwmgAgHi/tmPWHfxUMS4jqmG2c6G17yxsFRVhlzNY6neOKiNSgHKUZsw6unzHrKmNWhpgf/vCHAHzve9/rMfry0Ucf5ZVXXmHGjBnssssu4fKTTz6ZZDLJkiVLyGTys42C7RV++bG95XI5Zs+ezZNPPskJJ5ywTbm1gfPOO49XX32VpUuXFkWT1YpqdsxejndSuswY801gJd7E2p2Aw4FDgFZgQRXfc9AKowpK/sV3EvmcWREREameoGM2VjD8KxN0zMbjRR2z8dLhX/5xOdfD8K/GXbyC7pY3Coqw6pitdTrHFRGpQfkvPoO7TfPXzor+G5qq3Yk6kBx44IHMnDmTe+65h1/84heccMIJFdcN8mKDGIPA2LFjOfroo7n33nt54IEHmDlzJgATJ04EoLm5mc7Ozu3eNZvL5fja177G3XffzfHHH8/tt9++zUXhxx57jBtvvJH58+fz8Y9/vMp7Wh1V65i11r6MN/TgReBgvMm0i/Am2R7qLz/CWvtStd5zMLP+VJCyKIO4d7GYy6qrRkREpJqybnnGbBBlkIjHi04IY7Hik8MgyiBb0DEbNfxrZNgxW3AcD6KJcirM1iKd44qI1KYgriC4YjaGMGM2l1OUgQw9V199NYlEggsvvJB0Oh25zsaNG7n//vsBOOmkkzDGFP259957geIhYJMmTWLy5Mlks1kef/zx7foZstksJ510EnfeeScnn3wyP//5z/s19Ou5557DWsull15a9lnXrVsHeDm9xhhWrVpVrY/RJ9XsmMVa+wywlzHmIOCTQCOwBXjOWvtkNd9r0KuUMev/C2lVmBUREamqXESUQSaIMig5IXRKM2aD4V+JHqIMdvG20/JmQRFWHbM1T+e4IiK1J/+9p1+gdRysX5hVx6wMRbvvvjtnnXUW119/PTfccEPkOkuXLiWdTrPffvtV7CBdvnw5K1asYM2aNey2224AzJ07l4svvpgFCxYwffr0ojvJSnV1dZEqGIjbW+l0muOPP54HHniAU089ldtuu63b9+mNffbZh9NPPz3yubvuuou2tjZOO+00jDGMHTu2X++1rapWmDXGHAa0WGtXWWt/D/y+WtseioIDSeWOWUUZiIiIVFOum47ZeMnATae0Y9aPMijqmO1tlIEyZmuaznFFRGpTcEeKY/LH2eA3V3ehyBB1ySWXsHTpUhYuXBhZ1Fy8eDEAN910EwcccEDkNubNm8eCBQtYvHgxCxcuBOA73/kOd999N0888QSnnnoqixYtYtSoUUWva2tr40c/+hGxWIyLLrqoT/vd1dXFcccdx69//WtOP/10brnlln4XZQGmT5/O9OnTI59bsWIFbW1t3Hzzzf3qyu2var7zSuBm4KwqbnPIqvQNn+MPG1HHrIiISHVl/Y7VWFRhtuRkrSzKIOPdLpZNVI4ysNYybKwhloD2TS7pdpfkMEcds7VP57giIjWodMCRKeqYVZSBDE1jxozhBz/4Aeedd17Zc01NTaxevZp99923YlEW4PTTT2fhwoXcdtttXHbZZcTjcYYNG8Zvf/tbZs6cybJly3jwwQeZMWMGe+yxB67r8vLLL/PII4/Q0tLCokWL+rzf3/jGN/j1r3/NuHHj2GWXXbj88svL1jn88MM5/PDD+7ztWlfNwmwz0FHF7Q1tFaIMYkHHrIZ/iYiIVFU+yqB8+FeipGM2Fi8uzMb9KIPCwmxwDA+iDL4xfz5vvv02R0+8mC3rLC1v5hi3hwqzA4DOcUVEalDYMRtEGRiw1s+YzSrKQIauc845h5tuuom1a9cWLb/11lsBOOOMM7p9/dSpU5k+fToPP/wwDz74IF/5ylcA2GmnnXj88ce59957ueOOO3j66af5n//5HxzHYfLkycyaNYvTTjuNgw46qM/7vGbNGsAbMBZVlA2oMNu9JqDvf/sSqdLwr7pRowFof7eZsR/68Pu+XyIiIoNVLlceZRAWZhNesXaPtn+ik62MHVt861bSL752FWTPBh2zQUfPH55/HoB0w3tAI11t/kWjCrO1rgmd44qI1By3rGPWhFEGwfW0yGBV2jFeKJVKhYXOQsuWLWPZsmW92v5DDz0UudxxHGbNmsWsWbN6t6O91NTUVNXt9UZp4XpH6X9gQ97FwIeNMVcYYxI9ri3dCjNmTXFHTuPkKQC0vLb+fd8nERGRwSwbNfwrKMzG41hr+fRbpzDtrbnEE8XH55TrPe4kX1wNjuG5kngiE/OjDYJVlTFb63SOKyJSg4K6VMzPmDUmH2XgZvVlp4gMDNXsmL0Q+BvwA+B0Y8zzwFvk87cD1lobPRJNQrZClMHIXScDsOW1de/7PomIiAxm+eFf5VEGyUQCv26LE/e6cgol/Sy7DpO/EAyHf5UUZoPBYW7OBgvwF1ThU8h2oHNcEZEaZK0typJ1DAUdsztmn0RE+qqahdk5Bb/v5P+JYgGdtPYgPMCUFGYbJwWFWXXMioiIVFNUx2zaz3RPxOPk0t6xOVbSLQuQ9Guv7TafAV84/CtXMB3aOt7vQaE3LMxqgnStmlPwu85xRURqhAsUHpFjsXzHbE4dsyI7VFNTU6/iCUaNGsW3v/3tPm37/vvvZ9WqVT2uN3XqVObMmdOnbe8I1SzM7lbFbQ15+SiDko5ZvzCrKAMREZHqyvkdqzEnP+irMGM2l/ELs8nywmzCvwBsJx9HYAoyZrOFhdmYd4wPO2Zj6pitcTrHFRGpQa61+CkG5KzBMfmMWVdfdorsUE1NTVx22WU9rjdlypRtKswuXbq0x/WmTZs2tAqz1lrdW19NlTJmJ3kZs4oyEBERqa4wyiBWEGVQ1DHrLYtFpIzG/QvArTYdLov5d724rhsWeAFcx9tmWIdVlEFN0zmuiEhtslgKe2a94V/+l6Ka/SWyQ82fP5/58+dvl20vWbKEJUuWbJdt7whVKcwaYyYDn8K7hesZa+1r1djuUGaJzphtmLgrGEPrhjdws1mceDWbnkVERIau7oZ/JXvomA0Ks20FhdngGO5aS7aoMBtEGQQdsxr+Vat0jisiUrusBfwIQJegYzbIcdeXnSIyMDg9r9I9Y8w1wKvAL4C7gTXGmP/o73aHujDKoKQwG0+lGDFhZ2wuR+uGN3bEromIiAxKUcO/epsxG/MLr21uZ7jMKYgyKO6Y9X636pitaTrHFRGpbS5uUcZsYZRB6eBNEZFa1a/CrDHmZOC7ePcPvACs9n//rjHmpP7v3tAVHkhM+cXfyF12BaDljdffz10SEREZ1HLddMwm4vFuO2ZNxuuU7SBLxs88cPwvV3OuW5wxa/yO2TBj1i8EZ/PdtrJj6RxXRKT2WQvG+l+CYnAcg7VBx6wKsyIyMPS3Y/Z0IAtMt9Z+1Fq7N/B5vAGJmkrbH9aPMogozNaNHgNAV8uW93WXREREBrPIKIOgYzaR6DZj1qS9Ttl0zKEj3ea9xo8bymQyRVEGOeP97gaLhjd6P9tbqvI5pCp0jisiUuOs/z/vd78wGzxnbeUXiojUkP4WZj8G3G+tXRkssNauAB4APt7PbQ9plaIMAOpGehdwXVtUmBUREamWoGM23kPHrBMRZYBfmM3EHNr9wmzcL8xms9miKAPrRxmEHbMjRnk/296r0ieRKtA5rohIjbMWjBvEBpVkzGbVMSsiA0N/C7Oj8W7tKvUCMKqf2x7SrK0cZZBq9AqznVt0ASciIlItUVEGQcZs4fCveLeFWcPWdGv4GoB0NlsUZZALowz8BSrM1iKd44qI1DgblmHVMSsiA1d/C7MOkIlYngEirlqk14Iog4iO2VTQMasoAxERkarJ5sqHf0V3zEa8OOMXZh2H9q7W8DVQHmXgUhplEBRmN1flc0hV6BxXRKTGWWsxYZQBfmE2yJjVQE0RGRj6W5gF0FdR24F1Kxdm6xq9CzhFGYiIiFSH6+b8zhuD48TC5emIjNl4xPCv4iiD8o7ZTETGrFWUQa3TOa6ISA1zsUE/k9cxawo6Zl39J1xEBoZ4z6v0aL4xZn7UE8aYqK+prLW2Gu87qHWXMRtGGahjVkREpCqiBn8BYadr7zNmTViYjcdi4TYKC7NuMPyrNMpgqwqzNUbnuCIiNcxicfwOWQvEYuqYFZGBpxonj329nUu3f/VCWJiN+OtSlIGIiEh15Vw/xiBWnFNQlDGb9jNmSztmc1nIZXGNIWcMm7duBMBxHOLxONlslo7Ozvzq+Bmz2aBjdrT3M+iYzeUglu/alR1G57giIjXMhv8XdMw6BRmzO2inRET6qF9RBtZaZ1v+VGvnB7MwrDwqymCkhn+JiIhUU85vX42Z4u+se5Uxm+4CwI0nwBgeWPVTVvzj7vB1AO0FhdkwYzZo5qkf4R3vO7fCGy/DcaPgv+dX66PJNtA5rohI7bPYgtAZQyzu5Dtms+qYlcHNGIMxhilTptBZcJ5ZaOrUqRhjimYdlFq4cGG4rdWro+aeFnNdl3vuuYevfvWrTJo0ibq6OoYPH85ee+3F3LlzefLJJ7fp87z22mucddZZfPrTn2annXYilUoxceJEDj30UG677TYymajo/21jrWXGjBnh5+7u7+f9oBPIGmVtz1EGypgVERGpjmzYMVtcmC3KmPXPB2OlHbP+4C+Tqg8X/eW13wP5nNmOrq7wuVxYmPWvJo3JDwBbcjF0tMHtl/XzE4mIiAxuFosp6JiNFWTMujl3h+2XyPtp/fr1XHfdddv0WmstP/nJTzDGO7e99dZbu13/rbfe4rDDDmPWrFk8/PDDHHDAAZxzzjmcddZZfPjDH+aOO+7gkEMO4YYbbujzvrzyyissW7aMxsZGjj32WL73ve9x9NFHs27dOk477TSOOOKIqhVQFy1axMqVK6mrq6vK9vpLOVi1KogyMIoyEBER2d5yFTJmizpm/SiDWGnGrJ8vG0sN54pjf8a8+2ezsW1D+DqAjo6O/HsFhdnCc8sRo6B1E7z7ZnU+kIiIyCBnbT5DxgJOLBZ2zFplGcgQMHr0aIwxXHXVVZxxxhmMGzeuT69/6KGHWLNmDXPmzOE3v/kNS5cu5corrySZTJat297ezpFHHsnzzz/PiSeeyE033cTo0aOL1mlpaeGaa66hpaWlz5/loIMOYvPmzTglzYmZTIYjjjiCpqYmfvnLX3L88cf3eduFVq9ezfnnn8+5557LnXfeybp16/q1vWpQx2yNCg4kxikvzNY1el01KsyKiIhUR0/Dv5KJRBhlUKkwS7KOsSN2BqC5bQPW2sgogyBj1uYKLhqDjtlNG/r/YURERIaAoo5ZY/zhXx51zMpQMGzYMObNm0dLSwuXXdb3u62CDtkzzzyTU045hebmZu67777Ida+99lqef/55Dj74YJYtW1ZWlAUYOXIkl19+Oeeee26f9yWZTJYVZcG7a+3YY48F4KWXXurzdgtls1lmz57Nbrvttk1/X9uLCrM1Khz+Zcr/ESUbRgLQ1doSriciIiLbLhz+5UQP//I6Zr1lsbKM2XxhdniqgWHJBtLZTlo7N5PwowyKCrPW26ZbGH83wi/MqmNWRESkVyyFXbGGmONA2DGr62QZGr75zW+y++67c/PNN/Piiy/2+nVvv/02y5cvZ8899+Sggw7i61//OgC33HJL5PrB8nnz5kUWUAulUqle70dPcrkcv/71rwH42Mc+1q9tLViwgOeee46lS5dWdR/7S4XZGhUWZiP+hXdiMa84a626ZkVERKqgUsdsJqpjtjRjNizMehmz4xsmArCxbQPJbjpm3cKO2aAw29Xez08iIiIyNFgsxg1+N8TiMYJyrFXHrAwRiUSCq6++mkwmwwUXXNDr1wUDtebMmQPAPvvswyc/+UlWrlzJyy+/XLTua6+9xvr164nH40ybNq2au1+mubmZ+fPnc+mll3LWWWfxkY98hIceeoiTTz6ZL33pS9u83WeeeYaFCxdywQUXsP/++1dxj/tv0GTMGmNmAicB+wMfANYDvwSutNa2Fqw3GvgP4FigHngK+I619q/v+053I8zEiciYBS9nNt3aQmfLFupGlbeQi4iISO/lctGF2cKO2faKUQZ+fmzSGyAwbsTOrHt3Nc2tb4ZRBoXTcrM2ImM2iDIQERGRXinsmLVALJZvarKuMmaHolfGH7qjd6FXdt/4RFW3N3PmTA488EDuu+8+fve733HIIYd0u761lsWLF+M4Dqeeemq4fM6cOTz77LMsXryYq6++Oly+YYMXtTV27NjtPjCrubm5KGbAGMO5557LlVdeGTmDqTc6OjqYPXs2e++9N5dcckm1drVqBlPH7LlADvgBcCTwn8C/AA8bPw/AeP8Ul/vPnw18FUgAK40xu+6Ina4ozJiN/kdUpwFgIiIiVRMM/4pXGv7Vq47ZfGEWoLl1Q4UoA78wWxhl0KAvWUVERPrCYglqs5YgY9Y7RitjVoaaH/7whwB873vf63H43aOPPsorr7zCjBkz2GWXXcLlJ598MslkkiVLlpDxmxOgYAbSNhZG++IjH/kI1lqy2Szr1q3j2muv5ZZbbuGwww5j06ZN27TN8847j1dffZWlS5eG5+a1ZNB0zAJHW2s3Fjx+zBizCVgKHA48CnwZOAT4rLV2JYAx5ilgDXAecM77usfd6C7KACDV6BVmN730IuueaGKvY2bywvJ72fNLx9K46+T3bT9FREQGg4pRBn3MmIXiKIPI4V9hx2zE8C8RERHpFRuWYQEMsViM4GaUngpTMjhVuxN1IDnwwAOZOXMm99xzD7/4xS844YQTKq4b5MUGMQaBsWPHcvTRR3PvvffywAMPMHPmTAAmTvTObZubm+ns7NzuXbMAsViMyZMn861vfYsJEyZw0kkncckll7Bo0aI+beexxx7jxhtvZP78+Xz84x/fTnvbP4OmY7akKBt4xv8ZfAXwZeDNoCjrv24L8CBwzPbdw74Jh3p1E2UA8Kt/PYPHF1zCzZ/am8eumMcvZm175oaIiMhQVWn4V9gxG4/jVowy8IuuCe8kdeyICQBsanuLZNAx29ERrh4ZZaCO2SHHGLOrMeYGY8xTxph2Y4w1xkyNWK/OGPMfxpgNxpgOf/3DItZzjDEXGmPWGmM6jTHPG2O+WuG9zzTGvGCM6TLGrDbGfKP6n1BEZPuyWEzQMWsM8XhMHbMypF199dUkEgkuvPBC0ul05DobN27k/vvvB+Ckk07CGFP059577wWKh4BNmjSJyZMnk81mefzxx7f/BynxhS98AYCmpqY+v/a5557DWsull15a9lnXrVsHeHfGGWNYtWpVNXe71wZTx2yUIJX4//yfHwX+FrHe34FTjTEjrLVt78ue9SRsFY+unSeGDYtcvmX9uu22SyIiIoNVpY7ZdMHwr2y6d1EGI1Lel6db020k4mMB6CjMmHWDKIOCbp7xuttlCNoDOB74M/AEcESF9X4CHAV8H3gV+Cbwv8aYA621hVcQV+BFe13kb/NE4G5jzJestb8OVjLGnAncDFwFrAA+B9xkjDHW2v+s4ucTEdmurMl3zFq8wqwbLLEqzMrQs/vuu3PWWWdx/fXXc8MNN0Sus3TpUtLpNPvtt1/FDtLly5ezYsUK1qxZw2677QbA3Llzufjii1mwYAHTp0/HqXB3N0BXVxepVKr/H8j3xhtvABCP972Euc8++3D66adHPnfXXXfR1tbGaaedhjGGsWPH9ms/t9WgLcwaY3YBLgdWWGv/5C8eA6yNWD0IqhgNlBVmjTFzgbkAkye/PxdOPUUZVCrMioiISN8FHbOxkpyCwiiDfMdsyYszxYXZYckGANrTrdFRBn5h1hZmzO60W/lOWVvxzhkZFB631k4AMMacQURh1hjz/wEnA6dZa2/zlz2G11RwOd7dYBhjPoBXlL3aWnuN//KVxpg9gKuBX/vrxYGFwM+stRcVrDcRuMIYs9hamw+VExGpYRaX/PwvEx5zQR2zMnRdcsklLF26lIULF0YWTxcvXgzATTfdxAEHHBC5jXnz5rFgwQIWL17MwoULAfjOd77D3XffzRNPPMGpp57KokWLGDWqOIqrra2NH/3oR8RiMS666KKoTVf0hz/8gX333ZdhJbWutrY2vvWtbwFw1FFH9WmbANOnT2f69OmRz61YsYK2tjZuvvnmbSr6VsugiTIoZIwZATwAZIGvFz5FwX+6S5ZXZK29xVq7v7V2//Hjx1dvR7t9T78wW+GCLFE//H3ZDxERkaEgP/wrVrS8cPhXNsyY7b5jdlhqBADt6bbI4V9Zvwhc1DE7YUr5ThVNB5PBxtpetXN9GcgAdxW8LgvcCXzeGBO0o3weSAK3l7z+dmBfY0xQ+T8QGB+x3s+AsXizGEREBoTS4V/xRD7KQBmzMlSNGTOGH/zgB2zevJl333236LmmpiZWr17NvvvuW7EoC3D66adjjOG2224j658LDxs2jN/+9rccfPDBLFu2jClTpjBz5kwuuOACzjvvPI477jh22WUXLr300rKCbW9cddVVTJw4kWOOOYazzz6b888/n5NPPplJkyaxYsUKDjroIC688MI+b3cgGHQds8aYOmA58EFgmrX29YKnN+F1zZYKgt02b+fd67XwQOJUKszWv497IyIiMriFUQamZPhXUcZsl7dOT4XZoGO2q4WRQcdsYcasX3Atypgd1uB1xxZeSKa7oH7QnapJ33wUWGOtbS9Z/ne8Quwe/u8fBbqAlyPWA9gbb9jtR/3HpdFeheutRERkALBYnLAwi58x61HHrAxl55xzDjfddBNr164tWn7rrbcCcMYZZ3T7+qlTpzJ9+nQefvhhHnzwQb7yla8AsNNOO/H4449z7733cscdd/D000/zP//zPziOw+TJk5k1axannXYaBx10UJ/3+cwzz2T48OE888wzNDU10d7ezujRo9lvv/04/vjjOe2003ZoV+v2NKg+lTEmAdwLHABMt9b+tWSVvxOd37U3sL5m8mUBFGUgIiLyvgk6ZkujDNJ+lEEykSDrRxZUzJj1h3+l4vXETIx0rot43OvA7ezqCleP7JgFGDEaWjflH2fTgO6QGeLGEN04sKng+eDne7a8RSxqPSK2WbqeiEjNs+QzZjGGeCKRvz3WVcesDG7ddYWnUinWrFlTtnzZsmUsW7asV9t/6KGHIpc7jsOsWbOYNWtW73a0l4466qhtiiroj9LC9Y4yaKIMjDclaxneAINjrLVPR6y2HNjFGDOt4HUjgaP952pGzxmz0RdqJhaLXC4iIiKVZcMog+46Zr1lZRmzJR2zxhiGpRr8372T5mwuH0uQH/5Vsp0RJbd9ZbqQIa+3MVx9WY8K61beCWPmGmP+ZIz508aNG/vyUhGR7cYW/KesNMrAddUxKyIDw6ApzAI3ArOAa4Ctxph/Kvizq7/Ocjy2Gp4AACAASURBVOAp4HZjzInGmM/7ywzw7ztkryuw/jd8pkL8baWO2US9OmlFRET6wrUuuZw//KugMOu6bpirlYjHyaX94V+FHbOumx/+lcrHDA1Lejmzximvf2VzfmE2G9ExW7Riuu8fRgabnmK4NhX8HG3KhxNErUfENseUPF9kR8xbEBHpicXFFA7/KuiYtYoyEJEBYjBFGXzB/3mR/6fQZcB8a61rjPkSXvH2JqAOr1D7GWvta+/bnvZC8O1fpY7ZeIUCbFzZsyIiIr121x8X0bT6fj6713EAxJ18O2zQ5RqPxzHGkMv4hdkgY/a/L4XlN8K+h3mPE6nwtUHOrDXlA7yCjllb+tS4XeClP+cfq2NWvBiurxhjhpXkzO4NpMlnyv4dSAG7U5wzu7f/8x8F64GXNbuhm/VERGqeNW7+NgBjSCTi+cJsr+Yrisj20tTURFNTU4/rjRo1im9/+9t92vb999/PqlWrelxv6tSpzJkzp0/b3hEGTWHWWju1l+ttAk7z/9SsIMqAPmbMxuvqttcuiYiIDDq//uvPAFjxj7uB4o7ZMF/WHzQQFmaDjtm/PAYt78LLz3qPe1mYzeSCjNmSJ75xLby2Gl5f7a+ojllhOV6DwSxgKYAxJg6cADxkrQ2q97/FK9Se4q8f+BrwN2ttEDT3FNDsr7eiZL1NwJPb52OIiFSfxRYEsxgSyXg+ykAdsyI7VFNTE5dddlmP602ZMmWbCrNLly7tcb1p06apMCvbLsyYLbsjzVOpMFupw1ZEREQq68x4zYiFhdkwXzbhddHm/DppmDGb9UNnuzr8J/KvDaIMLNmy96oYZbDzB+GnL8C/fAJeWaWO2SHAGDPT/3U//+cXjDEbgY3W2sestauMMXcB1/lDbtcA/wLshldcBcBa+44x5lrgQmNMK/AsXvH2s8AxBetljDHzgJuMMW/gFWc/i9ewcLa1Vt8GiMiAYXExfmXWAvFEQXmjm8FIIrL9zZ8/n/nz52+XbS9ZsoQlS5Zsl23vCCrM1irbfZRBoj56+JebKb8AFBERkd6JRxRmK3bM+p2vpIPCbD4GIRj+ZU03hdnyZlpP0HmrjNmh4O6Sxzf5Px8DDvd//zqwEFgAjAKeB4601j5b8tqLgDbgW8BOwGrgeGvtg4UrWWv/y3hT6b4HfB9YD/yrtfYmREQGEGssxvrHZGNIJRK46pgVkQFGhdkale+Y7VuUQS6t7hoREZFtVdQx60cZxIPCrD/8ywkyZv0CK51+9GdBx+xwP8ogZzNl7+Fai0sON1ehmyee9HdAx/TBzlobfWtU8TodwHf9P92tl8Mr3i7oxTZvBm7u5W6KiNQkiwthx6whnkoWPKmOWREZGHTfe40KM2YrRRlUGP6VUx6diIjINisc/hV2zAZRBn70QDwozAZRBkHra7ygYzYozBJ9XHZNDrfSTS5Bx6yO6SIiIpGstWUds8lUIp8x66pjVkQGBhVma1QwRdI4fcuYzXXpIk5ERGRbRQ3/SoQds95ypzRjNlBUmPUyZnMVIjtzJout1DGb8Dt+FGUgIiISyc1ar2O2YPhXKpUKH1pXHbODmVVHtOwg2+PfPRVma1VPGbOVCrPqrhEREdlmsVh5x2yiJGM2HmTMlra8Fg7/8jNmszY6jsA12Z4zZhVlICIiEimXdbHGxfjXzbakY9aqY3bQisViYdyUyPstk8kQi8Wquk0VZmtU8A1f5cJs9PAvm8vh5ipd6YmIiEjAteUXbXEnf6IVdswmErg5i80BBkywSmnHbKy8Y7ZSYXZz6nWe4xGyUcfsMGNWX7aKiIhESXcEx1cT/kwmUwTJBuqoHLwaGhpoaWnZ0bshQ1RLSwsNDQ1V3aYKszWqp4xZJx4nlkxGPpdL60JORESkJ9lc+fEyEUuFv2cKogyCwV+xBBhTMvwrUNgx62fMZt3owuzKif/Jk4l7eOCRR8qfTGj4l4iISHc6OzoBcPxKrDWGZF1BlEFOHbOD1ZgxY9i8eTPNzc2k02kV4WW7s9aSTqdpbm5m8+bNjBkzpqrbj/e8iuwQQZSBqVw7j9fXk0unmXzwYex78v/jV988HYBcuotEff37spsiIiIDVSaiMDtm+ITw945O76Kvvq4uzJeN1xV8YdpNxmzSL/C6prh4m0om6Sr4AvXV114r37EgykAZsyIiIpHSXd6Xl/mjsiFVnwqjDFCxbtBKpVJMnjyZTZs2sXbtWnK6Y1jeB7FYjIaGBiZPnkwqler5BX2gwmyNyg//qlyYTdQPp2vLFurHjGWvY2fy6Lzz6Nj0LjnlrYiIiPQoqjA7vmFi+HunX0CtT6XIpkvyZQFylaMMEn4cgWuL12kYPryoMBuLOs7H1TErIiLSnXTaL8wG2QXGkEglw47ZXFbFusEslUqx8847s/POO+/oXRHpN0UZ1KggysBUiDKA/ACwIG82lvSq9rkuXciJiIj0pLQwa4zD6OEfCB8Xdsxmu/zCbKqwMFs5yiCIRHApL8wWv2fEcT4c/qWOWRERkSjpTu/46viVWIshkYyHHbPZ0i9PRURqlAqzNSrISem2YzYszHo/Y0mvU8fVhZyIiEiPMrniLzIbUo3EnXxxNSjM1qVS5PzCbCzZuyiDRMzres31UJh1oo7zypgVERHpVtq/+8SQ75h14vljtJvJRr1MRKTmqDBbo8LhX91GGZQWZr0Om6yGf4mIiPQoU5LhOjw1suhxh38HSn0qVaFjtufCbE8ds9GFWWXMioiIdCfd5Rdmg+wCYzDGhB2zGRVmRWSAUGG2Vrm9yJj1C7Jxv0Ab8ztsXBVmRUREepQu6ZgdlhxR9DgqyiAWFGZdNzxWh4qiDPyOWVt8TC4tzCpjVkREpO+ywVyVIGOW4mggN6vCrIgMDCrM1qhw+Be9yJgNCrMp/yJQhVkREZEelWbMDivpmO0MOmbr6sqHf5Xmy0LR8K94WJgtiUsoKczaqKnRhR2zrqvJ0iIiIiXSaT9j1n9s/cz2oGM2p45ZERkgVJitUfmM2W4Ks/XexV0YZeB3zOaUMSsiItKj0ozZUfVjix4XRhnkSqMMIguz+Y5ZxzjEnQSm5EyrtDCbzkQMJwk6Zrs64J8/Bhd9saePIiIiMqSku7zjsLHF18vBV5k5dcyKyAChwmyNsm7Pw7/2OPIoxuyxJ5MOOhSAWNIvzHbp1kcREZGeFHbM7tw4leP2m1v0fOHwr2zp8K+oac8FGbPgxRnEUy6f+tg+DK+v58hDD6U+lSpap7MrYjtBx+wbL8G6v8OfftuXjyUiIjLoZbPFHbPBN6FB52w2m9sBeyUi0nfxnleRHSEc/mUqd8zuedQx7HnUMeFjJyjMRnXfiIiISJGgMPvpD87grM8sKHu+ozDKYLNXmE3U+cflbMSxNlZemDVmK9dc+B0a/W7cny1fXrROV1fEXS7+HTBsfS+/zNpuzwlERESGkiDKIMyWNcVZs25OhVkRGRjUMVurbM8ds6XiSa/DJpdWx6yIiEhPgiiDYFBXqXD4V0GUQazbjNni77sTMe+4nMnmi6+lHbNdUbnwQcfslub8sqhCsIiIyBCV8ZuRTJBdEGbMehRlICIDhQqzNSromO1LYdZJeJ06Gv4lIiLSs6BgGhRQS0UO/wpWjSqUlkYZ+Fmx6YIs2/q6uqJ1Ijtmg4zZ997JL0t3RO6jiIjIUJT1C6/5YdnFw7/crLsjdktEpM9UmK1R1gYHkt7fthhTlIGIiEivBVEGyQqF2SDKwMuY9ZbFUt1kzJZ1zCaL3geiOma7yZjt3Jpflu6M3EcREZGhKJP2ogpKO2YVZSAiA40Ks7VqG6IMwsKsogxERER6FBRMg87WUlFRBvFtiTIo6JitKynMpiMLsxH7o8KsiIhIKN8x67ElUQbhzBYRkRqnwmyN2pYog1giKMwqykBERKQnPWbMRkYZVBj+FYuXDeeK7JgtjTKI+jI1EdHBq8KsiIhIKOd3xDqVOmaz6pgVkYFBhdkatU2F2XD4lwqzIiIiPQk7ZkuiDNo7Olhy33288+67gNcxmw2Gf6UqdMyWdMtCPiKhuyiDjvY0f/xpC12tBZ09UR28KsyKiIiEshk/yiBYYEoyZtUxKyIDhAqzNSoszJq+ZMz6w78yKsyKiIj0JF+YLS6E/uaJJ7hu6dLwcX1dXUSUQUnHbMngr8LtBkPGgm0VemdtB4/9aAuPX78lvzBVX76zKsyKiIiEskGGbNAxGwz/8g/TKsyKyEChwmwNstbmH/SpMKuOWRERkd5KZ6OjDNa9+Wb4uzGGZCLRuyiDEvkog8oZs67xOm/f/nvBsXv8pPKdzagwKyIiEshmSztmg9KGX6DNqTArIgODCrO1KCjMGtO3jlk/Y9ZVYVZERKRH+YzZ4mLpm++8E/5en0phjCHb6UcZVBr+FYvomI33HGWQM16Bt350wSnZyLFQP6J4Y+qYFRERCeX8wmx49PQPzxr+JSIDjQqzNWhbYgwAYimvMJuNGiQiIiIiRSpFGRQWZlPJ4NjaQ8dsd1EG3Qz/yjlegXfYmIJTMmNgwtTijakwKyIiEgqiDEw4/KukY1aFWREZIFSYrUFBlEFfBn9BQcdsJtPDmiIiIlKpMLuhoDDb0tYGkM+Y7cPwr6gog0Q8TjyeXzfomHViJV/GqjArIiJSUc6PKsjG0/xjMuSM9zg//MtWfK2ISC0pv4qQHS7smO1rYdbv6sl1qWNWRESkJ1GF2faODja3tISPc/4xOVtWmC3NmI3qmC2PMgAvzqA16xV2g8JspqPkAnKnqcWPVZgVEREJ5fyO2Vc/sYY/7gNj3vkrB697Jhz+hTpmRWSAUMdsDep3YVYdsyIiIj2KypgtjDEo1J/hX+lc8RemhQPArHFxyZHpKLmALOuY7YjcLxERkaEo6JjtbPS+/Nz0gQzH33k8743dCoBr1TErIgODCrM1yNrg4qyPGbNJ70Ivp4xZERGRbllraencDEAy3nNhNogyCJtrS6MMusuYzaax1uL6x/fSnFnXZEm354pfPGpC8eOuDnX/iIiI+II7Wj6x0eG/fjqevV5N4cQc1n50k7eCjpkiMkCoMFuLtjFj1kl4F4VZRRmIiIh068crzuOtLesBiBfEEFTumPV+9i3KIJ8xe9ny07jqV98AvCiDQutHrOKad7/FY3/8Y35h47jijd38XThj7/JOXRERkSHIzXrXzAevT/HBjQm+/lgjAB0N3henVh2zIjJAqDBbg7Y1yiA5fAQAmY72qu+TiIjIYOG6OZ5/7UkAJo/5EDs3Tgmf27RlCwDHfu5z7Lbrrlx29tlARMZsr6IMvAJsW9cW1jT/gxfffh7XzXHkoYcyZfQUEq7XOfvUhNvJ0MX5P/xh/sUf/yx89ODiDb6+Gl5/cds+tIiIyCCSc11cXBq6vGvmj26MMazL5AuzGv4lIgOECrM1KCjMYvoWZZAa6X1L2OVfVIqIiEi5ze0bydkcjfVjueIrtxcN/2rd6mXTfWjqVO5btIhjPvc5oDDKIOiY7X2UwZb2d8NlGTfD1487jgduu54JOzcWrV+XTBa8OAnX/g6+fmWP7yMiIjLU5FyXXKKTxk6vpJGwhmn/V09XQw4L4V2oIiK1ToXZWhRGGfSxMNvoF2ZbVJgVERGpZGPrBgDGN0wse66lrQ2AhuHDi5b3Z/jXex0FhdmCQWDJwkJsxHt6KxXn0ZJJl68jIiIyxLg5S6auncb2fEljxl/rcePQVl/Q7CQiUuNUmK1BwW0XxvTtH0+d3zHbueW9qu+TiIjIYNHc9iYA40bsXPZc0DFbVpgtjTJwSzpmIzNmvSiDLQWF2XQ2X5hNJYpf07vCbGf5OiIiIkNMzrpkUx00dnjXzDks+7yZYtd3Y7zbgDpmRWTAUGG2Bll/arPpa5SBOmZFRER6FHTMjmuoXJgdOWJE0fJcuiTKoLRjNirKIO51xG7tagmXZXL5jtfSjtnICKNUffHjtAqzIiIiuZylzumgLuOQdSwb6r07V6a9UM8mFWZFZABRYbYGhRMk+zj8K15Xj5NIkOvqItupCzcREZEoQcfs+BHlUQZRHbNu1uJmwTjgBIkFfYgyKFRYmC3tmG1t21q+s4mSjtmujvJ1REREhhhrXRqtd/dKR8Jl87BhAOy6Kc6mhoJrahGRGqfCbC3y83BMHwuzxhjqGkcB6poVERGppLmt547ZwsJsYb5seDdLL4Z/Jf0og0KFGbOpVPHzQb5t8UZKCrPqmBURESHnWhpz3nVzV9ylo847po5vjbFpJKC6rIgMEOXtHbLD2W0szAKkRjbS3ryRPyy6FuM47D7jSCYffFj4/Mb/+zt/v+cO6keNZr+5/0o8VX7RKCIiMpg1B1EGERmzLVGF2dJ8WYBc9Ttm29q3Yq0tjjJSxqyIiEgZ17WMxDteZhyXzjrveDm+JcamBtjFaviXiAwMKszWoLAw28eMWcjnzD77k/8E4KXfPsjcp/8aPv/YwktYu3IFAKOmfpAPH/2V/u6uiIjIgGGtZdPWdwAYM3xC0XOZbJaOzk4cx2FYXb4gmt7qF2brCo7LZVEGER2z8bqyZYWF2dH+MTuQc106OjsZVl+QK6uOWRERkTKutYzMxgDIkaPTjzIY1xpj8whQy6yIDBQqzNagIA/HmL53zNaNLL7Ia9/4TvHjd94Of9+85pVt2DsREZGBK5NL49occSdBMl5810hbezvgdcs6BXettG7wYgsadorlV+5FlMGY4R8of/9sPsrgX048kd0nTeJPizt5PHsv6Vg7rVu3qjArIiLSA9e1jEz75QzrYuMJSGRJZOJYx1HGrIgMGMqYrUE2uO1iG6MMCmU7O4sGgXUWZM+2vL5+23ZQRERkgEpnvWNiVDdrmC/rd90EtryRA6Bxl4Lvs3sRZZCM19FYP7ZoWWHH7JhRozjxqKP4xPBDqM+OLNqH/EZUmBURESmVtTlGdXlfmDo5F4whOdy7fh7dHqO9Lt3dy0VEaoYKszWoX1EGJYVZgK7WlvzvBYXZLevXbcPeiYiIDFxd2Q4AUt0VZgvyZQG2vOF1xxYXZks6ZiOiDKA8x7awMBtI1BsSbn3RPuSfVGFWRESkVLtpY1SHfyeLdcFxiI/27oT5QEuMthHtO3DvRER6T4XZWhREGTh9L8zWjRpVtqxri1eMta5LV0u+SLvlNXXMiojI0NLld8ymEvVlz7W0tQERhdk3/cLsxIIog7KM2eh0qHENvSnMOiT9wmywDyF1zIqIiJTZkthMY4dXzsgZF4MhPt5rUhrfGqOtQR2zIjIwqDBbg8KO2X5GGThx7yIx6JJNt7WCtZiYd2HZ8sZr4XuJiIgMBfmO2fLCbKWO2RY/ymBkYcdsaWE2ImMWYHzDxKLHmVxX2TqJekPSHVa0D6HSwmxGhVkREZG2xGYa2/OFWRxDfKKX7f6BlhjtKsyKyAChwmwNsm4QVL4NUQYNI8Pfx390XwA6t7zn/fQLtCMm7MywceNxMxna3trQv50VEREZQLr8wmZ3UQYjR4woWp6PMijomHV7Hv4FvY8ySOYqRBmoY1ZERKRMe7K1uDBrHOJTdgVgfEuMrSrMisgAocJsDQqGf21Lx2zh9MnGSVMA6GrxCrNBpEGqsZGRkyYDsEUDwEREZAgJOmajhn81b94MFHfM5jKW1rdzYGDkzsH0Zwvpks5Xp0KUQUlhNp2N7phN9LZjNt0JHVvLO3ZFRESGkM7EVkb6UQZZ42IcQ+JDuwNelEHraB0nRWRgUGG2FoUZs33/x+Nm8gegukYvb7bTL8gGkQZ1jaPCoq0GgImIyFCSDjJmS6IM7n3oIf7zjjuA4sJs69s5rAsNH4gRS/h3slx5Iqz8efGGK3TMjqwbXfS4p4zZNX95r+TJVPHjB2+CY0bAzHHwxsuR7ykiIjLYZWMdYWE2Z1zAEP/I3oDXMbtlfIbN7Zt34B6KiPSOCrM1qD8Zs3vPPJFxe32Uwy9ZSKrRy5sNCrJBpEFqZCMjPrATAB3vNldjl0VERAaEcPhXScfsH//yl/D3Az/xifD39k1evuzwcf4x2Vp4+sHyDVcozE4aswd7T/xU+DgqY3a3Q+rCwuw7b7QWP2kMfObk8g23t8CLz0S+p4iIyGA3zGZwMHTEXDDetXPsI3thsYzdGiNu4a7n7trRuyki0iMVZmtQOJDL9D1jtn70GOas+D37//O/UjeyuDAbRhmMbAyLtkHurIiIyFAQDv9KFHfMBhECN1x8Mft86EP59Vu9Y3JqpH/K9N470NVRvuFYdJSB48Q4/wuL+NqB5wLRHbO7fjLFwbMnALC1a2vZ81y4DObdU7687b3yZSIiIkPAiJx3l2lHEP/uGEwqRZfjLR/bFmPFSyt20N6JiPSeCrO1qB9RBoVSQWG2LMqgMf+cCrMiIjKEhIXZeHRhtnTwV1eLd0yuCwqzb62N3nAsumM2kIglgejCLMCo0V58QkemPXoDpVmzoMKsiIgMSS+/8zKjXe8L0XxPk9fU1OF4P8e3xHih+YUdsn8iIn2hwmwNCqMMTD8Ls2HGrHfhFnTHpkYWFGbf00WdiIgMHV0ZL8ogGS/Obg0Ks4X5sgCdLX7HbENQmF0TveEKHbOBngqzo8c0ANCR7UNhdquO4SIiMvTc/PTNjOr0WmUzQUnDv3be6hdmP9AaY6u7lU7/uC8iUqtUmK1B1gaF2f5tJxj+VRplUNc4ijpFGYiIyBBUafhXpcJsEGUQdsy+vTZ6wxUyZgPJsDBbnjELMHqs16nb6VYqzNaXL1PHrIiIDEFNrzbR2O4dlzv9i+agY3ZrzFu+y9txHMfh/r/cv2N2UkSkl1SYrUG2ylEGQfG1q7BjtqRoKyIiMhT0FGVQ1jHbWtIxW1qYTfnb6THKwOvQrdQxO26CX5glIr8W1DErIiJDWuuCK3jvG99g66o/0ZxuZmSHd1zu8jtk8a+dW+PeHSyT3vGOy7964Vfv/86KiPRB9/fdyQ4RDv/qb2G2MTpjNtXYWDYYTEREZCjID//KFzo7u7pIZzIk4nFSyWTx+j1FGSTrvWFg/YwyGDPeK8ymTQe5bI5YPFa8QlRhtnVzt+8pIiIykNz4xI3c+IcbybrZouUzUvvy3evfBgz23m9z2YfG0uV4x+dOY0iS75jdFE8CafZ9K0ksB8+/9XzZ+7QuuIL23zzBfRd8hv988U5+fMyPmbbHtO386UREoqljtha51emYDYqvbW9tYOVlF/H2X72DktcxW1y0FRERGaystaz4x93c8Yfr+evrTwPFHbOFg79MSY5QPsrAX17aMZv2O1x7iDJI9BBlkEzFSbh1YCw33n4nP7rtNv7+8ssFKxQUZoP3UsesiIgMYDadJrfmVdLZNF+97av88Okf0kUXOSdX9IdnVgOGWCJLzoGDX6rns6u9O1w6g2tmv3P2H8PH0eVkGdPlcMRf6tlqt3LmXWeG75l75WU23vAb2l7sYP1P76DNtjH3l3NJZ9O0LVzA+qkHsuV733u//ypEZAhTYbYGhcO/6F/IbKpxFPH6YWTat/LnWxbR+ubrADTsNLEs5kBERGSwWvvuC/zsqWv47d9+zpaOdwFIxvOFzkoxBgCdrd6XpakGxxv9XFqYnfJR7+fIsd3uQ09RBgApvGLxT++/m/9+4AEW/td/5Z8sLMxOmOr9VMasiIgMULa1lQ37T2ftp2dz7vwvsOrdVQDsM2YfrvjMFeGf3Ubsxqdf9Y6Bf/3iBE6Zu4FVk/Nfcnb4hdngi1XrOGxMtQBw5hMNJDPwyPpHuOKhKwDY/N0LsK53V8oxq0YQzwE2y72fP5S3r/tfMlvjbLrj99iO4mih7N//StfDv638eVyXjqW3kdvwZhX+dkRkKFGUQQ2qVsZsPJVi5s9/yYZn/xQuG73bBxn9wd2xrotxHDJb23CzWZy4/lUQEZHB6a0t68uWRXXMRhVmi4Z/bX4LMmloHAfX/R7WvwAf/hT89XH4xPRu9yHsmM12U5h1htFGPp5g/ZtvYq31LjYTJYXZN15SYVZERGpeNpfl+8u/zyd3/SSzPzUbAJvN8s4XZtKxwQIOH2vazK+OhVP3OZX5X5hf9PovTf4M6y+fCcDCiX9n80i45PhWrr8jxs6tXbweH8WEbP7a2RiHlngnW4ylsSPOWX8az3UHbuS252/jrb/+me8+tRFw2Dgix/i2GP/y0hQaVrdwwAtJrHGJxV3cTJz2/7qJ4d/xOmdtOs0bX5xLtj1O44G3MvaO/8aUnDO0XjKPjTc/Tt24nzDx+UcxJdFIIiKVqGO2Blnrd8z2szALsOsBB/Kpb5wd/tnj80eF206NHAmoa1ZERAa35rYNZctSve2YLcyYfWutt3Cn3WCXD8GBR8OYnWDa8RCLlb22UCLefcYsQH1sWNHjtvb2cN+KO2aneD+3vgf+l7kiIiLvh5lLZjLtxmnc9ofb6HrqSTad+DXe+dxR5Py7M0t9+adfZvkry7m06VJufepWOjOdLP3yIbStbsc4OVxjOezFYYzf7HDJ5y8pe338/geozzi8Mj7DxpEuu4/YnT98+xmum3wAp+w7mUxwzex3zBoDGHgu6R2Xj3oixlFvTSRmDZ+8/3WwDiv3audnh7R6+7e8i8NfqGdr0uVbJzXjfn4PAFruyA8Na198C9l2r5Fpy1Pv8MZ+R5BZ9Wz4vG1tZfPSRwHobDZs+da3+/E33Du/f/X3fPr6T/PwCw9v9/cSke1rSBZmjTGTjDH3GGO2GGNajDG/NMZM3tH7FQiHf5n+RRn0JIgz6NqijhsRERm8mlujCrP5jtmWtjagQsdsUJgd6eQHfwVRAn0QdMymK2TMAgxLDCtb9uY77/gbSOUXjprgFWqzGehs7/O+iNT6ubCI1I7Wjtbw9xsev4Hnmp/j9Y7X2XTpj3n9yxew+ZF1tP6lhXdPmRuu527eBMA//+Kf2fj6S/zo9rGc96vRXP/wVVx8yqc49JkEWcfymFuUcgAAIABJREFUk5NSPLVHBzFrmPvsGNouvoj1Uw7k7WlfoGPJT7DZLO3LvcJj4kMjueiQi3joGw8xIjUCi3+Xqf+eQVOT9bNm18dijNx/LNY6fGdZlp/99zgOf6GedMzys4PacI44ACeRxVoHjMsVX97EC5OyfG3SnwBL+9ousi+/xOb2zaz/2T0ApD5cR7wuS9e7Dq9/4Zu8fu2VAGy58EKynXFiCW9o2aZfPk/mqSfDv4/mLx3HG/seRnrliqr9czn7gbNpzjRz/m/Or9o2RWTHGHKFWWPMMOBR4CPA/wNmAx8CVhpjyq/IdoQqRRn0pK5xFABd6pgVEZFBLOiYbagbFS5LJXqOMrDW5qMMGpx8vuw2FWaDjNluCrOpfGF2VEMDUFCYLezIrRsOI/zPogFg0kcD4lxYRLarzJ+fIf3YyvBx9qXVbF10PVt/fB0dty/Fpr27O65acRUfu+FjHHD9AbQ9sZKfNC0C4BPr6zn2zyNIxyyP7tVO1nFp/VsrW6/9Ic1fOo41e36ZXx50AM/+7REW3jOWfd5IMePvw7h1yQTmNnnNQdce+R537LKOOz/tfTl62J8SbLz1d2Ta47T9o403v7+E9R88lNY/e5mt/3TS/+O0fzot3OfghpGwlclvanL+//buO06q6vzj+OfZ2c5Sll6kilIVjWhEEBAlYu+a2KNRoyYmMZpoYtSUnzGJLbHHWLCXGEtUFAUxKgJip4kiIL0ssJTtM+f3x7nDDsPssmV2dpf9vl+v+xq4c8u5c+buPPe5554TbdxkRscXnyG3dwaRinQ6rcnEZVWw9tejeOfmL7nznAfJP34/sAidLz2ca3/zBC7sWNumjA/6lYBL4/+uOYMxfzsAFlcQwXHymMU89ZeRWE8jUpFO6U2TeHnYgSx/8SMAOv36dPIGtcJF0lh70TX897OXePDGcyicuY6S1Y7l37+ezb/9zfbPt65mLJ5BYdlGhi3NZMCCEhbe/kfcli27XlFEmqSW2LHoRUA/YIBz7msAM/sc+Aq4BLitEcsGxAz+ZQ2bmK1sMavErIiI7L7WbfEXdQO7HcCHi6cAkJle2QI1mphtk5e3w3oVpY5wOYQyIT3LKhOzXfvWugzb+5itpiuD1tmtIPhJHr7PPrw1fTor1qzZecGsHMjLhw2rfT+zHXvUujzSojX5WFhEdu2WqbcAcNW4qxK+X/bO2xQ98QyutBTS0mh1/llkjhlHyYvPs/KSW3GREAUdytjaCnp/m0FMipPiv/2TeX86jQfmP0BaWhoD52xj1Z9+x315HfjZmWu5ZWo7wsCkA4q4+7BCFs1sxUXT2rL6pheDLRjDvsrisUVdyYgYGa0qiGQYnTf59EP5EV2Zc6DDSor5skcFC7qWMHB1NpYWocP3hxNeW8CW9xZRUeyXT0uvIPvk03Y4vqpazG5/xWFZWXR54znWHnMGGHR89F/032vA9m20u+9e2t5ejOXk8B3g78f8nZ+9+jMm71vMiG9yOH5mDt3WGZlhY3bvYgryHQ+sfIF/nh7hjNltOHt6HkNW+q6G5nUrYc2xB9Jx9H4UH/8bWJPO1JuvY9y8XCCTZfnl9NyYwbp/vsuGiWPIG74HobZ5kJHOotGDuD9rPhd0P5IhL88gc8TBZJ98apV1f+vT13DLsx3ZZ3k0lpnMivtf58E/jeK7g8Zw6OT5WNs25F5wUeXnFYlQ+tzTlM6cTe5pp5AxYmSV2xeR1GqJidnjgRnRQBTAObfYzN4HTqAJBKOVXRk07H6y2vrErPqYFRGR3VXERSjYuhqAgV33356YrcngX6Vb/EVfdpvgRmkSujIoD5dVDugVJz2rslXsPnvvzVvTp1e2mI2Vma0Ws1IfTT4WFkmFyNo1bLz0CspXFACQ3i2f1pecT9aEYxpun5EIEz+cyKMfPcrIjfn8fHY6aa1zyb/37h0Gkyp+4lE23/sEriK8w/rZ+/UnfPkFnPDOlawqWUXXTSHs9qc4am0ei1wxxRahq8ukb6FRtmHHRj7rXvsdLxxyNeNnZ9I2kk55mqNDQSYdCqAizbG2Sxnf5oQZuCqTditD9L7iWY4a1YrNreCaV9qShtFpa4j7H+tEuNhIS6/gZ/96hZWzbuP58hc49MscBq7KZE2bCh4Yu5mzpufRd30moYwKuj13O6EBg9l06U+w3Gza3X8fTxeuZPQ/R2MhY94FQznojQ20ueoyso44EoD8igqKH3mIbf9+lZzDD9lpMK3KxGz0aVPb8TVoUpvWoQNdZ1TdhYDlVMYDxw09jiMHHsl90+7kk0+fYv8lORw+zz/NctTxx/Ja98W8u+JdLD2N5w8qZuQVV7F84qO4rwt4ZsQ2lj5/DmbGqAk53PBiey6d0paQMzblhPnJeesZtSCLy99tTe62DArfX719v/kvLeDs/AraF85nXcTgkRm8+vgtvDGwhNGfQW4kRMerL+aMsRex8u5buObeMtoVZ1GYU8H87hXstTqdDgXp7HnrVL7NeIvV832Z2/5nEm1/fy3/vvlX9Pi0iB6bgs/wsQ+Z162Et/ctY+Y+6Zx44Pe5auwvKXvlZbY8+Dihzu1pd/ddO33mkY0b2HbH7RS/9zFtLv/h9uRxJBLhPzMeY+VNdxLKyeRHEyeTlbvjze7qRDZtYtNlP6XsG/+EU0bvLuTfdydp+e23L1P68otsvvshWl92PtknnLzTNlxZGYVXXEHFinXkXXgmWcefVOUTyOGli9n406vI2n8IeTfc2OBPKovsSktMzA4BXkowfy5wWoL5KVdSXEwkJ49SjNWLFjfYfiqyconk5LHy66/JnTunwfYjIiLSWLaWFBLa5Gid0YG8jTlkbQ4G71i0gi3BkymFK1aQ68rJKS5l65IV29fdtDxMhm2jVW4aZetWkrFyEQaUtekEW2v/yGDIQoRdmE0bVhJK2zkEKw5v3v7vNkGfsosWL+HbRUsAiHYAWrBpK7mWRQ6wbu6nlNC2VuVo32MPWrVrt+sFZXfV5GPhpQsXsnTuF7tc7oO1s3ltzZtsimyhb2ZPTut9PD1ze7Bp7VKWvPosfZaE2ZQbYdsBvRg07gekpe08SN+cjV/y4opXWRNeR7f0zpy8x3EMbNu/IQ4LgJxPPiFv8geE1hdTOqALX3+nFytmvc+gJSFyy428MGRHfGIpkp/OtkP3YevYsZBe/QCD9ZW2bRutJ00m56PFRLLSKDp0X7aOGVPtfteWFPDMkhf4qvQbWlku4zuPYWyXUTgcb6x8m2kF71HqyhicM4DT+5xAfmbt/lbVVGm4nBeXvcqswo+IAAe23o+Teh1LTnoWn26Yx8srX2NduIDu6V05ovNoPij4iKJVS7j2tTZ0L4xJPC1aTeF7NxNp/SeKD+rD5qMnEGmdx8ovZ1IwZSp9V6WxsEs5bw8oZsiabE6Ym037bb6utoYcRWlQkBdh2oAivu5cwWELstl/WTahSGxpjf4Gfw4bnbasiz4kwfr9xrP+l2dR0bkL+ROfJmf6aixBK51ti+ZS8cKV3Nw6DHSmW2H0tyTCYCqfBCkDijIivLtXMQV5YfbYmM7or3I59T2fsJvdp4Q/nriRgxZm0arMmD6wlE2tfEE7FYS4ZlI79lmRxZWvV/5WvDG0iIErM+i9IQMAN7If85eu4/wu53Bup7OYnPson//vfWYMy6WidW82fO8k+v53BiVjx/BlOAfmLYaf/hKAFbP8+f2bAdfyv5XvcOR+V7BmRBprAGZ8VnnAQ7/rp/j5QKS0nFAahKIDZ28f/Cvo0oAIc+LWqalxeUfA7WOx227FvfstlhFm2SHjuTovj/0zhjFr7Wyu2Ocn5GW2os9Ft7Bq22o2zLqatLQKnHN83M/4unc5/Zf6z6rNIf3JDJXw5rBC3tq3hKHLMtlvaRYhB22L0jj0yxz22JhO2BzzupYyeHUWx7ybwTHvZmwv05LLH+avve/llI/yaEeIj3sW0+dXv+J3S66hV2EGtz/ekRFf+9a7xekRssJQOHMdhROu5CAAMiloFWZB9zIOWJLF4FXZDF6VzYVTI2xo9R8+KvsP+UXR79Ma1r13GOuuOo9w+w5kf/4Frd94j4xFRVjE/03Y/OPbWfvUU9x1QDmr133Jr1/P55i1Psn96iGH0WbkPuwx4xu2bCvh9b3LmDR4Gx1b9+CcnFEMfOtzshauJdwph+IDh9D6lQ9J2xITFy36ls8OPoq/HLWZ/K57cvrHYQa/s5mMSBoFF9/KN48/TN6Z529fPLRpAx3/9gjp64K4bsYdRH5+C8XDe7L5mCOJxMQ8OZ99Rv6/3sRK0+GDtTw95RUePqyMA9sP5wfL82n39ieE1gXdTqVD6aDOFI04gNzpH5H51TrCnXLYMmEUJfvuC+VhWk+ZSu70uVhFhKID92LrhPFEcioHbP1223KeXfoyS8uX0S6tLcd0Hc/BnQ6o0/eyOgvffwGbMZ+um0Is7unoeuSxdO49NOn7iff+mpm8tmYqm90W+mX25PTeJ9Ijt9v299OKimk96Q2yPvqGZdkVPLvPNmb2LSaSBiEXYkj2QM7oe2K1vw+l4XJeXj6JGZtmE8ExvPUwTu51LDkxA/nW1uDvjqBj9+51Xj/ZzLWw0XzNrAy4zTl3Tdz8PwHXOOeqTVYPHz7czZ49uyGLyHNXXMZpC+5t0H2IiIhI3dwxrzUVrvaPtcz97V5EsqpOcqx+eyBrtvrL9KOW/YpJPf+6w/ufFvlc2tWZwxkXXsVR4RU7baMmnht8OafdcVed1q0NM/vIOTe8wXcktdIcYuE/jjyYMxdm7HpBkXpa3LGcp0ZsIZwG+y7L4rB5ObQpSU3rua1ZEf43sJgDv8mm05adfxueO3Ar83tUdn+TXW6M+jKb7y7KJhT8BoUtwgf9S3hvQCldNzjyt8A3XaGgrePznmWUZFZe6x8/O4eLp7VlS1YFU/csoO02R4/1sDEPJo6HZZ3g6Fkw7lMoD0EkO4cBa3PJC2exOb2YWXtspP3WEPsUdCRijm9araUOP4UNZuMRF3Hu/ddw1dhLGbNsctK2mxEJ4XBUpEWqXc4B33SDjoXQtghCkTT6bYt+VusoD8EDR8PCPWCv5fCdryGnDEIR2HMFtKrI5K7jKljYI8JBi7L49X/zyS6HZW1LaFOWQcdt/m9iBMdjo7aQt2Erg5bD8yPh3X1h6LJMbn66PevahLn+lI3klhm/fTmfDltCzNqzhI2ZRWxNL8UZpIeNXpty6Lchl07bKm9OFOaEeXdACYd8lU37bYnjlfndyliZX7G9JXGsDbkVGEZ+Ue1vJK3Ir+CxkVtwBme/35qeG3b+KZrbvYwhKzMTrO1tyg3z7t4lHLowm3a7KMOizuX02Bgiu1ytZVuiZ8Z35zdPPtPg+6lpLNwSW8wCJMpGV/mzYmYXAxcD9OqVggFrQyG2tdiqERERST0DQpHMKoKBcsCPtPxNUTaW25q6pIzy5xezcdDOFzJRXfYsoOijLgzedAR5kXZ0KOlNYeaq7e//KzSIgyNreN96kZaWzojwOjKo/kIxEQspxpCmHQu7NKMoY9ffbQPSIpDmIJwGzvyBRQwWdyxjfUYJ6Rai36Zs8qtIMsRuI2IQSUv84STL5pwI7wws5qsu5YxamM3glZksa1fGhvQSvuwRZkHvCCWZPllzwJJsxs3PofvGFJyzBgu7lPPWkCLaFKfVeL9pzpfVWVAHlZsjFAEL6ibSwAm8NOfrEXwdRveXqH4tWHZu12LumLCZgra+1DP7lfDIyEK+uyibI+blMmhlJuagPOT4qlMpJeEy9ijMpFNpJmtbh/nvd7bxRa9yHNBuKwz+Jo39l2TSc2s2uRUh1mWXsSqnhPK0ym+UAa23+fKsaRvmpaFhHh+xhcvfasv+S32L18LcCPcfVsjsvjsOFmnA0tYlLM4OMXhJiPQIVFiEjDWOQwsgu8wfdI/Fjk2tYbRVfufNQdut5czJLsAB/Rb7ui0BcjbDJc87SjN88rcUIAKUV/BlzmZCzgjjyF+fgQO+yN0AgHMZDXuy1EKR5bDfSeMAGH3291j5xxnkpxUnZdvbtxLZdbKx+4od1/kidyMQfFYVcO5//eecU5agNTSOE6ak8cSECKXhMr7IXU92meHKfffzLiOPHJfBgrZb6PNlOXnFGRQDB33umNergh7LK5ibU8C2NEdWcZjFXRw/Pnct3QqMY98L0W2VwQ7RSznfWiErc41VnWDywWG+6RKmIgRPH7SFK95sx9DlPgm6NTvC/wYU89bgYpZ38PHQrL4lXPi/NrQpTiMtAptDZSyzrRRlQ36bPPLKQkwbWMy61hUc+3EufQsycQalGfBxnxLe26uEAaszGLUwhwXdyrhnXCHFWf4Ltah9Cb94vR17rcsikub3P7X/VkorSpnTJYtxX+fRKu4GyrweZdw5fhMFeREeHF3I8MXZHDE3h6ErsojNqYfTYPLQIh4fuZn9FmVw6dttaVeSTjgN1rcJM3VQMTP7lVCW7uhamM7h83IYvDKTud3LeH/vEgauzGD0whxaF/v9L29fwdTBRRRnOA6fl0v/tTueF0bl36eG/I3Zmh3hqw4llEUqaBvJov/6LNLDu16vvqr6HY5dYGGXcqYMLqLbxjTGz8klv9ifS9HfjZr8PlT1N76uQqGGfQqltlpii9k1wIvOuUvi5t8DnOac61Td+qloJSAiIiLS3KnFbNOkWFhERESk4dU0Fm6J7bbn4vvWijcYmJfisoiIiIiIpJJiYREREZEmoiUmZl8GDjazftEZZtYHGBm8JyIiIiKyu1IsLCIiItJEtMTE7APAEuAlMzvBzI7Hj0y7DLi/MQsmIiIiItLAFAuLiIiINBEtLjHrnNsGjAMWAo8BTwCLgXHOua2NWTYRERERkYakWFhERESk6WiRw/I6574FTmnscoiIiIiIpJpiYREREZGmocW1mBURERERERERERFpbErMioiIiIiIiIiIiKSYErMiIiIiIiIiIiIiKabErIiIiIiIiIiIiEiKKTErIiIiIiIiIiIikmJKzIqIiIiIiIiIiIikmBKzIiIiIiIiIiIiIimmxKyIiIiIiIiIiIhIiikxKyIiIiIiIiIiIpJiSsyKiIiIiIiIiIiIpJgSsyIiIiIiIiIiIiIpZs65xi5Ds2Jm64ClKdpdR2B9ivYl9aO6aj5UV82L6qv5UF01H6mqq97OuU4p2I+kUIpj4d2R/lY2H6qr5kN11byovpoP1VX91CgWVmK2CTOz2c654Y1dDtk11VXzobpqXlRfzYfqqvlQXYk0Hp1/zYfqqvlQXTUvqq/mQ3WVGurKQERERERERERERCTFlJgVERERERERERERSTElZpu2fzZ2AaTGVFfNh+qqeVF9NR+qq+ZDdSXSeHT+NR+qq+ZDddW8qL6aD9VVCqiPWREREREREREREZEUU4tZERERERERERERkRRTYraJMLM0M7vWzJaYWYmZfWZmp9RgvT5m5qqZvp+K8rckda2rmPVzzOxGM/vKzErNbI2ZvWJmmQ1Z7paqPvVlZo9UcV7d0dDlbonqe27FbKefmRUFddW/Icra0tXzvLrZzD43s01BPS0ws9+ZWW5Dl7ulqkeM0cbMrjez6WZWENTZdDM7MRXlFmlOkhAfnmhmnwTrLjWz68wsFPN+yMyuMrOpQey4xcw+NrMLzUzXdLXU0PUVLDMqiCXnmFmFmS1J+oHsRsysp5n928wKzWyzmf3HzHrVcN1sM/ubma0ys2Iz+8DMRidYLimxZkuXorq60sz+GyznzOzGpB9IC9DQdWVme5vZ34PYfmuw7MtmNqxhjmj3pB/xpuOPwI3AXcBRwAzgOTM7ehfrrQJGJJimAKXA5AYqb0tW17rCzDKAScAPgVuB8cBlwHIgVM2qUnd1rq/AOnY+v25PfjGF+tdV1D1AYXKLJnHqU1dtgIeBM4HjgCeA3wJPNUhJBepeX73wv1HvAGcDZwALgRfM7PIGK61I81Sf+PBI4Hngw2DdvwPXATfFLJYTzJsDXAycCLwNPAD8JVkH0YI0dH0BHA4cCswF5ier4Luj4ObsVGAgcB5wDrAX8LaZtarBJh4ELgKuB47FXyO/YWb7xS2XrFizxUphXV0EdAZeTFLRW5wU1dX3gMOAifi4/jKgEzDTzA5I0qHs/pxzmhp5wv/BKQV+Hzd/CvB5HbaXC2wGnmvsY9vdpvrWFXBNUDc9G/tYWsKUhPp6BFje2MfREqZk/R3EJ/vWAD8HHNC/sY9td5uS/ZsVrPvnoL46Nvbx7W5TfeoLaAXkJpg/Bfi2sY9Nk6amMiUh3vgEeCdu3vVAGdA1+H8IaJ9g3YeAEiCnsT+H5jKlor6CeWkx/34cWNLYx95UJ+BnQDg2bgP6AhXAlbtYd1gQQ/wwZl468CXwcrLqXVPq6iqYnxbzvgNubOxjb25Tis6rjgRjV8XMawtsBB5t7M+guUxqMds0HAlk4n+wYz0O7GNmfWu5vZOB1vi7FpJc9a2ry/AJ82UNUTjZSbLPLWk49a4rM8sHbgOuAjYlvYQS1RDnVUHwWl6fgklCda4v59w251xRgrdmA92TV0SRZq/O55mZ9QT2S7DuY0AGvlUfzrmwc25Dgk18CGThL46lZhq8vgCcc5GklLZlOB6Y4Zz7OjrDObcYeB84oQbrlgPPxKxbATwNHGlmWcFsXRckRyrqSudPcjR4XTnn1rsgGxuzXCH+CaseyTiIlkCJ2aZhCP7u3ddx8+cGr4Nrub3zgLXA6/Usl+ysznUV9OXSE/jGzB4I+ngpMbMpCR7dkORIxrnV2czWB32DLTSzX8f3ISZJkYy6+iuwwDn3WDILJjtJym+WmaWbWZ6ZHQFcCTwUBHKSXMmOMQBGAwvqUyiR3Ux9zrMhweuc2JnBxXPRLtYFGIO/GbmqRiUVaNz6ksSGEPeZBuay6890CLA4wY3EufhEbP+Y5ZL9e9gSpaKuJDkapa7MrD0wFHXhUmPpjV0AAaA9sCn+TgOwIeb9GjGzHsA44O/BHQ1JrvrUVbR10a/xrRu+j2/h8Htgmpnt65z7NpmFlXqfW58CH+F/gLKBk/CPXO8F/CiJ5ZR61pWZjQLOBfZvgLLJjur9m2VmQ4EvYmY9iu8zUZIvaTEGgJldDByM73NWRLz6nGfR9zYmeG9jdesGfZ2eDvxOcX+tNEp9SbXak/gz3QDk12Pd6PvR16T9HrZgqagrSY7Gqqs7AQM0YHYNqcVsAzCzIyzxSO7x07ToKvj+O3baVB12fw6+XtWNQQ2kuK6i51sRcJxz7jXn3AvAMfgBHTSQyi6k+txyzt3hnLvTOTc1qK+L8AM8XGhmeyXnqHZPqawrM8sE7gdud87NS95RtAyN9Jv1NXAgMBb4Df6mx6P1OIwWozFjDDMbC/wDeMw590SdD0KkiUvxeRZdplbrm9lg/KCJ02jhg381h/qSGqlPndRk3WRec7d0DV1XkjwprSszuxY/5sdPYrtQkOqpxWzDmA4MqsFy0WbhG4B8M7O4O3j5Me/X1LnAp865z2qxTkuWyrqK9qH4fuwjAc65ZWa2ALX0q4nGPLeinsIPLDUc+KoO67cUqayrn+Pv2v7DzNoF83KD19Zm1to5t6WG5W6JUn5eOedK8P2UArxjZquAh83sTufcjBqWu6VqlL+DZnYg8DJ+dN8La1hWkeYqledZda2P2iVa18z6AW8Ci4ET1Vq2adeX1EhVrY3zSdxqL9YGoFcV60bfj74m+7qgJUpFXUlypLSuzOzHwE3Adc65h2pRzhZPidkGECTdatP32lz8I+17smOfN9F+P2rUAiy4aBoE/KIW+27RUlxX3wDFVH3nSR2c70JjnVtxqmspIYEU19VgoCuwIsF7HwOf4QfqkASayHkVTdL2B5SYrUZj1JeZ7QO8ge/e5RTnnAZpk91ais+zaP+WQ4APojPNrA/+JuMO65rZHvhR5DcDE5xzm2tRzt1SU64vqbG5VPbfG2swu/5M5wInmVluXH+Yg4EyKuu4IeKXligVdSXJkbK6MrNzgHuAW51z/1f3IrdM6sqgaXgd/+U+K27+2cCcoDP5mjgPqACeTGLZZEd1rqvgQvZV4FAzaxWdb35QsAH4fmcluZJ1bsU6E5+UVX0lV33q6mbgsLgp+ljn2ag/4GRriPNqTPC6qD4Fk4TqVV9Bty1v4m8uHuucK26QUoo0b/WJD7/F30BMtG45MCk6w8w6AW8F/x3vnFtXz3K3VCmpL6mVl4GDg9bgwPZk98jgvV2tmwGcFrNuOnAGMNk5VxrMboj4pSVKRV1JcqSkrszsJOBh4F/OuauSVfiWRC1mmwDn3Fozux241sy24Ft4nYEfxOuE2GXNbArQ2znXP25+Bn4wqUnOubWpKXnLk4S6ugGYBbxqZrfiB5S6AT+a7l0pOIQWpT71ZWa9gceAp/F3BLPw/WCeD9zvnFMCKYnqU1fOuQXEtZQJgg6AmerfKLnqeV7tC9wCPIdP9GUBo4Gf4X+/PkCSqp711RmflM3E/1YNNtuha7FPdBElkpT48DfAK2Z2P77LpP2B6/CD+a4O1svBt1zvA1wA7BG0no2ap9azNZOK+grW7UTljcdeQK6ZnRr8f576xd/BA8BPgJfM7Dp8I4g/Asvw4wgA2+PzRcAfnHN/AHDOfWpmzwB3BNfEi4FLgb7EJGFrU+9SrQavq2D94fi/d9HGhINjzp/X4lpxSmINXldmNhr/d/Bz4BEzOzhm/6XOuU8a8Ph2H845TU1gAkL4H/SlQCn+i31qguWmAUsSzD8Jf6Kd0tjHsrtPSairg4C38f1cFQIvAv0b+7h216mu9YXvj+fFYL0SfDcUH+N/3NIa+7h2x6m+51bcMucHfxN1bjWhugK64J/qWBycUwX41ueXA1mNfVy761SP+hobnEdVTX0a+9g0aWoqUxLiw5PxLTFLgW+B64FQzPt9dnE+jm3sz6A5TQ1q+nehAAAO+ElEQVRdX8Ey1f0NvbGxP4OmNuGT18/ju+nYEsThfeKW6ZPo88MPpHwbsBoft89MdE7UtN41NYm6ekTxR9OvK+DGauppSWMff3OZLPgwRURERERERERERCRF1MesiIiIiIiIiIiISIopMSsiIiIiIiIiIiKSYkrMioiIiIiIiIiIiKSYErMiIiIiIiIiIiIiKabErIiIiIiIiIiIiEiKKTErIiIiIiIiIiIikmJKzIqIiIiIiIi0EGZ2vpk5Mzs/bv4SM1vSOKVqHGY2NvgsbmzssohIy6TErIjstoIga1fT2MYup4iIiIg0D2Y20MzuNLM5ZlZoZmVmttLMXjWzC80su7HLKCIizUd6YxdARCQFfl/Ne0tSVQgRERERab7M7HrgBnwDpxnARGAr0AUYC/wLuBQY3khFrK/DG7sAIiItjRKzIrLbc87d2NhlEBEREZHmy8x+g7/Zvww4zTk3M8EyxwK/THXZksU5t6ixyyAi0tKoKwMRkYCZ3Rjt3sDMTjWzWWZWZGYbzOxpM+tRxXrtzezPZjbfzIqDx9qmmNn3Eiy7vU8vM5tgZtOC5V3ccmeZ2cfB9taa2WNm1j1Y3sUsNyHY3kNVlC3LzNYHU1Y9Ppu9zexmM5ttZuvMrNTMlprZP81sj1psp09Q3keqeH9a/GchIiIi0pjMrA9wI1AOHJ0oKQvgnHsFmJBg/dPN7H9BzFdsZl+Y2bWJYrMgTppWRTkeCd7vE1u2aGwVdLPwYhC7bjOz9xLFo9Uc5059zMbFrocFsdoWM9scdN8wqIpt7W1mz5vZxqAs083smKr6t61iG/cHyx5fxfsHB+8/F7ffZMSsVfa3G3vNkOC9gUFdLAv2vcbMnjSzAQmW7WJmt5jZl8FntCn49yNm1q+mZa2ijN3N7Hoze9/MVltllxtPVlVn1WyrVt9JEakdJWZFRHZ2GfA4vpuDu4E5wBnAW/EBtJn1Bj4CrgHWAfcBzwCDgNfN7KIq9nEq8AqwJVjn2ZhtXh3svw/+EbmHgSHA+0C7uO28ASwCzjCztgn2cwrQAXjEOVe6yyOv2snAj/GtRJ4C7gTmAT8CPrQqktYiIiIiu4EfAhnA8865OdUtGB9vmdlNVMaGTwJ3AQbcBLxhZhlJKmNf4AN83Hc/8BxwADDJzM5IwvaPBSYDm/Gx67vA0cA7ZtYxdkEzGxiU5WR8/Pp34FvgBeDEWuzzkeD1vCrePzd4nRgzr9FiVjObAHwMnAV8iD/uKUGZZpnZd2KWzcV/Nr8ElgL3Ag8CXwAnAIPrWZzR+OuTTcDzwO347jdOxX8Ow+q5fRFJEnVlICK7Pat6lNUS59zNCeZPAA50zn0Rs40ngR/gA6VnY5adCPQGfuCcezpm+XbANOAfZvayc25N3D6Oxre4eD2urP3wgfp64DvOuWXB/Gvwwfz3Y5d3zjkzuw/4G3AOPtiPdXHw+s+En0DNPQbcnuBi43vAJOA6fJ9qIiIiIrubUcHrlNqsZGYjgGvxScKDnHOrg/nX4pOUxwJX42O/+hoN3OKcuzpm/3fhE6T3mdkk59zmemz/ROBI59z2z8DM/oxP/l0A/DVm2buB9sBlzrl7Y5Y/Cnitpjt0zn1gZguBY82sg3OuIGZbWfi4eC0QG083SsxqZvn4RHARMNo5Ny/mvSHATHwfxNHk7OHAnsAdzrlfxG0rE6jzk26BqUAX59yWuG0PwyeEbwaOquc+RCQJ1GJWRFqCG6qYrqli+X/EJmUDDwSvB0VnBIHNGHzriadjF3bObQr2kY1vtRrvpfikbOBM/E2zO6NJ2WB7LihvOME6DwMlwCWxM4NHpsYAbzvnFiZYr8accysStbh1zk0G5gJH1mf7IiIiIk1Yt+B1eS3XuyB4/VM0KQvgnKvAt5SM4FtyJkMh8IfYGc652cAT+CeuTqrn9p+OTcoGojf+Y+PjnsA44Gt8y93Y8kwC3qrlficCmcQ1TgCOA/KBJ4LPM7qPxopZz8V/zjfEJmWDfc/FX0vsb2bxLWGLE5S1LD6hWlvOubWJtuGc+wyftD0sia21RaQe1GJWRHZ7zjmr5SqzE8yLJknzY+aNCF7bVtEqt1Pwmqgfp1lV7Hv/4PW9+Decc0vNbBm+i4PY+QVm9ixwrpkd4pybHrwVbS17XxX7qjEzM/xjWecDw/CfQyhmkbL67kNERESkiYrGkrXtBz/aOnJq/BvOuYVmthzoa2btgpv69fFxFcm8afiuAPZnx0f+a6um8fF+wesHzrlIgnXeA46oxX4fBf6IP4a7Y+ZHuzfY4ZgaMWaNXhcMq+K6YO/gdRC+a4V3gBXANUEXB6/hW7J+6pxL1BCj1szsGHy3DsOBjuyc/+kIrErGvkSk7pSYFRHZWaLAOHonPjaw6xC8jg+mquQlmLc6wTyAaD+x8V0fEDO/T4L59+Dv1F8CTA8e7zoP/3jXi9WUraZuA36OD97ewAeS0Tv85+O7cxARERHZHa0EBgI1HjwqEI3rqkp+rQJ6BcvVNzFbVewYjTkTjUVQGzuVzzlX4fOgO8THNYlla8w5t9zMpgDjzWyQc26+mXXGdz32adACNFZjxazR64KqxpeIygNwzm02s4OB3wPHU9mSd72Z3YNvZV1e18KY2RX4Pm43Am/i+/gtwt9cOBGftK5vdwkikgRKzIqI1F1h8Poz59w/arluVS0uon1/dcE/bhWvS8KNOTfTzD4GTjezn+P7jOoA/MU5V6+WAUHwewV+ELRDEvRV9YNabC7acqKq35/4wc1EREREGtt7+MfzD8cP0FRT0VixK36w1njd4pYDHyPWJU5KGCMG+47fR0OKjWUTqWp+dSbiG0Gch+/a6yz8ZxTfWjbZMWtmFe8lqofo5zvMOfd5TXbgnFsOXBi08h2M/45dDlyP73byd7Uo73Zmlo5P+K7Gj1mxKu79EQlXrKaoKHYXaTDqY1ZEpO5mBK+HJnGbnwSvo+LfMLPeQM9q1r0X36ftufhuDByVfePWRz/878XkBAHuHsH7NbUxeN3pOMysDZWPeYmIiIg0FQ8D5cApCfoI3UHw1FJUNK4bm2C5/vgWuIvjujHYSOI4KURlNwGJfMfMWieYH933JwneawjR/Ywws0T5hp1i3Br4Dz7he3awzfPwT7M9GbdcsmPWLlX0wzo8wbw6Xxc4b65z7k4qn8I7sbbbidERnzCdniApm0dlFxs1VdfvpIjUgBKzIiJ1FAyo8C5wspldkGgZM9snuHtfU0/iA82fBoMnRLdjwJ/Z8VGxROsWAr/CD/r1pnMuUesMzGyJmTkz61ODMi0JXkcFAVh0G3n4xG/CO+hmNtDMBsbOC4LkBcDI2AubYLu3ATk13ZaIiIhIKjjnlgA34ltQvmpmiRJzmNkEYFLMrIeC1+vMrFPMciHgFvz1eHwL3FlALzP7Xtz866j+Mfy2+JaWseUZjm9dWgi8UM26SRMMXjsN6M/OA9NOoHb9y0a3WQw8C/QAfoF/DP8159zauEWXBK+1ilmrMCtY/oexM83sfGBkguUfxnf3cIOZHRT/ppmlmdnYmP8PrSIOj7YoLopbf1oQu4/deZWdrA3WPyA49ug2MvDdG3RMtJKZ7RnE3PHJ6Fp/J6vZlojEUVcGIrLbq6ID/qgXnXOf1mPzZ+IHdHgw6MtpJj4o2wPYFxiKHwwgPnBMyDm3yMyuB24CPjOzZ/DB9HigPfBZsN1E6xaZ2UT8I1wQNxJunOiNuYpqlolud7WZPY0fDfdTM5uMD/7HAyXApyS+Wz4/eI0ffO1v+IuQ983suWAbhwEZ+OMbVottiYiIiDQ459xNwSPiNwAfmtl0/IBYW/HJtNHAXsQMkuWcm25mf8XfNJ9jZv8GtuG7nBqK7yLhb3G7ugXf3+hLQRy4ATgE6ItPeI6tooj/A35kZt/FDyLVDTgDH/Nd4pzbXMV6DeHyoAz3mNnRwOf41qqnAC8BJ1DZvVVNTQR+hG+oEP3/DuoRsyZyJz4pe6+ZHY4f6GwYvi5eAY6N23eBmZ2KT4DPCPrFnYs/zl7464EO+KfbwCeobwu+Rwvw1wp7UPnZxH8vahO7R8zsH/huH74ws5fwNxUOw19PvB38O94UfKK1L5VJbqjbd7KqbYlIHLWYFZGW4IZqpno9fhP0DXUA8FsgjG+VcAU+WPkW31Lgi1pu88/47giW4gPCC/GJyZH4G2rVBdbRlhmrgJcTLWBm+fgWB+8H5a+JC/HJ4hx8sH0kPig9hFr2WeacewgfWK/EP4p2OjAdf3z1HfhCREREpEE45/6AT6jehU/4/RC4GjgG34fsj4h7VN8592vgB8BX+PjuCvx1+HXA+PixAJxzU/CPsc/FJxjPwye2DsLHhlVZjI/LNgI/xsdXHwNHO+eeqeMh14lzbh4+EfkC/tH+n+MHrz0Jn4yG6uPZRNt8D/gafyN/Az4OTSQpMWtwDEfgE8zH4bsJK8Mf10dVrDMF34DiHvzx/hj/nRiKb8jx/ZjF3wDuwCdqTwB+iU/uvwkc6pz7d3TB4Mm5IfjvwQxq5nfBNovx1yMn428aHIS/RqmxenwnRaQGzLmqxp8REZGmJOiDdQ1+BNqEnfYHj1c9jB/JNeGAAWZ2PL61wjHOudcaqLgiIiIi0sCCx+EXAxOdc+c3amFqwMyewD9xNtA592Vjl6c5MLN98U+VXe6cu6exyyMiyaUWsyIiTYyZdYrvjyl4dO5W/F31hH2EBctciX/EqbpuDMYAnykpKyIiIiLJFvSn2jXB/MPx3SvMU1K2VsbgG2c8tKsFRaT5UR+zIiJNzynAH8zsLXx/Vu3xjzbtje8b687Yhc1sFD5gGwvsA9xVXRcFzrlfNkyxRURERETIBJaZ2dv4/lMr8I/ij8d3B3B5I5at2XHO3Ulc/C8iuw8lZkVEmp6Z+P63RuMHCQD/iNr/AX8JRqaNdQS+v9wN+BFnf5WicoqIiIiIxCsH7gPGAd8FcoH1wHPAzc65TxqxbCIiTYr6mBURERERERERERFJMfUxKyIiIiIiIiIiIpJiSsyKiIiIiIiIiIiIpJgSsyIiIiIiIiIiIiIppsSsiIiIiIiIiIiISIopMSsiIiIiIiIiIiKSYkrMioiIiIiIiIiIiKTY/wPYQSFokDRzrAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "states = [0, 1, 2, 3, 4]\n", - "nst = len(states)\n", - "\n", - "plt.figure(1, figsize=(24, 16)) # dpi=300, frameon=False)\n", - "plt.subplot(2,2,1)\n", - "plt.title('Energies')\n", - "plt.xlabel('Time, fs')\n", - "plt.ylabel('Energy, a.u.')\n", - "for i in xrange(nst):\n", - " st = states[i]\n", - " En = data_conv.unpack1(Hvib[0], st, st, 0) \n", - " plt.plot(T, En, label='State %i ' % (st), linewidth=2, color = colors[clrs_index[i]]) \n", - "plt.legend()\n", - "\n", - "\n", - "plt.subplot(2,2,2)\n", - "plt.title('Couplings')\n", - "plt.xlabel('Time, fs')\n", - "plt.ylabel('NAC, a.u.')\n", - "cnt = 0\n", - "for i in xrange(nst):\n", - " st1 = states[i]\n", - " for j in xrange(i+1, nst):\n", - " st2 = states[j] \n", - " NAC = data_conv.unpack1(Hvib[0], st1, st2, 1)\n", - " plt.plot(T, NAC, label='NAC_%i_%i' % (st1, st2), linewidth=2, color = colors[clrs_index[cnt]]) \n", - " cnt = cnt + 1\n", - "plt.legend()\n", - "\n", - "\n", - "plt.subplot(2,2,3)\n", - "plt.title('Distribution of energies')\n", - "plt.xlabel('Energy, a.u.')\n", - "plt.ylabel('Probability density')\n", - "\n", - "for i in xrange(nst):\n", - " st = states[i]\n", - " bin_supp, dens, cum = data_stat.cmat_distrib(Hvib[0], st, st, 0, -0.7, -0.2, 0.001) \n", - " plt.plot(bin_supp, dens, label='State %i ' % (st), linewidth=2, color = colors[clrs_index[i]]) \n", - "plt.legend()\n", - "\n", - "\n", - "plt.subplot(2,2,4)\n", - "plt.title('Distribution of couplings')\n", - "plt.xlabel('Coupling values, a.u.')\n", - "plt.ylabel('Probability density')\n", - "cnt = 0\n", - "for i in xrange(nst):\n", - " st1 = states[i]\n", - " for j in xrange(i+1, nst):\n", - " st2 = states[j] \n", - " bin_supp, dens, cum = data_stat.cmat_distrib(Hvib[0], st1, st2, 1, -0.025, 0.025, 0.0002) \n", - " plt.plot(bin_supp, dens, label='NAC_%i_%i' % (st1, st2), linewidth=2, color = colors[clrs_index[cnt]]) \n", - " cnt = cnt + 1\n", - "plt.legend()\n", - "\n", - "plt.show()\n", - "plt.close()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Also, compute the map of the averaged couplings and plot it as a 2D picture" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/alexey/miniconda2/envs/libra/lib/python2.7/site-packages/ipykernel_launcher.py:82: MatplotlibDeprecationWarning: The griddata function was deprecated in version 2.2. Use scipy.interpolate.griddata instead.\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxQAAAKjCAYAAACEO0noAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XmcNFV59//PVT0sIiqrMW6AwZ+KuxIDLlFxwUSDGMUNjUuCRuOuefIouAQlatx9EhfUGBVXjIkaUdwAg6JRFFCiKApuQRRQZJHlnrp+f5xzuk5VV3X39PRMz9R837yama46tfTc3afrquss5u6IiIiIiIjMolj0CYiIiIiIyOalgEJERERERGamgEJERERERGamgEJERERERGamgEJERERERGamgEJERERERGamgEJEZMHM7GZm9lEzu9TMfmtmHzOzm0+x3cvMzDseV63HuYuIiJjmoRARWRwz2wk4E7gaOApw4BXATsAd3P2KMdveFLhpY/F1gc8A/+7uj1yTkxYREcksLfoERES2uCOAWwC3cvdzAczsLOAHwFOB13dt6O4/A36WLzOzxxPq9ves1QmLiIjklKEQEVkgM/sCsKO736Ox/BQAd7/3Cvf3eeB2wE3dfdvcTlRERKSDMhQi0mv3f+BOfvHFyws7/hnfvOZEd3/QmCK3BT7esvxs4LCVHCs2gbov8EYFEyKyESy6Doap6mFZJQUUItJrF1+8zMmn3WRhx99lh/NubWbfyBYd6+7HZs93A37dsuklwK4rPNzjCYNtqLmTiGwIi66DAXbZ4bw9FnoCW4ACChGRtXWRu+8/oUxb21Ob4Vh/AXzL3c+aYVsREZGZaNhYEek5g3KwuMdkvyZkKZp2pT1z0f4qze4G3BplJ0RkQ1lwHTxdPTzz8N1x2x3N7DVmdoGZ/c7MTjOzP24pV5jZC83sfDO7yszONLOHd+zzCDP7npldbWbnmNlfd5Q71My+Fff3YzM7yswGjTLPNbOvm9nFsdy5ZvY6M9u9Ua5rKPL/mPQ3UIZCRGSxzib0o2jaD/ifFeznCcA24APzOCkRka0iDt/9RcLw3U+gGr77JDMbO3x39C7gwcDfAj8C/gY40cwOdPczsnIvB14AHAmcDjwaON7MHuLuJ2TncwTwduCVwOeB+wFvMTNz97dm5Q4G/i0e/3nAnYF/AK4H/F123N2AjwHfAS6L5V4C3NfM9nf3svF67gnkHV8umfD6FVCISM85WDlL66F18wngtWZ2C3f/EYCZ7Q3cA/i/0+zAzLYnfDGd4O6/WqPzFBFZuY1fB8Mqhu82szsCjwWe7O7vjstOIdwsOho4JC67ISGYeJW7vzZufpKZ7Qu8CjghllsCjgHe5+5HZuVuDLzczN7p7tfG5a8CTnX3p2TldgaOMrM3uPsvANz9xY3TPtnMrgTeRgguTm+s/9pKB/ZQkycRkcV6B3A+8HEze6iZHUIY9emnhDtUAJjZXma2zcxe0rKPhxDuQKm5k4jIyh0CfDUFEwDufh7wZeChU2x7LfDhbNttwIeAg81sh7j4YGB74LjG9scBtzezfeLzA4E9W8q9D9idkD3AzG4G3Kmj3HbAn0w474vjz2vHlpqSAgoRkQWKqfSDgO8TvgjeD5wHHOTul2dFDRjQXm8/gZCS/s+1PVsRkV66LaE5UNPZhOank7Y9z92vbNl2e2DfrNzVwLkt5ciOk5rANs9nqnIxELqy7bzNbMnMdjKzA4C/B77QMYjHT81sOfbJeLWZXaelTI2aPIlI//nGTre7+0+A1o55WZnz6Rj5yd0n3UETEVmcxdfBe6zh8N3jtk3r08/f+OiM0m3laNnntOXSstpgH7Ep1GXZohMZnevoXEJT228R+pE8EHgucBfgAS3HGVJAISIiIiJ9tpbDd9uU266kXNf5TFuu7byvBP4Q2JHQb+JI4JNmdv/UX8Ldm82nPmdmPwPeGMt9vutkFFCISK8Zm6JDoIhIL22SOng1w3dfArQNL7trtj793DWO1OQTyhHP54Ks3G5jyjXtQmNkpjiSU8rSnGpm3wZOAh5B6O/R5YPAGwnBSGdAoT4UIiIiIrKVrWb47rOBfeLQs81tr6HqM3E2sAPwBy3lyI6T+ko0z2eqcnGUwJ2mOO8UXOw7tlRlbMZEAYWIiIiIbGWfAA4ws1ukBdnw3Z+YYtvtyPojxKFfHwV81t2vjos/QwgwDm9s/zjgO7EzNcBpwEUd5S4hjDyV+t6d2VHuWuDTE8773vHnDyeUS/v/2rhCavIkIv3mYM0pe0REZH1sjjr4HcAzCMN3H0W4G/9yWobvJlyAH+3uRwO4+xlm9mFCP4PtCKP0PQ3Yh+xi391/aWZvAF5oZpcB3yQEHQeRDU3r7tea2YsJE9n9nNDM6CDgycAz3f2a7LxfBPynmb2d0DTpzsBRwJvSHBRmdgNCMPN+wrwaDtyNMBHemYQJ79Lr+xbwXuCcWO4BwDOBz7j7SeP+gAooRERERGTLcvcrzOwg4A2E4bsN+ALwnCmH734SYTK6VxD6L5wJPMjdv9kodyRwOfBs4EaEC/dHuvsnG+fzNjNz4PmE2bd/AjzD3d/SKHeCmT0CeCnwROBCwkzZx2TFrgK+CzwLuAmwjTD30euAN2cZFOL5PAP4/fg6f0iYnO8fm3+zJhsdvUpEpD/ucucd/Utf3Hthx7/ebuecPsXoIiIivbToOhhUD68H9aEQEREREZGZKaAQEREREZGZqQ+FiPSbg6llp4jIYqgO3hKUoRARERERkZkpoBARERERkZmpyZOI9N4mGANdRKS3VAf3nzIUIiIiIiIyM2UoRKT/SvUIFBFZGNXBvacMhYiIiIiIzEwBhYiIiIiIzExNnkSk3zQGuojI4qgO3hKUoRARERERkZkpQyEi/achC0VEFkd1cO8pQyEiIiIiIjNTQCEiIiIiIjNTkycR6TUDTGOgi4gshOrgrUEZChERERERmZkyFCLSb446BIqILIrq4C1BGQoREREREZmZAgoREREREZmZmjyJSO9pllYRkcVRHdx/ylCIiIiIiMjMlKEQkf5Th0ARkcVRHdx7ylCIiIiIiMjMFFCIiIiIiMjM1ORJRPrNwZRuFxFZDNXBW4IyFCIiIiIiMjNlKESk/1xjFoqILIzq4N5ThkJERERERGamgEJERERERGamJk8i0nvqECgisjiqg/tPGQoREREREZmZMhQi0m+OZmkVEVkU1cFbgjIUIiIiIiIyMwUUIiIiIiIyMzV5EpHeMw2BLiKyMKqD+08ZChERERERmZkyFCLSf+oQKCKyOKqDe08ZChERERERmZkCChERERERmZmaPIlIv2kMdBGRxVEdvCUoQyEiIiIiIjNTQCEiIiIiIjNTkycR6TUDzG3RpyEisiWpDt4alKEQEREREZGZKUMhIv2nDoEiIoujOrj3lKEQEREREZGZKaAQEREREZGZqcmTiPSbxkAXEVkc1cFbgjIUIiIiIiIyM2UoRKT/fNEnICKyhakO7j1lKEREREREZGYKKEREREREZGZq8iQivWelZmkVEVkU1cH9pwyFiIiIiIjMTBkKEek3Rx0CRUQWRXXwlqAMhYiIiIiIzEwBhYiIiIiIzExNnkSk/9QhUERkcVQH954yFCIiIiIiMjNlKESk/8pFn4CIyBamOrj3lKEQEREREZGZKaAQEREREZGZqcmTiPSbxkAXEVkc1cFbgjIUIiIiIiIyM2UoRKTnTEMWiogsjOrgrUAZChERERERmZkCChERERERmZmaPIlI/7nS7SIiC6M6uPeUoRARERERkZkpQyEi/eZgmqVVRGQxVAdvCcpQiIiIiIjIzBRQiIiIiIjIzBRQiEj/lba4xxTM7GZm9lEzu9TMfmtmHzOzm0/78szsNmZ2vJldZGa/M7NzzOzZM/+9RETmaZF1sObAWBfqQyEiskBmthPwReBq4AmAA68ATjKzO7j7FRO23z9ufzLwV8ClwC2BndfwtEVERIYUUIhI//miT2CsI4BbALdy93MBzOws4AfAU4HXd21oZgXwHuAL7v6wbNVJa3e6IiIrtLHrYJkDNXkSEVmsQ4CvpmACwN3PA74MPHTCtvcB9mNM0CEiIrLWFFCIiCzWbYHvtCw/mxAsjHPP+HNHM/uqmV1rZr80szeb2XXmepYiIiIdFFCISL85i+4MuIeZfSN7PKVxhrsBv24580uAXSe8uhvHnx8GPgs8APhHQl+KD8z6JxMRmZtF18HrMDiGme1oZq8xswviwBinmdkft5QrzOyFZna+mV1lZmea2cM79nmEmX3PzK6OA238dUe5Q83sW3F/Pzazo8xs0CjzXDP7upldHMuda2avM7PdW/Z3TzP7SnwdvzCz109zg0p9KERE1tZF7r7/hDJtLYyn+RZMN4WOc/eXxN9Pjl8mrzKz/dz9f6Y9URGRrWi1g2MA7wIeDPwt8CPgb4ATzexAdz8jK/dy4AXAkcDpwKOB483sIe5+QnY+RwBvB14JfB64H/AWMzN3f2tW7mDg3+LxnwfcGfgH4HrA32XH3Q34GCEbflks9xLgvma2v7uXcX93AD4HnAg8BNgHeA1wE+BR4/4ACihEpP98Qw8b+GtCZd+0K+2Zi9zF8efnGss/C7wKuBOggEJEFmtj18GwusEx7gg8Fniyu787LjuF0Gz1aEI/OczshoRg4lXu/tq4+Ulmti+hvj4hllsCjgHe5+5HZuVuDLzczN7p7tfG5a8CTnX3p2TldgaOMrM3uPsvANz9xY3TPtnMrgTeRgguTo/L/x74GXBYOoaZXQO8x8xe7e7f7Po7qMmTiMhinU3oR9G0H5ODgbPjz2aGI317l6s4LxGRrWI1g2McAlxLaHqatt0GfAg42Mx2iIsPBrYHjmtsfxxwezPbJz4/ENizpdz7gN2JfefM7GaEm0Zt5bYD/mTCeacbUilw2A54EPCRLGAB+AhwDRP+DgooREQW6xPAAWZ2i7TAzPYG7hHXjfNpQor+QY3lB8ef35jPKYqI9NpqBse4LXCeu1/Zsu32wL5ZuauBc1vKkR0n3WBqns9U5WIgdGXbeZvZkpntZGYHELIRX3D3s+LqPwB2bNnfVcAP2/aXU5MnEem/jX2f/h3AM4CPm9lRhGzDy4GfEtrQAmBmexEq9aPd/WgAd7/YzF4JvNjMfktoA7w/oW3se/K7bSIiC7P4OngPM8tvsBzr7sdmz1czOMa4bdP69PM37t7MKLeVo2Wf05ZLy2pNaWNTqMuyRScCh2XPx+3vkub+mhRQiIgskLtfYWYHAW8gpKoN+ALwHHe/PCtqwIDRzPLRhC+JpxPa515A6ET38jU+dRGRzWItB8ewKbddSbmu85m2XNt5Xwn8ISELcWdCx/BPmtn9YxOtle6vRgGFiMiCuftPgNahA7My59NSqce7Xa9Hk9uJiMxqNYNjXAK0DS+7a7Y+/dw1jtTkE8oRz+eCrNxuY8o17ZKtByCO5JSyNKea2beBk4BHEPp7jNvfrlRNrlqpD4WI9JyFEUYW9RAR2dIWXAdPVw+vdnCMfeLQs81tr6HqM3E2sAOhr0KzHNlx0oV783ymKhf74O00xXmn4CL18fghoY9Hc387EkbAGrs/BRQiIiIispWtZnCMTxBGVRr2R4hDvz4K+Ky7Xx0Xf4YQYBze2P5xwHdiZ2qA04CLOspdQhh5KmW2z+wody1h0I5x7h1//jDu75p4jo+M5588ghAIjf07qMmTiPSbg085U6qIiMzZ5qiDVzM4xhlm9mHgjXHo1fOApxEmhRte7Lv7L83sDcALzewy4JuEoOMgsiFZ3f1aM3sxYSK7nxMmtjsIeDLwzHjhn7wI+E8zezvwQULfiKOAN6U5KMzsBoRA4f2EeTUcuBthIrwzCRPeJS8jBDQfMbN/BvYm9Mn7qLufzhgKKERERERky5rD4BhPIkxG9wpC/4UzgQe1TAR3JHA58GzgRsA5wCPd/ZON83mbmTnwfMLs2z8BnuHub2mUO8HMHgG8FHgicCFhpuxjsmJXAd8FnkWY8XobcD7wOuDNWQYlBUcHA68GPgVcCryXELiMZaOjV4mI9Mf+t9zJ//tNt1zY8QcPPuv0KUYXERHppUXXwaB6eD0oQyEi/afO0SIii6M6uPfUKVtERERERGamDIWI9N/iZ2kVEdm6VAf3njIUIiIiIiIyMwUUIiIiIiIyMzV5EpF+c9QhUERkUVQHbwnKUIiIiIiIyMyUoRCR/tv4s7SKiPSX6uDeU4ZCRERERERmpoBCRERERERmpiZPItJzpg6BIiILozp4K1CGQkREREREZqYMhYj0m6MOgSIii6I6eEtQhkJERERERGamgEJERERERGamJk8i0n++6BMQEdnCVAf3njIUIiIiIiIyM2UoRKT3XB0CRUQWRnVw/ylDISIiIiIiM1NAISIiIiIiM1OTJxHpP83SKiKyOKqDe08ZChERERERmZkyFCLSb5qlVURkcVQHbwnKUIiIiIiIyMwUUIiIiIiIyMzU5ElEes7UIVBEZGFUB28FylCIiIiIiMjMlKEQkf5Th0ARkcVRHdx7ylCIiIiIiMjMFFCIiIiIiMjM1ORJRHrNPTxERGT9qQ7eGpShEBERERGRmSmgEBERERGRmanJk4j0n8ZAFxFZHNXBvacMhYiIiIiIzEwZChHpP42BLiKyOKqDe08ZChERERERmZkCChERERERmZmaPIlIvzm4OgSKiCyG6uAtQRkKERERERGZmTIUItJzpg6BIiILozp4K1CGQkREREREZqaAQkREREREZqYmTyLSf+oQKCKyOKqDe08ZChERERERmZkyFCLSexqyUERkcVQH958yFCIiIiIiMjMFFCIiIiIiMjM1eRKRfnOgXPRJiIhsUaqDtwRlKEREREREZGbKUIhI/6lDoIjI4qgO7j1lKEREREREZGYKKEREREREZGZq8iQiveel0u0iIouiOrj/lKEQEREREZGZKUMhIv3mpg6BIiKLojp4S1CGQkREREREZqaAQkREREREZqYmTyLSe650u4jIwqgO7j9lKEREREREZGbKUIhI/2nIQhGRxVEd3HvKUIiIiIiIyMwUUIiIiIiIyMzU5ElE+k8dAkVEFkd1cO8pQyEiIiIiIjNThkJEes09PEREZP2pDt4alKEQEREREZGZKaAQEREREZGZqcmTiPSfxkAXEVkc1cG9pwyFiIiIiIjMTBkKEek5wzVkoYjIgqgO3gqUoRARERERkZkpoBARERERkZmpyZOI9J/S7SIii6M6uPeUoRARERERkZkpoJBWZvY0M3Mze/Giz6XJzE6N5/a4xvL7x+XnzrDP65vZr83sfDPbYX5nKzKZmd3MzD5qZpea2W/N7GNmdvMpt/WOx53W+rxl7ZjZEfHf8e8XfS5NZnZyPLcnNpbfJy4/f4Z97mxmF5vZT81sx3mdq4isDwUUG4yZ/WvHxcFlZna2mb3FzG6zxuewE/AS4FLgzY11S9k5Pa51BzOUXTR3/y3wT8BewNMWfDoyTw5e2sIek8TP2xeBWwNPAB4P3BI4ycyuO+Wr/FfgwMbj+yv/YwnU6uGTF3T86wAvBS4D3tSyPtWrT5xiX1OXXSR3v5zwfXNT4BkLPh2ZpwXXwdPUw7J6Cig2rmuBC+Pjl8BOwH6Ei90zzOywNTz2c4EbAf/k7peu4XFm9WPgHELAM09vBK4AXmRm15vzvkW6HAHcAjjU3f/D3T8OHEIIbp865T5+7u5fbTyuXKsTljX3LOAmwFvc/ZJFn0yLn7A2dfCbCEHUC83s+nPet4isIQUUG9dX3P1G8fF7wI7AnwDnA9sD7zazPed9UDNbAp4JOPDOee9/Htz9cHe/tbt/cs77vRj4d2BPYENnVGSF3Bb3mOwQ4KvuPmyq5+7nAV8GHrpGfxHZoMxsQAgoAN6xyHPp4u5/Eevgf5/zfn8D/BuwGyFbJ32xyDpYHcLXhQKKTcLdr3X3zwCHx0XXBR6+Bof6M+D3CBc456/B/je6D8aff7nQs5Ct5LbAd1qWn03ISk7jaWZ2tZldaWZfNLN7ze/0ZJ39KXBj4Ovu/sNFn8wCqA6WhVhlX7Ydzew1ZnaBmf3OzE4zsz9uKVeY2Qtjf82rzOxMM2u9lov9qL4X6/ZzzOyvO8odambfivv7sZkdFW9MpPUDM3tB/G64MDah/6aZ/aWZFY19PbGj2f0Zk/4GCig2n9OAy+PvnRcb8U37F2b2eTO7yMyuMbOfm9mHzOwPx+z/SfHnR+Z1wi3nlt6wP2++mRvl7hXLXW1mu2bLWztlt2z/0Nh58NdmdrmZfcXMHj3h9D4H/Aa4q5ndfoWvK+8zclMzu42ZfSBWMFfED/DhWXkzs782s9Pj+V0cy9+0Y/87m9mjYpmzzew3seL6gZm9zcz2nfK87mBmHzGzX8Ttv2tmLzKz7VfyemVqe5jZN7LHUxrrdwN+3bLdJcCuLcubjgOeDtwfeAqwO/BFM7vPKs5ZOljWIdnCYA7/aGY/jJ+lH5nZ0ZZ1Kjaz+5nZibEevsLMvmTjA771qIMfF1/DL/ILj5ZyB8Zy15jZ7tny1k7ZLdv/mZmdlNXBp5nZYyec3heAi4E7mtmdV/K64jFTXbe3md3KzN4f6+ArLVx0PT4ra2b2lPi5vMzMLonfka0XkbEOPizu8ztZHXyumR1rZrec8rxuF4/zCwsXgd8zsxebBgRZGFt9X7Z3EZqvvgR4CHABcKKNDo7xcuBlhD6bfwJ8FTjezP60cT5HAG8nZOweBBwPvMXMntYod3As8/W4vzcBRwH/kBW7Tlz2HcJ3xKHASYQM6Ks7Xs9h1PvkPb6j3JDmodicUv6u9YvAzG5AaLpz37jICe1Sbww8CjjMzJ7h7m9tbDfItvnyvE868zHgrfF87kP4ELd5TPz5aXdvu+DqZGbPB15LeO2XEj5QBwIHmtkB7v6ctu3c/Voz+2/ggfHx7ZUcN3Mg8C/Aztnx7wwcZ2Z7AP8P+BDhQ3sNoc/MboTXfKCZ3aXlNf8V8Ibs+WWEmwL7xsfhZnaIu5805rzuRWjKthPwW8J76NbAMcCfmtnB7n7FjK95w/LFprwvcvf9J5TxlmVTnbS75xX9f5nZxwlfHK8A7jndKcoMdgW+Rvj8XEH4LO0DvBi4E3CImT2dcOHghBtBOxE+g583s4PcvVbPWrjBclB8upZ18H8AVxKy0fcDPttRLtXBn41NQqdmZs8m9EvL6+ADgAPM7EB3f2bbdu6+bGZfI2RqHgh8ayXHzdyNUNddLx5/R8K/y3vN7IbA64H3E17jtYR6eFfCd2Sqg5uv+YmEujtJdfAfxMdjzexQd//8mPO6O3AsoZXBbwmf81sBRxPq4AfEDuq9suA6eBqpL9utUvNTMzsL+AGhL9vruzY0szsCjwWe7O7vjstOIWSZjyY0ayW+714AvMrdXxs3PyneDHwVcEIst0T4Tn6fux+Zlbsx8HIze6e7XxuXvwo41d2fkpXbGTjKzN7g7r8AfgfcotEf6wsWbtQ+08xe4u6/a7ysM/JmuNNQhmLzuTuhIgL4UUeZ4wiBwRmEiPW67n4DwgXrUcAy8P/M7IDGdnciXABfC5w15/MeiiMqfSo+fUxbmfiBekR8+oEVHuJGhA/Zu4EbufuuhH4Rb4zrn21mjxyz/Tfiz9U0G3kH4U7bPu6+C+GLKvVJeQWhkjmY0ITtevFxb0In/L2Bv23Z50WEUVAOBHZx9+sTvqT3IwQnOwMfsDBCTJe3EoKk28X3xM6EQOUq4B7Aa2Z7ubIKvyZ8Npt2pT1zMZa7X0b4fI3LRMrqvZRwMXgvd9+Z8Fk6AtgG/JmFIbffSKiLdo+ft70JWebtqd8cSG4P3IBQR5+5ViceL1hTH7SuOngApHpypXXwnoS65L3A78c6eA/gdXH9MyZkKuZRBx8LnEK4kNoF2AV4W1x3dHz8GeHO686EOvhewC+AmwN/17LPiwkBxd2p6uAdgdsQgpPrEurgcXe03wL8D3CH+J64HiEr9TtCwNV54SprajV92Q4hXDd9ONt2G+F7+eAs83Qw4bN/XGP744Dbm9k+8fmBhM9Qs9z7CBnoe0JookW4bmsrtx3h+g93X+4Y3OHrwA6Ez+aqKaDYJMxsu5jaSm+c2ps3K/cgQrrth8B93f0zKfJ091+7+zGEdNsA+L+Nze8Wf37f3a+e4rT+KaZsWx/Az8Zsm76gHm7tTW3uT/hAXUb1xTet6wKfc/cnu/svAdz9End/LqHSBxg3tnv6Iv+jFR43dwHw8NQPJY6W9VTgPMKX15HA09z9A+5+jQdfAl4Yt39Ec4fufpy7PzuO4HNpXFa6+3cJd0dOJgRTfz7mvH4HPMjdz47bX+Pu7yJ0xAd4ipndZBWve+Nxg3KBj8nOJvSjaNqPcOExC6M96yHzc13gIe5+Kgw/S+8kXERDuGA9zt1fFDsb4+4/JlzAO/CHLU1rUh187pSjdL1pXB0c6+EuqQ7+c2uf9+G+hAzGlcDHpziX3E6E+uiJ7n4hDL9/XgC8J5b5ezPr+oDMow7+JfCweFGYbmT9DXBuPL+jgL+J9Wqqg08F/k/cvq0O/qC7P8vdT8vqYHf37xECk88TvrdGts1cTaiDvx23v8bd/5XQbBHgL81sr1W87o1n0XXwdPXwavqy3RY4r+UzezYhgNg3K3c14T3YLEd2nPR90DyfqcrF9/yVU5z3vQlNvC9oWXeqmS3H5oJvM7O2m141Cig2rrtnXwoXEu4gf4Zwh6sE/trd2y7Y08gY705fYi3SF8n9rN6H4ffjz4umPMcbEL5wxj26fIqQht6V0D6wKd01+4+WVNw0Xtmx/Jj489ZmdruOMun139DG9PGY4DXuvpwvcPeS0G4RwtC3HxzZKmQ1APbt+JJv5e5OlfW5x5iib+l4X/wLoVIZAA+b9rgyF58gNAO5RVpgZnsT/h0/sdKdWRhu88GE5jiydo7vaBKQN3cZqYdiUJG2a9ZBK62Dr8/sdfCnCf10rk9oXtSU6uCPz9gM8pWxXmpKdfC+wB07tk2vfw8z226GYwO8Nt4lHop1cGpi+zNG7+xCVQfvM2Xb+bTvaevgt3XcLX5vPKcC1cFrYS28MsyCAAAgAElEQVT7so3bNq1PP3/T8rloK0fLPqctl5Z1BgHxBvUjGf2cXEC4GfJkwo3dfya0pDhl0jWJAoqNazuqL4QbUv1bXQIc4O7/0rHd3ePPF4y5Y/XVWGZnQho4SWmvaZtZPN7dresRX0OrmAH5WHxaS33HN+2h8elKU+0Q7gCc1nHc7wK/ik/v0rF9ev0FYz6QE3T1vfhl/Hl2x5fthfGnEQK2GjO7uYVOoKfHDoHLqbMfVXOlG485r5PbFsYv2lPj066/i6yNdxCGg/64hYEEDiHcEf4poVMeAGa2l5ltM7OXZMteYGbvMLPHWpil+AmEFP2NCHdgZe1M+oxfxeidyCR9zpsXKiutg580rg72MQ3XPbTB/rf4tFkH70CV6ZylDr6Wjj4g7v4Dqjuik+pgCE08ZjHp3+d/Yr3XdGH2+y7NlRYGtnh1Rx2cmrHNWgf/V3yqOnj+LnL3/bPHsS1lZu3L1pURbm67knJd5zNtuc7zNrP9CDc0T6bRKdvdT3T3l7r7Ce5+kru/gjCM/u2YMJy+AoqN65TsCyF1Jvso4QL3nZaNetRwo/hzF6a7a7VT9ntq53fNXF7BZOmL6s8ad4IeQrhr9ivqd/um9cvmnamGn8efXfN4XJX9Pq4/wjhtKUQIbaOnWQ+NgMzMDiI0gflbwhfO9QlNwtIEiL+NRcfdVfv5FOvmPr/Jorkv7jH53PwKQkfc7xPavr6f0DTuIK93zjRCBimvt88hpLXfTBih7PVx23u6+38ha2nSZ/jCjpsGeZnmTZdF1cEPtvpEcn9C+A65BDhxhv1e5O7jXsOGrYMbmeVmHXxv4LuEZlF3Idz0UR08hUXWwdPUw6yuL9slY7ZN69PPXVua+rWVo2Wfu01ZDqrPb03MhH+O8D1x6IRrpeQThIEnxvbLU0CxCbj71e5+JiE9dSJwB7I7lw3p3/TBk+5cxUfebCq9+UbuyqyRLxIq9Z2oMhJQpdo/MuWbfaUm3XHIg7UVjWyyVuIdw/cRvqg+S+iUdR1338XjBIhUbX9nHU5jww/D0Vfu/hN3f7i7X9/dr+fuh3pjHhh3Pz9+Zl+WLfuku9/D3fdw9+3cfXd3P8Td/3u9X4PMxXrXwacQmtnsSL2ZTaqDj/dqNJl52ox18HaEJlI7E250/TGjdfDzUvFZD7P6M5UZraYv29mEJnI7NZbvR7g5cG5WbgfCiGDNcmTHSX0lmuczVbnYZHan5nlbGJL+C4TA90GxX9FKjA3NFFBsIvFu17MId1gOi3dLmlI6d9oJsXKp3eo0Y9+vWkzxprHWHwPD9t+pPe8sqXYIfR/GDYmc2in/qmN9ev2/a+lktSj3IKTRLwIe6u5f9tGO8+PaSyfjUvGT/i6bkhOGLFzUQ2QF1rsOdqrBPVIdvDMhSwyz18F7dAy2kUxbB18zw0XPWjkQuCkh6Huou/+Xu1/VKKM6uMWi6+Ap6+HV9GX7BCGbdVi27RJhCOLPZt/VnyEEGIc3tn8c8J3YmRpCk+2LOspdQmxO6O4/IQxg0FbuWkI/qXQ+e1K1+HiAu6/kPXYo4Wbm2H55Cig2GXf/PtUXwDEtRVLfgXEj/XQ5J/7cZ2yp+UpfWA+0MHHSwwh3y86nox/EFHagY3QQM7s1oU8KwDc7tt87/vzejMdfC2myu++1fIkl959iP21BaBr/Ps1Z0PV3EZG1lergvdfxmKkOvr+FcfIfSri7+VOqNv0rtR3hAnyEhTH300X1pDr4nI71i5Dq4O+PudG0mjrYqIbJVR28/mbuy+buZxCuy95oZn9lZvcjDBm7D2F46VTul4R+Ni80s+fFfm9vJTR5fVFW7lrCfDZPMLNXxHKpo/RLGs0JXwTc28zeHss9l9B/7k0e5qDAwlDyJxI+V0cCNzWzA7LHsLmjmX3OwkS3h5jZA8zsZYTWEWcy4QaDAorNKXW+vYeNzob7r/HngTZhRtKWfhipE90e6zVsXWyacS7hC+gRVJ0DPzim/fE0Xjhh+ffcvW2IOKjaCW6kNuiXxp+3arvzZ2GWzWnGbH+6hYkPm55A+JJfJkyKKCLr7yuEG7q7mlmzWcSacPdvEm6eDAh3WFMd/KHV1sEdw8KmOvgHdM+1sZHr4Fu2jXZjZg+kmhh2nKeZWVuTtscBNyOM4vixlvWyhlbZlw3CXCLvJswz9SnCv+WD4ucrd2Qs82zCRf49gEe6e214fHd/G/A0qqbujwGe4e7/3Ch3AuHa6YBY7rmEWbLzaQF+jzCx7g7xdZ3WeOSDAJxNGAL5/fF1PJ4wf8u9W1pF1Cig2IRiNJxSV0c11v0n1Zjh7zGzl5pZ6qiNme1mZoea2SeBf2xs+yvChwnWd1KsNHzq0wmztsLsqXYInYcOjqPf7AkheDKz1wJ/Ecu8tHPrjflldiphDok9Cf+uN4Jw58HMjiA0HZumrfF1gU/HUR4ws+3N7EmEoeEAjnX3cZ0GN6eNPf65CBDmyyF0+oXF1MFPBR4Qf19NHXwl4eLsXTHrgZntYmavJtxlBXjZmIBlI9bBXya8rt0Js23/Pgzr4CcTRsyapg7eEfiMxWHLLcwx9QSqSffeFZuy9MvGn4di5r5scfnv3P15sT/Nju7+R+5+cssxlt39Fe6+l7vv4O53cPePdpzP2939/4vlbunub+ko9zF3v2Msd3N3PzofXCA7567HyVnZ57j7beLr397d/8DdX+Bx3pVxFFBsXikYuJ+ZNVPLjyNMBrdEmMTuAjP7tZldSqjw/p2qjWxTak714Pme7lhpsrk7ECL/b4/JHkzjF4To/K+AC83sEkJ7xOfH9W9y94+0bRjbTO5HGLnj021lFsHdL6YKHh9N+Df9DaFz1bGEpgGvmGJXTyOMGHZ23P4ywhwU1yHcHW2boVtE1s8i6uAUPNyekC3+brxxNatfEQaJeBLwi1gHX0w1cMQ/u3trwBI7jt6ecGPoU21lFsHD/D0pu3IY8L9ZHfwuQqb976fY1dMJr+/bcfvLCS0LdiIM6f687k1FNi4FFJuUu38O+FZ82sxSXO7uhxCmg/934H8JldV2hDTz+4GHEzp4N/0LIeX+sAmd6ubG3c+h3mZ0NXfG0j5fR+hI9CXC+/x3hNTeY9z9OWM2fXT8+SGfbTKnNePuryd8kZ1GeD1LhKYKLyakTS/v3nrovwip0Y8S5uvwuI+jCKndDfWa58LVKVs2lXcTmr08tK1pzVrwMEFfPjLYPOrgNxK+g04h1MFXES6YH+fuzxiz6aMJzUo+4u6XrfY85snd30zon5iyFakOfilhDqhpzvcrhD5+H6Gqg88BXgLcp9G8ph8WXAerHl4ftromktJHZvYZ4GDgYe7+H4s+n/VkZmcSMiV3c/evL/p85iGONpGGfryZt8+w3lt3vvEufvJTW/tBrotdXvaJ0919/4WdgGw6ZvafhAzFYV3NIfrKzE4ntOm+u7vPOjDHhhMnvgPYp9mMpu8WXQeD6uH1oAyFtEn9C54/tlTPmNkDCMHEp/oSTIjIpvQywp3rrVYH35cQTJzYp2BCZCtQQCEj3P1rhFEm7tkyilSfHUVoavCiSQVlk3Fb3ENkhdz9G8DxhHHxpxmKtC+OIgRSXaP0yWa1yDpY9fC6GDf5l2xt/wf4NnD9SQX7II7D/EXgve5+1qLPR0S2vP9LGPFp50WfyHqIE+p9idB/7VuTyovIxqKAQlq5+w8JafctIc7GOs0IHbLpqFOebD5x1tyXLfo81kvsjKw6uJdUB28FWzag2MPM984X3PWuCzoTkbV11/p7+6f777+B+qWdfvpUxc4HLtI3Uu+oHpatIquHz9uMdTCoHpbxtmxAsTfwjfRk993hG9/oLiwia2OPPeDiyXNBbaCvX5mjvVE9LLJQU9bBoHpYxtuyAUXNVVct+gxEtqb1+uxpxuqNT/WwyPpTHSxzolGeAK7o31xeIpuCPnuS6L0gsv70uZM5UYZCRPrNQfN3iogsiOrgLUEZCoCdt8SofCIbjz57kui9ILL+9LmTOVFAAbDDDos+A5GtSZ89SfReEFl/+tzJnKjJE8Allyz6DES2pnX47DloDPTNQPWwyPpTHSxzogwFwM1vvugzENma9NmTRO8FkfWnz53MiQKKnXaCY45Z9FmIbE3HHBM+g2vNbXEPmUz1sMhibIU6WPXwutjaAcVee8Gxx8Lhhy/6TES2psMPD5/BvfYCszC5Wd5J8LrXDcukv1QPiyxOWx2c6tzBIPzMl4l02Lp9KO56V83KKrIRHH74xIvJ081OX6ezkfWkelhk8aaog0H1sIy3dQMKEdkiDNcsrSIiC6I6eCvY2k2eRERERERkVRRQiIiIiIjIzNTkSUT6zTUGuojIwqgO3hKUoRARERERkZkpQyEi/ae7YyIii6M6uPeUoRARERERkZkpoBARERERkZmpyZOI9J46BIqILI7q4P5ThkJERERERGamDIWI9J6Xiz4DEZGtS3Vw/ylDISIiIiIiM1NAISIiIiIiM1OTJxHpN0djoIuILIrq4C1BGQoREREREZnZps5QmJm5uy/6PERk43JMQxauIdXDIjKO6uCtYdMFFGa2JzAALtSXmIjI+lM9LCIiuU3T5MnMrmtmbwdOAU4CPmxm94rrNs3rEBHZrFQPi4hIm02RoTCzewPvBC4A3grsBTwS2NfM7unuVy7y/ERkY1O6ffVUD4vIrFQH99+GDyjMbAA8Afg58ETgJ+5emtlPgecDtwK+NeW+ngI8BeDmN7/5mpyviEjfqB4WEZFxNkOKehfgMOAUdz8fuE5cfhFgwI+n3ZG7H+vu+7v7/nvuuefcT1RENii3xT36QfWwiMxukXVwf+rhDW0zBBRXA+cA9wFw9yvM7HqEu2RfBw43s/0XdnYiIv2nelhERDpt+IDC3S8ntNs9wMzOMrMPENLuewPbgJcAJ5nZkyAMYbiocxUR6SPVwyIiMs7YPhRm9nrgWHf/3jqdT5e3A2cQvrxeA/wL8Ap3v8jMbhGXvcbMPuDuV0+zwx+cfjEPXHo3ECZxBChxlnHK+HCDbZSUgGfLS5xyuK5ats3C82vi8mUr2cb4ERWXMAYe4rqC6jt40PJ7vr7wlmVt5RrL6vtgYnkAGy6js5x597qwj+5j5Vce1euqWOvraqzztvJ0lq8t89FlY8vX9tvyGlrL1cvn68eVb11mE8pZWua157Vjti6r/ohm8KKrH0MvOHi5ea9v+1wPc8V3WP7vW4Xf04d4AF54eGMW4EVclj8v0nPDC/CBQQHlIK4bhHJhPyVelLXDWhl2ZKVhJdgyUDL83UqHsCmUHuq3Mj2P5b16joNts/BlUlook353g+WwbPi8JFueloWfPrIsvn/LIvzMtvfhNkX2PHaAzda5Z/vxMCdA2/KyLKCMcwa44c118RiejtHYV1qeb5Mfw2vL4rYlHcttuM+0zkfWWbaO2rrmNuVy47ln+8/Wlflx3Fhebm4TjrNcFtW515bXn5clLMe/WUlaTigDLDuEt5vFn/Gf12EZeJ0/amWf0o1ok9fBMp1JGYrnAGeb2ZfM7HFmtuN6nFSTB18l3AnbHvhH4JK47kfA8cBuwENWst8lNwo3Bm7xu8sYYBTxYQ5LFBSEC8sif8R1YX1YtuTh9+3jsoEXLDH+Q7QtBh7LVgUnAMtZIJJ+L7NlpbUsayvXWJYfI32+J+3Dh8voLJc3U2zfR/ex8pCrel0Vb31djXXWVp7O8rVlNrpsbPmW11N7DVm50f22/U3a9tu9j3zU/9ZynpbZ8Hm1rF6mvix8ETaPIQvX63o4XcyzLV4EL+cX59lFfOtzj0GAQwlFCgyWY3BQWgwc6l91XpQx0PAYkIAvkf1uYCl4sZFgJn4pVM8NfMnDzByFZwGPhxMdeNwuPi+olg/SsvDTBg6DMjxiYGWFQ1Fig7K2vQ23KbPnYLX9leF52o85FpcXg7K2vIjHGO6vsS4dw9Ix4r6G+4zLa/vLjm1xWVGUWFxnBbXlw30V1T7TfmxknWfrqK1rblPE15uWF9k5F4OqbJEfx5zBwBvrwnEGRTlcV18e1qXnRUFc5gyG5cINHAMGFm7wGB5/xn9eC28nkc1iUkDxYuB84J7Ae4D/NbM3mdnt1vrEOuxDaMt7WRxhJGVYdicE8xeuZGchSEj1fBVUpJ8pqChiubagosBqQUXhNlNQAbBs4fKwLahI5hFU1JbNMaiA6YOKkYAk3+8qgor0etY6qMjNM6hoWzaPoKK+rP68uW0feeOu43o+5qC/9bADZahnU8CQ7spbmQUVKVCYNaiAiUFFCApiUGEhqPCBtQYVPrzqawQVRQwqBisIKoqWoGIYcDSCihQgDMq5BBXEC+2RYCPf3xRBRTEsO11QUQUG9aBiGAgMl08XVFjLsduCirQuBS/NoGI02BgfVNQComx5YYwEFSmIGFgVWEwTVPTFIutgDVm7PsYGFO5+jLv/AfAAwt2n6wDPBM40sy+b2RPN7Drj9jFnZwA7EoccBLYzs/2AQ4CPAd+cdkdVRqKoAosYVCzFhikpSBi4TR1ULFGsSVCxXLuobQ8q2rIRTRslqGg7p1mCiua6/PWsR6Zi7GtoLVcvT8u6fJtFBBWlKt8Npc/1cLgKN1guhoHFMKgYZhjishRMzBJULA+mylQMg4qlKmgYCSogCxZoDyoKQpCw5PWgIgUSbUHFcNnkoGIYQKwgqKBIQcRoUNGawRgTVFhRriiosMYxrLasfmE+GmxMDirqy2ls1/LIMxz5dq3BxuijmanoCipqz7OgImUpmkHFoCWoENkspnq/uvsX3P3RwE0IY45/FzgQeBfhbtk/mdmd1u40hz4PnAW82sxOIkyu9ClgD+CYlU6sVGWvbSSoaGYqqkd3UDFs+jQmqBgXWKw2qMiXjwsuWi9mVxFUtO13vZo/ta2jtXx+nqPlFxlUtK2jZdksQQXDZQoqNru+1sPEwCD1GRgGFcv1oMK2MV1QUXp9XUvzpzywaA0qinpQkTd/Gu3Hka9Pv/vw91qmYhhAMBpU5IFHM6gYLps9qLCi7AwqrGt57aK/JRBpNn+qbZtd2GcX/CsJKtqaP40LDtqCitYsRWNdM6gYDTbqWYrR4KE9UzEovDOoaGv+VLRkKkQ2ixUFwO5+ibu/wd1vB9yDkH5fAp4OnG5m/21mf7kG55mO78CjgFcBvwFuCLzS3e/q7metdH+WBxKNoCL1pRhmMnxyUFHrT9ERVAAzBRXJvIOK+j5a9jtFUDExWFlAUDGvPhVTla+Vm19QMfWyMUFFPVgYfd+NCyp6xRf4mPdL6VM97DDsgDWvoCJ2qrbl7j4VQHtQMVimXPIqqMiaPw2XpSAhCyp8QHdQkfepyAKAkaAiNj1qDSqGfSdGg4qV9Kmo/cwDhGHGoSWoGDaXGs1UNIOKtJ/WoKIWKFQX7lWTqNGgoq1PRdEWJEzR/GmlmYp5BRUj5bKgomA0qGg2f+qNRdbBvfxS23hmninb3U8DTjOzZwGPJXyZ7Q/chXDHbE24+8XAUbHdbunubTd1J0r1NkBpRoEDRgnhd69uD5R4aATlZLcMnDIGF9nJsWQF2+Jl3RIF2zx8SWxPwTWU4MUwWOiyDWcJY9nKYRCyjA9He8p/TxekBUZpPhwlKZ1z18+2MuFvEf4uk8o5jg3/Xu3l3RiO/tS+j/DnbN02/1OT9lFFwNXx035b1ln1b9w833x/aV1tmTnmKyifnW/ba2grR0t5hn+Ttv2OWebhS6mtXOkMv5jCmXtjWVs52Qw2ez0MVFFwYdWbsAwXdWGvxvCdWzi2DXyJWAZiFRvexwV4mT6f4ZNaxEMYsRCGF0WMRLLXFEeCshLKpYJim4XjbIs7KAwrPQQXJdWFfAxqnBC4eBGPVYagwqqzC+c6iJ/Q4QfOh/sPw/8MK+Fq/4Xhni+z4d/HBmUY5Sn+/YZ/k7g8PA+fex+U2HIRzrGMf9X0d07BS2O5EV9Heo2E8/MyNEEqyyJuF19LUWIWRlUK1UlcPihD07b0947HoIwBD1ndlt4LhHXV8vR+seGxk2JQ4qXVlg3fOy03iYYlsnXD3WMUg5Iynm+1HAaD8M+0vFxtQwFljBXLeO5hG2NQOMtpXTyfogijP5lB4U4ZK+8Cp3RjkOpyjY4hm8jMAUVmX+AOwF7x+brE1O6+bTXbp+wEhA80WOOCrD2oKN0phj2luoOKEmcbZWdQwYQhZVNQkR+7K6ionV8WVDTlF/VAd6CxwYKKeqDUn6Civt+2v8l8gwqI1yxTBhX9sSU65W3KehgnSyfGd6ETOjaPCypiNToxqPCWoCL+z4si7mc0sAjLB+FnCioI21npMWiwcJyi+vx0BhXDiigLKsyGAc4wqBgQKszlYjSoGMTibUFF+jtNG1SUFmqcLHiAEh8GB/WgoihKymH5yUGFw/CCfJqgoqAKDppBRdr/NEEFBRSUw2Fj079ZMSiHQ8c25YFDbfdjggoIgUUzqAhBXzESVIQYuXqeggpwlksbG1T0w5aog7e8mQKKOEPqY4G/ItwJM+B3wHuBY+d2dmss3uRimJmIV2QF4fujLahYogh3DSZkKrDQ7CkFFaWHeSpWGlQQsxR5UAFhbor891y6AB8XQKTXsxZBRfNYXUFFKjdtUAHE1zU+qID6Rf+8goq033kHFdV+1zaogCpg2HpBRf/0pR5m2cIbdTlVFPGdGN+DrUEFoXnIVEEFLUFF2HNnUAEhEAgBBOFiMdtuxUHFkoehcPOgIgUMg+q1DTMVlNV3zzL1oGIYcFAFFYSswNSZiiJ+65nBclELKsJx68tXE1R46nSfBxWlhXq1rI6RBwKrDSqI51QFFvEiPmYx6gEHIwHHrEFFGc/H3HAzlperYMM81M+UWzWokL5bUUBhZgcCRwCHATsRPqVnAe8AjnP3S+d+hmso9IOoviZKqg91uimVgoq8k/G0mYo8qIBwMcwKMxVQ9adIbX+7shX1gKAeVNTOfUJQkY4xa1DRVi79/ayxv+Gfi8lBRf11dQcVYdv5BxX5sklBBY3XM21AMCmooGXZPIIKSMvqGQ3ZePpWD4d+E9mbsASIb9J4sVbdgSdcWE8TVJB/PscEFQOwsqgFFVWWoqhKpztN8TxtW3dQQbo2bwYVZXV2E4OK0qsKKg8qCsPThT8FMzd/GgYp5UjwYACDcGFcLhe1oMLNSBPmTRNUGLEOJXuN8byqQKFq/pQCgTA5X/Va8gBh2qACyJo0VccmO3YuDzgoi5mDilRbp3X58kEB5s5yGWrmFFS4x+QU9aBCZLOYGFCY2W7AXxDugt2G8Km8AvhXwuytX1vLE1wrsSpmmJ2IFcC4oCJ9r4zLVAxikLKNsjVTsdLmT2l53qeirQlUMo+gorZsjkEFMMxWTGr+BI0sB/MJKiC8nnkHFeGdVN9f899kHkFF27J5BBX1ZfkF1+bnsOnT7X2th4ezQZMqGh8fVGwzWPIqqLDRoII0Ud7wA1MPL0aDikHWjKo7qKg1fyqBpeo8m0HF8FyaQUXqUxH7X/g2mz2oKOPd/pagAg9NmlYbVNSaLuXBBkDaXyOo8CzQyTMVI82fxgQVQ0VZCyogO0ZZVBXxmKCivnxyUJGvawYVqY9GM6jI54toBhXWaP5Eqt+LshZUhD4YYRsnBBb5Dc/NrA91sEw2NqAwsw8ChxJmRTXgW4S7YO9398vW/vTWVrpALCxlGEaDiurC0ePP+kU1MaYoLFzMljGwGGYmhs2ownar7VPRFVQ0O2q3BRVQv0hvyxRslKCi7ZxmCSporAvbzj+oqJ9v24X+7EFFc7/532ktgwrZGPpeDw/fbKXFN39LUBHv+IeL2mGFxEimYhmw0WwFVs9UDLsvhKoXGNP8ycrRoKIEtsXjxP0Og4q4X58UVJR5Oa+inGZH7RRUxL/BNEEFxABiBUEFw47Xo0FF6BhtUwUVRqwrm5mK2rb1oKLqlD0aVAyzG1lQAWTBBhODinqn7HpQ0dphO1tXBQ/hNaamWVWwUc9SVJuH4wyKkuX479AMKjxeezSDinL47SOyeUzKUDwKuJzYJtfdT1/7U1o/w4tIt86gIl2Rxfo2XMi2Xbi3NoGKz6cc/SmNOjIuW7GaoCJfPrb/RNvF7CqCiuE+VhhUzKP5U9u63FpnKuYRVLStq/9dZw8qqr/DaFDRGx4unjaxXtfDtdRhylZQ1oMKbNhRO/SzaAQV7lVfhyxbMbyALaj6VFj2CQgp6KgKKiAEFvnIT7WgooCUwq4HDUboCB4vWycFFTSaP6XmX21BhVWveSSoGI44NXtQYe6toz/Z8N+mZTnh3yO8iiqo6Br9CYrWoAJicMBoUDHcF9nfIqqCDcYGFXmn7/RvnY49um50u2ZQMRpsjA8qCvORjtoh2IgvvSWogKr506a3+etgmcKkgOKpwAfc/Yr1OJn1ZDQuzOKEdqF/YD2oCNePKTiYLqgYuSivBRzjh5RdwqYOKprmHVTMq6P22GBlFUFFtY+VBRXz6lPRdvzmsrUKKqZeNiaoaBtSVjac3tbDAFkHtaDw2Im3EVTEu/e2PLznXQ8qhr83ggqy3+Mb3sp4CZwlBoJqSNm8X8Ww+dMgBBbFtjR7NsOL/tRROz9uCioY0D2krGdBxZyHlA0vKWV8NsaQsp1BRTZEajOoqA8dWwUV9WAjvYfagwobGYK1OvboutHtmkHF6PLuoGIYfLQEFWaN4CMLKjRqrGwmLWF5xd3f0fUlZma7mtnN1ua01ofF/9L3QgEMvL6sXib2kchm047J3up3T78Tt8tm0PbGc7onvxsnn/wuNWXKJ7xrTn6XypQtqd3husbPzmXGVOWmmfwuvyZv38eYbYfnk6+rrNfkd1OXr5XzlmWj5drK+5jyY5d5d7m2ye/UKXvj6HU97IQPYmlUE9xZfLPHYMKz9fG5OeH3VLZkOPld+J3h78PnZbi2tm0+nPyOkrGT39VONWUsrKwmv6t4tNkAACAASURBVFsKRUOgYXGZ4YPQ2duXwoNYhrTrIv3uIfMyzeR3AydNbDcy+d3AG8sYmeQu7XPs5HdpErvGJHdWm8Suvv+iNgO3TzX5XZGOnU8AN6hPVjc8dm2Zj0x+1zWjdnPyu2JQtsyaTeP5+Ec++V2Rne+kye+KIisXzz1NdldY/Xk++V3eN0Nko5t89Zoxs53N7HVm9gvgIuC8bN0fmdkJZnaXeZ/kWhkQg4hGYNEMKurPQ1CxNCGoCLNmtwcV08yoPW42bag3i+oKKtpm1a5mnh4fXIwNNFYRVDTLKaho23b0tbT/Tdr2O2bZhKAiBRE+4b23KaWL1UU85qxv9bAvx7/TcpEFDhbSxXlQsS17vlxgyyFbMTaogPEzai+PDyqsrSkMEPpV0B1UFEBho7NqdwUVKUjIg4pBCiKoBxVdM2qPCyqGy5kuqKgFCfMPKogX+K1BRXbRn45R1JbVg4rRmba7g4q0r/ryEBwUg2awUQUiswQVeWCRgoqiKEeCiqLwzqBikNLofbDIOlgdwtfF1AGFmd0AOA14LvC/wHehduXxbeBewGPmeYJrJQUAg2EwkC7+pwsqLAYHA08jO02fqShiwJECi9UEFWlI2Tyo6MpWJM2gou1Cv7l+ZN2MQUVbua6gYiRwmBBUVK+r0hZUNC/65xVUlNOUb3k9k4KKtixPW1AxVaAxJqiAngcVPdC3ejh92ftyaPJTz0ZMCCpiGVsmLF+20aAiBQpdQUW58qCiagblw6AiBQ0zBxVLLUFFLTORPS+oBxzNoGKYkcgu+otyZZmKGECkrEEeVKTlRQxsVhtUVJmJlMGIWYyifuyitmx1QUXaplpHLYvRmt1oDR66g4pmtqLIzmdQlMN1KagYxEczqBDZLFbydj0SuC3wRHe/C3B8vtLdrwROAe43v9NbW0YVWMwaVIR6vj2oGAybOLUHFcNgYg5BRWr+NK4JVD0gmBxAtC2rN6Fiqn1MG1R4y/6qfXQfq3ZBPEVQka+fZ1CRLxtXvu31jAsq6vvtDiralq0mqOiTNK79Ih5z1rt6OG/yNHNQEQOGtqBiGFzMGlRAe1Bh5TCo8JjuHgYVS+ODiio7QT2oaDZ/GhdUpKChGVQMA45ydc2fsnXNjEQ9y1APHGxQBS/TBBW1QCALKob7ywOaPBBIF/1ZUDE8xpRBRWvzp+w4bdmKdJzVBBXNdfnyEFiU1d+oJxZZB2vI2vWxkoDiz4ET3f29Y8r8GLjJ6k5pfaQAIt1gGsRsRbh5NFtQ0db8ab2CCqA1W9E0j6CitmyOQQWMBhVdzZ9GApJ8v6sIKtLrWY+golo2e1DRtl8FFb3Wq3o4pNby4KGomkDNGlQMA4cQVNi2bFn6uS0+lukMKvAYVCwPujMVjaBi2PzJqPpSNIIKoPq9GVSkPhWDFQYVzeZPaV1HUGFZP415BxXDi+kVBBWtzZ/GBBVVYFAPKoaBwHD5dJmKlQQVtcCmEVSk8s2gYrTJFNn+GFleGMOgQmSzWElAcVPCbKzjXA7cYPbTWV9VhqIKLOoX//m6yUHFYBVBxTR9KsYFFpOCirb+FFAPKsY1cWrddoFBRds5zRJUNNflr2feQUVzf/UL/dmCirZ1+fLVBBWyIfWuHm7rlN0aVDQ6ZncGFduq7ERXUDEMLIbNomJQETtqW1ltM7H5UxZUhExDfKSsRCOoGDZ9GhdUhC8UWPJ6UJECiWZQMdJ/YnxQMQwgVhBUNPtUNLMLKwkqQtOp6YMKaxzDasvqF+ajwcbqMhWtj2xdHlTk/T0mddSugofuoKLIvlNENrqJM2VnLgNuOKHMPoROgptAuEDP29YX8WcYdrWal6Jtnoowgl96Xs22HX5a3Gc2RGoolu03s0ZDytaOz/yHlM1pnoq4zJyNMKTs5GPFZc7wLlhbuX7oVcq7V/WwA74chwhdtuoOTxk/S2nY2PRmbU5+t43wLZZNhtc6+V3hIUAoGE6c3TlPRf4JmDBPRfq5ZvNUlOnc6NU8FUb694VpJr+bZUhZ0jGo/h6w8nkqZhlSdnT+iu4hZYczcnfNU9ELvaqDpcNK3q5fBx5iZtdrW2lmvw/8KXDqPE5srVXZiTx7UGUqqt+NJcC8nrkYxMxDW0ftfL/TZipWMqTsSjIVMH5I2eHvNrp8bKfstmUzZirayudmHf0pf13jMhWt66ytfH5O9XW1ZS3HHFu+Vm5+mYqplylTsZn0qh4Ot+QNL8MjZBFi5mG5qPepWC7q68dlKiaN/pRlKyD7PY3+FH+uZEhZrMQHy9WQsrHPRMhKWLUsZS5SpmJA9+hPKRuRtusaUrage/SnormsnqlY0ehPXZmKYcahJYOxgo7aaT+toz91ZCq6OmpbfowpMhVdQ8p2jf7UXLdWmQqRzWIlAcWbgN2BE8zsNvmK+Px4YEfgzfM7vbVVDx7qQUXb6E/NoGJYT7cEFbM0f9I8FfXf8xsaqwkqqnWVPgQVKy2/0qBCNqR+1cMO+dCOE4OK5vrhuubPbPSnrqAiSc9bggrK7qCirflT1QSKEBRMM09FFli0BhVt81QMO2JTDypiALDe81QMm1G1LN8s81SMCyqmfTSDitHlK5+nQmSzmLrJk7ufaGYvA14GfAe4FsDMLgJ2JVRjf+fuX5n/aa4NI9TV8TsmNp9JzZZCieWQEI6l25o/hXa71QzbVfMn3LLmJNM1f1pyKC00ydlGyRIFpTvbrKw1f8LKzqZPUDV/yo+dN3lKQUWzCVTVTKilWVMqE7ftbBI1zLyvrPlT235T06fufYQ/5bjmTylQmqX50zxm1J66fDzfttfQVq6+36o8jfXj9lFb5tSaP/WG1wOmzayP9bCX4baOxQ/asHlPat60HBqTWmHZDNrZ+tIhNttpbf60LZaLn7najNpQa/pUPY+fTw+f1NR0paoRq+ZPqelT7TUNloFBWB+bPqXt0ozaRmiOVJtVG9pn1B5WRFb9fYgbpC1Lwheaefg7NZs/DWLx4bKseVJs5jT1jNqlhcpiuWDYBIkSH86MzXD5cNZsiqln1HagGJSUy6lWj69xUMbAsmD4L5o1MUp/EoPha0n7r5bHvwHdzZ/cLVtuFIO4bHn0hl46z2wXlNl2aV2z+ZN71QSqiP9zD98Zy/H93JsWTz2qg6Xbit6v7n40YTjCTwC/BpYJn98TgPu7+2vmfoZrJGUfmk2dxmUqBmMyFYNhVqLKVIQbRqsfUjYs0zwVXefkjXW1bVtfV2UjzlMx9jU0ytX3m/9dR8u3LRvZryr9Da9P9TDQyE5MkakYToCXrc+bPy03MhXpjtFaDCnbl3kqVpqp6Bj9KZ+nYrWZitRRe6XzVNSbOdHRLGp8piJts4h5Ksy8Nk+FyGaxkk7ZALj7ScBJa3Au625AdVMnv0M0zEaQ7uamu9hhXYGzraWjdomF+ju7y5syFfnIRXmmojBjG+VIpiLdLl6iGGYq2jpqT5OpyHoRArRmKwYjWYbRTMW4Dtqt2YsZMxVt5dLfzxr7G/65qDIVw+O33eUfvq7uTEX1bzffTEW+bFKmguz1zNJRu/43yV/rFNmL7D3cBw696xDYm3rYiZ2x4933mJK0wmNWwqtMhKc7+jGo8OyOdcpUpE7cad+p3kgdkdPdeqqO2r4Ul43LVDAmUzEAK4tapqLZURvisVOmYnie3pqpSIFOLVOxFDMVsVSVySF8ieWZitQ5OX3wl7PXXlj4dvMqyzBTpmKY+ShrmYphp+pBGTK02f6LosQtBo3LxVSZCoOqc3V6jfG8quxDvaN2UYSMAmX1WtKysiymylSkfVUX9dWxyY6dKwZl6A8Uj51nKry0kY7aUO+sHdZlVyJFP+qtPtbBMqo3GbVZmLVnKcIcRTbyvCrT3lF7+LuTZSXGDylrnh9rc85T0bpt4+7+PDIVQC0wG91H97a1dVNkKvL1W32eCpG1U89MpMyCx2YttUzFcsHI5HddHbXL7PcVDilLyZrMUxEyDdQ7Zi96norhunqmYp7zVLQtt3x/U2YquoaU3SzzVHR11G7vh1FlKkQ2iy0bUAzra6sCi3FBRQoCVhNU1AKJ7PfNPk9FW7BQW7+goKK5j1mCiua6/PWsdVDRFiCtNKhoW0fLsknlRNaEMwwgvBEUtAYVbTNqTwoqsjktbFiO7qBiOQssStZ8nooqaJhhnopmUJECiWZQscB5KrqCjXFBheapyF67yCax4iZPfZLdEMqa51TZznTRny73SvKmNCE1uUR386fC46REhOYxSw7brGM+B48HRPNUbNV5KubRUTtfttLyzWW9UtrkMrIQ7tWnqpqXwcMFdglmWfOeFDCk5kjDpkPFmOZPHivz+NziO33YObsxT8WwaRDDZlLmrNk8FSwZtq3qqL2ieSpiSc1Tkd9UWt08FSMX8QUscp6K3lAd3HtbNkMBoW4ZWD1bkWcq8qyCdT7v7qhtaJ6KeXTU7sqAjN9H97btWYxKH4aUnSZTMWmZyLooQ3t6b3bOzpssDTMWVbZhJFPROaRs/bmlTttTzFMBdA4pux7zVPgS85unokiBVUumorasnqlYyyFl6+UnN3+aZZ6KSZmKZkftIssiTJOpmHWeitHl7ZkKkc1iy2YoDCcNslmYDfuv5ZmKQSxbwvDOf7qjkGcq0t2Kthm1cRsZUnYp3TzJLrCnyVSEDEf2fEymYpw8U4GHYKStk3Y6N9LrzTIVyTSZinq2Y7ZMRWu2IWYpuvcxOVNRz76sLFOxkYeUbfs3Sl9N1rnf7n1sduoQuIFVbRiHd+HzTIX//+y9ebQEXVWf/eyq+wIyyBDA4AyiqMQJ/RJZgUTQCAZ8Rc1gJDECgZgYyWDURAmjRuIQMMuggApGjclyxCQoKKAJBoJEQcH5YwoKGD5ABgHf27W/P860z6lT1VU93Ntdb+217r1d06nqut2nznP28KNxA1hAN2Gmmb6nYqikbEVRWzY4T0AnsUPulZRtg2cizkdvT9RWsJ6KMlEb/Ax+M1JS9iJ5UkTT91GhXlI2bY0eBER8IrbxVMQHWsVTceCSskqTeSqgO1hJWZoOEamXlDXlW8M5DlVS1iZWJ3PnHgtNstusp2JqSdml2NoHL9/OCihE5D7AZwFvBF6qqu/bp71QQKGzIUXKzlAxVP2pBhWH1KnYtfpTTacCXO7HqlNx/lCRtztc/WmojdVWq9lB++HgeYB8sNl2u0PFUPWnAirwYUIH16nwv0Z1Kho/dB6CCh/+dDI6FbFK1gSoaPxTrqJTEd0ve0KFwqJ1KqAfArXaaqduZxHyJCK3FpHnAC8FHgv8LPACEflyv332+xBSuFMr0IrzWLTi+1xJIU4uQdu9vkBckQ2/XEvUDpoUpU5FGf7kPM3761TsU/1pI11U1C4TtcvXwVadimKb1Pa315Rvy9ZJv93R/SvvJ3sPZr9+u/a+jrW72mp9O0Y/rBCTrnXjQp9CSVGNCdlu8B+2ue3ikq2jJkUlUTvsU+pUFOFQ4se6++hUyKXO06koErUJIU4tzkPhDmWWTkWpqD1W/WmbTkWZqO21JfbVqSCELbVBDTutbzL9iu3hT/voVJTVn65Kp6KfkM1WnYrVVjsXOwugAB4O3Bd4CPB5wGfj5nR+QET+gqpOGgOJyGNE5JUi8sr38R7Xj4v7Ca8FdbkV5FCRoIE40A9gUcup6EPEuPjdrtWfTr2kbA0qumIgfiioKKs/WbOD8N6xtt0JUGG3HxIq7Lqx/cv303sPxT55u8NQMbTu7E2du/26fqaYiHyUiPy4iPyxiLxbRH5SRD567lsVkX8pIioiL519n7bbwfvht7/3JujMvVIMREgfKmrid5umXlI2wkUFKobE7yI4uLarJWUrUBH2qUIFbIUKBxKknIoLqZaUjekZASQsVDS6W0nZEirCtgAWFgYOXFK2hAqx55gIFRkIGKiYW1K2L4q3HSrGqj8NlZSNYDMRKhZh19wHr+FWV2MHAwoRebyIfKOI3POAbTYicgPwxcCbce71t6rqK4B/Avxv4Jki8hFT2lPVZ6nqZ6nqZ91Gbkcj6j0TdahoSFCRPBI5VCQPRh0qymXxoDBVp+IUoGKfkrJb1x0QKqAPFbUBdG37oaDiWCVla+2V7+XQULHa1ZiI3Bp4MfCJwN8F/g7w8cBLROQ2M9q5B/BE4L3ArQ54fUfrh+98mxuw6tc1qMgStTdSh4ohnYrwt5aonXkwzkinwmyvQoV7oMCFHkWnIgJEG/Y9AlTY9iZ6Kg4BFREErkGnwno3LFSsttq52CE9FE8EngL8loj8qIh86r4NqmqnqjcBdwN+X1VvEpFb+s2vBh4PfALw93YKexIPDANQ0RZQYbzTPagIyyVUBI/E0nUq7PraYL52bGqj0u4VQEXZxi5QUW6z7+eQUJFfb2hjy3uo7pfvX2t3eXbyM2OPBu4BPExVf1pVnwfcCHwM8PdnvNHvAW4B3Ba4z7n0w8k7IVWoiGFQPZCoQEUt/EmDR6ICFSHUKfNUbIGKUqdC4SR1KsTul2CgChW76FQ06fh9dCrS3wpUxO05VNR0KqrVn4r2alAxtfrTVelUlOuXYdfbB68eiquxQwLFk4BvBv4Lzh3+a3MO9vG5TxWRe5l14VPwv4EvAFDVD4pIo6oK/E/gOcA/xD3spp+PBBRjUBH77LCeOlQM5VS4/nYYKmz4064lZadCBcwrKVsOOk+xpKy1uVBxqJyKchvV/e119vevQUVt/7K9Q0DFtv1XO7rdCLxcVX8/rFDV1wO/DHzRlAZ8HsN9gH+DS5Z+B2fQD0PyIIxChYUHDwSD4U9DUBFhoQIVveU6VLjqUGTeiiz8yZSUDVBRy6mwYDFYUtZDRZlTEUOfpnoqLFREzwN9qLDgUUJFXFdAxYzwp+xvCQ9D6wdyKixEbC0p2wOIaVAxJ/yp74nYDypsrsVqV2f7hJ6KyK1E5NtF5C0i8n4ReZmI/KXKfo0PTX2DiHxARF4tIl860OajReS3ReSDIvI7IvJVA/s9TER+zbf3RhF5nIi0ZnsrIv9cRF4sIm8TkfeIyK+KyKNqk0Aicm8ReaGIvFdE/j8ReY6I3GnbPTgYUKjqk1T1Car6Jap6F+DTph4rIg/FzXR9PfAE02b4Nr0KuI2IPCIc4re/H/gR4NbAl/m2JqNog9IQvvx1qIivKTQrsr8WFOZBRS9Re0eoWHUq+q/H2xg+ttaFz4WKY+lU1K7pWFCx2pXZvYHXVNa/FvjkbQeLyB2BpwFfr6r/AngD8Ntn0Q+r8VCMQYXZpptmHCoMRBxVpyLchAIqnFdC5+tU+MZWnYoCHOL6vqdiMlQcUKdirqdiX52K1a7GDhB6+v04b/PjgYcCb8EVrfj0Yr+n4CJ6vhs3QfNy4MdE5K8W1/No4JnATwAPBn4MeIaI/INivwf5fX7Ft/ddwOOAf212+xC/7jXAY4CHAS8Bno2bhLLtfTjwi/6YvwZ8NW5y6r9u80AfrWysqtYekD0TkfsBTwfeBrwMeLiI/KCqvkBEWlXdAC8EvhJ4hIj8lKq+S0QuVPUSeB3wCuDBIvJ0v//28+IgAqBR18F0Iogqm06ioGYrCiSdijAp1fT+CpiBY1lSFqbpVLjr8YM6M8CeU1L20g8JV50K/5AfbMPdyuqxYZt5T+Fc+fnPs6Rs7X8UHl3C8qDiml3edxaRV5rlZ6nqs8zynYB3Vo57B3DHCe1/O/C7wHPLDafeD7uLDH/EhR+FQSSdL0GqrjRpXMYDgBLVtP2XJKoot8QP/dF0KoRqSVkufZtUSsq6u33z1qnYND1FbehWnQrbPNIrN3vudgZhRyH09F7BWywivw78Hi709N8OHSginwZ8OfBIVX2OX/dLuEmhJ+O80IjIXYF/DjxVVb/DH/4Sn3v8VOD5fr8L4FuAH1LVbzL7fTjwFBH5Ph+Gij/upar6GLPfbYHHicjTVPWtwPuBe6jqO8xlv8hPRn2NiDzeTwwBfB1wA/CFqvoufz1/CPwSDkR+cug+TP60isgXWxfKAe0SR3JfiyOolwHfIiI3hIeSqv4u8OPAPf1+0fzN+gDwwVkPMYG2cbMCrZ/hCN6Ktsk9Fa2oeT3uqQiVn8pE7ZZhT8VQSdk8eXt6+NMFzcEStSFBwwbNcipq3oop1Z+2JnELW9uAuqeiVv1pvI3hc8VtotdeUnbS/tl+WlmX79dV9i+PWe0g9vaQhOx/nlXZp3bbe1/Ssh8WkfsDXwH8A+NJ2MWupx8GXyJWXClYJXkruib3VJjEbd00456KUFK2TNSOIVH0PRVDJWVNVahZJWU39BK1t5WUjffE5FREb0Sbeyoml5S1ngcb/hTKxloPRCwbq31PRW+d8SQU4VNbPRVZiVhiqdeUG5G33zTdoKeiFv40mKjdmoRrc44mW5d7KuaWlO2XjaVXNnbIS1F6Kpp2aVM7J237hJ7eCNwE/Gdz7CXwn4AHmZyzB+Hy3H64OP6HgU8Rkbv75fsCd6ns90PAnwHuByAiHwV8+sB+N5BCVDcFTAT7FeCWwJ2L9/LfAkz44/878Ca23Ic5+PsTwBtF5MlTY8om2q+o6v1V9eW4CiLfi7tBjwYwD89nAv8D+Mci8nn+n4WI3AX4s7gZslnWNE48JoY7jUBFqPwUAUEo9Cgwg34PH/ShIuhUTIWK69SpgDyfokzULl8HO8WSsrVtPXAYgYr8fSW7qpKyFla2QUX5frZBRRn+VB6zCAuhNNfxs93eifNSlHZH+p6Lsh9+Js7V/mYRuYOI3AE319765Vsyza6nH/YAoV0Y+I9DRR4O5cOffLWmydWfAmjUErVn6FRMLSk7FypqJWUzqNiiU5FAwryeq1MR4aICFSemUxE0J+ZUf7ounYo6cIzrVCzGrrMPntYP7xN6em/g9ar6J5Vjb4GbhAn7fRD4/cp+mPPc2/8tr2fSfh6E/mTCdf9l4F24ySRE5EOAu1fOG8492t4coHgGLkb2ccD/KyL/RUQeOidnoWZhNsvPhHXAi3APzceLyF1UdeOT/96Jc+2/FPgJEXm6iPw1nLvnIzBkONVS8tV2qHBeiRwq9ikpOyR+d0o6FZdoJn4HubeitFpOxVyoyNYdGCq00l5qI23rHWvbvUaosOvG9re2a07FaldqryU9GKx9MvCbxbqsHwY+CfgqHHiEn7+I04h4J/APmGDX1w8bCChgoAYVaioy5fvPhApb/WlIp6JX/YkEEFOgYqSk7DF1KsLrqqfi0DoVpafiBHUqDlVS9rp0KlY7mN1ZvP6N/3lMsX2f0NOxY8P28PddFW9ybT8qbU7dL6wbTKT2uRd/A/iOMDGEe58y0N47xtqDGUChqv8I+HDgkcArceJGz8PNlj1eJtYgH2n/Jv/3LbhEkVsC3+g3i9/2StwN+E/AX8HFmH068MWq+stzzidAqvI0DBU2UXtXqAjLJVQ0leWbo05F9dgjQAX0oWLbrPyhoeJYOhX9Nra8h+p++f6rXZn9DPDZ4nQkABCRj8WBwc/YHSv9cBjq/hGu0tJfxyVWvwZ4AC5EabJddT+s4MKdatWcDFRYiNgKFVZRe0pJ2SGdiuCVsFAxR6diC1SgYZ+6ToW74x1XplMRQKIGFbVE7QGomFv9KebMDEBFbb3Y9q4QKiIIXIFORfBUrHYwO1jo6cA+U46ds9/Q9Uzdb/C6ReSTgR/FJV/bpOyd2gs2x0OBqn5AVZ+rqvcFPhVX9/y2uIz114vIT4nIg+e0ac14O14BfB/w1SLyKX52rBWR26rqe4F/BHwGLmnkM1X1ZfNP5r6sESAaJ3NfQkXT5FBhhe+mQsVYSdlVp6IOC9auAyoOFf5UbrPv59jidytUOFMF7a7vZ4I9G1eZ6Xki8kUiciNusub/4EKMABCRjxGRS1w1p7IfvgGXMP0fcZ4CUdVfVNU3z71fV9oPe2hQP/h3+RT98KcICV3adxAqOuaXlD2AToVY70PcHl7rZJ2KABbadLN1KtxxTIMKsfup8UTQhwoLHkeACslyJAp4GPBgjEHFEnQqIugswK67D57YD88JPS1taPb+jmZ7+HvHSmRPbT8qbd5p4n4AdzDbo/mJq58HXo/TPro0m9+J692G3kstDyPaLKCwpqqvMbNlj8BVB7kR+G8i8npxNW8nq7z6NtX/fTeOnl4HfKuPC74ReKqIfKiq3qSqf+qTBHcywcw4GLCoQYX1VLQ7QoVdLqFi1anYDgurTkW47gpw9dYcBipWuxpT1fcBD8RVavohXAnW1wMP9AP3YEKIokzH1vrhOwP3Pod+2J2QPljUoCLELXZhnxGoGAp/MhBxaJ2KGOYUXvu/6bVO0qkAdtapsKFPkz0VFiqiV4IcKnzo0VydilpORTq2gAr7t4SHofXZ4D7fVnoqzlWnYrUrszmhp7Vj7+5Lz5bH/ikpZ+K1OK/vx1X2w5wn5EqU1zNpP+/hvnV53SLykbhw1ncDD/Z9fDSfA/KGynnDuUfvw85A4S/uNrgKI4/Fz4rh3O1/Bvg24LcrNXi3tRlGtK/Gzc49CPg5XDzvR0BlVLajuSpPPldCrLeCDCpKnYpdoKItlqdCRZmovStUzNGpGLO5OhVl9aewfuzv4LodoWKrB2QPqEjbkl2nTsWhw5+WYqeu0Kqqb1LVL1XVD1XV26nqw1T1DcU+b1BVUdUn2vWVflhxgnZn0Q/XqjxpDxLIwGFnqDDehh5UHFqnwn+JqtWfdtCpCGAxqlPhcysIwHHNOhW1RO2QdN2DioXrVAxBxZhOxZKA4gyUsieHng4cewMu5DQcewH8TeCFqvpBv/rncIDx8OL4vw28xidTg6uy9/aB/d6BqzyFqr4J10fX9rsJ+FlzPXcBfsEv/hVV/b8j7+UhInJ7c+z9gI9hy33YSYdCRD4DV5f3bwG3A96Hc40/Q1Vf5Wvg/kOceva/A/7S1LZVVUXkBuBjcaIiLY7oHqyqL9zleoffB4TnYtIowGOW0HXOQwGwJrnE9QAAIABJREFU8TP3DU5PIpSO3ajSSNKpsNoDG99UV7RfLruWpulUdMSy6ARngmvHL2hYX9epuDTfqyGdCqTLysaWNkenwl7fqlNRbDOflVPWqVjtNG0Z/bB72IfPnNOUcJ9gNo0bZPr1bm9ynQUABfG6E2Fb1KbY+M90Y9oPszn+Q380nYrW9S+lToV24fs5T6cC3PJWnQr//IqaEJjz13QqYkckx9Gp8H8n61R04nqoDteTNY7Ozl2ngoasLfOJHgSHtWzsldqzcWGczxORx+H+3U+hEnqKK4jxZFV9MoDvb/8z8HTfb74eVxDj7pjBvqr+kYg8DfiXIvIe4Fdx0PFATElWVb1JRP4VTsjuD3Ag8EBc7tzXqOqfmuv+Rpzo3DNxHuXPwBXt+C5fzhtfvekFuP78kcBHem9FsN803opvxwHJz4jItwK3x01MvQL4qbEbOBkovCvnb+EeYJ+J+yb8Fq684A9a14l303+br5H7qKnnMHY34H/hiO+xqvrdO7QxbuI8Dq7fdV/quVDRxDG8H+xvgYoL377E9btDRYO62bIdoKITd95LOi5o6FS5lG4nqLDnDt6Jtnht9wkD8DEgCLPog6CxB1SU7R4KKgD/vsahAvJB/woVq82xpfXDGjwSKm5Glh2gwoMD4r9t26Ai5DiI+2bvChWE67z0+/nvnJaD7TCApgIVOh8qwHsXkFGoEMS/ry1QcaHIZQEVqVNKRwaoEMXEjG6HCtwAfrL4XeOfcuL+HxYqYgzXnlChEIXjelDRietXu3TuQ0OFqhXAcyJ2wTPXDWiTrHZcU9X3icgDgafhQk8FFx70T7aFnnp7BK5AxTfj8hdejZuA+dViv28C3gv8Y1yp7d8B/oaq/pfier5XHGl+LU5s7k3AP1LVZxT7Pd9X2nsCLo/ubTiV7G8xu30YDjTAhdSW9gBcgjaq+gci8gCckN9P4DwqzwO+1lcAHLQ5Hoo/xM2CbfxJnqGqv7jlmD8AbjXjHIBz44jIk3CKsu/fesAOJmZWwH3/d4eKmqL2mKcieEXUX4mFitAuM6Ai9e3ToAJVEBf2FFS1G5XZngowoU/eTb/NWwFMgoraukNARW2/Q0BF/r6GocIdexyogGzidRAqKN7PEFQsyc5ApXWqLaofBgjxfyHSZ1eoEPqK2qOeikZ9OVk3kMygQjV1ClOgwg6sPVTIpR/sb4MK5itqu3UNASpozHe2EeRyGCoIY/MpUBE9EwYq4kPPrzYPOGldn5QG/jsqasf2ugwq3HU52BD1XgYDDhohZA+o8NeVQCFBRRZC06X3MhcqCNcbwSKduw8cy7Bz6IN9CNGXbtnnDVTm3Hwf+c/8z9jxGxx0fPOE63kmxjsyst9PMqJgPXTNI/v/Bq6C3yybAxTvAb4TeHZwo0ywZ+BcMLNNVb9rl+PmWHi40CmtqPsSK9DtDhUCbFQmQUXyIttwKEneBzAQgYMHMF6JBBXEdbtBxS7hT2F9CH9qtcm8FT2QyIBgd6jA38NDQwW4McQ2qIjnPzBUgHs/u0KFXTe2f+1/UoOK1U7SFtYPp/jmEOKiMRm12x0q1IfPMAEqOj/4tVARvgQhybolh4rGrjeeiiL8aQgqQvvp+zkCFS1I14xCBfhruvQNXPj34Nu3UBGupQoVXZhdmQgVoaOwUNG48xFDp5oMKtxzrNkPKvztj0Bg1hPOsWkODhWkfwE0XQ8qcthgK1QAJtwpnRtz7tVWOxebAxQfs83dUZp3v797647XYQJtmCEIsUud+gGaHTD65WYaVDR+AD8HKoT8fNYzocVyh9B4GCC2tR9UhH0PkVNRgwoLF0NQQXYP8sF3sCo4HBAq8P/rbVBRu6ZDQIU79mqgYkr403JsenL0Gdiy+mH1A0gx3rPQ7Wga1CpuRjqG7myDis6VpZgFFb6qRg8qUiedeSbit8hChckvGIIKNll3PQgVuK4XaH2uQ+6pCDfLeipi+FMAGN9uhArfbrwfJVQ06Vp6UCGQ5VRYqPBejx5UNLjnjPFUgAeIGVBBeP8VqBDR3nrAAWIFKtR4T6ZARRjw16BCJdxTfy+CRdgI/8xxT4UNf7JQsZyk7EX1wasN2GT8nfsQO3UTiFUU2qBK2eCX1Vd9KpYbYrWn1lSAsjoV4W/wVjTE5xRhLin93U+noonH7KdTEYTvGladCuDadSrGr7e/f1wn/XWj+2ft9t/DaqdnS+uHAV/RiViRKYjZdUXp2C6oXZuqTeqrM2XVn1QiqLBp+tWfqq/ZXafCLDstCokD7JpOBR2TdSrK6k9761Q04XVte3jtHy5lSdlddSoq1Z+uTKeiUv2pVlJ2TKciithVqj/lpWOpnFfN/szWqWgq+TOrrXaqNicp+ysm7NbhZsJ+S1V/b+eruiKzVZ7ATwqE+E5xMwVhljouG0+Fm3gRf2zfU+GfE9FTEfrffAY5zZKE5dJTUUvU7hBaheCe9pM4bna84g3Y5qlojM7KkKdiIx0XyGgIVM1TEWybp8KuH82fqK2LE4PzPRXBxrwix8qpqG4T9s6pyN/D7p6K1U7LltgPxwE8uEFj+Ax2oOLny40HIEsy9jPn0asBfU+FSJ5TIa6DjrP0pv0IDDVPhZ9p73sqwM0q+2XfJ5eeCsKsepzF99cfX+feAaD4LrqcCqTLQqBi+FML2jQ0l+79ErwVFymnInkuzP2Y46lQ84Czngo6B2S9hHRB4zZ6ngok3LfkqYj3rfBUiGpwmPc9Ev6Y3voYLuX+D9uqP0FjvBxhvf/fx/907qlwHpJwHRI9FfEcpPsB0vc6NDBU/Wn6lO9qq12/zQl5ei4zJjBF5LXAV6vq/5h7UVdlYZDuzHcCOKho6dh0bsjlYuzDvgkq2kYRnZ6ojaR+qYSKBBHzoEL8eUMX2Chc7gAVU0vKWv2JmpVQAQwmaef5ENcHFVUw8AA43MY0qAh2HVAxeX9zvfY9LMkW5G5/Lgvrh8uysRYqerkTfuyaDYp9LGkYrPegokzU9jkWtPShIsza16BCQgdTgQqzLJswRbQFKrzFykQVqBA/bq1BRXYPPVxIB92FgYr4Xnz1J59bkYUTBSirlZSNDy1TUpamDhURuCpQoXbdeKK2O0jqJWU3TRUqokekAhUxXIw9oGKgpCwBUEmfRwsVOWy462saUNVe+JNo+bUOn4Nl2IL64NUGbA5QPAJ4GK5W7i8AL8WVp/ow4P7A5wI/jRPcuA/wN4AXiMh9VfXVh7zoQ1io8hSTsc2XtwYVre8MSqjYpfpT6z3EtZKy0IeK0LFchU5FJxIrP+1bUvYQOhW9fSyEnAFUnLNOxWonaYvqh4fKxg5CxQaTs1B4KsLrKVARBoySBvP49kXTOTKoOLROhSQvRUQICxW1krLqLvpKdSoM4GQ6FUo6smN3nYo51Z8WrFPRtB1B0DHPqVhttfOwOUDxf4EvAL5AVV9QbhSRB+MeZM9W1e8UkR8AXgh8A/Dlh7jYg5qQuR6DN6CEikaTZ2IbVCgOLPYtKZtgY3eo2FWnAlUuxIUr7VNSdq5ORbCy+lMNIGybh4aK8lxL0akI7c6BisWYAsuZHVtWP4zE/42mNX2oCJWg2A4VqEQA2QoVDfVEbeAkdCqoQIX/NVWngsbOcyeoqJWUHYSKUvxuqPrTLjoV4T4FT8e+OhXF+n10KlTD/9xAxYBOhcZ1u0NF8mJ0LKp07LL64NUGbM6n9ZuAn6w9xABU9edwdXAf55dfBPw88Jf3vchjWdumxKqm6WibjrZRmpiUrTSt+xsSpdrGJXGHZZuoLeLgoWnoJWq3Ickbd9NDonZKyA5/U6J265fD9hbhgnqidqtils1rFVrqidouGTu0kydqxwRtxhO1x+wSZSMdG+no0DhItQna4XUtUXtbknUteTu+Fia1MSVRO+R7DrcxfC47LJ+aqN2V26S2P4P7Z+t2SNReEEos0RbXD3cbn2C9adCucYOvrnHLfiCiPrk6JliHY2wit0mw1o07vpeo7ROve4nam5FE7ZAM3uH39etqidqXxXInMQHb7U+WqI3fZpO007JP1N64wXrjk7pridrWykRtbZ2nIr12D6KQqB2Ss2OIlH8YZYnaF+ofSG5WLCZqi8bk7V6idqsmkdv9ldYPylsPZeLhpOliQnY4fluidtg2lKjdtF22vvHniO0V26qJ2ja52q/P2isStcNYIiZyN2Tr5yZqr0nZq52TzQGKTwNet2Wf1wGfapZfC9x57kVdhQkJCBr/pY9f4uJ1CRWNEOGjBhUNh4EKoQ8VtvpTDhFpXQKIBBUNfagQtec6HlTAcPUna4eAimzdAaECpkNFD0hsu3tARXg/x4aK1U7aFtUPo3hQoFfpKSgHD0KFB4pa9afY7iGgwleLmlz96dKv3wg9qIjgMA4VqSrUBKiArVDhoMBDhTio0FaqUDFa/amlX/1pDCqy6lB+cB6Bo4CKAAgzqj+NQQWiPaiIz/kZUNHEfadBRQKDHCoCIKT106BitdXOxeaEPP0p8Clb9vlU4Kai/T+Ze1FXYqHD8ObCl9Jy28DGj7Bc+EgeFhVCX8J+NvwpakV4l+eU8KfwvCnDn4Kbu5aoDeG47ToVqU2y8Jzkh111KvrhRJX9hCvTqaDY5o4Nn5fdwp/sOrs/kLW3pMeYwpISApfVDwNBsNMv+FAY/xnsUoiR4MHAf+AFYrhMt2lciEqxXnEwIG1H7K4YCX9S89q0M6pTsfGXbsOfOv9ekIPrVMT0Bdf1MqRTUVPUDufhkv11KhrQS1PxKMye4Zen6FTEJO+8+tOqU4HZdv62sD54tQGb46F4CfBQEXlMbaOIfBXwUODFZvUnAm/e/fKOacVsQvQ02HVmObguC0+F3a/mqajpVNQ8FW14nf3drlMhlfAniR6GFP50oYV3wrxedSqc1Wb+a+1eVfhTbRvV/e119vef4qmwtpBn2FJtYf0wSUMieiaohjKFBO7gXeh5JIbCn8y6rZ6KjT02b2dUpyJ4MopwJ3wI0yF1KqJ3YotOBQx4KhoOo1Mhdj/riaDvqRC7rvBUxHXJW3BQnYqh9caTcSydilyPgoH1456K1VY7F5vjofgXwOcA3yMiXwu8jFRd5L7APYF3Ad8IICIfBjwA+J4DXu9BrfFf6s6Qs/VUpLKyLm9i42dMSk8FjSkxW3gqWnRyonbof2ueCjXL1lNxgXKpq07FNg/EIas/wTRPxViitn1fY56K6jb/XmrXC+nzs69OxWonaYvqhxUPC352N8wqZ54KPxmStCqIuhNAvo0w8154KkylqK2eCnFehlk6FTQxYbfvqfDv59R0KsJDxupU4Gf+w/0L7Q95KmxJ2Xh/tO+poDuYTsVgovaQTkUTvCB9D8axdSr6CdkSPRVDOhU9T8Vqq52JTQYKVf09EfmLwL/HPaA+vtjlF3H1zn/XL/8RcDty1/vJmJBclaVnMUBF492SER5Eo/BdCRU1nYoAFaHDn6JTsRmAigQR9fCnVafi6qEi2D5Qkdq4eqjYtv+SbCnu9qX1wyjR5af+Q1hCBTTQJC2KEPJThQo/dq1BRQiX2goVfrkKFWHWvgYV56ZTEUrK+kF/LCkb7p99MArTS8r6ibdj6VSMlpS9Jp2KGNoUP9YJKubqVCwVKpbSB682bHM8FKjqbwOfKyIfCXw6cHucIuuvqeqbi30V+OChLvQYVpaNRdR7GupQEV9XoKL1MyQ1TwXMF78TzkOnYt+cilWnwoLSChWrbbel9cNhoBEG/4rEfIgaVHQbaNoBqAidJn2oiPtMhQrfEYfBPL59UU5Xp8K/y710Krz43WSdirKk7JhOhWjdU3HmOhV5iVl/rzmsTsVqq526TQYKEfkK4G2q+gL/0DrZmNxJJhqFZEQ0xtm2TUenrv5zgAoR4w1oOkRlNPxJVXqJ2jBP/C4MFId0Kvz8xs5QcSidin2hwp571ak4LZ2KxZimAeW52+L6YaAzfbCIe91tmlhONEKFJPDoNn6QH2ajS08FDlTKRO24zxSoCN6JMZ0KVZfce0o6Ff5dHkOnArX3zL++UOSygIrwHkqdihD+lBLRpkFF8DRcg05F9CIYqFC4Mp2KRdiC+uDVhm0O/v4A8OBjXch1WEjEKpOoGtGYHOXKyna9hOy26WhbrZaUDXoVTZMnarf+Z2qidsO8krJWp6JWUjYt5yVlh3QqxhK1Y4I2u5eUBVadCtvuhERtu/3YOhWrnaQtqx9WojpwKh/rvlCuLGyT1g+UjU2aFf2E7G6TtmXHmHUHLylrdSpi6Vi/LZSUDcs7lJRNy3qQkrJzdCrUVA9ZrE5FkagtVkOiTNS2ydV+/aF1KlZb7VxsDlC8deb+J21C+CKbjmMmVIzpVKQ2+tWfDiV+V4OKYYiYr1NxbKi4RFedCrMtf1+YY6dBxTF0KlY7OVtUP+xGo0HUbkeoUFIbQ1WeCqgI8HB0nQpTOcpCRFWn4jK0tx0qYoWnTR0qUL/fpmWK+J2DAladCnsOAxUREJquBxXH1qlYbbVzsTk5FD8HPEBEGtUFOK/8AB/C4ElSXKe3EBYCLnxJfSUHG+aU9svX2xwHlTz8adWpyG3VqThNnYrlmCwpIXBR/bBCL4cihP9Aqu4kErQq3Oc09CbpGP+ZHtCpUCQeV64/uk5F6qQ5tE6FghvM+iXFh7H6Y8SHzgyGP0l3PJ0KivCnMHuGXz5DnQr3/tM1hSmao+pULMIW1QevNmBzPq7fhKsW8v0ici2qqyLyiSLy+SLyaYdpL3kZxMxGlPoU4adttTiG3rbr0Kmwy2l7UtQuPRerTkVuq05FuO7+utVOzhbXD6dwpzTz3/NUmL/dJr3u6VR0ybtw5ToVxjMxSVF7F52KENZkvRUKu+hUaNMdV6ei9FRErwR9T4XYdYWnIq5L3oLr1qmoeSqOpVOx2mrnYnM8FD8K/DHwFcCXicgbcO738hOvqvq5h7k8ZyJyR1wd9b+I634/SkR+Cvg3qvoKERFVnf3NK6s81TwVLsHZHkNxTJwnom1hs+l7KsZ0KiS2tZ9OBWa59FQMlZQ9dZ2K0s5JpyLYrona9n2NeSqq2/x7qV2vO9c0T8WSbEGzY4vrh8v/jdD3VIQE59DbhRnymqeCLnkXsm1h3yZ9B2eXlA0zzrWSslCv/hS/XBrfx8F0KjCvQwWpLvUitj8JnorZOhW1krL2vrYMl5S1OhUHLinr3lK4b9s9FYfUqRB8XxkezijH0qlYii2oD15twOYAxeeY17cE7uV/SjsoUovIfYGnA38CPAJ4L/BxwPcD7xaR31TV985vN6d/8QMpV6GpiR1bKhvrLEBDsKlQMaRTAfNLykIfKhJEzIMKIVyHvwY9HZ2KbSVls1AnAxXBrhMqQujTcBvToCK9lxUqVgMW1g87OggvxVd6Cn1zl6Cia+KygO8/d4AK96U7TEnZlj5UhFn7GlTM0KkIJWG36lTY0J0GuDSDdQqdCnXvcrZOhb87WUlZM7sVKyPto1PRhvdTgYpDlpS9Ap2KsqQsaAST9LGfrlOx2mrnYnOE7a4clUXkNsBfxzl6H6uqv+E3vVxEPgd4EHBn3MNtSnuPAR4DcNdb3CGWfRN87Kq3NngUzBc+eTB2g4rWN7AvVHTic9hYvk6FPfccnYptngKy+3P6JWWvS6ditdOzpfXDH37r27rBl/+8xbwGyCAC/ISP/4DuDBUbTM7CHlARZqHFDOZ9+6LUPRVzS8qG59IhdSr8r710Khp/LcfQqYD5UBGg4ER0KhTqORVBST1qUkzTqVhttXOxWcJ212DvB94CfH14iInIhapeAi8GHoXp7raZqj4LeBbAJ9zmIzWjf0sM5FARvvAlVKhC16nZlkNFp8AmhwpRPahORXgHASJAzVXkUNGgXE6EikPqVHSqXEo3GyqoJGnD6epU1PYbgopwTVOhArhynYqlmLK62/e0o/XDf+7P3FWz/00YIFagouugaehBhSiIiE/g7UNF0IqI2/xMzEF1KlT87LuFDYnnzqAiXM8CdSqqUDFHpyKI34WsczNrJq2f6Ng0OVTgvAKTPRWNf8qN6FSIStRC2QcqejoVjbspQzoVQaui9FScu6198M3DTmbcICK3FpGnisi9/HKoYvLvVPWlYT//EAPnbn8b7mG34zlTWbe89rNPtG66mIyVl401ydkNsYb0nJKyh9KpEMw63CA1vK6VlA06FWG58dtCSdkmHnO4krJu3apTUR6b2hg+l937OnQqVrt52ZX3w0oS/AqJ1kWytHappGwXk57zRO1YUrYrNCcUxkrKHkynomNeSdmgU1Emap+oTgUNk3Qq4gNFzLKwm07FUEnZmk6FScgOxx+6pGzUqRgoKXsInYp+6didvlWrrXYtNuvjKiKNiHyNiLxcRP5YRC7Nts8QkWeIyCfMvQgReSjwauDrgScAhJKIqvrB8hr8y3sCr2Oim713TnIwSF/k3aAiitPMgIrr1Kmoid8JdZ2KBA+rTsWuUAF9qMjbSNt6QGLb3QMq5upULMlsJaGr/jm0Lakfdm3n96vzALETVBjdirPQqaiJ3+2rU3FJqgo1ABUos3QqMvE7YVCnAkivS6hoNOlUXOj56lTY9iZAxb46FUux6+yDV+/I1dhkoBCRWwA/j0vM+zjgPZCNBl8PPBJ4+JwLEJH7+Tb/CPhh4G+KyIPGDxEB/gLw66r6Qb88z8yg33oqalBRKyk7FyqGSso22fEJKhrmQUWCiT5UhOUSKprKcigpW0KFBYm5UBF+rqukbG2QXvMUnApU1K5pF6got9n3c3OEiiXY4vphzABck6eiBhV5SdndoGKwpKxpowYbk6Gi+ppE9DWo6Oxrs62jDxUDJWUtVESw6Aqo6DSt98eUJWX7/54EFc7TwGBJWTUAMQoV5mGVQUUAiRpUxHXboWJuSdnQ7hBUDJaUneOpyI7NoWJbSdnVVjsXm+Oh+DrgAcCTgA8Dvs9uVNV3Af8dl6A3xy5x8blfCzwOeBnwLSJyQ21nVd0AHw98NPAiv069q/6e4J50U07chwY7O1CDBxcXuQ0qSniwNaZPTadC9DR0KoBVp4LcU1EeOxcqatuo7m+vc3j/1U7CltUPF8Bg9SVq4U9hkN51E6CiBx4eHA6kU5Evy346FREWKlBhw5/20anYcHCdijL8yYY+bYWKa9CpSMfmUJH9LeFhaH0GHeNQEXQrqjoV26BitdXOxOYAxcOBX1bVJ3s3eO2T/nrcA2aO/Yqq3l9VXw68Gfhe4NOBR48c86m4mN3fhDi79t+A/yAit5taCz3AQZZHYZd3hIo8NMp1HG3TDUJFtlxARfiZAhU5TCSIaItlCxUXDENFWvavR6Ai/dShYoqnAuZBRWmHhoq8jUq7E6BiK6zsARVpW7IpUDE1p2IxZgaFC3C1L6ofVqDbuAF2t8nBIOZV7AoVlRCnuN+Ap2MIKiw4xGM3+XLc3wNADyrM/tWciiGoqEJGHypiDkV4nTqSCBXOK5GgopdTUSkiFqGi3dBdaIKKEP7UJKgIEBGhwjx8qlBhcyoMAPSgohmBimxdDhVlToU0Xd1TEcKeKvCQ4KAPFWn/PaCizccfFioWU+XpmvvgNeTpamwOUNwdePmWfd4B3GnOBfiZLkTkBv+AfBHwE8DjReQudl8Tt/vZwNuBVkS+D/hFXAzvF6nqe6acN/NEVEOc0vZ+7oSDim2J2n14qHsq2kYHoaKN67dDRSvDnorh5WFPRZ5j4XIrhjwVKam7DhUXWiyPQMWYWagYS9KGItSpMtNznVBh+7ddoSIHpWQrVCzaFtUPu3NbjwQFGKSBfs3r0HUTErV7gDAAFZthqNAuBwcLFb3wp5BwXYMKG+ZUQoUNj7IQcZkvy2bYUxGhIliRqC2Xuaeimqg9kFMRwCJCRcipaA1UhNyKttjuE/2qORVToKLVYahodRAqZiVqD0CFZHCQt99kCtzHgYrVVjsXm1M29v3AHbbs89HAu3a5EFW9yf99i4g8G/h84BuBfxoUWFW1E5EL4DNx8cMvxanEPkBV/8fcc4YvsyquwzEdcaZS2YD4yba0mxBKyrqHU5MNwppGgC4rKds0rlyciixCp2JuSdmaTsWuJWVrOhVQLykby6rKMnUqgKMoai/HFjVDtbh+OAzq4+ApCLyB6z/DLG0H9msrEEvIdh24CCs3IHU9Gu73psnKxnYbfLiM/4Y0pr1z1Klo3Pvs6VT4887SqfDvcqykrAuBuiadCvH/T/8+w8UfVPyu8zN4RUnZQ+lUjIrfdW4sEf+joYM+e1tUH7zagM0ZO7wK+HyfFNgzEbk9Lm73FbtejIm5fQUuNvirReRTfGxuIyK3Am4N3B43M/ZYVb3XLg8xd77xeEYbClX3SOSuyameChGlbfvVn9rGhUa1TTp+F0+Frf5Uhju12frkqWgZDn8qPRW2pGxK3k5eiyk5FfuWlL1Ee/kUMOytCFZWf6olbJfbe9uErfvD0Mx/vt+Qp6LnjRjxVOTvK1nNU1HmSGzzVKx2crasflgHQiGMpyIrKbupeyqiR8JUg9oa/hT2L7f5c3ShMtMETwX+HIPVn0Jid1i/8QBRVn+K69jqqchKyvpSs9ZTET0W1nNhcyo6xkvKDlV/giynIoQ4ZZ6KBmolZaueigvjeYhhU9YzYZYbfNlY7Vd/av2gvOapKHIydqn+JKGca9tVS8rO8VSE6k/JM2HGIE0aa2x5DK622knZHKB4NvBRwI+IyIfaDSJyB+C5wB1xsbc7WYi5VdV3Az+KK0f4rb79hwHfAXwA+GpVvZuq/uCu53LXbQf//qcdyKcYCX+yUNH28jGGoeKUdSrKkrK76FQ4aKhDxb4lZSFBxc1Jp6J3rG13AlTY7StUnKUtrB+WNND28BB+BqFiIPwpgwpbBnYLVIQwpX5oFNevU1GWlA06Fb3qTySAGKj+dFCoGCop63UqaiVlr1ynwg76Te7EPlBhqz9dmU7FaqvUgVqRAAAgAElEQVSdiU0OeVLVHxWRzwMeAdwIvBNARF4J3Bu4JfDvVfX5+1xQcKvj6qE/E/g24OeAPw/8V+AWqvqyfc7hzuMG+sHVntxxQtN2bnYq7mu+1A30lbMluWAxKtvhkEr4UxgKNuA6UqOobcORVMjCnzqEFqUTgW66orYNf2r8eYIXGXM+G+6kxXKHuP47Dn59KJRKnEnJwnNUaSScKw9/Ql1DFzRRUfvS++Z3CX/aVFS1eyra9toq4U/VEKexdfHfPi/8aXA/cc+7sfCn2rHZtvi+hsOf0v/ObPMNNJrWLcq6ZbyfpfXDClGRmNAX+22uv+xi+FMWMhGI14YrxQ+9/0b4UKfU22ov/Ckoagvei1BsC6rdoul7FtdvmjQg3Rb+1OAUtSGFP/l23GezyRW1TThPnPEx4U7xPcbwLK+o7eNRQ/iTXLrBPiGEK0BF8BjE73oe/kTj96Me/qRN59f5KSMb/hTDxVy7NvyJzvdz4XUZ/oTvBBFzf+graoeHXhM+ROl+SePO57a5+2vDn1BxT7sJitqEY0z4kw0hC2MFux5w/8uNn2YbCX/K2sC8R39di0nKhsX0wasN2xwPBar6KFyN898E7oL79N8H+H3gUar6NftekHer3wDcA1eWsMU9JB+sqjeq6s4CSsWZMk9C/pO8Dj0vhfFU5GFO+TE1T4X1TEzVqaiFP12VTkVNUXvVqchfH9JTAX1PRS1Ru3ZNu3gqym32/axlY0/XFtUPKz2vQz8hO+zTFOtDYnapOeE9EsbzYD0Vtv3SUzFUUrYW/oQ5x2RPRfU1jOpU1BS1Q7WnuToVIYfDg8U+OhXVkrKFTkXpqdi5pKwY70TpqeglZevZ6VSMid+tttq52JykbABU9bnAc0XkQ3Cu9T9W1fcd+LruBvwv4AZcfO53H7h9wMx+VKxp/Ca/ved6DLMXEmb2ofRUuATnZG0Lm409PM2diZ9xsevDLLT4Wf7SU9GoouI8CNZTITjPQJmoHd5O6alQs1x6KmqJ2unc7j13uImxS+nP1ANmer3uqWhMufohT8VGOi6QQW/FkKcimPVY1DwVdv3Q39778raPpyK2MdNTMZaobd/XmKeitm2ptrSEwCX1wy7AKpK0mx3Hj4FDUnaYnS//j2F2Xs38bump8InLsc0NNCGJNzvGe0n8zLnd5magpZeoHTwYqJiZ9hFPBUBrvBamnQgMDX1PhZ9pr3oqwoxSR5zdD88h66kghB0ZbwXOyZIStW0vconpqJKnApK3ouqpaHAji8vSEyG4RHB7/+z28Dq/lvz++PdeeirEPHtLT0WAD+OpAO+VmOipENXgMO95KsJ5e+tx/w/3LmSrpyI/1r/HWVO+p21L64NX69tsoAimqu/HVRw5uKnqm0TkScCz/HmOYiLmC1sBCwmzKF0FKGBr+JN7EObVn4agom06Nr5zK6FC/YC+BhUSLyVBBcQuKoOK2K9i/yaoqUHFBcrlAFSIP+++UOGOM8sHggrIQeLQUJG3sRtUbIWVPaAitTEPKmyo3GqnbUvoh91AwwzvC6iIA5HOTa70Ppqhgy0gIEJF53u7KVDh26lBhf/SVaGCTqZXfxI3KO5BBdSrP3X+okIVoBIqzLJsUt9fQgUhVCd0/m0YIAfAyAfy4sfnqT9xUJHXpTVQ0TqwaC4leR38oD9Uf+rdP3+Dq9WfPIBEqGj9m61BRQSuClSoXZdDBRLu4xaoaDtk01ShInpEKlDhqljFOzoKFTTuIntQsdpqZ2I7A8WxTVW/66gnEKJrUlVS52d3kTRLEMChZztCRddpL6eiEaWreCoOVVI29s/0oSJBxHRPxVhJ2fAUOgZUjJmFCtSFTY1BBeH9GqgIdp1QEbwUw21sh4oclOZDxWqrHb0fJoUYuUmb4FUgAYD5XpYgkDb4vzOhQkT6eRPir6KEikOVlN00rgx5zVNhJrF6UBFn4QuoKErKygZCSdhBqGiDZyLdjxIqbE5FCRW1nAriPRspKXsR3kua3YrnH4IK66kYgoo2fA4qUHHIkrIVqIDuyCVlV1vtPGwWUIjIXwa+DpeYd0fqDjlV1ZMFlWBCxetQQEXSotgPKvKwqNC2Gw4uUaciJGrvqlPRoQdJ1LbnXnUqbr7hTyGefim2pH4480Bka+3se+Nnb53tChUS8hMMVICuOhVDULGjToW27ibd3HQqYmLInlChUCRqn78trQ9erW6THzgi8hDgp3Ff2zcBv4PpKs7PNAOK4KlQPzsQbC5U5CJ3ruPow0Zouw8V4THXtu7ZYKs/tQ0ullOFTcdeUDFW/SldRQ4VDfXwpzGoCD3inJyKQ1V/opJPMeStCFZCRW2gb9/PIaGitt8QVIRrmgIV+fsahwr89jUp+zRtcf1wMdAInopQiGJXqFDxEzQkqOg6aBomQUXMqega1yfZbb7TVHUVAfeCioZ69Sfwg2bNqz9tzPVMgYoY3hP69gQVcbA9BhXM91RI17hzILGilHnSjkIFYWxu79+FIpcFVIxVfwqD+2LWTFrQCBzsDhWxva5f/alxsCMqWfWnMagIlc2GoGK11c7F5sxgPRG4CXiIqr7wOJdztdY06sevmj3UmtaBQfgy16AiuOkzuAgTSN7T4ErHJqiYqqhNHDAyWFK29V5fyKHCMUg/UftQJWUvfLsCBiIAX1YxJAVaqLCVi64DKlyb/n/J8UrK5iFUh4WKcGtr3hMLFfH8O0KFO399yvucTYc/JudmT2Rh/XAceMWwJ7/eT0Q3MAgV0njitjPlfsDZdU2s0reLovaUkrLdxp0jlqcNl6ES1+0MFWMlZWnc+47eDAMV3iPRg4owEGakpCwzoaLFA0QJFcREbcL/L2CvSSgvoSJcSxUqunh100vKQg4VjbinmyYvw1WVlG2aDhUh6J4EqAA3XhjyVCzFFtQHrzZgc4DizwH/aSkPMQT/8ArdY//TXnowYldhXA0JNryZbUmPIo4uC9gIbewGFfFBa6DinHQqrgoqxnQqtiVqbw1xGlt3QKgArlynYrWTtGX1w/jSqtY9Vpj6WWvnOsthOs3G57ARB9JIrBTVy6lQAwL49TvqVGSaF2H9tepUYGDDX89RdCralHh8CJ2KxtyPEiqsTkUDeinToMJ+fgJUDOhUgAcIEdhwcKiIn94BnQqNYVMJKlZb7VxsDlC8F3jHsS7kqk1wnWyMMzWPlbiPLQEbwWF/qMjXhzZ8NYp4eA4VKW+8DxUqTC4pOwQVRZ+bQYVAdr4IEX6EWyspG6giQEVqcz5UhH3HoAKYXVJ2KlTY9bXBfLBTgorymnaBitVO0hbVD0e9iOCdqLjH1Ff6iSPZMm5/V6goQcCdLYrYQR8qQjUnu21U/A43Iz3ZU6HmtWmHELcfPAcWKnzVwD5U+KuxUGGSlqtQ4duxg98IFeJfCeCP2Un8rqNaUjYM8rP7MQQVnbnO8FwVqJaUjQnbxAdchIqY5F1ARYMH3WmeCmI1pz5USLhvE6DC3f90TbWJztVWO1WbAxQvAu57rAu5DoseiAgA+Rc4xD0GCEgeiz5UjCV4Jz2KHCqOrVPRopPDn1adilWnYslQsaCEwMX1w73/TfEFiFoUfiBZLx3rB9JDOhV4aIE+VBxbp8JAy1aogJPSqUiAsadORVlSNngrLgS5TDkVq06Ff++xFO1i+q0l9cGrDVjFwTxo3wB8nIg8TkQW8MnwHUlQp2wKlUr702h/XdivCQmE3ehxNUXtXGnb/bRteQxJebuhqqidLTdkitrhZ4qidnyd/RXaYjlt9wrYWlfUTsvu9YVKbCO1s11R+0KLZeqK2sAsRW3IVbS3KWrb9UN/B9dJpd3KfhrXDe9vrd7G8LE13LJQq5X2VjspW1g/nDwUPRXs3vq0b09N21dw6qlpa6FqHY61itpdQ6nS3W3yc8Rjwn4VRe10rny9o5S0bquidoc51qw3qtg9RW2ruK2pjXJZNv51RVHbvSa+jtZ5DumcK1s6RTbQbPy2DZmidu//G7wW0tFdOMBRDy8qoP5BFJYD2OiFB5GWuD08iKKitv+rglfFJgFCo8Vru84/+5tynYcTMT++zVFF7baLytqlcnZSxs7X5/unsUGpqL3aaudiczwUTwBeCzwJeKSIvAp4V2U/VdVHHeLijmqhIyDNuUirPhE7zH6YcKYG+hWe/H5+xqMX+gTZcclpkWZL5uhUDInfXadORbgHq07F8nQqlmOypNmxZfXD9GcuVcX3i8QPZfJSuD66ycKUjHVKPSzK/y08C9FTMUOnIrRzUjoVM0rK7qNTwWXyAPQStdW9y0PpVISc83j+qToVPv9hKToVy7BF9cGrDdgcoPhK8/pj/U/NFDiLB1lIgoolY1VMqbb0uLKhUaFaU/qi96GiVv3pEDoVASquU6cird9fp2IXqFh1Kq5Op2K1k7SvNK8/ljPvh11fmfpgEfc6AoT5UKYBSaquFMq2ZhagolL9CVJ7JVRM1alIKsvXqFNhKlXtrVNRJGpHqPDnnaVT4X+N6lSYkrJH0akIs/pKOjJAheh8nYpYJWsiVBxYp2K11c7F5gDF3Y92FddgggEFYwpF2VjNZwoKcEjwkKACKmBhYOQqdCpqJWV30akIdyh4Jsxj1h1joCK0WyZqH1L8btWpKCo4DUBFuKYpUJG/L/L7vdqp2aL6YYAkvgbmy5/KvvqBc/JSpP1CBZ0+PISBc4OGEBKIHexV6VTUSsrOgooGV/1JxatEkwbNRpNiL52Ky3D/NYOKONgeg4qap8K/y6mJ2jTpObMNKghjc3v/5paUDYP7YtYs6lTEgb8f9OPUq4+tU6ERQnKoWG21c7HJQKGqbzzmhVy5iesY3SxNvil0XslbUYeKYKVORX1bOu4qdCqauENfp2JOSdnwkEhedu+NYKSkrK46FbV1eQjVYaEi3Nqa98RCRTz/zQwqluJuX1w/jPvf6MYPvv3A1g5NXd83DBVp8NtUoUIojvMDzqvQqaiVlHXNuZmAsqRsyHfoQUXnqvbN1qkg3BsDFf5RlVd/InbyZ6lTYUvKToGKMZ2KgepPx9apEHDn1VKnYhm2lD54tWGb46FYmKkJZfIdTLbVejEk3x9mQcXQcYfSqdAwEVWBChWqJWXDe151Ko6rUxGsCg4HhAqIY5SBNqDszrdBxWqrXYVlA434Ic8/sVGroikHJtOhojzPoXUqdiopu2kyqGADNpSq56mA6VAR2iPcm+SZiPdtiToV/hmc6VQIVKs/BbjKPDJbSsoeUKdiUknZ1VY7E5sNFCLyhcDDgU8CbqOq9/TrPwn4QuBHVPUPDnqVxzI/0BcYhopY5lVG9SYghw+77RAlZcd0KkK52RpUtA1sujpUrDoVxPXH0qmowYK164CKqeFPS7FQHWhJtph+uPa/qUCFJjcmHU0RW15ARa89P5CunGduSVnQQZ0KuhSyZLcFRe2Q79GDCj1jnQrrqQiDY+H0dCqgn6g9RacieM2OpFPBAGy4kywnk22JffBqfZsMFL5E4XOBv+1XvR/4ELPLO4F/jfs+/JsDXd/xTNJAP8wUiAjdptgvisy4g0bhYED8bqj6U9hW5lT01ztbdSqWo1NxqJyKYMeAitVOz5bWD4fBfFz2eQchxCl8YsuQJe1VzDVQQeGlAMaqP4XwpzKnInoq/LWE3nbVqUgz8+l1XnEJWIZOBZ1P4qYHFQ42pkHFTjoVHjZWW+1cbM6n9R8Cfwd4DnAn4DvsRlV9K/DLwEMOdnVHNCFARPpBlKbV3vpcb2J4W65HwYiGReW4uJ6ddCoa0WvTqRhenqdT0eiqU7Ftv+vQqVjtpGxR/TBQ1aHojDaE1Z+I2zcVvYmwXyfU9Sigrl8h0VOyr05F1KC4Dp2KLh1/dJ0KbxKgQuHmplMR9ChCm8fSqVhttXOxOSFPjwJeDTxaVVVqJZLg94AHHeTKjm7aKxvr1rrZJ+upUD/YTl4F6IqJrtJTUVZ/6mtYpOMOoVMRcy9oep6KY+tUhJl/67mIieH+nFNKykKaJArj/qmeilBS9tLfqVWngr1Lyi7JdDmKswvrh4nJ0bEqkllvPRVlyEQII8qt8FQU1Z9K70La4P8WnoVtnopSp6LzcfWE2Wjb3rF1KjZhxpu+p2IXnYqxkrKSvBThfmzVqfDvctWpyD0V0DGmU7EUW1AfvNqAzQGKewHP1BDIX7c/Au6y3yVdnaX8iNxKqAghSyVUaCjROrH6U1/DgnjcXKjYplNRKyl7CKi4Sp2KXUrKXogLVwqJ2p0ql9Jdm05FDSrI7s/p6lSsdpK2rH5YKcrG5pZXeHL9brbdV8kJHt3YaICKBspEbTfol2r4EzALKkBHdSqqJWXPRadi35KyNZ0K/y5PWqfC5OscBSpm6lSsttq52ByguARutWWfjwDeu/vlTDMRuY2qvk9EWlUtsx4mNuJ+pNXozrU2BSpCZ5R5JLZARQCEXMOCDDim5lTMLSlrdSrKRG3YTaeiVv2J+Ht/nYrUt+9W/QlwngOZV/0JTOjTQEnZKToV9tq3gcYhcirK/YagIryfMahY7SRtUf1wyKHIy8bmtg0qwhfAloHdBhVW/G6qTsVsqBgqKWt0KspE7bjPVKhoGK7+NKZTETqFKVBhB9YcsKTsLjoVTZ5TMVmn4rICFdEzYaDCJmoXs2aDOhVzoSK2103SqVhttXOxOUDxm8DniIjUZsdE5FbAA4FfO9TFVc5xT+A/Aq8BHrkzTMT2wuNAkFYRVa87gV8/HSrs9ilQ0d+W2qzpVBwKKsKAsm2oit8pzNKpgB1KyuqwTsWplJQN68eqP1mrJWrvAhX4e3gKOhVLsgVVGFlcP5wlZXuwKEOZpkJF3HcqVMzUqTgYVIRzeMXvqToVs6FiW0lZxXtMDFQ0dr3xVEwpKWv+F0MlZedCBfhr8iVlCWFPwWsyRaciiN/JDKgIn7EhnQrvZTi2TsVSbEF98GoDNufT+kPAJwJPE5HsOBFpgX8LfDiuAsnBzZ/z7wOfBdxXRD7PnHt+e1BJynZf4jJROyQ7x9mvXlJ1vn04GZtZidqtTfAeSdRuGuJ5m/J6qgnc5NsaskTtBt/mhETthjSZ08S/El+H5bQ9JWaXyy4x24USxURtMAnZ0xO1XS7e9kTtsSRt6Cdqh4H2pvhrtwExUbtD4/pagnT12LCfjGwz68pE7cH9ZGRb74pWO1FbVD+MUk/KriZdp+TmrhveFpO6y0Ttantkyda1RO2ua5iSqK0Kaq47HQM22bpMyLZtlOt102TH4s/RS9RWgU0lUdvNEFFN1M4Stv0gPa7Dzfj4ZQnteA9ASNSWS9I6/9dtx+VidOpf+0kxn6iNkiVqSy2/UDq08YNvcfCSJWa34hOxJa7DbMc1bV57SGgVLnyVQZMY7Y43r0NSdC1RO9tGnmBtkr9HE7VNu9WE7PB3tdXOxOZ4KJ4J3Ag8FvjrwHsAROTHgc/GPcSep6o/cuiL9LNxnX9ovRlXKvFrRORFqroZmq0bN3XuxV5StvRnBiS4gHNPxBxPxVBJWff+iku3x0lfp2JI/O4UdSqgn1NxlToVF9JsTdRedSpCG8lTsayQJ1nS7Nii+mEFNt4TgM+xClYmXVstip09FRReCkiz8+VnJMzO+89P8jr4Kx8QvztJnYqYP8HuOhW+lxksKRu6beutCOfDdTzKuE4FOA9FnqTtp4w6RnUq2Gj/fpSeil10KoZKym4Tv5voqYi9cEfPU0HhqTtfW1QfvNqATfZQeLf2Q4EnA7cAPgH3mf8S4NbAU3APuIObeUiFMom/gHt4fqVfP+mTKiKPEZFXisgr3/HBD+SzCoWnIvcaBK8DxX6H8VSkUrN9T0XukSBrb2pJWXvtNU/FUEnZNngsJngqzKRQz1Nhl9P28ZKysepf8FTobiVlp3oqYF5J2dLLcIolZa2NeUVqnoqlhTwtxZbWD797876sLGxX8yL0vA4jHocJnop66VgGSs26mfjQTs9TYZa3lZSN4l5DnoqBkrLB67FXSVnjJal6KqIHIrURPRW95bB/8lQEr0TVW6G4gfWGWFJWOufdqJWUtd4KbVzD2m7ykrIX/rIvJK0LMDPHUxH3s14Jck9F60f3Q56KuC73VEwuKRs8FEOeitVWOxObFaCnqpeq+kTgrjiF1vsBnwLcRVWfoKqXY8fvasa1f3t/7u8E/hD4eyJyVz9rtvVhpqrPUtXPUtXPutOtbpUG7ubLG38KPYoED2Hw3W0Nf6rBwa7hT6euU9GOQEVbLE+FCqtT0eL0JnaBijk6FWM2V6cihS5dH1TU9rcTRWv40/nZkvrhD21vawbb9KBiMPTJD5S7bnv4U/ohtjkEFWevU7FphqHChDAdXacizNSPQMUcnYoAFqM6FReCtuIg4YLl6FSsttqZ2CygCKbOfkdV/6eqvnbfpDwAEbm1iDxVRO5VOV8nIhfALYG3q+rbgP8M3AP4Kr/brac8zPJzkg3ee1BRDPZLqAiD+iGoyADCQkBF/K7qpSi2zYGKMqeiaTqXk1GBirbRQaho4/ppUNFSz6kYWm5HoKLVvvjdhcpOORUX6kFiC1TMyako8ynK10AVKnrbVqg4rpnB4HX8HO1tLaEftrP8ZhY/81RM8EaMQUXm2TBQUfNIlCCQtTUEASNQUeZUdJt0XA8qNsNQEYTrJkPFRuo5FTZ3wkKFb6MKFZd9qJANfj11qCB5KYaggm4YKmo5FdFbEaAg5FS0BioaXG6Ff8BEb8UQVARIsFDRliCh3psxABWtHg4qmq4PFUuwa+6Dj9kPr5ZsTg7F0UxEHgo8Dfg44KOBLy+2t6p66WfI7uZXfy/wOcCXicjH4WbNvh743enndYNl92HTPPYTbDB6zIFQ/PYip8I9IJoYY+n20moVJ3tMTacirU/XMaZTIaK2ad++APN0KkTV52Xsp1NRq/50qjoVc6s/wc1Hp2K1m5ddVz8c+jwR15+F8p7xs5tVeDLVmIKZnArx5V772+xxvpMIORWiVHUqivWxg/WdikCWUyFhgN6EHs2fa65ORWi/Sd3ZwUrKrjoV00rKho9JOLLjanQqGv/JNzoVq612LnbtQCEi9wOeDrwNeBnwcBH5QVV9QdjHJ/zdAhe7+9t+3btE5HeBBwD3xCUpvmn6eZM7UUh9u4ov5Rd2LKAiDPZLqHD7dlhxmm1QAZhtmm3LgYMMOEqdiv760EYdKuLbqpSUJZzXd6ZL16nYFSrg6nUqwjmuQqdiSVChsM5QbbHr6ofL/42qIOq9r60ZnxVQEb3DwczAvrd9G1Q0MFRSlq6ZrFMRgCYM1LdCxUhJ2Xgvwsy1Wb83VIRB86pTMQ4VASIsVFyDTsUSbO2Dbx527UCB66beAnwdLh73HsC3iMiLVfUmABFpVPVPReR9wIWI/DngWcBnAq8Hbgu8WVU/MEdkqWm76J1wX2aAVOWpBhVQeiQKqABoOkR8rO4eUJFvS8ddhU5FE3dYdSpqdh06Fdm6A0MF0Kv+tNrNyq6pH5aRKk8MQgVUwMJAheu3zPY9oEIojvMDzqvQqVAkHpd5N/xMwOJ1KlqQrrl561SsttqZ2Cng76+o6v1V9eW4UoTfC3w68Oiwg4/dvS1OAfZf4USb/hi4D/AY4E+Ax4nILWbFERe5CmnZwYbdjtBPoB6o/hS8H0nTgsGcivyHkW3944Z0Ktomz8dYdSpCO6tOxeh+lfZWu9nY9fTDSp7DUMlp2JZTUa/+RH/7SE7FUXQqTHWmuP5mrlMhIWeio6pTEfIt0LBPSy2nIuVTFDoVF8lBsBiditVWOxO7dg9FePCIyA2qepOIvAj4CeDxIvJjqvp//WzXe0Xkp4EvAP4p8POq+m5/7M/iJzcm10L3X1pNi66zCbMo5PWg3b6SZi2Cea9AzVPhZoTC/uOeChF7JTqwjd5xNZ0KgLbpDqJT4Vz4eU7FKehUuMFvCn9Kbc7zVNycdSpiG3Y/SZ6KJdnqbh+36+qHlf7/pvyMumbcZ1fK+PVwTOFBsJ4K7Dm2eCpEpP/J31WnovQu+HPtolOhnfRyKq5Mp0K9J6Mx98J7AOKMUufPa55DPZ2K8J7tczacj+QdALbqVIS/PZ2KBjeqORWdigAfe+hULMXWPnj5du1AESy41VX1LSLybODzgW/EPbQaYKOqXy8iTwfeGkoU+ofW16nqn849Z5iRVzWPHtPZZSI9Eh8HPahQP1NfDX+KHQqMQUW2roCKfBu948qcij5sOAvgkA5Pjznx115CBRFM+lDRomyYBhX2NpRQoWa5hIpaonaH0CrxAdThvO2XMjD43gIVjSlKMwQVG+m4QGZDRbBDQ8WhErVr98vmVax287Lr6Ic73zdakTrLCxrjJ4tqLQVU1LcNH1eDCiswl1+kuoMqCeEh/KnMqUigIln4UwjlqkKFmoGx3Rb2rUGFgZatUCEOCKpQEbwQJVTg2q9DhX+fYTlAQQEV+GdqDOXxz9X0OoU/WahI/18HFUiXhUBFqGgdWDSXkkEFFymnwl9Ncf/sPQuv82vJ74/2oYLOAVkNKuI2elBhBXPHoGK11c7FdgYKEbkjcFtV/T+HuhjzYHoF8H3APxaRH1DV3/DqrLdQ1T8M+4cZsF0eYmBmHro0sLVQ0TT+YdcAeE8EfajIlbMLqIgeDPaCip6XwhyXV3lKnXktp2IIKhpRugGoUD+gr0GFxEsZhwrETXT5O5lBRYKIeVAh/rz7QoU7ziyPQMWYlVABDCZp50nWpwcVS7Olzo4toR8O/5uuU5/z5Sx+RmPuhKtC11aTsUtAsNt0cNtcqKh7MPzA3r+PHlRUciqGoELEX0UNKiScqw8VdDItUXvTIKrQVjwVgu2Yc6iIs/AVqDDLsjFP0jGoCO+78+/Fn4/GVWoC8Z5STI+UoMKaVdXuLgxUxPeSqj/F+xe2+RP0qj8FqFADFVEVuwIV0YtTgQq16+Ynai/FltoHr5ZslkNNRG4rIt8pIgjB5Y0AACAASURBVG8F3o5LxAvb/oKIPF9E7rPrxZgH07uBHwVeB3yriNwBuBH4dhH50F3bL85GjGlsUv6A1ZSgzGswuQkIWT5DrkdBL59i1alw+9R0Ki4YFr+7Tp2KC3XL16VT0duH8XyLfXQqyv3Wvv90bVH9sFLkQxTLvdwJ2JT6EZ09fmhb3u62nIpF61QEkbsyp8KvuxKdio6qToVcqtOk8DkVmU7FJrTTz6kApulUePG7mGfhHyaDOhUtVHUqvMp2plMxpKi9r07FaqudiU32UIjI7YGXAvcGXoV7kH2S2eU3gPsDfwv41V0vyMyOvRp4JvBtwM8Bfx54XrHPzhYBAj9D0mqsI951yVORPBNaLNc9FbXqT7kHg62eCtvWzUWnIoQ/hRk8jKci3Kur1qkAnOdAjqtTEays/pR5MUY8D4fwVAztt9pp2dL64ZB/EJfVzeiKOG8q+H4reBI6Jnkq6mVjycKq8m2rTgVhfXHua9OpoFL9yf+aqlNBg+mpd9CpaNRBzNSSsnRpNsa+zzGdilh6V6qeitVWOxebE/L0TbiH2Feq6n8QkScAjw8bVfVPROSXgM/d54JUVUXkBuBjgY/HfW1vCTxYVV+4T9ulideNcHkUEju0xl0HMVSpAhViBvbVRO0wBbKH+F04bq5ORVlS9qp0KhyDTE/UhuklZTHtztGpIPbtOVQ0IlzSVaGCA+hUXKKYLEJ/T+s6FbWciq0hThWoCOc4FFQsx4oY+vO2xfXDm87Dv+ZlYzcb10c1TTcIFcGbakvDBquXjYXZ4ncN7KJTUZaUvSqdClSm51QMQcVQSdlddSrihFFK1N5bp2JuSVlgZ52KLl7d4XUqcGXmh8KflmGL6oNXG7A5QPElwAtU9T+M7PNG4P/Z75IAp8L6v4AbgMeq6ncfoM2eOXei1aAwHWsnJtkaQixlGNiHDjB6H0qoAP8ASlAR18UOhdjmIXUqwFZ5Sp6KY+tUhETtU9OpSBNGZoAdk7GPJ363rfqTtUNARbbuAFCx2knaovphJXglnCe1/C52Xag05weU2exvmkDIYSM/R9fbdljxO6E4Lgykkbj+KnUqYqJ2CJ05NFSE9xIKA5dQ4R9VmU6Fna3fAhWh/SGdCpowV9Oi7WYrVGSK2h276VSEnAqZARXhczikU2GhIsCDCmX1p9VWOxebAxQfiSsjOGbvBW6/++U4U9U3iciTgGep6vv3ba9qkgafmPKwkDrWBlL4U1StPABUZOuJbY5BhcSSen2oyBK2J0BF8mD4Q7ZAhQrZegsVKlRLyoZOdZ+SsmFGqpaoHf5PtZKymAHIPiVlEYn7HgsqtlV/qoU91Qb8x4CKxZiypOTGZfXDSjFz2f8ubjYp/CkLddoTKjAD/tTeFqgoZ1kNVJSVpLZChRrvQjjXCFSExGu7LZwjlKKtwcZkqFDz2rTjyvSJf+ZNgIrO3LcMKtJzaAgq2GAdyz2oEKEoKdv6sCSmQUVHLCkbAmwjVPj3Man6UwN6aUKeBaolZQNcWaAagQqgV1J2EbasPni1AZsDFO8B7rpln7vjYnr3NlX9rkO0M3KG6LYVP+CuQYVoGndGj0UFKgZ1KgBbHi6zClQMwcGhdSrKkrJjOhVDJWU7DqNT0frLr0GFmuWp1Z9KnYp9SsquOhWrnZgtrB/GhTFiP3f976LN1OiXgE1QMaRTkR03ASpKyAlQcXCdiqKkLIzoVGi9pOzBdCqgXv1prKRs4/85e+pU6AUOTqTwVoTzkbwDwHF0KnRGSdl4L+z90TpU7KlTsdpq52JzgOJXgIeKyO1U9T3lRhG5G/BXgf96qIs7tmVJ2UNQIWlg27Qd3SYMwXKoCN6FfXUqarkRmPYpzu0ecpVOxxxX06mYU1K2bTo2vnMroeIqdCowyxYqLlAuB6Bi1ak4TKL2aidni+uHwyCqa+x3L/8u2pKy9YRs9yXuezDMeXog4s4DfZ2KjiIkKsDHjiVlB3UqZpSUBWK4z5XrVED0NvSggmZvnYoofhcH3P79h9eH1qkIDxmrU9H17x8t+5eUpdtPp2K11c7E5gDFdwE/CzxfRB5jN4jIJwHPBm4F/LvDXd7xzNXc9jPwoaPzDxULFSnUyc9eZNAxDSqOrVMRKjz1zABHclpsh4qu02r1pyGoWHUqElSM2bnpVCzFlHLG+axtUf1wLIsK0LkJCGnEQ0H6LnZ+4B2gotMC/CdAxbF1KkoQsG3tolMhIvXqT0NQIeFcfag4JZ0K5wnoQwX+uRp1Krp0P2pQIf4RK+FfY6DCWlWnwuZUBJ2KkFthZreiTsYQVAQg3QYV++hULMAW1gevNmCTgUJVXyAiTwSeCLwGuAlARN4O3BH3XfsGVf2fh7/MY5hGb0DsmM3DJ4OKmJym0LiKDGOeilr1pzGoyJK/J0BF8mBMg4pDl5TdbEoPBn5Wrw8VMK+kbOu95DZR+4KUS1BCRbgHU0vKXqi5xcyDis5XhoL9cyrsuYegwu5joaK0sTKz+0DFaqdny+uHU5Wn+H3rlA1NDypcvxf6F1ddacxTUav+NAYVvQHPFqiQxj0PskNGoALSdZRQsUtJ2QACcdsGk7NQzLSH11OgIjz7JA3m8e2LUvdUzC0pi8+puBiACgkQMQAVOr+kbAqBavNEbX93DlJStvXkpaQjvacD0bqnYktJ2dVWOxebhb+q+mRcOcKfAd6JG/cp8Hzg81T12w9+hcc0SeJv4kVnolhcq3G7NF1P/K5pO6TtvNgdhRieb7OxYnZhXdcTv8tF8Yw4nbm2fJsaAbx07rAuF8dL22rid3F/SW0H8bpS/C4Txmvz9W3jHu6HEL9rSAJ4AZsaJK5r/XI4pkW4gMnid2G9E82bLn7XqAOJIIC3j/hd8GYECNigUZ/CvrYWxO8SXPUF6crtvW3C1v0h+OOWY06w7Hp+ppiIfJSI/LiI/LGIvFtEflJEPrr+XrJ++N24r8gd/eb3AA8RkS/Y+6ZdkYUqT5vOCNl1LrTJic45j0QQoLPid5uuMfsFUTgPH/6YzojKqV0XzxXWDwjWmXNnInmd4ATrcgE8J07n1vfOMyB+18W2cvE7VXrid/E9dk1/2yadZ2/xOxUnfrdpwK7feIDw6zPxu40fhW8Rv6NzHgYufXsdmfhd+Cvhb2eXXRJ2VfwuttNUxe/AgYCmB0tf/K7BhX2Z7fh90nb/+sLPgDV+UjG8Fu2L3zXkwnh+zBHF76LInWuzBqznbNfZB++nlrPaVJvtT1PVl6jqF6vq3VT1Fqp6F1X9QlV98TEu8JgmjVGk9D8BKhw0jENFrqDdh4q0PR+sSwCLAioSbEyDirSNkW05VERFbAMVQ4raY1DRSB8qGnGVpdpGaZo+VASwmAoVglkHZqDfhwrxUNHOgIpGEyzMgYoAE2mdzIYKcGraQVHbgkXcXgWC7QBRW5fBx0SoWO1qTERuDbwY+ETg7wJ/B6f98BIRuU3tmNAPAw8AngN8JfB5wFfgqjw9X0S+5PhXv5/58SEboyptoSKBxDBUWHioQUUEggIYuh6IuIH9kNr2IFSo9KBC/fVRHucH9uHcUxS1x6DCQURlW+e8KGGbXW/XTYKKjvQ6rsd1JCVUhHUbqUPFpgIVFiB823Jp1u0KFdCDiqSmrQkkrKL2xThURJAooaJU1B6DigANJVRE4OhyqFjtymzOxE7l2FuJyLeLyFtE5P0i8jIR+UuV/RoR+Zci8gYR+YCIvFpEvnSgzUeLyG+LyAdF5HdE5KsG9nuYiPyab++NIvI4EWmLfe4nIs8VkdeIyKWIvGGgrc8REa38vGvbPZijlP0VwKtU9ddH9vkU4DO21Eg/DQujVSjyIoiFe5Tc7ZqqMjlXpoYmGnAxPw2Y8KfYngxUfzpBnYq5JWWXoFNBXDevpOw+OhVh/anrVKx2JfZo4B7AvVT19wFE5NeB3wP+PvBvw45lP6yqrwUeZRsTkTcC9wUeAfzkVbyBfSyEGqXPnfnOdUrXiK/e5HO1fAiSTdR2x0Mpfuf6B2LIlA1/isedok7FzJKyJ6tTofgQKY3hTvHW2ZKyl9ILf6rqVIS2G0xo5pD43cySsofSqWjIS8ruqVOx2tWYmdj5IG5iR4Fvxk3sfKqqvm9LE98PPAT4OuB1wFcDLxCR+6rqq8x+TwH+OU6k9H8DXwb8mIg8VFWfb67n0cAzgW8FfgHnlX6GiIiqfo/Z70G4UuLfD/wz4DOAfw3cDvgGc97PBe4PvNK/t9tteT+PxRUBCXY5tGOwOUnZz8XF7Q4CBXAj8GTg5IFC8J4GfLfRKLHTJkEFtgMFl+8QRrwToeKcdCqAaknZMahQIVtvoUKFVadiZNb/lHUqlmShNOmJ2o3AywNMAKjq60Xkl4EvwgAF0/rhhwB3wudXnLIFLwKE77eD/LbJoaLMqQjlYedAxVnpVOBn+JvYq7MNKk5SpyJ10gVU+KuZq1MRzhvvfg4VMX0hPL8ZzqlwnooCKjr216no7H5q7sEAVBQPuB5ULMROvA+GGRM7pYnIpwFfDjxSVZ/j1/0S8FrcmPhGv+6uOJh4qqp+hz/8JSJyT+CpuPQBROQC+Bbgh1T1m8x+Hw48RUS+T1VD//5U4KWq+hiz322Bx4nI01T1rX79U1T1Sb79Hwbut+V+/JaqvnzLPpkd+tPawrmMRIpwpOBibFOYUMypEGIoU8x32CH8Cd9OFv4Uj6WyrmNO+JPdb/A8xbYypyKco7XnkRC+ZI8x1+u3leFP+XWTwp2852Bq+FOeS5EgoimW03YfrlQJfxJC2FI4RrjQPOTJvp6SUxGWL2gGw5/GQqACcNTyKuxfuw2I4U92/Wj+ROWrORb+tNqV2b1xCdalvRb45CkNeDf6hYj8WeCBfvW/P9D1HdVCjHPnvaMuN6If/mTDjcJ+u4Q/ZaFKtR8bglQLWRoJf6LaHoPnQdO2aviTDVlSE+ZUCX9SE8KUhy1Rzakoz/3/s3fm8dJcZZ3/PtU3oAEcCEHEJURUVDKMbCIgLoBMUBZhEBBBBcYERWQZdFT2gAjjxiIiJMgiu8iqKKAYcIQAAiEgOCqQEMUECBC2AMnb9cwfZz91qrqqb9++3X3P7/N539t1qurU6eqq55zfec7z/BYuf5rH56b1+OVO+fInW19n+VNrP0fbMnfHmfJ4+ZPMMTP5pvu1+0mXP7UaljzZc/KYCrcESpu2s/wJc5hZAhV1Nm75Ew1+qVN3v/tsOxe71MkvfzIdku14lGT5k8Rldszg91VbvEYUJ3YAN7Gz6NwrgFdE5x4DXg6cKiJXtsWnAlcCXpyd/2LghiLy7Xb7lsC1Cse9CLgmlgyIyLcBN+o57jjAx9KpHrzu+hQPxRhcHxOsvfkQ/Mvq1ShbOythB7lgjYXamQe3NEpcClnKngpNvQU+vzeRNyT6aafoVIAWPQ7L6lSIlFPKmuaknopldCpWkVJ2HToVZqJtekpZDkinIsdh6FTsDNxg6/Bwooi8J9o+U1XPjLZPoGw3P0sItl6E3wEeYT8fA76gqm+Z3NJDQPhtIk8i1oxG71y8SgTSrEwlT0Uqcmde4txLEL/M5X3956XPlLUlS+pUuLoE53UIdeaeiqV0KsRdK5izRSllffxE7KkQ42VYt04FboVAk34P/9l5glpzvkSOAXcnltKpcClls+v6+7oKnYpFKWV3AYdvg8fgFOB1hfIPAfcYce75qnpZ4dwrAd9pP5+CWVL1kcJxYCaQzrfHQXeiKT7u7L7jrIf7MkZOSPXgJSJyInAp8CbgN1T1wqETBgmFiDwvK7qriJxcOHQGnIRZn/WGsa09bIiLVxBj0J0bkxkmRZ470OaDdqQCTKyBWcZEl1Q44xnHNdDa7S6pmKpTMVX8btmUslN0Khoxa51zUrGqlLLePtMlFavQqQDztTdFpwKbPWqqToXDKkhFxcpwiarebMExpZGDwGg7fDzG9p4E/FfgqnZN7mYL3KmZpDCcXGjsQNrESmDsh9u2aVHduzdvQUR86ticVHRTx2qPKJ79OFGnYqr43bIpZafoVLglPx1SsURKWaNcHdLTmnqaw9epcKGmbbgf0gDHwmC9HFMRSEWMQZ0Ke96B6lT471MgFUlYbcUBYz8TO0Pnuv3u76XaZYql4yjUOfY4V3ZCoXwRPg/8PvA2TBbBGwOPBM4RkRur6qf6Tlzkobhf9FkxrpUb9RyrwLuAh49r8+EjkbonMkwlUuG8EtbQxZoTxkhkpCIhEYFUOCKSkwrv9YAOqdgGnQof0F3wVFSditXqVAAdb0UpUNthPzoVFWtBn+G/ht13v6hsjB1+J+b1+D02XDFbwYrU2fe3dfalTCrEBmnHnoqYOIyJqZjbgOuS+F1nFjUa2Pft2ySdinZu+7CSp2JHdCrCDH5oi2vHoE6F/Za9MRWAWQK1WToVFSvDIk8xDEzsLEB4LYfPnXJcX3vGHrdUJ66q5wLnRkVvE5G/B96NCdR+dN+5iwjFt0cN+xjwNIxSa4458LkRUfCbBcHkf9auYeqQCquYnZMKM9B3PctiUhETEY1c8klZ2ySkIvVgsJBUuHMCsQikIk6Z6DFAKrrlrv4uqTDkoUXFkIA4+9OsAVG166PZF6lw2Z/cG+RIhPH9uPKUVDSUlz+VSIXPFDWRVKDKnpjA6mWzP4GNqSgEaQNFb4VDTipKBCL+PotIxa5AkU13tztXeI4bAB/GpIKFCXZYRH4PeNgBtHXlUIW5io+tGiIV87ZhRtshFctkf3JExEyatJ4cJPpAroLGkZ2s8QOkwly4sTPawXqaQb90yodIhbv2VPE7ly3K77MzMarivShLkwrrxVAVO/sek41w7YRUuPaMIRUu+5MjVQxkf3J3PSYVCzwV5exPjSEuiE/KotF5k0nFniLHMlIxlP2JFp950M2a7QA2xAYv8hQvmtgZwmcx3uHSuW6/+3sNm6lJFxyHbc9F0XEnDByX4+rR/n1BVd8nIv8KfP/QcYOEQlU/7j6LyBnA2XHZVkM0jWuYqe3ZmuVJhbiZmPEpZb3BSEbr1qg49yiRNyRb/jREKtx5pZSypWVTjnCE1LGBVLhrjyEV/mv1pJSd+a+VkgrDQeJlSsOkwnUS7mstSim7Z+tlAqkInG99KWUhkApTZ2PvaXkJ1CpSyqZLqAJpq1gLXg/8nohcT1U/BmCXNP0gZt3qJDssIg0maO+jB9noVUBx9gEaVU8sjF1bjlSIjdqdklLW2LA2GcAlqWOjgb2IFJdGLZNSltYofifkBUyqcVuu2bWx7VxIKhaklG3n9l5FKWXtxX3ZKFLRqk2Nbk/3g2ZrnfOUso5k4e7NAlIReyVWSSpmJPEU4EgFPvuTv2fugEaQY/2kwj7QXVLR+tYtJhV5StmKdWHRxM6ic+8mIsdncRQ3AC4nxEx8CLgy8B2kcRQu1uHD0XHY9lw08rhz3EG2/zh+RLunIHkVShjNf1X1DFX9+303aYMgVkAmycJkszyFTE5ZtiarkE2UGSkRspu1NDMNdbh6lsn+lInfpaJ447M/DYnf9WV/6hO/K2V/mip+F2eXyrM/zVydsjj7U4P1FLsyzIDYfS6J3zVYlWyNxe5CWVDPDscuk/3JZ31iOPvTEBZlf4pRyv5Uytw0uuzQJ5NWi96MPmv4NwJnARcArxORnxSRu2CCA/8dk4ccABG5LvAY4EejsseLyDNE5F4i8iMici/gjcDNgcet6v4dJEyWJkMsWlwWpzh7EyZzk4btedvQzrPMTfY4N1Eyn6e/w7LZn3LxO1UG1LaXE7/ry/7UK35XyP40VfzOXaOY/cmK4k1S1J4ifmfPcZmjcPuO5eWRorYdrA+K3x0jZIXqEb9zczUyn1FS1B4UvxPQPUFnLnhbQsYnwjwgQjf704xu9ifRYfG7HZrZOUwbPNIOvx64hYhczxVEEzuvH3HucUTB2zb1672AN6vq12zxGzEE4z7Z+fcF/slmlQJDDi7pOe6zmMxT2CDp83qOuwL46wXtHgURuRkm6dK7ho5bKsuTVeA7EcO0OlgUCb4xcLEJMxuU3TpvRZt6KiwSz0IWqJ3mxoZmZlzbiaeilP2JaEnTIehUpIHc6Xl9OhWh3NUhOO9dyVOhkpbHnop8+dNR1KkARmd/WqdORcV6YJco3RZ4KibdnwBvAR6mql+KDg08GW+HPwrcHpMD/WrAp4F/Bn5KVTde1A5LAhrUvTK0Yt7Deevsmvk7t7P84f2WTqB2/i7O5yaRhEMLxexPXQ9G2syD1qnoejBYrFMRC9bZazm9Ceh6Kvp0KuIg8rhc7TV2QqdCgk4F9pwhnYpe8buWXp0K8vuReyriQO2GVPzOzZ7lnooalL1OnAU8GDOx82jMQ/hEyhM7HwWeoKpPAFDV94vIK4CnichxmExNv4QJG/CDfVX9lIg8FfhNEfki8D4M6bgtUWpaVb1CRB6DEbL7BEbY7rbAA4BfUdXLo3Y/EvhLEXkO8DJMEPWjgadHGhSIyLWAH7GbJwHHi8hP2e0Pq+qH7XEvse1/HybD042B3wQ+Afzh0A2cRCisEvZTgNvQQyYwP8Kq09GuHm6GoA2bQSFbPNnwLlQV734dSyqMezosf/LB1QVSIc7glUiFhAF2t5xRpCKkju2Sik5a2ZhwiEsdm5KKsSllAduBdFPKtqi/RyVSoTJu+dPMNr9EKjTaHpv9yVzbfOcWl8Vpc1LK5gP+VaeUrVg/7CTM3RcccwEgInJDEXkDZTt8HfvvNmyDHcYSe/uc+vfQkgrjDcCTCtX4mR1HKvKYimS2MiMVKdnI2tnZZ87r1tdPKsqpY61975CNMLBXlYggxHVKsvypN6Vso+AmzQqkQlspppRVTLvCoNiQimJKWShnf2rC8UVS4dOmRvfCkQo30G4tmYn6oZhU0IT5ungJlL9e6M1Nw47Fv28gFRCIRZFUNJi36lhOGgRUs/tHco8SUuHvRXx/tEwqKtaCZSd2ItwfI0b3W5j4hfOAO6jq+7LjHgV8CXgo8E3AvwD3VNW/yNrzbDGDs0dg1LcvBB6sqs/KjvsrSwweh0ng8UmMUvaTsuueArwyK3PbZ2AEU8GkoL038CuYZVMXA68GHqeqlzCA0R2OiHwP8A67+TfAnTE37JPATTAei7MxX3rj4QfxvtdJSUUcO6HuWAqkopD9KSYccUxFM2vNulXfgohUxPEcY3UqCill+0jFqnUq+lLK7opOheAGN/vTqZiSUnaqTsVQStlV6FTsEjYgIHAl2DU7bMiEHUcRvBVgSAUtRjXbkgr/zmekopT9yetX2LSrjlSUU8f2kwNfY3FfOaVsH6lYuU5FT0rZg9apKKaUdX3JhupUxKRCIseAuxN9KWWX1qmwN3jfOhU7gm2wwVMmdgrlXwH+l/03dP4cQzp+a0R7nkPkHRk47tWYQf/QMW+l0O7CcU8GnrzouBKmzGA9BrNG7PtV9YMi0gKvUdUniMhVgGcAP0Ga4vBAYGXOP62q/1mIlp9QkZ1tITJERKQimekwL3iHVAwFavvz7OwahlSoiiUa0cAeSw7okoqpOhVTSUXVqVic/cn9lEdJp6JiI7FzdtiRCnDmLSUVZrJAbVAy/v2KScVQoLaZBJfEU1FOHbtanYqppGLbdCqKy582WKdiP9mf8PdsIKVsSafCXX+sToWIze4UkYqKii1BYRTZix8F/lJVPxiVmSGUSRf7QExqrSeurHUZROQWIvJO4LmYNcMsTyZsELIVNhAXBOUCpRsXTG3LokBohPGB2v480kDtWdsJ1Jam9QHO7hpJCkNfJ0lgdBL8vSBQu7HXyAO1m+jaeaB2GnSdBmqn5f2B2i6gezbTpNx06lngdoMP1J75ckYFas/oBmrvId4/acpDoPbMdiyicYC13adx4Lb5vKd58LbZtyhQe09NcHYcqL1nScEygdoQSEMcpD1Hk+0QZK3Jdow4OLsUqF2xUfhRdskOY8aKcw3Ewvx1Qc0mpazbNoHWbv/4QG0XLB0Cvc2/eRxc3YZ65oWA627QdRYsnQeCDgRqt/PGBFdn9bXzQvC2qytqRx6oHW8PBWq3c1dXA3l983CtPFBbWyEOxl4YqG0Dq5NA7SzYOgnUtnWYH98dY/cdy7ZbSyxcAHeLD9SmxQZkEwK123hbkTmdQG2Zm+NMPd1AbQedzQ0RE0Kg9gzUdkR5oLbzZqjtlDqB2gI2i0cI1J5pGqhdUbElmOKhOBH4t2j7GGZ9FQCqekxEzgbutqK2AeBmvkTk4ZhAk78A/gyTFWWflZuX1Qde29kFtcuS/IwCbrbFzSAEYbrOEienkL1inQoI5SWdilDujncz/tNSysbXzlPKrkKnAqwXQzlwnYpY/O4gdCrwP89yKWUB4zmQzdSp2BkoZmCzG9gpO6wILrKstZwk+ASl+P7P51ZR25u7bkyFShyMvTqdCiBNJ+sqaFhtSlka0xfl14Gip2KyTkVjPRvr0Kkg81SAdZXo/nUqor5usvjdEp6Kw9Gp2AHslg2u6MEUQvFZ4KrR9iV0hTwuB/7LfhsVw3Zi18Csa3sq8ExVvXQVdYtbfoRxtRpjY7I89ZIKMJk13ExMXO6Pb3EBdsuSCv/qxWTHl7n6GzrLn3w5LEsquvvwpEJ1e3QqoEwqvK0mXf7kdCoEIhKBmUkD3PrdmFQEzpeSisaqZm+zTkXFRmLn7PBcIwIhhlg0Ysr7SEVr7ZuKGcTn2Z8aTDyXNGKXMC1HKvzYdKROBXb5U5lwTNepELLz3Cu/TToVJVIxRqdCscuwIlJh7/Em6VTQEJY/RQHlq9OpqKjYDkwhFB8FTo623wvcXkS+0abCugom7dX5K2yfw20xqavu7joxEfkBTMf574sizx1E5HTgdICTTrgyPm0spEFVBVKBph6J2EBCgVT4DiYjFX3idz0pZcF2HgeYUnaIVCQB29G+UkrZUkzFsqTC3vJOoPYMtcGaB0MqhlLKzgwXsNvDnorWZ3g6J7O0SAAAIABJREFUWPG7oZSyMZYhFbuEbQgIHImdssPfwIlEptKOHaWXVMTvZZz9qZRStrEVzmk6pKJP/K4vpawx0REBiLCylLIDpCIPCB9MKVuIqViWVCjiU9Em5XMz6B+dUnYqqYhH+LGnIr51cUrZY2KC1RaRCld346hEl1Tg+m9mpp625KkIpCKJqXDXIvKaWFLh5hkHsz9JgVTsCHbIBlf0oFl8iMebgdvYDgvg2Ri573NF5JXAB4HrYtbVrho3xKgKXiIip4jIu4C/xKT0ereI3GPwbAtVPVNVb6aqNzvxans+1iGOm3CxFcaQhX2l2In42I5YXRzPkO0z4nl0YyqiOIL4HBM/wXjxuyzmY4z4XX7tVBRPi+dNEb9L4y3y7SyGwv6dNfH5hHgMdHRMReM+J3+D+J3bDvtjQbuw7T8r5OJ3oc7p4nc+xoJ+8buhuIpF4neleAogianI4yaqd2KjsVN2+Ov5BhPngPmnYOMoxMdTmDIbD0EcQ0EifpfHVPhYCn9MFn/RNsWYijQGwtVbErgrxFZkMRWTxe86sRNufzd2g+gaY8XvYhG9XPyuE1Nhr9E6YbqsPD52lPhd8TOGVOQxFbH4XR5T0drPufhdHEdREr+bk8RVJOJ3rYZye85QTEUufocYUqF7FMTtjCfNx1N09rvPdjYsF7+rqNgSTCEUZwH/E/h6AFV9A/Awu3134BuB/4PJMjIZInK8iDxFRL47KnMOv49jpMqvC/wB8J/APYFfx+TwfZ6I3Hn6RV1wdJlUJNteQbtLKppZ2ylPg7zHkYqwv0sqSoHa6UC/QCoSAlAiHeNIxdB5YwO1XTB2iVS4tpdIRSlQ2ylqjyUVKZlISUW8nZOKUqC2eDLgzjEB1wdJKoClSIXDIlIRl1dSsfHYOTvcYoOytUwq4kDttu0nFXM3YC+QiiFF7ZxUdAOr6dbRRwAKpKK8L21PHgxdJBWFuvKBfefaWaB2O0+vEZMKHSAVpUBtRx5GkwpLCIqkIiIRHVLhyUKBVHS2y6TCZIey5fYvuM9qg7I1BGfbc3JSEROLIqloAqnQPUlIBc2SpKKiYkswesmTql4EvCIre4aI/BEmUPBTy2b6EJE7YdblfgdmPbDLHGJVDfhXjDl4GcYUPFhV/w042wo8vRn4JRF5q6p+cdxFSfzsyTpLt/zJLsdx2zj3J4XlT9KjUzEgfldKKXvQOhUu6Poo6VQgZsASlj25v+7XC9vL6lQsK363yToVuwLFDmx2ADtnh8E/0W6VURqPK8zt13EpZUXVC9/ly5/6dCqGxO+MPUxTyh60TkVLFmfhbMmO6FSIWw4aLe1xy6FWqlMRbcvc9aShH+rTqWBmvyccik5FvKRrkU7FLmCXbHBFP0Z7KETkJBH5hrxcVeeq+kkbtHc1ETlpSgNE5NbA04BPAS8G7iUip9p97gn8GPAm4PuBr2Izi4jITFX/E+P2vwNGnXDCxY0HwE5HFz0V2BlybFpXt5Sp45Ho8WAE70LBU1FIKdvYFLQdb0G0jCj3VAyllPXnjUwpW/JUFNPJZvtKnoqmaYueijylrF8+VfBUrCql7EzKKWVTz8R4T8VQStmpnoo9zbYHPBVDiD0VfSllHZKlTgXCWD0Um4lds8NusriNPpc8FeEz1hNR9lS0rVBKKdvame+xKWXLqWNJyzKPw1BK2b59fSllS56K3LuQ1DWQUtakp+16KvKUsnE9q0gpq/Yaiadi3pRTykbLnoqeipEpZWUepZTNPBVuSROQLH0KXovgqaAlTSk7Z3D5U/BWYDwNpZSye4LOxKSQjb0VfSllZ9QlTxVbhSlLns7HSIUP4SFMDwY8BlyEkRd/NHAO8CQROc7NtNlZudfY404EThKRJpo5+yLwFbrZTvrhBr6OONjcz0FPwpIIt5xpJKkoLn/yZGMcqfDnbJhOxTKkorT8qaRT4UjFQetUNBysToUrX4VORV9MxfDLlJIGSLUpltGp2AX0Lk9Zw78VY7fsMIQ4CYwjYY7xKMakYq7TSEVp+dO8bSaRCkcsNk2nYhlSMVanwtdz0DoVWiAVq9SpUFarU+H/lUmFf5bzmIqcVNjlT2o7mFE6FTuCw7TBB2CHKwqYQiiEg3m8/1FVf0hV3wn8B2aW60bAaUC8fve1wIuAGwA/h11DLCLHA7fCBCO+e/xl1SwJ8oP34K2QyEvQRyqCmF1KELyXISIrniBMFb/znokwsCca9LtrxKRC/D+65SNJRXJeRipSwqHdfRmp6JYPkwrvxZh1ScWsaQ25aFZDKnISMUvKU1KxxzRS0eh0UuFiKlZBKubSek/FIm+Fw66Tih3BTtlhxRAIRya8lwJDKmLBuxKpaFtbnpEKQwYsIchIxVTxu25Atqu/sTEYTYdUtB0iIsZ7MsFT4evsE7+LrxEN7F0Z2bVLnopeUuE8G/k+SwLaeRb0vR9SYT0yvnxuCYTz1MSkYt5MIxUtRVKRx1N0SEVrSIUc09Hid6WYCkcadEYnpmIUqdirtrhiezAlbewYXBv48pQT3OyWnQm7QkTeArwKeKyIvFJVP21nwb4sIn+Mya/+GOCWIvK3wH8D7gz8uj1fxqwhFuygHsXpSbg4Cr8Y3w5OnbaEWQMarYeEsLYTRqWU9cdres5KdSqS+jQtW4H4XXdfOK9p2o5ORV9MxX5Sypr/ujoVU1LKujWyfrmrvY5dYgvR9VatU2E+bnZK2YqtxdbYYSLC2/h3h+Svf0fNS8ZMNCyjVxNDMSeLqWqdfSmnlHXidwepU4ErL+hUrET8rkenQppUC+MgU8q68/w5YG+sdlLKdmIqWttPtmpTo9vTbf0LdSqIHowD0qnQcLu6MRVTdSpaYM99B1t/rFMRtTOOqaio2BYMEgoR+bms6EaFMjDjr5OAn8XMUE2Gql5h/14kImcB/x14JPBw3PBL9eOYoL+PAXcE7gF8DfgJVX27PWb8SMi+70FxMyUVgUTYF1wN+chJxVbpVCwhfieSXru7j855fToVgWzYUxaQChWS8iFS0WICNR2T2GSdik0gFWMCtXcF7RZ/n123w9FwrEgq5vZdcWNHIcz5xKTC1BDey03WqVhK/C5/hvejU2EVqceSChd4He/rIxVxeUwqmANi+9WcVCyjU+EW2sWkIr5126ZT0UT3IyYVO4JttsEV47DIQ/EC8CMWxQgm/WThOPekXAacsWxjolmtd2PyqD9URJ6nqh8UkQa4is0e8vuq+rsich27rneJixFGlK30kwqNSIKNTyiRCp/NqUAqNCMbEJEKMSPbjhcjJxW+rEsqREKGqQ6pkDDATjBB/C6Ud0lFmh0qO08U3z1FbQvlrg7BjT9yUuEyQ/WRChU62Z8aNTNeYxW1nRe8RCoEkut5EmFn4XJS0WhgFY5UhDqnkwp37BCpAEZnf5pCKio2Bi9gR+2wEr5Ya0tKpELt2NJYxSB8V/JUzAjvZUwqVOMMZimpUB93HspbO5sfk4okA1RGKlKykX3Pzj573hTxOzIvhW27uQG5ByMM7NV6VTW7truhMalwInaQkgraIFgX7xsUv0PMRJttz0LxO40+R/XQCm6t6nhSYVsTk4rINV0kFbYeTT5bUuH6WAHsOWL7Tm2a8aSiNeenpMGQCvL74YhYRcWWYBGhuL/9K8DzMOtnX1c4bg58BjjHKagugyj47wsi8jKMC/3JInJf4DbA7UTkkar6BXvccmTCIXGb9pCKWfSSe9IwjVT4dLAlUkFrO4PFpMKnh81IhRvUF0mFX+ZUIBUSk4NhUhE8EV1SIfng0+5LlzkFYz4lpaz5LUzbS6RCxLW7q6g9ZxypmDleGX1lN+jQaDsnFabeMqkw44f9pZTFq20brCqlbJ4Wto9U7Aw0m8HdPuy0HXZ2IJiULqkA857aFaHMZDqpmLcwa+JnPLxz87mxQfYODJKK3BvgSEWXbESHFYiDe/m79fWTinLqWHsDOh4M/PKnpomWJcWeCtqEVPSmlG3MJEoppawbrJdSymrkvVhIKgBmPaQi8v50SEXMNnNSIYRt52kvkAoa0tSubfw5eCp8D+2XV5k74UgFBGLRm1LWeSv2BDmmnlSgmt0/uhOE24rtt8EVIzBIKFT1he6ziPw88FpV/dODbFA0O3Ye8Bzgd4A3AjfHdKKrmTq1AdaAeWln6mdTOqRCYq+FRoamQCoib8EYnQq1BnFTdCr6SMUu61S0knKrmFQEEjGNVIi9riMV5qfcPp2KisPHLtvhrocizJbnpEIIJtE4XvtJxVSdCj8WjVp2mDoVfaRil3QqiqTCetQ7pEJIDHRCKkTCg5GTimh7tE6F+96t/S72ek5TAqbqVJjydm85nYqKim3BFGG72xxkQ6LrqIgcB5wMfBfGaXll4A6q+uZVXktmUcAWWGKRGlC3ZMmJ39lRcr+nYtbi8m0n5MF6HEqkwpAQuqSiEKjdzIwwXb78CefpoEsqHBkokYpANhhFKlxGkvjaDdmyJ4do3xRS0bbaianoIxUzW3GJVADM7V0eI37nVn3Hgxg3SC+RCncPSqQClShw27ZBo1vMNFLRinDM3qkhUjGEmFSgJmvUEKmo2Dzsoh2eYzOz+WfPtyIhFd5bqDa76ICnwi1jyj0Vxv6USYW0StvE715/oPbcxkDky5/KZMN+7CEOoN3Z2wWkQholX/6UE4GkLkI7xpIKEenGVNh6OqTCCgeWSIU/ZgypmDeIatdTMXd9Yrg3nlTMXfsLpOIYZpQTkQpsLGQeU+FJRTSB6CcEG+CYrZM0piInFaXlT+Du2SyNqbDnSasmC1QLiCKa+EMqKrYC+8ryJCJ3AW6Lee7/XlVftZJWwXWAdwHHAQ9R1WeuqN4UYg0SaSYIZmbSw2VXl5kdQsaK2nZgLzSjlz/1kgpfPo5U+HNaIc7+BCbo2Q36x5CKtJyFpMKdE4hFIBWhLMICUpF6MFz9ZrqrRCpUDAmIsz+tilS45U9CGqi9R8h6tB9S0do2oBIFb49f/rQnZrnSKgK142u7FLKz7POuQGGn3e3bboed6Y2JRev3qX3/DLyYcnDe4pajjF3+1Ecq5m3DjHY0qQBDLBoXXB2RCpcOOw3G7icVxoNSvjGDMRWSEot2junTOrEW9m8PqRCXnjUiFaDlQG2wHaSm+1ZFKlzfJ9Fg3tYvSvQQLEcqvNfmmITvH5EKZ/iHsj+Z5UnjSYWDWk+WC/7W6DznqcizP+0Cdt0GVxgsyvJ0Z+DXgMeo6tuyfc/H5CF3T8mDReS1qnr3/TZKVS8UkTOAM1X1K/utrwjBuqmNAZImBEYRG9YhUgHorDWu5pEpZZnZQX+h3Hs2xpKKxDOh1sDar2YH/dhDiMt8lidNy1eQUtbVlZCLiHDkMRXdcld3mVT4r52llJ01mAB6NWul90Mq3Eq4eCmGG3SEVqSkwtWbB2oPkQr8z7Pe7E9AEk+B/X65t6JiM7DTdhhj0eaYgVQ8yHdjO0eC+0hFQ9CoGJtSFkxKZxEz+I5JRWNnyMeSihboSynrMkbFKWVdhifJCEfbmvasJKWsJRuaZ5ICk7Aii6lw1849Fb2koi+lrJ2JURW/NGtpUmFYppm4s9cIZCMQmoRUqNKbUrZEKqK+bmpK2WU8FXlK2XCfMR6UY11SUVGxLVjkobgLcBPMLJWHiNwJ+HlMrvOnYhRSTwfuKiL3VtWX7bdhqvr0/daxEInhoUwqNDKGfaSiscPLAqmYmlI28Tzsk1T472YPSbCilLKbqFMx819rvToV3vvAZutU+HK7RGqRTsUuQPPnf7uws3ZYiSfPo3iGjFTE21AmFUM6FeFa41LKOp2KPFB7XToVk1PKbqBORTu36XdH6lT0koqpOhWWiOC9GRGpaOLyiFT4PnsEqcBRiQWkYkU6FbuCLbfBFSOwiFDcHJMx5KtZ+QMw79b9VfXPAUTkRcBHgfsA++7I1oJSULaIn2VxI8fEGEZpWEukwih6MjqlrEMx+1NJ/O6gdSqScnyd26hT0ZdSdlU6FWK3d1WnomJjsNN2ODVLUTxZRiLi7YToF0iFC08em1K2T6dibpcQrVunwkyGTEgp6wxeUnEgFYepU9GbUjbTqVjoqYAyqehLKZs8KMEz4e/bfnQq6CcVNG6upqxTYW5SO1qnoqJiW7CIUHwTcE6h/IeBSzFKqgCo6sUi8gbgB1fXvAOEaBhxx8SiwS5JigbHEnkYLDnoIxX++MxT0Zv9qaHqVESkAmKy4epYTqdi1tBZ/rRKnQpwZGM3dSoqNgY7a4cVUDvpEAtfNXaQFnsm7PSKfT7dcWVS0YigdD0VfdmfoOpUdHQqYsE6e61ldCrizFQdUrEKnQofP1EgFSvQqaCJTHE8Weeuh4T+XejVqQBDLNIg7YxUtHR0KioqtgWLCMU1gM/GBSJyEnAC8BcFNdTzMe757cAseAGSdS4z2924kaXNcz2WVBSXP/UEZCvpgH90Stkd1qmAmGzYr1t1KoqkYh06FduPLJ3n9mGn7fCcMCgz474weJ9FpMK9a2NJBXSXP7mNVaWU3WmdCsTfUGdtj6JOhZsU3K9OBdImS6DG6lTsBrbeBleMwCJC8UXgW7Oym9q/5/ack7vlNxeh50mnpK1x8TEVM2fF90cqcO7PnDwMpZR1y6VKpKLqVACHq1PhutappELsdfdLKqboVAyhpFNRsTHYaTts3p2IcIt6UmHeE/M+gPjYif2QCtGyp8LYnzKpwGYwKpGKqlPBcErZ1n5wA/CofGU6FVDO/tTCynUqWnOtXKciJhVTdCrAFPfpVFRUbAsWEYoPAncUkauq6pds2d0wb80/FI7/dmB/6tXrgoBf7gMko8fGzoXNm0AqJOyPSYUJuG1GkQoxI+gyebBGa9t1KkqkYlmdilJK2U3TqRgSv3P3YGxK2T2NbjGrJxVTYip2yteu8az3VmJn7XDwOhj4ZYmeVJgH3w3yQyYoc7YjFcr4QO15a+oveSpE8O/XNutUlEjFsjoVpZSyG6dTYX+7eNbnwHQqZvhkLf4JzUjF1JSyIVi7pFOxA9h+G1wxAosIxUswKqlvE5EXAtfHBPtdDJwdHyhmbcmtKa/13UxEaWNDEnPKpMJ+zkkFMD37k1tqFaeOjQKut1mnops2NpCKqToV3XLXVjPdNUWnQtQGXu6DVCzSqQjl69epcOJ3sU5Fq8oxaZfWqajYGOywHVbitLEwTCrmCcEw5y+b/clnD7LnNijzuRg9iIKnYpt0Krz43Qp0Kty1V6JT4erfD6lwfZ+EwTy2fmOyTf+wLKnwXptD1qnYOVJRsfNYRCj+BPgfwKnAjTDvxRXAQ1WdQoPH7TDBg3+76kYeCNxsBmDMgdoBPcuTCnv+lJSyztBUnYqD1aloMJ2oqhRTyi6jU1HK/oT/f/86FftNKQvQ2CxSy+hUVGwMdtYOK35ehUYNsWgR9vZBKjxBGEEqiu+/tW9VpyIlFSvRqXDXUCmmlJ1EKszDkJIKSwa8JsUqdCp8n71enYo4o1RFxTZgkFCoaisidwTuDdwK+AzwalV9f+HwE4GnA69feSsPCjM74zDDDqLdIM/u92l+rLvTkQo/4M5IhZ11QdOZlKmkIjaQcblps/U8lFLKTiQV+P2kLoCkPk3LdkCnovEH7E+nAvpTyi6jU7EpKWUXkY1tg8JWBwTuuh2e23dkLmbQ1qhyzJPuQCpinYq5HazlMRVuDOaXQe2DVIzRqSillK06FYtJRZw6dt86FUMpZWn2r1MxNqVs9FusVKdiB7DtNrhiHBZ5KFDVFuNyf8mC414OvHxF7VoDnDvYjdjcZw1vvhs9+qBsBgO1IRiXWL/CEwe7NnO/4ne9KWWPgE7FVFKxTToVpZSy+yEVY1LK7hp52FXsqh0274F/mCmmdrWk4phGnovovD5S4exETioEwgrXjFTE7+UYnYpSStkjoVMxkVRsvU5FT0rZmFR4kunv/mp0KioqtgULCcXOQvAGAkh7GDfIipc/RWl+liYVPh3tinQqnOdhi3Uq+lLKmp+kq1PRJ363SzoVcUrZ/ehU7ElY+rSsTsWuoM6ObS6UOEV0qhdxjO7yp1xReyqpmFtvdIlULKNTMZ93FbWd1yEnFRurU9GTUrZXp6JH/G6ndCo887TXjfqhkk4FZN4Kdz0k9O9CMaXssE7FbqDa4N3H0SUU2DGdm2Zu6ZIKn7eczqhxNKmQ1Mj0kYq+lLJmKczh6VT0ppSFhGS5Ovs8Dn06FR3hu+i8vpSypjmbo1MxlFJWo+2xKWVnau+tGxgptIeoU1FRcZBwxNl9zklF7KlwT/NUUuHnjxaQir6UsoetU9GXUhbKqWjTwVsgFb06FUWywXBKWcTfUGdtD1Wnoi+l7NI6FfZ7HoBORfhk7sSQTkVFxbbgSBMKP7PgjE5OKuK/bgZqKqmwpGQRqfBzXwVScZg6FUMpZUs6FS7oehU6FUMpZafoVDRi0j0elE4FwuSUslN0KtxPeZg6FRUVBwFFae3kQOO9DxCTihBDq8zNzIjfHksqPLFfQCrmrTBrNk+nYiilbGlfSxZn4TwaS+hU2Jttf5WCp8LO/i8iFSK2FQVSgRAG4PE5U3Qqlkkp28LKdSrc927tdymQiqk6FRUV24CjSyjclJXdCMaLMHB2advctgRDMppU9KWUnbXGgI/VqRgiFcvoVBRSyq5DpyKQjUAqltWp6CMVuU6FXyZlf4eYVKxKp2JRSll7hxNS4e7BOnQqWpFk+dMyKWW3GdXdvrlwT1wrZiY5JxU5iVDrTXDbY0gFlFPKzu0SnbE6FUOkYhmdilJK2XXoVEijHY/EsjoVfaQi16lobQZEmgKpWJVOhev7HHlxpMKllC2J361ap0JI+3oyUlFKKaum0UMpZbcd1QbvPo4uoYAwIm/cTL2AqDEaJVJB6zu2XlJhCcHKdSrAp5Rto/pTsjGOVHgC4ElEIBUHrVPhzunTqehoVSwgFSXxu8PUqRgK1A5kY/06FS6mwulUAEunlK2oWBWM58DaEoS591a4I7qkAtQ8/wOkQqIrrFKnIk4pO2tSUrGMTkUL5Nmf1qFTYS7c0KtTkZUvIhUl8TvQw9OpaCgHartrWwJ0aDoVFEiF/W+XSUXFbuPIEgoV0D1FXBJ034vZ8Ks+UuGWPwnGINKkpMIN1ONANpYgFUTGk9QwNbOWPp0K73nYUp2KuL6STkWeUnZdOhWGg4wP1IaD16no81Q01htxEClltxNSVVo3GHNLtt1z3CDWW+GOKHsq5nYWui1kf4oVtPdDKoZSys5benUqVLqB2lulU9GY9vbpVOQpZdelU2Fu7MiYij5SsWqdCj9hdLA6FduNaoOPAo4soQCMW7RxwztJjHmHVPiRYbwt5ZSy7thZaiS9+J2m7tlV6lT4pVMlnYq+lLI9pAK/n9QF4OqLSIUvU0HEeFH2QyrSfel5fSllS9mfppKKPp0KF6i9aToVgfNF8RU+GHt/OhUVFetA8uxG3ooSqTAejWhwT39K2ZhE5KTCWYKD0qloMPFcJZ2KvpSyq9ap6BKO1elUDKaULWR/WpVOhQ/UPmydCvvTTRW/8/VHadwXkYqKim3BVhIKERF1eUL3g2iwrD5fNmVS4Xq2/ZIKa1yKOhUDpGIpnYqmuy8sm4rs4gJSMVWnwnlRclLhvQ4TSMUUnYq03NU9TCqGdCpKpGJIp0Iwa7L3TSrMTU9IxTI6FY2PmxDE1n2MdjypqKjowapssBlaa+qdGCAViFo90v2RitjMTCEVjtBM0amY0ySkwhEEVY28GItJxVSditK+VBRvPKmYpFOREwF355bUqSiSClteJBWqNvHJPkmFf0DCvTBl9rNNADIkfkfjzS2xuTaP2ThPRUXFtmArCUXckS3dsQmJAesjFU4l2+TqBjMLwzRSIRPE73pIhc/mNEWnwl47z/5kBvx0SUWP+J2Pk5igU2Ha5o6PBvGOPBSJQ7i229dJK7tiUjGkU+EJx0jxOzPhqJNIhdjt/YjfhTq7ngoXN+EGM45EjBK/2xGowgqmHyoirMQGu7ocIfZaMl1SEV5vsSbNZWcbTyrM0fsjFXOsp7JAKvp0Kkrid846pRoWtrtI4vQCqaBDHKJ72KNTUd4Xex0yUtEJ7nY3ICcbqyUVQzoVk8XvWjt9MoVULCN+58YErj0F8btkUjD3VuCohCHKfaRiF1Bt8NHAVhEKEfl+4GeBy4GPAmeq6nz4rKEKzZ800CslFdpGs/Mzd9JEUkHbDdReQCpQMwMyRvzOp4MtkQrneRhDKmYtefanheJ3PnVsl1SUxO+gTCpWKX4H/aQixFuMIxV9OhV94ndTSYVG22NTyubidyY1bDmlbFj+ZNpl6nIP/rD4XUVFjpXbYOudAONR6yUVBPJsGzKZVMyja44lFeLbFkhFn07FvO0Gai8Sv6Ozz2SAyrM/uXe9T/yuJHDnLHt5Xw+pICMOEAxbIZPUoPjdEKmwWaZGk4o+nQpMu0L/vSSpWEqnQi3ZENtHl8Xv+kgFjZmPWxxTUVGxHdgKQiEiVwGeBvwMcDZwfeBk4BTgwSLSqGrbX0MPnEFuQWdm2+SOjkjFnnFn+oG0MyB9pKKkqB0ZpVHid7FnI/ZU9KSOVdIB/1jxO3NeGNiKvydth1SsUvwOppGKVYnfGVLgOuqUVPSJ3+GJyXidCj9xFT0WiwK1S6RiDzM4GiN+N5RSNiYVybIoKJIKl1J2l+CSGFQsh4OywYZQRzbDvztqnkW3TyBOKWveq35SUVLUbiw9aO2VF4nfmXfZDBPz7E+llLLLit8BowO1Vyl+Z647gVQUy5ksfmf6TvH1JaSiR/zOYZJORWvi+UZnfyqllHX3w022dUiF/T4xqRhKKRuRCtrQjqNAKqoN3n1sBaEAHgH8AHA34B3A8cCDgMeKyO+q6sfHVCIipwOnA5z0zXuGRLTBsHhj1Oaeish4gbWKPaQCKGZ/mip+Z70LfSll8+VPqxLgHazwAAAgAElEQVS/W0QqpqSUNTttPRNIRZ5SdohUTNWp6CMVLqVsyVPRJ34Hy6WUdXcnJhVCN6XsFPG71n3uSSnrSEU8yPIopJTdqzEUFSlWYoMhtcNX4gSb5SnYBQjeithT4VLFmlgga6Z6SAWWVOSeCpgmfrcopWy+/MnYnzKpmCJ+h2tjD6mYklIWyuJ3C0lFJ3VsP6mwNx97B7qB2rTjSIX9TUueCoQwwx+XE/eZpKRiKFBbxfSnrtxe27V1GfE7T7B6Usp6UmHb6ScEY1KR6VRUVGwLNp5QiMi1gQcAfwecrapXAF8SkY8ClwDHj13Dq6pnAmcC3PSGX6caG7h41mAPk6WhiTu6TPzOpY61545a/iRh/750KqAYU9GrUwFMEb8bIhVCRCBGkoo+8Tvz+9rjMutZCtRehlT06VS0rUb7QntmM1amUyGoHRilpMLPhrpHJ+1mISIV7l5N1alwP/yy2Z8qKhxWaYMhtcPHy3XVPetzSImF/RiTCjJPBWZzUqC2JIO1/aWULcVUQFmnYqr4Ha6NAyllp5CKPvE785u4fRGpaKAYqL0EqejVqXDxC8k5loSsSKfCLWfqkAqnMxJ7KoZSytKWScWElLLhvpL29e47FTwVFRXbgo0nFMDngSsBn7AdmcO3AH9v9389cNmkWu2ITqPNYGgKpEILpGJq9ieMd6HoqVgRqVDo16lYgfjdIlIR9CgCqVhG/C4+LycVU8TvuuWubjMTtYxOxbxlFKkAmGuZVJhzuqTCcdWcVDSUlz+ZlXRuOyUVpZSyEc07UqSiqrTuCwdjgy3iJU/5u5iTipD5KVXUnpL9aW4Ha1MUtZcJ1O7TqViF+N0iUhEyOeH3LSV+N0QqJojfuWsXScWSOhXNzPmchkkFc5BZ2O54KmBc9qeIaHQ9FfnfiFT4Pttmf3LtGkkqdgXVBu8+NoZQiMjxwGOB56vqv8S7gFcD/8us9+etwGnAPYHzgX8CzhOR01T1I1OuqYIJitZ0tsORCmcIBj0Vy6SU7VHUjjMmdUiFukCz8dmf/PeMSYVbLpWRChW137tAKqZmfyoEag+Rir7UsOA8GOHauUckPq8rcreYVKgPAu2Sir6UsrOGlZAKJXnMElIhxIMo04ZyTIUgynhPhf9hYYhUJHEWFUcCh2GDzTMY0sZC9110T2KD+DTH+yUVQ4raQvROZqRCyMePi7M/5SllnfhdafmTC7oukYqp2Z9KwdhDpCId8GWkYkL2J8AkrEjiI4ZJhcviZH/JhFT0pZRt581qSIVGn6P6e7M/WaKRsk0zGVj2VFiD70iF9diPJRUVFduCjSAUInIn4KnAdwAnYQL/AFDVr4jIY4CrAN8H/ALwSeAngY8D3w08A3ia7dAuGn1ha7DVDeBJDY0fezlS4aeXC6RCAaLtJQK1xZKDIqkQt10gFT3Zn/pSypZiKgI5oEMq/JKlAqmYkv2pj1QMZXEK+7qkou+8UqC2JMQhwCdA8vuigUxPoHZf9icokwoFv9wo4ZoxD/V/w/VLMRV9gdp9nopQZyAV5cxPEWxMRcXRwWHZYBVrbsyFfHnyLkbjqkWeiqGUsmMDtedJG1JSof796ZKKvuxPUE4pW4qpiIOuc1LRDawO7/qU7E99pEJjY2jb40iFSBjwh3PsDejL/lQI1FZNt91PG/e56TnmNy4Favdlf/LH5KQimixMSAXArIdU+KVOI0hF3/In52mISQVTSEVFxXbg0AmFiNwakz3kk8A5wH1E5IWq+iax02Gq+jng/iLyX4G/Bn5dVd9kq/iAnVl7LvDNwKjOTCU2UNJPKjQYpaSHyUnFUErZbCp6KFC7l1R4T0SXVODcqCVS0ZP9qRio7eIsMlLh09ISfUfXLvFzTKOyP5VIRWM7uQR+X+yJSEnFlJiKILSXkgqXMja9rLnOrGmZ25mnnFT0ZX+CLqmYub6+QCriJFg5qdBoe2lPhWLy+EekwmVyCg9Dj6diR2AIXe2Y+3BYNtghxEdIL6mIU8qK318iFaaeEqkI5y0O1O4jFSjMpEwqRPtJRV/2pxKpiIlDTCqSDE9EDaM/ixOUiEiZVLgZ/xTWlkTegPQkOzs/MqaixVw3JxXGfvaQClvPlOxP/piYVETHdkiFXR1QJBV9KWUnkAqXkS8hFTqOVOwCqg0+Gjh0QoF5/S4Cfg34T+B6wJNE5O+y9boAdwa+GnVkDpdihvTfBbx39JXt820MSw+pkMjwUFDTHkMqXI7xfZIKb4wyUuHnvgqkYjD7UxaoDTaou+SpSM6NBvZYTwRdUtEXqD2VVKSeiJRUdLwU9rw+UqGtdJY/DZGKRkwQZYlUTMn+1EcqMq6ZkIpAIrqkoi/7Ux6obX+YDqkY5amoOCo4NBtsnv/oHe4hFW1GKsL+8aRiLvjZ9P2QCjP27JKKeSvMmjKpMIPJMqnIA7Vd7EXJU9Fq9o7ahpXJhv3YE6g9lVR4rYlsL632eDCiG0hKKkToLH8aIhUithUlUiGEfjEud59HkAqidMAdUiEkBnpU9qeMVJgly7ZFEz0VFRXbgk0gFP+oqj8EICIN8GzgBZg1us+y5S6DyGXAd4jIzVT1PXb27CrAjwEfAPJOrh8Cao20tGp1KGIXZfRSz1dAKiQYkg6pKGR/8ulh7Qy5uMG7SNFTMUgq7HX7yUYgFXF6WEd0zAC+RUSKnoohUuG9HkT3gn5Soaq9AdfJj2ev3d3XPS8mFX0xFbOZGcc4YuEH7i69bIFUzGwFU0iFkMZUhLIuqdhDONZDKtw92A+pGOWp2AXoTjlcDgKHY4MtYkLhiEODSeUP5n1w47P9kgqVMFOak4pS9qc5pg+IA7XnlvOUPBVDpEKE5HqLArXj9LCOVLRtg4oWPRVDpKIvw1MfqZBGUxJCiFkokYp2Ds2sRDb8j2R+EgKJKMVUtK3tDqO6JKu/Qyrm4QcaTSqUJKaCeQOiCG2XVMxd/xXu2+TsTzS2Lyx4KrArDPai7xCRip1AtcFHAodOKJzKqogcp6pXiMhbgFdh8pu/UlU/HR1+HvAR4Pki8mTgS5h1vHcCngBcOil9oQvIdkSitcuI/GveTyqMC9bv7ZIKZ78dqaAlSruTkgpaqx5KQiqAcvanmRnwiyMXEalwwd4JeYgUq8eSCmNAg/fEeSqamQt8FuLsT32kIgjijSMV2EF8ksnJkgNVicrHkYpu7EQ/qQCbNrbVJPtT0xjPTWn501RS0ReojR2kCGn2p1WSCs/z/GMYArXFl+8oqajoxaHaYIz2SRwb4XBMFpMK5+EoB2rTSSkL6vUsTL1p9icKpMJPOpB6Ksx7Y2bm4+xP89a8j7n43XwuzGbdGI4hUtGX/WnuMjllitp9pKLjpUj2dUmFsWlZtihLKkTU2PesvkFSEfGZRaRCbV0ikmR4aud2kN+sgFSYH7wbqD1vTJ/hPCKrJBWNIHNAy+J3YsVV3HWT1QQVFVuAQycUDs61rqoXichZwH8HHgk8HPOKzlX1rSLym8AfYGbRLgEuBu6mqu+YfE338nojJAmpwC6nKZEKY4Sst0IKpMJlf3I9Ybz8SaAjfucJRzOOVEDwTPSI37loR08qRGw+8KgcBrM/TUkpC2bg7Qb+2EMcQVhVStmS+F2XcNhji8uchklFX0pZJ37Xp1MxNaWsu5uLxO/27GArzFiNSyk7pFNREr8LP26Y1a04OjgMGwzmGewouFscE2isanYfqXDZnxqsu6+Q/ck81uE9nNsBYy5+t8qUsl7nwJ7rSEXTmKaUUsr2ZX+aklI2JhsmQUXrSYW4slWklDUzNgmxMIN+6ZT7WZKRngpPF3vSxvqlcQWdiqkpZWMhPXd8Ufxu7rr6cO1RKWX7dCp6xO/CZGP0fSsqtgAbQyiA2K3+bkyA30NF5Hmq+kER2QNmqvoqEXFKrVdX1fExE8nFCO5g+0/sNK0jFcFPMYJU2IGtHpOUVLhUcjGpcKPHJH1sllLWrVeNSYWImVUZQyqI2knqQvXrMiWaeYFgDDUjHE1o5yJSkcyquOsko/XWDmiF1i0vckusPKEKdzwhD9nIv6RTEddX8nA4wmNSOSrdVLOujjKp8F+roFPhUsq6AUZMKhRoxfz+YxS1W/LQG3MdVy4Ic4K3ZM+SFSEOzMYQRYgIRCAVHU+FbWgjUnUojijWaoNx70Vg0e5Z3It9ZCIc03YhqXBLp7RAKnpjKGxKWUe6neeAYNXJSYUnCCNIRXFSoXX2xQz+zRImcx0XqK1iBuYzq2DtSIWJGWtH61Q0WEJgSYU/JyYXnnAYklMmHLG3IiIVDRR1KmxKWc3rAkOyRP13ia/ttheSigGdCpdSVsT0pwkRUUswZ23kmRhQ1G7V/PqxonasUyFqfp04UNvloZ9F98JJu/tyoklD8237PBW7gmqDdx8bRSicm1xVvyAiL8MEAD5ZRO4L3Aa4nYg8alJq2KHrzTBvrXOhuh2NIMcGSEU8HotJRQvsWXemqHFvLiIVNhg6IRVucDyz3MIOvH2wmmLWY9p4Br/cSW1nNJZU2GvEpELtvaAx124zwuEUT1tPNsxNMMHcjCMV7rbP8KTCw8ZqqIrNyhQ8GSb1YpPUFcgDA4Sju2/msjRFS7Mc2WgtGXGkIhCOLqmQNlLQjj0H1svlSEWLWf7gAvTMsohAKlyXgjKKVDjvREwqyp4JwrXt2nTTX/WTiramjT2yWLsNBq6gZYaEGB/Fexw8sSiQigabVMA+9rmith9b24IhUmHiKlJSEZMIs6wqDNJdbIVP3kMgFS48eSypaG1jY1JhzKoyJ4qjcG1rG5MhSMwSTdM+POEwBGExqXBI99nzCoTDHRuIRUoqUvJgbZ2rPyIV0kSCba01zO7aViFbk2VVllTY7SKpyMiDv4YlHMXyRiMSoX65k1rCMYpUNNglwxGpiPuamFS04f66rz+kqC1Q4w4qtgobRSggmSE7D3gO8DvAG4GbA68DdMoa3T64tLHiZk3iWZEW2EtJBRrFVDh3JJiBd6yoHc0QKQVSEYvgjCEVrl0xqbDej+CZiEiE88l3CAeJR2IMqYgH/X6fPc90UoFUmGBuYwBbd4/czZ5IKtx9Dqlew0/duGVH87RnjK+9LKlImmvPM8uXNCEc8zaqrhFmtJNIRSsmcDMmFeavMpMo/WtEKoSgSxGTCo2uN4ZUtCKB2y4gFbsDqSkLJ2BdNthAbexC3AD8K++E7GzDIo9E5DV0nEJTUhGCtUPFfrmThu0xpMKQmJRUeHKRkYpGhHnUX0BKKlQxgdsjSUVrZ/tjUuEwn6ekwpEHUbXZmpYnFeV9ocwQi3BhScrb5UkFsXfeeT+CV0AT74YGCjdEHgrlpo+LPRORroUjMLQJqSAhGxGpUJclciSpaMzkH0Skwk8EpqRiN1Bt8FHAxhEKVVUROQ44GZOCcAZcGbiDqr55pddqLGFog3BOH6mIfRWpSxR0bwKpcAHa0cxaQirU5BrpkAoNbtuFpKLBGMZZuk/c6FQ1BGKPIBV5gNgQqRDs4F40yghl9iOYXO0RGVhEKhKl7AguOLxILCS9xtCyqSmkIpxjfkqX5tCRCuPdML/nfkiFm3WNSYX7NrGvLJANNyc6FEOxmFQka9ErjizWaoMxA/dODEUPqcgDtZOcQ/bjGFLR2nXwsY5LTCoUjNckIxXd7X5S4TJAzSPyAtilj9hliDqaVIhKWm5RIhWAX/bTzLpkw5SnMzxDpEIjLYb0HJyYdJj8ctfx3o1AKgLZWJ5U+Mk8680wZCGQCm0C4dgPqcDui0kFjcuy6JY6BaLTWf40lVT0xVRUVGwJNo5QWFwHeBdwHPAQVX3mgVzFuie0MaPdIqlopD/7U04qWtMVjSMV1lhYW5Suc2m7pGJGZGD3RyoUG2hWIBWObBAd7zqRKaQCJBPEc+elInOurj5SEY7tkgpwhKNT2rkG0LtsaohUqK0/JxV2Usp/jtPKut8zJhUimIDMjFR4Bd8CqVBNH4v4Z4pJRSiPBxyLSUUYEBlS0YrNllO4zxVHDuuxwcA8dhPHiF75+JlcRCpaTZ/jIVKRpHZNSAWAdkiFK18FqWjs0scSqRCxXoyIVMxpkpiKMaQC8NmXuuVdzYk+UuE9DAVSAdbjE3kqtFNfiEmJycZYUhF0LjJSYW5m4qnwGaBaRwayZU5N2yEVNqdvkVQgURrZWKvCPTX58ifVsFIgJhU+RiQjFfbeJcufNCIVFRVbgo0kFKp6oYicAZypql85kIuIotYFKy3ozBALad1wOB6+RqTCDdbdMTGpcAP2gqfCr8fJSQVEeUL3QSo0UsjOSAWR+3QRqYjLiY4fIhWury6Rio6YHqslFbk6d7Snd59ZOpCSCu8Jyc7xZIMuqTBBhG7QkpIKlTBT6gY9s5l2SIV7HkqkYmY9FQdFKlykdk4qds1DoVDXIk/EWmww5rc55slAyxxotWGOcKVodJosfSJ9rXNS4QfyBU9FeL1TUnGMKNvTPkiFnwSgSyoUkpiKIVLRYATuppCK+BnPx/1mdZp0yldFKlz9JVKhkWhciWzEpMLF6OWkIlXqTklFOKdLKtw+fw3r8chJBfOmG6gdLX/KYyoGSUVr25WTisZN1mWkAhkM1N4FVBt8NLCRhAJAVZ++tmtFxMKN2mNPhRkwG1JB06OoHfcqBVKhbSH7kyMV3uCSjh5FuzEVkqWUdaRCwuecVKDRNimpcCkVE1KhoZzoeCfO1yEVdmBdIhVOZbREKnLvgmmDvRdxucbkIKN6Et2bDInCaV5fdp5JuWrrj0iFP9YiJhUuTWuJVLh70lG4bugsf1KJla/DozHXsgOrwWY7BPKYipbonIhUaLYdrm2+866TiorpWKcNhpRYNDoLsRX2FUsE8HoUtd27KL48IxW4d88cNcZTEd6nQCLMni6pECjIERhSITjT3yUVqnRiKmaiNjNOSiq0R92+lFLW7fMTSwVSUcq+ky5xsgN7356scl9HmVSEc1JS4euLBvZejbvn2uEXjkhFck5GKiTycsSkolRu6+mQipkm1+iQCgmkJSEVUoipmMX9fUQq/MPRJRUVFduCjSUUhwW1RtfPcLTYFH5EhqZLKtxayGJKWZcf2xsdAqmwg/ok+9PcGmDnWWjEB2W73iomFWYQDCWdCuZiLkGWUtbNCEUEwRt+6Su33yfbF9aRZqRi7vQONCEVrj7JBu7gCEJKKtSRG08AooGDG+xnxEE1vbYnSvE5STs1qiKM3tNye4olFWFfSirmbkBCIBVzNzaSVPxuHmlC5KRCSMXvEq4ZfWWfx95/pUBiXJkUdCoMKQlryGNSMS8uJdte1JSF24V82V2XGFgPW0Yq/FBf6KSULStqp8+/Od4O6O22lrwBOJsQSMUsKs9JxUychyIlFT6ds2tTG5YumeWZQfyO5NjQkph8lEjFLBq4x6RiZt9xdQ0l2MYucdDuOxSRirAvIxWSndfa5UBk72SLH7ibXyUlFbHnIicV7ibmpALp1icz+7y4dNpxeSsdnQrxE37RJGNMKmamLnx59NzGgdrueVZytkk6qZiRiswTtM2oNnj3sUOP6zTM3nc5V7v+hRz38i/6Mm1akNYHawNmwOmMZiPee0EjxO+HuhGe3x9dzE1ble52Y/dROF407HOf/d9gvMSX2+OSujQ1cv66NnBNuse6cl+/vaYpN51gss+fl13DZuPIy30OcimV2XOadF8o13Jd+aUL1w5l6TlxWdOzrxm4RqfcdqRNVk/j7p3LjgI2oNGVk5zTiCMVnUu4Ry29blTuPAxiB0Lm0ZDssRT7KLljJKlrbXjJS+Dkk6Fp4MQT4WpXw9+Qq14VTjyRm8JN19mkivXgxvoJPvS13+Eex871ZcdQ5tLSEjJAtaKeULgg7hallcxzEe3Xzj6147nuO9uKmw4JUOu1bAn7fB0E8hAtxEnKk7qQ3PFqytVMSMTLQYxApyEOPtEDYVvb6LMbzEbbbcEjm4iNDpTHZYv2lerqfsFyPaVyNGtT6Zy2/xqdYhVDEkrXaCU9T7Pj42s7baa+a+fl8fGemMVlpHW1loBp/Dc6bx3IbfCJJxr7u7dn/tqyaocrhnCkPRSzC+cc/6DPcBlwxU9frXtARhiKr3bBSxGfr436uAxfT+ylCFPIqdciqUdTL0W2j8yYJt4FV5cs9lLk9fhr0zO7ULq2REHr8QBVgpciPsfdi1L9ndmypNxcIfVs0PF4JNeel+pJ2xn2YTwxc+kcD8ZLMXfCfNnSp+T7iblC6d5GIRhpOWHJU1JG8FIEb0TwUuSzun1dkfNKFFaJDe47ELzkJXD66XDZZWb7M59J93/5y+Zfxc7iJC7lmfPXAvDKvRt39s8JS/D6FLWD9wLyJ790Tr70KdZ7we7r1tM/A1fy58XxFPFxi7wUxfrdkqLSmLbQZSQ2M7Jb8dKnbjnFCZK+ffGyqNRWBy+F9whEbRIK9RTK+66dL32SvNx5KeL+2y1nKt1flXK581iUru28FJnN1+w7h7Ju9d4rUdoHPjbxwDFkg10nl9vliooCjqyHwkEuU77usZ/r3Z8kHllwt3o9ekPnlZaWNOWOo3jsULmra+S+2NvQuUTPNfrKgbJnhPLMft9s/7IY8lp0ylecSaPkzWik3KbSsWNQejxKXgtTVn4whx7LZl3u6Uc9KnRkBwU723tY/yoW43iu4PHzv+ndn3sahtBHhofOy70Trh4tvJ999QyR8JJ3wl8729e2wUvRraf8PA09Z0PnjPY0LImi56BnAqnofdjXxXuuUeIUy1679KPnHgjXlr5rDN3vdczsHAEbXO3wenBkPRQXADdzGxfOee/Xnf/ew2vNVuBE4JLDbsQRwsHc7+JUavlQkfuv/PI5xrrQLzjgdlQcDi4gssNcype+9sjdssPa83k5VBu8XmzI/T7YwfCUZUwXHGA7KrYfR5ZQXFIjhCZBRN6jqjdbfGTFKlDv92qha1vDVTEF1Q6PR7UJ60W936tFtcG7jyO/5KmioqKioqKioqKiYnlUQlFRUVFRUVFRUVFRsTSO7JKnisk487AbcMRQ7/eKoPRkKauo2C5Um7Be1Pu9IlQbfDRQPRQVo6Cq1biuEfV+V1RUxKg2Yb2o97uiYhqqh6KiomLHUdMGVlRUVBweqg0+CqgeioqKioqKioqKioqKpVEJRUVFRUVFRUVFRUXF0qhLniomQUSur6r/etjtqKgYDe2qEVdUbCuqDa7YOlQbfCRQPRQVoyAitxKRC4E/FZGrHXZ7dh0ichMROV1EThWRqxx2eyoqKg4X1QavH9UOV1SMR/VQVAxCRK4J/AlwZ+AFwO+p6hcPtVE7DBE5Hvgj4F7Ax4AbAO8QkWep6ktFpFGtmqNToFADAiu2FtUGrx/VDq8W1QYfDVQPRUUvROTBwKeB6wC3BH5FVf/5cFu187gP5l7fEfgx4BbAMeB5IvIDtROrqDg6qDb40FDtcEXFRFRCUTGEK9m/L1bVd6vqZQAici0RudLAeRUTISKNiBwH3A34D+AfVPViVX038DDgvcBzRORbDrOdFRUVa0W1wWtEtcMVFcujEoqKDkREAFT1D4B/Bn7GdmDXF5E3Am8EzhGRXxWR69pz6rO0D6hqq6pXYGYiP6KqV4jIle3u84DHAtcHfqHe6+lQPbx/FRVTUW3w4aDa4YPDYdrgaofXg/pCVCAix4vIU0TkuwFUVUXExdc8DPgB4K+Ac4HLgXOAS4HfBl5kz6ku4JHI77ctcwtM3wv8OICqfs2u1VXgHcDzgQdhOruKioodQbXB60e1wxUVq0UlFEccInInzMzL/wYe58pV9ZiIiKr+DfA64FuBnwbupaoPVtXbAWcAtxaRB9m66vO0AAP3282hvB+4iojc351i938FeAlwPOZ3iDu/igVQlUP7V1ExhGqD149qh9ePw7TB1Q6vB9X4HGGIyK2BpwGfAl4M3EtETo0Omdm/vwQ8Gfhba1AdXo4xvPcRkVmdIRvG0P0WEXev3wxcANxfRK6uqvNopvJjwLuBO9j7XR25FRVbjGqD149qhysqDgaVUBxtHAMuAh4BPBrjRn+SDUqLZ8guVtVnuI4sWt/7UeCLwFepz9IY9N5vVZ0DWMGqPwe+0x7noaoXY+7119zxFbsBEfk2EflzEfm8iHxBRF4tIieNOO9mInKmiPw/EblMRC4UkZeIyLevo90V+0a1wetHtcMVRSxrh+25XycivysiF4nIV0TkHBH54cJxjYj8pohcICJfFZHzROTuPXWeZm3710TkX0TkF3uOu6uInGvr+7iIPDoix+6YW4vIC0Tkn0TkmIhcsOr7UA3Q0cY/quoPqeo7MRktng3cCDjNHRDPvkSdnIrBjYBTgHNtIFvFMAbvd2QAngP8X+ChIvJjqnrM7r8W8E2YGbKKCWj18P4tgpic938HfA/w88DPAt8FnC2LxbR+GvMOPgOz5vs3gJsA7xGRb1v6hlWsC9UGrx/VDh8CDtMGr8EOg9GKOQ0TuH8nDGl9k31HYzwReDzwTIzNfifwShH5iaw9p2GewVcBdwBeCTxLRH4pO+5Ue8w/2vqejiHKv51d93bADwEfwiR6KGI/96EK2x1huNkVOzNzhYi8BfNgPlZEXqmqn86Ov8IefzXgZOCRGLfxC9fa8C3FmPstJvjvcyLyu8DVgFeJyPOBf8AYi28BXnFY36HiQHAacD3gu1X1IwAi8gHg34AHAn8wcO7/yd9TEXk7cD6hc6vYUFQbvH5UO1zRg6XtsIh8H/AzwANU9fm27G2YwfsTgLvYsm8EfhV4iqr+nj39bBH5TuApmMQL2OV1TwJepKqPio77ZuCJIvLcaALhKZj0xqdHx10VeLSIPNV61ACeqKpn2PpfDNx61feheigqfCelqhcBZwFXxnRUScCZiFxbRH4Dw5r/Fvhu4GdV9YNrb/QWY+h+E4L/3gPcE7NG+vYY43Ij4G6q+vZ1t7niQHEX4J3OeKwmaYkAACAASURBVAOo6vnA24GfHDoxH3Daso9jxNBqrvwtQbXB60e1wxUZlrbD9twriEim9Wi9HDhVQurhUzHaMi/Ozn8xcMNoqeotgWsVjnsRcE0sGbBe6Bv1HHccNlOZbc/Y+Kql70MlFBVA0mm9G3gu8MsickPrWm/EZA+5EnBtzIP+CFX9PlV97yE1easxcL/nIjITkauq6peABwM3Bu6sqjdV1XMOq83bii3If34K8E+F8g8BN5j6fUXke4FvZMCtXbF5qDZ4/ah2eD04bBu8Bjt8CnC+WuHJ7NwrYWJx3HFfAz5SOI7oOqfYv3l7Rh1nCcBlI9pdwtL3oRKKCiCs01XVLwAvw6wPfbKIXB24K2aN9meBx6rq7VU1Z8QVE7Dgft8FeIqIfIOqXqGql9sgwYrtxIki8p7o3+nZ/hOAzxXO+yxwjSkXsq7yZ2M8FH+yVGsrDgXVBq8f1Q4fKRykHR461+13fy+N46IGjqNQ59jjXNkJhfJFWPo+1BiKCg8REfugn4dxqf8ORpH15sDrgUZVv3iITdwpLLjfrwPGzatULER7uHnIL1HVmy04pvRbL9PoZwK3Au6oqqVOoWKDUW3w+lHt8HpwyDYYDtYOy8hzpxzX156xx+3nhi9VXyUUFR7WtX4cJtjvuzA50K8M3EFV33yYbdtF1PtdYdE3k3QNyjNFRYjIk4HTgZ+vz892otqE9aPe8wqL/djhzwKltKrXiPa7v9eISOzQcdj2XBQdd8LAcTmuHu2fgqXvQyUUFTmuA7wLE9DzEFV95iG3Z9dR73fFhwhrYWPcAPjwmApE5FGYlLEPUdUXrbBtFetHtQnrR73nFfuxwx8C7iYix2dxFDcALifETHwIQ1a/gzSOwsUmfDg6Dtuei0Ye5+N6RORkjJr7qP4jw9L3ocZQVCRQ1QuBM4BvrEb14FHv93qw4cGArwduISLXcwW2Q/hBu28QIvIQ4LeAR6nqHy5zfyo2B9UmrB/1nh88tiAoez92+PUYMnqP6Nw94F7Am1X1a7b4jRiCcZ/s/PsC/2SDqcGQg0t6jvssJuOSe27P6znuCuCvF7S777ssdR+qh6KiA1V9+mG34Sih3u8jj7MwWWReJyKPxqxffSLw75g13QCIyHWBjwJPUNUn2LKfBp6G6aj+TkRuEdX7BVVdZoaq4pBRbcL6Ue/5kcfSdlhV3y8irwCeZpfPnQ/8EvDtRIN9Vf2UiDwV+E0R+SLwPgzpuC1RSlY1+iiPwQjZfQKTIvq2wAOAX1HVy6N2PxL4SxF5DiaxwI0xwnZPjzQonCDjj9jNk4DjReSn7PaHo75i1H0ooRKKioqKncfIGapDgap+WURuCzwVkz9cgLcAD7MpKx0Es7479izfwZbfwf6L8TbgRw+o2RUVFRWjsck2GPZthwHuj9Ep+S1M/MJ5mDic92XHPQr4EvBQjOL6vwD3VNW/yNrzbBFR4BHArwEXAg9W1Wdlx/2VJQaPA+4HfBKjkv2k7LqnYNS2Y7jtMzDq3VPuQwfSzV5VUVFRsTv41uZ6+svH5bZ1fXjk5T/z3hHZRSoqKip2Eodtg6Ha4XWgxlBUVFRUVFRUVFRUVCyNuuSpoqJip6FsRA70ioqKiiOJaoOPBqqHoqKioqKioqKioqJiaVQPRUVFxc6jRopVVFRUHB6qDd59VA9FRUVFRUVFRUVFRcXSqIRiQyAiMxE5TUTeJiKfFZErRORTIvIBEXmuiNwlO/5+IqIicr8VXf9kW98LVlFfxeZBRE63v/ErRhz7KHvs09bRtoqKw0a1wRUHjWqDK3YZdcnTBkBEZsBfYvLIXwq8AfgP4ASMRPvPAN/DCNXciooBvBT4feCuInKiql5SOkhEBCOgA0bkZruh0FZ/e8UAqg2uWBOqDa7YWVRCsRm4N6YjOw/4EVX9fLxTRI4HfuAwGlaxO1DVL4nIy4DTgJ8D/qDn0NsC1wPeoaofWlf7KioOEdUGVxw4qg2u2GXUJU+bgVvZvy/IOzIAVb1MVc922yLyVuD5dvP51i3q/p1sj/lmEXmsiLxdRC4WkctF5D9F5KUi8r1x/SLyeIxUPMDPZ/XdLzv2VBH5KxG5RES+JiIfFZHfFZGrT/nCIrInIg8SkXeKyBdE5DIROVdEHiwiTXasXwpgP7/cXv+rIvIeEbnTwHXuLSJni8jn7PH/LCKPFpErF45VEXmriHyTXeLwCRGZx/dARK4vIq+y9X1ZRN4hInfMlz/Y5RP/br/bVXva9kx7zt2n3Lueusb+Lmfav78wUN1p2bFbDUUO9V/FVqDa4GqD94Vqg/tx2Da42uH1oHooNgOfsX+vP/L4F2Dc8j8JvA54f7TvUvv3h4HfAM4GXoWRev8u4KeAu4jID6rqefbYt2Kk4h+KmaF7bVSfr1tEHouRaP8sZnnAp4D/Bvwq8BMicktV/cKixovIccBfAKdiZOdfCnwVuA3wh5iZwJ8tnHpd4N3AxzCS8CcA9wJeJyI/Fnf49jp/gnEb/wfwantvbgE8EbidiNxeVY9l1zgBeCfmfr0aaDFS9ojI9wBvt8e8AfgAZhbpNcBfxZWo6lxEzrL3695kbmsR+XrgPsDF7HMZxZTfRVXfIyLnAje2z8Dbs7quCdwV+Dzwyv20q6Jii1BtcLXBS6Pa4IqKSig2Ba8Gfh34RRG5GsY4vldVP146WFVfICJgOrPXquoLCof9HXBtVf1iXCgi34cxyE8BftzW91YRuQDTmb1fVR+fVyYit8EYzHOAn1DVS6N998PM1p0BPHzE930UpiN7JvAwVZ3bemaYGZkHiMifq+rrsvN+FHi8qp4RXfulwBuBX8N03HGbHoC5l/dR1a9E+x4PPA74ZeDp2TVuiOkoH1Do6P4I05E9SFX/OKrvx8k6M4uzgMcAD6S7DvZemAHEb6vqFYVzR2HJ3+Us4FmYWbCkM8O44a8MPFdVL1u2XRUVW4Zqg6k2eBlUG1xRYVCXPG0AVPVc4L6YWZj7YmazLhCRz4jIa0TkzkvU+am8I7Pl52E6utvYWaqxeIj9e1psMG2dL8DMot1nUSXWlf5gzKzQw11HZuuZA4/ApKwu1fVx4Leya78JuBC4eXbsQ4FjmE7pK9m+J2JmJEvXuBz41bwjE5Fvw6xr/QjwnKwNfw38bV6Rql6EmWm8qYjcNNv9QMzM234D7pb5XV4CfBm4h4j8l2zf/7R/d8LV7tDq4f2r2HxUG+zrqTZ4OqoNHoHDtMHVDq8H1UOxIVDVPxOR12BczrcGbmz/3hWTEeJPgfup6uhXQ0TuCPwicDPgRLq/94nARSOruyVwBcYA3qOw/0rAtUTkmqr6mcJ+h+sD1wT+DXi0neXL8RXgewvl7487vwj/btsH+ADK7wMuAR7Wc42v9VzjAlX9VKH8RvbvOaraFvb/A/BjhfJnYZY4PBA43bbvhhi3/1+r6gWlxk3A5N9FVb8gIn8G3B+TveaPbbtuBZwCvEtVP7DPdlVUbBWqDU5QbfB4VBtcUUElFBsF63Z9s/3n3M93B56HcYO+hnRtbS9E5CEYV/LngL/BzCBdhpl5uivG2HeC4gZwTczz8rgFx12VsB65rx4wa4mH6ioF0V1aKAMzCxZ7264BCHCtBdco4eKecjeL9Mme/cVyVT1bRP4ZuLeIPMLOWD7Q7n5O6ZyJWPZ3ORPTmf0CtjMjBAluf5rCDHWCqmIMqg3u1JOj2uAuqg0egWqDdx+VUGww7EzQn9nZlEdj3L0LOzMR2cOs2bwYuIl1+8b7b1k8cRifBxpVPWGJc/N6AF6jqv9jn3Utusa5qnqTief22T0X6Hjtnv195QDPxgws7iMiL8S4vz+BCd7bL5b6XVT1nSLyAeAmInITzGzlPTHf8+UraFdFxdaj2uB9X6Pa4B5UG1yxa6gxFNsBtw439hs7t/OscPyJmGCzdxQ6sqsCJQM/VB+YrBvXEJFTRrW4H/8Pm+lj4vrh0VDVLwEfAk4Rkf12vg7n2r+3lCylosWtB859IWa97AMJgYB/0rN0YCr287u4WbBfwLjdrwK8VFW/vIJ2VVTsEqoNnoBqg0ej2uCKnUElFBsAMXm6b18ykiLyTYSc1H8f7XKu05MKVX4K41q/qUT5t23n8XRMZ5fjc5iZoVJ9AE+1f88SkW8utPMqInKLnnM9bKDdH/7/9u491q66SuD4dwGFAhptfcTHCBQxGhgQEycjijDDYFpRgRkeTkAUSSogkiFRMqJVoRUsgwO+aBTxNTA+AI1UBAGhMEHBKI8iJTLKUEEFX4UqAm2la/747UM3h317T/el7LLP90NuLnff9dtnn9Nk7fvb6/cAXgh8qlq6b/hcL4yInSc71yTOpIxd/WI0rM8eETOqp0Ijycx7KEs77sS6cvngXHNoHrs7aLsS+BplDPBHKX84nNsUGxEnR1kX/eQRL20q/y7nU8ZKHw68e3CeEV/3aSNxMqDWzxz8hHOZg83BT5quc7B5+KnhkKdNw99TVsS4LyKuY90GR7OANwFbU9Y6v6jW5nrKDeuE6gnQYPzopzNzZUR8irIG+k8j4mJKYv9HypJ7S6r/f0yWHTx/BLw+Iv4b+F9K0l2cmbdm5lUR8X7gY8DPI+LS6jqfQVmbfG/KpLg5I7zfBZTxw8cAb4mIqynl5+dTxvW+jrKs4e0jnKtRZn6xWtXj3cCdETFYiWQm5XPdi7Kc3zEbcNrjKEv8LYqI/Vi3BvpBlH+fAyirhjRZRHkK9WLgO9XNscngD5rh5RIbTeXfJTMfiIgLKWPDd6Msk3nTKK8r9Yw52Bw8YA6WWrBDsWn4T8r4yX0pSWU2MJ3yBOwayqZDX62vLpKZ90fZ3fMjlIld21a/Op8ypvNDwO8pCfTo6tiVlHHAj60hPuQIytOWOZSNgIKyIdGt1WueHhE/oCyTtyclea+k3IjOqa5zUpm5JiIOpCzPeCTwZkry/T0lEX+IsqzelGTmcRFxGeWGtS+lzL2CclM7g/JZbcj5bq/GPp9GGUu9D+Wz+WfKaiUHsG6c73DbmyPiFsoTsvVNBNyVckO8YAOuayr/LudQbmaD/+8lH1BpEuZgc/CAOXgjMAf3X2zACniSJlA9UTwMeEVm3tHw+2cCv6HcTGc1LXsYEUG5oV+dmYdu5EseGy+Ml+ZRm53W2euftvZfb8zMV3d2AdIYMAdvurrOwWAefio4h0IaUURsVo2nHj7+T5SJfrc33cgqx1KeAC6aYA11gL+lLEH4sSfjeiWpT8zB0qbLIU/S6LYE7omIJZSVUv5K2YToDZTdXY+rB0fZAfVYypjduZQNrBZNdPLM/CmPX0VGTxIn5Um9YA5+mjIH958dCml0ayjrme9DmcS5DWUn2AuBhZl581D8DMqTrlXAjcDx1aZKkqQNZw6WNlF2KKQRVWuWH78B8cvxadcmwYdj0tOfOfjpyxzcf86hkCRJktSaHQpJkiRJrTnkSVKvJRPvdCVJ2rjMwePBCoUkSZKk1qxQSOo9JwRKUnfMwf1nhUKSJElSa3YoJEmSJLXmkCdJveeEQEnqjjm4/6xQSJIkSWrNDoUkSZKk1hzyJKnXEkiXGJGkTpiDx4MVCkmSJEmtWaGQ1HtOCJSk7piD+88KhSRJkqTW7FBIkiRJas0hT5J6z/mAktQdc3D/WaGQJEmS1JoVCkm9ljghUJK6Yg4eD1YoJEmSJLVmh0KSJElSaw55ktR7ltslqTvm4P6zQiFJkiSpNSsUknrPJQslqTvm4P6zQiFJkiSpNTsUkiRJklpzyJOkXnMNdEnqjjl4PFihkCRJktSaFQpJPZekUwIlqSPm4HFghUKSJElSa3YoJEmSJLXmkCdJveeEQEnqjjm4/6xQSJIkSWrNCoWk3nM6oCR1xxzcf1YoJEmSJLVmh0KSJElSaw55ktRr7tIqSd0xB48HKxSSJEmSWrNCIan3MjqcEuhsREljrtMcDObhp4AVCkmSJEmt2aGQJEmS1JpDniT1nhMCJak75uD+s0IhSZIkqTUrFJJ6zSULJak75uDxYIVCkiRJUmt2KCRJkiS15pAnSb2XLkIuSZ0xB/efFQpJkiRJrdmhkCRJktSaQ54k9Z4rjEhSd8zB/WeFQpIkSVJrVigk9VrihEBJ6oo5eDxYoZAkSZLUmh0KSZIkSa055ElS7zkhUJK6Yw7uPysUkiRJGmsR8ZKIuCgiVkbEnyLiWxGx3Yhtp0fEGRFxb0Q8HBHXR8ReDXGbRcRJEbE8Ih6JiKURcdAE55wbET+LiFURcUdEHDNB3IERcXN1vl9GxLyI2Lwhbs+I+GF1ffdFxJkRsfVQzJERkQ1ft0z2GdihkNR7Gd19jWKKN7LTIuKKiPhjlfiPnMJHJUlPui5z8Ch5OCK2Aa4GXgG8AzgCeBmwJCK2HeEtfgGYC3wYeDNwL3B5ROw+FLcAOBn4DPBG4AbgwojYb+h65gKfA74JzAEuBBZFxLFDcbOrmB9X5/skMA84bShuN+BK4HfV9c0D3gl8eYL3cwiwR+3riMk+AIc8SVKHajeyVZQbWQIfpdzIdsvMv0xyiuOBW4BLgLdvzGuVpJ6aC+wIvDwzfwEQEbcCPweOBs6cqGFEvBI4DDgqM79UHbsWWAbMB/avjj0feB+wMDM/XjVfEhE7AQuBS6u4LYBTgfMy84O1uBcBCyLi3MxcUx1fCFyXme+qxT0DmBcRZ2XmfdXxU4BfAYcM2kbEauArEXF6Zt409LZuGXwOo7JCIUndGtzIDszMb2fmxZQb0PaUG9lknpWZr6c8+ZIkbbj9gRvqf0Rn5l3AD4ADRmi7BvhGre1fga8DsyNiq+rwbGBL4Pyh9ucDu0bErOrnPYDnNcSdBzwH2BNKZRvYfYK4aZSKBRExjVLluKDWEQG4AFg9wvsbiR0KSb2WwFqys68RTOVGRmY631HSJqvrHDxiHt4FuK3h+DJg5xHa3pWZDzW03RLYqRa3Chh+8r+s+r5zLY6G6xkprrp/PFSLeykwvSHuEeBOmt/fdRHxaDUn5LMRMbMh5nHsUEhSt6ZyI5MkTe65EfGT2te7hn4/E7i/od0KYMYk515f28HvB98fyMzhHk5THA3nHDVucGyUuBW130OZ+zEfOArYFzgbOBy4NiKmN7R/jHMoJPVex4/wnxsRP6n9fE5mnlP7eSo3Mkna5G0CZdQ/ZOarJ4lpKmWMsrRGjNh2Q+Imup5R46JFHJl5OXB57dCSiPgp8G3gbcC5E12MHQpJ2rg25o1MkjR19Sf6dTNofuBTtwJoWpVvRu33g+8zIiKGqhRNcVTXc28tbuZ64oY9e8S4GawbSjWRxcBfgL9jPR0KhzxJUremciOTJE3dMtbNSajbGbh9hLazqhX7htuuZt2ciWXAVpQ5DcNx1F5n8Af+8PWMFBcROwDb1OLupMzdGI6bTlkQZLL3N7DeiokdCkk9l53+N4Kp3MgkaRPXbQ4eMQ8vBl4TETsODlR/mL+u+t1kbadR9m4YtN0CeCtwRWauqg5/j9LBOHyo/duA26rJ1ADXA3+YIG4FZcEOMvNuYOkEcWuAy6q41dVrH1pd18DBlA7OZO/vQGBb4EfrC3LIkyR1azHw8YjYMTP/Dx53I3t/h9clSePi88B7gIsjYh7lafwC4B7KBnMARMT2lCf+8zNzPkBm3hIR3wA+US3RehdwLDCL2h/7mfm7iDgLOCki/gzcROl07ENtRb/MXBMRH6JsZPdr4PtVzFHA8VUHYeADwCUR8Tnga8CrKJvWfbK2BwWUzfSuBy6IiLOBHYAzgIsy88ba+7sSWEJZKORhyn3ofZSOy1fX9wHaoZDUa2XJwk1a6xtZdXxvyprlL6gOvToiHgTIzIuekncgSRN4GuRgMvMvEbEPcBZlH4cArgJOyMwHa6EBbM4TR/i8k7IZ3Ucp8xeWAnMaNoz7IPAg8G+UnH0HcGhmfmfoej4bEQm8FzgRuBt4T2YuGoq7NCIOBj4CHAn8lrJL9qlDcbdUu2qfDnwXWAn8F6VDUreMsiv231CqF/cAnwUW1CotjeKJq1dJUn88O2bl3pvNnzxwI1m89u03TjYpOyK2o9zI3sDjb2TLazE7UJ58nZKZJ9eOXwPs3XTezHRit6ROdZ2DYbQ8rKmxQiFJHavGwh40ScxyGlZ+ysx/2DhXJUnSaOxQSOq9EXdKlSRtBObg/nOVJ0mSJEmtWaGQ1HvOJJCk7piD+88KhSRJkqTW7FBIkiRJas0hT5J6rayB7oRASeqCOXg8WKGQJEmS1JoVCkm9lz4dk6TOmIP7zwqFJEmSpNbsUEiSJElqzSFPknpvbdcXIEljzBzcf1YoJEmSJLVmhUJSryXpkoWS1BFz8HiwQiFJkiSpNTsUkiRJklpzyJOk3rPYLkndMQf3nxUKSZIkSa1ZoZDUe2vD52OS1BVzcP9ZoZAkSZLUmh0KSZIkSa055ElSryW4BrokdcQcPB6sUEiSJElqzQ6FJEmSpNYc8iSp9yy2S1J3zMH9Z4VCkiRJUmtWKCT1nhMCJak75uD+s0IhSZIkqTU7FJIkSZJac8iTpF5zDXRJ6o45eDxYoZAkSZLUmhUKSb23tusLkKQxZg7uPysUkiRJklqzQyFJkiSpNYc8Seq5JJ0QKEkdMQePAysUkiRJklqzQiGp11yyUJK6Yw4eD1YoJEmSJLVmh0KSJElSaw55ktRvAWvDcrskdcIcPBasUEiSJElqzQqFpF4rEwIlSV0wB48HKxSSJEmSWrNDIUmSJKk1hzxJ6j3XQJek7piD+88KhSRJkqTWrFBI6r306ZgkdcYc3H9WKCRJkiS1ZodCkiRJUmsOeZLUa0k6IVCSOmIOHg9WKCRJkiS1ZoVCUu/5dEySumMO7j8rFJIkSZJas0MhSZIkqTWHPEnqPcvtktQdc3D/WaGQJEmS1JoVCkm9lvh0TJK6Yg4eD1YoJEmSJLVmh0KSJElSaw55ktR7a6PrK5Ck8WUO7j8rFJIkSZJas0MhSZIkqTWHPEnqNVcYkaTumIPHgxUKSZIkSa1ZoZDUc+nTMUnqjDl4HFihkCRJktSaHQpJkiRJrTnkSVKvJfCo5XZJ6oQ5eDxYoZAkSZLUmhUKSb3nhEBJ6o45uP+sUEiSJElqzQ6FJEmSpNYc8iSp9yy3S1J3zMH9Z4VCkiRJUmtWKCT1WpI8Gmu7vgxJGkvm4PFghUKSJElSa3YoJEmSJLXmkCdJveYurZLUHXPweLBCIUmSJKk1OxSSeu9RsrMvSRp3XebgUfNwRLwkIi6KiJUR8aeI+FZEbDdi2+kRcUZE3BsRD0fE9RGxV0PcZhFxUkQsj4hHImJpRBw0wTnnRsTPImJVRNwREcdMEHdgRNxcne+XETEvIjZviNszIn5YXd99EXFmRGzdELdLRFwREQ9GxB8j4ksRMXOyz8AOhSRJksZWRGwDXA28AngHcATwMmBJRGw7wim+AMwFPgy8GbgXuDwidh+KWwCcDHwGeCNwA3BhROw3dD1zgc8B3wTmABcCiyLi2KG42VXMj6vzfRKYB5w2FLcbcCXwu+r65gHvBL48FPci4Bpga+Bg4DhgX+CSiFhvn8E5FJIkSRpnc4EdgZdn5i8AIuJW4OfA0cCZEzWMiFcChwFHZeaXqmPXAsuA+cD+1bHnA+8DFmbmx6vmSyJiJ2AhcGkVtwVwKnBeZn6wFvciYEFEnJuZa6rjC4HrMvNdtbhnAPMi4qzMvK86fgrwK+CQQduIWA18JSJOz8ybqrgTgWnAWzLzgSruN8C1wIHAtyb6HKxQSOq1BB6N7OxLksZZ1zl4xDy8P3DDoDMBkJl3AT8ADhih7RrgG7W2fwW+DsyOiK2qw7OBLYHzh9qfD+waEbOqn/cAntcQdx7wHGBPKEO0gN0niJtGqVgQEdMoVY4Lah0RgAuA1UPvb3/gu4PORPVe/ge4m0k+BzsUkiRJGme7ALc1HF8G7DxC27sy86GGtlsCO9XiVgG/aIij9jq7VN+Hr2ekuKoj9FAt7qXA9Ia4R4A7B3HVfIpZDa87eO31fg4OeZLUa2vz15f/+ZGTntvhJfyhw9eWpE5tAjkYYHpE/KT28zmZeU7t55nA/Q3tVgAzJjn3+toOfj/4/kBmDpdMmuJoOOeocYNjo8StqP1+BhDriXt5w/HH2KGQ1GuZOafra5CkcfU0ysFNY6NihHYxYtsNiZvoekaNi40Y18ghT5IkSRpn9Sf6dTNofmJfV3/KP9x28PvB9xkRMfzHeVMcDeecOWIcwLNHjJtR+/39lM7EZHGN7FBIkiRpnC1j3ZyEup2B20doO6taena47WrWzZlYBmxFmdMwHEftdQZzJYavZ6S4iNgB2KYWdydl7sZw3HTKyla3A1RzQJY3vO7gtdf7OdihkCRJ0jhbDLwmInYcHKj+MH9d9bvJ2k4DDqm13QJ4K3BFZq6qDn+P0sE4fKj924DbqsnUANdT5t41xa2grDxFZt4NLJ0gbg1wWRW3unrtQ6vrGjiY0sGpv7/FwJsi4lm197InsD2TfA7xxLkhkiRJ0nioNq9bCjxM2fQtKZvQPRPYLTMfrOK2pzzxn5+Z82vtv05ZFvZE4C7gWMoGcq+t7fFARCwETgA+ANxE6XQcDRyQmd+pxR0DLKJsUPd9YJ/quo7PzLNrcfsBlwCfB74GvAr4GPDpzDyxFrc7paNyGXA2sANwBnBVZtY7Qi+uPodl1XmeBfwHcB+wR2aunfAztEMhSZKkcRYR2wFnAW+gTEK+CjghM5fXYnagdBhOycyTa8e3pmxGdxhl/sJS4N8z85qh19gcOImykd4LgDsonZOLGq7naOC9lOrA3cBZmbmoIe5fgI9Qdvn+LXAucGpmPjoUtxdwOqXTsZLSAfnA8HK3EbErZSO/11IqKhcD783MPzZ8bOva2aGQJEmS1JZzKCRJkiS1ZodCkiRJUmt2KCRJkiS1ZodCkiRJUmt2KCRJkiS1ZodCyMjEcAAAABpJREFUkiRJUmt2KCRJkiS1ZodCkiRJUmv/D8A7/CAOQ2uCAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "opt = 2\n", - "Hvib_ave = data_stat.cmat_stat2(Hvib[0], opt)\n", - "\n", - "x, y, Hvib_data_re = data_outs.show_matrix_pyplot(Hvib_ave.real(), 0)\n", - "x, y, Hvib_data_im = data_outs.show_matrix_pyplot(Hvib_ave.imag(), 0)\n", - "\n", - "# Energy axis in eV\n", - "e = []\n", - "sz = Hvib_ave.num_of_cols\n", - "for i in xrange(sz):\n", - " e.append(Hvib_ave.get(i,i).real * units.au2ev)\n", - " \n", - "\n", - "plt.figure(1, figsize=(12, 12)) # dpi=300, frameon=False)\n", - "plt.rc('xtick', labelsize=16) # fontsize of the tick labels\n", - "plt.rc('ytick', labelsize=16) # fontsize of the tick labels\n", - "\n", - "\n", - "plt.subplot(1,2,1)\n", - "plt.title('Re(Hvib) map')\n", - "plt.xlabel('State energy, eV')\n", - "plt.ylabel('State energy, eV')\n", - "plot_map(plt, e, Hvib_data_re)\n", - "\n", - "\n", - "plt.subplot(1,2,2)\n", - "plt.title('Im(Hvib) map')\n", - "plt.xlabel('State energy, eV')\n", - "plt.ylabel('State energy, eV')\n", - "plot_map(plt, e, Hvib_data_im)\n", - "\n", - "plt.show()\n", - "plt.close()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2. Decoherence Times\n", - "\n", - "Compute decoherence times based on the energy gap fluctuations" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tau-0-1 = 5.23092407095 fs\n", - "tau-0-2 = 5.3477049825 fs\n", - "tau-0-3 = 5.67407762179 fs\n", - "tau-0-4 = 5.56128459207 fs\n", - "tau-1-2 = 8.75767280992 fs\n", - "tau-1-3 = 12.2881164649 fs\n", - "tau-1-4 = 6.66482976416 fs\n", - "tau-2-3 = 11.2728977809 fs\n", - "tau-2-4 = 12.2881164649 fs\n", - "tau-3-4 = 8.75767280992 fs\n" - ] - } - ], - "source": [ - "itimes = [0]\n", - "nsteps = len(Hvib[0])\n", - "verbosity = 0\n", - "tau, rates = decoherence_times.decoherence_times_ave(Hvib, itimes, nsteps, verbosity)\n", - "\n", - "nst = Hvib[0][0].num_of_cols\n", - "for i in xrange(nst):\n", - " for j in xrange(i+1, nst):\n", - " print \"tau-%i-%i = \" % (i,j), tau.get(i,j) * units.au2fs, \" fs\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 3. Influence Spectrum" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Compute energy gaps, averaged () over the trajectories and time" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": {}, - "outputs": [], - "source": [ - "dE = decoherence_times.energy_gaps_ave(Hvib, itimes, nsteps)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Compute the distributions of energy gaps and plot them" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGYCAYAAACj9P2TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXl8VNX5/9/PTHbQQAIYEDCgKIgCsq8SsYpSLbGoUC2KSgGXAn5bqyhl0a/brxQLgjVtWRT51q1WUSuLSwBpEEFB2UETAogEEiB7QjLn98e9k0xm7kxmMpNkguf9et3XzJz1c+/cmXnmnOc8R5RSaDQajUaj0fyUsTW2AI1Go9FoNJrGRhtEGo1Go9FofvJog0ij0Wg0Gs1PHm0QaTQajUaj+cmjDSKNRqPRaDQ/ebRBpNFoNBqN5iePNog0YYuIpIiIEpGsxtbijoikm9omuKWHrWYIf331gYj8SkQyRKTAPHclIimNrUuj0YQXEY0tQHPuISLLgbvdkiuAfOAUsBPYAvxTKZXZQJpaANMBlFJzGqLPhsY0zpKBd5VS2xtXTXggIncAK82XZ4Hj5vPyxlGk0WjCFT1CpKlPnD9Ax4E8IA64GBgNPA18JyJviUhrL/WLgX3AdyHQ0gKYbR6hIBtD25kQtRcKJmCcXy8fZUJ5TZsCD5uPLwBxSqkk8/hvY4rSaDThhx4h0tQn/1VKpbgmmCM1AzF+vG8DbgUGicgApdRR17JKqS1A14aRGhhKqbsaW0NdCOdrWk90Nx+XKqUqGlWJRqMJa/QIkaZBUUqdVkqtVkqNA34OlAIXAv9qXGWac5RY87GwUVVoNJqwRxtEmkZDKbUa+L35coCI3Oya78sBWERsIjJBRD4TkVwROSsiJ0Rkl4gsFZEbXMqmA5kur5XbMce1rNNZWkRaiMjzIrJXRIpF5LRVOV/nKCI3mxpPiUih6dx7h5eyyU5NPtrzuCamVgUMN5OWuZ1flq/6Fn1cIyLviMiPIlJuPv5bREb4qOPsK1lEOorI30XkiIiUiUimiMwTkfO9XqhaEJHzRWSOiOwwr2OhiHwjInNFJN6trNV1zHTRuDzAvpuLyOMi8qWInBGRUhE5ICILRaSDlzqu91GsqX2fiJSISI6IvC4iXWrpt7WIPCsi35rnWyQiO0XkaRFJ8FIny+k0LiIXishLIvK9+T5sdyvrqqtURI6Zuq6wuoYi0kxE8s30m3zoFvM9VyIyyffV9ahrF5Hp5ntbIsZn+gMRGWLmV91nbvWiROTn5n23Q0ROmud0SERWikgfH326XrOOIvIPETls1nfeu/E+6o8Wkf+IyHExvofyzGv6TxEZG8j5axoZpZQ+9BHSA1gOKCDdj7JRwI9m+X+65aWY6VkW9Vaaec7jNFDm8nqzS9l3gBMueT+6Hb93KZtulnkEw89GYYxi5QOnLcpN8KYZmGY+d2A4k1e6aHjR4pySnfk+rpfHNQHGmudRbuadcTu/L/25pmb+/7podOp2uKQ966WeM380kGs+z8fwI3PmfQlE1uF+usS8ns52iszD+foQ0MWlfAeXc3eWOeGStiCAvru59X0WY7TJ+ToPGGJRz3l/TAW+crmPil3q5gIXe+l3qMt1VBj3tmvdbOAyi3pOrZOovueLTM3bXcrFA1vd2j9jPi8E7rC6F4G/men/8nHNrnXp9/wArnUk8B+3a33K5fkYl7xkt7o3ueQ5+y5xa2u8l36d12wikGM+L3CrfwBoa1H3abd+893q/Rjo/a6PxjsaXYA+zr2DAAwis/z/meWPuKWnYPHjDVxtpldirBw7z0wXoC3GCrd5bnWSrb7gLbSku3whZgM3ADYz7xKLchO8aC7CMFBeAS4w81oC81y+LO8IVKO3a+JLUwD1x7loexFoZaYnAgtd8n5tUdeZdwr4BLjCTI8G7sUwBhTwQID3UhSwg2oj4DrzfRaMH95DZt5OINqHruQ63MfxGCOLCvg3cBUQ4fJevUq1gd3Cy3txymxjJGDHGJUfBhw289+06Pciqg2BvwOXmfUEwyfqIzNvF2B3q5tF9f37DTDYJc/1/n2FauPn15iGqtl+hkv/yq39/mZ6ufP+sND/mlnm1QCv91yzXgXGn4lYl+vxvqsm9/cT475eCowAEl3SO2I41CsMQ6WjRb/Oa3Yaw/AZaqbbMAx8p2G51uLz6vyT84zr9QDaYBhwSwK97/TReEejC9DHuXcQuEE0w+WLLtIlPQVrg+gPZvpHAWhKtvqCtyiX7vKFf4Uf5Sa4pae4nMtaQHxcnwOu+f5o9HZNfGnypz7Gj+0BM++fXuo6DdcsTCPRJc95zt4MkxfN/E8DvJfGU/0P3+P9wPgBd46M3WuRH4xB5Bwte9fqfTTLfGiW+b1buvO9KMbFEHHJd452lAJRbnlOg8JyJAvDSNxulrnVLS+LakPsAi/1O1M96neHRX488IO3e5FqA3Wal7rOkayUAK51c6pH3h63yI90OeeA309giVlvtkWe85qVeHmvrnHpd6hL+u1m2p5A7y19hOehfYg04cApl+eWvhFu5JuPbUSkvu7hj5RSO4Ns41llfnO68bT5eAnQM8g+QkUvDD1gGAJWzDUfL8IYKbBivlKqzCL9XfPxigB13eqsb/V+KKV2AW+bL28PsO3auNt8fMHL+wjwT/PxOi/5byulDlqkr8L4MY2m+rojIrEYqy8B5ls1qJQqp/qcvfX7qlLquJe8WzAM4MMu+l3bPwO87KUuwD/Mx3ss8sZhOLJ/B6z30YY7I4FmGAbiQgtNZ/FyPfzkffNxiI8yb1q9V0qpzwBnmIZbXbKc30PxIhIXhDZNmKANIk244e2Hx5WPMUYFegPpIvJrEWkXYh0ZQdY/C2yyylBKHQCOmS97B9lPqHDqOGEaGR4opfYBR93Ku/Oll3RnvZZ11PWZjzKf1qIpYExn6fbmy7dMx3KPg+ofb0vnarxcD/MHPsd86XpN+mKMAAF84aPfR2rp19f9e5X5uMmHobfRR/3XMAyXniLifs3vNR+X+Wjbl6btSilvKwJ9aUJEEkTkjyLyXzEWWlS4OIb/2yzm63si3Uee07hzPd8vMHzI2gIZIjJJRDr50qgJb3QcIk044PqDcMprKROl1EERuR9YhOGPMQyM1SLAauBvSqmvg9R0Isj6J81/8t44ivFF6i0oZUPj1HHUZyk4ghEmwZvuAi/ppeZjoN85/ug6Yj4miogE+EPsjbYWGnzhbYTA2/WA6msS6aXfC4Lo19f928p8POajzA/eMpRSp0TkHQzH63swnMYRkcsxRg4dGD5KgRCUJrPvT6l5zVwdo6Mwvmea+Wjf1z3mzKu6F8zrMB5jgUcPIM3U8iPGdPlSpVQgo2SaRkaPEGnCgSvNxyPmP+daUUotBTphOFW/h7EiJxmYAmwTkceD1FQZZP3akHpuv65EN7YALzS0LtfvxnillNRyJIe431N+9CnKLfCpC77u31Dce383H+8QEed74xwdWquUOmJRxxf+aPJl6C7DMIa+wlgIcZ5S6nyl1AVKqSSqpyHreu6W9ZRS/8H43pkEvIlhtCUBd2GMXv+tjv1pGgFtEGkaFRGJwlgtBLUMibujlDqulFqglErF+OfWH2NoXICnRKRHSMUGRivz3LzhHAlw/SdfFUlZRGK81PMaDyVInDo61lLOOY0U7Aiavzj7uchHGaem3BCNDkH1nmcAl4eozUD6bSkiSfXUh/OatvVRxlceSql04CCGz98vRCQCY7UaGKu96kOT5XSXiHTE+OxXAr9QSq2xmHbzZ7TN13Sa1ecVMHyulFJ/V0qNVUpdiOHo7zQYfyMiP/ejb00YoA0iTWPzG4wlqlC9CWfAKIMvMf4JHsG4t4e6FHE4n4hIQ4zORAKDrDJE5BKqv3y/csk67fK8Pdb089Gn8xzrcn5OHc1ExNJhWkQuxZgucy1f3zj7ucZHGWfAyJBpUsamw07j5JehatcPtlJtGNdXv87p5CE+PgvD/Ghnifl4L0bU+QswRmrfC0JTLxFpHqCmKiNduW3/48LP/NAw3I+8Wu8xpdRupdQkYLMf7WrCCG0QaRoNERkJ/Ml8maGU+tDPel5HXpRSlRgOzVBzmiXf5XmLQHQGwQwvPzgzzMcDGEuYATD/1WaZL0e7VxKRRIzgcd5wnmNdzm87xj9+AG/TjXPMxyxgSx36qAvO1VQ3ishV7pki0p3qlT9vhrjv5ebjAyLSzVshMzJzSEbulFIFVG9jM1NEvI5siEiED+PBF+9iTD91wGJlnhgRxaf40c5yDOPteuAxM+21WnznvLEWI3ZXDPCghaYIqjfqdce5wfIFItLGPVNErsTwd6qNsSLS2aL+1VSvTnvLJd3XCDAY/ksQvtPQGje0QaRpUEQkXkRGisg/MaLSxmIs/73Vd80aPCMib4tIqrhsYSAiF4jIQgzfIgWsc+YppU5T7ZRptVw41BRjjFwscX5Ji7kVCNW+FnMspnicP+ozRcQ5FYGIDMRYXefrS9i5OuyXgf5Amzpmmi9Hi8iLpgGGiCSa1/VXTm1KKYdVO/XAGxgBBgHeFZGfOY1MEbkW4x6KxDj3Oo8weuE54HsMR9z1InK3qwEiIh1E5DfANoyl7KHiMapXL/1XRG5x8dNBRC4RkenAHoxVaQGhlPqO6mv1DxG5w+U+uxwj8GOty8iVUj8CH2D8jgw0k+syXeY0BF8wX/6viPzWDEHgnBJ7G+NzbcUejFFhAd4wR2ARkUgR+SXG94A/e9mVAx+JyGCzvk2M7YScRvk6pZTrytH7RWSNef2qpvrMz/njGDG/ANb40bcmHGjsQEj6OPcOqgMPllNzCwnX7RYUxhTPG3iPeJuCdRDBv7i1cwZjdMQ1zSq421yXfOdoTBYw3aVMOrUEN/RVjppbd0x3Oc88am7dschLuy2p3jLEGbjPGbDuEIafhrfAjF2p3r7kLMbKmCzg89quqUu+69YdlRa6a9u6I9lLfrKzTB3uJ3+27ri0Lrr87Hu32zXJpeY2Ggq425/7w62M85xSLPL6me+fs/2zwEmqI347j+H+tulWrgXGNJXrfXbafF6AYfwqoKyWdn7u0sbWIL83ojCMB2d75eb953x+i0teW7e6t7jdp/kun4XaPjfOa+a+dYfre+yxdQfVn2/X75RTbmlpwVwTfTTsoUeINPVJJIZfwQUYy2rLMP5xrwKewNjHaaxS6mSA7b6AsUfUe8B+jH+G0RgjTW8AVyulnrGo9yTwKMaIg2A46l5EPU2hKaX+AvwCI4aJDeNHZzPG1hcPealzChiMsWfUD2a9XIxIz72pXmJuVXcvRqC+1RhGYhLG+XnzR7JqYyaGk/t7GD/Azc3+VwE/U0rN8FG9XlBGsLyeGO+fa3DGncBTQA+l1P567Psq4AGMWEh5wPkYU0XfYLwvw4EVIe73SwwD91GMoIAFGPdpCYaf0fNAP1XHZd3KGDEdgnH9DmJ8HkoxAjX2xxh1gZp+bVasxjAcoI6jQy6ayjEMrN9hvLcODCPnfYztelxjUZ12q/tvjBHZdRjXKhLDEJqH8f75s+rtIMaI21KMz48dw1j6M9BXKeUeEuD/MHwg38C4XmcxPi/HMD4vo5VSk/3oVxMmiGnpNp4AkfYYH/q+GF96sUAnpVSWRdluGF+K12AMY2cDLymlFriUsZntTcb4QdgHPKmU+pd7exqNRqPxRETuw4hIvV55X9qPGLvQf45hTLU1Da360nQtxrTxIRW6MAfO+GUXAdcoY/Wc5idKOIwQXYLh2HcKH8uuRaQvRmTQaIyhzVEYlrvdrehTGM6fi4AbMf6RvyUio0ItXKPRaM41TGfhaebLdb7KUu18/VZ9GkMmzujctWnSaOpEOIwQ2ZTpoCkiEzHiN9QYITJHfb4F9iulvDovms6rh4HnlFKzXdI/AVorpRozLo1Go9GEBaaj8lyM6aGvlFJFprN6P4zpuBSMaaOuynCetmpjJMbmtnaMKaVtQWqyY0w//QNj1ekZM727qXUMxrRUH6XUt8H05dZvFnqESEMYbN2h/FutkoIRHK22paAjMRzzXnNLfw1YKiKdlBFfRKPRaH7KRAETzAMROY2x5N0ZELQUw9fNwxgyDYhYquOHrQjWGHI2jWH0jDH7ycf4jXKueHMAD4XSGNJoXAmHKTN/cAbYixGRzSJyVkRyRGShc2mmSXcMx133HYudy5EbMuKsRqPRhCs/YDgvr8FwPo6iejVVGoaj+gde6l6EERn+CIbbQqgchysxnNffw1h8YcMYfTqE4bTeTymlt8LQ1BuNPkLkJ86ovm9g+AY9huGE/SRGcDHnNFoCcFp5zgPmueRrNBrNTxqlVDEw3zwCrVsvkd7N7+2/mkeDEUoHbU3TpqkYRM6RrNeUUrPM5+nmnPNzInK5Umo3xpCrlVOUzw+wiEzC2JyPZs2a9enatWuIZGs0Go1GowmGbdu2nVRKta7vfpqKQZRrPrqvLliLEU22F0bwtDyMTRHFbZSopfmYhwXmMOzfAPr27au2bt0aKt0ajUaj0WiCQEQONUQ/TcWHyOkD5D764xz5cbiUiwYudivn9B3aHXppGo1Go9FomjpNxSD6CMNZ+ga39JHmo3NIZzVGiPc73cr9GtipV5hpNBqNRqOxIiymzETEubFnH/PxRhE5AZxQSq1XSuWKyLPAH82lmJ9iOFXPAl4xw+ujlMoRkRcwdhkvAL4CxmKEdPfYPVyj0Wg0Go0GwsQgAt5ye/2S+bie6h2Dn8TYo+YB4PcY+8X8CSMytStPYGyyN43qrTtuV0q9H3LVGo1Go9FozgkaPVJ1uKGdqjUajUajCR9EZJtSqm9999NUfIg0Go1Go9Fo6g1tEGk0Go1Go/nJow0ijUaj0Wg0P3nCxalao9FoNHWkrKyMvLw8CgoKqKysbGw5Go1X7HY75513HgkJCURHRze2nBpog0ij0WiaMGVlZWRnZ9OyZUuSk5OJjIxEpF62G9NogkIpxdmzZ8nPzyc7O5uOHTuGlVGkp8w0Go2mCZOXl0fLli1p1aoVUVFR2hjShC0iQlRUFK1ataJly5bk5VnuptVoaIOoCVGYmcnxzz5rbBkajSaMKCgo4Pzzz29sGRpNQJx//vkUFBQ0towaaIOoCfHNE0+wZeJETm3f3thSNBpNmFBZWUlkZGRjy9BoAiIyMjLs/N20QdSEKDl2DIDjn37ayEo0Gk04oafJNE2NcLxntUHUhDibnw/AiY0bG1mJRqPRaDTnFtogaiIopaoMotPffktZmDmjaTQajUbTlNEGUROhsqgIHA7jhVKc/PzzxhWk0Wg0Gs05hDaImgjO0SEnOXraTKPRaGowZ84cRISsrKyQtLd06VJEhC1btgTVzrZt2xARlixZEhJd/pKXl0dCQgIPPvhgUO0UFxeTlJTE+PHjvZYJ9bVvDLRB1EQ4ay5PtMXEAIYfkVKqMSVpNBpN2LN8+XJExOeRnJzsUa+wsJCZM2dy8803079/f4/8vLw8pk+fTnJyMtHR0bRr1457772XI0eOeJTt06cPqampzJw5k8LCwoDPoTb9IkJ6erpHvVmzZlFSUsLjjz9eI/3IkSM8/fTT3HbbbVxyySXYbDZEhIMHD1r2HxcXx4wZM1i5cmXQxmE4oyNVNxGcI0Txl19OydGjlB4/Tv7evcR369bIyjQajSb86dmzJ6mpqZZ5LVq08EhbuHAhx44d47HHHvPIy83NZfDgwezfv58RI0Ywbtw49u7dy7Jly/jwww/JyMigc+fONerMmDGDAQMGsHDhQg8DxV9mz57tNc/dqMvOziYtLY177rmHCy+8sEbe1q1bmTlzJiJCp06diI+P5/Tp0z77njx5MnPnzmXmzJmsXbu2TvrDHW0QNRGcBlFkfDzNO3fm8Ntvc2LDBm0QaTQajR/06tWLOXPm+FW2srKSl19+mS5dujB48GCP/Mcff5z9+/fz8MMPM3/+/Kr0hQsXMm3aNB544AFWr15do07//v3p2rUraWlpPProo9jt9oDPwV/9AGlpaVRUVDBhwgSPvL59+7JhwwZ69uzJ+eefT0pKCuvXr/fZXkxMDGPHjiUtLY0DBw7QpUuXANWHP3rKrIlQZRCdfz5trr4agJwNGxpTkkaj0ZyTrFu3jsOHDzN27FiPvKKiIlasWEGzZs2YO3dujbyHHnqI5ORk1qxZw/fff+9Rd9y4cWRnZ/Pxxx/Xm3YwViUvW7aMDh06WBp07du3Z9iwYQFHOB83bhxKKZYuXRoqqWGFNoiaCBUuBlGrIUPAZiNv2zYqiooaWZlGo9GcWzgNlqFDh3rkZWRkUFJSwpAhQzjvvPNq5NlsNq6//noAPrPYZmnIkCGAYXDVJ7t27eLYsWNV/YWK/v37ExkZWe/6Gws9ZdZEqBohOu88olq0oGXPnpz6+mtObt5M0rXXNrI6jUYTjsy7ML6xJfjF74+eqfc+tm/f7nXKaeDAgdxwww1Vrz83w5r07dvXo+y+ffsAuPTSSy3bck4l7d+/3yOvX79+AGyo4+i+N/0xMTE1fJ186Q+G2NhYunfvztdff01BQYGHQdjU0QZRE8G5yizSHOJsPWwYp77+mhMbNmiDSKPRaGphx44d7NixwzJv2rRpNQyi7OxsIiMjSUxM9Ch75oxhvMXHWxubznQrJ+X4+HhiYmLIzs4OWD/gMUXn2q6rQeRsv23btnXqxxdJSUls376do0eP0rVr15C335hog6iJ4BwhinAxiPYvXKj9iDQajVcaYuSlqXD33XezfPlyv8rm5ubSsmXLOvXjDIfiba+uhIQEjh8/XvU6KyvLUpfVaJC/oVZyc3MB6nwOvkhISADg5MmTIW+7sdEGURPB1akaoEWPHkTGx1OcnU1RVhbNLOJoaDQajSZwYmNjKS0ttcxzjgA5R4rcyXeGSPEyglRSUkJsbGzV66ysLMuRn0BWlLnjbN/bOQRDSUlJjT7OJbRTdROhws0gskVEGM7V6KjVGo1GE0ratGlDfn4+Z8+e9ci77LLLAGsfIYADBw4A1j5GDoeD06dP06ZNm6q0lJQUlFIeR7D6oXqkKJQ423Q9h3MFbRA1EVydqp04l9+f0AaRRqPRhIwePXoA1Q7UrgwcOJDY2Fg2bdpEgenb6cThcFQFLbzmmms86u7btw+lFL169aoH1dU49e/duzfkbe/bt4/ExETat28f8rYbG20QNRHcnaoBWptLQk9mZOAoL28UXRqNRnOukZKSAsDmzZs98po3b8748eMpKirymNZatGgRWVlZjBw50iNStWt7VsZSKBk2bBh2u91SfzBkZmZy/PhxUlJSvPpINWW0D1ETwd2pGiC2bVvOu/RSCvbvJ2/bNloNGtRY8jQajSas8bXsHmr67KSmpjJ9+nTWrFnDxIkTPco+88wzpKenM3/+fLZv307//v3Zs2cP7733Hm3atGHx4sWWfaxduxa73c7o0aPrdA6+9KemplaNPMXHx3PttdeSnp7OqVOnLJ2rXSNYO0eSHn300aql9BMnTvSIw+Qc/RozZkyd9Ic9VnOXDXkA7YEXgQygGFBAci11ZpjlPrfIs5n5WUApsAMY46+ePn36qHDD4XCoVZdcolZ17qwqy8tr5O18+mm1qnNnteu55xpJnUajaUx2797d2BLChtmzZytAZWZmVqUtW7ZMmb8XPg93UlNTVXR0tMrLy7PsKzc3V02dOlV17NhRRUZGqqSkJHXPPfeow4cPW5Y/ffq0iomJUaNHjw74vPzRv2zZshp13n33XQWol156qU5turenlFKDBg1SrVu3VmVlZR55Vte+Nvy9d4GtqgHskXCYMrsEuB04BdTqDCMinYEngBwvRZ4C5gCLgBuBzcBbIjIqFGIbg8qiInA4sMfFYYuMrJHXZvhwQPsRaTQajRUTJkzw9895DR555BHKysq8LtVPSEhgwYIFHDp0iPLyco4dO8bSpUu9+ta8+uqrlJaW8rvf/S7gc/BHv/ueZTfddBPdunUjLS3N8vwCbe+bb74hIyODqVOnEhUVFfA5NAXCwSDaoJS6QCk1CnjLj/J/BVYCe9wzRKQN8HvgOaXUPKXUZ0qpycBnwHOhFN2QuC+5dyWhb19sMTHk79lDaY43G1Gj0Wg0gTB48GBuu+02nn/+eYqLi4Nqq6SkhGeffZYxY8YwbNiwECn0jd1uZ968eezYsYN33nkn6PZmzZpF+/bt62TQNRUa3SBSSjn8LSsidwC9MabErBgJRAGvuaW/BlwpIp3qJLKRqXKotgiTbo+OptXAgYAeJdJoNJpQMm/ePKZMmUJmZmZQ7WRlZTFp0iTmzZsXImX+MWrUKBYsWBB0PKLi4mKuuuoqVqxYcU7GH3LSZJyqRaQl8ALwB6VUnhcP9+5AGXDQLX2X+Xg5ENyd3QhYOVS70nrYMHLS08nZsIEO56qzm0aj0TQwHTt2DCpAopNu3bqFpJ26MHXq1KDbiIuLY/bs2SFQE940GYMI+BOwH1juo0wCcFp5TpjmueR7ICKTgElgfADCDV9TZmD4Ee166ilObNqEqqxE7PaGlKfRaDRhgXO5fIsWLRpXyE+Qc+HaNwmDSESGAXcBvS2MnRpFMTzkrdK9opT6G/A3gL59+wYXIrQeqM0gapacTGz79pQcOcLpnTtp2bNnQ8rTaDSasCAlJaXqh1nTsJwL177RfYj8JA1YAhwRkRYi0gLDmLObr6PNcnlAS/GcT2vpkt/kcN+2wx0RqY5arTd71Wg0Go0mYJqKQdQNmIKxNN95DAEGms/vN8vtAqKBi93qX24+7q53pfWA1bYd7rQ2Vy7kaINIo9FoNJqAaRJTZoBVnPO/AHbgt1Q7Ua8GyoE7Adftg38N7FRKNTmHarDetsOdVoMGIRERnN6xg7P5+T7LajQajUajqUlYGEQicqv5tI/5eKOInABOKKXWK6XSLeqcBiJc85RSOSLyAjBDRAqAr4CxwAigbrHSw4DaVpmBMXrUsndv8rZs4cR//0u7G25oKHkajUaj0TR5wsIgwjMg40vm43ogJcC2ngAKgWlAErAPuF0p9X4wAhuT2pyqnbQZNswwiNav1waRRqPRaDQBEBY+REop8XKk+KiTopQaapFeqZTNsrTxAAAgAElEQVT6X6XURUqpaKVUD6XU2/V6AvVMbU7VTlqbjtU5GzdahmrXaDQajUZjTVgYRBrf+ONUDRB/+eVEJSRQeuwYhQfdY1NqNBqNRqPxhjaImgD+OFUDiM1WY5RIo9FoNBqNf2iDqAngj1O1kzbm8nsdjyh4jpw6wuo9qxtbhkaj8ZM5c+YgImRlZYWkvaVLlyIibNmyJah2tm3bhoiwZMmSkOjyl7y8PBISEnjwwQeDaqe4uJikpCTGjx/vtUyor31joA2iMEcp5feUGUDroYZbVe6WLVQGuaHfT52blt3EAx88wLIvljW2FI1GU0eWL1+OiPg8kpOTPeoVFhYyc+ZMbr75Zvr37++Rn5eXx/Tp00lOTiY6Opp27dpx7733cuTIEY+yffr0ITU1lZkzZ1JYWBjwOdSmX0RIT0/3qDdr1ixKSkp4/PHHa6Rv2rSJP/zhD/Tr14/WrVsTHR1Np06dmDhxIgct3C3i4uKYMWMGK1euDNo4DGfCZZWZxguVRUXgcGCPi8MWGVlr+ehWrYjv3p0zu3aR+8UXtBk+vAFUnnvk5OeQX5mPiLA4YzH3DLinsSVpNJog6NmzJ6mpqZZ5VvtvLVy4kGPHjvHYY4955OXm5jJ48GD279/PiBEjGDduHHv37mXZsmV8+OGHZGRk0Llz5xp1ZsyYwYABA1i4cKGHgeIvvjZYdTfqsrOzSUtL45577uHCCy+skTdmzBhOnDjB4MGDufPOO4mIiCAjI4MlS5bw+uuvs27dOgYNGlSjzuTJk5k7dy4zZ85k7dq1ddIf7miDKMzxd8m9K62vvpozu3aRs3GjNojqyJItS3DuAJN3No/tR7bTq32vRlal0WjqSq9evfzecb6yspKXX36ZLl26MHjwYI/8xx9/nP379/Pwww8zf/78qvSFCxcybdo0HnjgAVavrjnd3r9/f7p27UpaWhqPPvoo9jpswu2vfoC0tDQqKiqYMGGCR97DDz/M+PHjadeuXY30Z555hieeeIJJkybx7bff1siLiYlh7NixpKWlceDAAbp06RKw/nBHT5mFOVUO1X5MlznR+5oFz9r9xj8gpRQiwpy1cxpXkEajaTDWrVvH4cOHGTt2rEdeUVERK1asoFmzZsydO7dG3kMPPURycjJr1qzh+++/96g7btw4srOz+fjjj+tNOxjfW8uWLaNDhw6WBt2jjz7qYQw502NjY9m5cye5ubke+ePGjUMpxdKlS+tFd2OjDaIwJxCHaictr7qKiObNKfzuO4qPHq0vaSHlL+l/ocv/68JHuz9qbCkAZBdkA9D/AsN34JsT31BYFvjcv0ajaXo4DZahQz1C3ZGRkUFJSQlDhgzhPLc/qjabjeuvvx6Azz77zKPukCFDAMPgqk927drFsWPHqvrzFxEhIsKYOLIawerfvz+RkZH1rr+x0FNmYU5dpsxskZG0GjSIH9et48SGDVz0q1/Vl7yQkfZlGg6bg2c/e5YbL7+xUbWsP7ge7OCodLD8V8u5Yv4VYIdnP36Wp3/+dKNq02gC4e4lAxpbgl+8ct8X9d7H9u3bvU45DRw4kBtcovt//vnnAPTt29ej7L59+wC49NJLLdtyTiXt37/fI69fv34AbKjj6L03/TExMTV8nXzp98Vbb71FQUEBAwcOtPSrio2NpXv37nz99dcUFBR4GIRNHW0QhTl1MYjA8CP6cd06cjZuDHuDaM+PeyijDEE4UngEh8OBzdZ4g5evbXsNgMToRGIiYxiRPIJPDn/CO7vf0QaRRtNE2bFjBzt27LDMmzZtWg2DKDs7m8jISBITEz3KnjlzBoD4+HjLtpzpp0+ftsyLiYkhOzs7YP2AxxSda7uuBpGz/bZt2/rddmZmJr/97W+JiIjgz3/+s9dySUlJbN++naNHj9K1a1e/228KaIMozPF32w53nH5EJzdtwnH2rF8r1BqLhRsXVjkwi13497f/ZkzPMY2m58ujXwIwuKMx9/7kjU+y7uV1lNvKWbVzFb+44heNpk2jCYSGGHlpKtx9990sX77cr7K5ubm0bNmyTv04t01yfqe5k5CQwPHjx6teZ2VlWeqyGg3yd0smp/+Pv+eQk5PDjTfeyIkTJ1i8eLGl35GThIQEAE6ePOlX200JbRCFOYHEIHIlrn17mnXqRFFmJqd27CAxwKHThmTjISOqtqPSgc1u4/+++r9GM4gKywo5U3EGm83GhH4TAEg6P4lO53XiUNEh5q2fpw0ijeYcJzY2llIvcdycI0DOkSJ38s3vbG8jSCUlJcTGxla9zsrKshz5CWRFmTvO9r2dgys5OTmMGDGCffv2sWDBAh544AGf5UtKSmr0cS6hnarDHH+37bCiKaw2O5R3iGJVjFKK1EuNGCHfnvi2llr1x4ovV2Cz2ZBKoXeH3lXpj11jDEcfLjrM4VOHG0ueRqNpANq0aUN+fj5nz571yLvssssAax8hgAMHDgDWPkYOh4PTp0/Tpk2bqrSUlBSUUh5HsPoBy5Virhw7doyUlBR2797N4sWLmTp1aq1tO9t0PYdzBW0QhTl1WWXmpLW5jUdOGBtECzcY02WxEsvM62aiHIpKWyXf/tA4RtH7e94H4OKWF9dIv77r9cQQg81mY9bqWY0hTaPRNBA9evQAqh2oXRk4cCCxsbFs2rSJAvMPqxOHw1EVtPCaa67xqLtv3z6UUvTqVb8xzZz69+7d67XMkSNHGD58OHv37uXll1+udWTIyb59+0hMTKR9+/Yh0RpOaIMozKmrUzVA4oAB2KKiOLNzJ2W1/FNoLD79/lMAhnYcSmLzRM6zG1ODf8v4W6PoOZBn/Lu7qetNHnm3X3E7ABuyN1BRWdGgujQaTcORkpICwObNmz3ymjdvzvjx4ykqKvKY1lq0aBFZWVmMHDnSI1K1a3tWxlIoGTZsGHa73VI/GE7Xw4cP57vvvmPJkiVMmjTJr3YzMzM5fvw4KSkpXn2kmjLahyjMqatTNUBEXBwJ/fpxctMmTmzaRPtfhJfvS05+DmcqzoDAQ0MfAmBQh0Gsy17H54c+b3A93/7wLQ67A+VQ3NXvLo/8R699lFd2vILYhUUbFzE9ZXqDa9RoNHXD17J7qOmzk5qayvTp01mzZg0TJ070KPvMM8+Qnp7O/Pnz2b59O/3792fPnj289957tGnThsWLF1v2sXbtWux2O6NHj67TOfjSn5qaWjXyFB8fz7XXXkt6ejqnTp3ycK4ePnw4WVlZ9OnTh0OHDlm2O2HCBI/tQJyjX2PGNN6il/pEG0RhTl2dqp20ufpqwyDasCHsDKIXP38RsQmRKpIr210JwKRBk1iXvY7TFac5U3KG+Fhrx8T6YNkWYxPX5vbmlv3GRMbQ+4LefH3ya5Z/tVwbRBpNE8LXsnuoaWy0b9+em2++mffff9/SoEhMTCQjI4O5c+fy7rvvsnHjRhITE7nnnnt48sknLaeTzpw5w7vvvstNN91Ehw4d6nQO3pbdg7GXmetU3AMPPMDatWt5/fXXuf/++2uUde5Iv23bNrZt22bZXkpKiodB9Morr9C6detz1iDSU2ZhTjBO1VDtR3Ri40aUwxEyXaFg9X5jr5/+7ap3ku7doTc2hw2bzcbfM/7eoHqco1J923lfkffUDU+hlCK/Mp8vDuklzRpNuDNhwgRLp+XanJgfeeQRysrKvC7VT0hIYMGCBRw6dIjy8nKOHTvG0qVLvfrWvPrqq5SWlvK73/0u4HPwR7/7nmU33XQT3bp1Iy0tzeP8/GnPOW3o5JtvviEjI4OpU6cSFRUV8Dk0BbRBFOYE41QNcN6llxKTlETZyZPk+3Cwa2jOlJzhZLkRx2LKoCk18i5vdTkAH+z9oMH0lFeUc6L0BAC/7vNrr+W6JXWjVVQrRIQn1z3ZUPI0Gk0DM3jwYG677Taef/55iouLg2qrpKSEZ599ljFjxjDM/JNa39jtdubNm8eOHTt45513gm5v1qxZtG/fvk4GXVNBG0RhjFIq6CkzEQnL1WYvbXoJm82G3WFncOeaQcB+1dOIrJ1dkI2jgUa13tnxDja7DVWpSLkkxWfZBwYaqzF25+7mTIl1LBKNRtP0mTdvHlOmTCEzMzOodrKyspg0aRLz5s0LkTL/GDVqFAsWLPArHpEviouLueqqq1ixYsU5GX/IiTaIwpjKoiJwOLDHxQUVabq+4hFVlpay/8UX+e4f/wi4rnN5e88Lenrk3drrVlSlQuzCqp2rgtbpD29/+zYAHZp3qHXbkLv63WVM69ltPLlGjxJpNOcqHTt2ZM6cOXTv3j2odrp168acOXM8fHIagqlTp3LnnXcG1UZcXByzZ8/2mEY719BO1WFMMEvuXWk1ZAjYbORt20ZFYSERzZsHrS1/716+mj6dAjMIWeLAgbS44gq/6haXFXOs+Bg2u41JAzyXe0bYI2jXrB3HSo+x8uuVpPZIDVpvbew8sRMEftblZ7WWtdlsjLx4JB9lfsQH+z/gz3jf90ej0TQczh9sq41JNfXLuXDt9QhRGFPlUB3kjsJR8fG07NkTVVHBSS9xKfxFKcX3y5ez8ZZbKDhwAJvpXJf12mt+t7HkiyXY7EY06Ou6XmdZZuSlIwH45vg3Qen1h8OnDlNOOUop7htwn1915o6ci8PhoMJWwRtfvVHPCjUajT+kpKQwZ86cJv2j3FQ5F669NojCmGAdql1p7Zw227ixzm2UnTzJlvvuY9dTT+EoL6fjuHEMNZ31jq5aRbnF7s5WOKennM7TVkweOBnlUJyVs+z5cU+dNfvDks1LEBGiiaZdfDu/6iQ2T6RLfBcAFmxaUJ/yNBqNRtMAaIMojAnVlBlU+xHV1bH6+GefkT5qFDnr1xPZogV9X3qJnk8/TXy3brQeNgxHWRmH33671nbKK8rJLswG4O6+d3vXe34bmtmbISK8nPFynTT7yyfffQLAlW2uDKjeE9c+AcCPJT/y3cnvfJYtfe8dHGEaLVyj0Wg0ARhEIrJDRO4XkeDmbzzbbS8iL4pIhogUi4gSkWS3Mn1F5G8istcsky0iK0Wkk0V7NhGZISJZIlJq6m6SUaRCaRC1uPJKIlu0oDg7myIzKJc/VJaVsfPJJ9kycSLlubkkDhzI8A8/pO3IkVVlksePByBr5cpaYx29tvW1qtVct1x5i8+yg9oPAmBjVt1HtWrD4XBwtOgoALf3vD2gusMvGU6cxCE24Y8f/dFruaIX/szRiS+Qe+e9QWnVaDQaTf0RyAjR5cAi4AcR+buIeI9eFxiXALcDpwBvv3zjgO7AQuBG4DGgN7BVRNxDfj4FzDG13ghsBt4SkVEh0ttgBLNthztit9N6sLG83d9Rovx9+9h4yy1kvvIKEhFBtz/8gUGvvkpsUlKNchekpBB74YUUZ2eTs369zzZf3/46AF1adql1NddvBv4GgFNnT1FQUuCzbF35eP/HiF1wVDpIvTJw5+07exqrNzb/sJnyinLLMvkrPwSg6NucsAuOqdFoNBqDQAyi9sAfgRPAfcAXIrJVRH4jIs2C0LBBKXWBUmoU8JaXMs8rpYYopV5SSq1XSv0fcAPQEviNs5CItAF+DzynlJqnlPpMKTUZ+Ax4LgiNjUKwMYjcaT18OFC7H5FSiswVKwzH6X37aJaczNC33uKSyZMRu92jvNjtJJvLOn05VzscDg6eOQjAnb1qXwba76J+2CqNqNX/2Bz40n5/WPnVSgAuiL2ACHvgiy7/J+V/qkIEzE+f75FfmX2I4uwy43l5BGfXfxqcYI1Go9HUC34bREqp40qpZ5RSnTFGXt4FegAvY4wavSQivXw2Yt1urX+ZlVInLNIOYRhnF7okjwSiAPdf5deAK62m2MKZYLftcKf10KEAnMzIoLKszLJMWW4uX06axM45c3CUldHhttu4etUqWvTo4bPtDrfdhi0qipz16ynKzrYs869v/oXYBVWpuKPPHX5p7pbYDYD3977vV/lA+erYVwAMS65b9NioiCgGXWhM7a3csdIjv2jxYlDVH7OSdxomrpJGo9FoAqNOTtVKqTVKqTFAB4xRo5PAZGCbiGwWkQkiEhNCnR6ISDegDeC6BKk7UAYcdCu+y3z0vqwpDAnlKjOA2KQkzrvsMipLSjhlsaFfzsaNrP/5zzn+6adEnn8+fRYtotdzzxHRrPYBwOiEBNrddBMoxaGVnoYBwKtbXwXgovMu8ns05raetwGQlZ8V8qjVp4pPUVRZBOD3cnsrnrzhSZRDUayKWX+w5pRhwX+MMAcxbYzXxV/srHM/Go1Go6k/glplppQ6DjwL/A/wAyBAf2AJcFhE6mU7cBGJwBiZOmH25SQBOK08d+rLc8lvMoTSqdpJG4ttPCrLytj19NN8MWECZSdOkNC/P8M//JB2N94YUNudTOfq7LfeoqKkpEaew+Fgd+5uAG698la/2/xV71/hqHQgduHD3R8GpKc2ln+xHLEJdoedrhd0rXM7F7e6mKRYw6/q6Y+frkqv2L2T0h8dIA5a/fkxAEqzS1FeRuc0Go1G03jU2SASkQtFZDZwCHgHSAJWAakYjs2VwJ9F5KlQCHVjETAY+LVS6pSrLMBz22Ij3SsiMsn0h9p64oTH7FyjEUqnaifu8YgKDh7k8zFj+H7pUsRup+vvfsfg114jtp1/8XhcadGjBy169ODsmTP88EHNjVnX7lsLdnBUOrhvoP+jMRH2CNrFGVpe+8r/4I/+8J99/wHgsoTLgm5r2pBpABzIP0BuobG8vnDRXwGhWXIM0Tf8nIi4ChyVdso+rJ/pP41Go9HUnYAMIjEYJSLvAZnAbCASeAborJRKVUqtUkrNAboA2zAcsEOGiDwLTALuVUqtdcvOA1qKiLsB1NIl3wOl1N+UUn2VUn1bt24dSrlBEWqnaoCEvn2xx8aSv3cv+xcvZsPo0eTv2UNcx44MefNNujzwgKXjtL8k/9rYKT5rxQpcB+r+8YXhFN0urh0xkYHNpl7f5XoAdhzfUWddVmSeMTZs/EX3XwTd1tjeY4lwRGCz2Zi9ZjYAhZ9sB6D5LSMAiLusFQAl738UdH8ajcaTOXPmICJkBRBaxBdLly5FRNiyZUtQ7Wzbtg0RYcmSJbUXDiF5eXkkJCTw4IMPBtVOcXExSUlJjDdnAawI9bVvDAKJQzQTwwh6H7gZ+C/GcvgOSqk/KqUOu5ZXShWYZS8IlVgReQJjyf00pdQKiyK7gGjgYrd0p+/Q7lBpaQhC7VQNYI+OJnHgQAD2zZ+Po7SU9r/8JcPff5+WvQL2ifeg3U03EdmyJWd27eL09u1V6TtyDGNm9OWjA25z8uDJKKUop5z9OfuD1gjw5aEvUXaFw+Hgzt7BbXzo5ObLbgZgzXdrKNu0kbI8G2KrJG7K/QDEXmNc95JtB0LSn0ajqZ3ly5cjIj4Pq01XCwsLmTlzJjfffDP9+/f3yM/Ly2P69OkkJycTHR1Nu3btuPfeezly5IhH2T59+pCamsrMmTMpLCwM+Bxq0y8ipKene9SbNWsWJSUlPP744zXSN2zYwPjx47niiitITEwkJiaGTp068Ytf/IJPPvnEo524uDhmzJjBypUrgzYOw5lA1hk/CeQDLwF/VUr5Y1xsA16tizB3RGQq8L/AE0qpF70UWw2UA3cCc13Sfw3sVEplhkJLQxFqp2onF1xzDTmffUbEeefR46mnuPDmm0PWtj06motuv52DaWlkvvYaLa+6ik3fb8Jhc+BwOLh/8P0Bt5l0fhJxEkcJJbz835eZn+q5vD1Qln+5HIAWES2Ii44Luj2AP17/R/61919gh8//8gzJQLOu52Nrabiuxd4+FuavpvTHShz5+dhC/L5qNBrv9OzZk9RU61hjVvtvLVy4kGPHjvHYY4955OXm5jJ48GD279/PiBEjGDduHHv37mXZsmV8+OGHZGRk0Llz5xp1ZsyYwYABA1i4cKGHgeIvs2fP9prnbtRlZ2eTlpbGPffcw4UXXlgj79NPP+XTTz9lwIABjBgxgmbNmpGdnc2qVat4//33mTlzJk89VdPbZfLkycydO5eZM2eydq375Mw5glLKrwNjFVkzf8sHcgC3msdfMXyA7jdfDzfzxwEO4CNgoNtxuVtbzwGlGI7eKWabDuBmf7T06dNHhQMOh0OtuuQStapzZ1VZXh7StitKS9WhN99URUePhrRdJ0WHD6tVF1+sPujaVZWeOKHuXHGn6vynzqrfX/rVuc37/nmf6vynzqr3/N4h0dh7fm/V+U+d1eQ3JoekPSej/j5Kdf5/nVV6l/7qYKuhqnDRghr52RcPUgdbDVVFS/4e0n41P112797d2BLChtmzZytAZWZmVqUtW7ZMAeruu+/2u52KigrVoUMH1aVLF8v8SZMmKUA9/PDDNdIXLFigADVy5EjLel27dlUdO3ZUFRUVfmtRSinzdzGgOo8//rgC1KZNmzzySkpKLOscOXJEtWnTRtlsNvXDDz945E+ZMkWJiNq/f79HntW1rw1/711gq6oH28P9CMSHaA+Q6KuAiHQQkasDaNPJW+YxxXz9kvnaOcpzA4Zj9A1AhtvxkltbT2CMJE0D1gBDgNuVUk3Kk7WyqAgcDuxxcdgiI0Patj06mo633UZcHRyn/SGufXsuGDECR3k52W++yZc/fAnAqEvrHix84oCJAOSdzaOwLPAhZ1dKz5aSd9ZwJ7ur711BteXOrOtm0SnHTvtTUajICuLu/U2N/NgrjH9qJWt0gEaNJlxZt24dhw8fZuzYsR55RUVFrFixgmbNmjF37twaeQ899BDJycmsWbOG77//3qPuuHHjyM7O5uOPP6437WAMdCxbtowOHTow2NyhwJWYGGs/zgsvvJDBgwfjcDi86ldKsXTp0pBrDgcCMYg+AybUUuYus1xAKKXEy5Fi5k+orYxLW5VKqf9VSl2klIpWSvVQStW+62iYUR9L7hsSp3P1treXU2GrQDkUDw6ru2PfwE4DkUrBZrOxZHNwjon//OqfxrYhlTC4s+eXRTAMuGgAN+w0puA2d61EYmNr5MdeZ4Q9KNlxKKT9ajSa0OE0WIaawWxdycjIoKSkhCFDhnCe24IXm83G9dcbi0A++8zzp3DIkCGAYXDVJ7t27eLYsWNV/flLTk4OX3zxBdHR0Vx2mefq2/79+xMZGVnv+huLQHyIfC5ddyljtexdEyBVDtUhXGHWkLQeOpRmF13ExvOMH/4WkS1o3Ty4FXxdE7uy5/QeVu1ZxbTh0+rczr93/huA5PjkoPRYoSoqGLnb+Pf15uVnuPVsaY1VdbFjfwVz36AsV6g89gP2tvUzSqfRAPzpisO1FwoDHtnpviVl6Nm+fTtz5syxzBs4cCA33HBD1evPP/8cgL59Pbfs3LdvHwCXXnqpZVtdunQBYP9+zwUg/fr1Awyn5rrgTX9MTEwNXydf+l3ZunUrH3zwARUVFRw5coRVq1aRn5/Piy++SKtWrTzKx8bG0r17d77++msKCgo8DMKmTuCbN/mmI1A/u3D+xKgvh+qGQmw2Lvr1r/nmWyNQ4bUXXxt0m7deeStPbXyKzDOZOByOWjeH9cbe3L1ggxsuvaH2wgFS+vYbxBVHcqJ5BbsvquC5j59jzo1zqvJtrVoT00ooPSGUvvE6zab/T8g1aDQaT3bs2MGOHdahO6ZNm1bDIMrOziYyMpLERE8vkTNnzgAQHx9v2ZYz/fTp05Z5MTExZHvZ3qg23KfoXNt1NYic7bdt29Zne1u3bq3R5nnnnceyZct8Lq9PSkpi+/btHD16lK5d6x7QNhzxaRCJyCy3pBTPED8A2DGMoXHA56GR9tOmqU+ZAZxNuYqDJxX2SmFih8CX27tzR587mJs+F5vdxtp9a7mhW+AGzcGcg1RIBThgQv8JQWtyp/BVY3/ig5cplMCbu96sYRABxPbqROm6LEo+/lwbRJp6pSFGXpoKd999N8uXL/erbG5uLi1btqy9oAXKjL/m5beShIQEjh8/XvU6KyvLUpfVaJCz7drIzTWCw9Z2DlOmTGHKlCmUlpaSmZnJyy+/zF133cWmTZt4+eWXveoHOHnypF9amhK1jRDNcXmuMFZtpfgofxQjTpAmSM4Fg2jx10tRNqFLNpxd9Qlc5TkfHwhREVEkxSaRU57DK1++UieD6B9f/AMRIVZig57Cc0eVlVG4/TgQwbD7puDInEuZrYzVe1bX0Bo76mecWvcPinf/GNL+NRpNaIiNjaW0tNQyzzkC5Bwpciff/O72NoJUUlJCrItvYVZWluXIj7fpMX9wtu/tHNyJiYmhW7duLFiwgLKyMtLS0vjZz37Grbd6brNUYm7LFOvmH3kuUNucwzXmMQLDP2i5S5rrcTXGxqoXKaU8dw3VBEx9bNvR0KzPMjY67fk9HH7nHSqKioJu87ou1wGw/fh2y/yKkhK+mTWLI+++a60p09B0VdurgtbiTsnyJTjORhDZrIKOY+6iQzPj3/nznz1fo1zMLbcitkrOFtip2LfHqimNRtOItGnThvz8fM6ePeuR53Q2tvIRAjhwwAi8auVj5HA4OH36NG3atKlKS0lJ8RaOJij9UD1SFAg3mntYWgV6dG3T9RzOFXwaREqp9eaRDrwCvOuS5np8rpTao5QK7XbkP2HqY9uOhuTIqSMUOgpRSjGg2eVUFBZy5L33gm53yuApKKUoo4zvTn5XI085HGx/5BEOrVzJzrlzcbh9mVVUVvBjiTEqM67XuKC1uFP4urF/W/OhlyI2G48MfwSArMIsfjjzQ1U5adaMmHZRAJS88UbIdWg0muDo0aMHUO1A7crAgQOJjY1l06ZNFBTUdJl1OBxVQQuvueYaj7r79u1DKUWvEOwK4Aun/r179wZc9+jRowBERFhPIO3bt4/ExETat29fd4Fhit9eqUqpe5RSq+pTjKaa+ti2oyF58fMXERFiiKHvnUYsHvf9zepCu/h2xEkcIsJfN/21Rt6+BQs49oCZI6EAACAASURBVJGxT9jZ/HzyvvqqRv77O9/HZrehKhU3drsxKB3uOE6fpnCP4UTZ/H5j+76br7iZKBVl7G+2umaE2di+xr/MkvVfhlSHRqMJnpSUFAA2b97skde8eXPGjx9PUVGRx7TWokWLyMrKYuTIkR6Rql3bszKWQsmwYcOw2+2W+gHWr1+Pw+E5fvHdd9/x9NPGQpif//znHvmZmZkcP36clJQUrz5STZlQrzLThIimvsps3UEjTsWgDoNoe8MNRD/9NAX795P35ZckWuwLFAj9L+zP+qPrSc9Mr0o7smoVBxYtApuNhD59yPvyS45/8gmtBgyoKvPmjjcBaBvXts4r1LxR/LeXUZV2ols6iBpSHZv0l5f/ktf3vM5nWZ/VWBkXN3oUee/upmR/HsrhQEKsR6PR1MTXsnuo6bOTmprK9OnTWbNmDRMnTvQo+8wzz5Cens78+fPZvn07/fv3Z8+ePbz33nu0adOGxYsXW/axdu1a7HY7o0fXbZGJL/2pqalVI0/x8fFce+21pKenc+rUKQ/n6tGjR9OiRQsGDBhAhw4dqKio4LvvvmP16tVUVFTw29/+luuuu85SP8CYMWPqpD/s8RbCGmO7iwrgUpfXlX4cFQ0RYru+jnDZumPL/ferVZ07q6P/+U9jSwmYkwUnVafnO6nOf+qstmVvU0optWf+fLWqc2e19aGHgm7/8+8+V53/1FklP5+sCkoLVN7XX6sPunZVqzp3Vt8vX65OfvGFWtW5s/rk2mtr1Ov2p26q8586qyc+eCJoDe4cG3CtOthqqDo1ueZWIAWlBarTc8a1eGnjS1XpjrNn1fdJA9XBVkNV+eb/hlyP5qeD3rqjGl9bd9R2uJOamqqio6NVXl6eZV+5ublq6tSpqmPHjioyMlIlJSWpe+65Rx0+fNiy/OnTp1VMTIwaPXp0wOflj/5ly5bVqPPuu+8qQL300kse7f3lL39Ro0aNUh07dlSxsbEqKipKdejQQd16661q9erVXnUMGjRItW7dWpWVlXnknetbd2wANgLFLq/9OTYGbpZp3GnKTtWLPl+E2IQIRwS9O/QG4KJf/Qqx2zm2di2lLktO68KQzkOqolYvX/siX06ejKO8nIvuuIPku+6iZe/eRMbHU5SZSWGmsZ9vTn4OpaoUpRT3Dbwv6HN0pfLYDxR/XwIomj9Yc/Pa5tHN6dHamM9/4b8vkFtoOCRKRASxFzUDoOTtf4VUj0ajqWbChAl+/Ri688gjj1BWVuZ1qX5CQgILFizg0KFDlJeXc+zYMZYuXerVt+bVV1+ltLSU3/3udwGfgz/6J0yYUKPOTTfdRLdu3UhLS/M4v2nTpvHhhx9y6NAhiouLKSsrIzs7m7feeouRI0daavjmm2/IyMhg6tSpREVFBXwOTQGvBpFSKkUpdY1S6ojb61qPhpN/7tKUnar/s+8/APRp26cqLTYpiaTrrkNVVHDo9deD7qNLSyMa7OYPX6Xs5ElaDR7MFbNmISLYIiJoM3w4AMc/NfYMW7JlCSJCpIqkU2KnoPt3pWjxYpSyEXOBEHFlT4/8F0a/gKpUVNoqGfmPkVRUVgAQO9gwlIo3WQeL02g0jcfgwYO57bbbeP755ykuLq69gg9KSkp49tlnGTNmDMOGDQuRQt/Y7XbmzZvHjh07eOedd4Jub9asWbRv375OBl1TQTsuhClN1am6oKSAnLIcACYPmlwjz7m/2aHXX/dYARYot15hzGEfaF1OXKdk+ixaVGMT3AtGjACqDaK1+4257+6tuwfVrxWFH24CoPlIa9+oTomdWHzzYhwOB6cqTnHbK7cBEDsmFYCSrEJURUXIdWk0muCYN28eU6ZMIdMcaa4rWVlZTJo0iXnz5oVImX+MGjWKBQsW+B2PyBvFxcVcddVVrFix4pyMP+QkaINIRFqJyC0iMlJE7KEQpWm6TtVpGWnYbDZslTaGXzK8Rl7iwIE079KFspwcfjSd8+pKv405xJXCyXgoe+IeotyCoLW++mrEbidv61bO5ueTXWCEsr/liluC6tedioMHKDlSAeKg+dSHvJa78fIbebDvgyil+CbvGx7/4HEiBw3FHl2B42wE5R+vCakujUYTPB07dmTOnDl07x7cH6lu3boxZ84ckpOTQyMsAKZOncqdd94ZVBtxcXHMnj27avXduYrfBpGI3C8iX4hIgktaH2AP8DbwH+C/ItIs9DJ/WiilmuyU2bu7jYCIPdr08MgTETqZo0SZr71W5z4O/+tfHPrbErqZ2wGtPPqRR5mo+HgS+vZFVVSw9t8vgx0clQ7GXjW2zv1aUbRoMSDEdYjCfpHvqbjfj/g9V19orEB7fffr/N9X/ySui7H6o+TdD0KqS6P5KZKSksLs2bNp0aJFY0v5yXEuXPtARojGYnji57mk/QloCSzDMIj6AVNCJ++nSWVRETgc2OPiakwDhTulZ0s5WmQE9bq3/72WZdqnphLRvDl5W7aQbxH0rDZyt25lxxNPANC1s7Fz9FfHvrIs65w2W7fNMNISoxOJigitM2Dh2q3A/2fvvMObrNoG/jtJulu6oBQoq1CGTFkyRIv1U/AVrfIqqC9SnCgqiKIylKLiqyIqIIoynS8OlCEqe8mQIUVmAWmhQCl075HkfH88be1I26RJk7Q8v+t6LshzzrnP/ZSS3Dn3Au+7bqphpsLSUUtp4dECoRFM3zydy31aA5C33/ICaioqKuUJDw8nOjq6Xn8o11caws/eEoMoDPir5IUQojFwM7BESvmYlHI4sB940LYqXnvU1z5my/ctR6PVgIEqCx/qvL0JuUdxW8V/+aVF8nMTEjjw1FPIoiLajhnDE0++V1q1Oi6lso+/aUQEAKdRstoGtR5k0X41UXToIPlXBUJjxGt81e6ysmg0Gn577DfccEOj1fC4+2YA8i4UIIt7BKmoqKio2B9LDKJA4EqZ1yWfLj+VubcTaG2tUtc6pQHV9cxd9t1fSuHDToGdqi182KbYn31h9erSZ62Joqws9j3+OIWpqTQZPJjrpk4lxD8ED+GBEIKFuyt3ZvZu2xaX0Nacbaa8Htt3rIVPVD3ZC5Q9vdp7oWlsfqNYTzdP1o1dBwZI9jVwwa8QadSSv9r6TBAVFRUVldphiUGUCjQu8/pmlGKNu8vck4C7DfS6pqmPAdV6g574zHgAHu71cLVzfcLCCOzfH0NuLgkra67BIw0G/pwwgazTp/Fu357e8+ejKe6z06d5HwC2/L3F5NqTfRpT6AKNsqFniG37B2VvOwaA979N1+2ojraBbfks8jOMRiMHQ5WMu7x11gWaq6ioqKjUHksMohPAcCFEoBDCDyWmaL+UMrPMnDbAZRvqd01SH11m//vzfwitQBok9/W8r8b5bR9WjKb4r75CmuipU5bjb7/Nle3bcfH3p99nn5U7OSuJVUouTCa3oHKtkG3+irus+yXbxmIVbt1EYYYWjc6A52NP1EpGRMcIJvWfxKFWSkrs0Rg1jkhFRUXFUVhiEM0FmgEXgAQgGPi4ZLA45f5GQK0yZyX10SD65tA3AIT6hprVJ6xpRATuwcHkxMWRvHt3lfPOrVjB2aVLES4u9P34Y7xal/fI3tz+ZjAosTlfHPii0vpjUuky3+1kETnnzlnySNWS/elyALy6BCCscG0+e9Oz+Pfrg0FIgq64sHzjfBtpqKKioqJiCZZ0u1+DkkF2DIgFXpRSls2dvhXFXaYWVLGS+ta2w2g0cirtFACjeowya41Gp6P1Aw8AEFdFcHXynj0cmaF0ie/+xhtVNoUtqVr949HyMThHLh3BqDWi1UtCL/9TpNFapNFI1p6/AfB+sHZNGssy7/EvSGhciItRsG7lAvbGme5QraKioqJSd1hUmFFK+ZmUsk/x9UGFsfVSSn8p5We2VfHao77VIFpzdE1pnZ+H+1YfP1SW1qNGIVxcSNqyhdxLl8qNZcfFcWD8eKReT7vHHqPVfVW74UZ0U6pW/53+d7n7y/YtAyCw0B0Xg+0MooJVP6LP1aF11ePxnzE2kdm1cxsAeiV48J/v/sOljEvVL1BRUVFRsSlq6w4npL617Vh2QDE8Wnq3tKjOj1vjxjQfOhSMRs59803p/cKMDPY9/jhFGRk0jYig80svVStndJ/RGA1G0MKWU/8YPTvjlT7DXVr3QWi1pOzbZ3ZWW3VkL/8fAN69miNs1OTQZ6hSM+n6eBekVjJ08VAK9YU2ka2ioqKiUjMWG0RCCK0Q4johxCAhxE2mrrpQ9FqivmWZHbuqZFvd2+Vei9e2GT0agPPffouhoABjUREHn32WnLg4fDp2pNf77yO01XeEcXdxp4m7kva+fP9yAAr1hSQXJAPw4IAo/Hv3Rur1XN2502IdyyILC8k+qJzeeEfZruq1+7/vB2Gk/RVXvLIlOTKHO5fcaTP5KirXAtHR0QghiI+Pt4m8pUuXIoRg3759Vsk5ePAgQgiWLFliE73MJTU1lYCAAMaPH2+VnIsXL+Lh4cGrr75a5ZyoqCiEEFbt42gsMoiEEK8CV4EjwA5gaxWXihXUp6DqzbGbkVqJ0WjkiQGWZ1v59+pFo+uuozA1lcRff+XYm2+SvGsXroGB9Fu0CJ23t1lybm13KwAHEpXK0T8c/gGNVoM0SMLbh9N0yBAAkjZvtljHsuR99QWGQh06Tz1u9/zbKlll0fgH4N5Ui0AwM3sAUkr+zvqbZ1aaV/BRRUXFNMuXL0cIUe1lqsdYdnY206dPZ/jw4fQzEb+YmprKxIkTadOmDW5ubjRv3pxHHnmECxcuVJrbu3dvIiMjmT59OtnZ2RY/Q036CyHYtm1bpXWvvfYaeXl5TJ06tVr5BQUFdO3aFSEEISEhlcZbtGjBuHHjmDNnDgkJCRbrX1/QmTtRCPESMBPIAL5EyTRTW3TXAfUpqPqzP5SQsWD3YDzdPC1eL4SgzX/+w19Tp3L09dcpyshA4+pK34UL8WzRwmw5Tw58khUnVpBPPglpCfx4RAmwbundEo1GQ9OICE688w5J27cjDYYaT52qIvt/ShsQ7/6hCDOy6SzBs1c78n85w41Hs/nXgH/xS9wv/HL2FxbuWsi4QWpHHBUVa+jRoweRkZEmx0y1m5g3bx6JiYm88sorlcZSUlIYOHAgp06d4pZbbmHUqFGcPHmSZcuWsW7dOvbs2UNoaGi5NVOmTOGGG25g3rx5NRooVTGjOMnEFBWNuvPnz/Ppp58yduxYWtTwXjp16lTO1ZCFO3nyZObPn88bb7zBZ5810FBhKaVZF3AaxQhqYu4aM+WGAPOBPUAuSnHHNibmuaP0TksE8orn32RingaYAsQD+ShlAEaYq0/v3r2lo9k+fLhcExoq0w4fdrQqNRL2TpgMnR0qZ22YVWsZRbm58teePeWa0FC5JjRUJvz0U63kdJ7dWYbODpVT1k6RHd/tKENnh8o3178ppZTSaDTKTeHhck1oqEzZv79W8o2ZmfJscH95pvGNsmDLxlrJqI68b/8nzzS+UZ5r3V9KKeVtn94mQ2eHyjZvt5HbTm+z+X4qDYPjx487WgWnYcaMGRKQcXFxpfeWLVsmATlmzBiz5ej1etmyZUsZFhZmcvyJJ56QgHz++efL3Z87d64E5O23325yXadOnWSrVq2kXq83WxcppSz+XLRozdSpUyUgd+3aVe28rVu3SiGE/OSTTyQgW7RoUeXcoUOHSk9PT5menl5pbMyYMRbraO7vLnBA2tDuqOqy5CtuS2CVlPJqbQyvamgP3A+kobT+qIolwOPAa8CdKIbReiFExfLDbwDRwEfAMGAv8L0Q4g7bql131Jeg6o0nN2LQGDAajTw16Klay9F5eNC6uJ1H2NNPE1LFt7ia6N2sNwA/x/5MIYVIKRl7g9KuQwhR2tusttlmuUsWYdTrcPU14Drk1lrJqA63u+9BaA0U5ejQHznM2kfW4q3xRqPV8MjKR0hIa7hH1SoqzsTGjRtJSEhg5MjKcYI5OTl8+eWXeHl5MXPmzHJjzzzzDG3atGH9+vWcPXu20tpRo0Zx/vx5Nm3aVGe6g3LQsWzZMlq2bMnAgQOrnJeZmUlUVBQRERGMG1fzKfSoUaPIzc1lxYoVtlTXabDEIErCAhebBeyQUjaVUt4BfG9qghCiB0rT2OellIuklJtRjKjzwOtl5gUBLwJvSynfk1JulVI+iRLX9HYd6F4n1Jeg6g92KpUXWni2wN/T3ypZHSdOJHzDBjq98EKtZZT0KsuROQghcMed5r7NS8eDb1EyuWprEGX/8BsA3jddV2sdq0O4ueER4gZA7rff4apzZf1j6xEGAVoYtmQY+UX5dbK3iorKP5QYLDfeeGOlsT179pCXl8egQYPwqVAaRaPRcNtttwGwdWvlcNpBg5QWoBs3brS1yuU4duwYiYmJpftVxXPPPUdaWprZwd720t9RWGLgfAfcI4Rwk1IW2EoBKWX1fRsU7gKKgG/LrNMLIVYAr5TR6XbAFfiqwvqvgKVCiLZSyspt0Z0IKWW9qEOUX5TPydSTCK3gsb6PWS1Po9Ph066dVTJu6XALGIDi8KBuTbuVGw/o0wedtzdZp0+Tm5CAZ8uWZss2Jl8l53Q2oMV7/JNW6VkdHv2uI/fcX+Tt/JNGQHCjYL66/yse+O4B8rR5DFs0jK1Pq3kLKubRs5anrfYmZtWqut8jJobo6GiTY/3792fo0KGlr3///XcA+vTpU2lubGwsAB06dDApKyxMKRR76tSpSmN9+/YFYMeOHeYrXoaq9Hd3dy8X61Sd/iX89NNPfP755yxevJhWrVqZtX/79u3x8/Ortf7OjiUG0WtAf+AHIcRzdjYsugBxUsqKzaqOoRhA7Yv/3gUoAM6YmAdwHeDUBpEhJweMRrSenmhcbNt/y5bM2zEPoRVgwKJijHVNO792/J2lFGi8r3v5Yo4aV1eCbrqJS7/8QtKWLbQdY35RxZyPFyCNWtwbS1x697WpzmXxuGc4fP8XeX+nI41GhEZD/7b9mRE+g9d3vM753PM8/u3jLBq5qM50UFFpiBw+fJjDh013lpowYUI5g+j8+fO4uLgQGBhYaW5GRgYAvr6+JmWV3E9PTzc55u7uzvnz5y3WH6jkoisrt6xBVCK/WbNmJucnJSXx5JNPMmzYMB599FGLdAgODubkyZPk5+fj7t6werlbYhAdA1yA5sAdQogMoPK/uBJUZd1X/coEoMQYVSS1zHjJn+nFQVjVzXNa6kvK/Yq/FB9yv2b9zOpdZi/u7Xovs/fMxmgwEtmt8rfjoFtu4dIvv3DZQoMoe812ALxv620zXU3hGnEbWpeZGAp0FO3cjuvNSrmAqBuiOJZ0jB9P/cjm85s5l3qO1gGta5Cmcq1jj5OX+sKYMWNYvny5WXNTUlLw969dGEDJx09VNXkCAgJISkoqfR0fH29SL1OnQZU/2kyTkpICUOUzPP744xQVFbFokeVfrAIClI/R5ORkkyn69RlLDCINSpp9WdPW1L94XVRmEihR9jXtZe688oNCPAE8AZh9dFhXlAZUO7G77NSVU6TrFVt4SsQUB2tTnicGPMGu+F30CemDTlv51zvo5ptBoyHljz8oysoy6+dsOBdH7vlCQOD1zNN1oPU/CI0Gj1AfsmPzyPtxValBBDD7rtmsnb2WIlHEdzHfMfmWyXWqi4rKtYqHhwf5+abj9UpOgEpOiiqSWfyltqoTpLy8PDw8PEpfx8fHmzz5qco9Zg4l8k09wxdffMHatWv5/PPPa0zHN0VeXl65PRoSljR3bSOlbGvOVQd6pmL6dMe/zHjJn/6ismlecV45ZJkebU2aNLFaWWuoDwHVb216CyEEPhofurfo7mh1yqHRaPjyoS+ZcPMEk+NuAQH4X389sqiIq7t2mSUz56MFIDV4tNCiC+toS3VN4jFISZzM23O00lion1LbZPvZ7XWuh4rKtUpQUBCZmZkUFRVVGuvYUXkPMBUjBHD69GnAdIyR0WgkPT2doKCg0nvh4eFVlaSxSn/456SoLH/++SegnJhVLO4ISlXqktem3H4pKSnodLrSk6KGRF1kjdUFx1ACuj0rxBFdBxTyT8zQMcANaEf5OKKStKDjda2otTi7y8xoNLIrYRdo4Z7r7nG0OrUiOCKCtIMHSdq8WemlVgNZvyll+73/VX3Ghq3w+Pe/Yeke8hLykIWF5fqlDW47mNiYWP5O+7saCSoqKtbQvXt3Tp8+TWxsLF27di031r9/fzw8PNi1axdZWVnlMs2MRiMbNmwAYMiQIVQkNjYWKSU9e1asFmN7/QFOnjxZaWzAgAFVVstesmQJnp6ePPDAAwC4ubmVG8/JyeHixYv06NGj3rfpMEWtgz+EEP5CCPPTdKxjDUr8UmmUrBBCB4wENpTJevsNxUB6qML6/wBHnT3DDJzfIPrxrx8xao0YDUZevOVFR6tTK5oWp99f2bYNaTBUO1d/7Aj5l40IYcTrGfu00XDp2w+dhx6jXkvBL2vLjd3f834ACmQBWXnWN6pVUVGpTHh4OAB79+6tNObt7c3o0aPJycmp5Nb66KOPiI+P5/bbb69UqbqsPFPGki0ZPHgwWq3WpP4jR45k8eLFJi9Q4o5KXld0i+3btw+DwVDn+jsKi06IhBDeKO07HgKaoMTr6IrHbgBmANOllH9aKLekKVRJxOowIcRV4KqUcruUMkYI8S3woRDCBSVT7CmgLWWMHynlFSHEB8AUIUQW8CeK0XQLcLclOjkKZ2/bsWD3AgDa+bbD2828PmPOhnf79ni2bEluQgJphw8T0KtXlXOz538MCDxD3dE2a17lPFvj0TGQrJgM8tb8invkiNL77Rq3K61L9NORn3i4n/Nk+KmoODPVpd1D+ZidyMhIJk6cyPr163nsscplRd566y22bdvG+++/T0xMDP369ePEiROsXr2aoKAgFixYYHKPDRs2oNVqufvu2n0cVad/ZGRk6cmTr68vERERbNu2jbS0tFoHiFek5PRrxIgRNcysn1jSy8wX+B0ltT0GSAY6l5lyBBgMPIBiiFhCxYKMHxf/uR0IL/77WGAW8Cbgh9KSY6gJ42sakA1MAIKBWOB+KeVa6gHOXIMoIy+D+Kx4NFoNzwysv01HhRA0veUW4j7/nKQtW6o3iLb8BWjwvifCfgoCHjffQFbMBvIOnqbiW1kzr2Zcyr/EhlMbVINIRcVMqku7h/LGRkhICMOHD2ft2rUmDYrAwED27NnDzJkzWbVqFTt37iQwMJCxY8fy+uuvm8y+ysjIYNWqVdx55520tKAGWlmqSrsHpZdZWVfc008/zYYNG1ixYgVPPVX7TgIlGI1GvvrqK3r06MGAAQOslueMWOIym4ZiDEVJKXtRwYgpju3ZDlj8ySGlFFVc4WXm5EkpJ0kpg6WU7lLKG6SU20zIMkgp35RStpZSukkpu0spf7BUJ0fhzG073t3yLhqtBq1RS2T3+lHwrSqamlG1unD37xSkaRBaA55PWv+GYgkeo0YBkJ+ox1hsJJfQL0TpvH3syrFK61RUVMoTFRVlbl/NckyePJmCgoIqU/UDAgKYO3cu586do7CwkMTERJYuXVplKvoXX3xBfn4+L9SiGr85+kdFRZVbc+edd9K5c2c+/fRTs4O0pZRcuHDB5Ni6deu4cOECL75YP0MlzMESg+heYL2U8otq5pwDLM/jUynFmbPM1pxcA8BNrW5ysCbWE9ivH1ovL7JiY8m9eNHknOxPlBodXp180Zjohl2X6NqH4drIgJQaCn4sf4BaUl8pvSgdo9GcQu8qKiqWMnDgQO677z7eeecdcnMr1gS2jLy8PP773/8yYsQIBg8ebCMNq0er1fLee+9x+PBhfvzxR6tkSSmZMWMGffr04aGHKoboNhwsMYhCgL9qmJMNmC6+oGIWzhpUffD8QXKMOUgpmfZ/0xytjtVoXF0JKn5jMnVKJPV6snYoabU+I++0q24leHRRqszm/lpev0FtByENEo1Ww9bTahsPFZW64r333mPcuHHExVmXjxMfH88TTzzBe++9ZyPNzOOOO+5g7ty5VdZUMpfLly9z1113sWjRogaZXVaCJQZRFhBUw5y2KLFFKrXEWYOq3976NkIIAlwCaBtYF6Wm7E+p22zz5kpjuZ9+jD5Xh85dj8ejj9tbNQA8blUMtrzD58rd12g0+LsqMQ2rj622u14qKtcKrVq1Ijo6mi5dulglp3PnzkRHR9OmTRvbKGYBzz33nNWnOs2aNSM6OrrOywU4GkuyzPYDdwohfKSUlfJ9hRDNgDuAn22l3LWIMwZVG41G/rz8J2jhoR4N57g0KDwchCDljz/Q5+Sg8/IqHctc+hMAjYZ2K1cHyJ543D8K3viBghQwXr6MJji4dKxb027svLSTgxcPOkQ3FRVnpCRd3s/OLm4VJcvNEQafLbHkhGguEAj8IoQom11G8evvAXdgnu3Uu/ZwxqDqJX8sAS1Ig2T84PGOVsdmuAUG4t+zJ8bCQq4Wd4cGKNq/l9zzRQhhpNHUV6qRULdogoNxawwgyPv2f+XGhnZUCkpezr1sf8VUVJyU8PBwoqOjVYPIAURGRlrVbsQZsKR1x3ogGhgEHAWmAAghkotfDwSmSCl3217NawdnDKpeun8pAF0Du+Kqc8xpSV3RNEJJikza+k8sTsZb7wMC7y6+aNtWLq5mTzx7tAEgb9Pv5e7f1fUuJaBaCyeTKlejVVFRUVGxDIsqVUspX0dJq1+D0n3egFKc8RfgVinlbJtreA0hpXQ6l9nlzMtczldOIV4Itzxd1NkprVq9dSvSaMSYlkrW3gQAGk141JGqAeAxTDHY8o4nlrvv6eaJh0apIvtdzHd210tFRUWloWFx6w4p5VYp5T1SymZSSlcpZRMp5XApZdUFXVTMwpCTA0YjWk9PNC4ujlYHUBq5ajQaXKUrN7e/2dHq2ByfDh3waNGCguRk0v/6i+x338WoUn1DHQAAIABJREFU1+EWYCxXIdpRuN/7b4TGSGGmFv3p2HJjYQFhAOw6Z16TWhUVFRWVqql1LzMV2+OMKfcb/lZKtQ9tX3MT1PpISdVqULLNMn7YCYDv/c7Rq0f4+OAerOQ+5K34ttzYkFBFx/j0eHurpaKiotLgUA0iJ6I0oNpJ3GVbTm2hSBRhNBqZEjHF0erUGSUGUdoPaylM16Bx0eM1+SUHa/UPHn07AJC3fV+5+/dff7/iZhVFpGSnOEI1FRUVlQZDlQaREMIohDDU4tLb8wEaEs4WUD1nxxwAmns0J6hRTSWo6i+BN9yA1tMT13OKQdpoYGs0TvJvAOAxfBgAeafKGz3NfZujlVqEEKw8vNIRqqmoqKg0GKo7Idph4joCCJRA6vPAvuI/ZfH9I8DOOtS3QeNMLrP8onxOpJwA4LF+lbs9NyS0bm4E9byeRkUegKTRFOcKHncbdicanQF9no6i/XvLjYV4K32TNp3Z5AjVVFRUVBoMVRpEUspwKeWQkgt4EKUtx49AmJSyrZRygJSyLRAG/AQ0Qul2r1ILnMkgmr9zPkIrwABj+o5xtDp1TmBSBhoEBd56XHr3dbQ65RCurni0UjLK8r4vfxI0oJXSdfpkspp6r6KiomINlsQQvQOkSSn/LaUs19il+PW/gYzieSq1wJnadqw4vAKAPs36oNE07FAzWVCAOH4FgCSRg97KRo51gceAbgDk7Tpc7v6I7komXJYhC73BPG+11OspWP8rOXNmI/PybKuoioqKSj3Fkk+624H1VQ1KKWXxeMNMR7IDzlKD6MyVM6Tp05BSMuWWhhtMXULuR/MwFOjQa/Vkk0vyLudLY/e4524AcuOykPp/DJ/erXorjV41Gn498avJtTInh/zvVpD2+BMk9hlCfMvBXPjPW1x+ew1pjzimT5uKSl0QHR2NEIL4+HibyFu6dClCCPbt21fz5GpYuXIlQgg2m+ibWJecOnUKV1dXZs+2rkTgxYsX8fDw4NVXX61yTlRUVL1v/GqJQeRDzZ3sfYvnqdQCZ2nb8dbmtxBC4K3xpmdIw27mB5DxhdJ+T9OtMQhI2uJ8JbVcBt+M1k2PsUhH4eaN5cYauzcG4OfjynMYk6+Su2ghqQ/8h4vdbiIu9DYujl9A6qoT5J7TY9Tr0LopRlXGtrMYryTZ92FUVOzI8uXLEUJUe5nqwZWdnc306dMZPnw4/fr1Kze2ceNGXnjhBSIiIggICEAIwY033lilDvfeey+9evVi0qRJSoV5C4iPj69R/6qMwEmTJhEYGMj48f+0XJJS8ttvv/Hss8/Ss2dP/P39cXd3p2PHjkycOJGkpMrvBy1atGDcuHHMmTOHhIQEi/SvT1jS3PUEMFII8V8pZaWfiBCiNTASOG4r5a41nCXLbGfCTtBA5HWRDtXDHhRu30reJSNCY6Dx9BfhkUdIKq5aLZzIVSg0Gjza+ZF9PJu8VWtxu31Y6dgAtw6kHjtElw37ufDqIApSBUqOQwkaXLz1eIQ1xn3A9bhH3o3L9b252GUw+Ve0ZL42A7+FC+3+TCoq9qRHjx5ERpp+TzPV+2zevHkkJibyyiuV+xkuWLCA1atX4+7uTvv27UlLS6t2byEEL7/8MiNHjmTFihU8+OCDFuvv6+vLxIkTqxyv+Ay7d+9m3bp1zJo1C09Pz9L7BQUFDBs2DFdXV2666SZuvfVWDAYDW7ZsYe7cuaxYsYKdO3cSFhZWTt7kyZOZP38+b7zxBp999pnF+tcHLDGIZgPfAIeEEPNQss6SgKbAzcCzKCdEavuOWuIMQdUrD6/EqDFiNBiZHD7ZYXrYi8x35wPg3T0Qv5tuwr1ZM/ITE8k4ehS/7t0drF15PAb3Ivv4DnJ+P4p2xmvk7zlE3ulknsvWAQEAFAAgcfM34n5dczwG98M98h607dpXkuf35Aguv7GS9J8P45uTg/DysufjqKjYlZ49e5rdfNRgMLBw4ULCwsIYOHBgpfGXX36ZWbNm0alTJxISEmjbtm2NMu+++278/Pz4+OOPa2UQ+fn5WdQ8dcGCBWg0GkaPHl3uvlar5c033+Tpp5/G39+/9L7RaOTpp5/m008/ZdKkSaxdu7bcuubNm/N///d/fP3118yePRtf35ocRvUPS5q7rgBeALyBGcBmlKaum4tf+wAvSim/rVKISrU4Q1D1x7s/BiDUNxQfj4bt/TQmXyXroNKnzfeFceWrVjuh28xz5P0A5F+WXPl4K5mH0inK1iGEkZiW+Xw1MIucKUNoe+InQk7tovGq7/F6YbJJYwjA8+lncPExYCjQkTXrTXs+ioqKU7Nx40YSEhIYOXKkyfEBAwbQpUsXtFqt2TLd3NyIjIxk165dnDxZt1mhmZmZ/PDDDwwcOJCWLVuWG3NxcWHatGnljCEAjUbDa6+9BsC2bdtMyh01ahS5ubmsWLGiTvR2NJY2d/0A6Ai8hpJmv6X4z+lAh+JxlVri6KDqrLwszmaeBeCZAc84RAd7kvXf/2I0aHEPAreh/wL+qVp92QkNIl23HniFuqLR6fFsrSMgsjMtFoynbdwGoh/K54vBWXzb0YCmcROz5AmdDv/RSvPY9P9tKxesraJyLbNpk1LXq7q4oNowaNCgcvLrih07dlBYWGix/q6urgDodKadRyX6b9y40eR4fccSlxkAUspzwKw60OWax9FB1e9ufReNVoPGqOGeHvc4RAd7IY1GMlftBbQ0euC20vuNBwxA6+FB5rFj5F2+jEdwsOOUNEHwH6azVDoGduRQ8iH2nt9rcrwqvF+ZSurSTRRl68idPxev552rKKWKldxWT7J+Nsg63yImJqZKl1P//v0ZOvSfBOnff/8dgD59+thUh759lRpnO3bs4JlnLPvSmZ6eXqX+wcHBjBs3rvR1bfVfsmQJQLmfRVnat2+Pn58fO3bssEhufcFig0il7nB0UPWqE6sAuKnVTQ7Z357kf/MlhZlatK56vJ+fVHpf6+ZG40GDSNq0iaQtW2hTC1+/I7g17FYOJR/ifNZ5i9YJDw987+5NyreHSfv0JzwnPO9UweQqKrbi8OHDHD582OTYhAkTyhkB58+fx8XFhcDAQJvqEFz8Bev8ecv+nwJkZGQwc+ZMk2M9evQoZxCVyG/WrJnZ8vfv38/MmTPx8fHhzTerdqEHBwdz8uRJ8vPzcXd3N1t+fUA1iJwEKaVDXWZ/JvxJjjEHgKm3TrX7/vYm4+OvAGh0U7tKwcTBEREkbdrEla1b641BdF+P+3h397sYhIHLmZcJbmT+yVajmTNJW3knBSk68r/5Eo//NPzK5NcMdjh5qS+MGTOG5cuXmzU3JSWlUoyNLQgIUJIfkpOTS+/FxMSwatWqcvP8/PwqZZS1bt3a7PpKKSlK30Nzn+HUqVMMHz6coqIiVqxYQbt27aqcW/YZQkJCzJJfX1ANIifBkJMDRiNaT080Li523//tLW8jhMBf50+7xlX/Z2gI6I8fJedMLiBoNP3lSuNB4eEAXN21C31eHjoPD/sqWAsCvQNxkS7oNXq+PfQtE26eYPZaTWAgvkPak7YxnvQPlqsGkco1j4eHB/n5+TaXm1dcGd6jzHtKTExMpZOf1q1bV5tiXxMl8s15htOnTzNkyBBSU1NZsWIFd911V7XzTT1DQ0E9G3cSHJlybzQaOXj5IACjuo+y+/72JnPWuyA1eLV3R9elW6Vx96Ag/Lp3x1hQQPLu3Q7QsHa0btQagK1/b7V4re+smQiNkdzzego2/mZr1VRU6hVBQUFkZmZSVFRkU7klJzdBQUGl96KiopBSlrusrbRdIr9kv6o4ceIEN998M8nJyXz//feMGDGiRtkpKSnodLrSk6KGhGoQOQmlAdUOcJct/WMpaEEaJM/d9Jzd97cnMi+PzG2nAfAd91CV85w5/b4qBrVRMkBOp562eK22bSg+fZQ30fQ3P7SpXioq9Y3uxTXIYmNjbSq3JN2+Z8+67QBQon916f1HjhwhPDyc1NRUVq5cyd13312j3JycHC5evEj37t3rfZsOU9Qbg0gIMUgIsUEIcUUIkSmE+FMI8UiFOe5CiNlCiEQhRJ4QYo8Qol5ECDsyoHrZgWUAXBd4Ha46V7vvb09yPnwfQ6EOFx8D7qOrdg2VGERXtm5FadPn/NzfU6lTlGvMJb/I8uN+v9enApLs49kUHTpoY+1UVOoP4cVu8717LcvarIkSeUOGDLGp3IrUpH9MTAxDhgwhKyuL1atXc+edd5old9++fRgMhjrX31GYHUMkhHCRUtr2/ND8vbsDm4C9wONALvBvYIkQwk1K+Unx1CXAv4DJwFlgPLBeCDFAShljf83Nx1EusyuZV7iUdwmNRsOLN79o170dQcZXijvI964bqs2manTddbgHB5N/+TKXN2yg2e2320vFWtM5uDMYQKPVsPbYWu7reZ9F611698W7szfZJ3LIeHUWjX/+sY40VVGxP9Wl3QPlxiIjI5k4cSLr16/nscceqzT3999/Z/HixYDS8wyUWJyoqKjSOaYCuDds2ICfnx+3FH/hsoTq0u5Bcb2V9GTr2rUrHTt2ZPPmzRgMhnIFJNPS0oiIiCA1NZWIiAj27NnDnj17KsmbOHFipXYgGzZsADDLtVYvqei7rOoCrgDvAO3NXWOrC3gLKAS8K9zfC+wp/nsPQAJjy4zrgFhgjbl79e7dWzqC8z/+KNeEhsqDzz9v132f+/E5GTo7VHZ6t5Nd93UE+Rt+lWca3yj/bjpAGpIu1zj/zKJFck1oqFzXrZvMOHHCDhpaz4B5A2To7FAZ9U1Urdbn//aL8jMKGiD18WdtrJ1KXXD8+HFHq+A0zJgxQwIyLi6u9N6yZctk8WdDtVdFIiMjpZubm0xNTa00Zo7MisTGxkpATpgwwaJniouLM0v/rVu3llv34YcfSkD+8ssvtZJX9mcopZQGg0GGhITIHj16mNRzzJgxJp+7Osz93QUOSDvYGpa4zDQoJy+xQoiNQogRQgh7Zam5AkVAXoX76fzj9rureE5p6xAppR5YAdwuhHCzg561xlFtOzacUSz+29rfVsPM+k/me0pbEp/eTdEENa1xfuijj9Lirrsw5OSw7/HHKSiTKuus9GreC4AjSUdqtd7t9mF4ttQijVoypkXbUDMVFcdgKmjZ1FWRyZMnU1BQYPKkxxyZFfn0009xdXXluecsi9Ns06aNWfqXuMlKGDt2LI0bN2ZhhcbN5sorOW0qYd26dVy4cIEXX2y4ngRLDKLmwH+AnUAE8B2QIISYJYSoubOddSwv/nOeEKK5EMJPCPF4sR4l7UK6AHFSytwKa4+hGFSmGzo5CY6oQbTt9DYKRSFGo5FpEdPstq8jMCReIitGMWh8X3rWrDVCCHq8/TZ+PXuSd+kS+8eNw1BQUJdqWs3dXZTAyNSCVIxGY61k+D0fBUDG5lMYa8hSUVFpqAwcOJD77ruPd955h9zcih8rlpGYmMgnn3zCs88+S2hoqI00rJ5GjRoxc+ZM1qxZw4EDB6ySJaVkxowZ9OnTh4ceqjoZpb5jSXPXQinlN1LKcKAT8CGKS2oKcFoI8YsQ4m4hhM0DtaWUR4Fw4G7gIpAGLADGSaXpLCjtvtNMLE8tM24SIcQTQogDQogDV69etZneluCIth1zts8BoLlHc4IaBdUwu36TNeu/SKMWj2YC15vN999r3dzou3Ah7s2akXboEIenTHHqIOuIDhEYDUaEVrAnvnJcgDm4P/QwboFGjHodmTOibaugHUhKymHEiNX89JPl2XbOjsFg5OmnN/LGG7X7t1WxjPfee49x48YRFxdnlZz4+Hhefvllpk+fbiPNzOPJJ59k1qxZJCUlWSXn8uXL3HXXXSxatKhBZpeVUCvjRUp5Skr5AtCCf06NhgI/AueFENFCiOa2UlIIEQasRDntGQ7cCiwEFgohSsxVgeL7rLS8JvlSys+klH2klH2aNDGvMaatsXeWWaG+kGMpxwAY22esXfZ0FFKvJ/Nn5RtSo9H/sni9e5Mm9Fu0CK2nJxdXr+bMJ5/UvMhBaDQafF18AfjpyE+1kiE0GvweU06aMlYfQOZV9FQ7N5MmbePHH0/z7LOb0etrd0rmrKxYcZJPPjnMa6/tYt++REer0+Bp1aoV0dHRdOnSxSo5AwYMYMaMGZWClOsarVbL1KlT+de/LH/fK0uzZs2Ijo6u83IBjsaq0xwpZSGwDqXj/SUU46M58BoQJ4T40EaxO2+hxAfdKaX8WUq5WUr5HIrbbm7xqVQqpk+BSmqXp5oYcxrsnWU2f+d8hFaAAR654ZGaF9Rj8pYtpihHh9ZNj9dztav+6tu5M70++ACE4OScOVz6zXmLF17X5DoA9l3YV2sZXhMn4eKlR5+vI/vt/9pKtTpn+/YEvvnmBAAXL2azevUZB2tkO4qKDLz22q7S19Om/e5AbZyT8PBwhxgeKkpm3owZMxythlXU2iASQvQXQixDMYQ+ALyAeUBP4BGU7K5nUVxr1tINOCwrp/3vAwKBIJTTo7ZCCM8Kc65DyVBz6ndGewdV/+/w/wDoHdwbTQNv5pmx6DsAfG/tjHCrvX0efOutdH7pJQAOvfAC6UeP2kQ/W3NbByVA/lL2pVrLEDodfg/cDED6V5uQtYxHsidFRQaeeWYzAF26KE05Fyw45EiVbMrSpUc5ezaDsDB/fH3d2LTpHFu2WN4ktCETHh5OdHS0ahA5gMjIyGrLAtQHLPokFEL4CCGeFkIcBnYBY4ATwBNAcynlRCnlX1LK5cD1wBaUekHWchnoKYSoWDXwBiAf5fRnDeAClBZfKc6CGwlskFI6dTSsPYOq/07+m9SiVKSUvHLLK3W+nyMpivmT3LhCEEZ8plXuW2Yp7R5/nJYjRmDMz2f/k0+Sb6Vvvi4Y0X0E0iiRWklcSu1jH3ymTkPrpqcwU0vuJx/ZUMO6YcGCGI4eTSY01JctW+7Hy8uFrVsTOH7c+bMDayIvr4jXX1fiht5660YmT+4LwLRpOx2plopKg8Jsg0gIsRjlNGg+EAZ8CfQvjr1ZIqUsF2ggpTQA26gmmNkCPgLaAmuLA7dvE0J8BDwAfFIc8B2DknL/oRDiMSFEBErKfVvA6c/x7BlU/dHOjxBC4KXxolfLXnW+nyPJfOs9QODd0RtdWEer5Qkh6PbGGwT07Uv+5cvse/JJ9E4WY+Pj4YNbsaf6+5jvay1H+Pjgd0cPANI/qb0ce5CYmM2MGYo7ae7cWwgK8mL0aMV1uGCBU9dkNYuPP47h0qVsevVqyr33dmDChF40aeLB3r2J5OY6pF6uikqDw5ITokdQTmpeAkKklFFSypqCFLYBr9dSt1KklD8AdwBuwGKUAOsbUSpRTy4zdSywDHgTJbapJTBUSvmntTrUNfYMqo5NVvrzdAy03kBwZoyZmWT+rpyQ+D5juw7uWjc3+ixYgGfLlmQcOULMSy85nUsp1F9J7d0et90qOY1ej0ajNZCfBPk/fFvzAgfx0ks7yMws5M47Q7nzznYAjB+vBIB+8cUxMjOd+oC4WjIzC/jvf5W32lmzbkSjEXh7uzJtWn8A0tMLnDrzUUWlvmCJQTRMShkmpZwjpTQrQFlKuUtKObOWulWU9auUMlxK2URK6SOl7Cml/Lj4JKpkTp6UcpKUMlhK6S6lvEFKuc0W+9clUkq7usySshU3T7vAdnW+lyPJmTMbY5EOVz8DbveNsqlst8BA+n32GTpvbxJ/+YVT8+fbVL61DG4zGICzaWetkqMJDqbRTW0ASH/3M2vVqhN27rzAV18dx81Ny9y5/5RU6Nq1CTffHEJ2dhFffnncgRpaxwcfHCQlJY/Bg0O4/fY2pfeffLIHLVv6UFRkJDXV8t51Kioq5bHEIGpa3FOsSoQQXYUQD1up0zWHIScHjEa0np5oXFzqfL/MIsX46tG8R53v5UgyvlU61fuOGFxt37La4tOhA73mzgWNhlPz5nFx7Vqb71FbRl4/EoACWUBWXpZVsnxnzUAIIzlxhRRu32IL9WyGXm9k/PhNALz8cj9CQ8sH044ffz2gBFfXx1OU5ORc5sxRSkbMmnVjuRow7u46ZswYCMClS9kYjfXv+VRUnAlLPiWWA5E1zLkbxWWlYgH2TLk3Go3o0QMwoM2AOt/PURSsWUVBigaNTo/3y9YHU1dF0/BwukydCkDMSy+RFuMc8SptA9siDAKhEaz8a6VVsnRhHfG5XsnaSp85xxbq2YyPP47hyJFk2rRpxCuv9Ks0HhnZnubNvTlxIpVt2xIcoKF1vPPOPrKyChk2rC2DB4dUGh8zpgs6nYaCAgMpKc4Vy6aiUt+w9ddmLaaLI6pUQ2lAtR3cZbFXYtFoNBiNRtoG1nXHFceR8eEiAHxuCEHjb4u4/qppGxVFq1GjMBYWsv/JJ8m7VPt0d1vS3Fupjbrx9EarZflFvwxIso6moz9y2Gp5tiApKYdXX1Vq8cydewseHpVPV11ctDzxhHKw/dFH9SsF/+LFLD76SDGw33zzRpNzdDoNfn5KAL16SqSiYh22Nog6YLp9hko12DOg+o9zfwDgQt275hyF4Vwc2UfTAfB9uXaFGC1BCEG36GgaDxhAQXIy+554An1OTp3vWxN9Wyip2ceuHLNalsuAQXiFeYDUkP7am1bLswUvv6wEUt9xR1uGD686Hu6JJ7qj02lYvfoMFy5Y5z60J2++uZf8fD333deBXr2qbkbs6emCh4eOoiIjV69a13NLReVaplqDSAixtOQqvhVZ9l6Z63MhxFZgFLC7zrVuYNjTZXYkUemC7uvqW+d7OYrMN99GSg2eLbW4DBhklz01Li70/ugjvFq3JvPECQ698ILDM8/u7X4vABlFGbVu9FoW/6nPAJC5+yKGC451P+3adZHPPz+Gq6sSSF1df6VmzbwZMSIMg0Hy6afOcbpVE3//nc7ixUfQaASvv17977AQ0KKFNwCJiTkYDM6V8WhPoqOjEUIQHx9vE3lLly5FCMG+fbWv+g6wcuVKhBBs3rzZJnqZy6lTp3B1dWX27NlWybl48SIeHh68+uqrVc6Jioqq933OajohiipzSZQq1FEmrtHATSiVo5+3tZINHXsaRGdSlYLdzXya1flejkAWFpK5/i8AGj1yj133dvXzo9/ixbg0asTljRs5Ocex8TYD2gxAGiQarYbNp6x/I3a78248mmuQRi2Zr0Zbr2AtKRtI/dJLfWnf3r+GFf8EVy9a9BeFhYYaZjue6Ojd6PVGxozpQqdOgTXO9/V1w9vbBb3eSFKSekpUluXLlyOEqPZq06ZNpXXZ2dlMnz6d4cOH069f+fi0jRs38sILLxAREUFAQABCCG680bRbE+Dee++lV69eTJo0yeIvJ/Hx8TXqX5UROGnSJAIDAxk/fny5+6tWrWLkyJF06tQJf39/PDw8CAsL44EHHuDAgQOV5LRo0YJx48YxZ84cEhLqXyyeuehqGC8JMhHAWZQ2HHNNzDMAaVJKx/sJ6iH2bNuRmKU0hGwX0DBT7tPHP4s+T4fOU4/nE0/ZfX/v0FB6f/QRf4wdy5mFC/Fu146W995rdz1AafTq7+pPuiGdNcfW8H+d/s9qmX7PPkTelC/JWH8c3/R0NA5okbBwYQyHD1+ldetGTJlyg1lrbryxBd26NebIkWRWrjzFAw90rmMta8/Ro1f5+uvjuLhomDHDvMQHIQQtWvgQG5tKUlIOQUGe6HQNuyWPpfTo0YPISNN5QaZafcybN4/ExEReeaVyNf8FCxawevVq3N3dad++PWlp1UeKCCF4+eWXGTlyJCtWrODBBx+0WH9fX18mTqw6BKDiM+zevZt169Yxa9YsPD3Ld7RavXo1+/fvp2/fvjRv3hxXV1fOnDnDTz/9xLfffstnn33GY489Vm7N5MmTmT9/Pm+88QaffeacJTisRkpp1oVS7fkmc+fX16t3797S3sTOmyfXhIbKE++9V+d7dXingwydHSqX7FlS53vZm/xff5ZnmgyUZxrfKLMXzHeoLnFffSXXhIbKnzt1kin79ztMj6hvomTo7FA5YN4Am8gzGgzyfHvlZ5w+6XmbyLSEpKRs6es7T8Js+dNPpyxau3BhjITZcuDAr+tIO9sQGfmThNny2Wc3mTX/+PHjpX+PjU2R+/cnyoSEzLpSz6mZMWOGBGRcXFzpvWXLlklAjhkzxmw5er1etmzZUoaFhZkc3717tzx69KjU6/UyLi5OAnLQoEHVyszPz5d+fn41zqtIifzWrVtbtO7BBx+UGo1Gnj9/vtJYXl6eyTV//fWXdHNzk76+vrKgoKDS+NChQ6Wnp6dMT0+vNDZmzBipmBTmU/Z3tzqAA9IOn/9mf4WQUs6UUu6oA5vsmseebTsKZSEAN7Q275t1fcGYmUnS07NAamjUOwCvp59xqD5tHnqINqNHK5lnTz1F7oULDtFjaMehACTl2qbnmtBo8H/kDgDSf9iDLLBvBehXXtlJRkYBQ4e24e6721u09qGHOtOokSu7d18iJuZKHWloHfv2JbJq1Rk8PXVMndrf4vUtWiiZqleu5NYL16CzsnHjRhISEhg5cqTJ8QEDBtClSxe0Wq3ZMt3c3IiMjGTXrl2cPHnSVqqaJDMzkx9++IGBAwfSsmXLSuPu7u4m13Xr1o3OnTuTkZHB1atXK42PGjWK3NxcVqxYYXOdnYEqDSIhRKviS1vhdY2X/dRvGNgry+xc6jk0WiXlvnNT53UZ1IbUhx+lKEuLi5eewP85RymsLtOn02TwYApTU9n32GMU1nCsXhfc3e1uJWZBCycun7CJTK8XJqPz1KPP1ZHznnXBmpawZ88lli07iqurlnnzIiwO4PT2dmXs2K6AUqjRGZk2TSkjMGFCb4KDvSxe7+Xlgp+fO0ajJDFRjWCoLZs2KTFq1cUF1YZBgwaVk19X7Nixg8LCQov1P3XqFLGxsTRu3JhmzSrHmZbov3Gj9aWM+lpqAAAgAElEQVQ8nJHqYojiUQKpOwOnyryuCVmDXJUK2Cuoem/8XgB0UoemDio3O4rcpYvJ2HUZkAR9+GKd1x0yF41OR+958/j93/8m6/Rp1vfrh2/nzgT07Utgv34E9O6NW+PGdaqDu4s7nhpP8snnu5jvmDHU+j7HwtUVv38PIPmL/aQt/wWvKVPrpBJ4WQyGfwKpX3yxD2FhNQdSm+Lpp3syd+6ffP31Cd5992b8/U1/U3YEW7acZ9Omc/j6upV2s68NLVp4kZ6eT3JyLm3erB/ZpHJR3ddPiomJITo62uRY//79GTp0aOnr339XDNM+ffrYVIe+fZV/1x07dvDMM5adYqenp1epf3BwMOPGjSt9ba7+mzZt4vfff6ewsJC4uDjWFlfbX7x4scnPiPbt2+Pn58eOHQ3TWVSd4fIFinGTUeG1io2xV1D14UtKyrGPa90XgLQXhgsJXHltCaDDf2g73CNHOFqlcrg0akS/xYs5/MorpB48SMaxY2QcO0bc8uUAeIWGEtinj2Ik9e2LR0iIzVNXwwLCOJJ6hF3ndtlMps+MaNJW3E5huo68JZ/h+fi4mhdZwaefHubQoSu0bOnD1Km1d/d26BDA//1fazZuPMfy5Ud5/nnbfuDVFikl06btBJTMOWsMNQ8PFwIDPdTK1RU4fPgwhw+bLrswYcKEcgbR+fPncXFxITCw5gw/SwgODi6VbykZGRnMnGm6NWiPHj3KGUQl8k2d8pRl06ZNvPPOO+X0W758ObfffnuVa4KDgzl58iT5+flVut7qK1UaRFLKqOpeq9gOezV2PZV8CoCmXlUXeatvJD/wGIYCHW6BEv/Fzpn54NWqFQO/+QZ9bi7pMTGkHDhA6v79pB06RM7Zs+ScPcv5774DwD04mMC+fQno25eAPn3wCQuz+vQlPDScI6lHOJdxzgZPo6Bp1Ajf264j9edTpM//pk4NoqtXc0tdSR98MAQvL1er5I0ffz0bN55jwYIYJkzojUbj+NopP/98lr17EwkK8uS553pZLa95cy9SU/PY/2QiXboEmqzifa0xZswYlhd/EamJlJQU/P1rdwpZHQEByul1cnJy6b2YmBhWrVpVbp6fn1+ljLLWrVubXV8pJSUFoMZnePvtt3n77bfJycnh1KlTvPfeewwbNow33niDadOm1fgMISGV28nUZ1TXlhNgr6Dqi5kXAWgb0DBadmS9+QbZJ3MRGgNNl81GuLk5WqVq0Xl60njgQBoPVBpyGouKyDh2jNT9+xUj6cAB8i9f5uLataWNYl38/Ajo3ZuAPn0I7NsX365dLW4AfP/19zNv/zyKRBEp2SkEetvmW2+jWTNJ+/V+8hK1FKxZhdtdNbU6rB1TpuwkPb2A225rw733hlkt7847Q2nVyoe//05nw4Z4hg517P8Ho/Gf06Fp0/rj7W2dwQfg5qajcWNPrl7N5eLFHNq3t395hPqMh4cH+fn5Npebl5dXKr+EmJiYSic/rVu3rjbFviZK5Jv7DF5eXlx//fV8/fXXpKam8uqrr3LbbbeVuvjKYuoZGgqqQeQE2CuoOr0gHQR0adqlTvexB/rDMSQv+BXQ0vjhgXarSG1LNC4u+PfsiX/PnrR7/HGk0Uj2mTOk7N+vGEn795N/+TJJmzeTVFzhVuPuTovhw+kxaxbCzAyX5r7N0UotRo2R7w9/z7hBtjnN0TYPodGAEDJ+TyTxqXfQTnrXepleLgStXIyuvWL4/PFHIkuWHMHFRcP8+dVXpDZ7D62Gp57qyZQpO1mw4JDDDaIVK05y5EgyLVv68OST3W0mt1kzL1JS8khPzycnp9Dqk7VriaCgIE6fPk1RUREuFn4BqY6Sk5ugoKDSe1FRUURFRdlsj7LyS/azhKFDh/Lbb7+xfft2kwZRSkoKOp2u9KSoIVGlQVSmXYelSCnlo7Vce80hpbSby6zAWIDQCvq1qtwVvD4h9XqujH4Oo16LZ2sdPu9Y/0HsDAiNBp8OHfDp0IE2Dz2ElJK8ixfLGUg5Z8+S8P33+HbpQtvRo82W3dKnJedyzrH5zGabGUQAfrNeI/OWJzAU6jAU2kBghpG0ZyfT5NdV5QKpX3ihDx062O4N+NFHuzFjxm7WrTtLXFw6bds65gSlqMjAa68psV3R0QNxc7Pdd1RXVy1BQZ5cvpzDxYvZNv35NXS6d+/O6dOniY2NpWvXrjaTW5Ju37NnT5vJNEX37t1L97v11lstWnvxouJJ0Okq/y7m5ORw8eJFevToUe/bdJiiuv99UbWUKQHVIDITQ04OGI1oPT0tdoVYwpXMKwitQBol14dcX2f72IOM5yaQlyjRuOhp8r/FdZ7h5CiEEHiGhOAZEkLLe5Q2JJd+/ZWDzzxD7Pvv0/yOO3AzM+hzQKsBnDtxjpPJtq1/oruuK613fYH+lPVy9XHxXJ6xgsyDV/Hbv5elf3pw8GASISE+TJ9ueU2e6mjSxJORIzvy5ZfHWbjwMO+8c7NN5ZvLsmVH+fvvdDp08Ofhh21/chsc7MXVq7lkZhaSlVWAj49zu5WdhfDwcFauXMnevXttahDt3atk+g4ZMsRmMk0RHh5eul/FbLaCggIOHjzIwGLXfVn279/PwoUL0Wg05YLMS9i3bx8Gg6HO9XcU1RlEDSPQxMmxV8r97nil566QAp22/npKCzatJ/WHGEBD0Ev3oQvr6GiV7EqzoUNpMngwV3fu5MTs2fR8+22z1o3oPoIVJ1aQbcimUF+Iq8527hNtu/Zo21lWJNEUboD3d+vIPpZN4vOvM+W4UgDy/ffD68TdM3789Xz55XEWLz5CdPRAuwce5+UV8frrewB4441BddJqQ6fT0LSpF5cuZXPxYjYdO7o2yG/25lBd2j1QbiwyMpKJEyeyfv36Si0sQElrX7x4MaD0PAM4ffp0OdeXqQDuDRs24Ofnxy233GKx/tWl3YPieivpyda1a1c6duzI5s2bMRgM5QpI5uXlMWjQIDp16kSvXr0ICQkhNzeXEydOsGXLFgBmz55Np06dTOoPMGKEc2Xz2gx7lMOuT5e9W3dknDwp14SGyq23316n+0T/Gi1DZ4fK7nO61+k+dYkxM1OebzdAnml8o0y69V+OVsdhZJ09K9d27CjXhIbK1D//NHtd27fbytDZoXL1kdU208VgMMiPdnwkN8dutom8wn1/yDNNBsrTjW+UYdpXZUTEt9JoNNpEdkWMRqPs3fsLCbPlsmVH6mSP6pgzZ7+E2bJnz8+lwVD7Z6yp/YFeb5CHDiXJ/fsTZVqa6ZYNDYXqWnfUdFUkMjJSurm5ydTU1Epj5sisSGxsrATkhAkTLHqmktYdNV1bt24tt+7DDz+UgPzll1/K3S8sLJSvv/66jIiIkC1atJBubm7S3d1dtmvXTo4ePVru3bvXpB4Gg0GGhITIHj16mBy/plp3qNQN9gqojr0aC0CQZ1ANM52X1LGPU5ihReepp/HXSxytjsPwbtuWdo8qXukjM2YgDea1aGjsrhSB/PnYzzbR41zqOfrN68f7f7zPo6se5eD5g1bLdOnbj/wOTRHA814nmD/f8orU5iKE4JlnFPexvStXZ2YW8NZbfwAwa9aNdZr6r9VqaNZMqXp98WI2yufLtUNUVJRZH4YVmTx5MgUFBSZPesyRWZFPP/0UV1dXnnvuOYv0b9OmjVn6l7jJShg7diyNGzdm4cKF5e67uLjw6quvsmnTJi5cuEB+fj55eXmcOXOGL774ghtuMF3na926dVy4cIEXX3zRIv3rE2rrDgdjL5dZQkYCAG3829TpPnVF3lefk779AiBpOnsCmqCGU0upNoSNH497s2ZkHDvGuW+/NWvN9c2UD/+YyzFW779ozyKGLBpCml5pR6LRaHj4u4fRG/RWyTUaJc9nRZAntdzmepm2sdus1rU6Ro7sSECAOwcOJLFvX2Kd7lWWDz88SEpKHoMGtWDYsLqPTmjSxBNXVy15eXrS0myfTt4QGThwIPfddx/vvPMOubm5VslKTEzkk08+4dlnnyU0NNRGGlZPo0aNmDlzJmvWrOHAgQNWyZJSMmPGDPr06cNDDz1kIw2dj+pOiOKBOKBdhdc1XWfrRtWGib0MotT8VAA6BVX2Czs7hsRLXJmy8P/ZO/PwpqqtD7/7JGmbTukElHkqAoLMqIAiqCiKIJ/oBVEUnMArXAFFAZEWFRFFxXlE0QtcEXFgUAGRQUDmeaZCKUMZOiWd0jQ5+/vjtIXStE3apBN9n+c8tefss/eKpMk6a6/1W4Ag9LYm+P1rSEWbVOHo/f1pkyucdnjWLLKTk0u8p9+1/QBItCaWMLJoMrMzGTBnADM2zEDoBHpVz8s3v4zqULFi5YmFhfMt3GHOnH2s2pvFT7IJAMkx75dpvpIwGg08/vh1AHz4YflEiZKSspg1S/uCev31m8olp0dRxFUdJSots2bNYtSoUZw4caJM88TFxfHiiy8yZcoUD1nmGiNHjmT69OmcP1+25s7nzp1jwIABfPHFF9U6B604h+jb3MN8xe8lHf/1lrHVkfJq25Hl0MS0ujSsHK0K3CHxwcexW/X4hqqEfv1FRZtTaajbty8RPXqQYzZz+K2Sm6z2bdUXVVUROlGq7a2NxzfS8b2OHEg5AECbkDbsenYXw28YzpOdngRg/en1LD+w3O25AZKTs5g0SRMobD1tOIrOQdYZlaxvvNus9+mn2yMELFx4hIsXyxYJcIWZM7eSlmbjzjub0LNn4U7k3iI83Iivr47sbAeJiTVtPVyhUaNGxMTE0KZN2SoAu3XrRnR0NCEh5SvvoNPpmDx5Mv369SvTPHXr1iUmJsbrcgEVTU3rjgqmPDSIzFlmULSwZ9eGpW8aWRGkz5xB+oF0hFCp/cVriGqojlpahBC0jY5mXb9+xC9aRKMhQwht377I8T56H4J0QWTIDBbvXUznRp1dXmvCkgn8cPgHFEVBOiQTb5rIUz2eyr8+uc9kfj3yKwnWBMYuG0vPZj0JMrr+npZSMnbsGpKSsrj11kYMeuYWUrZeQ8pv/5D8xhzqDXvUa/IKTZuGcPfdzVi+/Dhz5uxj4sTS90oribNn0/ngAy0SNX26Zzupl4SiCOrVC+TECTMJCRmEhxsrRdsST5KXR1PejkcNWmVeXpVbVaUmqbqCKY+2HVtObkEIgVAF/r7+XlvH09gP7ufi7CUAhD/YBZ9bqqf2RVkIat6cZiNGgJQuJVi3jNBkCjaf2uzS/KdTTnP9e9fz49EfURSFEF0Ia55cU8AZyuOHR34AB6g6lcHzBrv1Ot5+ezv//e9BjEZ9viJ1yKyZKAY71kRB5scfuDWfu+QlV3/66R4cDtVr67z22t9YrXYGDWpB586RXlunKMLC/DAa9dhsjnKJhpU3vXr1IiYmpsYhqgAGDhxYrCxAVaBUDpEQoqEQYoAQYljuz3KL+woh7hZCrBdCpAshLEKI7UKIWy+7HiqE+FIIkSiEyBBC/CGEuK687HOX8qgy23l6JwBGXdWJrkhV5cJDo1HteowNdAS/+25Fm1RpuWb0aPwiIzHv25ffJLYo+kT1AeBU2qkS5527ZS49P+9JUk4SqqrSr1k/tj27jcZhjZ2OjwyOJLp3NFJKDqce5ou/XdveXLr0H154YR0A3357F9deq1XDKbXrEHqv5qgkz16ItJctYbs47rijCVFRIZw8aWH5cu+kQR4/nsoXX+xDUQSvvFIxrWaEENSvHwhAQkKGV52/GmqoarjlEAkhWgghVqElWP8EzM39GSeEWCWEuMbjFhZcfyTwC7AD+D/gAWAR4J97XQBLgL7AGGAQYADWCCEqZVve8kiqPnxBUxGu5V/La2t4Gsv48WSddqDo7dSe/2G1VaP2BPqAAK6dNAmAQ7NmYUtJKXLsoPaDkFLiEA7Oms86HWPNsXLf1/fxyvpXEDqBTtUxZ+Ac3r/vfZQS/h0euf4R2oa1RQjBjPUzOJ1yutjxe/deZOjQZUipiRPef39Boc3gmW+g87VjM+vImOmaCGVpUBTB009r+RHeSq6OidmE3a4ybNi1+U5fRWAy+RIQYMBuV7lwofpFiWqoobS4/C0jhIgCNgG3oVWSfQu8mfvzeO75DbnjPI4QogkwG5ggpRwnpVwlpVwhpZwppcwTVhkA3AQMk1L+T0r5e+45BXjBG3aVlfJIqj6ZehKARiFVQxHBtm4NSQu2AVBr7AD013pOOr+6Uq9fPyK6dSMnNZXDb79d5LjwwHAM0oAQgu93FY4mbT6xmQ6zO7AnaQ8ALU0t2fnsTm69xnVl3e8e/g6dqkPoBA/894Eix50/n0H//j+Snp7D0KGteemlwu05lOBgwoZquTbJXyxHZme7bIe7jBjRFqNRz6pVJzl6tOSqPVeRUvLbb8eZN+8gBoNCdHQ3j81dGi6PEp07l4HdXv2iRDabg9On07BavRdVrKH64c5j9wwgHHgWaCmlHCGlnCSlHAG0BMYBEcDrnjcTgMcAFfi0mDEDgLNSyjV5J6SUZmApcK+X7CoT5ZFUnZillVm3rFX521zIjAwuPDkFKRUC2wQS+OKkijapSiCEoG1MDEKv5+R335G6d2+RYxubtC2vNcfXFDg/celEHlz0IDkiB+mQPHfjc/z65K8E+ga6ZYu/rz8fDfgIqUou2C4Q81tMoTFWq53/+79fiI9P44Yb6jJnzp1FlvMGTXsFg7+dnAw9adFT3bLFHUJD/Rg6tDUAH39cdq0mKSXLlv1Djx7/4+67f0RKGDmyfYU1kr2c4GBfgoN9cDgkx4+noqrVpwzfarVz+HAy585lcPZsRkWbU0MVwh2H6DbgVynlB1LKAo8UUkpVSvke8BvgXmtd17kJOAwMEUL8I4SwCyFihRDPXDamDbDfyb0HgEZCCPc+2cuB8kiqzrRrYfFODTp5bQ1PkfL4SLJTFPR+diL+d/WqUZeGoKgomg0friVYT5uGVJ0/+d/URIu4xCbHAnDOco5u73dj0ZFFKIpCsBLMqsdX8czNzzi93xX6tOrDbY1vA+Cbvd+w98wlB01KyRNPrODvv8/SsGEQP/88ED+/ovvrCaOR0CfuAiBl/nrU3IcIb/DMM9q22dy5B8jIsJVqDodDZeHCw3To8C39+//E33+fJSzMj2nTujNrVsU0kXVG48Ym9HoFi8XGqVNpFW2OR8jKyuHIkWRsNq24wGLJrtFcqsFl3HGIfICSHpt2o+XseIN6QAvgLeAN4A5gFfChEOLZ3DFhgLMEirz4d6iXbCs13k6qzszORCqatHu3JhUbqi8J68IFpKyOAyS1Z4xCV7deRZtU5bhmzBj86tQhdfduTv3wg9MxD7TXtrEy1Uy+2vwVPT7pwQXbBaQqubPJnewYu4PmEc2d3usOnz3wGf7CH0Wn8NB3D6HmOmgzZmxh/vxDBAQYWLr0/4iMDChxrsBJk/EJdmC36rFMnlxm24qiY8c6dO9eD7M5m/nzD7l1r83mYM6cfbRu/TVDhixj796L1K0bwNtv9+LkyaeYOrU7vr6Vp7Gyr6+OqKgQhBBcvJhZ5fOJMjJyOHIkhZwclaAgHwwGBbtdJTOzZtusBtdwxyHaA5SUHxQFFB2rLxsKEASMlFJ+IaX8U0r5NPA7MCk3oVqgNbq7kmLFNoQQT+VWq22/ePGixw0vCiml17fMdpzeoW1FqGAymryyhidQL5zn/AsfAIKQnvUxPvxoRZtUJdEHBnLtxIkAHHzzTWypqYXGtI5sDQ6t3cb0DdNBB4qq8NmAz/j4/o9LTJx2FUVRmD9kPqpDJVNmMnLRSBYvPspLL21ACFiwoB/t27vWW0/o9YT9R3PkUn7cgZrovb/TZ57RKts+/HCXS9GFzMwc3n9/J82bf8kTT6zg2LEUmjUz8dlnfThx4knGj+9CYKCP1+wtC4GBPjRpoj2MxcdbMJu9l6PlTdLTbRw9mozdrmIy+dKiRQgmky+gRYlqqMEV3Pnkex24Twhxl7OLQoh+aJVf0z1hmBOScn+uuuL8SqAOUBctEhTm5N68yJDT8hsp5edSyi5Syi61apVfJZYjIwNUFZ2/P4rBO4G1Hac0RWI/nZ9X5vcUyU8+gz1Tj4/JQdjcLyvanCpNvf79Cb/hBnJSUjj8zjtOx0T6X9LAiQqOYueYnfRp1cfjtrSr345H22nO7eqTqxk+VhOynzmzJwMGuFd/4T/mWXzDJWqOHvPzL3rc1jwGDWpB7dr+7NuXyIYNZ4ocZzZnM2PGFpo0+Zxnn/2T06fTaNMmnHnz7ubIkcd56qn2lSoiVBTh4cb8th7Hj6eSlVW1IioWSzZHj6bgcEhCQ/1o3jxE2/oN1hwis7l0W581XH0U19z1kcsPtITq34BlQoiVQogpQognc3+uQit3/xUtsdobHCjK1Nyfau4YZxrr1wLxUsp0bxhWWsqj5P7g+YMAhPk58xMrBzm7d2L+W2usWfu9iQgvJphfDeQpWAudjpMLFpC6v3Ba3fM9nydYCWZMlzGseGqFW6rS7hJzVwxh1EEoAtN9qxj2aEuef959xXShKIRPHAFA6u+HccSf9LSpAPj66nnyyXYAfPRR4RL8ixczeemlv2jU6DMmT/6Lixez6No1kp9/HsjevcN56KFr0eurlkxEvXqBhIb64XBIYmNTqkzlmdmczbFjWlJ4eLiRZs1M+erbwcFaVC4jw1ajt1SDSxT3VzsX+PqKoz+aA3I78ArwWe7P23LPD8gd5w1+yv155xXn7wROSynPoTll9YUQ+ZmLQojgXLuXeMmuUpOfUO1FByAuJQ6AhsHl1zPJXVImTAWpENjSiG+/ARVtTrUguGVLmuYmWO+PiSmUYP1/7f+PXeN3MbbXWK/bkpmZg/2HR8hJDsK34UWSe5S+QaRx+OMY6ymoDh2pz030sKWXGDmyHTqdYPHiYyQkaM9Rp05ZGDv2Txo3/pzXX9+CxWKjd++GrFr1AFu2PMS990ZV2VYYQgiaNAnG399AdraDf/6p/JVnKSlWYmNTkFJSq5Y/TZpo3d2FEMTFxaHXKwQGGpASLJbSRYm++uorhBBs3bq1TLYuXrwYIQSrV68u0zzucvToUXx8fHjLhV6HxbFjh5Z6MWdO0YUuvXr1qtatO0aglbpffoxw4XjMS7b+CqwBPhNCjBJC3CGE+Bwtufrl3DFLgL+BeUKIIUKIO3PPCTTNpEpFeahUX8i8AECLWi28tkZZsG1cT9ruVEASOrN8O0FXd64ZMwbfWrVI2bWLUz/+WCE2qKpk+PDf2L0lHXX1nUgpOZi6n7lb5pZ6zrDoMQCY18djP+Je4rOrNGwYzL33RmG3q7zyyt888cQKmjf/kvfe20lWlp177mnGpk1D+fPPwdx+e+Nq0QFcp1OIigrBYFBIS7MRH2+ptBVaSUlZ/PNPKlJCnTr+NGoU5PTfIDjYl6VLFxIWZtTaFxVxOPsiT09PZ8qUKfTv35/rr7++wLVVq1bx3HPPcdtttxEWFoYQgptuKro33X333UenTp0YP358fnGBq8TFxRVre94RFxdX6N7x48cTHh7OM88UXzGamJhIZGRkka+jc+fODBw4kClTppCeXqk2WjxKcc1dvylPQ0pCSimFEAPR9JCmoeUFHQYeklIuyB2jCiHuAWYBHwN+aA5Sbyllyb0Kypny2DJLz0kHHXSs19Fra5SFlBdfAwRBHUz49OhZ0eZUKwxBQVw7aRK7xo/n0MyZRPbpg4+pfBPrp03bxKJFRwkO9mHFVxN4fuNejlqO8uraV7m79d3UDnYtqfpy/O67n4A3PiHjhI2U8ZOptfynkm8qBc8805EffzzGp59qIpWKIhgypBUTJ17vcjJ4VcPHR0dUVCiHDyeTmJiFn5/epSrA8uTixUxOntQ+O+vWDaRevYAiHVKT6VIye/v27Rk4cKDTcc56n73//vskJCQwcWLhSORHH33EL7/8gp+fH1FRUaQUow4PWgTuxRdfZPDgwXz33XcMHTq02PHOMJlMjB1bdET3ytewadMmli9fzvTp0/H3L76H5ciRI8nIKF6zadKkSdxwww28//77TPZipWeFIqWsOS47OnfuLMuL+B9/lEuaNZM7xo3zyvw59hzZdGZT2eytZjLBnOCVNcqC9bdlMjbiJhlbq7vM2b2ros2plqiqKjcMGSKXNGsm90ZHl+vaCxYclPCWVJRZ8tdf/5FSSmnJtMioN6Jks7eayR4f9Cj13NZVv8vYiB4ytlZ3adu+1VMmF0BVVdmt23xpMLwtH3/8d3n0aLJX1ikrBw8e9PicSUlZctu2BLltW4JMScny+Pyl5dy59Hy7EhLSC12Pjo6WgDxx4oSUUvs3nDbtPQnIhx8e5vI6drtdNmzYULZo0cLp9U2bNsn9+/dLu90uT5w4IQHZo0fx72er1SpDQkJKHHclefM3btzYrfuGDh0qFUWR8fHxxY775ptvJCA//vjjEl9Hq1atZKNGjaTdbi907ZZbbnHbRlffu8B2WQ7f/1Ur86+a4e22HXvO7EEoAtWhEhlc/p21SyJ5yiwATDdGom/foYKtqZ4IIbguJgah0xE3fz7mgwfLZd0tWxIYMeJ3AN55pxd33dUMgCBjELPvmY1UJQnWBF5fVTphe9/b7yTw2kCQCinPR3vM7ssRQvDnn/8iKWk0X355Jy1aVDoZM68RFuZHvXqaju3x42aysnIq1B4pJWfPpucLSDZqFOxS5EoIkS/6abO5vlW1atUqTp06xeDBg51e79atG23atEGn07k8p6+vLwMHDmTjxo0cPnzY5ftKg8Vi4YcffqB79+40bFh0/mh8fDz/+c9/ePzxx7nrLqcF5AUYMmQI8fHx/PHHH540t9LgbnPXACHEhNwO8oeEEMedHP94y9jqhrc1iLbGa4mAvoqvV+YvC9aFC8g8aUcoDkLe8V7Tzhq0BOsmw4aBqrIvOrpIBWtPceqUhXvv/YnsbAcjR7bnP/8pqJDer00/bsXLobMAACAASURBVG5wMwBf7PyCQ+dKlwcU9mY0CJW0/RZs6/4ss93O8PPTExRUOTWEvE3dugGEhfmhqpJjx1LJyXFUiB1SSs6cSefsWS13pUkTE7VrF78FdDlGo+YQ5eS4/r7P+8IvLi+oNPTo0aPA/N5i/fr12Gy2Yu2XUjJ8+HBMJhPvFCHPcSV59q9adaX6TfXAZZEMIUQIsAGthN0CBANmNAVrY+6ws0DFPkpUIbzdtuPAeU2pINS3cj3ZSlUl6dVPAAjp3Qx9VOVM+K5OtBw7lrPLlpGycyenf/qJhoMGeWWd9HQb/fv/xPnzmdx6ayM++OBWp/kdcwbPof277bHqrAxZMIRdY3e5LQhpuKEbwZ0isOxIJnni60T+7XoDWleQqop14QLUpCT8nxyF8K18DxYlIcSsijbBJaR8vojzklOn0rhwIRMhoGlTE2FhRqdjiyLPITpwYC/R0dFO34833ngjffv2zf99w4YNAHTp0sWttUqia1dNbmL9+vWMHj3arXtTU1OJiYlxei0yMpJRo0bl/+6K/bNnz2bt2rWsXLmS4OBgkpNLbmh8uf3VEXdUw6agOUOPo5XkO4B3gVeBG4APgQwKl8XXUATerjI7nnwcgPrB9b0yf2nJmvM51vOg6O2YaqJD5YIhKIjWEyey+/nnOZibYO1pR1xVJcOG/cqePRdp0SKURYv6YzA431LQ6/T8d/B/GfS/QaSTzpgfx/DR/R+5vWbo26+R1nsUGbHZZC/5Gd8BzpNm3UGqKpkfvEfKJz+QnaQ5afo3vyPkgW4ERcegeLEIooZLSCk5edJCYmIWQgiaNzcREuK+wGyeJtTRowd45RXncnbPPvtsAYcoPj4eg8FAeHh46YwvgsjIyPz53cVsNjNt2jSn19q3b1/AIcqbv27duk7HHzx4kMmTJzNq1Chuv9319qMmkwk/P79S2V8VcMchGgCsl1J+DeR72bkJT5uFEHcD+4CXuFQGX0MxeLvK7Hz6eQCiwt1TBPYmUlVJfuu/gEJIv7bo6jWoaJOuGhoMHEj8d9+RvH07R2bPpu1Uz3aOf+mlv/j551hCQnxZuvT/SnyS79SwE4NbD2bRkUX8evxX1sWu45Yo95qf6ttcR3CP+pg3JJAUPZt6ZXCIpM1G+sw3SJ37OzaLDlBQ9HZ0PpCTqSfx222kfHcnIf3bE/zaqygR5adqX1qKiry4S2ZmDocPJ6Oqkvr1A6lb17t9slVVcuKEmZQUK4oiiIoKyVeeLi39+v2LTz75koYNS05RSEpKIjTU85H1sDBNIDcxMTH/3O7du/n5558LjAsJCSlUUda4cWOnpfXOSErSGjs4ew05OTkMGzaMunXr8uab7qvRhIWFcf78ebfvqwq4E6NuCOy87HcVyH+HSikvoClZD/GMadUfbydVW2za/O3qtfPK/KUh451ZZKco6HzsmGbWRIfKEyEEbWNiQFE48d//YvFgYue33x7gjTe2otMJFi0aQMuWrimjv9H/DcIN4SiKwlM/PoU1x+r22qHvvIHQOcg67SBrnvtqITItDcuLL3CqxS1ceH8VNosOna+d8Afa0Xj/MhoeW0ed8X3xMTlw2PQkLT7AyesGkPzwo15Ty65s+PsbaNpUk2w4cyadlBT3/51cRVUl//yTmu8MtWgRWmZnKA9X+5oZjUasVs+/xqysrPz589i9ezfTpk0rcMyePbtM6+TN7+w1zJgxg127dvH1118TGOi+Y5uVlVXA/uqEOw5RJto2WR5m4MrSpfNA5dqfqcR4M6laVVXsQutJVFm63EubjeSPNc2Y0AduQPFwOLqGkjG1bk3Thx++lGDtAeG9DRtO8+STKwH48MPbuP32xm7dv2jYIqRDYlfsPDz/YbfX1zVtRsjtWh5a8owvXU4aV5OSSB09mpOt7+DiV3+Tk6lH72+n1ogbaXxoJSEff4QSHo7w8SFw0ks0OLqByOj78Y2QqHY9KSuOc7LrgyTdNxj7ofKp3qtIQkP9qF9f+wI9ccJMZqbn00UdDpXY2BTM5mz0eoWWLcM8ltQuBGRl2bHZSk4Or127NhaLhZwcz77GvMhN7dqXdKyGDx9eqPzb1UhQUeTNn7fe5ezcuRMpJb169Sog7Ni0aVMANm7ciBDCqTaTqqqkpqYWsL864Y5DdAotSpTHQaCnEOLyJIGbgHOeMOxqwJtJ1UcuHEFRFFSHStPwph6fvzSkT3+VnDQ9eqOd4One6gFcQ0m0HDcOn/Bwkrdv5+Drr6PaSt/88tdfj3PvvT9jszkYM6Yjo0a5L5/QOKwx47uPB2DnxZ38dvA3t+cImTUTRW/HegEyP/242LGOs6dJGf4YJ6+7h6SFe3Bk6/EJdlD7P31odHQtwW++5bSfnlAUAkY/S/0D66n3zuMY6ytIVUfqX2eJv+VJLva9l5wd29y2vSoRGRlAeLgRVZXExqa65FwUh5SSjIwczp/PIDY2lX37ErFYbOj1CtdcE0pAgOeaXufls7kSJWrXTouqHzlyxGPrX7iQyfLlfwPQoYN3ZUby7HdW3t+nTx8ef/zxQkeexECdOnV4/PHHeeSRRwrde+TIEaSUXre/onAnh2gd8C8hhMjNG1oIvA8sF0IsBXoBNwKfeNzKaoo3k6o3n9wMgEF47gOlLMiMDJK//gPQE/rIrYiAyqV+ezVhCA7mupgYdjz7LMe/+oqkrVvpNHs2gU1dd5ytVjsvvrie99/XdtH792/OO+/0LrVNo28ezfd7v+dM1hle//N17rq2ZE2Uy1EiIwm9tz1Jiw+Q/O4C/J8ahdAX/Hizxx7DPDkay/o4VIcO0OMbphL69CD8R/+n0PiiEIqCcdhwjMOGY/15MakzPibjuA3LjmQsfccR2CaI0GkT8LnFs1VvlQEhBI0bB5OdbSc9PYd//kmlZctQlysEVVUlI8NOWpqN9HQb6ek5hXqm+fnpiYoKydcP8hQ+PpqNZrONiIjiy/Z79erF4sWL2bx5M23bti3z2lJKEhLS2bNnBwC9e5f+b8UVevXqBcDmzZsLVbMV1cYjLi6OhQsXEhUVxZdfful0zObN2veKt+2vKNx5x32DVmLfAC1a9ClwKzAQrZ8YwEa0arQaSkBK6dUts/0JWodzk0/5tmooCsvLL2PP0mMItBM01TtCejW4Tr2778avTh12jh+Pef9+1vfvT9voaBref3+Jfbn277/I0KHL2bcvEb1e4bXXevD8813R6cqm8/rybS8zatkoTmee5mTySRqHubf1FvzGG6Quuwtbqp6MWW8SOFFrL5Czeyfml17Dsu08UiqADmNdQcjYYRiHP45ws9z/cvwGDiJy4CBsq1eR8srbpB9MJ/1AOun3TyWg+euETh7tkcq3yoSiCJo3D+HQoWQyMnI4ccJCs2Ymp+8bu10lIyMn3wHKyLAX2qb19dURGOhDUJCBwEAffH11XukNd+jQPj7/fBZCCCIj/QutcXlJ+8CBAxk7diwrVqzgiSeeKDTXhg0b8p2GvN5ex44dY/jw4flj5s6dm//fFouNnByVLVvWERRkomfPXm7bX1zZPWhbb3k92dq2bUvLli1ZvXo1DofDLQHJ4li5ciU6nY57773XI/NVNlx2iKSUO4GnL/vdDtwnhOgMRAFxwDYppXdV36oJjowMUFV0/v4oBs9HcWKTYwGoG+S87LI8UVOSSVn4N6An7Ol7ET5Xp9BdZSOsc2duWbaMfVOncmbJEvZMnMiFdetoN326055nUko+/ng3zz+/DqvVTosWoSxY0I8uXTyjgt6nVR/8lvlhVaxM/X0q3wx1L0FaCQkhdHB3Er/dSvKnS/HpdiOpr7xN2r5UkAqg4N/EQOiLI/G737kCcWnxua0PdW7rQ9i2zaS+PAPLzkQy/skm4/G3MTaYTehzIzA+/KhH16xIDAYdLVpoTlFKipWEBD316gVisznyIz9paTaysuyF7jUaNbHLwEDNAfLx8cyXdUns3buXvXv3Fnn9cmejQYMG9O/fn6VLl5KSklKoWis2NpZvvin4/rxw4UKBc5c7RImJWZw8+Q/79u1gyJAnsFoV3N0YKK7sHgp3m3/66acZO3YsK1eudEmF2pX1f/75Z+65555i1a+rMmVu3SGl3CGlXCil3FLjDLmOt0vuE9ISgMpRcm9+YRIOmx7fUJWA51+oaHNquAxDUBCd3n2Xjm+/jT4wkITffmPd3XeTuGVLgXEXL2YyYMBPjB69GqvVzmOPtWXnzmEec4byGNJOK1LdcGoDdkfhL9OSCH7tNfT+dnIy9Jy6P5q0vRaQgsCW/jSYN5m62/70uDN0OYauN1Lr919ovPYzTDdFIhSt+u3suC850+ZmcnbvLHmSKoLRaKB5cy3x9uzZdPbtu8jevRc5ftzMhQuZZGXZEQICAw1ERgYQFRVChw61adMmgkaNggkLM5aLM3R50nJcnJlt2xI4cyatUCLzlUyYMIHs7OwCjo2zOYs68rDbVVJTs/nxx//i4+PD4MFPkJiY5bL9TZo0cakPV942WR4jRowgIiKCTz/91K118kQdr+Tbb7/FarXy3HPPuWx7VaNUDpEQwiCEaCeEuDn3Z+VIVKlC5CdUe6ltR2p2KgBtI8u+/10WHAlnSV2mPZWFPfdQmbYnavAeDQYOpOfSpYR27Ij13Dn+fughDs2ahZqTw8qVcbRr9w3Llh0nJMSXRYv6M2dOXwIDPR/pm9B7AtIhQQcfrP/A7fuF0UjYE7lPw0IlqEMIjZbMpM6GFfjeWfanZFfRX9uWiJ8W0XjrfELvaJqf8J307xfLzYbywGTyzdf1yc52oCiC4GAf6tULpGXLMDp2rE2rVuE0aBBESIhfvkhixdmrvWfN5pITq7t3784DDzzAzJkzyczMLPWayclZXLx4jh9//JbRo0fTuHETMjNzvFKldznBwcFMmzaNJUuWsH379jLNlZWVxYwZMxg0aBA333yzhyysfLiVtSaECAfeAIYCl0uGWoUQC4BJUspEpzfXUABvq1TnyBwUFG5ofINX5ncV83Mvotr1+NUB45OjSr6hhgojoFEjuv/vfxz98EOOffwxsZ98ws7vfuf5Pd04ZzfRs2cD5s27m4YNvafU7Gfwo0tkF3Zc3ME3u75hXO9xbs8R9PJU9FHNMLRrj77NdV6w0nV0jZsSNv9bgvfs5uTto8mIzcR+cD/6ayv2QcWT1K7tj7+/HkVR8PfXeyX/x1MEBfkgBGRk5GC3qyU6aLNmzeKrr77ixIkTtGnTplRrJiZaOXv2FM8+O56JE5/HbFa4eDGTpKQs/P29G0sYOXIkqampZRZSjIuL46mnniqQI1UdcdldF0LUAbagte6wAeuB73N/2nLPb84dV0MJeHPL7ETSCRSdgqqqtK7T2uPzu4rjn1hSV2u9fsNeGlkTHaoCKAYDrcaNo/7rn5AqTASnnOC9Bov4aLjK6tUPeNUZyuOVvq8gpcTisLD5xOZSzWF88OEKd4YuR9++AwHN/UAqWKa7rw5cmRFCEBTkS0CAoVI7QwA6nZIf2XSl/L5Ro0bExMSU2hnKiwR17NiV119/lZCQECIiNFHDpCRroQo7T6PT6Zg8eTL9+vUr0zytW7cmJiamQI5SdcSdb6jXgWbAbKCxlLK3lPJBKWVvoDHwXu71GoEZF/CmQ7QlTsv/0Eu92w0zPUnKc5OQqg7/RnqMD7ovuFdD+SOl5LPP9nDTo/t5+sQgdtEKo5JDw/Wfsee58fnvW2/Sqk4ravnUQgjBK3+84vX1ygvTqAcBsKw9hszIqGBrqie9evUiOjraqahgHsHBeQ5R6fW3XCUvVygszIiiaM6iv78eo1GP3a66tHVXVRg+fHihdiNVDXe+Le8B/pJSjpdSFvhUlFJapJTj0Mru+3vSwOqKN9t27D67G4AgH+/kJ7mCfd8eLJvOAhD2ivvbHjWUP4mJmfzf//3CqFGryMqyc/+wTozd9SMdZs5E5+/P2WXLWHfPPSSVMR/BFUZ317RTDiUfwpxl9vp65YHfIyMwBNlx2PRkzH63os2plvTq1YuYmJhiHSKTSWsDYjZne0SpvShUVZKcrLXOyIsKgRZRy/vdneTqys7V5hAFAc7Tzy/xF+Ddrn/VBG9qEMUmaSX3dQIqbvcy5bkpSKkQ0MIP334DKsyOGlxj9eqTtG//Lb/8EovJ5Mv//ncPc+feRXCwLw3vv59bli4lpF07ss6cYdODD3Jk9mxUu/tVYK7yUOeH0Kk6FJ3CtBVFlxpXJYSiYBqg5fSZF6yoYGuuXoxGPQaDQk6OitXqvfew2ZyN3a5iNOrx9y+YrhsW5ocQ2piyqn3X4DnccYgOAyWJ2tQFPKd1Xo3xZtuOM5YzADQLa+bxuV0h5++NWHalAJKwmTU6nZUZm83BCy+so0+fRZw9m06PHvXZs+cRhgxpVWBcQJMm9Pj+e6Kefhqk5OgHH7BpyBAyT53yil2KotA3qi8Ay44u88oaFUHQ5EkInQPrBche9XtFm3NVIoTIbxZrNntv2ywv+hMRYSyUW2Uw6DCZtLqkvChSDRWPOw7Re8BgIYTT1ulCiA7Av9ByjGooAW9WmaVkpwBwbZ1rPT63KyS/8AogCGpnwufmWyrEhhpK5ujRZLp3X8Bbb21DUQTTpnVn7drBNG7sXN1cMRho/fzzdJs3D7/ISFJ27WLdPfdw+pdfvGJf9B3RqA4Vh+Lgux3feWWN8kapXYegTlpjTMus4nuu1eA9LuUReSeHx2ZzYDZnI4QWDXJGRIR2PjExy6tbdzW4TpEOkRCi5+UHcAJYBWwVQnwuhHhYCNEn9+cXwGZgJZpidQ0l4M2kapuqPfVc3+h6j89dEtkrfiP9cAYIldBZ1SchtjohpeTLL/fSseO37NhxniZNgvnrrweZOrW7SzoxETfeyC3Ll1O3b1/s6ensGj+ebaNGYT5wwKN2hgeGc03oNQC8t/E9j85dkZgmaPlRabsTcZw9XcHWXJ3kOURpaTk4HJ7XE05K0qJDJpNfflPZKzGZfDEYFKxWOxkZ3tUkqsE1ivv0WwusueLoj9bP7Am03ma/5/58PPf8vbnjaigBbyVVX7BcQOgEUpV0bNDRo3O7QvKUtwCB6fo6GDp2Lvf1ayie5OQsHnhgCU8+uZLMTDtDh7Zm9+5H6datnlvz+ISE0PnDD2k/YwY6o5Fzq1axfsAAtjz2GMkeTLqectsUpJSct54n9kKsx+atSHx6345fpECqOtJef6OizbkqMRh0BAQYkFKSnu5ZZ0RKme8Q5UWBnCGEIDy8+iVXV2WKE2Z8BaiJ43kJbyVVb4rbBIAiFfQ6z3aLLgnrDwvJjMtBKA5C3p1RrmvXUDJr18YzbNhvnD6dRlCQDx9/fDsPP1z6bVUhBI3+9S9q9ezJ8a++4uSCBVxYt44L69YRdv31tHj6aWrdfHOZtGlubn4zgUogGTKDl39/mf898r9Sz1WZMA27G+tby7Es24Fpth2hL9+/1Rq0KFFGRg5mc3Z+5ZknyMjIwWp1YDAoJc4bHm7k3LkMkpOtNGwYVOYGyTWUjSL/CqWUMeVox1WHt5Kqd5/RSu4DDAEendcVkl/5CABTryboW7Qs9/VrcE5OjoPo6E288cYWpIQbb6zL/Pn9aNas6NJkdzBGRtJm8mSiRo3ixDffEPfttyRv3cqWrVsxtW1Li3//m8g+fUotzDms4zA+3fkpWxK2YLPb8NFX/ebAAc+OQ/f+L+Rk6Mn6+kv8a1Tcyx2TyZeEhAyP5xHlRXvCwwsnU1+J0agnIMBARkYOKSnZBcrzayh/atzRCsJbSdVHE48CUNu/tkfnLYnMr74gK0Gi6B2EvD2zXNeuoWhiY1Po0eN/zJixBSEEU6d246+/HvSYM3Q5vmFhtBo3jtvWr6f1Cy/gGxGBef9+tv/736y96y5O/fgjao772xPjbhkHDhA6wdtr3/a43RWB8PXFdJtWyWf+4vsKsUFarTjOnr1qE3oDAgzodAKr1UF2tmfK7x0ONb9qLG87rCQuKVfXbJtVNKVt7nqTEGKMEOJlIcR/hBA3edqw6oyU0mtbZqfMWhl0k9AmHp23OKSqkjxzLgAhfVuja9Cw3NauwTlSSubO3U/Hjt+ybds5GjUKYt26wUyb1sPrDTYNQUFEjRzJbevW0TYmBmO9eqTHxrJ7wgT+vP124ubPx5Ht+lO5XqenW/1uACzYs8BbZpc7QVMmglDJPGEjZ9eOcl1bqio5x+LIuWBBTUgo17W9SUxMDEII4uLiShzrSvn9V199hRCCrVu3urR+Sko2qioJCDBgNF7agFm8eDFCCFavXl3onrAwPxRFkJZm85hjlsfRo0fx8fHhrbfeKtM8Z86cwWg08vLLLxc5Zvjw4ZW+dUtJuPXJKIToJIQ4CKxDK6+fBrwLrBNCHBRCdPGCjUXZ8rsQQgohXrvifKgQ4kshRKIQIkMI8YcQovI0NQIcGRmgquj8/VEMnm3ul2RNAuDa2uVXcp/53rtkJyvoDHZMs6pXn6aqSGqqlSFDljFixO+kp+cweHBL9ux5lJtualCuduj8/Gg6bBi3/vknHd58k4Bmzcg6fZp9U6ey+pZbiP38c+zp6S7N9epdryJVSabMZO2xtd41vJzQt2hJ4DWBgMDy+qxyXdtx5gxqrh6ganHt36CqMnfuXIQQTo+oqFC6dq1Lp06tCt2Xnp7OlClT6N+/P9dff6liNyMjg/nz5zN06FBatWpFQEAAQUFBdOnShbfemkVOjq3Q1td9991Hp06dGD9+PKpasKpNp1MIDb1Ugn8lcXFxRdp/+eHMCRw/fjzh4eE888wzBc7//PPPDB48mFatWhEaGorRaKRFixY8+OCDbHdSFFG/fn1GjRrF22+/zSkvaY9VBlzO5BNCRAF/AsFoitV/AgloYoy9gZuBVUKI66WUx7xg6+W2PAi0d3JeAEuApsAYIAWYBKwRQnSQUlaKGldvltxbHVaETtCpYSePz+0MabOR/OFiQEfooK4o4eHlsm4Nzvnrr9M8/PBy4uPTCAw08OGHt/HII20q9MlNMRhoOGgQDQYOJGHlSo598gmWAwc4NHMmsZ9+StNHH6XpI4/gExpa5BxNw5tS11iXc9nnmL56Or1a9Cq/F+BFgkc/QvqYT7FsjCPUYkHxwmfClcjsbBzJ6YD2nlCzHUgpq/zTfUm0b9+egQMHFjhnt6tcuJBJcLAJVZX5/cYA3n//fRISEpg4cWKBe/766y8efvhhwsLC6N27NwMHDiQ5OZmlS5fy5ptTWbFiKRs3ri1wjxCCF198kcGDB/Pdd98xdOjQAtfDw/1ISsoiKclKvXqBTv8tTCZTsa0xrmxXsmnTJpYvX8706dPx9/cvcO2XX35h27ZtdO3alXr16uHj40NsbCw//fQTCxcu5PPPP+eJJ54ocM+ECRP44IMPePXVV/n888+LtKNKI6V06UArr7cDDxRx/f7c69+4OmdpDiAEOAc8iFYF99pl1+7NPdf7snMmIBl435X5O3fuLL2N+fBhuaRZM7nmzjs9Om9qZqps+mZT2fTNpjLDmuHRuYvCEjNVxkbcJOMa3ChVi6Vc1qyhMDabXU6Z8pdUlFkS3pJdu/5XHjuWXNFmOUVVVXl+7Vq54V//kkuaNZNLmjWTy9u2lfunT5dZ584Ved+iXYtks7eaySYzm8gLaRfK0WLvoTocMj6qm4yNuElapk4p1RwHDx50a7ztyFGZteuQzN5/SFr3HJRZuw5JR0rlfK+4S3R0tATkiRMn8s99/fXXEpCPPvqo03v27bsot21LkBZLdv45u90uGzZsKFu0aFFo/K5du+S8efNkdnZ2gfOHD5+RrVpdJwE5a9asQvdZrVYZEhIie/ToUeiaqqpy794Lctu2BGk2WwtcO3HihARk48aNi3nlhRk6dKhUFEXGx8cXupaVleX0nr1790pfX19pMpkKvT4ppezbt6/09/eXqampha49+uijUnMpXMfV9y6wXXrRr8g73Nkyux34WUq5qAjH6gfgl9xx3uRN4ICU0ln97QDgrJQyXwtJSmkGlqI5S5UCbyVUbzmpJc4KVeDv61/yDWVE2mwkf7USgNBhvRBe6MtWQ8kcP55Kz57f8dprm5FSMnnyDWzc+CBRUUVHXCoSIQS1b7mFHgsX0v2776jVsyeOzEyOz5nDmjvuIP3ECaf33d/hfvSqHkVRiPk9pnyN9hJCUTDdp6Vgmhf+6fX11JQUHJnaXpm+UT0UP33u+erRQLc0mExa1eLlnedXrVrFqVOnGDx4cKHxHTp04KGHHsLH51K1o5SS7GwDDz2kVQuuXbu20H2+vr4MHDiQjRs3cvjw4QLXPK1JZLFY+OGHH+jevTsNGxbO6fTzc66PdN1119G6dWvMZjMXL14sdH3IkCFkZmby3XfVQzn+StxxiCLQ+pkVx+HccV4hN3n7EeDfRQxpA+x3cv4A0EgIUSkaz3pry2zHaS0x06grn9LNzE8+wp6pR2+0ExQdUy5r1lCQefMO0qHDt2zenECDBkGsWTOY6dNvLlIdt7IR3rUrN379NTf/8guhnTtjT0/n1OLFRY4f0EprFLzyn5WFcjGqKoETJ6LoHWQnKVh/+dFr60gpsZ85D4A+0IASFIwSrH0kqhlXbz+tvMRqi+VSYvUff/wBwE03uVYvZLHYsNkcGI3aXPoidKV69OhRYP7LCQ/XnJSUFK0pbFlYv349NpvNZfvzOHr0KEeOHCEiIoK6dQu3Ls2zf9WqVWWyr7LijhrYRaCkTN1WQGLpzSkaIYQB+AyYJaUsqoFsGM5bhyTn/gwFKjyD0FsO0eELmr9ay7+WR+ctCvPXPwNgurs9wtdzwmY1lIzZnM2///0HCxYcAuD++6/hs8/6EBZWNXVMQtq2pdXYsfw9bBgJK1bQ6rnnnOZRTO0zlR8O/QA6+GbbN4y4YUQFWOtZlNAwgq6vh3nTeSyzv8Tv3vs8NvfStu+mHgAAIABJREFU5s09Npc36f/PP15fY/fu3cTExBQ6L6UkIqIV3br1JifHgcGgY8OGDQB06eJanVBeyfzy5QsB6Nu3r9NxXbt2BTSHZfTo0QWu+frqCQ72wWKxkZxspXbtglH+1NRUp/YDREZGMmrUJS0rV+3/448/2LBhAzabjRMnTrB06VIAvvzySxQnumFRUVGEhISwfv36YuetqrjjEP0JDBVCDJFSFoqXCSEGoW1LzfeUcVfwImAEphczRuBcXbvYbEEhxFPAUwCNGjUqrX0u4622HfGp8QA0CvH+a7BtXE/WGRUhVIImT/L6ejVcYtOmMzz00HLi4iz4++t5//3beOyxtlU+KTbs+usxhIaScfw46bGxBLVoUWhMkDGItuFtOZh6kI///rhaOEQAwS+OxXzvJNIPmAk/eQJd46YVbVK1Y8+ePezZs8fptUceGUm3br2xWGyEhxuJj4/HYDAQ7kKRiN2ukpKSzffff8WaNavo0KEDjz32mNOxkZGRAMTHxzu9Hh5uxGKxkZiYVcghMpvNTJs2zel97du3L+AQ5c3vLMpzOX/88QczZ17SjYuMjGTu3LnceeedRd4TGRnJ4cOHsVqtRW69VVXccYheIdfhEUI8g9azLAGIBHoBNwFpwGtFTVBahBCNgJfQeqj5CiEuD0f4CiFCctdORosSXUleMkWKs/mllJ8DnwN06dLF6ypl3tIgSszSgnOtahcuIfU0lplas83A60LQNWrs9fWqMikpViZOXE9KStm3JbKzHSxffhyHQ9K5cx0WLOjHNdc4e8tXPRS9nsjbb+fUokUk/P67U4cItCjR4O8Hk5STxIGEA7Sp26acLfU8Pt1vwthAR9ZpsLz2BqFffOaRefMiLzlHj+HIdKAYwHBtywLOs/3ECezmbHT+OgzXOP9/Xh149NFHmTt3rtNr589ncOpUGmaz5hAlJSURWkzV4+UkJ1tZvXoZ77wzlcjISBYvXoyhCDmVsDDtbzUx8dJGyu7du/n5Zy3aLqXk3LkMAgKCmT59EkbjpXkaN27skr4SQFKSJr9S0muYODGG0aNfIiREcOzYMWbNmsVdd93Fq6++yksvvVTia2jQoHylPLyNyw6RlDJWCHE78C3QI/eQXIq+HAEeld4puW8G+AHznFx7PvfoiJYrdIeTMdcC8VLKCt8uA++17ci0Z4IOOtb3blNXNSmJtK0JgA7TuKe8ulZ1YMKEdcyZs89j8wkBL7zQlVdfvQkfn6qRK+Qqde+8U3OIVq7kmjFjnI7p2rgrJp0Ji2ohekU0Pwz/oZyt9A6mEQPJenUxlhV7CbHZED6eaVGipl6WSN2wXqFIohIaAubzqFb7VVF+7wwtjygNiyUbKSVGoxGr1bUHmIULF/PSS08TEVGLtWvX0qxZsyLHZmVpW2tG46Wt7d27dxeK/NSt24Bx48bSsGHpdOry5i/uNVgs2cTGpgLg7x9Cx44dmT9/PsnJybz88svccccd+Vt8Jb2G6oJbHQWllNuA1kKI7kAntJJ2M7BLSrnRC/blsRtN6+hK1qA5SXOAWDQNohFCiFuklOsAhBDBQH+g0kjceqPKLDM7E6lIkNCtSTePzeuM9JlvoDp0+IZLfO+pNMV7lZLNm88yZ84+DAaFzz7rQ0BA2YU4W7UKp1278skTK28iundHHxiI5eBBMuLjCShiC/uxLo8xe+tsdp7fiTXHip+h6ofu/Uf9G/2shdiz9GR+/gkBo58t85xSSuyntURqXaDBqc6RMIUgxDmkKpDp6Vdltaifnw4fHx02m4PMTDu1a9fm2LFj5OTkFBntAZg373+MG/cYERG1WbfuT1q2LL6HY17kpnbtS62Vhg8fzvDhw/N/z8iwcehQMklJVurXL92/Rd78eetdidVq559/Ui+zK4uwMO1vqG/fvvz++++sW7fOqUOUlJSEXq/PjxRVJ9wRZuwJWKSUu6WUm4BN3jOrIFLKVGCtE5sATkop1+b+vgT4G5gnhJjAJWFGgVauXynwRlL1jtM7EEIgHRKT0eSxea9EqirmHzcCOkwP3ua1daoDDofKM89oUv3PPdeFESMqlWB6pUTn60ud3r05s3Qp51asoPmTTzod98xNzzD779kIneCNP94g5q6Y8jXUCwgfH4LvvI7knw9hnvOTRxwi9cwZVDsIIdE3du5cCiFQfHU4rCpqSgrKVegQaW08fEhMzMJiyaZdu3YcO3aMI0eO0LZtW6f3LFiwgOHDH6FWrUi+/355ic4QkF9u36FDhyLH+PtrbT+ysuwFpADcoV27dvnr3X57QSUcu13l2LEUHA5JcLAPaWk2zOZsbDYHPj46zpw5AzivlMvIyODMmTO0b9++WkYS3Sm7X0Nu4nFlRUqpAvcAq4CPgZ8AB5pQY6XRG/dGUvX2eE1u3U/n3Sdl68IF2Mw6FIOdwPHPe3Wtqs4XX+xl587zNGwYxJQpN1a0OVWGyNwKnYQVK4ocoygKvRr3AuD7AxXTHNUbBE+eiBAqWacd5PxdtqC7zM7GnqRtz+trmRDFRDqUoAAA1PSrt8GoyXSpr1mvXr0A2Lx5s9Ox33zzDcOGDSMysj6ff/4TnTq1dmmNvPl693a24aHhCU2iouxXVcmhQ+fZunUz/v56mjcPISRE+85ISspi27ZtfPrppyiK4rRSbuvWrTgcjmLtr8q4s2WWCFSqvxYpZSEXVUqZDDyWe1RKvJFUffDCQQDC/LwbxrR89C0AwTc3vSpD666SmJjJ5Mla6es77/QiIMAz+SBXA7V79kTx8yNl1y6yzp3DmFuZcyXT7pzGzV/cTLaSzW8Hf+Oua+8qZ0s9j65pMwLbmEjbn4Z55mwifu5R6rnsJ08hpUAxgFJCtZESHgYX05A2iXQ4ELrqlZsGRZfd5zFlylRA27Lq338AY8eOZcWKFYVaWKxZs4bHHnsMVVXp3LkHv/22iO3blxWImISEhDhts7Fy5UpCQkK49dZbi7U1PNyPM2fSMJuzMZm0/K/iyu5B23pr0qQJAG3btqVly5asXr0ah8OBTqdDSsmpU2kkJlp44okBtGzZis6dO1GrVl0SElI4efIYW7dqn1lvvfUWrVoVLs5ZuVIT4h00aFCx9ldV3HGI1gLdvWTHVYU3kqpPppwEoGGw9zrN2w8dJP1oBiAInlQTHSqOyZM3kJJi5fbbGzNo0DUVbU6VQu/vT+2ePTm3ciXnVq2i6bBhTsc1CG1Ao4BGnM46zZtr36wWDhFA8NgnSHviXdK2nCEsJRkl1P2HHDU1FUem1jld37Buidsbws+IopOoDoGanISuVu1ix1dFiiu7B4iJiSEw0EB6eg7BwbXp378/S5cuJSUlpUC11smTJ/NFQZcscdYwQasIu9IhOnr0KJs3b+bZZ58t1FvsSgwGHSaTL6mp2aSmattmxZXdgxYVynOIAJ5++mnGjh3LypUrueuuu7hwIZOLFzPx9w9gypRo/v57A+vWrcuteBPUqhXJ4MFDGTt2DDfccEOh+VVVZd68ebRv355u3bybp1pRuLNlNgVoKYR4NVcksYZS4o2k6guZFwBoWavkfezSYnl9JkiFgKa+GDqUT/PYqsi2bQl8+eVeDAaFDz64tVrutXuburk6KAm//17suBd6vQBAXHocZ81nvW5XeeB37334hqmodh3pl2nEuIqWSH0OyEukdi2nUPHXtoxUc5rba1Zmhg8f7mqfzAKq1RMmTCA7O7tQqf7w4cPJzrazbVsC27cnYLPZC83lrDz+s88+w8fHh//85z8u2R0RoW2bGY21UVW1RPvztsnyGDFiBBEREXz66aeYzdmcOqX9u7ZoEc6rr8bwxx9/cPr0aaxWK7GxF/jpp7+ZMeMjp84QwPLlyzl9+jTPP199H4bdcYgmobXFmAycFEL8JoT4Wgjx1RXHHO+YWj2QUnplyyw9R1MUaF+vvcfmvByZlYVlzVEAgkcN8coa1QGHQ+Xf//4DKWHcuM60alWysFsNhalz660Ig4GkrVvJTk4ucly/Nv3wkT4oikL079HlaKF3Mf1Ly9EwL/4L6WaLElcSqZ2hmLQHNDXLVsLI6svlfc26devGAw88wMyZM8nMzCwwLjnZmjve16U2OQkJCXzyySeMGTOm2LL8ywkO9sVgULBa7WRk5Lj5SiA4OJhp06axZMkSli5dC0DduoFO1ezznK/kZCsOR+H3m5SS6OhounTpwkMPPeS2LVUFdxyi4WjiiwJNjPFO4NHc81ceNRSBIyMDVBWdvz9KMUmO7mB32FGF9ibu1tQ7ocyM92fjyNZjCLRjHP64V9aoDsyZs4/t289Tv34gL79cPcPK5YEhOJiIbt1AVTnvpO/T5dzf5n4A1sStqTb9zQImvIBisGNL1ZG9yPVGmtJmu5RIHRFcbCL1lYjQUAQS6RDIKxyAqwV/fwN6vYLN5iA728GsWbMYNWoUJy5rOCylzE92znMkSiIuLo4XX3yRKVOmuGyLooh85yWvNYi7PPbYE4wZM5nExIuEhvpRr16A03F+fnoCAw2oqiQlpXBl27lz5xgwYABffPFFtY54u+MQNXXxcM39vUrxRsn9njN7EIpAdahEBjtPQC0r5nm/AWC6pyvCSY+bGrQPrUmT/gLg7bd7ERhYk0hdFvK3zYqpNgOYdNskpEMidZJPNn5SHqZ5HSU4mOAeTQAwf/iNy/fZT8ZridR6UOrVc2tNodMhfLS/bbWYqFx1Jq/8HrQoUaNGjYiJiaFNm0tq6BkZOVitdgwGJb8yrSS6detGdHQ0ISEhbtkTEaFVgBUVuSkOVZXExaXzyCNjuOOOu2jSJLhYZ6a4yra6desSExNTrFxAdcDlbzYp5UlXD28aXNXJT6j24HbZ1vitAPgq3mmwalu9Cus5iVAcBE6e6JU1qgMvvbSB5GQrt97aiH/9y3u5XFcLkbffDorCxY0b8/9unOHv60+H2toH9Zzt1WfHPnjy84Ak/Ug69mNF9bO+hGpOxZHheiK1M5RALdlXTauaEaJevXqVyvG4nMvziJyR5zCEhxu9Hi0xGg0EBBhwOGR+crUrSCmJj7eQnm7DYFCIigpBpyv+6z4szA9FEaSn27Ba7W7bOnDgQKKjq/a2tUsOkRCikRBikBDiPiGE98qYrgK8kVC9/9x+AEJ9Xeu94y7mtz4EIKhjLXR13XvqvFrYvv0cn3++B71e+X/2zjs8qipt4L9zZ5KZ9EZCAkhCFZQSmkJQDCqirgqrsrouKoIVC4iuoKKADRUEZRXFtth1FUX8bBRBFESlCkqHAIEE0tsk0+75/rhJSJkkk2QySSb39zzz5Mncc85952Ry73vfyssvX+TTZmVvYWrXjqghQ5B2OyfXrq117JzRc5BSkuvIZeuxrV6SsGnxGzCIwAR/kAoFT9ceXC2lxHGsNJA6yIgS1rDirEqUdg1Rbc56xy61BJKTk5k9e3YjFSLNQlRQYENVK7e2dDrV8vihMotKU1PmlqtPTaKTJy1kZhajKILu3SPcavFjMChERJyuSVRfxo4dW2tZgNZAnQqREGI+cAj4H/ApcFgIMa+pBfNVmsJldjhH8293DO3osTXLUNPTKdiWAUDYv+/x+Pq+gKpK7rlnDVLC1KkD6d1bD6T2FO5mm/Xt0JdIv0iEEMxeOdsLknmHsFvHAZC3ejfSWrOFQD1xokGB1FVRgoIRikRKgczNrXuCD+LvbyAgwIiqSgoLK1uJcnOtqKokKEirJu0NIiLMCCEoKLBhtdZtucnNLSE1VbOodukSVq92QRWVr7LMu7ZErQqREOIGYBpaIPUetAauApgmhPhn04vnezSFQnSyUOtV1D2qu8fWLKNg7lykasDcHvwvGuXx9X2B//53F7/+mkaHDsE8/rheqsuTxF6i9Wo+9eOPOIprf2q989w7AdiZuZOCYt9IHQ+YdBt+QQ6cViNFi150OUY6HTgySy3P7UIb3RRWKe2wrrZRhQgqV62uSH2DqT2B0agQEaHJk5VVe8NZi8XOoUN5AHTsGFxu8XGX4GA/TCYDdrtao8vQl6nLQjQJcAAXSynPllKehZZdppYe06knTdG2I9+mrZnYwbMBb1JVyVuhxSeFjfeNoneeJju7mBkz1gMwf/4FhITogdSeJCAujvDERNSSEjLWr6917MRzJyKcAsWg8NTqp7wkYdMijEZCrxgEQP57X7sco2blNDiQ2hVKqBbfqFra3g2xjDK3WX7+aauc1eqgoMCGooh6KxqNxR3Ljd3u5MCBXFRVEhlpJjbWdUZZbQghGuSi8xXqUoj6AcullOUOfCnlauBLwLfDzZsIT9cgUlUVh9DMqOcmuC6o1VCKl76NvdCIweQgaMr9Hl3bV5g582cyM4u54IJOXH999VL3Oo0nrtRKVFe2maIojOqqWTG/3PNlk8vlLUIemYFQnBSnSWw//lDpmPX7b1GtWmsH4xmxHoldU0q7mKsOanXT+TLBwf4oiqC42IHNpu1vmYIQHm7GaPRupm1IiD/+/gZsNicFBdUVVVWVHDiQi83mJCjIj4SEsAZ/F8pio3JzrTgcrS+OrDHU9VeNQHOTVWUP0PCotTaMp9t27D21F0VRUJ0qXaK6eGTNMvKXaGXpQ0f2RAR4z0TcWti69SSvvbYDg0HogdRNSFkc0ck1a1BttVst5oyeg6qq2IWdL3Z84Q3xmhxDh06E9Nfi0vKe/0/5+1JVyZz2jDYmyIgS5plLsvDzQykNO1GzszyyZmtDUUS5tTc/34qUstxdVZYK701qs9xolbHzKCqy4+9voHv3cBSl4dcif38DoaH+SCnJzm5bVqK6FCIFcFUi044WS6RTTzydZbbpiNbN2M/D3VQcO7ZTdMgKQiX0kekeXdsXUFXJ3XdrFamnTBlInz7RzS2SzxKUkEBor144CgvJ2Lix1rExoTF0DdVKob3w0wveEM8rhD4wGYCCLSdRT2kxg4VzZlNyCoSgUYHUrlCCtJuvml/k0XVbExXjiAoKbNhsTvz9Dc3mFo+K0hSxnJzKlpv09CKys0tKM8rC3aqcXRenla/aY5Z8DXfsfm0v1LwJ8XRQ9c60nQCEmzxrsMt7Zh4gCO4RhLH3WR5d2xd4551dbNqURmxsELNm6YHUTU3cpZcCkF6H2wzg0QsfBeCE5QRHsn2jLJpp9GWYY0A6DRQ88yxqejpZb64CQAk2NTqQuipKhHY9UUscbTLbCCrGEdnIyDgdTN1clmCTyUhIiGa5ycnRFJXs7BKOH9faNnXtGkZgoGcejMPDzRgMChaLHYul/m1DWivuKESzhRDOii/gcYCq75e+6l/RqQ3h6aDqA1kHAIgN9lyFallQQMFPhwAInTzeY+v6Cjk5JUyffjqQuqyQm07TUZZtlr56Naqj9kvMhT0vJIAAhCJ47NvHvCGeVwi7QXMd5q3YRPYd9+C0GTG1kx5zlVVEhIYiRGn6fek1q61hNhsxmQw4nWq5AlJmpWkuKrrNiorspKRoGWWdOoUQHu452RRFlH/WthRc7Y5CJOr50vs61IKng6rTC7VibJ5MuS9c+AJOuxH/UCfmf+oKUVUef3wDGRnFjBjRiRtu6N3c4rQJQnr2JCghAVt2NtmbN9c5/p/9tKogG1I34HD6xjNa0NT7Mfg7sBcYydt4EpBEz39I85l5GCEEilmrs6Pm6On3oAU2m0zeqT1UE+HhJgwGQVGRnf37c1BVSbt2AbRvH+jxc5UFV2dnl1QrUOmr1Kq8SCmVhry8JXxrxNNB1blW7WLVN66vR9YDyPtIa6YZdnWS3resCtu3n2Lx4u16ILWXEUKUu83qKtII8O8L/410SjDAS+tfamrxvIIICiL0gtMPPqGD22H621VNdj4lREvbVotaj4Vg9uzZCCFISUnxyHorVnzEkCFx/PnntkbVHlq2bBlCCNasWdMoeQwGpbzhq8OhEhzsT+fONfco27dvH/7+/sybV/9ayoGBRgICjDgcKj/++AtCCN56q+bWOMnJySQkJNT7PC0J/W7nZTwdVG2Xmn/3nM7neGQ969crsGYKFIOT4BkPe2RNX6EskFqrTD2Avn31QGpvUpZtlr5qVZ1tJfyN/gyJGwLAu9vebXLZvEXozOkIxYnBz0HkG/+pe0IjUKK0zDbVDrION2VLZunSpQghan25upEXFhbyzDNzGDHiEhITB5UXRywqKuKDDz7ghhtuoFevXgQFBRESEsLgwYN54YUXsLnIhLz66qsZOHAg06ZNQ61nS5SUlJQqsoYxZEgcQ4bE0bt3FAaDUqMSOG3aNKKiorj77rtrPUdmZiaxsVrZhvPOOw+onNnWqVNvxo4dy8yZMyksLKyX/K2J5rX/tTGklB51mR3OOoxiUFBVld7tPeO6yVv4OgAhQ+LKL4g6Gu+99ycbN56gfftA5swZ3tzitDnC+vbFHBdHSVoauTt2EDFgQK3jn7z0SS5951IKnAVsPLSRpK6tP/jdeFYfOn3xPEpICIZOTdtWUphMKEatHpGanYUhpn2Tnq+p6d+/P2PHjnV5zFXvs0WLFpGWlsaHH35M795RKKXW8p9++onx48cTGRnJyJEjGTt2LNnZ2Xz11Vc8+OCDfP7556xZswaz+XRMjxCC6dOnc9111/Hxxx9zww031Fv+sLAwpk6dCmhFGA0GpVJ6fdXPsHHjRr7++muefvppAgNrd6ndcccdFBVVzyiMjDSTmlpAXp6VBx98iPPOS2LRokU88sgj9Za/NaArRF7EWVQEqoohMBDFr/HZAL+m/AqAURrL/1kbgzP1GIU7cwCF0BlTGr2eL5GbW8JDD2mB1PPmXVAptkDHOwghiBs9msNLl5L2/fd1KkQ9Y3oSY4ohw5bBk6uf5Nvbv/WSpE2Lf9J5XjuXEuiPmm9DzSto9QpRYmKi281HnU4nr732Gj169CA5eUSlY7Gxsbz//vuMGzcO/wrZfQUFBSQnJ7Nx40ZeeeUVHnjggUrzxowZQ3h4OIsXL26QQhQeHl6v5qmvvPIKiqJw44031jru3Xff5fPPP2fx4sVMnjy50jE/PwNhYWZyc0vo2rUvvXr1YsmSJUyfPh2DofHp/S0N3WXmRTydcr/9xHYAQv09s17BU88gVYWAjgr+w0fUPaENMWvWRk6dsnDeeR0ZP14vQ9BclMcRff+9W+ng9ybdC8CenD3kWHKaVDZfRAkPA0Atbjup1wCrVq3i2LFjXHfdddWOJSYm8q9//auSMgQQEhJSrgStW7eu2jyTycTYsWPZsGEDe/bsaRK5y8jPz+ezzz4jKSmJM86o2ZJ49OhR7rvvPiZNmsRll7luz1RWiDIrq5jrrruOo0ePsnr16iaRu7nRFSIvUh5Q7aEMs7KU+5igmEavJR0O8r7VFKywCWMavZ4v8ccfGbz88jYURQ+kbm4iBw7EPyoKy9Gj5LtxU/nnwH9iUA0oBoUnvn/CCxL6FiI8Qku/VwVqke/GjlSl7IZfFk/jLn6lln+j0bXzZfjw4ZXWbyrWr1+PzWarVX4pJRMmTCAsLIwFCxbUOC4szISfn0JJiZNBg7T2UKtWrfK4zC0B3WXmRTwdUH08/zgAXSO7Nnoty+uv4bAYMZodBE6+p9Hr+QpSng6kvvfeAfTv33jlU6fhCIOBuEsu4chHH5H+/feE9a49dk5RFP7W42+sOLiCr/d/zUIWeknSlkG3+d08t1gT3sMPPniw6RYvZfv27TW6nIYOHcqlpdZHgJ9//hmAwYMH1+scb7/9NkCltSoyZIgW6L9+/Xruuad+19nc3Nwa5Y+NjeXOO+8s/90d+V988UXWrVvHypUrCQ0NJTs72+U4IQRRUQGkpxcRH392ufy+iK4QeRFPu8xyrDkgoE9sn0avlf/WMgBCR53t8aq3rZkPPtjNzz8fJyYmkCee0AOpWwKxo0dz5KOPSPvuO84sDTKtjcdHP87y/ywHA3y45UNuGFT/+A2d1s+OHTvYsWOHy2NTpkyppMQcPXoUPz8/ouqRWPLyyy/z3XffkZiYyMSJE12OiY2NLV+/vuTl5TFnzhyXx/r3719JISpbPy4uzuX4v/76i0ceeYQ777yTiy++uM5zt2unKUQOhwmz2dwg+VsDukLkRTytEFlVK4pBaXTKvf3337ActYOQhD46wyOy+QJaZsU6AJ57boRHK8HqNJx2Q4fiFxpKwf79FB46RHDX2i2kEYER9Iroxb78fSzasKhNKUSesLxIiwXrvqMIJP59eyJaaTDtzTffzNKlS90am5WVRUREhNtrf/7550ydOpXY2FiWLVtW7jqrSmRkJKCluZexfft2li9fXmlceHh4eUZZGfHx8W7XV8rK0pryuvoMdrudG2+8kbi4OJ5//nm31jObjQQH+1FYaCc8PIKMjFNuzWtt6AqRF/Fk2470/HQUg4JUJf079m/UWvlzXwAEwWeFYOjmuYrXrZ3HH9/AyZMWkpI6cNNNZze3ODqlKH5+tL/oIlK/+IK077+nx1131TnnsYsfY/yy8ZyynmLfqX30jOnpBUl9AxEYiDBIpFMgc3IQ7do1t0hNTkBAACUl7jU2Xb58Oddffz0xMTGsXbuWrrUo6MXFxeXrl7F9+/Zqlp/4+PhqClF9KFvf1WeYO3cu27ZtY+3atQQHB7u9ZlRUAIWFdoqLiyvJ70u0mqBqIcS1QohlQogjQohiIcReIcRcIURIlXERQog3hRCZQogiIcRqIYTnyjg3Ak/WINqUonW5V6SC0dBwvVbNzSX/F838GXbfpEbL5Sv88MNRFi3aisEgeOWViyvV+9Bpfipmm7lDUtckQpQQhBA8/t3jTSmaT6IEaG50Na9t9DWLiYkhPz8fu7327LpPP/2UcePG0b59e3788UfOPPPMWseXWW5iYk7HIk6YMAEpZaVXYyttl61fdr6KbN26FSklycnJlQo+dunSBYANGzYghKhW1ygy0gxI8vPziI72zVjK1mQhehA4CjwCpAIDgNnlKGwZAAAgAElEQVTASCFEkpRSFVr6zwqgC3AvkAM8DKwVQiRKKVObRfJSPNm2Y/txLSMs2M99Dd8Vhc8/h+owYopQMV99baPl8gVyc0u4+WatZs3jjw8jMdE3//lbM9HnnYchMJC8nTuxHD9OYMeOdc65aeBNLN6ymN/SfsPmsOFv1GPl3EUJC8FZmI1qsTa3KF6hX79+7N+/n71799Knj+sYzQ8//JCbbrqJjh071mkZKqMs3T4xMdGj8lalX79+5eerGiM0atQo2rmw8hUWFvLJJ5/Qvn17rrjiimrFHA0GhZycY0gp6dWr8XGrLZHWpBBdKaXMqPD7j0KIbOAdIBn4AbgKOA+4UEq5FkAI8QtwGHgIuM+rElfBk1lmezP2AhAd2PD2EVJVyf9sPaAQOu6CRsvkK9x99xpSUws499w4HnlkaHOLo+MCg9lMTHIyad98Q/rKlXS95ZY650wZMYXFvy1GGATz187nkVG+WW23KVAioxDHs1GdAllSjDD7psukjOTkZJYtW8amTZtcKkTvvPMOEydOJD4+nrVr1xIfH+/Wups2aZb9kSNHelTeqiQnJ5efr2o2W01tPFJSUvjkk0/o3r07b775pssxBw5oQen9+w9DSulzJUhajUJURRkq4/fSn2WPh1cBJ8qUodJ5eUKIr4AxtBCFyBMWomP5xwBIiEho8BrWLz7DmqOgGB0E//uhRsvkC3z88R4+/HA3gYFG3nvvcozGVuNVbnPEjR5N2jffkPbdd24pREaDkeGdhrMhbQMf7vhQV4jqgTAYEP4CaZOoWdkY3LDItTRqS7sHKh0bO3YsU6dO5fvvv+fWW2+tNG7t2rVMnDgRVVUZOXIk//3vf6ut5SooGmDlypWEh4dz4YUX1lv+2tLuQXO9lfVk69OnD2eeeSZr1qzB6XR6rKr0+vU/YDAYGD58FPn5Np+r2N9qFKIaKDNr7C79eTawy8W4P4GbhBDBUspmqy7myaDq7BKtZsRZMQ2vmpy3SKuZEZrUGcVFL5+2RmpqAXfdpRUcW7hwJD16uJ9louN92icno/j7k71lCyUZGZij67aWPnnZk4x8cyTFSjE/7PuBC3vW/8bUVlGCA1CzLagFRbTGPLPa0u6hskLUqVMnrrzySr766itycnIqZWsdOXKkvEFrWd2hqrgKit63bx+bNm1iypQpdfYWc0VtafdQvdv8XXfdxdSpU1m5cmWNVajre/7ly5dz8cWXEhvbkaysYp9TiFrt468QoiPwBLBaSrm59O1ItLihqpRVnHJ5hxNC3C6E2CyE2JyR4coQ5Rk8GVRd4tSyBwZ3rl/hsDIcB/ZTuLsAkITOeKDO8b6OqkomTPiW3FwrV1zRldtu69fcIunUgTE4mOjzzwcpSXezcm58ZDwdAjsA8MwPzzSleD6HEqE9NKlWp1ttU1oKroKWXb2q8u9//xur1VotVd+d9VwFRS9ZsgR/f3/uu69+joqEhAS35C9zk5Vxyy230K5dO1577bV6naesqGNV3n33XUpKSnjooQcByMmx4nCo9fosLZ1WqRAJIYKBLwEHUNFWLgBX/6m1OjqllK9LKQdLKQdHu/GU2VA8FVSdV5wHilZFeVCnQQ1ao+DpZ0EqBMb74TekcXWMfIFFi7ayZs1RoqMDePPN0T7nG/dV4i65BHA/2wzg/vPvB+Bg/kEyCpvuAcjXEMEhCEUipUDm5Ta3OE1OUlIS48aN47nnnsNisTRqrbS0NF599VXuvfdet4KvPUFoaChz5sxhxYoVbN68ue4JtVBcXMzcuXO55ppruPDCZEJD/ZFSkp3tXmmC1kKrU4iEEGa0TLKuwOgqmWPZaFaiqpRZhpq1u6Ongqp/PfKrliqpCgJN9Te9SpuN/NV/ARA2Sc8s+/PPTGbM0ErRv/HGaNq3D2pmiXTcpf3FFyMMBrI2bcKW695N+pr+1+An/VAUhVnfzWpiCX0HIQSKWYuyUHPymlka7zB//nzuvPNODh8+3Kh1UlJSmD59OjNnzvSQZO5xxx138PTTT3Py5MlGrZOSksLtt9/O/PnzAa1yNUBmZnGjZWxJtKoYIiGEH7AMOAe4WEq5s8qQP4FLXEw9CzjanPFDUkqPucy2pG4BINBYf2UIoOiFeThKjPgFOgi47Y5GydLasdmcjB//DVark0mT+jJmjF6YsjXhHx5O1NChZG7YwMk1azjjmmvcmjem1xg+2/sZKw+uRFVVFKXVPRs2C0poCE5LLmqRb1kGaqJz5861BjK7y7Bhwxg2bFjjBaonBoOBRx5pfPJA7969K+1DeLgZgyEfi8WOxWInMNB1Ze7WRqu5CgghFOAD4CJgjJRyk4thK4COQogLKswLBa4sPdZsOIuKQFUxBAai1FDW3V32nNJqWbQLqH/FWDUnm6zF/wdA2LXDEDV0ZW4rzJq1ge3bT9G1axgLFzZtKqxO01BepHHlSrfnzLx4JqpTRRokb//qOjBWpzpKaesJ1aFZmlsaycnJzJo1q1pRQR3PoiiCyEjNSpSVpVmJJkyY0Kjq2i2BVqMQAa8A44D5QJEQYmiFV6fSMSuAX4D3hRDXCyFGl74nAPeatjQRnky5P5qrVZbuHN653nNz7rwXR4kR/3AnoXOfbbQsrZmffkrlued+Q1EE7713OSEheqG+1kjsqFEgBBnr1+ModM8IHBIQQt8orYD9kl+XNKV4PoXw90cpfYZSs6tXQW5ukpOTmT17tq4QeYEyt1lWVklpUoquEHmTsrzBR9GUnoqvWwGklCpwBbAKWAx8ATiBkVLKY94WuCLlAdUeyDDLLNYaA/aK6VWvebaNP5O7NgWA6KfuadNd7fPzrdx44zdICQ8/fC5JSa2vroqOhjk6mshBg1BtNk79+KPb82ZdMgspJVn2LHaeqOp916kJJUhrcqzmN1sEgk4LIDDQSECAEYdDJS/PNyqYtxqFSEqZIKUUNbxmVxiXLaWcKKWMlFIGSikvklLWXHzCS3iySrXFoWU81CfDTKoqWffMBKkQ0icE83Vtp+O3K6ZM+YEjR/IZNKg9s2Z537ev41liR48GIO2779yeM6jzIMKN4QghmP397CaSzPdQIsIAUEscHk2/l1LiOHoU+4GDSKfTY+vqNA1CCJ8Lrm41ClFrx1MuM4vVglS0uhPnxp/r/ryXFmI55kQxOIl8fWGjZGjtfP75PpYu/ROz2cj771+On19rLDOnU5Gy9PuT69bhtLr/tDppsNbQeNupbVisjUutbiuIsHCEkEhVIAsLPLKmtFiw/7UXR7YFZ6Edx4GDrarWUVslMtKMEJCXZ8Vma/1KrK4QeQlPKUS/H/tdq5GjQlhAmFtz1JxsMhd8BkDEtYMw9qi9I7Mvk5ZWyO23a0X85s0bQa9eUc0skY4nCOzUibA+fXBaLGT89JPb8+4afhfCKRAGwdw1c5tQQt9BCIFi0h4i1OzGVzJxpqdh238E1Q5CSAQSZ7GK88iRRq+t07T4+RkIC9NcqL5Qk0hXiLyEp9p2bD22FQCzwez2nNzJ92mB1GFOwl6Y36jzt2aklEyc+B1ZWcWMHp3A3XcPaG6RdDxIXJnbrB5FGhVFITk+GYBlfy5rCrF8EiVEq9XVmPR76XBg37cfe3oeUgoUf4H/mV0wxmpl4xy5JTjT0z0ir07T0a6ddi/KzCxu9VY9XSHyEp6qQfTXKa2gYpTZPcuG/ddfyF2jFRVr9+RkhMm3es/Uh1df3c5336UQGWnm7bcv1atR+xhl6fcn16xBtdvdnvfEZU+gqipWYeXrP79uKvF8CiVKu/5Im0Q6HPWer+bmYvtrP06L5mYxRgbi17snwmzGEBuLsdTq4EjPQW0DVbFbM2FhJvz8FEpKHBQVuf9/1xLRFSIv4am2HSk5KQB0Cu1U+8BSMic/gpQKwWcFE/DP8Y06d2tm795sHnxQy0BasmQUHToEN7NEOp4muGtXgnv0wJ6XR9avv7o9r0NYBxKCEwCY9+O8JpLOtxBmM4pBItFc8u4ipcRx5Ai2lHSkKhAGiX+XOIydO1d6QDEkxGMwK0gE9pQ0ZIlvBO36IkIIoqJ8I7haV4i8hKeyzE5ZTgFwZnTdcUBFLy3EctSBYnAS9fqCRp23NWO3Oxk//muKix3cdNNZXHtt242h8nXiGpBtBvBQ8kMAHCk8QmpOah2jdQCUQM3arOa5F1gti4u1wOkc7aZpCDLi37sHSlj1WEghBMYe3VCMIKXAfuBIgyxROt4hKiqAwEAjQUGtu2K1rhB5CU8FVRfZiwBI7JhY6zg1N5fMF/4HQMTVAzCe2btR523NPPnkL2zefJL4+FAWLbqoucXRaULKFKL0Vavqlbp92VmXYcKk9Tf7Xu9v5g5KuHYtU4vrrljtPJmObV9KeeC0X1wEfj2611opXxgM+HVPQCgS1QGOA4fqjFGZPXs2QgiX3eYbwttvv40Qgt9++61R6yxbtgwhBGvWrPGIXO6yb98+/P39mTevcZbPLVu2IITgrbfecnk8IMDI5MnXMmTIWY06T3OjK0RewhNB1TaHDVVRAUhKSKp1bO49U3AUG/EPdRK2sO1ah3755QRPP/0rQsC7715GWFjbjaFqC4T27k1g585YMzPJ3rq1XnP/cfY/AFh3ZB2qqjaFeD6FCI9AIJFOgayhG7wWOH0Ae1quFjjtB/49EzC0b+/eOcxm/BI6aJlnJSrOBig6S5cu1Zph1/JKSEioNq+wsJCZM2dy5ZVXcs4551Q6Nm/ePC6//HISEhIIDg4mNDSUvn37Mm3aNFJTq1sYr776agYOHMi0adPq/d1KSUmpU/6alMBp06YRFRXF3XffXes5MjMziY2NRQjBeeedV+34oEGDGDt2LDNnzqTQzWrwrZG23cjKi3giqHrH8R0IIVCdKjGhMTWf6/dN5K48ACi0m3NHmw2kLiy0ceON36CqkoceGsKIEWc0t0g6TYwQgrhLLuHgm29y6K23CO/XD4Ob3/8ZF8/g3T/eRRgEizcs5p7z72liaVs3wmBAmBSkVaJmZ2MIrNxsWs3Lw370BNKpxQYZIwIwVIkVcgclNAxjXAn2tBwceVZEWhqGuLh6y9u/f3/Gjh3r8pirVh+LFi0iLS2NGTNmVDu2ZMkSgoODueCCC2jfvj12u51t27axcOFC3nrrLdatW8eAAaezWIUQTJ8+neuuu46PP/6YG26of2HcsLCwWltjVP0MGzdu5Ouvv+bpp58mMLD2RuB33HEHRUVFtY55+OGHOffcc1m0aJFHGsa2RHSFyEt4Iqh687HNAJiU2i/wmXeVBlL3DiJg/M0NPl9rZ9q0dRw8mEv//tE88cTw5hZHx0t0uvpqDr3zDumrVvHT3//OoBdfJKRnzzrnmf3MDGw/kG2Z23h789u6QuQGSnAgqrUItaCIsvKmUkqcR4+WxgoJhCLx6xyH0oj+Yob27ZElJThyinGczNOCuiMi6rVGYmKi253rnU4nr732Gj169CApqbo1fteuXZjN1UufvPHGG9x+++08+uijfPPNN5WOjRkzhvDwcBYvXtwghSg8PNxt+QFeeeUVFEXhxhtvrHXcu+++y+eff87ixYuZPHlyjePOOeccevXqxZIlS5g+fToGg+8VtNVdZl7CE0HVu9J3ARBhqvlCUPTyS1iO2BEGJ1FL2q6rbMWKA7zxxh+YTAbef/9yTCZd928rhJ55Juf9738ExcdTsHcv68eO5fB777lVI2XO6DlIKcl15PL7kd+9IG3rRonUrkWqTUWqKrKkBPvufacDpwMN+J/Vo1HKUBmGzp0xBBiQgP1oOrK46SqLr1q1imPHjnHddde5PO5KGQL4xz80t+v+/furHTOZTIwdO5YNGzawZ88ezwnrgvz8fD777DOSkpI444yaLeNHjx7lvvvuY9KkSVx22WU1jivj+uuv5+jRo6xevdqT4rYYdIXIC0gpPeIyO5R9CICOoa4bkar5+WTO+xiAyLH9MfZu3QFuDeXUqSJuvVUrzjd37vn06RPdzBLpeJvwfv0Y8dVXnDFuHKrVyq7Zs/n99tuxZtXeof3suLOJ8otCCMETq57wkrStFyUoGKFIpBQ4U45g23sY1Sa1wOnYcPx69qg1cLo+CCEwdu+K4leWeXa0yTLPym74ruJpauOrr74CoF+/fi6PDx8+vNL6TcX69eux2Wy1yi+l1qE+LCyMBQvce3guk3/VqlUekbOloT82ewFnURGoKobAQBS/hqclniw6CUD3qO4uj+fecx8OixG/kNYXSH38eAHvvPMnxcWNv8CtXXuMjIxiLrywM1OmuN8AV8e3MAYFkfjss8SMGMEfjz7KyR9+4Me//Y3EefOIOf/8GudNHjaZp356il1ZuygoLiAkoHHFVA9nHebjbR/z18m/uHHQjVzS65JGrVcfDkbX/DlbEt0y3Gu3omWedcG29xCqU+DYfxBjr55uxSVt3769RpfT0KFDubS0sCfAzz//DMCgAQNwHj+OVFWU0FBEaGilc7355pukpqZSWFjIzp07Wb16NfHx8Tz77LMuzzNkyBBAU1juuad+Ltnc3Nwa5Y+NjeXOO++sJv/gwYNrXO/FF19k3bp1rFy5ktDQULKz664nVVF+X0RXiLyAJ1Lun139LLn2XIQiGBo/tPo5tvxO7nf7AYXoWbchAgIafC5vs29fNhdd9CmpqZ5pFAkQHm5i6dJLURS9GnVbp8PllxOemMi2Bx4g+7ff+HXCBLpOmkSvBx5wGXB985CbeWbdM2CAJ1c9yfNXPV+v8209tpX/bf8fm45tIrUgFWk47arb8NUGwr8N5+GRDzMucVyjP1tbRJhM+HXpiP3QcZxWEIcOY+zWtc55O3bsYMeOHS6PTZkypZJCdPToUfz8/AhJy8IuS68hWUUIcQLhp6AEmlBCQ3nzjTf4tUJK/pAhQ/jwww/p3t31Q2tsbGz5+vUlLy+POXPmuDzWv3//SgpR2fpxNQSf//XXXzzyyCPceeedXHzxxW7LEBYWhtlsbpD8rQFdIfIC5QHVDXSXPfbNY3zw5wcIRdA5sDNj+1XPlMi6a4YWSH1mAAE339Ioeb3Jzp0ZjBr1KSdPWhg6NI7LL6/7wuYOl13WhTPOaFzNJx3fIbBDB5Lef58DS5aw98UXOfTWW2T+8gsDFy4kpMrNS1EULul2Cd+lfMeKvSt4npoVIlVVWbt/LV/s+oItx7dwsvgkwlBBCTeAVCUmYSLEP4RMayZ5zjxmrJ7BE2ue4L6k+7ht2G1N9bHdtrw0Bikl6onjiOAQl0UWmwIlJBRjhxLsx7NxFNgQJ45j6OA6lKCMm2++maVLl9Y6RtpsOI8fJyszk4iQUK1UgEEi/AyoNidSFUibRLWVQG4JPy55B+EHOSVFbDt0iMeff55BgwbxySefVFKwyoiMjAS0NPcytm/fzvLlyyuNCw8Pr5ZRFh8f73Z9paxS13CEi8Bzu93OjTfeSFxcHM8/Xz9lH7TPcPLkyXrPaw3oCpEXaExA9bTl01i+fzlCCHqG9uTrW6v3Wipa/DJFh20IxUnUkhcaLa+32Lw5ndGjPyM7u4RRo+L54osxBAX5N7dYOj6KMBjoMXky7ZKS2Hr//eT/9Rfrx4zh7EcfJf6f/6zkCpl96Wy+WfwNdsXOZ9s/49rEawGtFtiKXSv4evfX/JH+B9m2bBSDUuEcAlVVCTYEc1b0WYzuOZpr+l9DWICmKOw8sZN//9+/2Zu7F4ti4dkNz7Lg5wVMGjSJacnTUJTWF9YphMDQ0b1WQp7EEB2DLC7BkW3BcaoAYXa/hUhVZEkJzuPHcRbakFIQYDJTYrPiFxeBEhNT/t1QLUXInFzUIgtqiUNTkOwQZggiuUdfVix4hcS//42b/vUvDm3eTFCHDpXKnhQXa8HmARUs+Nu3b69m+YmPj681xb4uytYvKanefHfu3Lls27aNtWvXEhxc/xZGxcXFleT3JXSFyAs01GV2+ye3s+bYGoQQJEYl8unNn1a7YMqCArKe+wAwEjmmH8az+3pK7Cbl559TufzyzykosHHVVd345JMrMZv1r6NO0xORmMiIFSvYNWcOqV98wc7HHiNj/Xr6z52Lf+kTdXRwNN1Du3Oo8BBP/fAUn+z4hD2Zeyh0Flb6H1QMCqpTJdI/kv6x/fnbWX/jyrOvxN9YWbGXUuIsKaFvh758d/t3HMw8yIMrHmR7xnZsBhuvbn2VJZuXcH2f63nskseqzW8KVKmiShWj0nr/74ydOyNLDuC0OLAfO4m01101uyKqpQjn8TTUIgeaY1MrHhkTE83+Q4dQIyMxVFCUlcAgCAw6XWKgpAQ1Nxe1sAhZbCc8JJRz+vXnq7Vr2LFxC4POtiIUiWI2ogQFkpmXB0BMzOk6chMmTGDChAmN2oeqlK2f5SKJYOvWrUgpSU5Odjl3w4YNCCEICwsjN7dyY11VVcnNzaVLly4elbel0Hr/E1oRDVGIxr8/nl/SfwEgKS6J9/71nstxufdOwW4x4hfsIOylhY0X1gusXn2EMWO+wGJxcN11Z/Lee5fj5+d7NS10Wi5+ISEMmD+fmAsu4I+ZM0lftYrcP/4gcd48okszaR696FEmfTmJArWArRla1WtFUcAJ7QPbM7jjYK7uezUjuo2o/qDidJK/dy9Zv/1G9ubNZP/+O9bMTDpedRV9n3iCbu268cXEL0jPT+fBFQ+y8fhGVIPKh399yIc7P+Sqnlfx9OVPE2iqvaBefXCqTnIsOeSV5FHiKMGJE4HAbDDTNaorBqV1/g8au3dF7t6Haheo2XluzVEL8nGeOImz+HR7F8UkMMZGo0RE0m/AAPYfOsTevXvp06dPjesIsxlDbOxpBcluJy1XU0L8zQYEIFWB0+LEaSlgZ2mwc/8astA8RVmW2549e6rFCI0aNYp27dohbTZkoQUpQZiMWIBPPvmE9u3bc8UVV7gs5rh3716klCQm1t46qrWiK0ReoD5tO1RV5Zql1/BH9h8AjOo8itf+8ZrLsfZtW8j5di+g0O6xSa0ikPqrrw4ybtwKrFYnt9zShzfeuASDofW5CXR8g45XXknEgAFsnTaNnC1b2HTzzXS77TZ63X8/yT2S6Rnak4O5B+kY3JGk+CSuS7yOfh2r38ycViu5O3eS/fvv2mvLFhwuWhwcX7GC7K1bGbhgAZGDBhEbGsv7498nrziPh756iFWHVyEMghUHV/Dli19yYfyFzLtqHhGB9StCCGB32skuyibfmo/VaUVSuQ6TQLN8lDhL2H1qN/Hh8YSYG5dR1xwIRcGvR1dsew4iSwOgZQ3tMdTcXJxpJ3FaT++Fwaxg6NAeJfR0/FNycjLLli1j06ZN1RSiI0eO4HQ66dq1erzj62+/zeZt2znjjDMYOPYqFEDm5aLmF6BarPy2UwvqPr9bT9SCfJSQpolzLLP+bNq0qVo22+TJk3EeO4Yz21LpG3E04ziffPIJ3bt3580333S57qZNmwAYOXJkU4jd7OgKkRdwtwaRqqpc/ubl7M/fj5SSv/f4Oy+MrTkmKOuu6UhVIaiHmcCJt3pU5qbgk0/2MH78NzgcKvfcM4CXXrpQzwLTaXYCO3Ui6cMP2b94Mfv+8x8Ovv46mRs3MvDFF/n29m9dznEUFpK9dSvZv/9O1ubN5G7fjmqr7K4J6NSJqMGDiTznHKJK05W33n8/ebt2seH66+l57730mDwZxWgkLCCMJf9YgsVq4fHvHmf5nuVggLWpaxn4n4EMjRvKC2NeoENYhxo/R7G9mBxLDoXWQqyq1fUgCf4Gf4L8g4gIjMBis5BekI4UksO5h4kwR9AprFO922s0N8LfH7+unaD0Fu88egyqKCzbNv3K4zNmnp7jJ1BCQhD+mnuyYkr72LFjmTp1Kt9//z233lr52rpt2zauvvpqkpKS6NmzJ+3btycrK4tNmzaxc+dOgoODee+998orOYvIKJTIKAB+2Pob4SGhXDBoKPaDJzBG5aF0cm+/a0u7B831VtaTrU+fPpx55pmsWbMGp9NZLossKcF+6AiqTdsnQ4ABJTgQR2Y+0q6tI+32Gs+xcuVKDAYDY8aMqVPe1oiuEHkBd9p2OJwOLl5yMccsx5BSMr7PeJ64rObCcJYlr1J00IpQnLRbMt/jMnua//53J7feuhJVlUyffg5z557f6i66Or6LYjRy5n33ET18OFunTSNv1y7WX3klfR5/nDPGjcOWlUX2li2aC+z338nbvRuqWCFCevYkcsgQTQkaMoQAFynP5336KXtffJEDr7/OvpdeIuPnnxm4YAGBnbSg5EBTIPPHzOfZK57l6VVP88EfH4ABfjv1G8OXDKdvVF8WXLmAru268tuR3/h0x6dc0eEKHGkOcPHvJBD4G/wJMYUQERCB2a9yheUg/yBCzaEczDqIUzrJLcml0FpIt6huXolj8iRKcAiGUM3N47Q4cKamgskfR2oaAH/s3cMfe2uuEF1R2ejUqRNXXnklX331FTk5OZWytQYOHMj999/PTz/9xNdff012djZms5muXbvywAMPMGXKFJfVofft28emzZu57957CYkIwlmiYs8qwlC4D2PXhDp7TtaWdg+aVahik9q77rqLqVOnsnLlSi677DKcGadwnMhCSoEQEmNMeHlPOBERjjh5AgBpc2A/cBBjlwREhfYceXl5LF++nCuuuKLW6tetGeFOOfu2xODBg+XmzZs9uub2GTM49umn9HvmGeJdlIIvsZcw8tWRnLKdQqqSOwfdyUMXPVTjerKggGN9L8FeZCRyTC8i3nzDo/J6mlde2cY996wB4Mknh/Poo0N1ZUinxWIvKGDnrFkc//JLAMyxsZSkp1caI4xGwvr0KVd+IgcNKg/IdofMjRvZ9uCDlJw8iTE4mH5PPknHq66qNk5VVRatX8SS35dgE7by94QU5en9S85fQvt4rXu8QGA2mgk1hRIRGIGfwb1CsFJKjuUeI9eaq7nSJMSFxNEuuIh6CfMAAB2DSURBVJ3bn6kxOG02nBYLjqIikBL/qCiMDQgBmD17NnPmzGHP16uJr5CGL4TEEGLC0LGj282uN27cyPDhw1mwYAH3339/vWWpygMPPMDLL7/M7t276dq1K84TJ3Bk5J1WUDq2w9DOc1X18/Pz6datG0nDhvHZgoU4CzXLj+IHxi5naAHiFZCqivPIURx5WmaaYpAYEzqWu/X+85//cN9997F+/XrOd1HYNDk5mZSUFLdLAwDs3r2b3r171zlOCLFFSllzlUkPoVuIvEBtQdWF1kKSX00mx5GDqqo8OOxB7j7/7lrXy51yP/YiI35BDsJferFJZPYUzz//G9Ona1VNFyxI5v77m/w7raPTKPxCQhi4YAExI0awc9YsStLTMQQEEJGYqFmAhgwhPDERYx0dxGujXVISF3z9NTsefpj0VavYev/9nFq/nr6zZ2OskAqtKApTk6cyNXkqb296mxc3vEiRonUlV50qYX5hmBQTHUI6EB4Q3uDAaCEEnSM6E1ESQUpuCghIK0wjtySXrpFdPVoOQEqJarXiKCrCYbHgLCpCreKmseXkYAwJwRwdjTEoqIaVakYJ1G5tQkgMYQGaIlTPLgFJSUmMGzeO5557jjvuuKPOjvG1kZaWxquvvsq9995bHntk6NABERaG4/AxVIfAnpqFzMvHkFDZMtNQQkNDmf3wDO554EF+u+4mBp3dB2OYGUN8Z4SLv6dQFIxdElBysrEfO4nqFNgPnsAQlYctKoq5c+dyzTXXuFSGfAVdIfICNQVV5xXnMWLxCAplIaqqMuuCWUw4d0Kta9m3byXn678AA+1m3oJowMXCG0gpmTVrA08+uQkh4LXXRnH77f2bWywdHbfpNHYsMRdcQPGJE4T07Nmotjuu8I+IYPCrr3L044/Z9dRTpH7xBdlbtjBw4UIiXGTxTBw6kYlDJ7Ju/zqK7cWMOnMURoOR3bt3ExUU5RGZQswhnBVzFoeyDlHiLKHYUcxfp/4iISKBYFP9a9ZAacmB4mIcRUXlViDpdFYaIwwGDIGBGIOCkHY7tpwcHAUFFBYUYAwKwhQdjTE42G3LsjG+M/4R4YjgkEb1Ups/fz5vv/02hw8f5uyzz27wOikpKUyfPp0pU6ZUel8JCsLvrJ44U47gyLfiKLCj/rUfY5eOKMEND3CXUuJMTeWWCy4l655UMnIy8Y+PQYmIrHOuEhGJf3AIjkOHcRarOLKKOLBjJ7dNnMgtt7b8WNXGoCtEXsBVUPWp/FOMfH0kJZSgOlXmjZ5XXvytNrLuegipGgjqbiLw1tubTObGIKXkwQfXsWDBFhRF8M47lzF+fNtsNKvTuvGPiKiXK6y+CCGI/+c/iRwypLxY5IZ//IOeU6bQ4847XVoKknskN5k8AAbFQI/oHpwqOMXJwpNIITmUc4hIcySdwusuwChVtdzy47BYcFos1bK+hNGIMShIewUGopjNlZQdU0wM1sxMbFlZmiWpqAhDQACm6Gj8qvQTc4UQAiW88X+3zp071xrI7C7Dhg1j2LBhLo8JRcHYtQtKVhb246c0y8yBVIztQlA6dqx3eIG0WrEfSkG1ShSDgYfvuQtj1y71spAJPz/8zuyJUurW69mpK4+M64IxuGU+gHsKn1SIhBBnAAuBUWihhquBqVLKZmnAUjWoOjUnlYvfvBi7sCOdkpeveJm/nf23WteQNhtFC1+g6EBpIPVrDQ+kTk8vYvv2U3TrFk737uEejedRVcnkyatZsmQHfn4KH310Bddc09Nj6+vo+CIh3btz3mefseeFFzj01lvsXbCAjJ9/ZsALLxDYoebMsqYkJiSGUHMoh7IP4ZROckpyKDhZUC3gWnU4yi0/DosFZ3ExVIlNVfz9y5UfQ1AQir9/rdcdxWgkIDYWU3Q0tuxsrJmZOIuLsRw9imIyYY6Oxi8srJrrpyzdPDw83HMb4SWUqCj8Q0JwHErRAq4zCzEU7MfYLaE8E64unJkZOI5nno5Lig7D0Ijvj0u3Xm4+hi7V3XoTJkyoVsixteFzQdVCiEBgB2AFZqLlYT4FBAL9pJRFtc1viqDq7wYNwp6byyW//84xRzaXL70cp+JEOiVvX/22yyc+WVBAyf99ScnKtZTsOEjJCRuqU/sCRl7Rk4j/vuXWuaWUHDqUx08/pZa+jrN/f0758djYIM4/vyPnn9+J88/vRN++7RpcF8jhUJk48Tvee+8vzGYjy5Zd5bHeZDo6bYVTP/3E9n//G2tGBn6hofR7+mk6XH55jePdDUxtKFJKjuYcJd+WX/oGxBkjCLQJnBYLThftIQxmM8agIAxlFqBGuhulqpYrRmXxRoqfH6boaPwjIlzGxLRWtN5wJ3Bk5CMRCEXi1zEaJarmAHfpdOI8nIKjLHDaWBo47aGQCqmq5W49AMVAo9160PKCqn1RIZoCLADOlFIeKH2vC7AfeEhKuaC2+Z5WiKSU/F/PnqCqJKz9nL9/dI3W/doJH17/IefGnwuAmp5OyZefU/zDz5TsOoY1Q0XKyv/kxgAHQQM6EvXhOzXGDqmqZNeuzHIFaP36VNLSKuuAQUF+JCbGsG9fNhkZxZWOhYWZSErqwPnnd2LEiE4MHtwek6luQ6LN5uSGG/6PZcv2ExTkx1df/Z2RIzvXZ6t0dHRKsWZlsWPGDE7+8AMAZ4wbR5/HHnMZYNyUCpGUEtVmw1FURGFRLhmiCHvp5SCsCEItgBAYAwI05ScoCENgIIoHgoJdyqOq2HNzKcnIKK/7JIxGTO3aYYqM9EgwcktBLSzEkZKK6tB+N4b4a5aZKsqfWliA4/Bx1NKwLGOoCUNCfJMoiWp2FvbUU0hVIJANduuVoStETYwQYg1gllIOr/L+jwBSygtqm+9phchRWMi3/fuT287E7KutYADhFHwx4iW6/LSTkp9+p3hPOrZcQdVCIn4hTgJ6RmMePoiAsWMw9q0elGyzOdm8Ob3c+rNhw3FycysXZYuKCqhgBerIgAHtMRoVpJTs3ZvNTz8dL1egUlLyK801mQyce25c+dykpI6EhFQ23xYX27n22hV8881hwsJMfPvtNQwb1jxmfh0dX0FKScr77/PX3LmoVitBCQkMXLiQ8CptHzypEJX1XHOWxu04LBakw3H6OJAXDAWlGfGKFMRHJBBsbljAdWPktOfnYz11qtxCJQwGTFFR+EdFoTQikLolIVVVs/wUaMqfYgRjQieU4GBNWT1+HEdmwWlLUqeY8iKQTSaTzVbu1gMwmATGbl3cdutVRFeImhghRDrwpZTyjirvLwbGSSlrLfTgaYWo+MQJPrr8fP53oUJ8tom+R/y4NMWMKKzyDytUTJFg7t2RgAuGYv773zHEV2+gV1ho45dfTpQrQL/+mkZxsaPSmM6dQ8pdYCNGdKJXr0i3Nfhjx/IrKUh//lm5OaCiCBITY8oVrIEDY5g06XvWrj1Gu3YBrFx5LQMGtK/fJuno6NRIwb59bJk6lYK9exFGI72mTaPbbbeVWwB2795Nr169GvSULlW1PAOsLAvMZQB0aQaYISgIg9nMqcJTnCo8hVaySBJljqJjeMcaztJ0SClxFBZScuoUTotFk1dR8I+MxNSuncczA5sLNSsTe2qGFhuExBgVjFpoKW9BYjArWnHHBiglDcV5/LhW4bo0XsmvU+1uvapIKdmzZ4+uEDUlQggbsEBKOaPK+08BM6SUtT46eFoh+mjyHXT7ZidRRZVNucVSYacznM2OCDY7otjmDMfiRoy702EEWfnCZwq2EBSVR3BUPkFR+fgH1lC2vwE4bEaKskIpyg6lKDMMS14QyOqmWKPJSrekXZhDi12soqOj0xiMqsol6ekMK+1eXqIoqKUKUJf580lISMDYAIWoul0aHEJgUxRsioJVUXDU4HqRQsVpLkEpLRDZ3PcS7bMIhG/d0spRJETnGwi2nv57qAIyQhwUmpvnQxud0D7fiNmufQfyzU6izzzLLeXcZrORkpJCz551J93ohRkbh6tvR41/ISHE7cDtoKVZepKTZjinyEChv8qmolh+t0Wz2R7Jn45wHDTAxyskAeEFpcpPHkGR+RhNjrrnNRCjv4OwuGzC4rIBcDoULDkhFGWFaYpSTgh+Jhtdh/2JKbh6cKWOjk7jcSgK33TowP6QEMamphJawY1VsnkzxWecQVgD3UT2UgXIajBgUxScbipWQioYiwNw+lvBX20R1ecl1Z4XfQYVSItwElosic43YDNK0sMd2JsxbMqmwLFIB1FFCpGFpb3b3Pwe5OfnE1JHf09v44sWopPA8pbiMrMWW/ns1VkMuvBfRJ/RvdHrBQYaCQhoOWZgh0MzrxuNvpPloaPTklEdDhylpTwAbHY7x7OyiIyMJDQ0FKPR6PZNSQjhkUBkh+rA4Wy6B7MGocpq6f8+g1RBuLLvNSMF+SihYfibam65IqXEbreTn59PTk4OnTt3xuRGKxXdZdZAhBA/AP5SyvOqvL8O7fN6NahaR0dHp6mxWq1kZ2dTUFCAs0oVaB2dloTBYCAkJITIyEi3lCHQXWaNYQUwXwjRVUp5CEAIkQAMB2bUMk9HR0enVWIymYiLiyOutHu5jo5O/fFFP8cbQArwpRBijBDiKuBL4BiwpDkF09HR0dHR0WmZ+JxCVFqJ+kJgH/Ae8AFwGLhQSlnYnLLp6Ojo6OjotEx80WVGac+ya5pbDh0dHR0dHZ3Wgc9ZiHR0dHR0dHR06ouuEOno6Ojo6Oi0eXSFSEdHR0dHR6fNoytEOjo6Ojo6Om0eXSHS0dHR0dHRafPoCpGOjo6Ojo5Om0dXiHR0dHR0dHTaPLpCpKOjo6Ojo9Pm8bnmro1FCJEBHGmCpdsBmU2wro5r9P32Lvp+exd9v72Lvt/epep+x0spo5v6pLpC5CWEEJu90a1XR0Pfb++i77d30ffbu+j77V2aa791l5mOjo6Ojo5Om0dXiHR0dHR0dHTaPLpC5D1eb24B2hj6fnsXfb+9i77f3kXfb+/SLPutxxDp6Ojo6OjotHl0C5GOjo6Ojo5Om0dXiFwghDhDCPGZECJPCJEvhPhcCNHZzblmIcQ8IUSaEKJYCPGLEGKEi3GKEOJhIUSKEKJECLFDCHFNDWveJoTYI4SwCiH2CiHubOxnbEm0pP0WQqwTQkgXr6me+KwtAS/t9zQhxFel46QQYnYta44VQmwr/bscEULMFEIYGvERWxQtab+FEEtr+H6/2MiP2WJo6v0WQvQUQrwkhPhDCFFYOnaFEKJ/DWvq1++a53p0vxt9/ZZS6q8KLyAQ2A/sAsYCY4CdwEEgyI35HwC5wG3ARcDnQDGQWGXc04AVeBAYCSwBVODyKuNuK33/6dJxT5X+fldz75WP7vc6YAcwtMortrn3qpXt927gV+BVQAKza1hvNOBEixkYCUwDSoDnmnuvfHS/lwKnXHy/45t7r1rLfgP3AH8AD5R+Z/8O/FL6vR1UZT39+u3d/V5HI67fzb6hLe0FTCm9QHev8F4XwAFMq2Nu/9KL0S0V3jMCe4EVFd6LQbs5z6kyfw3wR5W5p4B3qox7G61olV9z75cv7Xfpe+uAn5t7X1rzfpe+r1Q4XtsNehvwY5X3Hgds7l7EWvKrBe73UiC1ufelNe83WtFAUWVuGJADvFtlrn799tJ+l77fqOu37jKrzlXAJinlgbI3pJSHgQ1o2m9dc+3AJxXmOoCPgdFCCFPp26MBf+D9KvPfB/oKIbqU/j4MiHYx7j0gCjjPzc/UkmlJ+90W8MZ+I6VU6xJECHEGkIjr77cfcFlda7QCWsx+txGafL+llJmy9O5bYVwesA/oWOFt/fpd91xP7nej0RWi6pyNZv6ryp/AWW7MPSyltLiY6w90rzDOChxwMY4K5zm79GdVeaqOa820pP0uY0CpP9xe6reeVIccrQlv7Hd9ZKGqPKUXVIsb8rQGWtJ+lxEjhMgUQjiEEPuEENN9KGarWfZbCBEJ9EFzXVZcDxfy6Nfv03M9ud9lNPj6bXR3YBsiEs0UV5VsIKIRc8uOl/3Mrar11jAOF2tWHdeaaUn7DbAeza+9DwgHbgLeFELESSmfqkOe1oA39rs+slDDmjkNWK8l0pL2G2A7sAXtpmNGi8eYC/QAbm3Aei2N5trv/wACqBicrl+/Gz637HhNuNpvaOT1W1eIXOOqOJNwY55wc259xtUkjy/RUvYbKeXjVd76UgjxBfCoEOJFKWWhG3K1dJp6v92ltu93Q9dsibSU/UZKWfUG8o0QohCYKoR4Tkq5v6FrtyC8ut9CiIeBG4BJFV1H6NfvuvD0fjf6+q27zKpT05NpBK612Ypk1zK37HjZzwghRNU/vKtxuFgzssrx1kxL2u+a+AjtabpvHeNaA97Yb3ep7UkwvAHrtURa0n7XxEelP32healX97s0hf4ZYKaU8m0X6+FiTf36reHp/a4Jt6/fukJUnT857futyFnAX27M7SKECHQx18bpGJY/ARPQzcU4KpynzNdcVZ6q41ozLWm/a8KXnvS8sd/1kYWq8gghEtDSefXvt2f3uyb07/fpuW7vtxDiRmAx8IKU8uka1sOFPPr1+/RcT+53Tbj9/dYVouqsAIYKIbqWvVF6gR5eeqyuuX7AuApzjfx/e+ceY3dRxfHPlxYKQmwpL1GQiggS5SmIkLYsBrAQCwJNi0WxvE15E54JQkG0IEKAEh4RoVTFSgALRihQcIFCbJEKFtBgwC3vR61tQWih9vjHmUt//TF3997d7d7dveeT/DLdmTNz5nfu7u+ezpzfGRgHPGBmy1P1TPwDP6LU/3vAsymoFDzXwsIqcovwSP6+Tm+ydzXG47kx5ncg1xfoCXvXhJm9jOcMyX0uHwH31TNeL6XX2LsdxuNfFk9203iNpEfsLekQ4BbgJjM7s8p48fzuuG932rsatT+/eyJXQV+6gPVxz3Q+/trgQfhD+yVgg4LcVniuhQtK/afjS4XH4omm7sATSO1akrs01Z8BtOAJ1VYCo0tyP0z1lyS5i9PPJzbaVv3N3sAI4I/AMWmsQ4G78S+Lcxptqz5m792AMcDYZL/b089jgE8V5A5Mn8ON6XM5PY13eaNt1d/snXQ8CkwE9gdG4zlxVgLXN9pWfcXewMhUNw/Yi9UTAO5SGi+e3z1kb7rh+d1wg/bGC/g8cCewFHgXmAEMK8kMI5MADVgPuBJ4M32Ic4CWjI4BwPnAAvyV8L8BY6rM5wQ8an45nhV0YqNt1B/tjb/meR/wWpJ5D3gC+G6jbdQH7T019c9dZV2H4g/R5cDLeGLGAY22U3+zNx6vMSP9DSzD/9c8D88EvFaj7dRX7A1MasfWbZn5xPO7B+xNNzy/47T7IAiCIAianoghCoIgCIKg6QmHKAiCIAiCpiccoiAIgiAImp5wiIIgCIIgaHrCIQqCIAiCoOkJhygIgiAIgqYnHKIgCIIgCJqecIiCoMFIshqulkbPMwiCoD8zsNETCILgYy5qp62tpyYRBEHQjESm6iBoMJIMwMzUkWwQBEGwZogtsyDoY0iaVNlGkzRG0lxJ70taJGm6pM9V6TdU0mRJf5f0gaQlkh6StH9GdkLSMUHSKEmtSd5KckdImpfGe1vSryR9NslbQW5UGu/mKnMbJGlhugbVaIeadCfZdSSdJOleSQskLU/2miXpgCrjt6VrsKRrJb0maZmk5yWdIukTDqykg5JN30g6Xpf0iKSJtdxTB/f7HUm/lvSCpP9Kek/SU2kuNT/Li78/mbZhqW1qV+cbBH2N2DILgr7LRPx06XuAR4A9gHHATpJ2NrPlFUFJWwGt+CGLjwEz8ZOqvw3MlHSCmf0io2MMMAo/NPGG1L8y5lnAz/DTqm8FlgD7AY+nfxe5H3gRGCfpdDMrtx8GbARcUZx3NerUDX6w6dX4YY8PAu8Am+Mnvt8r6TgzuynTbx1gFjAEP5l7nTTXq4HtgBMLczoeuBE/qPIPwEJgU2BH4Cjguo7uqwMuxU9Kn4MfYDkY+Gaay+7A97s4fhA0N40+KTeuuJr9YtXJzZOqXOeW5Ccl+aXADqW221Lb2FJ9K/5lenipfgjwNH7y+WaF+glpnJXAqMyctwY+wh2LLQv1An5buadSnzNT/UmZ8VpT27Y12KszugcBW2TGGgw8CywC1iu1taWxZgODCvVDcefOgJGF+qfwU7Y3zejZuBt+T76YqVsLdwgN2KPGcSq/Py2ZtmGpbWqj/y7iiqunr9gyC4Lew4VVrnOryF9jZvNLdZVVnq9XKiTtBOwN3Glm04vCZrY46VgXX/koc7eZzczUj8dXmKeY2SuF8SzN93+ZPrcAy4ATipWStkvz+5OZvZDp12XdZrbczF7N1C8BbgY2xFdZcpxnhVUrM1sE/Dj9eFRJdgXurJX1LGzvhmrBzF7M1K3EV4gAvtVVHUHQzMSWWRD0Eqz+oOq/ZOoqDsKGhbo9UzlY0qRMn01SuX2mbW4V3bukcna5wcwWSHqFwvZaqv+3pNuBIyXtZWZPpKbjU3lDFV1d1g0g6SvAWcBIfLts3ZJILvZqBb7NVqa1NBeA3wBXAM9J+h2+jfm4mb1T7UbqQdJG+PwPxFfJ1i+JZGPHgiCojXCIgqDvsjhTtyKVAwp1G6Vyv3RVY4NM3ZtVZAen8q0q7W+RcUrwOJoj8VWiJ1IA9Q+At4EZ7cytS7olfQN4GH/mPYTHXS3FtwR3Bg7Gt9XKLDSz3GpXxS6VuWBmV0paiMd2nQKcBpikR4CzzCznwNaEpCHAk8AXcCd1Gr7NtwLf9jy1yvyDIKiRcIiCoP9TCTI+1cyuqbNvtbwcS1O5GfBcpn2z7GBmcyTNA8ZKOg04AHfYLjOzD2ucU2d0nw+sB+xjZq3FBknn4Q5Rjo0lDcg4RZ9J5WoB3GY2DZiWHJi9gEOAo4H7JW1vZm9X0dMRx+LO0EVmNqk0/z1xh6hWVqYy9/wf0qnZBUE/IGKIgqD/8+dUjujGMf+ayuHlhvRG25bt9L0e3646Et8uM1bFPq0p3dsAi8rOUGLvdnQNxB2bMi2luayGmS02s3vN7DhgKh6I3RX7b5PKOzNt7c0/x39SmbPTbnWOFQT9hnCIgqCfk7ZqHgMOlXR0TkbSDpI2rWPY2/DtmpMlffzFmnLzTGb1Lbtc3yXA2fiX+YO5gOFu1t0GDJW0Y7FS0jF0HIw8uZgbSdJQfMUJPFC8Uj9KUm7VpWLX9wuyLSnfT2sHuovzh1WOWGWcXYDzch1S/qQvS9q81FSJCzuqON9kywvqHCsI+g2xZRYEvYQqAc8VZpjZ010YfjweQ/NLSafguWwWA1vgeXK+igdf17SlY2YvSroA+CnwTAoiruQCGgo8k8bN9X1f0q14nA147p6a6aTuq3DHZ3YK7F6Cr4YMB+7A8y3leAOPzXlW0j3A2kl2c+A6M3u0IDsdWCZpNu7ACF8V2h1/JX9WQbbyn9EV1MY0PKD6Kkn7AP8EvoTnkboLzz9V5hDcYbsVT6MAfLxt+SgeXD5X0sP4NuNoPF9UbuUoO1YQ9CfCIQqC3sOF7bS14fmCOoWZvSrpa8DJ+Ov1R+ArKW8CzwNTgPIr/B2NOVnSq8AZ+Ovn7+JfqGcDD7Aq1ifHzbhD9AYe4FwX9eo2s5mSRuMrO+PwV/PnAvvgb2xVc4g+BPbFna/DgY2Bl/AkiVNKsufiTteu+Jtgy4AFwDnA9WZWfB1/h1Sulgahnft9XdKIpHd40vMPPIB7FnmHqD0OBi5P5cm4g1Wx3dg6xwqCfkGcZRYEQbci6dP4m15Pm9meVWQm4CsOl5jZj3pSdx1jtQGY2bCuz+wTY9+F54rauo5g8iAI1iARQxQEQaeQtImktUt1A/FcPOsCv6/SbyC+srOCOrfLuqq7N5BinUYAPw9nKAh6D7FlFgRBZzkMuFjSLDwh5FA8LmVbfHtvtS0lScPxIOoWfMvo2lz26DWhuzeRMmpv0qFgEAQ9SjhEQRB0ljl4tuiRrEr++C/gJ3heoQ9K8vvicVKL8Nfsz+5B3UEQBO0SMURBEARBEDQ9EUMUBEEQBEHTEw5REARBEARNTzhEQRAEQRA0PeEQBUEQBEHQ9IRDFARBEARB0xMOURAEQRAETc//Adstqj+1Pht9AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "states = [0, 1, 2, 3, 4]\n", - "nst = len(states)\n", - "\n", - "plt.figure(1, figsize=(9, 6)) # dpi=300, frameon=False)\n", - "plt.subplot(1,1,1)\n", - "plt.title('Distribution of energy gaps')\n", - "plt.xlabel('Energy gaps, a.u.')\n", - "plt.ylabel('Probability density')\n", - "cnt = 0\n", - "for i in xrange(nst):\n", - " st1 = states[i]\n", - " for j in xrange(i+1, nst):\n", - " st2 = states[j] \n", - " bin_supp, dens, cum = data_stat.cmat_distrib(dE, st1, st2, 0, 0.0, 0.025, 0.001) \n", - " plt.plot(bin_supp, dens, label='|E(%i)-E(%i)|' % (st1, st2), linewidth=2, color = colors[clrs_index[cnt]]) \n", - " cnt = cnt + 1\n", - "plt.legend()\n", - "\n", - "plt.show()\n", - "plt.close()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, lets select the energy window of interest and compute the influence spectrum to see which phonons are coupled to which transitions." - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "metadata": {}, - "outputs": [], - "source": [ - "params = {}\n", - "params[\"dt\"] = 1.0 # MD timestep in fs\n", - "params[\"wspan\"] = 4000.0 # cm^-1\n", - "params[\"dw\"] = 1.0 # cm^-1\n", - "params[\"do_output\"] = False\n", - "params[\"do_center\"] = True\n", - "params[\"acf_type\"] = 1\n", - "params[\"data_type\"] = 0\n" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [], - "source": [ - "states = [0, 1, 2]\n", - "nst = len(states)\n", - "\n", - "ACF, W, J2 = [], [], []\n", - "for i in xrange(nst):\n", - " for j in xrange(i+1,nst):\n", - " \n", - " data_ij = [] \n", - " for de in dE:\n", - " x = MATRIX(1,1)\n", - " x.set(0,0, de.get(i,j))\n", - " data_ij.append(x)\n", - "\n", - " Tij, ACFij, uACFij, Wij, Jij, J2ij = infsp.recipe1(data_ij, params)\n", - " \n", - " ACF.append(ACFij)\n", - " W.append(Wij)\n", - " J2.append(J2ij)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Visualize the computed influence spectrum as well as the ACFs" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABCIAAAGYCAYAAACXuEPnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl4FEX++PF3hVzckHDvhoRbZFlQWb78AAmgEkE5zQKCcrnghXixKKuYcAjqsoqKyLUGUJdVlCPIoSuEYxE5VOJquMSEiCII4TSEXJ/fHz0zTjIzySSZJAQ+r+eZZzLV1dXVPZPu6uo6jIiglFJKKaWUUkopVRb8yjsDSimllFJKKaWUunZoRYRSSimllFJKKaXKjFZEKKWUUkoppZRSqsxoRYRSSimllFJKKaXKjFZEKKWUUkoppZRSqsxoRYRSSimllFJKKaXKjFZEKKWUUkopVUaMZbwxZp8xJt0YI7ZXhO0lxhgp73wqpVRp0ooIpVSpMcYMcCpgfVLEdXsaYxYYY5KMMWeMMZnGmJPGmK3GmBhjTBM368Q6ba+g1xzf7aVSSqmrjTFmie16saUUkv8b8DrQDjDACdsrpxS2pfIxxlQxxkwwxiQYY36xlS9OGWO+McasNMY8aoxpU975LAlbhVasMeax8s6LUp74l3cGlFJXtZFOf99ijPm9iBwraAVjTAPgHeAWp+Bs4AIQCnSzvaYYY14Rkb+6SSYX+KWAzZz3JvNKKaVUKXjU9v4EMEdEHK0fjDER5ZGha4UxpjmwEWjmFPwrEAi0sb0GAolA+zLPoO9EADHAUUAfvqgrkraIUEqVCmNMKHAHkA78C+t8c08h6/we2IVVCXEJmAX8AQgUkRCsgkIn4FUgC/izh6R+EJEGBbye88EuKqWUUkVijKkH1LV9XORcCaFKlzHGH1iNVQnxM/AgECoi1USkBtbDjn7AMqwyiFKqFGlFhFKqtAwDAoA1wAJb2EhPkY0xfsB7QGPgNNBFRP4mIt/aC2oikiMiu0TkMeA6YHdp7oBSSinlY5Xtf4jIxfLMyDXoVqwWDwB9RWS+iKTZF4pImoisFZGRQM9yyaFS1xCtiFBKlRZ7pcO7wHYgFbjOGNPRQ/yBQGfb3/eLyFcFJS4iR4EhvsioUkop5S1jzBbb+BGjjDGVbX3xDxpjLtnGMvq3MaZFvnW62wagTHEKcx67KLYo2y0gTootTncPy6sZY/5mjNljjDlnjMkwxhw2xrxmjAnz1f66SSPUGDPVGPOFMeasbZDOQ7Z1+3tYJ9A2qOd2Y0yaMeayMeaoMeYtY0zrgrbnQVvb+wkR2VtQRBFxaRHhNG5IrDEm2LY/B5yOw3JjTMuC0i3JPnl7DI0xKUCC7WO4m3GyRjnHtf9ejDG/M8bMM8Z8b8vXPlucQgdQtf++bdvOv8x5Gw2NMfONMT/Yjtt+Y8zjtodR9vh/th2fs8aY88aYdcaYPxR0bFTFpGNEKKV8zliDPN2E1bLhExERY8xy4CmsCgp3LRnut73vF5EPvdmONmlVSilVjmoAO4AbgMtY4xPVxaokv80Y01FEjtjiZmINSFkJqGMLO+GUVqm3jrDd6G4Awm1B2bZ8NwceAe4xxvQVkR0ekijK/jpv92ZgFVbXB7CORQbQwvYagjVop/M6DW15bWcLysUay6ExMBq42xgzXERWFuUY2IQYY4JFJKMY6wIEYd3od+K3fakLDAX6GWN6i8i2/CuVZJ+KeAx/wfquauN+zCx33U5aAiuwfpvpWN1ffa0JsBxogDVWVwBW69aXgabAI8aYF7DKijm2fFQH+gCdbb+vw6WQL1VOtEWEUqo02FtDvC8i9ovZu7b3ocaYQOfIxpgAoIvtY3wZ5E8ppZQqqalYN3u3A1WBaliDKR8DQrDGOQJARD4TkQbAn5zCnMcuml2aGTXG1ATWY1VCrAZuBCqLSDWsG8S3bfvyoTGmlodkvN5fp+02Az7CuoHeh9XloYqI1LStEwWszLeOvVtnO2CbbRuVbeM4NAD+AQQDb9vS95a9FUQAMN8YU70I6zp7EPgjVlmnmm1fbgC+BKoA7xtjavtqn4p6DEXkT8Ag20d3Y2a952af/gEcx+oWW9X2u4gu3uHx6BUgGWhny3sNYIpt2cPGmL9hDeD6GFDTdmzaAgeBWsDzPs6PKmdaEaGU8iljTCV+G5TyX/ZwEfkf8D+si2bffKuFY128wRqpuqTCjDE/e3h96oP0lVJKqSDgNhH52DaGUa6IbMe6kQLr6XhgAeuXpb9izaSwBhgkIl+JSDaAiKSIyAisior6wF88pFGc/Z2FdcN5COgmIgkikmPb7hkR+URE7sq3zkisCps9QC8R2S4imbZ1TojIROBNrHLD494eABFJALY6beO4MeYjY8wUY8ztBVTA5FcTGCciy+wPW0RkH1aFwGmsY/iwD/epOMewqLKxvtvP7AEi8l0J08wvF+gjIl/b0k8XkRnAZqzWHM8DM0TkVRH51RbnG2Csbf0r6f9J+YBWRCilfK0X0BBryqj8zTvtrSLyD1oZ6vR3GiXnh1UQcPeqU8B6SimllLc+8HCzFg8I1o1787LNkkf26+4rBXRrXG57v83D8iLtrzGmGtb4TwDPiciFIub1DRG57CGO/UGHp7x6Yp8VIxerVccdwDSsLhOnjTEJxpg+haRx1Gn7DiJyit8G587fmqBY+1SCY1hUy0TkROHRSmS+iJx1E25/QJSJ1U0jvx1Y3VCupP8n5QNaEaGU8jX7xXa5m8LOcqzCSm9jTF1Kz1ERMR5eFXlecKWUUleOPe4CbU/JT9o+1nYXpywZaxDK39s+rvDUYhB4zRbH7aCVFH1/O2CNRyfARi/z6g/YB7V+uYC8riokr26JyHnbrBhNsFoerMSqWADrvqg7sM4Y848CktlaQGWOvcXFH+xP70u4T0U+hsW0sxTTtvufh3D7byfF3UwyIpILnLJ9LPf/J+U7OlilUspnbH1Q7SM3u3takGqM2Y7VN3IY8Kpt0WmnaCGlmkmllFLKNwp6Om0fCDGgLDJSiIZOf3vzEKCKh/Ci7m992/s5ETnnxXbBKgMEOv1dmMqFR3ElIqnAHNsLY0xj4C7gWdt2nzDGbBORNW5W/7GApO3LKmHdNJ+gZPtUnGNYHPkHtCwNxz2E5xSy3DnOlfD/pHxEW0QopXxpCNZgSwBfu5kySrAqISBv94yjWKMjw2+jSSullFKq5JzL+zULaDFof0X4aLum8CgF5rWdF3ktzjZciEiqiLwC/D9+K4+MKUZS7vJTkn3yyf55IafwKEr5llZEKKV8Kf/YDwW5wRjTFhzNOu3jSeQfyFIppZRS1oCC8FuFvzs13YQ59/2/3nfZKdTPtveathaT3jjNbzfFZZlXAETkEPBf28eWHqI1KiAJe+uTHOCM7e+S7FNxjqGv2X93GGM8/fbKK2+qAtOKCKWUTxhjmgOdbR/bYzVJ9PRaa4vnXHGx0PZ+vTFmEF4wxpTVkwKllFKqvNkH+vu9u4W267DLzA8iksxvlRFeXV99ZC/WTawBenuzgu3BhH2azbLMq7Nfbe+ZHpZHFrCufdk3TrNilGSfinwMbXJt774oJzkPMOn2t4fTtLRKeUsrIpRSvmKvVEgUkUQROevpBaywxR1um+4TrAGjPrf9vdAYc0NBGzPGhAPu5sJWSimlrkb2wf76eVj+dAHrLrG9P2SMae0pkrH45Om2beBB+wCMU40x1b1cdYnt/S5jTI+CIhpjvB680BjzB2NMg0Li1Ad62j7u8xAtwhhzt5t1Q4Bxto8r8i1eYnsv0j6V4Biet72X+Lu05SHF9rF//uXGmFA8T/mqlEdaEaGUKjFby4R7bR9XerHKWiALaIA177Z9VOTBwDGs6Tz/a4x53rnAZIypZIzpaIx5BTjAb6NQK6WUUle7D7BmT2hrjHnVGFMLwBhTzxjzGtZ1ON3Dui8A32NNWbnVGDPSNjUktjTCjDFjgS/4bbpIX/gb1iCXLYFtxpgexhg/2zZrGWPuMMasy7fOP7EeTPgBHxljHrXd5NvzWs8Yc7cxZgvwaBHy0h1INsa8bYzpmy/NGsaY4VjdMmpitSiY6yGdc8AiY8w9thkxMMb8EfgYazDQk8A8H+5TcY7hYaxyVk1jzF2FHpnCvW97f9YY089pvzthTb8Z6HFNpTzQigillC90B8Jtf39YWGRbq4jNto8jncJ/wKpc2II1avffgCRjTKYx5jRWM8ldwGNYI1K/45vsK6WUUlc2EfkW2ywPwATgjDHmDNY4Ag8B9+Nh9gPbdTcK2I91s7wEOGeMOW2MSQdSsbpI3oBV2eGrPH+H9RT9LFa3zc1AujHmLNYYCh8BffKtk2VbZwdWWWAOcMoYk2aMuYDVzeRfWN0gipLXLKzxNe4B4oHTxpgLxpjzWJUL7wDNsWYAGSMibqcrBd7Eap3yNnDRGHMOSMSaajMd+LOInHFeoST7VMxj+CvWlOkAHxhjzhpjUmyvaG8PmBN7RVYtYI1tvy9iTfsZgvV7VKpItCJCKeUL9sqEQ7aCkjfsFRb97U91AETkuIj0AG4DFmO1fEgHamAN+LQVmAI0E5FnfZF5pZRSqoJ4EqvSIRHrhlmwnsT3FJElBa1ou6G9wbZ+ApCGdW3NBr4GXse6EX7blxkWkQSgFfAi8I1te/7AIaybZZeuJiJy0paX4cB6rFYG1bDGPDiA1cKgDzCzCPlYANwIPANswJqxKwBruszTWC0WZgKtRWRpAUldBnoA02xpBGJVAP0buFFEtnnYfrH3qTjHEHgAmAUcBIKwHhiF27ZZJLaKlc5YlVU/Yd1Dnsb6zdyI1ZpVqSIxIj6r9FRKKaWUUkqpq44xZgnWg5epIhJbvrlRquLTFhFKKaWUUkoppZQqM1oRoZRSSimllFJKqTKjFRFKKaWUUkoppZQqM1oRoZRSSimllFJKqTKjg1UqpZRSSimllFKqzPiXdwYqmjp16khERER5Z0MppZQqFV988cUpEalb3vm4Wmk5Qiml1NXM23KEVkQUUUREBHv37i3vbCillFKlwhhztLzzcDXTcoRSSqmrmbflCB0jQimllFJKKaWUUmVGKyKUUkoppZRSSilVZrQiQimllFJKKaWUUmVGKyKUUkoppZRSSilVZrQiQimllFJKKaWUUmVGKyKUUkoppZRSSilVZrQiQimllFJKKaWUUmWmQlZEGGN+b4x53Riz0xiTbowRY0yEl+v6GWMmG2NSjDEZxphEY8xdpZtjpZRSSimllFJKAfiXdwaKqTkwGPgC2A70KsK604GJwDO29YcCK4wxd4rIel9nVKmrxeXLl0lLS+PChQvk5OSUd3aUUl6oVKkS1atXJyQkhKCgoPLOjroC6bldKaWUJ6VZjqioFRHbRKQ+gDHmL3hZEWGMqYdVCfGCiMy2BScYY5oDLwBaEaGUG5cvXyY1NZXatWsTERFBQEAAxpjyzpZSqgAiQlZWFufPnyc1NZXGjRuXSmWEMSYKeAq4HqgN/AJ8BsSKSJJTvDDgFeA2wACfAo+JSGq+9GoDfwcGAJWBncDjIvK/fPGCsR4u3APUAvYBT4nItnzx/Gz5ux9oABwEponIh272ZSzwJNAESAFeEZH5buINAGKA1sAJYBEwS0Qq1J28ntuVUkp5UtrliArZNUNEcou5ahQQCLyTL/wdoK0xpkmJMqbUVSotLY3atWtTp04dAgMDtaCqVAVgjCEwMJA6depQu3Zt0tLSSmtTIVgtDMdjPRiYDLQBPjfGhNvyUgXYDFwHjATuBVpgPQyo6pRnA8QDtwOPAHcBAbZ4v8+33X8CY4HngDuB48DHxpj2+eJNB2KBuUBv4HOslpB9nCPZKiEWAB/atr8CmGeMeTBfvChbnD229F4FngVmenOwriR6bldKKeVJaZcjKmqLiOJqA1wGvssX/q3t/XoguSwykpuby9wHl5KdCY8uGkEl/0plsVmliuXChQtERESUdzaUUsVUo0YNUlJSaNiwoc/TFpHlwHLnMGPMbuAAEA38A6vCoCnQSkS+s8X5GjiM1VLhZduq/YCuQE8RSbDF24l1bZ4ETLCFtQOGAWNEJM4WthXrej7Nlo7XLSGNMf7A88DbIvKMU7xGwHRjzGIRybKFvwD8V0TGOcWrBjxrjHlFRH4u3pEse3puV0qVhVzJ5dfL56kcUBX/SgHlnR1VDKVRjqiQLSJKIAQ4KyKSLzzNaXmZ8PPz49LOSHL23Er6+QtltVmliiUnJ4eAAL1wKFVRBQQElHX//9O2d/vNez/gc3slBICIJAM7gP5O6/UDfrJXQtjinQPWuomXBbznFC8b+DcQZYyxtx31tiXk/wPquon3NhCKVTli717S3kO8AKwWEhWGntuVUmXhYsZZTl04zi8XfirvrKhiKo1yxLVWEWGA/JUQ9nDPKxkzzhiz1xiz95dffvFZZsQ/E4Dzaed8lqZSpUWb7CpVcZXF/68xppIxJtAY0wKri8PPWBUDYLVI/MbNat9itUbEi3iNbS0P7PGSRSTdTbxArEGt7fEKawlpj4ebbXsVz1apkp5vXyoEPbcrpUrbpcxfAcjIyn/KVhVFaVwrrrWKiDSgtnE9krWdlrsQkYUi0kFEOtStW9dnmZFKVkXEr2fP+yxNpZRSqpzswrrpPwT8Eat7xUnbshDgjJt10vjtGlxYPJziFhYvxOndm5aQ9vf8aXobzx5WZi0rlVKqwtAKT+XGtVYR8S0QBDTLF25/gpFEGbJXRFw8+2tZblYppZQqDfcCnbDGbjgP/McYE+G03JsWid62XCyNeJ7y6G08jyXt0mpZqZRSFUHx5xlQV7NrrSJiI5AJDM8Xfg/wja1pZZmRSlbX2fQLF8tys0qpa8zhw4cZOHAgDRo0wBhDrVq1yjtL6iokIvtFZJdt8MpbgGrA07bFnloL1CZv64K0AuLhFLeweGlO7960hPQ0VlSIl/HAmkK0TFtWqivP+fPnmTBhAhEREfj7+2OMYd++fWzZsgVjDLGxseWdRaWKrKTlCCm0jlddiypsRYQxJtoYEw3cZAvqbQuLdIqTbYz5p/2zrYnoK8BkY8wTxpjuxpg3gZ7A38oy/wDYKiIuXbhU5ptWSpXM888/jzEGYwwHDx4sNH5ubi4ffPABd911F2FhYQQHB1O1alVat27NuHHj2LFjR574S5YscaTv6eWNnJwcBgwYwPr167nzzjuJiYnh6aefLnxFBUBSUhKDBw+mXr16BAcH06pVK2JiYrh0qfTP21lZWbz66quMHj2a9u3bO6ZXXLx4calvu6RE5CzWuAz2sRq+5bfxFZxdT97WiAXFSxWRi07xmtimBc0fL5PfxoTwtiWkfSyI/Nv2Kp6t5UcVyrhlpfKNopxTCzNp0iRef/112rZty+TJk4mJiaFBgwY+SVtduUaNGoUxhpSUlPLOis/5uhzh2lPu6qblCM8q8vSdK/J9nmd73wp0t/1dyfZy9gxwEXgUaAAcBAaLyNrSyWYB7BURv2aU+aaVUsUnIvzzn//EGIOIsGjRImbPnu0x/s8//0x0dDQ7duygevXq3HbbbTRr1gwR4fDhwyxfvpxFixbx2muv8cgjj+RZt127dgwYMKDYeU1OTiYpKYmxY8eycOHCYqdzLdq1axc9e/YkKyuL6OhowsLC2Lx5M9OmTWPTpk1s2rSJoKCgwhMqpl9//ZXHHnsMgPr169OgQQN++OGHUtueLxlj6gPXAe/aguKB2caYpiLyvS1OBNCF31pN2OONNsZEishWW7waQF/gX/niTQX+DCy1xfMHhgCfiMhlWzznlpBTndbP3xJyJ3DKFu/TfPHSsGb3QERSjTGJtniL88XLAjYUfnTU1eyjjz6iZcuWrF2bt1h54MCBcsqRUiXji3KEc+WDSC7G5L89uzppOaJgFbYiQkQKrbp2F0dEcoAZtlf5slVEZKRnFRJRKXUl+eSTT0hOTmbUqFFs2LCBpUuXMnPmTAIDA13ipqenc/vtt5OYmMjQoUOZN28etWvXzhPn/PnzzJ49m/PnXQeubd++fYma8v70kzVVVqNGjYqdxrUoJyeH0aNHk56ezpo1a+jXrx9gtWwZPHgwH374Ia+88kqpti6pUqUK69evp3379jRs2JDY2FimTp1a+IplzBizCvgS+BprbIiWwONANvAPW7RFwHhgjTHmWawxFqYDP2DNsGEXj1Up8I4x5q9YXTEmY42/8JI9kojsM8a8B8wxxgQAycCDQBOcul+KyEljjL0l5AVbPodgtYTs7xQvyxgzBZhnjPkRqzKiJzAGeEREMp3y+DfgI2PMAmA5cAPwLPCqiPxc9COoriY//fQT3bp1K+9sKOUzvihHOFdE5CIVt0l+EWg5onDXwu/gimUqZQOQeSmzkJhKqSvJokWLABg7dizDhw/n1KlTrFq1ym3cV155hcTERLp06cK7777rUgkBUKNGDaZNm8bEiRN9mk9jDJGRVm+1qVOnOpofO1dsnDt3jsmTJ9OqVSuCg4OpXbs2UVFRfPrppy7pOfdx3r17N3fccQchISFeN0c9fvw4o0ePpl69elSuXJn27duzdOlSj32nv/jiCx599FHatWtHSEgIwcHBtGjRgieffJIzZ1wnLbB3Z1myZAnr1q2jc+fOVK1aldq1axMdHc3hw4e9PnZbt25l//79dOvWzVF4APDz8+Oll6z74fnz55dqE9PAwEB69+5Nw4YNS20bPvI5MACrZcI64Ams1ontReQQgIj8inVjfwh4G6ulRDLWzBqOgZLEGtHsTuA/WC0dVwE5QA8Ryf8YZzQQh/VgYR0QBtwuIl/mi/eMLc6jwMdYrTBcWkKKyHysyozBtnh3A+NF5I188dYD0VgDc36MVekyk7wtO1QFl5KSgjGGUaNGkZKSwtChQ6lTpw7BwcF06NCBjz76KE/87t27O1rJbd261XG+7d69e4HbiYiIICIiwu2y2NhYjDFs2bLFZdmBAwcYNWoUYWFhBAUFUb9+fYYNG+a2q6Bzt4EFCxbQtm1bgoODqV+/PuPGjePcOffTyB87dowJEybQokULgoODCQkJoWPHjkyfPt1t3PHjx9O0aVOCgoIIDQ2lX79+7Nmzp8D9zy8+Pp5bbrmFhg0bEhQURKNGjYiMjGTevHl54tmP9+XLl3n22Wdp0qQJQUFBNGvWjKlTp5KZ6b5sXZTjBtbDhBdffJEOHTpQvXp1qlWrRuvWrZkwYQInTpwArGvt0qVLAWjSpInju3f+Xu35zczMZNq0abRq1YqgoCBGjRoFFPxdO/8Wndm/1+TkZObOncv1119PcHAwERERzJw503F9WrFiBR07dqRq1arUq1eP8ePHk5HhXWtsX5Uj7GNEfL5jNwGVArQcoeUIoAK3iLgaGH+rIuLypexyzolSylsnTpwgPj6eli1b0rlzZ2rUqMHLL7/MwoULGTJkiEt8ezPGKVOm4OdXcN2vr5vnxcTEkJKSwtKlS4mMjHQUiO3vZ8+epUuXLiQlJfGnP/2Jxx57jFOnTvH+++/Tq1cv3nzzTe6//36XdHfu3MmsWbPo2rUrY8aM4dSpU25bgzg7efIknTt3JiUlhW7dutG5c2d+/vlnHnroIXr16uV2nUWLFrFq1SoiIyO59dZbycnJ4csvv+Tll19mw4YN7Nq1i+rVq7ust3LlSjZs2MDAgQPp3r07+/bt48MPPyQhIYHPPvuMVq1aFXrsNm/eDMDtt9/usqxp06a0bNmSQ4cO8f3339OsWf7hB64tIvIi8KIX8VKBu7yIl4bVEmFMIfEuYVV6PFFIPK9bQorIAvK20PAUbyWwsrB4quI7evQoHTt2pGnTptx7772kpaXx3nvv0b9/fz799FN69OgBWDeF3bt3Z+rUqYSHhztuGj1VMpTExo0bGTRoEFlZWfTt25fmzZtz7NgxVq5cybp160hISODGG290WW/SpEl8/PHH9O3bl169epGQkMCiRYv47rvvHOc8u7179xIVFUVaWhrdunVj0KBBpKenk5SURGxsLFOmTHHE/fLLL+nVqxdpaWlERUUxaNAgTp06xerVq+natSurVq2iT58+he7XwoULuf/++2nQoAF9+/alTp06nDx5kq+//pq4uDgeeughl3UGDx7Mnj17iI6OJiAggDVr1hAbG8vevXuJj4/PM/ZHUY/bmTNn6NGjB4mJibRq1YoxY8YQGBjIkSNHeOuttxg0aBD169cnJiaG1atXk5iYyKOPPuoYyNHdgI533XUXe/bsoXfv3gwYMIB69eoVelwKM3HiRLZs2eL4XuPj43nmmWfIzMwkJCSEp59+mgEDBnDzzTfzn//8hzfeeIOcnBzefPPNQtP2VTki/6wZWo7QcgRgNZXRl/evm266SXxlVr8P5KU2qfLmE/N9lqZSpSEpKam8s3DFmDVrlgAyc+ZMR9iNN94oxhg5fPhwnripqakCiL+/v1y6dKlI24mLixNA2rVrJzExMS6vr776yqt0EhISBJCYmBiXZePGjRNAxo0bJ7m5uY7wQ4cOSY0aNSQwMFCSk5Nd0gJk/vyinbfGjBkjgEyaNClP+L59+yQwMNBtHlNSUiQ7O9slrcWLFwsgL7zwQp5w+zEDZO3atXmWzZkzRwDp2bOnV/mNjo4WQD744AO3y++44w4BZP369V6l5wsxMTECyKJFi4q1vrf/x8BeuQKut1fry5fliJLSc7vFft5wlpyc7AiPjY3Ns2zjxo0CSO/evd2mFRkZ6RLu6VwcHh4u4eHhbvNl/59PSEhwhKWlpUmtWrUkNDRUvv322zzxv/nmG6latarccMMNecJHjhwpgISFhcnRo0cd4VlZWXLzzTcLILt27XKEX758WSIiIgSQd9991yVfqampedJo1qyZBAUFyZYtW/LE+/HHH6VRo0bSoEEDycjIcLuPzm688UYJDAyUEydOuCz75Zdf8nyOjIwUQFq0aCFpaWmO8EuXLkmnTp0EkGXLljnCi3Pc7r77bgHkgQcekJycnDzLzp8/L2fPnnV8th9j52umu/y2bdvWZV9E3H/Xdvbf4siRI/OE27cZHh4ux44dc4SfOXNGQkNDpUqVKlKnTp08/+cZGRnSunVrj8cKhYZiAAAgAElEQVTZHV+UI1JPH5LvTybJv1Yt0XKEjZYjRFtElCc/f6spTlbmtTV6rLq6zP5dzfLOglcm/ui+6WlRiAiLFy/Gz8+PESNGOMJHjRrFl19+yeLFi3nhhRcc4cePHwcgNDSU4ODgYm0zMTGRxMREl/CIiAjat29frDTBGkn5nXfeoVq1asyaNSvPU6MWLVowYcIEZsyYwbJly3juuefyrNu+fXu3LSU8yczMZPny5dSsWZNnn302z7J27doxYsQItyM4h4eHu01vzJgxPPHEE3z88cc89dRTLst79uzJnXfemSds/PjxvP7662zevJmjR496TNvO3lS5Zk33v297+NmzZwtMR6mK6lo6txckPDzc5bwVFRVF48aN2b17d6lu251ly5Zx9uxZR1N8Z23atGHs2LHMmTOHpKQkl+XPPfccjRs3dnz29/dn9OjRbN++nd27d9OxY0cA1q5dS0pKCv369WPYsGEueQgLC3P8vW7dOo4cOcLEiRMdTfjtGjVqxKRJk3jsscfYtGmTV60i/P39CQgIcAmvU6eO2/hTpkzJ0+UxODiYWbNm0aNHD9566y3uvfdeoOjH7eTJk7z33ns0bNiQ2bNnu7RodPcU3RvTp0/3uC/FNWXKFH73u985PteqVYt+/foRFxfHk08+SevWrR3LgoKCGDJkCLGxsezfv79ELTKKUo4Y9fDQPOtqOULLEaBdM8pVpYBccoFsrYhQqkLYvHkzR44cISoqKs9Ff9iwYUycOJElS5Ywffp0RyHKqhSmRNPCjRw5kiVLlpQo3+4cOHCA9PR0unTpQkhIiMvynj17MmPGDL766iuXZfbCqrcOHjzIpUuXHH1s8+vatavbAkRWVhYLFizg3//+N0lJSZw7d47c3N+ad/74449ut5e/MAxQqVIlunbtypEjR/jqq68KLUAUpijf7Zw5c1wKGgMGDChRRZJSqmy0b9+eSpVcR/gPCwtj586dZZ4f+zYTExPdDmR86NAhAPbv3+9yw92hQweX+PZKBef+8p9//jkAvXv39jo/R48edZsfe5/6/fv3F1oRMXz4cJ588knatGnDkCFDiIyMpEuXLtStW9fjOu7O9zfffDP+/v55rl9FPW579uwhNzeXbt26UbVq1QLzXRRFvX56w933ah9Y8qabbnJZZi+/HDt2rETbLUo5YqTk7bqq5QgtR4BWRJSrSgFiq4go75woVXyl/TTqSmIf7yH/gFGhoaH07duXDz/8kDVr1hAdHQ38VhA4deoUGRkZxW4VURrsNfWeBjCyh7urqW/QoEGxtlW/fn23yz2FDxkyhFWrVtG0aVP69+9PgwYNHONozJkzh8uXL7tdz1N69nx7GpjNmf1Jhae49hlOPD3pcDZnzhyOHj2aJ6ykLVqUKm3X0rm9IO76+YP15N75hqasnD59Gvht0GRPLl686BLmbl/8/a1bgZycHEeY/bzvXOFeWH5WrFhR5Pzk98QTT1CnTh3mzZvHa6+9xpw5cxyDJf797393e8Pt7nxfqVIlQkNDOXnypEs+vT1uRTkGRVHU66c33F2H7N9rQcuysko2a19RyhFC3oeuWo7QcgRoRUS5qhRoyAJysnTyEqWudL/88gurV68G4O677+buu+92G2/hwoWOioiwsDAaN25Mamoq27Zt8ziYUnmwX/h+/tn9bIP2biXuLpBFbeFRo0YNAMcI4/m5C9+7dy+rVq3i1ltvZf369Xma6ubm5jpGnPY2PfhtX7256NsHorI/JcvP/pSvZcuWhablzUjgSqlrk5+fn8cZHtxVBNvPX4mJifzxj38slTzZKyw8PS12lx/n6QlLYsSIEYwYMYKzZ8/y2WefsWrVKt566y2ioqLcdiU4ceJEnu4mYFWqnD592nHtcc6nt8etKMegKDxdP+1dP7KzXQewv1Kb7helHGF/+m+n5QgtR4BO31muAoKsf8LcbP0alLrSLV26lMzMTG666Sbuu+8+t6+6devy6aefkpyc7Fhv3LhxAMyYMaPQp2eeauZLQ6tWrahSpQr79u1zO4VVQkICgNuR14vquuuuo3Llynz99ddcuHDBZfl///tfl7DvvvsOgH79+rn0F969ezeXLl3yuL2tW7e6hOXk5Di2c8MNNxSa5549ewLWKOv5ff/99xw6dIjw8HCaNm1aaFpKKeVJ7dq1OXHihNun03v37nUJ69SpEwDbt28vtTzZt7Fhwwav4/o6P7Vq1aJPnz4sWrSIUaNGkZaW5nYb7s7327dvJzs7O8+5vqj57NixI35+fmzbto1ff/210Pj27jvOLUuKwj7OxQ8/5J+l2P3v4ErgbTnCm2tuYbQccXXSO+By5KiIyHHte6iUurLY+x7OmzePxYsXu31ZU1RJnn6Kjz/+OO3atWP79u2Opzz5Xbx4kWnTpjF79uwy25/AwECGDx/OxYsXXQajPHLkCK+99hoBAQGOgb5Kuq0hQ4Zw7tw5ZszIO4NiYmIiy5Ytc1nHPuVd/jnVT548ycMPP1zg9jZv3sxHH32UJ2zu3LkcOXKEHj16eNWvMzIyktatW7Nt2zbi4+Md4bm5uY6BrR544IESjf+hlFIdO3YkOzubuLi4POFLlixhx44dLvFHjx5NrVq1mDp1qtvBMnNzc13Om0XVt29fIiIiiI+PZ/ny5S7LnVsJ9O/fn2bNmvHGG2+wfv16t+nt3LmT9PT0Qre7ceNGty0C7F0sqlSp4rJs+vTpeW6CMzIymDx5MmAdK7uiHre6desydOhQjh8/zsSJE10eJFy8eDFPk/vQ0FAAUlNTC91Pd+xjJsTFxeU5Bj/88APTpk0rVpqlzdtyxPB7hvtkW1qOuPpo14xyFBhsHX7J1ooIpa5kW7Zs4eDBg7Rt27bAAZbuu+8+nn/+eeLi4pg6dSr+/v5UqVKFjRs3Eh0dzbvvvsvatWu57bbbaN68Obm5uXz33Xds2rSJ8+fPM3fu3DLcK3jhhRfYvn07c+fOZc+ePfTo0cMx//eFCxeYO3cuTZo08dm2Nm/ezEsvvcSuXbvo3Lkzx48f5/3336dPnz6sXr06z6jkf/rTn+jSpQsrV66kc+fOdO3alRMnTrBhwwZatWrlGH/Dnb59+zJw4EAGDhxI8+bNSUxMZP369YSEhDBv3jyv8lupUiXi4uLo2bMn0dHRREdH07hxYzZt2sTevXvp0qULjz/+eImPS2FeeOEFDhw4AMC+ffsAq6BqfyrTtWtX/vKXv5R6PpRSpeORRx4hLi6OBx98kE2bNhEWFkZiYiKfffYZd955p8vNUGhoKB988AEDBw6kU6dO3HLLLbRp0wY/Pz9SU1PZuXMnp0+fJiMjo9h5CgwMZMWKFfTq1Ythw4axYMECOnXqREZGBvv372fTpk2Om+WAgABWrlxJVFQUd9xxB507d6Z9+/ZUqVKFH374gT179vD9999z/PhxtxUJzoYOHUpwcDBdu3YlIiICEWH79u3s2bOHm266iVtvvdVlndatW9OmTRuio6MJCAhgzZo1HDlyhDvuuCNPRXpxjtvcuXP55ptvmD9/Plu2bCEqKorAwECSk5P5+OOPiY+Pp3v37gDccsst/P3vf2fs2LFER0dTrVo1atWqxfjx47065v/3f/9Ht27d2LZtGx07dqRnz56cOHGCtWvXEhUV5balxJXAm3JEREQEP6Qd9sm2tBxRdFd0OcKbOT71VTrzfy+ftlZeapMqU/u+47M0lSoN1/pc88OGDRNAXn311ULj3nbbbQLIypUr84Tn5OTI+++/LwMHDpTf/e53EhQUJJUrV5ZWrVrJfffdJzt27MgT3z6Xdf55w4uqoPm/Raz5xidNmiTNmzeXwMBAqVmzptx6663y8ccfFzmtwhw7dkxGjBghderUkeDgYGnXrp0sWbJEVqxYIYC88soreeKfPn1aHnzwQQkPD5egoCBp2rSpTJ48WX799VcJDw+X8PDwPPHtxywuLk7Wrl0rnTp1kipVqkjNmjVl0KBBcvDgwSLn+dtvv5Xo6GgJDQ2VwMBAadGihTz33HOSnp5erGNQVPa55z29ivL78PX83/oq/3JESV3r53Y7+/+Ts+Tk5AL/x+z/m+7SioyMdAkv6Py5fft2ufnmm6Vy5cpSvXp16dOnjyQmJkpMTIwAkpCQ4LJOcnKyPPzww9K8eXMJCgqS6tWrS6tWreSee+6RVatW5Yk7cuRIASQ5OblI+Tp69Kg8+OCDEhERIQEBARISEiIdO3aUGTNmuMQ9ceKEPPXUU9KmTRupXLmyVK1aVZo3by533XWXvP3225KVleWyTn5vvvmmDBgwQJo0aSKVK1eW2rVrS/v27eXFF1+U8+fP54lrP/4ZGRnyzDPPSEREhAQGBkqTJk0kNjZWMjIy3G6jKMdNROTixYsyY8YMadu2rVSuXFmqVasmrVu3lkcffVROnDiRJ+4//vEPue666yQwMFCAPNcoT78XZ2fOnJG//OUvUrduXQkMDJQ2bdrIggULPP4WC/peC/rtOF8rvVHSckRWdqZ8fzJJvj+ZJP9atUTLEVqOcLyMFVd5q0OHDuKrvlqrZ3/C4SWtSQ//jJh1QwpfQalysn///jzzUCvlS8888wwzZ85k48aNREVFFTudJUuWMHr0aOLi4lxmNlHe/x8bY74QEdfh6ZVP+LIcUVJ6blcVVffu3dm6dSt6H3Ply8rJ5FjaEcfn0GoNqFG5tk+3oeWIsuHrcoSOEVGOgqtb08eQE1BwRKWUugr89NNPLmH/+9//eO211wgJCXE7b7dSSimlKjCXyqLiVx5pOeLqomNElKPKVStbf+RqRYRS6urXoUMHmjdvzh/+8AeqVq3K4cOHWbduHbm5ucyfP5/g4ODyzqJSSimlfMi1GqL4FRFajri6aEVEOapSw6qIMDmB5ZwTpZQqfffffz+rV69m+fLlXLhwgVq1ahEVFcXEiRMdA34ppZRS6mqSt+KhJL1ptBxxddExIorIl307v92azPqH/blU9zDPJfT0SZpKlQbtR6xUxadjRFwZdIwIpdS15HJ2Bj+dSXZ8rl21LrWq1CnHHKni0jEiriJVqttbRASVc06UUkoppZRSysckf4sIfQiuLFoRUY6CqlgVEEYHq1RKKaWUUkpdZXw5RoS6umhFRDkKrmZVRPhl6xgRSimllFJKqauNtohQ7mlFRDkKrGK1hDA5geRkZ5dzbpRSSimllFKqNGlFhLJoRUQ5CgyqBIBfdgA5WZnlnBullFJKKaWU8p38LSC0a4ay04qIcuTnb6w/xI+srIzyzYxSSimllFJKlSLtmaHstCKiHPlZDSIwuZXI1hYRSimllFJKqauIawsIrYlQFq2IKEfGXhEhlcjKvFy+mVFKKaWUUkqpUqUVEcqiFRHlyBiDmBwAMjO0IkIppZRSSil1Fck/RoTWQygbrYgoZ+KnFRFKqdJ1+PBhBg4cSIMGDTDGUKtWrfLOklJKXZXOnz/PhAkTiIiIwN/fH2MM+/btY8uWLRhjiI2NLe8sKlVkJSlHuNY7aE2EslTIighjTJgx5gNjzDljzHljzEpjTGMv121sjFlqjEk1xqQbYw4ZY2YYY6qWdr7dZ8iqiMi6nFUum1dKFc/zzz+PMQZjDAcPHiw0fm5uLh988AF33XUXYWFhBAcHU7VqVVq3bs24cePYsWNHnvhLlixxpO/p5Y2cnBwGDBjA+vXrufPOO4mJieHpp58u1j5fi5KSkhg8eDD16tUjODiYVq1aERMTw6VLl0p924cPH+bFF1+kZ8+ehIWFERgYSP369enfvz8JCQmlvn2lrhVFOacWZtKkSbz++uu0bduWyZMnExMTQ4MGDXyStrpyjRo1CmMMKSkp5Z0Vnyt5OSL/rBnXFi1HeOZf3hkoKmNMFWAzcBkYifV7ngEkGGP+KCK/FrBuVeBTIACYAqQCfwKmAi2AIaWbe1f2FhFZGTpYpVIVhYjwz3/+0+peJcKiRYuYPXu2x/g///wz0dHR7Nixg+rVq3PbbbfRrFkzRITDhw+zfPlyFi1axGuvvcYjjzySZ9127doxYMCAYuc1OTmZpKQkxo4dy8KFC4udzrVo165d9OzZk6ysLKKjowkLC2Pz5s1MmzaNTZs2sWnTJoKCgkpt+1OmTOG9997j+uuvp0+fPoSEhHDw4EHi4+OJj4/n1VdfZcKECaW2faVU0X300Ue0bNmStWvX5gk/cOBAOeVIqZIpaTnCPn2nvcx0LVVFaDmiYBWuIgIYCzQFWonIdwDGmK+Bw8D9wMsFrNsFq8IhSkQ+sYUlGGNCgInGmCoikl56WXfDXhGRqS0ilKooPvnkE5KTkxk1ahQbNmxg6dKlzJw5k8DAQJe46enp3H777SQmJjJ06FDmzZtH7dq188Q5f/48s2fP5vz58y7rt2/fvkRNeX/66ScAGjVqVOw0rkU5OTmMHj2a9PR01qxZQ79+/QCrZcvgwYP58MMPeeWVV0q1dcntt9/OU089xQ033JAnfOvWrdx222389a9/5c9//jMNGzYstTwopYrmp59+olu3buWdDaV8xlflCINBkGtmjAgtRxSuInbN6Ad8bq+EABCRZGAH0L+Qde13CflL+2exjoVv2uUVgZhcQLtmKFWRLFq0CICxY8cyfPhwTp06xapVq9zGfeWVV0hMTKRLly68++67LpUQADVq1GDatGlMnDjRp/k0xhAZGQnA1KlTHc2PnSs2zp07x+TJk2nVqhXBwcHUrl2bqKgoPv30U5f0nPs47969mzvuuIOQkBCvm6MeP36c0aNHU69ePSpXrkz79u1ZunSpx77TX3zxBY8++ijt2rUjJCSE4OBgWrRowZNPPsmZM2dc0rd3Z1myZAnr1q2jc+fOVK1aldq1axMdHc3hw4e9PnZbt25l//79dOvWzVF4APDz8+Oll14CYP78+Y4nPaVh1KhRLoUHgMjISLp3705mZiafffZZqW1fqWtZSkoKxhhGjRpFSkoKQ4cOpU6dOgQHB9OhQwc++uijPPG7d+/ueOK7detWx/m2e/fuBW4nIiKCiIgIt8tiY2MxxrBlyxaXZQcOHGDUqFGEhYURFBRE/fr1GTZsmNuugs7dBhYsWEDbtm0JDg6mfv36jBs3jnPnzrnd/rFjx5gwYQItWrQgODiYkJAQOnbsyPTp093GHT9+PE2bNiUoKIjQ0FD69evHnj17Ctz//OLj47nlllto2LAhQUFBNGrUiMjISObNm5cnnv14X758mWeffZYmTZoQFBREs2bNmDp1KpmZ7lsaF+W4gfUw4cUXX6RDhw5Ur16datWq0bp1ayZMmMCJEycA61q7dOlSAJo0aeL47p2/V3t+MzMzmTZtGq1atSIoKIhRo0YBBX/Xzr9FZ/bvNTk5mblz53L99dcTHBxMREQEM2fOdFyfVqxYQceOHalatSr16tVj/PjxZGRkFPZVOPatpOUIcUrr8x27aVirsZYjtBwBVMwWEW2ANW7CvwX+XMi6n2K1nHjRGPMgVteMjsCjwPyCunWUGluLiOwsrYhQqiI4ceIE8fHxtGzZks6dO1OjRg1efvllFi5cyJAhrr277M0Yp0yZgp9fwXW/vm6eFxMTQ0pKCkuXLnVcdADH+9mzZ+nSpQtJSUn86U9/4rHHHuPUqVO8//779OrVizfffJP777/fJd2dO3cya9YsunbtypgxYzh16pTb1iDOTp48SefOnUlJSaFbt2507tyZn3/+mYceeohevXq5XWfRokWsWrWKyMhIbr31VnJycvjyyy95+eWX2bBhA7t27aJ69eou661cuZINGzYwcOBAunfvzr59+/jwww9JSEjgs88+o1WrVoUeu82bNwPW04T8mjZtSsuWLTl06BDff/89zZo1KzQ9XwsICADA378iXsaVqjiOHj1Kx44dadq0Kffeey9paWm899579O/fn08//ZQePXoAVoG/e/fuTJ06lfDwcMdNo6dKhpLYuHEjgwYNIisri759+9K8eXOOHTvGypUrWbduHQkJCdx4440u602aNImPP/6Yvn370qtXLxISEli0aBHfffed45xnt3fvXqKiokhLS6Nbt24MGjSI9PR0kpKSiI2NZcqUKY64X375Jb169SItLY2oqCgGDRrEqVOnWL16NV27dmXVqlX06dOn0P1auHAh999/Pw0aNKBv377UqVOHkydP8vXXXxMXF8dDDz3kss7gwYPZs2cP0dHRBAQEsGbNGmJjY9m7dy/x8fF5xv4o6nE7c+YMPXr0IDExkVatWjFmzBgCAwM5cuQIb731FoMGDaJ+/frExMSwevVqEhMTefTRRx0DObob0PGuu+5iz5499O7dmwEDBlCvXr1Cj0thJk6cyJYtWxzfa3x8PM888wyZmZmEhITw9NNPM2DAAG6++Wb+85//8MYbb5CTk8Obb75ZaNq+KEcMG2mVjZy/Cy1HaDkCsPrtVKQXkAm84CZ8BpDtxfr1gO1YFXT21yLAz5vt33TTTeJLz//fXnmpTaps//Ajn6arlC8lJSWVdxauGLNmzRJAZs6c6Qi78cYbxRgjhw8fzhM3NTVVAPH395dLly4VaTtxcXECSLt27SQmJsbl9dVXX3mVTkJCggASExPjsmzcuHECyLhx4yQ3N9cRfujQIalRo4YEBgZKcnKyS1qAzJ8/v0j7M2bMGAFk0qRJecL37dsngYGBbvOYkpIi2dnZLmktXrxYAHnhhRfyhNuPGSBr167Ns2zOnDkCSM+ePb3Kb3R0tADywQcfuF1+xx13CCDr16/3Kj1fSklJkaCgIKlSpYqkpaV5vZ63/8fAXrkCrvdX68vX5YiS0HO7xX7ecJacnOwIj42NzbNs48aNAkjv3r3dphUZGekS7ulcHB4eLuHh4W7zFRMTI4AkJCQ4wtLS0qRWrVoSGhoq3377bZ7433zzjVStWlVuuOGGPOEjR44UQMLCwuTo0aOO8KysLLn55psFkF27djnCL1++LBEREQLIu+++65Kv1NTUPGk0a9ZMgoKCZMuWLXni/fjjj9KoUSNp0KCBZGRkuN1HZzfeeKMEBgbKiRMnXJb98ssveT5HRkYKIC1atMhzHrx06ZJ06tRJAFm2bJkjvDjH7e677xZAHnjgAcnJycmz7Pz583L27FnHZ/sxdr5mustv27ZtXfZFxP13bWf/LY4cOTJPuH2b4eHhcuzYMUf4mTNnJDQ0VKpUqSJ16tTJ83+ekZEhrVu39nic3SlpOeJ/+/fJ9yeTJPX0YfnXqiVajrDRcoRUyBYR4H6Uk0K7VRhjgoH3sCoj7uW3FhHPAdnAgx7WGweMA2jc2KvJObxnmzUjU1tEqApq5D//r7yz4JWl9+0qcRoiwuLFi/Hz82PEiBGO8FGjRvHll1+yePFiXnjhBUf48ePHAQgNDSU4OLhY20xMTCQxMdElPCIigvbt2xcrTYCsrCzeeecdqlWrxqxZs/I8qWjRogUTJkxgxowZLFu2jOeeey7Puu3bt3fbUsKTzMxMli9fTs2aNXn22WfzLGvXrh0jRoxg8eLFLuuFh4e7TW/MmDE88cQTfPzxxzz11FMuy3v27Mmdd96ZJ2z8+PG8/vrrbN68maNHj3pM287eVLlmzZpul9vDz549W2A6vnb58mWGDx/O5cuXeemll9x29VHKF66lc3tBwsPDXc5bUVFRNG7cmN27d5fqtt1ZtmwZZ8+edTTFd9amTRvGjh3LnDlzSEpKcln+3HPP5SnH+vv7M3r0aLZv387u3bvp2LEjAGvXriUlJYV+/foxbNgwlzyEhYU5/l63bh1Hjhxh4sSJjib8do0aNWLSpEk89thjbNq0yatWEf7+/o4ntc7q1KnjNv6UKVPynAeDg4OZNWsWPXr04K233uLee+8Fin7cTp48yXvvvUfDhg2ZPXu2S4tGd0/RvTF9+nSP+1JcU6ZM4Xe/+53jc61atejXrx9xcXE8+eSTtG7d2rEsKCiIIUOGEBsby/79+0vUIsPbcsTyd//NXyaMyLNcyxFajoCK2TXjDBDiJry2bVlB7gO6A81F5IgtbJsx5hyw0BgzX0RcSvwishBYCNChQwffduSxdc3Iycz2abJKKd/bvHkzR44cISoqKs9Ff9iwYUycOJElS5Ywffp0RyHKqhTO2xyxqEaOHMmSJUtKlG93Dhw4QHp6Ol26dCEkxPWU2rNnT2bMmMFXX33lssxeWPXWwYMHuXTpkqOPbX5du3Z1W4DIyspiwYIF/Pvf/yYpKYlz586Rm5vrWP7jjz+63V7+wjBApUqV6Nq1K0eOHOGrr74qtABRmKJ8t3PmzHEpaAwYMKDIFUk5OTnce++97NixgyFDhvh8TBGllKv27dtTqVIll/CwsDB27txZ5vmxbzMxMdHtQMaHDh0CYP/+/S433B06dHCJb69UcO4v//nnnwPQu3dvr/Nz9OhRt/mx96nfv39/oRURw4cP58knn6RNmzYMGTKEyMhIunTpQt26dT2u4+58f/PNN+Pv75/n+lXU47Znzx5yc3Pp1q0bVatWLTDfRVHU66c33H2v9oElb7rpJpdl9vLLsWPHSrRdb8sRXyd+DYBxGppQyxFajoCKWRHxLdY4EfldDyQVsm5b4IxTJYSdvUq7NeD66LE0+Vn/DNlZOWW6WaV8pbSfRl1J7OM95B8wKjQ0lL59+/Lhhx+yZs0aoqOjgd8KAqdOnSIjI6PYrSJKg72m3tNIyfZwdzX1DRo0KNa26tev73a5p/AhQ4awatUqmjZtSv/+/WnQoIFjHI05c+Zw+fLlIqVnz7engdmc2Z9UeIprn+HE05MOZ3PmzOHo0aN5woraoiUnJ4d77rmHFStWMHjwYN55550SVXApVZhr6dxeEHf9/MF6cu98Q1NWTp8+Dfw2aLInFy9edAlzty/2/uE5Ob+VQ+3nfecK98Lys2LFiiLnJ78nnniCOnXqMG/ePF577TXmzJnjGCzx77jZcrEAACAASURBVH//u9sbbnfn+0qVKhEaGsrJkydd8untcSvKMSiKol4/veHuOmT/XgtallXC1thelyPOWddL52uWliO0HAEVsyIiHphtjGkqIt8DGGMisKbmLGz+k5+B2saY5uI06wZgb3/ovlqsNNm6ZuRklf3FTCnlvV9++YXVq1cDcPfdd3P33Xe7jbdw4UJHRURYWBiNGzcmNTWVbdu2eRxMqTzYL3w///yz2+X2biXuLpBFvXDVqFEDwDHCeH7uwvfu3cuqVau49dZbWb9+fZ6murm5uY4Rp71ND37bV28u+vaBqOxPyfKzP+Vr2bJloWl5MxJ4QbKzsxk2bBgrVqxg2LBhLFu2zO0TWqVUxePn5+dxhgd3FcH281diYiJ//OMfSyVP9goLT0+L3eXHeXrCkhgxYgQjRozg7NmzfPbZZ6xatYq33nqLqKgot10JTpw44dJtOicnh9OnTzuuPc759Pa4FeUYFIWn66e960d2tmsL6bJuuu8tb8sRNWpYLRic913LEVqOgIo5feciIAVYY4zpb4zphzWLxg/AAnskY0y4MSbbGOPcuXkJcAFYb4wZaYzpYYz5KzAb+AJrCtCy5WgRoV0zlLqSLV26lMzMTG666Sbuu+8+t6+6devy6aefkpyc7Fhv3LhxAMyYMaPQp2eeauZLQ6tWrahSpQr79u1zO4VVQkICgNuR14vquuuuo3Llynz99ddcuHDBZfl///tfl7DvvrPqivv16+fSX3j37t1cunTJ4/a2bt3qEpaTk+PYjruprPLr2bMnYI2ynt/333/PoUOHCA8Pp2nTpoWmVRKZmZlER0ezYsUKRowYwdtvv31FFB6UUr5Ru3ZtTpw44fbp9N69e13COnXqBMD27dtLLU/2bWzYsMHruL7OT61atejTpw+LFi1i1KhRpKWlud2Gu/P99u3byc7OznOuL2o+O3bsiJ+fH9u2bePXXwufVM9+XnZuWVIU9n76P/zwg8syd7+DK4G35Yh27a2KH1P4cH4eaTmi+K7kckSFq4gQa4rNnsAh4G3gXSAZ6Ckizu2+DFAJp30UkRSgE7APa5aN9cBYrPEfbhORsm+WYKxN5mRriwilrmT2vofz5s1j8eLFbl/333+/Y0BLu8cff5x27dqxfft2x1Oe/C5evMi0adOYPXt2me1PYGAgw4cP5+LFiy6DUR45coTXXnuNgIAAx0BfJd3WkCFDOHfuHDNmzMizLDExkWXLlrmsY5/yLv+c6idPnuThhx8ucHubN2/mo48+yhM2d+5cjhw5Qo8ePbzq1xkZGUnr1q3Ztm0b8fHxjvDc3FzHwFYPPPBAqTZrvHz5MgMHDmTNmjXcd999xMXFFToFrFKqYunYsSPZ2dnExcXlCV+yZAk7drg+Hxs9ejS1atVi6tSpbgfLzM3NdTlvFlXfvn2JiIggPj6e5cuXuyx3biXQv39/mjVrxhtvvMH69evdprdz507S09ML3e7GjRvdtgiwd7GoUqWKy7Lp06fnuQnOyMhg8uTJgHWs7Ip63OrWrcvQoUM5fvw4EydOdHmQcPHixTxN7kNDQwFITU0tdD/dsY+ZEBcXl+cY/PDDD0ybNq1YaZY2b8sRQ+7+M1Cy8bK0HFE8V3o5oiJ2zUBEUoG7ComTgpuZNEQkCRhcOjkrBkeLCK2IUOpKtWXLFg4ePEjbtm0LHGDpvvvu4/nnnycuLo6pU6fi7+9PlSpV2LhxI9HR0bz77rv8f/bOPEyK6tzD7+ltZlgUBnC9wKAYREIgkRAuoCCiE0ERkBvXKGpQiVuiXBLiAijuRo0hKmoEXK6KCgiuUUDFHaNMVFARBxDFQdZhlp7evvtHVfX0Uj0LszPfy9NP06e+Oud09XT1qV99y9KlSznhhBPo2bMnsViMr7/+mmXLllFcXMzs2bMb8V3BrbfeysqVK5k9ezarVq3iuOOOi9f/3rNnD7Nnz6ZHjx71Ntby5cu5/fbb+eCDDxg8eDBbtmxhwYIFjBo1isWLFyf9OP7yl79kyJAhLFy4kMGDBzN06FCKiop4+eWX6dWrVzz/hhunnHIK48aNY9y4cfTs2ZOCggJeeuklcnNzue+++2o0X6/Xy9y5cxkxYgQTJkxgwoQJdOvWjWXLlvHRRx8xZMgQ/vjHP9b5uFTFJZdcwksvvUTnzp059NBDXRejw4cPj9dzbwqMMROAM4EBWBWpNgELgZtFZI9tk4d1w8CNjiISV+fs6lY3AucAHbBuHPxJRN5KGdcD/Am4GDgI+BK4QUSec5njJOBqoAeWR+XdIvKAi91YYDpWvqgiLA/MW0QkmmI3FLgd+DmwG/g/4BoRyXx7TVEycPnllzN37lwmT57MsmXL6Nq1KwUFBbz77rucfPLJaRdDnTp14tlnn2XcuHEMGjSI448/nj59+uDxeNi0aRPvvfce27dvJxgM7vWcAoEAzzzzDCeeeCJnnXUWc+bMYdCgQQSDQdauXcuyZcviF8t+v5+FCxeSn5/P6NGjGTx4MP3796dNmzZ8++23rFq1im+++YYtW7a4CgmJnHHGGWRnZzN06FDy8vIQEVauXMmqVas4+uijGTlyZNo+vXv3pk+fPkyYMAG/38/zzz/P+vXrGT16dJKQvjfHbfbs2Xz22Wc88MADvPHGG+Tn5xMIBCgsLOTVV19lyZIl8fPv8ccfzx133MGkSZOYMGEC7dq1o0OHDlx22WU1Oua/+tWvOPbYY3nrrbcYOHAgI0aMoKioiKVLl5Kfn+/qKdEcqMk6onteN3aWbquTR4Qzlq4jakezX0fUpManPhqu/vdNI1+V2/tskiduerhe+1WU+qS115o/66yzBJC//e1v1dqecMIJAsjChQuT2qPRqCxYsEDGjRsnhx56qGRlZUlOTo706tVLLrzwQnnnnXeS7J1a1ql1w2tLVfW/Rax641OnTpWePXtKIBCQ/fffX0aOHCmvvvpqrfuqjs2bN8u5554rnTt3luzsbOnXr5/MmzdPnnnmGQHk7rvvTrLfvn27TJ48Wbp37y5ZWVly2GGHybRp06S0tFS6d+8u3bt3T7J3jtncuXNl6dKlMmjQIGnTpo3sv//+Mn78ePnyyy9rPefPP/9cJkyYIJ06dZJAICBHHHGEXH/99VJWVrZXx6A2OHXnq3rU5rOo7/rflinvAwuAs4FhwB+AXXa7x7bJs+d7M5ZXYuLDm9LfE/b+k4DjsUSNcqB/it1NQAUwBTgOKzQzBoxKsZtkt99k282yX09OscsHolgekscBVwFB4LYUu5/Z81lsz+93WBW7nq7pMavvdURdaO3ndgfn+5RIYWFhledg5/vp1tewYcPS2qs6f65cuVKOOeYYycnJkfbt28uoUaOkoKBApk+fLoCsWLEibZ/CwkK59NJLpWfPnpKVlSXt27eXXr16yTnnnCOLFi1Ksj3vvPMEkMLCwlrNa+PGjTJ58mTJy8sTv98vubm5MnDgQJk1a1aabVFRkfzpT3+SPn36SE5OjrRt21Z69uwpp512mjz22GMSDofT9knl/vvvl7Fjx0qPHj0kJydHOnbsKP3795fbbrtNiouLk2yd4x8MBuWaa66RvLw8CQQC0qNHD5kxY4YEg0HXMWpz3ERESkpKZNasWdK3b1/JycmRdu3aSe/eveXKK6+UoqKiJNu//vWvcuSRR0ogEBAg6Tcq099LIjt37pTf/e530qVLFwkEAtKnTx+ZM2dOxr/Fqj7Xqv52En8ra0Jd1xE7SrbKN1vXSFHxZvm/RfN0HaHriMrf1JoY6aMBhYgTX5Lb+2yS+Tc8WK/9Kkp9ootVpSH5y1/+IoC88sordeqntour1kYDCRFdXNrOtRc4I+zXjhDxu2r66mfbnZ/Q5sPydliS0HaALULMTNl/GfCflH23AvNT7B4BtgH+hLZPgDdT7K4HQsBBCW2LgHUp+zrv9xc1OWYqRChK3anJhb3SPNheUiTfbF0jW4u/l2+2rpFN29fV+xi6jmgc6nsd0XyCRForxqohG9McEYqi7ON8//33aW2ffvop9957L7m5ua51u5XmjYj86NK8yn6ubd27MUAYeDqh/wjwFJBvjMmym/OBAPB4yv6PA32NMU480X8DXVzsHgM6AUMBjDFdgf4Z7PzASbadH/g1sEBEEjMLLsASLE6txXtVFEVpVTi5EKzr1L1D1xH7Fi0yR8S+hLFzRGj5TkVR9nUGDBhAz549+elPf0rbtm1Zt24dL774IrFYjAceeIDs7OymnqJSPzgrwbUp7bcYYx4ASoE3sfIqfJqwvQ9QKCKpWe0+xxIeetr/74PlEfG1ix3AUVg5KfrYrz+rwm5FJjsRKTTGlNl2AIcD2S52QWPM+gQ7RVEUJY4lPFTmiNh7IULXEfsWKkQ0MY4QUU1VP0VRlBbPxRdfzOLFi3nyySfZs2cPHTp0ID8/nylTpjRpwkWl/jDGHArcALwuIk7NuQqsHA7/An4EjgT+ArxrjBkoIo5gkYuVbyGVHQnbneddkn5bzc0Olz5raue01cRuR8J2RVEUxcY5U8c9IurQl64j9i1UiGhqPNbXMRquy9dSURSl+TN9+nSmT5/eYP1PnDiRiRMnNlj/StUYY9oBzwMRIF43T0S2AJckmK40xryC5ZlwDVaFDLAqXbn9GKamWq+NHRlsa2pn9sIufaMxFwEXAXTr1q2a6SiKUh11LVGqNCb15xGh64h9C80R0cSoR4SiKIrS0rHLbi4BDgPyRWRzVfYi8i3wNvDLhOZMXgUdE7Y7zx1NevF1Nztc+sytoR1YJURrYtcxYXsaIvKgiAwQkQFdunTJZKYoirLP4cgO8VO23ntVbFSIaGKMx0lWqd9KRVEUpeVhJ3F8DhiIVT7z02p2ie9K8pL0c6CHMaZNit1RWMkgv06wy8LK2ZBqB7AmwQ4qc0DUys4Ykwe0SbBbjxVmkmqXjSXArEFRFEVJIdkjQlSJUGxUiGhijNcWItQjQlEURWlhGGM8wBPA8cCpIvJ+DffrBgwBPkhoXoJVpeJ/Eux8wOnAv0Skwm5+BUuYODul23OAz0Sk0H79HlaZTje7HcA7ACKyCSjIYBcGXrbtQvbYv7Hn5TABSxhZUt37VhRFaXWk5IhQlwjFQXNENDHGY+mC6hGhKIqitED+gSUc3ASUGmMGJWzbLCKbjTF/xbrx8R5WsspewDQgBtzsGIvIamPM08A9tpdFITAZ6EGCSCAiW40xdwPTjDF7gI+xxIoRJJTQFJGwMeY64D5jzHfA67bNBcDltrDg8BfgBWPMHOBJ4OfAtcDfROSHBLsZ9vtYYIz5B5AH3AE8KyL/ru3BUxRF2ddxPCAs3boyeaWiqBDRxDhChMSqzHOlKIqiKM2Rk+zna+xHIjOxLtw/xxIUJgLtsbwUlgMzReTLlH3OxxI1ZmHlZygAfi0iH6fYXQOUAFcCBwFfAr8RkaWJRiLygDFGgKuB/wU2AZeJyH0pdi8ZYyYA0+15FmGJJDel2K02xuQDtwEvAruBR7GEDEVRFKUGiAjpaX6U1oYKEU2M8VrPGpqhKIqitDREJK8GNo8Aj9Swv3LgKvtRlV0US6yYVYM+52CVD63ObiGwsAZ2bwH/XZ2doiiKkuARgcEYxyNCqKbYkNIK0BwRTYyTI0Ki+mVUFEVRFEVRFGUfIikUw6Q3Ka0WFSKaGI/9CYh6RCiKoiiKoiiKsg9RmSPCEPeC0EQRCipENDkeOzgmpjkiFEVRFEVRFEXZp3BEBys0I7FFad2oENHEGMcjQkMzFEVpINatW8e4ceM46KCDMMbQoUOHpp6SoijKPklxcTFXXHEFeXl5+Hw+jDGsXr2aN954A2MMM2bMaOopKkqtqdM6wiU0Q6UIBVSIaHIcjwgRFSIUpSVx0003YYzBGMOXX6Ym/k8nFovx7LPPctppp9G1a1eys7Np27YtvXv35qKLLuKdd95Jsp83b168/0yPmhCNRhk7diwvvfQSJ598MtOnT+fPf/7zXr3n1sY///lPLr74Yn71q1/Rpk0bjDFce+21jTb+6tWrmTFjBkOGDOHggw8mEAhw6KGHcuaZZ/Lxx6lFJBRF2Vtqc06tjqlTp/L3v/+dvn37Mm3aNKZPn85BBx1UL30rzZeJEydijGHDhg1NPZV6p67riMTQjLgM0Up0CF1HVI1WzWhiPHbVDImqJqQoLQUR4Z///CfGGESEhx56iDvvvDOj/Q8//MCECRN45513aN++PSeccAKHH344IsK6det48skneeihh7j33nu5/PLLk/bt168fY8eO3eu5FhYWsmbNGiZNmsSDDz641/20Rq6++mp2795Nx44dOeSQQ1i/fn2jjn/JJZfwwQcfcPTRRzN+/HjatWvH6tWreeqpp3j22WdZsGAB48aNa9Q5KYpSNS+88AI/+clPWLo0qZIsX3zxRRPNSFHqRv2uI1qXR4SuI6pGhYgmxuO1BAj1iFCUlsO//vUvCgsLmThxIi+//DLz58/n5ptvJhAIpNmWlZXx61//moKCAs444wzuu+8+OnbsmGRTXFzMnXfeSXFxcdr+/fv3r5Mr7/fffw/AIYccstd9tFaeeuopevfuTffu3Zk3bx7nn39+o45/9tln8/jjj9OzZ8+k9ieeeIJzzjmHSZMmMXr0aNe/O0VRmobvv/+eY489tqmnoSj1Rl3XEcnlO01S276OriOqRm/DNzFen/2FjOlHoSgthYceegiASZMmcfbZZ7Nt2zYWLVrkanv33XdTUFDAkCFDeOKJJ9JECID99tuPG264gSlTptTrPI0xDBs2DICZM2fG3Y8ThY3du3czbdo0evXqRXZ2Nh07diQ/P5/XX389rb/EGOcPP/yQ0aNHk5ubW2N31C1btnD++edzwAEHkJOTQ//+/Zk/f37G2Ol///vfXHnllfTr14/c3Fyys7M54ogjuPrqq9m5c2da/044y7x583jxxRcZPHgwbdu2pWPHjkyYMIF169bV6vj9+te/pnv37rXapz65/PLL0xYPYC0sjjjiCLZv386nn37aBDNTlH2fDRs2YIxh4sSJbNiwgTPOOIPOnTuTnZ3NgAEDeOGFF5Lshw8fHveSe/PNN+Pn2+HDh1c5Tl5eHnl5ea7bZsyYgTGGN954I23bF198wcSJE+natStZWVkceOCBnHXWWa6hgolhA3PmzKFv375kZ2dz4IEHctFFF7F7927X8Tdv3swVV1zBEUccQXZ2Nrm5uQwcOJAbb7zR1fayyy7jsMMOIysri06dOjFmzBhWrVpV5ftPZcmSJRx//PEcfPDBZGVlccghhzBs2DDuu+++JDvneFdUVHDttdfSo0cPsrKyOPzww5k5cyahUMi1/9ocN7BuJtx2220MGDCA9u3b065dO3r37s0VV1xBUVERYP3Wzp8/H4AePXrEP/vEz9WZbygU4oYbbqBXr15kZWUxceJEoOrPOvFvMRHncy0sLGT27NkcddRRZGdnk5eXx80334zY8Q/PPPMMAwcOpG3bthxwwAFcdtllBIPB6j6K+Hur8zoiQXN47+0POOyAo7hh5o26jmgEmvs6Qj0imhiP1/aEUCFCUVoERUVFLFmyhJ/85CcMHjyY/fbbj7vuuosHH3yQ008/Pc3ecWO87rrr8Hiq/p5nZWXV61ynT5/Ohg0bmD9/PsOGDYsviJ3nXbt2MWTIENasWcMvf/lL/vCHP7Bt2zYWLFjAiSeeyP3338/FF1+c1u97773HLbfcwtChQ7ngggvYtm1btWr61q1bGTx4MBs2bODYY49l8ODB/PDDD/z+97/nxBNPdN3noYceYtGiRQwbNoyRI0cSjUb5+OOPueuuu3j55Zf54IMPaN++fdp+Cxcu5OWXX2bcuHEMHz6c1atX89xzz7FixQreffddevXqVbsD2Qzx+/0A+Hz6M64oDcnGjRsZOHAghx12GL/97W/ZsWMHTz/9NKeeeiqvv/46xx13HGBdFA4fPpyZM2fSvXv3+EVjJpGhLrzyyiuMHz+ecDjMKaecQs+ePdm8eTMLFy7kxRdfZMWKFfziF79I22/q1Km8+uqrnHLKKZx44omsWLGChx56iK+//prly5cn2X700Ufk5+ezY8cOjj32WMaPH09ZWRlr1qxhxowZXHfddXHbjz/+mBNPPJEdO3aQn5/P+PHj2bZtG4sXL2bo0KEsWrSIUaNGVfu+HnzwQS6++GIOOuggTjnlFDp37szWrVv5z3/+w9y5c/n973+fts9vfvMbVq1axYQJE/D7/Tz//PPMmDGDjz76iCVLliTl/qjtcdu5cyfHHXccBQUF9OrViwsuuIBAIMD69et55JFHGD9+PAceeCDTp09n8eLFFBQUcOWVV8YTOboldDzttNNYtWoVJ510EmPHjuWAAw6o9rhUx5QpU3jjjTfin+uSJUu45pprCIVC5Obm8uc//5mxY8dyzDHH8Nprr/GPf/yDaDTK/fffX23f9bGOOOX0fCA5R8QH77/P7bfdruuIJqRZrCNERB+1eBx99NFSn8y/dqHc3meT3HDKvHrtV1HqkzVr1jT1FJoNt9xyiwBy8803x9t+8YtfiDFG1q1bl2S7adMmAcTn80l5eXmtxpk7d64A0q9fP5k+fXra45NPPqlRPytWrBBApk+fnrbtoosuEkAuuugiicVi8favvvpK9ttvPwkEAlJYWJjWFyAPPPBArd7PBRdcIIBMnTo1qX316tUSCARc57hhwwaJRCJpfT388MMCyK233prU7hwzQJYuXZq07Z577hFARowYUat5p/Z9zTXX7NX+9cn7778vgBx66KGuxycTNf0eAx9JM/i93Vcf9b2OqAt6brdwzhuJFBYWxttnzJiRtO2VV14RQE466STXvoYNG5bWnulc3L17d+nevbvrvKZPny6ArFixIt62Y8cO6dChg3Tq1Ek+//zzJPvPPvtM2rZtKz//+c+T2s877zwBpGvXrrJx48Z4ezgclmOOOUYA+eCDD+LtFRUVkpeXJ4A88cQTafPatGlTUh+HH364ZGVlyRtvvJFk991338khhxwiBx10kASDQdf3mMgvfvELCQQCUlRUlLbtxx9/THo9bNgwAeSII46QHTt2xNvLy8tl0KBBAsijjz4ab9+b43bmmWcKIJdccolEo9GkbcXFxbJr1674a+cYJ/5mus23b9++ae9FxP2zdnD+Fs8777ykdmfM7t27y+bNm+PtO3fulE6dOkmbNm2kc+fOSd/zYDAovXv3znic3ajrOuL9gpXyzdY1Uh4qlQVLHtd1hK4j4g+9ldLEeHxOQd3G9YgQEaISxefRPwGlbtzx02+bego14n8/61rnPkSEhx9+GI/Hw7nnnhtvnzhxIh9//DEPP/wwt956a7x9y5YtAHTq1Ins7Oy9GrOgoICCgoK09ry8PPr3779XfQKEw2Eef/xx2rVrxy233JJ01+iII47giiuuYNasWTz66KNcf/31Sfv279/f1VMiE6FQiCeffJL9998/LVt0v379OPfcc3n44YfT9svkznjBBRdw1VVX8eqrr/KnP/0pbfuIESM4+eSTk9ouu+wy/v73v7N8+XI2btzYpK6SdWHnzp389re/BeCuu+7C6/U28YyUfZXWdG6viu7du6edt/Lz8+nWrRsffvhhg47txqOPPsquXbvirviJ9OnTh0mTJnHPPfewZs2atO3XX3893bp1i7/2+Xycf/75rFy5kg8//JCBAwcCsHTpUjZs2MCYMWM466yz0ubQtWvlMX/xxRdZv349U6ZMibvwOxxyyCFMnTqVP/zhDyxbtqxGXhE+ny9+pzaRzp07u9pfd911SSGP2dnZ3HLLLRx33HE88sgj8fNlbY/b1q1befrppzn44IO588470zwa3e6i14Qbb7wx43vZW6677joOPfTQ+OsOHTowZswY5s6dy9VXX03v3r3j27Kysjj99NOZMWMGa9eurZNHRk3XEc8+9Ry//+NFWIkqLZt+/frpOqKJaE7rCL0KbWK8PvvE1shCxL2vT+WbbWu4fcKzZPlzGnVsRWmpLF++nPXr15Ofn5/0o3/WWWcxZcoU5s2bx4033hhfRFmiMHUqC3feeecxb968Os3bjS+++IKysjKGDBlCbm5u2vYRI0Ywa9YsPvnkk7RtzmK1pnz55ZeUl5fHY2xTGTp0qOsCIhwOM2fOHJ566inWrFnD7t27icVi8e3fffed63ipi2EAr9fL0KFDWb9+PZ988kmjLiDcko1OnDix1i7bpaWljBkzhnXr1jF16lR+85vf1M8EFUXJSP/+/V0X6l27duW9995r9Pk4YxYUFLieW7766isA1q5dm3bBPWDAgDR7R1RIjJd///33ATjppJNqPJ+NGze6zseJqV+7dm21QsTZZ5/N1VdfTZ8+fTj99NMZNmwYQ4YMoUuXLhn3cTvfH3PMMfh8vqTfr9oet1WrVhGLxTj22GNp27ZtlfOuDbX9/awJbp+rk1jy6KOPTtvmrF82b95cp3Fruo749D9rgMp6GQADfpk+56rQdcSMtLZ9YR2hQkQT4/VZP26NmaxSRPh401sAbNqxjiMO/Fmjja3sezT03ajmhJPvITVhVKdOnTjllFN47rnneP7555kwYQJQuRDYtm0bwWBwr70iGgInOdnBBx/sut1p37VrV9q2gw46aK/GOvDAA123Z2o//fTTWbRoEYcddhinnnoqBx10UDyPxj333ENFRUWt+nPmnSkxW0Mxc+bMtLbhw4fXagFRWlrK6NGjefvtt7nqqqu47bbb6nGGipJOazq3V4VbnD9Yd+4TL2gai+3btwOVSZMzUVJSktbm9l6c+PBoNBpvc877iYJ7dfN55plnaj2fVK666io6d+7Mfffdx7333ss999wTT5Z4xx13uF5wu53vvV4vnTp1YuvWrWnzrOlxq80xqA21/f2sCfvvv39am/O5VrUtHA7XadyariOKnd9cY6wHcOCB0ymEYwAAIABJREFUtfPE0HXEvrmOUCGiifH6HY+IxnOL2VW2Lf5/j0fdehWlJvz4448sXrwYgDPPPJMzzzzT1e7BBx+MCxFdu3alW7dubNq0ibfeeitjMqWmwFmc/PDDD67bnbASt0VMbT089ttvP4B4hvFU3No/+ugjFi1axMiRI3nppZeSXHVjsRi33357xvEyjeO8V7f31JA4njF7y549exg9ejQrV65k6tSpzWLxoChK/eDxeDJWeHATgp3zV0FBAT/7WcPcSHIEi0x3i93m8/zzzzNmzJg6j33uuedy7rnnsmvXLt59910WLVrEI488Qn5+vmsoQVFRUVK4CViiyvbt2+O/PYnzrOlxq80xqA2Zfj+d0I9IJJK2ze3voDlQ03VE+/0sDwYrMMN6/7qOqB376jqixZZqMMZ0NcY8a4zZbYwpNsYsNMZ0q37P+P69jTHPGGO2GWPKjTFfGmOubMg5u+FzhIhY4wkCRcWVcZ+hcHmjjasoLZn58+cTCoU4+uijufDCC10fXbp04fXXX6ewsDC+30UXXQTArFmzqr17lkmZbwh69epFmzZtWL16tWsJqxUrVgC4Zl6vLUceeSQ5OTn85z//Yc+ePWnb33777bS2r7/+GoAxY8akxQt/+OGHlJdnPne9+eabaW3RaDQ+zs9//vNazb8p2b17NyeeeCIrV67kmmuuaTaLB0VR6oeOHTtSVFTkenf6o48+SmsbNGgQACtXrmywOTljvPzyyzW2re/5dOjQgVGjRvHQQw8xceJEduzY4TqG2/l+5cqVRCKRpHN9bec5cOBAPB4Pb731FqWlpdXaO+E7iZ4ltcHJc/Htt+m5Wdz+DpoDNV1H9P1ZH7tl78NUdR2x9zTndUSLFCKMMW2A5cCRwHnAb4EjgBXGmGoDuYwxA4APgCzgd8Ao4K9Ao7sHeAK2U0oj5ogoKq6MCauI1KyOsKK0dpzYw/vuu4+HH37Y9XHxxRfHE1o6/PGPf6Rfv36sXLkyfpcnlZKSEm644QbuvPPORns/gUCAs88+m5KSkrRklOvXr+fee+/F7/fHExrVdazTTz+d3bt3M2vWrKRtBQUFPProo2n7OO6GqTXVt27dyqWXXlrleMuXL+eFF15Iaps9ezbr16/nuOOOazEJpnbu3MnIkSN5//33mTlzZtqxUxSl5TNw4EAikQhz585Nap83bx7vvPNOmv35559Phw4dmDlzpmuyzFgslnberC2nnHIKeXl5LFmyhCeffDJte6KXwKmnnsrhhx/OP/7xD1566SXX/t577z3KysqqHfeVV15x9QhwQizatGmTtu3GG29MuggOBoNMmzYNsI6VQ22PW5cuXTjjjDPYsmULU6ZMSbuRUFJSkuSe36lTJwA2bdpU7ft0w8kdMXfu3KRj8O2333LDDTfsVZ8NTU3XEeN+cyqQmKoShNrd4dd1xN7R3NcRLTU0YxJwGNBLRL4GMMb8B1gHXAzclWlHY4wHmA8sE5FxCZtWNNx0M+Pz29pHowoRlWqrChGKUj1vvPEGX375JX379q0y0dSFF17ITTfdxNy5c5k5cyY+n482bdrwyiuvMGHCBJ544gmWLl3KCSecQM+ePYnFYnz99dcsW7aM4uJiZs+e3YjvCm699VZWrlzJ7NmzWbVqFccdd1y8/veePXuYPXs2PXr0qLexli9fzu23384HH3zA4MGD2bJlCwsWLGDUqFEsXrw4KSv5L3/5S4YMGcLChQsZPHgwQ4cOpaioiJdffplevXrF82+4ccoppzBu3DjGjRtHz549KSgo4KWXXiI3N5f77ruvxnN++OGH43c/nDsrS5cujSf4OvLII/nzn/+8N4ejRowfP56PPvqIww8/nFgs5pqsauzYsXWqnqIoStNy+eWXM3fuXCZPnsyyZcvo2rUrBQUFvPvuu5x88slpF0OdOnXi2WefZdy4cQwaNIjjjz+ePn364PF42LRpE++99x7bt28nGNz79V0gEOCZZ57hxBNP5KyzzmLOnDkMGjSIYDDI2rVrWbZsWfxi2e/3s3DhQvLz8xk9ejSDBw+mf//+tGnThm+//ZZVq1bxzTffsGXLFlchIZEzzjiD7Oxshg4dSl5eHiLCypUrWbVqFUcffTQjR45M26d379706dOHCRMm4Pf7ef7551m/fj2jR49OEtL35rjNnj2bzz77jAceeIA33niD/Px8AoEAhYWFvPrqqyxZsoThw4cDcPzxx3PHHXcwadIkJkyYQLt27ejQoQOXXXZZjY75r371K4499ljeeustBg4cyIgRIygqKmLp0qXk5+e7eko0B2qyjujWvSuRaDieH6IuY+k6onY0+3VETWp8NrcHsAx4x6X9TeDNavYdgVUf9pi9Gbu+63+/9thbcnufTTLz+CX12m9V3Pv6VDn34YFy7sMD5c0vG29cpeXS2mvNn3XWWQLI3/72t2ptTzjhBAFk4cKFSe3RaFQWLFgg48aNk0MPPVSysrIkJydHevXqJRdeeKG88847SfZOvenUuuG1par63yJWvfGpU6dKz549JRAIyP777y8jR46UV199tdZ9VcfmzZvl3HPPlc6dO0t2drb069dP5s2bJ88884wAcvfddyfZb9++XSZPnizdu3eXrKwsOeyww2TatGlSWloq3bt3l+7duyfZO8ds7ty5snTpUhk0aJC0adNG9t9/fxk/frx8+eWXtZqvU6M902PYsGF7dRxqSvfu3asc33mvNaW+63/rY+8e9b2OqAut/dzu4HyfEiksLKzyHDxs2LC0fZy+3M4NVZ0/V65cKcccc4zk5ORI+/btZdSoUVJQUCDTp08XQFasWJG2T2FhoVx66aXSs2dPycrKkvbt20uvXr3knHPOkUWLFiXZOueywsLCWs1r48aNMnnyZMnLyxO/3y+5ubkycOBAmTVrVpptUVGR/OlPf5I+ffpITk6OtG3bVnr27CmnnXaaPPbYYxIOh9P2SeX++++XsWPHSo8ePSQnJ0c6duwo/fv3l9tuu02Ki4uTbJ3jHwwG5ZprrpG8vDwJBALSo0cPmTFjhgSDQdcxanPcRERKSkpk1qxZ0rdvX8nJyZF27dpJ79695corr5SioqIk27/+9a9y5JFHSiAQECDpNyrT30siO3fulN/97nfSpUsXCQQC0qdPH5kzZ07Gv8WqPteq/nYSfytrQl3XEZu2fyXfbF0j4UhInlv6lADyl2un1WjsVHQdUTua+zrCWLYtC2PMD8DzInJxSvt9wP+ISMY6P8aY64GZwInAjcDRwE7gKeBPIlJl0oQBAwZIfcZqrXj6XT66sSvlB37K9cuqr69cH9yw5ELW//gZAOf89xROOOp/GmVcpeWydu3apDrUilKfXHPNNdx888288sor5Ofn73U/8+bN4/zzz2fu3LlplU2Umn+PjTH/FpHa1VZTakx9ryPqgp7blZbK8OHDefPNN2mJ1zGtjU3b1xGNReia25NtJVsoD5Vy4P5daRNoV29j6DqicajvdUSLzBEB5GKJB6nsADpWs6/jh/M08C/gBOB2rFwR/1dfE6wpfr8VHWMaMVllOFqZnVmTVSqK0lh8//33aW2ffvop9957L7m5ua51uxVFURRFack4YlFCloi9FJB0HbFv0VJzRACuWU5qEnzkiC+Pi4iTWeUNY4wXuNUYc5SIrEnq1JiLgIuAtBJBdcUbT1bZeEJEJFYpRFREVIhQFKVxGDBgAD179uSnP/0pbdu2Zd26dbz44ovEYjEeeOABsrOzm3qKiqIoiqLUI3EZwlSmidhbPxZdR+xbtFQhYieWV0QqHXH3lEhku/38Wkr7v4Bbgf5AkhAhIg8CD4LlUlnbyVaFL2CXk2lEISIcrSwRpckqFUVpLC6++GIWL17Mk08+yZ49e+jQoQP5+flMmTIlnvBLURRFUZR9CRePiL2UInQdsW/RUoWIz4E+Lu1HkSIiZNgX0r8BzjcjRiPiz7IEiMYMzYhE1SNCUZTGZ/r06UyfPr3B+p84caLGdCqKorQC6lqiVGlE7CuuussQuo7Y12ipOSKWAIOMMYc5DcaYPGCIva0qXgYqgF+ntDuZTRo1g5Q/y/GIaLyPIhJTjwhFURRFURRFURoWiSsRdc8RoexbtFQh4iFgA/C8MeZUY8wY4HngW2COY2SM6W6MidiVMgAQke3ALcAlxpibjTEjjTF/Bq4H5ovI1435Rnz+xg/NiCSEZoTUI0JRFEVRFEVRlIamJtn8lFZDiwzNEJFSY8wI4G7gMaw/62XAH0SkJMHUAF7SBZcbgD3A74EpwBbgDqxyno2KP9sPxBo3NCPRIyKsHhGKoiiKoiiKotQ/jkeEsf8ltimtmxYpRACIyCbgtGpsNuCivYlVdPgu+9Gk+Pw+IIQRLyKCMQ0rFYpIUvlOzRGh1JTG+PtUFKVhEHWDVTKg53ZFURoKEdn7hBBKs6Ih1hEtNTRjnyGeIyLmRWINnyczGoskvdYcEUpN8Hq9hMPh6g0VRWmWhMNhvN7G87xTWgZ6blcUpVEwYEyCR4SK4y2OhlhHqBDRxPh81kdgxEssEqnGuu4kekOAekQoNaN9+/YUFxc39TQURdlLiouLad++fVNPQ2lm6LldUZSGJDEsw/6P0kJpiHWEChFNjNdvK0sxL7FowwsRifkhACrCKkQo1ZObm8vOnTvZtm0boVBIlWxFaQGICKFQiG3btrFz505yc3ObekpKM0PP7YqiNChpp5S6FvBUGpOGXke02BwR+wo+W4gw4kGi0QYfz6mY4fP4icTCGpqh1IisrCy6devGjh072LBhA9FG+FtVFKXueL1e2rdvT7du3cjKymrq6SjNDD23K4rSkIjE2F5ahMFD+Y9CSUUxwXApOwOl5ASKmnp6Sg1oyHWEChFNjN9nCxGxxgnNcDwi2mbtx+7y7YRUiFBqSFZWFgcffDAHH3xwU09FURRFqSf03K4oSkNRUrGb2x6/gDaB9tz/29f5v/fv4dXPn+SMgVdwUu+zm3p6ShOjoRlNjDdga0HiJdYIdyKcHBE5gbYY4yESC6clsFQURVEURVEURakLMTsRv8dYl5xej9duV+8rRYWIJieerDLqJRoOVWNddyK2EOHzBMjyZQOoV4SiKIqiKIqiKPVKTCwhwhEgjC1IOO1K60aFiCbG/j5i8BAJNXwJrbAdmuH3+vF6LG+MiHpEKIqiKIqiKIpSj8TEusYwxhIiPPZzTNQjQlEhoskxxhDzWOJARUUjekR4/fg8frtNa4griqIoiqIoilJ/OKEZXkeI8KhHhFKJChHNAY/1ZYxWNLwg4Hg/+D2BSiEipkKEoiiKUnuMMROMMc8ZYzYaY8qNMV8aY24xxrRPsetojHnYGLPNGFNqjHndGNPXpb9sY8wdxpgtdn/vGWOOdbHzGGOmGWM2GGOCxpgCY8xpGeY4yRjzhTGmwp7fJRnsxhpjPrH722iMudY4t/GS7YYaY9615/eDMeYuY0xOzY+aoihK6yBqez44AoQjSEQ1R4SCChHNAjHWlzEcbgQhwvaIKNu6ldDOXQCarFJRFEXZW6YAUeAvwK+B+4HJwGvGDgY2xhhgib39cuA0wA+sMMb8V0p//wQmAdcDJwNbgFeNMf1T7G4EZgCzgZOA94FnjDGjEo2MMZOAOcBz9vjPAPcZYyan2OXbNqvs/v4GXAvcnGL3M+A1YKs9v2uB84F51RwnRVGUVodIcrJKDc1QEtHync0Bjy1ENIJHRNgOw9jx2eeEOgXggKwWnyNiXdF/eOfrl/mfAZNpm7VfU09HURSlNXGKiPyY8PpNY8wOYD4wHFgOjAGGAiNEZAWAMeY9oBCYClxht/UDzgIuEJG5dtubwOfADXY/GGMOwBJAbhWRO+1xVxhjegK3Ai/Zdj7gJuAxEbkmwe4Q4EZjzMMi4vzw3gq8LSIXJdi1A641xtwtIj/Y7TOBzcD/OPsaY0LAfGPMbSLy8V4fSUVRlH0MR3DwGJ/9bAkSoqEZCuoR0SwQY30ZMwkRX2z5mPfX/6texnI8IkxEMFEBINqCc0R8v6uQWS9MYsUXC/n3xjebejqKoiitihQRwmGV/Xyo/TwG+N4RIez9dgNLgVMT9hsDhIGnE+wiwFNAvjEmy27OBwLA4ynjPg70Ncb0sF//N9DFxe4xoBOWOIIxpivQP4OdH8tDAmOMH8urYkGCgAGwAAilvBdFUZRWjxOCEfeIcMp3qhChoEJE88DxiMhQNeOWlyZz/xvXsb3kB9fttcHJB2GilUJES84R8dqHj8X/X7xraxPORFEURbEZZj+vtZ/7AJ+52H0OdLM9Dxy7QhEpc7ELAD0T7CqAr13sAI5KsMNl7BrZiUghUJZgdziQ7WIXBNYn2CmKoihUCg5OjghHkNCwcAVUiGgWiJOsMlx1vFRx+c46jxV28YhoyULE918UxP//w5efNuFMFEVRFGPMoVhhFK+LyEd2cy7g9gO2w37uWEO73ITnXSIiNbDDpc+a2jltNbHbkbA9DWPMRcaYj4wxH/34o5sTiaIoyr5HLO4RkVq+Uz0iFBUimgfGUgUjoXR1MDF/QzhW9/KeTn+JHhEtOXNtKBKM/z9YUdqEM1EURWnd2J4NzwMRrASO8U1AqmjgtKe+rm87MtjW1M7shV0aIvKgiAwQkQFdunSpZjqKoij7BpU5IhwhQst3KpWoENEMcDwiwi5CRDBceXFdHiqp81jxHBH7SGhGKEGcqQiXN+FMFEVRWi/GmGysyhiHAfkisjlhcyZvAccTYmcN7XYkPHe0q3FUZ4dLn7k1tAPoUEO7jgnbFUVRFCoFB6+dG6IyR0TLvQmq1B8qRDQH7PKdbqEZ5aFKIaK0Yk+dh4rYiSk9EcHOkRlva4kkiigV0WAVloqiKEpDYCdxfA4YCIwSkdQ4uc+pzMOQyFHAJhEpSbDrYYxp42IXojInxOdAFlbOhlQ7gDUJdriMXSM7Y0we0CbBbj1WbopUu2wsAWYNiqIoSpy0ZJVOaEYL9sZW6g8VIpoDtkdExE2ISPCIKAvVXYhwwjtMVDARJzSj5QoRYan0IglFK5pwJoqiKK0PY4wHeAI4HjhVRN53MVsCHGqMGZaw337AKfa2RDs/8D8Jdj7gdOBfIuKc5F/BEibOThnnHOAzO8kkwHvAtgx2O4B3AERkE1CQwS4MvGzbheyxf2PPy2ECljCyBEVRFCWOaGiGUgW+6k2UBseumhEJpX8pgw3kEWEisYTQjJabuTZCpXgTqoccGoqiKEqt+AeWcHATUGqMGZSwbbMdorEESxR43Bjzv1ihGNOw8irc7hiLyGpjzNPAPbaXRSEwGehBgkggIluNMXcD04wxe4CPscSKESSU0BSRsDHmOuA+Y8x3wOu2zQXA5baw4PAX4AVjzBzgSeDnwLXA30QksWTVDPu9LDDG/APIA+4AnhWRf9f24CmKouzLVFbNUCFCSUeFiGaA2DES0aibR0RlFbPdu4rqPFbYJUdEfZTQWb3pbT745jXOHzqNgC+7zv3VlKiJ4uQIC4sKEYqiKI3MSfbzNfYjkZnADBGJGWNOBu4E7sMqgfkecJyIfJuyz/lYosYsrPwMBcCvReTjFLtrgBLgSuAg4EvgNyKyNNFIRB4wxghwNfC/wCbgMhG5L8XuJWPMBGA6MBEoAm6255Jot9oYkw/cBrwI7AYexRIyFEVRlASikhKa4eSIaME3QZX6Q4WI5oAjRITT1cHEBJXVCRG7NnzD+tdeodNPepE37HhXGycMI6l8Zz3kiLj7tasB6HlAX44/akKd+6spUU8MsE5qiWEaiqIoSsMjInk1tNuB5YlwQTV25cBV9qMquyiWWDGrBmPPAebUwG4hsLAGdm8B/12dnaIoSmsnlilHhHpEKKgQ0TywQzOikfQvZUlpZbny0oriKrt58bJJbPnEKtt+xZebCbRrn2YTdpJVNlDVjMbO0xD1VlZRixhNfKMoiqIoiqIozYF4+U6PdcmpoRlKIpqssjng5IhwEyL2bI//vzRYtRBRsrXSYyK4e7erTbx8Z0QwsfrJERGKVIoP2f7UZOcNh4gQ9Va+jnhUiFAURVEURVGU5kA8R0SaR4Su2RUVIpoHdtUMV4+Iksqy5OXhkrTtiRR1jbIl/wDEA5GgeynLsBOakegREalbboUdpZUCSChSdQnNmMTYXb69ShuH6gSSaEUF4qssIx/1SBXWiqIoiqIoiqI0Fo4Q4bUFCK9Hy3cqlagQ0Rywc0TEwukX0qVllZ4N5bGqL/LXj9qPbUNy2fWz/YiUl7naxKtmRAWvXX0sVOFuW1N+3PN9/P/BcNV9zXv7Vq74v1F8sSU171gyy9cu5KL5w1hX9J+MNhUle4j5K/+Eoz4VIhRFURRFURSlOeAkxHc8IoyGZigJqBDRDDCOR0Q0/UtZlhCOESKz54JI5UX4niPaES4vd7VzvB+8Hh8+O14rFKpa4KiO7SWVlc2qEyLe/Op5AF79/Kkq7ea/exvRWITH3rszo015yW7wJHhEJHhHKIqiKIqiKIrSdGj5TqUqWqwQYYzpaox51hiz2xhTbIxZaIzpthf9TDPGiDHm7YaYZ42whYhYJP2OfllFZThGyBvN+MWNVlTmaSjtnkMkWLUQ4fP64x4R4bC7EPHVD6uZ8fxErlt0TpUCw7aSLfH/l4dLM9olzbeGlTqkihNV2R4rkac3JBAV8BrC4cZNlqkoiqIoiqIoSjqVVTOc0Azr2kNzRCjQQoUIY0wbYDlwJHAe8FvgCGCFMaZtLfo5DKsW+daGmGeNiXtEpG8KJl7Ym0oXp1TC5WXWxTgQ2c9PaUK1jUQcAcDr9cc9IjJdvL/wn0cp3LaWTTvWsXnH+ozT356QI2Lb5m8y2iVS0wSZMckcblFWsgsAb8yD1w5rKcnwvhVFURRFURRFaTzSk1Vaz1HNEaHQQoUIYBJwGDBWRBaLyPPAGKA7cHEt+rkfeAJYW/9TrAV2jgiJpl90B6PJng2RDJ4E4bIySIhMSMwt4ba/zxeIq5KZhIjyUKUIUhHNHL5REa6cY2KVj6qoacnQKj0iSm0hQgweW9dwvCQag1gsypc/fFLnqiOKoiiKoiiKsq9RWb5TQzOUdFqqEDEGeF9EvnYaRKQQeAc4tSYdGGPOAn4BTGuQGdYCY1d7iLqEZoRiyXkhwhkqXATL9iTlS6jIkIAymiBE+LyWEBGJuAsRoQTxYeeWTZmmT0V5ZfhIxFuzE4tTRrQ6qjpRlZVaYotPvHhtYbV0z46M9vXNqg3LufnFS7j7X1c12piKoiiKoiiK0hJIDc1wnkVDMxRarhDRB/jMpf1z4KjqdjbGdATuBqaKSONduWaaj5MjwsUjIjUUIxR0z8FQXlac9Loi6F7q0+nP7/Pj8wSAzOJGKEGg2Pp1ZqeRRC+EqjwnEvsrryLnRGJJn5hk9jYIlu8BwIcPX8z6U3a8JBqDz79bBcBn332QVMJUURRFURRFUVo7aaEZTvlO9YhQaLlCRC7g5oO/A+hYg/3vAL4C5tVkMGPMRcaYj4wxH/344481nmSNsT0iYi7fyWiKYpjofZBImhCR0SPCurD3+rLwev1AZu+EiopK0SPqzZyroby0cuyKWOZkkWWhyrnvCWYWDMrClXalFXsyj+sIEcaHT6wTW2mpe0hKQ9A+p0P8/+9/81qjjasoiqIoiqIozR0nNMObEpqhOSIUaLlCBIDblXG19RuNMccA5wKTRarIhJg4kMiDIjJARAZ06dKlltOsHmNf5Mei6dOPYn1RTcRSKSqC7gJDqhARDGUQIhyPCH8W/mqEiMQ+yoOZBYFEwSIkmXM/lIUq+ygJ7kryfEiktKI46f+Z7IL2uH7jjwsRZRlyYzQEiZVESoKNN66iKIqiKIqiNHecG6qVoRmaI0KppKUKETuxvCJS6Yi7p0Qic4B/ApuNMR2MMR0AH+C1X2fV71SrxwnNcAuXihlLpPCErOdQBk+HYEooRijkXr7TESJ8gSy8Xis0I1MCzFC00rshmMETAyCSED4RNplDKRKFCEEoqXC/eC9JECIsu2JXO6fsqN/48WHlu8j0vhuCRCEiFMkckqIoiqIoiqIorQ2JpVbNcEIz1CNCablCxOdYeSJSOQpYU82+vYFLsAQL5zEEGGT/f3L9TbNmOMkq3W7826kP8NjlKUMZPCKcfAkO4UxChP3F9/sD+H2W5uImRIgIkQTvhlShI6lPKice8cYyqpyJoRkAxeXumlFZSjhGSYV7GIcjlPg8frz2iS0UbjxBIFGICIYbTwBRFEVRFEVRlOaOc91h8PDxPx9g21rrMk2FCAWwbyO3PJYAdxpjDhORbwCMMXlYgsKfq9n3OJe2ewAvcDnwtcv2BsURIiSWHpohthDhjUKYzB4RFSmhGBUZLsidL77Pn43f78RppXsxRGMRJGE6wSqSS0ZNcoRLRbiMnEC7NLvSFM+GPRkEhlRPieLyXRzSId3OESL8xk8YS4jIVIoULDewLbs2cHCHvLgyWxcSy5Zu+7bR/2wURVEURVEUpdniXHdsX/s5m65/As8RB8Nv9yfmlhhPaXW0VI+Ih4ANwPPGmFONMWOA54FvsUIvADDGdDfGRIwx1zttIvJG6gPYBey2X29u1HcC4OSIqEKI8EWt/4Qq3O+8ByuSq2mEM5TkjHtEBLIrPSJchIiKlFCDqkIeYsY+mcSs95GpIkaqR0Q4Q26KVMEi9XV8f7u0acAbiCfByVSKFOCfK2fxl4Vn8vHGtzLa1IbE97l1/Rf10qeiKIqiKIqi7As4XtKh3dZaPrhtm92uHhFKCxUiRKQUGIFV+eIx4AmgEBghIolXuwbL06FZv0+PPbvU76SIIF5LnKjMgeB+kZ8qFIQz5CxwTgj+QDZ+vyVERF1KZIajyRf0VeVAiNoeHb4y6w1k8p5IzBEBmZNkpuaESJ1LZbu1v98TwGes45OpFGlJcDdvr3sRgNWbVro9vuF5AAAgAElEQVTa1JbyYOU8vfu3rZc+FUVRFEVRFGVfwEk4H62w1+f2TUtNVqlAyw3NQEQ2AadVY7OBGlTSEJHh9TOrvcOpmpEamuGETJiI2BfaIcIh94vyYKg86dMMZbggj0kMDPj9OUQD9jguQkSaR0TMvT+ozGPhLY8SaefLKFqUVdTMIyK18kWmvA+OJ4fP68fnsSuAZPCIeO+bf8X/v3+bTq42taV0T2WOi7BRZVdRFEVRFEVRHBzBIVJSigeodKLWdbPSzD0FWgtOuoJUIcK5ADcxweupuipEKMULIZJBOIhhnQEC2dkE4h4R6SeDVDEhnKE/EUF81rw9FVbfmbwSysMp4SOZyoaWpoRm7N7haucINV5vIH58MvW5p7yyj4pqEkuKCNv2bKG66q4VscpjFCZz2dKS4G7+uXIW67d+VmV/iqIoiqIoirKv4KzVo0F7zSxOOLoKEYoKEc0CTwaPCCcxpYlKvCpEOIN3QCjFEyDTBbkjRPgDbfAHcgCIurhHhVLCISIuXhMAkZh1AW4iMUzEzhFR6l6W0wnFMLbykinkIl4qNGr1V7p7m6tdvBSpr9IjIpyhFGmih0eqIJLKvz5/iqsXjOXlz56o0i6UID5EqvCIWLJ6Lm99tZQbll5YZX+KoiiKoiiKsq/geETEKuzrhVhyu9K6USGiGWDfzEdiyR9HRZl1QW5i4HPu+GcUIpLb3RJQAsSwLu792dkEAtlAcvnNtP7sWK5MoQeOAGIigs9riQHBEvfkko5okeO38ilkFA2CllDgtT0syordy3xWChGB+NjRWPVCRHUeEf/3wT0APP3h3zPaRGMRoqbyJBrxZvae2FXuLqQoiqIoiqIoyr6K2IKDhOybkZojQklAhYhmgCdTaIbtEeGJGbxOMsYMOSJSPSAiLhfkIoLYpTb9gRz8WW2ASi+JpLHtC3evnYAy6hWi4fQ+HdHAEyWeMLK8xL0sZ8QWHtrYpT0zeW3E+6ywxg5lEA6c3BZ+bxY+byBpjEzvByAYqVqIqElpz7iwYXttRKsQItpnV9YeVVc0RVEURVEUpTUQTU1WaS+XNUeEAipENAuMnWMBSRYiKoJ2aIYkeERkSMboXNQHsJM2ung5xL/0USGQk0Mgyw7NcBEiKmzPC6cShvgMFXvSPR2CdhiGiREPH6nIkMcibIsj2XGPCPf34uTBcDwiQuFMpUit7T5/AL/PFiIyeEQkChF7dm11tUnouOrtQNAO7/CVRiBm5cnIJDIkiiM/lmyptm9FUZSGZNGiRVx55ZVcffXVvPbaaxntjDHnGWOWN+LUFEVRlH0I59ojVpHiEaE35hRacNWMfYlKj4hkXci5IPeIwet1QjMyCBF2MskcTw6hWJgo6aEZ8SocMcGblU1WliV8OF4SiQSDVliILyhUADG/h9CeYtrkJlecKC+zSnJ6o+DFC8QIhzJUubDFkpxAG/u1u2gQjgQhAJ6gk/wykxBhncR8viz83gBEMoekJAoRO77f6GrjIJEoBKrW6ILhSrEklhUjluWlrHwP7dp2SLMtTShH+sPujRy4339V2beiKEpDICKcfvrpPPfcc/FkvPfccw+jR4/m0UcfpUOHtPNXHjCskaepKIqi7CPEc0QE7bW8JLcrrZsqr7aMMVFjzHUpbT8zxpzbsNNqXWTKERGyPSI8YvB5nNAD93CGiC08OPkX3DwiHPcoExN8WVkE7NCMxFwHDuXllsDgd8r++g3RUPrYQVuI8IiJe0RkCqVwvBXa+KsOzXDEBG9F1UKEo7L6/QF8PqcCiLsQkZgjIuKr2uPBUWurImhXKfGEYnhCln1xBk+LRCFiy66qRZCWQEnF7oyfnaIozZe5c+fy7LPP8l//9V/cdNNN3H777Rx11FG88MILDB06lK1bq/EWUxRFUZRa4KzVo7YQoTkilESqC80w9iORccDchplO68TjhGakCBHhuEeEJ56MMVNpTEd4cC7yYx6IRZPFiPhFegy8/gCBbEuIkNRPGAhWWB4R/pDtNeH3EK1IFwScChfemCeeIyKzR4QdmhGoOjTDqdDhj9mVQjJc9DohJX5fFn5f5lKkAMFQZaWMaMDlDScgnsrtqdVIHCoShYiwNY+SDEJESYIQsb20qMqxmzulFcVc+viJ3LDkgqaeiqIotWTu3Ll06NCBVatWMW3aNKZMmcLq1au56qqrWLNmDSNHjmTbNk2uqyiKotQPsYSboFaD/STRuGee0nrRHBHNAK/XvtiX1NAMO2EkBp+dAyGaIZwhYns1tLE9IsTnIZaSXDLxZODNCsQ9IsRD2smgosK6cA9ELDEg5jeEg+kCQ4UjROCp9IjIcPFe06oZjpgQz3cRy1SK1A7N8Gfj91ctRJSXVYoBVZXarAiXIwlhGXuC7hU7nISXnpDEPSJKire72iZ6RGQSX1oKG7Z/CcCmHeua5Adk+dqFrPzqhUYfV1H2BT799FPGjx/PAQccEG/zer3ceeed3HPPPXz22WeMHDkSwNtkk1QURVH2GZx1ueN8bSAeniHqFdHq0RwRzQDjz+QRYd91x/aIiFbmgkglGhci2gMgfkM0HMKXnV1p4wgRUcHj8+PLybYSM3oN0Vgk7nUBELTH9osPTxRiXhPPG5FI0BYsvHjjCTUjGfJY1LRqhlNONMuTBUSJRKsuRRrIyibgt95nxCU3BpA096hXiMWieDzpa+0d2zYnvd5Vvp1O7Q5K7y/BI8KPjyBQUrzDdezSUKUQUV3p0OZOUtLP4E72y8lttLHLQiXMf/c2AIb0PMn181MUJTOhUIgDDzzQddsVV1yB1+vl8ssvB/iJMSY94Y2iKIqi1IJ4CEbCzSuDQRBiEsOjunerRj0imgGORwRpHhHWBb0Xb2XoQaaLco8tRAQsISLmNcTCybaVySrBGwjgy8rGOOUnU5I8VjhChPHhtcuKugkRTqlNL168Hid8pOrKHtVVzXCEiGyv5bERFnfPCafsqN+fnRCa4a6uhlIEnIoMJTyLNn+V9Hp3yY+udo6oYiKC387fUVqS7j0RiYbjogVAKOoettJS2FVW6bbd2BVAfiz+Lv7/PRXuJWIVRcnMoYceyqZNmzJuv/TSS7nrrrsA2gCvAvs30tQURVGUfRBJ8YgA8NiaRCYvZqX1oEJEM8Drsz6G1GSVYbuEpgdPPDQjU3nKqF35om227RHhszwikmykMjTD4/fjzcqKx2ylVptwEk76TQCvPS8nb0SSXYV1ke0zPvyeqvNYOGJH2UbL6yCjR4R9tsrx28k0MySgdDwi/P4s/IFsu81diAjbnhImZG0PZvBM2PrDhqTX27Z962rnfA4mKmT5rLHLynan2SXmhwCoyCDStBR2lVWGn2zb07hCxNY9ld4qifNQFKVm9O3blxUrVlRp84c//AHgO+CXwGWNMC1FURRlH8XxxiYxEbyTLkJLeLZ6ahKaMdYYk5fwuj+AMeaRDPYiIhfWcV6tCkeISPWICDseEcZXmQMhQ3nKmC0v5thhD65ChLNvTPD6/PizczJ7RNgiiN/jxythIBoXHZLsbM8Jn8ePz1hiSSaBwWn/7KGHYPwhGct3xmxRxfLuKIonr8xk58/KIWALEVGX/A8iEm/3lUYIBwIZPSJ27vgu6fWeYvfEbc578USELF8OUBoPZ0mktCJZnEgMbWiJ7C6vPB7bGtkjYmuCR8Susm107/STRh1fUVo6o0aNYvHixbz44ouMHj26KtMfgDnATOJLRkVRFEWpHU5ohkn4JTFawlOxqYkQ0d9+pDIxg70AKkTUAo8jRMSS46TC9kWr13irFyLstWJOlh2a4TPEQpmSVYInELA8IqKOR0SyrXOh7fdm4cWaR6gi/eLdSahpCRGWR0Q0U1lOW3jwOGU5M4VmOPkucvazXruUIgWI2XaBQA6BQI7dlr5mjsTCiAETieEtjxHuCOXh0jQ7sD0YEj6GshL3EADnWHiMh4DX+mzcxA0nUaXXeIlKtN6EiB2lRdzz2v9yUt+z+e/D8+ulz5qwu0k9IiqFiN3l6hGhKLVl/PjxRKNR2rZtW62tiNxojNkE5DX4xBRFUZR9krSqGVSGaWiySqU6IeL8RplFK8drV2kwkiJE2EkfvR4fficZY4Z4KrEvwHOyHY8ID9FIsrgQD82IWh4R3kBW/GSQKnBEbDHB5wvgcaphhFyEiHA5+MDv9eP3WBfk4QzhI47Y4Y0LERmqYdi6TLu2Ha25uYRbxCIRxM6t4Q9kEQhYYRwxl5t3zsW/CQseOzSjrHQ3dE4fOxwOJgkR5aXp4RZQmRvDZ/zxHBFuuTHKQlY4y/5tOrOjtIiKehIinnj/bjZu/5IH3ri+UYWIXQkCwLaS7xttXEgRIjQ0Q1FqTW5uLhdffHGN7UVkfgNOR1EURdnHiXs9xARvIEA0FIp7RGQKvVZaD1UKEboIaRx8AXePiEgkBF7wGW9ciMiU2MWJ6shJyBERC7mHZpiY4An48SV6RKSESThChN+fhde+Mg+H0i+iQ5EKW4jIwucNuPaV2qcn6AgRGUIzPAIY2rXLhYpKD4mkvkIViMcSIrweH4EsyyMi6kkXIpyLf084Fhci9uzOEHLhiAkxAY8hWJ6eFwMqy5v6vP54tRE3IcIRW9pnd2BHaVG1HhF7grtYsOofjOw9ge6de2W027j9q4zbGpLEZJW7y92rhDQUW4src0SoR4SiKIqiKErzJpaQrNLfpi3RUCghR4R6RLR2NFllM8CfZX8MUX9Su3Ph7vX64zkQYi5hCiKCXdiCNtlWOEPMZ4iG3UMziIHXH8B4PHGPiHBF8gWyUzLT78/C63hEhNMvop2Emn5vgIAdPuKW0yEmsbiI4ogBbqEZIhL3dGjfvhPgLkREKypwHEgsIcLyiBCX0IxQXIiQuDdGyR73C9mQLSZ4qwkfCduhGT6PH783c26MkL1/u6z9k+aSifnv3MZbXy3hzlevrNLuxz3fVbm9IRCRJAEg07FpKIoThI9EQeT/2XvveMmO+sz7Wyd1umnmThIaRSSESMaAjUk2i4MA7QL7OrLYLxiHdVrva+P1eg2yZXvN4nUAbGMbsA0GbEwSIAwWBiGiJRDKOY9Gk8MNfTueVO8fVXVSn74zg2aGkaaez2c+93Z3dZ2q0317+vec5/c8FhYWFhYWFhYWpx4ys0op8TtKtW3aNKxHhMURiQghxC8LIf6XEMJfZ0ygx/zi8V3e6QGvqYQpIi2fYpM+4RUK7bp4yjSOc0VEoHp/pTtpVhkXFRG+Opap28OK0aJpo/D9Jq5Q64ujmiv+unD3vVwRUedjkcddpjhRqo852eqRpVHEkpl51TuR1qgc0igCrYgonp/UXV8RIWL1+LSWi4z80aduWvtI5o3hBVl0aFwz1jy/01AEUXiE4v223dcB0B1NRoEamHYPgJZ/5F7v44VR1C+9tuFJTABJ06R07qwiwsLi0eOd73zncZlHCLFdCPEXQohrhRADIYSsmFybcXLKv2dWxjn6O8UOIcRICHGLEOKHpxz754QQdwshxkKIe4QQvzBl3KuEEDfp+R4WQrxJCDERYC+EeKEQ4t+FEEMhxD4hxJ8JIVo1454qhPg3IURPCHFYCPEeIcTGoz1nFhYWFqcDMrPKFALjT5R1a9jUjNMd6xIRQojnA38ONKSU9Tp6QEoZAj7wl0KI5x7fJT7+4TfXV0R4jr9uPGUShaBVBE3jleA7qlgvIC3Ed7qaiHCkel5VEWEKzobfxHO0IqLmar7xg/DdIPexqCMiCgSDIQPqFBZmzyJJ6SwoRURa8y6Nw3GmnHAdj0arM3Vs0SPCKEuGg7XJgUCUquMHsZpoWvuIIVF8Nyciopp9V4mIcTxCyukm9KNIEULO5PfjDLuXH8zHx8OTxihXSZTj5XdxNKgey8Z3Wlg8OrztbW/jl37pl47XdBcAPwYsA185wtj3As+r/Kv2mv0BcDnwl8DLgOuAjwghXl4cJIT4OVS6x8eAlwIfAf6qelFECHGJHnO9nu/twJuAN1fGPQP4HHAA+I96zE/rNRfHPQH4ItACfgT4ZeAHgH8RQlilqYWFhYWGLNQewYQiwhIRpzuOZFb5WqAH/MlRzPWnwK8Drwe+/ijXdVrBb6mis6qIiLXZpOv6uQdCTZtCGoaZX4KKkgRcQRyWC8fMIyJRrRmQExHVRAxjIOMHTVxHrSuOJq/4m3GeFxD4TRhBwjqKiETixPVJHZAX/iKWzGzQioiamjwZhzkRITyChtqPOQ9FZK0ZYUrQnAESxlO8H8yaAukDce0aIU808b2G2ncEcVqjiNDjuvfch+d4xKma07RzFDGO8tdgob1Ye1woKyKkTBlFA9o6tvVbxTDs8XtXvp6nb38er/meX6sdYxQQncYc/XH3pEaRmkQSgUAip6aeWFhYHBlvfvObueyyy/jpnz5uftRfllJuBRBC/CzwQ+uM3S2lvG7ag0KILcBvAG+RUprvHtcIIS4A3gJ8Ro/zgD8E3i+lfGNh3BOAPxBC/G3hAspbgK9KKX++MG4GeJMQ4q1Syn36/t8DdgE/ap4rhAiBfxBC/JGU8kY97n+gLr78Jynlih63B/gS8CrginX2b2FhYXHaIPO2S8HPFBHKC856RFgcibl/EXC1lLK+aitAStkHrtbPsTgGBFNaM+KC2mC9eMokikrqAMNVxGG9yoFCa4aDVkRU2iRMOkcQtPEctb46M8ascPcaOVlSc4XeFOkikblBZo2XhFFJiETSnteKiDoiomBW6bm5YkS6gjQuz1tszQj8lt5LfRFtVA0NtO/DFCGQaZvxfU1EUK8EMYqInddcgxyo36cV8I8s35/9Poom21by/ZQfMxGhjwb3H7idvasP8293/HOmyqgiqvG7WE/dcTxh1jTX2pAd28LC4thx2WWXcdlll/GKV7yCd7/73cdlTnl8M9guAQLgA5X7PwA8XQhxnr79PGBzzbj3A4vACwGEEGehIsjrxvkohQS6/fSlwIcrCtAPAyHwysJ9rwA+bUgIACnll4GdlXEWFhYWpzUM2SCkJJiZNXeqH1YRcdrjSETE2cB9xzDf/fo5FscAr6X9GpLyVXJDHHhekMVT1pkxJmGYeUQ4ws1VDmHVgFJ9t3JScFxV3Tv6idWxiTbFDBqtQipEnSIiydaYJXvUGGoWlQ6mNSMhmShkxyPFeTkJNNqzWXpF1XciicIS+WIUBrJGCWIKdyeSGVlStxe1H01EuCYutT5aKEsVKbSk1MUQGSLCiSUiTPR66ovo5f6B7PdBuFbrtQFMEAW9cb3fxbGgaDx5++5v1I4xioiG18J3AyRyqofG8YY5Z7PNnIg4WSSIhcXjBW94wxt485vfzAtf+EL++Z//GSEmFWQnAb+o/RwGQogvCCGqFy+eCoxR3yeKuEP/fEphHMDt38o4KeVDwKAw7olAs2bcCHjAjNN+EefVHNcc+yk191tYWFiclkgLioigrRQR5oKkNau0OBIR4ZKFrBwV0qOY06KCoiJCpvnpNmoDzwuyAjp15EQBlkZ5a4bneAhNRMQVBYMxmxTkXz4d/XLFFb8G40URNNp5LGcdEaHdcL2CaiOp87HQe3ESiQBEZFIpynOauEwnFXhBkH1YjUfl4jsZ5+SL63i4WrUhPUE8Ku+lqIhoaEJnGhFhiIeW19F7mUZE6NfG9bN9xzUEjCneRSxxIu2NMYWIqBIU05QORzsOVMvFn3/+f/L1Bz8/dQyUyYybd9a3eEcF8iXQRE2YnBxlwliTL02/g+f4J5UEsbB4POCv//qveetb38rTnvY0PvWpT9FoNL4dy/gA8EsoP4WfRykXviCEeHFhzEZgRU4yjUuFx4s/q86+RzvO3Hc045YKj28AxFGMs7CwsDjtUfSn82dmzJ3qR2oVEac7jkQaHERdJThaXADYXL1jhB8EpDqmoeiNaK6I+26A5+VX/KsmlHFYVgfk7RZlIiLSRIRTQ0RMKiIUUdBotHNFRE3hZxQRvt+gYZIranwsooJHRPFndc5QEw5G1eHoz6jRoHzVP6mYVQohppIW4aiv53Tw9XmMp6RXGA+OTkN9WNaRC5ATFr4bZORGvRJEKyKiQlrINCKi0o4xTekwrigi1iMiPnHT33HDw1/kr65549Qx6lj5HAd7e2rHGLPKwGsQaIPOk9UiMdKqlqbfIvBOLgliYfF4wIEDBxBCcNlllzE3N/dtWYOU8qeklB+SUn5FSvkBVPvEHuB/F4YJ6i+AVOUb5vaRLpasN06cwHHlB4T4eSHEN4UQ3zx48OC0YRYWFhaPK9SmZiRp6TGL0xdHIiKuB35QCDF/pIn0mB8E6nXdFlPhegHSVYV6PC4qInSx6zcyn4a6WM5kPM5SMxzHzdotqp4OxmzSPA7gCqOIKI/NFBGtTq6IqDFuTDk6IiJLw4glnS1bM8PKKhGRtWakZSKimnKRFAw6jRpC6LHhuGxkONZGnK7w8EzCxZQ0DEMmdJrqLV9nDgrlthmz7zoliGl5ELFEZIqIehJkVPF+WBut1I+bICymExH37r9l6mOlOUY56THVI0KvO3AbGRkwrkk+OREwJE2JiDiJ8aEWFo91PPe5z8V1XX7hF36BO++889u9HACklGvAp4HvKty9BGwQk30jGwqPF39WFQgbj3IcwMJRjttQeHwZRUIcaVwJUsp3SSmfI6V8zubNm+uGWFhYWDzuYJTTSInXbIEQuSLCekSc9jgSEfFBYA54x1HM9ZfArH6OxTHA8xtITxMRYU5EZP4LfiNTJUhHkIzLxbtROiDBEU5BEVHxiIjrWjNcPUelNUN7UTSanUxFkNQU76b49vwmQbNdem7p2GmuiGhtXMx8IuIqETFWRbBrFBG6th9VUi7iMCdfXB11acaGVUWEntMreElMS8MwxMNMe0Pp9sR+ioqIxlEoImKZKSLGU67kV00oe6NprRkmOrShx033iNi1/MDUx4ooqiqmERFGEeF7DRoZGXCSiAi95+69DyL7w5N6bAuLxwNe+tKX8pGPfIRer8cll1zCI4888u1ekkFVAXEH0GBSjWm8F+4sjIPcA+KYxgkhzgXahXEPoLwpquOawPlmnJRyAOyoOa459qnB8lhYWFicApAFRYQbBHiNRhbfmVgi4rTHkYiIjwH/DrxaCPElIcQPCCEyR0UhRKDv+yLwX4CvSSk/duKWm0MIcZYQ4qNCiFUhRFcIcYUQ4ohGmUKI5wgh3iWEuFubZe0UQvxjwYn7pMN1fdJMEZEXvoYp9L0Gno7QlK4gqbZc6MQLU4hnvg8V4iBTRFBURLilx7JjO5qIaHXwtYqgVhGhP2D8oEFgCnKnhohI6omIsNIikREReo1GGVElIgy5IFIywzXTzjGuKCJKRES2l3rvB0OizM2q6NCpioisJaVJ0NR+EjUEjLmSL+L0yB4RFaXD2rheEWHGLc5sBaa3cCz3D5aOtZ6549EQEbWKiJPUHmHWdOjmWxjvV91floiwsDg2vPKVr+STn/wkS0tLXHLJJRw+fPjbuh4hxBxwKeXI76tQKRWvqQz/SeB2bTIJcC2qFbRu3BLwNQAp5U7glinjIuBf9bhQH/vHdDSowY+giJErC/ddCVxaVIsKIV4InFMZZ2FhYXFaIzerlLhBgOMHGfVs4zstvPUelFJKIcQPA59FxXJ+FoiFEIdRb6NNeg6B+o/+R07schWEEG3gC6irF6/Va/nfqGzwZ+go0Wn4CdSVjD9HXSk5E7gM+KYQ4plSypN+mchzvaw1IxrEqESxXG3g+43cjLGmNSMa68hLXYi7mcqh0poRTxIRjphUREgpSfWQRmsG31fFex1zqdowBL7fpNFUvgqypks2KrRmtDYuIhJ1mqvkRq6IcPVPB5BZy0Y2n1Z7OIWDGSLGtGIYhJqo8RxfERHpOooITaLMLWyBvWTnoYpMEeEFNFtq36kz+YE60i0lTixxwvU9IoZDRQY445S04dCfonQYxeocLbQ3sW915wSBYbA8KPchD6M+7WCmdmyRzDiiIqJARBwvMiBJYxzhTnXxN3t0wvSILS4WFhbTcckll/DpT3+aV7ziFVx66aVcd911x2VeIYT5///Z+ufLhBAHgYNSyi8JIX4DuAi4BuULcQ7wG8A2CiSBlPKAEOKtwP8SQqwBNwI/DryEQjSmlDISQlwG/JUQYjfweT3m9cB/08SCwW8D/yKEeCdKtfmdwJuAt0sp9xXGXY4iOD4shHgHcC7wx8BHpZQ3FMb9MYrIuFII8X+AeeD/olpTP35MJ87CwsLicQzTmiEkuH6AGwSYa3zSKiJOe6xLRABIKfcLIZ4H/Drwc6h4zm2FITuBdwFvlVLWV0THHz+HkkpeJKW8H0AIcSsqavS/An+2znP/SEpZqtCEEF8DHtLz/s4JWfE6EMLJWjMUEaGQFPwXSoqIKa0ZRojgGN+HqkeEISJEXl0b74k4zgvzVCaKWkokQauTxVPWqQiUl4RLEDRptpQyIHUn92ie6ySS9uKmzM8hScpzRpmfgyEilGp3NCpzS5kKpEiqSAdIJ/wuDGnhuYEiVcbURmMmUZQZYM7OLKr73HoVQaYE8Vs0TEtKDWkx0gSKKLZmTCneVw7tVXN2I8abG9PNKk2UZWMBmFSVZONqTC2nERFVRUQq09L7BAqKCO/4EhFREvLbH3s1Zyycw6//UP2fbhbBGqZHbHGxsLBYHy9+8Yu56qqruPTSS4/ntB+p3P4r/fNLwIuBe4D/rP/NA12UauFnpJRVb6k3Aj3gv6O+b9wD/JiU8lPFQVLKvxFCSOANwP9AfR/5FSnlX1XGfUYTJb8LvA7YD7wZ+MPKuJuFEJcAf4TyrlgF3ociMorjdgsh/gPqu8bHUAqOTwJvkNK6r1lYWFgY5GaVEsf3cf2g4BFhPy5PdxyRiADQBMMfAn8ohNgOnIEqVfdIKXeZcUIIB/hPUspPnojFFvAK4DpDQug1PqQJhVeyDpXgYVkAACAASURBVBFRJSH0fQ/rKzdnnojFHgmucLPUjHiUF8imTcDzGjiOKsylw6QiIqoqIgwRUR5nbhvFhDk2lI0tDWkgEonXaBQUETVEhF6jH7RoaCJC1hTkRbPK1rZFRE97RFSUCaHei1mjIReiisrBJIKUFBGmNSOsKCI0MeF5OmJ0nCsaSmscDkg9NcdMR/mQ1ZEqkKdp+H6DZks50NcREUaNMTO/yKp+3Y6kiHD7CWzOSYwqDMEw21Q+FtEUImLlUDn9ojdaZfPsE2rHdgdlf7VxNKQVdMp7KSgiGtqfYhqpcizYuXQfB9Z2cWBtVy0BArlBpxMeOQbVwsLiyHj+85/P1Vdffdzmk7JOC1d6/FPAp9YbUxiboFSO//soxr4TeOdRjLsCuOIoxn0ZeN5RjLsNZdBtYWFhYTEFWURnKnF9H7cRIPR3cOsRYXEkj4gJSCl3SSmvl1J+w5AQQohzhBB/gLoaccT/6I8DngrcXnP/HeRGVUcNIcTFwBbgrke5rm8JjpMrIsKCIiJLrvCb5daMCY8I3aagTShNu0VR5VC87TgFj4hMEZGTFkU/B6/ZIvBbwJTWDN3o5TdaBLo1I3XFhB9BkdxobVzESaYQEaFuzdAtuhlRUlU5RGbPhb3o78FRpVXBjPW9gECrO2qNJYdDpCYi2u15SCQ4olY9YZJBAr+pyA0UaZHGFYWHJmA6C5uOqIgw93sDtbZhf0prht7frE72qKajGCzv31W6vdqbnqxrDC+dsVnjpLjJ7GXtwYeIu0qhcjzaI5b7OTfYm5YUottRiooI25phYfHo8KxnPevbvQQLCwsLi8cxjEeEkOD4gVZE6MdSS0Sc7jhmIsJACOEKIf4fIcRVKLfpN6KUEp8/XotbBxtREVpVLJFHfB0VtCnV3wAHgb979Es7djii4BExyv8oc7VBwSPCESRh1YTSqAPUy5kZUFYSKUzqhVNURBgiomBsGadavZBIvGYT3xTaNcW7MbUMGi2VriEluIJoVC5kM0VEImkvLiIMEZFUFRFavaDXZdQd1VSPXDlRaM3IxlYUI3HB20DvpY6IiIeDjIhodWanRoyq5xuTzhaBThWRniAel9cZ6XM5u3FLYc+T80FORLiGiBhOUURokmCmuX5rRq9XVjksHaq3PwnjMTExIpZ4PUWk1PlEmML/3k9cwUOf+Yy+79GrEg5083UVSYnysTXxVPKIsIoICwsLCwsLC4tTFVn7hVFEBA2Mt7ttzbA4ZiJCCHG+EOLNwCOontAfBA6jJJTnSykvOb5LnIq65v11paFT8JfA84GflFLWkRsIIX5eCPFNIcQ3Dx6sL5QeDVzHzVIzkiIRkZlVNjNyAbem2DVEBFUiokJY6AI4mwuV2FF8TP2e+zl4zRZBQ6sIaj4wjBg3CFoIITLvh3HV08HEd8aS1oY8NaOqNoiMKkATEdPiRbM9F/biTCEtjNrD94MCETG5l2g0QrpqjmZrFhFPv/JeVESYSFBFRFSUG3rfs4vbsj1HNTGoAGGqSZi+JgOmtmYYRcSCnq+e2OgPyoqK5aW9teMGoTLUdIdJpogYRpN+r6YFxIlkQZVwHIiItd35Ggf1f1+GGHFLighLRFhYWFhYWFhYnKrIFBE6vtMN/OzCnCUiLI6KiBBCeEKIHxVCfA64F/gtlCrhClTx/0kp5e9IKR8+cUstYVkfv4oN1CslaqHdrn8eeL2U8t+mjZNSvktK+Rwp5XM2b958zIs9EpyiWeVwUhHhBU1V5Ou/14lCOyMitEeEY1ozpigiCq0ZnmsUETkhkHlOJCpqJyveRVpquZBpmiki/ECRFablYjRcqz12Ft85pTUj0ms25pymRWMiAUS3p9QpIqpmleYYnpcrItIaIiIc9DNFhO81cPRLYZIvijCvTdBo4RkiwnWIhxUlCOq8zixsylpHwrDe0zWSep1aEVGNITUwbQqGiJjWojAYlomI1e6B2nFGieFEKa5O9lhPEeFEeRTp8TCMPNAtEhH1axyFk60Z1qzSwsLCwsLCwuLURdZ+IaVqzQgaSj1NIdrT4rTFumaVQogLUUkSr0VFdQpUlNZ7gX+SUi4JIb4ddNYdKJ+IKp4C3Hk0Ewgh3ogiVH5VSvn+47i2Y4Yj3Kw1Iy4oInK1gSryhRRIZBbXaRBVYjld4YOcTLkwZINbiEg3BX9SuEo/1i0BIhUIIVTkJaYtJMRraPPKMEQ6apGebk8w74bxqFzImhYFJ5G0FjdNbc2I4xA88LRSw5AqEx4RWQJIQd3BpPEm6PPgKo8Ik3CR1LxthwMdn5mAECIjIoaDLiyWx5qYz0ajnSeaeJMtKaYFpDUznxEWxgejikiTFi2hyJJpsZxhJTVjmlnlcNSDFnjdiHjOp9s/XH9c0zYTyUwRUUdEmOMUE0DWUyWEvTWE6+G3WlPHAOw/itaM0Vi9JxURYVszLCyOFS95yUuOZfiThBBfWOfx90op3/col2RhYWFh8ThHUlJE+KX4TusRYXGk1Ix7UC0QB4C3Au+RUt5xwld1ZFwJ/IkQ4nwp5YMAQohzgRegyIV1IYT4VVQryRullH9xAtd5VHAcl9TTqRnjXHGQKSJ0aoXKj2AiQSKOVPGeRV46HqRlcgHy26a4B/A83ZpRIC1MW4WJAzWkgHQFaRRCRkSMs7hLU4w7qTaMHFeICE0kiBSaCwsFRUSFLEnNGtVb0xNGsVFNANGKCDGZADKhBEkjcMFzGwQNHTHqTHb2jAe90h7Mz2qLRJrqeNNU4mu1ipMos8pxRT1hWkDanfksBrVK0mR70n0tc51FIKr3pkhjoiRECId2YxaY3poxivrQgqCbEs9Bf0ocqDHFdOIUZz1FhGnNiCUiXJ+ISMKQv/3eZ4Pr8porrmL+rHNqx6Uy5XB/f3Z7qT9FEaHX02rO0osSfeyTa1Z5886v0ht3eeGFLz+px7WwOB548MEHEeKouxcbwHnrPL7w6FdkYWFhYfF4RrH1Qkhw/QA3CAqKCNuacbrjaOI7JfAZ4KOnCAkB8G7gV4BPCiHehFrjH6B8K7IYLyHEOSgjzd+XUv6+vu8ngLcBVwFfEEJ8T2HerpTyqBQVxxNuQRERjdQfpZQyi8H0M0WEAySTbQrxCDyy2ENPEw1JWiUitCLCKSgidAxjcexIKyKM+WXxin8chgTmuGEIrmkH0Z4Our4Pw4q5pG5HcIWH12xNNW40azTqgUwREVcNKMPS42puPbZKWuiYoMDPFRGG5CnCEA6uMf1MROl8ZMdO8zYTV5MyIgVcGBW8MdI0UYRHKmnOzBN4DUDWKiKklMSueu3nOpuAvbURo6aNoum18PVrN40MMKaWHZoMkFl7QxXdw4oIEPERFBG68BdRihM5pfVUsbr3EW76iQ7uIGHxN36FH/9QfWpfGI+Qhf+IpnlEGHVIe2YDbnyodN/JwP7uI7z1c28A4Bnbn8dc65g8cS0svu3YsWPHUY8VQtwmpXzOiVuNhYWFhcXjHYZoMAoIx/Nx/YIiwrZmnPY4kkfEZcDDwE8DXxNC3CmE+E0hxBknfmnTIaXsAy9B+VW8H/hH4CHgJVLKYtUoAJfyPl+q738pcG3l31+d8MXXwBFORkQkY/VHmcZx1vZgWiOMB8SkGaP2fsgUEZMqB8iNIUtEhG6pKJpGhvqKvfE0yKNDISmYMSbjcd6aoceItN4HIQrzNAwhREYaVE0tMz8Hk5ph9jJBvhjjzXwvUxUR+oPO95s0TMRozTs/HJt9O6X9VxURxXhTN9CEid530dehaNDZmJ3N/CmqJA3otgcBIk6ZW9ikjsMkEWEIgobf1sTGdEXEWCsYTAtHGNWTBkYRIWK5riIi82kotWbUqxL2H9hBuBgwPKvFg+FDtWPUccrvk5XB+u0jzWYHz1HnfJqZ54nAFTe8K/t9GlliYWFhYWFhYWGhkOrawlz7cwMfx/cRqfWIsFBYl4iQUv6hlPKJwMuAjwNPBN4C7BRCfFoI8WMnYY3T1rZTSvnDUso5KeWslPJVUsodlTE7pJRCSnl54b7X6fvq/r34JG8DACEcUmNWqa9IJ1GINEEZmdpAExFhfSqE8UhwtQFlUum9ylsz6oiIfGxoWjP0fMXWjKQQjZlGYdaaka3RkCUTyR5aEeGWTSjDSpuCIUSMIsKoMapeEnV7yaNI1yEiTGuGywTMFXZjgGkIiappZBZvGku8QJNEhrQomHRGhVaGoDObKVuqRBIUDCNDyeyGLeo4YvID2qyx4TUJjCJiikdEKHV0aFv5ukY1CguAUV95Y3iOj7uOImJcIGqO5NOwvJQbUO558vSPmXE8WPe2gfEYaTY6BIaImGLmeSJw/4Hbst9Xh/VkiYWFhYWFhYWFhULWemGIiKw1Qz+e2taM0x1HlZohpfyslPJHgLOA30apJF4GfBD1dnqmEOLZJ2yVj3MIIcApt2akYQhOOQXDtF5MtGYk5TYFQxxMtGYYZrK3jTs+1SeNJX6NImI8LhfkWWuGq8wqs+OGdWRJfYSmWbNROpif1TaFTLWhvSvMXkwhOrnnoiJCExFxRQmiDSMDv0mjrRQRsuadH5n2EUPo6J/jit+FMf1UighFBhjSIiz4dxi1gIhTgtlZGoFqC6lTJhiCwQlTZhe3qePUGGoaciPwGriOh0CQpHGt4U8k1DoXZjbr8zCFiNDkSeA11veIMLGhG7dmrTXT1BgrK7nvw3DRK71vSsfWc/oDWbo9sRf9Xm62ZjMCZlqqyIlAr+CvsTpFtWFhYWFhYWFhYaGQt2ao73hOEOjWDOsRYaFwNB4RGaSUB1CKiLcIIb4fFX35SuA5wDeEELcCfyulfMdxX+njHFlqRqgKyiSKsraHXG0wJZ7SqAOEVxo/oYjQyoDx13+cz3x6iduu6ONfqoiIojzKkAOmEC8REcXWjHCyNcPN2kdqDDUpej+oOccV481EX7X3jSLCkCpJxdQyLrdwFPc9VRERtGi2dGuGK5BSlszbxuEQ3MK+cYF4qiLCSSROoBUecnKsKdKdWBLMzGT+FHXFu/FzcKKU+U1nwAFInDoiItTnp5ElmoTxiCgJaTjldIrYSQGHxQ1nwlI9sQE5EdFotEm1ImIYTRb5Rv0ws7CJ7ooylawmlBis9Q5lv6cNh1F3lc6myejbsSY83O6YqN1kFE4eN5WpIpNSSaM9QyNuAtFU0uJ4I06iEjFjFREWj1W8/vWvP9qh5woh/l7/HqIMq68FPiul/eZoYWFhYXFkmItk5uun6/u4vo/2cc++n1ucvjgmIqIIKeXVwNVCiE3A64CfAb4D+HPAEhHHiIyI0KkZSVjX9mDUBpVC23hEGEWEUTnISY8IJ26SHDobgEeuH3POd50BDYgpEBFGEeGUWz2qiohoNFKqDZkf29HFeziuxm2OS2vzhEut8ab+0DK+GJ6rPrAmYj4N+aKJCshJibiiBEn1J57vN/B1AgmuIB6P8Jt58R7FI5WuYbw2hAeMJ1thCh4RpjXDqEeKxEoxFjPozGT+FFUPC4ChJjCcMGVusyIiUpcJsiRKDAGj9h24iogIkzENP99LmiQknnovLW4+C5bqiQ3IDTYbQYtIv2Xq2h5MC0irM5/7XUzxnej2l0B1wZA0HEYrK7VExEgTMF5fve5RGpLKNFP/qD3nrTCNzizBsAVEJy2+szfulm5bIsLisYr3vve9Rzt0EfX/ehESuEkI8UNSyqXjuCwLCwsLi8chsoucWgHh+oHyiNCpGdLGd572+JaJCAMp5SHgT1Bxmi8GfvbRznk6QjpGEaHlSlGYtQ8YIiI3Y5yiiDBtD0ZFUGEa0zShtffC0n3RwUXYXs7yNUaTJjqzpIgokCDG3LFY32aqjeoadfFt4kLVWpOJcWbNnq8IC99rQDhJLhiSxSsQEZkSpKKeSDQV22h2EEIgYon0BONRv0REhPEYGvm+zfmumktmRESct2aY5xRNOrOUiUQSzORmlbEs7wVg2F9Rx0wdGjOz2RqjJMxMKSFvzTCKEfOzaho5Xl0lCdRrsWFetXokNZGloFtPXPDdJpiI0ZqEDbPvdmchV3dMISJ6o9WMiMAV9FcPs8iFE+OylpRRiohSpO8QxWVSxZzHTFnSbQFdwvjkKCJ6ldhT25ph8VjFe97znqMa97rXvW4HcLm+6QJbgFcA3wP8IfCLx391FhYWFhaPJxhltjGrdIIAxw8yRYRtzbB41EREEVLKLwJfPJ5znjZwVfFsVPul1ozsCr0mIioqgmosp2l/SCp/4IlM6Oy5uHRftH+jIiLIxxqVglshItJKa4Zp4RAyv2LvMsXHQhMRvtcszDmeGGfY00wR4QUQlj0sIC+Ki0SE5/ogaxQR+hPQmEU6iSTxBKNhjxmdUFFcsyeKZMlkq0dcjO80rRkZaZEXx8OhupLupkqOFujjxzVStGFPj8XFb7YRcYr0XKJkXCEizHlU9+XJGRUiotcl1UTEwtxWdR7WIyLaEPgNhH59qr4YAJGMQEB7dgNBYwaIJ2JVDfrhWul2t+AZUTp2nHtjOGFK4juM42GJiDBKDBGn+J0ZGkFH73mS0DkR6I0qRMTQXgy2eGzita997VGNe93rXndYSvkPxfuEEP8X+AZw6QlYmoWFhYXF4wwZ0WAUEZ6HG9jUDIscR2VWaXHiIV1V0MXROq0ZGRFRac2oRF6a9ofqH3iSJrT2PxGAp71KFXOjvfPqsUJrhrnKnc23XmsGeWIE5AV51TvAFPO+X/Z+qPolmHV4RSKCSXVHNV2jOGe1JcUQEY2GuopvwihGw3L8o1lzRuhk5peVNpNSfKdRRKhjhwXfgpEmF0z6SKCL6+r6AEYDTUQIF6/VKqRSVI9tPCKMIkIRB9XkjMHaCrgCkUhm5xbVcafQjmbNgd/KzlFdy4Vp3+nMbaTZMmRAPRExTMpExtpqfeSl8V5wwjTbc9X7oZw+UvDaSOuPDXDzzq/y9Qc/P/XxY4FRRGyZ3Q4cuTXj3++/ig9f/w6krCd+LCwei9DeENcA277da7GwsLCwOPVh6hBjcJ6ZVeqvR9YjwuK4KiIsvnUIrYiIx6qoj8MxVIiITBExcYU+ycat7YuRSyqucaI1g4Tm8hMAuPjlbW7/RJ/h7hmQkJIXTVlBrgv7cmpGURGhr2angvFaSmPWyciSyWQPTZb4Be8HJv0Sin4OkF/5r/O7AJG1ehTXWTXpNEREoItsQ5yYmNJ8jWFpHnPeq1f94yRvuXB8c47M2Hzfo75SBXiGiGi0IS2TPhNjHQ+/pRQRMEkwZISOXqMhJKrET7+3rOaLBe2ZDQBI3yFNUxynzD8aIqLRaOMGbaBXIlRAnW8pJKSS1twCjfYssJoZd07sh/J6emv1KoKsNSNKs8SOXvcQW+bOzNdnWlwi1ZrRbM2qc5HWp4CkMuWtn3sDAE8787l0GrO1444WhoiYGzU4wPpExFL/AO/80u8C8PwnvpTtG5/4qI59LLh999e5+q6P8dMv+C3mWhtP2nEtHhvYuXPnsQwPhBBn19z/fuA2IcSclLJb87iFhYWFhQVQ9IhQ3+9cP8Dx/EwhYeM7LSwRcYogbaiiOBrqQl77EoiUzKzQcVxl3BjXKyIcGvz9K/cRhZfg/OyHSFkuj4sgWN0CSLY/u0FjTjDueniDBVLyQjGMxuDnZIE7Jb7TKCc2Xfdq/uJvdvPq920p+FhUyRJVNJr2BFPsTyRcVIkI/bNadCqSxSsrIqa0caS67m421VV8J1XnczxBRKjzaIr8zPyy0gIQjnMliHltzH6KSoLRMFc5gPKoYJDvsQiTtuEKr6SIqBIMxdQMKLZmlM/joOA54flB5jkxGnRpzyyU96OP0QhaeM0O0Js4rhnjRJLW1g20dAzqNDJg7EQUP156/eXacaO4qIhQ56W7fAC2T+7ZiVOCzgxNY/o5JY50ZZCrL/Z1d/LEzU+tHXe06OvWjJUvXo94wSKDsEeSxqXoWIN/ve0fs9+XBgdOKhHxx1f9KgCOEPy37/+jk3Zci8cGzj333JLx7RHwdOCh9aYDfv/RrsnCwsLC4vGLjGjQPxzTmqGvfVqPCAtLRJwiMEREPNCFvC52RUHdbTwbJswYdTHoPHQh474EXDq7Lyblq6VxYm0RIV38uTW8hmDD2T77bg8JVraSevlV3jhWRITvlNsoJoiIcIQzarPhxlchgRvev4Z7jmlnqCFLHPC1GaIhEKpFvlFEGGNHMz6tFO9qz17WulFcZ1E9IaVEqlOKryX9rhSAnDBkrCZxmJ/VFoDIKEEKLSmZMqFACIyG6jU1LR6NRnsqEWGSSjzh4TWbWVE+nmhTMB4RFbPKinJiNFAKC+PZYXwxBr3VCSLCkA6N5gxJcwbYP7nnLLkipTG/QLOjW3pq2kwAIk+tv5M06bsj+oOV2nGmDcMJUwKnyRDorZTbODJFRCzxOzO02krhUKcsATi4tif7fd/Kw4+aiFgbKhLFHcR4sSDyJKNoQKcxNzH2nn03Zb8v9+vbUU40bnnk39d9/IEDt/OJm/6WrXNn8aPf9cs0tC+IxeMbv/M7v3PURMTll1++B3jXOkO+dFwWZWFhYWHxuIVRZotU4gYBQghcP8gUEdK2Zpz2sETEqYKmUUSUr6yXjCAdD5LJVgHTipDcmhdc7d0Xk86Vvys6Kyo+MdioitSFszxNRGwj3HRHNs4UnVnUplP0iMgL3igcseHOF2e3D9wT4Z1Xb/CYpEmJiDCF9DQiIlNEaAVFteg0H25ZHCfFNo58bKaOSGSWkOFIB0gmDBmzfWsCwhAxE4qIyCgi8hYHz1Exo0UlgVFcmCvnDa3ISEWNIkKTIp7jI4TIVBvG8DJfo26bkQ7XXP7bpE9Xa6m+J4z/havbQpwEEkw6xzmlsWZ/jeYMUrc9VBUWRZ+G5vwCvreZs6/8TVYvnqxHkigibqlzM+/O02fEcLQ2MU7tT93vS4/UawJjet1y60N2bNOa0VYEQEIyEW8KZSJi7+oxydFrsbSk5vMGCQxCmPMYhv1aImJtlCs/lvoH1p337r03ct+BW/mPz3jtugXiVbf9E9fc83H+18v/moX2ptoxRWVKlIQcWtvLptkzasd+/s6PcOuua4FredK2Z/Ld533/uuu0eHzg8ssvP5axe6WUv3fiVmNhYWFh8XhH1pohpUrLABXfqb8GW48IC2tWeYpANtSV4XjoI6XMWjNKRpCOKiqrrQfmdvLIE7L7OrufQkLZLM9ZVekJrUVV9C6cpQrkYHVbqTjOEy5UYe8IVyXIu4KoSETEY9qFFI7lHTFuT5Ed1eLdXDk3xIKZe2rCRUORBoEmGiYUEbJsagngepOxpcWEC08bS7pTPCKM0sTPCBi/dH+2b/PaFP58sv0UCAETb2rmaWiDx7oYzTAzCNVqDN1PYpQN2bH1ed1z7bXc8O53sOdr6up3mJTNJQ2B4Wmu0U3Ungf9cgIE6DQMoNmaoWH8FypKh6JPQ3NhgX13vIi5B76bs/7lf0yYMkaDPokmIhYC5VUwGJeNQbN1jtQ6G26DQKs7+mtl9YQhIkSUqvjOmVlIJFLU/ydWUkSsPlx73GPByqpK/HCHKc5IHc+YbBYhpaQ7zImI5cF0IiJJY/7PZ36Rj37zr7l7343rHv+D33g7+1Z38m93fGjqmMO9faXbu5YfmDr2UGHsocK5srCwsLCwsLA4XpC6NUPo9DgANwhAWo8ICwVLRJwiEF5M6o6RiUs8qiciMoPHqtpAJojYR3ZnsvtaB84jleWrrO7qFvXYJkV6bDg7JyIKF/dzrwRdkAshsqLbrAuUIWXzkPIz62xSj7tLZ01ZY7XlQqsXqn4OxlgyaJImEt8kTVSIiBSjiMhbMzJFRGGsISKcWOI2NLGiVQJhNQZVmkhQTURoYqNKlsRGEUF+fjOvhkJLgzHzzIiIhiIipDPZF5cllZi2EP2CGMVANk6f15V77wdAjCN9fyW+s9IWkiksBpP+crHed6szR7ujrvJHVSIiU0SkNOcXWNufG+dHUfn8jNZWkZ4DqWS2qYwyR1GZ9DEYjhRB0fBaNDz1Wvf7ZSIi86fQqRlBZwZHm3lWvSwADnR3Zb/vPjy9ID9arPWVf4o7THDG6rh1RMQo6pfeKyvrtGbcsef67Pf1WjhKrT41xzTY332kdLs7qvfkgDJpcSTVhoWFhYWFhYXFt4Jia4Yxd3e8XBFh4zstLBFxisBBkDRVUTZaTYl1kVwsdo3EP616RMgEv6uUCPPbXfwNESL1EOGG0tVqb0UVj+0tqujNFBErW1VxHOvkDl1MmTYKyFUExh8BIBzGBCvbkCLh3Oersc5AFZ4TLRdGwWDiLvXc1SvvqVYL7PzsJt767F0MHlJS9KIiQkqZFfJeYY2GiCh+sMXFqE1NRBjfhKgSUWnSR0xLip9Fh1aKcv3amLaH4rGLhaghIrKozUIaRpWAMQW1GetpY4vRqBIxqgmBaFkV6yI2ppZl4se0nWTGm2a+wWSLRKzPV6s9l/lHJKL8n0OuSpBE4QyD5U722KGHyudx0NNGmTF0morYGCWTcaAAw1ARFA2/TcNXHh6DQVm1kZEgoyZf/vMmd332vHzfNfGh+w7vyH4/uLa79rgGH7/xb/ntj72aD1//jqljRnqNzjjF1ckewxpipVr8L62jiPj6g5/Lfq+qGYrYu7Ij+329vewvkC+Q+1pUkaQxywUzz/WOfSIQpzE3Pvylic8HCwsLCwsLi8cX8tYMlZgBShEhTGqGJSJOe1gi4hSBwMmIiOFqmsVfisJLZMwTq0kFqUwIukrtML/do7lZPe6GWzNyAcDrKiJiZqsqAnIiYhvSEcQj3R5SQ0TkKoK8oBwcmkFIl2ThQDaX6G+oXWNSNaHMivxq1CaIxOO298yTxvDAP5yl788JlTSOkY5OqyjEd/qa5EgKbSaZyWKxNcMQEfGYJJJ88HUHeP9P7EcePlfPaUw6g9q9xHVEhG8UEflYc66yOs3sZwAAIABJREFUVo9mMyugq4oRc9XfEBom8nM4QUTo/WgzS5OuUTWrHOvi2RAb7pT5pJQZ6dDqLNCamYdUkgpJWohBNZ4TTgIH7y0rbfbdVT62SexwUkFLJ1xEUxIuxvoqfzPoZGNHo3oVyOLtb+Lez6Xcd81GgpXF0mNFFIvriLi0jyo+d8eH2L3yIJ++9X0TxqDZGmP1OnY6CwVFRA0RoYv/TTPKm2E9pUNRwXCot3fquEcKLRa7l6eHGBzsKpJipqFMRKcpIlYGh0r/8R/u758654nAlTf/PW///G/yT19/20k9roWFhYWFhcXJhfn+pcwqteLX97MUDZuaYWGJiFMEjnBqFREuda0ZVbVBqmM5YeFMj+YWTUSMt5JEqlCLhilebxPSiels0YkGmx2CGfBGczjjDcRjdcykErWp1mFUBHnROTqsip50cS8zW1ShK/o6TWFaGobxftCERFVtIB2YfeA52e3e7gCvt1AiIpJwjHQ1ESFyv1Xfm0zYyGNQJY6n/RL0c6JwzM6vj9j1zbEy7bzxDYjYJzDJHjXml+oc6DhJJ//zCfzJ/ZhzlZELzSYiMVfyK+0emogwLR5mXybWMxunn+foeYzCIqy0KGSKCKPG0ETEqNLqkYQhqeZTmq0OQWcmVxsU1B3GW8KVgqUHy6/ZgbvLexno9g8vdWhrRUQk6omIUayK/3ZzhlZT+VMYlYRBGA4RcUBjJX9fdB55ppo3mWzNGMdlQmE4paUhTiL6Yd6qMq14j/XaN5/7pIyIqJvTEBFnbjgf1/HojVcnXheD3ihXfaynSti1dH8+rr9v4txk841Xs2OvtxdzLH9FvWZLJ5mI+ORNfwfA1Xd9dF2CyMLCwsLCwuKxDUM0iJTMrNL1A4T1iLDQsETEKQKHMhFhpPZFQ0RDRFS/wCck+JqImD/To6WJBjfcQqr795d3qmIqnN9Po6mKXSEEi09SVWhj+fxMEWEK7xIRISZ9FcIVJeOXi/uZ3aar2b5ONKiqNkwahp7TFPtV7wfpKKPN/ImCufueTyodPvPGw3zhLcsk4zCL5DQqEQAvMERETlqY5AonKbS4CHVO42TMvVfnRasTzjN/94sydYMxyqySJYY0KCoiDLFi/BYAIn0lPYssbRQUERPxmGUVii/UvqoRo1mLRCxLP6vKgFyNYYgNNd+oYtAZDweknjofvhvgtzs4WbtH/loPdbuEJz0OPaDWOth6OwC9/eX3o/GhcFOHTksRU5FTX3SG+jw0m3O02/O1ex4O1wiWzyipg2Z2Pat23wChVPe5PfW69Xv1RfnaqOxFMZWIcNX5WDzrfFyjiKghBLoj5SUx39rIjE7UGIT1aSHFYx1ah4ioPnag0oIBMFxN6H3jDETssXVuOzC5N4N7bv4yAK3dQ0SqxhnFx6NBnMY8cPCOdcmF1WE5DeWuvTc86uNaWFhYWFhYnJrILuSlMmvNcIKiIsJekDjdYYmIUwRiiiLCKRS7WSrERGtGStBViRjz213aW1Th5I42k1SIiPHCXrxC5OWWJ6s5m4efyB1XRiztiLLCOwja+bE1EREXipZoTccXLqxkigjZq09dyEwoG2pOP1NE5B9CUkpSR7WKAFx0iRozf/9z2Xjra7njkwNu+ECP3beMstYM45sBhYSNQmtGOFZEQzGowigiwijkgWvU4895rWoL2Hj792dKCNOaMaGIMESEmCQikoLMzIzLFBbNVqZkmFBE6II6G6u9HYrmoOp5mqDSZIGZr0pshLrNINAqEeMVUVVYRMMh0lPn0ncb+O3cx6LY7mG8JTzhsfSgWvtw853qsW6ZTMoTO9yMXIi9etY7StUxOu05WnpsWNnLaNSjsawSYTZdqPbR2v90kJNERJxEpEIiYok3VK/byuHJ1ofDD0Tc9OEuxWCZOl8FKSWJ5rq2nHsRzljNWaeIMMX/bHMDTV95aNQpGJI0pj/OlRiHe3snkkcMqkRGv3J7dXfM3126j+QfXsaWa3+cLZqI6A6Xaud78M7rAAiWI/xV9Te6vI5hZRiPuWvvDVPXZ/Cvt36A37/y9fyfz/wi4RRi48493yzdfuDgHbXjLCwsLCwsLB77yFszyFszPN96RFhksETEKQJXOMTGI6KbZjGQjigqIurNE1NSglVDRHi0t6o/cG+0hTRU8yzv0IqIDXtL3g9bn6zm3PKN1/DVd/j8008egDVlfGnaKNT6VNFdbM1ItPpBzHeZ3aqNNNdUQW/Ikj23jhmuJBNERNCYbKNI4xjpimwvz3rNLI4n6ex6Khvu/s/ZuFs+EuetGQUiwuyr2MYxNt4GxfQR05rRc+kfSgk6ghf88jxSRLT2XogYzZbmq6o24lgV4kUSpGEUEQUvBEM2GJLCa+WtGVWPCNMGYQga81qHUT0RIWLJhvMvQERmvjKxEWYkiJ7PUfONKwV0XCIiKoqIYmKDPo8ePod1a8Z4493qZ+Wi/1CTFj4eMx3tGeKWC9nhasLtn+jTfPA7AOVP0W6bxI7yXsbjPo1l5btw3guaNGbADefw+hsmWjNGsdqfE6ZZG0V3udx+sLIr5u9fuY8b/jRgZsd3ZvfXqQiiJARHIGLJpvOfhBNOT80wxf9cayOtQBMRNV4Spo2i7bRp+R3CZDxVwTAM1Xmfb6kY1CKBAXD7J/oMV9SaFu5+EVtmzpq6F4DuQK3R6yd4q/qzYQoRIaXkj/71l3nLZ36JGx/+cu0Yg/v23wLAvftv4RsPXV07Zt+q8sVoB+oz4mQbZVpYWFhYWFicPKS1iogguwhkPSIsLBFxikBUWzN0EVi86u7pP+Iqg5gCjSV1xXjjuT4zOlnRHW7JPCJWd+etGcbUEWDbxc3SXMOVlPZdrwJy0gAKxXuh4E21MaWz0KUxK/BbAhkGOOMWiUw4cE/IP/6XA7zrpXvx9BXtRkZEqJ9FY8kkHCOFi6+NN7c82efcl+QEwsUvV2zqI9eDFJOKCFPEF4kIk1xRJCLMc8JltYb5Mz2CtkO48VYEDqN7VNEbBJMpHJCTCCUiQkdzFveTqRwMuVBozaheya/6cgTekYiIlIVzzyt4TlRbPcrHDqYQG/FoSFoiItqFJI5Ca4Y2kAxGZxANJa0FSdzao+Zcq5AMY01aCJ9mSxWdqStJk/w8XnXZMv/6piW2X/k/CVa20Z6dp93RbRwVY8vxeECwfCYAG8/12HShOu/NQ2dP7NsYTjphSiDUnrsrZSLia+/I/Rnaey7Kfl+rac3oral2AidKmT1ze9aasV5qxmxzgZY/nYhYGyqSINm/TCsJph4bYKAVFcYAcxCWzUb33Jrv3+9twtt1TjZfnYrBKCxmOxszxUhVZWFw/W3XMnrPD3Dhe9/OrdffVzvG4EAh0WPf6s7aMcaP4sKtinw62UaZFhYWFhYWFicPScGs0sR3un4hNcN6RZ32sETEKYKiWeVwOc0IhLJHxGSrgJQSMV7EiZv4CxHNOYeZbeo53nAzaaSKuu5e9Zxo9mClNSNg9UlfLa3FW1Py7qBZaM3QRbfxR0giiRzNI0WCuzBACJG1Z/i9RRKZsO92tYewJ9l8/Y+pOVtlIqJIGsTjMf5oI07i0150CNoO33uZz/7nf5Dliz/N9/26R3PeIRoKnHixtC4oEAeFUIeciCicR92mEK6oInl+u5pjuOl6AHq3qchQEw1aJBfUOZgkIox6pKjwMOkjZq/CcXD0w+OqV4NWuTR0O4xpD4kqZofF1oyFc87L1AvF2NDi8zLiR89XTYZQrRnq3AS6NcPRiRzFIt+YXwYrTwJg85NdpKMK2HCtnKJRjA7NIlW9PJUF4MDd+dzBoTNozS4wM6PVExU/CaWI0ETbeT6bL1JzNg+dM2EGaZQKTpjS1HGga92yN8Ej1+fPae2/IPu9TkXQWzkEgBsL2ps2F1IzJhURRq2wdP3NDHYoL4e61gxDWLj9BLk6mDoOYBipzwRDRBTNNWUq2XebOo/9i1Tbw9I3OgRekygJa9c4TNR92867GNcQEVVJi8Z1fyZZuPcFNJbPZOmKC2vHgPKHKHpX1PlYQK6AeJIhIk6iImLn4Xt54xWv4fN3fuSkHdPCwsLCwuJ0hrmQJ1KdloH6KTKPCKuION1hiYhTBI5wiGZV0dPdE+c+BE4xItIQESm9QwmfvXyJ+67u4w3PBqC1XRUlrQWX1BvjRjMMV8JsToBw7lB2lRyUYeWeH3o79//kG/i+37wHAK+nJBWNZicbZ4p30wKwti8BHKKZJTxfrXF2q6ufv5FUJiztyK9sG9+HQM9ZR0SE40E2zsSBNpoBB5/7Mfa98N0gQxbPV/d7w3P0uopkgJpTOpOKCLdARBgCIVlVrQDzZ+pEicWbAejdq1ozsiSMamuGPgfmnAA0dfRkUji2if0sEjqOZkmqRETmy6HHmrSLaUoHoYkIkUySBurYao2G2DCJIhOKiOGgoojoZIqIMMnHZuTCsiIinvCMAOmqAjbqidLVd2M2GTgNAleRBtJziIY6HjaU+v2j0FjZTDAzS1sTEYlIy/NFQ4KuahdaOMtjy0Xq3DQOnTNxHofaA8MJU1oN9Zr0+rnaoLs3Lh27ve8CNnVUkV9nVtldURGcbipoLWzACdW6hhVlgrpPHfvGt7+d1TvvBepjPvfvVuoCr59AT71ug2hyPoCBJgmCbqJv5+OWH44ZdVNmtrgsPe1zANz5kR3MBHO1+4lHI0JHvc+ecMHTcYfqvdMfr1LFyq6Y8Q3bs9vJ7eeyvDOaGAcqOrRIjhbVEUUs6RYQQ0Qs9fdP9Z546OBd/NZHf/yILSFHg2HY5/c/9bPsWr6f91/7J/YKjIWFhYWFxUlARjSkMkvNcHwf9P/9VQ82i9MPlog4ReA6LuG8kiqv7k5IElUwOKJoVpm3Ztz1L31u/WifT/5/y8w/8DMAdDQR4bleTmrsT5AyL/yiuYN4hdYMAAfBaPPDNDYs4TUE7ngBZ9wqERGmeDcFb3evWl80ewhPm2jmioiNJCQs78gLF39tEyQSr6kKYjN3lYjwtT/EglYpuLrYl64gGY9YPF/d9gZnl9YFeRtCWnhXZ2aVxRYXnbSRdFUrwPyZHjJNGc8+TBIMGB8K6B1Ich8LUS6WMiLCLbRmFPYjsw9YdY6ajfw8Bt0z2Xzdj9BfKisTEtTrY1o8jIJhMl2jQkTE9R4RxmfBrMuYVkZVU8uCR4Tn+koRUdM+YpQU4rCKhzzzWW2QIakbImNBPCoSB4NsD4ZQka4gHqr7u7tjiiR4sLqZYHYuU2+kniAa5lfzo3GMN1gAkdBedDLDyuahsxmNygV8v6fUD17iZO0R/X6udNh9k9rTeS9qIuYHuOMZzkhUFGidIqKv1RR+6iIch6Y+j4Nhd2KsUS+44yRv4ahROux9UJl8eoOYZKmrx00SEXEaEyZjRAr3v++fccYt1g7kr4lpy9j6NI/uE24jdUPCwXacPeq9XvWTWNu7m6Sp/jg2b38i7mh6a8YN718D6bB88ZdYuegrCOnw4FeHE+MA9q7uAODsjUo1UUdESCk53FcKiO0bL6DptxlFg5LCozj2T//t19i7uoN3fOG3a495LLhn300lL5G79t34qOe0sLCwsLCwWB+m7bhkVukHmSJCWiLitIclIk4ROLhEc+rqa3dvTKTTLkzCA5DFSqYyZfmRgtpgTcnLO2ep+zwnJyJ6+yTDlZRoKEmCPmljkEVoGrj6bRCGA+bPUkVMsLqNhu7vV3OWFRHGcyKaO5C1jMxsLbZmpCVFhDecxxn5eA1DRBj1Qr6OcDTKjCqNIsIoHqQriMOQxSeqdfj9SSLCtJxIR2R+BJFWALg1LS7pmoofnd/uEY/HSF8y3KauVu++ZVzrOQGQpMasMldEFFsQkrEqemJDLujzKFPJpq//Jluv/Qnu+IttpavBsVZdNFqd0nzVlgtDTDixZL7kEVFuUTCtHi19bJPGEVXmC4c9ZcaYqnPpNVsZuTEO88IzjAaIKICl7SDgzO9o4aaCpKEK7WJyxlif88BrZkSEIhfUfCuPlD0ggu4WGrNzBG4DdzDHGV/5Xd7zyiUe+JIaH61qFr3Zw3EFi+ep895YPoPRsFzo99aUCsBLHVoNpWwZjvJid9cNam1nPrMBW9TfyOLoycCU1ow1Ze7oo30pPO39MJ4kDoyfgzNKC+kak0TEgb0PAOAOkowMqHo/QE5OOKMEr9/ign/8Yw791iv5979RCoa9t6rXfPGpKdILGWxTBEfrnqfrOcsEw9ruXSQt9Te6ZfuFuAPTmlEmA4arCbddodZ9+NlXMjjzLgAevqG+hWNfV5lQXrTtOwm8Jv1xd6Ldox92CeMRTa/NDX/2Z2xoqvanw71Jn4h79t2ceWbEacTOw/fWHvdo8XDl+d986JqpY/vjLn/0r7/CVbd/8FEds4g0Taz81MLCwsLitEOWmiEr8Z3SeETY/xtPd1gi4hSB4zhIL0I0u6QxRD1VqJcKbdeoA2DlkUmZ9MZn5GkOoSY1egdhzfhDzB2CVGZkQHZszQaE4wELuk0hWNmWxWEWj22K8O4eNWc4dxBPKzXKrRl5wdleVFfcg+4iXkPN6TfbkEqkk39QheFggohw3YIiIhxnrRl+76x1z0+i00LC0BARhRYXM25NJRHMn+kqo0xHMDhDFS17bg6zJIy06hGhGV5zPDVn4cr/WB3TtHQYVcLdVw0IVpWiYPmmjTx8XU4emGOYFg/TShFXolpNy46Twtz2s3KPiIIiQkqZKyxaqhhv6DaTKrFh0jBM64oQAldLSkbDvJgMozFzD34XpB5nPCOgMevgFA1WC0SEiW9s+K38vHi5IsK8LzZcoNbur20hmJ0l8JrMPfDddPZ8F929cMeVqhhOVtX5c9vqWM15hzRYxYmb9PaV2fReLycOOi3VolAkDXb8uzp/5zyvQbSgiIiZfm7wWEV/oMgJXxtftnTiQx3BYIgDd5yuq4hYHWjVRj/BHaWl5xYxKBAR7UO/SrC6DVKHr/1ll8MPRpkiYuEi9bN3tmpjaN71otLzDbq7d+WKiCecjx+r39f6y6SxZNxTLTHXvrNLNJT0zrmF0eaH2fAUdY733lpW0xgY88359iJbZpWp6IG1sk+EIRzEvi5f/4s/Rezt6vsnfSIeOHBb6faNOx9de8bOJfU3/cILLy3drsMX7rqCO/dczwe//rZHTYAArAwO84YPv4o3f/q/Zn+j0Sjlns8OSKL6tpRdN45Z2x/XPmZhYWFhYfFYQd6aQdaaUVREWJLewhIRpwgcXVCLjiqkojXVNlD0QDBjpCNY2am+qJ6vag72veh9bLhQ/UG7oqCIOAirxh9i9hAilbhePifkaoHxeMDcGTpmc2Vb+Yq/LigzRcQeo4iob80Qg02kMcxuc1k41xARm3A1CeI3C1GWutgOwyHBSh5DqvaiCQRXEI1GbDjXKCJUwVMiIgrqiVSbfWZeG6JIWAQgBejUj/kzPZIwRLoFIuKWcebXkFb+SkzbjCFgsjlRBbdRRBjjymZbkQH3Xa2u8BsVwX2fz9sPEq26aOixps0krkS1hjo+tTUzj99q42iCpWjaGI9GpDre1JAp0+YzrQ1FDw1Pz2lIClCKi3ld4D7lUk2S4WZ7GReSM0KtzlBExKRHhCEiNj9LFbhebwuN2Vl8t5GZUgIcul+91+SaPiezuUIjbe8FYLCn/F4eDFSB6+PT6SjFy1BHei7vjFl5JKY557DtqQHhrCqOvVVlfNobTXolDPvqvkDHn7abai1VI8gkjRnHQ9UHWYgOrSUsErWP2faGTDkxqCEsDDnROLwZb/wyUiciOedBAG7+UI+D90YIB1rnq3H9J3wJ5BqN5YtpHjh3QunQPbiXtOEiJLQaM8zNKlXC2jfn+evv38Off89u3vG9e7jhfT2EA/te8AFmmwssXuCS+EMGez36hyZllCaOdKYxn5lqLvXKkaAmMcNdUiTV+H5FVKwOD03Mt3vlIQAu2PIMAPauPDwx5liw87BSOT3/gpcBsGv5gVpvijRN+OI9n8huX3nLex/VcQH+6bo/Y6l/gPv238rHb3o3AJ/7g2WufMNhvvy2yffbg18e8sH/9wAf/YVDyLSeqLCwsLCwsHgsIMnMKmWpNYPUekRYKFgi4hSBI/QV6bb6Yh731NVct+BDYIpuKVzW9qpC53t/NWLnD/0Uh55zZVa0u4XWjP4hN0/MmDuISHSGbwHmeeF4SGeTGuuvLZbMGM3V/1h/aOSKiANZG8FsoTXD6eXKho76Fb+7KVNEeI2ciDAqi2g0zBURZ2tiRgiE/pyKxkPmtrkIN8UbbkJEQYmIyPwkHEGiW1uy1oyiR4QX4PU2IFKf9kaVzhGPRyUiYv+dIa7ThsRly1d+iQ+8Zj/hQJ1z4/1QJCIylYUniHQ6hEnbMETEnlsUObL3+/4egPu/OMoKolSbXLZMa4ZrFAwVRYQu8tudBYQQma9CWEjDiAb9zPfBEEjTiAhj9lhUjJhzVVRERP2A2YefCSLloksMEeGQNidbM4wPRaPRUa+PVOclHKixK7u0IuIpymPCG88jnA6B1yBYyomI5Ydjlc6iiYjGXOGK/IwiIkZ7yuqewTAnDmZmlOJlHKtz8+CX1c9zntfAcQXjOTVHdFCdm1E8nChQjRdEw1Nj2m1FEI7TsumnIRycccrcE87KiYgapcNYjunsfBrt/b9Fa/9/ADnZRgG5omHDna9A4LL65K+y+sIrALjxH3vIBDZd6BN5+tjxAMaqkN58/X+eVESsKnIgIEAIwfz8FtzBHN6Hf5zBYb3eZfXz4teNGW19iA3tzcy25xhuux9QBF0VRSJirqXOeXe0VBqzOtRKlTXtfbOqzt/KoDwOYPeKIluefc73ArB39VsnIoZhnwNru/Acn4u2fSdzzQ2MokFGjBTxyPIDHOrtzW7fv//WdedeGRxmZXB46uPd4TJff+jz2e1r7vo4e+8ccscnFYn1zX9Yo3cw/xKWJpKr36LUJYfui7j/mnpPDgsLCwsLi8cC0kJ8Z9aa4XuYjmdrHm3xmCUihBBnCSE+KoRYFUJ0hRBXCCHOPsrnNoUQfyyE2CuEGAohrhVCfO+JXvN6yApqTUQkvY3l+wFPJ2g48WbSBDqbHRwvIu4cLo31XD8jIgZLLssPa8XBwj4ofBhkx9ZFaBQOCWa0EeNgoWTGaOIks9YMY1ZZas0wbRMbcYcq5WD+TI/mpljfvxnhqLecGwQFfwM156Ab4Y3mSL0RncX8relInTQx7uN4gvaC9iBY3VomSwqKCNOaEemozaKyxPeCjPCYP1MnaIyVIiJt9pk9OyUJobezxRlffi0L9/wAe28J2XWDji5dpzUjdZUiQiks1GONZoe1/SqtQXoDVi7+Cu7cgN7+hAN3RUgpMyJiuG+Wd710D3f/8auZu/d5WYuFQRYJqgkL4z8RRXmBGA36pH6ZiDDpGcmEIkIVsV6xdUWrR8bj/Cq98+AzEalH5/x9dBY14SW83CNidZKIaDY6CCGy188QG4YYCzaNiWbUe3fcU34SRUVEGsPSjgjRU8V/a0PhXMyoonq8PzcCBRiO1DEabpOZOXXFfyxDZCq5+UOqMH/SD6pzMejsAaC/W+I7AVKmmZojm0+3dTR1a0tHExGRjEr/gZoWDHecsvXp30FDqL8X09pRRBIGnPWZXyPe83xm913OWZ/+dQaDXGGx9FDErR/tcWjHCHc0w+zDlwBw6NmfYnXLrWx7Wv73+/RXdUotIRue8BWkiJi793ms7iq/d7pr6ly3HEXezM1uYfHmlyHigPNe2OTXb9rOq9+3hZ/9zBmc8cPq3Gxob2a2uVBQCk22ZxglyUxznrmWUhl1h+U2l64mIrx+QmvDRrxeUrrfIJUpe1Z2APDsc18MwP7uI1PTNeIk4t/u+BAH1/bUPm6iRLfNn43neGzf8EQAHlm6f2LsrmXl3fHsc15My++wPDjIcv/gxLhoOOSdP/wifu39L+e/f/DlfPzGv6099n2ayLj4jGezdW47/bDLN658pDTm7qvy133/nWGmdAMynw4LCwsLC4vHIkx8Jyk4XtGsUv2fLm1rxmmPxyQRIYRoA18Angy8Fvgp4ELgGiFEZ73navwd8HPA7wD/Ef5/9t47TpKrPvf+ngqdu2d68uzM5qRdSbuSVgIFhAIgJIGCQWCTBQYMtoFrm8v1vca+gMH5NReuSbaxwSZnbESSFZBQQDnuarW72ryTc4fqSuf945yqru6ZNfL7XnMl1L/PZz+z23Pq1KlTp3rr95zneX6MAT8SQpzxnzPinx8RI4KsSrDCqgYiEsmuoRNEs6Hoz92jTUkBNIEI07DiChyV6RRzh1Xy6naPIUKJ0S7N0ACH69ZJ51UiZtW6sIzEjr8VlQ71CYNEFY7idGyimes1EIZUIMaSkk50jZiky6pPu9LXPGc6Kc3QJUH1ZqRfnEQI0bxunch62nsh262rMswPtTIi2vwkAHwtWWgBIsw0qcWBeHyA8ojQuXjfaWpcJ+5NUX70RfFxURIWUcnspDTDSHghNBzFSjAjMMCOjw17nwIjJL3lEAD7b6kTNBpx273ftFQCGRp0P/GCFiBCShkzGjIagMhoQMJLSDPcapIRoe5NxJzw2/wuolKbVlK6ItQ8OonSmKmnng9A766mpt8yrNgjorGUACLQRpna7yL2nKgpkCDyLDG6l/DzKlGvzxuIwCK1MIgkpG+jSmSn9/kYWkJT6G2O2yioBNGfKrZcTwQIpK0shaJ6hnwj4NBdDWYP+hSHTLa8OIuUkmpeJanTexeQVbW22sttOrq/TErNc6arG0MbTDp+c8c6BgOcgOKqEXLan6Jab6XfyzAkv+8arLoCNKSo0rXvfCqfvwApJXtvrPEP14zzow/Mcc9vrmbLZz+JEWTIFHfT6DuCIxtc8r5uEFAaNtn56kLCSyJk1c7VuIWbERjM/bS/5dxLVZX0Z7XhZnd5kO4QCSAqAAAgAElEQVTdFwPw/F8vYtqC0bPSlNdYzNcUkNmd66eQ7qL+7wERmhGRT5coZdS9WnLmGH/c5R+vHeOLr5tg5ikNcFZ9tl79CuyKWiOLTiujYKYyjus7dGV7GSytppDuwvFq8Xja46Y93+CLd/81f/jt16/YZlp7UPQWVFngkbLyaDk+99SyttFnoz0bWd+/HYCD07uXtTty+63s7R4n1I/M9x7+3IrMiH2TDwOweXAHO0bPB+DY42qu1p6rnsvjD6rnVkrJ8Ye1kepZ6rtkYs/K5VKfiSGEGBVC/G8N6teEEFIIsW6Fdk9rE0AIYQgh/rsQ4pAQwhFCPCyEeOVJzv02IcQTQoiGEGKvEOIdJ2l3rRDiQd3fYSHE+4VIUOWa7V4ghLhTj29cCPHXQojsCu1OFUL8WAhREULMCCH+UQjR83TmqxOd6EQnngvRwojQ0gzDttHK5Y40oxPPTiACBSJsAK6VUn5HSvld4GpgLfAb/96BQoidwGuB35FS/p2U8ibg1cAR4EP/ucM+ecSyi6x6mZZ1lXUlk90YaPBUglEcsgg8N76LSSDCK00TWg6NpRRjj6rkodE9hghpSfKh6Z/geQ3srHoZtqrdrTv+ESNCBlQmA0IfQnsWaXlYuiKDYQoyfVqOMHUaoBgHZl73qZMvACudjiUXke9EZUKzE4qt+vIIiHAbKmnOFFVCm5ofbgEYWvwkNGjhB1FJ08S1pNLYCxEQoc/pNsGA0fPUzwc+72METcPOyKwv+uKMrhtapRl+vY5XqxFGZTGNFMfu00BBn0p2rE1qR3b/LXW8eg1pGQgvxaF/ayb0uROnxIaXkCjd6YWkCyrRzWgzSj9RatOrVgktQ49LMyKi8qJtDAtXV8ZIMkts/fcIpHBrIfbUZqQIGNjVTNQtYROkVZukNMOPgAidjEceJI5Twa2GOIshVloQWAv4BZUcV6YCFo8HCGnilabJ9imgYeaAh6VBueJAAkzqUscFM90t19OIgAM7R1EzInwzjP04Tn9FHsMSeIGLm5shNF2gG2NR9e14rXR4Z7KHgTteQxrVV7pYwnDVtVarFZYmfGQomxUzGiHF4VUUcmpctbbqEc78PNnJnQCc8Y69OPl3EKRqyAe38sXXT3LD+2aQofJbkb6B6eaQBKw/dz/ClwQiYGAHvO6LA/za5wew0iLBiAgYOH0nXvqHANTvXtPCJKhq5kIupdZMLrOJ1FI/QarKqjNbwcnIuLOULVPIdMWMiPHH3WUmi5EXRVKaMT9R56u/Psn0fp8TD7vMfOwCCA3MasCmy1+GpYGIdmnG+MIRAFZ1rwMUkwFgfPFI3CYMVIlcKSW3PPFtda1elRse+aeWvib2uBy+T81NnwYiVnWvX9ZfFJE3xUj3BjZoIOKpqeVAxN4b/5W5M9V3mT3v4YdePI5kRIyILYNnsGO1AiIqh9XzuPPVCqQ7/mADP/D48Pfexne+830Atl2ZI5UXVCYDqjMnf0k7GUvk/1JsQv0/Ogfc/u+0e7qbAH8MfAD4G+AK4G7g60KIK5ONhBBvAz4DfBO4HPg68EkhxDvb2r1Ut7lX9/cx4P3An7S12wHcCEzq8b0feDPwubZ2q4BbgSxwHfBbwIuB7wkhnq3vVZ3oRCc68X80YqBB0pRmmCaGzkM60oxOPFv/w7wauFtKGfNrpZQHgTuAa57GsR7w1cSxPvAV4KVCiPTJDvzPDEPLIMKM3nGuqcTHNJNAhEq0RaASvGy3Qeh5SEMzIhIeEQiJ06N2fN2KRBgSr2sSscK7a5SEup6DndE75LXuliQ/Ko0ZyCD2h/D1WJPVNbrUez7pOVVSVAERKrkznWbSKAwDQ1OzXEedc/GI2rX3eluThCiRjfweMkWVUKXbGBEtfhK6zyh5b0m07UyTEaFNMf0EK2HdRSa5nuajMXbRP6qfjzaQoWwyIlqkGdqU0TTw6jXcaiXuzzJtDv9MjV0M6yU7cgA7J5h8wuPJH9cAm55HLsOtwtBpKVIlV5U8XRyMzxEDEYEkVdCMCO0/kSzLmfSISOlxZTQQEbQtgJgRYSy/lqh854mHXYQ0qQ8cpNTbJBxZpk2QUsc3KkkgItDnVGOMZB8NpxrLMorDJg1nCS+vEt7KZMDckUhCNIalwaipfR62lmv0rU0wdEqLSBHAfDe+mzDKfOR0Rn/wHjJGiUJe7c4HtuCA9ofYdLH2g/BqICReSa3h7PSq5ueJMO55HQP3vJLqV15F4EnSpS7MRkju+Fa+9DKXT79ojB99YI6615RHFIdHYn+K9v4qU9OkZ9VDsvasEsLfzbHLPwbA2MMugQenXpPjHTcNs+p99zB72r8xu/U32fjCgUSpzyVW7UjTtUqt3Uj+YXmC3i1bkfJneLk55GQ34481AarIh6KQ0fKSmmIH1IafpB60lUHV4EI+XaKQ7iLILiH7Z/AdGQOboJLhFo8IzYiofuss3Ipk1c4UxUETOVOi+NQuilaR4TPPjoGIxfpyRgQ0GQwxEKEBCmcx5PPXTfC5V0ywe/feFv+IJ8YejP8+d8Tji6+b4MAHdtC9+4X0ahPNwdIoABOLrVU9oMmIGClvYF3vVkD5RiRDSsmjj91CmDUpLJmMfFfRuO4/3FoS1A99Ds/sBWDjwGlsHtiB6WUxZnswLNh0SZZMl0F1KuTmO25i/+SjZMfUd+Zs/4P0b1XP4+QTzef6oSM/5bO3f5g79n2fh79R4ZMXneBLb5hg7sgzgjlxm5RyUEp5JQoMWBZPdxNACDEAvBf4MynlX0kpb5FS/gZwC/BniXYW8BHgn6WUf6DbvR8FGvyxEKL5paaO+6mU8u263V+jQIjfEUIMJdp9EDgGvEpKeZOU8u+B9wCvFkKclWj3XwEbuEpK+UMp5VeA1wHnAdf+x6auE53oRCd+OSPJiEj600Xm+5H5eyeeu/FsBSJOBR5b4fPHge1P49iDUspa2+ePAynUzs4vPOLymKlJDAuEW0b4KayEjCJKug1fJZ+ZLmNlaYYGJBp9TT1yblAiTX9FICI6zvddJBVC08P0sgROkzkRMSJ8GcQVM4K0rjqQACI08zmO0ioToQ0NLad191qETe8HgMpRlSAF/Yda2hlE5UVVMpnOqeQ1PTsSgzNxW319UVvf15RwMykzSZNaaAUikvKIVNrmot/tJl0UTJz3JWbOvIFsWdBYkixNBLHmLcmIiBktlsCtVHArTSCiMWsyc8DHzgrM/uPqfNQ4+43qPv74jyXbPvM1hm+7HoDz31GiZ5P2wZjYGp/D194Lhi9J5bRUIK/nLGFqmQQiZh5Oc+guB1uXnQzapBkRuGMbrfMDCpgCYm+M2sgesvnmPbQNmzCl5tmrNhdWYKhzZHMRI0KbXzrV2FukNGziOBX8CIiYClk4roGI0iRGVq3do/c5WE6JIFWjPFqIz5FOW3ilKZAGC7oKR30+wL75NXQ/cSGM7yBjK2DLrq6nMhGS7zcY2KbZHlpW0ehWu+CZ6XXq3wngYPwxF3NOLWjvRB97bqiRLpWw57tY86/vw11Uc/zot6ocvVWtUcMJyPX1UywpRpMTtJpajj8yjxGkaXSNMbRhBNMJWdp4P3Ov/lvWPD/NrjcUuPxDPQgh8Ffv5cRLPo1VOExx1UhsgNkObiwsKPZIxspSGFqF2fBY2HoHALu/12xb09VDinkFkixNqWegtmrvsgobEWgxdfd93PEH71f3ZdMeAJ76SZM14ng1gtAnZWVIWWmK2TK546dgPHA6Zgqu/NNezr5erfOeRy6jp2eEdLFEuaSAgflqq5xiptoKREQ/I3PJm/98jul9HtP7PG5+r4DQ4HnrX4xpWByd2x/LVG7583kiktDwLW+lnFKA3kACiHj46xW+/KZJFo77NHyH6aUTmMJkqLQ6Zk6cmDvYOi9Tk8yW1D09ZeRs8ofqGL7ynEhKQ8bnD+MFLv3FEXKpAtlUnjWeYkXkV3uYtmDkDPXM3X7jA5i1EqmFIQK7zg+mPtYEIvaqi5heGuMTt/wBtz35r3zhS1/jxx+YozYbcvxBl69cP8XS+P/dlzn59IS+T3cT4KWo/4u/0Hb8F4DThRAa7uY8oH+Fdv8M9AIvAOUnBZxxknY2iiGBBi4uB74mpUyiO18DXFo3Oa4GbpBSxiYwUsrbUKDKz9sM6UQnOtGJ50RE5TmVWWUTG46M+MOwA0Q81+PZCkT0oCig7TELlP9/HBv9/hcepjZxCaVPaVg9oKmF/tgkEpoSCpEEIjy3yYiISoAKgZCCRk9z168wrN3qw1ZZBjRBEM9z8Bo1/Jx6t6rNNpNLO6WS7pCARQ1E+FmVHNiJhLxnUxMYMCxFMRcZldSY9a4WOnEsuXBqhIGkPqZunT9wqGV8RjsjQhsVZqbXtZTlhCS4oZKuyH8iKc2w7AzpabXT2rMukmY059EybE67Ns+77hxhZtc3QECuT427NhPGcgk7AcAIIeK5rdcWcStLMRiw99uq/eiuNKm0NgYNXM5/R4nTrs2RLoZqdx/YfnWOjRdn6d2sDR1n18bniIw3hS+xNSMiq4GIZDUMt1oltAT997yCm95j8vW3TfHAnwxBaCwrRdrwNeCRAGpSERChk/WjWlZSHdlDLp+Q11ipGIhwq808JDDVXEVtI88Jt1GLGRGlYQunvhQDEdWpgIXjuhJL1yQydRxhQmNR9dUoHydXSoAgVoZGWRkUzh5S9/ihrzZ39cOptaS1wWRqbjMAq8/OxLKkqMqF26V2wdOz6/TnzcR99/dUm8iQ86GvVkgVu+h/4Dew6l30nqH9GoCj31Zr13RCMuUypW6V5Luy1fzy2GNqvpyBpyj0DcZ+E/Pr7+JXPzvApf+tjKEBrEpFm0umChQGh05aErRSmY3bFYeGMZ2A+W23AbDnhhq12YD54x6NUI0lKts5d0x9j9SH9y2rsBExIvZ95WvM3quYBpX1DwBw4DYn0S5iQyjQKS/KrPo3pY573ltKlNdYbH95DklI/thplDVlanDDKQgvxA0bNBJymNmqerZ78wqA6NEld2arkziLYQuw4hzN0b3nQjb0b2dd7ylIGXJg8jEWx3wO3OZgpQVhvoLp5jCOjup+BzENi6XpBj/+4BzH7m/w7XdPMzF3Aomkr7gKy7QZLK3GECZTS8dx/eb1zj61n9qoWlenb78Ey7DIH1Bz99jxn8XtDs8qKcuans3xZyONswGQQwqwGDlTPWfegX56ppUyIVh1jKnqMRoDiukxpRkR37j/02ocEoZ/cj0A2661Gd2VpjIZ8K13TRMGzyipxkrxdDcBTgUaQLuj6OP65/ZEO1i+KfG02mkWZS3RbiOQWaGdAxyI2mm/iPUrnDc698/bDOlEJzrRiedExAbpIS1G+VG+EnSkGc/5eLYCEQArvXUtz7JXbvMfOlYI8XYhxH1CiPumppa7qP+fiOZD6ccGivbCYJtHhK6aEWggomQQul5sspiUKRhS4CSYBSMvVGDASoyIyEfA912cWiUGIqrTzS+IlB0BETLeuY6BiMQYezc2gYjRswwMUxCIKoFdR4Qp3MpyIKLRqDJ70Cd0bdzSBEau9T012lF3XS1vMOfxs/OYjTy1iXZGRGRsqYEI7T9hJwCdYLYbq1EkyMxSHEqaVUaAjkqck1KPTHcYz0kYARGp1tKRplSPU726qKUZBpnxjdz392rcZ7+pGDMzPL+BYQmu+HAv13zsKI+/+zXseedredmfqJ303vVqXKnZ1XH/sTTDD0kVtM6/qBkRCe8Hr1YlPbuVwTteG382cZ9N70NXEJoSGSZ8J7TJZXJ+UjqB9/wGlamAY/c3kIZHdfQxcqUmzmebKUI7AiJ0GdIgINS3JKv9K2y9LhtuLQaxSsMmjUYNrxAxIpoAl1eapNGYp2dtcz273cdiOQpAKpUAInRVmKg8J0BjbISUpe6PvaRkFz3rm/1Fya+XVzveqQWVIDcSBpTHH1Lzfezyj2PmfMYedbnxz3aSP3EhgV1ny7vH2PmqPKm8oLavSHpmBLMRki33UOwdQviSUMh4DQJM6w12b+AQhmWRj7wk3OoyzX9FSy7y6RL5wSFMNyoJ2gpERIaY+UwX6a5u0mEKZ+ApnNF91OdDPnHRCf7upeN0HfhbrEo3hVyZMJDMHdbrdeDAMiCipoEIqx5g1dTamhm4n1ReML3Pi3fqk/4QoS+5808lmdnVNMonOPvNipGS6YL64FMYgY3lnQlA76YtceWMhUTljKY0QwEQvREQUZng8M8cZACjZ6e54iMKLx766RvoqW9h8+AOAPZPPsaeG2ogYePFGSrb7gZg8aE893zqY8zue5L+4ip6H7oiPufUXo8n71CgT39RrZUIjJBIxhaaUrHZA/uorVbPxymjuxjaeRaF/ep+PHrs7rjd0dl9AKzpbQIRXXXFrlnSay4CInInTmH10oUADJ6i2u7mBgAmn3CpNha59+BNCATvXvVJspMb8bMLzLzwn7j2470UNzU49525GMB6BsfT3QToAeblchOMldqxQp9Pt1302dNpN5v4fRn1vvDz2nWiE53oxHM6TibNaDIiOkDEcz2erUBE8uUhGWVWfjlIxsleFMqJ37eElPJvpZRnSynP7u/vb//1/5GISmAGYUDX6ogRMdTKiIikGZ5K8LKaEUHMiGgm5SYGlTWPsvrcB3jN5wcYOlclNUKuxIjQyXHg4jaq+DmV2NQSRmlWoiLFwjGVWPm6wkcSAOnd0GQenPNG7QHhOgS6z6T5mhkzIuqMPaoS4vrQ/qbpZNRO/ztKmkO3Qb1fvczPPtn6rmoQGVtqaUaExs6O8I+/Ms6nLj3B2I0quW/0PRnvkCeBiKQ3hlYZkCppQ80EEJGy24CISIJQr9BYWkKaguFb34wM4ew3FVh3XiY+xkskp/XaEhghwmx+NrhVV7uYbVak9XRpScOXpPLaI6JQglAiBVTmXI7e5+BWqvTf/wYAznxTmms+qsCNnkcuQxoGfqO5w9t45I2s//oHsWTT+yFtZzGrXcg7L+HGP54DCZU1DxJmauSS0gwrTZhSfbk1XQHFqRPaBkhIWVk9n5oR4daZPaTuR/dqi0ajlpBmBE1pRtckTqNC3+bmWnK7jpLKJ8aYyuJGQMRTyjBy6snm/NXGu5AN/RwtaiBiXfO+RvIGP3dAt9mI8FJx1Qy/IZl8wkUSUh3Zzba3qefHWbCQIuDY5R+H8iJ21uCUy1XC3b37EgwnIFPuYWl6M127z2s5F8DSuPYS6VEJd65URrghkrAFBAGo6VKk+Xw3djaHFaiv68W5VjPXCDQoFJSko9Q9AAKOX/Y3ZErqXphpiV3bzPAtbyOXKjB/xMd3wM9MEmQrLC22SiQiRoRZDxGeRPghrqiy7Wq1fu//54pupxkRopfvvGeaJ77vENoNjl7xURrGYtymsvYhAOoLKtMur9+IVVX3eyHhEzFTUeBmxIToyStmyUx1gkN3qLW2/vwM216Wpb52N1atm9vfOsTk77+c4VvewtEDE3GZ1s1XWMytuheA3V85wG0f/iO++bpX0p8bpnBYMRAiCcSxn6nvpf7iSDyWkfI6AE7MN+UZxw8/jl+0SEkFVHRtvJaufa+l976rOXhTQGVWrcEjMxqISDAirHl1LZPWYwShz+CpNtIMyEyvIbhP/W72hk9iSZPd4Q8RpmT2kM9de27GDz025DZx6+/9WM3Zlju5+dA3+Mhnr+Sul7+eLxx587Phhe7pbgL8R9pxkrZPt534T2zX+otfwIZGJzrRiU48k6IpzQAzITWPfPGCjjTjOR/PViDicZp0y2RsB5bbnC8/dr0uAdp+rMtyOugvJGJpRujTrxOw7OQ6qJbiJL0diEiXjBZJQQsjAgOMkP7THmJ0VzqWNRgrvCdFjAYvcHGdWlxSsTrT3DmPkklpitgjwstPLDtvOmdz+Oo/59iL/5LyWl1C0603wY3ZZp9N74dabIBXG9q/zPchBiI81V/gNnD6DgEw0w5EROCGZk9E0ozGEzuY3udRmQwY+4k2Eux7Mj7OdxKMiISMI5J6pIqqn+p0EBs+tjMi8kdPo/+uV+FUq9Qr82THN5MfO4Vcj8H579QyBT3XfsJcslGvtIwdoGdtniBVw6p3U5nW862PEb6Mk/JUvoDwJSKw+Or103zl+il++vcvJX98B0G6yvN+vaCM8bohPTdCanEdfj0CD0IYv4D8sVMx7jk/PncqlWXgnldi33MF+29WyfH8VmWEnwRfUnaGoE2a4TsOoS1Y960/5IbrBYtjfuw/0fAcpvaqa+jfatNwa3h5XTVjsinN8EpTNBpVdr2hSIRJNcr7sXP5xLlzOL3KR2LqSZf5YwFeXeLnZnF6D0NoMH8oxAgE6XkFRJTXNO9rBA5IMU06N4kRFNj8Tx9l7Fb1tTD5hEvog1c6Spius+WaFFf9ZS87r/OZPu1dLG26N5ZxnHqNLoe5+yJsz+aef/C470vbGL3pvRQO7WwBIpxZtQ5En0q+013K/DI5pihq2gCzqOuWpoSax6X51iQmGkdRlyst9Q0i/JB613Gu/16Z3/7pKq75ixmk8CgdOBtrqSc2QQxKh9T9nT3R0mdUYcMOTYZO34lZVfdm8ys8ELDnhirVmYBK1O47V3HgJw6ZLoOl6z+DM3iQxboCmRbqs1TWqgoSixPKG6K8YRPWkh//HtQLS+QF0RsDEREjYpJDd6p1u+78DIuNGQ5d8ZfUNqoSme5Uit6HrqTxwTeyOBbQv8WmeOYc1VHla+E5a5FYLI0dJ3xyluzkehCS89+pJCVzD6n7PnHDzXz9165h7IH7Yp+I4wmfiMMz6jtjWKzhe++bZfePr8KS72T49jfS/5138ulLx3jgy4scmnkCgDU9W5r3aVwt5mrxGEdm9xGaDeqD+xAYBLMKABGVByjeP4O0PIzBBWQIt99+FwDyG/cRcgkAufL9YAqOds2DkNg/O8azoFjD090EmAXKor2808rtWKHPnqfZDqD7abYrJ34/hwIhfl67lvhFbGh0ohOd6MQzKYKTMCKiDb/wadkLdeKXOZ7xby4niX8BzhVCxNaIumb5Bfp3P+9YG3hV4lgL+FXgx1K2ibp/QdEEIkKGTlUPa3Z8C8c/dClfeM0kswc9DJ2VtTAiVjCrhGaS72tfAd9Vl7UiIyJKjgO3dZd6MsmI0GaMhmBpQu9+5zQjIuHTYBkWSxvvZXHznQSuOrfrOk25R5IRkfB+iICI+uD+WBoRt9PX7WswxXMc6sNK2z/2UCua2pRxqAQ5+hL0JweWXXd96NH4737DgWgeE4yMCBywCurc1Wm1ew1gp5tJuVsLGf72/2Dw7l9lcvca6rVFCkdOB2DLZTnSBXWtUSKfBCIcDURE0g6AdDZPo0dRwiefdKhOB0w9HiICSwERWqZg5wuIQNLz8OXMHtDX6qhzjF/wRQrlDIYl2HCJmtPCkfPwHTU30/ubYwjuODuWBmTSefJHVfnVM19b4AXvhoVtd4OUsYwHlE9D0yNCHevVaxheF4UjO5ndJ/n2u6Zj2UejHjB/1MewoGedjevVCdM1SFXxahJnIURaHn5unoZbZ+SMNC//0iIHX/lBnIGHEUZifjI5nP7D8XVM7lHrx+k7jNutktmFYz5WYJKaU34D5YTUI2IfGG7I9svvJTQrpBYHOfrpTdTmgrhUa71fJZ7ZVI5TrshxwW8XCFMquXW0RGLkzBSibw67ViY/++vc9Zlmyc7hW36duq5MUl8ICJwCoeWQKmvj1UQ50HYgwglUm1KXSloiICLyjoivJVRrs1BUgEW+bwCzrvoMMjWy3SaGMUN1+C6ENJm5pZ/JJ7STY7fykVmYb2VZRJKLwdWbGTh9J1Zdv0z0L7Dp4gyBpzwzKo0FigfOJrhvK3ZW8Guf6ye/Wa3nRV0CdNGZoz60D2l4LE3mqC8EmhERSTPU9Sw5c/ihRyHdFft7ZFN5cqkCYrqXxRMB2bLB4Hab8YXDBNkljLd+l3ffPcKvfbFMZbV6noUJL/6DMnP1CcJ0jaB7HESKvu2qmIHz0xARWpgjc2y4MIuVFvhHy5j1IpV7H+fw7bfy3be9gaGiYiMlGRHj7hiEBuV/eTdP/KCGlQEaX6Yy8i0qqx9F+oKbPrKA2LOJ7lx/bLYJMH+sKT16cvwh9ozdz8yOH8W/7980zWV/+n767pqFUDLTpUCWhf02Gc8ie38RzBFyvQa//9GP8/zuCyhWLM5YWM97P/L9ZWWZn4HxdDcBHgfSKM+G9nbQ3GyIvCDaNyWeVjv9zpBLtDuA8qZob5dBlQvfDaA9Lg6tcN7o3D9vM6QTnehEJ54TEa5QvhPASGy+duK5Hc9WIOLvUC8C3xVCXCOEuBr4LnAUVVMcACHEWiGEL4T4o+gzKeVDKNfu/yWEeKsQ4kUo1+71wP/8BV5DS8TSDOnTv9VGEpCZHSWsqs8P/8yJEUTTbTerVH20ABF6dywyOIx+rsSISKWycZtGvYJXUIlBZSIBGkS+CUEPoQeZkiTM6NKY5vLKHtIUsQTAc50V5R6xlKHSULR6EVIffAqrzYAyAjq8BKhSXf0okpDjDzTUzn7cZwRu1OP5RAq8CZWkXfeZPjZeXefgKz8QJ5nQrBBhSNHyQh9V4TALKkmsTgeEmhEReSkAPPLNpm5/bt92GtUl8kcVELHmeUn/heVARFQ1JJoPACudwelXYMu+m2t84TUT3P7b3Wz8wl9huAI7r9ZAqlDA8CWlA+cAcMav5uke2cP0Wf/K4o6b4nWw7gI11szUFnxHXev0vuYYZD0Ts1XMsExmZg3SdLn4vd2su0jtuhoBLXOTSmUSHhGaEVGvYy+Nxm0mn/BILaldbXdBJdS9G21MW+B6DRAg+pqmqqK8AKJZOlRa81TXPBrf1yjSqTxhuoZfnCRwYe+P1f1x+g7hdikgYv6YT7rShxGksfMO6WKzj4hFYLghg9vzLO18K07PMaRr8uCXKxy5R5DqdrEAACAASURBVM1RfVjtbKe1zCQJHESmkUII/HOUP4A99VqQcOpV4GemSc+vYmKPAgFnDqj/cBs9x8mlNaOlWGqaULZ5P7io+9NV6tdjUGunUplbsV1kQpkfGGwp9QlQn5tlcdO/ATBxWy72v7B6lURkcbHJsnB9B1/6CD9kcOtpdK9dj1mP+quw6w1q7T3whQoLEw5DtysZ0IXv7qJ/c4pSRm0UL2qmw2J9Fml5NEpPgBQcf9ClMDRMqqHW0uy8YmO0yzKiKOcGYinFuvMyCEMwsaSqz9QffJJ/uPBUFp74Lo23fI69b3knV3+rzuiuNNMVVVrT71IyiZHz30phaBXGEbU+/dHDWGnB0GkR8LuJ1Kyal8r4CbxHFAARARFhEDCXrlJ+/FL8AyPk+wze+NUhBtf/C2HwFxy67oP4L7kVgIGfXccqBvnqK6/kq696OQf+7VZqMyHCCvEKs9x36BYeOnoHC1vuJEidAAKu+NPt7Hj9m9nx/CvpuXee+oB6/nMntlK6bQwzfSkAG1+YJWWn+c1X/jV/8547+J3f/Qq5nl6eBfF0NwF+iAImXtd2/OuBx7TJJMBdwPRJ2s2iynkjpTwCPHySdh7wA93O1ed+tR5XFNehgJHkJse/AC8TQsTuvUKIFwBr+fmbIZ3oRCc68ZyICIhYXjUjMujvMCKe6/GsBCKklFXgUuBJVAmuLwIHgUullEnXNQGYLL/ONwP/CHwYuAFYDVwupXzgP3noJ43ICyIMA6wU+NnjLb8fe8RVSb4UGJ72B+gyCDyvKc0QSY8IbcLo6eRdyxqMFW55Kp3TbRzq1UW8ot6hTAARkTTD8BS1Ot8frigJSUo4goY6p+e7CQPMpDRDjbFyNI0MwOiaRNqNlgoXqs9WIML1HIJsBWfwKQKvWV5SSokZ6vKMWpoREJBaGCR0U+T7DdZfkOWc90iqax4jQUCIGRSGbJ2f6N9mrqrHH8SVJ5LSjGRJQ3d2lPmxDLkTipa9+pwmEGFr8CKQzbltOBEQ0Ty3YdssrVWU7Ee+0oirTWRmR8lO7mxKM3J5hC/jKiDnvr3EwKnfYPyiz7esh1WnqrFmpzbi1lQSnmREAE2zyHFVqaMxuA8rJajpxNcMWkEsO5Vd5hHh1qqkFkdb2plH1Dz482rt9G/RVVp0NQJ7oCkLMLcouUUEDNUqat2YbdVeMhl1/Y1exYrY+yM1//WhQ7jFJhCRmVdjSZUWWo6PynSabkhhcJh01mPs0r8D4MEvVzh0l1pTi1pSEO3QW+l07NVQqzdLXtZ23kx1RG28Dp2W4oW/00ttUFVROHK7mpuZA2q+nd5j5NKRvKoUm1A6bdUwXEPdj6JmRETlSGv1hZXbaSAi1zeA4Whz1YYCIpy5WZbWPYqfXmLxkMmx+xsYFmRXq++ZSrUJbiT9IXrWbdRARNTfIqvPSbP23DTOYshT77qY9NwIVu8i+77zOo7f+zNKWcWgX9LSjOinl1c7/MfuayAMg660ajc9dRi/IbnxnRZbPvsJyo9d2nJ9PYVBioc0EHGBWsdTGojwnjxGZfwEd3/8rxjp2YDXNcWUVL4fkfGlF6rzNmrr2HrVr2DXFNtnYVAxKAZP1VK48U30ZPp58Z/8PwCMfeMHCAQTi8fwA4/FY0eo92cYuEvl0Ze8r0zvRpvRcy+g8FQNIQX7T/kHyNfJjW9h6ctjHPvZnRy983a+9ZbfA1S1mFQqxZMTD3PLE98CM8CTb+Hi9zzB4LY0Qghe8mcfZdMjBrjq+S89tYP+n86SH3kNABte2CoJe6aEEOI6IcR1wC790RX6s4vg6W8CSCkngY8C/10I8btCiIuFEJ9C/Z//PxLtPOAPgTcJIT6s230IeAvwRxpYiOJ/ABcJIT6j2/0O8H7gY1LK8US7D6DeB74mhHiREOLXgY8D35BS3p9o95dAAPyLEOJyIcSvot5D7gG+/f95EjvRiU504pco4qoYgcRMSjNiRsQz3tuoE//J8awEIkDtckgpXymlLEkpi1LKa6WUh9raHJJSCinlB9o+r0spf1dKOSSlzEgpny+lvPUXOPxlYdlNdNBvNGj0qJfQ3AaVnBx/0MUwTAw3i5Ampu1j2oLwZNKMNkZEDESsIM1IZ1VS57oNnNoSXkHtZCZr00fggFVXCW9pyG9KGZLnNUylnjUEjboau+c5eMWozwQjQifKtXH1Yi261Ptgkv4PTXddP2i9lto6VT1t/y11pJTc8N9mGfynj5I9saXpJyEDMpO6ZOA21W9a70YnS1l62tyyfec9MtQUWYVvVacDZOQRkWkyjOePqrmqDe8FYPyBF2IEadz+w+TKTUAgrdknPolym7rCR1LiIoTAGXicINWk65d3qTHkj7+wRZphL5WxnCKpkqQwYOJok8Mks6R7NIWfXsKqdzF3XEszNCNC6kR28YQunzmjEt/GgGKM1JYUGNC+dtLpLKHtIAnxHUnoSxr1Kmmd/BcG9HUfVgqqcEoxRFbtjCqHqPuZHm7uxmd3qQTT1cactapKupNsEYB0Rl1/Q3uFgKLkV9Y+jJ9XO+ELR30yC0p7bxZb5QxOghGR7x8gk8pRHX0c+maoz6nrKQ66eD1q3UaMCIC0oYClqq5qAVALKhz6lY9Q3vW/eP2XBigM5GgMKCBi/E717Jx4WF2TM3CQXFZtpKZL3YmynM177QUuoSERviSvvR+yKXXNkYklgB/6qlxqKOOSofmBgRUZEUEOljbeFx+79twMpR7VZ9VJgCqNqNxuQHHVKN3r1if6qyCE4MXvL5MqqPUQmg3c4Y9x7O6f8OVrL0OrdVhw1NzN15QRZpBWhpURcFguKebDzPwY+2+ps/hEltTiIOG/vJAfve/3OHirYnB0y1EKR3aAIVn/AvVdMbmo1knEYJg/9BTdDfU8Hp9TTIJpDUSEvjrvxG7YdMVViFBV2JjsuQcvcCluVgPOHd/AlgsvY+vVr0CYJifuvJO+/BChDBhfPMqxfY9g187ErvbSvdbklMvVmhh53nmYjZDueQvfqjG7/qeqvyPbWHfxizjnN98DhlqH/tJezhy+IJ7r4pMVVhUy7HrLS+LPsuUeXv6Xn2bkxnuRcgKz0UP/tt9labKXVF7EYMwzML6u/7xD//uT+t8fTLR5upsAf6DbvAf4EUp2+Wop5b8mG0kpPw28E3i1bvca4LellJ9oa/d9FLPhXN3ud4A/AX6/rd1DwEuBYT2+PwH+CXhTW7vjwCUo5sY3gU8DtwBXStnZ4utEJzrRCUgwIiQYyfKdHUZEJ3Q8a4GIX7aIpBmhDAncBgsb/p4n3vp2tv/ZXuysYP6oj79kYToqibYziaRcAwJGsmqGTvKDULeLpBkrGJpFjIhA+tSXFvBXZESopNaqq4oTxUGXMK4y0cpgiOQMnpZm+L6LV1TJyGIS3NCJcn1cAwNFlTgsZ0TYLdcQgQy1rcoRf+8P6zz01Sp7vl/DqHex9ru/T0OXHAxESGpeG9+tV/2kNJNBmoLQ1ywANzLzbGNE6H+LjErUqlMh0eZ8OmKSuJLFsQApQmbO+D4AzowCP9xNj7T015zrBCNCszHaJSmGDBm76HP0bfd51d/1s+7NKvnKTp6PnWtKM9IzChzq2hAihIilHnbivgghaOhKI5P71DXPHFQ/l9Y9CNAsy7qg+m50qYS+XtWlHGUrGJBK5UCAtDXzpS5xaouktPHema9RSW745DrsxT7E7E6ECVteouYgKkeaG9EggYD8Ng1ehQ2klDTqy0EVgGxO9R2ZaAKURiVBpoKfVeOeP+aTWlAsDJGbaDk+CURkymWy6SIICHbcE7fp2zyDtAQibF3jGVMloElAwPHrSNulPLKE0EyhsG8PgV2nejDL4pjP0fvUPFVHHqeQV2yAdKkpzUh6RNR1OU2jEZDpUpVKchllrOgkJBwRi8JohGTLqs98/2DMYIjKclbnZgizJlPP/yYlXR5428tylEp9LecDqLoRIyKguGqE7rXrEwwL9buedTZv+e4Q4rI7OfjqP6I6eUN8fGWPYiREZpWzc+p+2LmnECaM73ZxayH9/Wt1u1ke+07zmmQ9xSNf3c03X/dKnrrpx9iPn44ILTLbp8j3qrFPzCv/lNSczynXXqfm+wnFrDk2FzEi1HnN2uMYZp25wz5+sBNh9OJn5nG7xpleGiMcVcdlJzex7pKXkC33MPr885FBQJfbBDf2Hr6H0r7nA7D1Jbn4Po8+Xxm9Fu9U31/VUWURkGrs4sqP/y0X/cGHOO21/139buJB/A98k02sIzsbMPTjKc5557sxzNZna+2FF/Pa7/yI8ojqc/r4m+N7lso9M//b1qD/Sn8uTrR5WpsAUspASvlhKeVaKWVaSrlDSvmNk5z3M1LKLbrdZinlJ0/S7ltSyp263Rop5YeklMu246SUt0kpz9PjG5RS/hftC9He7lEp5UuklHkpZVlKeb2Ucqa9XSc60YlOPFcjDKOqGe3SjMisssOIeK7HM/ON5jkYkYmLROI7DtICvziLbVuUhrUB46yF6agEzEpHQIT6KWQryNAsealLbcYeEctvecRAkCZUZyYI0hWk7eJWJY2K9g3QiZhdVUlvccCJV0+SEQFgaKpBlBB7roNXUEBECyMiklxMq8RXFk60jCeKGIjQJS8jRkQweIL+rTbOYsi/fbhJLbecEtVjKsEKCbGX1N+jeWyRj+j5c7VMYFnp0EjiYtSUqV1DQqh2xG3Nblg87iNDoGuepQ33g2gygv2trb5lkR9HQBMFjhgR1rJ5FMyfdjMX/PE4687LYA5W8HPzmH6JRkUDUrk8mdl16vrWaw8Cze5on8eIPTBz0MBvSCoTAZKA6ogyX1zQjIjGvGbIlFTyXq/pxLQNiMhoRkjSJ6JeXyI9q6pUbLoky/DpKaSTZutnP43AZP35mTiZ9DRIlus2uP7bg7z9R8OktQFoaAm8WpW6BiJsYbedW60Zp+cE5/2GStA3XavayuwUCFgcC7BnR/VnrVUhYiCiEZLp6iaXVX3UT7uFc99W5CV/VGb0PEXpt6TZ4o2RSan5qTeayXtDy9sjnwaAdMqkslb18fDXKiwcCwjNKk7/YYoFxXI4mVllBCCYTki6pMaWz3Utaxf5SpiNkHRJ/T7X399kMGh2Q0V7QIjyHG/+9hCv//IAp16Vp9StQLp60JQWRWCD6YQUV42QLnWRkWotLcw1WezFQYvaxT+iPnQAsxbEVU1qexXgFZlVzleUEWYhbTG4LYUM4MRDLoMjqrRlrYqqiGEGzOz4oercVvKM2/70Q1RvW6c+O2NPfO7JBeUrMrpqK9uuUUBE8IiS6RybVUBExIiwFxxKg+r+3/kJNR9u124QMLF4lGn5GH5mEatRpmudYitsuuxKAKzDipHz1NTjPDW7l9KB5wFNMA0g3z9AecMmSj+b4sVDL8MeVPIikT6bbFl5N6S7VNnSrlUG7uFxsn/0Qzb9r32sHzmd017dbl2gYviMXbziUy/FzmpWltEE9zrRiU50ohOdeKZHIPXmY6gkx1FEOU+HEdGJDhDxDIkoAZYGuEtLLf4LOZ24NeaMGIgwU1FpzJW9HyKaf5y8/ztARIRMSlNQmVNJnCypZCQCDiKWgl1VjIh8b3VFSQgkSmjqBNvzG03fifEgrs7QBCJUAuUX1I5/xA6JItKSRQaPvt+Ir/GcNxXjdpsuzeKecQsA9XFFUw/FciCiaahJ08fCi+anNdluVh9xyHZrv4iGGm8qq5KRuSP6i7Z3XnkmbPgEIjVFZfUjmKumW/pLa2+DQCSACO2HsJxZoubR0YCOH7rUB1SSN3dUzVGqUCA1r8Ch/NqoSomad9tMt/Tn9agEafGEHftBBJlJ3O4x/bn6rD6jjnN09Ym69kJoZyVE7A4ZAxESp17BruoyksMmO1/VLLkphc95ulwigC/V/Uyn8/RvTtG1yiKlvVKkZeAuLcUVRdrnJq3NOkMTzv+tIm+9YYiec1SyaRJQXmMhA7AOqwQwSB9rOb4eGYT6AjtfIJ9XrANHLHLhe7o549UFanV172zZxsaIgAhdXjOUYWwYWexqAhEZO8fSBsXaufvvdAJcehyMkEICiGiW72yyAppARBADDHnNomgEzortIuZEvr9pVlnV0ozFqpJJZE21oz58uprncp8CjVya4FlFe1CYtYDCkPp9xOCY0+yGuG1DtbVqAWf/xm+rcz2q5ElLkVllTf0sZsuM7lLnPXSnw8h65dVgHT0NGUKw/iBzp90EgN19FZmefqb2ZageyOFnF1g6RRmCVhtL1MMawg1Zu/0cBnco/4jKPY9jmSlmquPM16aZq04ipMBe9Bk6Vc3ZiYc1qyqnmC9HZ/ezf9/d1DQYN7lH3euNl10BQHC7MivdfeI+pmdT2NUerGKdwe2t63H03PMRwNpHQjb8830QjhH6WWae0iVKdcWMC3//bVz0hx+mZ/NW1l96GS//1D9gWK3rKxm9G22u/uteNl2a5XVfHKB/c+qkbTvRiU50ohOdeCZFmCjfmayakWSBd+K5HR0g4hkSkaxCGoJGZZFo89kyLHI96ja58wkgwtYVKfyTABG6v7h8p2ZGGG07/uocEUPAoOGoJFZ0qQRmacKPxyF8G6s6BEKS7aquaFYJTZ8FV+/Me75LmK5DysF3VJnG+LyhQTCnkpwgr4CIqNxjPD69sx9oUMXTP03D4tSr81z36T7OflOBl36wDKsUZbsxoRKoABkDEcUhLS8xk4yIiGURySNWZkS4nkO2rIGIegkCSUrv3s9rIMLsUwm7V/oJxvbf4tB1H8K2W/XckR9HmAAivEiaYbYDEZpZou+J6zs4Wl4xc0D9zs7lsZeUFCKzSq2FSOrRPo9+j0rUl8azcSlBPzuOV1K75YsnfLx6iDNvEhoebkmBRxEY0M5KiHwagqiEZy2ktuRg+GlC08XOCba9PE/XJYep9x+ksuF/s2pHc0y+Rsoz2eYub8TiCG2BW6nErJqU0ZqApbMFCCQIRe0rr7Wp6mTbkmZcCQFAEuJaR1uOr2tPhIydRQhBvqCT/LBZvbeqTTpTbdcdSSSiEqANrwZCsSvy5QQQkcqzuPFeRK4JMCyu/w7Q9HtIl1ZmRDSlGSHpLgVEFLRXRCNRYTjydjCSjIi+fsw2KUW1rvwscnbrjnpPvwIWI8NLgNkZ9RxmRBorre5XxOBYaisdWnGaMo6R551L97oNMK3BD82IqHiqTXdhgM0vUoygPT+o0b9uG8INKRxSFV8WN9yLM3AQKU/gOXk2vvS9kFF2AzM7f8isq8YVGVWm5jyGTj+TwtAw+cEh3IUFhrLqub/rwI+QSApLBkYg2XpZmkzJ0HMuEEJJqJ489gDHp/ZTHVVARORf0b12PX2nbCe1dwZLWByZfRJ/XlVrHN0llpXK3HrVrwBwz998lPrMNOmcAr4m92oPi2PqZay8JsU573gXb7n1Hl75z1+na/Vafl5suDDLr3y8LwaPOtGJTnSiE514NkQENIgQzFTzXSo2q6QDRDzXowNEPEMiBggMcBcXE2wDO6ayK0aE2gk2Lc028FZmOkTgQKBr9EZAhLmCR0QTiCA+r9GrEqGo5KBl2GSm1iEwyffUkaETt22XFMRAhE6II5NJUVQJyWKCZZFaHIDQpDRs4ht6J99uAyI0curH19JaNnT9C7Jc8l/L5MomxohKOP2pUWQoCQ1J6mSMCMuIS4y6eh6XgSqRxCVwYyDCcoqIUMbGO3PaqNIa0FKUoBFfeyrVCkRk0hEjQsafuVpq0s5giIwyG1oC0KhXYkbE5BP6fto2dkUBEXYEhGiZSaoNBAnLiqruzOSZO6znMjeOq4GIheMBC8fVvfFKU4QpiZQyZmS0AyVpDSCECUZEdU79pxJmlxBCYKUEq996mAOv/69UBr8Xs2EAfK0NTAIRKbPJiGhUFnEidkcbqGJnsxi+OpcXG1uqZNuWFsMJIMIrTeHJxZbj646a00hmUSgqCr0bNpkBNS1JSbXdl1gioZkJ9dinISBT7onb5bIlwkwNrvos/Vtsdr3epTaq/DhyMRDRtaJZZUUbYZoNia2ZN0VdxtNLGJ0uzivZg+0bCEOvz3SatFBjXlpSwEFUPSOfaTJSAHoGFZvGT6nylADzs4r1kAQtSiXFMKomKnaEYRCbYZpOQPeadQydcRZWVfUTeURUQzU/5e4hRs5M0TVqUpkImNhdJDtVpvjUWQBMrv4JhBJTKt+PfXdcCfbzQS4yc+b3ma1OEsqwCUTMugztPBOAwdMVK6LXU9d34+NfAyBzQq3Nge3reO0XBth4UYar/6qPLWuVcer+Ew8xY8xTXaWAiCP3OMhQrdGNL7kCw5f01fQaOaTOderlw7TH2gsvYejMXc1/X6Ceyam9HlLKmBHRNbocCO5EJzrRiU504pcxYj+0xDszgKmBiI63byc6QMQzJCIGgxSCRmWpmeSbNrledZucOYHV0IwIUyf5mtbfbkIZeTrEcoYgMqtcgRGRkGZETAx7i6LlH7yjKRso6BJ6PWtnCU5SrQOa8oZ2IMIsaZZFAohIa2PDnvV2/IW1LOk024CIqL82uj6A1eXg5ebAzygDSS+D2ShgpGQMJBjCQOhkw3P0GDW4YYqVgQjfa8TVL6xaCZEoRbQ0psZlDzjx+Dx9X9KpXEt/cfJuNBPyiNVit0lSIk+GiFniOFWcAVURYGKPGm99PsD0SgSpGkFaJa+R1KMdiDDtALc0gQwNpckHvMI4YbqKlQvx6pLxxzV1vaQSXD/0aOikvT0hjwCEmBFRDaktqOuS2aaRY1QpRBoQes2SoYGIgIimvCa696Et8CoVGlrek2pnyWSzCF/fQ70eogobKWG3MCJmT7+Rhu+0HB/JILLaa6LUrZN80UzyI0lKymydx0jG4erqgLXIp8EJyXSX43a5CLAo7ef6bw2x9UXTBGm1BiN5R7pUwmwEekxNIGJpSclCUmHTnyKqiuEZTZ+VJe390C4fyadUQr6oGQw1fb3FXLmlXSQRCdIGtRl1zoUl1Wch2x23K/cM62tt+mLU3AoSiVEPMIRJcWQ1PRs3YzRCTGnQ8Oss1mfxRYDwQrr7ViGEYOer1Lq54b/NsvZ7f4ERpMmedhCvNI294LFq+wkQ0FjSrIP6p0hnQ4LQZ7E+x/GJfQBkliQ9m1Rp2MHTd6pxTqhjZqra+PbgHIZlURpZTe8Gm1d8op9152d44Wt+G8MJqJkN/LwJhUMUBk0Wjgc8/I0qJx5uEJrXIa0L6fvhFMXKKPmjp4LwWH9hs4JKFEIIrvjopzjj+rdx7T9+mW1XKaBjcq9HfU49W+miiFkZnehEJzrRiU78skcszZC0SDPM6F0PueJxnXjuROet6BkSQgMJsUeEudwjwpkjlmYIMzKCjPwS2iQFGtgIA+0FEMkZVpRmaDq8KeLzpk9XiejRex3caohl2hQPKyCiPDpO4LnIk5hVxiwCN0rM1bmtbpVoRaUubTMVV1joWWcRoL6w2hNoSzMkItObQLM72nfo1WcpXC1BmD3kY9XVTne+X7bQqSNlRKMdLDFa5ydie3h+o+kR4ZQQIXF/EcMjPRDt0Htx+cl2ICITAxHNz6Id/XYApp1Z0mhUcbsmkWaV6nRIZTpg9pCaE7d7DNdZQoZhDGy0n9sUJk6voow/dZsGIooTICA7pK4hAijcotoVb3hOPEfLgAhduSPJiIiSR5ltJqyx3MIy8OrNZDvyycgmgIjoHKGlADlXS2ZSdmvyZ2WyGG1ARCRTSBlpBrbZ5HoMjO4qM2f+IL4fUTQ0WJPNqYQ9Mm30E0l+VBUj03bufEGtKQ+fUIYtMopsghFRyKu/RwCDszBPGAERtgYiTmJWubiogQjZXOOlXj1Gs7mDsFTR5UVpBbHyOQUiVGvzBK5Lw1TPTKnQ39LOMiwMHzAEs+NK1lTREpek8Wa5T5l+OmET0En6Q5RGV2PaNj0bNyOAdENd5+EZVQLWqgYU+tX4z7m+yNaXZvHqErPWS5CucGzX3wOQmWiw4eJRrvhwD+miYM2ufdD4Z1IVdV9mquMcOarK9vZlB+NqE/3blGwi81izFCxAZsyha826ZT4Ma89/IeVK83tm56rnce7bNJviQ3N88XWT3PP5IhQ/Bfv/gi1ffRcCg57Rw2S7VmY19G7eyos/8ldsuuxK+reo+zG112VWV6fpXm0tk3R0ohOd6EQnOvHLGtEGowhlizTD1saVsgNEPOejA0Q8QyIGCAyBm2REGFYszXBmm0CEYajkJ/IXaAcY4koTMYvg3/GISHgmROdNdQcMnZYicOFvLx/jxt+0yY1tRQqf4sBx/Hr9pNIMK+GroMagzp1apRKcsUe0tMJKkZ5Tmu6eDVaTEdEGREQJetB2LSsBEbaZotGtgIi5Qx5mTSVehcG2spy6Bme02x8l7+2miLHpp++S7Yk8IookLB5ihke2X41PmjRBlVRrEpvWZSeTBSg8zcZY5o2hz90EImogJLKgqgNM7nFjiUWjfIJGvYJbrRBa4iT92TiDB1o+a3Qpmnt+UP1ncPCnGqDoUoCFU1ukEckj2u5LBEQEaQ1e1EKcil4L+aYvQlyVxRL49WZ1hkieksl3xZ+lLF1a1TZwK5W4mkk61Q5EZGJGRASUOBo4SJtp7IzB9d8eYuQPb0XajbhCRxQRMJHT5y72DEAoCc3mM9PQTIdIvhFFtqtbySkENLx6i2FkCxBRUoBFQ1ekaCzMJxgRah2kEtKMpFllpaZkDZHEAqC7PKTmzRZIXRKrUtXtjNZ7XdJgSc1doj43i59TC66Y6aY9Ur4a08z4IdWn9pXo0uAMQN+wKkfbMBKmlo42tawrWQZAz0ZVCSM1p57Rx08oU0h73iPXr55FwxRc9Ze9/Oo/9NN15Y3se9N/YaxHGVxmJhuMnHMup12T5113jPCyP9+mkvfD6rtjfP4w43Nq/a8a2BSPpX+bMr5cfHQvpwwp1BENPAAAIABJREFUqUfJLJE77ijfihXi7df9Vfz3F134Jna8Ms9p1+ZJlwTldRbbXpbDzi6CdQqNxY0AbL3MW7Gv9ugeNUnlBdXpkH03q+dncHvHaLITnehEJzrx3AkZNqUZLYwIO2JEdKQZz/XoABHPkGiaVUJjKQlE2LFZZX0uxHRUUmQInUBrfwGjXVKgk/SYRRAbPK7EiEhKM5rnfckflhk4xaY+FzL1qGo7e9p3QVbx6rUWH4uWc8elQ3VlD53Y5dapxOXEw00GQIs0QyfvdpuvQuQZEf0+AjbMlYAIK0UjYkQc9rGXVPLWvbrNCFIDEW4kzTgJuBHNjR94ZLu1NKNexNDfnZ4TUp8LMSxIlbU/giUILXXP2iUFkQwhmjvVt0ruljFBUOeOfBIiQMIoKR+Mid0eU0+qcTfKJ3CcqmLTREDEsjKoFosb7ov/nS17NPqU50RhWFfo0EaiXlEBEbXKfAwopdvGl42AiIwaX2NR4lfV9YpcE3CwEyyHJCMikqdkE0BEWrMPwpSBW1lKsDtawQAhBBF5wdElPqNymmlLMUHyvSaFfjXmpK8CgKdlFVElimxPTwwINCIGg/6ZTbcaPLazGJKlNpPSjEjuEUk4nIV5goxaQz+PERF5MWTMJgCTyRQglMiUQW1+VrdTcpys1cp+6epSMo66X6U+N0sQAxFdtEdal+acnVb3vB6ocfRqFgRA/6hK5j2ruXsRMSLMekD3WgVUdG9QCbsxpu7Jo8dUpYv0rEu+vwlsCEOw5nkZdlxbws/Px5/npn0Gd5wZtykMDbPm/AtJT6g1eHz+IHOeuvZ1G89qXu/adViZLEtjx3nLWe/l96/4BK+tX4HhScrrNy67ZoBTNp7Lh675J95+0QfYOnQmpi244sM9vPvOUd76vWFe/ue9vPbzGXA+B8F+TO9/sutNZ6/YV3sIQzByllr3931erY+kb0knOtGJTnSiE7/s0WREtJbvtBJecJ3KGc/t6AARz5AwWhgRi61AhGZE1GZkzIgAtWvpayCiHWCwIyAijIAIXdlhBUZEBCRIS8S76ZZhM3Rqijd+fZDXfmGA7ddZTJ3zLaae9wUCx1GMCOMkZpW6vwgkicaQX+2QygsWTwRUJgPsBCOid71N8P+y995xkl3lmf9zbqrYXZ2me3KQRmFGCSWMBEgiGIkkB4GwQWAZG1jAmLWNjYX4YWywwWHXOCxrcMI2YLzYeI1YwhoQ+AcWySAZSUigMChN6p4OlW4++8c556a6t7pHXdNh6v1+PvPpCqfuPfdWdU+d5z7v80pl1MqUFERCBA8QBkGkoGYzFQDA0Etwx6UQ8ZALa0k6Lvamx6rWmJ7MICgSIqJjCVxUo64ZDaisydZR8Ud2ZEaHZaqgRQZu5osBUctLncGXAZlKWDGzV/3lvl1XBWpK94s8vqPfc/H4neIcd7d9H47dlo6IfBHE1MwoYwIAxne1o3mObk//KfBHxT667cWEKyH9vlhV0bkikHkQ3cUAXlfsU6slhAj5PnEz44iQH5tqPSFESEdEaAlnkCuFiHI5LUQAgC7FJCVE2PL8lM14nhXV2UMLEbjx1XxPtg5VroXy+ERCEFDdMGT5RjkuHQGAcsrF0IlyGoxAi3JDAGB0Qiy8lQjSnp8FtzSAx3PUTROWLKvoOIn8BRkumRQYGGOQFRZYmHsiPc5Mn5+GzHSwuQM74Yio5zgiqpr43M0viHIcG+KcT87EHR3Gt+0B80Nwg0XnWzknjE6Axl4hRFjVGkZ27II5J87dY/PCgWPNuahume7Z97kXXJ26v3/PpTAr6d+DAz95I8rHxJwOzd6HjuUBIcfZT3lmNEbTdUydewAA4B46jAPbL0PzYeGcGNuX74gAgD1T5+Dp+59f+Pz0wTPx9DdaKIWvxA1/8SpUJiYKx2bZfXn692/rBSREEARBEMNDun1n/P1aMw3R+QwkRAw7JERsECJXgsbgJLtm6LEjojMXRF0zOMTVSC8SIgocEfKPgJ9oedmz72RphlzEqscYY9jxlBKuvqWKo8/4KLgB+I4Dr9MuDKuMXARyIadcGeVyBdsuFF/GH/5KF6w9BaPbALfaqG3RopaW2U4TqiQg4CEC1ylsGwoIl4UzHmdEmEtiQTa5L70o0CAdETIIMihyRMj7fuDFXTO6I5GQofIh6jN64jxqcXlERojQNC0uKeiIBZ0nhZps+YGphAh5pVx11yhtEcf38FdsHP5PFxwhOtt+IDIkms1CEcTQLYABpQv/D2pTGs6+5lA0z9Htidq9CgOviKvO3U4zzrsopRe7mmFACzj8slhAdxdCBF1xDHo9zmSISzM0eFKI4JxH5SnVerw4LhnSEWFqcJtxRkR1JB2yCMRikmovqtpplhPzjBwWstQDEP8xBiwEQo5aY0IecxW6J96XlsxdcGQeggqdVFiJgMmu10ZzSQRCJssoAKAxJT57vhaKzgknRICixaxUVoAq/egmhAiVO1G10iKI6YvXqc4WXVk+Ui2lx41PCgHOZR6ah59AUCsuzaiZ4rWLUlDxdHFsW3bGTgLdNGFIHefYE0LMihwRnbg0AwAmztyP0ol0CUNp3k+VrSjGRrag7pai7Vz5ktf2jDnr+S9GRXZjueeJbwAaQ2XWx/T+g6lxKifi+H33AgDmHxYiyHhBacZKufKX3oo33fco9jzzmpN63e6nxn/HzArD1Jm9Di6CIAiCOF2JRIYQ6a4ZphWFxiuxghhOSIjYIOiJ8ohsRoRV1WDVGQIPsBbE4oYzYWeOsw0yYoC8Ch3Iq+3KlaDpOUJEYt+hXMSqBWE8JhYrfLsLt9sBCoUI6SKQ2QeB/ENkWhUcfKFYdH3rb5vwH98FAPC3/ACMsSg9t1TKOCKkMBEihG/bKbdIFssswW0cBddcNI+EqB4RdeQTuzNOB5m0qfIPvFAJEdlyBiXoxEKE3h2JSjtUPsToVgOmCv00WKI8Ir04BQAmVeCuFCKUUGNlj1u+VpVGKGdCZaKNyTMM+DYHOICxwwhLHThuF05rKSGC5Hcf0ff/K97wpR0oj8xHwtPk3vj8TOwzYMg/DXZ7KWoHmgyVjI8FCMrSkbAQIrTFMZgj8UI0Dqtk8GVphtttR/tO5mhEQoSlwV5ahCvLVmqjvYtY9R5GQkTQ62BQmROhyeC0xBV8JVhoXlxKwRiDEYjtLc0fRRgEkWuiWksv3sujjVQ5RbMlgiXLme4ao7LdZmAxeJ125Jwoa+lxqpVnsjRDdbnICgxmKH7XFhdEV5uuL15Tq6TFktGZ7dA7ATgDjh95CH5VvG6k1CtE1CviHDTbc/BcB35JfH6mtqdLGqxAiBmzj0shwu4tzQBEToR1Ip3J0QjqUbBkll//yT/HRd+p4ar/mMaZz3pez/PlxhjOf+rzoqsnALDb2NWzvalzhRAx+z0RZrlwSJQdjfdxRKyUJxMyOX3AxMxBE+VRDU9/4yg0g4IqCYIgiOFBfb9lnKcco7ppQeVUhpyEiGGGhIgNQtKVkM2IAIDRbWIhoQVqYSyEiMDLz0tQQoQfpjMisoJFch9CiBAfCWWRzxvjOw6crlgoadB6vqSrY1HdDKLgxlIFB15YxciMjtkHfMx+9qkAAHf6PgBxZoBVzpQAyIVqiCDVNtTIEVVMswxoIYKGWCwZXbFAG9uV32LUc6RrQ54nw8i6COLQz7h951h0Nb55RLxuZKueCmVU5RFZVwKAKF/CkQtoX/6hLpXS4o8l56LKE1SWRKlcw/5nx2O17Q+I7bkduK1WtMDP7luFV6rFvdftRqLF9NklXPvOcWy/yMKlN41AV/kU3bg8QnWYyB5LkHBEcNle1hyN/2NRggjXWeSI6LbEIpb56W4mKociNBk6s8eikMn62GTPvlV7U1s6CdxQzLNWiecZdeEwNXgt5ZyQLW9djnIjXpirFpjNhWNwm0sILXEes10zyuMT0Ow4YHKpIxwUVT3tGFECQ1AWrTGbTTEum+dQlcKJHcRChHJj1DMiiOqOobpqqHEq60JR2zINoyU+V8eP/zDKiKjnZESoYMuWu4S5xx8CNAbd5T2fxzLEezN7VJQ8tGzxN0jvBGjs2RuNm9h/dhRWqZiq9JZlKHbNnINf/tMv4uYPfRpMy/8v6em/9DZUDscdOy6/+EU9YyJHxPfuhb24gOYTj0EvlTC6c3fhvk8lms7wqv+1Fb/w1e24/Obe3x2CIAiCOJ0JAhVWidTFA80yY0cElWYMNSREbBDihT7Sjgi5EG5sj3+BQ92D74ur0L6fX5oRd5oQfwSijIichbFasI4fOBfnvOSlAOIryYrIsWEw+E4Xni0WTVrORyhZzgDEQkSpVIVuMlzxX8SX8tAW+3Wm7wXnPC7NyJQAqGMJNcDvdiJLfzYkE4jzJLyxH0SPebU5mJX0PHWmWmOK41BCRDZ3wowEHQ/VCQ1MC2HYI9ACsR/VirSxw4jcFKLERXYfyXFEKDeF3WmBc54QatLHrd4D5YTw5Pm0SjVceEMdE/sMnHd9FdXLvyLGOd2+YZUqM8KPhIhOPE+jhAtfUscrPjKD866vRZ1PunYzcoskQyXjY0EiIyIEHDHGGo/DIZMCjQqr7LbEIlbLCOHJ0oyFQ4cQyHBE1TIziZqjIz+LrnIwVHszJ7ipwWmJeSpHBPPClBBhMfF5ai7NwV5ajFptljP5C5WJSejSEdFx22jJwMi6lV5smnoJLBD7Xjp+BK2ODJbMhF9W6g0wnyPgQST6OFz8rFfTAoPqjhGVj8ggzJHM+alumYbRFO/B3NLhvl0zxhoiy6LjtXDscVHOYPq9v9dVQ5yHE3Mi1HJxSbT4repVlEbiY584Yz90O8TErPibUXmsi6nd+7EaJvefjZ/YfiN0HzBCHVc848aeMVNSiJi9714c++5dAIQ4kW3dudZQy06CIAhiGAmji3wZV7JhkiOCAEBCxIYh6ThwE44IJQCMbo+/TAelVpS/4PvS6ZD5JTcSAY9AXKKRHQfEdfQefKAqFo1ZIYIxFokOnuuI0gzkh1+qhadyRKhwSUsGDl7wkzVsk8Ft3ekH4Uw8iNDzCkMWU26RVhNcl1kNuaUZcvE+dn/0mL3lwZ5xumox6qZzLHpaXurxeWQag9kQC0SrMwUAOPGweN3EPiMKCOXJ0oycQM1k69DAceKWqZl9W+p9CdKhluVKHWO7DPzcbdvwgt+ZRKUhPhuO10237yxwRChBw7O74KbKBMk4QWQXltbCXCT8ZEtmAEDjGnxZmtGZCwCnAY4Q5clY4Y5LM7QorLIjHRF6kRBhaZi9757YlWD17tuQnz3HEe4cj8lQ1IQ7IFma4WYdEVkhQi7y280TcJeWEq0200KEUSrBkO6J1tIsWp44/uwinzEGU5Z7nDj+GDq2KA2pVTKlHiMNaLY4EaoDhyuPpZ4RGCq6OA+qbaeriXGqDERRnZyC2RLbPN48DG5pMJjRU3IFABMTIk+iy20ce+T7Yk7oFdDqJSHwLCyKspAFKUQ0RtNuh3HZwvPMjxzBy+eegzP/4oeFnStOhmtf83b83sv/N9710o/mOjuqE5OozWyF12nj+5+5DQAwc/5Fq94vQRAEQRAnj7rIl71YqlnJjAhyRAwzJERsEHQ9zmlwWkvR4k+VUoxuixf8fm0Bvquukrvy9ZlFp+rRKxfYfpBfegDEiz/X78YdEjJCBADocnHqup0oWyE3/DLhIgCAQLaYKFXEIkrTGV72V1tw8bu+gQdf/laEmgffsWOnQ6bkQk8GeS4sJM5NjhAhyzjs8XvBdI5Q8zB7xV/lHIsszVCCjnSO9JRmGOnuI8aoWEibSog4JIWIvWa84NaTpRm9CzqdKyGiA6/TSbhfMg4GKapEQoS84l+pZNpJSmu/69twm0uF+RRK2FDvi6vKa7gGjaX/FKi8i/bibFSuk+fu0DmLSjOcJgeDBr+6iGo1XrxHpRkJR4TdXor2ndqeZoi56AwBC2MhImcBbTDVVUS2YJX2ilo9FiLS4ZdinypzQ3M5So1kUKY43+32QsoRke1IAQBlKVo0l+bQCcR5HK31ujZKoZjjwtxj6Mrch3o1U24xOgpdlnp0XeGSiQSGsbTAUJHlHqq9pzrm0UZ6nGYYGDGES2GOCdGibo3mXp1vjIkWt57F8ch3vwmgNyQzeXxLLRHO2eqK7U5M7kyNG9m2HWa1BntuFovf+i5YiIEIEQAwNbIN28f2Fj6/5eD5AIA7P/TnAIDpC0iIIAiCIIj1IHZjZ77XmyaYyrEkR8RQQ0LEBiHtiEh0zVAZEQlHRHvX3fGVfHl128w6IuSCOmQcPAzjFpFG72JSLcAc346EiKwjAoivQLueA9cpdkRELoLQEyUXMvuhVI4X0GZFEy0jGRCwUGY/yMW7lp/TwA2GztxxhH0yIlTgo189hqf+2gP4wc++CWF9rmecEjeUEBHK8gjVoSPaXuQskULEiFhMGu1JdBcC2IshzCpDbYsWCQm1ndtRnhFCRW5GhPy1c5wW3E4rIRyk30PVLlPlJPhyjuVMVkOlKhaNnu/AaTUL8ylUNxIlaNi2PJa891B+7tqLc4Xhl4AMjNQD6OW4FMOvn0CpnBQiEmGVtsyI6CzFr0/AGIvEA25qiZyGHEeEnKMSxXz5OauPxIJAyhHRTnfXEGGVsSigSjDa3UU4S4sISnrhvssy56HVmkOXi8/QxMSOnnGqk8bRRx+IhI1qph2oNTIKPXJEiC4lXBOlI9mQzpoMr+y4LYQ8hG+KYx6d3Nqz74mGeMyeEXMYqfYKJUDs5PArOh6+52sAgLH6lp5xY2OihEN1y2h74nwm23wCANM0zEgB4JGv/huAwQkRy7H/eS9I3Z8+/8I12S9BEARBEGlUR4zsxVIRVqkyIkiIGGZIiNggqEVVqDPYzWbUojJyRCQyIpp7vxM5IpQQ0eOIUHX5mgiXVCUayimRRC38HK8b2dZzHRGqLadrw5P7z8tpUIt3P/RTXS56FsZSNOjphpEN3kzkZzQPH44W7obWu8i3ZMBewDgqM8fgjc72LHaBhLvDc0ROgzw/2dahhqFah4rntZpYfBndybgsY68hbPhynmNnnYXpSy/NPWYgDll0bBEuGQkrmeNRpRAqzFJlSSjhQaGyG7zAlWGV+edbCRsqwFQt4A3kCDpSsGotzkXlG9nSESAO/TSqcZcEr34C5YRrI1myosIqVacLI+e9iVpuWhoCKUSUzF5HRNzeVP4uyDyJkbGpxHHEGRFuU5aQKBHEB8yEc0NlN3TtJpzF/o4INbbVXoCji9/BqcyCHIiDKecOH0JQEecq6zYojTQiR0THbUWtO3U7RKmRLkGoSTdF12vD8ToAY9CcELWcMM/p6b1i7HZxDkYrvS1QgbjkIqjqcKTmMj3ZG/A4LoWWji/mZ0O85zM7e/Mfdl35zNT9sQF0rlgJ517/k9HtibPOwcwFT1mT/RIEQRAEkSZyE2cdEZYVOyKoNGOoISFig2AkSjM4DwCNgYFB08TipbEj/iXu7PgePNdG6PtR/kJPEIx8HdeBwLELMxAAQNNExwcOjrYjFmm5jgjlIvBdeE43Ne8kZkqI6MbujozAEAkRjCNwncKSCyNRmtE6eqRQsAAAy4q3qRa7ua4NJar4DkLPKyyPUBkPqgUpq8tFbGcSJw6JBej4HjEP5RjwAhde4KQeS+1bZRvYLXjtdiysZI6nLF0FkRAh/2qX6+nFaUXe97kngk6LSjOUsCEFDRXUmddJRQkJrfnZvo4IFRiplZ3oMa8+h3Kic0UU4mlq8GQ5iG0LUUAJQklKkYsh4YgwchwRcruuZyMMAgSy9exIokyhpIJOE46IVnNOzt1IlSpU5Zy7bhtOcykWIqxeIaJaFmPnu8fBGaDZARrbdvWMq0nRYX72Mfi1/MDIUiOZEdGMciI0J0iFQAJAXeZf2GEXbScxbrQ3M2H77oMAEAlJO8b39YwB4k4aQUWHNyo+g1u3ndUzbnKLOD5H89BtLyHQQyDgmN57Ts/YpBBR37oNlfHe9qungvLYOJ76xv+K8X1n4if++u8LW4YSBEEQBHFqURfx9MwaRTMMQGZEBOSIGGpIiNggJEszooU74i/RtUkd1/+3SbRe9UFwwxNiQLcTOSeyWQ3JXIXAdaPuGdnSA4Wli8eXuiKNP0+IUO4Hz7Oj0pDswh1IdOzgQdrpkJljqSIWeKHG4TtO1HYyuyCPjkVnaB87Urg9IHZEcB2w22Kxq+WWj8hj8d10PkW2+4h0SCg3AiqyZWF3Ak/cJa4IT59rprcZuPBk94PcXAW5+LbtNrx2HweDLGXxoYQI8Ue7Wk8vZGvyvs994bAoCMosya4cAZQjQopJrFfQqcor77bTAjfzwzSBWPDSyt3oMb9+AiUr0V6UadBVOYoSIpQjIleIkFkWVZEVoXEtV3SKhB/fgdNaBLc0gPOUe8JMiBq2zIhoN0W2gZU57prstuF4XdgL85EbI680oybbai54YltGJ0B9prc8oiYFi1ZnPmqhOVLOdMIYGU04IpppR0RGYBgZEW4Ph7toNkULT90VAZpZ9h68PHV/x3h+eUTNGoHOdARVHe6EOCeTo9t6xo3IDh5+VcfjD/xndNxje3oFju2XXA5Liig/+t735e73VHHV234TP/eVb69ZOQhBEARBEL3EpRmZ7/WWBfmVFpzadw4169vXjIjQ84SIzCLtnGur4N0fAnMANMBZWixcQCcX775jRwtp08oXIkpmGW13CU1bLLTzSjPUQtlxOvA8sdDOXSDKhWCAtCMi63SIHRHIOCIyx5LomtE6egS8ms7PyJtjqDO0l04AOmDmLHZ1zQRC4YgQ+RT54oYKjFTOE14VC0+tNYFHvi7OwZ4fKctzoUI6Xai+RHmlGeo8uHYHbqdd6PAoSyFCOSFE1gbrESKqMhPBZ4HouLKjICOiLM53II9FlTTkzXFkZALoAkFJi7tH5JQoKCFBqy8BEN0XvPqJnm3qMBDAhW3LnAanAzDAzBFBLCVE1MS2rZwSHDFOLL5d38HSglyUe+l2iYZmQIOGUA/hyIDMTntBbje9eK/VJ4AlwAm6aB07gvCsYiGiXhdX+BeZdHZ0AlS3TPeMG6lNAG0gKOvFjojRREaE04pcSboT9jgiGmNiHy7zsDQvuleYfn57yJ27DsJkJjyZCbKrQIjQNB1T9W042nwMnb3iPR6v9mZERCUcFR2H7hJZEoYT5gowRrmMl338NgSOi+2XPTV3vwRBEARBnL6EkSMi/T1OMxNdM8gRMdSQI2KDkGxR2e+Kf1Jg6M6fiB0Rmav+KUeE4yaEiN4rp0B8FZrLBXTe1W/VEtTptKKMiLwuHFYpzlXol/2gSg+4xhE4cVhlTyvJhEjTPnK4b2lG8jy2FsXiNO+Kf+yI8EQLTS1fLFFlJkoM4I3D4CyANrsXC4/6KI0wTB9QpRmqbakXdbrIa9+pMhMcpw2v3Y7DJTML7nJF2PoDhAjDIHJOVEYyjojRcTlHDmdpobB9Z0We75CF4JxHQZ25QoRsBxmWNIQytDGvREGX57Z26dfBZFikM/lYj6NGCRYq5FS13MzrfKJEML8uXqOcClmsqB2pg9aSKLfQ/d5xSuxQ2RDqZ3aOjXERxmgHNhaPHwY0BpOZuZ1hJkeF6OJr4nNR8nXoZu+xTMjciKCiwa/KvJc+joi220RTlY54TNgXk3OcEE4FTw+wOH9EHF+YrydbRhlP2XtVdH/7WH5pBgBsbYhMiFC6X/oKEVUdP/jWl8TcfRNMy/9vZOaCp5AIQRAEQRBDiiq76CkfN8XFQIAyIoYdEiI2CEZCYIgzFXoXGKrMgGsM9vz88qUZ0hERSuuTZfWG/gG9izJVqpFElVz4gRu7F3LEANUxwQ+8vkKEGZVRMNhLi9FCO3ssyXPTTAoRea1Dk6LF4pw8lhxXgnIvBK50YxTkWMjzpRwRobGE9s57o+d3XV6GFoVxJkozlBCRl6uQcJa47Vbh+akoIUIL4crMCeaGKGeukqtQS24wLD3+aGFGhHr/Qp0hcJyoQ0reHNWiPFzOESHnHNaO4qf+oo0nrroF3a0P9Igb6n2xZTmIKgvJE0FUacUlv/Yr8n6vIwFItyNVQoQR9v5JUwKPEiC6Mp8i63RoTIswRpe7WJKL/FLO7wEAbJ/eH9U3AkAZ+eNGR0UpRVDWERQ5IhJdM7puG4uLx8Tx5QgM9YoQA8KShmOPPyhez3t/BxVP3fec6HaekKSYaaTzLcaqUz1jVJaEX9Hx6EOiNGPMWpvsB4IgCIIgNhdKZMheYNRME4xTRgRBQsSGIcox0FnhFW0gvSi3F+YTbT6LhAggcByErL8QoRwRilxHRDJQs0AAEfuQ5QwaYC/OF5ZmJMsolo4fBgCwUGQKpPcbiwt+t1O4veQ2ucHQbs3Lx3qPRTkV/MAT+RQF51GJJaEsZvN8F80zvhk9/7TXxB0QVNcLPxVWmZehIZ0Tng2v0y7MiFDdMEKNoysdBJobpjo9JI8vNBjshYXC7cWhkaKNZuza6D0/KvDRr+jglgYGlpsbojpXeK4D3Wijs/27ufuOxwkBwpU/8z5nyhHRZUIoySuNAGLBwg1dtFsi28QIe/NAVE5Hty3aTtoy5FEJOIqxUVH2EFgMxx59AABQserIY8sZZ8Nc9KL7I9pI7rhaSYhGQVmHX+0XVhlnRCw0hRBRDns/O2o+QVnHsWOHAABVni+CAMDle5+NV/zIL+HXX/D+wjEAMD0aCxGj5fGCTA4LJa0M6Az2VnFOt86sTTcMgiAIgiA2F8WOCCt2RJAQMdSQELFBYIxF4ZShTLnPK3tQXTS4BlGaUZARETkDNAbfdRCozIJS/0Wdem2ewBBt02CF+xXj5IJXZ+gcP14oHCTdC0tHHhfH16fVptpOkXshOR+uM3TbyoLfR4gIPXidYnFDXXUPZdmBH3pYOPhv0HY8jOfcOoZtF8TbNvV4m67fT4iFvoAmAAAgAElEQVSQ2QZuF267XbjvSlUuYg2gtXBcHF+AHit8UnwBAG4ZufuOxukafNuGK3M+rJwA06psT+mPim2VtFIqeyE+FtW5oguv046s/VnRIsoXkeUgkRsj571Rr12UwallI188q5bF4t/lLloy98HMib1Rn+1ORwoRrhB1KuW0eBCJBhU9KrlQ3TGyjO09A5WF2BGxQ+vNSQCAqhQO/DET3NRg6aWeVqRJR0THbWKhLUqKqug9blUe4Vd1HJ97BAAwWhrrGadgjOF55/8UDmy7tHAMAMyM7oxvN3q7fyi2jArXSHuv+Duy+0xqj0kQBEEQRC+hLAtXpd0K3YodESGFVQ41JERsINQiWrUszFukJbMf7IV5IHIm5GdEQGcIHDt2RJSKHBHxwjHvyjeQ6ezRxxGRymmYPVpYcpEMoWwee0I8ht7FbnJ7yZ99HRE6g91dksfWe8yG6uwR+sKVUBRWqQI1lRAReAjKLdRu/Htc8tPphWyUEeE7fUsz1MLf85xU14ysda1SE4vgUGdozour5HqQU3oQCRHyOUvP3bcqUQgN6YiQYkDWGQAAZWnj96QQUS3n5zSoLiyua4vgTSmiZcNO43PTlccu9p0ngqj3S3VwyS7cFbWaKAtw4UYig8VySj1kS1e7K0oyHE/MoVJJiwxKiPCrOsKyLEcp5ZczMMYwasTn5KIDz86foyXfwz0iFyLbMQMArJFRGI74fLWdZnTcda1335ZRQsk3AJ3hOBflKBMj+SLIybCtsSe6/dLL3lA4TokU9jbxvm3fee6q900QBEEQxOlH7IjoDatUjghOGRFDDXXN2EAYugk3dBBaxYv8pMBgLxRnRCRLOALHBZfr+1K5wBGRWKwXCRFJ4UBdC87PaYj3vXT4CWAPoIWs54q6znTRXEJnWDxxFDgz3bI03p5ydyDaLhBnMqTGqswCg8muEKO55ShqAe2HHrxutzCnwSqr0gxxPwiFHT8vhFK9BwEPAPnHN9cRYVYAG3A9B57dRjiRfzzKycENhsVZUbpi8JzSA5X9YIr3RbgSeI8TJOmc8LrdKHciT4hQeRAqqFI5JLKUrCpgqzKTTqKsKD+fwvWFQONKocbKERnUZzFyRBSUZoyMTgLHABc+ut0lQOvthAEAFTl322mDhyEcKcBkQzDLZhWMM3BLi8oo8nIxFFalCkBs67zrfiJ3zJYREWppSwFmpNLrXtB0PdpPq7sA0xW/XXUzv9yjzqtwsIT2jJjj1ESxg2GlbBnZjlde8RaMVbfgnK0X9x2XZLK+ehGEIAiCIIjTC855FIBvmJlOaomuGQHPSRknhoZN6YhgjGmMsVsYY4cYYzZj7C7G2A0reN0oY+wdjLF/Z4zNMcYW5O0fX4t5L0eUmSAdEXlX/PVEWGV3fgUZEZoMq5RX9K2i0oyEEFHKcWKI+SRKJAr2CySyCAyGxaOPAQC0nI8aYwx6ILazuHAkdXy5x5Itzcg5P0nXhipxUVfEk1iqGwYPUo6I7PFY8rVKBPFD8QfTyDlHjLHUAtzU88sZlDDiBY4IqyxwRKhtcVOLhAgzR6jRNQOMM0ATJTOBLt7rbElD5CwxRMcVleuY5zjILsDLBQtydSyuL9wdYYEjQolbnixZURkaefsuSZFoaRkhYnRM5Fh4eoCuyn3ICZdU+whNBntxAU4oxIP6aDqQkTGGMpfOjTFxrvoJEdfufwlKxx0c/LqO0mi+Y6RebkTlFEC+IwIARmR5xZI9j5YvnBujlfwgyFFTBVaKz8L0tsHkNDz34Etx2d5r+o6ZTpRwAMBkbWYg+yYIgiAI4vQhkN+XEXAYVvq7mWYakNFrVJox5GxKIQLAuwC8E8CfAng+gK8B+Dhj7AXLvG43gDcA+DKAmwC8DMD3AfwzY+yNp2y2K8TIChH9MhA0SEeEfJwVh1V6nU40zrLy3Q4lc+WlGeFypRkJMWDxqMh+0As+aqrLQbMlux6wYhdIJEQY+WUUQEIE0VmUV1DOsdcrR0QQ+vD6BGCqUpZQF/YxP3JE5Is1SVeDsvpnKclt+oELJ9E1w8zsmzEG5ou/1PPzUojIKT1Izjss6+BMiFpaplwnCrXUGTqzx8HN4lDU7OK/qOOC6pDi+Y4ozSgoK1LOB1Wyon6WKr1OCyV6dD2R5ZBXWgMAo2NiEewbHF23eKz6PIemcBG5XLyHYxO9V/MrujhuVwkRfTpN/MhPvhq/dvFv4xd/91OFYwBga6LsYTynGwUAjFYnwNwQXb+NRYiSoonGttyx45V0a83tuw/03f8gmR7ZEd229FLhZ5wgCIIgiOFFCREs4D3tzUVYJWVEEJtQiGCMTQN4C4D3cs7/gHN+O+f8dQBuB/DeZV7+MIAzOOe3cM4/wzn/HOf8ZgBfBPDWUzrxFaC6Uighol9pBtcZ7PkTCUEgmxEROyec5lJfFwGQKc0oaFmYzGrol9OQard5VGY/5AgMAGDIK/zt7mLh/IwCR0SuUJPsPiKvzpfLvYtdUwoyAQL4ydKMbNeMZMcOx4nq3UyzyDUSzyl5JTyJlWhv6nZagMagQesRDgARTgkAi7KTgqXlCxHqqr9fEdvIE5OSjojO7PHCMgo1NilQFDkDKvLceqGLjgwH1bnW0/lECWB+mBYiyjlCRCPjBCh0REwIISIwWRxAmed+iUpXNNjz8/CY+M+xMbW9Z+xYQ3TOYLsn5L6LhQjGGPZf+0JUxvu3sNzW2B3dPnfrJbljKuOTsGQXDs4ABBxj4/lCxFQjMe+AY3rnWX33P0imR2MhYvfk2bmOH4IgCIIghhvlIGYhh25lSjMsC0x1zQipa8Yws+mECADXArAAfDjz+IcBXMAY21f0Qs55m3PeyXnqWwB6VyVrjFqEhyVVmpEnRCRKM1bUvjMtROQJB0DaSp+11edts2/XjMiVAHQWTxSOAwBDxpQEMhwwL/dB03RR2qExcCau6BcdC2MMurR/BBUpROQsdlVJQcBDWZohjyezfz1Z6uG5US1bXsiimH+8qK8XdFxQDg0/9GDbbbmf/POjyXCKZke0Is3rACLmI0tNauJAykbOglyVehiacEQY6pznixvJRXiRM6AsO3t4oQvbFiUFRp/OFT73wcMQnhQksoGRADCWcQ0UhVVW62NgfgjoDC1nsXB76vPMTYbOiTn4snRlbMuOnrEN2cITZwqRY7SglOJkSOYoXLDzabljKhMTMBfidqBG20dtakvu2O07zolumy0fppX/mTgVTNW3Rf9ee/U712y/BEEQBEFsHpKOCK0nI8IEoq4ZJEQMM5sxrPI8AA6ABzKP3yN/HoRwPpwMVwG4b5XzWjWRvb5vRoR8y2RpBgpKJFJCxOIi+HhxKQWQcUQULPxSXTNkbVfeIjY6DkNLlFHkCyAmE48HZbGAzuYkJI8nDN1l3RhimxYC2Aiq4ljLOYtTdYU+RJBq35k9PylHhOsikBYys6DEJXn1vsgRUapIIYIHcByhi2XLMhRCVAnRcoo7gIh5ivN27s0/g4fwpVSpjSIZ5CmEiOLSDEC4IJr2fHQ7j6oSIhCgK7tSmDnuF1WqERoaPLsbKeXlWm8g41glLURUChwRjDHoLuAbwJK3AEBHfaTXnRCXZmhYOPRQFAZbq/UGR6pSg7m2yCwZr03n7vtkSJYzFOU+VMYnYD2aECJaASqT+WUcM9NxJkQN+efmVKFrBt5zwz/IPJT8zw1BEARBEMNNJESEgGH1ds2IHBFUmjHUbEYhYgLAAudqKRxxIvH8imGMvRbA0yAyI/qNeS0A7N69u2jYqlELxUCVZvTNiJClGfqkeDwT8pgUDZz5RYRTqpyhQIhIiA+lHKs+kG6NCVa8iNX1OJ+iXxlF8vXKEZFt8RMdj27CC11wIxYi9KJj0SzYoQ1fugMq1d7FrgrtDFjYNyMieR4Dx0EAVZqRL0SMVafw+MJDAPoIEbKcIeA+HKcNoJZbHgGoLhkh2n4TgJEbvAkApiynmbn6SuArX8oVLJLvX/v4sURpRpEjIt5XkSOiKhfzPlPHEotLufs2GNylJQTyf6ByJUeIqE6m7m8Z6XUuKAyfwQfQ0R0AVYw0el0EyYyIuR/ch3C/dMrkCG7Z92xiAELEFWdei/nOcVyw84rCMZWJSZh3x0KE2fJRLRIiRneBgYGD44ar37zq+Z0sRa4cgiAIgiAIAFGmGgs4tGxphmnGGRHUvnOoWXchgjH2XAD/uoKhX+acXwNA9CbM2dST2Pc1AP4YwN9xzj9SNI5z/kEAHwSAyy67LG/fA0GVYlR3bMMcnHxHhCrN0BlC348yIno7LsSLTmdpKXJOFLoIEgvhyXp+bXoyAFNtL28BbWrxvtUCv7CkQC8BHAiqxdkGaj9dry0Wz5be91hKehkIl2Ihoty72FVCQsg4vFYrcoxky2E0TRd/LDUGz+kilI2P81qCAsB4LV4I18sFGRHKjaEDnfYigNoyAaEebG4DqKNc0EZTvd8tewFAvnNCdNeQbVWPPAa+p/g9BNLiQ2FGhHREhDrQaQnXhpnTQjMpRLSPHwUv6K4BiM9A1RpBxxUOi62jxeKfGeqwEcKdENufmtzZM0Z10ghNDcceuh84m0EL8t1B2fDFQQgRmqbjRRf9TN8xlfEJmItxC6vG3U1UJ/NLMybrM3jrC/4HxipT2Da2J3cMQRAEQRDEepEKqyxnwth1Peqa4cvMMGI4WXchAsC/A1hJ7LvKdjgBYJwxxjKuiPHE88vCGLscwCchgip/boVzPaWohfXOZ1+DRx/8XEFGREFwY09JQeIKdCqsMv8tTy64ihZNytUwceAAxs48E0edb+SXZkTlDFo8v4Jwx5JRBjzAr4l5VQoW2krImLn8cjwx5sJGp/BKfsmoAB6i0oxSjmiQDN7szp8Anyx2bmghEGqA021LR4RW2AZ1vBqfxyJHRFIkittY5gsR4rg7UQhlJSd4M7lNlZVQmPMBHT4CLDzxKMIzy6nXZqmsICOilHAbtBZnxZzzxCnVEcZgaB87tmxZSNmsRELERL24RaTJDQAu/Lp4rycmd/WMsaKMCA3HH/kBgCmYYW8wKJB+zxgYGgVdLgZNZWIS5aNOdH/87hbKY72lI4oD2y5di2kRBEEQBEGcNEGfsErGGDR5/TjwvJ7XEsPDugsRMjzyZPIZ7gFQAnAm0jkRB+XPe5fbAGPsAgCfA3AngBs45xvit0CVYtie0FyWa98JoFBgiPIAdAa7uRgt/IqEiP3TF+DNz/19nLHlPNRKvQ4CIBZK9r/wxaLrwd3fgJlTSpF0TkSOiAIhwjIrUogodi8A8VX76/70z3DP534JaHUKj6Vs1YBu3OYzb2GcFCLsROhnbgAmF885dguhlHCL2qAmBZ0iISLO0GDxHAtyOcTj81EIZTUn7wKIF/RN5YgoyFXQmQEfAbrtRXDpmlhRaUaBIyIqezA0NOePA6jnhkuaiaDM9rEjUWvVon2r3wEAPR04UvtnFoBYTc923EjN0WLodBYBTMFEvpsm6WJpVCdzxcBTQWViEpWjDg58xkb4vcdRHZsA0zZjljBBEARBEMNOyhGRE6rN5Hc73ydHxDCzGb/pfhZi5fGKzOM3Abibc943qJIxdhZEKchDAF7EOe+eklk+CdSix/G68n7O1XkWd80AijMY4oUfg90UV5ZZWLyoY4zhkj1X9dTn583PD72o/WJu60eVq2BocQ5BwRV/VaevHBHLLbQ9343qzopKM7JX782cspBk9kNnbravY0R1rrDbTQRSiCiVCxwRidKMrM0/2neijaZqMZonlgBAzRLCjDciz0+toNxDHmPL7u+IMJVIlHxvCvZ9+b5no2xWYeoWdk+ekzvGSnSk6LaFCJLbLjXliDgaHXdR+GbXy2tu00s5UwYyWuntcpFs36mCYEs55SMAcPbMRdHtonN4KijLFqDGHYdgLXiFQZUEQRAEQRAbnUC15QxlJkQGTV7kC0iIGGo2nRDBOT8G4A8B3MIY+2XG2DWMsf8J4NkA3pYcyxj7AmPsgcT9aQgRwgLwGwAOMsaelvi3rilsanFs+0KIyFsUR4+p0oyCrhSxGMBgt8XiVP3Sr3Z+fuBFJQV5V7Qju34iWLIorLIkW1mqK/7LlWa4gQM/8Ppus5Jpm5nriEiUuLSOPNHXEaFL+5jdaYErR0RhacbyGRFGIkMjEgMKMjTqVbGwVpkK1Xp+O0klCCzJLhdFLS+T++bKlVAQEHrZ3mfh/Tf9K95/0+cxM9qbvQAkSzO0yOWQFw4alaOYMijTVNkh+Yv9s6YvBACcPfOU3OcVyTalhs9yt6fEDl42ota4eW0+gXTr0KNLj/Xd9yBp7NwNpsflItUJEiKI0w/5/zXP+beQGTfOGPsLxtgsY6zNGPu8dDJmt1dmjP0+Y+wwY6zLGLuDMXZVzjiNMXYLY+wQY8xmjN3FGLuhYI6vYYzdxxhzGGP3M8b+S8G4H2eMfUdu74eMsbczxvJrvgiCIIaMVPtOq/d7ZuSI8EiIGGY2nRAhuRXAuwG8GaLE4ukAbuSc35YZpyNdfnIQwB6IPIlPAbgj8y8/pXGNMDKlGflChHJEQP4sajupMiI02HYLwOqFCFU64od+whHR+8dFLaq5pYEbxa1IAUThi6rGf7n2lF6QdETk2+ZrGddAXlCmnirNWBABnChwRMiT7XSbCLVlhIhkWGVhRkQsEvFlHBGjI+kF6ehEfl5CzRIL6/n2MQDF5zFyBxgsem/6tWHUNaNvlwTlpgjN2N2R54hIlnC0jh6Jj7tAiHjd1e/Etef9NF7/rHcV7huQZTjqdpB/HFVLzmekHHWkaUxsLdzma69+JwDgxst/oe++B4lRLmPyrNh1Mn7GmWu2b4JYB34RwBWJf89VTzDGGER+03UA3gTgBgAmgNsZY1lF9C8BvAbAOwC8CMBhAJ9jjGUVzHcBeCeAPwXwfABfA/BxxtgLkoMYY68B8AEA/yT3/3EA72eMvT4z7lo55ptye38E4O0AfufkTgNBEMTpiZ/MiDB7v59pVJpBYANkRDwZOOcBhBDx7mXGXZO5/yU8ie4aa4WeLc1Ypn0nUFyawRiDDh0BAngyAmNQjoggjB0RVs4iVmMaLL0EN3CitpxFi91sqUFeS0WxH+mI8O3IEaEXlmakF8KW3rvYTZZmJH/mnnOmA/Bh2y2EUgAqlfMzE0bKsWOhMGtD73VEFC32xxozwKPx/aLSjKoUdOY7x8X8igQdswzYsixkmcDIlZByRMjtFXXCEOMYOo8dQ3hhcdcMAJga2YaXP+2/Lrv/rfvPAw6JiJmyn//nTAkRvskjR0RRCRAAPH3/83Hu1otT7oi1YPq8CzF7n4i42XXlM9d03wSxxnyPc/61gueuB/AMAM/mnN8OAIyxOwA8DODXIEQMMMYuAvByAK/mnP+1fOzLEDlSvyW3o5yQbwHwXs75H8h93M4Y2w/gvQA+LccZAH4boovWrYlx2wG8izH2F4k8qfcC+Arn/LWJcXUAb2eM/SHn/MhqTg5BEMRmJ+DJjIhiISLw/Z7niOFhszoiTkvU4tjxizMioiv2pmrjmXk8OZaJx1RdvLbKtzvKiAg8eH5xRgQQLzwjp0OBwFAbTYcLFoUsqvIBL3CWdURkF+F5i/xkaQYHIndA7nmEOMnd5mIsWBSUM2hMw0suez1+9OCNaFTy8zaUIyI0EuURBeex0Ui3jywSGFSWRDSuSNCRHUR4IiizaN8rIel+UYv8/PIIFRipoZUIq+zntlgJu3afH92emNiRO6Yqz42+ZSz6XSgXnEfFZH1rYRjqqWLq3Lh50K4rnrGm+yaIDcT1AJ5QIgQAcM4XAdwG4Mcy4zwA/5AY5wP4GIBrE6WW10KUY344s58PA7iAMbZP3r8CwJaccX8HYBJCHAFjbBeApxSMMyEcEgRBEENNv64ZAKDJ79a+7/Q8RwwPJERsINTVeMe3xf1ccUH84jIzfUU/T7QwlYNBuhJUicFq57dcaQYQL5gP/vzPpu5nyS5aixaIpnQ1qBBDjenQtPxy3KyrIjdQM1GaoX4LNKblhnkaUtDpNPt311C8+KKbcdMVv1L4fJzToCE01OK9ICOinC0zyXcQVDPBmEVOA8uM8ztiR0TxsSyHxjTo0iYSyBaj/YQIbmpoHT8mSjP46kQQALho15XR7bHtva07gdiZ4ukBrnzHbwBIdwTZKEyde150uz5TXDpCEKcBH2GMBYyxOcbYRxljuxPPnQfg7pzX3ANgt3QeqHEPy85b2XEWgP2JcQ7SXbbUOCDuuKV+AbP7XtE4GZTdSYwjCIIYWuKMCOSXZsgv3x4JEUPNpizNOF1Ri1tV9tDPEcGs+Iq+GNv7Vhq6CQSxI0Lv0wZxJahSCD/04C4jRKjFqK0L90LRFfrsgrlogaj2Y7ttAMVBlWIbcdmEqZcgSo7TJEszlhMXTCYe77QWwCf6h2+uhFgEQcIRkX8es503igSGHkfEMlkb3NASnStWtyg3dQsBtyMhopRTCpMszXCl48dkRu57czKMlMei222nmTumZFbBmAbb68DVRYpzuaAd6Xqy71nPxXN++w+w9SmXrPdUCOJUsQjgvwH4MoAlABdDhEzfwRi7WIZRTwA4lPPaE/LnOICWHDffZ9xE4ucC55yvYBxytrnSceqx3h7CABhjrwXwWgDYvXt33hCCIIjThlT7zpyuGWJNEiLwvZ7niOGBHBEbiKwVvGz1LhB7SzOKF8bKNh+WxNh+V/FXghI7glTXjPwr2iV55X2pK7s4FC6M069fTojoelKI6HMsSUdEUQikniNE6AXigtp3u3kiKoVZzblU29OqZVjTU33nmRUikgvvJNVMHkVR1kYyn4LLz0XR2JVSlp1P/Go/R4TYR2hpUVClEnhWy69e98eYHtmJl172htznNaZFOREnWkfFnFd5zKcCxhguvvk12PaUS9d7KgRxSuCcf4dz/hbO+W2c8y9zzt8HEQo5A5n9AJHjlBUN1OPZ+4Meh4KxKx1XqKxyzj/IOb+Mc37Zli1bioYRBEGcFqRKM0o5ofGyNEM5rInhhISIDUTW1ZB31VZ1zdh6iVislKYm5eO9izrlQlCOiKJcgxXP7yRKM1RA5JItLiYVXcnPPl6YbSBFlY4rOoAU5UMAaTGjqC2moScyIvq4SgDA1JQQMb9sO9KVoEQMVrZw/itf1Xee9YQQMVnbWijUnKwjIjRY9LkoGrtSypkWrHnHknREKCfGassyFOfv+BH8/o3/hH1bDhSOUTkRx5qPA+gVeAiCWB84598G8H0Al8uHTiDfVaCSgOdXOO5E4uc467Vf5Y1DzjYnVjgOAMYSzxMEQQwtKlgeAYeW64igjAiChIgNRVZMqOQKEWKxXJmZxpvuexRGXSxMc0szpPAQyBDBosXuSjESpRmREFEgbihBYTlHRG9GxAodEX2EgGSpQdXqbSUJJEszYldJURcONcdue7FvqOVKUcfiB250HgsdEVa8YN4+vi93DJBXwlEgRMhjDMsauCbOw2pEFSAWnZQjol/XDG5qUVBlsvXmqUblRBxeOAQAaFRy3dMEQawPSdfCPYhzGJIcBPAI57yVGLePMZb9T+MgABdxJsQ9AEoAsj1xVZbDvYlxyNn3isYxxvYCqCbGEQRBDC1R14wwPyNCCREelWYMNSREbCCyC8K8q99qARyGAUojo31bWaorzqqbgWnluxJWPD8lRCQW0MVhlWJfTXtB3F/G6RC9rrB9pxQDZEZEkWgAAJXEeTtjS35uWCojQuvviIjcGLbIIGAhckMtV4p6DwMeRMGkRWGVSaFmqr6tcJvVjCNChVJmUZ+Jy952C4Di830yqLkbM2Jxn9cutZTjiChX8kWiU4E6P0u2EMaKOpoQBLG2MMYuA3A2gK/Lhz4JYAdj7OrEmFEAL5bPITHOBPDSxDgDwMsA/F/OubrM9lkIYeIVmV3fBOBuGTIJAHcAmC0YdwLAVwGAc/4IgLsKxnkAPrPsQRMEQZzmJDMijFLv90LV2c+n0oyhhsIqNxC9pRm9QoQmFUT1C+7Ln6rUIEnUJlJa8K1VChG63IcozeifERFZ8bkIByzs4nCSYZXdqDSjjyMisbjeP31B7hglBnBDi7pHFLkcSmYFsAHfFBfsNL66gEXGGEzdghe40fGYOYt3NVbRb/FcybgLthSIFurcdGTQfJED5WRQ72EnaMv7eaUZUhQzNYSWOKbVloScDNnSlVFyRBDEmsMY+wiAhwF8G8ACRFjlLQAeB/AnctgnIUSBDzPGfhWiFOMWCNfE76ltcc7vZIz9A4D3McZMud3XA9iHhEjAOT/GGPtDALcwxppy3y8D8Gwk2oFyzj3G2P8H4P2MsccBfF6OeTWAN3HOk9+W3wbgU4yxDwD4e3kcbwfwR5zzI6s+Uavk0Tu+gmP3fBeXvPp1YBpdbyIIYu3xQ/H9nwUcejmne51GQgRBQsSGIru4zluUR4GRUoBQP/MW5iqYMCrNKK1u4Rc7IrwVt++M7hcIDD0ZEQWChZnNiMgRXhTJbI0iIYIxBp0ZCLgfCzVFrgRLHItqg6oPwEhkaCa8wI2Op2jfSXaOn1H4XNKh0ahMoFJQkqIEi/nOMQCDckSk37O8QE1dM2BoJnx4cXeNgvf6VJB1jFBpBkGsC3cD+GkAb4IoYzgC4BMAfoNzPgsAnPOQMfYiAH8A4P0AyhDCxLM4549mtvezAH4bwLsh8hnuAnCdzJ1IcitEp403A9gK4H4AN3LOb0sO4pz/GWOMA/gVAL8K4BEAv8A5f39m3KcZYy8B8BsAbgZwFMDvyLmsK2EQ4JOveSW68ydQ27IF5/7YS9Z7SgRBDCHJsEqj3PtdMxIi5DhiOCEhYgORzXDIXuUG0rZ+QOQ1APlCRBRMWFKOiAEJEeHKSzOK7sePx3MyNLPQlaD203Gb8n7xwj2ZC7FjrDhXwdANBL6PoCLPT4ErQYko6jxqMg9pBfIAACAASURBVOl3NRi6CXjx8RRlRADAm5/7e7j/yJ24dO81K9r29OjOwueqpjg38+1ZAMUOlJOhlJn7SHk8f5xRge96CPp01zhVVEvxZ6Ji1tZ03wRBCDjn7wHwnhWMOwHhRHj1MuO6AH5Z/us3LoAQK969gn1/AMAHVjDuExAiyoZi7gf3ozsv8jIPf+fbJEQQBLEupEszcrpmJC5uEsMLCREbiNHMAi6va4amxaUZnPPoFz1vAR8FE6quGats3xmFNrptcB5CY3pxOUOPEJEvgjQqkzD1ErzAiUSVPJQQocIv84I843mW8M7rPwTLKEXnKw9Ds+DAjtqbFrkSymXZnrImjtUaQNtJ9V5EwkofR8Qle67GJXuuLnw+y/RIsRChAiIXOoMTIlbiiBDjSmi78XlcS0dEMvSzUaV8CIIgTk+WHotNIyce/P46zoQgiGFmpY6IoM93f+L0h4oHNxDJBZypW7nhiVG4S+jFIgTT0duZLC7NUFfyV9sdQTk0VOBfkRsC6F2cFgkRjDGct/3y3OdS25Nuhba7BGD5BfS+LQewo08pAxCXdzzjPe/JnbNCtaf0VXtKbXVtUMW+lcNDlmYMoJXlpXuuAQD86MEbC8coAWehcxwAUB5ATkPyvJXNaqGgo8pAdr3g2p7XnWqSLpnRMpVlEARxetJ8PBYiWocPr+NMCIIYZnxfOKdZyKAZOeuZyGVNpRnDDDkiNhDJAL3C0EZDtX70IgeBXiAwmJmMiNW0nAR6F639hIjejIjiReeV+6/DnY9+pe++s21CB3ElX5V3qBDKIjGgVBaLWFVSUCoo4Ti5fUtHhLN8acZKef2z3oWFziy2jGwvHKPEJFXaU5TdcTLUy43odpEbAojFJGv3DPDA2goRyayQtXRiEARBrCVLTzwW3W4fP7qOMyEIYpjxPNEVbrmLparNJzGckBCxgUiWZhQKEVJB9AKvb1AlkMiIsAYjRGiajrJZhe11UtvPo6cbRp/uDE/d91x0vU7fMMbsQn0g2QZSLFEOj6KFcaUigg59KUQMwkVgaOoPsBAE+pVmrBRTt/qKEEBvSUt5AGGVM4lSkKJ8CCA+v1FL1zUUBPZMnRPddvzumu2XIAhiLenOzUa3O3OzCH0/92okQRDEqcR1xXctgxVkvxli7UJCxHBDpRkbiGQHA1bw1igF0Q/dRFBl/4DHyu4dctzqsw2SC9l+gZHZRWa/hTZjDNec82OFHS7EvtKiR16Q58miFsYtZzF1P0tZChGByjYYwOK9mulq0U/UGSRZIWIQLTST4Zj9HBHqM9GSQsRaB0a+48V/iV0T+3HDpa9f0/0SBEGsFfbiQnyHc3Rmj6/fZAiCGFpcVzki8tcocQB+sGZzIjYeJJNvULzAyX1cLVg934UfFAdVAnEmhB0s72BYKRWrhnmZL7BSR4RllFPtJZ8MWSFjII4IWS7SlAGYhaUZmbKSSim/NebJUC+Ppu6vpH3nIMi29RzEeZwe3RHdXokQ0VwnIeLM6fPx7p/4yJrukyAIYi2xFxZS97sn5lDfum2dZkMQxLDietIRUbRGMdLOYGI4IUfEBsVdRohIOSIKMiKU/V+VUuR14ThZUo4Io09GRMI1MIir7r2lGas/lrg0o//CuGff5QEIEaX0gn0QGRErIeskGYS7Ixn+WKR8A3mlGWtzzARBEMOCIx0RRkWIzCmHBEEQxBrheWIdYxaVjyshAiREDDMkRGxQPD9fiFCig8iIUKUZ/X/JFYMoZ0heUe8fVlnOvf1k6SnNGGBGRMvpn1mQFSgqGTfDkyHpHNCZPpDQyJWQzbfol92xUpIhRF2vXThOnW+V0WANIPSTIAiCiLEXRanh2N598j4JEQRBrD2uXMcUu7bFxShyRAw3JERsULzAzX1ctY70AzdqeaMXCRHa4DtNrDQjIrl4X21IZt6+BuOISF+hL8qxyD5eqzZyx50M9VK8jUZ1atWlKytFBY4qBuGIAAAm57+1satwTLb8JFsmQhAEQawOZ0kIEY1dewAA9sL8ek6HIIghRV1QLXL8mqZ4PES4ZnMiNh6UEbHB0JiOkAfg4LnPx44IF36gSjP6h1UqBuEiSLoq+jkito7ujm7Ptlbfy/yUOCLkIlyVrhSVCmT/iKouGquhnnBEjFenVr29k6Fs1uJynQE4IgDg3T/+YXztof+LF174qsIxWWdJozo5kH0TBEEQQBgECSFC/B+czYwgCIJYC1TWXVH5uGlYgE+lGcMOOSI2GD//zLcDAH726bfkPq9rBjSmg4PD9ZdJpNWzjojVuwiS2xirFC+gLaOEd/7YhzBWncILL3zlqvdbMiupEpRBuDuypQFmQalA9kr+IDIv6qW4vGO8tmXV2zsZkq6WQbTvBICdE2fiJZe9vu/7ku0U0u/zQxAEQZwcSoQojTZQGRdCr0OlGQRBrAOevFhqFpQ9mzIInhwRww05IjYYTz/rBbhkz1V9beuGbsL1g+iqdqHamHl8EC6C5GIy2S0hj31TB/C+n/pUKkPgyaIxDVMj23Bk8REAg+2aEd0vdESkx2VzFp4MyYyIseraChE88Ud/sr51zfab3ddoZXzN9k0QBHG6o0SHUqOB0pj4P6ZLpRkEQawDfihKzPuWZnSBkOU7wInhgBwRG5DlaudVmYIKBiwMq+xxRAw2I2J6dOey4wchQkT7G4mFj0F2zVAUdc3IZkQMIliyXo4zIsbXWIhQYg4AbG3s7jNysCSFiFppdCDtZAmCIAiBCqYsN8ZQbgghghwRBEGsB16oHBH5QoQhLwYGjBwRwwwJEZsQtYCLHBGFibSnoDQjkRGRFAbWgqTwMYgOID1CRJFqmzmPg+gCkmzfudaOiOdf8AoAwC8/77+v6X6nEkIElWUQBEEMFmcxLs1QQgR1zSAIYj0IZKB+ySooe5aPkyNiuKHSjE2IckAoIUIvKM3I1uQPpH1nwg2wEkfEINlS3x7dHkR5RFZQKHJEaEyDqVtRJ5NBOEuS781IefVdOE6Gl172Bjz/glegUVnbsMik+EAdMwiCIAZL5IgYG0N5TJS+UdcMgiDWA497AAOsgu/MliW+x5MQMdyQI2ITolpZqtKMovaYWcv/IBbQqi8w0Ct0nGpGKxPRbU3TV729rPBQZB/Ljh1Ey8tkycpaL8p1zVhzEQJIv2dKKScIgiAGQ15pBnXNIAhiPQi46IZRquZ3mrPKYk3CNYBzEiOGlU0pRDDGNMbYLYyxQ4wxmzF2F2PshiexnTMYYx3GGGeM7T8Vcz0VqBBK21WlGfmOiEaiLSSTV/VXy9TItlVv48kyWZ8Z6PaygkK/koud42cmxg2m08SNl/8CfmTfc7F/+oKBbG8zoUKMCIIgiMGQ7JpRHheOCMqIIAhiPfAhLjhVqvkX20r1ETBfCBDKcUwMH5u1NONdAN4C4FYA/wHgpwB8nDH2Is75p09iO+8HsAhgMCvLNcJYaUaEbPUZ8gCcDyYM5tytl+B1V/8m9k6dO5DtnQxnzVyEq86+HjvHzxjI9npKMwradwLA/ukLcP+R7wAYXMvLQbQ13WyoEpcta5wvQhAEcbqjMiLKjTGURkXJn724AB6GYNqmvO5EEMQmJZAd2sqVfEeEWa2BeSG4ocMLHFh9XMnE6cum+5+JMTYNIUK8l3P+B5zz2znnrwNwO4D3nsR2Xg7gYgC/e2pmeuqIwypl14yCjAhgMOUYSRhjuHL/ddg+tneg210JGtPwc8+8Fdee/9MD2V5v14ziP4Jnz1wU3S4bgz2nw8TbX/TneNoZz8Mrr/iV9Z4KQRDEaYWtHBGNMeimCas+Ah6GcJpL6zwzgiCGjVB2w6jU8nPQzGoVmifGOL69ZvMiNhabTogAcC0AC8CHM49/GMAFjLF9y22AMTYO4L9DCBqbzreYDassKs0ABi9EnE6stH0nAOyficsn+mVJEP3ZO3UuXv+sd2GiNtgyG4IgiGEnWZoBCEECoM4ZBEGsLUHogzMAAUepXpARUa1D80RphktCxNCyGUszzgPgAHgg8/g98udBAA8vs43fA3Af5/zvGGM3D3Z6px7liOiqrhkFpRkAUBlAy87TlaTwwMD6Cjr1UgM/98xbAQhnBkEQBEFsJJwl4XwojYwCACpjY2g+/qjonLF77zrOjCCIYUIJC5oXwqrlr0OSjgg3cHLHEKc/m1GImACwwHsjVk8kni+EMfYMAK+CKMvYlGRLM/oJEeSIKKZkxkKEZZRTnSzyuOrs60/1lAiCIAjiSRE5IhppR4RDnTMIglhDbK8LANDcEGZBWKVeKkGTYZW23VqzuREbi3W/tMsYe67sWrHcvy+plwDI6/PSfxUp9mUB+ACAP+Sc33sSc3wtY+xbjLFvHT9+fKUvO2UYGUdEv4yI9chy2CwkSzN2DCgAkyAIgiDWg2xpRnlMdM7oLsyv25wIghg+HF8KER4vdEQwxqAHYhnaaS+u2dyIjcVGcET8O4ADKxjXkT9PABhnjLGMK2I88XwR/xXCMfHHjLEx+ZiyDIwwxkY4583sizjnHwTwQQC47LLL1r3ZrWrf2XakDbNPO8mfeuovwvFtPOfASXc3Pe0xNBMj5XE07XncfOVb13s6BEEQBPGkUUJEORIipCOCMiIIglhDnKQjokCIAACdkxAx7Ky7EME57wC47yRecg+AEoAzkc6JOCh/9nM6HASwFcDjOc99G8BdAJ5yEnNZF1RpRscVmkm/8ot6uYE3Pvu312Remw3GGN72wj9DyMOBtQQlCIIgiPUgyogYFRkRyhFhkyOCIIg1JHJEuCHMarEQYXAdANDt9lwDJoaEdRcingSfBeACeAWA30w8fhOAuznn/YIq3wvgQ5nHrgPwVvn6+wc3zVOHoVmp++U+jgiiP1S6QhAEQWx2As+D12mDaRrCkoEv3PuP6I6JIDjqmkEQxFqiSsc1L4zCc/MwoAPgsLvUYnhY2XRCBOf8GGPsDwHcwhhrQjgZXgbg2QB+LDmWMfYFAHs45/vla+9Dxn3BGNsrb36dc57txLEhyWZClKkzBkEQBEEMLU5TuSEa+Ng3/hi33/cJGGUD+0cMckQQBLGmdNpC/NR9DUa5XDjOZCYAF7bdXqOZERuNTSdESG4F0ALwZohSi/sB3Mg5vy0zTsfmPcZCTL2Uul+2qDMGQRAEQQwrKgfCmGzgjgc/CwDw4WP+4gYJEQRBrCmtpTkAgMWKw/SBhBDhkBAxrGzKRTrnPADwbvmv37hrVrCtD6G3XGNDY/Y4IkiIIAiCIIhhRTkinL0jsL1O9Hhrfw329ygIjiCItaPdFH0DzEwpeRZxYbWNrk0ZEcPKurfvJE4e1b5TQRkRBEEQBDG8OItCbGhtE98PrjjzOjAwdHZWokUBQRDEWtBsib85Za24LAMAKiVRWt6xKSNiWCEhYhNiZoUIyoggCIIgiKGle2IWANCaYgCA83c8FTtH94EbDMdMCqskCGLtaHaEEFE1+ju2ayXRarjtkBAxrJAQsQmh0gyCIAiCIBSdWSFELIy6AIB9UwdwzvZLAABzDQeB563b3DYKgevi87e+BZ941Y2Y+8HaNUnjnOM/Dn0ZX/jeP6XKZgjidKVlC4dWzRzpO26kKloMdzzKiBhWNmVGxLDT077TpNIMgiAIghhWOrPH4dV1dAwXZbOKbY09OGf7Jfj8ff+Izu4yOsePYWT7jvWe5rpyx/t+D3d+6M8BAPMPPYCbb/86dLN/mN4g+OzdH8XHvvHHAICvPfg53PKC/wlN00/5fglivWg7S4AJ1GvjfceN1qcAG+iG3TWaGbHRIEfEJiTpgDD1EnSN9CSCIAiCGFY6c8fR3S7qsfdOngtN03HW9IXiuZ0VLB1+fD2nt+4Erou7/u6vovvzDz+I+z/5iVO+367bwifvjPf7/aN34asPfOZJbSv0Oe77bAf//meLeOIuZ1BT3LA89o078B9//n60jx1d76kQJ0nbawEAxsa39R3XaEwDAByc/p9nIh8SIjYhk7WZ6DaVZRAEQRDEcNOZnUV3h3BH7ttyAAAwXtuCatdAWNbx0ON3AQCO3uvik78yi2/+TROc83Wb71rz4L9+BvNGEw/98rn4/m9diONXjuPuf/jwKd/v7ff9MzpuC+dsvRivueo3AACf/u7fnfS5f+QbNj50wxHc9pY5fPVPl/CRVxzDtz9y+nYaOPRvX8THfuI63P7OW/CRFz8X3RMUuLqZsLkNAJic2tV33LgUKhzdP+VzIjYmJERsQibrW6PbJEQQBEEQxNrCGNvFGPtHxtgiY2yJMfYJxtju9ZpP+/gxdHcIR8S+qYPR4zPeGADggeN3w+uG+Oc3zeL+z3Xxpd9fwN3/PDx12d/5+N/g0E270B4DHLg4ct0MvrvwHSw++sNlX9t2lhCEJ79Q8gIXn7vnYwCAF174SjztzOdhrLoFTywcwr1PfHNF22jPBvg/vz6Hf3j1ccw96KOxU8f5Py6+933xdxdw+Lun35VkHob48rveEd1feuwR3PG+313HGREnA+ccHUtk0mzbflbfsZMz4k+mZ4SnfF7ExoSEiE1IrTQa3eacfnkJgiAIYq1gjFUBfBHAuQB+BsArAZwF4HbG2Lq0sVp49IdRaca+qQPR43tqZwAADjUfwNf/sonm0SB67v//k0X4zunvimg+8Ti+bt0Nb8zEnrGzcONlbwQAPPH8aXz77/+68HWub+NPvvDreMOHfxS/9LEX4877v4Wj33Ph2Sv73vXvD3wWC51Z7Bzfjwt3XglDM/CcAzcAQCRQFMFDjjv/Vwt/ef1h3PupDowSwzPe1MCrP7kNz3/3JC77mRHwEPjsO+YReJv3PTxyt4tP3zqHT/3aHO77TEeUn/zLP+H4vd/FyLYdeMWnvggwhjv/9i+x+Ngj6z3dTcv8Qw/i9t+8Ff/2nneiefiJU7qvdncRgQloTojt+y/oO3Zq134wN0RoMrTa1N1nGCEhYhPCGItud9zT15pHEARBEBuQ1wA4A8CPc87/N+f8XwBcD2APgNet9WTcdgsLwTz8uoGaOQbvwUksPi6u4B/Y8zQAwHGb4Zt/LVrk/fTfTGP6XBPt4yH+8xOttZ7umvP5j/8R5i4fA+PAz1/zDjz/wpuwvbwT/qiJzz/wCYR+r9uBc46//sp78K1DtwMcMP/tKnzuZeP425cexf+46gnc8YGlviKOH/q47a4PAQBecOFNmL3vXhz68hdw5Y7nwNJLuOvRr+KHs/mdO+Ye9PDRVx7Dv/7WPJwljr1PL+Pmf96KK143CsMS3/+e8QujaOzUMfsDD9/+6MZ6D3nI8cOv27jvMx04rWLR5uGv2vjITUdxz7908L1Pd3Dbr87hA9c+gc+/+/vg7P+1d+dxcpR14sc/36o+5komd7hyQYBwg4IiBBIQDawLKAJyiMeC4uoq67H+PHdR8VjcdV1hXUFEQFBAUIEVEZEzQAhXAgQTkkDu+5rM1VfV9/fHU5Pp6fRMOpOe7p7J9/161atnqp6uer51PvX0U0+N4qQvfZV9j3s7h73/fMJslud+8h8VjGLoWDX3WW4781RevPF65l7/X/zqzFPZ9MbCAVvesiUvAZBsV+qaR/SZNpZMUtfmjqNlb744YHkytcsqIga5jkxtXYCMMcaYIe4cYI6qLukaoapvAU8D51Y6M1vfXELb1Eb8zmEcdNd3+fVlG7nxzLX89ftbOfiQGcS3Zhn99OXk0jDtrAYOeHuSEz6eBGDuTa3kMj1vqFWV9QszrH8902tfBqrK6nlp3nyyk46tQdE01RYGyqYVW3m443HwhOmjT2Pi6EPwxOMjp30NgNXHJXnuDzu3inh04e94ZulDJP16PrD6TvaZ/WG8XIJs8wayHcrs61q4+dy1LH28s+g6enzh79nYuppxjfux9ts3c+sZJ3HPJefxmxnTOSJ0zdXvffFnPb6bSyvP/WI7t16wjjXzMzSO9TjnP0dz/s/GMHJiz07J4/UeZ3zNvZHg6f9poXVdZZ6xV1VWvZjmke9t5ckfb2PdgkyP6W0bAn575UbuvnwjD/zLZn557jrWvLLz4yMb38hw/xc2EebgyPc3cNxns/jjt9O2PiSV/gg66hGeenwKf33iUSZecREa93jtrjvYtuzNssWSSysbFmbYvnbo9k+w5oW53HPpB9k0AdZ+/hje/PIRLDo1xm2fvYDWNQPTge2CVx4FYIT2/erOLsNz7lGjpYtfKDpd1W2nlc+nSG23VuDlFmSVTEf11qu9bmGQqos32PuojTHGmMo7ArivyPgFwAUVzgsr5z5D69QjOPCufyXcOp5Ek5DtVF66o42lj/sc1PY9Yi1HoMlOjrwoxVPfv56Xbv0F8Eta1x/Cw9+cw6xrjsfzY6yYm2L2dZtZM9/dII87VDj186OYfFI94gmp7Wleum0x8++Btk3NUQ4Cho1dxoS3bebAUxoYM20yIyZNIlbnOs8MNSTbHrL21QzLn0uzYk6adKsy7vAYU2YmmPguj1h9iIeHhKDpgGzKJ9sZQ7wYdcN9ksM8YknXGkBVyXYqqZaQdGuOUHPgBajkgBzbVuZ484mQpY+GpLZ4TKz7Je1TnuG937gIDRXxhEPHv41pW09m7Xp44KmNtC17kUOmH8qw8SnmLryLu1ffjpdu5ND7rmTxmhieH+Jf8hCvjbmZMWvfyUHPXkXL8gS/+6dNjJwUY9KJSUYdGMMfnmVV5wIefv0xmoJjaJ7TxltvbCU+7DSaxo9l61uLyV27lGEXTmPxqm3ctu5ujmo6gy2LPN54uIP2Te6G4ODTMxx3YQv1IzazZUkSP5HAjyfwk91/T5me5OAz6ln8SCcPfHkzZ/9wNMPG912sV1VQRcMQDUPCIHCP+Eb/u0FRzf8/pHNbwFuzU8z/bYaWNd2PBz93UyvD99nGQTMELzGSBfcrqRalrlloHOOxeWnAnR/bwBn/OpzD3lcHImxZluP3n9lKpl0ZO3078975PRZueAkuFhpXHMXoeWcx7M230z57Ei8+HbBt2my2fPK9aGYJ197wD7zz+H+mafOxbJvfwOqXM8QSwthD44ydFmP4/oLggXqgQvP+PmOmxmka5+P5gqqybUWOV+5t55V720m1uPU9akqMqafXc/Dp9YyYGMOPCQiIAAJeTPDj3S2SwzAkyEC6NaCzJSDXoYiv+AmXzo8rfhy8OO7T7173qKI7hrD7M6cEOSXMQjYTkktDLhWSTSugxJNKrA68ZEgsoYinhFkl2wm5Dp9cu0dni1v/qe2wbsEKFj//Mp0H/jskhpF4YQs6eiWpsct57ezlXH39OVx85tc47uRz8f1d3w4G2ZBMe0C6NUt7SwfbN22jrX0rmbCV+qYk48aMp2l4E/MWPwETYfKoI0i3hmQ6QnJpJZdSgqxbF15M8GLucx85kk3tS1iw6SXODkMWLpvD/bN/xtp1bYx7YybD3zqD1PqoUkOgcXIn6YmL6azbyPDMBJraJ+CnhjF2apwJx8fZ720g8TZSbS2EIWhnI6mt9WQ7EwzfL8nISQnqhns9Wpf3HbeS2h66WNqUeL1QN8KjvtnDi5U2j0IaKi1rAtYvyLB6fpq1r2TwfGHctDj7HZNk36MTNIzKO+eF0a4TKhoCGo0LIZd1+4GfEOJ1QiwpRfMVBkqYc/EEGWXVS2kW/qmDJY91EmRg5KQYlz+wD+L1L6b+kr2p1+RyOP744/WFF4rX2lXSF+48l83t6wC49fLnqpwbY4wxQ4WIvKiqx1c7H7VKRDLAj1T1KwXjrwG+oqp9lurLWY645j0PEts0FT/rbvrHHOJzwQ3jad8U8ODXtrBpses0LoylWHH2D2mbOA8v426+hr35Lib8+csABLFOvCCBqO/+j3eiXo5Y2t0AhF4W9XM7lgOQbdhKpnktDesPQcLukEM/g3oBSOhu5rIJvDDeZxxBvBMAL4j3mFe+rvl62aS72SxBGEvh5ep2/O/FQDwIMr1/J4h3ImEML4jyrClo+xyEz7D8kgm0HtIIgc/o+Wcx5vlziXeMLCkvpUiNfpMN7/wVbRPn7TyxyP1BrH00U+65lnjHKMDFqxKC5JXtpaCcr1Lwt+QlzftfuxYq3esCyNVtZ+uRj+LlEjT/7ZQd+0iX1kkvs/q9/0OuvpX9HrucUa++N8pbGpVwxz7Use8i3jr/ajSWxUsHjHx5O8Nfb+Wg6Wcw8ZxPsPBOn+1P7A+h38caK41KgHo5RD0kb1/MDF+HnxqGn9l11y4qAWEsjaiP5OIl74M7lu9nUT8AFSR0lSWiHoTebs2rS+hld3lc9aXrmANcPvJ3E8HtRyiIuuMhlyx53urlej2O+xJ6WfACJJfosU5y9S1kh20kuWlSSTEH8U6QEC9bt+Oc1mM5Ox0nOwWPhL7b1n3E0bUOJe9Y6Z6d9DzW8pegXtF8lYt6OUI/C6iLI4z1ubzQz5AZuZxvPn562fJQajnCWkQMUlfOvJr/eOgqLjvpS9XOijHGGLO3KfYrTq8/JYnIJ4FPAkycWMaXawRx/Gw9oZ9h4uk5zvvOwSSbPJrG+nzk7vEsfzZF++YM8x7/Psv950CShHWuQNpy2FziHbcxdu4H8dPuRizbtJktRz7C5rf9EfVyjH757xg9/yzibaMhjKMSkBq7jC1H/YVthz+BxrL4HcNpXnQyIxaeQt2mie7Gv+BpjdDPkB69gvb9F9A2cT65+m00rTyaYW+eQMP6Q3tUcCghQbKdMNmBeiF+ugEv3YAXJHbMN4ylCZJthIlU901D6EPoEybaaZ84j5aDnqLeW8r7Jn4FNs5k4UPdLQ4Ahu/nM3xKhsWtj5DKJkhumUDd5gN25EU8ZczUNvaZ+igtb/lseK2ZiXeuYtO7RtJy1HC2HH0/m499kIY106hffxDJLfvidzYRb6sj3hrQGNYzfP/9aRy7D1GjA8KcEmZztK5ZSWv7JtLNkB7ZQmbUOlonv0znPoujvai0m5RM3Tbei2iIOwAAHT9JREFUvOgb7PPkRxm27NgelS7lFMQ7SY1dxrbDnmTbYU+gcVeTs2767TS/cRL166eifoa2SfNpmzSfrsNjzek3kBq9nHHPXUis07WgCf00LYfOZt3JN1O/uoXm11oZOa+Fxvpmjr70k5z8pa/jJxLMOBlaVud47qbtLH2qk7b1ARCQrV9Hx76LaT1wAe0TFoAKdZsmU7/uQOJtI9z9nx+CeiS27UNyy/7EO0YigVunufoW2ibNZ/Oxf6Jz38UQ+DSuPozhS99B07Jj8VNN7uYzuokUFXcjF8bws91vqgu9LGGyw+2riRQS+EgQj4aYq9jLxdz/6iM5H/p4CkQlcDfHXkgYy6B+xn3GMqCCl0viZevwskm8XB1edDyG8RRhopNcXRtBfStBXSu5+u0E9a3E67McfPA0jj90OtnNCTYuybLxjSwbF6UhVd97Zorlj5AwnnbLi6fQWBpRdZUGQRIJEni5hPs/jIFAokGI1wuxOvdrvRcXNHDHQZCLjoec0rZ9O2Eu7io7oooGL5lG93uDNVMfZMthL6N+Dq8jxqhXJjL8jUOJtSVIj2mhbXILqXFZ6jdOpWnFUTSsPqzH+SRXt51M8waChhbirWOIt4zrMX2XcUtAkGwnqGsnTHTiZepc5VWqcbfmUyjbsJXU2OV07LuIzn3fAIH6dVNpWHsIdRum4KcbkFzC1XKIoqJA2P1313g/i3oBEsSQXLQNwhh+QQWKEqJ+DvVcpVxmxDq2HzyHlmmzyTZupWFjI1C+iohSWYuI3VQrLSIAgjCH71ldkjHGmPKxFhF9E5H1wB9U9cqC8T8FLlDVsX19v5zliKXzXqd57GhG7zdul02NVZVAA9LZTkQEQdx3QujYlsbzs8SSMWJ1dTvSA4RBjs7N7eAnqGtOEo/HQCSqdZEd80IEVAlSoCqEmYBcOk0sCbE6HxHXHFo8b8fgvgOZdkV88OMCXkCgAUGYJQgDCJQgmyVIhQhxko1x4ok4fiyO5+/er4q5tGsSH0tIjybIuTBHNpd298+pOuJ1nmuKX9BMOchkyHZErz0VIdCAUEPifhzPj9aLCH4iucu8qSrZjnZymRQ5QrxkAjzZUZ0lPeq1orWdv43V5UfDAA0CgkyOIBf9wt61fvGjvwXP89xcPc/NTaL5CXiSt1yR7u0bbdZYQnaM785RkTz1GatrVp5okqLfUdXS5hWGZNrbCHM5soHrfyLmx/Gke32rKqGG5MIsoQZkMqFr7SHgJ926EPF2bC8XR964KK6ufRbPI8gqYRq8uEcs6eH5ed/tXnnR/93jFAhzEGbd4MUE8VzLHM/v/rvURwXcOnCPOfiJ7u8FYY5cmHOPfqDE/ASxXu4RNFR3zHmQ6mgjnWollADPi+H7PoiPh4/nxQCfWNIn2eDjeX6v+VRVUtkOErE6CDw8f+fjpy+dHa2k29LUN4wgXu8epemSyaTIpVNILkQ8Dy8WQzwfz/cR3wcRskEaz/PxwhhBxq3zRKN7TEFVyYVZskGGIJOlc1snGigaKmH0qFJ+XOJF28l3rai8wjhECAMll+o+hgTAk+hxnu7ziyey0yNRXeegonpZvzut9x3/9xyvqmgAubRL4h6Bocf6LLYM8Tyam8cVz1M/WIuIvYBVQhhjjDEVtwDXT0Shw4HXK5mRg449vOS0IkJMYsSSO3ciVze+ocg3ujUe0Nzn9HyxHa3cY0AJzbkFksPyC8Yx/FK/u5vcM9c7F8JjXoxYIipT9bFYP5HATyTKkhcRIdHYRKKxqf8zKf8qGhAu1r5vSku9ERfPIznM9VPR/9+j+yEJ9HNT+QmgPLsN4G7wYwXb3vdiJd8XiCc7jrlE43BgeN9fKGWeItQnooO/H69CqG8YRn1D8Q4uE4k6Eom+W/skvWhv8F2/HIV5i/sJ4n4CEjCsqXyPU5k9Y2/NMMYYY4wp3f3AiSJyYNcIEZkMnBxNM8YYY8wuWEWEMcYYY0zpfg4sA+4TkXNF5BzcWzRWAjdUM2PGGGPMYGEVEcYYY4wxJVLVdlyvXm8AvwLuAN4CTlfVtmrmzRhjjBksrJMBY4wxxpjdoKorgA9WOx/GGGPMYGUtIowxxhhjjDHGGFMxVhFhjDHGGGOMMcaYirGKCGOMMcYYY4wxxlSMVUQYY4wxxhhjjDGmYqwiwhhjjDHGGGOMMRVjFRHGGGOMMcYYY4ypGKuIMMYYY4wxxhhjTMVYRYQxxhhjjDHGGGMqRlS12nkYVERkI7C8jLMcA2wq4/xM32x9V46t68qy9V05Q31dT1LVsdXOxFBl5YheDZU4YOjEYnHUlqESBwydWCyO4koqR1hFRJWJyAuqeny187G3sPVdObauK8vWd+XYuja1ZKjsj0MlDhg6sVgctWWoxAFDJxaLY8/YoxnGGGOMMcYYY4ypGKuIMMYYY4wxxhhjTMVYRUT13VjtDOxlbH1Xjq3ryrL1XTm2rk0tGSr741CJA4ZOLBZHbRkqccDQicXi2APWR4QxxhhjjDHGGGMqxlpEGGOMMcYYY4wxpmKsIqIKRGSCiNwjIi0isl1EficiE6udr8FERA4QketE5FkR6RARFZHJRdLVicgPRWStiHRG6U8tks4Tka+KyDIRSYnIfBH5YCViqXUicr6I3Csiy6N1uEhEvi8iwwrSjRSRm0Rkk4i0i8gjInJUkfmVtE32ViIyS0QeFZF1IpIWkVUicreIHF6QrqTzSKnbxTgi8lB0PrmmYLzt36Zm1Ho5QkRmRsdR4bCtIF3NHFfVLFeIyCdEZGF0zl8kIp+qQBzFto+KyLE1EkdVyh67E2+54hCRyX1sjxG1EEc0z6qUT8p9/JcSh5R4DqtmHL3EVpEyTNn2L1W1oYID0AAsBl4D3g+cC7wKLAUaq52/wTIAM4H1wIPAnwEFJhdJdwewDfgE8G7gd0AncGxBuu8CaeBLwGnADUAI/F21Y632AMwB7gYuBWYA/xyt0zmAF6UR4ClgFXAxcCbwBO6dxAf0Z5vsrUO0/n4InB+t78uABcB23HuZSz6P7M52sWHHul8bnU+u6c96tP3bhoEeBkM5IrpGK/BZ4MS84fi8NDV1XFGlckU0nzBKfxpwTfT/Pw5wHAr8smD7nAg01EgcVSl7lBpvmeOYHG2P7xXZHn4txBHNsyrlk1JjLnMcM9nFOazacfQSV0XKMOXav/Y4aBt2eye5CgiAqXnjpgA54AvVzt9gGYhO3tHfV1DkQgscE43/eN64GLAIuD9v3LjoYPpWwff/CrxS7VirPQBji4z7SLRuT4/+Pzf6/7S8NM3AFuAnu7tNbNhpfR8arbcvRv+XdB4pdbvYoAAjgHXRRbrwIm77tw01MwyGcgTdhfgz+khTU8dVNcoV0Xc3ALcWpLsZd5MQH4g4omk9znO9zKuacVS87FFqvAMQx+To/yt2Ma+aK9cywOWTUmMegDhmsotzWC3FQQXLMOXcv+zRjMo7B5ijqku6RqjqW8DTuB3FlEBVwxKSnQNkgbvyvpcD7gRmiUgyGj0LSAC3F3z/duAoEZmy5zkevFR1Y5HRz0ef+0ef5wBrVPWxvO+1AA/Qc78udZuYnjZHn9nos9TzSKnbxcC1wAJV/U2RabZ/m1oyVMoRNXVcValc8S5gbJF0vwJGA9N3J4YoP6XEUapqxlGNskfZy4MlxlGqWizXDnT5pFLX1cI4SlUrcVSyDFO2/csqIirvCFxzpUILgMOLjDf9dwTwlqp2FIxfgDuApualSwNLiqQD2y7FzIg+/xZ99rVfTxSRprx0pWyTvZ6I+CKSEJGDcU3e1uEuBlD6eaTU7bJXE5HpuF+oPt1LEtu/TS0ZTOWIO0QkEJHNIvLrgufEB+NxVe5yxRHRZ+F6qFT54x+jZ+Q7omfmTymYXmtxDHTZo1LlwcI4unxfRHJR3wr3F3mGvybiqHD5ZMCO/13E0aWvc1itxFHpMkzZ9i+riKi8UcDWIuO3ACMrnJehrq913TW963ObRu2K+khnABHZH/g28IiqvhCN3tW6HlliOlvX3Z7DnejfAI7GNeHcEE0r9TxS6nbZa4lIHFcA+Q9VXdRLMtu/TS0ZDOWIFuA/cY8GnA58BzgDeFZExkVpBuNxVe5yRddn4TwrEdvtuBuXM4BP4louPCoiM/PS1EwcFSp7DHh5sJc40rjr0JW45+2/BBwFPCMih+V9vVbiqGT5ZCCP/77iKOUcVkr+BjSOKpVhyrZ/xUpNaMqqcMOB60jElJdQ2rouNd1eL6o1vQ/3rN/H8ydh67rcLgOGAwfiCiV/EZHpqrosmm7ruzz+H1CP63ipN7Z/m1pT0/uZqr4MvJw36gkReRKYC3wO+AaD87gqd567/i+WdkCp6mV5/z4lIvfhfjW9hu5HKWoijgqWPQZ0X+stDlVdC+S/YeQpEXkI9wvz14EP72b+BvqYqWT5ZCBj6TWOEs9hu5O/gYqjGmWYssViLSIqbyvFa4pGUrwWyvTfFnpf113Tuz5HikjhAVSYbq8mInXA/bgT9ixVXZU3eVfremuJ6WxdR1T1b6r6XPS837uBJuAr0eRSzyOlbpe9UtTE8uvAN4GkiIyQ7leldf3vY/u3qS2Dshyhqi/hfnk8IRo1GI+rcpcrevsFcVTB9AGnqq3AH+nePl3Lr2ocFS57DFh5cBdx7ERVVwKz2Xl7VL1cW+HyyYAd/7uIo1j6wnNYKfkbsDiqWIYp2/5lFRGVt4DuZ+nyHQ68XuG8DHULgCki0lAw/nAgQ/ezTQuAJHBQkXRg26Wr6de9wDtwr+Z5tSBJX/v1ClVty0tXyjYxeVR1G27ddD2fV+p5pNTtsrc6EKjDNVHemjeA+3VkK655rO3fppYM5nJE/i9pg/G4Kne5ouuZ6sL1UK3yR+EvnVWNowpljwEpD5YQR69fZeftUVPl2gqUTypy/BeJozfFtkm14qhWGaZs+5dVRFTe/cCJInJg1wgRmQycHE0z5XM/EAcu6BohIjHgQ8DDqpqORj+EO8AuLfj+h4HXot5+91oi4uHeK/xu4FxVnVMk2f3A/iIyI+97w4Gz6blfl7pNTB4RGQ9Mw72HG0o/j5S6XfZW83DP4xYO4C7sp+EuvLZ/m1oyKMsRInI8cAjuuWwYnMdVucsVz+Jeb1ks3RbcmwYqIlr376N7+0AV46hS2aPs5cES4yj2vYm4Yzp/e9RcubYC5ZOKHP9F4iiWpvAc1pW/asVRrTJM+fYvLeO7ZG0o6T2vjdFO8SrulSnnAPOBN4GmaudvMA3A+dHwv7jayX+M/p+Rl+ZOXI3gFbiLwD1ACnhbwbx+EI3/Au7dwf8LhMDZ1Y6z2kPe+r0GOLFgOCBK4wHPACuBi3Cv9nkcVwCZUDC/krbJ3joAv8c1szsXdxG5ElgIbAMOidKUdB7Zne1iQ49tUPgObtu/baiZYTCUI3A3XtcA5+E6evsi7kZ1BTAmSlNzxxVVKFfg+gYIo/U1E9eRYQh8ZqDiwP1a+nPgkmiZH432pwxwSi3EQZXKHqXGW+Y4/hP4L+BC3HX/U8By3HX/0FqII5pnVconpcZc5jh2eQ6rdhx9xDfgZZhy7V9lC9qG3dpBJuKaaG0HWoE/AJOrna/BNkQHWrHh8bw09cCPcK/kSeFqMWcWmZeP63hmOa4H3VeA86sdYy0MwLI+1vXVeelGATdHJ7YO4K/AMUXmV9I22VsHXMdDL0YXxA5gEa5H5MkF6Uo6j5S6XWzosc56XMR3Zz3a/m1DJYZaL0cAX42uoy2499KvBG4E9i1IV1PHVbXKFbgboTeidIuBTw9kHLhfQp/G3Vhlgc24X0PfUStxUKWyx+7EW644gH8AnsfdAOaiPP6agkqIasYRzbMq5ZNSYy5nHJR4DqtmHLs4/ge0DFOu/UuimRljjDHGGGOMMcYMOOsjwhhjjDHGGGOMMRVjFRHGGGOMMcYYY4ypGKuIMMYYY4wxxhhjTMVYRYQxxhhjjDHGGGMqxioijDHGGGOMMcYYUzFWEWGMMcYYY4wxxpiKsYoIY0y/iMjjIjIk3v8rIvuIyK0iskpEAhFRERlR7XwZY4wxxvSXiFwqIleLyEXVzosxhWLVzoAxprr6UZnwcVW9ZSDyUkW3AO8FfgMsARRIVTNDxhhjhq4Srr1D8VprKkhEPgf8d97/o1T1p3swv1nALODYaBgJPKGqM/cwq2YvZRURxphvFRn3z0Az7gK2rWDavOjzI0DDAOarIkQkAbwHeERVL612fowxxuxVil2Doftaa8xuE5FPAD8GVgCfB64DrheRTlX9ZT9n+1ngfUAn8CauIsKYfhPVIdGy2hhTRiKyDJgETFHVZdXNzcASkYnAcuBWVf1YlbNjjDFmL9DVIkJVpdp5MUOLiFwG3Aq8DsxS1dUiMgn4M3Aw8GFV/U0/5nsS7sepRcAUYDHWIsLsAesjwhjTL8X6iBCRmVH/CleLyPEi8pCItIjIVhG5V0QmROkOFJE7RWSjiHSKyGMickwvy2kQka+KyDwRaReRNhF5VkQuLkMMy3CVEAAfjfKuInJLND0hIp8TkZeiGDpEZJmI3CciZ+zp8o0xxphdEZHbo2vTRBG5SkReja6djxSkO0tE/iQim0UkLSJLReRaERney3xnicjT0bV1i4j8XkQOyVveAXlpz4jGfaOXea0SkSW9TLs0KjNsE5GUiLwuIl+LWiTmp4tFy3hERMaKyE0isi6K5TUR+Ugf6+hMEfk/EdkQpV8pIn8QkdOj6X8fzfvGXr5fF62D9YX52l0i0hiVW16KyixtUcz/LSJj89J1recJUVnj9Wi7viUiXxERidJ9SESej8og60XkJyKS7GXZFwC/BJ4FTlHV1QCquhyYDrwI3CYi5+1uXKr6jKq+rqrB7q8VY3Zmj2YYYwbCCcD/A54Afg4cBZwHHCUi5wCzgYXAbbiWF+cBfxGRA1W1rWsm4jqMfBQ4DngJuBlXgToL+LWIHKGqRQtFJfoxMBm4CpgP/CEa39Uk9hbgYuC1KK+dwH64i/mZQI9CoDHGGDOA/gd3/XkQ+COQ6ZogIt8GvglsBh4ANgLHAP8CnCUiJ6lqa176DwG/BtLAXcA64FTcDezr5cqwiNyKe5RzBXAP0AKcBHwXOF1EZhW5sR0V5aMDuBuoBy4EbhWRQFXvKFjGd4GvAa246/gquq/Vl+DKEQ8Cy4CLReSL+esiciHuUYN/V9UM/SQio4HHcOWevwG/wG2nqcDlwG9x2ybfj4EZwP8BDwPvB74PxESkA/gOcB/wJK7881lAos/8ZZ8N3AH8CbhQVTvzp6vqpqhi5l7gNyLyAVV9sL+xGrPHVNUGG2ywoceAu1grMLmPNI+7U0iPcTOj7ylwacG0X0TjtwBfL5j2zWjaVQXjb4nGf7lgfB3wEBACx+5hrJOjZdxSML45mv8LgF/ke6OrvZ1ssMEGG2wYnEPetfLqIsPHCtLeHqVdCUwqMq/3RNOfApoLpl0RTfth3rjhwFbcDfJxBemvy8vbAXnjz4jGfaOXeFYBS3pZ9t1AXcG070TTPpM3Lpa37Bvyr724G/sAeKVgPn8XpV8C7FcwTYD98/7/SpT2U0XyPzu65h+0h9v17mgZ1xM9Ap83bVj+9snbrkuBffPGj4rKSm3ABuDQvGl1uEcjUtUsh+AqVhR4vFp5sGHwD/ZohjFmIMzWgl8scM8rgvs15AcF026LPo/tGhH9qvBh4AVVvTY/saqmcC0uBPdrx0DQaP5pXOGk50TVzQO0XGOMMXuPfysyfKyXtD9Q18S+0OeizytUtSV/gqrehGvVl98Z8weAEcCvVPXlgnn9K65lQTlchavsuCK6buf7Fq6/gWKdRLcBX9S8lhKq+iowBzhSROrz0na1Cvi8qq7Jn4k6q/NGdbVOuDI/nYgcDpyM67R6aanBFRKRfYHzcZUy/6KqPR5fVdXWwu0T+baqrs1LtwXXOqIRuF5VF+VNS+EqO5LAtP7m1ZhaYI9mGGMGwgtFxnUVEObpzs0wuwoKB+SNOwHwARWRq4vMLx59HtbfTPZFVbeLyAPA2cA8EbkX92vTc6raMRDLNMYYs3fR3euscm4v49+FqzS/OOpWoFAM2FdEmqMb4bdF458okp+tIvIK7sa830RkGHAksB74Qi/5SlH8Gr5I8x7TzLMS91jHCNyjkgAn4n4s+POu8qSqG0XkHuASEXmHqnatz66KiZ/tah678A7cDxhPaMFjEbvQV5npxSLTipWZ9oiIjKK7Qivfj1R1e7mWY0w+q4gwxgyEYjX+ud6mqWouKqTE80aPjj5PiIbeNPUngyX6EK7lxSV0v2ItFRVkvqSq6wdw2cYYY0y+db2MH4W7Af63XXy/CXcNbo7+7+0a1ttydseo6HP8LvKVKzKu8LXhhWn9vHHNwEYtvV+Hn+Ku6VcCc0WkDrgMF/P9Jc6jNyOiz9V9ptrZbpWZ8qbFi0zrr1EU3043AVYRYQaEPZphjKlVXRff/1JV6WM4baAyoKqdqnq1qh4CTMQ9KjI7+rxnoJZrjDHGFKG9jN+Ouxnv61opeY8pdF1fx/cyv32KjOt6RLG3HzGbC/7vWsbzu8jTnt5MtwBjSn3Thao+DbwCXCQizXR3UvkLVS1WKbI7uipQ9t/D+VScqi7pZfusqnbezNBlFRHGmFo1F1fwOaXaGQFQ1ZVRvxezcO/Onh71Y2GMMcZU0xxgrIgcWmL6l6LPGYUTRGQkcHSR72yNPicU+c40Clonquo2XKeKR0VvwBooc+h+m1ap/hdowP2o8ElcWePnZcjLXFxl0YyCfiyMMUVYRYQxpiap6gbca6iOF5FvishOv8KIyEEiMqVg3OPRe7ln7snyo3eYv7PIpEZcz9c58l6dZowxxlTJj6LPm6IOE3sQkaaC69nvcS0JLhOR4wqSfxt3jSv0Oq4TyQ+IyJi8eTcA/91HvuqAX0StDwrzNarI8nfXdV3L6iX2Yq0Tbsd1yPlVXF8YD/XSCSgisioqU+yyP4aow8nf4vpuuFYKOsaItsPwXc3HmL2F9RFhjKll/wQcjCsYXSYis3HPtO6H6+DqBOBi4K2873RVsO5pE8v9gTki8jfcr0crca88+3tcs9Wf6M7vITfGGGMqSlUfFpFv4F6JuVhE/oS7LjbhXlE9A3gMd/3q6oz5U8CvgadF5C5cHwmn4q6ts4HpBctIi8h1uJv3eSLye1wfBbOA5RTpb0JVbxSRt+NaHcwQkYeBFbj+CA7EtXj8Oe5a39/YHxSRH+BezblQRP6Ae2vFPlEMT+FeI5r/nTYR+RXw6WjUDX0sYnfLFJ8GDsfF9O4o5gwwBTgTOAu3fgcdETkV+Ifo367Kqmkickv0d6Cql1c8Y2bQsooIY0zNigpLM3CFmEuAD+J+XVmPezzi88BfutJHvz4cASzDNdfcE8twHTfNBE4DxuDe670IV+C5cw/nb4wxxpSFqn5XRJ7CvfngZOBcXKuHVbi3QdxRkP5OEdmKe13nh3BvsHgS+Hg0rkdFROQbQDtwOa6zx3XRfL+NuyYXy9eVIvLHKP17cB06bsZVXlyLa52wR1T1qyLyNO5VnmfjWi5uwD0q0dv8b8ZVGqwC/lgsQdTyYx/cWzBK6sBTVTeLyLtw5ZMLceWXAFcB83NcGWKwOgT4aMG48XnjAty+YUxJpOAVt8YYM2iJyNHAfOAzqvrTaufHGGOMGWxE5HbgUmDCUO2sUESuwFUMXK2q3+olzXnAvcAsVX24kvkzZm9gfUQYY4aSGbjWEjdXOyPGGGOMqT1Rn1Ofxz0ycWMfSWcAL1olhDEDwx7NMMYMGap6Hd0dVxljjDHGACAip+D6wTgd14/Dj6MOJotS1asqlTdj9kZWEWGMMcYYY4wZ6mYBX8f19/QzXMebxpgqsT4ijDHGGGOMMcYYUzHWR4QxxhhjjDHGGGMqxioijDHGGGOMMcYYUzFWEWGMMcYYY4wxxpiKsYoIY4wxxhhjjDHGVIxVRBhjjDHGGGOMMaZirCLCGGOMMcYYY4wxFfP/AYmNwUuoB5U7AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(1, figsize=(18, 6)) # dpi=300, frameon=False)\n", - "plt.subplot(1,2,1)\n", - "plt.title('ACF')\n", - "plt.xlabel('Time, fs')\n", - "plt.ylabel('ACF')\n", - "count = 0\n", - "for i in xrange(nst):\n", - " st1 = states[i]\n", - " for j in xrange(i+1,nst):\n", - " st2 = states[j]\n", - " \n", - " plt.plot(T, ACF[count], label='ACF for gap %i - %i' % (st1, st2), linewidth=2, color = colors[clrs_index[count]]) \n", - " count = count + 1\n", - "plt.legend()\n", - "\n", - "\n", - "plt.subplot(1,2,2)\n", - "plt.title('Influence Spectrum')\n", - "plt.xlabel('Frequency, cm^-1')\n", - "plt.ylabel('|J|^2')\n", - "count = 0\n", - "for i in xrange(nst):\n", - " st1 = states[i]\n", - " for j in xrange(i+1,nst):\n", - " st2 = states[j] \n", - " plt.plot(W[count], J2[count], label='Influence spectrum for gap %i - %i' % (st1, st2), linewidth=2, color = colors[clrs_index[count]]) \n", - " count = count + 1\n", - "plt.legend()\n", - "\n", - "plt.show()\n", - "plt.close()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 4. Nonadiabatic Dynamics \n", - "\n", - "Define simulation parameters" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [], - "source": [ - "params = {}\n", - "\n", - "# Trajectory:\n", - "params[\"dt\"] = 41.0 # in a.u. of time\n", - "\n", - "# Thermals:\n", - "params[\"T\"] = 300.0 # in K\n", - "params[\"Boltz_opt\"] = 1 # options: 0 (no), 1 (Pyxaid), 2 (Classical), 3 (N-state Boltzmann)\n", - "\n", - "# Statistics:\n", - "params[\"ntraj\"] = 1000\n", - "\n", - "# TSH:\n", - "params[\"sh_method\"] = 1 # 0 - MSSH, 1 - FSSH\n", - "\n", - "# Decoherence:\n", - "params[\"decoherence_constants\"] = 0 # 0 - decoherence times from the data\n", - "params[\"decoherence_method\"] = 2 # 0 (no), 1 (ID-A), 2 (mSDM), 3 (DISH)\n", - "\n", - "# Simulation:\n", - "params[\"istate\"] = 1\n", - "params[\"init_times\"] = [0]\n", - "params[\"nsteps\"] = 440 # can not be larger than len(Hvib)\n", - "\n", - "# Outputs:\n", - "params[\"outfile\"] = \"_out.txt\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Run the actual calculations" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Decoherence times matrix (a.u. of time):\n", - "Decoherence times matrix (fs):\n", - "Decoherence rates matrix (a.u.^-1):\n" - ] - } - ], - "source": [ - "res = step4.run(Hvib, params)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Visualize the population dynamics" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABBUAAAGYCAYAAAAdl9qmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXecnGW5//++Z3a2l2w2m94T0ggQQpMWEBAEEVBQxHJERfDY/alHPZaDHBXb94CKDfUgKAcQpDepIaEnhEB6SC+b7X13Zqfdvz+eMs/MzuyUndmZ3b3er9e8duap98xOuZ7PfV2fS2mtEQRBEARBEARBEARBSBdXvgcgCIIgCIIgCIIgCMLoREQFQRAEQRAEQRAEQRAyQkQFQRAEQRAEQRAEQRAyQkQFQRAEQRAEQRAEQRAyQkQFQRAEQRAEQRAEQRAyQkQFQRAEQRAEQRAEQRAyQkQFQRAKDqXU2UoprZTal4dzX22ee/VIn1sQBEEQhOwh8YQgjAwiKghCDEqpIvOH4Eml1BGllF8p1aGU2qaUekwp9S2l1Elx9rN+uFK5bczHcxvvKKW+qpS6Xik1N99jEQRBEMYeWYoh5iY5R8rbCrlB4glBiKYo3wMQhEJCKVUPPA6c6FjsAxSwGFgCXAR0AROGOFQrEEqyXhh5vgrMAVYD+xJs0wXsAA6MzJAEQRCEsUAWYwih8JF4QhAciKggCNH8HSMY6AH+G/ib1roRQClVBZwCfAB4X5LjnKS13pfDcQo5Qmv9APBAvschCIIgjDqyFUMIYwCJJ4TxhIgKgmCilFoCnG8+/LTW+j7neq11D/AM8IxS6hsjPT5BEARBEAoTiSEEQRjPiKeCIEQ4xnH/0aE21Fp7czyWKJRSq83ayauVUrVKqZuUUnuUUj6l1CGl1K1KqWlJjrFAKfVHx34dSqk1SqlrlFLubJ9XKfVXc9/rU3leabwWlUqpDyml7lRKbVZKdSqlvEqpXeZ4joqzz/VKKY2RqgjwfIzHxWrHtkmNlZRSHzTrZVuUUgPma3GnUmplgu3nWucyHy9XSt2tlGo0X8vtSqnvK6WKE+xfZa5/QynVY9boNiil1iulfqGUWp7q6ycIgiDkhIKNIZxIPBG1j8QTEk8IWUIyFQQhPjOA3fkeRBzqgHXAAsALBDHG+lngMqXUWVrrbbE7KaUuBu4FSs1FXUAFcKZ5u1IpdZnWui+b580RVwO/cTzuwRBIF5i3j5rP5RnHNr1AE1BvbtsB+B3r21M5sVLKBdwG/Ju5KGSefwbwUeAjSqkvaq1/P8QxzgceBMow/g8ejFrbG4ATgMtitq8BXgaWmYvC5n5TgGnmPiHg26k8B0EQBCHnFGoM4UTiCYknJJ4QsoZkKghChDcc93+rDMOlQuP7QBXwfqBSa10JnA3sxfiBu1cp5XHuoJRaANyNEQC8ACzRWk8wj3MdMACcB/wqm+fNIW0YQcBpwAStdTXGc1sK3IkR3PyfUqrC2kFr/Uut9VTgoLnog1rrqY7bB1M8939gBAAa4zWp1VrXAjMxgiwXcItSatUQx7gHeASYZ/4fqoHvmMe8VCl1Ucz2X8EIAFqAi4ESrfVE8zkvwvjxL/TgVRAEYawzGmIIJxJPSDwh8YSQPbTWcpOb3MwbcDvGl7HG+HF8BvgRcClQn2Tfsx37tgCNQ9w+m+a4VpvHDQNnxlm/2ByvBj4es+4v5vJdQHmcfa91HHthFs/7V3P59Sk8r6sTvJb70nydFPC0ue8n46zfZ647e4hjXG1uszpmeQWGoq+BG+Ps5wbWmuvXxKyb63hvPAWoOPs/Yq7/35jlj5vLv5Xvz4fc5CY3uckt8W0EY4h2x7Zz0xyjxBOpvU4ST8hNbmncJFNBEKL5LPA/GKlsxcC5wHcx0sualVKvK6U+ppRSSY4zCSOdLNGtIvGuQ7JWa702dqHWegdgmUJdYS03x3m5+fAmrXV/nGP+GTiM8QN6RZz1aZ83X2itNfCY+fD0LB/+fIxZAD/w8zjnDmG4fQOcqZSamuA4PzXHGcuD5t/YesZu8++QNa6CIAhC3hmpGKI2C2OVeGIIJJ4QhPQQUUEQHGit/VrrrwOzgM8BdwHvYCi7ACdhtIy6x6yHS8Q8rbUa4nZzhkNcPcS6F8y/TnOf+UCNef/5eDtprcOO48Y1BsrgvDlFKTVTKfUz02ioUykVchgX3WRuNj3Lp7We31ta644E26zBqA91bh/LugTLD5t/Y4PFx82/X1ZK/U0pdaEyWpMJgiAIBcRIxRDAu7Mw3NVDrJN4QuIJQUgLERUEIQ5a62at9R+11h/VWi/CUHU/S6SG7kPAl/IwtMMprHPWcdbHWR+PQ3G2H855c4ZS6ixgG0Y94kqMIKcHwzipiYgSn2k2SCKs55fwtdBa+zBqNJ3bx27Tk2B3n/k3qpZUa30HcCvGzM/HMYKCTqXUm0qpGxK5ZQuCIAj5oYBjCCcST0g8IfGEkDVEVBCEFNBaN2mt/4zxo9NkLv50HocUj2TplCV5Om/2TmSYN/0dqMSoVV0FlGmtJ2jTJAn4/3I8rly9jgnRWl+HkcZ4A8YszwCwAsPc6R2l1HtGekyCIAhCaoySGMKJxBMSTwhCWoioIAhpoLVuBR4yHy7KwxCGSsGzFOYWxzLn/TkkZmac7YdzXoik7ZWSmJoh1sXjVIyxtgOXaq3Xmmq+kylpHjNVrOeX8HVUSpVitMtybp8VtNZbtNb/pbV+NzABwzl7E8YMyu0j6JYtCIIgZEABxBBOJJ6QeELiCSFriKggCOlj9V72D7lVbjgrhXUbHMv2AJ3m/bg1mGZd59lx9h3OeXGcdyZxMFs0LR3iuPGwjrUzgUkUGO2sEhG2Tp/meSHy/I5SSs1IsM0qoChm+6xj1u0+ipFCC0YgdlSuzicIgiBkjXzGEE4knjCQeELiCSELiKggCCZKqXlmD+ahtikHLjMfbsz9qAZxllLqtNiFSqmjiLgl32stN12B7zcffsUcfyzXADMwjKTui7M+7fOabDL/nm8q7rF8jfRT/7rMv0fFO6ZS6nyGNrCy6iMnpHleMFo3dWPUKH4zzrndGOmDYLhbN2ZwjkEopYqHWO113B/xNEpBEATBYJTEEE4knjCQeMJA4glhWIioIAgRjgZ2KKXuV0p92GlYo5SqUEq9H6Nv8Dxz8a/yMMZu4H6l1EVWSyql1JnAExg/AluAf8Ts8xOMmZHpwGNKqcXmfiVKqc8Cvza3+4vWelcWz/sIxo9UPXCHUmqyuV+NUuq7wPVEftRT5SWgHyMl8A7rf6SUKlNKfRr4JxFjo3hsMf9elSAwSYjWug/jtQTDOfm7SqlK8/wzMFy+z8CYvfheOsdOwjNKqV8rpVYppcqshUqpozF6dwMcIRJ0CYIgCCPPaIghnEg8IfEE5jklnhCGj9ZabnKTm9YAF2Co685bP0banXNZEPjPOPuf7dimBWgc6pbm2Fabx/06sMsxth7HOZuBZQn2fz/GD7K1bQdG6qX1+BmgIgfn/XLMa9cBhMz7P3Ac/+oEr+W+FI7ZCQTM+29iOGprYHWcfc9x7DeA4cS9D7jbsc3VQ+zvBm6PeS+0Y/zwa/O5fT7OfnOtfYb4H8d9zhizWdpx/PaY/2UfcG6+Pz9yk5vc5Daeb2Q3hpib5Fwpbxtn3+H+rks8oSWekJvcYm+SqSAIJlrrfwGLgW8AD2L86IHhDNyJUdN2M3Cc1voncQ8SYRKGwc9Qt0xow+hzfTOGg3Qx0AD8CVihtd6a4Lk9AhxjbrcPKMf4MX8RuBa4QBvKebbP+2vgSuBV83wujNmBD2itb0j1Scc55geJzDIUAduB/wJOwwhQEu37HPABjF7YXow0zTnA1BTPHdJafxIjRfMpjPdFJYayfxdwstb6d5k8ryG4BuO5PQ8cAKzZhe3ALcByrfWzWT6nIAiCkAZZjiFGAoknJJ6QeELIGkprne8xCIKQBKXUagwDo09prf861s8rCIIgCEL2kXhCEIRcIJkKgiAIgiAIgiAIgiBkhIgKgiAIgiAIgiAIgiBkhIgKgiAIgiAIgiAIgiBkhIgKgiAIgiAIgiAIgiBkhBg1CoIgCIIgCIIgCIKQEUX5HkA+mTRpkp47d26+hyEIgiAIOeGNN95o1VrX53scYxWJIwRBEISxTKpxxLgWFebOncv69evzPQxBEARByAlKqf35HsNYRuIIQRAEYSyTahwhngqCIAiCIAiCIAiCIGSEiAqCIAiCIAiCIAiCIGSEiAqCIAiCIAiCIAiCIGSEiAqCIAiCIAiCIAiCIGSEiAqCIAiCIAiCIAiCIGSEiAqCIAiCIAiCIAiCIGSEiAqCIAiCIAiCIAiCIGRE3kUFpdRMpdRvlFKvKKX6lVJaKTU3xX1dSqnvKKX2KaV8Sqm3lFKX53bEgiAIgiAUChJHCIIgCEJ+ybuoACwEPgx0AGvT3Pe/geuBW4ALgVeBe5VSF2VzgIIgCIIgFCwSRwiCIAhCHinK9wCANVrrKQBKqWuA81PZSSk1GfgG8FOt9S/Nxc8rpRYCPwUez8VgBUEQBEEoKCSOEARBEIQ8kvdMBa11OMNdLwCKgb/HLP87cIxSat6wBiYIgiAIQsEjcYQgCIIg5Je8iwrD4GhgANgVs3yL+XfZSA2krbeJx97+G2t3PjpSpxQEQRAEYXgUTBwxEPDy5Oa7ePSt20fqlIIgCIKQNUazqDAR6NRa65jl7Y71I0J7XxP/WHcLz2+/f6ROKQiCIAjC8CiYOEKjueu1m3nwzb8weDiCIAjCaKehcy8bD7xIc/fhqOWd/W0cbI/VtkcfheCpkCkKiPfLq4bcSalrgWsBZs+enZWBlBdXAtDv78vK8QRBEARByDkFE0eUFJXhcZcQCA3gD/oo8ZRl5biCIAhC7mnpaeCGhz9Nt68Dt3Izf/LRlHsq7fWBkJ9tR95Ax/3JMfjexX/iQNtO3jr4UtRypVwsnHwM5y27grLiygR755/RLCq0A7VKKRUzy1DrWD8IrfWtwK0AJ554YlamA8qLqwDo9/dk43CCIAiCIOSegokjlFJUldbQ3tdMt6+DehEVBEEQRg27mjfR7esAIKRDvNP09qBtXMrNwslHc6h9N97A4InodXuf46mt9xDPJmjjwRfxh3xcfsLnsj/4LDGaRYUtQAmwgOh6SKsGcutIDcTKVPD6e0fqlIIgCIIgDI+CiSMAqkprae9rptfXRX3V9JE8tSAIgjAMBoI+AFYtej9Xnvwl9rRsJRwORW0zfcI8JlfPGLTv89vv568v/Yzntt+P1mGWTjuB9y7/qL1+9Y4HefPAWlp6juT2SQyT0SwqPAn4gY8BP3Qs/ziwWWu9d6QGUlxUilu58YcGCIYCFLk9I3VqQRAEoUDRWqPUkJn0Qn4pmDgCoLKkBoCegc6RPK0gCIIwTPwBL2CUslWW1HDszFNT3ndajdFoKBAaAOC8ZR9ixewz7PUul5s3D6yl2xs3ea5gKAhRQSl1hXn3BPPvhUqpFqBFa/2CuU0QuF1r/RkArXWzUuom4DtKqR5gA3AlcA5w6QiPn7LiSnoHuuj391JdVpt8J0EQBGHMsq1hPb948stcd/YNnDL/vHwPZ8wz2uMIwI4derwdI31qQRAEIQm7mjbx6p6naOo+SEPnPnt5fdV02yuhuKg07ePOqI10L64orua4WadHra8uNX4bun0iKqTCvTGPf2f+fQE427zvNm9Ovgv0Al8BpgI7gA9rrR/JzTATU15cZYoKPSIqCIIgjHNue+mnhHSI3z3/XREVRoZRH0dEMhW6opZrrensbyWsw7y6+1/sbHoLgHn1S7nomI9nFMQKgiCMN9r7mnh442109LXYy4rcRSyZdiKTq2bQ3tdoLw+GQ+xp2UL/gOGX1zvQze7mTXGNFlt7I2UJJUXp++FUlU6gqrSWHl8HJ88/D4+7OGp9dZnRiEgyFVJAa500PzTeNlrrEPAj85ZXyoorAOgXXwVBEIRxj8ddYt+XMojcMxbiiKrSCQD0+jpp6Wng1hd+iDfQS4+vk87+1kHbbzz4IntbtvG18//fSA9VEAShoAjrMLuaN7G1YR3BUACAtt5GDnXsRqMJh8M0dh8gFA4O2nf9vtUpncPtKuLsxZeyoH45CyYvx+0qoqO/hR8/eq29TaadexZPPY4N+9dy1qJLBq2LZCp0EtZhXMqV0TlyTUGICmOBCrMDhJg1CoIgjA8aOvext2Urpx910aB1YR0xaGrqPsjUmuy0HhTGLlV24NjBwxtvY2fTRntdeXElJUVl1FZM5j3LPkxbXyP3rf89hztH1PZBEASh4NjfuoNfP/utqIyBeCjl4sS57+b0hRfZQn+Pr5M396+huaeBuZMWU+SK+OJNq5nD5OqZKKXMzg3LqSipjjqmlUVgUZJh5thnzvw+V5zQxrQJcwatK3J7qCiups/fTa+vq2Az4kVUyBJW39B+f09Bq0iCIAjC8AmE/Hznn1cCMGviQmbXLbLXhXWYlp4G+/E7TW+LqCAkparUKH843LGX/W3bUSi+8d5fMbFiClNrZkfFFS09Ddy3/vdxW48JgiCMdYLhII2d+9nWuIF/rv893kAfdRVTWTlnlX2hX1pUxoLJy+1ygokVU6g0v2edrFr0/ozHUewuwaXc9kRCJuUPYAjHVjfBeFSXTaTP3023tz2uqNDS08DOxo0snX4iEysmZzSG4SKiQpaw3giv7X2WP6/9Edeuup4T5p6V51EJgiAIuWDtzkft+33+nqh1nf0ttoszQEtvA4KQDCtTYVez0d985exVLJ9xStxtFcYsm9aD63sFQRDGMn0D3fzo0WtpcGRqnTzvPK476/oR78CnlKLMU0GfvxvIXFRIRk3ZRI507aPbFzHyXbf3ObY2rGd3y2b2t+0A4JR55/H5c36ckzEkQ0SFLGFlKqzb+ywAd7zyCxEVBEEQhok/6KPI5cHlivXXyx9aa57acrf9OLYXdXP34ajH3eLmL6RApempYHHB8qsSbmul7mokU0EQhPHDP9b9lsfevsN+fMyMd7Fq8SWcNPecvHkXlRU7RAVPboxzq8zshC5vG6/teYZ/bb6L3S2b7fVuVxGhcJDG7oM5OX8qiKiQJcpNTwWL2vL6PI1EEARhbOD19/G1u9/PwsnH8I33/irfw7HZ0biRI1377cfBGOOnfa3bASMt0h8aoKfA20AJhcHkqhlMrppJc88hFtQfzeKpxyfc1gqew5KpIAjCOKGx6wBPbLoTgCnVM/nme39DfdX0PI8KSj3l9v1cZioA/GH1D+xlCsU5Sz/IsTNPY9qEOfzHvVfENfUdKURUyBIVMXUwk6tn5GkkgiAIY4OdTRvxBvrYdPjVfA8liqe33h31ONZN+uXdTwKwavElPLP1XslUEFKiuKiEG6+4h/2t25lSPWvIWTeF5a8gooIwegmE/ITDIVp6GjjcuYeD7bt4+9ArLJt+Ih85+cv5Hp5QYDz61u2EdYgzjnof15z5/YLpqlTqqbDvZ2rUmIwT55zNy7uepN/fg0JxwfKrOGvxJUyfMA8wJjcUim5vO6FwELdr5C/xRVTIEmUxooLVzkQQBEHIDK+/z74fDAcpSuFHciDo45kt/+C42Wcws3Z+1se0v3UH6/etxuMuYfbEo9jdsjlKVGjo3Mv+th2UF1dy5lEXG6KCT0QFITWKXEUsmLw86XbKNG0Uo0ah0PEHB2jtPUIoHGRPy1Y6+pvZ3byZjv4WDrbvirtPc/chERWEKAYCXl43S8zff9zVBSMogFH+YJFpS8lkLJ1+Ir/56BM0dO2jsqRmkBljkauI6rJaurztdHnb82LWKKJClqiKqYUcCHrzNBJBEISxQVtfk32/19fJhPJJSff5n6e+xvYjG9jWuIFvXHBz1sf02t5nADh78aV0e9vZ3bKZYDgiIu9oNNoAHjvzNOoqpwLiqSBkH5eUPwijAK011z90NYc798Rdr5QLj8tDWXEFC+qXU1M+iee33x/1nSqMH7Ycfp32vmbOXHTxoHXr969mIOhl4eRjCq6bUllUpkJuRAUwWkvOnnhUwvU1ZZMMUaG/TUSF0czRM07msuOvQSnFAxv+JKKCIAjCMHG2ZexJQVRo6NzL9iMbANhv+hpkA601bx18iTl1i+nobwFgTt1itjasAyDkMGrc37YTgLmTllBRUo1SLvr9PQRDgRF3pRbGLpKpMLrpG+hGKVfCFnL+4ACd/a3sbtnMQNAHQEdfCwfb36G+ajpXnvylrLYuD4WDbG1Yz73rf8ehjt2ctuC9XLPq+3G3vfPVm3h2231Mq5nLp07/NgunHJPwuO19zRzu3IPbVcTkqhlMqZnN1OpZzKlbzKTKqcyZtCQqXTwcDvH89vsJhPxorQtqNjpbhMMhNh1+jQWTj6ayZHB7w/HMz5/8EgBHTTl2kHDw8q4nADht4YUjPq5klI1A+UMq1JZP4kD7Tjr6W5jH0hE/v4gKWcLjLuYDKz/L3tZthqgQ8OV7SIIgCKOW9r4mtja8bj/u8XUm3Wdf6w77/uTqmVkby+bDr3HT01+nurSWWeYsQU15nV2z6Cx/OGC2dZpbtxiXclFdOoEubzs9vk5qK8TAV8gOdvcHyVQYVWxrWM89625hb+s2XMrNV877OStmnxG1zVsHX+YPq39Af0yrWienLbyQOXWLsjau3z73Xd7Yv9p+/Mruf/HpM7+LS7nY2fQWD2z4E/Prl3HKvPNYv+95QuEghzp28etnv8Wvrnos4cX//jZD3F0ydSX/ceFvko7D5XLjUm7COkQoHBxTQmxnfyvN3Ye4Z91v2dX8Nu9e8kGuPv1b+R5WQdLaeyRKVOjoa2FLwzrcriJOmX9eHkcWn5EwakyFCWaTgC5vfswaRVTIMtabyR8SUUEQBCFTfvr452nqPmQ/TkVUaHR0ZPAHs/cdbLVt6vZ10OU1OjnUlA0WFcLhkF0jPNsM+KtKJ9Llbafb1yGigpA1LKNGaSk5OgiFg9zx8i9YveNBe1lYh9jTupXDnXt5ctOdaDThcNhuTedxl7Bk2kq7m1hxUQnPbL0XgEBoIGtjC4T8vHXwJQDef9yneHLz/xEIDdgu8r9+5lv0+DrY2rCOx966A+0wB+3yttHj66DadKaPZZ8pss6pW5zyeIrcHvzBEIGQf8yICs3dh/n+gx/HF+i3l+1p2ZLHERUezi5KfQPdUeue334/WodZMXtVQWZ3OE0R89n+ekJ5HQAdeeoAIaJClrFEhYHA4PKHV3b/i8qSGo6Z+a6RHpYgCMKoQWsdJSgA9KRgdtjYdcC+P5BFUcHjKrbvH+naBxiighXwBsMBtNbc9tKN+EMDTKqcRkVJNQDVZbXQAd1eaSspZI+Ip4KICqOBe9f/jtU7HqTI5eGSFZ9GEzazWr08v+3+KDPXMk8F5y37EB884bpBJQ7723bwTtPbhB0lV8Nlf+sOguEA0yfM44oTP8eWhtfZ07KF1p4GXtj5MD2+DpZMXUnvQDeHOiLGivVV02npaaCttymhqLC/1RIVUs+q8LiK8eMbU74Kf3/ll7agMH3CXBo6943J0o7h4PX32vfb+5oBQ4x7euu9PPzWXwE4/+iP5GNoSXG5sleKNBysTIV8tZUUUSHLWLU0sQHtkc79/GH1D6gqncAtH/tXPoYmCIIwKvDHmYVLJVPhSI5EBWfAHwoHUWZZg1tFMhXaehtZs/MRAC5Z8Wl7e8vEVzpACNkk4qkg5Q+FgNaafa3bCYWDzK9fFjVbubd1G09suhO3cvPN9/6GJdOO52kz4+Bg+y66fR1Ul9by4w/+H6AoL6lK2OnG/s7R2RMVdpmZWAsnG94I9ZXT2NOyhdf2PsNLu57Ardx85szv8dDGv0SJCtNq5tDS00Br7xHm1Q+u337s7b+x8eCLAHHXJ8ISawMhf8bPKV90ezt4asvdFBeVcu7SK6goqWJ3yxbeOvQyZZ4Kfvahe/EF+vmPe6+g19eV7+EWFP1xRIVNh17lrtcMw+VViy5hybTj8zK2ZGTT32Q4zKidx8rZq5gzMXulUekgokKWKbZFhehMhXX7ngOMwDgQ8uNxFw/aVxAEQYABc0an1FPOB1dey/+9dnNSUSGswzR2R0SFbJY/dMVkGVSXTsDlckeVP/SZ9c/TauZw1uJL7G2tWku/mPcKWUSMGguLN/av5jfPfhuAT5z6Dc5b9iF73T/f+CMA5y//iH1RZE1AbTF9YxZNPS7hbL8TS6xw+rgMl93N0aLCpKrpAHapxbuXfYjJ1TModkcM6NzKbfvWOLv0WHj9vTz45p8BuPKkLzKlelbK47Hi42w+x5HiiU1/5/FNfwfgn2/8gRPmnE1D5z4A3r3kg0aGm8sQTXoHRFRw4nO0kO4wRYUGMzNwTt1iPnX6t/MxrJRwqfyVPDhZPPV4Fk/Nn/AiokKW8biLUcpFKByM6qu+bu9z9jY9vg4mVkzJ1xAFQRAKGp9ZPlZZUmMH2slEhY6+FvxBH2WeCryBviyLCm1Rj2vKjLrFIrfx/R4MB/CaAVFse+FI9lr2aqAFQWEaNTL2MhVaehroH+hh5sQFUbXKhcyB9nfs+1sb1tuiwpsH1rLp0CuUesp537H/Zm8T6xC/aMqKlM7jVpaokL1MhbbeRgCmmcZ49aaoAHDszFO56uSvAIang4WnqMRumdvWewQAr7+Pte88St9AN0e69uMP+lgydSUXHfuJtMYzmjMVtpgdgSws80uPu9h+T5QVV6KUC1+gX7oCOegPODMVDKGqpdvoAHX6wgvz6lWQjELJVMg3o+PbehShlKKkqBRfoJ+BgJeikiqaug9xoH2nvU23V0QFQRCERPiCkUwF6yK9N4moYH3Hzpu0lG2NGwiGA4TCwaxclHT1R4sKll+CM1PBFzBEhbKYFnEetxGIDyVy9A308PLuJzl1/vlUlhaeCZVQeFhB7Gj3VAiGg2gdJhwO8dz2+1m781EOd+4B4MyjLk7Y1rDQ6OyL1DDvbd1q379v/e8BuHzldVGCY3GMqDBtwtyUzmNdWIWzWP5gmT5aY7LEAoAPnfQF+6LXKYSUFJVSV2Fs19rbyDtNb3PHyz+PElcAVjmytlKlyPSwCY4yUaHX18WBtp0UuTxnubygAAAgAElEQVR868JbeGP/C8ypW4zHXcy0mjnUVRpxv0u5qCyppsfXSe9At22uN96J56nQ0muICvVVM/IyplQ5ad453L/hVpZMXZnvoeQVERVyQElRmSEqBL1UlFSxft/zUetTqQ0WBEEYr1hGtyVFZfYFfG+MG3QsVjvJuZOWsKd1K75Av5G5kKAPfDp0xrRnaus1ZlEiokLIrgd19qs2noMRiPuHyFT485ob2HBgDRsPrOWb7/31sMcrjH1Ge0vJcDjE/712M89u+2fCC+Sm7oMjPKrM6ehvtu+39zXT2d/GhPI6++LotIUXRm0fKyo4W9INhfM7J1v4bVHBEEAX1B9NTdlElk0/idlmC11jfWTMHncJk0zxYcP+F9iw/wXAyC47d9kVKBTVpbWcOv/8tMfjsTIVRplR44YDa9BoFk45hkVTV7BoauLsk8qSGlNU6BokKgwEffz40WuZMWEe1539w1wPu2DwOsofOr1t+IMDtPZYosL0RLsVBNMnzONXVz1O1TifFBBRIQfYbSXNmSlLVKgorqbP3y2GXYIgCEPgc3gqlBYZwXasT00sVj/0OXWL7WyxLm872468wbEzT8s4xTQQ8tM30I1Lufn8u3/E757/Hu9f8UkgOlPBa2cqRIsKxbaokDhTYcOBNQBsPvxaRmMUxh+jzVOhpaeB2168kbY+I9W+19dl15RbNeaTq2fyoRP/nTJPBT994guER5FgYrmtW+VXr+55ivcuv8r+/6iY9OgSd4aigsp+poIleFqeCRUl1dx81WODtnOKCsVFJUytmY3HXWyXKayYfSaXrfhMWqaM8bC76uQgU6Gtt4ny4spB39PDoaWnge1HNvB/r94EwKnzL0i6T4XZFjGeWeO2hvXsb9vB/rYdXHXKV1Ly2hgL9AciooLWYaMDiVlaU+iiAiAZJ4iokBNKPJEOEIGQn32t21EoTph7Nmt2PkyPV0QFIX9kKyVcEHKFU1Rwfp8Oxf62SKaCFfze/PQ3OdK1j0tWfIrLT/hcRmPpNr+vq8tqOWneOfxx1nP28a2LoWA4YJtMxWYqFFvlD6HkHg/W8QQhGU5PBa11Qben29Kwjltf+CGd/S1RyydVTuOaM7/H0uknRi3f1bQJAJ3FC+dc02E+t3OWXs5jb9/BXa/dzNy6JbbnhSvm/1PsiRYVYr83EpELo8ZATKYCxK8Rj81UqCip5obL7mDd3udZNPU4lk47ISvj8djlD9nNVGjqPsi37vswx8w4ha9fcHNWjtnj6+Tb933Ybn958rzzOGvxpUn3s8rc4pk1bm/cYN/ffPh1lk47ge2NGwiGApQXV3H87DNQylXQn3knWmvCOpQ07nSWPwC8vvcZAiE/VaUTUhbdhPwiVxY5wMpUGAh6aejcR1iHmFoz21baJFNByBe9vi6+/+AnWDj5GL5wzo/zPRxBiIuVlVDiKXNkfiXOVNjTspX2vmbKPBVMrp5p73PEdI5et/e5zEUFn9H5obq0FogOrONnKkSXWxQPUf4Q1mFe2/O0Y9uSQdsIQjyUUiiUISqgbZGh0PD6e/nV099kIOhl0ZQVfPL0b+FWRueU+qrpcS+MlMvyixgdmQqBkJ8eXycu5ebyE67jzQNraejcS5e3zfa8GJSpkGn5g5WpkM3yB/O7yfJ/SUSspwIYad+XHj8va2MBcOfIqPHV3U+hdZi3D72CP+gbVIKSCa09R2xB4aOnfJXzln0opYv9SrOsr89R1tc30ENzzyFe2PGwveyPL/yX/Tm3cCs3laUTuPHye6goqRr2c8g1tzz3HXY3b+bGy+8eshzREhXm1C1mf9sOnt32TwAmV80ckXEKw0dEhRxgt5UMeGnuPgzArNqFtklPj4gKQp7415a7aO9r4vW9TXyB7IoK4XCIJzbdybIZJzFv0vDSH4XxjZ2pUFQeEWkD8UWFYCjAPet+AxizhC7lGhQsDsdd2/JKKI8TvDlFhUSeCkOVP6zZ8TC3vXRjZJySqSCkgVIutA4ZKfYF6j6+v20nA0EvsyYu5NsX/TalLDkXlqgwOjIVrNKHmrKJuF1FzKpdQEPnXrQO254XsaJCcYblD3amQpZeG631IE+FRDjHnEyAGA4eRwZYNtnXut2+v7tlS1YyKywxecm0lVyw/KqU96s0yx/+98Ufs7t5M219jWxrWB/3/1rk9rBs2okEw0G2NLxOSIfo8rZxqGNXXtsHpopVAv7a3mc528zi0Fqz7cgbUT4Kmw6/CsCKWadzoP0dtA7jdhVx6fGfHvlBCxkhokIOiLQQ83HQdMKdNfEoqsyZrm4xahTyxIb9a3J27Bd3Pc4/1v8W1sPtn5HacCFzLAGh1FNGkduDW7kJ6VDc9lu3vXQj249soLy4iouO+TgwODi23MQzod+cSaoorh60zmoZHDRbCEM8T4XE3R8sczOLXAbqwthDKQW6sM0arbKkBfXLUy67c9l+EYX7vCy01jy15R4AaismAw6/C3TEUyEmkyQ248njTu07yq2M1zBbmQohs/uGlT0yFM7v1VxmVRWZr0U2MxXC4VBUWcHOxo1ZERUSicnJcHb5eWHnQwC4lJuZtQuoq5zKOUs+yKyJR9HpbWV6zVzKiivoG+jh838/z95vtJWx7m/dAYuN+2vfeYS/rI0/sTVtwly+dM5P2d++g+Nmnc6C+qNHcJTCcBhd78hRgrP84WD7LgBmTVxof4mIp4KQD/xBH4c6dtuPw+FQVvv+Hu7Yk7VjCeMbq6VkiafM/tvv72Ug6B0kKmw69AoAX33PL+zvWOs72CLVgD0efVamQpy0TTtTIRSwA+DSRJkKocHlDz0x9bSeoszHKYw/rAvVQm4ruc/2Olmc8j5W+nghPy+Lte88ylNb7gYMjwiIiAphHbZFhViPAmcpQTr14tnOVLC8ajwpiARRokIOBdCIUWP2MhVe3fO0LQAA7GndlpXjJmolnIxl00+itvw+Vsw+k7l1iynxlLF8xilRbUcBuw0lQEVJFacuuIBXdv8LGD2im8XOprfYduQNAB5/+04AlkxdSXlxJa29jXZb6DJPBStmn8EJc88a+QELw0JEhRxgBbS3vnC9rV5OrZmFy6yF6/K2JdxXEHJFMMbYyRf0xr1QypRs1z8K4xeflalgdn4oLoqIClaLSQsrKE7U+gziiwphHeaZLf9g0dQVzJ20JOFY7EyFksSZCiEd8VSI/UxZLu/xMhVi2wvnMlAXxh7OGfFCxUo5n12XuqhgxUqF1tmiy9vGc9se4HDnHg6176atr9H+3Vs67QQ+sPKzQHS7zzA6apmFc5Y5nQwltyu7ngq2SWMKY4ju/jB8P4JE2EaN4ezEFMFwkAc2/AmAUxe8l1d2P4k/QTldumSaqbCg/mhuvurRtM/3qTP+k82HX6PH11lwn494BBxi+qGOXfz08c/bjydWTOabF/6GIlcRhzv28J/3G+UjqQhcQmEiokIOqCqLKI1WoFlZUmOLDZ39rQXv1iyMfoLhIG29R5hSPQsYXJ/qC/QlFBVe2f0vAiE/qxa9P/XzZdmpWRi/WOUPdqaC7VMTfWGutbZFheI4JmJD8dSWe7jrtZtRysVfP/1Kwu36U8hUCIZDQ3gqGAHSQIxR487GjbT0HI5aNpyMCmH8YccQBTpj+eI7j9PQuZfiolJm1S5Ieb9CzFTw+nv5yWOfo7HrwKB1K+ecxZfP/Zk9bpej3WeilpLO+C9ep4VEWIJLtjIV7HaSKXxnlsS0lMwVkUyF4Xe4GAj6uG/972nuOcTUmtmctfgSXtn9JIEsCRaWJ0A2J2iGoqSolGk1c+nxbRwVRqY+h3izZOpK+75Lubhg+VW2MD+jdj7FRaX4gz6mVs8e8XEK2UFEhRxw4fKP8dy2f0alWlWUVON2FVFeXEW/v4ceXyfVZbV5HKUw1nnozT/z8Mbb+Pi7vs57jv7woJkNywwvlrAO84fVPwDgtAXvTdnkLhAnvVsQMsEqf7DSgp0lZU4CIT9ahylyeaJm/mJN0HyO/tcWr9oppENfuPQN9ABQHidTwWnUGEmDjV/+EHC0lOzoa+HHj1036HjiqSCkg8uRZl+IPLDhVgA+dsrX0prZtjMVKJzn9fDGv9LYdYAp1TO5dMVnqKucypy6xbiUyxY/LeKVpQzVnSMdUSGSqZCdlpKpmjTCCBo1Wp4Kw7zwD4aD/OiRz9pp9R84/rP2+zCZYBEMBznY9g6Tq2cO2WHB/t5PM1NhONiiVQF9PhJh/WZPrJjCd973+yG3/Z8rH6Krvy2q5EMYXYiokAMqS2t4/3FXc8+6WwBDwbSCz4kVk+n399DR1yyigpBTnt1qtOP5+6v/jxWzzxjkLO9NICo4WxwFQgOpiwpZdmoWxi92pkKR5algmd9GiwpWSUGsh0JJTA/4eO/1vSnW1Pb7TVEhzkyU9ZkKhQL2jNVgT4XBmQqxGQoWkvYppIN1oVqI5Q8DAS+tvUcocnnSyngDR6ZCuHAumho69wLw4ZO+yIlz3z3kthFPBePCVaGGzEyNzWIYimxnKgRSbCcJseUPhemp4Av08/reZ2nqPsiL7zxOZ38LAGcedTEnzz/P9jkbqrTCH/TxH/deQUd/CyfOPZsvnfuzhNvaGWojlKkAhZnJkwgrk7A0RniLR1XphEGeEsLoojB7EI0BrE4PABUlEZfX2vJ6ADrMLzpByAWxBj7f+McHuPPV/4lalihTwdnyNB2fBPFUELJF4kyF6PKHSOlDdIAbOyva0LmXHzz4b/T6DGNEqwUcQH3VdLq9HTz+9t8GeRwA9JmiQkVx4paSwXDQFi7KE2QqOD0Vurztg44FUv4gpIdypNkXGs2mcFZfNSNtQ+BCzFToNcX26tLkk0HWRV/IzA5MJhpklqmQpfKHUPzv0HhElT+4c+epYHXrCWYQUzy77Z/8Ze2PePSt221B4RsX/IprVn0fl3LhSaG0orX3iB2j7297Z8jzeRNkqOWSQvUciYc1ERAr/AtjExEVcoRTbat0igpmy6H2vuYRH5MwfujyttHnN4Igy4Bp3b7norZx9gd20u11igqpzxRkEgAIQjwiLSVjRIUYcy07YImZBSmJE/Dub9vB8zseALBnq8CYDb3txZ9wz7pb+N1z3x20X79d/pBYVBgIegmEBnAp96AZP+vz5ywPssx6LZE59niCkApOQ8BCo6n7EABTqmemvW8hZir0DWHYGoslEoTMEoVk/lnWRWIquJRlDptlT4UURAJnJlUuBVDrwj+d+MPCEhLcys0Xz7mRGy77G8fMfJe93m1mlw2VqeDMbOtOIADb22Zo1DgcCvlzH4s/IKLCeEJEhRwRJSqUOkUFI4gcq6JCU/chfvbEF9nVtCnfQxnXWO0dj5pyLNes+kHcbVLLVEjdJ0GMGoVsYXd/iDVqDMYXFWID4uIEqZZWEOY0WwuEBtjRtBGArUfWD9rHSm8dKlPBEuhKikoHXUB4bFHBb88uWoHqqsWXUFcx1TG+7FwoCOODQvZUaO4+CMDkDESFwsxUMLKcnPFcIpQZWlsX/skyEfKaqWCVP6SQqeAcZy6NxovcmXd/sMx8P3HaNzlp3jnMqVsUtT4VwcIpXg8EvQljJchPpoIq4M99LAN2iWLuMluEwkFEhRzhLH9wZipMLDcyFdp6j4z4mEaCHz78KbY2rOPWNT/M91DGNZaoMGPCfE6Zfx7TauYO2iaeeR1EZyqkIxSIUaOQLfrMAL7MY9SpWpkIsZkKtqdCjIfCHEd7SSdWre6Rrv32smA4MGQdZ7+Z8VMeR1SwnKu9AUN4iGdGp5SKlECYn5FOM1OhpqwuKjgvpJlZofCJeCoU3vsmK5kKBXLRpLWOZCoUp5Cp4DIv+qzyhyFMGiE9TwW35amQ7fKHNI0XczlH7nFlnqmQLN3eKq0IDeEBFSsiDNUG3hKUR9So0frcF8jnYyis17LEzDoUxjYiKuSIKoeaXelIl7MyFV7e/SSv7n5qxMeVS5w/vKXyBZJXmnqMgG5azRwgflp1IvW921FXno77ciYBgCDEEg6H6DFFhSrTzDZR94eBBEaNi6au4OaPPMp3LvpD9PamKOEUFQIhf5Tw66Shc5/tfxDPATw2UyFRXbIVsHv9ffzuue/ywo6HAENUcKY+F8pFlDA6iHgqFF4adLMtKsxKe99Cqxn3BfoI6xClnvKUjIstESEXngqWP0UoS90fAml0f4gih+85t+17kEGmQjJRwc5USHzs2N+Zrv4URIURNWq0uj8U3uc+FslUGF+IqJAjnA7gztmrhZOPte+v2/fsiI4p1zhTiufWLcnjSAqTvoEe2ygu17T1NgLYrXnccYyyEpc/RGoIxahRGGl6B7rQOkxFSbWdCRApf4gxajRFgngZArUV9SyZdvygYwfDQRpTEBVC4SA/ePDf7Mfx3NEjRo2BhNs4x3fPult4be8z9vKason2rCZkr05aGB8Uchp0h2mGavlIpYOrwDIVetPIUgDn/8USFYbOVEilpMLCylQIZ9lToZDa2Xps34NMMhXiZ69Z2B17hhBlYrM4h8xUCFjdH/LhqVAYn4+hSOR7JIxNRFTIEc4fEecsQkVJFV8696cAhAtwdmE47GvbHnmQu3K7UYnWms///Ty+cOf5IxIoWZ4dEyuNeu14RlAJMxWk/EHII9b7r6Zsor0sXqaC19/HruZNUeuT8czWe/nqXRfT3teM21VkB//OzCrr+7qjr8V+T9dVTI17YRDbpjXRbJ8liryy+8mo5TVldXb9NWSvTloYH7gK2LDN9iBIkAU0FC77wrkwLprSMWkEp1Hj0J4KX7/gZhbUL+fq07+d8lgimQrZKn8wvuPSnUnO5Sy55amQyURFbDviwceOZCok+tz4YsrsOhOYNWqt81L+UMhiYizS/WF8IVbTI8DgekczOC3AQGA4OOudCzHIySfOFnbBUCCnPZ4B2vuaAKirSJyp4E3gqeBsq5eWUWMGswqCEEuXmSlTXRoRFYptT4VIpsIvnvwyu1s2A+kFxJYRaW15PX0D3XgDfVHBWZ+/m8qSGlrNbB+A686+Pu6xYsuKEtUlJ5oFrCmbGHXBMRpmnoTCwRKkCu194yyFrEzxQtxJoc3EpvtcIp4QlqdCfFHh2JmncuzMU9Mai/VbHtJZKn9IM1OhvLiSfn8vR005NvnGGWK3fRwim6Df30tbbyO1FfV4/X1sOfw6S6atTJpu71Iu3MpNSIcIhYNxy1liRYVE5Q++QD8aTXFR6Yh27nEVcCvZWKzfbCl/GB+IqJBDlHKhdZh5k5ZGLbdnF0ZBPVQ6OGcRR8OX3UjirOHO9f/dH/TR4+vE7Sqi2pztTTVTYXfLFrY3brAfp+OTEAhK+YMwfKzOCNWOTIXSOJkKlqAA8csfklFdNhF/0Ic30MeA47PQ1d9GZUkNbX2GqHDK/PeweOrxcY8RG0gmCsyd261adAlrdj4MGCmhzvKH0TDzJBQOqkBjCW+aHgSxFFpXi940MxXs7g8ptpRMB+u7JGvdH9L0VPjZFffR3HOIhZOPycr542F3fwj5aelp4Llt99Pae4S9rVsJh8NoNF39rYPKxSaU19ulC0Ol27vdHkLBEMFwIO77cyBo/B5MqZ5FU/fBhOUPVplpbfmk9J/kMIhkKhTW5z4e1mspRo3jAxEVcsjPrriXd5re5uR558WsKdyUxeHgrHcutCAnm+xt3cab+9dw8XFXp/xD7BQVcpXi3O/v5X/X/pj59csAYybWCs5S9VT485oboh6nY5SUjqmjICQiIipEOujY3R+CXsI6TEdMS95MUiurSifYGUTOvuRd3nZm1M6P+JI4Wj7GEisqJJqNKXeYeJ1/9JW8a/577DFHlT+Ip4KQBoWaBh2Z2U+/9AEK73mlW/4wKFMhDSPGZLiU8Z2TLf8Vy1Mh1e4P1WW1Ud/NucDyVDjUsZvvPfCxuLGKS7mZWjOblp4GPO5iM7ss0lVtqN8Ej6sYPz6jvDOO5mWdb3LVDJq6D9q/SbEc6doHELe7Vi4ZTd0fJFNhfCGiQg6ZUj0zbjulQp1dyJSOvhY87mK7vRsUTjCQC65/6GrAULFPP+qilPY50rnPvp+r//vdr/2adfueY92+5wCYaJY+QHSmgsddTCDkt2sBLbq8bTSY41w4+Vh2Nb89ro0awzqMQqU8yxQI+fnj6v9ixewzOOOo9+V4dIXHQ2/+hdqKelYtumRYx+k2yxOc5Q+W54HX38dz2/7J3175ZdQ+iUy5AL5wzk+489Wb6OxviVpeXVqLx5wRc2ZAWLNSVoA6qTKxqBA7y5Wo1/tZiy8F4ILlH2HWxIVR6y4/4TpuevrrwNj+3hSyj6vAygQsLEPiVC/CYym09G5bJEnRUHGwp0I2MxVMv4lsZSqYcVui7658YGUqWKLvUVOO5fSFF7Fg8nLKzTbD5SVVlBdXMhD04VZuNh9+zf4ehaEvYovcQxtBWuUPVgzV7++Ju90R05x82oQ5KT+3bDC6uj+Ip8J4QkSFPKDGkKdC30A3X737YmrK6jhlfiQjo1CCgWzjHyIbo3egi3JPpW2k5MTZGSNXs5EbD74Y9djq/ADRmQqlngoCIf8gv4SdjRsBOHr6yUyqmsau5rcJppF9YP3Pszkrky/COsz1D11Nv7+Xa878/qAuAvFYs+NhW9QZb6JCS08D92+4FWD4okKcTIWqkgmA8RmLFRQAStyJA8iT553Lilln8NnbV0Utry6baJcrOEUF6/ztvaYvyRCiQqqeCqfMPy/q+9HJitln8PULbub//eurIioIaVGoLSWHY9IIhZepYD2fiuLBbWXjkdtMBctTYXhxRGPXAZ7cfBerdzwIpJ6pMBLEirWXr7yOpdNPjLutJR5UlU6IWZ74ItYy2E00EWKVw1mdS/r9vXG3syaLRjpTodA+H0MhosL4QkSFPGD/4IwClTEZB9rfAYzZPafB32j4ssuE3c2ROm6nY3xT9yH+497LOWneuXzxnJ/Yy4PhIEWuIhq7D9rLchEADgR9g+r+Jjjq/FyOi59STxk9vg67ltJihykqLJ56vG1ml8wn4X9f/AlHOvfzrQtvsZfFOuKPRpq7D7G/bQcAf157A7/88ANJ9zncuSfXwypYBmKMrYZDvO4PlsCQKA21OEm7qnhlSlWlE+xMBacxV585K2UZNU50iHOxuGO8SjI1YLUuvqT8QUgH26hxkBl0frEvwoeZqVAocUSkTWFqdeEqJlNBZbEd1nAyFQ537OGBDX+iy9vO4c49dgYGQJmjRCvfeFzF9v2K4moWTV2RdB9nFonHXRx3csfCzlRI4BnlC1qZColFBX/Qx4YDawCYVjM76fiyiSrgri9gfG6bug4S0iH797xUWkqOC0RUyAtjJ1PhSGfEK+Bg+y77fqF+2Q2X7Y1v2vedAc8LOx4CYN3eZ+1lj751Ow+++We+f/Gf6Y0SXLJ/4XDQFHecVJVGZnqdFz8lRUZgFCsY7G3dBsDCKcew6dArxjZJOjpYz9tpmjcas1RW73iIf22+iy+e8xNm1M63XwswZuH9wYGkF4xt5sz2eCSb7+ku7+DuD9YsVEdMCYNFJvWaRvmDEVw6jRqtQNsS6SaWT054DKWU7SQOmfd6ty+iwqPvsyPkj8iMeGH93qbrQRCLNRtfKL8lVlafJUImwxJ7CilTob2viRse+UyUP8HCycewcs5Z9A10c9ys07I2xuEypWYW8+uP5kjnPi485mMpdVZwZsUkM+61Jj4SlT9YvwcRUSG6/CGsw/zo0Wvt13JqzciWP0REt/yK0O19TRxs3x21rLn7EI++fXtUxzMY2jhTGDuIqJAHXKOoHioZztnZQx2RL5dCCQayze6WLfZ950xBe4xxHMC9638HwCNv/TWqfWMuBJfOOC2PqhzKvTsmUwEGt4ts6j4EGKr79iNvxN0mEZYaDYUzu5Qq2xrWc9uLRnbJpkOvGqJCy7aobdr7mpiaZDbC6hYwHsnme9rKknF2fyguKqXUUx7XsAsyFBUc5Q8+R/lD34ARQFqpscnEJMtJPJVtE1FoM7PC6EAVqGHb8MsfIjP7YR2OaruaD6zvglRFBctDIeKpkL3xRzIV0mspuWbnI/gC/SyddgKXHX8NnqIS5k1amvfXNh4edzH/dcn/prWPM9MiWbZkskwFy7i3prwOhcIX6CccDtnZD28ffNnOZDx36RU5N66MReXR7L2zv5Vnt93H3pZtbDvyRkJhZkL5JMrNcqHJVTOYU7d4JIcp5AkRFfLIWJjNdwoJTgotHTMbaK3Z17o98tghCrX1Jr6gjFVoc6Eux2t55Azooj0VjEwFZ/lDv7+XHl8Hxe4SJpTXU+SyWjolzlRwvn97cpyJkUusFEaIzFw4MxXAMO1LKiqM60yF7HzetdaRTIWYQK2qtNYWFWrK6jh6xsm8vOsJc7/kx/7lhx9g/b7nufv1X5vHi5Q/OC/K+ge60VrbnU+KklxIFLmKsHJ+MmltCZHypHCWes8L4wNVYIaGFpHuD5llKoAxIx/WIeO5FYyokJpoaNe856ClpJ2pkEb5Q1iHWbvzUQDef9zVLJm2MmvjKRSc4shQcQtExKHEmQqGyFzmqaCsuIJ+fy/eQB8VJdUEw0Ee3mgIHlee9EUuOvYT2Rh+WuQrk6elp4GfPPY52vsisc6iKSuiYly3cvOuBefzrvnnZ/V9L4wORFTIA2Op+8Phjr1xlxdaOmY26OhvsWdRITpTwSkqaK3t/tQweHYjF2JSV0yqGUClw7jI2f0hkqkQKX9oMj0fJlfPxKVcdlr4UB0dnM/RWfoChTG7lCqtjv+dZcRpiWXHzDyVTYdeidomHoGQ306RzGb97GghHEdEbO4+zGNv38HFx32S+qrpKR3HF+gnEBqwMxOcVJfW0tJzGIAzjnofHz7pC7ao4MwESkR91XROXXCBLSpUl9XGnXnc1byZF3Y8hEbjdhUlfR87s4AyNTuTTAUhEwyKIsUAACAASURBVFwFWlttdX9ItVtCPJRSoI3PROLq+JEh3UwFK8azShScbWOHi9sWIFMXFZq7D9Hae4SasrqEhodjiVi/qFjs8ocE8Y0vaIjXZZ4Kyour6Pf30u/vpaKkmoff/Au7W7YwobyesxZflt2Bp0jkGmJkfy+e2HQn7X1NzJu0jIuO/ThTq2cxu27RiI5BKGxGR9Q/xhgr3R96fV1RF9lOCm3mJBscaNsZ9di6ABgI+qKUW39oIKpfshVgxe6XTTrjZCpYjvkQnangcZeiUITCQVsYaeoyRIUp1bPMbYyLo6FEBWdphOUgbTGaLo6cgtBA0Ohd3e/vwaXczJ+01NzmSKLd0VrzwIY/RR6jCy7IzzXxPu+3PPcdVu94kJue+nqcPeLT7bP8FAankzozF6xUylPmnUexuyTlemCn0FZVGl9U6PN3c9tLNwKpXUREiQrDLX8QTwUhDQq1tdxwPRWgsHwVrN+6VD/fLstTwTJqzGOmwt6WbTy5+S4A5tQtGjVi/3BIVrZplT8k8oyyMhVKPGWUFVcAEbPGV/c8DcA1Z36PipLUuoFkm0j3h5H93Lf2NABwyYpPcfK8c0VQEAYhmQp5oFADgXRp7DbaJJYXVw5yxx1NF5WpYtXQWVjPsa23Mep/6fX32f4EAJ3e1rj7ZZOuOJ4KzlkiZ6aC2+XG4y7GHxogEPJT4iqzxzuleiaQvOYQogWH2FmTcDgEKZgrFQLRooKXXkdAPKlqGsCQmQr/++JPWLPzYZRy2QFwIOTP+AJzNBJPRLHabaXTFSNe5wcLp/HoHDOY+fd3/yit17rIVcTVp3+LcDiMx12ctLQhFVHBWb/rGaK15VBYn8/RVjok5JdCdYEfrqcCOE0o8x9LBIJpGjXGZCq4VPZyLWxPhSG+KzbsX8Ojb93OhPJJvLF/tb18Zu2CrI2jEHG7iqIyKBMRyVQYHN8EQwGC4QBu5abI5bF9Afr9PfT4OmnqPkixuySvGR+RDKWR/WxYk1fOzmKC4CTvkqVSapZS6j6lVJdSqlspdb9SKqX+LEqp2Uqp25VSB5RS/UqpnUqpHymlKnI97uFgadaFFgikS6M5u71oyuB2P4Uwu5BtYn0LrB/1/oFoZ2BfoI9mM00boKs/ug1eLl4bS7hwXow5e2o7MxVcyo3HvAiz0gSbewxRYbIpKkQyFRIr/rFZDBPK6+3079FycTQQ8NoBsP3Y9IeoKq2hrtIQFRJ5ZgwEfazd+QgA/372DZSbZlGpGlwWMuv3Pc/rjm4mQxHv/52J27Plp1AVR1RwlpVY71OlVNrizbuXfJBzl10BJL9ISOUiotzxOROjxvwwHuMIcHQZKDAPo96sZCoUjl9E5p4KOchUcCXPVHhi053sbtkcJSgAzBjjokKqoo89aRInU8Fq/11TXodSyjaA7B/otVuKz520lKI8TppEvFRG9hrC6ugwobxuRM8rjB7yKioopcqB54AlwCeBTwBHAc8n+0E31z8DrAK+D7wP+DPwdSA929iRZox4KjR2GZkKc+oWDTIoG02CSapjtVzhrVpv6wKgz98dtZ3X32eniUE8MSJ3mQo1ZZEve1eMkGBhZCpEiwZWEGi18fMkSQ809o0WFabXzLHPOVoujmI7NvhDPscs2wS7laGzn7eTI5370GimT5jHKfPfYwc1Q5WNjAbW71vNb579Nr997j8JpjDzE+8zVFKUvqjQY5Y/1JQOFhU6He0ks5XCmywILXIlD1KttmMwDE8Fl4gKmTJu4wjyN2OZjGxkKhSS0Ja+p4Ix9kimQhY9FZJkNQXDQfaZRsOXHX8Npy14r71uZu38rI2jEElV9BkqU2Fn40YAjppyHIA9UbDx4Ivc9LRRyrdw8jHDHutwyEfXl3A4RLfVmSnO77MgQP4zFT4LzAcu01o/qLV+CLgEmANcl2Tf0zECh+u01rdrrZ/XWv8c+BVwuRloFCTW7MJouvCOh1X+MKVm9qB05UIIBFJhw/41/PvfzmXToVeTbttnGvFZgZL1hd4Xk6ngDfTR7Y1kJww42tVB9l+bsA7b56uKU4sO0XXfLuW2L378ZlqnlW1h1QhaF1Nd/W0JSyBizZAMk8fRlcYdW9YwEPDZnSwqS2vwuIYWCQ53GKn9MybMA1Lzoih0GrsO8Kc1P7Qfp5JO6uyZbn2vZSIqJOr8ANgu2xce87G0j5uIZEFoKhcRtU5RIdPuD3b9+Oj43BQY4zKOgPzNWA5FWIcH/Z5kQiE9t7RbSpoXffnIVDjY9g7+0ABTqmfxgZWf5ROnfdNeN33C3KyNoxCZZnZoSibuRjIVBv9O72wyRIXFZgaulfG5ZufD9japevjkCpUHwa3b14nWYapKJ9ivnyDEkm9R4RLgVa21bR2vtd4LvARcmmRf69s9dgqxE+N5FawFu/X7MtrbLjaZmQpTa2ZHpQDD6MnC+NUz38Qb6OP2l3+WdNv+mJTOSKZCjKjg74tqsRhLttXl1p4jhHSIiuLqqOwEJ/E8FSASLFmeGJYq7yky1u9s2siNj38+7jGtOlOLKWbnCBg9hnNWWcPkKiOd3vBUMGbZqkoiP56JLqwPdxrdT2aYM0AeW6zx5W7QOea2l260WzdCau9XZycUa/tMyh8sT4XqOOUPS6at5DcffZIrT/pS2sdNhCdJcGR9DoYiK5kKBTQrOwoZl3EEOD0VCud90+/vQaMpL66MErPTJfKZyL/QZmX0pVv+YGV5ZbX7gy3cx/9N2tVipOhbs+nlxZV89+Jb+c/3/SFj0XO0cO1Z17Ny9iq+874/DLldJP6JnjDRWrOj8U0AFk89HsA2arS48fK7896S0/5sjOA1hNVhrKZM/BSExORbVDga2Bxn+RZgWZJ9nwHeAX6mlFqmlKpUSp0DfAX4g9Y6eY+xPBFJXcrzQIaB1tr2DZhSPZMyT0XM+sIJclKh0tEpIRHWhbeVEm9dAPTHpMZ7A312mlg8sn3h8OjbtwOwfMbJURd3TmI9FYpjPBWsdoiWOORxmM/tan477jFjZ+MnV88adRdHlqhgzeA0dR/ijX2rATNTIUk5gyUqTLczFUZ3+UN7XxPbj2yICp5T+V86RZewKSiWZpCpYGXcxOv+AEYGQzZn/bJd/uDJ2FPBvFAYJWJcgTEu4whweCoUUDCRjc4P4BQV8v/cMm0paQki2fzOsoSaREL3npYtACyoP9petmjKcfZF8limvmo6X3nPL5hfP/TH3ip/CMWICgc7dtHe10x1aS3Ta43f9GKH+e6lx3/G/q3PJ648ZPFYvl3ipyAMRb5FhYlAvKuvdiB+VGmitfYBZ2A8hy1AD/As8CjwxUT7KaWuVUqtV0qtb2lpSbRZTlF2fV3+fywzpd/fiy/QT0lRGRXF1YN6yhdCymIynGOsr5qedHsrWIqICiFz+eDyh5HKVAiFg7z4zmMAfGDltXZq+LlLL4/aLrb8wb74DVqZCqaoYKarpjIjM1hUmOHwVMj/7FIqREQFI1Do8rax6bBRClNZWjNk7SVAY9d+c/+5QMSob7SKCuv3Pg/AcbNOtQWmVN6vzlRcS9gqziBTwRLuhntBkirJ3ufF6ZY/ZJipoApoVnYUMi7jCHBcXBRQ1qPVQnk4fgpQWJ+JtMsf7LaPQfNx9kLtZC0lrdbXcyctydo5xxqJWkpu2P8CAMfPXmX/z6bUWG22i7n42E+O4CgTo/JgYtrZL50fhOTkW1SA+FfWSWVdpVQpcA8wGcOY6Szgm8CVwG8TnkzrW7XWJ2qtT6yvr89sxMMkHyYr2aajrxkwZumUUoNSnQshEEhGu/kcAEqTXABprQd7KoTDPLv1Pv61xegBbfkZeP29SUSF7AkuA0EfoXCQMk8F0ybM4ZiZ7+LXH32cT5z6zajthjJqDIWD+AL9KJQtDqVSMxfb4WBK1cyCcuxOhdaYTAUnzvKHQJzaS4gITZaniBV0xvpNjAZaehp49O07ADhx7jlptXQLOVJxrdKn4jSzHSDiP5JJ6UQmxF4kfOW8X0Q9TuVzMLHc6amQmajgHmUGpwXIuIsjoDBbSmaj8wPkZzY2HlrrLGQqZLH8YQjh3h/00dC5D5dyM2viwqydc6xhTRa09R6xv3O11naW4so5q+xtV845iy+e8xN+ddVjBdMmOh+feytedpqBC0Is+RYVOjBmGWKpJf7Mg5PPAGcDF2mt/661XqO1/iWGa/PnlFLHZXWk2cT2VBi9tPU1ATCxYgoApUXRmQqFkLKYjMOde+z7/uDQF4F+8+Ld4y6x6xLDOswdr0QuQiZVTgWM2e6hWgpmU3CxavedtZI1ZXWD0i2jyh9ckZaSgdAA3oCR4VtWXGkHcrHBk9YarXVU+0XnbPzHTvkaJZ4yh1Hj6Lg4ajffx/FEhcrSGorM1yE2TdLC6zdeu1Kz/CeSATL6RIU7Xv45Xd42lk07kZPmnZuW6aYzFVfbQVrkPWC9TsnwBQxRIZPSiUyIfZ8vnLycK0/+kmN98iCytiJyUZnqRUcshVQ/PgoZn3EE+ZmxTEY2Oj+As7Qjv58JZzvJVMsY7O4PllFjFq05IuUPg1+XA23vENYhpk+YO+b9E4aDJRY/u+2frN7+IGD4Rx1of4fKkhqWTT8psq2riJPmnTti2XOpEPlsjNznftOhlwGYU7d4xM4pjD7yLSpswaiHjGUZsDXJvscAHVrr3THLXzf/Lh3m2HJGIbkaZ4qVqWAF1LEzi4UU5CRia8M6+36ymeU+23Og0r7Y8oeizfjqKg2BpaX78JDHynamAiSfIY1uL+mKzKgHB+gfiDZpBOyLaYtAaIA39q/mC38/n2e33mcuM4Kt0xdexPnLPwIUVspqMkLhoK2+T62ZM2h9eXElbuVGoQjp0KAf8EDITzAcwO0qsl/P4qLoVp0WOxs38vjbf8v7Zz4YCvDDhz/NTU9/I2r5/tYdvH3oFYqLSvn3d/+IIleRo11d8jGH4hg1OjtC9MeYmSZiIGgYRJZ4RsZ0P/Z97nK5ozIsUhEJnKVfpZ4hOxgmJOKpUPifmwJkXMYRELlYLSQRN2ueCq7CiJMiJo2pC4auHGYqJBJ797Vu578fvQaQC79keBxeObe//DP8QR/3rTfMHc9dennBZCQkwv5tHoGyp3A4xAMb/sTuli2UFJWxYtbpOT+nMHrJt6jwMPAupZTdPFcpNRejzdPDCfaxaARqlVKxOV6nmH+HvrLLI3b5QwHVQaaLNcNbZ2YqWDX8M2sXAIXf/aHf38vz2x+wHyebWXa2yLK+0K36b4u6imkAtoFlbHtHq0Y9mxfc1ridZkLxcDvLH1SRfeEUCPkHmTTCYFd8f3CA+9+4FcDOzogXbI2m7g+d/W2EdYiasrooQcWirmIqSqlI+6kYnwRr9r3MU2HPYNndH2K2/fFj13HPulvYfuSNrD+PdNh48EX2tGxh44G1UcH6U1vvAeDsxZfZ7RxVGpkKTidyK0vJmb3gjfmsJMLOVMhT+YPbYWIKqZU/ANz0kUf4+Yf+mXEwOtoMTguMcRlHgNNToXB+b+1MhdKxlqmQuqhgjd0SW11ZNWqM76nwTlPEUPldC87P2vn+f/a+PE6K6lz7Ob1Pz74ywADDqhBlEVwQVJaIiAgihhg0CkaNX4xy1ZgYk4gak2jUazDmRi+5EYwRo5iAKypKVAQxKoILKALDzjD73ltVfX9Un6pTa1f39DYz9fx+ynR3ddXpWt/3Oc/7vL0RTua+7iROPPn+/fi69lPk+4oxc8xlGRyZNaSzpeS/v1qPddv/AgCYMPictJUm2uiZyDSpsBJADYD1hJD5hJB5ANYDOATgCboQIWQIISRCCLmL+e4qiKZKrxJCriaETCeE3A7gIQAfQ2wnlZWQPRWyJxCIF42SUkGsJ64sHIwnrtqEa875BYDsVypsP/ieom1eLGO9jpA4++L3FEjJltqgsSw/Siq0HgYgKxcoaC1aMktDgpxVpQJj1Mi0lNx5eKt0LP1eObFWtwILRgIYXDpSet0ZapdMHpWkQs8xamxoPwZALFtRy1p/Nfcv0vGUzBpVbtty2Yg8Ox2r+0MXc85lAlv3vi79TdU5gXAn/rP/bQBKg894apoV5Q9RspSddVcTcEYIRvePupwqVVAnCg6HS1HyYLWFXEluBfoVVCU8DsIkhz35uZAh9Mk4AsjOlpJUqZDn6S1KhQRIBYlcT59SgcYzF429CmOrJidte70RbDkjJ3DY8s1rcDncuOPCP/UIz4B0Xfc8z2HD588AAIaXn4JFpxt619qwAQBIvIlwEiAIQke0fdMjAP4G0W3gLQD/JQgCG4USAE4wJIggCDWEkLMA3A3gPgBlEIOI/wXwGyGbnrIqJLO9UKbQKBk1yomzz+3vMTNuhxtFtevYqsnYeXhrzPIH2ZU+X/qNakl3cdQVl8q+S3MrUVO/G4BIJOX7inCsBRBSoVSIUT/JKhUcxCGREB/u34gP928EoFQqFPhKMG7QFOw4JMbUYS6oqAv94siHilpTdt1A9h9/AGjqFF3bWfd+AKjIr8KIfqdKr11ODxDu0CgVAoxSgUIywGSUL2zC3d3Zu+6AF3jsPLRFeh0Id8Dr8uHjA+8gGOnCqH7jUFk4WPo8nmOpLH+IKhXiLH/geQ6h6HmWaGvGeKEmDZwOl0L1k6hHQrwghIAQBwSBBy9wcJKMPpp7FPpqHAFkZyllS7QtbJ4vdptmM2SPUoEq8qzfk2iMx6WkpaS+UoGS3OpOXDa0OMz4aVFMP3kBqkqGZ2A08YMSS8m+7oORAI427cehpm9Q13YEnx3ehtrWQyjL649fzH1CM9lkw4YaGT9DBEE4CGBhjGVqoOPkLAjClwAWpWZkqUNv6P5Q334UgLJHOwA4kH1Bjh6ONImkwtDyMSKpEKP8gaoS/J58aQZFrVRQB1HsvvF78+GK3pD5JEpVJU+FGAEP66ngJE7dAIktASCE4NZZ/41f/etKHGzcg2AkIAUtAHCs5YAU1LhdjFLB0XNIBVq+wJIpgJagocctzMxuNLTX4q3dLwBQ1tHLSgX5fGoLyOaWyTTsihdNHXUK8iwQ7kJhDtDYLpYyjeyn9KSLR2KpZ9TIvmdFqcB2fkhmCzYzsOcuoCTcgPSRCnTbnMCDF3g4Yy9ug0FfjCOA9MqgrYK26aVKr0SRLd0f9BR5sSCXAUZbSiZRFExVh7xKOUeVCjapEBvnjpyLLd+8pnzvpHkZGk38iKczk1XwAo8HXv0R9tZ9oXi/MKcU1577K5tQsGEJ9lmSCUgmK9mdeBshFAngROsROIhTMbMJpOZmlwocbhKZ6qFlog9XWGW6qEanZD6VL7HEndGSCACYfcpiTdDBJul+T55GEpkM6HV/0INCqeAwIhXyNe/R9YZUpEJzZ70UvHgUSoWeU/5gFISpS0momV+EaSt5z4tL0dIl9m1myx9ko0Z52dbockBmicQTrYcUr+nvj0R7dWtKAeKQWLKqBNlTQX7vva9fxpQRc0xn7KifgjdNnR8AwO2Qa2sJcShMTIF0kwpOcIhk/b3TRvbAkYWllPVt4oQD7YaUKLLF9DcxTwW1UiGZ5Q8Oad2CIEj3VJtUsI7RAybhkctfxPJ1V6M1IDaIoX5gPQHJnryrbzuGZ7b9QSIUxg2agiGlo1BZMBinDTkXOTqeUzZs6MEmFTIAuR4qwwNJEEea90OAgP6Fg3QSESrLyt7AuCvUjoaO43A7PdKDJKZSISrfzvXkS8ePzr6eMfTb+N6Zy3Cg4WvFd9jE3evyp8RUi848xyIVFEoFhxMenQAp1xuDVGDaArZ01cPpEEtfdI0as/j4U1B/g5wYpIJbMmoM43DjXqz79P8kQkH8vrb8gVUEUDkwkNn9clxFKgRVpILLoTQlTLSlJF2efW/38U+w+9jHGD1gkuE6qFIhXSaNgPIapcSbOwGjxmTAkQLS0UYvRxpd4K0gGAmgNdAEp8OFopyybq0rW54lUvmDqzueCslTqDmIQyqVEgRe8ngKGDzPbOijJLcf2gLN0ut0qeOSARLHdf/G58/i7d3/glkT+4b241LMctXZP1V4K9mwEQ9sUiED6OnlD0eis/xVxWrD7PhudpnCkab9AID+hUMkVj+2p0K0/IFpk0U7QtCkUt0xgU22fe4cWcWRCqVCjPIHFyNdI8SpW7NuplQIRgIIKJQKjVJ3Cz1PBaEHdH8IGNSgep3q8geZVPj9hpskd3MKXaPGCKtUkEmFzCoVDiteU1IlEi3rcDqVjwN5pjA2CcbreCpQcmFAUTWONtegIerDYgQaFHvTZNIIqAixKPHmScCoMRnIliTKRs9BPGqidICWPpTmViqI7ERA4mhpGw/aAs2oqd+NERWnWJqBDel4B8WCQ+OpkNyE1UmciAg8OIGDA0pSIdG2tn0R1557F1a+ew+Wffv3mR5KXLDqpcLzHNZt/z/JaNwMpw48Cyf3Pw3TTpqflDHa6JuwSYUMQG4p2TOlCocavwEAVBUP03yWjcZRatRGZ2wrC4fIrRUteyrkSQ9vSkTQpFQddLAJi9eVI6s4knjcZaPGGJ4KRO2poJ110SMVvHTmXUepUMkNAqD8nfG0Icw0jIIwNclAyx/CfEhDKABKpYJHV6kgqxqySamgLn/QKhWsy4/NPBVov3qWlNJDuttJAsrZR6pUyJynQvarvGxkF2Qzw+x43tbTjjrd9FMAUlNKd7hpH37xz+8BAOac+n1894zYbva0/CEWcc9CrVRwJNlLx+FwAnxYXH/00W5EktswxpQRF2JS9bQet8+seqkcbNyDjlAryvL647YL/mC4nM+dozBdt2EjUdikQgYgS+GyIxCIF2ZKhZ4w23aiTWw9XlEwUJqxD3FB1NTvxpDSk3SlinL5Q4GkDqCgM9XqpIxVA3hdPolM4JM4iy+3lIzhqeBQeioEddz4/TqzNlL5A6f2VGiQSkbSUf5Q23oIJbn9kprkqWtQrzr7p3h5x2p85/QbFcuxSgU9KIwaXVqjxmwpf6BKhUElI3Co8RsEI0qlghGpYKmlJBP40/OceirkeiipYN5Ok47Hm8YAz+VgSIWomkfZUjKN5Q/U1V2IxFjShg0R8gx4dsQS9W20TW8ySIXkTVAIggBe4PDyjtXSe3VRs+lYkLs/xOOpIPseAKlRKrDrB2TlWU9LkDMJQkiP3F8Oi2rnL499BAAYM2ASBhRVp3pYNmzYpEImkCpZX7pwrOUAAGBg8VDNZz3ht0mkQn4VHMQBl8ONCB/G8vVX45bzH8b4wVM132GNGtmZZ4Apf1DVXCqUCm6/REYkszRENmqMT6nASvIpzMofOoJtCHMhOIkTLqcHwUgXWgPiOhTlDybdHwRBwBPv3A2P04trzrkz1k8DAOw6+hFq247gyc2/xalVk/ETE7Y9XqhJhZmjF+rWEtK6ejqjr4ay/EFr1BgIdGHKwEswrGgs+CYfdrXtSs4PiBNzBl8PfhAPr8uHYFUAuV0F2LVrF76VOw0jxp6JvHAhdu3axSz/Q0Sqwmg9FsCuE+ZjHuqaiGvHngwAqD3YgHpHC+ZV3whOiMDrysGk4ovgF/IU61dDiPhx7djfwevymS6XTAiCgGvH/g6AeI3s2rULvMBL7+UHitI2lu+d9HPwAofD+47hqEO/VMTpdCI/Px8lJSXwetNXmmEjO5FtxsjHWmoAdN+kEUieUSPPc7jv5es0rvbBGCQnRUKkgqosJdltxCkBGYoEpckA26ixdyMYDKKxsRFtbW0o40fg2rG/g8/tN30+lYaH4dqxv0O+N33PMRvZj1TGETapkBH03PKHUCSAhvbjcBInyvIHaD6nDH02eyqcaKWkgjh+j8uLSEhMGD899L4+qRA1ZfR78zWGPsblD15mmRwpOElmABiKWDNqZNsBORxODC07WbOM36tVKnij66UkhM+TizxvAWpbD0uzUoqWkiaS1bZAM7bu3QAAWDL1jpjGSEeb9+P+12TVwGeHt5ouHy+sBmHuGEoFPaNGWpYSDAYxMu8MlA4uhcfnQmXxIOT6CnTXk2rU1BMIgoCCnBK0djWiOLccRf4ynGg7go5AK8rzByDPVygtf7R5P4LhAPoXVccsSWhor5XOkariYXC7vDjU6EaEC6MgpxitXU0oyClGqUmy0RZoRn2bD3m+QpTr3FtSAUEQUFMv3o+dDhcGl44EL/A4UC+emxUFA6XyjVTjYIMLHB/BoJIRugaRgiAgHA6jtbUVBw8exODBg21ioY8jW9ouAuJz7aOafwMARvef2O31OeLwdDHDgYavJULBSZwYWDwcBxu/ltoxx4LcUjIeTwXlsy3ZSgVainjLsxfjnktWY3DJSMao0fZU6G0IBoM4ePAgiouLUV1dja5IGxo7TiA/p9iUwDvU+A0iXBgDi4fFnHiy0TeQ6jii59id9iKQLGwDZRXHWw9BgIDygoEK8z8K2Ywwe0mFujZRBl5RUAVAGSzolQAAQAdVKnjyNQECnal2q8sfnB5JBjpu0JSU1ExLpEKMgIc1zXIQJyZWT8fNM5XmRLkmSoVm2j7RnYvCqKs3rZ+1Wv5ATbzEcccO6L458XnMZbqDLos1qJKnAqM+UH4uH3cqlw9HVQ2NjY3oV1YJX54HDpdDcmtPJ3ieR1eoU2o/RkthpGMUvQ9pZ9Osl2mxBCn9i97fZKLJ/Lynn6fThZsQIv1u6V+m/pkkuRY61lgAY7KZEAKPx4OysjIUFxejsVGrNrLRt5Atps8dwVb85uXr0dhRi5LcfhjRb2y310nvA58f2YZg1G8lEVAJ+Hmj5uOv12zBNVNFlRztNhMLCbWUVN1LHUm+71PSnhc4PLRhGTqCrbZSoRejsbERxcXFKCsrg8fjsVT2JAi87JeUxjI+G9mNVMcRNqmQAfRkT4XjLQcBiCaHepDNCLOTVAiGu9DS1Qinw4VifzkAZemAXmINyJ4Kfo+eUkEkFRwOp1TrCAAepwfL5z2Jn87+I8YPNQhnZQAAIABJREFUmpoSqWrIqqcCUbaUdBAHJlafJ+0DwNxToaUzSip4clHkV7YK0yUVdDpc1DM1rLHq6wH5XGNh5XtWYTUIi1X+wAa8UgId/f1tbW1w52ROECYIAo4078PxaMmSgzg0xI+cxHYn8NW7l4nvURIjVuIjS4XT+1hSJwDJliqnAgUFBWhr0/qi2OhbkIyRMxxLbPzyeXxz4jMAwNkjZieFGKTreGnHk/jTpl/E9d26tqN4ecdqvPjpk9jyzWsAgNEDRPWE1x3taGRAVATDXQrSuy0oth2M9Yxlob6HkSSH2lNGzEFJbgVKcivQ0tWAZ7b9AbzAwe302AlkL0RbWxsKCnQUcyaXfZgLA4IYv/Skdpk20odUxBF2+UMGICeXPY9UONYsJif9Cwfrfp7tv436KZTnD5Bm79kbrldH5h3hwghFAnAQJ3xuv+YGzfaFdjk94KIzIG6nFwU5xfjWwDOi27E2YxsPElMqyOMXCZE6EOLQNciTSIWotD3HnauRpitbShqXP9S1xUcqHGj4SvNefftx3a4jicAyqRCj/GFw6Sjpb4dD+fs5joOgSFLTe120B1sU46Y9zgE5iRcMlArxpNZK1ZXA/N/aeR+OBNHUUSeNMZ2gs73pVCXojyMKC/dOt9sNjsv+Dis2UotMeioIgiCRGR/sexMAMP3kSzF//A+Ssn42Md9x6P24vvvk5t/hi6MfKtY1uv8kAGInJkBfqRCKBHH785eiyF+Oey95CoIg4OOadwAAJ1WOtz52qInK5N7Trj9vOXiBx9HmGvzqX1di855XANgqhd4KjuPgdstkkaxqU0IQBAQjAXic3oQUNjb6FlIRR9ikQkbQg5UKrbGUCsqEJdtQJ5EKA6X3AsyMhd4Me2dIbidJCNH03/YpjPo8UrCivpmrzZuSAdmo0bpSgTVtpEGI352nm8x5oyqOFqb8gZaNUBTmlDDrNi5/oOUSgPEsEYUgCLqkQkP7saSRCvQ45VhWKmjLH64/dzmGlY+RXjtVCXSmS5zaAk2K146oSgXQKhW0SbW1Mq3Wria0B+RWm9LSUvlD7I4grYFmzXbTBTHg53QVCuk9evqBou6SPUBNYSP1yJSnAsdHcN/L12MfY36Y5y3ElZNv0y2LTASJkosdwVbsOvYxHMSJOWOvBAFBddloFPlLAcgTBwGdZ9CRpn1o6WpES1cjOoKteOOLf+BYSw3yfUUYPWBSwmNPxfXqIA5UFQ/DOSPn4p2v1wOwSYXeDP1zSHndd4bacaL1MFxON9PNyCYVbOgjFfclm1TIALLJXCleUBl8SW6F7uepSJyTCdmkkSUV5FlzPYl7RzDaTtIrlkZoyh9c8oOcvYGru0Ekq91iU0cd9pzYidOrZyAUNX/0xiAVWCKENW2kCbWeSSMAeJziemlymuPJQz9m3+X7ilCYU6rZji6p0CaTCoGIuVKhM9SONkWiGV0H48vQHfACLx33WC0M3ZKngvbcoCoUCqktYJScEq8Ded+n85oPcyEEw0rvCgdxSrNmncE2NHfWGXsqWHzeNBgcE0pWOCyUP7DlUuls4whkXqEgQZYqZHIUNnoQJGPkND9vdxzaIhEKBAQO4sDsUxcnjVAAEg94dxzaAl7gMKb/JHxn0o80n5spFQ41fSP9/euXrpO6WUwdeVFcv02tTEil+mruuKslUsGZxP1vo+eBqhMiXFhSKNqkgo10wr4DZRAcJ+DNLVtwvK4Ol82ejZwe4ORNk8t8X5Hu53L3h+wMjKV2ksxsOxtcRHhtj/iOkGjS6PeINW3qAMHldDF/M6SCqiQhHlJhzbYVCHMhfH/yTzTB1SNv3oYDDV/hirNulZQK7hjOvoruD3pKBQMvCbUCIseTp9h3g4pHKMan9hSg2H1sO3Yc3iK9jlX+QI0x1TBKYOMFVUp4XTkxAz5a/kAVKyzYfQmwSoWokRaUpEKyEAh3oi3QjNLcSqmNpxq0YwkLwngqAEBTRz0TdMRv1KhLkkjvxWPUKG7L584xPBdTBbVRIyASiF2hjpgqlqSOIw6lgg0bACuDFq+tHYfexzPb/oAfTbsPQ8pOSuq2vqn9DBt3rQUvcKip3w0A+O4ZN2HOqVcmdTsU6nurVVAPhQlDztX93OVww0Gc4PgIIlxY4UFwqHGP9Pexlhr43H5cfsbNOHfUxXGNQVtKljrisqJAJvn1fIhs9EboP5t5QYxfve4c8DwHQhzIMTAft2EjFbBJhQyAPmAO7xFw+3OiA39+Xh4umTkzk8OyBCpTLvCV6H6erNn4VEEiFQxa1ukpFWhyRpUK6lkINmF3m5AK6lp2I7QHWrDh82cAAOMHT8XYqsmKz2lZwDtfvSjtb68zjvIHJgmlpIKRQaVaAVGa209h7qhuK2p0/FdveUDxWk96ysKIVGjurDf9nlXE45RNg05W4k+hnhmigTAXJadSMYMoCLzkbeJz+w0JPko45Xjy0BU9h1mlAgWd3dDUAdPtmYzFqIe8IAgSt2CmXmG+AADI9RamXdovb0/eLi2PykiZQQ9UsNnIDIh0vxXPmf9+41YAwJ823Ynff+eFpG7r6Q/+G/vrv5Reu51eTBlxYVK3wSKRa+9gw9f47MgH8Lh8OHvEbMP1+tw56Ay1IxjpUpAKBxlSARA7Rkw/eUHc40h1S0k1xvSfJHW5sNH7YfRspgrJfF+RYVxgw0YqYZMKGQB9wDSfkB+abe3aWcVUo6WrAeFICGX5/S0tLwhCbKVClpc/1EmkQpXu53pmfDTBpTOo6oDBSYxIhcTKH45GJZcA8NKnq3By5QS8/vmzmFg9DQOKqqXPjjXvR3l0liIepYJToVQQ/SCMyh9YvwgAKMvvryilUCflRr+xNWr0mOctRHuwBcEY5Q/tQW0CD0Aq9+gu4iIVHJ7omLREh1oSq5b6qw1Lk6HgYcdhdp2Fo/sqx+1nSAWH4vizSCSI1zuXFb+QWPNZkXwdMpDEU3UVu+WMjMP2SbARJxwGz1tqrJssNHacwP76L+FxenHNOWInhoHFwxSlb8lGPEqF2tbD+ONbP8ORpv0AgHNGXoQ8b6Hh8h6XTCrkekUF4t4Tn2N/3S7FcqPiMGdkoen+kOJr+7rzluPRjT/D+WO+k9Lt2MgyqMIJSiokqvKxYaO7sPuMZAD0+dLGPPfDEa3sPpV4accq3PzMHNz23CV49+uXLH2nM9QOjo/A5/Yr2jCyyGalAs9zUgcCdQcDCk6n/CEQ7gAgtlMEdCTvTJJthVSIRbjQWWgA2FO7Ay/vfAprP/4zfv7CdwHIrR85gUNrl0jyxPRUUCgVrJc/VBYou3yU5lUCAGafshg+tx+zT/mecjuq7geASEZRtcfpQ2cAiK1UMCQVIgHd9+NFfEoFkTjYuneD5jO1aaeT6HkqJBes+SLHcwiGAxoyTBAEhCOiAoHtaOJ0OOByulGeP0DTGlQb9hK6MsOx6BmbihSBbP5IQMDxHNY89RzOO+88lJSUwO12o6KiAmPHjsW1116L1159XVoeAFatWgVCCFatWmW47XhQU1MDQgiWLFmi+UwK+JMc+L/88suYNm0aCgsLkZeXhzPPPBOrV682+QaVsttKBRvWQAz8mZLZevdw0z7c+cLlAIBTqs7C5OEXYPLwCzC4ZGTStqGHeBLx1z9fg0ON34AXOIwbNAULJ95gujx9XgbCXahtPYzfv3YT7n3pBwhGuhSk66h+YxMau0MVWqe6o01JbgXunv8kpoyck9Lt2MgSGFwbtPzB6eidpALHcVi5cqVhHPHiiy8qlk9nHJEqxB9HZBa2UiEjIAgHHAh2yTeGdJIKe2p3Yu1Hf5ZeH23eb+l7sVQKgHGQkw1o6WoEx0eQ7ytWJFqzT1kslRvolT/QBJgaMpqVP9D6e0Cv+0NswiXCR7Cndof0WoCA/+x/W7EMaxhI6/zVpRZqsA8ZNmiiRIkRqZDrzUexvxxNnWK7v7I8UdXyvTOX4btn3KQJllhSiRd4OIgDwUgXeIGDx+mVZoWseiqM7j8Ru459LL0fjsRWKhxvOYj/2fRLXDbp/2lKRyioUaQVUsHtMDY60pQ/qEiVZJNrwUhAYb7Y3FmP5s560Qm8ZIR0nDk+Al7g4XQ4FecGiR77PF8hAuFORTmJdnZN/NfsSuYMyh9kIoKA53lce8WP8M5b76GoqAgXXXQRqqqq0NjYiL179+KZZ57BZ1/sxDkzzkp6Ym8FkqdCEuueH3vsMdx0000oLS3FlVdeCY/Hg7Vr12LJkiX47LPP8NBDDyVtWzb6LiQfjuh9xuf2J41QaA+04K1dL+DlnaslMvfMod9OyrqtwOpsaygSwNa9Iin5kwtW4NSqs2J+h973P9j3Bl7b+TRCXBA57lycPWI25pz6fdz23CUo9pejIEe/zDMWtJ4K9vydjeRBPruUT2c6mdEbDTs5jsPcuXOxYcMGwzhi9+7dmDdvXqaHmjT0xDii9515PQAO4kBXi9LhPJ2kwv66LxWv9ST/eqBu/Pm+YsNlrPoGZAJ09ltNilx+xs1wOz14accq3X0hzWp7xEBEU/5gcANXBxZWlAp/3PgzfHpoMwCgwFeM1kATGjtqpc+DkYAka5e2AwK/19zczmHQUvKMoTOxv+5L09rYsvz+EqnAzm7rzb7Q47/9wLtYs+0P+NH032BQyQgAgN+bLxEzVkmFERVjcc3UX+BE22E8uOFmBC0oFX77yg1o6WrAnzf9En/+/lu6y1AfAU8MMgaAouaWhdr0EJD3iZFSobtkG+2+QghRrIsXeBxs+BoFOSUozesnnSNup1cxRgcTjmjrfOM3atRXKsjfIARYs2YN3nnrPYz+1kl49933UFZSrli2s7MTr739UnSLmSh/SO42a2pq8JOf/AQlJSX46KOPUF1dDQC46667cPrpp+Phhx/GwoULMXmykvCSE8TsI2RtZCckojp6xeW4c7tNKvA8h3/85zG8t+dl6T7cr2AQlky5A6P7T+zegOOAVaXCntqd6Ay1YXDJKEuEAiArFdZv/z8AwFnDZuHKybdJscFDi/6FHHeu4fdjId3lDzb6Jow8FXpj+cOaNWuwYcMGjBs3Du+88w4KC5XlTZ2dndi2bVuGRpd8JBpHZBo2fZoREIS6lBd9OGwtsU8GjreKDsH9CgYB0J+d14MlpUIWS3hpgJQXnS2nIIRIDsr6SoUoqRBtRaWWvFu9gdPZCqPZa57nJEIBENtYsdsHgFodd+eCnOKY7a5YpQI7/srCwVh2/oMYXDrK8Ltsy8xYMk66Lz49tBmBcCce3fhTqfTB78mTFCJ67bxYtDPHqqJgIPK94jmnJlT00NLVEN2eMdESiZIKRoQBC5dBSya9fU4JJrVSIRlBZVeoEx3BVhBCUJxbrrsM9a4ISaSCR7Ft9qrUmonFPyY9o0YxKZbLH7ZsEbt+LLx8AQoKtMfE7/djyjmTo2MgmDZtGpYuXQoAWLp0KQgh0n81NTUAgKNHj+Lee+/FlClTUFlZCY/HgwEDBmDx4sXYtUtZF3333Xdj6NChAIDVq1cr1kflkXTbr7/+OubMmYOysjJ4vV4MHz4ct99+O5qbte1NjfDXv/4VwWAQP/7xj6VAAACKi4tx5513AgAef/xx7RftvMNGnFAT1clwev/i6H+w4fNn0BFsxYiKsbjizFuwfN5fMWbApLQmx1afqw0dYkegqpLhltdN20oCwOCSUfjhtHsUcU15/gDk+Yw9GWJBo1RIcfmDjb4G7XXICzwEgQchJOXlNpkAjSOWLFmiIRQAMY6YPn269DrdcQSLjMYRGYatVMgACIGGYkynUuFYNDEdVDIcta2HLCsV5M4PxkqFbPZUoIlqropUAABntGxB31OBSuWjngrMDd1JnKqkzZhMoV0XjJQKtDMFAIwfNBVnDjsfr372tGKZ/dFWXiyK/PoJpnLbTPlDnPV21AnfCtQPM07gpBINvydfkp3Gmk2jqhJ6rGhry1hKBeqZAQDVJi3VaAmJEWHAgi1pYaEX9DpULSXpsXY6XNHrLHGyrSss7seCnGJ4TLp9CIIgleywZT5qaLs96L9OtPsDXUtpqWjmtn9vjeF9QV5arFcsKirC+vXrMX/+fIwfL5ulFRWJgf+7776L+++/H9OnT8fChQuRl5eHPXv2YO3atXjxxRfx/vvvY9y4cQDE4KK5uRkrVqzAuHHjcMkll0jrGz9+vET2PfzACjz424dRUlKCuXPnoqKiAjt37sRDDz2EV199FVu3bkVBgfbeocbbb4vlSrNna93nL7zwQsUySljpt2HDhgy1MXJ3ZtcpPj7wDgDg3FHzcM3UOzM2y251u00dYglXsYXnIAV7X5w55rKkJ2FaTwWbMbSRCgjRiQaHpLp0qGLS3gIaR3z99deWlk93HEFx7733Yvny5RmMIzILm1TIAAgcjDyYRE3V0kcq0F7GVcUj8FHNvxHRSaT1ICsVzMofxJtZdpIKYqKq5wpNE0ez8gcaiBDCJujWL6FYSgXaI3vcoCm4ZdbDigSZYn/9Ls17xbkVMbftNCh/sIKFk36IhvZjmGahtZZecNYZpKRCnmVSQVKVRGeLqDFoLKXCPqa0R915gQVVKrgNCAMWbgM1g96xlz0NlEoFp8OJCBdWpIsPDUx8JiyduGGvce9zjje/zgkBLr30UjzwwAN4ZvU/wIeAyxZ+BxMnTsSgwYPQ0H4MuZ4ChRkkNUFav349LrnkEl1TpBkzZqC2thb5+Urlw44dOzBlyhTccccdeO01sV/9tGnTUF1djRUrVmD8+PG4++67Fd9paD+OrZu34cHfPozJkyfj1VdflYIOQDR7Wrp0KZYvX45HHnnE9PcCwFdfiS1fR43Sqn/69++P3NxcHD58GJ2dnfD7ZRWQTSnYiBfqkhm3SyZJQ5GgwlA5FAnA5fSYJtC8wGP7wfcAADNHL8xocqIeJ/XoUYOW5sVFKjBKhSElxiq9RGErFWykEvTs4gUefx42KKNjsYqfHNE337YKGkc8/vjjaGtrw4IFCzBx4kQMGTJEd/l0xxEAsGnTJixfvjyjcUSmYd/pMgBCiBQ5etzRZDZNpEIwEkBjRy2cxInKQtHZ32r5A+00kJ9jxagxeaRCTf1u3Pj0LGze80q31tNholSQSAW98oeoVD8nmhBTxQGgTSzN6qFlpYL+MocavwEAyYNAr6MD7RPuYT6zEkw5mHHGSyrkeQtx6wWP4LQh58bejs665fKHfCmYC8bo/qA+VlaVCs3RABMAOBMFTpi3rlSg4weAQsa4S49UkJU6VKkgRN+ny/aulFFfqSAwih2CCRMm4LH//QPKykux5plnsXDhQlRXV6OsrAxXfvdqPPP83+JuKVlRUaEJBABg3LhxmDFjBjZt2mS5pIwQgtUrRUXQypUrFYEAIAYn48ePx9///ndL62tpEYMnPYkm+z5dTgPbU8GGRcieCtEWtozHSXuwBYIgYNu+jVj1/gP48d9n484XLseB+q8M13esuQbNnXUo8pdjSKmx0isdUBMI1AdHDXrPNyoJ0wOrPmPbNCcLGk8Fu7bJRjJBJ+9ikPq9CRMmTMDTTz+Nfv364emnn5biiNLSUixYsAAvvWStix2LZMYRAPDoo48CyJI4IkOwlQoZAPuAcbtcCIZCaVMqfHpQrNkvLxgoSagjBg9rNdriKH8AxIQqGTMdv3v1/yEQ7sTKd++VfAbU4AUeGz5/BidXnoZh5WN0l5E9FXSUCtG2gXqqDdpS0uvWGjWq/RXMICsV9CXjh5r2AgAGFYukgl5Hh5po+UNV8XDsq/sCgDVSgU2AU9luiCVcKJTlDyKpQLsvGEHtf0GlfbG6PzRHjQwBmTjQAw1QjVQILFgC5M6LnsDP1oq9wPX2o8NEqQBAwSnEw9yHIkEcadoHp8OFwaUjwfM8DjSIyUGerxDl+QNwpGkfQpEgcr356Ai2Ic9XELN0he3LPrR8tOKzurajaA+0mJb06HoqQCZT6L1u/qXzMG3WVOz+ZC8++nA7tm/fjvc2v4c3XnsLb7z2Fi67/FI8sOLXcQXfr7zyCh5//HF89NFHqK+v1xCz9fX16N+/v4U1EXzy0adwu914/vnn8fzzz2uWCIVCqKurQ0NDgyTDTBTSvtE4xMcuN7Fhg4Vc/iCeNezzq7WrEU9vfRgfH/i39N6xlgP406Zf4P7LntOd9adKuBEV38q4hFqdmIcjQQXRzvER/PGtOyRlhbpFrhmaOk9If5uViCUKrVGjPX9nI/kQBB4LP/1AfoMA5Xnd8wPJZixatAgLFizApk2bsHnzZmzfvh2bN2/GunXrsG7dOlx11VUKnyQrSF4cAWzdujXjcUSmYZMKGYCoVBBPBK/Hg/bOzrSQCh3BNvzlvV8DAM4ZOdc0kVajtvUwWqLt58yMGgHxASpIpjHdS2DF+nAxAS0xkfl/sPcN/OPDPwIAVv9A3wFWKn/wGSsV9Ga3aVLpk0gFJ/M965cQTbiNZPnUZK8krx8AKKSraihIBQszNAoiJIUBjkapIAjooOUP3jzJ9DGWUkHtqeCO7osQFzQlq5q75BaJZl4hklGjSbtIiqmjLsJ/at7GOaMuVpIzRKf8gfFUiPARCOABIu+XRBNGarzodYtBNfv76fGkhAbd37me2HV70PF3iQecQfcHaaWE/kPgdrsx49szMG+uWEZztOkA/vnCC/jZsl9i7bP/xLdnT8PSK66ztN1HH30Uy5YtQ3FxMc4//3wMHjwYfr8fhBCsW7cOO3bsQDAY29QTEPdfc1MLIpEI7rnnHtNl29vbYwYDhYWFqK+vR0tLi+6yra0iYaapq8yu2MBGDwAlqiVSgbnn/ebl6xHigvB78jHtpEtwcv8JeGrLg6htPYQdh97HhMHnaNZHy8eGlukT8+mE+jkV4gIA5GTpcNM+iVAAgGJ/7DJAirq2Y90enxnUHgq90TjPRubBltL6PLmoLKjq9QSW2+3GrFmzMGvWLABiq8kXXngB11xzDZ566iksWLBA4XdghmTGEQDQ0NCQ+Tgiw7BJhYxAfuDQ8od0kApHmvchFAlgUMkIXDT2Knx57CMA5jJxANjyzQY88c5y6bWZpwIgGhlyENtcdff2djg6ew/I3Sr0QGdtzdAhJapaFtdpVv4QJTVydJQKWgm8cYYmB4D6iZhsCOmX1u1yuHXHRLtVAOZdDiiUQU3qshd18CRAkGaF/J58qS1nl4mnwpGmfWgLNMPvyZNUJQ7igNvpQZgLIcwFFeUfLFoYpYJZWU9EMmqMrVTI8xbiVxf/BQAU7T11yx9o9weeQ3tAPN+UZp6JZfDSeKMkCEsq0CDCofD6cFpygicgJkoE8/Mkwkf0lSOCoDBeZMfLbsvhILho/oX4atcePPbfj2Pr5m1YesX1MccciUSwfPlyVFZW4pNPPtHMImzdujXmOlgQEOQX5EHggaampri+q4eTTjoJ9fX1+PrrrzXtno4dO4aOjg5UVVXp1EHargo24oNDuq7E5IK954W4IBzEiR/P/B2+NeB0AMDM0fvwj/88hm373tSQCs2dDXhr11oAwLDyb6Vj+KbQkAqqe82x5hrF60K/9Zm/2acuxpObf4sLT70i4fGZgUCtVLAZQxvJg6xqE697j8uLyoJBffI8czqdWLRoET777DPcd999ePvtty2RCsmOIwCRCOB5Ho2NjXF/V43E44jMondTWlkKQogUNrrTSCpQ47/+hdUghEiz7GHevPzhyc2/Vbw2K38AkuurcLBBdno1q6enEnszmHV/MFNt0ATYG51lJyakgmn3B2KuVJDJC9nBm02e2R7hFflV0t9FOd2TUSUTejMytS2HAIhGjXTftwWaDL0ltu59HQBwevVMxf6l5Trq4JIFbScJmCsV6DnvtuCpwEJZRmKsVOAETlJbJKNndIQ3JkFoGMFux+fOtRhgGC8jpbgGx6mlsx58tIWVBvQ7UrtG7T2BHp/c3FxpO3RdTmd0P3JaAq6+vh7Nzc04++yzNYFAe3s7PvnkE813zNbncDgxfuI4NDc344svvtD9rfFgxowZAIANGzZoPqOmT3QZFmrTPRs2YkG+rsRzhoveJ04fOhOXnvZD3LfgaYlQAIABRWJLNFpeRsHzHH790g/EdYKguuzklI89FtQzriGVSe/R5v2K1/GoBs8bNQ/3L3wOiybdmPgATaAtbbJDbRvJhyyBd/RJQoEF9UZgn5/pjCMA4KyzzkJTU1NG44hMw77TZQBs3bCXkgpxmIEkirpoy8Ly/AEA2I4H5oSG+mGen5M+UqG+XZYpmnUMaFcFSXow9VQw6f4QVCkIlKUEyoTRLB9Qm/hpthM1hGSdqVlSYfYpi7F83pNY9u0HcXr1dNxy/sNYOPEGDK84xXijOvCloIaUQq/chSpi/J585HkLke8rQiDcqahrZUFbmk0ecYHifbkEwphcau5kyh9MyLJ4lAosYnlTSMeYUSo4HE7mik8sYeQkpYJ2vPQccTJ+FlZ/l2kcEiNGoSSfupZZgEyuERCsWbMG77z9Lnielx74giAgwodRV1uHZ58Waw/PmDxJujdSud/Bg9rOExUVFfD7/fj444/R3i6baIbDYSxbtgz19fWa7xQXF4MQoru+XE8+/uu/lgEArrvuOhw9qu260tHRgQ8++EDzvh6WLl0Kr9eLxx57TOqHDYgqiN/+ViRob7jhBkvrsmHDDOqWkvRZ/t3Tf4z5E67BwOJhiuWpJ4GamN19fLv0rP3uGTfBb0HllGpojBpVYz7CkAojKsbGtW5CCPoXDYnLEym+9dtKBRupB0sq9HasWbMGb775pq455fHjx7Fy5UoAwLnnyobi6YwjAOCWW24B0LfjCLv8IQNguz9kQqkgkQrRWVrORCZer6o99Lh8ul0JWCSzrSRLKpjV4dO2hWagSV5eHN0fBEGQuj/QZNy8/MEYDtWskhpy+YOc9HsZXwWPy6cwoRw/eCrGD55qefsPXPbWY9PPAAAgAElEQVQ8QialA8mAWe0oDVT7F1ajLfApjjbXgOd5PLX1QSw47ToMLRONAikxUFU8XPF9ui+MlAoRLiypA8TXxteUZNRowVOBBeujoHfsJUINgtSCVSQfaPAf1+YkSEoFZpsDiociGO6Syl9YgsuqAsPcGNFcjs9FVT3abcnLEwDbtm3DihUrUF5RhrOnTMaoESeD5zl8+fXn2LTxXQS6Ajh/9gxcePEF0r1j8uTJ8Pv9+MMf/oDGxkb06yf6jNx0000oLCzEzTffjPvvvx+nnnoq5s+fj1AohE2bNqGxsRHTp0/Hpk2bFCPKy8vDmWeeiffeew9XXHEFRo0aBafTiXnz5mHs2LGYN2cB7r//fvz85z/HyJEjMWfOHAwdOhTt7e04cOAA3nnnHUydOlV31kCNoUOH4sEHH8TNN9+MSZMm4bvf/S48Hg/Wrl2Lw4cP47bbbtPIGQGZ4LF1CjasQjb/pUaNxuQjwHbRUT5Lt3wjznzNG780ZSUB8UJN2BspFX40/Tf41sDTkU1QPwdtTwUbyYXKs6MPGPLQOKKyshJTp07F0KGi6mr//v145ZVX0NXVhfnz5+Oyyy6TvpPuOGLmzJkZjyMyDZtUyADYQD6dngqUIJCVCtHyBxOZ+AGm/ACApRkMR1KVCselv806BnSErCsV9MsfokaNKlJBNAbk4XZ6pSTSzKhxWPlofHNip64aQiZbtEqFCB9BmAuBEIei6wNLAMQr1VeDthBNJfS6PwCiyoO2yhxQVI2va0VSYfOeV7Dj0PvYceh9rP7BNvACjy6pBaXyXHNL5Q/6SgW29AFIh1JBj1QgcBInOIFDa1cjPCgRz5duPvP1yh+8KoJPeV5a/V0Wyh8MPqfnsd62BKb84bbbbsPAIZXY+OZGfPH5l3h7478RCARQVFyIM88+HfMvvQjzFs6NXh/iVouLi/HCCy/gnnvuwZNPPomODrEDy5VXXonCwkL8+te/Rnl5Of7yl7/giSeeQGFhIc4//3zcd999WL58uWY8APC3v/0Nt9xyCzZs2IA1a9ZAEARUVVVh7FhxlvNnP/sZpkyZgkcffRSbN2/G+vXrUVhYiIEDB+L666/H4sWLzXclg5tuugnV1dV46KGH8NRTT4HneYwZMwb33Xcfrr76aoNv2Z4KNuKD9KxVeSoY3deklr5RUoHjI3h5x1N4b8/LAICzhs1K6XjjgXp2nyWTmzvrUdtyCAQE4wdPjTnRkW6oyVpbqWAjmVCfTn1BqXDbbbdh5MiR2LhxI3bu3InXX38dgUAApaWlmDZtGhYvXozFixcrrrW+GUdkFjapkAkQIs1YelzRWv40kAon1OUPTmNzQgr1jIZZnTpFLO+AeMAqJczKHzpiKBUiXFgyrmLLCyiMSkFoO0lWPcAmzmr55MKJN6AgpwRnDj1fsw2pA4DOfqEqjBy3X3FTpD4C4t/G3SCyBWxiO27QFBTmlGDBadcjz1sodbOgfcGPNteATWqD4S5E+DAECPC5/ZqkPZZSoTlKKhT5y9HcWWfe/SFKOLjiJGpYEsnIK8HhcIHjOLR0NaAcJXA6nIyxUvzXBM9z4HnRu8DMn4E9F5NS/iBBO2ZBEEQZIgGcqm2pyx8GDRqE6354HS67cj4K/SUoye2HrlAHjrdoJYRsMD579mzMnj1bd0Qulwu33norbr31Vs1nq1atwqpVqzTvjxgxImYv66lTp2LqVOvqHzNcfPHFuPjii5OyLhs29KBuKUnVQ0b+ArR9YjAcgCAI+PO/78J/9r8FALjirFs15RKZhPpeF+aC6Aq1Y8ve1/GvT1aCEzhMHDIt6wgFwG4paSO96Auk1aBBg3DjjTfixhvj80Gx44j0wiYVMgCFUsEjJjWpVipE+AiaOk6AgKA0txIA00bRhFSgMnF5PbFJBanLAbqnVOAFHg0dslKB4yOIcGHdhCmWUSNVOfhUSTuFEcGi7sgAqFz2VW0FfW4/Lh63RHcMZkqFYISaQSoJDzZgcru6p1RIB1iZ5ykDzsCsUy7XLEPNwg43fYPKAlk98dmRbRhcMhKAfjtEtq2kHuixKvAVi6SCSatUqs6JV/3BJu5Gklb6fmugCeWe7hs1RqREwW0aPLD3lWQoFaTPdHgQmrw4iVO7HwRB8yV18mOkYuoLwZERbKNGG/FC7V8kXZcG1z99njR0HMc1T04BL3DIcefiRzN+g7FV2SWlVd8LgpEAnnjnbqmNJAHBpafF7haTCdhGjTZSC1sJYyM7YZMKGYDoqSDeBNJV/hAIdUCAgFxPgZRAS4m0mUu+KoHTbSGngjqBSBR1bUfA8REU+IoR4SPoDLUhEOlEnlNbWkATSqMZAaoEMDIpNPJUCEjfk0kFNnmLz1MhqlTQydL0yAtAXf7QE5QK8v43MvQcWj4abqcXe2p3orVLbuF3tHk/SvPEmrdcr7ZNpjdG+QM9N/1esWwiwpmVPyTW/cEKqIFjW6AZiJIKlEjqCnWg090elxEaHWss9YGyzaS1IMPMU8Goxl8QBEnB5GBUGIplVONQJ8zJ8FvpdZB2o00q2LAG1r9IEASm9az+c4l9ntB70g3T7s06QgHQaykZwFfHtwMALjz1CoytOhtVJcP1vppxaD0V7KTPRvKgPpts0spGtiBhUoGINu8nASgGoDsVJwjCu4muvzcjE54K1KndzRj/GSXSLNRKhTyfNqFXIxndHyJcGI+88RMA4sz2ibYj6Ay1IRju0vUroMj1aJNRwDhpp6DkAMfrlz/QdpKAsvwhnjZWUgCo415LyQuvivTocaQCsz8Kckp0l8nzFmLqyIuwafc/Udt6SHqf4yOS4aZfh1SIpVSg5zg1LjRVKsQwNLMG/eSPkkdSS0mHEwInHvNQJIDalkMYUnaSZfOuMGetVCPHnYv8nCL4mJakMWEa6+rX+Dd31aO5QzTTdBIXCCEYWDwMdW1HGcJHUKxDIhqhVCoQQhgHa9LHZ1z63m+344juwUFVgYIAXuAgQICDOA27GqhNeq+c/JO4zH7TCfUEweGmvegMtaPIX4bLz7g5Q6OyBo1SwS5/sJFC9O3npo1sQkKkAiHkVwBuARArw0xNv54eDvYG4I56KqSaVKCKA68eqWCqVBATmjH9J6E92Iqrzr495rYc0uxJ4jNuNQ27caylBk6HC9+f/BP8adOdAPR9FdjxG5EGAaldo/7nRqqN2tbDAJRkCitnj6cllaxU0JIKUttKl1qp4NX9O1uhUCr4igyXO3v4Bdi0+5+K9zg+go5oGYte+YPHFUOpED3Hfa4cEOIAL3DgeU73GKVDqdAeEI1BHcQBTcGLIFjOIcO8tbESQlCW1990Gc13EkhkKaEAyOe/x+WFx+VFKBIQaQNB9lQQxyYTjZ2hduk4Ox0u6ZpLZCy9CTKF0zeUCnYc0X3IZB3PlEkZh3UO4oDH6ZWIWb1OSNkCNem68Uux9SztEpTNUM8c20mfjeRC1f3BJq1sZAniJhUIIT8FcA+AFgB/A3AIQOpdBnsRCIgUNnrT5KkgKRUY4z/ZR8Cs9lwMPk7ufxrmT/iBpW0RyahR6x1gFYeb9gEAzhj6bVSVDJfIAD1SoT0od34wKrmIVf5AlQoRPgxBEKQg4IO9bwAAJgySZ3MSbSlpplToMlBSeJPY/SEdYPdNgU9fqQAAZVGzUBYcH2E6dGiVCtSo0siokb7vdnnhcrgR5oKI8GF4dEmFxLo/KKEfKBK1UoE4rDoi6iKcQgLEWvcH5TXldDjB8Zz0txaC/G3pH1mmXdsiq1NYUqE7+6g3INdbGG3Zq3+P6k2w44jkQCbr5NKHWM8krztHIhVy4lE1pRlGku6hZWN0388mqLsgOWx5uo1kQt39oY8T8jayB4koFa4DcATAaYIg1CV5PH0DhEjqYDctfwjHNkDsDmi9OatUcBCxHtpsRjeRhMbBBDqJ4kiUVBhYLJr6UTIgoOpGAcjJG2BsDknJCK+BksFBHFIrQE7g4CIutHQ14Muj/4HL4cbpQ2cwyzJGjQl5KugoFSL65Q+s4Vb3pPrpAbtv8k1KZYr8ZdL+poiw5Q86ZSyxlAohSY3jg8vhQpgLIsyFNZJfgDmvHd1J1PXPb2d0H1CCRLzOrHxTH+FI6kgF8zxe31TB5fSA46OeCgYmlGz3B3E7+ial7PXT18MinzvHkPTshbDjiCRAJvB5yXA5FlHKdhTSKzPLFrDPyYUTb8CWb17D8dZDGDfo7AyOyhpspYKNVELjqWArFWxkCRIhFQYBWGkHAolD4amQpvKHIBeIbk8OKAghcDndCHMhwxldmVSwLr2Xuj90w1NBIhWKxBZXlAwI6igV2M4PRgZwkqeCySyg0+kGF+HAcWG4HC40tNdCgICBxcOQy8hESXeVCjpjDBiUP7Az/z0hMKHjzfUWmO4bB3HA58mVEm9AVf6gI8v1xPBUCElqHK/oPxDuMOxsErZofpgIKDlHVT760kRrtALPc+D4iHitpoRUim3UqOnkwHyHJQmk9xkyUSIVov9ShQOFglToAee3jaTBjiOSAAdjgEq9kYw6P1B43Qyp4LZuGJtusM/JeeOX4uJxS9AV7ojL5DZTUBsz2kmfjeTC7v5gIzuRyJ2uFnbXiG6BKJQK6SEVaMLlUZEDslmj/vYTmSVVm7IlgiPN+wEAVcWiu3OOm5Y/aJUKdHYbMCYypJaNJjOBauNK+q+aUGEDBmcc7QLprK4eqRA0MGrsaaAJtFnpA4WaQOGiHT4AA1IhRvcHWv7gcXmluuKwgV9IhLdmfpgI1CUB4nFXPvStinhYQ8lUBA7U90Kv3ISOWT1UnplBdOkoPcSGkgK7CsOSKGX9tx0Y9SHYcUQSIJU/gEeEi+2pACjbFudkcYKuLhMkhPQIQgHQkgg2qWAjlbDPLxvZgkQe6s8BWEAI8QqCELu/oA0DiAG0y+kEIQQ8z4PjODidqfGkkhMupRTc5XQDYWOzRjrbGh+pIEsyE0FHsBXNnXXwuHwoyxeN52ggpOep0GFJqRD1VDAwagTkYEwiFaS6e+Vlkmj5g9xq09hTIcdtrFToCaCz9AUG7SRZqAkUjo9I3h96XTzcUVWBuiMJBT1XPVSpAOPOJpRscHdDqWBEmimPmdjRwLjpojloN5JUKCoAsROH1+WLS4kkRIP9XG8BCnzMcWZ+pNz7QVX+oEoUlOUPNqnQh2DHEUkAq36zeq9gSQW/J3s9FbrjyZRpqJM8h31vs5FEqM8m+/yykS1IJGO5C8AxAGsJIUOTPJ4+BDnYTkcHiJBOS0lAlkrSmVs1pPKHODoPOEySZyugpQ8DiqqlBI0aGAYieuUP7dLfeiaIAEMqeExIBakDhHgcIgZtBxMtf3CYkC2ykkI9vp71sKDHqSS3wvKyFEqjRq1SwWHQ9pOCJc7oMTMqf6DdH/Rm2rsLB1EmyoSQhE0IOYvma4mCEAKPy2eggtBvKUnP35LcCpUhGbO8ICjeMyIM7PKHPgs7jkgCiE75Q6wyKfaaM/IYygb0aFJBI0/vWZMDNrIcdnmNjSxFIpHqFwDcAAYAmEMIaQHQrLOcIAjC8O4Mrq/A7XIhFA4jHInA501N20DWxI6FNDvPGZQ/JGDUSLpp1HikWemnAMiz2sFY5Q8GRo00aTf1VFCXP0hKBeVvZw0tk0UqyEoK5fh6WqJ1ysAzsfjM/8L4wefEXHZI6Sjsq/tCes3xEXSFOwAAOTozaHRfGwWbIck3xMuoGozKH7qvVDACW/6grq2lsFoaJLeJS79Jp0QRqIZKyUKNxJddhho1EqVSQQ1W1dEdY1cbPQ52HJEEsK1aZU8F82cSS/ZnsxLOaIKgJ0C9X3vac9xGz4J9ftnIFiRCKjggtn46yLxnNs1lQxc02EZalQqs8zMgkwW/3/Bj/HzOn1GaV6n8HiMptwpq1JjoTMNhqfODTCrQbgBspwcKa0aN1LPArPxBObstz/yoyx9YpUI8ngrGBpZG3Sl62sPC7fTgglO+Z2nZ70z6EXiBR66nAK9+9jdwQkQ6T/Xa6rmi+9rI/0NqKen0aggiNWSjxlQoFeRzQk68VcfRYgJtNVFICXSMGgVBkDwVjBISvV9mNJPCvt8dDxYbPQ52HJEEsP5FHGeNgDRrIZ1N6NFKBXsm2UYaYdR+1YaNdCPuSFUQhOoUjKPPgVgsfwhzIbz06ZM4a/gsDChKXCXKmtixoMlXXdtR/O7VH+GhRf9UbT9+T4XutpSUOz/Iv7copxQA0NLZoFleUf4QTdgFQUAg3CEZUQUtdH+g3glUoSApFVRBGptMGbXU04OZ10RrVyMAIE8l+4+HzOlpyPUW4Jqpd+KTA+8AnwERnpM8FdTnKSAn1oblD2xLSelY6pf1GB3bZIAlmqSZetUyVq8MqU46E6SCrhOEAAji79ISXnL5A7321d0f1LCVCn0TdhyRHLDP2ojFlpI9JVnvKePUg8ZToYdNDtjIbmjLa+zzy0Z2wKa3MgQ2fnZFSYWIDqnw+udrsP7Tv+LnL1zere2FdFpKAkoTwrq2I2hoP674PKGWkjR5NihFiIWj0c4PrFKh0C+SCs1d9ZrlWaUCVQH8+6t/4Ya/zcT2g+8BAAIR60oFOpNjJUiLRz5qplRo7KgFAJTl9Ve8/+0xizC0bDSuOvunlrfT08CSBTKJpUMqELqcfrAZZpQKbgc1atReU/EE4IlA0Qa0m7dYOn5niowazaDnqEDPXdPzXkiw/MFWKtiwERdkTwXr5Q9GpGy2IVGj52yAJumzQ20bKYRNKtjIFnT7TkcIKSCEDCKEaJ3VbBiC3gIIAdzuaP23Dqlwou2I9Hd3ggFJqaBpKalUIOyr+1LxOpGWkrJRY/xJQoQLo6WrEYQ4UJrbT3q/KKcMANDS2aj5jp5SYdX7DwAAHt34MwByeYHPpGWjJJmPEimcBeOreG7mRkoFQRDQECUVSvL6KT7L9ebj7vmrMHP0Qsvb6WlgSQUjRY16OT2wngpOp/JYsmCD71TUFDt0lApqYyWrCTRnUIKTHmhpBd7AT0F8T720DJ7j8ezfnsfl86/ChFFnYdSAsTh9zFRMGH8a7rjlV9i44W0F07pq1SoQQrBq1aqk/JKamhoQQrBkyZKkrM8Mzc3NePDBB3HFFVdgzJgxcLlcIIRg48aNKd92T4UdRyQGuaWkwKivYpEKPUMB0JM9FcSOP4R5bZMKNlKHbPZGSSY4jsPKlStx3nnnoaSkBG63GxUVFRg7diyuvfZavPjii4rl7Tgi/UgoUiWEOAHcDuBaAEOZ9/cD+AuAhwRB6Bl0eMYgP3Ck8oewtv6bbfV4oOFrDCsfk9DWJE8FE6UCADR3KpUAcveHRIwa4w8KWgNNAIACX5EiOStilAqCICiSeT1PhVxPATpCrZKEUi5/MFYqeKLECZXRh7nYs9nxzEAYKRU6gq0IRQLIcef2mD7cyYTTIZedGHl/sMvF7P7g9MHtUHbyYBFJwHxUD0acmZPt/hA95hrqyQLhxvM8eJ4HISSuMpukgxkqb6pU0C9/4DgOF198MTZs2ICCwgJM//a5qBxQiZbmFpw40oAX//kK9u7Zj/MvnJna35Em1NTU4Kc/FZVFVVVVKCsrQ21tbYZHlX2w44jug20padXUtecoFXoG+WEEQhwQor/Bnkm2kVSoPTv6gPUMx3GYO3cuNmzYgKKiIlx00UWoqqpCY2Mj9u7di2eeeQa7d+/GvHnzMj3UpKCnxhFxkwqEEA+ADQDOgxhuHoLYGqo/gGoAvwEwmxAySxAE/YJm5foGAXgEwPkQo9KNAP5LEISDpl+Uvz8awL0ApgPIhWj89D+CIKyI75elG9Y8Ferajkp/7z7+SdJJBYcqKW7qrFO8TsRTgXRDqdDWJZIK+b4Sxfs+dy48Ti9CkYDCKwEAOoLK8gdBEFCcW46OkNiesLmzQe6uYFL+QPcNTU6ttOhKhlKBqhTUJpl9BRKpwIcR4cMgILrnG/UqiN1SklEq6LRKpWRRd0kFI7BkmNw/Ov6HPhfNp5wOV0aCUtYEjsKo84MWAl0J1qxZgw0bNmD0KSdjzbrVKCjIl5YaWj4aXx74BJ9+srPXeCoMGTIEGzduxIQJE1BSUoIlS5Zg9erVmR5WViHZcUR0nX0ulmA9FaiqKVap1Dmj5uLZDx/FpOrpKR9fd8D1eFKBSLfBvjKTbCM90LgZ9YHzi8YR48aNwzvvvIPCwkLF552dndi2bVuGRpd89NQ4IpEz8VYA0wC8AmC0IAjVgiBMjhovnQTgJQDnRJczBSHED+BtACcDuBrA9wGMBLCJEKLtKaf9/iQA2wB4Ic52zAHwMIAMTuvFCQJ4TMof6tuPSX/XtR7VfG4VUhcHlayceg1QGCoVEuj+8NxHf1Ik/GbYtu9NPPDqjTjaUgMAKMgpVq6TEBT6oyUQXcoSCFapAIhJUHuwVXq9r+4LBCVPBePyB3d031AiRXLTTrqngjJ5oj4WJbkVltfVm0BJha6Q2E7S7fToJtGSUsEg2AxL57gPLocb3oYqfPWncrTXK5enREOq2jQqzolutJSkMmVHHB1GUg1zpYIM+usIgC1btgAAvnP5AgWhQOHP9WPy1DOl19OmTcPSpUsBAEuXLpVMIQkhqKmpAQAcPXoU9957L6ZMmYLKykp4PB4MGDAAixcvxq5duxTrv/vuuzF0qDgRvnr1asX61LLI119/HXPmzEFZWRm8Xi+GDx+O22+/Hc3Net0O9VFcXIyZM2eipKQk9sJ9F0mLI4C+G0soW0paUypc8K3LcedFj+OH592d6uF1C4koHbMJSm+d3j+TbCMz0DdN7n2gccSSJUs0hAIA+P1+TJ8uE6V2HJEZJFL+sBjA5wAuEVR3fUEQ9hJCLgXwKYArANwfY13XARgG4CRBEL4BAELITgB7APwQwH8bfZGIT9PVAN4SBGEB89Gm+H5OpqBT/qAiFSJcGE0dJ6TXtGY8EciyciU50MX4EQBmpEL8ngpfHv0Pnv1wBX5wzi9jfmfT7n9h17GP4feKSUeBr1izTGFOKerajqC5sx6VhYMBiAl6p+o38DyHNoZ4CEa65JaNJt0f6L6hHQjCFpLPxJQKyiS3rysVXNFyga5wlFTQ8VMArJQ/iMfN7fTC7XRj2D/uQ20wDxs6G3HZn8ul5eSyltQoFZxsS0mp+0H8oOeJM2OlDzrdH8w8FcAoGwSZVigtFUuX9u89IC2bn1OEgqgaiYAoSJYlS5agqKgI69evx/z58zF+/Hjps6KiIgDAu+++i/vvvx/Tp0/HwoULkZeXhz179mDt2rV48cUX8f7772PcuHEAxOCiubkZK1aswLhx43DJJZdI62PXfe+992L58uUoKSnB3LlzUVFRgZ07d+Khhx7Cq6++iq1bt6KgwC75TxKSGUcAfTSWkK853rL/isPhxEmVE1I+tu6C7yHeD0awPRVspA7sudX7CQUAUhzx9ddfW1rejiMyg0RIhREA/qgOBCgEQeAJIa8BuMnCuuYB+IAGAdHv7yeEvA9gPkwCAYizHGMA3GB14FkFqg6G3P1BTSo0dBxXBNtU3p0IQswsLgt1Qt7UeULxOhFSgTBJ0OFoe8hYoOoDqsxQKxUA2VehpUtuKxkId0AQeHhcPvA8hwgfRnuwVTGbzfGcoVKDBd03tItAxIqnQhKUCo3tUZPG3H6a7/QFULIgECUVvC6tnwK7XOyWkl44HW44g2KJTP0epVeJTD6kSKlgxahREHD1/52JnoAHmTazlpQKqu4Pl156KR544AE8vWoN2traMGvOtzFtykyUjeovLcMKN6gJ0vr163HJJZfomiLNmDEDtbW1yM9XKh927NiBKVOm4I477sBrr70GQAwGqqursWLFCowfPx533323Zn2bNm3C8uXLMXnyZLz66qtS0AGIZk9Lly7F8uXL8cgjjxj/bhvxIJlxBNBHYwmZqBYk/5hUdLTJBKpKRmDb/uw2JTMDGxv0lcTPRvpx17qrMj0ES1j9g+6VJtA44vHHH0dbWxsWLFiAiRMnYsiQIbrL23FEZpAIfRoCEMtNLheA1nVQi29BnK1Q4wuID3kzTI3+6yOEfEAICRNCThBCHiWEGE9HZw20ngrPffg/CIblcoT6tmOKb9CkKREYueqbKRU4PgJe4OAgzphtqliwPZmtGsy1RkkFWgpQ4NNKfgpzKKkgqxCaOxukz+hDnCUdgGirQoPuFyzoZ3Q/cxbkpPEYNdJl1UoFqqLoiyaNAEsqiPvBqNTGqlGj2+VTEAZ8RL/cpNifWLnJ5OGzAQAzRl+qP04dpUKPBrP7TD0VmJ8qkQogmDBhAp5++mmUV5Rj3dqX8KNrlmHMSaegtLQUCxYswKY3xLavDof1a6miokITCADAuHHjMGPGDGzatEnX+NYIjz76KABg5cqVikAAEIOT8ePH4+9//7vl9dmIiWTGEUAfjSXkTku8JQ+gnoTZpyzGokk34ncL/5HpoSQEooiDbKWCjeShF0QVcYPGEf369cPTTz+NhQsXorq6WoojXnrppbjXaccRyUciSoWdAC4jhNwtCEKd+kNCSBmAywDssLCuEgBNOu83AtBOVSsxIPrvPwA8BuAOAJMgGi0NArBA70uEkOsBXA8AgwcPtjDEFIPI5Q/7T+zGW7vWYs7Y7wOQTRqL/OVo7qyTEmMW++t3wUmcGFw6ynQzRi0laQJNQOB0uNAZakcw3AWvOychlQKgTDicFurBI3wE7cEWAEBbQKw5ytdRKngkzwPZt6sxqqwoze0nERPqEo5QJAABAlwOt2l9umzUGFBsx7z8weSHqUCTJl6lVKAkQ0Yd/jMINWFlpCYxIxUiDAHmcrgUx0ytoj3RehgA0K9gUELjvf7cu3DJhB9IJThqKM4xol/+IECIydw3dpxAS2cDinPLURT1E0kn2oOtqGs9Ar2WknpBsrL8QfnZokWLMP2CqXjt9Vfx0bZPsHd3DbZs2Yp169Zh3bCcNPAAACAASURBVLp1WPS9y7B69VNxje+VV17B448/jo8++gj19fWIqJRe9fX16N+/v6V1bd26FW63G88//zyef/55zeehUAh1dXVoaGiQZJg2uoVkxhFAmmOJbIkjCKN+Y1vl9gZ4XF5cNK5nzMLqQeGpYJMKNpIJJvD8zaVrUFU8LIODSR8WLVokTkRs2oTNmzdj+/bt2Lx5sxRHXHXVVVIbSauw44jkIpGnz2MAngXwISHkPoh1h8cAVEKUEf4SQDmAmy2uT8+xzMoZQe/STwuCcFf0739H21TdTwgZIwjCl5qNCcL/AvhfAJg0aVLG7MbZGUyXU0xCeJ5Is7UAUNcukgoDi4aiubNO46lQ33YMd69fAiC2tMio+wOF35OPHE8u6tuPoamzDpWFg9EeEBP9+EkF+bdZqQenHR9Y6Hkq0KSbrbWknhPFuRU40PAVAK1Sgdbqm5U+sJ9TokWa+XEaXyZxtZQEDQCVWa5V87veCg2pYKBUoN4LeqRCWDq/xe+6TJQKtW2UVKhKaLwOh9OQUACU5JB8ncc/t0DP80yRTXKDSBnWjRrl8gcKvy8f50yfgnOmT8HA4mFwEhdeeOEFXHPNNXhuzVp8b9EVijpFMzz66KNYtmwZiouLcf7552Pw4MHw+/0ghGDdunXYsWMHgkHryq6GhgZEIhHcc889psu1t7f32mAgzUh2HAGkMZbItjhCEHjJWLi3kAo9HWxs0CsUazayEo4+Vlrjdrsxa9YszJo1C4DYapLGEU899RQWLFhgxxEZRNxPH0EQniOEjIfI5v+vziIEwO8FQXjOwuqaIM4wqFEM/VkHFjRzfFP1/hsQjZ3GA9CQCtkCycaMAM4oqQBB2W6QKhUGFFXji6MfajwV3tr1gvQ3z3Oms/BGngqXTfp/WPvRn/G9M5fhP/vfQn37MXxz4jMU5JTgtufECzNeUoFtU2nFub5V1c0B0PdUcEmtB+WkskHyI6iQyx86laRCLFk9hVT+EE1Q5fIH498fDxFAYikV4pB/9yZolQr6xBc9lyI6pEJQpcRRKBVUi1OlQkXBwMQGHANOPU8FFQRBQEN7LXI8uYZlL9QXxIraJzXQjt06Acb2fxDhYe4jhBA4nU4sWrQIn332Ge677z68/fbbloKBSCSC5cuXo7KyEp988olmFmHr1q0x16FGYWEheJ5HY6P2XmQj+UhyHAH00VhC8lSAIHc4MjEjtpE+sPd+W6lgI5kgir/79rllxxHZhYTORkEQ7gRwNoC/AtgOYF/0378CmCIIwh0WV/UFxFpINcYg9kP8Czoc1fv0esvufkSSUSORlAqCQBSkAvVUGFgstjFRkwpb9r4m/c2WBOghpJrJpZg79mr8cfFrOGfUXJxaNRkAsOPQFhxt2i8to5fEmUFR/qAzy8rzHN74/FnJxLEloL0A83WUCnryd2osWZJbISU6aqVCwLJSgZY/xGPUaJ0ldhh4KsiJWt8sf1C7lRspFejxV+8/QNlOElDuSy6sUipIpEJi5Q+xoKdUUJ8nHcEWtHY1orblkOF6+Oh57iCZnnmU95/sqaA9VwmjbRCk+5sMttsGS0rQmkbWwJQSrRynPdb19fVobm7G2WefrQkE2tvb8cknn2i+Y7Y+ADjrrLPQ1NSEL774QvdzG8lHEuMIoI/GErL5Ly8p8nLc/kwOyUYUbBzU12aTbaQafa/7QyzYcUR2IGGKSxCEDwRBuE4QhEmCIIyM/nudIAjx0DsvAjiLECIVBBFCqgFMiX5mhtcABAHMVr1/QfTfj+IYRwZApH+cEqmg7M1c306VCiKpEGaMGnmBV8zI0zaIeuAFXpqt97mUAQchBAU54gTP2EEiqfD5kQ8UppBtgVgTPapfxhoU6cyybvpqHf6+7RH84p/fA6CvVNCbvaXrYpPKxg6ZVKAPcerPQF93haKtCmMpFTTlD9RTwaT8IQndHzItc8801EqFRFpKUsNRXzSgZs9BdnGOj0gdRiryByAVUBxHgwe+kdmkcpnMKhUkioA5XWX/D+PzXlyesgoEa9aswZtvvglBEFCePwAleRXSsTx+/DhWrlwJADj33HOldVBp4MGDBzXrr6iogN/vx8cff4z2dtloNhwOY9myZaivr9d8p7i4GIQQ3fUBwC233AIAuO6663D06FHN5x0dHfjggw8Mf7ONxJCkOALoo7EEkYwaBfkZ77FJhWyA7algIx3oK+cWjSN4Xsvx2nFE9iDTU2ArAfwYwHpCyC8hRqK/BnAIwBN0IULIEAB7AdwrCMK9ACAIQgMh5HcAfkUIaQXwNkRzpbsArGZbS2Uj2Fk9J5W9M+UPwUgALV2NcDpcqMivkt6jCIY7Ve0mjUmFtkATeIFDnrfQdNa9X8EgyRTycNPeBH+Z8mGqlxB9dXy74nWLDqng05lt0UsqGzvE8odiRqlAzR4LfEVo6WqUgq1YSgW3qvxBbtFlXP4QD0tMl+VVXdRsTwWLngompIJk8OkTHXcJcUAgHIjg1CzH8REU+IoNyyy6C0X5g2EtbezzJuPlD0S+R1GYnqsG3R+2bduGFStWoLKyElOnTsXQoSJJun//frzy/9l79zgpqjP//32quntmmoFhuMtFIYDmJuAliQY2Al5C1HAR42ZRs5Com3xdYkQTdbMbkJDfDzfZRMhmVxd3QxQlGzUB8gVx44agRENivMZoRAW8IJdhuMx9urvO94+6dFV19XW6p3umz/v1Unqqq6tPd1dXP+c5n+fzbN1KR0cH8+bN48orr3Qef/755xONRrn77rtpbm5m5Eiz3erSpUtpaGjgq1/9KqtXr+bMM89k3rx5dHd3s2PHDpqbm5k1axY7duzwDK2+vp5PfOITPPXUU1x99dWcfvrp6LrO3LlzmTJlChdeeCGrV6/mjjvuYPLkyVx66aVMmDCB1tZW9u/fz86dO5kxYwbbt2/P6a279dZbnaBk165dAHz3u99lw4YNAMyfPz/nuk9FTlRlLCFcSoVOR6kwoJxDUlh4WkoqTwVFiaiWc0vFEX0jjsiaVBBC2I5k70kpE66/syKlDE7nJO9vE0LMBn4APIAZlv4v8DUppbvXoQB0UpUVK4EW4P8At2IaPX0XM5ioaII8FdzlD02Wn8Kw+lHUhs0aSbdSod1afbfJ1G7SbruYi4N8Q90QjrcfcfwcCsEr+0s9xewJoI1fqRDSwoE+DnYphTepkFr+YCsVBtY2epMKWZQKNdYk0+6ykUuLLi0fo0Zhf87+pILtqVCdSoWU8oc0k/1MSoWTlpqm3koqaEJDaglEwvue2qqVaE1qG6Fi4Sl/cCbm+f3wSykrUsFirxIEJ8BcSQiZ9FS45ZZbmDx5Mk888QQvvfQSjz/+OJ2dnQwdOpSZM2eyaNEiFi1a5EnQNTY28uijj3LnnXfy4x//mLY283O75ppraGho4Nvf/jbDhw/nvvvu495776WhoYGLL76YVatWsXz58sCxP/DAA9x8881s376djRs3IqVk7NixTJkyBYDbbruN6dOns3btWnbt2sXmzZtpaGhgzJgx3HDDDSxatCjn9+mRRx5h//79nm3/8z//49weP358xQUDpaSUcYS1T1XGEpr1nTMw6Oi2lAoqqVARaMpTQVEivH4d1ZFUUHGESaXHEbkoFfZhzoE/BLzu+jsbMpfjWwHDwiz77CMgKpemjvz71n99CuG8g1rSU8FITjgPnTRrrUcMGkfYVesvpUQI4ci9bTIpFY63mx27ckkq1Nc0AMmkBsC3Pvuf2V+QC29SIfXH1F9O4Vcq1EWCg6LkpNKcbMUTMdq6TqIJnYG1jcnyh047qWBOMDtyNGoM+8sfbE+FjOUPSqnQUzRNRyCc1e1sLSWDPD7c6hSwlApaAnylb+0x83tTytW8IKVCprPE/k57trm6J5QraEi2iEwiM5Q/uEfpTpqOGzeOG2+8kRtvvDGv558zZw5z5vgV6SahUIhly5axbNmylPvWr1/P+vXrU7ZPmjQpay/rGTNmMGPGjLzGGcS+fft6fIx+xj5KGEdAlcYS7vKHuBkwB6n8FL2P20CvWn/bFaVDCDN3Xy0JKxVH9A1y+bG+H/OH/YTvb0UPkM5kQ7q6PySVCgetpMKoQeMIaSE0oWPIBAkjTkgPO5Mjm2IpFeprzaSC3c5yzkcXMXHER/N4ZcnVEwhefc+mVEgXFNmTtYQ0J5W2IqG+ZhCa0FKUCvaqda5GjTW6nbyxyh+clpIZyh/yWIF2lAo+369YPHuden9H10LO+50u+ZNJqdDqlD+YBp+mUiF1v87u0kuEPT/yIuUGgKd0SUojxfjQ9t2oDGljavmDyKCqkXjLHxQKVBxREoTTpthwkucqqVAZVONqsqI3EYBUJqCKiiIXJcHiTH8reojA8VQwjRrNOMt2hR9pOdRHQjV0xtrpTnQR0sMFKRUa6rL3RbVX9+3yh3SqgUy4J1VBq/wtHV6lwsnOXJMK3kmlnZyod61OQ7KF5CCfUiFb+UOKUiGH8od8ssSOUsFlNPOb3/+eh/7jTcadXVtRMvfexp1USKtUcMpfUp13TwZ4KqCn7mc7pNcWcF7nijvp4Uyqfb/7brWKIQ00fEkFl1Kh7HiMGvMvf1AoVBxRGjSX+s3+3VOeCpWBx1OhihcMFKWl2ltKKioLdTaWCXerOU/3B2ylgllGOqrBLD2NOCaC5oS3PSWpEKxU+NkffsTPnzPbgDdGh2cdl13+0JMAJVt/ZtuAzu6n7VcqpHtO25/BrjVv9U0k/RMde9XaViqk6ypgE0lj1KjrqYmR2R9cSG04ynkTL8l4TO/4zc/5cMu7/Pfv/xWAF197DcOAjuPhqg483GaN2TwV7FaL7i4adkmNcy4gkCIgqdALSoUgJYV/ai19SYWuWAeHTr7rtIZNtm4s3znhOMtbWQVDGlapRhYFgnQnRUo+TIWiaqmzuiS1dZ1U3R8qDPcKsqaSq4oSURELDwqFRd4RqxAiIYT4pyz7fFMIkb1nWhWTnA/JpKeCFM4qdqpSwTIRTKRLKgQrFba+dL9ze3A0u1LBTirY9NT0yT/Rd08EB9YOxjASzipz8jmzlD/YSgXHkLEh5bkEggE1gwBcRo2Z3f4jLu8KcLeUTFUq/O30b/Dv1zzhTGJzwX3x3/byA+ZrsIxjpCyjy38F4EkqZCt/kAnW/exnzF68mEOWM26Lv/xB05AupcKRlgP8+cCzyV7uJVQq2IoLL94ffrdSQUqDAyf20d7VQlPL+9a2yisfSCY69MBAJpmEwKVuqJzxKyoHFUcUhxEDxwBwuOU92rtbAGXUWCkopYKilCQXJtW5pagcCjkbBblFiiqazAVX9wcMU6nQFevgWPsRdC3E0HqzBYotCbfbSqaUP2TwVLBpyMNTwaaQyZfhkqf7TQnbuk46t3UtRGvXiZRuCOlWkd2TSnCVP9R4yx8AopGBKcmAbJ4KkTRGjUGdKCD/bg3+8oaEEeek1R9Xyspy+e9tvEqF4M9JCOG8Rz966CGOnTjBhi1mC3q/UkHg9VS49WcLuOuxG9lz6CUA6sL1xX8RFrbaIBN+pYI9CbcTEhVV/mCRu6GorMjxKyoKFUcUgZpwHYOjw51Ee1ivyWgsrOg93LJ0dR1UlAqlglFUEqVKcTUC6Yv8FZ4VyKSngmnU6HR+GDjWmWzZ5nWxtOUPwW+3W0o+rH5U1nH5lQqFyMTdK7X+hMHx9ibntiETTucHe4UZ0q+06MLrqZBa/pCclEdr6lMm/dmTCn6lglX+UKQgzR9YnOw45igVkKKqjRrdgXCmLh3+zyIUMv/2KxWc7g8+3jryClBipUIiVamQ0t1BppofWvd47i9r+QOp5Q+Qq6Go8uBT9BgVR+TAyEFjndvKpLFyyFYGqlD0CNuuSZ1bigoip9mSEOJTvk3jA7aB2f/5VOBq4C89HFu/JmljJtD1pFGjO6kwsmGcs39yFd1WKlg+AXqEWKI7UKkgpXRWTW+66LsMGTAy67j8cv5CghS3kZ7fVM/dTjJhJBw/heEDRzv3pW8paSYJbCWE36jRXcMYjQx0jP1sspU/2IqEWMJs3RlPpC9/KAS/EuF4R1Oy/MGo9u4Pyfcm0+ekazox1yml6zqGkaDVUsDUu0phpJ6qnLaTb6X0VAguf0iPtxTC/tcqNaiAVYhYl6SjsxM0u0tJOkVNcqz266iE8SsqAxVHlIaRg8bxl4PPAyqpUEm4f881ZV+mKDpJXzaFolLIdQn2NyTnwRL4W+u/IARgALf0aGT9HZc5ur/7g7udpE1E966id1gtJRvqhtLU+n6gUqE73omUBhG9hrNPC4rdUimGUsFtVOcvf7DbPZr3JZUKQ+tHOavINeG6wOPaq9S2gsA+1kBrzO6M7YCaQSlKhWxGjZrQnCRNLNHlanFYrKSC9+J/vN2VVJBClT9Y2F4Y2fYz/9Z459ibSGnQUDfEUTwIoYEwUh5vJ99K66mQXxm4lO7Em6VUqITyASEwDOhsMXir5V0mjBtpbQ4OkJ3eD10hkCrgUaTwG1QcUXTcSoU6lVSoGFRLSUUpsc8opVRQVBK5JhVWYgYBAvgWZnCwM2C/BHAU2CGlfK0YA+y/mD1mhTBN5QCQAsOIc/CE3fkhQKngK3+wkwp7j7xKW9dJz4SsEFM6v1KhkMmXe6XW8E2w3EkFt1JhsKvdpV9hYGMnCQy/p0JA94dopD5AqZA5qWDuU2sqP+JdTnJEL5VSod2rVBBa9f44uJMFA32+Hp79fO+hrmk89fovATh3/GxnezqlQm+0XUsElT9kWLH3KBXsf2X5kwoCnOQA5Fb+oMVqMY4NJqwNJDFsHyilgiKJiiNKwEjX4oMyaawcvJ4K1fvbrigtSg2oqCRySipIKVfYt4UQfwtsklKuLdWgqgkJaLpVu2yYq5zNJw8DMHLQqc5+TrvDhNeocbBlvvjCO7v4x19cww8+v8V5jF0ikU+gEQnVUl/T4Ez+Cyt/SK9UaOl0KRWMBMc7TI+FBldSIZ0Bot9ToSVDS8loZGBKN4VsngpgqRm6TUNMuzY+VCSlgn88x9qOeJQK6ZIp1YA3qZC+o0aKUkHX+d1bvwLggtPnOtuFEF5PBXsqY1HK4DtmZDdqdBPoqWArFcoqm/UGK3aLVS1D8kvrNlVGwtADjqCoZlQcURo+eMrZrr+Ul0mloJQKitKiuj8oKo+8z0Yp5QQVCBQPjaQsXkpzld/fThKS0v2kUsGcjLrbRDa3HfIcuxClghDCUypRjKRCS1sb7x0yx9bqSiokZJz3j+8HvP4R6SbXyZaSCc+x6p3yh+TjwnokZQKayQDQxk7edMbakEh0oRfN66AuUs+XZ67k7FPN97fp5GFiceu9ktXtqeBWceRT/iCE6dOhC51Th57uOp6GO8AWhvdxpSx/+NTkzwJw7viZ7pGm3d+TVPB7KlRQMGqfq2nLdILGWkHjV1QOKo4oHu4k7OuHXizjSBRulKeCojeopBhBoVBXunJhy4oFaJpwtrV1tXCy8xhhPULjgOHO7jV2Z4JEF4Y0aGo9AMBwq091EE5SIc9V2bNO/SvndiGdD9w15QmZ4DPXX89lf/d3HG5u9noqGAkOHN8HwOiG8c52Lc1zJltKmsfvincAycSH27NA10Ipk59clAq2KqHTOrZeJJWCzfkTP830yZcBcOT4EWe7adRYvUoFuywBMp9zuhbCcM3B7SRbXaTe8+OqCQ2kS36a8B4zGildS8lPTvoM37liI1+Z9Z3k82f43Xd7Kkh/94cyrvWbBVpJ4nHbqDGDp4KQvm0q4FEoSs3sDy4E4Nzxs8o8EoWNewVZTfwUxcY+pVRLSUUlUVCvPGFeIa8EPg2MAYJma1JKeWEPxlYlSISWVCocaXkXgMboCE/wnmwp2cnBE/vpjLUzZMDIjG0i7fKHfJMKU8dN59zxMxk64JS8HmfjVipII0FruzlhfH3vXqcNJJgJkiOtBxBC8ygV0vXZthUMdvcHu7OF3bXBPSkPaeGUyWkungr2c3fFOpzjFBtbXdJ08qizTUqRUVbe3+m0EmDZ0LUQMpH8EW3vsjwSfEkCITSEq22jSIRxd6crpaeCEIKxjR/IeX9/iRBUjlGjO6sQTyTMJGhaRY0KbhS5o+KI4nHt+bcwacRHOXPs+eUeisLCnVBVEnVFsakJRYGOoi98KRQ9Ie+kghCiBtgGzCS5mOWOJiWpi1yKtAgcn0YpnG4IQwaM8OzlJBUS3ew98ioAE4Z9iEgoffs9e6JWm6fUW9dCLL3wrrwe4ybhUyrYaJrmUSqAKfMeOWgcYT3C/LOuZ/dbv2L6pM+kHReYSggppePkb5eGCL9SIc/uD+bjLKVCzG7ZWfwLdmPUVKAcO3kc+ysoZXUrFWzj0WyEtBCGK6nQ0d0BIlV5YCoVkpN1M6mQpPdbr6WfcEuZeqmsxPKHRMKAUO4BshCVNX5F5aDiiOKiaTrTJ19a7mEoXHiVCiqpoCguwweOBtRvrKKyKORKdxswC1gFDMf84V8BjAYWAe8APwUixRliP8Xu4+4KvGOdGu0nzEmmP6mgO50PDPY2WUmF4R/KuPqeVCr07gTKXf4QTyQ89/mTCgCjB48HYMHZ17H6yv9OWXW2cXd/SMgEUhpoQnfUBe5Jua6FCur+ENLNY3VaSoVidX5wY5tSnmxtcbZJQ1R14OEuf8iE7k8qWEoFf1JBCM3TuUDEk/nTsF5TNPPNXMn0s+9OKqSWP5TvnBB4lQqJhN39ITj5lfoak1sSiQTr1q3jggsuYMiQIYTDYUaMGMGUKVO47rrr2LJli+eR69evRwjB+vXre/5CgH379iGEYPHixUU5XiZeeOEFVqxYwfTp0znllFOIRCKMGTOGv/mbv+G5554r+fP3EVQcoejXuOd61WzCrCgNQoiqSyioOKLy44hCyh8+BzwnpVwOyQmxlPIg8FMhxO+BF4CvAf9SpHH2Q9yeCubNtqM17HlyOGfMPEyjL6lgS44TRoK9TWaXrexKBXPC1dttptxKhe7u5O3Ori5P9webTL4QbhxPBSNOzKqlt0sfwCvLDgUpFfTs8ald7mD7NZSi/CGkhxlYO5hj3Uk5frUbNdpkUxBoQvckFTq7OqE2oPwBgXB5KmgupUJ5erlnMmr0dqmQ0qiM8gcfCcOwjGUznaeukhPrNScSCS6//HK2b9/O4MGDueyyyxg7dizNzc28+eabPPTQQ7z22mvMnTs33UH7FF/+8pfZvXs355xzDldccQX19fW88MIL/PSnP+WRRx7hZz/7GQsWLCj3MMuNiiMU/ZqpY6fz/vH9nHXqX3nKOxUKRf6oOKJvxBGFJBUmAutcf0vAidillG8JIbYCi1HBQFrcmk7/vKGtOcLQASM92zSn80Gcd4+9AcCpQ053WjI6x5XSCdAK6f5QDBJGzLnd3ZVMKrR1tNPe3YJAoGsh4tZ+uRgoQtLvIGEkUvwUwF/+oKd6KmRIwCSfwy5/MBMytnKh2DTUDSMRP+D8LWVqy8lqJJvXgV+p0BkzEzMp5Q+a7it/SJ4nvf19MAeQ/i5PUgEwpKwIo0YQSNfzG4Y5prRJhZQEiPn3xo0b2b59O1OnTmXnzp00NDR49mpvb2f37t1FG3W5ufrqq9mwYQOTJk3ybH/wwQe55ppruP7667nsssuIRKp6EV7FEYp+zWenLeaz0xaXexgKRb9AxREmlR5HFLI0GsPteAYtmPJFN/uB3J3Kqhx/jJ6IaQFKBXPCebjlXTpj7TTUDWVQXWPKseKuCX2hRo09xW75CNDVlbx9os1UKURrBnrk57mqAez3IGHEiVl+Cu6ERIpRo8hfqWAnIjodo8bSfGEbo8NIdCc/eClFVXsq2KQrfbEJaSGMeHLy2tVtngcp5Q8Ib/mDq/tDbyt3zPGkx/19gcpRKghfRbudo8msVHC959btp59+GoDFixenBAIA0WiUWbOSrvUzZ85kyZIlACxZssSReQoh2LdvHwAHDhxg5cqVTJ8+nVGjRhGJRBg9ejSLFi3i1Vdf9Rx/xYoVTJgwAYCf/OQnnuP5ZZGPP/44l156KcOGDaOmpoaJEyfy9a9/nePHj5MrS5cuTQkEwAwSJk+ezNGjR3n55ZdzPl4/RcURCoVCocgJFUeYVHocUcgy7LuYTs02rwN+y+GzgOZCB1UVWBMe01PBe1e8W0tRKtgT5P1H/wLAuCHmyebfL57odibPhbaU7Cne8ofkhOmklVSorxlEa9dJZ3uu9e32hN+QuSgVCix/sJQJXXFbqVCa2vuG6FASrsmx2VKyessfxjZO5N1jb3ramQbhVyp0xboRpCYjNE1HyOR56DZqLGU7yfTkbtRoSMNl1Fg554R0fGAyeCp4Xoo59qFDTQ+R119/PafnWbx4MYMHD2bz5s3MmzePadOmOfcNHjwYgCeffJLVq1cza9YsFi5cSH19PXv27OGRRx5hy5Yt/Pa3v2Xq1KmAGVwcP36cNWvWMHXqVObPn+8cz33slStXsnz5coYMGcLll1/OiBEjeOmll/je977Htm3beOaZZxg0aFBOryEd4bB5HoZCpVFA9SFUHKFQKBSKnFBxRJJKjiMKGdFvgYtcf28CVgkh/hP4Oaab80XAQz0eXVUgU5IKplLBu2hjT5CPtJiSeTupMKBmEN//6y3c+rMF1mQ7Rp31mA7LUb+35d5utYQnqdBuGhNGI4McFQXkrlTQXSUgTucHPVipEGTUmJtSwS5/sJUKpfnSNkaHk4gppYLN1+es5fm3n2L6pMwO5v6kQnesmxogGhno2U9DQFpPhTKUPwTwyKx0yY3D1r/1mAu4LWn26w2iXLrJ/K7ZSYX0rU8FHqWClTi94ooruOuuu7jnnntoaWlhwYIFnHPOOZx22mmBR7FNkDZv3sz8+fMDTZFmz57NoUOHGDjQ+7m/+OKLTJ8+ndtvv53HHnsMMIOB8ePHs2bNGqZNm8aKFStSjrdjxw6WEOF4PgAAIABJREFUL1/O+eefz7Zt25ygA0yzpyVLlrB8+XJ+8IMfpHnt2dm9ezd//vOfGTNmDB/96EcLPk4/QcURCoVC0UO++9F3yj2EnPj6n3rmK6LiCJNKjyMKWQZ7CPiLEGK89ffdwB+AJcAW4BbgTeD2Ioyv/2Kv+iFSyh+MmEZ97WDPNv8q9tjGic7tofUjGVQ3BMBZwQccvwX7vnIQ607Wtbe0mUmOaKQezTVZzz2p4PJUiAclFTTPvn5PhVA+Ro2Op0Jpyh8aosNIxFzZJFlZq9K9zeDoMGZ9cEFWfw1dCyF9SQWAqC9xZr6Xwd0f8m2xWgwqyXCxJ0gpMvo8CHfJifXzctZZZ7FhwwZGjhzJhg0bWLhwIePHj2fo0KEsWLCAX/7yl3mPY8SIESmBAMDUqVOZPXs2O3bsIBaLBTwymLVr1wKwbt06TyAAZnAybdo0HnzwwbzHaXPs2DGuvfZaAL7//e+j69WbQLRQcYRCoVAockLFEX0jjsh7GVZK+RvgN66/24UQ04F5wCRgH/BLKWVuPeKqHZGqVCARSUki+E38BtR45TP2KnzcSCYVjrUdAaAx6vVnKDV//fGl/PfvfwhAt8tToa2jDerMsbtVBLmaIXo9FYLKH7xJBb9yIZfyAseoMV5apcLguqFepYIhqrr8IVdSlQpmiUOKUkFoCMPVJ9xt1FghSoW/3tnpKRWyaRww3PnujmwYV6ZyDdPbYc97e4h1Jr9HAi1DgsSrVHB7Wlx11VUsWLCAHTt2sGvXLp5//nl27drFpk2b2LRpE1/4whec9k+5snXrVu655x6effZZmpqaiMe972VTUxOnnHJKTsd65plnCIfDPPzwwzz88MMp93d3d3PkyBGOHj3qyDBzpa2tjblz57Jnzx6+8Y1vcNVVV+X1+P6IiiMUCoWi5/RUAdCXUHFE5ccRRZkxSSnjwKPFOFa14CmjFt6a6kR36sfir2P2S+XDVu1/LGFm1eJGnJMdzQgEDdH8Tt6ecumZ1zBh6AdZ/diNxGJJpUJbpzlRH1Az0ON3oOeoVHC6P6TxVPC0lNTDnkRMLqUP5lgsT4VY6VpKgplYcSsVVPeH3NA1b0vJWNw831NaSgotrVFjWbo/BKAJDUOIFE8FO6EA5e/+4PVISKoPAvcWeN9z377hcJhLLrmESy65BDBbRD366KN88Ytf5P7772fBggWeOsVMrF27lptuuonGxkYuvvhiTj31VKLRKEIINm3axIsvvkhXV1duLxM4evQo8XicO++8M+N+ra2teQUDbW1tXHbZZezatYtly5Zx11135fzYakPFEQqFQqHIhIojKjuOqDyXh2pDgOabN3R3pu7m9wfwT0DtLgVxa7J9ov0oEklD3ZCSrbZnwu5eEetOzko6OjvQMVeV3ePPdeJuKxGkNOiKm29S2CWX9ygVhLf8wV0mkQlbNdFZ4vKHAZGBPk+F1ESRIhW/UiEeN5Uw0bDPqFFoCLenQjz5+VeKUsF0DtaQvpaS/n3KhfncvueXuY9HZNlX13WuuuoqXn75ZVatWsWvf/3rnIKBeDzO8uXLGTVqFM8991zKKsIzzzyT8xhtGhoaMAyD5ubi+QK2tLRw2WWX8dRTT/GNb3yjogMBhUKhUCj6GiqOqCyyzjaFEF8o9OBSyvsLfWz/RwTeBOjqNIjFYo7DJ5DSySDVhNBWKphJhWPtptnb4Ki/S1fvYE/w3UqF9s5OBmKu0nvaP+bYYUEIga6FSBhxZ9IfSeupoHueI1elguOpUOLyh2iNP6mgyh9yQRe+pELCSirUBCgVPJ4KlVf+IISWVYlQXqVCEFnOUU8iIbfz2a5pdCs27FrBRCI14dLU1MTx48e54oorUgKB1tZWnnvuuZTHZDoewHnnncfWrVt55ZVX+MhHPpLTuDNx4sQJ5syZw+9+9zu++c1vsmrVqh4fsy+j4giFQqFQlAoVR1QGucyY1pMigs2K3eFcBQNZkaClvr1Hjh1j9IikF4J/wpnaLtGcXNtKhePtpkmjrRjobezxmkoFc6LR1dXNQEyjRq9SIfeJuy50EsTptNplpit/MI0aCyl/sLs/lLalZF14gKelJEZ1GzXmil+pELPq3wbVes1IhRCeCa7mTiqUyaPAjyZ8/gT2VdNF+c+JfJQKXhNHW6mwceNGhg0bxoUXXpjSOeLgwYOsW7cOgE996lPOdlsa+Pbbb6c8y4gRI4hGo/zxj3+ktbWV+nrz84zFYtx00000NTWlPKaxsREhRODxAG6++Wa2bt3K9ddfzyOPPMLo0aM997e1tfHyyy9z3nnnZXj9JseOHeOSSy7h2Wef5c477+Rb3/pW1sdUAetRcYRCoVAoCkDFEX0jjshlNrek5KOoRpye78Ed7A81NXmSCv5OBrrwdzawlApWO8ekSWN5lAr2hD4ecyUVus0JoF+pkKungrlvCBJdzqQ/nVFjyGfUmLNSwSp/SCoVSlP+QEL3TNCkFP2mQ0Ap8XsqGAnJ4OiwFJ8ETegeo0ZvUqFylAoeHxAtTDwR8+1TGeeErgkShsw4LRTgSzqYt3fv3s2aNWsYNWoUM2bMYMKECQDs3buXrVu30tHRwbx587jyyiudR55//vlEo1HuvvtumpubGTlyJABLly6loaGBr371q6xevZozzzyTefPm0d3dzY4dO2hubmbWrFns2LHDM7b6+no+8YlP8NRTT3H11Vdz+umno+s6c+fOZcqUKVx44YWsXr2aO+64g8mTJ3PppZcyYcIEWltb2b9/Pzt37mTGjBls374963t1xRVX8OyzzzJx4kQMwwhsPTV//nxPb+sqQMURCoVCoSgIFUesSNmnEuOIrEkFKeVPemMg1UYyNhcgjJT7D/qyZNmUCnbtf9wpfyhvUsGe0Mddc6RuO6kQGehJkuSjBrBfd6dlpOhuQehRKvTQqDGpVChN+UNbh+kJoekGRkJD5ruGV6WE9DDScCVjDMGoQanux6ZSwdX9oSLLH7yJpJAeSUkqlB0rSaDpZlJBZvNUcN9v3b7llluYPHkyTzzxBC+99BKPP/44nZ2dDB06lJkzZ7Jo0SIWLVrkeS8aGxt59NFHufPOO/nxj39MW5upTLrmmmtoaGjg29/+NsOHD+e+++7j3nvvpaGhgYsvvphVq1axfPnywKE98MAD3HzzzWzfvp2NGzcipWTs2LFMmTIFgNtuu43p06ezdu1adu3axebNm2loaGDMmDHccMMNLFq0KKe3bO/evQC8+eabaQ2bxo8fX3HBQClRcYRCoVAoCkXFEalUYhyhjBrLjkSI1BllalIhi6eC5vNUaDM9FRoHlC+pICV0tia3xWJ2/ftAr4ogD6VCyJn02+UPaYwatRCax6gxP08F+30sVfeHFuviFooYdHdonomyIj0RvcaTgJEGjAxIKmh4/Qq0CkwqmGNMnrNhLYzbo7U2Ei3Z+Zcv9g91xuSXz9jRNsocN24cN954IzfeeGNezzlnzhzmzJkTeF8oFGLZsmUsW7Ys5b7169ezfv36lO2TJk3K2st6xowZzJgxI69x+tm3b1+PHq9QKBQKhSKJiiP6BiqpUC7s4FyAzCmpkM1TwZw02S0ly65U0DRamyJ0tGqEQiHi8TixmPk6B0QGeXwU9HyUCsJWKqSWP3ik5CLkSbzk2sXBP4nLpzQjH062mtkWvcaADvKvNq5SwnoNuIQ9hhSMaghIKmi+lpLx5OdYW0HlD+6sult10xAdwpABI8sxrEA0y/dFGulP1HTlDwqFQqFQKBSK/k3eSQUhxFs57iqllBPzPX61ISBQqXDIl1RI8VTItfyhbEaNOsferQPgC/Pm8V+PPkoibr7OaE29JymSz2qsvzwhffeHkGfC5n//0uEvdwiXyKjRUSqEzRmylAIpZcXU0Fcq4VCNR4IvDRjVcGrKfgLNU/6gxSMMGTCCls7jDKod3CtjzYZmtZS08Z6jFXYeWMPJXKbj61WRR/tJRXWh4giFQqFQKPoXhSgVNILXVRsAO1o/AFRYcXBlYQfnUgCupIK9qv/+kSOe/f3KBH85RNhl1CilLL9Ro9CdlolTzjgDIQTSMF93NFzvVRHk0/1BS69USD9BSy0XSX98nwFmiZQKJyylQihiYH6dBAnDIKTnNs5qJbX8QTB0wKiU/TRNc+T3YHoq3PrpNXTGO8rW/UHXdBJGshWRX6mQa+KrV5GWAb/l+2JkyCr4lQpCJRUU6VFxRJF5fd8+Ths9mppIicyFFQqFQqHIQN79yqSU46WUEwL+GwKcDmwH3gQ+VOzB9i/sgFt6kgrjRpkTJL9SwV/+kDr5tcsfuuiItdEV7yASqiVapgmUEEnzQV3TqK0xx9dYOxpN071KhTzUAPbr7rCTCqE05Q++Y/rfv/TH95U/lEipcPzkSfP4EQN7aOl63yqShPWIT6kgPOeAjalUcHkqJGoYPXgCE4f3vHdwoYwdMomRrlINIbyeCroWoiZcC1C2721arKRCpvIHv6dCxaktFBWDiiOKy0+3buWqr32N+x5+uNxDUSgUCkWVUtQm6FLKN4ArgDFAsHWmwoNmLu85f48YOhRN0zje0kIsHne2+1faU5QKIbv8IZY0aYwOL5ucXtd0Z/Kn6zoDB5qTpeGRD5jbRGHlD5qwWz7aSoV05Q++90vLTQHgH0s+JpL5cLylxXy+SNKoM66SClmJhGo865vSSP0ugN39wW3UWFP20hJNaJ7zXhMamlupIHRGDTqVMY0TqA1HyzHEFKTzr6VUyOip4E3kuMtPFIpcUXFE/qy2erSvU0mFiqE7FuOd999HqtZOCoWiSih61Cel7AR+BfxNsY/dr7DLHySelpI14TADB5hGcnbdPQR0f/B7KmhJT4VymzSCNV7rNQohqLO88U4eruP9I0c8k/x8zBBTyx/Sd3+wkRKMRG4TyhSjRqVUqCjCegTp6cAq0EhNKmhC95Q/6ImalH3KgiuJIBBId3NZoaFpOpFQbTlGFozzHTb/NaTEMFJb4Jr7+Ls/KKWCojBUHJE7HZ3JnjEfnqjsJyqF///ee/nsV77CZ7/8ZTq7uso9HIVCoSg5pVpKigOphc4KB2cqIZKrgACRcJhBQUmFXD0VErGkn0KZ2kmCOcFwlAqagBozCfA/T/yJuV/5iq8zQz6eCl6jxnTdH9xJhbd2D+HH//Yqx6yJfCb8YymZp4KjVDCc8helVMhOWPcaNQIYAe04g5QKlYB7pJrQMFwZknIrKTIikoaymZIKHs9ZlVRQ9AwVR+TAH195xbldV1tBCckqZ+977wHw7qFDvHf4cJlHo+hvGIahFqIUFUfRkwpCiGHAAuCdYh+7XyFdN3xGjUFKBX/5Q7ruD7FEV0UoFQBnUiGEwAglJ/SxeBxRYPlDJqNGT1JBJJMDrUfMCeXvXnghh+P3TvcHu/xBjxjOKrBKKmQnrNek2LsFqUv9SgWRKM3nmD+ulXyhIdNM0CsF6bpO2edpIl1SAeWpoCgOKo7Inb3vvuvcbu/oKONIFG7cZQ+qBEJRbN55/3327N+f9vdYoSgHhbSU/FaGY40D5mE6ON/Rg3FVDQKQrtVKTdMCkwpCy2zUaE+u40aMti5zAl9f7tZ5VlJBCgOtthOoc+7q7nIlUvTc3art1x2zWmdGQu7yh8zmj26PinSklD+U3FMhmVRQWefsREKpSgUZoFTQUpQKleGI7plyC+FRKlQ82ZIKvvc80NtfoUDFEcXk7fffd263uUohFOXFk1RQEz9FkemKxUgYBvF4HF11fFFUCIX0MFuR5f6TwCop5T8XcOyqwd1SMiGTk0l3UuGk1XYQcjBqdMofup2JdziPyXopiRldRKLeCXN7a3oTyky4FQjgN2rM3J6vkKRCPu0u88EpfwgbCM08GVRSITv+lpIQnFQQQkPI5HklKiSp4PZU0IRGNFJPZ6y9YowZU3B5Kji+ChkDZHdSQSkVFGlZkeV+FUfkyDvupEJ7exlHonDjvk5masWrUPQEpYJRVBKFzJhmpdluAMeA16SU2WdvCsAMwQ1X73pNCAbWm+3kCjNqjBHXYta2Mku+rUlFLNFJpM47YW5t7XZu51NL7n/dg6NDk0/nWhoNaiEZzyGpoPs9FUpQ/iCl9Bg1osofciYc8hs1gpFI/VEVPum9iFVK+UMSITQG1Q0hrEeoqdCkgvudzUVR4zVnVEkFRVpUHFEk3jl40LndpsofKgZDlT8oSol1TqmElaKSyDupIKXcWYqBVC+ShCt20oQI7v6Qs1FjtzMRLsWEOB/sa113ogM9YjB2suDdPebGttZudzVEzmgu5cDA2kYaoyOcv7NJyXOZtKcqFYq/wt3W0UE8kaCmJoymJw3wVFIhO6angj1ZlYAIVqAYvqRSPETnCYNYh8HAUaVRn+SC8HkqCCGI1gws23iy4gpYNLP/bdryBzNwdnd/KOnIFH0YFUcUh1gsxvtHjljGyJLOri4SiQS6nrv6T1Ea3CUPmdVdCkX+OO2e1bmlqCBUI/FyYV8RhE+pkMZTwb3yrgk9ZXXfLgOIJ7qJJypLqdAd70AIOHv6QK7/3OcAaG2NFXTIkCu5Mn7oGZ73QWZJKuRS/uAvm8inM0Wu2KUPg+rNz1m1lMwdd/mDpps3umOp55KwLm1SiyNFAmHo/HD6e9xz0ft0niznj7Cr/KEPrORL13VKWEmFtAFyShKh8l+fQtGXOXD4MIZhcMrw4QyoM7P0Sq1QGbhXkNVqsqJUqHNLUUkUnFQQQswQQvynEOI5IcSb1r/3CSFmFHOA/RX3ZSCdp4Kn+4NrMu0vAYCkf0Is0U3c6La2lVupYE4qfvniegBqw1GGDxkCWEqFAtBcngqnDTvDc19WpUJBngrFfw/t1pYDB5iSd9X9IXfCoWRSoabefL9efv311B2tzg9SGBgh77l2bH9hCa1i4M4FioASnUpCSunOfTqeJemVCv4NJRuaop+g4oie0Wz9lgxrbCRqJRVUB4jKQHV/UJQS+5xS55aikigoqhVC/BDYCSwBpgETrH+/COwUQqwt2gj7K7YBGqlKhUGBSoWQ63b6pEJ3opt4wpw8l6pzQc5Yr/FEp9ni0ptUKGxiN7C2wbk9fugHvU+X5eKak1FjiqdCCcofLDOt+qidVFBGjbkS1iNOsqphlOl0/pvf/z51R9u8UUikL6nQ3V6+H2H3OZqPl0gloFsdaIx052kGpUIikWDdunVccMEFDBkyhHA4zIgRI5gyZQrXXXcdW7Zs8Txy/fr1CCFYv359Uca+b98+hBAsXry4KMfLxMsvv8x1113HWWedxfDhw6mpqWHcuHFcdNFF/PznP1dBoIWKI3qOLX3WNc35PVEdICoDQ5U/KHqBajq3VBxR+XFEIS0llwI3Am8B3wZ+AxwERmGaL/0jcKMQ4i9Syh8Vb6j9EwODhCupoOdQ/hCoVLBaK8YSXU67xXJ3f3Ba/1n/eJIKbTEaCzjmwnO+wuDocDq6WznrtE957jNk5kl5pXR/6OjqAqCutpZOSBo15jC+akcTmlNWM2hUJwf/Us/vX3qJjs5O6mprnf1sFUCQUqG7tTw/wkZCgqFTG46mGIJWIvaPlp0a0KykQr5KhUQiweWXX8727dsZPHgwl112GWPHjqW5uZk333yThx56iNdee425c+eW4FX0Pn/84x/ZtGkT5513Hp/85CdpaGjg4MGD/PKXv2ThwoVcc801PPDAA+UeZllRcURxsKXPmqYppUKFocofFL1BtZxbKo7oG3FEIZHtl4EDwLlSyuOu7fuB9UKILcDLwP8BVDCQBvsyoAnhmQwLV/cHT0tJVyIhWKmQTCokDHNyWqp2iDnjakcHZlJhxFCzW0N7W2FKhQE1A5k7bUnw0wVcXM+f+Gle5CUgt/KCFE+FEqg9OqyVpLoaM6ngtJSsooxzj7CSCuHaBHX1go7WOIePHuW0MWOcXUQivVKh43h53ufDr5nn/MgzTkULVb5Kwfk+ieTEBTKcp2lim40bN7J9+3amTp3Kzp07aWho8Nzf3t7O7t27izLmSuDzn/984ErGyZMnOe+889iwYQNLly7l4x//eO8PrnJQcUQRcBJ/QjDASqq2qraSFYF7BVmZ6SmKTbWVP6g4wqTS44hCyh8+ADzqCwQcpJTNwKPWflkRQowTQjwihDghhDgphPi5EOLUfAclhLhDCCGFELvyfWxZkMl/EjmVP2RWKkSspAL7RqP9fzdS/9bZJZHu54MzJ7EmJbWhKEMaGtA0jY72REprwJ4SpFS4/q+WO7djAYZ+flKUCiV4DzstpYK9sqQ8FfJDupJV4Yj55p10fVfMnazvi5ApSoWOY+UN8OLdfSMI8I9S17MpFaTvb/OzefrppwFYvHhxSiAAEI1GmTUr2WFw5syZLFliJg6XLFmCEML5b9++fQAcOHCAlStXMn36dEaNGkUkEmH06NEsWrSIV1991XP8FStWMGHCBAB+8pOfeI7nl0U+/vjjXHrppQwbNoyamhomTpzI17/+dY4fD/y5C6TWpZhxM2jQID796U8DsGfPnpyP108pahwB1RlL2BNXTQilVKgwlFJB0RtUS/mDiiNMKj2OKGQp+yiQzWWvG2jKdiAhRBT4NdAF/C1mHLsK2CGEmCKlbMv0eNdxPgB8Ezicy/6VgMvCx9tSUtMYZCkVjlsmTOb23DwVGu9fikiEGfv4UkJfK+9qqNs5HqA2EiWk6wxtaODIsWPEujQidcW7IAYZNbovuPZkPhO67k8qlK78YUCtnVSwWkqq8oeckJZfghCSSI0ApCcB59lXGClKhfYyJxX6jIGhLxC2k5npPBXSxc1DLXXS60GGmgEsXryYwYMHs3nzZubNm8e0adOc+wYPHgzAk08+yerVq5k1axYLFy6kvr6ePXv28Mgjj7BlyxZ++9vfMnXqVMAMLo4fP86aNWuYOnUq8+fPd47nPvbKlStZvnw5Q4YM4fLLL2fEiBG89NJLfO9732Pbtm0888wzDBo0KKfXEER7ezu//vWvATjzzDMLPk4/oWhxBFRvLGFPVoXbU0ElFSoCtzqhWlaTFb1PtZxbKo4wqfQ4opAZ0yZgrhDiH6SUKUu/QogIMNfaLxvXY65EnCGlfMN6/EvAHuDvgO/nOKZ/Bx4EzqCw19T7uLPYbqWCEAxpaCASDnO8pYW2jg4G1NX5lAqpLzEcMpMKImFOihM1rYT0IaUafU4Yhtm33l3+ADB8yBAzqdCpFzWpENRSMu76Ye/IJangS9iUsvwhWheFuKulZJVknHuK89XRIFKjA4anVAhIqmACPBU6jleGImSa60epknnoX74LQEg3vxvZzlOJRCCc5MkVV1zBXXfdxT333ENLSwsLFizgnHPO4bTTTgt8vC3527x5M/Pnzw+UAM6ePZtDhw4xcOBAz/YXX3yR6dOnc/vtt/PYY48BZjAwfvx41qxZw7Rp01ixYkXK8Xbs2MHy5cs5//zz2bZtmxN0gGn2tGTJEpYvX84PfvCDjK/dzRtvvMGGDRtIJBIcOnSIrVu3cuDAAe644w6mTJmS83H6KcWMI6BKYwl7QuFWKrSp8oeKwKNUUL/tiiJjn12XfOlLZR1HrrywKddLeTAqjugbcUQh5Q//AJwAnhBCfFJYFubCZDrwBHDM2i8bc4Hf2UEAgJRyL/BbYF4ugxFCLALOBu7I61WUHXu11bvCrmkamqYxZuRIAN47dAjwTnaDlAoRvQaM5MfZNeztkkyI8yGpVDBv1LmSCgDxzuK21AtSKrg7KuSiVBBCeN63UpQ/pCoVzO2q+0NuuMsfamrM74JfqZBMKkiMsNcNvdzlD30V3ZVUyLg6Irz3nXXWWWzYsIGRI0eyYcMGFi5cyPjx4xk6dCgLFizgl7/8Zd5jGTFiREogADB16lRmz57Njh07cip3slm71mw0sG7dOk8gAGZwMm3aNB588MG8xvjGG29w5513smrVKtatW0dTUxPf/e53+c53vpPXcfopxYwjoEpjCaf8QdMYYCcVlFKhIvB0f6iS1WRFL1Jl55SKI/pGHFFIJv4FIAKcAjwFxIUQTcAw1/HeB170tUyTUsqJvmN9BNgc8ByvAJ/LNhAhRCPwA+AbUsrmvtSizTFZQXq8AGwztLGjRrH33Xd59+BBTh8/3tPTPuh1hvQINc1jnb+NcBchvdxJBa9SoSZkJhVss8ZYZ2pypCcEJRXcJQVd3dnUtiaapoNhXkj8yoViYCsVamtqoBVnEqY8FbJjGIaVopdmUqHW/HzSKRUkEiPiDbLLZdRoY4cCPc3cl5ruWIw9+/c756eu6ZaxrERKmXodkr4bMnn/VVddxYIFC9ixYwe7du3i+eefZ9euXWzatIlNmzbxhS98wWn/lCtbt27lnnvu4dlnn6WpqSmlfKipqYlTTjklp2M988wzhMNhHn74YR5++OGU+7u7uzly5AhHjx51ZJjZmDNnDlJKYrEYb7/9Ng8++CD/8A//wM6dO3n00UeJRMrreVNmihlHQJXGEobLqDFq1eC2q5aSFYE78VotEnVF77P13nudRcj+joojKj+OKCSpoAEx4G3f9gO+v/2fatCnPARzNcJPM+TUcfC7wOvA+hz2NQchxA3ADQCnnpq3h1PxEdJr1Gh9GcZaF4l3Dx40d3N9SYK+MJrQGNA8IblPIlR+pYKR2lISYHij+dEWO6kQVP6QyNNTAeCjoz/Oc28/yaDaxrwuTrnw2ltv8Ze9ewGcFoh2vkglFbJjqzmcRFWNeQlLVSpYQZxmpCgV2pvL/D73lfjS31JS6GiahpFIkDAMJwGagpDma/S9znA4zCWXXMIll1wCmJ/lo48+yhe/+EXuv/9+FixY4KlTzMTatWu56aabaGxs5OKLL+bUU08lGo0ihGDTpk28+OKLdOX4fQc4evQo8XicO++8M+N+ra2tOQcDNuFwmIkTJ/Ktb32LSCTCHXfcwdq1a7n11lvzOk4/o5glzO4JAAAgAElEQVRxBPRyLFEpcYR0GTWGw+bvvfodqQxU+YOiVEgpnZ/XaktYqTiisuOIvJMKUsrxRR5D0Dci60xOCPFXwBeAs2Ue3yop5X8A/wFw7rnnlu/bKJP/xo2kvOaU4cMBU6kA8K5V/uBGpHl7wvH65D6JcNmVCjYiTflDrMs7KfnDyy/zx1de4Yarrko/YclAoFIhz/IHgK9e9M/sbXqVaKQ++8550N7RweeXLXP+rqsxO3bY748qf8iO45FhJ6pqzXM8RangLJYbJCpMqdBX8F8cNaGhaxrxRCJLkCxd/0+PrutcddVVvPzyy6xatYpf//rXOQUD8Xic5cuXM2rUKJ577rmUVYRnnnkm6zH8NDQ0YBgGzc3NeT82Hz7zmc9wxx138Jvf/KbigoHepARxBPRiLFEpcYQ9cdU0jXDIDOdiyvC3IpCq/EHRC1T7uaXiiMqKI4pb1J4/xzBXGPw0Erzq4OZe4D+Bd4UQg4UQgzGTJLr1d01xh1pcPN0fjDiTpjfx2UvO47OzZwOpSoVcCBl1zu3KUCpYY7HCOvs1D7WUCn5Phev/6Z+456c/Zecf/lDQ82X1VMix/EEIwQeGf5hRDcVdgfI/v6NUUC0lc8ZRKmhWoqrOPMczeir4kgrdrZJErLp/iHPB/w4JoSV9FQLO1WQix9UvNwfsmkb3fC7T8zQ1NXH8+HE++clPpgQCra2tPPfccymPyXQ8gPPOO49jx47xyiuv5DboAnnvvfcACIUq3gOwr1GVsYT7O2MnFVQXocrAPdmTSqmgKBHq3DJRcURl0OOkghBikNUfupAeGa9g1kL6+TDw5yyP/RDwZcyAwf5vOnCedfsrBYyn13C3W4wnYgwYEuOquTMdh/VTR48GYJ918uRCyEj2NRVGqGClgpSSFT/8If+2cWNBj7eP4SwS2VL1cJ31rzmuxuhIVs67P+WxR/Po5epm6IBRKdvyNWrsTeykAkqpkDP+8oe6WrOe7GS6pAISI5JaY9zdVsYf4r6Sz/CtgGhCcxREmTtAeJMKGzdu5Fe/+lWguuHgwYOsW7cOgE996lPOdlsa+PbbfnW8aa4UjUb54x//SKtLoRKLxbjppptoakrtQtjYaJYyBR0P4Oabbwbg+uuv58ABvwIf2tra+N3vfhf4WD+7du0KNHc6cuQIt99+OwCXXXZZTseqFnoYR0CVxhJuo0ZHqZCHsZiidHjKH6p8NVlRXGQVnlsqjjCp9DiioDSHEEIHvg5cB0xwbd8L3Ad8T0qZS7p8C/A9IcQHpJRvWccYj/mDfnuWx84K2HY3oANLgTcC7q84hDCVCgAhV6vIcaecQiQc5sDhw7S0tTFwwABqD09g6AufQX7mycBj6QmXUiEeLlipcKipiU3/+78AfOXzny/IVyD5xTcN9eafdT0fGPZhIJldGzZgDKcNOyPlsYVm3y6f+gU6Y22cP/HTzjaPp0KOSoVS4b8Y1loGK7anQq5GktVMMqlgKRWi5nuYzlNBilRPBYCuFknd4JTNChdOqGJ9/TWho1tJhYzlD7YyyTrA7t27WbNmDaNGjWLGjBlMmGD+ZOzdu5etW7fS0dHBvHnzuPLKK51DnH/++USjUe6++26am5sZaSm3li5dSkNDA1/96ldZvXo1Z555JvPmzaO7u5sdO3bQ3NzMrFmz2LFjh2dI9fX1fOITn+Cpp57i6quv5vTTT0fXdebOncuUKVO48MILWb16NXfccQeTJ0/m0ksvZcKECbS2trJ//3527tzJjBkz2L59e9b37e///u85ePAg06dP59RTT0XXdfbt28e2bdvo6Ohg/vz5fPGLX8x6nP5OEeMIqNJYwil/EML53VTlD5WBewW52ureFb1HtZxbKo7oG3FE3rM3q3/0duACzLjzHUyX5lOA8cB3gDlCiEuklNlmSeuAvwc2CyH+0Tret61j3ut6ztOAN4GVUsqVAFLK3wSM7TgQCrqv4rCuA4aEuJVU0HV3K0OdSaedxp/feIM9+/Zx9kc+wqQHzX7xXcYwWJx6SN1IqjQ1I1ywyaB78t3W0UF9NJr3MezJvBDwkdEfZ8HZ1yXHaakx4okEHZ2d/O7FF/nkWWc594f1wgwca8NRrjn/Fs+2QjwVSoU/o2wrFcK15hgPl7gOqz/g91SwHc9b0nR/QDNSyh8AulrLp1Q40tJETSzkeItULO7zVZhlQXompYKvhax5CMktt9zC5MmTeeKJJ3jppZd4/PHH6ezsZOjQocycOZNFixaxaNEiz/WqsbGRRx99lDvvvJMf//jHtFlJo2uuuYaGhga+/e1vM3z4cO677z7uvfdeGhoauPjii1m1ahXLly8PfDkPPPAAN998M9u3b2fjxo1IKRk7dqzT6/m2225j+vTprF27ll27drF582YaGhoYM2YMN9xwA4sWLcrpbbvlllvYtGkTzz//PI8//jjd3d0MGzaM2bNnc+2113LVVVcV3QC2r1HkOAKqNJawJxRCiH7nqdAdi/HTrVu54GMf47QxY8o9nLxRRo2K3qBalAoqjugbcUQhS8LLgJnA/wVukVLuse8QQkwE/gX4rLXf6kwHklK2CSFmY7ZyegBzqvC/wNeklO5ZgsBcNSi3B0TRsIMBDUhYRo1+ZcEZ48fz5zfe4C9793L2R5LKTv1YsGuonvAmFQrFverbfOJEj5IKiGTXBxu7xCMej/PP993HL554gs/NmePcX8yLpLu+tLOrK7gVXi/hr32zkwqROjOpcPDIkV4fU1/DX/4wIGolFdKUP0ghSYQDkgotvRvk2d93gwQn2k9COwxrLH53kWLi/hZqQkcIgZalpjD5yGT507hx47jxxhu58cYb83r+OXPmMMd1XXATCoVYtmwZy1zGpzbr169n/fr1KdsnTZqUtZf1jBkzmDFjRl7j9HPttddy7bXX9ugYVUDR4gio3lhC9mOjxgc2b+aHGzbw/fXrK779bhCGMmpUlAj32VQtCSsVR/QNCkkqLAL+BMyXvh5+Uso3hRBXYPagvprcgoG3gYVZ9tlHDi7OUsqZ2fapFJzmD0I63R90zftxnGHJe17ft8/34OC3wq1UEInCe5e6J2hzv/IVvnrttXxxYcaPKAXDUSpIPjz6XM99IZdS4RdPPAHAwy45UDHLABI+CWIsHicSLo+BpX911+7+ELaSCu+rpEJW/EaNA6Lme9jS1uZJGCVjuGBPha7W8gd5hmE4qp2KxBUIa1aNTqbyB+m7LTw3FAoPRY0jrMdVXSyR/J3tf0qFlLinj+GWpVeLRF3RS6hzS1GhFJKtnwQ85g8EbKztjwETezKwqkFCPJHqqQDw4UmTAHj2T3/yXTiCYyItnkwkaInCXUFb29s9f6994IG8j2FP/mrCtcz+4BWe++zaz3giEbhS21HEMgX/impHZ+oEs7fwX/z9SgWVVMiO83k65p811NXWkjAM2jqSigTbUwFhYFSAUiHInLGvdPvQNZ1BdWaphmZ9XwNX3tz+jFYJhIp3FGlQcUQRcCsVQv2s+0MhbaUrCVX+oOgNVFJBUUkUctXuBuqz7DMAUBbEmXDVHztGjb5uDR+ZNInGhgbeOXiQN/bvdz02OKngVieIROGr8f6kQiHYq/KRcA2a5l2NDbuUCnZNvJtieh9UUlIhxajRVirUGiAkTceOKbPGLMRdChgw1T0DBwwAvAobw1X+4PZUsPN23WX0VLCp9ODfDlYioRoa7KRCLkaNTvkDgckUhQIVRxQFt1Fjf1MqVLSKKwekKn9QlIhqLH9Q9A0KSSq8BFwphBgedKcQYhhwJfBiTwbW33EMliBZ/iC86gJd15n5sY8B8Ovdu10PDj6m5kkqFK5U8NenF4J9odMDVhvcKypBSoViTqz9q8FtFZRUsINAoUGkzvxQDx092uvj6kv4PRV0LcwgK6lw0m3W6DZqdHV/GDDUDFR726hRBtzqisV479ChwCReR2dnUZJ7PSHoMpNTUsH1lVahtCINKo4oAp7yB6usr98kFfqRUsHvp6RQ9AjpjShU0kpRKRRy1f5XYDjweyHEl4QQHxBC1AkhJgghlgC7rfv/tZgD7a9IIZNGjXqqumDGOecA8OJrrznbRDqlQjyZSOhJUqG1CEkFezIfFBjY29o6OgInTkVVKvh+zNs7UqXwvYX/wu9OqDglEIcP9+qY+hr+pEJID1YqJEXVXk+FAcOtpEJLL/8IBzxd07FjHG9pYX9AP+O33n2X/QcOVISawX21yaX8wXyQUiooMqLiiCIQZNRYCdeMYtCvyh/UpE9RQlTSSlEp5D3zlFL+TAgxDbP3838E7CKAf5ZS/qyng+vPOL8xrpaS/u4PAB8YNw6A/QcOJBt5p/FUEHHX4xOFSweLsULqKBUCJIy2UuFES0vgY4uqVPAFWG1lTCoEtuGzCNXEgTBNx4/33oD6II7yxDJqDGlhBtWbKmq3UsEOtqXwKhWijWagWq6Wku7Q0n1uek0mk3slDKMgN91i4IzDlfzKrfwB7FeqYmlFECqOKA79uvyhjycVVPmDolT4zyZDSvp2sZCiv1BQvCql/AchxBbgS8BZQANwAnge+C8p5TPFG2L/Rro8FfzdHwDGjhyJrmkcOHyYBDF0wmk9FfApFQptn+gvfwgVUNtoTzqCVhuyHa+URo1tZZSUZ8omayHzZ6Kcng99gYQj9zX/DmlhBlpJhUClgpCeHFxkgPlH+Ywagwoh8HQlcZ+zlWDC5L6CiJy6P8igjQqFBxVH9Bx3+YP9u9pfkgr9SamgVpIVRcUXF1RCnKBQQA96NUspfyelvF5Kea6UcrL17/UqEMgN9yJgPBHcUhIgHA4zeuRIpJS0RJqsB2dPKgAkCrS48isVEoaR90UrU/mDrVSw8Sc+ukpY/lAspcKPHnyQz375y3n5T7iDjP9YuRKAGy5YAcCUUz8OqKRCNpLlD6lGjSfdRo32vFx4z9tw1FYq9O6PsPNsab667pIftw9IOU2YApUKOZQ/REK16HrIu1GhCEDFET0jqPyhvyQV+rJRo5TSEzMppYKimAQpFRSKSiCvpIIQ4lQhxEIhxBVCiHGlGlR1YMuDpWPU6G8paXPa6NEAtIStevt0SYWYL6nQXdiFxp4ozz7vPGeM+QYqGcsffNs+MWWK5+/OEho1FstTYd3DD/POwYP83x07cn6M/Z6cMWECH7de8/RJn2Hd3+5k8ikfMsenkgoZ8XsqGDLhGDV6Ejx2Sb/wTsrrylz+kA53UsGtVKiEYMHjqZCx/MEqSdFDaJpdylHiwSn6HCqOKB4eo8b+llTow0oF//VRrSQrSolSwigqhZyv2kKI7wFvAT8DHgb2CiG+W6qB9Xfs3xhDmhMITegprRdtxo8ZA8DJ8KHMx4x7H5+I9SypcP3nPkd9NArkb55oT4wCyx98SoXTJ0zw/F3KlpLF9lSI53ExtyeI/mApEqqlzmqtWU4jyb6AkySyZrqxRHfSqNHtqWDYq+zm5/PJW2r4wKdq+dBnzPO5u2zlD8G4fUQqWqmQs6eC9Rjf637/8GH2HzigguwqRcURxcWjVOhn3R/6cvmDPxms2v4pSkklLD4oFJBjUkEIsQhYhhkpvgb8xbq9TAjxN6UbXv/H7vwQVPpgM3rECADaQqaJn5BpPraYd3uhSgW7/KE+GqUmYrapzNc8MZGhpaR/W21NjefvYho1ljqp4D9+JpxVpYD3JGolFYrpJ9EfcZQKllFjLNHtGDV6PBUcpYJ54+yroyz8t+HUDTbf+87eTirY40qTXeiKJWuVEhWSVLBJ1/0hJTHgykHYeQj/LsdbWmhtb8/re6PoH6g4ovgEGTX2l+4PfVmp4L82qkmfopj4zy+VpFdUCrletb8ExIGLpJQfkVJ+GPg0Zjf4L5VqcP0Z+yKQrfQBYEBdnbmvZk0401w/DCupkIiYSYGeeioMHDCg4KRCpvIHt6kUQCQUYtnixc7fxVQqlKr8wSafSZ9jXhlgnukoFVT5Q0b8Ro3d8a6kp4JHqWDdELYk3zyPo0N1hA5tTQbxrl78Ic7yVN3d3U7gGa+Q8oegZxZCpPVV8PyVpkLL6crR8+Ep+h4qjigy/bn8oU8rFfzlDxWQHFb0Xyph8UGhgNyTClOATVJKp4BcSvkEsBmYVoqB9XfseNxJKuip7SRtov6kQrqIPWZO1A07qVCAUkFK6SQVBkSj1FpJhXx9DuIZyh/A66sQDof5wvz5bPrRjwBz4h+LFZgRSTMOe9WjrEoFl1TVj/0Zd6jyh4z4PRUioZpApULSqNH8sbXbtephQcOYEEg49nZxzrFcyPZNlOCc85VS/mBfpPxGqjmVQNgPcTeCkEmdhlpZqUpUHFFk3OUPoX6uVGg6downnn66T0yglFJB0Zuo31NFpZBrUqERU6ro5zVgcPGGU33EnfKHDEkFaxU7qVRITSpIKUl0m9sTEXNiWkhSobOrC8MwqK2pIRwK9VypkC6p4PJViFi37QTGu4cOceVNN9GdJrGQz0Te3nfQwIFA8ZUK/u4SmcioVLBKQFT5Q2bsCfekkR9l6rjpXPzhzzlKhedffZX1v/iFuaO9Ii4MdC3kmRgPGW+eb8f2lSP4Tv+dtL9jlVL+kG6kaZMK9gOECCx/8LRYU0FQNaLiiCLjLn+wE/XxRKJPTLyz4VY5/ujBB7loyRJu/ed/5slnny3jqHIjxVNBXe8URUQlrRSVSq5JBQ0ImuHFSLtsrshEUqlgTiQylT/YSYWYSF/+YMTN7YYWQ4asyUkBRo0tLj8FgBprsptvm8dM5Q+QqlRwPxfA/gMHePZPf0p53ANbtvCJq67i1TffzGkc9qTf7hBQCZ4KgUoFVf6QE/b7PXzQKSy75PvUReqdzxbg7p/8BPCWP4St0gebRiup0NybSYUMP/ruxF17R4e3NWY5g4V0SoVMbSXTkEgkWLduHYsXLeKT555L/YABjBgxgilTpnDdddexZcsWz/7r169HCMH69et79hos9u3bhxCCxa4yq95CSsnFF1+MEAIhRL9ZSS4AFUcUGXf5gxAiqVboB54l7uT7uocfdm4/9+c/l2M4eaHKHxS9SbUk6e044oILLmDIkCGEw2EVR1QY6WeyqVTHWdtL2BcBwzBPjExGjXU5KBXs+vBQRNCpm8csxFOhzS59sOT4NT0sf8hFqWDXgvoNG5/8wx/45Flnebb9y3/9FwBr7r+fe+68M+s4HKWCJZEv9qQ9H6WCzKH8IUhJcbK1lfpotE/XmBYL+/12J6WGDE5d5LSTClJIp/TB2X+8+fex/b1X/pCJSDhMV3c3iUSCg0ePeu6rZKVCpkDZrVRIJBJcfvnlbN++nUGDBvFXM2fywdNP5+SJE7z55ps89NBDvPbaa8ydO7fIr6Ay+Nd//Vd27NhBbW0tnSppqOKIIiJ9ib9wKEQ8HicWjxMJp1c/9gXSJS1f2bOnl0eSP2olWdGb9AdlUjbcccTgwYO57LLLGDt2LM3NzSqOqCDySSqsEEKsCLpDCBGUFpdSynyOX5XEHKPGHDwVhDWxD+j+EO80f7RqohGGjpzEkfcLUyq4/RQgWZJQaPlDLp4KdvBT4wuCdv7hD3zjuusCjxGUmW0/lmDbHc1M+3w9k2Za75kvqVBOpUKigPKHt955hyuWLuWCj32MNd/8Zg9G2j+w32/dd/48+sMfsnDpUhqsMhfn9BBGil+JXf7QvLf3Mr1ON4qA+xzZsmE4iqAhDQ00nzhREcForp4K7g6UTt5TSjZu3Mj27duZMmUK965fz8CBA5kwdmxSndPezu7du0v6GsrFX/7yF2677TZuvfVWfvrTn7J///5yD6ncqDiiiPh/Z8OhEB1Y/ixW3NBX8Sfsv3TllfznI4/w6ptvkkgk0qogK4HUa2P5r+OK/oP/bKqG88uOI6ZOncrOnTtpaGjw3K/iiMogn6VPked/alk1A075Q8KcrGdUKlgTzqRRYyrx7qRSYYAlBy/EU8GedA+0yx8KSCp0dXfz2+efBzIoFQKSCv7kwftHjvDHV14JfHyQQuDpfz/J3l2d/OLvm5xtdlLBrrsvZ/eHTEqFOtuo0ZeB3LpzJ2AmWBTpFTCjhw8HkuepkbBnuKlKhQHDzHOv40Q5svup30lbtdPR0YEhJZFw2FEKlVWpkCZQyaX8wclDSHj66acBuObaaxnoJH2Sj41Go8yaNcv5e+bMmSxZsgSAJUuWOHI/IQT79u0D4MCBA6xcuZLp06czatQoIpEIo0ePZtGiRbz66quesaxYsYIJEyYA8JOf/MRzPL8s8vHHH+fSSy9l2LBh1NTUMHHiRL7+9a9z/PjxDO9UMPF4nGuvvZYJEyZwZw6qqipBxRFFJEipAP2jA4RfCTV6xAhGDRtGe2cnf3PLLax94IGKnUyleCpUwUqyohepQiWMHUcsXrw4JaEAKo6oFHJaAZAyYGlc0UN8LSXz6f4QUP6QsMsfagT2oQpJKrRa9dwDfEmFfMofVq9bxy9+9SsgvaeCe3s4lHoaNg4axLGTJ/n5r37Fx848M+X+oB/p7tbUbf7yh2IrFeKFGDVm8lTwja9Sg6Zik0gkePfQIU4bPTrrfpB6Xtm+HN2xmNllwFYGCCPFU0GPWIamBXw/CibDU4Wt19JtTQTqampyKjHoLfxXmyClgpQyoKek+TkMHToUgD0u2XKm83rx4sUMHjyYzZs3M2/ePKZNSzYGGGyVujz55JOsXr2aWbNmsXDhQurr69mzZw+PPPIIW7Zs4be//S1Tp04FzODi+PHjrFmzhqlTpzJ//nzneO5jr1y5kuXLlzNkyBAuv/xyRowYwUsvvcT3vvc9tm3bxjPPPMOgQYNyecsAWLVqFc8//zzPPPOMxy+mWlFxRPFxEtW+pEJ/8FTwLxzURiJcNnMm//nII7y+bx+v79vHlDPOYObHP16mEaZHlT8oepNqSFrZccTrr7+e0/4qjigPSlZYJuzfmIS0yx/SfxR2CUJc60YSfPGwPRX0iEhOmgooGW+1JrX2SmltAUaNdkIBMpQ/uD0VAmo/v3rttdz5ox/x1LPPBkodg5QKQgtItljBVYPtqdDRgZQyRdJdKPlczN2mWn7c5Q/u8VVLUuGf1q5l286dfOdrX+OymTPT7hfkqWD/rWsaCcMwA2qXUaO/s0qoHEmFAD7yfyY7txuD7u+9oQQy1Prv4ENHPNvtCYx7NfTNd95BJiQDGZVcY7a44ooruOuuu7hv3TreP3SICy++mItnz+YjH/pQ4PPaJkibN29m/vz5gaZIs2fP5tChQ47ywebFF19k+vTp3H777Tz22GOAGQyMHz+eNWvWMG3aNFasWJFyvB07drB8+XLOP/98tm3b5gQdYJo9LVmyhOXLl/ODH/wg+M3y8Yc//IHvfOc73H777Zx77rk5PUahyBd7sipc5Q8A23buZPJpp3HuRz/qLEr0Nfy/fTWRCEuvuYYFF13E3fffzxNPP82/b9xYkUkFZdSoKCXub4Y7jqho/qdn8ZYdR9xzzz20tLSwYMECzjnnHE477bTA/VUcUR7UykGZiSXs7g/plQq6rjuT+7iIIYI8FbrdSoXCJ01t/u4PBZQ/uKXp+ZQ/APzjV77CVZ/5DPMvuojRI0bQ2t7OnoD6oaDJvBYgirAnobU1NdRGIsQTiZQSg56QV1LBCpKC3hP9/7H35XFSVPf251avsy8Mw7DMsKgooCiKCoIaBZRnDIpbXOMajVHjz/2Z5wvEmMT4jHGJxl3cNajBBQOKAgFBEQVZlEVgWGeYfenp6a3q/v6oulW3qqu7q3u6pxumzuczMFNdXfty77nnnK/DAY/bDUqpThXSFxhoQG4EA8DchQvjzhdLqQAAbuVaDYXDXPUHCS6DCogJF8TkYkLSA3LgkURGCoypmFra2iCKIiRKEQyFEBLDfFVJADJ5Om7cOLz22muorKzER++/j9tuvhlHjh6Nfv36YebMmfjwww+T3qbKysqohgAAHH300Tj99NOxePFi2VduEY8//jgA4LnnntM1BAC5cXLMMcfg9ddft7Ss7u5uXHHFFRg9ejR+97vfWd4GGzaShRRDqfDEa6/hN3/8I869+WY0trRkbft6AuPAAWuLDKmqwp9uuw15Xi8279iB1o6OpJe9u64Odz70EDbv2JGWbTXCLilpI6Pog9cTa0cMGDAAr732Gs4//3wMGzbMbkfkGGylQhbAM/CiYn+Il6kAyPL4QDCIiBBEviNaOqO3PzClQuqkgtH+kAyp4HI6IYZYVoT16g8AcMGZZ6q/Hzt6NPY1NGDN99/jiBEjdN83VSqYkAoRrhNaXFSEQHMz2n2+tI3epFJSMpZKIt/rRTAUQnd3t6pc6HuvjviIV1XE43KhOxBAMBSCJMnXFCU0ylqkKXkyd3S7mkTk99O20SyoceNTsh1g5LBh2KJ4/ABgxJAhcDgc2LpzJ9xOJw4bNixj2xkPjS0taGhpQYXhei0qKEC+1wt/IACf368SkDKobHzgMhUA4KKLLsKUadPw7rx5WPPNN6jdtg1ffvkl5s2bh3nz5uEXv/iFWv7JKubPn4+nn34aq1evRlNTU1SJpaamJgwcONDSslauXAmXy4W5c+diLle+jiEUCqGxsRHNzc2qDDMW7r77bmzfvh2rVq0yVWHZsJEuUEP4r9NgJWxobsZbH3+MWy6/vNe3racwju7z1aHcLhdGVFdj49at2LF7N8rGJKfr+svzz2P5N99g6apV+Pqdd9KyvTyM226TCjYyhY1PbUVxQQGqLb7rDmRcdNFFmDlzJhYvXozly5djzZo1WL58ud2OyCHYpEIWoJEKFGHFo+CIk6kAyB3OlvZ2RIQgiElJb6ZUcLigZSqkUv1BsT8UGqo/JJOp4HK51PljZSrEUirwGDd6ND5asgTfbNyIS84+W/eZuVIhtv3B4XCgtKgIDc3NaO/sxEAl2M8IX5MIf5OIyiPcpp8bkYr9IRbR4lQKTHEAACAASURBVDWrANHHGiOJXgVWlArhcBhUIRXMghoZ6RbJkP1h9+oA3rqqEZNvKUHpKYnnN14PDofDUhhib8F4Tggh8Ho88AcCiChKBeMXmCCD/8jpdGLSySdj0sknY8iAASjMz8e7776La665Bq+88gpmzpyp8ynGw+OPP45bb70VZWVlmDZtGmpqapCfnw9CCObNm4fvvvsuKctWc3MzIpFIwiAkn88XtzGwdOlSPPnkk5g9e7bOZ2nDRiYQZX/g3qX3XHcd/vL883j7449RmJ+PE8eOxehDD83KdqaCqEwFg594+JAh2Lh1K7bv2YNjkyQVOnw+AJkLtDQ+E237g410wtgqyIV2Qm/B5XLhjDPOwBlnnAFAbhPa7YjcgU0qZAH8AyAiMftDAqWCWlYyqEm7OTApt9PDZSqkIO9mQY09sT/wygMrJSVjsXATjj4ahBD8Z/VqNLe1oR8nJ7Jsf1A6oU5BUMMaWYPCDM+esQ9iCLju44Eoq0l8eyQV1GhoABrBzjEf1tiXXhZAbBUHQ6xMBUArSRoMh0El+VhSIsFpCGoUnAAIQEW5SoQZGdUTtNTKDdWmrSGNVIhzGgVBACFEJRv5fcvF6g+ARoSIoqgPbGQ7anJI+eVRSuFwOHDRRRdh/fr1eOCBB/D5559bagxEIhHMmjULVVVV+Pbbb6NGEVauXJlwGUaUlJRAkiS09FAqvmbNGlBKMWvWLMyaNct0Hva8W7NmzQHXYLCRWzAGNfLPjlOOPx4r1q7FstWr8dgrrwCQVVCnT5yIX154ofpuz1WYZSrwOKS6GoBcdjlZDB4wAOs2b1bXk66MJQY7qNFGRmEkrfrw9WW3I3KrHWGTClmA+gAg0JQKCUgFxtKHhZBpB4XlJzjcBE6vEqTWnXpJSRbU2FNSwUqmgln1B0B+8Z96/PFYsmoV3po/Hzdddpn6mVlnK5H9gYU1tschFRgRs29t0BKpkIpSQYhjfwAAP5f50FcyFRg69okQw1RVExgRT6mgVoAIcfcIkeAyKBUIIXC6CSJBCjFEIeSlt0EpReSVh/xm91+Me5JrFAiCIHe6leDJlvZ2lJuUUMo0tHyE6OPDjr8oSeYNZoP9AdA3rPnfzcpMqss3sRc1NTWhra0N5513XlRDwOfz4dtvv429vTHsShMmTMD8+fOxceNGjEly1JPHkUceiWuvvdb0s7fffhs+nw/XXHMNCCEJ5Y82bCSCsaIQ/14tLynB3+69F//69FOsWrcOi7/6Ctv37MH2uXMRDodxm0lwWS4hVqYCw4ghQwBAZx2zCl71UN/UFFO5mCqighr7cKfPRuYgEAKJUoiiiMaWFoTCYZSXlCBPaUv2JdjtiNyATSpkAyaZCvGCGgGtwxkRgqb9Es3+QFBQIV/4XU3Jl5XyGTMVlJdvIAkJEG9niGl/4IgEdwxSAQCunDkTS1atwj8XLMAvOPbRTLYYr/oDy1QAgPbOzgR7APhbRHxwRxP6j3Rh4g36Dp0uEyOFTIVY6g1G5HQqahHjuvoCOupE7PwygBEnm2deJMpUAJhSgRF31NRa5HADkaBMIrnSHI6u3NI6UiHRWTR+TgjBgIoK7GtowP6mJpQWFcW8bjKGeEoF7uWql/ZS2f7ABTW++eabqKiowDHHHRe17Pr6ejz33HMAgFNO0bwi7EW5a9euqHVXVlYiPz8f33zzDXw+HwoVsjAcDuPWW29FU1NT1HfKyspACDFdHgDcdtttmD9/Pn75y1/inXfewSBDadOuri6sX78eEyZMiHlMAGDq1KmYOnWq6WeLFi2Cz+fDM888E+V9t2EjFajqN+WG4zvirGNx4fTpuHD6dDS3tWHuggV4+q23sHbTpt7f2CRhfPd5DaTCoUrq++oNG/CvTz/FzGnTLC+bD2veunNn+kkFo1Khjw0O2Mgs2NUlCAIkUUQgFEJAGR0XRRE1CUpzH4hg7YgpU6ZEtYXsdkTuIPe2qA+AT0i3Uv0BMNgfTPqxUpgpFYCiAXKDv3N/8qQCUyoUGTIVMqlUiJWpAADjRo3C2MMPx7rNmzF3wQJ1ercJyWFmf2CdUCenVIhnf2DYviyAXV8FsXlhdxSpwDcQkvFkqlLVGMeE2Tua29rUaXwjUZKkHnUsf9i2DYFgEONGj055GZkGoQSB9tgNMEvVH0IhCMoiqIlSAWC5ChSRDIQ1SqK8zLCf2w+Lq+FVAWXFxWjr6IA/EEBnVxdKTFKKM4m4SgVmfzAoFaJ2k1J89dVXeOyxx1A5YACOGTcOg4cMQUFeHurr6jB//nx0d3fjnHPOwQUXXKB+beLEicjPz8ejjz6KlpYWDBgwAABwyy23oKSkBL/5zW/w4IMP4qijjsI555yDUCiExYsXo6WlBaeddhoWL16s24zCwkKceOKJWLZsGS677DKMHDkSDocDM2bMwNixYzFlyhQ8+OCDuPfee3HYYYfhrLPOwvDhw+Hz+bBz504sXboUkydPxgLuGZRuBDolhP0SPIUC3AV2YSYbiWEMavRxhLQR/UpLMeP00/H0W29h3/79vbJ9PYGRsDcqFQYPGICrzzsPL733Hh5/7TWcO3WqZRsDTyp8tnIlTklzuTbb/mCjN2Cmeo0kMdB1IIG1I6qqqjB58mQMHz4cALBjxw67HZFDsEmFLEDXKWWkgiNx9QdAViqYjV5HlD6/w0VUUsG3P/kQImP1B7Zes058LDiTzFRIxLZdcOaZWLd5M5atXq1O43MH1HWZBTVyHvySJJQKrTtjH7tUSQUxgf2hX1kZAD2pwJezCUciPfLBXnLHHQCAlW+/rVaXyEWY2waUz5TjYWaZ4ZUKXvUU0ahMBYCrAJGBsEZJuSTM9oMmYBeM10ZxYSH8gQA6fL5eJxXigVcqSAalAgGnVABwxx134LDDDsP8jz/GDz/8gC+WLUMoFEK/fv3wk5/8BJdeeikuvfRSPaFSVoZ3330Xv//97/HSSy+hS+ksXX755SgpKcEf/vAH9O/fH88//zyeeeYZlJSUYNq0aXjggQdiehBfffVV3HbbbViwYAHefPNNUEoxZMgQjB07FgBwzz33YNKkSXj88cexfPlyvP/++ygpKcHgwYNx/fXX49JLL033YdQh5JPgb5EgOAncBRldlY2DBMacni6T9yKPAf36welwoLG1FYFgMCr8MJcQlalgsq2/ueIKzF+6FA3Nzfhx507LlXJ4UuH9zz7D8CFDcPmMGaZZPakgyv5gKxVspBMm+VyFeXnwdXcftKQCa0csWrQI69atw8KFCxEIBOx2RI7BJhWyAP5VKSo9kESZCkzKGBZiBDWqSgWCwsrUlQqq/UFRRjBygZENVuBK1v6QoFzKITU1AGSZIkN3IKAGLAWCQdz36KPYu6UTg/JOQ1X3SHU+nf0hgVKBr5bRWa8dO2OYH68eCCVRw1ZKoFSoMFEq8FU3QuFwWsK1ugOBrJIKYpji3/e1oHq8B0dfWGj4lCDUFbsBxqwhRQXRvS5VqRAOw8OUCoJkqgLKJKkgskyFOPtRXFAAQgiKCvX7bxxpKy4sxP6mJnR0daG+sRGlxcW91hGgBmk1D2cMpYLMKEDHKlRXV+Omm27CBT//OZqUa7uyvBz9y8vjrn/69OmYPn266WdOpxO33347br/99qjP5syZgzlz5kRNP/TQQxPWsp48eTImT54cd55UUZuC99uGjXhQ3ylMqZDgPe1wOFBVUYE9+/djX0MDRihhh7mIqEwFk3YCIQQnHHUUPlqyBKvWr7dMKrDcotMnTMDnX36JR19+GfOXLMHFP/0pzps2rcfBjVH2B1upYCONUO0P3HVaXloKX3d3UpbcAwmsHXHTTTcl9T27HdG7sDWW2YDJC8ZypgIJmFqdVVJByVQgAtDVLCVdVpI1Slj1B0YuJGqs8HCnKaiRobqqKmobRElSO/QfLVmCRStX4ofmDVhf/m/dd8UkghojQfNjZQy85EchjDVt4yFRUKOZ/SHEkQrhcBirN2zAX198EW0dHZbXm2vY800QP8z345Pft8Lfon8BEgDhOEqFuKQCF9SohaFSOE0yFZwKN5NJpYJuP6j+F0EQMKSqSr0mGYyNWZfTqVqfmtvbsa+hIe3bmwriZipA4xRiBTX2tawQK1Av2fTmhto4iBFlf7Dwnh6sSID35rgFwtgRj0XGH3/UUQCAFWvWWF42U17eePHF+Pv//i+qKiqwdedO/OGpp/C3l19OcYs1GJUKNqlgIxNwOBxwOZ1wOZ0oVEohSpTaGR42sgabVMgCtBFALqU0AanARqhFEklY/UENa6SAr9E6a0kpVeWTrCPDyIVEskoeVkpK8oilZmAoLixEWXFx1PTuQABPvfEGHvjHP9RpEaK3afDBfonsD7FIBeOIc8pKhQRBjWb2B16p8PlXX+G6++7Dqx98gAXLllleL79uIPsdutZdGhGz9m0jwUPi2h8YqVBcaFQ4aKRCMBwG2O4SCa649ockNtwizKo/JDrigyordf/z4Pe1OxjsvZGIOEoFQRBAIN8L/P1g3E/+UjOWlLRhw0bPYLQ/sPvKGGrIYxDzFT/wAO586CHsrqvL8FamBqsdo5OPOw5OhwMr167F/uZmS99h9oc8rxeTjzsO/3rySdx3441wOhx4Zd68HpP2tv3BRibBqwgPranBoTU1clUrpS19sFogbOQ+bFIhCzBjrRPZH1jmgkREUCm6Uc46R6z/pIY11lt/uASCQUiSBK/HoxIDPbY/xOhAJ8vcVxtKvgDA+i1b8Ow//6mbJhK5w8rC8vigxkT2h5hKBUMnN2NBjUrZwObWVnUaT1p8+sUX6u87k2wI8h0/o6y0t9G6U9un3V8bszoIQv7U7A8eLqiR7SKFuVKBlayMZFCpAAqtCkWC1ZQVF2PUiBEqicejpKhIp2hIhuDrCeJtMiFEJQP19wDVLBCGhcQNdMwiJElCe2dn9htiuXRQbBwQoAb7A0OhyfORYYhCKgDAohUr8Ov778fC5ctxz8MP46c33KAj6bMJq6RCeWkpTj3+eEiShDOvvRYvz5uXkHhlpAJTgOZ5PLjgzDMx6pBDAOitlqmgt4MaW9rb8evf/x6ff/llRtdjI7dAILcnWZsyUclDGzYyDZtUyAI0abY2LVFQI08qAFzHRQFvfwCAQhbW2GD94dJpsD4AnP2hu9vy6CI/shnrZZrsSGWNCanw6vvvAwDGHn44Xn7wQXl9CqnAjoeZ/aEtllIhEEupYCBwUlQqsO/F8msypUITp1Tgq25s371b/X1vfb3l9QL6l0y2XzgtO7SLN9Cpbzimw/4gl5RUJibKVMhE9YcIPyKv/sb9G3v03wwOxSpRqWQQ9Jb1JV6mAj+9pb1dPx36oEZ1eTmkluHR0NKCPfv3586IrW1/sGERRvXb3dddBwC49/rrY35n6sSJOG7MGFx7wQWoqqjA7ro63PPww1i4fDn27t+PdxYuRH1jY+Y3PgGSkXBf+rOfqc+jv82Zg3v++te4hD+vVOAxUslk2LxjR5Jbq4ex3ZPp593sJ57AijVrcLvSDrLRN8GyjrJOkNvos7CDGrMAsxdMdyh2KSgAcBCZJNBIBaoSCIDe/gAARSmENXYZQhoBuaPmdrkQCoctBwVaGclP1vNlRiqsWr8egNyAYioEVakQBuDVOtBOhwNlihKgtb09qjyjKIoxR62NI+cpKxWU78VSb5QWFcEhCOjw+RAKh+F2uXSkQiOnYNiTLKnAKxWyTSrUascsaCAVQFMPauSVCqpCIEamQkarP/CHN7rGYsrLLSsuRnNbGzr9fvj8flNVQ8xtkiRERDFhKKoZkunjqtUtTJQKuWp/YD50P5cInw3YmQo2koVkIP4uPftsnDtlimpfNMPQwYPxwh//CAC4+Kyz8NoHH2Drzp0YUFGBlWvWoL6pCavWr8eM00/P/A7EQTKj+8eNGYPPX34ZX69fj/uffBKLVqzASePG4bxp06LmFUVRtRUa2zOMVNjSwzC0qEyFDKsD/8NVxrJx8EO9MwwvC1upYCPbsJUKWYTbqb3QAuH4pIKmVGDyfv3nKqnAlApVjFSw3un1GcpJMiRrgeAfaOEYI/nJdirMvOYMhw4dqnaWVKWCMlrM9inP64XH7UZJUREioqgb7Z23aBEmXXop1m3ZZLp848g530GPtX9mMPpfjRAEAeUK8dGiqBViKSH2NjQk1VDJFaWCGKZo38uRCh3R10EspUJEFNHV3Q1CiI74YlCDGsNhtYNGIaHEG11lIJNBjaKJUkG93Inuv6TgdDpRoahZ9jc1JXUP1e7di607d+pIqkRItPSY1RsIp1Swgxpt2MgYqIn6LR6hYET/8nLcdtVVeGrWLMy66SZcPmMGAI2wzyaS7YiXFRfjjEmTcMfVVwMAPlu50nQ+Rijkeb1R6rCRw4cD6Dmp0Jv2h/1NTervNYMGZWw9NnIIrC1pmMwyFbq6u7GvoQH1TU1Zt7va6FuwSYUsgL0s3U4vZs+Yg2NrTsHPjr467necSuaCBE2pwEOzP8h/s0wFXzJKBcWrXWholBRyFggr4KVXoRgj+cl2KgbGIBXKiovhcjrVDqVOqQCgTpFxDuzfHwDQX+mUNbS0qMuY/fe/IxAM4rH3nwYAuAv1j+p0KRUSVX8AgP79+snbrTQUAkF95sCgykqUlZQgGAphS20tfti2zdKx5M9JNl8yXU0iqAjkl8uPnqBP0lQFAEicoEafolIozM83tQrwpAILajxu+E9wwoipUfNmNKiR44EojXGtpzgcXV5SApfTiUAoFLOKiRlY2jlTelhCAvtDWXGxSoKpIBS6ps4BoFTIGZjY4mLPah8/G9ElJXuKE5Va6yu+/TYpwjwTSHV0/9QTToAgCPhq3Tq8PG8eXpk3D19zJIlqfTApzXvY0KFwCAK21taqbYdUEGV/yOA7d86//qWt1x6hPmhh5ZnPlAptnZ1o7ehAc1tbzAwxGzYy0Y6wSYUsgPdVD+8/CrdO+z+UFfSP+x32sGD2BzEqU0GZj9kfUghqZEoEY8hTskoFycJIfrLMPSMFjGAjt1FKhTBFdyCA1o4OuJxOtVxjpdJpb+RIBYaugLx/VUe64S3Wbg1jJ1dKMVOB7XMs+wOg2TyYv9u4/OqBA9WgrYtvvx2X3HEHrrr33oQPh2wqFbYt7caiP7VCilD1WHpLBLjyCagUfXxj2R/iWR8ATcoaDIVUJc/A0mrz6g+ZDGoUOZJEEuR7wJCtkCoEQVAVAi1c9oZVJPMSsTKnsRysJsuMXkquBjXmGqx0D8PhcMKqOTYOfhjtDz3FoUOH4rChQ9HS3o4X33sPK9euVX/Wb9nSq2RWqqRCeUkJxo0ahUgkgr/NmYNH5szBjbNnq89LvyGkkUdhfj6mTZoEUZLw1vz5KW+7kUTIlFJhV10d3lm4UP27t0J8bfQuHA6Hri0dy/7A3sf81FAS6kQbfQuZaEfYpEIWQGNIl+LBSfT2B2pUKiidI6dKKsjzpxLUaJSWq2GNVu0PGchUYGSAEYwscHFKBQoKMUxRr4z2V1VUqCPbrEPG5xMw+IPyC9lTIOCGRQNx9IVy5zVeUGMqSoV4DUBGKuxSSAWjXH3IgAFqnXGG7zZtQmuC8D4xC0qF5m1hfPbnVrx3UxPWvOHD9uUBhBXVhyuPwFukqBV0uQokpv0hEamgsz9IzGpifqwzG9TI/eHPQ4fJuelJJ6CksBAOQUB3MKiOullFUp0CCx0Wp9MYy0Nj2h9spUJ8GC0y8dDR0YEipUSujT6MBBWFkgUhBJf97GcAgH+8+SZunD1b/bni7rvx6YoVaVmPFfTkPfXbX/0KV82ciStmzMDwIUMQEUWs/O47ALFDGhmYBeTN+fOx8ccfU3pWGUmETJAKlFL86emnEY5EMPWkkwDYpMLBiqKiIn07IkYforiwEAP69cOI6mp18CmZgS8bfQuZaEfYQY1ZgEoqJNEQYCUnJSK/aKOUCoagxkIlqNHXKEISKQSHPL2xpQX3PfYYqioqcM3552Mo58HrMqn+wP9t9YVlpTpCsi9qZww2rUIhCZwOBwgIKKGgkCCGKepaZfliFadyUEkFE6VCMCJLxJ0eAne+gPxypWRePPtDMkoFFtQYhxlUSYV9+9Dh80UROeUlJdGSc0STD0bw56S3koE//UMrdq/W7BtiiCLcLZ93V74AT1gOEg10aNtGQBDqToNSQVmESUajPD2TQY0c4Sc1FaO1sgkhtwRKC9LSuBQEAUUFBWjr7EQgFIrZOFa3gTv3yazfklLB5FomgGn5h1yt/pB7MGcVKKUIh8Po6OhAa2srampqenm7bOQa0m1/AICfnnoq1m3ejL0NDeq01vZ2bKmtxcJly3DGpElpW1c89OQZcUh1Nf7flVcCAAZUVODhF1/Ep198gWGDB6s2uljPzSMPOwxnTJqET774ApfdeScG9u+PB++4A0cfcYTl9RsHTdJtf3hn4UL83wsvIBgKobiwEL+9/np8/uWXCIXDCEciUQoyGwc2ysvLsWvXLgBAcXFxzHtDEARVvcvmCdqkgg0OmW5H2E+eLCA1pQKzPyhKBUVivW7zZrhdLohhmW1inSinhyCvTEB3qwR/i4TC/g50B4O44y9/wbrNmwEAHy5ejKkTJ+LOa69FZXm5Vv0hnUGNsZQKPWgwuJxOdbkVilIBAFyCCyEpBJFEIIWBfUqjiLdOqJkKzc3qtHyvV5f87vTIZ8ZVIP8fT6kgShJEUbQkIbIiVWVBSz9s346f3nBD1OfFhYUoUipd8DBmLxgRyYL9oXm7/mUW7JBUJY07j4BK8u/GChChLgpKadRxSkapILLGtjOWUkH+P9OkQrjTicNrarBpZR06OxtBC7sQFrrha21Faw88u51dXfB1daGrrS3m8WAQJQkNimqno7nZ8npb2tsRDAYR8vngNfEfA0AkEtERdG1iO1p8XjicBF0tIpweggK/fG/sb2pSG9utbjf8hlKU2UJjSwsiyvNEyGIDzN8sIhykyA854PLGuG4dDhQVFaGmpgaeGOfERt+BFfVbsnC5XPjdTTfpptU3NmL6L3+JL9aswacrVoAAGFFdjRHV1WlbrxHpUtRNOvZYPPzii1iyahWWrFqlTo9Hxt517bXYVVeHTdu3o66xEX97+WXM+fOfLa8z00GNz8+dqw4k3P+b36C8tBT5Xi98fj/83d0osVVMBxU8Hg9qamrQ0tKC2tpadPp8aO/sRIfXiw6TATJAvub2NzYChCDk86X1GWHjwEYm2xE2qZAFJKr/bgZBUEgFaJkKf3/9dTw/dy5Ki4pwg/AwAG0EFpBzFbpbJXTWR1BQIeCuhx7Cus2bUVVRgYnHHIN/LVqET774AjWDBuHmyy5TgxiNSoVk7Q88Sx9JU1AjD4/brZEKCkkAAA7iAhCCRCI6+8PABEqFgvx8PamgNOjd+QqpYFQqGDrl4UjEGqlgIajRmKlgRHFhIYZUVUVNTySDz0amAjEckkCHBHeBrM5x5RNVqRPs5DIIKAEV5QBFp+FZx0iFYhNSBeBKSobDkKAPLjXC6WL2B+v7YxW8/SHsp/B4PCBNFVg524ENZSvxXb+PcM355+M3V1yR8jrmLliAPz79NGZOnYpZN98cd97avXtx+f/8DwDgpHHj8NSsWZbWcdP99+OLb7/FE/fdh3HHHGM6j8/vxxX/+7/q3xP3X4Hrfn0Gyg5zYcGtjag50YOfvyCHrP7y0kvVZ8i4UaPwUhKN9Ezif265Bdt37wYArJ03L2vbMff6RtSuCOCCpyswfJz1BH8bfRc0zfaHWKjq3x+jDzkE32/bhrseeggA4PV48PGzz5oq59IBfnR/0rHHprycYYMH49Kzz8baTZuwfdcurfpDnMZ0//JyvPXII/D5/fjJFVdg7Q8/oK6xMWa2kxFRQY1pJhVY8O7vbroJPznhBAByO83n96PLJhUOSng8HgwcOBADBw7Ee59+ivuffDLh+///XX01GltbMf+ZZ6JsszZsZAJ2pkIWwF4vyUgWtUwFuUMY8Acx5733AMhJr/6wTAiwADoAKOivlJdpktDS3o7l33wDr8eDp3//e8y6+WbceMklAIBmJV8gkf3BKqmgq/6QJvsDAMy++Wa4XS783913q9P4DiarkCEqpELtnj0AzEkFvvoDG+EGgAgJqcSMO1++PeIpFQDruQoqqRCnAVhaXBy3QVBcWKh65XgkUir0dqZCuFtCV6O8nlE/la+fQIekEjSuPAEeJVOhuz2a5DASOYBGKhivTwYm+QyFwypZEFupkJr9wcp1y5eUZKGT7JBTpEeuPKCiAgCwn1PcxAKf/tyShDqAXTPxCDNj/gqFCCIACgeqI1j4Z0EyWSSZRq6M4EgJckBs2DAiE0qFWLjr2msx7aSTMGXCBAwZMACBYBDzlyzJ2PrYe+rq887D/911V8rLIYTg7uuuwxsPP4yLzjpLnW6l9GZhfj5OnzABQOwSlWYw2h9SDZ2MBXa2TzvxRHUaexb77VyFgx5W7/uhgwcDALYp1gkbNjINm1TIAlQGPhlSQdAHNe6o26PrvPvCcmeBJxXUIDyfpI7a1wwciGHKg4ZJF9s6O+VlJAhqtJqpwL9ApykBQvHmsYpzp07FF2++iYncqCn/UNWIlzAaW1ux5OuvQQjB+COPVOdho/y76+rUDiLfIe92dKjSY5eiVGA5ALG23WqugtVRpZPGjYv5WUlhoUqM8AjkWKZC+z55HaU1TgweJysIAu0Sl6lA4FEqbAQ6te2hRP7cSOQA2vVntOcw6DIVwonsD9ZJBSpRrH/Ph3Xv+vD4xL3YtCA+uabrSCv7S1VSgTUGevboHaAEl9ZzNcpjgS8j2ZxExQgrJBghBDf8/Ofad4gECNpxZ1YQSqmOVOitXI8DCVQ5JEaFjw0bsdBbSgUAGDd6NP7v7rvx1//+b9x+tVwC+5E5c3DChReqP5MvvRSff/llWtbH9m3yUsG6HAAAIABJREFUccdZIgCs4BfnnIOjjzgCh9TU4KennmrpO6MOOQSAeQ5TLGTa/sCen3wlqfwk22k2Dlyw6yuRQpblgKzesCHj22TDBmCTCllBSvYHaCUlmzw78NDcJ3Sf+8IyMcBXz3OrmQAS9nOVEBhKlRHxdiOpEEOpYLXGPRvh/N9f/1pNkjYiVckkG42+5OyzMbB/f5x6/PHqZw7ClAphvPTZa4hEIjj9xBN1doGy4mKUFRejq7tbzVXgSYWAs0PNVGBSfWOJw1SVCqIF+wMATJ88OeZnxYWFpg3IVDMVKKXYUlub9k5e+275mJQOcarlOQMdklrZwc1Vf/C3a4QI63QbwzGB+PXFAU1xEgyF1I59oqDGiIXqDz8u7saC37Vi4axWhHwUH94ZXx3Al5Rk+8HueUaaENpDpYJCKmzfvRszb74ZqzdswG//9jc8P3du1Lz8fdva3m5ZJcSu13glUAHgxksuwYXTpwNQlAqEQOFAVVLBGCSaS0qFXAEjnnqhf2jjIEEmghqt4OTx43H48OEqWch+fH4/nn/nnbSsw+r7MhlUlJXh5QcfxLuPP27ZUsHb6qwi00GN7NjwAdbJDv7YOHAhWlQqnHDUUQCAVevXZ3ybbNgA7EyFrCCJymEqVKUCRCwZ9AyCjfoOfme4A/2gz1Rg8vKQT8sXGMCRCkxmz5QK7GVUaBgVSNb+wB54E44+OiaTettVV8EfCODSs8+2tEwj7rnuOtx97bUGpYLcg9xa8gU2b/oCXo8H13OjqAzDhwxB6/ffY/uePajs10/1JwJAwNEJByMVFKWCv1nUBQcaGwyJVAIMVkeVJo4bh0GVlWrQJI9i5ZzdcvnlmL9kCQZWVuKLb7/V7YMZeCKB3/63//1vPPjss7h8xgzcec01lvbDCtr2KKRCtUNPKiiVHVz5RCVv/J1aB5Mq1U1CJmUl2T6a1RcHtJEafyAA0W01qDHxvvga9efblRf/ztUpFRTFBRuFZvYHQnvWc+QtMjv27MF1992n/n3tBRfo7gve/hARRXR2dcXMpeBhRanAwBq3EpFk+wNTKij7bWyQ5xKpkCtmA0ZGEUeubJGNXEdv2h94uJxOvPXII7r7OhQO46zrr8f3P/6IzTt24PDhw3u0jt5UYcQDT1ZbRaaVCmbWtHzb/tBnQC0SbkcfcQTcLhc2bd+OKVddZTqPx+3GzGnTcEh1NfqVliZV5cSGDSPsMZEsIJWXpaZUiCDo0AiFSmXEskuUa9jy9gc20s7bH6pMSAWmVGDZCiXFxbp1sw5IskqFeCOcFWVlePCWe3C8wqSmAmNDitkf6vO2AABuuuwy04bN8CFDAMidsXAkoutkiySsdnb7jXDBU0zQ9GMEmxdqL2ojqZAoJFFdtnJcEp13t8uFt//2Nyx/4w385c47MXXiRPWzYiXp/9oLLsB7f/+7ev6TyVTgVQmvf/ghAOC1Dz6wtA9W4WuU11E0wAlviUIq8PYHLlPB3641TCVFqWBmf2CNpVhSWHZs2js71RHyhEGNFuwP+eX681U4IL7kkK/+wMgR1qZkpAntoVIhXifCeJ8a/96mhBImgqpUsBBCykgFSoyZCorFyKhUsMtcRYEpFXrojLHRh5DNjjchBB63W/0pKihQy00uW726x8sXkyA1MwlvKkqFDAc1mpEKtlKh70CtJJbg3vB6PJiitB+b29pMf/Y1NODJ11/H7Q8+iCv/+7+xYs2ajG+/jYMXtlIhC0jlBcOUCt3ODnVaYX4+Tj3+eMxdsAB+yuwPnFKhUCuJuD8Sx/7g86Gruxt79u+H0+lEjaG6ACtZZ5lUYI2BOJ2RXasCePuaRoy/shCn3VUWc75kwOwP7R65csIRMUZKhnGkgpEQEElEzVTwFAmYfHMJPvtTGzbM68IR02XFhtH+YJVUSKYByI75mZMnY/vu3VikhEQZS/sxK0DC6g+GMpgMgysrY1aa6AkYKeAuIjqlAutku/IJigfK56t1N2d/ILHtD/4E9gdGknV2dUFUqiwKrlhKBeukgmiwSBT0i9/J5itKMOsMKwHL7B1CD0kFADjr1FPx8dKleGrWLPz9tdfw/bZtAOTSjbwSgVcqAMBX332HcaNGJVy+VfsDoDVuJYggRFMqiIogIaSQCm6XC6FwOGZVmFxBqEtCd7uEkkG994pk14hgZyrYsIhs2R9i4bBhwwDAVGWXLGiOkApuhVSwqkgE9CovSZLSGtRIKTV9NttKhb6DZO77P912G+685pqY/Y7vt23DR4sXo76pCes2b8ZfnnsOp4wfDwCoHjgQZ0yahFLDQKMNG7GQ9TERQkg1IeQdQkg7IaSDEPIeIaTGwvfGE0KeJYRsIoT4CSG7CCGvE0J6prnrBfQkUyHkkC0I1f0G4+Nnn1VH3b/Jm4+NpYv0mQqF0UoF3v7gcbvh9XgQiUTw3aZNoJRixJAhcLn0w7upkgrOOI2BL5+TyZHVL/tizpMsHAaOjB0bI0ZwpIJxhF8kER0xM2CU0qDo0BoFxgaC3yKpkGoDMJ61gZEMqWYq8CU5rZ5fKwj55GPkKRDUQMZgB+WUCgQVI+XrrKlWO36s021qf1COcyylQmF+Pggh8Pn9iITkTqsjUVCjhUwFI/EQCcRvIFJdpoI+qJGZn6jU80fv//761/j3c8/hpHHj8MZf/4oJRx8NIDq8kZ1X5iH+6rvvLC1fsqisAQCnk4WkMvuDsgyDUoHlteRSUKPZc/iZM+rw7Bl16KjrPfJDze+1qz+khL7YlsiW/SEWBlXK5WPTQSpkIlMhFXiU9lAoBfsD6/Sn0/7AEwr8ebeVCn0HVu0PgPxs6FdaioqyMtOfU8aPx0N33YVn7r8f/cvKsHPfPrz6wQd49YMP8KdnnsE5N92EL779NtO7ZOMgQVZJBUJIPoDPARwB4EoAVwA4DMBiQkhBgq9fDGAMgMcB/BeA/wZwLIDVhJDqjG10GpAKqcBG4Rmqy2tQXFioCzxcW/G+wf7AKRVM7A+Aplb4WglyGWkyup80qWChFF0mGkEsUwEA8lz56Fdaajrf8DikgkTCcHrNjqH5SD9gnVSwGq5jRDzCgI3aJ6z+EINU4L+3tbY2qe2KB3a83AVaIGOgQ0LrTnkY350voKCfgLxSAYEuvvoDIxWSVyoIgqDmf3SFZfJNiDHQnJxSQf930MSaoZufz1RgQY2s+oOyfz0NagTk48CXS63iykxSSrFh61aIoqhWfDh9wgQ4BAHrt2xRLU9x9yMZpYIyj2x/IFz1B/lz1iBneS05lalgcj8G2uV93/+99Y5ET2FXf0gdfb0tke3RfAZGKtQ1NvZ4Wbmyb0ypEEzB/sDaQOm0P8RqX/GZQjYObli1PySDPI8H/5g9G3dcfTVuv+oq3PqLX+C4MWPQ3tmJ3z/5ZE69s23kLrL9JvolgBEAzqWUzqOUvg9gBoChAG5I8N2/UEonUUqfopQupZS+AWA6gDJluTkL9npJhoE3jsL3z5Nf3p5wkX4+jlTwKEqFHa0/or6pCXler5oaz8Ak4y+99x4A4HBFvsgjWVLBUsBbBgYf+GM0sGhQzM57VUUFvB4PmtvasL9Zn+QvkoiaqQDwFSC0RkGUUoEbGWjcGsI/Tt+HjR9EHyuaRCeNRzxrg1WlQqxMBX7bt+7cmdR2xUPQp9gfCgVdWOL+7+WGmSuPgBCCisNcao4CoGUqhE2UCmwf82IENQJyyU0A8Ifl4++IYX9wKoqeiIU+o5F4MFYDMYLPVDAqFVhQI9KgVDCCqZDqGhvx/uef4/K77sLZv/oV/rN6NRyCgPFjxuD4o45CRBSxcPnyhMtLKagRkmx/YJkKimqDNcgZ6XOgNFDSbIWOvy6JdaJ6b50HEfpkWyLnlAoKyVnX2Nhjyf+BrFRg+64+F9Nof4hFKjDC9sV337VLCB7koBmyPR06dCiuOOcc/OLcc3H1eefh+QcewIjqajQ0N+OyO+/Envr6tK7PxsGHbDdfZgD4klL6I5tAKd0B4AsA58T7IqU0igqnlO4E0AhgcJq3M61QywslY38wpHeVEPnlXeDSp7jzI7OMVFjqk0P4LvnpT6OsDSWGFPhjx4yJWnee1wuHICAQDFoKWGOdVmc8pUIGrjyeVBhQUBVzPkEQMHywfIkwHzqDHNSo/c2UCnwnN16mwqIH2uBrEPHxb6NrWqtKhSR7DfFGOSyTCjEyFfiKHi3t7UltVzywjrdHIWWMgYkupbJG/8NcoIRTKvQgqBHQQkUZqZBIqRAJWs9UGHuBTK51NUr4933N6Go2l/BL3GRm45AkfaYCMtBZVZUKTU1475NPAMiNe0oprjn/fAwdPBg/O/10AMCHixcnXF5SpIJqfxD11R8U7iBosD+EwmGtzCal+HHXLh3x1RchqUqF3OggHmDom22JHBnNZ8jPy0NpURFC4bCqkEoVqsTbQlBsJpGSUsEQcptO+0MkRhD26EMPVX+38ny3ceAimXdzT0AIwRUzZgAAttTW4rFXXsno+mwc+Mj2m2gMADNKdSOA0ckujBAyCkAlgB96uF0ZhVpSMglSwWmwP7gDssJgYEkVCsOa+oAPQHMXErS692An/R55Xi+uPPfcqOU2KhUfAOD1hx/GGO7FxEAISaoChJUHXiYGH3hSodhtbn1gGF4tq1p/MJAKEonA4SJoaWtDa0eHplTwS2oDLl6mAhttNEOq7PKvLr4Y1VVVmH3LLVGf9TRTgVcqdKQxU0FTKsj7esbsct3nrCxj2VAnJKIdz54ENQIcqRBhpIL5sWbn1Ww9RrCyk6yKBQBsmOfH8ifMSRiJy2mIBCikCOXsD4psMQNKhSpllPCjJUuwbvNmdfqlZ5+NGy6+GABw+oknQhAEbNi6NSFBmJr9Qc5UcKglJeX9ZaN8eV4v3C6XWt8ekCuQXPCb3+CvL71keV97Db2qVJD/z5H+4YGGPtmWyLWgRiB9uQrJPH8yiZSUCoZMBZpOpYJBBcFw9BFH4Mnf/Q5AdLvGxsGF3iIVAOCcKVNwh1JufNnq1XZmh424yHbzpRxAq8n0FsjSQ8sghDgBPA15dOGFOPNdTwhZTQhZ3ZgG318qUDMVkviOQPWkgtQpv+gE0YUZO2fBLcojgJ3cyLO7UMDm0qUAgHOnTNHVtmdgxEZZSYkpocBQmIQFwlKmQiaUClymQr6jMM6cWq6CUQYuChFQSDj9qqtw2i9+AYeLwOGSR1xZ5zJuUGOck5rqi2BIVRU+fPppnDtlStRnqdgf+N/5F0QmghpZWOiR5xTghGu168+dL0/3FAuQYKJUMAtqVPbRilKhOyLfB7HsD6wyCiM/4oEpFZxuoiosAKC71byhKBmU/eFuGmV/oFL6OwGHDxums4YMHzIEX7/zDu6+7jq1AcosUJRS1BkCHY1IRalAIYEQogU1KrwFy+7wuFzqNdvVKZ/PF955BwDwxkcfWdnNjINXBvUip6ASMHamQkro1bZELrQjgNyzPwDpIxWkFLKnMoFUlAqMRFAVXL2QqQAAx44eDUIItu/enVQJTBsHFnqTTBQEAVfMmIFjRo1CIBTC0lWrMr5OGwcusk0qAObttlTulL8DOAnA5ZRSs8aFvDJKn6WUjqeUju/PhZz1JlKRLBqD3cQOuQMdCVIQEI1U4DqGngKC/XmyGnTmtGmmy/39LbfgxLFjMedPf4q7fparkGg0O1a5IyMy8Sx0ckqFAiE+qTB25EjT6SIJoz2ojUBHRBGufJarIO9XVFAj1zGPl9yeCXZZLSmZDKnAbb+OVPClrxIHIwU8BdrxKB+mnR+mVPAWCao6AeCCGg25BZIkqTYTVjfcDKpSQYxvf1AVKD4LSgWFVHC4iWqHAYC8cvPzyDqHbB9DfokjFZROQAZIhfLSUix8/nn84dZbcUhNDa678EK4nNEHwGqj34qNiUFNOTfaHwxKBY/bDY9LPn8vXLALgPWSrJmCsdPCk0KSheog6QK7RuzqDymj19oSudCOULYDQPY73jzKlYDk1o6OBHPGh3QwKRXSaX9Q1KhmpEKe14thgwcjIor4MY0ZSTZyC9kgE0865hgAsg3Cho1YyDap0Ap5hMGIMpiPOpiCEPJnANcDuIZS+kmati1jkFJQKlCJ6NQKkVb593BAkZlL8ugtTypESAg+ZzMIFVAzwNwaetTIkXjm/vsxdHB866jVsEa+4xz3gZeBh6GDOz55CUiFE8aOxd3XXRc1XSIRtPs1UsHf3a2rogFEKxX4TlG8vZIy4H+1bH/gMxWUziKlVG9/SBOpIIYpIgEK4oCukkb5ME1JwjrcnmIBEpepECuokXnyvW53XAUMIxUCkhLUGMv+UKg/p4n2B5BzIVhOCQDkl8YgFZROqbdYC/lkthhmf6BiZhoDxYWF+Nlpp+Hdxx/HT0891XSegQqpsHf//rjLSilTASIgcEGNyrFgSgW32w23Uve2oy0ASmlS9d97A3wwp5XMjXSBVX8QbKVCKujTbYlcsj+wilJWKszEQ66oMJhSIZmRf3ZeMhLUmIBsOWLECADReVE2Dh5kI0ulUgl5b+phVoqNgxvZJhU2QvZCGjEawPdWFkAI+R/IJaBupZS+msZtyxwYa53Ey5JKgEC11ma4RVEqxCEVdtfXA4SiKFwBGuzZqU6FVIiHdLQTjPkFAqdUyCPxSQVCCC4888yo6SKJoLXLSCoYlAqGQDnL9ocMNAC9PVAqhMJhXdZCujIVWBlFdwHRNQjLh2vnh5EN3mIBlLc/MKVCt/7cqnkKcawPAGd/kJSSkrGqP3hkiX4kSFXSIBaY7cXhJrrrll0XUfMr1R88xSy3gUYpFTJR/cEqBltUKiRDKqil04gIQjQJP5Xk+5Q1yL1uNzxu+ZoVSQjBTu3Ye+IoUHoTPJEQiX9bpRUszDMT1rA+gD7ZllA73jkUxFGSZlIh20oFpoxLhvxUKz1lMKgxloKMBTZu2LIlbeu0kVvIBplYUSa7yJpaokPIbdhgyPab6AMAEwghI9gEQsgwAJOUz+KCEPIbAA8A+B9K6RMZ2sa0IxXJoiRSHalAu1wI+SW1AeySou0PO/bsAQAUhwagbXfPSrhZJRXYiLgzEanQwyvv0wda8fTUOgQ7tREAXqngoYlKkyOqEgYgkwptXRoT6w8E4M5nMna9UoGVx+NJhXinVO2kZYBUSLakZEQU8fK//qWbJ11KhZCPWR/0Jzmv1IFJNxfjlNtK1GvfU0R0SgWt+oO5GiReSCPAKRUoKylpPh8hJIosigVJVSoQXdaDGIluKFJK1RFnFuyotz+wkpLZG32zan9IJijNxRrPRAIRiD5XQdSUJm6XS1UqRIQwupq0c5/o3GYKxuewnlTofaWCXf0hJfTJtgRDLikVWEWptp6SCqydlGVSQVUqpGJ/YGRrBjIVnCbWNgA4+vDDAUAX1mvj4EI2VDwqqdBqWfhlow8i26TCcwBqAbxPCDmHEDIDwPsAdgN4hs1ECBlKCIkQQn7HTbsYwKMAFgD4nBAygftJOu25N8FeL8k0BIxKBafkQePmMMLKiK5bjFYq1O7dCwAoDg/Aa5c06DrgyaI4SaVCPIk6gNScrgoopVj7lg++BhG7v9E603z1B3cwvlKBYfyRRwLQyvGJJIxWn0YqdJkpFYykAp+GG+eOymSmQrJBjYtWrMBTb74JACgvKQGQnkyFjroInp1eB0ALaeRx0q9KcOK1xerfslKBy1QQzO0PjLjJ54IIzcCkt91U3pdYSgUgOqxx8yd+vHllg66jCwCRkJapwG+XMZCRn0Yc0JFRaklJlh+RIfuDFQweMABAeu0P6ogcRJUw1MpKUpVU8LjdcDvlRrpIQnpSIcG5zRSMiife/iD2JqlgV3/oCfpkW6I3U+CtgikVekpS54pSwelwwCEIECVJp+yLB2rIVEir/SFGSUmGI0aMgMvpxPY9e9I2UGAjt5AN+0P/ctldZpMKNuIhq09rSmkXgNMBbAHwKoDXAewAcDqllH8aEgAO6Ld3ujJ9OoCVhp+nMr7xPUAqLCMVgUG0A78KbUIBDUOAA29coXWAzOwPLKinOCR3IlpqU08DZuFLDc3NcedjL7xM2h98DdqLnXnzAehHf7usjXr+9Z57cO/11+P2q69WFqEnFboDgZiZCoxUsJypkIEGYKqZCo2chK2irAxOhwOBUKjHidHfze1SWTM+1DAWnF4C6uSUCgKr/mBeYSNRx5ORQ52CvH+OGEGN8vbpwxo/uL0Ze74JYtlj+lKREpepwG+XWYifpKgXHE6ikgphvwSoSgVmf8geqTB00CAAsud22+7dMedLqqSkan+Q1Hubz1Vg15WHy1SIkDC6mrTjmQ2lQt36IBo26a/5bCkVVPuDnamQNPpsWyIHgxpLi2XSOF1KhVxQYSSrVmDvemcG7A9igoEbt8uFUYccAgCYceONuO+xx/Dv//wHq9atS9s22MguxCyQiWXFxXAIAto6OxOWo7bRd5F1eptSuotSej6ltJhSWkQpPZdSWmuYp5ZSSiils7lpVynTzH5+0su7kXFIIsVz4YX4VWQzbgtvVKc3b5dv7uHjlNFmhVRoaW/H0q+/BgCMP0YebOmos8aym4GVYNy2a1fc+awmxvekndC4RXughTnvfZBqHetQp7WXeElREX5+1lmoUEgTkUTQ0mFUKjBSQa9UYJaQZDMV0tkATDVTgZFEAODz+1GkSFZ7OrJR0E97pMQKSeRBCIEznztXSpChMUCx26JSgY3CdwpNoKDqaLkZYoU1+qKUCvL/DhdRlQht7jp8UvsxwhG9XIF9LjjBVQ3RMhXY/tEsZir0Ly/HzGnTEIlE8Jdnn405X1JBjar9IVqpIEaoSnrJQY1KpoIQQkejdt3GkvNmEl893wliuGmzbX8Q7OoPKaEvtiVoBix1PUW6MxVyQYXBKkBYLStptD+kU6kQsVCy+7xp0+B0OtHW2YmPFi/GvY88glseeCBhO8HGgYFs3PeCIKjtRjus0UYsZP9p3QeRWqYC0A/yC2G02Ibq8XLD3LdffsEU5untCe998glC4TBOHj8ew6vlkcnO+tRJhUOqqwEg7sgmkERQYw8azjpSgZOjByXNhsCsHl8+14Fnz9wHf0v8fWf5CiKJoKXTmKnAvPEGpYIJqRBvv2gG5Jx5Hg8K8vLQHQigPk69dGOmAs8072tosGxvSQSHR9v/lp3WGmAOjlSQlNDGcDfVydK7LSoVigsLUZifj4gQQlDogiOe/UFRKgQNZSWN1gs+U+GwqbIi6OPqB/HRzn9i7oIF+nmVEoqCg6ikRaBTgtqmdCjLjmS3E3DblVeiIC8Pq9avx2NXrsLHc9did51sW/l0xQr88emn1XKjlkpKMqUCJI1UYEoFEbqgRpeghMySEBrqNFVINuqqG60PACBym2GFVNjxRQDfvNazDpS8LfL/tlLBhlVkoqJQT8EyFQ4mUiFZpUJUUGMG7A/xnsvnTp2Kz+fMwWO//S1GKANCwVAo4aCQjQMD2cobYYNvtgXCRixk/2ndB0FTkPXxjV8CLVne12hOKnz+1VcAgAvPPBNFVfLLp6Mu9bDGgf37I8/rRXNbG9ri1J8WLbDo6k6kCL1SQXtZhzmlQkAhFZY91o72vSK+mxt/BJ4lz0skgiH1GzAlsg+AnJfg4mXsMAlq5DIV+ABKYzhTJiRrgiDg+KOOAgCsWLs25nzGTAVjB46pLnqqVOArKXQ1WmtIOb3adyiobGmhWrlUwDqpQAhRgwi7XM1qWKAZWOaDMajRaL2IMFLBTTD9/nJUHelWsxGMYVgip1QorZZX3rI9ot2/AlMqxN2NjKO4sBAzp00DAMxpexC/fX02fnbjjTj7hhtw10MP6ciS5JQKkkqWsjwLKayVjXS7XHARlqkQRlOTRioEs1Ba0piLQSlNWqnwzg2N+PzBNtRv7Nn2M0LKrv5gwypSGaDINIoKCiAIAnx+f5SSKxnkEqmQslJB2fZMBDUmGpwoLizEqSecgH8+9himTJgAANhSW5u27bCRPWTLGlRh5yrYSIDe15vaSEkGT7mBdgEUXkYqKPkCRQVyB7fD50NLWxu+//FHeNxunDB2LGoVObeZUqGrScTmhX4ceW5BzBJ5gPxiH1FdjY1bt2Lb7t04boxZ9S7rPmyn1IUJhX/Hpu6zAVTHndcIfj94+8NAHIJ1WI68SLGuVB0QP7APkDs7gNzReaDuQwDAGcIZslKhQJOxA9FBjd2BACilIISonnpA7rBIooSOfSL6jXBlLFznpHHjsGTVKqxcswbnKR1FI/hMBUmSdKTCJWefjZ1KqGePw7W4Ntf0P5RZ+o6QRwHlexJEuPIJwt0UIT+FWz7E2K9kefTjbBuxMLhyALbU1sLnaoYQJ0nfbQhqZIhWKsj/O1xysOTY8wtkxzaisyyYqkFwEVSOlDvPTVtDqByllEt0KOchkv2G8tSTTsJrH3yghUcC2KOEN0469lj4u7vRr7TUUqlHp6pUEM2VCgph4PV4NFJBCKGlRRvN7C1Sge+ISRJ0+y9Kki6cMRn7Q8e+CKrGpF4WUw1qtKs/2LCITFQU6ikEQUBxQQHaOjvR6fPprHbJ4IDOVFC2PRuZCkY4HQ4cOXIkPvvyS2y1SYWDAtmyPQ2pqgIAPPXGG2j3+bC3vl5tMzA4HA6cdcopOGncuF7dNhu5AZtUyAJU1joZ+wM3skkIgaeYJavL00qK5HCk9s5OrPzuOwDAcWPGwOvxoKhK7viYZSp8cIccTle3PoSfPtgv7jYcopAKP+7cGZtUsMiiH7b/YRxS/AQmFj0OIBB3XiMCHZw6gSMVRpET4a9zon9gBCIiVVP7AcDptkoqaCMrh9N200wF1pBzu1zwuN0IhkLo8PlQUlSkl04HKP51SxN2rw7i4pf6Z6yRNPGYYwAAq9avhyRJpqRFlP1BGUE6efx43HH11bjv0UcB9DxciykVxl9ZiKNmWqvA4fCKgCJF3lnaAAAgAElEQVR+oaDIKxHgb5bQ1SSisEJuOLFKJsMGD064vIH9ZaWC3xM/VNRjCGpkMCoVRK76AwAQh3Zd8SGdgHY/OpxAxaHyNdX0YwQVh8m/sw43zWJQI8MQJX+CYfYtt6CyvBzVVVWoHjgwqWXFy1SQIlQlsXilQoSE0dqmXW+9ZX94++pGSCLFJa9UQhIpJK76iCiKuudGMqRCyN+zjoPESkpmn2+ycYAgV8ouGlFSVIS2zk60dXamTiocwEoFo/2B9nKmghEjhw0DYCsVDhZk676/6txzsXz1amzduROzn4hdefejxYtxSE2NaqsdXFWF2TffbMlKaePAhk0qZBFJKRU4+4NAoCoVGMqUxOXWjg78sG0bAKgdf2Z/6KyPliLuUUoybv2sO+ozIw4fPhwAsGnHjpjzqA2BBA+PYv8GAICTBCGJNKnRuWAMUoFQATVdx2jzcSU0nZ74y2ejsSLxq9OGSz50d3fDrYQPMvUDr8Y4auRIrN6wActWr8bZp52mK0cXCVLsXi0f340f+iE5M1NbeEhVFSr79UNDczO279mDQ2tqouaJZX84fPhwOB0OVCsMNOu8A8Dzc+eivLQUM6dOtbzNjFRwea2/7ASPPlOhfIQLzdsjaNkexoAj5POyc59sR2GVC+KhqlyxP7jjS/RiBTUalQoil6kAAAEuu6PRIANUJewOAm+JgKIqBzrrRbTUMl+EfA3QLGcqALLqwwkXIopM5Ijhw3HEiBEpLcuhsz/I03ilAlN0eNxuOKGQCkII7f52QHG0BAJBvHJRPX72cD+U1bhM19O8PYzSamfcrIx4CPkl9Z4M+SioaFAqiKKOSEimpKSRjEoGlFK1aopNKtiwilSslL0BNayxB8q3bCTcxwJrHwQtBh1GBTVmwP6QTAeNtd2+37YN3YFA1sr32kgPsnXfD6iowKsPPYT3Pv0UW2prUVZcjNGHHqq7R3fX1eHV99/X5Xes+eEH/Py//gtHjRzZq9tro/dhkwpZQEqZCrz9gZAoUqG8VK7+0NrermYesLqyhf0dIA6gq0mCGKb6BjmB7F/vTvzSG6V0ODZv3x5zHiazdyZoCFCqfS5FtA6IFeiVCpys3yDE4MkHRwKlgkupPUgcWlDhSKkd33Z3o2iAQsooVhN+BGXqSSdh9YYNWLRyZTSpwP0e7JQglSQnW7QKQgiOHT0aC5Ytw5rvv09MKnD2B7eSuH+I8h32ImhoacHfX5c1/vv/PAZHnpOPk2/VRpxaasPY+WUQh57mRdEA7THCrAKCeZ/QfPs9+s5Y+Qj5+DT9qJFgzJ4x1IJSoThfbtCGHf6488UMajTcC0alQmdIywHY19CgWl8AvVIBAPof5kJnvYjGzezAULm8pJj9TgAhBMXohxbUA4CaRZEKHDr7g5KpoCgVdn8dxP4fZSLG43bDSTWrUXuoTSUVIpKIuu+D+OxPbbjg6f5R69j5VQD/vLYRJ15XhFP+X2qjn/4W7Vz7W0VIItXKfKJn9gcjGZUMKKdSyCV/vI3cRi6N5vNIRwUImkP7xuwPlpUKhkyFTJAKyQQ+V5SVYezhh2Pd5s2Yt2gRTp8wAS6nM2UVyYGO7nYRyx5tx9gLCntkWcsWsnnflxYX45rzz487z9XnnYdN27dDFEU8/OKL+H7bNjX42cbBjew/rfsgUslU4DvMBNFKheLiAjidTvgDAdV/Xqq82AUn0ST8htE0b5H1S2CkwnZv3bkzZp1ayaI0T+IuPT7cLxHEMMVw+iHOLbsO+UKTrgPI1BxMldDVLKLCuQnjCl4CQfxRRKfSC/ZCO9AjpQ74AwEUD1RIBSXokh9BmTpxIgRBwLLVq7F5xw49qcAFDQY6JPVFkIlOwzGjRgGQGWEz8JkKImd/YFUvjNU9uvxah7yzIYIPX10HHzdt4exWLHqgFU9PqYO/lSMsDKP6VkBc+vNfNly+Npq3yddYW0cH2jo7ke/1on9Z4pyGfI8cxBB2xH+JaUoFSVUYALK3nb9PRC5TAQA6w1pQaSAYRGu7RjKISqYG61CX1sjsgnqdsqDGHFAqAIAbeervLKwzFfD2BxbCyo7Xogda0d4s20TcLpeqVBBJCF20XbcciUTUkFUj6tfLfuZtS5OzSzFs/tSP+fdolhh/iwTJTKmQov2hJ6QCuz1tlYKNZJCJMsXpACMVemKnE3MoL4LZHyxnKrDBlQzYH5LNVGCYOXUqAOAvzz+PM6+7DqdfdRWuu+8+zH7iCfy/P/2px5WfDiQse7Qd383twqs/359w3kiQYs1bnaZK32whV8lEBo/bjaOPOALHjhmjDm4araI2Dk7k5hV5kCOVJGC+02Nmf3B5BZQpL/LaPXsAyIwi/zkARAyjsJ4i6y/swvx81AwahHAkErO0pFXJIqXaC5EPN0yEYKeEn5XdjMPyPsGMshsNpIL8v7dUXndnvYirK8/A1JJZKNr0TtzlOiBvj5uL5R9KffB3d6OQKRX2yyObEmd/qCgrw0XTp0OUJDz84ov6DolRqZBBydp4xery1Xff6VQJDLFKSrIsiaGDB8MhCNi7fz8CwaDO374vfyM+GfIIbpg1S/5+iGLfWk0G2r5He9mmRirot7d0mHy8t37Wjf3fh3TWByuN53yX3FEOCfFJBW+JvJ6uZimq89jdynU0DUqFjqC++smq9evV3ylX/QGAqnJRP1c6sFTMkUcvt9s96Zg4TUtKassTiVZS0kk1+0O3U08qiCQcszBMp1I+t+nHsE6tZBUf3NaMfd9pnQJ/iwQaMWQqSFLS1R8YemR/4EqR2rBhFdkKbEsEVlayI0VSgW8j5ULHKVmlQibtD6lkKgDA9JNPxvgjj0Rlv36o7NcPXrcbqzdswLzPPsOSVauwYs2atG1jrqNtt3WCYMunfix6oA1PT62LUjVmC7kUYpoIzGpjkwp9A9l/WvdFpFL9gQ9qBFFLSjK4vARlJSUYKbVjVt3HGCO2qqMFAOD0KmURA0ZSIblLYKziiXrl/fdNyRGrLDrlug5iEvlswQ4RgtIxq/Z8BWeHRm6opEKxRiowuFu2xl8wFSBQp06p4IEEv78LLq+A/HIBUgTwN0tRxMmvL70UDkHAtxs3IhDWHpy8jJpXKmSikXRITQ0GVVaiua0N67Zsifo8VqYCIxXcLhdqBg2CJEmo3bsXfu4FsLdgIwBg41b5GDZuDulK8fGVNsRU7A8GpUJxtaCOdr91TQMWPlkLABhoUZ6f75JH3EMk/kustFq+Rtt2RaIsD/6WaPUFqyDSGWAdYfnvx199VSVpjEoFlmeiQlUqWNqVjMND89OyHKdio5EIRypw5jpGKrjdbggisz+YkwqxwEgFUGDp39ow5/x6tO9L/UB2t4hK9Qfu+pWkqFyUeODJXmPFmWRAbaWCjRQgZaiiUE9R2kOlQi7lKQDJKxWMQY1SOpUKKWQqAHLn7vkHHsAnL7yAT154AR898wzuuPpq9fNui3kRBwOIQt6GSQD//s9/4pY+bd+rfbbiH7HLqfcmMql6TTdUUqEPXV99GbnxxO5j6HGmAmiUbcHpJagsyMM/A0swWWrAVZEf1fBGQCYdABNSoVBbjhUFxS8vvBAetxsfL12KX82aFZXYbtXvp89USGI0cO8+3d8u3x5tOUoDP09RKnTUaS8DicY/1lKEwiE54YF+1FzsliWBrHPYURfRKRUAuR704cOHQ5Qk1Es71e/yHZJgJ80oqUAIwelKLerFX34Z9XmsTAVmfwC0MKf1W7bAz/nf3KImkQ+GQrrRXkCfSSCloFSgTv0xJ04Jp9wmZ4SEfBRbv5HDEEs5kiwe8phSgcTPVCgdIvd62/dG1MoeDHqiRLHVKPvUHpAbFid5z8LQQYOwr6EBX2+Qg0cllVSQv8vnTcg7pyw3BzIVAGBi+DwUhitwUv2VPVqOWo+diFxQI0ccCvK96HW74ZC06g9+R7s6XZ4vjFhSBd9+7X5eN7cLjZvDWP5Eu/nMBpg92/wtkhzUCD3hJnKXN08wmIEn11JRT6jLYZkKdji2jSRAc9z+kGqmQi7lKQA9UCqw52KWMxXMUFFWhivOOQcXTp8OILo88sEMdui+qXgP9z7yCP78zDMx541wh2X1y51Y9lhbUpbdTCBT5ckzgTyPB4CtVOgryP0r8iBESpkKhuoPnpJoUmFSUBu1FyDbFdTP8+R1RQykAj+aaCWscejgwZh9880AgK/WrcNqpTPFIFrNVODsD8k8oKVa/Si80M0xx8pivCWMVNA6C4lK+EkRQKBOeKi+YxD2y42i4oFOdZlm5MDRRxwBAKgXtqnTIkalQoZfBJOPOw4AsHbTpqjP+EwFSZJUZp4FNQJatZCv16/XheqEBO1lsGPPHtRv1JMKfElGMUwRIUHddZUIxGEo4ShJOPGaYgwep9QGV8IzSyySCl4nIxXiv8RceQKKBjggRYCW7fqRCj4A1Ki+6FBIhQIUY8rEiQCAZd98A4APapSvt8IB5koFKZwbj96yyECcs3MWhvvG92g5qlIBEhfUqH0ucUoFp0IqhB3dCDp9IISoKhSRhGNW2mVBqTpYfHSYPdvUoEZeqWCo/mAkYY3gCdFgj0gF9mzIrc6hjdyGlKv2hx6SCrmUpwBoSgWrHW/2rndmwv6QYqZCLKiVLSyqMA4GMPJ2e/FXAID3Pv005rxBQ8bPl891YsP72c2fsO0PNnIVudGy7WNIZXSBVyqUFBaaZCoQVFGtI1jk1HdemVLBSCrwI23+ZmuN4v865RT84pxzAABrDcGAomEUPxYopxyQkrA/kL2b9X8HtUYLG+3LL5fXzcvWEioVRAoHdUUpFSKKUkENa6yPmBInjFTY79AqY+iC2ygghjPbUBo+ZAgAYNe+fVGfGTMVjPYHADj+qKMAAJ988QXe/eQTdXrAqR3jbbt2obtN3g8WQhj0afu5x7cL/xxxN97+9k3L200NpAJrKJcNVWqDC8mRCh7BC0IJwgiq/tNYYPvQuEV/EfKdUDVTgZWUDMv3mUvy4uTxcmd8+erVoJRyJSXl7xZWxspUsLQrGUe6VLkOLqhRsz9o13mEy1QQIvJ59bnk0MQSbym8bnk0QyQRU8uBGKboaoreWCtt9bbdESz/e7Siwd8igUrQV38QRT2hlECpIEb0xGGqYNdDMmScDRvZqlefCD0tKZlrI7HJkiSSoeOf1qDGFDMVYsGrjCRbLZd5MICp6ArDFeq0WDlhjFQ4/iqt/bH76+weqwPK/sCUCn3o+urLyI0nto2E4Ks/FHi9cLoJXHnaA8XpJegnaUxgGfQjr7HsDxFOJbD0b23YMM8aAztu9GgA0dUGrErzJKSmVBDq9aSCENJe8oSGcGzBC6gslC0IzdzosyQl2B4RcNBo+0Owsx2UUtX+0FlvrlRg1oF2V4M6rbvdoHoIiVHfSycqy8vh9XjQ1tmJDkNjLlGmAiAHIbKk3q+++06dHnBox3hzba2qTGAhhDyTv6ZtBSiR8NG6+Za32+ijZ0RA+TC5h8WUClbtD5AIXJLMjvsSJFqXKaRCw2ZtlKbNvQ+rtirKA5HKfneidfhCinRBkFwYO3IkSoqKsLu+Hjv37VMJMqZUcLqJSnIBHKmQI9UfqJieETQ1qJG3PyjHi4KqSgWXywWiZCqw66rEXQon0XIWzLIJuppEgAIF/fX3js9MvWDAm1c24JtXojs3/hYRUkTOgWBY+24H1r6tXTNGEtYIPg8mHqmwaft2vPTeezGr5tiZCjZSQbbq1SdC6UGmVOinlF5sam21NL+RVEirUkFRGSabqRALTKkQsKhU+HbjRjzz9ttpzYnobTDSXyTaPp9/yy147p//xNpNm7Crrk6dzto3Q47z4Mp3BwAA9n6b3Q5yrpFu8WArFfoWcv+KPAiRirdeCnONZ4VhGD7Zq05yeghKI5qHvITqXxAsqNFY/UHiOvRbPunGv+9rUUv5xQMbmV+/ebMu5MZy9Qeuky8lkbXmaJcf9kGnXMfeGdZGIMfQOZhS8nscs+BYZSXc+mgCUiGG/cEhhuEPBFDQX6kU0CSa7uOgykoQQtDlbIGkEBMBA6mghvhl6EVACEHNwIEAoFZMUNdtIBXCJpkKhBDce/31UcvlSYUV336rKhMY0RLk8ghKiMb8t7Rb87sHIvoqDez+KB2qKCEc8nVdrCSKJ4IYpnBJsgWCL4NphlKVVNCu+fk1f8ajSx/RlQh1uLRRgVBEvreEiAsOhwOTjpWvt2WrV6uj7Ox+A4wWCCWoMZwbjWUpTYoJlokQIeGo6g8SxP/P3nnHSVWdb/x7p89s70tfelMQEAXsWGKJGrsGo4nGNFtMjEnUX6rpxm6MsYtoEltsUQQLiCgoXTosdXvfnZ3ZKffe3x/n1im7swi4xH38+Nnhzr13bj3nvM953udFlVQcqgOX04kzZnfxzHUW4HbopEI8SW4KpkljTpnLptLKhFRIt45QKqg2pcKyJ+1GXHLMLFWbCtb2M/F9t+LWu+7i3qef5k+PPpp6P4bCpW88F/04NNBXZyw/b0nJvlYyr1grZZxpn6YewPSHTNWgmUJvuzNN7bjqttt46LnnWLB06X75/S8CDofolxKNgh989lm++bOfMefmm40gWC9x7M2WKBntxpsr0V4j07yzFxLb/Qy5j773qdBPKny50Dda7C8Z9O6lN82BErY0+DHxeeb3TCNGh1OiSDVf2mzZ/gKb1R8SAt0U7WKwoeeBemFeHhWDBtEVjbKp0pT8Z+ypYK3+0AujRjUigsSovxwAR9wctBSxMeU2YK+ekfJ7WU2pVPCpMq3t7WQVi/MJNipJRo0g2P6SgkJUSaHTJWYzEmcu4xoxdCBnX4YOHAhgY9rB7IT0z6mUCgCzZ8xg5hFH2JZZSYVtu3dTExLmmLkaqRC1mhrKllnfjenvhxWhqF1NoD9D+v719Iccb2ZKBSUOngxJheKR4vxbdiYzW5sqK433Qy8nCRDVnPyc2oz7cZqXxQeffmoogazr51hSIPT8fTXeN5re/ZWGoUtoZUcUFbtZpa5ScGqlJF1xv23bAspxopMKMbo6lCRjM73EZ6DQwSWPlzDkSPF7HXXyPpughZpk5Lg9/UEl+YJ0VwHCSojGwmpa1VWlVub3hfnzk8xtQcyAqqj0kRiqH4cI+rpSYV9LSibO9H/RKPycSoV06Q9VdXU88dJLNmPknrC/0x/21VOhtrFxv/z+FwFVhbCrDVVSKS4oYOVLL/Gnm29m3IgRAHR0drJ2s1DF6so5b44DySFRMVMEyS9d2/iFlZhU9zOxdCAR0EiFUD+p8KVA338i/wexL54KipVFjooOqHSshwsfLubSJ8SsfaDLZF0DchfI5og3XfqDPgi+7KlSRp8iBvvdzbhZMWX8eMBuDKh3pj1J82zVH6KZ/Z4SV4k2iSBRyRHGbi65w7iesha0WH7Fclw9pz+4VG8SqeBBpsVCKqRTKgAMLBbSuKBbdLZJSgW59/e9t0inVIgneipo6hK3KzmJuyAvz/bvmFM8byV+cX7/9t9Bo3cnOeW6p4J5nvosPsCaFIaRqdAZsQf+sqKwfc8eWgN7OfrbOUb6g9+VRWeTzOonq7vtzJW4qVTo6CH9oWRs+tqX7cFgkp8CWJQKGqkwa8oUXE4nn65fz+76KkC8b6qq0tTaSqDISioo2jFq/1ZVqtdEvjA3aaWbWfjewOFw4FS1smva9dENG+MOPV3EhRJX8cSz8MfNZyzQUYJLJxUcMVQ5wY8EbAqQ0nEeLn2yFE+WRLxL7bWXwdSvZ+NwQWejQlerYtwTsJeX1BENdUcqJJAfadpOfbAKsH7bNtt3C5cu5fxbr2FF8Uv91R/60SuofdRTwef14na56IpG96mqQF8zoivWSIWm1taM1s9UqXDVrbdy79NPc9/cuRkfS3wfS0qmg+Gp0EtSoW/cmX1DPKIakz9lhcU4HA6+cuyx/POuu5hz9tkArNiwATDTH/Qy7qfcXkDxaDctu+J8cF9br6qX7S/01VKyqdDvqfDlQt9/Iv8HsU9GjVaWL2p+Hn6MnyHTBRMotdTaNwqaHaDLJ251uvSH7DInfq1qQrqBcSIm66SC1vhCL+pLW3TXciSzzuyTpztQtJlnR4lQKniloBFwxFUzQPQXOHBYfCV6MkqS4yr+eG5S+oMXhdb2drItpEIqpQLAgCKdVBAGdImkgiIfeHZZN2u03hNIn/6QqFQAbKVIrThtwNeMz7WBzWb6g0WuHrXU40v0dUiHYMge+EeiUS64/nou+/GPOer7fqJucc/9UjYbvv1Hjnh2EJt+9kTa/ckxswxmT6RCTrkTb07q97AtGDSCfZtSIWYnFfJycjj35JNRFIWXVr8AiHSkF99+m5O/+U22yCuMbfVZfN1TYfv7XcybU88L32/o9jgPFKxKhc9b9syNVq1DFoMH3fBQlsR76FTdhNsU4hGVgshgYztlRxG1K/R1xXOZpPLRSQWvRQGipZUE6zKXWxx5ZTYn31pA/hBBiMUidlLBnZV8DTpq0+8/UWUVbkm9rrW+fXV9ve27x198EYDN+e8bREw/+pEJ+lrwrUOSpM/lq9DX0h+KLKRCJu1kYknJdP4DdU1irJCqYlM6HCilQqaeCjoOlvS+vSa+30n3eEQlpJEKJXlFtu+m6n5hOqkQ1NMfxL0MFDg59XaRDrPq2SBPXVTXbYrcgUBfLSWbCv3pD18u9I0W+0uG/UIqJHZs0Qh0tIDTRax0mFjW3mR8rZs6Jhk1WnLG9VKMqUqjtVXHeePnTbTuNQN1XamwcuNGOpqjPH1xLdsWiyDO6XTCtlXwxG02EkSHQzUlwGqG0r/myjhurUxgzthBAHikDsOp36pUyCl34rSY8Ejx7jtMNQ6BeH6SUsGrpT94cyWcbogGVTONIWHAU14g1BOGUiHhOspxLQ/uAA6UTpg+Hb/Px/J169i8Y4f522mMGt29IBUKmkfy4yuvBqDL24Y/X5xHtFNc/807dtAmm89cpsy0Hvg7VBHorbIQInWNjUQkTakgBZjeeTsAY7f8JO3+5LhqGjX2kP4gSRIlY8znxuU334/W9naTVLBcJmMmPm6qPL5z8cW4XS5WVH1Ch6sBl0/ijoceAuCpDX831jNIBa2k5O5PxPO8++PIQc/RVFXV1h6kSoXqDVxoM15aepauNjDTH9x0tSaTCrnRUkPloBMQib4KumLESirolTU6eiAV3AFzG1+u2KZwuPg9NaEmZTRitm96ypi1ikwiEv1g9DSNRFjfhURSwVpD09GvVOhHL9BXPRXA9FVoaW/vYc1k9DWyxO/z4ff5iMZiPfYpkCL9oQciQu6hSpFt3QzVoJnCt68lJQ/wvanfFGXBb5t5+NQaHju7hvm/bGbti0E2vx1i89shdi/vIhpSiIYUdi/vYvPbIba+Gyba2fOkmCAVhLK3KNtOKuh+YRu3b0eRVaJBFSThqaBj8DQvR1ySBUDj1hht1Qe3nFNfLSWbCgap0K9U+FKgn1T4ArBPpELM8kKqKsQSOoDWOvG3oAx3oZjFp6PZ+DptSUk9Z9wtGQZoqZQKn73cyYbXQnz8D3OAMHTAAIYOHEhLWxu/v2MeNRu6WPOSmJVwOhzwg6nw3O/hxbuS9iepFhVBJDMGs6tNxqWRChSYSoVwszjeuGIhFUqduCTLNeuBVFBkFX88L0X6g0JrRweSJBkpEJFQasVBeb6mVHCJwDoxGJEPglIhNzubr51yCgBzX3nF/O0ETwXdXNOTIv1Bzx9NRMMKBx1rAwB0eVoN5j4SVNi2axeX3HQTG5SPjfUzlb3qpIJXFvteumqV8V3l3r2oqLhlH0rEHES5SE9EKTEyTn8AewqEp8i8//VNTaangiX9QZ/RccTN562suJgzjj8eFZVN+e/bgl/ZIgfQ8/f1985tWe+xr9byzGV17F5+cBh9OYrNzFT5nLNBLo0YCGttk542oJeTdKluQs0yckwlEDeJq+++OMJCKvSgVLB6VZRnRip4LKSCThQUDhfPvdVPAcz35LRfFjDpAjFo7I5USJxBS0cqWGcBq+vqbN9Z+4H+6g/96A36sgt8WbEw7a1p6L0KS5EPbKWkfUFvUiD0+5Jp9Qe5F5UU9rtSQZOn70uayoFCZ5PM05fUGZV42vbKrH2xk/m/bOHVHzXx6o+a+NdVDdx7VBX3HlXFv65q4NUfNfGfGxp57y893594l0rUIcihLHeW7Tt9UqUzHKarQ1xrb7aUpCI79f8KGTZTXLvGbQd3QqCvlpJNBSP9oRe+If04dNH3n8hDGKqqEg2lqq2+D6RCYoMfSwg8mrXUh4JyyNWYV4tSwdWDp4LTIxlKhVSeCvrM4c6lXbbj/+Z55wHwZuUrLB7wKCoKxWoXp+x4x9x4T7K0z6GYg2y1K7POLNyqWEgFEcB7HB207hGDfqtSoWCYAycWIkHuiVSAgJyflP7gQzYcrHVSIRoWv5c44CnLsysV2hPYaz1//UCzy5effTYOh4O3PviAOs1Myeqp0J1RI6RWKjgkB07VQ8dnIlgPu9vxaMx9pENh4UcfJW2TidxNVVUj8PfIonP/0EIqbNu9W3ynBAw5PYCT9M+MHFPxKH6y1Bgl699LJuASMHS61/jszjevU11Tk0HCpUx/iNkJGT0Xc2fOp6juuO39bnPXUOvfbEjto0EROCcGz1lbXyN489dp2dr72b3eIpFg/LwSU7emVIjGdaWCRqBoRIFDddO8M44cURkWnEZxXiHnn3oqJaM9jD1RPHOqV6wbSgjODUWVTakgrn9P6Q/WV18/5yJdqSDZf0dFIbvMyeSLsskbLPbfVpV+/4lKhVCa9Ieu7pQKFvSnP/SjN+hrM/pW6P4+exJMgzNBX8wZ18n2RZ980qOyQEnwVOgx/bIXSoV4hmW7M0VvPBWslb56OqfPg84G2UjNO+fuIs65q4gTfpzH2K/4GXOqn9Gn+Cke5cLpAacHiodVWrkAACAASURBVEe5GHGcmBHf+WHP4454RCWqVZXyOQO275xOJz6vF1VVaWsSgbA+gZKI4tGiH2nccvBVhtA33/tE9Eap0BkOU7sPJGQ/+g6Spyn7sd+w4LctrPl3J1e/Vm7IbcFS/aE3DULiCxkJQ5bFUK9Fm/3KL4WcQvE5A6WCKe+2kAop0h90iXtHrUzzjjhFI8T5nH3iiTz/5ptsrKykwVfJ0OAR/C6ygqO3Wp2Bk89TsvodRDJjMO2kgqlUqNFIBWtKxdGXOxlQ7IV/ar/XE6kQV/HH8/EkKhW09AfAKCsZDafu1EuzNVLBa3dF9uZIRDpUQ6lwoNnlQWVlnDJzJm9/+CH/evNNbvjGNzIqKakj0agRIMsXQEIiXpMDxdApteLNEefR2ahQtXF30jaZdCLhri5kRcGpeIyZ7rhl4LJy/XoAfHIO0U4VWXXhlOJIpA+AlbiKS/Hys+haTnv3v1DohO/8Je36w48zS7NaiZD65mYjR95fYN4zffAlxezGoGOHD6fMP5C6cDXLaz+0SV5fH/Z78UH3UpUltr8fNpylh8300rgtxnnuawCoeXIS/O5XaY95fyCTSjC9gUsj9bo0wtNQKmhGjS7FTeO2GPGIilfJ4pW/PmIQdRWH58NqyBsXg3po3ZWg8unGU6EnpYL1PLOKxH0sqEitVFAkxVBs5Q0S67R3m/7Qs1JBVVXbgD2RVLC2jv3pD/3oDfTAri/OWA7RSYXa2h7WTEZf81QAKNHKSt795JPc+/TTlBUVMXb4cJwOB6fMmsUZxx9vrJvou9STUiGd50Iq7G+lQm9KSlrbsV6nS/QCOolcfpiHsacGelhbQFVU7j+2ivYamfaaOLkD0oc38YhK1CHGnT5HVtL3AZ+PrkiE1maNVMhJ/RyWjNJIhYOtVOiD70c66KRCTUMDP/7jH43lDoeDi884g+mHH24su/RHP2JPTQ0LHn+cksLCg36s/fj86PtP5CGMNf8WM7Cr/203rFP3JQ8yUZmQ6FPQrgWyeSWmUqHFlNm6/MmkgqqqRiDhcGEMplMpFayKi51Lzd92u908+9e/4pLcRJ0hoo4QU5Um+8YpGj6bp0KGSoWuNgW3pBEQKZQKDsvsdcAbYtxss9PtkVSQhaeCTyMVFK0enk8zagQzIIl2pZZmZrtzcCkeolIYJWASJXrut6IevDJAl331qwC8vHAh0VgsradCKqVCYQpSIdsvOl5naw6oEiHakTzmM7Hm011J22QySKnRlBQexY+kJg+SPlq9GoCBofG0VcWJq76kdRIRalJwqR7OlkUZP164s9v13T6HcY9yKsz3o6WtjaZaTSJZZObGRmI6qZB8vIflHAnA0ysf7/Y3JRxsejNk1MCednkOP3h3oPG9smdbuk3TIhpSeOrCWpbcn1kt9cRSibpvwb5CJxUi0YhxPGCmNDhUF03bY8aA0UoQ5GvqGNkvrndTpX2QljL9QTdqrO9GSSCrhlJh2hXZTDxXPMclY9IpFWSTVBgo9t+yp7v0B/u/ExUWIGb3rEFDTWOj7X3sT3/ox77iUFAqJJY3zgR98bzmnHMOx0ydyqCyMhRFoaahgfeXL+edjz/m1rvvZv6SJcZ7fkDTH/azp0JvSkpa+/TeGjv2BqlI5J4gOSQGHSFUF3tXdD/2iHepxDRSwYs/6fssv1jW3iz6o3Skgq5UaNjaTyqkg04qALzz8cfG/wuWLuXXDzxg9IV7amoMVVPlnj1fyLH24/Oj7z+R/wNIlMgaSoVe7EONJjSS0YTZfT3VIbcIKjTm77MPjK9TlZRU4uJgJCc4nN2nP+hKBbCTCiAGxQUekT+5ouQlgiQEqikGBpKVVEhh5JgIVVUJt1mUCoWmUkE3j3Sqlk6usx0sPhRSD9Owqmyv/iAHRJDjQWbrrl38+oEHqHfvBNKTCnJMIjsmrsNzA2+hzrcVsJAKB9FU64hx4xhTUUFLWxsLly61DVqsJSUzTX/IzhKzBQ6c+ORsVFS2a6kJMnHaXHVJ2/SU/rBuyxYuuP56cRyyH6mbN6KiYzrNOzIjFapWR3AqHvZImc1wAHzz5TJO/UUBY86yX4/31oh3KKtY84/Q/RQUF2rckSR3n5w1C5diHuPpxx1HxaBBSb/ncjuo/KCLnR8EGed7FZ87CK3mDLazOVn50RP2fBKhflOMjx5uz8ihPBZOrVraV7hUTUYbtxs1yhajxqbKuFmm00oqaKZuXQ5BwDZV2hvNlOkPGSgVdDLC7ZeYfUuB4Y3hCThw+aQko0YVFV+uWEdXKrTsjPPhg6mJmkyUCvpAPDsQoCg/n3g8nrbevcPZd4KofvR99MXgW8eQz5P+0AeDpinjx/PgL37BGw8/zLJ//5tn/vIX7rzlFk6ZNQtVVfnpnXdyz1NPASmMGvdj+sMBq/6QwSSAjVQ4gB4MugWWM7FKeA8YPFX0QTXruic8rEoFj5I8TtAD4bYWnVRI/X4VDBXjhe58dw4E+vJ7nwhdCQOiOtmdt9zCnbfcwqCyMvbW1XHzn//Mr+6/n1/ef7+xXiR2cEmafuw/9J0W+38YiWXH9sVTQYolkgqJSgWNVMgrhumni8+r3hFVITBLSlrz0q2pD0APpIK5bM8nEWOQr6PAXWx87pQSZGddyWZ5DotRY6rqEImIdKhIcgyHJAuNcHYBqiThcXTStjuCqqo4JUtDFO6w7VdSum+klDg4cRlGjXG/CHK8qsyu6mpeXriQl7Y/ox1uasWBHFPJjplOwh+WPw2YM6q6p8LBUCpIksQFp50GwKvvvmvzVIjH40aKgTuFUWN2ILmTzcs1JYIezQTx0h/9iAnXh2jwb0eRkjvVngYdz7/1lvE5NzcLydIc5WSZvzcsZwS5sVKad8Z6JBVURaVqdQSX6qZessxANHU/sPXnOTni4mwUj30wsnDb24CpVNBJBT1V48Hjqg2lDECuWswpVdcxpnwMo4YO5eLTT+fx3/0OXzzHtt8ZVwvi5rDA85xdeB1lDx0Le7cY3+dH1vY6Z9XhMtuTzsYMHLD3s6eCkf6gtTkn/1zIhcd/TSx3O9wE62VDOWCtqKETWSFFkArNO2I2YkQ/1tTpD+kHdDpxole/saJ8ogdFSvA9kWSjHrk3x8Gki8Rz+OnTqcvi6aSCflypPBX0GT2f10upJumsb25OWg8AqXf3vB9fbuxr+kMmDvmfFwNLSnA6HNQ2NvZaKt8XSQUrvB4Ph40ezSmzZvF/3/++0Wdu2L4dMMd4rgOgVPgiPRWsffqBTH8wqv14ehc062ltPQX58S6VqFMnFZKVCgFNqdDSqCkVi1MTOLqvVCykosgHr6xkX676kgjrMU6dMIFTZs3ilFmzuFzzoHpv2TL+8847rLRU/erMoMJKP/om+maL/T+GxHh22y4hFe9VgxDPMP0hpwiKB8GISRAJwdpFgDmotgYSRuUHjUj0d+OpEAmag+dYWKV6tT1gzHeZwXRnolVHMNmN14HlomRQ/UH4KWjqDK9fpFRogX+4phU5hq2EJKEEpYLSfQeoEz8DXIIc8RaK9IrJIyqMdSqbKlFRiXRps9UJnXosJHLFjWN2taKikl2iS+cPbv7r6ccdh9vlYtnatbY8bt3rwO1ypXwGJUnin3fdxbicycay/NwcowP1ytnG8obSDYTGbknah/V30mFASYnxuXiEl0GHm527Xq4UYMaQYwAxYyxjmbqwECXLHmtn7YtBGrfHiLSrZOf5yLISV5uXd3ssOuLaMzQgOobc7GzqwtUEXc0ENFJBDxD1agUA2943VUPxiEpRZBh/uOzXvHDffUydOJHC/HxGydOMdW6JruPI2CMAlLk/A8BVt0WUYNXgk9roeuzPGR2zDmuKUv2mngd8yekPvfq5JLgUO6lwxCXZXLdkIAOni2vn95v3zu2XbM+env7QHmrHl+cg2qna0hrMkpLm7/kLHDjdEGlPbYgLJqmgG9VaMfJEX7JSQVIMchXgtF8U4PJKRDvVpDKXYKY/ZJVolXO6USr4PB4jT7TBQipYB+ox54EbqPfjfw/7MmNZuTjMvUdX2So5HQi43W5GDh2KoijcN3dur7bt66SCFXk5OTz9pz8BJlmo3xc98FdVtVv12BdZ/cHwVMiEVLCscyDTH/S+ydmL9AeAvIEZmOvKIu1Xr/7gjqcgFXSlQlP3pILDKeHJEsdoVfMeaPTlqi/dYfzIkcbni884g7/ccgu/vPZa4//SIhFHZFK2tR99E4fWE3kIwTrrZ81V3lVVxYPPPtv7HSYqFRLNDa1KBYCjBQvIkheB1OkPhlJBm+F0ByQkpxiIJyoRdCf3illiVL97uf14clTTVMWdU2A/tmCy1NdGKiSmdqRAuFXGrac+eEQnIGm/44m30LglZq/2EEpQKvSY/iD+DnCLRs2hmV1OHzOS6+bMMdZbU/ga22MiEEycKYiFFXxxe+pA0N2IJ8uBJ9uUWh8syVpeTg4nHHUUqqqmlC2mSn3QMW7ECIa4Rxn/zs3OJlAoOtbDm083ln/62WdUxten3Ee4q6vbgZRVPZG9aw3XVb1EsSru2ZQJE3A6HLicTmaMmAFAqFmxPzedQpIebJBZfHcb83/Zwu6PxbkNGJVFjnXdumTPh5THpD1DrriPqRMmAFDv32oMKvRr57KQG9aCIcaMekIQe/SlgkApUrv4eryS/NfuQHKqhBXLu6J5P0Qc4tnzPX+rWdUlA0SD5oE0bO5ZPpioSNpvSgVLW+XPdxqDT49FBunJtl8fXanQ2tFBsWZ+Vb/RPActo8KmVJAkyUiBSFcBQr8f7hSkwpHfyGHypfYBpYJp1Kj/Rq7mrdBemzz7pSsV9BSnbkkFrzclqRCypAnFpQMnKe7H/xasgWpvJigW3yPazQ/uy8x75fPgtu99D6fDwXNvvEF7MNjzBhoOJXk3YHuvVVVNSYok9oXWlIdYL+TeB9JToae0OZtS4UCmP6Tw0MkEuYO0tro6nvZc9H3rngptG11JpLSuVGhvEevo6Y+p4NEqQ+yr+qczHKalvT2jalk6DrX3Y9aUKbhdLk6eOdNY5nQ6OXXWLM479VTj/9OPOw7oJxUOZfSTCgcI1gbGKondussMbpasXJnx/qR4QgOeaNzYpikVdJPGEy8Rfz94AeIxYzAeT0UqaOkPkiQZaoVwgoxXZ2FHnCAa272fJqZjmAFqWeEo+3cdKUgFyyxyJp4KXdbKDz5Nnl86DIBc516RR28dkIc77EoFtXtWXZeuObWgFo2wcMoxvn3RRZx41FEArC9cIJY7HEwcPdq2j1hYZWLLKcwsPYnBpcLzYW9gHQ4X5JY7UaWDzy6fc9JJScv0YN7l7L74i0M2v8/LySGgVUAYEB7Pn069B4CP16yhrqsKh+pkUNZQ2/ayotgqOSTC2nHc1rKIaU0buDeyDIAxFRX88eabuevnP6co3zSONIw6AToEkdZhCfY+e1Wk2gw9Iptsi28HzdXdnquOmKZoccoepozTSAXfdsOkU5d8Oi2+IapikemnGQzl5wt1R8Dy3Bfkt+GVLLL6BmFOtH3in2mIjREVLmp3ZHTcYKqJAHYt657QAaj5zP5OKJ+XVFDsRo06oto181pIBVuJrqZqcv/xQ0apQdqDQcomi4Fh1SpzP8bMVcJ11X0Pmnelfs70dK9USgWHS2L6Vdm2ZapkJxUAcsq1NIvaZOJC98vR1UjhFjnpuusDca/XS7HmIL9h+3aa20RQF7LU7445Mh9Y9uPLDSuh0BtSwZUiFehAYfK4cYwfORJFUdi8I/O27FBSKoBIGfT7fIS7ugiGQraZZEeaChDWmf5QDwS8FftbqeB0OnG5XKIEeg/kxkEzaoylbu97gi/XQTynnUhncrlmHfGIiizFkB0xHKqTPR8q3HtUFbuWmW2vrlRob9dIhaL019qrl9YO9o5UUFWVB+fN4/g5czjpiis45utf5+rbbuPBefN4acEC2jpSp9yBJf3hEHk/7r3tNhbNnZvSr8uKHC2NSC8z3o9DD4fGE3kIoqvd7CDCrWZj0255WS46/XQyRRKpsG6x/d8dulGjplSoOAyGTRBlJdd9YAwkrOZsesPtsExY5w/RBuk77YN0nSQZebwfJKheG7HJp8dEj6KgazBTG84j3JRwrD0oFaREgiQFbOkPmlKBsgoA8lx7qF4TTU5/sJAVjh5LSoq/JqmgKS80RcjkceNs679+32NGgKAjFlZxq34uHX8lN37zCgDWFr3Jju11DJziNcrXHUx2eeaUKcbnOVoOm45oa/evvxRPIBUsHWvFmFKGlJcbpIEvnotHTvZi6C4FwtpxFGtqmYlKKxNHDGfyuHGcOmsWxx95JO6Aeb08bvOeqm06qWAGe/UbYyDB8GnZZFnKltJY1e256jDSGxQ3k0aKFIw6i1LB9FQwA2SrEskgFRKCWD3nNttyTAVZ9XgcybN3vrHDaYmPEP9oyNwF2apU2PVRhFX/TD8zGKyXqVxsf+8+b0lJZ4Kngg79mlkNm2xu2n++EsfbT3BPVKSo5I0T6++1kApyiooRACv9b/DGkD+wd2PqAZihVPCnftYTZccqiq38L0BuuXgPUpEKetqUJ8uB2y8JWW2CDNZ6/vqM5ivvvMOFN9wA2JUKMfpJhX5khn2drXT3UlL+eTFuhGjLNlVWZryNQSocIjOxkiQZ73Z9c7Pt3ujnkOiRYw3QFUXJOEjf354KYLbNPfkkHCylwr5UfwB464MP+FfZbawr/C/taVIg4l2mSWN2IMswiP7PjY3UrBPnpJMKwQ5dqZCeVNCVCnp56Ezx/vLlPPL886gIo2KHJLFi/Xoeef55fvPgg5x//fXc89RT/ObBB3n+rbeob24mFo8jyyZxfai8H26Xy1B/dAd9nNQZzqzMfD/6HvpJhQME6wA/3Gx+btFmp2ZNmcINl1+e0b5UVcWhiMZOHTNdLHztISH/jkXhB1Nhl2ZyoisVJAkmHis+71pvyH/tSgXxV1cqgFkip8lSd1eOiRw0h0vkDpeMdiNHoWatRQnQ6efMvT9lfNvsZI+EYCtYWHhVVXFYA77E1I4UsFV+8GqNU3kFAHnOvVStiuC0yt1DHTY1h7XaRCqYSgXtWLI1wkAjJmYffbSxbiBWgDOYXNtYTxFx+yVOmTmT4fEjiDu6eLn+CQYe4TbTHw4iu+x2ubjv9tv55nnncf3ll1NWZHpfONXulQpSzEIqZGfbTD6HH+Mz3L0B/HIejoiZ8K6bP3Un6QtqpMI9t96Ka8gYY/m8qy6wmUXmlJvHYTwDQLwxmVQAYcBXmAcua758U2ZKBSO9QfUwtLACjxwg6GmkoavO9r1DNgNP64xIPM1gSDeetKon8nz1dqWCvnxyBR2ydm17QSroSoWiEeJ6bXsndcccCSr8/ZRqGrUyWAOPEAPKz1tS0ml4Ktjvue7k7PNZ0h+yLNdnzbsADJbFtfAPE9e4dl3UuJ7pruv8va/Q6q3m/dUfpjymWJp0FB2J9eFVSaZ0nJ1U0JUK7TWplApi/110ohYIEicxBSJsSX8otdTebm5ro6G52TaQj/WnP/QjQ+yrSWO6d+FAQScVNvaCVNDJPsd+mo0/GCi1pEBYjfTSKhUSgvJMzen2t1IBzP66J2LjYCkV0inTesID8+YBsK7wLWrWRWndE09K84tHzHKS+QXZ/PCTQWSVOIgGVZ65rJ6dS7uMADjY2TOp4N3H9AedZLv8nHN4f+5c3nv6aX5/001cc9FFDCgpoam1lSdffpmXFizgd3//O6dddRXTL7yQGZdcwrotwsfqUDBq7A2ytXFS8BBUKsTice546CEWf/rpF30oXyj6SYUDhC6LqVe4VTGYxZZ2YY509OTJtvqt3UGOYfgFSJNOgMOPFzPx7z4LezfbDN4MUgFg8Fjxd+9mPFkamxpUjAA6lcSseKRWd9dCKuiNpSfgQJIkhkzXfBU+MTuYqEV6nZSaocgiyNegKuCwVmrIQKkQ6bCSClrAWT4cEKRCR62cQqlgHp+jx/QH8delaI2ZrlTQSncOs5QF9Cj+lGXsTKd5cZ3uu+8Gcnw5bKzbwLv1rxvpDweyI2irjvPMnDq2vmsGlMcfeSQ/vPJKfF6vTa0gqc6kkng2xOxKBU9APEMur4Qn4KCs2Kz44Y/nQtgMGnWZW3cVIPT0h+xAwFTaAFSuta03aIqHr91XzPcXliDJJhkVrxVEQXsCqTBgkgd/orFppkoF7XidqoemTTIDQkKh8tFqkapkpD9YSQXLoCWdp0IqUiHHU4fXkUAqOJzkTx5KkIEARHem94LoqI1T+YF5nw010YliQNS0I3VKQLBONnwgSse7DWnn5/ZUkD14VJmT1v4LVi40luszWlZSwaZU0AbgMUkcR0gNkj/EhRwzXbyNkpJpBpmtdamfs1g3ngpg9/UA8ORCoMA+gDTTH5Kvp07M/nrtDTwV+BmyFEuqAKE/U36Lp4KO1957z/bvqNSvVOhHZthnpYIl/SFTyf3ngW7OtnL9et5btoyHnnuOu554gvvmzmXpqlUpj+FQm4kF01ehvqnJnv6gnUMiqZCo4suYVNjPngpg8VXoQX1gJRIOZPWHeBplWk+wXpMFv23hkTNqeGh2NXUbzWMVSgVxrXOzsnD7HZz5+yJyBziN7XxuMcbVU9MCRelDJSP9oZdKhaZWYWA+sLQUEGOEM084gWvnzOH+22/H6/GQl5PDdy+5hBOPOgq/z4fL6SSmqUMHlJQwbODAXv1mX0eWTuYcgp4Kr733Hi/Mn88Nd9zxRR/KF4rupyr7sc+wqhPiEZVYWMUTkGjVSAW9LnsmkCOqGTC7vXDWd0X6w1uPmcSBDrfFHX+wNvu7ZzMurzA1C9bJtFXJFAx1GTnUPSkVdDmvPrs45EgvK+cFDV8FVVVt+WSOeBck9nfBFsgSgaYiY1MVyMGepU7RThW3PouXkP6Q79kLgCup+oMl/SGDkpIScXxRsS8GaX4JllnXv/70p9z6l3uZ1ngBjdtijDzBLudKLF83ZEQhf/jJD7n+jjt44o1/GRReLAgkCx32Cz58oI2aNVH+c0MjP/lsSNL3F3zlK9z15JMAdHjqCTbI5A5I0wzEXEYLkZudzdSf5OP0SBxzrbiP5VZSQc5FkWXQeLKcrCxqGhq6TX+wkQq6JwhA1VbbepIkMXq2HzrtbuXSpo+Ba5KCvbJxbnxx8Uw1OXwUKV0ZeyoYSgXFw/t3tjIwNIFdOStZsnIll331qyapoKYhFfQZ9UgjqGVCMYTJwOdYFDo5rjo8UkKKQn4pTp+LwPhhsAeaPq5kAKnx+NdqiQZVLvpHCRWzfIY6qmSMG6dHkAeRDsUewGNPgTrz94V8/LC4rp83/cGlerkyvo1jd22Cny2Ct8Xv6EoFv19XsqhMbrwdXp4A51xrbB92C7Kwtb0df34JrXtMFYicJq1ER6hJRo6pRlsWCof5x7//zeHOYwFPypKSkKxUaCvciaqqNuJPfz9SeirEVPT/AMLONsIt9jtmeCp4PEkpU4mu+P3pD/3IFPvDrE0flxxIjB42jPLiYmobG7npD3+wfff4iy9y1gknMOOIIwAoys/nyMMOM5UKh0jOOJhKhQ9XrmTZmjWA5nehV4DoJv0BMpd86ymH+1Op4M0w/SGcUFJSVVUemDeP/y5aRGF+PsMHD+bys8821Cn7CqPssKf79RJhvSZ5g53EwiqhJoWnL6rjuBvzOPrbOcQjZjlJneyvmOnj2/8dwOPn1tK6O46vXvTvMTWKJ0syJlRSYV+VCjqpUJyfn/TdqGHDeOXBB8nOykoq8d3c2kpNYyNjhw/fr8RSX4B+Pw5FUqEhXZnoLxn6SYUDgM9e6eTN2+wPWLhFwRNwGEqFgry8VJumRDyi4tIDarcXjj0fsvNh6wrY9HH6DYdohEOVkEoVDncRrJNp3hGjYKjLkv5gblKkOa83bosZg2tDqaCRCoOPFMFB9Zoo8aiKKquGJwGAQ00RSAZboEwYK6qyikMyN4i19zyQjoUSSkqCzVMBsFd/qN4OpaZxYI9GjXGVXGeVMJAsHmQYNVpJhZNnzuSpaybz2k+a2PlRF0dfbTedSSQVAI6dNo2ff+c7/OEf/zBmLyKtKpT1eMr7hJ4k7Fl+P98++rs8uuxhBgcPp6MuPakgRU1SIS87m/zBLs7+i6mEsZIK+b4CWrtM7wxdhdNd+oPuqZDjdkCXRe5WlbpEpa4a0eHaskTsJyHYKx3vwat5YdRIAYo8CKVMqAMC3ZN5ZvqDm7YqmXKnUCqs3rgRWZZTlpQMJygVBns+Juu7F8OFP4bviIoOqZQKwye0EKpNIBU088zxV4yF3wGNe4l2KobSyHY5NHXQ7uVdVMzyGekPvlwHhRVuGrbEaNoRY+Akr207PY1l8DQvJaM9OLRA/PMqFZyym1PiJnlTtWcXD734Mq+//744riw3MaDItYWK2ofhIeDIrxjre7QSLO8vX87kXEHqRTRSIZUBppUQkBWF+k1RBhwuznXe66/z5MsvAy8zh/vTmtMlkgprQx/z+IsvcvWFFxrL9HKRwYbURo2yRXUVcYaS0h8MTwWvl8Ie2v0o/ekP/cgM+5r+YE2BDDUr3QZM+wMet5sn/vAH/vbss9Q0NDBq6FAGlJbS0tbGc2+8wRuLFvHGokXG+tmBgFFa7lBSKuglkucvEf2SRyupmVapkNA3Zkoq6ITLgfBU6KkMdGIVqaq6Oh574QUAahoaWL91Kx+uXMllZ56JJEkU5OVx/qmn9poc2tfqD26XOZb5zlsDiXYqPH5uLR21Mh/c24YSVymb4DE8FfR+GcTk2vgzAnz0cDu1y/UKEZFuUx/ArGSUquRwd9BJhaIUpAJAuaXkthWF+fkUptnmUIdOoByKpEJvysL+L6OfVDgAmP/LZMaqZXecvEEuw1OhJxdUK+JRFY+ee52VCx4fjJoKq9+1GzZOmGnfsKwCHA6o3w1v/IOia1lalQAAIABJREFU4Rex++MIzTvELLsegFqVCllFovxhpEOlq13Bn+c0ghW3FtgECpwUj3bTuDXG3hURQ92gQ09TeKrhDY4vuJvhroWw4SMYKWYjFNlu1Bi3KBU2vRmicXuMY67Ntc0WRkNqcvpDyWBwusiSa3FLnfbqDzvX2a6HrRRhCigyFLg0qfnAUaYaIiGQHTrDCxJUrYgQCyu4/Q6DLNCDtcSZn4vPOIPW9nb+9txzAHRZK3mFg7D0FZhxtqHkSHl8cRXJ2XPqhCe75857eskxVO8uIBDPTzn7qkONukC71LkplDVWUqE4v4C2GvPEDE+FDIwac+WEdfamIRW6REcTdpThirfhrt+C2lKXlOtePMqNY5VYt011oRYNQqrZDov+BfmlMPMcVFXlzcWLqdy7l+OmTTOMOHXSoGxEFqyEgJxHcU4RjR1N7KiqspEOxmFppIKqqsQjKtPz/yG+eOGvNlLhotgObtHKkQL4IrV4i0NgbS50ZcMEMdOT66ymYWuMQUfYiQErYiGNrNKUCp5sB0UjBanQXBlPIhWiITv5pQ/cPi+pUKi0M1Y11STv/esxXl9iprIEAl7atHMyoJW8BfDFQmT5Hbz+/vsMGnIsUGakkaXyVLA+W3FHhKrVJqnQrA3YADpcDbh99ioPxnZy8vN//zPPcPbs2cbMoy/HTB1LhBxXiTsss3fOYNr0B5/Xi8Ph4ISOK9jq+JTqrA1J+4v2KxX6kSH0ILW3YbdVqRRukckffOCHgQNKSvjtjTcmLT955kxeevttYnFRAnDrrl1s2bnTCCoGl5cf8GPbXzjj+OPZVV1NR2cnAb+fr3/1q1QMGmT02YkEZqJSIdOZzvgB8FQwSij2UPazK0GpUFUnvIbKioq47Xvf4765c9m2e7cx1gFhenjmCSf06njSGfP2BOv4KBaP48ly8fW5pSz6ayub3grz4YOifwrnibFKIsk76iQ/Hz3cTts2J5RD3NGV5LGTCFOpsG/pD/+rBMG+IOsQJhUSlUhfVvSTCgcAOeVO2vbaB5ZVqyJUzPQZSoWeZqyskCMqPoc2WM/SGqCBowSpsF4zKJs9B35wr31DlxsGjYE9m+De7zLo7MNYxRCjsoNZ/cFS+z0W5bz8q4h5ZDpq/os/z2kYEHots6Ujj/fRuDXG9vfD5JbbOzddVdEWH8L6jrMZXrAQ3n4Czv4+IEwRPRalgtIZNgLzBXe00NWmMPGcLAqGmo9nLKTgI8Go0ekSRMWWTxngXo3T6tPQWAXNNcY/HRkYNeY7d5rX1qPp+BNM5wIFTsonuKldH2PvyijDZniZN6cef4HDuJ6pnOavPO88XnphCdEOiWirpaO8/wewcC6cdBn8/NmUx9awNcrTF9Vx7HV5HP3t7skoq0rCKge3ItqpUBAVHhGpvCEMRCxSwuzkoMxKKpSXF1JZs9v4t18jFTbv2EFHZyenzJxpGwQpimLMzASi2kBm0Gio3ibKKMai9lQeMAiemDOX+vBIhnmXsuLnbxOsP1Gce0Bi4CSPOGctVSIouVBKhuCs2Q53XyP281wVK2tbuPXuuwF49PnnmTZxIpV79hhk36hjcmnWKr5OGjuGdz/9iM+2bCESjVKqhDmdTwhyAXF8RnUXJS78QtqVweYxyzI4nWQHAtwWs3tF0FyN1JlQK14fFBUOQJFcZDkb2LahjUFHlCZdf+OyaCSBNU1JN2us3xQlMdcmUVHTo1Lhk7egZAhUTEx7DAAFtNoXbFuJtYspKymiDch3WnwiXnnAtsmVJx3D3xZ8wMfB+RzGFUb6g2HcZRlkWgceUUeYqpURjvyGIL9CQXPwuytnJS5vajlu4kBfx3Ovv86NV4gKLl6txKTNN0bfPg4xiw9ClzOYpFSwpj+EWxQG100nz13Bq1m/SdpfVO0nFfqRGfa17KKVVAg1f7ED4cPHjOHwMWNsy6rq6mhsacHhcHxuGf3BRF5ODj+95pqk5fr9WbZ2LafOmmUsTzQ6XLF+fUbBt2yUhN5/pMKYigo+/ewz1m/dyjFTp6ZdL9GosaahAYDphx/O8dOnM3XiRF5esIC2YJBdVVUsWLqUlxcu3GdSobdGjVZSpLmtjbKiInIHuPjqn4vwZLWw9kUxkRFyC1VlohqgbKKb8oluaveK8V/xJJUz/1BEdzCqP/SipKSqqmb6Q0JK3JcZh7JSIVGJ9GXFoZOwdgihYJibmBSm1r+FwhGi4d+7MoKqqjQ2iSAivzdKhYhVqaCREQOF+RFhrRGddILdpFHHlb81PpYH5wPQvEMnFcRyI/3hzm/BV30MVRYw0vcukY2bgWRPBYCRJ4nAftt7YVr32HPadcWAIvnY2nU6qj8XNn8C52TDfT9Aiak2AsCv1hNuVWivlo1Z385Ge7AbDam4E0tKAkwQnfRAzwoz/SFfC8C2mC6sPSkV1Djk25QKGqkQSZYkGukfqyO0VcnUfhZlxwddRDvM6g+J8Ho83Dj+l5y+92bCrZbGZ6GWU/3ec0nb6FhyfztKHBbf05Z2HR1WaWviNdRhZdRTmc8BqIpKPGZ2krrywIpSC6kwcHAhkiolrX/v00/z0zvv5O6nniJmqYHdGRZEUsDnw6mXHC0eDKXDhGwklVohIjoaxeWnNjpZnMuaT5GccO49Rfzg/YGc/zdtkNApOuwgbjrP/7F5PwG2rGDNpk22Xa9Yv56W9nYq9wpPjSETs5h0YRbTrshmyuFCxfDuxx/TGQrxcGQp17heYkbOfYBQKqiqys4PRUAoOS3NquYP4U418K+pFOckSXD0V8Wy2VpFGKeTSI54x8Nrkme0reZmsbBCPKoSahb325vtMMxUty9Krn+uK2r0Up36+5/SdmT7arjtDPjOYSm+tCOQkGKUXyvO/Z933cVjv/sdU8ZOEMtdJvlkJf4ALph+BC6nk3UtKwg5W430B2PmyjLI7LSRCiG2LAhTrVWk2bPDnPXrcNcTrE/9LqSTLL749tuGEsLtl5CcIhi7e9peVs4zzTWVuErMplToSFv9we/1GqqanFgJJ1Z/j8MGT7Ct2yY30Y9+9Aa9Nf61VvGxlrvuKxhUVsbkceM4fMwYm5z9UMXUCeIdv+3uu6nVgnAwA3TdbG/5unUZ7e9AkAqTxopU2TWbN3e7XqJSoVo7Hz04zw4E+Ma553LdnDn84tpr8Xk8fLJuHXNfeaVXx7Ov1R/aOsy2uanFTMeUHBJf+XUh0y4XkyOdLjE+sE6MgHiXLn+ujMseEhMDqjfaYwqGYdTYC1Ih1NVFVySCz+Mxylf2A3L0kpKh0EExkd2fsE5QHGrHvj/RTyrsR7S2t6MoCnJUZUn5U7wz6H5qB64GoGZNlM2L2ogpURyKi44dDqKhzBqheFQ1XeINUmGUfaWCNDLB4y+E37wGQO6u/4IE1WsitOyOm0aNHknMDL/9pG1TdcNHAEmeCgADJ3nILnXSXi3zzh+sM5SmoaK/3E9c9dN15k/FV12d8PpDqAm5gwWuXXTUyjaH3s4mexAQs6Y/+CzGNRqpMMizwjSzHD1N/LWSCj1Wf0hQKuiKkI4mWzlMgIGTNVJhbdRwpwdo0+oipzOFyy5yISEZwZ8NzuTBk6qoLLijhW2WSg49NVZ2wiANqWB57tr2piYV4hEVWer+mvktRMOwkcU4LO6ciZVNnnn1VU67+mpWa8G8zkTnZGWZJo15xXCYVgb1v/9I/kGN4HFlB6iNTQKg3L2Wy58tY8wpATwBhzkA0BQAQclNcNRRcN8yw9OD7atYv1UEvL+54YaUuak+n4+v/KqQ2bcUMGvqVJwOB4s//ZQHn32W4aog8oZ5hUpIicNrNzfx0nXiPPwuC/mzfZXteGxo1wLIQC787Bm4/XmY83/G14oWcCqV65M2tc42dtTJPHl+LaEmTVGU7WDQFC+BQgete+JG6cjEbXVFjT5wS+nHse4D83O4+zJPObJGCGrqhAFdTfh9PsZUVDBt4kSyOjYywruQPKtSQYf2HhcRYcYRR6CgUO/fzvxNb/HSggV0xoIoyDY5rDUH2Vkg2pwXvtdArEuhuc1sk4Lu5rSDUzkh/SE/O5fxI0bQHgzyqTbIlyTJkLjGI6qtvZNjKnGHXamQmP5g9VRorzHft0GhiXy9/AYuOv10Lp52MQBNsbqUx9mPfiRin5UKFuL57V818+AJVbz96+ZeG831IzPc+dOfcuJRRxGNxbh37lwjfUEP0KdOmEB2IMCemhpmXXqp7f9jLruMb/3859x699089/rrLFy61FAH7M/0B51U+HDlSqNcYSpYU84URWF3tUhlG5Ai/z8nK4trLhbt2l+feILKPZmXR45HVRp8O/h491JjRr8nxGIxW5/QmGK7qXNy8GRJKIUaqZDiuCWHRHa2mLhatXFjjykhulIhlZItHQw/hYKC/7mykJ8Hbrcbh8NBXJb586OP8tp77/HfRYuoa2zseeMvGFaPlANZbrWvo59U2E/Ytns3J115JT/64x+JBGWqs0QgsD3vIwqHu4iFVd57RDTAPjmbuRfXs/junmeeITH9IR2p0I3z35STwe3BWfkpk86SUeLw0d/bkGMqxa7NHFn1Xfj4taTN3DuXARBqVQg4GphY9ytoEjOLkkPipJ+IwFtXKvgLHDg1o7G46sWXJ4KLtpk3wQmXGPtVm+zl/fKcu+iok6nfaAY/oQRSIdppKSlpUyoI34QBnlUmqTB+RtK5ODPwVMhx1op/lAwRRo3+bGHuF7R3TgMnCVl+zdoIrbvNIEGf9XGncdP2F4pBwPLHOti7MsFHwJWct7d7eYTV/7R3aJ2N3Q/8rAPDdLOzEUvnt+PDLsKtyetFgiolXSPwKdnMnpF8PXXM/fOfue+22xh5eAmSKhFQY/w2soKcHWaZ02+dfz5OhzApveb225n76qsEOzvxq3F+2PEJrNLKD+YWw8W3iM+v3A9//1HCQYkBg680i9qYUCoMylpH+YQUOY/N4l42Sx4xeBsxCb71e/Hd1pWs37YNgMNGj+b+//u/pBkL3bgKYOSQITz8m98YDtkmzPu8eb45mHHHzBkSVr8r/rZ3MwOdlSf+P/5C8JhEjXucSDdw1260zS6C3RSqenWUlp3mc+jJknA4JUZpaqItC+0kXizBU8HZXfrDRosR7J5Nyd9rUFWVLI1M/Mwh2oUKJcjIIUOMoKfoj9O4oOgqRvsX2DeeMNNUXrXWM2GUaNtq/Zv5z47n+M2DD/KvwT9j0YB/2NzArRLJ/Alx8gY7ibSrbH+/i9Yu852N5bZy3A2p0830wCwQy6eifTpP/P4PTJ0orvuWnTuN9bw59ndaVwEpcRKUCunTH3xeLx2aUkH3odn1rsJNl1zDscOPA6ApWp/yOPvRj0Tsa/UH/f0HoVYMNSmseb6T57/T8Ll9VfqRDJfTyY1XXIHL6eTNxYu5/Cc/YVNlpRGEZAUCnD17NiBmsK3/d4bDrNq4kf8uWsSfHn2Um//8Z2q1AGt/VsYYUFJilMT8xi23cNGNN3Ln44+zYv16nnn1Ve5+8kmuvu02/msx1ATYVVVlbJ8KV194IacfJ9q25WvXplwnFeqDNbw9+C4eeOdBbr/nnoy2ae2wl2e+56mnWL1pE5t37DD+dxVF+d7CgXQFxNi7vCh1aoPVwPHSH/3IpoBIhDfbQcTRyZ7W3TY1pizL1DQ02MrJ68ehKyXTmTR+mVGipYM898Yb/N+993Lr3Xfzteuu4y+PPUZzW2Yx0xcBK6HVnUH5/zoOfW1ZH8HG7dtRVZX3ly+nXS4wSip2yWHGniYcZSs318Ng8MtigLvquSCn3NZzPlU8qpKjpz9ka43QgJH2lbojFbx+EShXb+eoc4KsfT2PHR92MeRIL2cV3Ehpywb47Uti3TOuYZvrAka9djpZDZ8A0NkgMzv31wzd9Sr8/H34h5jBG3dGgE/ndlCzVgTzAw7zULVEBFSy5MWXJzq9rqAEt/0TdfdGpB1rkRqExDxKFk6HTBZNdFQ2U7fRjBgSg2db+oPXolQoGYLiycYftQT+08+Ap39p275Ho8a4is+h7SO3SEjSyypg52dQt9OsBgHklLvIKXPSUSdTuTg5PSKVpwJAoFAsj4VVnrui3l7y0ZVcO8laqlBH0/YY2SVO4hGVjx5up6M2zum/LcThFANLm1IhjV+ClXiQo/DRw+2cdEu+jTEPNcm4VC/fdvyJq3+avhayNR92xtjpHF39IGfLe2HtYzwdOJfsQIAbr7iCa+fM4U+PPMLzb73FXU88we9++EO+GdvGGeHN8JYm+8wrhuGHi6oJL/wVXrobzrvRVBho6Q+u3CyU4qGE5EICNEHdLiivsB9Yg5DY10gBU7I5SuSKhtZ/RG18JgGfj4pBgxgxZAhvPfooj73wAg/Mm0fFoEFJubxHHnYYN115JX985JG010KHz2Hp+N6dB1f/MZlUCOQIwgqEUiEFPOMPByCfLVR+0MXY08znPtLNrIjDJe7j6JP9rH2xk63vhDnmB2ZQrSsVPAnpDylLSq5fYn7evQHGTEv5m6oCXkkoGbY7cphCG0VKhIkDNLImmsKwc94eeOcZUQHi/X+KZSsWMP6k68XPZa+yrV6dtcH2jFrTH4JdIabNyeHdP7Wy4Y1OOqLmPehQWvCmsbDRZw1zY6UcU38Fw4cOYuzw4YDwA9EhynKa79Pu5V2MPzMryaixyxkk2CDbylLqgw2f10u7lm40/owAW71haj+LsuA3LQyblY9L8RAiSHswSG4KD5N+9MMKPVjpffqD2O7axQNxeSWaKmP854dNVK+JsmNJl0FG9mP/YfjgwTzwi1/w6wceYFNlJXNuvtlIvfJ5vVw3Zw7Xz5lDYqseiURYu2UL9U1NrNuyhZqGBrbs3MngsjJGDRu2345PkiT+7wc/4JWFC1myciVbd+1i665dPPPqq0nrlhUVUdck+rONlZVAelIB4OhJk3jrgw9YtnYtl5x5prG8Mxxm844djB42zAji9Wd5fedKY70V69cTjcXwuLs3TEwM/Cv37OGbP/uZbdnA0lL+edddNLW24HQ4KNaIlEQMKivjxiuu4LEXXqC6vp7f/u1v/O6mm1i5YQN7a2vZsnMnOVlZHDZ6NJUbGnm54inkthj/ubyUmy78DmdeMJWf/vWvLFy6lILcXFwuF40tLUlK0954q31ZcNv3v8+Kzz4jLsu0tLXR1NrKsrVrmffaa2yqrOTRO+7ok+qOJFLhANzbuCwzf8kS1mzaRGFeHt8491yy/H2rve4nFfYTQpYHaqVzvvF54/btVHzLyUcPQ9AtGObsmBhoFw7P7PLLUUugoisV/FkiSNqmNb7dkQoAhQOhejv5/np8eQWEmhRadscZ7kiQFR1+HE7HdORXXWSHNkCog2C9zACPNsDf+ZnwcfCLQe+4MwIGqVB+mIe6D3U/BS85ZYJZadweY9BUD3W7ChgMSE1CBqfgQckrw9myiT2vbqCudQIzs++lyLWVPY2P2g4rFlIJOLXALNvC7koS8eKReKrXmMtGTUk6fZuJYwooccs1ztE6GoNU2JW0zxETG2lpWc/2Rccm7Std+kOgwC5XVBXVnOu2KBXiURUlptKeIn2hqTLGsBk+3vljC2ufF0HclMuyDdf7iIUwaK8WAczKZzuoXNzFV/9UhC/PYRj7zfpBLkv/1s6KuUGKR7qZdKEZyOgGXjlF7owb8Gv/Pp0dt54BqzYC8PVjj+LyK74tTs/p5LbvfY/2YJD5S5bwu7//nZsSne6Hi5QGvnMnbFslZvk3fGSSClHTU+OyJ8uQf3s07HxTVEDJKRQpJHpqTL1OKvjpikToikQIZhVT4M8l0F7PEF+QY2afaZvtufrCC/nmeeellZVeetZZnDxzJlyqlTvzSFz2VCnPXSlml4fN8LLr4wg+SXuOSoeK43j7KRg6zr6zkVPMyi1pSAWGiRnzEvcmFr0ZspMKGZSvGjrDhydLomFzjJbdccP4NKp7KvglCLYyatOtbHZ9jd3LJ6Oqlqor7c3GdQRgV3Iahg5VAa+mpurAzQ4CjKWNGcXaMddst62v5A3AUTIYLtUGfS6PUKe89yyTjxT+EjFnMtsfi8eNPGurUmFzZSW+OYIU3LGuBTlfxi37ycrx0hpqpaG5OaXUVVcqSKp5z1OSCtmwPv9tBoTHUxgZwp5PIow/MwslBjFL1ZmoJ0j7Lpnq1VEGTRHvpNWct1FTKuQNdnLu3UU8ckYNW98JUzTSTU6shBZvFbuqq5PM6/rRj0TsS/qDqqpG+oMvz4HDKTHgcC9Tv57N4rvb+OSpDiqO8fW6lF8/esaMyZN58b77eGDePJ574w1juT4zG0gRHGT5/Zx41FGAqCJ1IHH8kUdy/JFH0tTayrotW3hh/nzqm5oYU1HBwNJSJo4aRWlREWMqKvjaddexp8b0w0lU+llx1CTRr7+3bBlTzjsv7XoBn48svx8VCIVM5V00FmP9tm1MGT++2+PXlQojhgzhjOOPZ09NDZs00gOgrqmJ6vp6Hpg3D4CSwsJufSm+df75fOXYY7nwhhtY+NFHLPzoo/Q/rr2CTZF6bp93B7fPM7/S23+3y8WwgQON99XldHLR6ad3e05fRhx/5JEcM3kaz15eB+tjTJ/t56pf1HLzX//AivXr+e/ixZzVS+PPgwHrJEdPpVn3Fc+8+ir3PPWU8e8X5s/njOOO49o5c1L6nn0R6CcV9hPaO1PnG6uqyo1//zkXn34TWzYL87Chg8qgzjSj6QnxLgWPpMngrQHIL14UJmoFZXYjulQoFm7/UlM15RMPZ+fSLqpWRxkeH0620yK5PeossmuzqY9NYIBnLWz+hM6Gibglixvrhy/DKd8AYNzpAd77UyvFo91klzlNk0aHj2EzfKx/JcTOD7tweSTcwSIGB0Cu0UkFF74xY2DZJtS923HGsjm27K8A1FSvBU42rmE0pFBaoAU1IybZTk0aOAo0UkHBgcPpgpO+Du89C0PGwZ5NOImixBUcrtQDMCUeT04x0YPZup1J65+8dQbO4jDPNLxCTcxOOKQlFTSlQoFzO11qPp1NAzHCeItS4V9X1dO2N86wGcn3tG6DIHD2fGI2Wk3b4wapYFUqNG6Loaoq7/xeBFtLH2pj9s8KiGnEw5hT/Lg8EovvaWPvykgCqSBrx5x53qbDKTFyfAA0/umWI4ZCqb1qwTmzZzN/yRI6w2Gy1QQ/h6PPMj9PPkmQChs/EoROQZlpmukLkD/EBV85FR5+E5a9Dk/cBoXl8IBQ1+jBcK3kpzMc5ru//CVrNm3id9FczqKd6yr8nJbCqbunPNUSy8xG+QQPTPPytfuKiYUVKmb5+Oc368mR2yAKXPQTePB6Ucry3OvsOxqVAakweAxqII/80B4aFm2kZfdMkxhIyH8uHO7iuBvyyM1tFxVLPCIwGHmCn43/DbH+lU6OvV4812b6gwMe+TEl6x/lkpJ/8sDqNWxZGGbsqRoR0NZg+w02f5L2uqgqeDU1VVBys0vKYixtTNJ5kATjTXnkUfbcu4qJcPFPYe6vKNiwiNxADu2hZMlpfVMTg8oEgWolFWRF4Vu//xEn+29iqyS8LvxyDmUFebSGWqmur++eVLCksowYPBiXy8Xumhp2VlXxy/vvZ13LVpRimdW8hlPx0LL2Ck7jqyhxu6eCkiP6gVXPBQ1SQS9vWZiXxw7dqLHcRe4AFyNP8LP1nTDrX+0kRxGkwu6amn5SoR89QtkHpUI8ooIKTg+Gug1EP7747jb2fhrh4VOqOe1XhYye3bdmwP4XEPD7ueXb3+Yb557LsrVr8bhc3aYXfhEoys/nxKOOMsiMVLhuzhxee+89KvfsYeKoUUkeSlYMKivj2GnTWLJihW250+FgQEkJtY2NxGXZSPkwvlfcnDh1Ju+sXsw//vUvQz3o93o5fOxYvG43iqqydedOfF6vEbwPGziQay66KOk4lqxYwXW//S3/fvNNAMq6IUJ0DCwt5do5c/jLY48BQpFx+JgxHD52LLUNDezWiJWx+ROYUTib5z94hXeq3iTu6KIgL49fX389YysqUFWV3OzslMRRP5JRtyFK7XoxEbjt3TC+3IHceMUV3PHQQ7w4f37fJBUOQvqDnm40bOBAQl1dNDQ3M/fVV3lpwQKmTZzI7BkzOOGoo4wqZl8E+kmF/YSOFKTCTVd+k0ee/zfb9+zhL65biDtFEHX8xcPZuTK1vD0VlGAHDkkh7sjCZc29L6+AR9abZei6Q5EmYW+upvwwDzuXdrH30wjeErOuPJf/AnILyZUUPotNZYBnLfE1S5HrC8lyWuTbH7xokArZJU6+8/YA3D6JXR9HDN8DxemjYpboaPZ8EqF5R4wjFDGol6tE+oMquXEMGQ3LhOFeiXuj8RPu5kp0UkGOAfEoxa4t4lxHTLadmmvEKNA8GRU8Ili56vcwZCyccy3KBaU4JAU5KqclFZwRMbsc9+Sb7HVZhfibglRwyqIBKfestpEKLq9kG6xZESh0UuzaxLdKT6M6OpWO3QtNUkERwUa4TcxyAmx8M7msTuXiLhRZtZkwNm43VRhRiwNxw5YYTZVm4L7+1RDH3ZhnqebhoPwwQWboJpM6QlpeeKDQIcozPnErHHM+TBG5n3z6Nnz6FlzxayHl12GV+a9bBKdcbtvvjMmTOXryZJatWcNwZ8RUlE891SwVCqYvxn/uEzPY075ikg66p8YRJ4m/i5/XLsReaKqG7AJorScuOWmUfMx77TUjh3GhcwBnyXs5oWMrUjyWXLayJ1irgWjlRq2D76v+Uw5naWk0s+fAYz+Dzcthq31Axcgjks81ES430tFnwnvPMdL9Nssfn8hXfiVIjUiHuIeFw10cc20eo2b7cXXU/n975x1fRZU24Ofcnp6QUEIooVdpIkpRpNh777rq2ta6rnXtZVdXXfunu1bUVbGDvWFBRWwYEJBO6Anpvdxyvj/O3JLkJqSRgLzP7ze5uTMYiyL9AAAgAElEQVRnZs6cOXfmPe95C5w7CIZNhHs/BaUYc2o8v39Yya+vljPh/ARcsbZwoMZYBYu/AiBGGbelj28pJLWfk7SBTii1rJi69TEKhqwvYN7LMOOMBlXVgXAw2XLlJFuZnt2lzIpTsrluVHHnmCjXvPfB8NLtqMVfMmbwuczPWtigyNbt20NKhYp6AV9rvV4+yrgv9N0ecJHetSsrt6wOBTerT9D9QUWoOJxOJ6OHDOGXZcs49tJLG+zjt9Xyof8Z7qg+HL+3bvaHSl2GVppVn1dSXZKCJ8kW8gPtkphE0QZTNinDPGNGHhvH6nlVlG71k9DFPB8jZwCFPY/f164le8sWxo8cWUeJWZ9gXvSWxFSoH6Q1SFKGg3Gnx7P8/UoqCwPMuTKfCeclsPcZCcR3a7+AgIIhvWtXjp0xo7Or0Shaa358roxuQ130m9xQYXDIlCkcMqWhlWZjPH7LLTsssyU3l+KyMuw2G49ePR9XTg/2Gx7DvKz5fJ+VxfdZWc061/7jx0ddP3ncOGZOmsTnCxYAcNgBBzTreKcfeSTD+vfH5/czdtgwnE24YYw44kzSpkzH7oDLF2Q06gorNM3mX8x7sttQJ9tXeNn4YzVn3nQADzz7LIuWL2dLbm5IDthV6AilQjDA55Vnn82EUaOY9/33PP6//5FXVMT8n39m/s8/o5Qi1hPDEVMP4O8XX7xT6tEU0uPbibIoEWLPOe5Y5j7xBIMzM/H5woO7zL49UDYzq9yswEhWoECfI6HhNputmUoFY6lA/hYyxoQHUjE2K/XaRQ/CmSYOgTvBRm2G0VJXffsN8SXG5133HGzO9csn4VSWQFJPB7Fd7GROcuMIBmrETVyqne7DnfhqNCVb/FT6Lc1wftBSwQn7HQ3AiNi3GB7zTuiY7rKwubS3MkCaY5VxYcgYFHK9CKIyBoX+9wWsa+ve11KSpJrzAIHqxk2S7NWmHfzuiBgXQaXCO4+EBl/mQI0rg9wxPpj7eCigZSRxXW0cOsJkNejpWkT1ytXhjVZ2gMhgldoacA87IpZz3uxOUi87lYUBvnmkpE7qyII1XioL/dRWBkKuDcpuXBhWRCgmqksDbF5UUydFaFIvo1csrpcFIhgoM7aLDd76N7z7f3D9DFi2AIq2wx3HmpgH955RNztGWYRSIYq5vN1u5/FbbuHOK65ggMtqx9Nugpteq1tw6L5h6xutjQKjwAQ6DcXU6DeqYRrVVb8Y5QJQ4klCK8XCxcaK5Za//IVBJ1xIZWwKni0r4elrG9Rvh5RHBGEsK2q4vboCfF5Tx4QUmGj6N+88Ei4z/QwYMwOcbhgzHU69sfHzTTwGgCExH7BhQfilFUxflTHWzdBDY4258tJvzPl//RyWfG1td9FztIvq0nBfCA8sVJ3rGTQzhtpyzWvnbTdxAYrNQLzQNgwuesgUmhNxHRGYmAqWUgEH62zmWaWyrT5QT6nAkH0aHmTwePDEweZVHDw0M+p5IpUDFTvIZZ1ROZI+GSYrTvaWLVHLBC0VnE47R90f7kt3X3UV/Xr1avL421d4CfioE1Ohqqaa+PEl+GthxceV+P3+0AyaLoqlujRAfDd7aKCWOckTsmwaXDKVm8fcH3WWTdgzKCot5azrr+fGBx/ksrvuajLbTyhQYwvcH0K/fU9DmWHG31O47NueTLk8EbQJKPz04dt448I8tmTtHHNeYdckZ2kt8x8q4c2L8pqdpaytZHTvzoiBAxnavz/jfIeQUTmCqeP25dZLL+WKs84KLScfdhjjhg9n7LBhjB02jJmTJjFp7FgcDgdHTZvGcTNnRj2+UorbL7uM42bO5KaLL+bUiPgOTaGUYtyIEUwYNapJhQJATJKd7sOc+L3w1b9L+OGZ0tASLf6WEJ1gIPO9z0zA7oTSrX6c2s00y6rng6++6sTaRSfScnJnKRWCExSpycnEx8ZyzIwZvP/f/zL7wQe5+ZJLmDhmDDZsVFRVsua7xoOL7kzEUqGdCFoqHDF5Bh9++yUzKs8FzM1/9d//5up77+Xrn4z5cO8ePfAk1lJVHKC6NEBcatMzAQErPZrf0QaTlqClQsFW+k3xMPPmFNbMqyRuUzEEgCMuMgoKi8RDpxN41UbCxk/Zx20Gimrfw82s6/IF8Oo/jTVABDHJdg6+MQaeBY/lS91vsofc5WagXGFZKthLjIAfUA7Ya390r8HE1zOPjqs2vnCbF9WgFHRzWoOTAQ3jJZARzoTh1w1nnv24cFCDv7oGiB4AzVFjtbEnQqnQe0j4/3tOhxfWmtn0iNn4rj3KOPovqbz7N7NufMyT8H/3wfv/gaeX1jmHqq4kvTgc+Mi5OBx7g9pq8NaG3BsimXp1EgndHQyaEcPPL5Tz43PmYWFzmFgQ676p5qlDt5Haz4GvWqNskL6Xi61Ztfz6ilH+eBJtVJcG2LCwJhR3wRVnwx1vFBDluX58NTqUsi8YUyEusQbefDxcmdn/NPE5gjP2C9+DtVnhmBORlgoblhuFQD2ll9Ph4OiJE+DeQjOwPufOOn0PMNYPV/4X7j8n4tz3mM/gzL7NBkf9BV6+K1xm1U+w3kSZLnDEhywhLjzlFI4/6CBjKrzfSLhyInz2Alz8UMNzN0VpYfj/ssKG24OKhmBgz0POgy9fDW//y6NwrAlEyOvbjYKsqfNPOBwdn0LP8l9Jyv+GyqKTiE2xU1MWIN25iEH5i8B/K9jtdZU4950Nd8xFDRzLqBPi2Lq4luXvVzLqhHi8lpDo9NRVKhxxTwpvFPrZsqiW3z+sZLgtlzhgy7oknHudSoLzCpOmtbQAvptDYNbtlHWfQuI/ngRbYiimQrly4k3pATm/wDor1smaiKCLdgcMjqJUcDhh1FT48UOmBqKknQQef/llRg8dSt+ePeu8xAEOnzo1FJ38+PX/IMafyLBBJi7C6g3Rjxc8xpDpCQw9LByzIr1rV9545BG25OTwz6ee4ofFixvs+/vXRQR8dry2ugLEh/q/DI05nl9nD6f3wT4CgQCJ8fFs/820e88xrpDJusOtyJzkYfW8KmL9SaTGJbRrqjhh92JzTk5oAmLl+vW88v779ElPx+l0Mmrw4Drm060J1Oir0oCmm2cF+Lo2yDqkbIqJFyWRPsrNLy+ZWDzZC6rZsLCazEkeCtZ5QZtMT91HuEKPLmVX7HVcHN2HtdDyS9glKdkctlz87a0K9j4ryoTWTsRvuQa7Yxwcf9BBzdonEAiglGry9xAfG8ttl13W6Pb2oO9EI/PWz9yFgnPn9CBtQNOKiR1RWxmgdKvfWBP+AdFas+VXIwf33sdNSqaT/NVeCtf5OGraND6aP5/3v/6aC04+eZcK2BgZV29nxVQoiHClDOJ2uRjavz9D+/fnxEMOYcFzBXz5cAHjTu4cFwixVGgngrlsDxgxkdPXPsJQd9gEy263c9Yxx4S+d+3SJZwZoRkuEFXbjOCvY9sQTdSKqUDBFpRNMfbUeE56NBZboMYMlD2xdYr3O24gC6tNSr8Ml2W6vdf+xprBZjMDvA+eanCa9CHmZRDT1VIqTAkLQVUYSwV3lZlxDignKIU68pJQGW35lyexnvkPF/Pq2duZfe52Up0mBSCZIxteW6/w4N9Pwwdt2FKh8WCN9lora4U7Ighkv73gmlnm/8JtRlEA4RlzYPSM8lB6OIAMn5VCcMMy8NcLtLhlFXjDSoP49R/V3V5ZSq5lqdDdSpNoc0Bcmhlk7HdBIqn9w3rAPhM82Kyv3kod8kFzxSm6DTH7V5ea/jX5MtOuWbPL0X7jU2t3KmwORWK6OX4wsCOEYyqkln1rBs9d0s2GHz6Aj542fSCoSIgcMEYqFSpKzAx9RHuFyLGC4HXPbHxQfdDZxr3nwFPD65LSYL+jwt9P/JuJpRDk5btg1s0A6K4mu8bYYcP4y2mnhV9Aw/Yz2VAqSmBj2OWmWUQqEipLwe+Lvj0Y7HPMdEiPyCQRaVkRl7hjhUZsAuqkawAYH/90SOlUW645s+uxDFhzJ3xo/Q7X/xbeL28T3HE8VJYx+KBY7C7jhlSW46PWmq2Mqd1cx+rG6S1m3GlGeFzzZRXla3IBqAqksHK+DUZMMUqiX+cReO0BbEWbSVoxm5KrzkD7NS7LUuHGv17Lo0+8YBRGudnw44dG8RQTD6/lwCtbzLVH4+A/meabN4sJ1UfRpbpPnc3bCwo48YoreOX990MKgcMOOIBrzz+fO6+4ghm9D2dSztnE+BPxJNoY1D/TXE8jSoXFK40FRTCNZSQOu52+GRmNBgib98YKSrf5Q4Ea+1uWDZuLN/N5xqPkrq4k6zPThqlJSSFBKRhrIcjggyL9bCWl355MflFd66f7n32Wy+++m4tvu41Jp53GmGOP5eDzz+f5t98OBftrqfvDsJi5HO+dAU9d02i5zIkejv+/NM55szs9RjjRAVj/bTWlW/2UbvOTu9zLkjcqyHrNLL++Us4nt0VRsu6GaK359rESlr8fPU7WnkDJlvB77euHisle0LEp8oLxxuzu5vdtm822SwwyJ5yXwOTLEplwfkJo6TXeDRp+eants8ef3FrI88fmkP39HzNtYVVRgOqSAK54RWJPe0jmzV/rZcKoUaSlpLBx61Y+nD+fnLw8cvLywhm+OolAINAu7g/fZ2Xx0KxZdVKTBtFa17FUaIyaAjuuQAxd0mMbLbMzEaVCOxG0VPDYzI0MpmsLMm74cE4/8kj++qc/YbfbSU4o4Mjky/Av/6XBsYIE/Bod0NRYSgWV0IacthGWCiFKLJ/phIa5emNT7NjPvJ6aQISGeuT+MP5guPxJ8/2xv8CKH83/WsPC92GLZdJv+b2njwrPXKTtawZ57oAZeGplDcYP+3OojDrobABSHNn88Ix5AAd8kGy3BgU9Gwr/kYPKeFtug81+TB205f5Qke9vECTTYSkVAjH1UnwefA7cYVkXvPOwGURGtmHBNrr0c5CSaR588Z6I1Jb1/ejrWWMkF9eLJlxZSs5SM/CYdl0yqf0dDDgwJhSjISbZziF3hH1sk3rZmXJ5Ep7Euj9jV6yNPhFBHuO62hh5bBx2Z9j81R9hEBF0gdi+MvwgC2V/KLH8GKefbszTg0w7Hfa3zLQfPN8EJAwEwkqFYH/7z1/hjD5GgI0cgH9rpTDt03REZ/oOh2mnhb8fc0XdOAhxSfBklgnQGDlAHzWVjIvu5t/XX89Td97Z8LjDJ5nP5QuaPj8Y5cPdJ8PzN5ugkJGUF9f9Xl+pYLPBcVeFtyc07iPdKDNM/JKerkXk/Gb6cE1ZRFv++AE8eZUJoAqmLQaOMwP6/16NO8EWUu6t+6aaQEUVp6cdR4976wUDzNtMvylGUbVlUQ3Fy0w8hKpAF1Z8WGliHgA8ewO2rSZGRW0gjuRNH1L99SehmAp9Bg4lNj4hrAC82YqFsY8VVDalbvDOOkw61vSdTSs4p3cKk3PPblDE6/Nx3zPP8Ol3JiDj0dOnc8ZRR+Gw2zlj0mn0KzdWEJ5kG3179sTpcLA5N7dBDAaARcuMdce44cMbrVJjL/CP0h7mt01LQ+4P+46uG+slO+FnPn3EuOJUrIlh6Rzzjug1rq5SYcgh5p2RbF+PffWCOq5lwp5FUKlwyJQpHDVtGpPHjWPyuHEMHzgwNGDaXlDAIy++GEr316UFue69VQEmxFvK8TmPNllWKUW3oS5OfaEbh9/ThUPvSuG8uT248JN0TngyjZk3J4cWV5wid7mXog1NZ1lqb3y1mg9uKGDxm+33m8lf7eX7/5bywQ2FbF/R0HJwR2z6qZqXTs01bmT5fr57ooT3ry8IuaztDhRHKBX8tfDpnYXNc9VtJ4Lncjg7X0nQUmKS7Ey6OImpf00OLYfcbuTKZXMrQr+Rwmwvr/15Oxt/bP4AtKrEz4qPzXvs20dLdlB69ySo0Eru5UApRapl2fHRTYW8cloeg4tNkMabHnqIQy+4gEMvuICpZ53FX++5hw+++io0wdtSyisrWb95c8glsiVU1lMi1P/eXB6aNYsX5szho2++iXqOmtpaPG53kwE/K/LNhGB8186xeOx09welVG/gIeAgQAGfA1dprTc2uaPZ1wPcBZwJJANZwPVa6/k7r8bRCWZ/cAWMgOiOrzvQs9lsXPfn8OB5YvW1ZMR+TOA/X8CRDbWXi5/bwPKnlxEzehiJ242gYU9pg1IhLcPMHG7faAb+GYPCgdiSokfB3fvcVIo/GY273MpVn2xFTz/iQjPD+87Dxjz9oW/h85fMADKI5Q9vdyqOuj+V/DVeMgYPJvCADZsyP1qtrO4XEw83vw6fvQhn3Y7+dBZxVfn0d3/OuhrjH5fiyDZlM6IoFYBqdwaemi2hY0cSsJQXgZpaCtZ5eemUXJTdCPfjz06g195uKrLNYLiBUgFMgMCeA2HrGlgwNxT/AIDCbajv3uFPN8Xx8w9DSfpwTXjb/DdgyVfw8XMmZoDlV16x3/nw3Vzi7HXTeVZuLqR4U3cyExaSUezl3Dmnolb+BE/fZ0zGD/4T3YeH40f0z/8PA+PWMuHrJ/nsn+UstlJMuuIV/fcPKxUSezpwxdo4/J+pLHymlLyVXroNdRpFUHEeewceoMB2Eu9dA1t+rWHAgTGU55oHk2e7lbJ00N6QmGbM33sNgfPuCbkZACaORHL3sFKh74iw8iXghzf/DUW5cMH9RqHwsjXQP+Hqhu1dn/2OgmtfgJQesHcUU8iU7mZ5+Hv46SMYOwNGTiGeYKjPKAyfZLIyLP0GDm+YBaIOn78UDgZZn5O6wqtbwkqUYOrE4Hcwx3/iCvN/t7oz782iay98MWnEVOWz5MnfWfNlPypWZDMjGKfohw/qlu83Cq57ES7dGz56BvqNov+UP7HmiyrWfVNNUtXisPVRXJJR9lRXQMEW3ANGM/igWFZ8VIk3ZzvEQqU/lW2/1bL9ytPpFndPyMpkeeUxVMQOYh8eoOalR4mzLBVC2VO69amrWIu0OGkMh9O4Yr14G8P8z7PA+wQTc88k3pvKsQ92Y69xffk+K4vbHnuM6poaRg8dyvgRI0K7J6aHX2muWIXT4aBfr16sys7mhXfe4YgDD8TjclHj9bJ4xQo2bN2Kx+0ORRYPUZJvlj5DmTlpEo88+zK11X5q7ZWkpaRQVV1DRVUl83s8g89WS89ABdN6JrF44ECWrzHPgB+6vYpWVvo+n1HODj44JmSFFMTuVJz8bFeKb/sXo7P/D9641QRAFVrEH0GWyLOUCn3S07n0jLoBUbXWaK356Jtv+HX5cgB69ejBUdOmNfv43iqNDkRYCQUCO7SWcnpsjDgqrs66pIy6ouO2JbUse7eSF07MxeY0bj0xyXbKcutacg2aHsOB1yZjd0QfLDrcxnquuaz8pJLl75tl1PFxKFvbB6FFG8J1fu/aAiZenEh1aYDijT4mXpRITHLTwvovL5eHJgd+fNakbAb4/YNK+u/vYdiRsSEFkSvOuD/Zd/LguWijl8rCAGkDnbjimnYRACixYiwd91gaXz9YTOF6H1mzyxl3ZnydffNW1eKt0tZx22+OMmyp0MIdtYal38KQCeDaNVLsAXTJdDLy2FiWzqnkmSNy6DnGFQrIvXFhHkfe1wWoe0+6DXGy/IPKOlYjFXlh69dtS2sp3uyjpixA4XofGWNddd5/uytB15vgM6bb0PAkUu5yL5lMpyylhnWJP2BzadxJivziQr784Qe+/OEH7DZbk4Pu9K5dGdCnT51+XFxayk+//YbX58PjdofSVoPJtNAtNZXfVq7E5/czYtAgEuPrulHX1LOUaI2lgt/vD8V++uCrrzh6+vQ626O5PkSjfLtpv7g9UamglIoFvgBqgHMwtp93A18qpUZprXdkf/YscARwLbAOuBT4RCk1UWvdvFCx7UTQUsHljwFqccU1/dBOrTUm47bahlq14tVFDH5lDKMTitm+cjjLK4+DJHCmtUGp4PLAjDPh42fNrOZNr4UtFRKjKxUcLkXag/8hcPVUOOW6umYt5/3TBM/btAJOjLJ/RIrLoK9y3qoYtnnHhgY0QQsCAA44ySyAOuMWeOZ6juhyNV8W38zG2okk2S25MH1A1LraB42ApY0EY7PcH759aDsVnuTQbP26+dXkLKslc5KHpNJCSGxEqWCzwXFXmtn4WTfD1JPD21b+CHeegAPY77qX4ENMDAGt4c0HwuWum24G5kDspIl8knUoUyv/zPrqA0lxZJPuWkz+4gIcJHFM4vnY7iuD2XfXNc9/7wkct70DDGSw50MGrrgJVoCafBzdRxwIllLBHatxemz03c/NhoU1IYFw6GGxDDk0hi2Lakn0rYLT94aCrQwEVK91vL3xIRa9XM6il02fHBHzJq7F1oB18HiT/WHAGNjrAOMuU18wecGK8Gx3wFm3GwXDBfcDGm48BOb9zyxBDjzVuNTsCKWMK8SOGDrBLM1hrKVu+Gq2SWWYOcLES/htvpn5X/8b3PW+UbgtmNv0seY8Budb8R5+tzIWDN03vN3lMW4c2UuN5UVLUQr7sHGw6FO6O5eyelkvMt1ropeddpqx5MgcAX/+l/mtP3EFw8fNY766iw0LFaM9v4MHAoldsT3xM7x0O3zyPOSZWfXD7jbuWTGfmgFOt/3S4Ut44c9w2pn30uuLS/BrJ2tcp7LvrfsSuOMhuhV/AsF3WNBN66i/GCXUideY+oxtVMVTl8MvhFfuJmXLh8TbttG/bF9SBziYfIBxwTlkyhQG9OnDd4sWccLowTiXzg8du2eEZVTQrWf00KGsys7mqddf56nXX29wusljRuP87WuTNcMdYxQsV+9vFERPZpHSdziz//4Ur5yVh3OvPC75z0hcTid/vf1+vl7yPTatebd6Ho5HPueVtwrxxybywNMvMPuj90Ln6D0ombEz4plyWVJUgb7vvh76jlkFi4geN0Zokj+KLJFfaCyd0lIavoeC/uJHTJ3a6pRqlUUBUiPTQ29b16iiviWMPjneKCKrNFRBDZqKvIYK/qVzKlk6p/EAq644RdogJ10yHaQOcDJoRgwpfRr3HQ8GdANjadceMR2KNoUHcYXrfXxwfYRbh4bpN0SRESIIKhQUPta/+ise1ZVqbWS3dd9Us+6bugOO7sOdjDwujp6j3KGYRvHd7A0sEFuLtzrAy6dvp6rY3I8eI5wMPjgWmx16jHARk2LHGWNMzYPPpmA2qOQ+Dva/Mom5VxXwxb+K+eJfxWRO8jD+nHjWfl3N4tfLCVjN1XO0i4HTY+qPjc1xejkYPDOmWUofrXXIktLhaqGyZc5j8OSVcOwV8JfoQYVbTG0NfPKcCcA89eS67pYtYOrfktmwsIaynHCGryDvX9cK1yENTx8aDgiekung/Pd67BIuIG0hqERJ6mXe3wOmejj49hSqSwL0GOnCk2Tj+/+cwOrPTaDNxJ52VPcyNscvIduTxdINv0fNxhekrKKCVdnZDdYrpYiPjaW8srKOO8XS1athdTioev3UqNFoTUyFLdu3U2u5Pfz422/k5ufXSXsaVCo05foAUG4pnjora09nq7UuAPoDQ7TWawCUUkuA1cBFwION7aiUGg2cDpyntX7eWvc1sAy4Ezh651Y9TCAQCHVih88oFZyxTbwQtMahI16sxXlhKwCg5NP59LWZDtTNuZxuSWZWwj4gSjyBlnD8X+HTWcbH+dppcISVbqQRSwUAMkdgezu/4Xp3DNw3zwwWs5c23O5qmIYoJdPJkoSDyKgxP0qbuxFh4cRr4McP8Sz5msNSrsGr3ThVDbX2FFwJ0V/ozlETYOmnUbdVOXuR7F2He+XnLKswM8X7X5nEN4+UUFkQYPl7lUxPNDPszu4NXUEAOOwCYy66aQW89q/oZe4zZuqceZsxPf90VnhbWSEs+gwA1WsIvS8Yy//dmIXGznFdTFDP/MX5ZHo249LWjG9QoXDgqWaAvugzuH4Gl049FOfa+SbAJsD8N+h5nDFN7+FczKmFJ8CLN3LMQ7eSvbCawTMsre2r/0RVlNDr/HvhvvvquHEM8L3FGS8+x/KP/az6rBJPySoOT7GsCDxxRpljs8E+h4avKbVnWIFy8nXwejidHyMmwRMRD99b3oTX7oUVP5jvVzxpBo+dReYIc/4Pn4JrppqgkK/fZ5REQR66wCiTlnwFNrsJrHhqDyNcRPLR00bQcMfCFy+bdUPrpUzsO7x1CgULNXhvWPQph834iGGDxhJYsBY2gx49DXXwn0yAw2596ip6jrvSWHc8fCHORXM5t+dPvLTtHZKd5nkSOP46bN36QJqV5eDZ6wFw7HcUB92cTvXaUtgCQ07szXe/KGpKNa/NPoIe/VayfQ0MPjKV7lNSyep6N2PyIzJYBOOzjJsJL+9wkrghXXrApGNR899gTJc3+aHyCo78V6p5Tr50O/QZxsBDzmPgkUfAnwYa66sHv4GRU4jtYufCT9JZ9Eo5Qw81/f7qc8+lT3o6ny1YQF5hIRVVVdjtdvr36sXooUO5qGABXH8THHMZKFtds/DX/gXXzqLX2Bj+/F46Cem9cLrNs/3B267hlnufJHvhGziCsRB+nYf9gBO5/uLz8L08ljdSjcVB37HxzLyoicGI1rDWik0yUJQKreAPIUsE3R/spQms/66ajLEuXE3JEi1k9bwq+ts3hVf8568mUxKY58fRlzWIr9QcMsa4ufz7DPyWLF223UfZNj/dhrtCJuxFG718fEshJVv90Q+iTUasrVm1oUHXwqdKmXBuIrWVAboOdlFbESBvtTcUemTNvLBL05K3Khgw1Y8n0Ub6KFerB1fFG32k2Ncx6tzelFenUJHvJ2+1l4K1Ppa9V8kBVyc3OtityPdTluNH2eCI5KsZ5plDbSCWVWcsptfMTH6dXU55hPXGxh9ryF3uJXd5XTc6mwNGHhPHzJtT2mzFsGFhTUihAJCzzEvOsoam83FpNuK72ekxwhWKr5TU007aACdjTq0JBR7MXlAdNS+xP6kAACAASURBVMbC1sW1bF3cuLtIXJoNh1uR0tdJSqaD7kOdDWZTY5JtoQCENgcttzx58VbzOefRHSsV/D5451EjA9hsJtZSagbse6TJThS04Jl1k7G0DB5/xpkmY1VqeouqFpti58KP06kqDvDj82X8/EIZvfdxk5hux19b17Vk29La0Iz96JPiyIhwmXMn2IhJsvHOOb/jVmWUkIn2Q1G2j21Lauk5etex0GgNQdeboKWCza4YfWJdy4BjH06jaIOX2eflUbrVD1tjSWA/9mI/JqT7SRumiLUC4DtjFN2HO3G4FYFAgHXbs9HJFXgSws9Vh8PB+JEj6ZKUVEch4fP5WLpmDWUVFQzp1w+Py8XS1avx14+XBqAUK9et48W5c1tlqbBuU/i5rLXmw/nzOff440PrCpurVLAsFeLT9kylwtHAwqAQAKC1Xq+U+g44hiYEAWtfLxDKRae19imlZgM3KKXcWusOid5RUVWF1ppYj4c1n5lTuuKUcTNYuxgmH2tmb8FEzX/lbhz+CJeHk7sRuOo5bIebwaU/y/gKl6buR2JBRK72yAB1rSFzBNzzqXFZWPUzrLLcMZpSKjRFak944Gt4/FLzf49+ZjYfwNlQqeBwKcY9fhZccC8AKXs1kmfWZjNR8i8bDz4vTisQmi+1P43OQ5x8Hfz+PUw9pcGmmHMug2fms2/SU1TGDWLM9CJ6D0pjyL/SePGGHoyJe4m942cBkDioEX9vlxuued4Evyve3lgtDNNPNxkSKkuNOf7Vz8Ljl4X97TMGMXxELN6qNJa/X0HtOmMaXfbTUobFWAqakfsbd5XeQ+DSx4yZ6jPXwVsPEru6XoDHBe/QddKxnHj3SOLmzMK+tRb+dwfu/U9gyEF7mTLrlsDzN5n/M/cyM/RgAglmmeCSPb/+Gz1PvZzpl/REv/1F+Jd1dpTsDGAGsE9mmQwCo6YaK4SCrQ2DF4L5DUw6xpzX6YEpxzXdhh3BBfcb5c8vn8JdJzbcvmCOWcCkdkzsArPWwtzHjHvHTx/Cyp+MO8CTV9Xdd8CY9q3rqKkw+x7cv77DkF/DqVfVpGObtuI48BRjCvqPk4lf9TNHplyBU5mXpm3QKFNmyvEmCGlJHjxykfk9n3w9nipj+RM/MJ1Lv87gs7uK+O3tCrauNoP14UcaC5h+D1zDByelcETcxeiYhPaZKTn0fJj/Bvumv8Ze91xHvHcp/P0CWGO547z3hBkEbbeUFg+ca1xkMkeQlJHEtKsTjMXJR3nETD6Ws445pk6w3BAL34eXLB/zuY833P75i/DlK7DXAXS5+0NwhRWhdrud2669kNnnvALBN80vn8ABpi8lq24cvPlqlqV8ymlHHmKsWDYsN4rJzSuNG9HEo6FbX6OALMk3MTda4yIj/CFkie0FRqnw0/2a9TV5DJwew3GPtvL9jInLFPSxrSoOsPnbPGLTIoJB1o8R88z1Jnhu5siGlmjuGKMsdcfCxuXhYLsWTsBpd8DQffHUVNK1rBAyzockM2GSng7nPgOkpJtsNVEo2eKjeLOPnGW1bPp4PaO23Ujv1xdQ6BtIVSAFArEo7zh82gychqsKRnd7hfXVB/DF7DtDA98xp8az3wXRMxYopYhLszU6YPWtXcWfuh0MXyfjOPdWsDvRMx2889Rw1q7K4NM7CskYE33gVphtFM6ZY3wMzv0INLhslQzyfIy792VMu7bugKB4k49lbxdQsNFOwVovWpv0vIXZPpa8VcGStysazRie1MvB/pcnmWwyUV7PZbl+8lZ5WfmxmcCacnkie5+VwOLXy6koCFBbHmDrkloCPk15np+K/AAV+YFQtq6kXnacMebAM29KZvRJcTjcinfPW0ZM8e8wZjqjTkxg6GEmFXHWG+VUFTW0TtEBzfL3K6nIN9tKtvjJbkYoI0cLgjSaE2nwRvxMa2sad4EoyoVbjzLv7yDBSZxX7jaK9kPOhbEz4e2Hzfr0/say593/M8/rkVPA4TIBvU+5wWSs2gE2hyIuzc60a017JvZ0RFVQrfmyincuN5N5+1+Z1MDlRvt8nNXrZOK96ym46COWrt2bX14q5+NbC0nu3bJhXVWRH29ODkNmht0nYrvYSBvgbNCvctfaWTrPE4p5kdjTwbjT40NpkZvCnWBrloK0ZJMPB9X0rPwEPii0JrMOCwebt0jp6+T893qQu7yWgB/Wf1PNL/8ro2qbnU3bIBz0WLOUyMd3T5wxij4T3CGrmhrga7xAlAlU+qIU5A51Ed/NTp+YcQycHhP1WoLKhOZYKpRVVNSJvfDbKhNzLTMjg+wtW3hp7lyyfg9bKs//+WegafeH2ooA3kqTxc2d2DkWK6qpPMg7/eRK5QBztdYX1Vv/BHCS1rpr9D3BeuGP1VoPqbf+ZIxwMFJrvSzqzhbjx4/XP1s3qi1s3b6dwy+8kASVwtGr72Sg5xMO6vsw8eVWSr3MkTD5ODPofuP+RiPOb+hzBTq5B5lL/g5A3umzSfjsn3jyLN/1T9vpXq3NMoPjnPVmBvbvs0OCcJvweeHp62DBO/CXx2BiI0qQ3xcapcaEw+tGxq9P7gZY9h3ca/mWTjsdbny55fXy++HScWZgXY+A3Q1+PzasgfC/5sHY6Q3KhaiqgPefNPEEinLN5+1z4b9Xm7qO3B8ejHDDDb7YspfBczdCbCJc/1IdgW3D2RfQN+eZ0Hdts6OeXxW9bX5faNIhgtGYF26DX+eZ73FJdeM9pHQ3QQI3r6xrNRFk5lnG9/7TWWZQFo1/fFTXOqEpXvsXPHuDyXDwZrSH8y5IIGAGk/+73aSDvOQRGDEZ/F5zLZtWmACFlz9hYn/Up7TQuH3kZpu0oFlfwOhpcP8X7VtPrU0933nYKCYLtxkh/7GfjLJwRxRtR184ClUSEcj0tRzTRwAqy4zC5/t3Gw403i6C+GQCPs2StyrIWVbL0MNiyZwYVhwWb/bh/GUOcQN6GGGrrfj9cOFI0/71cbrqZFGpg91hniulBeb3GKTnAOPmVVVupPaA38RJ+fHDhsc4+lLzrFn2Lbx0B9RYVmUjJkOvwUZxNnqacVNI6U7g0Uuw/W4FXbXZ4ZTrIX0As+/uRk7JQOJs27lg2o3NCwo6bD945Psdl2sBSqlftNbjd1xy96UzZYn2kiMApp12LkVVRRyTfQfxPhPU9dhH04jt0lCA1QHIWVYbdSBntms2fLgBW1548J/k2MSRKVeY7Ddn32FcfcA8B+e9ZN7LO5vE1LB1VBPo/C2o0ua/RxZ2e5oKe0+2L68NmeQHKQ90p9QfPmdsFxtJ3X0MGbyGXqPsODzh93HhY48yxPZ21HMsrT6JZeXH49MNJ00i2W/KUgasvCW8YuQU+PN9DQt+9Ixp97PvNIpji/y1tXz7aEloIO62lZDuysJGeIa0MpBKrnckWkdX0MTbt9HVuQKFpsiXyT4vXULXodF9zQM+TWmOn8L1Xoo3+VD+Ggb5XidebYP+o4yiqd8oKMkjcPlEbIWb0QecjErvbxS9RQ0DZNc5fvf+VE6+mIA9hvy1XqqKA+StCVDIUAI2UyetoWiDl5LNfmzUMnOfuYw+IIpbQN4mI3dFjl16DjR9+p2Hw+v+9hz0Hhr+ntrTWOVoDbcdY9Jhd+0NF/3bbFubBZtWmoDH+ZvrnvO4q+DiB02mqxdva/iO7DUYrvhPVAvdEF3SoUdm+LvfZ9wsaxvOauuAZvFbFSR0tzPggHr3rGArvP1Q+P2WkELlmFPI/3wxHlvLgzd6bEUk2rftuKDFyqrDKPQZl6mqQAo53lGN9sEwmq7u1XRP3RrVPSaiGL6iEobFvEusPeLexyUZa+G9DmhyErSmIkBloZ+CNd6Q4qOiIEDxZl9Ix+Ct0uSvaltAWWecIrm3g7QBTmxOhfZrCtd7+a68kLf1W8Q4Ykl2puKr1tQfYjvdCkdCgM35W9FRsj3deOGFPPvWW2wvKGiwzWazce/f/sbBkydHrVdhtpdnj8whqZedCz/uGbVMa2muHNHZSoVa4EGt9Q311t8N3KC1blTlppT6FEjUWu9Xb/1M4DPgAK11wxCaEbSXMPDtfY8y8vNrcAJuDQ7VdIct9dnJru6CzbY/I2Ojv7wAntk2AI+tkkO7lPBrWTwrq5p+kbUUGxqFxr+LJwHJcFXTP6aSpRUJFPlal5vXrfxMSCyhp6uG6oC5Xo8tQJrTi1KQXe0hqzyRzTVumn7qRaKxAQEUoOnurKXE76A60DKzoyRHIpOT/PR2rcGhvMwr7sKKyigDWIvJiUWMii/jjbwelPvtHJ2aRzdXeJBV4bdR6HXS29O4trQ2oHg5N52KgBUMx1nDXnHlZLircdkCeGyaIq+DV7enW9fXHDSj4srZWusm37t75Su3oYmx+UPt0Vq6O2so9TuoCtjZmc9Wtwrg07Tot9vF4eXQ1ApSnWXk1ibx+vboaR17uasZGltBV5eX/FonnxU1DCLVESTYfRyRmk9Xl5dyv50Kv50l5fGsrYoh01ONXWkq/Ta6u2rJjKnGhibN6SU4AenXUOW3E+9oxNzaosDr5NfyBGYkF7KoPJHvS5MIXq9DBejurOWI1DxctsbvpzegKPU7SHU2/uyv8NvYUuOh0Oek3G9nWGwFyQ4vcfbwoPDnskQclzzImLPPb35D7YA9RKnQabJEe8kRvvJyyo83igS3H8AJqi3PUU1MI4OMdWUO3t7Y0M3BhqZbjJ84R8O+Hu/QdPOY31KlX5FbZW8gEntsmvRYP1pDglPTPabub8+uIDbKsRsjp8rGx1tiSHAGsClIdGrS3HWPOTDRF7W+9akOJKC19bxUCqeqwqEaf0cuL3bhDViBVu2aAQk+HC0UlX7MdzE+tZZ2iB/ZZmr8ENDNq4hdaVz1xBhfAGyKdr0WX8A8O5tz/vag2m/6oNMGtX54fm08Zd76N1XTO9bP1B7V9IgJsKXSzuvZsfgj2i7JGSDN48euYGLXGrp6mpcxoNoP2jqOw6Zx7iKid43fQa0OPg8UYAfV8AbE2Ip3OL5pLwprbGyutJPmDtAztul3+K5CQCvKlKOZiaFVFKlK4QwY6xpNwz6lsKGa+g0r64/283txNeN+aXn2mkYP3Uw5orPdHyB6Yu7mPLZUa/ZVSl0IXAjQp0/7mJlWVVeTjDd0dn8Afil08WO+C19A0S/eR48YPynuAAU1Nn7Ic+PTNdic+axMvobskm30iauiT8wG7MpBkrOYvGpNcaFJ6TYr3wFUW8uex1pgLTag9Xmjq4HPimxAXa1vgsNNjxg/68od+HXb2nhDq+tWzNv54LJ58NjdlHp9QHGj5ecVw1cqAb8Vl+PFQg9Om5sDulfTxRVgUaGL9eUOxnWBPnF+tlba2Vplp8yrSHEF6BHjJ7vcQUFE6rqNwMY8O2BM2h1K49egaZnm+8digEpr2b1ojxq3tg+0lNbYYm8Dni+AWHs8Vf5Ao/fW/N4chF8Ppa2rZBupAV4o9GBXHvwazKPdB5QRGcVlNfAtRuEaa3czMsVLnEOzrNhJfrWNNEvg89g1NX6FBgIaUlwBXDbNhgoH5T4fS7cl4NNAvXYpB54tjGNokhd/QOHT0DvOT7wjQKxDUxtQfJnjIbfKxvAkO8nuAMnOAGkeTRd3gFo/ZFfY+TrHQ7nPhnlt+cjCDbhJcgbwBmBwko8VJZqJte0nCOxhdJgssTPkiI0riugflCPsYDwy2vZU8gVs5NWoOrNlfg2/FERXVgRQ5FS1TSyM4q4fgSbZpXE2oaALldRQUGOmPvJrGh9hzs/VHJpR1ahiQWF+hx57wyxbBbVp1OiGcZTWl6fwfc7yOutSXH7GpdbSzdM8NXuVX/FTvotqv2JgQhSXQKAmAEU1drp5/E0O1gMacqrsVPtV8KJIdftJcjal6IRtVXYCGkYke0lyaaJ38+gU1thYU+agu8dPvFOT6g6gNWwst/NzgYuuVjuUeBUFNQ0VTEFswMjkWrrH1B0kuWyaNE8ARyN9obDGxu8lzgYzvbXWdfmswZUN6BHjJ8ZuhmH51Tb2Tq2tM2AP9wHzvcxrntkNFQqm9KZKB/9bF0+8I0CVX9VRKACUeG2UWPtuKHcwPb2aFFfjioW65w9fUHGtotLXMs2CL2CUen6t+Hyrh8x4H6nuAIW1NoprbS24w4aANm0d3s+8n6Bhn01yuhmcaMOuAAVdXH6SXc07Y4XfyfbqLk1OUikgxVmK1tXMy/HgDSjsSjM8yUuKO0B6jFHkdD4eo/BV4YleG9V0dReTRBuVLrb28bRz2lo3AdtWOttSIReY00qTxdeAMbuC+4O3opy1X6whvp+d1LQUE+yrKTMoQRD2CHb3SMx/VFr93tPsdKMNZ0wsDk/7vT/2EEuFTpMl2s39QWvKtmxh69oShoxtXYT5BnjiRBYB45pZWU85aneE09/+0fH7oaLxiYqoJHSpG1ejotT4t0dzA2wtFaXG1TAa8Sk7THfaIiL7QHsfu6XnBzNOiE9uGLtE2H2pqQq7S7YQrTU1ZbrNFq7KpkwQSqe7XX+ru4ulwjIgmkPwcGB5lPX19z1OKRWrdWQqBYYDtUAjOdfaH2dcPEOPaufAbIIgCIIgNIfdX5ZQioRevRjSa8fxBoQW4nCaWA57KnZ7268/Lrq73C53zMbo7D7Q2ecXdj7uGLO0AgV4/gA6zs726HkX2E8pFYpIp5TKBCZb23a0rxM4KWJfB3AK8GlHRWsWBEEQBKFTEVlCEARBEDqRzlYqPA1kA3OVUscopY4G5gKbgP8GCyml+iqlfEqpW4PrtNZZGNPEh5VSf1ZKzQBmA/2A2zrwGgRBEARB6DxElhAEQRCETqRTlQpa6wpgOrAKeAl4GVgPTNdal0cUtcKRNqjvucDzwN3AB0Bv4FCt9aKdXHVBEARBEHYBRJYQBEEQhM6ls2MqoLXeCJywgzLZRAmPpbWuAq62FkEQBEEQ9kBElhAEQRCEzqOz3R8EQRAEQRAEQRAEQdhNEaWCIAiCIAiCIAiCIAitQpQKgiAIgiAIgiAIgiC0ClEqCIIgCIIgCIIgCILQKkSpIAiCIAiCIAiCIAhCqxClgiAIgiAIgiAIgiAIrUKUCoIgCIIgCIIgCIIgtApRKgiCIAiCIAiCIAiC0CqU1rqz69BpKKXygA3teMg0IL8djyc0jbR3xyLt3fFIm3csf8T27qu17trZlfijInLEbo+0d8ci7d3xSJt3LH/E9m6WHLFHKxXaG6XUz1rr8Z1djz0Fae+ORdq745E271ikvYXORvpgxyLt3bFIe3c80uYdy57c3uL+IAiCIAiCIAiCIAhCqxClgiAIgiAIgiAIgiAIrUKUCu3LU51dgT0Mae+ORdq745E271ikvYXORvpgxyLt3bFIe3c80uYdyx7b3hJTQRAEQRAEQRAEQRCEViGWCoIgCIIgCIIgCIIgtApRKrQRpVRvpdSbSqkSpVSpUuptpVSfzq7X7oZSqpdS6jGl1PdKqUqllFZKZUYp51FK3a+U2qaUqrLKHxClnE0pdaNSKlspVa2UWqyUOqEjrmVXRyl1olLqLaXUBqsNVyql7lFKJdQrl6KUekYpla+UqlBKfa6U2ivK8Zp1T/ZklFKHKKW+UErlKKVqlFKblVKvK6WG1yvXrOdJc++NYFBKfWw9U+6ut176uNDpiBzRPogc0XGIHNHxiBzR+Ygs0TSiVGgDSqlY4AtgKHAOcBYwCPhSKRXXmXXbDRkInAwUAd80Ue5Z4ALgVuBIYBvwiVJqTL1ydwG3A48DhwELgTeUUoe3b7V3S64B/MDfgUOBJ4FLgM+UUjYApZQC3rW2Xw6cADgxfbtXveM1957syXQBfgEuAw4GbgRGAAuVUn2h+c+TFt6bPR6l1GnA6CjrpY8LnY7IEe2KyBEdh8gRHY/IEZ2IyBLNQGstSysX4ErMQ3VgxLp+gA+4urPrtzstgC3i/z8DGsisV2a0tf7ciHUOYCXwbsS6bkANcEe9/ecBSzr7Wjt7AbpGWXe21bbTre/HWN+nRZRJAgqBR1t6T2SJeh+GWG33N+t7s54nzb03smiAZCAHOM1qs7tb2o7Sx2XZmYvIEe3aliJHdFxbixyxCywiR3RYO4ss0YxFLBXaxtHAQq31muAKrfV64DtMJxOaidY60IxiRwNe4LWI/XzAbOAQpZTbWn0I4AL+V2///wF7KaX6tb3Guy9a67woq3+yPjOsz6OBrVrrLyP2KwHeo27fbu49ERpSYH16rc/mPk+ae28EuA9YprV+Nco26ePCroDIEe2EyBEdh8gRuwwiR3QMIks0A1EqtI0RwNIo65cBw6OsF9rGCGC91rqy3vplmJf/wIhyNcCaKOVA7k00plqfv1ufTfXtPkqp+IhyzbknAqCUsiulXEqpQcB/MZrv2dbm5j5Pmntv9miUUlMwM2d/aaSI9HFhV0DkiI5F5Iidh8gRHYDIER2LyBLNR5QKbaMLxnevPoVASgfXZU+gqfYObg9+FmvLtqiJcgKglMoA7gQ+11r/bK3eUVunNLOctHVdfsAIqquAURgz0e3WtuY+T5p7b/ZYlFJOjLD1gNZ6ZSPFpI8LuwIiR3QsIkfsBESO6FBEjuggRJZoGaJUaDv1XzgAqsNrsWegaF57N7fcHo+lQZ2L8bc7N3IT0tY7g7OA/YDTgVJMUKvMiO3S5u3D9UAM8I8mykgfF3YVpH91HPK7b2dEjuhwRI7oOESWaAGiVGgbRUTXLKUQXRsltI1CGm/v4PbgZ4oVkbWpcns0SikPJmJtf+AQrfXmiM07auuiZpaTto5Aa/271voHyy9vBhAP3GBtbu7zpLn3Zo/ESp11E3AL4FZKJSulkq3Nwe92pI8LuwYiR3QsIke0IyJHdDwiR3QMIku0HFEqtI1lGB+Z+gwHlndwXfYElgH9rJQ5kQwHagn7Pi4D3MCAKOVA7k3QpOstYAJwuNb6t3pFmurbG7XW5RHlmnNPhHporYsx7RP0o2vu86S592ZPpT/gwQRUK4pYwKRBKwL2Qvq4sGsgckTHInJEOyFyROcjcsRORWSJFiJKhbbxLrCfUqp/cIVlgjTZ2ia0L+9icr+eFFyhlHIApwCfaq1rrNUfY36gZ9Tb/0xgqRUJd4/FyiH9MkbDfYzWemGUYu8CGUqpqRH7JQJHUbdvN/eeCPVQSnXH5JJea61q7vOkufdmTyULmBZlASMcTMO8vKWPC7sCIkd0LCJHtAMiR+waiByxUxFZooWohjFohOailIoDFgNVwM0YX5m7gARglGj6WoZS6kTr3xnAxZhIq3lAntb6a6vMbEyqp2uB9cAlwJHAJK31oohj3QtcBfwdWIT50V6Eefm91yEXtIuilHoS077/AN6vt3mz1nqzJTB8C/TGtHURcCMmKNBorfWmiOM1657sySil3sH0wyUYH8jBwF+BHsAErfWq5j5PWnJvhDBKKQ38Q2t9s/Vd+rjQ6Ygc0b6IHNExiBzR8YgcsWsgskQTaK1lacMC9MGYf5UCZcAcILOz67U7LpiHX7Tlq4gyMcCDmBQ61ZgouAdGOZYd80DdgImSuwQ4sbOvcVdYgOwm2vr2iHJdgOcwfl6VwDzMA7L+8Zp1T/bkBRPs5xeg2GrLlZiIwpn1yjXredLceyNLnTbTwN2taUfp47LszEXkiHZtS5EjOqadRY7o+DYXOWIXWESWaHwRSwVBEARBEARBEARBEFqFxFQQBEEQBEEQBEEQBKFViFJBEARBEARBEARBEIRWIUoFQRAEQRAEQRAEQRBahSgVBEEQBEEQBEEQBEFoFaJUEARBEARBEARBEAShVYhSQRAEQRAEQRAEQRCEViFKBUEQUEp9pZT6Q+SXVUr1UEq9oJTarJTyK6W0Uiq5s+slCIIgCH9URI4QhD0bR2dXQBCE9qMVL/RztdazdkZdOpFZwMHAq8AaQAPVnVkhQRAEQdgdEDkCEDlCEFqM0voPoVQUBAFQSt0eZfVVQBLwCFBcb9scrXWWUqoPEKu1XrGTq7hTUUq5gCpgntb64M6ujyAIgiDsTogcIXKEILQGUSoIwh8cpVQ20Bfop7XO7tza7FwsoWYD8ILW+k+dXB1BEARB2O0ROUIQhB0hMRUEQYjqC6mUOtDyI7xdKTVeKfWxUqpEKVWklHpLKdXbKtdfKTVbKZWnlKpSSn2plBrdyHlilVI3KqWylFIVSqlypdT3SqnT2uEasjGCAMA5Vt21UmqWtd2llLpCKbXIuoZKpVS2UmquUmpmW88vCIIgCHsqIkeIHCHs2UhMBUEQdsQ+wPXA18DTwF7A8cBeSqmjgW+BFcCLmJmM44HPlFL9tdblwYNYQY6+AMYCi4DnMIrNQ4BXlFIjtNY3t6GeDwOZwJXAYmCOtT7L+pwFnAYstepaBfQEpgCHAp+34dyCIAiCIERH5AhB+IMjSgVBEHbE4cCZWuuXgyuUUs8C5wELgH9rrf8Rse0W4E7gfIz/ZZCHMYLA9Vrr+yLKezAv7r8rpd7UWmfRCrTWDyulMjHCQJbW+vaIcyQBpwK/APtqrf2R+yqlUltzTkEQBEEQdojIEYLwB0fcHwRB2BHfRgoCFi9YnyXAvfW2vWh9jgmusF62ZwI/RwoCAFrraswMhgJOb69K10Nbx68BAg02al2wk84rCIIgCHs6IkcIwh8csVQQBGFH/Bxl3VbrM6u+th7YYn32ili3D2AHdCORpZ3W57DWVrIptNalSqn3gKOALKXUW8A3wA9a68qdcU5BEARBEACRIwThD48oFQRB2BElUdb5GtumtfYppSD8ggcImgXuYy2NEd+aCjaTUzAzGacDd1jrqpVSbwLXaK1zd+K5BUEQBGFPReQIQfiDI+4PgiB0BEGh4SGttWpimbazKqC1rtJa3661Hgz0wZhRfmt9vrmzzisIgiAIQpsROUIQdmFEqSAIQkfwI8YHcf/OrgiA1nqT5d95CLAamCJBlgRBEARhWPEk5QAAAapJREFUl0XkCEHYhRGlgiAIOx2t9XbgZWC8UuoWpVQD1yul1AClVL96676yckQf2JbzK6W6KqX2jbIpDkjAmGHWtuUcgiAIgiDsHESOEIRdG4mpIAhCR3EZMAiTJuospdS3QC4mx/MwjI/kacD6iH2Cik8fbSMDWKiU+h2T23oTkAgcCfQAHtVal7XxHIIgCIIg7DxEjhCEXRRRKgiC0CFYkZOnAhdighydAHgwAsFq4K/AZ8HyykRpGgFkAwvbePps4DbgQGAakAYUAiuBG4DZbTy+IAiCIAg7EZEjBGHXRWmtO7sOgiAIDVBKjQIWA5dqrZ/o7PoIgiAIgrD7IHKEIHQcElNBEIRdlamY2YfnOrsigiAIgiDsdogcIQgdhFgqCIIgCIIgCIIgCILQKsRSQRAEQRAEQRAEQRCEViFKBUEQBEEQBEEQBEEQWoUoFQRBEARBEARBEARBaBWiVBAEQRAEQRAEQRAEoVWIUkEQBEEQBEEQBEEQhFYhSgVBEARBEARBEARBEFqFKBUEQRAEQRAEQRAEQWgVolQQBEEQBEEQBEEQBKFV/D9TcIhWod8/kQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# nstates = 2 => n_cols = 2*3 + 5 = 10\n", - "# 0 1 2 3 4 5 6 7 8 9 10\n", - "# res = t E0, P_SE0, P_SH0, E1, P_SE1, P_SH1, E_SE, E_SH, P_SE, P_SH\n", - "\n", - "T = [i*params[\"dt\"]*units.au2fs for i in xrange(params[\"nsteps\"]) ]\n", - "\n", - "states = [0, 1, 2, 3, 4]\n", - "nst = len(states)\n", - "\n", - "plt.figure(1, figsize=(18, 6)) # dpi=300, frameon=False)\n", - "plt.subplot(1,2,1)\n", - "plt.title('SE populations')\n", - "plt.xlabel('Time, fs')\n", - "plt.ylabel('Population')\n", - "for i in xrange(nst):\n", - " st = states[i]\n", - " Pi = data_conv.unpack2(res, 1+ 3*st+1) \n", - " plt.plot(T, Pi, label='State %i ' % (st), linewidth=2, color = colors[clrs_index[i]]) \n", - "plt.legend()\n", - "\n", - "\n", - "plt.subplot(1,2,2)\n", - "plt.title('SH populations')\n", - "plt.xlabel('Time, fs')\n", - "plt.ylabel('Population')\n", - "for i in xrange(nst):\n", - " st = states[i]\n", - " Pi = data_conv.unpack2(res, 1+ 3*st+2) \n", - " plt.plot(T, Pi, label='State %i ' % (st), linewidth=2, color = colors[clrs_index[i]]) \n", - "plt.legend()\n", - "\n", - "plt.show()\n", - "plt.close()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Lets do the fitting of the initial excited state decay curve. The fitting gives about 160 fs for the decay time. From the population dynamics plots above, one can see that the population transfers to other, energetically close states, but the recombination doesn't happen, or at least it is not observed." - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 51, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABCwAAAGYCAYAAACJcXNUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XuYXFWd7//3l5BEQiDpEBAEQgIoEo9czvSIiHKJchGRwID4M6AkKF5mUEBxFGS4CQ6jKMJwfqOgAoqiAnMgCAQvBEY0YWzAAOFmMOEygKbpXEiA3PieP6o6VjqVdHV1dXp36v16nnp2au21dn03TzZVfFh77chMJEmSJEmSimST/i5AkiRJkiSpKwMLSZIkSZJUOAYWkiRJkiSpcAwsJEmSJElS4RhYSJIkSZKkwjGwkCRJkiRJhWNgIUmSCiEinouIjIh39+FnvK/8GXP66jMkSVJjGFhIkqSGi4hrysFAd6/TajjWzhFxXkR8rpt+J5X77dG4M5EkSf1l0/4uQJIkbdRWAB3r2b+04s9zgCXAK1367AycCzwFXL6eY50E7Fc+zkPr+bwngKfXcxxJklQABhaSJKkv/T4zD6ylY639eiMzZwBv7evPkSRJvectIZIkSZIkqXAMLCRJUiFUW3QzIp4DflV+u0uVNTBOiIhPRERSuh0E4Edd+sypON46F92MiHsrjjksIi6IiCcj4rWI+EtE/CQidunmHCZGxD0Rsbj8mhERH+16/N7+s5IkqRl4S4gkSSqyvwLDgBZgFdDeZf+rwOvAX4BRwGBgEfBaRZ/5PfzMEcAMYI/ycV4HtgE+AhwcEe/IzLldB0XEeZTW2gDIch3vAN7pQqCSJPWcMywkSVJhZeb/Bo4rv52Xmdt2ed2UmT/JzG2B/y73O6VLn317+LEXAsOBQ4DNy38+EHgeGA1c1HVARBzM38KK7wFvzMwWYCvgX4EzgP/VwzokSWpqzrCQJEl96V0R8eI69t2RmVM2aDW1GQIcnJl/rmi7JyI+D/wUOCoiNs3MlRX7zytvb8/MkzsbM3MhcFZEjAZORpIk1cwZFpIkqS8NBt64jldLP9a1Pj/rElZ0uqW83YzSo1YBiIhtgXeV3359Hce8uHHlSZLUHAwsJElSX7onM2Mdr6P6u7h1+EO1xsx8DXip/LYybNmrvF0FzFzH2D9TuqVEkiTVyMBCkiRpTS+vZ1/nYp6DK9pGl7cdmblsPWMNLCRJ6gEDC0mSpN6J/i5AkqSNkYGFJElS73Q+NnVURAxdT7/tNkQxkiRtLAwsJElS0b1e3nY3k6HWfo32x/J2EPDOah0iYhyw/QarSJKkjYCBhSRJKrrF5e3IBvVrqMx8EZhRfnvGOrr98wYqR5KkjYaBhSRJKrongZWUbrmYuJ5+s8vbYyJiRN+XtYbzy9sjIuI7EbE1QESMiIgLgU8BizZwTZIkDWgGFpIkqdAyczHw8/LbmyNiYUTMK78qH436Q2AFcADQHhHPlfvcvQFqvBO4sPz2U8BfIqKD0mNQvwL8G38LVNb3JBFJklRmYCFJkgaCkyn9R/8TwBuAncqv4Z0dMnM2cAhwJ6XZDNuV++ywIQrMzH8B/gH4LbAU2BT4b2BSZp4JdM76WLgh6pEkaaCLzOzvGiRJkjZqEbEFpdkWg4EdM/O5fi5JkqTCc4aFJElS3zuNUljxuGGFJEm12bS/C5AkSdoYRMS3gQeBaZn5l3LbdsApwJfL3S7pp/IkSRpwvCVEkiSpASJiJrBP+e2rwHL+tm4FwNXAx9MfX5Ik1cTAQpIkqQEi4gPAh4B3ANtSWhC0A/gD8IPM/L/9WJ4kSQOOgYUkSZIkSSoc17DoI6NHj86xY8f2dxmSJEmSJBXK/fff356ZW3fXz8Cij4wdO5a2trb+LkOSJEmSpEKJiKdr6edjTSVJkiRJUuEYWEiSJEmSpMIxsJAkSZIkSYVjYCFJkiRJkgrHwEKSJEmSJBWOgYUkSZIkSSocAwtJkiRJklQ4BhaSJEmSJKlwNu3vAiRJkiRJG9ayZcvo6Ojg5ZdfZtWqVf1djgawQYMGscUWWzBq1CiGDh3a0GMbWEiSJElSE1m2bBnPPPMMLS0tjB07lsGDBxMR/V2WBqDMZMWKFSxevJhnnnmGMWPGNDS08JYQSZIkSWoiHR0dtLS0MHr0aIYMGWJYobpFBEOGDGH06NG0tLTQ0dHR0OMbWEiSJElSE3n55ZfZcsst+7sMbWS23HJLXn755YYe08BCkiRJkprIqlWrGDx4cH+XoY3M4MGDG74eioGFJEmSJDUZbwNRo/XF3ykDC0mSJEmSVDgGFpIkSZIkqXAMLCRJkiRJUuEYWEiSJEmSms6qVau46qqrOOCAAxg1ahSDBw9mm222YY899uATn/gEU6dOXaP/NddcQ0RwzTXXNOTz582bR0QwefLkhhyvFr/4xS848MADGTFiBMOHD2efffbh2muv3WCf31Ob9ncBkiRJkiRtSKtWreKII45g2rRpjBw5kg984APssMMOdHR08NRTT/GTn/yExx9/nCOPPLK/S22YK664gs9+9rNstdVWnHDCCQwZMoQbb7yRyZMn8/DDD3PJJZf0d4lrMbCQJEmSJDWV66+/nmnTprHnnntyzz33MGLEiDX2v/LKK9x33339VF3jzZs3jzPOOINRo0bR1tbG2LFjATjnnHP4+7//e775zW9yzDHHsO+++/ZvoV14S4gkSZIkqan8/ve/B2Dy5MlrhRUAw4YN46CDDlr9/sADD2TKlCkATJkyhYhY/Zo3bx4Azz//PBdccAH77bcf2267LUOGDOFNb3oTkyZN4rHHHlvj+Oeddx7jxo0D4Nprr13jeF1vObnzzjs5/PDDGT16NEOHDmWXXXbhi1/8IgsXLqz5fH/wgx+wbNkyTjnllNVhBUBLSwtnnXUWAN/5zndqPt6G4gwLSZIkSVJT2WqrrQB48skna+o/efJkRo4cyS233MLEiRPZa6+9Vu8bOXIkAP/1X//FxRdfzEEHHcQxxxzD8OHD+dOf/sSNN97I1KlT+d3vfseee+4JlAKQhQsXctlll7Hnnnty1FFHrT5e5bEvuOACzj33XEaNGsURRxzBNttsw0MPPcQll1zC7bffzowZM9hyyy27rf+uu+4C4LDDDltr3/vf//41+hRJZGZ/17BRam1tzba2tv4uQ5IkSZLW8Nhjj7H77rv3dxn96sEHH2SfffZh5cqVHH/88Rx99NH83d/9HTvttNM6x1xzzTVMmTKFq6++uupCmX/961/ZbLPN2GKLLdZonzVrFvvttx/vec97uOOOO1a3z5s3j3HjxnHiiSdWXchz+vTpTJgwgX333Zfbb799dTBSWctpp53GpZde2u35br311rS3t9Pe3r46rKk0fPhwli5dytKlSxk2bFi3x1uXWv9uRcT9mdnaXT9nWEiSJEmSALhk+7VvjyiiM/5nUa/G77333lx33XWceuqpXHfddVx33XUAjBo1iv3335+TTjqJD37wgz065jbbbFO1fc8992TChAn88pe/ZMWKFQwePLim411++eUAXHXVVWuEFVCa8XHZZZfx4x//uKbAYtGi0j+vare/dLYvXbqURYsW9SqwaDQDC0mSJElS0znuuOM4+uijmT59Ovfeey8PPvgg9957LzfffDM333wzH/vYx1Y/yrRWt912G9/5zndoa2ujvb2dlStXrrG/vb2d7bbbrqZjzZgxg8GDB3PDDTdwww03rLV/+fLlzJ8/n5deeqnqrIme6LzzoifnuiEYWEiSJEmSgN7PXBhoBg8ezCGHHMIhhxwClB53etNNN3HSSSfxwx/+kKOPPnqN9SXW5/LLL+fUU0+lpaWFgw8+mDFjxjBs2DAigptvvplZs2axbNmymmt76aWXWLlyJeeff/56+y1ZsqTbwGLEiBG0t7ezaNGiqn0XL14MUNN6GBuSgYUkSZIkScCgQYM47rjjePjhh7nwwgu56667agosVq5cybnnnsu2227LAw88sNYsihkzZvS4lhEjRvD666/T0dHR47Fd7bbbbrS3t/Pkk0+u9ejSF154gaVLl7LDDjsU6nYQ8LGmkiRJkiStoXPhzMqHVAwaNAgozcLoqr29nYULF/Kud71rrbBiyZIlPPDAA2uNWd/xAN75zneyYMECZs+eXd9JVJgwYQIA06ZNW2tf50KgnX2KxMBCkiRJktRUrr/+en71q1/x+uuvr7XvxRdf5KqrrgJg//33X93eeSvFM888s9aYbbbZhmHDhnH//fezZMmS1e0rVqzg1FNPpb29fa0xLS0tRETV4wGcfvrpAJx88sk8//zza+1funQpM2fOXN9prjZlyhSGDh3KFVdcwbx581a3L1iwgK997WsAfPrTn67pWBuSt4RIkiRJkprKfffdx2WXXca2227Lu9/9bsaNGwfA3Llzue2223j11VeZOHEixx577Oox++67L8OGDePb3/42HR0dvPGNbwTgs5/9LCNGjOBzn/scF198MW9/+9uZOHEiy5cvZ/r06XR0dHDQQQcxffr0NWoYPnw4++yzD7/97W85/vjjectb3sKgQYM48sgj2WOPPXjve9/LxRdfzJlnnsmb3/xmDj/8cMaNG8eSJUt4+umnueeee3j3u99dddZEV+PGjeMb3/gGn/vc52htbeXDH/4wQ4YM4cYbb+S5557jC1/4wlq3ihRBVE5xUeO0trZmW1tbf5chSZIkSWt47LHH2H333fu7jH717LPPMnXqVH7961/z6KOP8sILL/Daa6+x1VZbsffeezNp0iQmTZrEJpuseVPCtGnTOP/883n44YdZunQpUAo5xo4dy8qVK7n88sv53ve+x9y5cxkxYgQHH3wwF154Ieeeey7XXnvt6r6d5syZw+mnn87vf/97FixYQGZy9dVXM3ny5NV97r33Xi6//HLuvfde2tvbGTFiBNtvvz0TJkxg0qRJtLa21nzet956K5dccgkPPPAAr7/+OuPHj+eUU07hxBNP7NU/z061/t2KiPszs9vCDSz6iIGFJEmSpCIysFBfaXRg4RoWkiRJkiSpcAwsJEmSJElS4RhYSJIkSZKkwjGwkCRJkiRJhTNgA4uI2DEiboyIRRGxOCL+MyLG1Dj2DRHxjYh4ISJejYgZEbF/N2M+EhEZEc815gwkSZIkSdK6DMjAIiKGAXcBbwVOBD4KvBmYHhGb13CI7wMnA+cARwAvAHdGxF7r+LyRwKXAi72vXpIkSZIkdWfT/i6gTicDOwO7ZeYcgIh4CPgT8CngW+saGBF7ApOAkzLz6nLbPcBs4ALgyCrDvg7MohRsvK9xpyFJkiRJkqoZkDMsKIUKMzvDCoDMnAv8DphYw9gVwM8qxq4EfgocGhFDKztHxH7ACcA/NaZ0SZIkSepfmdnfJWgj0xd/pwZqYPE24JEq7bOB8TWMnZuZr1QZOwTYtbMhIgYDVwLfqAxHJEmSJGmgGjRoECtWrOjvMrSRWbFiBYMGDWroMQdqYDEKWFClvQNo6cXYzv2dvgQMBf61pwVKkiRJUhFtscUWLF68uL/L0EZm8eLFbLHFFg095kANLACqzTeJGsZFLWMjYlfgK8ApmflaLQVFxCcjoi0i2ubPn1/LEEmSJEnaoEaNGsWCBQtob29n+fLl3h6iumUmy5cvp729nQULFjBq1KjuB/XAQF10cwFrzoTo1EL12ROVOoBqjz9tqdgPcDmlJ5HMLD8lBEq3jET5/bLMfLXyAJl5JaVbSGhtbfWqlyRJklQ4Q4cOZcyYMXR0dDBv3jxWrVrV3yVpABs0aBBbbLEFY8aMYejQod0P6IGBGljMprQWRVfjgUdrGHt0RAzrso7FeGA5MKfi/U5UD0AWAJcBp/WkaEmSJEkqgqFDh7Lddtux3Xbb9Xcp0joN1FtCpgLvjIidOxsiYiywX3lfd2MHAx+qGLsp8GHgl5m5rNz8/wEHdXndCbSX/3xFA85DkiRJkiRVMVBnWFwFnALcEhFnU1qT4qvAs8B3OztFxE7AU8AFmXkBQGb+MSJ+Bny7/BSQucBngHHA8Z1jM3Nm1w+NiMmUbgW5u29OS5IkSZIkwQCdYZGZS4EJwJPAj4AfUwoeJmTmkoquAQxi7fOcAlwNXAjcBuwIHJaZD/Rx6ZIkSZIkqQbhirB9o7W1Ndva2vq7DEmSJEmSCiUi7s/M1u76DcgZFpIkSZIkaeNmYCFJkiRJkgrHwEKSJEmSJBWOgYUkSZIkSSocAwtJkiRJklQ4BhaSJEmSJKlwDCwkSZIkSVLhGFhIkiRJkqTCMbCQJEmSJEmFY2AhSZIkSZIKx8BCkiRJkiQVjoGFJEmSJEkqHAMLSZIkSZJUOAYWkiRJkiSpcAwsJEmSJElS4RhYSJIkSZKkwjGwkCRJkiRJhWNgIUmSJEmSCsfAQpIkSZIkFY6BhSRJkiRJKhwDC0mSJEmSVDgGFpIkSZIkqXAMLCRJkiRJUuEYWEiSJEmSpMIxsJAkSZIkSYVjYCFJkiRJkgrHwEKSJEmSJBWOgYUkSZIkSSocAwtJkiRJklQ4BhaSJEmSJKlwDCwkSZIkSVLhGFhIkiRJkqTCMbCQJEmSJEmFY2AhSZIkSZIKx8BCkiRJkiQVjoGFJEmSJEkqHAMLSZIkSZJUOAYWkiRJkiSpcAwsJEmSJElS4RhYSJIkSZKkwjGwkCRJkiRJhWNgIUmSJEmSCsfAQpIkSZIkFY6BhSRJkiRJKhwDC0mSJEmSVDgGFpIkSZIkqXAGbGARETtGxI0RsSgiFkfEf0bEmBrHviEivhERL0TEqxExIyL279LnLRFxWUQ8FBFLyn2nRsSefXNGkiRJkiSp04AMLCJiGHAX8FbgROCjwJuB6RGxeQ2H+D5wMnAOcATwAnBnROxV0ecQ4CDgWuCDwD8CWwP3RcTfNehUJEmSJElSFZv2dwF1OhnYGdgtM+cARMRDwJ+ATwHfWtfA8gyJScBJmXl1ue0eYDZwAXBkuetPgf+TmVkx9i5gHnAq8LHGnpIkSZIkSeo0IGdYUAoVZnaGFQCZORf4HTCxhrErgJ9VjF1JKaA4NCKGltvaK8OKctsi4Elg+0achCRJkiRJqm6gBhZvAx6p0j4bGF/D2LmZ+UqVsUOAXdc1MCJGAf8LeKz2UiVJkiRJUk8N1MBiFLCgSnsH0NKLsZ371+XfgQC+3V2BkiRJkiSpfgM1sADIKm1Rw7ioZ2xEnElp7YtTKm9F6dLnkxHRFhFt8+fPr6EUSZIkSZJUzUANLBZQfSZEC9VnT1TqWM/Yzv1riIhPA18Dzs7MH6zrwJl5ZWa2Zmbr1ltv3U0ZkiRJkiRpXQZqYDGb0loUXY0HHq1h7Ljyo1G7jl0OrDF7IiI+Cvz/wDcz86L6ypUkSZIkST0xUAOLqcA7I2LnzoaIGAvsV97X3djBwIcqxm4KfBj4ZWYuq2g/Grga+F5mntGo4iVJkiRJ0vpt2t8F1Okq4BTglog4m9KaFF8FngW+29kpInYCngIuyMwLADLzjxHxM+DbETEYmAt8BhgHHF8xdn/geuAh4JqIeGfF5y/LzAf78PwkSZIkSWpqAzKwyMylETEBuBT4EaUFM38DnJaZSyq6BjCItWeSTAEuAi4ERgKzgMMy84GKPhOAocDewO+6jH8aGNuQk5EkSZIkSWuJzGoPzFBvtba2ZltbW3+XIUmSJElSoUTE/ZnZ2l2/gbqGhSRJkiRJ2ogZWEiSJEmSpMIxsJAkSZIkSYVT96KbETEI2A1oobSw5Voy87/qPb4kSZIkSWpedQUWEfEvwOnAiG66Vg0yJEmSJEmS1qfHgUVE/DNwPrCI0iNFnwVWNrguSZIkSZLUxOqZYXEy8D/A/87M+Q2uR5IkSZIkqa5FN3cEbjaskCRJkiRJfaWewOIv9GKxTkmSJEmSpO7UE1j8HDg4IoY2uhhJkiRJkiSoL7A4B3gBuDEixjW4HkmSJEmSpLpu7ZgNDAbeBBweEYuAhVX6ZWbu0pviJEmSJElSc6onsNiE0mNMn6loiyr9qrVJkiRJkiR1q8eBRWaO7YM6JEmSJEmSVqtnDQtJkiRJkqQ+1evHk0bElsAIYFFmLu59SZIkSZIkqdnVNcMiIgZFxJcjYg6wAJgHLIiIOeX2XgchkiRJkiSpefU4WIiIIcA04AAggWcpPeZ0O2AscBFwWEQckpnLG1eqJEmSJElqFvXMsPg8cCBwG7B7Zo7NzH3Li3HuBtwKvKfcT5IkSZIkqcfqCSwmAY8AR2Xmnyp3ZOZTwD8As4Hje1+eJEmSJElqRvUEFrsCd2Tm69V2ltvvAHbpTWGSJEmSJKl51RNYLAeGd9Nnc2BFHceWJEmSJEmqK7B4CDg2IrautjMiRgPHArN6U5gkSZIkSWpe9QQWVwBbA/8dER+PiJ0jYrOIGBcRU4D7yvuvaGShkiRJkiSpefT4saaZ+fOI2Av4MnBllS4BfD0zf97b4iRJkiRJUnPqcWABkJlnRcRU4OPA3sAIYBHwIPCDzJzRuBIlSZIkSVKzqSuwAMjMmcDMBtYiSZIkSZIE1LeGhSRJkiRJUp/qdoZFRIwp//F/MnNVxftuZeYzdVcmSZIkSZKaVi23hMwDEtgdeLLifXeyxuNLkiRJkiStoZZA4YeUwodFXd5LkiRJkiT1iW4Di8ycvL73kiRJkiRJjeaim5IkSZIkqXB6HFhExKqI+Jdu+nwlIlbWX5YkSZIkSWpm9cywiPKrln6SJEmSJEk91le3hLQAr/XRsSVJkiRJ0kaupseORsT+XZrGVmkDGASMAY4HnuhlbZIkSZIkqUnVFFgAd/O3R5kmcGL5VU0ArwNf6FVlkiRJkiSpadUaWFxAKagI4BxKAcY9VfqtAl4Cpmfm440oUJIkSZIkNZ+aAovMPK/zzxFxInBzZl7eV0VJkiRJkqTmVusMi9Uyc1xfFCJJkiRJktSpr54SIkmSJEmSVLcez7AAiIgAjgUOBbYHhlbplpn53l7UJkmSJEmSmlSPA4uIGArcDhxIaRHOzsU4O2VFuyRJkiRJUo/Vc0vIl4CDgAuBrSmFE+cBbwImAc8CPwWGNKZESZIkSZLUbOoJLD4EPJCZ52bmS52NmfliZv4UmAAcAZzWoBolSZIkSVKTqSew2AX4XcX7BAavfpP5Z+A2YHKvKutGROwYETdGxKKIWBwR/xkRY2oc+4aI+EZEvBARr0bEjIjYv0q/TSLizIiYFxGvRcSsiDim8WcjSZIkSZIq1RNYrABeq3j/MqVbQyo9Dexcb1HdiYhhwF3AW4ETgY8CbwamR8TmNRzi+8DJwDmUZoO8ANwZEXt16fdVSre7XAG8H5gJ3BARhzfgNCRJkiRJ0jrU85SQ5yg9GaTTk8C+XfrsDXTUW1QNTqYUiOyWmXMAIuIh4E/Ap4BvrWtgROxJaa2NkzLz6nLbPcBs4ALgyHLbNsAZwMWZeUl5+PSI2BW4mNLCo5IkSZIkqQ/UM8Pid8C7Kt7fDLw9Ir4fER+IiG8A7wPubkB963IkMLMzrADIzLnl2ibWMHYF8LOKsSspLRR6aPkpKFB6ZOsQ4Lou46+jdL7jenUGkiRJkiRpneoJLH4CPBERY8vvvw38AZgCTAW+ADwFfLkB9a3L24BHqrTPBsbXMHZuZr5SZewQYNeKfsuAOVX6UcPnSJIkSZKkOvX4lpDMvJuK2ROZ+UpE7EdpZsOuwDzg1iqBQCONAhZUae8AWnoxtnN/53ZhZmY3/Qa8S7Yf0d8lSJIkSZJ64Yz/WdTfJTRcPWtYrKV8S8VNjThWTz62SlvUMC5qHFtrv7/tiPgk8EmAMWNqemCJJEmSJEmqoiGBRT9YQPUZDi1Unz1RqQOolia0VOzv3LZERHSZZdG132qZeSVwJUBra2u1sKOQNsYkTpIkSZI0sHUbWETEx+o9eGb+sN6x3ZhNaY2JrsYDj9Yw9uiIGNbltpXxwHL+tmbFbGAosAtrrmPRuXZFd58jSZIkSZLqVMsMi2uofmvE+nTeTtFXgcVU4JKI2Dkz/wxQXgR0P7pf7HMqcD7wIeDa8thNgQ8Dv8zMZeV+0ygFGMeX+3c6AXik/FQSSZIkSZLUB2oJLKb0eRU9dxVwCnBLRJxNKRz5KvAs8N3OThGxE6UnllyQmRcAZOYfI+JnwLcjYjAwF/gMMI5SOEG5318j4lLgzIh4GXiAUqgxge4fnSpJkiRJknqh28AiM6/dEIX0RGYujYgJwKXAjyjN6PgNcFpmLqnoGsAg1n586xTgIuBCYCQwCzgsMx/o0u8rwBLgVGBb4AnguMy8tbFnJEmSJEmSKsXaT+1UI7S2tmZbW1t/lyFJkiRJUqFExP2Z2dpdv64zDyRJkiRJkvpdjx9rGhF/rrFrZuYuPT2+JEmSJElSjwMLSrMyqt1HMoLSehAAzwMr6i1KkiRJkiQ1tx4HFpk5dl37ImJX4HJgc+DQ+suSJEmSJEnNrKFrWGTmHOAfgO2Bcxt5bEmSJEmS1DwavuhmZr4G/Ar4SKOPLUmSJEmSmkNfPSVkJbBtHx1bkiRJkiRt5BoeWETEaOBo4NlGH1uSJEmSJDWHeh5res56jrUjMJHSE0PO7EVdkiRJkiSpidXzWNPzutm/GLgwM79ex7ElSZIkSZLqCiwOWkf768AC4PHMXFl/SZIkSZIkqdn1OLDIzHv6ohBJkiRJkqROffWUEEmSJEmSpLrVc0sIABHxbmAKsDelRTYXAQ8A12TmvY0pT5IkSZIkNaO6AouI+HfgH4HosmsvYEpE/J/M/Fxvi5MkSZIkSc2px7eERMRngX8C5lKaYTEO2Ky8Panc/k8R8U8NrFOSJEmSJDWRetaw+DTwPNCamddm5tOZuay8vQZ4B/AipRkYkiRJkiRJPVZPYLEzcFNmLqy2MzM7gJvK/SRJkiRJknqsnsDiJWB5N32WA+11HFuSJEmSJKmuwOJm4MiIGFxtZ0QMAY4s95MkSZIkSeqxegKLsyg9wvTXEfGuiAiAKNkP+DWwoNxPkiRJkiSpx+p5rOkfgSHAdsBvgZUR0Q6MrjjeC8CscpbRKTNzl17UKkmSJEmSmkQ9gcUmwArgmS7tz3d5H928lyRJkiRJqqqPpfLSAAAWPklEQVTHgUVmju2DOiRJkiRJklarZw0LSZIkSZKkPlXPLSFriIgtgRHAosxc3PuSJEmSJElSs6trhkVEDIqIL0fEHEpPBJkHLIiIOeX2XgchkiRJkiSpefU4WIiIIcA04AAggWcpPRVkO2AscBFwWEQckpnLG1eqJEmSJElqFvXMsPg8cCBwG7B7Zo7NzH3Li3HuBtwKvKfcT5IkSZIkqcfqCSwmAY8AR2Xmnyp3ZOZTwD8As4Hje1+eJEmSJElqRvUEFrsCd2Tm69V2ltvvAHbpTWGSJEmSJKl51RNYLAeGd9Nnc2BFHceWJEmSJEmqK7B4CDg2IrautjMiRgPHArN6U5gkSZIkSWpe9QQWVwBbA/8dER+PiJ0jYrOIGBcRU4D7yvuvaGShkiRJkiSpefT4saaZ+fOI2Av4MnBllS4BfD0zf97b4iRJkiRJUnPqcWABkJlnRcRU4OPA3sAIYBHwIPCDzJzRuBIlSZIkSVKzqSuwAMjMmcDMBtYiSZIkSZIE9DCwiIgxwN8DCfwhM5/tk6okSZIkSVJTqzmwiIhLgNMorVEBkBFxaWZ+sU8qkyRJkiRJTaump4RExCTg85TCiseBJ8p//nxEfKTvypMkSZIkSc2o1seafhxYCbwvM9+WmeOBQ4HXy/skSZIkSZIaptbAYg/g5syc3tmQmb8GbgH26ovCJEmSJElS86o1sGihdBtIV48DIxtXjiRJkiRJUu2BxSbAiirtK/jbIpySJEmSJEkNUWtgAaVHmUqSJEmSJPW5mh9rCpwXEedV2xERq6o0Z2b25PiSJEmSJElAz2ZYRA9fPTl2j0TEJhFxZkTMi4jXImJWRBzTg/FHRcSD5bFPR8TZETGoYv+giDgjIu6KiL9ExMsR8UBEfDwi+uy8JEmSJElSSU3/8Z2Zm9Tz6sO6vwqcB1wBvB+YCdwQEYd3NzAiDgVuAv5QHnsZcDbwtYpum5XbHgE+CRwFTAeuAv6tUSchSZIkSZKqi8yBtTRFRGwDPAtcnJnnVrT/Btg6M/foZvyDwOLMPKCi7RxKAcWYzHyxPNtiRGZ2dBn7A2AS0JKZr67vc1pbW7Otra2HZydJkiRJ0sYtIu7PzNbu+g3E2xsOBYYA13Vpvw54e0SMW9fAiNgR2KvK2B8BgynNuCAzV3UNK8r+AAwFRtdXuiRJkiRJqsVADCzeBiwD5nRpn13eju9mLJRu9VgtM+cCr3QzFuAAYCHwQk2VSpIkSZKkugzEwGIUsDDXvpelo2L/+sYCLKiyb8H6xpbXvjgOuCQzV9ZYqyRJkiRJqkO/BxYR8b6IyBped3cOAaotvBG1fFx526PxETEeuB64m/UsuhkRn4yItohomz9/fg3lSJIkSZKkajbt7wKA3wO719DvlfK2A2iJiOgyy6KlYv+6rG8WxshqYyNiZ+BXwFzgqPXNrsjMK4ErobTo5nrqkCRJkiRJ69HvgUVmvgI83oMhsyktfLkLa65j0bn+xKPdjIXSWhYzOhsjYiwwrOvYiNgB+A2wGDgsMxf3oE5JkiRJklSnfr8lpA7TgOXA8V3aTwAeKS+gWVVmPgPMWsfYFcAdnQ0RsTXw6/LbgzPTezwkSZIkSdpA+n2GRU9l5l8j4lLgzIh4GXgA+DAwAZhY2TcifgPslJm7VjSfBfwiIr5LaV2KvYGzgcsy88XyuM2AO4GxwEnADuXZFp0edbaFJEmSJEl9Z8AFFmVfAZYApwLbAk8Ax2XmrV36DaLLOWbm7RFxLHAuMBn4C/A14KKKbm+kFGQA/LjK5x9EaQFOSZIkSZLUB2Ltp4OqEVpbW7Otra2/y5AkSZIkqVAi4v7MbO2u30Bcw0KSJEmSJG3kDCwkSZIkSVLhGFhIkiRJkqTCMbCQJEmSJEmFY2AhSZIkSZIKx8BCkiRJkiQVjoGFJEmSJEkqHAMLSZIkSZJUOAYWkiRJkiSpcAwsJEmSJElS4RhYSJIkSZKkwjGwkCRJkiRJhWNgIUmSJEmSCsfAQpIkSZIkFY6BhSRJkiRJKhwDC0mSJEmSVDgGFpIkSZIkqXAMLCRJkiRJUuEYWEiSJEmSpMIxsJAkSZIkSYVjYCFJkiRJkgrHwEKSJEmSJBWOgYUkSZIkSSocAwtJkiRJklQ4BhaSJEmSJKlwDCwkSZIkSVLhGFhIkiRJkqTCMbCQJEmSJEmFY2AhSZIkSZIKx8BCkiRJkiQVjoGFJEmSJEkqHAMLSZIkSZJUOAYWkiRJkiSpcAwsJEmSJElS4RhYSJIkSZKkwjGwkCRJkiRJhWNgIUmSJEmSCsfAQpIkSZIkFY6BhSRJkiRJKhwDC0mSJEmSVDgGFpIkSZIkqXAMLCRJkiRJUuEYWEiSJEmSpMIxsJAkSZIkSYVjYCFJkiRJkgrHwEKSJEmSJBXOgAwsImKTiDgzIuZFxGsRMSsijunB+KMi4sHy2Kcj4uyIGLSe/iMj4sWIyIh4X2POQpIkSZIkrcuADCyArwLnAVcA7wdmAjdExOHdDYyIQ4GbgD+Ux14GnA18bT3D/g3I3pUsSZIkSZJqtWl/F9BTEbENcAZwcWZeUm6eHhG7AhcDt3dziIuBezPzkxVjhwNnR8Slmflil8/bDzgB+Czw/UadhyRJkiRJWreBOMPiUGAIcF2X9uuAt0fEuHUNjIgdgb2qjP0RMJjSjIvK/oOB71IKOf7cu7IlSZIkSVKtBmJg8TZgGTCnS/vs8nZ8N2MBHqlszMy5wCtVxv4zpXDk63VVKkmSJEmS6jLgbgkBRgELM7PrmhIdFfvXNxZgQZV9CyrHlm8xORs4MjOXRUSd5UqSJEmSpJ7q9xkWEfG+8tM3unvd3TmE6gtg1pIodPapZfx/ALdk5q9qOhEgIj4ZEW0R0TZ//vxah0mSJEmSpC6KMMPi98DuNfR7pbztAFoiIrrMsmip2L8u65uFMbJzf0QcB+wHtEbEyPL+4eXt5hExIjMXdT1AZl4JXAnQ2trqU0UkSZIkSapTvwcWmfkK8HgPhswGhgK7sOY6Fp3rTzzazVgorWUxo7MxIsYCwyrGjgc2q+hf6WZgEaWAQ5IkSZIk9YF+vyWkDtOA5cDxXdpPAB4pL6BZVWY+A8xax9gVwB3l99cAB3V5nV7edwZwRP3lS5IkSZKk7vT7DIueysy/RsSlwJkR8TLwAPBhYAIwsbJvRPwG2Ckzd61oPgv4RUR8F7ge2JvS4pqXZeaL5c+YB8zrcqzOP87KzHsbfFqSJEmSJKnCgAssyr4CLAFOBbYFngCOy8xbu/QbRJdzzMzbI+JY4FxgMvAX4GvARX1csyRJkiRJqlGs/XRQNUJra2u2tbX1dxmSJEmSJBVKRNyfma3d9RuIa1hIkiRJkqSNnIGFJEmSJEkqHAMLSZIkSZJUOAYWkiRJkiSpcAwsJEmSJElS4RhYSJIkSZKkwjGwkCRJkiRJhWNgIUmSJEmSCsfAQpIkSZIkFY6BhSRJkiRJKhwDC0mSJEmSVDgGFpIkSZIkqXAMLCRJkiRJUuEYWEiSJEmSpMIxsJAkSZIkSYVjYCFJkiRJkgrHwEKSJEmSJBWOgYUkSZIkSSocAwtJkiRJklQ4BhaSJEmSJKlwDCwkSZIkSVLhGFhIkiRJkqTCMbCQJEmSJEmFY2AhSZIkSZIKx8BCkiRJkiQVjoGFJEmSJEkqHAMLSZIkSZJUOAYWkiRJkiSpcAwsJEmSJElS4RhYSJIkSZKkwjGwkCRJkiRJhWNgIUmSJEmSCsfAQpIkSZIkFY6BhSRJkiRJKhwDC0mSJEmSVDgGFpIkSZIkqXAMLCRJkiRJUuFEZvZ3DRuliJgPPN3fdfTAaKC9v4uQBgCvFak2XitSbbxWpNp4rWxcdsrMrbvrZGAhACKiLTNb+7sOqei8VqTaeK1ItfFakWrjtdKcvCVEkiRJkiQVjoGFJEmSJEkqHAMLdbqyvwuQBgivFak2XitSbbxWpNp4rTQh17CQJEmSJEmF4wwLSZIkSZJUOAYWTSwidoyIGyNiUUQsjoj/jIgx/V2XtKFExA4R8e8RMSMiXomIjIixVfq9ISK+EREvRMSr5f77V+m3SUScGRHzIuK1iJgVEcdsiHOR+kpEHBsRN0XE0+W//09ExL9GxBZd+rVExPcioj0ilkbEryPi7VWOV9P1JA00EXFoRNwVES9GxLKIeC4ifh4R47v0q+n3V63XlLQxiIhp5d9hF3Zp97ulyRlYNKmIGAbcBbwVOBH4KPBmYHpEbN6ftUkb0K7AccAC4Lfr6fd94GTgHOAI4AXgzojYq0u/rwLnAVcA7wdmAjdExOGNLVvaoM4AVgFnAYcB/wF8BvhVRGwCEBEBTC3v/yxwDDCY0nfKDl2OV+v1JA00o4D7gVOAQ4AzgbcBMyNiJ6j991cPrylpQIuIjwB7Vmn3u0WuYdGsIuJU4FvAbpk5p9w2DvgT8M+Z+a3+rE/aECJik8x8vfznTwBXAeMyc15Fnz2BPwInZebV5bZNgdnAE5l5ZLltG+BZ4OLMPLdi/G+ArTNzjw1zVlJjRcTWmTm/S9vHgGuB92bmXRExEbgZmJCZ08t9RgBzgesy83PltpquJ2ljERG7AY8DZ2TmN2v9/VXrNSUNdBExktI1cjrwE+CizDy7vM/vFjnDookdCczs/LIEyMy5wO+Aif1WlbQBdYYV3TgSWAH8rGLcSuCnwKERMbTcfCgwBLiuy/jrgLeXf5BKA07XsKLsD+Xt9uXtkcDznT8oy+MWAbey5ndKrdeTtLF4qbxdUd7W+vur1mtKGui+DszOzOur7PO7RQYWTextwCNV2mcD46u0S83qbcDczHylS/tsSgHFrhX9lgFzqvQDryttXA4obx8rb9f3nTImIoZX9KvlepIGrIgYFBFDIuLNwHeBFyn9hxPU/vur1mtKGrAi4t3Ax4B/XEcXv1tkYNHERlG6b7+rDqBlA9ciFdn6rpXO/Z3bhbn2fXZd+0kDWkRsD1wA/Doz28rN3V0nLTX28zrRxuA+SgH2k8AelKaz/7W8r9bfX7VeU9KAFBGDKQV6l2TmE+vo5neLDCyaXLUFTGKDVyEVW1DbtVJrP2nAKv/frFuAlcCUyl14nUidPgq8E5gELKa0QO3Yiv1eKxJ8CdgMuGg9ffxukYFFE1tA9bSxheoJpdSsOlj3tdK5v3PbUl7Ren39pAEpIt5AabX2nYFDM/O5it3dXScLauzndaIBLzMfy8z7yvfkvxcYDny5vLvW31+1XlPSgFN+jO9XgH8BhkbEyPLim1S8H4TfLcLAopnNpnS/V1fjgUc3cC1Skc0GxpUfRVdpPLCcv61ZMRsYCuxSpR94XWkAK0/dvQl4B3B4Zj7cpcv6vlOeycwlFf1quZ6kjUJmLqT097rzHvpaf3/Vek1JA9HOwBsoLUy+oOIFpUdpLwDejt8twsCimU0F3hkRO3c2lKcr7lfeJ6lkKqVnfn+os6H8qKwPA7/MzGXl5mmUvhSP7zL+BOCR8irw0oATEZsAP6b0f4onZubMKt2mAttHxAEV47YEPsia3ym1Xk/SRiEi3gi8FXiq3FTr769arylpIPojcFCVF5RCjIMohQx+t4hYe304NYOI2ByYBbwKnE3pvq+vAlsAe5jcq1lExLHlP74X+DSllarnA/Mz855yn59SemzpFyk9+/szwBHAuzLzgYpjXQycBpwFPEDpi/JTlP4j79YNckJSg0XEf1C6Ni4CftFl93OZ+Vw51LgX2JHSdbIAOJPSgoN7ZuazFcer6XqSBpqI+L+U/t3/EKW1K94CnA5sC7wjM5+s9fdXT64paWMREQlclJlnl9/73SIDi2ZWvn/sUuBgSovS/AY4LTPn9Wdd0oZU/nKs5p7MPLDcp3NRqEnASEo/Nr+UmXd3OdYgSl+kJ1P6gfoEcEFm3tgnxUsbQETMA3Zax+7zM/O8cr9RwCXAUZSm+s4APp+Zs7ocr6brSRpoIuJLwHGUbg0cAjwL3A38a+Vvq1p/f9V6TUkbi66BRbnN75YmZ2AhSZIkSZIKxzUsJEmSJElS4RhYSJIkSZKkwjGwkCRJkiRJhWNgIUmSJEmSCsfAQpIkSZIkFY6BhSRJkiRJKhwDC0mS1G8i4u6I2CiesR4R20bEtRHxXESsioiMiJH9XZckSQPVpv1dgCRJGvjqCB2mZOY1fVFLP7oGOAS4HpgDJPBafxYkSdJAFpkbxf/UkCRJ/SgizqvSfBowArgMWNhl382Z+ceIGAMMy8zH+7jEPhURQ4BXgd9k5iH9XY8kSRsDAwtJktQnIv5fe3cTKlUdxnH8+yMK6XVRQdibGgUh9gJe3BgqBEZUC1uUYhQFbYoiCKxIsiCIIJIWbSJRwXChULQJjF7oUhYmVwgqXHRDCiwqLFML62lxztB0vVfC8XKP4/cDwx/+Z2aeZ7a/+Z/nZBy4EphbVeMz2830aoOXb4FNVXXfDLcjSdJQcIaFJEmaMZPNsEiytJ3/sC7JwiTvJDmQ5Jck25Nc3r5vXpKtSX5McjjJ+0mun6LO2UmeTDKW5PckB5N8kmTlSfgN4zRhBcC9be+VZGN7/awkjyTZ3f6GQ0nGk7yV5OZB60uSNKycYSFJkrpqBFgDfAi8BiwAVgALktwBjAJfAZtpTnKsAHYkmVdVB3tf0g6+fA+4EdgNbKD502Y58EaS+VX19AB9rgfmAI8Ce4A32/2xdt0IrAS+aHs9DMwGFgO3AO8OUFuSpKFlYCFJkrrqVmB1VW3pbSR5Hbgf+Bh4qaqe77u2FngOeIBmbkbPepqwYk1Vvdj3/lk04cJTSbZV1RgnoKrWJ5lDE1iMVdW6vhoXAHcDnwOLquqv/s8mufBEakqSdDrwlhBJktRVo/1hRWtTux4AXphwbXO73tDbaAOB1cCu/rACoKqO0JzgCLDqZDU9QbXf/wfw9zEXq36aprqSJJ3yPGEhSZK6atcke9+369jE0wrAd+16Wd/eCHAGUFM8yeTMdr32RJs8nqr6NcnbwO3AWJLtwEfAp1V1aDpqSpI0LAwsJElSVx2YZO/oVNeq6mgS+DeEAOjdcjHSvqZy7ok0+D/dRXOSYxXwbLt3JMk24PGq2j+NtSVJOmV5S4gkSRpmvWDj5arKcV7LpquBqjpcVeuq6hrgCppbVEbbddt01ZUk6VRnYCFJkobZZzSzI26a6UYAqmpfO5djObAXWOzgTUmSJmdgIUmShlZV/QBsARYmWZvkmNthk1yVZO6EvQ+SVJKlg9RPcnGSRZNcOgc4j+YWlz8HqSFJ0rByhoUkSRp2DwNX0zzy9J4ko8B+YDbNsM0RYCXwTd9nen/qHGUwlwI7k3wJ7Ab2AecDtwGXAK9U1W8D1pAkaSgZWEiSpKHWPqljCfAgzeDLO4FZNKHFXuAxYEfv/Wkmd84HxoGdA5YfB54BlgLLgIuAn4GvgSeArQN+vyRJQytVNdM9SJIkdUaS64A9wENV9epM9yNJ0unKGRaSJEn/tYTm9MWGmW5EkqTTmScsJEmSJElS53jCQpIkSZIkdY6BhSRJkiRJ6hwDC0mSJEmS1DkGFpIkSZIkqXMMLCRJkiRJUucYWEiSJEmSpM4xsJAkSZIkSZ1jYCFJkiRJkjrnH4QRdRr/5NTvAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "st = 0\n", - "P_st = data_conv.unpack2(res, 1+ 3*st+2) \n", - "\n", - "verb, opt = 0, 0\n", - "#Pfit1, A1, B1 = fit.fit_exp(T, P_st, 0.0, verb, opt) \n", - "#print \"SLG data gives: A = \", A1, \" and B = \", B1, \" 1/B = \", 1/B1, \" fs\"\n", - "\n", - "plt.figure(1, figsize=(18, 6)) # dpi=300, frameon=False)\n", - "plt.subplot(1,1,1)\n", - "plt.title('Fitting')\n", - "plt.xlabel('Time, fs')\n", - "plt.ylabel('Population')\n", - "\n", - "plt.plot(T, P_st, label='State %i ' % (st), linewidth=2, color = colors[\"11\"]) \n", - "#plt.plot(T, Pfit1, label='State %i ' % (st), linewidth=2, color = colors[\"21\"]) \n", - "\n", - "plt.legend()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 5. X-NA-MD \n", - "\n", - "Ok, after the initial test, we see that the recovery of the ground state is very slow, so we can't get reliable timescales if we just do the direct fitting of the computed populations (they are not zero, but very small). Instead, we are going to use the artificial scaling of the couplings by a parameter $\\alpha$ which will then be varied. \n", - "\n", - "Lets define an auxiliary function that will:\n", - "\n", - "* scale the input NACs by the given parameter $\\alpha$\n", - "* run the NA-MD calculations for all possible initial excitations\n", - "* save the results of the dynamics in the files, in case we don't want to recompute it all again\n", - "* compute the population of the ground state over all initial excitation as a function of time\n", - "* rescale the NACs back - to the original value\n", - "* return the averaged population of the ground state vs. time" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [], - "source": [ - "def run_scaling(hvib, alp, prms):\n", - " # Scale NACS\n", - " data_conv.scale_NACs(hvib, alp)\n", - " \n", - " P_ave = []\n", - " for i in xrange(params[\"nsteps\"]):\n", - " P_ave.append(0.0)\n", - " \n", - " # Change already defined NA-MD parameters \n", - " istates = [1, 2, 3, 4] # possible initial excitations\n", - " \n", - " nrm = 1.0/len(istates)\n", - " \n", - " for istate in istates:\n", - " prms[\"istate\"] = istate \n", - " params[\"outfile\"] = \"_out-scl%5.3f-istate%3i.txt\" % (alp, istate)\n", - " \n", - " res = step4.run(Hvib, prms)\n", - " \n", - " # Extract the population of the Ground state\n", - " P0 = data_conv.unpack2(res, 2) \n", - " \n", - " for i in xrange(params[\"nsteps\"]):\n", - " P_ave[i] = P_ave[i] + nrm*P0[i]\n", - " \n", - " # Return the NACs to the original values\n", - " data_conv.scale_NACs(hvib, (1.0/alp))\n", - " \n", - " return P_ave" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we are about to start the actual calculations. Since this may be a bit time-consuming, I'm going to reduce the cost-influencing parameters - only 100 surface hopping trajectories per 1 initial condition (initial time and initial excitation)\n", - "\n", - "We will use 6 initial times, to represent the sampling of the initial conditions\n", - "\n", - "The NA-MD will be run for just 1 ps." - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [], - "source": [ - "params[\"ntraj\"] = 100\n", - "params[\"init_times\"] = [0]\n", - "params[\"nsteps\"] = 440 # can not be larger than len(Hvib)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we are going to run NA-MD with different scaling parameter $\\alpha$ taking one of the following 6 values.\n", - "\n", - "We are interested only in the population of the ground state, so lets save each population dataset in the variable P_alpha for future use.\n", - "\n", - "BEWARE: this step may take a while (several minutes in my case)!!! it produces a bunch of output files too " - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Decoherence times matrix (a.u. of time):\n", - "Decoherence times matrix (fs):\n", - "Decoherence rates matrix (a.u.^-1):\n", - "Decoherence times matrix (a.u. of time):\n", - "Decoherence times matrix (fs):\n", - "Decoherence rates matrix (a.u.^-1):\n", - "Decoherence times matrix (a.u. of time):\n", - "Decoherence times matrix (fs):\n", - "Decoherence rates matrix (a.u.^-1):\n", - "Decoherence times matrix (a.u. of time):\n", - "Decoherence times matrix (fs):\n", - "Decoherence rates matrix (a.u.^-1):\n", - "Decoherence times matrix (a.u. of time):\n", - "Decoherence times matrix (fs):\n", - "Decoherence rates matrix (a.u.^-1):\n", - "Decoherence times matrix (a.u. of time):\n", - "Decoherence times matrix (fs):\n", - "Decoherence rates matrix (a.u.^-1):\n", - "Decoherence times matrix (a.u. of time):\n", - "Decoherence times matrix (fs):\n", - "Decoherence rates matrix (a.u.^-1):\n", - "Decoherence times matrix (a.u. of time):\n", - "Decoherence times matrix (fs):\n", - "Decoherence rates matrix (a.u.^-1):\n", - "Decoherence times matrix (a.u. of time):\n", - "Decoherence times matrix (fs):\n", - "Decoherence rates matrix (a.u.^-1):\n", - "Decoherence times matrix (a.u. of time):\n", - "Decoherence times matrix (fs):\n", - "Decoherence rates matrix (a.u.^-1):\n", - "Decoherence times matrix (a.u. of time):\n", - "Decoherence times matrix (fs):\n", - "Decoherence rates matrix (a.u.^-1):\n", - "Decoherence times matrix (a.u. of time):\n", - "Decoherence times matrix (fs):\n", - "Decoherence rates matrix (a.u.^-1):\n", - "Decoherence times matrix (a.u. of time):\n", - "Decoherence times matrix (fs):\n", - "Decoherence rates matrix (a.u.^-1):\n", - "Decoherence times matrix (a.u. of time):\n", - "Decoherence times matrix (fs):\n", - "Decoherence rates matrix (a.u.^-1):\n", - "Decoherence times matrix (a.u. of time):\n", - "Decoherence times matrix (fs):\n", - "Decoherence rates matrix (a.u.^-1):\n", - "Decoherence times matrix (a.u. of time):\n", - "Decoherence times matrix (fs):\n", - "Decoherence rates matrix (a.u.^-1):\n" - ] - } - ], - "source": [ - "alphas = [1.0, 5.0, 10.0, 20.0]\n", - "P_alpha = []\n", - "\n", - "for alp in alphas:\n", - " pi = run_scaling(Hvib, alp, params)\n", - " P_alpha.append(list(pi))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Lets plot the total population of all excited states (1 - population of the ground state). \n", - "\n", - "Lets fit each such data to an exponential decay function.\n", - "\n", - "The function prints out the recombination times computed for each scaling parameter. \n", - "\n", - "Empirically, I have determined that the scaling parameter of 100 was too much, so we exclude it from our analysis.\n", - "\n", - "In this step, we also collect all the times and rates (inverse timese) obtained from the fitting - these data will be used later on.\n", - "\n", - "Also, note that the direct estimate of the recombination rate (corresponding to $\\alpha = 1$) yields the timescale of 1.34 ns" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "======= i = 0 ==========\n", - "SLG data gives: A = 1.0 and B = 1.74262526359e-08 1/B = 57384683.9533 fs\n", - "======= i = 1 ==========\n", - "SLG data gives: A = 1.0 and B = 1.63149813591e-05 1/B = 61293.3584162 fs\n", - "======= i = 2 ==========\n", - "SLG data gives: A = 1.0 and B = 5.24760929685e-05 1/B = 19056.2967521 fs\n", - "======= i = 3 ==========\n", - "SLG data gives: A = 1.0 and B = 0.000217319338664 1/B = 4601.52329814 fs\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 55, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABWMAAAO0CAYAAADAvyTdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XecJHWd//HXt6o6TE8OmwObQDKogIJKUEEMoMjJeXceIooKonh691PMAuYM6mHAgHomQE84I6KgAkqQKCxsYvPu5NTToaq+vz+quqcnzyyzM7O77+eDftR0dYVvVff0LO/+9KeMtRYRERERERERERER2buc2R6AiIiIiIiIiIiIyIFAYayIiIiIiIiIiIjIDFAYKyIiIiIiIiIiIjIDFMaKiIiIiIiIiIiIzACFsSIiIiIiIiIiIiIzQGGsiIiIiIiIiIiIyAxQGCsiIiIic4IxZoUxxhpj7Czs+9R435tmet97izHmgviY/jjbYxERERGRiMJYERERkTnMGPOdUkA57NZjjHnAGPMZY8zS2R7nXBaHkh8xxhw722MRERERkQObN9sDEBEREZFJKQId8c8GmAccE9/eZIw5y1r759ka3Bx3AXAKsAl4YIxlssBaYNvMDElEREREDkSqjBURERHZN9xprV0Y3xYANcD5QBfQAPzUGFM1qyPch1lr/2atPdRa+6LZHouIiIiI7L8UxoqIiIjsg6y1WWvt94B3xLMWAq+axSGJiIiIiMgEFMaKiIiI7Nt+AoTxz88e/qAxZoEx5nPGmMeNMVljTLcx5m/GmHcbY1KjbbCiT+1HjDFpY8xH4/UHjDG7jTE/NMYcMsa6H4nX/c5YA67c/mQP0hiTNMa83BjzDWPMg8aYNmNMzhjzlDHmB8aY0Y79gvhiYKfEs749rO/upoplJ7yAlzHmNGPMTcaYncaYQjz9mTHmheOsU9rXCmPM8nj8W40xeWPMRmPMZ40xdZM9D6Nsf7Ex5uvGmG3x+dhgjPm8MaZhkus/3xjzo4oxtRtjbjXG/IsxxoyznjHG/LMx5v/i85CPx3CHMeY/jDHNw5ZfZIy5OF7+yfi12GOM+Xv8+hoxXmPMh+Jzd+8Ex/CGeLktxhj9/42IiIjMafrHioiIiMg+zFqbB9riu0NCPWPMCcA/gHcBzwB8IAkcD3wW+KsxZv44m08BfwA+BKwECkS9al8L/N0Yc/L0HcmEzgBuAd4EHA1UARZYDvwrcLcx5t+HrTMA7CLqtwvQE98v3Vonu3NjzFXAbcA5wHygP56+Cvi9MeYTE2ziGODv8fjriP4dvgJ4d7x+YrJjqRjTYUQ9cC8CFhM9vwuB/wDuAZomWP9TwJ+AfwaWAHmilhcvAv4H+J/Rwk1jTD3wW+BHwMuIzkM23vcLgM8DZw1b7Rrgq/Hya+J9VQPHEr2+7h3lQnTfIvqg4dnGmKPGOZQL4+l3rbXhOMuJiIiIzDqFsSIiIiL7sLhP7Lz4blfF/Ebg50SB3MPACdbaOqJes68BOokCwh+Ms/mLiYLP1wM11tp64JnA/UAG+Em8n5nQB3ybKChssdZWW2urgIOALxJdmPbrxpjlpRWstT+21i4E7oxnXVbRd3ehtfb4yezYGPNa4P3x3S8D8621jUTn/Zp4/nuNMa8bZzPfIQpOj6p4Ht5IFEoeRxSoTloc3t4Qj2EDcIq1tibe7tlAPVHIOdb6lwH/jyiQvgRojMdVDZwH7CAK3d8zyuo/AF5MFHZfBjTF56MKOAq4guj1VelJ4APAEUBVvHwaOJUoOF4NfK1yBWvtVuA38d03jHEca4DnEwXz3x7reEVERETmCoWxIiIiIvu2NwKlr5P/tWL+pcAiooD2DGvtPQDW2sBaewNR0Abw4nG+Zl8PvNlae721thiv/wDwEqAdWAC8bToPZizW2j9aay+01t5mrW2vmL/ZWvsfRFWUacYI7fZU/FX9K+O7P7LWvt1a2xbvu91a+w7gh/HjV43zNfltwMustY/E6+attd8CvhE//k9THNprgcOJqpVfZq29I95uaK29GTiX6Pkb7ZgagKuIKmlfYa39b2ttV7x+zlr7U+DVRAHnfxljkhXrvgx4efzYq621V1esW7DWPmKt/bC19n8r92mtvdxa+zFr7T+stbl4XtFaeztwJlEo/DJjzMphwy2dn9eNUT1cqoq9w1q7foJzJiIiIjLrFMaKiIiI7GPifp0rjDH/CXw6nv0UcHPFYqVw75vW2p3Dt2Gt/S1wV3z3vDF29RTR19WHr9vGYBXjVEPEvaV07M+b5u0eS/S1eogCzNF8NJ4eBJwwxjKfj1tKDPfzeHrkFMdVOu83WWvXDn/QWvsn4I4x1j2XqIL2z9bav422gLX2bqKK20aG9iI+P57+xlr76ymOeVTW2g4Gq5dPHPbwzUQtJeYBr6h8IA6+S+P51nSMRURERGRvUxgrIiIism84pXQxKKI+mhuBzxB9NXwH8CprbQGii10xGO79YZxt3hZPnzXG47dba+1Yj8XTIysrJ/cmY0yTMeaDxpg74wtN+RXn5GfxYounebelc9NqrX10tAXiMHTbsOWHu2eM+aX1ptruobSf28dZZqzHToqnz4kvvjXqjagfL8CyinWfG09/OcXxYow5wRjzLRNdDK6v4uJmFnhlvNiQ589a6wPfje8Or3p+CVGv2x6ilg0iIiIic5432wMQERERkUkpAh3xz5boAlIbgN8RVb9W9uhsYvBD922MbWs8nTfG4+OtW3rMJQoSd42z7NNmjDmcKDxeUDG7l6hvqSW6MFkjUc/T6VQ6N+OdC4jO5RLGPpe9Y8zPxdOp/ru8tJ/t4ywz1pgXxdOq+DaRTMXPpfO/eRLrlVVUcZdaagREfWUL8f16ojYToz1/3yTqb/tSY8wCa23ptVZqUfAja212KuMRERERmS2qjBURERHZN9xZceGpRdbaNdbaM6y1nxkWxA6X2kvjMRMvMq2+TRQE3k/UY7TWWltnrV0QX6TrNXt5XHvrPO5NY52L0v8DfMFaayZx+87TGoQxRwCfisfzZaKLeKWstU2l1zSDla0jxmytfZKoytcD/j3eZhPRhcpALQpERERkH6IwVkRERGT/00HUygCiPqZjWRpPW8d4fLyv/JeqK0sVjiV+PE2Ps+6oF5YaizFmOVEv1gA421r7G2tt37DFFoxcc1qUzs3ycZea+FxOt9J+JvMcDVeqLD18D/ZbWne819Vw5xL9f8dv4gug/cNaGwxbZqLn75vxtNSq4HVE1dD/sNb+dfRVREREROYehbEiIiIi+5m4d+wj8d3Txln0hfH0/jEeP2WcdUuPPVLqVRvriqdLGYUxxjD0glCTUQ46rbVjffX+xeOsXwqm96RqtnRuqo0xo16cyxhzCFGLgsrl97bSfk4eZ5mxnr/ShdtOMcY0T3G/d8fTl01hndLz9/fRHjTGVDPYi3YsNxC9tg43xjyHwVBWVbEiIiKyT1EYKyIiIrJ/Kn3t+wJjzIgKSWPMGQxeuf4nY2xjhTHmX0ZZtwl4c3z3p8MefjieHj/afoF/Y+gFoSajO54uMMbMH2U8RwH/Os76PfG0YYr7BXgAWBf//L4xlvlIPN0E/G0P9rEnSuf91caYg4c/aIw5ibGD2p8S9RxOE10EbkzGmOEXFrs+np5hjDlzkmMtPX9HjfH4+4Ha8TZgrc0B34/vfg44lqiP8vcmOQYRERGROUFhrIiIiMj+6cvADqILNP3aGHMcgDHGNcacC/woXu5Wa+1tY2yjG/iGMeZ1xhgvXv9o4DdEF5DaDXx12Dp/IbqoVBL4oTFmZbxexhjzFuAbDG1rMBmPEV0gywA/NsasibeZMMa8mugiZsPbFlR6NJ6+2hgzpRYJ1loLfCC++0pjzDWlalJjTLMx5mqgFFh/wFobjradveDHwD+Ietn+0hjz/HhMjjHm5cBNDIbQQ1hr24HL47tvMMb8xBhzZOlxY0zaGPN8Y8xXiJ7PSr+Kbwa40RjzdmNMQ7xe0hhzlDHmc8aYV1Ws87t4+nJjzPuMMZl4+XnGmM/EY2mfxDF/I54+L57eYq3dPYn1REREROYMhbEiIiIi+6H4ol6vIgo+jwbuMcb0EIWWNwCNwENElapj+W+iStfvAX3GmG7gQeA4IAu8ZvjFw6y1PnApUWuAU4AN8XrdwLXA/wC/mOKxhMA74m2eCjxZcSw3AnngneNs4ntAAXg+0GaM2WaM2WSM+fMk9/9j4GPx3UuB3caYDqIw+u3x/E9aa38wleN6Oqy1RaKLlrUCa4A/GWN6ic7JLUAvcMU4618DfBCw8XYeNsb0x8fVD/wJuIQozK9czxJVId8OZICrgfZ4vQGi19S7qKhCttb+ligchug89sXL7wL+k6jVwC2TOOaHgHsrZqlFgYiIiOxzFMaKiIiI7KestX8jukjTF4AngATRBbbuBf4LeM4ElYV5op6zVwBPEVW7thJV1T7LWnvHGPv9GXAG8AeiUNAl+rr/m6y1b9zDY/kZUY/b38XbTMRj+izwTKLK2bHWfRw4Hfg1USi8kOgCVKP2tR1jGx8AXgT8L9AG1BBVc/4CeLG19vJxVt8rrLX/IPq6/jeJqqATwE6i5/t4ogu5jbf+VcAxwNeBJ4mqXavjbf0KuBh4zijrdRE9F68Hbo33UxOvdztRMD48cP9n4L1EVc7FeF9/AV4/xddEKdQtjVFERERkn2KiD7dFRERERCLGmO8QBW0ftdZ+ZHZHIzLIGPM7oou1fcpa+97ZHo+IiIjIVKkyVkRERERE5ry4V/CLiForfHOWhyMiIiKyRxTGioiIiIjInGaMqQGuIWpvcIu1dt0sD0lERERkjyiMFRERERGROckY805jzCaiPr1nAjmi3rMiIiIi+ySFsSIiIiIiMlc1EF1sLQDuBM6IL1wmIiIisk/SBbxEREREREREREREZoA32wPYF7S0tNgVK1bM9jBERERERERERERkDrrvvvvarLXzJlpOYewkrFixgnvvvXe2hyEiIiIiIiIiIiJzkDHmqcksp56xIiIiIiIiIiIiIjNAYayIiIiIiIiIiIjIDFAYKyIiIiIiIiIiIjIDFMaKiIiIiIiIiIiIzACFsSIiIiIiIiIiIiIzQGGsiIiIiIiIiIiIyAxQGCsiIiIiIiIiIiIyAxTGioiIiIiIiIiIiMwAhbEiIiIiIiIiIiIiM0BhrIiIiIiIiIiIiMgMUBgrIiIiIiIiIiIiMgMUxoqIiIiIiIiIiIjMAIWxIiIiIiIiIiIiIjNAYayIiIiIiIiIiIjIDFAYKyIiIiIiIiIiIjIDFMaKiIiIiIiIiIiIzACFsSIiIiIiIiIiIiIzQGGsiIiIiIiIiIiIyAxQGCsiIiIiIiIiIiIyAxTGioiIiIiIiIiIiMwAhbEiIiIiIiIiIiIiM0BhrIiIiIiIiIiIiMgMUBgrIiIiIiIiIiIiMgMUxoqIiIiIiIiIiIjMAIWxIiIiIiIiIiIiIjNAYayIiIiIiIiIiIjIDFAYKyIiIiIiIiIiIjIDFMaKiIiIiIiIiIiIzACFsSIiIiIiIiIiIiIzQGGsiIiIiIiIiIiIyAxQGCsiIiIiIiIiIiIyA2Y9jDXGLDXGXGOMucsYkzXGWGPMikmu6xhjLjfGbDLG5IwxDxpjzh1j2YuMMY8bY/LGmLXGmLdO53GIiIiIiIiIiIiIjGfWw1hgDXAe0An8aYrrXgl8BPgy8FLgbuCnxpiXVS5kjLkI+BpwI3Am8FPgq8aYi5/WyEVEREREREREREQmyVhrZ3cAxjjW2jD++U3AN4CV1tpNE6w3H9gCfNJa++GK+b8H5llrj47ve8B24FfW2tdXLPct4GxgkbW2ON6+jjvuOHvvvffuyeGJiIiIiIiIiIjIfs4Yc5+19riJlpv1ythSELsHXgIkge8Pm/994ChjzMr4/onAvFGW+x7QDDx/D/e/35ntYF5ERERERERERGR/5s32AJ6GI4A8sG7Y/Efj6eHAxng5gEfGWe4Pe2OA+5KvXn4dNzzxJ05evIbVyzyqGrKkXJckCRIkSMY3FxdjzGwPd3Yd6Mc/CQf8a0SmlV5Pk6TzNCl6PU2SztOE9FqaJJ2nSdHraZJ0niZH52lCBp2jSdFraVL0Hj6xRc88jqY1B8/2MOaMfTmMbQK67Mhyzo6KxyunnRMsd8Cy1nLTw/fS4XXx8833cthDL+ToznMJajvJzd9EvmkLQaoXp5iGENxCChO49C+9h1zzQxg/wISAtTiBxRQsbiGAEDBgfIvX55Po8bGOoVjn4de4lP8EWnD8EFO0g9OCh7HzMHYBJmzB2AZMWAcmSZjwCT2LN1BPor8ZN1eHCQxYMKEPNgthFozBukms42E9i/VCrGuxJsA6AYXaRyjU/wYnnyVMJEhkT8TLNWMG7iW981FS7QVMCBbA1GGTi/EzjYRpi5+y4KWBWqAWt7gQp7gYE9Zg3d2E3i6sV4WxB+H4izF+AscnPidOdOw+OIGJTlL55pQfxxbBdoPtgnArBOsgeApsH5ADG4JJAUmwuyHchgGsaQLvueCuAlMLpia+1QIB5K7F+PcNPv/es8E5CChE+yxPcxB2gG0D2zPuP1csCXAPi24mGT2pw2+lX1WTAachGnewCYIngGw0BmcZ2B4IN0KwNTphxiV6q4qnpjo+rjpw4qmpi+fFx2h74/PkAInoHOZ/iLHdI8furALvGCjeirG9g/PNPHAPBnc1mGYIN0RjDXeALQBFDP5Ev17jnDOiY/aOBfcZYKqAdHz+4mm4DYp3gn83xvZUrFsTjc1ZEB97NYSbwH8EY1ufxphccA8FkwYS4CyMn9eDoxHbXrAD8XNQD8YDmyP6XCwVz6uJnzMT/S4GT8S3teCvBbtT//QVERERERE5gLzoY59VGFthXw5jDXGeMcr80e5P6Tv4xpg3A28GWL58+ZQHty/ZtmsXnU5bdMfAY423sS3zKCftPp/mJ08k6vQwUvNDZ1PMdNJz8F10H3wX2cVPgBsMWcbN1pHsmUfPEU9hPR+soXrr4dRseiaYkDCZwxKS6GuObr3R1Ms27OWjBngRfvoN9K66l5rHn0ki21h+xM90kVvZi5vL4OarcYI0BkgA5CCVm6YhuBMtsHTy27K92LA1CmHH4x2L7bsY/Pug6p2QfuPE2w53Y4t/hOJfAA+cxeAsiqeLwV0JJjH5sc6G1L9jc1dD/qcYwihATr8Z0m+Kxm4vx+ZvAtsJiReBd/iEm7TBuuicBGvBPRy8Z0ahaimANM3RdpxlELZBuB0ogrM0mufUTWLc/xTtK+yJQmUccMd+XdiwO9oHIYSt4D8AwaNRcOseGoW32Y9hwk0jV666HNKvnXhMU+GuIrpuYizswpbCWdsH3hHgHhF98FD4PRT/EM03abDZ0ccpIiIiIiIiso+a9Qt4VZriBbw+BVwGVFVWxxpjTgD+CrzCWvt/xpiLga8Ci621OyqWmw/sAi611n5lvH0dCBfw+uTbPs9vtj1EJ13lecY6HNn5Eo7seAnOxKkhlhA/083Agg1kF60l3XoQdeuPxwmThG6e7KInSXUtJNHXMvG2TECxpoNiTTt+TSd+VQ9Buhfr+pjQxYQuflUPxZoOgkw3NirNxQk83GIap5jGYHGMxSHECz0SfgI38HBDDyefwV13Ik77isGd1u2Exq2EratxKoJZgCCZpVjbhk314YQuTuBhXB8SOWwyS1jdQVDXSpjM4vY34vQ34ZoQr6aNZKaTQipL1itQ9HwM0JsaoD+Z54jWhazsiYqzDTYukA0xQBi6BMUq/EKGQraJXF8zhWwjYZDAhh7WGhzXBxNSHGjAL1RH23GKVDduIVO/HTeRw/VyOF4B18vTteMIOrcfjeMWyDRspa99FZiA+gWPR+fdutjQxYYOYZDEL1Tj56sJg9SEz36quo1M/Q4cLx/PMWBN6QmNlzM4bgE3MYAxIfn+FgZ652NDj1Smg2Smi6CYJtffTHGgHozFmBBjwui8GBuvn4uPLV8+RjeRi/ZtHYJiiiBIYQgxTkhP6xr6O1bE56dAIt2HDV2KuXoA0rW7yPUuGHJEjlugqm4nqeo2vGSWfH8zud75FAvV2NDBhh5Pt+22l+wj07CNqrod0TlxfBzXxzg+xoTkeufT176SbNdSrB387Mw4PqnqVpJVXdFxOz65/hYGehYR+ulJ7XflcT8gVd1enpfvb+bJOy8CA5n6rRgnwEsMkK7dRbp2F8aEBH6aMEjgenkcL4fjBIShRxgkcBwf1xvA8fLx8wVBoYpc33xyvQuiad98gmJmSuco07CZlhV3UtO8fsS3pKw19Ow8jLbNz8Uv1JDKtJGqbqVxyQOka/a8QnhyZulv55i73bvjmb1/Kkzzjid5IHPnX0YzYLRzMof+bTjdpu3IpnqOZumcWoAwJAxDsCHGOBjHASeaGszIMoZRh7qHvzul4x7l+Cd9RiZ77p7GuMdefbLrj/Z7NNlV7djnbTKrhyFBsUBQLEbfsfI8jOvheC6O62Hc+N/wFX9Eh/xU8fwP/ZqtqSh9sfGw7OB4bembT6XrTlT8bG15f8aU9jHKfVP6oriJ75oRY6K8ezv0+hZ28Ac7fGbl6bN2cEyAteHgcVgLYTTWaNdOPD4zYjry5Jkxz+NU7I2vNk/4//cjX3ATPFzxfA55YLTzMnLdwddL6b4d8roa+nwNfUbLr6th94eMbSyOKb/nlW/xcYy+2h6+T+/h+7u1FhuG2DAc+norj3NSb85TGke0z4DQD7BBQOj7hIFfHocNw+h3JAgHn6thQ6gcY/mcls61cTBOfCxOdD96zMQ/l9aL7+8nppqpHagtDY553Rs46OTTZnsYe91kL+C1L4ex5wPfBQ621q6rmH8B8G1glbV2ozHmZOB24HRr7a0Vy51K1Cv2hdbacXvGHghhLERvItd8//t868Ybh8xfVLWMs2veiLtlPt1bgzHWHocTQDgY5vrVXfQedheFVCdOvgqsg1/TQbG2LQpga9vwM93g7Om13SbJQmbbYVRvPYL+ZY+QXfx4+R+dye6FJMIMbnWAlwlI1yaoTtVRlciQTlSTTmSoSlSTTmbinwfnl25VFfdTXtWQN917N/2Ba37/XhbWL+cT5/4YZxr+GPW1BfTu8Gk5OEEiPfr2wsDy6w928OgvsgAkawyv/EILK04cO8Cz1rL78SLr/jDA1nvzJGsc6he71C32qFsUTRsP8kjVzN0/qNZanrx1gNs/303XlsHWAo0rPF7ykUaWHZdm9+MFHvxpH2EAa06t4qAT03ipsf9QBkXL9gfybPxLjvYNPvMPTbDsuBSpGofdjxdoXVck0+iy4PAkzas8su0h3dt9gqKlYalH/VKPTJMzqT/GNrTkey3ZzgAbQuNyD8cbuZ4NLdnOEBuCDSydm322/b3A7rUFaue7zD8syaO/6GfzX/Nkmh1e+635NK+OKpp//s42nrx1gGNeU80ZH9473VustfTtDmhdW2T32iL53pAFhydZeGSS7m0+T/xugM1/jcrOvbShe6tPvjf6G7XoqCQv+3gTTSsTWGt54ncD/Pmabjo2jmwV4Sbh9A80ctSra/bKcYiIiIiIiIgMdyCEsfOBLcDHrbUfrZh/K7DAWntUfD8BbAdusda+oWK5bwLnAIustYXx9nWghLEldz/4IP/16U/T299fnpdMJHjbv/0b57345fRstrStK9K+vkj7hiJt6/0o4JriS6l2oUvjKoe6g0Jqlvuklw2QWtyHn+onV8zGt+jngfL9ynmVy2UpBuM+jbPKGIe0VxWHs9WkE1Vs6ViHHxY5fPHxLKxbPhjiJqsnDHg9d89bAoSB5Q+f6mL7QwXOvLKReQcnp/FI5zZrLYV+S9+ugFxvyILDkuMGrvuj4kDITW9vY/PdeaoaHM68qolMk8MP/nU3Xtpw0S8XUTN/4kr4mZDvC3nohj7u+W4v/a0hiSrDiW+tY+Ofc2y5J6rArl/i8pyL6lh+QoqOjT5P/C7LIz+PPmw4+txqXvyBRtzEgfUci4iIiIiIyMzbp8JYY8w/xT++CHgrcAnQCrRaa2+Pl/GB71pr31ix3ieBdwLvA+4H/hl4C/BKa+3NFcu9lahVwceBW4EXAh8A3j5RiwI48MJYgCAI+MTXv84Nv/nNkPnHHnYYV7zjHSxftGjI/GIupHOTT/uGIu3rfdrWR2Ft52YfO8Vi2up5Di2rEzTHt+hnj6qG8QMiP/SjoLYwGNAOjBHc5or9wwLeipC30E/OH8DavVyZ+zR4TmJIcJseUrGbGTGvFOSOFvCmElXTUpkr+45iLuTmd7ez/vaoCjXT7JBtD3nOm2o5+Z0z0a95avK9Ibd+rJN/3JItz6tqcHjepfUcfW71iLD1kZ/387srO/Hzlue/vZ4T3zKJ3rwiIiIiIiIiT8O+FsaONYjbrbWnVizzXWvtBRXrucDlwEXAQmAtcIW19oZR9vEW4N3AQcBm4AvW2q9OZnwHYhhbcttdd/GuT31qyLx0KsW7LriA15x55oRfsfYLls6nooC2VEnbvr5IxyafcIoXos80OeWAtnm1Vw5sJ/tV76mw1lLwc3FgOzTIrQx2B4aEv2NX8RaC/LSObzoZDKlE1RgtFiYKeDOkk9VDWjIk3AOn0nZfZkPLvdf3cscXuwl9SNc5XPTrRaTr5m4w/9gvs9x1bTcHnZjmeZfUk64fe6wb/5Ljhre0kshE1b7VLXOj2ldERERERET2T/tUGDvXHchhLMAnvvY1fvyrX42Y/9xjjuEjl17KwnnzprzNoGjp2hIFtFEVbfRzx8YiQXFq26pqiEPaVd6QatrqedMf0u6pIPQrAtzBkPbnf/8mT+56iCMWn8Bhi589uEyhf9wq3nCq5cYzyHW8ET1zRwt5RwS8w/rvViUypBIZVe3uZTsfKXDX17o58pwaDn5h1WwPZ1rd9LZW1t+e26t9cEVERERERERAYey0OtDD2J6+Pl55ySV09vQwv7mZ3e2DV2CvyWT4f296E2eddtq0BJ+hb+ne5tNWqqQtVdNu8PFzU3utpmoNzasStKwZrKZtXpWgdqE7Z0Ladbsf5sqb30TCTfGJc3/EvNrFE65jraUY5AeD3UL/GBVBGE41AAAgAElEQVS841X1DlbxFvzcDBzpnkt5Y1XtDu2xO14Vb1W5ajc1Z5572fva1xf59qt3goULfraQltV73mtZREREREREZDwKY6fRgR7GAtz4299y5Ve/yqply3jBs5/N9f/7v1S+dk494QQ+eMklNDfsnX6TNrR0bwuiStq41UGpmrY4MLXXcCJjyn1om1fFlbRrEtQtcjHOzAd11/7xw9y1/tc8a/nJXHb6Z2Z8/2EYkPMHRrRZGKzOHbtNw8hK3n6CuVy1a9wRPXOjQHesi6WNH/A6jr76Ptf97soOHvhxP8uOT/HyTzZRu8Cb7SGJiIiIiIjIfkhh7DRSGAvFYpHTXv96+rJZbrn2Wlo7O/nQl77Elp07y8s01Nby/osv5vSTTpqxcdnQ0rsrDmnX+7SvGwxrC31TDGmrDE0rvYqLhkWBbf0SD8fdeyFtV7aN99zwGnLFLO864wscs2zmzt90i6p2CyMvijYizJ24ird0m8uSbqqiOne8tgwjQ96o3+5gwJtU1e5e0d8ecN0rdpDvtTgeHHJ6hpPeWkezqmRFRERERERkGimMnUYKYyPv+exn+c2f/8y7L7yQfz/7bLIDA3zx+uv5ybB+si89+WTee9FF1NfWztJIo1Cwb3dQrp4tV9Ou88n1hFPalpuEppVxu4NVgxcPa1jm4XjTE5796uEf8KO/Xc2CuqVcdc7/kPRS07LdfV1oQ/IjLoo2Wh/d/mF9divXGZzvh1NsSDyDHOOSHnIhteoJ+u4Om5cc2ofXdVQBWrJ7bYG7v97DE7cOYAPw0oYzPtTIEWdXz/bQREREREREZD+hMHYaKYyN/OqOO7j885/n2UccwXUf+1h5/p1//zsf/fKX2VXRS3ZeYyMfetvbeMFxE74GZ5S1lv72cLAfbandwYYi2Y6phbSOF4W0pQuHlappGw/ycBNTC2n90OeDP3sd27s2csLKF3PxqVfoK/B7gR8Uy9W5I9st9JMrDA9+Ry5XquLNFwewzN33z0RctTtam4VyoDvsommjhb5ViWqSXnq/qNrt2eHzp6u7+cfNUcX1Ma+p5oWXN+Il9/1jExERERERkdmlMHYaKYyN9Pb3c9rrX08Yhtz2ne/QUFdXfqynr4/PXHcdN//hD0PWefXpp/PuCy+kumruX6U92xFEFwsrVdPGYW1/29RD2sblXtzmYLCatmlFAi81dujzVNtaPvHLixko9nPyIWfxhue/D8c4T/ewZC8JbUjBzw3rmzuyYnd4m4bRAt5cMUsxKMz2IY3JGId0+UJq4/TRTVYPC4BHD3g9d/ZaBFhreejGfn7/8U6CAqw6Oc0rv9iiQFZERERERESeFoWx00hh7KC3fvjD3P3gg1x52WWcddppIx6/7e67ueq//5uO7u7yvMXz53PFO97BcUceOZNDnTYD3UG5erbywmG9u6Z2oSrjQMOyUhXtYFjbtMIjURWFrk/sfIDP/PodFII8px9+Hv/63P9QIHuA8EO/XJ07vL/uxG0ahrVq8AewdmofIswkz0kMCW4nDHmHPDZ0vVSiao9+R3Y+UuCGt7Yy0BWy6gVxIDvOhyUiIiIiIiIi41EYO40Uxg760S9/ySe//nVe9Nzn8rn3vnfUZTq6u/n4tddy6113DZn/b2edxdtf9zrSqf2jH2q+N6R9YzG6aFhFWNuzfWohLQbql7jlNgcDjZu5eednyTY8xbMPOYmLTvkwKS+9dw5C9kvWWgp+btQLow2Uq3Xj+YXxq3hzxSyFID/bhzQmgyFV0Wt3aE/dsQPedCJDYUsdd/5XHYVuw7KTXM7+XDOZ2v3j/UlERERERERmlsLYaaQwdtDO1lbOvOgiqtJp/nj99aSSyVGXs9byqzvu4BNf/zq9/f3l+SuWLOHKyy7jqEMOmakhz7hCNqRjgx+1OdhQCmuLdG8LmGqL0ULdbpyFXRx73GEsPbSu3PYgVatqWZk5QeiP6Jk7Wh/dwXYN41fxhnaKH1jsRanWg1h544fwBuoZmL+ered8Fq8xP+JCacND3hEB77D+u1WJDKlERpXtIiIiIiIiBwiFsdNIYexQ//Kud/HYhg1c/f73c/Lxx4+77O6ODj765S/zl/vvL89zHIcLzz2Xt5x3HonE7PWOnGnFgZCOTX75wmGlatquzT5T/UZ5zQKX5lVeVE27JgpoW1YnSNcr+JG5zVpLMcgPVucWJg54h1TyDqviLfi5pz2mZMdiDvr55aS6F1GsaWfLS79IdsljMA1dC1Je1TihbmWf3fHaNET3E25qv7iQmoiIiIiIyP5IYew0Uhg71HU33MA13/8+zzzsML718Y9PGA5Ya/nZrbfy2euuI5sbDE4OWbGCq975Tg5ZsWIvj3hu8/OWzqeKtK2r7EtbpHOzT+hPbVvVLc6QC4eVetNmmty9M3iRWRaGATl/YGibhUJlNe7obRqGXngtS6HbYd6Nl5DZfigAA/PX03H0b+k+5C7CVHaWjzLiGndEz9wo0B3rYmnjB7yOo/cFERERERGR6aIwdhopjB2qt7+fs976Vrp6e/nS+97HKSecMKn1tu3axYeuvpr7Hn20PM/zPC5+7Wt5/Tnn4LkKBioFRUvn5qiS9pH71/OPv2+AXc0kOxfjBFOrKK5qdOKetIMXDmtenaC62VGlnUismAv5y3938vANWXLxNQidhKXpmTnmndpB9Qm7yPsTV/GWQt68PzC7BzSBpJuqqM4dJeQdc17cpiE5GPAmVbUrIiIiIiIHOIWx00hh7Eg/uPlmPnPddaxatoyffPGLkw5SwzDkh//3f1z9ve+RLxTK84865BCuvOwyVixZsreGvM8r+Hnu3vBbbnvk52xb30GqYynp9qWkOpaRal9KunMJxh+9h+9Y0nVOOaBtKYe0HjXzXQUrcsDy85a1v8ny8E39bLkvX+71vPrUNGde0USmySXfF7Lz0QLGgJcy0S0dTTPNLl7SENqQ/IiLoo3soxtV544W8A4Nef2wOLsnZhyOcUmPuJDaJAPeZEXAG99cx5vtQxIREREREZkShbHTSGHsSIVikXMuvZRtu3bx4be9jVecdhptnZ00NzSQnEQf2I1bt/LBL32JR558sjwvnUzyjvPP57UvexmOo96n49nU9jiP7biPzR1PsqXjSbZ3bSLwQ5I980i1R+FsqmNZHNYuwfHTU9tBOo+d34pZ2IGzsAt3URfe4l68phyuGz030YWJDAZD9J/BGCeeRuFMKlFF2suAgXxxgLw/gMHBcxPRzamYOqPMi6c16XoWN6zEGyOgsdbS3reTbV0b6ejfRc9AB725LvzQJ7QBjnHJJGuoTtWR8tK4jovBob/QS89AB3k/R226nrqqZjzHpeDnKfh58n6Ogp8jsD6ekyDhJrFY8sUBCn4ez/VIemkSbhI/8CkGefywSDEoUAwK8XlycYyDY5zy+bGEhDa6WWuxNoweMyZaDoNjXObVLebQhc9iZctheO7ov1cd/bt5dNvfsFhSXhWu41EM8vH4EjRkWqhLN8YX4RoYEu4VgwKhDQhtSMJNkk5Uk/JSFOLxF/08hSBPMchjMLiOh2McikHpGPPxrUA4rPGxGdZwtSZdT3P1QhoyLQShT97PkS9m4xYDURuA0vNtbUhgA8IwIAiD8nOY9NKkvBQpr4qkl8ZzE+VznU5kWFC3lAV1y6hJ1Y/6YYK1lu6BDnpyHWTzfQwU+8gW+hgo9OEHxej4HJeBQh/dA+305roxvTX4969m4JZjsANJTF0Wd0E3/voFEI7xPmUsprEPZ0EnVWc9SGZ1H57rlY+lNA3DAMdxy69113i4YQov4eB5CRJughUth3HIgmPw3AR9uW4e2f43dnY9NaTdQt6PXo/RITuAxVob78sf8posvQbyxQHsVK8oOIMc4+A6Hq6TwHO86Gfj4jguruORTmSoSdVRlawl5aVIelU0ZeazrGkNDdUtuMajJ9dJvjhAJllDMhH9nibdFI5x6cq20ta3k/5CL0k3RdJLkfLS5d/nXHGA/nwPeT/L4PucwTEGg0NNup6GTAuZZC39+R56c11UJTKsaDmMpJea1DGGYUBntpWeXCd9uW4Giv0U/DzFIBdPC9Hvnz/4O1aVrCaTqAFjyr97flCkGOQJwmDU99ViGP0u+2ERQ+l9xh18vzHRe3fCSVKfaaK+qgVrQ9r6dtDRvxvP8ahJ1VOdrqcmVU9NaZqqJ5OswRgTv5eFQ0L0bKGP1t7tGCCTrCWVqCJXzNKf74luhV6y+V6qktXMq13CgrqlVKfqJnXurLUTfmCYK2Z5cMud7O7dShD68S0o/zz4HhyWf18stjyv9P5sjCHhJkm4qfhvh4nOGaVzZyrOa/R30XU8GqvnMa9mEUkvza6erezs3ky20EsQ+lhrWVi/jINaDqW5egFd2Tba+3bihz5JL0XSTTNQ7KMn14m1lqOXnsjSxtVjHnMYBmzv2kTeH2B+3dIx3wNHU/BztPXtYHfPNopBgaWNq1lQtxTHccvPV/ShSQ2OcbDW4ofF8t+D0fTmutjasY6dPZvZ3bN9lA+SRn/vGe3/SYwxrJl/FM866JT4b22RR7b9lV09W0h6KRJuOv771k8u/ndG6e/beIwx8e9+mkT8HpBOZDh66YnMq108YvltnRu444mbKQZ5PCdJY/U8zjjin/XBkYiIiAyhMHYaKYwd3S9vv533feELeJ5HGIaEYUhjfT3nv/KVnPfSl1JdVTXu+n4Q8J2bbuLaH/8Y3x9sjnrckUfy0be/nSULFuztQ9hv+EGR7V0b2dq5gdbe7bT2bqO1dzu7e7fR2deK19NMqmMpqfZlpDuWxmHtUtxCZkr7CRID5Ju2km/eWp7mmrZQrG8Fs3ffSxJuiuVNB1OTro9DOp+BYj8DxX66sm3lQG9/lPTSvPSof+PsY95QDiD/su5X3LnuVzyx84E5HarNhkyylgV1S2muWVgOULoHOniq7XF6cp17tM1ETwtLf/0OqrcdDoA1AQMLNmDdAiZI4vhJjJ/EKSbxsg0YG31bIEj1s+G8D5Bv2TJke15fIy33n4U1IfmmbWBC6tY9h5pNxxKk+tn+4q/Tu/oeANKJDIsbVrK57QkS21dg3SK5+ZumfAwGQ11VI67j0dHfSmUgYnA4eMFRHL3sJJqqF5AvDu3Dmy300pfroj/fS3+hh/5875BAXyIJN8nqeUdy1NLn8uyDTmVh/XJ29WzhsR33srN7C335bnpzXbT2bmN3z7Y5Xe08GaUPmEqvgaSboipZQxD69OW7p7y9ZU1rOHrpSRy99CRWzTuMpDf0g8THtt/Lz/9+HU/uepCGzDxaaheRdFMMFKO2IJlkLQ1VzRSCPI9s+xvFID8txzkXLKpfwbHLn8fypkNY0rCStr6drG99hPWtj7Cp7fEhfwMzyZr4g7gmaqsaqUs3UJtuwg8LbOvcwPaujfTlesj7A6O+BpNuCowZcoHE6AOxFAU/T2gDkm6KBfXLWFC3lLp0MzXpOvLFHI/tuJfNHU+O2ObTVZOq59BFz+Kx7ffRX+iZ9u2XGOPwrOUn8/yDX04mWQtYbn/iF9y17tcj/tZe8Lz3ctqh5+y1sYiIiMi+R2HsNFIYO7owDLng8st5aO1ajDHU19TQ1dsLQH1tLV96//s59tBDJ9zO2o0b+eCXvsQTmzaV51VXVfGfF17Iq178Yn1d/mkqBgXa+3bS2rudjv7dcdWqh2Nciu0pclur6N/s0bc5Qf/mJANb0wT9U+vf6yQDUktypJcOkF6SJb1sgOTiXmxzF/kg+h/ElFdFyktjiapq/MDHD6OqrsrqvSD0o0qvsEgQFPHDIu19u9jdu3XcMdSlG1nSuIp5tYupr2qmNt2A5yZxjCEIA7KFPvrzPXH1qo+1IZlkLXVVTSS9NH25bnoGOghCn1QiqpArVc24jheNz48qbdKJqDLTD30KxQEKQYGEm8Bzk3EFVXSDqGIptGFUDRuGWOywqrRStexgNaO1liD02dzxJGt33s/2rk0ALG1cw4mrz+D3j91AR/9uIAp/jlzyHKpTdeSLAwShT8JLkXRTFII83dl2enId5WrCygs4JdxkPBaHYpCPLmTl56MKQi9VrhZKuEmsJa4mC8pVYgkvnrrJYRVSQ/+uhNbSl+uirW8nXdlWEm6KdKKKlBd9rT3lVYGJPlTww2JcSezhOi6ucTGOgw1D8v5AXK2cpxDkKAYFEm4Sz0mQLfSxq2cLu3q2jBvMZ5K1NFXPL1cYViVryCRr8dxEuWIuk6yhvqqZmnQD1ob4YYEwDDHWoeueZow1NB6bJVETVTQDQ96nQh/yu1Jsun4e7XfXkWgqsOqKB6iaH+Ial8LuKp644mDyu8avoKw6aSO7D/0VO4tPkuyez7x7ziGz41DwAhZ8/Nek5wXl58kxDrniAAOFvuhDikJU9Zsr9pMt9JMt9NAz0FkOE4xxaMy04BiXgWI/2Xxv+bFF9QexqGEFLTUL6RnoZGPbY+zq2TLeUAEz7Hk3pLwUnpPEcxM4xo3PZRGLJe1VkYgrSP0hldbRe8Jc/oDB4MTf3oiOuVQ1H4QBA8W+Icsm3NS4gWB9VTP1VU3UpBvIJKtJuumK37vB37+kG52rgWK2vI/y72H8fuMYN3pvDYsEgU8xjN5PPSdB0k3hugmoeI8JCYe85xT8PN0D7XRl2wCYV7uYpuoFhDagL99NX647mlb8XPm7ZoyDraiQT7opWmoX4xiXbKGXfHGAdCJDdaqWTKqW6mQdmWQN2UIfu3u3sqt7C4WKc+Ual+XNh9BUvQBjoLO/lfWtgz3nJ36eDAcvOJo184+KKs9LFdaOh2c8jOPiYHAcJ65srfgGQ/z+7BiH0IblbwqUK2lL79fxOaTiZ2tDikGRzuxu2np3kPOzLKhdyoL6ZdSlm3AdD2tDtnVtYFPb43Rm22iqnk9zzUJSXjr65kWQpypRTW26kYFiH/c/dceE4XZLzSKqU3UTvgcO5xqX5ppFzK9bgmtctnSup6N/V/k5rE7VlS9+WLlOMM6HMAk3xUHNh7CwfjkL6paNCNWj52d0w79Vkfdz/G3j79nc8UR53tLGNTxj4TH4gU8hyOOV/75lyt/ISbhJGOffj9YG8d+SfPlbIG19O7n/qdsJRrl6qut4nHzIWSxpXM32zo3c9viNLGtaw5Wv+r7+nSoiIiJlCmOnkcLYseULBdq7upjX2Ijnedz1wANc+6Mf8dDatRz9jGfw3U9+clL/SC0Ui3ztxz/m2zfdRBgO/s/cC447jg9dcgnzmpr25mFIBWst/W0h7euLtK0r0r6+SPsGn7Z1RXLd4cQbqOAmoWnFYC/a5tUJWlYlaFju4Sam9j8v/fkenmp/goKfi76qbNzyVyfr0o3UpOuntL19yeM7/s51f7pqSCC9tHENLz3qX3n2QadQlayZxdHNLdZaenOd7OrZSnvfzihgtT5ViRpWtBxKS82iGfsf52Iu5KdvbmXb/QUaD/I46pxqGpZ7/P4TnfS3hiw8MsnqU9J0bPTJ94asfEGag19UxRO/HeCOL3bj58f++3z8G2o59d0NUxpPEPp0D3TgB0WaqucPaX3RlW3jtsdu5LbHb6I31zViXdfxyr9n9VXNLGlYxdKm1SyqP4jmmoU0VDVjjFNuL5Fwk3t8nqNgMDf6hdHK1brx/MLQ3roDxX768j34QaG8TmEOV0caTBQejdpTd/CDkxHzktWjrlP6EGim+HFo5ZroA7yCn6O/0ItjHOqrmqf0GigGBdbu/DsPbvkLj+24j62dG4aEuxB9mHLmkf/Kiw47N2qD0LcdPyhQlagm6aXJFvroyrYRhD5HLnkOjdXzpu9gZ5Ef+jy+4z6e3PVw3JpoI43V81k97whWzTuC1fOPoL6qGSi9B3bFrVa66BnooCfXSW+uE2McljSsZEnDKhoyLeW2HMOfp2yhD4MhnciUH/ODIoUgH7WIcbzoA7Du6AOw3lxXOSx+xsJnsmb+UZNu1zEZ1lo2tT/O+t2PcOjCZ7G0afW0bXu4rmwbf3j8Zzyx84Hog43QZ2nTGs465oJy+4JiUOBdPzqbnlwn73/51zhk4bF7bTwiIiKyb1EYO40Uxk7NQC7HmRddRHdvL9/+xCd45mGHTXrdh9au5YNf+hJPbd9enldXU8P73vIWznzBC/bGcGWSrLVkO8I4nC3Svt4vB7bZjqmFtI4HTSuicLZ51WBY23hQAi+pCpPR5P0cP7//G2xse4wXH34ezzro5DH79cnckesO+Z/zd9G+fmil1bLjU7z6yy0kq0d/Dts3FLnzv3vo3emT6wkxBo58VTULDk/y4wtbSdUa3nrr4jHX31MFP8/WzvW09e2grXc7mWQtK1sOY0njqjH7Fs91UT/JygujjXaxtP74QmrjX2wtV8zO6bYMpQr4yoB25EXTqkcGvMmhy1YlMqQSmVl9jxko9LOp7TH68j3xsbkcuujZZPThk8wBN9x7LTc/+G2es+p0LjntqtkejoiIiMwRCmOnkcLYqfvKD37AN376U0494QS++L73TWndgXyeq7/3PX54yy1D5p/xvOdx+VveQmPd5C7wITMn2xnQscGnbX1cSRtX0/btnlpoYVxoXO4NCWhbVidoWpnASymklX1ToT/kyd8PsOPhAjseLtC0wuOMjzSSSO9Z0PXD1+9m6315XvieBp7977XTPFoZj7WWYpAfUpk7XsA7pIq3OLyKNzukJ+dcVGolMlqwW1mdO24Vb/zz06mWFplr2vt28e6fvAoHw+df+wsaMi2zPSQRERGZAxTGTiOFsVPX3tXFSy+6iKLv87Mvf5kVS5ZMeRv3PPwwH7r6ana0tpbnNTc08KFLLuGUE06YzuHKXpLrCaMq2nVF2iqqaXt3TjGkdaB+qUfL6sqgNkHTSo9kRtWhcmB58vdZfn5ZO/VLXN70y0U4rgKufVUYBuT8ioulFforwtyx2zRULlsZ8o7Xx3O2Ra1lhlfpZqhKZobMHwx8xw94HWdqvc1FptvVt76H+576I+c86yJe9cw3zfZwREREZA5QGDuNFMbumSu+8hVu+t3vOPeMM/jgJZfs0Tb6slk+961v8bNbbx0y/+wXvpD/euMbqa2uno6hygzL94V0bIzC2XI17YYi3VunHiTUL3HL4WxLqTftqsS0f31bZK4IA8t1r9hJ1xafs7/QzDNOz8z2kGQOiKp2C6NW4A5ttzB2FW9lyJv3B2b7kMaVdFMV1bmjhLzD5lWGvFWJTLk1QzpRTdJNqWpXpuzR7ffw6V9dSkOmhU//0w2kElWzPSQRERGZZQpjp5HC2D2zads2zrn0UhKex6+/+U2a6vf8Akt33HsvV3zlK7R1dpbnLWxp4aNvfzvPOeaY6RiuzAGFbEjHRr+i1UGRtvU+XVt8pnpx9dqF7mCrg1UJmtdE/WnTdQppZd93/w97+f3Humg5OMH5P1kw5QviiUwktCH5IVW6o/TRLfSP06ZhaKuG0a5QP1c4xiU94kJqEwe8g+0ahvbhdR1vtg9JZoC1lo/84gI2tT3OWcdcwD8dd/FsD0lERERmmcLYaaQwds+97Yor+Mv99/Oht72NV59++tPaVldPD5/8xjf49Z/+NGT+P7/sZbzz/POpSqef1vZl7irmQjo3+VE4u84vB7Wdm32m+q3cmvkuzau8EdW0VQ36yqvsO4q5kG+/aifdWwNO/o96nvNG9dKWua2yanfUPrqFwRB38PHRq3jzxQHsVD+hm0EJN1UR4A4Pc+NAN1n5+GhVvFHAm/TSqtqdw9btfpgrb34TnpPgY6/+HxbWL5/tIYmIiMgsUhg7jRTG7rkbf/tbrvzqV3nBccdxzQc+MC3b/O1f/sLHr72Wrt7e8rxlixZx5WWXceyhh07LPmTf4BcsnU8N9qJt3xBV1HZs8plqEVamyYnC2TWDrQ6aVyfINDn6H2GZkzbdmeOnb27FSxve8LOFNCxTNZ4cGEIbUvBzw3rn9g+r4h3ef7cU8g4PgrMUg8JsH9KYjHFIly+kNnof3aEXUxsv4M3guYnZPqT9znV/uoo7nriZo5Y8l3e/5Iv6N4OIiMgBTGHsNFIYu+faOjs5/cILSXgef7z+ejJV09NPq62zkyu/+lVuv+ee8jzHcTj/la/k4n/5F1LJ5LTsR/ZNQdHStdmPLxo2GNZ2bCwSFKe2raqGKKQdUk27JkF1i0JamX23vKedx/4vy4qT0vzT11r0mhTZA37ol6tzhwe347ZpGNJndzDkndtVu8kRrRZGC3mHt2oYLeBNJapwjFr/9Ax08p4bXkO20MulL/wEx6984WwPSURERGaJwthppDD26Tn/Pe/hobVr+dx73sOLTjxx2rZrreUXt93GZ667jr5stjx/9fLlXHXZZRy2evW07Uv2D6Fv6d7m0xaHs23romrajg0+fn5q74WpOkPzqlKbg8Fq2tqFrgIxmTH97QHfOmsnuZ6Q0z/UyLHn1cz2kEQOaNZaCn5ujF66wwLewthVvKXlikF+tg9pTAZDKlE1omfu1Kp4B+8n3H33g/TfP3Yj19/5aaoS1XzgrG+ytHHVbA9JREREZoHC2GmkMPbp+fZNN/Gl66/nFaeeylXvfOe0b39HaysfueYa/vrQQ+V5nuty0XnnceG555Lw9NVdGV8YWHq2B1FAO6yatjgwtffIZLWJWxx4FT1pE9QtcjGOQlqZfv+4pZ//e28HjgfnfWMey45X/2yR/UUQ+iN65o7WR3ewXcP4VbzhVButzyD3/7N33+FV1vf/x5/3OjPzJCGBAIGEpYIWXNS9J3VUravaqrhF29o6vq3W1V+t2iq4qrbuUWfraOtC66pacCCizCTs7J2z7vX744STHBIgwZMBvB/XxYXeOee+P4d1Tl7nfV4fVd8ooO055N044O3s3+0MgL1GYECndh3X4b53f8O8irnkBYu4/riHyQnkDdj1hRBCCDE0SBibRhLGfjeVa9dywoo6LbYAACAASURBVKWXkpWRwTuPPYaupX+jJMdxeO7117nrsceIxjqnSHYeN46br7iCslGj0n5Nsf1zHZfWajsxQdsR0G4Ia+Ntffu30/ArhMamBrR5ZTrZxTqqJiGt+G7evb2J+Y+14s9R+fHfCskZKW9CCSFSua6Lacc6N0iLbz7g3eRmax23iVvRwX5Im+VNdu12n8JNndDteYq3az2DoXm2+KmXuBXl1n9dyorarxmbvxNXH30vfk9wgB6tEEIIIYYCCWPTSMLY7+7Eyy6jYs0aHrr5ZvacMqXfrrNy3TqunzOHBYsXJ495DINZP/4xZ8yYgdYPQbDY8biuS1uNnZyerSs3qV+eCGujLU6fzqV7O0PaDRO1+WUGOaN0VF1CWtE7ju3y0mV1VHwQJTRW58Q5+YTGykY9Qoj+4zg2USvSGdDGN65b6KmmIZxy264hrz2Up3YVrVtnbiLUTe3SVVB5d/FLtMWayc8Yzsl7XMywzOJuAa+qyutRIYQQYnskYWwaSRj73c1+/HEeeeklTp8xg6tnzuzXa9m2zROvvMK9Tz2FaVnJ49N23pmbLr+ckUVF/Xp9seNyXZf2eqdjirZL3UG5SbihbyGtZkDumMTGYfnjjOTmYbmjdTRDQlrRXazV4emzqqlbbmH4FQ6+KoddTw5Kh7EQYshLTO3Ge5zATa1b2PQUb9eQN2ZFBvshbZZH93WZxO0h5E3ZPC11itdvBJLVDD4jiEfzyr/zQgghxBAhYWwaSRj73S1YvJifXHMNqqpyxL778tMTT2RSaf9ubrB85Up+M3s2i8vLk8f8Ph9XnnMOJx1xhLxwFQMq3NDRSdsRzm4Ia9vr+hbSqjrkjtaT4eyGadrQGAPdK3+md3SxVoe3/18j37ya2NRwl+MDHH1zSPqKhRA7FMd1iHXbFK1LsBtv7zHM7WmyN2K2YzvWli86SFRFw2f4U8PaLQS8qVUNqT28mio1N0IIIcTWkjA2jSSM/e5c1+XOxx7j6ddew+qYVr3k9NO54NRT+/W6pmny0Asv8Nfnn8d2OkOv73/ve9xw2WUU5uf36/WF2JJIs52cnq1fYSb6acst2qr79nFNRYWc0Tp5pQb5ZZ1hbWiMjuEfuE1MxNDw7b/aeeOGRsywy+5nZXDwVTnyBpQQQmylrlO7PfboxrtP8UbibaysX0JjuDZ5Hk3VcRwbl6H7/ZehebsEuBsHuR0/e7p+PdhD6JsIeD26T557hBBC7FAkjE0jCWPTp6q2lideeYVn/vlPHMfhNxdfzMlHHtnv1120fDnX3XUX5WvWJI9lBAJcc/75HHvQQfJCUQw5sVanM6DtEta2rOtjp54C2cVal03DEhuIhUp1PAEJabdnlR9HefHiWhwLDvhZNnvPzBrsJQkhxA5nXVMlL33+IPMq5gKJjcUO2+lkJhdPJyeYT8yMbFTFsHFNQ9cAeOMgOIxpxwf5EW6aoqj4dD8bd+amTuduHOZuKuANoGvShS6EEGJokzA2jSSMTb8X3niDW+6/H1VVueGyy3Bcly+/+YaJY8dy+owZ/XLNaCzGfU8/zROvvELXP/eHTJ/Oby66iFBOTr9cV4h0iocdGsot6rr00tatMGlea9PXQZusEVqy6iA5TVtq4M2UkHZ7sfj1MK/+qh5cOO7OPCYeHhjsJQkhxA5pZd0SXvzszyxY89/ksWx/iN1LDuZHe16C35OxVee1HCs5nbtxcLvJmoZuG6l1hrxDe2rX061+oceQ10gNeXsKeL2GH1WR1ztCCCHSS8LYNJIwtn/c98wzPPjss92OP/L73zN1p5367bqfL1rE9XPmsKa6OnksNyuL31x8MYd+//v9dl0h+pMZcWiotLoEtIn/blpt4fatlpbMwo6QtktAm19m4MuWb1q2RfMfb+Xd25oIFqic9+pwvBk9/z7WLTeZ/1gr9eUmBRMMinbxkDNax5uh4slQ8WYqeDPUbhvIuY5LpNnBn61266Z1XZdoi0O43kHVwfCr6J7EbVzclP/fFNdxibW52HEX1wXdo/Tqz+KGdZkRN/EjnPhvO+7izVTx52oYPoVwo53cYM+frSbejFDAtV0UTSGrSEPVE2u0TZe2Ght/rpoyWe5YLrblonsV+aSFEGKzllZ9ybuL/8436+fTFK4DoCh7NJcd8ntGhcYBELOilNcuYmnVAurbq9AUHU3VyA0UUJxbyvCcEjyaD1VVCXgyMTTPJq/num63f5cc1+kxiHRdl7gV7dalG4630RJpoC3WTMyKJI/HzAhRK0LMDBO1IphWDNOOJwNf046l8VcuvRQUvIa/W2fupgJeXTUIm+0Mzy4hy5+LzwiguLCqYTmmHUNVtY4zJ56rNFUnw5tFhjcbj+5FVTQM3cuwzOJ+fZ6IWzFqW9cSt2OMyZu0xWs5rgOu22X9m7a2sZz69mpiZgTTjqOpOoZm4DOChILDCAUL0TWDmBnGdmyC3qwtXr891kpjew26ZiQrMgKejG73c12XyvrF1LWuw6P78Op+RuaWkeHLTt4mZkVRSGyQtyWO66DQf8/ZGzYl9Ojefjm/EGLokjA2jSSM7R+u63LbX//KWx99xJQJE1AUhXc++YQJY8bw9B//iK5t+kWBbdssXLaM9+fNY9X69ew7dSqH7bMPmcFgr67d2tbGnCef5PnXX085npOVxR677MK4khIO33dfykaN+k6PUYjBZsVcGirNlF7a+hUmjass+rofSTBfTdk4bMM0bSC05RfwYvC4jstTZ9WwfkGc3c/K4JCrczu/5rqsnhdj3iOtlH8Q7dX5DL+CN0vFl6ViRhxaq2wcC/w5KsXTvITG6DSutKhbbtKyzsI2N3MyBTKHaWSP0hk+xcPY/XzkjTVY/p8Ii/8dpnapSbTF6Tb1vespQQ7+VQ6egEpbrc2Xf2ujpcrCMRNvTDSttmhcZZGOT++qOuSM0nFdaF7T8fdGgZyROpmFGi1VFi3rbVw7cVtvhsqEw/3s/7Ns/Nmdfzdc16Wh3GLVvCjNa2zaamzCjTaaoWD4FXSfguFT0H0q2SM0hu3kIWu4xur5MSo+iIICR90Uko36hNhOuK7LyvolPPT+zaxpXI5H8zImfyca2qtpaK/BcXtXS5Tpy+Hnh/+RsmGTAYiZEd5f+ipLqxdQXruIurb16KqBoXlwcTGtGLZro6l6R/CVSX5GEQWZIzA0D22xFtpjLbTHWjt+biEcb+31xKxH91GYNRJV0WiPtRKJtxGJt+GQeNMr259HbqAgGZjZjkVzpJ6WaCNxq3fPQ9uyUHAYu5ccxNj8nTpCXz/tsVaqWlZR31bFuMJd2WvMIXgNPwCWbdIWayFuRQnHW6mo+5blNQupaVlDlj+XnEABlm1S07KG6pY1NLRXJ3+vdh6+Bz/d71oKs0amrGFp9QJeX/g0Vc2rqGldiwKUDtuF8cN2I8ObRcyKYjsmWf4QoWAhDe3VvL/0VVbWL+nTYx1fuCsnTruAnYfvkQw941aUeZXv8smKN1jVsJymLp3KG2iqTqYvl+HZoynJm4jPCPJp+Vusb65MuZ2iqJQV7MLY/J2oqFtMRe0iNFXniMmnceyuZ6OrBl+t+ZglVZ+joGLoHsKxNirrF7O6YTmu65DlzyXTl4uheTE0g5xAPgdNPJGJRd9DURQcx2Zd80qaw3W0RBtRUJhcvHdKCLyxNY3lzH7rV9S2rqUoezSjQ+MpLdiF8YW7Upg9inWNFVTWLyE3kM8eYw7pFgiH4228tehZalrXMjZ/J8qGTaYkNGGzgfn6ppW8/vXTfLn6Q0LBQkryJjIqNI5QcFjyTZzNvWkzUGJmhDVN5axrrKA11sT00sMJBQsBWLz+Cx796FbC8RbyMoaTFywk4M3stvlgzIzQGK4lEm/n6ClnMjynZJAflRCpJIxNIwljB0YkFuOkWbNYV1PD1TNnptQVlK9ezVOvvsrSykqaWltpaGqiPRJJub/X42HfadPYe9ddmbrzzqxYtYr//O9/fLVkCYqioGkalmXR3NpKOBpl8vjxHLjnnjz7739T19jYbT1+n485v/41e06Z0qfH4bour7zzDt+uWIHP68VjGLS0tdHQ3IzX4+H/LrwQv2/L79gK0Z9s06VxlUX9crOz8qDcoqHC7HNI68/tCGlLExuIbeilDRaoMiU4RFQvjvPEjxKfBjjruUKyR+iUfxDhsyfaqPo6kVjqPoXJJwQZd7CPumUmVYtM2mttYm0OsVaHWKtLrM3pcdLaCCiY4Z5fT3gyFAK5WmJKpGMyFQAF4u0uvckbPEElMXWqQqTJwbESAenY/X0sfKkdK9rztb1ZCh6/ihFIBJ5GQEUzINbqEm6wsaIugVBiShYg2uIQa3FAAVVTsGKJSdgkJfGmRKTR6fb3RDNICZ79uSrTL8jCirrULomz5ot4nzfm29hxf8xj4pFSNSHE9iRmRXn8v7fx4bJ/Jo8pKIwKjWdi0fcYkTMW13WwHJPa1nWsbaqgpmUNph3HtOOE460EvVn8+tgH8HsyuOutX/Y5NOsNvxHEo/tQlcRzu0LHz4qCqqioikZbrIXWaPfX1JCoGLAde7Mhs6KoyWnSoDebDG8WAW8mColQLGqGaYzU0hyux3VdvIYfj5aYPHRch3C8NWXDtJ5oioaiqFjO5t4pHHyJyWWl16H8BgoqOYF8olZiEzlD9TBjt5+w7/hjyMso4p9fPc5Lnz3Y5/MCBD1ZjC3YCa/uT/x+unbiz2CslYb2ahrba7BdG58RwHFs4h2T0aNDE8gO5KGpOkurviQcb02e06N5ycsYjuNaxK1YsmajJ1m+XMYV7oplx2mPtVJZvxi7y5Oxoqi4HS9Sgt4sbMfa5Lm2ZGz+zmQH8lha9QXheFvK11RFY6fhu7P/hBnsPfawlJB0afUC7nzzypTHuDnTRh/AeQf8hgxvNm2xZt5f+iqvLXiM9lhLyu0KMouZsevZTC87gvmV/+HNRX9jXVMFmb5cgt5MVjcs3+x1QsFCLjjgenYascV8KC3WNVUwr+Id9ht/LHkZRQB8Wv42D3/4u5TfE4/u4/jvnYuiqLww//4+/7mcXLw3vzpqTlrXLsR3JWFsGkkYO3De/fRTfv7735MRCHDdJZfQ2NLCpwsW8O6nn3a7bXFhIQfsuSclI0bw9n//y/yvv96qa3oMg7jZ8wsyj2Fw57XXsu+0ab0+3yMvvcTsxx/f5NdvnDWL4w89tM/rFGIgOJZL0+oNnbSJadq65SYNFWafpwy9mUoynE0EtIlJ2swiTULaQfDOrY189mQbvmw1Eap2vN7156pMPT2DqadnEMjd/JSz67qY4UT1QKTZwfAqZA7X0L0KzWts1nwWo3mtRWisTv44g5xROoZ/05UCjuXSUmXTWGmy8tMYFR9GaagwKZnuY9LRAcbs68OfnVqNULs0zj+vaaB2aee/2+MP9VN2kA/No6B7FLKL9WTFwndlRhwaV1koCuSM1jF8KraZmDhvq3HIGq6RXayjexWsuEtDhck7v29i9fzuH88NhFRKpvsomGCQMUwjEFKxLbAiLmbUwYwmfn0bKixqFsdpXmtRtIsHI6Cy/J0Ik47y84M78r/zYxJCDC2u67Ki9mviVqzj497DevVRa8uxuHvuNXy56gNyAwW4QFO4lmGZIzl2t7MZVzCZ4Tkl2I6NacdQFBWP5kVTdUw7TsyK0BZtpq5tPbWt67Adi6A3q+NHZkcomkXAk4Gm6r16LO2xFqpb1qCg4PcECXgy8HsyMDQPlm1S3bKadU2VtMdbMe04tmMxLLOY4txSCjKG9+rj8pvTFmtm8frPWVW/lLVNFVQ1r8Z2LFRFpTFckxKsqahompGsUyjJm0hxbikZnixMJ059WxVN4Tq8up+cQD4uLu2xFprCdcSsKOASM6NEzXbsrQg3B1rXsDIvWMSwzGKyAiE8mpdwvI3WaFNi07WOkDtqRWiPtWJoHvYoOYg9xhxMlj93kxupOY4NHeF8JN7O2988z78XPkV7PDVYHJu/EwdOPJ6dR+zZ4+953IrRHKlnbWM5lfWLaYk0sNuofZlcvHfKn8NIvJ1v189ndcMKSvImMKHoe6xrquDZ/93D0uovARiTP4lpow/Ao/sw7TiG5qEkbyIleRMxNIOWSCOt0SZMO4bpmCyp+oK537xAW6w5eZ38jOEUZI4g05dLe6yFb9d/lgwNR+aO48Rp56MqKsuqv+Ktb57DtGNMKzmQmftfR23rWlbWL2VFzdcsq1lAbes6RuSMZWRuGV+sep9wvI28YBE5gXzK675J/v5MLJrK7iUHsrJ+KYvXf059exWQCIJ7CiwNzcM+447m0EknJSao6xezvqmSxnAd65sqqWtbD8CRu5zOyXtc3Ov6hKZwHW9/8wKV9YtpDtfRGm1iTP4k9i49nCnF02mK1FPdvBqfJ8Ckoqloqs6n5W/z1w9uIWZF8Op+Tpx2Pm2xZl5b8BgAI3LGMio0jpgZ4cvVH6Zc79hdz+bQnU6ivr2a+raq1J7reKIT26v7yA7k8coXDxO3Y/zuh88wMre0V49HiIEgYWwaSRg7cFzX5bKbb+ajzz9POe4xDI475BCOPuAAQtnZZGdmkpuV2kNUVVvLR198wbyFC1mweDHFhYUctNdefH/qVHweD5Zto6kq2ZmZ6JrGs//+N4++9BJNra1M3WknTjjsMO56/HEam5tTrq1pGn++4YZeTci+88knXPmHP+C6LuedfDIZgQCxeJyMQIDF5eW89p//cNIRR3DdJZek5xdMiAHi2C7Nay3qlls0lJudlQflFmakb88jhl9JTNGWGSm1B9nFGqomIW1/ibU5/PUH62mvdVA0KJ7qZdJRfiYfH9xsYDoUWXGXTx5soXGlxV7nZFK48+B/9K4r13VZ9EqYZXMjZI/QKJhoULizh4LxRrde3d5oXmfx4BHrMfwKl34wAsO3bf1+CSH6T9yKcvvrVyTDp4lFU7n80D9s9mPUO6q4FeV/Fe/w3pJ/sKphWXJCb1RoHKfvdQW7FO+1Vefd0A/adaO0xGZq4R6OtdMWbaYxXIvt2NiORdyKErVSN1sbynq7kZrPCKIpGq2xJlRFQ1VUCrNHMSZvUvK2XiOQ9o3UNlSA+D1BCrP6XjkXs6LMr3gHF5hUNJX8zOEpX2+LNvO/irm8tuCxZEja1cGTTuTs7/9qi28s1Lau4753f0N57SIgUc8wsWgqR085kynF05Pf5zqOzf8q5vLKl4+wtqmckbnjOHLyaexechDheCvNkXoKs0aR6et5M2rLsXj1y0d55cuHcVyb4pxSLjzoRkryJvR4+6gZpqL2Gz4pf4sPl/2z11Pkmb5cSgt2ZsHqj4BE6LquqSL5dVXROH2vyzl8l1OTj+3rtZ/y5Md/oiXawMz9r2NayQG9uhbAox/9gXcXv8RBE0/gnP2u7fX9hOhvEsamkYSxA2tdTQ3/74EH0DWNvJwcRhYV8YODDyY/N3fLd+6j9kiEr5cuZdouu2DoOg3Nzfzu/vuZ+8knKbfLycriXw88QMDvTzneFg7z+gcfEIlGsWybB/72N6LxOJefdRbnnnRSym2/+PZbzrn2WsaXlPD87NlpfyxCDAbXSUw2buiirV9hUdcR1Mbb+vb8onsVQmP1bpUHOaP0bptGia3TtCaxsdvIad7ERlVim/HEqVVULTI5YXYe4w+VqgIhRKdwvI1HPvw9oeAwTtnjkk1OLopUcStG1Gwn05c7pD6x47hOYnO0jcLcnsPdcDLk7Xq86w8zHQXq/cir+/F7gt3C3d5srLbxMUPzDtjvZdyK8c7il3hvyctk+0OUDZvMpKJpTC7eu9drsGyTz1b+B0PzsvOIPfAZm35+d1yHlkgj2f7QVj3GFbWLePC9G6hqXoWm6vxw2gUcs+tZyTB8TcMK/vrh76io+zY5oaugsPuYg9h33NHkBofhN4IsXPspn6x4k8q6b8nLKGRY1ijqWtcnO301ReP0vX/GYTufwldr/ssTH99B1Ixw8cE3s8uIPbuty3VdbMfq879b65oqufbFUzE0L3ed9qq8ASWGDAlj00jC2B2L67r86/33ufXBB2ltb08eLwiF+NM11zBlQuJdxC8XL+b//vQn1tXUpNz/uEMO4cZZs7o9ScbicfY94wxs2+b9J5/s9WZjQmyLXDfRtVlfbnUGteWJTZ2izT2Ujm6GqkNojJ6coE1M0+rklhjonqHzzZMQ/enTv7bw/p3N7DwjwLG35g32coQQQmwjLMdKhLTxzoA20kNou+lj7V3+P5wM6oYiVdFSAlz/hmDX0xncbinw7Xqst/Uc24qYFeXZ/93N3G9fAODAicfz032vobG9hptenUlTuBZN0RidN4HxhbtyyKSTerVBluu6rGpYxperPmCX4r0YN6zzE6WO6+A4dr+8SfTHN37GV2s+5uTdL+YH3/tp2s8vxNaQMDaNJIzdMVXX13PTvfemVCaoqspPTjgBXdN4+MUXsR2HSaWl7DF5MrbjMGLYME49+mg8Rs9PNmdddRULly7l/htu4Pvf+95APRQhhgzXdQk3OB3hbGcvbf0Kk/a6vr24V7TEJk55pZ19tHllBqExm+8pFWJb1LjK5C/HVOHJULj0/WJ5I0IIIcSAc12XuB3rDGjjG6Zz2zcKcXue0u06wRsxw8St6GA/pM0yNO9GwW7qRG7yuCeYDH5Tw+DO//fq/iEzgf3Fqg+4751fE7djfL/sSFbWL2FdUyUTi6byiyP+tNkJ3aHk67Wfcvvrl5MTKOCPP/q7fCpADAkSxqaRhLE7Ltd1ef711/n9gw/S09+Vn554IpeecQbGJsLXjd3x8MM8+corXHTaaVx02mnpXq4Q27RIs50SztavSEzVtvZ1B3oFsos18rv00eaVJUJbT1BCWrHtevSkKmqXmJx0Xz6lB/i3fAchhBBiCHMcm6gV6d6zGw93m8jtOfBNPd7bftPBoKDgNfx9r2DwBHsMdw3tu/XlL17/OX968xfErAgAI3PL+L9jHyDozUzHwx0Qruvy65fOYG1TOafv/TOOmnz6YC9JiF6HsdvX3L0QaaYoCj86+mjaw2FmP/FEytdUVSXg80Ef3uHcdeJEAL5asiSt6xRie+DP1hg5TWPktNQdXmNtDg0VHX20ycoDk+Y1mwhpXWheY9O8xmbFe6kTF5lFWrLmIL+0M6z1ZUtIK4a+CYf7qV1isuTNiISxQgghtnmqqhHwZBDwZKTlfF03Uuteu9DeZZK3e5DbU7jrkr7BNRc3ed6mNJxPU/VuAe2mpnJ7CnwzfTlcdOCNPPT+zQS8GVx55J3bVBALHd+r73kpd751JX///EH2GnsIoWDhYC9LiF6RydhekMlYYVoWJ82axar161FVFcfp/Dj1zmVl3HTFFYwbPXqL56muq+PImTPJCAR4/8knUVUJgITYWvGwQ2Nl14A2MVXbtMqir3VmwXw1WXPQtfYgENr8TrhCDKT6cpOHj6tCM+CMJwsp2uW7TcUIIYQQomeu6xK3osmp3J7C3dRJ3u4bq3U9Frdjg/2QNsuj+7pM5nYPeHsKfXsKfP1GAI/uG9BKhrvnXs38yv+wx5iDmXXorQN2XSF6IjUFaSRhrACobWhg9fr1hLKzuf7uu1OmWw1d59Izz+Ss445D0zYf3hx9/vmsr63lhTlzehXgCiH6xoq5NK7sMknbUXvQuNLCsfp2Ln9uR0hbqic3D8svMwgWqEOm90vsWN7+XSNfPNNGziids58vxJshb+oJIYQQQ53tWETNyEah7earGKJmO5F4eKNjieO228carwGkKCo+3d+lYmHjLt3eHkv8/5a6YOvbqrn2xVOJWRF+ccSf2G3UvgP0SIXoTsLYNJIwVmzMtm0ef/ll7nv6aUyrM93ZbdIkbrr8ckpGjNjkfa++4w7e+PBDrrvkEk464oiBWK4QArBNl6bVVsrmYXUrTBoqTOx4387lzVSS4WwioE1M0mYWaRLSin5lxVyeOrOamsUmk47yM+P2PPkzJ4QQQuxAXNdNqWRIncht77FyYXMbq0XN8GA/pM3SVWOTXbobpnnXNlawaN3/CHqyOHmPi8gJ5PcY+HqNAKoib2SL/iNhbBpJGCs2ZfmqVVw/ezbfrFiRPObzeLji7LM59ZhjeqwhePq117jtL3/h+EMP5cZZswZyuUKIHji2S/NaK7lhWHIDsXILM9K350jDrySmaMuMlNqD7GINVZPATKRHQ6XJ4z+qxgy7HHVTLlN+mJ6uPSGEEELseBzXIZac2u2hhiE5xbv5jt0NP8y+TjkMMK/u32zdwsYTvT1urJbcSM0rb4qLFBLGppGEsWJzTMvi4Rdf5KHnnsOyOz8usueUKdxw2WUUF6aWiH+9bBk//tWvKBkxgpfvu2+glyuE6CXXcWmpshPB7IqOSdqOoDbe1rfnTt2rEBqrd6s8yBmloxnyAk703aJX2/nXtQ14MxXOfWU4GQXSbyyEEEKIwWc5VnLDtE1vqNYZ8Ea6Teqmhr5uXzeDGECqom2xbmHjwLcz7O3s2d3w/5qqD/ZDEt+RhLFpJGGs6I3F5eX85q67WL5qVfJYwOfjynPP5YeHH558x8y0LA748Y+JRKO8/tBDFBUUDNaShRBbwXVd2mrsxIZhXTYPq1tuEm3u24tFVYfQGD05QZuYptXJLTHQPRLSik1zXZeXLqmj/IMoE4/0c9wf8wd7SUIIIYQQaeW6LnE71hnQxnuuW9hwbG1jOQvXfgLAiJyxGJonpcYhbkUH+RFtnqF5Nwp2u2+q1tNGa11D4A1hr1f3y9TuIJAwNo0kjBW9FTdN/vy3v/Ho3/+O43SGMvtOm8b1l15KYV4eAFfeeitzP/mEay+4gFOPOWawliuESCPXdQk3OCmdtBsqD9rr+hbSKhrkjEpM0G7oo80rMwiN0TH80nMlEprXWTxyfBVmxOXEe/IZd5B/sJckhBBCCDGoXph/P68ueBSAfcYdzZl7gIOLpwAAIABJREFU/5wMXzYAjmMTtSIb9eyGO6Z4N7+hWtdjGyZ97b7uDjyAFBS8hr/b9O2WKhg2FfgamkfC3V6QMDaNJIwVfbVw6VKumz2byrVrk8cyg0GunjmTYw86iFfeeYff3n03+06bxr3XXz+IKxVCDIRIs50Szm7op22t7uNOuApkF2vklxmESg3yOyZp80oNPEEJaXdE859o5d0/NJFZqDHjtjxG7u4d7CUJIYQQQgwax3V44+tnePGzBzDtGFm+XE6Ydj4HTjwePc01AF03UutexdDeZZK35wqGrnUNMTOCy9DN5zRFw+cJduvY3VT37saBb0HmCLL8ocF+GP1Owtg0kjBWbI1oLMY9Tz3FU6++Ste/ZwfttReX/fjHnHLFFeiaxn+eeIKgX6aZhNgRxdocGio6+miTlQcmzWv6GNICmUVasuYgv7Rz8zBftoS02zPHdnn6rBrWf5XYLKN4qocpPwxSMMFDXqlMUgshhBBix1TVvIqHP/x/LKn6AoBhmSM5YdpMppcePiS7WV3XJWZFNhvupk7ydp3U7R74xu3YYD+kFKfueRnH7HrWYC+j30kYm0YSxorv4rNFi7h+zhzWVlcnj+VkZpKdmcnKdeu446qrOGyffQZxhUKIoSYedmis7BrQJqZqm1ZZ9HUPg2C+mqw56Fp7EAjJhk/bi1irw/wnWvn8yTaiLZ1/QBQViqd6GX+on3EH+8keqcnHy4QQQgixw3Bdl/mV7/LiZ39mffNKAPIzhnPUlDPZc8zB5AS2385927F6XbuQEvjGwxsdSxy33b4Pi3T1k32u5pCdfpimRzd0SRibRhLGiu8qHIlw52OP8fzrr3f72pH77ccffvnLQViVEGJbY8VcGld2maTtqD1oXGnR18oqf25HSDu2s5M2v8wgWKBKYLeNirc7fP2PdtZ8HqNuuUlDpUXX182BkErRLh4Kd/FQNNlD0c4e+f0WQgghxHbPdiw+Wv4v/vnVE1Q1d264ne0PMTpvIqND4ynJm8jI3FLyM0fg1X2DuNqhx3XdHioZulcubC7wPWHqTKaO3n+wH0q/kzA2jSSMFeny8ZdfcsPdd1NdX588pigKf7r6ag6ePn0QVyaE2JbZpkvTaitl87C6FSYNFSZ2vG/n8mYq5G2oOShLTNKGSg2yijQUVUK7bUmszaH8/SjL5oZZ+UmMaHP3sWrNgECeRjBfI5inEszXKPm+j0lHBQZhxUIIIYQQ/cdxbD5b+R7vLH6JyrpvCcfberxdli+X4TljGJlbxvCcMfh0P7pm4DeChILDCGUUEjAyUFUN13WJmu00RxqwHYtQsBC/J5hyPtd1aY+1oKkafk9GytfaYy3ErRiKoqIoiY23FEXFdmwsO47t2mT7Q/gMeW22LZAwNo0kjBXp1Nrezh0PP8zLc+emHD/ukEP41XnnkRkMbuKeQgjRN47t0rzWSm4YltxArNzCjPTt+d/wK+SVdk7Rbqg9yC7WUDUJaYc613VpXmtTvShOVcePmm/NlFqDJAUufHM4WcOHXp+aEEIIIUQ6uK5Lbes6VtYvYWX9UlbVL6GqZTX1bVVYjtmrc6iKhqqo3W4f9GThMwIoioLjOrREGrAcE03VOWryGRz/vXNpj7fw3Lx7+XjFG726VqYvh6Ls0UwdfQB7jT2UgswRvbqf4zqoSs97CLiuy2cr/0Nl3WKqW9bQFmtmUtE09i49jFBwGCtqF7G8ZiGZvlymFE8nL6Mw5b62Y2HacTy6N9nDu66pgvmViXO2x1poi7XgM/xc94O/9Gq92zoJY9NIwljRH96fN4+r7riDaKyzWLswL4/fXnYZ+0ydOogrE0Js71zHpaXKTgSzKzomaTuC2nhb314X6F6F0Fi9Y5pWT07V5ozS0QwJaYc6M+LQXu8Qrrdpr7P5/Kk2Vv0vxv6XZzP9gqzBXp4QQgghxIByXIemcC1rGytY3bicmpY1mHYcyzZpj7VQ315NY3sNUTOMS+J1s0f3kePPR1VV6tuqMXvYPMtvBImY7QDkBAoIx1uJW1E0VSfDm4Xrbjibi+M6aIqGrhmoikZTuK5b4JufMZzcYAE5gQICngz8RhCP7sV1wcWhoa2aVQ3LWNdUSaYvh5K8CYwt2JkDJxxHXkYRMTPCQ+/fxLzKd3r8ddAUrVtP7LDMkbg4tMdaiMTbk49fQSHTl4OueWhor+52Lr8R5M9n93yd7Y2EsWkkYazoLx/Mn8+sW27pdvyUo47i5z/5CQG/fxBWJYTYUbmuS3ut07lxWMcUbd1ys8ePuG+OqkNojJ6coE38rJM7xkD3SEg7VJW/H+HFS+rIHaNz3qtF0icrhBBCCNGDDZOhjmvj6dIx67ourdEm4lY0GVZm+XLxGn6W1yzkiY/voLJuMQB7jj2UU/e8bItTrhuma5fXfM28irl8ufpDomZ4q9atKRr7jj+WyrpvWdWwDL8R5PBdfkRR1mg8uo8vVn3AF6veJxJvZ1RoHOMLd6OxvYZv1s/vds1EYOxJeaxBbxZTR+/PlOLpZPtDBL1ZBL3ZKVO12zMJY9NIwljRX1zX5fQrr2RxeTkBn49wNJr8WnFhITfOmsUekycP4gqFECLxb1W4wemsOii3kmFte13fQlpFg5xRiQna/LLO2oPQGB3D3/NHqMTAcSyXPx+2jvY6hzOfGsaI3byDvSQhhBBCiO1Gorf2P2QH8plQuNtWncO04zS0V9PYXktjuJZIvJ2oFSZuRVFIbM6a4c2mJG8CI3PLaIrUs6p+CfMq3+V/FXNx3cTr98Kskfzs8DsYkTM25fyWbWI5ZkpPrWWbrGuuxKv7yfBm4TeCqKoGJDZIa4020R5roSh7dLKyYEckYWwaSRgr+tNr777Lb2bPZuzIkYwtLuadTz9Nfk1RFM6YMYNZP/4xPq98QyyEGHoizXaik7a8s/KgfoVJa7W95Tt3pUB2sZacos0v66w98AQlpB1I797exPzHWtntR0GOuD402MsRQgghhBBpUtW8in8tfBLLNjlz+s8JeqWWKp0kjE0jCWNFfzJNk6MvuIC6xkbuv+EGGpqbufXBB2ltb0/epmTECG6+4gp2nThxEFcqhBC9F2tzaKjo6KNNVh6YNK/pY0gLZBZpHRO0OvmlnZuH+bIlpO0PNUviPHZSNd4shUveLUb3SlWBEEIIIYQQWyJhbBpJGCv620PPPce9Tz/Nfrvvzj3XXUd1fT033XsvH33+efI2qqry0xNP5KLTTsNjGIO4WiGE2HrxsENjZSKgbSg3qeuYqm1aZeH2rfGAYL6arDnoWnsQCGn9s/gdyGMnV1Gz2OS4P+Yx8cjAlu8ghBBCCCHEDk7C2DSSMFb0t8aWFo6aOZNYPM7f77mHsSNH4rou/3j7be54+GHaI5HkbceNHs3NV1zBTmVlg7hiIYRILyvm0riyyyRtR+1B40oLx+rbufy5HSHt2M5O2vwyg2CBKhtS9dL8J1p59w9NFE/zcPpjw+TXTQghhBBCiC2QMDaNJIwVA+GW++/nhTfe4PB99uH2q65KHl9XU8MNd9/N/xYuTB7TNY2Zp5zCeSefjKHvuOXYQojtn226NK22OjcP6whrGypM7HjfzuXNVJKdtImAVidUapBVpKGoEjZ2FW1x+Mux64k0Ovzg9jwmHS3TsUIIIYQQQmyOhLFpJGGsGAjVdXUcd8klxOJxnrjtNqZMmJD8muM4PPf669z12GNEY7Hk8Z1KS7n5Zz9j3OjRg7FkIYQYNI7t0rzW2mjzMJP6cgsz0rfXNoZfIa+0c4p2Q+1BdrGGqu24Ie2C59t488ZGMos0zn2lCE9AOnqFEEIIIYTYFAlj00jCWDFQZj/+OI+89BJ7TJ7MQzff3O1joavWr+f6OXP48ttvk8cMXeeSM87g7OOPR9OkJ1EIsWNzHZeWKrsznF1hUdcR1sbb+vaaR/cqhMbqHdO0enKqNmeUjmZs/yGtY7s8cVo1Nd+afP+iLPa7LHuwlySEEEIIIcSQJWFsGkkYKwZKS1sbP7j4YppbW7nnuuvYb/fdu93Gtm2efPVV7n3qKeKmmTy+68SJ3Hz55ZQUFw/kkoUQYpvgui7ttU6ij7bLFG3dcpNoc992DlN1CI3RkxO0iZ91cscY6J7tK6Rd83mMZ86uQfPAT18qIjRGNpAUQgghhBCiJxLGppGEsWIgPfHyy/zxkUcYX1LCs3feiar2/LHQFatXc93s2XyzfHnymM/jYdZZZ3H6scdu8n5CCCE6ua5LuMFJhrNdKw/a6/oW0ioa5IxKTNDml3XWHoTG6Bj+bfff5H9eU883r4XJLNI47dFh5IyUrnIhhBBCCCE2JmFsGkkYKwZSLB7nhEsvZX1tLX/45S85cr/9Nnlby7Z55MUXeeC557Cszu3G95g8mRtnzaK4sHAgliyEENulSLO9USdtYiOx1mq7bydSILtYS07R5pd11h54gkM/pI23O7xwUS1rv4iTXaxx6iPDyB4hgawQQgghhBBdSRibRhLGioH24ptvcvN99zF25EhemD17i12wi8vLuX7OHJZWViaPBXw+fnHOOZx0xBHdumeFEEJsvVibQ0NFRx9tsvLApHlNH0NaILNI65ig1ckv7dw8zJc9tELaWJvD8xfWsn5BnOyRGmc8UUhGgfSUCyGEEEIIsYGEsWkkYawYaKZlccKll7K2uprf/fznHHvggVu+j2nywHPP8ciLL2I7nR+t3WfqVH576aUU5uf355KFEGKHFw87NFYmAtqGcpO6jqnaplUWbt8aDwjmq8mag661B4HQ4AWgsVaH52bWULXIpGCiwWmPDMOXNbRCYyGEEEIIIQaLhLFpJGGsGAwvz53Lb+++m9EjRvDS3Xejb2E6doOFS5dy/Zw5VKxZkzyWEQhw9fnnM+Ogg2RKVgghBpgVc2lc2WWStqP2oHGlhWNt+f5d+XPVRN1BaWcnbX6ZQbBAHZB/38ONNs+cXUNDhcXIPbyc/Od8DJ8EskIIIYQQQkgYm0YSxorBYNk2J152GavXr+fqmTM5fcaMXt83Gotx39NP88Qrr9D17/hBe+3Fby6+mPzc3P5YshBCiD6wTZem1Vay5mBDWNtQYWLH+3Yub6aS7KRNTNMmwtqsIg1FTW9I27Le4qkf19BWbTN6upfj/5g/5GoVhBBCCCGEGGgSxqaRhLFisPzzvff49Z13AnDo9On88rzzGF5Q0Ov7f/HNN1w/Zw6rq6qSx3IyM7n2wgs3uzGYEEKIwePYLs1rrY02DzOpL7cwI3173Wb4lZQp2g21B9nFGqq29SFt3XKTZ8+tIdzgkDNa54d355NXZmz1+YQQQgghhNjWSRibRhLGisHiui5PvvIK9z3zDJFoFJ/Xy2nHHMPZJ5xAdkYGH33xBW988AF5OTkcuf/+7FxW1u1jqpFolLsef5xn//WvlONH7Lsv1154IblZWQP5kIQQQmwl13FpqbI7w9kVFnUdYW28rW+v53SvQmis3jFNqyenanNG6WhG70La5nUW/7i8jprFJp4Mhf0uzWa3H2WgexP3b6ux8WYpUmMghBBCCCF2CBLGppGEsWKwVdfVccfDD/PWf/8LgM/rJTcri/W1tSm3G1NczOz/+z9Kiou7nePTBQu44Z57Uu6Tl5PDdZdcwkF77dW/D0AIIUS/cV2X9lon0UfbZYq2brlJtLlvO4epOoTG6MkJ2g2VB7ljDHRP95A2HnZ4/boGlrwRASCzSKNkupfV82M0r0mEsVNODLLzjCBNqy1Wz4sRbrDJLTEIjdUZtYeXrOF6Wn4dhBBCCCGEGEwSxqaRhLFiqPh62TIeePZZPuj48ziysJATDz+cusZG3vzoI+qbmjj6gAP4/S9+0eP928Jh/vjww/z97bdTjs84+GCuOu88sjIy+v0xCCGEGBiu6xJucJLhbNfKg/a6voW0igY5oxITtPllnbUHoTE6uk9hxXtRPpjdTN0yM3kfw69suVZBgbH7+ph8QpD88QaBXBXNUGirsWmrtfFmqOSPN5LTths4lsuK9yJUfR2naY1Ny3oLXNAMBdVI/Jz4AaqhoGoKVtQh1u5iht3ktTUdvJkqnqBKXqlO8VQv+eMMmlZb1C41iUccQiUGuSU6kUaHmiVxWtbbFE32MHovL56ATP0KIYQQQogECWPTSMJYMdQsq6ykLRxmt0mTUNXEN4Lramo49sILMXSdtx5+mOzMzE3e//3587n53nupbWxMHhuWl8cNl13GPlOn9vv6hRBCDK5Is71RJ23iv1ur7L6dSIHsYi0xRVuqY0ZdFBUmHOZn5O4+ar41+eJvrVR8FCWv1GDUnl6yR+g0rrSoXRqn4sMotrn5S6g65I8zKNzJQ+EuBlYMvni6lea1fVxrmmkGlB7g54gbcgnkakCi77d+hUlGoYY/WxvU9QkhhBBCiIElYWwaSRgrthWX3Hgj//3iC66eOZPTZ8zY7G2bW1v5w1/+wr/eey/l+ElHHMEvzjmHoN/fn0sVQggxBMXaHBoqOvpok5UHJs1r+h58ZhZqHRO0nZ20eWV6SkgZabL55rUwy+ZGaKu1iTQ62HGXYIFGxjCNSINNfUVi6nVjOaN1djomQM4onewRGqquYJsutgmO6Sb/2zZdHNNF9yt4M1QMv8KGenUr7hJvc4k0O1R/G2fdl3EaKkxyR+sUTDAwAiqNKy0aV5r4slWGTfSQUaix5rMY6xfGwYXQWJ1THixAUeFf1zaw6n8xUKBggkHZgX6+f1FWSsWD67rd+t2FEEIIIcS2T8LYNJIwVmwr3vrvf/nVbbcxvqSE5+66q1ff7M39+GNu+fOfaWxuTh4bMWwYN86axZ5TpvTncoUQQmwj4mGHxsrOSdq6jknaplUWbt8aDwiE1GTNQV5pZ+VBME/t8XkrHnaoWWxS/U2c6m/jxNtcdjkuQNlBflRt8ELNlvUWL15SR90yk8xCDSvuEml08GQo2DE3OfE74Qg/P7g9D1VTWPBCGx/Oaebgq3LYeUZw0NYuhBBCCCHST8LYNJIwVmwrTNPkiPPOo7GlhSdvv53J48f36n4NTU387s9/Zu4nn6QcP2PGDGaddRZ+r7c/liuEEGIbZ8VdGiu7TNKWmzSUmzRUWjhW387lzVI6OmkNQl26aTOLtCE7SRptdnjxklrWLYgDMGYfH8f8vxDeTJVVn0Z57ep6Yq0uu54UxJupMu/RVgDKDvTxw3sLBnPpQgghhBAizSSMTSMJY8W25E+PPMLjL7/MSUccwXWXXNLr+7muy7/ff59bH3qIlra25PHRI0Zw8+WXs9ukSf2xXCGEENsh23RpWm112zysocLCivXttacRUMgbq3eZpk3UHWQX64M6GbtBPOzw0b3NZI/UmXpqBorauaY1n8d4/oJarGjnpmG4iQqHi+aOGJwFCyGEEEKIfiFhbBpJGCu2JeWrV/PDWbMI+Hy8/cgjBPrY/VrT0MBN997Lh599ljymqio/OeEELj79dDyGke4lCyGE2EE4tkvLOjvZRZsIaRNhbby9b69JNQ+ExhjdemlzR+toxuCHtBuUvx/h75fXYQQUjvtjPv+4vA4z4nLpByOSG38JIYQQQohtn4SxaSRhrNjW/OSaa1iweDG3XHEFMw4+uM/3d12Xl+fO5fa//pX2SCR5vGz0aG6+/HJ2HjcuncsVQgixg3Ndl7Zqm7oVFg3lJnUdk7T1KyyizX0rpVV1yBmVmKRNVB4k/js0Rsfwqf30CDavaY2FJ6gQyNV46sxq1i2I86O/FFAy3Tco6xFCCCGEEOknYWwaSRgrtjUvvPEGt9x/P3vvuisP3HTTVp9nXU0NN95zD59+9VXymKaqzDzlFGaecgqGrqdjuUIIIUSPXNcl3OB0qzuoLzdpr+3jzmEKZBdr5G9Ud5BXauAJDlxI+9bNDXz5bDsHXpnNXudkDdh1hRBCCCFE/5IwNo0kjBXbmpa2Ng475xxMy+LfDz5IUcHWbxLiOA7Pv/46dz72GNFYLHl8Umkpt1xxBeNKStKxZCGEEKJPos1OZ9VBl7qDlnV2n8+VWah1qzvIK9PxZ6e/RmDB8228eWMjOx0bYMYf8tJ+fiGEEEIIMTgkjE0jCWPFtujqO+7gjQ8/5LIzz2TmKad85/OtWr+e386Zwxfffps8Zug6F512Gj858UR0TXrvhBBCDL542KFhoyna+nKLptUWbh+HaQMhtXPjsC5BbTBPRVG2rpd2/cIYT55eQ/44nXP+MXyrziGEEEIIIYYeCWPTSMJYsS36YP58Zt1yCyUjRvCPe+/d6m8au7Jtm6dfe427n3ySuGkmj08eP56bLr+c0lGjvvM1hBBCiP5gxVwaKk0ayi3qNoS0K0waV1o4Vt/O5ctSCZXqXSoPEr20mUXaFp9vzajD7L3WggJXfFo8aD22QgghhBAivSSMTSMJY8W2yLJtjpo5k7rGRp647TamTJiQtnNXrFnDdbNn8/WyZcljHsPg0jPP5Mc/+AGaTMkKIYTYRtimS9Nqq1svbUOFhRXr2+tkI6CQN1bvnKbt6KXNLtZRtc6Q9uHj11O/wuKsvxVSNNmT7ockhBBCCCEGQW/DWNl9R4jtlK5pHHPAATz+8su89OabaQ1jx44cyaO33srj//gH9z/zDKZlETdN7nz0Ud755BNuuvxySkaMSNv1hBBCiP6iGUoiNC01Uo47tkvLOrtL1UFnL228veeQ1gy7VC0yqVpkphzXPBAa01l34MtOTMOu/zomYawQQgghxA5GJmN7QSZjxbZq+apVnHLFFbiuyy9++lPOPuGE9F9j5Uqumz2bb8vLk8d8Hg+zzjqL0489FlWVj18KIYTYfriuS1u1Td0Ki4Zyk7oN3bQrLKLNfSylVSA0JjFJm19mEOqoOwiN0aW+QAghhBBiGyM1BWkkYazYlr3wxhvccv/9AFxx9tmc88Mfpv0apmXxyIsv8uBzz2HZnbtY777LLtw4axYji4rSfk0hhBBiKHFdl3CD063uoL7cpL227yFtdrHWpZO2cwMxT1BCWiGEEEKIoUjC2DSSMFZs6/7x9tvceO+9uK7Lbb/6FUfsu2+/XGdxeTnXz5nD0srK5DG/z8fPf/ITTj7ySJmSFUIIsUOKNjudVQflJjWLTVZ9Gtuqc2UWasm6g65BrT9b+tqFEEIIIQaThLFpJGGs2B489Pzz3PvUUxy1//7ceuWV/XYd0zR56Pnn+esLL2A7nZNAe++6K7+97DJGDBvWb9cWQgghthX3H7qOtmqb4+/Kwwy7ySnauhUWzWss3D4O0wby1I5gtnOKNq/MIJinoijKlk8ghBBCCCG+E9nASwiR4oA99uDep57i66VL+/U6hmFwyRlncOBee3Hd7NmUr14NwKdffcUpV1zBleeey4mHHSbfGAohhNihFe3iYXl1hGiTw64nZ6R8zYq5NFR2bhi2ofKgcaWFY/V8vnC9Q7g+xup5qRO3viyVUKnepfIgMVGbWaTJc7EQQgghxCCQydhekMlYsT2wbJv9zzyTSDTKO48+Signp9+vGYvHeeDZZ3n073/H6TIlu8/Uqfz20kspzM/v9zUIIYQQQ9GXz7Xx1k2NjDvEz4lzevd8aJsuTautbr20DRUWVqxvr+mNgELe2I6qgy51B9nFOqomIa0QQgghRF9JTUEaSRgrthfn/frXfLZoEbP/7/84cK+9Buy6Xy1ZwvVz5lC5dm3yWEYgwFUzZ/KDgw+WyRwhhBA7nNYqiz8fth7Dr3DZR8Xonq1/LnRsl5Z1drLqIBHSJsLaeHvfXutrHgiN6V53kDtaRzPk+VoIIYQQYlOkpkAI0c2uEyfy2aJFLFy2bEDD2F0nTuRvf/oT9z71FE+++iqu69IWDnP9nDnM/fhjfnPxxRSEQgO2HiGEEGKwZRbpDJtkULPYZPW8GGP39W31uVRNIWeUTs4onbKD/MnjruvSVm1Tt8KiodykrmOStn6FRbS551JaOw61S01ql5qp19AhZ1Rikja/zCDUUXcQGqNj+GSDTiGEEEKI3pIwVogdyJQJEwBYuGTJgF/b5/Vy5bnncsj06Vw/Zw6rq6oAeG/ePL749luuOf98jj7gAJmSFUIIscMoO9BPzWKT8vci3ymM3RRFUcgs0sks0lPO77ou4QanW91BfblJe23PIa1jQUOFRUOFxbK3I10uAtnFWpdO2s6JWk9QQlohhBBCiI1JTUEvSE2B2F7UNjRw+LnnEvT7ef/JJ9E0bVDWEYlGmfPEEzzzz3+mHD9k+nR+c9FFA9JnK4QQQgy2dQtiPHVmDdkjNc7/9/Ah8YZktNnprDrYUHewwqRlvd3nc2UWap11B12CWn/24Lz+EEIIIYToT1JTIITopiAUYnhBAetra6lYu5Zxo0cPyjr8Ph9Xn38+h0yfzm/vvpt1NTUAvPPJJ3zxzTdce+GFHLHvvoOyNiGEEGKgFE32EAipNK+xqS+3yC8zBntJ+LJViqd6KZ7qTTkeDzs0lFvUrTBp6Ahq61ZYNK+xcHsepqW12qa12qbyv6nHA3lqsou2ay9tME8dEoG0EEIIIUR/kjBWiB3MlAkTWF9by8IlSwYtjN1gzylTeH72bO567DGef/11ABpbWrjq9tuZ+/HHXHPBBeRmZQ3qGoUQQoj+omoKY/f3sejlMCveiwyJMHZTPAGVoskeiiZ7Uo5bMZeGys4NwzZUHjSutHCsns8VrncI18dYPS+WctyXpRIq1btUHiQmajOLNAlphRBCCLHdkDBWiB3MlIkTefOjj/hq6VJOOOwwPv7yS4qHDaOkuHhQ1hP0+/n1RRdxyPTp3HjPPVTV1QHwxocfMm/hQn5z8cUcMn36oKxNCCGE6G9lB/pZ9HKY8vei7H3utvcGpO5VGDbRw7CJqSGtbbo0rba69dI2VFhYsZ5r0qItDuu+jLPuy3jKcSOgkDe2o+qgS91BdrGOqklIK4QQQohti3TG9oJ0xortyZeLF/MvT4M3AAAgAElEQVTTa65hZGEhw4cNY97CheTl5PDPBx7A5/Vu+QT9qLW9nT898gh/f/vtlOPHHnggV59/PlkZGYO0MiGEEKJ/xNoc7jtwHVbM5Ud/KaBkevo38hpKHNulZZ2d3DAs2UtbbhJv79v3JZoHQmO61x3kjtbRDAlphRBCCDGwetsZK2FsL0gYK7Yn0ViM/c48E8tK/ezgtRdcwKnHHDNIq0r14WefceO991Lb0JA8VpCby3WXXsoBe2zx3zUhhBBim/LJgy18MKeZnNE6P32pEMOnDvaSBpzrurRV29StsGgoN6nrmKStX2ERbd5EKe0mqDrkjEpM0uaXGYQ66g5CY/Qd8tdWCCGEEANDwtg0kjBWbG/Ov+465i1cyIyDD+Z7kyZxy/33M2LYMF65/350bWjscNzS1sZtf/0rr737bsrx4w89lF+eey6ZweAgrUwIIYRIL9t0efyUKuqWW0w/P5P9r8gZ7CUNGa7rEm5wutUd1JebtNf2LaRFgexirbOTdkMvbamBJyghrRBCCCG+Gwlj0+j/s3ff8U2W6x/HP09W092mLR3MFlAQAVFABFREcW9wHxT3QHDrcR0QPM7jAAfDvcWNP0VRQBERHCiyZHUwu9PdZjxP7t8fadOG2UIhLb3erxcv4E7y5EoobfLN9Vy3hLHiUFNeWUmB00m3Tp0wDIMLxo1j8/btPH7nnZxxwgmhLi/ID7/+yqPTplFcWhpYS05IYMKttzK4X78QViaEEEI0n23L3bw/ugCTGa78KJmkw2x7v1Eb5yrz1Y86qBt3kOmlPNdo8rGiU8yBWbQN59KGx7aMD6mFEEII0fJJGNuMJIwVh7rPvv+eSS+9xGFdujDrueda3I7FpeXlPPHKK3y7aFHQ+shTT+XOq68mMjw8RJUJIYQQzef7yU6Wz6oi+QgrV7yXLHNP95Gn2oczS6co04uzNqgtytQp26qjmthMG5FgCsyibTiXNjLB1OJeLwkhhBAitCSMbUYSxopDncfr5awbbqCwpIQXHnqI41voXNbvf/mFx6ZPp6S8PLCWmpTEI+PGMbBPnxBWJoQQQuw/d6WPt0bmUbbNYOC10Zx4h4wraE66W+HMqd8wrG7kQckmHZ++99s3ZI8x4ciw1I88qJ1LG51ilpBWCCGEaKMkjG1GEsaKtuCtL77guTff5IiuXXn36acxmVrm7DRnaSmPzZjBvCVLgtYvOfNMbr/ySsLth/Yu1EIIIQ5tW/908+GYApSCS15LotNA+bl2oBleRekWfae5tM5sHd3dtPdK1giNhHRLg5m0/o7a2PYWTGYJaYUQQohDmYSxzUjCWNEW1LjdnHvTTRSWlPDUPfdw6pAhoS5pt5RSzP35Zx6fOZOyiorAeofkZCaNH8/RvXqFsDohhBBi//z8YhlLppcTnWzmkjfaEd/JEuqS2iSfoSjfbgQ2DAvMpc3y4qlq2nsosw0c6fXhbN24g/hOFhlHIYQQQhwiJIxtRhLGirbik7lzeXTaNDqlpfHp1KlYLS37zV9RSQmPTpvGj7/9FljTNI0rzjmHsVdcQXhYWAirE0IIIfaN4VV8cFUBuSs8WMI0jrsphgFjoiW0ayGUUlTmGxRl6jizvBTVdtIWZ+q4ypo2lNZkgfhOFhwZ1tqRB/4/O7pYsNpb5llKQgghhNg1CWObkYSxoq3w6jojx49n8/btPHTzzYw67bRQl7RXSim+/vFHnnjlFSqrqwPrndPSmDR+PH179AhhdUIIIcS+qSk1WPBkKWv+z/+zLelwK+f+LwFHujXElYndUUpR7fQ16KStHX2Q6aWqqIk7h2kQ18ESmEUbmEubYcUWKSGtEEII0RJJGNuMJIwVbcl3ixdz79NPkxQfzydTpxIbHR3qkholv7iYSS+9xOI//wysmUwmrjzvPG6+7DLCbLYQVieEEELsm5wlLr57xEnZVgNrhMZpE+PpeWZkqMsSTeQq8wVm0RZn1447yPRSnms0+VjRKeb6cQcN5tKGx5oPQOVCCCGEaCwJY5uRhLGiLfH5fIy+7z5Wb9hAeocOvPjww7RPTg51WY2ilOKLefP43+uvU1VTE1jP6NCBSbfdxpHdu4ewOiGEEGLfeKp8zJ1Ywtpv/F2yR5wdwbC744hMlPCttfNU+3Bm6RRlenHWzqUtytQp26qjmthMG5FgCsyibTiXNjLBhKbJiAshhBDiQJMwthlJGCvamvyiIm6dPJkNmzaREBfHCw89xBHduoW6rEbLLSxk4osv8uvffwfWzCYTV48cyQ0XX4zNKqd4CiGEaF2UUvz9cRU/PFmK7laExWgMHRtLt+HhRKeYJWw7xOhuhTOnfsOwuq7akk06Pr1px7LHmHBkWGpn0tYHtfJ1I4QQQjQvCWObkYSxoi2qqKri7ief5NcVK2ifnMxX06e3qhfsSik+mTuXZ998kxqXK7DevXNnJt92Gz0yMkJYnRBCCLFvSjbrzH+shOyf63+2RThMdBwQxtFXRNO+n61V/bwWTWN4FaVbamfRZumBkNaZraO7m/a+zhqh+btnd5hLG9vegsksX0NCCCFEU0kY24wkjBVtldfrZfiYMVRUVTH3tddITkgIdUlNti0/nwkvvMAfq1YF1ixmM9dddBHXjhqF1WIJYXVCCCFE0ymlWD+vhr9nVZK/xourvP589tTeNvpdHsVhI8Kx2mWjp7bCZyjKtxsNNg+r76r1VDXt/Z7ZBo50605zaeM7WTBbJaQVQgghdkfC2GYkYaxoy254+GF+W7mSqQ8+yAkDBoS6nH3i8/mYNWcOU95+G5fHE1jvkZHB5PHj6d6lS+iKE0IIIfaDUorSLQarZ1exfFYlNaX+YDYsRqPHaREkZFiJTDRjjdDQ3QrdpQK/KwXtelhJ7W3DGr734FYpRXWxD0+VD8Pr79L06QrDC8qnsNpNWMI1YlLN2CLqj+czFIZXtelw2OvyUe304Srz4a1WmCxgtmpEp5iJcBy42b9KKSrzDYp2GHdQnKnjKmvaUFqTBeI7WXBkWGtHHvj/7OhiadP/tkIIIUQdCWObkYSxoi179o03eHv2bG6+7DJuvOSSUJezXzbn5vKfqVNZ/s8/gTWLxcJNl1zCmAsvxGKWjVCEEEK0Xt4aH2u+rmbFJ1XkrfLs/Qa1TBaI62hB00Apf+DW+Tg7qX1sFK73svlXN/n/eKjINRp1KrzZBp0H2eky2E7hOi+ZC2uoKfXR69xIhoyNISb14J6V4irzkb/WgzNbp2STl7JtBlVF/l8mi0ZUkpkIhwmfAbpLYY/RGPGwA3usP2AsWOvhu0dKSO1jY+DV0USnWFBKUZFnUL7dwF3pQ3cp2vcLI6pd/WsJpRTb/vKwfFYl67+rxvDuXJvJAkddEsWgG2KITDh4r0OUUlQ7fQ06aWtHH2R6qSpq4s5hGsR1sOw07iAhw4otUkJaIYQQbYeEsc1IwljRls1ZuJAHnnuOYQMH8vwDD4S6nP1mGAbvf/UVL7z7Lh5v/buiXt27M3n8eDI6dgxhdUIIIUTzKFjrIWuRi8oCf+jorVFY7BqWMA1r7e+Grshd6aFwnRfVyPzNHmvCHmvCbPV3dposGmYroPmDTE+1omSTDrt5i1EX1GoaKB/EtLfQroeVtL42krrbmuWxVxYY5CxxsWmpi9wVHn89TdTtJDvnT03EW614++L8wDFMFug00E5RppfKfCPoNiYLHH5aBN1PCWf7cjeZC12U5NTetwbR7cyExZiwRWoon3+TrsL1XlD++a2nTXTQ88yI/X78+8tV5qvvoM2uHXeQ6aU819j7jXcQnWLeadxBQlcL4bHyAbgQQohDj4SxzUjCWNGWZW/dygW33kpKYiLfvvpqqMtpNtlbt/LwlCms2rAhsGazWrnl8ssZfe65mKVLVgghRBvhrvBRnqejmTSUT5G/2kvOEhf5azwkdrPS6dgw2h8VRlxHS6M6HSuLDDJ/rGHL724SMqx0O8mOxa7x89Qy1n5bs9vbnTohnr4XRQFQ7TRYNKWMbieF03VY+B7vz5njZenMcko26ZTnGlQWBIeGZhu062EjsauV+HQLcR0s/m7YBDM+XVFVZFDt9GGqbdj99j9O3OWKYXfHUrjey+ovq0nsbiWxm5W131YHgmZ7jAlHhoWwaBM+XbH5V/dOoXaEw0TvCyPpe1EUse137gguWOdh0ZQysn5yEeEwcfOCNEyW3c9l3fybi28fdnL6ZAedBtr3+Lw0N0+1D2eWTlGmF2ftyIOiTJ2yrXqjw/w6EQmm2mC2vos2oauVyESTbEAnhBCi1ZIwthlJGCvaMsMwGHrFFdS4XCx46y0csbGhLqnZ6IbBO7Nn8/L77+PV67tm+hx+OJPHj6dz+/YhrE4IIYQ49BRt9OLM9mKyaCgFJZu85K3ysG5uDWYrXP5uMgkZFmZdU0juSg8Wu8ZVnyTj6GLd5fHKc3Xe+1dBUJeqNVyjY/8wOg+20/GYMBK7W5u08dTGH2r4fFwRaIACi13jylnJJHS14szxkrfaQ7seNhLSLWim+uOWbdf5871K8lZ5SOtrI+MEO2l9w/Z630opXjsnj5IcnVEzkkgfsvuQ9d3L88ld4eGIcyI46/GWsbGq7lY4c+o3DKvrqi3ZpONrYlNyWLTmD2brumlrQ9qYVHPQcy2EEEK0RBLGNiMJY0VbN+b++1n+zz+8PGECg/v1C3U5zW7j5s38Z8oU1mRmBtbsNhvjRo/msrPOwmSSeWdCCCHEgfT9ZCfLZ1UR28FMQrqVrEWuQBia2tfG5W+126ljtKbU4P3RBTizdTocE8bQW2OISbMQnWzeY3dpY/z4v1J+f7MCgNMmxtNnVNR+HW9vFr9Uxi/Tyjny/AjOeHTXIWvuSjfvXlYAQHwXC9d9lXpAa9pfhldRuqV2Fm2WHghpndl6o2YPN2QN13CkW3CkBwe1cR0tTQrahRBCiAOpsWHswZ2eL4RolXpmZLD8n39Ym5V1SIax3Tp14q0nn+TNzz5jxkcfoes6Lo+Hp197jflLlvDIuHF0TG3Zb3iEEEKI1uyk++LJW+Uhb7WXsq0G9hgTI6cnMvuOYnL/9vDbGxUMuj4mcH3do/h0bBHObJ3E7lYueCERe0zzfXh6/G2xGB5FRIKJ3iMjm+24u9PzzAh+mVbO+u9rOOUhH1b7zo/lrw8qA38uydFxlfkCm4y1RGZrfZdrQz5DUb7dCN48rLaj1lO565DWW6PIX+Mlf03wLmgmC8R3bjCPNsM/9sCRbsUSJiGtEEKIlknCWCHEXvXIyADgnwado4caq8XC9RdfzAkDBvDwlCmsz8kB4M81a7jo9tu546qruOj006VLVgghhDgALDaNc59N5O2L8/HW+LjgxUTS+oRx+iQHn9xYyOKXysg4wU67w/2bfC17t4Lcvz3EpJq5aEZSswax4A8ST34gvlmPuSeOdCvJR1jJX+Mla5GLw0cEb+RVVWyw9ptq0CC2vZmyrQa5q9ykD9nzPN2WyGTWiOtoIa6jJWgesFKKygLDH842CGqdWV6qnbseSuvTqd1gTAfq5xFrJohtbwkadVA3m7Yxc4+FEEKIA0nCWCHEXvXs2hWAtdnZIa7kwDs8PZ33nn6aVz7+mNc++QTD58PldvP4zJnMX7KECbfeSvvk5FCXKYQQQhxyYttbuObLFHxeRXSK/21K+hA7R10SyfJZVcx5wMnoD5NxV/hYOrMcgFMnxhPV7tDYdLPnmRHkrylj7ZzqncLYFZ9UYXih6zA7cZ0sLHu7ku1/e1plGLs7mqYRnWwhOtlCl+OC5+ZWlxg4G4w6qAtsK/KNXR5L+aB0i07pFp3MH11Bl0Unm3FkWEjsasWRYa393UJE/KHxdSSEEKLlk5mxjSAzY0Vb59V1hlx2GR6vl0XvvUd05IE/Xa8lWLNxIw9PnUrm5s2BtQi7nbuuuYYLR4yQ3X6FEEKIg8BT7ePNC/Mo22ow6IYY3BU+/vqgkvShdkZNTwp1ec2mIk9n+ohczFYYMCaG9d9XU77dICbNTGWhgadScdHMJFxlPv7vnmLSj7czatqh8/j3hbvShzPbG9xNm6lTulWHJr7NjXCYcGTUd9DWddNGtTPLaz4hhBCNIht4NSMJY4WAK+65h9UbNvDqo4/S/8gjQ13OQePxepn+4Ye8+fnn+Hz1p8gN7tePCWPHkpyYGMLqhBBCiLZh659uPriqAE0jsLHXmM9SSOxm3dtNW5UPry5gy+/uXV6W2N3KmM+SKd9uMPO0XMLjTIxdlCZB4S54XT5KcvSgebTOLC/OHB2f3rRj2aK0wCzawFzarlZi0syYzPLcCyGEqCcbeAkhmlXPjAxWb9jAP1lZbSqMtVmtjB89mpOOPZaHp0whZ9s2AH756y9Gjh/PPddey7nDh8sbISGEEOIA6nB0GAOuiub3NysA6HNR5CEXxAIcd2MMNSUlpPYJo8fpEaQcaaMiT6ciz6BdTxuaphGTZibCYaLa6aN0i058p0PvedhfVruJdj1stOthC1o3vIqyrTpFmV6cWbW/13bW6q5dNyl5KhW5KzzkrvAErVvCNBzpdV20ltquWivxnSyYrfK6UAghxO5JGCuEaJS6TbxWb9gQ4kpCo/dhh/Hhs8/y8vvv886XX/o3maiuZsILLzB/yRIeuuUW2jkcoS5TCCGEOGQNHRfL5t9cVOQbDB0bG+pyDojOg+xc/UVq0Jo9xkbSYfV/1zSN1D42Mn90kbvCI2FsE5itGo50K4704OdM+RTluUbQqIO6jlp3xa5DWt2tKFjrpWCtN2jdZIG4jpbaMQfWwCZiji4WrOGyeZgQQggZU9AoMqZACFiXnc0ld9xBh+RkvpoxI9TlhNRf//zDf6ZOZUtubmAtJiqK+66/njNPOEG6ZIUQQogDxPAqfIbCam/bodaSGeX8/EIZR18exckPxIe6nEOWUoqqIt9OG4cVZ3mpLvbt/QANaRDb3txg1EH92IOw6Lb99SyEEIcKmRnbjCSMFQJ0w+D4K66gxuViwZtv4oiLC3VJIVXjcjH13Xf54KuvgtaHDxrEgzfdREIbf36EEEIIceBsWurio+sKSe1t418fJIe6nDappsygOFPHmeWlKMs/9qA400t5rtHkY0W1M+PIsJCYYcWRYSWxduxBhMMkH/ILIUQrIjNjhRDNymI2c2T37vy+ciV/r1vHScceG+qSQircbue+665j+LHHMuGFF9heUADAgqVL+XP1au6/8UZOHTJEXkALIYQQotmlHGkDDQrWetA9CotNXm8cbOGxZjocbabD0WFB655qnz+YreumzfaHtKVbdNRummkrCwwqCww2Lw3evC08zoQjo8HIg9pNxKJTzPIaUwghWjEJY4UQjdbn8MP5feVKVq5f3+bD2DoDevfmkylTeO6tt/j4228BKK2o4L7//Y/vFy/mgRtvbPNdxEIIIYRoXmFRJhLSLRRn6RRt8JLSy7b3G4mDwhZhIuVImz8wb0D3KEpygkcdFGfplOR4Mby7PlZNqY9tf3rY9mfw5mHWCK0+nG0wmza2vQWTWUJaIYRo6SSMFUI0Wp/D/LtH/L12bYgraVkiwsN58KabOPm443jkxRfJLSwEYN6SJSxr0CUrhBBCCNFcHBlWf5i3ScLY1sBi00g6zEbSYcH/Vj5dUbZNp6hu5EGmF2dtUOut2fVIQW+1Im+Vh7xVwSGt2QaOLsEhrSPDQnxnq3RPCyFECyJhrBCi0XoffjgAqzduRDcMLGZziCtqWQb17cvHU6bw7Btv8Nn33wNQUl7OvU8/zfeLF3P/jTfiiD00d38WQgghxMEV39n/Vq5kkx7iSsT+MFk04jtbie9sheHhgXXlU1TkG/Ubh9WNPcjUcZXvet6B4YHC9V4K13uBmsC6Zoa4jpadumkd6RZsEbJ5mBBCHGwSxgohGs0RG0vHlBS25OWxcdMmemRkhLqkFicqIoL/jB3LKYMHM+mll8grKgLg+19+4Y/Vq3nwxhs5ZfDgEFcphBBCiNYuvmNtGLtZwthDkWbSiEm1EJNqIX1o/bpSiupiX+2Yg+CxB1WFuw5plQElOTolOTobFwRfFpNmrg1n68Ja/y97rIS0QghxoEgYK4Rokj6HH86WvDxWrFsnYeweDO7XL9Al+/m8eQCUlJVx91NPcfrxx3Pf9dcTHxMT4iqFEEII0VoFOmMljG1TNE0jMtFMZKKZTgPtQZe5yn31HbRZeu24Ay9l24zdHq98u0H5doPsRcHrkYmm2lm0/lEHiV2tODKsRCaYZPMwIYTYTxLGCiGapPfhh/P1woWsWLeOi884I9TltGjRkZFMuPVWTj7uOCa9/DIFxcUAfLtoEb+tWMFDN9/M8EGDQlylEEIIIVqj+M5WAEplTIGoZY8x0f6oMNofFRa07qn2UZKjBwW1xVleSjbrqN3ktFVFPqqK3Gz+zb3TfTQMZ+vGHsSkmNFMEtIKIURjSBgrhGiSvrVzY/9ety7ElbQeQ485hk+mTOGZN95g9vz5ADjLyrjziSc444QTuO+664iTLlkhhBBCNEFkkglruEZNqQ9XmU9OKxe7ZYswkXyEjeQjgjcPM7yKkk07h7TObC+GZ9fHcpX72L7cw/blwVewhms40i2Bbtq6kDaugwWTRUJaIYRoSMJYIUSTdO/SBbvNxpbcXErKy+VU+0aKiYrikXHjOKW2S7bQ6QTgm59+4veVK3no5psZNnBgiKsUQgghRGuhaRpxHS0UrvdSstlLau+wvd9IiAbMVo3EblYSu1mD1n2GomybUT+XNtOLM0unKNOLt1rt8ljeGkX+Gi/5a7w73AfEd9lhJm1XC/FdrFhsEtIKIdomCWOFEE1iMZvp1b07y1avZtEff3Du8OGhLqlVOb5/fz6dOpWnXnuNr374AYCikhJuf+wxzjrxRO697jpio6NDXKUQQgghWoP4znVhrE5q7zDcFT6WvVtBr/MiiU2Tt3pi35jMGvGdLMR3stBtWHhgXSlFZb5BUWb9PNq6DcRqSne9eZjhhaINXoo2eIGawLpmgtgOFhK7WmrHHdQHtrZI6fIWQhza5Ce0EKLJzh0+nGWrV/P6p59y1oknYjabQ11SqxITFcWjt93GiOOO49Fp0ygsKQHg64UL+W3FCh6+5RZOGDAgxFUKIYQQoqWL71S7iVft3Ng/3qngl5fLWfN1NaM/TCYsSkIt0Xw0TSM6xUJ0ioX0IcGbh1U7aztpMxuMPcjWqczf9VBa5YPSzTqlm3X4wRV0WXSKOWjUQV1QGx4n7zmEEIcGCWOFEE125oknMmPWLHK2bWPekiWcNnRoqEtqlU4cOJCjevbkqVdf5euFCwEoLClh/H//yzknncQ9115LTFRUiKsUQgghREsV39n/dq50sz+MzV7sD7VKcnTmPODk/OcTZFMlcVBEOMxEOMx07B+87q7wUZzdYCZtpr+jtmybAbueeEBFnkFFnkHO4h3vwxQYc1A/m9ZKZJIJTZOvcyFE66EptZvvgCKgf//+6o8//gh1GUK0KJ/Mncuj06bRtVMnPn7+eUwm6bzYHz/8+iuPTptGcWlpYC3J4eA/t9zC8f377+GWQgghhGirtvzh4sMxhaT2sTFqWhIvHr8NzeTfTMldoTj+tlgGXS/z/UXL43X5cObUjjto0E1bslnHpzftWGHRGo4MK4kZVhwZFhK7WnFkWIlNM8uHEUKIg0rTtGVKqb2+gZcwthEkjBViZx6vl3Nvvpm8oiKeue8+Tj7uuFCX1OqVlpfz5Kuv8s1PPwWtn3fyydx19dXSJSuEEEKIIJWFBtNO2o491sSpE+P58o5iOvYPY8CYaD67tQg0uPztdrTvJ5t7idbB8CpKN+v1m4fVdtM6s3V0d9OyC4tdw5HeYOOw2rEHcR0tmK0S0gohmp+Esc1Iwlghdu3DOXN4YuZMemRk8MEzz8jpQc1kwdKlPDptGs6yssBau4QEJowdy5Cjjw5hZUIIIYRoSZRSTDl2G95qxWEjwln/fQ3Hj49l0A0xLHyulN9eqyCxu5UrP0qW8Em0asqnKNtuBMYcFGfqgfEHnsqmZRomi3/ER/2oA/+f47tYsNrlbD8hxL6TMLYZSRgrxK65PR5Ou/ZaSisqmPXccxyenh7qkg4ZJeXlPPnKK3y7aFHQ+gWnnMKdV19NdGRkiCoTQgghREvy1qg8CtZ60cygDBg9K5mUXja8Lh9vnJ9H2VaDE++KZeDVMq5AHHqUUlQV+ijK9OLM8tb+7u+srXb6mnYwDWLbmwNjDvy/+4Na2QxPCNEYEsY2Iwljhdi9/06fzsfffss1I0cyfvToUJdzyJn3yy/8d8YMShp0ySYnJDDh1lsZ3K9fCCsTQgghREsw+84i1n9XA0B4nImxP6UF5mRm/1zDJzcVYQ3XuObLFGJSZf9m0XbUlBpBm4bVzaatyDOafKyoZHOgg7ZhN22Ew3wAKhdCtFYSxjYjCWOF2L1lq1dz7YMPktauHV/PmCGjCg4AZ1kZj8+Ywfe//BK0fuGIEdx59dVERUSEqDIhhBBChNpPz5fy66sVAPQ4I4Jznk4IuvzLu4pYN7eGbsPDuWBqYihKFKJF8VT56ufR1m4cVpylU7ZVRzWxmTY83lQ/j7ZBUBuVbJb3RUK0QY0NY+WjUSHEfunXsyftEhLYXlDAinXr6NujR6hLOuQ4YmN5+t57+W7xYh6fMYOS8nIAPvv+e5YsX86EW29lUN++Ia5SCCGEEKEQ37n+LV2XwTtv1HXSvXFk/+xi44IaNiyoofvw8INZnhAtji3SRGrvMFJ7B/9/0d0KZ45/zEFRphdn7UxaZ46OT9/1sWpKfGxd5mbrMvcO96HVhrMW/8iDDP/og9j2ZkxmCWmFaOskjBVC7BeTycRpQ4bwzpdf8u2iRRLGHkCnDhlC/169eGzGDOYtWQJAbmEhN02YwEWnn87tV11FZLi8wRJCCCHakvjO1sCfuwy275UGkHUAACAASURBVHR5dLKFoeNiWfBEKfMfK6HzoDBsETL/UogdWcI02h1uo93htqB1n64o3aIHjToozvLizNbx1uz6TGNPlSJ3pYfclZ6d7iO+iyUQ1NZ108Z3ssgme0K0ITKmoBFkTIEQe7Z640auuPtuEuLi+O611zCbZXbSgaSUYu7PP/P4zJmUVVQE1lOTknhk3DgG9ukTwuqEEEIIcTC5K3y8elYuid2tXPJau11ex2co3r0sn/w1XgaMiWbY3XEHuUohDj3KpyjPMwJjDgKzabO8uMublrOYLBDXceeZtI50C9Zw+fBEiNZCZsY2IwljhdgzpRTn3nwzW/LymPHIIxwrp8wfFMWlpfx3+nQWLF0atH7xGWdw+5VXEiFdskIIIUSb4Kn2YTJrWMJ231mXt8rDO5flo5lgxEPxtOthJSHDii1Sgh4hmpNSiqpiX9DGYc7akLaqqIlDaTWITTP7g9kMK4m1Yw8SMqzYY+T/rhAtjYSxzUjCWCH27qX33uOVjz/mghEjmDB2bKjLaTOUUnzz00888corlFdWBtbbJycz8dZbGdC7dwirE0IIIURLMu+xEv56v/71gtkKR10WxXE3xBAeJ2c2CXGgucp89ZuGZdePPSjfbjT5WJFJptouWmv9JmJdrUQ4TLJ5mBAhImFsM5IwVoi9W5+Tw8W3344jNpbvX39dRhUcZIVOJ/+dPp0ff/staP3SM8/ktiuvJNy+8ww5IYQQQrQtulvx53sV5K324MzWKdzgBQVh0RqDro/h6Cui99hdK4Q4MDzVPpzZDUcd+EPa0s06qonNtPZYUyCYbTibNjrFLCGtEAdYqwljNU3rCDwHjAA0YB5wu1JqcyNumw48DZwCWIHfgHuUUn/scL0E4D/AOUAqkAd8DTyilCrc2/1IGCvE3imlOPumm9iWn88bjz9Ov549UUpxx+OPU1pRweTx4+mYmhrqMg9pSinmLFzIk6++GtQl2yE5mUfGj+eYXr1CWJ0QQgghWpr8tR4WPlPKpiX+neBjUs0MHRfLEWdHoJkktBEi1HSPomSTF2eWTlGmF2eWl6JMnZIcL4a3aceyRmgkpDcMaf3dtLEdLJjM8v9diObQKsJYTdMigL8BN/AQoIBHgQigj1Kqag+3TQBWABXABKAauBPoDwxUSv1Tez0N+Bk4DH8g+w9wBDAZWA8MVnt5EiSMFaJxnn7tNd77v//jqvPP544xY1j699/cNGECAHHR0Tx3//30O+KIEFd56CtwOnn05Zf5qcH3LU3TuPSssxj/r39Jl6wQQgghgmQvdrHwmVIK1/vTndgOZvqMjOLICyKJSpSznYRoaXy6omybHrxxWO1GYt6apmU8ZhvEd7bu1E0b39mKxSYhrRBN0VrC2NuAZ4HDlVIba9fSgQ3AvUqpZ/dw24eAiUCPBreNBLKAhUqpi2vXDgPWATcqpWY2uP1NwLTa26/bU50SxgrROH+sWsV1Dz1Ep7Q0Zr/0Enc9+SQLli4lIS6O4tJSrBYLT959N8MHDQp1qYc8pRRf/fgjT77yCpXV1YH1jqmpTBo3TkJxIYQQQgTxGYo1X1Xzy8tllG3zz680WaD3hZEcd0MM0SmWEFcohNgbpRQVeUb9qIMGm4i5ypo270AzQ1xHS/082tpuWke6BVuEbB4mxK60ljB2PmBXSg3ZYX0hgFLqxD3c9iugq1Kq5w7rnwBnAjFKKV3TtCOBlcBlSqkPG1zvUuAD4Ii6LtrdkTBWiMbRDYOTx4yhrKKCaRMnMnbSJEwmE1/PmMGbn33GB19/TVREBJ9OnUpyYmKoy20T8ouLmfzyy/y8bFlgTdM0rjjnHMZecQXhYWEhrE4IIYQQLY3PUGxa4mL5R1Vk/liD8vk75/pfGc3x42N3Ob7AU+WjstAgqp1ZQhohWiClFNVOX6B71h/W+rtpqwqbOJQW/0iThK5WHBkWEjOsOGq7acNjpZNetG2tJYzNA2YrpW7cYf1l4CKlVNIebjsb6KKU6rvD+nvA5dR2vNaOKfgRSASuAtbiH1PwJpCjlDpzb3VKGCtE4z08ZQr/98MPJMbHU1RSwunHH88Td90VmB/742+/MfSYY3jhoYda9AB53TDI3rKF1Rs3krVlC0WlpRSXlhIfE8OpQ4Yw9JhjsFmtALjcbn5fuZKf//yTbfn5Qcdp+Bh3fLR1l4XZbFx46qkM6lv/7ayqpgab1YrVsv9dKEopZi9YwP9eey2oS7ZTWhr3XXcd3y9ezGnHH89xRx213/dTUVWFbhgopYgMD8d+kMNewzDQNA2TSd4ICiGEEPurONPL4pfLWDe3BoA+IyM5dUJ8IJD1VPtY9k4lv71RjqfS/74yLFojvrOVpMOsxHW0UFVoULZNx2TR6DY8nG4nhWOPCf45XbjBQ9EGHZMZMEHpJp3tKzwUrvdgsmjYIjRsESasEf4/e6oVFfkGVYV1HbwaljCNyCQT0e3M2OPMWO0aYdEavc6NJCa1ebp6lVIsnVlBcaaXfpdH0f6o3b/OMbyKzIU12CJNdD42bK8zeF3l/kDbVepD9yiik83EpJpxlfvIXeGhYJ0XkwXsMSbMNo2qQoOKAgN8EOEwEZFgptvwcGLT6h+r4VVUFhqYzGC2aoTHm/bp9Xfd5lKeKh8+w3+KvKvMR02JD4tdo8cZEYRFNf61l+5WeKp9GB6F2aYREd/4AM9nKFZ8UoXhUUS1MxMeb8Jd4a8lJs1Cl8GNH8dVXWKw6vMqXGX+5zwi3sxRl0Rhj23+15G5K91smF+Dp1rhrVa4yn1UFxvUlPlIPdJGv8ujSO1tC/r3UUqRu9KD2aaR1N0aNNfV8Co2/+Yi6ycXPgNiUsxEp5iJTjYTnWIhKtnc6BEDrnIfzuz6MQfFmV6Ks73+DvkmxkURCSYSu9aHs3XdtJEJ+/a1J0Rr01rCWA/wrFLq3zusPwr8Wym125+amqY9BdwKdFRKFdeumfCPJOiGfxbsktr1SOAd4IIGh/gaf+Bbs5vj3wDcANCpU6djNm3atG8PUog2ZsHSpdz5xBOBv7/+3/9ydO3GUQVOJxfeeiuV1dX89/bbOWvYsN0eRynV6B/YPp9vv8O3kvJyPp07l5Xr17MlL49t+fm4PZ7dXj8qIoL4mBjcXi+l5eV4vE2coL8LwwYO5KRjj+W7xYtZsnw5g/v148WHH97v49bJLypi0ssvs/jPP3e6LDUpia+mT8ds3vuL4e0FBfy1Zg2btm+norqaispKtuTlkbVlCxVV9aO+7TYbF51+OlddcAGJ8fHN9jh2xeP1MmPWLN764guS4uM5a9gwzhk2jM7t2x/Q+xVCCCHagpwlLj4fV4TuUvS5KJJe50SSubCG1bOrqCryd9VFJ5upKfWhu/f8/tJkgZReNhK7WQmPN5H5Yw1FG/UDVnt0spnL322334Gs8inmPVbK8g/rN0ntOCCMHmdE4OhiIb6TBZNFQwHZi2pYMr08MO4htr1/Bu/R/4raqXPYVe5j0ZRSln9U1eTga0fWcI0T7oyl76goVn1Rxc8vlFHtrO967HlWBGc/mdDo4/3xdgV/vFVBRb6xx+uFRWscdUkUyb1slG7Sqcg3SOllo+swO+FxZiqLDLYtc7N1mZutf7opWOcNeqxpR9k44uxIep4Rsdcg9OcXy1gyvXy3l1/+Tjva99t7M0D+Wg9fjC+ifHvwYwuPN3H8bbH0PCMCd4UPV4UPd4XCXe7D0BWRibWBZ7K5UZvcFaz18POLZWT+6NrrdZOPsHLYiAgyjrdTWWCw+KUy8lb732NYIzSSj7ChaaC7FMXZ3sAHILsTkWAiJsWMzwfVxT7cFT46Dgijz8hIMk4Ix2zdc/3eGh/OHD04pM3yUrpFx9fE/7JhMRoJ6fWbhtXNpo1JbdzzKERr0ZrC2GeUUvfvsP5f4L69hLEZwBpgPjAe/wZeDwI3AWZgkFLq19rrvg8MAx7Bv4FXz9o/LwPOUUrtsS9fOmOFaLwal4thV16J2+Ohe+fOfPT880Gh6hfz5zPxhReIiYrinJNOIjoykiO6duX4/v0D13vl449549NPGXbssVx53nn0yMjY5X3phsEDzz7Lqg0bmDZxIp3T0gD4edkyHnnxRUrKy/EphdVioZ3DQXJiIgN692b0uecSER4OwKbt23n3yy/5csGCncLX9snJHNG1K4enp9MuIQFHbCwbN2/mm59+Yl12dtB1j+jWjeOPOYYjunZFqwuGG3x/bfi9dsfvuhtycnjjs8+odgW/SNM0jR/eeou4mJi9POuNp5Tii3nz+N/rr1NVE/xZ1B1XXcVVF/g/syotL2fxX3/xT2Ym67OzqayuRjcMSisqKCgu3u3xw+127DYbaBolZWWAv/P3inPO4YaLL8YeFoZX13n3yy/J2rKFe669lpioqH1+PIZhsGL9eh6fMYP1OTlBl5lMJiaPH7/H0F8IIYQQjbNpqYvPxhbtFLamHGnjxDtj6TTQjlKKmhL/qdCFG7yUbdOJSjIT295CtdPHuu+q2fK7mx3ffdljTXQcEIZmAp8OUe3MpPWxkdzLHz55q/2dlJ5qhafKh9WuEZ1sITLJhMms4dMV3hp/F2hFvoG70odeo1g/r4bcFR4Su1m47K3kQNBXXWJQuN5LSY5OYjcr7fvZggIhw6tY+201q2ZXERZlotOAMPL/8bLqiyrMNjjyvEjWfluNu2LP76Ud6RYMjwqEsp0GhTFqWlIgBFv3XTXzHyuhqsiHZob4ThbssSbMFo3yPJ2KPANruEZKr/rnwl3hQ3dDVJKJyHZmTGaNmhKDvFUeNv7gfy1pjzHhKvc/yREJ/ueo2mng0+HcZxM4/NSIvf57G17Fi0O34alSmK0Q38VKeJwJzQQms4Y91kR4vInC9V62/uHe5TE0sz8M3zHwNFnAFmnCbAN3hUJ3+Z/H2PZmxnyesttRF5t+dfHRdYUA9D4/kpoyH64yH2HRGu4KxdZlblJ727jivXa7DfgMr2LtN9V8P7kEb40i5Ugb3U8Ox2zTyPyhhi27eSw76nBMGJe+mRR4/7JhfjV/f1LFsLvjSOzqP3tu5eeVzJ1QgvL5g/I+IyOJ62jBYtcIizYRmWDGGq6xdm41Kz6p2uVM1wiHvyO8bOvOgXhidyvdh4cTHmeiPM+govZrpiLPoLLQ2On/WUMxaWYufbNdoJPaW+Nj+UdVHDYiuLt6d89hyWY9MObAmaVTlOn//7S3D2N2ZA3XcKTXzaWt76aN6+j/cEOI1qa1hLH5wBf7Mqag9nojgZeA5NqlP4EFwN1AZ6XUZk3TzgK+Ak5RSs1vcNsRwHfA+Uqp2Xu6HwljhWiau554gvlLl/LQzTcz6rTTgi5TSjF20iR++euvoPXzTj6Z+2+4gdc//ZSZH30UdNkJ/fvz1D337HTK+5S33+aNzz4D4PD0dN5+8kkKnU4uvfPOoNPxd5QUH8+VF1zAX2vW8MOvvwaC0hP69+esYcPonJZGh5QUoiJ2/0I1t7AQj9eL3WYjMiJij9dtjEKnkxmzZrElN5eTjj2WOT/9xIp163j63nsZMXjwfh17V3ILC7nuoYd2Gqsw5oILuOyssxh93327DV2jIyPp17MnPTIyiImKIioykrSkJNI7dCAxPj7wovSfzExe+fhjFixdCkCX9u25btQo3p49OxCc9uvZk2kTJ2IPC8MwDNbn5NC9Sxcse+jQVUqx6I8/+HzePP5YtSrQjdsxJYVHxo3D8Pn4Yt48vl64EKvFwiuPPspRPXrs71MmhBBCtHnZi118eWcRkYlmMk60021YuD9EbcLpxzWlBgXrvBRv9FKRb9DhmDC6DLbvtUtvX9SUGXwwuoDiLJ12PaxEOMwUbvDsNCMzOsVMt5PCMVnA61Jk/+TaZTeoxa5xwdREugy2467wsfrLKvLWeHDm6JRt1QOfuEcmmRkwJpqeZ0agaf7O4jkPOKku9tH34khOeTCen54r4/c3KwB/Z+ipE+JJ6m4Luj/lU6DR6Od33ffVzJtcQrXTR2x7MyfcEcfhp4WjaRrLZ1Xy/eQSIhwmrp6dstfRAFt+d/Hh1YU40i1c/XnKHoOxbcvd/PV+JZ4qH3GdLUQ6zGz+zc3m31z4dH/glnaUjQ7HhNHh6DBS+9iw2v2Bq6fax8YFNfwyvZySHJ3jb4tl0PU7NyJUFRm8NSqPqiIfg2+OYcjY2KDLPdU+Xj0zl6oiH2c96eCIsyIDlxleReaPNaz9tprsxa5AR2mv8yI49T8OLGH+x6aUYt3cGhZNKaOy0CAsWsMeYyIs2oQ92oTJApUF/iDf8MLVs1MCwevr5+VSnKljjzFxwYuJlG7R+eYhJyg46tIoBt8UQ2Ti7p9zr8tH1iIX2YtcZC2qQTNp9B8dxVGXRGENN/nvd4N/VIUlTAt8yLE7Pl1RVWRQnucfUxGZaEYzwdpva1g+q5LSzTqHnRrOec/69/H4bpKTvz+qostgOxfN3GMMs/v7NPwfPDizvBRleXHWbhxWnOXFU9W03MlkAUcXi3/cQeCXBUe6NfDvJURL1FrC2AWATSk1dIf1H/HXttsNvBpc1wwcBniUUpmapk0DzlJKdaq9/N/A40CsUqq8we1igVLgfqXUE7s4dICEsUI0TXFpKX+sWsWIwYN3OT7A7fEw75dfcJaVUVhSwkdz5uDyeEiKj6ewpASzycS9113H1rw8Pv3uO6pdLv517rncfc01gWPM++UX7n7qKcwmE464OAqdTkaddhprNm5kTWYmwwYO5Ol77sFkMuH2eChwOsnZto1XP/6YVRs2BI5jtVg4+6STGH3uuWR07HhQnp/GePXjj3nxvfcYddppPHTzzc1+/PLKSs64/nqqamoIs9mCuoIjwsOprqmha6dOnDZkCD26dsURG4vFbCY8LIwOKSmNGmdQZ+X69Ux44QWytmwJrLVPTsar6xQUF3PSscdy0emn8/xbb7E+J4fhgwbxv3vv3eXXzqoNG3juzTdZtnp1YC2tXTtGDB7MTZdeSri9fk7YEzNn8uGcOThiY3n36adJa9euqU+TEEIIIXbQlFFSLUF5rs57VxRQWVAfrloj/DM44zpZ2PqHm/LcnYNXR7qF/ldGo2mw+Xc3pZt1Trwzlo4DGj+TtKHtf7v58OoCDA8kdrNQtFHHZIGT7o2j36VRzXaqdnWJwfblHroMtgeFVsqnmHVtIVt+dweNK6gsMlj1WRVrv63msFPDGXyTP+T86blSfn2tgv5XRXHSPfs2bspV7qMiT8eRbt1r2J7zi4uPbyjEHmPihrmphEUHvw789OZCsha56DggjItfTQqan1pn5WeVfPufEqJTzFzzZQrOLJ3186pZ+XkV1cX1AXxiNwv9Lo+m70WR+/S1POfBYlbPruaEO2I59toYnDleXjs7L3C52ebv8FY+OOH2WI69rvnOcmsOFXk6r52Th7dGccnrSZgsGh9cWRC4/PpvUonr2DxzlsH/PaOywAgEs/6ZtP6xBzUlTds8TDNBbHtL0KgDR4a/m7Ypc4uFOFBaSxh7O/A/4DClVFbtWhdgA/6Zsc808XhpwCrgaaXU47VrY4A3gBFKqXkNrnsqMBe4Uin1zp6OK2GsEAfW+pwc7nrySbbk5mI2mXj8rrs4dcgQAFZv3MhV992HbhjMnDSJgX36sHztWm6ZOJFql4u7r7mGo3r2ZMz996Pr/uFF7ZOT+eCZZ3Z5+rvP5+ObRYuYs3AhPTIyuOyssw74PNN9sXL9ekbfey8dU1L4v+nTm/34M2fN4uUPPmBA7948Mm4cV/373xQ6nUHXuej007nn2msDG5Xtj7qZrp/MncvZw4Zx6xVXsK2ggKvvvz9ozmydsZdfzvUXXxy09ubnn/P8W28BEBsdzTUjR3LKccfRPjl5p9uDf4zFrZMmsfTvv0lyOBh6zDH07dGDU447br87mYUQQgjRepRs9rJhXg3xXawkdbcS275+TqXyKbYt97DtL3dgI7C4jha6HLf3Tbea6p85VXx1r//1lj3WxHnPJdBp4L6Fu/uiZLPOmxfmobsUYdH+U+UrC4zA/E+zFW6an0aEw8ybI/MoXOfloplJTdoUa18ppfhwTCFbl7kZfEsMQ26p73zNW+XhnUvzCYvWuGZ2KlHtdt0U4DMU71yST8FaLxa7Fhh/AJCQYaH3hZF0Pzliv4PG9d9XM/uOYtKOsnHFu8n89no5C58t829kFq3x90f+17ZDx8Vw3I2xezlaaPwyvYzFL5aTdJgVn6EoztQJi9FwlysGXhPNiXfGHZQ6qp2GP6BtMJO2OEunci9zinclKtlMQnp9SFsX2EY4Gt9EIsT+ai1hbCTwN1ADPIT/xI7JQDTQRylVWXu9zkAmMEkpNal2zQo8BSwEyoFewP211ztZKeWpvV4M/jmxWu2x1wI9gAmABzii7n52R8JYIQ688spK3pk9m2OOPJJBffsGXTZj1iymffABKYmJnHTssXw4Zw5KKU4//ngev/NONE3jnS+/5JnXX8dqsfDmE0/Qq1u3ED2S5qEbBsNGj6ayupqvZ8zYbeC4L1xuN6dddx1lFRW8MnkyA3r35p/MTC67666drpvRsSOTxo/nyO7dm+3+G/przRpunjgRs9nMtaNG0TktjbufegqAKQ8+yAn9++Pz+Xj+rbd4e7Z/osxV55/PtaNGNWrWbHllJdc99FDQPNlTBg/mf/fee0AejxBCCCHEnvz1YSU5v7gYdncc8Z2ar/uwsVbNruL7ySWBoFIzQddh4VQVGeSu8HDCnbH0OjuSacO3Yw3XuPXn9gfttPAtf7j4cEwhtiiNG+amEh7rD9G+/ncxa76qpv9V0Zx0z55Dws2/uZh1bSEoiEk102WonV7nRPrnAjdTR7en2seLQ7Zh6HDLj2l8cVsR25d7OPfZBA4bEc6a/6sGDXqdE7n3g4WI1+Xj9XPyAl3h8Z0tnDohnlnXFBIeb+Km+WlYbKHrgHdX+nBme4O7abN0ShuMA2ms8DhToHs2sIFYhpXoFHOr6vIXrUOrCGMBNE3rBDwHjMAfmM4HbldK5TS4ThcgG3hEKTWxds0CfAEMAOKArcAHwGNKqaBhkZqmdQQmAsOBVCAXmAdMVEpt21uNEsYKEVq6YTDm3/8OjBcwm0xcef753HzZZYGuTaUUs+fPp1NqKkf36hXKcpvNHY8/zg+//sp/xo7lwhEjmu24s+fPZ8ILL9Cre3fefeqpwIuQMfffz/J//iEuJobS8vpdas0mE2MuvJAbL7mkWbpkd1RcWorNaiU60v+C9ZWPP+al997DZrXSOS0Nk8nEuuxsLBYLk8eP54wTTmjS8b26zj+ZmSz+809mzJpFWrt2zJk5s9kfhxBCCCFEa+DTFe4qH+4KhS1SIyLeTObCGj4bW0RsBzODro9h7oQSMk6wM/LlfZsfuq8+uq6ATUvdHDM6iuH3xVNZaDBjxHaUz3/6/J7mpNYpWOvBbPNvDHWgwrZPbi4ke5GL42+LZdHUMsxWuPXn9rvdfKwlWje3mi/v8u8RccnrSXQcEMZbo/IpXOfl7Kcc9Dyz5YXJXpePkhzd30mb5e+kdWZ5cebogQ7vxrJGaCSk++fSJna11s6ntRDXQTYPE/uu1YSxrYGEsUKE3qZt27jmwQdJSUri4ZtvpkdGRqhLOuA+nDOHJ2bO5LShQ3ny7rub7bj/uuceVm3YwMRx4zj/5JMD6xs3b+arH37gqvPP57vFi3n+7bepcbkCl3fr1IlJ48dzxAHuOlZK8fDUqXz1ww+BtXC7nWfuu4/B/frt83G9Xi+DLrkEn1IsnTWLMJtt7zcSQgghhGgDfIbilTNyKd9uEJNqpjzX4OQH4jj68uiDWkfuSjfv/asAZcBZTzpwZussmV5O91PCOf/5xINay5789WEl8x4tCYxD6HqinQtfOrjB9f5SSrFkRjn2WBNHX+b/d67b6K1D/zAue7P17Lfg0xWlW/VAB21dN60zW8db07TMy2yF+C71HbR1c2kdXWTzMLF3EsY2IwljhWgZDMNo0sZRrV3Otm2cP3Ys8bGxzH/jjV1uaNVUdeMIoiMj+e711wkPC9vtdbfm5THhhReCNssym0xcM3IkN1x8MdYD0CXbUKHTSXFpKSXl5XTt1Il2Dsd+H/PcW25h8/btfDJlCt06d26GKoUQQgghDg1LZ5azaGpZ4O/XzUkNySiFP9+vYP5jpZhtYLWbcJX7uPTNJDr2P3jzdfemIk9n+im5gb+f9kg8fUbufYRWS+ep8vHySdvxViuu/DiZ5J6tu3lB+RQV+cZOIW1xlo6rbB82D+tgqQ9pG4w8sEW2no5ocWA1Now9+N9ZhRBiH7WlIBagc1oayQkJ5BcXs2HTJg5PT9/vY3707bcAnDt8+B6DWIAOKSm8MnkyH33zDc+//TYutxvD5+OVjz9m4e+/M2n8+APaoZzkcJDUDAFsQ53T0ti8fTs527ZJGCuEEEII0cCRF0ay+OUyfDrEdbKEJIgF6HdZFMWZXpbPqsLw+GjXw0qHY/b8uvVgi06xkHyElfw1XtD8c3cPBbZIE30ujGTZu5XMecDJ6A+TW3U3qGbSiEm1EJNqIX1o/bpSimqnLxDMOrO8FGV5cWbpVBbsevMw5YPSzTqlm3Uyf3QFXRadbN7lXFrZPEzsjoSxQgjRQmmaxrF9+/LlggX8+vff+x3GVlRV8c1PPwFw0emnN+o2JpOJS886iyFHH82EF17gzzVrAFifk8O/7rmHa0aN4vpRow54l2xz6ZKWxiL8XcdCCCGEEKJeVKKZ7ieHs25uDRlDQ9eFqmkaw/8dT8kmnU1L3Qy8JrpFbrTUdVg4+Wu8tO9nIzLh0Andho6PJfMnF0UbvPz0fCnD74sPdUnNTtM0IhPMRCaY6TQw+DJ3hS8wjzYQ1GZ6Kdtm7HbzsIp8g4p8g01L3EHr4fGmwJiDupEHCRkW2TxMSBgrhBAtWe/DDuPLBQvI3LJlBYuRrwAAIABJREFUv4/19Y8/4nK7Gdi7N13at2/SbTumpvLqo4/y4Zw5TH37bVweD7phMHPWLH789Vcm33Zbs3TuHmidax/3pu3bQ1yJEEIIIUTLM+zuOCITzBx7fUxI6zBbNUZOS6JwvZeUXi3zVPl+l0VRsknnqEta/3iChmwRJs5+0sH7owtY9k4l6UPtpA85NDp/GyMs2kRa3zDS+gZ3Y9dvHhY88qBk0+43D6sp8bF1mZuty4JDWmuEFghmG3bTxnawYDJLSNsWSBgrhBAtWPvkZAC25efv8vJt+fk8NmMG144cydG9egXWN+TkYLNaA+GjUiowouCiM87Yp1pMJhOXn312oEt2+T//AP4u2SvuvpvrL76Ya0aOxGppuT9aukgYK4QQQgixWzGpFk5+oGV0QpqtWosNYgEi4s2c/WRCqMs4IFJ7hzHkllgWTS3jq3udXPBCIh2OblmjIg42q91Eux422vUI/po0vIqyrTpFmf4xB3VdtXvaPMxbrchb5SFvlSdofafNw2pD2vguViw2CWkPJS33HbMQQgg6pKQAuw9jZ370EYv//BOfz8e02jC2vLKS0ffdh8Vs5qvp04mLieHPNWvI2rKFxPh4hg0cuMtjNVbntDRee/RR3v/6a158913ctV2y0z74gB9+/ZVJ48dzWJcu+3UfB0rntDTAP6ZAKSWnBwkhhBBCCLELA6+NZvsKN5k/uvjo2gJOnejgyPMiQ11Wi2O2ajjSrfw/e/cdVmX9/3H8dZ/BEEQUESfOHJk5QksrS1tWVuZKs9TStCxXjtTMkWm2XFSaNsydmmnlt2lbfw1Hau69UFRAkH0O5/79AZ4gUVGBw3g+rqvLep/73Pf70HUVvnzz/pSpnnVtm+kyFXciLWPNQfq6g/RpWqeS47I/PCzNIZ3e49DpPQ5JSe66YZECq6QfHlYm07oDDg8rvAhjAaAAq1C2rAzDUGRUlBwOR5bdrHHx8frm118lSRu2bVNSSop8vb21duNGJaek/yjMxytXamD37lqWMRX78J135srkqtVq1eMPPqiWN9ygMeHh2rxzpyRp5/79enToUPXt3Fk927cvcFOyZUuXlp+vr+Li4xUTF6cypUp5uiUAAACgwLFYDbWbVlY/vn5GGxfF66sXo5UQlaYbn/TsCovCwrAYKlXRplIVszk8LCrrXtpzKw8STmUf0pouKeaQUzGHnNKP5x8edm6CtkwNu8rWTN9RW6J00dljXBQVrN8lAwCysNvtKl+2rI6fOqXjp08rtEIF92urf/pJyanpP9qS6nBowz//6JYbbtAv69e7r1m8erXua9lS3//f/8lisajD3Xfnan9VK1XShxMnauEXX+jthQuV6nDI6XTqnUWL3FOytapWzdVnXg3DMFS1UiVt37tXhyIiCGMBAACAC7DYDN0xqrRKV7dpzaQz+mVKrEqWs+ratkzIXinDMORX1iq/slaFNst6UF5ynEvRB/6doD0X2Obk8LCD67LWfUtb0kPa6llXHviHcHhYQUAYCwAFXMVy5XT81Ckdi4x0h7GmaWrZN99IkmpXq6bdBw9q7caNuqlRI63duFGSVK9GDe3Yv1/9xo+X0+nU7c2aqXxwcK73Z7Va1b1dO90aFqYxM2Zo6+7dkqTt+/ap65Ah6vvII+rZvr1s1oLxp7PVzoWxx46pcb16nm4HAAAAKNCadC0p0yn98NoZff1StEqGWFWlqc+l34jL4hNwgcPDklyKPpSx6iBTSHvJw8PWp+jo+qyHh3n5pR8eVubcXtoadgXVtKlUJQ4Py0+EsQBQwFUuX14btm3Lsjf27x07tP/IEQUFBmp4797qPXq01m7apDt37lRcfLyqVqyocf3765HBg3UqJkaS1KlNmzzts3rlypr76quat2qVZi5erFSHQw6nU28vXKgfzk3JhobmaQ85kXlvLAAAAIBLu+Hxkoo95tSGBfFaOTBKrUcGqt69JWSxEeDlNbuvRSF1vRSSzeFhZ444s0zSRh+4+OFhqQmmjm9N1fGt/zk8zEsqXdWusjUz7aWtaVPpqhwelhcIYwGggKtUrpykrId4nZuKbXfnnWpUr54C/P11OCJCi774QpLUMixMdapX150tWuj7detUOSREzRs1yvNerVarnmjfXrc1baoxM2bonz17JEnb9+5V1+ef19NduqjHww97dEq2WqVKkghjAQAAgMtx+7BAxR1P0541SfrfyGj933txatTZX6Wr2hRY2abSVW2Es/nIajfc062689+66TIVdzzt3520+xzuadqUuOxD2rTUCxweZpUCK9vcKw8y76X1KsHhYVeKMBYACrhK5ctLko6eOCFJik9M1Pfr1skwDLW/6y7ZrFbd1LChvl27Vmt+/12S1LJpU0nSoO7dFRMbq24PPCCLJf/+Z1mjShXNnTxZ81au1MzFi+VwOuVwOhW+YIHW/P67R6dkz03GHo6I8MjzAQAAgMLIYjX04FtB2v5lotbNilXMQad+fP2M+3XvkoaqNPVRrVY+uq6dH7tJPcSwGCpVKX31QI1b/62bpqmEKFf6uoP/rDy44OFhaf8eHrb3P6+VLG91T9BmXnngG1gw1tMVZISxAFDAVQoJkSQdO3lSkrRl1y6lOhy6vk4d92s3N2mib9eulST5lyihRhm7UCuXL68PJk70QNeSzWrVkx06qGXTphobHq5t/5mS9dQuWXcYe+KEnGlpBWaXLQAAAFDQWWyGrmvnp3r3l9DOrxJ1dFOKYo84FXPYqbiINO39IUl7f0iSI9FUk24lPd0uMjEMQ/5lrfK/wOFhUfsdit7v0Ol9GftpD1zi8LATaTp74vzDw0qUsWSsOvg3pA2uY5dfEL/vOocwFgAKuP+uKfh7xw5JUqO6dd3XtGjc2P33NzdpIrut4PznvVZoqD7OZkr27YUL9cO5KdmqVfOtH18fH4UEBSkyKkoRJ0+6D0UDAAAAkDNWu6H6D/qp/oN+7lrsMae2fpag/5sVp7+Xxqvxo/5MxxYSPgEWVWrkrUqNsjk87GDGPtr9Tp3elx7Yxhy+8OFhidEuJUZnPTysac+Sun1oYF5+hEKl4PxuHQCQrbKlS8vby0uxZ8/qbELCv2FsxvSrJAWXKaM61atr14EDahkW5qlWL+jclOxtzZppzIwZ/07J7tunrkOG5PuUbLVKlRQZFaWDx44RxgIAAAC5oFQlm5r3DdDmpfGK2ufU8S2pqtjQ+9JvRIFl97UopJ6XQuplc3jYYee/e2kz1h1EH3DKmXz+KG1QTeLHzPhqAEABZxiGKpUrp/1Hj+rw8ePamhFkNsw0GStJo595Rr9t2KC7b7nFE23mSM0qVfTx5Mmav2qV3l20yGNTstUrV9YfW7Zo76FDBTK8BgAAAAqjcxOzf809q60rEghjiyir3Ug/1KumPUvddJmKjUj7dy9txgFiwbW9LnCn4omjzwCgEDh3iNdPf/yhpORkValQQUGBWX/Mo0Ht2nqma9cCtaIgOzarVU+0b68lU6fqumuucde379unLkOGaM6yZXKmpeVpDw1q15Ykbd65M0+fAwAAABQ3Ddqnry7Y8VWiUhOzPxgKRZNhMRRY2aYaLX3VtGeA2rxcRt0Whqh8fcLYzAhjAaAQOLc3dvXPP0s6fyq2MKpZpYrmTp6sgd27uwNkp9OpdxYuVPfhw7Xn4ME8e/a5FQ9/79wpl4tvEAEAAIDcElTDroqNvORINLXrm0RPtwMUOISxAFAInJuMjTh5UlLWw7sKs4tNyXYdOlRzli2Tw3mBzfBXoWK5cioXFKTYs2d14NixXL8/AAAAUJxdnzEdu3VFgoc7AQoewlgAKATOTcaek/nwrqIg85Sslz1971BeTskahqHGGV/DTdu35+q9AQAAgOKuTpsSspcwdGxTqo5uSPF0O0CBQhgLAIVA5YzJWEkq6eenGpUre7CbvOGekp0yJcuU7I79+9OnZJcuzdUp2XPTxX+zNxYAAADIVV4lLArrXlKStObVGLnSTA93BBQchLEAUAhUCglx/33DunVlsRTd/3zXyJiSHdSjR9Yp2UWL1H34cO3OpSnZxtdeK0n6m8lYAAAAINfd2KukSpa36uROB+sKgEyK7u/mAaAI8fP1VemAAElFZ1/sxdisVvV8+GEtmTJFDWrXdtd37N+vR4cO1exPPrnqKdlaVavKz9dXRyMjdSo6+mpbBgAAAJCJ3deiVsMCJUm/To9VciwH5wISYSwAFBo1Q0MlSU0bNPBwJ/mnRpUqmvvqq+dNyb67ePFVT8narFZ30MuqAgAAACD31b7bV1XCvJV0xqWf3joj02RdAUAYCwCFxEv9+mnKiBFqWAwmYzOzZkzJfjJ1qq6vU8ddz40p2XOrCjjECwAAAMh9hmHojlGBstqlrSsS9Pvss55uCfA4wlgAKCSqVqyo1jfd5Ok2PKZ65cr6aNIkDe7Z87wp2cevcEq2cb16kqS/d+zIzVYBAAAAZAiu7aX7XwuSDOm38Fj9vTTe0y0BHkUYCwAoNKxWq3q0a3felOzOjCnZ9y5zSrZB7dqyWizadeCAEpOS8qJlAAAAoNirc3cJ3T2mtCTpuwkxOrCW771RfBHGAgAKnQtNyc5cvFiPDRumXQcO5Og+vj4+qhkaqjSXS/uOHMnLlgEAAIBirWEnfzV/OkAypTWTzijNwf5YFE+EsQCAQulCU7K7DhxQt8uYkq1Vtaokac+hQ3nWKwAAAACped8AlaluU8whpzYtYV0BiifCWABAoXZuSvb5nj3l7eUlSXKmpeV4SrZWaKgkaS9hLAAAAJCnrHZDtw8NlCStmxmrpDNpHu4IyH+EsQCAQs9qtar7RaZkZy1ZIofDke17z4Wx+w4fzpdeAQAAgOKsRksfVW3urZQ4U2tePaOdXyXq70/iFbU/++/XgaKGMBYAUGRUq1Qp2ynZWUuWqNuwYdq5f/9576l5bjKWMBYAAADIc4ZhqNXwQBkWacfqRH0xLErfTYjRsqdOyZnCHlkUfYSxAIAiJfOUbMO6dd313QcP6rFhw86bkq1YrpxK+Pgo6swZRcfGeqJlAAAAoFgJvsZLrUcEKvQmb9W+21elKll1NjJNfy9ljyyKPsJYAECRVK1SJX04caKGPPHERadkDcNwH+LFqgIAAAAgfzR5tKQeeb+cHppSVneMLC1J+mNOnFITXZd9r9QEl1LiL/4+02UqcmeqtiyPV/SB7FciuJymYiOccjk9P6F7eq9DGxedVfypq9+r60w1deC3JB1Ym6yIzSk6vc+hsyecSk24/K81rp7N0w0AAJBXrFarHn/oId0aFqax4eHavHOnpH+nZHt17KjeHTuqZmiotuzapb2HDqlpgwYe7hoAAAAoXmrc5qMKDb10fHOqNsyPV/O+ARe93nSZ2vdLsnZ/m6jjW1MVfcApSfLyMxRQwapKTbx1TWtflb3GriN/pejA2mQdXJesxKj08NFik8J6lNSNvQJ0Yluq9v6QpIjNKYra55QzxVTpqjbdMTJQ1W/xVcSWFP354VnFRTgVXNuu4NpeSjnrUtR+h86eSFPpqjaF1PNSQCWbXA5TzlRTgVVsqnCdlyw2Q/Gn0rTjf4lyJpu6sXdJWazGhT+XaWrTonhtXp6g03vSA+PNyxL02KJysvte2TylI8mlpU+dUsTfqdm+HnqTt+4ZW0aBVYgI84thmp5P+wu6sLAwc/369Z5uAwBwFdLS0rRo9Wq9vWCBUlL//UakdrVqat64sT7+7DN1uPtuvdSvnwe7BAAAAIqnQ38ka2mvU/Iuaaj1iNJKjnXJJ8Ci+g+VkGGkB5imaWrX10n6v9lx7rBSSg9XrXZDjqSLZ1z+IVaVrWXXwXXJkinJUPqvmXj5GUpNSC+WqW5zB72Xy7ukoaAadh3/J1VmxnBr29fLqN59ftle73Ka+nZ8jLZ+liBJ8gmwyOotJZxy6bp2frr3lTKX3UOaw9TKgae1/5dk+ZW1qOw1dqXGm0qJdyk1wVRSTJrSHJLd11DLQaXUqIv/RcPiy2G6TP0yLVYlK1jVpGvJXLlnQWcYxgbTNMMueR1h7KURxgJA0XHo2DGNyTQlK0kWi0Uul0sN6tTR/Nde82B3AAAAQPH1Sa+TOvxHSpZa6xGBuuGx9DDvt/BY/d97cZIk/3JWNenmr9Bm3gqu4yWrXUqOcynmoFP7f03W3h+SdOaIUxUbean6Lb6qfrOPgmraZBiGjm9N0XcTYhS53aGgGjZdc4evqt3so3J1vGTzMbRh/lmtmxknR5IpLz9Djbv4q/otPjq9z6HTexzy9rcoqJZdJUOsitrv1MkdqUo4nSarlyGLVYrc4VDMofQQ12KTyl5j18kdDoVca9fjn4S4w+VznKmmvhwepT3fJ8nmY+ie8aVV5+4Sij7g0IJHT8qZbKrNy6XVoL1/jr+WpsvU12Oi9c/KRPmUsujReeUUVNOe5ZrE6DStefWMdn6VKEkqV9euVsMDFdrM57L+vZkuUye2parsNXbZfSxKc6Q/e/sXibLapae+qqCS5Yv+5C1hbC4ijAWAouVCU7IWw9DCN99UvZo1PdgdAAAAUDxF7Xfol2mxsvsYstilbavSw7zHFofo7Ik0rXjutAyL1HpkoK7v4C+b15VPcZqmqZSzpnwCsv/x/7ORTh36PUW1bveVT6nLXxFw5qhTp/c4VLGhl7z8LHrvrgglRrv0yIfBWcLOs5FOfTEsSsc2psq7pKH27wSrchNv9+v/rEzQV6OjZfWS6j/gp3r3l1CVMG8Zlgt/9viTaVo9KkqHf0+R3ddQ5w+CVfF67wtev2dNota8ekZnT6SP8F5zp6/ufaWMvP0v/bkdSS59+UK09v6QJJ9SFl3fwU+ndjt04Ldk2X0NPTQ1SNVv8c3Jl6zQI4zNRYSxAFA0HYqI0NjwcP29Y4e7ZrVa1atjRz3VsaPsdvtF3g0AAAAgL30zPlpbliWodFWbEmPSlBJnquXgUrqx18V3yhZE62bFau3bcapxq486zAyWJB1Ym6TVI6KVFOOSX7BFHWYGK6Su13nvXTMpRhsXxbv/OeRauzrNCZZvKet51+7/JUn/GxWtpDMu+Za26IE3g1T1xktPujqSXFo/L15/vJ8+EVyunl0dZwbLr+z5zzgnISpNnz13Wse3pspik1yZNjr4lraow7tlVaHBhUPgooYwNhcRxgJA0ZWWlqbFq1drykcfyZXp/4m1q1XTywMGqG6NGh7sDgAAACi+HEkuzX8kUlH701O+Wq181G5G2fN+zL8wSIxJ03t3HZcz2dRD04K0+9sk7fgqUTKlqs29df/kIPkFXTj4PL3Xoe1fJuifVQlKOOVSheu91Pn9YHmV+Hd69cj6ZC3tfUouZ/o975sUJP/gC98zO2eOOLWs7ymdOexUYBWbGnbyU9R+h2KPpqlEkEWlKttksRo6tStVEZtTlXTGpVKVrOrwbrBSE13auCheZ4+n6e5xpVWmWvEabiGMzUWEsQBQ9I2eNk1f/vRTlprVYkmfku3UiSlZAAAAwANO7kzV4h4n5V/Oqm4LQy64VqAw+G5CtP7+JMH9zxab1OKZAN30VMBF1w5kdvaEU4u6n1RcRJpCb/JWh3eCZfM2FHvMqfldIpUU41KTR/3VekRgju/5XwlRafr0mVOK3O645LUVGnqp3fSy8r/IBG1xQRibiwhjAaDo+/TbbzXh3Xd1bc2a2n/kiJIz7ZK9pmpVvTxgALtkAQAAAA9Iik2TVwmLrPbCNxGbWcwhh+a2j5QrzVSD9n666akABVS4/IOtYg45tKj7SSVGueRfzqp695fQwbXJOrXboeq3+Kj9O2VlsV7d1yo1waXfZ8cpJcFU2Vp2BVaxKTE6TbFHnUpLNRVc20vl6tlVOtR2xaFvUUMYm4sIYwGg6Nu6e7ceHz5coRUrKnz0aI0LD9emzLtkmZIFAAAAcJXOHHHK5mNc9vqA/zq5K1WfD4lSzMF/F7WWrmbTY4sK9/RwYZbTMJZ/OwAASKpXs6ZKlSypwxERSktL0wcTJ2pYr17y8UpfoJ/mcmn20qV6dOhQ7di3z8PdAgAAACiMAqvYrjqIlaRydbzU64vyenR+OTXs7KfQZt5q/3ZZgthCgH9DAABIslmtahmW/oeYP/7xhywWi7o98IA+mTZNjevVc1+359AhPTZsmN5ZuFCpjkvvUAIAAACAvGAYhio19tbdY8rokQ/LFbsDsworwlgAADK0vukmSelh7DlVK1bMdkp2zrJlenTIEG3fu9cjvQIAAAAACh/CWAAAMtzUqJF8vLz0z549ioyKctfPTckunT5dTa691l3fe/iwHh8+XG8zJQsAAAAAyAHCWAAAMvh6e6t548aSpJ8yTceeE1qhgt5/5RUN7907y5Ts+0zJAgAAAABygDAWAIBMWt14o6Ssqwoys1gserRtWy2dPl031K/vrjMlCwAAAAC4FMJYAAAyaRkWJqvFovX//KO4+PgLXhdaoYLmTJigF3r3lo+3t6SsU7LbmJIFAAAAAPwHYSwAAJkEBgSoSf36cqal6dcNGy56rcViUde2bbVs2rTzpmS7Dx+u8AULmJIFAAAAALgRxgIA8B+tM1YVfL9uXY6ur3KBKdkPli9XV6ZkAQAAAAAZCGMBAPiPO1q0kGEYWrtxo+ITE3P0ngtNye5jShYAAAAAkIEwFgCA/yhXpoyaXHutUh0O/fzXX5f13nNTsiOeeoopWQAAAABAFoSxAABk464WLSRJ361de9nvtVgs6nL//Reckp0xfz5TsgAAAABQDBHGAgCQjTuaN3evKjibkHBF93BPyfbpk2VK9sNPP1WX55/XP3v25GbLAAAAAIACjjAWAIBsBGesKnA4nfr5zz+v+D4Wi0Vd7rtPy6dPzzIlu//IEXV/4QVNnzdPKampudEyAAAAAKCAI4wFAOAC7r75ZknSt1ewquC/Kpcvf96UrMvl0kcrVqjL889ry65dV/0MAAAAAEDBRhgLAMAF3NG8uSwWi9b9/fcVryrILPOUbNh117nrB44eVc+RIzVl7lwlp6Rc9XMAAAAAAAUTYSwAABdQtnRpNahdW06nU5t27Mi1+1YuX16zX35Zo/r2VQkfH0npU7LzVq7UI4MH6++dO3PtWQAAAACAgoMwFgCAizi353XT9u25el+LxaLO996rZdOn68aGDd31QxERemLkSL354YdKYkoWAAAAAIoUwlgAAC6icb16kpSrk7GZVQoJ0axx4/RSv37y8/WVJJmmqQWff67OgwZp47ZtefJcAAAAAED+I4wFAOAiGtatK8MwtG3PHqWkpubJMwzDUIe779byGTPUonFjd/3I8ePqNXq0XpszR0nJyXnybAAAAABA/iGMBQDgIgL8/XVN1apyOJ3atmdPnj6rQnCw3hkzRuOee07+JUpISp+SXbx6tToNHKi/tm7N0+cDAAAAAPIWYSwAAJfQKGNVwcZc3hubHcMw1O7OO/XpjBm65YYb3PWjkZF66qWXNOm995SYlJTnfQAAAAAAch9hLAAAl9Dk2msl5d3e2OyElC2r8NGjNWHgQJX083PXl371lToMGKA/Nm/Ot14AAAAAALmDMBYAgEs4d4jX5p07lZaWlm/PNQxDD7RqpU/Dw3Vb06bu+vFTp9R37Fi9MnOm4hMT860fAAAAAMDVIYwFAOASQsqWVcVy5RSfmKi9hw/n+/PLlSmjaaNGaeLgwSpVsqS7vvybb9RxwACt27Qp33sCAAAAAFw+wlgAAHLg3HTspnzYG5sdwzB0/2236dMZM9Tqxhvd9ROnT6vf+PEa//bbOpuQ4JHeAAAAAAA5Y5im6ekeCrywsDBz/fr1nm4DAOBBy7/5Rq/MnKkKwcEqFxSk5JQUtW3VSl3uu092my1fezFNU9/89psmz56tM2fPuushQUF6qV+/LAd/AQAAAADynmEYG0zTDLvkdYSxl0YYCwA4FBGhds8+q//+f7NGlSoa2aePmjZokO89RZ85o0mzZ+v7deuy1B9o1UrDevVSgL9/vvcEAAAAAMURYWwuIowFAEjSxm3bdPrMGZUNDFR0bKymz5unIydOSJI63nOPnu/ZUyV8ffO9r2/XrtWrs2crJjbWXQsuXVqjn3lGtzVrlu/9AAAAAEBxQxibiwhjAQDZSUlN1ceffaY5y5bJ4XSqckiIRj39tJo3aiTDMPK1l+jYWL3+/vv6+tdfs9Tvv+02De/dO8vBXwAAAACA3EUYm4sIYwEAF7Pn4EG9OG2adh88KEmqGRqqrvffrzubN1dgQEC+9rLm//5PE2fNUnSmKdmgwEC9+PTTan3TTfnaCwAAAAAUF4SxuYgwFgBwKQ6HQ/M//1yLv/xSp2JiJEmGYahejRq6sWFD3diwoRrXqydvL6887+VMXJxe/+AD/e/nn7PU29x6q1546imVzueAGAAAAACKOsLYXEQYCwDIKYfDoe/WrdOqNWu0cft2OZxO92veXl6qWrGiAvz9FRgQoHZ33KFbbrjB/fqxyEjZbDaFBAXlSi8//fmnXpk5U6czwmFJKlOqlEb17as7W7TIlWcAAAAAAAhjcxVhLADgSiSlpGjT9u36Y/Nm/b55s3YdOHDeNQ+2bq1H27bVgs8/1+qff1aAv79WhIcrKDAwV3qIPXtWb3z4ob788ccs9btatNDIPn1UJpeeAwAAAADFGWFsLiKMBQDkhpi4OJ04dUpnExK0ZdcuzVm2TCmpqedd99Add2h8//65+uxf1q/XhHff1anoaHetdECARvTpo7tvvjnfDxwDAAAAgKIkp2GsJT+aAQAA6eFnvZo11ez669W7Uyd9MnWqrq9TR4ZhqG2rVpo5bpzsNptWrVmjrbt3S5Li4uP119atSktLu6pntwwL06czZqjdHXe4azFxcXrhzTc19LXXFHXmzFXdHwAAAABwaUzG5gCTsQCAvGKapuITE1XSz0+SNGP+fH346aeqf82VOjDzAAAgAElEQVQ1an/XXXp7wQLFxMWpybXXasLAgapYrpzWbtyold9/rxZNmqj9XXdd9jPXbtyol995R5FRUe5aqZIl9ULv3rq3ZUumZAEAAADgMrGmIBcRxgIA8ktiUpLaPfecTmYKSr3sdqU6HCrh46OK5cpp7+HD7tc633uvhvXqJbvNdlnPOZuQoKlz52rFd99lqd/erJlefPppBZcpc3UfBAAAAACKEdYUAABQCJXw9dXQJ5+UJJULCtJrQ4fqmw8+0F0tWigxOVl7Dx9W2dKl1eW++2S32bT0q6/03MsvKyEp6bKeU9LPT2OefVYzx41TheBgd/2nP/9UhwED9OWPP4o/sAUAAACA3MVkbA4wGQsAyG+HIiJULihIvt7ektLXGfz811+Ki4/XPbfcIm8vL23euVODX31V0bGx6v7QQ3r+iSeu6FkJSUma9vHHWvb111nqt4aFafQzzygkKOiqPw8AAAAAFGWsKchFhLEAgIJq+969enToUHl7eenLWbOuar3An1u2aPw77+hYZKS75l+ihIb26qWHWrdmlywAAAAAXABrCgAAKAaurVVLrW+6SSmpqfpwxYrzXj8VHa1lX3+t2LNnL3mvZtdfr2XTpqnLffe5a/GJiRoXHq7nJkzQiVOncrV3AAAAAChuCGMBACjknu7SRZK0/OuvFXn6tLu+ZdcudR0yRBNnzdITo0bpZHT0Je9VwtdXI/r00fuvvKIq5cu762s3blTHgQO14rvv2CULAAAAAFeINQU5wJoCAEBBN/yNN/Tt2rW655ZbdP/tt+tQRIRmzJsnh9MpL7tdqQ6HKoWE6L3x41U5U8h6MUnJyQpfsECLV6/OEsDe1LChxjz7rCqWK5dXHwcAAAAAChV2xuYiwlgAQEG3/8gRdRw4UC6XK0v9kfvu01OdOmnAxInavnevQoKC9Nnbb6uEr2+O771p+3aNffttHY6IcNdK+Pjo+SeeUIe772aXLAAAAIBijzA2FxHGAgAKg8Vffqlf1q+X1WqVzWrVXS1a6P7bb5eUvvu1+wsvaP+RI5o2apRub9bssu6dlJKimYsWaf7nn2eZkm3WoIHGPvecKoWE5OZHAQAAAIBChTA2FxHGAgCKgncWLtScZcvU7YEHNKxXryu6x+adOzU2PFwHjx1z13x9fDSwe3d1btNGFgvr6AEAAAAUPzkNY/kdEwAAxUSz66+XJP21desV36Nh3bpaMmWKej78sDt4TUpO1uTZs/XUSy/pyPHjudIrAAAAABRFhLEAABQT19epIy+7XbsPHtSZuLgrvo+Pt7cG9eihjydPVo0qVdz1Ddu2qdOgQVr05Zfn7a4FAAAAABDGAgBQbHh7een6OnUkpQenV6tB7dpaMmWKenXsKGvGlGxySopef/999XrxRR3KdOAXAAAAAIAwFgCAYqVpgwaSrm5VQWZedrv6P/aY5r/+umqFhrrrm3bsUOdBgzR/1SqlpaXlyrMAAAAAoLAjjAUAoBhpet11kqS//vknV+97ba1aWvTWW+rTubNsVqskKSU1VW999JGeGDUqy4FfAAAAAFBcEcYCAFCMXFe7tny8vLTv8GFFnzmTq/f2stvV79FHteCNN1S7WjV3fcuuXeo8aJDmfvYZU7IAAAAAijXCWAAAihEvu12N6tWTlPvTsefUrVFDC994Q8907eqekk11ODTt44/VY8QI7TtyJE+eCwAAAAAFHWEsAADFzLm9sevzKIyVJLvdrr6PPKKFb76pujVquOv/7NmjLoMH64Ply+VkShYAAABAMUMYCwBAMdPs+uslSb9t2CCXy5Wnz6pTvbrmv/66nu3WTTabTZLkcDoVvmCBur/wgvYeOpSnzwcAAACAgoQwFgCAYqZ+rVqqEBys46dOacO2bXn+PLvNpqc6ddKSt97StbVquevb9+5VlyFDNGfpUjmczjzvAwAAAAA8jTAWAIBixmKx6IHWrSVJq9asybfn1qpaVfNee00DHn9c9owpWafTqXcWLdLjw4dr98GD+dYLAAAAAHgCYSwAAMXQQxlh7Pfr1ulsQkK+PddmterJDh20ZOpUNahd213fuX+/Hh0yRLOWLJHD4ci3fgAAAAAgPxHGAgBQDFUKCVHYddcpOTVV365dm+/Pr1mliua++qoG9+wpL7tdkuRMS9OsJUvUbdgw7di3L997AgAAAIC8RhgLAEAx9dAdd0jK31UFmVmtVvVo105Lp01Tw7p13fXdBw/qsWHDFL5ggVKZkgUAAABQhBDGAgBQTN3ZvLn8fH21ZdcuHTh61GN9VKtUSR9OnKghTz4pHy8vSVKay6UPli9Xl8GDtXX3bo/1BgAAAAC5iTAWAIBiytfHR3fffLMkadGXX3q0F6vVqscffFBLp0/XDfXru+v7jx5VjxEjNGXuXCWnpHiwQwAAAAC4eoSxAAAUY90efFAWi0Urvv1WB48d83Q7Cq1QQXMmTNCIPn3k6+MjSXK5XJq3cqU6Dx6sTdu3e7hDAAAAALhyhLEAABRjtUJD1e6OO5Tmcmn6vHmebkeSZLFY1OW++7R8+nTd2LChu344IkJPvviiXpszR0nJyR7sEAAAAACuDGEsAADF3DNdu8rXx0c//vGHNm7b5ul23CqFhGjWuHEa8+yz8i9RQpJkmqYWr16tjgMH6s8tWzzcIQAAAABcHsJYAACKueAyZdT9oYckSVPmzpVpmh7u6F+GYaj9XXdp+fTpurlJE3f9WGSk+owZo1dmzlR8YqIHOwQAAACAnCOMBQAA6tGuncqWLq1/9uzRgi++8HQ75ykfHKy3X3pJEwYOVEk/P3d9+TffqOOAAVq3aZMHuwMAAACAnCGMBQAAKuHrqxefflqSNH3ePG3dvdvDHZ3PMAw90KqVVoSH6/Zmzdz1E6dPq9/48RobHq64+HgPdggAAAAAF0cYCwAAJEmtbrxRXdu2ldPp1Atvvllgg83gMmU0deRITR4yRIElS7rrq9asUYf+/fXzn396sDsAAAAAuDDCWAAA4Da4Rw/Vq1FDESdP6pWZMz3dzgUZhqE2t96qFeHhuvvmm931UzExGjhpkkZOmaIzcXEe7BAAAAAAzkcYCwAA3Lzsdr02bJh8fXz07dq1+m3DBk+3dFFlAgP1+rBheuuFFxQUGOiuf/XLL2rfv7++X7fOg90BAAAAQFaEsQAAIIvQChX0dJcukqTJs2crOSXFwx1d2h3Nm+vTGTN0/223uWvRsbEa+vrrGvr664o+c8aD3QEAAABAOsJYAABwnkfbtlXN0FAdjYzURytWeLqdHAkMCNDEwYM148UXFVymjLv+/bp1at+/v/73888yTdODHQIAAAAo7ghjAQDAeew2m0b17StJ+mjFCh0+ftzDHeVcy6ZN9emMGXr4zjvdtTNnz2rU1Kka/OqrOhkd7cHuAAAAABRnhLEAACBbN9Svr7atWinV4dBrc+YUqqnSAH9/jX3uOb07dqwqBAe76z/9+ac69O+vVWvWFKrPAwAAAKBoIIwFAAAXNLhHD/mXKKG1Gzfqh99/93Q7l61F48ZaPmOGOrVp466dTUjQ2PBwPTdhgk6cOuXB7gAAAAAUN4SxAADggoICA9X/scckSa+//74Sk5I83NHl8/P11YtPP605EyaockiIu75240Z1GDBAy7/5hilZAAAAAPmCMBYAAFxUx3vu0bU1ayoyKkqzly71dDtXrGmDBlo2fboebdtWhmFIkhKSkvTKzJnqO2aMjkVGerhDAAAAAEUdYSwAALgoq9WqkX37yjAMLfj880IdWvr6+Gh47976cNIkVa1Y0V3/c+tWdRgwQIu//FIul8uDHQIAAAAoyghjAQDAJTWoXVstw8LkTEvT3zt2eLqdq9a4Xj19MnWqej78sCyW9G+HklNS9Nr776v36NE6FBHh4Q4BAAAAFEWEsQAAIEfqVK8uSdp35IiHO8kdPt7eGtSjhz6ePFk1qlRx1zdu367OgwZp3sqVSktL82CHAAAAAIoawlgAAJAjNUNDJUn7i0gYe06D2rW1ZMoUPdWpk6wZU7IpqamaMneueo4cWWTCZwAAAACeRxgLAABypGbG9Oi+w4c93Enu87Lb9Wy3blr45puqXa2au7519251GTxYHyxfLidTsgAAAACuEmEsAADIkaoVK8pmtepoZKSSUlI83U6eqFujhha++ab6de0qm80mSXI4nQpfsECPDxum3QcPerZBAAAAAIUaYSwAAMgRu92u0AoVZJqmDh496ul28ozdZlOfRx7Rkrfe0rW1arnrO/bv16NDhmjm4sVyOBwe7BAAAABAYUUYCwAAcqxGxt7Yoriq4L9qVa2qea+9poHdu8vLbpckOdPS9N4nn6jbsGHavnevhzsEAAAAUNgQxgIAgBxz740tJoda2axWPdG+vT6ZOlXX16njru8+eFCPDx+uGfPnKyU11YMdAgAAAChMCGMBAECO1SxGk7GZVa9cWR9NmqShTz4pHy8vSVKay6UPP/1UXZ9/Xlt27fJwhwAAAAAKA8JYAACQY+4wtphMxmZmtVr12IMPaun06bqhfn13ff/Ro+o5cqSmfPSRkovowWYAAAAAcgdhLAAAyLHQChVks9l0LDJSScnJnm7HI0IrVNCcCRM0sk8f+fr4SJJcLpfmrVqlzoMHa+O2bR7uEAAAAEBBRRgLAAByzG6zqWrFipLSJ0KLK4vFokfuu0/Lp0/XjQ0buuuHIyLUa/RovTZnjhKTkjzYIQAAAICCiDAWAABcFvchXsVsb2x2KoWEaNa4cRrz7LPyL1FCkmSaphavXq1Ogwbpzy1bPNwhAAAAgIKEMBYAAFyW4nqI14UYhqH2d92lT2fM0C033OCuH4uMVJ8xYzTh3XcVn5jowQ4BAAAAFBSEsQAA4LK4J2OL4SFeFxNStqzCR4/WKwMHKsDf313/9Ntv1aF/f63duNGD3QEAAAAoCAzTND3dQ4EXFhZmrl+/3tNtAABQIBw4elQPP/ecLBaLQitUUI0qVdSnc2fVrVHD060VGKeiozXpvff04x9/ZKk/2Lq1hj75ZJawFgAAAEDhZxjGBtM0wy55HWHspRHGAgDwr7S0NPUbP15/ZNqH2qJxY707duxl32vr7t0a8MorKlWypFo0bqx6NWtq76FD2rp7t8oEBmp4794qV6ZMbrafb0zT1Ldr12ry7NmKiYtz14NLl9aLzzyj25s182B3AAAAAHITYWwuIowFAOB8SSkp2nPwoHqOHCmLxaKf5s1zH2KVE8ciI/X48OGKjo294DXlgoI0beRI1aleXVt27dLew4f1QKtW8vH2zo2PkC+iY2P12pw5+ua337LU723ZUsN791bpgAAPdQYAAAAgtxDG5iLCWAAALqzXiy9qw7Ztem3oUN1zyy05es/ZhAT1GDFC+48cUfNGjdS7Uyf9399/a++hQ7qmalVdW6uW5q9apY3bt8vHy0t+JUoo6swZSVKfRx5Rv65d8/Ij5Ykffv9dE2fNcn8OSSpTqpRG9u2ru1q08GBnAAAAAK4WYWwuIowFAODC5n/+ud768EO1ufVWTR4y5JLXR0ZFaeRbb2nj9u2qUaWKPp48WSX9/M67zuFwaOKsWVq5Zo2k9B/vPxUTo8ohIfpi1iwZhpHrnyWvxZ49qzc++EBf/vRTlvqdzZtrZN++CgoM9ExjAAAAAK4KYWwuIowFAODCjp44obZPPy0/X1/9OG+evOz2bK8zTVNf/PijXn//fcUnJiooMFDzXntNlUJCLnhv0zT1x5YtKh0QoFqhobq3Tx+djIrSx5Mnq2Hdunn1kfLcL3/9pQkzZ+pUdLS7FliypIb37q17W7YslEEzAAAAUJzlNIy15EczAACg6KpcvrxqV6umhKQk/bV16wWve++TTzRmxgzFJyaqZViYlkyZctEgVpIMw9BNDRuqTvXqslqtapOxBuF/v/ySq58hv7Vs2lSfzpihh++80107c/asRk2dqkGTJulkppAWAAAAQNFBGAsAAK7a7TfeKEn68Y8/sn09OjZWcz/7TJI09tlnNf3FFxVcpsxlP+e+226TJH37229yOJ1X2G3BEODvr7HPPaeZ48apQnCwu/7zX3+p/XPPaeWaNeInmAAAAICihTAWAABctdYZYexPf/4pl8t13usLv/hCySkpuuWGG/TwXXdd8Y/h16leXTUqV1ZMXJx+//vvq+q5oGjeqJGWz5ihzvfe667FJyZqXHi4nn35ZR0/dcqD3QEAAADITYSxAADgqtWpXl0VgoN1OibmvMOp4uLjtWT1aknSU506XdVzDMPQvRnTsYV9VUFmfr6+GtW3r+ZMmKDKmVY3rNu0SR0HDNDyb75hShYAAAAoAghjAQDAVTMMQ48+8IAkaWx4uD799lv3a0tWr1ZCUpKaNWiQK4du3deypaT0lQjRZ85c9f0KkqYNGmjZ9Onq9sAD7unhhKQkvTJzpvqMGaOjJ054uEMAAAAAV4MwFgAA5IrHH3xQ/R97TKZpasK772rMjBmaMneuFnzxhSTpqc6dc+U5lUJC1LxRIyWnpGjklClKS0vLlfsWFL4+PhrWq5c+nDRJVStWdNf/2rpVHQcO1MIvvihynxkAAAAoLgx+5O3SwsLCzPXr13u6DQAACoUlq1dr8pw5WWqN6tXTR5MmXfGu2P+KjIpS1+efV3RsrHp17Kj+jz2WK/ctaJJTUjRryRLNW7Uqyy7e6+vU0fj+/VW9cmUPdgcAAADgHMMwNpimGXbJ6whjL40wFgCAy7Nx2zb9s2eP0lwuGYahe265RRWCg3P1GX9t3aq+Y8fK5XJp+qhRuq1Zs1y9f0Hyz549Ghcerr2HD7trXna7+j7yiHo8/LBsVqsHuwMAAABAGJuLCGMBACiYPlqxQtPnzVO5oCCtfu892W02T7eUZxwOhz749FO9v2yZnJnWFNSrUUPj+vdXnerVPdgdAAAAULzlNIxlZywAACi0erRrpxqVK+tkVJS+W7vW0+3kKbvdrqe7dNGit97StTVruus79u9Xt6FD9e6iRUp1ODzYIQAAAIBLIYwFAACFlsViUbcHH5QkLfjiCxWHn/ipXa2a5r3+ugZ27y4vu12S5ExL0+ylS9V1yBBt3b3bwx0CAAAAuBDCWAAAUKjdf9ttKh0QoO1792rT9u2ebidf2KxWPdG+vZZOm6ZG9eq56/sOH1aPESM0Ze5cJaekeLBDAAAAANkhjAUAAIWaj7e3OrVpI0ma//nnHu4mf1WrVEkfTpyoF3r3lo+3tyTJ5XJp3sqV6jx4sDZu2+bhDgEAAABk5vEw1jCMKoZhLDcMI9YwjDjDMFYYhhGaw/dWz3jvGcMwEgzD+NEwjGwX5RqGUckwjA8NwzhhGEaKYRgHDMN4NXc/DQAA8ITO994ru82mn/78U7+sX6+k5GRPt5RvLBaLurZtq+XTp6tZgwbu+uGICD354ot6dfZsJSQlebBDAAAAAOcYntytZhhGCUmbJaVIGi3JlPSKpBKSrjdNM+Ei7w2StEXSWUljJSVKel5SmKRmpmnuyHRtNUlrJR2QNENSpKRqkmqZpvnSpfoMCwsz169ff9mfDwAA5J+x4eFatWaNpPSAslZoqBrUrq0Gdero1htuUFBgoIc7zHumaWrFd99p6ty5ik9MdNcrBAdrzLPPqnmjRh7sDgAAACi6DMPYYJpmtkOiWa7zcBg7UNIUSXVM09ybUasuaY+k4aZpTrnIe0dLGiepbqb3+knaL+ln0zQ7Z7r2a0llJN1smuZlHzNMGAsAQMF3NiFBMxcv1sbt27Xn4EGluVzu1/xLlNCovn113223ebDD/BN5+rRemTVLv/7n+5d2d9yh5594QgH+/h7qDAAAACiaCksYu0aSj2maN/+n/rMkmaZ5wd8xGYbxpaSapmnW+099uaT7JAWYpuk0DKOmpL2SupumOf9K+iSMBQCgcElKSdGOvXu1dc8e/bZhg/7aulWS1ObWWzWqb99iEUaapqn//fKLXn//fcWePeuuB5curRefeUa3N2vmwe4AAACAoiWnYaynd8bWl/RPNvVtkq69xHvTJKVmU0+R5CupZsY/nwt6kwzD+C5jX2yMYRjzMlYdAACAIsbX21tN6tdXj3btNPvll/VSv37y8fbW17/+qs6DBmn9P9l9+/GvTdu3a+rcuUpOScmnjnOfYRi6/7bbtCI8XHe2aOGun4qJ0aBJkzTirbcUExfnwQ4BAACA4sfTYWwZSTHZ1KMllb7Ee3dJuiZzoGoYhkXSuTGPMhm/Vsz49UNJuyXdK+kFSfdL+ibjPecxDKOPYRjrDcNYf+rUqZx8FgAAUAAZhqEOd9+tT6ZO1XXXXKMTp0/rqZde0pSPPlLk6dPnXb/vyBE9+/LL+njlSi3/5hsPdJy7ggID9ebw4Xpz+PAse3O//vVXte/fX9/89ps8+ZNSAAAAQHHi6TBWSj+067+MHLxvltL7n2cYRk3DMCoo/XCu6hmvn1sUd+4z/mSa5rOmaf5gmuZsSf0k3SDpnmybMs3ZpmmGmaYZFhwcnNPPAgAACqiqFSvqo1dfVZ/OnWUYhuatWqU2Tz2lPi+9pP/9/LMcTqfi4uM1+NVXlZicLEla+vXXcmXaPVuY3dmihVaEh6ttq1buWkxsrF548009P3myTkVHe7A7AAAAoHjwdBgbo38nWDMrrewnZt1M09wvqZvSA9W9kiIkNZc0NeOS4xm/RmX8+t1/bvFtxq+NL69lAABQWNltNvV79FF9PHmy7mzRQnabTX9u3apRU6eqbd++emb8eB2OiFDtatVUvmxZHY6I0O+bN3u67VxTqmRJvTJwoMJHj1ZI0L/bmn784w+1799fq9asYUoWAAAAyEOeDmO3KX1v7H9dK2n7pd5smuankiplXF/LNM0bJPlLOmKa5uFMz5Cyn8CV/p2gBQAAxUSD2rX15vDh+v6jj/Ti00+reuXKioyK0rY9e1SqZElNHTlSndq0kSQtWb3aw93mvlvDwvRpeLg63vPvDwidTUjQ2PBwPfvyyzrOiiYAAAAgTxhXOv1gGIZVUh2lT7Fas7vGNM1fLnGPQZLelFQ7Y9JVhmFUk7RH0gjTNN+6zJ4qKv1AsDdM03w1o2aTdETSBtM022a6tqukRZLuNE1zzcXuGxYWZq5fv/5yWgEAAIWIy+XSbxs36ru1a9WpTRtdX6eOomNjdU+vXnKmpenLWbNUKSTE023mib+2btX4t9/W0chId62Ej48G9eihjvfcI4vF0392DwAAABR8hmFsME0z7JLXXUkYaxjGS5IGSyp1setM08w2pM10Hz9JmyUlSRqt9OnVCZJKSrreNM34jOuqSton6WXTNF/OqNklvS7pZ0lxSp+wHZlx3R2maaZmek4PSXMlvSdphaRakiZK+ltSa/MSXwTCWAAAiqcXp07V6p9/Vo927TS4Z09Pt5NnkpKT9fbChVr05ZdZ1hTcUL++xj73nEIrVPBgdwAAAEDBl2dhrGEYwyVNlhQraZXSp06d2V1rmub4HNwvVOl7Xu9S+sFdayQNMk3zYKZrqkk6IGm8aZrjMmo2SSslNZUUKOmopMWSJpmmmZjNcx6X9IKkayRFS1ouaeS5wPdiCGMBACietu7erceHD1dJPz99PnOmSgcEeLqlPPX3zp0a//bbOnD0qLvm4+WlZ7t106Nt28pqveifswMAAADFVl6GsXsk+UhqYppmsVgoRhgLAEDxZJqmnh43Tn9s3qwHW7fWywMGeLqlPJeSmqr3PvlEH3/2mdJc/67Wb1C7tsb176+aVap4sDsAAACgYMppGHslS8CqSFpZXIJYAABQfBmGoVF9+shus+nzH37Q+n/+8XRLec7by0sDHn9cC954Q7WrVXPXt+7erS6DB2vOsmVyOLP9oSgAAAAAl3AlYWykJFtuNwIAAFAQVa1USb06dpQkTZo1Sw6Hw8Md5Y96NWtq4RtvqF/XrrLZ0r/1czidemfhQj02bJh27t/v4Q4BAACAwudKwtilku4yDMM7t5sBAAAoiJ5o316hFStq/9Gjem/pUk+3k2/sdrv6PPKIlrz1lupfc427vuvAAXUbOlRvL1yo1GISTgMAAAC54UrC2DGSjktabhhG9VzuBwAAoMDx9vLSS888I8Mw9P6yZfr022893VK+qlW1qj6ePFmDe/aUt5eXJCnN5dL7y5apy+DB2rJrl4c7BAAAAAqHKznAa78ku6SKGaVYSWeyudQ0TbPm1bVXMHCAFwAAkKRlX3+tibNmyWKx6M3hw9X6pps83VK+O3TsmMa/8442bt/urhmGocceeED9unWTrzc/PAUAAIDiJy8P8LJIcko6nPFXrCQjm7+u5N4AAAAFVqc2bfR0ly5yuVwa8dZb+vnPPz3dUr6rWqmS3n/lFY3o00e+Pj6SJNM0Nf/zz9V54MBiccgZAAAAcKUuezK2OGIyFgAAnGOapibPmaNP/vc/WSwWDe/VS13uv9/TbXnEschITXj3Xf2+eXOWeqc2bTSoRw/5+fp6qDMAAAAgf+V0MpYwNgcIYwEAQGamaWr20qWauXixJOnJDh004PHHPdyVZ5imqVVr1ujNDz9UfGKiu14hOFgv9eunFo0be7A7AAAAIH/kWxhrGEaApFKSYk3TjLuqmxVQhLEAACA7X/z4o8a//bacaWn6as4cVQgO9nRLHnMyOloTZ87Uz3/9laX+YOvWGvrkkwrw9/dQZwAA4P/Zu8/oqKqvj+Pfm54QSEKASO+9Y2ihSJUiICKggqJ0pYgC0v9SFCmilARBlCIiTUFURFQEQaQjvYSOoYVeEtImc58XhHmIBFKYMAF+n7VmJbPvuefsiy9Mds7sIyLpLz17xmIYhrNhGIMMwzgCXAFOAFcMwziSEHdJy7wiIiIij5LmdetSu3JlANZv326L/3v2LJPnzmXF2rVcuHzZUek9VDmyZmXSkCGM6dsX38yZbfEfV6+mVYyS3KsAACAASURBVO/erN60yYHZiYiIiIhkDKkuxhqG4Qb8DowGCgBhwJaErwUS4qsSxomIiIg81moH3vrj97o7PkUzdsYMZi9dypCJE2nYqRPt+vVjw44djkrxoTEMgya1a7M0OJhGNWva4hevXKHv2LEMnDCBy9euOTBDERERERHHSnWbAsMwBgEfAcuBfqZpHr7jWmHgE6A5MNQ0zbF2zNVh1KZARERE7uXilSs06NgRdzc3/vz6a65dv06Tbt1wcXamSrly/LN/P1HR0QAEVaxIqSJFCL94kYibNylfogS1AwMpmCcPhmE4+Ensb/WmTXz0+edcvHLFFvPNnJmBXbvSuFatx/KZRUREROTJlG49Yw3D2J3wbQXTNK1JXHcCdibMXTZVk2dQKsaKiIjI/bR/7z32HT7MlKFDCT1xgqnffEPDoCA+HjCA6JgYFvz8MzO/+y7RAVd3KpA7N6+2aEHzunVxd0v/DxddvnqV0dOn82zNmol2sKaEaZqpKqJej4hgwqxZ/Lh6daJ4nSpVGPLmm+TImjVV64uIiIiIZETpWYy9CQSbpjnwPmPGAb1N0/RK1eQZlIqxIiIicj+fL1rEtAULaNWwIVt27+ZUeDhT33+fGpUq2cZcvnaNJb/9hsViISBbNlxdXNi8axd///MPV67fOgPV39eXKuXK4Zs5M54eHly6epVzFy7gmyULH/Tpg5urq13ynbFoEZ8tWABAnw4deOOFF5ItsB4LC2PYpElEx8Tw5YcfktXXN1Vrbtixg1FTp3Lu4kVbzNvLi/6dOvF8/fraJSsiIiIij7T0LMZeBb4xTbPnfcaEAK+ZpumTqskzKBVjRURE5H4OHD3KK/364eriQpzFQg5/f36ZMQNnZ+dk77XEx7NqwwbmfP89B48du+e44GHDqBWY7M92KfJy376J1nq5aVP6deqEq0vSZ7D+/OeffDh9uq3dQrXy5Zn6/vsper47Rdy8yeS5c/l25cpE8Wrly/O/Hj3IHRCQyicREREREckY0rMYuw4oDpQxTfNCEtezAXuBQ6Zp1k7V5BmUirEiIiJyP6Zp8mznzly4fBmALm3a0Kt9+1TPsSs0lFNnz3L1xg0io6Lw9/Vl2969rPzrL15v2ZJ333jjgXM9HR7Oc9274+XhwZDu3Rk5dSpxFguF8uRhQNeuVC1XjhOnT7Pr4EF2HjjArtBQjp86BcCzNWqwdc8erly/To9XXqHbSy+lKYdte/cyMiSEsHPnbDFPDw/6dOhA28aNcXJK9RmzIiIiIiIOldJibNLbH+4vBFgIbDEM40NgDXAWeAqoAwwDsgNvp2FuERERkUeOYRjUfPppvv/9dwBa1KuXpjkqlChBhRIlEsVz5cjByr/+Ytu+fXbJdfXmzQDUCgykWd265MqRg+EhIRw7dYo3hw/H28vrrt62Xh4e9O3YkReffZaNO3fSc9Qopi9aRP7cuWkYFJTq4mlgmTL07diR1Zs28fPatVitVqKioxk7Ywa/rV/P8J49yZ87t12eV0REREQkI0n1tgPTNBcDY4H8wAzgMBABHAG+BAoCHyeMExEREXki1K9WDYAqZcuSL2dOu81boUQJXJydOXD06D0PAPuv6JgYfl2/PsnxqzduBKBeQr6VSpdmyZQp9H71VTzc3Ym4eZPsfn40CAqiX6dOfD1+PGu//prWjRphGAZBFSvSpXVrrFYrAydM4PkePZjz/ffEWSwpfqZ9R47w7pgxHDh6lDljxlAoTx7btX/276ftu+8y5/vvscTHp3hOEREREZFHQarbFNhuNIxqQGegIuADXAN2ALNM09xotwwzALUpEBERkZT4+59/KFGoEP6pPNwqOR0GDmR3aGiK+sbejIri7dGj2bZ3L7UCAwkeNsx27dLVqzTo2BFXFxfWzJ1LJk/PRPfeiIwk8uZNArJlu++BWvHx8cz94QcWrVhhO5CrY6tW9OnQIUXP8+G0aXz366+4uLiwZfFiLPHxfLF4MbOWLCHearWNK120KCN79aJI/vwpmldERERExFFS2qYgzQ25TNPcZJpmV9M0A03TLJrwtevjVogVERERSakalSrZvRALtz7WD7d6rd5PxM2b9Bg1yjbur23b2HnwoO36ms2bMU2TauXL31WIBcicKRNPZc9+30IsgLOzMx1bteLnzz9nXP/+AHzz00+cDg9P9lmiYmJY+ddfAFgsFi5dvYqbqys927fnmwkTKF6woG3svsOHeblfP2YsWpSqnbciIiIiIhmVTkcQERERyeAqly0LwNb7FGPjLBZ6jBzJzgMHCPD3t/WtDf76a25/Emr1pk0A1Kte3S55OTs706hmTZrUrk1sXBwh33yT7D1/bNiQqH3C2Qv/fx5siUKFmPfxx/Rs3x5Xl1tHG1gsFj5bsID2/ftz4OhRu+QtIiIiIuIoyRZjDcPIl/By/s/7ZF/pn76IiIjI4+9239iDx45xIzIyyTFLf/uN3aGhBPj7M+ujj+jfqRNZvL3Zvm8fG3fuZNqCBWzcuRMnJyeeqVzZrvn1fvVV3Fxd+WXdOvYcOnTfscv++APAVmy9sxh7O961TRsWTpxI2WLFbPFDJ07Qrn9/6rz2Wop24IqIiIiIZEQp2Rl7AjgOFP7P++Rex+ybqoiIiMiTydPDg9JFi2K1Wtlx4MBd129ERjJ94UIABnTpQu6AALJ4e9OxVSsA+owezeeLFgHw7htv4Jcli13zy5UjB+2bNwdg4pw53OtMgrCzZ9m2dy8e7u40feYZ4O5i7G2F8+Zlzpgx9OvYEQ83NwBM0+TqjRt0GDgwUfsFEREREZFHRUqKsXMTXtf+8z6519f2TlZERETkSXW/vrGzly7lyvXrVChZknrVqtniLzdtir+vL3EWC34+PkwbMYLXWrRIl/w6vfgiPpkz88/+/Rw5eTLJMbd3xTYMCrIdynXuHsVYuNUG4bXnn2fx5MkUveMQr0tXr9Jx8GDGf/klUdHRdnwKEREREZH05ZLcANM037jfexERERFJf4FlyjDzu+/Yunt3ovi5Cxf45qefAOjXsWOiw7c8PTz4+L33+H3DBt5o1YoAf/90yy9zpkzUrFSJn9euZcuePRQtUCDR9TiLhR8TirEtGzTgyrVbf+c/d/FisnPny5mT0kWKcPiOIq9pmsxfvpy1W7fyfo8eVC1f3n4PIyIiIiKSTnSAl4iIiMgjoELJkni4uXHg2DHCL12yxacvXEhMbCyNatZM1GP1tkqlSzOwa9d0LcTeZjtobM+eu66t3rSJC1euUChvXiqVKsVT2bMDcOb8+WTnjbNYWLNlCwBOdxSbAU6Hh9N9+HBGTp3K9YiIB30EEREREZF0lepirGEY8YZh/C+ZMUMNw7CkPS0RERERuZOnuzvVKlQAYG1CYTIyKoqVf/0FQI927RyW2223i7Hb9+0jPj4+0bXFv/wCQNsmTTAMg1wJxdiU7IzdumcP127coFDevFQoWRKA9s2bk8Xb2zbm+99/58W33+bPhH8bEREREZGMKC07Y42EV0rGiYiIiIid1K1aFYA1mzff+rppE9GxsVQsWZL8uXI5MjUAcgcEkDN7dm5ERnLoxAlb/PCJE2zftw8vDw+a1akDgJ+PD+5ublyPiCAyKirRPFarlUlffUXwvHlERUfz2/r1ADxbowblihcHwMPdnaXBwdS/o0fuhcuXeeejjxg4YQKXr11DRERERCSjSa82BX6ATlMQERERsaPalSvj5OTE1j17uB4RwYp16wBo+swzDs7s/yXVqmDxypUANKtbF28vLwAMw+CpbNkAOPufQ7y27NnDnO+/Z+Z339GmTx9WbdwIQMM7irG7Q0PJ5ufHJ4MGMWHAAPx9fW33/7p+Pa169WLF2rWYpplOTyoiIiIiknopKsYahlH79ishVODO2B2vuoZhvA60B0LTLWsRERGRJ5BflixULFkSS3w8P65ezaZdu3BxcaFhUJCjU7OxFWP37gXgRmQky//8E7jVouBOt/vGnvtPMXbZqlUAeHl4cCo8nIibNymcLx+F8+alfIkSAOw9fNjWCqFBUBBLg4NpXreubY6rN24wZOJE+oweTXgKWiGIiIiIiDwMKd0Z+yewJuFlAq/f8f7O1ypgNpAdmGDnXEVERESeeLdbFYR88w1Wq5WalSrhmyWLg7P6f5XLlAHgn337sMTH89WyZURFR1O5bFmK5MuXaOztvrF37oy9HhHB6k2bMAyDhRMn0q1tW3wyZ6bjCy8A4O/rS+6AAKKiozny77+2+3wyZ+aDPn2Y+v775EyYF2Ddtm28+PbbfPfrr9olKyIiIiIO55LCcaO4VYQ1gPe5VZxdm8S4eOASsMY0zYP2SFBERERE/l/dqlWZMGsW0TExQMZqUQC3drvmfeopws6d49PZs5m/fDmGYdCldeskx0LiYuyKdeuIjYujWvny5MuZkx7t2t11OFm54sU5HR7O7tBQihcsmOhajUqV+G7KFKZ8/TWLVqwAIOLmTT6cNo1f16/n/R49yJszp70fW0REREQkRVK0M9Y0zRGmaY40TXMEcBJYlvD+v68PTdOcpkKsiIiISPrIHRBAsQIFAPD28qJ2YKBjE0pCYEKrgvnLlwPwXufOVC1f/q5xSfWM/SGhRUHLBg3uOX/5hL6xu0KT7oqVydOTwd26MWv0aPLdcbDZ1j17aNOnD1//8IOtxYGIiIiIyMOU6gO8TNMsaJrmlPRIRkRERESSV796dQAaVK+Oh7u7g7O52+1WBQDtmzenXbNmSY7LlSMH8P89Yw8eO8aBY8fI4u1ta8eQlLK3i7EH7//3/0qlS7N44kTeeOEFnJxu/dgbHRvLJ7Nn8/qgQYnaHIiIiIiIPAypLsaKiIiIiGO93rIlg7p1o2/Hjo5OJUk1n36agnny0KJePfq+8cY9x93eGXsu4YCtH/74A4CmtWvj7uZ2z/uKFSiAT+bMhJ09y55Dh+6bi4e7O++8/jpfjx9v21EMtw4Ae7lvXz5ftIi4uLgUPpmIiIiIyIMx0nKQgWEYBtAaaATkBpLakmGapln/wdLLGAIDA81t27Y5Og0RERGRx0psXBxV27bFyTD4afp0WvXqRXRsLAs//ZQShQrd995P58xh7rJlNK9blw/69EnRenFxccz5/ntmLF5MnMViixfNn58RvXtTukiRB3oeEREREXlyGYax3TTNZHuIpXpnrGEY7sAqYCHQCXgWqHPH65k7vhcRERERSZKbqyvZfH2Jt1oZNXUq0bGxNAgKSrYQC9C2cWMMw+DX9eu5cv16itZzdXWla9u2LJw4kbLFitnih0+e5LUBA5g4Z47tYDQRERERkfSQljYFA4G6wIdAdsAARgC5gHZAGLcKtff+bJmIiIiICJAzoW/spl27cHF2pverr6bovjxPPUWNSpWIjYtjWcKhXylVOG9e5owZQ79OnfBIaIdgtVr5atky2rzzDtv37UvdQ4iIiIiIpFBairFtgH9M0xxumual20HTNM+ZprkQqAc0A96xU44iIiIi8pi63TcWoHWjRuTPlSvF97Zt0gSA7379lfj4+FSt6+zszGstWvDdlClUKVvWFg87e5bOQ4cyevp0Im7eTNWcIiIiIiLJSUsxtjDw9x3vTcDV9sY0jwE/A288UGYiIiIi8th7Knt2ADJ5etKtbdtU3VujYkVyBwRwOjycv3fsSNP6eZ56is9HjeL9nj3x9vKyxb9duZLWb7/N+u3b0zSviIiIiEhS0lKMjQOi73h/g1vtCu50Eki+2ZeIiIiIPNEqlykDQM/27cnq65uqe52dnWnTuDEAIfPmERcXl6YcDMOgVcOGLAkO5pnKlW3xcxcv0uuDDxg2aRJXU9iXVkRERETkfgzTNFN3g2HsA3aYpvlqwvstgLtpmuXvGPMrUMo0zbz2TNZRAgMDzW3btjk6DREREZHHUlRMDJ7u7mm692ZUFG3feYdT4eF0bt06xT1n78U0TX5dv55xX3yR6GCwrD4+DOrWjYZBQRiG8UBriIiIiMjjxzCM7aZpBiY3Li07Y/8Ggu54vwwoaxjGTMMwnjMM42OgAfBnGuYWERERkSdMWguxAF6ennzQpw+GYTB76VJ2HTz4QLkYhkHjWrVYEhxM41q1bPHL164x4OOP6TduHBcuX36gNURERETkyZWWYux8INQwjAIJ7ycBW4GOwI9AP+AoMMgO+YmIiIiI3FfFUqV4vWVLrFYrwyZP5kZk5APPmdXHh7H9+jF5yBCyZ81qi6/etIlWvXuz7I8/SO0nzEREREREUt2mIMlJDMMFeB4oApwAfjJN87E5flZtCkREREQytti4ONr378/hkycpki8fU4YNI1eOHHaZ+0ZkJBPnzGHp778nilevUIFhb71F7oAAu6wjIiIiIo+ulLYpsEsx9nGnYqyIiIhIxnc6PJzeH3zAsVOn8Pf1ZdKQIZQtVsxu82/ZvZtRU6dyKjzcFvP08ODtV1/lpaZNcXJKy4fORERERORxoGKsHakYKyIiIvJouB4RwXvjx7N5924yZ8rEz59/ThZvb7vNHxUdzdT58/nmp58StSmoULIkI3r1okDu3HZbS0REREQeHXYrxhqG0SGtSZimOTet92YkKsaKiIiIPDriLBbeHD6c7fv20bNdO7q2bWv3NXaHhjIiJIRjYWG2mJurK91feokOLVvi6uJi9zVFREREJOOyZzHWCqR2+6wBmKZpOqfyvgxJxVgRERGRR8uW3bvp9v77+GXJwoovvsDT3d3ua8TGxfHlt98ya8kSLPHxtniJQoUY0asXJQoVsvuaIiIiIpIx2bMY+3pakzBN86u03puRqBgrIiIi8mgxTZPXBgxg7+HDDOjShXbNmqXbWqHHjzMyJIT9R4/aYi7OzrzRqhVd27TB3c0t3dYWERERkYxBPWPtSMVYERERkUfP6k2b6Dt2LE9ly8ZP06bh6uqabmtZ4uP5+ocfmL5wITGxsbZ4wTx5GN6rFxVKlEi3tUVERETE8VSMtSMVY0VEREQePVarldZ9+nAsLIx2zZrRrE4dArJl469t21izeTOZvLwY0asXbnYs0p48fZqRU6fyz/79tphhGLz83HP0bt8eL09Pu60lIiIiIhmHirF2pGKsiIiIyKPp57VrGTpx4j2vt2ncmKFvvmnXNa1WK9+uXMnkuXO5GR1ti+fKkYP3e/akWvnydl1PRERERBwv3YqxhmEcS+FQ0zTNwqmaPINSMVZERETk0bVqwwbWbdvGjgMHOHv+PJXLlqVy2bJMX7iQ2Lg4RvbuzfP169t93TPnz/PhtGls2LEjUbxl/fr07diRLN7edl9TRERERBwjPYuxJ4CkbvIBfBO+PwPEmaZZMFWTZ1AqxoqIiIg8HkzTxDAMAJatWsWIkBDc3dz4auxYShQqZBu3etMmjoaF0bpRI/yyZHmg9Zb/+Scfz5zJ9YgIWzy7nx9D3nyTulWrpv1hRERERCTDcEibAsMwigBTgExAI9M0o5O55ZGgYqyIiIjI42nU1Kks/f13cgcEMH/CBHwyZ2bHgQN0GTqUeKsVLw8PXn3+ecoWLcqla9eIvHmTvDlzUix/fgKyZbMVdv9rwqxZ/LRmDRVLlqRahQpcvHKFpb/9xuVr1xKNc3F2xsPdHU93d7w8PfHOlImq5crxfL165M+d+2H8E4iIiIiIHTisZ6xhGB7AXuBb0zQH23VyB1ExVkREROTxFBMbS8chQ9h/5Ag1KlXiw3fe4ZW+fTl38SJ5c+Yk7OzZe96bL1cu5o0ff1e7gXMXLvBc9+7EW60PlFtgmTKM7N2b3AEBDzSPiIiIiKQ/hx7gZRjGNKCJaZoF7D65A6gYKyIiIvL4OnP+PO369ePqjRvk8Pfn/KVLlC1WjFkffcTeQ4f4+scfiYqOxt/XF08PD06cPs2Bo0eJuHmTfp068VqLFonmmzx3LrOXLqVOlSrUqVKFzbt34+HmRtXy5QksUwaraTL5q6/4ee3aRPc9Xbo0LzZqxKadO/nt77+Jjokhu58f00aMoEj+/A/zn0REREREUsnRxdhgoKtpmh52n9wBVIwVERERebxt3LmTHiNHYpom3l5eLJo48b47Utds3sy7Y8aQL1culoWE4OTkBEBUdDSNunThekQEc8eNo1zx4vecY8OOHXzw2WecvXDBFsvk6cm7b7xBg+rV6TduHNv37SOLtzfBw4ZRvkQJ+z2wiIiIiNhVSouxTumwcDbgBSDM3nOLiIiIiKSH6hUq8F7nzmT18WHU228n2xqgVmAgT2XLxr9nzrBlzx5b/Oe1a7keEUHZYsXuW4gFCKpYke+mTOHlpk1tscioKD6cNo3+48czuHt36lSpwvWICHqOGsXFK1eSnCcqJoY/t2xhyMSJ1O3QgUlffZWKJxcRERGRhynVO2MNw3j/HpdcgLzA84APMNg0zfEPll7GoJ2xIiIiIk8G0zTveSjXf32xeDFT58+nXrVqfDpoEKZp8mLv3hw7dYoxffvSpHbtFK+7Y/9+RoSEcPLMGVvM3c2NN19+mS27d7Nx506ee+YZRr/7LgC7Dh5k5nffcTQsjDPnz/Pfn+lnf/QRFUuVSvH6IiIiIvJg0q1NgWEYyZ1EcB2YbJrm8FRNnIGpGCsiIiIi/3XxyhUad+mC1TT5PiSElX/9xbQFC8ieNSsrZszA1cUlVfNFx8QwY/Fivvr++0SHfxXNn58Tp08TZ7Ewc/RoXF1c6D58OFHR0QC4ODtTrEABGgQFcf7SJRauWEHhfPlY+MknuLq62vWZRURERCRp6VmMfeYel6zAFeCgaZqWVE2awakYKyIiIiJJGThhAr+uX4+LszOW+PhbsS5deKVZszTPuf/IEUaEhHDoxAlbzMnJCavVSt6cObl6/To3IiNpUrs2Xdu0IW/OnLbCb3RMDG369CHs3Dn6dOhAx1atHuj5RERERCRlHHqA1+NGxVgRERERScr2ffvoPHQoACULFeKtdu2o9fTTKW51cC9xFgtzli5lxuLFxFnu3udQp0oVJgwciIuz813XNuzYQY+RI/Fwc2NJcHCy/W9FRERE5ME57AAvEREREZEnxdOlSzOuf3+mDB3K/E8+oXZg4AMXYgFcXVzo2rYtCydOTPIgsNwBAUkWaeHWwWCNa9UiOjaWaQsXPnAuIiIiImI/ad4ZaxhGTaAjUJFbB3ZdA/4B5pimud5uGWYA2hkrIiIiIo4SHx/PwhUrCJ43j+iYGFs8b86cDO/Zk8AyZe6653R4OM/36IHVNFkaHEyB3LkfZsoiIiIiT5x03RlrGEYwsJZbxdgKQMGEr52AtYZhTEnLvCIiIiIikpizszPtmzfnu8mTqVqunC0edvYsXYYNY/T06UTcvJnontwBAbSoVw+r1crnixY97JRFRERE5B5SXYw1DKM30BM4zq1ibEHAM+Frp4R4T8MwetoxTxERERGRJ1qep55i+siRvN+zJ95eXrb4tytX8mLv3vz1n09ydWnTBhcXF1b+9RfHwsIedroiIiIikoS07Ix9EzgDBJqm+ZVpmidN04xJ+DoHqAKcA3rYMU8RERERkSeeYRi0atiQJcHB1KlSxRYPv3SJ3h9+yNCJE7l6/ToAuXLk4IUGDTBNU7tjRURERDKItBRjCwFLTNO8mtRF0zQvA0sSxomIiIiIiJ0F+PszcfBgxvbrh1+WLLb4z2vX8kLv3vy6fj2madKldWtcXVz4df161m/f7sCMRURERATSVoy9BMQmMyYWuJiGuUVEREREJAUMw6BxrVosDQmhSe3atviVa9cYOGECfceOxXByottLLwEwZOJEToeHOypdERERESFtxdhlQAvDMFyTumgYhhvQImGciIiIiIikI78sWRjTty9Thg4lh7+/Lb5m82Za9eqFv48PNZ9+musREbw3fjwxscntqxARERGR9GKYppm6GwwjC7AKiAIGAxtN0zQNwzCAIGAM4A40ME3zhp3zdYjAwEBz238ORBARERERyWhuREYy6auvWPLbb4nilUqV4nR4OOGXLuHt5YWTkxPubm50bNWKV557jls/youIiIhIWhmGsd00zcBkx6WhGHsMcANyJoQs3GpJkA1wSYid5e5WBqZpmoVTtVgGoWKsiIiIiDxKtu7Zw6ipUwk7d84Wc3N1xdnZmajo6ERj61SpwohevfC9o/esiIiIiKROSouxaWlT4ATEAf8mvM5wq/B65o5YHGD855WWtUREREREJJUqly3L4smT6dCyJU5Ot34Mj42LIyo6mhKFCjFnzBg+HjCAzJky8eeWLbzcty+HT5xwbNIiIiIiT4BU74x9EmlnrIiIiIg8qvYePszIkBAOnzxpi7m4uNDpxRd5rnZt/jdlCrtDQ/H28mLSkCEElilDVHQ0J8+coUDu3Hi4uzswexEREZFHQ7q1KXgSqRgrIiIiIo+yuLg45nz/PTMWLybOYrHFC+XNy5Du3Vn488+s2rgRVxcXShYuzP6jR7FYLHi4uxNUsSLP1qjBszVq2HbZmqbJ+UuXyOHvr36zIiIiIjzEYmzCgV4+wDXTNK8/0GQZlIqxIiIiIvI4OBoWxsiQEHaHhtpihmHwctOmxMTFsTTh4C8nJydyZs/O6fBw27jyJUrwv7feIjo2lolz5rB93z56tW9PlzZtHvpziIiIiGQ06VqMNQzDGXgP6AIUvOPSceBLYIJpmpak7n0UqRgrIiIiIo+L+Ph4Fv/yC1PmzUt0mFeuHDloUa8eJQoVolKpUmTx9ubchQus2byZWUuWcOHKFZydnIi3Wm33+Pv6svLLL3F1cUlqKREREZEnRrod4GUYhhvwOzAaKACEAVsSvhZIiK9KGCciIiIiIhmIs7MzrzRrxneTJ1O9QgVb/Mz580xfuJA1mzfbYk9lz84rzZqxNCSENo0bE2+14ubqSsdWrcifKxeXrl5lwz//OOIxRERERB5Jqd4ZaxjGIOAjYDnQzzTNw3dcKwx8dVmCPQAAIABJREFUAjQHhpqmOdaOuTqMdsaKiIiIyOPINE2W//knH8+cyfWICFvc39eXwd260SAoKNH446dOkcnLixxZszJ76VImz51LvWrV+HTQoIeduoiIiEiGkm5tCgzD2J3wbQXTNK1JXHcCdibMXTZVk2dQKsaKiIiIyOPs0tWrjJ0xg983bEgUr1+tGoO6dSN71qx33XPh8mUad+mCYRj8NnMmWX19H1a6IiIiIhlOurUpAIoAvyRViAVIiP8CFE7D3CIiIiIi8pD5+/ry8YABfDpoENn9/GzxPzZtolXv3ixbtYr/buLInjUrNZ9+Gkt8PD+vXfuwUxYRERF5JKWlGBsLeCczJhMQl4a5RURERETEQepVq8aS4GBeaNjQFrsRGcmIkBDeHDGCU+fOJRr/fP36AHyfRLFWRERERO6WlmLsbqC1YRjZk7poGEY2oDWw60ESExERERGRhy+LtzfDe/ZkxqhR5AkIsMU379pF6z59+PrHH4mPjwegVmAgWX18OBYWxvZ9+xyVsoiIiMgjIy3F2BAgO7DFMIzOhmEUMgzD0zCMgoZhdAQ2J1wPsWeiIiIiIiLy8FQpV45vp0yhw/PP4+R069eG6JgYPpk1izcGD+bIyZO4urjQpnFjAKZ8/bV2x4qIiIgkI9XFWNM0FwNjgfzADOAwEAEcAb4ECgIfJ4wTEREREZFHlKe7O307dmTuuHEUzZ/fFt9z6BAv9+vHtAULeKVZM7L6+LA7NJQ/Nm50YLYiIiIiGZ+R1r9eG4ZRDegMVAR8gGvADmCWaZqP1U9hgYGB5rZt2xydhoiIiIiIw8TFxTF76VJmfPstFovFFi+cLx81KlVi7rJl5MuViyVTpuDq4uLATEVEREQePsMwtpumGZjsOH2UKHkqxoqIiIiI3HI0LIyRISHsDg21xQzDwNvLixuRkQzu1o2XmjZ1YIYiIiIiD19Ki7GpalNgGEY+wzBeNAyjlWEYedOenoiIiIiIPIoK583L7I8+YkCXLni4uwNgmiY3IiMBCJ43j6vXrzsyRREREZEMK8XFWMMwJgDHgMXAt8BxwzA+Tq/EREREREQkY3J2dqZds2YsmTKF6hUqJLoWcfMmHQYO5HpEhIOyExEREcm4UlSMNQyjHdAXMICDQGjC930Nw3gl/dITEREREZGMKndAAJ8NH86ot98mi7e3Lf7v2bM0f/NNHeglIiIi8h8p3RnbGbAADUzTLG2aZimgEWBNuCYiIiIiIk8gwzBoUa8eS4ODaRgUZItfi4ig37hx9B83jotXrjgwQxEREZGMI6XF2HLAMtM019wOmKa5CvgBqHDPu0RERERE5ImQzc+PjwcMYHz//jg7/f+vGas2bqTFW28xf/lyrFarAzMUERERcbyUFmP9uNWa4L8OAr72S0dERERERB5lz9asydT338fV1dUWuxkdzfgvv6Ry69Z0HjqUzbt2YZqmA7MUERERcYyUFmOdgLgk4nHc6h0rIiIiIiICQLUKFfh7/nz6dOiAt5eXLR5vtbJ93z66Dx9Ou/79+XH1aiKjohyYqYiIiMjDldJiLID+dC0iIiIiIini5upKx1at+H3WLF5r0QInp8S/ehw4epT3p0yh/uuvM2TiRHbs36/dsiIiIvLYM1LyA49hGFZSX4w1TdN0SVNWGUxgYKC5bds2R6chIiIiIvLI2nPoECNDQjjy77+2mEHiXzKKFyzIszVq4Ofjg2/mzFQuW5bMmTIlO/epc+c4c/48Fy5fJpufH1XKlcMwbn2ALzIqijWbNlG2WDHy585tuyc+Ph5nZ+dE81y4fJmjYWFUKVvWVjw+eOwY85cv5+WmTSlVpEiyuZimyZbdu1m4YgXRMTE0qlmTBkFBth3CVquVS1evcu7iRbL6+JA7ICDZOUVERCTjMwxju2magcmOS0UxNtVM00zNztsMS8VYEREREZEHFxcXx6ylS/ni22+xWCy2uF+WLFji47kRGZlofIPq1ZkwcOB95wyeN4+Z332XKPZKs2b079iRS9eu0fuDDwg9fhyAkoUKUaJwYUKPHePQyZPkz5WLvm+8QVDFiqxYu5YxM2YQcfMmZYoW5b3OndkdGsrkr7/GYrFQqkgR5k+YcN9nW7l+PV//8AOHTpxIdM3dzY0s3t5Ex8RwMyqK+ISDzDw9PFg+fTr+vjqGQ0RE5FFn12Lsk07FWBERERER+zny77+MmjqV3aH/f0awk2FQvUIF8ubMSURUFMvXrMHby4t18+bd1eLgth/++IPhwcG4ODtTvkQJ/Hx8WLtlC3EWC7UDAzl88iRnL1wgh78/N6OiiLh5M8l5CubJw/FTp4BbBdKo6OhE111cXLBYLCz45BNKFi6c6FpMbCzzly9n/vLlXLh8GQB/X19ebtqUbH5+LP/zT7bv25foHr8sWbCaJtdu3KBfp0681qJF6v4BRUREJMNRMdaOVIwVEREREbGv+Ph4Fq5YQfC8eUTHxNjiuQMCeL9HD0aEhHD2wgW+nTSJogUKABB+8SLHTp0iX86chF+8SPfhw4mzWBj21lu0btQIgK179vDumDG2wmu54sWZPHQoXh4e/P3PP5w5f57iBQtSJH9+fvjjD2YsWsTN6Gi8PDwY0LUrzwYFMXPJEuYuW4aXpycjevVi6549zF++nNaNGjHsrbdsue47coT/TZrEsYRCbpF8+Xj1+edpWrs2bq6utnGXr14lzmLBw90dLw8PXF1d+WPjRvqNG0fR/PlZPGmSra2CiIiIPJpUjLUjFWNFRERERNLH6fBwPvjsMzbt2pUonicggFPh4Qzp3p22TZpgtVp5vkcPws6dSzTuleeeY2DXroliR06eZOikSRTNn5+hb72Fp7v7Pde/cPkyv/39N3WqVEnUv/XytWu4ubri7eXF0bAwXuzdGy8PD36fPRsvDw++WLyYzxctIt5qpUDu3LzXuTNBFSumuKgaFxdHw06duHrjBgs//ZQShQql6D4RERHJmFJajH0sDtgSEREREZFHU+6AAKaNGMGPq1czYdYsW9/YU+HhAKxcv562TZqw/+hRws6dw8PdncxeXly4coVagYH069TprjmL5M/PookTU7R+9qxZad+8+V3xrD4+tu8L581LxZIl2XHgAL+sW0fo8eN8u3IlhmHwaosW9GrfHo/7FHyT4urqSpPatVnw88/8uHq1irEiIiJPCO2MTQHtjBURERERSX8Xr1xh7BdfsGrDhkTxBkFBZM+alQXLl/Ny06YM6taNqJgYPNzcHtrH+3/+80+GTpqEq4sLcRYLbq6uTBgwgNqVK6d5zv1HjtCuf3/8smTht5kzcb2jtYGIiIg8WlK6MzbpTvgiIiIiIiIPWTY/PyYMGMAnAwfi7+tri6/asIFFK1YAUKdKFQA83d0fap/V+tWrk8Xb29b7NXjYsAcqxAKULFyYIvnyceX6ddb/84+dMhUREZGMTMVYERERERHJUOpXr873ISHk8Pe3xaxWKwCzly7ldEILg4fJw92d7i+9RP5cuZg2fDhVy5d/4DkNw6BFvXoA/LRmzQPPJyIiIhmfirEiIiIiIpLhZPH2pvWzzwIk2gG7efduWvfpwzc//UR8fPxDzal98+b88NlnVCxVym5zNqpVC4ANO3YQHRNjt3lFREQkY1IxVkREREREMqTbRc/b51zcLspGRUfz8cyZdBwyhKNhYQ7Lzx4C/P0pWagQ0TExbNu719HpiIiISDpTMVZERERERDKkMkWL4ux061cWN1dXZowaReF8+WzXd4eG8vK77/L5okXExcU5Ks0HViuh9+w6HRosIiLy2FMxVkREREREMiRPDw+KFyoEQLXy5alctiwLP/mEN19+GRcXFwDiLBamLVjAK/36sffwYUemm2a1A28dvPzXtm22XcAiIiLyeFIxVkREREREMqw6CbtGn6tTBwBXV1fefPllFn76KWWLFbONO/Lvv3QYOJBPZ88m6hHrvVqqcGH8fX05e+ECR06edHQ6IiIiko5UjBURERERkQyr44sv8n1ICI1q1kwUL5IvH3PGjKF/p054uLsDYLVamfvDD7R5+2227N7tiHTTxMnJiVpPPw2oVYGIiMjjTsVYERERERHJsFxdXCiYJ0+S15ydnXm1RQuWTJlC1fLlbfFT4eF0e/99Rk6dyvWIiIeV6gOprb6xIiIiTwRDPYmSFxgYaG7TD0UiIiIiIhmWaZr8sHo1n8yaxY3ISFs8u58fg7t3p161ag7MLnmRUVHUee01LPHx9H3jDTbs2AHAuP79yeLt7eDsREREJDmGYWw3TTMw2XEqxiZPxVgRERERkUfDhcuXGffFF6zauDFRvGFQEIO6dcPf19dBmSXvrREj2LhzZ6LYM5UrM3HwYJyc9KFGERGRjCylxVj9H11ERERERB4b2bNmZcLAgUwYMCBR4fX3DRt4oVcvflqzhoy6IaV98+bkzJ6detWqMaR7d7J4e7N261ZmL13q6NRERETETrQzNgW0M1ZERERE5NFzPSKCT2fPZtkffySKV69QgWFvvUXugAAHZZYyf23bRu8PP8TJyYnPhg+n2h19cUVERCRjUZsCO1IxVkRERETk0bVp1y5GTZ3KmfPnbTFPDw96v/oqLzVpgrOzswOzu7/P5s9nxuLFFCtQgMWTJqXq3sioKI6FhXH033+Jt1rJ7udHDn9/iubPn6GfWURE5FGkYqwdqRgrIiIiIvJoi4qOJuSbb5i/fHmiNgXlihdneK9eFM6b14HZ3VtMbCw1XnkFq2my/ptv8PL0BGD+8uVs3rWLsf364enhkeieXQcPMm3BAjbt2pXknLkDAmjfvDlNa9fm2o0bnAoP53R4OKfCwzl34QLOzs5k8vS0vbw8PcmeNSuF8uQhf+7cuLm6puoZwi9dwmKxZPidyCIiIg9CxVg7UjFWREREROTxsDs0lBEhIRwLC7PFXFxc6NK6NZ1ffBHXVBYaH4ZX+vblwLFjzBw9mqdLl8Y0Tep26MDVGzf4sE8fmtWtC8C1GzcYOmkS67dvB8DVxYWCefJQKG9e3N3cuHD5MsfCwjh38WKac3F2cuLp0qVpWqcODapXx9vLK8lxF69cYdGKFazbto3Q48dxcXZm9Lvv0qhmzSTHm6bJ7tBQ1mzeTNECBXjumWfSnKOIiIgjpLQY6/IwkhEREREREckIyhUvzsJPP2XWkiV8+d13WCwWLBYL0xcu5PcNGxjesyflihd3dJqJlCpShAPHjrH/yBGeLl2aE6dPc/XGDQBWbdxoK8Z+8e23rN++HS8PD9o1b85rLVrgkzlzorni4+NZu3Ur8378kd2HDhHg70/uHDnI/dRT5AkIIGf27JimSWRUlO0VERnJuYsXOXbqFKfOnWPLnj1s2bOHsTNm8O7rr9O2SRMMwwBuFVVXrFvHuC++4HpEBABurq7ExsUx+NNPiYqJoWX9+gBcuHyZf/bvZ9vevazfvp2zFy7Y8tx3+DB9O3bE5T7tFKxWK05OOpNaREQeLdoZmwLaGSsiIiIi8vg58u+/jJo6ld2hobaYYRi8/Nxz9G7f3tYSwNGW/v47o6ZOpXGtWozt18/2HsDdzY01X32Fq4sLz3buzJXr1/l6/HjKFiuW7LymadqKqCl1PSKCPzZuZPmff7J93z4AGgYF8dYrr7DvyBF+Xb/etjM3qGJFXm3RgqdLl2buDz8w9ZtvAChesCBnzp/nRmRkorlz+PtTpVw5Vv71FxaLhRqVKtH71Vcpkj//XUXZtVu2MGTiROpWrcrg7t3JlEH+W4mIyJNLbQrsSMVYEREREZHHU3x8PIt++YXgefOIio62xXNmz87/evQgqGJFB2Z3S+jx47z07rvkfeopfpo+nf9NnsxPa9bYro/r3x8XZ2f6jRtHkXz5+Hby5FQXWdPi1/XrGTV1KpFRUYnimTw96d+pEy0bNEiUx7wff2TCrFmJxpUrXpxKpUtTpWxZyhYrhpOTE//s20ffsWNtu389PTyoXKYMQ998k4Bs2Thz/jwvvfuurZibN2dOxvfvT8nChe32bCdOn2bopEk0qlGDDi1b2m1eERF5fKkYa0cqxoqIiIiIPN7OnD/P6OnT+fuffxLFm9WpQ79OnfDLksVBmYElPp4ar7xCTGws6+bNo33//oSdO0eT2rX5Zd06nq1Rg+iYGNZt20a/Tp14rUWLh5bbyTNnGB4czPFTp6hQogSBZcrwbM2aBPj7Jzn++KlTXIuIIN9TT+Hn43PPovHp8HCmL1zIjv37ORUeDtzaOTtl6FA++vxzdoeGUrV8ea5cu8ahEydwdXFhztixlC5S5IGf6cz583QcPJjwS5fI5OnJqtmz7zokTURE5L9UjLUjFWNFRERERB5/pmmyYu1aPp4507YrE8DPx4cBnTvTuFath7LjNCkdBg5kd2goH/bpw7DJk/Hy8GDhxIm0eOstPNzdiY2Lw8kw+G3WLLL6+Dgkx/QSfvEigz75hB0HDuDk5ITVaiWHvz+LJ07Ew92dkVOn8su6dZQrXpw5Y8akqI9sbFwcny9aRKnChalfvbotfvHKFToOGULY2bO22Ad9+tA8oS+viIjIvaS0GKtu5yIiIiIiItzqF/tcnTosDQmhSe3atviVa9cY/OmnvD16NOfuOGTqYSpdtCgA3/z0EwBlixcnX86clCxUiOiYGKxWK7UrV37sCrEAAdmyMX3kSJ6tUcN2aNfYvn3xzZIFD3d3hr75Jv6+vuwODWXF2rXArZ21I0NC2HnwYJJzLv/zT2Z+9x39xo1j8Kefcv7yZRYsX35r1/HZs5QoVIi+b7wBwLJVqx7Wo4qIyBPAxdEJiIiIiIiIZCRZfXwY07cvTWrX5qPp0zl38SIAf23bRqu9e3m7QwfaNm6coh2Y9lIm4eP3B44dA6BiyZIA1K9e3RZrWb/+Q8vnYXN3c2Nsv35ULV+e7H5+VCpd2nbN28uLt197jeHBwUyeOxc/Hx+GTZrElevXOR0ezowPPrhrvnVbt9q+/2XdOn5Zt872vkShQnw2fDhurq58tmAB2/ft4+SZM+TPlSt9H1JERJ4I2hkrIiIiIiKShNqBgSwJDualpk1t7QluRkczdsYMOg0dyvFTpx5aLqX+0wv1djG2YY0aODk5kcPfn6BKlR5aPo7g5OTEi88+S+3Kle+61rxuXcoULcqFK1foOWoUV65fB2BXaCgxsbGJxkbHxLBp504AvvjgA8ok7DouXbQonw4axPwJE8jq44O3lxcNg4IA+HH16vR8NBEReYKoGCsiIiIiInIPmTw9GdytG7M++oiCefLY4jsPHKDtO+/wxeLFxMXFpXse+XPlwtvLCwBnJyfKFitmi88cPZovRo3Cxdk53fPIqJycnBjYtavtfbtmzSicLx8xsbHsDg1NNHbLnj1Ex8ZSslAhKpcty1djx/LTtGnMGz+eetWqJdrx/EKDBsCtYmx8fPzDeRgREXmsqRgrIiIiIiKSjIolS7Jo4kS6tW1rK3rGWSxMnT+fdv37s+fQoXRd38nJiZKFCwNQvFAhvDw9E+WWP3fudF3/UVC2WDGmDB3KlGHDGNClC1XLlQNg6969icbdblFwe4ets7MzeXPmTPJwtoqlSpE3Z04uXL7Mhh070vkJRETkSaBirIiIiIiISAq4ubrSo107Fnzyie2j7QCHT57k9UGDmDBrFlHR0em2/u3dsJVKlUq3NR51tStXpnbgrYOsK5ctC8C2PXts103TZN22bQA8k0S7g/8yDIMWdesCsGrjRnunKyIiTyAVY0VERERERFKhaIECfDV2LP07dcLD3R0Aq9XKvB9/5MW332ZjQj9Se3u9ZUu6tW1L59at02X+x83TpUtjGAa7Dx0iKiYGgIPHjnH+0iWyZ81q22mcnHrVqwOwdssWLGpVICIiD0jFWBERERERkVRydnbm1RYtWDJlCtXKl7fFz5w/z1sjRvC/yZO5duOGXdf0yZyZHu3a4Zcli13nfVxl8famRMGCWCwWdh44AMDa2y0KAgOTbEuQlEJ58pA3Z06u3rjBroMHbfHrEREqzoqISKqpGCsiIiIiIpJGuQMCmDZiBB/06YNP5sy2+E9r1vBCr178un49pmk6MMMnW+XbfWP37CE+Pp7VmzYBKWtRcJthGNStWhWANZs3A3Dk339p0rUrLXv0SPd+wSIi8nhRMVZEREREROQBGIZB87p1WRocTKOaNW3xy9euMXDCBN756CPCL150YIZPrsplygCwadcuhkycyKETJ8ji7U2VhCJtSt1ZjDVNk4lz5hAZFcWp8HA6Dh7M7KVLsVqtds9fREQePyrGioiIiIiI2IG/ry/j+vdn8pAh5PD3t8XXbt1Kq969+XblShXsHrJKpUvj7OTE/iNH+HX9ejJ5ejJ5yBBbr9+UKlesGFl9fDgdHs68H3/k73/+IZOnJ20aN8YSH8/kuXN5PziYeLUtEBGRZKgYKyIiIiIiYkfPVKnCkilTaNO4sS0WGRXF6OnT6fq//3Hi9GkHZvdkyeTpSakiRYBbPWQ/HzWKiqVKpXoeZ2dnnqlSBYBP58wBoGOrVgx9802mDB2Kp4cHy9esYeTUqSrIiojIfakYKyIiIiIiYmeZM2Vi6JtvMmv0aPLnymWLb9+3j7bvvMOX335LnMXiwAyfHJ1efJGq5cvz5YcfUqZo0TTPc7tVgWma5PD3p32LFgDUrlyZ4GHD8HB358fVqxkeEkJkVJRdchcRkcePoWbyyQsMDDS3bdvm6DREREREROQRFBMbyxfffsucpUux3LFrsliBAgzv1YvSCTs3JWOLiY2lTocOREVHM+rtt2lRr16i61v37KH3Bx8QHRuLn48PXVq3pnLZsly6epWo6GiqlCuHt5eXg7IXEZH0ZhjGdtM0A5Mdp2Js8lSMFRERERGRBxV6/Dgjp05l/5EjtpiTkxOvNm/OW+3a4ZnKPqby8P26fj3HT52ia5s2ODs733V9z6FDfDxzJrtDQ++6ls3Pj34dO9K4Vi0Mw3gY6YqIyEOkYqwdqRgrIiIiIiL2YImPZ/5PP/HZ/PlEx8ba4nkCAvhfjx5ULV/egdmJPZimybqtW5m1dCk3IiPJ5uvLtYgIQo8fB6BGpUpMGjIEVxcXB2cqIiL2pGKsHakYKyIiIiIi9hR29iwfTpvG5t27E8Vb1q9P344dyeLt7aDMJD1YrVZ++OMPJn71FdcjIpgydCi1K1d2dFoiImJHKS3G6gAvERERERGRhyxvzpxMHzmSEb17kzlTJlt82R9/8EKvXvy+YQPaOPP4cHJy4oWGDWnZoAEA++5oVSEiIk8WFWNFREREREQcwDAMWtavz/chITQMCrLFL129ynvjx9N37FjOX77swAzF3m4f1rb/6FEHZyIiIo6iYqyIiIiIiIgDZfPz4+MBA5g4eDDZs2a1xdds3kyrXr347tdfsVqtDsxQ7KVU4cIA7D9yRDufRUSeUCrG/h979x0dRdnFcfw72XQgDULohBpApXcVBEVFRaogUqSKSAlNwFe60ouQgCBFmihIRwEpAtKkiSAqvYUaOimQvu8fZFdCAoSQZAP8PufkSO7MM3N3UWFv7txHREREREQkA6hRqRKLAwJo+Prr1ljYrVt8OXkyHw0YwOnz522YnaSGPDly4JY5M1dv3CD4yhVbpyMiIjagYqyIiIiIiEgG4ZY5M/0/+YTpX35Jvly5rPE9f/9N427dmLlkCdExMTbMUB6HYRj/dcdqVIGIyDNJxVgREREREZEMpvzzz/PjV1/RpmFDTHZ3PrZFRkUxYc4cWvTuzUEV8p5YJeLnxmoTLxGRZ5OKsSIiIiIiIhmQs5MTXVu0YN6YMRQvWNAaP3TiBM0//ZTxs2cTERlpwwwlJaybeKkYKyLyTFIxVkREREREJAMrVrAgc0ePxr9lS5wcHQGIjYtj1tKlvNetG7sPHLBxhvIoLJ2x/x4/rk28RESeQSrGioiIiIiIZHD2JhOtGzRg4YQJVHjhBWv8zIULtO/fn8GTJhESFmbDDCW5cmTLhqe7OzdDQzl/6ZKt0xERkXSmYqyIiIiIiMgTIl/OnEwdMoQBnTqR2dXVGl+6bh0Nu3Rhw44dNsxOkuPuTbw0N1ZE5NmjYqyIiIiIiMgTxDAMGtSqxdKJE3m1cmVr/PL16/QYMYJeI0dy5fp1G2YoD/NckSKA5saKiDyLVIwVERERERF5Anl7eTG2b1/G9ulDNk9Pa3z9779Tv3Nnlq5bp5mkGdRz8Z2xKsaKiDx7VIwVERERERF5gr1apQpLAgOpX6uWNRYaHs7gSZPoMGAAZy5csGF2khTLJl4Hjh4lMirKxtmIiEh6UjFWRERERETkCeeWOTMDO3Vi6pAh5M2RwxrfdeAA7/n7M2vpUmJiY22YodzN28sLvwIFuB0Rwa6//rJ1OiIiko5UjBUREREREXlKVCxZkh8nTKBV/fqY7O583IuIimL87Nm07N2bQydO2DhDsahRqRIAG3futHEmIiKSnmxejDUMI69hGIsMw7hpGEaIYRhLDMPIl8y1BeLX3jAMI9wwjI2GYZR/yJqmhmGYDcM4mzqvQEREREREJONwcXKi24cf8t3o0fgVKGCN/3v8OM169SJg7lw9Gp8B1IzffG3Trl3EqmtZROSZYdNirGEYrsAGoBjwIdACKAJsNAwj00PWZgW2As8DHYD34w9tNAyj+H3WeABfARdT5QWIiIiIiIhkUMULFeK70aPp2qIFjg4OAMTGxfHt4sU07taNP/75x8YZPtuK5M9Pbh8frt28yYGjR22djoiIpBNbd8a2BwoC9cxm8zKz2bwceBfIz50C64N0BHyAd8xm8wKz2fwT8A5wCxh8nzWjgP3AmtRIXkREREREJCNzsLenTcOGLBw/nnLPPWeNnz5/nraff86XkycTGh5uwwyfXYZh/DeqYMcOG2cjIiLpxdbF2HeBHWaz+ZglYDabTwLbgLoPWVv+7OOrAAAgAElEQVQZOHrP2nBgC/COYRj2d59sGMaLQHOgUyrlLiIiIiIi8kTInzs30774gn4dO5LZ1dUaX7RmDQ26dNHcUhuxFGM37NyJ2Wy2cTYiIpIebF2MfQ74O4n4P0CJh6yNBZIadBQJuACFLAHDMByAqcDou4u3IiIiIiIizwo7OzsavfEGiwMDeaViRWv88rVrdB8+nE9HjeLqjRs2zPDZU7pYMTzd3Dhz4QLHz5yxdToiIpIObF2M9QKuJxG/Bng+ZO1hoEj87FgADMOwAyx/q/C669w+gBMwPLmJGYbxkWEYewzD2HP58uXkLhMREREREcnQfLJm5avPPmN07954ubtb4+u2b6d+584s//VXdWmmE5PJRPUKFQDUnSwi8oywdTEWIKk/5Y1krJvCnfznGIZRyDCMnEAAYNkuNA7AMIzCwOdAZ7PZHJHspMzmqWazubzZbC7v7e2d3GUiIiIiIiIZnmEY1KpalaUTJ1L31Vet8ZCwMAYGBvLxoEGcvah9j9ND1bJlAdh38KCNMxERkfRg62LsdRJ2sFp4knTHrJXZbD4BNAPKAceA80AV4Kv4Uy7E/zMA2ADsMAzDwzAMD8ARMOK/d3nsVyEiIiIiIvIEcs+ShcFdujBl8GBy+/hY4zv376eRvz9zly8nJjbWhhk+/Z4vUgSAf48dU0eyiMgzwNbF2H+4Mzf2XiWAfx+22Gw2LwZyx59f2Gw2lwMyA2fMZnPQXdd6izvFXctXUyBX/K+TPbpARERERETkaVS5VCkWTZhAy7p1sbO78zExIjKSsTNn0rJPHw6fPGnjDJ9eOb298XRz43pICBc0Ik9E5Kln62LsCqCyYRgFLQHDMHyBF+OPPZTZbI41m80HzWbzccMwcgFNgMl3nfI+UOOerzXAlfhfT3z8lyEiIiIiIvJkc3F2pkfr1swZOZKivr7W+L/HjvFBz54EzJ1LRGSk7RJ8ShmGQYnChYE777WIiDzdbF2MnQacApYbhlHXMIx3geXAGeAby0mGYeQ3DCPGMIwBd8UcDMP4yjCMeoZh1DQMowuwhzvdtmMt55nN5h1ms3nT3V/ARSAy/nv9aSciIiIiIhLv+SJFmDdmDF2aN8fRwQGA2Lg4vl28mPe6dWP3gQM2zvDpU6JQIQD+UTFWROSpZ9NirNlsDgdqAkeAucA84CRQ02w2h911qgGYSJivGSjCnaLtaqAb8C3whtlsjkr77EVERERERJ5ODvb2tG3UiIXjx1Puuf8my525cIH2/fszeNIkQsLCHnAFeRTqjBUReXYYGhD+cOXLlzfv2bPH1mmIiIiIiIiku7i4OJauX89Xs2YRduuWNZ7Vw4O+H33Ea1WqYBiGDTN88gVfvcobbduS2dWVLfPm6f0UEXkCGYbxh9lsLv+w82w9pkBEREREREQyMDs7Oxq+/jpLJ07ktSpVrPGrN27w6ahRdB8+nOCrV22Y4ZMvu5cX2Tw9Cbt1izMXL9o6HRERSUMqxoqIiIiIiMhDeXt5MaZPH8b17Yu3p6c1vmnXLhp26cLCX34hLi7Ohhk+uQzDsM6N1agCEZGnm4qxIiIiIiIikmw1K1dmcWAgjd54wxoLu3WLoVOm0Pbzzzl59qwNs3tyaW6siMizQcVYEREREREReSRumTPTr2NHvh06FN/cua3xPw8epHG3bkxdsIDo6GgbZvjkeS6+GPtPfDH28MmTnD5/3pYpiYhIGtAGXsmgDbxERERERESSFhkVxfSFC5m5ZAkxsbHWeKF8+RjYqRMl/fxsmN2T4+qNG7zaqhWuzs68WLYs67Zvx8XZmbmjRlE4Xz5bpyciIg+hDbxEREREREQkzTk5OtKpWTN+GDuWF4oWtcaPBwXxYd++jJw2jfDbt22Y4ZMhq4cHObJl41ZEBOu2bwfgdkQEPUeMIOzWLRtnJyIiqUXFWBEREREREXlsRXx9mTV8OL3btcPF2RkAs9nMDytX0rBLFzbracOHqlGpEgC1q1Vj+aRJFMmfn9PnzzMgIAA91Soi8nTQmIJk0JgCERERERGR5Dt/6RJDp0xh2969CeJvvvwyvdu2xcvDw0aZZWzRMTHcjojALXNmAIIuXOCDnj0Ju3WLGpUq8cE771D++ecxDMPGmYqIyL2SO6ZAxdhkUDFWRERERETk0ZjNZlZv3szoGTO4HhJijbtnyULP1q2pU6OGiorJsHn3bnqMHElMTAwARX19mTJ4MF7u7jbOTERE7qaZsSIiIiIiImIzhmHwVvXqLJk4kXdeecUavxkayoCAAD4eNIizFy/aLsEnRLUKFfh58mQ+atKEbJ6eHDl1ihUbNtg6LRERSSEVY0VERERERCTNeLq58WW3bnw9cCC5sme3xnfu30+jrl2Zs2wZMbGxNsww48vh7c0nTZvSs3VrAHbs22fjjEREJKVUjBUREREREZE0V7VMGRYHBNDi3Xexs7vzUTQiKopxs2bRsndvDp04YeMMM75KJUsC8OfBg0RGRdk4GxERSQkVY0VERERERCRduDg707NNG+aOGkVRX19r/N/jx2nWqxcT5swhIjLSdglmcF4eHvgVKEBkVBT7Dh60dToiIpICKsaKiIiIiIhIunqucGHmjRlD1xYtcHRwACA2Lo6ZS5bwnr8/u/76y8YZZlyVS5UCYMf+/TbOREREUkLFWBEREREREUl3Dvb2tGnYkIUTJlD++eet8TMXL/LRgAEMCgwkJCzMhhlmTJUsxdgk5sb+e+wYQ6dM0fsmIpKBqRgrIiIiIiIiNpM/Vy6mffEFAzt1IrOrqzW+7Ndfqd+5M2u3bcNsNtsww4ylbIkSODo4cOjkSa6HhFjjN0ND8R82jIW//MKy9ettmKGIiDyIirEiIiIiIiJiU4ZhUL9WLZZOnMhrVata41dv3KD36NF0Hz6c4CtXbJhhxuHs5ESZ4sUxm80JxjkMnzqVy9euAbD3339tlZ6IiDyEirEiIiIiIiKSIXh7eTGmd2/G9e2Lt5eXNb5p1y4adOnCglWriIuLs2GGGUPl0qWB/+bG/rJlC79s2WKdv7vv4EF1E4uIZFAqxoqIiIiIiEiGUrNyZZYEBvLem29aY+G3bzN86lTafP45J86csWF2tmfZxGvVb7/RsGtXBk2cCEDvdu3w9vTkRmgop86ds2WKIiJyHyrGioiIiIiISIaTJVMmPv/4Y74dOpQCefJY4/sOHqRJ9+5MmT+fqOhoG2ZoO34FCuCbOzeRUVEcDwoiIjKSauXL0/D11yldvDgAfx48aOMsRUQkKYYeXXi48uXLm/fs2WPrNERERERERJ5JkVFRzFi0iG+XLCEmJsYaL5g3LwM7daJUsWI2zM42IqOiuHD5MtHR0cTGxVEob14cHBz44eefGTl9Ou/UqMGX/v62TlNE5JlhGMYfZrO5/MPOU2esiIiIiIiIZGhOjo588sEHzB87lheKFrXGT5w5Q6vPPmPE1KmE375twwzTn5OjI765c1PE15diBQviED8vtkyJEgDs0yZeIiIZkoqxIiIiIiIi8kQonD8/s4YPp0+7drg4OwNgNpuZv2oVDTp3ZvPu3TbO0PYK589PJhcXzgYHc+naNVunIyIi91AxVkRERERERJ4YJpOJpu+8w5LAQF4qV84aD756la5Dh9JnzBiu3rhhwwxty95koqSfHwB/qjtWRCTDUTFWREREREREnjg5vb0J7NeP4T164Onubo2v2bqV+p07s/zXX3lW90gpaxlVoE28REQyHBVjRURERERE5IlkGAa1q1VjaWAgdWrUsMZDwsIYGBjIxwMHcubCBRtmaBulixcH4E8VY0VEMhwVY0VEREREROSJ5uHmxhf+/kweNIjcPj7W+M6//uI9f39mLV1KTGysDTNMX88XLYq9ycSRU6cIu3XLGo+Li9McWRERG1MxVkRERERERJ4KVUqXZtGECbSsWxc7uzsfdyOiohg/ezbNP/2Ug8eP2zjD9OHi5ETxQoWIi4vjr8OHrfF5P/3E623asGTdOhtmJyLybFMxVkRERERERJ4aLs7O9Gjdmu9GjcKvQAFr/NCJEzT/9FO+mjWL25GRNswwfZSJnxt79yZea7dtA2D87NlcDwmxSV4iIs86FWNFRERERETkqVOicGG+Gz0a/5YtcXJ0BCA2Lo7Zy5bxXteu7Ny/38YZpq0y98yNDQ0P559jx4A7M3UnzZtns9xERJ5lKsaKiIiIiIjIU8nB3p7WDRqwcMIEKrzwgjV+NjiYDgMHMjAwkJuhoTbMMO2UKlYMgANHjhAdHc3ef/4hLi6OPD4+2JtMLF679pkZ2yAikpGoGCsiIiIiIiJPtXw5czJ1yBAGde5MlkyZrPHlv/5K/c6dWbN1K2az2YYZpj4vd3cK5MlDZFQUB0+cYOdffwHwVvXqNH37bcxmMyOmTSMuLs7GmYqIPFtUjBUREREREZGnnmEY1HvtNZZOnEitqlWt8Ws3b9JnzBi6DRvGxcuXbZhh6it916iC3QcOAFCxZEk6vP8+WT082H/oED/+8ostUxQReeaoGCsiIiIiIiLPjGyenozu3ZuvPvuM7FmzWuO/7d5Ngy5dmL9q1VPTLVo2fhOvX3//naOnT+Ps6EhJPz8yu7ryvw4dgDubeQVduGDLNEVEnikqxoqIiIiIiMgzp0alSiwJDKRx7drW2K2ICEZMnUrr//2P42fO2DC71GHZxOuvw4eBO52yjg4OALxapQq1q1UjIjKSgQEBT00BWkQko1MxVkRERERERJ5Jlg7RmcOGUSBPHmt8/6FDNOnenck//EBUdLQNM3w8uX188Pb0tH5fsWTJBMf7tGtHNk9P/jx4kB9Wrkzv9EREnkkqxoqIiIiIiMgzrUyJEiz46is6NGmCvb09ADExMXyzYAHvd+/OvkOHbJxhyhiGYZ0bC4mLsR5ubvRt3x6ApevWpWtuIiLPKhVjRURERERE5Jnn6OBAx6ZNmT9uHCX9/KzxE2fP0vqzzxg+dSpht27ZMMOUscyNzezqSvGCBRMdtxRoz1+6hNlsTtfcRESeRSrGioiIiIiIiMQrnC8fM4cNo2/79rg6OwNgNptZsGoVDbp04bddu2yc4aOpVqECrs7OvP3KK5hMpkTHs2TKRCYXF25FRBASFmaNL/v1VwYGBnI7MjI90xUReeqpGCsiIiIiIiJyF5PJxPtvv82SwEBeLl/eGr909Sr+w4bRe/Rort64YcMMky+3jw+/zZ1Ln3btkjxuGAY5vL0BuHD5sjX+zfz5LP/1V2YvXZoueYqIPCtUjBURERERERFJQg5vbwI+/5yRvXrh6e5uja/dto36nTuzbP36J+LRfgcHB+zs7v/xP2d8Mfb8pUsAREZFcfHKFQBmLVmSoEgrIiKPR8VYERERERERkfswDIM3XnqJpYGBvFuzpjUeEhbGoIkT+WjAAE6fP2/DDB9fzns6Y88FB1uLzBFRUXw1a5atUhMReeqoGCsiIiIiIiLyEB5ubgzp2pUpgweT28fHGt994ADv+fszY9EiomNibJhhyuXKnh34rxh79uJFAIrkz4+zoyNrt21j94EDNstPRORpomKsiIiIiIiISDJVLlWKRQEBfFivHqb4R/+joqMJ/O47mvXqxYEjR2yc4aOzdsbGjykIunABgDIlStCmYUMAhk+dSmRUlG0SFBF5iqgYKyIiIiIiIvIIXJyc6N6qFfPGjKF4wYLW+JFTp2jZpw+jpk8n/PZtG2b4aO4dU2DpjM2bIwct69Ujf65cnDhzhsDvvrNZjiIiTwsVY0VERERERERSoFjBgswdPZoerVrh7OQEgNls5vuff6Zhly5s3rPHxhkmT07LmIL4TbvOWIqxOXPi7OTE0O7dsTeZ+G7FCnbs32+zPEVEngYqxoqIiIiIiIikkL3JRMt69VgcEEDVMmWs8YtXrtD1yy/pM2YMV2/csGGGD5fNwwMHe3uu37zJ7chIazE2T44cADxfpAgdmjQBYEBAADdDQ22Wq4jIk07FWBEREREREZHHlNvHh0kDBjC0e3c83dys8TVbt1K/c2eWrV+P2Wy2YYb3Z2dnR45s2QA4FxzM+eBgAPLctVFZ64YNKennx6WrV+kxYgS3IyNtkquIyJNOxVgRERERERGRVGAYBm9Xr86SiRN5p0YNazwkLIxBEyfSvn9/Tp8/b8MM7y9H/NzYP//9l5jYWLJnzWodvQB3OoCH9+iBt5cXf/zzD71GjiQqOtpW6YqIPLFUjBURERERERFJRZ5ubnzp78/kQYMSdJfu+ftv3vP3Z/rChUTHxNgww8Qsm3jt+usv4M7mXffK7ePDN4MH4+nmxra9e+k7diyxsbHpmqeIyJNOxVgRERERERGRNFCldGkWBgTwYb16mOzufPyOio5m4rx5fNCzJweOHLFxhv+xFGP3/P03kHQxFqBg3rxMHjSILJkysWHHDpauX59uOYqIPA1UjBURERERERFJIy5OTnRv1Yp5Y8ZQolAha/zo6dO07NOHkdOmEX77tg0zvCNn9uwAXA8JASBvzpz3PbdYwYL069gRgEnz5hESFpb2CYqIPCVUjBURERERERFJY8UKFmTOqFH0bN3aOovVbDbzw8qVNOzShc27d9s0v1zxnbEWee7TGWvx+osvUu6557geEsLUH39My9SIiIwkNDw8Te8hIpJeVIwVERERERERSQf2JhMt6tZlcUAAVcuUscYvXrlC16FD6T16NFeuX7dJbjnvKcbme0BnLNzZrOzTtm0xDIP5K1dy8uzZNMnr/KVLNOzalWrNm/N+jx6MmzWLc8HBaXIvEZH0oGKsiIiIiIiISDrK7ePDpAEDGNa9O55ubtb42m3bqN+5M0vXrcNsNqdrTjmyZcMwDOv3D+uMhTvdvg1q1SImNpZ+EyZw/MyZVM0p+MoV2vfvz7ngYMxmM4dOnGDOsmW0/t//uHrjRqreS0QkvagYKyIiIiIiIpLODMPgrerVWTpxInVq1LDGQ8PDGTxpEu379+f0uXPplo+DgwPZPD0B8HRzI0umTMla16lZM7J6ePDP0aM09vdn2DffpMpIgcvXrtF+wADOBQdTonBh1n37LVMGD+aFokW5dPUqn44aRXRMzGPfR0QkvakYKyIiIiIiImIjHm5ufOHvz5TBg8nj42ON7/n7b97r1o1pCxcSHR2dLrlYRhUkpyvWwsvdnYUTJvDem29iBn5cvZppjzlDNi4ujj5jxhB0/jzFChZkyqBBeHt5UblUKcb17Yu3pyd7//2XcbNmPdZ9RERsQcVYERERERERERurXKoUCwMCaFW/Pia7Ox/Vo6KjmTRvHk179uTAkSNpnkNKirFwpyD7+ccfM6hzZwDOXLz4WHnM+/ln9v77L9k8Pfl64EDcMme2HvP28mJMnz7Y29vzw88/s2P//se6l4hIelMxVkRERERERCQDcHFyotuHHzJvzBhKFCpkjR8LCqJlnz6MnDaN8Nu30+z+lk27CuTOnaL1+XPlAu6MGEiuqzdusGbrVjbu3ElUdDSnzp1j4nffAdC/Y0e83N0TrSlVrBiNXn8dgH+PHUtRriIitmJv6wSeNpGRkVy7do3Q0FBiY2NtnY6IPGFMJhNZsmTBy8sLJycnW6cjIiIiIjZQrGBB5owaxQ8rVzJp3jwiIiMxm838sHIlG3fu5H8dOlCtQoVUv+/7b7+Ns5MTDeILnY/K28sLgEvJKMZu//NPxs+ezZFTp6wxjyxZyOzqSmRUFHVq1KB6xYr3XZ89a1YAboaGpihXERFbUTE2FUVGRhIUFISnpye+vr44ODgk2I1SRORBzGYz0dHRhISEEBQURL58+VSQFREREXlG2ZtMtHj3XWpWqsSwb75h2969AFy8coWuQ4dSq2pV+rRvb910KzVk9fCgbaNGKV7vHZ/L1evXiY2NxWQyJXnehcuX6T16NGG3buHk6EiZ4sW5dvMmR06d4kZoKNmzZuXTtm0feC/L6IKQsLAU5ysiYgsqxqaia9eu4enpSbZs2Wydiog8gQzDwNHR0fr/kGvXrpEz/lExEREREXk25fbxYWL//qzevJnR337L9Zs3AVi3fTs79u+ne6tW1H/ttQzRCOTg4ICnuzvXb97k2s2b1k7Zu8XFxTEgIICwW7d4pWJFRvbqhZOjI2azmUMnTrBx1y5erVw5wZzYpLhnyQLATRVjReQJo5mxqSg0NBQ3NzdbpyEiTwE3NzdC9ciViIiIiHDnh/ZvVa/O0sBA6tSoYY2HhoczZNIk2vXrx+lz52yY4X+yP2RUwbyff2b3gQN4ubsz4JNPcHJ0BO68xuKFCvFJ06b4FSjw0Pu4xxdrNaZARJ40KsamotjYWBwcHGydhog8BRwcHDR3WkREREQS8HBz4wt/f6YMHkweHx9r/I9//uG9bt2YtnAh0dHRNszwv7mxSW3idfr8eQLnzgVgQKdOeHl4pPg+GlMgIk8qFWNTWUZ4NEREnnz6f4mIiIiI3E/lUqVYGBBA6wYNMNnd+VgfFR3NpHnzaNqzJ38dPmyz3KydsVevJjq2dutWoqKjeeOll3jlAZtzJYfGFIjIk0rFWBEREREREZEnjIuTE/4tWzJvzBhKFC5sjR8LCuLDvn0ZMXUq4bdvp3teD+qM3fPPPwC8WqXKY9/HMqYgRGMKROQJo2KsiIiIiIiIyBOqWMGCzB05kp5t2uDs5ASA2Wxm/qpVNOjcmd927UrXfLJnzQoknhkbHR3N/oMHASj/3HOPfR8XZ2fs7e2JiIoiIjLysa8nIpJeVIyVDGHQoEEYhsGmTZse6zqbNm3CMAwGDRqUKnmJiIiIiIhkdCaTiRbvvsvigABeLFvWGg++ehX/YcP4dNQorly/ni653K8z9u9jx4iIiqJg3ryPNSvWwjCM/7pjw8Mf+3oiIulFxVhJU0OHDsUwDAzD4LAN5xall4MHDzJw4EDq1q1Lvnz5rK89JiYmRdeLjY1l/PjxlCxZEhcXF7y8vHjrrbfYvn37fdfcvn2bgQMH4ufnh7OzM9mzZ6dx48YcjP8pdFKuXbtGt27d8PX1xcnJiVy5ctGmTRvOnj2borxFRERERCT95fbxYWL//gzv0QNPd3drfN327dTv3JnFa9cSFxeXpjncb2bsnr//BqBcKnTFWmhUgYg8iVSMlTRjNpuZMWOGdSOiadOm2TijtLdmzRqGDBnCypUryZQpE87Ozim+ltls5v3336d79+5ERUXRuXNn6tevz+bNm6lWrRrLly9PtCYyMpJatWoxZMgQ3Nzc8Pf357XXXmPp0qWUL1+enTt3Jlpz9epVqlSpwoQJEyhUqBDdu3enYsWKzJw5k3LlynHixIkUvwYREREREUlfhmFQu1o1lgYG8m7NmtZ4aHg4X3z9Ne379+fUuXNpdn9LMfbyPZ24f8QXY8s//3yq3ctNm3iJyBNIxVhJM2vXruXkyZN8+OGH+Pj4MHv2bKKiomydVpqqXbs2O3bsIDQ0lIMHD+Lj45Pia82fP59FixZRtWpV9u3bx+jRo5kxYwYbN27EZDLRvn17Qu/5CfC4cePYtm0bjRo1YufOnYwcOZLvv/+eRYsWcevWLdq0aZPoJ+H/+9//OHLkCN27d+fXX39lxIgRLFu2jAkTJnDp0iU++eSTFL8GERERERGxDQ83N4Z07co3gweTN0cOa/yPf/6hcbduTPvxR6Kjo9Pkvvb29twMDbXOco2OjmbfoUNA6hZjLZ2xN9UZKyJPEBVjJc1YOmHbt29Ps2bNuHLlCkuXLn2kaxiGwSuvvML58+dp0aIF2bNnx8XFhXLlyvH9998/cO2+fft4++238fDwwNXVlerVqyf5eP/58+cZMmQIL774Ijly5MDR0ZFcuXLxwQcfPPDR/qT4+flRqVIlXFxcHmldUiZPngzAl19+maDDtkKFCjRp0oTLly+zaNEia9xsNjNlyhQARo0ahZ3df/95161bl5dffpl///2X3377zRoPDw9n7ty5ZMqUicGDBye4f+fOnfH19WXNmjXqjhUREREReUJVKlWKhRMm0LpBA0zxnxGioqOZ9P33vN+zJ/vji6Spxc7ODm9PTwDrnNp/jh8nIjKSgnnykDUV5sVauMd3xoaoM1ZEniAqxkqaCA4OZsWKFRQtWpSqVavSunVrAKZOnfrI17p+/TpVq1blwIEDtG7dmpYtW3LixAmaNWvG6NGjk1yzZ88eqlatSkREBO3ateOdd95h69atvPrqq4lm127evJkRI0bg4eFBw4YN6d69O5UrV2bRokVUqFCB/fv3P/ob8JgiIyPZvn07rq6uvPzyy4mO165dG4ANGzZYY8ePHycoKIiiRYtSoECBZK35/fffuX37Ni+++CJZ4v8iY2FnZ8frr78OwMaNGx//RYmIiIiIiE04Oznh37Il348dy3NFiljjx4OCaPXZZwyfOpWwW7dS7X7e98yNtYwoKJeKXbFwV2dsCoqx/xw7Rv3Ona2zbEVE0ouKsZImZs6cSXR0NK1atQLg+eefp2zZsmzcuJFjx4490rX++usvKlasyN69exk5ciTffPMNe/fuxdPTk88//zzJrs2VK1fy9ddf8+uvvzJmzBh+/PFHvv76ayIiIpgwYUKCc2vWrElwcDArV65k0qRJjBw5kiVLlrB7924A+vbtm7I34TEcO3aM2NhYChYsiL29faLjReL/AnXkyBFrzFJkLlq0aJLXTK01IiIiIiLyZPIrUIA5I0bQq00bXOKfvjObzSxYtYoGXbqwadeuVLnPvXNj96TBvFi4a2ZsCsYULF6zhpNnz7LqricHRUTSQ+Iqj6SJMbndH35SBtDr3M3HvobZbGb69OnY2dnRsmVLa7xVq1bs3buX6dOnM2LEiGRfz2QyMXLkyASP3RcoUICuXbsyePBg5s6dy8CBAxOsefHFF62FYIs2bdrQuXNndt3zF4zs2bMned9SpUpRs2ZN1q5dS3R0NA4ODsnO+cph9wkAACAASURBVHHdvHnn98HdPel/byzxGzdupPsaERERERF5cplMJpq/+y41K1dm6JQpbNu7F7jTxdpt2DBeq1qVPu3aWbtbU+Luztiou+bFlnvuucd/AXd5nJmxlpzOXLyYqjmJiDyMOmMl1W3YsIHjx49Tq1YtcufObY1/8MEHODo6MmvWrEcaFJ8vX74kH7t/5ZVXAPjzzz8THStfvnyimIODAz4+Ply/Z1dPuNNJW6dOHXLmzImDgwOGYWAYBj/99BORkZFcuXIl2fmmB7PZDNyZqZvR1oiIiIiISMaXK3t2Jvbvz/AePfC8qzlj/fbt1O/cmUVr1iTa/De5smfNCsDla9fYtncvtyMi8CtQgGzxs2RTi2Vm7KOOKQgJC+PEmTMAnLlwIVVzEhF5GHXGppPU6Dh9Uljmwt7bmZo1a1bq1KnD4sWLWb58OY0aNUrW9Xx8fJKM54jfEdTS3Xk3j/sMhbe3tyc2NjZBLCAgAH9/fzw9PalVqxb58uXD1dUVwzBYtmwZ+/fvJzJ+F9D0YulITeq1AYSEhCQ4Lz3XiIiIiIjI08EwDGpXq0aV0qUZN2sWK+L3lwi7dYsvJ09m9ebN9P/kE3zvarJJDssGXpeuXWP15s0A1K5WLXWTB9ziO2NDHrEz9u5Nyy5euUJEZCTOTk6pmpuIyP2oGCup6vLlyyxbtgyApk2b0rRp0yTPmzp1arKLscHBwUnGL8Y/TvI4hcKYmBgGDhxIjhw52Lt3Lzlz5kxw/Pfff0/xtR9H4cKFMZlMnDhxgpiYmERzY48ePQoknPXq5+cH3H++a2qtERERERGRp4uHmxtDunblnVde4Yuvv7Y+uv/HP//wnr8/7d97j9YNGiR7dJulM/bUuXOcPHsWgDdfeinV807pBl777irGApy7dIlCefOmWl4iIg+iYqykqtmzZxMVFUW5cuUoXbp0kuesWLGC9evXc/LkySTHD9wrKCiIU6dO4evrmyC+adMmAMqUKZPifK9cucKNGzdo0KBBokJsWFgYe+PnJ6U3JycnqlatypYtW9iyZQs1atRIcHz16tXAnc3HLAoVKkS+fPk4cuRIku9tUmsqV66Mi4sL27ZtIzQ0lCzxj/kAxMXFsXbtWoBE9xcRERERkadPxZIlWThhAlN//JHZS5cSGxdHdEwMX//wA2u2bWPAJ59Qqlixh17HMjP2UPxmy+Wee44c3t6pnq9lTEHIIxZjLZ2xTo6OREZFcebCBRVjRSTdaGaspKrp06cD8PXXXzN9+vQkvzp06GDd5Cs5YmNj6dOnT4J5RSdPniQgIAB7e3uaN2+e4nyzZ8+Oq6srf/zxB2F3/QEeHR2Nv79/usyKDQoK4tChQ9y6dStBvGPHjgD069ePiIgIa3z37t0sWLAAb29vGjZsaI0bhsHHH38MQO/evRO8X8uXL2fLli2UKFGC6tWrW+OZM2emRYsWhIeHM2jQoAT3nzhxIqdOneKNN96gYMGCqfZ6RUREREQk43J2cqJrixZ8P3YszxUpYo0fDwqi1WefMXzqVMLu+exyL0tnrEVajCiA/8YUPMoGXtExMfwd/2RgjUqVAM2NFZH0pc5YSTWbNm3i8OHDvPDCC1SsWPG+57Vt25ahQ4cyc+ZMBg8enOgR/HuVLFmSnTt3Uq5cOV5//XVu3rzJggULuHHjBqNGjaJQoUIpztnOzo6uXbsyYsQIXnjhBerWrUtUVBQbN27k2rVr1KhRg40bNyb7eleuXKFXr14Jvoc7r9myCVbfvn0pdtdPk1u2bMlvv/3Gxo0brZuSAbz//vssWbKERYsWUaZMGerUqcPVq1dZsGABsbGxTJs2DTc3twT379GjBz///DOLFi2iUqVKvPrqqwQFBbFw4UJcXV359ttvsbNL+DOYYcOGsWnTJsaNG8e+ffuoWLEiBw8eZPny5WTPnp1JkyYl+/WLiIiIiMjTwa9AAeaMGMH8VauYOG8etyMiMJvNLFi1io07d/LZRx9Zi5n3yuTigquzM7ciIrA3mXitSpU0yTGzqysmOztuRUQQHR2drDEKh0+eJCIqivy5cvFC0aL8smULQSrGikg6UmespJpp06YB0K5duwee5+vry2uvvcaFCxf46aefHnpdT09Ptm/fznPPPcfMmTOZNWsWBQoUYN68eXz66aePnfcXX3zB2LFjcXFx4ZtvvmHJkiWUL1+eXbt2kS9fvke6VlhYGLNnz7Z+hYeHAzBnzhxrzDLr9mEMw+CHH35g3Lhx2NvbExgYyJIlS6hWrRqbN2+mbt26idY4OTmxfv16BgwYwI0bN/jqq69Yt24d9erVY/fu3VRK4i9LWbNm5ffff6dr164cO3aMsWPHsnPnTlq3bs0ff/zxWMVuERERERF5cplMJprVqcPigABeKlfOGr909Srdhw+n18iRXL52Lcm1lu7YqmXK4HFPE0lqMQzjv0284j97PYxlREHp4sXJGz+qTp2xIpKeDLPZbOscMrzy5cub9+zZ89DzDh48SPHixdMho2eHYRhUr17dOh9W5Fmi/6eIiIiISEZhNptZs3Uro6ZP59rNm9Z4ZldXun34IQ1q1UrwFF6nIUPYtncvI3r25M2XX06zvOp+8gmnz59nSWAgBZMx9/XTUaNYt307Azp1omyJEtTr1IncPj6s/OYbAP48eBD3zJmTdS0RkbsZhvGH2Wwu/7Dz1BkrIiIiIiIiIg9kGAZvvvwySydOpO6rr1rjYbdu8eXkybTr14+TZ89a473atGFAp068/uKLaZqXZROvm8nYxMtsNrPP0hlbrBi5smfHzs6OC5cvEx0dzdmLF2n3+ed0Gz48TXMWkWebirEiIiIiIiIikizuWbIwuEsXpg4ZYn3MH2Dvv//SuFs3vlmwgOjoaArkyZOoWzYtWMcUJGMTrwuXL3P52jXcs2TBN3duHB0cyJEtG3FxcZy/dIkNO3YQGxdH0PnzREZFpWneIvLsUjFWRERERERERB5JxZIlWTh+PG0aNsTeZAIgOiaGyT/8QJMePawdqGnNPb4Ym5zO2H0HDwJQ0s/PWiS2FJSDLlxg486d1nMvXr6c2qmKiAAqxkoGZzabNS9WREREREQkA3J2cqJrixZ8P3YszxUpYo2fOHOG1p99xrBvviHs1q00zcHtEcYU7D98GLgzosAiX3wxdt+hQwkKyOcuXUrNNEVErFSMFREREREREZEUK+rry5wRI/i0bVtcnJ2BO401P65eTYMuXdiwY0ea3dv9EcYUWDpjS9+1SW7eHDkAWLRmDXdvcH5exVgRSSMqxoqIiIiIiIjIYzGZTDSrU4fFAQG8VK6cNX7p6lV6jBhBjxEjCL56NdXvm9wxBeG3b3P09GnsTSZKFC5sjVvGFNyML+bm9PYGVIwVkbSjYqyIiIiIiIiIpIpc2bMT2K8fI3v1wsvd3RrfsGMHDTp3Zv6qVcTGxqba/dzjxxSEPKQYe+DIEeLi4ihWsCAuTk7W+N2bkBmGQZO33gJUjBWRtKNirIiIiIiIiIikGsMweOOll1g2aRL1a9WyxsNv32bE1Km0/t//OHrqVKrcy1KMvfmQMQWWEQWl7poXC5DHx8f661LFivFC0aKAirEiknZUjBURERERERGRVOeWOTMDO3Vi+pdf4ps7tzX+1+HDNO3Zk8DvviMiMvKx7wEPH1OQ1LxYuLMJWY5s2QCoUakSubJnB+CCirEikkZUjBURERERERGRNFP++edZ8NVXfNSkCfb29gDExMYyY9Ei3uvWjV1//ZXia1vHFDygMzY2NpYDR44AiTtjAV4uXx5PNzfefOklvL28sDeZuHz9OpFRUSnOS0TkflSMFREREREREZE05eToyCdNm7Lgq68oc1d36pkLF/howAAGBARwIyTkka+bnA28jgUFEX77NrmyZye7l1ei459//DHrZ87EJ1s27E0mfOI7ZS9cvvzI+YiIPIyKsSIiIiIiIiKSLgrlzcuMoUPp17EjmV1drfEVGzZQv3NnVm7ahNlsTvb1Mru6YhgGoeHh990YbP+hQ0DiEQV3M5lM1l9bRhVobqyIpAUVY0VEREREREQk3djZ2dHojTdYOnEitapWtcavh4Tw+fjxdBw0iLMXLybrWiaTiSyZMgEQEh6e5Dn74ouxpfz8knVNFWNFJC2pGCs21bx5cwzD4OzZs6l2zV9++YUqVarg4eGBYRg0atQo1a6dlo4dO4ZhGLRr1+6xr5UnTx4KFy6cClmJiIiIiIikDW8vL0b37s2E//3PuokWwI79+2nUtSszlywhOibmoddxiy/Ght6nGPv30aNA0vNik6JirIikJRVjJdUZhvHAr1mzZj1w/eMUJY8fP069evU4ffo0bdu2ZeDAgTRu3DiFryR1nDp1Cjs7OwzDYMCAATbNJT1ERUUxYcIEWrVqRenSpXF0dEzW7/uDbN26ldq1a+Pl5YWrqyulSpUiICDgvo8hASxfvpzq1avj7u5O5syZqVy5Mt99990D7zNz5kwqVKhApkyZcHd3p0aNGqxevTrFeYuIiIiIyMNVr1iRxYGBfPDOOxiGAUBEVBQT5syhWa9e1mLq/WR5QDE2OjqacxcvYhgGBfLkSVY+uVWMFZE0ZG/rBOTpNXDgwCTjpUuXtv569OjR9OvXjxw5cqTKPdetW0dkZCTjx4+3eRHWYtq0aZjNZgzD4Ntvv2XgwIEJ5hE9bUJCQujWrRsAPj4+5MiRgzNnzqT4eosXL6Zx48a4urrSpEkTPD09WbFiBf7+/vz+++/88MMPidaMHz+e7t27ky1bNpo3b46DgwMLFy6kRYsW/P3334wYMSLRmm7dujFhwgTy5s1Lhw4duH37NgsWLOCtt95i8uTJfPzxxyl+DSIiIiIi8mCZXFzo3a4db1WvzpBJkzhy6hQAR06domWfPrz/1lt0ataMTC4uidY+qBh75uJFYuPiyO3jg5OjY7JyUWesiKQlFWMlzQwaNOih5+TMmZOcOXOm2j3Pnz8PQK5cuVLtmo8jJiaGmTNn4uHhQePGjZk6dSorV67k3XfftXVqaSZLliysXr2aMmXK4OPjQ79+/Rg6dGiKrnXjxg0++ugjHBwc2Lx5M2XKlAFgyJAhvPLKK8yfP5+GDRsmGEVx/Phx+vTpQ9asWfnjjz/Ily8fAP3796d8+fKMGjWKhg0bUqFCBeuaLVu2MGHCBIoUKcLu3btxd3cHoFevXpQvX57u3bvz9ttvkzdv3pS+LSIiIiIikgzPFynCvDFjmPfTT0z54QcioqKIi4vj+59/ZsOOHXz20UdUr1gxwZrMDyjGnjp3DgDf3LmTnYOKsSKSljSmQGzq3pmx/fr1o0iRIgDMmDEjwXiDBz1ivn79egzD4IsvvgDg5Zdftq7bunWr9bzDhw/TokULcuXKhaOjI7ly5eLDDz/k+PHjia7Zr18/6/q5c+dSsWJFMmfO/EizWH/++WcuXLhA06ZN6dixI3CnU/ZRWN6joKAgRo8ejZ+fH87OzuTNm5eePXsSGhp637Xh4eH07NmTfPny4eTkRJEiRRgzZkySu5N+++23NGjQgIIFC+Li4oK7uzsvvfQS33///SPl6+TkxJtvvomPj88jrUvKjz/+yLVr12jWrJm1EAvg4uJi/b2ePHlygjUzZswgKioKf39/ayEWIGvWrHz22WeYzWamTJmSYI3lGv3797cWYgEKFSpEx44diYiIeKwxCyIiIiIiknwO9va0ql+fRQEBVC5Vyhq/eOUK/sOG0WvUKC5fu2aNWzpjw5Ioxp6Ob9h5lGKst5cX9iYTV65fJyIyMqUvQ0QkSeqMlQylZs2ahISEEBgYSJkyZRJ0kJYsWfK+6woWLMjAgQPZsGEDW7ZsoXXr1tZCnOWfO3bs4PXXXycsLIy6detSrFgxDh06xNy5c1mxYgW//vorZcuWTXTtkSNHsn79eurUqUPNmjUJCwtL9uuZOnUqgHV+aqlSpVi9ejVnz54lTzLnFVl06dKFLVu20LhxY9zd3Vm9ejXjxo1j69atbN68GScnpwTnR0VF8dprr3Hp0iXeeustTCYTS5cu5dNPPyUyMpLPP/88wfkdOnSgdOnSVK9enRw5cnDlyhVWrVpFs2bNOHr06H3HTqSlDRs2APDmm28mOvbKK6/g7OzMli1biI6OxsHB4aFrateuneCc5Nyndu3aDB8+nA0bNtC/f//HeDUiIiIiIvIo8uTIweRBg1i1eTNjZszgekgIAOu3b2fHvn10+/BDGtSq9cAxBSnpjDWZTOTIlo2zwcFcvHLlkdaKiDyMirGSZpIaU+Dr60urVq3uu6ZmzZrky5ePwMBAypYtm6xRB3CnGDto0CBiYmLYsmULbdq04aWXXrIej4uLo2XLloSGhjJ//nyaNGliPTZv3jyaN29Oy5YtOXDggHVgvMXGjRvZsWMHpe76iWxyBAUFsWbNGkqUKEHF+MdoPvzwQ3r06MGMGTMeubj5+++/s3//fuuj8sOGDaNhw4YsX76ccePG8dlnnyU4/8yZM5QqVYoNGzbgEj9XqX///hQtWpSxY8fSt2/fBLNrDx06RKFChRJcIzIykjfeeIOhQ4fSoUOHVJvtm1yHDx8GoGjRoomOOTo6kj9/fg4fPsypU6esHdUPWpM3b16cnZ05ffo0UVFRODo6EhISQnBwMB4eHnh7eydaY7nukSNHUu11iYiIiIhI8hiGwdvVq/NimTKMmzWLFfGNFGG3bvHl5Mn8vGkTfgUKAEkXY0/GP4X5qAXVXNmzczY4mPOXLqkYKyKpSsXYdDImt/vDT8ogep27mSrXGTx4cKJY9erVH1iMTStbtmzh6NGjvPzyywkKsQDNmjVj4sSJ7Nixg99//52qVasmON6xY8dHLsQCTJ8+nbi4uASvt3nz5vTp04cZM2bQv39/7OySPymke/fuCWaWmkwmRo8ezYoVK/j2228TFWMBAgMDrYVYgBw5clCnTh2+//57jh49SrFixazH7i3Ewp2RA5988gm//fYbGzZs4IMPPkh2vqnh5s07/y7ePTrgbpb4jRs3rLGQ+J+Wu7m5JbnGzc2NS5cucfPmTby9va1rH+UeIiIiIiKSvjzc3BjStSvvvPIKX0yezJkLFwDYd/Agf8U3ZNyI/yxwN8uYgvwpKMYCnAsOfpy0RUQS0cxYSTNmsznR16ZNm2ySy969e4E7nbdJscT//PPPRMcq3jMcPjliY2OZOXMmJpOJFi1aWOPe3t7Url2bM2fO8MsvvzzSNatXr54oVqRIEXLlysWxY8cSzY7NmjUrvr6+idZYCrrXr19PED916hSffPIJfn5+uLq6WmfuWorX5+If78lILLNv7+1mvvf75KxJrfNFRERERCTtVCxZkoXjx9Puvfewj3/SLy4uDoBVmzez5++/redeDwnhZmgors7OeHt6PtJ9VIwVkbSiYqw8Eywdljlz5kzyuCWeVPdjSh7NX7VqFWfPnuXNN99MtL5169bAf/Nkk+t+G2JZrh9yz0+BPTw8kjzf3v5OQ3xsbKw1duzYMcqWLcs333xDrly5aNeuHf369WPgwIHWYnKkDQbXW7pSLb9/97K85ru7Wt3c3DCbzYneD4vQ0FAMw7B2zlrep0e5h4iIiIiI2I6zkxOdmzVj/rhxlPTzs8bDb9+mXb9+DJ40iZCwsATzYh+1uSJfrlzAfzNnRURSi8YUpJPUevRfUsZSSLt48WKSxy/EP+KSVMEtJR2RlkLrypUr77t+5cqVnD9/nlzxf8g/THBwcJKjBCyv6X6P5SfHmDFjuH79OnPnzqV58+YJjs2dO5e5c+em+NqPw8/Pj3379nHkyJFEoyKio6M5ffo0Dg4OCTqA/fz82LlzJ0eOHKFChQoJ1pw5c4aIiAh8fX1xdHQE7rxvPj4+BAcHc/ny5URzY48ePQokPYNWRERERERsp3D+/MwcNoxxs2Yx76efrPGl69bx265d1KhUCXj0EQUAReI/Yxw5dSo1UhURsVJnrGQ4lk2l7u7cfFxlypQBuO+YBEu8bNmyj32vc+fOsXr1atzd3Wnbtm2SX1WqVCEmJoaZM2cm+7q//fZbotjRo0c5f/48hQsXJkuWLCnO+dixYwA0bNgwWfdNL5bxEUmNdNi4cSMRERG8/PLLODg4JGvN6tWrE5zzOGtERERERMT2TCYT78b/XT3TXftlXLt5k8Vr1wLglYKn3PLnyoWDvT3nL10i7Nat1ElWRAQVYyUD8vLyAiAoKCjVrlmtWjUKFy7Mpk2bWLZsWYJj8+fPZ/v27RQvXpwqVao89r1mzJhBbGwsLVu2ZPr06Ul+WYqw06dPt84kfZivvvqKM2fOWL+PjY3l008/xWw2W0cfpJSls/TeYvWqVauYNWvWY107OW7evMmhQ4cSdS43btwYLy8v5s2bl2Ce7+3bt+nfvz9wZ4O1u7Vt2xYHBwcCAgISvF9Xr15l+PDhGIZBhw4dEqz5+OOPAfjyyy8TjCs4ceIEkydPxtnZ2SYbz4mIiIiIyMNlyZTJ+s9xffviHf+Z0uLH1auZu3w5MY/Q8GNvMlEwfr+NY6n42VRERGMKJMNxd3enfPnybNy4kebNm1O0aFHs7OyoV68ezz//fIquaWdnx+zZs3n99ddp2LAh9erVw8/Pj0OHDrF8+XLc3NyYM2fOY2/SFBcXx4wZMwBo167dfc/z8/PjpZdeYuvWraxdu5Y33njjodeuUqUKpUqVonHjxri7u7N69WoOHDhAhQoV6Nmz52Pl3alTJ+bMmUP9+vVp1KgROXPm5O+//2bNmjU0btyYBQsWPNL1hg0bxpEjR4D/NkWbPn26tdhbvXr1BAXkhQsX0r59e9q2bcv06dOtcQ8PD6ZOnUrjxo2pVq0aTZo0wdPTkxUrVnDkyBHef/99GjVqlODehQoVYuTIkfTo0YOyZcvSpEkT7O3tWbRoEefOnaNPnz6JNmWrVq0aXbt2JSAggJIlS9KwYUMiIiKYP38+N27c4Ouvv7ZufCYiIiIiIhmLpRgbGh5OzcqVqViyJIHffceCVasAiI6JYezMmaz67TcGdOpE8STGvyWliK8vh0+e5OipU5QuVizN8heRZ4uKsZIhzZs3jx49erBq1Sq+//57zGYzvr6+KS7GAlStWpXdu3fz5ZdfsmHDBlasWEG2bNn44IMPGDBgAEWKFHnsvNesWUNQUBAVKlSgZMmSDzy3ffv2bN26lalTpyarGBsYGMiCBQuYPn06p079n737Dq/xfAM4/n2zE5lWJIgYsaoIsWKEKEoprb13jVqpKi0aFEVRYhWxatcKFQSNELFntUWsSGImInb2+/tDzvnlSEIiiRj357pyNZ73We+hJ1fuc7/3E0KBAgXw8PBg/PjxGBsbZ2nfzs7O+Pv7M3bsWHx9fUlMTKRSpUr4+PhgZmaW6WDsjh07CAoK0mkLCgrSthkYGGQ4m7d169YEBAQwceJENm3aRExMDE5OTsyaNYtBgwalOcbDw4MSJUowffp0VqxYQVJSEhUqVODnn3/WHkj2olmzZlGpUiXmz5/PwoUL0dfXp0qVKnz33Xc0a9YsE3cvhBBCCCGEeJPymJqiKApPnj0jMTERczMzRvTuzUY/P53yd+evXqXziBF0adGCAR07Ympi8tJ5SxcrBsCl69dzdP9CiA+LktFHpD9kLi4u6okTJ17Z7/z585QrV+4N7Eh8SLp06cLq1asJCwujSJEiub0d8QbJe4oQQgghhBAZU6dTJx4/fcqBVauwNDfn+s2btBw4kEL589OmSRMW/fEHcfHx2v52BQowun9/6lStmu6ch06fZuD48TiXK8eyn39+E7chhHiHKYpyUlVVl1f1k5qxQgghhBBCCCGEeKelLFUAEBIeDoBj4cL0aduWDbNnU/3jj7X9b0VEMOinnxg1Ywb3oqPTnLN08tkal65fz/BZH0II8SoSjBVCCCGEEEIIIcQ7LVUw9uZN4HkwFqCYvT0LJ0xgwpAhWFlYaMftCgzki0GD2LJnT6qAaz5ra2ysrHj89Cm3IyPfxG0IIT4AEowVQgghhBBCCCHEO+3FYOzNu3cBKFKokLaPoih87u7Olrlz+czNTdv+8PFjxs+bR58xYwi5cUOnv5ODAwCXQkJy+haEEB8ICcYK8ZZbtWoVqqpKvVghhBBCCCGESMeLwdi79+4BUDBfvlR981pZMcnDg/menhS2tdW2n/z3X9oOHcqi9euJT64v65RcqiBYgrFCiGwiwVghhBBCCCGEEEK808xfDMZGRQFpB2M1XJ2d2ejlRY8vvkBf73l4JD4hgflr19L+m284ff68Nhh7OTQ0B3cvhPiQSDBWCCGEEEIIIYQQ77R0M2Pz5n3pOFNjY4Z1787q6dP5yMlJ2341LIye33/PgePHAcmMFUJkHwnGCiGEEEIIIYQQ4p2WMhibkJjIvehoAArY2GRofNkSJfh9yhS+69MHUxMTbbv/kSMAhISHExsXl827FkJ8iCQYK4QQQgghhBBCiHdaymDsvehokpKSyGdtjaGhYYbn0NfXp1Pz5myeM4d6Li4615JUlYHjx3M7IiJb9y2E+PBIMFYIIYQQQgghhBDvtJTB2IyWKEiPXYECzB49ml+++478KTJrT/77L18OHsya7dtJTEzM+qaFEB8kCcYKIYQQQgghhBDinWaZHIx9/PTp/4OxLzm861UURaGRqyub58yhWoUK2vanMTFM8/am26hRXLx2LWubFkJ8kCQYK4QQQgghhBBCiHeauZkZ8EJmbBaCsRqW5ub8PHw4AEqK9n8vXaLT8OHM/v13nsXGZnkdIcSHQ4KxQgghhBBCCCGEeKfplCmIigJev0zBi/Lb2FDa0REVaNGgAYYGBgAkJiWxbPNm2g4ZwuEzZ7JlLSHE+0+CsUIIIYQQQgghhHinpVUztkA2ZMZquDo7A2BjZcWG2bOp+tFH2mvhd+4wYNw4xsyaRdSDB9m24rinDgAAIABJREFUphDi/STBWPFWGDduHIqiEBAQkKV5AgICUBSFcePGZcu+hBBCCCGEEEK8/XIyMxagVuXKABw5cwbHwoVZ/NNPeH79tXZdgO0BAXw5aBDb/P1RVTXb1hZCvF8kGCty1KRJk1AUBUVRuHjxYm5vJ8dpgsrpfe3atStT8yUmJjJr1iwqVqyIqakpefPmpVmzZhw6dCjdMc+ePcPT05MyZcpgYmJCwYIFadeuHefPn093TFRUFMOGDcPR0RFjY2Ps7e3p1asX4eHhmdqvEEIIIYQQQuSGPMk1Y588e8adbKwZq+FcvjwmxsYEh4QQERWFnp4eXzRqxJa5c/m0bl1tv+hHj/jRy4t+P/5I6K1b2ba+EOL9YZDbGxDvL1VVWbJkCYqioKoqixcvZvr06bm9rTeie/fuODo6pmovVapUhudQVZUOHTqwceNGypQpw6BBg4iKimL9+vXUq1ePTZs20bJlS50xsbGxNGrUiKCgIFxcXBg6dChhYWFs2LABX19f/P39qVGjhs6Ye/fu4erqSnBwMO7u7nTo0IELFy6wbNkyfH19OXz4MCVKlHit10EIIYQQQggh3gQDfX3ymJry5Nkzbty+DWRvZqyRoSEuFSpw8ORJDp85w+fu7sDzerJThg/nMzc3Ji9cyK2ICACOnTtH26FD+apdO7q1aqWtMyuEEPJuIHLM7t27uXbtGj169GDnzp2sWLGCyZMnY2RklNtby3E9evSgfv36WZpj3bp1bNy4EVdXV/766y9MTEwA6N+/P3Xq1KFv3764u7tjYWGhHTNz5kyCgoJo06YN69evR0/vefJ7+/btadWqFb169eLcuXPadoAffviB4OBgPDw8mDlzprbdy8uLoUOHMnDgwExn9AohhBBCCCHEm2ZuZsaTZ89ITErCxNhYp4RAdnB1dubgyZMcOn1aG4zVqOviwqaPPmLB2rWs3r6dpKQkYuPimLNqFTsPHODHr7+mYpky2bofIcS7ScoUiByzePFiAPr27Uvnzp2JjIxky5YtmZpDURTq16/PzZs36dq1KwULFsTU1JSqVauyZs2al449c+YMn332GdbW1piZmeHm5pbm4/03b95kwoQJ1K5dm0KFCmFkZIS9vT2dOnV66aP9OW3BggUATJw4URuIBahWrRrt27cnIiKCjRs3attVVeW3334DYNq0aToB15YtW1K3bl3+++8/9u/fr21/8uQJK1euJE+ePIwfP15n/UGDBuHo6Iifnx9Xr17NkXsUQgghhBBCiOySMvhaMF8+FEXJ1vk1h3gd+/vvNK+bmZoyvFcvVk2bRtkUTxdeDg2l+6hRTFm0iMdPn2brnoQQ7x4JxooccefOHbZt20bp0qVxdXWlZ8+eACxatCjTc92/fx9XV1fOnTtHz5496datG1evXqVz58788ssvaY45ceIErq6uxMTE0KdPH5o3b87Bgwdp2LBhqtq1Bw4cYMqUKVhbW9O6dWs8PDyoWbMmGzdupFq1apw9ezbTez548CAzZsxg6tSprF+/nsjIyEyNj42N5dChQ5iZmVE3Rf0hjaZNmwLg7++vbbty5QqhoaGULl2a4sWLZ2jM4cOHefbsGbVr19bJsAXQ09OjcePGAOzbty9T+xdCCCGEEEKIN00nGJuNJQo0itnbY2JkRNSDBzx68iTdfuVLlWLVL7/wTY8emBgbA8+TZ9bt2MGXgwfjf+RItu9NCPHukDIFIkcsW7aM+Ph4evToAUCFChWoUqUK+/bt4/Lly5mqnfr333/Ttm1b1q1bp832HDVqFFWrVmX06NG0bt06VU1TX19fli1bpl0fYOHChfTv35/Zs2czf/58bbu7uzt37txJFYw8e/YstWvXZtSoUezcuTNT9z927FidPxsbGzNixAgmTJiQoU9nL1++TGJiIiVKlMAgjdpCTk5OAAQHB2vbNEHm0qVLpzlndo0RQgghhBBCiLfRi5mx2U1RFOwLFuRqeDg3796lTBpJMBoG+vp0a9WKhrVqMXnhQoJOnQLg7r17fDNlCu41azKyb19sc2CfQoi3mwRj35DuS2q8utNbYEXvo1meQ1VVvL290dPTo1u3btr2Hj16cOrUKby9vZkyZUqG59PX12fq1Kk6j90XL16cIUOGMH78eFauXImnp6fOmNq1a+sEYgF69erFoEGDOHbsmE57wYIF01y3UqVKuLu7s3v3buLj4zE0NHzlXitVqsTSpUupX78+dnZ23L17l927dzNmzBgmTpxIYmIikydPfuU8Dx48AMDKyirN65r26OjoNz5GCCGEEEIIId5GOZ0ZC2Bva8vV8HBu3Lnz0mCsRmFbW+aOHYvfwYNM8/YmKvl3MP8jRzh69iyDu3albZMm6Ovr58h+hRBvHylTILKdv78/V65coVGjRhQuXFjb3qlTJ4yMjFi+fDnx8fEZns/BwSHNx+41B2SdPn061TUXF5dUbYaGhtja2nL//v1U13x9fWnRogV2dnYYGhqiKAqKovDnn38SGxub4TIDX3zxBT179qR48eKYmJjg4OBAnz592LFjB4aGhkyfPj3TJQvSoqoqQKZqIL2pMUIIIYQQQgiRG1IGY3Mq47SwrS0AN+7ezfAYRVH4tG5dtsydyxeffKJtf/LsGVMWLaLH998THBKS3VsVQrylJDP2DcmOjNN3haYu7IuZqfny5aNFixZs2rSJrVu30qZNmwzNZ5v8w+5FhQoVAv6f3ZmStbV1mmMMDAxITEzUafPy8mLo0KHY2NjQqFEjHBwcMDMzQ1EUfHx8OHv2LLGxsRnaa3qqVKlC9erVCQoK4vDhw7Ro0eKl/TUZqWndG8DDhw91+r3JMUIIIYQQQgjxNjLP4TIFAPbJT1bevHMn02OtLCzwHDSIZm5uTFywgOs3bwJwLjiYTsOH07VlS75q3x7T5DqzQoj3kwRjRbaKiIjAx8cHgI4dO9KxY8c0+y1atCjDwdg76fyQu337NpC1QGFCQgKenp4UKlSIU6dOYWdnp3P98OHDrz33iwoUKADAk5cUetcoVaoU+vr6XL16lYSEhFR1Yy9dugTo1notU6YMkH591+waI4QQQgghhBBvo5yuGQtQODkYe+M1grEa1T7+mD9mzWLJpk0s3bSJhIQEEhITWbZ5M3uCgvihf39cnZ2za8tCiLeMBGNFtlqxYgVxcXFUrVqVypUrp9ln27Zt7N27l2vXrqVZfuBFoaGhhISE4OjoqNMeEBAAgHMWfkhFRkYSHR3Nl19+mSoQ+/jxY04lF1nPqvj4eO1cLx42lhZjY2NcXV0JDAwkMDCQBg0a6FzXHCjm7u6ubStZsiQODg4EBwen+dqmNaZmzZqYmpoSFBTEo0ePdA4xS0pKYvfu3QCp1hdCCCGEEEKIt82bqBmrKVNwMxNlCtJibGTEwI4daVKnDhPnz+f0+fMAhN+5w8Dx42larx4jevUibzpPfQoh3l1SM1ZkK29vbwDmz5+Pt7d3ml/9+vXTHvKVEYmJiYwcOZKkpCRt27Vr1/Dy8sLAwIAuXbq89n4LFiyImZkZJ0+e5PHjx9r2+Ph4hg4dmqn6ro8ePeLMmTOp2uPi4hg2bBihoaGULVs2VT3b0NBQLly4wNOnT3XaBwwYAMCYMWOIiYnRth8/fpz169dToEABWrdurW1XFIX+/fsD8N133+m8Xlu3biUwMJDy5cvj5uambTc3N6dr1648efKEcePG6aw/d+5cQkJCaNKkSYYCyEIIIYQQQgiRmzTBWD09PfLZ2OTIGilrxmrO2MiKkkWLsmTSJH78+mudYPLOAwdoNWgQPnv3Zss6Qoi3h2TGimwTEBDAxYsX+fjjj6levXq6/Xr37s2kSZNYtmwZ48ePT/UI/osqVqzI0aNHqVq1Ko0bN+bBgwesX7+e6Ohopk2bRsmSJV97z3p6egwZMoQpU6bw8ccf07JlS+Li4ti3bx9RUVE0aNCAffv2ZWiue/fu4ezsTOXKlalYsSJ2dnZERESwb98+rl27Rv78+Vm7di16erqfgXTr1o39+/ezb98+7aFkAB06dGDz5s1s3LgRZ2dnWrRowb1791i/fj2JiYksXrwYS0tLnbm++eYbtm/fzsaNG6lRowYNGzYkNDSUDRs2YGZmxtKlS1OtP3nyZAICApg5cyZnzpyhevXqnD9/nq1bt1KwYEHmzZv3ei+uEEIIIYQQQrxBmmBmPisrDPT1c2QNS3NzzM3MePz0KfcfPiRvNpyvoaenx5eNGuFWrRq/LFnCrsBAAB4+fsy4uXP5c98+xg4ciGOKA7KFEO8uyYwV2Wbx4sUA9OnT56X9HB0d+eSTT7h16xZ//vnnK+e1sbHh0KFDfPTRRyxbtozly5dTvHhxVq9ezYgRI7K8759++okZM2ZgamrKwoUL2bx5My4uLhw7dgwHB4cMz5M3b14GDx6MsbExfn5+zJw5k/Xr12NhYcHIkSP5999/0y3dkBZFUVi7di0zZ87EwMCAOXPmsHnzZurVq8eBAwdo2bJlqjHGxsbs3buXH3/8kejoaH799Vf27NlDq1atOH78ODVq1Eg1Jl++fBw+fJghQ4Zw+fJlZsyYwdGjR+nZsycnT57MUrBbCCGEEEIIId4U2+Q6sQ729jm6jn0m68bGxcdzJzJSJ8M1OCQEzzlzOHD8uLYtn7U1U4YPZ96PP2ozcAFO/vsvbYcOZcHatcTFx2fTXQghcosi6e6v5uLiop44ceKV/c6fP0+5cuXewI4+HIqi4Obmpq0PK8SHRN5ThBBCCCGEyJwDJ05QokgRihQqlGNrePz8M/uOHmXqt9/SpE6dNPs8fvqUjX5+HD5zhrPnzxMTF4dTsWK0aNCA0Fu32LxnD0lJSZgYG7Nh1iyKvnCGybPYWBauW8fKrVtJTFGCzrFwYcYMGIBLhQo5dn9CiNejKMpJVVVdXtVPyhQIIYQQQgghhBDivVDP5ZVxkCx72SFeqqqy48ABZi1fTsT9+9p2UxMTLl2/zszlywHQ19OjRJEiXA0Px3POHLwnTtQpKWdqbMyw7t1pWq8eP82fzz+XLgEQcuMGfcaMoXn9+jyNiaF4kSIM6Ngxx8oyCCGynwRjhRBCCCGEEEIIITKocDplCuITEhg2eTJBp04B8HHp0nT5/HOqVaiARZ48BJ48yY4DBzA0MKBP27bks7KizdChnPrvP1Zv307Xzz9PtVaZ4sVZMWUKG3btYs6qVTx59gyA7SmeHr18/TpTvv0WU2PjHLpjIUR2kmCsEEIIIYQQQgghRAZpMmNfDMbOXbWKoFOnsLawYFiPHnzeoIFOtqt7zZq416ypM2bsgAEMnTyZuatWUc/FhWJp1LvV19enw2ef0aBGDaZ6e+N/5IjO9f3Hj9Nj1Ci+bNQIYyMjzM3MsCtYkMIFC2JlYYGiKNl160KIbCDBWPFWk5rGQgghhBBCCCHeJpoDvFKWKQg8cYIVPj7o6+nx6w8/4JzBsx/cqlenab167DxwAJ+9exnarVu6fW3z52fmqFGMmzsXn717da5dvHaNnxctSjWmab16TPbwkICsEG8RvVd3EUIIIYQQQgghhBCgG4xNSkriTmQkY2fPBuDrzp0zHIjVaNmwIYC2vMHLxMbFEXTyJPC8Pu6LQVaLPHlwLl+e0o6OGBoYsPPAAQ4cP56p/QghcpYEY4UQQgghhBBCCCEyyMzUFBsrK+ITEoiIimLs7NlEP3pErcqV6fHFF5mer0r58piamBAcEsKdyMiX9t2ydy8R9+9T2tGR2aNHs3LaNMoUL669/ujJE86cP0/lcuUY0LEjALNXriQxMTHT+xJC5AwJxgohhBBCCCGEEEJkguYQr19XrODYuXPYWFoycdgwnRqxGWVkaEiNihUBOPiS7Fi/gweZtXw5AP3at0dRFCo4ObF6+nQ8evTAJPkAL1VV+WPnTtZs346NpSVXw8L4M8WBX0KI3CXBWCGEEEIIIYQQQohM0BzitSswEIAxAwaQz9r6teerU7UqAAeTSxBoxMXHcycyknmrVzNy+nRi4uL44pNPaFCjhraPgb4+3Vu1YpOXF7WrVNG2R96/z/2HDwGYu3IlMbGxr70/IUT2kQO8hBBCCCGEEEIIITJBUzcWoJmbGw1r1crSfHWSg6hHz54lPj6eu1FRDJ00icuhodo+enp6fNOjB51btEjzQK7CtrbMHTuW3UFBTPP25l50tPZaZHQ0fceOxXviRIyNjLK0VyFE1khmrBBCCCGEEEIIIUQmFClUCIACefMyqm/fLM9XqEABSjk48DQmhiNnz/Lt1KlcDg1FX0+PAjY2fFy6NHPHjqXL55+nGYjVUBSFJnXqsGXuXNo0aaJz7VxwMO7du3P83Dmd9qSkJPYcOsTDx4+zfB9CiFeTzFghhBBCCCGEEEKITGhSpw6XQkL43N0dS3PzbJmzTtWqXA4NZfSsWTx8/JjCtrasnTHjtea3NDdnzIABfFa/Pj/Nn8/VsDAAnjx7Rt+xY2nXtCnDunXDzNSUzXv2MHHBAupXr86sH37IlnsRQqRPMmOFEEIIIYQQQgghMsHczIxRX31F+VKlsm1OTd3Yh48fY2RoyPTvvstyoNe5XDnWz5zJ1507Y2jw/3y8P3bupPWQIRw4cYKtf/0FQMCxYzplEYQQOUOCsUIIIYQQQgghhBC5rFLZsljkyQPAd336UK5kyWyZ19DQkL5t27LRywunYsW07bciIhgycSLngoO1bcu3bMmWNYUQ6ZNgrMhVXbp0QVEUwsPDs23OXbt2UatWLaytrVEUhTZt2mTb3Dnp8uXLKIpCnz59sjxXkSJFKJWNn9AKIYQQQgghhMhZhgYGzBw1iglDhtC6ceNsn7+YvT1rZszQBnxT0tfTQ1EUdu7fz827d7N9bSHE/0kwVmQ7RVFe+rV8+fKXjs9KUPLKlSu0atWK69ev07t3bzw9PWnXrt1r3kn2CAkJQS/5B9uPP/6Yq3t5EzR/f+l9denSJdNzHjx4kKZNm5I3b17MzMyoVKkSXl5eJCYmpjtm69atuLm5YWVlhbm5OTVr1mTVqlUvXWfZsmVUq1aNPHnyYGVlRYMGDdi5c2em9yuEEEIIIYQQr6Paxx/zubv7Sw/pygpDAwM6NGsGQGFbW217YlISqqqSmJTEnFf83iSEyBo5wEvkGE9PzzTbK1eurP3+l19+YcyYMRRKPokyq/bs2UNsbCyzZs3K9SCsxuLFi1FVFUVRWLp0KZ6enujr6+f2tnKcs7Mzn3/+ear2ihUrZmqeTZs20a5dO8zMzGjfvj02NjZs27aNoUOHcvjwYdauXZtqzKxZs/Dw8CB//vx06dIFQ0NDNmzYQNeuXfnnn3+YMmVKqjHDhg1j9uzZFC1alH79+vHs2TPWr19Ps2bNWLBgAf3798/UvoUQQgghhBDibdTqk0/w3rhRmwGrr6dHYlKS9vrOAwewsbRkSNeumBgb59Y2hXhv5XowVlGUosCvQCNAAfYCw1RVfWXVaEVRigO/AJ8AhsAxYISqqidS9CkNfA00AEoAj4DjwFhVVc9m792IlMaNG/fKPnZ2dtjZ2WXbmjdv3gTA3t4+2+bMioSEBJYtW4a1tTXt2rVj0aJF+Pr6phmkfN9UqVIlQ/8GXiY6OpqvvvoKQ0NDDhw4gLOzMwATJkygfv36rFu3jtatW+uUorhy5QojR44kX758nDx5EgcHBwDGjh2Li4sL06ZNo3Xr1lSrVk07JjAwkNmzZ+Pk5MTx48exsrIC4Ntvv8XFxQUPDw8+++wzihYtmqX7EUIIIYQQQojcVtjWllqVK3Po9GkAOjZvjqmxMcu2bCEhIQGANdu3E3jiBKMHDKBmpUq5uV0h3ju5WqZAURQzwB8oC3QHugJOwD5FUVIXMdEdmw84CFQA+gEdki/tUxSlXIqujXkeiF0BtAAGAgWAo4qiVM2+uxGv48WasWPGjMHJyQmAJUuW6Dze/rJHzPfu3YuiKPz0008A1K1bVzvu4MGD2n4XL16ka9eu2NvbY2RkhL29Pd27d+fKlSup5hwzZox2/MqVK6levTrm5uaZqsW6fft2bt26RceOHRkwYADwPFM2MzSvUWhoKL/88gtlypTBxMSEokWLMnz4cB49epTu2CdPnjB8+HAcHBwwNjbGycmJ6dOno6pqqr5Lly7lyy+/pESJEpiammJlZUWdOnVYs2ZNpvabnf744w+ioqLo3LmzNhALYGpqqv27XrBggc6YJUuWEBcXx9ChQ7WBWIB8+fLx/fffo6oqv/32m84YzRxjx47VBmIBSpYsyYABA4iJiXlleQ0hhBBCCCGEeFd82aiR9vtWDRvydefOrP/1V2zz59e2h92+TX9PT0b/+itRDx7kxjaFeC/ldmZsX55nq5ZRVfUygKIofwOXeB5gnfmSsQMAW8AtxVh/4CowHtA8o74OmKemiD4l9wsBhgLdsvF+RBa5u7vz8OFD5syZk+ox95c93l6iRAk8PT3x9/cnMDCQnj17agNxmv8eOXKExo0b8/jxY1q2bEnZsmW5cOECK1euZNu2bfz1119UqVIl1dxTp05l7969tGjRAnd3dx4/fpzh+1m0aBEAPXr0oHLlylSqVImdO3cSHh5OkSJFMjwPwODBgwkMDKRdu3ZYWVmxc+dOZs6cycGDBzlw4ADGLzw+EhcXxyeffMLdu3dp1qwZ+vr6bNmyhREjRhAbG8vo0aN1+vfr14/KlSvj5uZGoUKFiIyMZMeOHXTu3JlLly6lW3YiPTdu3OC3334jKiqK/PnzU6tWLT7++ONMzeHv7w/Ap59+mupa/fr1MTExITAwkPj4eAwNDV85pmnTpjp9MrJO06ZN+fnnn/H392fs2LGZ2r8QQgghhBBCvI3cqlen+scfk8/GhlLFigFQsmhRhnXvzvczZqCvr689o8N3/34OnjqFR48etMzBerZCfChyOxj7OXBEE0wFUFX1mqIoQUBLXh6MrQlcemHsE0VRAoHmiqIYqKqaoKpq5IsDVVV9oChKMFA42+5EpJLWI+qOjo706NEj3THu7u44ODgwZ86cTD3mXqJECcaNG0dCQgKBgYH06tWLOnXqaK8nJSXRrVs3Hj16xLp162jfvr322urVq+nSpQvdunXj3LlzqX6w7Nu3jyNHjlApk49mhIaG4ufnR/ny5alevToA3bt355tvvmHJkiWZDm4ePnyYs2fPah+Vnzx5Mq1bt2br1q3MnDmT77//Xqd/WFgYlSpVwt/fH1NTU+B55mfp0qWZMWMGo0aN0qlde+HCBUqWLKkzR2xsLE2aNGHSpEn069cvU7V9d+3axa5du3Ta3N3dWbFiRYYD0RcvXgSgdOnSqa4ZGRlRrFgxLl68SEhIiDaj+mVjihYtiomJCdevXycuLg4jIyMePnzInTt3sLa2pkCBAqnGaOYNDg7O0J6FEEIIIYQQ4m1naGDAouSnDVNySg7MFrSxoWLZsvglP2n64NEjxs2Zw/Z9+xgzYACOhSWcIsTryu1g7EfA1jTa/wXavmJsIhCXRnssYAqUBC6mNVBRlLw8L2+wLMM7zaLuS2q8qaWybEXvo9kyz/jx41O1ubm5vTQYm1MCAwO5dOkSdevW1QnEAnTu3Jm5c+dy5MgRDh8+jKurq871AQMGZDoQC+Dt7U1SUpLO/Xbp0oWRI0eyZMkSxo4di55exiuFeHh46NQs1dfX55dffmHbtm0sXbo0VTAWYM6cOdpALEChQoVo0aIFa9as4dKlS5QtW1Z77cVALICxsTEDBw5k//79+Pv706lTp1fuM0+ePHh6etKyZUuKFy8OwNmzZ7WZy5988gmnT5/W2Vd6HiQ/CpOydEBKmvbo6Ght28OHDwGwtLRMc4ylpSV3797lwYMHFChQQDs2M2sIIYQQQgghxPuomJ0dBvr63L53j82DB9OiQQMm/fYbtyIiADjxzz+0HTqUPm3b0vPLLzFKfkIxs25HRHDmwgXMTEyol+I8DyE+BLlaMxbIC9xPoz0KsHnF2IuAU3LtWAAURdEDqqeYOz1zeH5Y2Kz0OiiK8pWiKCcURTkRkfymIzJHVdVUXwEBAbmyl1OnTgHPMzPTomk/nVzAPCVNVmtmJCYmsmzZMvT19enatau2vUCBAjRt2pSwsLBUWaOv4ubmlqrNyckJe3t7Ll++nKp2bL58+XB0dEw1RhPQvX9f93+9kJAQBg4cSJkyZTAzM9PW3NUEr2/cuJGhfdrZ2TFu3DicnZ2xtrbG2toaNzc39uzZg4uLCxcvXmTp0qUZmutVNNVHXsxmftljM+mNya7+QgghhBBCCPGuMjQ0xMHeHlVVuRYWRp2qVdk8Zw7dWrVCPzmZKD4hgQVr19Lew4NT//6bqfnPXLhA8379+LRvX0bNmMGQSZM4J08hig9MbgdjAVKfJPQ8UPoqv/F8/78rilJSURQ7wAsonnw9Ka1BiqJ8D3QCBqUscZBqU6q6SFVVF1VVXdJ6dFm8WzQZlnZ2dmle17Snlf2YmUfzNXbs2EF4eDiffvppqvE9e/YE/l9PNqNsbW3TbNfMr8kI1bC2tk6zv4HB84R4Tf0fgMuXL1OlShUWLlyIvb09ffr0YcyYMXh6emqDybGxsZna74sMDQ3p3bs3AAcOHMjQGE1W6oN0isVr7jllVqulpSWqqqZ6PTQePXqEoijazFnN65SZNYQQQgghhBDifVUyOYHncmgoAKYmJnzTowerp0/no+QybgDXwsPpNXo04+fN42EGzlZJTExk/Ny5hN+5g7mZGQ729gCs9fXNgbsQ4u2V22UK7pN2BqsNaWfMaqmqelVRlM7APEATVD0F/Ap8C9x6cYyiKP2BycAYVVWzJzUvg7Lr0X/xejSBtNu3b6d5/datWzr9UnqdjEhNoNXX1zfd8b6+vty8eRP75B9Ar3Lnzp00Swlo7im9x/IzYvr06dy/f5+VK1fSpUsXnWsrV65k5cqVrz13Spq2PqfwAAAgAElEQVQPNp48eZKh/mXKlOHMmTMEBwenKhURHx/P9evXMTQ01MkALlOmDEePHiU4OJhqLzzuEhYWRkxMDI6OjhgZGQHPXzdbW1vu3LlDREREqrqxly5dAtKuQSuEEEIIIYQQ75uSDg7sOXSIK8nBWI2yJUrw+5Qp/LFzJ3NWreJpTAwAW/bsYf+xY4zo3ZtP69ZN/3fg/fu5Fh5OYVtbfObOJeL+fZr378/uoCCG9+xJvnQSioR43+R2Zuy/PK8b+6LywH+vGqyq6iaeH8JVHiilqmpVwBwIU1VV511DUZSuwHxghqqqk7K6cZFzNIdKpczczCpnZ2eAdMskaNqrVKmS5bVu3LjBzp07sbKyonfv3ml+1apVi4SEBJYty3jZ4v3796dqu3TpEjdv3qRUqVJYWFi89p4vX37+eUbr1q0ztO7rOnLkCPD8wLWM0JSPSKukw759+4iJiaFu3boYpqhT9LIxO3fu1OmTlTFCCCGEEEII8T4q5eAAwJWwsFTX9PX16di8OVvmzqVBjf+fjRP14AHfz5zJ1xMmcOPOnVTj4uLjWbB2LQADOnTA0NAQ+4IFcatWjYSEBDb5+eXQ3Qjx9sntYOw2oKaiKNrIjKIojkDt5GuvpKpqoqqq51VVvaIoij3QHliQso+iKF/w/LAub1VVv82mvYsckjfv82Tp0Bc+hcuKevXqUapUKQICAvDx8dG5tm7dOg4dOkS5cuWoVatWltdasmQJiYmJdOvWDW9v7zS/NEFYb29vbU3SV/n1118JS/HDMDExkREjRqCqqrb0wevSZJa+GKzesWMHy5cvz9RcR48eJT4+PlX7nj178PLyAp4fmpbSgwcPuHDhQqrM5Xbt2pE3b15Wr16tU8/32bNnjB07Fnh+wFpKvXv3xtDQEC8vL53X6969e/z8888oikK/fv10xvTv3x+AiRMn6pQruHr1KgsWLMDExCRXDp4TQgghhBBCiDetpCYY+5LfyW3z5+fX779n5qhRFMynPcqHQ6dP03rwYJZt3kx8QoK2ffOePdyKiKBE0aI0rVdP296hWTMANvj56fQX4n2W22UKFgODgK2Koozhef3Yn4AwYKGmk6IoxYArwARVVScktxkC04D9wEOeZ9h+z/Ns2xkpxtYD1gJ/A8sVRamZYv1YVVVTn9gkcpWVlRUuLi7s27ePLl26ULp0afT09GjVqhUVKlR4rTn19PRYsWIFjRs3pnXr1rRq1YoyZcpw4cIFtm7diqWlJb///nuWD2lKSkpiyZIlAPTp0yfdfmXKlKFOnTocPHiQ3bt306RJk1fOXatWLSpVqkS7du2wsrJi586dnDt3jmrVqjF8+PAs7fvrr7/m999/54svvqBNmzbY2dnxzz//4OfnR7t27Vi/fn2G5xo+fDjBwcG4ublRpEgRVFXl7NmzBAQEoCgKkydPpkaKT1ABNmzYQN++fenduzfe3t7admtraxYtWkS7du2oV68e7du3x8bGhm3bthEcHEyHDh1o06aNzlwlS5Zk6tSpfPPNN1SpUoX27dtjYGDAxo0buXHjBiNHjkx1KFu9evUYMmQIXl5eVKxYkdatWxMTE8O6deuIjo5m/vz52oPPhBBCCCGEEOJ9VtTODkMDA25FRPDk2TOMDAzY4OeHZZ48VC5XjsK2ttrfnd1r1qR6xYrMXbWK9Tt3oqoqMXFxzP79d3YeOMDYgQMpVawY3hs2APB1p07ap2EBqlesSIkiRbgaHo7/kSM0qVMnV+5ZiDcpV4Oxqqo+URTFned1Xlfy/OCuv4BhqqqmrP6sAProZvKqgBPPD+OyBsKBpcBkVVXjUvRzB4wBZyDohS1cBxyz635E9lm9ejXffPMNO3bsYM2aNaiqiqOj42sHYwFcXV05fvw4EydOxN/fn23btpE/f346derEjz/+iFOKQuSvy8/Pj9DQUKpVq0bFihVf2rdv374cPHiQRYsWZSgYO2fOHNavX4+3tzchISEUKFAADw8Pxo8fj7GxcZb27ezsjL+/P2PHjsXX15fExEQqVaqEj48PZmZmmQrGdu/eHR8fH44dO8aOHTtISEjA1taW9u3bM3jwYGrXrp2pvbVu3ZqAgAAmTpzIpk2biImJwcnJiVmzZjFo0KA0x3h4eFCiRAmmT5/OihUrSEpKokKFCvz888/aA8leNGvWLCpVqsT8+fNZuHAh+vr6VKlShe+++45myZ/WCiGEEEIIIcT7zkBfH8fChbl0/TpXw8I4dPq0tsQAgF2BAiycMAGH5IOwzc3MGPXVV3xWvz4/zZ9PcEgIAMEhIXQbOZLaVaoQef8+pR0dca9ZU2ctRVFo36wZPy9axEY/PwnGig+CktFHpD9kLi4u6okTJ17Z7/z585QrV+4N7Eh8SLp06cLq1asJCwujSJEiub0d8QbJe4oQQgghhBAiN4yaMYNdgYEM7NiRpZs3ExMbS63KlTkXHMzjp08Z3b8/bT/9NNW4+IQEVm3bxsJ164iJi9O51rBWLWaMHJlqzMPHj3Hr2hUDfX0OrlmDcfJhy0K8axRFOamqqsur+uV2zVghhBBCCCGEEEII8RbR1I1dtGEDMbGxfFKrFgvGjaNry5YA3I6MTHOcoYEBPb/8kk1z5lD7hQOy/zp8mGGTJ3M7IkKn3dLcnJJFixKfkMD5q1dz4G6EeLtIMFYIIYQQQgghhBBCaJVMPjMjISEBQwMDhnXvDjw/uAvgzr17Lx1f2NaWuWPHMmHIEJ32gGPH+HLwYNZs305iYqK2vVLZsgCcOX8+2+5BiLeVBGOFEEIIIYQQQgghhJYmMxagc4sWFClUCADbfPkAuJNOZuzhM2foNnIkV8PCUBRF29/awkLb52lMDNO8vek2ahQXkjNhKyeXZzt74UL234wQbxkJxgrxllu1ahWqqkq9WCGEEEIIIYQQb0QRW1sK29piV6AAfdq21bZrg7HpZMZu8vPj74sXWZh8CPSp//4DoJmbG0snTaJEit9r/710ic7ffsvM5cspU7w48DwYK2cbifedQW5vQAghhBBCCCGEEEK8PfT19dk4ezZJqkoeU1Ntu7ZMQWQkqqqiKIrOuEvXrwPP68NGREVxOjkYW/Wjj6jy0Ues+/VXlm/ezOING4hPSCAxKYnffXzYExSEuZkZUQ8eEHb7Ng52dm/oToV48yQzVgghhBBCCCGEEELoMDUx0QnEAuQxNcXczIzYuDgePHqkcy0mNpaw27cBSEhM5I+dO/n74kUAnJPLEBgZGvJV+/ZsnD0blwoVtGNvRUTw+OlTAA6ePJlj9yTE20CCsUIIIYQQQgghhBAiQwqlc4hXyI0bJCUlYWRoCMAKHx9i4uJwLFyYvNbWOn2LFS7M4p9+YvzgwVilqCcL8Ovy5Wz08yMpKSkH70KI3CPBWCGEEEIIIYQQQgiRISlLFaSkKVFQr1o1ShQpQlx8PADO5cunOY+iKLRs2JAtc+fSvH59bXt8QgITFyyg1+jRXA4N1RnzLCaGtdu3ExEVlV23k2tuR0QwZtYsLoWE5PZWxBsmwVghhBBCCCGEEEIIkSHpHeJ1OTkY61SsGO2aNtW2V0knGKuR18qKicOGMWfMGJ32M+fP0+Gbb5i7ejUxsbEArN+5k6ne3vTz9NSWNXhX7Tp4kO0BAfyxa1dub0W8YRKMFUIIIYQQQgghhBAZosmMvf1CZqwmi7WUgwPNGzQgj6kpiqJQ9aOPMjRvXRcXPi5dGgA9vefhqoSEBLw3bKDt0KEcPnOGE//8A8DVsDBGTp9OYmJittxTboh++BCA8OQ6u+LDYZDbGxBCCCGEEEIIIYQQ74b0MmOvaIKxxYphbmbGPE9Poh8+xL5gwQzPXaV8ec4FB+NUrBhGhoacCw4GIOz2bQaMG4eBvj4A5mZmBJ06xczly/m2Vy8URcmOW3ujHjx+DMCNu3dzeSfiTZPMWCGEEEIIIYQQQgiRIWnVjH34+DG3IyMxNjKiiK0tAJXLlqV+9eqZmrvjZ59RKH9+Ll67hqIojOjdG3MzM+31hMREFEXhy8aN0dfXZ/Wff9J91ChO/PMPUdHR+AYEMGvFCv6+eDEb7jRtUdHR2nq4WfHw0SMAbt29+05n+IrMk8xYIYQQQgghhBBCCJEhaWXGXgkLA6BEkSLoJ2evvo5CBQrgPXEifcaM0QZU/5g1C6+VK9kVGAiAqqr87uND8SJFuBcdzd8XL9LnhXqzK7du5evOnenxxRfakgfZwXf/fjy9vLA0N6dj8+a0b9oUM1NTHj5+TNitW/x7+TKXrl+ngpMTX3zyCXp6esQnJLBy61au37zJ2IEDtdm90cnB2PiEBCKioihUoEC27VO83SQYK94K48aNY/z48ezbt4/6KU5RzKyAgAAaNGiAp6cn48aNy7b9CSGEEEIIIYQQ4v+ZsXcjI1FVFUVRdEoUZFWRQoXwnjiR3qNH8/fFi5z691+mDB9OxP37nEyuGQtwLTwcA319qn70EeevXCExKYmqH31Efhsbtvn747VyJUfOnKF5gwZUKV8eYyMjLl2/zrXwcOITEtDX08PKwoJmbm7aAOnLbN6zh5/mz0dVVaIePGDe6tX8tnYtiUlJqfpu2bOHHfv381W7dsxdvVpbbqHtp59SwckJeJ5NrHHj7l0Jxn5ApEyByFGTJk1CURQUReFiDj4m8LY4f/48np6etGzZEgcHB+29JyQkvHRcVFQUw4YNw9HREWNjY+zt7enVqxfh4eGZ3sOzZ8/w9PSkTJkymJiYULBgQdq1a8f58+ezdf3w8HB69eqFvb09xsbGODo6MmzYMO7fv5/pPQshhBBCCCGEeDfkMTXF3MyMmLg4HiRnd166fh3InmAsPA/I9uvQAYANfn4A3Eg+6OqLTz7RBk8TEhM5+e+/5LW2Zvp33zHf05MJQ4YwZ8wYrC0sOHbuHD96edG8f38a9erFwPHj+WXJEmatWMGMZcv40cuLpRs3vnI/G/38mDBvHqqqMqRrVxaOH0/NSpVITEpCT08PawsLnIoVo2XDhgzq3Jm8Vlac/Pdf+nl6agOxAFEPHmi/f5AyGHvnTtZfNPHOkMxYkWNUVWXJkiUoioKqqixevJjp06fn9rZylJ+fHxMmTEBfXx8nJydMTEyIiYl56Zh79+7h6upKcHAw7u7udOjQgQsXLrBs2TJ8fX05fPgwJUqUyND6sbGxNGrUiKCgIFxcXBg6dChhYWFs2LABX19f/P39qVGjRpbXv3LlCq6urty9e5eWLVtStmxZjh07xuzZs9m1axdBQUHkS350RQghhBBCCCHE+6VQ/vxcDg3lzr17WFtaclkTjHVwyLY1mtaty8xlyzh74QL7jx3jdmQkFnnyMHbgQDq3aMFPCxZw9sIFAMJv32bwxIk0c3Pj2549qeviwkYvL3bs38+p//7j7IULJCQm4lSsGCUdHDA1NuZpTAwb/fzw3riRJnXrUszeHngeywC0h4LFxMYyfelSAEb07k3nFi0AqFGpEjGxsRgZGqYqhdC6SROmLFqE38GDfFq3Ls9iYth//Dj3UwRjNTVjQYKxHxrJjBU5Zvfu3Vy7do3u3btja2vLihUriIuLy+1t5aimTZty5MgRHj16xPnz57FNLlz+Mj/88APBwcF4eHjw119/MWXKFHx8fJg9ezZ3795l4MCBGV5/5syZBAUF0aZNG44ePcrUqVNZs2YNGzdu5OnTp/Tq1YukFx6heJ31Bw4cyN27d/Hy8sLHx4cpU6bg7++Ph4cHFy9eZPTo0RnesxBCCCGEEEKId0vKQ7xUVc3WMgUapiYmNE8uYzhp4UIAKpcrh56eHqWKFWPZ5MmMGTBA54CvHfv302rQIDbv2UNeKyu6tWrFrB9+YN/vvxO4ejVLJ09mdP/+fNOzJ2MGDOBzd3fi4uOZ/NtvJCUlsWb7dup27syCtWu1cx47d46Y2FjKlSihDcRqmBgbp1mT1sbSkqnffkvQ2rVMGT6conZ2ANx/+BB4HuCNSREfkWDsh0WCsSLHLF68GIC+ffvSuXNnIiMj2bJlS6bmUBSF+vXrc/PmTbp27UrBggUxNTWlatWqrFmz5qVjz5w5w2effYa1tTVmZma4ublx6NChVP1u3rzJhAkTqF27NoUKFcLIyAh7e3s6der00kf701KmTBlq1KiBqalphvo/efKElStXkidPHsaPH69zbdCgQTg6OuLn58fVq1dfOZeqqvz2228ATJs2TecHQsuWLalbty7//fcf+/fvz9L6V69eZffu3Tg6OvL111/rjBk/fjx58uRh5cqVPHnyJEOvgRBCCCGEEEKId0vBFId43YuOJvrRIyzy5KFg3rzZuk6bJk0AuJt8WFiV8uW11/T09GjTpAk+8+bxad262vaHjx8zYd48eo8erT1YLD0ePXpgbWHB0b//pr2HB9O8vXn89Cmrtm3jWfJTrvuPHQPArXr1TO8/T3JswMbSEoDo5GDswxd+X5Zg7IdFgrEiR9y5c4dt27ZRunRpXF1d6dmzJwCLFi3K9Fz379/H1dWVc+fO0bNnT7p168bVq1fp3Lkzv/zyS5pjTpw4gaurKzExMfTp04fmzZtz8OBBGjZsmKp27YEDB5gyZQrW1ta0bt0aDw8PatasycaNG6lWrRpnz57N/AuQQYcPH+bZs2fUrl0bCwsLnWt6eno0btwYgH379r1yritXrhAaGkrp0qUpXrx4qutNmzYFwN/fP0vra8Y3btw41SeAFhYW1K5dm6dPn3LkyJFX7lkIIYQQQgghxLunUHJm7O3ISIJOnQLAqVgx7aP92aVUsWI4lyun/XPlFN9r5LexYcrw4cz39KRwiqdTT58/T3sPD+auXk1MbGya89tYWvJNcrzi0vXrWJqbU9jWlqcxMfgfPYqqqhw4cQIAt2rVXvs+bKysgP9nxmpKFJiamADPD/ASHw4JxoocsWzZMuLj4+nRowcAFSpUoEqVKuzbt4/Lly9naq6///6b6tWrc+rUKaZOncrChQs5deoUNjY2jB49Os2sUV9fX+bPn89ff/3F9OnT+eOPP5g/fz4xMTHMnj1bp6+7uzt37tzB19eXefPmMXXqVDZv3szx48cBGDVq1Ou9CBmgCQyXLl06zetOyacsBqco+J2dc72pMUIIIYQQQggh3h+2yZmxIeHhzF29GoCWDRvmyFptP/0UACNDQz4qVSrdfq7Ozmz08qJX69b/P+ArIQHvDRtoO3QoR9JJtGrRoAHtmjalkasrG2bNonurVgD4BgRw/soVIqKiKJgvH2UzeJZLWjSZsZqasZrDu5yKFUNfT4+IqCji4uNfe37xbpEDvN6QXyq8PDX+bTHin6JZnkNVVby9vdHT06Nbt27a9h49enDq1Cm8vb2ZMmVKhufT19dn6tSpOlmYxYsXZ8iQIYwfP56VK1fi6empM6Z27draQLBGr169GDRoEMeSHzHQKFiwYJrrVqpUCXd3d3bv3k18fDyGhoYZ3nNGPUh+I7ZK/pTsRZr26OjoHJnrTY0RQgghhBBCCPH+0NSM/Sv5iciPnJxo0aBBjqz1iasrAceO4VSsGEav+L3c1NiYIV270qxePZ0DvsJu36a/p6f2gK+81tbaMYqi8EO/fto/N65dm2lLlnDk7FltBrBbtWpZyvp9MTP2QXJmbF4rK2zz5+fm3bvcunuXYoULv/Ya4t0hmbEi2/n7+3PlyhUaNWpE4RRvJJ06dcLIyIjly5cTn4lPfBwcHNJ87L5+ciHv06dPp7rm4uKSqs3Q0BBbW1vu37+f6pqvry8tWrTAzs4OQ0NDFEVBURT+/PNPYmNjiYyMzPB+s9OLpzi+6bne1BghhBBCCCGEEO8OTWasxne9e6d5kFV2MDI0ZNqIEfRt1y7DYzJywNeLh1trWFtaUs/FhaSkJDbv2QNAvTRiDJlhk1wWUJsZmxyM1ZRFAAiXurEfDMmMfUOyI+P0XaGpC/tiZmq+fPlo0aIFmzZtYuvWrbRp0yZD89mmqPmSUqFChYD/Z2qmZJ3iU66UDAwMSExM1Gnz8vJi6NCh2NjY0KhRIxwcHDAzM0NRFHx8fDh79iyx6dSXySpNFmla9wDwMPlTs/SyULM615saI4QQQgghhBDi/aHJjAX4zM2NSmXL5uJu0qY54Kt+9epMX7qUXYGBwP8P+Nq+bx+jBwygZNHU8Zrm9evjn5z1a2JsTPWKFbO0l1SZscllCqzMzdHX0+P4uXNyiNcHRIKxIltFRETg4+MDQMeOHenYsWOa/RYtWpThYOyddN6Qbt++DWQt6JeQkICnpyeFChXi1KlT2NnZ6Vw/fPjwa8+dEWXKlAHSr6966dIlIP36rFmd602NEUIIIYQQQgjx/shjaopj4cLci45mSIryhG8jzQFfn7u7M+m337RBz1P//Ud7Dw96fPEFfdq0wcTYWDumTtWqWFlY8ODRI2pVroyxkVGW9mCRJw8G+vo8efaMuPh4HmqCsRYWWCZnzUow9sMhwViRrVasWEFcXBxVq1alcuXKafbZtm0be/fu5dq1a2mWH3hRaGgoISEhODo66rQHBAQA4Ozs/Nr7jYyMJDo6mi+//DJVIPbx48ecSj4VMqfUrFkTU1NTgoKCePToERbJb8IASUlJ7N69G4AGGai9U7JkSRwcHAgODk7ztd25cyfw/MCyrKyv+X737t0kJSXpPIry6NEjgoKCMDU1pWbNmhl+HYQQQgghhBBCvFtWTJlCQmIi+dJ5MvVtoznga/Eff/C7jw8JiYnaA778AgMZPWAANStVAp6XRmjZsCG/+/jQtF69LK+tKArWlpZE3r/P/YcPtWUKrCwsyGNqCsCNu3ezvI54N0jNWJGtvL29AZg/fz7e3t5pfvXr1097yFdGJCYmMnLkSJ16LteuXcPLywsDAwO6dOny2vstWLAgZmZmnDx5ksfJn0wBxMfHM3To0ByvFWtubk7Xrl158uQJ48aN07k2d+5cQkJCaNKkCSVeOLXxypUrXLhwQaf2rqIo9O/fH4DvvvtO5/XaunUrgYGBlC9fHjc3tyytX7JkSRo3bkxISAjz5s3TGePp6cmTJ0/o1q0befLkea3XRAghhBBCCCHE28/KwuKdCcRqaA74Wjdzpk5pBc0BXz/8+itRyYdRD+7ShfW//krj2rWzZW0bS0vged1YTZkCS3Nz/sfenYfXeK3/H38/SYgggpSg5KQiUooQoWZFSyml5eivhJr6VVpDaKut+ZhrHkppCIJDaYOW1BSUltTQuYZEzTRqHiqJJM/vj2TnZCI7gyTi87quXIn1rOHemz7d+87a9yqfUILxfMKnfyX/085YyTa7du3i2LFjVK9enbp16963X+/evZkwYQIBAQGMHTsWO7sH/zOsUaMGoaGh1K5dm5YtW3Ljxg3WrFnD9evX+fjjj3F3d890zDY2NgwcOJDJkydTvXp12rdvT3R0NDt37uTq1as0a9aMnTt3Wj3f5cuXeffdd5P9GeIfs+VAqw8++ICnk9z0J06cyK5du5gxYwY//fQTdevW5ciRI2zYsIHSpUunSngCtGjRgtOnT3Py5MlkO4aHDBnC119/zbp163j22Wdp0aIFZ86cYe3atRQuXJglS5akKqqemfXnz59PgwYNGDhwIDt27KBKlSqEhoayc+dOKleuzIQJE6x+zkRERERERERykuWAry+3bWPWsmXc/ucfIP6Ar72HDjH4jTfo0KIFnlZ8mtdaicnYmze5mWRnrOUAL+2MfXxoZ6xkm88++wyAPn36PLCfm5sbzz//PBcvXuSrr75Kd94SJUrw/fff88wzzxAQEMDSpUt56qmnWLlyJe+9916W4x43bhzTp0/HwcGBhQsX8uWXX+Lj48MPP/yAq6trhua6ffs2y5YtS/y6c+cOAMuXL09s+yvFb7ucnZ3Zt28fAwcOJDw8nOnTpxMaGkrPnj05dOhQhpLN9vb2bN++nVGjRnH9+nVmzpzJtm3b6NChAwcOHODZZ59NNSYz67u7u3Pw4EF69OhBaGgo06dP58SJEwwcOJB9+/bhnOJkTREREREREZG8xHLA1/pPPuHFxo0T2y0HfPUZMYITZ89m23qJh3jduMF1SzK2aFFKOjlRyN6em7dvcyshhyD5m2GaZm7HkOf5+PiYBw8eTLffkSNHqFKlSg5E9PgwDIOmTZsm1ocVeZzoniIiIiIiIpIzvjt8mIkLFyY7SMvOzo6er7xC7xQHfGXGpEWLWLN5M+/17k3ghg38dfkymxYu5EkXF14dMIA/z54l8OOPqa7DsB9ZhmEcMk3TJ71+2hkrIiIiIiIiIiKPtYbe3qybM4deHTtiZ2sLQExMDJ+tXcu/Bw9m/88/Z2n+pGUKLDVjnRIO0fauWhWANQkHb0v+pmSsiIiIiIiIiIg89u57wNfFi7w1ejTDkxzwlVGWZOylK1e4GxmJrY0NRRwcAOj56qvY2dqyefduTp8/n/UHInmakrEiIiIiIiIiIiIJLAd8jejXj6KFCye2b9q9mw7vvEPQtm3ExcVlaE5LzdjTFy4AUMzRMfGg7yddXGjXvDlxcXEs+vzzbHoUklcpGSt5mmmaqhcrIiIiIiIiIjnqQQd8jc3EAV+WnbGWna9ORYsmu96nUyfsbG0J3rOHU9odm68pGSsiIiIiIiIiIpKGJ0qUYPLQoXwyahRPurgkth/+4w9e8/Pjk5UriYyKSncey87Y67duAf+rF2vxpIsLL2t37GNByVgREREREREREZEHyOoBXyUTdsZapNwZC9Dn3//G1saGrXv3ciMhaSv5j5KxIiIiIiIiIiIi6bAc8PXf6dOp4emZ2G7NAV/FUuyETflngHKlS+NTrRoxsbHs/OGH7A1e8gwlY0VERERERERERKzk4ebG0kmTMnTAl52tbbLSBGntjAV4oWFDALZ///1DiFzyAiVjRUREREREREREMiAzB3yVSFKq4H7J2ObPPouNjQ37f0jY2TEAACAASURBVP6Zm7dvP5zgJVcpGSsiIiIiIiIiIpIJGTngK2kyNq0yBQAlixen9jPPEBMTwy6VKsiXlIwVERERERERERHJAmsO+Crh5JTY/347YwFeaNAAUKmC/ErJWBERERERERERkSxK74Cv8NOnE9uc7rMzFqBF/frY2Niw76efuHXnzkONWXKekrEiIiIiIiIiIiLZ5H4HfJ25eDHx56TtKTkXL4531arci4lht0oV5DtKxkqu8vX1xTAMzp07l21zfvPNN9SvX5/ixYtjGAadOnXKtrkfpvDwcAzDoE+fPlmeq3z58lSqVCkbohIRERERERGRjLrfAV8WUz77LNUBX0m1atQIgIWff87dyMiHFqfkPCVjJdsZhvHAr6VLlz5wfFaSkidOnKBDhw6cPn2a3r17M3r0aDp37pzJR5I9Tp06hY2NDYZhMGrUqFyNJSdER0cze/ZsevToQc2aNSlYsKBVf+8AAQEB1KlThyJFiuDk5ESzZs0IDg7OVBwbNmygadOmODk5UbRoUerVq8eKFSuydf2YmBimT59O9erVcXBwwNnZmbZt2xIaGpqpmEVERERERCR/SXrAV9IDvH4PD091wFdSLzdvjse//sXZixeZYcX7aXl02OV2AJJ/jR49Os32mjVrJv48depURowYQZkyZbJlzW3bthEVFcWsWbNyPQlr8dlnn2GaJoZhsGTJEkaPHo1tQjHv/OjmzZsMHjwYABcXF8qUKcPZB/y2z2Lw4MHMnj2bChUq0LdvX+7evcuaNWto06YNCxYs4K233rI6hlmzZuHn58cTTzyBr68vBQoUYO3atXTr1o3ffvuNyZMnZ3l90zTp3LkzQUFBVKlShQEDBnD58mXWrFnDli1bCAoKom3btlbHLCIiIiIiIvlXQ29vRr/zDoMnTkxssxzw9c3evQx/6y3qeXklXrMvWJAJfn50ffdd1n7zDU18fGjs45MboUs2UzJWHpoxY8ak26ds2bKULVs229a8cOECAOXKlcu2ObMiJiaGgIAAihcvTufOnVm0aBGbNm3i5Zdfzu3QHhpHR0eCg4OpVasWLi4ujBgxggkTJjxwzJ49e5g9ezYeHh4cOHAAp4QTJt999118fHzw8/PjpZdeokKFCumuf+LECYYNG4azszOHDh3C1dUVgJEjR+Lj48PHH39Mx44dqVOnTpbWX7FiBUFBQTRu3Jht27Zhb28PwP/93//RpEkT+vTpQ3h4OEUfcEKmiIiIiIiIPD7KPPEEAI6FC/NUhQr8cuwY8L8Dvl5q2pShPXtSsnhxACq7ufF2167MWraMEbNnU71yZQoWKECDWrXo1KpVrj0OyRqVKZBclbJm7IgRI/Dw8ABg8eLFycobPOgj5tu3b8cwDMaNGwdA48aNE8ft3bs3sd+xY8fo1q0b5cqVo2DBgpQrV4433niDEydOpJpzxIgRieMDAwOpW7cuRYsWzVAt1q+//pqLFy/y+uuv069fPyB+p2xGWJ6jM2fOMHXqVDw9PSlUqBAVKlRg6NCh3Lp1675j79y5w9ChQ3F1dcXe3h4PDw+mTZuGaZqp+i5ZsoRXX32VihUr4uDggJOTE40aNWLVqlUZitfe3p4XX3wRFxcXq8csWLAAiE+YWhKhAO7u7vTr14/IyEiryhxA/L+b6OhoBg0alJiIBXB2dubDDz/ENE0+/fTTLK9vGTNhwoTERCxAvXr16NSpExEREQQFBVkVs4iIiIiIiOR/5cuUoWjhwlStVCnNA7427d5Nh3feIWjbNuLi4gDo9vLLPFujBjdu3WLvoUOE7N/P+AULWLN5c249DMki7YyVPKV58+bcvHmTuXPnUqtWrWQ7SGvUqHHfcRUrVmT06NGEhISwZ88eevbsmZiIs3zfv38/LVu25Pbt27Rv356nn36ao0ePEhgYyMaNG9mxYwfe3t6p5p4yZQrbt2+nXbt2NG/enNu3b1v9eBYtWgSQWD/Vy8uL4OBgzp07R/ny5a2eB2DAgAHs2bOHzp074+TkRHBwMDNmzGDv3r18++23yRKCEF+79fnnn+fSpUu0adMGW1tbgoKCeO+994iKimL48OHJ+vft25eaNWvStGlTypQpw+XLl9m8eTNdu3YlLCzsvmUnskNISAgAL774YqprrVu3ZtKkSYSEhDBy5Mgsz5W0T2bX/+effwgNDcXR0ZGGDRumOea///0vISEhdOvWLd2YRUREREREJP8rWrgwmxctwsHePvGAr+fq1mXakiV8s2cPADdv32bsJ5/w1c6dDO/XD/cKFfhk9Gh+/OMP7kZFEXbqFHNXrOBjf39cy5WjfpJSkPJoUDJWHpq0yhS4ubnRo0eP+45p3rw5rq6uzJ07F29vb6tKHUB8MnbMmDHExMSwZ88eevXqRaOEkwcB4uLi6N69O7du3WL16tW89tpriddWrlyJr68v3bt359dff8UwjGRz79y5k/379+OVpHaLNc6cOcOWLVuoWrUqdevWBeCNN95gyJAhLF68OMPJzX379vHzzz8nflR+4sSJdOzYkQ0bNjBjxgw+/PDDZP3Pnj2Ll5cXISEhODg4APE7PytXrsz06dP54IMPktWuPXr0KO7u7snmiIqKolWrVkyYMIG+fftmW23fpG7evElERATFixenVKlSqa5bdkofP37cqvmOJXzMo3LlyqmuVahQgUKFCnH69Gmio6MpWLBgptYPCwsjLi4Od3d3bGxSf8AgozGLiIiIiIjI46FYilJ2lgO+2jVrxsSFCzkfEQHA4T/+4DU/P3q+8gp9/v1v6lSvDkATHx/+iYxk8bp1vPfxxwR+/DFPZXCzl+QuJWNzyNRq6R9glFe891v6dTmtMXbs2FRtTZs2fWAy9mHZs2cPYWFhNG7cOFkiFqBr167MmzeP/fv3s2/fPho0aJDser9+/TKciAXw9/cnLi4u2eP19fVl2LBhLF68mJEjR6aZyLsfPz+/ZDVLbW1tmTp1Khs3bmTJkiWpkrEAc+fOTUzEApQpU4Z27dqxatUqwsLCePrppxOvpUzEQnzJgf79+7N7925CQkLo0qWL1fFa6/r16wDJygMkZWm39EvPzZs3ASiW5JTKpIoVK8alS5e4ceMGpUqVytT6N27cyNaYRURERERE5PHW0NubdXPm8Nnnn7N8/XpiYmPve8DX2126cOrcOXbs38/wmTMJ/PjjxM1WlgPEJe9SzVh5aEzTTPW1a9euXInl8OHDQPzO27RY2n/88cdU1yy7WjMiNjaWgIAAbG1tk31MvVSpUrRu3ZqzZ8/yzTffZGjOpk2bpmrz8PCgXLlyhIeHp6od6+zsjJubW6oxloTutWvXkrWfOnWK/v374+npSeHChRNr7lqS1+fPn89QvNnFUt82I/8zeVDfjM6XmfUzM0ZEREREREQebw729gzs1o3/Tp9ODU/PxHbLAV/DZ87k6vXr2NjYMG7QIFycnfnjxAnWbdkCxJc46PHhh3QePJhjJ0/m1sOQdCgZK48Fy07GsmXLpnnd0p7WTsbMfDR/8+bNnDt3jhdffDHV+J49ewL/qydrrfsdiGWZ37Ij1KJ4wumLKdnZxW+Ij42NTWwLDw/H29ubhQsXUq5cOfr06cOIESMYPXp0YjI5KioqQ/FayxKn5e8oJcvjut8u1JSKFSuGaZqpng+LW7duYRhG4s7ZzKxv+Tm7YhYRERERERGx8HBzS/eAr0L29rzfpw8Ac1es4HxEBAMnTODno0c5fuoU3YcNY/327bn1EOQBVKYgh2TXR/8lcyxJsb/++ivN6xcvXkzWL6nM7G60JFo3bdp03/GbNm3iwoULlCtXzqo5IyIi0iwlYHlM9/tYvjWmTZvGtWvXCAwMxNfXN9m1wMBAAgMDMz13eooVK4aLiwsRERH8/fffqeq2hoWFAWnXgE2Lp6cnoaGhHD9+nDp16iS7dvbsWSIjI3Fzc6NgwYKZXt/DwwMbGxtOnDhBXFxcqnITGY1ZREREREREJClrDvj66K23aFS7NnsPHaLz4MHcuXsXF2dn6tSowdc7dzJm3jy+2LqVJnXq0KxuXSr961+5/KgEtDNW8iBLnZOkOzezqlatWgD3LZNgaff29s7yWufPnyc4OBgnJyd69+6d5lf9+vWJiYkhICDA6nl3796dqi0sLIwLFy5QqVIlHB0dMx1zeHg4AB07drRq3exmKRORVumG4ODgZH0exlwZHVO4cGGeffZZbt26xXfffZflmEVERERERETSYjng65NRo3gyySdmD//xB/9vyBCedHGhYIEC3Ll7FydHR+aPGcP4QYMYO2AADoUK8evx43yyciWdBg1iz8GDufhIxELJWMlzSpYsCcCZM2eybc4mTZpQqVIldu3axfr165NdW716Nd9//z1VqlShfv36WV5r8eLFxMbG0r17d/z9/dP8siRh/f39E+uLpmfmzJmcPfu/g+BiY2N57733ME0zsfRBZllqy6ZMVm/evJmlS5dmaW5rvPXWWwCMHz8+2Uf///zzTxYsWEChQoVSHfx2+fJljh49ypUrV5K19+7dmwIFCjBnzpxkz9eVK1eYNGkShmHQt2/fLK/fr18/AIYPH56shENoaCjr1q3DxcWFV155JYPPhIiIiIiIiEhqlgO+enXsiF3CJraYmBjWbN5MkcKFqVCmDHNHjMA94ZyY9i1asCMggBkffED9mjUBCAkNzbX45X9UpkDyHCcnJ3x8fNi5cye+vr5UrlwZGxsbOnToQLVq1TI1p42NDcuWLaNly5Z07NiRDh064OnpydGjR9mwYQPFihVj+fLlWT5wKS4ujsWLFwPQJ6F2S1o8PT1p1KgRe/fuZevWrbRq1SrduevXr4+XlxedO3fGycmJ4OBgfv31V+rUqcPQoUOzFPfbb7/N8uXLeeWVV+jUqRNly5blt99+Y8uWLXTu3Jk1a9ZkaL6JEydy/Phx4H+Hovn7+ycme5s2bZosgdykSRMGDhzInDlzqFGjBh07diQyMpLVq1dz/fp15s+fn3jwmMWsWbOYMGEC48aNY8SIEYnt7u7uTJkyhSFDhuDt7c1rr72GnZ0d69at4/z58wwbNizVoWyZWd/X15cvv/yS9evXU6tWLdq2bcvly5dZs2YNcXFx+Pv7U7Ro0Qw9byIiIiIiIiL3Yzngq3XjxoxbsIBfjh0D4NqNG1y7cYP/btrEky4uOCecjVLYwYHm9epR2tmZfT/9xIFffsnN8CWBkrGSJ61cuZIhQ4awefNmVq1ahWmauLm5ZToZC9CgQQMOHDjA+PHjCQkJYePGjTzxxBN06dKFUaNG4eHhkeW4t2zZwpkzZ6hTpw41atR4YN8333yTvXv3smjRIquSsXPnzmXNmjX4+/tz6tQpSpUqhZ+fH2PHjsXe3j5LcdeqVYuQkBBGjhzJpk2biI2NxcvLi/Xr11O4cOEMJ2M3b96c6uP73333XWKbnZ1dqt28s2bNwsvLi/nz57Nw4UJsbW3x9vbm/fffp02bNhla38/Pj4oVKzJt2jSWLVtGXFwc1apVY9KkSYkHkqWU0fUNw2Dt2rXMnj2bgIAA5syZg4ODA8899xwjR46kXr16GYpZRERERERExBqWA76+3LaN2cuXc+vOHQCCv/2WvYcOMah7d1594YXE802qVKyIY5EinIuI4HxERLJyB5LzDGs/Iv048/HxMQ9aUVfjyJEjVKlSJQcikseJr68vK1eu5OzZs5QvXz63w5EcpHuKiIiIiIiIPMiV69eZtmQJwd9+m6zd6+mnGfHWW3gklCX0mzSJnaGhjHnnHTo8/3wuRJr/GYZxyDRNn/T6qWasiIiIiIiIiIjII8i5eHEmDRnC/NGjqVCmTGL7z0eP8vrQocxatoy7kZHUrV4dgFCVKsh1SsaKiIiIiIiIiIg8whrUqsXa2bPp8+9/Y2cXX5U0JjaWpUFBdBw4ENuEtgO//mr1QeLycCgZKyIiIiIiIiIi8ogrZG/PO1278vnMmXhXrZrYfuHSJSZ++ikFCxTg8rVr/HnuXC5GKUrGiuRxK1aswDRN1YsVERERERERkXRVrFAB//HjGfPOOzg5Oia2R9+7B8CCVauIjY3NrfAee0rGioiIiIiIiIiI5CM2NjZ0eP55gubNo12zZsmubd+3j+4ffMDRP//Mpegeb0rGioiIiIiIiIiI5EMlnZwYN2gQn40bx5MuLontv4eF0eXdd5m2ZAn/3L2bixE+fpSMFRERERERERERycfqVK9O0Lx5FCtSJLEtLi6OFRs38so777AzNDQXo3u8KBkrIiIiIiIiIiKSzxUsUIDnGzQAoHyZMontEVeu4DdpEoMnTuSvv//OrfAeG0rGioiIiIiIiIiIPAae9fIC4MnSpZkweDAlnJwSr+364QdeGTCAwA0biNEBXw+NkrEiIiIiIiIiIiKPgTrVqgHw89GjvNCwIevnzePVF15IvH43MpLpAQF0ffddfgsLy60w8zUlY0VERERERERERB4DJYsXx+Nf/yIyOppfjh3DydGRUW+/TcDEibi7uib2O3byJN3ef59JixZx686dXIw4/1EyVkRERERERERE5DFRp3p1AH745ZfEtlpVq7J6+nQG+PpiX7AgAKZpsmbzZl595x22fvcdpmnmSrz5jZKxIiIiIiIiIiIij4lna9QAIDRJMhagQIEC9O7UiS/mzKGht3di+9/XrvH+1KkMGD+e8xERORprfqRkrOQJY8aMwTAMdu3alaV5du3ahWEYjBkzJlviEhERERERERHJT2pXq4atjQ2/h4Vx5+7dVNfLlynDvJEjmfLuuzxRokRi+95Dh+g4YAABX37JvZiYnAw5X1EyVh6qCRMmYBgGhmFw7Nix3A7noTJNk2+++YYBAwZQs2ZNSpQoQaFChfD09GTw4MFEPOC3R1evXmXw4MG4ublhb29PuXLl6NWrF+fOnctwHHfv3mX06NF4enpSqFAhSpcuTefOnTly5Ei2rn/u3Dl69epFuXLlsLe3x83NjcGDB3Pt2rUMxywiIiIiIiIiOaNo4cJUrVSJmNhYDv/+e5p9DMOgVaNGBM2bR+fWrTEMA4DI6GhmL1/O60OG8NPRozkZdr6hZKw8NKZpsnjx4sT/YD/77LNcjujhioqKonXr1ixatIhSpUrRu3dv+vXrR6FChZg9ezZeXl6EpXES4ZUrV6hfvz6zZ8/G3d0dPz8/6tatS0BAALVr1+bPP//MUAwvvPAC//nPfyhWrBiDBg3i+eefJygoCB8fH0JDQ7Nl/RMnTlC7dm0CAgKoW7cufn5+VKxYkdmzZ1O/fn2uXLmSsSdPRERERERERHJM3YRSBT+kKFWQkmORInzUty/Lp0yhsptbYnv4mTP0+OADxs2fz83btx9mqPmOkrHy0GzdupWTJ0/yxhtv4OLiwrJly4iOjs7tsB4aW1tbxo8fz19//cW2bduYNm0aM2fO5Mcff6Rv375EREQwZMiQVOM++ugjjh8/jp+fHzt27GDy5MmsX7+e2bNnc+nSJfr37291DDNmzOC7776jU6dOhIaGMmXKFFatWsW6dev4559/6NWrF3FxcVlev3///ly6dIk5c+awfv16Jk+eTEhICH5+fhw7dozhw4dn/AkUERERERERkRxRz8sLgJDQUGJjY9PtX71yZVZNn86QHj0oZG+f2P7F1q10ePttNu/erQO+rKRkrDw0lp2wb775Jl27duXy5csEBQVlaA7DMHjuuee4cOEC3bp1o3Tp0jg4OFC7dm1WrVr1wLE//fQTL730EsWLF6dw4cI0bdqU77//PlW/Cxcu8J///IeGDRtSpkwZChYsSLly5ejSpcsDP9qfUoECBRg+fDglktRTAbCxsWHUqFEAqWri3rlzh8DAQIoUKcLYsWOTXXvnnXdwc3Njy5YtVu2ONU2TTz/9FICPP/4YG5v//efdvn17GjduzB9//MHu3buztP6ff/7J1q1bcXNz4+233042ZuzYsRQpUoTAwEDu3LmTbswiIiIiIiIikvO8q1alXOnSnI+I4Lsff7RqjJ2tLd07dCBo3jya1qmT2H71xg0+mjmTt8aM4czFiw8r5HxDyVh5KCIiIti4cSOVK1emQYMG9OzZE4BFixZleK5r167RoEEDfv31V3r27En37t35888/6dq1K1OnTk1zzMGDB2nQoAGRkZH06dOHtm3bsnfvXlq0aJGqdu23337L5MmTKV68OB07dsTPz4969eqxbt066tSpw88//5zxJyCFggULAmBnZ5esfd++fdy9e5eGDRvi6OiY7JqNjQ0tW7YEYOfOnemuceLECc6cOUPlypV56qmnUl1v3bo1ACEhIVla3zK+ZcuWyRK+AI6OjjRs2JB//vmH/fv3pxuziIiIiIiIiOQ8W1tbOifkCdZs3pyhsWVLlWLWRx8x44MPKO3snNge+vPPdBo4kM8+/5zoe/eyNd78RMlYeSgCAgK4d+8ePXr0AKBatWp4e3uzc+dOwsPDMzTXL7/8Qt26dTl8+DBTpkxh4cKFHD58mBIlSjB8+PA0d41u2rSJ+fPns2PHDqZNm8bnn3/O/PnziYyMZPbs2cn6Nm/enIiICDZt2sQnn3zClClT+PLLLzlw4AAAH3zwQeaehCQWL14MwIsvvpis3ZIYrly5cprjPDw8ADh+/Hi6a2RmrpwaIyIiIiIiIiJ5S4cWLbAvWJDvDh/O8I5WwzBoXq8eQfPm0bVdu8TNWtH37vHJqlW85ufHwd9+exhhP/Ls0u8i2aFmhw65HYJVflq/PstzmKaJv78/NjY2dO/ePbG9R48eHD58GH9/fyZPnmz1fLa2tkyZMiXZLsynnnqKgQMHMnbsWAIDAxk9enSyMQ0bNkxMBFv06tWLd955hx9++CFZe+nSpdNc18vLi+bNm7N161bu3btHgQIFrI45qQMHDjB27FgcHR0ZP358sms3btwAwMnJKc2xlvbr16+nu05m5sqpMSIiIiIiIiKStxQvVozWjRuzfscOPg8O5t1evTI8RxEHB97r3Zu2zz3HuPnz+ePECQBOnjtHnxEjaN+iBYPfeIMSxYpld/iPLO2MlWwXEhLCiRMneOGFF3jyyScT27t06ULBggVZunQp9zKwXd3V1TXNj90/99xzAPyYRm0THx+fVG0FChTAxcWFa9eupbq2adMm2rVrR9myZSlQoACGYWAYBl999RVRUVFcvnzZ6niTOn78OO3atePevXusWLECd3f3DI23FL82DCNT62d1rpwaIyIiIiIiIiI577U2bQBYv307dyMjMz1PFXd3Aj/+mGF9+lDEwSGxfcOOHQzNwIa8x4F2xuaQ7Nhx+qiw1IVNuTPV2dmZdu3a8cUXX7BhwwY6depk1XwuLi5ptpcpUwb4307NpIoXL57mGDs7u1SnBM6ZM4dBgwZRokQJXnjhBVxdXSlcuDCGYbB+/Xp+/vlnoqKirIo1qbCwMJo1a8bVq1dZvXo1L7/8cqo+ll2kaT0GgJs3bybr9yCZmSunxoiIiIiIiIhI3lPF3Z0anp78cuwYG0NCEpOzmWFra8vrbdvSvH59pvr7s33fPgDe7to1u8LNF5SMlWz1999/sz4h8fz666/z+uuvp9lv0aJFVidjIyIi0mz/66+/gKwl/WJiYhg9ejRlypTh8OHDlC1bNtn1fQk3jow6cuQILVq04MqVK6xdu5b27dun2c/T0xO4f33VsLAw4P71WbM6V06NEREREREREZG8yffll3l/6lSWBgXx6gsvZLpMo4WLszPThg3j24MH+eXYMWo/80w2RZo/KBkr2WrZsmVER0dTu3ZtatasmWafjRs3sn37dk6ePJlm+YGUzpw5w6lTp3Bzc0vWvmvXLgBq1aqV6XgvX77M9evXefXVV1MlYm/fvs3hw4czPOevv/7K888/z40bN/jiiy9o27btffvWq1cPBwcHvvvuO27duoWjo2Pitbi4OLZu3QpAs2bN0l3X3d0dV1dXjh8/nuZzGxwcDMQfWJaV9S0/b926lbi4uGS1fG/dusV3332Hg4MD9erVSzdmEREREREREcldz9evT8Xy5fnz3Dm+3rWLV154IVvmbeLjQ5M0ykg+7lQzVrKVv78/APPnz8ff3z/Nr759+yYe8mWN2NhYhg0bRlxcXGLbyZMnmTNnDnZ2dvj6+mY63tKlS1O4cGEOHTrE7du3E9vv3bvHoEGDMlwr9qeffqJZs2bcunWLDRs2PDARC1C0aFG6devGnTt3GDNmTLJr8+bN49SpU7Rq1YqKFSsmu3bixAmOHj2arPauYRi89dZbALz//vvJnq8NGzawZ88eqlatStOmTbO0vru7Oy1btuTUqVN88sknycaMHj2aO3fu0L17d4oUKfLAxy4iIiIiIiIiuc/GxoY+//43AIvXrSMmRXlHyV7aGSvZZteuXRw7dozq1atTt27d+/br3bs3EyZMICAggLFjx2Jn9+B/hjVq1CA0NJTatWvTsmVLbty4wZo1a7h+/Toff/xxhg/FSsrGxoaBAwcyefJkqlevTvv27YmOjmbnzp1cvXqVZs2asXPnTqvmunbtGi1atODq1au0aNGCffv2pVnmYPDgwclq2k6cOJFdu3YxY8YMfvrpJ+rWrcuRI0fYsGEDpUuXTpXwBGjRogWnT5/m5MmTyXYMDxkyhK+//pp169bx7LPP0qJFC86cOcPatWspXLgwS5YsSbaTNbPrz58/nwYNGjBw4EB27NhBlSpVCA0NZefOnVSuXJkJEyZY9ZyJiIiIiIiISO5r1agRn65Zw5kLFwj+9lvaWfEJXckc7YyVbPPZZ58B0KdPnwf2c3Nz4/nnn+fixYt89dVX6c5bokQJvv/+e5555hkCAgJYunQpTz31FCtXruS9997Lctzjxo1j+vTpODg4sHDhQr788kt8fHz44YcfcHV1tXqeGzducPXqVQB27NjB2LFj0/y6fv16snHOFaOv0QAAHuFJREFUzs7s27ePgQMHEh4ezvTp0wkNDaVnz54cOnQoQ8lme3t7tm/fzqhRo7h+/TozZ85k27ZtdOjQgQMHDvDss8+mGpOZ9d3d3Tl48CA9evQgNDSU6dOnc+LECQYOHMi+fftwdna2OmYRERERERERyV22trb0STjbx3/t2lSHn0v2MUzTzO0Y8jwfHx/z4MGD6fY7cuQIVapUyYGIHh+GYdC0adPE+rAijxPdU0RERERERCSn3IuJoX3//ly4dIlPx46lnpdXbof0SDEM45BpmukWydXOWBERERERERERkcdcATs72iaUJwj+9ttcjib/UjJWREREREREREREaN24MQA79u0jKjo6l6PJn5SMFREREREREREREZ4qX54qFSty+59/2HvoUG6Hky8pGSt5mmmaqhcrIiIiIiIiIpJD2jRtCqhUwcOiZKyIiIiIiIiIiIgA0LJRIwzD4NuDB7l1505uh5Pv2OV2ACIiIiIiIiIiIpI3uDg741OtGgd+/ZXJixZx/tIljp08SdvnnmNIjx44FCqU2yE+0rQzVkRERERERERERBK1btIEgE27d/PTkSPcjYxk7Tff0NnPj5+OHs3l6B5t2hkrIiIiIiIiIiIiiVo1asSWvXuxs7WlTZMmlC9ThvELFhB2+jQ9PviAFvXq8X+vvYbnU0/ldqiPHMM0zdyOIc/z8fExDx48mG6/I0eOUKVKlRyISEQeB7qniIiIiIiISF4Rfe8eC9esYcXGjURFRwPQ2MeHf7dqRUNvb2xtbXM5wtxlGMYh0zR90uunnbEiIiIiIiIiIiLyQAULFGCAry//r00blgYFsW7LFvYcPMiegwdxcXamirs7ZUuVomTx4tgYBgCF7O3p2q5dLkeetygZKyIiIiIiIiIiIlYpVbIk7/XuTe+OHdkQEsKXW7dy9q+/iLhyJVXfEk5OSsamoGSsiIiIiIiIiIiIZEjJ4sXp+eqrvNGhA8dOnuR8RAQX//6bazdvJvZxsLfPxQjzJiVjRUREREREREREJFNsbGyo4u5OFXf33A7lkWCT2wHI483X1xfDMDh37ly2zfnNN99Qv359ihcvjmEYdOrUKdvmfpjCw8MxDIM+ffpkea7y5ctTqVKlbIhKRERERERERESyi5Kxku0Mw3jg19KlSx84PitJyRMnTtChQwdOnz5N7969GT16NJ07d87kI8kep06dwsbGBsMwGDVqVK7GkhOOHz/O5MmTadasGeXLl6dgwYK4uLjQoUMHdu/e/cCxAQEB1KlThyJFiuDk5ESzZs0IDg7OVBwbNmygadOmODk5UbRoUerVq8eKFSuydf2YmBimT59O9erVcXBwwNnZmbZt2xIaGpqpmEVEREREREQkf1OZAnloRo8enWZ7zZo1E3+eOnUqI0aMoEyZMtmy5rZt24iKimLWrFm5noS1+OyzzzBNE8MwWLJkCaNHj8bW1ja3w3poPvroI7744gueeeYZXnrpJUqUKMHRo0f56quv2LBhA5988gn9+/dPNW7w4MHMnj2bChUq0LdvX+7evcuaNWto06YNCxYs4K233rI6hlmzZuHn58cTTzyBr68vBQoUYO3atXTr1o3ffvuNyZMnZ3l90zTp3LkzQUFBVKlShQEDBnD58mXWrFnDli1bCAoKom3bthl/AkVEREREREQk3zJM08ztGPI8Hx8f8+DBg+n2O3LkCFWqVMmBiPI2wzCA+GRVZoSHh+Ph4UHv3r3x9/fP0NhRo0Yxbtw49uzZQ6NGjTK1fnaKiYnB1dWVu3fv0rlzZxYtWsSGDRt4+eWXU/XNyuNOqXz58hQqVIjw8PAszZMZS5YsoXbt2nh5eSVr37FjBy+++CK2tracOXOG0qVLJ17bs2cPTZo0wcPDgwMHDuDk5ATE73T28fEhMjKS48ePU6FChXTXP3HiBFWrVsXR0ZHDhw/j6uoKwJUrV/Dx8eH06dOEhoZSp06dLK0fGBhI9+7dady4Mdu2bcM+oSj5/v37adKkCSVLliQ8PJyiRYtm8pnUPUVERERERETkUWEYxiHTNH3S66cyBZKrUtaMHTFiBB4eHgAsXrw4WXmDB33EfPv27RiGwbhx4wBo3Lhx4ri9e/cm9jt27BjdunWjXLlyFCxYkHLlyvHGG29w4sSJVHOOGDEicXxgYCB169alaNGiGarF+vXXX3Px4kVef/11+vXrB8TvlM0Iy3N05swZpk6diqenJ4UKFaJChQoMHTqUW7du3XfsnTt3GDp0KK6urtjb2+Ph4cG0adPSTJQvWbKEV199lYoVK+Lg4ICTkxONGjVi1apVGYq3V69eqRKxAC1atKBx48ZERUWxb9++ZNcWLFgAwMiRIxMToQDu7u7069ePyMjIdMtbWCxevJjo6GgGDRqUmIgFcHZ25sMPP8Q0TT799NMsr28ZM2HChMRELEC9evXo1KkTERERBAUFWRWziIiIiIiIiDweVKZA8pTmzZtz8+ZN5s6dS61atZLtIK1Ro8Z9x1WsWJHRo0cTEhLCnj176NmzZ2IizvJ9//79tGzZktu3b9O+fXuefvppjh49SmBgIBs3bmTHjh14e3unmnvKlCls376ddu3a0bx5c27fvm3141m0aBEAPXr0oGbNmnh5eREcHMy5c+coX7681fMADBgwgD179tC5c2ecnJwIDg5mxowZ7N27l2+//TZZQhAgOjqa559/nkuXLtGmTRtsbW0JCgrivffeIyoqiuHDhyfr37dvX2rWrEnTpk0pU6YMly9fZvPmzXTt2pWwsLD7lp3IiAIFCgBgZ5f81hMSEgLAiy++mGpM69atmTRpEiEhIYwcOTLdNdKbK2mfzK7/zz//EBoaiqOjIw0bNkxzzH//+19CQkLo1q1bujGLiIiIiIiIyONByVh5aMaMGZOqzc3NjR49etx3TPPmzXF1dWXu3Ll4e3unOUdaKlasyJgxY4iJiWHPnj306tUrWZmCuLg4unfvzq1bt1i9ejWvvfZa4rWVK1fi6+tL9+7d+fXXXxPLLFjs3LmT/fv3p7nb80HOnDnDli1bqFq1KnXr1gXgjTfeYMiQISxevDjDyc19+/bx888/J35UfuLEiXTs2JENGzYwY8YMPvzww2T9z549i5eXFyEhITg4OADxOz8rV67M9OnT+eCDD5LVrj169Cju7u7J5oiKiqJVq1ZMmDCBvn37Zqm278mTJ9m1axdFixZN9ndz8+ZNIiIiKF68OKVKlUo1zrJT+vjx41atc+zYMQAqV66c6lqFChUoVKgQp0+fJjo6moIFC2Zq/bCwMOLi4nB3d8fGJvUHDDIas4iIiIiIiIg8HpSMzSE1O3TI7RCs9tP69dkyz9ixY1O1NW3a9IHJ2Idlz549hIWF0bhx42SJWICuXbsyb9489u/fz759+2jQoEGy6/369ctwIhbA39+fuLi4ZI/X19eXYcOGsXjxYkaOHJlmIu9+/Pz8ktUstbW1ZerUqWzcuJElS5akSsYCzJ07NzERC1CmTBnatWvHqlWrCAsL4+mnn068ljIRC2Bvb0///v3ZvXs3ISEhdOnSxep4k4qMjKRLly5ER0czefLkZKUArl+/DpCsLSlLu6Vfem7evAlAsWLF0rxerFgxLl26xI0bNyhVqlSm1r9x40a2xiwiIiIiIiIijwfVjJWHxjTNVF+7du3KlVgOHz4MxO+8TYul/ccff0x1zbKrNSNiY2MJCAjA1tY22cfUS5UqRevWrTl79izffPNNhuZs2rRpqjYPDw/KlStHeHh4qtqxzs7OuLm5pRpjSeheu3YtWfupU6fo378/np6eFC5cOLHmriV5ff78+QzFaxETE0OXLl3Yv38/Xbp0wc/PL0PjLfVtU+5YfpAH9c3ofJlZPzNjRERERERERCT/085YeSxYdjKWLVs2zeuW9rR2Mmbmo/mbN2/m3LlzvPTSS6nG9+zZk40bN7Jo0SLatGlj9ZwuLi5ptpcpU4bz589z8+ZNHB0dE9uLFy+eZn9LvdbY2NjEtvDwcOrWrcuNGzdo0qQJrVq1wsnJCVtbW/78808CAwOJioqyOlaLmJgYXn/9dYKCgnj99ddZvnx5qj6WOC1/RylZdrrebxdqSsWKFeP69evcvHkzzTG3bt3CMIzEnbOZWd/yc3bFLCIiIiIiIiKPByVjc0h2ffRfMseSFPvrr7/SvH7x4sVk/ZLKzO5Gy8FdmzZtuu/4TZs2ceHCBcqVK2fVnBEREWmWErA8pvt9LN8a06ZN49q1awQGBuLr65vsWmBgIIGBgRme8969e7z22msEBQXRrVs3li5dmmZZhmLFiuHi4kJERAR///13qrqtYWFhQNo1YNPi6elJaGgox48fp06dOsmunT17lsjISNzc3ChYsGCm1/fw8MDGxoYTJ04QFxeX6nFlNGYREREREREReTyoTIHkOZZDpZLu3MyqWrVqAdy3TIKl3dvbO8trnT9/nuDgYJycnOjdu3eaX/Xr1ycmJoaAgACr5929e3eqtrCwMC5cuEClSpWS7YrNqPDwcAA6duxo1brpiYqK4tVXXyUoKIiePXveNxFrYSkTkVbphuDg4GR90pOZuTI6pnDhwjz77LPcunWL7777Lssxi4iIiIiIiMjjQclYyXNKliwJwJkzZ7JtziZNmlCpUiV27drF+hS7lFevXs33339PlSpVqF+/fpbXWrx4MbGxsXTv3h1/f/80vyxJWH9//8T6oumZOXMmZ8+eTfxzbGws7733HqZp0rNnzyzFbKktmzJZvXnzZpYuXZqhuSIjI2nfvj1ff/01ffv2ZfHixekeVPbWW28BMH78+GQf/f/zzz9ZsGABhQoVSnXw2+XLlzl69ChXrlxJ1t67d28KFCjAnDlzkj1fV65cYdKkSRiGQd++fbO8fr9+/QAYPnx4shIOoaGhrFu3DhcXF1555ZUHPm4RERERERERebyoTIHkOU5OTvj4+LBz5058fX2pXLkyNjY2dOjQgWrVqmVqThsbG5YtW0bLli3p2LEjHTp0wNPTk6NHj7JhwwaKFSvG8uXLs3zgUlxcHIsXLwagT58+9+3n6elJo0aN2Lt3L1u3bqVVq1bpzl2/fn28vLzo3LkzTk5OBAcH8+uvv1KnTh2GDh2apbjffvttli9fziuvvEKnTp0oW7Ysv/32G1u2bKFz586sWbPG6rnefPNNtmzZQunSpXFxcWHs2LGp+jRv3pwmTZok/rlJkyYMHDiQOXPmUKNGDTp27EhkZCSrV6/m+vXrzJ8/P/HgMYtZs2YxYcIExo0bx4gRIxLb3d3dmTJlCkOGDMHb25vXXnsNOzs71q1bx/nz5xk2bFiqQ9kys76vry9ffvkl69evp1atWrRt25bLly+zZs0a4uLi8Pf3p2jRolY/byIiIiIiIiKS/ykZK3nSypUrGTJkCJs3b2bVqlWYpombm1umk7EADRo04MCBA4wfP56QkBA2btzIE088QZcuXRg1ahQeHh5ZjnvLli2cOXOGOnXqUKNGjQf2ffPNN9m7dy+LFi2yKhk7d+5c1qxZg7+/P6dOnaJUqVL4+fkxduxY7O3tsxR3rVq1CAkJYeTIkWzatInY2Fi8vLxYv349hQsXzlAy9uTJkwBcunSJ//znP2n2sbOzS5aMhfjkqpeXF/Pnz2fhwoXY2tri7e3N+++/n6GDzgD8/PyoWLEi06ZNY9myZcTFxVGtWjUmTZpEt27d0hyT0fUNw2Dt2rXMnj2bgIAA5syZg4ODA8899xwjR46kXr16GYpZRERERERERPI/w9qPSD/OfHx8zIMHD6bb78iRI1SpUiUHIpLHia+vLytXruTs2bOUL18+t8ORHKR7ioiIiIiIiMijwTCMQ6Zp+qTXTzVjRURERERERERERHKAkrEiIiIiIiIiIiIiOUDJWBEREREREREREZEcoGSsSB63YsUKTNNUvVgRERERERERkUeckrEiIiIiIiIiIiIiOUDJWBEREREREREREZEcoGSsiIiIiIiIiIiISA5QMjabmaaZ2yGISD6ge4mIiIiIiIhI/qNkbDaytbXl3r17uR2GiOQD9+7dw9bWNrfDEBEREREREZFspGRsNnJ0dOTmzZu5HYaI5AM3b97E0dExt8MQERERERERkWykZGw2KlmyJNeuXePy5ctER0frY8YikiGmaRIdHc3ly5e5du0aJUuWzO2QRERERERERCQb2eV2APmJvb09rq6uXL16lVOnThEbG5vbIYnII8bW1hZHR0dcXV2xt7fP7XBEREREREREJBspGZvN7O3tKVu2LGXLls3tUERERERERERERCQPUZkCERERERERERERkRygZKyIiIiIiIiIiIhIDlAyVkRERERERERERCQHKBkrIiIiIiIiIiIikgOUjBURERERERERERHJAUrGioiIiIiIiIiIiOQAJWNFREREREREREREcoCSsSIiIiIiIiIiIiI5wDBNM7djyPMMw/gbOJ3bceSQJ4DLuR2EiDxSdN8QkczQvUNEMkP3DhHJKN03JKf8yzTNUul1UjJWkjEM46Bpmj65HYeIPDp03xCRzNC9Q0QyQ/cOEcko3Tckr1GZAhEREREREREREZEcoGSsiIiIiIiIiIiISA5QMlZSWpTbAYjII0f3DRHJDN07RCQzdO8QkYzSfUPyFNWMFREREREREREREckB2hkrIiIiIiIiIiIikgOUjBUMw6hgGMY6wzBuGIZx0zCMLw3DcM3tuEQk5xmGUd4wjLmGYewzDOMfwzBMwzDc0uhXyDCMqYZhXDQM425C/yZp9LMxDONDwzBOGYYRaRjGz4ZhdMyJxyIiOcMwjE6GYXxhGMbphPvBMcMwJhmG4ZiiXwnDMPwNw7hsGMYdwzC2G4ZRPY35rLq/iMijzTCMVoZhhBiG8ZdhGFGGYZwzDONzwzCqpuhn1XsVa+8xIpK/GIbxTcJ7lvEp2vW6Q/IsJWMfc4ZhFAZCgKeBN4BugAew0zCMIrkZm4jkikpAZ+AasOcB/RYDbwKjgLbARWCLYRg1U/QbB4wB5gGtgf3AWsMw2mRv2CKSi94FYoGPgBeBBUA/YJthGDYAhmEYwMaE6wOAjkAB4l9vlE8xn7X3FxF5tJUEDgHvAC2BD4FngP2GYfwLrH+vksF7jIjkE4ZhvA54pdGu1x2Sp6lm7GPOMIxBwAzA0zTN8IS2p4Aw4H3TNGfkZnwikrMMw7AxTTMu4ec+wGfAU6ZpnkrSxwv4CehlmmZAQpsd8DtwzDTNlxPaSgNngcmmaY5OMn4HUMo0zRo586hE5GEyDKOUaZp/p2jrDiwDWpimGWIYRntgPdDcNM2dCX2cgJPACtM0Bya0WXV/EZH8yTAMT+Ao8K5pmtOtfa9i7T1GRPIPwzCKE3+/8ANWARNM0xyRcE2vOyRP085YeRnYb3lxA2Ca5kngO6B9rkUlIrnCkohNx8vAPWBNknExwGqglWEY9gnNrYCCwIoU41cA1RPeTInIIy5lIjbBgYTvTyZ8fxm4YHlDlDDuBvAVyV9vWHt/EZH86UrC93sJ3619r2LtPUZE8o+Pgd9N0/xvGtf0ukPyNCVj5RngtzTafweqptEuIvIMcNI0zX9StP9OfPK1UpJ+UUB4Gv1A9xiR/KxpwvcjCd8f9HrD1TCMokn6WXN/EZF8wjAMW8MwChqG4QEsBP4iPhEC1r9XsfYeIyL5gGEYjYDuQP/7dNHrDsnTlIyVksTXhkzpKlAih2MRkUfDg+4bluuW79fN1PVwUvYTkXzEMIwngf8A203TPJjQnN59o4SV/XTfEMl/Qon/5e1xoAbxHyu+lHDN2vcq1t5jROQRZxhGAeJ/cTPNNM1j9+mm1x2SpykZKwBpFQ42cjwKEXlUGFh337C2n4jkEwk7TTYAMUDPpJfQfUNE0tYNqAd0AW4Sf/ifW5LruneISFLDAAdgwgP66HWH5GlKxso10v5tTwnS/g2RiMhV7n/fsFy3fC+RcJrpg/qJSD5gGEYh4k8urgi0Mk3zXJLL6d03rlnZT/cNkXzGNM0jpmmGJtR9bAEUBT5IuGztexVr7zEi8ggzDMMVGA6MBOwNwyiecJAXSf5si153SB6nZKz8TnydlJSqAn/kcCwi8mj4HXjKMIzCKdqrAtH8r0bs74A94J5GP9A9RiTfSPjI4BdAXaCNaZq/pujyoNcbZ0zTvJ2knzX3FxHJh0zTvE78f+eWOo3Wvlex9h4jIo+2ikAh4g8EvpbkC+DdhJ+ro9cdkscpGSsbgXqGYVS0NCR8LKhhwjURkZQ2AgWAf1saDMOwA14DtpqmGZXQ/A3xL2K6phjvC/yWcBqyiDziDMOwAVYSv6OtvWma+9PothF40jCMpknGFQPakfz1hrX3FxHJhwzDcAGeBk4kNFn7XsXae4yIPNp+Apql8QXxCdpmxCdQ9bpD8jQj9bkq8jgxDKMI8DNwFxhBfL2UcYAjUEO/RRZ5/BiG0SnhxxbAW8SfUvo38LdpmrsT+qwGWgHvASeBfkBboIFpmoeTzDUZGAx8BBwm/oVNX+ITNl/lyAMSkYfKMIwFxN8rJgBfp7h8zjTNcwkJ271ABeLvG9eAD4k/rMfLNM2zSeaz6v4iIo82wzCCiH9t8AvxtWIrA35AGaCuaZrHrX2vkpF7jIjkP4ZhmMAE0zRHJPxZrzskT1MyVix1V2YCLxBfqHoHMNg0zVO5GZeI5I6EFzNp2W2a5nMJfSxF87sAxYl/ozTMNM1dKeayJf6Fz5vEv7k6BvzHNM11DyV4EclxhmGcAv51n8tjTdMck9CvJDAN6ED8Rwz3AUNM0/w5xXxW3V9E5NFmGMYwoDPx5YwKAmeBXcCkpO9DrH2vYu09RkTyn5TJ2IQ2ve6QPEvJWBEREREREREREZEcoJqxIiIiIiIiIiIiIjlAyVgRERERERERERGRHKBkrIiIiIiIyP9v715CrC7DOI5/f1QSdjGoQOymRkGIXUBpU2QQGlEtalGG0Q3aFF0gsKJoCoIIImvRJhIVKhcKRpugOw1lUTJCUFHQhBVYdNFMLbSnxf8/NEyj6Jw559TM9wOHF973nP/znO2Pl+cvSZLUA4axkiRJkiRJktQDhrGSJEmSJEmS1AOGsZIkSZIkSZLUA4axkiRJmjKSvJOk+t3HZEgyO8naJN8m2Z+kkpzQ774kSZI0cUf2uwFJkiRprAkEqrdU1Zpu9NJHa4ClwMvAV0ABe/vZkCRJkjqTqilxcUCSJElTSJKBcbbvAWYBzwC/jjnbVFVDSU4HZlbV511usauSzAD2AG9W1dJ+9yNJkqTJYRgrSZKk/4Ukw8AZwLyqGu5vN93VhsrfAGur6uY+tyNJkqRJ4sxYSZIkTRnjzYxNsqSdtzqQZFGS15LsSPJLko1JTmu/Nz/J+iQ/JtmT5O0k5x2gzswkDyQZSvJ7kl1JPkiyfBL+wzBNEAtwU9t7JVnTns9IcleSLe1/2J1kOMkrSS7rtL4kSZK6x5mxkiRJmi4WAyuBd4HngYXANcDCJFcDg8DnwDqaG7jXAK8nmV9Vu0Ye0r5E6y3gAmALsJrmksMy4KUkC6rqoQ76XAXMBe4GtgKb2v2hdl0DLAc+bXvdA8wBLgIuB97ooLYkSZK6yDBWkiRJ08UVwIqqenFkI8kLwK3A+8BTVfX4qLOHgceA22jm1I5YRRPErqyqJ0d9/2ia4PTBJBuqaogJqKpVSebShLFDVTUwqsYs4HrgE+DCqto/+rdJTpxITUmSJPWGYwokSZI0XQyODmJba9t1B/DEmLN17Xr+yEYbdq4APh4dxAJU1V6am7cBbpispseo9vl/AH/967Dqpy7VlSRJ0iTwZqwkSZKmi4/H2fu+XYfG3jIFvmvXU0ftLQaOACrJwDjPO6pdz5lokwdTVTuTvApcBQwl2Qi8B3xYVbu7UVOSJEmTxzBWkiRJ08WOcfb2HeisqvYlgX8CVoCRMQCL28+BHDuRBg/RdTQ3cG8AHm339ibZANxXVdu7WFuSJEkdcEyBJEmSdOhGQtunqyoH+VzarQaqak9VDVTV2cDpNGMTBtt1Q7fqSpIkqXOGsZIkSdKh+4hmVuvF/W4EoKq2tXNwlwFfAhf5Ei9JkqT/LsNYSZIk6RBV1Q/Ai8CiJA8n+dfYryRnJpk3Zu+dJJVkSSf1k5yc5MJxjo4BjqMZu/BnJzUkSZLUPc6MlSRJkg7PncBZwGPAjUkGge3AHJoXdy0GlgNfj/rNyCWIfXTmFGBzks+ALcA24HjgSmA28GxV/dZhDUmSJHWJYawkSZJ0GKpqZ5JLgNtpXqJ1LXA0TSD7JXAv8PrI99O8BWwBMAxs7rD8MPAIsAS4FDgJ+Bn4ArgfWN/h8yVJktRFqap+9yBJkiRNWUnOBbYCd1TVc/3uR5IkSf3jzFhJkiSpuy6huTW7ut+NSJIkqb+8GStJkiRJkiRJPeDNWEmSJEmSJEnqAcNYSZIkSZIkSeoBw1hJkiRJkiRJ6gHDWEmSJEmSJEnqAcNYSZIkSZIkSeoBw1hJkiRJkiRJ6gHDWEmSJEmSJEnqAcNYSZIkSZIkSeqBvwEhtWsLvk2MOgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(1, figsize=(24, 16)) # dpi=300, frameon=False)\n", - "plt.subplot(1,1,1)\n", - "plt.title('Population decay')\n", - "plt.xlabel('Time, fs')\n", - "plt.ylabel('Population')\n", - "\n", - "tau, inv_tau = [], []\n", - "\n", - "n_alphas = len(alphas)\n", - "for i in xrange(0, n_alphas): \n", - " \n", - " tmp = []\n", - " for j in xrange(params[\"nsteps\"]):\n", - " tmp.append(1.0 - P_alpha[i][j])\n", - "\n", - " plt.plot(T, tmp, label='Alpha %5.3f ' % (alphas[i]), linewidth=2, color = colors[clrs_index[i]]) \n", - " \n", - " \n", - " verb, opt = 0, 0\n", - " Pfit1, A1, B1 = fit.fit_exp(T, tmp, 0.0, verb, opt) \n", - " print \"======= i = %i ==========\" % (i)\n", - " print \"SLG data gives: A = \", A1, \" and B = \", B1, \" 1/B = \", 1/B1, \" fs\"\n", - " tau.append(1.0/B1)\n", - " inv_tau.append(B1)\n", - " \n", - " plt.plot(T, Pfit1, label='Fit for Alpha %5.3f ' % (alphas[i]), linewidth=3, color = colors[clrs_index[i]]) \n", - "\n", - "plt.legend()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Lets just print out the timescales and rates" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[57384683.95331558, 61293.35841624468, 19056.296752113933, 4601.523298137636]\n" - ] - } - ], - "source": [ - "print tau" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[1.7426252635869434e-08, 1.6314981359138063e-05, 5.2476092968539073e-05, 0.00021731933866437833]\n" - ] - } - ], - "source": [ - "print inv_tau" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we want to know how the rate dpends on the scaling parameter $\\alpha$\n", - "\n", - "By a preliminary examination, I have determined that dependence is quadratic $\\frac{1}{\\tau} \\~ \\alpha^2$ for small $\\alpha$ and about linear, for the larger values. \n", - "\n", - "We'll exploit the quadratic dependence, since eventually we need to evalute the rate for $\\alpha = 1$ For this reason, I have also excluded the value of the scaling parameter of 50.0, which was also a bit large.\n", - "\n", - "To better show the quadratic dependence of the rate on the scaling parameter, lets plot $\\frac{1}{\\tau} vs. \\alpha^2$" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [], - "source": [ - "alphas2 = []\n", - "for alp in alphas:\n", - " alphas2.append(alp*alp)" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[1.0, 5.0, 10.0, 20.0]\n", - "[1.0, 25.0, 100.0, 400.0]\n" - ] - } - ], - "source": [ - "print alphas\n", - "print alphas2" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 60, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABYwAAAO0CAYAAAAGVnIhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8leX9//HXJwkEVBAQVBwILhRHHWi1DnDvUa2zWm3707Zq6+j41r1wK1qt1Fm1jtbZamsrWlddqKCg4h6IIg5kQ8i8fn+cE40xgYyT3Am8no/H/TjJfa77vt/nJD785MN1rjtSSkiSJEmSJEmSVJR1AEmSJEmSJElSx2DDWJIkSZIkSZIE2DCWJEmSJEmSJOXZMJYkSZIkSZIkATaMJUmSJEmSJEl5NowlSZIkSZIkSYANY0mSFioinoiIFBFHFvi8Kb8NLOR5JUmSJGtYSa1hw1jSYicijoyIsyJio6yzNFVEfDci5uaLr08iYlABz10aEbtExGkRcX/+/LWF3q6Fuo4kSZJazhr2W+e2htVCRUT3iHiqzu/Fz5px7DoRcUpEPJz/3aqIiFkR8UJEnBoRvdoyu9TRlWQdQJLawJHAMGASMD7TJE0QEesADwJL53f1B0ZHxFYppS8KcIl1gYcKcB5JkiS1nSOxhq3LGlaNiohi4G/A1nV2j4qIaSmlexdx7FbA03V2JWAW0BPYLL/9PCJ2Sym9VtjkUufgDGNJylBErAyMBpYD3gJ2AT4F1gL+ExHLFOhSM4FHgQuBHxTonJIkSVoCWcOqA7gW2BuoAo4A7iPX47o9IoYv4tguQCW5hvMeQM+UUm9gGeCHwBfAKsC/IqJ7m6SXOjhnGEtSRiKiN7lCewDwKrBjSunziBhGrjDeFPh7ROyRUqpoxaVeAfqklFKda7fidJIkSVpSWcMqaxFxPvBToAI4KKX0j4i4A7gFOBS4PyKGpZQam6n/LrBOSun9ujtTSmXAHRHxCfA4sBpwYP680hLFGcaSFhv5dd8SuY/yAdxUZz2rFBGT6o3/bkRcEBFjImJKft2qzyPioYhodAZDU24gERGT8mOGN/J8d+BfwHrAS8B2KaXPAVJKbwPbkvs44o7AX6IV1XFKqaZuoV0I+fXCZudf456LGPtmftyv6u0fFhH3RMTHddYMeyci/hERP4uIgv0/KiK6RsQeEXF9REyIiGkRsSAiPoyI2yNi0xacc3jd36uI2CsiHo+IGfm1/J6LiEObeK4B+WwfR0R5RHwQEZdGRM9GxveJiCMi4t78+zsnIuZFxOsRMTIiVmru65EkSdmwhm2YNaw1bCPn+BVwMrAA2Cel9A+AlFIVcDhwE7mlJf4TEas3dI6U0sf1m8X1nn+C3O8x5P4BRFrypJTc3NzcFosNOIjcR+Eq+Hodqk/rbC/WGbtMfkztVgHMrrfv2kau80T++SMXkmVSfszwBp4rAR7IP/8ssGwj51gFeDs/7soCv1e1r3HXVpzjL/lz3LGQMZvkx1QBK9TZf3S993oeMLfevm4FfL17NnC9sjrfVwKHN+fnDQzP758EHJ//ugaYAVTXOfdVi/gZ7AN8mf96dj5L7XMvAl0aOPbSeq9nVv49rv3+c2DDrP5bdHNzc3Nzc2v6Zg3brPfKGnYJrmGBg/NZ5wLbNzImgKvz53sHWL6F7/3Y/DmuLuTvsJtbZ9mcYSxpsZFSujOltCK5Ahbg+JTSinW2zeoMrwH+DRwCrEyusOsJ9AZ+Sa4IOToiDmiDqNcDewFPAjunlGY18no+JjdLYyLwy4g4tQ2ytMYd+ce9I2KpRsYckn98LKX0GUB+7GX5/X8GBqSUlk4pLUNuHbzdgL+S+xkVylxysw12APrmr9ed3MfMriD3B9B1ETGgBefuB1xC7o+P/im3/llfvn6Nxy1ilsbN5G5ss0H+d3AZch+xKweGAkc1cMwUcmv5bQL0SCktC5Tmx4/OZ7qjNbN6JElS+7CGbXfWsDmdqoaNiJ3yWecAu6SUHmsoVMo5Nv861iQ307jHQl7Ht0REH2D9/Lfe9E5Lpqw71m5ubm6F3mjC7IkmnOPw/Dkeb8n5WcjsjI6wUZjZGcXAZ/nzHNLA8wFMrv9eAZvn980FirN+L/KZbsxnOrOpP2++np2RgIeBaODYm/l6dkPUe6722NeA0gaOvSr//GPNfC2l5P5AS8CwrN9bNzc3Nzc3t6Zt1rBNen3WsN/Mag3bNu/r5fkcc4B+Wf+c3dyy2JxhLEkN+2f+cYuIKM40SQeVUqoG7s5/e0gDQ7YGViW3vth9dfbPzj92ITcboyOo/Xlv1cLjL0gppQb2n5d/XBP4TiPHjkwplTew/x/5x/UbeK5R+XM9kv+2pa9HkiR1Ttawi2AN+w3WsPVExM5A7brVZ6SUvsgqi5QlG8aSllgRURIRP83fIGRq/kYNKX/TkRn5Yd3IfcRPDav9SN+u+Y9u1VX7EbYHU0qz6+x/J791BZ6LiBMjYp22Xj4hf5ON0yPi2Yj4MiKq6vy8/54f1pKbxVUCzzT0RErpHWBq/ttNGjn+xUb2T8k/Nvj7l3/P/hgRr+Rv3lJT5/Ucnx/mze8kSVrMWMMWhDWsNWxD2YaQW1akiNzNHa/IIofUEZRkHUCSshARy5BbJ+t7dXaXAV/w9bpjK+QflwamtV+6pomIg4A/NPRcyq2D1+ZSSs9GxAfAIGB/cmvbERElQO1duu+od0x1fj20fwCrAyPz2/SIeAy4FfhnI7MdWiRf/D3G1z9TyH3ErPamIV3JFbVLt+D001JKFQt5fgrQn9yabA2Z08j+BfnHb/2/OiIOJreGW5f8rhpyNw2pneWxDLnX0pLXI0mSOihr2MKwhgWsYetnG0RuiY4+wHPAwYX8WUqdjTOMJS2pTidXaE8DjiB39+OlUkrL5wvVleuM7ag3DutOrnhsaGtPf8s/1r0pxk7kbpoxC3iw/gEppbHAWsBh5IrG98kVZz8A7gceLPDHKG8i9768BOxK7iYbPVNKK+R/3rU3hmmLn3VBzxkR/cj9UdMFuJPcTUK6pZR6p/zNccitu1bwa0uSpMxZwxaONezCLTE1bESsAjxK7r+f8cDuKaV57ZlB6mhsGEtaUtUWV79MKf0lpfR5vecXVrBW5R+7LWTMsi1O1kQppZtTStHQ1tbXruf2/OO2EVH78bHa9eDua2RtM1JKZSml21NKR6SU1iA3U+MCcrMldgN+Xohw+btGbw5UA3unlEanlObWG9aaP1D6RkTXhTzfP/9YqPXPdiM3++J14NCU0riUUmW9Me39B5ckSWof1rCFYw1rDUtErEiuWTwIeBPYOaU0s71zSB2NDWNJi6Paj+MtrOhcJf/4ciPP77iQY2sLiFUaejIi1gR6LeT4xUpKaSLwKrn/pxwcEd2AffNP39Hogd8+zwcppVPIzTgAGFagiLU/py9SSlMaGbOwn/eidAG2bOiJ/O9C7R8gL7XiGnXVvp5XUko19Z/Mr6O3fYGuJUmS2o81bDuyhrWGjYjlyN1ob21ys8V38CZ3Uo4NY0mLo9qbUyys4J2Vf9yg/hP5teFOXcixr+Yf927k+d8vNN3iqbaoPgTYC+gBfAo8Xn/gImYyQG5NNoDSAmWr/VmvEBHLN5BnA775UcSWOLmRG56cnH98B5jQymvUqn096zdyzaOANQp0LUmS1H6sYdufNewSWsNGxLLk1ixeH/gI2D6l9El7XV/q6GwYS1ocTcw/7pcvBBrySP5xZEQMqy1aImIzch9J6ruQ899D7iNnG0TEHyKiV/7Y5SPiSuBwYH5rX0QhRUTviOhbu9V5qmfd/RHRpdGTLNwd5N6ToXxdYN6ZUqpuYOzuEfFcRBwVEavVybhURBwF/DC/a3S913BWnTsoN8cbwMfkZuvcmZ8xQUR0iYj9yP0u1P94X3PMJzcb4sbaYj4iekXERcBP8mPOKuBNM/5L7r1eH7iyzu9fz4j4LXA18GWBriVJktqPNWw91rDWsG0hIpYmt0b1JsBUcs3iD9vj2lJnYcNY0uLoVqAC2BqYFhFTImJSRDxdZ8xp5G4WsirwBDA/IuYCL5CbsXEIjch/fO2K/Le/AmZExAxysxGOAX5G4db6KpSXyWWq3WrdWW//Vi05eUppMvBs/tuN848L+yjfFsB1wKSImB8R08kVvNeRu9vzv/Nft1r+I2+/Ivcxz+HAOxExO3+9e8ndlfmEVlziC+B3wI+BT/Ov5cv8PoCrU0pN/ljjoqSU3uLr37/jyP3+TQemAxeT+2PxmkJdT5IktRtr2G+zhrWGbQv78/XvTE/g6Yj4tJHtvnbKJHUoNowlLXZSSm+Su8PxQ+Q++rQisBp11mtLKb1P7iYStwGfA8Xk1nW7HdgspfTwIi7za3KF9QRgAbl/LR9N7l+nby7gy+lMbq/z9XsppRcaGfcYuRkst5D7aOR8ch//+5LczIMjgL1SSlWNHN9sKaW/k5tB8Qgwh9yabR8Cl5L74+DjVp7/CnIf73yS3P9bFwBjgMNSSse15tyNXO8k4Ghyf0SVAyXk7uh8ArAHX9/URpIkdRLWsJmxhl3yati6vbClyd1sr7GtTztlkjqUKNynCyRJWnJExHBy69t9mFIamG0aSZIkadGsYSU1hTOMJUmSJEmSJEmADWNJkiRJkiRJUp4NY0mSJEmSJEkSYMNYkiRJkiRJkpTnTe8kSZIkSZIkSQCUZB1Arde3b980cODArGNIkiR1aOPGjZuWUuqXdQ4VlrWwJEnSojWnFrZhvBgYOHAgY8eOzTqGJElShxYRH2adQYVnLSxJkrRozamFXcNYkiRJkiRJkgR0gIZxRKwaEfdExKyImB0R90XEgCYe2y0iLomIqRFRFhHPRcS2DYwrioiTI2JSRCyIiAkRsX8j5zwqIt6MiPKIeCsifl7v+Z4RcUZEPBsRX0bEzPzX+9YbVxwRv4mIxyLis4iYExEvRcRPI6Ko3tgjIyI1sI1vyvsgSZKkzsla2FpYkiSpo8m0YRwRSwGPAesARwCHA2sBj0fE0k04xY3AUcAZwJ7AVGB0RGxUb9y5wFnAH4HdgDHA3RGxe708RwHXAvcCuwJ3A6Mi4hd1hg0AjgGeBA4DDgLeBv4eEcfWGdcdOA14DTga2Bd4HLgeuKiR13MAsGWd7fAmvAeSJEnqhKyFv8VaWJIkqQOIlFJ2F484HhgJDE4pvZvfNwh4B/hdSmnkQo79DjAe+ElK6ab8vhJgIvBWSmnv/L7lgY+AC1NKZ9Y5/lGgX0ppwzrHfgL8J6V0RJ1xfwb2BvqnlCrzxXtKKc2vl+dRYK2U0oD898XAsiml6fXG/Rk4FOidUirL7zsSuCl//LtNfgPzhg4dmly3TZIkaeEiYlxKaWjWOWpZC1sLS5IktZfm1MJZL0mxNzCmbmGYUvoAeAbYpwnHVgJ31jm2CvgbsEtElOZ37wJ0BW6rd/xtwAb5ohxysxj6NTDuVmA5YOv8NebVL5DzxgIr1clSXb9AznsRKAX6LuL1SZIkafFmLSxJkqQOJ+uG8XrkPqZW30RgSBOO/aCBgnUiuaJ4zTrjyoH6sxUm5h+H1BlHA3nqj2vMtsCbixgDMAyYSe4jg/U9HRHV+XXoromIPk04nyRJkjona+FvshaWJEnqAEoyvn4fYEYD+6cDvVtxbO3ztY8z07fX3mhoHA2cs/64b4mIo4EtyK3j1qiI2AU4EDg9PwOk1lTgHOB5oAzYCvg/YKuI2CyltGBh55UkSVKnZC2cYy0sSZLUgWTdMAZoaBHlaMJx0cRjmzOusTyNh4gYDlwJ3JpSun0h44YAfwWeoN6NPlJKo4HRdXY9HhGvAv8gV3jf0MD5jiZ3AxEGDGjSjbQlSZLU8VgLWwtLkiR1KFk3jGfQ8GyF3jQ8Y6Ku6eTu0tzQsbXP1z72joioN7OioXHk89T9iFyfes9/JSI2Ax4gd3frnzYWNCJWBx4BPgD2rTejojEPAPOAzWigSE4pXQdcB7kbfTThfJIkSR1WeXk506dPZ86cOVRXVy9yfHFxMT169KBPnz6UlpYucnwHZS3cOGthSZK0xOhotXDWDeOJfL1eWl1DgNebcOz3I2Kpemu3DQEq+HqdtonkbqyxBt9cu612HbbX64wjn2fqQsYBEBEbkJsJMR7YP6VU2VDIiFgFeBSYDeyaUpq9iNdVnwWwJElarJWXlzN58mR69+7NwIED6dKlCxGNT7JNKVFZWcns2bOZPHkyAwYM6KxNY2vhRbMWliRJi7WOWAtnfdO7B4At8rMOAIiIgeTWLXugCcd2AQ6oc2wJcBDwcEqpPL/7IXJF8w/rHX8Y8Fr+TtQAzwHTGhk3ndzdqmuvsxa5WRLvA3umlMoaChgR/YD/5r/dKaX0xSJeU137AkuTW8tNkiRpsTV9+nR69+5N37596dq160ILZICIoGvXrvTt25fevXszffq3Jr92FtbCjbMWliRJS4SOWAtnPcP4euA44P6IOI3cDIJzgY+Aa2sHRcRqwHvAOSmlcwBSSuMj4k7giojoQu4jbr8ABlGn0E0pfR4RlwMnR8Qc4CVyhfT2wD51xlVGxOnAqIiYQq643R74CfDLlFJFPsvy5ArkrsCZwJB6P8iXU0rlEdGd3KyLgflzrJKfYVHr9doZFhHxCPA4ubtS197o4zfABOCO5r6pkiRJncmcOXMYOHBgi47t2bMnkyZNon///oUN1T6shbEWliRJS7aOWAtn2jBOKc2LiO2By4Fbyd1s41HghJTS3DpDAyjm2zOifwycB4wAepErKndNKb1Ub9ypwFzgeGBF4C3gwJTSP+vluSYiEvBr4LfAZOC4lNKoOsOGAKvlv/5XAy9rEDAJWAHYOL+voRuAbEfuph+Q+wjg4cAq5D4y+BFwDXBundkhkiRJi6Xq6mq6dOnSomO7dOnSpHXeOiJrYWthSZKkjlgLxzfvfaHOaOjQoWns2LFZx5AkSWqRN954g3XXXbfNj4+IcSmloS2+kDoka2FJktSZdcRaOOs1jCVJkiRJkiRJHYQNY0mSJEmSJEkSYMNYkiRJkiRJkpRnw1iSJEmSJEmSBNgwliRJkiRJkiTl2TCWJEmSJEmSJAE2jCVJktQBpJTa9ThJkiSpo+hotbANY0mSJGWquLiYysrKFh1bWVlJcXFxgRNJkiRJ7aMj1sI2jCVJkpSpHj16MHv27BYdO3v2bHr06FHgRJIkSVL76Ii1sA1jSZIkZapPnz7MmDGDadOmUVFRsciP1qWUqKioYNq0acyYMYM+ffq0U1JJkiSpsDpiLVxS8DNKkiRJzVBaWsqAAQOYPn06kyZNorq6epHHFBcX06NHDwYMGEBpaWk7pJQkSZIKryPWwjaMJUmSlLnS0lL69+9P//79s44iSZIktauOVgu7JIUkSZIkSZIkCbBhLEmSJEmSJEnKs2EsSZIkSZIkSQJsGEuSJEmSJEmS8mwYS5IkSZIkSZIAG8aSJEmSJEmSpDwbxpIkSZIkSZIkwIaxJEmSJEmSJCnPhrEkSZIy8fp9d3Hd5utz6Sq9uG7z9Xn9vruyjiRJkiS1i45cC5dkHUCSJElLntfvu4uHf/crqsrKAJg95SMe/t2vABiy34FZRpMkSZLaVEevhZ1hLEmSpHb39IXnfFUg16oqK+PpC8/JKJEkSZLUPjp6LWzDWJIkSe1u9icfN2u/JEmStLjo6LWwDWNJkiS1ux4rrdLg/p6N7JckSZIWF126L9Xg/o5SC9swliRJUruqqaqipFs3irp0+cb+ku7d2fr3Z2SUSpIkSWp7k558lMr58761vyPVwjaMJUmS1K5eueMWZrz3DqXLLkuPlVeBCHquvCo7X3xlh7jJhyRJktQWymfPYvRvcje3G7z3fvRcedUOWQuXZB1AkiRJS47yObN59rILANjp/JGsvcc+GSeSJEmS2seTI05nzicfs+JGm7DHVddTVNIxW7POMJYkSVK7eXHUH5g/7QtWGvpd1tp976zjSJIkSe3ik3Ev8srtt1DctSu7jhzVYZvF4AxjSZIktZM5n0xh7HVXAzD8jPOIiIwTSZIkSe2j/8absv2IS6iprKTv4HWzjrNQNowlSZLULp6+5DyqFpQxeK/vs9Kmm2UdR5IkSWo3UVTEJj8+OusYTeKSFJIkSWpzVQsW8MXrr1LUpQvbnHxm1nEkSZKkdjH15XHM+nhy1jGaxRnGkiRJanMl3bpx2L+f4LNXxtNrtUFZx5EkSZLaXMXcOTzwsyNYMHMGB9/7ICtssFHWkZrEGcaSJElqF0XFxfTfeNOsY0iSJEnt4slzT2fOlI/os8aa9Ft3/azjNJkNY0mSJLWZmqoqnrrgbOZ8MiXrKJIkSVK7+fB/jzPhtpso6tKFXUeOoqik8yz0YMNYkiRJbea1u27n+T+O5J7D9iellHUcSZIkqc1VzJ3D6N/+CoAtT/g/+q27XsaJmseGsSRJktpExby5PHPJeQBsefxviYiME0mSJElt78nzzmT2x5NZYYPvsPmxJ2Qdp9lsGEuSJKlNvHjNVcz7/DP6bzyUwXvvl3UcSZIkqc3NnvIRr/71L18tRVHcpUvWkZqt8yyeIUmSpE5j7qdTefFPVwIw7IwRzi6WJEnSEqHnyqty2IOP89lrE+g3pPPc6K4uG8aSJEkquGcuPY+qsvmstfterLL5llnHkSRJktrN8uttwPLrbZB1jBZzSQpJkiQV1NxPpzLx7r9SVFLCtiefnXUcSZIkqc19NOYZ3vrn37OOURDOMJYkSVJBLbNifw779xNMfelFeq++RtZxJEmSpDZVMW8uD534C2ZN/pCUEut08vt32DCWJElSwXX2j+FJkiRJTfXUBWcza/KHLL/eBqy1215Zx2k1l6SQJElSQdRUVzP52aeyjiFJkiS1m4+ee5qXb7qOopISdr38TxR36ZJ1pFazYSxJkqSCmHj3Hdx1wJ489Otjs44iSZIktbmK+fO+qn23OP63i80n7GwYS5IkqdUq5s/j6YtHALDa1sOzDSNJkiS1g6cuOJtZH06i35AN+O5xJ2Udp2BsGEuSJKnVxl77R+Z99ikrfGdj1tln/6zjSJIkSW2qYv48Jj3+X4pKStjt8lEUd+2adaSC8aZ3kiRJapV5n3/Gi6P+AMDw00cQRc5JkCRJ0uKt61JLc/jDT/HxmGdZfv0Ns45TUFbzkiRJapVnLj2fyvnzWHOXPVh1y62zjiNJkiS1i65LLc3q2++UdYyCs2EsSZKkFpv21hu8+te/EMXFbHvK2VnHkSRJktrUR2Oe4ZHfn0jF3DlZR2kzLkkhSZKkFuux0spsfuyJVFdW0GfNtbKOI0mSJLWZivnzGP3rY5k56QOWHbAamx9zQtaR2oQNY0mSJLVYaY+ebPP7M7KOIUmSJLW5py88l5mTPqDvuuux6f87Jus4bcYlKSRJktRsNdXVVJbNzzqGJEmS1C4+fv5ZXvrzNURxMbtdPorirl2zjtRmbBhLkiSp2V6/905u3HoT3n7w/qyjSJIkSW2qsmw+D510LKTEd487iRU22CjrSG3KhrEkSZKapbJsPk9fdC5zP51KZVlZ1nEkSZKkNvX0RSOYOel9+q67Hlue8Lus47Q5G8aSJElqlnHXXc3cTz9h+fU3ZMh+B2YdR5IkSWozqaaGsulfEsXF7Dry6sV6KYpaNowlSZLUZPO++Jznr74CgOGnjyCKLCclSZK0+IqiIna/8lp+/NjzrLjhxlnHaRdW+JIkSWqyZy+7gMp5c1l9x10ZsPWwrONIkiRJbSbV1Hz1dZ8118owSfuyYSxJkqQmmfb2m7xyxy1EcTHDTjsn6ziSJElSm5ny4hj+svM2fDrhpayjtDsbxpIkSWqS8lmz6DVgIBseegTLrTU46ziSJElSm6gsK+OhE4/hizde453//CvrOO2uJOsAkiRJ6hxW3uy7HPn481QtKMs6iiRJktRmnrlkBDM+eI/lBq/Llif+X9Zx2p0NY0mSJDVZcZcuFHfpknUMSZIkqU1MefF5xl53NVFczG6Xj6KktDTrSO3OJSkkSZK0UG/84x4eOfkk5k37IusokiRJUpupLCvjoZOOgZTY/BfHs+J3Nsk6UiZsGEuSJKlRlWVl/O+8M5nwlxv54NGHs44jSZIktZlnLj2PGe+/y3Jrr8OWJ/0+6ziZsWEsSZKkRr1045+Y88nH9BuyAUN+cHDWcSRJkqQ203ftdenWqze7jlwyl6Ko5RrGkiRJatD8L6fx/B8vB2D46edSVFyccSJJkiSp7ax/0A9Ze6996brU0llHyZQzjCVJktSg5y6/iIo5sxm0/U6stu12WceRJEmS2sSCmTO++npJbxaDDWNJkiQ1YPq77zDh1j8TRUVse+o5WceRJEmS2sQn417k2s3WY9wNf8o6Sodhw1iSJEnf8v6jo6mpqmL9gw+j3zpDso4jSZIkFVxlWRkPnfgLKufPY+5nU7OO02G4hrEkSZK+ZejPjmOlod+l5yqrZh1FkiRJahPPjryA6e+9Q58112arX5+SdZwOw4axJEmSGrTSpptlHUGSJElqE5+Me5Gx11xFFBWx68hRlHTrlnWkDsMlKSRJkvSVSU8+ysfPP5t1DEmSJKnNVC1YwEMnHUOqqcl9ss6JEt9gw1iSJElArnB++Hcn8Lf9dmPSk49mHUeSJElqE89dfhHT3307txTFb07NOk6HY8NYkiRJALx007XM/ngyfdddjwFbD886jiRJktQm1jvgUFbefEuXomiEaxhLkiSJ+dO/5PkrLwNg2GnnUFRcnHEiSZIkqW30WXMtDr7vP0RE1lE6JGcYS5IkiTFXXEz57FkMHLY9g4bvmHUcSZIkqeA+e20CKSUAm8ULYcNYkiRpCTfj/fcYf8sNEMGw087NOo4kSZJUcFPHj+O23Ybzjx8fQk11ddZxOjQbxpIkSUu45y6/iJqqKtY/6If0G7J+1nEkSZKkgqoqL+ehk44l1dTQe/U1XH5tEVzDWJIkaQm33dkX0n25vgz92XFZR5EkSZIK7rnLL+LLt96g9+prstVvT8s6Todnw1iSJGkJ171PH7Y76/ysY0iSJEkF9+mEl3hh1BUQwa4jr6ZL9+5ZR+rwXJJCkiRpCTX93Xf/20Q5AAAgAElEQVSoKi/POoYkSZLUJqrKy/nPiceQqqvZ9KhjWXmzLbKO1CnYMJYkSVoCVZWXc+/h+3PTdpsz88MPso4jSZIkFdz4m6/PLUUxaA22/t2pWcfpNFySQpIkaQk0/ubrmTX5Q5Zbex16rrxq1nEkSZKkgtvoyKMom/4lg3bYmS7dl8o6Tqdhw1iSJGkJUzZjOmOuvASAYaedS1GJJaEkSZIWPyWlpWxz8plZx+h0XJJCkiRpCTPmystYMHMmA7YexqDtd8o6jiRJklRQb//7ARbMnJF1jE4r84ZxRKwaEfdExKyImB0R90XEgCYe2y0iLomIqRFRFhHPRcS2DYwrioiTI2JSRCyIiAkRsX8j5zwqIt6MiPKIeCsifl7v+Z4RcUZEPBsRX0bEzPzX+zZyvq3zz5dFxKcRMTIivnU7xohYLyIejoi5+fPeFBF9mvI+SJIkNdXMDz/g5ZuuhQiGnz6CiMg60hLNWvircdbCkiSpID57dTz//PmR3LzD9yifMzvrOJ1Spg3jiFgKeAxYBzgCOBxYC3g8IpZuwiluBI4CzgD2BKYCoyNio3rjzgXOAv4I7AaMAe6OiN3r5TkKuBa4F9gVuBsYFRG/qDNsAHAM8CRwGHAQ8Dbw94g4tt75NgQeAT7P5zsN+DFwc71xKwFPAN2BHwDHAjsC/4qIzJv6kiRp8fHUBWdTU1nJkP0PZvn1N8w6zhLNWvircdbCkiSpIKorKvjPiceQqqtZe499KO3RM+tInVKklLK7eMTxwEhgcErp3fy+QcA7wO9SSiMXcux3gPHAT1JKN+X3lQATgbdSSnvn9y0PfARcmFI6s87xjwL9Ukob1jn2E+A/KaUj6oz7M7A30D+lVJkv3lNKaX69PI8Ca6WUBtTZ93dgfWBISqkyv+9HwC3Apimll/L7LidXPA9MKc3M79uWXCG+f0rpvoW9j0OHDk1jx45d2BBJkiQAXr/vLsZccTE/+Os/6LnyKlnHaVcRMS6lNDTrHLWsha2FJUlSYT1z6fk8d/lF9Bo4iB898gxdl2rKv8EvGZpTC2f9L/Z7A2NqC2SAlNIHwDPAPk04thK4s86xVcDfgF0iojS/exegK3BbveNvAzbIF+UAWwL9Ghh3K7AcsHX+GvPqF8h5Y4GVar+JiC7kZmbcVVsg590FVNR7fXsDD9YWyPnr/A+YzKLfB0mSpCYbst+B/PiJF5a4ZnEHZS389WuxFpYkSa3y2WsTeP6qyyCCXUeOslncClk3jNcDXmtg/0RgSBOO/aCBgnUiuaJ4zTrjyoF3GxhHneusl3+sn6f+uMZsC7xZ5/s1gG71z5dSWgC8V3u+/Bpugxq4bu21F3VdSZKkRaqpqvrq6yjKugRUnrWwtbAkSSqA6ooKHjrhGGqqqtjkJz9jle9+L+tInVrWfy30ARq6ZeF0oHcrjq19vvZxZvr22hsNjaOBc9Yf9y0RcTSwBXBBvXwNna/2nLXP9waiCeMkSZJapLqiglt23ponR5xOZVlDk0OVEWtha2FJklQAk554lC/eeI1lVxvI1r8/I+s4nV5J1gGAhhZRbsrtuqOJxzZnXGN5Gg8RMRy4Erg1pXR7E88XLRhX/7pHA0cDDBjQpBtpS5KkJdT4v9zIl2+9QaquZpvfn7noA9SerIWbNq7+da2FJUnSV9bYeTcO+Os/KOne3aUoCiDrGcYzaHjWQG8anmVQV2MzDnrXeb72sXdE1C84GxpHA+fsU+/5r0TEZsAD5O5u/dMG8jV0vtpr1z4/g1yBvKhx35BSui6lNDSlNLRfv34NDZEkSWLBzBk8d/lFAAw77VyKSjrCfAHlWQtbC0uSpAJZbdvtWHmzLbKOsVjIumE8ka/XS6trCPB6E44dFBFLNXBsBV+v0zYRKCW3jlr9cdS5Tu36bPXz1B8HQERsAIwmd3fq/evdzANya7OV1z9fRHQDVq89X37duUkNXLf22ot6HyRJkho15qrLWDBzBqtuuQ2r77hL1nH0TdbC1sKSJKkVxv/lRj5+4bmsYyx2sm4YPwBsERGr1+6IiIHAVvnnFnVsF+CAOseWAAcBD6eUyvO7HyJXNP+w3vGHAa/l70QN8BwwrZFx08ndrbr2OmsBjwDvA3umlMrqh0spVeSvfWA+V60fkCva676+B4A9ImLZOtfYGliNRb8PkiRJDZo5eRIv//laAIadcS7fnmSqjFkLf/1arIUlSVKzfD7xVR47/Xfcuf/uzPzwg0UfoCbL+jOJ1wPHAfdHxGnkPo52LvARcG3toIhYjdwshXNSSucApJTGR8SdwBUR0QX4APgFubssf1XoppQ+j4jLgZMjYg7wErlCentgnzrjKiPidGBUREwB/psf8xPgl/mil4hYnlyB3BU4ExhS74+vl+sU6GeRK77vioirgYHAJcA9KaVxdY65hFwx/kBEXAAsC1wMvAD8vTlvqCRJUq2nLzqX6ooKhux3ECtuuHHWcfRt1sI51sKSJKlZqisreejEX1BTVcXGPz6aXqsNyjrSYiXThnFKaV5EbA9cDtxK7sYWjwInpJTm1hkaQDHfnhH9Y+A8YATQC5gA7JpSeqneuFOBucDxwIrAW8CBKaV/1stzTUQk4NfAb4HJwHEppVF1hg0hN9sB4F8NvKxB5D5WV1vI7wJcBDwIzAL+ApxS77pTImI7YCRwL7lZIPcDv04p1TRwDUmSpIWqrqykYu5ciktL2fr3p2cdRw2wFv7qutbCkiSpWZ7/40g+n/gqyw5YjW1O9qbOhRYpNetGyOqAhg4dmsaOHZt1DEmS1AHNnDyJXgMGZh2jQ4iIcSmloVnnUGFZC0uStGT5fOKr3Lb7cGqqqjjw7n8x4HvbZB2pU2hOLZz1GsaSJElqQzaLJUmStLiorqzkoZOOoaaqio2OPMpmcRuxYSxJkrQYqa6s5D8nHsOnr7ycdRRJkiSpoKa/9w5zPplCz1UHsO0pZ2UdZ7GV9U3vJEmSVEATbruJiXfdztRxL/DjJ14gipwfIEmSpMVDv3WGcOTjzzPv06l0XXqZrOMstmwYS5IkLSbKZ8/iucsuAGCbU86yWSxJkqTFztJ9+7F0335Zx1is+VeEJEnSYuL5P46kbMZ0Vvnu91hzlz2yjiNJkiQVxAujruC5Ky6hurIy6yhLBGcYS5IkLQZmT/mIcTf8CYBhp48gIjJOJEmSJLXeF29M5OmLR1BTWcmArbZh5c22yDrSYs8ZxpIkSYuBpy88l+ryctbZZ3/6b7xp1nEkSZKkVquurOShE39BTWUl3zn8JzaL24kNY0mSpE5u/pfTeGf0gxR37crWvz8j6ziSJElSQbw46go+e3UCPVcZwLDTzsk6zhLDJSkkSZI6uaWW68tP/zeWKWOfp9eAgVnHkSRJklrtizdf59nLLwJgl0uvousyPTJOtORwhrEkSdJiYJkV+zN4z32zjiFJkiS1Wk1V1ddLURz2Y1bbZnjWkZYoNowlSZI6qZqqKl6/905qqqqyjiJJkiQVTPns2ZT26EmPlVdlW5eiaHc2jCVJkjqpV+64hX//6mjuP+rwrKNIkiRJBdO9Tx8O+Nv9HPL3hyjt0TPrOEscG8aSJEmdUPmc2Tx72QUArHfAIRmnkSRJklqvprqaVFMDQBQV0XPlVTJOtGSyYSxJktQJvTjqD8yf9gUrb7YFa+22V9ZxJEmSpFZ7cdQV3HXQ3sycPCnrKEu0kqwDSJIkqXnmfDKFsdf9EYBhp48gIjJOJEmSJLXOtLfe4NmRF1JdUcHMD96j14CBWUdaYjnDWJIkqZN5+uIRVC1YwOC9vs9Km26WdRxJkiSpVWqqqnjopGOorqhgg0N/xMBhO2QdaYlmw1iSJKkT+eL115h4z18p6tKFbU4+M+s4kiRJUqu9eO1VfDr+JXr0X5nhp4/IOs4SzyUpJEmSOpHl1l6HnS4YSdn0L+m12qCs40iSJEmtMu3tN3n20vMB2PnSKyntuWzGiWTDWJIkqRMpKinhO4f/JOsYkiRJUqt9YymKQw5n0PAds44kXJJCkiSpU6ipqmLe559lHUOSJEkqqDV32o1eAwcx/Izzso6iPBvGkiRJncCrf7uVG7bamPG33JB1FEmSJKkgikpK2OL433LkY8+7FEUHYsNYkiSpg6uYO4dnLj2fyvnz6Na7T9ZxJEmSpFapqa5m/pfTvvq+pLQ0wzSqz4axJElSB/fCn65k/hef03/joQze6/tZx5EkSZJaZdz1V3PTsM14d/SDWUdRA7zpnSRJUgc2Z+onjL3mKgCGn3keEZFxIkmSJKnlvnz3bZ6+eATV5eUUdemadRw1wBnGkiRJHdgzl55H1YIy1tp9L1bebIus40iSJEktVlNdzUMnHkN1eTnrH3QYq2+/U9aR1AAbxpIkSR3UF6+/xmt33k5RSQnbnnx21nEkSZKkVhl3/dVMfelFllmxP8PPPC/rOGqES1JIkiR1UFFczCpbbMXyQ9an9+prZB1HkiRJarHapSgAdrroD3RbtlfGidQYG8aSJEkdVN/B63LQ3f+iuqIi6yiSJElSi6WUePg3v6S6vJz1DjiUNXbcJetIWgiXpJAkSepgUkpffR0RlJSWZphGkiRJap2IYJtTzmLVLbdhu7POzzqOFsGGsSRJUgfz2p23cd+PDuTLd97KOookSZJUEKtsviUH3fMvuvXqnXUULYINY0mSpA6kYv48nr54BO8/OpovXn816ziSJElSi9VUVzPlxeezjqFmsmEsSZLUgYy99o/M++xTVtxoEwbvvX/WcSRJkqQWe+nGa/jrvjvz1IXnZB1FzWDDWJIkqYOY+9mnvDjqDwAMO30EEZFxIkmSJKllZrz/Hk9flGsUr7TJZhmnUXPYMJYkSeognr3sfCrnz2PNXfdk1S22yjqOJEmS1CI11dU8dNIxVC1YwJD9D2aNnXfLOpKawYaxJElSB/DFm6/z6l9vpaikhG1POTvrOJIkSVKLvXzTdUx5cQxLr7Ai259zYdZx1EwlWQeQJEkSfDrhJYpKStjwh0fSZ401s44jSZIktciM99/jqQtyEyB2vvAKuvXqnXEiNZcNY0mSpA5gg4MOY9Utt6brMj2yjiJJkiS12FMXnk3VgjKG7HeQS1F0UjaMJUmSOoheAwZmHUGSJElqlZ0v/gNLr7Ai3zvp91lHUQvZMJYkScrQ2/9+gKoFC1h33x8QRd5eQpIkSZ1bt1692eHci7OOoVbwrxJJkqSMVJbN57HTf8e/f3kU7z3yn6zjSJIkSS2SamoYf8sNVC1YkHUUFYANY0mSpIyMvfZq5n46lRU2+A5r7OT6bpIkSeqcXr75ev57yq+570cHZB1FBWDDWJIkKQPzvvicF0ZdAcCw00e4HIUkSZI6pZmT3ud/558FwCY//Xm2YVQQ/mUiSZKUgWcvu4DKeXNZY6fdGLDVtlnHkSRJkpot1dTw0K+Po6psPut+/wDW3GWPrCOpAGwYS5IktbNpb7/JK3fcQhQXs+2pZ2cdR5IkSWqRl2+5gY/HPMNSffux/Tne6G5xYcNYkiSpnY27/mpSdTUb/vBIlltrcNZxJEmSpGab+eEH/O+8MwHY6cLL6d6nT8aJVCglWQeQJEla0uww4lKWW2sd1v2+NwWRJElS5/TaXXdQVTafdfb9AWvttlfWcVRANowlSZLaWUlpKUOPPjbrGJIkSVKLbfWbU+izxloMHL5D1lFUYC5JIUmS1E6mjh9H2fTpWceQJEmSWi0iGLLfgSzVZ7mso6jAbBhLkiS1g8qyMh446kfcsPVGTHv7zazjSJIkSc2Wamp4/MyT+fLdt7OOojZkw1iSJKkdvHTjn5jzyccsu8oAlltz7azjSJIkSc02/i83Mu6GUdxz6H5UV1ZmHUdtxIaxJElSG5v/5TSev2okAMNOH0EUWYJJkiSpc5k5eRL/O+9MALY78zyKu3TJOJHain+tSJIktbFnR15Ixdw5DNp+Z1bbZnjWcSRJkqRmSTU1jP71cVTOn8fgvfdj7T32yTqS2pANY0mSpDY0/d13mHDrn4miIoaddk7WcSRJkqRmm3DbTXz07FN0X64vO4y4JOs4amM2jCVJktrQ/84/k1RdzQaH/Ii+g9fNOo4kSZLULLM++pAnR5wBwI7nX8ZSy/XNOJHaWknWASRJkhZnmx59LOWzZ7PVb07JOookSZLUbJ+9OoFUXcXae+7L4D33zTqO2oENY0mSpDa06hZbcdA9/8o6hiRJktQia+++N30HD6Fbr15ZR1E7sWEsSZLUBsrnzKa0R8+sY0iSJEmt1meNNbOOoHbkGsaSJEkFVrVgAbfsuBX//PmRLJg1M+s4kiRJUrOklLj/qMN59W+3klLKOo7amTOMJUmSCuylP1/D7I8n07VHD7ou0yPrOJIkSVKzvHL7zbzz7wf4+LmnWXOXPejeu0/WkdSOnGEsSZJUQPOnf8mYKy8DYPjp51JUXJxxIkmSJKnpZn08mSfOOQ2AHc671GbxEsiGsSRJUgGNueJiKubMZuDwHRg4bIes40iSJElNllLi4d/8ksp5c1lr970YvPd+WUdSBmwYS5IkFciM999j/C03EEVFDDvt3KzjSJIkSc3y6h238OFTT9C9dx92PH8kEZF1JGXAhrEkSVKB/O+CM6mpqmL9g35Iv3XXyzqOJEmS1GSzp3xUZymKS1i63/IZJ1JWvOmdJElSAdRUV7NU3+Xp2qMnW/3m1KzjSJIkSc1SMXcuPVdZld6DVmfw3vtnHUcZipRS1hnUSkOHDk1jx47NOoYkSQIWzJpJt2V7ZR1DDYiIcSmloVnnUGFZC0uSVDhV5eVUlc2nW6/eWUdRgTWnFnaGsSRJUgHZLJYkSVJnUrVgASXdugFQUlpKSWlpxomUNdcwliRJaoWq8nLuOWx/3h39IH5yS5IkSZ1JSol//PRQHjzu/1E2Y3rWcdRBOMNYkiSpFcbffD2THv8vc6Z8zOo77EKUWF5JkiSpc3jtztuY9MSjdOvVi5rKyqzjqINwhrEkSVILlc2YznN/uBiAYaePoMhmsSRJkjqJ2VM+5vGzTgFg+3MvYenlV8g4kToKG8aSJEktNOYPl1I+axarbTOcQdvtmHUcSZIkqUlSSjz8f8dTMWc2a+6yB+t+/4CsI6kDsWEsSZLUAjM+eI+Xb74OIhh22rlERNaRJEmSpCZ57a7bmfT4f+nWqxc7XjDSWlbfYMNYkiSpBZ664GxqKitZ74BDWX79DbOOI0mSJDXJnE+m8PiZJwOw/TkXs8wKK2acSB2NC+1JkiQ104KZM/hk3AuUdOvO1r89Nes4kiRJUpOV9uzJut8/gHmffcq6+x2YdRx1QDaMJUmSmqlbr9785KlxfPryOHqstHLWcSRJkqQm67pMD3a6YCQ1VVUuRaEGuSSFJElSC3RdamkGbLVt1jEkSZKkJpn/5TQq5s/76vuiEueRqmE2jCVJkpqouqKCF0ZdQcXcOVlHkSRJkpospcRDJx7DLTt+j89em5B1HHVwNowlSZKaaPwtN/C/887kviMPzjqKJEmS1GQT7/4r7z86mgUzZ7B03+WzjqMOzoaxJElSEyyYOYPnrrgIgM1+9suM00iSJElNM2fqJzx+5u8B2P7si1hmxf4ZJ1JHZ8NYkiSpCcZcdRkLZs5k1e9tw+o77pJ1HEmSJGmRUko88n8nUD57FqvvsAtDfuAn5bRoNowlSZIWYebkSbz852sBGH7GCO8mLUmSpE7h9Xvv5P1HR1O67LLsfPEfrGPVJDaMJUmSFuHpC8+huqKCIfsfzAobbJR1HEmSJGmRFsycwWNn/A6A7c660KUo1GQlWQeQJEnqyKa9/SZv3n8vxaWlbP1/p2UdR5IkSWqSbr16s/PFV/L+f0ez3gGHZB1HnYgNY0mSpIVYbq3B7H/bvcz88AN6rrxq1nEkSZKkJhu8574M3nPfrGOok7FhLEmStBARwaDtdsw6hiRJktQkcz/7lPlffM7y62+YdRR1Uq5hLEmS1IDqigq+ePP1rGNIkiRJTZZS4pH/O4Hb9tiON++/J+s46qQybxhHxKoRcU9EzIqI2RFxX0QMaOKx3SLikoiYGhFlEfFcRGzbwLiiiDg5IiZFxIKImBAR+zdyzqMi4s2IKI+ItyLi5w2M2Ssi7oiItyOiJiKeaORckyIiNbJdU2fc8EbGzGzK+yBJkgpvwm03ccuO3+PZkRdmHUWLMWtha2FJkgrpjb/fzXuP/IcuSy3NypttmXUcdVKZLkkREUsBjwHlwBFAAkYAj0fEhimleYs4xY3AHsBvgfeBY4HREbFlSml8nXHnAr8BTgXGAQcDd0fEnimlf9fJcxRwLXAB8F9gB2BURERK6U91zrcvsBEwBui2kHzfB0rr7dsvn/eBBsb/CnixzvdVCzm3JElqIwtmzeS5kRdCSiy/3gZZx9Fiylr4W6yFJUlqhXmff8Zjp/8WgOFnnU+PlVbOOJE6q6zXMD4KWB0YnFJ6FyAiXgHeAX4GjGzswIj4DnAo8JOU0k35fU8CE4FzgL3z+5YnVyBfmFK6NH/44xGxJnAh8O/8uBLgPODWlNKpdcatBJwbETeklCprc6eUavLHPd1YxpTSyw3kPg/4FBjdwCFvpJTGNHY+SZLUPp7/40jKZkxnlS22Yo2dd886jhZf1sLfZC0sSVILpZR45PcnsmDmTAZutyPrH/jDrCOpE8t6SYq9gTG1BTJASukD4BlgnyYcWwncWefYKv4/e/cdX3V1/3H8dTLYyBK3IIqioLUqThAQraC2at3WVe3P2tpa9wRRGa6KuIp71VXraN17URUUxYGoqLgRZa8wQpLz+yMBYwyQkIST3Pt6Ph48ktx7vt/75hbl46fnfg78C+gXQli6m6Ef0Ai4u8L1dwNbhRA6lf28M9C+knV3Ae2AnuVep2Slv7NKlH28cDfgnhhj8arcQ5Ik1a0533zFuFtLPy3f+/whhBASJ1IGsxaWJEm14uP/PshnzzxBo5Zr0O/ya6xhVSOpG8bdgA8qeXwC0LUK134RY1xQybWNgM7l1i0GPqtkHeVep1vZ14p5Kq6riaOAANy5nOfvCSEUhxBmlM2Fq9L8OkmSVHtevWwIxYsXs8VvD2bdX26XOo4ym7XwT1kLS5K0CkqKivjfpYMB2M1RFKoFqUdStAVmVfL4TKBNDa5d+vzSr7NjjLEK66jknhXX1cRRwDsxxvEVHp8DDAdeAeYC2wDnAaNDCNvEGKdWvFEI4Y/AHwE6dLCWliSpNkx5920++s8D5DZuTM+zz08dR5nPWriUtbAkSTWQk5fHoQ89wfj77mLLQ49MHUcZIHXDGEoP96ioKvvmQxWvrc665eWpsRDCTkAX4OSKz5XNdys/4+2VEMIo4E1KD/8YWMk1NwE3AXTv3r1OMkuSlG1arLUOXQ86nBZrr02rDTumjqPsYC1sLSxJUo212qADPc8csPKFUhWkbhjPovLdCm2ofMdEeTOByrYTtCn3/NKvbcpOd44rWUdZninl1rWt8PyqOprSOXP3VWVxjHFcCOETYPsavq4kSaqiluutz95X38DPN2NKdcJaeDmshSVJWrmCaVP59MlH2fqo4wg5qafOKpOk/tM0gR/npZXXFfiwCtd2CiE0q+TaQn6c0zYBaAxsUsk6yr3O0vlsFfNUXFdtZYeOHAo8GWOcVp1LqaNdHpIk6UclRUWUFP94BpeHhGg1sRZeyaVYC0uSVKkYI8+feyrPn3c6/7tscOo4yjCpG8aPAjuFEDZe+kAIYSOgR9lzK7s2Hzi43LV5lBajz8YYF5c9/DSlRfMRFa4/Evig7CRqgNHA9OWsm0npadWr6jeU7s5Y3gEfPxNC6A5sBrxRg9eVJElV8N7dt3NX/958+8brqaMou1gLL4e1sCRJKzbx0Yf49KnHadSiJb88+g+p4yjDpB5JcTPwV+CREMJASncQDAG+AW5cuiiE0BGYBAyOMQ4GiDG+G0K4H7gqhJAPfAH8GehEuUI3xjg1hDACODeEMA8YR2kh3RfYr9y6JSGE84GRIYTJwPNla44DTooxFlbIs/Tjce2AkhDCQWU/j40xflXh93k0MAN4orI3IYRwT1n+ccBsSg/6OBeYDFy7wndQkiTVyOJ5c3n9yktZOGM6C2ZMTx1H2cVaGGthSZKqq2DaVF4YcCYAfQYNZY31N0ycSJkmacM4xlgQQugLjADuovRjZy8Ap8QY55dbGoBcfr4j+lhgGDAUaA28B/SPMY6rsG4AMJ/SQzbWASYCh8QYH6uQ54YQQgROB84Evgb+GmMcWeF+uwG3V3jsgXKZ7lgWPIT2wF7ADeUL7Qo+AA4HTgKaAd8DDwMXxBj9L1dJkurQm/+4ioUzprP+9jux6V6/SR1HWcRaeBlrYUmSqijGyPPnncbCWTPp2Gs3tvrdMakjKQMFD3Vp+Lp37x7feuut1DEkSWpw5k7+ltt6bUfRokUc8dgLrLtt99SRVIdCCG/HGP0fOcNYC0uSssnHjzzE4yceR6MWLfn9i6PdXawqq04tnHqGsSRJUjKvXj6UokWL6LLvATaLJUmSVO9NePA+AHqfP8RmsepM6hnGkiRJSfww/l0+fOhf5OTns+s5g1LHkSRJklbqt7f/i48feYgtDjgkdRRlMBvGkiQpK837bjJNW7eh68G/o3XHTqnjSJIkSSuVk5dH1wMPTR1DGc6GsSRJykqd++3DBjv1IISQOookSZK0XAXTpzFq6CB6nXchzddaO3UcZQEbxpIkKWs1adU6dQRJkiRphV4YcAafPP5fCgvms9/Nd6WOoyzgoXeSJCmrTHjgPt64djhLFi5MHUWSJElaoYmP/YdPHv8v+c2a02fQ0NRxlCXcYSxJkrJG4fx5vDL0fBZMn0abTTZls733TR1JkiRJqtSCGdN5fsAZAPQeOJhWG3ZMnEjZwh3GkiQpa7x5/TUsmD6Ndbfdnk33+qGAmnIAACAASURBVE3qOJIkSdJyvTDgDBbOmM6Gu+zK1kcdlzqOsogNY0mSlBXmTfmOt264FoA+g4Z52J0kSZLqrYmP/5eJj/2H/GbN6Tf8OkKOLTytPv5pkyRJWeG1vw+jaNFCNttnP9bffsfUcSRJkqTlmjXpUwiBXgMuonWHjVLHUZZxhrEkScp4UyeM54N/30NOfj67nntB6jiSJEnSCu108plsvEd/2m/RLXUUZSEbxpIkKeNNePBfECPbHHM8bTptkjqOJEmSVKkY47LRaWt12ypxGmUrR1JIkqSM12fQUH5z453sdPKZqaNIkiRJlVowcwZ377MbX7z0fOooynI2jCVJUsYLIdDl1/vTtG3b1FEkSZKkSr14/ln88N47vPmPq4gxpo6jLGbDWJIkZayvRr3ErM8npY4hSZIkrdCnTz3Gx/99kLymzeg3/NplYymkFGwYS5KkjFRYMJ8nTz6B23fbgR/Gv5s6jiRJklSphTNn8tw5pwLQa8BFtO7YKXEiZTsbxpIkKSO9deN1FEz9gbW22pq1ttw6dRxJkiSpUi8OOosF06exwU492OaY/0sdR7JhLEmSMs/8H77nzZFXA9Dn/KF+pE+SJEn10qdPP85H/3mAvCZN6T/8OkKOrTqll5c6gCRJUm177YphFC1cwKZ7/ZoNdtwldRxJkiSpUvnNmtFinXXZ4cRTaL3RxqnjSIANY0mSlGGmfTSBD/51Nzl5eex67kWp40iSJEnLtVGvvhz70hs0atEydRRpGfe5S5KkjPK/SwcTS0rY+qjjaLtJ59RxJEmSpJ8pLJi/7PvGa7RyFIXqFf80SpKkjLLbBRezxQGHsPOpZ6eOIkmSJP3Mwlkzua3X9rwy9HyKCwtTx5F+xpEUkiQpo7TZeBP2ufbm1DEkSZKkSr10wbnM//47vnt7LDl5tuZU/7jDWJIkZYS5k78hxpg6hiRJkrRck559ig8f+hd5TZrSf/g/HEWhesk/lZIkqcFbsnAB9+77K+7bb08WzJieOo4kSZL0MwtnzeTZs08GYNdzBtFm400SJ5IqZ8NYkiQ1eG/d+A/mfz+F4iWFNG3TNnUcSZIk6WdeuvA8Cqb+wPrb78Q2x52QOo60XDaMJUlSg1Yw9Qfe/McIAHqfP9SP9UmSJKnemfT8M3z44H3kNWlC/ytHkpObmzqStFxO1pYkSQ3a68MvYcmCAjbZc2867LJr6jiSJEnSz6y91dZssufebLhzT0dRqN6zYSxJkhqs6Z98zPv33knIzaXXgItSx5EkSZIq1WLtddj/tnvBQ5rVAPiZTUmS1GCNGjqIWFLC1kceS7vOm6WOI0mSJP3ErC8mUVJUBEAIwfFpahD8UypJkhqkWFLC+jvsRMt112fn085JHUeSJEn6iUWzZ3H/Qftw7/57UjB9Wuo4UpXZMJYkSQ1SyMlhx7+exv+Nfo/ma7ZPHUeSJEn6iZcuGsD876eQk5tH0zZtU8eRqsyGsSRJanBiudlvufn5CZNIkiRJP/f5C88y4d/3kNekCf2H/4Oc3NzUkaQqs2EsSZIalCULF3BXv10Zd9uNy+bBSZIkSfXFojmzefasvwHQ48yBtO28aeJEUvXYMJYkSQ3K2zePZOqE8Xzwr7s8NESSJEn1zstloyjW3XZ7tjv+xNRxpGrzv7IkSVKDUTBtKm9cNwKAPoOG2TCWJElSvfLtm6P54P67yW3cmP4jRjqKQg1SXuoAkiRJVfX6lZeypGA+G+/ejw49e6eOI0mSJP3E+t13pO/gywBo13mzxGmkVWPDWJIkNQgzPvuE9++5g5CTQ6+Bg1PHkSRJkn4m5OSw7R/+lDqGVCN+jlOSJDUIo4ZdQCwuZqvDj2bNzTZPHUeSJEla5ru3xzJ38jepY0i1woaxJEmq9wrnz2Pe5G/Ib9acHmeclzqOJEmStMziuXN47IRjuKPvzkydMD51HKnGHEkhSZLqvUYtWnLkU68wY+JHNF9r7dRxJEmSpGVeHjyAeVMms+423Vlz866p40g15g5jSZLUIOTk5tK+65apY0iSJEnLfPHy84y/7y5yGzem/4iR5OTmpo4k1ZgNY0mSVG8VLVrEi4POcR6cJEmS6p3Fc+fw7Bl/A2CX08+l3aZdEieSaocNY0mSVG+Nu+0Gxt16PY+d8PvUUSRJkqSfeHnIQOZNmcw622zH9ieclDqOVGtsGEuSpHppwcwZjLlmOAA9zhqQOI0kSZL0o9lff8mEf99LbqNG9L9yJDl5HhOmzOGfZkmSVC+NHnEZhfPmstFue7BRr76p40iSJEnLtO6wEUc88SLTPpzAmpttnjqOVKtsGEuSpHpn5qTPeO+ftxJycug9cEjqOJIkSdLPrL3l1qy95dapY0i1zpEUkiSp3vnfJRdQUlTElocdSfvNu6aOI0mSJAHw9Wuj+OTJR1PHkOqUDWNJklSvzPpiEp898yR5TZvR4wxnF0uSJKl+WDxvLk+deiKPHn+UTWNlNEdSSJKkeqVNp004+pn/MX3iR7RYe53UcSRJkiQARg0dxLzJ37D2L35J5z33Th1HqjM2jCVJUr3TvuuWtO+6ZeoYkiRJEgBfjXqJ9+6+nZz8fPqPuJ6cPFtqylyOpJAkSfVC0aJFfPHy88QYU0eRJEmSlimcP49nzvwbALucerZnbCjj2TCWJEn1wjt33MRDRxzICwPOSB1FkiRJWuaVoYOY++3XrL3V1mx/4imp40h1zoaxJElKbuHMmYy5+goANvnVXonTSJIkSaUK58/jy1Evlo6iuHIkufn5qSNJdc6BK5IkKbnRV13O4rlz6NhrNzbqs3vqOJIkSRIAjVq05JjnXmPym2M8Y0NZwx3GkiQpqVlfTOLdf94CIdB74BBCCKkjSZIkScs0at6CTrvtkTqGtNrYMJYkSUn975KLKFmyhC0POYK1um2VOo4kSZLE16+N4vnzTqewYH7qKNJq50gKSZKUzOSxb/DJE4+Q16QpPc4ckDqOJEmSRGHBfJ4+/S/M/eZrWnfsRPcT/po6krRa2TCWJEnJtN+iKzudfCZ5TZrQct31UseRJEmSGDXsAuZ+8zVrdduKbY47IXUcabWzYSxJkpJp1KIlPc8amDqGJEmSBJSOonj3zlvIycuj/4jryc3PTx1JWu2cYSxJkla74sJCChcUpI4hSZIkLVNYMJ9nzigdP7HTyWd6voaylg1jSZK02r175y3c2nNbPn368dRRJEmSJABGXXwhc77+irW6bcWOJ52eOo6UjCMpJEnSarVo9ixGX3UZi2bPJifPj/hJkiQpvVhSwuK5c0pHUVw50lEUymruMJYkSavVmGuuYNHs2XTo0YuNd98zdRxJkiSJkJPDPtfezO9fGMNaW/4idRwpKRvGkiRptZn91Re8c/tNEAK9Bw0lhJA6kiRJkrJcLClZ9n3bzpsmTCLVDzaMJUnSavO/SwdTXFhI1wMPY+0tt04dR5IkSVnumzGvcVf/XvzwwXupo0j1hg1jSZK0Wnz39lgmPvoweU2a0POsganjSJIkKcsVLijgmdP/wtQJ4/ns6SdSx5HqDQ+9kyRJq0XxkkLabNyZzfbZjzXW3yB1HEmSJGW5Vy8dwuwvv6D9Fluy09/OSB1HqjdsGEuSpNViw5168PsXx1BSVJQ6iiRJkrLct2+8zrjbbiDk5tL/qpHkNmqUOpJUb9gwliRJq01ufj65+fmpY0iSJCmLLVm4gKdPOxFiZMeTTvdsDakCZxhLkqQ69c4dN/PcOadSMG1q6iiSJEnSslEUa27RjZ1PPjN1HKnesWEsSZLqzKI5s3nt78N4767bmDJubOo4kiRJEmtu0ZUmrduw1whHUUiVcSSFJEmqM29cO5xFs2exwc492WTPvVPHkSRJktjqsKPosu8BNGrWPHUUqV5yh7EkSaoTc775inG33QhAn/OHEEJInEiSJEnZbNHsWcu+t1ksLZ8NY0mSVCdevWwIxYsXs8UBh7DO1tumjiNJkqQs9u2bo7lxhy0Zd/tNqaNI9Z4NY0mSVOumvPs2H/3nAXIbN6bn2eenjiNJkqQstmThAp457S8sKZjPgqk/pI4j1Xs2jCVJUq37atRLAGz7hz/RaoMOidNIkiQpm716+TBmfTGJdl22YKdTzkodR6r3PPROkiTVup3+dgYde/ahzSadU0eRJElSFps8dgxv3/wPQm4ue40YSV7jxqkjSfWeDWNJklQn1t22e+oIkiRJymJLFi7k6VNPhBjZ4cRTPFdDqiJHUkiSpFrzyZOP8s2Y11LHkCRJknh9+MWloyg225ydTz07dRypwbBhLEmSasXiuXN47uxTuP/AvZk8dkzqOJIkScpyWx56JOt135H+jqKQqsWRFJIkqVa8+Y+rWDhzBuvvsDPrdd8xdRxJkiRluXabduHw/z5DCCF1FKlBcYexJEmqsbmTv+HtW0YC0Of8oRblkiRJSuaH8e8SYwSwLpVWgQ1jSZJUY69eNpSiRYvosu8BHnYnSZKkZL57603u3ns3Hj3+SGJJSeo4UoNkw1iSJNXID+Pf5cOH/kVuo0bseu4FqeNIkiQpSy1ZuJCnTzuRWFJCm002JeTY9pJWRfJ/ckIIG4YQHgwhzAkhzA0hPBxC6FDFa5uEEP4eQpgSQlgYQhgdQuhVybqcEMK5IYQvQwiLQgjvhRAOXM49jw8hfBxCWBxCmBhC+FMla34TQrg3hPBJCKEkhPDycu71+xBCrOTXu7X5PkiSlNLoEZcDsM2xf6R1h43ShpEaGGvhmr8PkiQt9frwi5k56VPabtqFXU49J3UcqcFKeuhdCKEZ8CKwGDgGiMBQ4KUQwi9ijAUrucWtwD7AmcDnwF+AZ0IIO8cYyxeiQ4AzgAHA28BhwAMhhF/HGJ8sl+d44EbgEuB5YHdgZAghxBivL3e//YFfAmOAJlX4rR4MfFvu55/8vmrhfZAkKZl+w6+jbedN2eHEU1JHkRoUa+Flr2stLEmqse/eHstbN15HyMlhrxHXk9ekKn9FSapM0oYxcDywMdAlxvgZQAjhfeBT4ATgyuVdGELYGvgdcFyM8fayx14BJgCDgX3LHluL0gL50hjjFWWXvxRC6AxcCjxZti4PGAbcFWMcUG7desCQEMItMcYlS3PHGEvKrnu1Cr/Pd5f+/mr7fZAkKbWmbdrS67yLUseQGiJr4Rq+D5IkARQtWrRsFMUOfzmFdbfZLnUkqUFLPZJiX2BM+QIyxvgF8BqwXxWuXQLcX+7aIuBfQL8QQuOyh/sBjYC7K1x/N7BVCKFT2c87A+0rWXcX0A7oWe51antqek3eB0mSkpg6YTxFixenjiE1ZNbCpayFJUk1Mu62G5j52Se07bwZu5x2buo4UoOXumHcDfigkscnAF2rcO0XMcYFlVzbCOhcbt1ioOKuhgllX7uWW0cleSquWxWvhhCKy+bL3RBCaFvh+Zq8D5IkrXaL583lwd/9ltv7bM+8Kd+ljiM1VNbCP762tbAkaZVte9yf2P7Ek+l/5UhHUUi1IPVIirbArEoenwm0qcG1S59f+nV2jDFWYR2V3LPiuuqYQulHAt8AFgI9gLOBHiGE7WOMi8rdu1rvQwjhj8AfATp08DwQSdLqNXbk1SyYPo31ttuBFuusmzqO1FBZC/94b2thSdIqy2vShN4DBqeOIWWM1A1jKD3UoqJQhetCFa+tzrrl5VklMcZngGfKPfRSCGE88F/gSOCW8surkLH8vW8CbgLo3r17rWWWJGll5n03mbdu+gcAfQYNI4Sq/LUtaTmshZf/utbCkqQV+uSJR+jQszdNWrVOHUXKKKlHUsyi8t0Kbah8l0F5M1dw7dLnl35tE37+X7OVraOSe7at8HxNPUrpydDbl3usJu+DJEmr1at/H0bRooVs9uv9Wa/7DqnjSA2ZtXApa2FJUrVNeedtHvvT77lzjx4UFsxPHUfKKKkbxhP4cV5aeV2BD6twbacQQrNKri3kxzltE4DGwCaVrKPc6yydz1YxT8V1taX8ToiavA+SJK02Uz94nwkP3EtOfj69zr0gdRypobMW/vG1rYUlSVVWtGgRT592IrGkhC6/2Z9GzVukjiRllNQN40eBnUIIGy99IISwEaXzzR6twrX5wMHlrs0DDgWejTEuPbb9aUqL5iMqXH8k8EHZCcwAo4Hpy1k3k9JTmmvD/kBzSme5LVWT90GSpNUixsjLQwZCjGxzzPG03mjjlV8kaUWshUtZC0uSqmX0iMuY8cnHtNm4Mz3OHJg6jpRxUs8wvhn4K/BICGEgpTsNhgDfADcuXRRC6AhMAgbHGAcDxBjfDSHcD1wVQsgHvgD+DHSiXKEbY5waQhgBnBtCmAeMo7SQ7gvsV27dkhDC+cDIEMJk4PmyNccBJ8UYCyvkWfoxunZASQjhoLKfx8YYvypb9xzwEqWnPi896OMM4D3g3uq+D5IkpbbV4UezaNZMdjr5zNRRpExgLVyN90GSJIAp777NmyOvghDof+VI8ps2TR1JyjhJG8YxxoIQQl9gBHAXpQdbvACcEmMsP4AmALn8fEf0scAwYCjQmtLis3+McVyFdQOA+cDJwDrAROCQGONjFfLcEEKIwOnAmcDXwF9jjCMr3G834PYKjz1QLtMdZd9PAI4CNqD0o4DfADcAQ8rt+qjO+yBJUjIhBLbY/yA23+9AD7qTaoG1cLXfB0lSlitavJinTy0dRbHdH//K+tvvmDqSlJFCjB4q3NB17949vvXWW6ljSJIyWNHixeQ1bpw6hlQjIYS3Y4zdU+dQ7bIWlqTs8cmTj/Lo8UfRptMmHP3cq+Q3rTjKX9LyVKcWTj2SQpIk1XOFBfO5o+/ObLbPvvQ863zymjRJHUmSJElZaLO99+XAex6icYs1bBZLdciGsSRJWqGxN1zL3G+/5ts3R5PrLmNJkiQl1KnPHqkjSBmv4hw0SZKkZeZ/P4Wx118DQJ/zhzq7WJIkSavdO3fczOSxb6SOIWUNdxhLkqTleu2KYRQtXMCme/2aDXbcJXUcSZIkZZnv33+HFwedDcD/vf4urTbokDiRlPncYSxJkio17cMPGP+vu8nJy2PXcy9KHUeSJElZpriwkKdPPZFYXMy2x55gs1haTWwYS5KkSr0ybBDEyNZH/4G2m3ROHUeSJElZZvRVlzP94w9pvVEnep5zfuo4UtawYSxJkn5mycIF5OTl06jlGux86tmp40iSJCnL/DD+Xd647koIgf5XjiS/abPUkaSs4QxjSZL0M/lNm3HAnfczb8p3NGvbLnUcSZIkZZHiwkKeWjqK4g9/9iwNaTVzh7EkSVquluuulzqCJEmSssyMTycyf8p3jqKQErFhLEmSlilcUMCjJxzD9++NSx1FkiRJWWqtbltx7EtvsO9Nd9GoWfPUcaSs40gKSZK0zFs3Xscnj/+Xud9+zRGPv0gIIXUkSZIkZaHma61N87XWTh1Dyko2jCVJEgAFU39g7MirAeg9cIjNYkmSJK1WY665AoAdTjyFnDxbVlIq/tMnSZIAeO2Ki1myoIDO/fZhw517po4jSZKkLDL1g/d5ffgllBQV0bFnH9bdtnvqSFLWcoaxJEli+sSPGH/fPwm5ufQ676LUcSRJkpRFipcs4alTT6SkqIhtjjvBZrGUmA1jSZLEK0MHEUtK2PrIY2nbedPUcSRJkpRF3rh2ONM+HE+rjhux67kXpI4jZT0bxpIkZbm5k7/h2zGv0ahFS3Y+7ZzUcSRJkpRFpk4Yz5ir/w5Avyuuo1Gz5okTSXKGsSRJWW6N9TfkD6+OY+qE8TRfs33qOJIkScoSxUuW8PSpf6akqIhf/v54Ouyya+pIkrBhLEmSgBZrr0OLtddJHUOSJElZZPHcOTRaoxWtOnSk13kXpo4jqYwjKSRJylJLFi5g/H3/pKSoKHUUSZIkZaFm7dbk0H8/xqEPPkmj5i1Sx5FUxoaxJElZ6u2bR/LMGSfxxEnHp44iSZKkLFJSXEyMEYCQk8Ma62+QOJGk8mwYS5KUhQqmTeWN60YAsPURv08bRpIkSVnljWuG88Bh+zHn269TR5FUCWcYS5KUhV6/8lKWFMxn4z3606Fn79RxJEmSlCWmffgBo6++nJIlS5jz5Re02qBD6kiSKnCHsSRJWWbGpxN5/547CLm59B44OHUcSZIkZYniJUt4+rQTKVmyhK2P/oMbF6R6yoaxJElZZtSwC4jFxfzid8fQbtMuqeNIkiQpS4wdeRU/jH+PNTboQO8BF6WOI2k5bBhLkpRFJo8dw6TnniK/eQt2Of3c1HEkSZKUJaZ9/CGvj7gMgP7Dr6NRi5aJE0laHmcYS5KURdbdpjt7/v0aigsLad5+rdRxJEmSlAWKlyzh6VP/XDqK4qjjHEUh1XM2jCVJyiI5eXn84nfHpI4hSZKkLLPJnntTOG+eZ2hIDYAjKSRJygJLFi5k/vdTUseQJElSFsrNz2eXU8/mmBdGO4pCagBsGEuSlAXG3Xo9t/TclvfvvTN1FEmSJGWJkqIiFsycseznvMaNE6aRVFU2jCVJynALZkznjetGULRwAa026JA6jiRJkrLE2Ouv5vY+OzDpuadTR5FUDc4wliQpw40ecRmF8+bSqe+v6Nhrt9RxJEmSlAWmT/yI16+8lOLCQnIbN0odR1I1uMNYkqQMNvOzT3nvrtsIOTn0GuABI5IkSap7JUVFPHXqnykuLOQXRxzDRr36po4kqRpsGEuSlMFGXXIhJUVFbHnYkbTfvGvqOJIkScoCY2+4hh/ee4eW621A7/OHpo4jqZpsGEuSlKG+GfManz39OHlNm9HjjAGp40iSJCkLTP/kY14ffgkA/a64hsYt10icSFJ1OcNYkqQM1aRVazbceVc23KUnLdZeJ3UcSZIkZbgYI8+c/leKCwvZ6ndHs1Hv3VNHkrQKbBhLkpSh2m/RjUMeeIxYXJw6iiRJkrJACIFeAy7i9SsuoY+jKKQGy4axJEkZJpaUEHJKp06FEAh5/nUvSZKk1WPDnXpw6IOPp44hqQacYSxJUoZ566breOiog5jx6cTUUSRJkpQFSoqK+O6tN1PHkFRLbBhLkpRBFs6cyZirr+CLF59j7uRvUseRJElSFnjrpuu4d79f8doVF6eOIqkW2DCWJCmDjL7qchbPncNGvfvSqc8eqeNIkiQpw834dOKyRvG6226fOI2k2mDDWJKkDDHr80m8e+fNEAK9Bw5JHUeSJEkZrqS4mKdPPZHixYvZ8tAj2bjvr1JHklQLbBhLkpQhRl1yISVFRWx56BG077pl6jiSJEnKcG/f/A+mvPMWLdZZjz4XDEsdR1ItsWEsSVIGmDx2DJ8++Sh5TZvR44wBqeNIkiQpw8347BNevXwoAHtefjVNWrVOnEhSbbFhLElSBpg+8SNyGzdm+z+dRMt110sdR5IkSRnufxdfSPHixXQ75Ag23n3P1HEk1aK81AEkSVLNbX3ksWzUuy9N27ZLHUWSJElZoN/w62i53vr0OOO81FEk1TIbxpIkZYhWG3ZMHUGSJElZommbtuw+9O+pY0iqA46kkCSpARt//918+ND9xJKS1FEkSZKU4UqKi3n3zlsoWrw4dRRJdcgdxpIkNVALZ83k5YvOY/GcObRYZ1069OiVOpIkSZIy2Lhbb+Dli87js2ee4KB7/5M6jqQ64g5jSZIaqDFXX8HiOXPo0LM3G+6ya+o4kiRJymAzJ33Gq5cNBmCb4/6UOI2kumTDWJKkBmj2l5/zzh03QQj0Pn8IIYTUkSRJkpShSoqLeeb0v1C0aBFdDzqcTfbolzqSpDpkw1iSpAbof5cOpmTJEroeeBhrb7l16jiSJEnKYONuvYHJY8fQfO116HvRJanjSKpjNowlSWpgvnvrTSY+9h/ymjSh51kDU8eRJElSBpv1+aRloyj2vPQqmrRukziRpLpmw1iSpAZm3O03ArDd8X9hjfU3SJxGkiRJmWz8/XeVjqI48DA22XOv1HEkrQZ5qQNIkqTq6X/lSNbbbge6HXx46iiSJEnKcLuecwHtNt2cjXffM3UUSauJDWNJkhqYvMaN2fa4E1LHkCRJUhYIIdDtoMNSx5C0GjmSQpKkBuKb0a+yYOaM1DEkSZKU4WJJCS8OOpuZkz5LHUVSArXaMA4htA0hdKjNe0qSJFg0ZzaP/N+R3NpjG2Z//WXqOJIqYS0sScoU79x+E+NuvYGHjjyAkqKi1HEkrWa1vcN4OPB5Ld9TkqSs98a1w1k0exZrdfsFrTbsmDqOpMpZC0uSGrxZX0xi1MUXArDbhZeQk+c0Uynb1MVIilAH95QkKWvN+eYrxt16AwC9Bw0hBP+qleox/wGVJDVYsaSEZ844iaJFC9nigEPo3G+f1JEkJeAMY0mS6rn/XTqY4sJCuh5wKOv8YpvUcSRJkpSh3rnzFr4d8xrN2q9F34suSx1HUiIr/FxBCOHrat6vTQ2ySJKkCqa8+zYf//dBchs3puc556eOI2UVa2FJUjaZ/eXnjBp2AQC/unQETdu2TZxIUiorG0SzwSrcM65KEEmS9FMxRl4ZUtok3u74E1lj/Q0TJ5KyjrWwJClr/DD+PWJJMZvvfxCb9v916jiSElpZw/gH4PsYY5U+/xpCuAM4qqahJEkShBDoefb5vHHtcHb8y6mp40jZyFpYkpQ1uvzmt6y5RTeatV0zdRRJia2sYfwO0DeEkBdjLKrC/dxRIUlSLdpgh53Z4K4HU8eQspW1sCQpq7TrvFnqCJLqgZUdevcekA90q+L9PBVakqRasHDmzNQRJFkLS5IyXCwp4ZH/O4IP/n0vMfr/e0oqtbKG8cPANVR9t8QlQN8aJZIkKcstnjuH23p359ETjqFwQUHqOFI2sxaWJGW0d/95K58+9Tijhg1i8dw5qeNIqidWOJIixjgWGFvVm8UYJwITaxpKkqRs9sZ1V7Jw5gwWTJtKftNmqeNIWctaWJKUyWZ//SWjb0ofswAAIABJREFUhl0AwB6XXEmTVq0TJ5JUX6xsh7EkSVqN5nz7NW/fcj0Avc8fSgh+wl2SJEm1K5aU8Mxpf2XJggK67HsAm+29b+pIkuqRVW4YhxA6hBB61WYYSZKy3WuXDaV48WI23/8g1t1mu9RxJC2HtbAkqSF7767b+Gb0/2jabk12H/r31HEk1TM12WF8LPBSbQWRJCnbff/+O3z48P3kNmrErucMSh1H0opZC0uSGqTZX3/JK0NLa81fXXIlzdqtmTiRpPpmhTOMJUnS6hFj5JXB5wOwzXEn0GrDjokTSZIkKRMtKShgjQ02ZM0uW7DZPvuljiOpHrJhLElSPVBcWEi7Lpsz47OJ7HTS6anjSJIkKUO136IbRz31CkWLF6WOIqme8tA7SZLqgbzGjdlj2BX832vv0KR1m9RxJEmSlGGKFv3YIM5r0oQmrVonTCOpPqtJwziU/ZIkSbWkUfMWqSNIqhprYUlSgxFj5OGjD+bJv53AotmzUseRVM+tcsM4xnhhjNEdypIk1cDieXO577f9+fSpx4gxpo4jqYqshSVJDcn7d9/O16+N4ouXnqO4qCh1HEn1nDOMJUlKaOzIq5n85mhiSQmd+/86dRxJkiRlmDnffs3LQ0oPV9592BU0X7N94kSS6jt3RUiSlMi87ybz1k3XAdBn0DBC8NPtkiRJqj0xRp494ySWFMxn0733pctvfps6kqQGoFoN4xDCCXUVRJKkbPPq5UMpWrSILr/5Lettt33qOJJWwlpYktTQvH/PHXz1v5dp2qYte1xypRsUJFVJlRvGIYRTgJF1mEWSpKwx9YP3mfDgfeTk57PruRekjiNpJayFJUkNzZxvv+blwQMBR1FIqp4qzTAOIZwHDAFur9s4kiRlvhgjLw8ZCDGyzbEn0Lpjp9SRJK2AtbAkqSFq0qo1W+x/EAtnzaTLvgekjiOpAVlpwziEMAQ4D3gUOL7OE0mSlOEWTJvKzM8+oUnr1uz0t9NTx5G0AtbCkqSGqnHLNdjz8qspKSpyFIWkallhwziEMBw4BXgVOCzGGFdLKkmSMljztdbmD6+OY9qHE2japm3qOJKWw1pYktQQFUyfRqPmzclv2gyAnLwqfbhckpZZ7gzjEMKfgVOBD4DfxBgXr7ZUkiRluPymzTzoTqrHrIUlSQ1RjJGn/vZH7tyjB9M+/CB1HEkN1IoOvVsLiMCQGOPc1ZRHkqSMVVgwn9dHXMbief61KjUA1sKSpAZn/H3/5MtXXmTR7Fk085A7SatoRQ3jN4Bi4IYQQte6ChBC2DCE8GAIYU4IYW4I4eEQQocqXtskhPD3EMKUEMLCEMLoEEKvStblhBDODSF8GUJYFEJ4L4Rw4HLueXwI4eMQwuIQwsQQwp8qWfObEMK9IYRPQgglIYSXV3CvJ0MIk0MIBSGED0IIZ4YQGlVY1yeEECv5Nbsq74MkqWEYe/01vH7FxTzxl/9LHUXSylkLWwtLUoMyd/I3vHzRAAB2H/p3mq+1duJEkhqq5TaMY4xPAwcDLYBnQggb1vaLhxCaAS8CmwPHAEcBmwIvhRCaV+EWt1J6+Mgg4NfAlLKsv6ywbghwIXAdsBcwBngghLB3hTzHAzcCDwH9gQeAkWUfSSxvf+CXZff5dgX5BgHfAyeX5bu/LMs9y1n/N2Dncr/2WMG9JUkNyLwp3zH2+msA2PGk0xKnkbQy1sLWwpLUkMQYefaskymcP4/O/fZh8/0PSh1JUgO2wsnnMcZHQgj7AQ9TWnzuGmOcUYuvfzywMdAlxvgZQAjhfeBT4ATgyuVdGELYGvgdcFyM8fayx14BJgCDgX3LHlsLOAO4NMZ4RdnlL4UQOgOXAk+WrcsDhgF3xRgHlFu3HjAkhHBLjHHJ0twxxpKy615dwe9v2xjjtHI/vxRKjya9KISwcYzx8wrrP4oxjlnB/SRJDdRrVwyjaNFCNt17X9bffqfUcSRVgbWwtbAkNRQf3H83X778Ak1at+ZXl46g9F+3krRqVjSSAoAY4zPAPsAGwBO1/Pr7AmOWFshlr/cF8BqwXxWuXULpToWl1xYB/wL6hRAalz3cD2gE3F3h+ruBrUIIncp+3hloX8m6u4B2QM9yr1Oy0t9Z6bpplTw8tuzr+lW5hySp4Zv24Qd8cP895OTl0eu8C1PHkVQN1sLWwpJU3y2YOYOXLjwPgL5DHEUhqeZW2jAGiDG+TOnH0rrU8ut3o/Tk6YomACubFdcN+CLGuKCSaxsBncutWwx8Vsk6yr1Ot7KvFfNUXFdTvYES4JNKnrsnhFAcQphRNheuSvPrJEn12ytDz4cY+eUxx9Om0yap40iqJmvhn6yrKWthSaplTdu0Zc/Lr2bLQ49ki98enDqOpAywwpEU5cUYXw8h7F7Lr98WmFXJ4zOBNjW4dunzS7/OjjHGKqyjkntWXLfKQgi/oHSG220xxh/KPTUHGA68AswFtgHOA0aHELaJMU6t6WtLktKY8s7bfPnKizReoxU7n3JW6jiSVpG1sLWwJNVXIQQ23/cANt/3gNRRJGWIKjeMAWKM4+ogQ8XiFaAqw3ZCFa+tzrrl5amxEMK6wCPAJOAnpx3FGN8B3in30CshhFHAm5Qe/jGwkvv9EfgjQIcObr6QpPpq3W2248B7HmLB9Ok0bVvjfoukhKyFV521sCTVvnlTvmPRrJm077pl6iiSMkyVRlLUoVlUvluhDZXvmChv5gquXfr80q9tws8nvle2jkru2bbC89UWQmgHPEdpId4vxjhvZdeU/QfJJ8D2y3n+phhj9xhj9/bt269qNEnSatCpzx50O+iw1DEk1T/WwsthLSxJKxZj5NmzTuauvfsw8bH/pI4jKcPUuGEcQsgPIWwTQliVmW4T+HFeWnldgQ+rcG2nEEKzSq4t5Mc5bROAxkDFoZFL57B9WG4dleSpuK5aQghrAM9QeljIHjHGydW5nDra5SFJqluFCwqYOmF86hiS6pi18IpZC0tS3Zjw73v54sVnyW/WjPW33yl1HEkZpsoN4xDCISGEf4cQ2pZ7bBNKi8u3gA9DCA+HEKoz5uJRYKcQwsbl7rkR0KPsuZVdmw8sm+he9tqHAs/GGBeXPfw0pUXzERWuPxL4oOwkaoDRwPTlrJtJ6WnV1VJWwD8BdAL2LH8CdhWu7Q5sBrxR3deVJKX31o3X8c9+u/LGdVemjiKpFlgLWwtLUn0xb8p3vHThuQD0HXw5LdZZN3EiSZmmOgXtccB6McbyH0cbTukJzC9SumtgP+BY4OYq3vNm4K/AIyGEgZTuIBgCfAPcuHRRCKEjpfPOBscYBwPEGN8NIdwPXBVCyAe+AP5MaUG6rNCNMU4NIYwAzg0hzAPGUVpI9y3Lu3TdkhDC+cDIEMJk4PmyNccBJ8UYCyvkWfrxuHZASQjhoLKfx8YYvyr7/iFKC/6TgeYhhPL/t9+kGOO0svvdU5Z/HDCb0oM+zgUmA9dW8b2UJNUT83/4nrEjr4YYWW+7HVLHkVQ7rIV/msdaWJISiDHy3NmnsHjuHDbeoz9dDzw0dSRJGag6DeOulM4eA5Z9vGxv4N8xxsPKCtV3qUaRHGMsCCH0BUYAd1H6sbMXgFNijPPLLQ1ALj/fEX0sMAwYCrQG3gP6V3IgyQBgPqXF6jrAROCQGONjFfLcEEKIwOnAmcDXwF9jjCMr3G834PYKjz1QLtMdZd/3L/t6TSW//fLrPgAOB04CmgHfAw8DF8QYp1dyrSSpHnt9+MUsWVBA5377sOHOPVPHkVQ7rIV/ZC0sSYlMeOA+Pn/hGRq3asWel13Fz0fUS1LNhRirNhYshLAQGB5jHFj2cz/gKeCAGON/yx67Cjg8xrh2HeVVJbp37x7feuut1DEkScC0jz/kn7/qASFw7Itv0LbzpqkjSSoTQng7xth9Fa+1Fq6nrIUlZYviwkJu2eWXzJsymb2uuoFuBx+eOpKkBqQ6tXB1dhjPA1qV+7k3pR+be7XcY4uAltW4pyRJGWXUsEHEkhJ++fvjbRZLmcVaWJKUVG6jRhz68JNM+Pe9dD3osNRxJGWw6jSMPwX2CiE0prQ4Phh4v8LHxDoCU2sxnyRJDcaXo17kixefo1GLluxy2jmp40iqXdbCkqTkWnfYiB5nnJc6hqQMV3EO2orcBGxMabH8Udn3t1VYsyOlJ0VLkpR12nXuQreDf8dOJ59Bs3Zrpo4jqXZZC0uSkpj/w/e8d9dtxJKS1FEkZYkq7zCOMd4ZQugC/LHsoevKfgFQdmDHRkDFQzEkScoKLddbn72uup6qng8gqeGwFpYkpRBj5LmzT2HSc08xb8p39DxrYOpIkrLAchvGIYRfAN/HGJd9rC7GeB6wvM8+vAq0AQpqNaEkSfVccWEhITeXnNxcAE+rljKAtbAkqT746OF/M+m5p2i8Riu2Puq41HEkZYkVjaR4B/jT0h9CCC+GEI5e3uIYY2GMcU6Msag2A0qSVN+Nvf5q/tlvVyaPHZM6iqTaYy0sSUpq/g/f8+KgswDoc+HFtFx3vcSJJGWLFY2kKAFyy/3cB3i5LsNIktTQFEybyhv/uIolBfMpLixMHUdS7bEWliQlE2PkuXNOZdHs2XTq+yu2POSI1JEkZZEV7TD+Fvjl6goiSVJD9PrwS1hSMJ9NfrUXHXr0Sh1HUu2xFpYkJfPRfx5g0rNP0qjlGux52dWOPJO0Wq1oh/FjwF9DCB8BU8oe+30Ioc9K7hljjLvXRjhJkuqz6Z98zPv33knIzaXXgItSx5FUu6yFJUlJxBiZ8MC9AOx24cW0XG/9xIkkZZsVNYwHAI2AfYDeQKT05OeNVnJPj4aXJGWFUcMuIBYXs/XRf6Ddpl1Sx5FUu6yFJUlJhBA44J8PMPHRh9nigENSx5GUhZY7kiLGOC/G+KcY44YxxlwgABfGGHNW8it3efeUJClTfP3qK3z+/NPkN2/BLqedkzqOpFpmLSxJSik3P5+uBx7qKApJSaxohnFFrwBf1lEOSZIalIWzZ9G0bTt2/MspNG+/Vuo4kuqetbAkqU4VTP2Bp049kYLp01JHkZTlVjSS4idijLvVZRBJkhqSLr/en4167UZOfqPUUSStBtbCkqS6FGPkuXNP47OnH6d48SJ+PfK21JEkZbEqN4wlSdJPNV6jVeoIkiRJygATH32Iz55+nEYtWtJrwODUcSRlueqMpJAkKeuNu/UGxlz9d5YsXJA6iiRJkjJAwbSpvDDgTAD6XDCMNdbfIHEiSdnOHcaSJFXRghnTefXyoRTOn8e6225Px137pI4kSZKkBizGyPPnnsrCWTPp2Gs3tjr86NSRJMkdxpIkVdXrV15K4fx5dOr7K5vFkiRJqrGJjz7Mp0+VjqLod8W1hBBSR5IkG8aSJFXFzM8+5b27biPk5DhXTpIkSbVi5qRPIQT6DBrKGutvmDqOJAGOpJAkqUpGXXwBsbiYXxxxDO0375o6jiRJkjLALqedQ+d++9C+65apo0jSMu4wliRpJb4Z/SqfPfME+c2as8vp56WOI0mSpAYuxrjs+7W6beUoCkn1Sq01jEMIR4cQfhdCaFVb95QkqT74+NGHAdj+z3+jxdrrJE4jqT6yFpYkVVXB9GncvXcfvhz1YuooklSp2hxJcQcQgXkhhOuBETHGqbV4f0mSktjj4uFs1LuvB91JWpE7sBaWJFXBC+edzg/vv8vYkVfTcdfd3F0sqd6pzYbxP4EAbAWcCZwMNKvF+0uSlEQIgU37/zp1DEn1m7WwJGmlJj72Hz554hHym7dgz79fY7NYUr1Uaw3jGOPvl35f9lG8XWvr3pIkpfDZM0/QtnMX2m7SOXUUSfWctbAkaWUWzJjO8+edDkDvgYNptWHHxIkkqXJ1cuhdjHFOjPHxuri3JEmrw4KZM3jqlD9zR98dmfnZp6njSGpArIUlSZV5/rzTWThzBh169GLrI49NHUeSlqtOGsaSJDV0Y666nMVz59ChZ2/adt40dRxJkiQ1YBMf+w+fPP5f8ps1p9/w6wg5tmMk1V9VHkkRQuhQ1bUxxq9XLY4kSenN+nwS7955CyEnh94Dh6SOI6kesBaWJNVEoxYtab72Oux88pmOopBU71VnhvGXlJ78vDKxmveVJKleGXXJBZQUFbHV4UfRfotuqeNIqh++xFpYkrSKOu22B8e+9AaNW66ROookrVR1itl/UnmR3Br4JdAReBn4quaxJElK49s3R/Ppk4+R17QZPc4YkDqOpPrDWliSVG2FBfNp1LwFAE1atU6cRpKqpsoN4/InP1cUQsgBzgf+BBxT81iSJKXx6qWDAdj+TyfRYp11E6eRVF9YC0uSqmvBzBncuccudDv4cHqcMYDc/PzUkSSpSmplynqMsSTGeBGlH9W7tDbuKUlSCv2GX8dWhx/F9n/+W+ookhoIa2FJUmVeGHAGBT98z5S33yInNzd1HEmqsto+lvN1YM9avqckSatNm06b0O+K65Z9dFCSqsFaWJIEwCdPPMLERx8mr2kz+g2/lpBT2+0XSao7tf1vrLZA81q+pyRJdW7W55OIsSrnWUnSclkLS5JYMHMGz593OgC9BlxE646dEieSpOqptYZxCGEP4FDgg9q6pyRJq8PCWTO5+9e7ce9v9mDx3Dmp40hqgKyFJUlLvTjwTBZMn8YGO/dkm2P+7//Zu8/wKMu0jePnlR46oYMgCIJUAZEiCCoroO6qa9t97bKKBVGqiCAoRVERde1t7b2tuiq9SVNAQYoivfdOCKn3+yGBjdkEEsjknsn8f8eRI5Nn7ueZM/MBLi7uuR7fcQCgwPJ90zszm3KMa9SUVCvr5+EnGwoAgKI095kxSt63TzGlSimmdBnfcQAEIWphAEB+rPjua/325WeKii+hbmMYRQEgNOW7YSzpvDyOO0l7JI2XNMY5l1cxDQBA0Nm7drV+fvMVyUydhoyQmfmOBCA4nZfHcWphAMBRVZufpdM6d1Xt8zqrXO3TfMcBgBOS74axc47/FgMAFDszHn1YGampanz1tarcpJnvOACCFLUwACA/Slerrr++9ZHvGABwUih8AQBha/P8H/X7f/6tqLg4dbhviO84AAAACFF7Vq9SRnq6JMnM+NQagJBGwxgAEJacc5o2IrNJ3KrH3SpdvYbnRAAAAAhFSXt268MrL9IHl3fVod27fMcBgJNWkBnGkiQzi5V0tqQakmJzW+Oce/skcwEAEFAuPV31ul6spN271Lpnb99xAIQIamEAQE5Th96vxO3bVL5OXcWXK+87DgCctAI1jM2su6THJeX1J6Ap88YfFMkAgKAWERWl1nf1VqvbeykiMtJ3HAAhgFoYAJDTygnfatnnHykqLl5dn3xOFsEHuQGEvnz/SWZm3SS9JmmLpP7KLIi/lDRY0sSsnz+R1L3wYwIAUHhcRsbRxzSLAeQHtTAAIKekPbs1cWDmJ9XOHTRM5evU9ZwIAApHQf7rq5+kXZLOcc49lXVsoXNutHOum6TbJF0haVUhZwQAoNAc3rtH/+rYSgtee/EPjWMAOA5qYQDAHxwZRVGjdTu17H677zgAUGgK0jBuKelr59yB3M53zr0uaZYyd1kAABCU5j77pPasWaWV47+RuHs1gPyjFgYAHLV+1oyjoyi6Pfk8oygAFCsFmWFcUpkfwTvisKQyOdbMFx/DAwAEqb3r1+rnf70sSTpv6EgZDWMA+UctDAA46pS27XXesEcUGROj8qcxigJA8VKQhvFWSZWy/bxFUoMca8pKYhgkACAozRw9XOkpKWp0xd9UpWlz33EAhBZqYQDAURGRkWrVo6fvGAAQEAX5zMRS/bEo/l5SZzM7V5LMrImka7LWAQAQVLb8NF+/ffmZImNj1eH+B33HARB6qIUBANo8/0cd2LzJdwwACKiCNIy/k9TezKpn/fy4pHRJ08xsh6RFkkpLGlm4EQEAODnOOU0bMUSSdNZtd6lMjZqeEwEIQdTCABDmDu/doy973KA3LmirHb8t8x0HAAKmIA3jlyXVkLRTkpxzyyR1VmbxvFPSBEkXOee+LeyQAACcjKQ9u5V6KFHxCRXUpmcf33EAhCZqYQAIc1MfekCJ27aqYoOGqnB6zqlEAFB85HuGsXMuVdK2HMfmSvpzYYcCAKAwlUiooBu+m649a1YrtkxZ33EAhCBqYQAIb6smjdfST95XVFycuj35vCIiGVkPoPjK9w5jM7vRzJodZ00TM7vx5GMBAFC4LCJCCXXr+Y4BIERRCwNA+Dq8b68mDrxXktR+wBAl1DvdcyIACKyCjKR4U9Llx1lzmaQ3TjgNAACFKHn/Pk24717t27jedxQAoe9NUQsDQFia+tADOrh1i6qf1Vpn3XaX7zgAEHAFaRjnR6QkV8jXBADghPzw3Fj98t6bmjDgHt9RAIQHamEAKGb2rFmlXz//SJGxseo29gVGUQAIC/meYZxP9SXtKeRrAgBQYPs2rteC116UJHUY+KDnNADCBLUwABQz5evU1bVfT9Ku35czigJA2Dhmw9jM/pXj0OVmVjuXpZGSakk6V9I3hZIMAICTMPOxEUpPTtYZl1+las3P8h0HQAiiFgYASFLVZi1UtVkL3zEAoMgcb4fxzdkeO0nNs75y4yT9IKnPyccCAODEbV30k379/GNFxsTo3PuH+o4DIHTdnO0xtTAAhJF1M6YqNemQ6nW9xHcUAChyx2sY18n6bpJWS3pa0jO5rEuXtMc5l1iI2QAAKDDnnKaPyGwSt/zHHSpb81TPiQCEMGphAAhDyfv36bs+d+ng1s366xsfqm6Xi3xHAoAidcyGsXNu3ZHHZvawpKnZjwEAEGx2/rpUG3+Ypbhy5dWmVz/fcQCEMGphAAhP04YP1sGtm1Wt5dmq07mL7zgAUOTyfdM759zDgQwCAEBhqNSoiW6cOEv71q9VXNlyvuMAKCaohQEgPKyZNkmLP3hHkbGx6jb2eUVERvqOBABFLt8NYwAAQkWlMxqp0hmNfMcAAABACEnev08T+t8jSWrf/wFVOL2B50QA4EeE7wAAABSG5AP7tXryBDnnfEcBAABACJo2YogObNmkqi3OUqsed/uOAwDe0DAGABQLPz7/tD6/8WpNHzHEdxQAAACEmOT9+7Tu+2mKjI3VRU+9qIgoPpANIHzxJyAAIOTt37RRC159XpLU4M9/9ZwGAAAAoSa2TFndPGm2Ni/4kVEUAMIeO4wBACFv5uMjlXb4sBr85a+q1rKV7zgAAAAIQTGlSqt2p86+YwCAdzSMAQAhbdvihVr22YeKiI7WuYOG+Y4DAACAELJ2xhRNGTpQKYcSfUcBgKCR74axmf1gZneaWflABgIAIL+cc5o2fIjknFrccrvKnVrHdyQAxRS1MAAUP8kH9mt8v1766fWXtOSDd3zHAYCgUZAdxq0kPSdpi5l9YmaXmFlkgHIBAHBca6ZM1IbZ3yuuXDm1vaef7zgAijdqYQAoZqaPeFAHNm9UlWbN1fymW33HAYCgUZCb3p0i6QZJN0m6UtIVknaY2XuS3nbOLQpAPgAA8nRKm3Zq12egSlSspPjyCb7jACjeqIUBoBhZN2OqfnnvTUXGxKjbUy8qIqog7REAKN7yvcPYObfFOfe4c66xpLMlvSApUlIfST+Z2c9mdq+ZVQpQVgAA/iCmVGm17/+AWtx8m+8oAIo5amEAKD6SD+zXuP69JEnt+gxUpTMaeU4EAMHlhG5655xb4JzrJamaMndYfC2pkaSxkjYUXjwAAP5XyqFEpSQe9B0DQJiiFgaA0DZj5FAd2LRBVZo1V+u7evuOAwBB54Qaxkc459Kcc18o8+N5wySlSYoujGAAAOTlx+ef1usdWmrVhO98RwEQxqiFASD0ZKSn6/D+fYqIjmYUBQDk4YT/ZDQzk9RFmXPcLpMUJ8lJmlw40QAA+F8HtmzW/JeeVdrhJMUxtxiAJ9TCABCaIiIj9ZcX39DulSuUUO9033EAICgVuGFsZo2UWRhfL6mqJJO0QtJbyrzhx8ZCTQgAQDaznhiltMNJOv3iS1Xj7Da+4wAIM9TCABC6XEaGLCLzg9Y0iwEgb/keSWFmd5vZPEmLJQ2QVELSa5I6OOcaOOceoUAGAATS9qWLteTj9xQRFaWODzzkOw6AMEItDAChbd330/TORZ20fckvvqMAQNAryA7jf0rKkDRRmTsovnDOHQ5IKgAAcjFj1FDJOTW/6TaVr1PXdxwA4YVaGABCVMrBAxrfv5f2b1yvVRPHqXKTZr4jAUBQK0jD+AFlfsxuc6DCAACQlzXTJmnt9CmKLVNW7Xrf5zsOgPBDLQwAIWr6qGHav3G9KjdpptZ39/EdBwCCXr4bxs650YEMAgDAsUTGxCqhXn01/b8bFJ/Aze4AFC1qYQAITetnTteit19XRFSULnrqRUVGR/uOBABBr8A3vQMAwIda55yrmyfPkcvI8B0FAAAAISAl8aDG9b9bktS2932q1KiJ50QAEBryfdM7STKzTmb2HzPbbmapZpaey1daoMICAMJbRFSUImNifMcAEKaohQEgtMx45CHt37BelRs3VZu7+/qOAwAhI987jM3sEkn/lhQpab2k5ZIoiAEAATXn6Sd0YPNGte//gEpWruI7DoAwRS0MAKGnUsPGiitXXt0YRQEABVKQkRQPSUqVdIlzbkJg4gAA8F8Ht23VD8+NVVrSITW68m80jAH49JCohQEgpJx5/S1qeMU1iilR0ncUAAgpBRlJ0UTSRxTIAICiMmvMKKUlHdLpF/1Zp7Q5x3ccAOGNWhgAQsThvXuOPqZZDAAFV5CG8UFJuwMVBACA7Hb8ulRLPnxXEVFROnfQw77jAAC1MACEgA1zZurl1k208K3XfEcBgJBVkIbxZEntAhUEAIDspo8aKpeRoTNv6K6EuvV8xwEAamEACHIphxI1rl9PpSYeVOLOHb7jAEDIKkjDeKCkumY2xMwsUIEAAFg7fbLWTp1pm7h7AAAgAElEQVSkmNJl1K7PQN9xAECiFgaAoDdz9HDtW7dWlRo1Vdte/XzHAYCQVZCG8TBJSyU9LGmVmX1uZv/K5ev1ggQws5pm9qmZ7TOz/VnXrZXPc+PM7Akz22JmSWY2x8w65rIuwswGmdlaMztsZovM7Mo8rnmbmf1mZslmttzM7shlzV/M7H0z+93MMsxs2jEyNjazCWZ20Mx2mdkbZpZQmO8DABQ3m+b9IElq06uvSlSo6DkNAEiiFs6+hloYQNDZMHeWfnr9JUVERemip15QZEyM70gAELKiCrD25myPa2d95cZJ+kd+LmhmJSRNkZQs6aasc0dKmmpmzZxzice5xOuSLpE0QNJqST0ljTezds65hdnWjZDUX9JgSQsk/V3SJ2b2Z+fct9ny3CbpZUmPSpokqbOkF8zMnHMvZrve5ZKaS5orKe4Yv191SdMk/SbpKknlJD0h6T9m1sE5l1FI7wMAFCvt+z+guhd2U4X6DX1HAYAjbs72uLaohamFAQSNlEOJGt+vpySpTa9+qtykmedEABDaCtIwrhOA179N0mmSGjjnVkqSmf0iaYWk2yWNzetEMztT0rWSujvn3sg6Nl2ZOz+GS7o061hlZRbIo51zY7JOn2pm9SSNlvRt1rooSaMkveOcG5xtXXVJI8zsNedc6pHc2Qrcmcf4/QZIipb0F+fc3qz1myVNV2ah/fnJvg8AUFxVPbOl7wgAkB21MLUwgCA16/FR2rt2jSo2bKy29/T3HQcAQl6+R1I459bl96sAr3+ppLlHCsOs11kjaZaky/Jxbqqkj7KdmybpQ0ldzSw263BXSTGS3s1x/ruSmprZkeK/naRKuax7R1IFSR2yvU7GcX+z/2b85kiBnHXuDEnr9cff72TeBwAoNpZ8/L7Wz/7edwwA+B/UwtTCAIJX0/+7QdXPas0oCgAoJAWZYRwIjSUtyeX4UkmN8nHuGufcoVzOjZFUL9u6ZEkrc1mnbK/TOOt7zjw51+WLmcUrcydKfn6/k3kfAKBYSNy+TZMH99fHV/9Z25cu9h0HAIoCtfB/X5taGMAJq9igof7vywmq0rS57ygAUCz4bhgnSNqTy/HdksqfxLlHnj/yfa9zzuVjnXK5Zs51+VVekh0jY/brncz7AADFwuwnH1XqoUTVvfAiVW7c1HccACgK1ML/vTa1MIAC27Z4oY788WZmntMAQPFxzIaxmaWfwFdaATPkLF6lzOLyeCyf5xZkXV55TsSxrpfb71eg98HMepjZfDObv2PHjhPJBwBBY+fvv+mX99+SRUaq4+CHfccBAEnUwieJWhhAQG38cY7eueg8fX37Tfrf/xMDAJyM4+0wthP4Ksiu5T3KfbdCeeW+yyC7nDsTsp975Pkj38vb//53Y27rlMs1E3I8n197lFn45pVxd461BXofnHOvOOdaOedaVapUqYDRACC4zBg1TC4jQ82uu1kVTm/gOw4AHEEtTC0MIAilJh3SuD53Sc4poV59dhcDQCE7ZkHrnIs4ka8CvP5S/XdeWnaNJC3Lx7l1zKxELuem6L9z2pZKipVUN5d1yvY6R+az5cyTc12+ZM2TW5vL9Y5cM/v1TuZ9AICQtn7mdK2eNE4xpUrrnH6DfMcBgKOohXNdly/UwgACaeZjI7V37WpVPKOR2t47wHccACh2fM8w/kpSWzM77cgBM6stqX3Wc8c7N1rS1dnOjZL0N0kTnHPJWYfHKbNovi7H+ddLWpJ1B2ZJmiNpZx7rdivzLs0F9ZWkS8ysbLaMHSSdqj/+fifzPgBASJv77JOSpNY9e6tkRXaJAQgr1ML/XUctDCBfNs2bqwWvvSCLjFS3p15QVGys70gAUOxEeX79VyXdLelLMxuizI+tjZC0QdLLRxaZ2amSVkka7pwbLknOuYVm9pGkp80sWtIaSXcq827MRwtd59x2M3tK0iAzOyDpJ2UW0hdIuizbulQze1DSC2a2SdKkrDXdJfVyzqXkyHN21o8VJGWY2VVZP89zzq3LevyEMovsr8zsUUllJT0u6UdJXxT0fQCA4ugvL72pBa+9qLNuu8t3FAAoatTCBXgfACA1KenoKIo2PfuoarMWviMBQLHktWHsnEs0swskPSXpHWXOfZssqbdz7mC2pSYpUv+7I/oWSaMkjZRUTtIiSd2ccz/lWDdY0kFJ90qqKmm5pGucc1/nyPOSmTlJ/SQNkLRe0t3OuRdyXO98SW/kOPZJtkxvZl1vk5mdL2mspM+UubvjS0n9nHMZJ/A+AECxE18+QR0GDPYdAwCKHLVwgd8HAGFuwavPa8+aVarQoKHa9r7PdxwAKLaMu4mGvlatWrn58+f7jgEABbLlp/mq1KiJouLifEcBECbMbIFzrpXvHChc1MJA+EhNStKsMaN0xqVXqOqZLX3HAYCQUpBa2PdICgBAGErcuUOf/N/liitXXtd/N00lEir4jgQAAIAgFx0fr/MeHOk7BgAUe75vegcACENzxo5WysEDqlD/DJrFAAAAOKbl//m3kvfv8x0DAMIGDWMAQJHatfJ3LXr3DVlEhDoNGe47DgAAAILYpnk/6Os7btZbXTooNemQ7zgAEBZoGAMAitSMUcPk0tPV9P9uVMUGDX3HAQAAQJBKTUrS+H49JefU8LKrFB1fwnckAAgLNIwBAEVm/ezvtWrCt4ouUVLt+z/gOw4AAACC2OwnH9HuVStUof4Zatf3ft9xACBs0DAGABQJl5Gh6SOGSJJa39VbJStX8ZwIAAAAwWrzgnma//JzsogIdRv7gqJiY31HAoCwQcMYAFA0zHT2Hb1U4+y2Ouv2nr7TAAAAIEilJiVpXJ875TIydPad96hai7N8RwKAsBLlOwAAIDyYmc647CqdcdlVvqMAAAAgiK2eNE67V61QQr36OqfvIN9xACDs0DAGAARcatIhblICAACAfGnwl78qukRJxSdUUFRcnO84ABB2GEkBAAioQ7t36ZU2TTX1oQeUkZbmOw4AAABCwGmduzCKAgA8oWEMAAioOU89pqRdO7VrxW+KiOKDLQAAAMjdT6+/pM0L5vmOAQBhj3+5AwACZveqlVr09uuyiAh1GjLCdxwAAAAEqS0/zdfUhwbJIiN12+xFKl29hu9IABC22GEMAAiY70c/pIy0NDX523Wq1LCx7zgAAAAIQmmHD+u7vnfJZWSo5T/uoFkMAJ7RMAYABMTGH+doxbdfKyq+hNr3H+w7DgAAAILU7KdGa/eK5Uqoezp1IwAEARrGAIBC55zTtOGZxf7Zd96jUlWreU4EAACAYLRl4QLNe+EZyUzdxr6g6Ph435EAIOzRMAYAFLqUA/tVslIVlaxcRWff0ct3HAAAAAShtORkjeuTOYqiVY+eqt6qte9IAABx0zsAQADElimrv77xgQ7t2qmYkqV8xwEAAEAQ2vX7r0rcvlXlT6un9gOG+I4DAMhCwxgAEDAlKlT0HQEAAABBqkrT5rp5yg9K2r2LURQAEEQYSQEAKDRJu3fr8xuv0ZafF/iOAgAAgBBQqkpVVWrY2HcMAEA27DAGABSauc88odWTxys9JVlXf/il7zgAAAAIQrOfekyRMTE6+/ZeioiiLQEAwYY/mQEAhWLPmlX6+a1XJTN1GjLCdxwAAAAEoa2LftKcpx6Ty8jQqR06qeqZLX1HAgDkwEgKAECh+P7Rh5WRmqrGV1+ryk2a+Y4DAACAIJOWnKxxfXvKpafrrFvvolkMAEGKhjEA4KRtmveDfv/mS0XFxavDgMG+4wAAACAIzX36ce38bZnK1T5NHQYO8R0HAJAHGsYAgJPinNO04ZlN4la3363S1Wt4TgQAAIBgs/WXn/XD809JZuo29nlFx5fwHQkAkAcaxgCAk7J71Qrt/G2ZSlSspNZ33es7DgAAAIJMekqKxvW5Sy49XS2736FT2pzjOxIA4Bi46R0A4KRUqFdft876WbtXr1RMqdK+4wAAACDIHN63V3Fly6lc7TrqcP+DvuMAAI6DhjEA4KSVrFxFJStX8R0DAAAAQahkpcr626ff6ODWLYopUdJ3HADAcTCSAgBwQg7v3aNF7/xL6ampvqMAAAAgCGWkpck5J0myiAjudQEAIYKGMQDghMz95xhNvL+PJt7f23cUAAAABKE5Tz+uz667Qvs3bfAdBQBQAIykAAAU2N51a/TzG69IklrcfJvnNAAAAAg225Ys0g/PPqmMtDTt27BeZWrU9B0JAJBP7DAGABTY96OHKz0lRY2u/LuqNG3uOw4AAACCSHpKisb16amMtDS16H67arZt7zsSAKAAaBgDAApk84J5Wv7V54qKi1OHgUN8xwEAAECQ+eG5sdqxbLHKnlpb5w4a5jsOAKCAaBgDAPLNOafpIzKbxGfdehcfLQQAAMAfbF+6WHOfeUKS1O3J5xVToqTnRACAgqJhDADItzVTJ2nTvLmKT6ig1j252R0AAAD+Kz01VeP63Jk5iuKWHqrZroPvSACAE8BN7wAA+Va70wXqOuZZRUTHKLZMWd9xAAAAEGTqdrlYaYcPM4oCAEIYDWMAQL5FREaq6f/d6DsGAAAAglBkdLTa939AbXr1U1RsrO84AIATxEgKAMBxJe/fpwNbNvuOAQAAgCCUnpqqpN27j/5MsxgAQhsNYwDAcc199km93qGllnz8vu8oAAAACDI/PveU3ji/tVZPmeg7CgCgEDCSAgBwTPs2rNNPr7+k9ORkVajfwHccAAAABJEdy5ZozjOPKyM1lZ3FAFBMsMMYAHBMMx8bofTkZDX869Wq1vws33EAAAAQJNJTU/VdnzuVkZqq5jfdqlrtO/qOBAAoBDSMAQB52rJwgX794hNFxsaqw8AHfccBAABAEPnx+ae1fckvKlOzljoOfth3HABAIaFhDADIlXNO00dkNolb/uMOla15qudEAAAACBY7fl2qOU8/JknqNuY5xZQs5TkRAKCw0DAGAORq1YRvtXHuLMWXT1Cbu/v6jgMAAIAg4ZzTuH49lZGaqjNv6K5aHTr5jgQAKEQ0jAEAuSpb81TVat9R7frer7iy5XzHAQAAQJAwM3UaMkI1zzlXnYYM9x0HAFDIonwHAAAEp0qNmujqj76SnPMdBQAAAEGm1jnnqtY55/qOAQAIAHYYAwD+ICM9/ehjM5NF8FcFAAAApPTUVG2e/6PvGACAAKMLAAD4g1mPj9Sn11+pXSt/9x0FAAAAQWTei8/o/csu1Jynn/AdBQAQQDSMAQBH7d+0QQtee0Frp05Syv79vuMAAAAgSOz4bZlmjx0tSarespXnNACAQKJhDAA4auZjI5V2+LAaXHqFqvEPAQAAAEjKSEvTuL53KSM1Vc2uu1mndjzfdyQAQADRMAYASJK2LV6oZZ99qMiYGJ07aJjvOAAAAAgS8176p7Yt+lmla9RUpwdH+I4DAAgwGsYAADnnNG34EElSi1t6qFyt2n4DAQAAICjsXP6rZj/5qCSp65h/KrZ0Gc+JAACBRsMYAKDVkydow+zvFVeunNre0993HAAAAASJGaOGKT0lRc2uu0m1O17gOw4AoAjQMAYAaN+GdYqMjVW73gMVV6687zgAAAAIEt2eflEtbumhTg+O9B0FAFBEonwHAAD41/KWHqrX5SKVqFjZdxQAAAAEkRIJFdR55BO+YwAAihA7jAEAkqQyNWoqKjbWdwwAAAB4lpGWpoVvvab0lBTfUQAAHtAwBoAwtuC1F7X0kw/kMjJ8RwEAAECQmP/Kc5r0QD/9+x/X+Y4CAPCAkRQAEKYObN6k7x99WGmHk1ShfgNVPbOl70gAAADwbNeK5Zo15hFJUsvut3tOAwDwgR3GABCmZj4xSmmHk1T/kstoFgMAAEAZaWn6rs+dSk9OVpO/X6865//JdyQAgAc0jAEgDG1fulhLP3lfEdHROnfQMN9xAAAAEATmv/q8tv68QKWr1dD5wx7xHQcA4AkNYwAIM845TR8xRHJOLW66TeXr1PUdCQAAAJ7tWvm7Zj0xSpJ04ePPKLZMWc+JAAC+0DAGgDCzdtpkrft+mmLLllXbewf4jgMAAIAgsPiDtzNHUfztep12wYW+4wAAPOKmdwAQZha+/bokqe09AxSfkOA5DQAAAIJBpyEjVLFBI9XrerHvKAAAz2gYA0CYufTlt7Tko3fV+JrrfEcBAABAkDAzNbnmWt8xAABBgJEUABBmImNidOYN3RUVG+s7CgAAADzKSE/X5Afv0541q3xHAQAEERrGABAmVk+eoEO7dvqOAQAAgCCx4NUX9PO/XtZn11+ljPR033EAAEGChjEAhIGDW7foq9tv0mvtWyhx+zbfcQAAAODZ7pUrNOuJkZKk8x8erYjISM+JAADBgoYxAISBWWNGKS3pkE7t0FElK1fxHQcAAAAeZaSna1y/nko7fFiNr75Wdf/U1XckAEAQoWEMAMXcjmVLtPjDdxURFaVzBz3sOw4AAAA8++n1l7R5/g8qWaWqzn/oEd9xAABBhoYxABRz00cNlZzTmTf+Qwl16/mOAwAAAI92r1qpmY8NlyR1Gf204sqV95wIABBsaBgDQDG2dvpkrZ02WTGly6hdn4G+4wAAAMCzbYsXymVkqNGVf1fdLhf5jgMACEJRvgMAAALDOafpI4ZKktre008lEip4TgQAAADfGl5+lSo3bqoSFSv5jgIACFLsMAaAYsrM9KdHn1T9Sy5Ty+53+I4DAACAIFHh9AaKL5/gOwYAIEjRMAaAYqzG2W116StvKyouzncUAAAAeOIyMvTv7tdq2WcfyTnnOw4AIMjRMAaAYihx+zbfEQAAABAkfn7jFa0c/42mj3xQKQcP+I4DAAhyNIwBoJhJ3L5Nr3VoqS9vu0Fpycm+4wAAAMCjPWtWacYjD0mSLnzsacWWLuM3EAAg6NEwBoBiZtaYR5SaeFAZaWmKio31HQcAAACeuIwMje93t9IOJ6nhFdeoXpeLfUcCAIQAGsYAUIzsXP6rFn/wtiwyUh0HP+w7DgAAADz6+c1XtfGH2SpRqbIuePgx33EAACGChjEAFCPTRw6Vy8jQmdffogr16vuOAwAAAE/2rl19dBRFl8eeVnxCgt9AAICQEeU7AACgcKybMVVrpkxQTKnSatf3ft9xAAAA4FFKYqLK1DhFVZqeqXpdL/EdBwAQQmgYA0AxkJGermkjHpQktbm7j0pWrOQ5EQAAAHyq3Lipbhz/vdJTuAkyAKBgaBgDQDGQnpKsU9q0U8rB/Wp5612+4wAAAMCTtMOHFRUXJ0mKios7+hgAgPxihjEAFAPR8SXUeeQTumXqj4qOj/cdBwAAAB64jAx9ev2V+q7PXUrev893HABAiKJhDAAhzjl39DE7SAAAAMLXwrdf18Y5M7VmygSlp6X5jgMACFE0jAEghCXu2K53unXU7998+YfGMQAAAMLL3nVrNGPUMEnSnx4dqxIJFTwnAgCEKhrGABDCZo8dre1LftGSj96TmfmOAwAAAA9cRobG9+ul1EOJOuOyK1X/4kt9RwIAhDDvDWMzq2lmn5rZPjPbb2afm1mtfJ4bZ2ZPmNkWM0syszlm1jGXdRFmNsjM1prZYTNbZGZX5nHN28zsNzNLNrPlZnZHHusuN7Ofs663zsyGmFlkjjXuGF/3Z1t3cx5rFubnfQAQnnatWK5f3ntTFhGhjkOG+44DADgB1MLUwkBhWPj269ow53vFV6ioC0Y+4TsOACDERfl8cTMrIWmKpGRJN0lykkZKmmpmzZxzice5xOuSLpE0QNJqST0ljTezds657AXmCEn9JQ2WtEDS3yV9YmZ/ds59my3PbZJelvSopEmSOkt6wczMOfditnVdJX2W9fp9JbWQ9Iik0pIGZnvddrlk7inpeklf5/Lc1ZI2Zvv5eL8/gDA2Y9QwufR0nXn9LapY/wzfcQAABUQt/D+ohYETsHf92qOjKC5kFAUAoBCYz5mXZnavpLGSGjjnVmYdqyNphaT7nHNjj3HumZIWSurunHsj61iUpKWSljvnLs06VlnSBkmjnXPDsp0/WVIl51yzbOdulvSdc+6mbOv+JelSSdWcc6lZx36WtN851ynbuqGShkiq5ZzbeozcKyXtcc6dne3YzZLekHT6kfehIFq1auXmz59f0NMAhLD1s7/Xx1f/WdElS+nWmT+pZOUqviMBQNAzswXOuVa+cxxBLXz02M2iFgZOWPL+fZo2fLBSEhP1lxff8B0HABCkClIL+x5JcamkudkLQ+fcGkmzJF2Wj3NTJX2U7dw0SR9K6mpmsVmHu0qKkfRujvPfldQ0qyiXMndAVMpl3TuSKkjqIGV+bFBS8zzWRUu6KK/AZtZBUl1Jbx3ndwOAPLmMDE0fMUSS1Pqu3jSLASB0UQsDOGmxZcqq65jndMmzr/qOAgAoJnw3jBtLWpLL8aWSGuXj3DXOuUO5nBsjqV62dcmScu5WWJr1vVG2dcolT77WZRX3h46T+yZJKZI+yOP5mWaWnjWH7iUzSzjGtQCEqX0b1+vQjh0qVbWaWt3e03ccAMCJoxb+I2phoAASd2xXalLS0Z8jorxOnAQAFCO+/0ZJkLQnl+O7JZU/iXOPPH/k+173v7M3clunXK6Z33VHjuVa2JpZnDLnsn3jnNuV4+ktkoZL+kFSkqT2ypz/1t7MznbOHc7lej0k9ZCkWrXydV8UAMVEuVq11f37BdqzeqWi40v4jgMAOHHUwpmohYECcs7pm57/0IEtm3Xpq++o0hnH+z8mAADyz3fDWMq8uUdOlo/zLJ/nFmRdXnnyu+5YuS+XVFbSmzmfcM6NlzQ+26GpZrZY0r+VeVOQ13I55xVJr0iZc9uOkxlAMRMdH6/KjZv6jgEAOHnUwtTCQIEteudfWj9rhuITKqhkpcq+4wAAihnfIyny2oVQXrnvWshu9zHOPfL8ke/lzSxnAZvbOuVyzYR8rpOkctmez+lGSTskfZfH8zl9pcw7Q599vIUAwsOhXTs187ERSt6/z3cUAEDhoBbOG7UwkId9G9Zp+sihkqQ/PfKkSlSo6DkRAKC48d0wXqr/zkHLrpGkZfk4t46Z5fw8diNlzkZbmW1drDJvsJFznbK9zpH5bDnz5GudmdWWVCK33GZWVVIXSe8fubt0AbBjAoAkac5Tj2nuP8dowsDevqMAAAoHtfDxUQsD2TjnNL5/L6UmHlT9Sy5Tg7/81XckAEAx5Lth/JWktmZ22pEDWcVm+6znjndutDJnoR05N0rS3yRNcM4lZx0ep8yi+boc518vaUnWDTokaY6knXms263Mu1XLObde0qI81qUq910T10uKVMHuCH25pJLKnOUGIMztXrlCi975lywiQm3vHeA7DgCgcFAL541aGMjFL++9qfUzpys+oYI6P/Kk7zgAgGLK9wzjVyXdLelLMxuizB0EIyRtkPTykUVmdqqkVZKGO+eGS5JzbqGZfSTpaTOLlrRG0p2S6ihbAeuc225mT0kaZGYHJP2kzEL6AkmXZVuXamYPSnrBzDZJmpS1prukXs65lGy5H5D0HzN7WZl3eW4haYikZ5xzW3P5PW+UtNg593Nub4KZTZQ0VZl3mz5yo4/+yizG3z/2WwggHMx49CFlpKWp6bU3clMTACg+qIVFLQzkV+KO7Zo2fIgkqfOoMSpZsZLnRACA4sprw9g5l2hmF0h6StI7yrxRxmRJvZ1zB7MtNWXuSsi5I/oWSaMkjVTmzLRFkro5537KsW6wpIOS7pVUVdJySdc4577OkeclM3OS+kkaIGm9pLudcy/kWPetmV0laZikmyVtk/RIVpY/MLMWkpoqs+jNy1JJN0g6RZkfGdwg6SVJI7LtDgEQpjbMnaWV4/6jqPgSat9/sO84AIBCQi18FLUwkA8lKlZSl8ef0YbZMxhFAQAIKHOOsWChrlWrVm7+/Pm+YwAIAJeRoff+0llbF/6kc/oN0jl97/cdCQBClpktcM618p0DhYtaGAAA4PgKUgv7nmEMADiG9bNmaOvCn1SySlW1uqOX7zgAAAAoYvs3bdTO5b/6jgEACCO+ZxgDAI7h1HPP01Xvf67UpCTFlCjpOw4AAACKkHNO4/vfrY1zZ+mS519X/Ysv9R0JABAGaBgDQJCr3amz7wgAAADwYPH7b2ndjKmKK1deNVq18R0HABAmGEkBAEEoafdubV/yi+8YAAAA8GT/pg2aNnyIJKnzqDEqWbmK50QAgHBBwxgAgtCcpx/X2906av4rz/uOAgAAgCLmnNOEAfco5eAB1ev2Z51x2ZW+IwEAwggNYwAIMntWr9LCt16VJNVq39FzGgAAABS1JR++o7XTpyiuXHld+OhYmZnvSACAMELDGACCzIxHH1JGWpqaXHOdKjdu6jsOAAAAilBacrJmPjFKktR55BOMogAAFDluegcAQWTTvB+04tuvFBUXr/YDBvuOAwAAgCIWFRur//tinJZ99pHOuPwq33EAAGGIhjEABAnnnKYNz2wSt7qjl0pXq+45EQAAAHwod2odndP3ft8xAABhipEUABAkfv/Pv7Xlp3kqUamyWt95j+84AAAAKEIHNm/SL++9Keec7ygAgDDHDmMACBLVW7VRk79dr+pnna2YUqV9xwEAAEARcc5p/H33aO3USTq4bSu7iwEAXtEwBoAgUbpadXUb+7zvGAAAAChiSz5+T2unTlJcuXJqdt3NvuMAAMIcIykAwLPUpEPKSE/3HQMAAAAeHNi8SdMeekCSdMHwx1WqSlXPiQAA4Y6GMQB4NvPxUXq7SwdtXjDPdxQAAAAUIeecJgzsreT9+1T3wovU8IprfEcCAICRFADg0951a/TzGy8rIy1NkbExvuMAAACgCC39+H2tmTJBsWXL6sLRT8nMfEcCAIAdxgDg0/ejhysjNVWNrvy7qjQ503ccAAAAFBHnnJZ+8oEk6YKHH1OpqtU8JwIAIBM7jAHAk80L5mn5V58rKi5OHe4b4jsOAAAAimx6r8YAACAASURBVJCZ6aoPvtDyr79Qw79e7TsOAABH0TAGAA+cc5o+IrNJfNZtPVWmximeEwEAAKCoRUZHqxFziwEAQYaRFADgwYrvvtameXMVX6GiWvfs7TsOAAAAisjBrVs0rm9PHdq103cUAAByxQ5jAPAgIzVV8RUqqn2/QYotXcZ3HAAAABQB55wmDOyt1ZPGKSM1VRc/+4rvSAAA/A8axgDgwRmXXak6F1yoqLh431EAAABQRJZ99pFWTxqn2DJlde4DD/mOAwBArmgYA4An7CwGAAAIHwe3bdWUofdJks5/6FGVrlbdcyIAAHJHwxgAitDssaNlEZFqdXtPRceX8B0HAAAARcA5p4kDeyt53z7VueBCNb7mWt+RAADIEw1jACgi+zas0w/PPqn0lBTVOb+zqp7Z0nckAAAAFIFfP/9YqyZ+p9gyZdXlsWdkZr4jAQCQpwjfAQAgXHw/erjSU1LU8IpraBYDAACEkd2rV0qSznvoEZWuXsNzGgAAjo0dxgBQBLYsXKDf/v2pImNj1WHgg77jAAAAoAh1GDBY9S++VJUaNfEdBQCA42KHMQAEmHNO00dkNonPuvVOlT2lludEAAAAKArOuaOPKzduyigKAEBIoGEMAAG2asK32jh3luLLJ6jN3X19xwEAAEARSNy+Te9efJ7Wz5zuOwoAAAVCwxgAAmzFuG8kSe363q/YMmU9pwEAAECgOec0cVBfbftloX586Z++4wAAUCDMMAaAAOs29nnVv+Qy1e54vu8oAAAAKAK/ffmZVo77j2JKl1GXx57xHQcAgAKhYQwAAWZmqvunrr5jAAAAoAgk7tiuyYP7S5LOHzZKZWqc4jkRAAAFw0gKAAiQZZ9/rF0rf/cdAwAAAEXEOadJg/ro8N49qt3pAjX5+w2+IwEAUGDsMAaAANi/aYPG979bLj1dt85eqDI1avqOBAAAgABb/tVnWvHdfxRTqrS6PPFPmZnvSAAAFBgNYwAIgJmPjVR6crLOuOxKmsUAAABhIqZUGZWsXEXtBwymBgQAhCwaxgBQyLYtXqhln32oyJgYdbh/qO84AAAAKCKnde6iW6b9qNgyZX1HAQDghDHDGAAKkXNO0x4eIklq0f12latV228gAAAABFxK4sGjj+PKlmMUBQAgpNEwBoBCtHrSeG2Y873iypVX2179fMcBAABAgCXu3KHXO7TUzMdGKCMtzXccAABOGg1jACgkzjnNfHykJKldn4GKK1fecyIAAAAEknNOkwb1VeL2bdry83xZZKTvSAAAnDQaxgBQSMxMl736tlp0v13Nb/yH7zgAAAAIsOVff6EV336l6JKl1GXMs4yiAAAUC9z0DgAKUbnap6nziMd9xwAAAECAJe7cocmD+0uSzntwhMqeUstzIgAACgc7jAGgEOz4damcc75jAAAAoIhMfqCfknbvUq0OndTs+lt8xwEAoNDQMAaAk3Rg8ya99+cL9N5fOis1Kcl3HAAAAATY8q+/0O/ffKnokqXUlVEUAIBihpEUAHCSZj4+UmmHD6tMjZqKjo/3HQcAAAABVv2s1qp9/p9Ur8vFKlvzVN9xAAAoVDSMAeAkbFuySEs//UAR0dHqOGiY7zgAAAAoAqWr19CV73zqOwYAAAHBSAoAOEHOOU0fPkRyTi1u7qFytU/zHQkAAAABtHvVSmWkp0uSzIxRFACAYomGMQCcoDVTJmr9rBmKLVtWbe/t7zsOAAAAAujQrp364K9d9eEVFylpz27fcQAACBgaxgBwAjLS0jR95IOSpLb3DFB8+QTPiQAAABBIk4cMUNKunYqMjlFc2XK+4wAAEDA0jAHgBDjn1ORv16lyk2ZqcUsP33EAAAAQQL9/86WWf/W5okuUVNexz8ki+Kc0AKD44m85ADgBkdHROvuOe3TDd9MVFRvrOw4AAAAC5NDuXZo4qK8kqePgh1WuVm2/gQAACDAaxgBQQBlpaUcfs7sEAACgeJuSNYqiZrtz1fzGf/iOAwBAwNHpAIACOLh1i15t20zzX3lezjnfcQAAABBAa2dM0W9ffpY5iuLJZ9ksAAAIC1G+AwBAKJk1ZpQObNmkTfPmqFWPnr7jAAAAIIBqte+kTg+OUEyp0ip3ah3fcQAAKBI0jAEgn3YsW6LFH76riKgodRz0sO84AAAACLCIyEidfcc9vmMAAFCk+DwNAOTT9FFDJefU/KZbVf60ur7jAAAAIEA2zZurg1u3+I4BAIAXNIwBIB/WTJuktdMmK7ZMWbXtfZ/vOAAAAAiQpN279eVtN+iN89to14rlvuMAAFDkaBgDwHFkpKdr+sihkqQ29/RTiYQKnhMBAAAgUKYMvU+HdmxXpYaNlVD3dN9xAAAocjSMAeA4Du3YrsioKJU5pZZa3nK77zgAAAAIkBXj/qNfv/hEUXHx6vrkc7II/skMAAg/3PQOAI6jVNVquv7badq/eaOi4uJ8xwEAAEAAJO3ZrYn395EkdXzgIZWvwz0rAADhif8uBYB8sIgIlT2llu8YAAAACJApQwfq0I7tOqXNOWpxSw/fcQAA8IaGMQDk4eC2rfqu953at2Gd7ygAAAAIoF0rf9dv//40cxTFGEZRAADCGyMpACAPs598REs/eV8piQd12avv+I4DAACAAKlQr76u/XqS9qxepfKnMYoCABDeaBgDQC52/LZMiz94RxYZqXMHDvUdBwAAAAFWrflZqtb8LN8xAADwjs/ZAEAuZowaKpeRoTNv6K6Eeqf7jgMAAIAAWDNtklZN+M53DAAAggoNYwDIYd2MqVozZaJiSpXWOX3v9x0HAAAAAXB47x6N69tTX9zyd62eMtF3HAAAggYNYwDIJiM9XdNGPChJatOrr0pUqOg5EQAAAAJhyrBBSty2VTXObqvanS7wHQcAgKBBwxgAstn68wLt/G2pSlc/RS3/cafvOAAAAAiAVRPHadmnHygqLk5dn3xeEZGRviMBABA0uOkdAGRTvVVr3TRptg7t2K7o+HjfcQAAAFDIDu/do4n395YkdbjvQSXUrec5EQAAwYWGMQDkULFBQ6lBQ98xAAAAEABTHx6sg1u3qHqrNmp5K58oAwAgJ0ZSAICkxB3btWrCd3LO+Y4CAACAADm8d4/Wz5qhqLg4dWMUBQAAuaJhDACSZo8drS9u+btmPT7SdxQAAAAESFy58rp58mxd/sYHSqh3uu84AAAEJRrGAMLerhXL9ct7b8oiI9Xwimt8xwEAAEAAxZYuo9odL/AdAwCAoEXDGEDYmzFqmFx6uppde5MqnN7AdxwAAAAUstVTJmrqsEFKTTrkOwoAAEGPm94BCGvrZ83QqonfKbpkKZ3Tb5DvOAAAAChkh/ft1YQB9+jg1s0qf1pdNb/pVt+RAAAIauwwBhC2XEaGpo8YIklq07O3Slaq7DkRAAAACtu04YN1cOtmVWt5tppdf4vvOAAABD0axgDC1m9ffa5tixepVNXqOqtHT99xAAAAUMjWTJ2kJR++q8jYWHV76gVFREb6jgQAQNBjJAWAsFX3wm5q1/d+JZxWT9HxJXzHAQAAQCFK3r9PEwbcI0lqP2CwKtSr7zkRAAChgYYxgLAVU7KU2jO3GAAAoFiaNnywDmzZpGotWqlVj7t9xwEAIGQwkgJAWFn2+cd6uVUjjTmlnF5p3UTLPv/YdyQAAAAUkmWff6xXWjfRmFPK6dcvPpVFRjKKAgCAAqJhDCBsLPv8Y0247x4d2LJJck77N23QhPvuoWkMAABQDByp9fZv2iA5p7TDSYqIita2xYt8RwMAIKTQMAYQNmaOHq60pKQ/HEtLStLM0cM9JQIAAEBhya3WS08+TK0HAEAB0TAGEDb2b9qQ+/HNG4s4CQAAAApbXjUdtR4AAAVDwxhAsZeWnKyJA3vn+XyZ6qcUYRoAAAAEQsnKVXI9Tq0HAEDBRPkOAACB9lWPG7V60jhZZKQsIkIZqalHn4uKj1eH+4d6TAcAAICTlXIoUbL/3Q9FrQcAQMGxwxhAsdeyew+VqVlL1309Sd3GvqAyNWpKZipTo6a6PP5PNbriGt8RAQAAcIKcc5o0qJ8St25WycpVVbp6DWo9AABOgveGsZnVNLNPzWyfme03s8/NrFY+z40zsyfMbIuZJZnZHDPrmMu6CDMbZGZrzeywmS0ysyvzuOZtZvabmSWb2XIzuyOPdZeb2c9Z11tnZkPMLDLHmofMzOXy9e9crtfYzCaY2UEz22Vmb5hZQn7eBwB/5JzTtiX/vRt27U6d1X36fFU9s6UaXXGNevy4RP037lWPH5fwDwgAgFfUwkfXUgvjhC356F0t+/QDRcXF66oPvtDt85ZR6wEAcBK8NozNrISkKdL/s3ffYVJV9x/H399dWKogFlARrLGAWBKsIfZewBij+YkFKxp7jC222I0mmthijUYlmhgbqNhLxBZbLFgxKoogKCAdluX8/rizulm3gcve3dn363nmGfbOucNnzjNz58x3zpzLWsABwH7AD4AnI6JTA+7iRuBQ4ExgV2A88HBErF+t3bnAb4ErgZ2AF4A7I2LnankOBa4F7gJ2BO4Ero6II6q126HQ5qXC/f0JOB24oJacA4BNq1xOqnZ/KwBPAR2APYEjgW2B+yNq+F2VpFqVz57FyGMP57adtmTsqKe/2d6mXbscU0mS9F2Ohb+5P8fCWmRffzaWx0/7NQDbXngpy67VJ+dEkiS1fHmvYXwosCqwZkppDEBEvAF8AAwFLq1tx4hYD9gHOCildFNh29PAaOAcYGBhW3fg18BFKaXfF3Z/MiJWBy4CHiy0awOcD9yaUjqtSrsVgHMj4oaUUuXCpxcBo1JKh1Vp1xk4PSIuSylNqBb3xZTS/Dr64USgLbBbSmlqIc/nwNPA7sDddewrqWDq2I8Zfsi+TBz9Jm06dGTOtK/zjiRJUl0cC2ccC2uRdenZi63P+R1fvPUG6+y1T95xJEkqCnl/Yz8QeKFygAyQUvoIeBYY1IB9y4G/V9l3PnAHsENEVE4n3AEoA26rtv9tQL+IWKXw96bAsjW0uxVYmmxmBBHRC1i/lnZtyWZZLKyBwAOVA+TCY/kXMJb6+0ES8PHTj3PbTlsycfSbLLnyKgy+/3HW2Hlg3rEkSaqLY+FvH4tjYS2SiGDdwUPY7sJav1+RJEkLKe+CcV/grRq2jwbq+y1RX+CjlNKsGvYtA1av0m4uMKaGdlT5f/oWrqvnaVC7wuB+Vi25P42IisL6br+LiA6VNxT+vUoN/2/l/+1vqqQ6pJR48cpLuWvfPZkzdQqrbrMD+z74lD9HlCS1BI6FHQtrEb173118Neb9vGNIklSU8l6SYilgSg3bJwPdvse+lbdXXk9NKaUGtKOG+2xou8ptVU/OMQY4BXgNSMD2wPHAD4HtCm26AVHHY1mzhu2SCmZ99SUvX3cVacECNv3VKWx2/MlESd7fhUmS1CCOhR0LaxFMeP1VRh53OCVtyzjoqX+zxAo9844kSVJRybtgDNngsbpowH7RwH0Xpl1teRra7n/uM6VU/ad6j0bEZ8AfI2LblNJjC3N//3NDxGHAYQC9ezfoRNpSUeq0zLLsds3NlM+YwWrbL8qvYCVJypVj4Qbe3//c4Fi41ZozdQrDhx5Axbx59Pu//S0WS5K0GOQ9Da/6LIRK3ah5lkFVk+vYt/L2yutuEVF9wFlTO2q4z6Ua2A5gySq31+b2wvWGhespZAPk2h5LjfeXUroupdQ/pdR/2WWXree/lIrLmIcf4OXrrvrm796b/cRisSSpJXIs7FhYCyGlxEO/OpJpn46lx7rrs+VZF+QdSZKkopR3wXg0366DVlUf4O0G7LtKRHSsYd95fLtO22igHbBaDe2o8v9Urs9WPU+D2kXEykDHBuSulAAK6859XMP/W/l/N/T+pKK3oKKCURefx70H7cNT55zGF2/+J+9IkiR9H46FHQtrIbxy3VWMefgB2nXpym7X3Eybdu3q30mSJC20vAvGw4FNImLVyg2FweaPC7fVt29b4OdV9m0D7A08klKaW9j8ENmgeXC1/fcF3iqcoAPgeeDLWtpNJjtbNSmlscDrtbQrB0bWk7tyvxerPZZdIqJrlccyAFiJ+vtBahXmTJ3CPUP25oU/XUKUlLD5aWfTfZ318o4lSdL34Vj428fiWFh1GvfSi/zrgrMA2PGyq1lypVVyTiRJUvHKew3j64GjgPsi4nSymQbnAp8C11Y2ioiVgA+Bc1JK5wCklP4TEX8nWwOtLfARcATZWZa/GcCmlCZGxGXAqRExHXiVbCC9NTCoSrvyiDgDuDoixgGPFdocBBydUppXJfdvgPsj4lqyn9VtAJwO/CmlNKFK7teAW4D3Co9tO+Bo4KGU0pNV7u8SskH28Ii4EOgKXAz8G7hn4bpUKj6T3n6Lew8ZzNeffEyHbkux69V/YaXNt8o7liRJ35dj4YxjYdVr2rhPidJSfnTQ4fxgx13zjiNJUlHLtWCcUpoZEVsDlwG3kp3Y4nHguJTSjCpNAyjluzOiDwTOB84jWzPtdWDHlNKr1dqdBswAjgWWIxu07pVSGlEtzzURkYATgBOBscBRKaWrq7V7MCL2BM4ChgBfABcUslT1HtmHgOUL+T8EziEbAFe9v3ERsRVwKXAX2SyQ+4ATUkoLkFqxj556jPsO2Y/5s2fRfZ11GXTDbXTttVLesSRJ+t4cC39zf46FVa+1d9+TZfusQ7dVqq+uIkmSGlukVN+JkNXc9e/fP7388st5x5AWi+njP+fWnbZg5S22YbuLLqNthw55R5IktVAR8UpKqX/eOdS4HAsXtzlfT6V91yXzjiFJUou3MGPhvNcwlqTvmD1lMmlBNqFoieVXYP+H/sVOf/yzxWJJkqRWZOxzz3Ddxv145547844iSVKrYsFYUrMy/j+vcMt2A3j+j9/+WrXzcssTETmmkiRJUlOaOfELHjjyYOZNn8ZX77+bdxxJkloVC8aSmo03b7+FO366I9PHj+OTfz1JRXl53pEkSZLUxBZUVHD/kQczc+IXrLjpADY74dS8I0mS1KrketI7SQKYP3cuT555Mq/fdhMA6+1/MFuffRGlbdvmnEySJElN7blLL+LT556h4zLLsutVN1LSxo+tkiQ1Jd95JeVq+vjPGX7Y/ox/9SVK27Vj2wsvpd/e++YdS5IkSTn46KnHeOFPl0AEu151I517LJd3JEmSWh0LxpJy9eRZpzD+1ZdYYoUVGXTDrSy33g/zjiRJkqQcVMybxyMnHgsp8eNfn0bvAVvkHUmSpFbJgrGkXG1z3iWUlpWx1dkX0XHpZfKOI0mSpJyUlpXx05vv4PVbbmTjY07IO44kSa2WJ72T1KTKZ8/ipWuuYEFFBQCduvdglytvsFgsSZIkuvftx3a/+yMlpaV5R5EkqdVyhrGkJjN17McMP2RfJo5+k3kzpvPjX/8m70iSJEnK2YePPsTcaV/T52d75x1FkiRhwVhSE/n46ce5/5cHM2fqFJZceVXW2HX3vCNJkiQpZ1PHfsyDxx7G3K+/psPSS7PKltvmHUmSpFbPgrGkxSqlxL+vvJRnfncupMSq2+zAzldcR/uuS+YdTZIkSTmaP3cuIw4fwtyvv2a17XZi5S22yTuSJEnCgrGkxWjerJmMPHYoHzw4AoBNf3UKmx1/MlHi8umSJEmt3dPnns4Xr79Gl1692emPfyYi8o4kSZKwYCxpMWpT1o45U6dStkQXdrnielbbbse8I0mSJKkZeHf43bx203WUtG3LbtfcTPslu+UdSZIkFVgwltToFsyfT0mbNpS0acNu19zMnKlTWWq11fOOJUmSpGZg8odjeOTEYwDY8qwLWH79H+WcSJIkVeXvwiU1mgUVFYy6+Dzu2vdnLJg/H4COSy9jsViSJEnfWDC/nE7LdmfN3X7KBkMOzTuOJEmqxhnGkhrFnKlTuP+oQ/j4yceIkhI++/fz9N7sJ3nHkiRJUjOzzJprs99DTwO4brEkSc2QM4wlfW+T3n6LW3feko+ffIwO3ZZiz2F3WyyWJEnS//j600+++XdZ5yUo67xEjmkkSVJtLBhL+l7eufefDNttW77+5GN69FuPfR96mpU23yrvWJIkSWpGvnzvHW7aahMeOemYb5YukyRJzZNLUkhaZB8+9jAPHHkwAH1/vg/bXngpbTt0yDmVJEmSmpN5M2cwfOgBzJ89i/lz5xGlpXlHkiRJdbBgLGmRrbLVtqy67Y6sstW2rH/AIa5BJ0mSpP+RUuLRU45n8gfvsfQaa7HthX9wzChJUjNnwVjSQhn/n1fo0rMXnZbtTklpKT+9+Q4H/ZIkSarRm3/7K+/c/Q/adOjIwOtuoaxjp7wjSZKkeriGsaQGe/P2W7jjpzsy4vAhVJSXA57ZWpIkSTWb+NYbPH7GSQBs/7s/svQP1sw5kSRJaghnGEuq1/y5c3nijJN4Y9jNACyz5tqQUq6ZJEmS1LyNuvg8KubOZd3BQ+jzs73zjiNJkhrIgrGkOk0f/znDD9uf8a++RGm7dmx34WWss/fgvGNJkiSpmdv16ht58YpL2eS4k/KOIkmSFoIFY0m1+vSFZxkx9ABmfTmJJXr2YtANt7LcuhvkHUuSJEktQFnnJfjJqWflHUOSJC0k1zCWVKuxz/6LWV9OovePN2e/kU9ZLJYkSVKdxr/6Mo+efBzls2fnHUWSJC0iZxhLqtVmx59MlxV60vfn+1DSxsOFJEmSajd7ymSGHz6E6eM+pUuv3mx81K/yjiRJkhaBM4wlfWPq2I+5a789mTFhPABRUkK//9vfYrEkSZLqlBYsYORxRzB93Kcst8GP6H/YUXlHkiRJi8iCsSQAPn76cW7baQs+euJRnj7/zLzjSJIkqQV56ZrL+e9jD9F+ySXZ7c83UVpWlnckSZK0iCwYS61cSokXr/gD/xz8M+ZMncqq2+7INuddkncsSZIktRCfvfgcz1x0DgA7/fFauvZaKedEkiTp+/B35lIrNm/GdEYedzgfjLwfgE1/dQqbHX8yUeJ3SZIkSarfzC8ncf8vDyJVVLDhL49lte12zDuSJEn6niwYS63U/LlzGTZwO7567x3KlujCLldc7wBfkiRJC6Vthw702nQA08Z9xoCTzsg7jiRJagQWjKVWqk27dqw96Ge8c99d7H7DMLqtulrekSRJktTClHXqzM5XXE/5rJmUtm2bdxxJktQI/N251IosqKhg6sf//ebvjY8+gcH3P26xWJIkSQtl0jujKZ89C4CIoKxT55wTSZKkxmLBWGolZk+ZzN0H7MWwgdsxbdxnAERJCWUdO+WcTJIkSS3JjAnjufMXgxi227bMnDQx7ziSJKmRWTCWWoGJo9/ktl224uMnH4MFC5j++bi8I0mSJKkFWjB/PvcfeTCzvpxEx6WWpsNSS+cdSZIkNTLXMJaK3Dv33MnDvz6a+XNm02Pd9Rl4/a10XbF33rEkSZLUAj17yfl89sKzdOreg12uupGS0tK8I0mSpEZmwVgqUhXl5fzrvDN55YarAei712C2veAPtO3QIedkkiRJaon++8SjvHjlpURJCbte/Rc6Lds970iSJGkxsGAsFamJb77Oq3+5hpI2bdjq7ItY/4BDiIi8Y0mSJKkFmjbuMx48+lAABpx0Or02HZBzIkmStLhYMJaK1PI/7M825/+eZdfuS88NN8k7jiRJklqwt/95O3OmTmGVrbdjoyOPzzuOJElajCwYS0Xkjb/9lS4r9mLlzbcGYP39D845kSRJkorBxsf8ms7LrcBq2+1ElHjudEmSipkFY6kIzJ87lyfOOIk3ht1M+yW7cfCoV+nQbam8Y0mSJKlIRATr7D047xiSJKkJ+NWw1MJN/3wcf//Zzrwx7GbatG/PlmddYLFYkiRJ39vUTz7ijj12YvKYD/KOIkmSmpAFY6kF+/T5Udy60xaMf+1llujZi/+792HW2WufvGNJkiSphZs/Zw4jhh7AZy8+x/N/ujjvOJIkqQm5JIXUQr3xt7/y6CnHkyoq6D1gC3b98010XGrpvGNJkiSpCDx59m/44s3X6dp7JbY575K840iSpCbkDGOpheq2ympEBBv+8lj2HHa3xWJJkiQ1infu/Sev33IjpWVl7HbtX2nfdcm8I0mSpCbkDGOpBZk3YzplnZcAoNemAzjo6ZdYcuVVc04lSZKkYvHVmPd55MRjANjqtxey3Lob5JxIkiQ1NWcYSy3ER089xvWbrsd/n3j0m20WiyVJktRY5s+dy4ihB1A+ayZrDfoZ6+1/cN6RJElSDiwYS81cSokXLv89d+27J7Mnf8W799yZdyRJkiQVodKyMn540FCW7dOP7S/+ExGRdyRJkpQDl6SQmrG506fx0PFH8MHI+wHY7IRT2fS4k3JOJUmSpGIUEaw7eAjr/GI/SkpL844jSZJyYsFYaqa+GvM+9x08mMlj3qddl67sfPl1rLbdjnnHkiRJUpH58v13iQiW/sGaABaLJUlq5VySQmqGFlRUcN9B+zB5zPssveba7PvAkxaLJUmS1OjmzZjO8EP25badt2LcSy/mHUeSJDUDFoylZqiktJQd/nAla++xF4NHPEa3VVfLO5IkSZKKTEqJR046lskffkDX3ivRfZ1+eUeSJEnNgEtSSM3E7CmT+ejJx+izx14A9NxwE3puuEnOqSRJklSsXr/lRt697y7adurMwGtvoW2HjnlHkiRJzYAFY6kZmDj6Te47ZDBfj/2Edp2XYLXtd8o7kiRJkorYhDde48nfngrA9hf/iaVW/0HOiSRJUnPhkhRSzt6++x/8beB2fD32E3qsuz7L9OmbdyRJkiQVsTlfT2XE0AOomDeP9fY/mLV33zPvSJIkqRlxhrGUk4rycp4+9wxevfHPAPTdazDbXvAH2nbokHMySZIkFbMJr7/KjC8m0KPfemx11gV5x5EkSc2MBWMpBzO/nMSIw4fw2fOjKGnblq3P/85NGgAAIABJREFUvoj19j+YiMg7miRJkorcyptvzeARj1PWuTNt2rfPO44kSWpmLBhLeUiJqR/9l07dezDwulvpueHGeSeSJElSkVtQUUFJaSkA3fv2yzmNJElqrlzDWGpCKSUAOi3bnT1u+Qf7PfQvi8WSJEla7GZN/oqbt9mUt+/+R95RJElSM2fBWGoC8+fO5ZGTjuWZi87+Zlv3vv3o3GO5HFNJkiSpNUgLFjDy2KFM/uA9XrvpOhZUVOQdSZIkNWMuSSEtZtM/H8d9h+3HhNdeoU379qy//yF06bli3rEkSZLUSvz7qsv46IlHab9kN3a75qZvlqWQJEmqiTOMpcXo0+dHcetOWzDhtVdYomcv/u/ehy0WS5Ikqcl8+vwoRl18HgA7X34dXXr2yjmRJElq7pxhLC0GKSVeveHPPHXu6aSKCnoP2IJd/3wTHZdaOu9okiRJaiVmTprI/b88iLRgARsf9StW3Wb7vCNJkqQWwBnG0mLw0jWX8+RvTyVVVLDhL49lz2F3WyyWJElSk3r4hKOYOfELVtzkx/z4xNPyjiNJkloIZxhLi8E6e+/L6DtvZ7PjT2bN3X6adxxJkiS1Qj855UzmzZjOrlfdSEkbP/pJkqSGcdQgNZJxL73I8hv8iJI2bei41NIc8OiznlBEkiRJuVm2zzr84u6ReceQJEktjEtSSN9TSokXLv89t/90B54+/6xvtlssliRJUlOb/vk43rn3n3nHkCRJLZgzjKXvYe70aTx0/BF8MPJ+iKBdly6klIiIvKNJkiSplakoL+f+Xx7EuJdeYPaUyfzwwMPyjiRJklogC8bSIvpqzPvcd/BgJo95n3ZdurLzFdez2rY75B1LkiRJrdSoi89l3Esv0Hm5FVhr4B55x5EkSS2UBWNpEXzw0P2MPPZw5s2YzjJr9WHQDbfRbZXV8o4lSZKkVurDR0by0tV/IkpL2fXPf6Hj0svkHUmSJLVQrmEsLaSUEm8Mu5l5M6az5sA92Gf4oxaLJUmSlJuvP/2EkccfDsBPTj2LFTfaNOdEkiSpJXOGsbSQIoKdL7+O90bcw3r7HeR6xZIkScpNxbx5jDh8CHOmTmW17XZiw6FH5x1JkiS1cM4wlhpg4ug3efDow6iYNw+ADt2WYv39D7ZYLEmSpFzNnPQFc6dNo8uKvdnxsquJEj/iSZKk78cZxlI93r77Hzxy4jHMnzObZfr0ZaMjjs07kiRJkgRAl5692G/kU0yfMJ4O3ZbKO44kSSoCFoylWlSUl/P0uWfw6o1/BmCdvfflhwcOzTmVJEmSBPNmzqCsU2cAyjovwdKrL5FzIkmSVCwsGEs1mDlpIiMOH8JnLzxLSdu2bH3O71yvWJIkSc1C+ezZ3PHTHemx3gZsfc7FtO3QIe9IkiSpiFgwlqqZNu5T/jZwe2ZM+JxOPZZj0HW3skL/jfKOJUmSJAHw5FmnMHH0m8ybOZMF5fPAgrEkSWpEFoylapZYvic9+q1H11692e3av9K5x3J5R5IkSZIAePuuv/PGsJspbdeOgdf+lXZduuYdSZIkFRkLxhIwf+5c5s2YTsellyFKStjlyuspLWtHaVlZ3tEkSZIkAL58/10eOfk4ALY592K6r7NuzokkSVIxKsk7gJS36Z+P446f7cQ9Q37B/LlzgezEIRaLJUmS1FzMmzWTEUMPYP7sWfTZY2/67XNA3pEkSVKRsmCsVu3T50dxy46bM+G1V5g58QtmTPg870iSJEnSd7zwp0v46v13WeoHa7LtRZd6MmZJkrTYuCSFWqWUEq/e8GeeOvd0UkUFK/1kS3a5+i90XGrpvKNJkiRJ37HJ0Scwa9Ik+g89irJOnfOOI0mSipgFY7U65bNn8ciJx/DOPXcCsNGRxzHg5DMpKS3NOZkkSZJUs7LOS7DjpVflHUOSJLUCLkmhVuftu/7OO/fcSduOndjt2r+y+W/OtlgsSZKkZmfu9Gk8c+HZlM+enXcUSZLUiuReMI6IXhHxz4j4OiKmRcTdEdG7gfu2j4hLImJ8RMyOiOcjYvMa2pVExKkR8XFEzImI1yPiZ7Xc56ER8W5EzI2I9yLi8Fra7R4RrxXu75OIOD0iSqvcXhoRv46IJyLii4iYHhGvRsTBEVFS7b6GRESq4fKfhvSDFs66g4fwo8OOYvADT7DmrrvnHUeSJLVijoUdC9cmpcTDvz6aF6+8lEdOPDrvOJIkqRXJtWAcER2BJ4C1gAOA/YAfAE9GRKcG3MWNwKHAmcCuwHjg4YhYv1q7c4HfAlcCOwEvAHdGxM7V8hwKXAvcBewI3AlcHRFHVGu3Q6HNS4X7+xNwOnBBlWYdCtveAg4DdgeeBK4HflfL4/k5sGmVy371d4HqkxYs4KVrLufrz8YCEBFsddb5LLPGWjknkyRJrZlj4e9wLFzFazdfz/v330tZ5yXY9PhT8o4jSZJakUgp5fefRxwLXAqsmVIaU9i2CvABcFJK6dI69l0P+A9wUErppsK2NsBo4L2U0sDCtu7Ap8BFKaWzquz/OLBsSmndKvt+DoxMKR1Qpd1fgIHA8iml8sK214BpKaUtqrQ7k2xQ3DulNKEww6JrSmlytdx/AfYBuqWUZhe2DQFuAn5Q2Q8Lo3///unll19e2N1ahbnTpzHy2MMZ8/ADLLf+Dxk84nGiJPeJ9ZIkKQcR8UpKqX/eOSo5FnYsXJvx/3mF23ffgQXl5ez655tYa+AeeUeSJEkt3MKMhfOunA0EXqg6MEwpfQQ8CwxqwL7lwN+r7DsfuAPYISLaFTbvAJQBt1Xb/zagX2FQDtkshmVraHcrsDQwALKfDQLr19KuLdksC1JKFdUHyAUvAe2AZep5fPqevvrgPYbtsjVjHn6Adl26sunxp1gsliRJzYljYX3HnKlTGDF0CAvKy9ngwMMsFkuSpCaXd/WsL9nP1KobDfRpwL4fpZRm1bBvGbB6lXZzgeqzFUYXrvtUaUcNeRrUrjC4n9WA3FsAU8l+MljdqIioKKxDd01ELFXPfakWH4wcwW27bM3kDz9gmbX6sO+DT7LatjvkHUuSJKkqx8L/q9WPhVNKjDzuCKZ9NpYe623AFmecl3ckSZLUCrXJ+f9fCphSw/bJQLfvsW/l7ZXXU9N3196oqR013GdD21Vuq3VgW1jvbS/gjMIMkErjgXOAF4HZwI+Bk4EfR8SGKaU5td2nvuvZ31/A85dlS+OtOXAPdvj9FZR16pxzKkmSpO9wLJxxLFxQMXcuZZ07065rV3a75mbatGtX/06SJEmNLO+CMUBNiyhHA/aLBu67MO1qy9PQdrXmjog+wO3AU1Q70UdK6WHg4SqbnoyIN4F7gX2BG2q4v8PITiBC794NOpF2q1HWeQmipITNTzuH/kOPIqIhTydJkqRcOBZ2LPyNNu3bs/MV1zNt3Kd0XbF4HpckSWpZ8l6SorZZCN2oedZCVZPr2Lfy9srrbvHdqmFN7ajhPpdqYDuAJavc/o2IWBV4FPgI2L3ajIraDAdmAhvWdGNK6bqUUv+UUv9ll122AXdX3ObP+XbiSf+hR7H/w8+w4eFHWyyWJEnNmWPh2rWqsfDsKZMpn52tLhIRFoslSVKu8i4Yj+bbddCq6gO83YB9V4mIjjXsO49v12kbTXZijdVqaEeV/6dyfbbqeRrULiJWBjpWzx0RKwKPA9OAHVNK02p7QLWob5ZHq/f23f/gxgE/ZOrYj4FskL1sn3XyDSVJklQ/x8L1K/qxcFqwgAeOPJhhu27DlI8+zDuOJElS7gXj4cAmhVkHwDeDzR8Xbqtv37bAz6vs2wbYG3gkpTS3sPkhskHz4Gr77wu8VThBB8DzwJe1tJtMdrZqUkpjgddraVcOjKySZ1ngscKf26WUJtXzmKraHehEtpabalBRXs4TZ57Cg0cfyvTx43j3njvzjiRJkrQwHAvXrtWMhV+4/A98/PQTzJz4BW3atc87jiRJUu5rGF8PHAXcFxGnk80gOBf4FLi2slFErAR8CJyTUjoHIKX0n4j4O/DHiGhL9hO3I4BVqDKATSlNjIjLgFMjYjrwKtlAemtgUJV25RFxBnB1RIwjG9xuDRwEHJ1Smlcl92+A+yPiWrK12DYATgf+lFKaUMjcgWwttpUL97FiYYZFpbcrZ1hExKPAk2Rnm6480cevyQbjf1vYTm0NZk6ayIjDh/DZC89S0rYtW5/zO9bb76C8Y0mSJC0Mx8K07rHw2FFP89wfLoAIdrnyepZYoWfekSRJkvItGKeUZkbE1sBlwK1kJ8p4HDgupTSjStMASvnujOgDgfOB88jWTHud7Kdur1ZrdxowAzgWWA54D9grpTSiWp5rIiIBJwAnAmOBo1JKV1dr92BE7AmcBQwBvgAuKGSp1INs8AwwrIaHvxXZST8g+2nffsCKZD8Z/BS4Bji3yuwQFXz+yksMP2w/ZkwYT6ceyzHoultZof9GeceSJElaKI6FW/dYeMYXE7j/qENICxawyXEnsfIW2+QdSZIkCYBIqeiXBSt6/fv3Ty+//HLeMZrErMlfcf3G/SifNZOeG27Cbtf+lc49lss7liRJagEi4pWUUv+8c6hxtcSx8IL58/nHLwbx2fOj6LXZT/j5HfdRUlqadyxJklTEFmYsnPeSFNJC6bjU0vzk1LOY8t8xbHnm+ZSWleUdSZIkSVoo7z84nM+eH0Wn7j3Y9aobLRZLkqRmxYKxmr3pn49j6icf0WvTAQD88KChOSeSJEmSFt2au/2UudO+ptuqq9Ope4+840iSJP0PC8Zq1sY+9wwjDh/CgvJy9n3gSbqtulrekSRJkqTvJSJYb98D844hSZJUo+onzpCahZQSL193FXf+YhCzv/qS5db/Ie2X7JZ3LEmSJGmRVJSX89AJR/LVmPfzjiJJklQnZxir2SmfPYtHTjyGd+65E4CNjjqeASed4dpukiRJarGeufC3vHXHbXz+yksc+MQLRIlzdyRJUvNkwVjNytRPPuK+g/dl0jtv0bZTZ3a67GrW2GVQ3rEkSZKkRTbm4Qd4+dorKWnThh0uucJisSRJatYsGKtZmTVpEl+NeY9uq67OoBuHscwaa+UdSZIkSVpkUz/5iJHHHQHA5r85m54bbpxzIkmSpLpZMFbuUkpEBAAr9N+I3f9yOz37b0S7Ll1zTiZJkiQtuvlz5jBi6AHMnfY1q++wCz867Mi8I0mSJNXL30IpV3OnT2P4ofvywUP3f7Nt1a23s1gsSZKkFu+pc07jizdfp2vvldjx0qu+mSQhSZLUnDnDWLn56oP3uO/gwUz+8AMmvPE6q269PaVlZXnHkiRJkhpF9779KFuiC7tdczPtl+yWdxxJkqQGsWCsXLz/4HBGHncE5TNnsMxafRh0w20WiyVJklRU1h08hDV23Z32XZfMO4okSVKDuSSFmtSCigqeufBshh+6H+UzZ7DWoJ+xz4jH6LbKanlHkyRJkr638tmzmDzmg2/+tlgsSZJaGgvGalKPnHQML155KVFaypZnns8uV91IWcdOeceSJEmSGsXjp5/IrTttwZhHHsw7iiRJ0iKxYKwmtd5+B7HECivy89vvpf/QozzxhyRJkorGW38fxlt33EZaUEHXXivlHUeSJGmRuIaxFrsv3nqdHuusB8Dy6/+Ig0e9Spt27XJOJUmSJDWeSe++zWO/OQGAbS74A8uu3TfnRJIkSYvGGcZabCrKy3nizJO5dYfNeW/EPd9st1gsSZKkYjJv5gxGHLY/8+fMpu9eg+m39755R5IkSVpkzjDWYjFz4heMOHwIn734HCVt2zJvxvS8I0mSJEmNLqXEoycfx+QPP2CZtfqw7QW/zzuSJEnS92LBWI3u81deYvhh+zFjwng6L7c8A6+9hRX6b5R3LEmSJKnRTflwDB+MHEHbjp3Y7dq/0rZDx7wjSZIkfS8WjNWoXr/tJh4//UQWlJez4sabsds1N9Ope4+8Y0mSJEmLxVKr/4B9hj/GtHGfsvTqa+QdR5Ik6XuzYKxGM2/mDF688lIWlJezwUFD2fLM8ylt2zbvWJIkSdJi1b1vP7r37Zd3DEmSpEZhwViNpqxTZ3a/YRiT3n2bvnv+Iu84kiRJ0mKRUmLkcUew8hZb02ePvfKOI0mS1KhK8g6glm3sc8/w3KUXffN393XWtVgsSZKkovbqjdfw9j9v57HfnMCsr77MO44kSVKjcoaxFklKiVeuv5qnzzuDVFHBCj/akJW32CbvWJIkSdJi9fkrL/H0uacDsOOlV9Fx6WVyTiRJktS4LBhroc2bNZNHTjyGd+/9JwAbHXU8vQdsmW8oSZIkaTGbPXkyIw4fwoL58/nRIb9kjZ0H5h1JkiSp0VkwVoO8ffc/GHXROUz7/DNKStuwYH45bTt1ZqfLrmaNXQblHU+SJElabN6++x88c9HZTB/3GQBdV1qFzU87O+dUkiRJi4drGKteb9/9Dx456RimjfsUUmLB/HKIYJPjTrRYLEmSpKJWORauLBYDzPxiPO/df2+OqSRJkhYfC8aq16iLzmH+7Nn/uzElXr/5hnwCSZIkSU2kprHw/DlzGHXROTklkiRJWrwsGKte0z7/bKG2S5IkScXCsbAkSWptLBirXl1WWHGhtkuSJEnFwrGwJElqbSwYq14DTjmTNh06/M+2Nh06MOCUM3NKJEmSJDUNx8KSJKm1sWCsevXZYy+2v/hyuvTsBRF06dmL7S++nD577JV3NEmSJGmxciwsSZJamzZ5B1DL0GePvRwUS5IkqVVyLCxJkloTZxhLkiRJkiRJkgALxpIkSZIkSZKkAgvGkiRJkiRJkiTAgrEkSZIkSZIkqcCCsSRJkiRJkiQJsGAsSZIkSZIkSSqwYCxJkiRJkiRJAiwYS5IkSZIkSZIKLBhLkiRJkiRJkgALxpIkSZIkSZKkAgvGkiRJkiRJkiTAgrEkSZIkSZIkqcCCsSRJkiRJkiQJsGAsSZIkSZIkSSqwYCxJkiRJkiRJAiwYS5IkSZIkSZIKLBhLkiRJkiRJkgALxpIkSZIkSZKkAgvGkiRJkiRJkiTAgrEkSZIkSZIkqcCCsSRJkiRJkiQJsGAsSZIkSZIkSSqwYCxJkiRJkiRJAiwYS5IkSZIkSZIKLBhLkiRJkiRJkgALxpIkSZIkSZKkAgvGkiRJkiRJkiTAgrEkSZIkSZIkqcCCsSRJkiRJkiQJsGAsSZIkSZIkSSqwYCxJkiRJkiRJAiwYS5IkSZIkSZIKLBhLkiRJkiRJkgALxpIkSZIkSZKkgkgp5Z1B31NETAI+yTtHTpYBvsw7RDNl39TN/qmdfVM7+6Zu9k/t7Ju6NVX/rJRSWrYJ/h81IcfCHltqYd/Uzf6pnX1TO/umbvZP7eybujW7sbAFY7VoEfFySql/3jmaI/umbvZP7eyb2tk3dbN/amff1M3+kRaNr53a2Td1s39qZ9/Uzr6pm/1TO/umbs2xf1ySQpIkSZIkSZIEWDCWJEmSJEmSJBVYMFZLd13eAZox+6Zu9k/t7Jva2Td1s39qZ9/Uzf6RFo2vndrZN3Wzf2pn39TOvqmb/VM7+6Zuza5/XMNYkiRJkiRJkgQ4w1iSJEmSJEmSVGDBWC1SROwcEf+KiBkRMS0iXo6IrfPOlbeI+HFEPBIREwv98mpEHJR3rqYWEStGxBUR8XxEzIqIFBEr19CufURcEhHjI2J2of3mTZ+4aTWkfyKif0RcFxHvFtqMjYhhEbFKPqmbRkOfO9X2ObXQblTTpMzHwvRNRKwdEXdGxJeF19Z7EXFs0yZuWgtx3OkdEX8tvKZmRcT7EXFeRHRq+tRNIyL2jIi7IuKTKs+HCyNiiWrtukXEDYXnzcyIeCwi+uWVW8pbRGxZOJZUv0yt1q7oXzuNPbaLiJLC+/fHETEnIl6PiJ81xWNpbAvRNzU9l1JErF+tXTH1TaO+/zT0+dUSNKRvImLlOp43S1a7v6LpG4CI2CEinoiICRExNyI+i4h/RESfau16RcQ/I+LryD5/3x0RvWu4v6I5Tjekbxr6/lVoWzR9U5OIeKjw2M+rtr3ZH3csGKvFiYihwH3AK8BPgZ8DdwId88yVt4hYF3gMaAscCvwMeAm4MSKOyDNbDlYH9gKmAM/U0e5Gsr46E9gVGA88XH3gXIQa0j+/APoClwM7AacAPwRejoheTREyJw197gAQEasCpwETF3Ou5qBBfRMR/YEXgXbAIcDOwB+A0ibImKd6+yeyovBjwObAGcAuwA3ACcBfmiZmLn4NVAC/AXYE/gwcATwaESUAERHA8MLtR5O9h7UFnoyIFfMILTUjxwCbVrlsW3lDK3rtNPbY7lzgt8CVZOOcF4A7I2Lnxo3dJBZm7HIz//tc2hR4v1qbYuqbxn7/KabPDvX2TRUX8t3nzfRqbYqpbwCWIqs3HAVsD5xK9tnohYhYCSAiOgJPAGsBBwD7AT8ge+58MxGgCI/T9fZNFbW+f0FR9s3/iIj/A9arYXvLOO6klLx4aTEXYGVgNnBc3lma2wW4AJgHdK62/QXg+bzzNXFflFT59yFAAlau1ma9wvYDq2xrA7wHDM/7MTSD/lm2hv1WAhYA5+T9GPLsm2rtHwauBZ4CRuWdP+++IfsiejRwT955m2n/bF/Yvn217RcB84GOeT+OxdQ3NR1P9i/0xdaFvwcV/t6qSpuuwGTg8rwfgxcveVyALQuvi23raNMqXjuNObYDugNzgbOr7f848Ebej3Vx9E3htgScV899FVvfNNr7T0OfXy3l0sC+Wbnw9yH13FdR9U0dj3PNwuM8ofD3sWRF99WrtFmlMKb7VZVtRX+crqFv6n3/Kva+AZYEJgD/V/3421KOO84wVktzEFnB6pq8gzRDZUA5WUG9qqm0sl8TpJQWNKDZQLL++nuV/eYDdwA7RES7xRQvdw3pn5TSpBq2fQJMAnoujlzNQQOfOwBExD5ks65PXXyJmo8G9s2WQB/g0sWbpvlpYP+UFa6nVdteeZyORg3VTNR0PCH7BQx8ezwZCHyeUnqyyn5fAyPIBtWSatYqXjuNPLbbgex4fFu1/W8D+kULW35rYcYuDVBsfdOY7z9F9dmhgX3TUEXVN3X4qnBdXrgeCLyQUhpT2SCl9BHwLN997hT7cbp63zRUMffNxcDolNLtNdzWIo47raqIpKIwAHgX+EVEfBgR8yNiTEQcmXewZuDmwvXlEbFCRCwZEYcC2wCX5Rer2eoLfJRSmlVt+2iygfLqTR+peYuItclmnryTd5a8RUQ3stfVSSmlyXnnaUYGFK7bR8QLEVEe2Zrql0dEh1yTNQ+PAR8Av4uIPhHRObL1948Frkkpzcw3XpPaonBdeTzpC7xVQ7vRQO+I6NwkqaTmaVhEVETEVxHxt2rrY/ra+VZDx3Z9yWbRjqmhHWRffBarIwprjs4qrEH6k2q3t4a+WdT3n9bw2aF631S6sPC5++uIGF7DOqtF2zcRURoRZRHxA7JfFU4gK9ZB3c+dqq+VojxO19M3lep6/4Li7ZsBZDP2f1lLkxZx3LFgrJZmBbJ1gS4h+wnv9sCjwJVR5CdUqk9K6S2y2X2DgHFk65hdBRyeUqp+4Fa29tKUGrZPrnK7CiKiDdnM/klk6yi1dpeQrfl3c845mpsVCtd/Bx4BtiP7dv0Q4G95hWouUkpzyIrqlUt3TCf7me/9ZOvAtQoR0RM4B3gspfRyYXN9x+RuTZFNama+JlsD/hBga7K1ZbcFno+I7oU2vna+1dCx3VLA1FT4bW8d7YrNbWTFi22Bw4ClgSciYssqbYq6b77n+09Rf3aopW/mkhUChwJbka173A94rjCRpFIx982LZP3wPrAu2XIdlecuqetxVz32Futxuq6+acj7FxRh30REW7LXze9TSu/V0qxFHHfaLM47lxaDEmAJYEhK6e7CticiOxPwqRFxeQ0DnFah8M3eXWRFiMPJlqYYBFwTEXNSSsPyzNcMBdl6QDVt13ddCWwG7JJSqulNq9UozMbZH/hhaz3e1KHyi+jbUkpnFv79VESUAhdFRJ+U0ts5ZctdRLQnK6Z3JzsxylhgI7KTWMwnO9lMUSvMmLiP7PEeWPUmPCZL/yOl9BrwWpVNT0fEv4B/k51I6HR87VTV0L5olX2WUtqvyp/PRMR9ZDPczuPbXwgVbd80wvtPq+ublNJ4ss+VlZ6JiIfIPm+eBuxbeRcUad+Qjde6AKuSFcwfjYgBKaWPC7e35udOrX3TwPcvKM6+ORnoAJxfR5sWcdxxhrFamsq1cR6ttv0RoAewfNPGaVYuIFvfZteU0v0ppcdTSscA/wD+VMPZblu7ydT8jVy3KrcLiIgLyWaiHJRSeiTvPM3AtWSzrD8rLP2yJNkXsKWFv4tlnbZFUdcxGqClnim7sRxM9kuQnVNKt6WU/pVS+j1wAnB4RHznLMrFpFAwH072wWKHlNJnVW6u75jcqr+okiqllF4lm821YWGTr51vNXRsNxnoVjhLfV3tilpKaTrwAN8+l6BI+6aR3n+K8rNDPX3zHSmlT4FRfPd5U3R9A5BSeiel9GJhHdptgM7AKYWbp1D746567C3K43Q9fVNT++rvX1BkfVNYcuM04AygXZXPilT5u5QWctyxgKSWZnQt2ysHNY150oeWph/wekqp+kLz/yb7yVn37+7Sqo0GVomIjtW29wHm8d2121qliDiN7I3/2JTSrXnnaSbWJpttMaXK5cfAJoV/F/0s0TpUHqOrfxPuMTrTD5iSUvqw2vZ/F67XpkgVfp53F9mM6p1TSm9WazKabJ226voAY1NKMxZzRKklqTrjyNfOtxo6thsNtANWq6EdQGv6JUz12WtF1zeN+P5TdJ8dGtA3te7Kd583RdU3NUkpTSV7LJXrxtb13Kn6Win643QNfVObmp47xdQ3qwLtyZYAqvpZEbJZ2FPIPg+0iOOOBWO1NPcUrneotn0H4LOU0oQmztOcTADWj4jREWYWAAAK60lEQVSyats3BubQgr/ZXUyGA22Bn1duKKzTuzfwSEppbl7BmouIOIbsZ4qnpZSuyDtPM7JVDZfXyX7WuRXwz/yi5W4k2VpmO1bbXnnMfpnWbQLZzK3qg+mNC9fjmjhPkyj8wmUY2eyTQSmlF2poNhzoGRFbVNmvC7Bb4TZJQET0B9YgWzsSfO1U1dCx3UNkH7QHV9t/X+CtlNJHTZA1d4XnyS58+1yCIuubRn7/KarPDg3sm5r26002UaLq86ao+qY2EdEDWAuo/OJ/OLBJRKxapc3KZP1T/blT1MfpGvqmpjbV37+g+PrmP9T8WRGyIvJWZEXeFnHccQ1jtTQPAk8C10bEMsB/gT3JTn53YF07tgJXAncCIyLiarI1jAcC/wdcllKal2e4phYRexb++aPC9U4RMQmYlFJ6OqX0n4j4O/DHwrfrH5HNDF2F7w6Si059/RMRvwD+SPbB4YmI2KTK7tOKeR3aBjx3nqphn6lAm5puKyYN6JuvCkuYnBER04AngP5ka/T+NaVUFDNMalNf/5CdJPFXwIMRcT7ZGsb9yX629grwbNMmbjJXkQ10zwdmVjuefFb4+etw4Hngtog4kWwGxqlkM1EubuK8UrMQEcPIxievAlOBDcheF+OAyi9yW81rp7HGdimliRFxGdn5T6aT9e/eZCdmGtRED6dRNWBc92tgTbLPUZ8DK5HNdluO4u6bRnv/KcLPDvX2TUT8gWyS4fNkJ75ek6xvFpAthwgUZd8QEfeQPf/fAKaRFTqPJ1vn+Q+FZteTnbT4vog4nWzm7LnAp2RL2FUqquN0Q/qmge9fUGR9U5hp/VT17YVVfj6p/KwYES3juJNS8uKlRV3IFla/CviC7BvwN4B98s7VHC7ATmQHqEnAdLJvuH4JlOadLYe+SLVcnqrSpgNwKdmsvzlk33ZumXf25tA/ZIWtevuwGC+L8rgLr7tReWdvDn1DNtD5Fdm35/OAT8jOut027/zNpH/6kK0t/ynZF3vvA78HuuWdfzH2y8d19M1vq7RbCvgL2S9iZgGPA+vlnd+Ll7wuZB8e3yA723x54bhxHbB8tXat4rXTmGM7oJTspEufkP0y5g1gz7wf4+LqG7JZa88CXxaeS1+RFWo2Kua+aez3n4Y+v1rCpSF9AxwEvERWzJpfeNx/A9Ys5r4pPJ6Tyb7Mn1p4TrxHVgReuVq73mTLekwj+/x9b/U2C/McawmXhvQNDXz/Kra+qaPPEnDeojzuPF9bUQggSZIkSZIkSWrlXMNYkiRJkiRJkgRYMJYkSZIkSZIkFVgwliRJkiRJkiQBFowlSZIkSZIkSQUWjCVJkiRJkiRJgAVjSZIkSZIkSVKBBWNJEgAR8duISBGx5fe8ny0L9/PbxkkmSZIk1a81jWcjYtPC4z0xItrmnUdScbFgLEmtQEScVhj0pohYM+88kiRJ0sJwPPutiNgYeBg4C7gYGBYRpXW07xQRgyPibxHxbkTMjIjpEfFyRJwQEWVNlV1Sy2DBWJKKXEQEcDCQCpsOzTGOJEmStFAcz34rIjYAHgLKgIOAp4CfAzdFRG01np8AtwE7AG8BVwC3Az2B3wNPRkT7xZtcUktiwViSit/2wCrAX4EvgAOcRSBJkqQWxPEsEBF9gUeAUmDnlNJNwI7AXcB+wDW17DoB2BdYPqW0Z0rplJTSYcAawKvAZsCRizu/pJbDgrEkFb/KGRjXA8OAZYCfNnTnws/+noqIFSLi1oiYGBGzI+KViNinnn3Xj4gHImJqRMyKiKcjYrMa2q0QEWdGxLMRMSEi5kXE54Wfza1dy30PjIjHI2J8RMwttH86In7Z0McmSZKkFqHVj2cjYg3gMaAC2CKl9ARASmkusBdwLXBoRPyx+r4ppf+klIallOZV2z4d+EPhzy3r6gdJrYsFY0kqYhHRAxgIvJ9Seg64qXDTYQt5V92A54B+hfu4BViVbL20E2vZp39hn/bADcD9wADg8RrWndscOAWYSjZD4jLgBWBP4KWIWK/a4zoMuA/oA4wgG+g+CHQADlzIxyZJkqRmyvEsRMQqwOPALODHKaXXqt6eUlqQUjocOAc4NiIuakB/VCovXM9fiH0kFbk2eQeQJC1WBwJtgZsBUkpvRcSrwFYRsXpKaUwD72dd4E7gFymlBQCFgegrwPkRcVdK6b/V9tkFODCldHPlhogYSvZTuWOBqjMnngB6FGY5UKX9esCzwEXATlVuGgrMA9ZLKU2sts8yDXxMkiRJav5a/Xg2pfQR0Ku+B5hSOovsRHgL46DC9UMLuZ+kIuYMY0kqUoWTgxwCLCCbQVHpZqDytoaqAE6uHFzDNwPXy8kG8PvVsM+zVQfXBX8hm72wUdWNKaWJ1QfXhe2vkw2+t4qIttVuns+3MyKq7vNlvY9GkiRJzZ7j2cUrIo4iWwP5P2SPS5IAC8aSVMy2BlYDHk0pjauy/W9ksxmG1DBorc3YwoC6uqcK1xvUcNvL1TeklMrJTlTSrfptEbFLRIworOFWXlhrLgG7wf+3dy+hdVVRHMa/f3wUpGgRtY7UjsRpVUSlkIjiY6BBEdFJiaCCgw61UEWqI0W0OnGiIEVtB6I4EdRAURwJ4qPoRIREENOKGEFKB8XlYJ9IGu7N84Z4b7/fZCfn7LPvPrPFYp+12EarVbfgXeAi4IckryaZTHL5Kt9FkiRJw8F4dpMkuR84RGuI90D3XpIEmDCWpFG2UNft7cUXq+oPWp20ncB9q1zrRJ/rc914SY97832eOUPr7PyfJPtoNeFuBb6gBa/PAweB77pp2xbmV9UrwF7gF2Af8CFwIsmxJDes9DKSJEkaCsazmyDJJHAUOAmM9yjFIekcZw1jSRpB3emEye7fI0mO9Jn6OPD+Kpbc2ef6ld341xq2d5Yk59MC6Tlgd1X9tuT+zb2eq6rDwOEkO4BbaJ2yHwU+SXLd0lpwkiRJGh7Gs5sTzyZ5kHZCew64rap+GvRvSBp+JowlaTTtBS6kNfH4ts+ce4Hbk+zq83neYlcluaaqZpZcH+/Gb1i/y4AdwAc9guvtwO7lHq6qeVpH6Y+TjNGC7D207tSSJEkaTsazA45nkzxCqwX9KzDhyWJJ/ZgwlqTRtNAA5Mmq+qrXhCQvAM90cw+ssN55wItJHl7UVXoX7fO5M8A7G9jrSeAUcH2S7VX1d7f+BcBrnF3rbWHvdwHTVXVmya0ruvHUBvYjSZKkrWc8O0BJ9tIa283SksWzg1xf0mgxYSxJIybJOHAtcLxfcN15ixZYTyV5boVlvwduAr5O8imtxttDtJMUT1XVz+vdb1X9k+R1YD9wPMlHtNMkE8ClwLHu78WOAqeTfAnM0Lpk7wFupJ1CmV7vfiRJkrS1jGcHG88mmaAli8e6vUwlWTptvqoODeo3JQ03E8aSNHoe68Y3l5tUVTNJpoE7aJ2bl/MncDfwEjAFXAz8CLxcVe9tbLsAPAv8Tjsd8gSthtxntBMjB3vM3w/cSfu87x7gNO20xNPAG3Z5liRJGmrGs4ONZ6+mJYuhlbvoZZbWqE+SSFVt9R4kSf9jSQr4vKrGt3ovkiRJ0loZz0rS2oytPEWSJEmSJEmSdC4wYSxJkiRJkiRJAkwYS5IkSZIkSZI61jCWJEmSJEmSJAGeMJYkSZIkSZIkdUwYS5IkSZIkSZIAE8aSJEmSJEmSpI4JY0mSJEmSJEkSYMJYkiRJkiRJktQxYSxJkiRJkiRJAuBfMAJCROf/FHcAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(1, figsize=(24, 16)) # dpi=300, frameon=False)\n", - "plt.subplot(1,2,1)\n", - "plt.title('tau^-1 vs. alpha')\n", - "plt.xlabel('Alphas')\n", - "plt.ylabel('Inv tau, fs^-1')\n", - "plt.plot(alphas[1:], inv_tau[1:], 'o--', label='', linewidth=2, color = colors[\"11\"]) \n", - "plt.legend()\n", - "\n", - "plt.subplot(1,2,2)\n", - "plt.title('tau^-1 vs. alpha^2')\n", - "plt.xlabel('Alphas^2')\n", - "plt.ylabel('Inv tau, fs^-1')\n", - "plt.plot(alphas2[1:], inv_tau[1:], 'o--', label='', linewidth=2, color = colors[\"11\"]) \n", - "plt.legend()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Indeed, the above plots show very well the quadratic dependence. Now, we just need to determine the regression coefficients.\n", - "\n", - "Lets package the data we are going to use in the regression analysis in the variables X and Y for convenience (the weird ranges in the alphas2 and inv_tau variables below indicate which data we are going to use).\n", - "\n", - "The regression analysis is done with the fit module function. The parameters are printed" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "a = 8.94810946299e-07\n", - "b = 5.39859009816e-07\n" - ] - } - ], - "source": [ - "X = list(alphas2[1:])\n", - "Y = list(inv_tau[1:])\n", - "\n", - "a,b = fit.Regression(X,Y, 1)\n", - "print \"a = \", a\n", - "print \"b = \", b" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, using the determined regression coefficients, lets determine the rate we would have for the non-scaled (original) NACs, which corresponds to the value of the scaling parameter $\\alpha = 1$ " - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "rate = 1.43466995611e-06 fs^-1\n", - "Timescale = 697024.424146 fs\n" - ] - } - ], - "source": [ - "alp = 1.0\n", - "\n", - "rate = a + b * alp\n", - "print \"rate = \", rate, \" fs^-1\"\n", - "print \"Timescale = \", 1.0/rate, \" fs\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As you can see, the predicted value is about 700 ps, not 57 ns as was determined using the direct fit. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.15" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt index 5c9ee66f9..d7cacf50c 100755 --- a/src/CMakeLists.txt +++ b/src/CMakeLists.txt @@ -54,6 +54,10 @@ ADD_SUBDIRECTORY("qobjects") MESSAGE("Going into subdirectory basis...") ADD_SUBDIRECTORY("basis") +MESSAGE("Going into subdirectory libint2_wrappers...") +ADD_SUBDIRECTORY("libint2_wrappers") + + @@ -179,6 +183,7 @@ TARGET_LINK_LIBRARIES(libra_core rigidbody_stat basis_stat qobjects_stat + libint2_wrappers_stat molint_stat linalg_stat meigen_stat specialfunctions_stat symmetry_stat operators_stat random_stat graph_stat data_stat ann_stat timer_stat context_stat io_stat calculators_stat ${ext_libs} ) @@ -208,6 +213,7 @@ TARGET_LINK_LIBRARIES(libra_core_stat rigidbody_stat basis_stat qobjects_stat + libint2_wrappers_stat molint_stat linalg_stat meigen_stat specialfunctions_stat symmetry_stat operators_stat random_stat graph_stat data_stat ann_stat timer_stat context_stat io_stat calculators_stat ${ext_libs} ) diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/.hg_archival.txt b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/.hg_archival.txt deleted file mode 100755 index 4dd5bd180..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/.hg_archival.txt +++ /dev/null @@ -1,4 +0,0 @@ -repo: 8a21fd850624c931e448cbcfb38168cb2717c790 -node: b9cd8366d4e8f49471c7afafc4c2a1b00e54a54d -branch: 3.2 -tag: 3.2.10 diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/.hgeol b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/.hgeol deleted file mode 100755 index 423676d31..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/.hgeol +++ /dev/null @@ -1,8 +0,0 @@ -[patterns] -scripts/*.in = LF -debug/msvc/*.dat = CRLF -unsupported/test/mpreal/*.* = CRLF -** = native - -[repository] -native = LF diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/.hgignore b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/.hgignore deleted file mode 100755 index e33ba2e9d..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/.hgignore +++ /dev/null @@ -1,32 +0,0 @@ -syntax: glob -qrc_*cxx -*.orig -*.pyc -*.diff -diff -*.save -save -*.old -*.gmo -*.qm -core -core.* -*.bak -*~ -build* -*.moc.* -*.moc -ui_* -CMakeCache.txt -tags -.*.swp -activity.png -*.out -*.php* -*.log -*.orig -*.rej -log -patch -a -a.* diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/.hgtags b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/.hgtags deleted file mode 100755 index c83128570..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/.hgtags +++ /dev/null @@ -1,35 +0,0 @@ -2db9468678c6480c9633b6272ff0e3599d1e11a3 2.0-beta3 -375224817dce669b6fa31d920d4c895a63fabf32 2.0-beta1 -3b8120f077865e2a072e10f5be33e1d942b83a06 2.0-rc1 -19dfc0e7666bcee26f7a49eb42f39a0280a3485e 2.0-beta5 -7a7d8a9526f003ffa2430dfb0c2c535b5add3023 2.0-beta4 -7d14ad088ac23769c349518762704f0257f6a39b 2.0.1 -b9d48561579fd7d4c05b2aa42235dc9de6484bf2 2.0-beta6 -e17630a40408243cb1a51ad0fe3a99beb75b7450 before-hg-migration -eda654d4cda2210ce80719addcf854773e6dec5a 2.0.0 -ee9a7c468a9e73fab12f38f02bac24b07f29ed71 2.0-beta2 -d49097c25d8049e730c254a2fed725a240ce4858 after-hg-migration -655348878731bcb5d9bbe0854077b052e75e5237 actual-start-from-scratch -12a658962d4e6dfdc9a1c350fe7b69e36e70675c 3.0-beta1 -5c4180ad827b3f869b13b1d82f5a6ce617d6fcee 3.0-beta2 -7ae24ca6f3891d5ac58ddc7db60ad413c8d6ec35 3.0-beta3 -c40708b9088d622567fecc9208ad4a426621d364 3.0-beta4 -b6456624eae74f49ae8683d8e7b2882a2ca0342a 3.0-rc1 -a810d5dbab47acfe65b3350236efdd98f67d4d8a 3.1.0-alpha1 -304c88ca3affc16dd0b008b1104873986edd77af 3.1.0-alpha2 -920fc730b5930daae0a6dbe296d60ce2e3808215 3.1.0-beta1 -8383e883ebcc6f14695ff0b5e20bb631abab43fb 3.1.0-rc1 -bf4cb8c934fa3a79f45f1e629610f0225e93e493 3.1.0-rc2 -da195914abcc1d739027cbee7c52077aab30b336 3.2-beta1 -4b687cad1d23066f66863f4f87298447298443df 3.2-rc1 -1eeda7b1258bcd306018c0738e2b6a8543661141 3.2-rc2 -ffa86ffb557094721ca71dcea6aed2651b9fd610 3.2.0 -6b38706d90a9fe182e66ab88477b3dbde34b9f66 3.2.1 -1306d75b4a21891e59ff9bd96678882cf831e39f 3.2.2 -36fd1ba04c120cfdd90f3e4cede47f43b21d19ad 3.2.3 -10219c95fe653d4962aa9db4946f6fbea96dd740 3.2.4 -bdd17ee3b1b3a166cd5ec36dcad4fc1f3faf774a 3.2.5 -c58038c56923e0fd86de3ded18e03df442e66dfb 3.2.6 -b30b87236a1b1552af32ac34075ee5696a9b5a33 3.2.7 -07105f7124f9aef00a68c85e0fc606e65d3d6c15 3.2.8 -dc6cfdf9bcec5efc7b6593bddbbb3d675de53524 3.2.9 diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/CMakeLists.txt b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/CMakeLists.txt deleted file mode 100755 index 77e9f2d35..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/CMakeLists.txt +++ /dev/null @@ -1,412 +0,0 @@ -project(Eigen) -cmake_minimum_required(VERSION 2.8.5) - -# guard against in-source builds - -if(${CMAKE_SOURCE_DIR} STREQUAL ${CMAKE_BINARY_DIR}) - message(FATAL_ERROR "In-source builds not allowed. Please make a new directory (called a build directory) and run CMake from there. You may need to remove CMakeCache.txt. ") -endif() - -# guard against bad build-type strings - -if (NOT CMAKE_BUILD_TYPE) - set(CMAKE_BUILD_TYPE "Release") -endif() - -string(TOLOWER "${CMAKE_BUILD_TYPE}" cmake_build_type_tolower) -if( NOT cmake_build_type_tolower STREQUAL "debug" - AND NOT cmake_build_type_tolower STREQUAL "release" - AND NOT cmake_build_type_tolower STREQUAL "relwithdebinfo") - message(FATAL_ERROR "Unknown build type \"${CMAKE_BUILD_TYPE}\". Allowed values are Debug, Release, RelWithDebInfo (case-insensitive).") -endif() - - -############################################################################# -# retrieve version infomation # -############################################################################# - -# automatically parse the version number -file(READ "${PROJECT_SOURCE_DIR}/Eigen/src/Core/util/Macros.h" _eigen_version_header) -string(REGEX MATCH "define[ \t]+EIGEN_WORLD_VERSION[ \t]+([0-9]+)" _eigen_world_version_match "${_eigen_version_header}") -set(EIGEN_WORLD_VERSION "${CMAKE_MATCH_1}") -string(REGEX MATCH "define[ \t]+EIGEN_MAJOR_VERSION[ \t]+([0-9]+)" _eigen_major_version_match "${_eigen_version_header}") -set(EIGEN_MAJOR_VERSION "${CMAKE_MATCH_1}") -string(REGEX MATCH "define[ \t]+EIGEN_MINOR_VERSION[ \t]+([0-9]+)" _eigen_minor_version_match "${_eigen_version_header}") -set(EIGEN_MINOR_VERSION "${CMAKE_MATCH_1}") -set(EIGEN_VERSION_NUMBER ${EIGEN_WORLD_VERSION}.${EIGEN_MAJOR_VERSION}.${EIGEN_MINOR_VERSION}) - -# if the mercurial program is absent, this will leave the EIGEN_HG_CHANGESET string empty, -# but won't stop CMake. -execute_process(COMMAND hg tip -R ${CMAKE_SOURCE_DIR} OUTPUT_VARIABLE EIGEN_HGTIP_OUTPUT) -execute_process(COMMAND hg branch -R ${CMAKE_SOURCE_DIR} OUTPUT_VARIABLE EIGEN_BRANCH_OUTPUT) - -# if this is the default (aka development) branch, extract the mercurial changeset number from the hg tip output... -if(EIGEN_BRANCH_OUTPUT MATCHES "default") -string(REGEX MATCH "^changeset: *[0-9]*:([0-9;a-f]+).*" EIGEN_HG_CHANGESET_MATCH "${EIGEN_HGTIP_OUTPUT}") -set(EIGEN_HG_CHANGESET "${CMAKE_MATCH_1}") -endif(EIGEN_BRANCH_OUTPUT MATCHES "default") -#...and show it next to the version number -if(EIGEN_HG_CHANGESET) - set(EIGEN_VERSION "${EIGEN_VERSION_NUMBER} (mercurial changeset ${EIGEN_HG_CHANGESET})") -else(EIGEN_HG_CHANGESET) - set(EIGEN_VERSION "${EIGEN_VERSION_NUMBER}") -endif(EIGEN_HG_CHANGESET) - - -include(CheckCXXCompilerFlag) -include(GNUInstallDirs) - -set(CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake) - -############################################################################# -# find how to link to the standard libraries # -############################################################################# - -find_package(StandardMathLibrary) - - -set(EIGEN_TEST_CUSTOM_LINKER_FLAGS "" CACHE STRING "Additional linker flags when linking unit tests.") -set(EIGEN_TEST_CUSTOM_CXX_FLAGS "" CACHE STRING "Additional compiler flags when compiling unit tests.") - -set(EIGEN_STANDARD_LIBRARIES_TO_LINK_TO "") - -if(NOT STANDARD_MATH_LIBRARY_FOUND) - - message(FATAL_ERROR - "Can't link to the standard math library. Please report to the Eigen developers, telling them about your platform.") - -else() - - if(EIGEN_STANDARD_LIBRARIES_TO_LINK_TO) - set(EIGEN_STANDARD_LIBRARIES_TO_LINK_TO "${EIGEN_STANDARD_LIBRARIES_TO_LINK_TO} ${STANDARD_MATH_LIBRARY}") - else() - set(EIGEN_STANDARD_LIBRARIES_TO_LINK_TO "${STANDARD_MATH_LIBRARY}") - endif() - -endif() - -if(EIGEN_STANDARD_LIBRARIES_TO_LINK_TO) - message(STATUS "Standard libraries to link to explicitly: ${EIGEN_STANDARD_LIBRARIES_TO_LINK_TO}") -else() - message(STATUS "Standard libraries to link to explicitly: none") -endif() - -option(EIGEN_BUILD_BTL "Build benchmark suite" OFF) -if(NOT WIN32) - option(EIGEN_BUILD_PKGCONFIG "Build pkg-config .pc file for Eigen" ON) -endif(NOT WIN32) - -set(CMAKE_INCLUDE_CURRENT_DIR ON) - -option(EIGEN_SPLIT_LARGE_TESTS "Split large tests into smaller executables" ON) - -option(EIGEN_DEFAULT_TO_ROW_MAJOR "Use row-major as default matrix storage order" OFF) -if(EIGEN_DEFAULT_TO_ROW_MAJOR) - add_definitions("-DEIGEN_DEFAULT_TO_ROW_MAJOR") -endif() - -set(EIGEN_TEST_MAX_SIZE "320" CACHE STRING "Maximal matrix/vector size, default is 320") - -macro(ei_add_cxx_compiler_flag FLAG) - string(REGEX REPLACE "-" "" SFLAG ${FLAG}) - check_cxx_compiler_flag(${FLAG} COMPILER_SUPPORT_${SFLAG}) - if(COMPILER_SUPPORT_${SFLAG}) - set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${FLAG}") - endif() -endmacro(ei_add_cxx_compiler_flag) - -if(NOT MSVC) - # We assume that other compilers are partly compatible with GNUCC - - set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fexceptions") - set(CMAKE_CXX_FLAGS_DEBUG "-g3") - set(CMAKE_CXX_FLAGS_RELEASE "-g0 -O2") - - # clang outputs some warnings for unknwon flags that are not caught by check_cxx_compiler_flag - # adding -Werror turns such warnings into errors - check_cxx_compiler_flag("-Werror" COMPILER_SUPPORT_WERROR) - if(COMPILER_SUPPORT_WERROR) - set(CMAKE_REQUIRED_FLAGS "-Werror") - endif() - - ei_add_cxx_compiler_flag("-pedantic") - ei_add_cxx_compiler_flag("-Wall") - ei_add_cxx_compiler_flag("-Wextra") - #ei_add_cxx_compiler_flag("-Weverything") # clang - - ei_add_cxx_compiler_flag("-Wundef") - ei_add_cxx_compiler_flag("-Wcast-align") - ei_add_cxx_compiler_flag("-Wchar-subscripts") - ei_add_cxx_compiler_flag("-Wnon-virtual-dtor") - ei_add_cxx_compiler_flag("-Wunused-local-typedefs") - ei_add_cxx_compiler_flag("-Wpointer-arith") - ei_add_cxx_compiler_flag("-Wwrite-strings") - ei_add_cxx_compiler_flag("-Wformat-security") - - ei_add_cxx_compiler_flag("-Wno-psabi") - ei_add_cxx_compiler_flag("-Wno-variadic-macros") - ei_add_cxx_compiler_flag("-Wno-long-long") - - ei_add_cxx_compiler_flag("-fno-check-new") - ei_add_cxx_compiler_flag("-fno-common") - ei_add_cxx_compiler_flag("-fstrict-aliasing") - ei_add_cxx_compiler_flag("-wd981") # disable ICC's "operands are evaluated in unspecified order" remark - ei_add_cxx_compiler_flag("-wd2304") # disbale ICC's "warning #2304: non-explicit constructor with single argument may cause implicit type conversion" produced by -Wnon-virtual-dtor - - # The -ansi flag must be added last, otherwise it is also used as a linker flag by check_cxx_compiler_flag making it fails - # Moreover we should not set both -strict-ansi and -ansi - check_cxx_compiler_flag("-strict-ansi" COMPILER_SUPPORT_STRICTANSI) - ei_add_cxx_compiler_flag("-Qunused-arguments") # disable clang warning: argument unused during compilation: '-ansi' - - if(COMPILER_SUPPORT_STRICTANSI) - set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -strict-ansi") - else() - ei_add_cxx_compiler_flag("-ansi") - endif() - - set(CMAKE_REQUIRED_FLAGS "") - - option(EIGEN_TEST_SSE2 "Enable/Disable SSE2 in tests/examples" OFF) - if(EIGEN_TEST_SSE2) - set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -msse2") - message(STATUS "Enabling SSE2 in tests/examples") - endif() - - option(EIGEN_TEST_SSE3 "Enable/Disable SSE3 in tests/examples" OFF) - if(EIGEN_TEST_SSE3) - set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -msse3") - message(STATUS "Enabling SSE3 in tests/examples") - endif() - - option(EIGEN_TEST_SSSE3 "Enable/Disable SSSE3 in tests/examples" OFF) - if(EIGEN_TEST_SSSE3) - set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mssse3") - message(STATUS "Enabling SSSE3 in tests/examples") - endif() - - option(EIGEN_TEST_SSE4_1 "Enable/Disable SSE4.1 in tests/examples" OFF) - if(EIGEN_TEST_SSE4_1) - set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -msse4.1") - message(STATUS "Enabling SSE4.1 in tests/examples") - endif() - - option(EIGEN_TEST_SSE4_2 "Enable/Disable SSE4.2 in tests/examples" OFF) - if(EIGEN_TEST_SSE4_2) - set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -msse4.2") - message(STATUS "Enabling SSE4.2 in tests/examples") - endif() - - option(EIGEN_TEST_ALTIVEC "Enable/Disable AltiVec in tests/examples" OFF) - if(EIGEN_TEST_ALTIVEC) - set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -maltivec -mabi=altivec") - message(STATUS "Enabling AltiVec in tests/examples") - endif() - - option(EIGEN_TEST_NEON "Enable/Disable Neon in tests/examples" OFF) - if(EIGEN_TEST_NEON) - set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mfpu=neon -mcpu=cortex-a8") - message(STATUS "Enabling NEON in tests/examples") - endif() - - check_cxx_compiler_flag("-fopenmp" COMPILER_SUPPORT_OPENMP) - if(COMPILER_SUPPORT_OPENMP) - option(EIGEN_TEST_OPENMP "Enable/Disable OpenMP in tests/examples" OFF) - if(EIGEN_TEST_OPENMP) - set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fopenmp") - message(STATUS "Enabling OpenMP in tests/examples") - endif() - endif() - -else(NOT MSVC) - - # C4127 - conditional expression is constant - # C4714 - marked as __forceinline not inlined (I failed to deactivate it selectively) - # We can disable this warning in the unit tests since it is clear that it occurs - # because we are oftentimes returning objects that have a destructor or may - # throw exceptions - in particular in the unit tests we are throwing extra many - # exceptions to cover indexing errors. - # C4505 - unreferenced local function has been removed (impossible to deactive selectively) - set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /EHsc /wd4127 /wd4505 /wd4714") - - # replace all /Wx by /W4 - string(REGEX REPLACE "/W[0-9]" "/W4" CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}") - - check_cxx_compiler_flag("/openmp" COMPILER_SUPPORT_OPENMP) - if(COMPILER_SUPPORT_OPENMP) - option(EIGEN_TEST_OPENMP "Enable/Disable OpenMP in tests/examples" OFF) - if(EIGEN_TEST_OPENMP) - set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /openmp") - message(STATUS "Enabling OpenMP in tests/examples") - endif() - endif() - - option(EIGEN_TEST_SSE2 "Enable/Disable SSE2 in tests/examples" OFF) - if(EIGEN_TEST_SSE2) - if(NOT CMAKE_CL_64) - # arch is not supported on 64 bit systems, SSE is enabled automatically. - set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:SSE2") - endif(NOT CMAKE_CL_64) - message(STATUS "Enabling SSE2 in tests/examples") - endif(EIGEN_TEST_SSE2) -endif(NOT MSVC) - -option(EIGEN_TEST_NO_EXPLICIT_VECTORIZATION "Disable explicit vectorization in tests/examples" OFF) -option(EIGEN_TEST_X87 "Force using X87 instructions. Implies no vectorization." OFF) -option(EIGEN_TEST_32BIT "Force generating 32bit code." OFF) - -if(EIGEN_TEST_X87) - set(EIGEN_TEST_NO_EXPLICIT_VECTORIZATION ON) - if(CMAKE_COMPILER_IS_GNUCXX) - set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mfpmath=387") - message(STATUS "Forcing use of x87 instructions in tests/examples") - else() - message(STATUS "EIGEN_TEST_X87 ignored on your compiler") - endif() -endif() - -if(EIGEN_TEST_32BIT) - if(CMAKE_COMPILER_IS_GNUCXX) - set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -m32") - message(STATUS "Forcing generation of 32-bit code in tests/examples") - else() - message(STATUS "EIGEN_TEST_32BIT ignored on your compiler") - endif() -endif() - -if(EIGEN_TEST_NO_EXPLICIT_VECTORIZATION) - add_definitions(-DEIGEN_DONT_VECTORIZE=1) - message(STATUS "Disabling vectorization in tests/examples") -endif() - -option(EIGEN_TEST_NO_EXPLICIT_ALIGNMENT "Disable explicit alignment (hence vectorization) in tests/examples" OFF) -if(EIGEN_TEST_NO_EXPLICIT_ALIGNMENT) - add_definitions(-DEIGEN_DONT_ALIGN=1) - message(STATUS "Disabling alignment in tests/examples") -endif() - -option(EIGEN_TEST_C++0x "Enables all C++0x features." OFF) - -include_directories(${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR}) - -# Backward compatibility support for EIGEN_INCLUDE_INSTALL_DIR -if(EIGEN_INCLUDE_INSTALL_DIR AND NOT INCLUDE_INSTALL_DIR) - set(INCLUDE_INSTALL_DIR ${EIGEN_INCLUDE_INSTALL_DIR} - CACHE PATH "The directory relative to CMAKE_PREFIX_PATH where Eigen header files are installed") -else() - set(INCLUDE_INSTALL_DIR - "${CMAKE_INSTALL_INCLUDEDIR}/eigen3" - CACHE PATH "The directory relative to CMAKE_PREFIX_PATH where Eigen header files are installed" - ) -endif() - -set(CMAKEPACKAGE_INSTALL_DIR - "${CMAKE_INSTALL_LIBDIR}/cmake/eigen3" - CACHE PATH "The directory relative to CMAKE_PREFIX_PATH where Eigen3Config.cmake is installed" - ) -set(PKGCONFIG_INSTALL_DIR - "${CMAKE_INSTALL_DATADIR}/pkgconfig" - CACHE PATH "The directory relative to CMAKE_PREFIX_PATH where eigen3.pc is installed" - ) - -# similar to set_target_properties but append the property instead of overwriting it -macro(ei_add_target_property target prop value) - - get_target_property(previous ${target} ${prop}) - # if the property wasn't previously set, ${previous} is now "previous-NOTFOUND" which cmake allows catching with plain if() - if(NOT previous) - set(previous "") - endif(NOT previous) - set_target_properties(${target} PROPERTIES ${prop} "${previous} ${value}") -endmacro(ei_add_target_property) - -install(FILES - signature_of_eigen3_matrix_library - DESTINATION ${INCLUDE_INSTALL_DIR} COMPONENT Devel - ) - -if(EIGEN_BUILD_PKGCONFIG) - configure_file(eigen3.pc.in eigen3.pc @ONLY) - install(FILES ${CMAKE_CURRENT_BINARY_DIR}/eigen3.pc - DESTINATION ${PKGCONFIG_INSTALL_DIR} - ) -endif(EIGEN_BUILD_PKGCONFIG) - -add_subdirectory(Eigen) - -add_subdirectory(doc EXCLUDE_FROM_ALL) - -include(EigenConfigureTesting) - -# fixme, not sure this line is still needed: -enable_testing() # must be called from the root CMakeLists, see man page - - -if(EIGEN_LEAVE_TEST_IN_ALL_TARGET) - add_subdirectory(test) # can't do EXCLUDE_FROM_ALL here, breaks CTest -else() - add_subdirectory(test EXCLUDE_FROM_ALL) -endif() - -if(EIGEN_LEAVE_TEST_IN_ALL_TARGET) - add_subdirectory(blas) - add_subdirectory(lapack) -else() - add_subdirectory(blas EXCLUDE_FROM_ALL) - add_subdirectory(lapack EXCLUDE_FROM_ALL) -endif() - -add_subdirectory(unsupported) - -add_subdirectory(demos EXCLUDE_FROM_ALL) - -# must be after test and unsupported, for configuring buildtests.in -add_subdirectory(scripts EXCLUDE_FROM_ALL) - -# TODO: consider also replacing EIGEN_BUILD_BTL by a custom target "make btl"? -if(EIGEN_BUILD_BTL) - add_subdirectory(bench/btl EXCLUDE_FROM_ALL) -endif(EIGEN_BUILD_BTL) - -if(NOT WIN32) - add_subdirectory(bench/spbench EXCLUDE_FROM_ALL) -endif(NOT WIN32) - -configure_file(scripts/cdashtesting.cmake.in cdashtesting.cmake @ONLY) - -ei_testing_print_summary() - -message(STATUS "") -message(STATUS "Configured Eigen ${EIGEN_VERSION_NUMBER}") -message(STATUS "") - -option(EIGEN_FAILTEST "Enable failtests." OFF) -if(EIGEN_FAILTEST) - add_subdirectory(failtest) -endif() - -string(TOLOWER "${CMAKE_GENERATOR}" cmake_generator_tolower) -if(cmake_generator_tolower MATCHES "makefile") - message(STATUS "Some things you can do now:") - message(STATUS "--------------+--------------------------------------------------------------") - message(STATUS "Command | Description") - message(STATUS "--------------+--------------------------------------------------------------") - message(STATUS "make install | Install Eigen. Headers will be installed to:") - message(STATUS " | /") - message(STATUS " | Using the following values:") - message(STATUS " | CMAKE_INSTALL_PREFIX: ${CMAKE_INSTALL_PREFIX}") - message(STATUS " | INCLUDE_INSTALL_DIR: ${INCLUDE_INSTALL_DIR}") - message(STATUS " | Change the install location of Eigen headers using:") - message(STATUS " | cmake . -DCMAKE_INSTALL_PREFIX=yourprefix") - message(STATUS " | Or:") - message(STATUS " | cmake . -DINCLUDE_INSTALL_DIR=yourdir") - message(STATUS "make doc | Generate the API documentation, requires Doxygen & LaTeX") - message(STATUS "make check | Build and run the unit-tests. Read this page:") - message(STATUS " | http://eigen.tuxfamily.org/index.php?title=Tests") - message(STATUS "make blas | Build BLAS library (not the same thing as Eigen)") - message(STATUS "--------------+--------------------------------------------------------------") -else() - message(STATUS "To build/run the unit tests, read this page:") - message(STATUS " http://eigen.tuxfamily.org/index.php?title=Tests") -endif() - -message(STATUS "") diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/COPYING.BSD b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/COPYING.BSD deleted file mode 100755 index 11971ffe2..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/COPYING.BSD +++ /dev/null @@ -1,26 +0,0 @@ -/* - Copyright (c) 2011, Intel Corporation. All rights reserved. - - Redistribution and use in source and binary forms, with or without modification, - are permitted provided that the following conditions are met: - - * Redistributions of source code must retain the above copyright notice, this - list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above copyright notice, - this list of conditions and the following disclaimer in the documentation - and/or other materials provided with the distribution. - * Neither the name of Intel Corporation nor the names of its contributors may - be used to endorse or promote products derived from this software without - specific prior written permission. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND - ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED - WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR - ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES - (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON - ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -*/ \ No newline at end of file diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/COPYING.GPL b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/COPYING.GPL deleted file mode 100755 index 94a9ed024..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/COPYING.GPL +++ /dev/null @@ -1,674 +0,0 @@ - GNU GENERAL PUBLIC LICENSE - Version 3, 29 June 2007 - - Copyright (C) 2007 Free Software Foundation, Inc. - Everyone is permitted to copy and distribute verbatim copies - of this license document, but changing it is not allowed. - - Preamble - - The GNU General Public License is a free, copyleft license for -software and other kinds of works. - - The licenses for most software and other practical works are designed -to take away your freedom to share and change the works. By contrast, -the GNU General Public License is intended to guarantee your freedom to -share and change all versions of a program--to make sure it remains free -software for all its users. We, the Free Software Foundation, use the -GNU General Public License for most of our software; it applies also to -any other work released this way by its authors. You can apply it to -your programs, too. - - When we speak of free software, we are referring to freedom, not -price. Our General Public Licenses are designed to make sure that you -have the freedom to distribute copies of free software (and charge for -them if you wish), that you receive source code or can get it if you -want it, that you can change the software or use pieces of it in new -free programs, and that you know you can do these things. - - To protect your rights, we need to prevent others from denying you -these rights or asking you to surrender the rights. Therefore, you have -certain responsibilities if you distribute copies of the software, or if -you modify it: responsibilities to respect the freedom of others. - - For example, if you distribute copies of such a program, whether -gratis or for a fee, you must pass on to the recipients the same -freedoms that you received. You must make sure that they, too, receive -or can get the source code. And you must show them these terms so they -know their rights. - - Developers that use the GNU GPL protect your rights with two steps: -(1) assert copyright on the software, and (2) offer you this License -giving you legal permission to copy, distribute and/or modify it. - - For the developers' and authors' protection, the GPL clearly explains -that there is no warranty for this free software. For both users' and -authors' sake, the GPL requires that modified versions be marked as -changed, so that their problems will not be attributed erroneously to -authors of previous versions. - - Some devices are designed to deny users access to install or run -modified versions of the software inside them, although the manufacturer -can do so. This is fundamentally incompatible with the aim of -protecting users' freedom to change the software. The systematic -pattern of such abuse occurs in the area of products for individuals to -use, which is precisely where it is most unacceptable. Therefore, we -have designed this version of the GPL to prohibit the practice for those -products. If such problems arise substantially in other domains, we -stand ready to extend this provision to those domains in future versions -of the GPL, as needed to protect the freedom of users. - - Finally, every program is threatened constantly by software patents. -States should not allow patents to restrict development and use of -software on general-purpose computers, but in those that do, we wish to -avoid the special danger that patents applied to a free program could -make it effectively proprietary. To prevent this, the GPL assures that -patents cannot be used to render the program non-free. - - The precise terms and conditions for copying, distribution and -modification follow. - - TERMS AND CONDITIONS - - 0. Definitions. - - "This License" refers to version 3 of the GNU General Public License. - - "Copyright" also means copyright-like laws that apply to other kinds of -works, such as semiconductor masks. - - "The Program" refers to any copyrightable work licensed under this -License. Each licensee is addressed as "you". "Licensees" and -"recipients" may be individuals or organizations. - - To "modify" a work means to copy from or adapt all or part of the work -in a fashion requiring copyright permission, other than the making of an -exact copy. The resulting work is called a "modified version" of the -earlier work or a work "based on" the earlier work. - - A "covered work" means either the unmodified Program or a work based -on the Program. - - To "propagate" a work means to do anything with it that, without -permission, would make you directly or secondarily liable for -infringement under applicable copyright law, except executing it on a -computer or modifying a private copy. Propagation includes copying, -distribution (with or without modification), making available to the -public, and in some countries other activities as well. - - To "convey" a work means any kind of propagation that enables other -parties to make or receive copies. Mere interaction with a user through -a computer network, with no transfer of a copy, is not conveying. - - An interactive user interface displays "Appropriate Legal Notices" -to the extent that it includes a convenient and prominently visible -feature that (1) displays an appropriate copyright notice, and (2) -tells the user that there is no warranty for the work (except to the -extent that warranties are provided), that licensees may convey the -work under this License, and how to view a copy of this License. If -the interface presents a list of user commands or options, such as a -menu, a prominent item in the list meets this criterion. - - 1. Source Code. - - The "source code" for a work means the preferred form of the work -for making modifications to it. "Object code" means any non-source -form of a work. - - A "Standard Interface" means an interface that either is an official -standard defined by a recognized standards body, or, in the case of -interfaces specified for a particular programming language, one that -is widely used among developers working in that language. - - The "System Libraries" of an executable work include anything, other -than the work as a whole, that (a) is included in the normal form of -packaging a Major Component, but which is not part of that Major -Component, and (b) serves only to enable use of the work with that -Major Component, or to implement a Standard Interface for which an -implementation is available to the public in source code form. A -"Major Component", in this context, means a major essential component -(kernel, window system, and so on) of the specific operating system -(if any) on which the executable work runs, or a compiler used to -produce the work, or an object code interpreter used to run it. - - The "Corresponding Source" for a work in object code form means all -the source code needed to generate, install, and (for an executable -work) run the object code and to modify the work, including scripts to -control those activities. However, it does not include the work's -System Libraries, or general-purpose tools or generally available free -programs which are used unmodified in performing those activities but -which are not part of the work. For example, Corresponding Source -includes interface definition files associated with source files for -the work, and the source code for shared libraries and dynamically -linked subprograms that the work is specifically designed to require, -such as by intimate data communication or control flow between those -subprograms and other parts of the work. - - The Corresponding Source need not include anything that users -can regenerate automatically from other parts of the Corresponding -Source. - - The Corresponding Source for a work in source code form is that -same work. - - 2. Basic Permissions. - - All rights granted under this License are granted for the term of -copyright on the Program, and are irrevocable provided the stated -conditions are met. This License explicitly affirms your unlimited -permission to run the unmodified Program. The output from running a -covered work is covered by this License only if the output, given its -content, constitutes a covered work. This License acknowledges your -rights of fair use or other equivalent, as provided by copyright law. - - You may make, run and propagate covered works that you do not -convey, without conditions so long as your license otherwise remains -in force. You may convey covered works to others for the sole purpose -of having them make modifications exclusively for you, or provide you -with facilities for running those works, provided that you comply with -the terms of this License in conveying all material for which you do -not control copyright. Those thus making or running the covered works -for you must do so exclusively on your behalf, under your direction -and control, on terms that prohibit them from making any copies of -your copyrighted material outside their relationship with you. - - Conveying under any other circumstances is permitted solely under -the conditions stated below. Sublicensing is not allowed; section 10 -makes it unnecessary. - - 3. Protecting Users' Legal Rights From Anti-Circumvention Law. - - No covered work shall be deemed part of an effective technological -measure under any applicable law fulfilling obligations under article -11 of the WIPO copyright treaty adopted on 20 December 1996, or -similar laws prohibiting or restricting circumvention of such -measures. - - When you convey a covered work, you waive any legal power to forbid -circumvention of technological measures to the extent such circumvention -is effected by exercising rights under this License with respect to -the covered work, and you disclaim any intention to limit operation or -modification of the work as a means of enforcing, against the work's -users, your or third parties' legal rights to forbid circumvention of -technological measures. - - 4. Conveying Verbatim Copies. - - You may convey verbatim copies of the Program's source code as you -receive it, in any medium, provided that you conspicuously and -appropriately publish on each copy an appropriate copyright notice; -keep intact all notices stating that this License and any -non-permissive terms added in accord with section 7 apply to the code; -keep intact all notices of the absence of any warranty; and give all -recipients a copy of this License along with the Program. - - You may charge any price or no price for each copy that you convey, -and you may offer support or warranty protection for a fee. - - 5. Conveying Modified Source Versions. - - You may convey a work based on the Program, or the modifications to -produce it from the Program, in the form of source code under the -terms of section 4, provided that you also meet all of these conditions: - - a) The work must carry prominent notices stating that you modified - it, and giving a relevant date. - - b) The work must carry prominent notices stating that it is - released under this License and any conditions added under section - 7. This requirement modifies the requirement in section 4 to - "keep intact all notices". - - c) You must license the entire work, as a whole, under this - License to anyone who comes into possession of a copy. This - License will therefore apply, along with any applicable section 7 - additional terms, to the whole of the work, and all its parts, - regardless of how they are packaged. This License gives no - permission to license the work in any other way, but it does not - invalidate such permission if you have separately received it. - - d) If the work has interactive user interfaces, each must display - Appropriate Legal Notices; however, if the Program has interactive - interfaces that do not display Appropriate Legal Notices, your - work need not make them do so. - - A compilation of a covered work with other separate and independent -works, which are not by their nature extensions of the covered work, -and which are not combined with it such as to form a larger program, -in or on a volume of a storage or distribution medium, is called an -"aggregate" if the compilation and its resulting copyright are not -used to limit the access or legal rights of the compilation's users -beyond what the individual works permit. Inclusion of a covered work -in an aggregate does not cause this License to apply to the other -parts of the aggregate. - - 6. Conveying Non-Source Forms. - - You may convey a covered work in object code form under the terms -of sections 4 and 5, provided that you also convey the -machine-readable Corresponding Source under the terms of this License, -in one of these ways: - - a) Convey the object code in, or embodied in, a physical product - (including a physical distribution medium), accompanied by the - Corresponding Source fixed on a durable physical medium - customarily used for software interchange. - - b) Convey the object code in, or embodied in, a physical product - (including a physical distribution medium), accompanied by a - written offer, valid for at least three years and valid for as - long as you offer spare parts or customer support for that product - model, to give anyone who possesses the object code either (1) a - copy of the Corresponding Source for all the software in the - product that is covered by this License, on a durable physical - medium customarily used for software interchange, for a price no - more than your reasonable cost of physically performing this - conveying of source, or (2) access to copy the - Corresponding Source from a network server at no charge. - - c) Convey individual copies of the object code with a copy of the - written offer to provide the Corresponding Source. This - alternative is allowed only occasionally and noncommercially, and - only if you received the object code with such an offer, in accord - with subsection 6b. - - d) Convey the object code by offering access from a designated - place (gratis or for a charge), and offer equivalent access to the - Corresponding Source in the same way through the same place at no - further charge. You need not require recipients to copy the - Corresponding Source along with the object code. If the place to - copy the object code is a network server, the Corresponding Source - may be on a different server (operated by you or a third party) - that supports equivalent copying facilities, provided you maintain - clear directions next to the object code saying where to find the - Corresponding Source. Regardless of what server hosts the - Corresponding Source, you remain obligated to ensure that it is - available for as long as needed to satisfy these requirements. - - e) Convey the object code using peer-to-peer transmission, provided - you inform other peers where the object code and Corresponding - Source of the work are being offered to the general public at no - charge under subsection 6d. - - A separable portion of the object code, whose source code is excluded -from the Corresponding Source as a System Library, need not be -included in conveying the object code work. - - A "User Product" is either (1) a "consumer product", which means any -tangible personal property which is normally used for personal, family, -or household purposes, or (2) anything designed or sold for incorporation -into a dwelling. In determining whether a product is a consumer product, -doubtful cases shall be resolved in favor of coverage. For a particular -product received by a particular user, "normally used" refers to a -typical or common use of that class of product, regardless of the status -of the particular user or of the way in which the particular user -actually uses, or expects or is expected to use, the product. A product -is a consumer product regardless of whether the product has substantial -commercial, industrial or non-consumer uses, unless such uses represent -the only significant mode of use of the product. - - "Installation Information" for a User Product means any methods, -procedures, authorization keys, or other information required to install -and execute modified versions of a covered work in that User Product from -a modified version of its Corresponding Source. The information must -suffice to ensure that the continued functioning of the modified object -code is in no case prevented or interfered with solely because -modification has been made. - - If you convey an object code work under this section in, or with, or -specifically for use in, a User Product, and the conveying occurs as -part of a transaction in which the right of possession and use of the -User Product is transferred to the recipient in perpetuity or for a -fixed term (regardless of how the transaction is characterized), the -Corresponding Source conveyed under this section must be accompanied -by the Installation Information. But this requirement does not apply -if neither you nor any third party retains the ability to install -modified object code on the User Product (for example, the work has -been installed in ROM). - - The requirement to provide Installation Information does not include a -requirement to continue to provide support service, warranty, or updates -for a work that has been modified or installed by the recipient, or for -the User Product in which it has been modified or installed. Access to a -network may be denied when the modification itself materially and -adversely affects the operation of the network or violates the rules and -protocols for communication across the network. - - Corresponding Source conveyed, and Installation Information provided, -in accord with this section must be in a format that is publicly -documented (and with an implementation available to the public in -source code form), and must require no special password or key for -unpacking, reading or copying. - - 7. Additional Terms. - - "Additional permissions" are terms that supplement the terms of this -License by making exceptions from one or more of its conditions. -Additional permissions that are applicable to the entire Program shall -be treated as though they were included in this License, to the extent -that they are valid under applicable law. If additional permissions -apply only to part of the Program, that part may be used separately -under those permissions, but the entire Program remains governed by -this License without regard to the additional permissions. - - When you convey a copy of a covered work, you may at your option -remove any additional permissions from that copy, or from any part of -it. (Additional permissions may be written to require their own -removal in certain cases when you modify the work.) You may place -additional permissions on material, added by you to a covered work, -for which you have or can give appropriate copyright permission. - - Notwithstanding any other provision of this License, for material you -add to a covered work, you may (if authorized by the copyright holders of -that material) supplement the terms of this License with terms: - - a) Disclaiming warranty or limiting liability differently from the - terms of sections 15 and 16 of this License; or - - b) Requiring preservation of specified reasonable legal notices or - author attributions in that material or in the Appropriate Legal - Notices displayed by works containing it; or - - c) Prohibiting misrepresentation of the origin of that material, or - requiring that modified versions of such material be marked in - reasonable ways as different from the original version; or - - d) Limiting the use for publicity purposes of names of licensors or - authors of the material; or - - e) Declining to grant rights under trademark law for use of some - trade names, trademarks, or service marks; or - - f) Requiring indemnification of licensors and authors of that - material by anyone who conveys the material (or modified versions of - it) with contractual assumptions of liability to the recipient, for - any liability that these contractual assumptions directly impose on - those licensors and authors. - - All other non-permissive additional terms are considered "further -restrictions" within the meaning of section 10. If the Program as you -received it, or any part of it, contains a notice stating that it is -governed by this License along with a term that is a further -restriction, you may remove that term. If a license document contains -a further restriction but permits relicensing or conveying under this -License, you may add to a covered work material governed by the terms -of that license document, provided that the further restriction does -not survive such relicensing or conveying. - - If you add terms to a covered work in accord with this section, you -must place, in the relevant source files, a statement of the -additional terms that apply to those files, or a notice indicating -where to find the applicable terms. - - Additional terms, permissive or non-permissive, may be stated in the -form of a separately written license, or stated as exceptions; -the above requirements apply either way. - - 8. Termination. - - You may not propagate or modify a covered work except as expressly -provided under this License. Any attempt otherwise to propagate or -modify it is void, and will automatically terminate your rights under -this License (including any patent licenses granted under the third -paragraph of section 11). - - However, if you cease all violation of this License, then your -license from a particular copyright holder is reinstated (a) -provisionally, unless and until the copyright holder explicitly and -finally terminates your license, and (b) permanently, if the copyright -holder fails to notify you of the violation by some reasonable means -prior to 60 days after the cessation. - - Moreover, your license from a particular copyright holder is -reinstated permanently if the copyright holder notifies you of the -violation by some reasonable means, this is the first time you have -received notice of violation of this License (for any work) from that -copyright holder, and you cure the violation prior to 30 days after -your receipt of the notice. - - Termination of your rights under this section does not terminate the -licenses of parties who have received copies or rights from you under -this License. If your rights have been terminated and not permanently -reinstated, you do not qualify to receive new licenses for the same -material under section 10. - - 9. Acceptance Not Required for Having Copies. - - You are not required to accept this License in order to receive or -run a copy of the Program. Ancillary propagation of a covered work -occurring solely as a consequence of using peer-to-peer transmission -to receive a copy likewise does not require acceptance. However, -nothing other than this License grants you permission to propagate or -modify any covered work. These actions infringe copyright if you do -not accept this License. Therefore, by modifying or propagating a -covered work, you indicate your acceptance of this License to do so. - - 10. Automatic Licensing of Downstream Recipients. - - Each time you convey a covered work, the recipient automatically -receives a license from the original licensors, to run, modify and -propagate that work, subject to this License. You are not responsible -for enforcing compliance by third parties with this License. - - An "entity transaction" is a transaction transferring control of an -organization, or substantially all assets of one, or subdividing an -organization, or merging organizations. If propagation of a covered -work results from an entity transaction, each party to that -transaction who receives a copy of the work also receives whatever -licenses to the work the party's predecessor in interest had or could -give under the previous paragraph, plus a right to possession of the -Corresponding Source of the work from the predecessor in interest, if -the predecessor has it or can get it with reasonable efforts. - - You may not impose any further restrictions on the exercise of the -rights granted or affirmed under this License. For example, you may -not impose a license fee, royalty, or other charge for exercise of -rights granted under this License, and you may not initiate litigation -(including a cross-claim or counterclaim in a lawsuit) alleging that -any patent claim is infringed by making, using, selling, offering for -sale, or importing the Program or any portion of it. - - 11. Patents. - - A "contributor" is a copyright holder who authorizes use under this -License of the Program or a work on which the Program is based. The -work thus licensed is called the contributor's "contributor version". - - A contributor's "essential patent claims" are all patent claims -owned or controlled by the contributor, whether already acquired or -hereafter acquired, that would be infringed by some manner, permitted -by this License, of making, using, or selling its contributor version, -but do not include claims that would be infringed only as a -consequence of further modification of the contributor version. For -purposes of this definition, "control" includes the right to grant -patent sublicenses in a manner consistent with the requirements of -this License. - - Each contributor grants you a non-exclusive, worldwide, royalty-free -patent license under the contributor's essential patent claims, to -make, use, sell, offer for sale, import and otherwise run, modify and -propagate the contents of its contributor version. - - In the following three paragraphs, a "patent license" is any express -agreement or commitment, however denominated, not to enforce a patent -(such as an express permission to practice a patent or covenant not to -sue for patent infringement). To "grant" such a patent license to a -party means to make such an agreement or commitment not to enforce a -patent against the party. - - If you convey a covered work, knowingly relying on a patent license, -and the Corresponding Source of the work is not available for anyone -to copy, free of charge and under the terms of this License, through a -publicly available network server or other readily accessible means, -then you must either (1) cause the Corresponding Source to be so -available, or (2) arrange to deprive yourself of the benefit of the -patent license for this particular work, or (3) arrange, in a manner -consistent with the requirements of this License, to extend the patent -license to downstream recipients. "Knowingly relying" means you have -actual knowledge that, but for the patent license, your conveying the -covered work in a country, or your recipient's use of the covered work -in a country, would infringe one or more identifiable patents in that -country that you have reason to believe are valid. - - If, pursuant to or in connection with a single transaction or -arrangement, you convey, or propagate by procuring conveyance of, a -covered work, and grant a patent license to some of the parties -receiving the covered work authorizing them to use, propagate, modify -or convey a specific copy of the covered work, then the patent license -you grant is automatically extended to all recipients of the covered -work and works based on it. - - A patent license is "discriminatory" if it does not include within -the scope of its coverage, prohibits the exercise of, or is -conditioned on the non-exercise of one or more of the rights that are -specifically granted under this License. You may not convey a covered -work if you are a party to an arrangement with a third party that is -in the business of distributing software, under which you make payment -to the third party based on the extent of your activity of conveying -the work, and under which the third party grants, to any of the -parties who would receive the covered work from you, a discriminatory -patent license (a) in connection with copies of the covered work -conveyed by you (or copies made from those copies), or (b) primarily -for and in connection with specific products or compilations that -contain the covered work, unless you entered into that arrangement, -or that patent license was granted, prior to 28 March 2007. - - Nothing in this License shall be construed as excluding or limiting -any implied license or other defenses to infringement that may -otherwise be available to you under applicable patent law. - - 12. No Surrender of Others' Freedom. - - If conditions are imposed on you (whether by court order, agreement or -otherwise) that contradict the conditions of this License, they do not -excuse you from the conditions of this License. If you cannot convey a -covered work so as to satisfy simultaneously your obligations under this -License and any other pertinent obligations, then as a consequence you may -not convey it at all. For example, if you agree to terms that obligate you -to collect a royalty for further conveying from those to whom you convey -the Program, the only way you could satisfy both those terms and this -License would be to refrain entirely from conveying the Program. - - 13. Use with the GNU Affero General Public License. - - Notwithstanding any other provision of this License, you have -permission to link or combine any covered work with a work licensed -under version 3 of the GNU Affero General Public License into a single -combined work, and to convey the resulting work. The terms of this -License will continue to apply to the part which is the covered work, -but the special requirements of the GNU Affero General Public License, -section 13, concerning interaction through a network will apply to the -combination as such. - - 14. Revised Versions of this License. - - The Free Software Foundation may publish revised and/or new versions of -the GNU General Public License from time to time. Such new versions will -be similar in spirit to the present version, but may differ in detail to -address new problems or concerns. - - Each version is given a distinguishing version number. If the -Program specifies that a certain numbered version of the GNU General -Public License "or any later version" applies to it, you have the -option of following the terms and conditions either of that numbered -version or of any later version published by the Free Software -Foundation. If the Program does not specify a version number of the -GNU General Public License, you may choose any version ever published -by the Free Software Foundation. - - If the Program specifies that a proxy can decide which future -versions of the GNU General Public License can be used, that proxy's -public statement of acceptance of a version permanently authorizes you -to choose that version for the Program. - - Later license versions may give you additional or different -permissions. However, no additional obligations are imposed on any -author or copyright holder as a result of your choosing to follow a -later version. - - 15. Disclaimer of Warranty. - - THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY -APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT -HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY -OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, -THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR -PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM -IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF -ALL NECESSARY SERVICING, REPAIR OR CORRECTION. - - 16. Limitation of Liability. - - IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING -WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS -THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY -GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE -USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF -DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD -PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), -EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF -SUCH DAMAGES. - - 17. Interpretation of Sections 15 and 16. - - If the disclaimer of warranty and limitation of liability provided -above cannot be given local legal effect according to their terms, -reviewing courts shall apply local law that most closely approximates -an absolute waiver of all civil liability in connection with the -Program, unless a warranty or assumption of liability accompanies a -copy of the Program in return for a fee. - - END OF TERMS AND CONDITIONS - - How to Apply These Terms to Your New Programs - - If you develop a new program, and you want it to be of the greatest -possible use to the public, the best way to achieve this is to make it -free software which everyone can redistribute and change under these terms. - - To do so, attach the following notices to the program. It is safest -to attach them to the start of each source file to most effectively -state the exclusion of warranty; and each file should have at least -the "copyright" line and a pointer to where the full notice is found. - - - Copyright (C) - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see . - -Also add information on how to contact you by electronic and paper mail. - - If the program does terminal interaction, make it output a short -notice like this when it starts in an interactive mode: - - Copyright (C) - This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. - This is free software, and you are welcome to redistribute it - under certain conditions; type `show c' for details. - -The hypothetical commands `show w' and `show c' should show the appropriate -parts of the General Public License. Of course, your program's commands -might be different; for a GUI interface, you would use an "about box". - - You should also get your employer (if you work as a programmer) or school, -if any, to sign a "copyright disclaimer" for the program, if necessary. -For more information on this, and how to apply and follow the GNU GPL, see -. - - The GNU General Public License does not permit incorporating your program -into proprietary programs. If your program is a subroutine library, you -may consider it more useful to permit linking proprietary applications with -the library. If this is what you want to do, use the GNU Lesser General -Public License instead of this License. But first, please read -. diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/COPYING.LGPL b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/COPYING.LGPL deleted file mode 100755 index 4362b4915..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/COPYING.LGPL +++ /dev/null @@ -1,502 +0,0 @@ - GNU LESSER GENERAL PUBLIC LICENSE - Version 2.1, February 1999 - - Copyright (C) 1991, 1999 Free Software Foundation, Inc. - 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - Everyone is permitted to copy and distribute verbatim copies - of this license document, but changing it is not allowed. - -[This is the first released version of the Lesser GPL. It also counts - as the successor of the GNU Library Public License, version 2, hence - the version number 2.1.] - - Preamble - - The licenses for most software are designed to take away your -freedom to share and change it. By contrast, the GNU General Public -Licenses are intended to guarantee your freedom to share and change -free software--to make sure the software is free for all its users. - - This license, the Lesser General Public License, applies to some -specially designated software packages--typically libraries--of the -Free Software Foundation and other authors who decide to use it. You -can use it too, but we suggest you first think carefully about whether -this license or the ordinary General Public License is the better -strategy to use in any particular case, based on the explanations below. - - When we speak of free software, we are referring to freedom of use, -not price. Our General Public Licenses are designed to make sure that -you have the freedom to distribute copies of free software (and charge -for this service if you wish); that you receive source code or can get -it if you want it; that you can change the software and use pieces of -it in new free programs; and that you are informed that you can do -these things. - - To protect your rights, we need to make restrictions that forbid -distributors to deny you these rights or to ask you to surrender these -rights. These restrictions translate to certain responsibilities for -you if you distribute copies of the library or if you modify it. - - For example, if you distribute copies of the library, whether gratis -or for a fee, you must give the recipients all the rights that we gave -you. You must make sure that they, too, receive or can get the source -code. If you link other code with the library, you must provide -complete object files to the recipients, so that they can relink them -with the library after making changes to the library and recompiling -it. And you must show them these terms so they know their rights. - - We protect your rights with a two-step method: (1) we copyright the -library, and (2) we offer you this license, which gives you legal -permission to copy, distribute and/or modify the library. - - To protect each distributor, we want to make it very clear that -there is no warranty for the free library. Also, if the library is -modified by someone else and passed on, the recipients should know -that what they have is not the original version, so that the original -author's reputation will not be affected by problems that might be -introduced by others. - - Finally, software patents pose a constant threat to the existence of -any free program. We wish to make sure that a company cannot -effectively restrict the users of a free program by obtaining a -restrictive license from a patent holder. Therefore, we insist that -any patent license obtained for a version of the library must be -consistent with the full freedom of use specified in this license. - - Most GNU software, including some libraries, is covered by the -ordinary GNU General Public License. This license, the GNU Lesser -General Public License, applies to certain designated libraries, and -is quite different from the ordinary General Public License. We use -this license for certain libraries in order to permit linking those -libraries into non-free programs. - - When a program is linked with a library, whether statically or using -a shared library, the combination of the two is legally speaking a -combined work, a derivative of the original library. The ordinary -General Public License therefore permits such linking only if the -entire combination fits its criteria of freedom. The Lesser General -Public License permits more lax criteria for linking other code with -the library. - - We call this license the "Lesser" General Public License because it -does Less to protect the user's freedom than the ordinary General -Public License. It also provides other free software developers Less -of an advantage over competing non-free programs. These disadvantages -are the reason we use the ordinary General Public License for many -libraries. However, the Lesser license provides advantages in certain -special circumstances. - - For example, on rare occasions, there may be a special need to -encourage the widest possible use of a certain library, so that it becomes -a de-facto standard. To achieve this, non-free programs must be -allowed to use the library. A more frequent case is that a free -library does the same job as widely used non-free libraries. In this -case, there is little to gain by limiting the free library to free -software only, so we use the Lesser General Public License. - - In other cases, permission to use a particular library in non-free -programs enables a greater number of people to use a large body of -free software. For example, permission to use the GNU C Library in -non-free programs enables many more people to use the whole GNU -operating system, as well as its variant, the GNU/Linux operating -system. - - Although the Lesser General Public License is Less protective of the -users' freedom, it does ensure that the user of a program that is -linked with the Library has the freedom and the wherewithal to run -that program using a modified version of the Library. - - The precise terms and conditions for copying, distribution and -modification follow. Pay close attention to the difference between a -"work based on the library" and a "work that uses the library". The -former contains code derived from the library, whereas the latter must -be combined with the library in order to run. - - GNU LESSER GENERAL PUBLIC LICENSE - TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION - - 0. This License Agreement applies to any software library or other -program which contains a notice placed by the copyright holder or -other authorized party saying it may be distributed under the terms of -this Lesser General Public License (also called "this License"). -Each licensee is addressed as "you". - - A "library" means a collection of software functions and/or data -prepared so as to be conveniently linked with application programs -(which use some of those functions and data) to form executables. - - The "Library", below, refers to any such software library or work -which has been distributed under these terms. A "work based on the -Library" means either the Library or any derivative work under -copyright law: that is to say, a work containing the Library or a -portion of it, either verbatim or with modifications and/or translated -straightforwardly into another language. (Hereinafter, translation is -included without limitation in the term "modification".) - - "Source code" for a work means the preferred form of the work for -making modifications to it. For a library, complete source code means -all the source code for all modules it contains, plus any associated -interface definition files, plus the scripts used to control compilation -and installation of the library. - - Activities other than copying, distribution and modification are not -covered by this License; they are outside its scope. The act of -running a program using the Library is not restricted, and output from -such a program is covered only if its contents constitute a work based -on the Library (independent of the use of the Library in a tool for -writing it). Whether that is true depends on what the Library does -and what the program that uses the Library does. - - 1. You may copy and distribute verbatim copies of the Library's -complete source code as you receive it, in any medium, provided that -you conspicuously and appropriately publish on each copy an -appropriate copyright notice and disclaimer of warranty; keep intact -all the notices that refer to this License and to the absence of any -warranty; and distribute a copy of this License along with the -Library. - - You may charge a fee for the physical act of transferring a copy, -and you may at your option offer warranty protection in exchange for a -fee. - - 2. You may modify your copy or copies of the Library or any portion -of it, thus forming a work based on the Library, and copy and -distribute such modifications or work under the terms of Section 1 -above, provided that you also meet all of these conditions: - - a) The modified work must itself be a software library. - - b) You must cause the files modified to carry prominent notices - stating that you changed the files and the date of any change. - - c) You must cause the whole of the work to be licensed at no - charge to all third parties under the terms of this License. - - d) If a facility in the modified Library refers to a function or a - table of data to be supplied by an application program that uses - the facility, other than as an argument passed when the facility - is invoked, then you must make a good faith effort to ensure that, - in the event an application does not supply such function or - table, the facility still operates, and performs whatever part of - its purpose remains meaningful. - - (For example, a function in a library to compute square roots has - a purpose that is entirely well-defined independent of the - application. Therefore, Subsection 2d requires that any - application-supplied function or table used by this function must - be optional: if the application does not supply it, the square - root function must still compute square roots.) - -These requirements apply to the modified work as a whole. If -identifiable sections of that work are not derived from the Library, -and can be reasonably considered independent and separate works in -themselves, then this License, and its terms, do not apply to those -sections when you distribute them as separate works. But when you -distribute the same sections as part of a whole which is a work based -on the Library, the distribution of the whole must be on the terms of -this License, whose permissions for other licensees extend to the -entire whole, and thus to each and every part regardless of who wrote -it. - -Thus, it is not the intent of this section to claim rights or contest -your rights to work written entirely by you; rather, the intent is to -exercise the right to control the distribution of derivative or -collective works based on the Library. - -In addition, mere aggregation of another work not based on the Library -with the Library (or with a work based on the Library) on a volume of -a storage or distribution medium does not bring the other work under -the scope of this License. - - 3. You may opt to apply the terms of the ordinary GNU General Public -License instead of this License to a given copy of the Library. To do -this, you must alter all the notices that refer to this License, so -that they refer to the ordinary GNU General Public License, version 2, -instead of to this License. (If a newer version than version 2 of the -ordinary GNU General Public License has appeared, then you can specify -that version instead if you wish.) Do not make any other change in -these notices. - - Once this change is made in a given copy, it is irreversible for -that copy, so the ordinary GNU General Public License applies to all -subsequent copies and derivative works made from that copy. - - This option is useful when you wish to copy part of the code of -the Library into a program that is not a library. - - 4. You may copy and distribute the Library (or a portion or -derivative of it, under Section 2) in object code or executable form -under the terms of Sections 1 and 2 above provided that you accompany -it with the complete corresponding machine-readable source code, which -must be distributed under the terms of Sections 1 and 2 above on a -medium customarily used for software interchange. - - If distribution of object code is made by offering access to copy -from a designated place, then offering equivalent access to copy the -source code from the same place satisfies the requirement to -distribute the source code, even though third parties are not -compelled to copy the source along with the object code. - - 5. A program that contains no derivative of any portion of the -Library, but is designed to work with the Library by being compiled or -linked with it, is called a "work that uses the Library". Such a -work, in isolation, is not a derivative work of the Library, and -therefore falls outside the scope of this License. - - However, linking a "work that uses the Library" with the Library -creates an executable that is a derivative of the Library (because it -contains portions of the Library), rather than a "work that uses the -library". The executable is therefore covered by this License. -Section 6 states terms for distribution of such executables. - - When a "work that uses the Library" uses material from a header file -that is part of the Library, the object code for the work may be a -derivative work of the Library even though the source code is not. -Whether this is true is especially significant if the work can be -linked without the Library, or if the work is itself a library. The -threshold for this to be true is not precisely defined by law. - - If such an object file uses only numerical parameters, data -structure layouts and accessors, and small macros and small inline -functions (ten lines or less in length), then the use of the object -file is unrestricted, regardless of whether it is legally a derivative -work. (Executables containing this object code plus portions of the -Library will still fall under Section 6.) - - Otherwise, if the work is a derivative of the Library, you may -distribute the object code for the work under the terms of Section 6. -Any executables containing that work also fall under Section 6, -whether or not they are linked directly with the Library itself. - - 6. As an exception to the Sections above, you may also combine or -link a "work that uses the Library" with the Library to produce a -work containing portions of the Library, and distribute that work -under terms of your choice, provided that the terms permit -modification of the work for the customer's own use and reverse -engineering for debugging such modifications. - - You must give prominent notice with each copy of the work that the -Library is used in it and that the Library and its use are covered by -this License. You must supply a copy of this License. If the work -during execution displays copyright notices, you must include the -copyright notice for the Library among them, as well as a reference -directing the user to the copy of this License. Also, you must do one -of these things: - - a) Accompany the work with the complete corresponding - machine-readable source code for the Library including whatever - changes were used in the work (which must be distributed under - Sections 1 and 2 above); and, if the work is an executable linked - with the Library, with the complete machine-readable "work that - uses the Library", as object code and/or source code, so that the - user can modify the Library and then relink to produce a modified - executable containing the modified Library. (It is understood - that the user who changes the contents of definitions files in the - Library will not necessarily be able to recompile the application - to use the modified definitions.) - - b) Use a suitable shared library mechanism for linking with the - Library. A suitable mechanism is one that (1) uses at run time a - copy of the library already present on the user's computer system, - rather than copying library functions into the executable, and (2) - will operate properly with a modified version of the library, if - the user installs one, as long as the modified version is - interface-compatible with the version that the work was made with. - - c) Accompany the work with a written offer, valid for at - least three years, to give the same user the materials - specified in Subsection 6a, above, for a charge no more - than the cost of performing this distribution. - - d) If distribution of the work is made by offering access to copy - from a designated place, offer equivalent access to copy the above - specified materials from the same place. - - e) Verify that the user has already received a copy of these - materials or that you have already sent this user a copy. - - For an executable, the required form of the "work that uses the -Library" must include any data and utility programs needed for -reproducing the executable from it. However, as a special exception, -the materials to be distributed need not include anything that is -normally distributed (in either source or binary form) with the major -components (compiler, kernel, and so on) of the operating system on -which the executable runs, unless that component itself accompanies -the executable. - - It may happen that this requirement contradicts the license -restrictions of other proprietary libraries that do not normally -accompany the operating system. Such a contradiction means you cannot -use both them and the Library together in an executable that you -distribute. - - 7. You may place library facilities that are a work based on the -Library side-by-side in a single library together with other library -facilities not covered by this License, and distribute such a combined -library, provided that the separate distribution of the work based on -the Library and of the other library facilities is otherwise -permitted, and provided that you do these two things: - - a) Accompany the combined library with a copy of the same work - based on the Library, uncombined with any other library - facilities. This must be distributed under the terms of the - Sections above. - - b) Give prominent notice with the combined library of the fact - that part of it is a work based on the Library, and explaining - where to find the accompanying uncombined form of the same work. - - 8. You may not copy, modify, sublicense, link with, or distribute -the Library except as expressly provided under this License. Any -attempt otherwise to copy, modify, sublicense, link with, or -distribute the Library is void, and will automatically terminate your -rights under this License. However, parties who have received copies, -or rights, from you under this License will not have their licenses -terminated so long as such parties remain in full compliance. - - 9. You are not required to accept this License, since you have not -signed it. However, nothing else grants you permission to modify or -distribute the Library or its derivative works. These actions are -prohibited by law if you do not accept this License. Therefore, by -modifying or distributing the Library (or any work based on the -Library), you indicate your acceptance of this License to do so, and -all its terms and conditions for copying, distributing or modifying -the Library or works based on it. - - 10. Each time you redistribute the Library (or any work based on the -Library), the recipient automatically receives a license from the -original licensor to copy, distribute, link with or modify the Library -subject to these terms and conditions. You may not impose any further -restrictions on the recipients' exercise of the rights granted herein. -You are not responsible for enforcing compliance by third parties with -this License. - - 11. If, as a consequence of a court judgment or allegation of patent -infringement or for any other reason (not limited to patent issues), -conditions are imposed on you (whether by court order, agreement or -otherwise) that contradict the conditions of this License, they do not -excuse you from the conditions of this License. If you cannot -distribute so as to satisfy simultaneously your obligations under this -License and any other pertinent obligations, then as a consequence you -may not distribute the Library at all. For example, if a patent -license would not permit royalty-free redistribution of the Library by -all those who receive copies directly or indirectly through you, then -the only way you could satisfy both it and this License would be to -refrain entirely from distribution of the Library. - -If any portion of this section is held invalid or unenforceable under any -particular circumstance, the balance of the section is intended to apply, -and the section as a whole is intended to apply in other circumstances. - -It is not the purpose of this section to induce you to infringe any -patents or other property right claims or to contest validity of any -such claims; this section has the sole purpose of protecting the -integrity of the free software distribution system which is -implemented by public license practices. Many people have made -generous contributions to the wide range of software distributed -through that system in reliance on consistent application of that -system; it is up to the author/donor to decide if he or she is willing -to distribute software through any other system and a licensee cannot -impose that choice. - -This section is intended to make thoroughly clear what is believed to -be a consequence of the rest of this License. - - 12. If the distribution and/or use of the Library is restricted in -certain countries either by patents or by copyrighted interfaces, the -original copyright holder who places the Library under this License may add -an explicit geographical distribution limitation excluding those countries, -so that distribution is permitted only in or among countries not thus -excluded. In such case, this License incorporates the limitation as if -written in the body of this License. - - 13. The Free Software Foundation may publish revised and/or new -versions of the Lesser General Public License from time to time. -Such new versions will be similar in spirit to the present version, -but may differ in detail to address new problems or concerns. - -Each version is given a distinguishing version number. If the Library -specifies a version number of this License which applies to it and -"any later version", you have the option of following the terms and -conditions either of that version or of any later version published by -the Free Software Foundation. If the Library does not specify a -license version number, you may choose any version ever published by -the Free Software Foundation. - - 14. If you wish to incorporate parts of the Library into other free -programs whose distribution conditions are incompatible with these, -write to the author to ask for permission. For software which is -copyrighted by the Free Software Foundation, write to the Free -Software Foundation; we sometimes make exceptions for this. Our -decision will be guided by the two goals of preserving the free status -of all derivatives of our free software and of promoting the sharing -and reuse of software generally. - - NO WARRANTY - - 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO -WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. -EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR -OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY -KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR -PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE -LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME -THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. - - 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN -WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY -AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU -FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR -CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE -LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING -RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A -FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF -SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH -DAMAGES. - - END OF TERMS AND CONDITIONS - - How to Apply These Terms to Your New Libraries - - If you develop a new library, and you want it to be of the greatest -possible use to the public, we recommend making it free software that -everyone can redistribute and change. You can do so by permitting -redistribution under these terms (or, alternatively, under the terms of the -ordinary General Public License). - - To apply these terms, attach the following notices to the library. It is -safest to attach them to the start of each source file to most effectively -convey the exclusion of warranty; and each file should have at least the -"copyright" line and a pointer to where the full notice is found. - - - Copyright (C) - - This library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - This library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with this library; if not, write to the Free Software - Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - -Also add information on how to contact you by electronic and paper mail. - -You should also get your employer (if you work as a programmer) or your -school, if any, to sign a "copyright disclaimer" for the library, if -necessary. Here is a sample; alter the names: - - Yoyodyne, Inc., hereby disclaims all copyright interest in the - library `Frob' (a library for tweaking knobs) written by James Random Hacker. - - , 1 April 1990 - Ty Coon, President of Vice - -That's all there is to it! diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/COPYING.MINPACK b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/COPYING.MINPACK deleted file mode 100755 index 11d8a9a6c..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/COPYING.MINPACK +++ /dev/null @@ -1,52 +0,0 @@ -Minpack Copyright Notice (1999) University of Chicago. All rights reserved - -Redistribution and use in source and binary forms, with or -without modification, are permitted provided that the -following conditions are met: - -1. Redistributions of source code must retain the above -copyright notice, this list of conditions and the following -disclaimer. - -2. Redistributions in binary form must reproduce the above -copyright notice, this list of conditions and the following -disclaimer in the documentation and/or other materials -provided with the distribution. - -3. The end-user documentation included with the -redistribution, if any, must include the following -acknowledgment: - - "This product includes software developed by the - University of Chicago, as Operator of Argonne National - Laboratory. - -Alternately, this acknowledgment may appear in the software -itself, if and wherever such third-party acknowledgments -normally appear. - -4. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" -WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE -UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND -THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES -OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE -OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY -OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR -USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF -THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4) -DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION -UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL -BE CORRECTED. - -5. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT -HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF -ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, -INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF -ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF -PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER -SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT -(INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE, -EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE -POSSIBILITY OF SUCH LOSS OR DAMAGES. - diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/COPYING.MPL2 b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/COPYING.MPL2 deleted file mode 100755 index 14e2f777f..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/COPYING.MPL2 +++ /dev/null @@ -1,373 +0,0 @@ -Mozilla Public License Version 2.0 -================================== - -1. Definitions --------------- - -1.1. "Contributor" - means each individual or legal entity that creates, contributes to - the creation of, or owns Covered Software. - -1.2. "Contributor Version" - means the combination of the Contributions of others (if any) used - by a Contributor and that particular Contributor's Contribution. - -1.3. "Contribution" - means Covered Software of a particular Contributor. - -1.4. "Covered Software" - means Source Code Form to which the initial Contributor has attached - the notice in Exhibit A, the Executable Form of such Source Code - Form, and Modifications of such Source Code Form, in each case - including portions thereof. - -1.5. "Incompatible With Secondary Licenses" - means - - (a) that the initial Contributor has attached the notice described - in Exhibit B to the Covered Software; or - - (b) that the Covered Software was made available under the terms of - version 1.1 or earlier of the License, but not also under the - terms of a Secondary License. - -1.6. "Executable Form" - means any form of the work other than Source Code Form. - -1.7. "Larger Work" - means a work that combines Covered Software with other material, in - a separate file or files, that is not Covered Software. - -1.8. "License" - means this document. - -1.9. "Licensable" - means having the right to grant, to the maximum extent possible, - whether at the time of the initial grant or subsequently, any and - all of the rights conveyed by this License. - -1.10. "Modifications" - means any of the following: - - (a) any file in Source Code Form that results from an addition to, - deletion from, or modification of the contents of Covered - Software; or - - (b) any new file in Source Code Form that contains any Covered - Software. - -1.11. "Patent Claims" of a Contributor - means any patent claim(s), including without limitation, method, - process, and apparatus claims, in any patent Licensable by such - Contributor that would be infringed, but for the grant of the - License, by the making, using, selling, offering for sale, having - made, import, or transfer of either its Contributions or its - Contributor Version. - -1.12. "Secondary License" - means either the GNU General Public License, Version 2.0, the GNU - Lesser General Public License, Version 2.1, the GNU Affero General - Public License, Version 3.0, or any later versions of those - licenses. - -1.13. "Source Code Form" - means the form of the work preferred for making modifications. - -1.14. "You" (or "Your") - means an individual or a legal entity exercising rights under this - License. For legal entities, "You" includes any entity that - controls, is controlled by, or is under common control with You. For - purposes of this definition, "control" means (a) the power, direct - or indirect, to cause the direction or management of such entity, - whether by contract or otherwise, or (b) ownership of more than - fifty percent (50%) of the outstanding shares or beneficial - ownership of such entity. - -2. License Grants and Conditions --------------------------------- - -2.1. Grants - -Each Contributor hereby grants You a world-wide, royalty-free, -non-exclusive license: - -(a) under intellectual property rights (other than patent or trademark) - Licensable by such Contributor to use, reproduce, make available, - modify, display, perform, distribute, and otherwise exploit its - Contributions, either on an unmodified basis, with Modifications, or - as part of a Larger Work; and - -(b) under Patent Claims of such Contributor to make, use, sell, offer - for sale, have made, import, and otherwise transfer either its - Contributions or its Contributor Version. - -2.2. Effective Date - -The licenses granted in Section 2.1 with respect to any Contribution -become effective for each Contribution on the date the Contributor first -distributes such Contribution. - -2.3. Limitations on Grant Scope - -The licenses granted in this Section 2 are the only rights granted under -this License. No additional rights or licenses will be implied from the -distribution or licensing of Covered Software under this License. -Notwithstanding Section 2.1(b) above, no patent license is granted by a -Contributor: - -(a) for any code that a Contributor has removed from Covered Software; - or - -(b) for infringements caused by: (i) Your and any other third party's - modifications of Covered Software, or (ii) the combination of its - Contributions with other software (except as part of its Contributor - Version); or - -(c) under Patent Claims infringed by Covered Software in the absence of - its Contributions. - -This License does not grant any rights in the trademarks, service marks, -or logos of any Contributor (except as may be necessary to comply with -the notice requirements in Section 3.4). - -2.4. Subsequent Licenses - -No Contributor makes additional grants as a result of Your choice to -distribute the Covered Software under a subsequent version of this -License (see Section 10.2) or under the terms of a Secondary License (if -permitted under the terms of Section 3.3). - -2.5. Representation - -Each Contributor represents that the Contributor believes its -Contributions are its original creation(s) or it has sufficient rights -to grant the rights to its Contributions conveyed by this License. - -2.6. Fair Use - -This License is not intended to limit any rights You have under -applicable copyright doctrines of fair use, fair dealing, or other -equivalents. - -2.7. Conditions - -Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted -in Section 2.1. - -3. Responsibilities -------------------- - -3.1. Distribution of Source Form - -All distribution of Covered Software in Source Code Form, including any -Modifications that You create or to which You contribute, must be under -the terms of this License. You must inform recipients that the Source -Code Form of the Covered Software is governed by the terms of this -License, and how they can obtain a copy of this License. You may not -attempt to alter or restrict the recipients' rights in the Source Code -Form. - -3.2. Distribution of Executable Form - -If You distribute Covered Software in Executable Form then: - -(a) such Covered Software must also be made available in Source Code - Form, as described in Section 3.1, and You must inform recipients of - the Executable Form how they can obtain a copy of such Source Code - Form by reasonable means in a timely manner, at a charge no more - than the cost of distribution to the recipient; and - -(b) You may distribute such Executable Form under the terms of this - License, or sublicense it under different terms, provided that the - license for the Executable Form does not attempt to limit or alter - the recipients' rights in the Source Code Form under this License. - -3.3. Distribution of a Larger Work - -You may create and distribute a Larger Work under terms of Your choice, -provided that You also comply with the requirements of this License for -the Covered Software. If the Larger Work is a combination of Covered -Software with a work governed by one or more Secondary Licenses, and the -Covered Software is not Incompatible With Secondary Licenses, this -License permits You to additionally distribute such Covered Software -under the terms of such Secondary License(s), so that the recipient of -the Larger Work may, at their option, further distribute the Covered -Software under the terms of either this License or such Secondary -License(s). - -3.4. Notices - -You may not remove or alter the substance of any license notices -(including copyright notices, patent notices, disclaimers of warranty, -or limitations of liability) contained within the Source Code Form of -the Covered Software, except that You may alter any license notices to -the extent required to remedy known factual inaccuracies. - -3.5. Application of Additional Terms - -You may choose to offer, and to charge a fee for, warranty, support, -indemnity or liability obligations to one or more recipients of Covered -Software. However, You may do so only on Your own behalf, and not on -behalf of any Contributor. You must make it absolutely clear that any -such warranty, support, indemnity, or liability obligation is offered by -You alone, and You hereby agree to indemnify every Contributor for any -liability incurred by such Contributor as a result of warranty, support, -indemnity or liability terms You offer. You may include additional -disclaimers of warranty and limitations of liability specific to any -jurisdiction. - -4. Inability to Comply Due to Statute or Regulation ---------------------------------------------------- - -If it is impossible for You to comply with any of the terms of this -License with respect to some or all of the Covered Software due to -statute, judicial order, or regulation then You must: (a) comply with -the terms of this License to the maximum extent possible; and (b) -describe the limitations and the code they affect. Such description must -be placed in a text file included with all distributions of the Covered -Software under this License. Except to the extent prohibited by statute -or regulation, such description must be sufficiently detailed for a -recipient of ordinary skill to be able to understand it. - -5. Termination --------------- - -5.1. The rights granted under this License will terminate automatically -if You fail to comply with any of its terms. However, if You become -compliant, then the rights granted under this License from a particular -Contributor are reinstated (a) provisionally, unless and until such -Contributor explicitly and finally terminates Your grants, and (b) on an -ongoing basis, if such Contributor fails to notify You of the -non-compliance by some reasonable means prior to 60 days after You have -come back into compliance. Moreover, Your grants from a particular -Contributor are reinstated on an ongoing basis if such Contributor -notifies You of the non-compliance by some reasonable means, this is the -first time You have received notice of non-compliance with this License -from such Contributor, and You become compliant prior to 30 days after -Your receipt of the notice. - -5.2. If You initiate litigation against any entity by asserting a patent -infringement claim (excluding declaratory judgment actions, -counter-claims, and cross-claims) alleging that a Contributor Version -directly or indirectly infringes any patent, then the rights granted to -You by any and all Contributors for the Covered Software under Section -2.1 of this License shall terminate. - -5.3. In the event of termination under Sections 5.1 or 5.2 above, all -end user license agreements (excluding distributors and resellers) which -have been validly granted by You or Your distributors under this License -prior to termination shall survive termination. - -************************************************************************ -* * -* 6. Disclaimer of Warranty * -* ------------------------- * -* * -* Covered Software is provided under this License on an "as is" * -* basis, without warranty of any kind, either expressed, implied, or * -* statutory, including, without limitation, warranties that the * -* Covered Software is free of defects, merchantable, fit for a * -* particular purpose or non-infringing. The entire risk as to the * -* quality and performance of the Covered Software is with You. * -* Should any Covered Software prove defective in any respect, You * -* (not any Contributor) assume the cost of any necessary servicing, * -* repair, or correction. This disclaimer of warranty constitutes an * -* essential part of this License. No use of any Covered Software is * -* authorized under this License except under this disclaimer. * -* * -************************************************************************ - -************************************************************************ -* * -* 7. Limitation of Liability * -* -------------------------- * -* * -* Under no circumstances and under no legal theory, whether tort * -* (including negligence), contract, or otherwise, shall any * -* Contributor, or anyone who distributes Covered Software as * -* permitted above, be liable to You for any direct, indirect, * -* special, incidental, or consequential damages of any character * -* including, without limitation, damages for lost profits, loss of * -* goodwill, work stoppage, computer failure or malfunction, or any * -* and all other commercial damages or losses, even if such party * -* shall have been informed of the possibility of such damages. This * -* limitation of liability shall not apply to liability for death or * -* personal injury resulting from such party's negligence to the * -* extent applicable law prohibits such limitation. Some * -* jurisdictions do not allow the exclusion or limitation of * -* incidental or consequential damages, so this exclusion and * -* limitation may not apply to You. * -* * -************************************************************************ - -8. Litigation -------------- - -Any litigation relating to this License may be brought only in the -courts of a jurisdiction where the defendant maintains its principal -place of business and such litigation shall be governed by laws of that -jurisdiction, without reference to its conflict-of-law provisions. -Nothing in this Section shall prevent a party's ability to bring -cross-claims or counter-claims. - -9. Miscellaneous ----------------- - -This License represents the complete agreement concerning the subject -matter hereof. If any provision of this License is held to be -unenforceable, such provision shall be reformed only to the extent -necessary to make it enforceable. Any law or regulation which provides -that the language of a contract shall be construed against the drafter -shall not be used to construe this License against a Contributor. - -10. Versions of the License ---------------------------- - -10.1. New Versions - -Mozilla Foundation is the license steward. Except as provided in Section -10.3, no one other than the license steward has the right to modify or -publish new versions of this License. Each version will be given a -distinguishing version number. - -10.2. Effect of New Versions - -You may distribute the Covered Software under the terms of the version -of the License under which You originally received the Covered Software, -or under the terms of any subsequent version published by the license -steward. - -10.3. Modified Versions - -If you create software not governed by this License, and you want to -create a new license for such software, you may create and use a -modified version of this License if you rename the license and remove -any references to the name of the license steward (except to note that -such modified license differs from this License). - -10.4. Distributing Source Code Form that is Incompatible With Secondary -Licenses - -If You choose to distribute Source Code Form that is Incompatible With -Secondary Licenses under the terms of this version of the License, the -notice described in Exhibit B of this License must be attached. - -Exhibit A - Source Code Form License Notice -------------------------------------------- - - This Source Code Form is subject to the terms of the Mozilla Public - License, v. 2.0. If a copy of the MPL was not distributed with this - file, You can obtain one at http://mozilla.org/MPL/2.0/. - -If it is not possible or desirable to put the notice in a particular -file, then You may include the notice in a location (such as a LICENSE -file in a relevant directory) where a recipient would be likely to look -for such a notice. - -You may add additional accurate notices of copyright ownership. - -Exhibit B - "Incompatible With Secondary Licenses" Notice ---------------------------------------------------------- - - This Source Code Form is "Incompatible With Secondary Licenses", as - defined by the Mozilla Public License, v. 2.0. diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/COPYING.README b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/COPYING.README deleted file mode 100755 index de5b63215..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/COPYING.README +++ /dev/null @@ -1,18 +0,0 @@ -Eigen is primarily MPL2 licensed. See COPYING.MPL2 and these links: - http://www.mozilla.org/MPL/2.0/ - http://www.mozilla.org/MPL/2.0/FAQ.html - -Some files contain third-party code under BSD or LGPL licenses, whence the other -COPYING.* files here. - -All the LGPL code is either LGPL 2.1-only, or LGPL 2.1-or-later. -For this reason, the COPYING.LGPL file contains the LGPL 2.1 text. - -If you want to guarantee that the Eigen code that you are #including is licensed -under the MPL2 and possibly more permissive licenses (like BSD), #define this -preprocessor symbol: - EIGEN_MPL2_ONLY -For example, with most compilers, you could add this to your project CXXFLAGS: - -DEIGEN_MPL2_ONLY -This will cause a compilation error to be generated if you #include any code that is -LGPL licensed. diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/CTestConfig.cmake b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/CTestConfig.cmake deleted file mode 100755 index 0557c491a..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/CTestConfig.cmake +++ /dev/null @@ -1,13 +0,0 @@ -## This file should be placed in the root directory of your project. -## Then modify the CMakeLists.txt file in the root directory of your -## project to incorporate the testing dashboard. -## # The following are required to uses Dart and the Cdash dashboard -## ENABLE_TESTING() -## INCLUDE(CTest) -set(CTEST_PROJECT_NAME "Eigen3.2") -set(CTEST_NIGHTLY_START_TIME "00:00:00 UTC") - -set(CTEST_DROP_METHOD "http") -set(CTEST_DROP_SITE "manao.inria.fr") -set(CTEST_DROP_LOCATION "/CDash/submit.php?project=Eigen3.2") -set(CTEST_DROP_SITE_CDASH TRUE) diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/CTestCustom.cmake.in b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/CTestCustom.cmake.in deleted file mode 100755 index 9fed9d327..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/CTestCustom.cmake.in +++ /dev/null @@ -1,3 +0,0 @@ - -set(CTEST_CUSTOM_MAXIMUM_NUMBER_OF_WARNINGS "2000") -set(CTEST_CUSTOM_MAXIMUM_NUMBER_OF_ERRORS "2000") diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Array b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Array deleted file mode 100755 index 3d004fb69..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Array +++ /dev/null @@ -1,11 +0,0 @@ -#ifndef EIGEN_ARRAY_MODULE_H -#define EIGEN_ARRAY_MODULE_H - -// include Core first to handle Eigen2 support macros -#include "Core" - -#ifndef EIGEN2_SUPPORT - #error The Eigen/Array header does no longer exist in Eigen3. All that functionality has moved to Eigen/Core. -#endif - -#endif // EIGEN_ARRAY_MODULE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/CMakeLists.txt b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/CMakeLists.txt deleted file mode 100755 index a92dd6f6c..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/CMakeLists.txt +++ /dev/null @@ -1,19 +0,0 @@ -include(RegexUtils) -test_escape_string_as_regex() - -file(GLOB Eigen_directory_files "*") - -escape_string_as_regex(ESCAPED_CMAKE_CURRENT_SOURCE_DIR "${CMAKE_CURRENT_SOURCE_DIR}") - -foreach(f ${Eigen_directory_files}) - if(NOT f MATCHES "\\.txt" AND NOT f MATCHES "${ESCAPED_CMAKE_CURRENT_SOURCE_DIR}/[.].+" AND NOT f MATCHES "${ESCAPED_CMAKE_CURRENT_SOURCE_DIR}/src") - list(APPEND Eigen_directory_files_to_install ${f}) - endif() -endforeach(f ${Eigen_directory_files}) - -install(FILES - ${Eigen_directory_files_to_install} - DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen COMPONENT Devel - ) - -add_subdirectory(src) diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Cholesky b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Cholesky deleted file mode 100755 index f727f5d89..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Cholesky +++ /dev/null @@ -1,32 +0,0 @@ -#ifndef EIGEN_CHOLESKY_MODULE_H -#define EIGEN_CHOLESKY_MODULE_H - -#include "Core" - -#include "src/Core/util/DisableStupidWarnings.h" - -/** \defgroup Cholesky_Module Cholesky module - * - * - * - * This module provides two variants of the Cholesky decomposition for selfadjoint (hermitian) matrices. - * Those decompositions are accessible via the following MatrixBase methods: - * - MatrixBase::llt(), - * - MatrixBase::ldlt() - * - * \code - * #include - * \endcode - */ - -#include "src/misc/Solve.h" -#include "src/Cholesky/LLT.h" -#include "src/Cholesky/LDLT.h" -#ifdef EIGEN_USE_LAPACKE -#include "src/Cholesky/LLT_MKL.h" -#endif - -#include "src/Core/util/ReenableStupidWarnings.h" - -#endif // EIGEN_CHOLESKY_MODULE_H -/* vim: set filetype=cpp et sw=2 ts=2 ai: */ diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/CholmodSupport b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/CholmodSupport deleted file mode 100755 index 88c29a646..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/CholmodSupport +++ /dev/null @@ -1,45 +0,0 @@ -#ifndef EIGEN_CHOLMODSUPPORT_MODULE_H -#define EIGEN_CHOLMODSUPPORT_MODULE_H - -#include "SparseCore" - -#include "src/Core/util/DisableStupidWarnings.h" - -extern "C" { - #include -} - -/** \ingroup Support_modules - * \defgroup CholmodSupport_Module CholmodSupport module - * - * This module provides an interface to the Cholmod library which is part of the suitesparse package. - * It provides the two following main factorization classes: - * - class CholmodSupernodalLLT: a supernodal LLT Cholesky factorization. - * - class CholmodDecomposiiton: a general L(D)LT Cholesky factorization with automatic or explicit runtime selection of the underlying factorization method (supernodal or simplicial). - * - * For the sake of completeness, this module also propose the two following classes: - * - class CholmodSimplicialLLT - * - class CholmodSimplicialLDLT - * Note that these classes does not bring any particular advantage compared to the built-in - * SimplicialLLT and SimplicialLDLT factorization classes. - * - * \code - * #include - * \endcode - * - * In order to use this module, the cholmod headers must be accessible from the include paths, and your binary must be linked to the cholmod library and its dependencies. - * The dependencies depend on how cholmod has been compiled. - * For a cmake based project, you can use our FindCholmod.cmake module to help you in this task. - * - */ - -#include "src/misc/Solve.h" -#include "src/misc/SparseSolve.h" - -#include "src/CholmodSupport/CholmodSupport.h" - - -#include "src/Core/util/ReenableStupidWarnings.h" - -#endif // EIGEN_CHOLMODSUPPORT_MODULE_H - diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Core b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Core deleted file mode 100755 index 509c529e1..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Core +++ /dev/null @@ -1,376 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2007-2011 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_CORE_H -#define EIGEN_CORE_H - -// first thing Eigen does: stop the compiler from committing suicide -#include "src/Core/util/DisableStupidWarnings.h" - -// then include this file where all our macros are defined. It's really important to do it first because -// it's where we do all the alignment settings (platform detection and honoring the user's will if he -// defined e.g. EIGEN_DONT_ALIGN) so it needs to be done before we do anything with vectorization. -#include "src/Core/util/Macros.h" - -// Disable the ipa-cp-clone optimization flag with MinGW 6.x or newer (enabled by default with -O3) -// See http://eigen.tuxfamily.org/bz/show_bug.cgi?id=556 for details. -#if defined(__MINGW32__) && EIGEN_GNUC_AT_LEAST(4,6) - #pragma GCC optimize ("-fno-ipa-cp-clone") -#endif - -#include - -// this include file manages BLAS and MKL related macros -// and inclusion of their respective header files -#include "src/Core/util/MKL_support.h" - -// if alignment is disabled, then disable vectorization. Note: EIGEN_ALIGN is the proper check, it takes into -// account both the user's will (EIGEN_DONT_ALIGN) and our own platform checks -#if !EIGEN_ALIGN - #ifndef EIGEN_DONT_VECTORIZE - #define EIGEN_DONT_VECTORIZE - #endif -#endif - -#ifdef _MSC_VER - #include // for _aligned_malloc -- need it regardless of whether vectorization is enabled - #if (_MSC_VER >= 1500) // 2008 or later - // Remember that usage of defined() in a #define is undefined by the standard. - // a user reported that in 64-bit mode, MSVC doesn't care to define _M_IX86_FP. - #if (defined(_M_IX86_FP) && (_M_IX86_FP >= 2)) || defined(_M_X64) - #define EIGEN_SSE2_ON_MSVC_2008_OR_LATER - #endif - #endif -#else - // Remember that usage of defined() in a #define is undefined by the standard - #if (defined __SSE2__) && ( (!defined __GNUC__) || (defined __INTEL_COMPILER) || EIGEN_GNUC_AT_LEAST(4,2) ) - #define EIGEN_SSE2_ON_NON_MSVC_BUT_NOT_OLD_GCC - #endif -#endif - -#ifndef EIGEN_DONT_VECTORIZE - - #if defined (EIGEN_SSE2_ON_NON_MSVC_BUT_NOT_OLD_GCC) || defined(EIGEN_SSE2_ON_MSVC_2008_OR_LATER) - - // Defines symbols for compile-time detection of which instructions are - // used. - // EIGEN_VECTORIZE_YY is defined if and only if the instruction set YY is used - #define EIGEN_VECTORIZE - #define EIGEN_VECTORIZE_SSE - #define EIGEN_VECTORIZE_SSE2 - - // Detect sse3/ssse3/sse4: - // gcc and icc defines __SSE3__, ... - // there is no way to know about this on msvc. You can define EIGEN_VECTORIZE_SSE* if you - // want to force the use of those instructions with msvc. - #ifdef __SSE3__ - #define EIGEN_VECTORIZE_SSE3 - #endif - #ifdef __SSSE3__ - #define EIGEN_VECTORIZE_SSSE3 - #endif - #ifdef __SSE4_1__ - #define EIGEN_VECTORIZE_SSE4_1 - #endif - #ifdef __SSE4_2__ - #define EIGEN_VECTORIZE_SSE4_2 - #endif - - // include files - - // This extern "C" works around a MINGW-w64 compilation issue - // https://sourceforge.net/tracker/index.php?func=detail&aid=3018394&group_id=202880&atid=983354 - // In essence, intrin.h is included by windows.h and also declares intrinsics (just as emmintrin.h etc. below do). - // However, intrin.h uses an extern "C" declaration, and g++ thus complains of duplicate declarations - // with conflicting linkage. The linkage for intrinsics doesn't matter, but at that stage the compiler doesn't know; - // so, to avoid compile errors when windows.h is included after Eigen/Core, ensure intrinsics are extern "C" here too. - // notice that since these are C headers, the extern "C" is theoretically needed anyways. - extern "C" { - // In theory we should only include immintrin.h and not the other *mmintrin.h header files directly. - // Doing so triggers some issues with ICC. However old gcc versions seems to not have this file, thus: - #if defined(__INTEL_COMPILER) && __INTEL_COMPILER >= 1110 - #include - #else - #include - #include - #ifdef EIGEN_VECTORIZE_SSE3 - #include - #endif - #ifdef EIGEN_VECTORIZE_SSSE3 - #include - #endif - #ifdef EIGEN_VECTORIZE_SSE4_1 - #include - #endif - #ifdef EIGEN_VECTORIZE_SSE4_2 - #include - #endif - #endif - } // end extern "C" - #elif defined __ALTIVEC__ - #define EIGEN_VECTORIZE - #define EIGEN_VECTORIZE_ALTIVEC - #include - // We need to #undef all these ugly tokens defined in - // => use __vector instead of vector - #undef bool - #undef vector - #undef pixel - #elif defined __ARM_NEON - #define EIGEN_VECTORIZE - #define EIGEN_VECTORIZE_NEON - #include - #endif -#endif - -#if (defined _OPENMP) && (!defined EIGEN_DONT_PARALLELIZE) - #define EIGEN_HAS_OPENMP -#endif - -#ifdef EIGEN_HAS_OPENMP -#include -#endif - -// MSVC for windows mobile does not have the errno.h file -#if !(defined(_MSC_VER) && defined(_WIN32_WCE)) && !defined(__ARMCC_VERSION) -#define EIGEN_HAS_ERRNO -#endif - -#ifdef EIGEN_HAS_ERRNO -#include -#endif -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include // for CHAR_BIT -// for min/max: -#include - -// for outputting debug info -#ifdef EIGEN_DEBUG_ASSIGN -#include -#endif - -// required for __cpuid, needs to be included after cmath -#if defined(_MSC_VER) && (defined(_M_IX86)||defined(_M_X64)) && (!defined(_WIN32_WCE)) - #include -#endif - -#if defined(_CPPUNWIND) || defined(__EXCEPTIONS) - #define EIGEN_EXCEPTIONS -#endif - -#ifdef EIGEN_EXCEPTIONS - #include -#endif - -/** \brief Namespace containing all symbols from the %Eigen library. */ -namespace Eigen { - -inline static const char *SimdInstructionSetsInUse(void) { -#if defined(EIGEN_VECTORIZE_SSE4_2) - return "SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2"; -#elif defined(EIGEN_VECTORIZE_SSE4_1) - return "SSE, SSE2, SSE3, SSSE3, SSE4.1"; -#elif defined(EIGEN_VECTORIZE_SSSE3) - return "SSE, SSE2, SSE3, SSSE3"; -#elif defined(EIGEN_VECTORIZE_SSE3) - return "SSE, SSE2, SSE3"; -#elif defined(EIGEN_VECTORIZE_SSE2) - return "SSE, SSE2"; -#elif defined(EIGEN_VECTORIZE_ALTIVEC) - return "AltiVec"; -#elif defined(EIGEN_VECTORIZE_NEON) - return "ARM NEON"; -#else - return "None"; -#endif -} - -} // end namespace Eigen - -#define STAGE10_FULL_EIGEN2_API 10 -#define STAGE20_RESOLVE_API_CONFLICTS 20 -#define STAGE30_FULL_EIGEN3_API 30 -#define STAGE40_FULL_EIGEN3_STRICTNESS 40 -#define STAGE99_NO_EIGEN2_SUPPORT 99 - -#if defined EIGEN2_SUPPORT_STAGE40_FULL_EIGEN3_STRICTNESS - #define EIGEN2_SUPPORT - #define EIGEN2_SUPPORT_STAGE STAGE40_FULL_EIGEN3_STRICTNESS -#elif defined EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API - #define EIGEN2_SUPPORT - #define EIGEN2_SUPPORT_STAGE STAGE30_FULL_EIGEN3_API -#elif defined EIGEN2_SUPPORT_STAGE20_RESOLVE_API_CONFLICTS - #define EIGEN2_SUPPORT - #define EIGEN2_SUPPORT_STAGE STAGE20_RESOLVE_API_CONFLICTS -#elif defined EIGEN2_SUPPORT_STAGE10_FULL_EIGEN2_API - #define EIGEN2_SUPPORT - #define EIGEN2_SUPPORT_STAGE STAGE10_FULL_EIGEN2_API -#elif defined EIGEN2_SUPPORT - // default to stage 3, that's what it's always meant - #define EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API - #define EIGEN2_SUPPORT_STAGE STAGE30_FULL_EIGEN3_API -#else - #define EIGEN2_SUPPORT_STAGE STAGE99_NO_EIGEN2_SUPPORT -#endif - -#ifdef EIGEN2_SUPPORT -#undef minor -#endif - -// we use size_t frequently and we'll never remember to prepend it with std:: everytime just to -// ensure QNX/QCC support -using std::size_t; -// gcc 4.6.0 wants std:: for ptrdiff_t -using std::ptrdiff_t; - -/** \defgroup Core_Module Core module - * This is the main module of Eigen providing dense matrix and vector support - * (both fixed and dynamic size) with all the features corresponding to a BLAS library - * and much more... - * - * \code - * #include - * \endcode - */ - -#include "src/Core/util/Constants.h" -#include "src/Core/util/ForwardDeclarations.h" -#include "src/Core/util/Meta.h" -#include "src/Core/util/StaticAssert.h" -#include "src/Core/util/XprHelper.h" -#include "src/Core/util/Memory.h" - -#include "src/Core/NumTraits.h" -#include "src/Core/MathFunctions.h" -#include "src/Core/GenericPacketMath.h" - -#if defined EIGEN_VECTORIZE_SSE - #include "src/Core/arch/SSE/PacketMath.h" - #include "src/Core/arch/SSE/MathFunctions.h" - #include "src/Core/arch/SSE/Complex.h" -#elif defined EIGEN_VECTORIZE_ALTIVEC - #include "src/Core/arch/AltiVec/PacketMath.h" - #include "src/Core/arch/AltiVec/Complex.h" -#elif defined EIGEN_VECTORIZE_NEON - #include "src/Core/arch/NEON/PacketMath.h" - #include "src/Core/arch/NEON/Complex.h" -#endif - -#include "src/Core/arch/Default/Settings.h" - -#include "src/Core/Functors.h" -#include "src/Core/DenseCoeffsBase.h" -#include "src/Core/DenseBase.h" -#include "src/Core/MatrixBase.h" -#include "src/Core/EigenBase.h" - -#ifndef EIGEN_PARSED_BY_DOXYGEN // work around Doxygen bug triggered by Assign.h r814874 - // at least confirmed with Doxygen 1.5.5 and 1.5.6 - #include "src/Core/Assign.h" -#endif - -#include "src/Core/util/BlasUtil.h" -#include "src/Core/DenseStorage.h" -#include "src/Core/NestByValue.h" -#include "src/Core/ForceAlignedAccess.h" -#include "src/Core/ReturnByValue.h" -#include "src/Core/NoAlias.h" -#include "src/Core/PlainObjectBase.h" -#include "src/Core/Matrix.h" -#include "src/Core/Array.h" -#include "src/Core/CwiseBinaryOp.h" -#include "src/Core/CwiseUnaryOp.h" -#include "src/Core/CwiseNullaryOp.h" -#include "src/Core/CwiseUnaryView.h" -#include "src/Core/SelfCwiseBinaryOp.h" -#include "src/Core/Dot.h" -#include "src/Core/StableNorm.h" -#include "src/Core/MapBase.h" -#include "src/Core/Stride.h" -#include "src/Core/Map.h" -#include "src/Core/Block.h" -#include "src/Core/VectorBlock.h" -#include "src/Core/Ref.h" -#include "src/Core/Transpose.h" -#include "src/Core/DiagonalMatrix.h" -#include "src/Core/Diagonal.h" -#include "src/Core/DiagonalProduct.h" -#include "src/Core/PermutationMatrix.h" -#include "src/Core/Transpositions.h" -#include "src/Core/Redux.h" -#include "src/Core/Visitor.h" -#include "src/Core/Fuzzy.h" -#include "src/Core/IO.h" -#include "src/Core/Swap.h" -#include "src/Core/CommaInitializer.h" -#include "src/Core/Flagged.h" -#include "src/Core/ProductBase.h" -#include "src/Core/GeneralProduct.h" -#include "src/Core/TriangularMatrix.h" -#include "src/Core/SelfAdjointView.h" -#include "src/Core/products/GeneralBlockPanelKernel.h" -#include "src/Core/products/Parallelizer.h" -#include "src/Core/products/CoeffBasedProduct.h" -#include "src/Core/products/GeneralMatrixVector.h" -#include "src/Core/products/GeneralMatrixMatrix.h" -#include "src/Core/SolveTriangular.h" -#include "src/Core/products/GeneralMatrixMatrixTriangular.h" -#include "src/Core/products/SelfadjointMatrixVector.h" -#include "src/Core/products/SelfadjointMatrixMatrix.h" -#include "src/Core/products/SelfadjointProduct.h" -#include "src/Core/products/SelfadjointRank2Update.h" -#include "src/Core/products/TriangularMatrixVector.h" -#include "src/Core/products/TriangularMatrixMatrix.h" -#include "src/Core/products/TriangularSolverMatrix.h" -#include "src/Core/products/TriangularSolverVector.h" -#include "src/Core/BandMatrix.h" -#include "src/Core/CoreIterators.h" - -#include "src/Core/BooleanRedux.h" -#include "src/Core/Select.h" -#include "src/Core/VectorwiseOp.h" -#include "src/Core/Random.h" -#include "src/Core/Replicate.h" -#include "src/Core/Reverse.h" -#include "src/Core/ArrayBase.h" -#include "src/Core/ArrayWrapper.h" - -#ifdef EIGEN_USE_BLAS -#include "src/Core/products/GeneralMatrixMatrix_MKL.h" -#include "src/Core/products/GeneralMatrixVector_MKL.h" -#include "src/Core/products/GeneralMatrixMatrixTriangular_MKL.h" -#include "src/Core/products/SelfadjointMatrixMatrix_MKL.h" -#include "src/Core/products/SelfadjointMatrixVector_MKL.h" -#include "src/Core/products/TriangularMatrixMatrix_MKL.h" -#include "src/Core/products/TriangularMatrixVector_MKL.h" -#include "src/Core/products/TriangularSolverMatrix_MKL.h" -#endif // EIGEN_USE_BLAS - -#ifdef EIGEN_USE_MKL_VML -#include "src/Core/Assign_MKL.h" -#endif - -#include "src/Core/GlobalFunctions.h" - -#include "src/Core/util/ReenableStupidWarnings.h" - -#ifdef EIGEN2_SUPPORT -#include "Eigen2Support" -#endif - -#endif // EIGEN_CORE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Dense b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Dense deleted file mode 100755 index 5768910bd..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Dense +++ /dev/null @@ -1,7 +0,0 @@ -#include "Core" -#include "LU" -#include "Cholesky" -#include "QR" -#include "SVD" -#include "Geometry" -#include "Eigenvalues" diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Eigen b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Eigen deleted file mode 100755 index 19b40ea4e..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Eigen +++ /dev/null @@ -1,2 +0,0 @@ -#include "Dense" -//#include "Sparse" diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Eigen2Support b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Eigen2Support deleted file mode 100755 index 6aa009d20..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Eigen2Support +++ /dev/null @@ -1,95 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN2SUPPORT_H -#define EIGEN2SUPPORT_H - -#if (!defined(EIGEN2_SUPPORT)) || (!defined(EIGEN_CORE_H)) -#error Eigen2 support must be enabled by defining EIGEN2_SUPPORT before including any Eigen header -#endif - -#ifndef EIGEN_NO_EIGEN2_DEPRECATED_WARNING - -#if defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__clang__) -#warning "Eigen2 support is deprecated in Eigen 3.2.x and it will be removed in Eigen 3.3. (Define EIGEN_NO_EIGEN2_DEPRECATED_WARNING to disable this warning)" -#else -#pragma message ("Eigen2 support is deprecated in Eigen 3.2.x and it will be removed in Eigen 3.3. (Define EIGEN_NO_EIGEN2_DEPRECATED_WARNING to disable this warning)") -#endif - -#endif // EIGEN_NO_EIGEN2_DEPRECATED_WARNING - -#include "src/Core/util/DisableStupidWarnings.h" - -/** \ingroup Support_modules - * \defgroup Eigen2Support_Module Eigen2 support module - * - * \warning Eigen2 support is deprecated in Eigen 3.2.x and it will be removed in Eigen 3.3. - * - * This module provides a couple of deprecated functions improving the compatibility with Eigen2. - * - * To use it, define EIGEN2_SUPPORT before including any Eigen header - * \code - * #define EIGEN2_SUPPORT - * \endcode - * - */ - -#include "src/Eigen2Support/Macros.h" -#include "src/Eigen2Support/Memory.h" -#include "src/Eigen2Support/Meta.h" -#include "src/Eigen2Support/Lazy.h" -#include "src/Eigen2Support/Cwise.h" -#include "src/Eigen2Support/CwiseOperators.h" -#include "src/Eigen2Support/TriangularSolver.h" -#include "src/Eigen2Support/Block.h" -#include "src/Eigen2Support/VectorBlock.h" -#include "src/Eigen2Support/Minor.h" -#include "src/Eigen2Support/MathFunctions.h" - - -#include "src/Core/util/ReenableStupidWarnings.h" - -// Eigen2 used to include iostream -#include - -#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \ -using Eigen::Matrix##SizeSuffix##TypeSuffix; \ -using Eigen::Vector##SizeSuffix##TypeSuffix; \ -using Eigen::RowVector##SizeSuffix##TypeSuffix; - -#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(TypeSuffix) \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \ - -#define EIGEN_USING_MATRIX_TYPEDEFS \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(i) \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(f) \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(d) \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cf) \ -EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cd) - -#define USING_PART_OF_NAMESPACE_EIGEN \ -EIGEN_USING_MATRIX_TYPEDEFS \ -using Eigen::Matrix; \ -using Eigen::MatrixBase; \ -using Eigen::ei_random; \ -using Eigen::ei_real; \ -using Eigen::ei_imag; \ -using Eigen::ei_conj; \ -using Eigen::ei_abs; \ -using Eigen::ei_abs2; \ -using Eigen::ei_sqrt; \ -using Eigen::ei_exp; \ -using Eigen::ei_log; \ -using Eigen::ei_sin; \ -using Eigen::ei_cos; - -#endif // EIGEN2SUPPORT_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Eigenvalues b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Eigenvalues deleted file mode 100755 index 53c5a73a2..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Eigenvalues +++ /dev/null @@ -1,48 +0,0 @@ -#ifndef EIGEN_EIGENVALUES_MODULE_H -#define EIGEN_EIGENVALUES_MODULE_H - -#include "Core" - -#include "src/Core/util/DisableStupidWarnings.h" - -#include "Cholesky" -#include "Jacobi" -#include "Householder" -#include "LU" -#include "Geometry" - -/** \defgroup Eigenvalues_Module Eigenvalues module - * - * - * - * This module mainly provides various eigenvalue solvers. - * This module also provides some MatrixBase methods, including: - * - MatrixBase::eigenvalues(), - * - MatrixBase::operatorNorm() - * - * \code - * #include - * \endcode - */ - -#include "src/Eigenvalues/Tridiagonalization.h" -#include "src/Eigenvalues/RealSchur.h" -#include "src/Eigenvalues/EigenSolver.h" -#include "src/Eigenvalues/SelfAdjointEigenSolver.h" -#include "src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h" -#include "src/Eigenvalues/HessenbergDecomposition.h" -#include "src/Eigenvalues/ComplexSchur.h" -#include "src/Eigenvalues/ComplexEigenSolver.h" -#include "src/Eigenvalues/RealQZ.h" -#include "src/Eigenvalues/GeneralizedEigenSolver.h" -#include "src/Eigenvalues/MatrixBaseEigenvalues.h" -#ifdef EIGEN_USE_LAPACKE -#include "src/Eigenvalues/RealSchur_MKL.h" -#include "src/Eigenvalues/ComplexSchur_MKL.h" -#include "src/Eigenvalues/SelfAdjointEigenSolver_MKL.h" -#endif - -#include "src/Core/util/ReenableStupidWarnings.h" - -#endif // EIGEN_EIGENVALUES_MODULE_H -/* vim: set filetype=cpp et sw=2 ts=2 ai: */ diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Geometry b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Geometry deleted file mode 100755 index efd9d4504..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Geometry +++ /dev/null @@ -1,63 +0,0 @@ -#ifndef EIGEN_GEOMETRY_MODULE_H -#define EIGEN_GEOMETRY_MODULE_H - -#include "Core" - -#include "src/Core/util/DisableStupidWarnings.h" - -#include "SVD" -#include "LU" -#include - -#ifndef M_PI -#define M_PI 3.14159265358979323846 -#endif - -/** \defgroup Geometry_Module Geometry module - * - * - * - * This module provides support for: - * - fixed-size homogeneous transformations - * - translation, scaling, 2D and 3D rotations - * - quaternions - * - \ref MatrixBase::cross() "cross product" - * - \ref MatrixBase::unitOrthogonal() "orthognal vector generation" - * - some linear components: parametrized-lines and hyperplanes - * - * \code - * #include - * \endcode - */ - -#include "src/Geometry/OrthoMethods.h" -#include "src/Geometry/EulerAngles.h" - -#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS - #include "src/Geometry/Homogeneous.h" - #include "src/Geometry/RotationBase.h" - #include "src/Geometry/Rotation2D.h" - #include "src/Geometry/Quaternion.h" - #include "src/Geometry/AngleAxis.h" - #include "src/Geometry/Transform.h" - #include "src/Geometry/Translation.h" - #include "src/Geometry/Scaling.h" - #include "src/Geometry/Hyperplane.h" - #include "src/Geometry/ParametrizedLine.h" - #include "src/Geometry/AlignedBox.h" - #include "src/Geometry/Umeyama.h" - - #if defined EIGEN_VECTORIZE_SSE - #include "src/Geometry/arch/Geometry_SSE.h" - #endif -#endif - -#ifdef EIGEN2_SUPPORT -#include "src/Eigen2Support/Geometry/All.h" -#endif - -#include "src/Core/util/ReenableStupidWarnings.h" - -#endif // EIGEN_GEOMETRY_MODULE_H -/* vim: set filetype=cpp et sw=2 ts=2 ai: */ - diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Householder b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Householder deleted file mode 100755 index 6e348db5c..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Householder +++ /dev/null @@ -1,23 +0,0 @@ -#ifndef EIGEN_HOUSEHOLDER_MODULE_H -#define EIGEN_HOUSEHOLDER_MODULE_H - -#include "Core" - -#include "src/Core/util/DisableStupidWarnings.h" - -/** \defgroup Householder_Module Householder module - * This module provides Householder transformations. - * - * \code - * #include - * \endcode - */ - -#include "src/Householder/Householder.h" -#include "src/Householder/HouseholderSequence.h" -#include "src/Householder/BlockHouseholder.h" - -#include "src/Core/util/ReenableStupidWarnings.h" - -#endif // EIGEN_HOUSEHOLDER_MODULE_H -/* vim: set filetype=cpp et sw=2 ts=2 ai: */ diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/IterativeLinearSolvers b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/IterativeLinearSolvers deleted file mode 100755 index 0f4159dc1..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/IterativeLinearSolvers +++ /dev/null @@ -1,40 +0,0 @@ -#ifndef EIGEN_ITERATIVELINEARSOLVERS_MODULE_H -#define EIGEN_ITERATIVELINEARSOLVERS_MODULE_H - -#include "SparseCore" -#include "OrderingMethods" - -#include "src/Core/util/DisableStupidWarnings.h" - -/** - * \defgroup IterativeLinearSolvers_Module IterativeLinearSolvers module - * - * This module currently provides iterative methods to solve problems of the form \c A \c x = \c b, where \c A is a squared matrix, usually very large and sparse. - * Those solvers are accessible via the following classes: - * - ConjugateGradient for selfadjoint (hermitian) matrices, - * - BiCGSTAB for general square matrices. - * - * These iterative solvers are associated with some preconditioners: - * - IdentityPreconditioner - not really useful - * - DiagonalPreconditioner - also called JAcobi preconditioner, work very well on diagonal dominant matrices. - * - IncompleteILUT - incomplete LU factorization with dual thresholding - * - * Such problems can also be solved using the direct sparse decomposition modules: SparseCholesky, CholmodSupport, UmfPackSupport, SuperLUSupport. - * - * \code - * #include - * \endcode - */ - -#include "src/misc/Solve.h" -#include "src/misc/SparseSolve.h" - -#include "src/IterativeLinearSolvers/IterativeSolverBase.h" -#include "src/IterativeLinearSolvers/BasicPreconditioners.h" -#include "src/IterativeLinearSolvers/ConjugateGradient.h" -#include "src/IterativeLinearSolvers/BiCGSTAB.h" -#include "src/IterativeLinearSolvers/IncompleteLUT.h" - -#include "src/Core/util/ReenableStupidWarnings.h" - -#endif // EIGEN_ITERATIVELINEARSOLVERS_MODULE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Jacobi b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Jacobi deleted file mode 100755 index ba8a4dc36..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Jacobi +++ /dev/null @@ -1,26 +0,0 @@ -#ifndef EIGEN_JACOBI_MODULE_H -#define EIGEN_JACOBI_MODULE_H - -#include "Core" - -#include "src/Core/util/DisableStupidWarnings.h" - -/** \defgroup Jacobi_Module Jacobi module - * This module provides Jacobi and Givens rotations. - * - * \code - * #include - * \endcode - * - * In addition to listed classes, it defines the two following MatrixBase methods to apply a Jacobi or Givens rotation: - * - MatrixBase::applyOnTheLeft() - * - MatrixBase::applyOnTheRight(). - */ - -#include "src/Jacobi/Jacobi.h" - -#include "src/Core/util/ReenableStupidWarnings.h" - -#endif // EIGEN_JACOBI_MODULE_H -/* vim: set filetype=cpp et sw=2 ts=2 ai: */ - diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/LU b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/LU deleted file mode 100755 index db5795504..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/LU +++ /dev/null @@ -1,41 +0,0 @@ -#ifndef EIGEN_LU_MODULE_H -#define EIGEN_LU_MODULE_H - -#include "Core" - -#include "src/Core/util/DisableStupidWarnings.h" - -/** \defgroup LU_Module LU module - * This module includes %LU decomposition and related notions such as matrix inversion and determinant. - * This module defines the following MatrixBase methods: - * - MatrixBase::inverse() - * - MatrixBase::determinant() - * - * \code - * #include - * \endcode - */ - -#include "src/misc/Solve.h" -#include "src/misc/Kernel.h" -#include "src/misc/Image.h" -#include "src/LU/FullPivLU.h" -#include "src/LU/PartialPivLU.h" -#ifdef EIGEN_USE_LAPACKE -#include "src/LU/PartialPivLU_MKL.h" -#endif -#include "src/LU/Determinant.h" -#include "src/LU/Inverse.h" - -#if defined EIGEN_VECTORIZE_SSE - #include "src/LU/arch/Inverse_SSE.h" -#endif - -#ifdef EIGEN2_SUPPORT - #include "src/Eigen2Support/LU.h" -#endif - -#include "src/Core/util/ReenableStupidWarnings.h" - -#endif // EIGEN_LU_MODULE_H -/* vim: set filetype=cpp et sw=2 ts=2 ai: */ diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/LeastSquares b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/LeastSquares deleted file mode 100755 index 35137c25d..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/LeastSquares +++ /dev/null @@ -1,32 +0,0 @@ -#ifndef EIGEN_REGRESSION_MODULE_H -#define EIGEN_REGRESSION_MODULE_H - -#ifndef EIGEN2_SUPPORT -#error LeastSquares is only available in Eigen2 support mode (define EIGEN2_SUPPORT) -#endif - -// exclude from normal eigen3-only documentation -#ifdef EIGEN2_SUPPORT - -#include "Core" - -#include "src/Core/util/DisableStupidWarnings.h" - -#include "Eigenvalues" -#include "Geometry" - -/** \defgroup LeastSquares_Module LeastSquares module - * This module provides linear regression and related features. - * - * \code - * #include - * \endcode - */ - -#include "src/Eigen2Support/LeastSquares.h" - -#include "src/Core/util/ReenableStupidWarnings.h" - -#endif // EIGEN2_SUPPORT - -#endif // EIGEN_REGRESSION_MODULE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/MetisSupport b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/MetisSupport deleted file mode 100755 index 6a113f7a8..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/MetisSupport +++ /dev/null @@ -1,28 +0,0 @@ -#ifndef EIGEN_METISSUPPORT_MODULE_H -#define EIGEN_METISSUPPORT_MODULE_H - -#include "SparseCore" - -#include "src/Core/util/DisableStupidWarnings.h" - -extern "C" { -#include -} - - -/** \ingroup Support_modules - * \defgroup MetisSupport_Module MetisSupport module - * - * \code - * #include - * \endcode - * This module defines an interface to the METIS reordering package (http://glaros.dtc.umn.edu/gkhome/views/metis). - * It can be used just as any other built-in method as explained in \link OrderingMethods_Module here. \endlink - */ - - -#include "src/MetisSupport/MetisSupport.h" - -#include "src/Core/util/ReenableStupidWarnings.h" - -#endif // EIGEN_METISSUPPORT_MODULE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/OrderingMethods b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/OrderingMethods deleted file mode 100755 index 7c0f1ffff..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/OrderingMethods +++ /dev/null @@ -1,66 +0,0 @@ -#ifndef EIGEN_ORDERINGMETHODS_MODULE_H -#define EIGEN_ORDERINGMETHODS_MODULE_H - -#include "SparseCore" - -#include "src/Core/util/DisableStupidWarnings.h" - -/** - * \defgroup OrderingMethods_Module OrderingMethods module - * - * This module is currently for internal use only - * - * It defines various built-in and external ordering methods for sparse matrices. - * They are typically used to reduce the number of elements during - * the sparse matrix decomposition (LLT, LU, QR). - * Precisely, in a preprocessing step, a permutation matrix P is computed using - * those ordering methods and applied to the columns of the matrix. - * Using for instance the sparse Cholesky decomposition, it is expected that - * the nonzeros elements in LLT(A*P) will be much smaller than that in LLT(A). - * - * - * Usage : - * \code - * #include - * \endcode - * - * A simple usage is as a template parameter in the sparse decomposition classes : - * - * \code - * SparseLU > solver; - * \endcode - * - * \code - * SparseQR > solver; - * \endcode - * - * It is possible as well to call directly a particular ordering method for your own purpose, - * \code - * AMDOrdering ordering; - * PermutationMatrix perm; - * SparseMatrix A; - * //Fill the matrix ... - * - * ordering(A, perm); // Call AMD - * \endcode - * - * \note Some of these methods (like AMD or METIS), need the sparsity pattern - * of the input matrix to be symmetric. When the matrix is structurally unsymmetric, - * Eigen computes internally the pattern of \f$A^T*A\f$ before calling the method. - * If your matrix is already symmetric (at leat in structure), you can avoid that - * by calling the method with a SelfAdjointView type. - * - * \code - * // Call the ordering on the pattern of the lower triangular matrix A - * ordering(A.selfadjointView(), perm); - * \endcode - */ - -#ifndef EIGEN_MPL2_ONLY -#include "src/OrderingMethods/Amd.h" -#endif - -#include "src/OrderingMethods/Ordering.h" -#include "src/Core/util/ReenableStupidWarnings.h" - -#endif // EIGEN_ORDERINGMETHODS_MODULE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/PaStiXSupport b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/PaStiXSupport deleted file mode 100755 index 7c616ee5e..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/PaStiXSupport +++ /dev/null @@ -1,46 +0,0 @@ -#ifndef EIGEN_PASTIXSUPPORT_MODULE_H -#define EIGEN_PASTIXSUPPORT_MODULE_H - -#include "SparseCore" - -#include "src/Core/util/DisableStupidWarnings.h" - -#include -extern "C" { -#include -#include -} - -#ifdef complex -#undef complex -#endif - -/** \ingroup Support_modules - * \defgroup PaStiXSupport_Module PaStiXSupport module - * - * This module provides an interface to the PaSTiX library. - * PaSTiX is a general \b supernodal, \b parallel and \b opensource sparse solver. - * It provides the two following main factorization classes: - * - class PastixLLT : a supernodal, parallel LLt Cholesky factorization. - * - class PastixLDLT: a supernodal, parallel LDLt Cholesky factorization. - * - class PastixLU : a supernodal, parallel LU factorization (optimized for a symmetric pattern). - * - * \code - * #include - * \endcode - * - * In order to use this module, the PaSTiX headers must be accessible from the include paths, and your binary must be linked to the PaSTiX library and its dependencies. - * The dependencies depend on how PaSTiX has been compiled. - * For a cmake based project, you can use our FindPaSTiX.cmake module to help you in this task. - * - */ - -#include "src/misc/Solve.h" -#include "src/misc/SparseSolve.h" - -#include "src/PaStiXSupport/PaStiXSupport.h" - - -#include "src/Core/util/ReenableStupidWarnings.h" - -#endif // EIGEN_PASTIXSUPPORT_MODULE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/PardisoSupport b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/PardisoSupport deleted file mode 100755 index 99330ce7a..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/PardisoSupport +++ /dev/null @@ -1,30 +0,0 @@ -#ifndef EIGEN_PARDISOSUPPORT_MODULE_H -#define EIGEN_PARDISOSUPPORT_MODULE_H - -#include "SparseCore" - -#include "src/Core/util/DisableStupidWarnings.h" - -#include - -#include - -/** \ingroup Support_modules - * \defgroup PardisoSupport_Module PardisoSupport module - * - * This module brings support for the Intel(R) MKL PARDISO direct sparse solvers. - * - * \code - * #include - * \endcode - * - * In order to use this module, the MKL headers must be accessible from the include paths, and your binary must be linked to the MKL library and its dependencies. - * See this \ref TopicUsingIntelMKL "page" for more information on MKL-Eigen integration. - * - */ - -#include "src/PardisoSupport/PardisoSupport.h" - -#include "src/Core/util/ReenableStupidWarnings.h" - -#endif // EIGEN_PARDISOSUPPORT_MODULE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/QR b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/QR deleted file mode 100755 index ac5b02693..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/QR +++ /dev/null @@ -1,45 +0,0 @@ -#ifndef EIGEN_QR_MODULE_H -#define EIGEN_QR_MODULE_H - -#include "Core" - -#include "src/Core/util/DisableStupidWarnings.h" - -#include "Cholesky" -#include "Jacobi" -#include "Householder" - -/** \defgroup QR_Module QR module - * - * - * - * This module provides various QR decompositions - * This module also provides some MatrixBase methods, including: - * - MatrixBase::qr(), - * - * \code - * #include - * \endcode - */ - -#include "src/misc/Solve.h" -#include "src/QR/HouseholderQR.h" -#include "src/QR/FullPivHouseholderQR.h" -#include "src/QR/ColPivHouseholderQR.h" -#ifdef EIGEN_USE_LAPACKE -#include "src/QR/HouseholderQR_MKL.h" -#include "src/QR/ColPivHouseholderQR_MKL.h" -#endif - -#ifdef EIGEN2_SUPPORT -#include "src/Eigen2Support/QR.h" -#endif - -#include "src/Core/util/ReenableStupidWarnings.h" - -#ifdef EIGEN2_SUPPORT -#include "Eigenvalues" -#endif - -#endif // EIGEN_QR_MODULE_H -/* vim: set filetype=cpp et sw=2 ts=2 ai: */ diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/QtAlignedMalloc b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/QtAlignedMalloc deleted file mode 100755 index 46f7d83b7..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/QtAlignedMalloc +++ /dev/null @@ -1,34 +0,0 @@ - -#ifndef EIGEN_QTMALLOC_MODULE_H -#define EIGEN_QTMALLOC_MODULE_H - -#include "Core" - -#if (!EIGEN_MALLOC_ALREADY_ALIGNED) - -#include "src/Core/util/DisableStupidWarnings.h" - -void *qMalloc(size_t size) -{ - return Eigen::internal::aligned_malloc(size); -} - -void qFree(void *ptr) -{ - Eigen::internal::aligned_free(ptr); -} - -void *qRealloc(void *ptr, size_t size) -{ - void* newPtr = Eigen::internal::aligned_malloc(size); - memcpy(newPtr, ptr, size); - Eigen::internal::aligned_free(ptr); - return newPtr; -} - -#include "src/Core/util/ReenableStupidWarnings.h" - -#endif - -#endif // EIGEN_QTMALLOC_MODULE_H -/* vim: set filetype=cpp et sw=2 ts=2 ai: */ diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/SPQRSupport b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/SPQRSupport deleted file mode 100755 index 7f1eb4770..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/SPQRSupport +++ /dev/null @@ -1,29 +0,0 @@ -#ifndef EIGEN_SPQRSUPPORT_MODULE_H -#define EIGEN_SPQRSUPPORT_MODULE_H - -#include "SparseCore" - -#include "src/Core/util/DisableStupidWarnings.h" - -#include "SuiteSparseQR.hpp" - -/** \ingroup Support_modules - * \defgroup SPQRSupport_Module SuiteSparseQR module - * - * This module provides an interface to the SPQR library, which is part of the suitesparse package. - * - * \code - * #include - * \endcode - * - * In order to use this module, the SPQR headers must be accessible from the include paths, and your binary must be linked to the SPQR library and its dependencies (Cholmod, AMD, COLAMD,...). - * For a cmake based project, you can use our FindSPQR.cmake and FindCholmod.Cmake modules - * - */ - -#include "src/misc/Solve.h" -#include "src/misc/SparseSolve.h" -#include "src/CholmodSupport/CholmodSupport.h" -#include "src/SPQRSupport/SuiteSparseQRSupport.h" - -#endif diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/SVD b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/SVD deleted file mode 100755 index fd310017a..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/SVD +++ /dev/null @@ -1,37 +0,0 @@ -#ifndef EIGEN_SVD_MODULE_H -#define EIGEN_SVD_MODULE_H - -#include "QR" -#include "Householder" -#include "Jacobi" - -#include "src/Core/util/DisableStupidWarnings.h" - -/** \defgroup SVD_Module SVD module - * - * - * - * This module provides SVD decomposition for matrices (both real and complex). - * This decomposition is accessible via the following MatrixBase method: - * - MatrixBase::jacobiSvd() - * - * \code - * #include - * \endcode - */ - -#include "src/misc/Solve.h" -#include "src/SVD/JacobiSVD.h" -#if defined(EIGEN_USE_LAPACKE) && !defined(EIGEN_USE_LAPACKE_STRICT) -#include "src/SVD/JacobiSVD_MKL.h" -#endif -#include "src/SVD/UpperBidiagonalization.h" - -#ifdef EIGEN2_SUPPORT -#include "src/Eigen2Support/SVD.h" -#endif - -#include "src/Core/util/ReenableStupidWarnings.h" - -#endif // EIGEN_SVD_MODULE_H -/* vim: set filetype=cpp et sw=2 ts=2 ai: */ diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Sparse b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Sparse deleted file mode 100755 index 7cc9c0913..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/Sparse +++ /dev/null @@ -1,27 +0,0 @@ -#ifndef EIGEN_SPARSE_MODULE_H -#define EIGEN_SPARSE_MODULE_H - -/** \defgroup Sparse_Module Sparse meta-module - * - * Meta-module including all related modules: - * - \ref SparseCore_Module - * - \ref OrderingMethods_Module - * - \ref SparseCholesky_Module - * - \ref SparseLU_Module - * - \ref SparseQR_Module - * - \ref IterativeLinearSolvers_Module - * - * \code - * #include - * \endcode - */ - -#include "SparseCore" -#include "OrderingMethods" -#include "SparseCholesky" -#include "SparseLU" -#include "SparseQR" -#include "IterativeLinearSolvers" - -#endif // EIGEN_SPARSE_MODULE_H - diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/SparseCholesky b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/SparseCholesky deleted file mode 100755 index 9f5056aa1..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/SparseCholesky +++ /dev/null @@ -1,47 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2013 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSECHOLESKY_MODULE_H -#define EIGEN_SPARSECHOLESKY_MODULE_H - -#include "SparseCore" -#include "OrderingMethods" - -#include "src/Core/util/DisableStupidWarnings.h" - -/** - * \defgroup SparseCholesky_Module SparseCholesky module - * - * This module currently provides two variants of the direct sparse Cholesky decomposition for selfadjoint (hermitian) matrices. - * Those decompositions are accessible via the following classes: - * - SimplicialLLt, - * - SimplicialLDLt - * - * Such problems can also be solved using the ConjugateGradient solver from the IterativeLinearSolvers module. - * - * \code - * #include - * \endcode - */ - -#ifdef EIGEN_MPL2_ONLY -#error The SparseCholesky module has nothing to offer in MPL2 only mode -#endif - -#include "src/misc/Solve.h" -#include "src/misc/SparseSolve.h" -#include "src/SparseCholesky/SimplicialCholesky.h" - -#ifndef EIGEN_MPL2_ONLY -#include "src/SparseCholesky/SimplicialCholesky_impl.h" -#endif - -#include "src/Core/util/ReenableStupidWarnings.h" - -#endif // EIGEN_SPARSECHOLESKY_MODULE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/SparseCore b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/SparseCore deleted file mode 100755 index 24bcf0156..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/SparseCore +++ /dev/null @@ -1,64 +0,0 @@ -#ifndef EIGEN_SPARSECORE_MODULE_H -#define EIGEN_SPARSECORE_MODULE_H - -#include "Core" - -#include "src/Core/util/DisableStupidWarnings.h" - -#include -#include -#include -#include -#include - -/** - * \defgroup SparseCore_Module SparseCore module - * - * This module provides a sparse matrix representation, and basic associated matrix manipulations - * and operations. - * - * See the \ref TutorialSparse "Sparse tutorial" - * - * \code - * #include - * \endcode - * - * This module depends on: Core. - */ - -namespace Eigen { - -/** The type used to identify a general sparse storage. */ -struct Sparse {}; - -} - -#include "src/SparseCore/SparseUtil.h" -#include "src/SparseCore/SparseMatrixBase.h" -#include "src/SparseCore/CompressedStorage.h" -#include "src/SparseCore/AmbiVector.h" -#include "src/SparseCore/SparseMatrix.h" -#include "src/SparseCore/MappedSparseMatrix.h" -#include "src/SparseCore/SparseVector.h" -#include "src/SparseCore/SparseBlock.h" -#include "src/SparseCore/SparseTranspose.h" -#include "src/SparseCore/SparseCwiseUnaryOp.h" -#include "src/SparseCore/SparseCwiseBinaryOp.h" -#include "src/SparseCore/SparseDot.h" -#include "src/SparseCore/SparsePermutation.h" -#include "src/SparseCore/SparseRedux.h" -#include "src/SparseCore/SparseFuzzy.h" -#include "src/SparseCore/ConservativeSparseSparseProduct.h" -#include "src/SparseCore/SparseSparseProductWithPruning.h" -#include "src/SparseCore/SparseProduct.h" -#include "src/SparseCore/SparseDenseProduct.h" -#include "src/SparseCore/SparseDiagonalProduct.h" -#include "src/SparseCore/SparseTriangularView.h" -#include "src/SparseCore/SparseSelfAdjointView.h" -#include "src/SparseCore/TriangularSolver.h" -#include "src/SparseCore/SparseView.h" - -#include "src/Core/util/ReenableStupidWarnings.h" - -#endif // EIGEN_SPARSECORE_MODULE_H - diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/SparseLU b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/SparseLU deleted file mode 100755 index 8527a49bd..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/SparseLU +++ /dev/null @@ -1,49 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Désiré Nuentsa-Wakam -// Copyright (C) 2012 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSELU_MODULE_H -#define EIGEN_SPARSELU_MODULE_H - -#include "SparseCore" - -/** - * \defgroup SparseLU_Module SparseLU module - * This module defines a supernodal factorization of general sparse matrices. - * The code is fully optimized for supernode-panel updates with specialized kernels. - * Please, see the documentation of the SparseLU class for more details. - */ - -#include "src/misc/Solve.h" -#include "src/misc/SparseSolve.h" - -// Ordering interface -#include "OrderingMethods" - -#include "src/SparseLU/SparseLU_gemm_kernel.h" - -#include "src/SparseLU/SparseLU_Structs.h" -#include "src/SparseLU/SparseLU_SupernodalMatrix.h" -#include "src/SparseLU/SparseLUImpl.h" -#include "src/SparseCore/SparseColEtree.h" -#include "src/SparseLU/SparseLU_Memory.h" -#include "src/SparseLU/SparseLU_heap_relax_snode.h" -#include "src/SparseLU/SparseLU_relax_snode.h" -#include "src/SparseLU/SparseLU_pivotL.h" -#include "src/SparseLU/SparseLU_panel_dfs.h" -#include "src/SparseLU/SparseLU_kernel_bmod.h" -#include "src/SparseLU/SparseLU_panel_bmod.h" -#include "src/SparseLU/SparseLU_column_dfs.h" -#include "src/SparseLU/SparseLU_column_bmod.h" -#include "src/SparseLU/SparseLU_copy_to_ucol.h" -#include "src/SparseLU/SparseLU_pruneL.h" -#include "src/SparseLU/SparseLU_Utils.h" -#include "src/SparseLU/SparseLU.h" - -#endif // EIGEN_SPARSELU_MODULE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/SparseQR b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/SparseQR deleted file mode 100755 index 4ee42065e..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/SparseQR +++ /dev/null @@ -1,33 +0,0 @@ -#ifndef EIGEN_SPARSEQR_MODULE_H -#define EIGEN_SPARSEQR_MODULE_H - -#include "SparseCore" -#include "OrderingMethods" -#include "src/Core/util/DisableStupidWarnings.h" - -/** \defgroup SparseQR_Module SparseQR module - * \brief Provides QR decomposition for sparse matrices - * - * This module provides a simplicial version of the left-looking Sparse QR decomposition. - * The columns of the input matrix should be reordered to limit the fill-in during the - * decomposition. Built-in methods (COLAMD, AMD) or external methods (METIS) can be used to this end. - * See the \link OrderingMethods_Module OrderingMethods\endlink module for the list - * of built-in and external ordering methods. - * - * \code - * #include - * \endcode - * - * - */ - -#include "src/misc/Solve.h" -#include "src/misc/SparseSolve.h" - -#include "OrderingMethods" -#include "src/SparseCore/SparseColEtree.h" -#include "src/SparseQR/SparseQR.h" - -#include "src/Core/util/ReenableStupidWarnings.h" - -#endif diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/StdDeque b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/StdDeque deleted file mode 100755 index f27234778..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/StdDeque +++ /dev/null @@ -1,27 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Gael Guennebaud -// Copyright (C) 2009 Hauke Heibel -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_STDDEQUE_MODULE_H -#define EIGEN_STDDEQUE_MODULE_H - -#include "Core" -#include - -#if (defined(_MSC_VER) && defined(_WIN64)) /* MSVC auto aligns in 64 bit builds */ - -#define EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(...) - -#else - -#include "src/StlSupport/StdDeque.h" - -#endif - -#endif // EIGEN_STDDEQUE_MODULE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/StdList b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/StdList deleted file mode 100755 index 225c1e18f..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/StdList +++ /dev/null @@ -1,26 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Hauke Heibel -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_STDLIST_MODULE_H -#define EIGEN_STDLIST_MODULE_H - -#include "Core" -#include - -#if (defined(_MSC_VER) && defined(_WIN64)) /* MSVC auto aligns in 64 bit builds */ - -#define EIGEN_DEFINE_STL_LIST_SPECIALIZATION(...) - -#else - -#include "src/StlSupport/StdList.h" - -#endif - -#endif // EIGEN_STDLIST_MODULE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/StdVector b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/StdVector deleted file mode 100755 index 6b22627f6..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/StdVector +++ /dev/null @@ -1,27 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Gael Guennebaud -// Copyright (C) 2009 Hauke Heibel -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_STDVECTOR_MODULE_H -#define EIGEN_STDVECTOR_MODULE_H - -#include "Core" -#include - -#if (defined(_MSC_VER) && defined(_WIN64)) /* MSVC auto aligns in 64 bit builds */ - -#define EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(...) - -#else - -#include "src/StlSupport/StdVector.h" - -#endif - -#endif // EIGEN_STDVECTOR_MODULE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/SuperLUSupport b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/SuperLUSupport deleted file mode 100755 index 575e14fbc..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/SuperLUSupport +++ /dev/null @@ -1,59 +0,0 @@ -#ifndef EIGEN_SUPERLUSUPPORT_MODULE_H -#define EIGEN_SUPERLUSUPPORT_MODULE_H - -#include "SparseCore" - -#include "src/Core/util/DisableStupidWarnings.h" - -#ifdef EMPTY -#define EIGEN_EMPTY_WAS_ALREADY_DEFINED -#endif - -typedef int int_t; -#include -#include -#include - -// slu_util.h defines a preprocessor token named EMPTY which is really polluting, -// so we remove it in favor of a SUPERLU_EMPTY token. -// If EMPTY was already defined then we don't undef it. - -#if defined(EIGEN_EMPTY_WAS_ALREADY_DEFINED) -# undef EIGEN_EMPTY_WAS_ALREADY_DEFINED -#elif defined(EMPTY) -# undef EMPTY -#endif - -#define SUPERLU_EMPTY (-1) - -namespace Eigen { struct SluMatrix; } - -/** \ingroup Support_modules - * \defgroup SuperLUSupport_Module SuperLUSupport module - * - * This module provides an interface to the SuperLU library. - * It provides the following factorization class: - * - class SuperLU: a supernodal sequential LU factorization. - * - class SuperILU: a supernodal sequential incomplete LU factorization (to be used as a preconditioner for iterative methods). - * - * \warning When including this module, you have to use SUPERLU_EMPTY instead of EMPTY which is no longer defined because it is too polluting. - * - * \code - * #include - * \endcode - * - * In order to use this module, the superlu headers must be accessible from the include paths, and your binary must be linked to the superlu library and its dependencies. - * The dependencies depend on how superlu has been compiled. - * For a cmake based project, you can use our FindSuperLU.cmake module to help you in this task. - * - */ - -#include "src/misc/Solve.h" -#include "src/misc/SparseSolve.h" - -#include "src/SuperLUSupport/SuperLUSupport.h" - - -#include "src/Core/util/ReenableStupidWarnings.h" - -#endif // EIGEN_SUPERLUSUPPORT_MODULE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/UmfPackSupport b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/UmfPackSupport deleted file mode 100755 index 7b1b66064..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/UmfPackSupport +++ /dev/null @@ -1,36 +0,0 @@ -#ifndef EIGEN_UMFPACKSUPPORT_MODULE_H -#define EIGEN_UMFPACKSUPPORT_MODULE_H - -#include "SparseCore" - -#include "src/Core/util/DisableStupidWarnings.h" - -extern "C" { -#include -} - -/** \ingroup Support_modules - * \defgroup UmfPackSupport_Module UmfPackSupport module - * - * This module provides an interface to the UmfPack library which is part of the suitesparse package. - * It provides the following factorization class: - * - class UmfPackLU: a multifrontal sequential LU factorization. - * - * \code - * #include - * \endcode - * - * In order to use this module, the umfpack headers must be accessible from the include paths, and your binary must be linked to the umfpack library and its dependencies. - * The dependencies depend on how umfpack has been compiled. - * For a cmake based project, you can use our FindUmfPack.cmake module to help you in this task. - * - */ - -#include "src/misc/Solve.h" -#include "src/misc/SparseSolve.h" - -#include "src/UmfPackSupport/UmfPackSupport.h" - -#include "src/Core/util/ReenableStupidWarnings.h" - -#endif // EIGEN_UMFPACKSUPPORT_MODULE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/CMakeLists.txt b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/CMakeLists.txt deleted file mode 100755 index c326f374d..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/CMakeLists.txt +++ /dev/null @@ -1,7 +0,0 @@ -file(GLOB Eigen_src_subdirectories "*") -escape_string_as_regex(ESCAPED_CMAKE_CURRENT_SOURCE_DIR "${CMAKE_CURRENT_SOURCE_DIR}") -foreach(f ${Eigen_src_subdirectories}) - if(NOT f MATCHES "\\.txt" AND NOT f MATCHES "${ESCAPED_CMAKE_CURRENT_SOURCE_DIR}/[.].+" ) - add_subdirectory(${f}) - endif() -endforeach() diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Cholesky/CMakeLists.txt b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Cholesky/CMakeLists.txt deleted file mode 100755 index d01488b41..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Cholesky/CMakeLists.txt +++ /dev/null @@ -1,6 +0,0 @@ -FILE(GLOB Eigen_Cholesky_SRCS "*.h") - -INSTALL(FILES - ${Eigen_Cholesky_SRCS} - DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Cholesky COMPONENT Devel - ) diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Cholesky/LDLT.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Cholesky/LDLT.h deleted file mode 100755 index abd30bd91..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Cholesky/LDLT.h +++ /dev/null @@ -1,611 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2011 Gael Guennebaud -// Copyright (C) 2009 Keir Mierle -// Copyright (C) 2009 Benoit Jacob -// Copyright (C) 2011 Timothy E. Holy -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_LDLT_H -#define EIGEN_LDLT_H - -namespace Eigen { - -namespace internal { - template struct LDLT_Traits; - - // PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef - enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite }; -} - -/** \ingroup Cholesky_Module - * - * \class LDLT - * - * \brief Robust Cholesky decomposition of a matrix with pivoting - * - * \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition - * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. - * The other triangular part won't be read. - * - * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite - * matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L - * is lower triangular with a unit diagonal and D is a diagonal matrix. - * - * The decomposition uses pivoting to ensure stability, so that L will have - * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root - * on D also stabilizes the computation. - * - * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky - * decomposition to determine whether a system of equations has a solution. - * - * \sa MatrixBase::ldlt(), class LLT - */ -template class LDLT -{ - public: - typedef _MatrixType MatrixType; - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here! - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, - UpLo = _UpLo - }; - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef typename MatrixType::Index Index; - typedef Matrix TmpMatrixType; - - typedef Transpositions TranspositionType; - typedef PermutationMatrix PermutationType; - - typedef internal::LDLT_Traits Traits; - - /** \brief Default Constructor. - * - * The default constructor is useful in cases in which the user intends to - * perform decompositions via LDLT::compute(const MatrixType&). - */ - LDLT() - : m_matrix(), - m_transpositions(), - m_sign(internal::ZeroSign), - m_isInitialized(false) - {} - - /** \brief Default Constructor with memory preallocation - * - * Like the default constructor but with preallocation of the internal data - * according to the specified problem \a size. - * \sa LDLT() - */ - LDLT(Index size) - : m_matrix(size, size), - m_transpositions(size), - m_temporary(size), - m_sign(internal::ZeroSign), - m_isInitialized(false) - {} - - /** \brief Constructor with decomposition - * - * This calculates the decomposition for the input \a matrix. - * \sa LDLT(Index size) - */ - LDLT(const MatrixType& matrix) - : m_matrix(matrix.rows(), matrix.cols()), - m_transpositions(matrix.rows()), - m_temporary(matrix.rows()), - m_sign(internal::ZeroSign), - m_isInitialized(false) - { - compute(matrix); - } - - /** Clear any existing decomposition - * \sa rankUpdate(w,sigma) - */ - void setZero() - { - m_isInitialized = false; - } - - /** \returns a view of the upper triangular matrix U */ - inline typename Traits::MatrixU matrixU() const - { - eigen_assert(m_isInitialized && "LDLT is not initialized."); - return Traits::getU(m_matrix); - } - - /** \returns a view of the lower triangular matrix L */ - inline typename Traits::MatrixL matrixL() const - { - eigen_assert(m_isInitialized && "LDLT is not initialized."); - return Traits::getL(m_matrix); - } - - /** \returns the permutation matrix P as a transposition sequence. - */ - inline const TranspositionType& transpositionsP() const - { - eigen_assert(m_isInitialized && "LDLT is not initialized."); - return m_transpositions; - } - - /** \returns the coefficients of the diagonal matrix D */ - inline Diagonal vectorD() const - { - eigen_assert(m_isInitialized && "LDLT is not initialized."); - return m_matrix.diagonal(); - } - - /** \returns true if the matrix is positive (semidefinite) */ - inline bool isPositive() const - { - eigen_assert(m_isInitialized && "LDLT is not initialized."); - return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign; - } - - #ifdef EIGEN2_SUPPORT - inline bool isPositiveDefinite() const - { - return isPositive(); - } - #endif - - /** \returns true if the matrix is negative (semidefinite) */ - inline bool isNegative(void) const - { - eigen_assert(m_isInitialized && "LDLT is not initialized."); - return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign; - } - - /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A. - * - * This function also supports in-place solves using the syntax x = decompositionObject.solve(x) . - * - * \note_about_checking_solutions - * - * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$ - * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$, - * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then - * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the - * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function - * computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular. - * - * \sa MatrixBase::ldlt() - */ - template - inline const internal::solve_retval - solve(const MatrixBase& b) const - { - eigen_assert(m_isInitialized && "LDLT is not initialized."); - eigen_assert(m_matrix.rows()==b.rows() - && "LDLT::solve(): invalid number of rows of the right hand side matrix b"); - return internal::solve_retval(*this, b.derived()); - } - - #ifdef EIGEN2_SUPPORT - template - bool solve(const MatrixBase& b, ResultType *result) const - { - *result = this->solve(b); - return true; - } - #endif - - template - bool solveInPlace(MatrixBase &bAndX) const; - - LDLT& compute(const MatrixType& matrix); - - template - LDLT& rankUpdate(const MatrixBase& w, const RealScalar& alpha=1); - - /** \returns the internal LDLT decomposition matrix - * - * TODO: document the storage layout - */ - inline const MatrixType& matrixLDLT() const - { - eigen_assert(m_isInitialized && "LDLT is not initialized."); - return m_matrix; - } - - MatrixType reconstructedMatrix() const; - - inline Index rows() const { return m_matrix.rows(); } - inline Index cols() const { return m_matrix.cols(); } - - /** \brief Reports whether previous computation was successful. - * - * \returns \c Success if computation was succesful, - * \c NumericalIssue if the matrix.appears to be negative. - */ - ComputationInfo info() const - { - eigen_assert(m_isInitialized && "LDLT is not initialized."); - return Success; - } - - protected: - - static void check_template_parameters() - { - EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); - } - - /** \internal - * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U. - * The strict upper part is used during the decomposition, the strict lower - * part correspond to the coefficients of L (its diagonal is equal to 1 and - * is not stored), and the diagonal entries correspond to D. - */ - MatrixType m_matrix; - TranspositionType m_transpositions; - TmpMatrixType m_temporary; - internal::SignMatrix m_sign; - bool m_isInitialized; -}; - -namespace internal { - -template struct ldlt_inplace; - -template<> struct ldlt_inplace -{ - template - static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) - { - using std::abs; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef typename MatrixType::Index Index; - eigen_assert(mat.rows()==mat.cols()); - const Index size = mat.rows(); - - if (size <= 1) - { - transpositions.setIdentity(); - if (numext::real(mat.coeff(0,0)) > 0) sign = PositiveSemiDef; - else if (numext::real(mat.coeff(0,0)) < 0) sign = NegativeSemiDef; - else sign = ZeroSign; - return true; - } - - for (Index k = 0; k < size; ++k) - { - // Find largest diagonal element - Index index_of_biggest_in_corner; - mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); - index_of_biggest_in_corner += k; - - transpositions.coeffRef(k) = index_of_biggest_in_corner; - if(k != index_of_biggest_in_corner) - { - // apply the transposition while taking care to consider only - // the lower triangular part - Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element - mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k)); - mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s)); - std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner)); - for(int i=k+1;i::IsComplex) - mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k)); - } - - // partition the matrix: - // A00 | - | - - // lu = A10 | A11 | - - // A20 | A21 | A22 - Index rs = size - k - 1; - Block A21(mat,k+1,k,rs,1); - Block A10(mat,k,0,1,k); - Block A20(mat,k+1,0,rs,k); - - if(k>0) - { - temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint(); - mat.coeffRef(k,k) -= (A10 * temp.head(k)).value(); - if(rs>0) - A21.noalias() -= A20 * temp.head(k); - } - - // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot - // was smaller than the cutoff value. However, soince LDLT is not rank-revealing - // we should only make sure we do not introduce INF or NaN values. - // LAPACK also uses 0 as the cutoff value. - RealScalar realAkk = numext::real(mat.coeffRef(k,k)); - if((rs>0) && (abs(realAkk) > RealScalar(0))) - A21 /= realAkk; - - if (sign == PositiveSemiDef) { - if (realAkk < 0) sign = Indefinite; - } else if (sign == NegativeSemiDef) { - if (realAkk > 0) sign = Indefinite; - } else if (sign == ZeroSign) { - if (realAkk > 0) sign = PositiveSemiDef; - else if (realAkk < 0) sign = NegativeSemiDef; - } - } - - return true; - } - - // Reference for the algorithm: Davis and Hager, "Multiple Rank - // Modifications of a Sparse Cholesky Factorization" (Algorithm 1) - // Trivial rearrangements of their computations (Timothy E. Holy) - // allow their algorithm to work for rank-1 updates even if the - // original matrix is not of full rank. - // Here only rank-1 updates are implemented, to reduce the - // requirement for intermediate storage and improve accuracy - template - static bool updateInPlace(MatrixType& mat, MatrixBase& w, const typename MatrixType::RealScalar& sigma=1) - { - using numext::isfinite; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef typename MatrixType::Index Index; - - const Index size = mat.rows(); - eigen_assert(mat.cols() == size && w.size()==size); - - RealScalar alpha = 1; - - // Apply the update - for (Index j = 0; j < size; j++) - { - // Check for termination due to an original decomposition of low-rank - if (!(isfinite)(alpha)) - break; - - // Update the diagonal terms - RealScalar dj = numext::real(mat.coeff(j,j)); - Scalar wj = w.coeff(j); - RealScalar swj2 = sigma*numext::abs2(wj); - RealScalar gamma = dj*alpha + swj2; - - mat.coeffRef(j,j) += swj2/alpha; - alpha += swj2/dj; - - - // Update the terms of L - Index rs = size-j-1; - w.tail(rs) -= wj * mat.col(j).tail(rs); - if(gamma != 0) - mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs); - } - return true; - } - - template - static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1) - { - // Apply the permutation to the input w - tmp = transpositions * w; - - return ldlt_inplace::updateInPlace(mat,tmp,sigma); - } -}; - -template<> struct ldlt_inplace -{ - template - static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) - { - Transpose matt(mat); - return ldlt_inplace::unblocked(matt, transpositions, temp, sign); - } - - template - static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1) - { - Transpose matt(mat); - return ldlt_inplace::update(matt, transpositions, tmp, w.conjugate(), sigma); - } -}; - -template struct LDLT_Traits -{ - typedef const TriangularView MatrixL; - typedef const TriangularView MatrixU; - static inline MatrixL getL(const MatrixType& m) { return m; } - static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); } -}; - -template struct LDLT_Traits -{ - typedef const TriangularView MatrixL; - typedef const TriangularView MatrixU; - static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); } - static inline MatrixU getU(const MatrixType& m) { return m; } -}; - -} // end namespace internal - -/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix - */ -template -LDLT& LDLT::compute(const MatrixType& a) -{ - check_template_parameters(); - - eigen_assert(a.rows()==a.cols()); - const Index size = a.rows(); - - m_matrix = a; - - m_transpositions.resize(size); - m_isInitialized = false; - m_temporary.resize(size); - m_sign = internal::ZeroSign; - - internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign); - - m_isInitialized = true; - return *this; -} - -/** Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T. - * \param w a vector to be incorporated into the decomposition. - * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1. - * \sa setZero() - */ -template -template -LDLT& LDLT::rankUpdate(const MatrixBase& w, const typename LDLT::RealScalar& sigma) -{ - const Index size = w.rows(); - if (m_isInitialized) - { - eigen_assert(m_matrix.rows()==size); - } - else - { - m_matrix.resize(size,size); - m_matrix.setZero(); - m_transpositions.resize(size); - for (Index i = 0; i < size; i++) - m_transpositions.coeffRef(i) = i; - m_temporary.resize(size); - m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef; - m_isInitialized = true; - } - - internal::ldlt_inplace::update(m_matrix, m_transpositions, m_temporary, w, sigma); - - return *this; -} - -namespace internal { -template -struct solve_retval, Rhs> - : solve_retval_base, Rhs> -{ - typedef LDLT<_MatrixType,_UpLo> LDLTType; - EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs) - - template void evalTo(Dest& dst) const - { - eigen_assert(rhs().rows() == dec().matrixLDLT().rows()); - // dst = P b - dst = dec().transpositionsP() * rhs(); - - // dst = L^-1 (P b) - dec().matrixL().solveInPlace(dst); - - // dst = D^-1 (L^-1 P b) - // more precisely, use pseudo-inverse of D (see bug 241) - using std::abs; - using std::max; - typedef typename LDLTType::MatrixType MatrixType; - typedef typename LDLTType::RealScalar RealScalar; - const typename Diagonal::RealReturnType vectorD(dec().vectorD()); - // In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon - // as motivated by LAPACK's xGELSS: - // RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() *NumTraits::epsilon(),RealScalar(1) / NumTraits::highest()); - // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest - // diagonal element is not well justified and to numerical issues in some cases. - // Moreover, Lapack's xSYTRS routines use 0 for the tolerance. - RealScalar tolerance = RealScalar(1) / NumTraits::highest(); - - for (Index i = 0; i < vectorD.size(); ++i) { - if(abs(vectorD(i)) > tolerance) - dst.row(i) /= vectorD(i); - else - dst.row(i).setZero(); - } - - // dst = L^-T (D^-1 L^-1 P b) - dec().matrixU().solveInPlace(dst); - - // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b - dst = dec().transpositionsP().transpose() * dst; - } -}; -} - -/** \internal use x = ldlt_object.solve(x); - * - * This is the \em in-place version of solve(). - * - * \param bAndX represents both the right-hand side matrix b and result x. - * - * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. - * - * This version avoids a copy when the right hand side matrix b is not - * needed anymore. - * - * \sa LDLT::solve(), MatrixBase::ldlt() - */ -template -template -bool LDLT::solveInPlace(MatrixBase &bAndX) const -{ - eigen_assert(m_isInitialized && "LDLT is not initialized."); - eigen_assert(m_matrix.rows() == bAndX.rows()); - - bAndX = this->solve(bAndX); - - return true; -} - -/** \returns the matrix represented by the decomposition, - * i.e., it returns the product: P^T L D L^* P. - * This function is provided for debug purpose. */ -template -MatrixType LDLT::reconstructedMatrix() const -{ - eigen_assert(m_isInitialized && "LDLT is not initialized."); - const Index size = m_matrix.rows(); - MatrixType res(size,size); - - // P - res.setIdentity(); - res = transpositionsP() * res; - // L^* P - res = matrixU() * res; - // D(L^*P) - res = vectorD().real().asDiagonal() * res; - // L(DL^*P) - res = matrixL() * res; - // P^T (LDL^*P) - res = transpositionsP().transpose() * res; - - return res; -} - -/** \cholesky_module - * \returns the Cholesky decomposition with full pivoting without square root of \c *this - */ -template -inline const LDLT::PlainObject, UpLo> -SelfAdjointView::ldlt() const -{ - return LDLT(m_matrix); -} - -/** \cholesky_module - * \returns the Cholesky decomposition with full pivoting without square root of \c *this - */ -template -inline const LDLT::PlainObject> -MatrixBase::ldlt() const -{ - return LDLT(derived()); -} - -} // end namespace Eigen - -#endif // EIGEN_LDLT_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Cholesky/LLT.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Cholesky/LLT.h deleted file mode 100755 index 7c11a2dc2..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Cholesky/LLT.h +++ /dev/null @@ -1,498 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_LLT_H -#define EIGEN_LLT_H - -namespace Eigen { - -namespace internal{ -template struct LLT_Traits; -} - -/** \ingroup Cholesky_Module - * - * \class LLT - * - * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features - * - * \param MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition - * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. - * The other triangular part won't be read. - * - * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite - * matrix A such that A = LL^* = U^*U, where L is lower triangular. - * - * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b, - * for that purpose, we recommend the Cholesky decomposition without square root which is more stable - * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other - * situations like generalised eigen problems with hermitian matrices. - * - * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices, - * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations - * has a solution. - * - * Example: \include LLT_example.cpp - * Output: \verbinclude LLT_example.out - * - * \sa MatrixBase::llt(), class LDLT - */ - /* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH) - * Note that during the decomposition, only the upper triangular part of A is considered. Therefore, - * the strict lower part does not have to store correct values. - */ -template class LLT -{ - public: - typedef _MatrixType MatrixType; - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - Options = MatrixType::Options, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime - }; - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef typename MatrixType::Index Index; - - enum { - PacketSize = internal::packet_traits::size, - AlignmentMask = int(PacketSize)-1, - UpLo = _UpLo - }; - - typedef internal::LLT_Traits Traits; - - /** - * \brief Default Constructor. - * - * The default constructor is useful in cases in which the user intends to - * perform decompositions via LLT::compute(const MatrixType&). - */ - LLT() : m_matrix(), m_isInitialized(false) {} - - /** \brief Default Constructor with memory preallocation - * - * Like the default constructor but with preallocation of the internal data - * according to the specified problem \a size. - * \sa LLT() - */ - LLT(Index size) : m_matrix(size, size), - m_isInitialized(false) {} - - LLT(const MatrixType& matrix) - : m_matrix(matrix.rows(), matrix.cols()), - m_isInitialized(false) - { - compute(matrix); - } - - /** \returns a view of the upper triangular matrix U */ - inline typename Traits::MatrixU matrixU() const - { - eigen_assert(m_isInitialized && "LLT is not initialized."); - return Traits::getU(m_matrix); - } - - /** \returns a view of the lower triangular matrix L */ - inline typename Traits::MatrixL matrixL() const - { - eigen_assert(m_isInitialized && "LLT is not initialized."); - return Traits::getL(m_matrix); - } - - /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. - * - * Since this LLT class assumes anyway that the matrix A is invertible, the solution - * theoretically exists and is unique regardless of b. - * - * Example: \include LLT_solve.cpp - * Output: \verbinclude LLT_solve.out - * - * \sa solveInPlace(), MatrixBase::llt() - */ - template - inline const internal::solve_retval - solve(const MatrixBase& b) const - { - eigen_assert(m_isInitialized && "LLT is not initialized."); - eigen_assert(m_matrix.rows()==b.rows() - && "LLT::solve(): invalid number of rows of the right hand side matrix b"); - return internal::solve_retval(*this, b.derived()); - } - - #ifdef EIGEN2_SUPPORT - template - bool solve(const MatrixBase& b, ResultType *result) const - { - *result = this->solve(b); - return true; - } - - bool isPositiveDefinite() const { return true; } - #endif - - template - void solveInPlace(MatrixBase &bAndX) const; - - LLT& compute(const MatrixType& matrix); - - /** \returns the LLT decomposition matrix - * - * TODO: document the storage layout - */ - inline const MatrixType& matrixLLT() const - { - eigen_assert(m_isInitialized && "LLT is not initialized."); - return m_matrix; - } - - MatrixType reconstructedMatrix() const; - - - /** \brief Reports whether previous computation was successful. - * - * \returns \c Success if computation was succesful, - * \c NumericalIssue if the matrix.appears to be negative. - */ - ComputationInfo info() const - { - eigen_assert(m_isInitialized && "LLT is not initialized."); - return m_info; - } - - inline Index rows() const { return m_matrix.rows(); } - inline Index cols() const { return m_matrix.cols(); } - - template - LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1); - - protected: - - static void check_template_parameters() - { - EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); - } - - /** \internal - * Used to compute and store L - * The strict upper part is not used and even not initialized. - */ - MatrixType m_matrix; - bool m_isInitialized; - ComputationInfo m_info; -}; - -namespace internal { - -template struct llt_inplace; - -template -static typename MatrixType::Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) -{ - using std::sqrt; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef typename MatrixType::Index Index; - typedef typename MatrixType::ColXpr ColXpr; - typedef typename internal::remove_all::type ColXprCleaned; - typedef typename ColXprCleaned::SegmentReturnType ColXprSegment; - typedef Matrix TempVectorType; - typedef typename TempVectorType::SegmentReturnType TempVecSegment; - - Index n = mat.cols(); - eigen_assert(mat.rows()==n && vec.size()==n); - - TempVectorType temp; - - if(sigma>0) - { - // This version is based on Givens rotations. - // It is faster than the other one below, but only works for updates, - // i.e., for sigma > 0 - temp = sqrt(sigma) * vec; - - for(Index i=0; i g; - g.makeGivens(mat(i,i), -temp(i), &mat(i,i)); - - Index rs = n-i-1; - if(rs>0) - { - ColXprSegment x(mat.col(i).tail(rs)); - TempVecSegment y(temp.tail(rs)); - apply_rotation_in_the_plane(x, y, g); - } - } - } - else - { - temp = vec; - RealScalar beta = 1; - for(Index j=0; j struct llt_inplace -{ - typedef typename NumTraits::Real RealScalar; - template - static typename MatrixType::Index unblocked(MatrixType& mat) - { - using std::sqrt; - typedef typename MatrixType::Index Index; - - eigen_assert(mat.rows()==mat.cols()); - const Index size = mat.rows(); - for(Index k = 0; k < size; ++k) - { - Index rs = size-k-1; // remaining size - - Block A21(mat,k+1,k,rs,1); - Block A10(mat,k,0,1,k); - Block A20(mat,k+1,0,rs,k); - - RealScalar x = numext::real(mat.coeff(k,k)); - if (k>0) x -= A10.squaredNorm(); - if (x<=RealScalar(0)) - return k; - mat.coeffRef(k,k) = x = sqrt(x); - if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint(); - if (rs>0) A21 /= x; - } - return -1; - } - - template - static typename MatrixType::Index blocked(MatrixType& m) - { - typedef typename MatrixType::Index Index; - eigen_assert(m.rows()==m.cols()); - Index size = m.rows(); - if(size<32) - return unblocked(m); - - Index blockSize = size/8; - blockSize = (blockSize/16)*16; - blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128)); - - for (Index k=0; k A11(m,k, k, bs,bs); - Block A21(m,k+bs,k, rs,bs); - Block A22(m,k+bs,k+bs,rs,rs); - - Index ret; - if((ret=unblocked(A11))>=0) return k+ret; - if(rs>0) A11.adjoint().template triangularView().template solveInPlace(A21); - if(rs>0) A22.template selfadjointView().rankUpdate(A21,-1); // bottleneck - } - return -1; - } - - template - static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) - { - return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); - } -}; - -template struct llt_inplace -{ - typedef typename NumTraits::Real RealScalar; - - template - static EIGEN_STRONG_INLINE typename MatrixType::Index unblocked(MatrixType& mat) - { - Transpose matt(mat); - return llt_inplace::unblocked(matt); - } - template - static EIGEN_STRONG_INLINE typename MatrixType::Index blocked(MatrixType& mat) - { - Transpose matt(mat); - return llt_inplace::blocked(matt); - } - template - static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) - { - Transpose matt(mat); - return llt_inplace::rankUpdate(matt, vec.conjugate(), sigma); - } -}; - -template struct LLT_Traits -{ - typedef const TriangularView MatrixL; - typedef const TriangularView MatrixU; - static inline MatrixL getL(const MatrixType& m) { return m; } - static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); } - static bool inplace_decomposition(MatrixType& m) - { return llt_inplace::blocked(m)==-1; } -}; - -template struct LLT_Traits -{ - typedef const TriangularView MatrixL; - typedef const TriangularView MatrixU; - static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); } - static inline MatrixU getU(const MatrixType& m) { return m; } - static bool inplace_decomposition(MatrixType& m) - { return llt_inplace::blocked(m)==-1; } -}; - -} // end namespace internal - -/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix - * - * \returns a reference to *this - * - * Example: \include TutorialLinAlgComputeTwice.cpp - * Output: \verbinclude TutorialLinAlgComputeTwice.out - */ -template -LLT& LLT::compute(const MatrixType& a) -{ - check_template_parameters(); - - eigen_assert(a.rows()==a.cols()); - const Index size = a.rows(); - m_matrix.resize(size, size); - m_matrix = a; - - m_isInitialized = true; - bool ok = Traits::inplace_decomposition(m_matrix); - m_info = ok ? Success : NumericalIssue; - - return *this; -} - -/** Performs a rank one update (or dowdate) of the current decomposition. - * If A = LL^* before the rank one update, - * then after it we have LL^* = A + sigma * v v^* where \a v must be a vector - * of same dimension. - */ -template -template -LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma) -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType); - eigen_assert(v.size()==m_matrix.cols()); - eigen_assert(m_isInitialized); - if(internal::llt_inplace::rankUpdate(m_matrix,v,sigma)>=0) - m_info = NumericalIssue; - else - m_info = Success; - - return *this; -} - -namespace internal { -template -struct solve_retval, Rhs> - : solve_retval_base, Rhs> -{ - typedef LLT<_MatrixType,UpLo> LLTType; - EIGEN_MAKE_SOLVE_HELPERS(LLTType,Rhs) - - template void evalTo(Dest& dst) const - { - dst = rhs(); - dec().solveInPlace(dst); - } -}; -} - -/** \internal use x = llt_object.solve(x); - * - * This is the \em in-place version of solve(). - * - * \param bAndX represents both the right-hand side matrix b and result x. - * - * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. - * - * This version avoids a copy when the right hand side matrix b is not - * needed anymore. - * - * \sa LLT::solve(), MatrixBase::llt() - */ -template -template -void LLT::solveInPlace(MatrixBase &bAndX) const -{ - eigen_assert(m_isInitialized && "LLT is not initialized."); - eigen_assert(m_matrix.rows()==bAndX.rows()); - matrixL().solveInPlace(bAndX); - matrixU().solveInPlace(bAndX); -} - -/** \returns the matrix represented by the decomposition, - * i.e., it returns the product: L L^*. - * This function is provided for debug purpose. */ -template -MatrixType LLT::reconstructedMatrix() const -{ - eigen_assert(m_isInitialized && "LLT is not initialized."); - return matrixL() * matrixL().adjoint().toDenseMatrix(); -} - -/** \cholesky_module - * \returns the LLT decomposition of \c *this - */ -template -inline const LLT::PlainObject> -MatrixBase::llt() const -{ - return LLT(derived()); -} - -/** \cholesky_module - * \returns the LLT decomposition of \c *this - */ -template -inline const LLT::PlainObject, UpLo> -SelfAdjointView::llt() const -{ - return LLT(m_matrix); -} - -} // end namespace Eigen - -#endif // EIGEN_LLT_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Cholesky/LLT_MKL.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Cholesky/LLT_MKL.h deleted file mode 100755 index 66675d747..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Cholesky/LLT_MKL.h +++ /dev/null @@ -1,102 +0,0 @@ -/* - Copyright (c) 2011, Intel Corporation. All rights reserved. - - Redistribution and use in source and binary forms, with or without modification, - are permitted provided that the following conditions are met: - - * Redistributions of source code must retain the above copyright notice, this - list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above copyright notice, - this list of conditions and the following disclaimer in the documentation - and/or other materials provided with the distribution. - * Neither the name of Intel Corporation nor the names of its contributors may - be used to endorse or promote products derived from this software without - specific prior written permission. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND - ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED - WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR - ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES - (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON - ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - - ******************************************************************************** - * Content : Eigen bindings to Intel(R) MKL - * LLt decomposition based on LAPACKE_?potrf function. - ******************************************************************************** -*/ - -#ifndef EIGEN_LLT_MKL_H -#define EIGEN_LLT_MKL_H - -#include "Eigen/src/Core/util/MKL_support.h" -#include - -namespace Eigen { - -namespace internal { - -template struct mkl_llt; - -#define EIGEN_MKL_LLT(EIGTYPE, MKLTYPE, MKLPREFIX) \ -template<> struct mkl_llt \ -{ \ - template \ - static inline typename MatrixType::Index potrf(MatrixType& m, char uplo) \ - { \ - lapack_int matrix_order; \ - lapack_int size, lda, info, StorageOrder; \ - EIGTYPE* a; \ - eigen_assert(m.rows()==m.cols()); \ - /* Set up parameters for ?potrf */ \ - size = m.rows(); \ - StorageOrder = MatrixType::Flags&RowMajorBit?RowMajor:ColMajor; \ - matrix_order = StorageOrder==RowMajor ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \ - a = &(m.coeffRef(0,0)); \ - lda = m.outerStride(); \ -\ - info = LAPACKE_##MKLPREFIX##potrf( matrix_order, uplo, size, (MKLTYPE*)a, lda ); \ - info = (info==0) ? -1 : info>0 ? info-1 : size; \ - return info; \ - } \ -}; \ -template<> struct llt_inplace \ -{ \ - template \ - static typename MatrixType::Index blocked(MatrixType& m) \ - { \ - return mkl_llt::potrf(m, 'L'); \ - } \ - template \ - static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \ - { return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); } \ -}; \ -template<> struct llt_inplace \ -{ \ - template \ - static typename MatrixType::Index blocked(MatrixType& m) \ - { \ - return mkl_llt::potrf(m, 'U'); \ - } \ - template \ - static typename MatrixType::Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \ - { \ - Transpose matt(mat); \ - return llt_inplace::rankUpdate(matt, vec.conjugate(), sigma); \ - } \ -}; - -EIGEN_MKL_LLT(double, double, d) -EIGEN_MKL_LLT(float, float, s) -EIGEN_MKL_LLT(dcomplex, MKL_Complex16, z) -EIGEN_MKL_LLT(scomplex, MKL_Complex8, c) - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_LLT_MKL_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/CholmodSupport/CMakeLists.txt b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/CholmodSupport/CMakeLists.txt deleted file mode 100755 index 814dfa613..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/CholmodSupport/CMakeLists.txt +++ /dev/null @@ -1,6 +0,0 @@ -FILE(GLOB Eigen_CholmodSupport_SRCS "*.h") - -INSTALL(FILES - ${Eigen_CholmodSupport_SRCS} - DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/CholmodSupport COMPONENT Devel - ) diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/CholmodSupport/CholmodSupport.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/CholmodSupport/CholmodSupport.h deleted file mode 100755 index 99dbe171c..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/CholmodSupport/CholmodSupport.h +++ /dev/null @@ -1,607 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_CHOLMODSUPPORT_H -#define EIGEN_CHOLMODSUPPORT_H - -namespace Eigen { - -namespace internal { - -template -void cholmod_configure_matrix(CholmodType& mat) -{ - if (internal::is_same::value) - { - mat.xtype = CHOLMOD_REAL; - mat.dtype = CHOLMOD_SINGLE; - } - else if (internal::is_same::value) - { - mat.xtype = CHOLMOD_REAL; - mat.dtype = CHOLMOD_DOUBLE; - } - else if (internal::is_same >::value) - { - mat.xtype = CHOLMOD_COMPLEX; - mat.dtype = CHOLMOD_SINGLE; - } - else if (internal::is_same >::value) - { - mat.xtype = CHOLMOD_COMPLEX; - mat.dtype = CHOLMOD_DOUBLE; - } - else - { - eigen_assert(false && "Scalar type not supported by CHOLMOD"); - } -} - -} // namespace internal - -/** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object. - * Note that the data are shared. - */ -template -cholmod_sparse viewAsCholmod(SparseMatrix<_Scalar,_Options,_Index>& mat) -{ - cholmod_sparse res; - res.nzmax = mat.nonZeros(); - res.nrow = mat.rows();; - res.ncol = mat.cols(); - res.p = mat.outerIndexPtr(); - res.i = mat.innerIndexPtr(); - res.x = mat.valuePtr(); - res.z = 0; - res.sorted = 1; - if(mat.isCompressed()) - { - res.packed = 1; - res.nz = 0; - } - else - { - res.packed = 0; - res.nz = mat.innerNonZeroPtr(); - } - - res.dtype = 0; - res.stype = -1; - - if (internal::is_same<_Index,int>::value) - { - res.itype = CHOLMOD_INT; - } - else if (internal::is_same<_Index,SuiteSparse_long>::value) - { - res.itype = CHOLMOD_LONG; - } - else - { - eigen_assert(false && "Index type not supported yet"); - } - - // setup res.xtype - internal::cholmod_configure_matrix<_Scalar>(res); - - res.stype = 0; - - return res; -} - -template -const cholmod_sparse viewAsCholmod(const SparseMatrix<_Scalar,_Options,_Index>& mat) -{ - cholmod_sparse res = viewAsCholmod(mat.const_cast_derived()); - return res; -} - -/** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix. - * The data are not copied but shared. */ -template -cholmod_sparse viewAsCholmod(const SparseSelfAdjointView, UpLo>& mat) -{ - cholmod_sparse res = viewAsCholmod(mat.matrix().const_cast_derived()); - - if(UpLo==Upper) res.stype = 1; - if(UpLo==Lower) res.stype = -1; - - return res; -} - -/** Returns a view of the Eigen \b dense matrix \a mat as Cholmod dense matrix. - * The data are not copied but shared. */ -template -cholmod_dense viewAsCholmod(MatrixBase& mat) -{ - EIGEN_STATIC_ASSERT((internal::traits::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); - typedef typename Derived::Scalar Scalar; - - cholmod_dense res; - res.nrow = mat.rows(); - res.ncol = mat.cols(); - res.nzmax = res.nrow * res.ncol; - res.d = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride(); - res.x = (void*)(mat.derived().data()); - res.z = 0; - - internal::cholmod_configure_matrix(res); - - return res; -} - -/** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix. - * The data are not copied but shared. */ -template -MappedSparseMatrix viewAsEigen(cholmod_sparse& cm) -{ - return MappedSparseMatrix - (cm.nrow, cm.ncol, static_cast(cm.p)[cm.ncol], - static_cast(cm.p), static_cast(cm.i),static_cast(cm.x) ); -} - -enum CholmodMode { - CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt -}; - - -/** \ingroup CholmodSupport_Module - * \class CholmodBase - * \brief The base class for the direct Cholesky factorization of Cholmod - * \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT - */ -template -class CholmodBase : internal::noncopyable -{ - public: - typedef _MatrixType MatrixType; - enum { UpLo = _UpLo }; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef MatrixType CholMatrixType; - typedef typename MatrixType::Index Index; - - public: - - CholmodBase() - : m_cholmodFactor(0), m_info(Success), m_isInitialized(false) - { - m_shiftOffset[0] = m_shiftOffset[1] = RealScalar(0.0); - cholmod_start(&m_cholmod); - } - - CholmodBase(const MatrixType& matrix) - : m_cholmodFactor(0), m_info(Success), m_isInitialized(false) - { - m_shiftOffset[0] = m_shiftOffset[1] = RealScalar(0.0); - cholmod_start(&m_cholmod); - compute(matrix); - } - - ~CholmodBase() - { - if(m_cholmodFactor) - cholmod_free_factor(&m_cholmodFactor, &m_cholmod); - cholmod_finish(&m_cholmod); - } - - inline Index cols() const { return m_cholmodFactor->n; } - inline Index rows() const { return m_cholmodFactor->n; } - - Derived& derived() { return *static_cast(this); } - const Derived& derived() const { return *static_cast(this); } - - /** \brief Reports whether previous computation was successful. - * - * \returns \c Success if computation was succesful, - * \c NumericalIssue if the matrix.appears to be negative. - */ - ComputationInfo info() const - { - eigen_assert(m_isInitialized && "Decomposition is not initialized."); - return m_info; - } - - /** Computes the sparse Cholesky decomposition of \a matrix */ - Derived& compute(const MatrixType& matrix) - { - analyzePattern(matrix); - factorize(matrix); - return derived(); - } - - /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. - * - * \sa compute() - */ - template - inline const internal::solve_retval - solve(const MatrixBase& b) const - { - eigen_assert(m_isInitialized && "LLT is not initialized."); - eigen_assert(rows()==b.rows() - && "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b"); - return internal::solve_retval(*this, b.derived()); - } - - /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. - * - * \sa compute() - */ - template - inline const internal::sparse_solve_retval - solve(const SparseMatrixBase& b) const - { - eigen_assert(m_isInitialized && "LLT is not initialized."); - eigen_assert(rows()==b.rows() - && "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b"); - return internal::sparse_solve_retval(*this, b.derived()); - } - - /** Performs a symbolic decomposition on the sparsity pattern of \a matrix. - * - * This function is particularly useful when solving for several problems having the same structure. - * - * \sa factorize() - */ - void analyzePattern(const MatrixType& matrix) - { - if(m_cholmodFactor) - { - cholmod_free_factor(&m_cholmodFactor, &m_cholmod); - m_cholmodFactor = 0; - } - cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView()); - m_cholmodFactor = cholmod_analyze(&A, &m_cholmod); - - this->m_isInitialized = true; - this->m_info = Success; - m_analysisIsOk = true; - m_factorizationIsOk = false; - } - - /** Performs a numeric decomposition of \a matrix - * - * The given matrix must have the same sparsity pattern as the matrix on which the symbolic decomposition has been performed. - * - * \sa analyzePattern() - */ - void factorize(const MatrixType& matrix) - { - eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); - cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView()); - cholmod_factorize_p(&A, m_shiftOffset, 0, 0, m_cholmodFactor, &m_cholmod); - - // If the factorization failed, minor is the column at which it did. On success minor == n. - this->m_info = (m_cholmodFactor->minor == m_cholmodFactor->n ? Success : NumericalIssue); - m_factorizationIsOk = true; - } - - /** Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations. - * See the Cholmod user guide for details. */ - cholmod_common& cholmod() { return m_cholmod; } - - #ifndef EIGEN_PARSED_BY_DOXYGEN - /** \internal */ - template - void _solve(const MatrixBase &b, MatrixBase &dest) const - { - eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); - const Index size = m_cholmodFactor->n; - EIGEN_UNUSED_VARIABLE(size); - eigen_assert(size==b.rows()); - - // note: cd stands for Cholmod Dense - Rhs& b_ref(b.const_cast_derived()); - cholmod_dense b_cd = viewAsCholmod(b_ref); - cholmod_dense* x_cd = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &b_cd, &m_cholmod); - if(!x_cd) - { - this->m_info = NumericalIssue; - } - // TODO optimize this copy by swapping when possible (be careful with alignment, etc.) - dest = Matrix::Map(reinterpret_cast(x_cd->x),b.rows(),b.cols()); - cholmod_free_dense(&x_cd, &m_cholmod); - } - - /** \internal */ - template - void _solve(const SparseMatrix &b, SparseMatrix &dest) const - { - eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); - const Index size = m_cholmodFactor->n; - EIGEN_UNUSED_VARIABLE(size); - eigen_assert(size==b.rows()); - - // note: cs stands for Cholmod Sparse - cholmod_sparse b_cs = viewAsCholmod(b); - cholmod_sparse* x_cs = cholmod_spsolve(CHOLMOD_A, m_cholmodFactor, &b_cs, &m_cholmod); - if(!x_cs) - { - this->m_info = NumericalIssue; - } - // TODO optimize this copy by swapping when possible (be careful with alignment, etc.) - dest = viewAsEigen(*x_cs); - cholmod_free_sparse(&x_cs, &m_cholmod); - } - #endif // EIGEN_PARSED_BY_DOXYGEN - - - /** Sets the shift parameter that will be used to adjust the diagonal coefficients during the numerical factorization. - * - * During the numerical factorization, an offset term is added to the diagonal coefficients:\n - * \c d_ii = \a offset + \c d_ii - * - * The default is \a offset=0. - * - * \returns a reference to \c *this. - */ - Derived& setShift(const RealScalar& offset) - { - m_shiftOffset[0] = offset; - return derived(); - } - - template - void dumpMemory(Stream& /*s*/) - {} - - protected: - mutable cholmod_common m_cholmod; - cholmod_factor* m_cholmodFactor; - RealScalar m_shiftOffset[2]; - mutable ComputationInfo m_info; - bool m_isInitialized; - int m_factorizationIsOk; - int m_analysisIsOk; -}; - -/** \ingroup CholmodSupport_Module - * \class CholmodSimplicialLLT - * \brief A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod - * - * This class allows to solve for A.X = B sparse linear problems via a simplicial LL^T Cholesky factorization - * using the Cholmod library. - * This simplicial variant is equivalent to Eigen's built-in SimplicialLLT class. Therefore, it has little practical interest. - * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices - * X and B can be either dense or sparse. - * - * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> - * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower - * or Upper. Default is Lower. - * - * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. - * - * \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLLT - */ -template -class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT<_MatrixType, _UpLo> > -{ - typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT> Base; - using Base::m_cholmod; - - public: - - typedef _MatrixType MatrixType; - - CholmodSimplicialLLT() : Base() { init(); } - - CholmodSimplicialLLT(const MatrixType& matrix) : Base() - { - init(); - Base::compute(matrix); - } - - ~CholmodSimplicialLLT() {} - protected: - void init() - { - m_cholmod.final_asis = 0; - m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; - m_cholmod.final_ll = 1; - } -}; - - -/** \ingroup CholmodSupport_Module - * \class CholmodSimplicialLDLT - * \brief A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod - * - * This class allows to solve for A.X = B sparse linear problems via a simplicial LDL^T Cholesky factorization - * using the Cholmod library. - * This simplicial variant is equivalent to Eigen's built-in SimplicialLDLT class. Therefore, it has little practical interest. - * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices - * X and B can be either dense or sparse. - * - * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> - * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower - * or Upper. Default is Lower. - * - * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. - * - * \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLDLT - */ -template -class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT<_MatrixType, _UpLo> > -{ - typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT> Base; - using Base::m_cholmod; - - public: - - typedef _MatrixType MatrixType; - - CholmodSimplicialLDLT() : Base() { init(); } - - CholmodSimplicialLDLT(const MatrixType& matrix) : Base() - { - init(); - Base::compute(matrix); - } - - ~CholmodSimplicialLDLT() {} - protected: - void init() - { - m_cholmod.final_asis = 1; - m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; - } -}; - -/** \ingroup CholmodSupport_Module - * \class CholmodSupernodalLLT - * \brief A supernodal Cholesky (LLT) factorization and solver based on Cholmod - * - * This class allows to solve for A.X = B sparse linear problems via a supernodal LL^T Cholesky factorization - * using the Cholmod library. - * This supernodal variant performs best on dense enough problems, e.g., 3D FEM, or very high order 2D FEM. - * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices - * X and B can be either dense or sparse. - * - * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> - * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower - * or Upper. Default is Lower. - * - * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. - * - * \sa \ref TutorialSparseDirectSolvers - */ -template -class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT<_MatrixType, _UpLo> > -{ - typedef CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT> Base; - using Base::m_cholmod; - - public: - - typedef _MatrixType MatrixType; - - CholmodSupernodalLLT() : Base() { init(); } - - CholmodSupernodalLLT(const MatrixType& matrix) : Base() - { - init(); - Base::compute(matrix); - } - - ~CholmodSupernodalLLT() {} - protected: - void init() - { - m_cholmod.final_asis = 1; - m_cholmod.supernodal = CHOLMOD_SUPERNODAL; - } -}; - -/** \ingroup CholmodSupport_Module - * \class CholmodDecomposition - * \brief A general Cholesky factorization and solver based on Cholmod - * - * This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization - * using the Cholmod library. The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices - * X and B can be either dense or sparse. - * - * This variant permits to change the underlying Cholesky method at runtime. - * On the other hand, it does not provide access to the result of the factorization. - * The default is to let Cholmod automatically choose between a simplicial and supernodal factorization. - * - * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> - * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower - * or Upper. Default is Lower. - * - * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. - * - * \sa \ref TutorialSparseDirectSolvers - */ -template -class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecomposition<_MatrixType, _UpLo> > -{ - typedef CholmodBase<_MatrixType, _UpLo, CholmodDecomposition> Base; - using Base::m_cholmod; - - public: - - typedef _MatrixType MatrixType; - - CholmodDecomposition() : Base() { init(); } - - CholmodDecomposition(const MatrixType& matrix) : Base() - { - init(); - Base::compute(matrix); - } - - ~CholmodDecomposition() {} - - void setMode(CholmodMode mode) - { - switch(mode) - { - case CholmodAuto: - m_cholmod.final_asis = 1; - m_cholmod.supernodal = CHOLMOD_AUTO; - break; - case CholmodSimplicialLLt: - m_cholmod.final_asis = 0; - m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; - m_cholmod.final_ll = 1; - break; - case CholmodSupernodalLLt: - m_cholmod.final_asis = 1; - m_cholmod.supernodal = CHOLMOD_SUPERNODAL; - break; - case CholmodLDLt: - m_cholmod.final_asis = 1; - m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; - break; - default: - break; - } - } - protected: - void init() - { - m_cholmod.final_asis = 1; - m_cholmod.supernodal = CHOLMOD_AUTO; - } -}; - -namespace internal { - -template -struct solve_retval, Rhs> - : solve_retval_base, Rhs> -{ - typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec; - EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) - - template void evalTo(Dest& dst) const - { - dec()._solve(rhs(),dst); - } -}; - -template -struct sparse_solve_retval, Rhs> - : sparse_solve_retval_base, Rhs> -{ - typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec; - EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs) - - template void evalTo(Dest& dst) const - { - dec()._solve(rhs(),dst); - } -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_CHOLMODSUPPORT_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Array.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Array.h deleted file mode 100755 index 0b9c38c82..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Array.h +++ /dev/null @@ -1,323 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_ARRAY_H -#define EIGEN_ARRAY_H - -namespace Eigen { - -/** \class Array - * \ingroup Core_Module - * - * \brief General-purpose arrays with easy API for coefficient-wise operations - * - * The %Array class is very similar to the Matrix class. It provides - * general-purpose one- and two-dimensional arrays. The difference between the - * %Array and the %Matrix class is primarily in the API: the API for the - * %Array class provides easy access to coefficient-wise operations, while the - * API for the %Matrix class provides easy access to linear-algebra - * operations. - * - * This class can be extended with the help of the plugin mechanism described on the page - * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_ARRAY_PLUGIN. - * - * \sa \ref TutorialArrayClass, \ref TopicClassHierarchy - */ -namespace internal { -template -struct traits > : traits > -{ - typedef ArrayXpr XprKind; - typedef ArrayBase > XprBase; -}; -} - -template -class Array - : public PlainObjectBase > -{ - public: - - typedef PlainObjectBase Base; - EIGEN_DENSE_PUBLIC_INTERFACE(Array) - - enum { Options = _Options }; - typedef typename Base::PlainObject PlainObject; - - protected: - template - friend struct internal::conservative_resize_like_impl; - - using Base::m_storage; - - public: - - using Base::base; - using Base::coeff; - using Base::coeffRef; - - /** - * The usage of - * using Base::operator=; - * fails on MSVC. Since the code below is working with GCC and MSVC, we skipped - * the usage of 'using'. This should be done only for operator=. - */ - template - EIGEN_STRONG_INLINE Array& operator=(const EigenBase &other) - { - return Base::operator=(other); - } - - /** Copies the value of the expression \a other into \c *this with automatic resizing. - * - * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized), - * it will be initialized. - * - * Note that copying a row-vector into a vector (and conversely) is allowed. - * The resizing, if any, is then done in the appropriate way so that row-vectors - * remain row-vectors and vectors remain vectors. - */ - template - EIGEN_STRONG_INLINE Array& operator=(const ArrayBase& other) - { - return Base::_set(other); - } - - /** This is a special case of the templated operator=. Its purpose is to - * prevent a default operator= from hiding the templated operator=. - */ - EIGEN_STRONG_INLINE Array& operator=(const Array& other) - { - return Base::_set(other); - } - - /** Default constructor. - * - * For fixed-size matrices, does nothing. - * - * For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix - * is called a null matrix. This constructor is the unique way to create null matrices: resizing - * a matrix to 0 is not supported. - * - * \sa resize(Index,Index) - */ - EIGEN_STRONG_INLINE Array() : Base() - { - Base::_check_template_params(); - EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED - } - -#ifndef EIGEN_PARSED_BY_DOXYGEN - // FIXME is it still needed ?? - /** \internal */ - Array(internal::constructor_without_unaligned_array_assert) - : Base(internal::constructor_without_unaligned_array_assert()) - { - Base::_check_template_params(); - EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED - } -#endif - -#ifdef EIGEN_HAVE_RVALUE_REFERENCES - Array(Array&& other) - : Base(std::move(other)) - { - Base::_check_template_params(); - if (RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic) - Base::_set_noalias(other); - } - Array& operator=(Array&& other) - { - other.swap(*this); - return *this; - } -#endif - - /** Constructs a vector or row-vector with given dimension. \only_for_vectors - * - * Note that this is only useful for dynamic-size vectors. For fixed-size vectors, - * it is redundant to pass the dimension here, so it makes more sense to use the default - * constructor Matrix() instead. - */ - EIGEN_STRONG_INLINE explicit Array(Index dim) - : Base(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim) - { - Base::_check_template_params(); - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Array) - eigen_assert(dim >= 0); - eigen_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim); - EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED - } - - #ifndef EIGEN_PARSED_BY_DOXYGEN - template - EIGEN_STRONG_INLINE Array(const T0& val0, const T1& val1) - { - Base::_check_template_params(); - this->template _init2(val0, val1); - } - #else - /** constructs an uninitialized matrix with \a rows rows and \a cols columns. - * - * This is useful for dynamic-size matrices. For fixed-size matrices, - * it is redundant to pass these parameters, so one should use the default constructor - * Matrix() instead. */ - Array(Index rows, Index cols); - /** constructs an initialized 2D vector with given coefficients */ - Array(const Scalar& val0, const Scalar& val1); - #endif - - /** constructs an initialized 3D vector with given coefficients */ - EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2) - { - Base::_check_template_params(); - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 3) - m_storage.data()[0] = val0; - m_storage.data()[1] = val1; - m_storage.data()[2] = val2; - } - /** constructs an initialized 4D vector with given coefficients */ - EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2, const Scalar& val3) - { - Base::_check_template_params(); - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 4) - m_storage.data()[0] = val0; - m_storage.data()[1] = val1; - m_storage.data()[2] = val2; - m_storage.data()[3] = val3; - } - - explicit Array(const Scalar *data); - - /** Constructor copying the value of the expression \a other */ - template - EIGEN_STRONG_INLINE Array(const ArrayBase& other) - : Base(other.rows() * other.cols(), other.rows(), other.cols()) - { - Base::_check_template_params(); - Base::_set_noalias(other); - } - /** Copy constructor */ - EIGEN_STRONG_INLINE Array(const Array& other) - : Base(other.rows() * other.cols(), other.rows(), other.cols()) - { - Base::_check_template_params(); - Base::_set_noalias(other); - } - /** Copy constructor with in-place evaluation */ - template - EIGEN_STRONG_INLINE Array(const ReturnByValue& other) - { - Base::_check_template_params(); - Base::resize(other.rows(), other.cols()); - other.evalTo(*this); - } - - /** \sa MatrixBase::operator=(const EigenBase&) */ - template - EIGEN_STRONG_INLINE Array(const EigenBase &other) - : Base(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols()) - { - Base::_check_template_params(); - Base::_resize_to_match(other); - *this = other; - } - - /** Override MatrixBase::swap() since for dynamic-sized matrices of same type it is enough to swap the - * data pointers. - */ - template - void swap(ArrayBase const & other) - { this->_swap(other.derived()); } - - inline Index innerStride() const { return 1; } - inline Index outerStride() const { return this->innerSize(); } - - #ifdef EIGEN_ARRAY_PLUGIN - #include EIGEN_ARRAY_PLUGIN - #endif - - private: - - template - friend struct internal::matrix_swap_impl; -}; - -/** \defgroup arraytypedefs Global array typedefs - * \ingroup Core_Module - * - * Eigen defines several typedef shortcuts for most common 1D and 2D array types. - * - * The general patterns are the following: - * - * \c ArrayRowsColsType where \c Rows and \c Cols can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size, - * and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd - * for complex double. - * - * For example, \c Array33d is a fixed-size 3x3 array type of doubles, and \c ArrayXXf is a dynamic-size matrix of floats. - * - * There are also \c ArraySizeType which are self-explanatory. For example, \c Array4cf is - * a fixed-size 1D array of 4 complex floats. - * - * \sa class Array - */ - -#define EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \ -/** \ingroup arraytypedefs */ \ -typedef Array Array##SizeSuffix##SizeSuffix##TypeSuffix; \ -/** \ingroup arraytypedefs */ \ -typedef Array Array##SizeSuffix##TypeSuffix; - -#define EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \ -/** \ingroup arraytypedefs */ \ -typedef Array Array##Size##X##TypeSuffix; \ -/** \ingroup arraytypedefs */ \ -typedef Array Array##X##Size##TypeSuffix; - -#define EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \ -EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 2, 2) \ -EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 3, 3) \ -EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 4, 4) \ -EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \ -EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \ -EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \ -EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 4) - -EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(int, i) -EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(float, f) -EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(double, d) -EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex, cf) -EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex, cd) - -#undef EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES -#undef EIGEN_MAKE_ARRAY_TYPEDEFS - -#undef EIGEN_MAKE_ARRAY_TYPEDEFS_LARGE - -#define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \ -using Eigen::Matrix##SizeSuffix##TypeSuffix; \ -using Eigen::Vector##SizeSuffix##TypeSuffix; \ -using Eigen::RowVector##SizeSuffix##TypeSuffix; - -#define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(TypeSuffix) \ -EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \ -EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \ -EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \ -EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \ - -#define EIGEN_USING_ARRAY_TYPEDEFS \ -EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(i) \ -EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(f) \ -EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(d) \ -EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cf) \ -EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cd) - -} // end namespace Eigen - -#endif // EIGEN_ARRAY_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/ArrayBase.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/ArrayBase.h deleted file mode 100755 index 33ff55371..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/ArrayBase.h +++ /dev/null @@ -1,226 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_ARRAYBASE_H -#define EIGEN_ARRAYBASE_H - -namespace Eigen { - -template class MatrixWrapper; - -/** \class ArrayBase - * \ingroup Core_Module - * - * \brief Base class for all 1D and 2D array, and related expressions - * - * An array is similar to a dense vector or matrix. While matrices are mathematical - * objects with well defined linear algebra operators, an array is just a collection - * of scalar values arranged in a one or two dimensionnal fashion. As the main consequence, - * all operations applied to an array are performed coefficient wise. Furthermore, - * arrays support scalar math functions of the c++ standard library (e.g., std::sin(x)), and convenient - * constructors allowing to easily write generic code working for both scalar values - * and arrays. - * - * This class is the base that is inherited by all array expression types. - * - * \tparam Derived is the derived type, e.g., an array or an expression type. - * - * This class can be extended with the help of the plugin mechanism described on the page - * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_ARRAYBASE_PLUGIN. - * - * \sa class MatrixBase, \ref TopicClassHierarchy - */ -template class ArrayBase - : public DenseBase -{ - public: -#ifndef EIGEN_PARSED_BY_DOXYGEN - /** The base class for a given storage type. */ - typedef ArrayBase StorageBaseType; - - typedef ArrayBase Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl; - - typedef typename internal::traits::StorageKind StorageKind; - typedef typename internal::traits::Index Index; - typedef typename internal::traits::Scalar Scalar; - typedef typename internal::packet_traits::type PacketScalar; - typedef typename NumTraits::Real RealScalar; - - typedef DenseBase Base; - using Base::operator*; - using Base::RowsAtCompileTime; - using Base::ColsAtCompileTime; - using Base::SizeAtCompileTime; - using Base::MaxRowsAtCompileTime; - using Base::MaxColsAtCompileTime; - using Base::MaxSizeAtCompileTime; - using Base::IsVectorAtCompileTime; - using Base::Flags; - using Base::CoeffReadCost; - - using Base::derived; - using Base::const_cast_derived; - using Base::rows; - using Base::cols; - using Base::size; - using Base::coeff; - using Base::coeffRef; - using Base::lazyAssign; - using Base::operator=; - using Base::operator+=; - using Base::operator-=; - using Base::operator*=; - using Base::operator/=; - - typedef typename Base::CoeffReturnType CoeffReturnType; - -#endif // not EIGEN_PARSED_BY_DOXYGEN - -#ifndef EIGEN_PARSED_BY_DOXYGEN - /** \internal the plain matrix type corresponding to this expression. Note that is not necessarily - * exactly the return type of eval(): in the case of plain matrices, the return type of eval() is a const - * reference to a matrix, not a matrix! It is however guaranteed that the return type of eval() is either - * PlainObject or const PlainObject&. - */ - typedef Array::Scalar, - internal::traits::RowsAtCompileTime, - internal::traits::ColsAtCompileTime, - AutoAlign | (internal::traits::Flags&RowMajorBit ? RowMajor : ColMajor), - internal::traits::MaxRowsAtCompileTime, - internal::traits::MaxColsAtCompileTime - > PlainObject; - - - /** \internal Represents a matrix with all coefficients equal to one another*/ - typedef CwiseNullaryOp,Derived> ConstantReturnType; -#endif // not EIGEN_PARSED_BY_DOXYGEN - -#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::ArrayBase -# include "../plugins/CommonCwiseUnaryOps.h" -# include "../plugins/MatrixCwiseUnaryOps.h" -# include "../plugins/ArrayCwiseUnaryOps.h" -# include "../plugins/CommonCwiseBinaryOps.h" -# include "../plugins/MatrixCwiseBinaryOps.h" -# include "../plugins/ArrayCwiseBinaryOps.h" -# ifdef EIGEN_ARRAYBASE_PLUGIN -# include EIGEN_ARRAYBASE_PLUGIN -# endif -#undef EIGEN_CURRENT_STORAGE_BASE_CLASS - - /** Special case of the template operator=, in order to prevent the compiler - * from generating a default operator= (issue hit with g++ 4.1) - */ - Derived& operator=(const ArrayBase& other) - { - return internal::assign_selector::run(derived(), other.derived()); - } - - Derived& operator+=(const Scalar& scalar) - { return *this = derived() + scalar; } - Derived& operator-=(const Scalar& scalar) - { return *this = derived() - scalar; } - - template - Derived& operator+=(const ArrayBase& other); - template - Derived& operator-=(const ArrayBase& other); - - template - Derived& operator*=(const ArrayBase& other); - - template - Derived& operator/=(const ArrayBase& other); - - public: - ArrayBase& array() { return *this; } - const ArrayBase& array() const { return *this; } - - /** \returns an \link Eigen::MatrixBase Matrix \endlink expression of this array - * \sa MatrixBase::array() */ - MatrixWrapper matrix() { return derived(); } - const MatrixWrapper matrix() const { return derived(); } - -// template -// inline void evalTo(Dest& dst) const { dst = matrix(); } - - protected: - ArrayBase() : Base() {} - - private: - explicit ArrayBase(Index); - ArrayBase(Index,Index); - template explicit ArrayBase(const ArrayBase&); - protected: - // mixing arrays and matrices is not legal - template Derived& operator+=(const MatrixBase& ) - {EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;} - // mixing arrays and matrices is not legal - template Derived& operator-=(const MatrixBase& ) - {EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;} -}; - -/** replaces \c *this by \c *this - \a other. - * - * \returns a reference to \c *this - */ -template -template -EIGEN_STRONG_INLINE Derived & -ArrayBase::operator-=(const ArrayBase &other) -{ - SelfCwiseBinaryOp, Derived, OtherDerived> tmp(derived()); - tmp = other.derived(); - return derived(); -} - -/** replaces \c *this by \c *this + \a other. - * - * \returns a reference to \c *this - */ -template -template -EIGEN_STRONG_INLINE Derived & -ArrayBase::operator+=(const ArrayBase& other) -{ - SelfCwiseBinaryOp, Derived, OtherDerived> tmp(derived()); - tmp = other.derived(); - return derived(); -} - -/** replaces \c *this by \c *this * \a other coefficient wise. - * - * \returns a reference to \c *this - */ -template -template -EIGEN_STRONG_INLINE Derived & -ArrayBase::operator*=(const ArrayBase& other) -{ - SelfCwiseBinaryOp, Derived, OtherDerived> tmp(derived()); - tmp = other.derived(); - return derived(); -} - -/** replaces \c *this by \c *this / \a other coefficient wise. - * - * \returns a reference to \c *this - */ -template -template -EIGEN_STRONG_INLINE Derived & -ArrayBase::operator/=(const ArrayBase& other) -{ - SelfCwiseBinaryOp, Derived, OtherDerived> tmp(derived()); - tmp = other.derived(); - return derived(); -} - -} // end namespace Eigen - -#endif // EIGEN_ARRAYBASE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/ArrayWrapper.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/ArrayWrapper.h deleted file mode 100755 index b4641e2a0..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/ArrayWrapper.h +++ /dev/null @@ -1,264 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009-2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_ARRAYWRAPPER_H -#define EIGEN_ARRAYWRAPPER_H - -namespace Eigen { - -/** \class ArrayWrapper - * \ingroup Core_Module - * - * \brief Expression of a mathematical vector or matrix as an array object - * - * This class is the return type of MatrixBase::array(), and most of the time - * this is the only way it is use. - * - * \sa MatrixBase::array(), class MatrixWrapper - */ - -namespace internal { -template -struct traits > - : public traits::type > -{ - typedef ArrayXpr XprKind; - // Let's remove NestByRefBit - enum { - Flags0 = traits::type >::Flags, - Flags = Flags0 & ~NestByRefBit - }; -}; -} - -template -class ArrayWrapper : public ArrayBase > -{ - public: - typedef ArrayBase Base; - EIGEN_DENSE_PUBLIC_INTERFACE(ArrayWrapper) - EIGEN_INHERIT_ASSIGNMENT_OPERATORS(ArrayWrapper) - - typedef typename internal::conditional< - internal::is_lvalue::value, - Scalar, - const Scalar - >::type ScalarWithConstIfNotLvalue; - - typedef typename internal::nested::type NestedExpressionType; - - inline ArrayWrapper(ExpressionType& matrix) : m_expression(matrix) {} - - inline Index rows() const { return m_expression.rows(); } - inline Index cols() const { return m_expression.cols(); } - inline Index outerStride() const { return m_expression.outerStride(); } - inline Index innerStride() const { return m_expression.innerStride(); } - - inline ScalarWithConstIfNotLvalue* data() { return m_expression.const_cast_derived().data(); } - inline const Scalar* data() const { return m_expression.data(); } - - inline CoeffReturnType coeff(Index rowId, Index colId) const - { - return m_expression.coeff(rowId, colId); - } - - inline Scalar& coeffRef(Index rowId, Index colId) - { - return m_expression.const_cast_derived().coeffRef(rowId, colId); - } - - inline const Scalar& coeffRef(Index rowId, Index colId) const - { - return m_expression.const_cast_derived().coeffRef(rowId, colId); - } - - inline CoeffReturnType coeff(Index index) const - { - return m_expression.coeff(index); - } - - inline Scalar& coeffRef(Index index) - { - return m_expression.const_cast_derived().coeffRef(index); - } - - inline const Scalar& coeffRef(Index index) const - { - return m_expression.const_cast_derived().coeffRef(index); - } - - template - inline const PacketScalar packet(Index rowId, Index colId) const - { - return m_expression.template packet(rowId, colId); - } - - template - inline void writePacket(Index rowId, Index colId, const PacketScalar& val) - { - m_expression.const_cast_derived().template writePacket(rowId, colId, val); - } - - template - inline const PacketScalar packet(Index index) const - { - return m_expression.template packet(index); - } - - template - inline void writePacket(Index index, const PacketScalar& val) - { - m_expression.const_cast_derived().template writePacket(index, val); - } - - template - inline void evalTo(Dest& dst) const { dst = m_expression; } - - const typename internal::remove_all::type& - nestedExpression() const - { - return m_expression; - } - - /** Forwards the resizing request to the nested expression - * \sa DenseBase::resize(Index) */ - void resize(Index newSize) { m_expression.const_cast_derived().resize(newSize); } - /** Forwards the resizing request to the nested expression - * \sa DenseBase::resize(Index,Index)*/ - void resize(Index nbRows, Index nbCols) { m_expression.const_cast_derived().resize(nbRows,nbCols); } - - protected: - NestedExpressionType m_expression; -}; - -/** \class MatrixWrapper - * \ingroup Core_Module - * - * \brief Expression of an array as a mathematical vector or matrix - * - * This class is the return type of ArrayBase::matrix(), and most of the time - * this is the only way it is use. - * - * \sa MatrixBase::matrix(), class ArrayWrapper - */ - -namespace internal { -template -struct traits > - : public traits::type > -{ - typedef MatrixXpr XprKind; - // Let's remove NestByRefBit - enum { - Flags0 = traits::type >::Flags, - Flags = Flags0 & ~NestByRefBit - }; -}; -} - -template -class MatrixWrapper : public MatrixBase > -{ - public: - typedef MatrixBase > Base; - EIGEN_DENSE_PUBLIC_INTERFACE(MatrixWrapper) - EIGEN_INHERIT_ASSIGNMENT_OPERATORS(MatrixWrapper) - - typedef typename internal::conditional< - internal::is_lvalue::value, - Scalar, - const Scalar - >::type ScalarWithConstIfNotLvalue; - - typedef typename internal::nested::type NestedExpressionType; - - inline MatrixWrapper(ExpressionType& a_matrix) : m_expression(a_matrix) {} - - inline Index rows() const { return m_expression.rows(); } - inline Index cols() const { return m_expression.cols(); } - inline Index outerStride() const { return m_expression.outerStride(); } - inline Index innerStride() const { return m_expression.innerStride(); } - - inline ScalarWithConstIfNotLvalue* data() { return m_expression.const_cast_derived().data(); } - inline const Scalar* data() const { return m_expression.data(); } - - inline CoeffReturnType coeff(Index rowId, Index colId) const - { - return m_expression.coeff(rowId, colId); - } - - inline Scalar& coeffRef(Index rowId, Index colId) - { - return m_expression.const_cast_derived().coeffRef(rowId, colId); - } - - inline const Scalar& coeffRef(Index rowId, Index colId) const - { - return m_expression.derived().coeffRef(rowId, colId); - } - - inline CoeffReturnType coeff(Index index) const - { - return m_expression.coeff(index); - } - - inline Scalar& coeffRef(Index index) - { - return m_expression.const_cast_derived().coeffRef(index); - } - - inline const Scalar& coeffRef(Index index) const - { - return m_expression.const_cast_derived().coeffRef(index); - } - - template - inline const PacketScalar packet(Index rowId, Index colId) const - { - return m_expression.template packet(rowId, colId); - } - - template - inline void writePacket(Index rowId, Index colId, const PacketScalar& val) - { - m_expression.const_cast_derived().template writePacket(rowId, colId, val); - } - - template - inline const PacketScalar packet(Index index) const - { - return m_expression.template packet(index); - } - - template - inline void writePacket(Index index, const PacketScalar& val) - { - m_expression.const_cast_derived().template writePacket(index, val); - } - - const typename internal::remove_all::type& - nestedExpression() const - { - return m_expression; - } - - /** Forwards the resizing request to the nested expression - * \sa DenseBase::resize(Index) */ - void resize(Index newSize) { m_expression.const_cast_derived().resize(newSize); } - /** Forwards the resizing request to the nested expression - * \sa DenseBase::resize(Index,Index)*/ - void resize(Index nbRows, Index nbCols) { m_expression.const_cast_derived().resize(nbRows,nbCols); } - - protected: - NestedExpressionType m_expression; -}; - -} // end namespace Eigen - -#endif // EIGEN_ARRAYWRAPPER_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Assign.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Assign.h deleted file mode 100755 index f48173172..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Assign.h +++ /dev/null @@ -1,590 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2007 Michael Olbrich -// Copyright (C) 2006-2010 Benoit Jacob -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_ASSIGN_H -#define EIGEN_ASSIGN_H - -namespace Eigen { - -namespace internal { - -/*************************************************************************** -* Part 1 : the logic deciding a strategy for traversal and unrolling * -***************************************************************************/ - -template -struct assign_traits -{ -public: - enum { - DstIsAligned = Derived::Flags & AlignedBit, - DstHasDirectAccess = Derived::Flags & DirectAccessBit, - SrcIsAligned = OtherDerived::Flags & AlignedBit, - JointAlignment = bool(DstIsAligned) && bool(SrcIsAligned) ? Aligned : Unaligned - }; - -private: - enum { - InnerSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::SizeAtCompileTime) - : int(Derived::Flags)&RowMajorBit ? int(Derived::ColsAtCompileTime) - : int(Derived::RowsAtCompileTime), - InnerMaxSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::MaxSizeAtCompileTime) - : int(Derived::Flags)&RowMajorBit ? int(Derived::MaxColsAtCompileTime) - : int(Derived::MaxRowsAtCompileTime), - MaxSizeAtCompileTime = Derived::SizeAtCompileTime, - PacketSize = packet_traits::size - }; - - enum { - StorageOrdersAgree = (int(Derived::IsRowMajor) == int(OtherDerived::IsRowMajor)), - MightVectorize = StorageOrdersAgree - && (int(Derived::Flags) & int(OtherDerived::Flags) & ActualPacketAccessBit), - MayInnerVectorize = MightVectorize && int(InnerSize)!=Dynamic && int(InnerSize)%int(PacketSize)==0 - && int(DstIsAligned) && int(SrcIsAligned), - MayLinearize = StorageOrdersAgree && (int(Derived::Flags) & int(OtherDerived::Flags) & LinearAccessBit), - MayLinearVectorize = MightVectorize && MayLinearize && DstHasDirectAccess - && (DstIsAligned || MaxSizeAtCompileTime == Dynamic), - /* If the destination isn't aligned, we have to do runtime checks and we don't unroll, - so it's only good for large enough sizes. */ - MaySliceVectorize = MightVectorize && DstHasDirectAccess - && (int(InnerMaxSize)==Dynamic || int(InnerMaxSize)>=3*PacketSize) - /* slice vectorization can be slow, so we only want it if the slices are big, which is - indicated by InnerMaxSize rather than InnerSize, think of the case of a dynamic block - in a fixed-size matrix */ - }; - -public: - enum { - Traversal = int(MayInnerVectorize) ? int(InnerVectorizedTraversal) - : int(MayLinearVectorize) ? int(LinearVectorizedTraversal) - : int(MaySliceVectorize) ? int(SliceVectorizedTraversal) - : int(MayLinearize) ? int(LinearTraversal) - : int(DefaultTraversal), - Vectorized = int(Traversal) == InnerVectorizedTraversal - || int(Traversal) == LinearVectorizedTraversal - || int(Traversal) == SliceVectorizedTraversal - }; - -private: - enum { - UnrollingLimit = EIGEN_UNROLLING_LIMIT * (Vectorized ? int(PacketSize) : 1), - MayUnrollCompletely = int(Derived::SizeAtCompileTime) != Dynamic - && int(OtherDerived::CoeffReadCost) != Dynamic - && int(Derived::SizeAtCompileTime) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit), - MayUnrollInner = int(InnerSize) != Dynamic - && int(OtherDerived::CoeffReadCost) != Dynamic - && int(InnerSize) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit) - }; - -public: - enum { - Unrolling = (int(Traversal) == int(InnerVectorizedTraversal) || int(Traversal) == int(DefaultTraversal)) - ? ( - int(MayUnrollCompletely) ? int(CompleteUnrolling) - : int(MayUnrollInner) ? int(InnerUnrolling) - : int(NoUnrolling) - ) - : int(Traversal) == int(LinearVectorizedTraversal) - ? ( bool(MayUnrollCompletely) && bool(DstIsAligned) ? int(CompleteUnrolling) : int(NoUnrolling) ) - : int(Traversal) == int(LinearTraversal) - ? ( bool(MayUnrollCompletely) ? int(CompleteUnrolling) : int(NoUnrolling) ) - : int(NoUnrolling) - }; - -#ifdef EIGEN_DEBUG_ASSIGN - static void debug() - { - EIGEN_DEBUG_VAR(DstIsAligned) - EIGEN_DEBUG_VAR(SrcIsAligned) - EIGEN_DEBUG_VAR(JointAlignment) - EIGEN_DEBUG_VAR(InnerSize) - EIGEN_DEBUG_VAR(InnerMaxSize) - EIGEN_DEBUG_VAR(PacketSize) - EIGEN_DEBUG_VAR(StorageOrdersAgree) - EIGEN_DEBUG_VAR(MightVectorize) - EIGEN_DEBUG_VAR(MayLinearize) - EIGEN_DEBUG_VAR(MayInnerVectorize) - EIGEN_DEBUG_VAR(MayLinearVectorize) - EIGEN_DEBUG_VAR(MaySliceVectorize) - EIGEN_DEBUG_VAR(Traversal) - EIGEN_DEBUG_VAR(UnrollingLimit) - EIGEN_DEBUG_VAR(MayUnrollCompletely) - EIGEN_DEBUG_VAR(MayUnrollInner) - EIGEN_DEBUG_VAR(Unrolling) - } -#endif -}; - -/*************************************************************************** -* Part 2 : meta-unrollers -***************************************************************************/ - -/************************ -*** Default traversal *** -************************/ - -template -struct assign_DefaultTraversal_CompleteUnrolling -{ - enum { - outer = Index / Derived1::InnerSizeAtCompileTime, - inner = Index % Derived1::InnerSizeAtCompileTime - }; - - static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src) - { - dst.copyCoeffByOuterInner(outer, inner, src); - assign_DefaultTraversal_CompleteUnrolling::run(dst, src); - } -}; - -template -struct assign_DefaultTraversal_CompleteUnrolling -{ - static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &) {} -}; - -template -struct assign_DefaultTraversal_InnerUnrolling -{ - static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src, typename Derived1::Index outer) - { - dst.copyCoeffByOuterInner(outer, Index, src); - assign_DefaultTraversal_InnerUnrolling::run(dst, src, outer); - } -}; - -template -struct assign_DefaultTraversal_InnerUnrolling -{ - static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &, typename Derived1::Index) {} -}; - -/*********************** -*** Linear traversal *** -***********************/ - -template -struct assign_LinearTraversal_CompleteUnrolling -{ - static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src) - { - dst.copyCoeff(Index, src); - assign_LinearTraversal_CompleteUnrolling::run(dst, src); - } -}; - -template -struct assign_LinearTraversal_CompleteUnrolling -{ - static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &) {} -}; - -/************************** -*** Inner vectorization *** -**************************/ - -template -struct assign_innervec_CompleteUnrolling -{ - enum { - outer = Index / Derived1::InnerSizeAtCompileTime, - inner = Index % Derived1::InnerSizeAtCompileTime, - JointAlignment = assign_traits::JointAlignment - }; - - static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src) - { - dst.template copyPacketByOuterInner(outer, inner, src); - assign_innervec_CompleteUnrolling::size, Stop>::run(dst, src); - } -}; - -template -struct assign_innervec_CompleteUnrolling -{ - static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &) {} -}; - -template -struct assign_innervec_InnerUnrolling -{ - static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src, typename Derived1::Index outer) - { - dst.template copyPacketByOuterInner(outer, Index, src); - assign_innervec_InnerUnrolling::size, Stop>::run(dst, src, outer); - } -}; - -template -struct assign_innervec_InnerUnrolling -{ - static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &, typename Derived1::Index) {} -}; - -/*************************************************************************** -* Part 3 : implementation of all cases -***************************************************************************/ - -template::Traversal, - int Unrolling = assign_traits::Unrolling, - int Version = Specialized> -struct assign_impl; - -/************************ -*** Default traversal *** -************************/ - -template -struct assign_impl -{ - static inline void run(Derived1 &, const Derived2 &) { } -}; - -template -struct assign_impl -{ - typedef typename Derived1::Index Index; - static inline void run(Derived1 &dst, const Derived2 &src) - { - const Index innerSize = dst.innerSize(); - const Index outerSize = dst.outerSize(); - for(Index outer = 0; outer < outerSize; ++outer) - for(Index inner = 0; inner < innerSize; ++inner) - dst.copyCoeffByOuterInner(outer, inner, src); - } -}; - -template -struct assign_impl -{ - static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src) - { - assign_DefaultTraversal_CompleteUnrolling - ::run(dst, src); - } -}; - -template -struct assign_impl -{ - typedef typename Derived1::Index Index; - static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src) - { - const Index outerSize = dst.outerSize(); - for(Index outer = 0; outer < outerSize; ++outer) - assign_DefaultTraversal_InnerUnrolling - ::run(dst, src, outer); - } -}; - -/*********************** -*** Linear traversal *** -***********************/ - -template -struct assign_impl -{ - typedef typename Derived1::Index Index; - static inline void run(Derived1 &dst, const Derived2 &src) - { - const Index size = dst.size(); - for(Index i = 0; i < size; ++i) - dst.copyCoeff(i, src); - } -}; - -template -struct assign_impl -{ - static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src) - { - assign_LinearTraversal_CompleteUnrolling - ::run(dst, src); - } -}; - -/************************** -*** Inner vectorization *** -**************************/ - -template -struct assign_impl -{ - typedef typename Derived1::Index Index; - static inline void run(Derived1 &dst, const Derived2 &src) - { - const Index innerSize = dst.innerSize(); - const Index outerSize = dst.outerSize(); - const Index packetSize = packet_traits::size; - for(Index outer = 0; outer < outerSize; ++outer) - for(Index inner = 0; inner < innerSize; inner+=packetSize) - dst.template copyPacketByOuterInner(outer, inner, src); - } -}; - -template -struct assign_impl -{ - static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src) - { - assign_innervec_CompleteUnrolling - ::run(dst, src); - } -}; - -template -struct assign_impl -{ - typedef typename Derived1::Index Index; - static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src) - { - const Index outerSize = dst.outerSize(); - for(Index outer = 0; outer < outerSize; ++outer) - assign_innervec_InnerUnrolling - ::run(dst, src, outer); - } -}; - -/*************************** -*** Linear vectorization *** -***************************/ - -template -struct unaligned_assign_impl -{ - template - static EIGEN_STRONG_INLINE void run(const Derived&, OtherDerived&, typename Derived::Index, typename Derived::Index) {} -}; - -template <> -struct unaligned_assign_impl -{ - // MSVC must not inline this functions. If it does, it fails to optimize the - // packet access path. -#ifdef _MSC_VER - template - static EIGEN_DONT_INLINE void run(const Derived& src, OtherDerived& dst, typename Derived::Index start, typename Derived::Index end) -#else - template - static EIGEN_STRONG_INLINE void run(const Derived& src, OtherDerived& dst, typename Derived::Index start, typename Derived::Index end) -#endif - { - for (typename Derived::Index index = start; index < end; ++index) - dst.copyCoeff(index, src); - } -}; - -template -struct assign_impl -{ - typedef typename Derived1::Index Index; - static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src) - { - const Index size = dst.size(); - typedef packet_traits PacketTraits; - enum { - packetSize = PacketTraits::size, - dstAlignment = PacketTraits::AlignedOnScalar ? Aligned : int(assign_traits::DstIsAligned) , - srcAlignment = assign_traits::JointAlignment - }; - const Index alignedStart = assign_traits::DstIsAligned ? 0 - : internal::first_aligned(&dst.coeffRef(0), size); - const Index alignedEnd = alignedStart + ((size-alignedStart)/packetSize)*packetSize; - - unaligned_assign_impl::DstIsAligned!=0>::run(src,dst,0,alignedStart); - - for(Index index = alignedStart; index < alignedEnd; index += packetSize) - { - dst.template copyPacket(index, src); - } - - unaligned_assign_impl<>::run(src,dst,alignedEnd,size); - } -}; - -template -struct assign_impl -{ - typedef typename Derived1::Index Index; - static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src) - { - enum { size = Derived1::SizeAtCompileTime, - packetSize = packet_traits::size, - alignedSize = (size/packetSize)*packetSize }; - - assign_innervec_CompleteUnrolling::run(dst, src); - assign_DefaultTraversal_CompleteUnrolling::run(dst, src); - } -}; - -/************************** -*** Slice vectorization *** -***************************/ - -template -struct assign_impl -{ - typedef typename Derived1::Index Index; - static inline void run(Derived1 &dst, const Derived2 &src) - { - typedef typename Derived1::Scalar Scalar; - typedef packet_traits PacketTraits; - enum { - packetSize = PacketTraits::size, - alignable = PacketTraits::AlignedOnScalar, - dstIsAligned = assign_traits::DstIsAligned, - dstAlignment = alignable ? Aligned : int(dstIsAligned), - srcAlignment = assign_traits::JointAlignment - }; - const Scalar *dst_ptr = &dst.coeffRef(0,0); - if((!bool(dstIsAligned)) && (size_t(dst_ptr) % sizeof(Scalar))>0) - { - // the pointer is not aligend-on scalar, so alignment is not possible - return assign_impl::run(dst, src); - } - const Index packetAlignedMask = packetSize - 1; - const Index innerSize = dst.innerSize(); - const Index outerSize = dst.outerSize(); - const Index alignedStep = alignable ? (packetSize - dst.outerStride() % packetSize) & packetAlignedMask : 0; - Index alignedStart = ((!alignable) || bool(dstIsAligned)) ? 0 : internal::first_aligned(dst_ptr, innerSize); - - for(Index outer = 0; outer < outerSize; ++outer) - { - const Index alignedEnd = alignedStart + ((innerSize-alignedStart) & ~packetAlignedMask); - // do the non-vectorizable part of the assignment - for(Index inner = 0; inner(outer, inner, src); - - // do the non-vectorizable part of the assignment - for(Index inner = alignedEnd; inner((alignedStart+alignedStep)%packetSize, innerSize); - } - } -}; - -} // end namespace internal - -/*************************************************************************** -* Part 4 : implementation of DenseBase methods -***************************************************************************/ - -template -template -EIGEN_STRONG_INLINE Derived& DenseBase - ::lazyAssign(const DenseBase& other) -{ - enum{ - SameType = internal::is_same::value - }; - - EIGEN_STATIC_ASSERT_LVALUE(Derived) - EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Derived,OtherDerived) - EIGEN_STATIC_ASSERT(SameType,YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - -#ifdef EIGEN_DEBUG_ASSIGN - internal::assign_traits::debug(); -#endif - eigen_assert(rows() == other.rows() && cols() == other.cols()); - internal::assign_impl::Traversal) - : int(InvalidTraversal)>::run(derived(),other.derived()); -#ifndef EIGEN_NO_DEBUG - checkTransposeAliasing(other.derived()); -#endif - return derived(); -} - -namespace internal { - -template::Flags) & EvalBeforeAssigningBit) != 0, - bool NeedToTranspose = ((int(Derived::RowsAtCompileTime) == 1 && int(OtherDerived::ColsAtCompileTime) == 1) - | // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&". - // revert to || as soon as not needed anymore. - (int(Derived::ColsAtCompileTime) == 1 && int(OtherDerived::RowsAtCompileTime) == 1)) - && int(Derived::SizeAtCompileTime) != 1> -struct assign_selector; - -template -struct assign_selector { - static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.derived()); } - template - static EIGEN_STRONG_INLINE Derived& evalTo(ActualDerived& dst, const ActualOtherDerived& other) { other.evalTo(dst); return dst; } -}; -template -struct assign_selector { - static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.eval()); } -}; -template -struct assign_selector { - static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.transpose()); } - template - static EIGEN_STRONG_INLINE Derived& evalTo(ActualDerived& dst, const ActualOtherDerived& other) { Transpose dstTrans(dst); other.evalTo(dstTrans); return dst; } -}; -template -struct assign_selector { - static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.transpose().eval()); } -}; - -} // end namespace internal - -template -template -EIGEN_STRONG_INLINE Derived& DenseBase::operator=(const DenseBase& other) -{ - return internal::assign_selector::run(derived(), other.derived()); -} - -template -EIGEN_STRONG_INLINE Derived& DenseBase::operator=(const DenseBase& other) -{ - return internal::assign_selector::run(derived(), other.derived()); -} - -template -EIGEN_STRONG_INLINE Derived& MatrixBase::operator=(const MatrixBase& other) -{ - return internal::assign_selector::run(derived(), other.derived()); -} - -template -template -EIGEN_STRONG_INLINE Derived& MatrixBase::operator=(const DenseBase& other) -{ - return internal::assign_selector::run(derived(), other.derived()); -} - -template -template -EIGEN_STRONG_INLINE Derived& MatrixBase::operator=(const EigenBase& other) -{ - return internal::assign_selector::evalTo(derived(), other.derived()); -} - -template -template -EIGEN_STRONG_INLINE Derived& MatrixBase::operator=(const ReturnByValue& other) -{ - return internal::assign_selector::evalTo(derived(), other.derived()); -} - -} // end namespace Eigen - -#endif // EIGEN_ASSIGN_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Assign_MKL.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Assign_MKL.h deleted file mode 100755 index 7772951b9..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Assign_MKL.h +++ /dev/null @@ -1,224 +0,0 @@ -/* - Copyright (c) 2011, Intel Corporation. All rights reserved. - - Redistribution and use in source and binary forms, with or without modification, - are permitted provided that the following conditions are met: - - * Redistributions of source code must retain the above copyright notice, this - list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above copyright notice, - this list of conditions and the following disclaimer in the documentation - and/or other materials provided with the distribution. - * Neither the name of Intel Corporation nor the names of its contributors may - be used to endorse or promote products derived from this software without - specific prior written permission. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND - ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED - WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR - ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES - (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON - ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - - ******************************************************************************** - * Content : Eigen bindings to Intel(R) MKL - * MKL VML support for coefficient-wise unary Eigen expressions like a=b.sin() - ******************************************************************************** -*/ - -#ifndef EIGEN_ASSIGN_VML_H -#define EIGEN_ASSIGN_VML_H - -namespace Eigen { - -namespace internal { - -template struct vml_call -{ enum { IsSupported = 0 }; }; - -template -class vml_assign_traits -{ - private: - enum { - DstHasDirectAccess = Dst::Flags & DirectAccessBit, - SrcHasDirectAccess = Src::Flags & DirectAccessBit, - - StorageOrdersAgree = (int(Dst::IsRowMajor) == int(Src::IsRowMajor)), - InnerSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::SizeAtCompileTime) - : int(Dst::Flags)&RowMajorBit ? int(Dst::ColsAtCompileTime) - : int(Dst::RowsAtCompileTime), - InnerMaxSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::MaxSizeAtCompileTime) - : int(Dst::Flags)&RowMajorBit ? int(Dst::MaxColsAtCompileTime) - : int(Dst::MaxRowsAtCompileTime), - MaxSizeAtCompileTime = Dst::SizeAtCompileTime, - - MightEnableVml = vml_call::IsSupported && StorageOrdersAgree && DstHasDirectAccess && SrcHasDirectAccess - && Src::InnerStrideAtCompileTime==1 && Dst::InnerStrideAtCompileTime==1, - MightLinearize = MightEnableVml && (int(Dst::Flags) & int(Src::Flags) & LinearAccessBit), - VmlSize = MightLinearize ? MaxSizeAtCompileTime : InnerMaxSize, - LargeEnough = VmlSize==Dynamic || VmlSize>=EIGEN_MKL_VML_THRESHOLD, - MayEnableVml = MightEnableVml && LargeEnough, - MayLinearize = MayEnableVml && MightLinearize - }; - public: - enum { - Traversal = MayLinearize ? LinearVectorizedTraversal - : MayEnableVml ? InnerVectorizedTraversal - : DefaultTraversal - }; -}; - -template::Traversal > -struct vml_assign_impl - : assign_impl,Traversal,Unrolling,BuiltIn> -{ -}; - -template -struct vml_assign_impl -{ - typedef typename Derived1::Scalar Scalar; - typedef typename Derived1::Index Index; - static inline void run(Derived1& dst, const CwiseUnaryOp& src) - { - // in case we want to (or have to) skip VML at runtime we can call: - // assign_impl,Traversal,Unrolling,BuiltIn>::run(dst,src); - const Index innerSize = dst.innerSize(); - const Index outerSize = dst.outerSize(); - for(Index outer = 0; outer < outerSize; ++outer) { - const Scalar *src_ptr = src.IsRowMajor ? &(src.nestedExpression().coeffRef(outer,0)) : - &(src.nestedExpression().coeffRef(0, outer)); - Scalar *dst_ptr = dst.IsRowMajor ? &(dst.coeffRef(outer,0)) : &(dst.coeffRef(0, outer)); - vml_call::run(src.functor(), innerSize, src_ptr, dst_ptr ); - } - } -}; - -template -struct vml_assign_impl -{ - static inline void run(Derived1& dst, const CwiseUnaryOp& src) - { - // in case we want to (or have to) skip VML at runtime we can call: - // assign_impl,Traversal,Unrolling,BuiltIn>::run(dst,src); - vml_call::run(src.functor(), dst.size(), src.nestedExpression().data(), dst.data() ); - } -}; - -// Macroses - -#define EIGEN_MKL_VML_SPECIALIZE_ASSIGN(TRAVERSAL,UNROLLING) \ - template \ - struct assign_impl, TRAVERSAL, UNROLLING, Specialized> { \ - static inline void run(Derived1 &dst, const Eigen::CwiseUnaryOp &src) { \ - vml_assign_impl::run(dst, src); \ - } \ - }; - -EIGEN_MKL_VML_SPECIALIZE_ASSIGN(DefaultTraversal,NoUnrolling) -EIGEN_MKL_VML_SPECIALIZE_ASSIGN(DefaultTraversal,CompleteUnrolling) -EIGEN_MKL_VML_SPECIALIZE_ASSIGN(DefaultTraversal,InnerUnrolling) -EIGEN_MKL_VML_SPECIALIZE_ASSIGN(LinearTraversal,NoUnrolling) -EIGEN_MKL_VML_SPECIALIZE_ASSIGN(LinearTraversal,CompleteUnrolling) -EIGEN_MKL_VML_SPECIALIZE_ASSIGN(InnerVectorizedTraversal,NoUnrolling) -EIGEN_MKL_VML_SPECIALIZE_ASSIGN(InnerVectorizedTraversal,CompleteUnrolling) -EIGEN_MKL_VML_SPECIALIZE_ASSIGN(InnerVectorizedTraversal,InnerUnrolling) -EIGEN_MKL_VML_SPECIALIZE_ASSIGN(LinearVectorizedTraversal,CompleteUnrolling) -EIGEN_MKL_VML_SPECIALIZE_ASSIGN(LinearVectorizedTraversal,NoUnrolling) -EIGEN_MKL_VML_SPECIALIZE_ASSIGN(SliceVectorizedTraversal,NoUnrolling) - - -#if !defined (EIGEN_FAST_MATH) || (EIGEN_FAST_MATH != 1) -#define EIGEN_MKL_VML_MODE VML_HA -#else -#define EIGEN_MKL_VML_MODE VML_LA -#endif - -#define EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE) \ - template<> struct vml_call< scalar_##EIGENOP##_op > { \ - enum { IsSupported = 1 }; \ - static inline void run( const scalar_##EIGENOP##_op& /*func*/, \ - int size, const EIGENTYPE* src, EIGENTYPE* dst) { \ - VMLOP(size, (const VMLTYPE*)src, (VMLTYPE*)dst); \ - } \ - }; - -#define EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE) \ - template<> struct vml_call< scalar_##EIGENOP##_op > { \ - enum { IsSupported = 1 }; \ - static inline void run( const scalar_##EIGENOP##_op& /*func*/, \ - int size, const EIGENTYPE* src, EIGENTYPE* dst) { \ - MKL_INT64 vmlMode = EIGEN_MKL_VML_MODE; \ - VMLOP(size, (const VMLTYPE*)src, (VMLTYPE*)dst, vmlMode); \ - } \ - }; - -#define EIGEN_MKL_VML_DECLARE_POW_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE) \ - template<> struct vml_call< scalar_##EIGENOP##_op > { \ - enum { IsSupported = 1 }; \ - static inline void run( const scalar_##EIGENOP##_op& func, \ - int size, const EIGENTYPE* src, EIGENTYPE* dst) { \ - EIGENTYPE exponent = func.m_exponent; \ - MKL_INT64 vmlMode = EIGEN_MKL_VML_MODE; \ - VMLOP(&size, (const VMLTYPE*)src, (const VMLTYPE*)&exponent, \ - (VMLTYPE*)dst, &vmlMode); \ - } \ - }; - -#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP) \ - EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, vs##VMLOP, float, float) \ - EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, vd##VMLOP, double, double) - -#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_COMPLEX(EIGENOP, VMLOP) \ - EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, vc##VMLOP, scomplex, MKL_Complex8) \ - EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, vz##VMLOP, dcomplex, MKL_Complex16) - -#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS(EIGENOP, VMLOP) \ - EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP) \ - EIGEN_MKL_VML_DECLARE_UNARY_CALLS_COMPLEX(EIGENOP, VMLOP) - - -#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL_LA(EIGENOP, VMLOP) \ - EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, vms##VMLOP, float, float) \ - EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, vmd##VMLOP, double, double) - -#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_COMPLEX_LA(EIGENOP, VMLOP) \ - EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, vmc##VMLOP, scomplex, MKL_Complex8) \ - EIGEN_MKL_VML_DECLARE_UNARY_CALL_LA(EIGENOP, vmz##VMLOP, dcomplex, MKL_Complex16) - -#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(EIGENOP, VMLOP) \ - EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL_LA(EIGENOP, VMLOP) \ - EIGEN_MKL_VML_DECLARE_UNARY_CALLS_COMPLEX_LA(EIGENOP, VMLOP) - - -EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(sin, Sin) -EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(asin, Asin) -EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(cos, Cos) -EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(acos, Acos) -EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(tan, Tan) -//EIGEN_MKL_VML_DECLARE_UNARY_CALLS(abs, Abs) -EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(exp, Exp) -EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(log, Ln) -EIGEN_MKL_VML_DECLARE_UNARY_CALLS_LA(sqrt, Sqrt) - -EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(square, Sqr) - -// The vm*powx functions are not avaibale in the windows version of MKL. -#ifndef _WIN32 -EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmspowx_, float, float) -EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmdpowx_, double, double) -EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmcpowx_, scomplex, MKL_Complex8) -EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmzpowx_, dcomplex, MKL_Complex16) -#endif - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_ASSIGN_VML_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/BandMatrix.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/BandMatrix.h deleted file mode 100755 index ffd7fe8b3..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/BandMatrix.h +++ /dev/null @@ -1,334 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_BANDMATRIX_H -#define EIGEN_BANDMATRIX_H - -namespace Eigen { - -namespace internal { - -template -class BandMatrixBase : public EigenBase -{ - public: - - enum { - Flags = internal::traits::Flags, - CoeffReadCost = internal::traits::CoeffReadCost, - RowsAtCompileTime = internal::traits::RowsAtCompileTime, - ColsAtCompileTime = internal::traits::ColsAtCompileTime, - MaxRowsAtCompileTime = internal::traits::MaxRowsAtCompileTime, - MaxColsAtCompileTime = internal::traits::MaxColsAtCompileTime, - Supers = internal::traits::Supers, - Subs = internal::traits::Subs, - Options = internal::traits::Options - }; - typedef typename internal::traits::Scalar Scalar; - typedef Matrix DenseMatrixType; - typedef typename DenseMatrixType::Index Index; - typedef typename internal::traits::CoefficientsType CoefficientsType; - typedef EigenBase Base; - - protected: - enum { - DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic)) - ? 1 + Supers + Subs - : Dynamic, - SizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime) - }; - - public: - - using Base::derived; - using Base::rows; - using Base::cols; - - /** \returns the number of super diagonals */ - inline Index supers() const { return derived().supers(); } - - /** \returns the number of sub diagonals */ - inline Index subs() const { return derived().subs(); } - - /** \returns an expression of the underlying coefficient matrix */ - inline const CoefficientsType& coeffs() const { return derived().coeffs(); } - - /** \returns an expression of the underlying coefficient matrix */ - inline CoefficientsType& coeffs() { return derived().coeffs(); } - - /** \returns a vector expression of the \a i -th column, - * only the meaningful part is returned. - * \warning the internal storage must be column major. */ - inline Block col(Index i) - { - EIGEN_STATIC_ASSERT((Options&RowMajor)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); - Index start = 0; - Index len = coeffs().rows(); - if (i<=supers()) - { - start = supers()-i; - len = (std::min)(rows(),std::max(0,coeffs().rows() - (supers()-i))); - } - else if (i>=rows()-subs()) - len = std::max(0,coeffs().rows() - (i + 1 - rows() + subs())); - return Block(coeffs(), start, i, len, 1); - } - - /** \returns a vector expression of the main diagonal */ - inline Block diagonal() - { return Block(coeffs(),supers(),0,1,(std::min)(rows(),cols())); } - - /** \returns a vector expression of the main diagonal (const version) */ - inline const Block diagonal() const - { return Block(coeffs(),supers(),0,1,(std::min)(rows(),cols())); } - - template struct DiagonalIntReturnType { - enum { - ReturnOpposite = (Options&SelfAdjoint) && (((Index)>0 && Supers==0) || ((Index)<0 && Subs==0)), - Conjugate = ReturnOpposite && NumTraits::IsComplex, - ActualIndex = ReturnOpposite ? -Index : Index, - DiagonalSize = (RowsAtCompileTime==Dynamic || ColsAtCompileTime==Dynamic) - ? Dynamic - : (ActualIndex<0 - ? EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime, RowsAtCompileTime + ActualIndex) - : EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime - ActualIndex)) - }; - typedef Block BuildType; - typedef typename internal::conditional,BuildType >, - BuildType>::type Type; - }; - - /** \returns a vector expression of the \a N -th sub or super diagonal */ - template inline typename DiagonalIntReturnType::Type diagonal() - { - return typename DiagonalIntReturnType::BuildType(coeffs(), supers()-N, (std::max)(0,N), 1, diagonalLength(N)); - } - - /** \returns a vector expression of the \a N -th sub or super diagonal */ - template inline const typename DiagonalIntReturnType::Type diagonal() const - { - return typename DiagonalIntReturnType::BuildType(coeffs(), supers()-N, (std::max)(0,N), 1, diagonalLength(N)); - } - - /** \returns a vector expression of the \a i -th sub or super diagonal */ - inline Block diagonal(Index i) - { - eigen_assert((i<0 && -i<=subs()) || (i>=0 && i<=supers())); - return Block(coeffs(), supers()-i, std::max(0,i), 1, diagonalLength(i)); - } - - /** \returns a vector expression of the \a i -th sub or super diagonal */ - inline const Block diagonal(Index i) const - { - eigen_assert((i<0 && -i<=subs()) || (i>=0 && i<=supers())); - return Block(coeffs(), supers()-i, std::max(0,i), 1, diagonalLength(i)); - } - - template inline void evalTo(Dest& dst) const - { - dst.resize(rows(),cols()); - dst.setZero(); - dst.diagonal() = diagonal(); - for (Index i=1; i<=supers();++i) - dst.diagonal(i) = diagonal(i); - for (Index i=1; i<=subs();++i) - dst.diagonal(-i) = diagonal(-i); - } - - DenseMatrixType toDenseMatrix() const - { - DenseMatrixType res(rows(),cols()); - evalTo(res); - return res; - } - - protected: - - inline Index diagonalLength(Index i) const - { return i<0 ? (std::min)(cols(),rows()+i) : (std::min)(rows(),cols()-i); } -}; - -/** - * \class BandMatrix - * \ingroup Core_Module - * - * \brief Represents a rectangular matrix with a banded storage - * - * \param _Scalar Numeric type, i.e. float, double, int - * \param Rows Number of rows, or \b Dynamic - * \param Cols Number of columns, or \b Dynamic - * \param Supers Number of super diagonal - * \param Subs Number of sub diagonal - * \param _Options A combination of either \b #RowMajor or \b #ColMajor, and of \b #SelfAdjoint - * The former controls \ref TopicStorageOrders "storage order", and defaults to - * column-major. The latter controls whether the matrix represents a selfadjoint - * matrix in which case either Supers of Subs have to be null. - * - * \sa class TridiagonalMatrix - */ - -template -struct traits > -{ - typedef _Scalar Scalar; - typedef Dense StorageKind; - typedef DenseIndex Index; - enum { - CoeffReadCost = NumTraits::ReadCost, - RowsAtCompileTime = _Rows, - ColsAtCompileTime = _Cols, - MaxRowsAtCompileTime = _Rows, - MaxColsAtCompileTime = _Cols, - Flags = LvalueBit, - Supers = _Supers, - Subs = _Subs, - Options = _Options, - DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic)) ? 1 + Supers + Subs : Dynamic - }; - typedef Matrix CoefficientsType; -}; - -template -class BandMatrix : public BandMatrixBase > -{ - public: - - typedef typename internal::traits::Scalar Scalar; - typedef typename internal::traits::Index Index; - typedef typename internal::traits::CoefficientsType CoefficientsType; - - inline BandMatrix(Index rows=Rows, Index cols=Cols, Index supers=Supers, Index subs=Subs) - : m_coeffs(1+supers+subs,cols), - m_rows(rows), m_supers(supers), m_subs(subs) - { - } - - /** \returns the number of columns */ - inline Index rows() const { return m_rows.value(); } - - /** \returns the number of rows */ - inline Index cols() const { return m_coeffs.cols(); } - - /** \returns the number of super diagonals */ - inline Index supers() const { return m_supers.value(); } - - /** \returns the number of sub diagonals */ - inline Index subs() const { return m_subs.value(); } - - inline const CoefficientsType& coeffs() const { return m_coeffs; } - inline CoefficientsType& coeffs() { return m_coeffs; } - - protected: - - CoefficientsType m_coeffs; - internal::variable_if_dynamic m_rows; - internal::variable_if_dynamic m_supers; - internal::variable_if_dynamic m_subs; -}; - -template -class BandMatrixWrapper; - -template -struct traits > -{ - typedef typename _CoefficientsType::Scalar Scalar; - typedef typename _CoefficientsType::StorageKind StorageKind; - typedef typename _CoefficientsType::Index Index; - enum { - CoeffReadCost = internal::traits<_CoefficientsType>::CoeffReadCost, - RowsAtCompileTime = _Rows, - ColsAtCompileTime = _Cols, - MaxRowsAtCompileTime = _Rows, - MaxColsAtCompileTime = _Cols, - Flags = LvalueBit, - Supers = _Supers, - Subs = _Subs, - Options = _Options, - DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic)) ? 1 + Supers + Subs : Dynamic - }; - typedef _CoefficientsType CoefficientsType; -}; - -template -class BandMatrixWrapper : public BandMatrixBase > -{ - public: - - typedef typename internal::traits::Scalar Scalar; - typedef typename internal::traits::CoefficientsType CoefficientsType; - typedef typename internal::traits::Index Index; - - inline BandMatrixWrapper(const CoefficientsType& coeffs, Index rows=_Rows, Index cols=_Cols, Index supers=_Supers, Index subs=_Subs) - : m_coeffs(coeffs), - m_rows(rows), m_supers(supers), m_subs(subs) - { - EIGEN_UNUSED_VARIABLE(cols); - //internal::assert(coeffs.cols()==cols() && (supers()+subs()+1)==coeffs.rows()); - } - - /** \returns the number of columns */ - inline Index rows() const { return m_rows.value(); } - - /** \returns the number of rows */ - inline Index cols() const { return m_coeffs.cols(); } - - /** \returns the number of super diagonals */ - inline Index supers() const { return m_supers.value(); } - - /** \returns the number of sub diagonals */ - inline Index subs() const { return m_subs.value(); } - - inline const CoefficientsType& coeffs() const { return m_coeffs; } - - protected: - - const CoefficientsType& m_coeffs; - internal::variable_if_dynamic m_rows; - internal::variable_if_dynamic m_supers; - internal::variable_if_dynamic m_subs; -}; - -/** - * \class TridiagonalMatrix - * \ingroup Core_Module - * - * \brief Represents a tridiagonal matrix with a compact banded storage - * - * \param _Scalar Numeric type, i.e. float, double, int - * \param Size Number of rows and cols, or \b Dynamic - * \param _Options Can be 0 or \b SelfAdjoint - * - * \sa class BandMatrix - */ -template -class TridiagonalMatrix : public BandMatrix -{ - typedef BandMatrix Base; - typedef typename Base::Index Index; - public: - TridiagonalMatrix(Index size = Size) : Base(size,size,Options&SelfAdjoint?0:1,1) {} - - inline typename Base::template DiagonalIntReturnType<1>::Type super() - { return Base::template diagonal<1>(); } - inline const typename Base::template DiagonalIntReturnType<1>::Type super() const - { return Base::template diagonal<1>(); } - inline typename Base::template DiagonalIntReturnType<-1>::Type sub() - { return Base::template diagonal<-1>(); } - inline const typename Base::template DiagonalIntReturnType<-1>::Type sub() const - { return Base::template diagonal<-1>(); } - protected: -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_BANDMATRIX_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Block.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Block.h deleted file mode 100755 index 87bedfa46..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Block.h +++ /dev/null @@ -1,405 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2006-2010 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_BLOCK_H -#define EIGEN_BLOCK_H - -namespace Eigen { - -/** \class Block - * \ingroup Core_Module - * - * \brief Expression of a fixed-size or dynamic-size block - * - * \param XprType the type of the expression in which we are taking a block - * \param BlockRows the number of rows of the block we are taking at compile time (optional) - * \param BlockCols the number of columns of the block we are taking at compile time (optional) - * - * This class represents an expression of either a fixed-size or dynamic-size block. It is the return - * type of DenseBase::block(Index,Index,Index,Index) and DenseBase::block(Index,Index) and - * most of the time this is the only way it is used. - * - * However, if you want to directly maniputate block expressions, - * for instance if you want to write a function returning such an expression, you - * will need to use this class. - * - * Here is an example illustrating the dynamic case: - * \include class_Block.cpp - * Output: \verbinclude class_Block.out - * - * \note Even though this expression has dynamic size, in the case where \a XprType - * has fixed size, this expression inherits a fixed maximal size which means that evaluating - * it does not cause a dynamic memory allocation. - * - * Here is an example illustrating the fixed-size case: - * \include class_FixedBlock.cpp - * Output: \verbinclude class_FixedBlock.out - * - * \sa DenseBase::block(Index,Index,Index,Index), DenseBase::block(Index,Index), class VectorBlock - */ - -namespace internal { -template -struct traits > : traits -{ - typedef typename traits::Scalar Scalar; - typedef typename traits::StorageKind StorageKind; - typedef typename traits::XprKind XprKind; - typedef typename nested::type XprTypeNested; - typedef typename remove_reference::type _XprTypeNested; - enum{ - MatrixRows = traits::RowsAtCompileTime, - MatrixCols = traits::ColsAtCompileTime, - RowsAtCompileTime = MatrixRows == 0 ? 0 : BlockRows, - ColsAtCompileTime = MatrixCols == 0 ? 0 : BlockCols, - MaxRowsAtCompileTime = BlockRows==0 ? 0 - : RowsAtCompileTime != Dynamic ? int(RowsAtCompileTime) - : int(traits::MaxRowsAtCompileTime), - MaxColsAtCompileTime = BlockCols==0 ? 0 - : ColsAtCompileTime != Dynamic ? int(ColsAtCompileTime) - : int(traits::MaxColsAtCompileTime), - XprTypeIsRowMajor = (int(traits::Flags)&RowMajorBit) != 0, - IsRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1 - : (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0 - : XprTypeIsRowMajor, - HasSameStorageOrderAsXprType = (IsRowMajor == XprTypeIsRowMajor), - InnerSize = IsRowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime), - InnerStrideAtCompileTime = HasSameStorageOrderAsXprType - ? int(inner_stride_at_compile_time::ret) - : int(outer_stride_at_compile_time::ret), - OuterStrideAtCompileTime = HasSameStorageOrderAsXprType - ? int(outer_stride_at_compile_time::ret) - : int(inner_stride_at_compile_time::ret), - MaskPacketAccessBit = (InnerSize == Dynamic || (InnerSize % packet_traits::size) == 0) - && (InnerStrideAtCompileTime == 1) - ? PacketAccessBit : 0, - MaskAlignedBit = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic) && (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % 16) == 0)) ? AlignedBit : 0, - FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1 || (InnerPanel && (traits::Flags&LinearAccessBit))) ? LinearAccessBit : 0, - FlagsLvalueBit = is_lvalue::value ? LvalueBit : 0, - FlagsRowMajorBit = IsRowMajor ? RowMajorBit : 0, - Flags0 = traits::Flags & ( (HereditaryBits & ~RowMajorBit) | - DirectAccessBit | - MaskPacketAccessBit | - MaskAlignedBit), - Flags = Flags0 | FlagsLinearAccessBit | FlagsLvalueBit | FlagsRowMajorBit - }; -}; - -template::ret> class BlockImpl_dense; - -} // end namespace internal - -template class BlockImpl; - -template class Block - : public BlockImpl::StorageKind> -{ - typedef BlockImpl::StorageKind> Impl; - public: - //typedef typename Impl::Base Base; - typedef Impl Base; - EIGEN_GENERIC_PUBLIC_INTERFACE(Block) - EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Block) - - /** Column or Row constructor - */ - inline Block(XprType& xpr, Index i) : Impl(xpr,i) - { - eigen_assert( (i>=0) && ( - ((BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) && i= 0 && BlockRows >= 1 && a_startRow + BlockRows <= xpr.rows() - && a_startCol >= 0 && BlockCols >= 1 && a_startCol + BlockCols <= xpr.cols()); - } - - /** Dynamic-size constructor - */ - inline Block(XprType& xpr, - Index a_startRow, Index a_startCol, - Index blockRows, Index blockCols) - : Impl(xpr, a_startRow, a_startCol, blockRows, blockCols) - { - eigen_assert((RowsAtCompileTime==Dynamic || RowsAtCompileTime==blockRows) - && (ColsAtCompileTime==Dynamic || ColsAtCompileTime==blockCols)); - eigen_assert(a_startRow >= 0 && blockRows >= 0 && a_startRow <= xpr.rows() - blockRows - && a_startCol >= 0 && blockCols >= 0 && a_startCol <= xpr.cols() - blockCols); - } -}; - -// The generic default implementation for dense block simplu forward to the internal::BlockImpl_dense -// that must be specialized for direct and non-direct access... -template -class BlockImpl - : public internal::BlockImpl_dense -{ - typedef internal::BlockImpl_dense Impl; - typedef typename XprType::Index Index; - public: - typedef Impl Base; - EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl) - inline BlockImpl(XprType& xpr, Index i) : Impl(xpr,i) {} - inline BlockImpl(XprType& xpr, Index a_startRow, Index a_startCol) : Impl(xpr, a_startRow, a_startCol) {} - inline BlockImpl(XprType& xpr, Index a_startRow, Index a_startCol, Index blockRows, Index blockCols) - : Impl(xpr, a_startRow, a_startCol, blockRows, blockCols) {} -}; - -namespace internal { - -/** \internal Internal implementation of dense Blocks in the general case. */ -template class BlockImpl_dense - : public internal::dense_xpr_base >::type -{ - typedef Block BlockType; - public: - - typedef typename internal::dense_xpr_base::type Base; - EIGEN_DENSE_PUBLIC_INTERFACE(BlockType) - EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl_dense) - - class InnerIterator; - - /** Column or Row constructor - */ - inline BlockImpl_dense(XprType& xpr, Index i) - : m_xpr(xpr), - // It is a row if and only if BlockRows==1 and BlockCols==XprType::ColsAtCompileTime, - // and it is a column if and only if BlockRows==XprType::RowsAtCompileTime and BlockCols==1, - // all other cases are invalid. - // The case a 1x1 matrix seems ambiguous, but the result is the same anyway. - m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0), - m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0), - m_blockRows(BlockRows==1 ? 1 : xpr.rows()), - m_blockCols(BlockCols==1 ? 1 : xpr.cols()) - {} - - /** Fixed-size constructor - */ - inline BlockImpl_dense(XprType& xpr, Index a_startRow, Index a_startCol) - : m_xpr(xpr), m_startRow(a_startRow), m_startCol(a_startCol), - m_blockRows(BlockRows), m_blockCols(BlockCols) - {} - - /** Dynamic-size constructor - */ - inline BlockImpl_dense(XprType& xpr, - Index a_startRow, Index a_startCol, - Index blockRows, Index blockCols) - : m_xpr(xpr), m_startRow(a_startRow), m_startCol(a_startCol), - m_blockRows(blockRows), m_blockCols(blockCols) - {} - - inline Index rows() const { return m_blockRows.value(); } - inline Index cols() const { return m_blockCols.value(); } - - inline Scalar& coeffRef(Index rowId, Index colId) - { - EIGEN_STATIC_ASSERT_LVALUE(XprType) - return m_xpr.const_cast_derived() - .coeffRef(rowId + m_startRow.value(), colId + m_startCol.value()); - } - - inline const Scalar& coeffRef(Index rowId, Index colId) const - { - return m_xpr.derived() - .coeffRef(rowId + m_startRow.value(), colId + m_startCol.value()); - } - - EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index rowId, Index colId) const - { - return m_xpr.coeff(rowId + m_startRow.value(), colId + m_startCol.value()); - } - - inline Scalar& coeffRef(Index index) - { - EIGEN_STATIC_ASSERT_LVALUE(XprType) - return m_xpr.const_cast_derived() - .coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), - m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0)); - } - - inline const Scalar& coeffRef(Index index) const - { - return m_xpr.const_cast_derived() - .coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), - m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0)); - } - - inline const CoeffReturnType coeff(Index index) const - { - return m_xpr - .coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), - m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0)); - } - - template - inline PacketScalar packet(Index rowId, Index colId) const - { - return m_xpr.template packet - (rowId + m_startRow.value(), colId + m_startCol.value()); - } - - template - inline void writePacket(Index rowId, Index colId, const PacketScalar& val) - { - m_xpr.const_cast_derived().template writePacket - (rowId + m_startRow.value(), colId + m_startCol.value(), val); - } - - template - inline PacketScalar packet(Index index) const - { - return m_xpr.template packet - (m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), - m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0)); - } - - template - inline void writePacket(Index index, const PacketScalar& val) - { - m_xpr.const_cast_derived().template writePacket - (m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), - m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0), val); - } - - #ifdef EIGEN_PARSED_BY_DOXYGEN - /** \sa MapBase::data() */ - inline const Scalar* data() const; - inline Index innerStride() const; - inline Index outerStride() const; - #endif - - const typename internal::remove_all::type& nestedExpression() const - { - return m_xpr; - } - - Index startRow() const - { - return m_startRow.value(); - } - - Index startCol() const - { - return m_startCol.value(); - } - - protected: - - const typename XprType::Nested m_xpr; - const internal::variable_if_dynamic m_startRow; - const internal::variable_if_dynamic m_startCol; - const internal::variable_if_dynamic m_blockRows; - const internal::variable_if_dynamic m_blockCols; -}; - -/** \internal Internal implementation of dense Blocks in the direct access case.*/ -template -class BlockImpl_dense - : public MapBase > -{ - typedef Block BlockType; - public: - - typedef MapBase Base; - EIGEN_DENSE_PUBLIC_INTERFACE(BlockType) - EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl_dense) - - /** Column or Row constructor - */ - inline BlockImpl_dense(XprType& xpr, Index i) - : Base(internal::const_cast_ptr(&xpr.coeffRef( - (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0, - (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0)), - BlockRows==1 ? 1 : xpr.rows(), - BlockCols==1 ? 1 : xpr.cols()), - m_xpr(xpr) - { - init(); - } - - /** Fixed-size constructor - */ - inline BlockImpl_dense(XprType& xpr, Index startRow, Index startCol) - : Base(internal::const_cast_ptr(&xpr.coeffRef(startRow,startCol))), m_xpr(xpr) - { - init(); - } - - /** Dynamic-size constructor - */ - inline BlockImpl_dense(XprType& xpr, - Index startRow, Index startCol, - Index blockRows, Index blockCols) - : Base(internal::const_cast_ptr(&xpr.coeffRef(startRow,startCol)), blockRows, blockCols), - m_xpr(xpr) - { - init(); - } - - const typename internal::remove_all::type& nestedExpression() const - { - return m_xpr; - } - - /** \sa MapBase::innerStride() */ - inline Index innerStride() const - { - return internal::traits::HasSameStorageOrderAsXprType - ? m_xpr.innerStride() - : m_xpr.outerStride(); - } - - /** \sa MapBase::outerStride() */ - inline Index outerStride() const - { - return m_outerStride; - } - - #ifndef __SUNPRO_CC - // FIXME sunstudio is not friendly with the above friend... - // META-FIXME there is no 'friend' keyword around here. Is this obsolete? - protected: - #endif - - #ifndef EIGEN_PARSED_BY_DOXYGEN - /** \internal used by allowAligned() */ - inline BlockImpl_dense(XprType& xpr, const Scalar* data, Index blockRows, Index blockCols) - : Base(data, blockRows, blockCols), m_xpr(xpr) - { - init(); - } - #endif - - protected: - void init() - { - m_outerStride = internal::traits::HasSameStorageOrderAsXprType - ? m_xpr.outerStride() - : m_xpr.innerStride(); - } - - typename XprType::Nested m_xpr; - Index m_outerStride; -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_BLOCK_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/BooleanRedux.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/BooleanRedux.h deleted file mode 100755 index be9f48a8c..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/BooleanRedux.h +++ /dev/null @@ -1,154 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_ALLANDANY_H -#define EIGEN_ALLANDANY_H - -namespace Eigen { - -namespace internal { - -template -struct all_unroller -{ - enum { - col = (UnrollCount-1) / Derived::RowsAtCompileTime, - row = (UnrollCount-1) % Derived::RowsAtCompileTime - }; - - static inline bool run(const Derived &mat) - { - return all_unroller::run(mat) && mat.coeff(row, col); - } -}; - -template -struct all_unroller -{ - static inline bool run(const Derived &/*mat*/) { return true; } -}; - -template -struct all_unroller -{ - static inline bool run(const Derived &) { return false; } -}; - -template -struct any_unroller -{ - enum { - col = (UnrollCount-1) / Derived::RowsAtCompileTime, - row = (UnrollCount-1) % Derived::RowsAtCompileTime - }; - - static inline bool run(const Derived &mat) - { - return any_unroller::run(mat) || mat.coeff(row, col); - } -}; - -template -struct any_unroller -{ - static inline bool run(const Derived & /*mat*/) { return false; } -}; - -template -struct any_unroller -{ - static inline bool run(const Derived &) { return false; } -}; - -} // end namespace internal - -/** \returns true if all coefficients are true - * - * Example: \include MatrixBase_all.cpp - * Output: \verbinclude MatrixBase_all.out - * - * \sa any(), Cwise::operator<() - */ -template -inline bool DenseBase::all() const -{ - enum { - unroll = SizeAtCompileTime != Dynamic - && CoeffReadCost != Dynamic - && NumTraits::AddCost != Dynamic - && SizeAtCompileTime * (CoeffReadCost + NumTraits::AddCost) <= EIGEN_UNROLLING_LIMIT - }; - if(unroll) - return internal::all_unroller::run(derived()); - else - { - for(Index j = 0; j < cols(); ++j) - for(Index i = 0; i < rows(); ++i) - if (!coeff(i, j)) return false; - return true; - } -} - -/** \returns true if at least one coefficient is true - * - * \sa all() - */ -template -inline bool DenseBase::any() const -{ - enum { - unroll = SizeAtCompileTime != Dynamic - && CoeffReadCost != Dynamic - && NumTraits::AddCost != Dynamic - && SizeAtCompileTime * (CoeffReadCost + NumTraits::AddCost) <= EIGEN_UNROLLING_LIMIT - }; - if(unroll) - return internal::any_unroller::run(derived()); - else - { - for(Index j = 0; j < cols(); ++j) - for(Index i = 0; i < rows(); ++i) - if (coeff(i, j)) return true; - return false; - } -} - -/** \returns the number of coefficients which evaluate to true - * - * \sa all(), any() - */ -template -inline typename DenseBase::Index DenseBase::count() const -{ - return derived().template cast().template cast().sum(); -} - -/** \returns true is \c *this contains at least one Not A Number (NaN). - * - * \sa allFinite() - */ -template -inline bool DenseBase::hasNaN() const -{ - return !((derived().array()==derived().array()).all()); -} - -/** \returns true if \c *this contains only finite numbers, i.e., no NaN and no +/-INF values. - * - * \sa hasNaN() - */ -template -inline bool DenseBase::allFinite() const -{ - return !((derived()-derived()).hasNaN()); -} - -} // end namespace Eigen - -#endif // EIGEN_ALLANDANY_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/CMakeLists.txt b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/CMakeLists.txt deleted file mode 100755 index 2346fc2bb..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/CMakeLists.txt +++ /dev/null @@ -1,10 +0,0 @@ -FILE(GLOB Eigen_Core_SRCS "*.h") - -INSTALL(FILES - ${Eigen_Core_SRCS} - DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core COMPONENT Devel - ) - -ADD_SUBDIRECTORY(products) -ADD_SUBDIRECTORY(util) -ADD_SUBDIRECTORY(arch) diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/CommaInitializer.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/CommaInitializer.h deleted file mode 100755 index 5dd3adeae..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/CommaInitializer.h +++ /dev/null @@ -1,151 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_COMMAINITIALIZER_H -#define EIGEN_COMMAINITIALIZER_H - -namespace Eigen { - -/** \class CommaInitializer - * \ingroup Core_Module - * - * \brief Helper class used by the comma initializer operator - * - * This class is internally used to implement the comma initializer feature. It is - * the return type of MatrixBase::operator<<, and most of the time this is the only - * way it is used. - * - * \sa \ref MatrixBaseCommaInitRef "MatrixBase::operator<<", CommaInitializer::finished() - */ -template -struct CommaInitializer -{ - typedef typename XprType::Scalar Scalar; - typedef typename XprType::Index Index; - - inline CommaInitializer(XprType& xpr, const Scalar& s) - : m_xpr(xpr), m_row(0), m_col(1), m_currentBlockRows(1) - { - m_xpr.coeffRef(0,0) = s; - } - - template - inline CommaInitializer(XprType& xpr, const DenseBase& other) - : m_xpr(xpr), m_row(0), m_col(other.cols()), m_currentBlockRows(other.rows()) - { - m_xpr.block(0, 0, other.rows(), other.cols()) = other; - } - - /* Copy/Move constructor which transfers ownership. This is crucial in - * absence of return value optimization to avoid assertions during destruction. */ - // FIXME in C++11 mode this could be replaced by a proper RValue constructor - inline CommaInitializer(const CommaInitializer& o) - : m_xpr(o.m_xpr), m_row(o.m_row), m_col(o.m_col), m_currentBlockRows(o.m_currentBlockRows) { - // Mark original object as finished. In absence of R-value references we need to const_cast: - const_cast(o).m_row = m_xpr.rows(); - const_cast(o).m_col = m_xpr.cols(); - const_cast(o).m_currentBlockRows = 0; - } - - /* inserts a scalar value in the target matrix */ - CommaInitializer& operator,(const Scalar& s) - { - if (m_col==m_xpr.cols()) - { - m_row+=m_currentBlockRows; - m_col = 0; - m_currentBlockRows = 1; - eigen_assert(m_row - CommaInitializer& operator,(const DenseBase& other) - { - if (m_col==m_xpr.cols() && (other.cols()!=0 || other.rows()!=m_currentBlockRows)) - { - m_row+=m_currentBlockRows; - m_col = 0; - m_currentBlockRows = other.rows(); - eigen_assert(m_row+m_currentBlockRows<=m_xpr.rows() - && "Too many rows passed to comma initializer (operator<<)"); - } - eigen_assert((m_col + other.cols() <= m_xpr.cols()) - && "Too many coefficients passed to comma initializer (operator<<)"); - eigen_assert(m_currentBlockRows==other.rows()); - m_xpr.template block - (m_row, m_col, other.rows(), other.cols()) = other; - m_col += other.cols(); - return *this; - } - - inline ~CommaInitializer() - { - finished(); - } - - /** \returns the built matrix once all its coefficients have been set. - * Calling finished is 100% optional. Its purpose is to write expressions - * like this: - * \code - * quaternion.fromRotationMatrix((Matrix3f() << axis0, axis1, axis2).finished()); - * \endcode - */ - inline XprType& finished() { - eigen_assert(((m_row+m_currentBlockRows) == m_xpr.rows() || m_xpr.cols() == 0) - && m_col == m_xpr.cols() - && "Too few coefficients passed to comma initializer (operator<<)"); - return m_xpr; - } - - XprType& m_xpr; // target expression - Index m_row; // current row id - Index m_col; // current col id - Index m_currentBlockRows; // current block height -}; - -/** \anchor MatrixBaseCommaInitRef - * Convenient operator to set the coefficients of a matrix. - * - * The coefficients must be provided in a row major order and exactly match - * the size of the matrix. Otherwise an assertion is raised. - * - * Example: \include MatrixBase_set.cpp - * Output: \verbinclude MatrixBase_set.out - * - * \note According the c++ standard, the argument expressions of this comma initializer are evaluated in arbitrary order. - * - * \sa CommaInitializer::finished(), class CommaInitializer - */ -template -inline CommaInitializer DenseBase::operator<< (const Scalar& s) -{ - return CommaInitializer(*static_cast(this), s); -} - -/** \sa operator<<(const Scalar&) */ -template -template -inline CommaInitializer -DenseBase::operator<<(const DenseBase& other) -{ - return CommaInitializer(*static_cast(this), other); -} - -} // end namespace Eigen - -#endif // EIGEN_COMMAINITIALIZER_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/CoreIterators.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/CoreIterators.h deleted file mode 100755 index 6da4683d2..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/CoreIterators.h +++ /dev/null @@ -1,61 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_COREITERATORS_H -#define EIGEN_COREITERATORS_H - -namespace Eigen { - -/* This file contains the respective InnerIterator definition of the expressions defined in Eigen/Core - */ - -/** \ingroup SparseCore_Module - * \class InnerIterator - * \brief An InnerIterator allows to loop over the element of a sparse (or dense) matrix or expression - * - * todo - */ - -// generic version for dense matrix and expressions -template class DenseBase::InnerIterator -{ - protected: - typedef typename Derived::Scalar Scalar; - typedef typename Derived::Index Index; - - enum { IsRowMajor = (Derived::Flags&RowMajorBit)==RowMajorBit }; - public: - EIGEN_STRONG_INLINE InnerIterator(const Derived& expr, Index outer) - : m_expression(expr), m_inner(0), m_outer(outer), m_end(expr.innerSize()) - {} - - EIGEN_STRONG_INLINE Scalar value() const - { - return (IsRowMajor) ? m_expression.coeff(m_outer, m_inner) - : m_expression.coeff(m_inner, m_outer); - } - - EIGEN_STRONG_INLINE InnerIterator& operator++() { m_inner++; return *this; } - - EIGEN_STRONG_INLINE Index index() const { return m_inner; } - inline Index row() const { return IsRowMajor ? m_outer : index(); } - inline Index col() const { return IsRowMajor ? index() : m_outer; } - - EIGEN_STRONG_INLINE operator bool() const { return m_inner < m_end && m_inner>=0; } - - protected: - const Derived& m_expression; - Index m_inner; - const Index m_outer; - const Index m_end; -}; - -} // end namespace Eigen - -#endif // EIGEN_COREITERATORS_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/CwiseBinaryOp.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/CwiseBinaryOp.h deleted file mode 100755 index 519a866e6..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/CwiseBinaryOp.h +++ /dev/null @@ -1,230 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2009 Gael Guennebaud -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_CWISE_BINARY_OP_H -#define EIGEN_CWISE_BINARY_OP_H - -namespace Eigen { - -/** \class CwiseBinaryOp - * \ingroup Core_Module - * - * \brief Generic expression where a coefficient-wise binary operator is applied to two expressions - * - * \param BinaryOp template functor implementing the operator - * \param Lhs the type of the left-hand side - * \param Rhs the type of the right-hand side - * - * This class represents an expression where a coefficient-wise binary operator is applied to two expressions. - * It is the return type of binary operators, by which we mean only those binary operators where - * both the left-hand side and the right-hand side are Eigen expressions. - * For example, the return type of matrix1+matrix2 is a CwiseBinaryOp. - * - * Most of the time, this is the only way that it is used, so you typically don't have to name - * CwiseBinaryOp types explicitly. - * - * \sa MatrixBase::binaryExpr(const MatrixBase &,const CustomBinaryOp &) const, class CwiseUnaryOp, class CwiseNullaryOp - */ - -namespace internal { -template -struct traits > -{ - // we must not inherit from traits since it has - // the potential to cause problems with MSVC - typedef typename remove_all::type Ancestor; - typedef typename traits::XprKind XprKind; - enum { - RowsAtCompileTime = traits::RowsAtCompileTime, - ColsAtCompileTime = traits::ColsAtCompileTime, - MaxRowsAtCompileTime = traits::MaxRowsAtCompileTime, - MaxColsAtCompileTime = traits::MaxColsAtCompileTime - }; - - // even though we require Lhs and Rhs to have the same scalar type (see CwiseBinaryOp constructor), - // we still want to handle the case when the result type is different. - typedef typename result_of< - BinaryOp( - typename Lhs::Scalar, - typename Rhs::Scalar - ) - >::type Scalar; - typedef typename promote_storage_type::StorageKind, - typename traits::StorageKind>::ret StorageKind; - typedef typename promote_index_type::Index, - typename traits::Index>::type Index; - typedef typename Lhs::Nested LhsNested; - typedef typename Rhs::Nested RhsNested; - typedef typename remove_reference::type _LhsNested; - typedef typename remove_reference::type _RhsNested; - enum { - LhsCoeffReadCost = _LhsNested::CoeffReadCost, - RhsCoeffReadCost = _RhsNested::CoeffReadCost, - LhsFlags = _LhsNested::Flags, - RhsFlags = _RhsNested::Flags, - SameType = is_same::value, - StorageOrdersAgree = (int(Lhs::Flags)&RowMajorBit)==(int(Rhs::Flags)&RowMajorBit), - Flags0 = (int(LhsFlags) | int(RhsFlags)) & ( - HereditaryBits - | (int(LhsFlags) & int(RhsFlags) & - ( AlignedBit - | (StorageOrdersAgree ? LinearAccessBit : 0) - | (functor_traits::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0) - ) - ) - ), - Flags = (Flags0 & ~RowMajorBit) | (LhsFlags & RowMajorBit), - Cost0 = EIGEN_ADD_COST(LhsCoeffReadCost,RhsCoeffReadCost), - CoeffReadCost = EIGEN_ADD_COST(Cost0,functor_traits::Cost) - }; -}; -} // end namespace internal - -// we require Lhs and Rhs to have the same scalar type. Currently there is no example of a binary functor -// that would take two operands of different types. If there were such an example, then this check should be -// moved to the BinaryOp functors, on a per-case basis. This would however require a change in the BinaryOp functors, as -// currently they take only one typename Scalar template parameter. -// It is tempting to always allow mixing different types but remember that this is often impossible in the vectorized paths. -// So allowing mixing different types gives very unexpected errors when enabling vectorization, when the user tries to -// add together a float matrix and a double matrix. -#define EIGEN_CHECK_BINARY_COMPATIBILIY(BINOP,LHS,RHS) \ - EIGEN_STATIC_ASSERT((internal::functor_is_product_like::ret \ - ? int(internal::scalar_product_traits::Defined) \ - : int(internal::is_same::value)), \ - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - -template -class CwiseBinaryOpImpl; - -template -class CwiseBinaryOp : internal::no_assignment_operator, - public CwiseBinaryOpImpl< - BinaryOp, Lhs, Rhs, - typename internal::promote_storage_type::StorageKind, - typename internal::traits::StorageKind>::ret> -{ - public: - - typedef typename CwiseBinaryOpImpl< - BinaryOp, Lhs, Rhs, - typename internal::promote_storage_type::StorageKind, - typename internal::traits::StorageKind>::ret>::Base Base; - EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseBinaryOp) - - typedef typename internal::nested::type LhsNested; - typedef typename internal::nested::type RhsNested; - typedef typename internal::remove_reference::type _LhsNested; - typedef typename internal::remove_reference::type _RhsNested; - - EIGEN_STRONG_INLINE CwiseBinaryOp(const Lhs& aLhs, const Rhs& aRhs, const BinaryOp& func = BinaryOp()) - : m_lhs(aLhs), m_rhs(aRhs), m_functor(func) - { - EIGEN_CHECK_BINARY_COMPATIBILIY(BinaryOp,typename Lhs::Scalar,typename Rhs::Scalar); - // require the sizes to match - EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Lhs, Rhs) - eigen_assert(aLhs.rows() == aRhs.rows() && aLhs.cols() == aRhs.cols()); - } - - EIGEN_STRONG_INLINE Index rows() const { - // return the fixed size type if available to enable compile time optimizations - if (internal::traits::type>::RowsAtCompileTime==Dynamic) - return m_rhs.rows(); - else - return m_lhs.rows(); - } - EIGEN_STRONG_INLINE Index cols() const { - // return the fixed size type if available to enable compile time optimizations - if (internal::traits::type>::ColsAtCompileTime==Dynamic) - return m_rhs.cols(); - else - return m_lhs.cols(); - } - - /** \returns the left hand side nested expression */ - const _LhsNested& lhs() const { return m_lhs; } - /** \returns the right hand side nested expression */ - const _RhsNested& rhs() const { return m_rhs; } - /** \returns the functor representing the binary operation */ - const BinaryOp& functor() const { return m_functor; } - - protected: - LhsNested m_lhs; - RhsNested m_rhs; - const BinaryOp m_functor; -}; - -template -class CwiseBinaryOpImpl - : public internal::dense_xpr_base >::type -{ - typedef CwiseBinaryOp Derived; - public: - - typedef typename internal::dense_xpr_base >::type Base; - EIGEN_DENSE_PUBLIC_INTERFACE( Derived ) - - EIGEN_STRONG_INLINE const Scalar coeff(Index rowId, Index colId) const - { - return derived().functor()(derived().lhs().coeff(rowId, colId), - derived().rhs().coeff(rowId, colId)); - } - - template - EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const - { - return derived().functor().packetOp(derived().lhs().template packet(rowId, colId), - derived().rhs().template packet(rowId, colId)); - } - - EIGEN_STRONG_INLINE const Scalar coeff(Index index) const - { - return derived().functor()(derived().lhs().coeff(index), - derived().rhs().coeff(index)); - } - - template - EIGEN_STRONG_INLINE PacketScalar packet(Index index) const - { - return derived().functor().packetOp(derived().lhs().template packet(index), - derived().rhs().template packet(index)); - } -}; - -/** replaces \c *this by \c *this - \a other. - * - * \returns a reference to \c *this - */ -template -template -EIGEN_STRONG_INLINE Derived & -MatrixBase::operator-=(const MatrixBase &other) -{ - SelfCwiseBinaryOp, Derived, OtherDerived> tmp(derived()); - tmp = other.derived(); - return derived(); -} - -/** replaces \c *this by \c *this + \a other. - * - * \returns a reference to \c *this - */ -template -template -EIGEN_STRONG_INLINE Derived & -MatrixBase::operator+=(const MatrixBase& other) -{ - SelfCwiseBinaryOp, Derived, OtherDerived> tmp(derived()); - tmp = other.derived(); - return derived(); -} - -} // end namespace Eigen - -#endif // EIGEN_CWISE_BINARY_OP_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/CwiseNullaryOp.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/CwiseNullaryOp.h deleted file mode 100755 index a93bab2d0..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/CwiseNullaryOp.h +++ /dev/null @@ -1,864 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_CWISE_NULLARY_OP_H -#define EIGEN_CWISE_NULLARY_OP_H - -namespace Eigen { - -/** \class CwiseNullaryOp - * \ingroup Core_Module - * - * \brief Generic expression of a matrix where all coefficients are defined by a functor - * - * \param NullaryOp template functor implementing the operator - * \param PlainObjectType the underlying plain matrix/array type - * - * This class represents an expression of a generic nullary operator. - * It is the return type of the Ones(), Zero(), Constant(), Identity() and Random() methods, - * and most of the time this is the only way it is used. - * - * However, if you want to write a function returning such an expression, you - * will need to use this class. - * - * \sa class CwiseUnaryOp, class CwiseBinaryOp, DenseBase::NullaryExpr() - */ - -namespace internal { -template -struct traits > : traits -{ - enum { - Flags = (traits::Flags - & ( HereditaryBits - | (functor_has_linear_access::ret ? LinearAccessBit : 0) - | (functor_traits::PacketAccess ? PacketAccessBit : 0))) - | (functor_traits::IsRepeatable ? 0 : EvalBeforeNestingBit), - CoeffReadCost = functor_traits::Cost - }; -}; -} - -template -class CwiseNullaryOp : internal::no_assignment_operator, - public internal::dense_xpr_base< CwiseNullaryOp >::type -{ - public: - - typedef typename internal::dense_xpr_base::type Base; - EIGEN_DENSE_PUBLIC_INTERFACE(CwiseNullaryOp) - - CwiseNullaryOp(Index nbRows, Index nbCols, const NullaryOp& func = NullaryOp()) - : m_rows(nbRows), m_cols(nbCols), m_functor(func) - { - eigen_assert(nbRows >= 0 - && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == nbRows) - && nbCols >= 0 - && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == nbCols)); - } - - EIGEN_STRONG_INLINE Index rows() const { return m_rows.value(); } - EIGEN_STRONG_INLINE Index cols() const { return m_cols.value(); } - - EIGEN_STRONG_INLINE const Scalar coeff(Index rowId, Index colId) const - { - return m_functor(rowId, colId); - } - - template - EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const - { - return m_functor.packetOp(rowId, colId); - } - - EIGEN_STRONG_INLINE const Scalar coeff(Index index) const - { - return m_functor(index); - } - - template - EIGEN_STRONG_INLINE PacketScalar packet(Index index) const - { - return m_functor.packetOp(index); - } - - /** \returns the functor representing the nullary operation */ - const NullaryOp& functor() const { return m_functor; } - - protected: - const internal::variable_if_dynamic m_rows; - const internal::variable_if_dynamic m_cols; - const NullaryOp m_functor; -}; - - -/** \returns an expression of a matrix defined by a custom functor \a func - * - * The parameters \a rows and \a cols are the number of rows and of columns of - * the returned matrix. Must be compatible with this MatrixBase type. - * - * This variant is meant to be used for dynamic-size matrix types. For fixed-size types, - * it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used - * instead. - * - * The template parameter \a CustomNullaryOp is the type of the functor. - * - * \sa class CwiseNullaryOp - */ -template -template -EIGEN_STRONG_INLINE const CwiseNullaryOp -DenseBase::NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func) -{ - return CwiseNullaryOp(rows, cols, func); -} - -/** \returns an expression of a matrix defined by a custom functor \a func - * - * The parameter \a size is the size of the returned vector. - * Must be compatible with this MatrixBase type. - * - * \only_for_vectors - * - * This variant is meant to be used for dynamic-size vector types. For fixed-size types, - * it is redundant to pass \a size as argument, so Zero() should be used - * instead. - * - * The template parameter \a CustomNullaryOp is the type of the functor. - * - * \sa class CwiseNullaryOp - */ -template -template -EIGEN_STRONG_INLINE const CwiseNullaryOp -DenseBase::NullaryExpr(Index size, const CustomNullaryOp& func) -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - if(RowsAtCompileTime == 1) return CwiseNullaryOp(1, size, func); - else return CwiseNullaryOp(size, 1, func); -} - -/** \returns an expression of a matrix defined by a custom functor \a func - * - * This variant is only for fixed-size DenseBase types. For dynamic-size types, you - * need to use the variants taking size arguments. - * - * The template parameter \a CustomNullaryOp is the type of the functor. - * - * \sa class CwiseNullaryOp - */ -template -template -EIGEN_STRONG_INLINE const CwiseNullaryOp -DenseBase::NullaryExpr(const CustomNullaryOp& func) -{ - return CwiseNullaryOp(RowsAtCompileTime, ColsAtCompileTime, func); -} - -/** \returns an expression of a constant matrix of value \a value - * - * The parameters \a nbRows and \a nbCols are the number of rows and of columns of - * the returned matrix. Must be compatible with this DenseBase type. - * - * This variant is meant to be used for dynamic-size matrix types. For fixed-size types, - * it is redundant to pass \a nbRows and \a nbCols as arguments, so Zero() should be used - * instead. - * - * The template parameter \a CustomNullaryOp is the type of the functor. - * - * \sa class CwiseNullaryOp - */ -template -EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType -DenseBase::Constant(Index nbRows, Index nbCols, const Scalar& value) -{ - return DenseBase::NullaryExpr(nbRows, nbCols, internal::scalar_constant_op(value)); -} - -/** \returns an expression of a constant matrix of value \a value - * - * The parameter \a size is the size of the returned vector. - * Must be compatible with this DenseBase type. - * - * \only_for_vectors - * - * This variant is meant to be used for dynamic-size vector types. For fixed-size types, - * it is redundant to pass \a size as argument, so Zero() should be used - * instead. - * - * The template parameter \a CustomNullaryOp is the type of the functor. - * - * \sa class CwiseNullaryOp - */ -template -EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType -DenseBase::Constant(Index size, const Scalar& value) -{ - return DenseBase::NullaryExpr(size, internal::scalar_constant_op(value)); -} - -/** \returns an expression of a constant matrix of value \a value - * - * This variant is only for fixed-size DenseBase types. For dynamic-size types, you - * need to use the variants taking size arguments. - * - * The template parameter \a CustomNullaryOp is the type of the functor. - * - * \sa class CwiseNullaryOp - */ -template -EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType -DenseBase::Constant(const Scalar& value) -{ - EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived) - return DenseBase::NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_constant_op(value)); -} - -/** - * \brief Sets a linearly space vector. - * - * The function generates 'size' equally spaced values in the closed interval [low,high]. - * This particular version of LinSpaced() uses sequential access, i.e. vector access is - * assumed to be a(0), a(1), ..., a(size). This assumption allows for better vectorization - * and yields faster code than the random access version. - * - * When size is set to 1, a vector of length 1 containing 'high' is returned. - * - * \only_for_vectors - * - * Example: \include DenseBase_LinSpaced_seq.cpp - * Output: \verbinclude DenseBase_LinSpaced_seq.out - * - * \sa setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Index,Scalar,Scalar), CwiseNullaryOp - */ -template -EIGEN_STRONG_INLINE const typename DenseBase::SequentialLinSpacedReturnType -DenseBase::LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high) -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return DenseBase::NullaryExpr(size, internal::linspaced_op(low,high,size)); -} - -/** - * \copydoc DenseBase::LinSpaced(Sequential_t, Index, const Scalar&, const Scalar&) - * Special version for fixed size types which does not require the size parameter. - */ -template -EIGEN_STRONG_INLINE const typename DenseBase::SequentialLinSpacedReturnType -DenseBase::LinSpaced(Sequential_t, const Scalar& low, const Scalar& high) -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived) - return DenseBase::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op(low,high,Derived::SizeAtCompileTime)); -} - -/** - * \brief Sets a linearly space vector. - * - * The function generates 'size' equally spaced values in the closed interval [low,high]. - * When size is set to 1, a vector of length 1 containing 'high' is returned. - * - * \only_for_vectors - * - * Example: \include DenseBase_LinSpaced.cpp - * Output: \verbinclude DenseBase_LinSpaced.out - * - * \sa setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Sequential_t,Index,const Scalar&,const Scalar&,Index), CwiseNullaryOp - */ -template -EIGEN_STRONG_INLINE const typename DenseBase::RandomAccessLinSpacedReturnType -DenseBase::LinSpaced(Index size, const Scalar& low, const Scalar& high) -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return DenseBase::NullaryExpr(size, internal::linspaced_op(low,high,size)); -} - -/** - * \copydoc DenseBase::LinSpaced(Index, const Scalar&, const Scalar&) - * Special version for fixed size types which does not require the size parameter. - */ -template -EIGEN_STRONG_INLINE const typename DenseBase::RandomAccessLinSpacedReturnType -DenseBase::LinSpaced(const Scalar& low, const Scalar& high) -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived) - return DenseBase::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op(low,high,Derived::SizeAtCompileTime)); -} - -/** \returns true if all coefficients in this matrix are approximately equal to \a val, to within precision \a prec */ -template -bool DenseBase::isApproxToConstant -(const Scalar& val, const RealScalar& prec) const -{ - for(Index j = 0; j < cols(); ++j) - for(Index i = 0; i < rows(); ++i) - if(!internal::isApprox(this->coeff(i, j), val, prec)) - return false; - return true; -} - -/** This is just an alias for isApproxToConstant(). - * - * \returns true if all coefficients in this matrix are approximately equal to \a value, to within precision \a prec */ -template -bool DenseBase::isConstant -(const Scalar& val, const RealScalar& prec) const -{ - return isApproxToConstant(val, prec); -} - -/** Alias for setConstant(): sets all coefficients in this expression to \a val. - * - * \sa setConstant(), Constant(), class CwiseNullaryOp - */ -template -EIGEN_STRONG_INLINE void DenseBase::fill(const Scalar& val) -{ - setConstant(val); -} - -/** Sets all coefficients in this expression to \a value. - * - * \sa fill(), setConstant(Index,const Scalar&), setConstant(Index,Index,const Scalar&), setZero(), setOnes(), Constant(), class CwiseNullaryOp, setZero(), setOnes() - */ -template -EIGEN_STRONG_INLINE Derived& DenseBase::setConstant(const Scalar& val) -{ - return derived() = Constant(rows(), cols(), val); -} - -/** Resizes to the given \a size, and sets all coefficients in this expression to the given \a value. - * - * \only_for_vectors - * - * Example: \include Matrix_setConstant_int.cpp - * Output: \verbinclude Matrix_setConstant_int.out - * - * \sa MatrixBase::setConstant(const Scalar&), setConstant(Index,Index,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&) - */ -template -EIGEN_STRONG_INLINE Derived& -PlainObjectBase::setConstant(Index size, const Scalar& val) -{ - resize(size); - return setConstant(val); -} - -/** Resizes to the given size, and sets all coefficients in this expression to the given \a value. - * - * \param nbRows the new number of rows - * \param nbCols the new number of columns - * \param val the value to which all coefficients are set - * - * Example: \include Matrix_setConstant_int_int.cpp - * Output: \verbinclude Matrix_setConstant_int_int.out - * - * \sa MatrixBase::setConstant(const Scalar&), setConstant(Index,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&) - */ -template -EIGEN_STRONG_INLINE Derived& -PlainObjectBase::setConstant(Index nbRows, Index nbCols, const Scalar& val) -{ - resize(nbRows, nbCols); - return setConstant(val); -} - -/** - * \brief Sets a linearly space vector. - * - * The function generates 'size' equally spaced values in the closed interval [low,high]. - * When size is set to 1, a vector of length 1 containing 'high' is returned. - * - * \only_for_vectors - * - * Example: \include DenseBase_setLinSpaced.cpp - * Output: \verbinclude DenseBase_setLinSpaced.out - * - * \sa CwiseNullaryOp - */ -template -EIGEN_STRONG_INLINE Derived& DenseBase::setLinSpaced(Index newSize, const Scalar& low, const Scalar& high) -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return derived() = Derived::NullaryExpr(newSize, internal::linspaced_op(low,high,newSize)); -} - -/** - * \brief Sets a linearly space vector. - * - * The function fill *this with equally spaced values in the closed interval [low,high]. - * When size is set to 1, a vector of length 1 containing 'high' is returned. - * - * \only_for_vectors - * - * \sa setLinSpaced(Index, const Scalar&, const Scalar&), CwiseNullaryOp - */ -template -EIGEN_STRONG_INLINE Derived& DenseBase::setLinSpaced(const Scalar& low, const Scalar& high) -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return setLinSpaced(size(), low, high); -} - -// zero: - -/** \returns an expression of a zero matrix. - * - * The parameters \a rows and \a cols are the number of rows and of columns of - * the returned matrix. Must be compatible with this MatrixBase type. - * - * This variant is meant to be used for dynamic-size matrix types. For fixed-size types, - * it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used - * instead. - * - * Example: \include MatrixBase_zero_int_int.cpp - * Output: \verbinclude MatrixBase_zero_int_int.out - * - * \sa Zero(), Zero(Index) - */ -template -EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType -DenseBase::Zero(Index nbRows, Index nbCols) -{ - return Constant(nbRows, nbCols, Scalar(0)); -} - -/** \returns an expression of a zero vector. - * - * The parameter \a size is the size of the returned vector. - * Must be compatible with this MatrixBase type. - * - * \only_for_vectors - * - * This variant is meant to be used for dynamic-size vector types. For fixed-size types, - * it is redundant to pass \a size as argument, so Zero() should be used - * instead. - * - * Example: \include MatrixBase_zero_int.cpp - * Output: \verbinclude MatrixBase_zero_int.out - * - * \sa Zero(), Zero(Index,Index) - */ -template -EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType -DenseBase::Zero(Index size) -{ - return Constant(size, Scalar(0)); -} - -/** \returns an expression of a fixed-size zero matrix or vector. - * - * This variant is only for fixed-size MatrixBase types. For dynamic-size types, you - * need to use the variants taking size arguments. - * - * Example: \include MatrixBase_zero.cpp - * Output: \verbinclude MatrixBase_zero.out - * - * \sa Zero(Index), Zero(Index,Index) - */ -template -EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType -DenseBase::Zero() -{ - return Constant(Scalar(0)); -} - -/** \returns true if *this is approximately equal to the zero matrix, - * within the precision given by \a prec. - * - * Example: \include MatrixBase_isZero.cpp - * Output: \verbinclude MatrixBase_isZero.out - * - * \sa class CwiseNullaryOp, Zero() - */ -template -bool DenseBase::isZero(const RealScalar& prec) const -{ - for(Index j = 0; j < cols(); ++j) - for(Index i = 0; i < rows(); ++i) - if(!internal::isMuchSmallerThan(this->coeff(i, j), static_cast(1), prec)) - return false; - return true; -} - -/** Sets all coefficients in this expression to zero. - * - * Example: \include MatrixBase_setZero.cpp - * Output: \verbinclude MatrixBase_setZero.out - * - * \sa class CwiseNullaryOp, Zero() - */ -template -EIGEN_STRONG_INLINE Derived& DenseBase::setZero() -{ - return setConstant(Scalar(0)); -} - -/** Resizes to the given \a size, and sets all coefficients in this expression to zero. - * - * \only_for_vectors - * - * Example: \include Matrix_setZero_int.cpp - * Output: \verbinclude Matrix_setZero_int.out - * - * \sa DenseBase::setZero(), setZero(Index,Index), class CwiseNullaryOp, DenseBase::Zero() - */ -template -EIGEN_STRONG_INLINE Derived& -PlainObjectBase::setZero(Index newSize) -{ - resize(newSize); - return setConstant(Scalar(0)); -} - -/** Resizes to the given size, and sets all coefficients in this expression to zero. - * - * \param nbRows the new number of rows - * \param nbCols the new number of columns - * - * Example: \include Matrix_setZero_int_int.cpp - * Output: \verbinclude Matrix_setZero_int_int.out - * - * \sa DenseBase::setZero(), setZero(Index), class CwiseNullaryOp, DenseBase::Zero() - */ -template -EIGEN_STRONG_INLINE Derived& -PlainObjectBase::setZero(Index nbRows, Index nbCols) -{ - resize(nbRows, nbCols); - return setConstant(Scalar(0)); -} - -// ones: - -/** \returns an expression of a matrix where all coefficients equal one. - * - * The parameters \a nbRows and \a nbCols are the number of rows and of columns of - * the returned matrix. Must be compatible with this MatrixBase type. - * - * This variant is meant to be used for dynamic-size matrix types. For fixed-size types, - * it is redundant to pass \a rows and \a cols as arguments, so Ones() should be used - * instead. - * - * Example: \include MatrixBase_ones_int_int.cpp - * Output: \verbinclude MatrixBase_ones_int_int.out - * - * \sa Ones(), Ones(Index), isOnes(), class Ones - */ -template -EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType -DenseBase::Ones(Index nbRows, Index nbCols) -{ - return Constant(nbRows, nbCols, Scalar(1)); -} - -/** \returns an expression of a vector where all coefficients equal one. - * - * The parameter \a newSize is the size of the returned vector. - * Must be compatible with this MatrixBase type. - * - * \only_for_vectors - * - * This variant is meant to be used for dynamic-size vector types. For fixed-size types, - * it is redundant to pass \a size as argument, so Ones() should be used - * instead. - * - * Example: \include MatrixBase_ones_int.cpp - * Output: \verbinclude MatrixBase_ones_int.out - * - * \sa Ones(), Ones(Index,Index), isOnes(), class Ones - */ -template -EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType -DenseBase::Ones(Index newSize) -{ - return Constant(newSize, Scalar(1)); -} - -/** \returns an expression of a fixed-size matrix or vector where all coefficients equal one. - * - * This variant is only for fixed-size MatrixBase types. For dynamic-size types, you - * need to use the variants taking size arguments. - * - * Example: \include MatrixBase_ones.cpp - * Output: \verbinclude MatrixBase_ones.out - * - * \sa Ones(Index), Ones(Index,Index), isOnes(), class Ones - */ -template -EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType -DenseBase::Ones() -{ - return Constant(Scalar(1)); -} - -/** \returns true if *this is approximately equal to the matrix where all coefficients - * are equal to 1, within the precision given by \a prec. - * - * Example: \include MatrixBase_isOnes.cpp - * Output: \verbinclude MatrixBase_isOnes.out - * - * \sa class CwiseNullaryOp, Ones() - */ -template -bool DenseBase::isOnes -(const RealScalar& prec) const -{ - return isApproxToConstant(Scalar(1), prec); -} - -/** Sets all coefficients in this expression to one. - * - * Example: \include MatrixBase_setOnes.cpp - * Output: \verbinclude MatrixBase_setOnes.out - * - * \sa class CwiseNullaryOp, Ones() - */ -template -EIGEN_STRONG_INLINE Derived& DenseBase::setOnes() -{ - return setConstant(Scalar(1)); -} - -/** Resizes to the given \a newSize, and sets all coefficients in this expression to one. - * - * \only_for_vectors - * - * Example: \include Matrix_setOnes_int.cpp - * Output: \verbinclude Matrix_setOnes_int.out - * - * \sa MatrixBase::setOnes(), setOnes(Index,Index), class CwiseNullaryOp, MatrixBase::Ones() - */ -template -EIGEN_STRONG_INLINE Derived& -PlainObjectBase::setOnes(Index newSize) -{ - resize(newSize); - return setConstant(Scalar(1)); -} - -/** Resizes to the given size, and sets all coefficients in this expression to one. - * - * \param nbRows the new number of rows - * \param nbCols the new number of columns - * - * Example: \include Matrix_setOnes_int_int.cpp - * Output: \verbinclude Matrix_setOnes_int_int.out - * - * \sa MatrixBase::setOnes(), setOnes(Index), class CwiseNullaryOp, MatrixBase::Ones() - */ -template -EIGEN_STRONG_INLINE Derived& -PlainObjectBase::setOnes(Index nbRows, Index nbCols) -{ - resize(nbRows, nbCols); - return setConstant(Scalar(1)); -} - -// Identity: - -/** \returns an expression of the identity matrix (not necessarily square). - * - * The parameters \a nbRows and \a nbCols are the number of rows and of columns of - * the returned matrix. Must be compatible with this MatrixBase type. - * - * This variant is meant to be used for dynamic-size matrix types. For fixed-size types, - * it is redundant to pass \a rows and \a cols as arguments, so Identity() should be used - * instead. - * - * Example: \include MatrixBase_identity_int_int.cpp - * Output: \verbinclude MatrixBase_identity_int_int.out - * - * \sa Identity(), setIdentity(), isIdentity() - */ -template -EIGEN_STRONG_INLINE const typename MatrixBase::IdentityReturnType -MatrixBase::Identity(Index nbRows, Index nbCols) -{ - return DenseBase::NullaryExpr(nbRows, nbCols, internal::scalar_identity_op()); -} - -/** \returns an expression of the identity matrix (not necessarily square). - * - * This variant is only for fixed-size MatrixBase types. For dynamic-size types, you - * need to use the variant taking size arguments. - * - * Example: \include MatrixBase_identity.cpp - * Output: \verbinclude MatrixBase_identity.out - * - * \sa Identity(Index,Index), setIdentity(), isIdentity() - */ -template -EIGEN_STRONG_INLINE const typename MatrixBase::IdentityReturnType -MatrixBase::Identity() -{ - EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived) - return MatrixBase::NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_identity_op()); -} - -/** \returns true if *this is approximately equal to the identity matrix - * (not necessarily square), - * within the precision given by \a prec. - * - * Example: \include MatrixBase_isIdentity.cpp - * Output: \verbinclude MatrixBase_isIdentity.out - * - * \sa class CwiseNullaryOp, Identity(), Identity(Index,Index), setIdentity() - */ -template -bool MatrixBase::isIdentity -(const RealScalar& prec) const -{ - for(Index j = 0; j < cols(); ++j) - { - for(Index i = 0; i < rows(); ++i) - { - if(i == j) - { - if(!internal::isApprox(this->coeff(i, j), static_cast(1), prec)) - return false; - } - else - { - if(!internal::isMuchSmallerThan(this->coeff(i, j), static_cast(1), prec)) - return false; - } - } - } - return true; -} - -namespace internal { - -template=16)> -struct setIdentity_impl -{ - static EIGEN_STRONG_INLINE Derived& run(Derived& m) - { - return m = Derived::Identity(m.rows(), m.cols()); - } -}; - -template -struct setIdentity_impl -{ - typedef typename Derived::Index Index; - static EIGEN_STRONG_INLINE Derived& run(Derived& m) - { - m.setZero(); - const Index size = (std::min)(m.rows(), m.cols()); - for(Index i = 0; i < size; ++i) m.coeffRef(i,i) = typename Derived::Scalar(1); - return m; - } -}; - -} // end namespace internal - -/** Writes the identity expression (not necessarily square) into *this. - * - * Example: \include MatrixBase_setIdentity.cpp - * Output: \verbinclude MatrixBase_setIdentity.out - * - * \sa class CwiseNullaryOp, Identity(), Identity(Index,Index), isIdentity() - */ -template -EIGEN_STRONG_INLINE Derived& MatrixBase::setIdentity() -{ - return internal::setIdentity_impl::run(derived()); -} - -/** \brief Resizes to the given size, and writes the identity expression (not necessarily square) into *this. - * - * \param nbRows the new number of rows - * \param nbCols the new number of columns - * - * Example: \include Matrix_setIdentity_int_int.cpp - * Output: \verbinclude Matrix_setIdentity_int_int.out - * - * \sa MatrixBase::setIdentity(), class CwiseNullaryOp, MatrixBase::Identity() - */ -template -EIGEN_STRONG_INLINE Derived& MatrixBase::setIdentity(Index nbRows, Index nbCols) -{ - derived().resize(nbRows, nbCols); - return setIdentity(); -} - -/** \returns an expression of the i-th unit (basis) vector. - * - * \only_for_vectors - * - * \sa MatrixBase::Unit(Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW() - */ -template -EIGEN_STRONG_INLINE const typename MatrixBase::BasisReturnType MatrixBase::Unit(Index newSize, Index i) -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return BasisReturnType(SquareMatrixType::Identity(newSize,newSize), i); -} - -/** \returns an expression of the i-th unit (basis) vector. - * - * \only_for_vectors - * - * This variant is for fixed-size vector only. - * - * \sa MatrixBase::Unit(Index,Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW() - */ -template -EIGEN_STRONG_INLINE const typename MatrixBase::BasisReturnType MatrixBase::Unit(Index i) -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return BasisReturnType(SquareMatrixType::Identity(),i); -} - -/** \returns an expression of the X axis unit vector (1{,0}^*) - * - * \only_for_vectors - * - * \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW() - */ -template -EIGEN_STRONG_INLINE const typename MatrixBase::BasisReturnType MatrixBase::UnitX() -{ return Derived::Unit(0); } - -/** \returns an expression of the Y axis unit vector (0,1{,0}^*) - * - * \only_for_vectors - * - * \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW() - */ -template -EIGEN_STRONG_INLINE const typename MatrixBase::BasisReturnType MatrixBase::UnitY() -{ return Derived::Unit(1); } - -/** \returns an expression of the Z axis unit vector (0,0,1{,0}^*) - * - * \only_for_vectors - * - * \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW() - */ -template -EIGEN_STRONG_INLINE const typename MatrixBase::BasisReturnType MatrixBase::UnitZ() -{ return Derived::Unit(2); } - -/** \returns an expression of the W axis unit vector (0,0,0,1) - * - * \only_for_vectors - * - * \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW() - */ -template -EIGEN_STRONG_INLINE const typename MatrixBase::BasisReturnType MatrixBase::UnitW() -{ return Derived::Unit(3); } - -} // end namespace Eigen - -#endif // EIGEN_CWISE_NULLARY_OP_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/CwiseUnaryOp.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/CwiseUnaryOp.h deleted file mode 100755 index f7ee60e98..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/CwiseUnaryOp.h +++ /dev/null @@ -1,126 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2010 Gael Guennebaud -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_CWISE_UNARY_OP_H -#define EIGEN_CWISE_UNARY_OP_H - -namespace Eigen { - -/** \class CwiseUnaryOp - * \ingroup Core_Module - * - * \brief Generic expression where a coefficient-wise unary operator is applied to an expression - * - * \param UnaryOp template functor implementing the operator - * \param XprType the type of the expression to which we are applying the unary operator - * - * This class represents an expression where a unary operator is applied to an expression. - * It is the return type of all operations taking exactly 1 input expression, regardless of the - * presence of other inputs such as scalars. For example, the operator* in the expression 3*matrix - * is considered unary, because only the right-hand side is an expression, and its - * return type is a specialization of CwiseUnaryOp. - * - * Most of the time, this is the only way that it is used, so you typically don't have to name - * CwiseUnaryOp types explicitly. - * - * \sa MatrixBase::unaryExpr(const CustomUnaryOp &) const, class CwiseBinaryOp, class CwiseNullaryOp - */ - -namespace internal { -template -struct traits > - : traits -{ - typedef typename result_of< - UnaryOp(typename XprType::Scalar) - >::type Scalar; - typedef typename XprType::Nested XprTypeNested; - typedef typename remove_reference::type _XprTypeNested; - enum { - Flags = _XprTypeNested::Flags & ( - HereditaryBits | LinearAccessBit | AlignedBit - | (functor_traits::PacketAccess ? PacketAccessBit : 0)), - CoeffReadCost = EIGEN_ADD_COST(_XprTypeNested::CoeffReadCost, functor_traits::Cost) - }; -}; -} - -template -class CwiseUnaryOpImpl; - -template -class CwiseUnaryOp : internal::no_assignment_operator, - public CwiseUnaryOpImpl::StorageKind> -{ - public: - - typedef typename CwiseUnaryOpImpl::StorageKind>::Base Base; - EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryOp) - - inline CwiseUnaryOp(const XprType& xpr, const UnaryOp& func = UnaryOp()) - : m_xpr(xpr), m_functor(func) {} - - EIGEN_STRONG_INLINE Index rows() const { return m_xpr.rows(); } - EIGEN_STRONG_INLINE Index cols() const { return m_xpr.cols(); } - - /** \returns the functor representing the unary operation */ - const UnaryOp& functor() const { return m_functor; } - - /** \returns the nested expression */ - const typename internal::remove_all::type& - nestedExpression() const { return m_xpr; } - - /** \returns the nested expression */ - typename internal::remove_all::type& - nestedExpression() { return m_xpr.const_cast_derived(); } - - protected: - typename XprType::Nested m_xpr; - const UnaryOp m_functor; -}; - -// This is the generic implementation for dense storage. -// It can be used for any expression types implementing the dense concept. -template -class CwiseUnaryOpImpl - : public internal::dense_xpr_base >::type -{ - public: - - typedef CwiseUnaryOp Derived; - typedef typename internal::dense_xpr_base >::type Base; - EIGEN_DENSE_PUBLIC_INTERFACE(Derived) - - EIGEN_STRONG_INLINE const Scalar coeff(Index rowId, Index colId) const - { - return derived().functor()(derived().nestedExpression().coeff(rowId, colId)); - } - - template - EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const - { - return derived().functor().packetOp(derived().nestedExpression().template packet(rowId, colId)); - } - - EIGEN_STRONG_INLINE const Scalar coeff(Index index) const - { - return derived().functor()(derived().nestedExpression().coeff(index)); - } - - template - EIGEN_STRONG_INLINE PacketScalar packet(Index index) const - { - return derived().functor().packetOp(derived().nestedExpression().template packet(index)); - } -}; - -} // end namespace Eigen - -#endif // EIGEN_CWISE_UNARY_OP_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/CwiseUnaryView.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/CwiseUnaryView.h deleted file mode 100755 index f3b2ffeb6..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/CwiseUnaryView.h +++ /dev/null @@ -1,139 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009-2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_CWISE_UNARY_VIEW_H -#define EIGEN_CWISE_UNARY_VIEW_H - -namespace Eigen { - -/** \class CwiseUnaryView - * \ingroup Core_Module - * - * \brief Generic lvalue expression of a coefficient-wise unary operator of a matrix or a vector - * - * \param ViewOp template functor implementing the view - * \param MatrixType the type of the matrix we are applying the unary operator - * - * This class represents a lvalue expression of a generic unary view operator of a matrix or a vector. - * It is the return type of real() and imag(), and most of the time this is the only way it is used. - * - * \sa MatrixBase::unaryViewExpr(const CustomUnaryOp &) const, class CwiseUnaryOp - */ - -namespace internal { -template -struct traits > - : traits -{ - typedef typename result_of< - ViewOp(typename traits::Scalar) - >::type Scalar; - typedef typename MatrixType::Nested MatrixTypeNested; - typedef typename remove_all::type _MatrixTypeNested; - enum { - Flags = (traits<_MatrixTypeNested>::Flags & (HereditaryBits | LvalueBit | LinearAccessBit | DirectAccessBit)), - CoeffReadCost = EIGEN_ADD_COST(traits<_MatrixTypeNested>::CoeffReadCost, functor_traits::Cost), - MatrixTypeInnerStride = inner_stride_at_compile_time::ret, - // need to cast the sizeof's from size_t to int explicitly, otherwise: - // "error: no integral type can represent all of the enumerator values - InnerStrideAtCompileTime = MatrixTypeInnerStride == Dynamic - ? int(Dynamic) - : int(MatrixTypeInnerStride) * int(sizeof(typename traits::Scalar) / sizeof(Scalar)), - OuterStrideAtCompileTime = outer_stride_at_compile_time::ret == Dynamic - ? int(Dynamic) - : outer_stride_at_compile_time::ret * int(sizeof(typename traits::Scalar) / sizeof(Scalar)) - }; -}; -} - -template -class CwiseUnaryViewImpl; - -template -class CwiseUnaryView : public CwiseUnaryViewImpl::StorageKind> -{ - public: - - typedef typename CwiseUnaryViewImpl::StorageKind>::Base Base; - EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryView) - - inline CwiseUnaryView(const MatrixType& mat, const ViewOp& func = ViewOp()) - : m_matrix(mat), m_functor(func) {} - - EIGEN_INHERIT_ASSIGNMENT_OPERATORS(CwiseUnaryView) - - EIGEN_STRONG_INLINE Index rows() const { return m_matrix.rows(); } - EIGEN_STRONG_INLINE Index cols() const { return m_matrix.cols(); } - - /** \returns the functor representing unary operation */ - const ViewOp& functor() const { return m_functor; } - - /** \returns the nested expression */ - const typename internal::remove_all::type& - nestedExpression() const { return m_matrix; } - - /** \returns the nested expression */ - typename internal::remove_all::type& - nestedExpression() { return m_matrix.const_cast_derived(); } - - protected: - // FIXME changed from MatrixType::Nested because of a weird compilation error with sun CC - typename internal::nested::type m_matrix; - ViewOp m_functor; -}; - -template -class CwiseUnaryViewImpl - : public internal::dense_xpr_base< CwiseUnaryView >::type -{ - public: - - typedef CwiseUnaryView Derived; - typedef typename internal::dense_xpr_base< CwiseUnaryView >::type Base; - - EIGEN_DENSE_PUBLIC_INTERFACE(Derived) - EIGEN_INHERIT_ASSIGNMENT_OPERATORS(CwiseUnaryViewImpl) - - inline Scalar* data() { return &coeffRef(0); } - inline const Scalar* data() const { return &coeff(0); } - - inline Index innerStride() const - { - return derived().nestedExpression().innerStride() * sizeof(typename internal::traits::Scalar) / sizeof(Scalar); - } - - inline Index outerStride() const - { - return derived().nestedExpression().outerStride() * sizeof(typename internal::traits::Scalar) / sizeof(Scalar); - } - - EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const - { - return derived().functor()(derived().nestedExpression().coeff(row, col)); - } - - EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const - { - return derived().functor()(derived().nestedExpression().coeff(index)); - } - - EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col) - { - return derived().functor()(const_cast_derived().nestedExpression().coeffRef(row, col)); - } - - EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) - { - return derived().functor()(const_cast_derived().nestedExpression().coeffRef(index)); - } -}; - -} // end namespace Eigen - -#endif // EIGEN_CWISE_UNARY_VIEW_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/DenseBase.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/DenseBase.h deleted file mode 100755 index 4b371b075..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/DenseBase.h +++ /dev/null @@ -1,521 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2007-2010 Benoit Jacob -// Copyright (C) 2008-2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_DENSEBASE_H -#define EIGEN_DENSEBASE_H - -namespace Eigen { - -namespace internal { - -// The index type defined by EIGEN_DEFAULT_DENSE_INDEX_TYPE must be a signed type. -// This dummy function simply aims at checking that at compile time. -static inline void check_DenseIndex_is_signed() { - EIGEN_STATIC_ASSERT(NumTraits::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE); -} - -} // end namespace internal - -/** \class DenseBase - * \ingroup Core_Module - * - * \brief Base class for all dense matrices, vectors, and arrays - * - * This class is the base that is inherited by all dense objects (matrix, vector, arrays, - * and related expression types). The common Eigen API for dense objects is contained in this class. - * - * \tparam Derived is the derived type, e.g., a matrix type or an expression. - * - * This class can be extended with the help of the plugin mechanism described on the page - * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_DENSEBASE_PLUGIN. - * - * \sa \ref TopicClassHierarchy - */ -template class DenseBase -#ifndef EIGEN_PARSED_BY_DOXYGEN - : public internal::special_scalar_op_base::Scalar, - typename NumTraits::Scalar>::Real, - DenseCoeffsBase > -#else - : public DenseCoeffsBase -#endif // not EIGEN_PARSED_BY_DOXYGEN -{ - public: - - class InnerIterator; - - typedef typename internal::traits::StorageKind StorageKind; - - /** \brief The type of indices - * \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE. - * \sa \ref TopicPreprocessorDirectives. - */ - typedef typename internal::traits::Index Index; - - typedef typename internal::traits::Scalar Scalar; - typedef typename internal::packet_traits::type PacketScalar; - typedef typename NumTraits::Real RealScalar; - typedef internal::special_scalar_op_base > Base; - - using Base::operator*; - using Base::derived; - using Base::const_cast_derived; - using Base::rows; - using Base::cols; - using Base::size; - using Base::rowIndexByOuterInner; - using Base::colIndexByOuterInner; - using Base::coeff; - using Base::coeffByOuterInner; - using Base::packet; - using Base::packetByOuterInner; - using Base::writePacket; - using Base::writePacketByOuterInner; - using Base::coeffRef; - using Base::coeffRefByOuterInner; - using Base::copyCoeff; - using Base::copyCoeffByOuterInner; - using Base::copyPacket; - using Base::copyPacketByOuterInner; - using Base::operator(); - using Base::operator[]; - using Base::x; - using Base::y; - using Base::z; - using Base::w; - using Base::stride; - using Base::innerStride; - using Base::outerStride; - using Base::rowStride; - using Base::colStride; - typedef typename Base::CoeffReturnType CoeffReturnType; - - enum { - - RowsAtCompileTime = internal::traits::RowsAtCompileTime, - /**< The number of rows at compile-time. This is just a copy of the value provided - * by the \a Derived type. If a value is not known at compile-time, - * it is set to the \a Dynamic constant. - * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */ - - ColsAtCompileTime = internal::traits::ColsAtCompileTime, - /**< The number of columns at compile-time. This is just a copy of the value provided - * by the \a Derived type. If a value is not known at compile-time, - * it is set to the \a Dynamic constant. - * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */ - - - SizeAtCompileTime = (internal::size_at_compile_time::RowsAtCompileTime, - internal::traits::ColsAtCompileTime>::ret), - /**< This is equal to the number of coefficients, i.e. the number of - * rows times the number of columns, or to \a Dynamic if this is not - * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */ - - MaxRowsAtCompileTime = internal::traits::MaxRowsAtCompileTime, - /**< This value is equal to the maximum possible number of rows that this expression - * might have. If this expression might have an arbitrarily high number of rows, - * this value is set to \a Dynamic. - * - * This value is useful to know when evaluating an expression, in order to determine - * whether it is possible to avoid doing a dynamic memory allocation. - * - * \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime - */ - - MaxColsAtCompileTime = internal::traits::MaxColsAtCompileTime, - /**< This value is equal to the maximum possible number of columns that this expression - * might have. If this expression might have an arbitrarily high number of columns, - * this value is set to \a Dynamic. - * - * This value is useful to know when evaluating an expression, in order to determine - * whether it is possible to avoid doing a dynamic memory allocation. - * - * \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime - */ - - MaxSizeAtCompileTime = (internal::size_at_compile_time::MaxRowsAtCompileTime, - internal::traits::MaxColsAtCompileTime>::ret), - /**< This value is equal to the maximum possible number of coefficients that this expression - * might have. If this expression might have an arbitrarily high number of coefficients, - * this value is set to \a Dynamic. - * - * This value is useful to know when evaluating an expression, in order to determine - * whether it is possible to avoid doing a dynamic memory allocation. - * - * \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime - */ - - IsVectorAtCompileTime = internal::traits::MaxRowsAtCompileTime == 1 - || internal::traits::MaxColsAtCompileTime == 1, - /**< This is set to true if either the number of rows or the number of - * columns is known at compile-time to be equal to 1. Indeed, in that case, - * we are dealing with a column-vector (if there is only one column) or with - * a row-vector (if there is only one row). */ - - Flags = internal::traits::Flags, - /**< This stores expression \ref flags flags which may or may not be inherited by new expressions - * constructed from this one. See the \ref flags "list of flags". - */ - - IsRowMajor = int(Flags) & RowMajorBit, /**< True if this expression has row-major storage order. */ - - InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime) - : int(IsRowMajor) ? int(ColsAtCompileTime) : int(RowsAtCompileTime), - - CoeffReadCost = internal::traits::CoeffReadCost, - /**< This is a rough measure of how expensive it is to read one coefficient from - * this expression. - */ - - InnerStrideAtCompileTime = internal::inner_stride_at_compile_time::ret, - OuterStrideAtCompileTime = internal::outer_stride_at_compile_time::ret - }; - - enum { ThisConstantIsPrivateInPlainObjectBase }; - - /** \returns the number of nonzero coefficients which is in practice the number - * of stored coefficients. */ - inline Index nonZeros() const { return size(); } - - /** \returns the outer size. - * - * \note For a vector, this returns just 1. For a matrix (non-vector), this is the major dimension - * with respect to the \ref TopicStorageOrders "storage order", i.e., the number of columns for a - * column-major matrix, and the number of rows for a row-major matrix. */ - Index outerSize() const - { - return IsVectorAtCompileTime ? 1 - : int(IsRowMajor) ? this->rows() : this->cols(); - } - - /** \returns the inner size. - * - * \note For a vector, this is just the size. For a matrix (non-vector), this is the minor dimension - * with respect to the \ref TopicStorageOrders "storage order", i.e., the number of rows for a - * column-major matrix, and the number of columns for a row-major matrix. */ - Index innerSize() const - { - return IsVectorAtCompileTime ? this->size() - : int(IsRowMajor) ? this->cols() : this->rows(); - } - - /** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are - * Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does - * nothing else. - */ - void resize(Index newSize) - { - EIGEN_ONLY_USED_FOR_DEBUG(newSize); - eigen_assert(newSize == this->size() - && "DenseBase::resize() does not actually allow to resize."); - } - /** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are - * Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does - * nothing else. - */ - void resize(Index nbRows, Index nbCols) - { - EIGEN_ONLY_USED_FOR_DEBUG(nbRows); - EIGEN_ONLY_USED_FOR_DEBUG(nbCols); - eigen_assert(nbRows == this->rows() && nbCols == this->cols() - && "DenseBase::resize() does not actually allow to resize."); - } - -#ifndef EIGEN_PARSED_BY_DOXYGEN - - /** \internal Represents a matrix with all coefficients equal to one another*/ - typedef CwiseNullaryOp,Derived> ConstantReturnType; - /** \internal Represents a vector with linearly spaced coefficients that allows sequential access only. */ - typedef CwiseNullaryOp,Derived> SequentialLinSpacedReturnType; - /** \internal Represents a vector with linearly spaced coefficients that allows random access. */ - typedef CwiseNullaryOp,Derived> RandomAccessLinSpacedReturnType; - /** \internal the return type of MatrixBase::eigenvalues() */ - typedef Matrix::Scalar>::Real, internal::traits::ColsAtCompileTime, 1> EigenvaluesReturnType; - -#endif // not EIGEN_PARSED_BY_DOXYGEN - - /** Copies \a other into *this. \returns a reference to *this. */ - template - Derived& operator=(const DenseBase& other); - - /** Special case of the template operator=, in order to prevent the compiler - * from generating a default operator= (issue hit with g++ 4.1) - */ - Derived& operator=(const DenseBase& other); - - template - Derived& operator=(const EigenBase &other); - - template - Derived& operator+=(const EigenBase &other); - - template - Derived& operator-=(const EigenBase &other); - - template - Derived& operator=(const ReturnByValue& func); - - /** \internal Copies \a other into *this without evaluating other. \returns a reference to *this. */ - template - Derived& lazyAssign(const DenseBase& other); - - /** \internal Evaluates \a other into *this. \returns a reference to *this. */ - template - Derived& lazyAssign(const ReturnByValue& other); - - CommaInitializer operator<< (const Scalar& s); - - template - const Flagged flagged() const; - - template - CommaInitializer operator<< (const DenseBase& other); - - Eigen::Transpose transpose(); - typedef typename internal::add_const >::type ConstTransposeReturnType; - ConstTransposeReturnType transpose() const; - void transposeInPlace(); -#ifndef EIGEN_NO_DEBUG - protected: - template - void checkTransposeAliasing(const OtherDerived& other) const; - public: -#endif - - - static const ConstantReturnType - Constant(Index rows, Index cols, const Scalar& value); - static const ConstantReturnType - Constant(Index size, const Scalar& value); - static const ConstantReturnType - Constant(const Scalar& value); - - static const SequentialLinSpacedReturnType - LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high); - static const RandomAccessLinSpacedReturnType - LinSpaced(Index size, const Scalar& low, const Scalar& high); - static const SequentialLinSpacedReturnType - LinSpaced(Sequential_t, const Scalar& low, const Scalar& high); - static const RandomAccessLinSpacedReturnType - LinSpaced(const Scalar& low, const Scalar& high); - - template - static const CwiseNullaryOp - NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func); - template - static const CwiseNullaryOp - NullaryExpr(Index size, const CustomNullaryOp& func); - template - static const CwiseNullaryOp - NullaryExpr(const CustomNullaryOp& func); - - static const ConstantReturnType Zero(Index rows, Index cols); - static const ConstantReturnType Zero(Index size); - static const ConstantReturnType Zero(); - static const ConstantReturnType Ones(Index rows, Index cols); - static const ConstantReturnType Ones(Index size); - static const ConstantReturnType Ones(); - - void fill(const Scalar& value); - Derived& setConstant(const Scalar& value); - Derived& setLinSpaced(Index size, const Scalar& low, const Scalar& high); - Derived& setLinSpaced(const Scalar& low, const Scalar& high); - Derived& setZero(); - Derived& setOnes(); - Derived& setRandom(); - - template - bool isApprox(const DenseBase& other, - const RealScalar& prec = NumTraits::dummy_precision()) const; - bool isMuchSmallerThan(const RealScalar& other, - const RealScalar& prec = NumTraits::dummy_precision()) const; - template - bool isMuchSmallerThan(const DenseBase& other, - const RealScalar& prec = NumTraits::dummy_precision()) const; - - bool isApproxToConstant(const Scalar& value, const RealScalar& prec = NumTraits::dummy_precision()) const; - bool isConstant(const Scalar& value, const RealScalar& prec = NumTraits::dummy_precision()) const; - bool isZero(const RealScalar& prec = NumTraits::dummy_precision()) const; - bool isOnes(const RealScalar& prec = NumTraits::dummy_precision()) const; - - inline bool hasNaN() const; - inline bool allFinite() const; - - inline Derived& operator*=(const Scalar& other); - inline Derived& operator/=(const Scalar& other); - - typedef typename internal::add_const_on_value_type::type>::type EvalReturnType; - /** \returns the matrix or vector obtained by evaluating this expression. - * - * Notice that in the case of a plain matrix or vector (not an expression) this function just returns - * a const reference, in order to avoid a useless copy. - */ - EIGEN_STRONG_INLINE EvalReturnType eval() const - { - // Even though MSVC does not honor strong inlining when the return type - // is a dynamic matrix, we desperately need strong inlining for fixed - // size types on MSVC. - return typename internal::eval::type(derived()); - } - - /** swaps *this with the expression \a other. - * - */ - template - void swap(const DenseBase& other, - int = OtherDerived::ThisConstantIsPrivateInPlainObjectBase) - { - SwapWrapper(derived()).lazyAssign(other.derived()); - } - - /** swaps *this with the matrix or array \a other. - * - */ - template - void swap(PlainObjectBase& other) - { - SwapWrapper(derived()).lazyAssign(other.derived()); - } - - - inline const NestByValue nestByValue() const; - inline const ForceAlignedAccess forceAlignedAccess() const; - inline ForceAlignedAccess forceAlignedAccess(); - template inline const typename internal::conditional,Derived&>::type forceAlignedAccessIf() const; - template inline typename internal::conditional,Derived&>::type forceAlignedAccessIf(); - - Scalar sum() const; - Scalar mean() const; - Scalar trace() const; - - Scalar prod() const; - - typename internal::traits::Scalar minCoeff() const; - typename internal::traits::Scalar maxCoeff() const; - - template - typename internal::traits::Scalar minCoeff(IndexType* row, IndexType* col) const; - template - typename internal::traits::Scalar maxCoeff(IndexType* row, IndexType* col) const; - template - typename internal::traits::Scalar minCoeff(IndexType* index) const; - template - typename internal::traits::Scalar maxCoeff(IndexType* index) const; - - template - typename internal::result_of::Scalar)>::type - redux(const BinaryOp& func) const; - - template - void visit(Visitor& func) const; - - inline const WithFormat format(const IOFormat& fmt) const; - - /** \returns the unique coefficient of a 1x1 expression */ - CoeffReturnType value() const - { - EIGEN_STATIC_ASSERT_SIZE_1x1(Derived) - eigen_assert(this->rows() == 1 && this->cols() == 1); - return derived().coeff(0,0); - } - - bool all(void) const; - bool any(void) const; - Index count() const; - - typedef VectorwiseOp RowwiseReturnType; - typedef const VectorwiseOp ConstRowwiseReturnType; - typedef VectorwiseOp ColwiseReturnType; - typedef const VectorwiseOp ConstColwiseReturnType; - - ConstRowwiseReturnType rowwise() const; - RowwiseReturnType rowwise(); - ConstColwiseReturnType colwise() const; - ColwiseReturnType colwise(); - - static const CwiseNullaryOp,Derived> Random(Index rows, Index cols); - static const CwiseNullaryOp,Derived> Random(Index size); - static const CwiseNullaryOp,Derived> Random(); - - template - const Select - select(const DenseBase& thenMatrix, - const DenseBase& elseMatrix) const; - - template - inline const Select - select(const DenseBase& thenMatrix, const typename ThenDerived::Scalar& elseScalar) const; - - template - inline const Select - select(const typename ElseDerived::Scalar& thenScalar, const DenseBase& elseMatrix) const; - - template RealScalar lpNorm() const; - - template - inline const Replicate replicate() const; - - typedef Replicate ReplicateReturnType; - inline const ReplicateReturnType replicate(Index rowFacor,Index colFactor) const; - - typedef Reverse ReverseReturnType; - typedef const Reverse ConstReverseReturnType; - ReverseReturnType reverse(); - ConstReverseReturnType reverse() const; - void reverseInPlace(); - -#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::DenseBase -# include "../plugins/BlockMethods.h" -# ifdef EIGEN_DENSEBASE_PLUGIN -# include EIGEN_DENSEBASE_PLUGIN -# endif -#undef EIGEN_CURRENT_STORAGE_BASE_CLASS - -#ifdef EIGEN2_SUPPORT - - Block corner(CornerType type, Index cRows, Index cCols); - const Block corner(CornerType type, Index cRows, Index cCols) const; - template - Block corner(CornerType type); - template - const Block corner(CornerType type) const; - -#endif // EIGEN2_SUPPORT - - - // disable the use of evalTo for dense objects with a nice compilation error - template inline void evalTo(Dest& ) const - { - EIGEN_STATIC_ASSERT((internal::is_same::value),THE_EVAL_EVALTO_FUNCTION_SHOULD_NEVER_BE_CALLED_FOR_DENSE_OBJECTS); - } - - protected: - /** Default constructor. Do nothing. */ - DenseBase() - { - /* Just checks for self-consistency of the flags. - * Only do it when debugging Eigen, as this borders on paranoiac and could slow compilation down - */ -#ifdef EIGEN_INTERNAL_DEBUGGING - EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, int(IsRowMajor)) - && EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, int(!IsRowMajor))), - INVALID_STORAGE_ORDER_FOR_THIS_VECTOR_EXPRESSION) -#endif - } - - private: - explicit DenseBase(int); - DenseBase(int,int); - template explicit DenseBase(const DenseBase&); -}; - -} // end namespace Eigen - -#endif // EIGEN_DENSEBASE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/DenseCoeffsBase.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/DenseCoeffsBase.h deleted file mode 100755 index 3c890f215..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/DenseCoeffsBase.h +++ /dev/null @@ -1,754 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2006-2010 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_DENSECOEFFSBASE_H -#define EIGEN_DENSECOEFFSBASE_H - -namespace Eigen { - -namespace internal { -template struct add_const_on_value_type_if_arithmetic -{ - typedef typename conditional::value, T, typename add_const_on_value_type::type>::type type; -}; -} - -/** \brief Base class providing read-only coefficient access to matrices and arrays. - * \ingroup Core_Module - * \tparam Derived Type of the derived class - * \tparam #ReadOnlyAccessors Constant indicating read-only access - * - * This class defines the \c operator() \c const function and friends, which can be used to read specific - * entries of a matrix or array. - * - * \sa DenseCoeffsBase, DenseCoeffsBase, - * \ref TopicClassHierarchy - */ -template -class DenseCoeffsBase : public EigenBase -{ - public: - typedef typename internal::traits::StorageKind StorageKind; - typedef typename internal::traits::Index Index; - typedef typename internal::traits::Scalar Scalar; - typedef typename internal::packet_traits::type PacketScalar; - - // Explanation for this CoeffReturnType typedef. - // - This is the return type of the coeff() method. - // - The LvalueBit means exactly that we can offer a coeffRef() method, which means exactly that we can get references - // to coeffs, which means exactly that we can have coeff() return a const reference (as opposed to returning a value). - // - The is_artihmetic check is required since "const int", "const double", etc. will cause warnings on some systems - // while the declaration of "const T", where T is a non arithmetic type does not. Always returning "const Scalar&" is - // not possible, since the underlying expressions might not offer a valid address the reference could be referring to. - typedef typename internal::conditional::Flags&LvalueBit), - const Scalar&, - typename internal::conditional::value, Scalar, const Scalar>::type - >::type CoeffReturnType; - - typedef typename internal::add_const_on_value_type_if_arithmetic< - typename internal::packet_traits::type - >::type PacketReturnType; - - typedef EigenBase Base; - using Base::rows; - using Base::cols; - using Base::size; - using Base::derived; - - EIGEN_STRONG_INLINE Index rowIndexByOuterInner(Index outer, Index inner) const - { - return int(Derived::RowsAtCompileTime) == 1 ? 0 - : int(Derived::ColsAtCompileTime) == 1 ? inner - : int(Derived::Flags)&RowMajorBit ? outer - : inner; - } - - EIGEN_STRONG_INLINE Index colIndexByOuterInner(Index outer, Index inner) const - { - return int(Derived::ColsAtCompileTime) == 1 ? 0 - : int(Derived::RowsAtCompileTime) == 1 ? inner - : int(Derived::Flags)&RowMajorBit ? inner - : outer; - } - - /** Short version: don't use this function, use - * \link operator()(Index,Index) const \endlink instead. - * - * Long version: this function is similar to - * \link operator()(Index,Index) const \endlink, but without the assertion. - * Use this for limiting the performance cost of debugging code when doing - * repeated coefficient access. Only use this when it is guaranteed that the - * parameters \a row and \a col are in range. - * - * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this - * function equivalent to \link operator()(Index,Index) const \endlink. - * - * \sa operator()(Index,Index) const, coeffRef(Index,Index), coeff(Index) const - */ - EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const - { - eigen_internal_assert(row >= 0 && row < rows() - && col >= 0 && col < cols()); - return derived().coeff(row, col); - } - - EIGEN_STRONG_INLINE CoeffReturnType coeffByOuterInner(Index outer, Index inner) const - { - return coeff(rowIndexByOuterInner(outer, inner), - colIndexByOuterInner(outer, inner)); - } - - /** \returns the coefficient at given the given row and column. - * - * \sa operator()(Index,Index), operator[](Index) - */ - EIGEN_STRONG_INLINE CoeffReturnType operator()(Index row, Index col) const - { - eigen_assert(row >= 0 && row < rows() - && col >= 0 && col < cols()); - return derived().coeff(row, col); - } - - /** Short version: don't use this function, use - * \link operator[](Index) const \endlink instead. - * - * Long version: this function is similar to - * \link operator[](Index) const \endlink, but without the assertion. - * Use this for limiting the performance cost of debugging code when doing - * repeated coefficient access. Only use this when it is guaranteed that the - * parameter \a index is in range. - * - * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this - * function equivalent to \link operator[](Index) const \endlink. - * - * \sa operator[](Index) const, coeffRef(Index), coeff(Index,Index) const - */ - - EIGEN_STRONG_INLINE CoeffReturnType - coeff(Index index) const - { - eigen_internal_assert(index >= 0 && index < size()); - return derived().coeff(index); - } - - - /** \returns the coefficient at given index. - * - * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. - * - * \sa operator[](Index), operator()(Index,Index) const, x() const, y() const, - * z() const, w() const - */ - - EIGEN_STRONG_INLINE CoeffReturnType - operator[](Index index) const - { - #ifndef EIGEN2_SUPPORT - EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime, - THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD) - #endif - eigen_assert(index >= 0 && index < size()); - return derived().coeff(index); - } - - /** \returns the coefficient at given index. - * - * This is synonymous to operator[](Index) const. - * - * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. - * - * \sa operator[](Index), operator()(Index,Index) const, x() const, y() const, - * z() const, w() const - */ - - EIGEN_STRONG_INLINE CoeffReturnType - operator()(Index index) const - { - eigen_assert(index >= 0 && index < size()); - return derived().coeff(index); - } - - /** equivalent to operator[](0). */ - - EIGEN_STRONG_INLINE CoeffReturnType - x() const { return (*this)[0]; } - - /** equivalent to operator[](1). */ - - EIGEN_STRONG_INLINE CoeffReturnType - y() const { return (*this)[1]; } - - /** equivalent to operator[](2). */ - - EIGEN_STRONG_INLINE CoeffReturnType - z() const { return (*this)[2]; } - - /** equivalent to operator[](3). */ - - EIGEN_STRONG_INLINE CoeffReturnType - w() const { return (*this)[3]; } - - /** \internal - * \returns the packet of coefficients starting at the given row and column. It is your responsibility - * to ensure that a packet really starts there. This method is only available on expressions having the - * PacketAccessBit. - * - * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select - * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets - * starting at an address which is a multiple of the packet size. - */ - - template - EIGEN_STRONG_INLINE PacketReturnType packet(Index row, Index col) const - { - eigen_internal_assert(row >= 0 && row < rows() - && col >= 0 && col < cols()); - return derived().template packet(row,col); - } - - - /** \internal */ - template - EIGEN_STRONG_INLINE PacketReturnType packetByOuterInner(Index outer, Index inner) const - { - return packet(rowIndexByOuterInner(outer, inner), - colIndexByOuterInner(outer, inner)); - } - - /** \internal - * \returns the packet of coefficients starting at the given index. It is your responsibility - * to ensure that a packet really starts there. This method is only available on expressions having the - * PacketAccessBit and the LinearAccessBit. - * - * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select - * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets - * starting at an address which is a multiple of the packet size. - */ - - template - EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const - { - eigen_internal_assert(index >= 0 && index < size()); - return derived().template packet(index); - } - - protected: - // explanation: DenseBase is doing "using ..." on the methods from DenseCoeffsBase. - // But some methods are only available in the DirectAccess case. - // So we add dummy methods here with these names, so that "using... " doesn't fail. - // It's not private so that the child class DenseBase can access them, and it's not public - // either since it's an implementation detail, so has to be protected. - void coeffRef(); - void coeffRefByOuterInner(); - void writePacket(); - void writePacketByOuterInner(); - void copyCoeff(); - void copyCoeffByOuterInner(); - void copyPacket(); - void copyPacketByOuterInner(); - void stride(); - void innerStride(); - void outerStride(); - void rowStride(); - void colStride(); -}; - -/** \brief Base class providing read/write coefficient access to matrices and arrays. - * \ingroup Core_Module - * \tparam Derived Type of the derived class - * \tparam #WriteAccessors Constant indicating read/write access - * - * This class defines the non-const \c operator() function and friends, which can be used to write specific - * entries of a matrix or array. This class inherits DenseCoeffsBase which - * defines the const variant for reading specific entries. - * - * \sa DenseCoeffsBase, \ref TopicClassHierarchy - */ -template -class DenseCoeffsBase : public DenseCoeffsBase -{ - public: - - typedef DenseCoeffsBase Base; - - typedef typename internal::traits::StorageKind StorageKind; - typedef typename internal::traits::Index Index; - typedef typename internal::traits::Scalar Scalar; - typedef typename internal::packet_traits::type PacketScalar; - typedef typename NumTraits::Real RealScalar; - - using Base::coeff; - using Base::rows; - using Base::cols; - using Base::size; - using Base::derived; - using Base::rowIndexByOuterInner; - using Base::colIndexByOuterInner; - using Base::operator[]; - using Base::operator(); - using Base::x; - using Base::y; - using Base::z; - using Base::w; - - /** Short version: don't use this function, use - * \link operator()(Index,Index) \endlink instead. - * - * Long version: this function is similar to - * \link operator()(Index,Index) \endlink, but without the assertion. - * Use this for limiting the performance cost of debugging code when doing - * repeated coefficient access. Only use this when it is guaranteed that the - * parameters \a row and \a col are in range. - * - * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this - * function equivalent to \link operator()(Index,Index) \endlink. - * - * \sa operator()(Index,Index), coeff(Index, Index) const, coeffRef(Index) - */ - EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col) - { - eigen_internal_assert(row >= 0 && row < rows() - && col >= 0 && col < cols()); - return derived().coeffRef(row, col); - } - - EIGEN_STRONG_INLINE Scalar& - coeffRefByOuterInner(Index outer, Index inner) - { - return coeffRef(rowIndexByOuterInner(outer, inner), - colIndexByOuterInner(outer, inner)); - } - - /** \returns a reference to the coefficient at given the given row and column. - * - * \sa operator[](Index) - */ - - EIGEN_STRONG_INLINE Scalar& - operator()(Index row, Index col) - { - eigen_assert(row >= 0 && row < rows() - && col >= 0 && col < cols()); - return derived().coeffRef(row, col); - } - - - /** Short version: don't use this function, use - * \link operator[](Index) \endlink instead. - * - * Long version: this function is similar to - * \link operator[](Index) \endlink, but without the assertion. - * Use this for limiting the performance cost of debugging code when doing - * repeated coefficient access. Only use this when it is guaranteed that the - * parameters \a row and \a col are in range. - * - * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this - * function equivalent to \link operator[](Index) \endlink. - * - * \sa operator[](Index), coeff(Index) const, coeffRef(Index,Index) - */ - - EIGEN_STRONG_INLINE Scalar& - coeffRef(Index index) - { - eigen_internal_assert(index >= 0 && index < size()); - return derived().coeffRef(index); - } - - /** \returns a reference to the coefficient at given index. - * - * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. - * - * \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w() - */ - - EIGEN_STRONG_INLINE Scalar& - operator[](Index index) - { - #ifndef EIGEN2_SUPPORT - EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime, - THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD) - #endif - eigen_assert(index >= 0 && index < size()); - return derived().coeffRef(index); - } - - /** \returns a reference to the coefficient at given index. - * - * This is synonymous to operator[](Index). - * - * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. - * - * \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w() - */ - - EIGEN_STRONG_INLINE Scalar& - operator()(Index index) - { - eigen_assert(index >= 0 && index < size()); - return derived().coeffRef(index); - } - - /** equivalent to operator[](0). */ - - EIGEN_STRONG_INLINE Scalar& - x() { return (*this)[0]; } - - /** equivalent to operator[](1). */ - - EIGEN_STRONG_INLINE Scalar& - y() { return (*this)[1]; } - - /** equivalent to operator[](2). */ - - EIGEN_STRONG_INLINE Scalar& - z() { return (*this)[2]; } - - /** equivalent to operator[](3). */ - - EIGEN_STRONG_INLINE Scalar& - w() { return (*this)[3]; } - - /** \internal - * Stores the given packet of coefficients, at the given row and column of this expression. It is your responsibility - * to ensure that a packet really starts there. This method is only available on expressions having the - * PacketAccessBit. - * - * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select - * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets - * starting at an address which is a multiple of the packet size. - */ - - template - EIGEN_STRONG_INLINE void writePacket - (Index row, Index col, const typename internal::packet_traits::type& val) - { - eigen_internal_assert(row >= 0 && row < rows() - && col >= 0 && col < cols()); - derived().template writePacket(row,col,val); - } - - - /** \internal */ - template - EIGEN_STRONG_INLINE void writePacketByOuterInner - (Index outer, Index inner, const typename internal::packet_traits::type& val) - { - writePacket(rowIndexByOuterInner(outer, inner), - colIndexByOuterInner(outer, inner), - val); - } - - /** \internal - * Stores the given packet of coefficients, at the given index in this expression. It is your responsibility - * to ensure that a packet really starts there. This method is only available on expressions having the - * PacketAccessBit and the LinearAccessBit. - * - * The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select - * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets - * starting at an address which is a multiple of the packet size. - */ - template - EIGEN_STRONG_INLINE void writePacket - (Index index, const typename internal::packet_traits::type& val) - { - eigen_internal_assert(index >= 0 && index < size()); - derived().template writePacket(index,val); - } - -#ifndef EIGEN_PARSED_BY_DOXYGEN - - /** \internal Copies the coefficient at position (row,col) of other into *this. - * - * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code - * with usual assignments. - * - * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox. - */ - - template - EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, const DenseBase& other) - { - eigen_internal_assert(row >= 0 && row < rows() - && col >= 0 && col < cols()); - derived().coeffRef(row, col) = other.derived().coeff(row, col); - } - - /** \internal Copies the coefficient at the given index of other into *this. - * - * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code - * with usual assignments. - * - * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox. - */ - - template - EIGEN_STRONG_INLINE void copyCoeff(Index index, const DenseBase& other) - { - eigen_internal_assert(index >= 0 && index < size()); - derived().coeffRef(index) = other.derived().coeff(index); - } - - - template - EIGEN_STRONG_INLINE void copyCoeffByOuterInner(Index outer, Index inner, const DenseBase& other) - { - const Index row = rowIndexByOuterInner(outer,inner); - const Index col = colIndexByOuterInner(outer,inner); - // derived() is important here: copyCoeff() may be reimplemented in Derived! - derived().copyCoeff(row, col, other); - } - - /** \internal Copies the packet at position (row,col) of other into *this. - * - * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code - * with usual assignments. - * - * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox. - */ - - template - EIGEN_STRONG_INLINE void copyPacket(Index row, Index col, const DenseBase& other) - { - eigen_internal_assert(row >= 0 && row < rows() - && col >= 0 && col < cols()); - derived().template writePacket(row, col, - other.derived().template packet(row, col)); - } - - /** \internal Copies the packet at the given index of other into *this. - * - * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code - * with usual assignments. - * - * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox. - */ - - template - EIGEN_STRONG_INLINE void copyPacket(Index index, const DenseBase& other) - { - eigen_internal_assert(index >= 0 && index < size()); - derived().template writePacket(index, - other.derived().template packet(index)); - } - - /** \internal */ - template - EIGEN_STRONG_INLINE void copyPacketByOuterInner(Index outer, Index inner, const DenseBase& other) - { - const Index row = rowIndexByOuterInner(outer,inner); - const Index col = colIndexByOuterInner(outer,inner); - // derived() is important here: copyCoeff() may be reimplemented in Derived! - derived().template copyPacket< OtherDerived, StoreMode, LoadMode>(row, col, other); - } -#endif - -}; - -/** \brief Base class providing direct read-only coefficient access to matrices and arrays. - * \ingroup Core_Module - * \tparam Derived Type of the derived class - * \tparam #DirectAccessors Constant indicating direct access - * - * This class defines functions to work with strides which can be used to access entries directly. This class - * inherits DenseCoeffsBase which defines functions to access entries read-only using - * \c operator() . - * - * \sa \ref TopicClassHierarchy - */ -template -class DenseCoeffsBase : public DenseCoeffsBase -{ - public: - - typedef DenseCoeffsBase Base; - typedef typename internal::traits::Index Index; - typedef typename internal::traits::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - - using Base::rows; - using Base::cols; - using Base::size; - using Base::derived; - - /** \returns the pointer increment between two consecutive elements within a slice in the inner direction. - * - * \sa outerStride(), rowStride(), colStride() - */ - inline Index innerStride() const - { - return derived().innerStride(); - } - - /** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns - * in a column-major matrix). - * - * \sa innerStride(), rowStride(), colStride() - */ - inline Index outerStride() const - { - return derived().outerStride(); - } - - // FIXME shall we remove it ? - inline Index stride() const - { - return Derived::IsVectorAtCompileTime ? innerStride() : outerStride(); - } - - /** \returns the pointer increment between two consecutive rows. - * - * \sa innerStride(), outerStride(), colStride() - */ - inline Index rowStride() const - { - return Derived::IsRowMajor ? outerStride() : innerStride(); - } - - /** \returns the pointer increment between two consecutive columns. - * - * \sa innerStride(), outerStride(), rowStride() - */ - inline Index colStride() const - { - return Derived::IsRowMajor ? innerStride() : outerStride(); - } -}; - -/** \brief Base class providing direct read/write coefficient access to matrices and arrays. - * \ingroup Core_Module - * \tparam Derived Type of the derived class - * \tparam #DirectWriteAccessors Constant indicating direct access - * - * This class defines functions to work with strides which can be used to access entries directly. This class - * inherits DenseCoeffsBase which defines functions to access entries read/write using - * \c operator(). - * - * \sa \ref TopicClassHierarchy - */ -template -class DenseCoeffsBase - : public DenseCoeffsBase -{ - public: - - typedef DenseCoeffsBase Base; - typedef typename internal::traits::Index Index; - typedef typename internal::traits::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - - using Base::rows; - using Base::cols; - using Base::size; - using Base::derived; - - /** \returns the pointer increment between two consecutive elements within a slice in the inner direction. - * - * \sa outerStride(), rowStride(), colStride() - */ - inline Index innerStride() const - { - return derived().innerStride(); - } - - /** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns - * in a column-major matrix). - * - * \sa innerStride(), rowStride(), colStride() - */ - inline Index outerStride() const - { - return derived().outerStride(); - } - - // FIXME shall we remove it ? - inline Index stride() const - { - return Derived::IsVectorAtCompileTime ? innerStride() : outerStride(); - } - - /** \returns the pointer increment between two consecutive rows. - * - * \sa innerStride(), outerStride(), colStride() - */ - inline Index rowStride() const - { - return Derived::IsRowMajor ? outerStride() : innerStride(); - } - - /** \returns the pointer increment between two consecutive columns. - * - * \sa innerStride(), outerStride(), rowStride() - */ - inline Index colStride() const - { - return Derived::IsRowMajor ? innerStride() : outerStride(); - } -}; - -namespace internal { - -template -struct first_aligned_impl -{ - static inline typename Derived::Index run(const Derived&) - { return 0; } -}; - -template -struct first_aligned_impl -{ - static inline typename Derived::Index run(const Derived& m) - { - return internal::first_aligned(&m.const_cast_derived().coeffRef(0,0), m.size()); - } -}; - -/** \internal \returns the index of the first element of the array that is well aligned for vectorization. - * - * There is also the variant first_aligned(const Scalar*, Integer) defined in Memory.h. See it for more - * documentation. - */ -template -static inline typename Derived::Index first_aligned(const Derived& m) -{ - return first_aligned_impl - - ::run(m); -} - -template::ret> -struct inner_stride_at_compile_time -{ - enum { ret = traits::InnerStrideAtCompileTime }; -}; - -template -struct inner_stride_at_compile_time -{ - enum { ret = 0 }; -}; - -template::ret> -struct outer_stride_at_compile_time -{ - enum { ret = traits::OuterStrideAtCompileTime }; -}; - -template -struct outer_stride_at_compile_time -{ - enum { ret = 0 }; -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_DENSECOEFFSBASE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/DenseStorage.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/DenseStorage.h deleted file mode 100755 index 568493cba..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/DenseStorage.h +++ /dev/null @@ -1,434 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2006-2009 Benoit Jacob -// Copyright (C) 2010 Hauke Heibel -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_MATRIXSTORAGE_H -#define EIGEN_MATRIXSTORAGE_H - -#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN - #define EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN EIGEN_DENSE_STORAGE_CTOR_PLUGIN; -#else - #define EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN -#endif - -namespace Eigen { - -namespace internal { - -struct constructor_without_unaligned_array_assert {}; - -template void check_static_allocation_size() -{ - // if EIGEN_STACK_ALLOCATION_LIMIT is defined to 0, then no limit - #if EIGEN_STACK_ALLOCATION_LIMIT - EIGEN_STATIC_ASSERT(Size * sizeof(T) <= EIGEN_STACK_ALLOCATION_LIMIT, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG); - #endif -} - -/** \internal - * Static array. If the MatrixOrArrayOptions require auto-alignment, the array will be automatically aligned: - * to 16 bytes boundary if the total size is a multiple of 16 bytes. - */ -template -struct plain_array -{ - T array[Size]; - - plain_array() - { - check_static_allocation_size(); - } - - plain_array(constructor_without_unaligned_array_assert) - { - check_static_allocation_size(); - } -}; - -#if defined(EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT) - #define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) -#elif EIGEN_GNUC_AT_LEAST(4,7) - // GCC 4.7 is too aggressive in its optimizations and remove the alignement test based on the fact the array is declared to be aligned. - // See this bug report: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=53900 - // Hiding the origin of the array pointer behind a function argument seems to do the trick even if the function is inlined: - template - EIGEN_ALWAYS_INLINE PtrType eigen_unaligned_array_assert_workaround_gcc47(PtrType array) { return array; } - #define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) \ - eigen_assert((reinterpret_cast(eigen_unaligned_array_assert_workaround_gcc47(array)) & sizemask) == 0 \ - && "this assertion is explained here: " \ - "http://eigen.tuxfamily.org/dox-devel/group__TopicUnalignedArrayAssert.html" \ - " **** READ THIS WEB PAGE !!! ****"); -#else - #define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) \ - eigen_assert((reinterpret_cast(array) & sizemask) == 0 \ - && "this assertion is explained here: " \ - "http://eigen.tuxfamily.org/dox-devel/group__TopicUnalignedArrayAssert.html" \ - " **** READ THIS WEB PAGE !!! ****"); -#endif - -template -struct plain_array -{ - EIGEN_USER_ALIGN16 T array[Size]; - - plain_array() - { - EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(0xf); - check_static_allocation_size(); - } - - plain_array(constructor_without_unaligned_array_assert) - { - check_static_allocation_size(); - } -}; - -template -struct plain_array -{ - EIGEN_USER_ALIGN16 T array[1]; - plain_array() {} - plain_array(constructor_without_unaligned_array_assert) {} -}; - -} // end namespace internal - -/** \internal - * - * \class DenseStorage - * \ingroup Core_Module - * - * \brief Stores the data of a matrix - * - * This class stores the data of fixed-size, dynamic-size or mixed matrices - * in a way as compact as possible. - * - * \sa Matrix - */ -template class DenseStorage; - -// purely fixed-size matrix -template class DenseStorage -{ - internal::plain_array m_data; - public: - DenseStorage() {} - DenseStorage(internal::constructor_without_unaligned_array_assert) - : m_data(internal::constructor_without_unaligned_array_assert()) {} - DenseStorage(const DenseStorage& other) : m_data(other.m_data) {} - DenseStorage& operator=(const DenseStorage& other) - { - if (this != &other) m_data = other.m_data; - return *this; - } - DenseStorage(DenseIndex,DenseIndex,DenseIndex) {} - void swap(DenseStorage& other) { std::swap(m_data,other.m_data); } - static DenseIndex rows(void) {return _Rows;} - static DenseIndex cols(void) {return _Cols;} - void conservativeResize(DenseIndex,DenseIndex,DenseIndex) {} - void resize(DenseIndex,DenseIndex,DenseIndex) {} - const T *data() const { return m_data.array; } - T *data() { return m_data.array; } -}; - -// null matrix -template class DenseStorage -{ - public: - DenseStorage() {} - DenseStorage(internal::constructor_without_unaligned_array_assert) {} - DenseStorage(const DenseStorage&) {} - DenseStorage& operator=(const DenseStorage&) { return *this; } - DenseStorage(DenseIndex,DenseIndex,DenseIndex) {} - void swap(DenseStorage& ) {} - static DenseIndex rows(void) {return _Rows;} - static DenseIndex cols(void) {return _Cols;} - void conservativeResize(DenseIndex,DenseIndex,DenseIndex) {} - void resize(DenseIndex,DenseIndex,DenseIndex) {} - const T *data() const { return 0; } - T *data() { return 0; } -}; - -// more specializations for null matrices; these are necessary to resolve ambiguities -template class DenseStorage -: public DenseStorage { }; - -template class DenseStorage -: public DenseStorage { }; - -template class DenseStorage -: public DenseStorage { }; - -// dynamic-size matrix with fixed-size storage -template class DenseStorage -{ - internal::plain_array m_data; - DenseIndex m_rows; - DenseIndex m_cols; - public: - DenseStorage() : m_rows(0), m_cols(0) {} - DenseStorage(internal::constructor_without_unaligned_array_assert) - : m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0), m_cols(0) {} - DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_rows(other.m_rows), m_cols(other.m_cols) {} - DenseStorage& operator=(const DenseStorage& other) - { - if (this != &other) - { - m_data = other.m_data; - m_rows = other.m_rows; - m_cols = other.m_cols; - } - return *this; - } - DenseStorage(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) : m_rows(nbRows), m_cols(nbCols) {} - void swap(DenseStorage& other) - { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); } - DenseIndex rows() const {return m_rows;} - DenseIndex cols() const {return m_cols;} - void conservativeResize(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) { m_rows = nbRows; m_cols = nbCols; } - void resize(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) { m_rows = nbRows; m_cols = nbCols; } - const T *data() const { return m_data.array; } - T *data() { return m_data.array; } -}; - -// dynamic-size matrix with fixed-size storage and fixed width -template class DenseStorage -{ - internal::plain_array m_data; - DenseIndex m_rows; - public: - DenseStorage() : m_rows(0) {} - DenseStorage(internal::constructor_without_unaligned_array_assert) - : m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0) {} - DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_rows(other.m_rows) {} - DenseStorage& operator=(const DenseStorage& other) - { - if (this != &other) - { - m_data = other.m_data; - m_rows = other.m_rows; - } - return *this; - } - DenseStorage(DenseIndex, DenseIndex nbRows, DenseIndex) : m_rows(nbRows) {} - void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); } - DenseIndex rows(void) const {return m_rows;} - DenseIndex cols(void) const {return _Cols;} - void conservativeResize(DenseIndex, DenseIndex nbRows, DenseIndex) { m_rows = nbRows; } - void resize(DenseIndex, DenseIndex nbRows, DenseIndex) { m_rows = nbRows; } - const T *data() const { return m_data.array; } - T *data() { return m_data.array; } -}; - -// dynamic-size matrix with fixed-size storage and fixed height -template class DenseStorage -{ - internal::plain_array m_data; - DenseIndex m_cols; - public: - DenseStorage() : m_cols(0) {} - DenseStorage(internal::constructor_without_unaligned_array_assert) - : m_data(internal::constructor_without_unaligned_array_assert()), m_cols(0) {} - DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_cols(other.m_cols) {} - DenseStorage& operator=(const DenseStorage& other) - { - if (this != &other) - { - m_data = other.m_data; - m_cols = other.m_cols; - } - return *this; - } - DenseStorage(DenseIndex, DenseIndex, DenseIndex nbCols) : m_cols(nbCols) {} - void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); } - DenseIndex rows(void) const {return _Rows;} - DenseIndex cols(void) const {return m_cols;} - void conservativeResize(DenseIndex, DenseIndex, DenseIndex nbCols) { m_cols = nbCols; } - void resize(DenseIndex, DenseIndex, DenseIndex nbCols) { m_cols = nbCols; } - const T *data() const { return m_data.array; } - T *data() { return m_data.array; } -}; - -// purely dynamic matrix. -template class DenseStorage -{ - T *m_data; - DenseIndex m_rows; - DenseIndex m_cols; - public: - DenseStorage() : m_data(0), m_rows(0), m_cols(0) {} - DenseStorage(internal::constructor_without_unaligned_array_assert) - : m_data(0), m_rows(0), m_cols(0) {} - DenseStorage(DenseIndex size, DenseIndex nbRows, DenseIndex nbCols) - : m_data(internal::conditional_aligned_new_auto(size)), m_rows(nbRows), m_cols(nbCols) - { EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN } -#ifdef EIGEN_HAVE_RVALUE_REFERENCES - DenseStorage(DenseStorage&& other) - : m_data(std::move(other.m_data)) - , m_rows(std::move(other.m_rows)) - , m_cols(std::move(other.m_cols)) - { - other.m_data = nullptr; - } - DenseStorage& operator=(DenseStorage&& other) - { - using std::swap; - swap(m_data, other.m_data); - swap(m_rows, other.m_rows); - swap(m_cols, other.m_cols); - return *this; - } -#endif - ~DenseStorage() { internal::conditional_aligned_delete_auto(m_data, m_rows*m_cols); } - void swap(DenseStorage& other) - { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); } - DenseIndex rows(void) const {return m_rows;} - DenseIndex cols(void) const {return m_cols;} - void conservativeResize(DenseIndex size, DenseIndex nbRows, DenseIndex nbCols) - { - m_data = internal::conditional_aligned_realloc_new_auto(m_data, size, m_rows*m_cols); - m_rows = nbRows; - m_cols = nbCols; - } - void resize(DenseIndex size, DenseIndex nbRows, DenseIndex nbCols) - { - if(size != m_rows*m_cols) - { - internal::conditional_aligned_delete_auto(m_data, m_rows*m_cols); - if (size) - m_data = internal::conditional_aligned_new_auto(size); - else - m_data = 0; - EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN - } - m_rows = nbRows; - m_cols = nbCols; - } - const T *data() const { return m_data; } - T *data() { return m_data; } - private: - DenseStorage(const DenseStorage&); - DenseStorage& operator=(const DenseStorage&); -}; - -// matrix with dynamic width and fixed height (so that matrix has dynamic size). -template class DenseStorage -{ - T *m_data; - DenseIndex m_cols; - public: - DenseStorage() : m_data(0), m_cols(0) {} - DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_cols(0) {} - DenseStorage(DenseIndex size, DenseIndex, DenseIndex nbCols) : m_data(internal::conditional_aligned_new_auto(size)), m_cols(nbCols) - { EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN } -#ifdef EIGEN_HAVE_RVALUE_REFERENCES - DenseStorage(DenseStorage&& other) - : m_data(std::move(other.m_data)) - , m_cols(std::move(other.m_cols)) - { - other.m_data = nullptr; - } - DenseStorage& operator=(DenseStorage&& other) - { - using std::swap; - swap(m_data, other.m_data); - swap(m_cols, other.m_cols); - return *this; - } -#endif - ~DenseStorage() { internal::conditional_aligned_delete_auto(m_data, _Rows*m_cols); } - void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); } - static DenseIndex rows(void) {return _Rows;} - DenseIndex cols(void) const {return m_cols;} - void conservativeResize(DenseIndex size, DenseIndex, DenseIndex nbCols) - { - m_data = internal::conditional_aligned_realloc_new_auto(m_data, size, _Rows*m_cols); - m_cols = nbCols; - } - EIGEN_STRONG_INLINE void resize(DenseIndex size, DenseIndex, DenseIndex nbCols) - { - if(size != _Rows*m_cols) - { - internal::conditional_aligned_delete_auto(m_data, _Rows*m_cols); - if (size) - m_data = internal::conditional_aligned_new_auto(size); - else - m_data = 0; - EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN - } - m_cols = nbCols; - } - const T *data() const { return m_data; } - T *data() { return m_data; } - private: - DenseStorage(const DenseStorage&); - DenseStorage& operator=(const DenseStorage&); -}; - -// matrix with dynamic height and fixed width (so that matrix has dynamic size). -template class DenseStorage -{ - T *m_data; - DenseIndex m_rows; - public: - DenseStorage() : m_data(0), m_rows(0) {} - DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0) {} - DenseStorage(DenseIndex size, DenseIndex nbRows, DenseIndex) : m_data(internal::conditional_aligned_new_auto(size)), m_rows(nbRows) - { EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN } -#ifdef EIGEN_HAVE_RVALUE_REFERENCES - DenseStorage(DenseStorage&& other) - : m_data(std::move(other.m_data)) - , m_rows(std::move(other.m_rows)) - { - other.m_data = nullptr; - } - DenseStorage& operator=(DenseStorage&& other) - { - using std::swap; - swap(m_data, other.m_data); - swap(m_rows, other.m_rows); - return *this; - } -#endif - ~DenseStorage() { internal::conditional_aligned_delete_auto(m_data, _Cols*m_rows); } - void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); } - DenseIndex rows(void) const {return m_rows;} - static DenseIndex cols(void) {return _Cols;} - void conservativeResize(DenseIndex size, DenseIndex nbRows, DenseIndex) - { - m_data = internal::conditional_aligned_realloc_new_auto(m_data, size, m_rows*_Cols); - m_rows = nbRows; - } - EIGEN_STRONG_INLINE void resize(DenseIndex size, DenseIndex nbRows, DenseIndex) - { - if(size != m_rows*_Cols) - { - internal::conditional_aligned_delete_auto(m_data, _Cols*m_rows); - if (size) - m_data = internal::conditional_aligned_new_auto(size); - else - m_data = 0; - EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN - } - m_rows = nbRows; - } - const T *data() const { return m_data; } - T *data() { return m_data; } - private: - DenseStorage(const DenseStorage&); - DenseStorage& operator=(const DenseStorage&); -}; - -} // end namespace Eigen - -#endif // EIGEN_MATRIX_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Diagonal.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Diagonal.h deleted file mode 100755 index 68cf6d4b0..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Diagonal.h +++ /dev/null @@ -1,237 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2007-2009 Benoit Jacob -// Copyright (C) 2009-2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_DIAGONAL_H -#define EIGEN_DIAGONAL_H - -namespace Eigen { - -/** \class Diagonal - * \ingroup Core_Module - * - * \brief Expression of a diagonal/subdiagonal/superdiagonal in a matrix - * - * \param MatrixType the type of the object in which we are taking a sub/main/super diagonal - * \param DiagIndex the index of the sub/super diagonal. The default is 0 and it means the main diagonal. - * A positive value means a superdiagonal, a negative value means a subdiagonal. - * You can also use Dynamic so the index can be set at runtime. - * - * The matrix is not required to be square. - * - * This class represents an expression of the main diagonal, or any sub/super diagonal - * of a square matrix. It is the return type of MatrixBase::diagonal() and MatrixBase::diagonal(Index) and most of the - * time this is the only way it is used. - * - * \sa MatrixBase::diagonal(), MatrixBase::diagonal(Index) - */ - -namespace internal { -template -struct traits > - : traits -{ - typedef typename nested::type MatrixTypeNested; - typedef typename remove_reference::type _MatrixTypeNested; - typedef typename MatrixType::StorageKind StorageKind; - enum { - RowsAtCompileTime = (int(DiagIndex) == DynamicIndex || int(MatrixType::SizeAtCompileTime) == Dynamic) ? Dynamic - : (EIGEN_PLAIN_ENUM_MIN(MatrixType::RowsAtCompileTime - EIGEN_PLAIN_ENUM_MAX(-DiagIndex, 0), - MatrixType::ColsAtCompileTime - EIGEN_PLAIN_ENUM_MAX( DiagIndex, 0))), - ColsAtCompileTime = 1, - MaxRowsAtCompileTime = int(MatrixType::MaxSizeAtCompileTime) == Dynamic ? Dynamic - : DiagIndex == DynamicIndex ? EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::MaxRowsAtCompileTime, - MatrixType::MaxColsAtCompileTime) - : (EIGEN_PLAIN_ENUM_MIN(MatrixType::MaxRowsAtCompileTime - EIGEN_PLAIN_ENUM_MAX(-DiagIndex, 0), - MatrixType::MaxColsAtCompileTime - EIGEN_PLAIN_ENUM_MAX( DiagIndex, 0))), - MaxColsAtCompileTime = 1, - MaskLvalueBit = is_lvalue::value ? LvalueBit : 0, - Flags = (unsigned int)_MatrixTypeNested::Flags & (HereditaryBits | LinearAccessBit | MaskLvalueBit | DirectAccessBit) & ~RowMajorBit, - CoeffReadCost = _MatrixTypeNested::CoeffReadCost, - MatrixTypeOuterStride = outer_stride_at_compile_time::ret, - InnerStrideAtCompileTime = MatrixTypeOuterStride == Dynamic ? Dynamic : MatrixTypeOuterStride+1, - OuterStrideAtCompileTime = 0 - }; -}; -} - -template class Diagonal - : public internal::dense_xpr_base< Diagonal >::type -{ - public: - - enum { DiagIndex = _DiagIndex }; - typedef typename internal::dense_xpr_base::type Base; - EIGEN_DENSE_PUBLIC_INTERFACE(Diagonal) - - inline Diagonal(MatrixType& matrix, Index a_index = DiagIndex) : m_matrix(matrix), m_index(a_index) {} - - EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Diagonal) - - inline Index rows() const - { return m_index.value()<0 ? (std::min)(m_matrix.cols(),m_matrix.rows()+m_index.value()) : (std::min)(m_matrix.rows(),m_matrix.cols()-m_index.value()); } - - inline Index cols() const { return 1; } - - inline Index innerStride() const - { - return m_matrix.outerStride() + 1; - } - - inline Index outerStride() const - { - return 0; - } - - typedef typename internal::conditional< - internal::is_lvalue::value, - Scalar, - const Scalar - >::type ScalarWithConstIfNotLvalue; - - inline ScalarWithConstIfNotLvalue* data() { return &(m_matrix.const_cast_derived().coeffRef(rowOffset(), colOffset())); } - inline const Scalar* data() const { return &(m_matrix.const_cast_derived().coeffRef(rowOffset(), colOffset())); } - - inline Scalar& coeffRef(Index row, Index) - { - EIGEN_STATIC_ASSERT_LVALUE(MatrixType) - return m_matrix.const_cast_derived().coeffRef(row+rowOffset(), row+colOffset()); - } - - inline const Scalar& coeffRef(Index row, Index) const - { - return m_matrix.const_cast_derived().coeffRef(row+rowOffset(), row+colOffset()); - } - - inline CoeffReturnType coeff(Index row, Index) const - { - return m_matrix.coeff(row+rowOffset(), row+colOffset()); - } - - inline Scalar& coeffRef(Index idx) - { - EIGEN_STATIC_ASSERT_LVALUE(MatrixType) - return m_matrix.const_cast_derived().coeffRef(idx+rowOffset(), idx+colOffset()); - } - - inline const Scalar& coeffRef(Index idx) const - { - return m_matrix.const_cast_derived().coeffRef(idx+rowOffset(), idx+colOffset()); - } - - inline CoeffReturnType coeff(Index idx) const - { - return m_matrix.coeff(idx+rowOffset(), idx+colOffset()); - } - - const typename internal::remove_all::type& - nestedExpression() const - { - return m_matrix; - } - - int index() const - { - return m_index.value(); - } - - protected: - typename MatrixType::Nested m_matrix; - const internal::variable_if_dynamicindex m_index; - - private: - // some compilers may fail to optimize std::max etc in case of compile-time constants... - EIGEN_STRONG_INLINE Index absDiagIndex() const { return m_index.value()>0 ? m_index.value() : -m_index.value(); } - EIGEN_STRONG_INLINE Index rowOffset() const { return m_index.value()>0 ? 0 : -m_index.value(); } - EIGEN_STRONG_INLINE Index colOffset() const { return m_index.value()>0 ? m_index.value() : 0; } - // triger a compile time error is someone try to call packet - template typename MatrixType::PacketReturnType packet(Index) const; - template typename MatrixType::PacketReturnType packet(Index,Index) const; -}; - -/** \returns an expression of the main diagonal of the matrix \c *this - * - * \c *this is not required to be square. - * - * Example: \include MatrixBase_diagonal.cpp - * Output: \verbinclude MatrixBase_diagonal.out - * - * \sa class Diagonal */ -template -inline typename MatrixBase::DiagonalReturnType -MatrixBase::diagonal() -{ - return derived(); -} - -/** This is the const version of diagonal(). */ -template -inline typename MatrixBase::ConstDiagonalReturnType -MatrixBase::diagonal() const -{ - return ConstDiagonalReturnType(derived()); -} - -/** \returns an expression of the \a DiagIndex-th sub or super diagonal of the matrix \c *this - * - * \c *this is not required to be square. - * - * The template parameter \a DiagIndex represent a super diagonal if \a DiagIndex > 0 - * and a sub diagonal otherwise. \a DiagIndex == 0 is equivalent to the main diagonal. - * - * Example: \include MatrixBase_diagonal_int.cpp - * Output: \verbinclude MatrixBase_diagonal_int.out - * - * \sa MatrixBase::diagonal(), class Diagonal */ -template -inline typename MatrixBase::DiagonalDynamicIndexReturnType -MatrixBase::diagonal(Index index) -{ - return DiagonalDynamicIndexReturnType(derived(), index); -} - -/** This is the const version of diagonal(Index). */ -template -inline typename MatrixBase::ConstDiagonalDynamicIndexReturnType -MatrixBase::diagonal(Index index) const -{ - return ConstDiagonalDynamicIndexReturnType(derived(), index); -} - -/** \returns an expression of the \a DiagIndex-th sub or super diagonal of the matrix \c *this - * - * \c *this is not required to be square. - * - * The template parameter \a DiagIndex represent a super diagonal if \a DiagIndex > 0 - * and a sub diagonal otherwise. \a DiagIndex == 0 is equivalent to the main diagonal. - * - * Example: \include MatrixBase_diagonal_template_int.cpp - * Output: \verbinclude MatrixBase_diagonal_template_int.out - * - * \sa MatrixBase::diagonal(), class Diagonal */ -template -template -inline typename MatrixBase::template DiagonalIndexReturnType::Type -MatrixBase::diagonal() -{ - return derived(); -} - -/** This is the const version of diagonal(). */ -template -template -inline typename MatrixBase::template ConstDiagonalIndexReturnType::Type -MatrixBase::diagonal() const -{ - return derived(); -} - -} // end namespace Eigen - -#endif // EIGEN_DIAGONAL_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/DiagonalMatrix.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/DiagonalMatrix.h deleted file mode 100755 index 53c757bef..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/DiagonalMatrix.h +++ /dev/null @@ -1,313 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Gael Guennebaud -// Copyright (C) 2007-2009 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_DIAGONALMATRIX_H -#define EIGEN_DIAGONALMATRIX_H - -namespace Eigen { - -#ifndef EIGEN_PARSED_BY_DOXYGEN -template -class DiagonalBase : public EigenBase -{ - public: - typedef typename internal::traits::DiagonalVectorType DiagonalVectorType; - typedef typename DiagonalVectorType::Scalar Scalar; - typedef typename DiagonalVectorType::RealScalar RealScalar; - typedef typename internal::traits::StorageKind StorageKind; - typedef typename internal::traits::Index Index; - - enum { - RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime, - ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime, - MaxRowsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime, - MaxColsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime, - IsVectorAtCompileTime = 0, - Flags = 0 - }; - - typedef Matrix DenseMatrixType; - typedef DenseMatrixType DenseType; - typedef DiagonalMatrix PlainObject; - - inline const Derived& derived() const { return *static_cast(this); } - inline Derived& derived() { return *static_cast(this); } - - DenseMatrixType toDenseMatrix() const { return derived(); } - template - void evalTo(MatrixBase &other) const; - template - inline void addTo(MatrixBase &other) const - { other.diagonal() += diagonal(); } - template - inline void subTo(MatrixBase &other) const - { other.diagonal() -= diagonal(); } - - inline const DiagonalVectorType& diagonal() const { return derived().diagonal(); } - inline DiagonalVectorType& diagonal() { return derived().diagonal(); } - - inline Index rows() const { return diagonal().size(); } - inline Index cols() const { return diagonal().size(); } - - /** \returns the diagonal matrix product of \c *this by the matrix \a matrix. - */ - template - const DiagonalProduct - operator*(const MatrixBase &matrix) const - { - return DiagonalProduct(matrix.derived(), derived()); - } - - inline const DiagonalWrapper, const DiagonalVectorType> > - inverse() const - { - return diagonal().cwiseInverse(); - } - - inline const DiagonalWrapper, const DiagonalVectorType> > - operator*(const Scalar& scalar) const - { - return diagonal() * scalar; - } - friend inline const DiagonalWrapper, const DiagonalVectorType> > - operator*(const Scalar& scalar, const DiagonalBase& other) - { - return other.diagonal() * scalar; - } - - #ifdef EIGEN2_SUPPORT - template - bool isApprox(const DiagonalBase& other, typename NumTraits::Real precision = NumTraits::dummy_precision()) const - { - return diagonal().isApprox(other.diagonal(), precision); - } - template - bool isApprox(const MatrixBase& other, typename NumTraits::Real precision = NumTraits::dummy_precision()) const - { - return toDenseMatrix().isApprox(other, precision); - } - #endif -}; - -template -template -inline void DiagonalBase::evalTo(MatrixBase &other) const -{ - other.setZero(); - other.diagonal() = diagonal(); -} -#endif - -/** \class DiagonalMatrix - * \ingroup Core_Module - * - * \brief Represents a diagonal matrix with its storage - * - * \param _Scalar the type of coefficients - * \param SizeAtCompileTime the dimension of the matrix, or Dynamic - * \param MaxSizeAtCompileTime the dimension of the matrix, or Dynamic. This parameter is optional and defaults - * to SizeAtCompileTime. Most of the time, you do not need to specify it. - * - * \sa class DiagonalWrapper - */ - -namespace internal { -template -struct traits > - : traits > -{ - typedef Matrix<_Scalar,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1> DiagonalVectorType; - typedef Dense StorageKind; - typedef DenseIndex Index; - enum { - Flags = LvalueBit - }; -}; -} -template -class DiagonalMatrix - : public DiagonalBase > -{ - public: - #ifndef EIGEN_PARSED_BY_DOXYGEN - typedef typename internal::traits::DiagonalVectorType DiagonalVectorType; - typedef const DiagonalMatrix& Nested; - typedef _Scalar Scalar; - typedef typename internal::traits::StorageKind StorageKind; - typedef typename internal::traits::Index Index; - #endif - - protected: - - DiagonalVectorType m_diagonal; - - public: - - /** const version of diagonal(). */ - inline const DiagonalVectorType& diagonal() const { return m_diagonal; } - /** \returns a reference to the stored vector of diagonal coefficients. */ - inline DiagonalVectorType& diagonal() { return m_diagonal; } - - /** Default constructor without initialization */ - inline DiagonalMatrix() {} - - /** Constructs a diagonal matrix with given dimension */ - inline DiagonalMatrix(Index dim) : m_diagonal(dim) {} - - /** 2D constructor. */ - inline DiagonalMatrix(const Scalar& x, const Scalar& y) : m_diagonal(x,y) {} - - /** 3D constructor. */ - inline DiagonalMatrix(const Scalar& x, const Scalar& y, const Scalar& z) : m_diagonal(x,y,z) {} - - /** Copy constructor. */ - template - inline DiagonalMatrix(const DiagonalBase& other) : m_diagonal(other.diagonal()) {} - - #ifndef EIGEN_PARSED_BY_DOXYGEN - /** copy constructor. prevent a default copy constructor from hiding the other templated constructor */ - inline DiagonalMatrix(const DiagonalMatrix& other) : m_diagonal(other.diagonal()) {} - #endif - - /** generic constructor from expression of the diagonal coefficients */ - template - explicit inline DiagonalMatrix(const MatrixBase& other) : m_diagonal(other) - {} - - /** Copy operator. */ - template - DiagonalMatrix& operator=(const DiagonalBase& other) - { - m_diagonal = other.diagonal(); - return *this; - } - - #ifndef EIGEN_PARSED_BY_DOXYGEN - /** This is a special case of the templated operator=. Its purpose is to - * prevent a default operator= from hiding the templated operator=. - */ - DiagonalMatrix& operator=(const DiagonalMatrix& other) - { - m_diagonal = other.diagonal(); - return *this; - } - #endif - - /** Resizes to given size. */ - inline void resize(Index size) { m_diagonal.resize(size); } - /** Sets all coefficients to zero. */ - inline void setZero() { m_diagonal.setZero(); } - /** Resizes and sets all coefficients to zero. */ - inline void setZero(Index size) { m_diagonal.setZero(size); } - /** Sets this matrix to be the identity matrix of the current size. */ - inline void setIdentity() { m_diagonal.setOnes(); } - /** Sets this matrix to be the identity matrix of the given size. */ - inline void setIdentity(Index size) { m_diagonal.setOnes(size); } -}; - -/** \class DiagonalWrapper - * \ingroup Core_Module - * - * \brief Expression of a diagonal matrix - * - * \param _DiagonalVectorType the type of the vector of diagonal coefficients - * - * This class is an expression of a diagonal matrix, but not storing its own vector of diagonal coefficients, - * instead wrapping an existing vector expression. It is the return type of MatrixBase::asDiagonal() - * and most of the time this is the only way that it is used. - * - * \sa class DiagonalMatrix, class DiagonalBase, MatrixBase::asDiagonal() - */ - -namespace internal { -template -struct traits > -{ - typedef _DiagonalVectorType DiagonalVectorType; - typedef typename DiagonalVectorType::Scalar Scalar; - typedef typename DiagonalVectorType::Index Index; - typedef typename DiagonalVectorType::StorageKind StorageKind; - enum { - RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime, - ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime, - MaxRowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime, - MaxColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime, - Flags = traits::Flags & LvalueBit - }; -}; -} - -template -class DiagonalWrapper - : public DiagonalBase >, internal::no_assignment_operator -{ - public: - #ifndef EIGEN_PARSED_BY_DOXYGEN - typedef _DiagonalVectorType DiagonalVectorType; - typedef DiagonalWrapper Nested; - #endif - - /** Constructor from expression of diagonal coefficients to wrap. */ - inline DiagonalWrapper(DiagonalVectorType& a_diagonal) : m_diagonal(a_diagonal) {} - - /** \returns a const reference to the wrapped expression of diagonal coefficients. */ - const DiagonalVectorType& diagonal() const { return m_diagonal; } - - protected: - typename DiagonalVectorType::Nested m_diagonal; -}; - -/** \returns a pseudo-expression of a diagonal matrix with *this as vector of diagonal coefficients - * - * \only_for_vectors - * - * Example: \include MatrixBase_asDiagonal.cpp - * Output: \verbinclude MatrixBase_asDiagonal.out - * - * \sa class DiagonalWrapper, class DiagonalMatrix, diagonal(), isDiagonal() - **/ -template -inline const DiagonalWrapper -MatrixBase::asDiagonal() const -{ - return derived(); -} - -/** \returns true if *this is approximately equal to a diagonal matrix, - * within the precision given by \a prec. - * - * Example: \include MatrixBase_isDiagonal.cpp - * Output: \verbinclude MatrixBase_isDiagonal.out - * - * \sa asDiagonal() - */ -template -bool MatrixBase::isDiagonal(const RealScalar& prec) const -{ - using std::abs; - if(cols() != rows()) return false; - RealScalar maxAbsOnDiagonal = static_cast(-1); - for(Index j = 0; j < cols(); ++j) - { - RealScalar absOnDiagonal = abs(coeff(j,j)); - if(absOnDiagonal > maxAbsOnDiagonal) maxAbsOnDiagonal = absOnDiagonal; - } - for(Index j = 0; j < cols(); ++j) - for(Index i = 0; i < j; ++i) - { - if(!internal::isMuchSmallerThan(coeff(i, j), maxAbsOnDiagonal, prec)) return false; - if(!internal::isMuchSmallerThan(coeff(j, i), maxAbsOnDiagonal, prec)) return false; - } - return true; -} - -} // end namespace Eigen - -#endif // EIGEN_DIAGONALMATRIX_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/DiagonalProduct.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/DiagonalProduct.h deleted file mode 100755 index cc6b536e1..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/DiagonalProduct.h +++ /dev/null @@ -1,131 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2007-2009 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_DIAGONALPRODUCT_H -#define EIGEN_DIAGONALPRODUCT_H - -namespace Eigen { - -namespace internal { -template -struct traits > - : traits -{ - typedef typename scalar_product_traits::ReturnType Scalar; - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, - - _StorageOrder = MatrixType::Flags & RowMajorBit ? RowMajor : ColMajor, - _ScalarAccessOnDiag = !((int(_StorageOrder) == ColMajor && int(ProductOrder) == OnTheLeft) - ||(int(_StorageOrder) == RowMajor && int(ProductOrder) == OnTheRight)), - _SameTypes = is_same::value, - // FIXME currently we need same types, but in the future the next rule should be the one - //_Vectorizable = bool(int(MatrixType::Flags)&PacketAccessBit) && ((!_PacketOnDiag) || (_SameTypes && bool(int(DiagonalType::DiagonalVectorType::Flags)&PacketAccessBit))), - _Vectorizable = bool(int(MatrixType::Flags)&PacketAccessBit) && _SameTypes && (_ScalarAccessOnDiag || (bool(int(DiagonalType::DiagonalVectorType::Flags)&PacketAccessBit))), - _LinearAccessMask = (RowsAtCompileTime==1 || ColsAtCompileTime==1) ? LinearAccessBit : 0, - - Flags = ((HereditaryBits|_LinearAccessMask|AlignedBit) & (unsigned int)(MatrixType::Flags)) | (_Vectorizable ? PacketAccessBit : 0),//(int(MatrixType::Flags)&int(DiagonalType::DiagonalVectorType::Flags)&AlignedBit), - Cost0 = EIGEN_ADD_COST(NumTraits::MulCost, MatrixType::CoeffReadCost), - CoeffReadCost = EIGEN_ADD_COST(Cost0,DiagonalType::DiagonalVectorType::CoeffReadCost) - }; -}; -} - -template -class DiagonalProduct : internal::no_assignment_operator, - public MatrixBase > -{ - public: - - typedef MatrixBase Base; - EIGEN_DENSE_PUBLIC_INTERFACE(DiagonalProduct) - - inline DiagonalProduct(const MatrixType& matrix, const DiagonalType& diagonal) - : m_matrix(matrix), m_diagonal(diagonal) - { - eigen_assert(diagonal.diagonal().size() == (ProductOrder == OnTheLeft ? matrix.rows() : matrix.cols())); - } - - EIGEN_STRONG_INLINE Index rows() const { return m_matrix.rows(); } - EIGEN_STRONG_INLINE Index cols() const { return m_matrix.cols(); } - - EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const - { - return m_diagonal.diagonal().coeff(ProductOrder == OnTheLeft ? row : col) * m_matrix.coeff(row, col); - } - - EIGEN_STRONG_INLINE const Scalar coeff(Index idx) const - { - enum { - StorageOrder = int(MatrixType::Flags) & RowMajorBit ? RowMajor : ColMajor - }; - return coeff(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx); - } - - template - EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const - { - enum { - StorageOrder = Flags & RowMajorBit ? RowMajor : ColMajor - }; - const Index indexInDiagonalVector = ProductOrder == OnTheLeft ? row : col; - return packet_impl(row,col,indexInDiagonalVector,typename internal::conditional< - ((int(StorageOrder) == RowMajor && int(ProductOrder) == OnTheLeft) - ||(int(StorageOrder) == ColMajor && int(ProductOrder) == OnTheRight)), internal::true_type, internal::false_type>::type()); - } - - template - EIGEN_STRONG_INLINE PacketScalar packet(Index idx) const - { - enum { - StorageOrder = int(MatrixType::Flags) & RowMajorBit ? RowMajor : ColMajor - }; - return packet(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx); - } - - protected: - template - EIGEN_STRONG_INLINE PacketScalar packet_impl(Index row, Index col, Index id, internal::true_type) const - { - return internal::pmul(m_matrix.template packet(row, col), - internal::pset1(m_diagonal.diagonal().coeff(id))); - } - - template - EIGEN_STRONG_INLINE PacketScalar packet_impl(Index row, Index col, Index id, internal::false_type) const - { - enum { - InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime, - DiagonalVectorPacketLoadMode = (LoadMode == Aligned && (((InnerSize%16) == 0) || (int(DiagonalType::DiagonalVectorType::Flags)&AlignedBit)==AlignedBit) ? Aligned : Unaligned) - }; - return internal::pmul(m_matrix.template packet(row, col), - m_diagonal.diagonal().template packet(id)); - } - - typename MatrixType::Nested m_matrix; - typename DiagonalType::Nested m_diagonal; -}; - -/** \returns the diagonal matrix product of \c *this by the diagonal matrix \a diagonal. - */ -template -template -inline const DiagonalProduct -MatrixBase::operator*(const DiagonalBase &a_diagonal) const -{ - return DiagonalProduct(derived(), a_diagonal.derived()); -} - -} // end namespace Eigen - -#endif // EIGEN_DIAGONALPRODUCT_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Dot.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Dot.h deleted file mode 100755 index 23aab831b..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Dot.h +++ /dev/null @@ -1,263 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2006-2008, 2010 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_DOT_H -#define EIGEN_DOT_H - -namespace Eigen { - -namespace internal { - -// helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot -// with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE -// looking at the static assertions. Thus this is a trick to get better compile errors. -template -struct dot_nocheck -{ - typedef typename scalar_product_traits::Scalar,typename traits::Scalar>::ReturnType ResScalar; - static inline ResScalar run(const MatrixBase& a, const MatrixBase& b) - { - return a.template binaryExpr::Scalar,typename traits::Scalar> >(b).sum(); - } -}; - -template -struct dot_nocheck -{ - typedef typename scalar_product_traits::Scalar,typename traits::Scalar>::ReturnType ResScalar; - static inline ResScalar run(const MatrixBase& a, const MatrixBase& b) - { - return a.transpose().template binaryExpr::Scalar,typename traits::Scalar> >(b).sum(); - } -}; - -} // end namespace internal - -/** \returns the dot product of *this with other. - * - * \only_for_vectors - * - * \note If the scalar type is complex numbers, then this function returns the hermitian - * (sesquilinear) dot product, conjugate-linear in the first variable and linear in the - * second variable. - * - * \sa squaredNorm(), norm() - */ -template -template -inline typename internal::scalar_product_traits::Scalar,typename internal::traits::Scalar>::ReturnType -MatrixBase::dot(const MatrixBase& other) const -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) - EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived) - typedef internal::scalar_conj_product_op func; - EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar); - - eigen_assert(size() == other.size()); - - return internal::dot_nocheck::run(*this, other); -} - -#ifdef EIGEN2_SUPPORT -/** \returns the dot product of *this with other, with the Eigen2 convention that the dot product is linear in the first variable - * (conjugating the second variable). Of course this only makes a difference in the complex case. - * - * This method is only available in EIGEN2_SUPPORT mode. - * - * \only_for_vectors - * - * \sa dot() - */ -template -template -typename internal::traits::Scalar -MatrixBase::eigen2_dot(const MatrixBase& other) const -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) - EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived) - EIGEN_STATIC_ASSERT((internal::is_same::value), - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - - eigen_assert(size() == other.size()); - - return internal::dot_nocheck::run(other,*this); -} -#endif - - -//---------- implementation of L2 norm and related functions ---------- - -/** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the Frobenius norm. - * In both cases, it consists in the sum of the square of all the matrix entries. - * For vectors, this is also equals to the dot product of \c *this with itself. - * - * \sa dot(), norm() - */ -template -EIGEN_STRONG_INLINE typename NumTraits::Scalar>::Real MatrixBase::squaredNorm() const -{ - return numext::real((*this).cwiseAbs2().sum()); -} - -/** \returns, for vectors, the \em l2 norm of \c *this, and for matrices the Frobenius norm. - * In both cases, it consists in the square root of the sum of the square of all the matrix entries. - * For vectors, this is also equals to the square root of the dot product of \c *this with itself. - * - * \sa dot(), squaredNorm() - */ -template -inline typename NumTraits::Scalar>::Real MatrixBase::norm() const -{ - using std::sqrt; - return sqrt(squaredNorm()); -} - -/** \returns an expression of the quotient of *this by its own norm. - * - * \only_for_vectors - * - * \sa norm(), normalize() - */ -template -inline const typename MatrixBase::PlainObject -MatrixBase::normalized() const -{ - typedef typename internal::nested::type Nested; - typedef typename internal::remove_reference::type _Nested; - _Nested n(derived()); - return n / n.norm(); -} - -/** Normalizes the vector, i.e. divides it by its own norm. - * - * \only_for_vectors - * - * \sa norm(), normalized() - */ -template -inline void MatrixBase::normalize() -{ - *this /= norm(); -} - -//---------- implementation of other norms ---------- - -namespace internal { - -template -struct lpNorm_selector -{ - typedef typename NumTraits::Scalar>::Real RealScalar; - static inline RealScalar run(const MatrixBase& m) - { - using std::pow; - return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p); - } -}; - -template -struct lpNorm_selector -{ - static inline typename NumTraits::Scalar>::Real run(const MatrixBase& m) - { - return m.cwiseAbs().sum(); - } -}; - -template -struct lpNorm_selector -{ - static inline typename NumTraits::Scalar>::Real run(const MatrixBase& m) - { - return m.norm(); - } -}; - -template -struct lpNorm_selector -{ - static inline typename NumTraits::Scalar>::Real run(const MatrixBase& m) - { - return m.cwiseAbs().maxCoeff(); - } -}; - -} // end namespace internal - -/** \returns the \f$ \ell^p \f$ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values - * of the coefficients of *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$ - * norm, that is the maximum of the absolute values of the coefficients of *this. - * - * \sa norm() - */ -template -template -inline typename NumTraits::Scalar>::Real -MatrixBase::lpNorm() const -{ - return internal::lpNorm_selector::run(*this); -} - -//---------- implementation of isOrthogonal / isUnitary ---------- - -/** \returns true if *this is approximately orthogonal to \a other, - * within the precision given by \a prec. - * - * Example: \include MatrixBase_isOrthogonal.cpp - * Output: \verbinclude MatrixBase_isOrthogonal.out - */ -template -template -bool MatrixBase::isOrthogonal -(const MatrixBase& other, const RealScalar& prec) const -{ - typename internal::nested::type nested(derived()); - typename internal::nested::type otherNested(other.derived()); - return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm(); -} - -/** \returns true if *this is approximately an unitary matrix, - * within the precision given by \a prec. In the case where the \a Scalar - * type is real numbers, a unitary matrix is an orthogonal matrix, whence the name. - * - * \note This can be used to check whether a family of vectors forms an orthonormal basis. - * Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an - * orthonormal basis. - * - * Example: \include MatrixBase_isUnitary.cpp - * Output: \verbinclude MatrixBase_isUnitary.out - */ -template -bool MatrixBase::isUnitary(const RealScalar& prec) const -{ - typename Derived::Nested nested(derived()); - for(Index i = 0; i < cols(); ++i) - { - if(!internal::isApprox(nested.col(i).squaredNorm(), static_cast(1), prec)) - return false; - for(Index j = 0; j < i; ++j) - if(!internal::isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast(1), prec)) - return false; - } - return true; -} - -} // end namespace Eigen - -#endif // EIGEN_DOT_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/EigenBase.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/EigenBase.h deleted file mode 100755 index fadb45852..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/EigenBase.h +++ /dev/null @@ -1,131 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Benoit Jacob -// Copyright (C) 2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_EIGENBASE_H -#define EIGEN_EIGENBASE_H - -namespace Eigen { - -/** Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor MatrixBase(T). - * - * In other words, an EigenBase object is an object that can be copied into a MatrixBase. - * - * Besides MatrixBase-derived classes, this also includes special matrix classes such as diagonal matrices, etc. - * - * Notice that this class is trivial, it is only used to disambiguate overloaded functions. - * - * \sa \ref TopicClassHierarchy - */ -template struct EigenBase -{ -// typedef typename internal::plain_matrix_type::type PlainObject; - - typedef typename internal::traits::StorageKind StorageKind; - typedef typename internal::traits::Index Index; - - /** \returns a reference to the derived object */ - Derived& derived() { return *static_cast(this); } - /** \returns a const reference to the derived object */ - const Derived& derived() const { return *static_cast(this); } - - inline Derived& const_cast_derived() const - { return *static_cast(const_cast(this)); } - inline const Derived& const_derived() const - { return *static_cast(this); } - - /** \returns the number of rows. \sa cols(), RowsAtCompileTime */ - inline Index rows() const { return derived().rows(); } - /** \returns the number of columns. \sa rows(), ColsAtCompileTime*/ - inline Index cols() const { return derived().cols(); } - /** \returns the number of coefficients, which is rows()*cols(). - * \sa rows(), cols(), SizeAtCompileTime. */ - inline Index size() const { return rows() * cols(); } - - /** \internal Don't use it, but do the equivalent: \code dst = *this; \endcode */ - template inline void evalTo(Dest& dst) const - { derived().evalTo(dst); } - - /** \internal Don't use it, but do the equivalent: \code dst += *this; \endcode */ - template inline void addTo(Dest& dst) const - { - // This is the default implementation, - // derived class can reimplement it in a more optimized way. - typename Dest::PlainObject res(rows(),cols()); - evalTo(res); - dst += res; - } - - /** \internal Don't use it, but do the equivalent: \code dst -= *this; \endcode */ - template inline void subTo(Dest& dst) const - { - // This is the default implementation, - // derived class can reimplement it in a more optimized way. - typename Dest::PlainObject res(rows(),cols()); - evalTo(res); - dst -= res; - } - - /** \internal Don't use it, but do the equivalent: \code dst.applyOnTheRight(*this); \endcode */ - template inline void applyThisOnTheRight(Dest& dst) const - { - // This is the default implementation, - // derived class can reimplement it in a more optimized way. - dst = dst * this->derived(); - } - - /** \internal Don't use it, but do the equivalent: \code dst.applyOnTheLeft(*this); \endcode */ - template inline void applyThisOnTheLeft(Dest& dst) const - { - // This is the default implementation, - // derived class can reimplement it in a more optimized way. - dst = this->derived() * dst; - } - -}; - -/*************************************************************************** -* Implementation of matrix base methods -***************************************************************************/ - -/** \brief Copies the generic expression \a other into *this. - * - * \details The expression must provide a (templated) evalTo(Derived& dst) const - * function which does the actual job. In practice, this allows any user to write - * its own special matrix without having to modify MatrixBase - * - * \returns a reference to *this. - */ -template -template -Derived& DenseBase::operator=(const EigenBase &other) -{ - other.derived().evalTo(derived()); - return derived(); -} - -template -template -Derived& DenseBase::operator+=(const EigenBase &other) -{ - other.derived().addTo(derived()); - return derived(); -} - -template -template -Derived& DenseBase::operator-=(const EigenBase &other) -{ - other.derived().subTo(derived()); - return derived(); -} - -} // end namespace Eigen - -#endif // EIGEN_EIGENBASE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Flagged.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Flagged.h deleted file mode 100755 index 1f2955fc1..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Flagged.h +++ /dev/null @@ -1,140 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_FLAGGED_H -#define EIGEN_FLAGGED_H - -namespace Eigen { - -/** \class Flagged - * \ingroup Core_Module - * - * \brief Expression with modified flags - * - * \param ExpressionType the type of the object of which we are modifying the flags - * \param Added the flags added to the expression - * \param Removed the flags removed from the expression (has priority over Added). - * - * This class represents an expression whose flags have been modified. - * It is the return type of MatrixBase::flagged() - * and most of the time this is the only way it is used. - * - * \sa MatrixBase::flagged() - */ - -namespace internal { -template -struct traits > : traits -{ - enum { Flags = (ExpressionType::Flags | Added) & ~Removed }; -}; -} - -template class Flagged - : public MatrixBase > -{ - public: - - typedef MatrixBase Base; - - EIGEN_DENSE_PUBLIC_INTERFACE(Flagged) - typedef typename internal::conditional::ret, - ExpressionType, const ExpressionType&>::type ExpressionTypeNested; - typedef typename ExpressionType::InnerIterator InnerIterator; - - inline Flagged(const ExpressionType& matrix) : m_matrix(matrix) {} - - inline Index rows() const { return m_matrix.rows(); } - inline Index cols() const { return m_matrix.cols(); } - inline Index outerStride() const { return m_matrix.outerStride(); } - inline Index innerStride() const { return m_matrix.innerStride(); } - - inline CoeffReturnType coeff(Index row, Index col) const - { - return m_matrix.coeff(row, col); - } - - inline CoeffReturnType coeff(Index index) const - { - return m_matrix.coeff(index); - } - - inline const Scalar& coeffRef(Index row, Index col) const - { - return m_matrix.const_cast_derived().coeffRef(row, col); - } - - inline const Scalar& coeffRef(Index index) const - { - return m_matrix.const_cast_derived().coeffRef(index); - } - - inline Scalar& coeffRef(Index row, Index col) - { - return m_matrix.const_cast_derived().coeffRef(row, col); - } - - inline Scalar& coeffRef(Index index) - { - return m_matrix.const_cast_derived().coeffRef(index); - } - - template - inline const PacketScalar packet(Index row, Index col) const - { - return m_matrix.template packet(row, col); - } - - template - inline void writePacket(Index row, Index col, const PacketScalar& x) - { - m_matrix.const_cast_derived().template writePacket(row, col, x); - } - - template - inline const PacketScalar packet(Index index) const - { - return m_matrix.template packet(index); - } - - template - inline void writePacket(Index index, const PacketScalar& x) - { - m_matrix.const_cast_derived().template writePacket(index, x); - } - - const ExpressionType& _expression() const { return m_matrix; } - - template - typename ExpressionType::PlainObject solveTriangular(const MatrixBase& other) const; - - template - void solveTriangularInPlace(const MatrixBase& other) const; - - protected: - ExpressionTypeNested m_matrix; -}; - -/** \returns an expression of *this with added and removed flags - * - * This is mostly for internal use. - * - * \sa class Flagged - */ -template -template -inline const Flagged -DenseBase::flagged() const -{ - return derived(); -} - -} // end namespace Eigen - -#endif // EIGEN_FLAGGED_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/ForceAlignedAccess.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/ForceAlignedAccess.h deleted file mode 100755 index 807c7a293..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/ForceAlignedAccess.h +++ /dev/null @@ -1,146 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009-2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_FORCEALIGNEDACCESS_H -#define EIGEN_FORCEALIGNEDACCESS_H - -namespace Eigen { - -/** \class ForceAlignedAccess - * \ingroup Core_Module - * - * \brief Enforce aligned packet loads and stores regardless of what is requested - * - * \param ExpressionType the type of the object of which we are forcing aligned packet access - * - * This class is the return type of MatrixBase::forceAlignedAccess() - * and most of the time this is the only way it is used. - * - * \sa MatrixBase::forceAlignedAccess() - */ - -namespace internal { -template -struct traits > : public traits -{}; -} - -template class ForceAlignedAccess - : public internal::dense_xpr_base< ForceAlignedAccess >::type -{ - public: - - typedef typename internal::dense_xpr_base::type Base; - EIGEN_DENSE_PUBLIC_INTERFACE(ForceAlignedAccess) - - inline ForceAlignedAccess(const ExpressionType& matrix) : m_expression(matrix) {} - - inline Index rows() const { return m_expression.rows(); } - inline Index cols() const { return m_expression.cols(); } - inline Index outerStride() const { return m_expression.outerStride(); } - inline Index innerStride() const { return m_expression.innerStride(); } - - inline const CoeffReturnType coeff(Index row, Index col) const - { - return m_expression.coeff(row, col); - } - - inline Scalar& coeffRef(Index row, Index col) - { - return m_expression.const_cast_derived().coeffRef(row, col); - } - - inline const CoeffReturnType coeff(Index index) const - { - return m_expression.coeff(index); - } - - inline Scalar& coeffRef(Index index) - { - return m_expression.const_cast_derived().coeffRef(index); - } - - template - inline const PacketScalar packet(Index row, Index col) const - { - return m_expression.template packet(row, col); - } - - template - inline void writePacket(Index row, Index col, const PacketScalar& x) - { - m_expression.const_cast_derived().template writePacket(row, col, x); - } - - template - inline const PacketScalar packet(Index index) const - { - return m_expression.template packet(index); - } - - template - inline void writePacket(Index index, const PacketScalar& x) - { - m_expression.const_cast_derived().template writePacket(index, x); - } - - operator const ExpressionType&() const { return m_expression; } - - protected: - const ExpressionType& m_expression; - - private: - ForceAlignedAccess& operator=(const ForceAlignedAccess&); -}; - -/** \returns an expression of *this with forced aligned access - * \sa forceAlignedAccessIf(),class ForceAlignedAccess - */ -template -inline const ForceAlignedAccess -MatrixBase::forceAlignedAccess() const -{ - return ForceAlignedAccess(derived()); -} - -/** \returns an expression of *this with forced aligned access - * \sa forceAlignedAccessIf(), class ForceAlignedAccess - */ -template -inline ForceAlignedAccess -MatrixBase::forceAlignedAccess() -{ - return ForceAlignedAccess(derived()); -} - -/** \returns an expression of *this with forced aligned access if \a Enable is true. - * \sa forceAlignedAccess(), class ForceAlignedAccess - */ -template -template -inline typename internal::add_const_on_value_type,Derived&>::type>::type -MatrixBase::forceAlignedAccessIf() const -{ - return derived(); -} - -/** \returns an expression of *this with forced aligned access if \a Enable is true. - * \sa forceAlignedAccess(), class ForceAlignedAccess - */ -template -template -inline typename internal::conditional,Derived&>::type -MatrixBase::forceAlignedAccessIf() -{ - return derived(); -} - -} // end namespace Eigen - -#endif // EIGEN_FORCEALIGNEDACCESS_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Functors.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Functors.h deleted file mode 100755 index 5a1b2f28a..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Functors.h +++ /dev/null @@ -1,1029 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_FUNCTORS_H -#define EIGEN_FUNCTORS_H - -namespace Eigen { - -namespace internal { - -// associative functors: - -/** \internal - * \brief Template functor to compute the sum of two scalars - * - * \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, MatrixBase::sum() - */ -template struct scalar_sum_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op) - EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; } - template - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const - { return internal::padd(a,b); } - template - EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const - { return internal::predux(a); } -}; -template -struct functor_traits > { - enum { - Cost = NumTraits::AddCost, - PacketAccess = packet_traits::HasAdd - }; -}; - -/** \internal - * \brief Template functor to compute the product of two scalars - * - * \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux() - */ -template struct scalar_product_op { - enum { - // TODO vectorize mixed product - Vectorizable = is_same::value && packet_traits::HasMul && packet_traits::HasMul - }; - typedef typename scalar_product_traits::ReturnType result_type; - EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op) - EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a * b; } - template - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const - { return internal::pmul(a,b); } - template - EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const - { return internal::predux_mul(a); } -}; -template -struct functor_traits > { - enum { - Cost = (NumTraits::MulCost + NumTraits::MulCost)/2, // rough estimate! - PacketAccess = scalar_product_op::Vectorizable - }; -}; - -/** \internal - * \brief Template functor to compute the conjugate product of two scalars - * - * This is a short cut for conj(x) * y which is needed for optimization purpose; in Eigen2 support mode, this becomes x * conj(y) - */ -template struct scalar_conj_product_op { - - enum { - Conj = NumTraits::IsComplex - }; - - typedef typename scalar_product_traits::ReturnType result_type; - - EIGEN_EMPTY_STRUCT_CTOR(scalar_conj_product_op) - EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const - { return conj_helper().pmul(a,b); } - - template - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const - { return conj_helper().pmul(a,b); } -}; -template -struct functor_traits > { - enum { - Cost = NumTraits::MulCost, - PacketAccess = internal::is_same::value && packet_traits::HasMul - }; -}; - -/** \internal - * \brief Template functor to compute the min of two scalars - * - * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff() - */ -template struct scalar_min_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_min_op) - EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::min; return (min)(a, b); } - template - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const - { return internal::pmin(a,b); } - template - EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const - { return internal::predux_min(a); } -}; -template -struct functor_traits > { - enum { - Cost = NumTraits::AddCost, - PacketAccess = packet_traits::HasMin - }; -}; - -/** \internal - * \brief Template functor to compute the max of two scalars - * - * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff() - */ -template struct scalar_max_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_max_op) - EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::max; return (max)(a, b); } - template - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const - { return internal::pmax(a,b); } - template - EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const - { return internal::predux_max(a); } -}; -template -struct functor_traits > { - enum { - Cost = NumTraits::AddCost, - PacketAccess = packet_traits::HasMax - }; -}; - -/** \internal - * \brief Template functor to compute the hypot of two scalars - * - * \sa MatrixBase::stableNorm(), class Redux - */ -template struct scalar_hypot_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_hypot_op) -// typedef typename NumTraits::Real result_type; - EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const - { - using std::max; - using std::min; - using std::sqrt; - Scalar p = (max)(_x, _y); - Scalar q = (min)(_x, _y); - Scalar qp = q/p; - return p * sqrt(Scalar(1) + qp*qp); - } -}; -template -struct functor_traits > { - enum { Cost = 5 * NumTraits::MulCost, PacketAccess=0 }; -}; - -/** \internal - * \brief Template functor to compute the pow of two scalars - */ -template struct scalar_binary_pow_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_binary_pow_op) - inline Scalar operator() (const Scalar& a, const OtherScalar& b) const { return numext::pow(a, b); } -}; -template -struct functor_traits > { - enum { Cost = 5 * NumTraits::MulCost, PacketAccess = false }; -}; - -// other binary functors: - -/** \internal - * \brief Template functor to compute the difference of two scalars - * - * \sa class CwiseBinaryOp, MatrixBase::operator- - */ -template struct scalar_difference_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op) - EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; } - template - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const - { return internal::psub(a,b); } -}; -template -struct functor_traits > { - enum { - Cost = NumTraits::AddCost, - PacketAccess = packet_traits::HasSub - }; -}; - -/** \internal - * \brief Template functor to compute the quotient of two scalars - * - * \sa class CwiseBinaryOp, Cwise::operator/() - */ -template struct scalar_quotient_op { - enum { - // TODO vectorize mixed product - Vectorizable = is_same::value && packet_traits::HasDiv && packet_traits::HasDiv - }; - typedef typename scalar_product_traits::ReturnType result_type; - EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op) - EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a / b; } - template - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const - { return internal::pdiv(a,b); } -}; -template -struct functor_traits > { - enum { - Cost = (NumTraits::MulCost + NumTraits::MulCost), // rough estimate! - PacketAccess = scalar_quotient_op::Vectorizable - }; -}; - - - -/** \internal - * \brief Template functor to compute the and of two booleans - * - * \sa class CwiseBinaryOp, ArrayBase::operator&& - */ -struct scalar_boolean_and_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_and_op) - EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a && b; } -}; -template<> struct functor_traits { - enum { - Cost = NumTraits::AddCost, - PacketAccess = false - }; -}; - -/** \internal - * \brief Template functor to compute the or of two booleans - * - * \sa class CwiseBinaryOp, ArrayBase::operator|| - */ -struct scalar_boolean_or_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_or_op) - EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a || b; } -}; -template<> struct functor_traits { - enum { - Cost = NumTraits::AddCost, - PacketAccess = false - }; -}; - -/** \internal - * \brief Template functors for comparison of two scalars - * \todo Implement packet-comparisons - */ -template struct scalar_cmp_op; - -template -struct functor_traits > { - enum { - Cost = NumTraits::AddCost, - PacketAccess = false - }; -}; - -template -struct result_of(Scalar,Scalar)> { - typedef bool type; -}; - - -template struct scalar_cmp_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) - EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a==b;} -}; -template struct scalar_cmp_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) - EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a struct scalar_cmp_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) - EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a<=b;} -}; -template struct scalar_cmp_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) - EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return !(a<=b || b<=a);} -}; -template struct scalar_cmp_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) - EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a!=b;} -}; - -// unary functors: - -/** \internal - * \brief Template functor to compute the opposite of a scalar - * - * \sa class CwiseUnaryOp, MatrixBase::operator- - */ -template struct scalar_opposite_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_opposite_op) - EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; } - template - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const - { return internal::pnegate(a); } -}; -template -struct functor_traits > -{ enum { - Cost = NumTraits::AddCost, - PacketAccess = packet_traits::HasNegate }; -}; - -/** \internal - * \brief Template functor to compute the absolute value of a scalar - * - * \sa class CwiseUnaryOp, Cwise::abs - */ -template struct scalar_abs_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_abs_op) - typedef typename NumTraits::Real result_type; - EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { using std::abs; return abs(a); } - template - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const - { return internal::pabs(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = NumTraits::AddCost, - PacketAccess = packet_traits::HasAbs - }; -}; - -/** \internal - * \brief Template functor to compute the squared absolute value of a scalar - * - * \sa class CwiseUnaryOp, Cwise::abs2 - */ -template struct scalar_abs2_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_abs2_op) - typedef typename NumTraits::Real result_type; - EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs2(a); } - template - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const - { return internal::pmul(a,a); } -}; -template -struct functor_traits > -{ enum { Cost = NumTraits::MulCost, PacketAccess = packet_traits::HasAbs2 }; }; - -/** \internal - * \brief Template functor to compute the conjugate of a complex value - * - * \sa class CwiseUnaryOp, MatrixBase::conjugate() - */ -template struct scalar_conjugate_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_conjugate_op) - EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { using numext::conj; return conj(a); } - template - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = NumTraits::IsComplex ? NumTraits::AddCost : 0, - PacketAccess = packet_traits::HasConj - }; -}; - -/** \internal - * \brief Template functor to cast a scalar to another type - * - * \sa class CwiseUnaryOp, MatrixBase::cast() - */ -template -struct scalar_cast_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op) - typedef NewType result_type; - EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast(a); } -}; -template -struct functor_traits > -{ enum { Cost = is_same::value ? 0 : NumTraits::AddCost, PacketAccess = false }; }; - -/** \internal - * \brief Template functor to extract the real part of a complex - * - * \sa class CwiseUnaryOp, MatrixBase::real() - */ -template -struct scalar_real_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_real_op) - typedef typename NumTraits::Real result_type; - EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::real(a); } -}; -template -struct functor_traits > -{ enum { Cost = 0, PacketAccess = false }; }; - -/** \internal - * \brief Template functor to extract the imaginary part of a complex - * - * \sa class CwiseUnaryOp, MatrixBase::imag() - */ -template -struct scalar_imag_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_op) - typedef typename NumTraits::Real result_type; - EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::imag(a); } -}; -template -struct functor_traits > -{ enum { Cost = 0, PacketAccess = false }; }; - -/** \internal - * \brief Template functor to extract the real part of a complex as a reference - * - * \sa class CwiseUnaryOp, MatrixBase::real() - */ -template -struct scalar_real_ref_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_real_ref_op) - typedef typename NumTraits::Real result_type; - EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::real_ref(*const_cast(&a)); } -}; -template -struct functor_traits > -{ enum { Cost = 0, PacketAccess = false }; }; - -/** \internal - * \brief Template functor to extract the imaginary part of a complex as a reference - * - * \sa class CwiseUnaryOp, MatrixBase::imag() - */ -template -struct scalar_imag_ref_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_ref_op) - typedef typename NumTraits::Real result_type; - EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::imag_ref(*const_cast(&a)); } -}; -template -struct functor_traits > -{ enum { Cost = 0, PacketAccess = false }; }; - -/** \internal - * - * \brief Template functor to compute the exponential of a scalar - * - * \sa class CwiseUnaryOp, Cwise::exp() - */ -template struct scalar_exp_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op) - inline const Scalar operator() (const Scalar& a) const { using std::exp; return exp(a); } - typedef typename packet_traits::type Packet; - inline Packet packetOp(const Packet& a) const { return internal::pexp(a); } -}; -template -struct functor_traits > -{ enum { Cost = 5 * NumTraits::MulCost, PacketAccess = packet_traits::HasExp }; }; - -/** \internal - * - * \brief Template functor to compute the logarithm of a scalar - * - * \sa class CwiseUnaryOp, Cwise::log() - */ -template struct scalar_log_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op) - inline const Scalar operator() (const Scalar& a) const { using std::log; return log(a); } - typedef typename packet_traits::type Packet; - inline Packet packetOp(const Packet& a) const { return internal::plog(a); } -}; -template -struct functor_traits > -{ enum { Cost = 5 * NumTraits::MulCost, PacketAccess = packet_traits::HasLog }; }; - -/** \internal - * \brief Template functor to multiply a scalar by a fixed other one - * - * \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/ - */ -/* NOTE why doing the pset1() in packetOp *is* an optimization ? - * indeed it seems better to declare m_other as a Packet and do the pset1() once - * in the constructor. However, in practice: - * - GCC does not like m_other as a Packet and generate a load every time it needs it - * - on the other hand GCC is able to moves the pset1() outside the loop :) - * - simpler code ;) - * (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y) - */ -template -struct scalar_multiple_op { - typedef typename packet_traits::type Packet; - // FIXME default copy constructors seems bugged with std::complex<> - EIGEN_STRONG_INLINE scalar_multiple_op(const scalar_multiple_op& other) : m_other(other.m_other) { } - EIGEN_STRONG_INLINE scalar_multiple_op(const Scalar& other) : m_other(other) { } - EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; } - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const - { return internal::pmul(a, pset1(m_other)); } - typename add_const_on_value_type::Nested>::type m_other; -}; -template -struct functor_traits > -{ enum { Cost = NumTraits::MulCost, PacketAccess = packet_traits::HasMul }; }; - -template -struct scalar_multiple2_op { - typedef typename scalar_product_traits::ReturnType result_type; - EIGEN_STRONG_INLINE scalar_multiple2_op(const scalar_multiple2_op& other) : m_other(other.m_other) { } - EIGEN_STRONG_INLINE scalar_multiple2_op(const Scalar2& other) : m_other(other) { } - EIGEN_STRONG_INLINE result_type operator() (const Scalar1& a) const { return a * m_other; } - typename add_const_on_value_type::Nested>::type m_other; -}; -template -struct functor_traits > -{ enum { Cost = NumTraits::MulCost, PacketAccess = false }; }; - -/** \internal - * \brief Template functor to divide a scalar by a fixed other one - * - * This functor is used to implement the quotient of a matrix by - * a scalar where the scalar type is not necessarily a floating point type. - * - * \sa class CwiseUnaryOp, MatrixBase::operator/ - */ -template -struct scalar_quotient1_op { - typedef typename packet_traits::type Packet; - // FIXME default copy constructors seems bugged with std::complex<> - EIGEN_STRONG_INLINE scalar_quotient1_op(const scalar_quotient1_op& other) : m_other(other.m_other) { } - EIGEN_STRONG_INLINE scalar_quotient1_op(const Scalar& other) : m_other(other) {} - EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; } - EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const - { return internal::pdiv(a, pset1(m_other)); } - typename add_const_on_value_type::Nested>::type m_other; -}; -template -struct functor_traits > -{ enum { Cost = 2 * NumTraits::MulCost, PacketAccess = packet_traits::HasDiv }; }; - -// nullary functors - -template -struct scalar_constant_op { - typedef typename packet_traits::type Packet; - EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { } - EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { } - template - EIGEN_STRONG_INLINE const Scalar operator() (Index, Index = 0) const { return m_other; } - template - EIGEN_STRONG_INLINE const Packet packetOp(Index, Index = 0) const { return internal::pset1(m_other); } - const Scalar m_other; -}; -template -struct functor_traits > -// FIXME replace this packet test by a safe one -{ enum { Cost = 1, PacketAccess = packet_traits::Vectorizable, IsRepeatable = true }; }; - -template struct scalar_identity_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op) - template - EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const { return row==col ? Scalar(1) : Scalar(0); } -}; -template -struct functor_traits > -{ enum { Cost = NumTraits::AddCost, PacketAccess = false, IsRepeatable = true }; }; - -template struct linspaced_op_impl; - -// linear access for packet ops: -// 1) initialization -// base = [low, ..., low] + ([step, ..., step] * [-size, ..., 0]) -// 2) each step (where size is 1 for coeff access or PacketSize for packet access) -// base += [size*step, ..., size*step] -// -// TODO: Perhaps it's better to initialize lazily (so not in the constructor but in packetOp) -// in order to avoid the padd() in operator() ? -template -struct linspaced_op_impl -{ - typedef typename packet_traits::type Packet; - - linspaced_op_impl(const Scalar& low, const Scalar& step) : - m_low(low), m_step(step), - m_packetStep(pset1(packet_traits::size*step)), - m_base(padd(pset1(low), pmul(pset1(step),plset(-packet_traits::size)))) {} - - template - EIGEN_STRONG_INLINE const Scalar operator() (Index i) const - { - m_base = padd(m_base, pset1(m_step)); - return m_low+Scalar(i)*m_step; - } - - template - EIGEN_STRONG_INLINE const Packet packetOp(Index) const { return m_base = padd(m_base,m_packetStep); } - - const Scalar m_low; - const Scalar m_step; - const Packet m_packetStep; - mutable Packet m_base; -}; - -// random access for packet ops: -// 1) each step -// [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) ) -template -struct linspaced_op_impl -{ - typedef typename packet_traits::type Packet; - - linspaced_op_impl(const Scalar& low, const Scalar& step) : - m_low(low), m_step(step), - m_lowPacket(pset1(m_low)), m_stepPacket(pset1(m_step)), m_interPacket(plset(0)) {} - - template - EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; } - - template - EIGEN_STRONG_INLINE const Packet packetOp(Index i) const - { return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1(Scalar(i)),m_interPacket))); } - - const Scalar m_low; - const Scalar m_step; - const Packet m_lowPacket; - const Packet m_stepPacket; - const Packet m_interPacket; -}; - -// ----- Linspace functor ---------------------------------------------------------------- - -// Forward declaration (we default to random access which does not really give -// us a speed gain when using packet access but it allows to use the functor in -// nested expressions). -template struct linspaced_op; -template struct functor_traits< linspaced_op > -{ enum { Cost = 1, PacketAccess = packet_traits::HasSetLinear, IsRepeatable = true }; }; -template struct linspaced_op -{ - typedef typename packet_traits::type Packet; - linspaced_op(const Scalar& low, const Scalar& high, DenseIndex num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1))) {} - - template - EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return impl(i); } - - // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since - // there row==0 and col is used for the actual iteration. - template - EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const - { - eigen_assert(col==0 || row==0); - return impl(col + row); - } - - template - EIGEN_STRONG_INLINE const Packet packetOp(Index i) const { return impl.packetOp(i); } - - // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since - // there row==0 and col is used for the actual iteration. - template - EIGEN_STRONG_INLINE const Packet packetOp(Index row, Index col) const - { - eigen_assert(col==0 || row==0); - return impl.packetOp(col + row); - } - - // This proxy object handles the actual required temporaries, the different - // implementations (random vs. sequential access) as well as the - // correct piping to size 2/4 packet operations. - const linspaced_op_impl impl; -}; - -// all functors allow linear access, except scalar_identity_op. So we fix here a quick meta -// to indicate whether a functor allows linear access, just always answering 'yes' except for -// scalar_identity_op. -// FIXME move this to functor_traits adding a functor_default -template struct functor_has_linear_access { enum { ret = 1 }; }; -template struct functor_has_linear_access > { enum { ret = 0 }; }; - -// In Eigen, any binary op (Product, CwiseBinaryOp) require the Lhs and Rhs to have the same scalar type, except for multiplication -// where the mixing of different types is handled by scalar_product_traits -// In particular, real * complex is allowed. -// FIXME move this to functor_traits adding a functor_default -template struct functor_is_product_like { enum { ret = 0 }; }; -template struct functor_is_product_like > { enum { ret = 1 }; }; -template struct functor_is_product_like > { enum { ret = 1 }; }; -template struct functor_is_product_like > { enum { ret = 1 }; }; - - -/** \internal - * \brief Template functor to add a scalar to a fixed other one - * \sa class CwiseUnaryOp, Array::operator+ - */ -/* If you wonder why doing the pset1() in packetOp() is an optimization check scalar_multiple_op */ -template -struct scalar_add_op { - typedef typename packet_traits::type Packet; - // FIXME default copy constructors seems bugged with std::complex<> - inline scalar_add_op(const scalar_add_op& other) : m_other(other.m_other) { } - inline scalar_add_op(const Scalar& other) : m_other(other) { } - inline Scalar operator() (const Scalar& a) const { return a + m_other; } - inline const Packet packetOp(const Packet& a) const - { return internal::padd(a, pset1(m_other)); } - const Scalar m_other; -}; -template -struct functor_traits > -{ enum { Cost = NumTraits::AddCost, PacketAccess = packet_traits::HasAdd }; }; - -/** \internal - * \brief Template functor to compute the square root of a scalar - * \sa class CwiseUnaryOp, Cwise::sqrt() - */ -template struct scalar_sqrt_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op) - inline const Scalar operator() (const Scalar& a) const { using std::sqrt; return sqrt(a); } - typedef typename packet_traits::type Packet; - inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); } -}; -template -struct functor_traits > -{ enum { - Cost = 5 * NumTraits::MulCost, - PacketAccess = packet_traits::HasSqrt - }; -}; - -/** \internal - * \brief Template functor to compute the cosine of a scalar - * \sa class CwiseUnaryOp, ArrayBase::cos() - */ -template struct scalar_cos_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_cos_op) - inline Scalar operator() (const Scalar& a) const { using std::cos; return cos(a); } - typedef typename packet_traits::type Packet; - inline Packet packetOp(const Packet& a) const { return internal::pcos(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = 5 * NumTraits::MulCost, - PacketAccess = packet_traits::HasCos - }; -}; - -/** \internal - * \brief Template functor to compute the sine of a scalar - * \sa class CwiseUnaryOp, ArrayBase::sin() - */ -template struct scalar_sin_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_sin_op) - inline const Scalar operator() (const Scalar& a) const { using std::sin; return sin(a); } - typedef typename packet_traits::type Packet; - inline Packet packetOp(const Packet& a) const { return internal::psin(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = 5 * NumTraits::MulCost, - PacketAccess = packet_traits::HasSin - }; -}; - - -/** \internal - * \brief Template functor to compute the tan of a scalar - * \sa class CwiseUnaryOp, ArrayBase::tan() - */ -template struct scalar_tan_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_tan_op) - inline const Scalar operator() (const Scalar& a) const { using std::tan; return tan(a); } - typedef typename packet_traits::type Packet; - inline Packet packetOp(const Packet& a) const { return internal::ptan(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = 5 * NumTraits::MulCost, - PacketAccess = packet_traits::HasTan - }; -}; - -/** \internal - * \brief Template functor to compute the arc cosine of a scalar - * \sa class CwiseUnaryOp, ArrayBase::acos() - */ -template struct scalar_acos_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_acos_op) - inline const Scalar operator() (const Scalar& a) const { using std::acos; return acos(a); } - typedef typename packet_traits::type Packet; - inline Packet packetOp(const Packet& a) const { return internal::pacos(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = 5 * NumTraits::MulCost, - PacketAccess = packet_traits::HasACos - }; -}; - -/** \internal - * \brief Template functor to compute the arc sine of a scalar - * \sa class CwiseUnaryOp, ArrayBase::asin() - */ -template struct scalar_asin_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_asin_op) - inline const Scalar operator() (const Scalar& a) const { using std::asin; return asin(a); } - typedef typename packet_traits::type Packet; - inline Packet packetOp(const Packet& a) const { return internal::pasin(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = 5 * NumTraits::MulCost, - PacketAccess = packet_traits::HasASin - }; -}; - -/** \internal - * \brief Template functor to raise a scalar to a power - * \sa class CwiseUnaryOp, Cwise::pow - */ -template -struct scalar_pow_op { - // FIXME default copy constructors seems bugged with std::complex<> - inline scalar_pow_op(const scalar_pow_op& other) : m_exponent(other.m_exponent) { } - inline scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {} - inline Scalar operator() (const Scalar& a) const { return numext::pow(a, m_exponent); } - const Scalar m_exponent; -}; -template -struct functor_traits > -{ enum { Cost = 5 * NumTraits::MulCost, PacketAccess = false }; }; - -/** \internal - * \brief Template functor to compute the quotient between a scalar and array entries. - * \sa class CwiseUnaryOp, Cwise::inverse() - */ -template -struct scalar_inverse_mult_op { - scalar_inverse_mult_op(const Scalar& other) : m_other(other) {} - inline Scalar operator() (const Scalar& a) const { return m_other / a; } - template - inline const Packet packetOp(const Packet& a) const - { return internal::pdiv(pset1(m_other),a); } - Scalar m_other; -}; - -/** \internal - * \brief Template functor to compute the inverse of a scalar - * \sa class CwiseUnaryOp, Cwise::inverse() - */ -template -struct scalar_inverse_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_inverse_op) - inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; } - template - inline const Packet packetOp(const Packet& a) const - { return internal::pdiv(pset1(Scalar(1)),a); } -}; -template -struct functor_traits > -{ enum { Cost = NumTraits::MulCost, PacketAccess = packet_traits::HasDiv }; }; - -/** \internal - * \brief Template functor to compute the square of a scalar - * \sa class CwiseUnaryOp, Cwise::square() - */ -template -struct scalar_square_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_square_op) - inline Scalar operator() (const Scalar& a) const { return a*a; } - template - inline const Packet packetOp(const Packet& a) const - { return internal::pmul(a,a); } -}; -template -struct functor_traits > -{ enum { Cost = NumTraits::MulCost, PacketAccess = packet_traits::HasMul }; }; - -/** \internal - * \brief Template functor to compute the cube of a scalar - * \sa class CwiseUnaryOp, Cwise::cube() - */ -template -struct scalar_cube_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_cube_op) - inline Scalar operator() (const Scalar& a) const { return a*a*a; } - template - inline const Packet packetOp(const Packet& a) const - { return internal::pmul(a,pmul(a,a)); } -}; -template -struct functor_traits > -{ enum { Cost = 2*NumTraits::MulCost, PacketAccess = packet_traits::HasMul }; }; - -// default functor traits for STL functors: - -template -struct functor_traits > -{ enum { Cost = NumTraits::MulCost, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = NumTraits::MulCost, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -#if(__cplusplus < 201103L) -// std::binder* are deprecated since c++11 and will be removed in c++17 -template -struct functor_traits > -{ enum { Cost = functor_traits::Cost, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = functor_traits::Cost, PacketAccess = false }; }; -#endif - -template -struct functor_traits > -{ enum { Cost = 1 + functor_traits::Cost, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1 + functor_traits::Cost, PacketAccess = false }; }; - -#ifdef EIGEN_STDEXT_SUPPORT - -template -struct functor_traits > -{ enum { Cost = 0, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 0, PacketAccess = false }; }; - -template -struct functor_traits > > -{ enum { Cost = 0, PacketAccess = false }; }; - -template -struct functor_traits > > -{ enum { Cost = 0, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = functor_traits::Cost + functor_traits::Cost, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = functor_traits::Cost + functor_traits::Cost + functor_traits::Cost, PacketAccess = false }; }; - -#endif // EIGEN_STDEXT_SUPPORT - -// allow to add new functors and specializations of functor_traits from outside Eigen. -// this macro is really needed because functor_traits must be specialized after it is declared but before it is used... -#ifdef EIGEN_FUNCTORS_PLUGIN -#include EIGEN_FUNCTORS_PLUGIN -#endif - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_FUNCTORS_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Fuzzy.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Fuzzy.h deleted file mode 100755 index fe63bd298..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Fuzzy.h +++ /dev/null @@ -1,150 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2006-2008 Benoit Jacob -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_FUZZY_H -#define EIGEN_FUZZY_H - -namespace Eigen { - -namespace internal -{ - -template::IsInteger> -struct isApprox_selector -{ - static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec) - { - using std::min; - typename internal::nested::type nested(x); - typename internal::nested::type otherNested(y); - return (nested - otherNested).cwiseAbs2().sum() <= prec * prec * (min)(nested.cwiseAbs2().sum(), otherNested.cwiseAbs2().sum()); - } -}; - -template -struct isApprox_selector -{ - static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar&) - { - return x.matrix() == y.matrix(); - } -}; - -template::IsInteger> -struct isMuchSmallerThan_object_selector -{ - static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec) - { - return x.cwiseAbs2().sum() <= numext::abs2(prec) * y.cwiseAbs2().sum(); - } -}; - -template -struct isMuchSmallerThan_object_selector -{ - static bool run(const Derived& x, const OtherDerived&, const typename Derived::RealScalar&) - { - return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix(); - } -}; - -template::IsInteger> -struct isMuchSmallerThan_scalar_selector -{ - static bool run(const Derived& x, const typename Derived::RealScalar& y, const typename Derived::RealScalar& prec) - { - return x.cwiseAbs2().sum() <= numext::abs2(prec * y); - } -}; - -template -struct isMuchSmallerThan_scalar_selector -{ - static bool run(const Derived& x, const typename Derived::RealScalar&, const typename Derived::RealScalar&) - { - return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix(); - } -}; - -} // end namespace internal - - -/** \returns \c true if \c *this is approximately equal to \a other, within the precision - * determined by \a prec. - * - * \note The fuzzy compares are done multiplicatively. Two vectors \f$ v \f$ and \f$ w \f$ - * are considered to be approximately equal within precision \f$ p \f$ if - * \f[ \Vert v - w \Vert \leqslant p\,\min(\Vert v\Vert, \Vert w\Vert). \f] - * For matrices, the comparison is done using the Hilbert-Schmidt norm (aka Frobenius norm - * L2 norm). - * - * \note Because of the multiplicativeness of this comparison, one can't use this function - * to check whether \c *this is approximately equal to the zero matrix or vector. - * Indeed, \c isApprox(zero) returns false unless \c *this itself is exactly the zero matrix - * or vector. If you want to test whether \c *this is zero, use internal::isMuchSmallerThan(const - * RealScalar&, RealScalar) instead. - * - * \sa internal::isMuchSmallerThan(const RealScalar&, RealScalar) const - */ -template -template -bool DenseBase::isApprox( - const DenseBase& other, - const RealScalar& prec -) const -{ - return internal::isApprox_selector::run(derived(), other.derived(), prec); -} - -/** \returns \c true if the norm of \c *this is much smaller than \a other, - * within the precision determined by \a prec. - * - * \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is - * considered to be much smaller than \f$ x \f$ within precision \f$ p \f$ if - * \f[ \Vert v \Vert \leqslant p\,\vert x\vert. \f] - * - * For matrices, the comparison is done using the Hilbert-Schmidt norm. For this reason, - * the value of the reference scalar \a other should come from the Hilbert-Schmidt norm - * of a reference matrix of same dimensions. - * - * \sa isApprox(), isMuchSmallerThan(const DenseBase&, RealScalar) const - */ -template -bool DenseBase::isMuchSmallerThan( - const typename NumTraits::Real& other, - const RealScalar& prec -) const -{ - return internal::isMuchSmallerThan_scalar_selector::run(derived(), other, prec); -} - -/** \returns \c true if the norm of \c *this is much smaller than the norm of \a other, - * within the precision determined by \a prec. - * - * \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is - * considered to be much smaller than a vector \f$ w \f$ within precision \f$ p \f$ if - * \f[ \Vert v \Vert \leqslant p\,\Vert w\Vert. \f] - * For matrices, the comparison is done using the Hilbert-Schmidt norm. - * - * \sa isApprox(), isMuchSmallerThan(const RealScalar&, RealScalar) const - */ -template -template -bool DenseBase::isMuchSmallerThan( - const DenseBase& other, - const RealScalar& prec -) const -{ - return internal::isMuchSmallerThan_object_selector::run(derived(), other.derived(), prec); -} - -} // end namespace Eigen - -#endif // EIGEN_FUZZY_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/GeneralProduct.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/GeneralProduct.h deleted file mode 100755 index 5744eb71e..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/GeneralProduct.h +++ /dev/null @@ -1,633 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2006-2008 Benoit Jacob -// Copyright (C) 2008-2011 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_GENERAL_PRODUCT_H -#define EIGEN_GENERAL_PRODUCT_H - -namespace Eigen { - -/** \class GeneralProduct - * \ingroup Core_Module - * - * \brief Expression of the product of two general matrices or vectors - * - * \param LhsNested the type used to store the left-hand side - * \param RhsNested the type used to store the right-hand side - * \param ProductMode the type of the product - * - * This class represents an expression of the product of two general matrices. - * We call a general matrix, a dense matrix with full storage. For instance, - * This excludes triangular, selfadjoint, and sparse matrices. - * It is the return type of the operator* between general matrices. Its template - * arguments are determined automatically by ProductReturnType. Therefore, - * GeneralProduct should never be used direclty. To determine the result type of a - * function which involves a matrix product, use ProductReturnType::Type. - * - * \sa ProductReturnType, MatrixBase::operator*(const MatrixBase&) - */ -template::value> -class GeneralProduct; - -enum { - Large = 2, - Small = 3 -}; - -namespace internal { - -template struct product_type_selector; - -template struct product_size_category -{ - enum { is_large = MaxSize == Dynamic || - Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD, - value = is_large ? Large - : Size == 1 ? 1 - : Small - }; -}; - -template struct product_type -{ - typedef typename remove_all::type _Lhs; - typedef typename remove_all::type _Rhs; - enum { - MaxRows = _Lhs::MaxRowsAtCompileTime, - Rows = _Lhs::RowsAtCompileTime, - MaxCols = _Rhs::MaxColsAtCompileTime, - Cols = _Rhs::ColsAtCompileTime, - MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::MaxColsAtCompileTime, - _Rhs::MaxRowsAtCompileTime), - Depth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::ColsAtCompileTime, - _Rhs::RowsAtCompileTime), - LargeThreshold = EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD - }; - - // the splitting into different lines of code here, introducing the _select enums and the typedef below, - // is to work around an internal compiler error with gcc 4.1 and 4.2. -private: - enum { - rows_select = product_size_category::value, - cols_select = product_size_category::value, - depth_select = product_size_category::value - }; - typedef product_type_selector selector; - -public: - enum { - value = selector::ret - }; -#ifdef EIGEN_DEBUG_PRODUCT - static void debug() - { - EIGEN_DEBUG_VAR(Rows); - EIGEN_DEBUG_VAR(Cols); - EIGEN_DEBUG_VAR(Depth); - EIGEN_DEBUG_VAR(rows_select); - EIGEN_DEBUG_VAR(cols_select); - EIGEN_DEBUG_VAR(depth_select); - EIGEN_DEBUG_VAR(value); - } -#endif -}; - - -/* The following allows to select the kind of product at compile time - * based on the three dimensions of the product. - * This is a compile time mapping from {1,Small,Large}^3 -> {product types} */ -// FIXME I'm not sure the current mapping is the ideal one. -template struct product_type_selector { enum { ret = OuterProduct }; }; -template struct product_type_selector<1, 1, Depth> { enum { ret = InnerProduct }; }; -template<> struct product_type_selector<1, 1, 1> { enum { ret = InnerProduct }; }; -template<> struct product_type_selector { enum { ret = CoeffBasedProductMode }; }; -template<> struct product_type_selector<1, Small,Small> { enum { ret = CoeffBasedProductMode }; }; -template<> struct product_type_selector { enum { ret = CoeffBasedProductMode }; }; -template<> struct product_type_selector { enum { ret = LazyCoeffBasedProductMode }; }; -template<> struct product_type_selector { enum { ret = LazyCoeffBasedProductMode }; }; -template<> struct product_type_selector { enum { ret = LazyCoeffBasedProductMode }; }; -template<> struct product_type_selector<1, Large,Small> { enum { ret = CoeffBasedProductMode }; }; -template<> struct product_type_selector<1, Large,Large> { enum { ret = GemvProduct }; }; -template<> struct product_type_selector<1, Small,Large> { enum { ret = CoeffBasedProductMode }; }; -template<> struct product_type_selector { enum { ret = CoeffBasedProductMode }; }; -template<> struct product_type_selector { enum { ret = GemvProduct }; }; -template<> struct product_type_selector { enum { ret = CoeffBasedProductMode }; }; -template<> struct product_type_selector { enum { ret = GemmProduct }; }; -template<> struct product_type_selector { enum { ret = GemmProduct }; }; -template<> struct product_type_selector { enum { ret = GemmProduct }; }; -template<> struct product_type_selector { enum { ret = GemmProduct }; }; -template<> struct product_type_selector { enum { ret = GemmProduct }; }; -template<> struct product_type_selector { enum { ret = GemmProduct }; }; -template<> struct product_type_selector { enum { ret = GemmProduct }; }; - -} // end namespace internal - -/** \class ProductReturnType - * \ingroup Core_Module - * - * \brief Helper class to get the correct and optimized returned type of operator* - * - * \param Lhs the type of the left-hand side - * \param Rhs the type of the right-hand side - * \param ProductMode the type of the product (determined automatically by internal::product_mode) - * - * This class defines the typename Type representing the optimized product expression - * between two matrix expressions. In practice, using ProductReturnType::Type - * is the recommended way to define the result type of a function returning an expression - * which involve a matrix product. The class Product should never be - * used directly. - * - * \sa class Product, MatrixBase::operator*(const MatrixBase&) - */ -template -struct ProductReturnType -{ - // TODO use the nested type to reduce instanciations ???? -// typedef typename internal::nested::type LhsNested; -// typedef typename internal::nested::type RhsNested; - - typedef GeneralProduct Type; -}; - -template -struct ProductReturnType -{ - typedef typename internal::nested::type >::type LhsNested; - typedef typename internal::nested::type >::type RhsNested; - typedef CoeffBasedProduct Type; -}; - -template -struct ProductReturnType -{ - typedef typename internal::nested::type >::type LhsNested; - typedef typename internal::nested::type >::type RhsNested; - typedef CoeffBasedProduct Type; -}; - -// this is a workaround for sun CC -template -struct LazyProductReturnType : public ProductReturnType -{}; - -/*********************************************************************** -* Implementation of Inner Vector Vector Product -***********************************************************************/ - -// FIXME : maybe the "inner product" could return a Scalar -// instead of a 1x1 matrix ?? -// Pro: more natural for the user -// Cons: this could be a problem if in a meta unrolled algorithm a matrix-matrix -// product ends up to a row-vector times col-vector product... To tackle this use -// case, we could have a specialization for Block with: operator=(Scalar x); - -namespace internal { - -template -struct traits > - : traits::ReturnType,1,1> > -{}; - -} - -template -class GeneralProduct - : internal::no_assignment_operator, - public Matrix::ReturnType,1,1> -{ - typedef Matrix::ReturnType,1,1> Base; - public: - GeneralProduct(const Lhs& lhs, const Rhs& rhs) - { - Base::coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum(); - } - - /** Convertion to scalar */ - operator const typename Base::Scalar() const { - return Base::coeff(0,0); - } -}; - -/*********************************************************************** -* Implementation of Outer Vector Vector Product -***********************************************************************/ - -namespace internal { - -// Column major -template -EIGEN_DONT_INLINE void outer_product_selector_run(const ProductType& prod, Dest& dest, const Func& func, const false_type&) -{ - typedef typename Dest::Index Index; - // FIXME make sure lhs is sequentially stored - // FIXME not very good if rhs is real and lhs complex while alpha is real too - const Index cols = dest.cols(); - for (Index j=0; j -EIGEN_DONT_INLINE void outer_product_selector_run(const ProductType& prod, Dest& dest, const Func& func, const true_type&) { - typedef typename Dest::Index Index; - // FIXME make sure rhs is sequentially stored - // FIXME not very good if lhs is real and rhs complex while alpha is real too - const Index rows = dest.rows(); - for (Index i=0; i -struct traits > - : traits, Lhs, Rhs> > -{}; - -} - -template -class GeneralProduct - : public ProductBase, Lhs, Rhs> -{ - template struct is_row_major : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {}; - - public: - EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct) - - GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) - { - } - - struct set { template void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() = src; } }; - struct add { template void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() += src; } }; - struct sub { template void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() -= src; } }; - struct adds { - Scalar m_scale; - adds(const Scalar& s) : m_scale(s) {} - template void operator()(const Dst& dst, const Src& src) const { - dst.const_cast_derived() += m_scale * src; - } - }; - - template - inline void evalTo(Dest& dest) const { - internal::outer_product_selector_run(*this, dest, set(), is_row_major()); - } - - template - inline void addTo(Dest& dest) const { - internal::outer_product_selector_run(*this, dest, add(), is_row_major()); - } - - template - inline void subTo(Dest& dest) const { - internal::outer_product_selector_run(*this, dest, sub(), is_row_major()); - } - - template void scaleAndAddTo(Dest& dest, const Scalar& alpha) const - { - internal::outer_product_selector_run(*this, dest, adds(alpha), is_row_major()); - } -}; - -/*********************************************************************** -* Implementation of General Matrix Vector Product -***********************************************************************/ - -/* According to the shape/flags of the matrix we have to distinghish 3 different cases: - * 1 - the matrix is col-major, BLAS compatible and M is large => call fast BLAS-like colmajor routine - * 2 - the matrix is row-major, BLAS compatible and N is large => call fast BLAS-like rowmajor routine - * 3 - all other cases are handled using a simple loop along the outer-storage direction. - * Therefore we need a lower level meta selector. - * Furthermore, if the matrix is the rhs, then the product has to be transposed. - */ -namespace internal { - -template -struct traits > - : traits, Lhs, Rhs> > -{}; - -template -struct gemv_selector; - -} // end namespace internal - -template -class GeneralProduct - : public ProductBase, Lhs, Rhs> -{ - public: - EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct) - - typedef typename Lhs::Scalar LhsScalar; - typedef typename Rhs::Scalar RhsScalar; - - GeneralProduct(const Lhs& a_lhs, const Rhs& a_rhs) : Base(a_lhs,a_rhs) - { -// EIGEN_STATIC_ASSERT((internal::is_same::value), -// YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - } - - enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight }; - typedef typename internal::conditional::type MatrixType; - - template void scaleAndAddTo(Dest& dst, const Scalar& alpha) const - { - eigen_assert(m_lhs.rows() == dst.rows() && m_rhs.cols() == dst.cols()); - internal::gemv_selector::HasUsableDirectAccess)>::run(*this, dst, alpha); - } -}; - -namespace internal { - -// The vector is on the left => transposition -template -struct gemv_selector -{ - template - static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha) - { - Transpose destT(dest); - enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor }; - gemv_selector - ::run(GeneralProduct,Transpose, GemvProduct> - (prod.rhs().transpose(), prod.lhs().transpose()), destT, alpha); - } -}; - -template struct gemv_static_vector_if; - -template -struct gemv_static_vector_if -{ - EIGEN_STRONG_INLINE Scalar* data() { eigen_internal_assert(false && "should never be called"); return 0; } -}; - -template -struct gemv_static_vector_if -{ - EIGEN_STRONG_INLINE Scalar* data() { return 0; } -}; - -template -struct gemv_static_vector_if -{ - #if EIGEN_ALIGN_STATICALLY - internal::plain_array m_data; - EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; } - #else - // Some architectures cannot align on the stack, - // => let's manually enforce alignment by allocating more data and return the address of the first aligned element. - enum { - ForceAlignment = internal::packet_traits::Vectorizable, - PacketSize = internal::packet_traits::size - }; - internal::plain_array m_data; - EIGEN_STRONG_INLINE Scalar* data() { - return ForceAlignment - ? reinterpret_cast((reinterpret_cast(m_data.array) & ~(size_t(15))) + 16) - : m_data.array; - } - #endif -}; - -template<> struct gemv_selector -{ - template - static inline void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha) - { - typedef typename ProductType::Index Index; - typedef typename ProductType::LhsScalar LhsScalar; - typedef typename ProductType::RhsScalar RhsScalar; - typedef typename ProductType::Scalar ResScalar; - typedef typename ProductType::RealScalar RealScalar; - typedef typename ProductType::ActualLhsType ActualLhsType; - typedef typename ProductType::ActualRhsType ActualRhsType; - typedef typename ProductType::LhsBlasTraits LhsBlasTraits; - typedef typename ProductType::RhsBlasTraits RhsBlasTraits; - typedef Map, Aligned> MappedDest; - - ActualLhsType actualLhs = LhsBlasTraits::extract(prod.lhs()); - ActualRhsType actualRhs = RhsBlasTraits::extract(prod.rhs()); - - ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs()) - * RhsBlasTraits::extractScalarFactor(prod.rhs()); - - // make sure Dest is a compile-time vector type (bug 1166) - typedef typename conditional::type ActualDest; - - enum { - // FIXME find a way to allow an inner stride on the result if packet_traits::size==1 - // on, the other hand it is good for the cache to pack the vector anyways... - EvalToDestAtCompileTime = (ActualDest::InnerStrideAtCompileTime==1), - ComplexByReal = (NumTraits::IsComplex) && (!NumTraits::IsComplex), - MightCannotUseDest = (ActualDest::InnerStrideAtCompileTime!=1) || ComplexByReal - }; - - gemv_static_vector_if static_dest; - - bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0)); - bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible; - - RhsScalar compatibleAlpha = get_factor::run(actualAlpha); - - ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(), - evalToDest ? dest.data() : static_dest.data()); - - if(!evalToDest) - { - #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN - int size = dest.size(); - EIGEN_DENSE_STORAGE_CTOR_PLUGIN - #endif - if(!alphaIsCompatible) - { - MappedDest(actualDestPtr, dest.size()).setZero(); - compatibleAlpha = RhsScalar(1); - } - else - MappedDest(actualDestPtr, dest.size()) = dest; - } - - general_matrix_vector_product - ::run( - actualLhs.rows(), actualLhs.cols(), - actualLhs.data(), actualLhs.outerStride(), - actualRhs.data(), actualRhs.innerStride(), - actualDestPtr, 1, - compatibleAlpha); - - if (!evalToDest) - { - if(!alphaIsCompatible) - dest += actualAlpha * MappedDest(actualDestPtr, dest.size()); - else - dest = MappedDest(actualDestPtr, dest.size()); - } - } -}; - -template<> struct gemv_selector -{ - template - static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha) - { - typedef typename ProductType::LhsScalar LhsScalar; - typedef typename ProductType::RhsScalar RhsScalar; - typedef typename ProductType::Scalar ResScalar; - typedef typename ProductType::Index Index; - typedef typename ProductType::ActualLhsType ActualLhsType; - typedef typename ProductType::ActualRhsType ActualRhsType; - typedef typename ProductType::_ActualRhsType _ActualRhsType; - typedef typename ProductType::LhsBlasTraits LhsBlasTraits; - typedef typename ProductType::RhsBlasTraits RhsBlasTraits; - - typename add_const::type actualLhs = LhsBlasTraits::extract(prod.lhs()); - typename add_const::type actualRhs = RhsBlasTraits::extract(prod.rhs()); - - ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs()) - * RhsBlasTraits::extractScalarFactor(prod.rhs()); - - enum { - // FIXME find a way to allow an inner stride on the result if packet_traits::size==1 - // on, the other hand it is good for the cache to pack the vector anyways... - DirectlyUseRhs = _ActualRhsType::InnerStrideAtCompileTime==1 - }; - - gemv_static_vector_if static_rhs; - - ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(), - DirectlyUseRhs ? const_cast(actualRhs.data()) : static_rhs.data()); - - if(!DirectlyUseRhs) - { - #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN - int size = actualRhs.size(); - EIGEN_DENSE_STORAGE_CTOR_PLUGIN - #endif - Map(actualRhsPtr, actualRhs.size()) = actualRhs; - } - - general_matrix_vector_product - ::run( - actualLhs.rows(), actualLhs.cols(), - actualLhs.data(), actualLhs.outerStride(), - actualRhsPtr, 1, - dest.data(), dest.col(0).innerStride(), //NOTE if dest is not a vector at compile-time, then dest.innerStride() might be wrong. (bug 1166) - actualAlpha); - } -}; - -template<> struct gemv_selector -{ - template - static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha) - { - typedef typename Dest::Index Index; - // TODO makes sure dest is sequentially stored in memory, otherwise use a temp - const Index size = prod.rhs().rows(); - for(Index k=0; k struct gemv_selector -{ - template - static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha) - { - typedef typename Dest::Index Index; - // TODO makes sure rhs is sequentially stored in memory, otherwise use a temp - const Index rows = prod.rows(); - for(Index i=0; i -template -inline const typename ProductReturnType::Type -MatrixBase::operator*(const MatrixBase &other) const -{ - // A note regarding the function declaration: In MSVC, this function will sometimes - // not be inlined since DenseStorage is an unwindable object for dynamic - // matrices and product types are holding a member to store the result. - // Thus it does not help tagging this function with EIGEN_STRONG_INLINE. - enum { - ProductIsValid = Derived::ColsAtCompileTime==Dynamic - || OtherDerived::RowsAtCompileTime==Dynamic - || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime), - AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime, - SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived) - }; - // note to the lost user: - // * for a dot product use: v1.dot(v2) - // * for a coeff-wise product use: v1.cwiseProduct(v2) - EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes), - INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS) - EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors), - INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION) - EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT) -#ifdef EIGEN_DEBUG_PRODUCT - internal::product_type::debug(); -#endif - return typename ProductReturnType::Type(derived(), other.derived()); -} - -/** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation. - * - * The returned product will behave like any other expressions: the coefficients of the product will be - * computed once at a time as requested. This might be useful in some extremely rare cases when only - * a small and no coherent fraction of the result's coefficients have to be computed. - * - * \warning This version of the matrix product can be much much slower. So use it only if you know - * what you are doing and that you measured a true speed improvement. - * - * \sa operator*(const MatrixBase&) - */ -template -template -const typename LazyProductReturnType::Type -MatrixBase::lazyProduct(const MatrixBase &other) const -{ - enum { - ProductIsValid = Derived::ColsAtCompileTime==Dynamic - || OtherDerived::RowsAtCompileTime==Dynamic - || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime), - AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime, - SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived) - }; - // note to the lost user: - // * for a dot product use: v1.dot(v2) - // * for a coeff-wise product use: v1.cwiseProduct(v2) - EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes), - INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS) - EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors), - INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION) - EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT) - - return typename LazyProductReturnType::Type(derived(), other.derived()); -} - -} // end namespace Eigen - -#endif // EIGEN_PRODUCT_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/GenericPacketMath.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/GenericPacketMath.h deleted file mode 100755 index c6e93bbb0..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/GenericPacketMath.h +++ /dev/null @@ -1,350 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_GENERIC_PACKET_MATH_H -#define EIGEN_GENERIC_PACKET_MATH_H - -namespace Eigen { - -namespace internal { - -/** \internal - * \file GenericPacketMath.h - * - * Default implementation for types not supported by the vectorization. - * In practice these functions are provided to make easier the writing - * of generic vectorized code. - */ - -#ifndef EIGEN_DEBUG_ALIGNED_LOAD -#define EIGEN_DEBUG_ALIGNED_LOAD -#endif - -#ifndef EIGEN_DEBUG_UNALIGNED_LOAD -#define EIGEN_DEBUG_UNALIGNED_LOAD -#endif - -#ifndef EIGEN_DEBUG_ALIGNED_STORE -#define EIGEN_DEBUG_ALIGNED_STORE -#endif - -#ifndef EIGEN_DEBUG_UNALIGNED_STORE -#define EIGEN_DEBUG_UNALIGNED_STORE -#endif - -struct default_packet_traits -{ - enum { - HasAdd = 1, - HasSub = 1, - HasMul = 1, - HasNegate = 1, - HasAbs = 1, - HasAbs2 = 1, - HasMin = 1, - HasMax = 1, - HasConj = 1, - HasSetLinear = 1, - - HasDiv = 0, - HasSqrt = 0, - HasExp = 0, - HasLog = 0, - HasPow = 0, - - HasSin = 0, - HasCos = 0, - HasTan = 0, - HasASin = 0, - HasACos = 0, - HasATan = 0 - }; -}; - -template struct packet_traits : default_packet_traits -{ - typedef T type; - enum { - Vectorizable = 0, - size = 1, - AlignedOnScalar = 0 - }; - enum { - HasAdd = 0, - HasSub = 0, - HasMul = 0, - HasNegate = 0, - HasAbs = 0, - HasAbs2 = 0, - HasMin = 0, - HasMax = 0, - HasConj = 0, - HasSetLinear = 0 - }; -}; - -/** \internal \returns a + b (coeff-wise) */ -template inline Packet -padd(const Packet& a, - const Packet& b) { return a+b; } - -/** \internal \returns a - b (coeff-wise) */ -template inline Packet -psub(const Packet& a, - const Packet& b) { return a-b; } - -/** \internal \returns -a (coeff-wise) */ -template inline Packet -pnegate(const Packet& a) { return -a; } - -/** \internal \returns conj(a) (coeff-wise) */ -template inline Packet -pconj(const Packet& a) { return numext::conj(a); } - -/** \internal \returns a * b (coeff-wise) */ -template inline Packet -pmul(const Packet& a, - const Packet& b) { return a*b; } - -/** \internal \returns a / b (coeff-wise) */ -template inline Packet -pdiv(const Packet& a, - const Packet& b) { return a/b; } - -/** \internal \returns the min of \a a and \a b (coeff-wise) */ -template inline Packet -pmin(const Packet& a, - const Packet& b) { using std::min; return (min)(a, b); } - -/** \internal \returns the max of \a a and \a b (coeff-wise) */ -template inline Packet -pmax(const Packet& a, - const Packet& b) { using std::max; return (max)(a, b); } - -/** \internal \returns the absolute value of \a a */ -template inline Packet -pabs(const Packet& a) { using std::abs; return abs(a); } - -/** \internal \returns the bitwise and of \a a and \a b */ -template inline Packet -pand(const Packet& a, const Packet& b) { return a & b; } - -/** \internal \returns the bitwise or of \a a and \a b */ -template inline Packet -por(const Packet& a, const Packet& b) { return a | b; } - -/** \internal \returns the bitwise xor of \a a and \a b */ -template inline Packet -pxor(const Packet& a, const Packet& b) { return a ^ b; } - -/** \internal \returns the bitwise andnot of \a a and \a b */ -template inline Packet -pandnot(const Packet& a, const Packet& b) { return a & (!b); } - -/** \internal \returns a packet version of \a *from, from must be 16 bytes aligned */ -template inline Packet -pload(const typename unpacket_traits::type* from) { return *from; } - -/** \internal \returns a packet version of \a *from, (un-aligned load) */ -template inline Packet -ploadu(const typename unpacket_traits::type* from) { return *from; } - -/** \internal \returns a packet with elements of \a *from duplicated. - * For instance, for a packet of 8 elements, 4 scalar will be read from \a *from and - * duplicated to form: {from[0],from[0],from[1],from[1],,from[2],from[2],,from[3],from[3]} - * Currently, this function is only used for scalar * complex products. - */ -template inline Packet -ploaddup(const typename unpacket_traits::type* from) { return *from; } - -/** \internal \returns a packet with constant coefficients \a a, e.g.: (a,a,a,a) */ -template inline Packet -pset1(const typename unpacket_traits::type& a) { return a; } - -/** \internal \brief Returns a packet with coefficients (a,a+1,...,a+packet_size-1). */ -template inline typename packet_traits::type -plset(const Scalar& a) { return a; } - -/** \internal copy the packet \a from to \a *to, \a to must be 16 bytes aligned */ -template inline void pstore(Scalar* to, const Packet& from) -{ (*to) = from; } - -/** \internal copy the packet \a from to \a *to, (un-aligned store) */ -template inline void pstoreu(Scalar* to, const Packet& from) -{ (*to) = from; } - -/** \internal tries to do cache prefetching of \a addr */ -template inline void prefetch(const Scalar* addr) -{ -#if (!EIGEN_COMP_MSVC) && (EIGEN_COMP_GNUC || EIGEN_COMP_CLANG || EIGEN_COMP_ICC) - __builtin_prefetch(addr); -#endif -} - -/** \internal \returns the first element of a packet */ -template inline typename unpacket_traits::type pfirst(const Packet& a) -{ return a; } - -/** \internal \returns a packet where the element i contains the sum of the packet of \a vec[i] */ -template inline Packet -preduxp(const Packet* vecs) { return vecs[0]; } - -/** \internal \returns the sum of the elements of \a a*/ -template inline typename unpacket_traits::type predux(const Packet& a) -{ return a; } - -/** \internal \returns the product of the elements of \a a*/ -template inline typename unpacket_traits::type predux_mul(const Packet& a) -{ return a; } - -/** \internal \returns the min of the elements of \a a*/ -template inline typename unpacket_traits::type predux_min(const Packet& a) -{ return a; } - -/** \internal \returns the max of the elements of \a a*/ -template inline typename unpacket_traits::type predux_max(const Packet& a) -{ return a; } - -/** \internal \returns the reversed elements of \a a*/ -template inline Packet preverse(const Packet& a) -{ return a; } - - -/** \internal \returns \a a with real and imaginary part flipped (for complex type only) */ -template inline Packet pcplxflip(const Packet& a) -{ - // FIXME: uncomment the following in case we drop the internal imag and real functions. -// using std::imag; -// using std::real; - return Packet(imag(a),real(a)); -} - -/************************** -* Special math functions -***************************/ - -/** \internal \returns the sine of \a a (coeff-wise) */ -template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS -Packet psin(const Packet& a) { using std::sin; return sin(a); } - -/** \internal \returns the cosine of \a a (coeff-wise) */ -template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS -Packet pcos(const Packet& a) { using std::cos; return cos(a); } - -/** \internal \returns the tan of \a a (coeff-wise) */ -template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS -Packet ptan(const Packet& a) { using std::tan; return tan(a); } - -/** \internal \returns the arc sine of \a a (coeff-wise) */ -template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS -Packet pasin(const Packet& a) { using std::asin; return asin(a); } - -/** \internal \returns the arc cosine of \a a (coeff-wise) */ -template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS -Packet pacos(const Packet& a) { using std::acos; return acos(a); } - -/** \internal \returns the exp of \a a (coeff-wise) */ -template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS -Packet pexp(const Packet& a) { using std::exp; return exp(a); } - -/** \internal \returns the log of \a a (coeff-wise) */ -template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS -Packet plog(const Packet& a) { using std::log; return log(a); } - -/** \internal \returns the square-root of \a a (coeff-wise) */ -template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS -Packet psqrt(const Packet& a) { using std::sqrt; return sqrt(a); } - -/*************************************************************************** -* The following functions might not have to be overwritten for vectorized types -***************************************************************************/ - -/** \internal copy a packet with constant coeficient \a a (e.g., [a,a,a,a]) to \a *to. \a to must be 16 bytes aligned */ -// NOTE: this function must really be templated on the packet type (think about different packet types for the same scalar type) -template -inline void pstore1(typename unpacket_traits::type* to, const typename unpacket_traits::type& a) -{ - pstore(to, pset1(a)); -} - -/** \internal \returns a * b + c (coeff-wise) */ -template inline Packet -pmadd(const Packet& a, - const Packet& b, - const Packet& c) -{ return padd(pmul(a, b),c); } - -/** \internal \returns a packet version of \a *from. - * If LoadMode equals #Aligned, \a from must be 16 bytes aligned */ -template -inline Packet ploadt(const typename unpacket_traits::type* from) -{ - if(LoadMode == Aligned) - return pload(from); - else - return ploadu(from); -} - -/** \internal copy the packet \a from to \a *to. - * If StoreMode equals #Aligned, \a to must be 16 bytes aligned */ -template -inline void pstoret(Scalar* to, const Packet& from) -{ - if(LoadMode == Aligned) - pstore(to, from); - else - pstoreu(to, from); -} - -/** \internal default implementation of palign() allowing partial specialization */ -template -struct palign_impl -{ - // by default data are aligned, so there is nothing to be done :) - static inline void run(PacketType&, const PacketType&) {} -}; - -/** \internal update \a first using the concatenation of the packet_size minus \a Offset last elements - * of \a first and \a Offset first elements of \a second. - * - * This function is currently only used to optimize matrix-vector products on unligned matrices. - * It takes 2 packets that represent a contiguous memory array, and returns a packet starting - * at the position \a Offset. For instance, for packets of 4 elements, we have: - * Input: - * - first = {f0,f1,f2,f3} - * - second = {s0,s1,s2,s3} - * Output: - * - if Offset==0 then {f0,f1,f2,f3} - * - if Offset==1 then {f1,f2,f3,s0} - * - if Offset==2 then {f2,f3,s0,s1} - * - if Offset==3 then {f3,s0,s1,s3} - */ -template -inline void palign(PacketType& first, const PacketType& second) -{ - palign_impl::run(first,second); -} - -/*************************************************************************** -* Fast complex products (GCC generates a function call which is very slow) -***************************************************************************/ - -template<> inline std::complex pmul(const std::complex& a, const std::complex& b) -{ return std::complex(real(a)*real(b) - imag(a)*imag(b), imag(a)*real(b) + real(a)*imag(b)); } - -template<> inline std::complex pmul(const std::complex& a, const std::complex& b) -{ return std::complex(real(a)*real(b) - imag(a)*imag(b), imag(a)*real(b) + real(a)*imag(b)); } - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_GENERIC_PACKET_MATH_H - diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/GlobalFunctions.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/GlobalFunctions.h deleted file mode 100755 index 2acf97723..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/GlobalFunctions.h +++ /dev/null @@ -1,92 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2010-2012 Gael Guennebaud -// Copyright (C) 2010 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_GLOBAL_FUNCTIONS_H -#define EIGEN_GLOBAL_FUNCTIONS_H - -#define EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(NAME,FUNCTOR) \ - template \ - inline const Eigen::CwiseUnaryOp, const Derived> \ - NAME(const Eigen::ArrayBase& x) { \ - return x.derived(); \ - } - -#define EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(NAME,FUNCTOR) \ - \ - template \ - struct NAME##_retval > \ - { \ - typedef const Eigen::CwiseUnaryOp, const Derived> type; \ - }; \ - template \ - struct NAME##_impl > \ - { \ - static inline typename NAME##_retval >::type run(const Eigen::ArrayBase& x) \ - { \ - return x.derived(); \ - } \ - }; - - -namespace Eigen -{ - EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(real,scalar_real_op) - EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(imag,scalar_imag_op) - EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(conj,scalar_conjugate_op) - EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sin,scalar_sin_op) - EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cos,scalar_cos_op) - EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(asin,scalar_asin_op) - EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(acos,scalar_acos_op) - EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tan,scalar_tan_op) - EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(exp,scalar_exp_op) - EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log,scalar_log_op) - EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(abs,scalar_abs_op) - EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sqrt,scalar_sqrt_op) - - template - inline const Eigen::CwiseUnaryOp, const Derived> - pow(const Eigen::ArrayBase& x, const typename Derived::Scalar& exponent) { - return x.derived().pow(exponent); - } - - template - inline const Eigen::CwiseBinaryOp, const Derived, const Derived> - pow(const Eigen::ArrayBase& x, const Eigen::ArrayBase& exponents) - { - return Eigen::CwiseBinaryOp, const Derived, const Derived>( - x.derived(), - exponents.derived() - ); - } - - /** - * \brief Component-wise division of a scalar by array elements. - **/ - template - inline const Eigen::CwiseUnaryOp, const Derived> - operator/(const typename Derived::Scalar& s, const Eigen::ArrayBase& a) - { - return Eigen::CwiseUnaryOp, const Derived>( - a.derived(), - Eigen::internal::scalar_inverse_mult_op(s) - ); - } - - namespace internal - { - EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(real,scalar_real_op) - EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(imag,scalar_imag_op) - EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(abs2,scalar_abs2_op) - } -} - -// TODO: cleanly disable those functions that are not supported on Array (numext::real_ref, internal::random, internal::isApprox...) - -#endif // EIGEN_GLOBAL_FUNCTIONS_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/IO.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/IO.h deleted file mode 100755 index 8d4bc59e9..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/IO.h +++ /dev/null @@ -1,250 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2006-2008 Benoit Jacob -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_IO_H -#define EIGEN_IO_H - -namespace Eigen { - -enum { DontAlignCols = 1 }; -enum { StreamPrecision = -1, - FullPrecision = -2 }; - -namespace internal { -template -std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat& fmt); -} - -/** \class IOFormat - * \ingroup Core_Module - * - * \brief Stores a set of parameters controlling the way matrices are printed - * - * List of available parameters: - * - \b precision number of digits for floating point values, or one of the special constants \c StreamPrecision and \c FullPrecision. - * The default is the special value \c StreamPrecision which means to use the - * stream's own precision setting, as set for instance using \c cout.precision(3). The other special value - * \c FullPrecision means that the number of digits will be computed to match the full precision of each floating-point - * type. - * - \b flags an OR-ed combination of flags, the default value is 0, the only currently available flag is \c DontAlignCols which - * allows to disable the alignment of columns, resulting in faster code. - * - \b coeffSeparator string printed between two coefficients of the same row - * - \b rowSeparator string printed between two rows - * - \b rowPrefix string printed at the beginning of each row - * - \b rowSuffix string printed at the end of each row - * - \b matPrefix string printed at the beginning of the matrix - * - \b matSuffix string printed at the end of the matrix - * - * Example: \include IOFormat.cpp - * Output: \verbinclude IOFormat.out - * - * \sa DenseBase::format(), class WithFormat - */ -struct IOFormat -{ - /** Default contructor, see class IOFormat for the meaning of the parameters */ - IOFormat(int _precision = StreamPrecision, int _flags = 0, - const std::string& _coeffSeparator = " ", - const std::string& _rowSeparator = "\n", const std::string& _rowPrefix="", const std::string& _rowSuffix="", - const std::string& _matPrefix="", const std::string& _matSuffix="") - : matPrefix(_matPrefix), matSuffix(_matSuffix), rowPrefix(_rowPrefix), rowSuffix(_rowSuffix), rowSeparator(_rowSeparator), - rowSpacer(""), coeffSeparator(_coeffSeparator), precision(_precision), flags(_flags) - { - int i = int(matSuffix.length())-1; - while (i>=0 && matSuffix[i]!='\n') - { - rowSpacer += ' '; - i--; - } - } - std::string matPrefix, matSuffix; - std::string rowPrefix, rowSuffix, rowSeparator, rowSpacer; - std::string coeffSeparator; - int precision; - int flags; -}; - -/** \class WithFormat - * \ingroup Core_Module - * - * \brief Pseudo expression providing matrix output with given format - * - * \param ExpressionType the type of the object on which IO stream operations are performed - * - * This class represents an expression with stream operators controlled by a given IOFormat. - * It is the return type of DenseBase::format() - * and most of the time this is the only way it is used. - * - * See class IOFormat for some examples. - * - * \sa DenseBase::format(), class IOFormat - */ -template -class WithFormat -{ - public: - - WithFormat(const ExpressionType& matrix, const IOFormat& format) - : m_matrix(matrix), m_format(format) - {} - - friend std::ostream & operator << (std::ostream & s, const WithFormat& wf) - { - return internal::print_matrix(s, wf.m_matrix.eval(), wf.m_format); - } - - protected: - const typename ExpressionType::Nested m_matrix; - IOFormat m_format; -}; - -/** \returns a WithFormat proxy object allowing to print a matrix the with given - * format \a fmt. - * - * See class IOFormat for some examples. - * - * \sa class IOFormat, class WithFormat - */ -template -inline const WithFormat -DenseBase::format(const IOFormat& fmt) const -{ - return WithFormat(derived(), fmt); -} - -namespace internal { - -template -struct significant_decimals_default_impl -{ - typedef typename NumTraits::Real RealScalar; - static inline int run() - { - using std::ceil; - using std::log; - return cast(ceil(-log(NumTraits::epsilon())/log(RealScalar(10)))); - } -}; - -template -struct significant_decimals_default_impl -{ - static inline int run() - { - return 0; - } -}; - -template -struct significant_decimals_impl - : significant_decimals_default_impl::IsInteger> -{}; - -/** \internal - * print the matrix \a _m to the output stream \a s using the output format \a fmt */ -template -std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat& fmt) -{ - if(_m.size() == 0) - { - s << fmt.matPrefix << fmt.matSuffix; - return s; - } - - typename Derived::Nested m = _m; - typedef typename Derived::Scalar Scalar; - typedef typename Derived::Index Index; - - Index width = 0; - - std::streamsize explicit_precision; - if(fmt.precision == StreamPrecision) - { - explicit_precision = 0; - } - else if(fmt.precision == FullPrecision) - { - if (NumTraits::IsInteger) - { - explicit_precision = 0; - } - else - { - explicit_precision = significant_decimals_impl::run(); - } - } - else - { - explicit_precision = fmt.precision; - } - - std::streamsize old_precision = 0; - if(explicit_precision) old_precision = s.precision(explicit_precision); - - bool align_cols = !(fmt.flags & DontAlignCols); - if(align_cols) - { - // compute the largest width - for(Index j = 0; j < m.cols(); ++j) - for(Index i = 0; i < m.rows(); ++i) - { - std::stringstream sstr; - sstr.copyfmt(s); - sstr << m.coeff(i,j); - width = std::max(width, Index(sstr.str().length())); - } - } - s << fmt.matPrefix; - for(Index i = 0; i < m.rows(); ++i) - { - if (i) - s << fmt.rowSpacer; - s << fmt.rowPrefix; - if(width) s.width(width); - s << m.coeff(i, 0); - for(Index j = 1; j < m.cols(); ++j) - { - s << fmt.coeffSeparator; - if (width) s.width(width); - s << m.coeff(i, j); - } - s << fmt.rowSuffix; - if( i < m.rows() - 1) - s << fmt.rowSeparator; - } - s << fmt.matSuffix; - if(explicit_precision) s.precision(old_precision); - return s; -} - -} // end namespace internal - -/** \relates DenseBase - * - * Outputs the matrix, to the given stream. - * - * If you wish to print the matrix with a format different than the default, use DenseBase::format(). - * - * It is also possible to change the default format by defining EIGEN_DEFAULT_IO_FORMAT before including Eigen headers. - * If not defined, this will automatically be defined to Eigen::IOFormat(), that is the Eigen::IOFormat with default parameters. - * - * \sa DenseBase::format() - */ -template -std::ostream & operator << -(std::ostream & s, - const DenseBase & m) -{ - return internal::print_matrix(s, m.eval(), EIGEN_DEFAULT_IO_FORMAT); -} - -} // end namespace Eigen - -#endif // EIGEN_IO_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Map.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Map.h deleted file mode 100755 index f804c89d6..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Map.h +++ /dev/null @@ -1,192 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2007-2010 Benoit Jacob -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_MAP_H -#define EIGEN_MAP_H - -namespace Eigen { - -/** \class Map - * \ingroup Core_Module - * - * \brief A matrix or vector expression mapping an existing array of data. - * - * \tparam PlainObjectType the equivalent matrix type of the mapped data - * \tparam MapOptions specifies whether the pointer is \c #Aligned, or \c #Unaligned. - * The default is \c #Unaligned. - * \tparam StrideType optionally specifies strides. By default, Map assumes the memory layout - * of an ordinary, contiguous array. This can be overridden by specifying strides. - * The type passed here must be a specialization of the Stride template, see examples below. - * - * This class represents a matrix or vector expression mapping an existing array of data. - * It can be used to let Eigen interface without any overhead with non-Eigen data structures, - * such as plain C arrays or structures from other libraries. By default, it assumes that the - * data is laid out contiguously in memory. You can however override this by explicitly specifying - * inner and outer strides. - * - * Here's an example of simply mapping a contiguous array as a \ref TopicStorageOrders "column-major" matrix: - * \include Map_simple.cpp - * Output: \verbinclude Map_simple.out - * - * If you need to map non-contiguous arrays, you can do so by specifying strides: - * - * Here's an example of mapping an array as a vector, specifying an inner stride, that is, the pointer - * increment between two consecutive coefficients. Here, we're specifying the inner stride as a compile-time - * fixed value. - * \include Map_inner_stride.cpp - * Output: \verbinclude Map_inner_stride.out - * - * Here's an example of mapping an array while specifying an outer stride. Here, since we're mapping - * as a column-major matrix, 'outer stride' means the pointer increment between two consecutive columns. - * Here, we're specifying the outer stride as a runtime parameter. Note that here \c OuterStride<> is - * a short version of \c OuterStride because the default template parameter of OuterStride - * is \c Dynamic - * \include Map_outer_stride.cpp - * Output: \verbinclude Map_outer_stride.out - * - * For more details and for an example of specifying both an inner and an outer stride, see class Stride. - * - * \b Tip: to change the array of data mapped by a Map object, you can use the C++ - * placement new syntax: - * - * Example: \include Map_placement_new.cpp - * Output: \verbinclude Map_placement_new.out - * - * This class is the return type of PlainObjectBase::Map() but can also be used directly. - * - * \sa PlainObjectBase::Map(), \ref TopicStorageOrders - */ - -namespace internal { -template -struct traits > - : public traits -{ - typedef traits TraitsBase; - typedef typename PlainObjectType::Index Index; - typedef typename PlainObjectType::Scalar Scalar; - enum { - InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0 - ? int(PlainObjectType::InnerStrideAtCompileTime) - : int(StrideType::InnerStrideAtCompileTime), - OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0 - ? int(PlainObjectType::OuterStrideAtCompileTime) - : int(StrideType::OuterStrideAtCompileTime), - HasNoInnerStride = InnerStrideAtCompileTime == 1, - HasNoOuterStride = StrideType::OuterStrideAtCompileTime == 0, - HasNoStride = HasNoInnerStride && HasNoOuterStride, - IsAligned = bool(EIGEN_ALIGN) && ((int(MapOptions)&Aligned)==Aligned), - IsDynamicSize = PlainObjectType::SizeAtCompileTime==Dynamic, - KeepsPacketAccess = bool(HasNoInnerStride) - && ( bool(IsDynamicSize) - || HasNoOuterStride - || ( OuterStrideAtCompileTime!=Dynamic - && ((static_cast(sizeof(Scalar))*OuterStrideAtCompileTime)%16)==0 ) ), - Flags0 = TraitsBase::Flags & (~NestByRefBit), - Flags1 = IsAligned ? (int(Flags0) | AlignedBit) : (int(Flags0) & ~AlignedBit), - Flags2 = (bool(HasNoStride) || bool(PlainObjectType::IsVectorAtCompileTime)) - ? int(Flags1) : int(Flags1 & ~LinearAccessBit), - Flags3 = is_lvalue::value ? int(Flags2) : (int(Flags2) & ~LvalueBit), - Flags = KeepsPacketAccess ? int(Flags3) : (int(Flags3) & ~PacketAccessBit) - }; -private: - enum { Options }; // Expressions don't have Options -}; -} - -template class Map - : public MapBase > -{ - public: - - typedef MapBase Base; - EIGEN_DENSE_PUBLIC_INTERFACE(Map) - - typedef typename Base::PointerType PointerType; -#if EIGEN2_SUPPORT_STAGE <= STAGE30_FULL_EIGEN3_API - typedef const Scalar* PointerArgType; - inline PointerType cast_to_pointer_type(PointerArgType ptr) { return const_cast(ptr); } -#else - typedef PointerType PointerArgType; - inline PointerType cast_to_pointer_type(PointerArgType ptr) { return ptr; } -#endif - - inline Index innerStride() const - { - return StrideType::InnerStrideAtCompileTime != 0 ? m_stride.inner() : 1; - } - - inline Index outerStride() const - { - return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer() - : IsVectorAtCompileTime ? this->size() - : int(Flags)&RowMajorBit ? this->cols() - : this->rows(); - } - - /** Constructor in the fixed-size case. - * - * \param dataPtr pointer to the array to map - * \param a_stride optional Stride object, passing the strides. - */ - inline Map(PointerArgType dataPtr, const StrideType& a_stride = StrideType()) - : Base(cast_to_pointer_type(dataPtr)), m_stride(a_stride) - { - PlainObjectType::Base::_check_template_params(); - } - - /** Constructor in the dynamic-size vector case. - * - * \param dataPtr pointer to the array to map - * \param a_size the size of the vector expression - * \param a_stride optional Stride object, passing the strides. - */ - inline Map(PointerArgType dataPtr, Index a_size, const StrideType& a_stride = StrideType()) - : Base(cast_to_pointer_type(dataPtr), a_size), m_stride(a_stride) - { - PlainObjectType::Base::_check_template_params(); - } - - /** Constructor in the dynamic-size matrix case. - * - * \param dataPtr pointer to the array to map - * \param nbRows the number of rows of the matrix expression - * \param nbCols the number of columns of the matrix expression - * \param a_stride optional Stride object, passing the strides. - */ - inline Map(PointerArgType dataPtr, Index nbRows, Index nbCols, const StrideType& a_stride = StrideType()) - : Base(cast_to_pointer_type(dataPtr), nbRows, nbCols), m_stride(a_stride) - { - PlainObjectType::Base::_check_template_params(); - } - - EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map) - - protected: - StrideType m_stride; -}; - -template -inline Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> - ::Array(const Scalar *data) -{ - this->_set_noalias(Eigen::Map(data)); -} - -template -inline Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> - ::Matrix(const Scalar *data) -{ - this->_set_noalias(Eigen::Map(data)); -} - -} // end namespace Eigen - -#endif // EIGEN_MAP_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/MapBase.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/MapBase.h deleted file mode 100755 index 81efc4a6d..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/MapBase.h +++ /dev/null @@ -1,251 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2007-2010 Benoit Jacob -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_MAPBASE_H -#define EIGEN_MAPBASE_H - -#define EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived) \ - EIGEN_STATIC_ASSERT((int(internal::traits::Flags) & LinearAccessBit) || Derived::IsVectorAtCompileTime, \ - YOU_ARE_TRYING_TO_USE_AN_INDEX_BASED_ACCESSOR_ON_AN_EXPRESSION_THAT_DOES_NOT_SUPPORT_THAT) - -namespace Eigen { - -/** \class MapBase - * \ingroup Core_Module - * - * \brief Base class for Map and Block expression with direct access - * - * \sa class Map, class Block - */ -template class MapBase - : public internal::dense_xpr_base::type -{ - public: - - typedef typename internal::dense_xpr_base::type Base; - enum { - RowsAtCompileTime = internal::traits::RowsAtCompileTime, - ColsAtCompileTime = internal::traits::ColsAtCompileTime, - SizeAtCompileTime = Base::SizeAtCompileTime - }; - - typedef typename internal::traits::StorageKind StorageKind; - typedef typename internal::traits::Index Index; - typedef typename internal::traits::Scalar Scalar; - typedef typename internal::packet_traits::type PacketScalar; - typedef typename NumTraits::Real RealScalar; - typedef typename internal::conditional< - bool(internal::is_lvalue::value), - Scalar *, - const Scalar *>::type - PointerType; - - using Base::derived; -// using Base::RowsAtCompileTime; -// using Base::ColsAtCompileTime; -// using Base::SizeAtCompileTime; - using Base::MaxRowsAtCompileTime; - using Base::MaxColsAtCompileTime; - using Base::MaxSizeAtCompileTime; - using Base::IsVectorAtCompileTime; - using Base::Flags; - using Base::IsRowMajor; - - using Base::rows; - using Base::cols; - using Base::size; - using Base::coeff; - using Base::coeffRef; - using Base::lazyAssign; - using Base::eval; - - using Base::innerStride; - using Base::outerStride; - using Base::rowStride; - using Base::colStride; - - // bug 217 - compile error on ICC 11.1 - using Base::operator=; - - typedef typename Base::CoeffReturnType CoeffReturnType; - - inline Index rows() const { return m_rows.value(); } - inline Index cols() const { return m_cols.value(); } - - /** Returns a pointer to the first coefficient of the matrix or vector. - * - * \note When addressing this data, make sure to honor the strides returned by innerStride() and outerStride(). - * - * \sa innerStride(), outerStride() - */ - inline const Scalar* data() const { return m_data; } - - inline const Scalar& coeff(Index rowId, Index colId) const - { - return m_data[colId * colStride() + rowId * rowStride()]; - } - - inline const Scalar& coeff(Index index) const - { - EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived) - return m_data[index * innerStride()]; - } - - inline const Scalar& coeffRef(Index rowId, Index colId) const - { - return this->m_data[colId * colStride() + rowId * rowStride()]; - } - - inline const Scalar& coeffRef(Index index) const - { - EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived) - return this->m_data[index * innerStride()]; - } - - template - inline PacketScalar packet(Index rowId, Index colId) const - { - return internal::ploadt - (m_data + (colId * colStride() + rowId * rowStride())); - } - - template - inline PacketScalar packet(Index index) const - { - EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived) - return internal::ploadt(m_data + index * innerStride()); - } - - explicit inline MapBase(PointerType dataPtr) : m_data(dataPtr), m_rows(RowsAtCompileTime), m_cols(ColsAtCompileTime) - { - EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived) - checkSanity(); - } - - inline MapBase(PointerType dataPtr, Index vecSize) - : m_data(dataPtr), - m_rows(RowsAtCompileTime == Dynamic ? vecSize : Index(RowsAtCompileTime)), - m_cols(ColsAtCompileTime == Dynamic ? vecSize : Index(ColsAtCompileTime)) - { - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - eigen_assert(vecSize >= 0); - eigen_assert(dataPtr == 0 || SizeAtCompileTime == Dynamic || SizeAtCompileTime == vecSize); - checkSanity(); - } - - inline MapBase(PointerType dataPtr, Index nbRows, Index nbCols) - : m_data(dataPtr), m_rows(nbRows), m_cols(nbCols) - { - eigen_assert( (dataPtr == 0) - || ( nbRows >= 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == nbRows) - && nbCols >= 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == nbCols))); - checkSanity(); - } - - #ifdef EIGEN_MAPBASE_PLUGIN - #include EIGEN_MAPBASE_PLUGIN - #endif - - protected: - - void checkSanity() const - { - EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(internal::traits::Flags&PacketAccessBit, - internal::inner_stride_at_compile_time::ret==1), - PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1); - eigen_assert(EIGEN_IMPLIES(internal::traits::Flags&AlignedBit, (size_t(m_data) % 16) == 0) - && "input pointer is not aligned on a 16 byte boundary"); - } - - PointerType m_data; - const internal::variable_if_dynamic m_rows; - const internal::variable_if_dynamic m_cols; -}; - -template class MapBase - : public MapBase -{ - typedef MapBase ReadOnlyMapBase; - public: - - typedef MapBase Base; - - typedef typename Base::Scalar Scalar; - typedef typename Base::PacketScalar PacketScalar; - typedef typename Base::Index Index; - typedef typename Base::PointerType PointerType; - - using Base::derived; - using Base::rows; - using Base::cols; - using Base::size; - using Base::coeff; - using Base::coeffRef; - - using Base::innerStride; - using Base::outerStride; - using Base::rowStride; - using Base::colStride; - - typedef typename internal::conditional< - internal::is_lvalue::value, - Scalar, - const Scalar - >::type ScalarWithConstIfNotLvalue; - - inline const Scalar* data() const { return this->m_data; } - inline ScalarWithConstIfNotLvalue* data() { return this->m_data; } // no const-cast here so non-const-correct code will give a compile error - - inline ScalarWithConstIfNotLvalue& coeffRef(Index row, Index col) - { - return this->m_data[col * colStride() + row * rowStride()]; - } - - inline ScalarWithConstIfNotLvalue& coeffRef(Index index) - { - EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived) - return this->m_data[index * innerStride()]; - } - - template - inline void writePacket(Index row, Index col, const PacketScalar& val) - { - internal::pstoret - (this->m_data + (col * colStride() + row * rowStride()), val); - } - - template - inline void writePacket(Index index, const PacketScalar& val) - { - EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived) - internal::pstoret - (this->m_data + index * innerStride(), val); - } - - explicit inline MapBase(PointerType dataPtr) : Base(dataPtr) {} - inline MapBase(PointerType dataPtr, Index vecSize) : Base(dataPtr, vecSize) {} - inline MapBase(PointerType dataPtr, Index nbRows, Index nbCols) : Base(dataPtr, nbRows, nbCols) {} - - Derived& operator=(const MapBase& other) - { - ReadOnlyMapBase::Base::operator=(other); - return derived(); - } - - // In theory we could simply refer to Base:Base::operator=, but MSVC does not like Base::Base, - // see bugs 821 and 920. - using ReadOnlyMapBase::Base::operator=; -}; - -#undef EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS - -} // end namespace Eigen - -#endif // EIGEN_MAPBASE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/MathFunctions.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/MathFunctions.h deleted file mode 100755 index f707aa41e..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/MathFunctions.h +++ /dev/null @@ -1,792 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2006-2010 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_MATHFUNCTIONS_H -#define EIGEN_MATHFUNCTIONS_H - -namespace Eigen { - -namespace internal { - -/** \internal \struct global_math_functions_filtering_base - * - * What it does: - * Defines a typedef 'type' as follows: - * - if type T has a member typedef Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then - * global_math_functions_filtering_base::type is a typedef for it. - * - otherwise, global_math_functions_filtering_base::type is a typedef for T. - * - * How it's used: - * To allow to defined the global math functions (like sin...) in certain cases, like the Array expressions. - * When you do sin(array1+array2), the object array1+array2 has a complicated expression type, all what you want to know - * is that it inherits ArrayBase. So we implement a partial specialization of sin_impl for ArrayBase. - * So we must make sure to use sin_impl > and not sin_impl, otherwise our partial specialization - * won't be used. How does sin know that? That's exactly what global_math_functions_filtering_base tells it. - * - * How it's implemented: - * SFINAE in the style of enable_if. Highly susceptible of breaking compilers. With GCC, it sure does work, but if you replace - * the typename dummy by an integer template parameter, it doesn't work anymore! - */ - -template -struct global_math_functions_filtering_base -{ - typedef T type; -}; - -template struct always_void { typedef void type; }; - -template -struct global_math_functions_filtering_base - ::type - > -{ - typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type; -}; - -#define EIGEN_MATHFUNC_IMPL(func, scalar) Eigen::internal::func##_impl::type> -#define EIGEN_MATHFUNC_RETVAL(func, scalar) typename Eigen::internal::func##_retval::type>::type - -/**************************************************************************** -* Implementation of real * -****************************************************************************/ - -template::IsComplex> -struct real_default_impl -{ - typedef typename NumTraits::Real RealScalar; - static inline RealScalar run(const Scalar& x) - { - return x; - } -}; - -template -struct real_default_impl -{ - typedef typename NumTraits::Real RealScalar; - static inline RealScalar run(const Scalar& x) - { - using std::real; - return real(x); - } -}; - -template struct real_impl : real_default_impl {}; - -template -struct real_retval -{ - typedef typename NumTraits::Real type; -}; - - -/**************************************************************************** -* Implementation of imag * -****************************************************************************/ - -template::IsComplex> -struct imag_default_impl -{ - typedef typename NumTraits::Real RealScalar; - static inline RealScalar run(const Scalar&) - { - return RealScalar(0); - } -}; - -template -struct imag_default_impl -{ - typedef typename NumTraits::Real RealScalar; - static inline RealScalar run(const Scalar& x) - { - using std::imag; - return imag(x); - } -}; - -template struct imag_impl : imag_default_impl {}; - -template -struct imag_retval -{ - typedef typename NumTraits::Real type; -}; - -/**************************************************************************** -* Implementation of real_ref * -****************************************************************************/ - -template -struct real_ref_impl -{ - typedef typename NumTraits::Real RealScalar; - static inline RealScalar& run(Scalar& x) - { - return reinterpret_cast(&x)[0]; - } - static inline const RealScalar& run(const Scalar& x) - { - return reinterpret_cast(&x)[0]; - } -}; - -template -struct real_ref_retval -{ - typedef typename NumTraits::Real & type; -}; - -/**************************************************************************** -* Implementation of imag_ref * -****************************************************************************/ - -template -struct imag_ref_default_impl -{ - typedef typename NumTraits::Real RealScalar; - static inline RealScalar& run(Scalar& x) - { - return reinterpret_cast(&x)[1]; - } - static inline const RealScalar& run(const Scalar& x) - { - return reinterpret_cast(&x)[1]; - } -}; - -template -struct imag_ref_default_impl -{ - static inline Scalar run(Scalar&) - { - return Scalar(0); - } - static inline const Scalar run(const Scalar&) - { - return Scalar(0); - } -}; - -template -struct imag_ref_impl : imag_ref_default_impl::IsComplex> {}; - -template -struct imag_ref_retval -{ - typedef typename NumTraits::Real & type; -}; - -/**************************************************************************** -* Implementation of conj * -****************************************************************************/ - -template::IsComplex> -struct conj_impl -{ - static inline Scalar run(const Scalar& x) - { - return x; - } -}; - -template -struct conj_impl -{ - static inline Scalar run(const Scalar& x) - { - using std::conj; - return conj(x); - } -}; - -template -struct conj_retval -{ - typedef Scalar type; -}; - -/**************************************************************************** -* Implementation of abs2 * -****************************************************************************/ - -template -struct abs2_impl_default -{ - typedef typename NumTraits::Real RealScalar; - static inline RealScalar run(const Scalar& x) - { - return x*x; - } -}; - -template -struct abs2_impl_default // IsComplex -{ - typedef typename NumTraits::Real RealScalar; - static inline RealScalar run(const Scalar& x) - { - return real(x)*real(x) + imag(x)*imag(x); - } -}; - -template -struct abs2_impl -{ - typedef typename NumTraits::Real RealScalar; - static inline RealScalar run(const Scalar& x) - { - return abs2_impl_default::IsComplex>::run(x); - } -}; - -template -struct abs2_retval -{ - typedef typename NumTraits::Real type; -}; - -/**************************************************************************** -* Implementation of norm1 * -****************************************************************************/ - -template -struct norm1_default_impl -{ - typedef typename NumTraits::Real RealScalar; - static inline RealScalar run(const Scalar& x) - { - using std::abs; - return abs(real(x)) + abs(imag(x)); - } -}; - -template -struct norm1_default_impl -{ - static inline Scalar run(const Scalar& x) - { - using std::abs; - return abs(x); - } -}; - -template -struct norm1_impl : norm1_default_impl::IsComplex> {}; - -template -struct norm1_retval -{ - typedef typename NumTraits::Real type; -}; - -/**************************************************************************** -* Implementation of hypot * -****************************************************************************/ - -template -struct hypot_impl -{ - typedef typename NumTraits::Real RealScalar; - static inline RealScalar run(const Scalar& x, const Scalar& y) - { - using std::max; - using std::min; - using std::abs; - using std::sqrt; - RealScalar _x = abs(x); - RealScalar _y = abs(y); - RealScalar p = (max)(_x, _y); - if(p==RealScalar(0)) return RealScalar(0); - RealScalar q = (min)(_x, _y); - RealScalar qp = q/p; - return p * sqrt(RealScalar(1) + qp*qp); - } -}; - -template -struct hypot_retval -{ - typedef typename NumTraits::Real type; -}; - -/**************************************************************************** -* Implementation of cast * -****************************************************************************/ - -template -struct cast_impl -{ - static inline NewType run(const OldType& x) - { - return static_cast(x); - } -}; - -// here, for once, we're plainly returning NewType: we don't want cast to do weird things. - -template -inline NewType cast(const OldType& x) -{ - return cast_impl::run(x); -} - -/**************************************************************************** -* Implementation of atanh2 * -****************************************************************************/ - -template -struct atanh2_default_impl -{ - typedef Scalar retval; - typedef typename NumTraits::Real RealScalar; - static inline Scalar run(const Scalar& x, const Scalar& y) - { - using std::abs; - using std::log; - using std::sqrt; - Scalar z = x / y; - if (y == Scalar(0) || abs(z) > sqrt(NumTraits::epsilon())) - return RealScalar(0.5) * log((y + x) / (y - x)); - else - return z + z*z*z / RealScalar(3); - } -}; - -template -struct atanh2_default_impl -{ - static inline Scalar run(const Scalar&, const Scalar&) - { - EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) - return Scalar(0); - } -}; - -template -struct atanh2_impl : atanh2_default_impl::IsInteger> {}; - -template -struct atanh2_retval -{ - typedef Scalar type; -}; - -/**************************************************************************** -* Implementation of pow * -****************************************************************************/ - -template -struct pow_default_impl -{ - typedef Scalar retval; - static inline Scalar run(const Scalar& x, const Scalar& y) - { - using std::pow; - return pow(x, y); - } -}; - -template -struct pow_default_impl -{ - static inline Scalar run(Scalar x, Scalar y) - { - Scalar res(1); - eigen_assert(!NumTraits::IsSigned || y >= 0); - if(y & 1) res *= x; - y >>= 1; - while(y) - { - x *= x; - if(y&1) res *= x; - y >>= 1; - } - return res; - } -}; - -template -struct pow_impl : pow_default_impl::IsInteger> {}; - -template -struct pow_retval -{ - typedef Scalar type; -}; - -/**************************************************************************** -* Implementation of random * -****************************************************************************/ - -template -struct random_default_impl {}; - -template -struct random_impl : random_default_impl::IsComplex, NumTraits::IsInteger> {}; - -template -struct random_retval -{ - typedef Scalar type; -}; - -template inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y); -template inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(); - -template -struct random_default_impl -{ - static inline Scalar run(const Scalar& x, const Scalar& y) - { - return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX); - } - static inline Scalar run() - { - return run(Scalar(NumTraits::IsSigned ? -1 : 0), Scalar(1)); - } -}; - -enum { - floor_log2_terminate, - floor_log2_move_up, - floor_log2_move_down, - floor_log2_bogus -}; - -template struct floor_log2_selector -{ - enum { middle = (lower + upper) / 2, - value = (upper <= lower + 1) ? int(floor_log2_terminate) - : (n < (1 << middle)) ? int(floor_log2_move_down) - : (n==0) ? int(floor_log2_bogus) - : int(floor_log2_move_up) - }; -}; - -template::value> -struct floor_log2 {}; - -template -struct floor_log2 -{ - enum { value = floor_log2::middle>::value }; -}; - -template -struct floor_log2 -{ - enum { value = floor_log2::middle, upper>::value }; -}; - -template -struct floor_log2 -{ - enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower }; -}; - -template -struct floor_log2 -{ - // no value, error at compile time -}; - -template -struct random_default_impl -{ - static inline Scalar run(const Scalar& x, const Scalar& y) - { - typedef typename conditional::IsSigned,std::ptrdiff_t,std::size_t>::type ScalarX; - if(y=x the result converted to an unsigned long is still correct. - std::size_t range = ScalarX(y)-ScalarX(x); - std::size_t offset = 0; - // rejection sampling - std::size_t divisor = 1; - std::size_t multiplier = 1; - if(range range); - return Scalar(ScalarX(x) + offset); - } - - static inline Scalar run() - { -#ifdef EIGEN_MAKING_DOCS - return run(Scalar(NumTraits::IsSigned ? -10 : 0), Scalar(10)); -#else - enum { rand_bits = floor_log2<(unsigned int)(RAND_MAX)+1>::value, - scalar_bits = sizeof(Scalar) * CHAR_BIT, - shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)), - offset = NumTraits::IsSigned ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits,scalar_bits)-1)) : 0 - }; - return Scalar((std::rand() >> shift) - offset); -#endif - } -}; - -template -struct random_default_impl -{ - static inline Scalar run(const Scalar& x, const Scalar& y) - { - return Scalar(random(real(x), real(y)), - random(imag(x), imag(y))); - } - static inline Scalar run() - { - typedef typename NumTraits::Real RealScalar; - return Scalar(random(), random()); - } -}; - -template -inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y) -{ - return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y); -} - -template -inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random() -{ - return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(); -} - -} // end namespace internal - -/**************************************************************************** -* Generic math function * -****************************************************************************/ - -namespace numext { - -template -inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x) -{ - return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x); -} - -template -inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x) -{ - return internal::real_ref_impl::run(x); -} - -template -inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x) -{ - return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x); -} - -template -inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x) -{ - return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x); -} - -template -inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x) -{ - return internal::imag_ref_impl::run(x); -} - -template -inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x) -{ - return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x); -} - -template -inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x) -{ - return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x); -} - -template -inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x) -{ - return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x); -} - -template -inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x) -{ - return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x); -} - -template -inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y) -{ - return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y); -} - -template -inline EIGEN_MATHFUNC_RETVAL(atanh2, Scalar) atanh2(const Scalar& x, const Scalar& y) -{ - return EIGEN_MATHFUNC_IMPL(atanh2, Scalar)::run(x, y); -} - -template -inline EIGEN_MATHFUNC_RETVAL(pow, Scalar) pow(const Scalar& x, const Scalar& y) -{ - return EIGEN_MATHFUNC_IMPL(pow, Scalar)::run(x, y); -} - -// std::isfinite is non standard, so let's define our own version, -// even though it is not very efficient. -template bool (isfinite)(const T& x) -{ - return x::highest() && x>NumTraits::lowest(); -} - -} // end namespace numext - -namespace internal { - -/**************************************************************************** -* Implementation of fuzzy comparisons * -****************************************************************************/ - -template -struct scalar_fuzzy_default_impl {}; - -template -struct scalar_fuzzy_default_impl -{ - typedef typename NumTraits::Real RealScalar; - template - static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec) - { - using std::abs; - return abs(x) <= abs(y) * prec; - } - static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec) - { - using std::min; - using std::abs; - return abs(x - y) <= (min)(abs(x), abs(y)) * prec; - } - static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec) - { - return x <= y || isApprox(x, y, prec); - } -}; - -template -struct scalar_fuzzy_default_impl -{ - typedef typename NumTraits::Real RealScalar; - template - static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&) - { - return x == Scalar(0); - } - static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&) - { - return x == y; - } - static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&) - { - return x <= y; - } -}; - -template -struct scalar_fuzzy_default_impl -{ - typedef typename NumTraits::Real RealScalar; - template - static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec) - { - return numext::abs2(x) <= numext::abs2(y) * prec * prec; - } - static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec) - { - using std::min; - return numext::abs2(x - y) <= (min)(numext::abs2(x), numext::abs2(y)) * prec * prec; - } -}; - -template -struct scalar_fuzzy_impl : scalar_fuzzy_default_impl::IsComplex, NumTraits::IsInteger> {}; - -template -inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, - const typename NumTraits::Real &precision = NumTraits::dummy_precision()) -{ - return scalar_fuzzy_impl::template isMuchSmallerThan(x, y, precision); -} - -template -inline bool isApprox(const Scalar& x, const Scalar& y, - const typename NumTraits::Real &precision = NumTraits::dummy_precision()) -{ - return scalar_fuzzy_impl::isApprox(x, y, precision); -} - -template -inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, - const typename NumTraits::Real &precision = NumTraits::dummy_precision()) -{ - return scalar_fuzzy_impl::isApproxOrLessThan(x, y, precision); -} - -/****************************************** -*** The special case of the bool type *** -******************************************/ - -template<> struct random_impl -{ - static inline bool run() - { - return random(0,1)==0 ? false : true; - } -}; - -template<> struct scalar_fuzzy_impl -{ - typedef bool RealScalar; - - template - static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&) - { - return !x; - } - - static inline bool isApprox(bool x, bool y, bool) - { - return x == y; - } - - static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&) - { - return (!x) || y; - } - -}; - - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_MATHFUNCTIONS_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Matrix.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Matrix.h deleted file mode 100755 index 02be142d8..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Matrix.h +++ /dev/null @@ -1,420 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2006-2010 Benoit Jacob -// Copyright (C) 2008-2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_MATRIX_H -#define EIGEN_MATRIX_H - -namespace Eigen { - -/** \class Matrix - * \ingroup Core_Module - * - * \brief The matrix class, also used for vectors and row-vectors - * - * The %Matrix class is the work-horse for all \em dense (\ref dense "note") matrices and vectors within Eigen. - * Vectors are matrices with one column, and row-vectors are matrices with one row. - * - * The %Matrix class encompasses \em both fixed-size and dynamic-size objects (\ref fixedsize "note"). - * - * The first three template parameters are required: - * \tparam _Scalar \anchor matrix_tparam_scalar Numeric type, e.g. float, double, int or std::complex. - * User defined sclar types are supported as well (see \ref user_defined_scalars "here"). - * \tparam _Rows Number of rows, or \b Dynamic - * \tparam _Cols Number of columns, or \b Dynamic - * - * The remaining template parameters are optional -- in most cases you don't have to worry about them. - * \tparam _Options \anchor matrix_tparam_options A combination of either \b #RowMajor or \b #ColMajor, and of either - * \b #AutoAlign or \b #DontAlign. - * The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter controls alignment, which is required - * for vectorization. It defaults to aligning matrices except for fixed sizes that aren't a multiple of the packet size. - * \tparam _MaxRows Maximum number of rows. Defaults to \a _Rows (\ref maxrows "note"). - * \tparam _MaxCols Maximum number of columns. Defaults to \a _Cols (\ref maxrows "note"). - * - * Eigen provides a number of typedefs covering the usual cases. Here are some examples: - * - * \li \c Matrix2d is a 2x2 square matrix of doubles (\c Matrix) - * \li \c Vector4f is a vector of 4 floats (\c Matrix) - * \li \c RowVector3i is a row-vector of 3 ints (\c Matrix) - * - * \li \c MatrixXf is a dynamic-size matrix of floats (\c Matrix) - * \li \c VectorXf is a dynamic-size vector of floats (\c Matrix) - * - * \li \c Matrix2Xf is a partially fixed-size (dynamic-size) matrix of floats (\c Matrix) - * \li \c MatrixX3d is a partially dynamic-size (fixed-size) matrix of double (\c Matrix) - * - * See \link matrixtypedefs this page \endlink for a complete list of predefined \em %Matrix and \em Vector typedefs. - * - * You can access elements of vectors and matrices using normal subscripting: - * - * \code - * Eigen::VectorXd v(10); - * v[0] = 0.1; - * v[1] = 0.2; - * v(0) = 0.3; - * v(1) = 0.4; - * - * Eigen::MatrixXi m(10, 10); - * m(0, 1) = 1; - * m(0, 2) = 2; - * m(0, 3) = 3; - * \endcode - * - * This class can be extended with the help of the plugin mechanism described on the page - * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_MATRIX_PLUGIN. - * - * Some notes: - * - *
- *
\anchor dense Dense versus sparse:
- *
This %Matrix class handles dense, not sparse matrices and vectors. For sparse matrices and vectors, see the Sparse module. - * - * Dense matrices and vectors are plain usual arrays of coefficients. All the coefficients are stored, in an ordinary contiguous array. - * This is unlike Sparse matrices and vectors where the coefficients are stored as a list of nonzero coefficients.
- * - *
\anchor fixedsize Fixed-size versus dynamic-size:
- *
Fixed-size means that the numbers of rows and columns are known are compile-time. In this case, Eigen allocates the array - * of coefficients as a fixed-size array, as a class member. This makes sense for very small matrices, typically up to 4x4, sometimes up - * to 16x16. Larger matrices should be declared as dynamic-size even if one happens to know their size at compile-time. - * - * Dynamic-size means that the numbers of rows or columns are not necessarily known at compile-time. In this case they are runtime - * variables, and the array of coefficients is allocated dynamically on the heap. - * - * Note that \em dense matrices, be they Fixed-size or Dynamic-size, do not expand dynamically in the sense of a std::map. - * If you want this behavior, see the Sparse module.
- * - *
\anchor maxrows _MaxRows and _MaxCols:
- *
In most cases, one just leaves these parameters to the default values. - * These parameters mean the maximum size of rows and columns that the matrix may have. They are useful in cases - * when the exact numbers of rows and columns are not known are compile-time, but it is known at compile-time that they cannot - * exceed a certain value. This happens when taking dynamic-size blocks inside fixed-size matrices: in this case _MaxRows and _MaxCols - * are the dimensions of the original matrix, while _Rows and _Cols are Dynamic.
- *
- * - * \see MatrixBase for the majority of the API methods for matrices, \ref TopicClassHierarchy, - * \ref TopicStorageOrders - */ - -namespace internal { -template -struct traits > -{ - typedef _Scalar Scalar; - typedef Dense StorageKind; - typedef DenseIndex Index; - typedef MatrixXpr XprKind; - enum { - RowsAtCompileTime = _Rows, - ColsAtCompileTime = _Cols, - MaxRowsAtCompileTime = _MaxRows, - MaxColsAtCompileTime = _MaxCols, - Flags = compute_matrix_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret, - CoeffReadCost = NumTraits::ReadCost, - Options = _Options, - InnerStrideAtCompileTime = 1, - OuterStrideAtCompileTime = (Options&RowMajor) ? ColsAtCompileTime : RowsAtCompileTime - }; -}; -} - -template -class Matrix - : public PlainObjectBase > -{ - public: - - /** \brief Base class typedef. - * \sa PlainObjectBase - */ - typedef PlainObjectBase Base; - - enum { Options = _Options }; - - EIGEN_DENSE_PUBLIC_INTERFACE(Matrix) - - typedef typename Base::PlainObject PlainObject; - - using Base::base; - using Base::coeffRef; - - /** - * \brief Assigns matrices to each other. - * - * \note This is a special case of the templated operator=. Its purpose is - * to prevent a default operator= from hiding the templated operator=. - * - * \callgraph - */ - EIGEN_STRONG_INLINE Matrix& operator=(const Matrix& other) - { - return Base::_set(other); - } - - /** \internal - * \brief Copies the value of the expression \a other into \c *this with automatic resizing. - * - * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized), - * it will be initialized. - * - * Note that copying a row-vector into a vector (and conversely) is allowed. - * The resizing, if any, is then done in the appropriate way so that row-vectors - * remain row-vectors and vectors remain vectors. - */ - template - EIGEN_STRONG_INLINE Matrix& operator=(const MatrixBase& other) - { - return Base::_set(other); - } - - /* Here, doxygen failed to copy the brief information when using \copydoc */ - - /** - * \brief Copies the generic expression \a other into *this. - * \copydetails DenseBase::operator=(const EigenBase &other) - */ - template - EIGEN_STRONG_INLINE Matrix& operator=(const EigenBase &other) - { - return Base::operator=(other); - } - - template - EIGEN_STRONG_INLINE Matrix& operator=(const ReturnByValue& func) - { - return Base::operator=(func); - } - - /** \brief Default constructor. - * - * For fixed-size matrices, does nothing. - * - * For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix - * is called a null matrix. This constructor is the unique way to create null matrices: resizing - * a matrix to 0 is not supported. - * - * \sa resize(Index,Index) - */ - EIGEN_STRONG_INLINE Matrix() : Base() - { - Base::_check_template_params(); - EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED - } - - // FIXME is it still needed - Matrix(internal::constructor_without_unaligned_array_assert) - : Base(internal::constructor_without_unaligned_array_assert()) - { Base::_check_template_params(); EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED } - -#ifdef EIGEN_HAVE_RVALUE_REFERENCES - Matrix(Matrix&& other) - : Base(std::move(other)) - { - Base::_check_template_params(); - if (RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic) - Base::_set_noalias(other); - } - Matrix& operator=(Matrix&& other) - { - other.swap(*this); - return *this; - } -#endif - - /** \brief Constructs a vector or row-vector with given dimension. \only_for_vectors - * - * Note that this is only useful for dynamic-size vectors. For fixed-size vectors, - * it is redundant to pass the dimension here, so it makes more sense to use the default - * constructor Matrix() instead. - */ - EIGEN_STRONG_INLINE explicit Matrix(Index dim) - : Base(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim) - { - Base::_check_template_params(); - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix) - eigen_assert(dim >= 0); - eigen_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim); - EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED - } - - #ifndef EIGEN_PARSED_BY_DOXYGEN - template - EIGEN_STRONG_INLINE Matrix(const T0& x, const T1& y) - { - Base::_check_template_params(); - Base::template _init2(x, y); - } - #else - /** \brief Constructs an uninitialized matrix with \a rows rows and \a cols columns. - * - * This is useful for dynamic-size matrices. For fixed-size matrices, - * it is redundant to pass these parameters, so one should use the default constructor - * Matrix() instead. */ - Matrix(Index rows, Index cols); - /** \brief Constructs an initialized 2D vector with given coefficients */ - Matrix(const Scalar& x, const Scalar& y); - #endif - - /** \brief Constructs an initialized 3D vector with given coefficients */ - EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z) - { - Base::_check_template_params(); - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 3) - m_storage.data()[0] = x; - m_storage.data()[1] = y; - m_storage.data()[2] = z; - } - /** \brief Constructs an initialized 4D vector with given coefficients */ - EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w) - { - Base::_check_template_params(); - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 4) - m_storage.data()[0] = x; - m_storage.data()[1] = y; - m_storage.data()[2] = z; - m_storage.data()[3] = w; - } - - explicit Matrix(const Scalar *data); - - /** \brief Constructor copying the value of the expression \a other */ - template - EIGEN_STRONG_INLINE Matrix(const MatrixBase& other) - : Base(other.rows() * other.cols(), other.rows(), other.cols()) - { - // This test resides here, to bring the error messages closer to the user. Normally, these checks - // are performed deeply within the library, thus causing long and scary error traces. - EIGEN_STATIC_ASSERT((internal::is_same::value), - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - - Base::_check_template_params(); - Base::_set_noalias(other); - } - /** \brief Copy constructor */ - EIGEN_STRONG_INLINE Matrix(const Matrix& other) - : Base(other.rows() * other.cols(), other.rows(), other.cols()) - { - Base::_check_template_params(); - Base::_set_noalias(other); - } - /** \brief Copy constructor with in-place evaluation */ - template - EIGEN_STRONG_INLINE Matrix(const ReturnByValue& other) - { - Base::_check_template_params(); - Base::resize(other.rows(), other.cols()); - other.evalTo(*this); - } - - /** \brief Copy constructor for generic expressions. - * \sa MatrixBase::operator=(const EigenBase&) - */ - template - EIGEN_STRONG_INLINE Matrix(const EigenBase &other) - : Base(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols()) - { - Base::_check_template_params(); - Base::_resize_to_match(other); - // FIXME/CHECK: isn't *this = other.derived() more efficient. it allows to - // go for pure _set() implementations, right? - *this = other; - } - - /** \internal - * \brief Override MatrixBase::swap() since for dynamic-sized matrices - * of same type it is enough to swap the data pointers. - */ - template - void swap(MatrixBase const & other) - { this->_swap(other.derived()); } - - inline Index innerStride() const { return 1; } - inline Index outerStride() const { return this->innerSize(); } - - /////////// Geometry module /////////// - - template - explicit Matrix(const RotationBase& r); - template - Matrix& operator=(const RotationBase& r); - - #ifdef EIGEN2_SUPPORT - template - explicit Matrix(const eigen2_RotationBase& r); - template - Matrix& operator=(const eigen2_RotationBase& r); - #endif - - // allow to extend Matrix outside Eigen - #ifdef EIGEN_MATRIX_PLUGIN - #include EIGEN_MATRIX_PLUGIN - #endif - - protected: - template - friend struct internal::conservative_resize_like_impl; - - using Base::m_storage; -}; - -/** \defgroup matrixtypedefs Global matrix typedefs - * - * \ingroup Core_Module - * - * Eigen defines several typedef shortcuts for most common matrix and vector types. - * - * The general patterns are the following: - * - * \c MatrixSizeType where \c Size can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size, - * and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd - * for complex double. - * - * For example, \c Matrix3d is a fixed-size 3x3 matrix type of doubles, and \c MatrixXf is a dynamic-size matrix of floats. - * - * There are also \c VectorSizeType and \c RowVectorSizeType which are self-explanatory. For example, \c Vector4cf is - * a fixed-size vector of 4 complex floats. - * - * \sa class Matrix - */ - -#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \ -/** \ingroup matrixtypedefs */ \ -typedef Matrix Matrix##SizeSuffix##TypeSuffix; \ -/** \ingroup matrixtypedefs */ \ -typedef Matrix Vector##SizeSuffix##TypeSuffix; \ -/** \ingroup matrixtypedefs */ \ -typedef Matrix RowVector##SizeSuffix##TypeSuffix; - -#define EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \ -/** \ingroup matrixtypedefs */ \ -typedef Matrix Matrix##Size##X##TypeSuffix; \ -/** \ingroup matrixtypedefs */ \ -typedef Matrix Matrix##X##Size##TypeSuffix; - -#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \ -EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \ -EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \ -EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \ -EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \ -EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \ -EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \ -EIGEN_MAKE_FIXED_TYPEDEFS(Type, TypeSuffix, 4) - -EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i) -EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f) -EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d) -EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex, cf) -EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex, cd) - -#undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES -#undef EIGEN_MAKE_TYPEDEFS -#undef EIGEN_MAKE_FIXED_TYPEDEFS - -} // end namespace Eigen - -#endif // EIGEN_MATRIX_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/MatrixBase.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/MatrixBase.h deleted file mode 100755 index e83ef4dc0..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/MatrixBase.h +++ /dev/null @@ -1,563 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2006-2009 Benoit Jacob -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_MATRIXBASE_H -#define EIGEN_MATRIXBASE_H - -namespace Eigen { - -/** \class MatrixBase - * \ingroup Core_Module - * - * \brief Base class for all dense matrices, vectors, and expressions - * - * This class is the base that is inherited by all matrix, vector, and related expression - * types. Most of the Eigen API is contained in this class, and its base classes. Other important - * classes for the Eigen API are Matrix, and VectorwiseOp. - * - * Note that some methods are defined in other modules such as the \ref LU_Module LU module - * for all functions related to matrix inversions. - * - * \tparam Derived is the derived type, e.g. a matrix type, or an expression, etc. - * - * When writing a function taking Eigen objects as argument, if you want your function - * to take as argument any matrix, vector, or expression, just let it take a - * MatrixBase argument. As an example, here is a function printFirstRow which, given - * a matrix, vector, or expression \a x, prints the first row of \a x. - * - * \code - template - void printFirstRow(const Eigen::MatrixBase& x) - { - cout << x.row(0) << endl; - } - * \endcode - * - * This class can be extended with the help of the plugin mechanism described on the page - * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_MATRIXBASE_PLUGIN. - * - * \sa \ref TopicClassHierarchy - */ -template class MatrixBase - : public DenseBase -{ - public: -#ifndef EIGEN_PARSED_BY_DOXYGEN - typedef MatrixBase StorageBaseType; - typedef typename internal::traits::StorageKind StorageKind; - typedef typename internal::traits::Index Index; - typedef typename internal::traits::Scalar Scalar; - typedef typename internal::packet_traits::type PacketScalar; - typedef typename NumTraits::Real RealScalar; - - typedef DenseBase Base; - using Base::RowsAtCompileTime; - using Base::ColsAtCompileTime; - using Base::SizeAtCompileTime; - using Base::MaxRowsAtCompileTime; - using Base::MaxColsAtCompileTime; - using Base::MaxSizeAtCompileTime; - using Base::IsVectorAtCompileTime; - using Base::Flags; - using Base::CoeffReadCost; - - using Base::derived; - using Base::const_cast_derived; - using Base::rows; - using Base::cols; - using Base::size; - using Base::coeff; - using Base::coeffRef; - using Base::lazyAssign; - using Base::eval; - using Base::operator+=; - using Base::operator-=; - using Base::operator*=; - using Base::operator/=; - - typedef typename Base::CoeffReturnType CoeffReturnType; - typedef typename Base::ConstTransposeReturnType ConstTransposeReturnType; - typedef typename Base::RowXpr RowXpr; - typedef typename Base::ColXpr ColXpr; -#endif // not EIGEN_PARSED_BY_DOXYGEN - - - -#ifndef EIGEN_PARSED_BY_DOXYGEN - /** type of the equivalent square matrix */ - typedef Matrix SquareMatrixType; -#endif // not EIGEN_PARSED_BY_DOXYGEN - - /** \returns the size of the main diagonal, which is min(rows(),cols()). - * \sa rows(), cols(), SizeAtCompileTime. */ - inline Index diagonalSize() const { return (std::min)(rows(),cols()); } - - /** \brief The plain matrix type corresponding to this expression. - * - * This is not necessarily exactly the return type of eval(). In the case of plain matrices, - * the return type of eval() is a const reference to a matrix, not a matrix! It is however guaranteed - * that the return type of eval() is either PlainObject or const PlainObject&. - */ - typedef Matrix::Scalar, - internal::traits::RowsAtCompileTime, - internal::traits::ColsAtCompileTime, - AutoAlign | (internal::traits::Flags&RowMajorBit ? RowMajor : ColMajor), - internal::traits::MaxRowsAtCompileTime, - internal::traits::MaxColsAtCompileTime - > PlainObject; - -#ifndef EIGEN_PARSED_BY_DOXYGEN - /** \internal Represents a matrix with all coefficients equal to one another*/ - typedef CwiseNullaryOp,Derived> ConstantReturnType; - /** \internal the return type of MatrixBase::adjoint() */ - typedef typename internal::conditional::IsComplex, - CwiseUnaryOp, ConstTransposeReturnType>, - ConstTransposeReturnType - >::type AdjointReturnType; - /** \internal Return type of eigenvalues() */ - typedef Matrix, internal::traits::ColsAtCompileTime, 1, ColMajor> EigenvaluesReturnType; - /** \internal the return type of identity */ - typedef CwiseNullaryOp,Derived> IdentityReturnType; - /** \internal the return type of unit vectors */ - typedef Block, SquareMatrixType>, - internal::traits::RowsAtCompileTime, - internal::traits::ColsAtCompileTime> BasisReturnType; -#endif // not EIGEN_PARSED_BY_DOXYGEN - -#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::MatrixBase -# include "../plugins/CommonCwiseUnaryOps.h" -# include "../plugins/CommonCwiseBinaryOps.h" -# include "../plugins/MatrixCwiseUnaryOps.h" -# include "../plugins/MatrixCwiseBinaryOps.h" -# ifdef EIGEN_MATRIXBASE_PLUGIN -# include EIGEN_MATRIXBASE_PLUGIN -# endif -#undef EIGEN_CURRENT_STORAGE_BASE_CLASS - - /** Special case of the template operator=, in order to prevent the compiler - * from generating a default operator= (issue hit with g++ 4.1) - */ - Derived& operator=(const MatrixBase& other); - - // We cannot inherit here via Base::operator= since it is causing - // trouble with MSVC. - - template - Derived& operator=(const DenseBase& other); - - template - Derived& operator=(const EigenBase& other); - - template - Derived& operator=(const ReturnByValue& other); - - template - Derived& lazyAssign(const ProductBase& other); - - template - Derived& lazyAssign(const MatrixPowerProduct& other); - - template - Derived& operator+=(const MatrixBase& other); - template - Derived& operator-=(const MatrixBase& other); - - template - const typename ProductReturnType::Type - operator*(const MatrixBase &other) const; - - template - const typename LazyProductReturnType::Type - lazyProduct(const MatrixBase &other) const; - - template - Derived& operator*=(const EigenBase& other); - - template - void applyOnTheLeft(const EigenBase& other); - - template - void applyOnTheRight(const EigenBase& other); - - template - const DiagonalProduct - operator*(const DiagonalBase &diagonal) const; - - template - typename internal::scalar_product_traits::Scalar,typename internal::traits::Scalar>::ReturnType - dot(const MatrixBase& other) const; - - #ifdef EIGEN2_SUPPORT - template - Scalar eigen2_dot(const MatrixBase& other) const; - #endif - - RealScalar squaredNorm() const; - RealScalar norm() const; - RealScalar stableNorm() const; - RealScalar blueNorm() const; - RealScalar hypotNorm() const; - const PlainObject normalized() const; - void normalize(); - - const AdjointReturnType adjoint() const; - void adjointInPlace(); - - typedef Diagonal DiagonalReturnType; - DiagonalReturnType diagonal(); - typedef typename internal::add_const >::type ConstDiagonalReturnType; - ConstDiagonalReturnType diagonal() const; - - template struct DiagonalIndexReturnType { typedef Diagonal Type; }; - template struct ConstDiagonalIndexReturnType { typedef const Diagonal Type; }; - - template typename DiagonalIndexReturnType::Type diagonal(); - template typename ConstDiagonalIndexReturnType::Type diagonal() const; - - typedef Diagonal DiagonalDynamicIndexReturnType; - typedef typename internal::add_const >::type ConstDiagonalDynamicIndexReturnType; - - DiagonalDynamicIndexReturnType diagonal(Index index); - ConstDiagonalDynamicIndexReturnType diagonal(Index index) const; - - #ifdef EIGEN2_SUPPORT - template typename internal::eigen2_part_return_type::type part(); - template const typename internal::eigen2_part_return_type::type part() const; - - // huuuge hack. make Eigen2's matrix.part() work in eigen3. Problem: Diagonal is now a class template instead - // of an integer constant. Solution: overload the part() method template wrt template parameters list. - template class U> - const DiagonalWrapper part() const - { return diagonal().asDiagonal(); } - #endif // EIGEN2_SUPPORT - - template struct TriangularViewReturnType { typedef TriangularView Type; }; - template struct ConstTriangularViewReturnType { typedef const TriangularView Type; }; - - template typename TriangularViewReturnType::Type triangularView(); - template typename ConstTriangularViewReturnType::Type triangularView() const; - - template struct SelfAdjointViewReturnType { typedef SelfAdjointView Type; }; - template struct ConstSelfAdjointViewReturnType { typedef const SelfAdjointView Type; }; - - template typename SelfAdjointViewReturnType::Type selfadjointView(); - template typename ConstSelfAdjointViewReturnType::Type selfadjointView() const; - - const SparseView sparseView(const Scalar& m_reference = Scalar(0), - const typename NumTraits::Real& m_epsilon = NumTraits::dummy_precision()) const; - static const IdentityReturnType Identity(); - static const IdentityReturnType Identity(Index rows, Index cols); - static const BasisReturnType Unit(Index size, Index i); - static const BasisReturnType Unit(Index i); - static const BasisReturnType UnitX(); - static const BasisReturnType UnitY(); - static const BasisReturnType UnitZ(); - static const BasisReturnType UnitW(); - - const DiagonalWrapper asDiagonal() const; - const PermutationWrapper asPermutation() const; - - Derived& setIdentity(); - Derived& setIdentity(Index rows, Index cols); - - bool isIdentity(const RealScalar& prec = NumTraits::dummy_precision()) const; - bool isDiagonal(const RealScalar& prec = NumTraits::dummy_precision()) const; - - bool isUpperTriangular(const RealScalar& prec = NumTraits::dummy_precision()) const; - bool isLowerTriangular(const RealScalar& prec = NumTraits::dummy_precision()) const; - - template - bool isOrthogonal(const MatrixBase& other, - const RealScalar& prec = NumTraits::dummy_precision()) const; - bool isUnitary(const RealScalar& prec = NumTraits::dummy_precision()) const; - - /** \returns true if each coefficients of \c *this and \a other are all exactly equal. - * \warning When using floating point scalar values you probably should rather use a - * fuzzy comparison such as isApprox() - * \sa isApprox(), operator!= */ - template - inline bool operator==(const MatrixBase& other) const - { return cwiseEqual(other).all(); } - - /** \returns true if at least one pair of coefficients of \c *this and \a other are not exactly equal to each other. - * \warning When using floating point scalar values you probably should rather use a - * fuzzy comparison such as isApprox() - * \sa isApprox(), operator== */ - template - inline bool operator!=(const MatrixBase& other) const - { return cwiseNotEqual(other).any(); } - - NoAlias noalias(); - - inline const ForceAlignedAccess forceAlignedAccess() const; - inline ForceAlignedAccess forceAlignedAccess(); - template inline typename internal::add_const_on_value_type,Derived&>::type>::type forceAlignedAccessIf() const; - template inline typename internal::conditional,Derived&>::type forceAlignedAccessIf(); - - Scalar trace() const; - -/////////// Array module /////////// - - template RealScalar lpNorm() const; - - MatrixBase& matrix() { return *this; } - const MatrixBase& matrix() const { return *this; } - - /** \returns an \link Eigen::ArrayBase Array \endlink expression of this matrix - * \sa ArrayBase::matrix() */ - ArrayWrapper array() { return derived(); } - const ArrayWrapper array() const { return derived(); } - -/////////// LU module /////////// - - const FullPivLU fullPivLu() const; - const PartialPivLU partialPivLu() const; - - #if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS - const LU lu() const; - #endif - - #ifdef EIGEN2_SUPPORT - const LU eigen2_lu() const; - #endif - - #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS - const PartialPivLU lu() const; - #endif - - #ifdef EIGEN2_SUPPORT - template - void computeInverse(MatrixBase *result) const { - *result = this->inverse(); - } - #endif - - const internal::inverse_impl inverse() const; - template - void computeInverseAndDetWithCheck( - ResultType& inverse, - typename ResultType::Scalar& determinant, - bool& invertible, - const RealScalar& absDeterminantThreshold = NumTraits::dummy_precision() - ) const; - template - void computeInverseWithCheck( - ResultType& inverse, - bool& invertible, - const RealScalar& absDeterminantThreshold = NumTraits::dummy_precision() - ) const; - Scalar determinant() const; - -/////////// Cholesky module /////////// - - const LLT llt() const; - const LDLT ldlt() const; - -/////////// QR module /////////// - - const HouseholderQR householderQr() const; - const ColPivHouseholderQR colPivHouseholderQr() const; - const FullPivHouseholderQR fullPivHouseholderQr() const; - - #ifdef EIGEN2_SUPPORT - const QR qr() const; - #endif - - EigenvaluesReturnType eigenvalues() const; - RealScalar operatorNorm() const; - -/////////// SVD module /////////// - - JacobiSVD jacobiSvd(unsigned int computationOptions = 0) const; - - #ifdef EIGEN2_SUPPORT - SVD svd() const; - #endif - -/////////// Geometry module /////////// - - #ifndef EIGEN_PARSED_BY_DOXYGEN - /// \internal helper struct to form the return type of the cross product - template struct cross_product_return_type { - typedef typename internal::scalar_product_traits::Scalar,typename internal::traits::Scalar>::ReturnType Scalar; - typedef Matrix type; - }; - #endif // EIGEN_PARSED_BY_DOXYGEN - template - typename cross_product_return_type::type - cross(const MatrixBase& other) const; - template - PlainObject cross3(const MatrixBase& other) const; - PlainObject unitOrthogonal(void) const; - Matrix eulerAngles(Index a0, Index a1, Index a2) const; - - #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS - ScalarMultipleReturnType operator*(const UniformScaling& s) const; - // put this as separate enum value to work around possible GCC 4.3 bug (?) - enum { HomogeneousReturnTypeDirection = ColsAtCompileTime==1?Vertical:Horizontal }; - typedef Homogeneous HomogeneousReturnType; - HomogeneousReturnType homogeneous() const; - #endif - - enum { - SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1 - }; - typedef Block::ColsAtCompileTime==1 ? SizeMinusOne : 1, - internal::traits::ColsAtCompileTime==1 ? 1 : SizeMinusOne> ConstStartMinusOne; - typedef CwiseUnaryOp::Scalar>, - const ConstStartMinusOne > HNormalizedReturnType; - - const HNormalizedReturnType hnormalized() const; - -////////// Householder module /////////// - - void makeHouseholderInPlace(Scalar& tau, RealScalar& beta); - template - void makeHouseholder(EssentialPart& essential, - Scalar& tau, RealScalar& beta) const; - template - void applyHouseholderOnTheLeft(const EssentialPart& essential, - const Scalar& tau, - Scalar* workspace); - template - void applyHouseholderOnTheRight(const EssentialPart& essential, - const Scalar& tau, - Scalar* workspace); - -///////// Jacobi module ///////// - - template - void applyOnTheLeft(Index p, Index q, const JacobiRotation& j); - template - void applyOnTheRight(Index p, Index q, const JacobiRotation& j); - -///////// SparseCore module ///////// - - template - EIGEN_STRONG_INLINE const typename SparseMatrixBase::template CwiseProductDenseReturnType::Type - cwiseProduct(const SparseMatrixBase &other) const - { - return other.cwiseProduct(derived()); - } - -///////// MatrixFunctions module ///////// - - typedef typename internal::stem_function::type StemFunction; - const MatrixExponentialReturnValue exp() const; - const MatrixFunctionReturnValue matrixFunction(StemFunction f) const; - const MatrixFunctionReturnValue cosh() const; - const MatrixFunctionReturnValue sinh() const; - const MatrixFunctionReturnValue cos() const; - const MatrixFunctionReturnValue sin() const; - const MatrixSquareRootReturnValue sqrt() const; - const MatrixLogarithmReturnValue log() const; - const MatrixPowerReturnValue pow(const RealScalar& p) const; - -#ifdef EIGEN2_SUPPORT - template - Derived& operator+=(const Flagged, 0, - EvalBeforeAssigningBit>& other); - - template - Derived& operator-=(const Flagged, 0, - EvalBeforeAssigningBit>& other); - - /** \deprecated because .lazy() is deprecated - * Overloaded for cache friendly product evaluation */ - template - Derived& lazyAssign(const Flagged& other) - { return lazyAssign(other._expression()); } - - template - const Flagged marked() const; - const Flagged lazy() const; - - inline const Cwise cwise() const; - inline Cwise cwise(); - - VectorBlock start(Index size); - const VectorBlock start(Index size) const; - VectorBlock end(Index size); - const VectorBlock end(Index size) const; - template VectorBlock start(); - template const VectorBlock start() const; - template VectorBlock end(); - template const VectorBlock end() const; - - Minor minor(Index row, Index col); - const Minor minor(Index row, Index col) const; -#endif - - protected: - MatrixBase() : Base() {} - - private: - explicit MatrixBase(int); - MatrixBase(int,int); - template explicit MatrixBase(const MatrixBase&); - protected: - // mixing arrays and matrices is not legal - template Derived& operator+=(const ArrayBase& ) - {EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;} - // mixing arrays and matrices is not legal - template Derived& operator-=(const ArrayBase& ) - {EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;} -}; - - -/*************************************************************************** -* Implementation of matrix base methods -***************************************************************************/ - -/** replaces \c *this by \c *this * \a other. - * - * \returns a reference to \c *this - * - * Example: \include MatrixBase_applyOnTheRight.cpp - * Output: \verbinclude MatrixBase_applyOnTheRight.out - */ -template -template -inline Derived& -MatrixBase::operator*=(const EigenBase &other) -{ - other.derived().applyThisOnTheRight(derived()); - return derived(); -} - -/** replaces \c *this by \c *this * \a other. It is equivalent to MatrixBase::operator*=(). - * - * Example: \include MatrixBase_applyOnTheRight.cpp - * Output: \verbinclude MatrixBase_applyOnTheRight.out - */ -template -template -inline void MatrixBase::applyOnTheRight(const EigenBase &other) -{ - other.derived().applyThisOnTheRight(derived()); -} - -/** replaces \c *this by \a other * \c *this. - * - * Example: \include MatrixBase_applyOnTheLeft.cpp - * Output: \verbinclude MatrixBase_applyOnTheLeft.out - */ -template -template -inline void MatrixBase::applyOnTheLeft(const EigenBase &other) -{ - other.derived().applyThisOnTheLeft(derived()); -} - -} // end namespace Eigen - -#endif // EIGEN_MATRIXBASE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/NestByValue.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/NestByValue.h deleted file mode 100755 index a893b1761..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/NestByValue.h +++ /dev/null @@ -1,111 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_NESTBYVALUE_H -#define EIGEN_NESTBYVALUE_H - -namespace Eigen { - -/** \class NestByValue - * \ingroup Core_Module - * - * \brief Expression which must be nested by value - * - * \param ExpressionType the type of the object of which we are requiring nesting-by-value - * - * This class is the return type of MatrixBase::nestByValue() - * and most of the time this is the only way it is used. - * - * \sa MatrixBase::nestByValue() - */ - -namespace internal { -template -struct traits > : public traits -{}; -} - -template class NestByValue - : public internal::dense_xpr_base< NestByValue >::type -{ - public: - - typedef typename internal::dense_xpr_base::type Base; - EIGEN_DENSE_PUBLIC_INTERFACE(NestByValue) - - inline NestByValue(const ExpressionType& matrix) : m_expression(matrix) {} - - inline Index rows() const { return m_expression.rows(); } - inline Index cols() const { return m_expression.cols(); } - inline Index outerStride() const { return m_expression.outerStride(); } - inline Index innerStride() const { return m_expression.innerStride(); } - - inline const CoeffReturnType coeff(Index row, Index col) const - { - return m_expression.coeff(row, col); - } - - inline Scalar& coeffRef(Index row, Index col) - { - return m_expression.const_cast_derived().coeffRef(row, col); - } - - inline const CoeffReturnType coeff(Index index) const - { - return m_expression.coeff(index); - } - - inline Scalar& coeffRef(Index index) - { - return m_expression.const_cast_derived().coeffRef(index); - } - - template - inline const PacketScalar packet(Index row, Index col) const - { - return m_expression.template packet(row, col); - } - - template - inline void writePacket(Index row, Index col, const PacketScalar& x) - { - m_expression.const_cast_derived().template writePacket(row, col, x); - } - - template - inline const PacketScalar packet(Index index) const - { - return m_expression.template packet(index); - } - - template - inline void writePacket(Index index, const PacketScalar& x) - { - m_expression.const_cast_derived().template writePacket(index, x); - } - - operator const ExpressionType&() const { return m_expression; } - - protected: - const ExpressionType m_expression; -}; - -/** \returns an expression of the temporary version of *this. - */ -template -inline const NestByValue -DenseBase::nestByValue() const -{ - return NestByValue(derived()); -} - -} // end namespace Eigen - -#endif // EIGEN_NESTBYVALUE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/NoAlias.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/NoAlias.h deleted file mode 100755 index 768bfb18c..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/NoAlias.h +++ /dev/null @@ -1,134 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_NOALIAS_H -#define EIGEN_NOALIAS_H - -namespace Eigen { - -/** \class NoAlias - * \ingroup Core_Module - * - * \brief Pseudo expression providing an operator = assuming no aliasing - * - * \param ExpressionType the type of the object on which to do the lazy assignment - * - * This class represents an expression with special assignment operators - * assuming no aliasing between the target expression and the source expression. - * More precisely it alloas to bypass the EvalBeforeAssignBit flag of the source expression. - * It is the return type of MatrixBase::noalias() - * and most of the time this is the only way it is used. - * - * \sa MatrixBase::noalias() - */ -template class StorageBase> -class NoAlias -{ - typedef typename ExpressionType::Scalar Scalar; - public: - NoAlias(ExpressionType& expression) : m_expression(expression) {} - - /** Behaves like MatrixBase::lazyAssign(other) - * \sa MatrixBase::lazyAssign() */ - template - EIGEN_STRONG_INLINE ExpressionType& operator=(const StorageBase& other) - { return internal::assign_selector::run(m_expression,other.derived()); } - - /** \sa MatrixBase::operator+= */ - template - EIGEN_STRONG_INLINE ExpressionType& operator+=(const StorageBase& other) - { - typedef SelfCwiseBinaryOp, ExpressionType, OtherDerived> SelfAdder; - SelfAdder tmp(m_expression); - typedef typename internal::nested::type OtherDerivedNested; - typedef typename internal::remove_all::type _OtherDerivedNested; - internal::assign_selector::run(tmp,OtherDerivedNested(other.derived())); - return m_expression; - } - - /** \sa MatrixBase::operator-= */ - template - EIGEN_STRONG_INLINE ExpressionType& operator-=(const StorageBase& other) - { - typedef SelfCwiseBinaryOp, ExpressionType, OtherDerived> SelfAdder; - SelfAdder tmp(m_expression); - typedef typename internal::nested::type OtherDerivedNested; - typedef typename internal::remove_all::type _OtherDerivedNested; - internal::assign_selector::run(tmp,OtherDerivedNested(other.derived())); - return m_expression; - } - -#ifndef EIGEN_PARSED_BY_DOXYGEN - template - EIGEN_STRONG_INLINE ExpressionType& operator+=(const ProductBase& other) - { other.derived().addTo(m_expression); return m_expression; } - - template - EIGEN_STRONG_INLINE ExpressionType& operator-=(const ProductBase& other) - { other.derived().subTo(m_expression); return m_expression; } - - template - EIGEN_STRONG_INLINE ExpressionType& operator+=(const CoeffBasedProduct& other) - { return m_expression.derived() += CoeffBasedProduct(other.lhs(), other.rhs()); } - - template - EIGEN_STRONG_INLINE ExpressionType& operator-=(const CoeffBasedProduct& other) - { return m_expression.derived() -= CoeffBasedProduct(other.lhs(), other.rhs()); } - - template - ExpressionType& operator=(const ReturnByValue& func) - { return m_expression = func; } -#endif - - ExpressionType& expression() const - { - return m_expression; - } - - protected: - ExpressionType& m_expression; -}; - -/** \returns a pseudo expression of \c *this with an operator= assuming - * no aliasing between \c *this and the source expression. - * - * More precisely, noalias() allows to bypass the EvalBeforeAssignBit flag. - * Currently, even though several expressions may alias, only product - * expressions have this flag. Therefore, noalias() is only usefull when - * the source expression contains a matrix product. - * - * Here are some examples where noalias is usefull: - * \code - * D.noalias() = A * B; - * D.noalias() += A.transpose() * B; - * D.noalias() -= 2 * A * B.adjoint(); - * \endcode - * - * On the other hand the following example will lead to a \b wrong result: - * \code - * A.noalias() = A * B; - * \endcode - * because the result matrix A is also an operand of the matrix product. Therefore, - * there is no alternative than evaluating A * B in a temporary, that is the default - * behavior when you write: - * \code - * A = A * B; - * \endcode - * - * \sa class NoAlias - */ -template -NoAlias MatrixBase::noalias() -{ - return derived(); -} - -} // end namespace Eigen - -#endif // EIGEN_NOALIAS_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/NumTraits.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/NumTraits.h deleted file mode 100755 index bac9e50b8..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/NumTraits.h +++ /dev/null @@ -1,150 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2006-2010 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_NUMTRAITS_H -#define EIGEN_NUMTRAITS_H - -namespace Eigen { - -/** \class NumTraits - * \ingroup Core_Module - * - * \brief Holds information about the various numeric (i.e. scalar) types allowed by Eigen. - * - * \param T the numeric type at hand - * - * This class stores enums, typedefs and static methods giving information about a numeric type. - * - * The provided data consists of: - * \li A typedef \a Real, giving the "real part" type of \a T. If \a T is already real, - * then \a Real is just a typedef to \a T. If \a T is \c std::complex then \a Real - * is a typedef to \a U. - * \li A typedef \a NonInteger, giving the type that should be used for operations producing non-integral values, - * such as quotients, square roots, etc. If \a T is a floating-point type, then this typedef just gives - * \a T again. Note however that many Eigen functions such as internal::sqrt simply refuse to - * take integers. Outside of a few cases, Eigen doesn't do automatic type promotion. Thus, this typedef is - * only intended as a helper for code that needs to explicitly promote types. - * \li A typedef \a Nested giving the type to use to nest a value inside of the expression tree. If you don't know what - * this means, just use \a T here. - * \li An enum value \a IsComplex. It is equal to 1 if \a T is a \c std::complex - * type, and to 0 otherwise. - * \li An enum value \a IsInteger. It is equal to \c 1 if \a T is an integer type such as \c int, - * and to \c 0 otherwise. - * \li Enum values ReadCost, AddCost and MulCost representing a rough estimate of the number of CPU cycles needed - * to by move / add / mul instructions respectively, assuming the data is already stored in CPU registers. - * Stay vague here. No need to do architecture-specific stuff. - * \li An enum value \a IsSigned. It is equal to \c 1 if \a T is a signed type and to 0 if \a T is unsigned. - * \li An enum value \a RequireInitialization. It is equal to \c 1 if the constructor of the numeric type \a T must - * be called, and to 0 if it is safe not to call it. Default is 0 if \a T is an arithmetic type, and 1 otherwise. - * \li An epsilon() function which, unlike std::numeric_limits::epsilon(), returns a \a Real instead of a \a T. - * \li A dummy_precision() function returning a weak epsilon value. It is mainly used as a default - * value by the fuzzy comparison operators. - * \li highest() and lowest() functions returning the highest and lowest possible values respectively. - */ - -template struct GenericNumTraits -{ - enum { - IsInteger = std::numeric_limits::is_integer, - IsSigned = std::numeric_limits::is_signed, - IsComplex = 0, - RequireInitialization = internal::is_arithmetic::value ? 0 : 1, - ReadCost = 1, - AddCost = 1, - MulCost = 1 - }; - - typedef T Real; - typedef typename internal::conditional< - IsInteger, - typename internal::conditional::type, - T - >::type NonInteger; - typedef T Nested; - - static inline Real epsilon() { return std::numeric_limits::epsilon(); } - static inline Real dummy_precision() - { - // make sure to override this for floating-point types - return Real(0); - } - static inline T highest() { return (std::numeric_limits::max)(); } - static inline T lowest() { return IsInteger ? (std::numeric_limits::min)() : (-(std::numeric_limits::max)()); } - -#ifdef EIGEN2_SUPPORT - enum { - HasFloatingPoint = !IsInteger - }; - typedef NonInteger FloatingPoint; -#endif -}; - -template struct NumTraits : GenericNumTraits -{}; - -template<> struct NumTraits - : GenericNumTraits -{ - static inline float dummy_precision() { return 1e-5f; } -}; - -template<> struct NumTraits : GenericNumTraits -{ - static inline double dummy_precision() { return 1e-12; } -}; - -template<> struct NumTraits - : GenericNumTraits -{ - static inline long double dummy_precision() { return 1e-15l; } -}; - -template struct NumTraits > - : GenericNumTraits > -{ - typedef _Real Real; - enum { - IsComplex = 1, - RequireInitialization = NumTraits<_Real>::RequireInitialization, - ReadCost = 2 * NumTraits<_Real>::ReadCost, - AddCost = 2 * NumTraits::AddCost, - MulCost = 4 * NumTraits::MulCost + 2 * NumTraits::AddCost - }; - - static inline Real epsilon() { return NumTraits::epsilon(); } - static inline Real dummy_precision() { return NumTraits::dummy_precision(); } -}; - -template -struct NumTraits > -{ - typedef Array ArrayType; - typedef typename NumTraits::Real RealScalar; - typedef Array Real; - typedef typename NumTraits::NonInteger NonIntegerScalar; - typedef Array NonInteger; - typedef ArrayType & Nested; - - enum { - IsComplex = NumTraits::IsComplex, - IsInteger = NumTraits::IsInteger, - IsSigned = NumTraits::IsSigned, - RequireInitialization = 1, - ReadCost = ArrayType::SizeAtCompileTime==Dynamic ? Dynamic : ArrayType::SizeAtCompileTime * NumTraits::ReadCost, - AddCost = ArrayType::SizeAtCompileTime==Dynamic ? Dynamic : ArrayType::SizeAtCompileTime * NumTraits::AddCost, - MulCost = ArrayType::SizeAtCompileTime==Dynamic ? Dynamic : ArrayType::SizeAtCompileTime * NumTraits::MulCost - }; - - static inline RealScalar epsilon() { return NumTraits::epsilon(); } - static inline RealScalar dummy_precision() { return NumTraits::dummy_precision(); } -}; - -} // end namespace Eigen - -#endif // EIGEN_NUMTRAITS_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/PermutationMatrix.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/PermutationMatrix.h deleted file mode 100755 index bda79fa04..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/PermutationMatrix.h +++ /dev/null @@ -1,722 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Benoit Jacob -// Copyright (C) 2009-2011 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_PERMUTATIONMATRIX_H -#define EIGEN_PERMUTATIONMATRIX_H - -namespace Eigen { - -template class PermutedImpl; - -/** \class PermutationBase - * \ingroup Core_Module - * - * \brief Base class for permutations - * - * \param Derived the derived class - * - * This class is the base class for all expressions representing a permutation matrix, - * internally stored as a vector of integers. - * The convention followed here is that if \f$ \sigma \f$ is a permutation, the corresponding permutation matrix - * \f$ P_\sigma \f$ is such that if \f$ (e_1,\ldots,e_p) \f$ is the canonical basis, we have: - * \f[ P_\sigma(e_i) = e_{\sigma(i)}. \f] - * This convention ensures that for any two permutations \f$ \sigma, \tau \f$, we have: - * \f[ P_{\sigma\circ\tau} = P_\sigma P_\tau. \f] - * - * Permutation matrices are square and invertible. - * - * Notice that in addition to the member functions and operators listed here, there also are non-member - * operator* to multiply any kind of permutation object with any kind of matrix expression (MatrixBase) - * on either side. - * - * \sa class PermutationMatrix, class PermutationWrapper - */ - -namespace internal { - -template -struct permut_matrix_product_retval; -template -struct permut_sparsematrix_product_retval; -enum PermPermProduct_t {PermPermProduct}; - -} // end namespace internal - -template -class PermutationBase : public EigenBase -{ - typedef internal::traits Traits; - typedef EigenBase Base; - public: - - #ifndef EIGEN_PARSED_BY_DOXYGEN - typedef typename Traits::IndicesType IndicesType; - enum { - Flags = Traits::Flags, - CoeffReadCost = Traits::CoeffReadCost, - RowsAtCompileTime = Traits::RowsAtCompileTime, - ColsAtCompileTime = Traits::ColsAtCompileTime, - MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime, - MaxColsAtCompileTime = Traits::MaxColsAtCompileTime - }; - typedef typename Traits::Scalar Scalar; - typedef typename Traits::Index Index; - typedef Matrix - DenseMatrixType; - typedef PermutationMatrix - PlainPermutationType; - using Base::derived; - #endif - - /** Copies the other permutation into *this */ - template - Derived& operator=(const PermutationBase& other) - { - indices() = other.indices(); - return derived(); - } - - /** Assignment from the Transpositions \a tr */ - template - Derived& operator=(const TranspositionsBase& tr) - { - setIdentity(tr.size()); - for(Index k=size()-1; k>=0; --k) - applyTranspositionOnTheRight(k,tr.coeff(k)); - return derived(); - } - - #ifndef EIGEN_PARSED_BY_DOXYGEN - /** This is a special case of the templated operator=. Its purpose is to - * prevent a default operator= from hiding the templated operator=. - */ - Derived& operator=(const PermutationBase& other) - { - indices() = other.indices(); - return derived(); - } - #endif - - /** \returns the number of rows */ - inline Index rows() const { return Index(indices().size()); } - - /** \returns the number of columns */ - inline Index cols() const { return Index(indices().size()); } - - /** \returns the size of a side of the respective square matrix, i.e., the number of indices */ - inline Index size() const { return Index(indices().size()); } - - #ifndef EIGEN_PARSED_BY_DOXYGEN - template - void evalTo(MatrixBase& other) const - { - other.setZero(); - for (int i=0; i=0 && j>=0 && i=0 && j>=0 && i inverse() const - { return derived(); } - /** \returns the tranpose permutation matrix. - * - * \note \note_try_to_help_rvo - */ - inline Transpose transpose() const - { return derived(); } - - /**** multiplication helpers to hopefully get RVO ****/ - - -#ifndef EIGEN_PARSED_BY_DOXYGEN - protected: - template - void assignTranspose(const PermutationBase& other) - { - for (int i=0; i - void assignProduct(const Lhs& lhs, const Rhs& rhs) - { - eigen_assert(lhs.cols() == rhs.rows()); - for (int i=0; i - inline PlainPermutationType operator*(const PermutationBase& other) const - { return PlainPermutationType(internal::PermPermProduct, derived(), other.derived()); } - - /** \returns the product of a permutation with another inverse permutation. - * - * \note \note_try_to_help_rvo - */ - template - inline PlainPermutationType operator*(const Transpose >& other) const - { return PlainPermutationType(internal::PermPermProduct, *this, other.eval()); } - - /** \returns the product of an inverse permutation with another permutation. - * - * \note \note_try_to_help_rvo - */ - template friend - inline PlainPermutationType operator*(const Transpose >& other, const PermutationBase& perm) - { return PlainPermutationType(internal::PermPermProduct, other.eval(), perm); } - - /** \returns the determinant of the permutation matrix, which is either 1 or -1 depending on the parity of the permutation. - * - * This function is O(\c n) procedure allocating a buffer of \c n booleans. - */ - Index determinant() const - { - Index res = 1; - Index n = size(); - Matrix mask(n); - mask.fill(false); - Index r = 0; - while(r < n) - { - // search for the next seed - while(r=n) - break; - // we got one, let's follow it until we are back to the seed - Index k0 = r++; - mask.coeffRef(k0) = true; - for(Index k=indices().coeff(k0); k!=k0; k=indices().coeff(k)) - { - mask.coeffRef(k) = true; - res = -res; - } - } - return res; - } - - protected: - -}; - -/** \class PermutationMatrix - * \ingroup Core_Module - * - * \brief Permutation matrix - * - * \param SizeAtCompileTime the number of rows/cols, or Dynamic - * \param MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it. - * \param IndexType the interger type of the indices - * - * This class represents a permutation matrix, internally stored as a vector of integers. - * - * \sa class PermutationBase, class PermutationWrapper, class DiagonalMatrix - */ - -namespace internal { -template -struct traits > - : traits > -{ - typedef IndexType Index; - typedef Matrix IndicesType; -}; -} - -template -class PermutationMatrix : public PermutationBase > -{ - typedef PermutationBase Base; - typedef internal::traits Traits; - public: - - #ifndef EIGEN_PARSED_BY_DOXYGEN - typedef typename Traits::IndicesType IndicesType; - #endif - - inline PermutationMatrix() - {} - - /** Constructs an uninitialized permutation matrix of given size. - */ - inline PermutationMatrix(int size) : m_indices(size) - {} - - /** Copy constructor. */ - template - inline PermutationMatrix(const PermutationBase& other) - : m_indices(other.indices()) {} - - #ifndef EIGEN_PARSED_BY_DOXYGEN - /** Standard copy constructor. Defined only to prevent a default copy constructor - * from hiding the other templated constructor */ - inline PermutationMatrix(const PermutationMatrix& other) : m_indices(other.indices()) {} - #endif - - /** Generic constructor from expression of the indices. The indices - * array has the meaning that the permutations sends each integer i to indices[i]. - * - * \warning It is your responsibility to check that the indices array that you passes actually - * describes a permutation, i.e., each value between 0 and n-1 occurs exactly once, where n is the - * array's size. - */ - template - explicit inline PermutationMatrix(const MatrixBase& a_indices) : m_indices(a_indices) - {} - - /** Convert the Transpositions \a tr to a permutation matrix */ - template - explicit PermutationMatrix(const TranspositionsBase& tr) - : m_indices(tr.size()) - { - *this = tr; - } - - /** Copies the other permutation into *this */ - template - PermutationMatrix& operator=(const PermutationBase& other) - { - m_indices = other.indices(); - return *this; - } - - /** Assignment from the Transpositions \a tr */ - template - PermutationMatrix& operator=(const TranspositionsBase& tr) - { - return Base::operator=(tr.derived()); - } - - #ifndef EIGEN_PARSED_BY_DOXYGEN - /** This is a special case of the templated operator=. Its purpose is to - * prevent a default operator= from hiding the templated operator=. - */ - PermutationMatrix& operator=(const PermutationMatrix& other) - { - m_indices = other.m_indices; - return *this; - } - #endif - - /** const version of indices(). */ - const IndicesType& indices() const { return m_indices; } - /** \returns a reference to the stored array representing the permutation. */ - IndicesType& indices() { return m_indices; } - - - /**** multiplication helpers to hopefully get RVO ****/ - -#ifndef EIGEN_PARSED_BY_DOXYGEN - template - PermutationMatrix(const Transpose >& other) - : m_indices(other.nestedPermutation().size()) - { - for (int i=0; i - PermutationMatrix(internal::PermPermProduct_t, const Lhs& lhs, const Rhs& rhs) - : m_indices(lhs.indices().size()) - { - Base::assignProduct(lhs,rhs); - } -#endif - - protected: - - IndicesType m_indices; -}; - - -namespace internal { -template -struct traits,_PacketAccess> > - : traits > -{ - typedef IndexType Index; - typedef Map, _PacketAccess> IndicesType; -}; -} - -template -class Map,_PacketAccess> - : public PermutationBase,_PacketAccess> > -{ - typedef PermutationBase Base; - typedef internal::traits Traits; - public: - - #ifndef EIGEN_PARSED_BY_DOXYGEN - typedef typename Traits::IndicesType IndicesType; - typedef typename IndicesType::Scalar Index; - #endif - - inline Map(const Index* indicesPtr) - : m_indices(indicesPtr) - {} - - inline Map(const Index* indicesPtr, Index size) - : m_indices(indicesPtr,size) - {} - - /** Copies the other permutation into *this */ - template - Map& operator=(const PermutationBase& other) - { return Base::operator=(other.derived()); } - - /** Assignment from the Transpositions \a tr */ - template - Map& operator=(const TranspositionsBase& tr) - { return Base::operator=(tr.derived()); } - - #ifndef EIGEN_PARSED_BY_DOXYGEN - /** This is a special case of the templated operator=. Its purpose is to - * prevent a default operator= from hiding the templated operator=. - */ - Map& operator=(const Map& other) - { - m_indices = other.m_indices; - return *this; - } - #endif - - /** const version of indices(). */ - const IndicesType& indices() const { return m_indices; } - /** \returns a reference to the stored array representing the permutation. */ - IndicesType& indices() { return m_indices; } - - protected: - - IndicesType m_indices; -}; - -/** \class PermutationWrapper - * \ingroup Core_Module - * - * \brief Class to view a vector of integers as a permutation matrix - * - * \param _IndicesType the type of the vector of integer (can be any compatible expression) - * - * This class allows to view any vector expression of integers as a permutation matrix. - * - * \sa class PermutationBase, class PermutationMatrix - */ - -struct PermutationStorage {}; - -template class TranspositionsWrapper; -namespace internal { -template -struct traits > -{ - typedef PermutationStorage StorageKind; - typedef typename _IndicesType::Scalar Scalar; - typedef typename _IndicesType::Scalar Index; - typedef _IndicesType IndicesType; - enum { - RowsAtCompileTime = _IndicesType::SizeAtCompileTime, - ColsAtCompileTime = _IndicesType::SizeAtCompileTime, - MaxRowsAtCompileTime = IndicesType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = IndicesType::MaxColsAtCompileTime, - Flags = 0, - CoeffReadCost = _IndicesType::CoeffReadCost - }; -}; -} - -template -class PermutationWrapper : public PermutationBase > -{ - typedef PermutationBase Base; - typedef internal::traits Traits; - public: - - #ifndef EIGEN_PARSED_BY_DOXYGEN - typedef typename Traits::IndicesType IndicesType; - #endif - - inline PermutationWrapper(const IndicesType& a_indices) - : m_indices(a_indices) - {} - - /** const version of indices(). */ - const typename internal::remove_all::type& - indices() const { return m_indices; } - - protected: - - typename IndicesType::Nested m_indices; -}; - -/** \returns the matrix with the permutation applied to the columns. - */ -template -inline const internal::permut_matrix_product_retval -operator*(const MatrixBase& matrix, - const PermutationBase &permutation) -{ - return internal::permut_matrix_product_retval - - (permutation.derived(), matrix.derived()); -} - -/** \returns the matrix with the permutation applied to the rows. - */ -template -inline const internal::permut_matrix_product_retval - -operator*(const PermutationBase &permutation, - const MatrixBase& matrix) -{ - return internal::permut_matrix_product_retval - - (permutation.derived(), matrix.derived()); -} - -namespace internal { - -template -struct traits > -{ - typedef typename MatrixType::PlainObject ReturnType; -}; - -template -struct permut_matrix_product_retval - : public ReturnByValue > -{ - typedef typename remove_all::type MatrixTypeNestedCleaned; - typedef typename MatrixType::Index Index; - - permut_matrix_product_retval(const PermutationType& perm, const MatrixType& matrix) - : m_permutation(perm), m_matrix(matrix) - {} - - inline Index rows() const { return m_matrix.rows(); } - inline Index cols() const { return m_matrix.cols(); } - - template inline void evalTo(Dest& dst) const - { - const Index n = Side==OnTheLeft ? rows() : cols(); - // FIXME we need an is_same for expression that is not sensitive to constness. For instance - // is_same_xpr, Block >::value should be true. - const typename Dest::Scalar *dst_data = internal::extract_data(dst); - if( is_same::value - && blas_traits::HasUsableDirectAccess - && blas_traits::HasUsableDirectAccess - && dst_data!=0 && dst_data == extract_data(m_matrix)) - { - // apply the permutation inplace - Matrix mask(m_permutation.size()); - mask.fill(false); - Index r = 0; - while(r < m_permutation.size()) - { - // search for the next seed - while(r=m_permutation.size()) - break; - // we got one, let's follow it until we are back to the seed - Index k0 = r++; - Index kPrev = k0; - mask.coeffRef(k0) = true; - for(Index k=m_permutation.indices().coeff(k0); k!=k0; k=m_permutation.indices().coeff(k)) - { - Block(dst, k) - .swap(Block - (dst,((Side==OnTheLeft) ^ Transposed) ? k0 : kPrev)); - - mask.coeffRef(k) = true; - kPrev = k; - } - } - } - else - { - for(int i = 0; i < n; ++i) - { - Block - (dst, ((Side==OnTheLeft) ^ Transposed) ? m_permutation.indices().coeff(i) : i) - - = - - Block - (m_matrix, ((Side==OnTheRight) ^ Transposed) ? m_permutation.indices().coeff(i) : i); - } - } - } - - protected: - const PermutationType& m_permutation; - typename MatrixType::Nested m_matrix; -}; - -/* Template partial specialization for transposed/inverse permutations */ - -template -struct traits > > - : traits -{}; - -} // end namespace internal - -template -class Transpose > - : public EigenBase > > -{ - typedef Derived PermutationType; - typedef typename PermutationType::IndicesType IndicesType; - typedef typename PermutationType::PlainPermutationType PlainPermutationType; - public: - - #ifndef EIGEN_PARSED_BY_DOXYGEN - typedef internal::traits Traits; - typedef typename Derived::DenseMatrixType DenseMatrixType; - enum { - Flags = Traits::Flags, - CoeffReadCost = Traits::CoeffReadCost, - RowsAtCompileTime = Traits::RowsAtCompileTime, - ColsAtCompileTime = Traits::ColsAtCompileTime, - MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime, - MaxColsAtCompileTime = Traits::MaxColsAtCompileTime - }; - typedef typename Traits::Scalar Scalar; - #endif - - Transpose(const PermutationType& p) : m_permutation(p) {} - - inline int rows() const { return m_permutation.rows(); } - inline int cols() const { return m_permutation.cols(); } - - #ifndef EIGEN_PARSED_BY_DOXYGEN - template - void evalTo(MatrixBase& other) const - { - other.setZero(); - for (int i=0; i friend - inline const internal::permut_matrix_product_retval - operator*(const MatrixBase& matrix, const Transpose& trPerm) - { - return internal::permut_matrix_product_retval(trPerm.m_permutation, matrix.derived()); - } - - /** \returns the matrix with the inverse permutation applied to the rows. - */ - template - inline const internal::permut_matrix_product_retval - operator*(const MatrixBase& matrix) const - { - return internal::permut_matrix_product_retval(m_permutation, matrix.derived()); - } - - const PermutationType& nestedPermutation() const { return m_permutation; } - - protected: - const PermutationType& m_permutation; -}; - -template -const PermutationWrapper MatrixBase::asPermutation() const -{ - return derived(); -} - -} // end namespace Eigen - -#endif // EIGEN_PERMUTATIONMATRIX_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/PlainObjectBase.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/PlainObjectBase.h deleted file mode 100755 index 9f71956ff..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/PlainObjectBase.h +++ /dev/null @@ -1,822 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2009 Gael Guennebaud -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_DENSESTORAGEBASE_H -#define EIGEN_DENSESTORAGEBASE_H - -#if defined(EIGEN_INITIALIZE_MATRICES_BY_ZERO) -# define EIGEN_INITIALIZE_COEFFS -# define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED for(int i=0;i::quiet_NaN(); -#else -# undef EIGEN_INITIALIZE_COEFFS -# define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED -#endif - -namespace Eigen { - -namespace internal { - -template struct check_rows_cols_for_overflow { - template - static EIGEN_ALWAYS_INLINE void run(Index, Index) - { - } -}; - -template<> struct check_rows_cols_for_overflow { - template - static EIGEN_ALWAYS_INLINE void run(Index rows, Index cols) - { - // http://hg.mozilla.org/mozilla-central/file/6c8a909977d3/xpcom/ds/CheckedInt.h#l242 - // we assume Index is signed - Index max_index = (size_t(1) << (8 * sizeof(Index) - 1)) - 1; // assume Index is signed - bool error = (rows == 0 || cols == 0) ? false - : (rows > max_index / cols); - if (error) - throw_std_bad_alloc(); - } -}; - -template -struct conservative_resize_like_impl; - -template struct matrix_swap_impl; - -} // end namespace internal - -/** \class PlainObjectBase - * \brief %Dense storage base class for matrices and arrays. - * - * This class can be extended with the help of the plugin mechanism described on the page - * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_PLAINOBJECTBASE_PLUGIN. - * - * \sa \ref TopicClassHierarchy - */ -#ifdef EIGEN_PARSED_BY_DOXYGEN -namespace internal { - -// this is a warkaround to doxygen not being able to understand the inheritence logic -// when it is hidden by the dense_xpr_base helper struct. -template struct dense_xpr_base_dispatcher_for_doxygen;// : public MatrixBase {}; -/** This class is just a workaround for Doxygen and it does not not actually exist. */ -template -struct dense_xpr_base_dispatcher_for_doxygen > - : public MatrixBase > {}; -/** This class is just a workaround for Doxygen and it does not not actually exist. */ -template -struct dense_xpr_base_dispatcher_for_doxygen > - : public ArrayBase > {}; - -} // namespace internal - -template -class PlainObjectBase : public internal::dense_xpr_base_dispatcher_for_doxygen -#else -template -class PlainObjectBase : public internal::dense_xpr_base::type -#endif -{ - public: - enum { Options = internal::traits::Options }; - typedef typename internal::dense_xpr_base::type Base; - - typedef typename internal::traits::StorageKind StorageKind; - typedef typename internal::traits::Index Index; - typedef typename internal::traits::Scalar Scalar; - typedef typename internal::packet_traits::type PacketScalar; - typedef typename NumTraits::Real RealScalar; - typedef Derived DenseType; - - using Base::RowsAtCompileTime; - using Base::ColsAtCompileTime; - using Base::SizeAtCompileTime; - using Base::MaxRowsAtCompileTime; - using Base::MaxColsAtCompileTime; - using Base::MaxSizeAtCompileTime; - using Base::IsVectorAtCompileTime; - using Base::Flags; - - template friend class Eigen::Map; - friend class Eigen::Map; - typedef Eigen::Map MapType; - friend class Eigen::Map; - typedef const Eigen::Map ConstMapType; - friend class Eigen::Map; - typedef Eigen::Map AlignedMapType; - friend class Eigen::Map; - typedef const Eigen::Map ConstAlignedMapType; - template struct StridedMapType { typedef Eigen::Map type; }; - template struct StridedConstMapType { typedef Eigen::Map type; }; - template struct StridedAlignedMapType { typedef Eigen::Map type; }; - template struct StridedConstAlignedMapType { typedef Eigen::Map type; }; - - protected: - DenseStorage m_storage; - - public: - enum { NeedsToAlign = SizeAtCompileTime != Dynamic && (internal::traits::Flags & AlignedBit) != 0 }; - EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) - - Base& base() { return *static_cast(this); } - const Base& base() const { return *static_cast(this); } - - EIGEN_STRONG_INLINE Index rows() const { return m_storage.rows(); } - EIGEN_STRONG_INLINE Index cols() const { return m_storage.cols(); } - - EIGEN_STRONG_INLINE const Scalar& coeff(Index rowId, Index colId) const - { - if(Flags & RowMajorBit) - return m_storage.data()[colId + rowId * m_storage.cols()]; - else // column-major - return m_storage.data()[rowId + colId * m_storage.rows()]; - } - - EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const - { - return m_storage.data()[index]; - } - - EIGEN_STRONG_INLINE Scalar& coeffRef(Index rowId, Index colId) - { - if(Flags & RowMajorBit) - return m_storage.data()[colId + rowId * m_storage.cols()]; - else // column-major - return m_storage.data()[rowId + colId * m_storage.rows()]; - } - - EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) - { - return m_storage.data()[index]; - } - - EIGEN_STRONG_INLINE const Scalar& coeffRef(Index rowId, Index colId) const - { - if(Flags & RowMajorBit) - return m_storage.data()[colId + rowId * m_storage.cols()]; - else // column-major - return m_storage.data()[rowId + colId * m_storage.rows()]; - } - - EIGEN_STRONG_INLINE const Scalar& coeffRef(Index index) const - { - return m_storage.data()[index]; - } - - /** \internal */ - template - EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const - { - return internal::ploadt - (m_storage.data() + (Flags & RowMajorBit - ? colId + rowId * m_storage.cols() - : rowId + colId * m_storage.rows())); - } - - /** \internal */ - template - EIGEN_STRONG_INLINE PacketScalar packet(Index index) const - { - return internal::ploadt(m_storage.data() + index); - } - - /** \internal */ - template - EIGEN_STRONG_INLINE void writePacket(Index rowId, Index colId, const PacketScalar& val) - { - internal::pstoret - (m_storage.data() + (Flags & RowMajorBit - ? colId + rowId * m_storage.cols() - : rowId + colId * m_storage.rows()), val); - } - - /** \internal */ - template - EIGEN_STRONG_INLINE void writePacket(Index index, const PacketScalar& val) - { - internal::pstoret(m_storage.data() + index, val); - } - - /** \returns a const pointer to the data array of this matrix */ - EIGEN_STRONG_INLINE const Scalar *data() const - { return m_storage.data(); } - - /** \returns a pointer to the data array of this matrix */ - EIGEN_STRONG_INLINE Scalar *data() - { return m_storage.data(); } - - /** Resizes \c *this to a \a rows x \a cols matrix. - * - * This method is intended for dynamic-size matrices, although it is legal to call it on any - * matrix as long as fixed dimensions are left unchanged. If you only want to change the number - * of rows and/or of columns, you can use resize(NoChange_t, Index), resize(Index, NoChange_t). - * - * If the current number of coefficients of \c *this exactly matches the - * product \a rows * \a cols, then no memory allocation is performed and - * the current values are left unchanged. In all other cases, including - * shrinking, the data is reallocated and all previous values are lost. - * - * Example: \include Matrix_resize_int_int.cpp - * Output: \verbinclude Matrix_resize_int_int.out - * - * \sa resize(Index) for vectors, resize(NoChange_t, Index), resize(Index, NoChange_t) - */ - EIGEN_STRONG_INLINE void resize(Index nbRows, Index nbCols) - { - eigen_assert( EIGEN_IMPLIES(RowsAtCompileTime!=Dynamic,nbRows==RowsAtCompileTime) - && EIGEN_IMPLIES(ColsAtCompileTime!=Dynamic,nbCols==ColsAtCompileTime) - && EIGEN_IMPLIES(RowsAtCompileTime==Dynamic && MaxRowsAtCompileTime!=Dynamic,nbRows<=MaxRowsAtCompileTime) - && EIGEN_IMPLIES(ColsAtCompileTime==Dynamic && MaxColsAtCompileTime!=Dynamic,nbCols<=MaxColsAtCompileTime) - && nbRows>=0 && nbCols>=0 && "Invalid sizes when resizing a matrix or array."); - internal::check_rows_cols_for_overflow::run(nbRows, nbCols); - #ifdef EIGEN_INITIALIZE_COEFFS - Index size = nbRows*nbCols; - bool size_changed = size != this->size(); - m_storage.resize(size, nbRows, nbCols); - if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED - #else - internal::check_rows_cols_for_overflow::run(nbRows, nbCols); - m_storage.resize(nbRows*nbCols, nbRows, nbCols); - #endif - } - - /** Resizes \c *this to a vector of length \a size - * - * \only_for_vectors. This method does not work for - * partially dynamic matrices when the static dimension is anything other - * than 1. For example it will not work with Matrix. - * - * Example: \include Matrix_resize_int.cpp - * Output: \verbinclude Matrix_resize_int.out - * - * \sa resize(Index,Index), resize(NoChange_t, Index), resize(Index, NoChange_t) - */ - inline void resize(Index size) - { - EIGEN_STATIC_ASSERT_VECTOR_ONLY(PlainObjectBase) - eigen_assert(((SizeAtCompileTime == Dynamic && (MaxSizeAtCompileTime==Dynamic || size<=MaxSizeAtCompileTime)) || SizeAtCompileTime == size) && size>=0); - #ifdef EIGEN_INITIALIZE_COEFFS - bool size_changed = size != this->size(); - #endif - if(RowsAtCompileTime == 1) - m_storage.resize(size, 1, size); - else - m_storage.resize(size, size, 1); - #ifdef EIGEN_INITIALIZE_COEFFS - if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED - #endif - } - - /** Resizes the matrix, changing only the number of columns. For the parameter of type NoChange_t, just pass the special value \c NoChange - * as in the example below. - * - * Example: \include Matrix_resize_NoChange_int.cpp - * Output: \verbinclude Matrix_resize_NoChange_int.out - * - * \sa resize(Index,Index) - */ - inline void resize(NoChange_t, Index nbCols) - { - resize(rows(), nbCols); - } - - /** Resizes the matrix, changing only the number of rows. For the parameter of type NoChange_t, just pass the special value \c NoChange - * as in the example below. - * - * Example: \include Matrix_resize_int_NoChange.cpp - * Output: \verbinclude Matrix_resize_int_NoChange.out - * - * \sa resize(Index,Index) - */ - inline void resize(Index nbRows, NoChange_t) - { - resize(nbRows, cols()); - } - - /** Resizes \c *this to have the same dimensions as \a other. - * Takes care of doing all the checking that's needed. - * - * Note that copying a row-vector into a vector (and conversely) is allowed. - * The resizing, if any, is then done in the appropriate way so that row-vectors - * remain row-vectors and vectors remain vectors. - */ - template - EIGEN_STRONG_INLINE void resizeLike(const EigenBase& _other) - { - const OtherDerived& other = _other.derived(); - internal::check_rows_cols_for_overflow::run(Index(other.rows()), Index(other.cols())); - const Index othersize = Index(other.rows())*Index(other.cols()); - if(RowsAtCompileTime == 1) - { - eigen_assert(other.rows() == 1 || other.cols() == 1); - resize(1, othersize); - } - else if(ColsAtCompileTime == 1) - { - eigen_assert(other.rows() == 1 || other.cols() == 1); - resize(othersize, 1); - } - else resize(other.rows(), other.cols()); - } - - /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. - * - * The method is intended for matrices of dynamic size. If you only want to change the number - * of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or - * conservativeResize(Index, NoChange_t). - * - * Matrices are resized relative to the top-left element. In case values need to be - * appended to the matrix they will be uninitialized. - */ - EIGEN_STRONG_INLINE void conservativeResize(Index nbRows, Index nbCols) - { - internal::conservative_resize_like_impl::run(*this, nbRows, nbCols); - } - - /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. - * - * As opposed to conservativeResize(Index rows, Index cols), this version leaves - * the number of columns unchanged. - * - * In case the matrix is growing, new rows will be uninitialized. - */ - EIGEN_STRONG_INLINE void conservativeResize(Index nbRows, NoChange_t) - { - // Note: see the comment in conservativeResize(Index,Index) - conservativeResize(nbRows, cols()); - } - - /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. - * - * As opposed to conservativeResize(Index rows, Index cols), this version leaves - * the number of rows unchanged. - * - * In case the matrix is growing, new columns will be uninitialized. - */ - EIGEN_STRONG_INLINE void conservativeResize(NoChange_t, Index nbCols) - { - // Note: see the comment in conservativeResize(Index,Index) - conservativeResize(rows(), nbCols); - } - - /** Resizes the vector to \a size while retaining old values. - * - * \only_for_vectors. This method does not work for - * partially dynamic matrices when the static dimension is anything other - * than 1. For example it will not work with Matrix. - * - * When values are appended, they will be uninitialized. - */ - EIGEN_STRONG_INLINE void conservativeResize(Index size) - { - internal::conservative_resize_like_impl::run(*this, size); - } - - /** Resizes the matrix to \a rows x \a cols of \c other, while leaving old values untouched. - * - * The method is intended for matrices of dynamic size. If you only want to change the number - * of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or - * conservativeResize(Index, NoChange_t). - * - * Matrices are resized relative to the top-left element. In case values need to be - * appended to the matrix they will copied from \c other. - */ - template - EIGEN_STRONG_INLINE void conservativeResizeLike(const DenseBase& other) - { - internal::conservative_resize_like_impl::run(*this, other); - } - - /** This is a special case of the templated operator=. Its purpose is to - * prevent a default operator= from hiding the templated operator=. - */ - EIGEN_STRONG_INLINE Derived& operator=(const PlainObjectBase& other) - { - return _set(other); - } - - /** \sa MatrixBase::lazyAssign() */ - template - EIGEN_STRONG_INLINE Derived& lazyAssign(const DenseBase& other) - { - _resize_to_match(other); - return Base::lazyAssign(other.derived()); - } - - template - EIGEN_STRONG_INLINE Derived& operator=(const ReturnByValue& func) - { - resize(func.rows(), func.cols()); - return Base::operator=(func); - } - - EIGEN_STRONG_INLINE PlainObjectBase() : m_storage() - { -// _check_template_params(); -// EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED - } - -#ifndef EIGEN_PARSED_BY_DOXYGEN - // FIXME is it still needed ? - /** \internal */ - PlainObjectBase(internal::constructor_without_unaligned_array_assert) - : m_storage(internal::constructor_without_unaligned_array_assert()) - { -// _check_template_params(); EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED - } -#endif - -#ifdef EIGEN_HAVE_RVALUE_REFERENCES - PlainObjectBase(PlainObjectBase&& other) - : m_storage( std::move(other.m_storage) ) - { - } - - PlainObjectBase& operator=(PlainObjectBase&& other) - { - using std::swap; - swap(m_storage, other.m_storage); - return *this; - } -#endif - - /** Copy constructor */ - EIGEN_STRONG_INLINE PlainObjectBase(const PlainObjectBase& other) - : m_storage() - { - _check_template_params(); - lazyAssign(other); - } - - template - EIGEN_STRONG_INLINE PlainObjectBase(const DenseBase &other) - : m_storage() - { - _check_template_params(); - lazyAssign(other); - } - - EIGEN_STRONG_INLINE PlainObjectBase(Index a_size, Index nbRows, Index nbCols) - : m_storage(a_size, nbRows, nbCols) - { -// _check_template_params(); -// EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED - } - - /** \copydoc MatrixBase::operator=(const EigenBase&) - */ - template - EIGEN_STRONG_INLINE Derived& operator=(const EigenBase &other) - { - _resize_to_match(other); - Base::operator=(other.derived()); - return this->derived(); - } - - /** \sa MatrixBase::operator=(const EigenBase&) */ - template - EIGEN_STRONG_INLINE PlainObjectBase(const EigenBase &other) - : m_storage(Index(other.derived().rows()) * Index(other.derived().cols()), other.derived().rows(), other.derived().cols()) - { - _check_template_params(); - internal::check_rows_cols_for_overflow::run(other.derived().rows(), other.derived().cols()); - Base::operator=(other.derived()); - } - - /** \name Map - * These are convenience functions returning Map objects. The Map() static functions return unaligned Map objects, - * while the AlignedMap() functions return aligned Map objects and thus should be called only with 16-byte-aligned - * \a data pointers. - * - * \see class Map - */ - //@{ - static inline ConstMapType Map(const Scalar* data) - { return ConstMapType(data); } - static inline MapType Map(Scalar* data) - { return MapType(data); } - static inline ConstMapType Map(const Scalar* data, Index size) - { return ConstMapType(data, size); } - static inline MapType Map(Scalar* data, Index size) - { return MapType(data, size); } - static inline ConstMapType Map(const Scalar* data, Index rows, Index cols) - { return ConstMapType(data, rows, cols); } - static inline MapType Map(Scalar* data, Index rows, Index cols) - { return MapType(data, rows, cols); } - - static inline ConstAlignedMapType MapAligned(const Scalar* data) - { return ConstAlignedMapType(data); } - static inline AlignedMapType MapAligned(Scalar* data) - { return AlignedMapType(data); } - static inline ConstAlignedMapType MapAligned(const Scalar* data, Index size) - { return ConstAlignedMapType(data, size); } - static inline AlignedMapType MapAligned(Scalar* data, Index size) - { return AlignedMapType(data, size); } - static inline ConstAlignedMapType MapAligned(const Scalar* data, Index rows, Index cols) - { return ConstAlignedMapType(data, rows, cols); } - static inline AlignedMapType MapAligned(Scalar* data, Index rows, Index cols) - { return AlignedMapType(data, rows, cols); } - - template - static inline typename StridedConstMapType >::type Map(const Scalar* data, const Stride& stride) - { return typename StridedConstMapType >::type(data, stride); } - template - static inline typename StridedMapType >::type Map(Scalar* data, const Stride& stride) - { return typename StridedMapType >::type(data, stride); } - template - static inline typename StridedConstMapType >::type Map(const Scalar* data, Index size, const Stride& stride) - { return typename StridedConstMapType >::type(data, size, stride); } - template - static inline typename StridedMapType >::type Map(Scalar* data, Index size, const Stride& stride) - { return typename StridedMapType >::type(data, size, stride); } - template - static inline typename StridedConstMapType >::type Map(const Scalar* data, Index rows, Index cols, const Stride& stride) - { return typename StridedConstMapType >::type(data, rows, cols, stride); } - template - static inline typename StridedMapType >::type Map(Scalar* data, Index rows, Index cols, const Stride& stride) - { return typename StridedMapType >::type(data, rows, cols, stride); } - - template - static inline typename StridedConstAlignedMapType >::type MapAligned(const Scalar* data, const Stride& stride) - { return typename StridedConstAlignedMapType >::type(data, stride); } - template - static inline typename StridedAlignedMapType >::type MapAligned(Scalar* data, const Stride& stride) - { return typename StridedAlignedMapType >::type(data, stride); } - template - static inline typename StridedConstAlignedMapType >::type MapAligned(const Scalar* data, Index size, const Stride& stride) - { return typename StridedConstAlignedMapType >::type(data, size, stride); } - template - static inline typename StridedAlignedMapType >::type MapAligned(Scalar* data, Index size, const Stride& stride) - { return typename StridedAlignedMapType >::type(data, size, stride); } - template - static inline typename StridedConstAlignedMapType >::type MapAligned(const Scalar* data, Index rows, Index cols, const Stride& stride) - { return typename StridedConstAlignedMapType >::type(data, rows, cols, stride); } - template - static inline typename StridedAlignedMapType >::type MapAligned(Scalar* data, Index rows, Index cols, const Stride& stride) - { return typename StridedAlignedMapType >::type(data, rows, cols, stride); } - //@} - - using Base::setConstant; - Derived& setConstant(Index size, const Scalar& value); - Derived& setConstant(Index rows, Index cols, const Scalar& value); - - using Base::setZero; - Derived& setZero(Index size); - Derived& setZero(Index rows, Index cols); - - using Base::setOnes; - Derived& setOnes(Index size); - Derived& setOnes(Index rows, Index cols); - - using Base::setRandom; - Derived& setRandom(Index size); - Derived& setRandom(Index rows, Index cols); - - #ifdef EIGEN_PLAINOBJECTBASE_PLUGIN - #include EIGEN_PLAINOBJECTBASE_PLUGIN - #endif - - protected: - /** \internal Resizes *this in preparation for assigning \a other to it. - * Takes care of doing all the checking that's needed. - * - * Note that copying a row-vector into a vector (and conversely) is allowed. - * The resizing, if any, is then done in the appropriate way so that row-vectors - * remain row-vectors and vectors remain vectors. - */ - template - EIGEN_STRONG_INLINE void _resize_to_match(const EigenBase& other) - { - #ifdef EIGEN_NO_AUTOMATIC_RESIZING - eigen_assert((this->size()==0 || (IsVectorAtCompileTime ? (this->size() == other.size()) - : (rows() == other.rows() && cols() == other.cols()))) - && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined"); - EIGEN_ONLY_USED_FOR_DEBUG(other); - if(this->size()==0) - resizeLike(other); - #else - resizeLike(other); - #endif - } - - /** - * \brief Copies the value of the expression \a other into \c *this with automatic resizing. - * - * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized), - * it will be initialized. - * - * Note that copying a row-vector into a vector (and conversely) is allowed. - * The resizing, if any, is then done in the appropriate way so that row-vectors - * remain row-vectors and vectors remain vectors. - * - * \sa operator=(const MatrixBase&), _set_noalias() - * - * \internal - */ - template - EIGEN_STRONG_INLINE Derived& _set(const DenseBase& other) - { - _set_selector(other.derived(), typename internal::conditional(int(OtherDerived::Flags) & EvalBeforeAssigningBit), internal::true_type, internal::false_type>::type()); - return this->derived(); - } - - template - EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const internal::true_type&) { _set_noalias(other.eval()); } - - template - EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const internal::false_type&) { _set_noalias(other); } - - /** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which - * is the case when creating a new matrix) so one can enforce lazy evaluation. - * - * \sa operator=(const MatrixBase&), _set() - */ - template - EIGEN_STRONG_INLINE Derived& _set_noalias(const DenseBase& other) - { - // I don't think we need this resize call since the lazyAssign will anyways resize - // and lazyAssign will be called by the assign selector. - //_resize_to_match(other); - // the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because - // it wouldn't allow to copy a row-vector into a column-vector. - return internal::assign_selector::run(this->derived(), other.derived()); - } - - template - EIGEN_STRONG_INLINE void _init2(Index nbRows, Index nbCols, typename internal::enable_if::type* = 0) - { - EIGEN_STATIC_ASSERT(bool(NumTraits::IsInteger) && - bool(NumTraits::IsInteger), - FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED) - resize(nbRows,nbCols); - } - template - EIGEN_STRONG_INLINE void _init2(const Scalar& val0, const Scalar& val1, typename internal::enable_if::type* = 0) - { - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2) - m_storage.data()[0] = val0; - m_storage.data()[1] = val1; - } - - template - friend struct internal::matrix_swap_impl; - - /** \internal generic implementation of swap for dense storage since for dynamic-sized matrices of same type it is enough to swap the - * data pointers. - */ - template - void _swap(DenseBase const & other) - { - enum { SwapPointers = internal::is_same::value && Base::SizeAtCompileTime==Dynamic }; - internal::matrix_swap_impl::run(this->derived(), other.const_cast_derived()); - } - - public: -#ifndef EIGEN_PARSED_BY_DOXYGEN - static EIGEN_STRONG_INLINE void _check_template_params() - { - EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, (Options&RowMajor)==RowMajor) - && EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, (Options&RowMajor)==0) - && ((RowsAtCompileTime == Dynamic) || (RowsAtCompileTime >= 0)) - && ((ColsAtCompileTime == Dynamic) || (ColsAtCompileTime >= 0)) - && ((MaxRowsAtCompileTime == Dynamic) || (MaxRowsAtCompileTime >= 0)) - && ((MaxColsAtCompileTime == Dynamic) || (MaxColsAtCompileTime >= 0)) - && (MaxRowsAtCompileTime == RowsAtCompileTime || RowsAtCompileTime==Dynamic) - && (MaxColsAtCompileTime == ColsAtCompileTime || ColsAtCompileTime==Dynamic) - && (Options & (DontAlign|RowMajor)) == Options), - INVALID_MATRIX_TEMPLATE_PARAMETERS) - } -#endif - -private: - enum { ThisConstantIsPrivateInPlainObjectBase }; -}; - -namespace internal { - -template -struct conservative_resize_like_impl -{ - typedef typename Derived::Index Index; - static void run(DenseBase& _this, Index rows, Index cols) - { - if (_this.rows() == rows && _this.cols() == cols) return; - EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived) - - if ( ( Derived::IsRowMajor && _this.cols() == cols) || // row-major and we change only the number of rows - (!Derived::IsRowMajor && _this.rows() == rows) ) // column-major and we change only the number of columns - { - internal::check_rows_cols_for_overflow::run(rows, cols); - _this.derived().m_storage.conservativeResize(rows*cols,rows,cols); - } - else - { - // The storage order does not allow us to use reallocation. - typename Derived::PlainObject tmp(rows,cols); - const Index common_rows = (std::min)(rows, _this.rows()); - const Index common_cols = (std::min)(cols, _this.cols()); - tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols); - _this.derived().swap(tmp); - } - } - - static void run(DenseBase& _this, const DenseBase& other) - { - if (_this.rows() == other.rows() && _this.cols() == other.cols()) return; - - // Note: Here is space for improvement. Basically, for conservativeResize(Index,Index), - // neither RowsAtCompileTime or ColsAtCompileTime must be Dynamic. If only one of the - // dimensions is dynamic, one could use either conservativeResize(Index rows, NoChange_t) or - // conservativeResize(NoChange_t, Index cols). For these methods new static asserts like - // EIGEN_STATIC_ASSERT_DYNAMIC_ROWS and EIGEN_STATIC_ASSERT_DYNAMIC_COLS would be good. - EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived) - EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(OtherDerived) - - if ( ( Derived::IsRowMajor && _this.cols() == other.cols()) || // row-major and we change only the number of rows - (!Derived::IsRowMajor && _this.rows() == other.rows()) ) // column-major and we change only the number of columns - { - const Index new_rows = other.rows() - _this.rows(); - const Index new_cols = other.cols() - _this.cols(); - _this.derived().m_storage.conservativeResize(other.size(),other.rows(),other.cols()); - if (new_rows>0) - _this.bottomRightCorner(new_rows, other.cols()) = other.bottomRows(new_rows); - else if (new_cols>0) - _this.bottomRightCorner(other.rows(), new_cols) = other.rightCols(new_cols); - } - else - { - // The storage order does not allow us to use reallocation. - typename Derived::PlainObject tmp(other); - const Index common_rows = (std::min)(tmp.rows(), _this.rows()); - const Index common_cols = (std::min)(tmp.cols(), _this.cols()); - tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols); - _this.derived().swap(tmp); - } - } -}; - -// Here, the specialization for vectors inherits from the general matrix case -// to allow calling .conservativeResize(rows,cols) on vectors. -template -struct conservative_resize_like_impl - : conservative_resize_like_impl -{ - using conservative_resize_like_impl::run; - - typedef typename Derived::Index Index; - static void run(DenseBase& _this, Index size) - { - const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : size; - const Index new_cols = Derived::RowsAtCompileTime==1 ? size : 1; - _this.derived().m_storage.conservativeResize(size,new_rows,new_cols); - } - - static void run(DenseBase& _this, const DenseBase& other) - { - if (_this.rows() == other.rows() && _this.cols() == other.cols()) return; - - const Index num_new_elements = other.size() - _this.size(); - - const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : other.rows(); - const Index new_cols = Derived::RowsAtCompileTime==1 ? other.cols() : 1; - _this.derived().m_storage.conservativeResize(other.size(),new_rows,new_cols); - - if (num_new_elements > 0) - _this.tail(num_new_elements) = other.tail(num_new_elements); - } -}; - -template -struct matrix_swap_impl -{ - static inline void run(MatrixTypeA& a, MatrixTypeB& b) - { - a.base().swap(b); - } -}; - -template -struct matrix_swap_impl -{ - static inline void run(MatrixTypeA& a, MatrixTypeB& b) - { - static_cast(a).m_storage.swap(static_cast(b).m_storage); - } -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_DENSESTORAGEBASE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/ProductBase.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/ProductBase.h deleted file mode 100755 index cf74470a9..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/ProductBase.h +++ /dev/null @@ -1,290 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009-2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_PRODUCTBASE_H -#define EIGEN_PRODUCTBASE_H - -namespace Eigen { - -/** \class ProductBase - * \ingroup Core_Module - * - */ - -namespace internal { -template -struct traits > -{ - typedef MatrixXpr XprKind; - typedef typename remove_all<_Lhs>::type Lhs; - typedef typename remove_all<_Rhs>::type Rhs; - typedef typename scalar_product_traits::ReturnType Scalar; - typedef typename promote_storage_type::StorageKind, - typename traits::StorageKind>::ret StorageKind; - typedef typename promote_index_type::Index, - typename traits::Index>::type Index; - enum { - RowsAtCompileTime = traits::RowsAtCompileTime, - ColsAtCompileTime = traits::ColsAtCompileTime, - MaxRowsAtCompileTime = traits::MaxRowsAtCompileTime, - MaxColsAtCompileTime = traits::MaxColsAtCompileTime, - Flags = (MaxRowsAtCompileTime==1 ? RowMajorBit : 0) - | EvalBeforeNestingBit | EvalBeforeAssigningBit | NestByRefBit, - // Note that EvalBeforeNestingBit and NestByRefBit - // are not used in practice because nested is overloaded for products - CoeffReadCost = 0 // FIXME why is it needed ? - }; -}; -} - -#define EIGEN_PRODUCT_PUBLIC_INTERFACE(Derived) \ - typedef ProductBase Base; \ - EIGEN_DENSE_PUBLIC_INTERFACE(Derived) \ - typedef typename Base::LhsNested LhsNested; \ - typedef typename Base::_LhsNested _LhsNested; \ - typedef typename Base::LhsBlasTraits LhsBlasTraits; \ - typedef typename Base::ActualLhsType ActualLhsType; \ - typedef typename Base::_ActualLhsType _ActualLhsType; \ - typedef typename Base::RhsNested RhsNested; \ - typedef typename Base::_RhsNested _RhsNested; \ - typedef typename Base::RhsBlasTraits RhsBlasTraits; \ - typedef typename Base::ActualRhsType ActualRhsType; \ - typedef typename Base::_ActualRhsType _ActualRhsType; \ - using Base::m_lhs; \ - using Base::m_rhs; - -template -class ProductBase : public MatrixBase -{ - public: - typedef MatrixBase Base; - EIGEN_DENSE_PUBLIC_INTERFACE(ProductBase) - - typedef typename Lhs::Nested LhsNested; - typedef typename internal::remove_all::type _LhsNested; - typedef internal::blas_traits<_LhsNested> LhsBlasTraits; - typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; - typedef typename internal::remove_all::type _ActualLhsType; - typedef typename internal::traits::Scalar LhsScalar; - - typedef typename Rhs::Nested RhsNested; - typedef typename internal::remove_all::type _RhsNested; - typedef internal::blas_traits<_RhsNested> RhsBlasTraits; - typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; - typedef typename internal::remove_all::type _ActualRhsType; - typedef typename internal::traits::Scalar RhsScalar; - - // Diagonal of a product: no need to evaluate the arguments because they are going to be evaluated only once - typedef CoeffBasedProduct FullyLazyCoeffBaseProductType; - - public: - -#ifndef EIGEN_NO_MALLOC - typedef typename Base::PlainObject BasePlainObject; - typedef Matrix DynPlainObject; - typedef typename internal::conditional<(BasePlainObject::SizeAtCompileTime==Dynamic) || (BasePlainObject::SizeAtCompileTime*int(sizeof(Scalar)) < int(EIGEN_STACK_ALLOCATION_LIMIT)), - BasePlainObject, DynPlainObject>::type PlainObject; -#else - typedef typename Base::PlainObject PlainObject; -#endif - - ProductBase(const Lhs& a_lhs, const Rhs& a_rhs) - : m_lhs(a_lhs), m_rhs(a_rhs) - { - eigen_assert(a_lhs.cols() == a_rhs.rows() - && "invalid matrix product" - && "if you wanted a coeff-wise or a dot product use the respective explicit functions"); - } - - inline Index rows() const { return m_lhs.rows(); } - inline Index cols() const { return m_rhs.cols(); } - - template - inline void evalTo(Dest& dst) const { dst.setZero(); scaleAndAddTo(dst,Scalar(1)); } - - template - inline void addTo(Dest& dst) const { scaleAndAddTo(dst,Scalar(1)); } - - template - inline void subTo(Dest& dst) const { scaleAndAddTo(dst,Scalar(-1)); } - - template - inline void scaleAndAddTo(Dest& dst, const Scalar& alpha) const { derived().scaleAndAddTo(dst,alpha); } - - const _LhsNested& lhs() const { return m_lhs; } - const _RhsNested& rhs() const { return m_rhs; } - - // Implicit conversion to the nested type (trigger the evaluation of the product) - operator const PlainObject& () const - { - m_result.resize(m_lhs.rows(), m_rhs.cols()); - derived().evalTo(m_result); - return m_result; - } - - const Diagonal diagonal() const - { return FullyLazyCoeffBaseProductType(m_lhs, m_rhs); } - - template - const Diagonal diagonal() const - { return FullyLazyCoeffBaseProductType(m_lhs, m_rhs); } - - const Diagonal diagonal(Index index) const - { return FullyLazyCoeffBaseProductType(m_lhs, m_rhs).diagonal(index); } - - // restrict coeff accessors to 1x1 expressions. No need to care about mutators here since this isnt a Lvalue expression - typename Base::CoeffReturnType coeff(Index row, Index col) const - { -#ifdef EIGEN2_SUPPORT - return lhs().row(row).cwiseProduct(rhs().col(col).transpose()).sum(); -#else - EIGEN_STATIC_ASSERT_SIZE_1x1(Derived) - eigen_assert(this->rows() == 1 && this->cols() == 1); - Matrix result = *this; - return result.coeff(row,col); -#endif - } - - typename Base::CoeffReturnType coeff(Index i) const - { - EIGEN_STATIC_ASSERT_SIZE_1x1(Derived) - eigen_assert(this->rows() == 1 && this->cols() == 1); - Matrix result = *this; - return result.coeff(i); - } - - const Scalar& coeffRef(Index row, Index col) const - { - EIGEN_STATIC_ASSERT_SIZE_1x1(Derived) - eigen_assert(this->rows() == 1 && this->cols() == 1); - return derived().coeffRef(row,col); - } - - const Scalar& coeffRef(Index i) const - { - EIGEN_STATIC_ASSERT_SIZE_1x1(Derived) - eigen_assert(this->rows() == 1 && this->cols() == 1); - return derived().coeffRef(i); - } - - protected: - - LhsNested m_lhs; - RhsNested m_rhs; - - mutable PlainObject m_result; -}; - -// here we need to overload the nested rule for products -// such that the nested type is a const reference to a plain matrix -namespace internal { -template -struct nested, N, PlainObject> -{ - typedef typename GeneralProduct::PlainObject const& type; -}; -template -struct nested, N, PlainObject> -{ - typedef typename GeneralProduct::PlainObject const& type; -}; -} - -template -class ScaledProduct; - -// Note that these two operator* functions are not defined as member -// functions of ProductBase, because, otherwise we would have to -// define all overloads defined in MatrixBase. Furthermore, Using -// "using Base::operator*" would not work with MSVC. -// -// Also note that here we accept any compatible scalar types -template -const ScaledProduct -operator*(const ProductBase& prod, const typename Derived::Scalar& x) -{ return ScaledProduct(prod.derived(), x); } - -template -typename internal::enable_if::value, - const ScaledProduct >::type -operator*(const ProductBase& prod, const typename Derived::RealScalar& x) -{ return ScaledProduct(prod.derived(), x); } - - -template -const ScaledProduct -operator*(const typename Derived::Scalar& x,const ProductBase& prod) -{ return ScaledProduct(prod.derived(), x); } - -template -typename internal::enable_if::value, - const ScaledProduct >::type -operator*(const typename Derived::RealScalar& x,const ProductBase& prod) -{ return ScaledProduct(prod.derived(), x); } - -namespace internal { -template -struct traits > - : traits, - typename NestedProduct::_LhsNested, - typename NestedProduct::_RhsNested> > -{ - typedef typename traits::StorageKind StorageKind; -}; -} - -template -class ScaledProduct - : public ProductBase, - typename NestedProduct::_LhsNested, - typename NestedProduct::_RhsNested> -{ - public: - typedef ProductBase, - typename NestedProduct::_LhsNested, - typename NestedProduct::_RhsNested> Base; - typedef typename Base::Scalar Scalar; - typedef typename Base::PlainObject PlainObject; -// EIGEN_PRODUCT_PUBLIC_INTERFACE(ScaledProduct) - - ScaledProduct(const NestedProduct& prod, const Scalar& x) - : Base(prod.lhs(),prod.rhs()), m_prod(prod), m_alpha(x) {} - - template - inline void evalTo(Dest& dst) const { dst.setZero(); scaleAndAddTo(dst, Scalar(1)); } - - template - inline void addTo(Dest& dst) const { scaleAndAddTo(dst, Scalar(1)); } - - template - inline void subTo(Dest& dst) const { scaleAndAddTo(dst, Scalar(-1)); } - - template - inline void scaleAndAddTo(Dest& dst, const Scalar& a_alpha) const { m_prod.derived().scaleAndAddTo(dst,a_alpha * m_alpha); } - - const Scalar& alpha() const { return m_alpha; } - - protected: - const NestedProduct& m_prod; - Scalar m_alpha; -}; - -/** \internal - * Overloaded to perform an efficient C = (A*B).lazy() */ -template -template -Derived& MatrixBase::lazyAssign(const ProductBase& other) -{ - other.derived().evalTo(derived()); - return derived(); -} - -} // end namespace Eigen - -#endif // EIGEN_PRODUCTBASE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Random.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Random.h deleted file mode 100755 index 480fea408..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Random.h +++ /dev/null @@ -1,152 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_RANDOM_H -#define EIGEN_RANDOM_H - -namespace Eigen { - -namespace internal { - -template struct scalar_random_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_random_op) - template - inline const Scalar operator() (Index, Index = 0) const { return random(); } -}; - -template -struct functor_traits > -{ enum { Cost = 5 * NumTraits::MulCost, PacketAccess = false, IsRepeatable = false }; }; - -} // end namespace internal - -/** \returns a random matrix expression - * - * The parameters \a rows and \a cols are the number of rows and of columns of - * the returned matrix. Must be compatible with this MatrixBase type. - * - * This variant is meant to be used for dynamic-size matrix types. For fixed-size types, - * it is redundant to pass \a rows and \a cols as arguments, so Random() should be used - * instead. - * - * Example: \include MatrixBase_random_int_int.cpp - * Output: \verbinclude MatrixBase_random_int_int.out - * - * This expression has the "evaluate before nesting" flag so that it will be evaluated into - * a temporary matrix whenever it is nested in a larger expression. This prevents unexpected - * behavior with expressions involving random matrices. - * - * \sa MatrixBase::setRandom(), MatrixBase::Random(Index), MatrixBase::Random() - */ -template -inline const CwiseNullaryOp::Scalar>, Derived> -DenseBase::Random(Index rows, Index cols) -{ - return NullaryExpr(rows, cols, internal::scalar_random_op()); -} - -/** \returns a random vector expression - * - * The parameter \a size is the size of the returned vector. - * Must be compatible with this MatrixBase type. - * - * \only_for_vectors - * - * This variant is meant to be used for dynamic-size vector types. For fixed-size types, - * it is redundant to pass \a size as argument, so Random() should be used - * instead. - * - * Example: \include MatrixBase_random_int.cpp - * Output: \verbinclude MatrixBase_random_int.out - * - * This expression has the "evaluate before nesting" flag so that it will be evaluated into - * a temporary vector whenever it is nested in a larger expression. This prevents unexpected - * behavior with expressions involving random matrices. - * - * \sa MatrixBase::setRandom(), MatrixBase::Random(Index,Index), MatrixBase::Random() - */ -template -inline const CwiseNullaryOp::Scalar>, Derived> -DenseBase::Random(Index size) -{ - return NullaryExpr(size, internal::scalar_random_op()); -} - -/** \returns a fixed-size random matrix or vector expression - * - * This variant is only for fixed-size MatrixBase types. For dynamic-size types, you - * need to use the variants taking size arguments. - * - * Example: \include MatrixBase_random.cpp - * Output: \verbinclude MatrixBase_random.out - * - * This expression has the "evaluate before nesting" flag so that it will be evaluated into - * a temporary matrix whenever it is nested in a larger expression. This prevents unexpected - * behavior with expressions involving random matrices. - * - * \sa MatrixBase::setRandom(), MatrixBase::Random(Index,Index), MatrixBase::Random(Index) - */ -template -inline const CwiseNullaryOp::Scalar>, Derived> -DenseBase::Random() -{ - return NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_random_op()); -} - -/** Sets all coefficients in this expression to random values. - * - * Example: \include MatrixBase_setRandom.cpp - * Output: \verbinclude MatrixBase_setRandom.out - * - * \sa class CwiseNullaryOp, setRandom(Index), setRandom(Index,Index) - */ -template -inline Derived& DenseBase::setRandom() -{ - return *this = Random(rows(), cols()); -} - -/** Resizes to the given \a newSize, and sets all coefficients in this expression to random values. - * - * \only_for_vectors - * - * Example: \include Matrix_setRandom_int.cpp - * Output: \verbinclude Matrix_setRandom_int.out - * - * \sa MatrixBase::setRandom(), setRandom(Index,Index), class CwiseNullaryOp, MatrixBase::Random() - */ -template -EIGEN_STRONG_INLINE Derived& -PlainObjectBase::setRandom(Index newSize) -{ - resize(newSize); - return setRandom(); -} - -/** Resizes to the given size, and sets all coefficients in this expression to random values. - * - * \param nbRows the new number of rows - * \param nbCols the new number of columns - * - * Example: \include Matrix_setRandom_int_int.cpp - * Output: \verbinclude Matrix_setRandom_int_int.out - * - * \sa MatrixBase::setRandom(), setRandom(Index), class CwiseNullaryOp, MatrixBase::Random() - */ -template -EIGEN_STRONG_INLINE Derived& -PlainObjectBase::setRandom(Index nbRows, Index nbCols) -{ - resize(nbRows, nbCols); - return setRandom(); -} - -} // end namespace Eigen - -#endif // EIGEN_RANDOM_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Redux.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Redux.h deleted file mode 100755 index 9b8662a6f..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Redux.h +++ /dev/null @@ -1,409 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_REDUX_H -#define EIGEN_REDUX_H - -namespace Eigen { - -namespace internal { - -// TODO -// * implement other kind of vectorization -// * factorize code - -/*************************************************************************** -* Part 1 : the logic deciding a strategy for vectorization and unrolling -***************************************************************************/ - -template -struct redux_traits -{ -public: - enum { - PacketSize = packet_traits::size, - InnerMaxSize = int(Derived::IsRowMajor) - ? Derived::MaxColsAtCompileTime - : Derived::MaxRowsAtCompileTime - }; - - enum { - MightVectorize = (int(Derived::Flags)&ActualPacketAccessBit) - && (functor_traits::PacketAccess), - MayLinearVectorize = MightVectorize && (int(Derived::Flags)&LinearAccessBit), - MaySliceVectorize = MightVectorize && int(InnerMaxSize)>=3*PacketSize - }; - -public: - enum { - Traversal = int(MayLinearVectorize) ? int(LinearVectorizedTraversal) - : int(MaySliceVectorize) ? int(SliceVectorizedTraversal) - : int(DefaultTraversal) - }; - -public: - enum { - Cost = ( Derived::SizeAtCompileTime == Dynamic - || Derived::CoeffReadCost == Dynamic - || (Derived::SizeAtCompileTime!=1 && functor_traits::Cost == Dynamic) - ) ? Dynamic - : Derived::SizeAtCompileTime * Derived::CoeffReadCost - + (Derived::SizeAtCompileTime-1) * functor_traits::Cost, - UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize)) - }; - -public: - enum { - Unrolling = Cost != Dynamic && Cost <= UnrollingLimit - ? CompleteUnrolling - : NoUnrolling - }; -}; - -/*************************************************************************** -* Part 2 : unrollers -***************************************************************************/ - -/*** no vectorization ***/ - -template -struct redux_novec_unroller -{ - enum { - HalfLength = Length/2 - }; - - typedef typename Derived::Scalar Scalar; - - static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func) - { - return func(redux_novec_unroller::run(mat,func), - redux_novec_unroller::run(mat,func)); - } -}; - -template -struct redux_novec_unroller -{ - enum { - outer = Start / Derived::InnerSizeAtCompileTime, - inner = Start % Derived::InnerSizeAtCompileTime - }; - - typedef typename Derived::Scalar Scalar; - - static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func&) - { - return mat.coeffByOuterInner(outer, inner); - } -}; - -// This is actually dead code and will never be called. It is required -// to prevent false warnings regarding failed inlining though -// for 0 length run() will never be called at all. -template -struct redux_novec_unroller -{ - typedef typename Derived::Scalar Scalar; - static EIGEN_STRONG_INLINE Scalar run(const Derived&, const Func&) { return Scalar(); } -}; - -/*** vectorization ***/ - -template -struct redux_vec_unroller -{ - enum { - PacketSize = packet_traits::size, - HalfLength = Length/2 - }; - - typedef typename Derived::Scalar Scalar; - typedef typename packet_traits::type PacketScalar; - - static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func& func) - { - return func.packetOp( - redux_vec_unroller::run(mat,func), - redux_vec_unroller::run(mat,func) ); - } -}; - -template -struct redux_vec_unroller -{ - enum { - index = Start * packet_traits::size, - outer = index / int(Derived::InnerSizeAtCompileTime), - inner = index % int(Derived::InnerSizeAtCompileTime), - alignment = (Derived::Flags & AlignedBit) ? Aligned : Unaligned - }; - - typedef typename Derived::Scalar Scalar; - typedef typename packet_traits::type PacketScalar; - - static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func&) - { - return mat.template packetByOuterInner(outer, inner); - } -}; - -/*************************************************************************** -* Part 3 : implementation of all cases -***************************************************************************/ - -template::Traversal, - int Unrolling = redux_traits::Unrolling -> -struct redux_impl; - -template -struct redux_impl -{ - typedef typename Derived::Scalar Scalar; - typedef typename Derived::Index Index; - static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func) - { - eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix"); - Scalar res; - res = mat.coeffByOuterInner(0, 0); - for(Index i = 1; i < mat.innerSize(); ++i) - res = func(res, mat.coeffByOuterInner(0, i)); - for(Index i = 1; i < mat.outerSize(); ++i) - for(Index j = 0; j < mat.innerSize(); ++j) - res = func(res, mat.coeffByOuterInner(i, j)); - return res; - } -}; - -template -struct redux_impl - : public redux_novec_unroller -{}; - -template -struct redux_impl -{ - typedef typename Derived::Scalar Scalar; - typedef typename packet_traits::type PacketScalar; - typedef typename Derived::Index Index; - - static Scalar run(const Derived& mat, const Func& func) - { - const Index size = mat.size(); - eigen_assert(size && "you are using an empty matrix"); - const Index packetSize = packet_traits::size; - const Index alignedStart = internal::first_aligned(mat); - enum { - alignment = bool(Derived::Flags & DirectAccessBit) || bool(Derived::Flags & AlignedBit) - ? Aligned : Unaligned - }; - const Index alignedSize2 = ((size-alignedStart)/(2*packetSize))*(2*packetSize); - const Index alignedSize = ((size-alignedStart)/(packetSize))*(packetSize); - const Index alignedEnd2 = alignedStart + alignedSize2; - const Index alignedEnd = alignedStart + alignedSize; - Scalar res; - if(alignedSize) - { - PacketScalar packet_res0 = mat.template packet(alignedStart); - if(alignedSize>packetSize) // we have at least two packets to partly unroll the loop - { - PacketScalar packet_res1 = mat.template packet(alignedStart+packetSize); - for(Index index = alignedStart + 2*packetSize; index < alignedEnd2; index += 2*packetSize) - { - packet_res0 = func.packetOp(packet_res0, mat.template packet(index)); - packet_res1 = func.packetOp(packet_res1, mat.template packet(index+packetSize)); - } - - packet_res0 = func.packetOp(packet_res0,packet_res1); - if(alignedEnd>alignedEnd2) - packet_res0 = func.packetOp(packet_res0, mat.template packet(alignedEnd2)); - } - res = func.predux(packet_res0); - - for(Index index = 0; index < alignedStart; ++index) - res = func(res,mat.coeff(index)); - - for(Index index = alignedEnd; index < size; ++index) - res = func(res,mat.coeff(index)); - } - else // too small to vectorize anything. - // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. - { - res = mat.coeff(0); - for(Index index = 1; index < size; ++index) - res = func(res,mat.coeff(index)); - } - - return res; - } -}; - -// NOTE: for SliceVectorizedTraversal we simply bypass unrolling -template -struct redux_impl -{ - typedef typename Derived::Scalar Scalar; - typedef typename packet_traits::type PacketScalar; - typedef typename Derived::Index Index; - - static Scalar run(const Derived& mat, const Func& func) - { - eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix"); - const Index innerSize = mat.innerSize(); - const Index outerSize = mat.outerSize(); - enum { - packetSize = packet_traits::size - }; - const Index packetedInnerSize = ((innerSize)/packetSize)*packetSize; - Scalar res; - if(packetedInnerSize) - { - PacketScalar packet_res = mat.template packet(0,0); - for(Index j=0; j(j,i)); - - res = func.predux(packet_res); - for(Index j=0; j::run(mat, func); - } - - return res; - } -}; - -template -struct redux_impl -{ - typedef typename Derived::Scalar Scalar; - typedef typename packet_traits::type PacketScalar; - enum { - PacketSize = packet_traits::size, - Size = Derived::SizeAtCompileTime, - VectorizedSize = (Size / PacketSize) * PacketSize - }; - static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func) - { - eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix"); - Scalar res = func.predux(redux_vec_unroller::run(mat,func)); - if (VectorizedSize != Size) - res = func(res,redux_novec_unroller::run(mat,func)); - return res; - } -}; - -} // end namespace internal - -/*************************************************************************** -* Part 4 : public API -***************************************************************************/ - - -/** \returns the result of a full redux operation on the whole matrix or vector using \a func - * - * The template parameter \a BinaryOp is the type of the functor \a func which must be - * an associative operator. Both current STL and TR1 functor styles are handled. - * - * \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise() - */ -template -template -EIGEN_STRONG_INLINE typename internal::result_of::Scalar)>::type -DenseBase::redux(const Func& func) const -{ - typedef typename internal::remove_all::type ThisNested; - return internal::redux_impl - ::run(derived(), func); -} - -/** \returns the minimum of all coefficients of \c *this. - * \warning the result is undefined if \c *this contains NaN. - */ -template -EIGEN_STRONG_INLINE typename internal::traits::Scalar -DenseBase::minCoeff() const -{ - return this->redux(Eigen::internal::scalar_min_op()); -} - -/** \returns the maximum of all coefficients of \c *this. - * \warning the result is undefined if \c *this contains NaN. - */ -template -EIGEN_STRONG_INLINE typename internal::traits::Scalar -DenseBase::maxCoeff() const -{ - return this->redux(Eigen::internal::scalar_max_op()); -} - -/** \returns the sum of all coefficients of *this - * - * \sa trace(), prod(), mean() - */ -template -EIGEN_STRONG_INLINE typename internal::traits::Scalar -DenseBase::sum() const -{ - if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0)) - return Scalar(0); - return this->redux(Eigen::internal::scalar_sum_op()); -} - -/** \returns the mean of all coefficients of *this -* -* \sa trace(), prod(), sum() -*/ -template -EIGEN_STRONG_INLINE typename internal::traits::Scalar -DenseBase::mean() const -{ - return Scalar(this->redux(Eigen::internal::scalar_sum_op())) / Scalar(this->size()); -} - -/** \returns the product of all coefficients of *this - * - * Example: \include MatrixBase_prod.cpp - * Output: \verbinclude MatrixBase_prod.out - * - * \sa sum(), mean(), trace() - */ -template -EIGEN_STRONG_INLINE typename internal::traits::Scalar -DenseBase::prod() const -{ - if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0)) - return Scalar(1); - return this->redux(Eigen::internal::scalar_product_op()); -} - -/** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal. - * - * \c *this can be any matrix, not necessarily square. - * - * \sa diagonal(), sum() - */ -template -EIGEN_STRONG_INLINE typename internal::traits::Scalar -MatrixBase::trace() const -{ - return derived().diagonal().sum(); -} - -} // end namespace Eigen - -#endif // EIGEN_REDUX_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Ref.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Ref.h deleted file mode 100755 index 7a3becaf8..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Ref.h +++ /dev/null @@ -1,278 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_REF_H -#define EIGEN_REF_H - -namespace Eigen { - -template class RefBase; -template,OuterStride<> >::type > class Ref; - -/** \class Ref - * \ingroup Core_Module - * - * \brief A matrix or vector expression mapping an existing expressions - * - * \tparam PlainObjectType the equivalent matrix type of the mapped data - * \tparam Options specifies whether the pointer is \c #Aligned, or \c #Unaligned. - * The default is \c #Unaligned. - * \tparam StrideType optionally specifies strides. By default, Ref implies a contiguous storage along the inner dimension (inner stride==1), - * but accept a variable outer stride (leading dimension). - * This can be overridden by specifying strides. - * The type passed here must be a specialization of the Stride template, see examples below. - * - * This class permits to write non template functions taking Eigen's object as parameters while limiting the number of copies. - * A Ref<> object can represent either a const expression or a l-value: - * \code - * // in-out argument: - * void foo1(Ref x); - * - * // read-only const argument: - * void foo2(const Ref& x); - * \endcode - * - * In the in-out case, the input argument must satisfies the constraints of the actual Ref<> type, otherwise a compilation issue will be triggered. - * By default, a Ref can reference any dense vector expression of float having a contiguous memory layout. - * Likewise, a Ref can reference any column major dense matrix expression of float whose column's elements are contiguously stored with - * the possibility to have a constant space inbetween each column, i.e.: the inner stride mmust be equal to 1, but the outer-stride (or leading dimension), - * can be greater than the number of rows. - * - * In the const case, if the input expression does not match the above requirement, then it is evaluated into a temporary before being passed to the function. - * Here are some examples: - * \code - * MatrixXf A; - * VectorXf a; - * foo1(a.head()); // OK - * foo1(A.col()); // OK - * foo1(A.row()); // compilation error because here innerstride!=1 - * foo2(A.row()); // The row is copied into a contiguous temporary - * foo2(2*a); // The expression is evaluated into a temporary - * foo2(A.col().segment(2,4)); // No temporary - * \endcode - * - * The range of inputs that can be referenced without temporary can be enlarged using the last two template parameter. - * Here is an example accepting an innerstride!=1: - * \code - * // in-out argument: - * void foo3(Ref > x); - * foo3(A.row()); // OK - * \endcode - * The downside here is that the function foo3 might be significantly slower than foo1 because it won't be able to exploit vectorization, and will involved more - * expensive address computations even if the input is contiguously stored in memory. To overcome this issue, one might propose to overloads internally calling a - * template function, e.g.: - * \code - * // in the .h: - * void foo(const Ref& A); - * void foo(const Ref >& A); - * - * // in the .cpp: - * template void foo_impl(const TypeOfA& A) { - * ... // crazy code goes here - * } - * void foo(const Ref& A) { foo_impl(A); } - * void foo(const Ref >& A) { foo_impl(A); } - * \endcode - * - * - * \sa PlainObjectBase::Map(), \ref TopicStorageOrders - */ - -namespace internal { - -template -struct traits > - : public traits > -{ - typedef _PlainObjectType PlainObjectType; - typedef _StrideType StrideType; - enum { - Options = _Options, - Flags = traits >::Flags | NestByRefBit - }; - - template struct match { - enum { - HasDirectAccess = internal::has_direct_access::ret, - StorageOrderMatch = PlainObjectType::IsVectorAtCompileTime || Derived::IsVectorAtCompileTime || ((PlainObjectType::Flags&RowMajorBit)==(Derived::Flags&RowMajorBit)), - InnerStrideMatch = int(StrideType::InnerStrideAtCompileTime)==int(Dynamic) - || int(StrideType::InnerStrideAtCompileTime)==int(Derived::InnerStrideAtCompileTime) - || (int(StrideType::InnerStrideAtCompileTime)==0 && int(Derived::InnerStrideAtCompileTime)==1), - OuterStrideMatch = Derived::IsVectorAtCompileTime - || int(StrideType::OuterStrideAtCompileTime)==int(Dynamic) || int(StrideType::OuterStrideAtCompileTime)==int(Derived::OuterStrideAtCompileTime), - AlignmentMatch = (_Options!=Aligned) || ((PlainObjectType::Flags&AlignedBit)==0) || ((traits::Flags&AlignedBit)==AlignedBit), - ScalarTypeMatch = internal::is_same::value, - MatchAtCompileTime = HasDirectAccess && StorageOrderMatch && InnerStrideMatch && OuterStrideMatch && AlignmentMatch && ScalarTypeMatch - }; - typedef typename internal::conditional::type type; - }; - -}; - -template -struct traits > : public traits {}; - -} - -template class RefBase - : public MapBase -{ - typedef typename internal::traits::PlainObjectType PlainObjectType; - typedef typename internal::traits::StrideType StrideType; - -public: - - typedef MapBase Base; - EIGEN_DENSE_PUBLIC_INTERFACE(RefBase) - - inline Index innerStride() const - { - return StrideType::InnerStrideAtCompileTime != 0 ? m_stride.inner() : 1; - } - - inline Index outerStride() const - { - return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer() - : IsVectorAtCompileTime ? this->size() - : int(Flags)&RowMajorBit ? this->cols() - : this->rows(); - } - - RefBase() - : Base(0,RowsAtCompileTime==Dynamic?0:RowsAtCompileTime,ColsAtCompileTime==Dynamic?0:ColsAtCompileTime), - // Stride<> does not allow default ctor for Dynamic strides, so let' initialize it with dummy values: - m_stride(StrideType::OuterStrideAtCompileTime==Dynamic?0:StrideType::OuterStrideAtCompileTime, - StrideType::InnerStrideAtCompileTime==Dynamic?0:StrideType::InnerStrideAtCompileTime) - {} - - EIGEN_INHERIT_ASSIGNMENT_OPERATORS(RefBase) - -protected: - - typedef Stride StrideBase; - - template - void construct(Expression& expr) - { - if(PlainObjectType::RowsAtCompileTime==1) - { - eigen_assert(expr.rows()==1 || expr.cols()==1); - ::new (static_cast(this)) Base(expr.data(), 1, expr.size()); - } - else if(PlainObjectType::ColsAtCompileTime==1) - { - eigen_assert(expr.rows()==1 || expr.cols()==1); - ::new (static_cast(this)) Base(expr.data(), expr.size(), 1); - } - else - ::new (static_cast(this)) Base(expr.data(), expr.rows(), expr.cols()); - - if(Expression::IsVectorAtCompileTime && (!PlainObjectType::IsVectorAtCompileTime) && ((Expression::Flags&RowMajorBit)!=(PlainObjectType::Flags&RowMajorBit))) - ::new (&m_stride) StrideBase(expr.innerStride(), StrideType::InnerStrideAtCompileTime==0?0:1); - else - ::new (&m_stride) StrideBase(StrideType::OuterStrideAtCompileTime==0?0:expr.outerStride(), - StrideType::InnerStrideAtCompileTime==0?0:expr.innerStride()); - } - - StrideBase m_stride; -}; - - -template class Ref - : public RefBase > -{ - private: - typedef internal::traits Traits; - template - inline Ref(const PlainObjectBase& expr, - typename internal::enable_if::MatchAtCompileTime),Derived>::type* = 0); - public: - - typedef RefBase Base; - EIGEN_DENSE_PUBLIC_INTERFACE(Ref) - - - #ifndef EIGEN_PARSED_BY_DOXYGEN - template - inline Ref(PlainObjectBase& expr, - typename internal::enable_if::MatchAtCompileTime),Derived>::type* = 0) - { - EIGEN_STATIC_ASSERT(static_cast(Traits::template match::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); - Base::construct(expr.derived()); - } - template - inline Ref(const DenseBase& expr, - typename internal::enable_if::MatchAtCompileTime),Derived>::type* = 0) - #else - template - inline Ref(DenseBase& expr) - #endif - { - EIGEN_STATIC_ASSERT(static_cast(internal::is_lvalue::value), THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY); - EIGEN_STATIC_ASSERT(static_cast(Traits::template match::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); - enum { THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY = Derived::ThisConstantIsPrivateInPlainObjectBase}; - Base::construct(expr.const_cast_derived()); - } - - EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Ref) - -}; - -// this is the const ref version -template class Ref - : public RefBase > -{ - typedef internal::traits Traits; - public: - - typedef RefBase Base; - EIGEN_DENSE_PUBLIC_INTERFACE(Ref) - - template - inline Ref(const DenseBase& expr, - typename internal::enable_if::ScalarTypeMatch),Derived>::type* = 0) - { -// std::cout << match_helper::HasDirectAccess << "," << match_helper::OuterStrideMatch << "," << match_helper::InnerStrideMatch << "\n"; -// std::cout << int(StrideType::OuterStrideAtCompileTime) << " - " << int(Derived::OuterStrideAtCompileTime) << "\n"; -// std::cout << int(StrideType::InnerStrideAtCompileTime) << " - " << int(Derived::InnerStrideAtCompileTime) << "\n"; - construct(expr.derived(), typename Traits::template match::type()); - } - - inline Ref(const Ref& other) : Base(other) { - // copy constructor shall not copy the m_object, to avoid unnecessary malloc and copy - } - - template - inline Ref(const RefBase& other) { - construct(other.derived(), typename Traits::template match::type()); - } - - protected: - - template - void construct(const Expression& expr,internal::true_type) - { - Base::construct(expr); - } - - template - void construct(const Expression& expr, internal::false_type) - { - m_object.lazyAssign(expr); - Base::construct(m_object); - } - - protected: - TPlainObjectType m_object; -}; - -} // end namespace Eigen - -#endif // EIGEN_REF_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Replicate.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Replicate.h deleted file mode 100755 index ac4537c14..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Replicate.h +++ /dev/null @@ -1,177 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009-2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_REPLICATE_H -#define EIGEN_REPLICATE_H - -namespace Eigen { - -/** - * \class Replicate - * \ingroup Core_Module - * - * \brief Expression of the multiple replication of a matrix or vector - * - * \param MatrixType the type of the object we are replicating - * - * This class represents an expression of the multiple replication of a matrix or vector. - * It is the return type of DenseBase::replicate() and most of the time - * this is the only way it is used. - * - * \sa DenseBase::replicate() - */ - -namespace internal { -template -struct traits > - : traits -{ - typedef typename MatrixType::Scalar Scalar; - typedef typename traits::StorageKind StorageKind; - typedef typename traits::XprKind XprKind; - enum { - Factor = (RowFactor==Dynamic || ColFactor==Dynamic) ? Dynamic : RowFactor*ColFactor - }; - typedef typename nested::type MatrixTypeNested; - typedef typename remove_reference::type _MatrixTypeNested; - enum { - RowsAtCompileTime = RowFactor==Dynamic || int(MatrixType::RowsAtCompileTime)==Dynamic - ? Dynamic - : RowFactor * MatrixType::RowsAtCompileTime, - ColsAtCompileTime = ColFactor==Dynamic || int(MatrixType::ColsAtCompileTime)==Dynamic - ? Dynamic - : ColFactor * MatrixType::ColsAtCompileTime, - //FIXME we don't propagate the max sizes !!! - MaxRowsAtCompileTime = RowsAtCompileTime, - MaxColsAtCompileTime = ColsAtCompileTime, - IsRowMajor = MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1 ? 1 - : MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1 ? 0 - : (MatrixType::Flags & RowMajorBit) ? 1 : 0, - Flags = (_MatrixTypeNested::Flags & HereditaryBits & ~RowMajorBit) | (IsRowMajor ? RowMajorBit : 0), - CoeffReadCost = _MatrixTypeNested::CoeffReadCost - }; -}; -} - -template class Replicate - : public internal::dense_xpr_base< Replicate >::type -{ - typedef typename internal::traits::MatrixTypeNested MatrixTypeNested; - typedef typename internal::traits::_MatrixTypeNested _MatrixTypeNested; - public: - - typedef typename internal::dense_xpr_base::type Base; - EIGEN_DENSE_PUBLIC_INTERFACE(Replicate) - - template - inline explicit Replicate(const OriginalMatrixType& a_matrix) - : m_matrix(a_matrix), m_rowFactor(RowFactor), m_colFactor(ColFactor) - { - EIGEN_STATIC_ASSERT((internal::is_same::type,OriginalMatrixType>::value), - THE_MATRIX_OR_EXPRESSION_THAT_YOU_PASSED_DOES_NOT_HAVE_THE_EXPECTED_TYPE) - eigen_assert(RowFactor!=Dynamic && ColFactor!=Dynamic); - } - - template - inline Replicate(const OriginalMatrixType& a_matrix, Index rowFactor, Index colFactor) - : m_matrix(a_matrix), m_rowFactor(rowFactor), m_colFactor(colFactor) - { - EIGEN_STATIC_ASSERT((internal::is_same::type,OriginalMatrixType>::value), - THE_MATRIX_OR_EXPRESSION_THAT_YOU_PASSED_DOES_NOT_HAVE_THE_EXPECTED_TYPE) - } - - inline Index rows() const { return m_matrix.rows() * m_rowFactor.value(); } - inline Index cols() const { return m_matrix.cols() * m_colFactor.value(); } - - inline Scalar coeff(Index rowId, Index colId) const - { - // try to avoid using modulo; this is a pure optimization strategy - const Index actual_row = internal::traits::RowsAtCompileTime==1 ? 0 - : RowFactor==1 ? rowId - : rowId%m_matrix.rows(); - const Index actual_col = internal::traits::ColsAtCompileTime==1 ? 0 - : ColFactor==1 ? colId - : colId%m_matrix.cols(); - - return m_matrix.coeff(actual_row, actual_col); - } - template - inline PacketScalar packet(Index rowId, Index colId) const - { - const Index actual_row = internal::traits::RowsAtCompileTime==1 ? 0 - : RowFactor==1 ? rowId - : rowId%m_matrix.rows(); - const Index actual_col = internal::traits::ColsAtCompileTime==1 ? 0 - : ColFactor==1 ? colId - : colId%m_matrix.cols(); - - return m_matrix.template packet(actual_row, actual_col); - } - - const _MatrixTypeNested& nestedExpression() const - { - return m_matrix; - } - - protected: - MatrixTypeNested m_matrix; - const internal::variable_if_dynamic m_rowFactor; - const internal::variable_if_dynamic m_colFactor; -}; - -/** - * \return an expression of the replication of \c *this - * - * Example: \include MatrixBase_replicate.cpp - * Output: \verbinclude MatrixBase_replicate.out - * - * \sa VectorwiseOp::replicate(), DenseBase::replicate(Index,Index), class Replicate - */ -template -template -const Replicate -DenseBase::replicate() const -{ - return Replicate(derived()); -} - -/** - * \return an expression of the replication of \c *this - * - * Example: \include MatrixBase_replicate_int_int.cpp - * Output: \verbinclude MatrixBase_replicate_int_int.out - * - * \sa VectorwiseOp::replicate(), DenseBase::replicate(), class Replicate - */ -template -const typename DenseBase::ReplicateReturnType -DenseBase::replicate(Index rowFactor,Index colFactor) const -{ - return Replicate(derived(),rowFactor,colFactor); -} - -/** - * \return an expression of the replication of each column (or row) of \c *this - * - * Example: \include DirectionWise_replicate_int.cpp - * Output: \verbinclude DirectionWise_replicate_int.out - * - * \sa VectorwiseOp::replicate(), DenseBase::replicate(), class Replicate - */ -template -const typename VectorwiseOp::ReplicateReturnType -VectorwiseOp::replicate(Index factor) const -{ - return typename VectorwiseOp::ReplicateReturnType - (_expression(),Direction==Vertical?factor:1,Direction==Horizontal?factor:1); -} - -} // end namespace Eigen - -#endif // EIGEN_REPLICATE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/ReturnByValue.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/ReturnByValue.h deleted file mode 100755 index f635598dc..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/ReturnByValue.h +++ /dev/null @@ -1,99 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009-2010 Gael Guennebaud -// Copyright (C) 2009-2010 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_RETURNBYVALUE_H -#define EIGEN_RETURNBYVALUE_H - -namespace Eigen { - -/** \class ReturnByValue - * \ingroup Core_Module - * - */ - -namespace internal { - -template -struct traits > - : public traits::ReturnType> -{ - enum { - // We're disabling the DirectAccess because e.g. the constructor of - // the Block-with-DirectAccess expression requires to have a coeffRef method. - // Also, we don't want to have to implement the stride stuff. - Flags = (traits::ReturnType>::Flags - | EvalBeforeNestingBit) & ~DirectAccessBit - }; -}; - -/* The ReturnByValue object doesn't even have a coeff() method. - * So the only way that nesting it in an expression can work, is by evaluating it into a plain matrix. - * So internal::nested always gives the plain return matrix type. - * - * FIXME: I don't understand why we need this specialization: isn't this taken care of by the EvalBeforeNestingBit ?? - */ -template -struct nested, n, PlainObject> -{ - typedef typename traits::ReturnType type; -}; - -} // end namespace internal - -template class ReturnByValue - : internal::no_assignment_operator, public internal::dense_xpr_base< ReturnByValue >::type -{ - public: - typedef typename internal::traits::ReturnType ReturnType; - - typedef typename internal::dense_xpr_base::type Base; - EIGEN_DENSE_PUBLIC_INTERFACE(ReturnByValue) - - template - inline void evalTo(Dest& dst) const - { static_cast(this)->evalTo(dst); } - inline Index rows() const { return static_cast(this)->rows(); } - inline Index cols() const { return static_cast(this)->cols(); } - -#ifndef EIGEN_PARSED_BY_DOXYGEN -#define Unusable YOU_ARE_TRYING_TO_ACCESS_A_SINGLE_COEFFICIENT_IN_A_SPECIAL_EXPRESSION_WHERE_THAT_IS_NOT_ALLOWED_BECAUSE_THAT_WOULD_BE_INEFFICIENT - class Unusable{ - Unusable(const Unusable&) {} - Unusable& operator=(const Unusable&) {return *this;} - }; - const Unusable& coeff(Index) const { return *reinterpret_cast(this); } - const Unusable& coeff(Index,Index) const { return *reinterpret_cast(this); } - Unusable& coeffRef(Index) { return *reinterpret_cast(this); } - Unusable& coeffRef(Index,Index) { return *reinterpret_cast(this); } - template Unusable& packet(Index) const; - template Unusable& packet(Index, Index) const; -#endif -}; - -template -template -Derived& DenseBase::operator=(const ReturnByValue& other) -{ - other.evalTo(derived()); - return derived(); -} - -template -template -Derived& DenseBase::lazyAssign(const ReturnByValue& other) -{ - other.evalTo(derived()); - return derived(); -} - - -} // end namespace Eigen - -#endif // EIGEN_RETURNBYVALUE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Reverse.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Reverse.h deleted file mode 100755 index 041f8222a..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Reverse.h +++ /dev/null @@ -1,238 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2006-2008 Benoit Jacob -// Copyright (C) 2009 Ricard Marxer -// Copyright (C) 2009-2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_REVERSE_H -#define EIGEN_REVERSE_H - -namespace Eigen { - -/** \class Reverse - * \ingroup Core_Module - * - * \brief Expression of the reverse of a vector or matrix - * - * \param MatrixType the type of the object of which we are taking the reverse - * - * This class represents an expression of the reverse of a vector. - * It is the return type of MatrixBase::reverse() and VectorwiseOp::reverse() - * and most of the time this is the only way it is used. - * - * \sa MatrixBase::reverse(), VectorwiseOp::reverse() - */ - -namespace internal { - -template -struct traits > - : traits -{ - typedef typename MatrixType::Scalar Scalar; - typedef typename traits::StorageKind StorageKind; - typedef typename traits::XprKind XprKind; - typedef typename nested::type MatrixTypeNested; - typedef typename remove_reference::type _MatrixTypeNested; - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, - - // let's enable LinearAccess only with vectorization because of the product overhead - LinearAccess = ( (Direction==BothDirections) && (int(_MatrixTypeNested::Flags)&PacketAccessBit) ) - ? LinearAccessBit : 0, - - Flags = int(_MatrixTypeNested::Flags) & (HereditaryBits | LvalueBit | PacketAccessBit | LinearAccess), - - CoeffReadCost = _MatrixTypeNested::CoeffReadCost - }; -}; - -template struct reverse_packet_cond -{ - static inline PacketScalar run(const PacketScalar& x) { return preverse(x); } -}; - -template struct reverse_packet_cond -{ - static inline PacketScalar run(const PacketScalar& x) { return x; } -}; - -} // end namespace internal - -template class Reverse - : public internal::dense_xpr_base< Reverse >::type -{ - public: - - typedef typename internal::dense_xpr_base::type Base; - EIGEN_DENSE_PUBLIC_INTERFACE(Reverse) - using Base::IsRowMajor; - - // The following two operators are provided to worarkound - // a MSVC 2013 issue. In theory, we could simply do: - // using Base::operator(); - // to make const version of operator() visible. - // Otheriwse, they would be hidden by the non-const versions defined in this file - - inline CoeffReturnType operator()(Index row, Index col) const - { - eigen_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); - return coeff(row, col); - } - - inline CoeffReturnType operator()(Index index) const - { - eigen_assert(index >= 0 && index < m_matrix.size()); - return coeff(index); - } - - protected: - enum { - PacketSize = internal::packet_traits::size, - IsColMajor = !IsRowMajor, - ReverseRow = (Direction == Vertical) || (Direction == BothDirections), - ReverseCol = (Direction == Horizontal) || (Direction == BothDirections), - OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1, - OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1, - ReversePacket = (Direction == BothDirections) - || ((Direction == Vertical) && IsColMajor) - || ((Direction == Horizontal) && IsRowMajor) - }; - typedef internal::reverse_packet_cond reverse_packet; - public: - - inline Reverse(const MatrixType& matrix) : m_matrix(matrix) { } - - EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Reverse) - - inline Index rows() const { return m_matrix.rows(); } - inline Index cols() const { return m_matrix.cols(); } - - inline Index innerStride() const - { - return -m_matrix.innerStride(); - } - - inline Scalar& operator()(Index row, Index col) - { - eigen_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); - return coeffRef(row, col); - } - - inline Scalar& coeffRef(Index row, Index col) - { - return m_matrix.const_cast_derived().coeffRef(ReverseRow ? m_matrix.rows() - row - 1 : row, - ReverseCol ? m_matrix.cols() - col - 1 : col); - } - - inline CoeffReturnType coeff(Index row, Index col) const - { - return m_matrix.coeff(ReverseRow ? m_matrix.rows() - row - 1 : row, - ReverseCol ? m_matrix.cols() - col - 1 : col); - } - - inline CoeffReturnType coeff(Index index) const - { - return m_matrix.coeff(m_matrix.size() - index - 1); - } - - inline Scalar& coeffRef(Index index) - { - return m_matrix.const_cast_derived().coeffRef(m_matrix.size() - index - 1); - } - - inline Scalar& operator()(Index index) - { - eigen_assert(index >= 0 && index < m_matrix.size()); - return coeffRef(index); - } - - template - inline const PacketScalar packet(Index row, Index col) const - { - return reverse_packet::run(m_matrix.template packet( - ReverseRow ? m_matrix.rows() - row - OffsetRow : row, - ReverseCol ? m_matrix.cols() - col - OffsetCol : col)); - } - - template - inline void writePacket(Index row, Index col, const PacketScalar& x) - { - m_matrix.const_cast_derived().template writePacket( - ReverseRow ? m_matrix.rows() - row - OffsetRow : row, - ReverseCol ? m_matrix.cols() - col - OffsetCol : col, - reverse_packet::run(x)); - } - - template - inline const PacketScalar packet(Index index) const - { - return internal::preverse(m_matrix.template packet( m_matrix.size() - index - PacketSize )); - } - - template - inline void writePacket(Index index, const PacketScalar& x) - { - m_matrix.const_cast_derived().template writePacket(m_matrix.size() - index - PacketSize, internal::preverse(x)); - } - - const typename internal::remove_all::type& - nestedExpression() const - { - return m_matrix; - } - - protected: - typename MatrixType::Nested m_matrix; -}; - -/** \returns an expression of the reverse of *this. - * - * Example: \include MatrixBase_reverse.cpp - * Output: \verbinclude MatrixBase_reverse.out - * - */ -template -inline typename DenseBase::ReverseReturnType -DenseBase::reverse() -{ - return derived(); -} - -/** This is the const version of reverse(). */ -template -inline const typename DenseBase::ConstReverseReturnType -DenseBase::reverse() const -{ - return derived(); -} - -/** This is the "in place" version of reverse: it reverses \c *this. - * - * In most cases it is probably better to simply use the reversed expression - * of a matrix. However, when reversing the matrix data itself is really needed, - * then this "in-place" version is probably the right choice because it provides - * the following additional features: - * - less error prone: doing the same operation with .reverse() requires special care: - * \code m = m.reverse().eval(); \endcode - * - this API allows to avoid creating a temporary (the current implementation creates a temporary, but that could be avoided using swap) - * - it allows future optimizations (cache friendliness, etc.) - * - * \sa reverse() */ -template -inline void DenseBase::reverseInPlace() -{ - derived() = derived().reverse().eval(); -} - -} // end namespace Eigen - -#endif // EIGEN_REVERSE_H diff --git a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Select.h b/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Select.h deleted file mode 100755 index 87993bbb5..000000000 --- a/src/_Dependencies/Eigen/eigen-eigen-b9cd8366d4e8/Eigen/src/Core/Select.h +++ /dev/null @@ -1,162 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SELECT_H -#define EIGEN_SELECT_H - -namespace Eigen { - -/** \class Select - * \ingroup Core_Module - * - * \brief Expression of a coefficient wise version of the C++ ternary operator ?: - * - * \param ConditionMatrixType the type of the \em condition expression which must be a boolean matrix - * \param ThenMatrixType the type of the \em then expression - * \param ElseMatrixType the type of the \em else expression - * - * This class represents an expression of a coefficient wise version of the C++ ternary operator ?:. - * It is the return type of DenseBase::select() and most of the time this is the only way it is used. - * - * \sa DenseBase::select(const DenseBase&, const DenseBase&) const - */ - -namespace internal { -template -struct traits > - : traits -{ - typedef typename traits::Scalar Scalar; - typedef Dense StorageKind; - typedef typename traits::XprKind XprKind; - typedef typename ConditionMatrixType::Nested ConditionMatrixNested; - typedef typename ThenMatrixType::Nested ThenMatrixNested; - typedef typename ElseMatrixType::Nested ElseMatrixNested; - enum { - RowsAtCompileTime = ConditionMatrixType::RowsAtCompileTime, - ColsAtCompileTime = ConditionMatrixType::ColsAtCompileTime, - MaxRowsAtCompileTime = ConditionMatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = ConditionMatrixType::MaxColsAtCompileTime, - Flags = (unsigned int)ThenMatrixType::Flags & ElseMatrixType::Flags & HereditaryBits, - CoeffReadCost = traits::type>::CoeffReadCost - + EIGEN_SIZE_MAX(traits::type>::CoeffReadCost, - traits::type>::CoeffReadCost) - }; -}; -} - -template -class Select : internal::no_assignment_operator, - public internal::dense_xpr_base< Select >::type -{ - public: - - typedef typename internal::dense_xpr_base::type Base; - EIGEN_DENSE_PUBLIC_INTERFACE(Select) - - inline EIGEN_DEVICE_FUNC - Select(const ConditionMatrixType& a_conditionMatrix, - const ThenMatrixType& a_thenMatrix, - const ElseMatrixType& a_elseMatrix) - : m_condition(a_conditionMatrix), m_then(a_thenMatrix), m_else(a_elseMatrix) - { - eigen_assert(m_condition.rows() == m_then.rows() && m_condition.rows() == m_else.rows()); - eigen_assert(m_condition.cols() == m_then.cols() && m_condition.cols() == m_else.cols()); - } - - inline EIGEN_DEVICE_FUNC Index rows() const { return m_condition.rows(); } - inline EIGEN_DEVICE_FUNC Index cols() const { return m_condition.cols(); } - - inline EIGEN_DEVICE_FUNC - const Scalar coeff(Index i, Index j) const - { - if (m_condition.coeff(i,j)) - return m_then.coeff(i,j); - else - return m_else.coeff(i,j); - } - - inline EIGEN_DEVICE_FUNC - const Scalar coeff(Index i) const - { - if (m_condition.coeff(i)) - return m_then.coeff(i); - else - return m_else.coeff(i); - } - - inline EIGEN_DEVICE_FUNC const ConditionMatrixType& conditionMatrix() const - { - return m_condition; - } - - inline EIGEN_DEVICE_FUNC const ThenMatrixType& thenMatrix() const - { - return m_then; - } - - inline EIGEN_DEVICE_FUNC const ElseMatrixType& elseMatrix() const - { - return m_else; - } - - protected: - typename ConditionMatrixType::Nested m_condition; - typename ThenMatrixType::Nested m_then; - typename ElseMatrixType::Nested m_else; -}; - - -/** \returns a matrix where each coefficient (i,j) is equal to \a thenMatrix(i,j) - * if \c *this(i,j), and \a elseMatrix(i,j) otherwise. - * - * Example: \include MatrixBase_select.cpp - * Output: \verbinclude MatrixBase_select.out - * - * \sa class Select - */ -template -template -inline const Select -DenseBase::select(const DenseBase& thenMatrix, - const DenseBase& elseMatrix) const -{ - return Select(derived(), thenMatrix.derived(), elseMatrix.derived()); -} - -/** Version of DenseBase::select(const DenseBase&, const DenseBase&) with - * the \em else expression being a scalar value. - * - * \sa DenseBase::select(const DenseBase&, const DenseBase&) const, class Select - */ -template -template -inline const Select -DenseBase::select(const DenseBase& thenMatrix, - const typename ThenDerived::Scalar& elseScalar) const -{ - return Select( - derived(), thenMatrix.derived(), ThenDerived::Constant(rows(),cols(),elseScalar)); -} - -/** Version of DenseBase::select(const DenseBase&, const DenseBase&) with - * the \em then expression being a scalar value. - * - * \sa DenseBase::select(const DenseBase&, const DenseBase&) const, class Select - */ -template -template -inline const Select -DenseBase::select(const typename ElseDerived::Scalar& thenScalar, - const DenseBase& elseMatrix) const -{ - return Select( - derived(), ElseDerived::Constant(rows(),cols(),thenScalar), elseMatrix.derived()); -} - -} // end namespace Eigen - -#endif // EIGEN_SELECT_H diff --git a/src/math_meigen/Eigen/src/Core/SelfAdjointView.h b/src/math_meigen/Eigen/src/Core/SelfAdjointView.h deleted file mode 100755 index b2e51f37a..000000000 --- a/src/math_meigen/Eigen/src/Core/SelfAdjointView.h +++ /dev/null @@ -1,352 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SELFADJOINTMATRIX_H -#define EIGEN_SELFADJOINTMATRIX_H - -namespace Eigen { - -/** \class SelfAdjointView - * \ingroup Core_Module - * - * - * \brief Expression of a selfadjoint matrix from a triangular part of a dense matrix - * - * \param MatrixType the type of the dense matrix storing the coefficients - * \param TriangularPart can be either \c #Lower or \c #Upper - * - * This class is an expression of a sefladjoint matrix from a triangular part of a matrix - * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView() - * and most of the time this is the only way that it is used. - * - * \sa class TriangularBase, MatrixBase::selfadjointView() - */ - -namespace internal { -template -struct traits > : traits -{ - typedef typename ref_selector::non_const_type MatrixTypeNested; - typedef typename remove_all::type MatrixTypeNestedCleaned; - typedef MatrixType ExpressionType; - typedef typename MatrixType::PlainObject FullMatrixType; - enum { - Mode = UpLo | SelfAdjoint, - FlagsLvalueBit = is_lvalue::value ? LvalueBit : 0, - Flags = MatrixTypeNestedCleaned::Flags & (HereditaryBits|FlagsLvalueBit) - & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)) // FIXME these flags should be preserved - }; -}; -} - - -template class SelfAdjointView - : public TriangularBase > -{ - public: - - typedef _MatrixType MatrixType; - typedef TriangularBase Base; - typedef typename internal::traits::MatrixTypeNested MatrixTypeNested; - typedef typename internal::traits::MatrixTypeNestedCleaned MatrixTypeNestedCleaned; - typedef MatrixTypeNestedCleaned NestedExpression; - - /** \brief The type of coefficients in this matrix */ - typedef typename internal::traits::Scalar Scalar; - typedef typename MatrixType::StorageIndex StorageIndex; - typedef typename internal::remove_all::type MatrixConjugateReturnType; - - enum { - Mode = internal::traits::Mode, - Flags = internal::traits::Flags, - TransposeMode = ((Mode & Upper) ? Lower : 0) | ((Mode & Lower) ? Upper : 0) - }; - typedef typename MatrixType::PlainObject PlainObject; - - EIGEN_DEVICE_FUNC - explicit inline SelfAdjointView(MatrixType& matrix) : m_matrix(matrix) - { - EIGEN_STATIC_ASSERT(UpLo==Lower || UpLo==Upper,SELFADJOINTVIEW_ACCEPTS_UPPER_AND_LOWER_MODE_ONLY); - } - - EIGEN_DEVICE_FUNC - inline Index rows() const { return m_matrix.rows(); } - EIGEN_DEVICE_FUNC - inline Index cols() const { return m_matrix.cols(); } - EIGEN_DEVICE_FUNC - inline Index outerStride() const { return m_matrix.outerStride(); } - EIGEN_DEVICE_FUNC - inline Index innerStride() const { return m_matrix.innerStride(); } - - /** \sa MatrixBase::coeff() - * \warning the coordinates must fit into the referenced triangular part - */ - EIGEN_DEVICE_FUNC - inline Scalar coeff(Index row, Index col) const - { - Base::check_coordinates_internal(row, col); - return m_matrix.coeff(row, col); - } - - /** \sa MatrixBase::coeffRef() - * \warning the coordinates must fit into the referenced triangular part - */ - EIGEN_DEVICE_FUNC - inline Scalar& coeffRef(Index row, Index col) - { - EIGEN_STATIC_ASSERT_LVALUE(SelfAdjointView); - Base::check_coordinates_internal(row, col); - return m_matrix.coeffRef(row, col); - } - - /** \internal */ - EIGEN_DEVICE_FUNC - const MatrixTypeNestedCleaned& _expression() const { return m_matrix; } - - EIGEN_DEVICE_FUNC - const MatrixTypeNestedCleaned& nestedExpression() const { return m_matrix; } - EIGEN_DEVICE_FUNC - MatrixTypeNestedCleaned& nestedExpression() { return m_matrix; } - - /** Efficient triangular matrix times vector/matrix product */ - template - EIGEN_DEVICE_FUNC - const Product - operator*(const MatrixBase& rhs) const - { - return Product(*this, rhs.derived()); - } - - /** Efficient vector/matrix times triangular matrix product */ - template friend - EIGEN_DEVICE_FUNC - const Product - operator*(const MatrixBase& lhs, const SelfAdjointView& rhs) - { - return Product(lhs.derived(),rhs); - } - - friend EIGEN_DEVICE_FUNC - const SelfAdjointView - operator*(const Scalar& s, const SelfAdjointView& mat) - { - return (s*mat.nestedExpression()).template selfadjointView(); - } - - /** Perform a symmetric rank 2 update of the selfadjoint matrix \c *this: - * \f$ this = this + \alpha u v^* + conj(\alpha) v u^* \f$ - * \returns a reference to \c *this - * - * The vectors \a u and \c v \b must be column vectors, however they can be - * a adjoint expression without any overhead. Only the meaningful triangular - * part of the matrix is updated, the rest is left unchanged. - * - * \sa rankUpdate(const MatrixBase&, Scalar) - */ - template - EIGEN_DEVICE_FUNC - SelfAdjointView& rankUpdate(const MatrixBase& u, const MatrixBase& v, const Scalar& alpha = Scalar(1)); - - /** Perform a symmetric rank K update of the selfadjoint matrix \c *this: - * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix. - * - * \returns a reference to \c *this - * - * Note that to perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply - * call this function with u.adjoint(). - * - * \sa rankUpdate(const MatrixBase&, const MatrixBase&, Scalar) - */ - template - EIGEN_DEVICE_FUNC - SelfAdjointView& rankUpdate(const MatrixBase& u, const Scalar& alpha = Scalar(1)); - - /** \returns an expression of a triangular view extracted from the current selfadjoint view of a given triangular part - * - * The parameter \a TriMode can have the following values: \c #Upper, \c #StrictlyUpper, \c #UnitUpper, - * \c #Lower, \c #StrictlyLower, \c #UnitLower. - * - * If \c TriMode references the same triangular part than \c *this, then this method simply return a \c TriangularView of the nested expression, - * otherwise, the nested expression is first transposed, thus returning a \c TriangularView> object. - * - * \sa MatrixBase::triangularView(), class TriangularView - */ - template - EIGEN_DEVICE_FUNC - typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), - TriangularView, - TriangularView >::type - triangularView() const - { - typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), MatrixType&, typename MatrixType::ConstTransposeReturnType>::type tmp1(m_matrix); - typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), MatrixType&, typename MatrixType::AdjointReturnType>::type tmp2(tmp1); - return typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), - TriangularView, - TriangularView >::type(tmp2); - } - - typedef SelfAdjointView ConjugateReturnType; - /** \sa MatrixBase::conjugate() const */ - EIGEN_DEVICE_FUNC - inline const ConjugateReturnType conjugate() const - { return ConjugateReturnType(m_matrix.conjugate()); } - - typedef SelfAdjointView AdjointReturnType; - /** \sa MatrixBase::adjoint() const */ - EIGEN_DEVICE_FUNC - inline const AdjointReturnType adjoint() const - { return AdjointReturnType(m_matrix.adjoint()); } - - typedef SelfAdjointView TransposeReturnType; - /** \sa MatrixBase::transpose() */ - EIGEN_DEVICE_FUNC - inline TransposeReturnType transpose() - { - EIGEN_STATIC_ASSERT_LVALUE(MatrixType) - typename MatrixType::TransposeReturnType tmp(m_matrix); - return TransposeReturnType(tmp); - } - - typedef SelfAdjointView ConstTransposeReturnType; - /** \sa MatrixBase::transpose() const */ - EIGEN_DEVICE_FUNC - inline const ConstTransposeReturnType transpose() const - { - return ConstTransposeReturnType(m_matrix.transpose()); - } - - /** \returns a const expression of the main diagonal of the matrix \c *this - * - * This method simply returns the diagonal of the nested expression, thus by-passing the SelfAdjointView decorator. - * - * \sa MatrixBase::diagonal(), class Diagonal */ - EIGEN_DEVICE_FUNC - typename MatrixType::ConstDiagonalReturnType diagonal() const - { - return typename MatrixType::ConstDiagonalReturnType(m_matrix); - } - -/////////// Cholesky module /////////// - - const LLT llt() const; - const LDLT ldlt() const; - -/////////// Eigenvalue module /////////// - - /** Real part of #Scalar */ - typedef typename NumTraits::Real RealScalar; - /** Return type of eigenvalues() */ - typedef Matrix::ColsAtCompileTime, 1> EigenvaluesReturnType; - - EIGEN_DEVICE_FUNC - EigenvaluesReturnType eigenvalues() const; - EIGEN_DEVICE_FUNC - RealScalar operatorNorm() const; - - protected: - MatrixTypeNested m_matrix; -}; - - -// template -// internal::selfadjoint_matrix_product_returntype > -// operator*(const MatrixBase& lhs, const SelfAdjointView& rhs) -// { -// return internal::matrix_selfadjoint_product_returntype >(lhs.derived(),rhs); -// } - -// selfadjoint to dense matrix - -namespace internal { - -// TODO currently a selfadjoint expression has the form SelfAdjointView<.,.> -// in the future selfadjoint-ness should be defined by the expression traits -// such that Transpose > is valid. (currently TriangularBase::transpose() is overloaded to make it work) -template -struct evaluator_traits > -{ - typedef typename storage_kind_to_evaluator_kind::Kind Kind; - typedef SelfAdjointShape Shape; -}; - -template -class triangular_dense_assignment_kernel - : public generic_dense_assignment_kernel -{ -protected: - typedef generic_dense_assignment_kernel Base; - typedef typename Base::DstXprType DstXprType; - typedef typename Base::SrcXprType SrcXprType; - using Base::m_dst; - using Base::m_src; - using Base::m_functor; -public: - - typedef typename Base::DstEvaluatorType DstEvaluatorType; - typedef typename Base::SrcEvaluatorType SrcEvaluatorType; - typedef typename Base::Scalar Scalar; - typedef typename Base::AssignmentTraits AssignmentTraits; - - - EIGEN_DEVICE_FUNC triangular_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr) - : Base(dst, src, func, dstExpr) - {} - - EIGEN_DEVICE_FUNC void assignCoeff(Index row, Index col) - { - eigen_internal_assert(row!=col); - Scalar tmp = m_src.coeff(row,col); - m_functor.assignCoeff(m_dst.coeffRef(row,col), tmp); - m_functor.assignCoeff(m_dst.coeffRef(col,row), numext::conj(tmp)); - } - - EIGEN_DEVICE_FUNC void assignDiagonalCoeff(Index id) - { - Base::assignCoeff(id,id); - } - - EIGEN_DEVICE_FUNC void assignOppositeCoeff(Index, Index) - { eigen_internal_assert(false && "should never be called"); } -}; - -} // end namespace internal - -/*************************************************************************** -* Implementation of MatrixBase methods -***************************************************************************/ - -/** This is the const version of MatrixBase::selfadjointView() */ -template -template -typename MatrixBase::template ConstSelfAdjointViewReturnType::Type -MatrixBase::selfadjointView() const -{ - return typename ConstSelfAdjointViewReturnType::Type(derived()); -} - -/** \returns an expression of a symmetric/self-adjoint view extracted from the upper or lower triangular part of the current matrix - * - * The parameter \a UpLo can be either \c #Upper or \c #Lower - * - * Example: \include MatrixBase_selfadjointView.cpp - * Output: \verbinclude MatrixBase_selfadjointView.out - * - * \sa class SelfAdjointView - */ -template -template -typename MatrixBase::template SelfAdjointViewReturnType::Type -MatrixBase::selfadjointView() -{ - return typename SelfAdjointViewReturnType::Type(derived()); -} - -} // end namespace Eigen - -#endif // EIGEN_SELFADJOINTMATRIX_H diff --git a/src/math_meigen/Eigen/src/Core/SelfCwiseBinaryOp.h b/src/math_meigen/Eigen/src/Core/SelfCwiseBinaryOp.h deleted file mode 100755 index 7c89c2e23..000000000 --- a/src/math_meigen/Eigen/src/Core/SelfCwiseBinaryOp.h +++ /dev/null @@ -1,47 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009-2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SELFCWISEBINARYOP_H -#define EIGEN_SELFCWISEBINARYOP_H - -namespace Eigen { - -// TODO generalize the scalar type of 'other' - -template -EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase::operator*=(const Scalar& other) -{ - internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::mul_assign_op()); - return derived(); -} - -template -EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& ArrayBase::operator+=(const Scalar& other) -{ - internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::add_assign_op()); - return derived(); -} - -template -EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& ArrayBase::operator-=(const Scalar& other) -{ - internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::sub_assign_op()); - return derived(); -} - -template -EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& DenseBase::operator/=(const Scalar& other) -{ - internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::div_assign_op()); - return derived(); -} - -} // end namespace Eigen - -#endif // EIGEN_SELFCWISEBINARYOP_H diff --git a/src/math_meigen/Eigen/src/Core/Solve.h b/src/math_meigen/Eigen/src/Core/Solve.h deleted file mode 100755 index a8daea511..000000000 --- a/src/math_meigen/Eigen/src/Core/Solve.h +++ /dev/null @@ -1,188 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SOLVE_H -#define EIGEN_SOLVE_H - -namespace Eigen { - -template class SolveImpl; - -/** \class Solve - * \ingroup Core_Module - * - * \brief Pseudo expression representing a solving operation - * - * \tparam Decomposition the type of the matrix or decomposion object - * \tparam Rhstype the type of the right-hand side - * - * This class represents an expression of A.solve(B) - * and most of the time this is the only way it is used. - * - */ -namespace internal { - -// this solve_traits class permits to determine the evaluation type with respect to storage kind (Dense vs Sparse) -template struct solve_traits; - -template -struct solve_traits -{ - typedef typename make_proper_matrix_type::type PlainObject; -}; - -template -struct traits > - : traits::StorageKind>::PlainObject> -{ - typedef typename solve_traits::StorageKind>::PlainObject PlainObject; - typedef typename promote_index_type::type StorageIndex; - typedef traits BaseTraits; - enum { - Flags = BaseTraits::Flags & RowMajorBit, - CoeffReadCost = HugeCost - }; -}; - -} - - -template -class Solve : public SolveImpl::StorageKind> -{ -public: - typedef typename internal::traits::PlainObject PlainObject; - typedef typename internal::traits::StorageIndex StorageIndex; - - Solve(const Decomposition &dec, const RhsType &rhs) - : m_dec(dec), m_rhs(rhs) - {} - - EIGEN_DEVICE_FUNC Index rows() const { return m_dec.cols(); } - EIGEN_DEVICE_FUNC Index cols() const { return m_rhs.cols(); } - - EIGEN_DEVICE_FUNC const Decomposition& dec() const { return m_dec; } - EIGEN_DEVICE_FUNC const RhsType& rhs() const { return m_rhs; } - -protected: - const Decomposition &m_dec; - const RhsType &m_rhs; -}; - - -// Specialization of the Solve expression for dense results -template -class SolveImpl - : public MatrixBase > -{ - typedef Solve Derived; - -public: - - typedef MatrixBase > Base; - EIGEN_DENSE_PUBLIC_INTERFACE(Derived) - -private: - - Scalar coeff(Index row, Index col) const; - Scalar coeff(Index i) const; -}; - -// Generic API dispatcher -template -class SolveImpl : public internal::generic_xpr_base, MatrixXpr, StorageKind>::type -{ - public: - typedef typename internal::generic_xpr_base, MatrixXpr, StorageKind>::type Base; -}; - -namespace internal { - -// Evaluator of Solve -> eval into a temporary -template -struct evaluator > - : public evaluator::PlainObject> -{ - typedef Solve SolveType; - typedef typename SolveType::PlainObject PlainObject; - typedef evaluator Base; - - enum { Flags = Base::Flags | EvalBeforeNestingBit }; - - EIGEN_DEVICE_FUNC explicit evaluator(const SolveType& solve) - : m_result(solve.rows(), solve.cols()) - { - ::new (static_cast(this)) Base(m_result); - solve.dec()._solve_impl(solve.rhs(), m_result); - } - -protected: - PlainObject m_result; -}; - -// Specialization for "dst = dec.solve(rhs)" -// NOTE we need to specialize it for Dense2Dense to avoid ambiguous specialization error and a Sparse2Sparse specialization must exist somewhere -template -struct Assignment, internal::assign_op, Dense2Dense> -{ - typedef Solve SrcXprType; - static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) - { - Index dstRows = src.rows(); - Index dstCols = src.cols(); - if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) - dst.resize(dstRows, dstCols); - - src.dec()._solve_impl(src.rhs(), dst); - } -}; - -// Specialization for "dst = dec.transpose().solve(rhs)" -template -struct Assignment,RhsType>, internal::assign_op, Dense2Dense> -{ - typedef Solve,RhsType> SrcXprType; - static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) - { - Index dstRows = src.rows(); - Index dstCols = src.cols(); - if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) - dst.resize(dstRows, dstCols); - - src.dec().nestedExpression().template _solve_impl_transposed(src.rhs(), dst); - } -}; - -// Specialization for "dst = dec.adjoint().solve(rhs)" -template -struct Assignment, const Transpose >,RhsType>, - internal::assign_op, Dense2Dense> -{ - typedef Solve, const Transpose >,RhsType> SrcXprType; - static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) - { - Index dstRows = src.rows(); - Index dstCols = src.cols(); - if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) - dst.resize(dstRows, dstCols); - - src.dec().nestedExpression().nestedExpression().template _solve_impl_transposed(src.rhs(), dst); - } -}; - -} // end namepsace internal - -} // end namespace Eigen - -#endif // EIGEN_SOLVE_H diff --git a/src/math_meigen/Eigen/src/Core/SolveTriangular.h b/src/math_meigen/Eigen/src/Core/SolveTriangular.h deleted file mode 100755 index 4652e2e19..000000000 --- a/src/math_meigen/Eigen/src/Core/SolveTriangular.h +++ /dev/null @@ -1,235 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SOLVETRIANGULAR_H -#define EIGEN_SOLVETRIANGULAR_H - -namespace Eigen { - -namespace internal { - -// Forward declarations: -// The following two routines are implemented in the products/TriangularSolver*.h files -template -struct triangular_solve_vector; - -template -struct triangular_solve_matrix; - -// small helper struct extracting some traits on the underlying solver operation -template -class trsolve_traits -{ - private: - enum { - RhsIsVectorAtCompileTime = (Side==OnTheLeft ? Rhs::ColsAtCompileTime : Rhs::RowsAtCompileTime)==1 - }; - public: - enum { - Unrolling = (RhsIsVectorAtCompileTime && Rhs::SizeAtCompileTime != Dynamic && Rhs::SizeAtCompileTime <= 8) - ? CompleteUnrolling : NoUnrolling, - RhsVectors = RhsIsVectorAtCompileTime ? 1 : Dynamic - }; -}; - -template::Unrolling, - int RhsVectors = trsolve_traits::RhsVectors - > -struct triangular_solver_selector; - -template -struct triangular_solver_selector -{ - typedef typename Lhs::Scalar LhsScalar; - typedef typename Rhs::Scalar RhsScalar; - typedef blas_traits LhsProductTraits; - typedef typename LhsProductTraits::ExtractType ActualLhsType; - typedef Map, Aligned> MappedRhs; - static void run(const Lhs& lhs, Rhs& rhs) - { - ActualLhsType actualLhs = LhsProductTraits::extract(lhs); - - // FIXME find a way to allow an inner stride if packet_traits::size==1 - - bool useRhsDirectly = Rhs::InnerStrideAtCompileTime==1 || rhs.innerStride()==1; - - ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhs,rhs.size(), - (useRhsDirectly ? rhs.data() : 0)); - - if(!useRhsDirectly) - MappedRhs(actualRhs,rhs.size()) = rhs; - - triangular_solve_vector - ::run(actualLhs.cols(), actualLhs.data(), actualLhs.outerStride(), actualRhs); - - if(!useRhsDirectly) - rhs = MappedRhs(actualRhs, rhs.size()); - } -}; - -// the rhs is a matrix -template -struct triangular_solver_selector -{ - typedef typename Rhs::Scalar Scalar; - typedef blas_traits LhsProductTraits; - typedef typename LhsProductTraits::DirectLinearAccessType ActualLhsType; - - static void run(const Lhs& lhs, Rhs& rhs) - { - typename internal::add_const_on_value_type::type actualLhs = LhsProductTraits::extract(lhs); - - const Index size = lhs.rows(); - const Index othersize = Side==OnTheLeft? rhs.cols() : rhs.rows(); - - typedef internal::gemm_blocking_space<(Rhs::Flags&RowMajorBit) ? RowMajor : ColMajor,Scalar,Scalar, - Rhs::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime, Lhs::MaxRowsAtCompileTime,4> BlockingType; - - BlockingType blocking(rhs.rows(), rhs.cols(), size, 1, false); - - triangular_solve_matrix - ::run(size, othersize, &actualLhs.coeffRef(0,0), actualLhs.outerStride(), &rhs.coeffRef(0,0), rhs.outerStride(), blocking); - } -}; - -/*************************************************************************** -* meta-unrolling implementation -***************************************************************************/ - -template -struct triangular_solver_unroller; - -template -struct triangular_solver_unroller { - enum { - IsLower = ((Mode&Lower)==Lower), - DiagIndex = IsLower ? LoopIndex : Size - LoopIndex - 1, - StartIndex = IsLower ? 0 : DiagIndex+1 - }; - static void run(const Lhs& lhs, Rhs& rhs) - { - if (LoopIndex>0) - rhs.coeffRef(DiagIndex) -= lhs.row(DiagIndex).template segment(StartIndex).transpose() - .cwiseProduct(rhs.template segment(StartIndex)).sum(); - - if(!(Mode & UnitDiag)) - rhs.coeffRef(DiagIndex) /= lhs.coeff(DiagIndex,DiagIndex); - - triangular_solver_unroller::run(lhs,rhs); - } -}; - -template -struct triangular_solver_unroller { - static void run(const Lhs&, Rhs&) {} -}; - -template -struct triangular_solver_selector { - static void run(const Lhs& lhs, Rhs& rhs) - { triangular_solver_unroller::run(lhs,rhs); } -}; - -template -struct triangular_solver_selector { - static void run(const Lhs& lhs, Rhs& rhs) - { - Transpose trLhs(lhs); - Transpose trRhs(rhs); - - triangular_solver_unroller,Transpose, - ((Mode&Upper)==Upper ? Lower : Upper) | (Mode&UnitDiag), - 0,Rhs::SizeAtCompileTime>::run(trLhs,trRhs); - } -}; - -} // end namespace internal - -/*************************************************************************** -* TriangularView methods -***************************************************************************/ - -#ifndef EIGEN_PARSED_BY_DOXYGEN -template -template -void TriangularViewImpl::solveInPlace(const MatrixBase& _other) const -{ - OtherDerived& other = _other.const_cast_derived(); - eigen_assert( derived().cols() == derived().rows() && ((Side==OnTheLeft && derived().cols() == other.rows()) || (Side==OnTheRight && derived().cols() == other.cols())) ); - eigen_assert((!(Mode & ZeroDiag)) && bool(Mode & (Upper|Lower))); - // If solving for a 0x0 matrix, nothing to do, simply return. - if (derived().cols() == 0) - return; - - enum { copy = (internal::traits::Flags & RowMajorBit) && OtherDerived::IsVectorAtCompileTime && OtherDerived::SizeAtCompileTime!=1}; - typedef typename internal::conditional::type, OtherDerived&>::type OtherCopy; - OtherCopy otherCopy(other); - - internal::triangular_solver_selector::type, - Side, Mode>::run(derived().nestedExpression(), otherCopy); - - if (copy) - other = otherCopy; -} - -template -template -const internal::triangular_solve_retval,Other> -TriangularViewImpl::solve(const MatrixBase& other) const -{ - return internal::triangular_solve_retval(derived(), other.derived()); -} -#endif - -namespace internal { - - -template -struct traits > -{ - typedef typename internal::plain_matrix_type_column_major::type ReturnType; -}; - -template struct triangular_solve_retval - : public ReturnByValue > -{ - typedef typename remove_all::type RhsNestedCleaned; - typedef ReturnByValue Base; - - triangular_solve_retval(const TriangularType& tri, const Rhs& rhs) - : m_triangularMatrix(tri), m_rhs(rhs) - {} - - inline Index rows() const { return m_rhs.rows(); } - inline Index cols() const { return m_rhs.cols(); } - - template inline void evalTo(Dest& dst) const - { - if(!is_same_dense(dst,m_rhs)) - dst = m_rhs; - m_triangularMatrix.template solveInPlace(dst); - } - - protected: - const TriangularType& m_triangularMatrix; - typename Rhs::Nested m_rhs; -}; - -} // namespace internal - -} // end namespace Eigen - -#endif // EIGEN_SOLVETRIANGULAR_H diff --git a/src/math_meigen/Eigen/src/Core/SolverBase.h b/src/math_meigen/Eigen/src/Core/SolverBase.h deleted file mode 100755 index 8a4adc229..000000000 --- a/src/math_meigen/Eigen/src/Core/SolverBase.h +++ /dev/null @@ -1,130 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2015 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SOLVERBASE_H -#define EIGEN_SOLVERBASE_H - -namespace Eigen { - -namespace internal { - - - -} // end namespace internal - -/** \class SolverBase - * \brief A base class for matrix decomposition and solvers - * - * \tparam Derived the actual type of the decomposition/solver. - * - * Any matrix decomposition inheriting this base class provide the following API: - * - * \code - * MatrixType A, b, x; - * DecompositionType dec(A); - * x = dec.solve(b); // solve A * x = b - * x = dec.transpose().solve(b); // solve A^T * x = b - * x = dec.adjoint().solve(b); // solve A' * x = b - * \endcode - * - * \warning Currently, any other usage of transpose() and adjoint() are not supported and will produce compilation errors. - * - * \sa class PartialPivLU, class FullPivLU - */ -template -class SolverBase : public EigenBase -{ - public: - - typedef EigenBase Base; - typedef typename internal::traits::Scalar Scalar; - typedef Scalar CoeffReturnType; - - enum { - RowsAtCompileTime = internal::traits::RowsAtCompileTime, - ColsAtCompileTime = internal::traits::ColsAtCompileTime, - SizeAtCompileTime = (internal::size_at_compile_time::RowsAtCompileTime, - internal::traits::ColsAtCompileTime>::ret), - MaxRowsAtCompileTime = internal::traits::MaxRowsAtCompileTime, - MaxColsAtCompileTime = internal::traits::MaxColsAtCompileTime, - MaxSizeAtCompileTime = (internal::size_at_compile_time::MaxRowsAtCompileTime, - internal::traits::MaxColsAtCompileTime>::ret), - IsVectorAtCompileTime = internal::traits::MaxRowsAtCompileTime == 1 - || internal::traits::MaxColsAtCompileTime == 1 - }; - - /** Default constructor */ - SolverBase() - {} - - ~SolverBase() - {} - - using Base::derived; - - /** \returns an expression of the solution x of \f$ A x = b \f$ using the current decomposition of A. - */ - template - inline const Solve - solve(const MatrixBase& b) const - { - eigen_assert(derived().rows()==b.rows() && "solve(): invalid number of rows of the right hand side matrix b"); - return Solve(derived(), b.derived()); - } - - /** \internal the return type of transpose() */ - typedef typename internal::add_const >::type ConstTransposeReturnType; - /** \returns an expression of the transposed of the factored matrix. - * - * A typical usage is to solve for the transposed problem A^T x = b: - * \code x = dec.transpose().solve(b); \endcode - * - * \sa adjoint(), solve() - */ - inline ConstTransposeReturnType transpose() const - { - return ConstTransposeReturnType(derived()); - } - - /** \internal the return type of adjoint() */ - typedef typename internal::conditional::IsComplex, - CwiseUnaryOp, ConstTransposeReturnType>, - ConstTransposeReturnType - >::type AdjointReturnType; - /** \returns an expression of the adjoint of the factored matrix - * - * A typical usage is to solve for the adjoint problem A' x = b: - * \code x = dec.adjoint().solve(b); \endcode - * - * For real scalar types, this function is equivalent to transpose(). - * - * \sa transpose(), solve() - */ - inline AdjointReturnType adjoint() const - { - return AdjointReturnType(derived().transpose()); - } - - protected: -}; - -namespace internal { - -template -struct generic_xpr_base -{ - typedef SolverBase type; - -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_SOLVERBASE_H diff --git a/src/math_meigen/Eigen/src/Core/StableNorm.h b/src/math_meigen/Eigen/src/Core/StableNorm.h deleted file mode 100755 index 88c8d9890..000000000 --- a/src/math_meigen/Eigen/src/Core/StableNorm.h +++ /dev/null @@ -1,221 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_STABLENORM_H -#define EIGEN_STABLENORM_H - -namespace Eigen { - -namespace internal { - -template -inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale) -{ - Scalar maxCoeff = bl.cwiseAbs().maxCoeff(); - - if(maxCoeff>scale) - { - ssq = ssq * numext::abs2(scale/maxCoeff); - Scalar tmp = Scalar(1)/maxCoeff; - if(tmp > NumTraits::highest()) - { - invScale = NumTraits::highest(); - scale = Scalar(1)/invScale; - } - else if(maxCoeff>NumTraits::highest()) // we got a INF - { - invScale = Scalar(1); - scale = maxCoeff; - } - else - { - scale = maxCoeff; - invScale = tmp; - } - } - else if(maxCoeff!=maxCoeff) // we got a NaN - { - scale = maxCoeff; - } - - // TODO if the maxCoeff is much much smaller than the current scale, - // then we can neglect this sub vector - if(scale>Scalar(0)) // if scale==0, then bl is 0 - ssq += (bl*invScale).squaredNorm(); -} - -template -inline typename NumTraits::Scalar>::Real -blueNorm_impl(const EigenBase& _vec) -{ - typedef typename Derived::RealScalar RealScalar; - using std::pow; - using std::sqrt; - using std::abs; - const Derived& vec(_vec.derived()); - static bool initialized = false; - static RealScalar b1, b2, s1m, s2m, rbig, relerr; - if(!initialized) - { - int ibeta, it, iemin, iemax, iexp; - RealScalar eps; - // This program calculates the machine-dependent constants - // bl, b2, slm, s2m, relerr overfl - // from the "basic" machine-dependent numbers - // nbig, ibeta, it, iemin, iemax, rbig. - // The following define the basic machine-dependent constants. - // For portability, the PORT subprograms "ilmaeh" and "rlmach" - // are used. For any specific computer, each of the assignment - // statements can be replaced - ibeta = std::numeric_limits::radix; // base for floating-point numbers - it = std::numeric_limits::digits; // number of base-beta digits in mantissa - iemin = std::numeric_limits::min_exponent; // minimum exponent - iemax = std::numeric_limits::max_exponent; // maximum exponent - rbig = (std::numeric_limits::max)(); // largest floating-point number - - iexp = -((1-iemin)/2); - b1 = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // lower boundary of midrange - iexp = (iemax + 1 - it)/2; - b2 = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // upper boundary of midrange - - iexp = (2-iemin)/2; - s1m = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // scaling factor for lower range - iexp = - ((iemax+it)/2); - s2m = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // scaling factor for upper range - - eps = RealScalar(pow(double(ibeta), 1-it)); - relerr = sqrt(eps); // tolerance for neglecting asml - initialized = true; - } - Index n = vec.size(); - RealScalar ab2 = b2 / RealScalar(n); - RealScalar asml = RealScalar(0); - RealScalar amed = RealScalar(0); - RealScalar abig = RealScalar(0); - for(typename Derived::InnerIterator it(vec, 0); it; ++it) - { - RealScalar ax = abs(it.value()); - if(ax > ab2) abig += numext::abs2(ax*s2m); - else if(ax < b1) asml += numext::abs2(ax*s1m); - else amed += numext::abs2(ax); - } - if(amed!=amed) - return amed; // we got a NaN - if(abig > RealScalar(0)) - { - abig = sqrt(abig); - if(abig > rbig) // overflow, or *this contains INF values - return abig; // return INF - if(amed > RealScalar(0)) - { - abig = abig/s2m; - amed = sqrt(amed); - } - else - return abig/s2m; - } - else if(asml > RealScalar(0)) - { - if (amed > RealScalar(0)) - { - abig = sqrt(amed); - amed = sqrt(asml) / s1m; - } - else - return sqrt(asml)/s1m; - } - else - return sqrt(amed); - asml = numext::mini(abig, amed); - abig = numext::maxi(abig, amed); - if(asml <= abig*relerr) - return abig; - else - return abig * sqrt(RealScalar(1) + numext::abs2(asml/abig)); -} - -} // end namespace internal - -/** \returns the \em l2 norm of \c *this avoiding underflow and overflow. - * This version use a blockwise two passes algorithm: - * 1 - find the absolute largest coefficient \c s - * 2 - compute \f$ s \Vert \frac{*this}{s} \Vert \f$ in a standard way - * - * For architecture/scalar types supporting vectorization, this version - * is faster than blueNorm(). Otherwise the blueNorm() is much faster. - * - * \sa norm(), blueNorm(), hypotNorm() - */ -template -inline typename NumTraits::Scalar>::Real -MatrixBase::stableNorm() const -{ - using std::sqrt; - using std::abs; - const Index blockSize = 4096; - RealScalar scale(0); - RealScalar invScale(1); - RealScalar ssq(0); // sum of square - - typedef typename internal::nested_eval::type DerivedCopy; - typedef typename internal::remove_all::type DerivedCopyClean; - const DerivedCopy copy(derived()); - - enum { - CanAlign = ( (int(DerivedCopyClean::Flags)&DirectAccessBit) - || (int(internal::evaluator::Alignment)>0) // FIXME Alignment)>0 might not be enough - ) && (blockSize*sizeof(Scalar)*20) // if we cannot allocate on the stack, then let's not bother about this optimization - }; - typedef typename internal::conditional, internal::evaluator::Alignment>, - typename DerivedCopyClean::ConstSegmentReturnType>::type SegmentWrapper; - Index n = size(); - - if(n==1) - return abs(this->coeff(0)); - - Index bi = internal::first_default_aligned(copy); - if (bi>0) - internal::stable_norm_kernel(copy.head(bi), ssq, scale, invScale); - for (; bi -inline typename NumTraits::Scalar>::Real -MatrixBase::blueNorm() const -{ - return internal::blueNorm_impl(*this); -} - -/** \returns the \em l2 norm of \c *this avoiding undeflow and overflow. - * This version use a concatenation of hypot() calls, and it is very slow. - * - * \sa norm(), stableNorm() - */ -template -inline typename NumTraits::Scalar>::Real -MatrixBase::hypotNorm() const -{ - return this->cwiseAbs().redux(internal::scalar_hypot_op()); -} - -} // end namespace Eigen - -#endif // EIGEN_STABLENORM_H diff --git a/src/math_meigen/Eigen/src/Core/Stride.h b/src/math_meigen/Eigen/src/Core/Stride.h deleted file mode 100755 index 513742f34..000000000 --- a/src/math_meigen/Eigen/src/Core/Stride.h +++ /dev/null @@ -1,111 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2010 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_STRIDE_H -#define EIGEN_STRIDE_H - -namespace Eigen { - -/** \class Stride - * \ingroup Core_Module - * - * \brief Holds strides information for Map - * - * This class holds the strides information for mapping arrays with strides with class Map. - * - * It holds two values: the inner stride and the outer stride. - * - * The inner stride is the pointer increment between two consecutive entries within a given row of a - * row-major matrix or within a given column of a column-major matrix. - * - * The outer stride is the pointer increment between two consecutive rows of a row-major matrix or - * between two consecutive columns of a column-major matrix. - * - * These two values can be passed either at compile-time as template parameters, or at runtime as - * arguments to the constructor. - * - * Indeed, this class takes two template parameters: - * \tparam _OuterStrideAtCompileTime the outer stride, or Dynamic if you want to specify it at runtime. - * \tparam _InnerStrideAtCompileTime the inner stride, or Dynamic if you want to specify it at runtime. - * - * Here is an example: - * \include Map_general_stride.cpp - * Output: \verbinclude Map_general_stride.out - * - * \sa class InnerStride, class OuterStride, \ref TopicStorageOrders - */ -template -class Stride -{ - public: - typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 - enum { - InnerStrideAtCompileTime = _InnerStrideAtCompileTime, - OuterStrideAtCompileTime = _OuterStrideAtCompileTime - }; - - /** Default constructor, for use when strides are fixed at compile time */ - EIGEN_DEVICE_FUNC - Stride() - : m_outer(OuterStrideAtCompileTime), m_inner(InnerStrideAtCompileTime) - { - eigen_assert(InnerStrideAtCompileTime != Dynamic && OuterStrideAtCompileTime != Dynamic); - } - - /** Constructor allowing to pass the strides at runtime */ - EIGEN_DEVICE_FUNC - Stride(Index outerStride, Index innerStride) - : m_outer(outerStride), m_inner(innerStride) - { - eigen_assert(innerStride>=0 && outerStride>=0); - } - - /** Copy constructor */ - EIGEN_DEVICE_FUNC - Stride(const Stride& other) - : m_outer(other.outer()), m_inner(other.inner()) - {} - - /** \returns the outer stride */ - EIGEN_DEVICE_FUNC - inline Index outer() const { return m_outer.value(); } - /** \returns the inner stride */ - EIGEN_DEVICE_FUNC - inline Index inner() const { return m_inner.value(); } - - protected: - internal::variable_if_dynamic m_outer; - internal::variable_if_dynamic m_inner; -}; - -/** \brief Convenience specialization of Stride to specify only an inner stride - * See class Map for some examples */ -template -class InnerStride : public Stride<0, Value> -{ - typedef Stride<0, Value> Base; - public: - EIGEN_DEVICE_FUNC InnerStride() : Base() {} - EIGEN_DEVICE_FUNC InnerStride(Index v) : Base(0, v) {} // FIXME making this explicit could break valid code -}; - -/** \brief Convenience specialization of Stride to specify only an outer stride - * See class Map for some examples */ -template -class OuterStride : public Stride -{ - typedef Stride Base; - public: - EIGEN_DEVICE_FUNC OuterStride() : Base() {} - EIGEN_DEVICE_FUNC OuterStride(Index v) : Base(v,0) {} // FIXME making this explicit could break valid code -}; - -} // end namespace Eigen - -#endif // EIGEN_STRIDE_H diff --git a/src/math_meigen/Eigen/src/Core/Swap.h b/src/math_meigen/Eigen/src/Core/Swap.h deleted file mode 100755 index d70200918..000000000 --- a/src/math_meigen/Eigen/src/Core/Swap.h +++ /dev/null @@ -1,67 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SWAP_H -#define EIGEN_SWAP_H - -namespace Eigen { - -namespace internal { - -// Overload default assignPacket behavior for swapping them -template -class generic_dense_assignment_kernel, Specialized> - : public generic_dense_assignment_kernel, BuiltIn> -{ -protected: - typedef generic_dense_assignment_kernel, BuiltIn> Base; - using Base::m_dst; - using Base::m_src; - using Base::m_functor; - -public: - typedef typename Base::Scalar Scalar; - typedef typename Base::DstXprType DstXprType; - typedef swap_assign_op Functor; - - EIGEN_DEVICE_FUNC generic_dense_assignment_kernel(DstEvaluatorTypeT &dst, const SrcEvaluatorTypeT &src, const Functor &func, DstXprType& dstExpr) - : Base(dst, src, func, dstExpr) - {} - - template - void assignPacket(Index row, Index col) - { - PacketType tmp = m_src.template packet(row,col); - const_cast(m_src).template writePacket(row,col, m_dst.template packet(row,col)); - m_dst.template writePacket(row,col,tmp); - } - - template - void assignPacket(Index index) - { - PacketType tmp = m_src.template packet(index); - const_cast(m_src).template writePacket(index, m_dst.template packet(index)); - m_dst.template writePacket(index,tmp); - } - - // TODO find a simple way not to have to copy/paste this function from generic_dense_assignment_kernel, by simple I mean no CRTP (Gael) - template - void assignPacketByOuterInner(Index outer, Index inner) - { - Index row = Base::rowIndexByOuterInner(outer, inner); - Index col = Base::colIndexByOuterInner(outer, inner); - assignPacket(row, col); - } -}; - -} // namespace internal - -} // end namespace Eigen - -#endif // EIGEN_SWAP_H diff --git a/src/math_meigen/Eigen/src/Core/Transpose.h b/src/math_meigen/Eigen/src/Core/Transpose.h deleted file mode 100755 index 79b767bcc..000000000 --- a/src/math_meigen/Eigen/src/Core/Transpose.h +++ /dev/null @@ -1,403 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2006-2008 Benoit Jacob -// Copyright (C) 2009-2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_TRANSPOSE_H -#define EIGEN_TRANSPOSE_H - -namespace Eigen { - -namespace internal { -template -struct traits > : public traits -{ - typedef typename ref_selector::type MatrixTypeNested; - typedef typename remove_reference::type MatrixTypeNestedPlain; - enum { - RowsAtCompileTime = MatrixType::ColsAtCompileTime, - ColsAtCompileTime = MatrixType::RowsAtCompileTime, - MaxRowsAtCompileTime = MatrixType::MaxColsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - FlagsLvalueBit = is_lvalue::value ? LvalueBit : 0, - Flags0 = traits::Flags & ~(LvalueBit | NestByRefBit), - Flags1 = Flags0 | FlagsLvalueBit, - Flags = Flags1 ^ RowMajorBit, - InnerStrideAtCompileTime = inner_stride_at_compile_time::ret, - OuterStrideAtCompileTime = outer_stride_at_compile_time::ret - }; -}; -} - -template class TransposeImpl; - -/** \class Transpose - * \ingroup Core_Module - * - * \brief Expression of the transpose of a matrix - * - * \tparam MatrixType the type of the object of which we are taking the transpose - * - * This class represents an expression of the transpose of a matrix. - * It is the return type of MatrixBase::transpose() and MatrixBase::adjoint() - * and most of the time this is the only way it is used. - * - * \sa MatrixBase::transpose(), MatrixBase::adjoint() - */ -template class Transpose - : public TransposeImpl::StorageKind> -{ - public: - - typedef typename internal::ref_selector::non_const_type MatrixTypeNested; - - typedef typename TransposeImpl::StorageKind>::Base Base; - EIGEN_GENERIC_PUBLIC_INTERFACE(Transpose) - typedef typename internal::remove_all::type NestedExpression; - - EIGEN_DEVICE_FUNC - explicit inline Transpose(MatrixType& matrix) : m_matrix(matrix) {} - - EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Transpose) - - EIGEN_DEVICE_FUNC inline Index rows() const { return m_matrix.cols(); } - EIGEN_DEVICE_FUNC inline Index cols() const { return m_matrix.rows(); } - - /** \returns the nested expression */ - EIGEN_DEVICE_FUNC - const typename internal::remove_all::type& - nestedExpression() const { return m_matrix; } - - /** \returns the nested expression */ - EIGEN_DEVICE_FUNC - typename internal::remove_reference::type& - nestedExpression() { return m_matrix; } - - /** \internal */ - void resize(Index nrows, Index ncols) { - m_matrix.resize(ncols,nrows); - } - - protected: - typename internal::ref_selector::non_const_type m_matrix; -}; - -namespace internal { - -template::ret> -struct TransposeImpl_base -{ - typedef typename dense_xpr_base >::type type; -}; - -template -struct TransposeImpl_base -{ - typedef typename dense_xpr_base >::type type; -}; - -} // end namespace internal - -// Generic API dispatcher -template -class TransposeImpl - : public internal::generic_xpr_base >::type -{ -public: - typedef typename internal::generic_xpr_base >::type Base; -}; - -template class TransposeImpl - : public internal::TransposeImpl_base::type -{ - public: - - typedef typename internal::TransposeImpl_base::type Base; - using Base::coeffRef; - EIGEN_DENSE_PUBLIC_INTERFACE(Transpose) - EIGEN_INHERIT_ASSIGNMENT_OPERATORS(TransposeImpl) - - EIGEN_DEVICE_FUNC inline Index innerStride() const { return derived().nestedExpression().innerStride(); } - EIGEN_DEVICE_FUNC inline Index outerStride() const { return derived().nestedExpression().outerStride(); } - - typedef typename internal::conditional< - internal::is_lvalue::value, - Scalar, - const Scalar - >::type ScalarWithConstIfNotLvalue; - - EIGEN_DEVICE_FUNC inline ScalarWithConstIfNotLvalue* data() { return derived().nestedExpression().data(); } - EIGEN_DEVICE_FUNC inline const Scalar* data() const { return derived().nestedExpression().data(); } - - // FIXME: shall we keep the const version of coeffRef? - EIGEN_DEVICE_FUNC - inline const Scalar& coeffRef(Index rowId, Index colId) const - { - return derived().nestedExpression().coeffRef(colId, rowId); - } - - EIGEN_DEVICE_FUNC - inline const Scalar& coeffRef(Index index) const - { - return derived().nestedExpression().coeffRef(index); - } -}; - -/** \returns an expression of the transpose of *this. - * - * Example: \include MatrixBase_transpose.cpp - * Output: \verbinclude MatrixBase_transpose.out - * - * \warning If you want to replace a matrix by its own transpose, do \b NOT do this: - * \code - * m = m.transpose(); // bug!!! caused by aliasing effect - * \endcode - * Instead, use the transposeInPlace() method: - * \code - * m.transposeInPlace(); - * \endcode - * which gives Eigen good opportunities for optimization, or alternatively you can also do: - * \code - * m = m.transpose().eval(); - * \endcode - * - * \sa transposeInPlace(), adjoint() */ -template -inline Transpose -DenseBase::transpose() -{ - return TransposeReturnType(derived()); -} - -/** This is the const version of transpose(). - * - * Make sure you read the warning for transpose() ! - * - * \sa transposeInPlace(), adjoint() */ -template -inline typename DenseBase::ConstTransposeReturnType -DenseBase::transpose() const -{ - return ConstTransposeReturnType(derived()); -} - -/** \returns an expression of the adjoint (i.e. conjugate transpose) of *this. - * - * Example: \include MatrixBase_adjoint.cpp - * Output: \verbinclude MatrixBase_adjoint.out - * - * \warning If you want to replace a matrix by its own adjoint, do \b NOT do this: - * \code - * m = m.adjoint(); // bug!!! caused by aliasing effect - * \endcode - * Instead, use the adjointInPlace() method: - * \code - * m.adjointInPlace(); - * \endcode - * which gives Eigen good opportunities for optimization, or alternatively you can also do: - * \code - * m = m.adjoint().eval(); - * \endcode - * - * \sa adjointInPlace(), transpose(), conjugate(), class Transpose, class internal::scalar_conjugate_op */ -template -inline const typename MatrixBase::AdjointReturnType -MatrixBase::adjoint() const -{ - return AdjointReturnType(this->transpose()); -} - -/*************************************************************************** -* "in place" transpose implementation -***************************************************************************/ - -namespace internal { - -template::size)) - && (internal::evaluator::Flags&PacketAccessBit) > -struct inplace_transpose_selector; - -template -struct inplace_transpose_selector { // square matrix - static void run(MatrixType& m) { - m.matrix().template triangularView().swap(m.matrix().transpose()); - } -}; - -// TODO: vectorized path is currently limited to LargestPacketSize x LargestPacketSize cases only. -template -struct inplace_transpose_selector { // PacketSize x PacketSize - static void run(MatrixType& m) { - typedef typename MatrixType::Scalar Scalar; - typedef typename internal::packet_traits::type Packet; - const Index PacketSize = internal::packet_traits::size; - const Index Alignment = internal::evaluator::Alignment; - PacketBlock A; - for (Index i=0; i(i,0); - internal::ptranspose(A); - for (Index i=0; i(m.rowIndexByOuterInner(i,0), m.colIndexByOuterInner(i,0), A.packet[i]); - } -}; - -template -struct inplace_transpose_selector { // non square matrix - static void run(MatrixType& m) { - if (m.rows()==m.cols()) - m.matrix().template triangularView().swap(m.matrix().transpose()); - else - m = m.transpose().eval(); - } -}; - -} // end namespace internal - -/** This is the "in place" version of transpose(): it replaces \c *this by its own transpose. - * Thus, doing - * \code - * m.transposeInPlace(); - * \endcode - * has the same effect on m as doing - * \code - * m = m.transpose().eval(); - * \endcode - * and is faster and also safer because in the latter line of code, forgetting the eval() results - * in a bug caused by \ref TopicAliasing "aliasing". - * - * Notice however that this method is only useful if you want to replace a matrix by its own transpose. - * If you just need the transpose of a matrix, use transpose(). - * - * \note if the matrix is not square, then \c *this must be a resizable matrix. - * This excludes (non-square) fixed-size matrices, block-expressions and maps. - * - * \sa transpose(), adjoint(), adjointInPlace() */ -template -inline void DenseBase::transposeInPlace() -{ - eigen_assert((rows() == cols() || (RowsAtCompileTime == Dynamic && ColsAtCompileTime == Dynamic)) - && "transposeInPlace() called on a non-square non-resizable matrix"); - internal::inplace_transpose_selector::run(derived()); -} - -/*************************************************************************** -* "in place" adjoint implementation -***************************************************************************/ - -/** This is the "in place" version of adjoint(): it replaces \c *this by its own transpose. - * Thus, doing - * \code - * m.adjointInPlace(); - * \endcode - * has the same effect on m as doing - * \code - * m = m.adjoint().eval(); - * \endcode - * and is faster and also safer because in the latter line of code, forgetting the eval() results - * in a bug caused by aliasing. - * - * Notice however that this method is only useful if you want to replace a matrix by its own adjoint. - * If you just need the adjoint of a matrix, use adjoint(). - * - * \note if the matrix is not square, then \c *this must be a resizable matrix. - * This excludes (non-square) fixed-size matrices, block-expressions and maps. - * - * \sa transpose(), adjoint(), transposeInPlace() */ -template -inline void MatrixBase::adjointInPlace() -{ - derived() = adjoint().eval(); -} - -#ifndef EIGEN_NO_DEBUG - -// The following is to detect aliasing problems in most common cases. - -namespace internal { - -template -struct check_transpose_aliasing_compile_time_selector -{ - enum { ret = bool(blas_traits::IsTransposed) != DestIsTransposed }; -}; - -template -struct check_transpose_aliasing_compile_time_selector > -{ - enum { ret = bool(blas_traits::IsTransposed) != DestIsTransposed - || bool(blas_traits::IsTransposed) != DestIsTransposed - }; -}; - -template -struct check_transpose_aliasing_run_time_selector -{ - static bool run(const Scalar* dest, const OtherDerived& src) - { - return (bool(blas_traits::IsTransposed) != DestIsTransposed) && (dest!=0 && dest==(const Scalar*)extract_data(src)); - } -}; - -template -struct check_transpose_aliasing_run_time_selector > -{ - static bool run(const Scalar* dest, const CwiseBinaryOp& src) - { - return ((blas_traits::IsTransposed != DestIsTransposed) && (dest!=0 && dest==(const Scalar*)extract_data(src.lhs()))) - || ((blas_traits::IsTransposed != DestIsTransposed) && (dest!=0 && dest==(const Scalar*)extract_data(src.rhs()))); - } -}; - -// the following selector, checkTransposeAliasing_impl, based on MightHaveTransposeAliasing, -// is because when the condition controlling the assert is known at compile time, ICC emits a warning. -// This is actually a good warning: in expressions that don't have any transposing, the condition is -// known at compile time to be false, and using that, we can avoid generating the code of the assert again -// and again for all these expressions that don't need it. - -template::IsTransposed,OtherDerived>::ret - > -struct checkTransposeAliasing_impl -{ - static void run(const Derived& dst, const OtherDerived& other) - { - eigen_assert((!check_transpose_aliasing_run_time_selector - ::IsTransposed,OtherDerived> - ::run(extract_data(dst), other)) - && "aliasing detected during transposition, use transposeInPlace() " - "or evaluate the rhs into a temporary using .eval()"); - - } -}; - -template -struct checkTransposeAliasing_impl -{ - static void run(const Derived&, const OtherDerived&) - { - } -}; - -template -void check_for_aliasing(const Dst &dst, const Src &src) -{ - internal::checkTransposeAliasing_impl::run(dst, src); -} - -} // end namespace internal - -#endif // EIGEN_NO_DEBUG - -} // end namespace Eigen - -#endif // EIGEN_TRANSPOSE_H diff --git a/src/math_meigen/Eigen/src/Core/Transpositions.h b/src/math_meigen/Eigen/src/Core/Transpositions.h deleted file mode 100755 index 86da5af59..000000000 --- a/src/math_meigen/Eigen/src/Core/Transpositions.h +++ /dev/null @@ -1,407 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2010-2011 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_TRANSPOSITIONS_H -#define EIGEN_TRANSPOSITIONS_H - -namespace Eigen { - -template -class TranspositionsBase -{ - typedef internal::traits Traits; - - public: - - typedef typename Traits::IndicesType IndicesType; - typedef typename IndicesType::Scalar StorageIndex; - typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 - - Derived& derived() { return *static_cast(this); } - const Derived& derived() const { return *static_cast(this); } - - /** Copies the \a other transpositions into \c *this */ - template - Derived& operator=(const TranspositionsBase& other) - { - indices() = other.indices(); - return derived(); - } - - #ifndef EIGEN_PARSED_BY_DOXYGEN - /** This is a special case of the templated operator=. Its purpose is to - * prevent a default operator= from hiding the templated operator=. - */ - Derived& operator=(const TranspositionsBase& other) - { - indices() = other.indices(); - return derived(); - } - #endif - - /** \returns the number of transpositions */ - Index size() const { return indices().size(); } - /** \returns the number of rows of the equivalent permutation matrix */ - Index rows() const { return indices().size(); } - /** \returns the number of columns of the equivalent permutation matrix */ - Index cols() const { return indices().size(); } - - /** Direct access to the underlying index vector */ - inline const StorageIndex& coeff(Index i) const { return indices().coeff(i); } - /** Direct access to the underlying index vector */ - inline StorageIndex& coeffRef(Index i) { return indices().coeffRef(i); } - /** Direct access to the underlying index vector */ - inline const StorageIndex& operator()(Index i) const { return indices()(i); } - /** Direct access to the underlying index vector */ - inline StorageIndex& operator()(Index i) { return indices()(i); } - /** Direct access to the underlying index vector */ - inline const StorageIndex& operator[](Index i) const { return indices()(i); } - /** Direct access to the underlying index vector */ - inline StorageIndex& operator[](Index i) { return indices()(i); } - - /** const version of indices(). */ - const IndicesType& indices() const { return derived().indices(); } - /** \returns a reference to the stored array representing the transpositions. */ - IndicesType& indices() { return derived().indices(); } - - /** Resizes to given size. */ - inline void resize(Index newSize) - { - indices().resize(newSize); - } - - /** Sets \c *this to represents an identity transformation */ - void setIdentity() - { - for(StorageIndex i = 0; i < indices().size(); ++i) - coeffRef(i) = i; - } - - // FIXME: do we want such methods ? - // might be usefull when the target matrix expression is complex, e.g.: - // object.matrix().block(..,..,..,..) = trans * object.matrix().block(..,..,..,..); - /* - template - void applyForwardToRows(MatrixType& mat) const - { - for(Index k=0 ; k - void applyBackwardToRows(MatrixType& mat) const - { - for(Index k=size()-1 ; k>=0 ; --k) - if(m_indices(k)!=k) - mat.row(k).swap(mat.row(m_indices(k))); - } - */ - - /** \returns the inverse transformation */ - inline Transpose inverse() const - { return Transpose(derived()); } - - /** \returns the tranpose transformation */ - inline Transpose transpose() const - { return Transpose(derived()); } - - protected: -}; - -namespace internal { -template -struct traits > - : traits > -{ - typedef Matrix<_StorageIndex, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType; - typedef TranspositionsStorage StorageKind; -}; -} - -/** \class Transpositions - * \ingroup Core_Module - * - * \brief Represents a sequence of transpositions (row/column interchange) - * - * \tparam SizeAtCompileTime the number of transpositions, or Dynamic - * \tparam MaxSizeAtCompileTime the maximum number of transpositions, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it. - * - * This class represents a permutation transformation as a sequence of \em n transpositions - * \f$[T_{n-1} \ldots T_{i} \ldots T_{0}]\f$. It is internally stored as a vector of integers \c indices. - * Each transposition \f$ T_{i} \f$ applied on the left of a matrix (\f$ T_{i} M\f$) interchanges - * the rows \c i and \c indices[i] of the matrix \c M. - * A transposition applied on the right (e.g., \f$ M T_{i}\f$) yields a column interchange. - * - * Compared to the class PermutationMatrix, such a sequence of transpositions is what is - * computed during a decomposition with pivoting, and it is faster when applying the permutation in-place. - * - * To apply a sequence of transpositions to a matrix, simply use the operator * as in the following example: - * \code - * Transpositions tr; - * MatrixXf mat; - * mat = tr * mat; - * \endcode - * In this example, we detect that the matrix appears on both side, and so the transpositions - * are applied in-place without any temporary or extra copy. - * - * \sa class PermutationMatrix - */ - -template -class Transpositions : public TranspositionsBase > -{ - typedef internal::traits Traits; - public: - - typedef TranspositionsBase Base; - typedef typename Traits::IndicesType IndicesType; - typedef typename IndicesType::Scalar StorageIndex; - - inline Transpositions() {} - - /** Copy constructor. */ - template - inline Transpositions(const TranspositionsBase& other) - : m_indices(other.indices()) {} - - #ifndef EIGEN_PARSED_BY_DOXYGEN - /** Standard copy constructor. Defined only to prevent a default copy constructor - * from hiding the other templated constructor */ - inline Transpositions(const Transpositions& other) : m_indices(other.indices()) {} - #endif - - /** Generic constructor from expression of the transposition indices. */ - template - explicit inline Transpositions(const MatrixBase& indices) : m_indices(indices) - {} - - /** Copies the \a other transpositions into \c *this */ - template - Transpositions& operator=(const TranspositionsBase& other) - { - return Base::operator=(other); - } - - #ifndef EIGEN_PARSED_BY_DOXYGEN - /** This is a special case of the templated operator=. Its purpose is to - * prevent a default operator= from hiding the templated operator=. - */ - Transpositions& operator=(const Transpositions& other) - { - m_indices = other.m_indices; - return *this; - } - #endif - - /** Constructs an uninitialized permutation matrix of given size. - */ - inline Transpositions(Index size) : m_indices(size) - {} - - /** const version of indices(). */ - const IndicesType& indices() const { return m_indices; } - /** \returns a reference to the stored array representing the transpositions. */ - IndicesType& indices() { return m_indices; } - - protected: - - IndicesType m_indices; -}; - - -namespace internal { -template -struct traits,_PacketAccess> > - : traits > -{ - typedef Map, _PacketAccess> IndicesType; - typedef _StorageIndex StorageIndex; - typedef TranspositionsStorage StorageKind; -}; -} - -template -class Map,PacketAccess> - : public TranspositionsBase,PacketAccess> > -{ - typedef internal::traits Traits; - public: - - typedef TranspositionsBase Base; - typedef typename Traits::IndicesType IndicesType; - typedef typename IndicesType::Scalar StorageIndex; - - explicit inline Map(const StorageIndex* indicesPtr) - : m_indices(indicesPtr) - {} - - inline Map(const StorageIndex* indicesPtr, Index size) - : m_indices(indicesPtr,size) - {} - - /** Copies the \a other transpositions into \c *this */ - template - Map& operator=(const TranspositionsBase& other) - { - return Base::operator=(other); - } - - #ifndef EIGEN_PARSED_BY_DOXYGEN - /** This is a special case of the templated operator=. Its purpose is to - * prevent a default operator= from hiding the templated operator=. - */ - Map& operator=(const Map& other) - { - m_indices = other.m_indices; - return *this; - } - #endif - - /** const version of indices(). */ - const IndicesType& indices() const { return m_indices; } - - /** \returns a reference to the stored array representing the transpositions. */ - IndicesType& indices() { return m_indices; } - - protected: - - IndicesType m_indices; -}; - -namespace internal { -template -struct traits > - : traits > -{ - typedef TranspositionsStorage StorageKind; -}; -} - -template -class TranspositionsWrapper - : public TranspositionsBase > -{ - typedef internal::traits Traits; - public: - - typedef TranspositionsBase Base; - typedef typename Traits::IndicesType IndicesType; - typedef typename IndicesType::Scalar StorageIndex; - - explicit inline TranspositionsWrapper(IndicesType& indices) - : m_indices(indices) - {} - - /** Copies the \a other transpositions into \c *this */ - template - TranspositionsWrapper& operator=(const TranspositionsBase& other) - { - return Base::operator=(other); - } - - #ifndef EIGEN_PARSED_BY_DOXYGEN - /** This is a special case of the templated operator=. Its purpose is to - * prevent a default operator= from hiding the templated operator=. - */ - TranspositionsWrapper& operator=(const TranspositionsWrapper& other) - { - m_indices = other.m_indices; - return *this; - } - #endif - - /** const version of indices(). */ - const IndicesType& indices() const { return m_indices; } - - /** \returns a reference to the stored array representing the transpositions. */ - IndicesType& indices() { return m_indices; } - - protected: - - typename IndicesType::Nested m_indices; -}; - - - -/** \returns the \a matrix with the \a transpositions applied to the columns. - */ -template -EIGEN_DEVICE_FUNC -const Product -operator*(const MatrixBase &matrix, - const TranspositionsBase& transpositions) -{ - return Product - (matrix.derived(), transpositions.derived()); -} - -/** \returns the \a matrix with the \a transpositions applied to the rows. - */ -template -EIGEN_DEVICE_FUNC -const Product -operator*(const TranspositionsBase &transpositions, - const MatrixBase& matrix) -{ - return Product - (transpositions.derived(), matrix.derived()); -} - -// Template partial specialization for transposed/inverse transpositions - -namespace internal { - -template -struct traits > > - : traits -{}; - -} // end namespace internal - -template -class Transpose > -{ - typedef TranspositionsDerived TranspositionType; - typedef typename TranspositionType::IndicesType IndicesType; - public: - - explicit Transpose(const TranspositionType& t) : m_transpositions(t) {} - - Index size() const { return m_transpositions.size(); } - Index rows() const { return m_transpositions.size(); } - Index cols() const { return m_transpositions.size(); } - - /** \returns the \a matrix with the inverse transpositions applied to the columns. - */ - template friend - const Product - operator*(const MatrixBase& matrix, const Transpose& trt) - { - return Product(matrix.derived(), trt); - } - - /** \returns the \a matrix with the inverse transpositions applied to the rows. - */ - template - const Product - operator*(const MatrixBase& matrix) const - { - return Product(*this, matrix.derived()); - } - - const TranspositionType& nestedExpression() const { return m_transpositions; } - - protected: - const TranspositionType& m_transpositions; -}; - -} // end namespace Eigen - -#endif // EIGEN_TRANSPOSITIONS_H diff --git a/src/math_meigen/Eigen/src/Core/TriangularMatrix.h b/src/math_meigen/Eigen/src/Core/TriangularMatrix.h deleted file mode 100755 index 667ef09dc..000000000 --- a/src/math_meigen/Eigen/src/Core/TriangularMatrix.h +++ /dev/null @@ -1,983 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Benoit Jacob -// Copyright (C) 2008-2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_TRIANGULARMATRIX_H -#define EIGEN_TRIANGULARMATRIX_H - -namespace Eigen { - -namespace internal { - -template struct triangular_solve_retval; - -} - -/** \class TriangularBase - * \ingroup Core_Module - * - * \brief Base class for triangular part in a matrix - */ -template class TriangularBase : public EigenBase -{ - public: - - enum { - Mode = internal::traits::Mode, - RowsAtCompileTime = internal::traits::RowsAtCompileTime, - ColsAtCompileTime = internal::traits::ColsAtCompileTime, - MaxRowsAtCompileTime = internal::traits::MaxRowsAtCompileTime, - MaxColsAtCompileTime = internal::traits::MaxColsAtCompileTime, - - SizeAtCompileTime = (internal::size_at_compile_time::RowsAtCompileTime, - internal::traits::ColsAtCompileTime>::ret), - /**< This is equal to the number of coefficients, i.e. the number of - * rows times the number of columns, or to \a Dynamic if this is not - * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */ - - MaxSizeAtCompileTime = (internal::size_at_compile_time::MaxRowsAtCompileTime, - internal::traits::MaxColsAtCompileTime>::ret) - - }; - typedef typename internal::traits::Scalar Scalar; - typedef typename internal::traits::StorageKind StorageKind; - typedef typename internal::traits::StorageIndex StorageIndex; - typedef typename internal::traits::FullMatrixType DenseMatrixType; - typedef DenseMatrixType DenseType; - typedef Derived const& Nested; - - EIGEN_DEVICE_FUNC - inline TriangularBase() { eigen_assert(!((Mode&UnitDiag) && (Mode&ZeroDiag))); } - - EIGEN_DEVICE_FUNC - inline Index rows() const { return derived().rows(); } - EIGEN_DEVICE_FUNC - inline Index cols() const { return derived().cols(); } - EIGEN_DEVICE_FUNC - inline Index outerStride() const { return derived().outerStride(); } - EIGEN_DEVICE_FUNC - inline Index innerStride() const { return derived().innerStride(); } - - // dummy resize function - void resize(Index rows, Index cols) - { - EIGEN_UNUSED_VARIABLE(rows); - EIGEN_UNUSED_VARIABLE(cols); - eigen_assert(rows==this->rows() && cols==this->cols()); - } - - EIGEN_DEVICE_FUNC - inline Scalar coeff(Index row, Index col) const { return derived().coeff(row,col); } - EIGEN_DEVICE_FUNC - inline Scalar& coeffRef(Index row, Index col) { return derived().coeffRef(row,col); } - - /** \see MatrixBase::copyCoeff(row,col) - */ - template - EIGEN_DEVICE_FUNC - EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, Other& other) - { - derived().coeffRef(row, col) = other.coeff(row, col); - } - - EIGEN_DEVICE_FUNC - inline Scalar operator()(Index row, Index col) const - { - check_coordinates(row, col); - return coeff(row,col); - } - EIGEN_DEVICE_FUNC - inline Scalar& operator()(Index row, Index col) - { - check_coordinates(row, col); - return coeffRef(row,col); - } - - #ifndef EIGEN_PARSED_BY_DOXYGEN - EIGEN_DEVICE_FUNC - inline const Derived& derived() const { return *static_cast(this); } - EIGEN_DEVICE_FUNC - inline Derived& derived() { return *static_cast(this); } - #endif // not EIGEN_PARSED_BY_DOXYGEN - - template - EIGEN_DEVICE_FUNC - void evalTo(MatrixBase &other) const; - template - EIGEN_DEVICE_FUNC - void evalToLazy(MatrixBase &other) const; - - EIGEN_DEVICE_FUNC - DenseMatrixType toDenseMatrix() const - { - DenseMatrixType res(rows(), cols()); - evalToLazy(res); - return res; - } - - protected: - - void check_coordinates(Index row, Index col) const - { - EIGEN_ONLY_USED_FOR_DEBUG(row); - EIGEN_ONLY_USED_FOR_DEBUG(col); - eigen_assert(col>=0 && col=0 && row=row) - || (mode==Lower && col<=row) - || ((mode==StrictlyUpper || mode==UnitUpper) && col>row) - || ((mode==StrictlyLower || mode==UnitLower) && col -struct traits > : traits -{ - typedef typename ref_selector::non_const_type MatrixTypeNested; - typedef typename remove_reference::type MatrixTypeNestedNonRef; - typedef typename remove_all::type MatrixTypeNestedCleaned; - typedef typename MatrixType::PlainObject FullMatrixType; - typedef MatrixType ExpressionType; - enum { - Mode = _Mode, - FlagsLvalueBit = is_lvalue::value ? LvalueBit : 0, - Flags = (MatrixTypeNestedCleaned::Flags & (HereditaryBits | FlagsLvalueBit) & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit))) - }; -}; -} - -template class TriangularViewImpl; - -template class TriangularView - : public TriangularViewImpl<_MatrixType, _Mode, typename internal::traits<_MatrixType>::StorageKind > -{ - public: - - typedef TriangularViewImpl<_MatrixType, _Mode, typename internal::traits<_MatrixType>::StorageKind > Base; - typedef typename internal::traits::Scalar Scalar; - typedef _MatrixType MatrixType; - - protected: - typedef typename internal::traits::MatrixTypeNested MatrixTypeNested; - typedef typename internal::traits::MatrixTypeNestedNonRef MatrixTypeNestedNonRef; - - typedef typename internal::remove_all::type MatrixConjugateReturnType; - - public: - - typedef typename internal::traits::StorageKind StorageKind; - typedef typename internal::traits::MatrixTypeNestedCleaned NestedExpression; - - enum { - Mode = _Mode, - Flags = internal::traits::Flags, - TransposeMode = (Mode & Upper ? Lower : 0) - | (Mode & Lower ? Upper : 0) - | (Mode & (UnitDiag)) - | (Mode & (ZeroDiag)), - IsVectorAtCompileTime = false - }; - - EIGEN_DEVICE_FUNC - explicit inline TriangularView(MatrixType& matrix) : m_matrix(matrix) - {} - - using Base::operator=; - TriangularView& operator=(const TriangularView &other) - { return Base::operator=(other); } - - /** \copydoc EigenBase::rows() */ - EIGEN_DEVICE_FUNC - inline Index rows() const { return m_matrix.rows(); } - /** \copydoc EigenBase::cols() */ - EIGEN_DEVICE_FUNC - inline Index cols() const { return m_matrix.cols(); } - - /** \returns a const reference to the nested expression */ - EIGEN_DEVICE_FUNC - const NestedExpression& nestedExpression() const { return m_matrix; } - - /** \returns a reference to the nested expression */ - EIGEN_DEVICE_FUNC - NestedExpression& nestedExpression() { return m_matrix; } - - typedef TriangularView ConjugateReturnType; - /** \sa MatrixBase::conjugate() const */ - EIGEN_DEVICE_FUNC - inline const ConjugateReturnType conjugate() const - { return ConjugateReturnType(m_matrix.conjugate()); } - - typedef TriangularView AdjointReturnType; - /** \sa MatrixBase::adjoint() const */ - EIGEN_DEVICE_FUNC - inline const AdjointReturnType adjoint() const - { return AdjointReturnType(m_matrix.adjoint()); } - - typedef TriangularView TransposeReturnType; - /** \sa MatrixBase::transpose() */ - EIGEN_DEVICE_FUNC - inline TransposeReturnType transpose() - { - EIGEN_STATIC_ASSERT_LVALUE(MatrixType) - typename MatrixType::TransposeReturnType tmp(m_matrix); - return TransposeReturnType(tmp); - } - - typedef TriangularView ConstTransposeReturnType; - /** \sa MatrixBase::transpose() const */ - EIGEN_DEVICE_FUNC - inline const ConstTransposeReturnType transpose() const - { - return ConstTransposeReturnType(m_matrix.transpose()); - } - - template - EIGEN_DEVICE_FUNC - inline const Solve - solve(const MatrixBase& other) const - { return Solve(*this, other.derived()); } - - // workaround MSVC ICE - #if EIGEN_COMP_MSVC - template - EIGEN_DEVICE_FUNC - inline const internal::triangular_solve_retval - solve(const MatrixBase& other) const - { return Base::template solve(other); } - #else - using Base::solve; - #endif - - /** \returns a selfadjoint view of the referenced triangular part which must be either \c #Upper or \c #Lower. - * - * This is a shortcut for \code this->nestedExpression().selfadjointView<(*this)::Mode>() \endcode - * \sa MatrixBase::selfadjointView() */ - EIGEN_DEVICE_FUNC - SelfAdjointView selfadjointView() - { - EIGEN_STATIC_ASSERT((Mode&(UnitDiag|ZeroDiag))==0,PROGRAMMING_ERROR); - return SelfAdjointView(m_matrix); - } - - /** This is the const version of selfadjointView() */ - EIGEN_DEVICE_FUNC - const SelfAdjointView selfadjointView() const - { - EIGEN_STATIC_ASSERT((Mode&(UnitDiag|ZeroDiag))==0,PROGRAMMING_ERROR); - return SelfAdjointView(m_matrix); - } - - - /** \returns the determinant of the triangular matrix - * \sa MatrixBase::determinant() */ - EIGEN_DEVICE_FUNC - Scalar determinant() const - { - if (Mode & UnitDiag) - return 1; - else if (Mode & ZeroDiag) - return 0; - else - return m_matrix.diagonal().prod(); - } - - protected: - - MatrixTypeNested m_matrix; -}; - -/** \ingroup Core_Module - * - * \brief Base class for a triangular part in a \b dense matrix - * - * This class is an abstract base class of class TriangularView, and objects of type TriangularViewImpl cannot be instantiated. - * It extends class TriangularView with additional methods which available for dense expressions only. - * - * \sa class TriangularView, MatrixBase::triangularView() - */ -template class TriangularViewImpl<_MatrixType,_Mode,Dense> - : public TriangularBase > -{ - public: - - typedef TriangularView<_MatrixType, _Mode> TriangularViewType; - typedef TriangularBase Base; - typedef typename internal::traits::Scalar Scalar; - - typedef _MatrixType MatrixType; - typedef typename MatrixType::PlainObject DenseMatrixType; - typedef DenseMatrixType PlainObject; - - public: - using Base::evalToLazy; - using Base::derived; - - typedef typename internal::traits::StorageKind StorageKind; - - enum { - Mode = _Mode, - Flags = internal::traits::Flags - }; - - /** \returns the outer-stride of the underlying dense matrix - * \sa DenseCoeffsBase::outerStride() */ - EIGEN_DEVICE_FUNC - inline Index outerStride() const { return derived().nestedExpression().outerStride(); } - /** \returns the inner-stride of the underlying dense matrix - * \sa DenseCoeffsBase::innerStride() */ - EIGEN_DEVICE_FUNC - inline Index innerStride() const { return derived().nestedExpression().innerStride(); } - - /** \sa MatrixBase::operator+=() */ - template - EIGEN_DEVICE_FUNC - TriangularViewType& operator+=(const DenseBase& other) { - internal::call_assignment_no_alias(derived(), other.derived(), internal::add_assign_op()); - return derived(); - } - /** \sa MatrixBase::operator-=() */ - template - EIGEN_DEVICE_FUNC - TriangularViewType& operator-=(const DenseBase& other) { - internal::call_assignment_no_alias(derived(), other.derived(), internal::sub_assign_op()); - return derived(); - } - - /** \sa MatrixBase::operator*=() */ - EIGEN_DEVICE_FUNC - TriangularViewType& operator*=(const typename internal::traits::Scalar& other) { return *this = derived().nestedExpression() * other; } - /** \sa DenseBase::operator/=() */ - EIGEN_DEVICE_FUNC - TriangularViewType& operator/=(const typename internal::traits::Scalar& other) { return *this = derived().nestedExpression() / other; } - - /** \sa MatrixBase::fill() */ - EIGEN_DEVICE_FUNC - void fill(const Scalar& value) { setConstant(value); } - /** \sa MatrixBase::setConstant() */ - EIGEN_DEVICE_FUNC - TriangularViewType& setConstant(const Scalar& value) - { return *this = MatrixType::Constant(derived().rows(), derived().cols(), value); } - /** \sa MatrixBase::setZero() */ - EIGEN_DEVICE_FUNC - TriangularViewType& setZero() { return setConstant(Scalar(0)); } - /** \sa MatrixBase::setOnes() */ - EIGEN_DEVICE_FUNC - TriangularViewType& setOnes() { return setConstant(Scalar(1)); } - - /** \sa MatrixBase::coeff() - * \warning the coordinates must fit into the referenced triangular part - */ - EIGEN_DEVICE_FUNC - inline Scalar coeff(Index row, Index col) const - { - Base::check_coordinates_internal(row, col); - return derived().nestedExpression().coeff(row, col); - } - - /** \sa MatrixBase::coeffRef() - * \warning the coordinates must fit into the referenced triangular part - */ - EIGEN_DEVICE_FUNC - inline Scalar& coeffRef(Index row, Index col) - { - EIGEN_STATIC_ASSERT_LVALUE(TriangularViewType); - Base::check_coordinates_internal(row, col); - return derived().nestedExpression().coeffRef(row, col); - } - - /** Assigns a triangular matrix to a triangular part of a dense matrix */ - template - EIGEN_DEVICE_FUNC - TriangularViewType& operator=(const TriangularBase& other); - - /** Shortcut for\code *this = other.other.triangularView<(*this)::Mode>() \endcode */ - template - EIGEN_DEVICE_FUNC - TriangularViewType& operator=(const MatrixBase& other); - -#ifndef EIGEN_PARSED_BY_DOXYGEN - EIGEN_DEVICE_FUNC - TriangularViewType& operator=(const TriangularViewImpl& other) - { return *this = other.derived().nestedExpression(); } - - /** \deprecated */ - template - EIGEN_DEVICE_FUNC - void lazyAssign(const TriangularBase& other); - - /** \deprecated */ - template - EIGEN_DEVICE_FUNC - void lazyAssign(const MatrixBase& other); -#endif - - /** Efficient triangular matrix times vector/matrix product */ - template - EIGEN_DEVICE_FUNC - const Product - operator*(const MatrixBase& rhs) const - { - return Product(derived(), rhs.derived()); - } - - /** Efficient vector/matrix times triangular matrix product */ - template friend - EIGEN_DEVICE_FUNC - const Product - operator*(const MatrixBase& lhs, const TriangularViewImpl& rhs) - { - return Product(lhs.derived(),rhs.derived()); - } - - /** \returns the product of the inverse of \c *this with \a other, \a *this being triangular. - * - * This function computes the inverse-matrix matrix product inverse(\c *this) * \a other if - * \a Side==OnTheLeft (the default), or the right-inverse-multiply \a other * inverse(\c *this) if - * \a Side==OnTheRight. - * - * Note that the template parameter \c Side can be ommitted, in which case \c Side==OnTheLeft - * - * The matrix \c *this must be triangular and invertible (i.e., all the coefficients of the - * diagonal must be non zero). It works as a forward (resp. backward) substitution if \c *this - * is an upper (resp. lower) triangular matrix. - * - * Example: \include Triangular_solve.cpp - * Output: \verbinclude Triangular_solve.out - * - * This function returns an expression of the inverse-multiply and can works in-place if it is assigned - * to the same matrix or vector \a other. - * - * For users coming from BLAS, this function (and more specifically solveInPlace()) offer - * all the operations supported by the \c *TRSV and \c *TRSM BLAS routines. - * - * \sa TriangularView::solveInPlace() - */ - template - EIGEN_DEVICE_FUNC - inline const internal::triangular_solve_retval - solve(const MatrixBase& other) const; - - /** "in-place" version of TriangularView::solve() where the result is written in \a other - * - * \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here. - * This function will const_cast it, so constness isn't honored here. - * - * Note that the template parameter \c Side can be ommitted, in which case \c Side==OnTheLeft - * - * See TriangularView:solve() for the details. - */ - template - EIGEN_DEVICE_FUNC - void solveInPlace(const MatrixBase& other) const; - - template - EIGEN_DEVICE_FUNC - void solveInPlace(const MatrixBase& other) const - { return solveInPlace(other); } - - /** Swaps the coefficients of the common triangular parts of two matrices */ - template - EIGEN_DEVICE_FUNC -#ifdef EIGEN_PARSED_BY_DOXYGEN - void swap(TriangularBase &other) -#else - void swap(TriangularBase const & other) -#endif - { - EIGEN_STATIC_ASSERT_LVALUE(OtherDerived); - call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op()); - } - - /** \deprecated - * Shortcut for \code (*this).swap(other.triangularView<(*this)::Mode>()) \endcode */ - template - EIGEN_DEVICE_FUNC - void swap(MatrixBase const & other) - { - EIGEN_STATIC_ASSERT_LVALUE(OtherDerived); - call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op()); - } - - template - EIGEN_DEVICE_FUNC - EIGEN_STRONG_INLINE void _solve_impl(const RhsType &rhs, DstType &dst) const { - if(!internal::is_same_dense(dst,rhs)) - dst = rhs; - this->solveInPlace(dst); - } - - template - EIGEN_DEVICE_FUNC - EIGEN_STRONG_INLINE TriangularViewType& _assignProduct(const ProductType& prod, const Scalar& alpha, bool beta); -}; - -/*************************************************************************** -* Implementation of triangular evaluation/assignment -***************************************************************************/ - -#ifndef EIGEN_PARSED_BY_DOXYGEN -// FIXME should we keep that possibility -template -template -inline TriangularView& -TriangularViewImpl::operator=(const MatrixBase& other) -{ - internal::call_assignment_no_alias(derived(), other.derived(), internal::assign_op()); - return derived(); -} - -// FIXME should we keep that possibility -template -template -void TriangularViewImpl::lazyAssign(const MatrixBase& other) -{ - internal::call_assignment_no_alias(derived(), other.template triangularView()); -} - - - -template -template -inline TriangularView& -TriangularViewImpl::operator=(const TriangularBase& other) -{ - eigen_assert(Mode == int(OtherDerived::Mode)); - internal::call_assignment(derived(), other.derived()); - return derived(); -} - -template -template -void TriangularViewImpl::lazyAssign(const TriangularBase& other) -{ - eigen_assert(Mode == int(OtherDerived::Mode)); - internal::call_assignment_no_alias(derived(), other.derived()); -} -#endif - -/*************************************************************************** -* Implementation of TriangularBase methods -***************************************************************************/ - -/** Assigns a triangular or selfadjoint matrix to a dense matrix. - * If the matrix is triangular, the opposite part is set to zero. */ -template -template -void TriangularBase::evalTo(MatrixBase &other) const -{ - evalToLazy(other.derived()); -} - -/*************************************************************************** -* Implementation of TriangularView methods -***************************************************************************/ - -/*************************************************************************** -* Implementation of MatrixBase methods -***************************************************************************/ - -/** - * \returns an expression of a triangular view extracted from the current matrix - * - * The parameter \a Mode can have the following values: \c #Upper, \c #StrictlyUpper, \c #UnitUpper, - * \c #Lower, \c #StrictlyLower, \c #UnitLower. - * - * Example: \include MatrixBase_triangularView.cpp - * Output: \verbinclude MatrixBase_triangularView.out - * - * \sa class TriangularView - */ -template -template -typename MatrixBase::template TriangularViewReturnType::Type -MatrixBase::triangularView() -{ - return typename TriangularViewReturnType::Type(derived()); -} - -/** This is the const version of MatrixBase::triangularView() */ -template -template -typename MatrixBase::template ConstTriangularViewReturnType::Type -MatrixBase::triangularView() const -{ - return typename ConstTriangularViewReturnType::Type(derived()); -} - -/** \returns true if *this is approximately equal to an upper triangular matrix, - * within the precision given by \a prec. - * - * \sa isLowerTriangular() - */ -template -bool MatrixBase::isUpperTriangular(const RealScalar& prec) const -{ - RealScalar maxAbsOnUpperPart = static_cast(-1); - for(Index j = 0; j < cols(); ++j) - { - Index maxi = numext::mini(j, rows()-1); - for(Index i = 0; i <= maxi; ++i) - { - RealScalar absValue = numext::abs(coeff(i,j)); - if(absValue > maxAbsOnUpperPart) maxAbsOnUpperPart = absValue; - } - } - RealScalar threshold = maxAbsOnUpperPart * prec; - for(Index j = 0; j < cols(); ++j) - for(Index i = j+1; i < rows(); ++i) - if(numext::abs(coeff(i, j)) > threshold) return false; - return true; -} - -/** \returns true if *this is approximately equal to a lower triangular matrix, - * within the precision given by \a prec. - * - * \sa isUpperTriangular() - */ -template -bool MatrixBase::isLowerTriangular(const RealScalar& prec) const -{ - RealScalar maxAbsOnLowerPart = static_cast(-1); - for(Index j = 0; j < cols(); ++j) - for(Index i = j; i < rows(); ++i) - { - RealScalar absValue = numext::abs(coeff(i,j)); - if(absValue > maxAbsOnLowerPart) maxAbsOnLowerPart = absValue; - } - RealScalar threshold = maxAbsOnLowerPart * prec; - for(Index j = 1; j < cols(); ++j) - { - Index maxi = numext::mini(j, rows()-1); - for(Index i = 0; i < maxi; ++i) - if(numext::abs(coeff(i, j)) > threshold) return false; - } - return true; -} - - -/*************************************************************************** -**************************************************************************** -* Evaluators and Assignment of triangular expressions -*************************************************************************** -***************************************************************************/ - -namespace internal { - - -// TODO currently a triangular expression has the form TriangularView<.,.> -// in the future triangular-ness should be defined by the expression traits -// such that Transpose > is valid. (currently TriangularBase::transpose() is overloaded to make it work) -template -struct evaluator_traits > -{ - typedef typename storage_kind_to_evaluator_kind::Kind Kind; - typedef typename glue_shapes::Shape, TriangularShape>::type Shape; -}; - -template -struct unary_evaluator, IndexBased> - : evaluator::type> -{ - typedef TriangularView XprType; - typedef evaluator::type> Base; - unary_evaluator(const XprType &xpr) : Base(xpr.nestedExpression()) {} -}; - -// Additional assignment kinds: -struct Triangular2Triangular {}; -struct Triangular2Dense {}; -struct Dense2Triangular {}; - - -template struct triangular_assignment_loop; - - -/** \internal Specialization of the dense assignment kernel for triangular matrices. - * The main difference is that the triangular, diagonal, and opposite parts are processed through three different functions. - * \tparam UpLo must be either Lower or Upper - * \tparam Mode must be either 0, UnitDiag, ZeroDiag, or SelfAdjoint - */ -template -class triangular_dense_assignment_kernel : public generic_dense_assignment_kernel -{ -protected: - typedef generic_dense_assignment_kernel Base; - typedef typename Base::DstXprType DstXprType; - typedef typename Base::SrcXprType SrcXprType; - using Base::m_dst; - using Base::m_src; - using Base::m_functor; -public: - - typedef typename Base::DstEvaluatorType DstEvaluatorType; - typedef typename Base::SrcEvaluatorType SrcEvaluatorType; - typedef typename Base::Scalar Scalar; - typedef typename Base::AssignmentTraits AssignmentTraits; - - - EIGEN_DEVICE_FUNC triangular_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr) - : Base(dst, src, func, dstExpr) - {} - -#ifdef EIGEN_INTERNAL_DEBUGGING - EIGEN_DEVICE_FUNC void assignCoeff(Index row, Index col) - { - eigen_internal_assert(row!=col); - Base::assignCoeff(row,col); - } -#else - using Base::assignCoeff; -#endif - - EIGEN_DEVICE_FUNC void assignDiagonalCoeff(Index id) - { - if(Mode==UnitDiag && SetOpposite) m_functor.assignCoeff(m_dst.coeffRef(id,id), Scalar(1)); - else if(Mode==ZeroDiag && SetOpposite) m_functor.assignCoeff(m_dst.coeffRef(id,id), Scalar(0)); - else if(Mode==0) Base::assignCoeff(id,id); - } - - EIGEN_DEVICE_FUNC void assignOppositeCoeff(Index row, Index col) - { - eigen_internal_assert(row!=col); - if(SetOpposite) - m_functor.assignCoeff(m_dst.coeffRef(row,col), Scalar(0)); - } -}; - -template -EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE -void call_triangular_assignment_loop(DstXprType& dst, const SrcXprType& src, const Functor &func) -{ - typedef evaluator DstEvaluatorType; - typedef evaluator SrcEvaluatorType; - - SrcEvaluatorType srcEvaluator(src); - - Index dstRows = src.rows(); - Index dstCols = src.cols(); - if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) - dst.resize(dstRows, dstCols); - DstEvaluatorType dstEvaluator(dst); - - typedef triangular_dense_assignment_kernel< Mode&(Lower|Upper),Mode&(UnitDiag|ZeroDiag|SelfAdjoint),SetOpposite, - DstEvaluatorType,SrcEvaluatorType,Functor> Kernel; - Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived()); - - enum { - unroll = DstXprType::SizeAtCompileTime != Dynamic - && SrcEvaluatorType::CoeffReadCost < HugeCost - && DstXprType::SizeAtCompileTime * (DstEvaluatorType::CoeffReadCost+SrcEvaluatorType::CoeffReadCost) / 2 <= EIGEN_UNROLLING_LIMIT - }; - - triangular_assignment_loop::run(kernel); -} - -template -EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE -void call_triangular_assignment_loop(DstXprType& dst, const SrcXprType& src) -{ - call_triangular_assignment_loop(dst, src, internal::assign_op()); -} - -template<> struct AssignmentKind { typedef Triangular2Triangular Kind; }; -template<> struct AssignmentKind { typedef Triangular2Dense Kind; }; -template<> struct AssignmentKind { typedef Dense2Triangular Kind; }; - - -template< typename DstXprType, typename SrcXprType, typename Functor> -struct Assignment -{ - EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const Functor &func) - { - eigen_assert(int(DstXprType::Mode) == int(SrcXprType::Mode)); - - call_triangular_assignment_loop(dst, src, func); - } -}; - -template< typename DstXprType, typename SrcXprType, typename Functor> -struct Assignment -{ - EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const Functor &func) - { - call_triangular_assignment_loop(dst, src, func); - } -}; - -template< typename DstXprType, typename SrcXprType, typename Functor> -struct Assignment -{ - EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const Functor &func) - { - call_triangular_assignment_loop(dst, src, func); - } -}; - - -template -struct triangular_assignment_loop -{ - // FIXME: this is not very clean, perhaps this information should be provided by the kernel? - typedef typename Kernel::DstEvaluatorType DstEvaluatorType; - typedef typename DstEvaluatorType::XprType DstXprType; - - enum { - col = (UnrollCount-1) / DstXprType::RowsAtCompileTime, - row = (UnrollCount-1) % DstXprType::RowsAtCompileTime - }; - - typedef typename Kernel::Scalar Scalar; - - EIGEN_DEVICE_FUNC - static inline void run(Kernel &kernel) - { - triangular_assignment_loop::run(kernel); - - if(row==col) - kernel.assignDiagonalCoeff(row); - else if( ((Mode&Lower) && row>col) || ((Mode&Upper) && row -struct triangular_assignment_loop -{ - EIGEN_DEVICE_FUNC - static inline void run(Kernel &) {} -}; - - - -// TODO: experiment with a recursive assignment procedure splitting the current -// triangular part into one rectangular and two triangular parts. - - -template -struct triangular_assignment_loop -{ - typedef typename Kernel::Scalar Scalar; - EIGEN_DEVICE_FUNC - static inline void run(Kernel &kernel) - { - for(Index j = 0; j < kernel.cols(); ++j) - { - Index maxi = numext::mini(j, kernel.rows()); - Index i = 0; - if (((Mode&Lower) && SetOpposite) || (Mode&Upper)) - { - for(; i < maxi; ++i) - if(Mode&Upper) kernel.assignCoeff(i, j); - else kernel.assignOppositeCoeff(i, j); - } - else - i = maxi; - - if(i -template -void TriangularBase::evalToLazy(MatrixBase &other) const -{ - other.derived().resize(this->rows(), this->cols()); - internal::call_triangular_assignment_loop(other.derived(), derived().nestedExpression()); -} - -namespace internal { - -// Triangular = Product -template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar> -struct Assignment, internal::assign_op::Scalar>, Dense2Triangular> -{ - typedef Product SrcXprType; - static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) - { - Index dstRows = src.rows(); - Index dstCols = src.cols(); - if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) - dst.resize(dstRows, dstCols); - - dst._assignProduct(src, 1, 0); - } -}; - -// Triangular += Product -template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar> -struct Assignment, internal::add_assign_op::Scalar>, Dense2Triangular> -{ - typedef Product SrcXprType; - static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op &) - { - dst._assignProduct(src, 1, 1); - } -}; - -// Triangular -= Product -template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar> -struct Assignment, internal::sub_assign_op::Scalar>, Dense2Triangular> -{ - typedef Product SrcXprType; - static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op &) - { - dst._assignProduct(src, -1, 1); - } -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_TRIANGULARMATRIX_H diff --git a/src/math_meigen/Eigen/src/Core/VectorBlock.h b/src/math_meigen/Eigen/src/Core/VectorBlock.h deleted file mode 100755 index d72fbf7e9..000000000 --- a/src/math_meigen/Eigen/src/Core/VectorBlock.h +++ /dev/null @@ -1,96 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2010 Gael Guennebaud -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_VECTORBLOCK_H -#define EIGEN_VECTORBLOCK_H - -namespace Eigen { - -namespace internal { -template -struct traits > - : public traits::Flags & RowMajorBit ? 1 : Size, - traits::Flags & RowMajorBit ? Size : 1> > -{ -}; -} - -/** \class VectorBlock - * \ingroup Core_Module - * - * \brief Expression of a fixed-size or dynamic-size sub-vector - * - * \tparam VectorType the type of the object in which we are taking a sub-vector - * \tparam Size size of the sub-vector we are taking at compile time (optional) - * - * This class represents an expression of either a fixed-size or dynamic-size sub-vector. - * It is the return type of DenseBase::segment(Index,Index) and DenseBase::segment(Index) and - * most of the time this is the only way it is used. - * - * However, if you want to directly maniputate sub-vector expressions, - * for instance if you want to write a function returning such an expression, you - * will need to use this class. - * - * Here is an example illustrating the dynamic case: - * \include class_VectorBlock.cpp - * Output: \verbinclude class_VectorBlock.out - * - * \note Even though this expression has dynamic size, in the case where \a VectorType - * has fixed size, this expression inherits a fixed maximal size which means that evaluating - * it does not cause a dynamic memory allocation. - * - * Here is an example illustrating the fixed-size case: - * \include class_FixedVectorBlock.cpp - * Output: \verbinclude class_FixedVectorBlock.out - * - * \sa class Block, DenseBase::segment(Index,Index,Index,Index), DenseBase::segment(Index,Index) - */ -template class VectorBlock - : public Block::Flags & RowMajorBit ? 1 : Size, - internal::traits::Flags & RowMajorBit ? Size : 1> -{ - typedef Block::Flags & RowMajorBit ? 1 : Size, - internal::traits::Flags & RowMajorBit ? Size : 1> Base; - enum { - IsColVector = !(internal::traits::Flags & RowMajorBit) - }; - public: - EIGEN_DENSE_PUBLIC_INTERFACE(VectorBlock) - - using Base::operator=; - - /** Dynamic-size constructor - */ - EIGEN_DEVICE_FUNC - inline VectorBlock(VectorType& vector, Index start, Index size) - : Base(vector, - IsColVector ? start : 0, IsColVector ? 0 : start, - IsColVector ? size : 1, IsColVector ? 1 : size) - { - EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorBlock); - } - - /** Fixed-size constructor - */ - EIGEN_DEVICE_FUNC - inline VectorBlock(VectorType& vector, Index start) - : Base(vector, IsColVector ? start : 0, IsColVector ? 0 : start) - { - EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorBlock); - } -}; - - -} // end namespace Eigen - -#endif // EIGEN_VECTORBLOCK_H diff --git a/src/math_meigen/Eigen/src/Core/VectorwiseOp.h b/src/math_meigen/Eigen/src/Core/VectorwiseOp.h deleted file mode 100755 index 4fe267e9f..000000000 --- a/src/math_meigen/Eigen/src/Core/VectorwiseOp.h +++ /dev/null @@ -1,695 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2010 Gael Guennebaud -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_PARTIAL_REDUX_H -#define EIGEN_PARTIAL_REDUX_H - -namespace Eigen { - -/** \class PartialReduxExpr - * \ingroup Core_Module - * - * \brief Generic expression of a partially reduxed matrix - * - * \tparam MatrixType the type of the matrix we are applying the redux operation - * \tparam MemberOp type of the member functor - * \tparam Direction indicates the direction of the redux (#Vertical or #Horizontal) - * - * This class represents an expression of a partial redux operator of a matrix. - * It is the return type of some VectorwiseOp functions, - * and most of the time this is the only way it is used. - * - * \sa class VectorwiseOp - */ - -template< typename MatrixType, typename MemberOp, int Direction> -class PartialReduxExpr; - -namespace internal { -template -struct traits > - : traits -{ - typedef typename MemberOp::result_type Scalar; - typedef typename traits::StorageKind StorageKind; - typedef typename traits::XprKind XprKind; - typedef typename MatrixType::Scalar InputScalar; - enum { - RowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::RowsAtCompileTime, - ColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::ColsAtCompileTime, - MaxRowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::MaxColsAtCompileTime, - Flags = RowsAtCompileTime == 1 ? RowMajorBit : 0, - TraversalSize = Direction==Vertical ? MatrixType::RowsAtCompileTime : MatrixType::ColsAtCompileTime - }; -}; -} - -template< typename MatrixType, typename MemberOp, int Direction> -class PartialReduxExpr : public internal::dense_xpr_base< PartialReduxExpr >::type, - internal::no_assignment_operator -{ - public: - - typedef typename internal::dense_xpr_base::type Base; - EIGEN_DENSE_PUBLIC_INTERFACE(PartialReduxExpr) - - EIGEN_DEVICE_FUNC - explicit PartialReduxExpr(const MatrixType& mat, const MemberOp& func = MemberOp()) - : m_matrix(mat), m_functor(func) {} - - EIGEN_DEVICE_FUNC - Index rows() const { return (Direction==Vertical ? 1 : m_matrix.rows()); } - EIGEN_DEVICE_FUNC - Index cols() const { return (Direction==Horizontal ? 1 : m_matrix.cols()); } - - EIGEN_DEVICE_FUNC - typename MatrixType::Nested nestedExpression() const { return m_matrix; } - - EIGEN_DEVICE_FUNC - const MemberOp& functor() const { return m_functor; } - - protected: - typename MatrixType::Nested m_matrix; - const MemberOp m_functor; -}; - -#define EIGEN_MEMBER_FUNCTOR(MEMBER,COST) \ - template \ - struct member_##MEMBER { \ - EIGEN_EMPTY_STRUCT_CTOR(member_##MEMBER) \ - typedef ResultType result_type; \ - template struct Cost \ - { enum { value = COST }; }; \ - template \ - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \ - ResultType operator()(const XprType& mat) const \ - { return mat.MEMBER(); } \ - } - -namespace internal { - -EIGEN_MEMBER_FUNCTOR(squaredNorm, Size * NumTraits::MulCost + (Size-1)*NumTraits::AddCost); -EIGEN_MEMBER_FUNCTOR(norm, (Size+5) * NumTraits::MulCost + (Size-1)*NumTraits::AddCost); -EIGEN_MEMBER_FUNCTOR(stableNorm, (Size+5) * NumTraits::MulCost + (Size-1)*NumTraits::AddCost); -EIGEN_MEMBER_FUNCTOR(blueNorm, (Size+5) * NumTraits::MulCost + (Size-1)*NumTraits::AddCost); -EIGEN_MEMBER_FUNCTOR(hypotNorm, (Size-1) * functor_traits >::Cost ); -EIGEN_MEMBER_FUNCTOR(sum, (Size-1)*NumTraits::AddCost); -EIGEN_MEMBER_FUNCTOR(mean, (Size-1)*NumTraits::AddCost + NumTraits::MulCost); -EIGEN_MEMBER_FUNCTOR(minCoeff, (Size-1)*NumTraits::AddCost); -EIGEN_MEMBER_FUNCTOR(maxCoeff, (Size-1)*NumTraits::AddCost); -EIGEN_MEMBER_FUNCTOR(all, (Size-1)*NumTraits::AddCost); -EIGEN_MEMBER_FUNCTOR(any, (Size-1)*NumTraits::AddCost); -EIGEN_MEMBER_FUNCTOR(count, (Size-1)*NumTraits::AddCost); -EIGEN_MEMBER_FUNCTOR(prod, (Size-1)*NumTraits::MulCost); - -template -struct member_lpnorm { - typedef ResultType result_type; - template struct Cost - { enum { value = (Size+5) * NumTraits::MulCost + (Size-1)*NumTraits::AddCost }; }; - EIGEN_DEVICE_FUNC member_lpnorm() {} - template - EIGEN_DEVICE_FUNC inline ResultType operator()(const XprType& mat) const - { return mat.template lpNorm

(); } -}; - -template -struct member_redux { - typedef typename result_of< - BinaryOp(const Scalar&,const Scalar&) - >::type result_type; - template struct Cost - { enum { value = (Size-1) * functor_traits::Cost }; }; - EIGEN_DEVICE_FUNC explicit member_redux(const BinaryOp func) : m_functor(func) {} - template - EIGEN_DEVICE_FUNC inline result_type operator()(const DenseBase& mat) const - { return mat.redux(m_functor); } - const BinaryOp m_functor; -}; -} - -/** \class VectorwiseOp - * \ingroup Core_Module - * - * \brief Pseudo expression providing partial reduction operations - * - * \tparam ExpressionType the type of the object on which to do partial reductions - * \tparam Direction indicates the direction of the redux (#Vertical or #Horizontal) - * - * This class represents a pseudo expression with partial reduction features. - * It is the return type of DenseBase::colwise() and DenseBase::rowwise() - * and most of the time this is the only way it is used. - * - * Example: \include MatrixBase_colwise.cpp - * Output: \verbinclude MatrixBase_colwise.out - * - * \sa DenseBase::colwise(), DenseBase::rowwise(), class PartialReduxExpr - */ -template class VectorwiseOp -{ - public: - - typedef typename ExpressionType::Scalar Scalar; - typedef typename ExpressionType::RealScalar RealScalar; - typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 - typedef typename internal::ref_selector::non_const_type ExpressionTypeNested; - typedef typename internal::remove_all::type ExpressionTypeNestedCleaned; - - template class Functor, - typename Scalar_=Scalar> struct ReturnType - { - typedef PartialReduxExpr, - Direction - > Type; - }; - - template struct ReduxReturnType - { - typedef PartialReduxExpr, - Direction - > Type; - }; - - enum { - isVertical = (Direction==Vertical) ? 1 : 0, - isHorizontal = (Direction==Horizontal) ? 1 : 0 - }; - - protected: - - typedef typename internal::conditional::type SubVector; - /** \internal - * \returns the i-th subvector according to the \c Direction */ - EIGEN_DEVICE_FUNC - SubVector subVector(Index i) - { - return SubVector(m_matrix.derived(),i); - } - - /** \internal - * \returns the number of subvectors in the direction \c Direction */ - EIGEN_DEVICE_FUNC - Index subVectors() const - { return isVertical?m_matrix.cols():m_matrix.rows(); } - - template struct ExtendedType { - typedef Replicate Type; - }; - - /** \internal - * Replicates a vector to match the size of \c *this */ - template - EIGEN_DEVICE_FUNC - typename ExtendedType::Type - extendedTo(const DenseBase& other) const - { - EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isVertical, OtherDerived::MaxColsAtCompileTime==1), - YOU_PASSED_A_ROW_VECTOR_BUT_A_COLUMN_VECTOR_WAS_EXPECTED) - EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isHorizontal, OtherDerived::MaxRowsAtCompileTime==1), - YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED) - return typename ExtendedType::Type - (other.derived(), - isVertical ? 1 : m_matrix.rows(), - isHorizontal ? 1 : m_matrix.cols()); - } - - template struct OppositeExtendedType { - typedef Replicate Type; - }; - - /** \internal - * Replicates a vector in the opposite direction to match the size of \c *this */ - template - EIGEN_DEVICE_FUNC - typename OppositeExtendedType::Type - extendedToOpposite(const DenseBase& other) const - { - EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isHorizontal, OtherDerived::MaxColsAtCompileTime==1), - YOU_PASSED_A_ROW_VECTOR_BUT_A_COLUMN_VECTOR_WAS_EXPECTED) - EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isVertical, OtherDerived::MaxRowsAtCompileTime==1), - YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED) - return typename OppositeExtendedType::Type - (other.derived(), - isHorizontal ? 1 : m_matrix.rows(), - isVertical ? 1 : m_matrix.cols()); - } - - public: - EIGEN_DEVICE_FUNC - explicit inline VectorwiseOp(ExpressionType& matrix) : m_matrix(matrix) {} - - /** \internal */ - EIGEN_DEVICE_FUNC - inline const ExpressionType& _expression() const { return m_matrix; } - - /** \returns a row or column vector expression of \c *this reduxed by \a func - * - * The template parameter \a BinaryOp is the type of the functor - * of the custom redux operator. Note that func must be an associative operator. - * - * \sa class VectorwiseOp, DenseBase::colwise(), DenseBase::rowwise() - */ - template - EIGEN_DEVICE_FUNC - const typename ReduxReturnType::Type - redux(const BinaryOp& func = BinaryOp()) const - { return typename ReduxReturnType::Type(_expression(), internal::member_redux(func)); } - - typedef typename ReturnType::Type MinCoeffReturnType; - typedef typename ReturnType::Type MaxCoeffReturnType; - typedef typename ReturnType::Type SquaredNormReturnType; - typedef typename ReturnType::Type NormReturnType; - typedef typename ReturnType::Type BlueNormReturnType; - typedef typename ReturnType::Type StableNormReturnType; - typedef typename ReturnType::Type HypotNormReturnType; - typedef typename ReturnType::Type SumReturnType; - typedef typename ReturnType::Type MeanReturnType; - typedef typename ReturnType::Type AllReturnType; - typedef typename ReturnType::Type AnyReturnType; - typedef PartialReduxExpr, Direction> CountReturnType; - typedef typename ReturnType::Type ProdReturnType; - typedef Reverse ConstReverseReturnType; - typedef Reverse ReverseReturnType; - - template struct LpNormReturnType { - typedef PartialReduxExpr,Direction> Type; - }; - - /** \returns a row (or column) vector expression of the smallest coefficient - * of each column (or row) of the referenced expression. - * - * \warning the result is undefined if \c *this contains NaN. - * - * Example: \include PartialRedux_minCoeff.cpp - * Output: \verbinclude PartialRedux_minCoeff.out - * - * \sa DenseBase::minCoeff() */ - EIGEN_DEVICE_FUNC - const MinCoeffReturnType minCoeff() const - { return MinCoeffReturnType(_expression()); } - - /** \returns a row (or column) vector expression of the largest coefficient - * of each column (or row) of the referenced expression. - * - * \warning the result is undefined if \c *this contains NaN. - * - * Example: \include PartialRedux_maxCoeff.cpp - * Output: \verbinclude PartialRedux_maxCoeff.out - * - * \sa DenseBase::maxCoeff() */ - EIGEN_DEVICE_FUNC - const MaxCoeffReturnType maxCoeff() const - { return MaxCoeffReturnType(_expression()); } - - /** \returns a row (or column) vector expression of the squared norm - * of each column (or row) of the referenced expression. - * This is a vector with real entries, even if the original matrix has complex entries. - * - * Example: \include PartialRedux_squaredNorm.cpp - * Output: \verbinclude PartialRedux_squaredNorm.out - * - * \sa DenseBase::squaredNorm() */ - EIGEN_DEVICE_FUNC - const SquaredNormReturnType squaredNorm() const - { return SquaredNormReturnType(_expression()); } - - /** \returns a row (or column) vector expression of the norm - * of each column (or row) of the referenced expression. - * This is a vector with real entries, even if the original matrix has complex entries. - * - * Example: \include PartialRedux_norm.cpp - * Output: \verbinclude PartialRedux_norm.out - * - * \sa DenseBase::norm() */ - EIGEN_DEVICE_FUNC - const NormReturnType norm() const - { return NormReturnType(_expression()); } - - /** \returns a row (or column) vector expression of the norm - * of each column (or row) of the referenced expression. - * This is a vector with real entries, even if the original matrix has complex entries. - * - * Example: \include PartialRedux_norm.cpp - * Output: \verbinclude PartialRedux_norm.out - * - * \sa DenseBase::norm() */ - template - EIGEN_DEVICE_FUNC - const typename LpNormReturnType

::Type lpNorm() const - { return typename LpNormReturnType

::Type(_expression()); } - - - /** \returns a row (or column) vector expression of the norm - * of each column (or row) of the referenced expression, using - * Blue's algorithm. - * This is a vector with real entries, even if the original matrix has complex entries. - * - * \sa DenseBase::blueNorm() */ - EIGEN_DEVICE_FUNC - const BlueNormReturnType blueNorm() const - { return BlueNormReturnType(_expression()); } - - - /** \returns a row (or column) vector expression of the norm - * of each column (or row) of the referenced expression, avoiding - * underflow and overflow. - * This is a vector with real entries, even if the original matrix has complex entries. - * - * \sa DenseBase::stableNorm() */ - EIGEN_DEVICE_FUNC - const StableNormReturnType stableNorm() const - { return StableNormReturnType(_expression()); } - - - /** \returns a row (or column) vector expression of the norm - * of each column (or row) of the referenced expression, avoiding - * underflow and overflow using a concatenation of hypot() calls. - * This is a vector with real entries, even if the original matrix has complex entries. - * - * \sa DenseBase::hypotNorm() */ - EIGEN_DEVICE_FUNC - const HypotNormReturnType hypotNorm() const - { return HypotNormReturnType(_expression()); } - - /** \returns a row (or column) vector expression of the sum - * of each column (or row) of the referenced expression. - * - * Example: \include PartialRedux_sum.cpp - * Output: \verbinclude PartialRedux_sum.out - * - * \sa DenseBase::sum() */ - EIGEN_DEVICE_FUNC - const SumReturnType sum() const - { return SumReturnType(_expression()); } - - /** \returns a row (or column) vector expression of the mean - * of each column (or row) of the referenced expression. - * - * \sa DenseBase::mean() */ - EIGEN_DEVICE_FUNC - const MeanReturnType mean() const - { return MeanReturnType(_expression()); } - - /** \returns a row (or column) vector expression representing - * whether \b all coefficients of each respective column (or row) are \c true. - * This expression can be assigned to a vector with entries of type \c bool. - * - * \sa DenseBase::all() */ - EIGEN_DEVICE_FUNC - const AllReturnType all() const - { return AllReturnType(_expression()); } - - /** \returns a row (or column) vector expression representing - * whether \b at \b least one coefficient of each respective column (or row) is \c true. - * This expression can be assigned to a vector with entries of type \c bool. - * - * \sa DenseBase::any() */ - EIGEN_DEVICE_FUNC - const AnyReturnType any() const - { return AnyReturnType(_expression()); } - - /** \returns a row (or column) vector expression representing - * the number of \c true coefficients of each respective column (or row). - * This expression can be assigned to a vector whose entries have the same type as is used to - * index entries of the original matrix; for dense matrices, this is \c std::ptrdiff_t . - * - * Example: \include PartialRedux_count.cpp - * Output: \verbinclude PartialRedux_count.out - * - * \sa DenseBase::count() */ - EIGEN_DEVICE_FUNC - const CountReturnType count() const - { return CountReturnType(_expression()); } - - /** \returns a row (or column) vector expression of the product - * of each column (or row) of the referenced expression. - * - * Example: \include PartialRedux_prod.cpp - * Output: \verbinclude PartialRedux_prod.out - * - * \sa DenseBase::prod() */ - EIGEN_DEVICE_FUNC - const ProdReturnType prod() const - { return ProdReturnType(_expression()); } - - - /** \returns a matrix expression - * where each column (or row) are reversed. - * - * Example: \include Vectorwise_reverse.cpp - * Output: \verbinclude Vectorwise_reverse.out - * - * \sa DenseBase::reverse() */ - EIGEN_DEVICE_FUNC - const ConstReverseReturnType reverse() const - { return ConstReverseReturnType( _expression() ); } - - /** \returns a writable matrix expression - * where each column (or row) are reversed. - * - * \sa reverse() const */ - EIGEN_DEVICE_FUNC - ReverseReturnType reverse() - { return ReverseReturnType( _expression() ); } - - typedef Replicate ReplicateReturnType; - EIGEN_DEVICE_FUNC - const ReplicateReturnType replicate(Index factor) const; - - /** - * \return an expression of the replication of each column (or row) of \c *this - * - * Example: \include DirectionWise_replicate.cpp - * Output: \verbinclude DirectionWise_replicate.out - * - * \sa VectorwiseOp::replicate(Index), DenseBase::replicate(), class Replicate - */ - // NOTE implemented here because of sunstudio's compilation errors - // isVertical*Factor+isHorizontal instead of (isVertical?Factor:1) to handle CUDA bug with ternary operator - template const Replicate - EIGEN_DEVICE_FUNC - replicate(Index factor = Factor) const - { - return Replicate - (_expression(),isVertical?factor:1,isHorizontal?factor:1); - } - -/////////// Artithmetic operators /////////// - - /** Copies the vector \a other to each subvector of \c *this */ - template - EIGEN_DEVICE_FUNC - ExpressionType& operator=(const DenseBase& other) - { - EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) - EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) - //eigen_assert((m_matrix.isNull()) == (other.isNull())); FIXME - return const_cast(m_matrix = extendedTo(other.derived())); - } - - /** Adds the vector \a other to each subvector of \c *this */ - template - EIGEN_DEVICE_FUNC - ExpressionType& operator+=(const DenseBase& other) - { - EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) - EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) - return const_cast(m_matrix += extendedTo(other.derived())); - } - - /** Substracts the vector \a other to each subvector of \c *this */ - template - EIGEN_DEVICE_FUNC - ExpressionType& operator-=(const DenseBase& other) - { - EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) - EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) - return const_cast(m_matrix -= extendedTo(other.derived())); - } - - /** Multiples each subvector of \c *this by the vector \a other */ - template - EIGEN_DEVICE_FUNC - ExpressionType& operator*=(const DenseBase& other) - { - EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) - EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType) - EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) - m_matrix *= extendedTo(other.derived()); - return const_cast(m_matrix); - } - - /** Divides each subvector of \c *this by the vector \a other */ - template - EIGEN_DEVICE_FUNC - ExpressionType& operator/=(const DenseBase& other) - { - EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) - EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType) - EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) - m_matrix /= extendedTo(other.derived()); - return const_cast(m_matrix); - } - - /** Returns the expression of the sum of the vector \a other to each subvector of \c *this */ - template EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC - CwiseBinaryOp, - const ExpressionTypeNestedCleaned, - const typename ExtendedType::Type> - operator+(const DenseBase& other) const - { - EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) - EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) - return m_matrix + extendedTo(other.derived()); - } - - /** Returns the expression of the difference between each subvector of \c *this and the vector \a other */ - template - EIGEN_DEVICE_FUNC - CwiseBinaryOp, - const ExpressionTypeNestedCleaned, - const typename ExtendedType::Type> - operator-(const DenseBase& other) const - { - EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) - EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) - return m_matrix - extendedTo(other.derived()); - } - - /** Returns the expression where each subvector is the product of the vector \a other - * by the corresponding subvector of \c *this */ - template EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC - CwiseBinaryOp, - const ExpressionTypeNestedCleaned, - const typename ExtendedType::Type> - EIGEN_DEVICE_FUNC - operator*(const DenseBase& other) const - { - EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) - EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType) - EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) - return m_matrix * extendedTo(other.derived()); - } - - /** Returns the expression where each subvector is the quotient of the corresponding - * subvector of \c *this by the vector \a other */ - template - EIGEN_DEVICE_FUNC - CwiseBinaryOp, - const ExpressionTypeNestedCleaned, - const typename ExtendedType::Type> - operator/(const DenseBase& other) const - { - EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) - EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType) - EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived) - return m_matrix / extendedTo(other.derived()); - } - - /** \returns an expression where each column (or row) of the referenced matrix are normalized. - * The referenced matrix is \b not modified. - * \sa MatrixBase::normalized(), normalize() - */ - EIGEN_DEVICE_FUNC - CwiseBinaryOp, - const ExpressionTypeNestedCleaned, - const typename OppositeExtendedType::Type>::Type> - normalized() const { return m_matrix.cwiseQuotient(extendedToOpposite(this->norm())); } - - - /** Normalize in-place each row or columns of the referenced matrix. - * \sa MatrixBase::normalize(), normalized() - */ - EIGEN_DEVICE_FUNC void normalize() { - m_matrix = this->normalized(); - } - - EIGEN_DEVICE_FUNC inline void reverseInPlace(); - -/////////// Geometry module /////////// - - typedef Homogeneous HomogeneousReturnType; - EIGEN_DEVICE_FUNC - HomogeneousReturnType homogeneous() const; - - typedef typename ExpressionType::PlainObject CrossReturnType; - template - EIGEN_DEVICE_FUNC - const CrossReturnType cross(const MatrixBase& other) const; - - enum { - HNormalized_Size = Direction==Vertical ? internal::traits::RowsAtCompileTime - : internal::traits::ColsAtCompileTime, - HNormalized_SizeMinusOne = HNormalized_Size==Dynamic ? Dynamic : HNormalized_Size-1 - }; - typedef Block::RowsAtCompileTime), - Direction==Horizontal ? int(HNormalized_SizeMinusOne) - : int(internal::traits::ColsAtCompileTime)> - HNormalized_Block; - typedef Block::RowsAtCompileTime), - Direction==Horizontal ? 1 : int(internal::traits::ColsAtCompileTime)> - HNormalized_Factors; - typedef CwiseBinaryOp::Scalar>, - const HNormalized_Block, - const Replicate > - HNormalizedReturnType; - - EIGEN_DEVICE_FUNC - const HNormalizedReturnType hnormalized() const; - - protected: - ExpressionTypeNested m_matrix; -}; - -//const colwise moved to DenseBase.h due to CUDA compiler bug - - -/** \returns a writable VectorwiseOp wrapper of *this providing additional partial reduction operations - * - * \sa rowwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting - */ -template -inline typename DenseBase::ColwiseReturnType -DenseBase::colwise() -{ - return ColwiseReturnType(derived()); -} - -//const rowwise moved to DenseBase.h due to CUDA compiler bug - - -/** \returns a writable VectorwiseOp wrapper of *this providing additional partial reduction operations - * - * \sa colwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting - */ -template -inline typename DenseBase::RowwiseReturnType -DenseBase::rowwise() -{ - return RowwiseReturnType(derived()); -} - -} // end namespace Eigen - -#endif // EIGEN_PARTIAL_REDUX_H diff --git a/src/math_meigen/Eigen/src/Core/Visitor.h b/src/math_meigen/Eigen/src/Core/Visitor.h deleted file mode 100755 index 54c1883d9..000000000 --- a/src/math_meigen/Eigen/src/Core/Visitor.h +++ /dev/null @@ -1,273 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_VISITOR_H -#define EIGEN_VISITOR_H - -namespace Eigen { - -namespace internal { - -template -struct visitor_impl -{ - enum { - col = (UnrollCount-1) / Derived::RowsAtCompileTime, - row = (UnrollCount-1) % Derived::RowsAtCompileTime - }; - - EIGEN_DEVICE_FUNC - static inline void run(const Derived &mat, Visitor& visitor) - { - visitor_impl::run(mat, visitor); - visitor(mat.coeff(row, col), row, col); - } -}; - -template -struct visitor_impl -{ - EIGEN_DEVICE_FUNC - static inline void run(const Derived &mat, Visitor& visitor) - { - return visitor.init(mat.coeff(0, 0), 0, 0); - } -}; - -template -struct visitor_impl -{ - EIGEN_DEVICE_FUNC - static inline void run(const Derived& mat, Visitor& visitor) - { - visitor.init(mat.coeff(0,0), 0, 0); - for(Index i = 1; i < mat.rows(); ++i) - visitor(mat.coeff(i, 0), i, 0); - for(Index j = 1; j < mat.cols(); ++j) - for(Index i = 0; i < mat.rows(); ++i) - visitor(mat.coeff(i, j), i, j); - } -}; - -// evaluator adaptor -template -class visitor_evaluator -{ -public: - EIGEN_DEVICE_FUNC - explicit visitor_evaluator(const XprType &xpr) : m_evaluator(xpr), m_xpr(xpr) {} - - typedef typename XprType::Scalar Scalar; - typedef typename XprType::CoeffReturnType CoeffReturnType; - - enum { - RowsAtCompileTime = XprType::RowsAtCompileTime, - CoeffReadCost = internal::evaluator::CoeffReadCost - }; - - EIGEN_DEVICE_FUNC Index rows() const { return m_xpr.rows(); } - EIGEN_DEVICE_FUNC Index cols() const { return m_xpr.cols(); } - EIGEN_DEVICE_FUNC Index size() const { return m_xpr.size(); } - - EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index row, Index col) const - { return m_evaluator.coeff(row, col); } - -protected: - internal::evaluator m_evaluator; - const XprType &m_xpr; -}; -} // end namespace internal - -/** Applies the visitor \a visitor to the whole coefficients of the matrix or vector. - * - * The template parameter \a Visitor is the type of the visitor and provides the following interface: - * \code - * struct MyVisitor { - * // called for the first coefficient - * void init(const Scalar& value, Index i, Index j); - * // called for all other coefficients - * void operator() (const Scalar& value, Index i, Index j); - * }; - * \endcode - * - * \note compared to one or two \em for \em loops, visitors offer automatic - * unrolling for small fixed size matrix. - * - * \sa minCoeff(Index*,Index*), maxCoeff(Index*,Index*), DenseBase::redux() - */ -template -template -EIGEN_DEVICE_FUNC -void DenseBase::visit(Visitor& visitor) const -{ - typedef typename internal::visitor_evaluator ThisEvaluator; - ThisEvaluator thisEval(derived()); - - enum { - unroll = SizeAtCompileTime != Dynamic - && SizeAtCompileTime * ThisEvaluator::CoeffReadCost + (SizeAtCompileTime-1) * internal::functor_traits::Cost <= EIGEN_UNROLLING_LIMIT - }; - return internal::visitor_impl::run(thisEval, visitor); -} - -namespace internal { - -/** \internal - * \brief Base class to implement min and max visitors - */ -template -struct coeff_visitor -{ - typedef typename Derived::Scalar Scalar; - Index row, col; - Scalar res; - EIGEN_DEVICE_FUNC - inline void init(const Scalar& value, Index i, Index j) - { - res = value; - row = i; - col = j; - } -}; - -/** \internal - * \brief Visitor computing the min coefficient with its value and coordinates - * - * \sa DenseBase::minCoeff(Index*, Index*) - */ -template -struct min_coeff_visitor : coeff_visitor -{ - typedef typename Derived::Scalar Scalar; - EIGEN_DEVICE_FUNC - void operator() (const Scalar& value, Index i, Index j) - { - if(value < this->res) - { - this->res = value; - this->row = i; - this->col = j; - } - } -}; - -template -struct functor_traits > { - enum { - Cost = NumTraits::AddCost - }; -}; - -/** \internal - * \brief Visitor computing the max coefficient with its value and coordinates - * - * \sa DenseBase::maxCoeff(Index*, Index*) - */ -template -struct max_coeff_visitor : coeff_visitor -{ - typedef typename Derived::Scalar Scalar; - EIGEN_DEVICE_FUNC - void operator() (const Scalar& value, Index i, Index j) - { - if(value > this->res) - { - this->res = value; - this->row = i; - this->col = j; - } - } -}; - -template -struct functor_traits > { - enum { - Cost = NumTraits::AddCost - }; -}; - -} // end namespace internal - -/** \fn DenseBase::minCoeff(IndexType* rowId, IndexType* colId) const - * \returns the minimum of all coefficients of *this and puts in *row and *col its location. - * \warning the result is undefined if \c *this contains NaN. - * - * \sa DenseBase::minCoeff(Index*), DenseBase::maxCoeff(Index*,Index*), DenseBase::visit(), DenseBase::minCoeff() - */ -template -template -EIGEN_DEVICE_FUNC -typename internal::traits::Scalar -DenseBase::minCoeff(IndexType* rowId, IndexType* colId) const -{ - internal::min_coeff_visitor minVisitor; - this->visit(minVisitor); - *rowId = minVisitor.row; - if (colId) *colId = minVisitor.col; - return minVisitor.res; -} - -/** \returns the minimum of all coefficients of *this and puts in *index its location. - * \warning the result is undefined if \c *this contains NaN. - * - * \sa DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::maxCoeff(IndexType*,IndexType*), DenseBase::visit(), DenseBase::minCoeff() - */ -template -template -EIGEN_DEVICE_FUNC -typename internal::traits::Scalar -DenseBase::minCoeff(IndexType* index) const -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - internal::min_coeff_visitor minVisitor; - this->visit(minVisitor); - *index = IndexType((RowsAtCompileTime==1) ? minVisitor.col : minVisitor.row); - return minVisitor.res; -} - -/** \fn DenseBase::maxCoeff(IndexType* rowId, IndexType* colId) const - * \returns the maximum of all coefficients of *this and puts in *row and *col its location. - * \warning the result is undefined if \c *this contains NaN. - * - * \sa DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::visit(), DenseBase::maxCoeff() - */ -template -template -EIGEN_DEVICE_FUNC -typename internal::traits::Scalar -DenseBase::maxCoeff(IndexType* rowPtr, IndexType* colPtr) const -{ - internal::max_coeff_visitor maxVisitor; - this->visit(maxVisitor); - *rowPtr = maxVisitor.row; - if (colPtr) *colPtr = maxVisitor.col; - return maxVisitor.res; -} - -/** \returns the maximum of all coefficients of *this and puts in *index its location. - * \warning the result is undefined if \c *this contains NaN. - * - * \sa DenseBase::maxCoeff(IndexType*,IndexType*), DenseBase::minCoeff(IndexType*,IndexType*), DenseBase::visitor(), DenseBase::maxCoeff() - */ -template -template -EIGEN_DEVICE_FUNC -typename internal::traits::Scalar -DenseBase::maxCoeff(IndexType* index) const -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - internal::max_coeff_visitor maxVisitor; - this->visit(maxVisitor); - *index = (RowsAtCompileTime==1) ? maxVisitor.col : maxVisitor.row; - return maxVisitor.res; -} - -} // end namespace Eigen - -#endif // EIGEN_VISITOR_H diff --git a/src/math_meigen/Eigen/src/Core/arch/AVX/Complex.h b/src/math_meigen/Eigen/src/Core/arch/AVX/Complex.h deleted file mode 100755 index 7fa61969d..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/AVX/Complex.h +++ /dev/null @@ -1,451 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2014 Benoit Steiner (benoit.steiner.goog@gmail.com) -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_COMPLEX_AVX_H -#define EIGEN_COMPLEX_AVX_H - -namespace Eigen { - -namespace internal { - -//---------- float ---------- -struct Packet4cf -{ - EIGEN_STRONG_INLINE Packet4cf() {} - EIGEN_STRONG_INLINE explicit Packet4cf(const __m256& a) : v(a) {} - __m256 v; -}; - -template<> struct packet_traits > : default_packet_traits -{ - typedef Packet4cf type; - typedef Packet2cf half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size = 4, - HasHalfPacket = 1, - - HasAdd = 1, - HasSub = 1, - HasMul = 1, - HasDiv = 1, - HasNegate = 1, - HasAbs = 0, - HasAbs2 = 0, - HasMin = 0, - HasMax = 0, - HasSetLinear = 0 - }; -}; - -template<> struct unpacket_traits { typedef std::complex type; enum {size=4, alignment=Aligned32}; typedef Packet2cf half; }; - -template<> EIGEN_STRONG_INLINE Packet4cf padd(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_add_ps(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet4cf psub(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_sub_ps(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet4cf pnegate(const Packet4cf& a) -{ - return Packet4cf(pnegate(a.v)); -} -template<> EIGEN_STRONG_INLINE Packet4cf pconj(const Packet4cf& a) -{ - const __m256 mask = _mm256_castsi256_ps(_mm256_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000,0x00000000,0x80000000,0x00000000,0x80000000)); - return Packet4cf(_mm256_xor_ps(a.v,mask)); -} - -template<> EIGEN_STRONG_INLINE Packet4cf pmul(const Packet4cf& a, const Packet4cf& b) -{ - __m256 tmp1 = _mm256_mul_ps(_mm256_moveldup_ps(a.v), b.v); - __m256 tmp2 = _mm256_mul_ps(_mm256_movehdup_ps(a.v), _mm256_permute_ps(b.v, _MM_SHUFFLE(2,3,0,1))); - __m256 result = _mm256_addsub_ps(tmp1, tmp2); - return Packet4cf(result); -} - -template<> EIGEN_STRONG_INLINE Packet4cf pand (const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_and_ps(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet4cf por (const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_or_ps(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet4cf pxor (const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_xor_ps(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet4cf pandnot(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_andnot_ps(a.v,b.v)); } - -template<> EIGEN_STRONG_INLINE Packet4cf pload (const std::complex* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet4cf(pload(&numext::real_ref(*from))); } -template<> EIGEN_STRONG_INLINE Packet4cf ploadu(const std::complex* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet4cf(ploadu(&numext::real_ref(*from))); } - - -template<> EIGEN_STRONG_INLINE Packet4cf pset1(const std::complex& from) -{ - return Packet4cf(_mm256_castpd_ps(_mm256_broadcast_sd((const double*)(const void*)&from))); -} - -template<> EIGEN_STRONG_INLINE Packet4cf ploaddup(const std::complex* from) -{ - // FIXME The following might be optimized using _mm256_movedup_pd - Packet2cf a = ploaddup(from); - Packet2cf b = ploaddup(from+1); - return Packet4cf(_mm256_insertf128_ps(_mm256_castps128_ps256(a.v), b.v, 1)); -} - -template<> EIGEN_STRONG_INLINE void pstore >(std::complex* to, const Packet4cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore(&numext::real_ref(*to), from.v); } -template<> EIGEN_STRONG_INLINE void pstoreu >(std::complex* to, const Packet4cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(&numext::real_ref(*to), from.v); } - -template<> EIGEN_DEVICE_FUNC inline Packet4cf pgather, Packet4cf>(const std::complex* from, Index stride) -{ - return Packet4cf(_mm256_set_ps(std::imag(from[3*stride]), std::real(from[3*stride]), - std::imag(from[2*stride]), std::real(from[2*stride]), - std::imag(from[1*stride]), std::real(from[1*stride]), - std::imag(from[0*stride]), std::real(from[0*stride]))); -} - -template<> EIGEN_DEVICE_FUNC inline void pscatter, Packet4cf>(std::complex* to, const Packet4cf& from, Index stride) -{ - __m128 low = _mm256_extractf128_ps(from.v, 0); - to[stride*0] = std::complex(_mm_cvtss_f32(_mm_shuffle_ps(low, low, 0)), - _mm_cvtss_f32(_mm_shuffle_ps(low, low, 1))); - to[stride*1] = std::complex(_mm_cvtss_f32(_mm_shuffle_ps(low, low, 2)), - _mm_cvtss_f32(_mm_shuffle_ps(low, low, 3))); - - __m128 high = _mm256_extractf128_ps(from.v, 1); - to[stride*2] = std::complex(_mm_cvtss_f32(_mm_shuffle_ps(high, high, 0)), - _mm_cvtss_f32(_mm_shuffle_ps(high, high, 1))); - to[stride*3] = std::complex(_mm_cvtss_f32(_mm_shuffle_ps(high, high, 2)), - _mm_cvtss_f32(_mm_shuffle_ps(high, high, 3))); - -} - -template<> EIGEN_STRONG_INLINE std::complex pfirst(const Packet4cf& a) -{ - return pfirst(Packet2cf(_mm256_castps256_ps128(a.v))); -} - -template<> EIGEN_STRONG_INLINE Packet4cf preverse(const Packet4cf& a) { - __m128 low = _mm256_extractf128_ps(a.v, 0); - __m128 high = _mm256_extractf128_ps(a.v, 1); - __m128d lowd = _mm_castps_pd(low); - __m128d highd = _mm_castps_pd(high); - low = _mm_castpd_ps(_mm_shuffle_pd(lowd,lowd,0x1)); - high = _mm_castpd_ps(_mm_shuffle_pd(highd,highd,0x1)); - __m256 result = _mm256_setzero_ps(); - result = _mm256_insertf128_ps(result, low, 1); - result = _mm256_insertf128_ps(result, high, 0); - return Packet4cf(result); -} - -template<> EIGEN_STRONG_INLINE std::complex predux(const Packet4cf& a) -{ - return predux(padd(Packet2cf(_mm256_extractf128_ps(a.v,0)), - Packet2cf(_mm256_extractf128_ps(a.v,1)))); -} - -template<> EIGEN_STRONG_INLINE Packet4cf preduxp(const Packet4cf* vecs) -{ - Packet8f t0 = _mm256_shuffle_ps(vecs[0].v, vecs[0].v, _MM_SHUFFLE(3, 1, 2 ,0)); - Packet8f t1 = _mm256_shuffle_ps(vecs[1].v, vecs[1].v, _MM_SHUFFLE(3, 1, 2 ,0)); - t0 = _mm256_hadd_ps(t0,t1); - Packet8f t2 = _mm256_shuffle_ps(vecs[2].v, vecs[2].v, _MM_SHUFFLE(3, 1, 2 ,0)); - Packet8f t3 = _mm256_shuffle_ps(vecs[3].v, vecs[3].v, _MM_SHUFFLE(3, 1, 2 ,0)); - t2 = _mm256_hadd_ps(t2,t3); - - t1 = _mm256_permute2f128_ps(t0,t2, 0 + (2<<4)); - t3 = _mm256_permute2f128_ps(t0,t2, 1 + (3<<4)); - - return Packet4cf(_mm256_add_ps(t1,t3)); -} - -template<> EIGEN_STRONG_INLINE std::complex predux_mul(const Packet4cf& a) -{ - return predux_mul(pmul(Packet2cf(_mm256_extractf128_ps(a.v, 0)), - Packet2cf(_mm256_extractf128_ps(a.v, 1)))); -} - -template -struct palign_impl -{ - static EIGEN_STRONG_INLINE void run(Packet4cf& first, const Packet4cf& second) - { - if (Offset==0) return; - palign_impl::run(first.v, second.v); - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet4cf pmadd(const Packet4cf& x, const Packet4cf& y, const Packet4cf& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet4cf pmul(const Packet4cf& a, const Packet4cf& b) const - { - return internal::pmul(a, pconj(b)); - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet4cf pmadd(const Packet4cf& x, const Packet4cf& y, const Packet4cf& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet4cf pmul(const Packet4cf& a, const Packet4cf& b) const - { - return internal::pmul(pconj(a), b); - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet4cf pmadd(const Packet4cf& x, const Packet4cf& y, const Packet4cf& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet4cf pmul(const Packet4cf& a, const Packet4cf& b) const - { - return pconj(internal::pmul(a, b)); - } -}; - -EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet4cf,Packet8f) - -template<> EIGEN_STRONG_INLINE Packet4cf pdiv(const Packet4cf& a, const Packet4cf& b) -{ - Packet4cf num = pmul(a, pconj(b)); - __m256 tmp = _mm256_mul_ps(b.v, b.v); - __m256 tmp2 = _mm256_shuffle_ps(tmp,tmp,0xB1); - __m256 denom = _mm256_add_ps(tmp, tmp2); - return Packet4cf(_mm256_div_ps(num.v, denom)); -} - -template<> EIGEN_STRONG_INLINE Packet4cf pcplxflip(const Packet4cf& x) -{ - return Packet4cf(_mm256_shuffle_ps(x.v, x.v, _MM_SHUFFLE(2, 3, 0 ,1))); -} - -//---------- double ---------- -struct Packet2cd -{ - EIGEN_STRONG_INLINE Packet2cd() {} - EIGEN_STRONG_INLINE explicit Packet2cd(const __m256d& a) : v(a) {} - __m256d v; -}; - -template<> struct packet_traits > : default_packet_traits -{ - typedef Packet2cd type; - typedef Packet1cd half; - enum { - Vectorizable = 1, - AlignedOnScalar = 0, - size = 2, - HasHalfPacket = 1, - - HasAdd = 1, - HasSub = 1, - HasMul = 1, - HasDiv = 1, - HasNegate = 1, - HasAbs = 0, - HasAbs2 = 0, - HasMin = 0, - HasMax = 0, - HasSetLinear = 0 - }; -}; - -template<> struct unpacket_traits { typedef std::complex type; enum {size=2, alignment=Aligned32}; typedef Packet1cd half; }; - -template<> EIGEN_STRONG_INLINE Packet2cd padd(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_add_pd(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet2cd psub(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_sub_pd(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet2cd pnegate(const Packet2cd& a) { return Packet2cd(pnegate(a.v)); } -template<> EIGEN_STRONG_INLINE Packet2cd pconj(const Packet2cd& a) -{ - const __m256d mask = _mm256_castsi256_pd(_mm256_set_epi32(0x80000000,0x0,0x0,0x0,0x80000000,0x0,0x0,0x0)); - return Packet2cd(_mm256_xor_pd(a.v,mask)); -} - -template<> EIGEN_STRONG_INLINE Packet2cd pmul(const Packet2cd& a, const Packet2cd& b) -{ - __m256d tmp1 = _mm256_shuffle_pd(a.v,a.v,0x0); - __m256d even = _mm256_mul_pd(tmp1, b.v); - __m256d tmp2 = _mm256_shuffle_pd(a.v,a.v,0xF); - __m256d tmp3 = _mm256_shuffle_pd(b.v,b.v,0x5); - __m256d odd = _mm256_mul_pd(tmp2, tmp3); - return Packet2cd(_mm256_addsub_pd(even, odd)); -} - -template<> EIGEN_STRONG_INLINE Packet2cd pand (const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_and_pd(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet2cd por (const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_or_pd(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet2cd pxor (const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_xor_pd(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet2cd pandnot(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_andnot_pd(a.v,b.v)); } - -template<> EIGEN_STRONG_INLINE Packet2cd pload (const std::complex* from) -{ EIGEN_DEBUG_ALIGNED_LOAD return Packet2cd(pload((const double*)from)); } -template<> EIGEN_STRONG_INLINE Packet2cd ploadu(const std::complex* from) -{ EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cd(ploadu((const double*)from)); } - -template<> EIGEN_STRONG_INLINE Packet2cd pset1(const std::complex& from) -{ - // in case casting to a __m128d* is really not safe, then we can still fallback to this version: (much slower though) -// return Packet2cd(_mm256_loadu2_m128d((const double*)&from,(const double*)&from)); - return Packet2cd(_mm256_broadcast_pd((const __m128d*)(const void*)&from)); -} - -template<> EIGEN_STRONG_INLINE Packet2cd ploaddup(const std::complex* from) { return pset1(*from); } - -template<> EIGEN_STRONG_INLINE void pstore >(std::complex * to, const Packet2cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); } -template<> EIGEN_STRONG_INLINE void pstoreu >(std::complex * to, const Packet2cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); } - -template<> EIGEN_DEVICE_FUNC inline Packet2cd pgather, Packet2cd>(const std::complex* from, Index stride) -{ - return Packet2cd(_mm256_set_pd(std::imag(from[1*stride]), std::real(from[1*stride]), - std::imag(from[0*stride]), std::real(from[0*stride]))); -} - -template<> EIGEN_DEVICE_FUNC inline void pscatter, Packet2cd>(std::complex* to, const Packet2cd& from, Index stride) -{ - __m128d low = _mm256_extractf128_pd(from.v, 0); - to[stride*0] = std::complex(_mm_cvtsd_f64(low), _mm_cvtsd_f64(_mm_shuffle_pd(low, low, 1))); - __m128d high = _mm256_extractf128_pd(from.v, 1); - to[stride*1] = std::complex(_mm_cvtsd_f64(high), _mm_cvtsd_f64(_mm_shuffle_pd(high, high, 1))); -} - -template<> EIGEN_STRONG_INLINE std::complex pfirst(const Packet2cd& a) -{ - __m128d low = _mm256_extractf128_pd(a.v, 0); - EIGEN_ALIGN16 double res[2]; - _mm_store_pd(res, low); - return std::complex(res[0],res[1]); -} - -template<> EIGEN_STRONG_INLINE Packet2cd preverse(const Packet2cd& a) { - __m256d result = _mm256_permute2f128_pd(a.v, a.v, 1); - return Packet2cd(result); -} - -template<> EIGEN_STRONG_INLINE std::complex predux(const Packet2cd& a) -{ - return predux(padd(Packet1cd(_mm256_extractf128_pd(a.v,0)), - Packet1cd(_mm256_extractf128_pd(a.v,1)))); -} - -template<> EIGEN_STRONG_INLINE Packet2cd preduxp(const Packet2cd* vecs) -{ - Packet4d t0 = _mm256_permute2f128_pd(vecs[0].v,vecs[1].v, 0 + (2<<4)); - Packet4d t1 = _mm256_permute2f128_pd(vecs[0].v,vecs[1].v, 1 + (3<<4)); - - return Packet2cd(_mm256_add_pd(t0,t1)); -} - -template<> EIGEN_STRONG_INLINE std::complex predux_mul(const Packet2cd& a) -{ - return predux(pmul(Packet1cd(_mm256_extractf128_pd(a.v,0)), - Packet1cd(_mm256_extractf128_pd(a.v,1)))); -} - -template -struct palign_impl -{ - static EIGEN_STRONG_INLINE void run(Packet2cd& first, const Packet2cd& second) - { - if (Offset==0) return; - palign_impl::run(first.v, second.v); - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet2cd pmadd(const Packet2cd& x, const Packet2cd& y, const Packet2cd& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet2cd pmul(const Packet2cd& a, const Packet2cd& b) const - { - return internal::pmul(a, pconj(b)); - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet2cd pmadd(const Packet2cd& x, const Packet2cd& y, const Packet2cd& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet2cd pmul(const Packet2cd& a, const Packet2cd& b) const - { - return internal::pmul(pconj(a), b); - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet2cd pmadd(const Packet2cd& x, const Packet2cd& y, const Packet2cd& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet2cd pmul(const Packet2cd& a, const Packet2cd& b) const - { - return pconj(internal::pmul(a, b)); - } -}; - -EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cd,Packet4d) - -template<> EIGEN_STRONG_INLINE Packet2cd pdiv(const Packet2cd& a, const Packet2cd& b) -{ - Packet2cd num = pmul(a, pconj(b)); - __m256d tmp = _mm256_mul_pd(b.v, b.v); - __m256d denom = _mm256_hadd_pd(tmp, tmp); - return Packet2cd(_mm256_div_pd(num.v, denom)); -} - -template<> EIGEN_STRONG_INLINE Packet2cd pcplxflip(const Packet2cd& x) -{ - return Packet2cd(_mm256_shuffle_pd(x.v, x.v, 0x5)); -} - -EIGEN_DEVICE_FUNC inline void -ptranspose(PacketBlock& kernel) { - __m256d P0 = _mm256_castps_pd(kernel.packet[0].v); - __m256d P1 = _mm256_castps_pd(kernel.packet[1].v); - __m256d P2 = _mm256_castps_pd(kernel.packet[2].v); - __m256d P3 = _mm256_castps_pd(kernel.packet[3].v); - - __m256d T0 = _mm256_shuffle_pd(P0, P1, 15); - __m256d T1 = _mm256_shuffle_pd(P0, P1, 0); - __m256d T2 = _mm256_shuffle_pd(P2, P3, 15); - __m256d T3 = _mm256_shuffle_pd(P2, P3, 0); - - kernel.packet[1].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T0, T2, 32)); - kernel.packet[3].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T0, T2, 49)); - kernel.packet[0].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T1, T3, 32)); - kernel.packet[2].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T1, T3, 49)); -} - -EIGEN_DEVICE_FUNC inline void -ptranspose(PacketBlock& kernel) { - __m256d tmp = _mm256_permute2f128_pd(kernel.packet[0].v, kernel.packet[1].v, 0+(2<<4)); - kernel.packet[1].v = _mm256_permute2f128_pd(kernel.packet[0].v, kernel.packet[1].v, 1+(3<<4)); - kernel.packet[0].v = tmp; -} - -template<> EIGEN_STRONG_INLINE Packet4cf pinsertfirst(const Packet4cf& a, std::complex b) -{ - return Packet4cf(_mm256_blend_ps(a.v,pset1(b).v,1|2)); -} - -template<> EIGEN_STRONG_INLINE Packet2cd pinsertfirst(const Packet2cd& a, std::complex b) -{ - return Packet2cd(_mm256_blend_pd(a.v,pset1(b).v,1|2)); -} - -template<> EIGEN_STRONG_INLINE Packet4cf pinsertlast(const Packet4cf& a, std::complex b) -{ - return Packet4cf(_mm256_blend_ps(a.v,pset1(b).v,(1<<7)|(1<<6))); -} - -template<> EIGEN_STRONG_INLINE Packet2cd pinsertlast(const Packet2cd& a, std::complex b) -{ - return Packet2cd(_mm256_blend_pd(a.v,pset1(b).v,(1<<3)|(1<<2))); -} - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_COMPLEX_AVX_H diff --git a/src/math_meigen/Eigen/src/Core/arch/AVX/MathFunctions.h b/src/math_meigen/Eigen/src/Core/arch/AVX/MathFunctions.h deleted file mode 100755 index 6af67ce2d..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/AVX/MathFunctions.h +++ /dev/null @@ -1,439 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com) -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_MATH_FUNCTIONS_AVX_H -#define EIGEN_MATH_FUNCTIONS_AVX_H - -/* The sin, cos, exp, and log functions of this file are loosely derived from - * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/ - */ - -namespace Eigen { - -namespace internal { - -inline Packet8i pshiftleft(Packet8i v, int n) -{ -#ifdef EIGEN_VECTORIZE_AVX2 - return _mm256_slli_epi32(v, n); -#else - __m128i lo = _mm_slli_epi32(_mm256_extractf128_si256(v, 0), n); - __m128i hi = _mm_slli_epi32(_mm256_extractf128_si256(v, 1), n); - return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1); -#endif -} - -inline Packet8f pshiftright(Packet8f v, int n) -{ -#ifdef EIGEN_VECTORIZE_AVX2 - return _mm256_cvtepi32_ps(_mm256_srli_epi32(_mm256_castps_si256(v), n)); -#else - __m128i lo = _mm_srli_epi32(_mm256_extractf128_si256(_mm256_castps_si256(v), 0), n); - __m128i hi = _mm_srli_epi32(_mm256_extractf128_si256(_mm256_castps_si256(v), 1), n); - return _mm256_cvtepi32_ps(_mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1)); -#endif -} - -// Sine function -// Computes sin(x) by wrapping x to the interval [-Pi/4,3*Pi/4] and -// evaluating interpolants in [-Pi/4,Pi/4] or [Pi/4,3*Pi/4]. The interpolants -// are (anti-)symmetric and thus have only odd/even coefficients -template <> -EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f -psin(const Packet8f& _x) { - Packet8f x = _x; - - // Some useful values. - _EIGEN_DECLARE_CONST_Packet8i(one, 1); - _EIGEN_DECLARE_CONST_Packet8f(one, 1.0f); - _EIGEN_DECLARE_CONST_Packet8f(two, 2.0f); - _EIGEN_DECLARE_CONST_Packet8f(one_over_four, 0.25f); - _EIGEN_DECLARE_CONST_Packet8f(one_over_pi, 3.183098861837907e-01f); - _EIGEN_DECLARE_CONST_Packet8f(neg_pi_first, -3.140625000000000e+00f); - _EIGEN_DECLARE_CONST_Packet8f(neg_pi_second, -9.670257568359375e-04f); - _EIGEN_DECLARE_CONST_Packet8f(neg_pi_third, -6.278329571784980e-07f); - _EIGEN_DECLARE_CONST_Packet8f(four_over_pi, 1.273239544735163e+00f); - - // Map x from [-Pi/4,3*Pi/4] to z in [-1,3] and subtract the shifted period. - Packet8f z = pmul(x, p8f_one_over_pi); - Packet8f shift = _mm256_floor_ps(padd(z, p8f_one_over_four)); - x = pmadd(shift, p8f_neg_pi_first, x); - x = pmadd(shift, p8f_neg_pi_second, x); - x = pmadd(shift, p8f_neg_pi_third, x); - z = pmul(x, p8f_four_over_pi); - - // Make a mask for the entries that need flipping, i.e. wherever the shift - // is odd. - Packet8i shift_ints = _mm256_cvtps_epi32(shift); - Packet8i shift_isodd = _mm256_castps_si256(_mm256_and_ps(_mm256_castsi256_ps(shift_ints), _mm256_castsi256_ps(p8i_one))); - Packet8i sign_flip_mask = pshiftleft(shift_isodd, 31); - - // Create a mask for which interpolant to use, i.e. if z > 1, then the mask - // is set to ones for that entry. - Packet8f ival_mask = _mm256_cmp_ps(z, p8f_one, _CMP_GT_OQ); - - // Evaluate the polynomial for the interval [1,3] in z. - _EIGEN_DECLARE_CONST_Packet8f(coeff_right_0, 9.999999724233232e-01f); - _EIGEN_DECLARE_CONST_Packet8f(coeff_right_2, -3.084242535619928e-01f); - _EIGEN_DECLARE_CONST_Packet8f(coeff_right_4, 1.584991525700324e-02f); - _EIGEN_DECLARE_CONST_Packet8f(coeff_right_6, -3.188805084631342e-04f); - Packet8f z_minus_two = psub(z, p8f_two); - Packet8f z_minus_two2 = pmul(z_minus_two, z_minus_two); - Packet8f right = pmadd(p8f_coeff_right_6, z_minus_two2, p8f_coeff_right_4); - right = pmadd(right, z_minus_two2, p8f_coeff_right_2); - right = pmadd(right, z_minus_two2, p8f_coeff_right_0); - - // Evaluate the polynomial for the interval [-1,1] in z. - _EIGEN_DECLARE_CONST_Packet8f(coeff_left_1, 7.853981525427295e-01f); - _EIGEN_DECLARE_CONST_Packet8f(coeff_left_3, -8.074536727092352e-02f); - _EIGEN_DECLARE_CONST_Packet8f(coeff_left_5, 2.489871967827018e-03f); - _EIGEN_DECLARE_CONST_Packet8f(coeff_left_7, -3.587725841214251e-05f); - Packet8f z2 = pmul(z, z); - Packet8f left = pmadd(p8f_coeff_left_7, z2, p8f_coeff_left_5); - left = pmadd(left, z2, p8f_coeff_left_3); - left = pmadd(left, z2, p8f_coeff_left_1); - left = pmul(left, z); - - // Assemble the results, i.e. select the left and right polynomials. - left = _mm256_andnot_ps(ival_mask, left); - right = _mm256_and_ps(ival_mask, right); - Packet8f res = _mm256_or_ps(left, right); - - // Flip the sign on the odd intervals and return the result. - res = _mm256_xor_ps(res, _mm256_castsi256_ps(sign_flip_mask)); - return res; -} - -// Natural logarithm -// Computes log(x) as log(2^e * m) = C*e + log(m), where the constant C =log(2) -// and m is in the range [sqrt(1/2),sqrt(2)). In this range, the logarithm can -// be easily approximated by a polynomial centered on m=1 for stability. -// TODO(gonnet): Further reduce the interval allowing for lower-degree -// polynomial interpolants -> ... -> profit! -template <> -EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f -plog(const Packet8f& _x) { - Packet8f x = _x; - _EIGEN_DECLARE_CONST_Packet8f(1, 1.0f); - _EIGEN_DECLARE_CONST_Packet8f(half, 0.5f); - _EIGEN_DECLARE_CONST_Packet8f(126f, 126.0f); - - _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(inv_mant_mask, ~0x7f800000); - - // The smallest non denormalized float number. - _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(min_norm_pos, 0x00800000); - _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(minus_inf, 0xff800000); - - // Polynomial coefficients. - _EIGEN_DECLARE_CONST_Packet8f(cephes_SQRTHF, 0.707106781186547524f); - _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p0, 7.0376836292E-2f); - _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p1, -1.1514610310E-1f); - _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p2, 1.1676998740E-1f); - _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p3, -1.2420140846E-1f); - _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p4, +1.4249322787E-1f); - _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p5, -1.6668057665E-1f); - _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p6, +2.0000714765E-1f); - _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p7, -2.4999993993E-1f); - _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p8, +3.3333331174E-1f); - _EIGEN_DECLARE_CONST_Packet8f(cephes_log_q1, -2.12194440e-4f); - _EIGEN_DECLARE_CONST_Packet8f(cephes_log_q2, 0.693359375f); - - Packet8f invalid_mask = _mm256_cmp_ps(x, _mm256_setzero_ps(), _CMP_NGE_UQ); // not greater equal is true if x is NaN - Packet8f iszero_mask = _mm256_cmp_ps(x, _mm256_setzero_ps(), _CMP_EQ_OQ); - - // Truncate input values to the minimum positive normal. - x = pmax(x, p8f_min_norm_pos); - - Packet8f emm0 = pshiftright(x,23); - Packet8f e = _mm256_sub_ps(emm0, p8f_126f); - - // Set the exponents to -1, i.e. x are in the range [0.5,1). - x = _mm256_and_ps(x, p8f_inv_mant_mask); - x = _mm256_or_ps(x, p8f_half); - - // part2: Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2)) - // and shift by -1. The values are then centered around 0, which improves - // the stability of the polynomial evaluation. - // if( x < SQRTHF ) { - // e -= 1; - // x = x + x - 1.0; - // } else { x = x - 1.0; } - Packet8f mask = _mm256_cmp_ps(x, p8f_cephes_SQRTHF, _CMP_LT_OQ); - Packet8f tmp = _mm256_and_ps(x, mask); - x = psub(x, p8f_1); - e = psub(e, _mm256_and_ps(p8f_1, mask)); - x = padd(x, tmp); - - Packet8f x2 = pmul(x, x); - Packet8f x3 = pmul(x2, x); - - // Evaluate the polynomial approximant of degree 8 in three parts, probably - // to improve instruction-level parallelism. - Packet8f y, y1, y2; - y = pmadd(p8f_cephes_log_p0, x, p8f_cephes_log_p1); - y1 = pmadd(p8f_cephes_log_p3, x, p8f_cephes_log_p4); - y2 = pmadd(p8f_cephes_log_p6, x, p8f_cephes_log_p7); - y = pmadd(y, x, p8f_cephes_log_p2); - y1 = pmadd(y1, x, p8f_cephes_log_p5); - y2 = pmadd(y2, x, p8f_cephes_log_p8); - y = pmadd(y, x3, y1); - y = pmadd(y, x3, y2); - y = pmul(y, x3); - - // Add the logarithm of the exponent back to the result of the interpolation. - y1 = pmul(e, p8f_cephes_log_q1); - tmp = pmul(x2, p8f_half); - y = padd(y, y1); - x = psub(x, tmp); - y2 = pmul(e, p8f_cephes_log_q2); - x = padd(x, y); - x = padd(x, y2); - - // Filter out invalid inputs, i.e. negative arg will be NAN, 0 will be -INF. - return _mm256_or_ps( - _mm256_andnot_ps(iszero_mask, _mm256_or_ps(x, invalid_mask)), - _mm256_and_ps(iszero_mask, p8f_minus_inf)); -} - -// Exponential function. Works by writing "x = m*log(2) + r" where -// "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then -// "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1). -template <> -EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f -pexp(const Packet8f& _x) { - _EIGEN_DECLARE_CONST_Packet8f(1, 1.0f); - _EIGEN_DECLARE_CONST_Packet8f(half, 0.5f); - _EIGEN_DECLARE_CONST_Packet8f(127, 127.0f); - - _EIGEN_DECLARE_CONST_Packet8f(exp_hi, 88.3762626647950f); - _EIGEN_DECLARE_CONST_Packet8f(exp_lo, -88.3762626647949f); - - _EIGEN_DECLARE_CONST_Packet8f(cephes_LOG2EF, 1.44269504088896341f); - - _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p0, 1.9875691500E-4f); - _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p1, 1.3981999507E-3f); - _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p2, 8.3334519073E-3f); - _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p3, 4.1665795894E-2f); - _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p4, 1.6666665459E-1f); - _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p5, 5.0000001201E-1f); - - // Clamp x. - Packet8f x = pmax(pmin(_x, p8f_exp_hi), p8f_exp_lo); - - // Express exp(x) as exp(m*ln(2) + r), start by extracting - // m = floor(x/ln(2) + 0.5). - Packet8f m = _mm256_floor_ps(pmadd(x, p8f_cephes_LOG2EF, p8f_half)); - -// Get r = x - m*ln(2). If no FMA instructions are available, m*ln(2) is -// subtracted out in two parts, m*C1+m*C2 = m*ln(2), to avoid accumulating -// truncation errors. Note that we don't use the "pmadd" function here to -// ensure that a precision-preserving FMA instruction is used. -#ifdef EIGEN_VECTORIZE_FMA - _EIGEN_DECLARE_CONST_Packet8f(nln2, -0.6931471805599453f); - Packet8f r = _mm256_fmadd_ps(m, p8f_nln2, x); -#else - _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_C1, 0.693359375f); - _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_C2, -2.12194440e-4f); - Packet8f r = psub(x, pmul(m, p8f_cephes_exp_C1)); - r = psub(r, pmul(m, p8f_cephes_exp_C2)); -#endif - - Packet8f r2 = pmul(r, r); - - // TODO(gonnet): Split into odd/even polynomials and try to exploit - // instruction-level parallelism. - Packet8f y = p8f_cephes_exp_p0; - y = pmadd(y, r, p8f_cephes_exp_p1); - y = pmadd(y, r, p8f_cephes_exp_p2); - y = pmadd(y, r, p8f_cephes_exp_p3); - y = pmadd(y, r, p8f_cephes_exp_p4); - y = pmadd(y, r, p8f_cephes_exp_p5); - y = pmadd(y, r2, r); - y = padd(y, p8f_1); - - // Build emm0 = 2^m. - Packet8i emm0 = _mm256_cvttps_epi32(padd(m, p8f_127)); - emm0 = pshiftleft(emm0, 23); - - // Return 2^m * exp(r). - return pmax(pmul(y, _mm256_castsi256_ps(emm0)), _x); -} - -// Hyperbolic Tangent function. -template <> -EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f -ptanh(const Packet8f& x) { - return internal::generic_fast_tanh_float(x); -} - -template <> -EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d -pexp(const Packet4d& _x) { - Packet4d x = _x; - - _EIGEN_DECLARE_CONST_Packet4d(1, 1.0); - _EIGEN_DECLARE_CONST_Packet4d(2, 2.0); - _EIGEN_DECLARE_CONST_Packet4d(half, 0.5); - - _EIGEN_DECLARE_CONST_Packet4d(exp_hi, 709.437); - _EIGEN_DECLARE_CONST_Packet4d(exp_lo, -709.436139303); - - _EIGEN_DECLARE_CONST_Packet4d(cephes_LOG2EF, 1.4426950408889634073599); - - _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_p0, 1.26177193074810590878e-4); - _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_p1, 3.02994407707441961300e-2); - _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_p2, 9.99999999999999999910e-1); - - _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_q0, 3.00198505138664455042e-6); - _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_q1, 2.52448340349684104192e-3); - _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_q2, 2.27265548208155028766e-1); - _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_q3, 2.00000000000000000009e0); - - _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_C1, 0.693145751953125); - _EIGEN_DECLARE_CONST_Packet4d(cephes_exp_C2, 1.42860682030941723212e-6); - _EIGEN_DECLARE_CONST_Packet4i(1023, 1023); - - Packet4d tmp, fx; - - // clamp x - x = pmax(pmin(x, p4d_exp_hi), p4d_exp_lo); - // Express exp(x) as exp(g + n*log(2)). - fx = pmadd(p4d_cephes_LOG2EF, x, p4d_half); - - // Get the integer modulus of log(2), i.e. the "n" described above. - fx = _mm256_floor_pd(fx); - - // Get the remainder modulo log(2), i.e. the "g" described above. Subtract - // n*log(2) out in two steps, i.e. n*C1 + n*C2, C1+C2=log2 to get the last - // digits right. - tmp = pmul(fx, p4d_cephes_exp_C1); - Packet4d z = pmul(fx, p4d_cephes_exp_C2); - x = psub(x, tmp); - x = psub(x, z); - - Packet4d x2 = pmul(x, x); - - // Evaluate the numerator polynomial of the rational interpolant. - Packet4d px = p4d_cephes_exp_p0; - px = pmadd(px, x2, p4d_cephes_exp_p1); - px = pmadd(px, x2, p4d_cephes_exp_p2); - px = pmul(px, x); - - // Evaluate the denominator polynomial of the rational interpolant. - Packet4d qx = p4d_cephes_exp_q0; - qx = pmadd(qx, x2, p4d_cephes_exp_q1); - qx = pmadd(qx, x2, p4d_cephes_exp_q2); - qx = pmadd(qx, x2, p4d_cephes_exp_q3); - - // I don't really get this bit, copied from the SSE2 routines, so... - // TODO(gonnet): Figure out what is going on here, perhaps find a better - // rational interpolant? - x = _mm256_div_pd(px, psub(qx, px)); - x = pmadd(p4d_2, x, p4d_1); - - // Build e=2^n by constructing the exponents in a 128-bit vector and - // shifting them to where they belong in double-precision values. - __m128i emm0 = _mm256_cvtpd_epi32(fx); - emm0 = _mm_add_epi32(emm0, p4i_1023); - emm0 = _mm_shuffle_epi32(emm0, _MM_SHUFFLE(3, 1, 2, 0)); - __m128i lo = _mm_slli_epi64(emm0, 52); - __m128i hi = _mm_slli_epi64(_mm_srli_epi64(emm0, 32), 52); - __m256i e = _mm256_insertf128_si256(_mm256_setzero_si256(), lo, 0); - e = _mm256_insertf128_si256(e, hi, 1); - - // Construct the result 2^n * exp(g) = e * x. The max is used to catch - // non-finite values in the input. - return pmax(pmul(x, _mm256_castsi256_pd(e)), _x); -} - -// Functions for sqrt. -// The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step -// of Newton's method, at a cost of 1-2 bits of precision as opposed to the -// exact solution. It does not handle +inf, or denormalized numbers correctly. -// The main advantage of this approach is not just speed, but also the fact that -// it can be inlined and pipelined with other computations, further reducing its -// effective latency. This is similar to Quake3's fast inverse square root. -// For detail see here: http://www.beyond3d.com/content/articles/8/ -#if EIGEN_FAST_MATH -template <> -EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f -psqrt(const Packet8f& _x) { - Packet8f half = pmul(_x, pset1(.5f)); - Packet8f denormal_mask = _mm256_and_ps( - _mm256_cmp_ps(_x, pset1((std::numeric_limits::min)()), - _CMP_LT_OQ), - _mm256_cmp_ps(_x, _mm256_setzero_ps(), _CMP_GE_OQ)); - - // Compute approximate reciprocal sqrt. - Packet8f x = _mm256_rsqrt_ps(_x); - // Do a single step of Newton's iteration. - x = pmul(x, psub(pset1(1.5f), pmul(half, pmul(x,x)))); - // Flush results for denormals to zero. - return _mm256_andnot_ps(denormal_mask, pmul(_x,x)); -} -#else -template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet8f psqrt(const Packet8f& x) { - return _mm256_sqrt_ps(x); -} -#endif -template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet4d psqrt(const Packet4d& x) { - return _mm256_sqrt_pd(x); -} -#if EIGEN_FAST_MATH - -template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet8f prsqrt(const Packet8f& _x) { - _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(inf, 0x7f800000); - _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(nan, 0x7fc00000); - _EIGEN_DECLARE_CONST_Packet8f(one_point_five, 1.5f); - _EIGEN_DECLARE_CONST_Packet8f(minus_half, -0.5f); - _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(flt_min, 0x00800000); - - Packet8f neg_half = pmul(_x, p8f_minus_half); - - // select only the inverse sqrt of positive normal inputs (denormals are - // flushed to zero and cause infs as well). - Packet8f le_zero_mask = _mm256_cmp_ps(_x, p8f_flt_min, _CMP_LT_OQ); - Packet8f x = _mm256_andnot_ps(le_zero_mask, _mm256_rsqrt_ps(_x)); - - // Fill in NaNs and Infs for the negative/zero entries. - Packet8f neg_mask = _mm256_cmp_ps(_x, _mm256_setzero_ps(), _CMP_LT_OQ); - Packet8f zero_mask = _mm256_andnot_ps(neg_mask, le_zero_mask); - Packet8f infs_and_nans = _mm256_or_ps(_mm256_and_ps(neg_mask, p8f_nan), - _mm256_and_ps(zero_mask, p8f_inf)); - - // Do a single step of Newton's iteration. - x = pmul(x, pmadd(neg_half, pmul(x, x), p8f_one_point_five)); - - // Insert NaNs and Infs in all the right places. - return _mm256_or_ps(x, infs_and_nans); -} - -#else -template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet8f prsqrt(const Packet8f& x) { - _EIGEN_DECLARE_CONST_Packet8f(one, 1.0f); - return _mm256_div_ps(p8f_one, _mm256_sqrt_ps(x)); -} -#endif - -template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet4d prsqrt(const Packet4d& x) { - _EIGEN_DECLARE_CONST_Packet4d(one, 1.0); - return _mm256_div_pd(p4d_one, _mm256_sqrt_pd(x)); -} - - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_MATH_FUNCTIONS_AVX_H diff --git a/src/math_meigen/Eigen/src/Core/arch/AVX/PacketMath.h b/src/math_meigen/Eigen/src/Core/arch/AVX/PacketMath.h deleted file mode 100755 index 923a124b2..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/AVX/PacketMath.h +++ /dev/null @@ -1,637 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2014 Benoit Steiner (benoit.steiner.goog@gmail.com) -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_PACKET_MATH_AVX_H -#define EIGEN_PACKET_MATH_AVX_H - -namespace Eigen { - -namespace internal { - -#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD -#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8 -#endif - -#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS -#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS (2*sizeof(void*)) -#endif - -#ifdef __FMA__ -#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD -#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD -#endif -#endif - -typedef __m256 Packet8f; -typedef __m256i Packet8i; -typedef __m256d Packet4d; - -template<> struct is_arithmetic<__m256> { enum { value = true }; }; -template<> struct is_arithmetic<__m256i> { enum { value = true }; }; -template<> struct is_arithmetic<__m256d> { enum { value = true }; }; - -#define _EIGEN_DECLARE_CONST_Packet8f(NAME,X) \ - const Packet8f p8f_##NAME = pset1(X) - -#define _EIGEN_DECLARE_CONST_Packet4d(NAME,X) \ - const Packet4d p4d_##NAME = pset1(X) - -#define _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(NAME,X) \ - const Packet8f p8f_##NAME = _mm256_castsi256_ps(pset1(X)) - -#define _EIGEN_DECLARE_CONST_Packet8i(NAME,X) \ - const Packet8i p8i_##NAME = pset1(X) - -// Use the packet_traits defined in AVX512/PacketMath.h instead if we're going -// to leverage AVX512 instructions. -#ifndef EIGEN_VECTORIZE_AVX512 -template<> struct packet_traits : default_packet_traits -{ - typedef Packet8f type; - typedef Packet4f half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size=8, - HasHalfPacket = 1, - - HasDiv = 1, - HasSin = EIGEN_FAST_MATH, - HasCos = 0, - HasLog = 1, - HasExp = 1, - HasSqrt = 1, - HasRsqrt = 1, - HasTanh = EIGEN_FAST_MATH, - HasBlend = 1, - HasRound = 1, - HasFloor = 1, - HasCeil = 1 - }; -}; -template<> struct packet_traits : default_packet_traits -{ - typedef Packet4d type; - typedef Packet2d half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size=4, - HasHalfPacket = 1, - - HasDiv = 1, - HasExp = 1, - HasSqrt = 1, - HasRsqrt = 1, - HasBlend = 1, - HasRound = 1, - HasFloor = 1, - HasCeil = 1 - }; -}; -#endif - -template<> struct scalar_div_cost { enum { value = 14 }; }; -template<> struct scalar_div_cost { enum { value = 16 }; }; - -/* Proper support for integers is only provided by AVX2. In the meantime, we'll - use SSE instructions and packets to deal with integers. -template<> struct packet_traits : default_packet_traits -{ - typedef Packet8i type; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size=8 - }; -}; -*/ - -template<> struct unpacket_traits { typedef float type; typedef Packet4f half; enum {size=8, alignment=Aligned32}; }; -template<> struct unpacket_traits { typedef double type; typedef Packet2d half; enum {size=4, alignment=Aligned32}; }; -template<> struct unpacket_traits { typedef int type; typedef Packet4i half; enum {size=8, alignment=Aligned32}; }; - -template<> EIGEN_STRONG_INLINE Packet8f pset1(const float& from) { return _mm256_set1_ps(from); } -template<> EIGEN_STRONG_INLINE Packet4d pset1(const double& from) { return _mm256_set1_pd(from); } -template<> EIGEN_STRONG_INLINE Packet8i pset1(const int& from) { return _mm256_set1_epi32(from); } - -template<> EIGEN_STRONG_INLINE Packet8f pload1(const float* from) { return _mm256_broadcast_ss(from); } -template<> EIGEN_STRONG_INLINE Packet4d pload1(const double* from) { return _mm256_broadcast_sd(from); } - -template<> EIGEN_STRONG_INLINE Packet8f plset(const float& a) { return _mm256_add_ps(_mm256_set1_ps(a), _mm256_set_ps(7.0,6.0,5.0,4.0,3.0,2.0,1.0,0.0)); } -template<> EIGEN_STRONG_INLINE Packet4d plset(const double& a) { return _mm256_add_pd(_mm256_set1_pd(a), _mm256_set_pd(3.0,2.0,1.0,0.0)); } - -template<> EIGEN_STRONG_INLINE Packet8f padd(const Packet8f& a, const Packet8f& b) { return _mm256_add_ps(a,b); } -template<> EIGEN_STRONG_INLINE Packet4d padd(const Packet4d& a, const Packet4d& b) { return _mm256_add_pd(a,b); } - -template<> EIGEN_STRONG_INLINE Packet8f psub(const Packet8f& a, const Packet8f& b) { return _mm256_sub_ps(a,b); } -template<> EIGEN_STRONG_INLINE Packet4d psub(const Packet4d& a, const Packet4d& b) { return _mm256_sub_pd(a,b); } - -template<> EIGEN_STRONG_INLINE Packet8f pnegate(const Packet8f& a) -{ - return _mm256_sub_ps(_mm256_set1_ps(0.0),a); -} -template<> EIGEN_STRONG_INLINE Packet4d pnegate(const Packet4d& a) -{ - return _mm256_sub_pd(_mm256_set1_pd(0.0),a); -} - -template<> EIGEN_STRONG_INLINE Packet8f pconj(const Packet8f& a) { return a; } -template<> EIGEN_STRONG_INLINE Packet4d pconj(const Packet4d& a) { return a; } -template<> EIGEN_STRONG_INLINE Packet8i pconj(const Packet8i& a) { return a; } - -template<> EIGEN_STRONG_INLINE Packet8f pmul(const Packet8f& a, const Packet8f& b) { return _mm256_mul_ps(a,b); } -template<> EIGEN_STRONG_INLINE Packet4d pmul(const Packet4d& a, const Packet4d& b) { return _mm256_mul_pd(a,b); } - - -template<> EIGEN_STRONG_INLINE Packet8f pdiv(const Packet8f& a, const Packet8f& b) { return _mm256_div_ps(a,b); } -template<> EIGEN_STRONG_INLINE Packet4d pdiv(const Packet4d& a, const Packet4d& b) { return _mm256_div_pd(a,b); } -template<> EIGEN_STRONG_INLINE Packet8i pdiv(const Packet8i& /*a*/, const Packet8i& /*b*/) -{ eigen_assert(false && "packet integer division are not supported by AVX"); - return pset1(0); -} - -#ifdef __FMA__ -template<> EIGEN_STRONG_INLINE Packet8f pmadd(const Packet8f& a, const Packet8f& b, const Packet8f& c) { -#if ( (EIGEN_COMP_GNUC_STRICT && EIGEN_COMP_GNUC<80) || (EIGEN_COMP_CLANG) ) - // Clang stupidly generates a vfmadd213ps instruction plus some vmovaps on registers, - // and even register spilling with clang>=6.0 (bug 1637). - // Gcc stupidly generates a vfmadd132ps instruction. - // So let's enforce it to generate a vfmadd231ps instruction since the most common use - // case is to accumulate the result of the product. - Packet8f res = c; - __asm__("vfmadd231ps %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b)); - return res; -#else - return _mm256_fmadd_ps(a,b,c); -#endif -} -template<> EIGEN_STRONG_INLINE Packet4d pmadd(const Packet4d& a, const Packet4d& b, const Packet4d& c) { -#if ( (EIGEN_COMP_GNUC_STRICT && EIGEN_COMP_GNUC<80) || (EIGEN_COMP_CLANG) ) - // see above - Packet4d res = c; - __asm__("vfmadd231pd %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b)); - return res; -#else - return _mm256_fmadd_pd(a,b,c); -#endif -} -#endif - -template<> EIGEN_STRONG_INLINE Packet8f pmin(const Packet8f& a, const Packet8f& b) { return _mm256_min_ps(a,b); } -template<> EIGEN_STRONG_INLINE Packet4d pmin(const Packet4d& a, const Packet4d& b) { return _mm256_min_pd(a,b); } - -template<> EIGEN_STRONG_INLINE Packet8f pmax(const Packet8f& a, const Packet8f& b) { return _mm256_max_ps(a,b); } -template<> EIGEN_STRONG_INLINE Packet4d pmax(const Packet4d& a, const Packet4d& b) { return _mm256_max_pd(a,b); } - -template<> EIGEN_STRONG_INLINE Packet8f pround(const Packet8f& a) { return _mm256_round_ps(a, _MM_FROUND_CUR_DIRECTION); } -template<> EIGEN_STRONG_INLINE Packet4d pround(const Packet4d& a) { return _mm256_round_pd(a, _MM_FROUND_CUR_DIRECTION); } - -template<> EIGEN_STRONG_INLINE Packet8f pceil(const Packet8f& a) { return _mm256_ceil_ps(a); } -template<> EIGEN_STRONG_INLINE Packet4d pceil(const Packet4d& a) { return _mm256_ceil_pd(a); } - -template<> EIGEN_STRONG_INLINE Packet8f pfloor(const Packet8f& a) { return _mm256_floor_ps(a); } -template<> EIGEN_STRONG_INLINE Packet4d pfloor(const Packet4d& a) { return _mm256_floor_pd(a); } - -template<> EIGEN_STRONG_INLINE Packet8f pand(const Packet8f& a, const Packet8f& b) { return _mm256_and_ps(a,b); } -template<> EIGEN_STRONG_INLINE Packet4d pand(const Packet4d& a, const Packet4d& b) { return _mm256_and_pd(a,b); } - -template<> EIGEN_STRONG_INLINE Packet8f por(const Packet8f& a, const Packet8f& b) { return _mm256_or_ps(a,b); } -template<> EIGEN_STRONG_INLINE Packet4d por(const Packet4d& a, const Packet4d& b) { return _mm256_or_pd(a,b); } - -template<> EIGEN_STRONG_INLINE Packet8f pxor(const Packet8f& a, const Packet8f& b) { return _mm256_xor_ps(a,b); } -template<> EIGEN_STRONG_INLINE Packet4d pxor(const Packet4d& a, const Packet4d& b) { return _mm256_xor_pd(a,b); } - -template<> EIGEN_STRONG_INLINE Packet8f pandnot(const Packet8f& a, const Packet8f& b) { return _mm256_andnot_ps(a,b); } -template<> EIGEN_STRONG_INLINE Packet4d pandnot(const Packet4d& a, const Packet4d& b) { return _mm256_andnot_pd(a,b); } - -template<> EIGEN_STRONG_INLINE Packet8f pload(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_ps(from); } -template<> EIGEN_STRONG_INLINE Packet4d pload(const double* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_pd(from); } -template<> EIGEN_STRONG_INLINE Packet8i pload(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm256_load_si256(reinterpret_cast(from)); } - -template<> EIGEN_STRONG_INLINE Packet8f ploadu(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_ps(from); } -template<> EIGEN_STRONG_INLINE Packet4d ploadu(const double* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_pd(from); } -template<> EIGEN_STRONG_INLINE Packet8i ploadu(const int* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm256_loadu_si256(reinterpret_cast(from)); } - -// Loads 4 floats from memory a returns the packet {a0, a0 a1, a1, a2, a2, a3, a3} -template<> EIGEN_STRONG_INLINE Packet8f ploaddup(const float* from) -{ - // TODO try to find a way to avoid the need of a temporary register -// Packet8f tmp = _mm256_castps128_ps256(_mm_loadu_ps(from)); -// tmp = _mm256_insertf128_ps(tmp, _mm_movehl_ps(_mm256_castps256_ps128(tmp),_mm256_castps256_ps128(tmp)), 1); -// return _mm256_unpacklo_ps(tmp,tmp); - - // _mm256_insertf128_ps is very slow on Haswell, thus: - Packet8f tmp = _mm256_broadcast_ps((const __m128*)(const void*)from); - // mimic an "inplace" permutation of the lower 128bits using a blend - tmp = _mm256_blend_ps(tmp,_mm256_castps128_ps256(_mm_permute_ps( _mm256_castps256_ps128(tmp), _MM_SHUFFLE(1,0,1,0))), 15); - // then we can perform a consistent permutation on the global register to get everything in shape: - return _mm256_permute_ps(tmp, _MM_SHUFFLE(3,3,2,2)); -} -// Loads 2 doubles from memory a returns the packet {a0, a0 a1, a1} -template<> EIGEN_STRONG_INLINE Packet4d ploaddup(const double* from) -{ - Packet4d tmp = _mm256_broadcast_pd((const __m128d*)(const void*)from); - return _mm256_permute_pd(tmp, 3<<2); -} - -// Loads 2 floats from memory a returns the packet {a0, a0 a0, a0, a1, a1, a1, a1} -template<> EIGEN_STRONG_INLINE Packet8f ploadquad(const float* from) -{ - Packet8f tmp = _mm256_castps128_ps256(_mm_broadcast_ss(from)); - return _mm256_insertf128_ps(tmp, _mm_broadcast_ss(from+1), 1); -} - -template<> EIGEN_STRONG_INLINE void pstore(float* to, const Packet8f& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_store_ps(to, from); } -template<> EIGEN_STRONG_INLINE void pstore(double* to, const Packet4d& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_store_pd(to, from); } -template<> EIGEN_STRONG_INLINE void pstore(int* to, const Packet8i& from) { EIGEN_DEBUG_ALIGNED_STORE _mm256_storeu_si256(reinterpret_cast<__m256i*>(to), from); } - -template<> EIGEN_STRONG_INLINE void pstoreu(float* to, const Packet8f& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_ps(to, from); } -template<> EIGEN_STRONG_INLINE void pstoreu(double* to, const Packet4d& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_pd(to, from); } -template<> EIGEN_STRONG_INLINE void pstoreu(int* to, const Packet8i& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm256_storeu_si256(reinterpret_cast<__m256i*>(to), from); } - -// NOTE: leverage _mm256_i32gather_ps and _mm256_i32gather_pd if AVX2 instructions are available -// NOTE: for the record the following seems to be slower: return _mm256_i32gather_ps(from, _mm256_set1_epi32(stride), 4); -template<> EIGEN_DEVICE_FUNC inline Packet8f pgather(const float* from, Index stride) -{ - return _mm256_set_ps(from[7*stride], from[6*stride], from[5*stride], from[4*stride], - from[3*stride], from[2*stride], from[1*stride], from[0*stride]); -} -template<> EIGEN_DEVICE_FUNC inline Packet4d pgather(const double* from, Index stride) -{ - return _mm256_set_pd(from[3*stride], from[2*stride], from[1*stride], from[0*stride]); -} - -template<> EIGEN_DEVICE_FUNC inline void pscatter(float* to, const Packet8f& from, Index stride) -{ - __m128 low = _mm256_extractf128_ps(from, 0); - to[stride*0] = _mm_cvtss_f32(low); - to[stride*1] = _mm_cvtss_f32(_mm_shuffle_ps(low, low, 1)); - to[stride*2] = _mm_cvtss_f32(_mm_shuffle_ps(low, low, 2)); - to[stride*3] = _mm_cvtss_f32(_mm_shuffle_ps(low, low, 3)); - - __m128 high = _mm256_extractf128_ps(from, 1); - to[stride*4] = _mm_cvtss_f32(high); - to[stride*5] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 1)); - to[stride*6] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 2)); - to[stride*7] = _mm_cvtss_f32(_mm_shuffle_ps(high, high, 3)); -} -template<> EIGEN_DEVICE_FUNC inline void pscatter(double* to, const Packet4d& from, Index stride) -{ - __m128d low = _mm256_extractf128_pd(from, 0); - to[stride*0] = _mm_cvtsd_f64(low); - to[stride*1] = _mm_cvtsd_f64(_mm_shuffle_pd(low, low, 1)); - __m128d high = _mm256_extractf128_pd(from, 1); - to[stride*2] = _mm_cvtsd_f64(high); - to[stride*3] = _mm_cvtsd_f64(_mm_shuffle_pd(high, high, 1)); -} - -template<> EIGEN_STRONG_INLINE void pstore1(float* to, const float& a) -{ - Packet8f pa = pset1(a); - pstore(to, pa); -} -template<> EIGEN_STRONG_INLINE void pstore1(double* to, const double& a) -{ - Packet4d pa = pset1(a); - pstore(to, pa); -} -template<> EIGEN_STRONG_INLINE void pstore1(int* to, const int& a) -{ - Packet8i pa = pset1(a); - pstore(to, pa); -} - -#ifndef EIGEN_VECTORIZE_AVX512 -template<> EIGEN_STRONG_INLINE void prefetch(const float* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } -template<> EIGEN_STRONG_INLINE void prefetch(const double* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } -template<> EIGEN_STRONG_INLINE void prefetch(const int* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } -#endif - -template<> EIGEN_STRONG_INLINE float pfirst(const Packet8f& a) { - return _mm_cvtss_f32(_mm256_castps256_ps128(a)); -} -template<> EIGEN_STRONG_INLINE double pfirst(const Packet4d& a) { - return _mm_cvtsd_f64(_mm256_castpd256_pd128(a)); -} -template<> EIGEN_STRONG_INLINE int pfirst(const Packet8i& a) { - return _mm_cvtsi128_si32(_mm256_castsi256_si128(a)); -} - - -template<> EIGEN_STRONG_INLINE Packet8f preverse(const Packet8f& a) -{ - __m256 tmp = _mm256_shuffle_ps(a,a,0x1b); - return _mm256_permute2f128_ps(tmp, tmp, 1); -} -template<> EIGEN_STRONG_INLINE Packet4d preverse(const Packet4d& a) -{ - __m256d tmp = _mm256_shuffle_pd(a,a,5); - return _mm256_permute2f128_pd(tmp, tmp, 1); - #if 0 - // This version is unlikely to be faster as _mm256_shuffle_ps and _mm256_permute_pd - // exhibit the same latency/throughput, but it is here for future reference/benchmarking... - __m256d swap_halves = _mm256_permute2f128_pd(a,a,1); - return _mm256_permute_pd(swap_halves,5); - #endif -} - -// pabs should be ok -template<> EIGEN_STRONG_INLINE Packet8f pabs(const Packet8f& a) -{ - const Packet8f mask = _mm256_castsi256_ps(_mm256_setr_epi32(0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF)); - return _mm256_and_ps(a,mask); -} -template<> EIGEN_STRONG_INLINE Packet4d pabs(const Packet4d& a) -{ - const Packet4d mask = _mm256_castsi256_pd(_mm256_setr_epi32(0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF)); - return _mm256_and_pd(a,mask); -} - -// preduxp should be ok -// FIXME: why is this ok? why isn't the simply implementation working as expected? -template<> EIGEN_STRONG_INLINE Packet8f preduxp(const Packet8f* vecs) -{ - __m256 hsum1 = _mm256_hadd_ps(vecs[0], vecs[1]); - __m256 hsum2 = _mm256_hadd_ps(vecs[2], vecs[3]); - __m256 hsum3 = _mm256_hadd_ps(vecs[4], vecs[5]); - __m256 hsum4 = _mm256_hadd_ps(vecs[6], vecs[7]); - - __m256 hsum5 = _mm256_hadd_ps(hsum1, hsum1); - __m256 hsum6 = _mm256_hadd_ps(hsum2, hsum2); - __m256 hsum7 = _mm256_hadd_ps(hsum3, hsum3); - __m256 hsum8 = _mm256_hadd_ps(hsum4, hsum4); - - __m256 perm1 = _mm256_permute2f128_ps(hsum5, hsum5, 0x23); - __m256 perm2 = _mm256_permute2f128_ps(hsum6, hsum6, 0x23); - __m256 perm3 = _mm256_permute2f128_ps(hsum7, hsum7, 0x23); - __m256 perm4 = _mm256_permute2f128_ps(hsum8, hsum8, 0x23); - - __m256 sum1 = _mm256_add_ps(perm1, hsum5); - __m256 sum2 = _mm256_add_ps(perm2, hsum6); - __m256 sum3 = _mm256_add_ps(perm3, hsum7); - __m256 sum4 = _mm256_add_ps(perm4, hsum8); - - __m256 blend1 = _mm256_blend_ps(sum1, sum2, 0xcc); - __m256 blend2 = _mm256_blend_ps(sum3, sum4, 0xcc); - - __m256 final = _mm256_blend_ps(blend1, blend2, 0xf0); - return final; -} -template<> EIGEN_STRONG_INLINE Packet4d preduxp(const Packet4d* vecs) -{ - Packet4d tmp0, tmp1; - - tmp0 = _mm256_hadd_pd(vecs[0], vecs[1]); - tmp0 = _mm256_add_pd(tmp0, _mm256_permute2f128_pd(tmp0, tmp0, 1)); - - tmp1 = _mm256_hadd_pd(vecs[2], vecs[3]); - tmp1 = _mm256_add_pd(tmp1, _mm256_permute2f128_pd(tmp1, tmp1, 1)); - - return _mm256_blend_pd(tmp0, tmp1, 0xC); -} - -template<> EIGEN_STRONG_INLINE float predux(const Packet8f& a) -{ - return predux(Packet4f(_mm_add_ps(_mm256_castps256_ps128(a),_mm256_extractf128_ps(a,1)))); -} -template<> EIGEN_STRONG_INLINE double predux(const Packet4d& a) -{ - return predux(Packet2d(_mm_add_pd(_mm256_castpd256_pd128(a),_mm256_extractf128_pd(a,1)))); -} - -template<> EIGEN_STRONG_INLINE Packet4f predux_downto4(const Packet8f& a) -{ - return _mm_add_ps(_mm256_castps256_ps128(a),_mm256_extractf128_ps(a,1)); -} - -template<> EIGEN_STRONG_INLINE float predux_mul(const Packet8f& a) -{ - Packet8f tmp; - tmp = _mm256_mul_ps(a, _mm256_permute2f128_ps(a,a,1)); - tmp = _mm256_mul_ps(tmp, _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(1,0,3,2))); - return pfirst(_mm256_mul_ps(tmp, _mm256_shuffle_ps(tmp,tmp,1))); -} -template<> EIGEN_STRONG_INLINE double predux_mul(const Packet4d& a) -{ - Packet4d tmp; - tmp = _mm256_mul_pd(a, _mm256_permute2f128_pd(a,a,1)); - return pfirst(_mm256_mul_pd(tmp, _mm256_shuffle_pd(tmp,tmp,1))); -} - -template<> EIGEN_STRONG_INLINE float predux_min(const Packet8f& a) -{ - Packet8f tmp = _mm256_min_ps(a, _mm256_permute2f128_ps(a,a,1)); - tmp = _mm256_min_ps(tmp, _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(1,0,3,2))); - return pfirst(_mm256_min_ps(tmp, _mm256_shuffle_ps(tmp,tmp,1))); -} -template<> EIGEN_STRONG_INLINE double predux_min(const Packet4d& a) -{ - Packet4d tmp = _mm256_min_pd(a, _mm256_permute2f128_pd(a,a,1)); - return pfirst(_mm256_min_pd(tmp, _mm256_shuffle_pd(tmp, tmp, 1))); -} - -template<> EIGEN_STRONG_INLINE float predux_max(const Packet8f& a) -{ - Packet8f tmp = _mm256_max_ps(a, _mm256_permute2f128_ps(a,a,1)); - tmp = _mm256_max_ps(tmp, _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(1,0,3,2))); - return pfirst(_mm256_max_ps(tmp, _mm256_shuffle_ps(tmp,tmp,1))); -} - -template<> EIGEN_STRONG_INLINE double predux_max(const Packet4d& a) -{ - Packet4d tmp = _mm256_max_pd(a, _mm256_permute2f128_pd(a,a,1)); - return pfirst(_mm256_max_pd(tmp, _mm256_shuffle_pd(tmp, tmp, 1))); -} - - -template -struct palign_impl -{ - static EIGEN_STRONG_INLINE void run(Packet8f& first, const Packet8f& second) - { - if (Offset==1) - { - first = _mm256_blend_ps(first, second, 1); - Packet8f tmp1 = _mm256_permute_ps (first, _MM_SHUFFLE(0,3,2,1)); - Packet8f tmp2 = _mm256_permute2f128_ps (tmp1, tmp1, 1); - first = _mm256_blend_ps(tmp1, tmp2, 0x88); - } - else if (Offset==2) - { - first = _mm256_blend_ps(first, second, 3); - Packet8f tmp1 = _mm256_permute_ps (first, _MM_SHUFFLE(1,0,3,2)); - Packet8f tmp2 = _mm256_permute2f128_ps (tmp1, tmp1, 1); - first = _mm256_blend_ps(tmp1, tmp2, 0xcc); - } - else if (Offset==3) - { - first = _mm256_blend_ps(first, second, 7); - Packet8f tmp1 = _mm256_permute_ps (first, _MM_SHUFFLE(2,1,0,3)); - Packet8f tmp2 = _mm256_permute2f128_ps (tmp1, tmp1, 1); - first = _mm256_blend_ps(tmp1, tmp2, 0xee); - } - else if (Offset==4) - { - first = _mm256_blend_ps(first, second, 15); - Packet8f tmp1 = _mm256_permute_ps (first, _MM_SHUFFLE(3,2,1,0)); - Packet8f tmp2 = _mm256_permute2f128_ps (tmp1, tmp1, 1); - first = _mm256_permute_ps(tmp2, _MM_SHUFFLE(3,2,1,0)); - } - else if (Offset==5) - { - first = _mm256_blend_ps(first, second, 31); - first = _mm256_permute2f128_ps(first, first, 1); - Packet8f tmp = _mm256_permute_ps (first, _MM_SHUFFLE(0,3,2,1)); - first = _mm256_permute2f128_ps(tmp, tmp, 1); - first = _mm256_blend_ps(tmp, first, 0x88); - } - else if (Offset==6) - { - first = _mm256_blend_ps(first, second, 63); - first = _mm256_permute2f128_ps(first, first, 1); - Packet8f tmp = _mm256_permute_ps (first, _MM_SHUFFLE(1,0,3,2)); - first = _mm256_permute2f128_ps(tmp, tmp, 1); - first = _mm256_blend_ps(tmp, first, 0xcc); - } - else if (Offset==7) - { - first = _mm256_blend_ps(first, second, 127); - first = _mm256_permute2f128_ps(first, first, 1); - Packet8f tmp = _mm256_permute_ps (first, _MM_SHUFFLE(2,1,0,3)); - first = _mm256_permute2f128_ps(tmp, tmp, 1); - first = _mm256_blend_ps(tmp, first, 0xee); - } - } -}; - -template -struct palign_impl -{ - static EIGEN_STRONG_INLINE void run(Packet4d& first, const Packet4d& second) - { - if (Offset==1) - { - first = _mm256_blend_pd(first, second, 1); - __m256d tmp = _mm256_permute_pd(first, 5); - first = _mm256_permute2f128_pd(tmp, tmp, 1); - first = _mm256_blend_pd(tmp, first, 0xA); - } - else if (Offset==2) - { - first = _mm256_blend_pd(first, second, 3); - first = _mm256_permute2f128_pd(first, first, 1); - } - else if (Offset==3) - { - first = _mm256_blend_pd(first, second, 7); - __m256d tmp = _mm256_permute_pd(first, 5); - first = _mm256_permute2f128_pd(tmp, tmp, 1); - first = _mm256_blend_pd(tmp, first, 5); - } - } -}; - -EIGEN_DEVICE_FUNC inline void -ptranspose(PacketBlock& kernel) { - __m256 T0 = _mm256_unpacklo_ps(kernel.packet[0], kernel.packet[1]); - __m256 T1 = _mm256_unpackhi_ps(kernel.packet[0], kernel.packet[1]); - __m256 T2 = _mm256_unpacklo_ps(kernel.packet[2], kernel.packet[3]); - __m256 T3 = _mm256_unpackhi_ps(kernel.packet[2], kernel.packet[3]); - __m256 T4 = _mm256_unpacklo_ps(kernel.packet[4], kernel.packet[5]); - __m256 T5 = _mm256_unpackhi_ps(kernel.packet[4], kernel.packet[5]); - __m256 T6 = _mm256_unpacklo_ps(kernel.packet[6], kernel.packet[7]); - __m256 T7 = _mm256_unpackhi_ps(kernel.packet[6], kernel.packet[7]); - __m256 S0 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(1,0,1,0)); - __m256 S1 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(3,2,3,2)); - __m256 S2 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(1,0,1,0)); - __m256 S3 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(3,2,3,2)); - __m256 S4 = _mm256_shuffle_ps(T4,T6,_MM_SHUFFLE(1,0,1,0)); - __m256 S5 = _mm256_shuffle_ps(T4,T6,_MM_SHUFFLE(3,2,3,2)); - __m256 S6 = _mm256_shuffle_ps(T5,T7,_MM_SHUFFLE(1,0,1,0)); - __m256 S7 = _mm256_shuffle_ps(T5,T7,_MM_SHUFFLE(3,2,3,2)); - kernel.packet[0] = _mm256_permute2f128_ps(S0, S4, 0x20); - kernel.packet[1] = _mm256_permute2f128_ps(S1, S5, 0x20); - kernel.packet[2] = _mm256_permute2f128_ps(S2, S6, 0x20); - kernel.packet[3] = _mm256_permute2f128_ps(S3, S7, 0x20); - kernel.packet[4] = _mm256_permute2f128_ps(S0, S4, 0x31); - kernel.packet[5] = _mm256_permute2f128_ps(S1, S5, 0x31); - kernel.packet[6] = _mm256_permute2f128_ps(S2, S6, 0x31); - kernel.packet[7] = _mm256_permute2f128_ps(S3, S7, 0x31); -} - -EIGEN_DEVICE_FUNC inline void -ptranspose(PacketBlock& kernel) { - __m256 T0 = _mm256_unpacklo_ps(kernel.packet[0], kernel.packet[1]); - __m256 T1 = _mm256_unpackhi_ps(kernel.packet[0], kernel.packet[1]); - __m256 T2 = _mm256_unpacklo_ps(kernel.packet[2], kernel.packet[3]); - __m256 T3 = _mm256_unpackhi_ps(kernel.packet[2], kernel.packet[3]); - - __m256 S0 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(1,0,1,0)); - __m256 S1 = _mm256_shuffle_ps(T0,T2,_MM_SHUFFLE(3,2,3,2)); - __m256 S2 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(1,0,1,0)); - __m256 S3 = _mm256_shuffle_ps(T1,T3,_MM_SHUFFLE(3,2,3,2)); - - kernel.packet[0] = _mm256_permute2f128_ps(S0, S1, 0x20); - kernel.packet[1] = _mm256_permute2f128_ps(S2, S3, 0x20); - kernel.packet[2] = _mm256_permute2f128_ps(S0, S1, 0x31); - kernel.packet[3] = _mm256_permute2f128_ps(S2, S3, 0x31); -} - -EIGEN_DEVICE_FUNC inline void -ptranspose(PacketBlock& kernel) { - __m256d T0 = _mm256_shuffle_pd(kernel.packet[0], kernel.packet[1], 15); - __m256d T1 = _mm256_shuffle_pd(kernel.packet[0], kernel.packet[1], 0); - __m256d T2 = _mm256_shuffle_pd(kernel.packet[2], kernel.packet[3], 15); - __m256d T3 = _mm256_shuffle_pd(kernel.packet[2], kernel.packet[3], 0); - - kernel.packet[1] = _mm256_permute2f128_pd(T0, T2, 32); - kernel.packet[3] = _mm256_permute2f128_pd(T0, T2, 49); - kernel.packet[0] = _mm256_permute2f128_pd(T1, T3, 32); - kernel.packet[2] = _mm256_permute2f128_pd(T1, T3, 49); -} - -template<> EIGEN_STRONG_INLINE Packet8f pblend(const Selector<8>& ifPacket, const Packet8f& thenPacket, const Packet8f& elsePacket) { - const __m256 zero = _mm256_setzero_ps(); - const __m256 select = _mm256_set_ps(ifPacket.select[7], ifPacket.select[6], ifPacket.select[5], ifPacket.select[4], ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]); - __m256 false_mask = _mm256_cmp_ps(select, zero, _CMP_EQ_UQ); - return _mm256_blendv_ps(thenPacket, elsePacket, false_mask); -} -template<> EIGEN_STRONG_INLINE Packet4d pblend(const Selector<4>& ifPacket, const Packet4d& thenPacket, const Packet4d& elsePacket) { - const __m256d zero = _mm256_setzero_pd(); - const __m256d select = _mm256_set_pd(ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]); - __m256d false_mask = _mm256_cmp_pd(select, zero, _CMP_EQ_UQ); - return _mm256_blendv_pd(thenPacket, elsePacket, false_mask); -} - -template<> EIGEN_STRONG_INLINE Packet8f pinsertfirst(const Packet8f& a, float b) -{ - return _mm256_blend_ps(a,pset1(b),1); -} - -template<> EIGEN_STRONG_INLINE Packet4d pinsertfirst(const Packet4d& a, double b) -{ - return _mm256_blend_pd(a,pset1(b),1); -} - -template<> EIGEN_STRONG_INLINE Packet8f pinsertlast(const Packet8f& a, float b) -{ - return _mm256_blend_ps(a,pset1(b),(1<<7)); -} - -template<> EIGEN_STRONG_INLINE Packet4d pinsertlast(const Packet4d& a, double b) -{ - return _mm256_blend_pd(a,pset1(b),(1<<3)); -} - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_PACKET_MATH_AVX_H diff --git a/src/math_meigen/Eigen/src/Core/arch/AVX/TypeCasting.h b/src/math_meigen/Eigen/src/Core/arch/AVX/TypeCasting.h deleted file mode 100755 index 83bfdc604..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/AVX/TypeCasting.h +++ /dev/null @@ -1,51 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2015 Benoit Steiner -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_TYPE_CASTING_AVX_H -#define EIGEN_TYPE_CASTING_AVX_H - -namespace Eigen { - -namespace internal { - -// For now we use SSE to handle integers, so we can't use AVX instructions to cast -// from int to float -template <> -struct type_casting_traits { - enum { - VectorizedCast = 0, - SrcCoeffRatio = 1, - TgtCoeffRatio = 1 - }; -}; - -template <> -struct type_casting_traits { - enum { - VectorizedCast = 0, - SrcCoeffRatio = 1, - TgtCoeffRatio = 1 - }; -}; - - - -template<> EIGEN_STRONG_INLINE Packet8i pcast(const Packet8f& a) { - return _mm256_cvtps_epi32(a); -} - -template<> EIGEN_STRONG_INLINE Packet8f pcast(const Packet8i& a) { - return _mm256_cvtepi32_ps(a); -} - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_TYPE_CASTING_AVX_H diff --git a/src/math_meigen/Eigen/src/Core/arch/AVX512/MathFunctions.h b/src/math_meigen/Eigen/src/Core/arch/AVX512/MathFunctions.h deleted file mode 100755 index 9c1717f76..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/AVX512/MathFunctions.h +++ /dev/null @@ -1,391 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2016 Pedro Gonnet (pedro.gonnet@gmail.com) -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef THIRD_PARTY_EIGEN3_EIGEN_SRC_CORE_ARCH_AVX512_MATHFUNCTIONS_H_ -#define THIRD_PARTY_EIGEN3_EIGEN_SRC_CORE_ARCH_AVX512_MATHFUNCTIONS_H_ - -namespace Eigen { - -namespace internal { - -// Disable the code for older versions of gcc that don't support many of the required avx512 instrinsics. -#if EIGEN_GNUC_AT_LEAST(5, 3) - -#define _EIGEN_DECLARE_CONST_Packet16f(NAME, X) \ - const Packet16f p16f_##NAME = pset1(X) - -#define _EIGEN_DECLARE_CONST_Packet16f_FROM_INT(NAME, X) \ - const Packet16f p16f_##NAME = (__m512)pset1(X) - -#define _EIGEN_DECLARE_CONST_Packet8d(NAME, X) \ - const Packet8d p8d_##NAME = pset1(X) - -#define _EIGEN_DECLARE_CONST_Packet8d_FROM_INT64(NAME, X) \ - const Packet8d p8d_##NAME = _mm512_castsi512_pd(_mm512_set1_epi64(X)) - -// Natural logarithm -// Computes log(x) as log(2^e * m) = C*e + log(m), where the constant C =log(2) -// and m is in the range [sqrt(1/2),sqrt(2)). In this range, the logarithm can -// be easily approximated by a polynomial centered on m=1 for stability. -#if defined(EIGEN_VECTORIZE_AVX512DQ) -template <> -EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f -plog(const Packet16f& _x) { - Packet16f x = _x; - _EIGEN_DECLARE_CONST_Packet16f(1, 1.0f); - _EIGEN_DECLARE_CONST_Packet16f(half, 0.5f); - _EIGEN_DECLARE_CONST_Packet16f(126f, 126.0f); - - _EIGEN_DECLARE_CONST_Packet16f_FROM_INT(inv_mant_mask, ~0x7f800000); - - // The smallest non denormalized float number. - _EIGEN_DECLARE_CONST_Packet16f_FROM_INT(min_norm_pos, 0x00800000); - _EIGEN_DECLARE_CONST_Packet16f_FROM_INT(minus_inf, 0xff800000); - _EIGEN_DECLARE_CONST_Packet16f_FROM_INT(nan, 0x7fc00000); - - // Polynomial coefficients. - _EIGEN_DECLARE_CONST_Packet16f(cephes_SQRTHF, 0.707106781186547524f); - _EIGEN_DECLARE_CONST_Packet16f(cephes_log_p0, 7.0376836292E-2f); - _EIGEN_DECLARE_CONST_Packet16f(cephes_log_p1, -1.1514610310E-1f); - _EIGEN_DECLARE_CONST_Packet16f(cephes_log_p2, 1.1676998740E-1f); - _EIGEN_DECLARE_CONST_Packet16f(cephes_log_p3, -1.2420140846E-1f); - _EIGEN_DECLARE_CONST_Packet16f(cephes_log_p4, +1.4249322787E-1f); - _EIGEN_DECLARE_CONST_Packet16f(cephes_log_p5, -1.6668057665E-1f); - _EIGEN_DECLARE_CONST_Packet16f(cephes_log_p6, +2.0000714765E-1f); - _EIGEN_DECLARE_CONST_Packet16f(cephes_log_p7, -2.4999993993E-1f); - _EIGEN_DECLARE_CONST_Packet16f(cephes_log_p8, +3.3333331174E-1f); - _EIGEN_DECLARE_CONST_Packet16f(cephes_log_q1, -2.12194440e-4f); - _EIGEN_DECLARE_CONST_Packet16f(cephes_log_q2, 0.693359375f); - - // invalid_mask is set to true when x is NaN - __mmask16 invalid_mask = - _mm512_cmp_ps_mask(x, _mm512_setzero_ps(), _CMP_NGE_UQ); - __mmask16 iszero_mask = - _mm512_cmp_ps_mask(x, _mm512_setzero_ps(), _CMP_EQ_UQ); - - // Truncate input values to the minimum positive normal. - x = pmax(x, p16f_min_norm_pos); - - // Extract the shifted exponents. - Packet16f emm0 = _mm512_cvtepi32_ps(_mm512_srli_epi32((__m512i)x, 23)); - Packet16f e = _mm512_sub_ps(emm0, p16f_126f); - - // Set the exponents to -1, i.e. x are in the range [0.5,1). - x = _mm512_and_ps(x, p16f_inv_mant_mask); - x = _mm512_or_ps(x, p16f_half); - - // part2: Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2)) - // and shift by -1. The values are then centered around 0, which improves - // the stability of the polynomial evaluation. - // if( x < SQRTHF ) { - // e -= 1; - // x = x + x - 1.0; - // } else { x = x - 1.0; } - __mmask16 mask = _mm512_cmp_ps_mask(x, p16f_cephes_SQRTHF, _CMP_LT_OQ); - Packet16f tmp = _mm512_mask_blend_ps(mask, _mm512_setzero_ps(), x); - x = psub(x, p16f_1); - e = psub(e, _mm512_mask_blend_ps(mask, _mm512_setzero_ps(), p16f_1)); - x = padd(x, tmp); - - Packet16f x2 = pmul(x, x); - Packet16f x3 = pmul(x2, x); - - // Evaluate the polynomial approximant of degree 8 in three parts, probably - // to improve instruction-level parallelism. - Packet16f y, y1, y2; - y = pmadd(p16f_cephes_log_p0, x, p16f_cephes_log_p1); - y1 = pmadd(p16f_cephes_log_p3, x, p16f_cephes_log_p4); - y2 = pmadd(p16f_cephes_log_p6, x, p16f_cephes_log_p7); - y = pmadd(y, x, p16f_cephes_log_p2); - y1 = pmadd(y1, x, p16f_cephes_log_p5); - y2 = pmadd(y2, x, p16f_cephes_log_p8); - y = pmadd(y, x3, y1); - y = pmadd(y, x3, y2); - y = pmul(y, x3); - - // Add the logarithm of the exponent back to the result of the interpolation. - y1 = pmul(e, p16f_cephes_log_q1); - tmp = pmul(x2, p16f_half); - y = padd(y, y1); - x = psub(x, tmp); - y2 = pmul(e, p16f_cephes_log_q2); - x = padd(x, y); - x = padd(x, y2); - - // Filter out invalid inputs, i.e. negative arg will be NAN, 0 will be -INF. - return _mm512_mask_blend_ps(iszero_mask, - _mm512_mask_blend_ps(invalid_mask, x, p16f_nan), - p16f_minus_inf); -} -#endif - -// Exponential function. Works by writing "x = m*log(2) + r" where -// "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then -// "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1). -template <> -EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f -pexp(const Packet16f& _x) { - _EIGEN_DECLARE_CONST_Packet16f(1, 1.0f); - _EIGEN_DECLARE_CONST_Packet16f(half, 0.5f); - _EIGEN_DECLARE_CONST_Packet16f(127, 127.0f); - - _EIGEN_DECLARE_CONST_Packet16f(exp_hi, 88.3762626647950f); - _EIGEN_DECLARE_CONST_Packet16f(exp_lo, -88.3762626647949f); - - _EIGEN_DECLARE_CONST_Packet16f(cephes_LOG2EF, 1.44269504088896341f); - - _EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p0, 1.9875691500E-4f); - _EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p1, 1.3981999507E-3f); - _EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p2, 8.3334519073E-3f); - _EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p3, 4.1665795894E-2f); - _EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p4, 1.6666665459E-1f); - _EIGEN_DECLARE_CONST_Packet16f(cephes_exp_p5, 5.0000001201E-1f); - - // Clamp x. - Packet16f x = pmax(pmin(_x, p16f_exp_hi), p16f_exp_lo); - - // Express exp(x) as exp(m*ln(2) + r), start by extracting - // m = floor(x/ln(2) + 0.5). - Packet16f m = _mm512_floor_ps(pmadd(x, p16f_cephes_LOG2EF, p16f_half)); - - // Get r = x - m*ln(2). Note that we can do this without losing more than one - // ulp precision due to the FMA instruction. - _EIGEN_DECLARE_CONST_Packet16f(nln2, -0.6931471805599453f); - Packet16f r = _mm512_fmadd_ps(m, p16f_nln2, x); - Packet16f r2 = pmul(r, r); - - // TODO(gonnet): Split into odd/even polynomials and try to exploit - // instruction-level parallelism. - Packet16f y = p16f_cephes_exp_p0; - y = pmadd(y, r, p16f_cephes_exp_p1); - y = pmadd(y, r, p16f_cephes_exp_p2); - y = pmadd(y, r, p16f_cephes_exp_p3); - y = pmadd(y, r, p16f_cephes_exp_p4); - y = pmadd(y, r, p16f_cephes_exp_p5); - y = pmadd(y, r2, r); - y = padd(y, p16f_1); - - // Build emm0 = 2^m. - Packet16i emm0 = _mm512_cvttps_epi32(padd(m, p16f_127)); - emm0 = _mm512_slli_epi32(emm0, 23); - - // Return 2^m * exp(r). - return pmax(pmul(y, _mm512_castsi512_ps(emm0)), _x); -} - -/*template <> -EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8d -pexp(const Packet8d& _x) { - Packet8d x = _x; - - _EIGEN_DECLARE_CONST_Packet8d(1, 1.0); - _EIGEN_DECLARE_CONST_Packet8d(2, 2.0); - - _EIGEN_DECLARE_CONST_Packet8d(exp_hi, 709.437); - _EIGEN_DECLARE_CONST_Packet8d(exp_lo, -709.436139303); - - _EIGEN_DECLARE_CONST_Packet8d(cephes_LOG2EF, 1.4426950408889634073599); - - _EIGEN_DECLARE_CONST_Packet8d(cephes_exp_p0, 1.26177193074810590878e-4); - _EIGEN_DECLARE_CONST_Packet8d(cephes_exp_p1, 3.02994407707441961300e-2); - _EIGEN_DECLARE_CONST_Packet8d(cephes_exp_p2, 9.99999999999999999910e-1); - - _EIGEN_DECLARE_CONST_Packet8d(cephes_exp_q0, 3.00198505138664455042e-6); - _EIGEN_DECLARE_CONST_Packet8d(cephes_exp_q1, 2.52448340349684104192e-3); - _EIGEN_DECLARE_CONST_Packet8d(cephes_exp_q2, 2.27265548208155028766e-1); - _EIGEN_DECLARE_CONST_Packet8d(cephes_exp_q3, 2.00000000000000000009e0); - - _EIGEN_DECLARE_CONST_Packet8d(cephes_exp_C1, 0.693145751953125); - _EIGEN_DECLARE_CONST_Packet8d(cephes_exp_C2, 1.42860682030941723212e-6); - - // clamp x - x = pmax(pmin(x, p8d_exp_hi), p8d_exp_lo); - - // Express exp(x) as exp(g + n*log(2)). - const Packet8d n = - _mm512_mul_round_pd(p8d_cephes_LOG2EF, x, _MM_FROUND_TO_NEAREST_INT); - - // Get the remainder modulo log(2), i.e. the "g" described above. Subtract - // n*log(2) out in two steps, i.e. n*C1 + n*C2, C1+C2=log2 to get the last - // digits right. - const Packet8d nC1 = pmul(n, p8d_cephes_exp_C1); - const Packet8d nC2 = pmul(n, p8d_cephes_exp_C2); - x = psub(x, nC1); - x = psub(x, nC2); - - const Packet8d x2 = pmul(x, x); - - // Evaluate the numerator polynomial of the rational interpolant. - Packet8d px = p8d_cephes_exp_p0; - px = pmadd(px, x2, p8d_cephes_exp_p1); - px = pmadd(px, x2, p8d_cephes_exp_p2); - px = pmul(px, x); - - // Evaluate the denominator polynomial of the rational interpolant. - Packet8d qx = p8d_cephes_exp_q0; - qx = pmadd(qx, x2, p8d_cephes_exp_q1); - qx = pmadd(qx, x2, p8d_cephes_exp_q2); - qx = pmadd(qx, x2, p8d_cephes_exp_q3); - - // I don't really get this bit, copied from the SSE2 routines, so... - // TODO(gonnet): Figure out what is going on here, perhaps find a better - // rational interpolant? - x = _mm512_div_pd(px, psub(qx, px)); - x = pmadd(p8d_2, x, p8d_1); - - // Build e=2^n. - const Packet8d e = _mm512_castsi512_pd(_mm512_slli_epi64( - _mm512_add_epi64(_mm512_cvtpd_epi64(n), _mm512_set1_epi64(1023)), 52)); - - // Construct the result 2^n * exp(g) = e * x. The max is used to catch - // non-finite values in the input. - return pmax(pmul(x, e), _x); - }*/ - -// Functions for sqrt. -// The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step -// of Newton's method, at a cost of 1-2 bits of precision as opposed to the -// exact solution. The main advantage of this approach is not just speed, but -// also the fact that it can be inlined and pipelined with other computations, -// further reducing its effective latency. -#if EIGEN_FAST_MATH -template <> -EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f -psqrt(const Packet16f& _x) { - _EIGEN_DECLARE_CONST_Packet16f(one_point_five, 1.5f); - _EIGEN_DECLARE_CONST_Packet16f(minus_half, -0.5f); - _EIGEN_DECLARE_CONST_Packet16f_FROM_INT(flt_min, 0x00800000); - - Packet16f neg_half = pmul(_x, p16f_minus_half); - - // select only the inverse sqrt of positive normal inputs (denormals are - // flushed to zero and cause infs as well). - __mmask16 non_zero_mask = _mm512_cmp_ps_mask(_x, p16f_flt_min, _CMP_GE_OQ); - Packet16f x = _mm512_mask_blend_ps(non_zero_mask, _mm512_setzero_ps(), _mm512_rsqrt14_ps(_x)); - - // Do a single step of Newton's iteration. - x = pmul(x, pmadd(neg_half, pmul(x, x), p16f_one_point_five)); - - // Multiply the original _x by it's reciprocal square root to extract the - // square root. - return pmul(_x, x); -} - -template <> -EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8d -psqrt(const Packet8d& _x) { - _EIGEN_DECLARE_CONST_Packet8d(one_point_five, 1.5); - _EIGEN_DECLARE_CONST_Packet8d(minus_half, -0.5); - _EIGEN_DECLARE_CONST_Packet8d_FROM_INT64(dbl_min, 0x0010000000000000LL); - - Packet8d neg_half = pmul(_x, p8d_minus_half); - - // select only the inverse sqrt of positive normal inputs (denormals are - // flushed to zero and cause infs as well). - __mmask8 non_zero_mask = _mm512_cmp_pd_mask(_x, p8d_dbl_min, _CMP_GE_OQ); - Packet8d x = _mm512_mask_blend_pd(non_zero_mask, _mm512_setzero_pd(), _mm512_rsqrt14_pd(_x)); - - // Do a first step of Newton's iteration. - x = pmul(x, pmadd(neg_half, pmul(x, x), p8d_one_point_five)); - - // Do a second step of Newton's iteration. - x = pmul(x, pmadd(neg_half, pmul(x, x), p8d_one_point_five)); - - // Multiply the original _x by it's reciprocal square root to extract the - // square root. - return pmul(_x, x); -} -#else -template <> -EIGEN_STRONG_INLINE Packet16f psqrt(const Packet16f& x) { - return _mm512_sqrt_ps(x); -} -template <> -EIGEN_STRONG_INLINE Packet8d psqrt(const Packet8d& x) { - return _mm512_sqrt_pd(x); -} -#endif - -// Functions for rsqrt. -// Almost identical to the sqrt routine, just leave out the last multiplication -// and fill in NaN/Inf where needed. Note that this function only exists as an -// iterative version for doubles since there is no instruction for diretly -// computing the reciprocal square root in AVX-512. -#ifdef EIGEN_FAST_MATH -template <> -EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet16f -prsqrt(const Packet16f& _x) { - _EIGEN_DECLARE_CONST_Packet16f_FROM_INT(inf, 0x7f800000); - _EIGEN_DECLARE_CONST_Packet16f_FROM_INT(nan, 0x7fc00000); - _EIGEN_DECLARE_CONST_Packet16f(one_point_five, 1.5f); - _EIGEN_DECLARE_CONST_Packet16f(minus_half, -0.5f); - _EIGEN_DECLARE_CONST_Packet16f_FROM_INT(flt_min, 0x00800000); - - Packet16f neg_half = pmul(_x, p16f_minus_half); - - // select only the inverse sqrt of positive normal inputs (denormals are - // flushed to zero and cause infs as well). - __mmask16 le_zero_mask = _mm512_cmp_ps_mask(_x, p16f_flt_min, _CMP_LT_OQ); - Packet16f x = _mm512_mask_blend_ps(le_zero_mask, _mm512_rsqrt14_ps(_x), _mm512_setzero_ps()); - - // Fill in NaNs and Infs for the negative/zero entries. - __mmask16 neg_mask = _mm512_cmp_ps_mask(_x, _mm512_setzero_ps(), _CMP_LT_OQ); - Packet16f infs_and_nans = _mm512_mask_blend_ps( - neg_mask, _mm512_mask_blend_ps(le_zero_mask, _mm512_setzero_ps(), p16f_inf), p16f_nan); - - // Do a single step of Newton's iteration. - x = pmul(x, pmadd(neg_half, pmul(x, x), p16f_one_point_five)); - - // Insert NaNs and Infs in all the right places. - return _mm512_mask_blend_ps(le_zero_mask, x, infs_and_nans); -} - -template <> -EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8d -prsqrt(const Packet8d& _x) { - _EIGEN_DECLARE_CONST_Packet8d_FROM_INT64(inf, 0x7ff0000000000000LL); - _EIGEN_DECLARE_CONST_Packet8d_FROM_INT64(nan, 0x7ff1000000000000LL); - _EIGEN_DECLARE_CONST_Packet8d(one_point_five, 1.5); - _EIGEN_DECLARE_CONST_Packet8d(minus_half, -0.5); - _EIGEN_DECLARE_CONST_Packet8d_FROM_INT64(dbl_min, 0x0010000000000000LL); - - Packet8d neg_half = pmul(_x, p8d_minus_half); - - // select only the inverse sqrt of positive normal inputs (denormals are - // flushed to zero and cause infs as well). - __mmask8 le_zero_mask = _mm512_cmp_pd_mask(_x, p8d_dbl_min, _CMP_LT_OQ); - Packet8d x = _mm512_mask_blend_pd(le_zero_mask, _mm512_rsqrt14_pd(_x), _mm512_setzero_pd()); - - // Fill in NaNs and Infs for the negative/zero entries. - __mmask8 neg_mask = _mm512_cmp_pd_mask(_x, _mm512_setzero_pd(), _CMP_LT_OQ); - Packet8d infs_and_nans = _mm512_mask_blend_pd( - neg_mask, _mm512_mask_blend_pd(le_zero_mask, _mm512_setzero_pd(), p8d_inf), p8d_nan); - - // Do a first step of Newton's iteration. - x = pmul(x, pmadd(neg_half, pmul(x, x), p8d_one_point_five)); - - // Do a second step of Newton's iteration. - x = pmul(x, pmadd(neg_half, pmul(x, x), p8d_one_point_five)); - - // Insert NaNs and Infs in all the right places. - return _mm512_mask_blend_pd(le_zero_mask, x, infs_and_nans); -} -#elif defined(EIGEN_VECTORIZE_AVX512ER) -template <> -EIGEN_STRONG_INLINE Packet16f prsqrt(const Packet16f& x) { - return _mm512_rsqrt28_ps(x); -} -#endif -#endif - -} // end namespace internal - -} // end namespace Eigen - -#endif // THIRD_PARTY_EIGEN3_EIGEN_SRC_CORE_ARCH_AVX512_MATHFUNCTIONS_H_ diff --git a/src/math_meigen/Eigen/src/Core/arch/AVX512/PacketMath.h b/src/math_meigen/Eigen/src/Core/arch/AVX512/PacketMath.h deleted file mode 100755 index 5adddc7ae..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/AVX512/PacketMath.h +++ /dev/null @@ -1,1316 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2016 Benoit Steiner (benoit.steiner.goog@gmail.com) -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_PACKET_MATH_AVX512_H -#define EIGEN_PACKET_MATH_AVX512_H - -namespace Eigen { - -namespace internal { - -#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD -#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8 -#endif - -#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS -#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS (2*sizeof(void*)) -#endif - -#ifdef __FMA__ -#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD -#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD -#endif -#endif - -typedef __m512 Packet16f; -typedef __m512i Packet16i; -typedef __m512d Packet8d; - -template <> -struct is_arithmetic<__m512> { - enum { value = true }; -}; -template <> -struct is_arithmetic<__m512i> { - enum { value = true }; -}; -template <> -struct is_arithmetic<__m512d> { - enum { value = true }; -}; - -template<> struct packet_traits : default_packet_traits -{ - typedef Packet16f type; - typedef Packet8f half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size = 16, - HasHalfPacket = 1, -#if EIGEN_GNUC_AT_LEAST(5, 3) -#ifdef EIGEN_VECTORIZE_AVX512DQ - HasLog = 1, -#endif - HasExp = 1, - HasSqrt = 1, - HasRsqrt = 1, -#endif - HasDiv = 1 - }; - }; -template<> struct packet_traits : default_packet_traits -{ - typedef Packet8d type; - typedef Packet4d half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size = 8, - HasHalfPacket = 1, -#if EIGEN_GNUC_AT_LEAST(5, 3) - HasSqrt = 1, - HasRsqrt = EIGEN_FAST_MATH, -#endif - HasDiv = 1 - }; -}; - -/* TODO Implement AVX512 for integers -template<> struct packet_traits : default_packet_traits -{ - typedef Packet16i type; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size=8 - }; -}; -*/ - -template <> -struct unpacket_traits { - typedef float type; - typedef Packet8f half; - enum { size = 16, alignment=Aligned64 }; -}; -template <> -struct unpacket_traits { - typedef double type; - typedef Packet4d half; - enum { size = 8, alignment=Aligned64 }; -}; -template <> -struct unpacket_traits { - typedef int type; - typedef Packet8i half; - enum { size = 16, alignment=Aligned64 }; -}; - -template <> -EIGEN_STRONG_INLINE Packet16f pset1(const float& from) { - return _mm512_set1_ps(from); -} -template <> -EIGEN_STRONG_INLINE Packet8d pset1(const double& from) { - return _mm512_set1_pd(from); -} -template <> -EIGEN_STRONG_INLINE Packet16i pset1(const int& from) { - return _mm512_set1_epi32(from); -} - -template <> -EIGEN_STRONG_INLINE Packet16f pload1(const float* from) { - return _mm512_broadcastss_ps(_mm_load_ps1(from)); -} -template <> -EIGEN_STRONG_INLINE Packet8d pload1(const double* from) { - return _mm512_broadcastsd_pd(_mm_load_pd1(from)); -} - -template <> -EIGEN_STRONG_INLINE Packet16f plset(const float& a) { - return _mm512_add_ps( - _mm512_set1_ps(a), - _mm512_set_ps(15.0f, 14.0f, 13.0f, 12.0f, 11.0f, 10.0f, 9.0f, 8.0f, 7.0f, 6.0f, 5.0f, - 4.0f, 3.0f, 2.0f, 1.0f, 0.0f)); -} -template <> -EIGEN_STRONG_INLINE Packet8d plset(const double& a) { - return _mm512_add_pd(_mm512_set1_pd(a), - _mm512_set_pd(7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0)); -} - -template <> -EIGEN_STRONG_INLINE Packet16f padd(const Packet16f& a, - const Packet16f& b) { - return _mm512_add_ps(a, b); -} -template <> -EIGEN_STRONG_INLINE Packet8d padd(const Packet8d& a, - const Packet8d& b) { - return _mm512_add_pd(a, b); -} - -template <> -EIGEN_STRONG_INLINE Packet16f psub(const Packet16f& a, - const Packet16f& b) { - return _mm512_sub_ps(a, b); -} -template <> -EIGEN_STRONG_INLINE Packet8d psub(const Packet8d& a, - const Packet8d& b) { - return _mm512_sub_pd(a, b); -} - -template <> -EIGEN_STRONG_INLINE Packet16f pnegate(const Packet16f& a) { - return _mm512_sub_ps(_mm512_set1_ps(0.0), a); -} -template <> -EIGEN_STRONG_INLINE Packet8d pnegate(const Packet8d& a) { - return _mm512_sub_pd(_mm512_set1_pd(0.0), a); -} - -template <> -EIGEN_STRONG_INLINE Packet16f pconj(const Packet16f& a) { - return a; -} -template <> -EIGEN_STRONG_INLINE Packet8d pconj(const Packet8d& a) { - return a; -} -template <> -EIGEN_STRONG_INLINE Packet16i pconj(const Packet16i& a) { - return a; -} - -template <> -EIGEN_STRONG_INLINE Packet16f pmul(const Packet16f& a, - const Packet16f& b) { - return _mm512_mul_ps(a, b); -} -template <> -EIGEN_STRONG_INLINE Packet8d pmul(const Packet8d& a, - const Packet8d& b) { - return _mm512_mul_pd(a, b); -} - -template <> -EIGEN_STRONG_INLINE Packet16f pdiv(const Packet16f& a, - const Packet16f& b) { - return _mm512_div_ps(a, b); -} -template <> -EIGEN_STRONG_INLINE Packet8d pdiv(const Packet8d& a, - const Packet8d& b) { - return _mm512_div_pd(a, b); -} - -#ifdef __FMA__ -template <> -EIGEN_STRONG_INLINE Packet16f pmadd(const Packet16f& a, const Packet16f& b, - const Packet16f& c) { - return _mm512_fmadd_ps(a, b, c); -} -template <> -EIGEN_STRONG_INLINE Packet8d pmadd(const Packet8d& a, const Packet8d& b, - const Packet8d& c) { - return _mm512_fmadd_pd(a, b, c); -} -#endif - -template <> -EIGEN_STRONG_INLINE Packet16f pmin(const Packet16f& a, - const Packet16f& b) { - return _mm512_min_ps(a, b); -} -template <> -EIGEN_STRONG_INLINE Packet8d pmin(const Packet8d& a, - const Packet8d& b) { - return _mm512_min_pd(a, b); -} - -template <> -EIGEN_STRONG_INLINE Packet16f pmax(const Packet16f& a, - const Packet16f& b) { - return _mm512_max_ps(a, b); -} -template <> -EIGEN_STRONG_INLINE Packet8d pmax(const Packet8d& a, - const Packet8d& b) { - return _mm512_max_pd(a, b); -} - -template <> -EIGEN_STRONG_INLINE Packet16f pand(const Packet16f& a, - const Packet16f& b) { -#ifdef EIGEN_VECTORIZE_AVX512DQ - return _mm512_and_ps(a, b); -#else - Packet16f res = _mm512_undefined_ps(); - Packet4f lane0_a = _mm512_extractf32x4_ps(a, 0); - Packet4f lane0_b = _mm512_extractf32x4_ps(b, 0); - res = _mm512_insertf32x4(res, _mm_and_ps(lane0_a, lane0_b), 0); - - Packet4f lane1_a = _mm512_extractf32x4_ps(a, 1); - Packet4f lane1_b = _mm512_extractf32x4_ps(b, 1); - res = _mm512_insertf32x4(res, _mm_and_ps(lane1_a, lane1_b), 1); - - Packet4f lane2_a = _mm512_extractf32x4_ps(a, 2); - Packet4f lane2_b = _mm512_extractf32x4_ps(b, 2); - res = _mm512_insertf32x4(res, _mm_and_ps(lane2_a, lane2_b), 2); - - Packet4f lane3_a = _mm512_extractf32x4_ps(a, 3); - Packet4f lane3_b = _mm512_extractf32x4_ps(b, 3); - res = _mm512_insertf32x4(res, _mm_and_ps(lane3_a, lane3_b), 3); - - return res; -#endif -} -template <> -EIGEN_STRONG_INLINE Packet8d pand(const Packet8d& a, - const Packet8d& b) { -#ifdef EIGEN_VECTORIZE_AVX512DQ - return _mm512_and_pd(a, b); -#else - Packet8d res = _mm512_undefined_pd(); - Packet4d lane0_a = _mm512_extractf64x4_pd(a, 0); - Packet4d lane0_b = _mm512_extractf64x4_pd(b, 0); - res = _mm512_insertf64x4(res, _mm256_and_pd(lane0_a, lane0_b), 0); - - Packet4d lane1_a = _mm512_extractf64x4_pd(a, 1); - Packet4d lane1_b = _mm512_extractf64x4_pd(b, 1); - res = _mm512_insertf64x4(res, _mm256_and_pd(lane1_a, lane1_b), 1); - - return res; -#endif -} -template <> -EIGEN_STRONG_INLINE Packet16f por(const Packet16f& a, - const Packet16f& b) { -#ifdef EIGEN_VECTORIZE_AVX512DQ - return _mm512_or_ps(a, b); -#else - Packet16f res = _mm512_undefined_ps(); - Packet4f lane0_a = _mm512_extractf32x4_ps(a, 0); - Packet4f lane0_b = _mm512_extractf32x4_ps(b, 0); - res = _mm512_insertf32x4(res, _mm_or_ps(lane0_a, lane0_b), 0); - - Packet4f lane1_a = _mm512_extractf32x4_ps(a, 1); - Packet4f lane1_b = _mm512_extractf32x4_ps(b, 1); - res = _mm512_insertf32x4(res, _mm_or_ps(lane1_a, lane1_b), 1); - - Packet4f lane2_a = _mm512_extractf32x4_ps(a, 2); - Packet4f lane2_b = _mm512_extractf32x4_ps(b, 2); - res = _mm512_insertf32x4(res, _mm_or_ps(lane2_a, lane2_b), 2); - - Packet4f lane3_a = _mm512_extractf32x4_ps(a, 3); - Packet4f lane3_b = _mm512_extractf32x4_ps(b, 3); - res = _mm512_insertf32x4(res, _mm_or_ps(lane3_a, lane3_b), 3); - - return res; -#endif -} - -template <> -EIGEN_STRONG_INLINE Packet8d por(const Packet8d& a, - const Packet8d& b) { -#ifdef EIGEN_VECTORIZE_AVX512DQ - return _mm512_or_pd(a, b); -#else - Packet8d res = _mm512_undefined_pd(); - Packet4d lane0_a = _mm512_extractf64x4_pd(a, 0); - Packet4d lane0_b = _mm512_extractf64x4_pd(b, 0); - res = _mm512_insertf64x4(res, _mm256_or_pd(lane0_a, lane0_b), 0); - - Packet4d lane1_a = _mm512_extractf64x4_pd(a, 1); - Packet4d lane1_b = _mm512_extractf64x4_pd(b, 1); - res = _mm512_insertf64x4(res, _mm256_or_pd(lane1_a, lane1_b), 1); - - return res; -#endif -} - -template <> -EIGEN_STRONG_INLINE Packet16f pxor(const Packet16f& a, - const Packet16f& b) { -#ifdef EIGEN_VECTORIZE_AVX512DQ - return _mm512_xor_ps(a, b); -#else - Packet16f res = _mm512_undefined_ps(); - Packet4f lane0_a = _mm512_extractf32x4_ps(a, 0); - Packet4f lane0_b = _mm512_extractf32x4_ps(b, 0); - res = _mm512_insertf32x4(res, _mm_xor_ps(lane0_a, lane0_b), 0); - - Packet4f lane1_a = _mm512_extractf32x4_ps(a, 1); - Packet4f lane1_b = _mm512_extractf32x4_ps(b, 1); - res = _mm512_insertf32x4(res, _mm_xor_ps(lane1_a, lane1_b), 1); - - Packet4f lane2_a = _mm512_extractf32x4_ps(a, 2); - Packet4f lane2_b = _mm512_extractf32x4_ps(b, 2); - res = _mm512_insertf32x4(res, _mm_xor_ps(lane2_a, lane2_b), 2); - - Packet4f lane3_a = _mm512_extractf32x4_ps(a, 3); - Packet4f lane3_b = _mm512_extractf32x4_ps(b, 3); - res = _mm512_insertf32x4(res, _mm_xor_ps(lane3_a, lane3_b), 3); - - return res; -#endif -} -template <> -EIGEN_STRONG_INLINE Packet8d pxor(const Packet8d& a, - const Packet8d& b) { -#ifdef EIGEN_VECTORIZE_AVX512DQ - return _mm512_xor_pd(a, b); -#else - Packet8d res = _mm512_undefined_pd(); - Packet4d lane0_a = _mm512_extractf64x4_pd(a, 0); - Packet4d lane0_b = _mm512_extractf64x4_pd(b, 0); - res = _mm512_insertf64x4(res, _mm256_xor_pd(lane0_a, lane0_b), 0); - - Packet4d lane1_a = _mm512_extractf64x4_pd(a, 1); - Packet4d lane1_b = _mm512_extractf64x4_pd(b, 1); - res = _mm512_insertf64x4(res, _mm256_xor_pd(lane1_a, lane1_b), 1); - - return res; -#endif -} - -template <> -EIGEN_STRONG_INLINE Packet16f pandnot(const Packet16f& a, - const Packet16f& b) { -#ifdef EIGEN_VECTORIZE_AVX512DQ - return _mm512_andnot_ps(a, b); -#else - Packet16f res = _mm512_undefined_ps(); - Packet4f lane0_a = _mm512_extractf32x4_ps(a, 0); - Packet4f lane0_b = _mm512_extractf32x4_ps(b, 0); - res = _mm512_insertf32x4(res, _mm_andnot_ps(lane0_a, lane0_b), 0); - - Packet4f lane1_a = _mm512_extractf32x4_ps(a, 1); - Packet4f lane1_b = _mm512_extractf32x4_ps(b, 1); - res = _mm512_insertf32x4(res, _mm_andnot_ps(lane1_a, lane1_b), 1); - - Packet4f lane2_a = _mm512_extractf32x4_ps(a, 2); - Packet4f lane2_b = _mm512_extractf32x4_ps(b, 2); - res = _mm512_insertf32x4(res, _mm_andnot_ps(lane2_a, lane2_b), 2); - - Packet4f lane3_a = _mm512_extractf32x4_ps(a, 3); - Packet4f lane3_b = _mm512_extractf32x4_ps(b, 3); - res = _mm512_insertf32x4(res, _mm_andnot_ps(lane3_a, lane3_b), 3); - - return res; -#endif -} -template <> -EIGEN_STRONG_INLINE Packet8d pandnot(const Packet8d& a, - const Packet8d& b) { -#ifdef EIGEN_VECTORIZE_AVX512DQ - return _mm512_andnot_pd(a, b); -#else - Packet8d res = _mm512_undefined_pd(); - Packet4d lane0_a = _mm512_extractf64x4_pd(a, 0); - Packet4d lane0_b = _mm512_extractf64x4_pd(b, 0); - res = _mm512_insertf64x4(res, _mm256_andnot_pd(lane0_a, lane0_b), 0); - - Packet4d lane1_a = _mm512_extractf64x4_pd(a, 1); - Packet4d lane1_b = _mm512_extractf64x4_pd(b, 1); - res = _mm512_insertf64x4(res, _mm256_andnot_pd(lane1_a, lane1_b), 1); - - return res; -#endif -} - -template <> -EIGEN_STRONG_INLINE Packet16f pload(const float* from) { - EIGEN_DEBUG_ALIGNED_LOAD return _mm512_load_ps(from); -} -template <> -EIGEN_STRONG_INLINE Packet8d pload(const double* from) { - EIGEN_DEBUG_ALIGNED_LOAD return _mm512_load_pd(from); -} -template <> -EIGEN_STRONG_INLINE Packet16i pload(const int* from) { - EIGEN_DEBUG_ALIGNED_LOAD return _mm512_load_si512( - reinterpret_cast(from)); -} - -template <> -EIGEN_STRONG_INLINE Packet16f ploadu(const float* from) { - EIGEN_DEBUG_UNALIGNED_LOAD return _mm512_loadu_ps(from); -} -template <> -EIGEN_STRONG_INLINE Packet8d ploadu(const double* from) { - EIGEN_DEBUG_UNALIGNED_LOAD return _mm512_loadu_pd(from); -} -template <> -EIGEN_STRONG_INLINE Packet16i ploadu(const int* from) { - EIGEN_DEBUG_UNALIGNED_LOAD return _mm512_loadu_si512( - reinterpret_cast(from)); -} - -// Loads 8 floats from memory a returns the packet -// {a0, a0 a1, a1, a2, a2, a3, a3, a4, a4, a5, a5, a6, a6, a7, a7} -template <> -EIGEN_STRONG_INLINE Packet16f ploaddup(const float* from) { - Packet8f lane0 = _mm256_broadcast_ps((const __m128*)(const void*)from); - // mimic an "inplace" permutation of the lower 128bits using a blend - lane0 = _mm256_blend_ps( - lane0, _mm256_castps128_ps256(_mm_permute_ps( - _mm256_castps256_ps128(lane0), _MM_SHUFFLE(1, 0, 1, 0))), - 15); - // then we can perform a consistent permutation on the global register to get - // everything in shape: - lane0 = _mm256_permute_ps(lane0, _MM_SHUFFLE(3, 3, 2, 2)); - - Packet8f lane1 = _mm256_broadcast_ps((const __m128*)(const void*)(from + 4)); - // mimic an "inplace" permutation of the lower 128bits using a blend - lane1 = _mm256_blend_ps( - lane1, _mm256_castps128_ps256(_mm_permute_ps( - _mm256_castps256_ps128(lane1), _MM_SHUFFLE(1, 0, 1, 0))), - 15); - // then we can perform a consistent permutation on the global register to get - // everything in shape: - lane1 = _mm256_permute_ps(lane1, _MM_SHUFFLE(3, 3, 2, 2)); - -#ifdef EIGEN_VECTORIZE_AVX512DQ - Packet16f res = _mm512_undefined_ps(); - return _mm512_insertf32x8(res, lane0, 0); - return _mm512_insertf32x8(res, lane1, 1); - return res; -#else - Packet16f res = _mm512_undefined_ps(); - res = _mm512_insertf32x4(res, _mm256_extractf128_ps(lane0, 0), 0); - res = _mm512_insertf32x4(res, _mm256_extractf128_ps(lane0, 1), 1); - res = _mm512_insertf32x4(res, _mm256_extractf128_ps(lane1, 0), 2); - res = _mm512_insertf32x4(res, _mm256_extractf128_ps(lane1, 1), 3); - return res; -#endif -} -// Loads 4 doubles from memory a returns the packet {a0, a0 a1, a1, a2, a2, a3, -// a3} -template <> -EIGEN_STRONG_INLINE Packet8d ploaddup(const double* from) { - Packet4d lane0 = _mm256_broadcast_pd((const __m128d*)(const void*)from); - lane0 = _mm256_permute_pd(lane0, 3 << 2); - - Packet4d lane1 = _mm256_broadcast_pd((const __m128d*)(const void*)(from + 2)); - lane1 = _mm256_permute_pd(lane1, 3 << 2); - - Packet8d res = _mm512_undefined_pd(); - res = _mm512_insertf64x4(res, lane0, 0); - return _mm512_insertf64x4(res, lane1, 1); -} - -// Loads 4 floats from memory a returns the packet -// {a0, a0 a0, a0, a1, a1, a1, a1, a2, a2, a2, a2, a3, a3, a3, a3} -template <> -EIGEN_STRONG_INLINE Packet16f ploadquad(const float* from) { - Packet16f tmp = _mm512_undefined_ps(); - tmp = _mm512_insertf32x4(tmp, _mm_load_ps1(from), 0); - tmp = _mm512_insertf32x4(tmp, _mm_load_ps1(from + 1), 1); - tmp = _mm512_insertf32x4(tmp, _mm_load_ps1(from + 2), 2); - tmp = _mm512_insertf32x4(tmp, _mm_load_ps1(from + 3), 3); - return tmp; -} -// Loads 2 doubles from memory a returns the packet -// {a0, a0 a0, a0, a1, a1, a1, a1} -template <> -EIGEN_STRONG_INLINE Packet8d ploadquad(const double* from) { - Packet8d tmp = _mm512_undefined_pd(); - Packet2d tmp0 = _mm_load_pd1(from); - Packet2d tmp1 = _mm_load_pd1(from + 1); - Packet4d lane0 = _mm256_broadcastsd_pd(tmp0); - Packet4d lane1 = _mm256_broadcastsd_pd(tmp1); - tmp = _mm512_insertf64x4(tmp, lane0, 0); - return _mm512_insertf64x4(tmp, lane1, 1); -} - -template <> -EIGEN_STRONG_INLINE void pstore(float* to, const Packet16f& from) { - EIGEN_DEBUG_ALIGNED_STORE _mm512_store_ps(to, from); -} -template <> -EIGEN_STRONG_INLINE void pstore(double* to, const Packet8d& from) { - EIGEN_DEBUG_ALIGNED_STORE _mm512_store_pd(to, from); -} -template <> -EIGEN_STRONG_INLINE void pstore(int* to, const Packet16i& from) { - EIGEN_DEBUG_ALIGNED_STORE _mm512_storeu_si512(reinterpret_cast<__m512i*>(to), - from); -} - -template <> -EIGEN_STRONG_INLINE void pstoreu(float* to, const Packet16f& from) { - EIGEN_DEBUG_UNALIGNED_STORE _mm512_storeu_ps(to, from); -} -template <> -EIGEN_STRONG_INLINE void pstoreu(double* to, const Packet8d& from) { - EIGEN_DEBUG_UNALIGNED_STORE _mm512_storeu_pd(to, from); -} -template <> -EIGEN_STRONG_INLINE void pstoreu(int* to, const Packet16i& from) { - EIGEN_DEBUG_UNALIGNED_STORE _mm512_storeu_si512( - reinterpret_cast<__m512i*>(to), from); -} - -template <> -EIGEN_DEVICE_FUNC inline Packet16f pgather(const float* from, - Index stride) { - Packet16i stride_vector = _mm512_set1_epi32(stride); - Packet16i stride_multiplier = - _mm512_set_epi32(15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0); - Packet16i indices = _mm512_mullo_epi32(stride_vector, stride_multiplier); - - return _mm512_i32gather_ps(indices, from, 4); -} -template <> -EIGEN_DEVICE_FUNC inline Packet8d pgather(const double* from, - Index stride) { - Packet8i stride_vector = _mm256_set1_epi32(stride); - Packet8i stride_multiplier = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0); - Packet8i indices = _mm256_mullo_epi32(stride_vector, stride_multiplier); - - return _mm512_i32gather_pd(indices, from, 8); -} - -template <> -EIGEN_DEVICE_FUNC inline void pscatter(float* to, - const Packet16f& from, - Index stride) { - Packet16i stride_vector = _mm512_set1_epi32(stride); - Packet16i stride_multiplier = - _mm512_set_epi32(15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0); - Packet16i indices = _mm512_mullo_epi32(stride_vector, stride_multiplier); - _mm512_i32scatter_ps(to, indices, from, 4); -} -template <> -EIGEN_DEVICE_FUNC inline void pscatter(double* to, - const Packet8d& from, - Index stride) { - Packet8i stride_vector = _mm256_set1_epi32(stride); - Packet8i stride_multiplier = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0); - Packet8i indices = _mm256_mullo_epi32(stride_vector, stride_multiplier); - _mm512_i32scatter_pd(to, indices, from, 8); -} - -template <> -EIGEN_STRONG_INLINE void pstore1(float* to, const float& a) { - Packet16f pa = pset1(a); - pstore(to, pa); -} -template <> -EIGEN_STRONG_INLINE void pstore1(double* to, const double& a) { - Packet8d pa = pset1(a); - pstore(to, pa); -} -template <> -EIGEN_STRONG_INLINE void pstore1(int* to, const int& a) { - Packet16i pa = pset1(a); - pstore(to, pa); -} - -template<> EIGEN_STRONG_INLINE void prefetch(const float* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } -template<> EIGEN_STRONG_INLINE void prefetch(const double* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } -template<> EIGEN_STRONG_INLINE void prefetch(const int* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } - -template <> -EIGEN_STRONG_INLINE float pfirst(const Packet16f& a) { - return _mm_cvtss_f32(_mm512_extractf32x4_ps(a, 0)); -} -template <> -EIGEN_STRONG_INLINE double pfirst(const Packet8d& a) { - return _mm_cvtsd_f64(_mm256_extractf128_pd(_mm512_extractf64x4_pd(a, 0), 0)); -} -template <> -EIGEN_STRONG_INLINE int pfirst(const Packet16i& a) { - return _mm_extract_epi32(_mm512_extracti32x4_epi32(a, 0), 0); -} - -template<> EIGEN_STRONG_INLINE Packet16f preverse(const Packet16f& a) -{ - return _mm512_permutexvar_ps(_mm512_set_epi32(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15), a); -} - -template<> EIGEN_STRONG_INLINE Packet8d preverse(const Packet8d& a) -{ - return _mm512_permutexvar_pd(_mm512_set_epi32(0, 0, 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7), a); -} - -template<> EIGEN_STRONG_INLINE Packet16f pabs(const Packet16f& a) -{ - // _mm512_abs_ps intrinsic not found, so hack around it - return _mm512_castsi512_ps(_mm512_and_si512(_mm512_castps_si512(a), _mm512_set1_epi32(0x7fffffff))); -} -template <> -EIGEN_STRONG_INLINE Packet8d pabs(const Packet8d& a) { - // _mm512_abs_ps intrinsic not found, so hack around it - return _mm512_castsi512_pd(_mm512_and_si512(_mm512_castpd_si512(a), - _mm512_set1_epi64(0x7fffffffffffffff))); -} - -#ifdef EIGEN_VECTORIZE_AVX512DQ -// AVX512F does not define _mm512_extractf32x8_ps to extract _m256 from _m512 -#define EIGEN_EXTRACT_8f_FROM_16f(INPUT, OUTPUT) \ - __m256 OUTPUT##_0 = _mm512_extractf32x8_ps(INPUT, 0) __m256 OUTPUT##_1 = \ - _mm512_extractf32x8_ps(INPUT, 1) -#else -#define EIGEN_EXTRACT_8f_FROM_16f(INPUT, OUTPUT) \ - __m256 OUTPUT##_0 = _mm256_insertf128_ps( \ - _mm256_castps128_ps256(_mm512_extractf32x4_ps(INPUT, 0)), \ - _mm512_extractf32x4_ps(INPUT, 1), 1); \ - __m256 OUTPUT##_1 = _mm256_insertf128_ps( \ - _mm256_castps128_ps256(_mm512_extractf32x4_ps(INPUT, 2)), \ - _mm512_extractf32x4_ps(INPUT, 3), 1); -#endif - -#ifdef EIGEN_VECTORIZE_AVX512DQ -#define EIGEN_INSERT_8f_INTO_16f(OUTPUT, INPUTA, INPUTB) \ - OUTPUT = _mm512_insertf32x8(OUTPUT, INPUTA, 0); \ - OUTPUT = _mm512_insertf32x8(OUTPUT, INPUTB, 1); -#else -#define EIGEN_INSERT_8f_INTO_16f(OUTPUT, INPUTA, INPUTB) \ - OUTPUT = _mm512_insertf32x4(OUTPUT, _mm256_extractf128_ps(INPUTA, 0), 0); \ - OUTPUT = _mm512_insertf32x4(OUTPUT, _mm256_extractf128_ps(INPUTA, 1), 1); \ - OUTPUT = _mm512_insertf32x4(OUTPUT, _mm256_extractf128_ps(INPUTB, 0), 2); \ - OUTPUT = _mm512_insertf32x4(OUTPUT, _mm256_extractf128_ps(INPUTB, 1), 3); -#endif -template<> EIGEN_STRONG_INLINE Packet16f preduxp(const Packet16f* -vecs) -{ - EIGEN_EXTRACT_8f_FROM_16f(vecs[0], vecs0); - EIGEN_EXTRACT_8f_FROM_16f(vecs[1], vecs1); - EIGEN_EXTRACT_8f_FROM_16f(vecs[2], vecs2); - EIGEN_EXTRACT_8f_FROM_16f(vecs[3], vecs3); - EIGEN_EXTRACT_8f_FROM_16f(vecs[4], vecs4); - EIGEN_EXTRACT_8f_FROM_16f(vecs[5], vecs5); - EIGEN_EXTRACT_8f_FROM_16f(vecs[6], vecs6); - EIGEN_EXTRACT_8f_FROM_16f(vecs[7], vecs7); - EIGEN_EXTRACT_8f_FROM_16f(vecs[8], vecs8); - EIGEN_EXTRACT_8f_FROM_16f(vecs[9], vecs9); - EIGEN_EXTRACT_8f_FROM_16f(vecs[10], vecs10); - EIGEN_EXTRACT_8f_FROM_16f(vecs[11], vecs11); - EIGEN_EXTRACT_8f_FROM_16f(vecs[12], vecs12); - EIGEN_EXTRACT_8f_FROM_16f(vecs[13], vecs13); - EIGEN_EXTRACT_8f_FROM_16f(vecs[14], vecs14); - EIGEN_EXTRACT_8f_FROM_16f(vecs[15], vecs15); - - __m256 hsum1 = _mm256_hadd_ps(vecs0_0, vecs1_0); - __m256 hsum2 = _mm256_hadd_ps(vecs2_0, vecs3_0); - __m256 hsum3 = _mm256_hadd_ps(vecs4_0, vecs5_0); - __m256 hsum4 = _mm256_hadd_ps(vecs6_0, vecs7_0); - - __m256 hsum5 = _mm256_hadd_ps(hsum1, hsum1); - __m256 hsum6 = _mm256_hadd_ps(hsum2, hsum2); - __m256 hsum7 = _mm256_hadd_ps(hsum3, hsum3); - __m256 hsum8 = _mm256_hadd_ps(hsum4, hsum4); - - __m256 perm1 = _mm256_permute2f128_ps(hsum5, hsum5, 0x23); - __m256 perm2 = _mm256_permute2f128_ps(hsum6, hsum6, 0x23); - __m256 perm3 = _mm256_permute2f128_ps(hsum7, hsum7, 0x23); - __m256 perm4 = _mm256_permute2f128_ps(hsum8, hsum8, 0x23); - - __m256 sum1 = _mm256_add_ps(perm1, hsum5); - __m256 sum2 = _mm256_add_ps(perm2, hsum6); - __m256 sum3 = _mm256_add_ps(perm3, hsum7); - __m256 sum4 = _mm256_add_ps(perm4, hsum8); - - __m256 blend1 = _mm256_blend_ps(sum1, sum2, 0xcc); - __m256 blend2 = _mm256_blend_ps(sum3, sum4, 0xcc); - - __m256 final = _mm256_blend_ps(blend1, blend2, 0xf0); - - hsum1 = _mm256_hadd_ps(vecs0_1, vecs1_1); - hsum2 = _mm256_hadd_ps(vecs2_1, vecs3_1); - hsum3 = _mm256_hadd_ps(vecs4_1, vecs5_1); - hsum4 = _mm256_hadd_ps(vecs6_1, vecs7_1); - - hsum5 = _mm256_hadd_ps(hsum1, hsum1); - hsum6 = _mm256_hadd_ps(hsum2, hsum2); - hsum7 = _mm256_hadd_ps(hsum3, hsum3); - hsum8 = _mm256_hadd_ps(hsum4, hsum4); - - perm1 = _mm256_permute2f128_ps(hsum5, hsum5, 0x23); - perm2 = _mm256_permute2f128_ps(hsum6, hsum6, 0x23); - perm3 = _mm256_permute2f128_ps(hsum7, hsum7, 0x23); - perm4 = _mm256_permute2f128_ps(hsum8, hsum8, 0x23); - - sum1 = _mm256_add_ps(perm1, hsum5); - sum2 = _mm256_add_ps(perm2, hsum6); - sum3 = _mm256_add_ps(perm3, hsum7); - sum4 = _mm256_add_ps(perm4, hsum8); - - blend1 = _mm256_blend_ps(sum1, sum2, 0xcc); - blend2 = _mm256_blend_ps(sum3, sum4, 0xcc); - - final = padd(final, _mm256_blend_ps(blend1, blend2, 0xf0)); - - hsum1 = _mm256_hadd_ps(vecs8_0, vecs9_0); - hsum2 = _mm256_hadd_ps(vecs10_0, vecs11_0); - hsum3 = _mm256_hadd_ps(vecs12_0, vecs13_0); - hsum4 = _mm256_hadd_ps(vecs14_0, vecs15_0); - - hsum5 = _mm256_hadd_ps(hsum1, hsum1); - hsum6 = _mm256_hadd_ps(hsum2, hsum2); - hsum7 = _mm256_hadd_ps(hsum3, hsum3); - hsum8 = _mm256_hadd_ps(hsum4, hsum4); - - perm1 = _mm256_permute2f128_ps(hsum5, hsum5, 0x23); - perm2 = _mm256_permute2f128_ps(hsum6, hsum6, 0x23); - perm3 = _mm256_permute2f128_ps(hsum7, hsum7, 0x23); - perm4 = _mm256_permute2f128_ps(hsum8, hsum8, 0x23); - - sum1 = _mm256_add_ps(perm1, hsum5); - sum2 = _mm256_add_ps(perm2, hsum6); - sum3 = _mm256_add_ps(perm3, hsum7); - sum4 = _mm256_add_ps(perm4, hsum8); - - blend1 = _mm256_blend_ps(sum1, sum2, 0xcc); - blend2 = _mm256_blend_ps(sum3, sum4, 0xcc); - - __m256 final_1 = _mm256_blend_ps(blend1, blend2, 0xf0); - - hsum1 = _mm256_hadd_ps(vecs8_1, vecs9_1); - hsum2 = _mm256_hadd_ps(vecs10_1, vecs11_1); - hsum3 = _mm256_hadd_ps(vecs12_1, vecs13_1); - hsum4 = _mm256_hadd_ps(vecs14_1, vecs15_1); - - hsum5 = _mm256_hadd_ps(hsum1, hsum1); - hsum6 = _mm256_hadd_ps(hsum2, hsum2); - hsum7 = _mm256_hadd_ps(hsum3, hsum3); - hsum8 = _mm256_hadd_ps(hsum4, hsum4); - - perm1 = _mm256_permute2f128_ps(hsum5, hsum5, 0x23); - perm2 = _mm256_permute2f128_ps(hsum6, hsum6, 0x23); - perm3 = _mm256_permute2f128_ps(hsum7, hsum7, 0x23); - perm4 = _mm256_permute2f128_ps(hsum8, hsum8, 0x23); - - sum1 = _mm256_add_ps(perm1, hsum5); - sum2 = _mm256_add_ps(perm2, hsum6); - sum3 = _mm256_add_ps(perm3, hsum7); - sum4 = _mm256_add_ps(perm4, hsum8); - - blend1 = _mm256_blend_ps(sum1, sum2, 0xcc); - blend2 = _mm256_blend_ps(sum3, sum4, 0xcc); - - final_1 = padd(final_1, _mm256_blend_ps(blend1, blend2, 0xf0)); - - __m512 final_output; - - EIGEN_INSERT_8f_INTO_16f(final_output, final, final_1); - return final_output; -} - -template<> EIGEN_STRONG_INLINE Packet8d preduxp(const Packet8d* vecs) -{ - Packet4d vecs0_0 = _mm512_extractf64x4_pd(vecs[0], 0); - Packet4d vecs0_1 = _mm512_extractf64x4_pd(vecs[0], 1); - - Packet4d vecs1_0 = _mm512_extractf64x4_pd(vecs[1], 0); - Packet4d vecs1_1 = _mm512_extractf64x4_pd(vecs[1], 1); - - Packet4d vecs2_0 = _mm512_extractf64x4_pd(vecs[2], 0); - Packet4d vecs2_1 = _mm512_extractf64x4_pd(vecs[2], 1); - - Packet4d vecs3_0 = _mm512_extractf64x4_pd(vecs[3], 0); - Packet4d vecs3_1 = _mm512_extractf64x4_pd(vecs[3], 1); - - Packet4d vecs4_0 = _mm512_extractf64x4_pd(vecs[4], 0); - Packet4d vecs4_1 = _mm512_extractf64x4_pd(vecs[4], 1); - - Packet4d vecs5_0 = _mm512_extractf64x4_pd(vecs[5], 0); - Packet4d vecs5_1 = _mm512_extractf64x4_pd(vecs[5], 1); - - Packet4d vecs6_0 = _mm512_extractf64x4_pd(vecs[6], 0); - Packet4d vecs6_1 = _mm512_extractf64x4_pd(vecs[6], 1); - - Packet4d vecs7_0 = _mm512_extractf64x4_pd(vecs[7], 0); - Packet4d vecs7_1 = _mm512_extractf64x4_pd(vecs[7], 1); - - Packet4d tmp0, tmp1; - - tmp0 = _mm256_hadd_pd(vecs0_0, vecs1_0); - tmp0 = _mm256_add_pd(tmp0, _mm256_permute2f128_pd(tmp0, tmp0, 1)); - - tmp1 = _mm256_hadd_pd(vecs2_0, vecs3_0); - tmp1 = _mm256_add_pd(tmp1, _mm256_permute2f128_pd(tmp1, tmp1, 1)); - - __m256d final_0 = _mm256_blend_pd(tmp0, tmp1, 0xC); - - tmp0 = _mm256_hadd_pd(vecs0_1, vecs1_1); - tmp0 = _mm256_add_pd(tmp0, _mm256_permute2f128_pd(tmp0, tmp0, 1)); - - tmp1 = _mm256_hadd_pd(vecs2_1, vecs3_1); - tmp1 = _mm256_add_pd(tmp1, _mm256_permute2f128_pd(tmp1, tmp1, 1)); - - final_0 = padd(final_0, _mm256_blend_pd(tmp0, tmp1, 0xC)); - - tmp0 = _mm256_hadd_pd(vecs4_0, vecs5_0); - tmp0 = _mm256_add_pd(tmp0, _mm256_permute2f128_pd(tmp0, tmp0, 1)); - - tmp1 = _mm256_hadd_pd(vecs6_0, vecs7_0); - tmp1 = _mm256_add_pd(tmp1, _mm256_permute2f128_pd(tmp1, tmp1, 1)); - - __m256d final_1 = _mm256_blend_pd(tmp0, tmp1, 0xC); - - tmp0 = _mm256_hadd_pd(vecs4_1, vecs5_1); - tmp0 = _mm256_add_pd(tmp0, _mm256_permute2f128_pd(tmp0, tmp0, 1)); - - tmp1 = _mm256_hadd_pd(vecs6_1, vecs7_1); - tmp1 = _mm256_add_pd(tmp1, _mm256_permute2f128_pd(tmp1, tmp1, 1)); - - final_1 = padd(final_1, _mm256_blend_pd(tmp0, tmp1, 0xC)); - - __m512d final_output = _mm512_insertf64x4(final_output, final_0, 0); - - return _mm512_insertf64x4(final_output, final_1, 1); -} - -template <> -EIGEN_STRONG_INLINE float predux(const Packet16f& a) { - //#ifdef EIGEN_VECTORIZE_AVX512DQ -#if 0 - Packet8f lane0 = _mm512_extractf32x8_ps(a, 0); - Packet8f lane1 = _mm512_extractf32x8_ps(a, 1); - Packet8f sum = padd(lane0, lane1); - Packet8f tmp0 = _mm256_hadd_ps(sum, _mm256_permute2f128_ps(a, a, 1)); - tmp0 = _mm256_hadd_ps(tmp0, tmp0); - return pfirst(_mm256_hadd_ps(tmp0, tmp0)); -#else - Packet4f lane0 = _mm512_extractf32x4_ps(a, 0); - Packet4f lane1 = _mm512_extractf32x4_ps(a, 1); - Packet4f lane2 = _mm512_extractf32x4_ps(a, 2); - Packet4f lane3 = _mm512_extractf32x4_ps(a, 3); - Packet4f sum = padd(padd(lane0, lane1), padd(lane2, lane3)); - sum = _mm_hadd_ps(sum, sum); - sum = _mm_hadd_ps(sum, _mm_permute_ps(sum, 1)); - return pfirst(sum); -#endif -} -template <> -EIGEN_STRONG_INLINE double predux(const Packet8d& a) { - Packet4d lane0 = _mm512_extractf64x4_pd(a, 0); - Packet4d lane1 = _mm512_extractf64x4_pd(a, 1); - Packet4d sum = padd(lane0, lane1); - Packet4d tmp0 = _mm256_hadd_pd(sum, _mm256_permute2f128_pd(sum, sum, 1)); - return pfirst(_mm256_hadd_pd(tmp0, tmp0)); -} - -template <> -EIGEN_STRONG_INLINE Packet8f predux_downto4(const Packet16f& a) { -#ifdef EIGEN_VECTORIZE_AVX512DQ - Packet8f lane0 = _mm512_extractf32x8_ps(a, 0); - Packet8f lane1 = _mm512_extractf32x8_ps(a, 1); - return padd(lane0, lane1); -#else - Packet4f lane0 = _mm512_extractf32x4_ps(a, 0); - Packet4f lane1 = _mm512_extractf32x4_ps(a, 1); - Packet4f lane2 = _mm512_extractf32x4_ps(a, 2); - Packet4f lane3 = _mm512_extractf32x4_ps(a, 3); - Packet4f sum0 = padd(lane0, lane2); - Packet4f sum1 = padd(lane1, lane3); - return _mm256_insertf128_ps(_mm256_castps128_ps256(sum0), sum1, 1); -#endif -} -template <> -EIGEN_STRONG_INLINE Packet4d predux_downto4(const Packet8d& a) { - Packet4d lane0 = _mm512_extractf64x4_pd(a, 0); - Packet4d lane1 = _mm512_extractf64x4_pd(a, 1); - Packet4d res = padd(lane0, lane1); - return res; -} - -template <> -EIGEN_STRONG_INLINE float predux_mul(const Packet16f& a) { -//#ifdef EIGEN_VECTORIZE_AVX512DQ -#if 0 - Packet8f lane0 = _mm512_extractf32x8_ps(a, 0); - Packet8f lane1 = _mm512_extractf32x8_ps(a, 1); - Packet8f res = pmul(lane0, lane1); - res = pmul(res, _mm256_permute2f128_ps(res, res, 1)); - res = pmul(res, _mm_permute_ps(res, _MM_SHUFFLE(0, 0, 3, 2))); - return pfirst(pmul(res, _mm_permute_ps(res, _MM_SHUFFLE(0, 0, 0, 1)))); -#else - Packet4f lane0 = _mm512_extractf32x4_ps(a, 0); - Packet4f lane1 = _mm512_extractf32x4_ps(a, 1); - Packet4f lane2 = _mm512_extractf32x4_ps(a, 2); - Packet4f lane3 = _mm512_extractf32x4_ps(a, 3); - Packet4f res = pmul(pmul(lane0, lane1), pmul(lane2, lane3)); - res = pmul(res, _mm_permute_ps(res, _MM_SHUFFLE(0, 0, 3, 2))); - return pfirst(pmul(res, _mm_permute_ps(res, _MM_SHUFFLE(0, 0, 0, 1)))); -#endif -} -template <> -EIGEN_STRONG_INLINE double predux_mul(const Packet8d& a) { - Packet4d lane0 = _mm512_extractf64x4_pd(a, 0); - Packet4d lane1 = _mm512_extractf64x4_pd(a, 1); - Packet4d res = pmul(lane0, lane1); - res = pmul(res, _mm256_permute2f128_pd(res, res, 1)); - return pfirst(pmul(res, _mm256_shuffle_pd(res, res, 1))); -} - -template <> -EIGEN_STRONG_INLINE float predux_min(const Packet16f& a) { - Packet4f lane0 = _mm512_extractf32x4_ps(a, 0); - Packet4f lane1 = _mm512_extractf32x4_ps(a, 1); - Packet4f lane2 = _mm512_extractf32x4_ps(a, 2); - Packet4f lane3 = _mm512_extractf32x4_ps(a, 3); - Packet4f res = _mm_min_ps(_mm_min_ps(lane0, lane1), _mm_min_ps(lane2, lane3)); - res = _mm_min_ps(res, _mm_permute_ps(res, _MM_SHUFFLE(0, 0, 3, 2))); - return pfirst(_mm_min_ps(res, _mm_permute_ps(res, _MM_SHUFFLE(0, 0, 0, 1)))); -} -template <> -EIGEN_STRONG_INLINE double predux_min(const Packet8d& a) { - Packet4d lane0 = _mm512_extractf64x4_pd(a, 0); - Packet4d lane1 = _mm512_extractf64x4_pd(a, 1); - Packet4d res = _mm256_min_pd(lane0, lane1); - res = _mm256_min_pd(res, _mm256_permute2f128_pd(res, res, 1)); - return pfirst(_mm256_min_pd(res, _mm256_shuffle_pd(res, res, 1))); -} - -template <> -EIGEN_STRONG_INLINE float predux_max(const Packet16f& a) { - Packet4f lane0 = _mm512_extractf32x4_ps(a, 0); - Packet4f lane1 = _mm512_extractf32x4_ps(a, 1); - Packet4f lane2 = _mm512_extractf32x4_ps(a, 2); - Packet4f lane3 = _mm512_extractf32x4_ps(a, 3); - Packet4f res = _mm_max_ps(_mm_max_ps(lane0, lane1), _mm_max_ps(lane2, lane3)); - res = _mm_max_ps(res, _mm_permute_ps(res, _MM_SHUFFLE(0, 0, 3, 2))); - return pfirst(_mm_max_ps(res, _mm_permute_ps(res, _MM_SHUFFLE(0, 0, 0, 1)))); -} -template <> -EIGEN_STRONG_INLINE double predux_max(const Packet8d& a) { - Packet4d lane0 = _mm512_extractf64x4_pd(a, 0); - Packet4d lane1 = _mm512_extractf64x4_pd(a, 1); - Packet4d res = _mm256_max_pd(lane0, lane1); - res = _mm256_max_pd(res, _mm256_permute2f128_pd(res, res, 1)); - return pfirst(_mm256_max_pd(res, _mm256_shuffle_pd(res, res, 1))); -} - -template -struct palign_impl { - static EIGEN_STRONG_INLINE void run(Packet16f& first, - const Packet16f& second) { - if (Offset != 0) { - __m512i first_idx = _mm512_set_epi32( - Offset + 15, Offset + 14, Offset + 13, Offset + 12, Offset + 11, - Offset + 10, Offset + 9, Offset + 8, Offset + 7, Offset + 6, - Offset + 5, Offset + 4, Offset + 3, Offset + 2, Offset + 1, Offset); - - __m512i second_idx = - _mm512_set_epi32(Offset - 1, Offset - 2, Offset - 3, Offset - 4, - Offset - 5, Offset - 6, Offset - 7, Offset - 8, - Offset - 9, Offset - 10, Offset - 11, Offset - 12, - Offset - 13, Offset - 14, Offset - 15, Offset - 16); - - unsigned short mask = 0xFFFF; - mask <<= (16 - Offset); - - first = _mm512_permutexvar_ps(first_idx, first); - Packet16f tmp = _mm512_permutexvar_ps(second_idx, second); - first = _mm512_mask_blend_ps(mask, first, tmp); - } - } -}; -template -struct palign_impl { - static EIGEN_STRONG_INLINE void run(Packet8d& first, const Packet8d& second) { - if (Offset != 0) { - __m512i first_idx = _mm512_set_epi32( - 0, Offset + 7, 0, Offset + 6, 0, Offset + 5, 0, Offset + 4, 0, - Offset + 3, 0, Offset + 2, 0, Offset + 1, 0, Offset); - - __m512i second_idx = _mm512_set_epi32( - 0, Offset - 1, 0, Offset - 2, 0, Offset - 3, 0, Offset - 4, 0, - Offset - 5, 0, Offset - 6, 0, Offset - 7, 0, Offset - 8); - - unsigned char mask = 0xFF; - mask <<= (8 - Offset); - - first = _mm512_permutexvar_pd(first_idx, first); - Packet8d tmp = _mm512_permutexvar_pd(second_idx, second); - first = _mm512_mask_blend_pd(mask, first, tmp); - } - } -}; - - -#define PACK_OUTPUT(OUTPUT, INPUT, INDEX, STRIDE) \ - EIGEN_INSERT_8f_INTO_16f(OUTPUT[INDEX], INPUT[INDEX], INPUT[INDEX + STRIDE]); - -EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& kernel) { - __m512 T0 = _mm512_unpacklo_ps(kernel.packet[0], kernel.packet[1]); - __m512 T1 = _mm512_unpackhi_ps(kernel.packet[0], kernel.packet[1]); - __m512 T2 = _mm512_unpacklo_ps(kernel.packet[2], kernel.packet[3]); - __m512 T3 = _mm512_unpackhi_ps(kernel.packet[2], kernel.packet[3]); - __m512 T4 = _mm512_unpacklo_ps(kernel.packet[4], kernel.packet[5]); - __m512 T5 = _mm512_unpackhi_ps(kernel.packet[4], kernel.packet[5]); - __m512 T6 = _mm512_unpacklo_ps(kernel.packet[6], kernel.packet[7]); - __m512 T7 = _mm512_unpackhi_ps(kernel.packet[6], kernel.packet[7]); - __m512 T8 = _mm512_unpacklo_ps(kernel.packet[8], kernel.packet[9]); - __m512 T9 = _mm512_unpackhi_ps(kernel.packet[8], kernel.packet[9]); - __m512 T10 = _mm512_unpacklo_ps(kernel.packet[10], kernel.packet[11]); - __m512 T11 = _mm512_unpackhi_ps(kernel.packet[10], kernel.packet[11]); - __m512 T12 = _mm512_unpacklo_ps(kernel.packet[12], kernel.packet[13]); - __m512 T13 = _mm512_unpackhi_ps(kernel.packet[12], kernel.packet[13]); - __m512 T14 = _mm512_unpacklo_ps(kernel.packet[14], kernel.packet[15]); - __m512 T15 = _mm512_unpackhi_ps(kernel.packet[14], kernel.packet[15]); - __m512 S0 = _mm512_shuffle_ps(T0, T2, _MM_SHUFFLE(1, 0, 1, 0)); - __m512 S1 = _mm512_shuffle_ps(T0, T2, _MM_SHUFFLE(3, 2, 3, 2)); - __m512 S2 = _mm512_shuffle_ps(T1, T3, _MM_SHUFFLE(1, 0, 1, 0)); - __m512 S3 = _mm512_shuffle_ps(T1, T3, _MM_SHUFFLE(3, 2, 3, 2)); - __m512 S4 = _mm512_shuffle_ps(T4, T6, _MM_SHUFFLE(1, 0, 1, 0)); - __m512 S5 = _mm512_shuffle_ps(T4, T6, _MM_SHUFFLE(3, 2, 3, 2)); - __m512 S6 = _mm512_shuffle_ps(T5, T7, _MM_SHUFFLE(1, 0, 1, 0)); - __m512 S7 = _mm512_shuffle_ps(T5, T7, _MM_SHUFFLE(3, 2, 3, 2)); - __m512 S8 = _mm512_shuffle_ps(T8, T10, _MM_SHUFFLE(1, 0, 1, 0)); - __m512 S9 = _mm512_shuffle_ps(T8, T10, _MM_SHUFFLE(3, 2, 3, 2)); - __m512 S10 = _mm512_shuffle_ps(T9, T11, _MM_SHUFFLE(1, 0, 1, 0)); - __m512 S11 = _mm512_shuffle_ps(T9, T11, _MM_SHUFFLE(3, 2, 3, 2)); - __m512 S12 = _mm512_shuffle_ps(T12, T14, _MM_SHUFFLE(1, 0, 1, 0)); - __m512 S13 = _mm512_shuffle_ps(T12, T14, _MM_SHUFFLE(3, 2, 3, 2)); - __m512 S14 = _mm512_shuffle_ps(T13, T15, _MM_SHUFFLE(1, 0, 1, 0)); - __m512 S15 = _mm512_shuffle_ps(T13, T15, _MM_SHUFFLE(3, 2, 3, 2)); - - EIGEN_EXTRACT_8f_FROM_16f(S0, S0); - EIGEN_EXTRACT_8f_FROM_16f(S1, S1); - EIGEN_EXTRACT_8f_FROM_16f(S2, S2); - EIGEN_EXTRACT_8f_FROM_16f(S3, S3); - EIGEN_EXTRACT_8f_FROM_16f(S4, S4); - EIGEN_EXTRACT_8f_FROM_16f(S5, S5); - EIGEN_EXTRACT_8f_FROM_16f(S6, S6); - EIGEN_EXTRACT_8f_FROM_16f(S7, S7); - EIGEN_EXTRACT_8f_FROM_16f(S8, S8); - EIGEN_EXTRACT_8f_FROM_16f(S9, S9); - EIGEN_EXTRACT_8f_FROM_16f(S10, S10); - EIGEN_EXTRACT_8f_FROM_16f(S11, S11); - EIGEN_EXTRACT_8f_FROM_16f(S12, S12); - EIGEN_EXTRACT_8f_FROM_16f(S13, S13); - EIGEN_EXTRACT_8f_FROM_16f(S14, S14); - EIGEN_EXTRACT_8f_FROM_16f(S15, S15); - - PacketBlock tmp; - - tmp.packet[0] = _mm256_permute2f128_ps(S0_0, S4_0, 0x20); - tmp.packet[1] = _mm256_permute2f128_ps(S1_0, S5_0, 0x20); - tmp.packet[2] = _mm256_permute2f128_ps(S2_0, S6_0, 0x20); - tmp.packet[3] = _mm256_permute2f128_ps(S3_0, S7_0, 0x20); - tmp.packet[4] = _mm256_permute2f128_ps(S0_0, S4_0, 0x31); - tmp.packet[5] = _mm256_permute2f128_ps(S1_0, S5_0, 0x31); - tmp.packet[6] = _mm256_permute2f128_ps(S2_0, S6_0, 0x31); - tmp.packet[7] = _mm256_permute2f128_ps(S3_0, S7_0, 0x31); - - tmp.packet[8] = _mm256_permute2f128_ps(S0_1, S4_1, 0x20); - tmp.packet[9] = _mm256_permute2f128_ps(S1_1, S5_1, 0x20); - tmp.packet[10] = _mm256_permute2f128_ps(S2_1, S6_1, 0x20); - tmp.packet[11] = _mm256_permute2f128_ps(S3_1, S7_1, 0x20); - tmp.packet[12] = _mm256_permute2f128_ps(S0_1, S4_1, 0x31); - tmp.packet[13] = _mm256_permute2f128_ps(S1_1, S5_1, 0x31); - tmp.packet[14] = _mm256_permute2f128_ps(S2_1, S6_1, 0x31); - tmp.packet[15] = _mm256_permute2f128_ps(S3_1, S7_1, 0x31); - - // Second set of _m256 outputs - tmp.packet[16] = _mm256_permute2f128_ps(S8_0, S12_0, 0x20); - tmp.packet[17] = _mm256_permute2f128_ps(S9_0, S13_0, 0x20); - tmp.packet[18] = _mm256_permute2f128_ps(S10_0, S14_0, 0x20); - tmp.packet[19] = _mm256_permute2f128_ps(S11_0, S15_0, 0x20); - tmp.packet[20] = _mm256_permute2f128_ps(S8_0, S12_0, 0x31); - tmp.packet[21] = _mm256_permute2f128_ps(S9_0, S13_0, 0x31); - tmp.packet[22] = _mm256_permute2f128_ps(S10_0, S14_0, 0x31); - tmp.packet[23] = _mm256_permute2f128_ps(S11_0, S15_0, 0x31); - - tmp.packet[24] = _mm256_permute2f128_ps(S8_1, S12_1, 0x20); - tmp.packet[25] = _mm256_permute2f128_ps(S9_1, S13_1, 0x20); - tmp.packet[26] = _mm256_permute2f128_ps(S10_1, S14_1, 0x20); - tmp.packet[27] = _mm256_permute2f128_ps(S11_1, S15_1, 0x20); - tmp.packet[28] = _mm256_permute2f128_ps(S8_1, S12_1, 0x31); - tmp.packet[29] = _mm256_permute2f128_ps(S9_1, S13_1, 0x31); - tmp.packet[30] = _mm256_permute2f128_ps(S10_1, S14_1, 0x31); - tmp.packet[31] = _mm256_permute2f128_ps(S11_1, S15_1, 0x31); - - // Pack them into the output - PACK_OUTPUT(kernel.packet, tmp.packet, 0, 16); - PACK_OUTPUT(kernel.packet, tmp.packet, 1, 16); - PACK_OUTPUT(kernel.packet, tmp.packet, 2, 16); - PACK_OUTPUT(kernel.packet, tmp.packet, 3, 16); - - PACK_OUTPUT(kernel.packet, tmp.packet, 4, 16); - PACK_OUTPUT(kernel.packet, tmp.packet, 5, 16); - PACK_OUTPUT(kernel.packet, tmp.packet, 6, 16); - PACK_OUTPUT(kernel.packet, tmp.packet, 7, 16); - - PACK_OUTPUT(kernel.packet, tmp.packet, 8, 16); - PACK_OUTPUT(kernel.packet, tmp.packet, 9, 16); - PACK_OUTPUT(kernel.packet, tmp.packet, 10, 16); - PACK_OUTPUT(kernel.packet, tmp.packet, 11, 16); - - PACK_OUTPUT(kernel.packet, tmp.packet, 12, 16); - PACK_OUTPUT(kernel.packet, tmp.packet, 13, 16); - PACK_OUTPUT(kernel.packet, tmp.packet, 14, 16); - PACK_OUTPUT(kernel.packet, tmp.packet, 15, 16); -} -#define PACK_OUTPUT_2(OUTPUT, INPUT, INDEX, STRIDE) \ - EIGEN_INSERT_8f_INTO_16f(OUTPUT[INDEX], INPUT[2 * INDEX], \ - INPUT[2 * INDEX + STRIDE]); - -EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& kernel) { - __m512 T0 = _mm512_unpacklo_ps(kernel.packet[0], kernel.packet[1]); - __m512 T1 = _mm512_unpackhi_ps(kernel.packet[0], kernel.packet[1]); - __m512 T2 = _mm512_unpacklo_ps(kernel.packet[2], kernel.packet[3]); - __m512 T3 = _mm512_unpackhi_ps(kernel.packet[2], kernel.packet[3]); - - __m512 S0 = _mm512_shuffle_ps(T0, T2, _MM_SHUFFLE(1, 0, 1, 0)); - __m512 S1 = _mm512_shuffle_ps(T0, T2, _MM_SHUFFLE(3, 2, 3, 2)); - __m512 S2 = _mm512_shuffle_ps(T1, T3, _MM_SHUFFLE(1, 0, 1, 0)); - __m512 S3 = _mm512_shuffle_ps(T1, T3, _MM_SHUFFLE(3, 2, 3, 2)); - - EIGEN_EXTRACT_8f_FROM_16f(S0, S0); - EIGEN_EXTRACT_8f_FROM_16f(S1, S1); - EIGEN_EXTRACT_8f_FROM_16f(S2, S2); - EIGEN_EXTRACT_8f_FROM_16f(S3, S3); - - PacketBlock tmp; - - tmp.packet[0] = _mm256_permute2f128_ps(S0_0, S1_0, 0x20); - tmp.packet[1] = _mm256_permute2f128_ps(S2_0, S3_0, 0x20); - tmp.packet[2] = _mm256_permute2f128_ps(S0_0, S1_0, 0x31); - tmp.packet[3] = _mm256_permute2f128_ps(S2_0, S3_0, 0x31); - - tmp.packet[4] = _mm256_permute2f128_ps(S0_1, S1_1, 0x20); - tmp.packet[5] = _mm256_permute2f128_ps(S2_1, S3_1, 0x20); - tmp.packet[6] = _mm256_permute2f128_ps(S0_1, S1_1, 0x31); - tmp.packet[7] = _mm256_permute2f128_ps(S2_1, S3_1, 0x31); - - PACK_OUTPUT_2(kernel.packet, tmp.packet, 0, 1); - PACK_OUTPUT_2(kernel.packet, tmp.packet, 1, 1); - PACK_OUTPUT_2(kernel.packet, tmp.packet, 2, 1); - PACK_OUTPUT_2(kernel.packet, tmp.packet, 3, 1); -} - -#define PACK_OUTPUT_SQ_D(OUTPUT, INPUT, INDEX, STRIDE) \ - OUTPUT[INDEX] = _mm512_insertf64x4(OUTPUT[INDEX], INPUT[INDEX], 0); \ - OUTPUT[INDEX] = _mm512_insertf64x4(OUTPUT[INDEX], INPUT[INDEX + STRIDE], 1); - -#define PACK_OUTPUT_D(OUTPUT, INPUT, INDEX, STRIDE) \ - OUTPUT[INDEX] = _mm512_insertf64x4(OUTPUT[INDEX], INPUT[(2 * INDEX)], 0); \ - OUTPUT[INDEX] = \ - _mm512_insertf64x4(OUTPUT[INDEX], INPUT[(2 * INDEX) + STRIDE], 1); - -EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& kernel) { - __m512d T0 = _mm512_shuffle_pd(kernel.packet[0], kernel.packet[1], 0); - __m512d T1 = _mm512_shuffle_pd(kernel.packet[0], kernel.packet[1], 0xff); - __m512d T2 = _mm512_shuffle_pd(kernel.packet[2], kernel.packet[3], 0); - __m512d T3 = _mm512_shuffle_pd(kernel.packet[2], kernel.packet[3], 0xff); - - PacketBlock tmp; - - tmp.packet[0] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T0, 0), - _mm512_extractf64x4_pd(T2, 0), 0x20); - tmp.packet[1] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T1, 0), - _mm512_extractf64x4_pd(T3, 0), 0x20); - tmp.packet[2] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T0, 0), - _mm512_extractf64x4_pd(T2, 0), 0x31); - tmp.packet[3] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T1, 0), - _mm512_extractf64x4_pd(T3, 0), 0x31); - - tmp.packet[4] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T0, 1), - _mm512_extractf64x4_pd(T2, 1), 0x20); - tmp.packet[5] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T1, 1), - _mm512_extractf64x4_pd(T3, 1), 0x20); - tmp.packet[6] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T0, 1), - _mm512_extractf64x4_pd(T2, 1), 0x31); - tmp.packet[7] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T1, 1), - _mm512_extractf64x4_pd(T3, 1), 0x31); - - PACK_OUTPUT_D(kernel.packet, tmp.packet, 0, 1); - PACK_OUTPUT_D(kernel.packet, tmp.packet, 1, 1); - PACK_OUTPUT_D(kernel.packet, tmp.packet, 2, 1); - PACK_OUTPUT_D(kernel.packet, tmp.packet, 3, 1); -} - -EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& kernel) { - __m512d T0 = _mm512_unpacklo_pd(kernel.packet[0], kernel.packet[1]); - __m512d T1 = _mm512_unpackhi_pd(kernel.packet[0], kernel.packet[1]); - __m512d T2 = _mm512_unpacklo_pd(kernel.packet[2], kernel.packet[3]); - __m512d T3 = _mm512_unpackhi_pd(kernel.packet[2], kernel.packet[3]); - __m512d T4 = _mm512_unpacklo_pd(kernel.packet[4], kernel.packet[5]); - __m512d T5 = _mm512_unpackhi_pd(kernel.packet[4], kernel.packet[5]); - __m512d T6 = _mm512_unpacklo_pd(kernel.packet[6], kernel.packet[7]); - __m512d T7 = _mm512_unpackhi_pd(kernel.packet[6], kernel.packet[7]); - - PacketBlock tmp; - - tmp.packet[0] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T0, 0), - _mm512_extractf64x4_pd(T2, 0), 0x20); - tmp.packet[1] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T1, 0), - _mm512_extractf64x4_pd(T3, 0), 0x20); - tmp.packet[2] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T0, 0), - _mm512_extractf64x4_pd(T2, 0), 0x31); - tmp.packet[3] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T1, 0), - _mm512_extractf64x4_pd(T3, 0), 0x31); - - tmp.packet[4] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T0, 1), - _mm512_extractf64x4_pd(T2, 1), 0x20); - tmp.packet[5] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T1, 1), - _mm512_extractf64x4_pd(T3, 1), 0x20); - tmp.packet[6] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T0, 1), - _mm512_extractf64x4_pd(T2, 1), 0x31); - tmp.packet[7] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T1, 1), - _mm512_extractf64x4_pd(T3, 1), 0x31); - - tmp.packet[8] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T4, 0), - _mm512_extractf64x4_pd(T6, 0), 0x20); - tmp.packet[9] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T5, 0), - _mm512_extractf64x4_pd(T7, 0), 0x20); - tmp.packet[10] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T4, 0), - _mm512_extractf64x4_pd(T6, 0), 0x31); - tmp.packet[11] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T5, 0), - _mm512_extractf64x4_pd(T7, 0), 0x31); - - tmp.packet[12] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T4, 1), - _mm512_extractf64x4_pd(T6, 1), 0x20); - tmp.packet[13] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T5, 1), - _mm512_extractf64x4_pd(T7, 1), 0x20); - tmp.packet[14] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T4, 1), - _mm512_extractf64x4_pd(T6, 1), 0x31); - tmp.packet[15] = _mm256_permute2f128_pd(_mm512_extractf64x4_pd(T5, 1), - _mm512_extractf64x4_pd(T7, 1), 0x31); - - PACK_OUTPUT_SQ_D(kernel.packet, tmp.packet, 0, 8); - PACK_OUTPUT_SQ_D(kernel.packet, tmp.packet, 1, 8); - PACK_OUTPUT_SQ_D(kernel.packet, tmp.packet, 2, 8); - PACK_OUTPUT_SQ_D(kernel.packet, tmp.packet, 3, 8); - - PACK_OUTPUT_SQ_D(kernel.packet, tmp.packet, 4, 8); - PACK_OUTPUT_SQ_D(kernel.packet, tmp.packet, 5, 8); - PACK_OUTPUT_SQ_D(kernel.packet, tmp.packet, 6, 8); - PACK_OUTPUT_SQ_D(kernel.packet, tmp.packet, 7, 8); -} -template <> -EIGEN_STRONG_INLINE Packet16f pblend(const Selector<16>& /*ifPacket*/, - const Packet16f& /*thenPacket*/, - const Packet16f& /*elsePacket*/) { - assert(false && "To be implemented"); - return Packet16f(); -} -template <> -EIGEN_STRONG_INLINE Packet8d pblend(const Selector<8>& /*ifPacket*/, - const Packet8d& /*thenPacket*/, - const Packet8d& /*elsePacket*/) { - assert(false && "To be implemented"); - return Packet8d(); -} - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_PACKET_MATH_AVX512_H diff --git a/src/math_meigen/Eigen/src/Core/arch/AltiVec/Complex.h b/src/math_meigen/Eigen/src/Core/arch/AltiVec/Complex.h deleted file mode 100755 index 3e665730c..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/AltiVec/Complex.h +++ /dev/null @@ -1,430 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2010 Gael Guennebaud -// Copyright (C) 2010-2016 Konstantinos Margaritis -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_COMPLEX32_ALTIVEC_H -#define EIGEN_COMPLEX32_ALTIVEC_H - -namespace Eigen { - -namespace internal { - -static Packet4ui p4ui_CONJ_XOR = vec_mergeh((Packet4ui)p4i_ZERO, (Packet4ui)p4f_MZERO);//{ 0x00000000, 0x80000000, 0x00000000, 0x80000000 }; -#ifdef __VSX__ -#if defined(_BIG_ENDIAN) -static Packet2ul p2ul_CONJ_XOR1 = (Packet2ul) vec_sld((Packet4ui) p2d_MZERO, (Packet4ui) p2l_ZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 }; -static Packet2ul p2ul_CONJ_XOR2 = (Packet2ul) vec_sld((Packet4ui) p2l_ZERO, (Packet4ui) p2d_MZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 }; -#else -static Packet2ul p2ul_CONJ_XOR1 = (Packet2ul) vec_sld((Packet4ui) p2l_ZERO, (Packet4ui) p2d_MZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 }; -static Packet2ul p2ul_CONJ_XOR2 = (Packet2ul) vec_sld((Packet4ui) p2d_MZERO, (Packet4ui) p2l_ZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 }; -#endif -#endif - -//---------- float ---------- -struct Packet2cf -{ - EIGEN_STRONG_INLINE explicit Packet2cf() : v(p4f_ZERO) {} - EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {} - Packet4f v; -}; - -template<> struct packet_traits > : default_packet_traits -{ - typedef Packet2cf type; - typedef Packet2cf half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size = 2, - HasHalfPacket = 0, - - HasAdd = 1, - HasSub = 1, - HasMul = 1, - HasDiv = 1, - HasNegate = 1, - HasAbs = 0, - HasAbs2 = 0, - HasMin = 0, - HasMax = 0, -#ifdef __VSX__ - HasBlend = 1, -#endif - HasSetLinear = 0 - }; -}; - -template<> struct unpacket_traits { typedef std::complex type; enum {size=2, alignment=Aligned16}; typedef Packet2cf half; }; - -template<> EIGEN_STRONG_INLINE Packet2cf pset1(const std::complex& from) -{ - Packet2cf res; - if((std::ptrdiff_t(&from) % 16) == 0) - res.v = pload((const float *)&from); - else - res.v = ploadu((const float *)&from); - res.v = vec_perm(res.v, res.v, p16uc_PSET64_HI); - return res; -} - -template<> EIGEN_STRONG_INLINE Packet2cf pload(const std::complex* from) { return Packet2cf(pload((const float *) from)); } -template<> EIGEN_STRONG_INLINE Packet2cf ploadu(const std::complex* from) { return Packet2cf(ploadu((const float*) from)); } -template<> EIGEN_STRONG_INLINE Packet2cf ploaddup(const std::complex* from) { return pset1(*from); } - -template<> EIGEN_STRONG_INLINE void pstore >(std::complex * to, const Packet2cf& from) { pstore((float*)to, from.v); } -template<> EIGEN_STRONG_INLINE void pstoreu >(std::complex * to, const Packet2cf& from) { pstoreu((float*)to, from.v); } - -template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather, Packet2cf>(const std::complex* from, Index stride) -{ - std::complex EIGEN_ALIGN16 af[2]; - af[0] = from[0*stride]; - af[1] = from[1*stride]; - return pload(af); -} -template<> EIGEN_DEVICE_FUNC inline void pscatter, Packet2cf>(std::complex* to, const Packet2cf& from, Index stride) -{ - std::complex EIGEN_ALIGN16 af[2]; - pstore >((std::complex *) af, from); - to[0*stride] = af[0]; - to[1*stride] = af[1]; -} - -template<> EIGEN_STRONG_INLINE Packet2cf padd(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(a.v + b.v); } -template<> EIGEN_STRONG_INLINE Packet2cf psub(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(a.v - b.v); } -template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate(a.v)); } -template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a) { return Packet2cf(pxor(a.v, reinterpret_cast(p4ui_CONJ_XOR))); } - -template<> EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) -{ - Packet4f v1, v2; - - // Permute and multiply the real parts of a and b - v1 = vec_perm(a.v, a.v, p16uc_PSET32_WODD); - // Get the imaginary parts of a - v2 = vec_perm(a.v, a.v, p16uc_PSET32_WEVEN); - // multiply a_re * b - v1 = vec_madd(v1, b.v, p4f_ZERO); - // multiply a_im * b and get the conjugate result - v2 = vec_madd(v2, b.v, p4f_ZERO); - v2 = reinterpret_cast(pxor(v2, reinterpret_cast(p4ui_CONJ_XOR))); - // permute back to a proper order - v2 = vec_perm(v2, v2, p16uc_COMPLEX32_REV); - - return Packet2cf(padd(v1, v2)); -} - -template<> EIGEN_STRONG_INLINE Packet2cf pand (const Packet2cf& a, const Packet2cf& b) { return Packet2cf(pand(a.v, b.v)); } -template<> EIGEN_STRONG_INLINE Packet2cf por (const Packet2cf& a, const Packet2cf& b) { return Packet2cf(por(a.v, b.v)); } -template<> EIGEN_STRONG_INLINE Packet2cf pxor (const Packet2cf& a, const Packet2cf& b) { return Packet2cf(pxor(a.v, b.v)); } -template<> EIGEN_STRONG_INLINE Packet2cf pandnot(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(pandnot(a.v, b.v)); } - -template<> EIGEN_STRONG_INLINE void prefetch >(const std::complex * addr) { EIGEN_PPC_PREFETCH(addr); } - -template<> EIGEN_STRONG_INLINE std::complex pfirst(const Packet2cf& a) -{ - std::complex EIGEN_ALIGN16 res[2]; - pstore((float *)&res, a.v); - - return res[0]; -} - -template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a) -{ - Packet4f rev_a; - rev_a = vec_perm(a.v, a.v, p16uc_COMPLEX32_REV2); - return Packet2cf(rev_a); -} - -template<> EIGEN_STRONG_INLINE std::complex predux(const Packet2cf& a) -{ - Packet4f b; - b = vec_sld(a.v, a.v, 8); - b = padd(a.v, b); - return pfirst(Packet2cf(b)); -} - -template<> EIGEN_STRONG_INLINE Packet2cf preduxp(const Packet2cf* vecs) -{ - Packet4f b1, b2; -#ifdef _BIG_ENDIAN - b1 = vec_sld(vecs[0].v, vecs[1].v, 8); - b2 = vec_sld(vecs[1].v, vecs[0].v, 8); -#else - b1 = vec_sld(vecs[1].v, vecs[0].v, 8); - b2 = vec_sld(vecs[0].v, vecs[1].v, 8); -#endif - b2 = vec_sld(b2, b2, 8); - b2 = padd(b1, b2); - - return Packet2cf(b2); -} - -template<> EIGEN_STRONG_INLINE std::complex predux_mul(const Packet2cf& a) -{ - Packet4f b; - Packet2cf prod; - b = vec_sld(a.v, a.v, 8); - prod = pmul(a, Packet2cf(b)); - - return pfirst(prod); -} - -template -struct palign_impl -{ - static EIGEN_STRONG_INLINE void run(Packet2cf& first, const Packet2cf& second) - { - if (Offset==1) - { -#ifdef _BIG_ENDIAN - first.v = vec_sld(first.v, second.v, 8); -#else - first.v = vec_sld(second.v, first.v, 8); -#endif - } - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const - { - return internal::pmul(a, pconj(b)); - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const - { - return internal::pmul(pconj(a), b); - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const - { - return pconj(internal::pmul(a, b)); - } -}; - -EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf,Packet4f) - -template<> EIGEN_STRONG_INLINE Packet2cf pdiv(const Packet2cf& a, const Packet2cf& b) -{ - // TODO optimize it for AltiVec - Packet2cf res = conj_helper().pmul(a, b); - Packet4f s = pmul(b.v, b.v); - return Packet2cf(pdiv(res.v, padd(s, vec_perm(s, s, p16uc_COMPLEX32_REV)))); -} - -template<> EIGEN_STRONG_INLINE Packet2cf pcplxflip(const Packet2cf& x) -{ - return Packet2cf(vec_perm(x.v, x.v, p16uc_COMPLEX32_REV)); -} - -EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) -{ - Packet4f tmp = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_HI); - kernel.packet[1].v = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_LO); - kernel.packet[0].v = tmp; -} - -#ifdef __VSX__ -template<> EIGEN_STRONG_INLINE Packet2cf pblend(const Selector<2>& ifPacket, const Packet2cf& thenPacket, const Packet2cf& elsePacket) { - Packet2cf result; - result.v = reinterpret_cast(pblend(ifPacket, reinterpret_cast(thenPacket.v), reinterpret_cast(elsePacket.v))); - return result; -} -#endif - -//---------- double ---------- -#ifdef __VSX__ -struct Packet1cd -{ - EIGEN_STRONG_INLINE Packet1cd() {} - EIGEN_STRONG_INLINE explicit Packet1cd(const Packet2d& a) : v(a) {} - Packet2d v; -}; - -template<> struct packet_traits > : default_packet_traits -{ - typedef Packet1cd type; - typedef Packet1cd half; - enum { - Vectorizable = 1, - AlignedOnScalar = 0, - size = 1, - HasHalfPacket = 0, - - HasAdd = 1, - HasSub = 1, - HasMul = 1, - HasDiv = 1, - HasNegate = 1, - HasAbs = 0, - HasAbs2 = 0, - HasMin = 0, - HasMax = 0, - HasSetLinear = 0 - }; -}; - -template<> struct unpacket_traits { typedef std::complex type; enum {size=1, alignment=Aligned16}; typedef Packet1cd half; }; - -template<> EIGEN_STRONG_INLINE Packet1cd pload (const std::complex* from) { return Packet1cd(pload((const double*)from)); } -template<> EIGEN_STRONG_INLINE Packet1cd ploadu(const std::complex* from) { return Packet1cd(ploadu((const double*)from)); } -template<> EIGEN_STRONG_INLINE void pstore >(std::complex * to, const Packet1cd& from) { pstore((double*)to, from.v); } -template<> EIGEN_STRONG_INLINE void pstoreu >(std::complex * to, const Packet1cd& from) { pstoreu((double*)to, from.v); } - -template<> EIGEN_STRONG_INLINE Packet1cd pset1(const std::complex& from) -{ /* here we really have to use unaligned loads :( */ return ploadu(&from); } - -template<> EIGEN_DEVICE_FUNC inline Packet1cd pgather, Packet1cd>(const std::complex* from, Index stride) -{ - std::complex EIGEN_ALIGN16 af[2]; - af[0] = from[0*stride]; - af[1] = from[1*stride]; - return pload(af); -} -template<> EIGEN_DEVICE_FUNC inline void pscatter, Packet1cd>(std::complex* to, const Packet1cd& from, Index stride) -{ - std::complex EIGEN_ALIGN16 af[2]; - pstore >(af, from); - to[0*stride] = af[0]; - to[1*stride] = af[1]; -} - -template<> EIGEN_STRONG_INLINE Packet1cd padd(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(a.v + b.v); } -template<> EIGEN_STRONG_INLINE Packet1cd psub(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(a.v - b.v); } -template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) { return Packet1cd(pnegate(Packet2d(a.v))); } -template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a) { return Packet1cd(pxor(a.v, reinterpret_cast(p2ul_CONJ_XOR2))); } - -template<> EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) -{ - Packet2d a_re, a_im, v1, v2; - - // Permute and multiply the real parts of a and b - a_re = vec_perm(a.v, a.v, p16uc_PSET64_HI); - // Get the imaginary parts of a - a_im = vec_perm(a.v, a.v, p16uc_PSET64_LO); - // multiply a_re * b - v1 = vec_madd(a_re, b.v, p2d_ZERO); - // multiply a_im * b and get the conjugate result - v2 = vec_madd(a_im, b.v, p2d_ZERO); - v2 = reinterpret_cast(vec_sld(reinterpret_cast(v2), reinterpret_cast(v2), 8)); - v2 = pxor(v2, reinterpret_cast(p2ul_CONJ_XOR1)); - - return Packet1cd(padd(v1, v2)); -} - -template<> EIGEN_STRONG_INLINE Packet1cd pand (const Packet1cd& a, const Packet1cd& b) { return Packet1cd(pand(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet1cd por (const Packet1cd& a, const Packet1cd& b) { return Packet1cd(por(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet1cd pxor (const Packet1cd& a, const Packet1cd& b) { return Packet1cd(pxor(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet1cd pandnot(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(pandnot(a.v, b.v)); } - -template<> EIGEN_STRONG_INLINE Packet1cd ploaddup(const std::complex* from) { return pset1(*from); } - -template<> EIGEN_STRONG_INLINE void prefetch >(const std::complex * addr) { EIGEN_PPC_PREFETCH(addr); } - -template<> EIGEN_STRONG_INLINE std::complex pfirst(const Packet1cd& a) -{ - std::complex EIGEN_ALIGN16 res[2]; - pstore >(res, a); - - return res[0]; -} - -template<> EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) { return a; } - -template<> EIGEN_STRONG_INLINE std::complex predux(const Packet1cd& a) { return pfirst(a); } -template<> EIGEN_STRONG_INLINE Packet1cd preduxp(const Packet1cd* vecs) { return vecs[0]; } - -template<> EIGEN_STRONG_INLINE std::complex predux_mul(const Packet1cd& a) { return pfirst(a); } - -template -struct palign_impl -{ - static EIGEN_STRONG_INLINE void run(Packet1cd& /*first*/, const Packet1cd& /*second*/) - { - // FIXME is it sure we never have to align a Packet1cd? - // Even though a std::complex has 16 bytes, it is not necessarily aligned on a 16 bytes boundary... - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const - { - return internal::pmul(a, pconj(b)); - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const - { - return internal::pmul(pconj(a), b); - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const - { - return pconj(internal::pmul(a, b)); - } -}; - -EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd,Packet2d) - -template<> EIGEN_STRONG_INLINE Packet1cd pdiv(const Packet1cd& a, const Packet1cd& b) -{ - // TODO optimize it for AltiVec - Packet1cd res = conj_helper().pmul(a,b); - Packet2d s = pmul(b.v, b.v); - return Packet1cd(pdiv(res.v, padd(s, vec_perm(s, s, p16uc_REVERSE64)))); -} - -EIGEN_STRONG_INLINE Packet1cd pcplxflip/**/(const Packet1cd& x) -{ - return Packet1cd(preverse(Packet2d(x.v))); -} - -EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) -{ - Packet2d tmp = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_HI); - kernel.packet[1].v = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_LO); - kernel.packet[0].v = tmp; -} -#endif // __VSX__ -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_COMPLEX32_ALTIVEC_H diff --git a/src/math_meigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h b/src/math_meigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h deleted file mode 100755 index c5e4bede7..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/AltiVec/MathFunctions.h +++ /dev/null @@ -1,322 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2007 Julien Pommier -// Copyright (C) 2009 Gael Guennebaud -// Copyright (C) 2016 Konstantinos Margaritis -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -/* The sin, cos, exp, and log functions of this file come from - * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/ - */ - -#ifndef EIGEN_MATH_FUNCTIONS_ALTIVEC_H -#define EIGEN_MATH_FUNCTIONS_ALTIVEC_H - -namespace Eigen { - -namespace internal { - -static _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f); -static _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f); -static _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f); -static _EIGEN_DECLARE_CONST_Packet4i(23, 23); - -static _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inv_mant_mask, ~0x7f800000); - -/* the smallest non denormalized float number */ -static _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(min_norm_pos, 0x00800000); -static _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(minus_inf, 0xff800000); // -1.f/0.f -static _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(minus_nan, 0xffffffff); - -/* natural logarithm computed for 4 simultaneous float - return NaN for x <= 0 -*/ -static _EIGEN_DECLARE_CONST_Packet4f(cephes_SQRTHF, 0.707106781186547524f); -static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p0, 7.0376836292E-2f); -static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p1, - 1.1514610310E-1f); -static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p2, 1.1676998740E-1f); -static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p3, - 1.2420140846E-1f); -static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p4, + 1.4249322787E-1f); -static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p5, - 1.6668057665E-1f); -static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p6, + 2.0000714765E-1f); -static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p7, - 2.4999993993E-1f); -static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p8, + 3.3333331174E-1f); -static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q1, -2.12194440e-4f); -static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q2, 0.693359375f); - -static _EIGEN_DECLARE_CONST_Packet4f(exp_hi, 88.3762626647950f); -static _EIGEN_DECLARE_CONST_Packet4f(exp_lo, -88.3762626647949f); - -static _EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f); -static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f); -static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f); - -static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500E-4f); -static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507E-3f); -static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073E-3f); -static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894E-2f); -static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459E-1f); -static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201E-1f); - -#ifdef __VSX__ -static _EIGEN_DECLARE_CONST_Packet2d(1 , 1.0); -static _EIGEN_DECLARE_CONST_Packet2d(2 , 2.0); -static _EIGEN_DECLARE_CONST_Packet2d(half, 0.5); - -static _EIGEN_DECLARE_CONST_Packet2d(exp_hi, 709.437); -static _EIGEN_DECLARE_CONST_Packet2d(exp_lo, -709.436139303); - -static _EIGEN_DECLARE_CONST_Packet2d(cephes_LOG2EF, 1.4426950408889634073599); - -static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p0, 1.26177193074810590878e-4); -static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p1, 3.02994407707441961300e-2); -static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p2, 9.99999999999999999910e-1); - -static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q0, 3.00198505138664455042e-6); -static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q1, 2.52448340349684104192e-3); -static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q2, 2.27265548208155028766e-1); -static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q3, 2.00000000000000000009e0); - -static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C1, 0.693145751953125); -static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C2, 1.42860682030941723212e-6); - -#ifdef __POWER8_VECTOR__ -static Packet2l p2l_1023 = { 1023, 1023 }; -static Packet2ul p2ul_52 = { 52, 52 }; -#endif - -#endif - -template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet4f plog(const Packet4f& _x) -{ - Packet4f x = _x; - - Packet4i emm0; - - /* isvalid_mask is 0 if x < 0 or x is NaN. */ - Packet4ui isvalid_mask = reinterpret_cast(vec_cmpge(x, p4f_ZERO)); - Packet4ui iszero_mask = reinterpret_cast(vec_cmpeq(x, p4f_ZERO)); - - x = pmax(x, p4f_min_norm_pos); /* cut off denormalized stuff */ - emm0 = vec_sr(reinterpret_cast(x), - reinterpret_cast(p4i_23)); - - /* keep only the fractional part */ - x = pand(x, p4f_inv_mant_mask); - x = por(x, p4f_half); - - emm0 = psub(emm0, p4i_0x7f); - Packet4f e = padd(vec_ctf(emm0, 0), p4f_1); - - /* part2: - if( x < SQRTHF ) { - e -= 1; - x = x + x - 1.0; - } else { x = x - 1.0; } - */ - Packet4f mask = reinterpret_cast(vec_cmplt(x, p4f_cephes_SQRTHF)); - Packet4f tmp = pand(x, mask); - x = psub(x, p4f_1); - e = psub(e, pand(p4f_1, mask)); - x = padd(x, tmp); - - Packet4f x2 = pmul(x,x); - Packet4f x3 = pmul(x2,x); - - Packet4f y, y1, y2; - y = pmadd(p4f_cephes_log_p0, x, p4f_cephes_log_p1); - y1 = pmadd(p4f_cephes_log_p3, x, p4f_cephes_log_p4); - y2 = pmadd(p4f_cephes_log_p6, x, p4f_cephes_log_p7); - y = pmadd(y , x, p4f_cephes_log_p2); - y1 = pmadd(y1, x, p4f_cephes_log_p5); - y2 = pmadd(y2, x, p4f_cephes_log_p8); - y = pmadd(y, x3, y1); - y = pmadd(y, x3, y2); - y = pmul(y, x3); - - y1 = pmul(e, p4f_cephes_log_q1); - tmp = pmul(x2, p4f_half); - y = padd(y, y1); - x = psub(x, tmp); - y2 = pmul(e, p4f_cephes_log_q2); - x = padd(x, y); - x = padd(x, y2); - // negative arg will be NAN, 0 will be -INF - x = vec_sel(x, p4f_minus_inf, iszero_mask); - x = vec_sel(p4f_minus_nan, x, isvalid_mask); - return x; -} - -template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet4f pexp(const Packet4f& _x) -{ - Packet4f x = _x; - - Packet4f tmp, fx; - Packet4i emm0; - - // clamp x - x = pmax(pmin(x, p4f_exp_hi), p4f_exp_lo); - - // express exp(x) as exp(g + n*log(2)) - fx = pmadd(x, p4f_cephes_LOG2EF, p4f_half); - - fx = pfloor(fx); - - tmp = pmul(fx, p4f_cephes_exp_C1); - Packet4f z = pmul(fx, p4f_cephes_exp_C2); - x = psub(x, tmp); - x = psub(x, z); - - z = pmul(x,x); - - Packet4f y = p4f_cephes_exp_p0; - y = pmadd(y, x, p4f_cephes_exp_p1); - y = pmadd(y, x, p4f_cephes_exp_p2); - y = pmadd(y, x, p4f_cephes_exp_p3); - y = pmadd(y, x, p4f_cephes_exp_p4); - y = pmadd(y, x, p4f_cephes_exp_p5); - y = pmadd(y, z, x); - y = padd(y, p4f_1); - - // build 2^n - emm0 = vec_cts(fx, 0); - emm0 = vec_add(emm0, p4i_0x7f); - emm0 = vec_sl(emm0, reinterpret_cast(p4i_23)); - - // Altivec's max & min operators just drop silent NaNs. Check NaNs in - // inputs and return them unmodified. - Packet4ui isnumber_mask = reinterpret_cast(vec_cmpeq(_x, _x)); - return vec_sel(_x, pmax(pmul(y, reinterpret_cast(emm0)), _x), - isnumber_mask); -} - -#ifndef EIGEN_COMP_CLANG -template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet4f prsqrt(const Packet4f& x) -{ - return vec_rsqrt(x); -} -#endif - -#ifdef __VSX__ -#ifndef EIGEN_COMP_CLANG -template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet2d prsqrt(const Packet2d& x) -{ - return vec_rsqrt(x); -} -#endif - -template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet4f psqrt(const Packet4f& x) -{ - return vec_sqrt(x); -} - -template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet2d psqrt(const Packet2d& x) -{ - return vec_sqrt(x); -} - -// VSX support varies between different compilers and even different -// versions of the same compiler. For gcc version >= 4.9.3, we can use -// vec_cts to efficiently convert Packet2d to Packet2l. Otherwise, use -// a slow version that works with older compilers. -// Update: apparently vec_cts/vec_ctf intrinsics for 64-bit doubles -// are buggy, https://gcc.gnu.org/bugzilla/show_bug.cgi?id=70963 -static inline Packet2l ConvertToPacket2l(const Packet2d& x) { -#if EIGEN_GNUC_AT_LEAST(5, 4) || \ - (EIGEN_GNUC_AT(6, 1) && __GNUC_PATCHLEVEL__ >= 1) - return vec_cts(x, 0); // TODO: check clang version. -#else - double tmp[2]; - memcpy(tmp, &x, sizeof(tmp)); - Packet2l l = { static_cast(tmp[0]), - static_cast(tmp[1]) }; - return l; -#endif -} - -template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet2d pexp(const Packet2d& _x) -{ - Packet2d x = _x; - - Packet2d tmp, fx; - Packet2l emm0; - - // clamp x - x = pmax(pmin(x, p2d_exp_hi), p2d_exp_lo); - - /* express exp(x) as exp(g + n*log(2)) */ - fx = pmadd(x, p2d_cephes_LOG2EF, p2d_half); - - fx = pfloor(fx); - - tmp = pmul(fx, p2d_cephes_exp_C1); - Packet2d z = pmul(fx, p2d_cephes_exp_C2); - x = psub(x, tmp); - x = psub(x, z); - - Packet2d x2 = pmul(x,x); - - Packet2d px = p2d_cephes_exp_p0; - px = pmadd(px, x2, p2d_cephes_exp_p1); - px = pmadd(px, x2, p2d_cephes_exp_p2); - px = pmul (px, x); - - Packet2d qx = p2d_cephes_exp_q0; - qx = pmadd(qx, x2, p2d_cephes_exp_q1); - qx = pmadd(qx, x2, p2d_cephes_exp_q2); - qx = pmadd(qx, x2, p2d_cephes_exp_q3); - - x = pdiv(px,psub(qx,px)); - x = pmadd(p2d_2,x,p2d_1); - - // build 2^n - emm0 = ConvertToPacket2l(fx); - -#ifdef __POWER8_VECTOR__ - emm0 = vec_add(emm0, p2l_1023); - emm0 = vec_sl(emm0, p2ul_52); -#else - // Code is a bit complex for POWER7. There is actually a - // vec_xxsldi intrinsic but it is not supported by some gcc versions. - // So we shift (52-32) bits and do a word swap with zeros. - _EIGEN_DECLARE_CONST_Packet4i(1023, 1023); - _EIGEN_DECLARE_CONST_Packet4i(20, 20); // 52 - 32 - - Packet4i emm04i = reinterpret_cast(emm0); - emm04i = vec_add(emm04i, p4i_1023); - emm04i = vec_sl(emm04i, reinterpret_cast(p4i_20)); - static const Packet16uc perm = { - 0x14, 0x15, 0x16, 0x17, 0x00, 0x01, 0x02, 0x03, - 0x1c, 0x1d, 0x1e, 0x1f, 0x08, 0x09, 0x0a, 0x0b }; -#ifdef _BIG_ENDIAN - emm0 = reinterpret_cast(vec_perm(p4i_ZERO, emm04i, perm)); -#else - emm0 = reinterpret_cast(vec_perm(emm04i, p4i_ZERO, perm)); -#endif - -#endif - - // Altivec's max & min operators just drop silent NaNs. Check NaNs in - // inputs and return them unmodified. - Packet2ul isnumber_mask = reinterpret_cast(vec_cmpeq(_x, _x)); - return vec_sel(_x, pmax(pmul(x, reinterpret_cast(emm0)), _x), - isnumber_mask); -} -#endif - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_MATH_FUNCTIONS_ALTIVEC_H diff --git a/src/math_meigen/Eigen/src/Core/arch/AltiVec/PacketMath.h b/src/math_meigen/Eigen/src/Core/arch/AltiVec/PacketMath.h deleted file mode 100755 index 08a27d153..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/AltiVec/PacketMath.h +++ /dev/null @@ -1,1061 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2016 Konstantinos Margaritis -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_PACKET_MATH_ALTIVEC_H -#define EIGEN_PACKET_MATH_ALTIVEC_H - -namespace Eigen { - -namespace internal { - -#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD -#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 4 -#endif - -#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD -#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD -#endif - -#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD -#define EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD -#endif - -// NOTE Altivec has 32 registers, but Eigen only accepts a value of 8 or 16 -#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS -#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 32 -#endif - -typedef __vector float Packet4f; -typedef __vector int Packet4i; -typedef __vector unsigned int Packet4ui; -typedef __vector __bool int Packet4bi; -typedef __vector short int Packet8i; -typedef __vector unsigned char Packet16uc; - -// We don't want to write the same code all the time, but we need to reuse the constants -// and it doesn't really work to declare them global, so we define macros instead - -#define _EIGEN_DECLARE_CONST_FAST_Packet4f(NAME,X) \ - Packet4f p4f_##NAME = reinterpret_cast(vec_splat_s32(X)) - -#define _EIGEN_DECLARE_CONST_FAST_Packet4i(NAME,X) \ - Packet4i p4i_##NAME = vec_splat_s32(X) - -#define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \ - Packet4f p4f_##NAME = pset1(X) - -#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \ - Packet4i p4i_##NAME = pset1(X) - -#define _EIGEN_DECLARE_CONST_Packet2d(NAME,X) \ - Packet2d p2d_##NAME = pset1(X) - -#define _EIGEN_DECLARE_CONST_Packet2l(NAME,X) \ - Packet2l p2l_##NAME = pset1(X) - -#define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \ - const Packet4f p4f_##NAME = reinterpret_cast(pset1(X)) - -#define DST_CHAN 1 -#define DST_CTRL(size, count, stride) (((size) << 24) | ((count) << 16) | (stride)) - - -// These constants are endian-agnostic -static _EIGEN_DECLARE_CONST_FAST_Packet4f(ZERO, 0); //{ 0.0, 0.0, 0.0, 0.0} -static _EIGEN_DECLARE_CONST_FAST_Packet4i(ZERO, 0); //{ 0, 0, 0, 0,} -static _EIGEN_DECLARE_CONST_FAST_Packet4i(ONE,1); //{ 1, 1, 1, 1} -static _EIGEN_DECLARE_CONST_FAST_Packet4i(MINUS16,-16); //{ -16, -16, -16, -16} -static _EIGEN_DECLARE_CONST_FAST_Packet4i(MINUS1,-1); //{ -1, -1, -1, -1} -static Packet4f p4f_MZERO = (Packet4f) vec_sl((Packet4ui)p4i_MINUS1, (Packet4ui)p4i_MINUS1); //{ 0x80000000, 0x80000000, 0x80000000, 0x80000000} -#ifndef __VSX__ -static Packet4f p4f_ONE = vec_ctf(p4i_ONE, 0); //{ 1.0, 1.0, 1.0, 1.0} -#endif - -static Packet4f p4f_COUNTDOWN = { 0.0, 1.0, 2.0, 3.0 }; -static Packet4i p4i_COUNTDOWN = { 0, 1, 2, 3 }; - -static Packet16uc p16uc_REVERSE32 = { 12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3 }; -static Packet16uc p16uc_DUPLICATE32_HI = { 0,1,2,3, 0,1,2,3, 4,5,6,7, 4,5,6,7 }; - -// Mask alignment -#ifdef __PPC64__ -#define _EIGEN_MASK_ALIGNMENT 0xfffffffffffffff0 -#else -#define _EIGEN_MASK_ALIGNMENT 0xfffffff0 -#endif - -#define _EIGEN_ALIGNED_PTR(x) ((std::ptrdiff_t)(x) & _EIGEN_MASK_ALIGNMENT) - -// Handle endianness properly while loading constants -// Define global static constants: -#ifdef _BIG_ENDIAN -static Packet16uc p16uc_FORWARD = vec_lvsl(0, (float*)0); -#ifdef __VSX__ -static Packet16uc p16uc_REVERSE64 = { 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 }; -#endif -static Packet16uc p16uc_PSET32_WODD = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 2), 8);//{ 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 }; -static Packet16uc p16uc_PSET32_WEVEN = vec_sld(p16uc_DUPLICATE32_HI, (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 3), 8);//{ 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 }; -static Packet16uc p16uc_HALF64_0_16 = vec_sld((Packet16uc)p4i_ZERO, vec_splat((Packet16uc) vec_abs(p4i_MINUS16), 3), 8); //{ 0,0,0,0, 0,0,0,0, 16,16,16,16, 16,16,16,16}; -#else -static Packet16uc p16uc_FORWARD = p16uc_REVERSE32; -static Packet16uc p16uc_REVERSE64 = { 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 }; -static Packet16uc p16uc_PSET32_WODD = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 1), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 3), 8);//{ 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 }; -static Packet16uc p16uc_PSET32_WEVEN = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 2), 8);//{ 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 }; -static Packet16uc p16uc_HALF64_0_16 = vec_sld(vec_splat((Packet16uc) vec_abs(p4i_MINUS16), 0), (Packet16uc)p4i_ZERO, 8); //{ 0,0,0,0, 0,0,0,0, 16,16,16,16, 16,16,16,16}; -#endif // _BIG_ENDIAN - -static Packet16uc p16uc_PSET64_HI = (Packet16uc) vec_mergeh((Packet4ui)p16uc_PSET32_WODD, (Packet4ui)p16uc_PSET32_WEVEN); //{ 0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7 }; -static Packet16uc p16uc_PSET64_LO = (Packet16uc) vec_mergel((Packet4ui)p16uc_PSET32_WODD, (Packet4ui)p16uc_PSET32_WEVEN); //{ 8,9,10,11, 12,13,14,15, 8,9,10,11, 12,13,14,15 }; -static Packet16uc p16uc_TRANSPOSE64_HI = p16uc_PSET64_HI + p16uc_HALF64_0_16; //{ 0,1,2,3, 4,5,6,7, 16,17,18,19, 20,21,22,23}; -static Packet16uc p16uc_TRANSPOSE64_LO = p16uc_PSET64_LO + p16uc_HALF64_0_16; //{ 8,9,10,11, 12,13,14,15, 24,25,26,27, 28,29,30,31}; - -static Packet16uc p16uc_COMPLEX32_REV = vec_sld(p16uc_REVERSE32, p16uc_REVERSE32, 8); //{ 4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11 }; - -#ifdef _BIG_ENDIAN -static Packet16uc p16uc_COMPLEX32_REV2 = vec_sld(p16uc_FORWARD, p16uc_FORWARD, 8); //{ 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 }; -#else -static Packet16uc p16uc_COMPLEX32_REV2 = vec_sld(p16uc_PSET64_HI, p16uc_PSET64_LO, 8); //{ 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 }; -#endif // _BIG_ENDIAN - -#if EIGEN_HAS_BUILTIN(__builtin_prefetch) || EIGEN_COMP_GNUC - #define EIGEN_PPC_PREFETCH(ADDR) __builtin_prefetch(ADDR); -#else - #define EIGEN_PPC_PREFETCH(ADDR) asm( " dcbt [%[addr]]\n" :: [addr] "r" (ADDR) : "cc" ); -#endif - -template<> struct packet_traits : default_packet_traits -{ - typedef Packet4f type; - typedef Packet4f half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size=4, - HasHalfPacket = 1, - - HasAdd = 1, - HasSub = 1, - HasMul = 1, - HasDiv = 1, - HasMin = 1, - HasMax = 1, - HasAbs = 1, - HasSin = 0, - HasCos = 0, - HasLog = 0, - HasExp = 1, -#ifdef __VSX__ - HasSqrt = 1, -#if !EIGEN_COMP_CLANG - HasRsqrt = 1, -#else - HasRsqrt = 0, -#endif -#else - HasSqrt = 0, - HasRsqrt = 0, -#endif - HasRound = 1, - HasFloor = 1, - HasCeil = 1, - HasNegate = 1, - HasBlend = 1 - }; -}; -template<> struct packet_traits : default_packet_traits -{ - typedef Packet4i type; - typedef Packet4i half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size = 4, - HasHalfPacket = 0, - - HasAdd = 1, - HasSub = 1, - HasMul = 1, - HasDiv = 0, - HasBlend = 1 - }; -}; - - -template<> struct unpacket_traits { typedef float type; enum {size=4, alignment=Aligned16}; typedef Packet4f half; }; -template<> struct unpacket_traits { typedef int type; enum {size=4, alignment=Aligned16}; typedef Packet4i half; }; - -inline std::ostream & operator <<(std::ostream & s, const Packet16uc & v) -{ - union { - Packet16uc v; - unsigned char n[16]; - } vt; - vt.v = v; - for (int i=0; i< 16; i++) - s << (int)vt.n[i] << ", "; - return s; -} - -inline std::ostream & operator <<(std::ostream & s, const Packet4f & v) -{ - union { - Packet4f v; - float n[4]; - } vt; - vt.v = v; - s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3]; - return s; -} - -inline std::ostream & operator <<(std::ostream & s, const Packet4i & v) -{ - union { - Packet4i v; - int n[4]; - } vt; - vt.v = v; - s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3]; - return s; -} - -inline std::ostream & operator <<(std::ostream & s, const Packet4ui & v) -{ - union { - Packet4ui v; - unsigned int n[4]; - } vt; - vt.v = v; - s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3]; - return s; -} - -// Need to define them first or we get specialization after instantiation errors -template<> EIGEN_STRONG_INLINE Packet4f pload(const float* from) -{ - EIGEN_DEBUG_ALIGNED_LOAD -#ifdef __VSX__ - return vec_vsx_ld(0, from); -#else - return vec_ld(0, from); -#endif -} - -template<> EIGEN_STRONG_INLINE Packet4i pload(const int* from) -{ - EIGEN_DEBUG_ALIGNED_LOAD -#ifdef __VSX__ - return vec_vsx_ld(0, from); -#else - return vec_ld(0, from); -#endif -} - -template<> EIGEN_STRONG_INLINE void pstore(float* to, const Packet4f& from) -{ - EIGEN_DEBUG_ALIGNED_STORE -#ifdef __VSX__ - vec_vsx_st(from, 0, to); -#else - vec_st(from, 0, to); -#endif -} - -template<> EIGEN_STRONG_INLINE void pstore(int* to, const Packet4i& from) -{ - EIGEN_DEBUG_ALIGNED_STORE -#ifdef __VSX__ - vec_vsx_st(from, 0, to); -#else - vec_st(from, 0, to); -#endif -} - -template<> EIGEN_STRONG_INLINE Packet4f pset1(const float& from) { - Packet4f v = {from, from, from, from}; - return v; -} - -template<> EIGEN_STRONG_INLINE Packet4i pset1(const int& from) { - Packet4i v = {from, from, from, from}; - return v; -} -template<> EIGEN_STRONG_INLINE void -pbroadcast4(const float *a, - Packet4f& a0, Packet4f& a1, Packet4f& a2, Packet4f& a3) -{ - a3 = pload(a); - a0 = vec_splat(a3, 0); - a1 = vec_splat(a3, 1); - a2 = vec_splat(a3, 2); - a3 = vec_splat(a3, 3); -} -template<> EIGEN_STRONG_INLINE void -pbroadcast4(const int *a, - Packet4i& a0, Packet4i& a1, Packet4i& a2, Packet4i& a3) -{ - a3 = pload(a); - a0 = vec_splat(a3, 0); - a1 = vec_splat(a3, 1); - a2 = vec_splat(a3, 2); - a3 = vec_splat(a3, 3); -} - -template<> EIGEN_DEVICE_FUNC inline Packet4f pgather(const float* from, Index stride) -{ - float EIGEN_ALIGN16 af[4]; - af[0] = from[0*stride]; - af[1] = from[1*stride]; - af[2] = from[2*stride]; - af[3] = from[3*stride]; - return pload(af); -} -template<> EIGEN_DEVICE_FUNC inline Packet4i pgather(const int* from, Index stride) -{ - int EIGEN_ALIGN16 ai[4]; - ai[0] = from[0*stride]; - ai[1] = from[1*stride]; - ai[2] = from[2*stride]; - ai[3] = from[3*stride]; - return pload(ai); -} -template<> EIGEN_DEVICE_FUNC inline void pscatter(float* to, const Packet4f& from, Index stride) -{ - float EIGEN_ALIGN16 af[4]; - pstore(af, from); - to[0*stride] = af[0]; - to[1*stride] = af[1]; - to[2*stride] = af[2]; - to[3*stride] = af[3]; -} -template<> EIGEN_DEVICE_FUNC inline void pscatter(int* to, const Packet4i& from, Index stride) -{ - int EIGEN_ALIGN16 ai[4]; - pstore((int *)ai, from); - to[0*stride] = ai[0]; - to[1*stride] = ai[1]; - to[2*stride] = ai[2]; - to[3*stride] = ai[3]; -} - -template<> EIGEN_STRONG_INLINE Packet4f plset(const float& a) { return pset1(a) + p4f_COUNTDOWN; } -template<> EIGEN_STRONG_INLINE Packet4i plset(const int& a) { return pset1(a) + p4i_COUNTDOWN; } - -template<> EIGEN_STRONG_INLINE Packet4f padd(const Packet4f& a, const Packet4f& b) { return a + b; } -template<> EIGEN_STRONG_INLINE Packet4i padd(const Packet4i& a, const Packet4i& b) { return a + b; } - -template<> EIGEN_STRONG_INLINE Packet4f psub(const Packet4f& a, const Packet4f& b) { return a - b; } -template<> EIGEN_STRONG_INLINE Packet4i psub(const Packet4i& a, const Packet4i& b) { return a - b; } - -template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) { return p4f_ZERO - a; } -template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) { return p4i_ZERO - a; } - -template<> EIGEN_STRONG_INLINE Packet4f pconj(const Packet4f& a) { return a; } -template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; } - -template<> EIGEN_STRONG_INLINE Packet4f pmul(const Packet4f& a, const Packet4f& b) { return vec_madd(a,b, p4f_MZERO); } -template<> EIGEN_STRONG_INLINE Packet4i pmul(const Packet4i& a, const Packet4i& b) { return a * b; } - -template<> EIGEN_STRONG_INLINE Packet4f pdiv(const Packet4f& a, const Packet4f& b) -{ -#ifndef __VSX__ // VSX actually provides a div instruction - Packet4f t, y_0, y_1; - - // Altivec does not offer a divide instruction, we have to do a reciprocal approximation - y_0 = vec_re(b); - - // Do one Newton-Raphson iteration to get the needed accuracy - t = vec_nmsub(y_0, b, p4f_ONE); - y_1 = vec_madd(y_0, t, y_0); - - return vec_madd(a, y_1, p4f_MZERO); -#else - return vec_div(a, b); -#endif -} - -template<> EIGEN_STRONG_INLINE Packet4i pdiv(const Packet4i& /*a*/, const Packet4i& /*b*/) -{ eigen_assert(false && "packet integer division are not supported by AltiVec"); - return pset1(0); -} - -// for some weird raisons, it has to be overloaded for packet of integers -template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vec_madd(a,b,c); } -template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return a*b + c; } - -template<> EIGEN_STRONG_INLINE Packet4f pmin(const Packet4f& a, const Packet4f& b) -{ - #ifdef __VSX__ - Packet4f ret; - __asm__ ("xvcmpgesp %x0,%x1,%x2\n\txxsel %x0,%x1,%x2,%x0" : "=&wa" (ret) : "wa" (a), "wa" (b)); - return ret; - #else - return vec_min(a, b); - #endif -} -template<> EIGEN_STRONG_INLINE Packet4i pmin(const Packet4i& a, const Packet4i& b) { return vec_min(a, b); } - -template<> EIGEN_STRONG_INLINE Packet4f pmax(const Packet4f& a, const Packet4f& b) -{ - #ifdef __VSX__ - Packet4f ret; - __asm__ ("xvcmpgtsp %x0,%x2,%x1\n\txxsel %x0,%x1,%x2,%x0" : "=&wa" (ret) : "wa" (a), "wa" (b)); - return ret; - #else - return vec_max(a, b); - #endif -} -template<> EIGEN_STRONG_INLINE Packet4i pmax(const Packet4i& a, const Packet4i& b) { return vec_max(a, b); } - -template<> EIGEN_STRONG_INLINE Packet4f pand(const Packet4f& a, const Packet4f& b) { return vec_and(a, b); } -template<> EIGEN_STRONG_INLINE Packet4i pand(const Packet4i& a, const Packet4i& b) { return vec_and(a, b); } - -template<> EIGEN_STRONG_INLINE Packet4f por(const Packet4f& a, const Packet4f& b) { return vec_or(a, b); } -template<> EIGEN_STRONG_INLINE Packet4i por(const Packet4i& a, const Packet4i& b) { return vec_or(a, b); } - -template<> EIGEN_STRONG_INLINE Packet4f pxor(const Packet4f& a, const Packet4f& b) { return vec_xor(a, b); } -template<> EIGEN_STRONG_INLINE Packet4i pxor(const Packet4i& a, const Packet4i& b) { return vec_xor(a, b); } - -template<> EIGEN_STRONG_INLINE Packet4f pandnot(const Packet4f& a, const Packet4f& b) { return vec_and(a, vec_nor(b, b)); } -template<> EIGEN_STRONG_INLINE Packet4i pandnot(const Packet4i& a, const Packet4i& b) { return vec_and(a, vec_nor(b, b)); } - -template<> EIGEN_STRONG_INLINE Packet4f pround(const Packet4f& a) { return vec_round(a); } -template<> EIGEN_STRONG_INLINE Packet4f pceil(const Packet4f& a) { return vec_ceil(a); } -template<> EIGEN_STRONG_INLINE Packet4f pfloor(const Packet4f& a) { return vec_floor(a); } - -#ifdef _BIG_ENDIAN -template<> EIGEN_STRONG_INLINE Packet4f ploadu(const float* from) -{ - EIGEN_DEBUG_ALIGNED_LOAD - Packet16uc MSQ, LSQ; - Packet16uc mask; - MSQ = vec_ld(0, (unsigned char *)from); // most significant quadword - LSQ = vec_ld(15, (unsigned char *)from); // least significant quadword - mask = vec_lvsl(0, from); // create the permute mask - return (Packet4f) vec_perm(MSQ, LSQ, mask); // align the data - -} -template<> EIGEN_STRONG_INLINE Packet4i ploadu(const int* from) -{ - EIGEN_DEBUG_ALIGNED_LOAD - // Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html - Packet16uc MSQ, LSQ; - Packet16uc mask; - MSQ = vec_ld(0, (unsigned char *)from); // most significant quadword - LSQ = vec_ld(15, (unsigned char *)from); // least significant quadword - mask = vec_lvsl(0, from); // create the permute mask - return (Packet4i) vec_perm(MSQ, LSQ, mask); // align the data -} -#else -// We also need ot redefine little endian loading of Packet4i/Packet4f using VSX -template<> EIGEN_STRONG_INLINE Packet4i ploadu(const int* from) -{ - EIGEN_DEBUG_UNALIGNED_LOAD - return (Packet4i) vec_vsx_ld((long)from & 15, (const int*) _EIGEN_ALIGNED_PTR(from)); -} -template<> EIGEN_STRONG_INLINE Packet4f ploadu(const float* from) -{ - EIGEN_DEBUG_UNALIGNED_LOAD - return (Packet4f) vec_vsx_ld((long)from & 15, (const float*) _EIGEN_ALIGNED_PTR(from)); -} -#endif - -template<> EIGEN_STRONG_INLINE Packet4f ploaddup(const float* from) -{ - Packet4f p; - if((std::ptrdiff_t(from) % 16) == 0) p = pload(from); - else p = ploadu(from); - return vec_perm(p, p, p16uc_DUPLICATE32_HI); -} -template<> EIGEN_STRONG_INLINE Packet4i ploaddup(const int* from) -{ - Packet4i p; - if((std::ptrdiff_t(from) % 16) == 0) p = pload(from); - else p = ploadu(from); - return vec_perm(p, p, p16uc_DUPLICATE32_HI); -} - -#ifdef _BIG_ENDIAN -template<> EIGEN_STRONG_INLINE void pstoreu(float* to, const Packet4f& from) -{ - EIGEN_DEBUG_UNALIGNED_STORE - // Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html - // Warning: not thread safe! - Packet16uc MSQ, LSQ, edges; - Packet16uc edgeAlign, align; - - MSQ = vec_ld(0, (unsigned char *)to); // most significant quadword - LSQ = vec_ld(15, (unsigned char *)to); // least significant quadword - edgeAlign = vec_lvsl(0, to); // permute map to extract edges - edges=vec_perm(LSQ,MSQ,edgeAlign); // extract the edges - align = vec_lvsr( 0, to ); // permute map to misalign data - MSQ = vec_perm(edges,(Packet16uc)from,align); // misalign the data (MSQ) - LSQ = vec_perm((Packet16uc)from,edges,align); // misalign the data (LSQ) - vec_st( LSQ, 15, (unsigned char *)to ); // Store the LSQ part first - vec_st( MSQ, 0, (unsigned char *)to ); // Store the MSQ part -} -template<> EIGEN_STRONG_INLINE void pstoreu(int* to, const Packet4i& from) -{ - EIGEN_DEBUG_UNALIGNED_STORE - // Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html - // Warning: not thread safe! - Packet16uc MSQ, LSQ, edges; - Packet16uc edgeAlign, align; - - MSQ = vec_ld(0, (unsigned char *)to); // most significant quadword - LSQ = vec_ld(15, (unsigned char *)to); // least significant quadword - edgeAlign = vec_lvsl(0, to); // permute map to extract edges - edges=vec_perm(LSQ, MSQ, edgeAlign); // extract the edges - align = vec_lvsr( 0, to ); // permute map to misalign data - MSQ = vec_perm(edges, (Packet16uc) from, align); // misalign the data (MSQ) - LSQ = vec_perm((Packet16uc) from, edges, align); // misalign the data (LSQ) - vec_st( LSQ, 15, (unsigned char *)to ); // Store the LSQ part first - vec_st( MSQ, 0, (unsigned char *)to ); // Store the MSQ part -} -#else -// We also need ot redefine little endian loading of Packet4i/Packet4f using VSX -template<> EIGEN_STRONG_INLINE void pstoreu(int* to, const Packet4i& from) -{ - EIGEN_DEBUG_ALIGNED_STORE - vec_vsx_st(from, (long)to & 15, (int*) _EIGEN_ALIGNED_PTR(to)); -} -template<> EIGEN_STRONG_INLINE void pstoreu(float* to, const Packet4f& from) -{ - EIGEN_DEBUG_ALIGNED_STORE - vec_vsx_st(from, (long)to & 15, (float*) _EIGEN_ALIGNED_PTR(to)); -} -#endif - -template<> EIGEN_STRONG_INLINE void prefetch(const float* addr) { EIGEN_PPC_PREFETCH(addr); } -template<> EIGEN_STRONG_INLINE void prefetch(const int* addr) { EIGEN_PPC_PREFETCH(addr); } - -template<> EIGEN_STRONG_INLINE float pfirst(const Packet4f& a) { float EIGEN_ALIGN16 x; vec_ste(a, 0, &x); return x; } -template<> EIGEN_STRONG_INLINE int pfirst(const Packet4i& a) { int EIGEN_ALIGN16 x; vec_ste(a, 0, &x); return x; } - -template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) -{ - return reinterpret_cast(vec_perm(reinterpret_cast(a), reinterpret_cast(a), p16uc_REVERSE32)); -} -template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) -{ - return reinterpret_cast(vec_perm(reinterpret_cast(a), reinterpret_cast(a), p16uc_REVERSE32)); } - -template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) { return vec_abs(a); } -template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vec_abs(a); } - -template<> EIGEN_STRONG_INLINE float predux(const Packet4f& a) -{ - Packet4f b, sum; - b = vec_sld(a, a, 8); - sum = a + b; - b = vec_sld(sum, sum, 4); - sum += b; - return pfirst(sum); -} - -template<> EIGEN_STRONG_INLINE Packet4f preduxp(const Packet4f* vecs) -{ - Packet4f v[4], sum[4]; - - // It's easier and faster to transpose then add as columns - // Check: http://www.freevec.org/function/matrix_4x4_transpose_floats for explanation - // Do the transpose, first set of moves - v[0] = vec_mergeh(vecs[0], vecs[2]); - v[1] = vec_mergel(vecs[0], vecs[2]); - v[2] = vec_mergeh(vecs[1], vecs[3]); - v[3] = vec_mergel(vecs[1], vecs[3]); - // Get the resulting vectors - sum[0] = vec_mergeh(v[0], v[2]); - sum[1] = vec_mergel(v[0], v[2]); - sum[2] = vec_mergeh(v[1], v[3]); - sum[3] = vec_mergel(v[1], v[3]); - - // Now do the summation: - // Lines 0+1 - sum[0] = sum[0] + sum[1]; - // Lines 2+3 - sum[1] = sum[2] + sum[3]; - // Add the results - sum[0] = sum[0] + sum[1]; - - return sum[0]; -} - -template<> EIGEN_STRONG_INLINE int predux(const Packet4i& a) -{ - Packet4i sum; - sum = vec_sums(a, p4i_ZERO); -#ifdef _BIG_ENDIAN - sum = vec_sld(sum, p4i_ZERO, 12); -#else - sum = vec_sld(p4i_ZERO, sum, 4); -#endif - return pfirst(sum); -} - -template<> EIGEN_STRONG_INLINE Packet4i preduxp(const Packet4i* vecs) -{ - Packet4i v[4], sum[4]; - - // It's easier and faster to transpose then add as columns - // Check: http://www.freevec.org/function/matrix_4x4_transpose_floats for explanation - // Do the transpose, first set of moves - v[0] = vec_mergeh(vecs[0], vecs[2]); - v[1] = vec_mergel(vecs[0], vecs[2]); - v[2] = vec_mergeh(vecs[1], vecs[3]); - v[3] = vec_mergel(vecs[1], vecs[3]); - // Get the resulting vectors - sum[0] = vec_mergeh(v[0], v[2]); - sum[1] = vec_mergel(v[0], v[2]); - sum[2] = vec_mergeh(v[1], v[3]); - sum[3] = vec_mergel(v[1], v[3]); - - // Now do the summation: - // Lines 0+1 - sum[0] = sum[0] + sum[1]; - // Lines 2+3 - sum[1] = sum[2] + sum[3]; - // Add the results - sum[0] = sum[0] + sum[1]; - - return sum[0]; -} - -// Other reduction functions: -// mul -template<> EIGEN_STRONG_INLINE float predux_mul(const Packet4f& a) -{ - Packet4f prod; - prod = pmul(a, vec_sld(a, a, 8)); - return pfirst(pmul(prod, vec_sld(prod, prod, 4))); -} - -template<> EIGEN_STRONG_INLINE int predux_mul(const Packet4i& a) -{ - EIGEN_ALIGN16 int aux[4]; - pstore(aux, a); - return aux[0] * aux[1] * aux[2] * aux[3]; -} - -// min -template<> EIGEN_STRONG_INLINE float predux_min(const Packet4f& a) -{ - Packet4f b, res; - b = vec_min(a, vec_sld(a, a, 8)); - res = vec_min(b, vec_sld(b, b, 4)); - return pfirst(res); -} - -template<> EIGEN_STRONG_INLINE int predux_min(const Packet4i& a) -{ - Packet4i b, res; - b = vec_min(a, vec_sld(a, a, 8)); - res = vec_min(b, vec_sld(b, b, 4)); - return pfirst(res); -} - -// max -template<> EIGEN_STRONG_INLINE float predux_max(const Packet4f& a) -{ - Packet4f b, res; - b = vec_max(a, vec_sld(a, a, 8)); - res = vec_max(b, vec_sld(b, b, 4)); - return pfirst(res); -} - -template<> EIGEN_STRONG_INLINE int predux_max(const Packet4i& a) -{ - Packet4i b, res; - b = vec_max(a, vec_sld(a, a, 8)); - res = vec_max(b, vec_sld(b, b, 4)); - return pfirst(res); -} - -template -struct palign_impl -{ - static EIGEN_STRONG_INLINE void run(Packet4f& first, const Packet4f& second) - { -#ifdef _BIG_ENDIAN - switch (Offset % 4) { - case 1: - first = vec_sld(first, second, 4); break; - case 2: - first = vec_sld(first, second, 8); break; - case 3: - first = vec_sld(first, second, 12); break; - } -#else - switch (Offset % 4) { - case 1: - first = vec_sld(second, first, 12); break; - case 2: - first = vec_sld(second, first, 8); break; - case 3: - first = vec_sld(second, first, 4); break; - } -#endif - } -}; - -template -struct palign_impl -{ - static EIGEN_STRONG_INLINE void run(Packet4i& first, const Packet4i& second) - { -#ifdef _BIG_ENDIAN - switch (Offset % 4) { - case 1: - first = vec_sld(first, second, 4); break; - case 2: - first = vec_sld(first, second, 8); break; - case 3: - first = vec_sld(first, second, 12); break; - } -#else - switch (Offset % 4) { - case 1: - first = vec_sld(second, first, 12); break; - case 2: - first = vec_sld(second, first, 8); break; - case 3: - first = vec_sld(second, first, 4); break; - } -#endif - } -}; - -EIGEN_DEVICE_FUNC inline void -ptranspose(PacketBlock& kernel) { - Packet4f t0, t1, t2, t3; - t0 = vec_mergeh(kernel.packet[0], kernel.packet[2]); - t1 = vec_mergel(kernel.packet[0], kernel.packet[2]); - t2 = vec_mergeh(kernel.packet[1], kernel.packet[3]); - t3 = vec_mergel(kernel.packet[1], kernel.packet[3]); - kernel.packet[0] = vec_mergeh(t0, t2); - kernel.packet[1] = vec_mergel(t0, t2); - kernel.packet[2] = vec_mergeh(t1, t3); - kernel.packet[3] = vec_mergel(t1, t3); -} - -EIGEN_DEVICE_FUNC inline void -ptranspose(PacketBlock& kernel) { - Packet4i t0, t1, t2, t3; - t0 = vec_mergeh(kernel.packet[0], kernel.packet[2]); - t1 = vec_mergel(kernel.packet[0], kernel.packet[2]); - t2 = vec_mergeh(kernel.packet[1], kernel.packet[3]); - t3 = vec_mergel(kernel.packet[1], kernel.packet[3]); - kernel.packet[0] = vec_mergeh(t0, t2); - kernel.packet[1] = vec_mergel(t0, t2); - kernel.packet[2] = vec_mergeh(t1, t3); - kernel.packet[3] = vec_mergel(t1, t3); -} - -template<> EIGEN_STRONG_INLINE Packet4i pblend(const Selector<4>& ifPacket, const Packet4i& thenPacket, const Packet4i& elsePacket) { - Packet4ui select = { ifPacket.select[0], ifPacket.select[1], ifPacket.select[2], ifPacket.select[3] }; - Packet4ui mask = reinterpret_cast(vec_cmpeq(reinterpret_cast(select), reinterpret_cast(p4i_ONE))); - return vec_sel(elsePacket, thenPacket, mask); -} - -template<> EIGEN_STRONG_INLINE Packet4f pblend(const Selector<4>& ifPacket, const Packet4f& thenPacket, const Packet4f& elsePacket) { - Packet4ui select = { ifPacket.select[0], ifPacket.select[1], ifPacket.select[2], ifPacket.select[3] }; - Packet4ui mask = reinterpret_cast(vec_cmpeq(reinterpret_cast(select), reinterpret_cast(p4i_ONE))); - return vec_sel(elsePacket, thenPacket, mask); -} - - -//---------- double ---------- -#ifdef __VSX__ -typedef __vector double Packet2d; -typedef __vector unsigned long long Packet2ul; -typedef __vector long long Packet2l; -#if EIGEN_COMP_CLANG -typedef Packet2ul Packet2bl; -#else -typedef __vector __bool long Packet2bl; -#endif - -static Packet2l p2l_ONE = { 1, 1 }; -static Packet2l p2l_ZERO = reinterpret_cast(p4i_ZERO); -static Packet2d p2d_ONE = { 1.0, 1.0 }; -static Packet2d p2d_ZERO = reinterpret_cast(p4f_ZERO); -static Packet2d p2d_MZERO = { -0.0, -0.0 }; - -#ifdef _BIG_ENDIAN -static Packet2d p2d_COUNTDOWN = reinterpret_cast(vec_sld(reinterpret_cast(p2d_ZERO), reinterpret_cast(p2d_ONE), 8)); -#else -static Packet2d p2d_COUNTDOWN = reinterpret_cast(vec_sld(reinterpret_cast(p2d_ONE), reinterpret_cast(p2d_ZERO), 8)); -#endif - -template Packet2d vec_splat_dbl(Packet2d& a); - -template<> EIGEN_STRONG_INLINE Packet2d vec_splat_dbl<0>(Packet2d& a) -{ - return reinterpret_cast(vec_perm(a, a, p16uc_PSET64_HI)); -} - -template<> EIGEN_STRONG_INLINE Packet2d vec_splat_dbl<1>(Packet2d& a) -{ - return reinterpret_cast(vec_perm(a, a, p16uc_PSET64_LO)); -} - -template<> struct packet_traits : default_packet_traits -{ - typedef Packet2d type; - typedef Packet2d half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size=2, - HasHalfPacket = 1, - - HasAdd = 1, - HasSub = 1, - HasMul = 1, - HasDiv = 1, - HasMin = 1, - HasMax = 1, - HasAbs = 1, - HasSin = 0, - HasCos = 0, - HasLog = 0, - HasExp = 1, - HasSqrt = 1, - HasRsqrt = 1, - HasRound = 1, - HasFloor = 1, - HasCeil = 1, - HasNegate = 1, - HasBlend = 1 - }; -}; - -template<> struct unpacket_traits { typedef double type; enum {size=2, alignment=Aligned16}; typedef Packet2d half; }; - -inline std::ostream & operator <<(std::ostream & s, const Packet2l & v) -{ - union { - Packet2l v; - int64_t n[2]; - } vt; - vt.v = v; - s << vt.n[0] << ", " << vt.n[1]; - return s; -} - -inline std::ostream & operator <<(std::ostream & s, const Packet2d & v) -{ - union { - Packet2d v; - double n[2]; - } vt; - vt.v = v; - s << vt.n[0] << ", " << vt.n[1]; - return s; -} - -// Need to define them first or we get specialization after instantiation errors -template<> EIGEN_STRONG_INLINE Packet2d pload(const double* from) -{ - EIGEN_DEBUG_ALIGNED_LOAD -#ifdef __VSX__ - return vec_vsx_ld(0, from); -#else - return vec_ld(0, from); -#endif -} - -template<> EIGEN_STRONG_INLINE void pstore(double* to, const Packet2d& from) -{ - EIGEN_DEBUG_ALIGNED_STORE -#ifdef __VSX__ - vec_vsx_st(from, 0, to); -#else - vec_st(from, 0, to); -#endif -} - -template<> EIGEN_STRONG_INLINE Packet2d pset1(const double& from) { - Packet2d v = {from, from}; - return v; -} - -template<> EIGEN_STRONG_INLINE void -pbroadcast4(const double *a, - Packet2d& a0, Packet2d& a1, Packet2d& a2, Packet2d& a3) -{ - a1 = pload(a); - a0 = vec_splat_dbl<0>(a1); - a1 = vec_splat_dbl<1>(a1); - a3 = pload(a+2); - a2 = vec_splat_dbl<0>(a3); - a3 = vec_splat_dbl<1>(a3); -} - -template<> EIGEN_DEVICE_FUNC inline Packet2d pgather(const double* from, Index stride) -{ - double EIGEN_ALIGN16 af[2]; - af[0] = from[0*stride]; - af[1] = from[1*stride]; - return pload(af); -} -template<> EIGEN_DEVICE_FUNC inline void pscatter(double* to, const Packet2d& from, Index stride) -{ - double EIGEN_ALIGN16 af[2]; - pstore(af, from); - to[0*stride] = af[0]; - to[1*stride] = af[1]; -} - -template<> EIGEN_STRONG_INLINE Packet2d plset(const double& a) { return pset1(a) + p2d_COUNTDOWN; } - -template<> EIGEN_STRONG_INLINE Packet2d padd(const Packet2d& a, const Packet2d& b) { return a + b; } - -template<> EIGEN_STRONG_INLINE Packet2d psub(const Packet2d& a, const Packet2d& b) { return a - b; } - -template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a) { return p2d_ZERO - a; } - -template<> EIGEN_STRONG_INLINE Packet2d pconj(const Packet2d& a) { return a; } - -template<> EIGEN_STRONG_INLINE Packet2d pmul(const Packet2d& a, const Packet2d& b) { return vec_madd(a,b,p2d_MZERO); } -template<> EIGEN_STRONG_INLINE Packet2d pdiv(const Packet2d& a, const Packet2d& b) { return vec_div(a,b); } - -// for some weird raisons, it has to be overloaded for packet of integers -template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return vec_madd(a, b, c); } - -template<> EIGEN_STRONG_INLINE Packet2d pmin(const Packet2d& a, const Packet2d& b) -{ - Packet2d ret; - __asm__ ("xvcmpgedp %x0,%x1,%x2\n\txxsel %x0,%x1,%x2,%x0" : "=&wa" (ret) : "wa" (a), "wa" (b)); - return ret; - } - -template<> EIGEN_STRONG_INLINE Packet2d pmax(const Packet2d& a, const Packet2d& b) -{ - Packet2d ret; - __asm__ ("xvcmpgtdp %x0,%x2,%x1\n\txxsel %x0,%x1,%x2,%x0" : "=&wa" (ret) : "wa" (a), "wa" (b)); - return ret; -} - -template<> EIGEN_STRONG_INLINE Packet2d pand(const Packet2d& a, const Packet2d& b) { return vec_and(a, b); } - -template<> EIGEN_STRONG_INLINE Packet2d por(const Packet2d& a, const Packet2d& b) { return vec_or(a, b); } - -template<> EIGEN_STRONG_INLINE Packet2d pxor(const Packet2d& a, const Packet2d& b) { return vec_xor(a, b); } - -template<> EIGEN_STRONG_INLINE Packet2d pandnot(const Packet2d& a, const Packet2d& b) { return vec_and(a, vec_nor(b, b)); } - -template<> EIGEN_STRONG_INLINE Packet2d pround(const Packet2d& a) { return vec_round(a); } -template<> EIGEN_STRONG_INLINE Packet2d pceil(const Packet2d& a) { return vec_ceil(a); } -template<> EIGEN_STRONG_INLINE Packet2d pfloor(const Packet2d& a) { return vec_floor(a); } - -template<> EIGEN_STRONG_INLINE Packet2d ploadu(const double* from) -{ - EIGEN_DEBUG_ALIGNED_LOAD - return (Packet2d) vec_vsx_ld((long)from & 15, (const double*) _EIGEN_ALIGNED_PTR(from)); -} - -template<> EIGEN_STRONG_INLINE Packet2d ploaddup(const double* from) -{ - Packet2d p; - if((std::ptrdiff_t(from) % 16) == 0) p = pload(from); - else p = ploadu(from); - return vec_splat_dbl<0>(p); -} - -template<> EIGEN_STRONG_INLINE void pstoreu(double* to, const Packet2d& from) -{ - EIGEN_DEBUG_ALIGNED_STORE - vec_vsx_st((Packet4f)from, (long)to & 15, (float*) _EIGEN_ALIGNED_PTR(to)); -} - -template<> EIGEN_STRONG_INLINE void prefetch(const double* addr) { EIGEN_PPC_PREFETCH(addr); } - -template<> EIGEN_STRONG_INLINE double pfirst(const Packet2d& a) { double EIGEN_ALIGN16 x[2]; pstore(x, a); return x[0]; } - -template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a) -{ - return reinterpret_cast(vec_perm(reinterpret_cast(a), reinterpret_cast(a), p16uc_REVERSE64)); -} -template<> EIGEN_STRONG_INLINE Packet2d pabs(const Packet2d& a) { return vec_abs(a); } - -template<> EIGEN_STRONG_INLINE double predux(const Packet2d& a) -{ - Packet2d b, sum; - b = reinterpret_cast(vec_sld(reinterpret_cast(a), reinterpret_cast(a), 8)); - sum = a + b; - return pfirst(sum); -} - -template<> EIGEN_STRONG_INLINE Packet2d preduxp(const Packet2d* vecs) -{ - Packet2d v[2], sum; - v[0] = vecs[0] + reinterpret_cast(vec_sld(reinterpret_cast(vecs[0]), reinterpret_cast(vecs[0]), 8)); - v[1] = vecs[1] + reinterpret_cast(vec_sld(reinterpret_cast(vecs[1]), reinterpret_cast(vecs[1]), 8)); - -#ifdef _BIG_ENDIAN - sum = reinterpret_cast(vec_sld(reinterpret_cast(v[0]), reinterpret_cast(v[1]), 8)); -#else - sum = reinterpret_cast(vec_sld(reinterpret_cast(v[1]), reinterpret_cast(v[0]), 8)); -#endif - - return sum; -} -// Other reduction functions: -// mul -template<> EIGEN_STRONG_INLINE double predux_mul(const Packet2d& a) -{ - return pfirst(pmul(a, reinterpret_cast(vec_sld(reinterpret_cast(a), reinterpret_cast(a), 8)))); -} - -// min -template<> EIGEN_STRONG_INLINE double predux_min(const Packet2d& a) -{ - return pfirst(pmin(a, reinterpret_cast(vec_sld(reinterpret_cast(a), reinterpret_cast(a), 8)))); -} - -// max -template<> EIGEN_STRONG_INLINE double predux_max(const Packet2d& a) -{ - return pfirst(pmax(a, reinterpret_cast(vec_sld(reinterpret_cast(a), reinterpret_cast(a), 8)))); -} - -template -struct palign_impl -{ - static EIGEN_STRONG_INLINE void run(Packet2d& first, const Packet2d& second) - { - if (Offset == 1) -#ifdef _BIG_ENDIAN - first = reinterpret_cast(vec_sld(reinterpret_cast(first), reinterpret_cast(second), 8)); -#else - first = reinterpret_cast(vec_sld(reinterpret_cast(second), reinterpret_cast(first), 8)); -#endif - } -}; - -EIGEN_DEVICE_FUNC inline void -ptranspose(PacketBlock& kernel) { - Packet2d t0, t1; - t0 = vec_perm(kernel.packet[0], kernel.packet[1], p16uc_TRANSPOSE64_HI); - t1 = vec_perm(kernel.packet[0], kernel.packet[1], p16uc_TRANSPOSE64_LO); - kernel.packet[0] = t0; - kernel.packet[1] = t1; -} - -template<> EIGEN_STRONG_INLINE Packet2d pblend(const Selector<2>& ifPacket, const Packet2d& thenPacket, const Packet2d& elsePacket) { - Packet2l select = { ifPacket.select[0], ifPacket.select[1] }; - Packet2bl mask = reinterpret_cast( vec_cmpeq(reinterpret_cast(select), reinterpret_cast(p2l_ONE)) ); - return vec_sel(elsePacket, thenPacket, mask); -} -#endif // __VSX__ -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_PACKET_MATH_ALTIVEC_H diff --git a/src/math_meigen/Eigen/src/Core/arch/CUDA/Complex.h b/src/math_meigen/Eigen/src/Core/arch/CUDA/Complex.h deleted file mode 100755 index 9c2536509..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/CUDA/Complex.h +++ /dev/null @@ -1,103 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2014 Benoit Steiner -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_COMPLEX_CUDA_H -#define EIGEN_COMPLEX_CUDA_H - -// clang-format off - -namespace Eigen { - -namespace internal { - -#if defined(__CUDACC__) && defined(EIGEN_USE_GPU) - -// Many std::complex methods such as operator+, operator-, operator* and -// operator/ are not constexpr. Due to this, clang does not treat them as device -// functions and thus Eigen functors making use of these operators fail to -// compile. Here, we manually specialize these functors for complex types when -// building for CUDA to avoid non-constexpr methods. - -// Sum -template struct scalar_sum_op, const std::complex > : binary_op_base, const std::complex > { - typedef typename std::complex result_type; - - EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::complex operator() (const std::complex& a, const std::complex& b) const { - return std::complex(numext::real(a) + numext::real(b), - numext::imag(a) + numext::imag(b)); - } -}; - -template struct scalar_sum_op, std::complex > : scalar_sum_op, const std::complex > {}; - - -// Difference -template struct scalar_difference_op, const std::complex > : binary_op_base, const std::complex > { - typedef typename std::complex result_type; - - EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::complex operator() (const std::complex& a, const std::complex& b) const { - return std::complex(numext::real(a) - numext::real(b), - numext::imag(a) - numext::imag(b)); - } -}; - -template struct scalar_difference_op, std::complex > : scalar_difference_op, const std::complex > {}; - - -// Product -template struct scalar_product_op, const std::complex > : binary_op_base, const std::complex > { - enum { - Vectorizable = packet_traits>::HasMul - }; - typedef typename std::complex result_type; - - EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::complex operator() (const std::complex& a, const std::complex& b) const { - const T a_real = numext::real(a); - const T a_imag = numext::imag(a); - const T b_real = numext::real(b); - const T b_imag = numext::imag(b); - return std::complex(a_real * b_real - a_imag * b_imag, - a_real * b_imag + a_imag * b_real); - } -}; - -template struct scalar_product_op, std::complex > : scalar_product_op, const std::complex > {}; - - -// Quotient -template struct scalar_quotient_op, const std::complex > : binary_op_base, const std::complex > { - enum { - Vectorizable = packet_traits>::HasDiv - }; - typedef typename std::complex result_type; - - EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::complex operator() (const std::complex& a, const std::complex& b) const { - const T a_real = numext::real(a); - const T a_imag = numext::imag(a); - const T b_real = numext::real(b); - const T b_imag = numext::imag(b); - const T norm = T(1) / (b_real * b_real + b_imag * b_imag); - return std::complex((a_real * b_real + a_imag * b_imag) * norm, - (a_imag * b_real - a_real * b_imag) * norm); - } -}; - -template struct scalar_quotient_op, std::complex > : scalar_quotient_op, const std::complex > {}; - -#endif - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_COMPLEX_CUDA_H diff --git a/src/math_meigen/Eigen/src/Core/arch/CUDA/Half.h b/src/math_meigen/Eigen/src/Core/arch/CUDA/Half.h deleted file mode 100755 index 755e6209d..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/CUDA/Half.h +++ /dev/null @@ -1,674 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. -// -// The conversion routines are Copyright (c) Fabian Giesen, 2016. -// The original license follows: -// -// Copyright (c) Fabian Giesen, 2016 -// All rights reserved. -// Redistribution and use in source and binary forms, with or without -// modification, are permitted. -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - - -// Standard 16-bit float type, mostly useful for GPUs. Defines a new -// type Eigen::half (inheriting from CUDA's __half struct) with -// operator overloads such that it behaves basically as an arithmetic -// type. It will be quite slow on CPUs (so it is recommended to stay -// in float32_bits for CPUs, except for simple parameter conversions, I/O -// to disk and the likes), but fast on GPUs. - - -#ifndef EIGEN_HALF_CUDA_H -#define EIGEN_HALF_CUDA_H - -#if __cplusplus > 199711L -#define EIGEN_EXPLICIT_CAST(tgt_type) explicit operator tgt_type() -#else -#define EIGEN_EXPLICIT_CAST(tgt_type) operator tgt_type() -#endif - - -namespace Eigen { - -struct half; - -namespace half_impl { - -#if !defined(EIGEN_HAS_CUDA_FP16) -// Make our own __half_raw definition that is similar to CUDA's. -struct __half_raw { - EIGEN_DEVICE_FUNC __half_raw() : x(0) {} - explicit EIGEN_DEVICE_FUNC __half_raw(unsigned short raw) : x(raw) {} - unsigned short x; -}; -#elif defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000 -// In CUDA < 9.0, __half is the equivalent of CUDA 9's __half_raw -typedef __half __half_raw; -#endif - -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw raw_uint16_to_half(unsigned short x); -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw float_to_half_rtne(float ff); -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half_raw h); - -struct half_base : public __half_raw { - EIGEN_DEVICE_FUNC half_base() {} - EIGEN_DEVICE_FUNC half_base(const half_base& h) : __half_raw(h) {} - EIGEN_DEVICE_FUNC half_base(const __half_raw& h) : __half_raw(h) {} -#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER >= 90000 - EIGEN_DEVICE_FUNC half_base(const __half& h) : __half_raw(*(__half_raw*)&h) {} -#endif -}; - -} // namespace half_impl - -// Class definition. -struct half : public half_impl::half_base { - #if !defined(EIGEN_HAS_CUDA_FP16) || (defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER < 90000) - typedef half_impl::__half_raw __half_raw; - #endif - - EIGEN_DEVICE_FUNC half() {} - - EIGEN_DEVICE_FUNC half(const __half_raw& h) : half_impl::half_base(h) {} - EIGEN_DEVICE_FUNC half(const half& h) : half_impl::half_base(h) {} -#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDACC_VER) && EIGEN_CUDACC_VER >= 90000 - EIGEN_DEVICE_FUNC half(const __half& h) : half_impl::half_base(h) {} -#endif - - explicit EIGEN_DEVICE_FUNC half(bool b) - : half_impl::half_base(half_impl::raw_uint16_to_half(b ? 0x3c00 : 0)) {} - template - explicit EIGEN_DEVICE_FUNC half(const T& val) - : half_impl::half_base(half_impl::float_to_half_rtne(static_cast(val))) {} - explicit EIGEN_DEVICE_FUNC half(float f) - : half_impl::half_base(half_impl::float_to_half_rtne(f)) {} - - EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(bool) const { - // +0.0 and -0.0 become false, everything else becomes true. - return (x & 0x7fff) != 0; - } - EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(signed char) const { - return static_cast(half_impl::half_to_float(*this)); - } - EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned char) const { - return static_cast(half_impl::half_to_float(*this)); - } - EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(short) const { - return static_cast(half_impl::half_to_float(*this)); - } - EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned short) const { - return static_cast(half_impl::half_to_float(*this)); - } - EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(int) const { - return static_cast(half_impl::half_to_float(*this)); - } - EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned int) const { - return static_cast(half_impl::half_to_float(*this)); - } - EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(long) const { - return static_cast(half_impl::half_to_float(*this)); - } - EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned long) const { - return static_cast(half_impl::half_to_float(*this)); - } - EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(long long) const { - return static_cast(half_impl::half_to_float(*this)); - } - EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned long long) const { - return static_cast(half_to_float(*this)); - } - EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(float) const { - return half_impl::half_to_float(*this); - } - EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(double) const { - return static_cast(half_impl::half_to_float(*this)); - } - - EIGEN_DEVICE_FUNC half& operator=(const half& other) { - x = other.x; - return *this; - } -}; - -} // end namespace Eigen - -namespace std { -template<> -struct numeric_limits { - static const bool is_specialized = true; - static const bool is_signed = true; - static const bool is_integer = false; - static const bool is_exact = false; - static const bool has_infinity = true; - static const bool has_quiet_NaN = true; - static const bool has_signaling_NaN = true; - static const float_denorm_style has_denorm = denorm_present; - static const bool has_denorm_loss = false; - static const std::float_round_style round_style = std::round_to_nearest; - static const bool is_iec559 = false; - static const bool is_bounded = false; - static const bool is_modulo = false; - static const int digits = 11; - static const int digits10 = 3; // according to http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html - static const int max_digits10 = 5; // according to http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html - static const int radix = 2; - static const int min_exponent = -13; - static const int min_exponent10 = -4; - static const int max_exponent = 16; - static const int max_exponent10 = 4; - static const bool traps = true; - static const bool tinyness_before = false; - - static Eigen::half (min)() { return Eigen::half_impl::raw_uint16_to_half(0x400); } - static Eigen::half lowest() { return Eigen::half_impl::raw_uint16_to_half(0xfbff); } - static Eigen::half (max)() { return Eigen::half_impl::raw_uint16_to_half(0x7bff); } - static Eigen::half epsilon() { return Eigen::half_impl::raw_uint16_to_half(0x0800); } - static Eigen::half round_error() { return Eigen::half(0.5); } - static Eigen::half infinity() { return Eigen::half_impl::raw_uint16_to_half(0x7c00); } - static Eigen::half quiet_NaN() { return Eigen::half_impl::raw_uint16_to_half(0x7e00); } - static Eigen::half signaling_NaN() { return Eigen::half_impl::raw_uint16_to_half(0x7e00); } - static Eigen::half denorm_min() { return Eigen::half_impl::raw_uint16_to_half(0x1); } -}; - -// If std::numeric_limits is specialized, should also specialize -// std::numeric_limits, std::numeric_limits, and -// std::numeric_limits -// https://stackoverflow.com/a/16519653/ -template<> -struct numeric_limits : numeric_limits {}; -template<> -struct numeric_limits : numeric_limits {}; -template<> -struct numeric_limits : numeric_limits {}; -} // end namespace std - -namespace Eigen { - -namespace half_impl { - -#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530 - -// Intrinsics for native fp16 support. Note that on current hardware, -// these are no faster than float32_bits arithmetic (you need to use the half2 -// versions to get the ALU speed increased), but you do save the -// conversion steps back and forth. - -EIGEN_STRONG_INLINE __device__ half operator + (const half& a, const half& b) { - return __hadd(a, b); -} -EIGEN_STRONG_INLINE __device__ half operator * (const half& a, const half& b) { - return __hmul(a, b); -} -EIGEN_STRONG_INLINE __device__ half operator - (const half& a, const half& b) { - return __hsub(a, b); -} -EIGEN_STRONG_INLINE __device__ half operator / (const half& a, const half& b) { - float num = __half2float(a); - float denom = __half2float(b); - return __float2half(num / denom); -} -EIGEN_STRONG_INLINE __device__ half operator - (const half& a) { - return __hneg(a); -} -EIGEN_STRONG_INLINE __device__ half& operator += (half& a, const half& b) { - a = a + b; - return a; -} -EIGEN_STRONG_INLINE __device__ half& operator *= (half& a, const half& b) { - a = a * b; - return a; -} -EIGEN_STRONG_INLINE __device__ half& operator -= (half& a, const half& b) { - a = a - b; - return a; -} -EIGEN_STRONG_INLINE __device__ half& operator /= (half& a, const half& b) { - a = a / b; - return a; -} -EIGEN_STRONG_INLINE __device__ bool operator == (const half& a, const half& b) { - return __heq(a, b); -} -EIGEN_STRONG_INLINE __device__ bool operator != (const half& a, const half& b) { - return __hne(a, b); -} -EIGEN_STRONG_INLINE __device__ bool operator < (const half& a, const half& b) { - return __hlt(a, b); -} -EIGEN_STRONG_INLINE __device__ bool operator <= (const half& a, const half& b) { - return __hle(a, b); -} -EIGEN_STRONG_INLINE __device__ bool operator > (const half& a, const half& b) { - return __hgt(a, b); -} -EIGEN_STRONG_INLINE __device__ bool operator >= (const half& a, const half& b) { - return __hge(a, b); -} - -#else // Emulate support for half floats - -// Definitions for CPUs and older CUDA, mostly working through conversion -// to/from float32_bits. - -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator + (const half& a, const half& b) { - return half(float(a) + float(b)); -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator * (const half& a, const half& b) { - return half(float(a) * float(b)); -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a, const half& b) { - return half(float(a) - float(b)); -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator / (const half& a, const half& b) { - return half(float(a) / float(b)); -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a) { - half result; - result.x = a.x ^ 0x8000; - return result; -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator += (half& a, const half& b) { - a = half(float(a) + float(b)); - return a; -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator *= (half& a, const half& b) { - a = half(float(a) * float(b)); - return a; -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator -= (half& a, const half& b) { - a = half(float(a) - float(b)); - return a; -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator /= (half& a, const half& b) { - a = half(float(a) / float(b)); - return a; -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator == (const half& a, const half& b) { - return numext::equal_strict(float(a),float(b)); -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator != (const half& a, const half& b) { - return numext::not_equal_strict(float(a), float(b)); -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator < (const half& a, const half& b) { - return float(a) < float(b); -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator <= (const half& a, const half& b) { - return float(a) <= float(b); -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator > (const half& a, const half& b) { - return float(a) > float(b); -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator >= (const half& a, const half& b) { - return float(a) >= float(b); -} - -#endif // Emulate support for half floats - -// Division by an index. Do it in full float precision to avoid accuracy -// issues in converting the denominator to half. -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator / (const half& a, Index b) { - return half(static_cast(a) / static_cast(b)); -} - -// Conversion routines, including fallbacks for the host or older CUDA. -// Note that newer Intel CPUs (Haswell or newer) have vectorized versions of -// these in hardware. If we need more performance on older/other CPUs, they are -// also possible to vectorize directly. - -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw raw_uint16_to_half(unsigned short x) { - __half_raw h; - h.x = x; - return h; -} - -union float32_bits { - unsigned int u; - float f; -}; - -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw float_to_half_rtne(float ff) { -#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300 - __half tmp_ff = __float2half(ff); - return *(__half_raw*)&tmp_ff; - -#elif defined(EIGEN_HAS_FP16_C) - __half_raw h; - h.x = _cvtss_sh(ff, 0); - return h; - -#else - float32_bits f; f.f = ff; - - const float32_bits f32infty = { 255 << 23 }; - const float32_bits f16max = { (127 + 16) << 23 }; - const float32_bits denorm_magic = { ((127 - 15) + (23 - 10) + 1) << 23 }; - unsigned int sign_mask = 0x80000000u; - __half_raw o; - o.x = static_cast(0x0u); - - unsigned int sign = f.u & sign_mask; - f.u ^= sign; - - // NOTE all the integer compares in this function can be safely - // compiled into signed compares since all operands are below - // 0x80000000. Important if you want fast straight SSE2 code - // (since there's no unsigned PCMPGTD). - - if (f.u >= f16max.u) { // result is Inf or NaN (all exponent bits set) - o.x = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf - } else { // (De)normalized number or zero - if (f.u < (113 << 23)) { // resulting FP16 is subnormal or zero - // use a magic value to align our 10 mantissa bits at the bottom of - // the float. as long as FP addition is round-to-nearest-even this - // just works. - f.f += denorm_magic.f; - - // and one integer subtract of the bias later, we have our final float! - o.x = static_cast(f.u - denorm_magic.u); - } else { - unsigned int mant_odd = (f.u >> 13) & 1; // resulting mantissa is odd - - // update exponent, rounding bias part 1 - f.u += ((unsigned int)(15 - 127) << 23) + 0xfff; - // rounding bias part 2 - f.u += mant_odd; - // take the bits! - o.x = static_cast(f.u >> 13); - } - } - - o.x |= static_cast(sign >> 16); - return o; -#endif -} - -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half_raw h) { -#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300 - return __half2float(h); - -#elif defined(EIGEN_HAS_FP16_C) - return _cvtsh_ss(h.x); - -#else - const float32_bits magic = { 113 << 23 }; - const unsigned int shifted_exp = 0x7c00 << 13; // exponent mask after shift - float32_bits o; - - o.u = (h.x & 0x7fff) << 13; // exponent/mantissa bits - unsigned int exp = shifted_exp & o.u; // just the exponent - o.u += (127 - 15) << 23; // exponent adjust - - // handle exponent special cases - if (exp == shifted_exp) { // Inf/NaN? - o.u += (128 - 16) << 23; // extra exp adjust - } else if (exp == 0) { // Zero/Denormal? - o.u += 1 << 23; // extra exp adjust - o.f -= magic.f; // renormalize - } - - o.u |= (h.x & 0x8000) << 16; // sign bit - return o.f; -#endif -} - -// --- standard functions --- - -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isinf)(const half& a) { - return (a.x & 0x7fff) == 0x7c00; -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isnan)(const half& a) { -#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530 - return __hisnan(a); -#else - return (a.x & 0x7fff) > 0x7c00; -#endif -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isfinite)(const half& a) { - return !(isinf EIGEN_NOT_A_MACRO (a)) && !(isnan EIGEN_NOT_A_MACRO (a)); -} - -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half abs(const half& a) { - half result; - result.x = a.x & 0x7FFF; - return result; -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half exp(const half& a) { -#if EIGEN_CUDACC_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530 - return half(hexp(a)); -#else - return half(::expf(float(a))); -#endif -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log(const half& a) { -#if defined(EIGEN_HAS_CUDA_FP16) && EIGEN_CUDACC_VER >= 80000 && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530 - return half(::hlog(a)); -#else - return half(::logf(float(a))); -#endif -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log1p(const half& a) { - return half(numext::log1p(float(a))); -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log10(const half& a) { - return half(::log10f(float(a))); -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half sqrt(const half& a) { -#if EIGEN_CUDACC_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530 - return half(hsqrt(a)); -#else - return half(::sqrtf(float(a))); -#endif -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half pow(const half& a, const half& b) { - return half(::powf(float(a), float(b))); -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half sin(const half& a) { - return half(::sinf(float(a))); -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half cos(const half& a) { - return half(::cosf(float(a))); -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tan(const half& a) { - return half(::tanf(float(a))); -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tanh(const half& a) { - return half(::tanhf(float(a))); -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half floor(const half& a) { -#if EIGEN_CUDACC_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 300 - return half(hfloor(a)); -#else - return half(::floorf(float(a))); -#endif -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half ceil(const half& a) { -#if EIGEN_CUDACC_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 300 - return half(hceil(a)); -#else - return half(::ceilf(float(a))); -#endif -} - -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half (min)(const half& a, const half& b) { -#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530 - return __hlt(b, a) ? b : a; -#else - const float f1 = static_cast(a); - const float f2 = static_cast(b); - return f2 < f1 ? b : a; -#endif -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half (max)(const half& a, const half& b) { -#if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530 - return __hlt(a, b) ? b : a; -#else - const float f1 = static_cast(a); - const float f2 = static_cast(b); - return f1 < f2 ? b : a; -#endif -} - -EIGEN_ALWAYS_INLINE std::ostream& operator << (std::ostream& os, const half& v) { - os << static_cast(v); - return os; -} - -} // end namespace half_impl - -// import Eigen::half_impl::half into Eigen namespace -// using half_impl::half; - -namespace internal { - -template<> -struct random_default_impl -{ - static inline half run(const half& x, const half& y) - { - return x + (y-x) * half(float(std::rand()) / float(RAND_MAX)); - } - static inline half run() - { - return run(half(-1.f), half(1.f)); - } -}; - -template<> struct is_arithmetic { enum { value = true }; }; - -} // end namespace internal - -template<> struct NumTraits - : GenericNumTraits -{ - enum { - IsSigned = true, - IsInteger = false, - IsComplex = false, - RequireInitialization = false - }; - - EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half epsilon() { - return half_impl::raw_uint16_to_half(0x0800); - } - EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half dummy_precision() { return Eigen::half(1e-2f); } - EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half highest() { - return half_impl::raw_uint16_to_half(0x7bff); - } - EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half lowest() { - return half_impl::raw_uint16_to_half(0xfbff); - } - EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half infinity() { - return half_impl::raw_uint16_to_half(0x7c00); - } - EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half quiet_NaN() { - return half_impl::raw_uint16_to_half(0x7c01); - } -}; - -} // end namespace Eigen - -// C-like standard mathematical functions and trancendentals. -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half fabsh(const Eigen::half& a) { - Eigen::half result; - result.x = a.x & 0x7FFF; - return result; -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half exph(const Eigen::half& a) { - return Eigen::half(::expf(float(a))); -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half logh(const Eigen::half& a) { -#if EIGEN_CUDACC_VER >= 80000 && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530 - return Eigen::half(::hlog(a)); -#else - return Eigen::half(::logf(float(a))); -#endif -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half sqrth(const Eigen::half& a) { - return Eigen::half(::sqrtf(float(a))); -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half powh(const Eigen::half& a, const Eigen::half& b) { - return Eigen::half(::powf(float(a), float(b))); -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half floorh(const Eigen::half& a) { - return Eigen::half(::floorf(float(a))); -} -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half ceilh(const Eigen::half& a) { - return Eigen::half(::ceilf(float(a))); -} - -namespace std { - -#if __cplusplus > 199711L -template <> -struct hash { - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::size_t operator()(const Eigen::half& a) const { - return static_cast(a.x); - } -}; -#endif - -} // end namespace std - - -// Add the missing shfl_xor intrinsic -#if defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300 -__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_xor(Eigen::half var, int laneMask, int width=warpSize) { - #if EIGEN_CUDACC_VER < 90000 - return static_cast(__shfl_xor(static_cast(var), laneMask, width)); - #else - return static_cast(__shfl_xor_sync(0xFFFFFFFF, static_cast(var), laneMask, width)); - #endif -} -#endif - -// ldg() has an overload for __half_raw, but we also need one for Eigen::half. -#if defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 350 -EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half __ldg(const Eigen::half* ptr) { - return Eigen::half_impl::raw_uint16_to_half( - __ldg(reinterpret_cast(ptr))); -} -#endif - - -#if defined(EIGEN_CUDA_ARCH) -namespace Eigen { -namespace numext { - -template<> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -bool (isnan)(const Eigen::half& h) { - return (half_impl::isnan)(h); -} - -template<> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -bool (isinf)(const Eigen::half& h) { - return (half_impl::isinf)(h); -} - -template<> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -bool (isfinite)(const Eigen::half& h) { - return (half_impl::isfinite)(h); -} - -} // namespace Eigen -} // namespace numext -#endif - -#endif // EIGEN_HALF_CUDA_H diff --git a/src/math_meigen/Eigen/src/Core/arch/CUDA/MathFunctions.h b/src/math_meigen/Eigen/src/Core/arch/CUDA/MathFunctions.h deleted file mode 100755 index 0348b41db..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/CUDA/MathFunctions.h +++ /dev/null @@ -1,91 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2014 Benoit Steiner -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_MATH_FUNCTIONS_CUDA_H -#define EIGEN_MATH_FUNCTIONS_CUDA_H - -namespace Eigen { - -namespace internal { - -// Make sure this is only available when targeting a GPU: we don't want to -// introduce conflicts between these packet_traits definitions and the ones -// we'll use on the host side (SSE, AVX, ...) -#if defined(__CUDACC__) && defined(EIGEN_USE_GPU) -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE -float4 plog(const float4& a) -{ - return make_float4(logf(a.x), logf(a.y), logf(a.z), logf(a.w)); -} - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE -double2 plog(const double2& a) -{ - using ::log; - return make_double2(log(a.x), log(a.y)); -} - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE -float4 plog1p(const float4& a) -{ - return make_float4(log1pf(a.x), log1pf(a.y), log1pf(a.z), log1pf(a.w)); -} - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE -double2 plog1p(const double2& a) -{ - return make_double2(log1p(a.x), log1p(a.y)); -} - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE -float4 pexp(const float4& a) -{ - return make_float4(expf(a.x), expf(a.y), expf(a.z), expf(a.w)); -} - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE -double2 pexp(const double2& a) -{ - using ::exp; - return make_double2(exp(a.x), exp(a.y)); -} - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE -float4 psqrt(const float4& a) -{ - return make_float4(sqrtf(a.x), sqrtf(a.y), sqrtf(a.z), sqrtf(a.w)); -} - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE -double2 psqrt(const double2& a) -{ - using ::sqrt; - return make_double2(sqrt(a.x), sqrt(a.y)); -} - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE -float4 prsqrt(const float4& a) -{ - return make_float4(rsqrtf(a.x), rsqrtf(a.y), rsqrtf(a.z), rsqrtf(a.w)); -} - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE -double2 prsqrt(const double2& a) -{ - return make_double2(rsqrt(a.x), rsqrt(a.y)); -} - - -#endif - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_MATH_FUNCTIONS_CUDA_H diff --git a/src/math_meigen/Eigen/src/Core/arch/CUDA/PacketMath.h b/src/math_meigen/Eigen/src/Core/arch/CUDA/PacketMath.h deleted file mode 100755 index 4dda63188..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/CUDA/PacketMath.h +++ /dev/null @@ -1,333 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2014 Benoit Steiner -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_PACKET_MATH_CUDA_H -#define EIGEN_PACKET_MATH_CUDA_H - -namespace Eigen { - -namespace internal { - -// Make sure this is only available when targeting a GPU: we don't want to -// introduce conflicts between these packet_traits definitions and the ones -// we'll use on the host side (SSE, AVX, ...) -#if defined(__CUDACC__) && defined(EIGEN_USE_GPU) -template<> struct is_arithmetic { enum { value = true }; }; -template<> struct is_arithmetic { enum { value = true }; }; - -template<> struct packet_traits : default_packet_traits -{ - typedef float4 type; - typedef float4 half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size=4, - HasHalfPacket = 0, - - HasDiv = 1, - HasSin = 0, - HasCos = 0, - HasLog = 1, - HasExp = 1, - HasSqrt = 1, - HasRsqrt = 1, - HasLGamma = 1, - HasDiGamma = 1, - HasZeta = 1, - HasPolygamma = 1, - HasErf = 1, - HasErfc = 1, - HasIGamma = 1, - HasIGammac = 1, - HasBetaInc = 1, - - HasBlend = 0, - }; -}; - -template<> struct packet_traits : default_packet_traits -{ - typedef double2 type; - typedef double2 half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size=2, - HasHalfPacket = 0, - - HasDiv = 1, - HasLog = 1, - HasExp = 1, - HasSqrt = 1, - HasRsqrt = 1, - HasLGamma = 1, - HasDiGamma = 1, - HasZeta = 1, - HasPolygamma = 1, - HasErf = 1, - HasErfc = 1, - HasIGamma = 1, - HasIGammac = 1, - HasBetaInc = 1, - - HasBlend = 0, - }; -}; - - -template<> struct unpacket_traits { typedef float type; enum {size=4, alignment=Aligned16}; typedef float4 half; }; -template<> struct unpacket_traits { typedef double type; enum {size=2, alignment=Aligned16}; typedef double2 half; }; - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pset1(const float& from) { - return make_float4(from, from, from, from); -} -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pset1(const double& from) { - return make_double2(from, from); -} - - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 plset(const float& a) { - return make_float4(a, a+1, a+2, a+3); -} -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 plset(const double& a) { - return make_double2(a, a+1); -} - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 padd(const float4& a, const float4& b) { - return make_float4(a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w); -} -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 padd(const double2& a, const double2& b) { - return make_double2(a.x+b.x, a.y+b.y); -} - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 psub(const float4& a, const float4& b) { - return make_float4(a.x-b.x, a.y-b.y, a.z-b.z, a.w-b.w); -} -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 psub(const double2& a, const double2& b) { - return make_double2(a.x-b.x, a.y-b.y); -} - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pnegate(const float4& a) { - return make_float4(-a.x, -a.y, -a.z, -a.w); -} -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pnegate(const double2& a) { - return make_double2(-a.x, -a.y); -} - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pconj(const float4& a) { return a; } -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pconj(const double2& a) { return a; } - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pmul(const float4& a, const float4& b) { - return make_float4(a.x*b.x, a.y*b.y, a.z*b.z, a.w*b.w); -} -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pmul(const double2& a, const double2& b) { - return make_double2(a.x*b.x, a.y*b.y); -} - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pdiv(const float4& a, const float4& b) { - return make_float4(a.x/b.x, a.y/b.y, a.z/b.z, a.w/b.w); -} -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pdiv(const double2& a, const double2& b) { - return make_double2(a.x/b.x, a.y/b.y); -} - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pmin(const float4& a, const float4& b) { - return make_float4(fminf(a.x, b.x), fminf(a.y, b.y), fminf(a.z, b.z), fminf(a.w, b.w)); -} -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pmin(const double2& a, const double2& b) { - return make_double2(fmin(a.x, b.x), fmin(a.y, b.y)); -} - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pmax(const float4& a, const float4& b) { - return make_float4(fmaxf(a.x, b.x), fmaxf(a.y, b.y), fmaxf(a.z, b.z), fmaxf(a.w, b.w)); -} -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pmax(const double2& a, const double2& b) { - return make_double2(fmax(a.x, b.x), fmax(a.y, b.y)); -} - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pload(const float* from) { - return *reinterpret_cast(from); -} - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 pload(const double* from) { - return *reinterpret_cast(from); -} - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 ploadu(const float* from) { - return make_float4(from[0], from[1], from[2], from[3]); -} -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double2 ploadu(const double* from) { - return make_double2(from[0], from[1]); -} - -template<> EIGEN_STRONG_INLINE float4 ploaddup(const float* from) { - return make_float4(from[0], from[0], from[1], from[1]); -} -template<> EIGEN_STRONG_INLINE double2 ploaddup(const double* from) { - return make_double2(from[0], from[0]); -} - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pstore(float* to, const float4& from) { - *reinterpret_cast(to) = from; -} - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pstore(double* to, const double2& from) { - *reinterpret_cast(to) = from; -} - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pstoreu(float* to, const float4& from) { - to[0] = from.x; - to[1] = from.y; - to[2] = from.z; - to[3] = from.w; -} - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void pstoreu(double* to, const double2& from) { - to[0] = from.x; - to[1] = from.y; -} - -template<> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float4 ploadt_ro(const float* from) { -#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350 - return __ldg((const float4*)from); -#else - return make_float4(from[0], from[1], from[2], from[3]); -#endif -} -template<> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double2 ploadt_ro(const double* from) { -#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350 - return __ldg((const double2*)from); -#else - return make_double2(from[0], from[1]); -#endif -} - -template<> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float4 ploadt_ro(const float* from) { -#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350 - return make_float4(__ldg(from+0), __ldg(from+1), __ldg(from+2), __ldg(from+3)); -#else - return make_float4(from[0], from[1], from[2], from[3]); -#endif -} -template<> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double2 ploadt_ro(const double* from) { -#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350 - return make_double2(__ldg(from+0), __ldg(from+1)); -#else - return make_double2(from[0], from[1]); -#endif -} - -template<> EIGEN_DEVICE_FUNC inline float4 pgather(const float* from, Index stride) { - return make_float4(from[0*stride], from[1*stride], from[2*stride], from[3*stride]); -} - -template<> EIGEN_DEVICE_FUNC inline double2 pgather(const double* from, Index stride) { - return make_double2(from[0*stride], from[1*stride]); -} - -template<> EIGEN_DEVICE_FUNC inline void pscatter(float* to, const float4& from, Index stride) { - to[stride*0] = from.x; - to[stride*1] = from.y; - to[stride*2] = from.z; - to[stride*3] = from.w; -} -template<> EIGEN_DEVICE_FUNC inline void pscatter(double* to, const double2& from, Index stride) { - to[stride*0] = from.x; - to[stride*1] = from.y; -} - -template<> EIGEN_DEVICE_FUNC inline float pfirst(const float4& a) { - return a.x; -} -template<> EIGEN_DEVICE_FUNC inline double pfirst(const double2& a) { - return a.x; -} - -template<> EIGEN_DEVICE_FUNC inline float predux(const float4& a) { - return a.x + a.y + a.z + a.w; -} -template<> EIGEN_DEVICE_FUNC inline double predux(const double2& a) { - return a.x + a.y; -} - -template<> EIGEN_DEVICE_FUNC inline float predux_max(const float4& a) { - return fmaxf(fmaxf(a.x, a.y), fmaxf(a.z, a.w)); -} -template<> EIGEN_DEVICE_FUNC inline double predux_max(const double2& a) { - return fmax(a.x, a.y); -} - -template<> EIGEN_DEVICE_FUNC inline float predux_min(const float4& a) { - return fminf(fminf(a.x, a.y), fminf(a.z, a.w)); -} -template<> EIGEN_DEVICE_FUNC inline double predux_min(const double2& a) { - return fmin(a.x, a.y); -} - -template<> EIGEN_DEVICE_FUNC inline float predux_mul(const float4& a) { - return a.x * a.y * a.z * a.w; -} -template<> EIGEN_DEVICE_FUNC inline double predux_mul(const double2& a) { - return a.x * a.y; -} - -template<> EIGEN_DEVICE_FUNC inline float4 pabs(const float4& a) { - return make_float4(fabsf(a.x), fabsf(a.y), fabsf(a.z), fabsf(a.w)); -} -template<> EIGEN_DEVICE_FUNC inline double2 pabs(const double2& a) { - return make_double2(fabs(a.x), fabs(a.y)); -} - -EIGEN_DEVICE_FUNC inline void -ptranspose(PacketBlock& kernel) { - float tmp = kernel.packet[0].y; - kernel.packet[0].y = kernel.packet[1].x; - kernel.packet[1].x = tmp; - - tmp = kernel.packet[0].z; - kernel.packet[0].z = kernel.packet[2].x; - kernel.packet[2].x = tmp; - - tmp = kernel.packet[0].w; - kernel.packet[0].w = kernel.packet[3].x; - kernel.packet[3].x = tmp; - - tmp = kernel.packet[1].z; - kernel.packet[1].z = kernel.packet[2].y; - kernel.packet[2].y = tmp; - - tmp = kernel.packet[1].w; - kernel.packet[1].w = kernel.packet[3].y; - kernel.packet[3].y = tmp; - - tmp = kernel.packet[2].w; - kernel.packet[2].w = kernel.packet[3].z; - kernel.packet[3].z = tmp; -} - -EIGEN_DEVICE_FUNC inline void -ptranspose(PacketBlock& kernel) { - double tmp = kernel.packet[0].y; - kernel.packet[0].y = kernel.packet[1].x; - kernel.packet[1].x = tmp; -} - -#endif - -} // end namespace internal - -} // end namespace Eigen - - -#endif // EIGEN_PACKET_MATH_CUDA_H diff --git a/src/math_meigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h b/src/math_meigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h deleted file mode 100755 index c66d38469..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/CUDA/PacketMathHalf.h +++ /dev/null @@ -1,1124 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2016 Benoit Steiner -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_PACKET_MATH_HALF_CUDA_H -#define EIGEN_PACKET_MATH_HALF_CUDA_H - - -namespace Eigen { -namespace internal { - -// Most of the following operations require arch >= 3.0 -#if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDACC__) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300 - -template<> struct is_arithmetic { enum { value = true }; }; - -template<> struct packet_traits : default_packet_traits -{ - typedef half2 type; - typedef half2 half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size=2, - HasHalfPacket = 0, - HasAdd = 1, - HasMul = 1, - HasDiv = 1, - HasSqrt = 1, - HasRsqrt = 1, - HasExp = 1, - HasLog = 1, - HasLog1p = 1 - }; -}; - -template<> struct unpacket_traits { typedef Eigen::half type; enum {size=2, alignment=Aligned16}; typedef half2 half; }; - -template<> __device__ EIGEN_STRONG_INLINE half2 pset1(const Eigen::half& from) { - return __half2half2(from); -} - -template<> __device__ EIGEN_STRONG_INLINE half2 pload(const Eigen::half* from) { - return *reinterpret_cast(from); -} - -template<> __device__ EIGEN_STRONG_INLINE half2 ploadu(const Eigen::half* from) { - return __halves2half2(from[0], from[1]); -} - -template<> EIGEN_STRONG_INLINE half2 ploaddup(const Eigen::half* from) { - return __halves2half2(from[0], from[0]); -} - -template<> __device__ EIGEN_STRONG_INLINE void pstore(Eigen::half* to, const half2& from) { - *reinterpret_cast(to) = from; -} - -template<> __device__ EIGEN_STRONG_INLINE void pstoreu(Eigen::half* to, const half2& from) { - to[0] = __low2half(from); - to[1] = __high2half(from); -} - -template<> - __device__ EIGEN_ALWAYS_INLINE half2 ploadt_ro(const Eigen::half* from) { -#if __CUDA_ARCH__ >= 350 - return __ldg((const half2*)from); -#else - return __halves2half2(*(from+0), *(from+1)); -#endif -} - -template<> -__device__ EIGEN_ALWAYS_INLINE half2 ploadt_ro(const Eigen::half* from) { -#if __CUDA_ARCH__ >= 350 - return __halves2half2(__ldg(from+0), __ldg(from+1)); -#else - return __halves2half2(*(from+0), *(from+1)); -#endif -} - -template<> __device__ EIGEN_STRONG_INLINE half2 pgather(const Eigen::half* from, Index stride) { - return __halves2half2(from[0*stride], from[1*stride]); -} - -template<> __device__ EIGEN_STRONG_INLINE void pscatter(Eigen::half* to, const half2& from, Index stride) { - to[stride*0] = __low2half(from); - to[stride*1] = __high2half(from); -} - -template<> __device__ EIGEN_STRONG_INLINE Eigen::half pfirst(const half2& a) { - return __low2half(a); -} - -template<> __device__ EIGEN_STRONG_INLINE half2 pabs(const half2& a) { - half2 result; - unsigned temp = *(reinterpret_cast(&(a))); - *(reinterpret_cast(&(result))) = temp & 0x7FFF7FFF; - return result; -} - - -__device__ EIGEN_STRONG_INLINE void -ptranspose(PacketBlock& kernel) { - __half a1 = __low2half(kernel.packet[0]); - __half a2 = __high2half(kernel.packet[0]); - __half b1 = __low2half(kernel.packet[1]); - __half b2 = __high2half(kernel.packet[1]); - kernel.packet[0] = __halves2half2(a1, b1); - kernel.packet[1] = __halves2half2(a2, b2); -} - -template<> __device__ EIGEN_STRONG_INLINE half2 plset(const Eigen::half& a) { -#if __CUDA_ARCH__ >= 530 - return __halves2half2(a, __hadd(a, __float2half(1.0f))); -#else - float f = __half2float(a) + 1.0f; - return __halves2half2(a, __float2half(f)); -#endif -} - -template<> __device__ EIGEN_STRONG_INLINE half2 padd(const half2& a, const half2& b) { -#if __CUDA_ARCH__ >= 530 - return __hadd2(a, b); -#else - float a1 = __low2float(a); - float a2 = __high2float(a); - float b1 = __low2float(b); - float b2 = __high2float(b); - float r1 = a1 + b1; - float r2 = a2 + b2; - return __floats2half2_rn(r1, r2); -#endif -} - -template<> __device__ EIGEN_STRONG_INLINE half2 psub(const half2& a, const half2& b) { -#if __CUDA_ARCH__ >= 530 - return __hsub2(a, b); -#else - float a1 = __low2float(a); - float a2 = __high2float(a); - float b1 = __low2float(b); - float b2 = __high2float(b); - float r1 = a1 - b1; - float r2 = a2 - b2; - return __floats2half2_rn(r1, r2); -#endif -} - -template<> __device__ EIGEN_STRONG_INLINE half2 pnegate(const half2& a) { -#if __CUDA_ARCH__ >= 530 - return __hneg2(a); -#else - float a1 = __low2float(a); - float a2 = __high2float(a); - return __floats2half2_rn(-a1, -a2); -#endif -} - -template<> __device__ EIGEN_STRONG_INLINE half2 pconj(const half2& a) { return a; } - -template<> __device__ EIGEN_STRONG_INLINE half2 pmul(const half2& a, const half2& b) { -#if __CUDA_ARCH__ >= 530 - return __hmul2(a, b); -#else - float a1 = __low2float(a); - float a2 = __high2float(a); - float b1 = __low2float(b); - float b2 = __high2float(b); - float r1 = a1 * b1; - float r2 = a2 * b2; - return __floats2half2_rn(r1, r2); -#endif -} - -template<> __device__ EIGEN_STRONG_INLINE half2 pmadd(const half2& a, const half2& b, const half2& c) { -#if __CUDA_ARCH__ >= 530 - return __hfma2(a, b, c); -#else - float a1 = __low2float(a); - float a2 = __high2float(a); - float b1 = __low2float(b); - float b2 = __high2float(b); - float c1 = __low2float(c); - float c2 = __high2float(c); - float r1 = a1 * b1 + c1; - float r2 = a2 * b2 + c2; - return __floats2half2_rn(r1, r2); -#endif -} - -template<> __device__ EIGEN_STRONG_INLINE half2 pdiv(const half2& a, const half2& b) { - float a1 = __low2float(a); - float a2 = __high2float(a); - float b1 = __low2float(b); - float b2 = __high2float(b); - float r1 = a1 / b1; - float r2 = a2 / b2; - return __floats2half2_rn(r1, r2); -} - -template<> __device__ EIGEN_STRONG_INLINE half2 pmin(const half2& a, const half2& b) { - float a1 = __low2float(a); - float a2 = __high2float(a); - float b1 = __low2float(b); - float b2 = __high2float(b); - __half r1 = a1 < b1 ? __low2half(a) : __low2half(b); - __half r2 = a2 < b2 ? __high2half(a) : __high2half(b); - return __halves2half2(r1, r2); -} - -template<> __device__ EIGEN_STRONG_INLINE half2 pmax(const half2& a, const half2& b) { - float a1 = __low2float(a); - float a2 = __high2float(a); - float b1 = __low2float(b); - float b2 = __high2float(b); - __half r1 = a1 > b1 ? __low2half(a) : __low2half(b); - __half r2 = a2 > b2 ? __high2half(a) : __high2half(b); - return __halves2half2(r1, r2); -} - -template<> __device__ EIGEN_STRONG_INLINE Eigen::half predux(const half2& a) { -#if __CUDA_ARCH__ >= 530 - return __hadd(__low2half(a), __high2half(a)); -#else - float a1 = __low2float(a); - float a2 = __high2float(a); - return Eigen::half(half_impl::raw_uint16_to_half(__float2half_rn(a1 + a2))); -#endif -} - -template<> __device__ EIGEN_STRONG_INLINE Eigen::half predux_max(const half2& a) { -#if __CUDA_ARCH__ >= 530 - __half first = __low2half(a); - __half second = __high2half(a); - return __hgt(first, second) ? first : second; -#else - float a1 = __low2float(a); - float a2 = __high2float(a); - return a1 > a2 ? __low2half(a) : __high2half(a); -#endif -} - -template<> __device__ EIGEN_STRONG_INLINE Eigen::half predux_min(const half2& a) { -#if __CUDA_ARCH__ >= 530 - __half first = __low2half(a); - __half second = __high2half(a); - return __hlt(first, second) ? first : second; -#else - float a1 = __low2float(a); - float a2 = __high2float(a); - return a1 < a2 ? __low2half(a) : __high2half(a); -#endif -} - -template<> __device__ EIGEN_STRONG_INLINE Eigen::half predux_mul(const half2& a) { -#if __CUDA_ARCH__ >= 530 - return __hmul(__low2half(a), __high2half(a)); -#else - float a1 = __low2float(a); - float a2 = __high2float(a); - return Eigen::half(half_impl::raw_uint16_to_half(__float2half_rn(a1 * a2))); -#endif -} - -template<> __device__ EIGEN_STRONG_INLINE half2 plog1p(const half2& a) { - float a1 = __low2float(a); - float a2 = __high2float(a); - float r1 = log1pf(a1); - float r2 = log1pf(a2); - return __floats2half2_rn(r1, r2); -} - -#if EIGEN_CUDACC_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530 - -template<> __device__ EIGEN_STRONG_INLINE -half2 plog(const half2& a) { - return h2log(a); -} - -template<> __device__ EIGEN_STRONG_INLINE -half2 pexp(const half2& a) { - return h2exp(a); -} - -template<> __device__ EIGEN_STRONG_INLINE -half2 psqrt(const half2& a) { - return h2sqrt(a); -} - -template<> __device__ EIGEN_STRONG_INLINE -half2 prsqrt(const half2& a) { - return h2rsqrt(a); -} - -#else - -template<> __device__ EIGEN_STRONG_INLINE half2 plog(const half2& a) { - float a1 = __low2float(a); - float a2 = __high2float(a); - float r1 = logf(a1); - float r2 = logf(a2); - return __floats2half2_rn(r1, r2); -} - -template<> __device__ EIGEN_STRONG_INLINE half2 pexp(const half2& a) { - float a1 = __low2float(a); - float a2 = __high2float(a); - float r1 = expf(a1); - float r2 = expf(a2); - return __floats2half2_rn(r1, r2); -} - -template<> __device__ EIGEN_STRONG_INLINE half2 psqrt(const half2& a) { - float a1 = __low2float(a); - float a2 = __high2float(a); - float r1 = sqrtf(a1); - float r2 = sqrtf(a2); - return __floats2half2_rn(r1, r2); -} - -template<> __device__ EIGEN_STRONG_INLINE half2 prsqrt(const half2& a) { - float a1 = __low2float(a); - float a2 = __high2float(a); - float r1 = rsqrtf(a1); - float r2 = rsqrtf(a2); - return __floats2half2_rn(r1, r2); -} - -#endif - -#elif defined EIGEN_VECTORIZE_AVX512 - -typedef struct { - __m256i x; -} Packet16h; - - -template<> struct is_arithmetic { enum { value = true }; }; - -template <> -struct packet_traits : default_packet_traits { - typedef Packet16h type; - // There is no half-size packet for Packet16h. - typedef Packet16h half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size = 16, - HasHalfPacket = 0, - HasAdd = 0, - HasSub = 0, - HasMul = 0, - HasNegate = 0, - HasAbs = 0, - HasAbs2 = 0, - HasMin = 0, - HasMax = 0, - HasConj = 0, - HasSetLinear = 0, - HasDiv = 0, - HasSqrt = 0, - HasRsqrt = 0, - HasExp = 0, - HasLog = 0, - HasBlend = 0 - }; -}; - - -template<> struct unpacket_traits { typedef Eigen::half type; enum {size=16, alignment=Aligned32}; typedef Packet16h half; }; - -template<> EIGEN_STRONG_INLINE Packet16h pset1(const Eigen::half& from) { - Packet16h result; - result.x = _mm256_set1_epi16(from.x); - return result; -} - -template<> EIGEN_STRONG_INLINE Eigen::half pfirst(const Packet16h& from) { - return half_impl::raw_uint16_to_half(static_cast(_mm256_extract_epi16(from.x, 0))); -} - -template<> EIGEN_STRONG_INLINE Packet16h pload(const Eigen::half* from) { - Packet16h result; - result.x = _mm256_load_si256(reinterpret_cast(from)); - return result; -} - -template<> EIGEN_STRONG_INLINE Packet16h ploadu(const Eigen::half* from) { - Packet16h result; - result.x = _mm256_loadu_si256(reinterpret_cast(from)); - return result; -} - -template<> EIGEN_STRONG_INLINE void pstore(Eigen::half* to, const Packet16h& from) { - _mm256_store_si256((__m256i*)to, from.x); -} - -template<> EIGEN_STRONG_INLINE void pstoreu(Eigen::half* to, const Packet16h& from) { - _mm256_storeu_si256((__m256i*)to, from.x); -} - -template<> EIGEN_STRONG_INLINE Packet16h -ploadquad(const Eigen::half* from) { - Packet16h result; - unsigned short a = from[0].x; - unsigned short b = from[1].x; - unsigned short c = from[2].x; - unsigned short d = from[3].x; - result.x = _mm256_set_epi16(d, d, d, d, c, c, c, c, b, b, b, b, a, a, a, a); - return result; -} - -EIGEN_STRONG_INLINE Packet16f half2float(const Packet16h& a) { -#ifdef EIGEN_HAS_FP16_C - return _mm512_cvtph_ps(a.x); -#else - EIGEN_ALIGN64 half aux[16]; - pstore(aux, a); - float f0(aux[0]); - float f1(aux[1]); - float f2(aux[2]); - float f3(aux[3]); - float f4(aux[4]); - float f5(aux[5]); - float f6(aux[6]); - float f7(aux[7]); - float f8(aux[8]); - float f9(aux[9]); - float fa(aux[10]); - float fb(aux[11]); - float fc(aux[12]); - float fd(aux[13]); - float fe(aux[14]); - float ff(aux[15]); - - return _mm512_set_ps( - ff, fe, fd, fc, fb, fa, f9, f8, f7, f6, f5, f4, f3, f2, f1, f0); -#endif -} - -EIGEN_STRONG_INLINE Packet16h float2half(const Packet16f& a) { -#ifdef EIGEN_HAS_FP16_C - Packet16h result; - result.x = _mm512_cvtps_ph(a, _MM_FROUND_TO_NEAREST_INT|_MM_FROUND_NO_EXC); - return result; -#else - EIGEN_ALIGN64 float aux[16]; - pstore(aux, a); - half h0(aux[0]); - half h1(aux[1]); - half h2(aux[2]); - half h3(aux[3]); - half h4(aux[4]); - half h5(aux[5]); - half h6(aux[6]); - half h7(aux[7]); - half h8(aux[8]); - half h9(aux[9]); - half ha(aux[10]); - half hb(aux[11]); - half hc(aux[12]); - half hd(aux[13]); - half he(aux[14]); - half hf(aux[15]); - - Packet16h result; - result.x = _mm256_set_epi16( - hf.x, he.x, hd.x, hc.x, hb.x, ha.x, h9.x, h8.x, - h7.x, h6.x, h5.x, h4.x, h3.x, h2.x, h1.x, h0.x); - return result; -#endif -} - -template<> EIGEN_STRONG_INLINE Packet16h padd(const Packet16h& a, const Packet16h& b) { - Packet16f af = half2float(a); - Packet16f bf = half2float(b); - Packet16f rf = padd(af, bf); - return float2half(rf); -} - -template<> EIGEN_STRONG_INLINE Packet16h pmul(const Packet16h& a, const Packet16h& b) { - Packet16f af = half2float(a); - Packet16f bf = half2float(b); - Packet16f rf = pmul(af, bf); - return float2half(rf); -} - -template<> EIGEN_STRONG_INLINE half predux(const Packet16h& from) { - Packet16f from_float = half2float(from); - return half(predux(from_float)); -} - -template<> EIGEN_STRONG_INLINE Packet16h pgather(const Eigen::half* from, Index stride) -{ - Packet16h result; - result.x = _mm256_set_epi16( - from[15*stride].x, from[14*stride].x, from[13*stride].x, from[12*stride].x, - from[11*stride].x, from[10*stride].x, from[9*stride].x, from[8*stride].x, - from[7*stride].x, from[6*stride].x, from[5*stride].x, from[4*stride].x, - from[3*stride].x, from[2*stride].x, from[1*stride].x, from[0*stride].x); - return result; -} - -template<> EIGEN_STRONG_INLINE void pscatter(half* to, const Packet16h& from, Index stride) -{ - EIGEN_ALIGN64 half aux[16]; - pstore(aux, from); - to[stride*0].x = aux[0].x; - to[stride*1].x = aux[1].x; - to[stride*2].x = aux[2].x; - to[stride*3].x = aux[3].x; - to[stride*4].x = aux[4].x; - to[stride*5].x = aux[5].x; - to[stride*6].x = aux[6].x; - to[stride*7].x = aux[7].x; - to[stride*8].x = aux[8].x; - to[stride*9].x = aux[9].x; - to[stride*10].x = aux[10].x; - to[stride*11].x = aux[11].x; - to[stride*12].x = aux[12].x; - to[stride*13].x = aux[13].x; - to[stride*14].x = aux[14].x; - to[stride*15].x = aux[15].x; -} - -EIGEN_STRONG_INLINE void -ptranspose(PacketBlock& kernel) { - __m256i a = kernel.packet[0].x; - __m256i b = kernel.packet[1].x; - __m256i c = kernel.packet[2].x; - __m256i d = kernel.packet[3].x; - __m256i e = kernel.packet[4].x; - __m256i f = kernel.packet[5].x; - __m256i g = kernel.packet[6].x; - __m256i h = kernel.packet[7].x; - __m256i i = kernel.packet[8].x; - __m256i j = kernel.packet[9].x; - __m256i k = kernel.packet[10].x; - __m256i l = kernel.packet[11].x; - __m256i m = kernel.packet[12].x; - __m256i n = kernel.packet[13].x; - __m256i o = kernel.packet[14].x; - __m256i p = kernel.packet[15].x; - - __m256i ab_07 = _mm256_unpacklo_epi16(a, b); - __m256i cd_07 = _mm256_unpacklo_epi16(c, d); - __m256i ef_07 = _mm256_unpacklo_epi16(e, f); - __m256i gh_07 = _mm256_unpacklo_epi16(g, h); - __m256i ij_07 = _mm256_unpacklo_epi16(i, j); - __m256i kl_07 = _mm256_unpacklo_epi16(k, l); - __m256i mn_07 = _mm256_unpacklo_epi16(m, n); - __m256i op_07 = _mm256_unpacklo_epi16(o, p); - - __m256i ab_8f = _mm256_unpackhi_epi16(a, b); - __m256i cd_8f = _mm256_unpackhi_epi16(c, d); - __m256i ef_8f = _mm256_unpackhi_epi16(e, f); - __m256i gh_8f = _mm256_unpackhi_epi16(g, h); - __m256i ij_8f = _mm256_unpackhi_epi16(i, j); - __m256i kl_8f = _mm256_unpackhi_epi16(k, l); - __m256i mn_8f = _mm256_unpackhi_epi16(m, n); - __m256i op_8f = _mm256_unpackhi_epi16(o, p); - - __m256i abcd_03 = _mm256_unpacklo_epi32(ab_07, cd_07); - __m256i abcd_47 = _mm256_unpackhi_epi32(ab_07, cd_07); - __m256i efgh_03 = _mm256_unpacklo_epi32(ef_07, gh_07); - __m256i efgh_47 = _mm256_unpackhi_epi32(ef_07, gh_07); - __m256i ijkl_03 = _mm256_unpacklo_epi32(ij_07, kl_07); - __m256i ijkl_47 = _mm256_unpackhi_epi32(ij_07, kl_07); - __m256i mnop_03 = _mm256_unpacklo_epi32(mn_07, op_07); - __m256i mnop_47 = _mm256_unpackhi_epi32(mn_07, op_07); - - __m256i abcd_8b = _mm256_unpacklo_epi32(ab_8f, cd_8f); - __m256i abcd_cf = _mm256_unpackhi_epi32(ab_8f, cd_8f); - __m256i efgh_8b = _mm256_unpacklo_epi32(ef_8f, gh_8f); - __m256i efgh_cf = _mm256_unpackhi_epi32(ef_8f, gh_8f); - __m256i ijkl_8b = _mm256_unpacklo_epi32(ij_8f, kl_8f); - __m256i ijkl_cf = _mm256_unpackhi_epi32(ij_8f, kl_8f); - __m256i mnop_8b = _mm256_unpacklo_epi32(mn_8f, op_8f); - __m256i mnop_cf = _mm256_unpackhi_epi32(mn_8f, op_8f); - - __m256i abcdefgh_01 = _mm256_unpacklo_epi64(abcd_03, efgh_03); - __m256i abcdefgh_23 = _mm256_unpackhi_epi64(abcd_03, efgh_03); - __m256i ijklmnop_01 = _mm256_unpacklo_epi64(ijkl_03, mnop_03); - __m256i ijklmnop_23 = _mm256_unpackhi_epi64(ijkl_03, mnop_03); - __m256i abcdefgh_45 = _mm256_unpacklo_epi64(abcd_47, efgh_47); - __m256i abcdefgh_67 = _mm256_unpackhi_epi64(abcd_47, efgh_47); - __m256i ijklmnop_45 = _mm256_unpacklo_epi64(ijkl_47, mnop_47); - __m256i ijklmnop_67 = _mm256_unpackhi_epi64(ijkl_47, mnop_47); - __m256i abcdefgh_89 = _mm256_unpacklo_epi64(abcd_8b, efgh_8b); - __m256i abcdefgh_ab = _mm256_unpackhi_epi64(abcd_8b, efgh_8b); - __m256i ijklmnop_89 = _mm256_unpacklo_epi64(ijkl_8b, mnop_8b); - __m256i ijklmnop_ab = _mm256_unpackhi_epi64(ijkl_8b, mnop_8b); - __m256i abcdefgh_cd = _mm256_unpacklo_epi64(abcd_cf, efgh_cf); - __m256i abcdefgh_ef = _mm256_unpackhi_epi64(abcd_cf, efgh_cf); - __m256i ijklmnop_cd = _mm256_unpacklo_epi64(ijkl_cf, mnop_cf); - __m256i ijklmnop_ef = _mm256_unpackhi_epi64(ijkl_cf, mnop_cf); - - // NOTE: no unpacklo/hi instr in this case, so using permute instr. - __m256i a_p_0 = _mm256_permute2x128_si256(abcdefgh_01, ijklmnop_01, 0x20); - __m256i a_p_1 = _mm256_permute2x128_si256(abcdefgh_01, ijklmnop_01, 0x31); - __m256i a_p_2 = _mm256_permute2x128_si256(abcdefgh_23, ijklmnop_23, 0x20); - __m256i a_p_3 = _mm256_permute2x128_si256(abcdefgh_23, ijklmnop_23, 0x31); - __m256i a_p_4 = _mm256_permute2x128_si256(abcdefgh_45, ijklmnop_45, 0x20); - __m256i a_p_5 = _mm256_permute2x128_si256(abcdefgh_45, ijklmnop_45, 0x31); - __m256i a_p_6 = _mm256_permute2x128_si256(abcdefgh_67, ijklmnop_67, 0x20); - __m256i a_p_7 = _mm256_permute2x128_si256(abcdefgh_67, ijklmnop_67, 0x31); - __m256i a_p_8 = _mm256_permute2x128_si256(abcdefgh_89, ijklmnop_89, 0x20); - __m256i a_p_9 = _mm256_permute2x128_si256(abcdefgh_89, ijklmnop_89, 0x31); - __m256i a_p_a = _mm256_permute2x128_si256(abcdefgh_ab, ijklmnop_ab, 0x20); - __m256i a_p_b = _mm256_permute2x128_si256(abcdefgh_ab, ijklmnop_ab, 0x31); - __m256i a_p_c = _mm256_permute2x128_si256(abcdefgh_cd, ijklmnop_cd, 0x20); - __m256i a_p_d = _mm256_permute2x128_si256(abcdefgh_cd, ijklmnop_cd, 0x31); - __m256i a_p_e = _mm256_permute2x128_si256(abcdefgh_ef, ijklmnop_ef, 0x20); - __m256i a_p_f = _mm256_permute2x128_si256(abcdefgh_ef, ijklmnop_ef, 0x31); - - kernel.packet[0].x = a_p_0; - kernel.packet[1].x = a_p_1; - kernel.packet[2].x = a_p_2; - kernel.packet[3].x = a_p_3; - kernel.packet[4].x = a_p_4; - kernel.packet[5].x = a_p_5; - kernel.packet[6].x = a_p_6; - kernel.packet[7].x = a_p_7; - kernel.packet[8].x = a_p_8; - kernel.packet[9].x = a_p_9; - kernel.packet[10].x = a_p_a; - kernel.packet[11].x = a_p_b; - kernel.packet[12].x = a_p_c; - kernel.packet[13].x = a_p_d; - kernel.packet[14].x = a_p_e; - kernel.packet[15].x = a_p_f; -} - -EIGEN_STRONG_INLINE void -ptranspose(PacketBlock& kernel) { - EIGEN_ALIGN64 half in[8][16]; - pstore(in[0], kernel.packet[0]); - pstore(in[1], kernel.packet[1]); - pstore(in[2], kernel.packet[2]); - pstore(in[3], kernel.packet[3]); - pstore(in[4], kernel.packet[4]); - pstore(in[5], kernel.packet[5]); - pstore(in[6], kernel.packet[6]); - pstore(in[7], kernel.packet[7]); - - EIGEN_ALIGN64 half out[8][16]; - - for (int i = 0; i < 8; ++i) { - for (int j = 0; j < 8; ++j) { - out[i][j] = in[j][2*i]; - } - for (int j = 0; j < 8; ++j) { - out[i][j+8] = in[j][2*i+1]; - } - } - - kernel.packet[0] = pload(out[0]); - kernel.packet[1] = pload(out[1]); - kernel.packet[2] = pload(out[2]); - kernel.packet[3] = pload(out[3]); - kernel.packet[4] = pload(out[4]); - kernel.packet[5] = pload(out[5]); - kernel.packet[6] = pload(out[6]); - kernel.packet[7] = pload(out[7]); -} - -EIGEN_STRONG_INLINE void -ptranspose(PacketBlock& kernel) { - EIGEN_ALIGN64 half in[4][16]; - pstore(in[0], kernel.packet[0]); - pstore(in[1], kernel.packet[1]); - pstore(in[2], kernel.packet[2]); - pstore(in[3], kernel.packet[3]); - - EIGEN_ALIGN64 half out[4][16]; - - for (int i = 0; i < 4; ++i) { - for (int j = 0; j < 4; ++j) { - out[i][j] = in[j][4*i]; - } - for (int j = 0; j < 4; ++j) { - out[i][j+4] = in[j][4*i+1]; - } - for (int j = 0; j < 4; ++j) { - out[i][j+8] = in[j][4*i+2]; - } - for (int j = 0; j < 4; ++j) { - out[i][j+12] = in[j][4*i+3]; - } - } - - kernel.packet[0] = pload(out[0]); - kernel.packet[1] = pload(out[1]); - kernel.packet[2] = pload(out[2]); - kernel.packet[3] = pload(out[3]); -} - - -#elif defined EIGEN_VECTORIZE_AVX - -typedef struct { - __m128i x; -} Packet8h; - - -template<> struct is_arithmetic { enum { value = true }; }; - -template <> -struct packet_traits : default_packet_traits { - typedef Packet8h type; - // There is no half-size packet for Packet8h. - typedef Packet8h half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size = 8, - HasHalfPacket = 0, - HasAdd = 0, - HasSub = 0, - HasMul = 0, - HasNegate = 0, - HasAbs = 0, - HasAbs2 = 0, - HasMin = 0, - HasMax = 0, - HasConj = 0, - HasSetLinear = 0, - HasDiv = 0, - HasSqrt = 0, - HasRsqrt = 0, - HasExp = 0, - HasLog = 0, - HasBlend = 0 - }; -}; - - -template<> struct unpacket_traits { typedef Eigen::half type; enum {size=8, alignment=Aligned16}; typedef Packet8h half; }; - -template<> EIGEN_STRONG_INLINE Packet8h pset1(const Eigen::half& from) { - Packet8h result; - result.x = _mm_set1_epi16(from.x); - return result; -} - -template<> EIGEN_STRONG_INLINE Eigen::half pfirst(const Packet8h& from) { - return half_impl::raw_uint16_to_half(static_cast(_mm_extract_epi16(from.x, 0))); -} - -template<> EIGEN_STRONG_INLINE Packet8h pload(const Eigen::half* from) { - Packet8h result; - result.x = _mm_load_si128(reinterpret_cast(from)); - return result; -} - -template<> EIGEN_STRONG_INLINE Packet8h ploadu(const Eigen::half* from) { - Packet8h result; - result.x = _mm_loadu_si128(reinterpret_cast(from)); - return result; -} - -template<> EIGEN_STRONG_INLINE void pstore(Eigen::half* to, const Packet8h& from) { - _mm_store_si128(reinterpret_cast<__m128i*>(to), from.x); -} - -template<> EIGEN_STRONG_INLINE void pstoreu(Eigen::half* to, const Packet8h& from) { - _mm_storeu_si128(reinterpret_cast<__m128i*>(to), from.x); -} - -template<> EIGEN_STRONG_INLINE Packet8h -ploadquad(const Eigen::half* from) { - Packet8h result; - unsigned short a = from[0].x; - unsigned short b = from[1].x; - result.x = _mm_set_epi16(b, b, b, b, a, a, a, a); - return result; -} - -EIGEN_STRONG_INLINE Packet8f half2float(const Packet8h& a) { -#ifdef EIGEN_HAS_FP16_C - return _mm256_cvtph_ps(a.x); -#else - EIGEN_ALIGN32 Eigen::half aux[8]; - pstore(aux, a); - float f0(aux[0]); - float f1(aux[1]); - float f2(aux[2]); - float f3(aux[3]); - float f4(aux[4]); - float f5(aux[5]); - float f6(aux[6]); - float f7(aux[7]); - - return _mm256_set_ps(f7, f6, f5, f4, f3, f2, f1, f0); -#endif -} - -EIGEN_STRONG_INLINE Packet8h float2half(const Packet8f& a) { -#ifdef EIGEN_HAS_FP16_C - Packet8h result; - result.x = _mm256_cvtps_ph(a, _MM_FROUND_TO_NEAREST_INT|_MM_FROUND_NO_EXC); - return result; -#else - EIGEN_ALIGN32 float aux[8]; - pstore(aux, a); - Eigen::half h0(aux[0]); - Eigen::half h1(aux[1]); - Eigen::half h2(aux[2]); - Eigen::half h3(aux[3]); - Eigen::half h4(aux[4]); - Eigen::half h5(aux[5]); - Eigen::half h6(aux[6]); - Eigen::half h7(aux[7]); - - Packet8h result; - result.x = _mm_set_epi16(h7.x, h6.x, h5.x, h4.x, h3.x, h2.x, h1.x, h0.x); - return result; -#endif -} - -template<> EIGEN_STRONG_INLINE Packet8h pconj(const Packet8h& a) { return a; } - -template<> EIGEN_STRONG_INLINE Packet8h padd(const Packet8h& a, const Packet8h& b) { - Packet8f af = half2float(a); - Packet8f bf = half2float(b); - Packet8f rf = padd(af, bf); - return float2half(rf); -} - -template<> EIGEN_STRONG_INLINE Packet8h pmul(const Packet8h& a, const Packet8h& b) { - Packet8f af = half2float(a); - Packet8f bf = half2float(b); - Packet8f rf = pmul(af, bf); - return float2half(rf); -} - -template<> EIGEN_STRONG_INLINE Packet8h pgather(const Eigen::half* from, Index stride) -{ - Packet8h result; - result.x = _mm_set_epi16(from[7*stride].x, from[6*stride].x, from[5*stride].x, from[4*stride].x, from[3*stride].x, from[2*stride].x, from[1*stride].x, from[0*stride].x); - return result; -} - -template<> EIGEN_STRONG_INLINE void pscatter(Eigen::half* to, const Packet8h& from, Index stride) -{ - EIGEN_ALIGN32 Eigen::half aux[8]; - pstore(aux, from); - to[stride*0].x = aux[0].x; - to[stride*1].x = aux[1].x; - to[stride*2].x = aux[2].x; - to[stride*3].x = aux[3].x; - to[stride*4].x = aux[4].x; - to[stride*5].x = aux[5].x; - to[stride*6].x = aux[6].x; - to[stride*7].x = aux[7].x; -} - -template<> EIGEN_STRONG_INLINE Eigen::half predux(const Packet8h& a) { - Packet8f af = half2float(a); - float reduced = predux(af); - return Eigen::half(reduced); -} - -template<> EIGEN_STRONG_INLINE Eigen::half predux_max(const Packet8h& a) { - Packet8f af = half2float(a); - float reduced = predux_max(af); - return Eigen::half(reduced); -} - -template<> EIGEN_STRONG_INLINE Eigen::half predux_min(const Packet8h& a) { - Packet8f af = half2float(a); - float reduced = predux_min(af); - return Eigen::half(reduced); -} - -template<> EIGEN_STRONG_INLINE Eigen::half predux_mul(const Packet8h& a) { - Packet8f af = half2float(a); - float reduced = predux_mul(af); - return Eigen::half(reduced); -} - -EIGEN_STRONG_INLINE void -ptranspose(PacketBlock& kernel) { - __m128i a = kernel.packet[0].x; - __m128i b = kernel.packet[1].x; - __m128i c = kernel.packet[2].x; - __m128i d = kernel.packet[3].x; - __m128i e = kernel.packet[4].x; - __m128i f = kernel.packet[5].x; - __m128i g = kernel.packet[6].x; - __m128i h = kernel.packet[7].x; - - __m128i a03b03 = _mm_unpacklo_epi16(a, b); - __m128i c03d03 = _mm_unpacklo_epi16(c, d); - __m128i e03f03 = _mm_unpacklo_epi16(e, f); - __m128i g03h03 = _mm_unpacklo_epi16(g, h); - __m128i a47b47 = _mm_unpackhi_epi16(a, b); - __m128i c47d47 = _mm_unpackhi_epi16(c, d); - __m128i e47f47 = _mm_unpackhi_epi16(e, f); - __m128i g47h47 = _mm_unpackhi_epi16(g, h); - - __m128i a01b01c01d01 = _mm_unpacklo_epi32(a03b03, c03d03); - __m128i a23b23c23d23 = _mm_unpackhi_epi32(a03b03, c03d03); - __m128i e01f01g01h01 = _mm_unpacklo_epi32(e03f03, g03h03); - __m128i e23f23g23h23 = _mm_unpackhi_epi32(e03f03, g03h03); - __m128i a45b45c45d45 = _mm_unpacklo_epi32(a47b47, c47d47); - __m128i a67b67c67d67 = _mm_unpackhi_epi32(a47b47, c47d47); - __m128i e45f45g45h45 = _mm_unpacklo_epi32(e47f47, g47h47); - __m128i e67f67g67h67 = _mm_unpackhi_epi32(e47f47, g47h47); - - __m128i a0b0c0d0e0f0g0h0 = _mm_unpacklo_epi64(a01b01c01d01, e01f01g01h01); - __m128i a1b1c1d1e1f1g1h1 = _mm_unpackhi_epi64(a01b01c01d01, e01f01g01h01); - __m128i a2b2c2d2e2f2g2h2 = _mm_unpacklo_epi64(a23b23c23d23, e23f23g23h23); - __m128i a3b3c3d3e3f3g3h3 = _mm_unpackhi_epi64(a23b23c23d23, e23f23g23h23); - __m128i a4b4c4d4e4f4g4h4 = _mm_unpacklo_epi64(a45b45c45d45, e45f45g45h45); - __m128i a5b5c5d5e5f5g5h5 = _mm_unpackhi_epi64(a45b45c45d45, e45f45g45h45); - __m128i a6b6c6d6e6f6g6h6 = _mm_unpacklo_epi64(a67b67c67d67, e67f67g67h67); - __m128i a7b7c7d7e7f7g7h7 = _mm_unpackhi_epi64(a67b67c67d67, e67f67g67h67); - - kernel.packet[0].x = a0b0c0d0e0f0g0h0; - kernel.packet[1].x = a1b1c1d1e1f1g1h1; - kernel.packet[2].x = a2b2c2d2e2f2g2h2; - kernel.packet[3].x = a3b3c3d3e3f3g3h3; - kernel.packet[4].x = a4b4c4d4e4f4g4h4; - kernel.packet[5].x = a5b5c5d5e5f5g5h5; - kernel.packet[6].x = a6b6c6d6e6f6g6h6; - kernel.packet[7].x = a7b7c7d7e7f7g7h7; -} - -EIGEN_STRONG_INLINE void -ptranspose(PacketBlock& kernel) { - EIGEN_ALIGN32 Eigen::half in[4][8]; - pstore(in[0], kernel.packet[0]); - pstore(in[1], kernel.packet[1]); - pstore(in[2], kernel.packet[2]); - pstore(in[3], kernel.packet[3]); - - EIGEN_ALIGN32 Eigen::half out[4][8]; - - for (int i = 0; i < 4; ++i) { - for (int j = 0; j < 4; ++j) { - out[i][j] = in[j][2*i]; - } - for (int j = 0; j < 4; ++j) { - out[i][j+4] = in[j][2*i+1]; - } - } - - kernel.packet[0] = pload(out[0]); - kernel.packet[1] = pload(out[1]); - kernel.packet[2] = pload(out[2]); - kernel.packet[3] = pload(out[3]); -} - - -// Disable the following code since it's broken on too many platforms / compilers. -//#elif defined(EIGEN_VECTORIZE_SSE) && (!EIGEN_ARCH_x86_64) && (!EIGEN_COMP_MSVC) -#elif 0 - -typedef struct { - __m64 x; -} Packet4h; - - -template<> struct is_arithmetic { enum { value = true }; }; - -template <> -struct packet_traits : default_packet_traits { - typedef Packet4h type; - // There is no half-size packet for Packet4h. - typedef Packet4h half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size = 4, - HasHalfPacket = 0, - HasAdd = 0, - HasSub = 0, - HasMul = 0, - HasNegate = 0, - HasAbs = 0, - HasAbs2 = 0, - HasMin = 0, - HasMax = 0, - HasConj = 0, - HasSetLinear = 0, - HasDiv = 0, - HasSqrt = 0, - HasRsqrt = 0, - HasExp = 0, - HasLog = 0, - HasBlend = 0 - }; -}; - - -template<> struct unpacket_traits { typedef Eigen::half type; enum {size=4, alignment=Aligned16}; typedef Packet4h half; }; - -template<> EIGEN_STRONG_INLINE Packet4h pset1(const Eigen::half& from) { - Packet4h result; - result.x = _mm_set1_pi16(from.x); - return result; -} - -template<> EIGEN_STRONG_INLINE Eigen::half pfirst(const Packet4h& from) { - return half_impl::raw_uint16_to_half(static_cast(_mm_cvtsi64_si32(from.x))); -} - -template<> EIGEN_STRONG_INLINE Packet4h pconj(const Packet4h& a) { return a; } - -template<> EIGEN_STRONG_INLINE Packet4h padd(const Packet4h& a, const Packet4h& b) { - __int64_t a64 = _mm_cvtm64_si64(a.x); - __int64_t b64 = _mm_cvtm64_si64(b.x); - - Eigen::half h[4]; - - Eigen::half ha = half_impl::raw_uint16_to_half(static_cast(a64)); - Eigen::half hb = half_impl::raw_uint16_to_half(static_cast(b64)); - h[0] = ha + hb; - ha = half_impl::raw_uint16_to_half(static_cast(a64 >> 16)); - hb = half_impl::raw_uint16_to_half(static_cast(b64 >> 16)); - h[1] = ha + hb; - ha = half_impl::raw_uint16_to_half(static_cast(a64 >> 32)); - hb = half_impl::raw_uint16_to_half(static_cast(b64 >> 32)); - h[2] = ha + hb; - ha = half_impl::raw_uint16_to_half(static_cast(a64 >> 48)); - hb = half_impl::raw_uint16_to_half(static_cast(b64 >> 48)); - h[3] = ha + hb; - Packet4h result; - result.x = _mm_set_pi16(h[3].x, h[2].x, h[1].x, h[0].x); - return result; -} - -template<> EIGEN_STRONG_INLINE Packet4h pmul(const Packet4h& a, const Packet4h& b) { - __int64_t a64 = _mm_cvtm64_si64(a.x); - __int64_t b64 = _mm_cvtm64_si64(b.x); - - Eigen::half h[4]; - - Eigen::half ha = half_impl::raw_uint16_to_half(static_cast(a64)); - Eigen::half hb = half_impl::raw_uint16_to_half(static_cast(b64)); - h[0] = ha * hb; - ha = half_impl::raw_uint16_to_half(static_cast(a64 >> 16)); - hb = half_impl::raw_uint16_to_half(static_cast(b64 >> 16)); - h[1] = ha * hb; - ha = half_impl::raw_uint16_to_half(static_cast(a64 >> 32)); - hb = half_impl::raw_uint16_to_half(static_cast(b64 >> 32)); - h[2] = ha * hb; - ha = half_impl::raw_uint16_to_half(static_cast(a64 >> 48)); - hb = half_impl::raw_uint16_to_half(static_cast(b64 >> 48)); - h[3] = ha * hb; - Packet4h result; - result.x = _mm_set_pi16(h[3].x, h[2].x, h[1].x, h[0].x); - return result; -} - -template<> EIGEN_STRONG_INLINE Packet4h pload(const Eigen::half* from) { - Packet4h result; - result.x = _mm_cvtsi64_m64(*reinterpret_cast(from)); - return result; -} - -template<> EIGEN_STRONG_INLINE Packet4h ploadu(const Eigen::half* from) { - Packet4h result; - result.x = _mm_cvtsi64_m64(*reinterpret_cast(from)); - return result; -} - -template<> EIGEN_STRONG_INLINE void pstore(Eigen::half* to, const Packet4h& from) { - __int64_t r = _mm_cvtm64_si64(from.x); - *(reinterpret_cast<__int64_t*>(to)) = r; -} - -template<> EIGEN_STRONG_INLINE void pstoreu(Eigen::half* to, const Packet4h& from) { - __int64_t r = _mm_cvtm64_si64(from.x); - *(reinterpret_cast<__int64_t*>(to)) = r; -} - -template<> EIGEN_STRONG_INLINE Packet4h -ploadquad(const Eigen::half* from) { - return pset1(*from); -} - -template<> EIGEN_STRONG_INLINE Packet4h pgather(const Eigen::half* from, Index stride) -{ - Packet4h result; - result.x = _mm_set_pi16(from[3*stride].x, from[2*stride].x, from[1*stride].x, from[0*stride].x); - return result; -} - -template<> EIGEN_STRONG_INLINE void pscatter(Eigen::half* to, const Packet4h& from, Index stride) -{ - __int64_t a = _mm_cvtm64_si64(from.x); - to[stride*0].x = static_cast(a); - to[stride*1].x = static_cast(a >> 16); - to[stride*2].x = static_cast(a >> 32); - to[stride*3].x = static_cast(a >> 48); -} - -EIGEN_STRONG_INLINE void -ptranspose(PacketBlock& kernel) { - __m64 T0 = _mm_unpacklo_pi16(kernel.packet[0].x, kernel.packet[1].x); - __m64 T1 = _mm_unpacklo_pi16(kernel.packet[2].x, kernel.packet[3].x); - __m64 T2 = _mm_unpackhi_pi16(kernel.packet[0].x, kernel.packet[1].x); - __m64 T3 = _mm_unpackhi_pi16(kernel.packet[2].x, kernel.packet[3].x); - - kernel.packet[0].x = _mm_unpacklo_pi32(T0, T1); - kernel.packet[1].x = _mm_unpackhi_pi32(T0, T1); - kernel.packet[2].x = _mm_unpacklo_pi32(T2, T3); - kernel.packet[3].x = _mm_unpackhi_pi32(T2, T3); -} - -#endif - -} -} - -#endif // EIGEN_PACKET_MATH_HALF_CUDA_H diff --git a/src/math_meigen/Eigen/src/Core/arch/CUDA/TypeCasting.h b/src/math_meigen/Eigen/src/Core/arch/CUDA/TypeCasting.h deleted file mode 100755 index aa5fbce8e..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/CUDA/TypeCasting.h +++ /dev/null @@ -1,212 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2016 Benoit Steiner -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_TYPE_CASTING_CUDA_H -#define EIGEN_TYPE_CASTING_CUDA_H - -namespace Eigen { - -namespace internal { - -template<> -struct scalar_cast_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op) - typedef Eigen::half result_type; - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Eigen::half operator() (const float& a) const { - #if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300 - return __float2half(a); - #else - return Eigen::half(a); - #endif - } -}; - -template<> -struct functor_traits > -{ enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; - - -template<> -struct scalar_cast_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op) - typedef Eigen::half result_type; - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Eigen::half operator() (const int& a) const { - #if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300 - return __float2half(static_cast(a)); - #else - return Eigen::half(static_cast(a)); - #endif - } -}; - -template<> -struct functor_traits > -{ enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; - - -template<> -struct scalar_cast_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op) - typedef float result_type; - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float operator() (const Eigen::half& a) const { - #if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300 - return __half2float(a); - #else - return static_cast(a); - #endif - } -}; - -template<> -struct functor_traits > -{ enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; - - - -#if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300 - -template <> -struct type_casting_traits { - enum { - VectorizedCast = 1, - SrcCoeffRatio = 2, - TgtCoeffRatio = 1 - }; -}; - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float4 pcast(const half2& a, const half2& b) { - float2 r1 = __half22float2(a); - float2 r2 = __half22float2(b); - return make_float4(r1.x, r1.y, r2.x, r2.y); -} - -template <> -struct type_casting_traits { - enum { - VectorizedCast = 1, - SrcCoeffRatio = 1, - TgtCoeffRatio = 2 - }; -}; - -template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE half2 pcast(const float4& a) { - // Simply discard the second half of the input - return __floats2half2_rn(a.x, a.y); -} - -#elif defined EIGEN_VECTORIZE_AVX512 -template <> -struct type_casting_traits { - enum { - VectorizedCast = 1, - SrcCoeffRatio = 1, - TgtCoeffRatio = 1 - }; -}; - -template<> EIGEN_STRONG_INLINE Packet16f pcast(const Packet16h& a) { - return half2float(a); -} - -template <> -struct type_casting_traits { - enum { - VectorizedCast = 1, - SrcCoeffRatio = 1, - TgtCoeffRatio = 1 - }; -}; - -template<> EIGEN_STRONG_INLINE Packet16h pcast(const Packet16f& a) { - return float2half(a); -} - -#elif defined EIGEN_VECTORIZE_AVX - -template <> -struct type_casting_traits { - enum { - VectorizedCast = 1, - SrcCoeffRatio = 1, - TgtCoeffRatio = 1 - }; -}; - -template<> EIGEN_STRONG_INLINE Packet8f pcast(const Packet8h& a) { - return half2float(a); -} - -template <> -struct type_casting_traits { - enum { - VectorizedCast = 1, - SrcCoeffRatio = 1, - TgtCoeffRatio = 1 - }; -}; - -template<> EIGEN_STRONG_INLINE Packet8h pcast(const Packet8f& a) { - return float2half(a); -} - -// Disable the following code since it's broken on too many platforms / compilers. -//#elif defined(EIGEN_VECTORIZE_SSE) && (!EIGEN_ARCH_x86_64) && (!EIGEN_COMP_MSVC) -#elif 0 - -template <> -struct type_casting_traits { - enum { - VectorizedCast = 1, - SrcCoeffRatio = 1, - TgtCoeffRatio = 1 - }; -}; - -template<> EIGEN_STRONG_INLINE Packet4f pcast(const Packet4h& a) { - __int64_t a64 = _mm_cvtm64_si64(a.x); - Eigen::half h = raw_uint16_to_half(static_cast(a64)); - float f1 = static_cast(h); - h = raw_uint16_to_half(static_cast(a64 >> 16)); - float f2 = static_cast(h); - h = raw_uint16_to_half(static_cast(a64 >> 32)); - float f3 = static_cast(h); - h = raw_uint16_to_half(static_cast(a64 >> 48)); - float f4 = static_cast(h); - return _mm_set_ps(f4, f3, f2, f1); -} - -template <> -struct type_casting_traits { - enum { - VectorizedCast = 1, - SrcCoeffRatio = 1, - TgtCoeffRatio = 1 - }; -}; - -template<> EIGEN_STRONG_INLINE Packet4h pcast(const Packet4f& a) { - EIGEN_ALIGN16 float aux[4]; - pstore(aux, a); - Eigen::half h0(aux[0]); - Eigen::half h1(aux[1]); - Eigen::half h2(aux[2]); - Eigen::half h3(aux[3]); - - Packet4h result; - result.x = _mm_set_pi16(h3.x, h2.x, h1.x, h0.x); - return result; -} - -#endif - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_TYPE_CASTING_CUDA_H diff --git a/src/math_meigen/Eigen/src/Core/arch/Default/ConjHelper.h b/src/math_meigen/Eigen/src/Core/arch/Default/ConjHelper.h deleted file mode 100755 index 4cfe34e05..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/Default/ConjHelper.h +++ /dev/null @@ -1,29 +0,0 @@ - -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2017 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_ARCH_CONJ_HELPER_H -#define EIGEN_ARCH_CONJ_HELPER_H - -#define EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(PACKET_CPLX, PACKET_REAL) \ - template<> struct conj_helper { \ - EIGEN_STRONG_INLINE PACKET_CPLX pmadd(const PACKET_REAL& x, const PACKET_CPLX& y, const PACKET_CPLX& c) const \ - { return padd(c, pmul(x,y)); } \ - EIGEN_STRONG_INLINE PACKET_CPLX pmul(const PACKET_REAL& x, const PACKET_CPLX& y) const \ - { return PACKET_CPLX(Eigen::internal::pmul(x, y.v)); } \ - }; \ - \ - template<> struct conj_helper { \ - EIGEN_STRONG_INLINE PACKET_CPLX pmadd(const PACKET_CPLX& x, const PACKET_REAL& y, const PACKET_CPLX& c) const \ - { return padd(c, pmul(x,y)); } \ - EIGEN_STRONG_INLINE PACKET_CPLX pmul(const PACKET_CPLX& x, const PACKET_REAL& y) const \ - { return PACKET_CPLX(Eigen::internal::pmul(x.v, y)); } \ - }; - -#endif // EIGEN_ARCH_CONJ_HELPER_H diff --git a/src/math_meigen/Eigen/src/Core/arch/Default/Settings.h b/src/math_meigen/Eigen/src/Core/arch/Default/Settings.h deleted file mode 100755 index 097373c84..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/Default/Settings.h +++ /dev/null @@ -1,49 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2010 Gael Guennebaud -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - - -/* All the parameters defined in this file can be specialized in the - * architecture specific files, and/or by the user. - * More to come... */ - -#ifndef EIGEN_DEFAULT_SETTINGS_H -#define EIGEN_DEFAULT_SETTINGS_H - -/** Defines the maximal loop size to enable meta unrolling of loops. - * Note that the value here is expressed in Eigen's own notion of "number of FLOPS", - * it does not correspond to the number of iterations or the number of instructions - */ -#ifndef EIGEN_UNROLLING_LIMIT -#define EIGEN_UNROLLING_LIMIT 100 -#endif - -/** Defines the threshold between a "small" and a "large" matrix. - * This threshold is mainly used to select the proper product implementation. - */ -#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD -#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8 -#endif - -/** Defines the maximal width of the blocks used in the triangular product and solver - * for vectors (level 2 blas xTRMV and xTRSV). The default is 8. - */ -#ifndef EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH -#define EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH 8 -#endif - - -/** Defines the default number of registers available for that architecture. - * Currently it must be 8 or 16. Other values will fail. - */ -#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS -#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 8 -#endif - -#endif // EIGEN_DEFAULT_SETTINGS_H diff --git a/src/math_meigen/Eigen/src/Core/arch/NEON/Complex.h b/src/math_meigen/Eigen/src/Core/arch/NEON/Complex.h deleted file mode 100755 index 306a309be..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/NEON/Complex.h +++ /dev/null @@ -1,490 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2010 Gael Guennebaud -// Copyright (C) 2010 Konstantinos Margaritis -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_COMPLEX_NEON_H -#define EIGEN_COMPLEX_NEON_H - -namespace Eigen { - -namespace internal { - -inline uint32x4_t p4ui_CONJ_XOR() { -// See bug 1325, clang fails to call vld1q_u64. -#if EIGEN_COMP_CLANG - uint32x4_t ret = { 0x00000000, 0x80000000, 0x00000000, 0x80000000 }; - return ret; -#else - static const uint32_t conj_XOR_DATA[] = { 0x00000000, 0x80000000, 0x00000000, 0x80000000 }; - return vld1q_u32( conj_XOR_DATA ); -#endif -} - -inline uint32x2_t p2ui_CONJ_XOR() { - static const uint32_t conj_XOR_DATA[] = { 0x00000000, 0x80000000 }; - return vld1_u32( conj_XOR_DATA ); -} - -//---------- float ---------- -struct Packet2cf -{ - EIGEN_STRONG_INLINE Packet2cf() {} - EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {} - Packet4f v; -}; - -template<> struct packet_traits > : default_packet_traits -{ - typedef Packet2cf type; - typedef Packet2cf half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size = 2, - HasHalfPacket = 0, - - HasAdd = 1, - HasSub = 1, - HasMul = 1, - HasDiv = 1, - HasNegate = 1, - HasAbs = 0, - HasAbs2 = 0, - HasMin = 0, - HasMax = 0, - HasSetLinear = 0 - }; -}; - -template<> struct unpacket_traits { typedef std::complex type; enum {size=2, alignment=Aligned16}; typedef Packet2cf half; }; - -template<> EIGEN_STRONG_INLINE Packet2cf pset1(const std::complex& from) -{ - float32x2_t r64; - r64 = vld1_f32((const float *)&from); - - return Packet2cf(vcombine_f32(r64, r64)); -} - -template<> EIGEN_STRONG_INLINE Packet2cf padd(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(padd(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet2cf psub(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(psub(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate(a.v)); } -template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a) -{ - Packet4ui b = vreinterpretq_u32_f32(a.v); - return Packet2cf(vreinterpretq_f32_u32(veorq_u32(b, p4ui_CONJ_XOR()))); -} - -template<> EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) -{ - Packet4f v1, v2; - - // Get the real values of a | a1_re | a1_re | a2_re | a2_re | - v1 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 0), vdup_lane_f32(vget_high_f32(a.v), 0)); - // Get the imag values of a | a1_im | a1_im | a2_im | a2_im | - v2 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 1), vdup_lane_f32(vget_high_f32(a.v), 1)); - // Multiply the real a with b - v1 = vmulq_f32(v1, b.v); - // Multiply the imag a with b - v2 = vmulq_f32(v2, b.v); - // Conjugate v2 - v2 = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(v2), p4ui_CONJ_XOR())); - // Swap real/imag elements in v2. - v2 = vrev64q_f32(v2); - // Add and return the result - return Packet2cf(vaddq_f32(v1, v2)); -} - -template<> EIGEN_STRONG_INLINE Packet2cf pand (const Packet2cf& a, const Packet2cf& b) -{ - return Packet2cf(vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v)))); -} -template<> EIGEN_STRONG_INLINE Packet2cf por (const Packet2cf& a, const Packet2cf& b) -{ - return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v)))); -} -template<> EIGEN_STRONG_INLINE Packet2cf pxor (const Packet2cf& a, const Packet2cf& b) -{ - return Packet2cf(vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v)))); -} -template<> EIGEN_STRONG_INLINE Packet2cf pandnot(const Packet2cf& a, const Packet2cf& b) -{ - return Packet2cf(vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v)))); -} - -template<> EIGEN_STRONG_INLINE Packet2cf pload(const std::complex* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload((const float*)from)); } -template<> EIGEN_STRONG_INLINE Packet2cf ploadu(const std::complex* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu((const float*)from)); } - -template<> EIGEN_STRONG_INLINE Packet2cf ploaddup(const std::complex* from) { return pset1(*from); } - -template<> EIGEN_STRONG_INLINE void pstore >(std::complex * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); } -template<> EIGEN_STRONG_INLINE void pstoreu >(std::complex * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); } - -template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather, Packet2cf>(const std::complex* from, Index stride) -{ - Packet4f res = pset1(0.f); - res = vsetq_lane_f32(std::real(from[0*stride]), res, 0); - res = vsetq_lane_f32(std::imag(from[0*stride]), res, 1); - res = vsetq_lane_f32(std::real(from[1*stride]), res, 2); - res = vsetq_lane_f32(std::imag(from[1*stride]), res, 3); - return Packet2cf(res); -} - -template<> EIGEN_DEVICE_FUNC inline void pscatter, Packet2cf>(std::complex* to, const Packet2cf& from, Index stride) -{ - to[stride*0] = std::complex(vgetq_lane_f32(from.v, 0), vgetq_lane_f32(from.v, 1)); - to[stride*1] = std::complex(vgetq_lane_f32(from.v, 2), vgetq_lane_f32(from.v, 3)); -} - -template<> EIGEN_STRONG_INLINE void prefetch >(const std::complex * addr) { EIGEN_ARM_PREFETCH((const float *)addr); } - -template<> EIGEN_STRONG_INLINE std::complex pfirst(const Packet2cf& a) -{ - std::complex EIGEN_ALIGN16 x[2]; - vst1q_f32((float *)x, a.v); - return x[0]; -} - -template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a) -{ - float32x2_t a_lo, a_hi; - Packet4f a_r128; - - a_lo = vget_low_f32(a.v); - a_hi = vget_high_f32(a.v); - a_r128 = vcombine_f32(a_hi, a_lo); - - return Packet2cf(a_r128); -} - -template<> EIGEN_STRONG_INLINE Packet2cf pcplxflip(const Packet2cf& a) -{ - return Packet2cf(vrev64q_f32(a.v)); -} - -template<> EIGEN_STRONG_INLINE std::complex predux(const Packet2cf& a) -{ - float32x2_t a1, a2; - std::complex s; - - a1 = vget_low_f32(a.v); - a2 = vget_high_f32(a.v); - a2 = vadd_f32(a1, a2); - vst1_f32((float *)&s, a2); - - return s; -} - -template<> EIGEN_STRONG_INLINE Packet2cf preduxp(const Packet2cf* vecs) -{ - Packet4f sum1, sum2, sum; - - // Add the first two 64-bit float32x2_t of vecs[0] - sum1 = vcombine_f32(vget_low_f32(vecs[0].v), vget_low_f32(vecs[1].v)); - sum2 = vcombine_f32(vget_high_f32(vecs[0].v), vget_high_f32(vecs[1].v)); - sum = vaddq_f32(sum1, sum2); - - return Packet2cf(sum); -} - -template<> EIGEN_STRONG_INLINE std::complex predux_mul(const Packet2cf& a) -{ - float32x2_t a1, a2, v1, v2, prod; - std::complex s; - - a1 = vget_low_f32(a.v); - a2 = vget_high_f32(a.v); - // Get the real values of a | a1_re | a1_re | a2_re | a2_re | - v1 = vdup_lane_f32(a1, 0); - // Get the real values of a | a1_im | a1_im | a2_im | a2_im | - v2 = vdup_lane_f32(a1, 1); - // Multiply the real a with b - v1 = vmul_f32(v1, a2); - // Multiply the imag a with b - v2 = vmul_f32(v2, a2); - // Conjugate v2 - v2 = vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(v2), p2ui_CONJ_XOR())); - // Swap real/imag elements in v2. - v2 = vrev64_f32(v2); - // Add v1, v2 - prod = vadd_f32(v1, v2); - - vst1_f32((float *)&s, prod); - - return s; -} - -template -struct palign_impl -{ - EIGEN_STRONG_INLINE static void run(Packet2cf& first, const Packet2cf& second) - { - if (Offset==1) - { - first.v = vextq_f32(first.v, second.v, 2); - } - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const - { - return internal::pmul(a, pconj(b)); - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const - { - return internal::pmul(pconj(a), b); - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const - { - return pconj(internal::pmul(a, b)); - } -}; - -EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf,Packet4f) - -template<> EIGEN_STRONG_INLINE Packet2cf pdiv(const Packet2cf& a, const Packet2cf& b) -{ - // TODO optimize it for NEON - Packet2cf res = conj_helper().pmul(a,b); - Packet4f s, rev_s; - - // this computes the norm - s = vmulq_f32(b.v, b.v); - rev_s = vrev64q_f32(s); - - return Packet2cf(pdiv(res.v, vaddq_f32(s,rev_s))); -} - -EIGEN_DEVICE_FUNC inline void -ptranspose(PacketBlock& kernel) { - Packet4f tmp = vcombine_f32(vget_high_f32(kernel.packet[0].v), vget_high_f32(kernel.packet[1].v)); - kernel.packet[0].v = vcombine_f32(vget_low_f32(kernel.packet[0].v), vget_low_f32(kernel.packet[1].v)); - kernel.packet[1].v = tmp; -} - -//---------- double ---------- -#if EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG - -// See bug 1325, clang fails to call vld1q_u64. -#if EIGEN_COMP_CLANG - static uint64x2_t p2ul_CONJ_XOR = {0x0, 0x8000000000000000}; -#else - const uint64_t p2ul_conj_XOR_DATA[] = { 0x0, 0x8000000000000000 }; - static uint64x2_t p2ul_CONJ_XOR = vld1q_u64( p2ul_conj_XOR_DATA ); -#endif - -struct Packet1cd -{ - EIGEN_STRONG_INLINE Packet1cd() {} - EIGEN_STRONG_INLINE explicit Packet1cd(const Packet2d& a) : v(a) {} - Packet2d v; -}; - -template<> struct packet_traits > : default_packet_traits -{ - typedef Packet1cd type; - typedef Packet1cd half; - enum { - Vectorizable = 1, - AlignedOnScalar = 0, - size = 1, - HasHalfPacket = 0, - - HasAdd = 1, - HasSub = 1, - HasMul = 1, - HasDiv = 1, - HasNegate = 1, - HasAbs = 0, - HasAbs2 = 0, - HasMin = 0, - HasMax = 0, - HasSetLinear = 0 - }; -}; - -template<> struct unpacket_traits { typedef std::complex type; enum {size=1, alignment=Aligned16}; typedef Packet1cd half; }; - -template<> EIGEN_STRONG_INLINE Packet1cd pload(const std::complex* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet1cd(pload((const double*)from)); } -template<> EIGEN_STRONG_INLINE Packet1cd ploadu(const std::complex* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet1cd(ploadu((const double*)from)); } - -template<> EIGEN_STRONG_INLINE Packet1cd pset1(const std::complex& from) -{ /* here we really have to use unaligned loads :( */ return ploadu(&from); } - -template<> EIGEN_STRONG_INLINE Packet1cd padd(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(padd(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet1cd psub(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(psub(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) { return Packet1cd(pnegate(a.v)); } -template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a) { return Packet1cd(vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(a.v), p2ul_CONJ_XOR))); } - -template<> EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) -{ - Packet2d v1, v2; - - // Get the real values of a - v1 = vdupq_lane_f64(vget_low_f64(a.v), 0); - // Get the imag values of a - v2 = vdupq_lane_f64(vget_high_f64(a.v), 0); - // Multiply the real a with b - v1 = vmulq_f64(v1, b.v); - // Multiply the imag a with b - v2 = vmulq_f64(v2, b.v); - // Conjugate v2 - v2 = vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(v2), p2ul_CONJ_XOR)); - // Swap real/imag elements in v2. - v2 = preverse(v2); - // Add and return the result - return Packet1cd(vaddq_f64(v1, v2)); -} - -template<> EIGEN_STRONG_INLINE Packet1cd pand (const Packet1cd& a, const Packet1cd& b) -{ - return Packet1cd(vreinterpretq_f64_u64(vandq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v)))); -} -template<> EIGEN_STRONG_INLINE Packet1cd por (const Packet1cd& a, const Packet1cd& b) -{ - return Packet1cd(vreinterpretq_f64_u64(vorrq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v)))); -} -template<> EIGEN_STRONG_INLINE Packet1cd pxor (const Packet1cd& a, const Packet1cd& b) -{ - return Packet1cd(vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v)))); -} -template<> EIGEN_STRONG_INLINE Packet1cd pandnot(const Packet1cd& a, const Packet1cd& b) -{ - return Packet1cd(vreinterpretq_f64_u64(vbicq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v)))); -} - -template<> EIGEN_STRONG_INLINE Packet1cd ploaddup(const std::complex* from) { return pset1(*from); } - -template<> EIGEN_STRONG_INLINE void pstore >(std::complex * to, const Packet1cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); } -template<> EIGEN_STRONG_INLINE void pstoreu >(std::complex * to, const Packet1cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); } - -template<> EIGEN_STRONG_INLINE void prefetch >(const std::complex * addr) { EIGEN_ARM_PREFETCH((const double *)addr); } - -template<> EIGEN_DEVICE_FUNC inline Packet1cd pgather, Packet1cd>(const std::complex* from, Index stride) -{ - Packet2d res = pset1(0.0); - res = vsetq_lane_f64(std::real(from[0*stride]), res, 0); - res = vsetq_lane_f64(std::imag(from[0*stride]), res, 1); - return Packet1cd(res); -} - -template<> EIGEN_DEVICE_FUNC inline void pscatter, Packet1cd>(std::complex* to, const Packet1cd& from, Index stride) -{ - to[stride*0] = std::complex(vgetq_lane_f64(from.v, 0), vgetq_lane_f64(from.v, 1)); -} - - -template<> EIGEN_STRONG_INLINE std::complex pfirst(const Packet1cd& a) -{ - std::complex EIGEN_ALIGN16 res; - pstore >(&res, a); - - return res; -} - -template<> EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) { return a; } - -template<> EIGEN_STRONG_INLINE std::complex predux(const Packet1cd& a) { return pfirst(a); } - -template<> EIGEN_STRONG_INLINE Packet1cd preduxp(const Packet1cd* vecs) { return vecs[0]; } - -template<> EIGEN_STRONG_INLINE std::complex predux_mul(const Packet1cd& a) { return pfirst(a); } - -template -struct palign_impl -{ - static EIGEN_STRONG_INLINE void run(Packet1cd& /*first*/, const Packet1cd& /*second*/) - { - // FIXME is it sure we never have to align a Packet1cd? - // Even though a std::complex has 16 bytes, it is not necessarily aligned on a 16 bytes boundary... - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const - { - return internal::pmul(a, pconj(b)); - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const - { - return internal::pmul(pconj(a), b); - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const - { - return pconj(internal::pmul(a, b)); - } -}; - -EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd,Packet2d) - -template<> EIGEN_STRONG_INLINE Packet1cd pdiv(const Packet1cd& a, const Packet1cd& b) -{ - // TODO optimize it for NEON - Packet1cd res = conj_helper().pmul(a,b); - Packet2d s = pmul(b.v, b.v); - Packet2d rev_s = preverse(s); - - return Packet1cd(pdiv(res.v, padd(s,rev_s))); -} - -EIGEN_STRONG_INLINE Packet1cd pcplxflip/**/(const Packet1cd& x) -{ - return Packet1cd(preverse(Packet2d(x.v))); -} - -EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) -{ - Packet2d tmp = vcombine_f64(vget_high_f64(kernel.packet[0].v), vget_high_f64(kernel.packet[1].v)); - kernel.packet[0].v = vcombine_f64(vget_low_f64(kernel.packet[0].v), vget_low_f64(kernel.packet[1].v)); - kernel.packet[1].v = tmp; -} -#endif // EIGEN_ARCH_ARM64 - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_COMPLEX_NEON_H diff --git a/src/math_meigen/Eigen/src/Core/arch/NEON/MathFunctions.h b/src/math_meigen/Eigen/src/Core/arch/NEON/MathFunctions.h deleted file mode 100755 index 6bb05bb92..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/NEON/MathFunctions.h +++ /dev/null @@ -1,91 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -/* The sin, cos, exp, and log functions of this file come from - * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/ - */ - -#ifndef EIGEN_MATH_FUNCTIONS_NEON_H -#define EIGEN_MATH_FUNCTIONS_NEON_H - -namespace Eigen { - -namespace internal { - -template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet4f pexp(const Packet4f& _x) -{ - Packet4f x = _x; - Packet4f tmp, fx; - - _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f); - _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f); - _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f); - _EIGEN_DECLARE_CONST_Packet4f(exp_hi, 88.3762626647950f); - _EIGEN_DECLARE_CONST_Packet4f(exp_lo, -88.3762626647949f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500E-4f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507E-3f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073E-3f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894E-2f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459E-1f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201E-1f); - - x = vminq_f32(x, p4f_exp_hi); - x = vmaxq_f32(x, p4f_exp_lo); - - /* express exp(x) as exp(g + n*log(2)) */ - fx = vmlaq_f32(p4f_half, x, p4f_cephes_LOG2EF); - - /* perform a floorf */ - tmp = vcvtq_f32_s32(vcvtq_s32_f32(fx)); - - /* if greater, substract 1 */ - Packet4ui mask = vcgtq_f32(tmp, fx); - mask = vandq_u32(mask, vreinterpretq_u32_f32(p4f_1)); - - fx = vsubq_f32(tmp, vreinterpretq_f32_u32(mask)); - - tmp = vmulq_f32(fx, p4f_cephes_exp_C1); - Packet4f z = vmulq_f32(fx, p4f_cephes_exp_C2); - x = vsubq_f32(x, tmp); - x = vsubq_f32(x, z); - - Packet4f y = vmulq_f32(p4f_cephes_exp_p0, x); - z = vmulq_f32(x, x); - y = vaddq_f32(y, p4f_cephes_exp_p1); - y = vmulq_f32(y, x); - y = vaddq_f32(y, p4f_cephes_exp_p2); - y = vmulq_f32(y, x); - y = vaddq_f32(y, p4f_cephes_exp_p3); - y = vmulq_f32(y, x); - y = vaddq_f32(y, p4f_cephes_exp_p4); - y = vmulq_f32(y, x); - y = vaddq_f32(y, p4f_cephes_exp_p5); - - y = vmulq_f32(y, z); - y = vaddq_f32(y, x); - y = vaddq_f32(y, p4f_1); - - /* build 2^n */ - int32x4_t mm; - mm = vcvtq_s32_f32(fx); - mm = vaddq_s32(mm, p4i_0x7f); - mm = vshlq_n_s32(mm, 23); - Packet4f pow2n = vreinterpretq_f32_s32(mm); - - y = vmulq_f32(y, pow2n); - return y; -} - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_MATH_FUNCTIONS_NEON_H diff --git a/src/math_meigen/Eigen/src/Core/arch/NEON/PacketMath.h b/src/math_meigen/Eigen/src/Core/arch/NEON/PacketMath.h deleted file mode 100755 index 3d5ed0d24..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/NEON/PacketMath.h +++ /dev/null @@ -1,760 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2009 Gael Guennebaud -// Copyright (C) 2010 Konstantinos Margaritis -// Heavily based on Gael's SSE version. -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_PACKET_MATH_NEON_H -#define EIGEN_PACKET_MATH_NEON_H - -namespace Eigen { - -namespace internal { - -#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD -#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8 -#endif - -#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD -#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD -#endif - -#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD -#define EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD -#endif - -#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS -#if EIGEN_ARCH_ARM64 -#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 32 -#else -#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 16 -#endif -#endif - -#if EIGEN_COMP_MSVC - -// In MSVC's arm_neon.h header file, all NEON vector types -// are aliases to the same underlying type __n128. -// We thus have to wrap them to make them different C++ types. -// (See also bug 1428) - -template -struct eigen_packet_wrapper -{ - operator T&() { return m_val; } - operator const T&() const { return m_val; } - eigen_packet_wrapper() {} - eigen_packet_wrapper(const T &v) : m_val(v) {} - eigen_packet_wrapper& operator=(const T &v) { - m_val = v; - return *this; - } - - T m_val; -}; -typedef eigen_packet_wrapper Packet2f; -typedef eigen_packet_wrapper Packet4f; -typedef eigen_packet_wrapper Packet4i; -typedef eigen_packet_wrapper Packet2i; -typedef eigen_packet_wrapper Packet4ui; - -#else - -typedef float32x2_t Packet2f; -typedef float32x4_t Packet4f; -typedef int32x4_t Packet4i; -typedef int32x2_t Packet2i; -typedef uint32x4_t Packet4ui; - -#endif // EIGEN_COMP_MSVC - -#define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \ - const Packet4f p4f_##NAME = pset1(X) - -#define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \ - const Packet4f p4f_##NAME = vreinterpretq_f32_u32(pset1(X)) - -#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \ - const Packet4i p4i_##NAME = pset1(X) - -#if EIGEN_ARCH_ARM64 - // __builtin_prefetch tends to do nothing on ARM64 compilers because the - // prefetch instructions there are too detailed for __builtin_prefetch to map - // meaningfully to them. - #define EIGEN_ARM_PREFETCH(ADDR) __asm__ __volatile__("prfm pldl1keep, [%[addr]]\n" ::[addr] "r"(ADDR) : ); -#elif EIGEN_HAS_BUILTIN(__builtin_prefetch) || EIGEN_COMP_GNUC - #define EIGEN_ARM_PREFETCH(ADDR) __builtin_prefetch(ADDR); -#elif defined __pld - #define EIGEN_ARM_PREFETCH(ADDR) __pld(ADDR) -#elif EIGEN_ARCH_ARM32 - #define EIGEN_ARM_PREFETCH(ADDR) __asm__ __volatile__ ("pld [%[addr]]\n" :: [addr] "r" (ADDR) : ); -#else - // by default no explicit prefetching - #define EIGEN_ARM_PREFETCH(ADDR) -#endif - -template<> struct packet_traits : default_packet_traits -{ - typedef Packet4f type; - typedef Packet4f half; // Packet2f intrinsics not implemented yet - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size = 4, - HasHalfPacket=0, // Packet2f intrinsics not implemented yet - - HasDiv = 1, - // FIXME check the Has* - HasSin = 0, - HasCos = 0, - HasLog = 0, - HasExp = 1, - HasSqrt = 0 - }; -}; -template<> struct packet_traits : default_packet_traits -{ - typedef Packet4i type; - typedef Packet4i half; // Packet2i intrinsics not implemented yet - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size=4, - HasHalfPacket=0 // Packet2i intrinsics not implemented yet - // FIXME check the Has* - }; -}; - -#if EIGEN_GNUC_AT_MOST(4,4) && !EIGEN_COMP_LLVM -// workaround gcc 4.2, 4.3 and 4.4 compilatin issue -EIGEN_STRONG_INLINE float32x4_t vld1q_f32(const float* x) { return ::vld1q_f32((const float32_t*)x); } -EIGEN_STRONG_INLINE float32x2_t vld1_f32 (const float* x) { return ::vld1_f32 ((const float32_t*)x); } -EIGEN_STRONG_INLINE float32x2_t vld1_dup_f32 (const float* x) { return ::vld1_dup_f32 ((const float32_t*)x); } -EIGEN_STRONG_INLINE void vst1q_f32(float* to, float32x4_t from) { ::vst1q_f32((float32_t*)to,from); } -EIGEN_STRONG_INLINE void vst1_f32 (float* to, float32x2_t from) { ::vst1_f32 ((float32_t*)to,from); } -#endif - -template<> struct unpacket_traits { typedef float type; enum {size=4, alignment=Aligned16}; typedef Packet4f half; }; -template<> struct unpacket_traits { typedef int32_t type; enum {size=4, alignment=Aligned16}; typedef Packet4i half; }; - -template<> EIGEN_STRONG_INLINE Packet4f pset1(const float& from) { return vdupq_n_f32(from); } -template<> EIGEN_STRONG_INLINE Packet4i pset1(const int32_t& from) { return vdupq_n_s32(from); } - -template<> EIGEN_STRONG_INLINE Packet4f plset(const float& a) -{ - const float f[] = {0, 1, 2, 3}; - Packet4f countdown = vld1q_f32(f); - return vaddq_f32(pset1(a), countdown); -} -template<> EIGEN_STRONG_INLINE Packet4i plset(const int32_t& a) -{ - const int32_t i[] = {0, 1, 2, 3}; - Packet4i countdown = vld1q_s32(i); - return vaddq_s32(pset1(a), countdown); -} - -template<> EIGEN_STRONG_INLINE Packet4f padd(const Packet4f& a, const Packet4f& b) { return vaddq_f32(a,b); } -template<> EIGEN_STRONG_INLINE Packet4i padd(const Packet4i& a, const Packet4i& b) { return vaddq_s32(a,b); } - -template<> EIGEN_STRONG_INLINE Packet4f psub(const Packet4f& a, const Packet4f& b) { return vsubq_f32(a,b); } -template<> EIGEN_STRONG_INLINE Packet4i psub(const Packet4i& a, const Packet4i& b) { return vsubq_s32(a,b); } - -template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) { return vnegq_f32(a); } -template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) { return vnegq_s32(a); } - -template<> EIGEN_STRONG_INLINE Packet4f pconj(const Packet4f& a) { return a; } -template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; } - -template<> EIGEN_STRONG_INLINE Packet4f pmul(const Packet4f& a, const Packet4f& b) { return vmulq_f32(a,b); } -template<> EIGEN_STRONG_INLINE Packet4i pmul(const Packet4i& a, const Packet4i& b) { return vmulq_s32(a,b); } - -template<> EIGEN_STRONG_INLINE Packet4f pdiv(const Packet4f& a, const Packet4f& b) -{ -#if EIGEN_ARCH_ARM64 - return vdivq_f32(a,b); -#else - Packet4f inv, restep, div; - - // NEON does not offer a divide instruction, we have to do a reciprocal approximation - // However NEON in contrast to other SIMD engines (AltiVec/SSE), offers - // a reciprocal estimate AND a reciprocal step -which saves a few instructions - // vrecpeq_f32() returns an estimate to 1/b, which we will finetune with - // Newton-Raphson and vrecpsq_f32() - inv = vrecpeq_f32(b); - - // This returns a differential, by which we will have to multiply inv to get a better - // approximation of 1/b. - restep = vrecpsq_f32(b, inv); - inv = vmulq_f32(restep, inv); - - // Finally, multiply a by 1/b and get the wanted result of the division. - div = vmulq_f32(a, inv); - - return div; -#endif -} - -template<> EIGEN_STRONG_INLINE Packet4i pdiv(const Packet4i& /*a*/, const Packet4i& /*b*/) -{ eigen_assert(false && "packet integer division are not supported by NEON"); - return pset1(0); -} - -// Clang/ARM wrongly advertises __ARM_FEATURE_FMA even when it's not available, -// then implements a slow software scalar fallback calling fmaf()! -// Filed LLVM bug: -// https://llvm.org/bugs/show_bug.cgi?id=27216 -#if (defined __ARM_FEATURE_FMA) && !(EIGEN_COMP_CLANG && EIGEN_ARCH_ARM) -// See bug 936. -// FMA is available on VFPv4 i.e. when compiling with -mfpu=neon-vfpv4. -// FMA is a true fused multiply-add i.e. only 1 rounding at the end, no intermediate rounding. -// MLA is not fused i.e. does 2 roundings. -// In addition to giving better accuracy, FMA also gives better performance here on a Krait (Nexus 4): -// MLA: 10 GFlop/s ; FMA: 12 GFlops/s. -template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vfmaq_f32(c,a,b); } -#else -template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { -#if EIGEN_COMP_CLANG && EIGEN_ARCH_ARM - // Clang/ARM will replace VMLA by VMUL+VADD at least for some values of -mcpu, - // at least -mcpu=cortex-a8 and -mcpu=cortex-a7. Since the former is the default on - // -march=armv7-a, that is a very common case. - // See e.g. this thread: - // http://lists.llvm.org/pipermail/llvm-dev/2013-December/068806.html - // Filed LLVM bug: - // https://llvm.org/bugs/show_bug.cgi?id=27219 - Packet4f r = c; - asm volatile( - "vmla.f32 %q[r], %q[a], %q[b]" - : [r] "+w" (r) - : [a] "w" (a), - [b] "w" (b) - : ); - return r; -#else - return vmlaq_f32(c,a,b); -#endif -} -#endif - -// No FMA instruction for int, so use MLA unconditionally. -template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return vmlaq_s32(c,a,b); } - -template<> EIGEN_STRONG_INLINE Packet4f pmin(const Packet4f& a, const Packet4f& b) { return vminq_f32(a,b); } -template<> EIGEN_STRONG_INLINE Packet4i pmin(const Packet4i& a, const Packet4i& b) { return vminq_s32(a,b); } - -template<> EIGEN_STRONG_INLINE Packet4f pmax(const Packet4f& a, const Packet4f& b) { return vmaxq_f32(a,b); } -template<> EIGEN_STRONG_INLINE Packet4i pmax(const Packet4i& a, const Packet4i& b) { return vmaxq_s32(a,b); } - -// Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics -template<> EIGEN_STRONG_INLINE Packet4f pand(const Packet4f& a, const Packet4f& b) -{ - return vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b))); -} -template<> EIGEN_STRONG_INLINE Packet4i pand(const Packet4i& a, const Packet4i& b) { return vandq_s32(a,b); } - -template<> EIGEN_STRONG_INLINE Packet4f por(const Packet4f& a, const Packet4f& b) -{ - return vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b))); -} -template<> EIGEN_STRONG_INLINE Packet4i por(const Packet4i& a, const Packet4i& b) { return vorrq_s32(a,b); } - -template<> EIGEN_STRONG_INLINE Packet4f pxor(const Packet4f& a, const Packet4f& b) -{ - return vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b))); -} -template<> EIGEN_STRONG_INLINE Packet4i pxor(const Packet4i& a, const Packet4i& b) { return veorq_s32(a,b); } - -template<> EIGEN_STRONG_INLINE Packet4f pandnot(const Packet4f& a, const Packet4f& b) -{ - return vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b))); -} -template<> EIGEN_STRONG_INLINE Packet4i pandnot(const Packet4i& a, const Packet4i& b) { return vbicq_s32(a,b); } - -template<> EIGEN_STRONG_INLINE Packet4f pload(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_f32(from); } -template<> EIGEN_STRONG_INLINE Packet4i pload(const int32_t* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_s32(from); } - -template<> EIGEN_STRONG_INLINE Packet4f ploadu(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_f32(from); } -template<> EIGEN_STRONG_INLINE Packet4i ploadu(const int32_t* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_s32(from); } - -template<> EIGEN_STRONG_INLINE Packet4f ploaddup(const float* from) -{ - float32x2_t lo, hi; - lo = vld1_dup_f32(from); - hi = vld1_dup_f32(from+1); - return vcombine_f32(lo, hi); -} -template<> EIGEN_STRONG_INLINE Packet4i ploaddup(const int32_t* from) -{ - int32x2_t lo, hi; - lo = vld1_dup_s32(from); - hi = vld1_dup_s32(from+1); - return vcombine_s32(lo, hi); -} - -template<> EIGEN_STRONG_INLINE void pstore (float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_f32(to, from); } -template<> EIGEN_STRONG_INLINE void pstore(int32_t* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_s32(to, from); } - -template<> EIGEN_STRONG_INLINE void pstoreu (float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_f32(to, from); } -template<> EIGEN_STRONG_INLINE void pstoreu(int32_t* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_s32(to, from); } - -template<> EIGEN_DEVICE_FUNC inline Packet4f pgather(const float* from, Index stride) -{ - Packet4f res = pset1(0.f); - res = vsetq_lane_f32(from[0*stride], res, 0); - res = vsetq_lane_f32(from[1*stride], res, 1); - res = vsetq_lane_f32(from[2*stride], res, 2); - res = vsetq_lane_f32(from[3*stride], res, 3); - return res; -} -template<> EIGEN_DEVICE_FUNC inline Packet4i pgather(const int32_t* from, Index stride) -{ - Packet4i res = pset1(0); - res = vsetq_lane_s32(from[0*stride], res, 0); - res = vsetq_lane_s32(from[1*stride], res, 1); - res = vsetq_lane_s32(from[2*stride], res, 2); - res = vsetq_lane_s32(from[3*stride], res, 3); - return res; -} - -template<> EIGEN_DEVICE_FUNC inline void pscatter(float* to, const Packet4f& from, Index stride) -{ - to[stride*0] = vgetq_lane_f32(from, 0); - to[stride*1] = vgetq_lane_f32(from, 1); - to[stride*2] = vgetq_lane_f32(from, 2); - to[stride*3] = vgetq_lane_f32(from, 3); -} -template<> EIGEN_DEVICE_FUNC inline void pscatter(int32_t* to, const Packet4i& from, Index stride) -{ - to[stride*0] = vgetq_lane_s32(from, 0); - to[stride*1] = vgetq_lane_s32(from, 1); - to[stride*2] = vgetq_lane_s32(from, 2); - to[stride*3] = vgetq_lane_s32(from, 3); -} - -template<> EIGEN_STRONG_INLINE void prefetch (const float* addr) { EIGEN_ARM_PREFETCH(addr); } -template<> EIGEN_STRONG_INLINE void prefetch(const int32_t* addr) { EIGEN_ARM_PREFETCH(addr); } - -// FIXME only store the 2 first elements ? -template<> EIGEN_STRONG_INLINE float pfirst(const Packet4f& a) { float EIGEN_ALIGN16 x[4]; vst1q_f32(x, a); return x[0]; } -template<> EIGEN_STRONG_INLINE int32_t pfirst(const Packet4i& a) { int32_t EIGEN_ALIGN16 x[4]; vst1q_s32(x, a); return x[0]; } - -template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) { - float32x2_t a_lo, a_hi; - Packet4f a_r64; - - a_r64 = vrev64q_f32(a); - a_lo = vget_low_f32(a_r64); - a_hi = vget_high_f32(a_r64); - return vcombine_f32(a_hi, a_lo); -} -template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) { - int32x2_t a_lo, a_hi; - Packet4i a_r64; - - a_r64 = vrev64q_s32(a); - a_lo = vget_low_s32(a_r64); - a_hi = vget_high_s32(a_r64); - return vcombine_s32(a_hi, a_lo); -} - -template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) { return vabsq_f32(a); } -template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vabsq_s32(a); } - -template<> EIGEN_STRONG_INLINE float predux(const Packet4f& a) -{ - float32x2_t a_lo, a_hi, sum; - - a_lo = vget_low_f32(a); - a_hi = vget_high_f32(a); - sum = vpadd_f32(a_lo, a_hi); - sum = vpadd_f32(sum, sum); - return vget_lane_f32(sum, 0); -} - -template<> EIGEN_STRONG_INLINE Packet4f preduxp(const Packet4f* vecs) -{ - float32x4x2_t vtrn1, vtrn2, res1, res2; - Packet4f sum1, sum2, sum; - - // NEON zip performs interleaving of the supplied vectors. - // We perform two interleaves in a row to acquire the transposed vector - vtrn1 = vzipq_f32(vecs[0], vecs[2]); - vtrn2 = vzipq_f32(vecs[1], vecs[3]); - res1 = vzipq_f32(vtrn1.val[0], vtrn2.val[0]); - res2 = vzipq_f32(vtrn1.val[1], vtrn2.val[1]); - - // Do the addition of the resulting vectors - sum1 = vaddq_f32(res1.val[0], res1.val[1]); - sum2 = vaddq_f32(res2.val[0], res2.val[1]); - sum = vaddq_f32(sum1, sum2); - - return sum; -} - -template<> EIGEN_STRONG_INLINE int32_t predux(const Packet4i& a) -{ - int32x2_t a_lo, a_hi, sum; - - a_lo = vget_low_s32(a); - a_hi = vget_high_s32(a); - sum = vpadd_s32(a_lo, a_hi); - sum = vpadd_s32(sum, sum); - return vget_lane_s32(sum, 0); -} - -template<> EIGEN_STRONG_INLINE Packet4i preduxp(const Packet4i* vecs) -{ - int32x4x2_t vtrn1, vtrn2, res1, res2; - Packet4i sum1, sum2, sum; - - // NEON zip performs interleaving of the supplied vectors. - // We perform two interleaves in a row to acquire the transposed vector - vtrn1 = vzipq_s32(vecs[0], vecs[2]); - vtrn2 = vzipq_s32(vecs[1], vecs[3]); - res1 = vzipq_s32(vtrn1.val[0], vtrn2.val[0]); - res2 = vzipq_s32(vtrn1.val[1], vtrn2.val[1]); - - // Do the addition of the resulting vectors - sum1 = vaddq_s32(res1.val[0], res1.val[1]); - sum2 = vaddq_s32(res2.val[0], res2.val[1]); - sum = vaddq_s32(sum1, sum2); - - return sum; -} - -// Other reduction functions: -// mul -template<> EIGEN_STRONG_INLINE float predux_mul(const Packet4f& a) -{ - float32x2_t a_lo, a_hi, prod; - - // Get a_lo = |a1|a2| and a_hi = |a3|a4| - a_lo = vget_low_f32(a); - a_hi = vget_high_f32(a); - // Get the product of a_lo * a_hi -> |a1*a3|a2*a4| - prod = vmul_f32(a_lo, a_hi); - // Multiply prod with its swapped value |a2*a4|a1*a3| - prod = vmul_f32(prod, vrev64_f32(prod)); - - return vget_lane_f32(prod, 0); -} -template<> EIGEN_STRONG_INLINE int32_t predux_mul(const Packet4i& a) -{ - int32x2_t a_lo, a_hi, prod; - - // Get a_lo = |a1|a2| and a_hi = |a3|a4| - a_lo = vget_low_s32(a); - a_hi = vget_high_s32(a); - // Get the product of a_lo * a_hi -> |a1*a3|a2*a4| - prod = vmul_s32(a_lo, a_hi); - // Multiply prod with its swapped value |a2*a4|a1*a3| - prod = vmul_s32(prod, vrev64_s32(prod)); - - return vget_lane_s32(prod, 0); -} - -// min -template<> EIGEN_STRONG_INLINE float predux_min(const Packet4f& a) -{ - float32x2_t a_lo, a_hi, min; - - a_lo = vget_low_f32(a); - a_hi = vget_high_f32(a); - min = vpmin_f32(a_lo, a_hi); - min = vpmin_f32(min, min); - - return vget_lane_f32(min, 0); -} - -template<> EIGEN_STRONG_INLINE int32_t predux_min(const Packet4i& a) -{ - int32x2_t a_lo, a_hi, min; - - a_lo = vget_low_s32(a); - a_hi = vget_high_s32(a); - min = vpmin_s32(a_lo, a_hi); - min = vpmin_s32(min, min); - - return vget_lane_s32(min, 0); -} - -// max -template<> EIGEN_STRONG_INLINE float predux_max(const Packet4f& a) -{ - float32x2_t a_lo, a_hi, max; - - a_lo = vget_low_f32(a); - a_hi = vget_high_f32(a); - max = vpmax_f32(a_lo, a_hi); - max = vpmax_f32(max, max); - - return vget_lane_f32(max, 0); -} - -template<> EIGEN_STRONG_INLINE int32_t predux_max(const Packet4i& a) -{ - int32x2_t a_lo, a_hi, max; - - a_lo = vget_low_s32(a); - a_hi = vget_high_s32(a); - max = vpmax_s32(a_lo, a_hi); - max = vpmax_s32(max, max); - - return vget_lane_s32(max, 0); -} - -// this PALIGN_NEON business is to work around a bug in LLVM Clang 3.0 causing incorrect compilation errors, -// see bug 347 and this LLVM bug: http://llvm.org/bugs/show_bug.cgi?id=11074 -#define PALIGN_NEON(Offset,Type,Command) \ -template<>\ -struct palign_impl\ -{\ - EIGEN_STRONG_INLINE static void run(Type& first, const Type& second)\ - {\ - if (Offset!=0)\ - first = Command(first, second, Offset);\ - }\ -};\ - -PALIGN_NEON(0,Packet4f,vextq_f32) -PALIGN_NEON(1,Packet4f,vextq_f32) -PALIGN_NEON(2,Packet4f,vextq_f32) -PALIGN_NEON(3,Packet4f,vextq_f32) -PALIGN_NEON(0,Packet4i,vextq_s32) -PALIGN_NEON(1,Packet4i,vextq_s32) -PALIGN_NEON(2,Packet4i,vextq_s32) -PALIGN_NEON(3,Packet4i,vextq_s32) - -#undef PALIGN_NEON - -EIGEN_DEVICE_FUNC inline void -ptranspose(PacketBlock& kernel) { - float32x4x2_t tmp1 = vzipq_f32(kernel.packet[0], kernel.packet[1]); - float32x4x2_t tmp2 = vzipq_f32(kernel.packet[2], kernel.packet[3]); - - kernel.packet[0] = vcombine_f32(vget_low_f32(tmp1.val[0]), vget_low_f32(tmp2.val[0])); - kernel.packet[1] = vcombine_f32(vget_high_f32(tmp1.val[0]), vget_high_f32(tmp2.val[0])); - kernel.packet[2] = vcombine_f32(vget_low_f32(tmp1.val[1]), vget_low_f32(tmp2.val[1])); - kernel.packet[3] = vcombine_f32(vget_high_f32(tmp1.val[1]), vget_high_f32(tmp2.val[1])); -} - -EIGEN_DEVICE_FUNC inline void -ptranspose(PacketBlock& kernel) { - int32x4x2_t tmp1 = vzipq_s32(kernel.packet[0], kernel.packet[1]); - int32x4x2_t tmp2 = vzipq_s32(kernel.packet[2], kernel.packet[3]); - kernel.packet[0] = vcombine_s32(vget_low_s32(tmp1.val[0]), vget_low_s32(tmp2.val[0])); - kernel.packet[1] = vcombine_s32(vget_high_s32(tmp1.val[0]), vget_high_s32(tmp2.val[0])); - kernel.packet[2] = vcombine_s32(vget_low_s32(tmp1.val[1]), vget_low_s32(tmp2.val[1])); - kernel.packet[3] = vcombine_s32(vget_high_s32(tmp1.val[1]), vget_high_s32(tmp2.val[1])); -} - -//---------- double ---------- - -// Clang 3.5 in the iOS toolchain has an ICE triggered by NEON intrisics for double. -// Confirmed at least with __apple_build_version__ = 6000054. -#ifdef __apple_build_version__ -// Let's hope that by the time __apple_build_version__ hits the 601* range, the bug will be fixed. -// https://gist.github.com/yamaya/2924292 suggests that the 3 first digits are only updated with -// major toolchain updates. -#define EIGEN_APPLE_DOUBLE_NEON_BUG (__apple_build_version__ < 6010000) -#else -#define EIGEN_APPLE_DOUBLE_NEON_BUG 0 -#endif - -#if EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG - -// Bug 907: workaround missing declarations of the following two functions in the ADK -// Defining these functions as templates ensures that if these intrinsics are -// already defined in arm_neon.h, then our workaround doesn't cause a conflict -// and has lower priority in overload resolution. -template -uint64x2_t vreinterpretq_u64_f64(T a) -{ - return (uint64x2_t) a; -} - -template -float64x2_t vreinterpretq_f64_u64(T a) -{ - return (float64x2_t) a; -} - -typedef float64x2_t Packet2d; -typedef float64x1_t Packet1d; - -template<> struct packet_traits : default_packet_traits -{ - typedef Packet2d type; - typedef Packet2d half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size = 2, - HasHalfPacket=0, - - HasDiv = 1, - // FIXME check the Has* - HasSin = 0, - HasCos = 0, - HasLog = 0, - HasExp = 0, - HasSqrt = 0 - }; -}; - -template<> struct unpacket_traits { typedef double type; enum {size=2, alignment=Aligned16}; typedef Packet2d half; }; - -template<> EIGEN_STRONG_INLINE Packet2d pset1(const double& from) { return vdupq_n_f64(from); } - -template<> EIGEN_STRONG_INLINE Packet2d plset(const double& a) -{ - const double countdown_raw[] = {0.0,1.0}; - const Packet2d countdown = vld1q_f64(countdown_raw); - return vaddq_f64(pset1(a), countdown); -} -template<> EIGEN_STRONG_INLINE Packet2d padd(const Packet2d& a, const Packet2d& b) { return vaddq_f64(a,b); } - -template<> EIGEN_STRONG_INLINE Packet2d psub(const Packet2d& a, const Packet2d& b) { return vsubq_f64(a,b); } - -template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a) { return vnegq_f64(a); } - -template<> EIGEN_STRONG_INLINE Packet2d pconj(const Packet2d& a) { return a; } - -template<> EIGEN_STRONG_INLINE Packet2d pmul(const Packet2d& a, const Packet2d& b) { return vmulq_f64(a,b); } - -template<> EIGEN_STRONG_INLINE Packet2d pdiv(const Packet2d& a, const Packet2d& b) { return vdivq_f64(a,b); } - -#ifdef __ARM_FEATURE_FMA -// See bug 936. See above comment about FMA for float. -template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return vfmaq_f64(c,a,b); } -#else -template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return vmlaq_f64(c,a,b); } -#endif - -template<> EIGEN_STRONG_INLINE Packet2d pmin(const Packet2d& a, const Packet2d& b) { return vminq_f64(a,b); } - -template<> EIGEN_STRONG_INLINE Packet2d pmax(const Packet2d& a, const Packet2d& b) { return vmaxq_f64(a,b); } - -// Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics -template<> EIGEN_STRONG_INLINE Packet2d pand(const Packet2d& a, const Packet2d& b) -{ - return vreinterpretq_f64_u64(vandq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b))); -} - -template<> EIGEN_STRONG_INLINE Packet2d por(const Packet2d& a, const Packet2d& b) -{ - return vreinterpretq_f64_u64(vorrq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b))); -} - -template<> EIGEN_STRONG_INLINE Packet2d pxor(const Packet2d& a, const Packet2d& b) -{ - return vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b))); -} - -template<> EIGEN_STRONG_INLINE Packet2d pandnot(const Packet2d& a, const Packet2d& b) -{ - return vreinterpretq_f64_u64(vbicq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b))); -} - -template<> EIGEN_STRONG_INLINE Packet2d pload(const double* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_f64(from); } - -template<> EIGEN_STRONG_INLINE Packet2d ploadu(const double* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_f64(from); } - -template<> EIGEN_STRONG_INLINE Packet2d ploaddup(const double* from) -{ - return vld1q_dup_f64(from); -} -template<> EIGEN_STRONG_INLINE void pstore(double* to, const Packet2d& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_f64(to, from); } - -template<> EIGEN_STRONG_INLINE void pstoreu(double* to, const Packet2d& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_f64(to, from); } - -template<> EIGEN_DEVICE_FUNC inline Packet2d pgather(const double* from, Index stride) -{ - Packet2d res = pset1(0.0); - res = vsetq_lane_f64(from[0*stride], res, 0); - res = vsetq_lane_f64(from[1*stride], res, 1); - return res; -} -template<> EIGEN_DEVICE_FUNC inline void pscatter(double* to, const Packet2d& from, Index stride) -{ - to[stride*0] = vgetq_lane_f64(from, 0); - to[stride*1] = vgetq_lane_f64(from, 1); -} -template<> EIGEN_STRONG_INLINE void prefetch(const double* addr) { EIGEN_ARM_PREFETCH(addr); } - -// FIXME only store the 2 first elements ? -template<> EIGEN_STRONG_INLINE double pfirst(const Packet2d& a) { return vgetq_lane_f64(a, 0); } - -template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a) { return vcombine_f64(vget_high_f64(a), vget_low_f64(a)); } - -template<> EIGEN_STRONG_INLINE Packet2d pabs(const Packet2d& a) { return vabsq_f64(a); } - -#if EIGEN_COMP_CLANG && defined(__apple_build_version__) -// workaround ICE, see bug 907 -template<> EIGEN_STRONG_INLINE double predux(const Packet2d& a) { return (vget_low_f64(a) + vget_high_f64(a))[0]; } -#else -template<> EIGEN_STRONG_INLINE double predux(const Packet2d& a) { return vget_lane_f64(vget_low_f64(a) + vget_high_f64(a), 0); } -#endif - -template<> EIGEN_STRONG_INLINE Packet2d preduxp(const Packet2d* vecs) -{ - float64x2_t trn1, trn2; - - // NEON zip performs interleaving of the supplied vectors. - // We perform two interleaves in a row to acquire the transposed vector - trn1 = vzip1q_f64(vecs[0], vecs[1]); - trn2 = vzip2q_f64(vecs[0], vecs[1]); - - // Do the addition of the resulting vectors - return vaddq_f64(trn1, trn2); -} -// Other reduction functions: -// mul -#if EIGEN_COMP_CLANG && defined(__apple_build_version__) -template<> EIGEN_STRONG_INLINE double predux_mul(const Packet2d& a) { return (vget_low_f64(a) * vget_high_f64(a))[0]; } -#else -template<> EIGEN_STRONG_INLINE double predux_mul(const Packet2d& a) { return vget_lane_f64(vget_low_f64(a) * vget_high_f64(a), 0); } -#endif - -// min -template<> EIGEN_STRONG_INLINE double predux_min(const Packet2d& a) { return vgetq_lane_f64(vpminq_f64(a, a), 0); } - -// max -template<> EIGEN_STRONG_INLINE double predux_max(const Packet2d& a) { return vgetq_lane_f64(vpmaxq_f64(a, a), 0); } - -// this PALIGN_NEON business is to work around a bug in LLVM Clang 3.0 causing incorrect compilation errors, -// see bug 347 and this LLVM bug: http://llvm.org/bugs/show_bug.cgi?id=11074 -#define PALIGN_NEON(Offset,Type,Command) \ -template<>\ -struct palign_impl\ -{\ - EIGEN_STRONG_INLINE static void run(Type& first, const Type& second)\ - {\ - if (Offset!=0)\ - first = Command(first, second, Offset);\ - }\ -};\ - -PALIGN_NEON(0,Packet2d,vextq_f64) -PALIGN_NEON(1,Packet2d,vextq_f64) -#undef PALIGN_NEON - -EIGEN_DEVICE_FUNC inline void -ptranspose(PacketBlock& kernel) { - float64x2_t trn1 = vzip1q_f64(kernel.packet[0], kernel.packet[1]); - float64x2_t trn2 = vzip2q_f64(kernel.packet[0], kernel.packet[1]); - - kernel.packet[0] = trn1; - kernel.packet[1] = trn2; -} -#endif // EIGEN_ARCH_ARM64 - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_PACKET_MATH_NEON_H diff --git a/src/math_meigen/Eigen/src/Core/arch/SSE/Complex.h b/src/math_meigen/Eigen/src/Core/arch/SSE/Complex.h deleted file mode 100755 index d075043ce..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/SSE/Complex.h +++ /dev/null @@ -1,471 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_COMPLEX_SSE_H -#define EIGEN_COMPLEX_SSE_H - -namespace Eigen { - -namespace internal { - -//---------- float ---------- -struct Packet2cf -{ - EIGEN_STRONG_INLINE Packet2cf() {} - EIGEN_STRONG_INLINE explicit Packet2cf(const __m128& a) : v(a) {} - __m128 v; -}; - -// Use the packet_traits defined in AVX/PacketMath.h instead if we're going -// to leverage AVX instructions. -#ifndef EIGEN_VECTORIZE_AVX -template<> struct packet_traits > : default_packet_traits -{ - typedef Packet2cf type; - typedef Packet2cf half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size = 2, - HasHalfPacket = 0, - - HasAdd = 1, - HasSub = 1, - HasMul = 1, - HasDiv = 1, - HasNegate = 1, - HasAbs = 0, - HasAbs2 = 0, - HasMin = 0, - HasMax = 0, - HasSetLinear = 0, - HasBlend = 1 - }; -}; -#endif - -template<> struct unpacket_traits { typedef std::complex type; enum {size=2, alignment=Aligned16}; typedef Packet2cf half; }; - -template<> EIGEN_STRONG_INLINE Packet2cf padd(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_add_ps(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet2cf psub(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_sub_ps(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) -{ - const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x80000000,0x80000000,0x80000000,0x80000000)); - return Packet2cf(_mm_xor_ps(a.v,mask)); -} -template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a) -{ - const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000)); - return Packet2cf(_mm_xor_ps(a.v,mask)); -} - -template<> EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) -{ - #ifdef EIGEN_VECTORIZE_SSE3 - return Packet2cf(_mm_addsub_ps(_mm_mul_ps(_mm_moveldup_ps(a.v), b.v), - _mm_mul_ps(_mm_movehdup_ps(a.v), - vec4f_swizzle1(b.v, 1, 0, 3, 2)))); -// return Packet2cf(_mm_addsub_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v), -// _mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3), -// vec4f_swizzle1(b.v, 1, 0, 3, 2)))); - #else - const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x80000000,0x00000000,0x80000000,0x00000000)); - return Packet2cf(_mm_add_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v), - _mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3), - vec4f_swizzle1(b.v, 1, 0, 3, 2)), mask))); - #endif -} - -template<> EIGEN_STRONG_INLINE Packet2cf pand (const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_and_ps(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet2cf por (const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_or_ps(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet2cf pxor (const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_xor_ps(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet2cf pandnot(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_andnot_ps(a.v,b.v)); } - -template<> EIGEN_STRONG_INLINE Packet2cf pload (const std::complex* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload(&numext::real_ref(*from))); } -template<> EIGEN_STRONG_INLINE Packet2cf ploadu(const std::complex* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu(&numext::real_ref(*from))); } - -template<> EIGEN_STRONG_INLINE Packet2cf pset1(const std::complex& from) -{ - Packet2cf res; -#if EIGEN_GNUC_AT_MOST(4,2) - // Workaround annoying "may be used uninitialized in this function" warning with gcc 4.2 - res.v = _mm_loadl_pi(_mm_set1_ps(0.0f), reinterpret_cast(&from)); -#elif EIGEN_GNUC_AT_LEAST(4,6) - // Suppress annoying "may be used uninitialized in this function" warning with gcc >= 4.6 - #pragma GCC diagnostic push - #pragma GCC diagnostic ignored "-Wuninitialized" - res.v = _mm_loadl_pi(res.v, (const __m64*)&from); - #pragma GCC diagnostic pop -#else - res.v = _mm_loadl_pi(res.v, (const __m64*)&from); -#endif - return Packet2cf(_mm_movelh_ps(res.v,res.v)); -} - -template<> EIGEN_STRONG_INLINE Packet2cf ploaddup(const std::complex* from) { return pset1(*from); } - -template<> EIGEN_STRONG_INLINE void pstore >(std::complex * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore(&numext::real_ref(*to), Packet4f(from.v)); } -template<> EIGEN_STRONG_INLINE void pstoreu >(std::complex * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(&numext::real_ref(*to), Packet4f(from.v)); } - - -template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather, Packet2cf>(const std::complex* from, Index stride) -{ - return Packet2cf(_mm_set_ps(std::imag(from[1*stride]), std::real(from[1*stride]), - std::imag(from[0*stride]), std::real(from[0*stride]))); -} - -template<> EIGEN_DEVICE_FUNC inline void pscatter, Packet2cf>(std::complex* to, const Packet2cf& from, Index stride) -{ - to[stride*0] = std::complex(_mm_cvtss_f32(_mm_shuffle_ps(from.v, from.v, 0)), - _mm_cvtss_f32(_mm_shuffle_ps(from.v, from.v, 1))); - to[stride*1] = std::complex(_mm_cvtss_f32(_mm_shuffle_ps(from.v, from.v, 2)), - _mm_cvtss_f32(_mm_shuffle_ps(from.v, from.v, 3))); -} - -template<> EIGEN_STRONG_INLINE void prefetch >(const std::complex * addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } - -template<> EIGEN_STRONG_INLINE std::complex pfirst(const Packet2cf& a) -{ - #if EIGEN_GNUC_AT_MOST(4,3) - // Workaround gcc 4.2 ICE - this is not performance wise ideal, but who cares... - // This workaround also fix invalid code generation with gcc 4.3 - EIGEN_ALIGN16 std::complex res[2]; - _mm_store_ps((float*)res, a.v); - return res[0]; - #else - std::complex res; - _mm_storel_pi((__m64*)&res, a.v); - return res; - #endif -} - -template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a) { return Packet2cf(_mm_castpd_ps(preverse(Packet2d(_mm_castps_pd(a.v))))); } - -template<> EIGEN_STRONG_INLINE std::complex predux(const Packet2cf& a) -{ - return pfirst(Packet2cf(_mm_add_ps(a.v, _mm_movehl_ps(a.v,a.v)))); -} - -template<> EIGEN_STRONG_INLINE Packet2cf preduxp(const Packet2cf* vecs) -{ - return Packet2cf(_mm_add_ps(_mm_movelh_ps(vecs[0].v,vecs[1].v), _mm_movehl_ps(vecs[1].v,vecs[0].v))); -} - -template<> EIGEN_STRONG_INLINE std::complex predux_mul(const Packet2cf& a) -{ - return pfirst(pmul(a, Packet2cf(_mm_movehl_ps(a.v,a.v)))); -} - -template -struct palign_impl -{ - static EIGEN_STRONG_INLINE void run(Packet2cf& first, const Packet2cf& second) - { - if (Offset==1) - { - first.v = _mm_movehl_ps(first.v, first.v); - first.v = _mm_movelh_ps(first.v, second.v); - } - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const - { - #ifdef EIGEN_VECTORIZE_SSE3 - return internal::pmul(a, pconj(b)); - #else - const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000)); - return Packet2cf(_mm_add_ps(_mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v), mask), - _mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3), - vec4f_swizzle1(b.v, 1, 0, 3, 2)))); - #endif - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const - { - #ifdef EIGEN_VECTORIZE_SSE3 - return internal::pmul(pconj(a), b); - #else - const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000)); - return Packet2cf(_mm_add_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v), - _mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3), - vec4f_swizzle1(b.v, 1, 0, 3, 2)), mask))); - #endif - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const - { - #ifdef EIGEN_VECTORIZE_SSE3 - return pconj(internal::pmul(a, b)); - #else - const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000)); - return Packet2cf(_mm_sub_ps(_mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v), mask), - _mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3), - vec4f_swizzle1(b.v, 1, 0, 3, 2)))); - #endif - } -}; - -EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf,Packet4f) - -template<> EIGEN_STRONG_INLINE Packet2cf pdiv(const Packet2cf& a, const Packet2cf& b) -{ - // TODO optimize it for SSE3 and 4 - Packet2cf res = conj_helper().pmul(a,b); - __m128 s = _mm_mul_ps(b.v,b.v); - return Packet2cf(_mm_div_ps(res.v,_mm_add_ps(s,_mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(s), 0xb1))))); -} - -EIGEN_STRONG_INLINE Packet2cf pcplxflip/* */(const Packet2cf& x) -{ - return Packet2cf(vec4f_swizzle1(x.v, 1, 0, 3, 2)); -} - - -//---------- double ---------- -struct Packet1cd -{ - EIGEN_STRONG_INLINE Packet1cd() {} - EIGEN_STRONG_INLINE explicit Packet1cd(const __m128d& a) : v(a) {} - __m128d v; -}; - -// Use the packet_traits defined in AVX/PacketMath.h instead if we're going -// to leverage AVX instructions. -#ifndef EIGEN_VECTORIZE_AVX -template<> struct packet_traits > : default_packet_traits -{ - typedef Packet1cd type; - typedef Packet1cd half; - enum { - Vectorizable = 1, - AlignedOnScalar = 0, - size = 1, - HasHalfPacket = 0, - - HasAdd = 1, - HasSub = 1, - HasMul = 1, - HasDiv = 1, - HasNegate = 1, - HasAbs = 0, - HasAbs2 = 0, - HasMin = 0, - HasMax = 0, - HasSetLinear = 0 - }; -}; -#endif - -template<> struct unpacket_traits { typedef std::complex type; enum {size=1, alignment=Aligned16}; typedef Packet1cd half; }; - -template<> EIGEN_STRONG_INLINE Packet1cd padd(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_add_pd(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet1cd psub(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_sub_pd(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) { return Packet1cd(pnegate(Packet2d(a.v))); } -template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a) -{ - const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0)); - return Packet1cd(_mm_xor_pd(a.v,mask)); -} - -template<> EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) -{ - #ifdef EIGEN_VECTORIZE_SSE3 - return Packet1cd(_mm_addsub_pd(_mm_mul_pd(_mm_movedup_pd(a.v), b.v), - _mm_mul_pd(vec2d_swizzle1(a.v, 1, 1), - vec2d_swizzle1(b.v, 1, 0)))); - #else - const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x0,0x0,0x80000000,0x0)); - return Packet1cd(_mm_add_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v), - _mm_xor_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 1, 1), - vec2d_swizzle1(b.v, 1, 0)), mask))); - #endif -} - -template<> EIGEN_STRONG_INLINE Packet1cd pand (const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_and_pd(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet1cd por (const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_or_pd(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet1cd pxor (const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_xor_pd(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet1cd pandnot(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_andnot_pd(a.v,b.v)); } - -// FIXME force unaligned load, this is a temporary fix -template<> EIGEN_STRONG_INLINE Packet1cd pload (const std::complex* from) -{ EIGEN_DEBUG_ALIGNED_LOAD return Packet1cd(pload((const double*)from)); } -template<> EIGEN_STRONG_INLINE Packet1cd ploadu(const std::complex* from) -{ EIGEN_DEBUG_UNALIGNED_LOAD return Packet1cd(ploadu((const double*)from)); } -template<> EIGEN_STRONG_INLINE Packet1cd pset1(const std::complex& from) -{ /* here we really have to use unaligned loads :( */ return ploadu(&from); } - -template<> EIGEN_STRONG_INLINE Packet1cd ploaddup(const std::complex* from) { return pset1(*from); } - -// FIXME force unaligned store, this is a temporary fix -template<> EIGEN_STRONG_INLINE void pstore >(std::complex * to, const Packet1cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, Packet2d(from.v)); } -template<> EIGEN_STRONG_INLINE void pstoreu >(std::complex * to, const Packet1cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, Packet2d(from.v)); } - -template<> EIGEN_STRONG_INLINE void prefetch >(const std::complex * addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } - -template<> EIGEN_STRONG_INLINE std::complex pfirst(const Packet1cd& a) -{ - EIGEN_ALIGN16 double res[2]; - _mm_store_pd(res, a.v); - return std::complex(res[0],res[1]); -} - -template<> EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) { return a; } - -template<> EIGEN_STRONG_INLINE std::complex predux(const Packet1cd& a) -{ - return pfirst(a); -} - -template<> EIGEN_STRONG_INLINE Packet1cd preduxp(const Packet1cd* vecs) -{ - return vecs[0]; -} - -template<> EIGEN_STRONG_INLINE std::complex predux_mul(const Packet1cd& a) -{ - return pfirst(a); -} - -template -struct palign_impl -{ - static EIGEN_STRONG_INLINE void run(Packet1cd& /*first*/, const Packet1cd& /*second*/) - { - // FIXME is it sure we never have to align a Packet1cd? - // Even though a std::complex has 16 bytes, it is not necessarily aligned on a 16 bytes boundary... - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const - { - #ifdef EIGEN_VECTORIZE_SSE3 - return internal::pmul(a, pconj(b)); - #else - const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0)); - return Packet1cd(_mm_add_pd(_mm_xor_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v), mask), - _mm_mul_pd(vec2d_swizzle1(a.v, 1, 1), - vec2d_swizzle1(b.v, 1, 0)))); - #endif - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const - { - #ifdef EIGEN_VECTORIZE_SSE3 - return internal::pmul(pconj(a), b); - #else - const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0)); - return Packet1cd(_mm_add_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v), - _mm_xor_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 1, 1), - vec2d_swizzle1(b.v, 1, 0)), mask))); - #endif - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const - { - #ifdef EIGEN_VECTORIZE_SSE3 - return pconj(internal::pmul(a, b)); - #else - const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0)); - return Packet1cd(_mm_sub_pd(_mm_xor_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v), mask), - _mm_mul_pd(vec2d_swizzle1(a.v, 1, 1), - vec2d_swizzle1(b.v, 1, 0)))); - #endif - } -}; - -EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd,Packet2d) - -template<> EIGEN_STRONG_INLINE Packet1cd pdiv(const Packet1cd& a, const Packet1cd& b) -{ - // TODO optimize it for SSE3 and 4 - Packet1cd res = conj_helper().pmul(a,b); - __m128d s = _mm_mul_pd(b.v,b.v); - return Packet1cd(_mm_div_pd(res.v, _mm_add_pd(s,_mm_shuffle_pd(s, s, 0x1)))); -} - -EIGEN_STRONG_INLINE Packet1cd pcplxflip/* */(const Packet1cd& x) -{ - return Packet1cd(preverse(Packet2d(x.v))); -} - -EIGEN_DEVICE_FUNC inline void -ptranspose(PacketBlock& kernel) { - __m128d w1 = _mm_castps_pd(kernel.packet[0].v); - __m128d w2 = _mm_castps_pd(kernel.packet[1].v); - - __m128 tmp = _mm_castpd_ps(_mm_unpackhi_pd(w1, w2)); - kernel.packet[0].v = _mm_castpd_ps(_mm_unpacklo_pd(w1, w2)); - kernel.packet[1].v = tmp; -} - -template<> EIGEN_STRONG_INLINE Packet2cf pblend(const Selector<2>& ifPacket, const Packet2cf& thenPacket, const Packet2cf& elsePacket) { - __m128d result = pblend(ifPacket, _mm_castps_pd(thenPacket.v), _mm_castps_pd(elsePacket.v)); - return Packet2cf(_mm_castpd_ps(result)); -} - -template<> EIGEN_STRONG_INLINE Packet2cf pinsertfirst(const Packet2cf& a, std::complex b) -{ - return Packet2cf(_mm_loadl_pi(a.v, reinterpret_cast(&b))); -} - -template<> EIGEN_STRONG_INLINE Packet1cd pinsertfirst(const Packet1cd&, std::complex b) -{ - return pset1(b); -} - -template<> EIGEN_STRONG_INLINE Packet2cf pinsertlast(const Packet2cf& a, std::complex b) -{ - return Packet2cf(_mm_loadh_pi(a.v, reinterpret_cast(&b))); -} - -template<> EIGEN_STRONG_INLINE Packet1cd pinsertlast(const Packet1cd&, std::complex b) -{ - return pset1(b); -} - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_COMPLEX_SSE_H diff --git a/src/math_meigen/Eigen/src/Core/arch/SSE/MathFunctions.h b/src/math_meigen/Eigen/src/Core/arch/SSE/MathFunctions.h deleted file mode 100755 index 7b5f948e1..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/SSE/MathFunctions.h +++ /dev/null @@ -1,562 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2007 Julien Pommier -// Copyright (C) 2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -/* The sin, cos, exp, and log functions of this file come from - * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/ - */ - -#ifndef EIGEN_MATH_FUNCTIONS_SSE_H -#define EIGEN_MATH_FUNCTIONS_SSE_H - -namespace Eigen { - -namespace internal { - -template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet4f plog(const Packet4f& _x) -{ - Packet4f x = _x; - _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f); - _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f); - _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f); - - _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inv_mant_mask, ~0x7f800000); - - /* the smallest non denormalized float number */ - _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(min_norm_pos, 0x00800000); - _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(minus_inf, 0xff800000);//-1.f/0.f); - - /* natural logarithm computed for 4 simultaneous float - return NaN for x <= 0 - */ - _EIGEN_DECLARE_CONST_Packet4f(cephes_SQRTHF, 0.707106781186547524f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p0, 7.0376836292E-2f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p1, - 1.1514610310E-1f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p2, 1.1676998740E-1f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p3, - 1.2420140846E-1f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p4, + 1.4249322787E-1f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p5, - 1.6668057665E-1f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p6, + 2.0000714765E-1f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p7, - 2.4999993993E-1f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p8, + 3.3333331174E-1f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q1, -2.12194440e-4f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q2, 0.693359375f); - - - Packet4i emm0; - - Packet4f invalid_mask = _mm_cmpnge_ps(x, _mm_setzero_ps()); // not greater equal is true if x is NaN - Packet4f iszero_mask = _mm_cmpeq_ps(x, _mm_setzero_ps()); - - x = pmax(x, p4f_min_norm_pos); /* cut off denormalized stuff */ - emm0 = _mm_srli_epi32(_mm_castps_si128(x), 23); - - /* keep only the fractional part */ - x = _mm_and_ps(x, p4f_inv_mant_mask); - x = _mm_or_ps(x, p4f_half); - - emm0 = _mm_sub_epi32(emm0, p4i_0x7f); - Packet4f e = padd(Packet4f(_mm_cvtepi32_ps(emm0)), p4f_1); - - /* part2: - if( x < SQRTHF ) { - e -= 1; - x = x + x - 1.0; - } else { x = x - 1.0; } - */ - Packet4f mask = _mm_cmplt_ps(x, p4f_cephes_SQRTHF); - Packet4f tmp = pand(x, mask); - x = psub(x, p4f_1); - e = psub(e, pand(p4f_1, mask)); - x = padd(x, tmp); - - Packet4f x2 = pmul(x,x); - Packet4f x3 = pmul(x2,x); - - Packet4f y, y1, y2; - y = pmadd(p4f_cephes_log_p0, x, p4f_cephes_log_p1); - y1 = pmadd(p4f_cephes_log_p3, x, p4f_cephes_log_p4); - y2 = pmadd(p4f_cephes_log_p6, x, p4f_cephes_log_p7); - y = pmadd(y , x, p4f_cephes_log_p2); - y1 = pmadd(y1, x, p4f_cephes_log_p5); - y2 = pmadd(y2, x, p4f_cephes_log_p8); - y = pmadd(y, x3, y1); - y = pmadd(y, x3, y2); - y = pmul(y, x3); - - y1 = pmul(e, p4f_cephes_log_q1); - tmp = pmul(x2, p4f_half); - y = padd(y, y1); - x = psub(x, tmp); - y2 = pmul(e, p4f_cephes_log_q2); - x = padd(x, y); - x = padd(x, y2); - // negative arg will be NAN, 0 will be -INF - return _mm_or_ps(_mm_andnot_ps(iszero_mask, _mm_or_ps(x, invalid_mask)), - _mm_and_ps(iszero_mask, p4f_minus_inf)); -} - -template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet4f pexp(const Packet4f& _x) -{ - Packet4f x = _x; - _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f); - _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f); - _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f); - - - _EIGEN_DECLARE_CONST_Packet4f(exp_hi, 88.3762626647950f); - _EIGEN_DECLARE_CONST_Packet4f(exp_lo, -88.3762626647949f); - - _EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f); - - _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500E-4f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507E-3f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073E-3f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894E-2f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459E-1f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201E-1f); - - Packet4f tmp, fx; - Packet4i emm0; - - // clamp x - x = pmax(pmin(x, p4f_exp_hi), p4f_exp_lo); - - /* express exp(x) as exp(g + n*log(2)) */ - fx = pmadd(x, p4f_cephes_LOG2EF, p4f_half); - -#ifdef EIGEN_VECTORIZE_SSE4_1 - fx = _mm_floor_ps(fx); -#else - emm0 = _mm_cvttps_epi32(fx); - tmp = _mm_cvtepi32_ps(emm0); - /* if greater, substract 1 */ - Packet4f mask = _mm_cmpgt_ps(tmp, fx); - mask = _mm_and_ps(mask, p4f_1); - fx = psub(tmp, mask); -#endif - - tmp = pmul(fx, p4f_cephes_exp_C1); - Packet4f z = pmul(fx, p4f_cephes_exp_C2); - x = psub(x, tmp); - x = psub(x, z); - - z = pmul(x,x); - - Packet4f y = p4f_cephes_exp_p0; - y = pmadd(y, x, p4f_cephes_exp_p1); - y = pmadd(y, x, p4f_cephes_exp_p2); - y = pmadd(y, x, p4f_cephes_exp_p3); - y = pmadd(y, x, p4f_cephes_exp_p4); - y = pmadd(y, x, p4f_cephes_exp_p5); - y = pmadd(y, z, x); - y = padd(y, p4f_1); - - // build 2^n - emm0 = _mm_cvttps_epi32(fx); - emm0 = _mm_add_epi32(emm0, p4i_0x7f); - emm0 = _mm_slli_epi32(emm0, 23); - return pmax(pmul(y, Packet4f(_mm_castsi128_ps(emm0))), _x); -} -template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet2d pexp(const Packet2d& _x) -{ - Packet2d x = _x; - - _EIGEN_DECLARE_CONST_Packet2d(1 , 1.0); - _EIGEN_DECLARE_CONST_Packet2d(2 , 2.0); - _EIGEN_DECLARE_CONST_Packet2d(half, 0.5); - - _EIGEN_DECLARE_CONST_Packet2d(exp_hi, 709.437); - _EIGEN_DECLARE_CONST_Packet2d(exp_lo, -709.436139303); - - _EIGEN_DECLARE_CONST_Packet2d(cephes_LOG2EF, 1.4426950408889634073599); - - _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p0, 1.26177193074810590878e-4); - _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p1, 3.02994407707441961300e-2); - _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p2, 9.99999999999999999910e-1); - - _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q0, 3.00198505138664455042e-6); - _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q1, 2.52448340349684104192e-3); - _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q2, 2.27265548208155028766e-1); - _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q3, 2.00000000000000000009e0); - - _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C1, 0.693145751953125); - _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C2, 1.42860682030941723212e-6); - static const __m128i p4i_1023_0 = _mm_setr_epi32(1023, 1023, 0, 0); - - Packet2d tmp, fx; - Packet4i emm0; - - // clamp x - x = pmax(pmin(x, p2d_exp_hi), p2d_exp_lo); - /* express exp(x) as exp(g + n*log(2)) */ - fx = pmadd(p2d_cephes_LOG2EF, x, p2d_half); - -#ifdef EIGEN_VECTORIZE_SSE4_1 - fx = _mm_floor_pd(fx); -#else - emm0 = _mm_cvttpd_epi32(fx); - tmp = _mm_cvtepi32_pd(emm0); - /* if greater, substract 1 */ - Packet2d mask = _mm_cmpgt_pd(tmp, fx); - mask = _mm_and_pd(mask, p2d_1); - fx = psub(tmp, mask); -#endif - - tmp = pmul(fx, p2d_cephes_exp_C1); - Packet2d z = pmul(fx, p2d_cephes_exp_C2); - x = psub(x, tmp); - x = psub(x, z); - - Packet2d x2 = pmul(x,x); - - Packet2d px = p2d_cephes_exp_p0; - px = pmadd(px, x2, p2d_cephes_exp_p1); - px = pmadd(px, x2, p2d_cephes_exp_p2); - px = pmul (px, x); - - Packet2d qx = p2d_cephes_exp_q0; - qx = pmadd(qx, x2, p2d_cephes_exp_q1); - qx = pmadd(qx, x2, p2d_cephes_exp_q2); - qx = pmadd(qx, x2, p2d_cephes_exp_q3); - - x = pdiv(px,psub(qx,px)); - x = pmadd(p2d_2,x,p2d_1); - - // build 2^n - emm0 = _mm_cvttpd_epi32(fx); - emm0 = _mm_add_epi32(emm0, p4i_1023_0); - emm0 = _mm_slli_epi32(emm0, 20); - emm0 = _mm_shuffle_epi32(emm0, _MM_SHUFFLE(1,2,0,3)); - return pmax(pmul(x, Packet2d(_mm_castsi128_pd(emm0))), _x); -} - -/* evaluation of 4 sines at onces, using SSE2 intrinsics. - - The code is the exact rewriting of the cephes sinf function. - Precision is excellent as long as x < 8192 (I did not bother to - take into account the special handling they have for greater values - -- it does not return garbage for arguments over 8192, though, but - the extra precision is missing). - - Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the - surprising but correct result. -*/ - -template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet4f psin(const Packet4f& _x) -{ - Packet4f x = _x; - _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f); - _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f); - - _EIGEN_DECLARE_CONST_Packet4i(1, 1); - _EIGEN_DECLARE_CONST_Packet4i(not1, ~1); - _EIGEN_DECLARE_CONST_Packet4i(2, 2); - _EIGEN_DECLARE_CONST_Packet4i(4, 4); - - _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(sign_mask, 0x80000000); - - _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f); - _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f); - _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f); - _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f); - _EIGEN_DECLARE_CONST_Packet4f(sincof_p1, 8.3321608736E-3f); - _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f); - _EIGEN_DECLARE_CONST_Packet4f(coscof_p0, 2.443315711809948E-005f); - _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f); - _EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827E-002f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI - - Packet4f xmm1, xmm2, xmm3, sign_bit, y; - - Packet4i emm0, emm2; - sign_bit = x; - /* take the absolute value */ - x = pabs(x); - - /* take the modulo */ - - /* extract the sign bit (upper one) */ - sign_bit = _mm_and_ps(sign_bit, p4f_sign_mask); - - /* scale by 4/Pi */ - y = pmul(x, p4f_cephes_FOPI); - - /* store the integer part of y in mm0 */ - emm2 = _mm_cvttps_epi32(y); - /* j=(j+1) & (~1) (see the cephes sources) */ - emm2 = _mm_add_epi32(emm2, p4i_1); - emm2 = _mm_and_si128(emm2, p4i_not1); - y = _mm_cvtepi32_ps(emm2); - /* get the swap sign flag */ - emm0 = _mm_and_si128(emm2, p4i_4); - emm0 = _mm_slli_epi32(emm0, 29); - /* get the polynom selection mask - there is one polynom for 0 <= x <= Pi/4 - and another one for Pi/4 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet4f pcos(const Packet4f& _x) -{ - Packet4f x = _x; - _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f); - _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f); - - _EIGEN_DECLARE_CONST_Packet4i(1, 1); - _EIGEN_DECLARE_CONST_Packet4i(not1, ~1); - _EIGEN_DECLARE_CONST_Packet4i(2, 2); - _EIGEN_DECLARE_CONST_Packet4i(4, 4); - - _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f); - _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f); - _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f); - _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f); - _EIGEN_DECLARE_CONST_Packet4f(sincof_p1, 8.3321608736E-3f); - _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f); - _EIGEN_DECLARE_CONST_Packet4f(coscof_p0, 2.443315711809948E-005f); - _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f); - _EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827E-002f); - _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI - - Packet4f xmm1, xmm2, xmm3, y; - Packet4i emm0, emm2; - - x = pabs(x); - - /* scale by 4/Pi */ - y = pmul(x, p4f_cephes_FOPI); - - /* get the integer part of y */ - emm2 = _mm_cvttps_epi32(y); - /* j=(j+1) & (~1) (see the cephes sources) */ - emm2 = _mm_add_epi32(emm2, p4i_1); - emm2 = _mm_and_si128(emm2, p4i_not1); - y = _mm_cvtepi32_ps(emm2); - - emm2 = _mm_sub_epi32(emm2, p4i_2); - - /* get the swap sign flag */ - emm0 = _mm_andnot_si128(emm2, p4i_4); - emm0 = _mm_slli_epi32(emm0, 29); - /* get the polynom selection mask */ - emm2 = _mm_and_si128(emm2, p4i_2); - emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128()); - - Packet4f sign_bit = _mm_castsi128_ps(emm0); - Packet4f poly_mask = _mm_castsi128_ps(emm2); - - /* The magic pass: "Extended precision modular arithmetic" - x = ((x - y * DP1) - y * DP2) - y * DP3; */ - xmm1 = pmul(y, p4f_minus_cephes_DP1); - xmm2 = pmul(y, p4f_minus_cephes_DP2); - xmm3 = pmul(y, p4f_minus_cephes_DP3); - x = padd(x, xmm1); - x = padd(x, xmm2); - x = padd(x, xmm3); - - /* Evaluate the first polynom (0 <= x <= Pi/4) */ - y = p4f_coscof_p0; - Packet4f z = pmul(x,x); - - y = pmadd(y,z,p4f_coscof_p1); - y = pmadd(y,z,p4f_coscof_p2); - y = pmul(y, z); - y = pmul(y, z); - Packet4f tmp = _mm_mul_ps(z, p4f_half); - y = psub(y, tmp); - y = padd(y, p4f_1); - - /* Evaluate the second polynom (Pi/4 <= x <= 0) */ - Packet4f y2 = p4f_sincof_p0; - y2 = pmadd(y2, z, p4f_sincof_p1); - y2 = pmadd(y2, z, p4f_sincof_p2); - y2 = pmul(y2, z); - y2 = pmadd(y2, x, x); - - /* select the correct result from the two polynoms */ - y2 = _mm_and_ps(poly_mask, y2); - y = _mm_andnot_ps(poly_mask, y); - y = _mm_or_ps(y,y2); - - /* update the sign */ - return _mm_xor_ps(y, sign_bit); -} - -#if EIGEN_FAST_MATH - -// Functions for sqrt. -// The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step -// of Newton's method, at a cost of 1-2 bits of precision as opposed to the -// exact solution. It does not handle +inf, or denormalized numbers correctly. -// The main advantage of this approach is not just speed, but also the fact that -// it can be inlined and pipelined with other computations, further reducing its -// effective latency. This is similar to Quake3's fast inverse square root. -// For detail see here: http://www.beyond3d.com/content/articles/8/ -template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet4f psqrt(const Packet4f& _x) -{ - Packet4f half = pmul(_x, pset1(.5f)); - Packet4f denormal_mask = _mm_and_ps( - _mm_cmpge_ps(_x, _mm_setzero_ps()), - _mm_cmplt_ps(_x, pset1((std::numeric_limits::min)()))); - - // Compute approximate reciprocal sqrt. - Packet4f x = _mm_rsqrt_ps(_x); - // Do a single step of Newton's iteration. - x = pmul(x, psub(pset1(1.5f), pmul(half, pmul(x,x)))); - // Flush results for denormals to zero. - return _mm_andnot_ps(denormal_mask, pmul(_x,x)); -} - -#else - -template<>EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet4f psqrt(const Packet4f& x) { return _mm_sqrt_ps(x); } - -#endif - -template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet2d psqrt(const Packet2d& x) { return _mm_sqrt_pd(x); } - -#if EIGEN_FAST_MATH - -template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet4f prsqrt(const Packet4f& _x) { - _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inf, 0x7f800000); - _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(nan, 0x7fc00000); - _EIGEN_DECLARE_CONST_Packet4f(one_point_five, 1.5f); - _EIGEN_DECLARE_CONST_Packet4f(minus_half, -0.5f); - _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(flt_min, 0x00800000); - - Packet4f neg_half = pmul(_x, p4f_minus_half); - - // select only the inverse sqrt of positive normal inputs (denormals are - // flushed to zero and cause infs as well). - Packet4f le_zero_mask = _mm_cmple_ps(_x, p4f_flt_min); - Packet4f x = _mm_andnot_ps(le_zero_mask, _mm_rsqrt_ps(_x)); - - // Fill in NaNs and Infs for the negative/zero entries. - Packet4f neg_mask = _mm_cmplt_ps(_x, _mm_setzero_ps()); - Packet4f zero_mask = _mm_andnot_ps(neg_mask, le_zero_mask); - Packet4f infs_and_nans = _mm_or_ps(_mm_and_ps(neg_mask, p4f_nan), - _mm_and_ps(zero_mask, p4f_inf)); - - // Do a single step of Newton's iteration. - x = pmul(x, pmadd(neg_half, pmul(x, x), p4f_one_point_five)); - - // Insert NaNs and Infs in all the right places. - return _mm_or_ps(x, infs_and_nans); -} - -#else - -template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet4f prsqrt(const Packet4f& x) { - // Unfortunately we can't use the much faster mm_rqsrt_ps since it only provides an approximation. - return _mm_div_ps(pset1(1.0f), _mm_sqrt_ps(x)); -} - -#endif - -template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet2d prsqrt(const Packet2d& x) { - // Unfortunately we can't use the much faster mm_rqsrt_pd since it only provides an approximation. - return _mm_div_pd(pset1(1.0), _mm_sqrt_pd(x)); -} - -// Hyperbolic Tangent function. -template <> -EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f -ptanh(const Packet4f& x) { - return internal::generic_fast_tanh_float(x); -} - -} // end namespace internal - -namespace numext { - -template<> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -float sqrt(const float &x) -{ - return internal::pfirst(internal::Packet4f(_mm_sqrt_ss(_mm_set_ss(x)))); -} - -template<> -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE -double sqrt(const double &x) -{ -#if EIGEN_COMP_GNUC_STRICT - // This works around a GCC bug generating poor code for _mm_sqrt_pd - // See https://bitbucket.org/eigen/eigen/commits/14f468dba4d350d7c19c9b93072e19f7b3df563b - return internal::pfirst(internal::Packet2d(__builtin_ia32_sqrtsd(_mm_set_sd(x)))); -#else - return internal::pfirst(internal::Packet2d(_mm_sqrt_pd(_mm_set_sd(x)))); -#endif -} - -} // end namespace numex - -} // end namespace Eigen - -#endif // EIGEN_MATH_FUNCTIONS_SSE_H diff --git a/src/math_meigen/Eigen/src/Core/arch/SSE/PacketMath.h b/src/math_meigen/Eigen/src/Core/arch/SSE/PacketMath.h deleted file mode 100755 index 60e2517e4..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/SSE/PacketMath.h +++ /dev/null @@ -1,895 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_PACKET_MATH_SSE_H -#define EIGEN_PACKET_MATH_SSE_H - -namespace Eigen { - -namespace internal { - -#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD -#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8 -#endif - -#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS -#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS (2*sizeof(void*)) -#endif - -#ifdef __FMA__ -#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD -#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD 1 -#endif -#endif - -#if ((defined EIGEN_VECTORIZE_AVX) && (EIGEN_COMP_GNUC_STRICT || EIGEN_COMP_MINGW) && (__GXX_ABI_VERSION < 1004)) || EIGEN_OS_QNX -// With GCC's default ABI version, a __m128 or __m256 are the same types and therefore we cannot -// have overloads for both types without linking error. -// One solution is to increase ABI version using -fabi-version=4 (or greater). -// Otherwise, we workaround this inconvenience by wrapping 128bit types into the following helper -// structure: -template -struct eigen_packet_wrapper -{ - EIGEN_ALWAYS_INLINE operator T&() { return m_val; } - EIGEN_ALWAYS_INLINE operator const T&() const { return m_val; } - EIGEN_ALWAYS_INLINE eigen_packet_wrapper() {} - EIGEN_ALWAYS_INLINE eigen_packet_wrapper(const T &v) : m_val(v) {} - EIGEN_ALWAYS_INLINE eigen_packet_wrapper& operator=(const T &v) { - m_val = v; - return *this; - } - - T m_val; -}; -typedef eigen_packet_wrapper<__m128> Packet4f; -typedef eigen_packet_wrapper<__m128i> Packet4i; -typedef eigen_packet_wrapper<__m128d> Packet2d; -#else -typedef __m128 Packet4f; -typedef __m128i Packet4i; -typedef __m128d Packet2d; -#endif - -template<> struct is_arithmetic<__m128> { enum { value = true }; }; -template<> struct is_arithmetic<__m128i> { enum { value = true }; }; -template<> struct is_arithmetic<__m128d> { enum { value = true }; }; - -#define vec4f_swizzle1(v,p,q,r,s) \ - (_mm_castsi128_ps(_mm_shuffle_epi32( _mm_castps_si128(v), ((s)<<6|(r)<<4|(q)<<2|(p))))) - -#define vec4i_swizzle1(v,p,q,r,s) \ - (_mm_shuffle_epi32( v, ((s)<<6|(r)<<4|(q)<<2|(p)))) - -#define vec2d_swizzle1(v,p,q) \ - (_mm_castsi128_pd(_mm_shuffle_epi32( _mm_castpd_si128(v), ((q*2+1)<<6|(q*2)<<4|(p*2+1)<<2|(p*2))))) - -#define vec4f_swizzle2(a,b,p,q,r,s) \ - (_mm_shuffle_ps( (a), (b), ((s)<<6|(r)<<4|(q)<<2|(p)))) - -#define vec4i_swizzle2(a,b,p,q,r,s) \ - (_mm_castps_si128( (_mm_shuffle_ps( _mm_castsi128_ps(a), _mm_castsi128_ps(b), ((s)<<6|(r)<<4|(q)<<2|(p)))))) - -#define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \ - const Packet4f p4f_##NAME = pset1(X) - -#define _EIGEN_DECLARE_CONST_Packet2d(NAME,X) \ - const Packet2d p2d_##NAME = pset1(X) - -#define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \ - const Packet4f p4f_##NAME = _mm_castsi128_ps(pset1(X)) - -#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \ - const Packet4i p4i_##NAME = pset1(X) - - -// Use the packet_traits defined in AVX/PacketMath.h instead if we're going -// to leverage AVX instructions. -#ifndef EIGEN_VECTORIZE_AVX -template<> struct packet_traits : default_packet_traits -{ - typedef Packet4f type; - typedef Packet4f half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size=4, - HasHalfPacket = 0, - - HasDiv = 1, - HasSin = EIGEN_FAST_MATH, - HasCos = EIGEN_FAST_MATH, - HasLog = 1, - HasExp = 1, - HasSqrt = 1, - HasRsqrt = 1, - HasTanh = EIGEN_FAST_MATH, - HasBlend = 1 - -#ifdef EIGEN_VECTORIZE_SSE4_1 - , - HasRound = 1, - HasFloor = 1, - HasCeil = 1 -#endif - }; -}; -template<> struct packet_traits : default_packet_traits -{ - typedef Packet2d type; - typedef Packet2d half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size=2, - HasHalfPacket = 0, - - HasDiv = 1, - HasExp = 1, - HasSqrt = 1, - HasRsqrt = 1, - HasBlend = 1 - -#ifdef EIGEN_VECTORIZE_SSE4_1 - , - HasRound = 1, - HasFloor = 1, - HasCeil = 1 -#endif - }; -}; -#endif -template<> struct packet_traits : default_packet_traits -{ - typedef Packet4i type; - typedef Packet4i half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size=4, - - HasBlend = 1 - }; -}; - -template<> struct unpacket_traits { typedef float type; enum {size=4, alignment=Aligned16}; typedef Packet4f half; }; -template<> struct unpacket_traits { typedef double type; enum {size=2, alignment=Aligned16}; typedef Packet2d half; }; -template<> struct unpacket_traits { typedef int type; enum {size=4, alignment=Aligned16}; typedef Packet4i half; }; - -#ifndef EIGEN_VECTORIZE_AVX -template<> struct scalar_div_cost { enum { value = 7 }; }; -template<> struct scalar_div_cost { enum { value = 8 }; }; -#endif - -#if EIGEN_COMP_MSVC==1500 -// Workaround MSVC 9 internal compiler error. -// TODO: It has been detected with win64 builds (amd64), so let's check whether it also happens in 32bits+SSE mode -// TODO: let's check whether there does not exist a better fix, like adding a pset0() function. (it crashed on pset1(0)). -template<> EIGEN_STRONG_INLINE Packet4f pset1(const float& from) { return _mm_set_ps(from,from,from,from); } -template<> EIGEN_STRONG_INLINE Packet2d pset1(const double& from) { return _mm_set_pd(from,from); } -template<> EIGEN_STRONG_INLINE Packet4i pset1(const int& from) { return _mm_set_epi32(from,from,from,from); } -#else -template<> EIGEN_STRONG_INLINE Packet4f pset1(const float& from) { return _mm_set_ps1(from); } -template<> EIGEN_STRONG_INLINE Packet2d pset1(const double& from) { return _mm_set1_pd(from); } -template<> EIGEN_STRONG_INLINE Packet4i pset1(const int& from) { return _mm_set1_epi32(from); } -#endif - -// GCC generates a shufps instruction for _mm_set1_ps/_mm_load1_ps instead of the more efficient pshufd instruction. -// However, using inrinsics for pset1 makes gcc to generate crappy code in some cases (see bug 203) -// Using inline assembly is also not an option because then gcc fails to reorder properly the instructions. -// Therefore, we introduced the pload1 functions to be used in product kernels for which bug 203 does not apply. -// Also note that with AVX, we want it to generate a vbroadcastss. -#if EIGEN_COMP_GNUC_STRICT && (!defined __AVX__) -template<> EIGEN_STRONG_INLINE Packet4f pload1(const float *from) { - return vec4f_swizzle1(_mm_load_ss(from),0,0,0,0); -} -#endif - -template<> EIGEN_STRONG_INLINE Packet4f plset(const float& a) { return _mm_add_ps(pset1(a), _mm_set_ps(3,2,1,0)); } -template<> EIGEN_STRONG_INLINE Packet2d plset(const double& a) { return _mm_add_pd(pset1(a),_mm_set_pd(1,0)); } -template<> EIGEN_STRONG_INLINE Packet4i plset(const int& a) { return _mm_add_epi32(pset1(a),_mm_set_epi32(3,2,1,0)); } - -template<> EIGEN_STRONG_INLINE Packet4f padd(const Packet4f& a, const Packet4f& b) { return _mm_add_ps(a,b); } -template<> EIGEN_STRONG_INLINE Packet2d padd(const Packet2d& a, const Packet2d& b) { return _mm_add_pd(a,b); } -template<> EIGEN_STRONG_INLINE Packet4i padd(const Packet4i& a, const Packet4i& b) { return _mm_add_epi32(a,b); } - -template<> EIGEN_STRONG_INLINE Packet4f psub(const Packet4f& a, const Packet4f& b) { return _mm_sub_ps(a,b); } -template<> EIGEN_STRONG_INLINE Packet2d psub(const Packet2d& a, const Packet2d& b) { return _mm_sub_pd(a,b); } -template<> EIGEN_STRONG_INLINE Packet4i psub(const Packet4i& a, const Packet4i& b) { return _mm_sub_epi32(a,b); } - -template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) -{ - const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x80000000,0x80000000,0x80000000,0x80000000)); - return _mm_xor_ps(a,mask); -} -template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a) -{ - const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0x0,0x80000000,0x0,0x80000000)); - return _mm_xor_pd(a,mask); -} -template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) -{ - return psub(Packet4i(_mm_setr_epi32(0,0,0,0)), a); -} - -template<> EIGEN_STRONG_INLINE Packet4f pconj(const Packet4f& a) { return a; } -template<> EIGEN_STRONG_INLINE Packet2d pconj(const Packet2d& a) { return a; } -template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; } - -template<> EIGEN_STRONG_INLINE Packet4f pmul(const Packet4f& a, const Packet4f& b) { return _mm_mul_ps(a,b); } -template<> EIGEN_STRONG_INLINE Packet2d pmul(const Packet2d& a, const Packet2d& b) { return _mm_mul_pd(a,b); } -template<> EIGEN_STRONG_INLINE Packet4i pmul(const Packet4i& a, const Packet4i& b) -{ -#ifdef EIGEN_VECTORIZE_SSE4_1 - return _mm_mullo_epi32(a,b); -#else - // this version is slightly faster than 4 scalar products - return vec4i_swizzle1( - vec4i_swizzle2( - _mm_mul_epu32(a,b), - _mm_mul_epu32(vec4i_swizzle1(a,1,0,3,2), - vec4i_swizzle1(b,1,0,3,2)), - 0,2,0,2), - 0,2,1,3); -#endif -} - -template<> EIGEN_STRONG_INLINE Packet4f pdiv(const Packet4f& a, const Packet4f& b) { return _mm_div_ps(a,b); } -template<> EIGEN_STRONG_INLINE Packet2d pdiv(const Packet2d& a, const Packet2d& b) { return _mm_div_pd(a,b); } - -// for some weird raisons, it has to be overloaded for packet of integers -template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return padd(pmul(a,b), c); } -#ifdef __FMA__ -template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return _mm_fmadd_ps(a,b,c); } -template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return _mm_fmadd_pd(a,b,c); } -#endif - -template<> EIGEN_STRONG_INLINE Packet4f pmin(const Packet4f& a, const Packet4f& b) { return _mm_min_ps(a,b); } -template<> EIGEN_STRONG_INLINE Packet2d pmin(const Packet2d& a, const Packet2d& b) { return _mm_min_pd(a,b); } -template<> EIGEN_STRONG_INLINE Packet4i pmin(const Packet4i& a, const Packet4i& b) -{ -#ifdef EIGEN_VECTORIZE_SSE4_1 - return _mm_min_epi32(a,b); -#else - // after some bench, this version *is* faster than a scalar implementation - Packet4i mask = _mm_cmplt_epi32(a,b); - return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b)); -#endif -} - -template<> EIGEN_STRONG_INLINE Packet4f pmax(const Packet4f& a, const Packet4f& b) { return _mm_max_ps(a,b); } -template<> EIGEN_STRONG_INLINE Packet2d pmax(const Packet2d& a, const Packet2d& b) { return _mm_max_pd(a,b); } -template<> EIGEN_STRONG_INLINE Packet4i pmax(const Packet4i& a, const Packet4i& b) -{ -#ifdef EIGEN_VECTORIZE_SSE4_1 - return _mm_max_epi32(a,b); -#else - // after some bench, this version *is* faster than a scalar implementation - Packet4i mask = _mm_cmpgt_epi32(a,b); - return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b)); -#endif -} - -#ifdef EIGEN_VECTORIZE_SSE4_1 -template<> EIGEN_STRONG_INLINE Packet4f pround(const Packet4f& a) { return _mm_round_ps(a, 0); } -template<> EIGEN_STRONG_INLINE Packet2d pround(const Packet2d& a) { return _mm_round_pd(a, 0); } - -template<> EIGEN_STRONG_INLINE Packet4f pceil(const Packet4f& a) { return _mm_ceil_ps(a); } -template<> EIGEN_STRONG_INLINE Packet2d pceil(const Packet2d& a) { return _mm_ceil_pd(a); } - -template<> EIGEN_STRONG_INLINE Packet4f pfloor(const Packet4f& a) { return _mm_floor_ps(a); } -template<> EIGEN_STRONG_INLINE Packet2d pfloor(const Packet2d& a) { return _mm_floor_pd(a); } -#endif - -template<> EIGEN_STRONG_INLINE Packet4f pand(const Packet4f& a, const Packet4f& b) { return _mm_and_ps(a,b); } -template<> EIGEN_STRONG_INLINE Packet2d pand(const Packet2d& a, const Packet2d& b) { return _mm_and_pd(a,b); } -template<> EIGEN_STRONG_INLINE Packet4i pand(const Packet4i& a, const Packet4i& b) { return _mm_and_si128(a,b); } - -template<> EIGEN_STRONG_INLINE Packet4f por(const Packet4f& a, const Packet4f& b) { return _mm_or_ps(a,b); } -template<> EIGEN_STRONG_INLINE Packet2d por(const Packet2d& a, const Packet2d& b) { return _mm_or_pd(a,b); } -template<> EIGEN_STRONG_INLINE Packet4i por(const Packet4i& a, const Packet4i& b) { return _mm_or_si128(a,b); } - -template<> EIGEN_STRONG_INLINE Packet4f pxor(const Packet4f& a, const Packet4f& b) { return _mm_xor_ps(a,b); } -template<> EIGEN_STRONG_INLINE Packet2d pxor(const Packet2d& a, const Packet2d& b) { return _mm_xor_pd(a,b); } -template<> EIGEN_STRONG_INLINE Packet4i pxor(const Packet4i& a, const Packet4i& b) { return _mm_xor_si128(a,b); } - -template<> EIGEN_STRONG_INLINE Packet4f pandnot(const Packet4f& a, const Packet4f& b) { return _mm_andnot_ps(a,b); } -template<> EIGEN_STRONG_INLINE Packet2d pandnot(const Packet2d& a, const Packet2d& b) { return _mm_andnot_pd(a,b); } -template<> EIGEN_STRONG_INLINE Packet4i pandnot(const Packet4i& a, const Packet4i& b) { return _mm_andnot_si128(a,b); } - -template<> EIGEN_STRONG_INLINE Packet4f pload(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_ps(from); } -template<> EIGEN_STRONG_INLINE Packet2d pload(const double* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_pd(from); } -template<> EIGEN_STRONG_INLINE Packet4i pload(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_si128(reinterpret_cast(from)); } - -#if EIGEN_COMP_MSVC - template<> EIGEN_STRONG_INLINE Packet4f ploadu(const float* from) { - EIGEN_DEBUG_UNALIGNED_LOAD - #if (EIGEN_COMP_MSVC==1600) - // NOTE Some version of MSVC10 generates bad code when using _mm_loadu_ps - // (i.e., it does not generate an unaligned load!! - __m128 res = _mm_loadl_pi(_mm_set1_ps(0.0f), (const __m64*)(from)); - res = _mm_loadh_pi(res, (const __m64*)(from+2)); - return res; - #else - return _mm_loadu_ps(from); - #endif - } -#else -// NOTE: with the code below, MSVC's compiler crashes! - -template<> EIGEN_STRONG_INLINE Packet4f ploadu(const float* from) -{ - EIGEN_DEBUG_UNALIGNED_LOAD - return _mm_loadu_ps(from); -} -#endif - -template<> EIGEN_STRONG_INLINE Packet2d ploadu(const double* from) -{ - EIGEN_DEBUG_UNALIGNED_LOAD - return _mm_loadu_pd(from); -} -template<> EIGEN_STRONG_INLINE Packet4i ploadu(const int* from) -{ - EIGEN_DEBUG_UNALIGNED_LOAD - return _mm_loadu_si128(reinterpret_cast(from)); -} - - -template<> EIGEN_STRONG_INLINE Packet4f ploaddup(const float* from) -{ - return vec4f_swizzle1(_mm_castpd_ps(_mm_load_sd(reinterpret_cast(from))), 0, 0, 1, 1); -} -template<> EIGEN_STRONG_INLINE Packet2d ploaddup(const double* from) -{ return pset1(from[0]); } -template<> EIGEN_STRONG_INLINE Packet4i ploaddup(const int* from) -{ - Packet4i tmp; - tmp = _mm_loadl_epi64(reinterpret_cast(from)); - return vec4i_swizzle1(tmp, 0, 0, 1, 1); -} - -template<> EIGEN_STRONG_INLINE void pstore(float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_ps(to, from); } -template<> EIGEN_STRONG_INLINE void pstore(double* to, const Packet2d& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_pd(to, from); } -template<> EIGEN_STRONG_INLINE void pstore(int* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_si128(reinterpret_cast<__m128i*>(to), from); } - -template<> EIGEN_STRONG_INLINE void pstoreu(double* to, const Packet2d& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm_storeu_pd(to, from); } -template<> EIGEN_STRONG_INLINE void pstoreu(float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm_storeu_ps(to, from); } -template<> EIGEN_STRONG_INLINE void pstoreu(int* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm_storeu_si128(reinterpret_cast<__m128i*>(to), from); } - -template<> EIGEN_DEVICE_FUNC inline Packet4f pgather(const float* from, Index stride) -{ - return _mm_set_ps(from[3*stride], from[2*stride], from[1*stride], from[0*stride]); -} -template<> EIGEN_DEVICE_FUNC inline Packet2d pgather(const double* from, Index stride) -{ - return _mm_set_pd(from[1*stride], from[0*stride]); -} -template<> EIGEN_DEVICE_FUNC inline Packet4i pgather(const int* from, Index stride) -{ - return _mm_set_epi32(from[3*stride], from[2*stride], from[1*stride], from[0*stride]); - } - -template<> EIGEN_DEVICE_FUNC inline void pscatter(float* to, const Packet4f& from, Index stride) -{ - to[stride*0] = _mm_cvtss_f32(from); - to[stride*1] = _mm_cvtss_f32(_mm_shuffle_ps(from, from, 1)); - to[stride*2] = _mm_cvtss_f32(_mm_shuffle_ps(from, from, 2)); - to[stride*3] = _mm_cvtss_f32(_mm_shuffle_ps(from, from, 3)); -} -template<> EIGEN_DEVICE_FUNC inline void pscatter(double* to, const Packet2d& from, Index stride) -{ - to[stride*0] = _mm_cvtsd_f64(from); - to[stride*1] = _mm_cvtsd_f64(_mm_shuffle_pd(from, from, 1)); -} -template<> EIGEN_DEVICE_FUNC inline void pscatter(int* to, const Packet4i& from, Index stride) -{ - to[stride*0] = _mm_cvtsi128_si32(from); - to[stride*1] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 1)); - to[stride*2] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 2)); - to[stride*3] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 3)); -} - -// some compilers might be tempted to perform multiple moves instead of using a vector path. -template<> EIGEN_STRONG_INLINE void pstore1(float* to, const float& a) -{ - Packet4f pa = _mm_set_ss(a); - pstore(to, Packet4f(vec4f_swizzle1(pa,0,0,0,0))); -} -// some compilers might be tempted to perform multiple moves instead of using a vector path. -template<> EIGEN_STRONG_INLINE void pstore1(double* to, const double& a) -{ - Packet2d pa = _mm_set_sd(a); - pstore(to, Packet2d(vec2d_swizzle1(pa,0,0))); -} - -#if EIGEN_COMP_PGI -typedef const void * SsePrefetchPtrType; -#else -typedef const char * SsePrefetchPtrType; -#endif - -#ifndef EIGEN_VECTORIZE_AVX -template<> EIGEN_STRONG_INLINE void prefetch(const float* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } -template<> EIGEN_STRONG_INLINE void prefetch(const double* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } -template<> EIGEN_STRONG_INLINE void prefetch(const int* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } -#endif - -#if EIGEN_COMP_MSVC_STRICT && EIGEN_OS_WIN64 -// The temporary variable fixes an internal compilation error in vs <= 2008 and a wrong-result bug in vs 2010 -// Direct of the struct members fixed bug #62. -template<> EIGEN_STRONG_INLINE float pfirst(const Packet4f& a) { return a.m128_f32[0]; } -template<> EIGEN_STRONG_INLINE double pfirst(const Packet2d& a) { return a.m128d_f64[0]; } -template<> EIGEN_STRONG_INLINE int pfirst(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; } -#elif EIGEN_COMP_MSVC_STRICT -// The temporary variable fixes an internal compilation error in vs <= 2008 and a wrong-result bug in vs 2010 -template<> EIGEN_STRONG_INLINE float pfirst(const Packet4f& a) { float x = _mm_cvtss_f32(a); return x; } -template<> EIGEN_STRONG_INLINE double pfirst(const Packet2d& a) { double x = _mm_cvtsd_f64(a); return x; } -template<> EIGEN_STRONG_INLINE int pfirst(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; } -#else -template<> EIGEN_STRONG_INLINE float pfirst(const Packet4f& a) { return _mm_cvtss_f32(a); } -template<> EIGEN_STRONG_INLINE double pfirst(const Packet2d& a) { return _mm_cvtsd_f64(a); } -template<> EIGEN_STRONG_INLINE int pfirst(const Packet4i& a) { return _mm_cvtsi128_si32(a); } -#endif - -template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) -{ return _mm_shuffle_ps(a,a,0x1B); } -template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a) -{ return _mm_shuffle_pd(a,a,0x1); } -template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) -{ return _mm_shuffle_epi32(a,0x1B); } - -template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) -{ - const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF)); - return _mm_and_ps(a,mask); -} -template<> EIGEN_STRONG_INLINE Packet2d pabs(const Packet2d& a) -{ - const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF)); - return _mm_and_pd(a,mask); -} -template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) -{ - #ifdef EIGEN_VECTORIZE_SSSE3 - return _mm_abs_epi32(a); - #else - Packet4i aux = _mm_srai_epi32(a,31); - return _mm_sub_epi32(_mm_xor_si128(a,aux),aux); - #endif -} - -// with AVX, the default implementations based on pload1 are faster -#ifndef __AVX__ -template<> EIGEN_STRONG_INLINE void -pbroadcast4(const float *a, - Packet4f& a0, Packet4f& a1, Packet4f& a2, Packet4f& a3) -{ - a3 = pload(a); - a0 = vec4f_swizzle1(a3, 0,0,0,0); - a1 = vec4f_swizzle1(a3, 1,1,1,1); - a2 = vec4f_swizzle1(a3, 2,2,2,2); - a3 = vec4f_swizzle1(a3, 3,3,3,3); -} -template<> EIGEN_STRONG_INLINE void -pbroadcast4(const double *a, - Packet2d& a0, Packet2d& a1, Packet2d& a2, Packet2d& a3) -{ -#ifdef EIGEN_VECTORIZE_SSE3 - a0 = _mm_loaddup_pd(a+0); - a1 = _mm_loaddup_pd(a+1); - a2 = _mm_loaddup_pd(a+2); - a3 = _mm_loaddup_pd(a+3); -#else - a1 = pload(a); - a0 = vec2d_swizzle1(a1, 0,0); - a1 = vec2d_swizzle1(a1, 1,1); - a3 = pload(a+2); - a2 = vec2d_swizzle1(a3, 0,0); - a3 = vec2d_swizzle1(a3, 1,1); -#endif -} -#endif - -EIGEN_STRONG_INLINE void punpackp(Packet4f* vecs) -{ - vecs[1] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0x55)); - vecs[2] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0xAA)); - vecs[3] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0xFF)); - vecs[0] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0x00)); -} - -#ifdef EIGEN_VECTORIZE_SSE3 -template<> EIGEN_STRONG_INLINE Packet4f preduxp(const Packet4f* vecs) -{ - return _mm_hadd_ps(_mm_hadd_ps(vecs[0], vecs[1]),_mm_hadd_ps(vecs[2], vecs[3])); -} - -template<> EIGEN_STRONG_INLINE Packet2d preduxp(const Packet2d* vecs) -{ - return _mm_hadd_pd(vecs[0], vecs[1]); -} - -#else -template<> EIGEN_STRONG_INLINE Packet4f preduxp(const Packet4f* vecs) -{ - Packet4f tmp0, tmp1, tmp2; - tmp0 = _mm_unpacklo_ps(vecs[0], vecs[1]); - tmp1 = _mm_unpackhi_ps(vecs[0], vecs[1]); - tmp2 = _mm_unpackhi_ps(vecs[2], vecs[3]); - tmp0 = _mm_add_ps(tmp0, tmp1); - tmp1 = _mm_unpacklo_ps(vecs[2], vecs[3]); - tmp1 = _mm_add_ps(tmp1, tmp2); - tmp2 = _mm_movehl_ps(tmp1, tmp0); - tmp0 = _mm_movelh_ps(tmp0, tmp1); - return _mm_add_ps(tmp0, tmp2); -} - -template<> EIGEN_STRONG_INLINE Packet2d preduxp(const Packet2d* vecs) -{ - return _mm_add_pd(_mm_unpacklo_pd(vecs[0], vecs[1]), _mm_unpackhi_pd(vecs[0], vecs[1])); -} -#endif // SSE3 - -template<> EIGEN_STRONG_INLINE float predux(const Packet4f& a) -{ - // Disable SSE3 _mm_hadd_pd that is extremely slow on all existing Intel's architectures - // (from Nehalem to Haswell) -// #ifdef EIGEN_VECTORIZE_SSE3 -// Packet4f tmp = _mm_add_ps(a, vec4f_swizzle1(a,2,3,2,3)); -// return pfirst(_mm_hadd_ps(tmp, tmp)); -// #else - Packet4f tmp = _mm_add_ps(a, _mm_movehl_ps(a,a)); - return pfirst(_mm_add_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1))); -// #endif -} - -template<> EIGEN_STRONG_INLINE double predux(const Packet2d& a) -{ - // Disable SSE3 _mm_hadd_pd that is extremely slow on all existing Intel's architectures - // (from Nehalem to Haswell) -// #ifdef EIGEN_VECTORIZE_SSE3 -// return pfirst(_mm_hadd_pd(a, a)); -// #else - return pfirst(_mm_add_sd(a, _mm_unpackhi_pd(a,a))); -// #endif -} - -#ifdef EIGEN_VECTORIZE_SSSE3 -template<> EIGEN_STRONG_INLINE Packet4i preduxp(const Packet4i* vecs) -{ - return _mm_hadd_epi32(_mm_hadd_epi32(vecs[0], vecs[1]),_mm_hadd_epi32(vecs[2], vecs[3])); -} -template<> EIGEN_STRONG_INLINE int predux(const Packet4i& a) -{ - Packet4i tmp0 = _mm_hadd_epi32(a,a); - return pfirst(_mm_hadd_epi32(tmp0,tmp0)); -} -#else -template<> EIGEN_STRONG_INLINE int predux(const Packet4i& a) -{ - Packet4i tmp = _mm_add_epi32(a, _mm_unpackhi_epi64(a,a)); - return pfirst(tmp) + pfirst(_mm_shuffle_epi32(tmp, 1)); -} - -template<> EIGEN_STRONG_INLINE Packet4i preduxp(const Packet4i* vecs) -{ - Packet4i tmp0, tmp1, tmp2; - tmp0 = _mm_unpacklo_epi32(vecs[0], vecs[1]); - tmp1 = _mm_unpackhi_epi32(vecs[0], vecs[1]); - tmp2 = _mm_unpackhi_epi32(vecs[2], vecs[3]); - tmp0 = _mm_add_epi32(tmp0, tmp1); - tmp1 = _mm_unpacklo_epi32(vecs[2], vecs[3]); - tmp1 = _mm_add_epi32(tmp1, tmp2); - tmp2 = _mm_unpacklo_epi64(tmp0, tmp1); - tmp0 = _mm_unpackhi_epi64(tmp0, tmp1); - return _mm_add_epi32(tmp0, tmp2); -} -#endif -// Other reduction functions: - -// mul -template<> EIGEN_STRONG_INLINE float predux_mul(const Packet4f& a) -{ - Packet4f tmp = _mm_mul_ps(a, _mm_movehl_ps(a,a)); - return pfirst(_mm_mul_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1))); -} -template<> EIGEN_STRONG_INLINE double predux_mul(const Packet2d& a) -{ - return pfirst(_mm_mul_sd(a, _mm_unpackhi_pd(a,a))); -} -template<> EIGEN_STRONG_INLINE int predux_mul(const Packet4i& a) -{ - // after some experiments, it is seems this is the fastest way to implement it - // for GCC (eg., reusing pmul is very slow !) - // TODO try to call _mm_mul_epu32 directly - EIGEN_ALIGN16 int aux[4]; - pstore(aux, a); - return (aux[0] * aux[1]) * (aux[2] * aux[3]);; -} - -// min -template<> EIGEN_STRONG_INLINE float predux_min(const Packet4f& a) -{ - Packet4f tmp = _mm_min_ps(a, _mm_movehl_ps(a,a)); - return pfirst(_mm_min_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1))); -} -template<> EIGEN_STRONG_INLINE double predux_min(const Packet2d& a) -{ - return pfirst(_mm_min_sd(a, _mm_unpackhi_pd(a,a))); -} -template<> EIGEN_STRONG_INLINE int predux_min(const Packet4i& a) -{ -#ifdef EIGEN_VECTORIZE_SSE4_1 - Packet4i tmp = _mm_min_epi32(a, _mm_shuffle_epi32(a, _MM_SHUFFLE(0,0,3,2))); - return pfirst(_mm_min_epi32(tmp,_mm_shuffle_epi32(tmp, 1))); -#else - // after some experiments, it is seems this is the fastest way to implement it - // for GCC (eg., it does not like using std::min after the pstore !!) - EIGEN_ALIGN16 int aux[4]; - pstore(aux, a); - int aux0 = aux[0] EIGEN_STRONG_INLINE float predux_max(const Packet4f& a) -{ - Packet4f tmp = _mm_max_ps(a, _mm_movehl_ps(a,a)); - return pfirst(_mm_max_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1))); -} -template<> EIGEN_STRONG_INLINE double predux_max(const Packet2d& a) -{ - return pfirst(_mm_max_sd(a, _mm_unpackhi_pd(a,a))); -} -template<> EIGEN_STRONG_INLINE int predux_max(const Packet4i& a) -{ -#ifdef EIGEN_VECTORIZE_SSE4_1 - Packet4i tmp = _mm_max_epi32(a, _mm_shuffle_epi32(a, _MM_SHUFFLE(0,0,3,2))); - return pfirst(_mm_max_epi32(tmp,_mm_shuffle_epi32(tmp, 1))); -#else - // after some experiments, it is seems this is the fastest way to implement it - // for GCC (eg., it does not like using std::min after the pstore !!) - EIGEN_ALIGN16 int aux[4]; - pstore(aux, a); - int aux0 = aux[0]>aux[1] ? aux[0] : aux[1]; - int aux2 = aux[2]>aux[3] ? aux[2] : aux[3]; - return aux0>aux2 ? aux0 : aux2; -#endif // EIGEN_VECTORIZE_SSE4_1 -} - -#if EIGEN_COMP_GNUC -// template <> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) -// { -// Packet4f res = b; -// asm("mulps %[a], %[b] \n\taddps %[c], %[b]" : [b] "+x" (res) : [a] "x" (a), [c] "x" (c)); -// return res; -// } -// EIGEN_STRONG_INLINE Packet4i _mm_alignr_epi8(const Packet4i& a, const Packet4i& b, const int i) -// { -// Packet4i res = a; -// asm("palignr %[i], %[a], %[b] " : [b] "+x" (res) : [a] "x" (a), [i] "i" (i)); -// return res; -// } -#endif - -#ifdef EIGEN_VECTORIZE_SSSE3 -// SSSE3 versions -template -struct palign_impl -{ - static EIGEN_STRONG_INLINE void run(Packet4f& first, const Packet4f& second) - { - if (Offset!=0) - first = _mm_castsi128_ps(_mm_alignr_epi8(_mm_castps_si128(second), _mm_castps_si128(first), Offset*4)); - } -}; - -template -struct palign_impl -{ - static EIGEN_STRONG_INLINE void run(Packet4i& first, const Packet4i& second) - { - if (Offset!=0) - first = _mm_alignr_epi8(second,first, Offset*4); - } -}; - -template -struct palign_impl -{ - static EIGEN_STRONG_INLINE void run(Packet2d& first, const Packet2d& second) - { - if (Offset==1) - first = _mm_castsi128_pd(_mm_alignr_epi8(_mm_castpd_si128(second), _mm_castpd_si128(first), 8)); - } -}; -#else -// SSE2 versions -template -struct palign_impl -{ - static EIGEN_STRONG_INLINE void run(Packet4f& first, const Packet4f& second) - { - if (Offset==1) - { - first = _mm_move_ss(first,second); - first = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(first),0x39)); - } - else if (Offset==2) - { - first = _mm_movehl_ps(first,first); - first = _mm_movelh_ps(first,second); - } - else if (Offset==3) - { - first = _mm_move_ss(first,second); - first = _mm_shuffle_ps(first,second,0x93); - } - } -}; - -template -struct palign_impl -{ - static EIGEN_STRONG_INLINE void run(Packet4i& first, const Packet4i& second) - { - if (Offset==1) - { - first = _mm_castps_si128(_mm_move_ss(_mm_castsi128_ps(first),_mm_castsi128_ps(second))); - first = _mm_shuffle_epi32(first,0x39); - } - else if (Offset==2) - { - first = _mm_castps_si128(_mm_movehl_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(first))); - first = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(second))); - } - else if (Offset==3) - { - first = _mm_castps_si128(_mm_move_ss(_mm_castsi128_ps(first),_mm_castsi128_ps(second))); - first = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(second),0x93)); - } - } -}; - -template -struct palign_impl -{ - static EIGEN_STRONG_INLINE void run(Packet2d& first, const Packet2d& second) - { - if (Offset==1) - { - first = _mm_castps_pd(_mm_movehl_ps(_mm_castpd_ps(first),_mm_castpd_ps(first))); - first = _mm_castps_pd(_mm_movelh_ps(_mm_castpd_ps(first),_mm_castpd_ps(second))); - } - } -}; -#endif - -EIGEN_DEVICE_FUNC inline void -ptranspose(PacketBlock& kernel) { - _MM_TRANSPOSE4_PS(kernel.packet[0], kernel.packet[1], kernel.packet[2], kernel.packet[3]); -} - -EIGEN_DEVICE_FUNC inline void -ptranspose(PacketBlock& kernel) { - __m128d tmp = _mm_unpackhi_pd(kernel.packet[0], kernel.packet[1]); - kernel.packet[0] = _mm_unpacklo_pd(kernel.packet[0], kernel.packet[1]); - kernel.packet[1] = tmp; -} - -EIGEN_DEVICE_FUNC inline void -ptranspose(PacketBlock& kernel) { - __m128i T0 = _mm_unpacklo_epi32(kernel.packet[0], kernel.packet[1]); - __m128i T1 = _mm_unpacklo_epi32(kernel.packet[2], kernel.packet[3]); - __m128i T2 = _mm_unpackhi_epi32(kernel.packet[0], kernel.packet[1]); - __m128i T3 = _mm_unpackhi_epi32(kernel.packet[2], kernel.packet[3]); - - kernel.packet[0] = _mm_unpacklo_epi64(T0, T1); - kernel.packet[1] = _mm_unpackhi_epi64(T0, T1); - kernel.packet[2] = _mm_unpacklo_epi64(T2, T3); - kernel.packet[3] = _mm_unpackhi_epi64(T2, T3); -} - -template<> EIGEN_STRONG_INLINE Packet4i pblend(const Selector<4>& ifPacket, const Packet4i& thenPacket, const Packet4i& elsePacket) { - const __m128i zero = _mm_setzero_si128(); - const __m128i select = _mm_set_epi32(ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]); - __m128i false_mask = _mm_cmpeq_epi32(select, zero); -#ifdef EIGEN_VECTORIZE_SSE4_1 - return _mm_blendv_epi8(thenPacket, elsePacket, false_mask); -#else - return _mm_or_si128(_mm_andnot_si128(false_mask, thenPacket), _mm_and_si128(false_mask, elsePacket)); -#endif -} -template<> EIGEN_STRONG_INLINE Packet4f pblend(const Selector<4>& ifPacket, const Packet4f& thenPacket, const Packet4f& elsePacket) { - const __m128 zero = _mm_setzero_ps(); - const __m128 select = _mm_set_ps(ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]); - __m128 false_mask = _mm_cmpeq_ps(select, zero); -#ifdef EIGEN_VECTORIZE_SSE4_1 - return _mm_blendv_ps(thenPacket, elsePacket, false_mask); -#else - return _mm_or_ps(_mm_andnot_ps(false_mask, thenPacket), _mm_and_ps(false_mask, elsePacket)); -#endif -} -template<> EIGEN_STRONG_INLINE Packet2d pblend(const Selector<2>& ifPacket, const Packet2d& thenPacket, const Packet2d& elsePacket) { - const __m128d zero = _mm_setzero_pd(); - const __m128d select = _mm_set_pd(ifPacket.select[1], ifPacket.select[0]); - __m128d false_mask = _mm_cmpeq_pd(select, zero); -#ifdef EIGEN_VECTORIZE_SSE4_1 - return _mm_blendv_pd(thenPacket, elsePacket, false_mask); -#else - return _mm_or_pd(_mm_andnot_pd(false_mask, thenPacket), _mm_and_pd(false_mask, elsePacket)); -#endif -} - -template<> EIGEN_STRONG_INLINE Packet4f pinsertfirst(const Packet4f& a, float b) -{ -#ifdef EIGEN_VECTORIZE_SSE4_1 - return _mm_blend_ps(a,pset1(b),1); -#else - return _mm_move_ss(a, _mm_load_ss(&b)); -#endif -} - -template<> EIGEN_STRONG_INLINE Packet2d pinsertfirst(const Packet2d& a, double b) -{ -#ifdef EIGEN_VECTORIZE_SSE4_1 - return _mm_blend_pd(a,pset1(b),1); -#else - return _mm_move_sd(a, _mm_load_sd(&b)); -#endif -} - -template<> EIGEN_STRONG_INLINE Packet4f pinsertlast(const Packet4f& a, float b) -{ -#ifdef EIGEN_VECTORIZE_SSE4_1 - return _mm_blend_ps(a,pset1(b),(1<<3)); -#else - const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x0,0x0,0x0,0xFFFFFFFF)); - return _mm_or_ps(_mm_andnot_ps(mask, a), _mm_and_ps(mask, pset1(b))); -#endif -} - -template<> EIGEN_STRONG_INLINE Packet2d pinsertlast(const Packet2d& a, double b) -{ -#ifdef EIGEN_VECTORIZE_SSE4_1 - return _mm_blend_pd(a,pset1(b),(1<<1)); -#else - const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0x0,0x0,0xFFFFFFFF,0xFFFFFFFF)); - return _mm_or_pd(_mm_andnot_pd(mask, a), _mm_and_pd(mask, pset1(b))); -#endif -} - -// Scalar path for pmadd with FMA to ensure consistency with vectorized path. -#ifdef __FMA__ -template<> EIGEN_STRONG_INLINE float pmadd(const float& a, const float& b, const float& c) { - return ::fmaf(a,b,c); -} -template<> EIGEN_STRONG_INLINE double pmadd(const double& a, const double& b, const double& c) { - return ::fma(a,b,c); -} -#endif - -} // end namespace internal - -} // end namespace Eigen - -#if EIGEN_COMP_PGI -// PGI++ does not define the following intrinsics in C++ mode. -static inline __m128 _mm_castpd_ps (__m128d x) { return reinterpret_cast<__m128&>(x); } -static inline __m128i _mm_castpd_si128(__m128d x) { return reinterpret_cast<__m128i&>(x); } -static inline __m128d _mm_castps_pd (__m128 x) { return reinterpret_cast<__m128d&>(x); } -static inline __m128i _mm_castps_si128(__m128 x) { return reinterpret_cast<__m128i&>(x); } -static inline __m128 _mm_castsi128_ps(__m128i x) { return reinterpret_cast<__m128&>(x); } -static inline __m128d _mm_castsi128_pd(__m128i x) { return reinterpret_cast<__m128d&>(x); } -#endif - -#endif // EIGEN_PACKET_MATH_SSE_H diff --git a/src/math_meigen/Eigen/src/Core/arch/SSE/TypeCasting.h b/src/math_meigen/Eigen/src/Core/arch/SSE/TypeCasting.h deleted file mode 100755 index c6ca8c716..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/SSE/TypeCasting.h +++ /dev/null @@ -1,77 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2015 Benoit Steiner -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_TYPE_CASTING_SSE_H -#define EIGEN_TYPE_CASTING_SSE_H - -namespace Eigen { - -namespace internal { - -#ifndef EIGEN_VECTORIZE_AVX -template <> -struct type_casting_traits { - enum { - VectorizedCast = 1, - SrcCoeffRatio = 1, - TgtCoeffRatio = 1 - }; -}; - -template <> -struct type_casting_traits { - enum { - VectorizedCast = 1, - SrcCoeffRatio = 1, - TgtCoeffRatio = 1 - }; -}; - -template <> -struct type_casting_traits { - enum { - VectorizedCast = 1, - SrcCoeffRatio = 2, - TgtCoeffRatio = 1 - }; -}; - -template <> -struct type_casting_traits { - enum { - VectorizedCast = 1, - SrcCoeffRatio = 1, - TgtCoeffRatio = 2 - }; -}; -#endif - -template<> EIGEN_STRONG_INLINE Packet4i pcast(const Packet4f& a) { - return _mm_cvttps_epi32(a); -} - -template<> EIGEN_STRONG_INLINE Packet4f pcast(const Packet4i& a) { - return _mm_cvtepi32_ps(a); -} - -template<> EIGEN_STRONG_INLINE Packet4f pcast(const Packet2d& a, const Packet2d& b) { - return _mm_shuffle_ps(_mm_cvtpd_ps(a), _mm_cvtpd_ps(b), (1 << 2) | (1 << 6)); -} - -template<> EIGEN_STRONG_INLINE Packet2d pcast(const Packet4f& a) { - // Simply discard the second half of the input - return _mm_cvtps_pd(a); -} - - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_TYPE_CASTING_SSE_H diff --git a/src/math_meigen/Eigen/src/Core/arch/ZVector/Complex.h b/src/math_meigen/Eigen/src/Core/arch/ZVector/Complex.h deleted file mode 100755 index 1bfb73397..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/ZVector/Complex.h +++ /dev/null @@ -1,397 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2010 Gael Guennebaud -// Copyright (C) 2016 Konstantinos Margaritis -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_COMPLEX32_ALTIVEC_H -#define EIGEN_COMPLEX32_ALTIVEC_H - -namespace Eigen { - -namespace internal { - -static Packet2ul p2ul_CONJ_XOR1 = (Packet2ul) vec_sld((Packet4ui) p2d_ZERO_, (Packet4ui) p2l_ZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 }; -static Packet2ul p2ul_CONJ_XOR2 = (Packet2ul) vec_sld((Packet4ui) p2l_ZERO, (Packet4ui) p2d_ZERO_, 8);//{ 0x8000000000000000, 0x0000000000000000 }; - -struct Packet1cd -{ - EIGEN_STRONG_INLINE Packet1cd() {} - EIGEN_STRONG_INLINE explicit Packet1cd(const Packet2d& a) : v(a) {} - Packet2d v; -}; - -struct Packet2cf -{ - EIGEN_STRONG_INLINE Packet2cf() {} - EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {} - union { - Packet4f v; - Packet1cd cd[2]; - }; -}; - -template<> struct packet_traits > : default_packet_traits -{ - typedef Packet2cf type; - typedef Packet2cf half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size = 2, - HasHalfPacket = 0, - - HasAdd = 1, - HasSub = 1, - HasMul = 1, - HasDiv = 1, - HasNegate = 1, - HasAbs = 0, - HasAbs2 = 0, - HasMin = 0, - HasMax = 0, - HasBlend = 1, - HasSetLinear = 0 - }; -}; - - -template<> struct packet_traits > : default_packet_traits -{ - typedef Packet1cd type; - typedef Packet1cd half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size = 1, - HasHalfPacket = 0, - - HasAdd = 1, - HasSub = 1, - HasMul = 1, - HasDiv = 1, - HasNegate = 1, - HasAbs = 0, - HasAbs2 = 0, - HasMin = 0, - HasMax = 0, - HasSetLinear = 0 - }; -}; - -template<> struct unpacket_traits { typedef std::complex type; enum {size=2, alignment=Aligned16}; typedef Packet2cf half; }; -template<> struct unpacket_traits { typedef std::complex type; enum {size=1, alignment=Aligned16}; typedef Packet1cd half; }; - -/* Forward declaration */ -EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel); - -template<> EIGEN_STRONG_INLINE Packet2cf pload (const std::complex* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload((const float*)from)); } -template<> EIGEN_STRONG_INLINE Packet1cd pload (const std::complex* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet1cd(pload((const double*)from)); } -template<> EIGEN_STRONG_INLINE Packet2cf ploadu(const std::complex* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu((const float*)from)); } -template<> EIGEN_STRONG_INLINE Packet1cd ploadu(const std::complex* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet1cd(ploadu((const double*)from)); } -template<> EIGEN_STRONG_INLINE void pstore >(std::complex * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); } -template<> EIGEN_STRONG_INLINE void pstore >(std::complex * to, const Packet1cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); } -template<> EIGEN_STRONG_INLINE void pstoreu >(std::complex * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); } -template<> EIGEN_STRONG_INLINE void pstoreu >(std::complex * to, const Packet1cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); } - -template<> EIGEN_STRONG_INLINE Packet1cd pset1(const std::complex& from) -{ /* here we really have to use unaligned loads :( */ return ploadu(&from); } - -template<> EIGEN_STRONG_INLINE Packet2cf pset1(const std::complex& from) -{ - Packet2cf res; - res.cd[0] = Packet1cd(vec_ld2f((const float *)&from)); - res.cd[1] = res.cd[0]; - return res; -} -template<> EIGEN_DEVICE_FUNC inline Packet2cf pgather, Packet2cf>(const std::complex* from, Index stride) -{ - std::complex EIGEN_ALIGN16 af[2]; - af[0] = from[0*stride]; - af[1] = from[1*stride]; - return pload(af); -} -template<> EIGEN_DEVICE_FUNC inline Packet1cd pgather, Packet1cd>(const std::complex* from, Index stride EIGEN_UNUSED) -{ - return pload(from); -} -template<> EIGEN_DEVICE_FUNC inline void pscatter, Packet2cf>(std::complex* to, const Packet2cf& from, Index stride) -{ - std::complex EIGEN_ALIGN16 af[2]; - pstore >((std::complex *) af, from); - to[0*stride] = af[0]; - to[1*stride] = af[1]; -} -template<> EIGEN_DEVICE_FUNC inline void pscatter, Packet1cd>(std::complex* to, const Packet1cd& from, Index stride EIGEN_UNUSED) -{ - pstore >(to, from); -} - -template<> EIGEN_STRONG_INLINE Packet2cf padd(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(padd(a.v, b.v)); } -template<> EIGEN_STRONG_INLINE Packet1cd padd(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(a.v + b.v); } -template<> EIGEN_STRONG_INLINE Packet2cf psub(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(psub(a.v, b.v)); } -template<> EIGEN_STRONG_INLINE Packet1cd psub(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(a.v - b.v); } -template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) { return Packet1cd(pnegate(Packet2d(a.v))); } -template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate(Packet4f(a.v))); } -template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a) { return Packet1cd((Packet2d)vec_xor((Packet2d)a.v, (Packet2d)p2ul_CONJ_XOR2)); } -template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a) -{ - Packet2cf res; - res.v.v4f[0] = pconj(Packet1cd(reinterpret_cast(a.v.v4f[0]))).v; - res.v.v4f[1] = pconj(Packet1cd(reinterpret_cast(a.v.v4f[1]))).v; - return res; -} - -template<> EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) -{ - Packet2d a_re, a_im, v1, v2; - - // Permute and multiply the real parts of a and b - a_re = vec_perm(a.v, a.v, p16uc_PSET64_HI); - // Get the imaginary parts of a - a_im = vec_perm(a.v, a.v, p16uc_PSET64_LO); - // multiply a_re * b - v1 = vec_madd(a_re, b.v, p2d_ZERO); - // multiply a_im * b and get the conjugate result - v2 = vec_madd(a_im, b.v, p2d_ZERO); - v2 = (Packet2d) vec_sld((Packet4ui)v2, (Packet4ui)v2, 8); - v2 = (Packet2d) vec_xor((Packet2d)v2, (Packet2d) p2ul_CONJ_XOR1); - - return Packet1cd(v1 + v2); -} -template<> EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) -{ - Packet2cf res; - res.v.v4f[0] = pmul(Packet1cd(reinterpret_cast(a.v.v4f[0])), Packet1cd(reinterpret_cast(b.v.v4f[0]))).v; - res.v.v4f[1] = pmul(Packet1cd(reinterpret_cast(a.v.v4f[1])), Packet1cd(reinterpret_cast(b.v.v4f[1]))).v; - return res; -} - -template<> EIGEN_STRONG_INLINE Packet1cd pand (const Packet1cd& a, const Packet1cd& b) { return Packet1cd(vec_and(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet2cf pand (const Packet2cf& a, const Packet2cf& b) { return Packet2cf(pand(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet1cd por (const Packet1cd& a, const Packet1cd& b) { return Packet1cd(vec_or(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet2cf por (const Packet2cf& a, const Packet2cf& b) { return Packet2cf(por(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet1cd pxor (const Packet1cd& a, const Packet1cd& b) { return Packet1cd(vec_xor(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet2cf pxor (const Packet2cf& a, const Packet2cf& b) { return Packet2cf(pxor(a.v,b.v)); } -template<> EIGEN_STRONG_INLINE Packet1cd pandnot(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(vec_and(a.v, vec_nor(b.v,b.v))); } -template<> EIGEN_STRONG_INLINE Packet2cf pandnot(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(pandnot(a.v,b.v)); } - -template<> EIGEN_STRONG_INLINE Packet1cd ploaddup(const std::complex* from) { return pset1(*from); } -template<> EIGEN_STRONG_INLINE Packet2cf ploaddup(const std::complex* from) { return pset1(*from); } - -template<> EIGEN_STRONG_INLINE void prefetch >(const std::complex * addr) { EIGEN_ZVECTOR_PREFETCH(addr); } -template<> EIGEN_STRONG_INLINE void prefetch >(const std::complex * addr) { EIGEN_ZVECTOR_PREFETCH(addr); } - -template<> EIGEN_STRONG_INLINE std::complex pfirst(const Packet1cd& a) -{ - std::complex EIGEN_ALIGN16 res; - pstore >(&res, a); - - return res; -} -template<> EIGEN_STRONG_INLINE std::complex pfirst(const Packet2cf& a) -{ - std::complex EIGEN_ALIGN16 res[2]; - pstore >(res, a); - - return res[0]; -} - -template<> EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) { return a; } -template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a) -{ - Packet2cf res; - res.cd[0] = a.cd[1]; - res.cd[1] = a.cd[0]; - return res; -} - -template<> EIGEN_STRONG_INLINE std::complex predux(const Packet1cd& a) -{ - return pfirst(a); -} -template<> EIGEN_STRONG_INLINE std::complex predux(const Packet2cf& a) -{ - std::complex res; - Packet1cd b = padd(a.cd[0], a.cd[1]); - vec_st2f(b.v, (float*)&res); - return res; -} - -template<> EIGEN_STRONG_INLINE Packet1cd preduxp(const Packet1cd* vecs) -{ - return vecs[0]; -} -template<> EIGEN_STRONG_INLINE Packet2cf preduxp(const Packet2cf* vecs) -{ - PacketBlock transpose; - transpose.packet[0] = vecs[0]; - transpose.packet[1] = vecs[1]; - ptranspose(transpose); - - return padd(transpose.packet[0], transpose.packet[1]); -} - -template<> EIGEN_STRONG_INLINE std::complex predux_mul(const Packet1cd& a) -{ - return pfirst(a); -} -template<> EIGEN_STRONG_INLINE std::complex predux_mul(const Packet2cf& a) -{ - std::complex res; - Packet1cd b = pmul(a.cd[0], a.cd[1]); - vec_st2f(b.v, (float*)&res); - return res; -} - -template -struct palign_impl -{ - static EIGEN_STRONG_INLINE void run(Packet1cd& /*first*/, const Packet1cd& /*second*/) - { - // FIXME is it sure we never have to align a Packet1cd? - // Even though a std::complex has 16 bytes, it is not necessarily aligned on a 16 bytes boundary... - } -}; - -template -struct palign_impl -{ - static EIGEN_STRONG_INLINE void run(Packet2cf& first, const Packet2cf& second) - { - if (Offset == 1) { - first.cd[0] = first.cd[1]; - first.cd[1] = second.cd[0]; - } - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const - { - return internal::pmul(a, pconj(b)); - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const - { - return internal::pmul(pconj(a), b); - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const - { - return pconj(internal::pmul(a, b)); - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const - { - return internal::pmul(a, pconj(b)); - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const - { - return internal::pmul(pconj(a), b); - } -}; - -template<> struct conj_helper -{ - EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const - { return padd(pmul(x,y),c); } - - EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const - { - return pconj(internal::pmul(a, b)); - } -}; - -EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cf,Packet4f) -EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet1cd,Packet2d) - -template<> EIGEN_STRONG_INLINE Packet1cd pdiv(const Packet1cd& a, const Packet1cd& b) -{ - // TODO optimize it for AltiVec - Packet1cd res = conj_helper().pmul(a,b); - Packet2d s = vec_madd(b.v, b.v, p2d_ZERO_); - return Packet1cd(pdiv(res.v, s + vec_perm(s, s, p16uc_REVERSE64))); -} - -template<> EIGEN_STRONG_INLINE Packet2cf pdiv(const Packet2cf& a, const Packet2cf& b) -{ - // TODO optimize it for AltiVec - Packet2cf res; - res.cd[0] = pdiv(a.cd[0], b.cd[0]); - res.cd[1] = pdiv(a.cd[1], b.cd[1]); - return res; -} - -EIGEN_STRONG_INLINE Packet1cd pcplxflip/**/(const Packet1cd& x) -{ - return Packet1cd(preverse(Packet2d(x.v))); -} - -EIGEN_STRONG_INLINE Packet2cf pcplxflip/**/(const Packet2cf& x) -{ - Packet2cf res; - res.cd[0] = pcplxflip(x.cd[0]); - res.cd[1] = pcplxflip(x.cd[1]); - return res; -} - -EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) -{ - Packet2d tmp = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_HI); - kernel.packet[1].v = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_LO); - kernel.packet[0].v = tmp; -} - -EIGEN_STRONG_INLINE void ptranspose(PacketBlock& kernel) -{ - Packet1cd tmp = kernel.packet[0].cd[1]; - kernel.packet[0].cd[1] = kernel.packet[1].cd[0]; - kernel.packet[1].cd[0] = tmp; -} - -template<> EIGEN_STRONG_INLINE Packet2cf pblend(const Selector<2>& ifPacket, const Packet2cf& thenPacket, const Packet2cf& elsePacket) { - Packet2cf result; - const Selector<4> ifPacket4 = { ifPacket.select[0], ifPacket.select[0], ifPacket.select[1], ifPacket.select[1] }; - result.v = pblend(ifPacket4, thenPacket.v, elsePacket.v); - return result; -} - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_COMPLEX32_ALTIVEC_H diff --git a/src/math_meigen/Eigen/src/Core/arch/ZVector/MathFunctions.h b/src/math_meigen/Eigen/src/Core/arch/ZVector/MathFunctions.h deleted file mode 100755 index 5c7aa7256..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/ZVector/MathFunctions.h +++ /dev/null @@ -1,137 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2007 Julien Pommier -// Copyright (C) 2009 Gael Guennebaud -// Copyright (C) 2016 Konstantinos Margaritis -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -/* The sin, cos, exp, and log functions of this file come from - * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/ - */ - -#ifndef EIGEN_MATH_FUNCTIONS_ALTIVEC_H -#define EIGEN_MATH_FUNCTIONS_ALTIVEC_H - -namespace Eigen { - -namespace internal { - -static _EIGEN_DECLARE_CONST_Packet2d(1 , 1.0); -static _EIGEN_DECLARE_CONST_Packet2d(2 , 2.0); -static _EIGEN_DECLARE_CONST_Packet2d(half, 0.5); - -static _EIGEN_DECLARE_CONST_Packet2d(exp_hi, 709.437); -static _EIGEN_DECLARE_CONST_Packet2d(exp_lo, -709.436139303); - -static _EIGEN_DECLARE_CONST_Packet2d(cephes_LOG2EF, 1.4426950408889634073599); - -static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p0, 1.26177193074810590878e-4); -static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p1, 3.02994407707441961300e-2); -static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p2, 9.99999999999999999910e-1); - -static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q0, 3.00198505138664455042e-6); -static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q1, 2.52448340349684104192e-3); -static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q2, 2.27265548208155028766e-1); -static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q3, 2.00000000000000000009e0); - -static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C1, 0.693145751953125); -static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C2, 1.42860682030941723212e-6); - -template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet2d pexp(const Packet2d& _x) -{ - Packet2d x = _x; - - Packet2d tmp, fx; - Packet2l emm0; - - // clamp x - x = pmax(pmin(x, p2d_exp_hi), p2d_exp_lo); - /* express exp(x) as exp(g + n*log(2)) */ - fx = pmadd(p2d_cephes_LOG2EF, x, p2d_half); - - fx = vec_floor(fx); - - tmp = pmul(fx, p2d_cephes_exp_C1); - Packet2d z = pmul(fx, p2d_cephes_exp_C2); - x = psub(x, tmp); - x = psub(x, z); - - Packet2d x2 = pmul(x,x); - - Packet2d px = p2d_cephes_exp_p0; - px = pmadd(px, x2, p2d_cephes_exp_p1); - px = pmadd(px, x2, p2d_cephes_exp_p2); - px = pmul (px, x); - - Packet2d qx = p2d_cephes_exp_q0; - qx = pmadd(qx, x2, p2d_cephes_exp_q1); - qx = pmadd(qx, x2, p2d_cephes_exp_q2); - qx = pmadd(qx, x2, p2d_cephes_exp_q3); - - x = pdiv(px,psub(qx,px)); - x = pmadd(p2d_2,x,p2d_1); - - // build 2^n - emm0 = vec_ctsl(fx, 0); - - static const Packet2l p2l_1023 = { 1023, 1023 }; - static const Packet2ul p2ul_52 = { 52, 52 }; - - emm0 = emm0 + p2l_1023; - emm0 = emm0 << reinterpret_cast(p2ul_52); - - // Altivec's max & min operators just drop silent NaNs. Check NaNs in - // inputs and return them unmodified. - Packet2ul isnumber_mask = reinterpret_cast(vec_cmpeq(_x, _x)); - return vec_sel(_x, pmax(pmul(x, reinterpret_cast(emm0)), _x), - isnumber_mask); -} - -template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet4f pexp(const Packet4f& x) -{ - Packet4f res; - res.v4f[0] = pexp(x.v4f[0]); - res.v4f[1] = pexp(x.v4f[1]); - return res; -} - -template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet2d psqrt(const Packet2d& x) -{ - return __builtin_s390_vfsqdb(x); -} - -template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet4f psqrt(const Packet4f& x) -{ - Packet4f res; - res.v4f[0] = psqrt(x.v4f[0]); - res.v4f[1] = psqrt(x.v4f[1]); - return res; -} - -template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet2d prsqrt(const Packet2d& x) { - // Unfortunately we can't use the much faster mm_rqsrt_pd since it only provides an approximation. - return pset1(1.0) / psqrt(x); -} - -template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED -Packet4f prsqrt(const Packet4f& x) { - Packet4f res; - res.v4f[0] = prsqrt(x.v4f[0]); - res.v4f[1] = prsqrt(x.v4f[1]); - return res; -} - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_MATH_FUNCTIONS_ALTIVEC_H diff --git a/src/math_meigen/Eigen/src/Core/arch/ZVector/PacketMath.h b/src/math_meigen/Eigen/src/Core/arch/ZVector/PacketMath.h deleted file mode 100755 index 57b01fc63..000000000 --- a/src/math_meigen/Eigen/src/Core/arch/ZVector/PacketMath.h +++ /dev/null @@ -1,945 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2016 Konstantinos Margaritis -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_PACKET_MATH_ZVECTOR_H -#define EIGEN_PACKET_MATH_ZVECTOR_H - -#include - -namespace Eigen { - -namespace internal { - -#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD -#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 4 -#endif - -#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD -#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD -#endif - -#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD -#define EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD -#endif - -#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS -#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 16 -#endif - -typedef __vector int Packet4i; -typedef __vector unsigned int Packet4ui; -typedef __vector __bool int Packet4bi; -typedef __vector short int Packet8i; -typedef __vector unsigned char Packet16uc; -typedef __vector double Packet2d; -typedef __vector unsigned long long Packet2ul; -typedef __vector long long Packet2l; - -typedef struct { - Packet2d v4f[2]; -} Packet4f; - -typedef union { - int32_t i[4]; - uint32_t ui[4]; - int64_t l[2]; - uint64_t ul[2]; - double d[2]; - Packet4i v4i; - Packet4ui v4ui; - Packet2l v2l; - Packet2ul v2ul; - Packet2d v2d; -} Packet; - -// We don't want to write the same code all the time, but we need to reuse the constants -// and it doesn't really work to declare them global, so we define macros instead - -#define _EIGEN_DECLARE_CONST_FAST_Packet4i(NAME,X) \ - Packet4i p4i_##NAME = reinterpret_cast(vec_splat_s32(X)) - -#define _EIGEN_DECLARE_CONST_FAST_Packet2d(NAME,X) \ - Packet2d p2d_##NAME = reinterpret_cast(vec_splat_s64(X)) - -#define _EIGEN_DECLARE_CONST_FAST_Packet2l(NAME,X) \ - Packet2l p2l_##NAME = reinterpret_cast(vec_splat_s64(X)) - -#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \ - Packet4i p4i_##NAME = pset1(X) - -#define _EIGEN_DECLARE_CONST_Packet2d(NAME,X) \ - Packet2d p2d_##NAME = pset1(X) - -#define _EIGEN_DECLARE_CONST_Packet2l(NAME,X) \ - Packet2l p2l_##NAME = pset1(X) - -// These constants are endian-agnostic -//static _EIGEN_DECLARE_CONST_FAST_Packet4i(ZERO, 0); //{ 0, 0, 0, 0,} -static _EIGEN_DECLARE_CONST_FAST_Packet4i(ONE, 1); //{ 1, 1, 1, 1} - -static _EIGEN_DECLARE_CONST_FAST_Packet2d(ZERO, 0); -static _EIGEN_DECLARE_CONST_FAST_Packet2l(ZERO, 0); -static _EIGEN_DECLARE_CONST_FAST_Packet2l(ONE, 1); - -static Packet2d p2d_ONE = { 1.0, 1.0 }; -static Packet2d p2d_ZERO_ = { -0.0, -0.0 }; - -static Packet4i p4i_COUNTDOWN = { 0, 1, 2, 3 }; -static Packet4f p4f_COUNTDOWN = { 0.0, 1.0, 2.0, 3.0 }; -static Packet2d p2d_COUNTDOWN = reinterpret_cast(vec_sld(reinterpret_cast(p2d_ZERO), reinterpret_cast(p2d_ONE), 8)); - -static Packet16uc p16uc_PSET64_HI = { 0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7 }; -static Packet16uc p16uc_DUPLICATE32_HI = { 0,1,2,3, 0,1,2,3, 4,5,6,7, 4,5,6,7 }; - -// Mask alignment -#define _EIGEN_MASK_ALIGNMENT 0xfffffffffffffff0 - -#define _EIGEN_ALIGNED_PTR(x) ((std::ptrdiff_t)(x) & _EIGEN_MASK_ALIGNMENT) - -// Handle endianness properly while loading constants -// Define global static constants: - -static Packet16uc p16uc_FORWARD = { 0,1,2,3, 4,5,6,7, 8,9,10,11, 12,13,14,15 }; -static Packet16uc p16uc_REVERSE32 = { 12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3 }; -static Packet16uc p16uc_REVERSE64 = { 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 }; - -static Packet16uc p16uc_PSET32_WODD = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 2), 8);//{ 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 }; -static Packet16uc p16uc_PSET32_WEVEN = vec_sld(p16uc_DUPLICATE32_HI, (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 3), 8);//{ 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 }; -/*static Packet16uc p16uc_HALF64_0_16 = vec_sld((Packet16uc)p4i_ZERO, vec_splat((Packet16uc) vec_abs(p4i_MINUS16), 3), 8); //{ 0,0,0,0, 0,0,0,0, 16,16,16,16, 16,16,16,16}; - -static Packet16uc p16uc_PSET64_HI = (Packet16uc) vec_mergeh((Packet4ui)p16uc_PSET32_WODD, (Packet4ui)p16uc_PSET32_WEVEN); //{ 0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7 };*/ -static Packet16uc p16uc_PSET64_LO = (Packet16uc) vec_mergel((Packet4ui)p16uc_PSET32_WODD, (Packet4ui)p16uc_PSET32_WEVEN); //{ 8,9,10,11, 12,13,14,15, 8,9,10,11, 12,13,14,15 }; -/*static Packet16uc p16uc_TRANSPOSE64_HI = vec_add(p16uc_PSET64_HI, p16uc_HALF64_0_16); //{ 0,1,2,3, 4,5,6,7, 16,17,18,19, 20,21,22,23}; -static Packet16uc p16uc_TRANSPOSE64_LO = vec_add(p16uc_PSET64_LO, p16uc_HALF64_0_16); //{ 8,9,10,11, 12,13,14,15, 24,25,26,27, 28,29,30,31};*/ -static Packet16uc p16uc_TRANSPOSE64_HI = { 0,1,2,3, 4,5,6,7, 16,17,18,19, 20,21,22,23}; -static Packet16uc p16uc_TRANSPOSE64_LO = { 8,9,10,11, 12,13,14,15, 24,25,26,27, 28,29,30,31}; - -//static Packet16uc p16uc_COMPLEX32_REV = vec_sld(p16uc_REVERSE32, p16uc_REVERSE32, 8); //{ 4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11 }; - -//static Packet16uc p16uc_COMPLEX32_REV2 = vec_sld(p16uc_FORWARD, p16uc_FORWARD, 8); //{ 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 }; - - -#if EIGEN_HAS_BUILTIN(__builtin_prefetch) || EIGEN_COMP_GNUC - #define EIGEN_ZVECTOR_PREFETCH(ADDR) __builtin_prefetch(ADDR); -#else - #define EIGEN_ZVECTOR_PREFETCH(ADDR) asm( " pfd [%[addr]]\n" :: [addr] "r" (ADDR) : "cc" ); -#endif - -template<> struct packet_traits : default_packet_traits -{ - typedef Packet4i type; - typedef Packet4i half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size = 4, - HasHalfPacket = 0, - - HasAdd = 1, - HasSub = 1, - HasMul = 1, - HasDiv = 1, - HasBlend = 1 - }; -}; - -template<> struct packet_traits : default_packet_traits -{ - typedef Packet4f type; - typedef Packet4f half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size=4, - HasHalfPacket = 0, - - HasAdd = 1, - HasSub = 1, - HasMul = 1, - HasDiv = 1, - HasMin = 1, - HasMax = 1, - HasAbs = 1, - HasSin = 0, - HasCos = 0, - HasLog = 0, - HasExp = 1, - HasSqrt = 1, - HasRsqrt = 1, - HasRound = 1, - HasFloor = 1, - HasCeil = 1, - HasNegate = 1, - HasBlend = 1 - }; -}; - -template<> struct packet_traits : default_packet_traits -{ - typedef Packet2d type; - typedef Packet2d half; - enum { - Vectorizable = 1, - AlignedOnScalar = 1, - size=2, - HasHalfPacket = 1, - - HasAdd = 1, - HasSub = 1, - HasMul = 1, - HasDiv = 1, - HasMin = 1, - HasMax = 1, - HasAbs = 1, - HasSin = 0, - HasCos = 0, - HasLog = 0, - HasExp = 1, - HasSqrt = 1, - HasRsqrt = 1, - HasRound = 1, - HasFloor = 1, - HasCeil = 1, - HasNegate = 1, - HasBlend = 1 - }; -}; - -template<> struct unpacket_traits { typedef int type; enum {size=4, alignment=Aligned16}; typedef Packet4i half; }; -template<> struct unpacket_traits { typedef float type; enum {size=4, alignment=Aligned16}; typedef Packet4f half; }; -template<> struct unpacket_traits { typedef double type; enum {size=2, alignment=Aligned16}; typedef Packet2d half; }; - -/* Forward declaration */ -EIGEN_DEVICE_FUNC inline void ptranspose(PacketBlock& kernel); - -inline std::ostream & operator <<(std::ostream & s, const Packet4i & v) -{ - Packet vt; - vt.v4i = v; - s << vt.i[0] << ", " << vt.i[1] << ", " << vt.i[2] << ", " << vt.i[3]; - return s; -} - -inline std::ostream & operator <<(std::ostream & s, const Packet4ui & v) -{ - Packet vt; - vt.v4ui = v; - s << vt.ui[0] << ", " << vt.ui[1] << ", " << vt.ui[2] << ", " << vt.ui[3]; - return s; -} - -inline std::ostream & operator <<(std::ostream & s, const Packet2l & v) -{ - Packet vt; - vt.v2l = v; - s << vt.l[0] << ", " << vt.l[1]; - return s; -} - -inline std::ostream & operator <<(std::ostream & s, const Packet2ul & v) -{ - Packet vt; - vt.v2ul = v; - s << vt.ul[0] << ", " << vt.ul[1] ; - return s; -} - -inline std::ostream & operator <<(std::ostream & s, const Packet2d & v) -{ - Packet vt; - vt.v2d = v; - s << vt.d[0] << ", " << vt.d[1]; - return s; -} - -/* Helper function to simulate a vec_splat_packet4f - */ -template EIGEN_STRONG_INLINE Packet4f vec_splat_packet4f(const Packet4f& from) -{ - Packet4f splat; - switch (element) { - case 0: - splat.v4f[0] = vec_splat(from.v4f[0], 0); - splat.v4f[1] = splat.v4f[0]; - break; - case 1: - splat.v4f[0] = vec_splat(from.v4f[0], 1); - splat.v4f[1] = splat.v4f[0]; - break; - case 2: - splat.v4f[0] = vec_splat(from.v4f[1], 0); - splat.v4f[1] = splat.v4f[0]; - break; - case 3: - splat.v4f[0] = vec_splat(from.v4f[1], 1); - splat.v4f[1] = splat.v4f[0]; - break; - } - return splat; -} - -template -struct palign_impl -{ - static EIGEN_STRONG_INLINE void run(Packet4i& first, const Packet4i& second) - { - switch (Offset % 4) { - case 1: - first = vec_sld(first, second, 4); break; - case 2: - first = vec_sld(first, second, 8); break; - case 3: - first = vec_sld(first, second, 12); break; - } - } -}; - -/* This is a tricky one, we have to translate float alignment to vector elements of sizeof double - */ -template -struct palign_impl -{ - static EIGEN_STRONG_INLINE void run(Packet4f& first, const Packet4f& second) - { - switch (Offset % 4) { - case 1: - first.v4f[0] = vec_sld(first.v4f[0], first.v4f[1], 8); - first.v4f[1] = vec_sld(first.v4f[1], second.v4f[0], 8); - break; - case 2: - first.v4f[0] = first.v4f[1]; - first.v4f[1] = second.v4f[0]; - break; - case 3: - first.v4f[0] = vec_sld(first.v4f[1], second.v4f[0], 8); - first.v4f[1] = vec_sld(second.v4f[0], second.v4f[1], 8); - break; - } - } -}; - - -template -struct palign_impl -{ - static EIGEN_STRONG_INLINE void run(Packet2d& first, const Packet2d& second) - { - if (Offset == 1) - first = reinterpret_cast(vec_sld(reinterpret_cast(first), reinterpret_cast(second), 8)); - } -}; - -template<> EIGEN_STRONG_INLINE Packet4i pload(const int* from) -{ - // FIXME: No intrinsic yet - EIGEN_DEBUG_ALIGNED_LOAD - Packet *vfrom; - vfrom = (Packet *) from; - return vfrom->v4i; -} - -template<> EIGEN_STRONG_INLINE Packet4f pload(const float* from) -{ - // FIXME: No intrinsic yet - EIGEN_DEBUG_ALIGNED_LOAD - Packet4f vfrom; - vfrom.v4f[0] = vec_ld2f(&from[0]); - vfrom.v4f[1] = vec_ld2f(&from[2]); - return vfrom; -} - -template<> EIGEN_STRONG_INLINE Packet2d pload(const double* from) -{ - // FIXME: No intrinsic yet - EIGEN_DEBUG_ALIGNED_LOAD - Packet *vfrom; - vfrom = (Packet *) from; - return vfrom->v2d; -} - -template<> EIGEN_STRONG_INLINE void pstore(int* to, const Packet4i& from) -{ - // FIXME: No intrinsic yet - EIGEN_DEBUG_ALIGNED_STORE - Packet *vto; - vto = (Packet *) to; - vto->v4i = from; -} - -template<> EIGEN_STRONG_INLINE void pstore(float* to, const Packet4f& from) -{ - // FIXME: No intrinsic yet - EIGEN_DEBUG_ALIGNED_STORE - vec_st2f(from.v4f[0], &to[0]); - vec_st2f(from.v4f[1], &to[2]); -} - - -template<> EIGEN_STRONG_INLINE void pstore(double* to, const Packet2d& from) -{ - // FIXME: No intrinsic yet - EIGEN_DEBUG_ALIGNED_STORE - Packet *vto; - vto = (Packet *) to; - vto->v2d = from; -} - -template<> EIGEN_STRONG_INLINE Packet4i pset1(const int& from) -{ - return vec_splats(from); -} -template<> EIGEN_STRONG_INLINE Packet2d pset1(const double& from) { - return vec_splats(from); -} -template<> EIGEN_STRONG_INLINE Packet4f pset1(const float& from) -{ - Packet4f to; - to.v4f[0] = pset1(static_cast(from)); - to.v4f[1] = to.v4f[0]; - return to; -} - -template<> EIGEN_STRONG_INLINE void -pbroadcast4(const int *a, - Packet4i& a0, Packet4i& a1, Packet4i& a2, Packet4i& a3) -{ - a3 = pload(a); - a0 = vec_splat(a3, 0); - a1 = vec_splat(a3, 1); - a2 = vec_splat(a3, 2); - a3 = vec_splat(a3, 3); -} - -template<> EIGEN_STRONG_INLINE void -pbroadcast4(const float *a, - Packet4f& a0, Packet4f& a1, Packet4f& a2, Packet4f& a3) -{ - a3 = pload(a); - a0 = vec_splat_packet4f<0>(a3); - a1 = vec_splat_packet4f<1>(a3); - a2 = vec_splat_packet4f<2>(a3); - a3 = vec_splat_packet4f<3>(a3); -} - -template<> EIGEN_STRONG_INLINE void -pbroadcast4(const double *a, - Packet2d& a0, Packet2d& a1, Packet2d& a2, Packet2d& a3) -{ - a1 = pload(a); - a0 = vec_splat(a1, 0); - a1 = vec_splat(a1, 1); - a3 = pload(a+2); - a2 = vec_splat(a3, 0); - a3 = vec_splat(a3, 1); -} - -template<> EIGEN_DEVICE_FUNC inline Packet4i pgather(const int* from, Index stride) -{ - int EIGEN_ALIGN16 ai[4]; - ai[0] = from[0*stride]; - ai[1] = from[1*stride]; - ai[2] = from[2*stride]; - ai[3] = from[3*stride]; - return pload(ai); -} - -template<> EIGEN_DEVICE_FUNC inline Packet4f pgather(const float* from, Index stride) -{ - float EIGEN_ALIGN16 ai[4]; - ai[0] = from[0*stride]; - ai[1] = from[1*stride]; - ai[2] = from[2*stride]; - ai[3] = from[3*stride]; - return pload(ai); -} - -template<> EIGEN_DEVICE_FUNC inline Packet2d pgather(const double* from, Index stride) -{ - double EIGEN_ALIGN16 af[2]; - af[0] = from[0*stride]; - af[1] = from[1*stride]; - return pload(af); -} - -template<> EIGEN_DEVICE_FUNC inline void pscatter(int* to, const Packet4i& from, Index stride) -{ - int EIGEN_ALIGN16 ai[4]; - pstore((int *)ai, from); - to[0*stride] = ai[0]; - to[1*stride] = ai[1]; - to[2*stride] = ai[2]; - to[3*stride] = ai[3]; -} - -template<> EIGEN_DEVICE_FUNC inline void pscatter(float* to, const Packet4f& from, Index stride) -{ - float EIGEN_ALIGN16 ai[4]; - pstore((float *)ai, from); - to[0*stride] = ai[0]; - to[1*stride] = ai[1]; - to[2*stride] = ai[2]; - to[3*stride] = ai[3]; -} - -template<> EIGEN_DEVICE_FUNC inline void pscatter(double* to, const Packet2d& from, Index stride) -{ - double EIGEN_ALIGN16 af[2]; - pstore(af, from); - to[0*stride] = af[0]; - to[1*stride] = af[1]; -} - -template<> EIGEN_STRONG_INLINE Packet4i padd(const Packet4i& a, const Packet4i& b) { return (a + b); } -template<> EIGEN_STRONG_INLINE Packet4f padd(const Packet4f& a, const Packet4f& b) -{ - Packet4f c; - c.v4f[0] = a.v4f[0] + b.v4f[0]; - c.v4f[1] = a.v4f[1] + b.v4f[1]; - return c; -} -template<> EIGEN_STRONG_INLINE Packet2d padd(const Packet2d& a, const Packet2d& b) { return (a + b); } - -template<> EIGEN_STRONG_INLINE Packet4i psub(const Packet4i& a, const Packet4i& b) { return (a - b); } -template<> EIGEN_STRONG_INLINE Packet4f psub(const Packet4f& a, const Packet4f& b) -{ - Packet4f c; - c.v4f[0] = a.v4f[0] - b.v4f[0]; - c.v4f[1] = a.v4f[1] - b.v4f[1]; - return c; -} -template<> EIGEN_STRONG_INLINE Packet2d psub(const Packet2d& a, const Packet2d& b) { return (a - b); } - -template<> EIGEN_STRONG_INLINE Packet4i pmul(const Packet4i& a, const Packet4i& b) { return (a * b); } -template<> EIGEN_STRONG_INLINE Packet4f pmul(const Packet4f& a, const Packet4f& b) -{ - Packet4f c; - c.v4f[0] = a.v4f[0] * b.v4f[0]; - c.v4f[1] = a.v4f[1] * b.v4f[1]; - return c; -} -template<> EIGEN_STRONG_INLINE Packet2d pmul(const Packet2d& a, const Packet2d& b) { return (a * b); } - -template<> EIGEN_STRONG_INLINE Packet4i pdiv(const Packet4i& a, const Packet4i& b) { return (a / b); } -template<> EIGEN_STRONG_INLINE Packet4f pdiv(const Packet4f& a, const Packet4f& b) -{ - Packet4f c; - c.v4f[0] = a.v4f[0] / b.v4f[0]; - c.v4f[1] = a.v4f[1] / b.v4f[1]; - return c; -} -template<> EIGEN_STRONG_INLINE Packet2d pdiv(const Packet2d& a, const Packet2d& b) { return (a / b); } - -template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) { return (-a); } -template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) -{ - Packet4f c; - c.v4f[0] = -a.v4f[0]; - c.v4f[1] = -a.v4f[1]; - return c; -} -template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a) { return (-a); } - -template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; } -template<> EIGEN_STRONG_INLINE Packet4f pconj(const Packet4f& a) { return a; } -template<> EIGEN_STRONG_INLINE Packet2d pconj(const Packet2d& a) { return a; } - -template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return padd(pmul(a, b), c); } -template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) -{ - Packet4f res; - res.v4f[0] = vec_madd(a.v4f[0], b.v4f[0], c.v4f[0]); - res.v4f[1] = vec_madd(a.v4f[1], b.v4f[1], c.v4f[1]); - return res; -} -template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return vec_madd(a, b, c); } - -template<> EIGEN_STRONG_INLINE Packet4i plset(const int& a) { return padd(pset1(a), p4i_COUNTDOWN); } -template<> EIGEN_STRONG_INLINE Packet4f plset(const float& a) { return padd(pset1(a), p4f_COUNTDOWN); } -template<> EIGEN_STRONG_INLINE Packet2d plset(const double& a) { return padd(pset1(a), p2d_COUNTDOWN); } - -template<> EIGEN_STRONG_INLINE Packet4i pmin(const Packet4i& a, const Packet4i& b) { return vec_min(a, b); } -template<> EIGEN_STRONG_INLINE Packet2d pmin(const Packet2d& a, const Packet2d& b) { return vec_min(a, b); } -template<> EIGEN_STRONG_INLINE Packet4f pmin(const Packet4f& a, const Packet4f& b) -{ - Packet4f res; - res.v4f[0] = pmin(a.v4f[0], b.v4f[0]); - res.v4f[1] = pmin(a.v4f[1], b.v4f[1]); - return res; -} - -template<> EIGEN_STRONG_INLINE Packet4i pmax(const Packet4i& a, const Packet4i& b) { return vec_max(a, b); } -template<> EIGEN_STRONG_INLINE Packet2d pmax(const Packet2d& a, const Packet2d& b) { return vec_max(a, b); } -template<> EIGEN_STRONG_INLINE Packet4f pmax(const Packet4f& a, const Packet4f& b) -{ - Packet4f res; - res.v4f[0] = pmax(a.v4f[0], b.v4f[0]); - res.v4f[1] = pmax(a.v4f[1], b.v4f[1]); - return res; -} - -template<> EIGEN_STRONG_INLINE Packet4i pand(const Packet4i& a, const Packet4i& b) { return vec_and(a, b); } -template<> EIGEN_STRONG_INLINE Packet2d pand(const Packet2d& a, const Packet2d& b) { return vec_and(a, b); } -template<> EIGEN_STRONG_INLINE Packet4f pand(const Packet4f& a, const Packet4f& b) -{ - Packet4f res; - res.v4f[0] = pand(a.v4f[0], b.v4f[0]); - res.v4f[1] = pand(a.v4f[1], b.v4f[1]); - return res; -} - -template<> EIGEN_STRONG_INLINE Packet4i por(const Packet4i& a, const Packet4i& b) { return vec_or(a, b); } -template<> EIGEN_STRONG_INLINE Packet2d por(const Packet2d& a, const Packet2d& b) { return vec_or(a, b); } -template<> EIGEN_STRONG_INLINE Packet4f por(const Packet4f& a, const Packet4f& b) -{ - Packet4f res; - res.v4f[0] = pand(a.v4f[0], b.v4f[0]); - res.v4f[1] = pand(a.v4f[1], b.v4f[1]); - return res; -} - -template<> EIGEN_STRONG_INLINE Packet4i pxor(const Packet4i& a, const Packet4i& b) { return vec_xor(a, b); } -template<> EIGEN_STRONG_INLINE Packet2d pxor(const Packet2d& a, const Packet2d& b) { return vec_xor(a, b); } -template<> EIGEN_STRONG_INLINE Packet4f pxor(const Packet4f& a, const Packet4f& b) -{ - Packet4f res; - res.v4f[0] = pand(a.v4f[0], b.v4f[0]); - res.v4f[1] = pand(a.v4f[1], b.v4f[1]); - return res; -} - -template<> EIGEN_STRONG_INLINE Packet4i pandnot(const Packet4i& a, const Packet4i& b) { return pand(a, vec_nor(b, b)); } -template<> EIGEN_STRONG_INLINE Packet2d pandnot(const Packet2d& a, const Packet2d& b) { return vec_and(a, vec_nor(b, b)); } -template<> EIGEN_STRONG_INLINE Packet4f pandnot(const Packet4f& a, const Packet4f& b) -{ - Packet4f res; - res.v4f[0] = pandnot(a.v4f[0], b.v4f[0]); - res.v4f[1] = pandnot(a.v4f[1], b.v4f[1]); - return res; -} - -template<> EIGEN_STRONG_INLINE Packet4f pround(const Packet4f& a) -{ - Packet4f res; - res.v4f[0] = vec_round(a.v4f[0]); - res.v4f[1] = vec_round(a.v4f[1]); - return res; -} -template<> EIGEN_STRONG_INLINE Packet2d pround(const Packet2d& a) { return vec_round(a); } -template<> EIGEN_STRONG_INLINE Packet4f pceil(const Packet4f& a) -{ - Packet4f res; - res.v4f[0] = vec_ceil(a.v4f[0]); - res.v4f[1] = vec_ceil(a.v4f[1]); - return res; -} -template<> EIGEN_STRONG_INLINE Packet2d pceil(const Packet2d& a) { return vec_ceil(a); } -template<> EIGEN_STRONG_INLINE Packet4f pfloor(const Packet4f& a) -{ - Packet4f res; - res.v4f[0] = vec_floor(a.v4f[0]); - res.v4f[1] = vec_floor(a.v4f[1]); - return res; -} -template<> EIGEN_STRONG_INLINE Packet2d pfloor(const Packet2d& a) { return vec_floor(a); } - -template<> EIGEN_STRONG_INLINE Packet4i ploadu(const int* from) { return pload(from); } -template<> EIGEN_STRONG_INLINE Packet4f ploadu(const float* from) { return pload(from); } -template<> EIGEN_STRONG_INLINE Packet2d ploadu(const double* from) { return pload(from); } - - -template<> EIGEN_STRONG_INLINE Packet4i ploaddup(const int* from) -{ - Packet4i p = pload(from); - return vec_perm(p, p, p16uc_DUPLICATE32_HI); -} - -template<> EIGEN_STRONG_INLINE Packet4f ploaddup(const float* from) -{ - Packet4f p = pload(from); - p.v4f[1] = vec_splat(p.v4f[0], 1); - p.v4f[0] = vec_splat(p.v4f[0], 0); - return p; -} - -template<> EIGEN_STRONG_INLINE Packet2d ploaddup(const double* from) -{ - Packet2d p = pload(from); - return vec_perm(p, p, p16uc_PSET64_HI); -} - -template<> EIGEN_STRONG_INLINE void pstoreu(int* to, const Packet4i& from) { pstore(to, from); } -template<> EIGEN_STRONG_INLINE void pstoreu(float* to, const Packet4f& from) { pstore(to, from); } -template<> EIGEN_STRONG_INLINE void pstoreu(double* to, const Packet2d& from) { pstore(to, from); } - -template<> EIGEN_STRONG_INLINE void prefetch(const int* addr) { EIGEN_ZVECTOR_PREFETCH(addr); } -template<> EIGEN_STRONG_INLINE void prefetch(const float* addr) { EIGEN_ZVECTOR_PREFETCH(addr); } -template<> EIGEN_STRONG_INLINE void prefetch(const double* addr) { EIGEN_ZVECTOR_PREFETCH(addr); } - -template<> EIGEN_STRONG_INLINE int pfirst(const Packet4i& a) { int EIGEN_ALIGN16 x[4]; pstore(x, a); return x[0]; } -template<> EIGEN_STRONG_INLINE float pfirst(const Packet4f& a) { float EIGEN_ALIGN16 x[2]; vec_st2f(a.v4f[0], &x[0]); return x[0]; } -template<> EIGEN_STRONG_INLINE double pfirst(const Packet2d& a) { double EIGEN_ALIGN16 x[2]; pstore(x, a); return x[0]; } - -template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) -{ - return reinterpret_cast(vec_perm(reinterpret_cast(a), reinterpret_cast(a), p16uc_REVERSE32)); -} - -template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a) -{ - return reinterpret_cast(vec_perm(reinterpret_cast(a), reinterpret_cast(a), p16uc_REVERSE64)); -} - -template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) -{ - Packet4f rev; - rev.v4f[0] = preverse(a.v4f[1]); - rev.v4f[1] = preverse(a.v4f[0]); - return rev; -} - -template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vec_abs(a); } -template<> EIGEN_STRONG_INLINE Packet2d pabs(const Packet2d& a) { return vec_abs(a); } -template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) -{ - Packet4f res; - res.v4f[0] = pabs(a.v4f[0]); - res.v4f[1] = pabs(a.v4f[1]); - return res; -} - -template<> EIGEN_STRONG_INLINE int predux(const Packet4i& a) -{ - Packet4i b, sum; - b = vec_sld(a, a, 8); - sum = padd(a, b); - b = vec_sld(sum, sum, 4); - sum = padd(sum, b); - return pfirst(sum); -} - -template<> EIGEN_STRONG_INLINE double predux(const Packet2d& a) -{ - Packet2d b, sum; - b = reinterpret_cast(vec_sld(reinterpret_cast(a), reinterpret_cast(a), 8)); - sum = padd(a, b); - return pfirst(sum); -} -template<> EIGEN_STRONG_INLINE float predux(const Packet4f& a) -{ - Packet2d sum; - sum = padd(a.v4f[0], a.v4f[1]); - double first = predux(sum); - return static_cast(first); -} - -template<> EIGEN_STRONG_INLINE Packet4i preduxp(const Packet4i* vecs) -{ - Packet4i v[4], sum[4]; - - // It's easier and faster to transpose then add as columns - // Check: http://www.freevec.org/function/matrix_4x4_transpose_floats for explanation - // Do the transpose, first set of moves - v[0] = vec_mergeh(vecs[0], vecs[2]); - v[1] = vec_mergel(vecs[0], vecs[2]); - v[2] = vec_mergeh(vecs[1], vecs[3]); - v[3] = vec_mergel(vecs[1], vecs[3]); - // Get the resulting vectors - sum[0] = vec_mergeh(v[0], v[2]); - sum[1] = vec_mergel(v[0], v[2]); - sum[2] = vec_mergeh(v[1], v[3]); - sum[3] = vec_mergel(v[1], v[3]); - - // Now do the summation: - // Lines 0+1 - sum[0] = padd(sum[0], sum[1]); - // Lines 2+3 - sum[1] = padd(sum[2], sum[3]); - // Add the results - sum[0] = padd(sum[0], sum[1]); - - return sum[0]; -} - -template<> EIGEN_STRONG_INLINE Packet2d preduxp(const Packet2d* vecs) -{ - Packet2d v[2], sum; - v[0] = padd(vecs[0], reinterpret_cast(vec_sld(reinterpret_cast(vecs[0]), reinterpret_cast(vecs[0]), 8))); - v[1] = padd(vecs[1], reinterpret_cast(vec_sld(reinterpret_cast(vecs[1]), reinterpret_cast(vecs[1]), 8))); - - sum = reinterpret_cast(vec_sld(reinterpret_cast(v[0]), reinterpret_cast(v[1]), 8)); - - return sum; -} - -template<> EIGEN_STRONG_INLINE Packet4f preduxp(const Packet4f* vecs) -{ - PacketBlock transpose; - transpose.packet[0] = vecs[0]; - transpose.packet[1] = vecs[1]; - transpose.packet[2] = vecs[2]; - transpose.packet[3] = vecs[3]; - ptranspose(transpose); - - Packet4f sum = padd(transpose.packet[0], transpose.packet[1]); - sum = padd(sum, transpose.packet[2]); - sum = padd(sum, transpose.packet[3]); - return sum; -} - -// Other reduction functions: -// mul -template<> EIGEN_STRONG_INLINE int predux_mul(const Packet4i& a) -{ - EIGEN_ALIGN16 int aux[4]; - pstore(aux, a); - return aux[0] * aux[1] * aux[2] * aux[3]; -} - -template<> EIGEN_STRONG_INLINE double predux_mul(const Packet2d& a) -{ - return pfirst(pmul(a, reinterpret_cast(vec_sld(reinterpret_cast(a), reinterpret_cast(a), 8)))); -} - -template<> EIGEN_STRONG_INLINE float predux_mul(const Packet4f& a) -{ - // Return predux_mul of the subvectors product - return static_cast(pfirst(predux_mul(pmul(a.v4f[0], a.v4f[1])))); -} - -// min -template<> EIGEN_STRONG_INLINE int predux_min(const Packet4i& a) -{ - Packet4i b, res; - b = pmin(a, vec_sld(a, a, 8)); - res = pmin(b, vec_sld(b, b, 4)); - return pfirst(res); -} - -template<> EIGEN_STRONG_INLINE double predux_min(const Packet2d& a) -{ - return pfirst(pmin(a, reinterpret_cast(vec_sld(reinterpret_cast(a), reinterpret_cast(a), 8)))); -} - -template<> EIGEN_STRONG_INLINE float predux_min(const Packet4f& a) -{ - Packet2d b, res; - b = pmin(a.v4f[0], a.v4f[1]); - res = pmin(b, reinterpret_cast(vec_sld(reinterpret_cast(b), reinterpret_cast(b), 8))); - return static_cast(pfirst(res)); -} - -// max -template<> EIGEN_STRONG_INLINE int predux_max(const Packet4i& a) -{ - Packet4i b, res; - b = pmax(a, vec_sld(a, a, 8)); - res = pmax(b, vec_sld(b, b, 4)); - return pfirst(res); -} - -// max -template<> EIGEN_STRONG_INLINE double predux_max(const Packet2d& a) -{ - return pfirst(pmax(a, reinterpret_cast(vec_sld(reinterpret_cast(a), reinterpret_cast(a), 8)))); -} - -template<> EIGEN_STRONG_INLINE float predux_max(const Packet4f& a) -{ - Packet2d b, res; - b = pmax(a.v4f[0], a.v4f[1]); - res = pmax(b, reinterpret_cast(vec_sld(reinterpret_cast(b), reinterpret_cast(b), 8))); - return static_cast(pfirst(res)); -} - -EIGEN_DEVICE_FUNC inline void -ptranspose(PacketBlock& kernel) { - Packet4i t0 = vec_mergeh(kernel.packet[0], kernel.packet[2]); - Packet4i t1 = vec_mergel(kernel.packet[0], kernel.packet[2]); - Packet4i t2 = vec_mergeh(kernel.packet[1], kernel.packet[3]); - Packet4i t3 = vec_mergel(kernel.packet[1], kernel.packet[3]); - kernel.packet[0] = vec_mergeh(t0, t2); - kernel.packet[1] = vec_mergel(t0, t2); - kernel.packet[2] = vec_mergeh(t1, t3); - kernel.packet[3] = vec_mergel(t1, t3); -} - -EIGEN_DEVICE_FUNC inline void -ptranspose(PacketBlock& kernel) { - Packet2d t0 = vec_perm(kernel.packet[0], kernel.packet[1], p16uc_TRANSPOSE64_HI); - Packet2d t1 = vec_perm(kernel.packet[0], kernel.packet[1], p16uc_TRANSPOSE64_LO); - kernel.packet[0] = t0; - kernel.packet[1] = t1; -} - -/* Split the Packet4f PacketBlock into 4 Packet2d PacketBlocks and transpose each one - */ -EIGEN_DEVICE_FUNC inline void -ptranspose(PacketBlock& kernel) { - PacketBlock t0,t1,t2,t3; - // copy top-left 2x2 Packet2d block - t0.packet[0] = kernel.packet[0].v4f[0]; - t0.packet[1] = kernel.packet[1].v4f[0]; - - // copy top-right 2x2 Packet2d block - t1.packet[0] = kernel.packet[0].v4f[1]; - t1.packet[1] = kernel.packet[1].v4f[1]; - - // copy bottom-left 2x2 Packet2d block - t2.packet[0] = kernel.packet[2].v4f[0]; - t2.packet[1] = kernel.packet[3].v4f[0]; - - // copy bottom-right 2x2 Packet2d block - t3.packet[0] = kernel.packet[2].v4f[1]; - t3.packet[1] = kernel.packet[3].v4f[1]; - - // Transpose all 2x2 blocks - ptranspose(t0); - ptranspose(t1); - ptranspose(t2); - ptranspose(t3); - - // Copy back transposed blocks, but exchange t1 and t2 due to transposition - kernel.packet[0].v4f[0] = t0.packet[0]; - kernel.packet[0].v4f[1] = t2.packet[0]; - kernel.packet[1].v4f[0] = t0.packet[1]; - kernel.packet[1].v4f[1] = t2.packet[1]; - kernel.packet[2].v4f[0] = t1.packet[0]; - kernel.packet[2].v4f[1] = t3.packet[0]; - kernel.packet[3].v4f[0] = t1.packet[1]; - kernel.packet[3].v4f[1] = t3.packet[1]; -} - -template<> EIGEN_STRONG_INLINE Packet4i pblend(const Selector<4>& ifPacket, const Packet4i& thenPacket, const Packet4i& elsePacket) { - Packet4ui select = { ifPacket.select[0], ifPacket.select[1], ifPacket.select[2], ifPacket.select[3] }; - Packet4ui mask = vec_cmpeq(select, reinterpret_cast(p4i_ONE)); - return vec_sel(elsePacket, thenPacket, mask); -} - -template<> EIGEN_STRONG_INLINE Packet4f pblend(const Selector<4>& ifPacket, const Packet4f& thenPacket, const Packet4f& elsePacket) { - Packet2ul select_hi = { ifPacket.select[0], ifPacket.select[1] }; - Packet2ul select_lo = { ifPacket.select[2], ifPacket.select[3] }; - Packet2ul mask_hi = vec_cmpeq(select_hi, reinterpret_cast(p2l_ONE)); - Packet2ul mask_lo = vec_cmpeq(select_lo, reinterpret_cast(p2l_ONE)); - Packet4f result; - result.v4f[0] = vec_sel(elsePacket.v4f[0], thenPacket.v4f[0], mask_hi); - result.v4f[1] = vec_sel(elsePacket.v4f[1], thenPacket.v4f[1], mask_lo); - return result; -} - -template<> EIGEN_STRONG_INLINE Packet2d pblend(const Selector<2>& ifPacket, const Packet2d& thenPacket, const Packet2d& elsePacket) { - Packet2ul select = { ifPacket.select[0], ifPacket.select[1] }; - Packet2ul mask = vec_cmpeq(select, reinterpret_cast(p2l_ONE)); - return vec_sel(elsePacket, thenPacket, mask); -} - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_PACKET_MATH_ZVECTOR_H diff --git a/src/math_meigen/Eigen/src/Core/functors/AssignmentFunctors.h b/src/math_meigen/Eigen/src/Core/functors/AssignmentFunctors.h deleted file mode 100755 index 4153b877c..000000000 --- a/src/math_meigen/Eigen/src/Core/functors/AssignmentFunctors.h +++ /dev/null @@ -1,168 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_ASSIGNMENT_FUNCTORS_H -#define EIGEN_ASSIGNMENT_FUNCTORS_H - -namespace Eigen { - -namespace internal { - -/** \internal - * \brief Template functor for scalar/packet assignment - * - */ -template struct assign_op { - - EIGEN_EMPTY_STRUCT_CTOR(assign_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a = b; } - - template - EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const - { internal::pstoret(a,b); } -}; - -// Empty overload for void type (used by PermutationMatrix) -template struct assign_op {}; - -template -struct functor_traits > { - enum { - Cost = NumTraits::ReadCost, - PacketAccess = is_same::value && packet_traits::Vectorizable && packet_traits::Vectorizable - }; -}; - -/** \internal - * \brief Template functor for scalar/packet assignment with addition - * - */ -template struct add_assign_op { - - EIGEN_EMPTY_STRUCT_CTOR(add_assign_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a += b; } - - template - EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const - { internal::pstoret(a,internal::padd(internal::ploadt(a),b)); } -}; -template -struct functor_traits > { - enum { - Cost = NumTraits::ReadCost + NumTraits::AddCost, - PacketAccess = is_same::value && packet_traits::HasAdd - }; -}; - -/** \internal - * \brief Template functor for scalar/packet assignment with subtraction - * - */ -template struct sub_assign_op { - - EIGEN_EMPTY_STRUCT_CTOR(sub_assign_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a -= b; } - - template - EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const - { internal::pstoret(a,internal::psub(internal::ploadt(a),b)); } -}; -template -struct functor_traits > { - enum { - Cost = NumTraits::ReadCost + NumTraits::AddCost, - PacketAccess = is_same::value && packet_traits::HasSub - }; -}; - -/** \internal - * \brief Template functor for scalar/packet assignment with multiplication - * - */ -template -struct mul_assign_op { - - EIGEN_EMPTY_STRUCT_CTOR(mul_assign_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a *= b; } - - template - EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const - { internal::pstoret(a,internal::pmul(internal::ploadt(a),b)); } -}; -template -struct functor_traits > { - enum { - Cost = NumTraits::ReadCost + NumTraits::MulCost, - PacketAccess = is_same::value && packet_traits::HasMul - }; -}; - -/** \internal - * \brief Template functor for scalar/packet assignment with diviving - * - */ -template struct div_assign_op { - - EIGEN_EMPTY_STRUCT_CTOR(div_assign_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a /= b; } - - template - EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const - { internal::pstoret(a,internal::pdiv(internal::ploadt(a),b)); } -}; -template -struct functor_traits > { - enum { - Cost = NumTraits::ReadCost + NumTraits::MulCost, - PacketAccess = is_same::value && packet_traits::HasDiv - }; -}; - -/** \internal - * \brief Template functor for scalar/packet assignment with swapping - * - * It works as follow. For a non-vectorized evaluation loop, we have: - * for(i) func(A.coeffRef(i), B.coeff(i)); - * where B is a SwapWrapper expression. The trick is to make SwapWrapper::coeff behaves like a non-const coeffRef. - * Actually, SwapWrapper might not even be needed since even if B is a plain expression, since it has to be writable - * B.coeff already returns a const reference to the underlying scalar value. - * - * The case of a vectorized loop is more tricky: - * for(i,j) func.assignPacket(&A.coeffRef(i,j), B.packet(i,j)); - * Here, B must be a SwapWrapper whose packet function actually returns a proxy object holding a Scalar*, - * the actual alignment and Packet type. - * - */ -template struct swap_assign_op { - - EIGEN_EMPTY_STRUCT_CTOR(swap_assign_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(Scalar& a, const Scalar& b) const - { -#ifdef __CUDACC__ - // FIXME is there some kind of cuda::swap? - Scalar t=b; const_cast(b)=a; a=t; -#else - using std::swap; - swap(a,const_cast(b)); -#endif - } -}; -template -struct functor_traits > { - enum { - Cost = 3 * NumTraits::ReadCost, - PacketAccess = packet_traits::Vectorizable - }; -}; - -} // namespace internal - -} // namespace Eigen - -#endif // EIGEN_ASSIGNMENT_FUNCTORS_H diff --git a/src/math_meigen/Eigen/src/Core/functors/BinaryFunctors.h b/src/math_meigen/Eigen/src/Core/functors/BinaryFunctors.h deleted file mode 100755 index 3eae6b8ca..000000000 --- a/src/math_meigen/Eigen/src/Core/functors/BinaryFunctors.h +++ /dev/null @@ -1,475 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_BINARY_FUNCTORS_H -#define EIGEN_BINARY_FUNCTORS_H - -namespace Eigen { - -namespace internal { - -//---------- associative binary functors ---------- - -template -struct binary_op_base -{ - typedef Arg1 first_argument_type; - typedef Arg2 second_argument_type; -}; - -/** \internal - * \brief Template functor to compute the sum of two scalars - * - * \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, DenseBase::sum() - */ -template -struct scalar_sum_op : binary_op_base -{ - typedef typename ScalarBinaryOpTraits::ReturnType result_type; -#ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN - EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op) -#else - scalar_sum_op() { - EIGEN_SCALAR_BINARY_OP_PLUGIN - } -#endif - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a + b; } - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const - { return internal::padd(a,b); } - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const - { return internal::predux(a); } -}; -template -struct functor_traits > { - enum { - Cost = (NumTraits::AddCost+NumTraits::AddCost)/2, // rough estimate! - PacketAccess = is_same::value && packet_traits::HasAdd && packet_traits::HasAdd - // TODO vectorize mixed sum - }; -}; - -/** \internal - * \brief Template specialization to deprecate the summation of boolean expressions. - * This is required to solve Bug 426. - * \sa DenseBase::count(), DenseBase::any(), ArrayBase::cast(), MatrixBase::cast() - */ -template<> struct scalar_sum_op : scalar_sum_op { - EIGEN_DEPRECATED - scalar_sum_op() {} -}; - - -/** \internal - * \brief Template functor to compute the product of two scalars - * - * \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux() - */ -template -struct scalar_product_op : binary_op_base -{ - typedef typename ScalarBinaryOpTraits::ReturnType result_type; -#ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN - EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op) -#else - scalar_product_op() { - EIGEN_SCALAR_BINARY_OP_PLUGIN - } -#endif - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a * b; } - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const - { return internal::pmul(a,b); } - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const - { return internal::predux_mul(a); } -}; -template -struct functor_traits > { - enum { - Cost = (NumTraits::MulCost + NumTraits::MulCost)/2, // rough estimate! - PacketAccess = is_same::value && packet_traits::HasMul && packet_traits::HasMul - // TODO vectorize mixed product - }; -}; - -/** \internal - * \brief Template functor to compute the conjugate product of two scalars - * - * This is a short cut for conj(x) * y which is needed for optimization purpose; in Eigen2 support mode, this becomes x * conj(y) - */ -template -struct scalar_conj_product_op : binary_op_base -{ - - enum { - Conj = NumTraits::IsComplex - }; - - typedef typename ScalarBinaryOpTraits::ReturnType result_type; - - EIGEN_EMPTY_STRUCT_CTOR(scalar_conj_product_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const - { return conj_helper().pmul(a,b); } - - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const - { return conj_helper().pmul(a,b); } -}; -template -struct functor_traits > { - enum { - Cost = NumTraits::MulCost, - PacketAccess = internal::is_same::value && packet_traits::HasMul - }; -}; - -/** \internal - * \brief Template functor to compute the min of two scalars - * - * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff() - */ -template -struct scalar_min_op : binary_op_base -{ - typedef typename ScalarBinaryOpTraits::ReturnType result_type; - EIGEN_EMPTY_STRUCT_CTOR(scalar_min_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return numext::mini(a, b); } - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const - { return internal::pmin(a,b); } - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const - { return internal::predux_min(a); } -}; -template -struct functor_traits > { - enum { - Cost = (NumTraits::AddCost+NumTraits::AddCost)/2, - PacketAccess = internal::is_same::value && packet_traits::HasMin - }; -}; - -/** \internal - * \brief Template functor to compute the max of two scalars - * - * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff() - */ -template -struct scalar_max_op : binary_op_base -{ - typedef typename ScalarBinaryOpTraits::ReturnType result_type; - EIGEN_EMPTY_STRUCT_CTOR(scalar_max_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return numext::maxi(a, b); } - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const - { return internal::pmax(a,b); } - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const - { return internal::predux_max(a); } -}; -template -struct functor_traits > { - enum { - Cost = (NumTraits::AddCost+NumTraits::AddCost)/2, - PacketAccess = internal::is_same::value && packet_traits::HasMax - }; -}; - -/** \internal - * \brief Template functors for comparison of two scalars - * \todo Implement packet-comparisons - */ -template struct scalar_cmp_op; - -template -struct functor_traits > { - enum { - Cost = (NumTraits::AddCost+NumTraits::AddCost)/2, - PacketAccess = false - }; -}; - -template -struct result_of(LhsScalar,RhsScalar)> { - typedef bool type; -}; - - -template -struct scalar_cmp_op : binary_op_base -{ - typedef bool result_type; - EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a==b;} -}; -template -struct scalar_cmp_op : binary_op_base -{ - typedef bool result_type; - EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a -struct scalar_cmp_op : binary_op_base -{ - typedef bool result_type; - EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a<=b;} -}; -template -struct scalar_cmp_op : binary_op_base -{ - typedef bool result_type; - EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a>b;} -}; -template -struct scalar_cmp_op : binary_op_base -{ - typedef bool result_type; - EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a>=b;} -}; -template -struct scalar_cmp_op : binary_op_base -{ - typedef bool result_type; - EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return !(a<=b || b<=a);} -}; -template -struct scalar_cmp_op : binary_op_base -{ - typedef bool result_type; - EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a!=b;} -}; - - -/** \internal - * \brief Template functor to compute the hypot of two \b positive \b and \b real scalars - * - * \sa MatrixBase::stableNorm(), class Redux - */ -template -struct scalar_hypot_op : binary_op_base -{ - EIGEN_EMPTY_STRUCT_CTOR(scalar_hypot_op) - - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar &x, const Scalar &y) const - { - // This functor is used by hypotNorm only for which it is faster to first apply abs - // on all coefficients prior to reduction through hypot. - // This way we avoid calling abs on positive and real entries, and this also permits - // to seamlessly handle complexes. Otherwise we would have to handle both real and complexes - // through the same functor... - return internal::positive_real_hypot(x,y); - } -}; -template -struct functor_traits > { - enum - { - Cost = 3 * NumTraits::AddCost + - 2 * NumTraits::MulCost + - 2 * scalar_div_cost::value, - PacketAccess = false - }; -}; - -/** \internal - * \brief Template functor to compute the pow of two scalars - */ -template -struct scalar_pow_op : binary_op_base -{ - typedef typename ScalarBinaryOpTraits::ReturnType result_type; -#ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN - EIGEN_EMPTY_STRUCT_CTOR(scalar_pow_op) -#else - scalar_pow_op() { - typedef Scalar LhsScalar; - typedef Exponent RhsScalar; - EIGEN_SCALAR_BINARY_OP_PLUGIN - } -#endif - EIGEN_DEVICE_FUNC - inline result_type operator() (const Scalar& a, const Exponent& b) const { return numext::pow(a, b); } -}; -template -struct functor_traits > { - enum { Cost = 5 * NumTraits::MulCost, PacketAccess = false }; -}; - - - -//---------- non associative binary functors ---------- - -/** \internal - * \brief Template functor to compute the difference of two scalars - * - * \sa class CwiseBinaryOp, MatrixBase::operator- - */ -template -struct scalar_difference_op : binary_op_base -{ - typedef typename ScalarBinaryOpTraits::ReturnType result_type; -#ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN - EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op) -#else - scalar_difference_op() { - EIGEN_SCALAR_BINARY_OP_PLUGIN - } -#endif - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a - b; } - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const - { return internal::psub(a,b); } -}; -template -struct functor_traits > { - enum { - Cost = (NumTraits::AddCost+NumTraits::AddCost)/2, - PacketAccess = is_same::value && packet_traits::HasSub && packet_traits::HasSub - }; -}; - -/** \internal - * \brief Template functor to compute the quotient of two scalars - * - * \sa class CwiseBinaryOp, Cwise::operator/() - */ -template -struct scalar_quotient_op : binary_op_base -{ - typedef typename ScalarBinaryOpTraits::ReturnType result_type; -#ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN - EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op) -#else - scalar_quotient_op() { - EIGEN_SCALAR_BINARY_OP_PLUGIN - } -#endif - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a / b; } - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const - { return internal::pdiv(a,b); } -}; -template -struct functor_traits > { - typedef typename scalar_quotient_op::result_type result_type; - enum { - PacketAccess = is_same::value && packet_traits::HasDiv && packet_traits::HasDiv, - Cost = scalar_div_cost::value - }; -}; - - - -/** \internal - * \brief Template functor to compute the and of two booleans - * - * \sa class CwiseBinaryOp, ArrayBase::operator&& - */ -struct scalar_boolean_and_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_and_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a && b; } -}; -template<> struct functor_traits { - enum { - Cost = NumTraits::AddCost, - PacketAccess = false - }; -}; - -/** \internal - * \brief Template functor to compute the or of two booleans - * - * \sa class CwiseBinaryOp, ArrayBase::operator|| - */ -struct scalar_boolean_or_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_or_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a || b; } -}; -template<> struct functor_traits { - enum { - Cost = NumTraits::AddCost, - PacketAccess = false - }; -}; - -/** \internal - * \brief Template functor to compute the xor of two booleans - * - * \sa class CwiseBinaryOp, ArrayBase::operator^ - */ -struct scalar_boolean_xor_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_xor_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a ^ b; } -}; -template<> struct functor_traits { - enum { - Cost = NumTraits::AddCost, - PacketAccess = false - }; -}; - - - -//---------- binary functors bound to a constant, thus appearing as a unary functor ---------- - -// The following two classes permits to turn any binary functor into a unary one with one argument bound to a constant value. -// They are analogues to std::binder1st/binder2nd but with the following differences: -// - they are compatible with packetOp -// - they are portable across C++ versions (the std::binder* are deprecated in C++11) -template struct bind1st_op : BinaryOp { - - typedef typename BinaryOp::first_argument_type first_argument_type; - typedef typename BinaryOp::second_argument_type second_argument_type; - typedef typename BinaryOp::result_type result_type; - - bind1st_op(const first_argument_type &val) : m_value(val) {} - - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const second_argument_type& b) const { return BinaryOp::operator()(m_value,b); } - - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& b) const - { return BinaryOp::packetOp(internal::pset1(m_value), b); } - - first_argument_type m_value; -}; -template struct functor_traits > : functor_traits {}; - - -template struct bind2nd_op : BinaryOp { - - typedef typename BinaryOp::first_argument_type first_argument_type; - typedef typename BinaryOp::second_argument_type second_argument_type; - typedef typename BinaryOp::result_type result_type; - - bind2nd_op(const second_argument_type &val) : m_value(val) {} - - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const first_argument_type& a) const { return BinaryOp::operator()(a,m_value); } - - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const - { return BinaryOp::packetOp(a,internal::pset1(m_value)); } - - second_argument_type m_value; -}; -template struct functor_traits > : functor_traits {}; - - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_BINARY_FUNCTORS_H diff --git a/src/math_meigen/Eigen/src/Core/functors/NullaryFunctors.h b/src/math_meigen/Eigen/src/Core/functors/NullaryFunctors.h deleted file mode 100755 index b03be0269..000000000 --- a/src/math_meigen/Eigen/src/Core/functors/NullaryFunctors.h +++ /dev/null @@ -1,188 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2016 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_NULLARY_FUNCTORS_H -#define EIGEN_NULLARY_FUNCTORS_H - -namespace Eigen { - -namespace internal { - -template -struct scalar_constant_op { - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { } - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { } - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() () const { return m_other; } - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const PacketType packetOp() const { return internal::pset1(m_other); } - const Scalar m_other; -}; -template -struct functor_traits > -{ enum { Cost = 0 /* as the constant value should be loaded in register only once for the whole expression */, - PacketAccess = packet_traits::Vectorizable, IsRepeatable = true }; }; - -template struct scalar_identity_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op) - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType row, IndexType col) const { return row==col ? Scalar(1) : Scalar(0); } -}; -template -struct functor_traits > -{ enum { Cost = NumTraits::AddCost, PacketAccess = false, IsRepeatable = true }; }; - -template struct linspaced_op_impl; - -template -struct linspaced_op_impl -{ - linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) : - m_low(low), m_high(high), m_size1(num_steps==1 ? 1 : num_steps-1), m_step(num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1)), - m_flip(numext::abs(high) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType i) const { - typedef typename NumTraits::Real RealScalar; - if(m_flip) - return (i==0)? m_low : (m_high - RealScalar(m_size1-i)*m_step); - else - return (i==m_size1)? m_high : (m_low + RealScalar(i)*m_step); - } - - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const - { - // Principle: - // [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) ) - if(m_flip) - { - Packet pi = plset(Scalar(i-m_size1)); - Packet res = padd(pset1(m_high), pmul(pset1(m_step), pi)); - if(i==0) - res = pinsertfirst(res, m_low); - return res; - } - else - { - Packet pi = plset(Scalar(i)); - Packet res = padd(pset1(m_low), pmul(pset1(m_step), pi)); - if(i==m_size1-unpacket_traits::size+1) - res = pinsertlast(res, m_high); - return res; - } - } - - const Scalar m_low; - const Scalar m_high; - const Index m_size1; - const Scalar m_step; - const bool m_flip; -}; - -template -struct linspaced_op_impl -{ - linspaced_op_impl(const Scalar& low, const Scalar& high, Index num_steps) : - m_low(low), - m_multiplier((high-low)/convert_index(num_steps<=1 ? 1 : num_steps-1)), - m_divisor(convert_index((high>=low?num_steps:-num_steps)+(high-low))/((numext::abs(high-low)+1)==0?1:(numext::abs(high-low)+1))), - m_use_divisor(num_steps>1 && (numext::abs(high-low)+1) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE - const Scalar operator() (IndexType i) const - { - if(m_use_divisor) return m_low + convert_index(i)/m_divisor; - else return m_low + convert_index(i)*m_multiplier; - } - - const Scalar m_low; - const Scalar m_multiplier; - const Scalar m_divisor; - const bool m_use_divisor; -}; - -// ----- Linspace functor ---------------------------------------------------------------- - -// Forward declaration (we default to random access which does not really give -// us a speed gain when using packet access but it allows to use the functor in -// nested expressions). -template struct linspaced_op; -template struct functor_traits< linspaced_op > -{ - enum - { - Cost = 1, - PacketAccess = (!NumTraits::IsInteger) && packet_traits::HasSetLinear && packet_traits::HasBlend, - /*&& ((!NumTraits::IsInteger) || packet_traits::HasDiv),*/ // <- vectorization for integer is currently disabled - IsRepeatable = true - }; -}; -template struct linspaced_op -{ - linspaced_op(const Scalar& low, const Scalar& high, Index num_steps) - : impl((num_steps==1 ? high : low),high,num_steps) - {} - - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (IndexType i) const { return impl(i); } - - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(IndexType i) const { return impl.packetOp(i); } - - // This proxy object handles the actual required temporaries and the different - // implementations (integer vs. floating point). - const linspaced_op_impl::IsInteger> impl; -}; - -// Linear access is automatically determined from the operator() prototypes available for the given functor. -// If it exposes an operator()(i,j), then we assume the i and j coefficients are required independently -// and linear access is not possible. In all other cases, linear access is enabled. -// Users should not have to deal with this structure. -template struct functor_has_linear_access { enum { ret = !has_binary_operator::value }; }; - -// For unreliable compilers, let's specialize the has_*ary_operator -// helpers so that at least built-in nullary functors work fine. -#if !( (EIGEN_COMP_MSVC>1600) || (EIGEN_GNUC_AT_LEAST(4,8)) || (EIGEN_COMP_ICC>=1600)) -template -struct has_nullary_operator,IndexType> { enum { value = 1}; }; -template -struct has_unary_operator,IndexType> { enum { value = 0}; }; -template -struct has_binary_operator,IndexType> { enum { value = 0}; }; - -template -struct has_nullary_operator,IndexType> { enum { value = 0}; }; -template -struct has_unary_operator,IndexType> { enum { value = 0}; }; -template -struct has_binary_operator,IndexType> { enum { value = 1}; }; - -template -struct has_nullary_operator,IndexType> { enum { value = 0}; }; -template -struct has_unary_operator,IndexType> { enum { value = 1}; }; -template -struct has_binary_operator,IndexType> { enum { value = 0}; }; - -template -struct has_nullary_operator,IndexType> { enum { value = 1}; }; -template -struct has_unary_operator,IndexType> { enum { value = 0}; }; -template -struct has_binary_operator,IndexType> { enum { value = 0}; }; -#endif - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_NULLARY_FUNCTORS_H diff --git a/src/math_meigen/Eigen/src/Core/functors/StlFunctors.h b/src/math_meigen/Eigen/src/Core/functors/StlFunctors.h deleted file mode 100755 index 9c1d75850..000000000 --- a/src/math_meigen/Eigen/src/Core/functors/StlFunctors.h +++ /dev/null @@ -1,136 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_STL_FUNCTORS_H -#define EIGEN_STL_FUNCTORS_H - -namespace Eigen { - -namespace internal { - -// default functor traits for STL functors: - -template -struct functor_traits > -{ enum { Cost = NumTraits::MulCost, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = NumTraits::MulCost, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 1, PacketAccess = false }; }; - -#if (__cplusplus < 201103L) && (EIGEN_COMP_MSVC <= 1900) -// std::binder* are deprecated since c++11 and will be removed in c++17 -template -struct functor_traits > -{ enum { Cost = functor_traits::Cost, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = functor_traits::Cost, PacketAccess = false }; }; -#endif - -#if (__cplusplus < 201703L) && (EIGEN_COMP_MSVC < 1910) -// std::unary_negate is deprecated since c++17 and will be removed in c++20 -template -struct functor_traits > -{ enum { Cost = 1 + functor_traits::Cost, PacketAccess = false }; }; - -// std::binary_negate is deprecated since c++17 and will be removed in c++20 -template -struct functor_traits > -{ enum { Cost = 1 + functor_traits::Cost, PacketAccess = false }; }; -#endif - -#ifdef EIGEN_STDEXT_SUPPORT - -template -struct functor_traits > -{ enum { Cost = 0, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = 0, PacketAccess = false }; }; - -template -struct functor_traits > > -{ enum { Cost = 0, PacketAccess = false }; }; - -template -struct functor_traits > > -{ enum { Cost = 0, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = functor_traits::Cost + functor_traits::Cost, PacketAccess = false }; }; - -template -struct functor_traits > -{ enum { Cost = functor_traits::Cost + functor_traits::Cost + functor_traits::Cost, PacketAccess = false }; }; - -#endif // EIGEN_STDEXT_SUPPORT - -// allow to add new functors and specializations of functor_traits from outside Eigen. -// this macro is really needed because functor_traits must be specialized after it is declared but before it is used... -#ifdef EIGEN_FUNCTORS_PLUGIN -#include EIGEN_FUNCTORS_PLUGIN -#endif - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_STL_FUNCTORS_H diff --git a/src/math_meigen/Eigen/src/Core/functors/TernaryFunctors.h b/src/math_meigen/Eigen/src/Core/functors/TernaryFunctors.h deleted file mode 100755 index b254e96c6..000000000 --- a/src/math_meigen/Eigen/src/Core/functors/TernaryFunctors.h +++ /dev/null @@ -1,25 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2016 Eugene Brevdo -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_TERNARY_FUNCTORS_H -#define EIGEN_TERNARY_FUNCTORS_H - -namespace Eigen { - -namespace internal { - -//---------- associative ternary functors ---------- - - - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_TERNARY_FUNCTORS_H diff --git a/src/math_meigen/Eigen/src/Core/functors/UnaryFunctors.h b/src/math_meigen/Eigen/src/Core/functors/UnaryFunctors.h deleted file mode 100755 index 2e6a00ffd..000000000 --- a/src/math_meigen/Eigen/src/Core/functors/UnaryFunctors.h +++ /dev/null @@ -1,792 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2016 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_UNARY_FUNCTORS_H -#define EIGEN_UNARY_FUNCTORS_H - -namespace Eigen { - -namespace internal { - -/** \internal - * \brief Template functor to compute the opposite of a scalar - * - * \sa class CwiseUnaryOp, MatrixBase::operator- - */ -template struct scalar_opposite_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_opposite_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; } - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const - { return internal::pnegate(a); } -}; -template -struct functor_traits > -{ enum { - Cost = NumTraits::AddCost, - PacketAccess = packet_traits::HasNegate }; -}; - -/** \internal - * \brief Template functor to compute the absolute value of a scalar - * - * \sa class CwiseUnaryOp, Cwise::abs - */ -template struct scalar_abs_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_abs_op) - typedef typename NumTraits::Real result_type; - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs(a); } - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const - { return internal::pabs(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = NumTraits::AddCost, - PacketAccess = packet_traits::HasAbs - }; -}; - -/** \internal - * \brief Template functor to compute the score of a scalar, to chose a pivot - * - * \sa class CwiseUnaryOp - */ -template struct scalar_score_coeff_op : scalar_abs_op -{ - typedef void Score_is_abs; -}; -template -struct functor_traits > : functor_traits > {}; - -/* Avoid recomputing abs when we know the score and they are the same. Not a true Eigen functor. */ -template struct abs_knowing_score -{ - EIGEN_EMPTY_STRUCT_CTOR(abs_knowing_score) - typedef typename NumTraits::Real result_type; - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a, const Score&) const { return numext::abs(a); } -}; -template struct abs_knowing_score::Score_is_abs> -{ - EIGEN_EMPTY_STRUCT_CTOR(abs_knowing_score) - typedef typename NumTraits::Real result_type; - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scal&, const result_type& a) const { return a; } -}; - -/** \internal - * \brief Template functor to compute the squared absolute value of a scalar - * - * \sa class CwiseUnaryOp, Cwise::abs2 - */ -template struct scalar_abs2_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_abs2_op) - typedef typename NumTraits::Real result_type; - EIGEN_DEVICE_FUNC - EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs2(a); } - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const - { return internal::pmul(a,a); } -}; -template -struct functor_traits > -{ enum { Cost = NumTraits::MulCost, PacketAccess = packet_traits::HasAbs2 }; }; - -/** \internal - * \brief Template functor to compute the conjugate of a complex value - * - * \sa class CwiseUnaryOp, MatrixBase::conjugate() - */ -template struct scalar_conjugate_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_conjugate_op) - EIGEN_DEVICE_FUNC - EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { using numext::conj; return conj(a); } - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = NumTraits::IsComplex ? NumTraits::AddCost : 0, - PacketAccess = packet_traits::HasConj - }; -}; - -/** \internal - * \brief Template functor to compute the phase angle of a complex - * - * \sa class CwiseUnaryOp, Cwise::arg - */ -template struct scalar_arg_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_arg_op) - typedef typename NumTraits::Real result_type; - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { using numext::arg; return arg(a); } - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const - { return internal::parg(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = NumTraits::IsComplex ? 5 * NumTraits::MulCost : NumTraits::AddCost, - PacketAccess = packet_traits::HasArg - }; -}; -/** \internal - * \brief Template functor to cast a scalar to another type - * - * \sa class CwiseUnaryOp, MatrixBase::cast() - */ -template -struct scalar_cast_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op) - typedef NewType result_type; - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast(a); } -}; -template -struct functor_traits > -{ enum { Cost = is_same::value ? 0 : NumTraits::AddCost, PacketAccess = false }; }; - -/** \internal - * \brief Template functor to extract the real part of a complex - * - * \sa class CwiseUnaryOp, MatrixBase::real() - */ -template -struct scalar_real_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_real_op) - typedef typename NumTraits::Real result_type; - EIGEN_DEVICE_FUNC - EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::real(a); } -}; -template -struct functor_traits > -{ enum { Cost = 0, PacketAccess = false }; }; - -/** \internal - * \brief Template functor to extract the imaginary part of a complex - * - * \sa class CwiseUnaryOp, MatrixBase::imag() - */ -template -struct scalar_imag_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_op) - typedef typename NumTraits::Real result_type; - EIGEN_DEVICE_FUNC - EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::imag(a); } -}; -template -struct functor_traits > -{ enum { Cost = 0, PacketAccess = false }; }; - -/** \internal - * \brief Template functor to extract the real part of a complex as a reference - * - * \sa class CwiseUnaryOp, MatrixBase::real() - */ -template -struct scalar_real_ref_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_real_ref_op) - typedef typename NumTraits::Real result_type; - EIGEN_DEVICE_FUNC - EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::real_ref(*const_cast(&a)); } -}; -template -struct functor_traits > -{ enum { Cost = 0, PacketAccess = false }; }; - -/** \internal - * \brief Template functor to extract the imaginary part of a complex as a reference - * - * \sa class CwiseUnaryOp, MatrixBase::imag() - */ -template -struct scalar_imag_ref_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_ref_op) - typedef typename NumTraits::Real result_type; - EIGEN_DEVICE_FUNC - EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::imag_ref(*const_cast(&a)); } -}; -template -struct functor_traits > -{ enum { Cost = 0, PacketAccess = false }; }; - -/** \internal - * - * \brief Template functor to compute the exponential of a scalar - * - * \sa class CwiseUnaryOp, Cwise::exp() - */ -template struct scalar_exp_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op) - EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::exp(a); } - template - EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pexp(a); } -}; -template -struct functor_traits > { - enum { - PacketAccess = packet_traits::HasExp, - // The following numbers are based on the AVX implementation. -#ifdef EIGEN_VECTORIZE_FMA - // Haswell can issue 2 add/mul/madd per cycle. - Cost = - (sizeof(Scalar) == 4 - // float: 8 pmadd, 4 pmul, 2 padd/psub, 6 other - ? (8 * NumTraits::AddCost + 6 * NumTraits::MulCost) - // double: 7 pmadd, 5 pmul, 3 padd/psub, 1 div, 13 other - : (14 * NumTraits::AddCost + - 6 * NumTraits::MulCost + - scalar_div_cost::HasDiv>::value)) -#else - Cost = - (sizeof(Scalar) == 4 - // float: 7 pmadd, 6 pmul, 4 padd/psub, 10 other - ? (21 * NumTraits::AddCost + 13 * NumTraits::MulCost) - // double: 7 pmadd, 5 pmul, 3 padd/psub, 1 div, 13 other - : (23 * NumTraits::AddCost + - 12 * NumTraits::MulCost + - scalar_div_cost::HasDiv>::value)) -#endif - }; -}; - -/** \internal - * - * \brief Template functor to compute the logarithm of a scalar - * - * \sa class CwiseUnaryOp, ArrayBase::log() - */ -template struct scalar_log_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op) - EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::log(a); } - template - EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog(a); } -}; -template -struct functor_traits > { - enum { - PacketAccess = packet_traits::HasLog, - Cost = - (PacketAccess - // The following numbers are based on the AVX implementation. -#ifdef EIGEN_VECTORIZE_FMA - // 8 pmadd, 6 pmul, 8 padd/psub, 16 other, can issue 2 add/mul/madd per cycle. - ? (20 * NumTraits::AddCost + 7 * NumTraits::MulCost) -#else - // 8 pmadd, 6 pmul, 8 padd/psub, 20 other - ? (36 * NumTraits::AddCost + 14 * NumTraits::MulCost) -#endif - // Measured cost of std::log. - : sizeof(Scalar)==4 ? 40 : 85) - }; -}; - -/** \internal - * - * \brief Template functor to compute the logarithm of 1 plus a scalar value - * - * \sa class CwiseUnaryOp, ArrayBase::log1p() - */ -template struct scalar_log1p_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_log1p_op) - EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::log1p(a); } - template - EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog1p(a); } -}; -template -struct functor_traits > { - enum { - PacketAccess = packet_traits::HasLog1p, - Cost = functor_traits >::Cost // TODO measure cost of log1p - }; -}; - -/** \internal - * - * \brief Template functor to compute the base-10 logarithm of a scalar - * - * \sa class CwiseUnaryOp, Cwise::log10() - */ -template struct scalar_log10_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_log10_op) - EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { EIGEN_USING_STD_MATH(log10) return log10(a); } - template - EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog10(a); } -}; -template -struct functor_traits > -{ enum { Cost = 5 * NumTraits::MulCost, PacketAccess = packet_traits::HasLog10 }; }; - -/** \internal - * \brief Template functor to compute the square root of a scalar - * \sa class CwiseUnaryOp, Cwise::sqrt() - */ -template struct scalar_sqrt_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op) - EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sqrt(a); } - template - EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); } -}; -template -struct functor_traits > { - enum { -#if EIGEN_FAST_MATH - // The following numbers are based on the AVX implementation. - Cost = (sizeof(Scalar) == 8 ? 28 - // 4 pmul, 1 pmadd, 3 other - : (3 * NumTraits::AddCost + - 5 * NumTraits::MulCost)), -#else - // The following numbers are based on min VSQRT throughput on Haswell. - Cost = (sizeof(Scalar) == 8 ? 28 : 14), -#endif - PacketAccess = packet_traits::HasSqrt - }; -}; - -/** \internal - * \brief Template functor to compute the reciprocal square root of a scalar - * \sa class CwiseUnaryOp, Cwise::rsqrt() - */ -template struct scalar_rsqrt_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_rsqrt_op) - EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return Scalar(1)/numext::sqrt(a); } - template - EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::prsqrt(a); } -}; - -template -struct functor_traits > -{ enum { - Cost = 5 * NumTraits::MulCost, - PacketAccess = packet_traits::HasRsqrt - }; -}; - -/** \internal - * \brief Template functor to compute the cosine of a scalar - * \sa class CwiseUnaryOp, ArrayBase::cos() - */ -template struct scalar_cos_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_cos_op) - EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return numext::cos(a); } - template - EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pcos(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = 5 * NumTraits::MulCost, - PacketAccess = packet_traits::HasCos - }; -}; - -/** \internal - * \brief Template functor to compute the sine of a scalar - * \sa class CwiseUnaryOp, ArrayBase::sin() - */ -template struct scalar_sin_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_sin_op) - EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sin(a); } - template - EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psin(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = 5 * NumTraits::MulCost, - PacketAccess = packet_traits::HasSin - }; -}; - - -/** \internal - * \brief Template functor to compute the tan of a scalar - * \sa class CwiseUnaryOp, ArrayBase::tan() - */ -template struct scalar_tan_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_tan_op) - EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::tan(a); } - template - EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::ptan(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = 5 * NumTraits::MulCost, - PacketAccess = packet_traits::HasTan - }; -}; - -/** \internal - * \brief Template functor to compute the arc cosine of a scalar - * \sa class CwiseUnaryOp, ArrayBase::acos() - */ -template struct scalar_acos_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_acos_op) - EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::acos(a); } - template - EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pacos(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = 5 * NumTraits::MulCost, - PacketAccess = packet_traits::HasACos - }; -}; - -/** \internal - * \brief Template functor to compute the arc sine of a scalar - * \sa class CwiseUnaryOp, ArrayBase::asin() - */ -template struct scalar_asin_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_asin_op) - EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::asin(a); } - template - EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pasin(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = 5 * NumTraits::MulCost, - PacketAccess = packet_traits::HasASin - }; -}; - - -/** \internal - * \brief Template functor to compute the atan of a scalar - * \sa class CwiseUnaryOp, ArrayBase::atan() - */ -template struct scalar_atan_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_atan_op) - EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::atan(a); } - template - EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::patan(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = 5 * NumTraits::MulCost, - PacketAccess = packet_traits::HasATan - }; -}; - -/** \internal - * \brief Template functor to compute the tanh of a scalar - * \sa class CwiseUnaryOp, ArrayBase::tanh() - */ -template -struct scalar_tanh_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_tanh_op) - EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::tanh(a); } - template - EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& x) const { return ptanh(x); } -}; - -template -struct functor_traits > { - enum { - PacketAccess = packet_traits::HasTanh, - Cost = ( (EIGEN_FAST_MATH && is_same::value) -// The following numbers are based on the AVX implementation, -#ifdef EIGEN_VECTORIZE_FMA - // Haswell can issue 2 add/mul/madd per cycle. - // 9 pmadd, 2 pmul, 1 div, 2 other - ? (2 * NumTraits::AddCost + - 6 * NumTraits::MulCost + - scalar_div_cost::HasDiv>::value) -#else - ? (11 * NumTraits::AddCost + - 11 * NumTraits::MulCost + - scalar_div_cost::HasDiv>::value) -#endif - // This number assumes a naive implementation of tanh - : (6 * NumTraits::AddCost + - 3 * NumTraits::MulCost + - 2 * scalar_div_cost::HasDiv>::value + - functor_traits >::Cost)) - }; -}; - -/** \internal - * \brief Template functor to compute the sinh of a scalar - * \sa class CwiseUnaryOp, ArrayBase::sinh() - */ -template struct scalar_sinh_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_sinh_op) - EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sinh(a); } - template - EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psinh(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = 5 * NumTraits::MulCost, - PacketAccess = packet_traits::HasSinh - }; -}; - -/** \internal - * \brief Template functor to compute the cosh of a scalar - * \sa class CwiseUnaryOp, ArrayBase::cosh() - */ -template struct scalar_cosh_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_cosh_op) - EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::cosh(a); } - template - EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pcosh(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = 5 * NumTraits::MulCost, - PacketAccess = packet_traits::HasCosh - }; -}; - -/** \internal - * \brief Template functor to compute the inverse of a scalar - * \sa class CwiseUnaryOp, Cwise::inverse() - */ -template -struct scalar_inverse_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_inverse_op) - EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; } - template - EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const - { return internal::pdiv(pset1(Scalar(1)),a); } -}; -template -struct functor_traits > -{ enum { Cost = NumTraits::MulCost, PacketAccess = packet_traits::HasDiv }; }; - -/** \internal - * \brief Template functor to compute the square of a scalar - * \sa class CwiseUnaryOp, Cwise::square() - */ -template -struct scalar_square_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_square_op) - EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return a*a; } - template - EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const - { return internal::pmul(a,a); } -}; -template -struct functor_traits > -{ enum { Cost = NumTraits::MulCost, PacketAccess = packet_traits::HasMul }; }; - -/** \internal - * \brief Template functor to compute the cube of a scalar - * \sa class CwiseUnaryOp, Cwise::cube() - */ -template -struct scalar_cube_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_cube_op) - EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return a*a*a; } - template - EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const - { return internal::pmul(a,pmul(a,a)); } -}; -template -struct functor_traits > -{ enum { Cost = 2*NumTraits::MulCost, PacketAccess = packet_traits::HasMul }; }; - -/** \internal - * \brief Template functor to compute the rounded value of a scalar - * \sa class CwiseUnaryOp, ArrayBase::round() - */ -template struct scalar_round_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_round_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::round(a); } - template - EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pround(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = NumTraits::MulCost, - PacketAccess = packet_traits::HasRound - }; -}; - -/** \internal - * \brief Template functor to compute the floor of a scalar - * \sa class CwiseUnaryOp, ArrayBase::floor() - */ -template struct scalar_floor_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_floor_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::floor(a); } - template - EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pfloor(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = NumTraits::MulCost, - PacketAccess = packet_traits::HasFloor - }; -}; - -/** \internal - * \brief Template functor to compute the ceil of a scalar - * \sa class CwiseUnaryOp, ArrayBase::ceil() - */ -template struct scalar_ceil_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_ceil_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::ceil(a); } - template - EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pceil(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = NumTraits::MulCost, - PacketAccess = packet_traits::HasCeil - }; -}; - -/** \internal - * \brief Template functor to compute whether a scalar is NaN - * \sa class CwiseUnaryOp, ArrayBase::isnan() - */ -template struct scalar_isnan_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_isnan_op) - typedef bool result_type; - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return (numext::isnan)(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = NumTraits::MulCost, - PacketAccess = false - }; -}; - -/** \internal - * \brief Template functor to check whether a scalar is +/-inf - * \sa class CwiseUnaryOp, ArrayBase::isinf() - */ -template struct scalar_isinf_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_isinf_op) - typedef bool result_type; - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return (numext::isinf)(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = NumTraits::MulCost, - PacketAccess = false - }; -}; - -/** \internal - * \brief Template functor to check whether a scalar has a finite value - * \sa class CwiseUnaryOp, ArrayBase::isfinite() - */ -template struct scalar_isfinite_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_isfinite_op) - typedef bool result_type; - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return (numext::isfinite)(a); } -}; -template -struct functor_traits > -{ - enum { - Cost = NumTraits::MulCost, - PacketAccess = false - }; -}; - -/** \internal - * \brief Template functor to compute the logical not of a boolean - * - * \sa class CwiseUnaryOp, ArrayBase::operator! - */ -template struct scalar_boolean_not_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_not_op) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const bool& a) const { return !a; } -}; -template -struct functor_traits > { - enum { - Cost = NumTraits::AddCost, - PacketAccess = false - }; -}; - -/** \internal - * \brief Template functor to compute the signum of a scalar - * \sa class CwiseUnaryOp, Cwise::sign() - */ -template::IsComplex!=0) > struct scalar_sign_op; -template -struct scalar_sign_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_sign_op) - EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const - { - return Scalar( (a>Scalar(0)) - (a - //EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psign(a); } -}; -template -struct scalar_sign_op { - EIGEN_EMPTY_STRUCT_CTOR(scalar_sign_op) - EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const - { - typedef typename NumTraits::Real real_type; - real_type aa = numext::abs(a); - if (aa==real_type(0)) - return Scalar(0); - aa = real_type(1)/aa; - return Scalar(real(a)*aa, imag(a)*aa ); - } - //TODO - //template - //EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psign(a); } -}; -template -struct functor_traits > -{ enum { - Cost = - NumTraits::IsComplex - ? ( 8*NumTraits::MulCost ) // roughly - : ( 3*NumTraits::AddCost), - PacketAccess = packet_traits::HasSign - }; -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_FUNCTORS_H diff --git a/src/math_meigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h b/src/math_meigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h deleted file mode 100755 index e3980f6ff..000000000 --- a/src/math_meigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h +++ /dev/null @@ -1,2156 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_GENERAL_BLOCK_PANEL_H -#define EIGEN_GENERAL_BLOCK_PANEL_H - - -namespace Eigen { - -namespace internal { - -template -class gebp_traits; - - -/** \internal \returns b if a<=0, and returns a otherwise. */ -inline std::ptrdiff_t manage_caching_sizes_helper(std::ptrdiff_t a, std::ptrdiff_t b) -{ - return a<=0 ? b : a; -} - -#if EIGEN_ARCH_i386_OR_x86_64 -const std::ptrdiff_t defaultL1CacheSize = 32*1024; -const std::ptrdiff_t defaultL2CacheSize = 256*1024; -const std::ptrdiff_t defaultL3CacheSize = 2*1024*1024; -#else -const std::ptrdiff_t defaultL1CacheSize = 16*1024; -const std::ptrdiff_t defaultL2CacheSize = 512*1024; -const std::ptrdiff_t defaultL3CacheSize = 512*1024; -#endif - -/** \internal */ -struct CacheSizes { - CacheSizes(): m_l1(-1),m_l2(-1),m_l3(-1) { - int l1CacheSize, l2CacheSize, l3CacheSize; - queryCacheSizes(l1CacheSize, l2CacheSize, l3CacheSize); - m_l1 = manage_caching_sizes_helper(l1CacheSize, defaultL1CacheSize); - m_l2 = manage_caching_sizes_helper(l2CacheSize, defaultL2CacheSize); - m_l3 = manage_caching_sizes_helper(l3CacheSize, defaultL3CacheSize); - } - - std::ptrdiff_t m_l1; - std::ptrdiff_t m_l2; - std::ptrdiff_t m_l3; -}; - - -/** \internal */ -inline void manage_caching_sizes(Action action, std::ptrdiff_t* l1, std::ptrdiff_t* l2, std::ptrdiff_t* l3) -{ - static CacheSizes m_cacheSizes; - - if(action==SetAction) - { - // set the cpu cache size and cache all block sizes from a global cache size in byte - eigen_internal_assert(l1!=0 && l2!=0); - m_cacheSizes.m_l1 = *l1; - m_cacheSizes.m_l2 = *l2; - m_cacheSizes.m_l3 = *l3; - } - else if(action==GetAction) - { - eigen_internal_assert(l1!=0 && l2!=0); - *l1 = m_cacheSizes.m_l1; - *l2 = m_cacheSizes.m_l2; - *l3 = m_cacheSizes.m_l3; - } - else - { - eigen_internal_assert(false); - } -} - -/* Helper for computeProductBlockingSizes. - * - * Given a m x k times k x n matrix product of scalar types \c LhsScalar and \c RhsScalar, - * this function computes the blocking size parameters along the respective dimensions - * for matrix products and related algorithms. The blocking sizes depends on various - * parameters: - * - the L1 and L2 cache sizes, - * - the register level blocking sizes defined by gebp_traits, - * - the number of scalars that fit into a packet (when vectorization is enabled). - * - * \sa setCpuCacheSizes */ - -template -void evaluateProductBlockingSizesHeuristic(Index& k, Index& m, Index& n, Index num_threads = 1) -{ - typedef gebp_traits Traits; - - // Explanations: - // Let's recall that the product algorithms form mc x kc vertical panels A' on the lhs and - // kc x nc blocks B' on the rhs. B' has to fit into L2/L3 cache. Moreover, A' is processed - // per mr x kc horizontal small panels where mr is the blocking size along the m dimension - // at the register level. This small horizontal panel has to stay within L1 cache. - std::ptrdiff_t l1, l2, l3; - manage_caching_sizes(GetAction, &l1, &l2, &l3); - - if (num_threads > 1) { - typedef typename Traits::ResScalar ResScalar; - enum { - kdiv = KcFactor * (Traits::mr * sizeof(LhsScalar) + Traits::nr * sizeof(RhsScalar)), - ksub = Traits::mr * Traits::nr * sizeof(ResScalar), - kr = 8, - mr = Traits::mr, - nr = Traits::nr - }; - // Increasing k gives us more time to prefetch the content of the "C" - // registers. However once the latency is hidden there is no point in - // increasing the value of k, so we'll cap it at 320 (value determined - // experimentally). - const Index k_cache = (numext::mini)((l1-ksub)/kdiv, 320); - if (k_cache < k) { - k = k_cache - (k_cache % kr); - eigen_internal_assert(k > 0); - } - - const Index n_cache = (l2-l1) / (nr * sizeof(RhsScalar) * k); - const Index n_per_thread = numext::div_ceil(n, num_threads); - if (n_cache <= n_per_thread) { - // Don't exceed the capacity of the l2 cache. - eigen_internal_assert(n_cache >= static_cast(nr)); - n = n_cache - (n_cache % nr); - eigen_internal_assert(n > 0); - } else { - n = (numext::mini)(n, (n_per_thread + nr - 1) - ((n_per_thread + nr - 1) % nr)); - } - - if (l3 > l2) { - // l3 is shared between all cores, so we'll give each thread its own chunk of l3. - const Index m_cache = (l3-l2) / (sizeof(LhsScalar) * k * num_threads); - const Index m_per_thread = numext::div_ceil(m, num_threads); - if(m_cache < m_per_thread && m_cache >= static_cast(mr)) { - m = m_cache - (m_cache % mr); - eigen_internal_assert(m > 0); - } else { - m = (numext::mini)(m, (m_per_thread + mr - 1) - ((m_per_thread + mr - 1) % mr)); - } - } - } - else { - // In unit tests we do not want to use extra large matrices, - // so we reduce the cache size to check the blocking strategy is not flawed -#ifdef EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS - l1 = 9*1024; - l2 = 32*1024; - l3 = 512*1024; -#endif - - // Early return for small problems because the computation below are time consuming for small problems. - // Perhaps it would make more sense to consider k*n*m?? - // Note that for very tiny problem, this function should be bypassed anyway - // because we use the coefficient-based implementation for them. - if((numext::maxi)(k,(numext::maxi)(m,n))<48) - return; - - typedef typename Traits::ResScalar ResScalar; - enum { - k_peeling = 8, - k_div = KcFactor * (Traits::mr * sizeof(LhsScalar) + Traits::nr * sizeof(RhsScalar)), - k_sub = Traits::mr * Traits::nr * sizeof(ResScalar) - }; - - // ---- 1st level of blocking on L1, yields kc ---- - - // Blocking on the third dimension (i.e., k) is chosen so that an horizontal panel - // of size mr x kc of the lhs plus a vertical panel of kc x nr of the rhs both fits within L1 cache. - // We also include a register-level block of the result (mx x nr). - // (In an ideal world only the lhs panel would stay in L1) - // Moreover, kc has to be a multiple of 8 to be compatible with loop peeling, leading to a maximum blocking size of: - const Index max_kc = numext::maxi(((l1-k_sub)/k_div) & (~(k_peeling-1)),1); - const Index old_k = k; - if(k>max_kc) - { - // We are really blocking on the third dimension: - // -> reduce blocking size to make sure the last block is as large as possible - // while keeping the same number of sweeps over the result. - k = (k%max_kc)==0 ? max_kc - : max_kc - k_peeling * ((max_kc-1-(k%max_kc))/(k_peeling*(k/max_kc+1))); - - eigen_internal_assert(((old_k/k) == (old_k/max_kc)) && "the number of sweeps has to remain the same"); - } - - // ---- 2nd level of blocking on max(L2,L3), yields nc ---- - - // TODO find a reliable way to get the actual amount of cache per core to use for 2nd level blocking, that is: - // actual_l2 = max(l2, l3/nb_core_sharing_l3) - // The number below is quite conservative: it is better to underestimate the cache size rather than overestimating it) - // For instance, it corresponds to 6MB of L3 shared among 4 cores. - #ifdef EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS - const Index actual_l2 = l3; - #else - const Index actual_l2 = 1572864; // == 1.5 MB - #endif - - // Here, nc is chosen such that a block of kc x nc of the rhs fit within half of L2. - // The second half is implicitly reserved to access the result and lhs coefficients. - // When k= Index(Traits::nr*sizeof(RhsScalar))*k) - { - // L1 blocking - max_nc = remaining_l1 / (k*sizeof(RhsScalar)); - } - else - { - // L2 blocking - max_nc = (3*actual_l2)/(2*2*max_kc*sizeof(RhsScalar)); - } - // WARNING Below, we assume that Traits::nr is a power of two. - Index nc = numext::mini(actual_l2/(2*k*sizeof(RhsScalar)), max_nc) & (~(Traits::nr-1)); - if(n>nc) - { - // We are really blocking over the columns: - // -> reduce blocking size to make sure the last block is as large as possible - // while keeping the same number of sweeps over the packed lhs. - // Here we allow one more sweep if this gives us a perfect match, thus the commented "-1" - n = (n%nc)==0 ? nc - : (nc - Traits::nr * ((nc/*-1*/-(n%nc))/(Traits::nr*(n/nc+1)))); - } - else if(old_k==k) - { - // So far, no blocking at all, i.e., kc==k, and nc==n. - // In this case, let's perform a blocking over the rows such that the packed lhs data is kept in cache L1/L2 - // TODO: part of this blocking strategy is now implemented within the kernel itself, so the L1-based heuristic here should be obsolete. - Index problem_size = k*n*sizeof(LhsScalar); - Index actual_lm = actual_l2; - Index max_mc = m; - if(problem_size<=1024) - { - // problem is small enough to keep in L1 - // Let's choose m such that lhs's block fit in 1/3 of L1 - actual_lm = l1; - } - else if(l3!=0 && problem_size<=32768) - { - // we have both L2 and L3, and problem is small enough to be kept in L2 - // Let's choose m such that lhs's block fit in 1/3 of L2 - actual_lm = l2; - max_mc = (numext::mini)(576,max_mc); - } - Index mc = (numext::mini)(actual_lm/(3*k*sizeof(LhsScalar)), max_mc); - if (mc > Traits::mr) mc -= mc % Traits::mr; - else if (mc==0) return; - m = (m%mc)==0 ? mc - : (mc - Traits::mr * ((mc/*-1*/-(m%mc))/(Traits::mr*(m/mc+1)))); - } - } -} - -template -inline bool useSpecificBlockingSizes(Index& k, Index& m, Index& n) -{ -#ifdef EIGEN_TEST_SPECIFIC_BLOCKING_SIZES - if (EIGEN_TEST_SPECIFIC_BLOCKING_SIZES) { - k = numext::mini(k, EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_K); - m = numext::mini(m, EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_M); - n = numext::mini(n, EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_N); - return true; - } -#else - EIGEN_UNUSED_VARIABLE(k) - EIGEN_UNUSED_VARIABLE(m) - EIGEN_UNUSED_VARIABLE(n) -#endif - return false; -} - -/** \brief Computes the blocking parameters for a m x k times k x n matrix product - * - * \param[in,out] k Input: the third dimension of the product. Output: the blocking size along the same dimension. - * \param[in,out] m Input: the number of rows of the left hand side. Output: the blocking size along the same dimension. - * \param[in,out] n Input: the number of columns of the right hand side. Output: the blocking size along the same dimension. - * - * Given a m x k times k x n matrix product of scalar types \c LhsScalar and \c RhsScalar, - * this function computes the blocking size parameters along the respective dimensions - * for matrix products and related algorithms. - * - * The blocking size parameters may be evaluated: - * - either by a heuristic based on cache sizes; - * - or using fixed prescribed values (for testing purposes). - * - * \sa setCpuCacheSizes */ - -template -void computeProductBlockingSizes(Index& k, Index& m, Index& n, Index num_threads = 1) -{ - if (!useSpecificBlockingSizes(k, m, n)) { - evaluateProductBlockingSizesHeuristic(k, m, n, num_threads); - } -} - -template -inline void computeProductBlockingSizes(Index& k, Index& m, Index& n, Index num_threads = 1) -{ - computeProductBlockingSizes(k, m, n, num_threads); -} - -#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD - #define CJMADD(CJ,A,B,C,T) C = CJ.pmadd(A,B,C); -#else - - // FIXME (a bit overkill maybe ?) - - template struct gebp_madd_selector { - EIGEN_ALWAYS_INLINE static void run(const CJ& cj, A& a, B& b, C& c, T& /*t*/) - { - c = cj.pmadd(a,b,c); - } - }; - - template struct gebp_madd_selector { - EIGEN_ALWAYS_INLINE static void run(const CJ& cj, T& a, T& b, T& c, T& t) - { - t = b; t = cj.pmul(a,t); c = padd(c,t); - } - }; - - template - EIGEN_STRONG_INLINE void gebp_madd(const CJ& cj, A& a, B& b, C& c, T& t) - { - gebp_madd_selector::run(cj,a,b,c,t); - } - - #define CJMADD(CJ,A,B,C,T) gebp_madd(CJ,A,B,C,T); -// #define CJMADD(CJ,A,B,C,T) T = B; T = CJ.pmul(A,T); C = padd(C,T); -#endif - -/* Vectorization logic - * real*real: unpack rhs to constant packets, ... - * - * cd*cd : unpack rhs to (b_r,b_r), (b_i,b_i), mul to get (a_r b_r,a_i b_r) (a_r b_i,a_i b_i), - * storing each res packet into two packets (2x2), - * at the end combine them: swap the second and addsub them - * cf*cf : same but with 2x4 blocks - * cplx*real : unpack rhs to constant packets, ... - * real*cplx : load lhs as (a0,a0,a1,a1), and mul as usual - */ -template -class gebp_traits -{ -public: - typedef _LhsScalar LhsScalar; - typedef _RhsScalar RhsScalar; - typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; - - enum { - ConjLhs = _ConjLhs, - ConjRhs = _ConjRhs, - Vectorizable = packet_traits::Vectorizable && packet_traits::Vectorizable, - LhsPacketSize = Vectorizable ? packet_traits::size : 1, - RhsPacketSize = Vectorizable ? packet_traits::size : 1, - ResPacketSize = Vectorizable ? packet_traits::size : 1, - - NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS, - - // register block size along the N direction must be 1 or 4 - nr = 4, - - // register block size along the M direction (currently, this one cannot be modified) - default_mr = (EIGEN_PLAIN_ENUM_MIN(16,NumberOfRegisters)/2/nr)*LhsPacketSize, -#if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD) && !defined(EIGEN_VECTORIZE_ALTIVEC) && !defined(EIGEN_VECTORIZE_VSX) - // we assume 16 registers - // See bug 992, if the scalar type is not vectorizable but that EIGEN_HAS_SINGLE_INSTRUCTION_MADD is defined, - // then using 3*LhsPacketSize triggers non-implemented paths in syrk. - mr = Vectorizable ? 3*LhsPacketSize : default_mr, -#else - mr = default_mr, -#endif - - LhsProgress = LhsPacketSize, - RhsProgress = 1 - }; - - typedef typename packet_traits::type _LhsPacket; - typedef typename packet_traits::type _RhsPacket; - typedef typename packet_traits::type _ResPacket; - - typedef typename conditional::type LhsPacket; - typedef typename conditional::type RhsPacket; - typedef typename conditional::type ResPacket; - - typedef ResPacket AccPacket; - - EIGEN_STRONG_INLINE void initAcc(AccPacket& p) - { - p = pset1(ResScalar(0)); - } - - EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3) - { - pbroadcast4(b, b0, b1, b2, b3); - } - -// EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1) -// { -// pbroadcast2(b, b0, b1); -// } - - template - EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacketType& dest) const - { - dest = pset1(*b); - } - - EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, RhsPacket& dest) const - { - dest = ploadquad(b); - } - - template - EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacketType& dest) const - { - dest = pload(a); - } - - template - EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacketType& dest) const - { - dest = ploadu(a); - } - - template - EIGEN_STRONG_INLINE void madd(const LhsPacketType& a, const RhsPacketType& b, AccPacketType& c, AccPacketType& tmp) const - { - conj_helper cj; - // It would be a lot cleaner to call pmadd all the time. Unfortunately if we - // let gcc allocate the register in which to store the result of the pmul - // (in the case where there is no FMA) gcc fails to figure out how to avoid - // spilling register. -#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD - EIGEN_UNUSED_VARIABLE(tmp); - c = cj.pmadd(a,b,c); -#else - tmp = b; tmp = cj.pmul(a,tmp); c = padd(c,tmp); -#endif - } - - EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const - { - r = pmadd(c,alpha,r); - } - - template - EIGEN_STRONG_INLINE void acc(const ResPacketHalf& c, const ResPacketHalf& alpha, ResPacketHalf& r) const - { - r = pmadd(c,alpha,r); - } - -}; - -template -class gebp_traits, RealScalar, _ConjLhs, false> -{ -public: - typedef std::complex LhsScalar; - typedef RealScalar RhsScalar; - typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; - - enum { - ConjLhs = _ConjLhs, - ConjRhs = false, - Vectorizable = packet_traits::Vectorizable && packet_traits::Vectorizable, - LhsPacketSize = Vectorizable ? packet_traits::size : 1, - RhsPacketSize = Vectorizable ? packet_traits::size : 1, - ResPacketSize = Vectorizable ? packet_traits::size : 1, - - NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS, - nr = 4, -#if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD) && !defined(EIGEN_VECTORIZE_ALTIVEC) && !defined(EIGEN_VECTORIZE_VSX) - // we assume 16 registers - mr = 3*LhsPacketSize, -#else - mr = (EIGEN_PLAIN_ENUM_MIN(16,NumberOfRegisters)/2/nr)*LhsPacketSize, -#endif - - LhsProgress = LhsPacketSize, - RhsProgress = 1 - }; - - typedef typename packet_traits::type _LhsPacket; - typedef typename packet_traits::type _RhsPacket; - typedef typename packet_traits::type _ResPacket; - - typedef typename conditional::type LhsPacket; - typedef typename conditional::type RhsPacket; - typedef typename conditional::type ResPacket; - - typedef ResPacket AccPacket; - - EIGEN_STRONG_INLINE void initAcc(AccPacket& p) - { - p = pset1(ResScalar(0)); - } - - EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const - { - dest = pset1(*b); - } - - EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, RhsPacket& dest) const - { - dest = pset1(*b); - } - - EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const - { - dest = pload(a); - } - - EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacket& dest) const - { - dest = ploadu(a); - } - - EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3) - { - pbroadcast4(b, b0, b1, b2, b3); - } - -// EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1) -// { -// pbroadcast2(b, b0, b1); -// } - - EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp) const - { - madd_impl(a, b, c, tmp, typename conditional::type()); - } - - EIGEN_STRONG_INLINE void madd_impl(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp, const true_type&) const - { -#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD - EIGEN_UNUSED_VARIABLE(tmp); - c.v = pmadd(a.v,b,c.v); -#else - tmp = b; tmp = pmul(a.v,tmp); c.v = padd(c.v,tmp); -#endif - } - - EIGEN_STRONG_INLINE void madd_impl(const LhsScalar& a, const RhsScalar& b, ResScalar& c, RhsScalar& /*tmp*/, const false_type&) const - { - c += a * b; - } - - EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const - { - r = cj.pmadd(c,alpha,r); - } - -protected: - conj_helper cj; -}; - -template -struct DoublePacket -{ - Packet first; - Packet second; -}; - -template -DoublePacket padd(const DoublePacket &a, const DoublePacket &b) -{ - DoublePacket res; - res.first = padd(a.first, b.first); - res.second = padd(a.second,b.second); - return res; -} - -template -const DoublePacket& predux_downto4(const DoublePacket &a) -{ - return a; -} - -template struct unpacket_traits > { typedef DoublePacket half; }; -// template -// DoublePacket pmadd(const DoublePacket &a, const DoublePacket &b) -// { -// DoublePacket res; -// res.first = padd(a.first, b.first); -// res.second = padd(a.second,b.second); -// return res; -// } - -template -class gebp_traits, std::complex, _ConjLhs, _ConjRhs > -{ -public: - typedef std::complex Scalar; - typedef std::complex LhsScalar; - typedef std::complex RhsScalar; - typedef std::complex ResScalar; - - enum { - ConjLhs = _ConjLhs, - ConjRhs = _ConjRhs, - Vectorizable = packet_traits::Vectorizable - && packet_traits::Vectorizable, - RealPacketSize = Vectorizable ? packet_traits::size : 1, - ResPacketSize = Vectorizable ? packet_traits::size : 1, - LhsPacketSize = Vectorizable ? packet_traits::size : 1, - RhsPacketSize = Vectorizable ? packet_traits::size : 1, - - // FIXME: should depend on NumberOfRegisters - nr = 4, - mr = ResPacketSize, - - LhsProgress = ResPacketSize, - RhsProgress = 1 - }; - - typedef typename packet_traits::type RealPacket; - typedef typename packet_traits::type ScalarPacket; - typedef DoublePacket DoublePacketType; - - typedef typename conditional::type LhsPacket; - typedef typename conditional::type RhsPacket; - typedef typename conditional::type ResPacket; - typedef typename conditional::type AccPacket; - - EIGEN_STRONG_INLINE void initAcc(Scalar& p) { p = Scalar(0); } - - EIGEN_STRONG_INLINE void initAcc(DoublePacketType& p) - { - p.first = pset1(RealScalar(0)); - p.second = pset1(RealScalar(0)); - } - - // Scalar path - EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, ResPacket& dest) const - { - dest = pset1(*b); - } - - // Vectorized path - EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, DoublePacketType& dest) const - { - dest.first = pset1(real(*b)); - dest.second = pset1(imag(*b)); - } - - EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, ResPacket& dest) const - { - loadRhs(b,dest); - } - EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, DoublePacketType& dest) const - { - eigen_internal_assert(unpacket_traits::size<=4); - loadRhs(b,dest); - } - - EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3) - { - // FIXME not sure that's the best way to implement it! - loadRhs(b+0, b0); - loadRhs(b+1, b1); - loadRhs(b+2, b2); - loadRhs(b+3, b3); - } - - // Vectorized path - EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, DoublePacketType& b0, DoublePacketType& b1) - { - // FIXME not sure that's the best way to implement it! - loadRhs(b+0, b0); - loadRhs(b+1, b1); - } - - // Scalar path - EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsScalar& b0, RhsScalar& b1) - { - // FIXME not sure that's the best way to implement it! - loadRhs(b+0, b0); - loadRhs(b+1, b1); - } - - // nothing special here - EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const - { - dest = pload((const typename unpacket_traits::type*)(a)); - } - - EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacket& dest) const - { - dest = ploadu((const typename unpacket_traits::type*)(a)); - } - - EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, DoublePacketType& c, RhsPacket& /*tmp*/) const - { - c.first = padd(pmul(a,b.first), c.first); - c.second = padd(pmul(a,b.second),c.second); - } - - EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, ResPacket& c, RhsPacket& /*tmp*/) const - { - c = cj.pmadd(a,b,c); - } - - EIGEN_STRONG_INLINE void acc(const Scalar& c, const Scalar& alpha, Scalar& r) const { r += alpha * c; } - - EIGEN_STRONG_INLINE void acc(const DoublePacketType& c, const ResPacket& alpha, ResPacket& r) const - { - // assemble c - ResPacket tmp; - if((!ConjLhs)&&(!ConjRhs)) - { - tmp = pcplxflip(pconj(ResPacket(c.second))); - tmp = padd(ResPacket(c.first),tmp); - } - else if((!ConjLhs)&&(ConjRhs)) - { - tmp = pconj(pcplxflip(ResPacket(c.second))); - tmp = padd(ResPacket(c.first),tmp); - } - else if((ConjLhs)&&(!ConjRhs)) - { - tmp = pcplxflip(ResPacket(c.second)); - tmp = padd(pconj(ResPacket(c.first)),tmp); - } - else if((ConjLhs)&&(ConjRhs)) - { - tmp = pcplxflip(ResPacket(c.second)); - tmp = psub(pconj(ResPacket(c.first)),tmp); - } - - r = pmadd(tmp,alpha,r); - } - -protected: - conj_helper cj; -}; - -template -class gebp_traits, false, _ConjRhs > -{ -public: - typedef std::complex Scalar; - typedef RealScalar LhsScalar; - typedef Scalar RhsScalar; - typedef Scalar ResScalar; - - enum { - ConjLhs = false, - ConjRhs = _ConjRhs, - Vectorizable = packet_traits::Vectorizable - && packet_traits::Vectorizable, - LhsPacketSize = Vectorizable ? packet_traits::size : 1, - RhsPacketSize = Vectorizable ? packet_traits::size : 1, - ResPacketSize = Vectorizable ? packet_traits::size : 1, - - NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS, - // FIXME: should depend on NumberOfRegisters - nr = 4, - mr = (EIGEN_PLAIN_ENUM_MIN(16,NumberOfRegisters)/2/nr)*ResPacketSize, - - LhsProgress = ResPacketSize, - RhsProgress = 1 - }; - - typedef typename packet_traits::type _LhsPacket; - typedef typename packet_traits::type _RhsPacket; - typedef typename packet_traits::type _ResPacket; - - typedef typename conditional::type LhsPacket; - typedef typename conditional::type RhsPacket; - typedef typename conditional::type ResPacket; - - typedef ResPacket AccPacket; - - EIGEN_STRONG_INLINE void initAcc(AccPacket& p) - { - p = pset1(ResScalar(0)); - } - - EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const - { - dest = pset1(*b); - } - - void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3) - { - pbroadcast4(b, b0, b1, b2, b3); - } - -// EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1) -// { -// // FIXME not sure that's the best way to implement it! -// b0 = pload1(b+0); -// b1 = pload1(b+1); -// } - - EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const - { - dest = ploaddup(a); - } - - EIGEN_STRONG_INLINE void loadRhsQuad(const RhsScalar* b, RhsPacket& dest) const - { - eigen_internal_assert(unpacket_traits::size<=4); - loadRhs(b,dest); - } - - EIGEN_STRONG_INLINE void loadLhsUnaligned(const LhsScalar* a, LhsPacket& dest) const - { - dest = ploaddup(a); - } - - EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp) const - { - madd_impl(a, b, c, tmp, typename conditional::type()); - } - - EIGEN_STRONG_INLINE void madd_impl(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp, const true_type&) const - { -#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD - EIGEN_UNUSED_VARIABLE(tmp); - c.v = pmadd(a,b.v,c.v); -#else - tmp = b; tmp.v = pmul(a,tmp.v); c = padd(c,tmp); -#endif - - } - - EIGEN_STRONG_INLINE void madd_impl(const LhsScalar& a, const RhsScalar& b, ResScalar& c, RhsScalar& /*tmp*/, const false_type&) const - { - c += a * b; - } - - EIGEN_STRONG_INLINE void acc(const AccPacket& c, const ResPacket& alpha, ResPacket& r) const - { - r = cj.pmadd(alpha,c,r); - } - -protected: - conj_helper cj; -}; - -/* optimized GEneral packed Block * packed Panel product kernel - * - * Mixing type logic: C += A * B - * | A | B | comments - * |real |cplx | no vectorization yet, would require to pack A with duplication - * |cplx |real | easy vectorization - */ -template -struct gebp_kernel -{ - typedef gebp_traits Traits; - typedef typename Traits::ResScalar ResScalar; - typedef typename Traits::LhsPacket LhsPacket; - typedef typename Traits::RhsPacket RhsPacket; - typedef typename Traits::ResPacket ResPacket; - typedef typename Traits::AccPacket AccPacket; - - typedef gebp_traits SwappedTraits; - typedef typename SwappedTraits::ResScalar SResScalar; - typedef typename SwappedTraits::LhsPacket SLhsPacket; - typedef typename SwappedTraits::RhsPacket SRhsPacket; - typedef typename SwappedTraits::ResPacket SResPacket; - typedef typename SwappedTraits::AccPacket SAccPacket; - - typedef typename DataMapper::LinearMapper LinearMapper; - - enum { - Vectorizable = Traits::Vectorizable, - LhsProgress = Traits::LhsProgress, - RhsProgress = Traits::RhsProgress, - ResPacketSize = Traits::ResPacketSize - }; - - EIGEN_DONT_INLINE - void operator()(const DataMapper& res, const LhsScalar* blockA, const RhsScalar* blockB, - Index rows, Index depth, Index cols, ResScalar alpha, - Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0); -}; - -template -EIGEN_DONT_INLINE -void gebp_kernel - ::operator()(const DataMapper& res, const LhsScalar* blockA, const RhsScalar* blockB, - Index rows, Index depth, Index cols, ResScalar alpha, - Index strideA, Index strideB, Index offsetA, Index offsetB) - { - Traits traits; - SwappedTraits straits; - - if(strideA==-1) strideA = depth; - if(strideB==-1) strideB = depth; - conj_helper cj; - Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0; - const Index peeled_mc3 = mr>=3*Traits::LhsProgress ? (rows/(3*LhsProgress))*(3*LhsProgress) : 0; - const Index peeled_mc2 = mr>=2*Traits::LhsProgress ? peeled_mc3+((rows-peeled_mc3)/(2*LhsProgress))*(2*LhsProgress) : 0; - const Index peeled_mc1 = mr>=1*Traits::LhsProgress ? (rows/(1*LhsProgress))*(1*LhsProgress) : 0; - enum { pk = 8 }; // NOTE Such a large peeling factor is important for large matrices (~ +5% when >1000 on Haswell) - const Index peeled_kc = depth & ~(pk-1); - const Index prefetch_res_offset = 32/sizeof(ResScalar); -// const Index depth2 = depth & ~1; - - //---------- Process 3 * LhsProgress rows at once ---------- - // This corresponds to 3*LhsProgress x nr register blocks. - // Usually, make sense only with FMA - if(mr>=3*Traits::LhsProgress) - { - // Here, the general idea is to loop on each largest micro horizontal panel of the lhs (3*Traits::LhsProgress x depth) - // and on each largest micro vertical panel of the rhs (depth * nr). - // Blocking sizes, i.e., 'depth' has been computed so that the micro horizontal panel of the lhs fit in L1. - // However, if depth is too small, we can extend the number of rows of these horizontal panels. - // This actual number of rows is computed as follow: - const Index l1 = defaultL1CacheSize; // in Bytes, TODO, l1 should be passed to this function. - // The max(1, ...) here is needed because we may be using blocking params larger than what our known l1 cache size - // suggests we should be using: either because our known l1 cache size is inaccurate (e.g. on Android, we can only guess), - // or because we are testing specific blocking sizes. - const Index actual_panel_rows = (3*LhsProgress) * std::max(1,( (l1 - sizeof(ResScalar)*mr*nr - depth*nr*sizeof(RhsScalar)) / (depth * sizeof(LhsScalar) * 3*LhsProgress) )); - for(Index i1=0; i1(alpha); - - R0 = r0.loadPacket(0 * Traits::ResPacketSize); - R1 = r0.loadPacket(1 * Traits::ResPacketSize); - R2 = r0.loadPacket(2 * Traits::ResPacketSize); - traits.acc(C0, alphav, R0); - traits.acc(C4, alphav, R1); - traits.acc(C8, alphav, R2); - r0.storePacket(0 * Traits::ResPacketSize, R0); - r0.storePacket(1 * Traits::ResPacketSize, R1); - r0.storePacket(2 * Traits::ResPacketSize, R2); - - R0 = r1.loadPacket(0 * Traits::ResPacketSize); - R1 = r1.loadPacket(1 * Traits::ResPacketSize); - R2 = r1.loadPacket(2 * Traits::ResPacketSize); - traits.acc(C1, alphav, R0); - traits.acc(C5, alphav, R1); - traits.acc(C9, alphav, R2); - r1.storePacket(0 * Traits::ResPacketSize, R0); - r1.storePacket(1 * Traits::ResPacketSize, R1); - r1.storePacket(2 * Traits::ResPacketSize, R2); - - R0 = r2.loadPacket(0 * Traits::ResPacketSize); - R1 = r2.loadPacket(1 * Traits::ResPacketSize); - R2 = r2.loadPacket(2 * Traits::ResPacketSize); - traits.acc(C2, alphav, R0); - traits.acc(C6, alphav, R1); - traits.acc(C10, alphav, R2); - r2.storePacket(0 * Traits::ResPacketSize, R0); - r2.storePacket(1 * Traits::ResPacketSize, R1); - r2.storePacket(2 * Traits::ResPacketSize, R2); - - R0 = r3.loadPacket(0 * Traits::ResPacketSize); - R1 = r3.loadPacket(1 * Traits::ResPacketSize); - R2 = r3.loadPacket(2 * Traits::ResPacketSize); - traits.acc(C3, alphav, R0); - traits.acc(C7, alphav, R1); - traits.acc(C11, alphav, R2); - r3.storePacket(0 * Traits::ResPacketSize, R0); - r3.storePacket(1 * Traits::ResPacketSize, R1); - r3.storePacket(2 * Traits::ResPacketSize, R2); - } - } - - // Deal with remaining columns of the rhs - for(Index j2=packet_cols4; j2(alpha); - - R0 = r0.loadPacket(0 * Traits::ResPacketSize); - R1 = r0.loadPacket(1 * Traits::ResPacketSize); - R2 = r0.loadPacket(2 * Traits::ResPacketSize); - traits.acc(C0, alphav, R0); - traits.acc(C4, alphav, R1); - traits.acc(C8, alphav, R2); - r0.storePacket(0 * Traits::ResPacketSize, R0); - r0.storePacket(1 * Traits::ResPacketSize, R1); - r0.storePacket(2 * Traits::ResPacketSize, R2); - } - } - } - } - - //---------- Process 2 * LhsProgress rows at once ---------- - if(mr>=2*Traits::LhsProgress) - { - const Index l1 = defaultL1CacheSize; // in Bytes, TODO, l1 should be passed to this function. - // The max(1, ...) here is needed because we may be using blocking params larger than what our known l1 cache size - // suggests we should be using: either because our known l1 cache size is inaccurate (e.g. on Android, we can only guess), - // or because we are testing specific blocking sizes. - Index actual_panel_rows = (2*LhsProgress) * std::max(1,( (l1 - sizeof(ResScalar)*mr*nr - depth*nr*sizeof(RhsScalar)) / (depth * sizeof(LhsScalar) * 2*LhsProgress) )); - - for(Index i1=peeled_mc3; i1=6 without FMA (bug 1637) - #if EIGEN_GNUC_AT_LEAST(6,0) && defined(EIGEN_VECTORIZE_SSE) - #define EIGEN_GEBP_2PX4_SPILLING_WORKAROUND __asm__ ("" : [a0] "+x,m" (A0),[a1] "+x,m" (A1)); - #else - #define EIGEN_GEBP_2PX4_SPILLING_WORKAROUND - #endif - #define EIGEN_GEBGP_ONESTEP(K) \ - do { \ - EIGEN_ASM_COMMENT("begin step of gebp micro kernel 2pX4"); \ - traits.loadLhs(&blA[(0+2*K)*LhsProgress], A0); \ - traits.loadLhs(&blA[(1+2*K)*LhsProgress], A1); \ - traits.broadcastRhs(&blB[(0+4*K)*RhsProgress], B_0, B1, B2, B3); \ - traits.madd(A0, B_0, C0, T0); \ - traits.madd(A1, B_0, C4, B_0); \ - traits.madd(A0, B1, C1, T0); \ - traits.madd(A1, B1, C5, B1); \ - traits.madd(A0, B2, C2, T0); \ - traits.madd(A1, B2, C6, B2); \ - traits.madd(A0, B3, C3, T0); \ - traits.madd(A1, B3, C7, B3); \ - EIGEN_GEBP_2PX4_SPILLING_WORKAROUND \ - EIGEN_ASM_COMMENT("end step of gebp micro kernel 2pX4"); \ - } while(false) - - internal::prefetch(blB+(48+0)); - EIGEN_GEBGP_ONESTEP(0); - EIGEN_GEBGP_ONESTEP(1); - EIGEN_GEBGP_ONESTEP(2); - EIGEN_GEBGP_ONESTEP(3); - internal::prefetch(blB+(48+16)); - EIGEN_GEBGP_ONESTEP(4); - EIGEN_GEBGP_ONESTEP(5); - EIGEN_GEBGP_ONESTEP(6); - EIGEN_GEBGP_ONESTEP(7); - - blB += pk*4*RhsProgress; - blA += pk*(2*Traits::LhsProgress); - - EIGEN_ASM_COMMENT("end gebp micro kernel 2pX4"); - } - // process remaining peeled loop - for(Index k=peeled_kc; k(alpha); - - R0 = r0.loadPacket(0 * Traits::ResPacketSize); - R1 = r0.loadPacket(1 * Traits::ResPacketSize); - R2 = r1.loadPacket(0 * Traits::ResPacketSize); - R3 = r1.loadPacket(1 * Traits::ResPacketSize); - traits.acc(C0, alphav, R0); - traits.acc(C4, alphav, R1); - traits.acc(C1, alphav, R2); - traits.acc(C5, alphav, R3); - r0.storePacket(0 * Traits::ResPacketSize, R0); - r0.storePacket(1 * Traits::ResPacketSize, R1); - r1.storePacket(0 * Traits::ResPacketSize, R2); - r1.storePacket(1 * Traits::ResPacketSize, R3); - - R0 = r2.loadPacket(0 * Traits::ResPacketSize); - R1 = r2.loadPacket(1 * Traits::ResPacketSize); - R2 = r3.loadPacket(0 * Traits::ResPacketSize); - R3 = r3.loadPacket(1 * Traits::ResPacketSize); - traits.acc(C2, alphav, R0); - traits.acc(C6, alphav, R1); - traits.acc(C3, alphav, R2); - traits.acc(C7, alphav, R3); - r2.storePacket(0 * Traits::ResPacketSize, R0); - r2.storePacket(1 * Traits::ResPacketSize, R1); - r3.storePacket(0 * Traits::ResPacketSize, R2); - r3.storePacket(1 * Traits::ResPacketSize, R3); - } - } - - // Deal with remaining columns of the rhs - for(Index j2=packet_cols4; j2(alpha); - - R0 = r0.loadPacket(0 * Traits::ResPacketSize); - R1 = r0.loadPacket(1 * Traits::ResPacketSize); - traits.acc(C0, alphav, R0); - traits.acc(C4, alphav, R1); - r0.storePacket(0 * Traits::ResPacketSize, R0); - r0.storePacket(1 * Traits::ResPacketSize, R1); - } - } - } - } - //---------- Process 1 * LhsProgress rows at once ---------- - if(mr>=1*Traits::LhsProgress) - { - // loops on each largest micro horizontal panel of lhs (1*LhsProgress x depth) - for(Index i=peeled_mc2; i(alpha); - - R0 = r0.loadPacket(0 * Traits::ResPacketSize); - R1 = r1.loadPacket(0 * Traits::ResPacketSize); - traits.acc(C0, alphav, R0); - traits.acc(C1, alphav, R1); - r0.storePacket(0 * Traits::ResPacketSize, R0); - r1.storePacket(0 * Traits::ResPacketSize, R1); - - R0 = r2.loadPacket(0 * Traits::ResPacketSize); - R1 = r3.loadPacket(0 * Traits::ResPacketSize); - traits.acc(C2, alphav, R0); - traits.acc(C3, alphav, R1); - r2.storePacket(0 * Traits::ResPacketSize, R0); - r3.storePacket(0 * Traits::ResPacketSize, R1); - } - - // Deal with remaining columns of the rhs - for(Index j2=packet_cols4; j2(alpha); - R0 = r0.loadPacket(0 * Traits::ResPacketSize); - traits.acc(C0, alphav, R0); - r0.storePacket(0 * Traits::ResPacketSize, R0); - } - } - } - //---------- Process remaining rows, 1 at once ---------- - if(peeled_mc1::half>::size; - if ((SwappedTraits::LhsProgress % 4) == 0 && - (SwappedTraits::LhsProgress <= 8) && - (SwappedTraits::LhsProgress!=8 || SResPacketHalfSize==nr)) - { - SAccPacket C0, C1, C2, C3; - straits.initAcc(C0); - straits.initAcc(C1); - straits.initAcc(C2); - straits.initAcc(C3); - - const Index spk = (std::max)(1,SwappedTraits::LhsProgress/4); - const Index endk = (depth/spk)*spk; - const Index endk4 = (depth/(spk*4))*(spk*4); - - Index k=0; - for(; k=8,typename unpacket_traits::half,SResPacket>::type SResPacketHalf; - typedef typename conditional=8,typename unpacket_traits::half,SLhsPacket>::type SLhsPacketHalf; - typedef typename conditional=8,typename unpacket_traits::half,SRhsPacket>::type SRhsPacketHalf; - typedef typename conditional=8,typename unpacket_traits::half,SAccPacket>::type SAccPacketHalf; - - SResPacketHalf R = res.template gatherPacket(i, j2); - SResPacketHalf alphav = pset1(alpha); - - if(depth-endk>0) - { - // We have to handle the last row of the rhs which corresponds to a half-packet - SLhsPacketHalf a0; - SRhsPacketHalf b0; - straits.loadLhsUnaligned(blB, a0); - straits.loadRhs(blA, b0); - SAccPacketHalf c0 = predux_downto4(C0); - straits.madd(a0,b0,c0,b0); - straits.acc(c0, alphav, R); - } - else - { - straits.acc(predux_downto4(C0), alphav, R); - } - res.scatterPacket(i, j2, R); - } - else - { - SResPacket R = res.template gatherPacket(i, j2); - SResPacket alphav = pset1(alpha); - straits.acc(C0, alphav, R); - res.scatterPacket(i, j2, R); - } - } - else // scalar path - { - // get a 1 x 4 res block as registers - ResScalar C0(0), C1(0), C2(0), C3(0); - - for(Index k=0; k -struct gemm_pack_lhs -{ - typedef typename DataMapper::LinearMapper LinearMapper; - EIGEN_DONT_INLINE void operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0); -}; - -template -EIGEN_DONT_INLINE void gemm_pack_lhs - ::operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset) -{ - typedef typename packet_traits::type Packet; - enum { PacketSize = packet_traits::size }; - - EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK LHS"); - EIGEN_UNUSED_VARIABLE(stride); - EIGEN_UNUSED_VARIABLE(offset); - eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride)); - eigen_assert( ((Pack1%PacketSize)==0 && Pack1<=4*PacketSize) || (Pack1<=4) ); - conj_if::IsComplex && Conjugate> cj; - Index count = 0; - - const Index peeled_mc3 = Pack1>=3*PacketSize ? (rows/(3*PacketSize))*(3*PacketSize) : 0; - const Index peeled_mc2 = Pack1>=2*PacketSize ? peeled_mc3+((rows-peeled_mc3)/(2*PacketSize))*(2*PacketSize) : 0; - const Index peeled_mc1 = Pack1>=1*PacketSize ? (rows/(1*PacketSize))*(1*PacketSize) : 0; - const Index peeled_mc0 = Pack2>=1*PacketSize ? peeled_mc1 - : Pack2>1 ? (rows/Pack2)*Pack2 : 0; - - Index i=0; - - // Pack 3 packets - if(Pack1>=3*PacketSize) - { - for(; i=2*PacketSize) - { - for(; i=1*PacketSize) - { - for(; i1) - { - for(; i -struct gemm_pack_lhs -{ - typedef typename DataMapper::LinearMapper LinearMapper; - EIGEN_DONT_INLINE void operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride=0, Index offset=0); -}; - -template -EIGEN_DONT_INLINE void gemm_pack_lhs - ::operator()(Scalar* blockA, const DataMapper& lhs, Index depth, Index rows, Index stride, Index offset) -{ - typedef typename packet_traits::type Packet; - enum { PacketSize = packet_traits::size }; - - EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK LHS"); - EIGEN_UNUSED_VARIABLE(stride); - EIGEN_UNUSED_VARIABLE(offset); - eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride)); - conj_if::IsComplex && Conjugate> cj; - Index count = 0; - -// const Index peeled_mc3 = Pack1>=3*PacketSize ? (rows/(3*PacketSize))*(3*PacketSize) : 0; -// const Index peeled_mc2 = Pack1>=2*PacketSize ? peeled_mc3+((rows-peeled_mc3)/(2*PacketSize))*(2*PacketSize) : 0; -// const Index peeled_mc1 = Pack1>=1*PacketSize ? (rows/(1*PacketSize))*(1*PacketSize) : 0; - - int pack = Pack1; - Index i = 0; - while(pack>0) - { - Index remaining_rows = rows-i; - Index peeled_mc = i+(remaining_rows/pack)*pack; - for(; i=PacketSize) - { - for(; k kernel; - for (int p = 0; p < PacketSize; ++p) kernel.packet[p] = lhs.loadPacket(i+p+m, k); - ptranspose(kernel); - for (int p = 0; p < PacketSize; ++p) pstore(blockA+count+m+(pack)*p, cj.pconj(kernel.packet[p])); - } - count += PacketSize*pack; - } - } - for(; k -struct gemm_pack_rhs -{ - typedef typename packet_traits::type Packet; - typedef typename DataMapper::LinearMapper LinearMapper; - enum { PacketSize = packet_traits::size }; - EIGEN_DONT_INLINE void operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0); -}; - -template -EIGEN_DONT_INLINE void gemm_pack_rhs - ::operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset) -{ - EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS COLMAJOR"); - EIGEN_UNUSED_VARIABLE(stride); - EIGEN_UNUSED_VARIABLE(offset); - eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride)); - conj_if::IsComplex && Conjugate> cj; - Index packet_cols8 = nr>=8 ? (cols/8) * 8 : 0; - Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0; - Index count = 0; - const Index peeled_k = (depth/PacketSize)*PacketSize; -// if(nr>=8) -// { -// for(Index j2=0; j2 kernel; -// for (int p = 0; p < PacketSize; ++p) { -// kernel.packet[p] = ploadu(&rhs[(j2+p)*rhsStride+k]); -// } -// ptranspose(kernel); -// for (int p = 0; p < PacketSize; ++p) { -// pstoreu(blockB+count, cj.pconj(kernel.packet[p])); -// count+=PacketSize; -// } -// } -// } -// for(; k=4) - { - for(Index j2=packet_cols8; j2 kernel; - kernel.packet[0] = dm0.loadPacket(k); - kernel.packet[1%PacketSize] = dm1.loadPacket(k); - kernel.packet[2%PacketSize] = dm2.loadPacket(k); - kernel.packet[3%PacketSize] = dm3.loadPacket(k); - ptranspose(kernel); - pstoreu(blockB+count+0*PacketSize, cj.pconj(kernel.packet[0])); - pstoreu(blockB+count+1*PacketSize, cj.pconj(kernel.packet[1%PacketSize])); - pstoreu(blockB+count+2*PacketSize, cj.pconj(kernel.packet[2%PacketSize])); - pstoreu(blockB+count+3*PacketSize, cj.pconj(kernel.packet[3%PacketSize])); - count+=4*PacketSize; - } - } - for(; k -struct gemm_pack_rhs -{ - typedef typename packet_traits::type Packet; - typedef typename DataMapper::LinearMapper LinearMapper; - enum { PacketSize = packet_traits::size }; - EIGEN_DONT_INLINE void operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0); -}; - -template -EIGEN_DONT_INLINE void gemm_pack_rhs - ::operator()(Scalar* blockB, const DataMapper& rhs, Index depth, Index cols, Index stride, Index offset) -{ - EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS ROWMAJOR"); - EIGEN_UNUSED_VARIABLE(stride); - EIGEN_UNUSED_VARIABLE(offset); - eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride)); - conj_if::IsComplex && Conjugate> cj; - Index packet_cols8 = nr>=8 ? (cols/8) * 8 : 0; - Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0; - Index count = 0; - -// if(nr>=8) -// { -// for(Index j2=0; j2(&rhs[k*rhsStride + j2]); -// pstoreu(blockB+count, cj.pconj(A)); -// } else if (PacketSize==4) { -// Packet A = ploadu(&rhs[k*rhsStride + j2]); -// Packet B = ploadu(&rhs[k*rhsStride + j2 + PacketSize]); -// pstoreu(blockB+count, cj.pconj(A)); -// pstoreu(blockB+count+PacketSize, cj.pconj(B)); -// } else { -// const Scalar* b0 = &rhs[k*rhsStride + j2]; -// blockB[count+0] = cj(b0[0]); -// blockB[count+1] = cj(b0[1]); -// blockB[count+2] = cj(b0[2]); -// blockB[count+3] = cj(b0[3]); -// blockB[count+4] = cj(b0[4]); -// blockB[count+5] = cj(b0[5]); -// blockB[count+6] = cj(b0[6]); -// blockB[count+7] = cj(b0[7]); -// } -// count += 8; -// } -// // skip what we have after -// if(PanelMode) count += 8 * (stride-offset-depth); -// } -// } - if(nr>=4) - { - for(Index j2=packet_cols8; j2 -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_GENERAL_MATRIX_MATRIX_H -#define EIGEN_GENERAL_MATRIX_MATRIX_H - -namespace Eigen { - -namespace internal { - -template class level3_blocking; - -/* Specialization for a row-major destination matrix => simple transposition of the product */ -template< - typename Index, - typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, - typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs> -struct general_matrix_matrix_product -{ - typedef gebp_traits Traits; - - typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; - static EIGEN_STRONG_INLINE void run( - Index rows, Index cols, Index depth, - const LhsScalar* lhs, Index lhsStride, - const RhsScalar* rhs, Index rhsStride, - ResScalar* res, Index resStride, - ResScalar alpha, - level3_blocking& blocking, - GemmParallelInfo* info = 0) - { - // transpose the product such that the result is column major - general_matrix_matrix_product - ::run(cols,rows,depth,rhs,rhsStride,lhs,lhsStride,res,resStride,alpha,blocking,info); - } -}; - -/* Specialization for a col-major destination matrix - * => Blocking algorithm following Goto's paper */ -template< - typename Index, - typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, - typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs> -struct general_matrix_matrix_product -{ - -typedef gebp_traits Traits; - -typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; -static void run(Index rows, Index cols, Index depth, - const LhsScalar* _lhs, Index lhsStride, - const RhsScalar* _rhs, Index rhsStride, - ResScalar* _res, Index resStride, - ResScalar alpha, - level3_blocking& blocking, - GemmParallelInfo* info = 0) -{ - typedef const_blas_data_mapper LhsMapper; - typedef const_blas_data_mapper RhsMapper; - typedef blas_data_mapper ResMapper; - LhsMapper lhs(_lhs,lhsStride); - RhsMapper rhs(_rhs,rhsStride); - ResMapper res(_res, resStride); - - Index kc = blocking.kc(); // cache block size along the K direction - Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction - Index nc = (std::min)(cols,blocking.nc()); // cache block size along the N direction - - gemm_pack_lhs pack_lhs; - gemm_pack_rhs pack_rhs; - gebp_kernel gebp; - -#ifdef EIGEN_HAS_OPENMP - if(info) - { - // this is the parallel version! - int tid = omp_get_thread_num(); - int threads = omp_get_num_threads(); - - LhsScalar* blockA = blocking.blockA(); - eigen_internal_assert(blockA!=0); - - std::size_t sizeB = kc*nc; - ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, 0); - - // For each horizontal panel of the rhs, and corresponding vertical panel of the lhs... - for(Index k=0; k rows of B', and cols of the A' - - // In order to reduce the chance that a thread has to wait for the other, - // let's start by packing B'. - pack_rhs(blockB, rhs.getSubMapper(k,0), actual_kc, nc); - - // Pack A_k to A' in a parallel fashion: - // each thread packs the sub block A_k,i to A'_i where i is the thread id. - - // However, before copying to A'_i, we have to make sure that no other thread is still using it, - // i.e., we test that info[tid].users equals 0. - // Then, we set info[tid].users to the number of threads to mark that all other threads are going to use it. - while(info[tid].users!=0) {} - info[tid].users += threads; - - pack_lhs(blockA+info[tid].lhs_start*actual_kc, lhs.getSubMapper(info[tid].lhs_start,k), actual_kc, info[tid].lhs_length); - - // Notify the other threads that the part A'_i is ready to go. - info[tid].sync = k; - - // Computes C_i += A' * B' per A'_i - for(int shift=0; shift0) { - while(info[i].sync!=k) { - } - } - - gebp(res.getSubMapper(info[i].lhs_start, 0), blockA+info[i].lhs_start*actual_kc, blockB, info[i].lhs_length, actual_kc, nc, alpha); - } - - // Then keep going as usual with the remaining B' - for(Index j=nc; j Pack lhs's panel into a sequential chunk of memory (L2/L3 caching) - // Note that this panel will be read as many times as the number of blocks in the rhs's - // horizontal panel which is, in practice, a very low number. - pack_lhs(blockA, lhs.getSubMapper(i2,k2), actual_kc, actual_mc); - - // For each kc x nc block of the rhs's horizontal panel... - for(Index j2=0; j2 -struct gemm_functor -{ - gemm_functor(const Lhs& lhs, const Rhs& rhs, Dest& dest, const Scalar& actualAlpha, BlockingType& blocking) - : m_lhs(lhs), m_rhs(rhs), m_dest(dest), m_actualAlpha(actualAlpha), m_blocking(blocking) - {} - - void initParallelSession(Index num_threads) const - { - m_blocking.initParallel(m_lhs.rows(), m_rhs.cols(), m_lhs.cols(), num_threads); - m_blocking.allocateA(); - } - - void operator() (Index row, Index rows, Index col=0, Index cols=-1, GemmParallelInfo* info=0) const - { - if(cols==-1) - cols = m_rhs.cols(); - - Gemm::run(rows, cols, m_lhs.cols(), - &m_lhs.coeffRef(row,0), m_lhs.outerStride(), - &m_rhs.coeffRef(0,col), m_rhs.outerStride(), - (Scalar*)&(m_dest.coeffRef(row,col)), m_dest.outerStride(), - m_actualAlpha, m_blocking, info); - } - - typedef typename Gemm::Traits Traits; - - protected: - const Lhs& m_lhs; - const Rhs& m_rhs; - Dest& m_dest; - Scalar m_actualAlpha; - BlockingType& m_blocking; -}; - -template class gemm_blocking_space; - -template -class level3_blocking -{ - typedef _LhsScalar LhsScalar; - typedef _RhsScalar RhsScalar; - - protected: - LhsScalar* m_blockA; - RhsScalar* m_blockB; - - Index m_mc; - Index m_nc; - Index m_kc; - - public: - - level3_blocking() - : m_blockA(0), m_blockB(0), m_mc(0), m_nc(0), m_kc(0) - {} - - inline Index mc() const { return m_mc; } - inline Index nc() const { return m_nc; } - inline Index kc() const { return m_kc; } - - inline LhsScalar* blockA() { return m_blockA; } - inline RhsScalar* blockB() { return m_blockB; } -}; - -template -class gemm_blocking_space - : public level3_blocking< - typename conditional::type, - typename conditional::type> -{ - enum { - Transpose = StorageOrder==RowMajor, - ActualRows = Transpose ? MaxCols : MaxRows, - ActualCols = Transpose ? MaxRows : MaxCols - }; - typedef typename conditional::type LhsScalar; - typedef typename conditional::type RhsScalar; - typedef gebp_traits Traits; - enum { - SizeA = ActualRows * MaxDepth, - SizeB = ActualCols * MaxDepth - }; - -#if EIGEN_MAX_STATIC_ALIGN_BYTES >= EIGEN_DEFAULT_ALIGN_BYTES - EIGEN_ALIGN_MAX LhsScalar m_staticA[SizeA]; - EIGEN_ALIGN_MAX RhsScalar m_staticB[SizeB]; -#else - EIGEN_ALIGN_MAX char m_staticA[SizeA * sizeof(LhsScalar) + EIGEN_DEFAULT_ALIGN_BYTES-1]; - EIGEN_ALIGN_MAX char m_staticB[SizeB * sizeof(RhsScalar) + EIGEN_DEFAULT_ALIGN_BYTES-1]; -#endif - - public: - - gemm_blocking_space(Index /*rows*/, Index /*cols*/, Index /*depth*/, Index /*num_threads*/, bool /*full_rows = false*/) - { - this->m_mc = ActualRows; - this->m_nc = ActualCols; - this->m_kc = MaxDepth; -#if EIGEN_MAX_STATIC_ALIGN_BYTES >= EIGEN_DEFAULT_ALIGN_BYTES - this->m_blockA = m_staticA; - this->m_blockB = m_staticB; -#else - this->m_blockA = reinterpret_cast((internal::UIntPtr(m_staticA) + (EIGEN_DEFAULT_ALIGN_BYTES-1)) & ~std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1)); - this->m_blockB = reinterpret_cast((internal::UIntPtr(m_staticB) + (EIGEN_DEFAULT_ALIGN_BYTES-1)) & ~std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1)); -#endif - } - - void initParallel(Index, Index, Index, Index) - {} - - inline void allocateA() {} - inline void allocateB() {} - inline void allocateAll() {} -}; - -template -class gemm_blocking_space - : public level3_blocking< - typename conditional::type, - typename conditional::type> -{ - enum { - Transpose = StorageOrder==RowMajor - }; - typedef typename conditional::type LhsScalar; - typedef typename conditional::type RhsScalar; - typedef gebp_traits Traits; - - Index m_sizeA; - Index m_sizeB; - - public: - - gemm_blocking_space(Index rows, Index cols, Index depth, Index num_threads, bool l3_blocking) - { - this->m_mc = Transpose ? cols : rows; - this->m_nc = Transpose ? rows : cols; - this->m_kc = depth; - - if(l3_blocking) - { - computeProductBlockingSizes(this->m_kc, this->m_mc, this->m_nc, num_threads); - } - else // no l3 blocking - { - Index n = this->m_nc; - computeProductBlockingSizes(this->m_kc, this->m_mc, n, num_threads); - } - - m_sizeA = this->m_mc * this->m_kc; - m_sizeB = this->m_kc * this->m_nc; - } - - void initParallel(Index rows, Index cols, Index depth, Index num_threads) - { - this->m_mc = Transpose ? cols : rows; - this->m_nc = Transpose ? rows : cols; - this->m_kc = depth; - - eigen_internal_assert(this->m_blockA==0 && this->m_blockB==0); - Index m = this->m_mc; - computeProductBlockingSizes(this->m_kc, m, this->m_nc, num_threads); - m_sizeA = this->m_mc * this->m_kc; - m_sizeB = this->m_kc * this->m_nc; - } - - void allocateA() - { - if(this->m_blockA==0) - this->m_blockA = aligned_new(m_sizeA); - } - - void allocateB() - { - if(this->m_blockB==0) - this->m_blockB = aligned_new(m_sizeB); - } - - void allocateAll() - { - allocateA(); - allocateB(); - } - - ~gemm_blocking_space() - { - aligned_delete(this->m_blockA, m_sizeA); - aligned_delete(this->m_blockB, m_sizeB); - } -}; - -} // end namespace internal - -namespace internal { - -template -struct generic_product_impl - : generic_product_impl_base > -{ - typedef typename Product::Scalar Scalar; - typedef typename Lhs::Scalar LhsScalar; - typedef typename Rhs::Scalar RhsScalar; - - typedef internal::blas_traits LhsBlasTraits; - typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; - typedef typename internal::remove_all::type ActualLhsTypeCleaned; - - typedef internal::blas_traits RhsBlasTraits; - typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; - typedef typename internal::remove_all::type ActualRhsTypeCleaned; - - enum { - MaxDepthAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(Lhs::MaxColsAtCompileTime,Rhs::MaxRowsAtCompileTime) - }; - - typedef generic_product_impl lazyproduct; - - template - static void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) - { - if((rhs.rows()+dst.rows()+dst.cols())<20 && rhs.rows()>0) - lazyproduct::evalTo(dst, lhs, rhs); - else - { - dst.setZero(); - scaleAndAddTo(dst, lhs, rhs, Scalar(1)); - } - } - - template - static void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) - { - if((rhs.rows()+dst.rows()+dst.cols())<20 && rhs.rows()>0) - lazyproduct::addTo(dst, lhs, rhs); - else - scaleAndAddTo(dst,lhs, rhs, Scalar(1)); - } - - template - static void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) - { - if((rhs.rows()+dst.rows()+dst.cols())<20 && rhs.rows()>0) - lazyproduct::subTo(dst, lhs, rhs); - else - scaleAndAddTo(dst, lhs, rhs, Scalar(-1)); - } - - template - static void scaleAndAddTo(Dest& dst, const Lhs& a_lhs, const Rhs& a_rhs, const Scalar& alpha) - { - eigen_assert(dst.rows()==a_lhs.rows() && dst.cols()==a_rhs.cols()); - if(a_lhs.cols()==0 || a_lhs.rows()==0 || a_rhs.cols()==0) - return; - - typename internal::add_const_on_value_type::type lhs = LhsBlasTraits::extract(a_lhs); - typename internal::add_const_on_value_type::type rhs = RhsBlasTraits::extract(a_rhs); - - Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs) - * RhsBlasTraits::extractScalarFactor(a_rhs); - - typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,LhsScalar,RhsScalar, - Dest::MaxRowsAtCompileTime,Dest::MaxColsAtCompileTime,MaxDepthAtCompileTime> BlockingType; - - typedef internal::gemm_functor< - Scalar, Index, - internal::general_matrix_matrix_product< - Index, - LhsScalar, (ActualLhsTypeCleaned::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(LhsBlasTraits::NeedToConjugate), - RhsScalar, (ActualRhsTypeCleaned::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(RhsBlasTraits::NeedToConjugate), - (Dest::Flags&RowMajorBit) ? RowMajor : ColMajor>, - ActualLhsTypeCleaned, ActualRhsTypeCleaned, Dest, BlockingType> GemmFunctor; - - BlockingType blocking(dst.rows(), dst.cols(), lhs.cols(), 1, true); - internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==Dynamic)> - (GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), a_lhs.rows(), a_rhs.cols(), a_lhs.cols(), Dest::Flags&RowMajorBit); - } -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_GENERAL_MATRIX_MATRIX_H diff --git a/src/math_meigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h b/src/math_meigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h deleted file mode 100755 index e844e37d1..000000000 --- a/src/math_meigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h +++ /dev/null @@ -1,311 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009-2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H -#define EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H - -namespace Eigen { - -template -struct selfadjoint_rank1_update; - -namespace internal { - -/********************************************************************** -* This file implements a general A * B product while -* evaluating only one triangular part of the product. -* This is a more general version of self adjoint product (C += A A^T) -* as the level 3 SYRK Blas routine. -**********************************************************************/ - -// forward declarations (defined at the end of this file) -template -struct tribb_kernel; - -/* Optimized matrix-matrix product evaluating only one triangular half */ -template -struct general_matrix_matrix_triangular_product; - -// as usual if the result is row major => we transpose the product -template -struct general_matrix_matrix_triangular_product -{ - typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; - static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* lhs, Index lhsStride, - const RhsScalar* rhs, Index rhsStride, ResScalar* res, Index resStride, - const ResScalar& alpha, level3_blocking& blocking) - { - general_matrix_matrix_triangular_product - ::run(size,depth,rhs,rhsStride,lhs,lhsStride,res,resStride,alpha,blocking); - } -}; - -template -struct general_matrix_matrix_triangular_product -{ - typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; - static EIGEN_STRONG_INLINE void run(Index size, Index depth,const LhsScalar* _lhs, Index lhsStride, - const RhsScalar* _rhs, Index rhsStride, ResScalar* _res, Index resStride, - const ResScalar& alpha, level3_blocking& blocking) - { - typedef gebp_traits Traits; - - typedef const_blas_data_mapper LhsMapper; - typedef const_blas_data_mapper RhsMapper; - typedef blas_data_mapper ResMapper; - LhsMapper lhs(_lhs,lhsStride); - RhsMapper rhs(_rhs,rhsStride); - ResMapper res(_res, resStride); - - Index kc = blocking.kc(); - Index mc = (std::min)(size,blocking.mc()); - - // !!! mc must be a multiple of nr: - if(mc > Traits::nr) - mc = (mc/Traits::nr)*Traits::nr; - - std::size_t sizeA = kc*mc; - std::size_t sizeB = kc*size; - - ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, blocking.blockA()); - ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, blocking.blockB()); - - gemm_pack_lhs pack_lhs; - gemm_pack_rhs pack_rhs; - gebp_kernel gebp; - tribb_kernel sybb; - - for(Index k2=0; k2 processed with gebp or skipped - // 2 - the actual_mc x actual_mc symmetric block => processed with a special kernel - // 3 - after the diagonal => processed with gebp or skipped - if (UpLo==Lower) - gebp(res.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc, - (std::min)(size,i2), alpha, -1, -1, 0, 0); - - - sybb(_res+resStride*i2 + i2, resStride, blockA, blockB + actual_kc*i2, actual_mc, actual_kc, alpha); - - if (UpLo==Upper) - { - Index j2 = i2+actual_mc; - gebp(res.getSubMapper(i2, j2), blockA, blockB+actual_kc*j2, actual_mc, - actual_kc, (std::max)(Index(0), size-j2), alpha, -1, -1, 0, 0); - } - } - } - } -}; - -// Optimized packed Block * packed Block product kernel evaluating only one given triangular part -// This kernel is built on top of the gebp kernel: -// - the current destination block is processed per panel of actual_mc x BlockSize -// where BlockSize is set to the minimal value allowing gebp to be as fast as possible -// - then, as usual, each panel is split into three parts along the diagonal, -// the sub blocks above and below the diagonal are processed as usual, -// while the triangular block overlapping the diagonal is evaluated into a -// small temporary buffer which is then accumulated into the result using a -// triangular traversal. -template -struct tribb_kernel -{ - typedef gebp_traits Traits; - typedef typename Traits::ResScalar ResScalar; - - enum { - BlockSize = meta_least_common_multiple::ret - }; - void operator()(ResScalar* _res, Index resStride, const LhsScalar* blockA, const RhsScalar* blockB, Index size, Index depth, const ResScalar& alpha) - { - typedef blas_data_mapper ResMapper; - ResMapper res(_res, resStride); - gebp_kernel gebp_kernel; - - Matrix buffer((internal::constructor_without_unaligned_array_assert())); - - // let's process the block per panel of actual_mc x BlockSize, - // again, each is split into three parts, etc. - for (Index j=0; j(BlockSize,size - j); - const RhsScalar* actual_b = blockB+j*depth; - - if(UpLo==Upper) - gebp_kernel(res.getSubMapper(0, j), blockA, actual_b, j, depth, actualBlockSize, alpha, - -1, -1, 0, 0); - - // selfadjoint micro block - { - Index i = j; - buffer.setZero(); - // 1 - apply the kernel on the temporary buffer - gebp_kernel(ResMapper(buffer.data(), BlockSize), blockA+depth*i, actual_b, actualBlockSize, depth, actualBlockSize, alpha, - -1, -1, 0, 0); - // 2 - triangular accumulation - for(Index j1=0; j1 -struct general_product_to_triangular_selector; - - -template -struct general_product_to_triangular_selector -{ - static void run(MatrixType& mat, const ProductType& prod, const typename MatrixType::Scalar& alpha, bool beta) - { - typedef typename MatrixType::Scalar Scalar; - - typedef typename internal::remove_all::type Lhs; - typedef internal::blas_traits LhsBlasTraits; - typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhs; - typedef typename internal::remove_all::type _ActualLhs; - typename internal::add_const_on_value_type::type actualLhs = LhsBlasTraits::extract(prod.lhs()); - - typedef typename internal::remove_all::type Rhs; - typedef internal::blas_traits RhsBlasTraits; - typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhs; - typedef typename internal::remove_all::type _ActualRhs; - typename internal::add_const_on_value_type::type actualRhs = RhsBlasTraits::extract(prod.rhs()); - - Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs().derived()) * RhsBlasTraits::extractScalarFactor(prod.rhs().derived()); - - if(!beta) - mat.template triangularView().setZero(); - - enum { - StorageOrder = (internal::traits::Flags&RowMajorBit) ? RowMajor : ColMajor, - UseLhsDirectly = _ActualLhs::InnerStrideAtCompileTime==1, - UseRhsDirectly = _ActualRhs::InnerStrideAtCompileTime==1 - }; - - internal::gemv_static_vector_if static_lhs; - ei_declare_aligned_stack_constructed_variable(Scalar, actualLhsPtr, actualLhs.size(), - (UseLhsDirectly ? const_cast(actualLhs.data()) : static_lhs.data())); - if(!UseLhsDirectly) Map(actualLhsPtr, actualLhs.size()) = actualLhs; - - internal::gemv_static_vector_if static_rhs; - ei_declare_aligned_stack_constructed_variable(Scalar, actualRhsPtr, actualRhs.size(), - (UseRhsDirectly ? const_cast(actualRhs.data()) : static_rhs.data())); - if(!UseRhsDirectly) Map(actualRhsPtr, actualRhs.size()) = actualRhs; - - - selfadjoint_rank1_update::IsComplex, - RhsBlasTraits::NeedToConjugate && NumTraits::IsComplex> - ::run(actualLhs.size(), mat.data(), mat.outerStride(), actualLhsPtr, actualRhsPtr, actualAlpha); - } -}; - -template -struct general_product_to_triangular_selector -{ - static void run(MatrixType& mat, const ProductType& prod, const typename MatrixType::Scalar& alpha, bool beta) - { - typedef typename internal::remove_all::type Lhs; - typedef internal::blas_traits LhsBlasTraits; - typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhs; - typedef typename internal::remove_all::type _ActualLhs; - typename internal::add_const_on_value_type::type actualLhs = LhsBlasTraits::extract(prod.lhs()); - - typedef typename internal::remove_all::type Rhs; - typedef internal::blas_traits RhsBlasTraits; - typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhs; - typedef typename internal::remove_all::type _ActualRhs; - typename internal::add_const_on_value_type::type actualRhs = RhsBlasTraits::extract(prod.rhs()); - - typename ProductType::Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs().derived()) * RhsBlasTraits::extractScalarFactor(prod.rhs().derived()); - - if(!beta) - mat.template triangularView().setZero(); - - enum { - IsRowMajor = (internal::traits::Flags&RowMajorBit) ? 1 : 0, - LhsIsRowMajor = _ActualLhs::Flags&RowMajorBit ? 1 : 0, - RhsIsRowMajor = _ActualRhs::Flags&RowMajorBit ? 1 : 0, - SkipDiag = (UpLo&(UnitDiag|ZeroDiag))!=0 - }; - - Index size = mat.cols(); - if(SkipDiag) - size--; - Index depth = actualLhs.cols(); - - typedef internal::gemm_blocking_space BlockingType; - - BlockingType blocking(size, size, depth, 1, false); - - internal::general_matrix_matrix_triangular_product - ::run(size, depth, - &actualLhs.coeffRef(SkipDiag&&(UpLo&Lower)==Lower ? 1 : 0,0), actualLhs.outerStride(), - &actualRhs.coeffRef(0,SkipDiag&&(UpLo&Upper)==Upper ? 1 : 0), actualRhs.outerStride(), - mat.data() + (SkipDiag ? (bool(IsRowMajor) != ((UpLo&Lower)==Lower) ? 1 : mat.outerStride() ) : 0), mat.outerStride(), actualAlpha, blocking); - } -}; - -template -template -TriangularView& TriangularViewImpl::_assignProduct(const ProductType& prod, const Scalar& alpha, bool beta) -{ - EIGEN_STATIC_ASSERT((UpLo&UnitDiag)==0, WRITING_TO_TRIANGULAR_PART_WITH_UNIT_DIAGONAL_IS_NOT_SUPPORTED); - eigen_assert(derived().nestedExpression().rows() == prod.rows() && derived().cols() == prod.cols()); - - general_product_to_triangular_selector::InnerSize==1>::run(derived().nestedExpression().const_cast_derived(), prod, alpha, beta); - - return derived(); -} - -} // end namespace Eigen - -#endif // EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_H diff --git a/src/math_meigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h b/src/math_meigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h deleted file mode 100755 index f6f9ebeca..000000000 --- a/src/math_meigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular_BLAS.h +++ /dev/null @@ -1,145 +0,0 @@ -/* - Copyright (c) 2011, Intel Corporation. All rights reserved. - - Redistribution and use in source and binary forms, with or without modification, - are permitted provided that the following conditions are met: - - * Redistributions of source code must retain the above copyright notice, this - list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above copyright notice, - this list of conditions and the following disclaimer in the documentation - and/or other materials provided with the distribution. - * Neither the name of Intel Corporation nor the names of its contributors may - be used to endorse or promote products derived from this software without - specific prior written permission. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND - ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED - WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR - ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES - (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON - ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - - ******************************************************************************** - * Content : Eigen bindings to BLAS F77 - * Level 3 BLAS SYRK/HERK implementation. - ******************************************************************************** -*/ - -#ifndef EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_BLAS_H -#define EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_BLAS_H - -namespace Eigen { - -namespace internal { - -template -struct general_matrix_matrix_rankupdate : - general_matrix_matrix_triangular_product< - Index,Scalar,AStorageOrder,ConjugateA,Scalar,AStorageOrder,ConjugateA,ResStorageOrder,UpLo,BuiltIn> {}; - - -// try to go to BLAS specialization -#define EIGEN_BLAS_RANKUPDATE_SPECIALIZE(Scalar) \ -template \ -struct general_matrix_matrix_triangular_product { \ - static EIGEN_STRONG_INLINE void run(Index size, Index depth,const Scalar* lhs, Index lhsStride, \ - const Scalar* rhs, Index rhsStride, Scalar* res, Index resStride, Scalar alpha, level3_blocking& blocking) \ - { \ - if ( lhs==rhs && ((UpLo&(Lower|Upper))==UpLo) ) { \ - general_matrix_matrix_rankupdate \ - ::run(size,depth,lhs,lhsStride,rhs,rhsStride,res,resStride,alpha,blocking); \ - } else { \ - general_matrix_matrix_triangular_product \ - ::run(size,depth,lhs,lhsStride,rhs,rhsStride,res,resStride,alpha,blocking); \ - } \ - } \ -}; - -EIGEN_BLAS_RANKUPDATE_SPECIALIZE(double) -EIGEN_BLAS_RANKUPDATE_SPECIALIZE(float) -// TODO handle complex cases -// EIGEN_BLAS_RANKUPDATE_SPECIALIZE(dcomplex) -// EIGEN_BLAS_RANKUPDATE_SPECIALIZE(scomplex) - -// SYRK for float/double -#define EIGEN_BLAS_RANKUPDATE_R(EIGTYPE, BLASTYPE, BLASFUNC) \ -template \ -struct general_matrix_matrix_rankupdate { \ - enum { \ - IsLower = (UpLo&Lower) == Lower, \ - LowUp = IsLower ? Lower : Upper, \ - conjA = ((AStorageOrder==ColMajor) && ConjugateA) ? 1 : 0 \ - }; \ - static EIGEN_STRONG_INLINE void run(Index size, Index depth,const EIGTYPE* lhs, Index lhsStride, \ - const EIGTYPE* /*rhs*/, Index /*rhsStride*/, EIGTYPE* res, Index resStride, EIGTYPE alpha, level3_blocking& /*blocking*/) \ - { \ - /* typedef Matrix MatrixRhs;*/ \ -\ - BlasIndex lda=convert_index(lhsStride), ldc=convert_index(resStride), n=convert_index(size), k=convert_index(depth); \ - char uplo=((IsLower) ? 'L' : 'U'), trans=((AStorageOrder==RowMajor) ? 'T':'N'); \ - EIGTYPE beta(1); \ - BLASFUNC(&uplo, &trans, &n, &k, (const BLASTYPE*)&numext::real_ref(alpha), lhs, &lda, (const BLASTYPE*)&numext::real_ref(beta), res, &ldc); \ - } \ -}; - -// HERK for complex data -#define EIGEN_BLAS_RANKUPDATE_C(EIGTYPE, BLASTYPE, RTYPE, BLASFUNC) \ -template \ -struct general_matrix_matrix_rankupdate { \ - enum { \ - IsLower = (UpLo&Lower) == Lower, \ - LowUp = IsLower ? Lower : Upper, \ - conjA = (((AStorageOrder==ColMajor) && ConjugateA) || ((AStorageOrder==RowMajor) && !ConjugateA)) ? 1 : 0 \ - }; \ - static EIGEN_STRONG_INLINE void run(Index size, Index depth,const EIGTYPE* lhs, Index lhsStride, \ - const EIGTYPE* /*rhs*/, Index /*rhsStride*/, EIGTYPE* res, Index resStride, EIGTYPE alpha, level3_blocking& /*blocking*/) \ - { \ - typedef Matrix MatrixType; \ -\ - BlasIndex lda=convert_index(lhsStride), ldc=convert_index(resStride), n=convert_index(size), k=convert_index(depth); \ - char uplo=((IsLower) ? 'L' : 'U'), trans=((AStorageOrder==RowMajor) ? 'C':'N'); \ - RTYPE alpha_, beta_; \ - const EIGTYPE* a_ptr; \ -\ - alpha_ = alpha.real(); \ - beta_ = 1.0; \ -/* Copy with conjugation in some cases*/ \ - MatrixType a; \ - if (conjA) { \ - Map > mapA(lhs,n,k,OuterStride<>(lhsStride)); \ - a = mapA.conjugate(); \ - lda = a.outerStride(); \ - a_ptr = a.data(); \ - } else a_ptr=lhs; \ - BLASFUNC(&uplo, &trans, &n, &k, &alpha_, (BLASTYPE*)a_ptr, &lda, &beta_, (BLASTYPE*)res, &ldc); \ - } \ -}; - -#ifdef EIGEN_USE_MKL -EIGEN_BLAS_RANKUPDATE_R(double, double, dsyrk) -EIGEN_BLAS_RANKUPDATE_R(float, float, ssyrk) -#else -EIGEN_BLAS_RANKUPDATE_R(double, double, dsyrk_) -EIGEN_BLAS_RANKUPDATE_R(float, float, ssyrk_) -#endif - -// TODO hanlde complex cases -// EIGEN_BLAS_RANKUPDATE_C(dcomplex, double, double, zherk_) -// EIGEN_BLAS_RANKUPDATE_C(scomplex, float, float, cherk_) - - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_BLAS_H diff --git a/src/math_meigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h b/src/math_meigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h deleted file mode 100755 index b0f6b0d5b..000000000 --- a/src/math_meigen/Eigen/src/Core/products/GeneralMatrixMatrix_BLAS.h +++ /dev/null @@ -1,122 +0,0 @@ -/* - Copyright (c) 2011, Intel Corporation. All rights reserved. - - Redistribution and use in source and binary forms, with or without modification, - are permitted provided that the following conditions are met: - - * Redistributions of source code must retain the above copyright notice, this - list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above copyright notice, - this list of conditions and the following disclaimer in the documentation - and/or other materials provided with the distribution. - * Neither the name of Intel Corporation nor the names of its contributors may - be used to endorse or promote products derived from this software without - specific prior written permission. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND - ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED - WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR - ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES - (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON - ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - - ******************************************************************************** - * Content : Eigen bindings to BLAS F77 - * General matrix-matrix product functionality based on ?GEMM. - ******************************************************************************** -*/ - -#ifndef EIGEN_GENERAL_MATRIX_MATRIX_BLAS_H -#define EIGEN_GENERAL_MATRIX_MATRIX_BLAS_H - -namespace Eigen { - -namespace internal { - -/********************************************************************** -* This file implements general matrix-matrix multiplication using BLAS -* gemm function via partial specialization of -* general_matrix_matrix_product::run(..) method for float, double, -* std::complex and std::complex types -**********************************************************************/ - -// gemm specialization - -#define GEMM_SPECIALIZATION(EIGTYPE, EIGPREFIX, BLASTYPE, BLASFUNC) \ -template< \ - typename Index, \ - int LhsStorageOrder, bool ConjugateLhs, \ - int RhsStorageOrder, bool ConjugateRhs> \ -struct general_matrix_matrix_product \ -{ \ -typedef gebp_traits Traits; \ -\ -static void run(Index rows, Index cols, Index depth, \ - const EIGTYPE* _lhs, Index lhsStride, \ - const EIGTYPE* _rhs, Index rhsStride, \ - EIGTYPE* res, Index resStride, \ - EIGTYPE alpha, \ - level3_blocking& /*blocking*/, \ - GemmParallelInfo* /*info = 0*/) \ -{ \ - using std::conj; \ -\ - char transa, transb; \ - BlasIndex m, n, k, lda, ldb, ldc; \ - const EIGTYPE *a, *b; \ - EIGTYPE beta(1); \ - MatrixX##EIGPREFIX a_tmp, b_tmp; \ -\ -/* Set transpose options */ \ - transa = (LhsStorageOrder==RowMajor) ? ((ConjugateLhs) ? 'C' : 'T') : 'N'; \ - transb = (RhsStorageOrder==RowMajor) ? ((ConjugateRhs) ? 'C' : 'T') : 'N'; \ -\ -/* Set m, n, k */ \ - m = convert_index(rows); \ - n = convert_index(cols); \ - k = convert_index(depth); \ -\ -/* Set lda, ldb, ldc */ \ - lda = convert_index(lhsStride); \ - ldb = convert_index(rhsStride); \ - ldc = convert_index(resStride); \ -\ -/* Set a, b, c */ \ - if ((LhsStorageOrder==ColMajor) && (ConjugateLhs)) { \ - Map > lhs(_lhs,m,k,OuterStride<>(lhsStride)); \ - a_tmp = lhs.conjugate(); \ - a = a_tmp.data(); \ - lda = convert_index(a_tmp.outerStride()); \ - } else a = _lhs; \ -\ - if ((RhsStorageOrder==ColMajor) && (ConjugateRhs)) { \ - Map > rhs(_rhs,k,n,OuterStride<>(rhsStride)); \ - b_tmp = rhs.conjugate(); \ - b = b_tmp.data(); \ - ldb = convert_index(b_tmp.outerStride()); \ - } else b = _rhs; \ -\ - BLASFUNC(&transa, &transb, &m, &n, &k, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)b, &ldb, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)res, &ldc); \ -}}; - -#ifdef EIGEN_USE_MKL -GEMM_SPECIALIZATION(double, d, double, dgemm) -GEMM_SPECIALIZATION(float, f, float, sgemm) -GEMM_SPECIALIZATION(dcomplex, cd, MKL_Complex16, zgemm) -GEMM_SPECIALIZATION(scomplex, cf, MKL_Complex8, cgemm) -#else -GEMM_SPECIALIZATION(double, d, double, dgemm_) -GEMM_SPECIALIZATION(float, f, float, sgemm_) -GEMM_SPECIALIZATION(dcomplex, cd, double, zgemm_) -GEMM_SPECIALIZATION(scomplex, cf, float, cgemm_) -#endif - -} // end namespase internal - -} // end namespace Eigen - -#endif // EIGEN_GENERAL_MATRIX_MATRIX_BLAS_H diff --git a/src/math_meigen/Eigen/src/Core/products/GeneralMatrixVector.h b/src/math_meigen/Eigen/src/Core/products/GeneralMatrixVector.h deleted file mode 100755 index a597c1f4e..000000000 --- a/src/math_meigen/Eigen/src/Core/products/GeneralMatrixVector.h +++ /dev/null @@ -1,619 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_GENERAL_MATRIX_VECTOR_H -#define EIGEN_GENERAL_MATRIX_VECTOR_H - -namespace Eigen { - -namespace internal { - -/* Optimized col-major matrix * vector product: - * This algorithm processes 4 columns at onces that allows to both reduce - * the number of load/stores of the result by a factor 4 and to reduce - * the instruction dependency. Moreover, we know that all bands have the - * same alignment pattern. - * - * Mixing type logic: C += alpha * A * B - * | A | B |alpha| comments - * |real |cplx |cplx | no vectorization - * |real |cplx |real | alpha is converted to a cplx when calling the run function, no vectorization - * |cplx |real |cplx | invalid, the caller has to do tmp: = A * B; C += alpha*tmp - * |cplx |real |real | optimal case, vectorization possible via real-cplx mul - * - * Accesses to the matrix coefficients follow the following logic: - * - * - if all columns have the same alignment then - * - if the columns have the same alignment as the result vector, then easy! (-> AllAligned case) - * - otherwise perform unaligned loads only (-> NoneAligned case) - * - otherwise - * - if even columns have the same alignment then - * // odd columns are guaranteed to have the same alignment too - * - if even or odd columns have the same alignment as the result, then - * // for a register size of 2 scalars, this is guarantee to be the case (e.g., SSE with double) - * - perform half aligned and half unaligned loads (-> EvenAligned case) - * - otherwise perform unaligned loads only (-> NoneAligned case) - * - otherwise, if the register size is 4 scalars (e.g., SSE with float) then - * - one over 4 consecutive columns is guaranteed to be aligned with the result vector, - * perform simple aligned loads for this column and aligned loads plus re-alignment for the other. (-> FirstAligned case) - * // this re-alignment is done by the palign function implemented for SSE in Eigen/src/Core/arch/SSE/PacketMath.h - * - otherwise, - * // if we get here, this means the register size is greater than 4 (e.g., AVX with floats), - * // we currently fall back to the NoneAligned case - * - * The same reasoning apply for the transposed case. - * - * The last case (PacketSize>4) could probably be improved by generalizing the FirstAligned case, but since we do not support AVX yet... - * One might also wonder why in the EvenAligned case we perform unaligned loads instead of using the aligned-loads plus re-alignment - * strategy as in the FirstAligned case. The reason is that we observed that unaligned loads on a 8 byte boundary are not too slow - * compared to unaligned loads on a 4 byte boundary. - * - */ -template -struct general_matrix_vector_product -{ - typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; - -enum { - Vectorizable = packet_traits::Vectorizable && packet_traits::Vectorizable - && int(packet_traits::size)==int(packet_traits::size), - LhsPacketSize = Vectorizable ? packet_traits::size : 1, - RhsPacketSize = Vectorizable ? packet_traits::size : 1, - ResPacketSize = Vectorizable ? packet_traits::size : 1 -}; - -typedef typename packet_traits::type _LhsPacket; -typedef typename packet_traits::type _RhsPacket; -typedef typename packet_traits::type _ResPacket; - -typedef typename conditional::type LhsPacket; -typedef typename conditional::type RhsPacket; -typedef typename conditional::type ResPacket; - -EIGEN_DONT_INLINE static void run( - Index rows, Index cols, - const LhsMapper& lhs, - const RhsMapper& rhs, - ResScalar* res, Index resIncr, - RhsScalar alpha); -}; - -template -EIGEN_DONT_INLINE void general_matrix_vector_product::run( - Index rows, Index cols, - const LhsMapper& lhs, - const RhsMapper& rhs, - ResScalar* res, Index resIncr, - RhsScalar alpha) -{ - EIGEN_UNUSED_VARIABLE(resIncr); - eigen_internal_assert(resIncr==1); - #ifdef _EIGEN_ACCUMULATE_PACKETS - #error _EIGEN_ACCUMULATE_PACKETS has already been defined - #endif - #define _EIGEN_ACCUMULATE_PACKETS(Alignment0,Alignment13,Alignment2) \ - pstore(&res[j], \ - padd(pload(&res[j]), \ - padd( \ - padd(pcj.pmul(lhs0.template load(j), ptmp0), \ - pcj.pmul(lhs1.template load(j), ptmp1)), \ - padd(pcj.pmul(lhs2.template load(j), ptmp2), \ - pcj.pmul(lhs3.template load(j), ptmp3)) ))) - - typedef typename LhsMapper::VectorMapper LhsScalars; - - conj_helper cj; - conj_helper pcj; - if(ConjugateRhs) - alpha = numext::conj(alpha); - - enum { AllAligned = 0, EvenAligned, FirstAligned, NoneAligned }; - const Index columnsAtOnce = 4; - const Index peels = 2; - const Index LhsPacketAlignedMask = LhsPacketSize-1; - const Index ResPacketAlignedMask = ResPacketSize-1; -// const Index PeelAlignedMask = ResPacketSize*peels-1; - const Index size = rows; - - const Index lhsStride = lhs.stride(); - - // How many coeffs of the result do we have to skip to be aligned. - // Here we assume data are at least aligned on the base scalar type. - Index alignedStart = internal::first_default_aligned(res,size); - Index alignedSize = ResPacketSize>1 ? alignedStart + ((size-alignedStart) & ~ResPacketAlignedMask) : 0; - const Index peeledSize = alignedSize - RhsPacketSize*peels - RhsPacketSize + 1; - - const Index alignmentStep = LhsPacketSize>1 ? (LhsPacketSize - lhsStride % LhsPacketSize) & LhsPacketAlignedMask : 0; - Index alignmentPattern = alignmentStep==0 ? AllAligned - : alignmentStep==(LhsPacketSize/2) ? EvenAligned - : FirstAligned; - - // we cannot assume the first element is aligned because of sub-matrices - const Index lhsAlignmentOffset = lhs.firstAligned(size); - - // find how many columns do we have to skip to be aligned with the result (if possible) - Index skipColumns = 0; - // if the data cannot be aligned (TODO add some compile time tests when possible, e.g. for floats) - if( (lhsAlignmentOffset < 0) || (lhsAlignmentOffset == size) || (UIntPtr(res)%sizeof(ResScalar)) ) - { - alignedSize = 0; - alignedStart = 0; - alignmentPattern = NoneAligned; - } - else if(LhsPacketSize > 4) - { - // TODO: extend the code to support aligned loads whenever possible when LhsPacketSize > 4. - // Currently, it seems to be better to perform unaligned loads anyway - alignmentPattern = NoneAligned; - } - else if (LhsPacketSize>1) - { - // eigen_internal_assert(size_t(firstLhs+lhsAlignmentOffset)%sizeof(LhsPacket)==0 || size= cols) - || LhsPacketSize > size - || (size_t(firstLhs+alignedStart+lhsStride*skipColumns)%sizeof(LhsPacket))==0);*/ - } - else if(Vectorizable) - { - alignedStart = 0; - alignedSize = size; - alignmentPattern = AllAligned; - } - - const Index offset1 = (alignmentPattern==FirstAligned && alignmentStep==1)?3:1; - const Index offset3 = (alignmentPattern==FirstAligned && alignmentStep==1)?1:3; - - Index columnBound = ((cols-skipColumns)/columnsAtOnce)*columnsAtOnce + skipColumns; - for (Index i=skipColumns; i(alpha*rhs(i, 0)), - ptmp1 = pset1(alpha*rhs(i+offset1, 0)), - ptmp2 = pset1(alpha*rhs(i+2, 0)), - ptmp3 = pset1(alpha*rhs(i+offset3, 0)); - - // this helps a lot generating better binary code - const LhsScalars lhs0 = lhs.getVectorMapper(0, i+0), lhs1 = lhs.getVectorMapper(0, i+offset1), - lhs2 = lhs.getVectorMapper(0, i+2), lhs3 = lhs.getVectorMapper(0, i+offset3); - - if (Vectorizable) - { - /* explicit vectorization */ - // process initial unaligned coeffs - for (Index j=0; jalignedStart) - { - switch(alignmentPattern) - { - case AllAligned: - for (Index j = alignedStart; j1) - { - LhsPacket A00, A01, A02, A03, A10, A11, A12, A13; - ResPacket T0, T1; - - A01 = lhs1.template load(alignedStart-1); - A02 = lhs2.template load(alignedStart-2); - A03 = lhs3.template load(alignedStart-3); - - for (; j(j-1+LhsPacketSize); palign<1>(A01,A11); - A12 = lhs2.template load(j-2+LhsPacketSize); palign<2>(A02,A12); - A13 = lhs3.template load(j-3+LhsPacketSize); palign<3>(A03,A13); - - A00 = lhs0.template load(j); - A10 = lhs0.template load(j+LhsPacketSize); - T0 = pcj.pmadd(A00, ptmp0, pload(&res[j])); - T1 = pcj.pmadd(A10, ptmp0, pload(&res[j+ResPacketSize])); - - T0 = pcj.pmadd(A01, ptmp1, T0); - A01 = lhs1.template load(j-1+2*LhsPacketSize); palign<1>(A11,A01); - T0 = pcj.pmadd(A02, ptmp2, T0); - A02 = lhs2.template load(j-2+2*LhsPacketSize); palign<2>(A12,A02); - T0 = pcj.pmadd(A03, ptmp3, T0); - pstore(&res[j],T0); - A03 = lhs3.template load(j-3+2*LhsPacketSize); palign<3>(A13,A03); - T1 = pcj.pmadd(A11, ptmp1, T1); - T1 = pcj.pmadd(A12, ptmp2, T1); - T1 = pcj.pmadd(A13, ptmp3, T1); - pstore(&res[j+ResPacketSize],T1); - } - } - for (; j(alpha*rhs(k, 0)); - const LhsScalars lhs0 = lhs.getVectorMapper(0, k); - - if (Vectorizable) - { - /* explicit vectorization */ - // process first unaligned result's coeffs - for (Index j=0; j(alignedStart)) - for (Index i = alignedStart;i(i), ptmp0, pload(&res[i]))); - else - for (Index i = alignedStart;i(i), ptmp0, pload(&res[i]))); - } - - // process remaining scalars (or all if no explicit vectorization) - for (Index i=alignedSize; i -struct general_matrix_vector_product -{ -typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; - -enum { - Vectorizable = packet_traits::Vectorizable && packet_traits::Vectorizable - && int(packet_traits::size)==int(packet_traits::size), - LhsPacketSize = Vectorizable ? packet_traits::size : 1, - RhsPacketSize = Vectorizable ? packet_traits::size : 1, - ResPacketSize = Vectorizable ? packet_traits::size : 1 -}; - -typedef typename packet_traits::type _LhsPacket; -typedef typename packet_traits::type _RhsPacket; -typedef typename packet_traits::type _ResPacket; - -typedef typename conditional::type LhsPacket; -typedef typename conditional::type RhsPacket; -typedef typename conditional::type ResPacket; - -EIGEN_DONT_INLINE static void run( - Index rows, Index cols, - const LhsMapper& lhs, - const RhsMapper& rhs, - ResScalar* res, Index resIncr, - ResScalar alpha); -}; - -template -EIGEN_DONT_INLINE void general_matrix_vector_product::run( - Index rows, Index cols, - const LhsMapper& lhs, - const RhsMapper& rhs, - ResScalar* res, Index resIncr, - ResScalar alpha) -{ - eigen_internal_assert(rhs.stride()==1); - - #ifdef _EIGEN_ACCUMULATE_PACKETS - #error _EIGEN_ACCUMULATE_PACKETS has already been defined - #endif - - #define _EIGEN_ACCUMULATE_PACKETS(Alignment0,Alignment13,Alignment2) {\ - RhsPacket b = rhs.getVectorMapper(j, 0).template load(0); \ - ptmp0 = pcj.pmadd(lhs0.template load(j), b, ptmp0); \ - ptmp1 = pcj.pmadd(lhs1.template load(j), b, ptmp1); \ - ptmp2 = pcj.pmadd(lhs2.template load(j), b, ptmp2); \ - ptmp3 = pcj.pmadd(lhs3.template load(j), b, ptmp3); } - - conj_helper cj; - conj_helper pcj; - - typedef typename LhsMapper::VectorMapper LhsScalars; - - enum { AllAligned=0, EvenAligned=1, FirstAligned=2, NoneAligned=3 }; - const Index rowsAtOnce = 4; - const Index peels = 2; - const Index RhsPacketAlignedMask = RhsPacketSize-1; - const Index LhsPacketAlignedMask = LhsPacketSize-1; - const Index depth = cols; - const Index lhsStride = lhs.stride(); - - // How many coeffs of the result do we have to skip to be aligned. - // Here we assume data are at least aligned on the base scalar type - // if that's not the case then vectorization is discarded, see below. - Index alignedStart = rhs.firstAligned(depth); - Index alignedSize = RhsPacketSize>1 ? alignedStart + ((depth-alignedStart) & ~RhsPacketAlignedMask) : 0; - const Index peeledSize = alignedSize - RhsPacketSize*peels - RhsPacketSize + 1; - - const Index alignmentStep = LhsPacketSize>1 ? (LhsPacketSize - lhsStride % LhsPacketSize) & LhsPacketAlignedMask : 0; - Index alignmentPattern = alignmentStep==0 ? AllAligned - : alignmentStep==(LhsPacketSize/2) ? EvenAligned - : FirstAligned; - - // we cannot assume the first element is aligned because of sub-matrices - const Index lhsAlignmentOffset = lhs.firstAligned(depth); - const Index rhsAlignmentOffset = rhs.firstAligned(rows); - - // find how many rows do we have to skip to be aligned with rhs (if possible) - Index skipRows = 0; - // if the data cannot be aligned (TODO add some compile time tests when possible, e.g. for floats) - if( (sizeof(LhsScalar)!=sizeof(RhsScalar)) || - (lhsAlignmentOffset < 0) || (lhsAlignmentOffset == depth) || - (rhsAlignmentOffset < 0) || (rhsAlignmentOffset == rows) ) - { - alignedSize = 0; - alignedStart = 0; - alignmentPattern = NoneAligned; - } - else if(LhsPacketSize > 4) - { - // TODO: extend the code to support aligned loads whenever possible when LhsPacketSize > 4. - alignmentPattern = NoneAligned; - } - else if (LhsPacketSize>1) - { - // eigen_internal_assert(size_t(firstLhs+lhsAlignmentOffset)%sizeof(LhsPacket)==0 || depth= rows) - || LhsPacketSize > depth - || (size_t(firstLhs+alignedStart+lhsStride*skipRows)%sizeof(LhsPacket))==0);*/ - } - else if(Vectorizable) - { - alignedStart = 0; - alignedSize = depth; - alignmentPattern = AllAligned; - } - - const Index offset1 = (alignmentPattern==FirstAligned && alignmentStep==1)?3:1; - const Index offset3 = (alignmentPattern==FirstAligned && alignmentStep==1)?1:3; - - Index rowBound = ((rows-skipRows)/rowsAtOnce)*rowsAtOnce + skipRows; - for (Index i=skipRows; i(ResScalar(0)), ptmp1 = pset1(ResScalar(0)), - ptmp2 = pset1(ResScalar(0)), ptmp3 = pset1(ResScalar(0)); - - // process initial unaligned coeffs - // FIXME this loop get vectorized by the compiler ! - for (Index j=0; jalignedStart) - { - switch(alignmentPattern) - { - case AllAligned: - for (Index j = alignedStart; j1) - { - /* Here we proccess 4 rows with with two peeled iterations to hide - * the overhead of unaligned loads. Moreover unaligned loads are handled - * using special shift/move operations between the two aligned packets - * overlaping the desired unaligned packet. This is *much* more efficient - * than basic unaligned loads. - */ - LhsPacket A01, A02, A03, A11, A12, A13; - A01 = lhs1.template load(alignedStart-1); - A02 = lhs2.template load(alignedStart-2); - A03 = lhs3.template load(alignedStart-3); - - for (; j(0); - A11 = lhs1.template load(j-1+LhsPacketSize); palign<1>(A01,A11); - A12 = lhs2.template load(j-2+LhsPacketSize); palign<2>(A02,A12); - A13 = lhs3.template load(j-3+LhsPacketSize); palign<3>(A03,A13); - - ptmp0 = pcj.pmadd(lhs0.template load(j), b, ptmp0); - ptmp1 = pcj.pmadd(A01, b, ptmp1); - A01 = lhs1.template load(j-1+2*LhsPacketSize); palign<1>(A11,A01); - ptmp2 = pcj.pmadd(A02, b, ptmp2); - A02 = lhs2.template load(j-2+2*LhsPacketSize); palign<2>(A12,A02); - ptmp3 = pcj.pmadd(A03, b, ptmp3); - A03 = lhs3.template load(j-3+2*LhsPacketSize); palign<3>(A13,A03); - - b = rhs.getVectorMapper(j+RhsPacketSize, 0).template load(0); - ptmp0 = pcj.pmadd(lhs0.template load(j+LhsPacketSize), b, ptmp0); - ptmp1 = pcj.pmadd(A11, b, ptmp1); - ptmp2 = pcj.pmadd(A12, b, ptmp2); - ptmp3 = pcj.pmadd(A13, b, ptmp3); - } - } - for (; j(tmp0); - const LhsScalars lhs0 = lhs.getVectorMapper(i, 0); - // process first unaligned result's coeffs - // FIXME this loop get vectorized by the compiler ! - for (Index j=0; jalignedStart) - { - // process aligned rhs coeffs - if (lhs0.template aligned(alignedStart)) - for (Index j = alignedStart;j(j), rhs.getVectorMapper(j, 0).template load(0), ptmp0); - else - for (Index j = alignedStart;j(j), rhs.getVectorMapper(j, 0).template load(0), ptmp0); - tmp0 += predux(ptmp0); - } - - // process remaining scalars - // FIXME this loop get vectorized by the compiler ! - for (Index j=alignedSize; j and std::complex types -**********************************************************************/ - -// gemv specialization - -template -struct general_matrix_vector_product_gemv; - -#define EIGEN_BLAS_GEMV_SPECIALIZE(Scalar) \ -template \ -struct general_matrix_vector_product,ColMajor,ConjugateLhs,Scalar,const_blas_data_mapper,ConjugateRhs,Specialized> { \ -static void run( \ - Index rows, Index cols, \ - const const_blas_data_mapper &lhs, \ - const const_blas_data_mapper &rhs, \ - Scalar* res, Index resIncr, Scalar alpha) \ -{ \ - if (ConjugateLhs) { \ - general_matrix_vector_product,ColMajor,ConjugateLhs,Scalar,const_blas_data_mapper,ConjugateRhs,BuiltIn>::run( \ - rows, cols, lhs, rhs, res, resIncr, alpha); \ - } else { \ - general_matrix_vector_product_gemv::run( \ - rows, cols, lhs.data(), lhs.stride(), rhs.data(), rhs.stride(), res, resIncr, alpha); \ - } \ -} \ -}; \ -template \ -struct general_matrix_vector_product,RowMajor,ConjugateLhs,Scalar,const_blas_data_mapper,ConjugateRhs,Specialized> { \ -static void run( \ - Index rows, Index cols, \ - const const_blas_data_mapper &lhs, \ - const const_blas_data_mapper &rhs, \ - Scalar* res, Index resIncr, Scalar alpha) \ -{ \ - general_matrix_vector_product_gemv::run( \ - rows, cols, lhs.data(), lhs.stride(), rhs.data(), rhs.stride(), res, resIncr, alpha); \ -} \ -}; \ - -EIGEN_BLAS_GEMV_SPECIALIZE(double) -EIGEN_BLAS_GEMV_SPECIALIZE(float) -EIGEN_BLAS_GEMV_SPECIALIZE(dcomplex) -EIGEN_BLAS_GEMV_SPECIALIZE(scomplex) - -#define EIGEN_BLAS_GEMV_SPECIALIZATION(EIGTYPE,BLASTYPE,BLASFUNC) \ -template \ -struct general_matrix_vector_product_gemv \ -{ \ -typedef Matrix GEMVVector;\ -\ -static void run( \ - Index rows, Index cols, \ - const EIGTYPE* lhs, Index lhsStride, \ - const EIGTYPE* rhs, Index rhsIncr, \ - EIGTYPE* res, Index resIncr, EIGTYPE alpha) \ -{ \ - BlasIndex m=convert_index(rows), n=convert_index(cols), \ - lda=convert_index(lhsStride), incx=convert_index(rhsIncr), incy=convert_index(resIncr); \ - const EIGTYPE beta(1); \ - const EIGTYPE *x_ptr; \ - char trans=(LhsStorageOrder==ColMajor) ? 'N' : (ConjugateLhs) ? 'C' : 'T'; \ - if (LhsStorageOrder==RowMajor) { \ - m = convert_index(cols); \ - n = convert_index(rows); \ - }\ - GEMVVector x_tmp; \ - if (ConjugateRhs) { \ - Map > map_x(rhs,cols,1,InnerStride<>(incx)); \ - x_tmp=map_x.conjugate(); \ - x_ptr=x_tmp.data(); \ - incx=1; \ - } else x_ptr=rhs; \ - BLASFUNC(&trans, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)lhs, &lda, (const BLASTYPE*)x_ptr, &incx, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)res, &incy); \ -}\ -}; - -#ifdef EIGEN_USE_MKL -EIGEN_BLAS_GEMV_SPECIALIZATION(double, double, dgemv) -EIGEN_BLAS_GEMV_SPECIALIZATION(float, float, sgemv) -EIGEN_BLAS_GEMV_SPECIALIZATION(dcomplex, MKL_Complex16, zgemv) -EIGEN_BLAS_GEMV_SPECIALIZATION(scomplex, MKL_Complex8 , cgemv) -#else -EIGEN_BLAS_GEMV_SPECIALIZATION(double, double, dgemv_) -EIGEN_BLAS_GEMV_SPECIALIZATION(float, float, sgemv_) -EIGEN_BLAS_GEMV_SPECIALIZATION(dcomplex, double, zgemv_) -EIGEN_BLAS_GEMV_SPECIALIZATION(scomplex, float, cgemv_) -#endif - -} // end namespase internal - -} // end namespace Eigen - -#endif // EIGEN_GENERAL_MATRIX_VECTOR_BLAS_H diff --git a/src/math_meigen/Eigen/src/Core/products/Parallelizer.h b/src/math_meigen/Eigen/src/Core/products/Parallelizer.h deleted file mode 100755 index c2f084c82..000000000 --- a/src/math_meigen/Eigen/src/Core/products/Parallelizer.h +++ /dev/null @@ -1,163 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_PARALLELIZER_H -#define EIGEN_PARALLELIZER_H - -namespace Eigen { - -namespace internal { - -/** \internal */ -inline void manage_multi_threading(Action action, int* v) -{ - static EIGEN_UNUSED int m_maxThreads = -1; - - if(action==SetAction) - { - eigen_internal_assert(v!=0); - m_maxThreads = *v; - } - else if(action==GetAction) - { - eigen_internal_assert(v!=0); - #ifdef EIGEN_HAS_OPENMP - if(m_maxThreads>0) - *v = m_maxThreads; - else - *v = omp_get_max_threads(); - #else - *v = 1; - #endif - } - else - { - eigen_internal_assert(false); - } -} - -} - -/** Must be call first when calling Eigen from multiple threads */ -inline void initParallel() -{ - int nbt; - internal::manage_multi_threading(GetAction, &nbt); - std::ptrdiff_t l1, l2, l3; - internal::manage_caching_sizes(GetAction, &l1, &l2, &l3); -} - -/** \returns the max number of threads reserved for Eigen - * \sa setNbThreads */ -inline int nbThreads() -{ - int ret; - internal::manage_multi_threading(GetAction, &ret); - return ret; -} - -/** Sets the max number of threads reserved for Eigen - * \sa nbThreads */ -inline void setNbThreads(int v) -{ - internal::manage_multi_threading(SetAction, &v); -} - -namespace internal { - -template struct GemmParallelInfo -{ - GemmParallelInfo() : sync(-1), users(0), lhs_start(0), lhs_length(0) {} - - Index volatile sync; - int volatile users; - - Index lhs_start; - Index lhs_length; -}; - -template -void parallelize_gemm(const Functor& func, Index rows, Index cols, Index depth, bool transpose) -{ - // TODO when EIGEN_USE_BLAS is defined, - // we should still enable OMP for other scalar types -#if !(defined (EIGEN_HAS_OPENMP)) || defined (EIGEN_USE_BLAS) - // FIXME the transpose variable is only needed to properly split - // the matrix product when multithreading is enabled. This is a temporary - // fix to support row-major destination matrices. This whole - // parallelizer mechanism has to be redisigned anyway. - EIGEN_UNUSED_VARIABLE(depth); - EIGEN_UNUSED_VARIABLE(transpose); - func(0,rows, 0,cols); -#else - - // Dynamically check whether we should enable or disable OpenMP. - // The conditions are: - // - the max number of threads we can create is greater than 1 - // - we are not already in a parallel code - // - the sizes are large enough - - // compute the maximal number of threads from the size of the product: - // This first heuristic takes into account that the product kernel is fully optimized when working with nr columns at once. - Index size = transpose ? rows : cols; - Index pb_max_threads = std::max(1,size / Functor::Traits::nr); - - // compute the maximal number of threads from the total amount of work: - double work = static_cast(rows) * static_cast(cols) * - static_cast(depth); - double kMinTaskSize = 50000; // FIXME improve this heuristic. - pb_max_threads = std::max(1, std::min(pb_max_threads, work / kMinTaskSize)); - - // compute the number of threads we are going to use - Index threads = std::min(nbThreads(), pb_max_threads); - - // if multi-threading is explicitely disabled, not useful, or if we already are in a parallel session, - // then abort multi-threading - // FIXME omp_get_num_threads()>1 only works for openmp, what if the user does not use openmp? - if((!Condition) || (threads==1) || (omp_get_num_threads()>1)) - return func(0,rows, 0,cols); - - Eigen::initParallel(); - func.initParallelSession(threads); - - if(transpose) - std::swap(rows,cols); - - ei_declare_aligned_stack_constructed_variable(GemmParallelInfo,info,threads,0); - - #pragma omp parallel num_threads(threads) - { - Index i = omp_get_thread_num(); - // Note that the actual number of threads might be lower than the number of request ones. - Index actual_threads = omp_get_num_threads(); - - Index blockCols = (cols / actual_threads) & ~Index(0x3); - Index blockRows = (rows / actual_threads); - blockRows = (blockRows/Functor::Traits::mr)*Functor::Traits::mr; - - Index r0 = i*blockRows; - Index actualBlockRows = (i+1==actual_threads) ? rows-r0 : blockRows; - - Index c0 = i*blockCols; - Index actualBlockCols = (i+1==actual_threads) ? cols-c0 : blockCols; - - info[i].lhs_start = r0; - info[i].lhs_length = actualBlockRows; - - if(transpose) func(c0, actualBlockCols, 0, rows, info); - else func(0, rows, c0, actualBlockCols, info); - } -#endif -} - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_PARALLELIZER_H diff --git a/src/math_meigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h b/src/math_meigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h deleted file mode 100755 index da6f82abc..000000000 --- a/src/math_meigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h +++ /dev/null @@ -1,521 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SELFADJOINT_MATRIX_MATRIX_H -#define EIGEN_SELFADJOINT_MATRIX_MATRIX_H - -namespace Eigen { - -namespace internal { - -// pack a selfadjoint block diagonal for use with the gebp_kernel -template -struct symm_pack_lhs -{ - template inline - void pack(Scalar* blockA, const const_blas_data_mapper& lhs, Index cols, Index i, Index& count) - { - // normal copy - for(Index k=0; k::size }; - const_blas_data_mapper lhs(_lhs,lhsStride); - Index count = 0; - //Index peeled_mc3 = (rows/Pack1)*Pack1; - - const Index peeled_mc3 = Pack1>=3*PacketSize ? (rows/(3*PacketSize))*(3*PacketSize) : 0; - const Index peeled_mc2 = Pack1>=2*PacketSize ? peeled_mc3+((rows-peeled_mc3)/(2*PacketSize))*(2*PacketSize) : 0; - const Index peeled_mc1 = Pack1>=1*PacketSize ? (rows/(1*PacketSize))*(1*PacketSize) : 0; - - if(Pack1>=3*PacketSize) - for(Index i=0; i(blockA, lhs, cols, i, count); - - if(Pack1>=2*PacketSize) - for(Index i=peeled_mc3; i(blockA, lhs, cols, i, count); - - if(Pack1>=1*PacketSize) - for(Index i=peeled_mc2; i(blockA, lhs, cols, i, count); - - // do the same with mr==1 - for(Index i=peeled_mc1; i -struct symm_pack_rhs -{ - enum { PacketSize = packet_traits::size }; - void operator()(Scalar* blockB, const Scalar* _rhs, Index rhsStride, Index rows, Index cols, Index k2) - { - Index end_k = k2 + rows; - Index count = 0; - const_blas_data_mapper rhs(_rhs,rhsStride); - Index packet_cols8 = nr>=8 ? (cols/8) * 8 : 0; - Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0; - - // first part: normal case - for(Index j2=0; j2=4) - { - blockB[count+2] = rhs(k,j2+2); - blockB[count+3] = rhs(k,j2+3); - } - if (nr>=8) - { - blockB[count+4] = rhs(k,j2+4); - blockB[count+5] = rhs(k,j2+5); - blockB[count+6] = rhs(k,j2+6); - blockB[count+7] = rhs(k,j2+7); - } - count += nr; - } - } - - // second part: diagonal block - Index end8 = nr>=8 ? (std::min)(k2+rows,packet_cols8) : k2; - if(nr>=8) - { - for(Index j2=k2; j2=4) - { - for(Index j2=end8; j2<(std::min)(k2+rows,packet_cols4); j2+=4) - { - // again we can split vertically in three different parts (transpose, symmetric, normal) - // transpose - for(Index k=k2; k=8) - { - for(Index j2=k2+rows; j2=4) - { - for(Index j2=(std::max)(packet_cols8,k2+rows); j2 the same with nr==1) - for(Index j2=packet_cols4; j2 -struct product_selfadjoint_matrix; - -template -struct product_selfadjoint_matrix -{ - - static EIGEN_STRONG_INLINE void run( - Index rows, Index cols, - const Scalar* lhs, Index lhsStride, - const Scalar* rhs, Index rhsStride, - Scalar* res, Index resStride, - const Scalar& alpha, level3_blocking& blocking) - { - product_selfadjoint_matrix::IsComplex && EIGEN_LOGICAL_XOR(RhsSelfAdjoint,ConjugateRhs), - EIGEN_LOGICAL_XOR(LhsSelfAdjoint,LhsStorageOrder==RowMajor) ? ColMajor : RowMajor, - LhsSelfAdjoint, NumTraits::IsComplex && EIGEN_LOGICAL_XOR(LhsSelfAdjoint,ConjugateLhs), - ColMajor> - ::run(cols, rows, rhs, rhsStride, lhs, lhsStride, res, resStride, alpha, blocking); - } -}; - -template -struct product_selfadjoint_matrix -{ - - static EIGEN_DONT_INLINE void run( - Index rows, Index cols, - const Scalar* _lhs, Index lhsStride, - const Scalar* _rhs, Index rhsStride, - Scalar* res, Index resStride, - const Scalar& alpha, level3_blocking& blocking); -}; - -template -EIGEN_DONT_INLINE void product_selfadjoint_matrix::run( - Index rows, Index cols, - const Scalar* _lhs, Index lhsStride, - const Scalar* _rhs, Index rhsStride, - Scalar* _res, Index resStride, - const Scalar& alpha, level3_blocking& blocking) - { - Index size = rows; - - typedef gebp_traits Traits; - - typedef const_blas_data_mapper LhsMapper; - typedef const_blas_data_mapper LhsTransposeMapper; - typedef const_blas_data_mapper RhsMapper; - typedef blas_data_mapper ResMapper; - LhsMapper lhs(_lhs,lhsStride); - LhsTransposeMapper lhs_transpose(_lhs,lhsStride); - RhsMapper rhs(_rhs,rhsStride); - ResMapper res(_res, resStride); - - Index kc = blocking.kc(); // cache block size along the K direction - Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction - // kc must be smaller than mc - kc = (std::min)(kc,mc); - std::size_t sizeA = kc*mc; - std::size_t sizeB = kc*cols; - ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA()); - ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB()); - - gebp_kernel gebp_kernel; - symm_pack_lhs pack_lhs; - gemm_pack_rhs pack_rhs; - gemm_pack_lhs pack_lhs_transposed; - - for(Index k2=0; k2 transposed packed copy - // 2 - the diagonal block => special packed copy - // 3 - the panel below the diagonal block => generic packed copy - for(Index i2=0; i2() - (blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc); - - gebp_kernel(res.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc, cols, alpha); - } - } - } - -// matrix * selfadjoint product -template -struct product_selfadjoint_matrix -{ - - static EIGEN_DONT_INLINE void run( - Index rows, Index cols, - const Scalar* _lhs, Index lhsStride, - const Scalar* _rhs, Index rhsStride, - Scalar* res, Index resStride, - const Scalar& alpha, level3_blocking& blocking); -}; - -template -EIGEN_DONT_INLINE void product_selfadjoint_matrix::run( - Index rows, Index cols, - const Scalar* _lhs, Index lhsStride, - const Scalar* _rhs, Index rhsStride, - Scalar* _res, Index resStride, - const Scalar& alpha, level3_blocking& blocking) - { - Index size = cols; - - typedef gebp_traits Traits; - - typedef const_blas_data_mapper LhsMapper; - typedef blas_data_mapper ResMapper; - LhsMapper lhs(_lhs,lhsStride); - ResMapper res(_res,resStride); - - Index kc = blocking.kc(); // cache block size along the K direction - Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction - std::size_t sizeA = kc*mc; - std::size_t sizeB = kc*cols; - ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA()); - ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB()); - - gebp_kernel gebp_kernel; - gemm_pack_lhs pack_lhs; - symm_pack_rhs pack_rhs; - - for(Index k2=0; k2 GEPP - for(Index i2=0; i2 -struct selfadjoint_product_impl -{ - typedef typename Product::Scalar Scalar; - - typedef internal::blas_traits LhsBlasTraits; - typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; - typedef internal::blas_traits RhsBlasTraits; - typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; - - enum { - LhsIsUpper = (LhsMode&(Upper|Lower))==Upper, - LhsIsSelfAdjoint = (LhsMode&SelfAdjoint)==SelfAdjoint, - RhsIsUpper = (RhsMode&(Upper|Lower))==Upper, - RhsIsSelfAdjoint = (RhsMode&SelfAdjoint)==SelfAdjoint - }; - - template - static void run(Dest &dst, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar& alpha) - { - eigen_assert(dst.rows()==a_lhs.rows() && dst.cols()==a_rhs.cols()); - - typename internal::add_const_on_value_type::type lhs = LhsBlasTraits::extract(a_lhs); - typename internal::add_const_on_value_type::type rhs = RhsBlasTraits::extract(a_rhs); - - Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs) - * RhsBlasTraits::extractScalarFactor(a_rhs); - - typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,Scalar,Scalar, - Lhs::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime, Lhs::MaxColsAtCompileTime,1> BlockingType; - - BlockingType blocking(lhs.rows(), rhs.cols(), lhs.cols(), 1, false); - - internal::product_selfadjoint_matrix::Flags &RowMajorBit) ? RowMajor : ColMajor, LhsIsSelfAdjoint, - NumTraits::IsComplex && EIGEN_LOGICAL_XOR(LhsIsUpper,bool(LhsBlasTraits::NeedToConjugate)), - EIGEN_LOGICAL_XOR(RhsIsUpper,internal::traits::Flags &RowMajorBit) ? RowMajor : ColMajor, RhsIsSelfAdjoint, - NumTraits::IsComplex && EIGEN_LOGICAL_XOR(RhsIsUpper,bool(RhsBlasTraits::NeedToConjugate)), - internal::traits::Flags&RowMajorBit ? RowMajor : ColMajor> - ::run( - lhs.rows(), rhs.cols(), // sizes - &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info - &rhs.coeffRef(0,0), rhs.outerStride(), // rhs info - &dst.coeffRef(0,0), dst.outerStride(), // result info - actualAlpha, blocking // alpha - ); - } -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_SELFADJOINT_MATRIX_MATRIX_H diff --git a/src/math_meigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h b/src/math_meigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h deleted file mode 100755 index 9a5318507..000000000 --- a/src/math_meigen/Eigen/src/Core/products/SelfadjointMatrixMatrix_BLAS.h +++ /dev/null @@ -1,287 +0,0 @@ -/* - Copyright (c) 2011, Intel Corporation. All rights reserved. - - Redistribution and use in source and binary forms, with or without modification, - are permitted provided that the following conditions are met: - - * Redistributions of source code must retain the above copyright notice, this - list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above copyright notice, - this list of conditions and the following disclaimer in the documentation - and/or other materials provided with the distribution. - * Neither the name of Intel Corporation nor the names of its contributors may - be used to endorse or promote products derived from this software without - specific prior written permission. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND - ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED - WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR - ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES - (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON - ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -// - ******************************************************************************** - * Content : Eigen bindings to BLAS F77 - * Self adjoint matrix * matrix product functionality based on ?SYMM/?HEMM. - ******************************************************************************** -*/ - -#ifndef EIGEN_SELFADJOINT_MATRIX_MATRIX_BLAS_H -#define EIGEN_SELFADJOINT_MATRIX_MATRIX_BLAS_H - -namespace Eigen { - -namespace internal { - - -/* Optimized selfadjoint matrix * matrix (?SYMM/?HEMM) product */ - -#define EIGEN_BLAS_SYMM_L(EIGTYPE, BLASTYPE, EIGPREFIX, BLASFUNC) \ -template \ -struct product_selfadjoint_matrix \ -{\ -\ - static void run( \ - Index rows, Index cols, \ - const EIGTYPE* _lhs, Index lhsStride, \ - const EIGTYPE* _rhs, Index rhsStride, \ - EIGTYPE* res, Index resStride, \ - EIGTYPE alpha, level3_blocking& /*blocking*/) \ - { \ - char side='L', uplo='L'; \ - BlasIndex m, n, lda, ldb, ldc; \ - const EIGTYPE *a, *b; \ - EIGTYPE beta(1); \ - MatrixX##EIGPREFIX b_tmp; \ -\ -/* Set transpose options */ \ -/* Set m, n, k */ \ - m = convert_index(rows); \ - n = convert_index(cols); \ -\ -/* Set lda, ldb, ldc */ \ - lda = convert_index(lhsStride); \ - ldb = convert_index(rhsStride); \ - ldc = convert_index(resStride); \ -\ -/* Set a, b, c */ \ - if (LhsStorageOrder==RowMajor) uplo='U'; \ - a = _lhs; \ -\ - if (RhsStorageOrder==RowMajor) { \ - Map > rhs(_rhs,n,m,OuterStride<>(rhsStride)); \ - b_tmp = rhs.adjoint(); \ - b = b_tmp.data(); \ - ldb = convert_index(b_tmp.outerStride()); \ - } else b = _rhs; \ -\ - BLASFUNC(&side, &uplo, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)b, &ldb, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)res, &ldc); \ -\ - } \ -}; - - -#define EIGEN_BLAS_HEMM_L(EIGTYPE, BLASTYPE, EIGPREFIX, BLASFUNC) \ -template \ -struct product_selfadjoint_matrix \ -{\ - static void run( \ - Index rows, Index cols, \ - const EIGTYPE* _lhs, Index lhsStride, \ - const EIGTYPE* _rhs, Index rhsStride, \ - EIGTYPE* res, Index resStride, \ - EIGTYPE alpha, level3_blocking& /*blocking*/) \ - { \ - char side='L', uplo='L'; \ - BlasIndex m, n, lda, ldb, ldc; \ - const EIGTYPE *a, *b; \ - EIGTYPE beta(1); \ - MatrixX##EIGPREFIX b_tmp; \ - Matrix a_tmp; \ -\ -/* Set transpose options */ \ -/* Set m, n, k */ \ - m = convert_index(rows); \ - n = convert_index(cols); \ -\ -/* Set lda, ldb, ldc */ \ - lda = convert_index(lhsStride); \ - ldb = convert_index(rhsStride); \ - ldc = convert_index(resStride); \ -\ -/* Set a, b, c */ \ - if (((LhsStorageOrder==ColMajor) && ConjugateLhs) || ((LhsStorageOrder==RowMajor) && (!ConjugateLhs))) { \ - Map, 0, OuterStride<> > lhs(_lhs,m,m,OuterStride<>(lhsStride)); \ - a_tmp = lhs.conjugate(); \ - a = a_tmp.data(); \ - lda = convert_index(a_tmp.outerStride()); \ - } else a = _lhs; \ - if (LhsStorageOrder==RowMajor) uplo='U'; \ -\ - if (RhsStorageOrder==ColMajor && (!ConjugateRhs)) { \ - b = _rhs; } \ - else { \ - if (RhsStorageOrder==ColMajor && ConjugateRhs) { \ - Map > rhs(_rhs,m,n,OuterStride<>(rhsStride)); \ - b_tmp = rhs.conjugate(); \ - } else \ - if (ConjugateRhs) { \ - Map > rhs(_rhs,n,m,OuterStride<>(rhsStride)); \ - b_tmp = rhs.adjoint(); \ - } else { \ - Map > rhs(_rhs,n,m,OuterStride<>(rhsStride)); \ - b_tmp = rhs.transpose(); \ - } \ - b = b_tmp.data(); \ - ldb = convert_index(b_tmp.outerStride()); \ - } \ -\ - BLASFUNC(&side, &uplo, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)b, &ldb, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)res, &ldc); \ -\ - } \ -}; - -#ifdef EIGEN_USE_MKL -EIGEN_BLAS_SYMM_L(double, double, d, dsymm) -EIGEN_BLAS_SYMM_L(float, float, f, ssymm) -EIGEN_BLAS_HEMM_L(dcomplex, MKL_Complex16, cd, zhemm) -EIGEN_BLAS_HEMM_L(scomplex, MKL_Complex8, cf, chemm) -#else -EIGEN_BLAS_SYMM_L(double, double, d, dsymm_) -EIGEN_BLAS_SYMM_L(float, float, f, ssymm_) -EIGEN_BLAS_HEMM_L(dcomplex, double, cd, zhemm_) -EIGEN_BLAS_HEMM_L(scomplex, float, cf, chemm_) -#endif - -/* Optimized matrix * selfadjoint matrix (?SYMM/?HEMM) product */ - -#define EIGEN_BLAS_SYMM_R(EIGTYPE, BLASTYPE, EIGPREFIX, BLASFUNC) \ -template \ -struct product_selfadjoint_matrix \ -{\ -\ - static void run( \ - Index rows, Index cols, \ - const EIGTYPE* _lhs, Index lhsStride, \ - const EIGTYPE* _rhs, Index rhsStride, \ - EIGTYPE* res, Index resStride, \ - EIGTYPE alpha, level3_blocking& /*blocking*/) \ - { \ - char side='R', uplo='L'; \ - BlasIndex m, n, lda, ldb, ldc; \ - const EIGTYPE *a, *b; \ - EIGTYPE beta(1); \ - MatrixX##EIGPREFIX b_tmp; \ -\ -/* Set m, n, k */ \ - m = convert_index(rows); \ - n = convert_index(cols); \ -\ -/* Set lda, ldb, ldc */ \ - lda = convert_index(rhsStride); \ - ldb = convert_index(lhsStride); \ - ldc = convert_index(resStride); \ -\ -/* Set a, b, c */ \ - if (RhsStorageOrder==RowMajor) uplo='U'; \ - a = _rhs; \ -\ - if (LhsStorageOrder==RowMajor) { \ - Map > lhs(_lhs,n,m,OuterStride<>(rhsStride)); \ - b_tmp = lhs.adjoint(); \ - b = b_tmp.data(); \ - ldb = convert_index(b_tmp.outerStride()); \ - } else b = _lhs; \ -\ - BLASFUNC(&side, &uplo, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)b, &ldb, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)res, &ldc); \ -\ - } \ -}; - - -#define EIGEN_BLAS_HEMM_R(EIGTYPE, BLASTYPE, EIGPREFIX, BLASFUNC) \ -template \ -struct product_selfadjoint_matrix \ -{\ - static void run( \ - Index rows, Index cols, \ - const EIGTYPE* _lhs, Index lhsStride, \ - const EIGTYPE* _rhs, Index rhsStride, \ - EIGTYPE* res, Index resStride, \ - EIGTYPE alpha, level3_blocking& /*blocking*/) \ - { \ - char side='R', uplo='L'; \ - BlasIndex m, n, lda, ldb, ldc; \ - const EIGTYPE *a, *b; \ - EIGTYPE beta(1); \ - MatrixX##EIGPREFIX b_tmp; \ - Matrix a_tmp; \ -\ -/* Set m, n, k */ \ - m = convert_index(rows); \ - n = convert_index(cols); \ -\ -/* Set lda, ldb, ldc */ \ - lda = convert_index(rhsStride); \ - ldb = convert_index(lhsStride); \ - ldc = convert_index(resStride); \ -\ -/* Set a, b, c */ \ - if (((RhsStorageOrder==ColMajor) && ConjugateRhs) || ((RhsStorageOrder==RowMajor) && (!ConjugateRhs))) { \ - Map, 0, OuterStride<> > rhs(_rhs,n,n,OuterStride<>(rhsStride)); \ - a_tmp = rhs.conjugate(); \ - a = a_tmp.data(); \ - lda = convert_index(a_tmp.outerStride()); \ - } else a = _rhs; \ - if (RhsStorageOrder==RowMajor) uplo='U'; \ -\ - if (LhsStorageOrder==ColMajor && (!ConjugateLhs)) { \ - b = _lhs; } \ - else { \ - if (LhsStorageOrder==ColMajor && ConjugateLhs) { \ - Map > lhs(_lhs,m,n,OuterStride<>(lhsStride)); \ - b_tmp = lhs.conjugate(); \ - } else \ - if (ConjugateLhs) { \ - Map > lhs(_lhs,n,m,OuterStride<>(lhsStride)); \ - b_tmp = lhs.adjoint(); \ - } else { \ - Map > lhs(_lhs,n,m,OuterStride<>(lhsStride)); \ - b_tmp = lhs.transpose(); \ - } \ - b = b_tmp.data(); \ - ldb = convert_index(b_tmp.outerStride()); \ - } \ -\ - BLASFUNC(&side, &uplo, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)b, &ldb, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)res, &ldc); \ - } \ -}; - -#ifdef EIGEN_USE_MKL -EIGEN_BLAS_SYMM_R(double, double, d, dsymm) -EIGEN_BLAS_SYMM_R(float, float, f, ssymm) -EIGEN_BLAS_HEMM_R(dcomplex, MKL_Complex16, cd, zhemm) -EIGEN_BLAS_HEMM_R(scomplex, MKL_Complex8, cf, chemm) -#else -EIGEN_BLAS_SYMM_R(double, double, d, dsymm_) -EIGEN_BLAS_SYMM_R(float, float, f, ssymm_) -EIGEN_BLAS_HEMM_R(dcomplex, double, cd, zhemm_) -EIGEN_BLAS_HEMM_R(scomplex, float, cf, chemm_) -#endif -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_SELFADJOINT_MATRIX_MATRIX_BLAS_H diff --git a/src/math_meigen/Eigen/src/Core/products/SelfadjointMatrixVector.h b/src/math_meigen/Eigen/src/Core/products/SelfadjointMatrixVector.h deleted file mode 100755 index 3fd180e6c..000000000 --- a/src/math_meigen/Eigen/src/Core/products/SelfadjointMatrixVector.h +++ /dev/null @@ -1,260 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SELFADJOINT_MATRIX_VECTOR_H -#define EIGEN_SELFADJOINT_MATRIX_VECTOR_H - -namespace Eigen { - -namespace internal { - -/* Optimized selfadjoint matrix * vector product: - * This algorithm processes 2 columns at onces that allows to both reduce - * the number of load/stores of the result by a factor 2 and to reduce - * the instruction dependency. - */ - -template -struct selfadjoint_matrix_vector_product; - -template -struct selfadjoint_matrix_vector_product - -{ -static EIGEN_DONT_INLINE void run( - Index size, - const Scalar* lhs, Index lhsStride, - const Scalar* rhs, - Scalar* res, - Scalar alpha); -}; - -template -EIGEN_DONT_INLINE void selfadjoint_matrix_vector_product::run( - Index size, - const Scalar* lhs, Index lhsStride, - const Scalar* rhs, - Scalar* res, - Scalar alpha) -{ - typedef typename packet_traits::type Packet; - typedef typename NumTraits::Real RealScalar; - const Index PacketSize = sizeof(Packet)/sizeof(Scalar); - - enum { - IsRowMajor = StorageOrder==RowMajor ? 1 : 0, - IsLower = UpLo == Lower ? 1 : 0, - FirstTriangular = IsRowMajor == IsLower - }; - - conj_helper::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, IsRowMajor), ConjugateRhs> cj0; - conj_helper::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> cj1; - conj_helper cjd; - - conj_helper::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, IsRowMajor), ConjugateRhs> pcj0; - conj_helper::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> pcj1; - - Scalar cjAlpha = ConjugateRhs ? numext::conj(alpha) : alpha; - - - Index bound = (std::max)(Index(0),size-8) & 0xfffffffe; - if (FirstTriangular) - bound = size - bound; - - for (Index j=FirstTriangular ? bound : 0; - j<(FirstTriangular ? size : bound);j+=2) - { - const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride; - const Scalar* EIGEN_RESTRICT A1 = lhs + (j+1)*lhsStride; - - Scalar t0 = cjAlpha * rhs[j]; - Packet ptmp0 = pset1(t0); - Scalar t1 = cjAlpha * rhs[j+1]; - Packet ptmp1 = pset1(t1); - - Scalar t2(0); - Packet ptmp2 = pset1(t2); - Scalar t3(0); - Packet ptmp3 = pset1(t3); - - Index starti = FirstTriangular ? 0 : j+2; - Index endi = FirstTriangular ? j : size; - Index alignedStart = (starti) + internal::first_default_aligned(&res[starti], endi-starti); - Index alignedEnd = alignedStart + ((endi-alignedStart)/(PacketSize))*(PacketSize); - - res[j] += cjd.pmul(numext::real(A0[j]), t0); - res[j+1] += cjd.pmul(numext::real(A1[j+1]), t1); - if(FirstTriangular) - { - res[j] += cj0.pmul(A1[j], t1); - t3 += cj1.pmul(A1[j], rhs[j]); - } - else - { - res[j+1] += cj0.pmul(A0[j+1],t0); - t2 += cj1.pmul(A0[j+1], rhs[j+1]); - } - - for (Index i=starti; i huge speed up) - // gcc 4.2 does this optimization automatically. - const Scalar* EIGEN_RESTRICT a0It = A0 + alignedStart; - const Scalar* EIGEN_RESTRICT a1It = A1 + alignedStart; - const Scalar* EIGEN_RESTRICT rhsIt = rhs + alignedStart; - Scalar* EIGEN_RESTRICT resIt = res + alignedStart; - for (Index i=alignedStart; i(a0It); a0It += PacketSize; - Packet A1i = ploadu(a1It); a1It += PacketSize; - Packet Bi = ploadu(rhsIt); rhsIt += PacketSize; // FIXME should be aligned in most cases - Packet Xi = pload (resIt); - - Xi = pcj0.pmadd(A0i,ptmp0, pcj0.pmadd(A1i,ptmp1,Xi)); - ptmp2 = pcj1.pmadd(A0i, Bi, ptmp2); - ptmp3 = pcj1.pmadd(A1i, Bi, ptmp3); - pstore(resIt,Xi); resIt += PacketSize; - } - for (Index i=alignedEnd; i -struct selfadjoint_product_impl -{ - typedef typename Product::Scalar Scalar; - - typedef internal::blas_traits LhsBlasTraits; - typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; - typedef typename internal::remove_all::type ActualLhsTypeCleaned; - - typedef internal::blas_traits RhsBlasTraits; - typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; - typedef typename internal::remove_all::type ActualRhsTypeCleaned; - - enum { LhsUpLo = LhsMode&(Upper|Lower) }; - - template - static void run(Dest& dest, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar& alpha) - { - typedef typename Dest::Scalar ResScalar; - typedef typename Rhs::Scalar RhsScalar; - typedef Map, EIGEN_PLAIN_ENUM_MIN(AlignedMax,internal::packet_traits::size)> MappedDest; - - eigen_assert(dest.rows()==a_lhs.rows() && dest.cols()==a_rhs.cols()); - - typename internal::add_const_on_value_type::type lhs = LhsBlasTraits::extract(a_lhs); - typename internal::add_const_on_value_type::type rhs = RhsBlasTraits::extract(a_rhs); - - Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs) - * RhsBlasTraits::extractScalarFactor(a_rhs); - - enum { - EvalToDest = (Dest::InnerStrideAtCompileTime==1), - UseRhs = (ActualRhsTypeCleaned::InnerStrideAtCompileTime==1) - }; - - internal::gemv_static_vector_if static_dest; - internal::gemv_static_vector_if static_rhs; - - ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(), - EvalToDest ? dest.data() : static_dest.data()); - - ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,rhs.size(), - UseRhs ? const_cast(rhs.data()) : static_rhs.data()); - - if(!EvalToDest) - { - #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN - Index size = dest.size(); - EIGEN_DENSE_STORAGE_CTOR_PLUGIN - #endif - MappedDest(actualDestPtr, dest.size()) = dest; - } - - if(!UseRhs) - { - #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN - Index size = rhs.size(); - EIGEN_DENSE_STORAGE_CTOR_PLUGIN - #endif - Map(actualRhsPtr, rhs.size()) = rhs; - } - - - internal::selfadjoint_matrix_vector_product::Flags&RowMajorBit) ? RowMajor : ColMajor, - int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>::run - ( - lhs.rows(), // size - &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info - actualRhsPtr, // rhs info - actualDestPtr, // result info - actualAlpha // scale factor - ); - - if(!EvalToDest) - dest = MappedDest(actualDestPtr, dest.size()); - } -}; - -template -struct selfadjoint_product_impl -{ - typedef typename Product::Scalar Scalar; - enum { RhsUpLo = RhsMode&(Upper|Lower) }; - - template - static void run(Dest& dest, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar& alpha) - { - // let's simply transpose the product - Transpose destT(dest); - selfadjoint_product_impl, int(RhsUpLo)==Upper ? Lower : Upper, false, - Transpose, 0, true>::run(destT, a_rhs.transpose(), a_lhs.transpose(), alpha); - } -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_SELFADJOINT_MATRIX_VECTOR_H diff --git a/src/math_meigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h b/src/math_meigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h deleted file mode 100755 index 1238345e3..000000000 --- a/src/math_meigen/Eigen/src/Core/products/SelfadjointMatrixVector_BLAS.h +++ /dev/null @@ -1,118 +0,0 @@ -/* - Copyright (c) 2011, Intel Corporation. All rights reserved. - - Redistribution and use in source and binary forms, with or without modification, - are permitted provided that the following conditions are met: - - * Redistributions of source code must retain the above copyright notice, this - list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above copyright notice, - this list of conditions and the following disclaimer in the documentation - and/or other materials provided with the distribution. - * Neither the name of Intel Corporation nor the names of its contributors may - be used to endorse or promote products derived from this software without - specific prior written permission. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND - ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED - WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR - ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES - (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON - ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - - ******************************************************************************** - * Content : Eigen bindings to BLAS F77 - * Selfadjoint matrix-vector product functionality based on ?SYMV/HEMV. - ******************************************************************************** -*/ - -#ifndef EIGEN_SELFADJOINT_MATRIX_VECTOR_BLAS_H -#define EIGEN_SELFADJOINT_MATRIX_VECTOR_BLAS_H - -namespace Eigen { - -namespace internal { - -/********************************************************************** -* This file implements selfadjoint matrix-vector multiplication using BLAS -**********************************************************************/ - -// symv/hemv specialization - -template -struct selfadjoint_matrix_vector_product_symv : - selfadjoint_matrix_vector_product {}; - -#define EIGEN_BLAS_SYMV_SPECIALIZE(Scalar) \ -template \ -struct selfadjoint_matrix_vector_product { \ -static void run( \ - Index size, const Scalar* lhs, Index lhsStride, \ - const Scalar* _rhs, Scalar* res, Scalar alpha) { \ - enum {\ - IsColMajor = StorageOrder==ColMajor \ - }; \ - if (IsColMajor == ConjugateLhs) {\ - selfadjoint_matrix_vector_product::run( \ - size, lhs, lhsStride, _rhs, res, alpha); \ - } else {\ - selfadjoint_matrix_vector_product_symv::run( \ - size, lhs, lhsStride, _rhs, res, alpha); \ - }\ - } \ -}; \ - -EIGEN_BLAS_SYMV_SPECIALIZE(double) -EIGEN_BLAS_SYMV_SPECIALIZE(float) -EIGEN_BLAS_SYMV_SPECIALIZE(dcomplex) -EIGEN_BLAS_SYMV_SPECIALIZE(scomplex) - -#define EIGEN_BLAS_SYMV_SPECIALIZATION(EIGTYPE,BLASTYPE,BLASFUNC) \ -template \ -struct selfadjoint_matrix_vector_product_symv \ -{ \ -typedef Matrix SYMVVector;\ -\ -static void run( \ -Index size, const EIGTYPE* lhs, Index lhsStride, \ -const EIGTYPE* _rhs, EIGTYPE* res, EIGTYPE alpha) \ -{ \ - enum {\ - IsRowMajor = StorageOrder==RowMajor ? 1 : 0, \ - IsLower = UpLo == Lower ? 1 : 0 \ - }; \ - BlasIndex n=convert_index(size), lda=convert_index(lhsStride), incx=1, incy=1; \ - EIGTYPE beta(1); \ - const EIGTYPE *x_ptr; \ - char uplo=(IsRowMajor) ? (IsLower ? 'U' : 'L') : (IsLower ? 'L' : 'U'); \ - SYMVVector x_tmp; \ - if (ConjugateRhs) { \ - Map map_x(_rhs,size,1); \ - x_tmp=map_x.conjugate(); \ - x_ptr=x_tmp.data(); \ - } else x_ptr=_rhs; \ - BLASFUNC(&uplo, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)lhs, &lda, (const BLASTYPE*)x_ptr, &incx, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)res, &incy); \ -}\ -}; - -#ifdef EIGEN_USE_MKL -EIGEN_BLAS_SYMV_SPECIALIZATION(double, double, dsymv) -EIGEN_BLAS_SYMV_SPECIALIZATION(float, float, ssymv) -EIGEN_BLAS_SYMV_SPECIALIZATION(dcomplex, MKL_Complex16, zhemv) -EIGEN_BLAS_SYMV_SPECIALIZATION(scomplex, MKL_Complex8, chemv) -#else -EIGEN_BLAS_SYMV_SPECIALIZATION(double, double, dsymv_) -EIGEN_BLAS_SYMV_SPECIALIZATION(float, float, ssymv_) -EIGEN_BLAS_SYMV_SPECIALIZATION(dcomplex, double, zhemv_) -EIGEN_BLAS_SYMV_SPECIALIZATION(scomplex, float, chemv_) -#endif - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_SELFADJOINT_MATRIX_VECTOR_BLAS_H diff --git a/src/math_meigen/Eigen/src/Core/products/SelfadjointProduct.h b/src/math_meigen/Eigen/src/Core/products/SelfadjointProduct.h deleted file mode 100755 index f038d686f..000000000 --- a/src/math_meigen/Eigen/src/Core/products/SelfadjointProduct.h +++ /dev/null @@ -1,133 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SELFADJOINT_PRODUCT_H -#define EIGEN_SELFADJOINT_PRODUCT_H - -/********************************************************************** -* This file implements a self adjoint product: C += A A^T updating only -* half of the selfadjoint matrix C. -* It corresponds to the level 3 SYRK and level 2 SYR Blas routines. -**********************************************************************/ - -namespace Eigen { - - -template -struct selfadjoint_rank1_update -{ - static void run(Index size, Scalar* mat, Index stride, const Scalar* vecX, const Scalar* vecY, const Scalar& alpha) - { - internal::conj_if cj; - typedef Map > OtherMap; - typedef typename internal::conditional::type ConjLhsType; - for (Index i=0; i >(mat+stride*i+(UpLo==Lower ? i : 0), (UpLo==Lower ? size-i : (i+1))) - += (alpha * cj(vecY[i])) * ConjLhsType(OtherMap(vecX+(UpLo==Lower ? i : 0),UpLo==Lower ? size-i : (i+1))); - } - } -}; - -template -struct selfadjoint_rank1_update -{ - static void run(Index size, Scalar* mat, Index stride, const Scalar* vecX, const Scalar* vecY, const Scalar& alpha) - { - selfadjoint_rank1_update::run(size,mat,stride,vecY,vecX,alpha); - } -}; - -template -struct selfadjoint_product_selector; - -template -struct selfadjoint_product_selector -{ - static void run(MatrixType& mat, const OtherType& other, const typename MatrixType::Scalar& alpha) - { - typedef typename MatrixType::Scalar Scalar; - typedef internal::blas_traits OtherBlasTraits; - typedef typename OtherBlasTraits::DirectLinearAccessType ActualOtherType; - typedef typename internal::remove_all::type _ActualOtherType; - typename internal::add_const_on_value_type::type actualOther = OtherBlasTraits::extract(other.derived()); - - Scalar actualAlpha = alpha * OtherBlasTraits::extractScalarFactor(other.derived()); - - enum { - StorageOrder = (internal::traits::Flags&RowMajorBit) ? RowMajor : ColMajor, - UseOtherDirectly = _ActualOtherType::InnerStrideAtCompileTime==1 - }; - internal::gemv_static_vector_if static_other; - - ei_declare_aligned_stack_constructed_variable(Scalar, actualOtherPtr, other.size(), - (UseOtherDirectly ? const_cast(actualOther.data()) : static_other.data())); - - if(!UseOtherDirectly) - Map(actualOtherPtr, actualOther.size()) = actualOther; - - selfadjoint_rank1_update::IsComplex, - (!OtherBlasTraits::NeedToConjugate) && NumTraits::IsComplex> - ::run(other.size(), mat.data(), mat.outerStride(), actualOtherPtr, actualOtherPtr, actualAlpha); - } -}; - -template -struct selfadjoint_product_selector -{ - static void run(MatrixType& mat, const OtherType& other, const typename MatrixType::Scalar& alpha) - { - typedef typename MatrixType::Scalar Scalar; - typedef internal::blas_traits OtherBlasTraits; - typedef typename OtherBlasTraits::DirectLinearAccessType ActualOtherType; - typedef typename internal::remove_all::type _ActualOtherType; - typename internal::add_const_on_value_type::type actualOther = OtherBlasTraits::extract(other.derived()); - - Scalar actualAlpha = alpha * OtherBlasTraits::extractScalarFactor(other.derived()); - - enum { - IsRowMajor = (internal::traits::Flags&RowMajorBit) ? 1 : 0, - OtherIsRowMajor = _ActualOtherType::Flags&RowMajorBit ? 1 : 0 - }; - - Index size = mat.cols(); - Index depth = actualOther.cols(); - - typedef internal::gemm_blocking_space BlockingType; - - BlockingType blocking(size, size, depth, 1, false); - - - internal::general_matrix_matrix_triangular_product::IsComplex, - Scalar, OtherIsRowMajor ? ColMajor : RowMajor, (!OtherBlasTraits::NeedToConjugate) && NumTraits::IsComplex, - IsRowMajor ? RowMajor : ColMajor, UpLo> - ::run(size, depth, - &actualOther.coeffRef(0,0), actualOther.outerStride(), &actualOther.coeffRef(0,0), actualOther.outerStride(), - mat.data(), mat.outerStride(), actualAlpha, blocking); - } -}; - -// high level API - -template -template -SelfAdjointView& SelfAdjointView -::rankUpdate(const MatrixBase& u, const Scalar& alpha) -{ - selfadjoint_product_selector::run(_expression().const_cast_derived(), u.derived(), alpha); - - return *this; -} - -} // end namespace Eigen - -#endif // EIGEN_SELFADJOINT_PRODUCT_H diff --git a/src/math_meigen/Eigen/src/Core/products/SelfadjointRank2Update.h b/src/math_meigen/Eigen/src/Core/products/SelfadjointRank2Update.h deleted file mode 100755 index 2ae364111..000000000 --- a/src/math_meigen/Eigen/src/Core/products/SelfadjointRank2Update.h +++ /dev/null @@ -1,93 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SELFADJOINTRANK2UPTADE_H -#define EIGEN_SELFADJOINTRANK2UPTADE_H - -namespace Eigen { - -namespace internal { - -/* Optimized selfadjoint matrix += alpha * uv' + conj(alpha)*vu' - * It corresponds to the Level2 syr2 BLAS routine - */ - -template -struct selfadjoint_rank2_update_selector; - -template -struct selfadjoint_rank2_update_selector -{ - static void run(Scalar* mat, Index stride, const UType& u, const VType& v, const Scalar& alpha) - { - const Index size = u.size(); - for (Index i=0; i >(mat+stride*i+i, size-i) += - (numext::conj(alpha) * numext::conj(u.coeff(i))) * v.tail(size-i) - + (alpha * numext::conj(v.coeff(i))) * u.tail(size-i); - } - } -}; - -template -struct selfadjoint_rank2_update_selector -{ - static void run(Scalar* mat, Index stride, const UType& u, const VType& v, const Scalar& alpha) - { - const Index size = u.size(); - for (Index i=0; i >(mat+stride*i, i+1) += - (numext::conj(alpha) * numext::conj(u.coeff(i))) * v.head(i+1) - + (alpha * numext::conj(v.coeff(i))) * u.head(i+1); - } -}; - -template struct conj_expr_if - : conditional::Scalar>,T> > {}; - -} // end namespace internal - -template -template -SelfAdjointView& SelfAdjointView -::rankUpdate(const MatrixBase& u, const MatrixBase& v, const Scalar& alpha) -{ - typedef internal::blas_traits UBlasTraits; - typedef typename UBlasTraits::DirectLinearAccessType ActualUType; - typedef typename internal::remove_all::type _ActualUType; - typename internal::add_const_on_value_type::type actualU = UBlasTraits::extract(u.derived()); - - typedef internal::blas_traits VBlasTraits; - typedef typename VBlasTraits::DirectLinearAccessType ActualVType; - typedef typename internal::remove_all::type _ActualVType; - typename internal::add_const_on_value_type::type actualV = VBlasTraits::extract(v.derived()); - - // If MatrixType is row major, then we use the routine for lower triangular in the upper triangular case and - // vice versa, and take the complex conjugate of all coefficients and vector entries. - - enum { IsRowMajor = (internal::traits::Flags&RowMajorBit) ? 1 : 0 }; - Scalar actualAlpha = alpha * UBlasTraits::extractScalarFactor(u.derived()) - * numext::conj(VBlasTraits::extractScalarFactor(v.derived())); - if (IsRowMajor) - actualAlpha = numext::conj(actualAlpha); - - typedef typename internal::remove_all::type>::type UType; - typedef typename internal::remove_all::type>::type VType; - internal::selfadjoint_rank2_update_selector - ::run(_expression().const_cast_derived().data(),_expression().outerStride(),UType(actualU),VType(actualV),actualAlpha); - - return *this; -} - -} // end namespace Eigen - -#endif // EIGEN_SELFADJOINTRANK2UPTADE_H diff --git a/src/math_meigen/Eigen/src/Core/products/TriangularMatrixMatrix.h b/src/math_meigen/Eigen/src/Core/products/TriangularMatrixMatrix.h deleted file mode 100755 index f784507e7..000000000 --- a/src/math_meigen/Eigen/src/Core/products/TriangularMatrixMatrix.h +++ /dev/null @@ -1,466 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_TRIANGULAR_MATRIX_MATRIX_H -#define EIGEN_TRIANGULAR_MATRIX_MATRIX_H - -namespace Eigen { - -namespace internal { - -// template -// struct gemm_pack_lhs_triangular -// { -// Matrix::IsComplex && Conjugate> cj; -// const_blas_data_mapper lhs(_lhs,lhsStride); -// int count = 0; -// const int peeled_mc = (rows/mr)*mr; -// for(int i=0; i -struct product_triangular_matrix_matrix; - -template -struct product_triangular_matrix_matrix -{ - static EIGEN_STRONG_INLINE void run( - Index rows, Index cols, Index depth, - const Scalar* lhs, Index lhsStride, - const Scalar* rhs, Index rhsStride, - Scalar* res, Index resStride, - const Scalar& alpha, level3_blocking& blocking) - { - product_triangular_matrix_matrix - ::run(cols, rows, depth, rhs, rhsStride, lhs, lhsStride, res, resStride, alpha, blocking); - } -}; - -// implements col-major += alpha * op(triangular) * op(general) -template -struct product_triangular_matrix_matrix -{ - - typedef gebp_traits Traits; - enum { - SmallPanelWidth = 2 * EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr), - IsLower = (Mode&Lower) == Lower, - SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1 - }; - - static EIGEN_DONT_INLINE void run( - Index _rows, Index _cols, Index _depth, - const Scalar* _lhs, Index lhsStride, - const Scalar* _rhs, Index rhsStride, - Scalar* res, Index resStride, - const Scalar& alpha, level3_blocking& blocking); -}; - -template -EIGEN_DONT_INLINE void product_triangular_matrix_matrix::run( - Index _rows, Index _cols, Index _depth, - const Scalar* _lhs, Index lhsStride, - const Scalar* _rhs, Index rhsStride, - Scalar* _res, Index resStride, - const Scalar& alpha, level3_blocking& blocking) - { - // strip zeros - Index diagSize = (std::min)(_rows,_depth); - Index rows = IsLower ? _rows : diagSize; - Index depth = IsLower ? diagSize : _depth; - Index cols = _cols; - - typedef const_blas_data_mapper LhsMapper; - typedef const_blas_data_mapper RhsMapper; - typedef blas_data_mapper ResMapper; - LhsMapper lhs(_lhs,lhsStride); - RhsMapper rhs(_rhs,rhsStride); - ResMapper res(_res, resStride); - - Index kc = blocking.kc(); // cache block size along the K direction - Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction - // The small panel size must not be larger than blocking size. - // Usually this should never be the case because SmallPanelWidth^2 is very small - // compared to L2 cache size, but let's be safe: - Index panelWidth = (std::min)(Index(SmallPanelWidth),(std::min)(kc,mc)); - - std::size_t sizeA = kc*mc; - std::size_t sizeB = kc*cols; - - ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA()); - ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB()); - - // To work around an "error: member reference base type 'Matrix<...> - // (Eigen::internal::constructor_without_unaligned_array_assert (*)())' is - // not a structure or union" compilation error in nvcc (tested V8.0.61), - // create a dummy internal::constructor_without_unaligned_array_assert - // object to pass to the Matrix constructor. - internal::constructor_without_unaligned_array_assert a; - Matrix triangularBuffer(a); - triangularBuffer.setZero(); - if((Mode&ZeroDiag)==ZeroDiag) - triangularBuffer.diagonal().setZero(); - else - triangularBuffer.diagonal().setOnes(); - - gebp_kernel gebp_kernel; - gemm_pack_lhs pack_lhs; - gemm_pack_rhs pack_rhs; - - for(Index k2=IsLower ? depth : 0; - IsLower ? k2>0 : k2rows)) - { - actual_kc = rows-k2; - k2 = k2+actual_kc-kc; - } - - pack_rhs(blockB, rhs.getSubMapper(actual_k2,0), actual_kc, cols); - - // the selected lhs's panel has to be split in three different parts: - // 1 - the part which is zero => skip it - // 2 - the diagonal block => special kernel - // 3 - the dense panel below (lower case) or above (upper case) the diagonal block => GEPP - - // the block diagonal, if any: - if(IsLower || actual_k2(actual_kc-k1, panelWidth); - Index lengthTarget = IsLower ? actual_kc-k1-actualPanelWidth : k1; - Index startBlock = actual_k2+k1; - Index blockBOffset = k1; - - // => GEBP with the micro triangular block - // The trick is to pack this micro block while filling the opposite triangular part with zeros. - // To this end we do an extra triangular copy to a small temporary buffer - for (Index k=0;k0) - { - Index startTarget = IsLower ? actual_k2+k1+actualPanelWidth : actual_k2; - - pack_lhs(blockA, lhs.getSubMapper(startTarget,startBlock), actualPanelWidth, lengthTarget); - - gebp_kernel(res.getSubMapper(startTarget, 0), blockA, blockB, - lengthTarget, actualPanelWidth, cols, alpha, - actualPanelWidth, actual_kc, 0, blockBOffset); - } - } - } - // the part below (lower case) or above (upper case) the diagonal => GEPP - { - Index start = IsLower ? k2 : 0; - Index end = IsLower ? rows : (std::min)(actual_k2,rows); - for(Index i2=start; i2() - (blockA, lhs.getSubMapper(i2, actual_k2), actual_kc, actual_mc); - - gebp_kernel(res.getSubMapper(i2, 0), blockA, blockB, actual_mc, - actual_kc, cols, alpha, -1, -1, 0, 0); - } - } - } - } - -// implements col-major += alpha * op(general) * op(triangular) -template -struct product_triangular_matrix_matrix -{ - typedef gebp_traits Traits; - enum { - SmallPanelWidth = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr), - IsLower = (Mode&Lower) == Lower, - SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1 - }; - - static EIGEN_DONT_INLINE void run( - Index _rows, Index _cols, Index _depth, - const Scalar* _lhs, Index lhsStride, - const Scalar* _rhs, Index rhsStride, - Scalar* res, Index resStride, - const Scalar& alpha, level3_blocking& blocking); -}; - -template -EIGEN_DONT_INLINE void product_triangular_matrix_matrix::run( - Index _rows, Index _cols, Index _depth, - const Scalar* _lhs, Index lhsStride, - const Scalar* _rhs, Index rhsStride, - Scalar* _res, Index resStride, - const Scalar& alpha, level3_blocking& blocking) - { - const Index PacketBytes = packet_traits::size*sizeof(Scalar); - // strip zeros - Index diagSize = (std::min)(_cols,_depth); - Index rows = _rows; - Index depth = IsLower ? _depth : diagSize; - Index cols = IsLower ? diagSize : _cols; - - typedef const_blas_data_mapper LhsMapper; - typedef const_blas_data_mapper RhsMapper; - typedef blas_data_mapper ResMapper; - LhsMapper lhs(_lhs,lhsStride); - RhsMapper rhs(_rhs,rhsStride); - ResMapper res(_res, resStride); - - Index kc = blocking.kc(); // cache block size along the K direction - Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction - - std::size_t sizeA = kc*mc; - std::size_t sizeB = kc*cols+EIGEN_MAX_ALIGN_BYTES/sizeof(Scalar); - - ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA()); - ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB()); - - internal::constructor_without_unaligned_array_assert a; - Matrix triangularBuffer(a); - triangularBuffer.setZero(); - if((Mode&ZeroDiag)==ZeroDiag) - triangularBuffer.diagonal().setZero(); - else - triangularBuffer.diagonal().setOnes(); - - gebp_kernel gebp_kernel; - gemm_pack_lhs pack_lhs; - gemm_pack_rhs pack_rhs; - gemm_pack_rhs pack_rhs_panel; - - for(Index k2=IsLower ? 0 : depth; - IsLower ? k20; - IsLower ? k2+=kc : k2-=kc) - { - Index actual_kc = (std::min)(IsLower ? depth-k2 : k2, kc); - Index actual_k2 = IsLower ? k2 : k2-actual_kc; - - // align blocks with the end of the triangular part for trapezoidal rhs - if(IsLower && (k2cols)) - { - actual_kc = cols-k2; - k2 = actual_k2 + actual_kc - kc; - } - - // remaining size - Index rs = IsLower ? (std::min)(cols,actual_k2) : cols - k2; - // size of the triangular part - Index ts = (IsLower && actual_k2>=cols) ? 0 : actual_kc; - - Scalar* geb = blockB+ts*ts; - geb = geb + internal::first_aligned(geb,PacketBytes/sizeof(Scalar)); - - pack_rhs(geb, rhs.getSubMapper(actual_k2,IsLower ? 0 : k2), actual_kc, rs); - - // pack the triangular part of the rhs padding the unrolled blocks with zeros - if(ts>0) - { - for (Index j2=0; j2(actual_kc-j2, SmallPanelWidth); - Index actual_j2 = actual_k2 + j2; - Index panelOffset = IsLower ? j2+actualPanelWidth : 0; - Index panelLength = IsLower ? actual_kc-j2-actualPanelWidth : j2; - // general part - pack_rhs_panel(blockB+j2*actual_kc, - rhs.getSubMapper(actual_k2+panelOffset, actual_j2), - panelLength, actualPanelWidth, - actual_kc, panelOffset); - - // append the triangular part via a temporary buffer - for (Index j=0;j0) - { - for (Index j2=0; j2(actual_kc-j2, SmallPanelWidth); - Index panelLength = IsLower ? actual_kc-j2 : j2+actualPanelWidth; - Index blockOffset = IsLower ? j2 : 0; - - gebp_kernel(res.getSubMapper(i2, actual_k2 + j2), - blockA, blockB+j2*actual_kc, - actual_mc, panelLength, actualPanelWidth, - alpha, - actual_kc, actual_kc, // strides - blockOffset, blockOffset);// offsets - } - } - gebp_kernel(res.getSubMapper(i2, IsLower ? 0 : k2), - blockA, geb, actual_mc, actual_kc, rs, - alpha, - -1, -1, 0, 0); - } - } - } - -/*************************************************************************** -* Wrapper to product_triangular_matrix_matrix -***************************************************************************/ - -} // end namespace internal - -namespace internal { -template -struct triangular_product_impl -{ - template static void run(Dest& dst, const Lhs &a_lhs, const Rhs &a_rhs, const typename Dest::Scalar& alpha) - { - typedef typename Lhs::Scalar LhsScalar; - typedef typename Rhs::Scalar RhsScalar; - typedef typename Dest::Scalar Scalar; - - typedef internal::blas_traits LhsBlasTraits; - typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; - typedef typename internal::remove_all::type ActualLhsTypeCleaned; - typedef internal::blas_traits RhsBlasTraits; - typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; - typedef typename internal::remove_all::type ActualRhsTypeCleaned; - - typename internal::add_const_on_value_type::type lhs = LhsBlasTraits::extract(a_lhs); - typename internal::add_const_on_value_type::type rhs = RhsBlasTraits::extract(a_rhs); - - LhsScalar lhs_alpha = LhsBlasTraits::extractScalarFactor(a_lhs); - RhsScalar rhs_alpha = RhsBlasTraits::extractScalarFactor(a_rhs); - Scalar actualAlpha = alpha * lhs_alpha * rhs_alpha; - - typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,Scalar,Scalar, - Lhs::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime, Lhs::MaxColsAtCompileTime,4> BlockingType; - - enum { IsLower = (Mode&Lower) == Lower }; - Index stripedRows = ((!LhsIsTriangular) || (IsLower)) ? lhs.rows() : (std::min)(lhs.rows(),lhs.cols()); - Index stripedCols = ((LhsIsTriangular) || (!IsLower)) ? rhs.cols() : (std::min)(rhs.cols(),rhs.rows()); - Index stripedDepth = LhsIsTriangular ? ((!IsLower) ? lhs.cols() : (std::min)(lhs.cols(),lhs.rows())) - : ((IsLower) ? rhs.rows() : (std::min)(rhs.rows(),rhs.cols())); - - BlockingType blocking(stripedRows, stripedCols, stripedDepth, 1, false); - - internal::product_triangular_matrix_matrix::Flags&RowMajorBit) ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate, - (internal::traits::Flags&RowMajorBit) ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate, - (internal::traits::Flags&RowMajorBit) ? RowMajor : ColMajor> - ::run( - stripedRows, stripedCols, stripedDepth, // sizes - &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info - &rhs.coeffRef(0,0), rhs.outerStride(), // rhs info - &dst.coeffRef(0,0), dst.outerStride(), // result info - actualAlpha, blocking - ); - - // Apply correction if the diagonal is unit and a scalar factor was nested: - if ((Mode&UnitDiag)==UnitDiag) - { - if (LhsIsTriangular && lhs_alpha!=LhsScalar(1)) - { - Index diagSize = (std::min)(lhs.rows(),lhs.cols()); - dst.topRows(diagSize) -= ((lhs_alpha-LhsScalar(1))*a_rhs).topRows(diagSize); - } - else if ((!LhsIsTriangular) && rhs_alpha!=RhsScalar(1)) - { - Index diagSize = (std::min)(rhs.rows(),rhs.cols()); - dst.leftCols(diagSize) -= (rhs_alpha-RhsScalar(1))*a_lhs.leftCols(diagSize); - } - } - } -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_TRIANGULAR_MATRIX_MATRIX_H diff --git a/src/math_meigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h b/src/math_meigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h deleted file mode 100755 index a25197ab0..000000000 --- a/src/math_meigen/Eigen/src/Core/products/TriangularMatrixMatrix_BLAS.h +++ /dev/null @@ -1,315 +0,0 @@ -/* - Copyright (c) 2011, Intel Corporation. All rights reserved. - - Redistribution and use in source and binary forms, with or without modification, - are permitted provided that the following conditions are met: - - * Redistributions of source code must retain the above copyright notice, this - list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above copyright notice, - this list of conditions and the following disclaimer in the documentation - and/or other materials provided with the distribution. - * Neither the name of Intel Corporation nor the names of its contributors may - be used to endorse or promote products derived from this software without - specific prior written permission. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND - ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED - WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR - ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES - (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON - ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - - ******************************************************************************** - * Content : Eigen bindings to BLAS F77 - * Triangular matrix * matrix product functionality based on ?TRMM. - ******************************************************************************** -*/ - -#ifndef EIGEN_TRIANGULAR_MATRIX_MATRIX_BLAS_H -#define EIGEN_TRIANGULAR_MATRIX_MATRIX_BLAS_H - -namespace Eigen { - -namespace internal { - - -template -struct product_triangular_matrix_matrix_trmm : - product_triangular_matrix_matrix {}; - - -// try to go to BLAS specialization -#define EIGEN_BLAS_TRMM_SPECIALIZE(Scalar, LhsIsTriangular) \ -template \ -struct product_triangular_matrix_matrix { \ - static inline void run(Index _rows, Index _cols, Index _depth, const Scalar* _lhs, Index lhsStride,\ - const Scalar* _rhs, Index rhsStride, Scalar* res, Index resStride, Scalar alpha, level3_blocking& blocking) { \ - product_triangular_matrix_matrix_trmm::run( \ - _rows, _cols, _depth, _lhs, lhsStride, _rhs, rhsStride, res, resStride, alpha, blocking); \ - } \ -}; - -EIGEN_BLAS_TRMM_SPECIALIZE(double, true) -EIGEN_BLAS_TRMM_SPECIALIZE(double, false) -EIGEN_BLAS_TRMM_SPECIALIZE(dcomplex, true) -EIGEN_BLAS_TRMM_SPECIALIZE(dcomplex, false) -EIGEN_BLAS_TRMM_SPECIALIZE(float, true) -EIGEN_BLAS_TRMM_SPECIALIZE(float, false) -EIGEN_BLAS_TRMM_SPECIALIZE(scomplex, true) -EIGEN_BLAS_TRMM_SPECIALIZE(scomplex, false) - -// implements col-major += alpha * op(triangular) * op(general) -#define EIGEN_BLAS_TRMM_L(EIGTYPE, BLASTYPE, EIGPREFIX, BLASFUNC) \ -template \ -struct product_triangular_matrix_matrix_trmm \ -{ \ - enum { \ - IsLower = (Mode&Lower) == Lower, \ - SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1, \ - IsUnitDiag = (Mode&UnitDiag) ? 1 : 0, \ - IsZeroDiag = (Mode&ZeroDiag) ? 1 : 0, \ - LowUp = IsLower ? Lower : Upper, \ - conjA = ((LhsStorageOrder==ColMajor) && ConjugateLhs) ? 1 : 0 \ - }; \ -\ - static void run( \ - Index _rows, Index _cols, Index _depth, \ - const EIGTYPE* _lhs, Index lhsStride, \ - const EIGTYPE* _rhs, Index rhsStride, \ - EIGTYPE* res, Index resStride, \ - EIGTYPE alpha, level3_blocking& blocking) \ - { \ - Index diagSize = (std::min)(_rows,_depth); \ - Index rows = IsLower ? _rows : diagSize; \ - Index depth = IsLower ? diagSize : _depth; \ - Index cols = _cols; \ -\ - typedef Matrix MatrixLhs; \ - typedef Matrix MatrixRhs; \ -\ -/* Non-square case - doesn't fit to BLAS ?TRMM. Fall to default triangular product or call BLAS ?GEMM*/ \ - if (rows != depth) { \ -\ - /* FIXME handle mkl_domain_get_max_threads */ \ - /*int nthr = mkl_domain_get_max_threads(EIGEN_BLAS_DOMAIN_BLAS);*/ int nthr = 1;\ -\ - if (((nthr==1) && (((std::max)(rows,depth)-diagSize)/(double)diagSize < 0.5))) { \ - /* Most likely no benefit to call TRMM or GEMM from BLAS */ \ - product_triangular_matrix_matrix::run( \ - _rows, _cols, _depth, _lhs, lhsStride, _rhs, rhsStride, res, resStride, alpha, blocking); \ - /*std::cout << "TRMM_L: A is not square! Go to Eigen TRMM implementation!\n";*/ \ - } else { \ - /* Make sense to call GEMM */ \ - Map > lhsMap(_lhs,rows,depth,OuterStride<>(lhsStride)); \ - MatrixLhs aa_tmp=lhsMap.template triangularView(); \ - BlasIndex aStride = convert_index(aa_tmp.outerStride()); \ - gemm_blocking_space gemm_blocking(_rows,_cols,_depth, 1, true); \ - general_matrix_matrix_product::run( \ - rows, cols, depth, aa_tmp.data(), aStride, _rhs, rhsStride, res, resStride, alpha, gemm_blocking, 0); \ -\ - /*std::cout << "TRMM_L: A is not square! Go to BLAS GEMM implementation! " << nthr<<" \n";*/ \ - } \ - return; \ - } \ - char side = 'L', transa, uplo, diag = 'N'; \ - EIGTYPE *b; \ - const EIGTYPE *a; \ - BlasIndex m, n, lda, ldb; \ -\ -/* Set m, n */ \ - m = convert_index(diagSize); \ - n = convert_index(cols); \ -\ -/* Set trans */ \ - transa = (LhsStorageOrder==RowMajor) ? ((ConjugateLhs) ? 'C' : 'T') : 'N'; \ -\ -/* Set b, ldb */ \ - Map > rhs(_rhs,depth,cols,OuterStride<>(rhsStride)); \ - MatrixX##EIGPREFIX b_tmp; \ -\ - if (ConjugateRhs) b_tmp = rhs.conjugate(); else b_tmp = rhs; \ - b = b_tmp.data(); \ - ldb = convert_index(b_tmp.outerStride()); \ -\ -/* Set uplo */ \ - uplo = IsLower ? 'L' : 'U'; \ - if (LhsStorageOrder==RowMajor) uplo = (uplo == 'L') ? 'U' : 'L'; \ -/* Set a, lda */ \ - Map > lhs(_lhs,rows,depth,OuterStride<>(lhsStride)); \ - MatrixLhs a_tmp; \ -\ - if ((conjA!=0) || (SetDiag==0)) { \ - if (conjA) a_tmp = lhs.conjugate(); else a_tmp = lhs; \ - if (IsZeroDiag) \ - a_tmp.diagonal().setZero(); \ - else if (IsUnitDiag) \ - a_tmp.diagonal().setOnes();\ - a = a_tmp.data(); \ - lda = convert_index(a_tmp.outerStride()); \ - } else { \ - a = _lhs; \ - lda = convert_index(lhsStride); \ - } \ - /*std::cout << "TRMM_L: A is square! Go to BLAS TRMM implementation! \n";*/ \ -/* call ?trmm*/ \ - BLASFUNC(&side, &uplo, &transa, &diag, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (BLASTYPE*)b, &ldb); \ -\ -/* Add op(a_triangular)*b into res*/ \ - Map > res_tmp(res,rows,cols,OuterStride<>(resStride)); \ - res_tmp=res_tmp+b_tmp; \ - } \ -}; - -#ifdef EIGEN_USE_MKL -EIGEN_BLAS_TRMM_L(double, double, d, dtrmm) -EIGEN_BLAS_TRMM_L(dcomplex, MKL_Complex16, cd, ztrmm) -EIGEN_BLAS_TRMM_L(float, float, f, strmm) -EIGEN_BLAS_TRMM_L(scomplex, MKL_Complex8, cf, ctrmm) -#else -EIGEN_BLAS_TRMM_L(double, double, d, dtrmm_) -EIGEN_BLAS_TRMM_L(dcomplex, double, cd, ztrmm_) -EIGEN_BLAS_TRMM_L(float, float, f, strmm_) -EIGEN_BLAS_TRMM_L(scomplex, float, cf, ctrmm_) -#endif - -// implements col-major += alpha * op(general) * op(triangular) -#define EIGEN_BLAS_TRMM_R(EIGTYPE, BLASTYPE, EIGPREFIX, BLASFUNC) \ -template \ -struct product_triangular_matrix_matrix_trmm \ -{ \ - enum { \ - IsLower = (Mode&Lower) == Lower, \ - SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1, \ - IsUnitDiag = (Mode&UnitDiag) ? 1 : 0, \ - IsZeroDiag = (Mode&ZeroDiag) ? 1 : 0, \ - LowUp = IsLower ? Lower : Upper, \ - conjA = ((RhsStorageOrder==ColMajor) && ConjugateRhs) ? 1 : 0 \ - }; \ -\ - static void run( \ - Index _rows, Index _cols, Index _depth, \ - const EIGTYPE* _lhs, Index lhsStride, \ - const EIGTYPE* _rhs, Index rhsStride, \ - EIGTYPE* res, Index resStride, \ - EIGTYPE alpha, level3_blocking& blocking) \ - { \ - Index diagSize = (std::min)(_cols,_depth); \ - Index rows = _rows; \ - Index depth = IsLower ? _depth : diagSize; \ - Index cols = IsLower ? diagSize : _cols; \ -\ - typedef Matrix MatrixLhs; \ - typedef Matrix MatrixRhs; \ -\ -/* Non-square case - doesn't fit to BLAS ?TRMM. Fall to default triangular product or call BLAS ?GEMM*/ \ - if (cols != depth) { \ -\ - int nthr = 1 /*mkl_domain_get_max_threads(EIGEN_BLAS_DOMAIN_BLAS)*/; \ -\ - if ((nthr==1) && (((std::max)(cols,depth)-diagSize)/(double)diagSize < 0.5)) { \ - /* Most likely no benefit to call TRMM or GEMM from BLAS*/ \ - product_triangular_matrix_matrix::run( \ - _rows, _cols, _depth, _lhs, lhsStride, _rhs, rhsStride, res, resStride, alpha, blocking); \ - /*std::cout << "TRMM_R: A is not square! Go to Eigen TRMM implementation!\n";*/ \ - } else { \ - /* Make sense to call GEMM */ \ - Map > rhsMap(_rhs,depth,cols, OuterStride<>(rhsStride)); \ - MatrixRhs aa_tmp=rhsMap.template triangularView(); \ - BlasIndex aStride = convert_index(aa_tmp.outerStride()); \ - gemm_blocking_space gemm_blocking(_rows,_cols,_depth, 1, true); \ - general_matrix_matrix_product::run( \ - rows, cols, depth, _lhs, lhsStride, aa_tmp.data(), aStride, res, resStride, alpha, gemm_blocking, 0); \ -\ - /*std::cout << "TRMM_R: A is not square! Go to BLAS GEMM implementation! " << nthr<<" \n";*/ \ - } \ - return; \ - } \ - char side = 'R', transa, uplo, diag = 'N'; \ - EIGTYPE *b; \ - const EIGTYPE *a; \ - BlasIndex m, n, lda, ldb; \ -\ -/* Set m, n */ \ - m = convert_index(rows); \ - n = convert_index(diagSize); \ -\ -/* Set trans */ \ - transa = (RhsStorageOrder==RowMajor) ? ((ConjugateRhs) ? 'C' : 'T') : 'N'; \ -\ -/* Set b, ldb */ \ - Map > lhs(_lhs,rows,depth,OuterStride<>(lhsStride)); \ - MatrixX##EIGPREFIX b_tmp; \ -\ - if (ConjugateLhs) b_tmp = lhs.conjugate(); else b_tmp = lhs; \ - b = b_tmp.data(); \ - ldb = convert_index(b_tmp.outerStride()); \ -\ -/* Set uplo */ \ - uplo = IsLower ? 'L' : 'U'; \ - if (RhsStorageOrder==RowMajor) uplo = (uplo == 'L') ? 'U' : 'L'; \ -/* Set a, lda */ \ - Map > rhs(_rhs,depth,cols, OuterStride<>(rhsStride)); \ - MatrixRhs a_tmp; \ -\ - if ((conjA!=0) || (SetDiag==0)) { \ - if (conjA) a_tmp = rhs.conjugate(); else a_tmp = rhs; \ - if (IsZeroDiag) \ - a_tmp.diagonal().setZero(); \ - else if (IsUnitDiag) \ - a_tmp.diagonal().setOnes();\ - a = a_tmp.data(); \ - lda = convert_index(a_tmp.outerStride()); \ - } else { \ - a = _rhs; \ - lda = convert_index(rhsStride); \ - } \ - /*std::cout << "TRMM_R: A is square! Go to BLAS TRMM implementation! \n";*/ \ -/* call ?trmm*/ \ - BLASFUNC(&side, &uplo, &transa, &diag, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (BLASTYPE*)b, &ldb); \ -\ -/* Add op(a_triangular)*b into res*/ \ - Map > res_tmp(res,rows,cols,OuterStride<>(resStride)); \ - res_tmp=res_tmp+b_tmp; \ - } \ -}; - -#ifdef EIGEN_USE_MKL -EIGEN_BLAS_TRMM_R(double, double, d, dtrmm) -EIGEN_BLAS_TRMM_R(dcomplex, MKL_Complex16, cd, ztrmm) -EIGEN_BLAS_TRMM_R(float, float, f, strmm) -EIGEN_BLAS_TRMM_R(scomplex, MKL_Complex8, cf, ctrmm) -#else -EIGEN_BLAS_TRMM_R(double, double, d, dtrmm_) -EIGEN_BLAS_TRMM_R(dcomplex, double, cd, ztrmm_) -EIGEN_BLAS_TRMM_R(float, float, f, strmm_) -EIGEN_BLAS_TRMM_R(scomplex, float, cf, ctrmm_) -#endif -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_TRIANGULAR_MATRIX_MATRIX_BLAS_H diff --git a/src/math_meigen/Eigen/src/Core/products/TriangularMatrixVector.h b/src/math_meigen/Eigen/src/Core/products/TriangularMatrixVector.h deleted file mode 100755 index 76bfa159c..000000000 --- a/src/math_meigen/Eigen/src/Core/products/TriangularMatrixVector.h +++ /dev/null @@ -1,350 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_TRIANGULARMATRIXVECTOR_H -#define EIGEN_TRIANGULARMATRIXVECTOR_H - -namespace Eigen { - -namespace internal { - -template -struct triangular_matrix_vector_product; - -template -struct triangular_matrix_vector_product -{ - typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; - enum { - IsLower = ((Mode&Lower)==Lower), - HasUnitDiag = (Mode & UnitDiag)==UnitDiag, - HasZeroDiag = (Mode & ZeroDiag)==ZeroDiag - }; - static EIGEN_DONT_INLINE void run(Index _rows, Index _cols, const LhsScalar* _lhs, Index lhsStride, - const RhsScalar* _rhs, Index rhsIncr, ResScalar* _res, Index resIncr, const RhsScalar& alpha); -}; - -template -EIGEN_DONT_INLINE void triangular_matrix_vector_product - ::run(Index _rows, Index _cols, const LhsScalar* _lhs, Index lhsStride, - const RhsScalar* _rhs, Index rhsIncr, ResScalar* _res, Index resIncr, const RhsScalar& alpha) - { - static const Index PanelWidth = EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH; - Index size = (std::min)(_rows,_cols); - Index rows = IsLower ? _rows : (std::min)(_rows,_cols); - Index cols = IsLower ? (std::min)(_rows,_cols) : _cols; - - typedef Map, 0, OuterStride<> > LhsMap; - const LhsMap lhs(_lhs,rows,cols,OuterStride<>(lhsStride)); - typename conj_expr_if::type cjLhs(lhs); - - typedef Map, 0, InnerStride<> > RhsMap; - const RhsMap rhs(_rhs,cols,InnerStride<>(rhsIncr)); - typename conj_expr_if::type cjRhs(rhs); - - typedef Map > ResMap; - ResMap res(_res,rows); - - typedef const_blas_data_mapper LhsMapper; - typedef const_blas_data_mapper RhsMapper; - - for (Index pi=0; pi0) - res.segment(s,r) += (alpha * cjRhs.coeff(i)) * cjLhs.col(i).segment(s,r); - if (HasUnitDiag) - res.coeffRef(i) += alpha * cjRhs.coeff(i); - } - Index r = IsLower ? rows - pi - actualPanelWidth : pi; - if (r>0) - { - Index s = IsLower ? pi+actualPanelWidth : 0; - general_matrix_vector_product::run( - r, actualPanelWidth, - LhsMapper(&lhs.coeffRef(s,pi), lhsStride), - RhsMapper(&rhs.coeffRef(pi), rhsIncr), - &res.coeffRef(s), resIncr, alpha); - } - } - if((!IsLower) && cols>size) - { - general_matrix_vector_product::run( - rows, cols-size, - LhsMapper(&lhs.coeffRef(0,size), lhsStride), - RhsMapper(&rhs.coeffRef(size), rhsIncr), - _res, resIncr, alpha); - } - } - -template -struct triangular_matrix_vector_product -{ - typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; - enum { - IsLower = ((Mode&Lower)==Lower), - HasUnitDiag = (Mode & UnitDiag)==UnitDiag, - HasZeroDiag = (Mode & ZeroDiag)==ZeroDiag - }; - static EIGEN_DONT_INLINE void run(Index _rows, Index _cols, const LhsScalar* _lhs, Index lhsStride, - const RhsScalar* _rhs, Index rhsIncr, ResScalar* _res, Index resIncr, const ResScalar& alpha); -}; - -template -EIGEN_DONT_INLINE void triangular_matrix_vector_product - ::run(Index _rows, Index _cols, const LhsScalar* _lhs, Index lhsStride, - const RhsScalar* _rhs, Index rhsIncr, ResScalar* _res, Index resIncr, const ResScalar& alpha) - { - static const Index PanelWidth = EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH; - Index diagSize = (std::min)(_rows,_cols); - Index rows = IsLower ? _rows : diagSize; - Index cols = IsLower ? diagSize : _cols; - - typedef Map, 0, OuterStride<> > LhsMap; - const LhsMap lhs(_lhs,rows,cols,OuterStride<>(lhsStride)); - typename conj_expr_if::type cjLhs(lhs); - - typedef Map > RhsMap; - const RhsMap rhs(_rhs,cols); - typename conj_expr_if::type cjRhs(rhs); - - typedef Map, 0, InnerStride<> > ResMap; - ResMap res(_res,rows,InnerStride<>(resIncr)); - - typedef const_blas_data_mapper LhsMapper; - typedef const_blas_data_mapper RhsMapper; - - for (Index pi=0; pi0) - res.coeffRef(i) += alpha * (cjLhs.row(i).segment(s,r).cwiseProduct(cjRhs.segment(s,r).transpose())).sum(); - if (HasUnitDiag) - res.coeffRef(i) += alpha * cjRhs.coeff(i); - } - Index r = IsLower ? pi : cols - pi - actualPanelWidth; - if (r>0) - { - Index s = IsLower ? 0 : pi + actualPanelWidth; - general_matrix_vector_product::run( - actualPanelWidth, r, - LhsMapper(&lhs.coeffRef(pi,s), lhsStride), - RhsMapper(&rhs.coeffRef(s), rhsIncr), - &res.coeffRef(pi), resIncr, alpha); - } - } - if(IsLower && rows>diagSize) - { - general_matrix_vector_product::run( - rows-diagSize, cols, - LhsMapper(&lhs.coeffRef(diagSize,0), lhsStride), - RhsMapper(&rhs.coeffRef(0), rhsIncr), - &res.coeffRef(diagSize), resIncr, alpha); - } - } - -/*************************************************************************** -* Wrapper to product_triangular_vector -***************************************************************************/ - -template -struct trmv_selector; - -} // end namespace internal - -namespace internal { - -template -struct triangular_product_impl -{ - template static void run(Dest& dst, const Lhs &lhs, const Rhs &rhs, const typename Dest::Scalar& alpha) - { - eigen_assert(dst.rows()==lhs.rows() && dst.cols()==rhs.cols()); - - internal::trmv_selector::Flags)&RowMajorBit) ? RowMajor : ColMajor>::run(lhs, rhs, dst, alpha); - } -}; - -template -struct triangular_product_impl -{ - template static void run(Dest& dst, const Lhs &lhs, const Rhs &rhs, const typename Dest::Scalar& alpha) - { - eigen_assert(dst.rows()==lhs.rows() && dst.cols()==rhs.cols()); - - Transpose dstT(dst); - internal::trmv_selector<(Mode & (UnitDiag|ZeroDiag)) | ((Mode & Lower) ? Upper : Lower), - (int(internal::traits::Flags)&RowMajorBit) ? ColMajor : RowMajor> - ::run(rhs.transpose(),lhs.transpose(), dstT, alpha); - } -}; - -} // end namespace internal - -namespace internal { - -// TODO: find a way to factorize this piece of code with gemv_selector since the logic is exactly the same. - -template struct trmv_selector -{ - template - static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) - { - typedef typename Lhs::Scalar LhsScalar; - typedef typename Rhs::Scalar RhsScalar; - typedef typename Dest::Scalar ResScalar; - typedef typename Dest::RealScalar RealScalar; - - typedef internal::blas_traits LhsBlasTraits; - typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; - typedef internal::blas_traits RhsBlasTraits; - typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; - - typedef Map, EIGEN_PLAIN_ENUM_MIN(AlignedMax,internal::packet_traits::size)> MappedDest; - - typename internal::add_const_on_value_type::type actualLhs = LhsBlasTraits::extract(lhs); - typename internal::add_const_on_value_type::type actualRhs = RhsBlasTraits::extract(rhs); - - LhsScalar lhs_alpha = LhsBlasTraits::extractScalarFactor(lhs); - RhsScalar rhs_alpha = RhsBlasTraits::extractScalarFactor(rhs); - ResScalar actualAlpha = alpha * lhs_alpha * rhs_alpha; - - enum { - // FIXME find a way to allow an inner stride on the result if packet_traits::size==1 - // on, the other hand it is good for the cache to pack the vector anyways... - EvalToDestAtCompileTime = Dest::InnerStrideAtCompileTime==1, - ComplexByReal = (NumTraits::IsComplex) && (!NumTraits::IsComplex), - MightCannotUseDest = (Dest::InnerStrideAtCompileTime!=1) || ComplexByReal - }; - - gemv_static_vector_if static_dest; - - bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0)); - bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible; - - RhsScalar compatibleAlpha = get_factor::run(actualAlpha); - - ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(), - evalToDest ? dest.data() : static_dest.data()); - - if(!evalToDest) - { - #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN - Index size = dest.size(); - EIGEN_DENSE_STORAGE_CTOR_PLUGIN - #endif - if(!alphaIsCompatible) - { - MappedDest(actualDestPtr, dest.size()).setZero(); - compatibleAlpha = RhsScalar(1); - } - else - MappedDest(actualDestPtr, dest.size()) = dest; - } - - internal::triangular_matrix_vector_product - - ::run(actualLhs.rows(),actualLhs.cols(), - actualLhs.data(),actualLhs.outerStride(), - actualRhs.data(),actualRhs.innerStride(), - actualDestPtr,1,compatibleAlpha); - - if (!evalToDest) - { - if(!alphaIsCompatible) - dest += actualAlpha * MappedDest(actualDestPtr, dest.size()); - else - dest = MappedDest(actualDestPtr, dest.size()); - } - - if ( ((Mode&UnitDiag)==UnitDiag) && (lhs_alpha!=LhsScalar(1)) ) - { - Index diagSize = (std::min)(lhs.rows(),lhs.cols()); - dest.head(diagSize) -= (lhs_alpha-LhsScalar(1))*rhs.head(diagSize); - } - } -}; - -template struct trmv_selector -{ - template - static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) - { - typedef typename Lhs::Scalar LhsScalar; - typedef typename Rhs::Scalar RhsScalar; - typedef typename Dest::Scalar ResScalar; - - typedef internal::blas_traits LhsBlasTraits; - typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; - typedef internal::blas_traits RhsBlasTraits; - typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; - typedef typename internal::remove_all::type ActualRhsTypeCleaned; - - typename add_const::type actualLhs = LhsBlasTraits::extract(lhs); - typename add_const::type actualRhs = RhsBlasTraits::extract(rhs); - - LhsScalar lhs_alpha = LhsBlasTraits::extractScalarFactor(lhs); - RhsScalar rhs_alpha = RhsBlasTraits::extractScalarFactor(rhs); - ResScalar actualAlpha = alpha * lhs_alpha * rhs_alpha; - - enum { - DirectlyUseRhs = ActualRhsTypeCleaned::InnerStrideAtCompileTime==1 - }; - - gemv_static_vector_if static_rhs; - - ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(), - DirectlyUseRhs ? const_cast(actualRhs.data()) : static_rhs.data()); - - if(!DirectlyUseRhs) - { - #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN - Index size = actualRhs.size(); - EIGEN_DENSE_STORAGE_CTOR_PLUGIN - #endif - Map(actualRhsPtr, actualRhs.size()) = actualRhs; - } - - internal::triangular_matrix_vector_product - - ::run(actualLhs.rows(),actualLhs.cols(), - actualLhs.data(),actualLhs.outerStride(), - actualRhsPtr,1, - dest.data(),dest.innerStride(), - actualAlpha); - - if ( ((Mode&UnitDiag)==UnitDiag) && (lhs_alpha!=LhsScalar(1)) ) - { - Index diagSize = (std::min)(lhs.rows(),lhs.cols()); - dest.head(diagSize) -= (lhs_alpha-LhsScalar(1))*rhs.head(diagSize); - } - } -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_TRIANGULARMATRIXVECTOR_H diff --git a/src/math_meigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h b/src/math_meigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h deleted file mode 100755 index 3d47a2b94..000000000 --- a/src/math_meigen/Eigen/src/Core/products/TriangularMatrixVector_BLAS.h +++ /dev/null @@ -1,255 +0,0 @@ -/* - Copyright (c) 2011, Intel Corporation. All rights reserved. - - Redistribution and use in source and binary forms, with or without modification, - are permitted provided that the following conditions are met: - - * Redistributions of source code must retain the above copyright notice, this - list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above copyright notice, - this list of conditions and the following disclaimer in the documentation - and/or other materials provided with the distribution. - * Neither the name of Intel Corporation nor the names of its contributors may - be used to endorse or promote products derived from this software without - specific prior written permission. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND - ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED - WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR - ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES - (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON - ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - - ******************************************************************************** - * Content : Eigen bindings to BLAS F77 - * Triangular matrix-vector product functionality based on ?TRMV. - ******************************************************************************** -*/ - -#ifndef EIGEN_TRIANGULAR_MATRIX_VECTOR_BLAS_H -#define EIGEN_TRIANGULAR_MATRIX_VECTOR_BLAS_H - -namespace Eigen { - -namespace internal { - -/********************************************************************** -* This file implements triangular matrix-vector multiplication using BLAS -**********************************************************************/ - -// trmv/hemv specialization - -template -struct triangular_matrix_vector_product_trmv : - triangular_matrix_vector_product {}; - -#define EIGEN_BLAS_TRMV_SPECIALIZE(Scalar) \ -template \ -struct triangular_matrix_vector_product { \ - static void run(Index _rows, Index _cols, const Scalar* _lhs, Index lhsStride, \ - const Scalar* _rhs, Index rhsIncr, Scalar* _res, Index resIncr, Scalar alpha) { \ - triangular_matrix_vector_product_trmv::run( \ - _rows, _cols, _lhs, lhsStride, _rhs, rhsIncr, _res, resIncr, alpha); \ - } \ -}; \ -template \ -struct triangular_matrix_vector_product { \ - static void run(Index _rows, Index _cols, const Scalar* _lhs, Index lhsStride, \ - const Scalar* _rhs, Index rhsIncr, Scalar* _res, Index resIncr, Scalar alpha) { \ - triangular_matrix_vector_product_trmv::run( \ - _rows, _cols, _lhs, lhsStride, _rhs, rhsIncr, _res, resIncr, alpha); \ - } \ -}; - -EIGEN_BLAS_TRMV_SPECIALIZE(double) -EIGEN_BLAS_TRMV_SPECIALIZE(float) -EIGEN_BLAS_TRMV_SPECIALIZE(dcomplex) -EIGEN_BLAS_TRMV_SPECIALIZE(scomplex) - -// implements col-major: res += alpha * op(triangular) * vector -#define EIGEN_BLAS_TRMV_CM(EIGTYPE, BLASTYPE, EIGPREFIX, BLASPREFIX, BLASPOSTFIX) \ -template \ -struct triangular_matrix_vector_product_trmv { \ - enum { \ - IsLower = (Mode&Lower) == Lower, \ - SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1, \ - IsUnitDiag = (Mode&UnitDiag) ? 1 : 0, \ - IsZeroDiag = (Mode&ZeroDiag) ? 1 : 0, \ - LowUp = IsLower ? Lower : Upper \ - }; \ - static void run(Index _rows, Index _cols, const EIGTYPE* _lhs, Index lhsStride, \ - const EIGTYPE* _rhs, Index rhsIncr, EIGTYPE* _res, Index resIncr, EIGTYPE alpha) \ - { \ - if (ConjLhs || IsZeroDiag) { \ - triangular_matrix_vector_product::run( \ - _rows, _cols, _lhs, lhsStride, _rhs, rhsIncr, _res, resIncr, alpha); \ - return; \ - }\ - Index size = (std::min)(_rows,_cols); \ - Index rows = IsLower ? _rows : size; \ - Index cols = IsLower ? size : _cols; \ -\ - typedef VectorX##EIGPREFIX VectorRhs; \ - EIGTYPE *x, *y;\ -\ -/* Set x*/ \ - Map > rhs(_rhs,cols,InnerStride<>(rhsIncr)); \ - VectorRhs x_tmp; \ - if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \ - x = x_tmp.data(); \ -\ -/* Square part handling */\ -\ - char trans, uplo, diag; \ - BlasIndex m, n, lda, incx, incy; \ - EIGTYPE const *a; \ - EIGTYPE beta(1); \ -\ -/* Set m, n */ \ - n = convert_index(size); \ - lda = convert_index(lhsStride); \ - incx = 1; \ - incy = convert_index(resIncr); \ -\ -/* Set uplo, trans and diag*/ \ - trans = 'N'; \ - uplo = IsLower ? 'L' : 'U'; \ - diag = IsUnitDiag ? 'U' : 'N'; \ -\ -/* call ?TRMV*/ \ - BLASPREFIX##trmv##BLASPOSTFIX(&uplo, &trans, &diag, &n, (const BLASTYPE*)_lhs, &lda, (BLASTYPE*)x, &incx); \ -\ -/* Add op(a_tr)rhs into res*/ \ - BLASPREFIX##axpy##BLASPOSTFIX(&n, (const BLASTYPE*)&numext::real_ref(alpha),(const BLASTYPE*)x, &incx, (BLASTYPE*)_res, &incy); \ -/* Non-square case - doesn't fit to BLAS ?TRMV. Fall to default triangular product*/ \ - if (size<(std::max)(rows,cols)) { \ - if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \ - x = x_tmp.data(); \ - if (size(rows-size); \ - n = convert_index(size); \ - } \ - else { \ - x += size; \ - y = _res; \ - a = _lhs + size*lda; \ - m = convert_index(size); \ - n = convert_index(cols-size); \ - } \ - BLASPREFIX##gemv##BLASPOSTFIX(&trans, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)x, &incx, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)y, &incy); \ - } \ - } \ -}; - -#ifdef EIGEN_USE_MKL -EIGEN_BLAS_TRMV_CM(double, double, d, d,) -EIGEN_BLAS_TRMV_CM(dcomplex, MKL_Complex16, cd, z,) -EIGEN_BLAS_TRMV_CM(float, float, f, s,) -EIGEN_BLAS_TRMV_CM(scomplex, MKL_Complex8, cf, c,) -#else -EIGEN_BLAS_TRMV_CM(double, double, d, d, _) -EIGEN_BLAS_TRMV_CM(dcomplex, double, cd, z, _) -EIGEN_BLAS_TRMV_CM(float, float, f, s, _) -EIGEN_BLAS_TRMV_CM(scomplex, float, cf, c, _) -#endif - -// implements row-major: res += alpha * op(triangular) * vector -#define EIGEN_BLAS_TRMV_RM(EIGTYPE, BLASTYPE, EIGPREFIX, BLASPREFIX, BLASPOSTFIX) \ -template \ -struct triangular_matrix_vector_product_trmv { \ - enum { \ - IsLower = (Mode&Lower) == Lower, \ - SetDiag = (Mode&(ZeroDiag|UnitDiag)) ? 0 : 1, \ - IsUnitDiag = (Mode&UnitDiag) ? 1 : 0, \ - IsZeroDiag = (Mode&ZeroDiag) ? 1 : 0, \ - LowUp = IsLower ? Lower : Upper \ - }; \ - static void run(Index _rows, Index _cols, const EIGTYPE* _lhs, Index lhsStride, \ - const EIGTYPE* _rhs, Index rhsIncr, EIGTYPE* _res, Index resIncr, EIGTYPE alpha) \ - { \ - if (IsZeroDiag) { \ - triangular_matrix_vector_product::run( \ - _rows, _cols, _lhs, lhsStride, _rhs, rhsIncr, _res, resIncr, alpha); \ - return; \ - }\ - Index size = (std::min)(_rows,_cols); \ - Index rows = IsLower ? _rows : size; \ - Index cols = IsLower ? size : _cols; \ -\ - typedef VectorX##EIGPREFIX VectorRhs; \ - EIGTYPE *x, *y;\ -\ -/* Set x*/ \ - Map > rhs(_rhs,cols,InnerStride<>(rhsIncr)); \ - VectorRhs x_tmp; \ - if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \ - x = x_tmp.data(); \ -\ -/* Square part handling */\ -\ - char trans, uplo, diag; \ - BlasIndex m, n, lda, incx, incy; \ - EIGTYPE const *a; \ - EIGTYPE beta(1); \ -\ -/* Set m, n */ \ - n = convert_index(size); \ - lda = convert_index(lhsStride); \ - incx = 1; \ - incy = convert_index(resIncr); \ -\ -/* Set uplo, trans and diag*/ \ - trans = ConjLhs ? 'C' : 'T'; \ - uplo = IsLower ? 'U' : 'L'; \ - diag = IsUnitDiag ? 'U' : 'N'; \ -\ -/* call ?TRMV*/ \ - BLASPREFIX##trmv##BLASPOSTFIX(&uplo, &trans, &diag, &n, (const BLASTYPE*)_lhs, &lda, (BLASTYPE*)x, &incx); \ -\ -/* Add op(a_tr)rhs into res*/ \ - BLASPREFIX##axpy##BLASPOSTFIX(&n, (const BLASTYPE*)&numext::real_ref(alpha),(const BLASTYPE*)x, &incx, (BLASTYPE*)_res, &incy); \ -/* Non-square case - doesn't fit to BLAS ?TRMV. Fall to default triangular product*/ \ - if (size<(std::max)(rows,cols)) { \ - if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \ - x = x_tmp.data(); \ - if (size(rows-size); \ - n = convert_index(size); \ - } \ - else { \ - x += size; \ - y = _res; \ - a = _lhs + size; \ - m = convert_index(size); \ - n = convert_index(cols-size); \ - } \ - BLASPREFIX##gemv##BLASPOSTFIX(&trans, &n, &m, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (const BLASTYPE*)x, &incx, (const BLASTYPE*)&numext::real_ref(beta), (BLASTYPE*)y, &incy); \ - } \ - } \ -}; - -#ifdef EIGEN_USE_MKL -EIGEN_BLAS_TRMV_RM(double, double, d, d,) -EIGEN_BLAS_TRMV_RM(dcomplex, MKL_Complex16, cd, z,) -EIGEN_BLAS_TRMV_RM(float, float, f, s,) -EIGEN_BLAS_TRMV_RM(scomplex, MKL_Complex8, cf, c,) -#else -EIGEN_BLAS_TRMV_RM(double, double, d, d,_) -EIGEN_BLAS_TRMV_RM(dcomplex, double, cd, z,_) -EIGEN_BLAS_TRMV_RM(float, float, f, s,_) -EIGEN_BLAS_TRMV_RM(scomplex, float, cf, c,_) -#endif - -} // end namespase internal - -} // end namespace Eigen - -#endif // EIGEN_TRIANGULAR_MATRIX_VECTOR_BLAS_H diff --git a/src/math_meigen/Eigen/src/Core/products/TriangularSolverMatrix.h b/src/math_meigen/Eigen/src/Core/products/TriangularSolverMatrix.h deleted file mode 100755 index 223c38b86..000000000 --- a/src/math_meigen/Eigen/src/Core/products/TriangularSolverMatrix.h +++ /dev/null @@ -1,335 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_TRIANGULAR_SOLVER_MATRIX_H -#define EIGEN_TRIANGULAR_SOLVER_MATRIX_H - -namespace Eigen { - -namespace internal { - -// if the rhs is row major, let's transpose the product -template -struct triangular_solve_matrix -{ - static void run( - Index size, Index cols, - const Scalar* tri, Index triStride, - Scalar* _other, Index otherStride, - level3_blocking& blocking) - { - triangular_solve_matrix< - Scalar, Index, Side==OnTheLeft?OnTheRight:OnTheLeft, - (Mode&UnitDiag) | ((Mode&Upper) ? Lower : Upper), - NumTraits::IsComplex && Conjugate, - TriStorageOrder==RowMajor ? ColMajor : RowMajor, ColMajor> - ::run(size, cols, tri, triStride, _other, otherStride, blocking); - } -}; - -/* Optimized triangular solver with multiple right hand side and the triangular matrix on the left - */ -template -struct triangular_solve_matrix -{ - static EIGEN_DONT_INLINE void run( - Index size, Index otherSize, - const Scalar* _tri, Index triStride, - Scalar* _other, Index otherStride, - level3_blocking& blocking); -}; -template -EIGEN_DONT_INLINE void triangular_solve_matrix::run( - Index size, Index otherSize, - const Scalar* _tri, Index triStride, - Scalar* _other, Index otherStride, - level3_blocking& blocking) - { - Index cols = otherSize; - - typedef const_blas_data_mapper TriMapper; - typedef blas_data_mapper OtherMapper; - TriMapper tri(_tri, triStride); - OtherMapper other(_other, otherStride); - - typedef gebp_traits Traits; - - enum { - SmallPanelWidth = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr), - IsLower = (Mode&Lower) == Lower - }; - - Index kc = blocking.kc(); // cache block size along the K direction - Index mc = (std::min)(size,blocking.mc()); // cache block size along the M direction - - std::size_t sizeA = kc*mc; - std::size_t sizeB = kc*cols; - - ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA()); - ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB()); - - conj_if conj; - gebp_kernel gebp_kernel; - gemm_pack_lhs pack_lhs; - gemm_pack_rhs pack_rhs; - - // the goal here is to subdivise the Rhs panels such that we keep some cache - // coherence when accessing the rhs elements - std::ptrdiff_t l1, l2, l3; - manage_caching_sizes(GetAction, &l1, &l2, &l3); - Index subcols = cols>0 ? l2/(4 * sizeof(Scalar) * std::max(otherStride,size)) : 0; - subcols = std::max((subcols/Traits::nr)*Traits::nr, Traits::nr); - - for(Index k2=IsLower ? 0 : size; - IsLower ? k20; - IsLower ? k2+=kc : k2-=kc) - { - const Index actual_kc = (std::min)(IsLower ? size-k2 : k2, kc); - - // We have selected and packed a big horizontal panel R1 of rhs. Let B be the packed copy of this panel, - // and R2 the remaining part of rhs. The corresponding vertical panel of lhs is split into - // A11 (the triangular part) and A21 the remaining rectangular part. - // Then the high level algorithm is: - // - B = R1 => general block copy (done during the next step) - // - R1 = A11^-1 B => tricky part - // - update B from the new R1 => actually this has to be performed continuously during the above step - // - R2 -= A21 * B => GEPP - - // The tricky part: compute R1 = A11^-1 B while updating B from R1 - // The idea is to split A11 into multiple small vertical panels. - // Each panel can be split into a small triangular part T1k which is processed without optimization, - // and the remaining small part T2k which is processed using gebp with appropriate block strides - for(Index j2=0; j2(actual_kc-k1, SmallPanelWidth); - // tr solve - for (Index k=0; k0) - { - Index startTarget = IsLower ? k2+k1+actualPanelWidth : k2-actual_kc; - - pack_lhs(blockA, tri.getSubMapper(startTarget,startBlock), actualPanelWidth, lengthTarget); - - gebp_kernel(other.getSubMapper(startTarget,j2), blockA, blockB+actual_kc*j2, lengthTarget, actualPanelWidth, actual_cols, Scalar(-1), - actualPanelWidth, actual_kc, 0, blockBOffset); - } - } - } - - // R2 -= A21 * B => GEPP - { - Index start = IsLower ? k2+kc : 0; - Index end = IsLower ? size : k2-kc; - for(Index i2=start; i20) - { - pack_lhs(blockA, tri.getSubMapper(i2, IsLower ? k2 : k2-kc), actual_kc, actual_mc); - - gebp_kernel(other.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc, cols, Scalar(-1), -1, -1, 0, 0); - } - } - } - } - } - -/* Optimized triangular solver with multiple left hand sides and the triangular matrix on the right - */ -template -struct triangular_solve_matrix -{ - static EIGEN_DONT_INLINE void run( - Index size, Index otherSize, - const Scalar* _tri, Index triStride, - Scalar* _other, Index otherStride, - level3_blocking& blocking); -}; -template -EIGEN_DONT_INLINE void triangular_solve_matrix::run( - Index size, Index otherSize, - const Scalar* _tri, Index triStride, - Scalar* _other, Index otherStride, - level3_blocking& blocking) - { - Index rows = otherSize; - typedef typename NumTraits::Real RealScalar; - - typedef blas_data_mapper LhsMapper; - typedef const_blas_data_mapper RhsMapper; - LhsMapper lhs(_other, otherStride); - RhsMapper rhs(_tri, triStride); - - typedef gebp_traits Traits; - enum { - RhsStorageOrder = TriStorageOrder, - SmallPanelWidth = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr), - IsLower = (Mode&Lower) == Lower - }; - - Index kc = blocking.kc(); // cache block size along the K direction - Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction - - std::size_t sizeA = kc*mc; - std::size_t sizeB = kc*size; - - ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA()); - ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB()); - - conj_if conj; - gebp_kernel gebp_kernel; - gemm_pack_rhs pack_rhs; - gemm_pack_rhs pack_rhs_panel; - gemm_pack_lhs pack_lhs_panel; - - for(Index k2=IsLower ? size : 0; - IsLower ? k2>0 : k20) pack_rhs(geb, rhs.getSubMapper(actual_k2,startPanel), actual_kc, rs); - - // triangular packing (we only pack the panels off the diagonal, - // neglecting the blocks overlapping the diagonal - { - for (Index j2=0; j2(actual_kc-j2, SmallPanelWidth); - Index actual_j2 = actual_k2 + j2; - Index panelOffset = IsLower ? j2+actualPanelWidth : 0; - Index panelLength = IsLower ? actual_kc-j2-actualPanelWidth : j2; - - if (panelLength>0) - pack_rhs_panel(blockB+j2*actual_kc, - rhs.getSubMapper(actual_k2+panelOffset, actual_j2), - panelLength, actualPanelWidth, - actual_kc, panelOffset); - } - } - - for(Index i2=0; i2 vertical panels of rhs) - for (Index j2 = IsLower - ? (actual_kc - ((actual_kc%SmallPanelWidth) ? Index(actual_kc%SmallPanelWidth) - : Index(SmallPanelWidth))) - : 0; - IsLower ? j2>=0 : j2(actual_kc-j2, SmallPanelWidth); - Index absolute_j2 = actual_k2 + j2; - Index panelOffset = IsLower ? j2+actualPanelWidth : 0; - Index panelLength = IsLower ? actual_kc - j2 - actualPanelWidth : j2; - - // GEBP - if(panelLength>0) - { - gebp_kernel(lhs.getSubMapper(i2,absolute_j2), - blockA, blockB+j2*actual_kc, - actual_mc, panelLength, actualPanelWidth, - Scalar(-1), - actual_kc, actual_kc, // strides - panelOffset, panelOffset); // offsets - } - - // unblocked triangular solve - for (Index k=0; k0) - gebp_kernel(lhs.getSubMapper(i2, startPanel), blockA, geb, - actual_mc, actual_kc, rs, Scalar(-1), - -1, -1, 0, 0); - } - } - } - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_TRIANGULAR_SOLVER_MATRIX_H diff --git a/src/math_meigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h b/src/math_meigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h deleted file mode 100755 index f0775116a..000000000 --- a/src/math_meigen/Eigen/src/Core/products/TriangularSolverMatrix_BLAS.h +++ /dev/null @@ -1,163 +0,0 @@ -/* - Copyright (c) 2011, Intel Corporation. All rights reserved. - - Redistribution and use in source and binary forms, with or without modification, - are permitted provided that the following conditions are met: - - * Redistributions of source code must retain the above copyright notice, this - list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above copyright notice, - this list of conditions and the following disclaimer in the documentation - and/or other materials provided with the distribution. - * Neither the name of Intel Corporation nor the names of its contributors may - be used to endorse or promote products derived from this software without - specific prior written permission. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND - ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED - WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR - ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES - (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON - ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - - ******************************************************************************** - * Content : Eigen bindings to BLAS F77 - * Triangular matrix * matrix product functionality based on ?TRMM. - ******************************************************************************** -*/ - -#ifndef EIGEN_TRIANGULAR_SOLVER_MATRIX_BLAS_H -#define EIGEN_TRIANGULAR_SOLVER_MATRIX_BLAS_H - -namespace Eigen { - -namespace internal { - -// implements LeftSide op(triangular)^-1 * general -#define EIGEN_BLAS_TRSM_L(EIGTYPE, BLASTYPE, BLASFUNC) \ -template \ -struct triangular_solve_matrix \ -{ \ - enum { \ - IsLower = (Mode&Lower) == Lower, \ - IsUnitDiag = (Mode&UnitDiag) ? 1 : 0, \ - IsZeroDiag = (Mode&ZeroDiag) ? 1 : 0, \ - conjA = ((TriStorageOrder==ColMajor) && Conjugate) ? 1 : 0 \ - }; \ - static void run( \ - Index size, Index otherSize, \ - const EIGTYPE* _tri, Index triStride, \ - EIGTYPE* _other, Index otherStride, level3_blocking& /*blocking*/) \ - { \ - BlasIndex m = convert_index(size), n = convert_index(otherSize), lda, ldb; \ - char side = 'L', uplo, diag='N', transa; \ - /* Set alpha_ */ \ - EIGTYPE alpha(1); \ - ldb = convert_index(otherStride);\ -\ - const EIGTYPE *a; \ -/* Set trans */ \ - transa = (TriStorageOrder==RowMajor) ? ((Conjugate) ? 'C' : 'T') : 'N'; \ -/* Set uplo */ \ - uplo = IsLower ? 'L' : 'U'; \ - if (TriStorageOrder==RowMajor) uplo = (uplo == 'L') ? 'U' : 'L'; \ -/* Set a, lda */ \ - typedef Matrix MatrixTri; \ - Map > tri(_tri,size,size,OuterStride<>(triStride)); \ - MatrixTri a_tmp; \ -\ - if (conjA) { \ - a_tmp = tri.conjugate(); \ - a = a_tmp.data(); \ - lda = convert_index(a_tmp.outerStride()); \ - } else { \ - a = _tri; \ - lda = convert_index(triStride); \ - } \ - if (IsUnitDiag) diag='U'; \ -/* call ?trsm*/ \ - BLASFUNC(&side, &uplo, &transa, &diag, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (BLASTYPE*)_other, &ldb); \ - } \ -}; - -#ifdef EIGEN_USE_MKL -EIGEN_BLAS_TRSM_L(double, double, dtrsm) -EIGEN_BLAS_TRSM_L(dcomplex, MKL_Complex16, ztrsm) -EIGEN_BLAS_TRSM_L(float, float, strsm) -EIGEN_BLAS_TRSM_L(scomplex, MKL_Complex8, ctrsm) -#else -EIGEN_BLAS_TRSM_L(double, double, dtrsm_) -EIGEN_BLAS_TRSM_L(dcomplex, double, ztrsm_) -EIGEN_BLAS_TRSM_L(float, float, strsm_) -EIGEN_BLAS_TRSM_L(scomplex, float, ctrsm_) -#endif - -// implements RightSide general * op(triangular)^-1 -#define EIGEN_BLAS_TRSM_R(EIGTYPE, BLASTYPE, BLASFUNC) \ -template \ -struct triangular_solve_matrix \ -{ \ - enum { \ - IsLower = (Mode&Lower) == Lower, \ - IsUnitDiag = (Mode&UnitDiag) ? 1 : 0, \ - IsZeroDiag = (Mode&ZeroDiag) ? 1 : 0, \ - conjA = ((TriStorageOrder==ColMajor) && Conjugate) ? 1 : 0 \ - }; \ - static void run( \ - Index size, Index otherSize, \ - const EIGTYPE* _tri, Index triStride, \ - EIGTYPE* _other, Index otherStride, level3_blocking& /*blocking*/) \ - { \ - BlasIndex m = convert_index(otherSize), n = convert_index(size), lda, ldb; \ - char side = 'R', uplo, diag='N', transa; \ - /* Set alpha_ */ \ - EIGTYPE alpha(1); \ - ldb = convert_index(otherStride);\ -\ - const EIGTYPE *a; \ -/* Set trans */ \ - transa = (TriStorageOrder==RowMajor) ? ((Conjugate) ? 'C' : 'T') : 'N'; \ -/* Set uplo */ \ - uplo = IsLower ? 'L' : 'U'; \ - if (TriStorageOrder==RowMajor) uplo = (uplo == 'L') ? 'U' : 'L'; \ -/* Set a, lda */ \ - typedef Matrix MatrixTri; \ - Map > tri(_tri,size,size,OuterStride<>(triStride)); \ - MatrixTri a_tmp; \ -\ - if (conjA) { \ - a_tmp = tri.conjugate(); \ - a = a_tmp.data(); \ - lda = convert_index(a_tmp.outerStride()); \ - } else { \ - a = _tri; \ - lda = convert_index(triStride); \ - } \ - if (IsUnitDiag) diag='U'; \ -/* call ?trsm*/ \ - BLASFUNC(&side, &uplo, &transa, &diag, &m, &n, (const BLASTYPE*)&numext::real_ref(alpha), (const BLASTYPE*)a, &lda, (BLASTYPE*)_other, &ldb); \ - /*std::cout << "TRMS_L specialization!\n";*/ \ - } \ -}; - -#ifdef EIGEN_USE_MKL -EIGEN_BLAS_TRSM_R(double, double, dtrsm) -EIGEN_BLAS_TRSM_R(dcomplex, MKL_Complex16, ztrsm) -EIGEN_BLAS_TRSM_R(float, float, strsm) -EIGEN_BLAS_TRSM_R(scomplex, MKL_Complex8, ctrsm) -#else -EIGEN_BLAS_TRSM_R(double, double, dtrsm_) -EIGEN_BLAS_TRSM_R(dcomplex, double, ztrsm_) -EIGEN_BLAS_TRSM_R(float, float, strsm_) -EIGEN_BLAS_TRSM_R(scomplex, float, ctrsm_) -#endif - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_TRIANGULAR_SOLVER_MATRIX_BLAS_H diff --git a/src/math_meigen/Eigen/src/Core/products/TriangularSolverVector.h b/src/math_meigen/Eigen/src/Core/products/TriangularSolverVector.h deleted file mode 100755 index b994759b2..000000000 --- a/src/math_meigen/Eigen/src/Core/products/TriangularSolverVector.h +++ /dev/null @@ -1,145 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_TRIANGULAR_SOLVER_VECTOR_H -#define EIGEN_TRIANGULAR_SOLVER_VECTOR_H - -namespace Eigen { - -namespace internal { - -template -struct triangular_solve_vector -{ - static void run(Index size, const LhsScalar* _lhs, Index lhsStride, RhsScalar* rhs) - { - triangular_solve_vector::run(size, _lhs, lhsStride, rhs); - } -}; - -// forward and backward substitution, row-major, rhs is a vector -template -struct triangular_solve_vector -{ - enum { - IsLower = ((Mode&Lower)==Lower) - }; - static void run(Index size, const LhsScalar* _lhs, Index lhsStride, RhsScalar* rhs) - { - typedef Map, 0, OuterStride<> > LhsMap; - const LhsMap lhs(_lhs,size,size,OuterStride<>(lhsStride)); - - typedef const_blas_data_mapper LhsMapper; - typedef const_blas_data_mapper RhsMapper; - - typename internal::conditional< - Conjugate, - const CwiseUnaryOp,LhsMap>, - const LhsMap&> - ::type cjLhs(lhs); - static const Index PanelWidth = EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH; - for(Index pi=IsLower ? 0 : size; - IsLower ? pi0; - IsLower ? pi+=PanelWidth : pi-=PanelWidth) - { - Index actualPanelWidth = (std::min)(IsLower ? size - pi : pi, PanelWidth); - - Index r = IsLower ? pi : size - pi; // remaining size - if (r > 0) - { - // let's directly call the low level product function because: - // 1 - it is faster to compile - // 2 - it is slighlty faster at runtime - Index startRow = IsLower ? pi : pi-actualPanelWidth; - Index startCol = IsLower ? 0 : pi; - - general_matrix_vector_product::run( - actualPanelWidth, r, - LhsMapper(&lhs.coeffRef(startRow,startCol), lhsStride), - RhsMapper(rhs + startCol, 1), - rhs + startRow, 1, - RhsScalar(-1)); - } - - for(Index k=0; k0) - rhs[i] -= (cjLhs.row(i).segment(s,k).transpose().cwiseProduct(Map >(rhs+s,k))).sum(); - - if(!(Mode & UnitDiag)) - rhs[i] /= cjLhs(i,i); - } - } - } -}; - -// forward and backward substitution, column-major, rhs is a vector -template -struct triangular_solve_vector -{ - enum { - IsLower = ((Mode&Lower)==Lower) - }; - static void run(Index size, const LhsScalar* _lhs, Index lhsStride, RhsScalar* rhs) - { - typedef Map, 0, OuterStride<> > LhsMap; - const LhsMap lhs(_lhs,size,size,OuterStride<>(lhsStride)); - typedef const_blas_data_mapper LhsMapper; - typedef const_blas_data_mapper RhsMapper; - typename internal::conditional,LhsMap>, - const LhsMap& - >::type cjLhs(lhs); - static const Index PanelWidth = EIGEN_TUNE_TRIANGULAR_PANEL_WIDTH; - - for(Index pi=IsLower ? 0 : size; - IsLower ? pi0; - IsLower ? pi+=PanelWidth : pi-=PanelWidth) - { - Index actualPanelWidth = (std::min)(IsLower ? size - pi : pi, PanelWidth); - Index startBlock = IsLower ? pi : pi-actualPanelWidth; - Index endBlock = IsLower ? pi + actualPanelWidth : 0; - - for(Index k=0; k0) - Map >(rhs+s,r) -= rhs[i] * cjLhs.col(i).segment(s,r); - } - Index r = IsLower ? size - endBlock : startBlock; // remaining size - if (r > 0) - { - // let's directly call the low level product function because: - // 1 - it is faster to compile - // 2 - it is slighlty faster at runtime - general_matrix_vector_product::run( - r, actualPanelWidth, - LhsMapper(&lhs.coeffRef(endBlock,startBlock), lhsStride), - RhsMapper(rhs+startBlock, 1), - rhs+endBlock, 1, RhsScalar(-1)); - } - } - } -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_TRIANGULAR_SOLVER_VECTOR_H diff --git a/src/math_meigen/Eigen/src/Core/util/BlasUtil.h b/src/math_meigen/Eigen/src/Core/util/BlasUtil.h deleted file mode 100755 index 6e6ee119b..000000000 --- a/src/math_meigen/Eigen/src/Core/util/BlasUtil.h +++ /dev/null @@ -1,398 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009-2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_BLASUTIL_H -#define EIGEN_BLASUTIL_H - -// This file contains many lightweight helper classes used to -// implement and control fast level 2 and level 3 BLAS-like routines. - -namespace Eigen { - -namespace internal { - -// forward declarations -template -struct gebp_kernel; - -template -struct gemm_pack_rhs; - -template -struct gemm_pack_lhs; - -template< - typename Index, - typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, - typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs, - int ResStorageOrder> -struct general_matrix_matrix_product; - -template -struct general_matrix_vector_product; - - -template struct conj_if; - -template<> struct conj_if { - template - inline T operator()(const T& x) const { return numext::conj(x); } - template - inline T pconj(const T& x) const { return internal::pconj(x); } -}; - -template<> struct conj_if { - template - inline const T& operator()(const T& x) const { return x; } - template - inline const T& pconj(const T& x) const { return x; } -}; - -// Generic implementation for custom complex types. -template -struct conj_helper -{ - typedef typename ScalarBinaryOpTraits::ReturnType Scalar; - - EIGEN_STRONG_INLINE Scalar pmadd(const LhsScalar& x, const RhsScalar& y, const Scalar& c) const - { return padd(c, pmul(x,y)); } - - EIGEN_STRONG_INLINE Scalar pmul(const LhsScalar& x, const RhsScalar& y) const - { return conj_if()(x) * conj_if()(y); } -}; - -template struct conj_helper -{ - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const { return internal::pmadd(x,y,c); } - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const { return internal::pmul(x,y); } -}; - -template struct conj_helper, std::complex, false,true> -{ - typedef std::complex Scalar; - EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const - { return c + pmul(x,y); } - - EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const - { return Scalar(numext::real(x)*numext::real(y) + numext::imag(x)*numext::imag(y), numext::imag(x)*numext::real(y) - numext::real(x)*numext::imag(y)); } -}; - -template struct conj_helper, std::complex, true,false> -{ - typedef std::complex Scalar; - EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const - { return c + pmul(x,y); } - - EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const - { return Scalar(numext::real(x)*numext::real(y) + numext::imag(x)*numext::imag(y), numext::real(x)*numext::imag(y) - numext::imag(x)*numext::real(y)); } -}; - -template struct conj_helper, std::complex, true,true> -{ - typedef std::complex Scalar; - EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const - { return c + pmul(x,y); } - - EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const - { return Scalar(numext::real(x)*numext::real(y) - numext::imag(x)*numext::imag(y), - numext::real(x)*numext::imag(y) - numext::imag(x)*numext::real(y)); } -}; - -template struct conj_helper, RealScalar, Conj,false> -{ - typedef std::complex Scalar; - EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const RealScalar& y, const Scalar& c) const - { return padd(c, pmul(x,y)); } - EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const RealScalar& y) const - { return conj_if()(x)*y; } -}; - -template struct conj_helper, false,Conj> -{ - typedef std::complex Scalar; - EIGEN_STRONG_INLINE Scalar pmadd(const RealScalar& x, const Scalar& y, const Scalar& c) const - { return padd(c, pmul(x,y)); } - EIGEN_STRONG_INLINE Scalar pmul(const RealScalar& x, const Scalar& y) const - { return x*conj_if()(y); } -}; - -template struct get_factor { - EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE To run(const From& x) { return To(x); } -}; - -template struct get_factor::Real> { - EIGEN_DEVICE_FUNC - static EIGEN_STRONG_INLINE typename NumTraits::Real run(const Scalar& x) { return numext::real(x); } -}; - - -template -class BlasVectorMapper { - public: - EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlasVectorMapper(Scalar *data) : m_data(data) {} - - EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i) const { - return m_data[i]; - } - template - EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet load(Index i) const { - return ploadt(m_data + i); - } - - template - EIGEN_DEVICE_FUNC bool aligned(Index i) const { - return (UIntPtr(m_data+i)%sizeof(Packet))==0; - } - - protected: - Scalar* m_data; -}; - -template -class BlasLinearMapper { - public: - typedef typename packet_traits::type Packet; - typedef typename packet_traits::half HalfPacket; - - EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlasLinearMapper(Scalar *data) : m_data(data) {} - - EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void prefetch(int i) const { - internal::prefetch(&operator()(i)); - } - - EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar& operator()(Index i) const { - return m_data[i]; - } - - EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i) const { - return ploadt(m_data + i); - } - - EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE HalfPacket loadHalfPacket(Index i) const { - return ploadt(m_data + i); - } - - EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, const Packet &p) const { - pstoret(m_data + i, p); - } - - protected: - Scalar *m_data; -}; - -// Lightweight helper class to access matrix coefficients. -template -class blas_data_mapper { - public: - typedef typename packet_traits::type Packet; - typedef typename packet_traits::half HalfPacket; - - typedef BlasLinearMapper LinearMapper; - typedef BlasVectorMapper VectorMapper; - - EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE blas_data_mapper(Scalar* data, Index stride) : m_data(data), m_stride(stride) {} - - EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE blas_data_mapper - getSubMapper(Index i, Index j) const { - return blas_data_mapper(&operator()(i, j), m_stride); - } - - EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LinearMapper getLinearMapper(Index i, Index j) const { - return LinearMapper(&operator()(i, j)); - } - - EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE VectorMapper getVectorMapper(Index i, Index j) const { - return VectorMapper(&operator()(i, j)); - } - - - EIGEN_DEVICE_FUNC - EIGEN_ALWAYS_INLINE Scalar& operator()(Index i, Index j) const { - return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride]; - } - - EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i, Index j) const { - return ploadt(&operator()(i, j)); - } - - EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE HalfPacket loadHalfPacket(Index i, Index j) const { - return ploadt(&operator()(i, j)); - } - - template - EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void scatterPacket(Index i, Index j, const SubPacket &p) const { - pscatter(&operator()(i, j), p, m_stride); - } - - template - EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE SubPacket gatherPacket(Index i, Index j) const { - return pgather(&operator()(i, j), m_stride); - } - - EIGEN_DEVICE_FUNC const Index stride() const { return m_stride; } - EIGEN_DEVICE_FUNC const Scalar* data() const { return m_data; } - - EIGEN_DEVICE_FUNC Index firstAligned(Index size) const { - if (UIntPtr(m_data)%sizeof(Scalar)) { - return -1; - } - return internal::first_default_aligned(m_data, size); - } - - protected: - Scalar* EIGEN_RESTRICT m_data; - const Index m_stride; -}; - -// lightweight helper class to access matrix coefficients (const version) -template -class const_blas_data_mapper : public blas_data_mapper { - public: - EIGEN_ALWAYS_INLINE const_blas_data_mapper(const Scalar *data, Index stride) : blas_data_mapper(data, stride) {} - - EIGEN_ALWAYS_INLINE const_blas_data_mapper getSubMapper(Index i, Index j) const { - return const_blas_data_mapper(&(this->operator()(i, j)), this->m_stride); - } -}; - - -/* Helper class to analyze the factors of a Product expression. - * In particular it allows to pop out operator-, scalar multiples, - * and conjugate */ -template struct blas_traits -{ - typedef typename traits::Scalar Scalar; - typedef const XprType& ExtractType; - typedef XprType _ExtractType; - enum { - IsComplex = NumTraits::IsComplex, - IsTransposed = false, - NeedToConjugate = false, - HasUsableDirectAccess = ( (int(XprType::Flags)&DirectAccessBit) - && ( bool(XprType::IsVectorAtCompileTime) - || int(inner_stride_at_compile_time::ret) == 1) - ) ? 1 : 0 - }; - typedef typename conditional::type DirectLinearAccessType; - static inline ExtractType extract(const XprType& x) { return x; } - static inline const Scalar extractScalarFactor(const XprType&) { return Scalar(1); } -}; - -// pop conjugate -template -struct blas_traits, NestedXpr> > - : blas_traits -{ - typedef blas_traits Base; - typedef CwiseUnaryOp, NestedXpr> XprType; - typedef typename Base::ExtractType ExtractType; - - enum { - IsComplex = NumTraits::IsComplex, - NeedToConjugate = Base::NeedToConjugate ? 0 : IsComplex - }; - static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); } - static inline Scalar extractScalarFactor(const XprType& x) { return conj(Base::extractScalarFactor(x.nestedExpression())); } -}; - -// pop scalar multiple -template -struct blas_traits, const CwiseNullaryOp,Plain>, NestedXpr> > - : blas_traits -{ - typedef blas_traits Base; - typedef CwiseBinaryOp, const CwiseNullaryOp,Plain>, NestedXpr> XprType; - typedef typename Base::ExtractType ExtractType; - static inline ExtractType extract(const XprType& x) { return Base::extract(x.rhs()); } - static inline Scalar extractScalarFactor(const XprType& x) - { return x.lhs().functor().m_other * Base::extractScalarFactor(x.rhs()); } -}; -template -struct blas_traits, NestedXpr, const CwiseNullaryOp,Plain> > > - : blas_traits -{ - typedef blas_traits Base; - typedef CwiseBinaryOp, NestedXpr, const CwiseNullaryOp,Plain> > XprType; - typedef typename Base::ExtractType ExtractType; - static inline ExtractType extract(const XprType& x) { return Base::extract(x.lhs()); } - static inline Scalar extractScalarFactor(const XprType& x) - { return Base::extractScalarFactor(x.lhs()) * x.rhs().functor().m_other; } -}; -template -struct blas_traits, const CwiseNullaryOp,Plain1>, - const CwiseNullaryOp,Plain2> > > - : blas_traits,Plain1> > -{}; - -// pop opposite -template -struct blas_traits, NestedXpr> > - : blas_traits -{ - typedef blas_traits Base; - typedef CwiseUnaryOp, NestedXpr> XprType; - typedef typename Base::ExtractType ExtractType; - static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); } - static inline Scalar extractScalarFactor(const XprType& x) - { return - Base::extractScalarFactor(x.nestedExpression()); } -}; - -// pop/push transpose -template -struct blas_traits > - : blas_traits -{ - typedef typename NestedXpr::Scalar Scalar; - typedef blas_traits Base; - typedef Transpose XprType; - typedef Transpose ExtractType; // const to get rid of a compile error; anyway blas traits are only used on the RHS - typedef Transpose _ExtractType; - typedef typename conditional::type DirectLinearAccessType; - enum { - IsTransposed = Base::IsTransposed ? 0 : 1 - }; - static inline ExtractType extract(const XprType& x) { return ExtractType(Base::extract(x.nestedExpression())); } - static inline Scalar extractScalarFactor(const XprType& x) { return Base::extractScalarFactor(x.nestedExpression()); } -}; - -template -struct blas_traits - : blas_traits -{}; - -template::HasUsableDirectAccess> -struct extract_data_selector { - static const typename T::Scalar* run(const T& m) - { - return blas_traits::extract(m).data(); - } -}; - -template -struct extract_data_selector { - static typename T::Scalar* run(const T&) { return 0; } -}; - -template const typename T::Scalar* extract_data(const T& m) -{ - return extract_data_selector::run(m); -} - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_BLASUTIL_H diff --git a/src/math_meigen/Eigen/src/Core/util/Constants.h b/src/math_meigen/Eigen/src/Core/util/Constants.h deleted file mode 100755 index 7587d6842..000000000 --- a/src/math_meigen/Eigen/src/Core/util/Constants.h +++ /dev/null @@ -1,547 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2015 Gael Guennebaud -// Copyright (C) 2007-2009 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_CONSTANTS_H -#define EIGEN_CONSTANTS_H - -namespace Eigen { - -/** This value means that a positive quantity (e.g., a size) is not known at compile-time, and that instead the value is - * stored in some runtime variable. - * - * Changing the value of Dynamic breaks the ABI, as Dynamic is often used as a template parameter for Matrix. - */ -const int Dynamic = -1; - -/** This value means that a signed quantity (e.g., a signed index) is not known at compile-time, and that instead its value - * has to be specified at runtime. - */ -const int DynamicIndex = 0xffffff; - -/** This value means +Infinity; it is currently used only as the p parameter to MatrixBase::lpNorm(). - * The value Infinity there means the L-infinity norm. - */ -const int Infinity = -1; - -/** This value means that the cost to evaluate an expression coefficient is either very expensive or - * cannot be known at compile time. - * - * This value has to be positive to (1) simplify cost computation, and (2) allow to distinguish between a very expensive and very very expensive expressions. - * It thus must also be large enough to make sure unrolling won't happen and that sub expressions will be evaluated, but not too large to avoid overflow. - */ -const int HugeCost = 10000; - -/** \defgroup flags Flags - * \ingroup Core_Module - * - * These are the possible bits which can be OR'ed to constitute the flags of a matrix or - * expression. - * - * It is important to note that these flags are a purely compile-time notion. They are a compile-time property of - * an expression type, implemented as enum's. They are not stored in memory at runtime, and they do not incur any - * runtime overhead. - * - * \sa MatrixBase::Flags - */ - -/** \ingroup flags - * - * for a matrix, this means that the storage order is row-major. - * If this bit is not set, the storage order is column-major. - * For an expression, this determines the storage order of - * the matrix created by evaluation of that expression. - * \sa \blank \ref TopicStorageOrders */ -const unsigned int RowMajorBit = 0x1; - -/** \ingroup flags - * means the expression should be evaluated by the calling expression */ -const unsigned int EvalBeforeNestingBit = 0x2; - -/** \ingroup flags - * \deprecated - * means the expression should be evaluated before any assignment */ -EIGEN_DEPRECATED -const unsigned int EvalBeforeAssigningBit = 0x4; // FIXME deprecated - -/** \ingroup flags - * - * Short version: means the expression might be vectorized - * - * Long version: means that the coefficients can be handled by packets - * and start at a memory location whose alignment meets the requirements - * of the present CPU architecture for optimized packet access. In the fixed-size - * case, there is the additional condition that it be possible to access all the - * coefficients by packets (this implies the requirement that the size be a multiple of 16 bytes, - * and that any nontrivial strides don't break the alignment). In the dynamic-size case, - * there is no such condition on the total size and strides, so it might not be possible to access - * all coeffs by packets. - * - * \note This bit can be set regardless of whether vectorization is actually enabled. - * To check for actual vectorizability, see \a ActualPacketAccessBit. - */ -const unsigned int PacketAccessBit = 0x8; - -#ifdef EIGEN_VECTORIZE -/** \ingroup flags - * - * If vectorization is enabled (EIGEN_VECTORIZE is defined) this constant - * is set to the value \a PacketAccessBit. - * - * If vectorization is not enabled (EIGEN_VECTORIZE is not defined) this constant - * is set to the value 0. - */ -const unsigned int ActualPacketAccessBit = PacketAccessBit; -#else -const unsigned int ActualPacketAccessBit = 0x0; -#endif - -/** \ingroup flags - * - * Short version: means the expression can be seen as 1D vector. - * - * Long version: means that one can access the coefficients - * of this expression by coeff(int), and coeffRef(int) in the case of a lvalue expression. These - * index-based access methods are guaranteed - * to not have to do any runtime computation of a (row, col)-pair from the index, so that it - * is guaranteed that whenever it is available, index-based access is at least as fast as - * (row,col)-based access. Expressions for which that isn't possible don't have the LinearAccessBit. - * - * If both PacketAccessBit and LinearAccessBit are set, then the - * packets of this expression can be accessed by packet(int), and writePacket(int) in the case of a - * lvalue expression. - * - * Typically, all vector expressions have the LinearAccessBit, but there is one exception: - * Product expressions don't have it, because it would be troublesome for vectorization, even when the - * Product is a vector expression. Thus, vector Product expressions allow index-based coefficient access but - * not index-based packet access, so they don't have the LinearAccessBit. - */ -const unsigned int LinearAccessBit = 0x10; - -/** \ingroup flags - * - * Means the expression has a coeffRef() method, i.e. is writable as its individual coefficients are directly addressable. - * This rules out read-only expressions. - * - * Note that DirectAccessBit and LvalueBit are mutually orthogonal, as there are examples of expression having one but note - * the other: - * \li writable expressions that don't have a very simple memory layout as a strided array, have LvalueBit but not DirectAccessBit - * \li Map-to-const expressions, for example Map, have DirectAccessBit but not LvalueBit - * - * Expressions having LvalueBit also have their coeff() method returning a const reference instead of returning a new value. - */ -const unsigned int LvalueBit = 0x20; - -/** \ingroup flags - * - * Means that the underlying array of coefficients can be directly accessed as a plain strided array. The memory layout - * of the array of coefficients must be exactly the natural one suggested by rows(), cols(), - * outerStride(), innerStride(), and the RowMajorBit. This rules out expressions such as Diagonal, whose coefficients, - * though referencable, do not have such a regular memory layout. - * - * See the comment on LvalueBit for an explanation of how LvalueBit and DirectAccessBit are mutually orthogonal. - */ -const unsigned int DirectAccessBit = 0x40; - -/** \deprecated \ingroup flags - * - * means the first coefficient packet is guaranteed to be aligned. - * An expression cannot has the AlignedBit without the PacketAccessBit flag. - * In other words, this means we are allow to perform an aligned packet access to the first element regardless - * of the expression kind: - * \code - * expression.packet(0); - * \endcode - */ -EIGEN_DEPRECATED const unsigned int AlignedBit = 0x80; - -const unsigned int NestByRefBit = 0x100; - -/** \ingroup flags - * - * for an expression, this means that the storage order - * can be either row-major or column-major. - * The precise choice will be decided at evaluation time or when - * combined with other expressions. - * \sa \blank \ref RowMajorBit, \ref TopicStorageOrders */ -const unsigned int NoPreferredStorageOrderBit = 0x200; - -/** \ingroup flags - * - * Means that the underlying coefficients can be accessed through pointers to the sparse (un)compressed storage format, - * that is, the expression provides: - * \code - inline const Scalar* valuePtr() const; - inline const Index* innerIndexPtr() const; - inline const Index* outerIndexPtr() const; - inline const Index* innerNonZeroPtr() const; - \endcode - */ -const unsigned int CompressedAccessBit = 0x400; - - -// list of flags that are inherited by default -const unsigned int HereditaryBits = RowMajorBit - | EvalBeforeNestingBit; - -/** \defgroup enums Enumerations - * \ingroup Core_Module - * - * Various enumerations used in %Eigen. Many of these are used as template parameters. - */ - -/** \ingroup enums - * Enum containing possible values for the \c Mode or \c UpLo parameter of - * MatrixBase::selfadjointView() and MatrixBase::triangularView(), and selfadjoint solvers. */ -enum UpLoType { - /** View matrix as a lower triangular matrix. */ - Lower=0x1, - /** View matrix as an upper triangular matrix. */ - Upper=0x2, - /** %Matrix has ones on the diagonal; to be used in combination with #Lower or #Upper. */ - UnitDiag=0x4, - /** %Matrix has zeros on the diagonal; to be used in combination with #Lower or #Upper. */ - ZeroDiag=0x8, - /** View matrix as a lower triangular matrix with ones on the diagonal. */ - UnitLower=UnitDiag|Lower, - /** View matrix as an upper triangular matrix with ones on the diagonal. */ - UnitUpper=UnitDiag|Upper, - /** View matrix as a lower triangular matrix with zeros on the diagonal. */ - StrictlyLower=ZeroDiag|Lower, - /** View matrix as an upper triangular matrix with zeros on the diagonal. */ - StrictlyUpper=ZeroDiag|Upper, - /** Used in BandMatrix and SelfAdjointView to indicate that the matrix is self-adjoint. */ - SelfAdjoint=0x10, - /** Used to support symmetric, non-selfadjoint, complex matrices. */ - Symmetric=0x20 -}; - -/** \ingroup enums - * Enum for indicating whether a buffer is aligned or not. */ -enum AlignmentType { - Unaligned=0, /**< Data pointer has no specific alignment. */ - Aligned8=8, /**< Data pointer is aligned on a 8 bytes boundary. */ - Aligned16=16, /**< Data pointer is aligned on a 16 bytes boundary. */ - Aligned32=32, /**< Data pointer is aligned on a 32 bytes boundary. */ - Aligned64=64, /**< Data pointer is aligned on a 64 bytes boundary. */ - Aligned128=128, /**< Data pointer is aligned on a 128 bytes boundary. */ - AlignedMask=255, - Aligned=16, /**< \deprecated Synonym for Aligned16. */ -#if EIGEN_MAX_ALIGN_BYTES==128 - AlignedMax = Aligned128 -#elif EIGEN_MAX_ALIGN_BYTES==64 - AlignedMax = Aligned64 -#elif EIGEN_MAX_ALIGN_BYTES==32 - AlignedMax = Aligned32 -#elif EIGEN_MAX_ALIGN_BYTES==16 - AlignedMax = Aligned16 -#elif EIGEN_MAX_ALIGN_BYTES==8 - AlignedMax = Aligned8 -#elif EIGEN_MAX_ALIGN_BYTES==0 - AlignedMax = Unaligned -#else -#error Invalid value for EIGEN_MAX_ALIGN_BYTES -#endif -}; - -/** \ingroup enums - * Enum used by DenseBase::corner() in Eigen2 compatibility mode. */ -// FIXME after the corner() API change, this was not needed anymore, except by AlignedBox -// TODO: find out what to do with that. Adapt the AlignedBox API ? -enum CornerType { TopLeft, TopRight, BottomLeft, BottomRight }; - -/** \ingroup enums - * Enum containing possible values for the \p Direction parameter of - * Reverse, PartialReduxExpr and VectorwiseOp. */ -enum DirectionType { - /** For Reverse, all columns are reversed; - * for PartialReduxExpr and VectorwiseOp, act on columns. */ - Vertical, - /** For Reverse, all rows are reversed; - * for PartialReduxExpr and VectorwiseOp, act on rows. */ - Horizontal, - /** For Reverse, both rows and columns are reversed; - * not used for PartialReduxExpr and VectorwiseOp. */ - BothDirections -}; - -/** \internal \ingroup enums - * Enum to specify how to traverse the entries of a matrix. */ -enum TraversalType { - /** \internal Default traversal, no vectorization, no index-based access */ - DefaultTraversal, - /** \internal No vectorization, use index-based access to have only one for loop instead of 2 nested loops */ - LinearTraversal, - /** \internal Equivalent to a slice vectorization for fixed-size matrices having good alignment - * and good size */ - InnerVectorizedTraversal, - /** \internal Vectorization path using a single loop plus scalar loops for the - * unaligned boundaries */ - LinearVectorizedTraversal, - /** \internal Generic vectorization path using one vectorized loop per row/column with some - * scalar loops to handle the unaligned boundaries */ - SliceVectorizedTraversal, - /** \internal Special case to properly handle incompatible scalar types or other defecting cases*/ - InvalidTraversal, - /** \internal Evaluate all entries at once */ - AllAtOnceTraversal -}; - -/** \internal \ingroup enums - * Enum to specify whether to unroll loops when traversing over the entries of a matrix. */ -enum UnrollingType { - /** \internal Do not unroll loops. */ - NoUnrolling, - /** \internal Unroll only the inner loop, but not the outer loop. */ - InnerUnrolling, - /** \internal Unroll both the inner and the outer loop. If there is only one loop, - * because linear traversal is used, then unroll that loop. */ - CompleteUnrolling -}; - -/** \internal \ingroup enums - * Enum to specify whether to use the default (built-in) implementation or the specialization. */ -enum SpecializedType { - Specialized, - BuiltIn -}; - -/** \ingroup enums - * Enum containing possible values for the \p _Options template parameter of - * Matrix, Array and BandMatrix. */ -enum StorageOptions { - /** Storage order is column major (see \ref TopicStorageOrders). */ - ColMajor = 0, - /** Storage order is row major (see \ref TopicStorageOrders). */ - RowMajor = 0x1, // it is only a coincidence that this is equal to RowMajorBit -- don't rely on that - /** Align the matrix itself if it is vectorizable fixed-size */ - AutoAlign = 0, - /** Don't require alignment for the matrix itself (the array of coefficients, if dynamically allocated, may still be requested to be aligned) */ // FIXME --- clarify the situation - DontAlign = 0x2 -}; - -/** \ingroup enums - * Enum for specifying whether to apply or solve on the left or right. */ -enum SideType { - /** Apply transformation on the left. */ - OnTheLeft = 1, - /** Apply transformation on the right. */ - OnTheRight = 2 -}; - -/* the following used to be written as: - * - * struct NoChange_t {}; - * namespace { - * EIGEN_UNUSED NoChange_t NoChange; - * } - * - * on the ground that it feels dangerous to disambiguate overloaded functions on enum/integer types. - * However, this leads to "variable declared but never referenced" warnings on Intel Composer XE, - * and we do not know how to get rid of them (bug 450). - */ - -enum NoChange_t { NoChange }; -enum Sequential_t { Sequential }; -enum Default_t { Default }; - -/** \internal \ingroup enums - * Used in AmbiVector. */ -enum AmbiVectorMode { - IsDense = 0, - IsSparse -}; - -/** \ingroup enums - * Used as template parameter in DenseCoeffBase and MapBase to indicate - * which accessors should be provided. */ -enum AccessorLevels { - /** Read-only access via a member function. */ - ReadOnlyAccessors, - /** Read/write access via member functions. */ - WriteAccessors, - /** Direct read-only access to the coefficients. */ - DirectAccessors, - /** Direct read/write access to the coefficients. */ - DirectWriteAccessors -}; - -/** \ingroup enums - * Enum with options to give to various decompositions. */ -enum DecompositionOptions { - /** \internal Not used (meant for LDLT?). */ - Pivoting = 0x01, - /** \internal Not used (meant for LDLT?). */ - NoPivoting = 0x02, - /** Used in JacobiSVD to indicate that the square matrix U is to be computed. */ - ComputeFullU = 0x04, - /** Used in JacobiSVD to indicate that the thin matrix U is to be computed. */ - ComputeThinU = 0x08, - /** Used in JacobiSVD to indicate that the square matrix V is to be computed. */ - ComputeFullV = 0x10, - /** Used in JacobiSVD to indicate that the thin matrix V is to be computed. */ - ComputeThinV = 0x20, - /** Used in SelfAdjointEigenSolver and GeneralizedSelfAdjointEigenSolver to specify - * that only the eigenvalues are to be computed and not the eigenvectors. */ - EigenvaluesOnly = 0x40, - /** Used in SelfAdjointEigenSolver and GeneralizedSelfAdjointEigenSolver to specify - * that both the eigenvalues and the eigenvectors are to be computed. */ - ComputeEigenvectors = 0x80, - /** \internal */ - EigVecMask = EigenvaluesOnly | ComputeEigenvectors, - /** Used in GeneralizedSelfAdjointEigenSolver to indicate that it should - * solve the generalized eigenproblem \f$ Ax = \lambda B x \f$. */ - Ax_lBx = 0x100, - /** Used in GeneralizedSelfAdjointEigenSolver to indicate that it should - * solve the generalized eigenproblem \f$ ABx = \lambda x \f$. */ - ABx_lx = 0x200, - /** Used in GeneralizedSelfAdjointEigenSolver to indicate that it should - * solve the generalized eigenproblem \f$ BAx = \lambda x \f$. */ - BAx_lx = 0x400, - /** \internal */ - GenEigMask = Ax_lBx | ABx_lx | BAx_lx -}; - -/** \ingroup enums - * Possible values for the \p QRPreconditioner template parameter of JacobiSVD. */ -enum QRPreconditioners { - /** Do not specify what is to be done if the SVD of a non-square matrix is asked for. */ - NoQRPreconditioner, - /** Use a QR decomposition without pivoting as the first step. */ - HouseholderQRPreconditioner, - /** Use a QR decomposition with column pivoting as the first step. */ - ColPivHouseholderQRPreconditioner, - /** Use a QR decomposition with full pivoting as the first step. */ - FullPivHouseholderQRPreconditioner -}; - -#ifdef Success -#error The preprocessor symbol 'Success' is defined, possibly by the X11 header file X.h -#endif - -/** \ingroup enums - * Enum for reporting the status of a computation. */ -enum ComputationInfo { - /** Computation was successful. */ - Success = 0, - /** The provided data did not satisfy the prerequisites. */ - NumericalIssue = 1, - /** Iterative procedure did not converge. */ - NoConvergence = 2, - /** The inputs are invalid, or the algorithm has been improperly called. - * When assertions are enabled, such errors trigger an assert. */ - InvalidInput = 3 -}; - -/** \ingroup enums - * Enum used to specify how a particular transformation is stored in a matrix. - * \sa Transform, Hyperplane::transform(). */ -enum TransformTraits { - /** Transformation is an isometry. */ - Isometry = 0x1, - /** Transformation is an affine transformation stored as a (Dim+1)^2 matrix whose last row is - * assumed to be [0 ... 0 1]. */ - Affine = 0x2, - /** Transformation is an affine transformation stored as a (Dim) x (Dim+1) matrix. */ - AffineCompact = 0x10 | Affine, - /** Transformation is a general projective transformation stored as a (Dim+1)^2 matrix. */ - Projective = 0x20 -}; - -/** \internal \ingroup enums - * Enum used to choose between implementation depending on the computer architecture. */ -namespace Architecture -{ - enum Type { - Generic = 0x0, - SSE = 0x1, - AltiVec = 0x2, - VSX = 0x3, - NEON = 0x4, -#if defined EIGEN_VECTORIZE_SSE - Target = SSE -#elif defined EIGEN_VECTORIZE_ALTIVEC - Target = AltiVec -#elif defined EIGEN_VECTORIZE_VSX - Target = VSX -#elif defined EIGEN_VECTORIZE_NEON - Target = NEON -#else - Target = Generic -#endif - }; -} - -/** \internal \ingroup enums - * Enum used as template parameter in Product and product evaluators. */ -enum ProductImplType -{ DefaultProduct=0, LazyProduct, AliasFreeProduct, CoeffBasedProductMode, LazyCoeffBasedProductMode, OuterProduct, InnerProduct, GemvProduct, GemmProduct }; - -/** \internal \ingroup enums - * Enum used in experimental parallel implementation. */ -enum Action {GetAction, SetAction}; - -/** The type used to identify a dense storage. */ -struct Dense {}; - -/** The type used to identify a general sparse storage. */ -struct Sparse {}; - -/** The type used to identify a general solver (factored) storage. */ -struct SolverStorage {}; - -/** The type used to identify a permutation storage. */ -struct PermutationStorage {}; - -/** The type used to identify a permutation storage. */ -struct TranspositionsStorage {}; - -/** The type used to identify a matrix expression */ -struct MatrixXpr {}; - -/** The type used to identify an array expression */ -struct ArrayXpr {}; - -// An evaluator must define its shape. By default, it can be one of the following: -struct DenseShape { static std::string debugName() { return "DenseShape"; } }; -struct SolverShape { static std::string debugName() { return "SolverShape"; } }; -struct HomogeneousShape { static std::string debugName() { return "HomogeneousShape"; } }; -struct DiagonalShape { static std::string debugName() { return "DiagonalShape"; } }; -struct BandShape { static std::string debugName() { return "BandShape"; } }; -struct TriangularShape { static std::string debugName() { return "TriangularShape"; } }; -struct SelfAdjointShape { static std::string debugName() { return "SelfAdjointShape"; } }; -struct PermutationShape { static std::string debugName() { return "PermutationShape"; } }; -struct TranspositionsShape { static std::string debugName() { return "TranspositionsShape"; } }; -struct SparseShape { static std::string debugName() { return "SparseShape"; } }; - -namespace internal { - - // random access iterators based on coeff*() accessors. -struct IndexBased {}; - -// evaluator based on iterators to access coefficients. -struct IteratorBased {}; - -/** \internal - * Constants for comparison functors - */ -enum ComparisonName { - cmp_EQ = 0, - cmp_LT = 1, - cmp_LE = 2, - cmp_UNORD = 3, - cmp_NEQ = 4, - cmp_GT = 5, - cmp_GE = 6 -}; -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_CONSTANTS_H diff --git a/src/math_meigen/Eigen/src/Core/util/DisableStupidWarnings.h b/src/math_meigen/Eigen/src/Core/util/DisableStupidWarnings.h deleted file mode 100755 index 351bd6c60..000000000 --- a/src/math_meigen/Eigen/src/Core/util/DisableStupidWarnings.h +++ /dev/null @@ -1,83 +0,0 @@ -#ifndef EIGEN_WARNINGS_DISABLED -#define EIGEN_WARNINGS_DISABLED - -#ifdef _MSC_VER - // 4100 - unreferenced formal parameter (occurred e.g. in aligned_allocator::destroy(pointer p)) - // 4101 - unreferenced local variable - // 4127 - conditional expression is constant - // 4181 - qualifier applied to reference type ignored - // 4211 - nonstandard extension used : redefined extern to static - // 4244 - 'argument' : conversion from 'type1' to 'type2', possible loss of data - // 4273 - QtAlignedMalloc, inconsistent DLL linkage - // 4324 - structure was padded due to declspec(align()) - // 4503 - decorated name length exceeded, name was truncated - // 4512 - assignment operator could not be generated - // 4522 - 'class' : multiple assignment operators specified - // 4700 - uninitialized local variable 'xyz' used - // 4714 - function marked as __forceinline not inlined - // 4717 - 'function' : recursive on all control paths, function will cause runtime stack overflow - // 4800 - 'type' : forcing value to bool 'true' or 'false' (performance warning) - #ifndef EIGEN_PERMANENTLY_DISABLE_STUPID_WARNINGS - #pragma warning( push ) - #endif - #pragma warning( disable : 4100 4101 4127 4181 4211 4244 4273 4324 4503 4512 4522 4700 4714 4717 4800) - -#elif defined __INTEL_COMPILER - // 2196 - routine is both "inline" and "noinline" ("noinline" assumed) - // ICC 12 generates this warning even without any inline keyword, when defining class methods 'inline' i.e. inside of class body - // typedef that may be a reference type. - // 279 - controlling expression is constant - // ICC 12 generates this warning on assert(constant_expression_depending_on_template_params) and frankly this is a legitimate use case. - // 1684 - conversion from pointer to same-sized integral type (potential portability problem) - // 2259 - non-pointer conversion from "Eigen::Index={ptrdiff_t={long}}" to "int" may lose significant bits - #ifndef EIGEN_PERMANENTLY_DISABLE_STUPID_WARNINGS - #pragma warning push - #endif - #pragma warning disable 2196 279 1684 2259 - -#elif defined __clang__ - // -Wconstant-logical-operand - warning: use of logical && with constant operand; switch to bitwise & or remove constant - // this is really a stupid warning as it warns on compile-time expressions involving enums - #ifndef EIGEN_PERMANENTLY_DISABLE_STUPID_WARNINGS - #pragma clang diagnostic push - #endif - #pragma clang diagnostic ignored "-Wconstant-logical-operand" - -#elif defined __GNUC__ - - #if (!defined(EIGEN_PERMANENTLY_DISABLE_STUPID_WARNINGS)) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)) - #pragma GCC diagnostic push - #endif - // g++ warns about local variables shadowing member functions, which is too strict - #pragma GCC diagnostic ignored "-Wshadow" - #if __GNUC__ == 4 && __GNUC_MINOR__ < 8 - // Until g++-4.7 there are warnings when comparing unsigned int vs 0, even in templated functions: - #pragma GCC diagnostic ignored "-Wtype-limits" - #endif - #if __GNUC__>=6 - #pragma GCC diagnostic ignored "-Wignored-attributes" - #endif - -#endif - -#if defined __NVCC__ - // Disable the "statement is unreachable" message - #pragma diag_suppress code_is_unreachable - // Disable the "dynamic initialization in unreachable code" message - #pragma diag_suppress initialization_not_reachable - // Disable the "invalid error number" message that we get with older versions of nvcc - #pragma diag_suppress 1222 - // Disable the "calling a __host__ function from a __host__ __device__ function is not allowed" messages (yes, there are many of them and they seem to change with every version of the compiler) - #pragma diag_suppress 2527 - #pragma diag_suppress 2529 - #pragma diag_suppress 2651 - #pragma diag_suppress 2653 - #pragma diag_suppress 2668 - #pragma diag_suppress 2669 - #pragma diag_suppress 2670 - #pragma diag_suppress 2671 - #pragma diag_suppress 2735 - #pragma diag_suppress 2737 -#endif - -#endif // not EIGEN_WARNINGS_DISABLED diff --git a/src/math_meigen/Eigen/src/Core/util/ForwardDeclarations.h b/src/math_meigen/Eigen/src/Core/util/ForwardDeclarations.h deleted file mode 100755 index ea107393a..000000000 --- a/src/math_meigen/Eigen/src/Core/util/ForwardDeclarations.h +++ /dev/null @@ -1,302 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2007-2010 Benoit Jacob -// Copyright (C) 2008-2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_FORWARDDECLARATIONS_H -#define EIGEN_FORWARDDECLARATIONS_H - -namespace Eigen { -namespace internal { - -template struct traits; - -// here we say once and for all that traits == traits -// When constness must affect traits, it has to be constness on template parameters on which T itself depends. -// For example, traits > != traits >, but -// traits > == traits > -template struct traits : traits {}; - -template struct has_direct_access -{ - enum { ret = (traits::Flags & DirectAccessBit) ? 1 : 0 }; -}; - -template struct accessors_level -{ - enum { has_direct_access = (traits::Flags & DirectAccessBit) ? 1 : 0, - has_write_access = (traits::Flags & LvalueBit) ? 1 : 0, - value = has_direct_access ? (has_write_access ? DirectWriteAccessors : DirectAccessors) - : (has_write_access ? WriteAccessors : ReadOnlyAccessors) - }; -}; - -template struct evaluator_traits; - -template< typename T> struct evaluator; - -} // end namespace internal - -template struct NumTraits; - -template struct EigenBase; -template class DenseBase; -template class PlainObjectBase; - - -template::value > -class DenseCoeffsBase; - -template class Matrix; - -template class MatrixBase; -template class ArrayBase; - -template class Flagged; -template class StorageBase > class NoAlias; -template class NestByValue; -template class ForceAlignedAccess; -template class SwapWrapper; - -template class Block; - -template class VectorBlock; -template class Transpose; -template class Conjugate; -template class CwiseNullaryOp; -template class CwiseUnaryOp; -template class CwiseUnaryView; -template class CwiseBinaryOp; -template class CwiseTernaryOp; -template class Solve; -template class Inverse; - -template class Product; - -template class DiagonalBase; -template class DiagonalWrapper; -template class DiagonalMatrix; -template class DiagonalProduct; -template class Diagonal; -template class PermutationMatrix; -template class Transpositions; -template class PermutationBase; -template class TranspositionsBase; -template class PermutationWrapper; -template class TranspositionsWrapper; - -template::has_write_access ? WriteAccessors : ReadOnlyAccessors -> class MapBase; -template class Stride; -template class InnerStride; -template class OuterStride; -template > class Map; -template class RefBase; -template,OuterStride<> >::type > class Ref; - -template class TriangularBase; -template class TriangularView; -template class SelfAdjointView; -template class SparseView; -template class WithFormat; -template struct CommaInitializer; -template class ReturnByValue; -template class ArrayWrapper; -template class MatrixWrapper; -template class SolverBase; -template class InnerIterator; - -namespace internal { -template struct kernel_retval_base; -template struct kernel_retval; -template struct image_retval_base; -template struct image_retval; -} // end namespace internal - -namespace internal { -template class BandMatrix; -} - -namespace internal { -template struct product_type; - -template struct EnableIf; - -/** \internal - * \class product_evaluator - * Products need their own evaluator with more template arguments allowing for - * easier partial template specializations. - */ -template< typename T, - int ProductTag = internal::product_type::ret, - typename LhsShape = typename evaluator_traits::Shape, - typename RhsShape = typename evaluator_traits::Shape, - typename LhsScalar = typename traits::Scalar, - typename RhsScalar = typename traits::Scalar - > struct product_evaluator; -} - -template::value> -struct ProductReturnType; - -// this is a workaround for sun CC -template struct LazyProductReturnType; - -namespace internal { - -// Provides scalar/packet-wise product and product with accumulation -// with optional conjugation of the arguments. -template struct conj_helper; - -template struct scalar_sum_op; -template struct scalar_difference_op; -template struct scalar_conj_product_op; -template struct scalar_min_op; -template struct scalar_max_op; -template struct scalar_opposite_op; -template struct scalar_conjugate_op; -template struct scalar_real_op; -template struct scalar_imag_op; -template struct scalar_abs_op; -template struct scalar_abs2_op; -template struct scalar_sqrt_op; -template struct scalar_rsqrt_op; -template struct scalar_exp_op; -template struct scalar_log_op; -template struct scalar_cos_op; -template struct scalar_sin_op; -template struct scalar_acos_op; -template struct scalar_asin_op; -template struct scalar_tan_op; -template struct scalar_inverse_op; -template struct scalar_square_op; -template struct scalar_cube_op; -template struct scalar_cast_op; -template struct scalar_random_op; -template struct scalar_constant_op; -template struct scalar_identity_op; -template struct scalar_sign_op; -template struct scalar_pow_op; -template struct scalar_hypot_op; -template struct scalar_product_op; -template struct scalar_quotient_op; - -// SpecialFunctions module -template struct scalar_lgamma_op; -template struct scalar_digamma_op; -template struct scalar_erf_op; -template struct scalar_erfc_op; -template struct scalar_igamma_op; -template struct scalar_igammac_op; -template struct scalar_zeta_op; -template struct scalar_betainc_op; - -} // end namespace internal - -struct IOFormat; - -// Array module -template class Array; -template class Select; -template class PartialReduxExpr; -template class VectorwiseOp; -template class Replicate; -template class Reverse; - -template class FullPivLU; -template class PartialPivLU; -namespace internal { -template struct inverse_impl; -} -template class HouseholderQR; -template class ColPivHouseholderQR; -template class FullPivHouseholderQR; -template class CompleteOrthogonalDecomposition; -template class JacobiSVD; -template class BDCSVD; -template class LLT; -template class LDLT; -template class HouseholderSequence; -template class JacobiRotation; - -// Geometry module: -template class RotationBase; -template class Cross; -template class QuaternionBase; -template class Rotation2D; -template class AngleAxis; -template class Translation; -template class AlignedBox; -template class Quaternion; -template class Transform; -template class ParametrizedLine; -template class Hyperplane; -template class UniformScaling; -template class Homogeneous; - -// Sparse module: -template class SparseMatrixBase; - -// MatrixFunctions module -template struct MatrixExponentialReturnValue; -template class MatrixFunctionReturnValue; -template class MatrixSquareRootReturnValue; -template class MatrixLogarithmReturnValue; -template class MatrixPowerReturnValue; -template class MatrixComplexPowerReturnValue; - -namespace internal { -template -struct stem_function -{ - typedef std::complex::Real> ComplexScalar; - typedef ComplexScalar type(ComplexScalar, int); -}; -} - -} // end namespace Eigen - -#endif // EIGEN_FORWARDDECLARATIONS_H diff --git a/src/math_meigen/Eigen/src/Core/util/MKL_support.h b/src/math_meigen/Eigen/src/Core/util/MKL_support.h deleted file mode 100755 index b7d6ecc76..000000000 --- a/src/math_meigen/Eigen/src/Core/util/MKL_support.h +++ /dev/null @@ -1,130 +0,0 @@ -/* - Copyright (c) 2011, Intel Corporation. All rights reserved. - - Redistribution and use in source and binary forms, with or without modification, - are permitted provided that the following conditions are met: - - * Redistributions of source code must retain the above copyright notice, this - list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above copyright notice, - this list of conditions and the following disclaimer in the documentation - and/or other materials provided with the distribution. - * Neither the name of Intel Corporation nor the names of its contributors may - be used to endorse or promote products derived from this software without - specific prior written permission. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND - ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED - WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR - ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES - (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON - ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - - ******************************************************************************** - * Content : Eigen bindings to Intel(R) MKL - * Include file with common MKL declarations - ******************************************************************************** -*/ - -#ifndef EIGEN_MKL_SUPPORT_H -#define EIGEN_MKL_SUPPORT_H - -#ifdef EIGEN_USE_MKL_ALL - #ifndef EIGEN_USE_BLAS - #define EIGEN_USE_BLAS - #endif - #ifndef EIGEN_USE_LAPACKE - #define EIGEN_USE_LAPACKE - #endif - #ifndef EIGEN_USE_MKL_VML - #define EIGEN_USE_MKL_VML - #endif -#endif - -#ifdef EIGEN_USE_LAPACKE_STRICT - #define EIGEN_USE_LAPACKE -#endif - -#if defined(EIGEN_USE_MKL_VML) && !defined(EIGEN_USE_MKL) - #define EIGEN_USE_MKL -#endif - - -#if defined EIGEN_USE_MKL -# include -/*Check IMKL version for compatibility: < 10.3 is not usable with Eigen*/ -# ifndef INTEL_MKL_VERSION -# undef EIGEN_USE_MKL /* INTEL_MKL_VERSION is not even defined on older versions */ -# elif INTEL_MKL_VERSION < 100305 /* the intel-mkl-103-release-notes say this was when the lapacke.h interface was added*/ -# undef EIGEN_USE_MKL -# endif -# ifndef EIGEN_USE_MKL - /*If the MKL version is too old, undef everything*/ -# undef EIGEN_USE_MKL_ALL -# undef EIGEN_USE_LAPACKE -# undef EIGEN_USE_MKL_VML -# undef EIGEN_USE_LAPACKE_STRICT -# undef EIGEN_USE_LAPACKE -# endif -#endif - -#if defined EIGEN_USE_MKL - -#define EIGEN_MKL_VML_THRESHOLD 128 - -/* MKL_DOMAIN_BLAS, etc are defined only in 10.3 update 7 */ -/* MKL_BLAS, etc are not defined in 11.2 */ -#ifdef MKL_DOMAIN_ALL -#define EIGEN_MKL_DOMAIN_ALL MKL_DOMAIN_ALL -#else -#define EIGEN_MKL_DOMAIN_ALL MKL_ALL -#endif - -#ifdef MKL_DOMAIN_BLAS -#define EIGEN_MKL_DOMAIN_BLAS MKL_DOMAIN_BLAS -#else -#define EIGEN_MKL_DOMAIN_BLAS MKL_BLAS -#endif - -#ifdef MKL_DOMAIN_FFT -#define EIGEN_MKL_DOMAIN_FFT MKL_DOMAIN_FFT -#else -#define EIGEN_MKL_DOMAIN_FFT MKL_FFT -#endif - -#ifdef MKL_DOMAIN_VML -#define EIGEN_MKL_DOMAIN_VML MKL_DOMAIN_VML -#else -#define EIGEN_MKL_DOMAIN_VML MKL_VML -#endif - -#ifdef MKL_DOMAIN_PARDISO -#define EIGEN_MKL_DOMAIN_PARDISO MKL_DOMAIN_PARDISO -#else -#define EIGEN_MKL_DOMAIN_PARDISO MKL_PARDISO -#endif -#endif - -#if defined(EIGEN_USE_BLAS) && !defined(EIGEN_USE_MKL) -#include "../../misc/blas.h" -#endif - -namespace Eigen { - -typedef std::complex dcomplex; -typedef std::complex scomplex; - -#if defined(EIGEN_USE_MKL) -typedef MKL_INT BlasIndex; -#else -typedef int BlasIndex; -#endif - -} // end namespace Eigen - - -#endif // EIGEN_MKL_SUPPORT_H diff --git a/src/math_meigen/Eigen/src/Core/util/Macros.h b/src/math_meigen/Eigen/src/Core/util/Macros.h deleted file mode 100755 index aa054a0b7..000000000 --- a/src/math_meigen/Eigen/src/Core/util/Macros.h +++ /dev/null @@ -1,1001 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2015 Gael Guennebaud -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_MACROS_H -#define EIGEN_MACROS_H - -#define EIGEN_WORLD_VERSION 3 -#define EIGEN_MAJOR_VERSION 3 -#define EIGEN_MINOR_VERSION 7 - -#define EIGEN_VERSION_AT_LEAST(x,y,z) (EIGEN_WORLD_VERSION>x || (EIGEN_WORLD_VERSION>=x && \ - (EIGEN_MAJOR_VERSION>y || (EIGEN_MAJOR_VERSION>=y && \ - EIGEN_MINOR_VERSION>=z)))) - -// Compiler identification, EIGEN_COMP_* - -/// \internal EIGEN_COMP_GNUC set to 1 for all compilers compatible with GCC -#ifdef __GNUC__ - #define EIGEN_COMP_GNUC 1 -#else - #define EIGEN_COMP_GNUC 0 -#endif - -/// \internal EIGEN_COMP_CLANG set to major+minor version (e.g., 307 for clang 3.7) if the compiler is clang -#if defined(__clang__) - #define EIGEN_COMP_CLANG (__clang_major__*100+__clang_minor__) -#else - #define EIGEN_COMP_CLANG 0 -#endif - - -/// \internal EIGEN_COMP_LLVM set to 1 if the compiler backend is llvm -#if defined(__llvm__) - #define EIGEN_COMP_LLVM 1 -#else - #define EIGEN_COMP_LLVM 0 -#endif - -/// \internal EIGEN_COMP_ICC set to __INTEL_COMPILER if the compiler is Intel compiler, 0 otherwise -#if defined(__INTEL_COMPILER) - #define EIGEN_COMP_ICC __INTEL_COMPILER -#else - #define EIGEN_COMP_ICC 0 -#endif - -/// \internal EIGEN_COMP_MINGW set to 1 if the compiler is mingw -#if defined(__MINGW32__) - #define EIGEN_COMP_MINGW 1 -#else - #define EIGEN_COMP_MINGW 0 -#endif - -/// \internal EIGEN_COMP_SUNCC set to 1 if the compiler is Solaris Studio -#if defined(__SUNPRO_CC) - #define EIGEN_COMP_SUNCC 1 -#else - #define EIGEN_COMP_SUNCC 0 -#endif - -/// \internal EIGEN_COMP_MSVC set to _MSC_VER if the compiler is Microsoft Visual C++, 0 otherwise. -#if defined(_MSC_VER) - #define EIGEN_COMP_MSVC _MSC_VER -#else - #define EIGEN_COMP_MSVC 0 -#endif - -// For the record, here is a table summarizing the possible values for EIGEN_COMP_MSVC: -// name ver MSC_VER -// 2008 9 1500 -// 2010 10 1600 -// 2012 11 1700 -// 2013 12 1800 -// 2015 14 1900 -// "15" 15 1900 - -/// \internal EIGEN_COMP_MSVC_STRICT set to 1 if the compiler is really Microsoft Visual C++ and not ,e.g., ICC or clang-cl -#if EIGEN_COMP_MSVC && !(EIGEN_COMP_ICC || EIGEN_COMP_LLVM || EIGEN_COMP_CLANG) - #define EIGEN_COMP_MSVC_STRICT _MSC_VER -#else - #define EIGEN_COMP_MSVC_STRICT 0 -#endif - -/// \internal EIGEN_COMP_IBM set to 1 if the compiler is IBM XL C++ -#if defined(__IBMCPP__) || defined(__xlc__) - #define EIGEN_COMP_IBM 1 -#else - #define EIGEN_COMP_IBM 0 -#endif - -/// \internal EIGEN_COMP_PGI set to 1 if the compiler is Portland Group Compiler -#if defined(__PGI) - #define EIGEN_COMP_PGI 1 -#else - #define EIGEN_COMP_PGI 0 -#endif - -/// \internal EIGEN_COMP_ARM set to 1 if the compiler is ARM Compiler -#if defined(__CC_ARM) || defined(__ARMCC_VERSION) - #define EIGEN_COMP_ARM 1 -#else - #define EIGEN_COMP_ARM 0 -#endif - -/// \internal EIGEN_COMP_ARM set to 1 if the compiler is ARM Compiler -#if defined(__EMSCRIPTEN__) - #define EIGEN_COMP_EMSCRIPTEN 1 -#else - #define EIGEN_COMP_EMSCRIPTEN 0 -#endif - - -/// \internal EIGEN_GNUC_STRICT set to 1 if the compiler is really GCC and not a compatible compiler (e.g., ICC, clang, mingw, etc.) -#if EIGEN_COMP_GNUC && !(EIGEN_COMP_CLANG || EIGEN_COMP_ICC || EIGEN_COMP_MINGW || EIGEN_COMP_PGI || EIGEN_COMP_IBM || EIGEN_COMP_ARM || EIGEN_COMP_EMSCRIPTEN) - #define EIGEN_COMP_GNUC_STRICT 1 -#else - #define EIGEN_COMP_GNUC_STRICT 0 -#endif - - -#if EIGEN_COMP_GNUC - #define EIGEN_GNUC_AT_LEAST(x,y) ((__GNUC__==x && __GNUC_MINOR__>=y) || __GNUC__>x) - #define EIGEN_GNUC_AT_MOST(x,y) ((__GNUC__==x && __GNUC_MINOR__<=y) || __GNUC__=11 && (defined(__cplusplus) && (__cplusplus >= 201103L) || EIGEN_COMP_MSVC >= 1900) -#define EIGEN_HAS_CXX11 1 -#else -#define EIGEN_HAS_CXX11 0 -#endif - - -// Do we support r-value references? -#ifndef EIGEN_HAS_RVALUE_REFERENCES -#if EIGEN_MAX_CPP_VER>=11 && \ - (__has_feature(cxx_rvalue_references) || \ - (defined(__cplusplus) && __cplusplus >= 201103L) || \ - (EIGEN_COMP_MSVC >= 1600)) - #define EIGEN_HAS_RVALUE_REFERENCES 1 -#else - #define EIGEN_HAS_RVALUE_REFERENCES 0 -#endif -#endif - -// Does the compiler support C99? -#ifndef EIGEN_HAS_C99_MATH -#if EIGEN_MAX_CPP_VER>=11 && \ - ((defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901)) \ - || (defined(__GNUC__) && defined(_GLIBCXX_USE_C99)) \ - || (defined(_LIBCPP_VERSION) && !defined(_MSC_VER))) - #define EIGEN_HAS_C99_MATH 1 -#else - #define EIGEN_HAS_C99_MATH 0 -#endif -#endif - -// Does the compiler support result_of? -#ifndef EIGEN_HAS_STD_RESULT_OF -#if EIGEN_MAX_CPP_VER>=11 && ((__has_feature(cxx_lambdas) || (defined(__cplusplus) && __cplusplus >= 201103L))) -#define EIGEN_HAS_STD_RESULT_OF 1 -#else -#define EIGEN_HAS_STD_RESULT_OF 0 -#endif -#endif - -// Does the compiler support variadic templates? -#ifndef EIGEN_HAS_VARIADIC_TEMPLATES -#if EIGEN_MAX_CPP_VER>=11 && (__cplusplus > 199711L || EIGEN_COMP_MSVC >= 1900) \ - && (!defined(__NVCC__) || !EIGEN_ARCH_ARM_OR_ARM64 || (EIGEN_CUDACC_VER >= 80000) ) - // ^^ Disable the use of variadic templates when compiling with versions of nvcc older than 8.0 on ARM devices: - // this prevents nvcc from crashing when compiling Eigen on Tegra X1 -#define EIGEN_HAS_VARIADIC_TEMPLATES 1 -#else -#define EIGEN_HAS_VARIADIC_TEMPLATES 0 -#endif -#endif - -// Does the compiler fully support const expressions? (as in c++14) -#ifndef EIGEN_HAS_CONSTEXPR - -#ifdef __CUDACC__ -// Const expressions are supported provided that c++11 is enabled and we're using either clang or nvcc 7.5 or above -#if EIGEN_MAX_CPP_VER>=14 && (__cplusplus > 199711L && (EIGEN_COMP_CLANG || EIGEN_CUDACC_VER >= 70500)) - #define EIGEN_HAS_CONSTEXPR 1 -#endif -#elif EIGEN_MAX_CPP_VER>=14 && (__has_feature(cxx_relaxed_constexpr) || (defined(__cplusplus) && __cplusplus >= 201402L) || \ - (EIGEN_GNUC_AT_LEAST(4,8) && (__cplusplus > 199711L))) -#define EIGEN_HAS_CONSTEXPR 1 -#endif - -#ifndef EIGEN_HAS_CONSTEXPR -#define EIGEN_HAS_CONSTEXPR 0 -#endif - -#endif - -// Does the compiler support C++11 math? -// Let's be conservative and enable the default C++11 implementation only if we are sure it exists -#ifndef EIGEN_HAS_CXX11_MATH - #if EIGEN_MAX_CPP_VER>=11 && ((__cplusplus > 201103L) || (__cplusplus >= 201103L) && (EIGEN_COMP_GNUC_STRICT || EIGEN_COMP_CLANG || EIGEN_COMP_MSVC || EIGEN_COMP_ICC) \ - && (EIGEN_ARCH_i386_OR_x86_64) && (EIGEN_OS_GNULINUX || EIGEN_OS_WIN_STRICT || EIGEN_OS_MAC)) - #define EIGEN_HAS_CXX11_MATH 1 - #else - #define EIGEN_HAS_CXX11_MATH 0 - #endif -#endif - -// Does the compiler support proper C++11 containers? -#ifndef EIGEN_HAS_CXX11_CONTAINERS - #if EIGEN_MAX_CPP_VER>=11 && \ - ((__cplusplus > 201103L) \ - || ((__cplusplus >= 201103L) && (EIGEN_COMP_GNUC_STRICT || EIGEN_COMP_CLANG || EIGEN_COMP_ICC>=1400)) \ - || EIGEN_COMP_MSVC >= 1900) - #define EIGEN_HAS_CXX11_CONTAINERS 1 - #else - #define EIGEN_HAS_CXX11_CONTAINERS 0 - #endif -#endif - -// Does the compiler support C++11 noexcept? -#ifndef EIGEN_HAS_CXX11_NOEXCEPT - #if EIGEN_MAX_CPP_VER>=11 && \ - (__has_feature(cxx_noexcept) \ - || (__cplusplus > 201103L) \ - || ((__cplusplus >= 201103L) && (EIGEN_COMP_GNUC_STRICT || EIGEN_COMP_CLANG || EIGEN_COMP_ICC>=1400)) \ - || EIGEN_COMP_MSVC >= 1900) - #define EIGEN_HAS_CXX11_NOEXCEPT 1 - #else - #define EIGEN_HAS_CXX11_NOEXCEPT 0 - #endif -#endif - -/** Allows to disable some optimizations which might affect the accuracy of the result. - * Such optimization are enabled by default, and set EIGEN_FAST_MATH to 0 to disable them. - * They currently include: - * - single precision ArrayBase::sin() and ArrayBase::cos() for SSE and AVX vectorization. - */ -#ifndef EIGEN_FAST_MATH -#define EIGEN_FAST_MATH 1 -#endif - -#define EIGEN_DEBUG_VAR(x) std::cerr << #x << " = " << x << std::endl; - -// concatenate two tokens -#define EIGEN_CAT2(a,b) a ## b -#define EIGEN_CAT(a,b) EIGEN_CAT2(a,b) - -#define EIGEN_COMMA , - -// convert a token to a string -#define EIGEN_MAKESTRING2(a) #a -#define EIGEN_MAKESTRING(a) EIGEN_MAKESTRING2(a) - -// EIGEN_STRONG_INLINE is a stronger version of the inline, using __forceinline on MSVC, -// but it still doesn't use GCC's always_inline. This is useful in (common) situations where MSVC needs forceinline -// but GCC is still doing fine with just inline. -#ifndef EIGEN_STRONG_INLINE -#if EIGEN_COMP_MSVC || EIGEN_COMP_ICC -#define EIGEN_STRONG_INLINE __forceinline -#else -#define EIGEN_STRONG_INLINE inline -#endif -#endif - -// EIGEN_ALWAYS_INLINE is the stronget, it has the effect of making the function inline and adding every possible -// attribute to maximize inlining. This should only be used when really necessary: in particular, -// it uses __attribute__((always_inline)) on GCC, which most of the time is useless and can severely harm compile times. -// FIXME with the always_inline attribute, -// gcc 3.4.x and 4.1 reports the following compilation error: -// Eval.h:91: sorry, unimplemented: inlining failed in call to 'const Eigen::Eval Eigen::MatrixBase::eval() const' -// : function body not available -// See also bug 1367 -#if EIGEN_GNUC_AT_LEAST(4,2) -#define EIGEN_ALWAYS_INLINE __attribute__((always_inline)) inline -#else -#define EIGEN_ALWAYS_INLINE EIGEN_STRONG_INLINE -#endif - -#if EIGEN_COMP_GNUC -#define EIGEN_DONT_INLINE __attribute__((noinline)) -#elif EIGEN_COMP_MSVC -#define EIGEN_DONT_INLINE __declspec(noinline) -#else -#define EIGEN_DONT_INLINE -#endif - -#if EIGEN_COMP_GNUC -#define EIGEN_PERMISSIVE_EXPR __extension__ -#else -#define EIGEN_PERMISSIVE_EXPR -#endif - -// this macro allows to get rid of linking errors about multiply defined functions. -// - static is not very good because it prevents definitions from different object files to be merged. -// So static causes the resulting linked executable to be bloated with multiple copies of the same function. -// - inline is not perfect either as it unwantedly hints the compiler toward inlining the function. -#define EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS -#define EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS inline - -#ifdef NDEBUG -# ifndef EIGEN_NO_DEBUG -# define EIGEN_NO_DEBUG -# endif -#endif - -// eigen_plain_assert is where we implement the workaround for the assert() bug in GCC <= 4.3, see bug 89 -#ifdef EIGEN_NO_DEBUG - #define eigen_plain_assert(x) -#else - #if EIGEN_SAFE_TO_USE_STANDARD_ASSERT_MACRO - namespace Eigen { - namespace internal { - inline bool copy_bool(bool b) { return b; } - } - } - #define eigen_plain_assert(x) assert(x) - #else - // work around bug 89 - #include // for abort - #include // for std::cerr - - namespace Eigen { - namespace internal { - // trivial function copying a bool. Must be EIGEN_DONT_INLINE, so we implement it after including Eigen headers. - // see bug 89. - namespace { - EIGEN_DONT_INLINE bool copy_bool(bool b) { return b; } - } - inline void assert_fail(const char *condition, const char *function, const char *file, int line) - { - std::cerr << "assertion failed: " << condition << " in function " << function << " at " << file << ":" << line << std::endl; - abort(); - } - } - } - #define eigen_plain_assert(x) \ - do { \ - if(!Eigen::internal::copy_bool(x)) \ - Eigen::internal::assert_fail(EIGEN_MAKESTRING(x), __PRETTY_FUNCTION__, __FILE__, __LINE__); \ - } while(false) - #endif -#endif - -// eigen_assert can be overridden -#ifndef eigen_assert -#define eigen_assert(x) eigen_plain_assert(x) -#endif - -#ifdef EIGEN_INTERNAL_DEBUGGING -#define eigen_internal_assert(x) eigen_assert(x) -#else -#define eigen_internal_assert(x) -#endif - -#ifdef EIGEN_NO_DEBUG -#define EIGEN_ONLY_USED_FOR_DEBUG(x) EIGEN_UNUSED_VARIABLE(x) -#else -#define EIGEN_ONLY_USED_FOR_DEBUG(x) -#endif - -#ifndef EIGEN_NO_DEPRECATED_WARNING - #if EIGEN_COMP_GNUC - #define EIGEN_DEPRECATED __attribute__((deprecated)) - #elif EIGEN_COMP_MSVC - #define EIGEN_DEPRECATED __declspec(deprecated) - #else - #define EIGEN_DEPRECATED - #endif -#else - #define EIGEN_DEPRECATED -#endif - -#if EIGEN_COMP_GNUC -#define EIGEN_UNUSED __attribute__((unused)) -#else -#define EIGEN_UNUSED -#endif - -// Suppresses 'unused variable' warnings. -namespace Eigen { - namespace internal { - template EIGEN_DEVICE_FUNC void ignore_unused_variable(const T&) {} - } -} -#define EIGEN_UNUSED_VARIABLE(var) Eigen::internal::ignore_unused_variable(var); - -#if !defined(EIGEN_ASM_COMMENT) - #if EIGEN_COMP_GNUC && (EIGEN_ARCH_i386_OR_x86_64 || EIGEN_ARCH_ARM_OR_ARM64) - #define EIGEN_ASM_COMMENT(X) __asm__("#" X) - #else - #define EIGEN_ASM_COMMENT(X) - #endif -#endif - - -//------------------------------------------------------------------------------------------ -// Static and dynamic alignment control -// -// The main purpose of this section is to define EIGEN_MAX_ALIGN_BYTES and EIGEN_MAX_STATIC_ALIGN_BYTES -// as the maximal boundary in bytes on which dynamically and statically allocated data may be alignment respectively. -// The values of EIGEN_MAX_ALIGN_BYTES and EIGEN_MAX_STATIC_ALIGN_BYTES can be specified by the user. If not, -// a default value is automatically computed based on architecture, compiler, and OS. -// -// This section also defines macros EIGEN_ALIGN_TO_BOUNDARY(N) and the shortcuts EIGEN_ALIGN{8,16,32,_MAX} -// to be used to declare statically aligned buffers. -//------------------------------------------------------------------------------------------ - - -/* EIGEN_ALIGN_TO_BOUNDARY(n) forces data to be n-byte aligned. This is used to satisfy SIMD requirements. - * However, we do that EVEN if vectorization (EIGEN_VECTORIZE) is disabled, - * so that vectorization doesn't affect binary compatibility. - * - * If we made alignment depend on whether or not EIGEN_VECTORIZE is defined, it would be impossible to link - * vectorized and non-vectorized code. - */ -#if (defined __CUDACC__) - #define EIGEN_ALIGN_TO_BOUNDARY(n) __align__(n) -#elif EIGEN_COMP_GNUC || EIGEN_COMP_PGI || EIGEN_COMP_IBM || EIGEN_COMP_ARM - #define EIGEN_ALIGN_TO_BOUNDARY(n) __attribute__((aligned(n))) -#elif EIGEN_COMP_MSVC - #define EIGEN_ALIGN_TO_BOUNDARY(n) __declspec(align(n)) -#elif EIGEN_COMP_SUNCC - // FIXME not sure about this one: - #define EIGEN_ALIGN_TO_BOUNDARY(n) __attribute__((aligned(n))) -#else - #error Please tell me what is the equivalent of __attribute__((aligned(n))) for your compiler -#endif - -// If the user explicitly disable vectorization, then we also disable alignment -#if defined(EIGEN_DONT_VECTORIZE) - #define EIGEN_IDEAL_MAX_ALIGN_BYTES 0 -#elif defined(EIGEN_VECTORIZE_AVX512) - // 64 bytes static alignmeent is preferred only if really required - #define EIGEN_IDEAL_MAX_ALIGN_BYTES 64 -#elif defined(__AVX__) - // 32 bytes static alignmeent is preferred only if really required - #define EIGEN_IDEAL_MAX_ALIGN_BYTES 32 -#else - #define EIGEN_IDEAL_MAX_ALIGN_BYTES 16 -#endif - - -// EIGEN_MIN_ALIGN_BYTES defines the minimal value for which the notion of explicit alignment makes sense -#define EIGEN_MIN_ALIGN_BYTES 16 - -// Defined the boundary (in bytes) on which the data needs to be aligned. Note -// that unless EIGEN_ALIGN is defined and not equal to 0, the data may not be -// aligned at all regardless of the value of this #define. - -#if (defined(EIGEN_DONT_ALIGN_STATICALLY) || defined(EIGEN_DONT_ALIGN)) && defined(EIGEN_MAX_STATIC_ALIGN_BYTES) && EIGEN_MAX_STATIC_ALIGN_BYTES>0 -#error EIGEN_MAX_STATIC_ALIGN_BYTES and EIGEN_DONT_ALIGN[_STATICALLY] are both defined with EIGEN_MAX_STATIC_ALIGN_BYTES!=0. Use EIGEN_MAX_STATIC_ALIGN_BYTES=0 as a synonym of EIGEN_DONT_ALIGN_STATICALLY. -#endif - -// EIGEN_DONT_ALIGN_STATICALLY and EIGEN_DONT_ALIGN are deprectated -// They imply EIGEN_MAX_STATIC_ALIGN_BYTES=0 -#if defined(EIGEN_DONT_ALIGN_STATICALLY) || defined(EIGEN_DONT_ALIGN) - #ifdef EIGEN_MAX_STATIC_ALIGN_BYTES - #undef EIGEN_MAX_STATIC_ALIGN_BYTES - #endif - #define EIGEN_MAX_STATIC_ALIGN_BYTES 0 -#endif - -#ifndef EIGEN_MAX_STATIC_ALIGN_BYTES - - // Try to automatically guess what is the best default value for EIGEN_MAX_STATIC_ALIGN_BYTES - - // 16 byte alignment is only useful for vectorization. Since it affects the ABI, we need to enable - // 16 byte alignment on all platforms where vectorization might be enabled. In theory we could always - // enable alignment, but it can be a cause of problems on some platforms, so we just disable it in - // certain common platform (compiler+architecture combinations) to avoid these problems. - // Only static alignment is really problematic (relies on nonstandard compiler extensions), - // try to keep heap alignment even when we have to disable static alignment. - #if EIGEN_COMP_GNUC && !(EIGEN_ARCH_i386_OR_x86_64 || EIGEN_ARCH_ARM_OR_ARM64 || EIGEN_ARCH_PPC || EIGEN_ARCH_IA64) - #define EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT 1 - #elif EIGEN_ARCH_ARM_OR_ARM64 && EIGEN_COMP_GNUC_STRICT && EIGEN_GNUC_AT_MOST(4, 6) - // Old versions of GCC on ARM, at least 4.4, were once seen to have buggy static alignment support. - // Not sure which version fixed it, hopefully it doesn't affect 4.7, which is still somewhat in use. - // 4.8 and newer seem definitely unaffected. - #define EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT 1 - #else - #define EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT 0 - #endif - - // static alignment is completely disabled with GCC 3, Sun Studio, and QCC/QNX - #if !EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT \ - && !EIGEN_GCC3_OR_OLDER \ - && !EIGEN_COMP_SUNCC \ - && !EIGEN_OS_QNX - #define EIGEN_ARCH_WANTS_STACK_ALIGNMENT 1 - #else - #define EIGEN_ARCH_WANTS_STACK_ALIGNMENT 0 - #endif - - #if EIGEN_ARCH_WANTS_STACK_ALIGNMENT - #define EIGEN_MAX_STATIC_ALIGN_BYTES EIGEN_IDEAL_MAX_ALIGN_BYTES - #else - #define EIGEN_MAX_STATIC_ALIGN_BYTES 0 - #endif - -#endif - -// If EIGEN_MAX_ALIGN_BYTES is defined, then it is considered as an upper bound for EIGEN_MAX_ALIGN_BYTES -#if defined(EIGEN_MAX_ALIGN_BYTES) && EIGEN_MAX_ALIGN_BYTES0 is the true test whether we want to align arrays on the stack or not. -// It takes into account both the user choice to explicitly enable/disable alignment (by settting EIGEN_MAX_STATIC_ALIGN_BYTES) -// and the architecture config (EIGEN_ARCH_WANTS_STACK_ALIGNMENT). -// Henceforth, only EIGEN_MAX_STATIC_ALIGN_BYTES should be used. - - -// Shortcuts to EIGEN_ALIGN_TO_BOUNDARY -#define EIGEN_ALIGN8 EIGEN_ALIGN_TO_BOUNDARY(8) -#define EIGEN_ALIGN16 EIGEN_ALIGN_TO_BOUNDARY(16) -#define EIGEN_ALIGN32 EIGEN_ALIGN_TO_BOUNDARY(32) -#define EIGEN_ALIGN64 EIGEN_ALIGN_TO_BOUNDARY(64) -#if EIGEN_MAX_STATIC_ALIGN_BYTES>0 -#define EIGEN_ALIGN_MAX EIGEN_ALIGN_TO_BOUNDARY(EIGEN_MAX_STATIC_ALIGN_BYTES) -#else -#define EIGEN_ALIGN_MAX -#endif - - -// Dynamic alignment control - -#if defined(EIGEN_DONT_ALIGN) && defined(EIGEN_MAX_ALIGN_BYTES) && EIGEN_MAX_ALIGN_BYTES>0 -#error EIGEN_MAX_ALIGN_BYTES and EIGEN_DONT_ALIGN are both defined with EIGEN_MAX_ALIGN_BYTES!=0. Use EIGEN_MAX_ALIGN_BYTES=0 as a synonym of EIGEN_DONT_ALIGN. -#endif - -#ifdef EIGEN_DONT_ALIGN - #ifdef EIGEN_MAX_ALIGN_BYTES - #undef EIGEN_MAX_ALIGN_BYTES - #endif - #define EIGEN_MAX_ALIGN_BYTES 0 -#elif !defined(EIGEN_MAX_ALIGN_BYTES) - #define EIGEN_MAX_ALIGN_BYTES EIGEN_IDEAL_MAX_ALIGN_BYTES -#endif - -#if EIGEN_IDEAL_MAX_ALIGN_BYTES > EIGEN_MAX_ALIGN_BYTES -#define EIGEN_DEFAULT_ALIGN_BYTES EIGEN_IDEAL_MAX_ALIGN_BYTES -#else -#define EIGEN_DEFAULT_ALIGN_BYTES EIGEN_MAX_ALIGN_BYTES -#endif - - -#ifndef EIGEN_UNALIGNED_VECTORIZE -#define EIGEN_UNALIGNED_VECTORIZE 1 -#endif - -//---------------------------------------------------------------------- - - -#ifdef EIGEN_DONT_USE_RESTRICT_KEYWORD - #define EIGEN_RESTRICT -#endif -#ifndef EIGEN_RESTRICT - #define EIGEN_RESTRICT __restrict -#endif - -#ifndef EIGEN_STACK_ALLOCATION_LIMIT -// 131072 == 128 KB -#define EIGEN_STACK_ALLOCATION_LIMIT 131072 -#endif - -#ifndef EIGEN_DEFAULT_IO_FORMAT -#ifdef EIGEN_MAKING_DOCS -// format used in Eigen's documentation -// needed to define it here as escaping characters in CMake add_definition's argument seems very problematic. -#define EIGEN_DEFAULT_IO_FORMAT Eigen::IOFormat(3, 0, " ", "\n", "", "") -#else -#define EIGEN_DEFAULT_IO_FORMAT Eigen::IOFormat() -#endif -#endif - -// just an empty macro ! -#define EIGEN_EMPTY - -#if EIGEN_COMP_MSVC_STRICT && (EIGEN_COMP_MSVC < 1900 || EIGEN_CUDACC_VER>0) - // for older MSVC versions, as well as 1900 && CUDA 8, using the base operator is sufficient (cf Bugs 1000, 1324) - #define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \ - using Base::operator =; -#elif EIGEN_COMP_CLANG // workaround clang bug (see http://forum.kde.org/viewtopic.php?f=74&t=102653) - #define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \ - using Base::operator =; \ - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const Derived& other) { Base::operator=(other); return *this; } \ - template \ - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const DenseBase& other) { Base::operator=(other.derived()); return *this; } -#else - #define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \ - using Base::operator =; \ - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const Derived& other) \ - { \ - Base::operator=(other); \ - return *this; \ - } -#endif - - -/** \internal - * \brief Macro to manually inherit assignment operators. - * This is necessary, because the implicitly defined assignment operator gets deleted when a custom operator= is defined. - */ -#define EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Derived) EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) - -/** -* Just a side note. Commenting within defines works only by documenting -* behind the object (via '!<'). Comments cannot be multi-line and thus -* we have these extra long lines. What is confusing doxygen over here is -* that we use '\' and basically have a bunch of typedefs with their -* documentation in a single line. -**/ - -#define EIGEN_GENERIC_PUBLIC_INTERFACE(Derived) \ - typedef typename Eigen::internal::traits::Scalar Scalar; /*!< \brief Numeric type, e.g. float, double, int or std::complex. */ \ - typedef typename Eigen::NumTraits::Real RealScalar; /*!< \brief The underlying numeric type for composed scalar types. \details In cases where Scalar is e.g. std::complex, T were corresponding to RealScalar. */ \ - typedef typename Base::CoeffReturnType CoeffReturnType; /*!< \brief The return type for coefficient access. \details Depending on whether the object allows direct coefficient access (e.g. for a MatrixXd), this type is either 'const Scalar&' or simply 'Scalar' for objects that do not allow direct coefficient access. */ \ - typedef typename Eigen::internal::ref_selector::type Nested; \ - typedef typename Eigen::internal::traits::StorageKind StorageKind; \ - typedef typename Eigen::internal::traits::StorageIndex StorageIndex; \ - enum { RowsAtCompileTime = Eigen::internal::traits::RowsAtCompileTime, \ - ColsAtCompileTime = Eigen::internal::traits::ColsAtCompileTime, \ - Flags = Eigen::internal::traits::Flags, \ - SizeAtCompileTime = Base::SizeAtCompileTime, \ - MaxSizeAtCompileTime = Base::MaxSizeAtCompileTime, \ - IsVectorAtCompileTime = Base::IsVectorAtCompileTime }; \ - using Base::derived; \ - using Base::const_cast_derived; - - -// FIXME Maybe the EIGEN_DENSE_PUBLIC_INTERFACE could be removed as importing PacketScalar is rarely needed -#define EIGEN_DENSE_PUBLIC_INTERFACE(Derived) \ - EIGEN_GENERIC_PUBLIC_INTERFACE(Derived) \ - typedef typename Base::PacketScalar PacketScalar; - - -#define EIGEN_PLAIN_ENUM_MIN(a,b) (((int)a <= (int)b) ? (int)a : (int)b) -#define EIGEN_PLAIN_ENUM_MAX(a,b) (((int)a >= (int)b) ? (int)a : (int)b) - -// EIGEN_SIZE_MIN_PREFER_DYNAMIC gives the min between compile-time sizes. 0 has absolute priority, followed by 1, -// followed by Dynamic, followed by other finite values. The reason for giving Dynamic the priority over -// finite values is that min(3, Dynamic) should be Dynamic, since that could be anything between 0 and 3. -#define EIGEN_SIZE_MIN_PREFER_DYNAMIC(a,b) (((int)a == 0 || (int)b == 0) ? 0 \ - : ((int)a == 1 || (int)b == 1) ? 1 \ - : ((int)a == Dynamic || (int)b == Dynamic) ? Dynamic \ - : ((int)a <= (int)b) ? (int)a : (int)b) - -// EIGEN_SIZE_MIN_PREFER_FIXED is a variant of EIGEN_SIZE_MIN_PREFER_DYNAMIC comparing MaxSizes. The difference is that finite values -// now have priority over Dynamic, so that min(3, Dynamic) gives 3. Indeed, whatever the actual value is -// (between 0 and 3), it is not more than 3. -#define EIGEN_SIZE_MIN_PREFER_FIXED(a,b) (((int)a == 0 || (int)b == 0) ? 0 \ - : ((int)a == 1 || (int)b == 1) ? 1 \ - : ((int)a == Dynamic && (int)b == Dynamic) ? Dynamic \ - : ((int)a == Dynamic) ? (int)b \ - : ((int)b == Dynamic) ? (int)a \ - : ((int)a <= (int)b) ? (int)a : (int)b) - -// see EIGEN_SIZE_MIN_PREFER_DYNAMIC. No need for a separate variant for MaxSizes here. -#define EIGEN_SIZE_MAX(a,b) (((int)a == Dynamic || (int)b == Dynamic) ? Dynamic \ - : ((int)a >= (int)b) ? (int)a : (int)b) - -#define EIGEN_LOGICAL_XOR(a,b) (((a) || (b)) && !((a) && (b))) - -#define EIGEN_IMPLIES(a,b) (!(a) || (b)) - -// the expression type of a standard coefficient wise binary operation -#define EIGEN_CWISE_BINARY_RETURN_TYPE(LHS,RHS,OPNAME) \ - CwiseBinaryOp< \ - EIGEN_CAT(EIGEN_CAT(internal::scalar_,OPNAME),_op)< \ - typename internal::traits::Scalar, \ - typename internal::traits::Scalar \ - >, \ - const LHS, \ - const RHS \ - > - -#define EIGEN_MAKE_CWISE_BINARY_OP(METHOD,OPNAME) \ - template \ - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const EIGEN_CWISE_BINARY_RETURN_TYPE(Derived,OtherDerived,OPNAME) \ - (METHOD)(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const \ - { \ - return EIGEN_CWISE_BINARY_RETURN_TYPE(Derived,OtherDerived,OPNAME)(derived(), other.derived()); \ - } - -#define EIGEN_SCALAR_BINARY_SUPPORTED(OPNAME,TYPEA,TYPEB) \ - (Eigen::internal::has_ReturnType > >::value) - -#define EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(EXPR,SCALAR,OPNAME) \ - CwiseBinaryOp::Scalar,SCALAR>, const EXPR, \ - const typename internal::plain_constant_type::type> - -#define EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(SCALAR,EXPR,OPNAME) \ - CwiseBinaryOp::Scalar>, \ - const typename internal::plain_constant_type::type, const EXPR> - -// Workaround for MSVC 2010 (see ML thread "patch with compile for for MSVC 2010") -#if EIGEN_COMP_MSVC_STRICT<=1600 -#define EIGEN_MSVC10_WORKAROUND_BINARYOP_RETURN_TYPE(X) typename internal::enable_if::type -#else -#define EIGEN_MSVC10_WORKAROUND_BINARYOP_RETURN_TYPE(X) X -#endif - -#define EIGEN_MAKE_SCALAR_BINARY_OP_ONTHERIGHT(METHOD,OPNAME) \ - template EIGEN_DEVICE_FUNC inline \ - EIGEN_MSVC10_WORKAROUND_BINARYOP_RETURN_TYPE(const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,typename internal::promote_scalar_arg::type,OPNAME))\ - (METHOD)(const T& scalar) const { \ - typedef typename internal::promote_scalar_arg::type PromotedT; \ - return EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,PromotedT,OPNAME)(derived(), \ - typename internal::plain_constant_type::type(derived().rows(), derived().cols(), internal::scalar_constant_op(scalar))); \ - } - -#define EIGEN_MAKE_SCALAR_BINARY_OP_ONTHELEFT(METHOD,OPNAME) \ - template EIGEN_DEVICE_FUNC inline friend \ - EIGEN_MSVC10_WORKAROUND_BINARYOP_RETURN_TYPE(const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(typename internal::promote_scalar_arg::type,Derived,OPNAME)) \ - (METHOD)(const T& scalar, const StorageBaseType& matrix) { \ - typedef typename internal::promote_scalar_arg::type PromotedT; \ - return EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(PromotedT,Derived,OPNAME)( \ - typename internal::plain_constant_type::type(matrix.derived().rows(), matrix.derived().cols(), internal::scalar_constant_op(scalar)), matrix.derived()); \ - } - -#define EIGEN_MAKE_SCALAR_BINARY_OP(METHOD,OPNAME) \ - EIGEN_MAKE_SCALAR_BINARY_OP_ONTHELEFT(METHOD,OPNAME) \ - EIGEN_MAKE_SCALAR_BINARY_OP_ONTHERIGHT(METHOD,OPNAME) - - -#ifdef EIGEN_EXCEPTIONS -# define EIGEN_THROW_X(X) throw X -# define EIGEN_THROW throw -# define EIGEN_TRY try -# define EIGEN_CATCH(X) catch (X) -#else -# ifdef __CUDA_ARCH__ -# define EIGEN_THROW_X(X) asm("trap;") -# define EIGEN_THROW asm("trap;") -# else -# define EIGEN_THROW_X(X) std::abort() -# define EIGEN_THROW std::abort() -# endif -# define EIGEN_TRY if (true) -# define EIGEN_CATCH(X) else -#endif - - -#if EIGEN_HAS_CXX11_NOEXCEPT -# define EIGEN_INCLUDE_TYPE_TRAITS -# define EIGEN_NOEXCEPT noexcept -# define EIGEN_NOEXCEPT_IF(x) noexcept(x) -# define EIGEN_NO_THROW noexcept(true) -# define EIGEN_EXCEPTION_SPEC(X) noexcept(false) -#else -# define EIGEN_NOEXCEPT -# define EIGEN_NOEXCEPT_IF(x) -# define EIGEN_NO_THROW throw() -# if EIGEN_COMP_MSVC - // MSVC does not support exception specifications (warning C4290), - // and they are deprecated in c++11 anyway. -# define EIGEN_EXCEPTION_SPEC(X) throw() -# else -# define EIGEN_EXCEPTION_SPEC(X) throw(X) -# endif -#endif - -#endif // EIGEN_MACROS_H diff --git a/src/math_meigen/Eigen/src/Core/util/Memory.h b/src/math_meigen/Eigen/src/Core/util/Memory.h deleted file mode 100755 index 291383c58..000000000 --- a/src/math_meigen/Eigen/src/Core/util/Memory.h +++ /dev/null @@ -1,993 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2015 Gael Guennebaud -// Copyright (C) 2008-2009 Benoit Jacob -// Copyright (C) 2009 Kenneth Riddile -// Copyright (C) 2010 Hauke Heibel -// Copyright (C) 2010 Thomas Capricelli -// Copyright (C) 2013 Pavel Holoborodko -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - - -/***************************************************************************** -*** Platform checks for aligned malloc functions *** -*****************************************************************************/ - -#ifndef EIGEN_MEMORY_H -#define EIGEN_MEMORY_H - -#ifndef EIGEN_MALLOC_ALREADY_ALIGNED - -// Try to determine automatically if malloc is already aligned. - -// On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see: -// http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html -// This is true at least since glibc 2.8. -// This leaves the question how to detect 64-bit. According to this document, -// http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf -// page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed -// quite safe, at least within the context of glibc, to equate 64-bit with LP64. -#if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \ - && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ ) && (EIGEN_DEFAULT_ALIGN_BYTES == 16) - #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1 -#else - #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0 -#endif - -// FreeBSD 6 seems to have 16-byte aligned malloc -// See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup -// FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures -// See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup -#if defined(__FreeBSD__) && !(EIGEN_ARCH_ARM || EIGEN_ARCH_MIPS) && (EIGEN_DEFAULT_ALIGN_BYTES == 16) - #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1 -#else - #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0 -#endif - -#if (EIGEN_OS_MAC && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) \ - || (EIGEN_OS_WIN64 && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) \ - || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \ - || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED - #define EIGEN_MALLOC_ALREADY_ALIGNED 1 -#else - #define EIGEN_MALLOC_ALREADY_ALIGNED 0 -#endif - -#endif - -namespace Eigen { - -namespace internal { - -EIGEN_DEVICE_FUNC -inline void throw_std_bad_alloc() -{ - #ifdef EIGEN_EXCEPTIONS - throw std::bad_alloc(); - #else - std::size_t huge = static_cast(-1); - ::operator new(huge); - #endif -} - -/***************************************************************************** -*** Implementation of handmade aligned functions *** -*****************************************************************************/ - -/* ----- Hand made implementations of aligned malloc/free and realloc ----- */ - -/** \internal Like malloc, but the returned pointer is guaranteed to be 16-byte aligned. - * Fast, but wastes 16 additional bytes of memory. Does not throw any exception. - */ -inline void* handmade_aligned_malloc(std::size_t size) -{ - void *original = std::malloc(size+EIGEN_DEFAULT_ALIGN_BYTES); - if (original == 0) return 0; - void *aligned = reinterpret_cast((reinterpret_cast(original) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) + EIGEN_DEFAULT_ALIGN_BYTES); - *(reinterpret_cast(aligned) - 1) = original; - return aligned; -} - -/** \internal Frees memory allocated with handmade_aligned_malloc */ -inline void handmade_aligned_free(void *ptr) -{ - if (ptr) std::free(*(reinterpret_cast(ptr) - 1)); -} - -/** \internal - * \brief Reallocates aligned memory. - * Since we know that our handmade version is based on std::malloc - * we can use std::realloc to implement efficient reallocation. - */ -inline void* handmade_aligned_realloc(void* ptr, std::size_t size, std::size_t = 0) -{ - if (ptr == 0) return handmade_aligned_malloc(size); - void *original = *(reinterpret_cast(ptr) - 1); - std::ptrdiff_t previous_offset = static_cast(ptr)-static_cast(original); - original = std::realloc(original,size+EIGEN_DEFAULT_ALIGN_BYTES); - if (original == 0) return 0; - void *aligned = reinterpret_cast((reinterpret_cast(original) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) + EIGEN_DEFAULT_ALIGN_BYTES); - void *previous_aligned = static_cast(original)+previous_offset; - if(aligned!=previous_aligned) - std::memmove(aligned, previous_aligned, size); - - *(reinterpret_cast(aligned) - 1) = original; - return aligned; -} - -/***************************************************************************** -*** Implementation of portable aligned versions of malloc/free/realloc *** -*****************************************************************************/ - -#ifdef EIGEN_NO_MALLOC -EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() -{ - eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)"); -} -#elif defined EIGEN_RUNTIME_NO_MALLOC -EIGEN_DEVICE_FUNC inline bool is_malloc_allowed_impl(bool update, bool new_value = false) -{ - static bool value = true; - if (update == 1) - value = new_value; - return value; -} -EIGEN_DEVICE_FUNC inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); } -EIGEN_DEVICE_FUNC inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); } -EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() -{ - eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)"); -} -#else -EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() -{} -#endif - -/** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 or 32 bytes alignment depending on the requirements. - * On allocation error, the returned pointer is null, and std::bad_alloc is thrown. - */ -EIGEN_DEVICE_FUNC inline void* aligned_malloc(std::size_t size) -{ - check_that_malloc_is_allowed(); - - void *result; - #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED - result = std::malloc(size); - #if EIGEN_DEFAULT_ALIGN_BYTES==16 - eigen_assert((size<16 || (std::size_t(result)%16)==0) && "System's malloc returned an unaligned pointer. Compile with EIGEN_MALLOC_ALREADY_ALIGNED=0 to fallback to handmade alignd memory allocator."); - #endif - #else - result = handmade_aligned_malloc(size); - #endif - - if(!result && size) - throw_std_bad_alloc(); - - return result; -} - -/** \internal Frees memory allocated with aligned_malloc. */ -EIGEN_DEVICE_FUNC inline void aligned_free(void *ptr) -{ - #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED - std::free(ptr); - #else - handmade_aligned_free(ptr); - #endif -} - -/** - * \internal - * \brief Reallocates an aligned block of memory. - * \throws std::bad_alloc on allocation failure - */ -inline void* aligned_realloc(void *ptr, std::size_t new_size, std::size_t old_size) -{ - EIGEN_UNUSED_VARIABLE(old_size); - - void *result; -#if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED - result = std::realloc(ptr,new_size); -#else - result = handmade_aligned_realloc(ptr,new_size,old_size); -#endif - - if (!result && new_size) - throw_std_bad_alloc(); - - return result; -} - -/***************************************************************************** -*** Implementation of conditionally aligned functions *** -*****************************************************************************/ - -/** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned. - * On allocation error, the returned pointer is null, and a std::bad_alloc is thrown. - */ -template EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc(std::size_t size) -{ - return aligned_malloc(size); -} - -template<> EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc(std::size_t size) -{ - check_that_malloc_is_allowed(); - - void *result = std::malloc(size); - if(!result && size) - throw_std_bad_alloc(); - return result; -} - -/** \internal Frees memory allocated with conditional_aligned_malloc */ -template EIGEN_DEVICE_FUNC inline void conditional_aligned_free(void *ptr) -{ - aligned_free(ptr); -} - -template<> EIGEN_DEVICE_FUNC inline void conditional_aligned_free(void *ptr) -{ - std::free(ptr); -} - -template inline void* conditional_aligned_realloc(void* ptr, std::size_t new_size, std::size_t old_size) -{ - return aligned_realloc(ptr, new_size, old_size); -} - -template<> inline void* conditional_aligned_realloc(void* ptr, std::size_t new_size, std::size_t) -{ - return std::realloc(ptr, new_size); -} - -/***************************************************************************** -*** Construction/destruction of array elements *** -*****************************************************************************/ - -/** \internal Destructs the elements of an array. - * The \a size parameters tells on how many objects to call the destructor of T. - */ -template EIGEN_DEVICE_FUNC inline void destruct_elements_of_array(T *ptr, std::size_t size) -{ - // always destruct an array starting from the end. - if(ptr) - while(size) ptr[--size].~T(); -} - -/** \internal Constructs the elements of an array. - * The \a size parameter tells on how many objects to call the constructor of T. - */ -template EIGEN_DEVICE_FUNC inline T* construct_elements_of_array(T *ptr, std::size_t size) -{ - std::size_t i; - EIGEN_TRY - { - for (i = 0; i < size; ++i) ::new (ptr + i) T; - return ptr; - } - EIGEN_CATCH(...) - { - destruct_elements_of_array(ptr, i); - EIGEN_THROW; - } - return NULL; -} - -/***************************************************************************** -*** Implementation of aligned new/delete-like functions *** -*****************************************************************************/ - -template -EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void check_size_for_overflow(std::size_t size) -{ - if(size > std::size_t(-1) / sizeof(T)) - throw_std_bad_alloc(); -} - -/** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment. - * On allocation error, the returned pointer is undefined, but a std::bad_alloc is thrown. - * The default constructor of T is called. - */ -template EIGEN_DEVICE_FUNC inline T* aligned_new(std::size_t size) -{ - check_size_for_overflow(size); - T *result = reinterpret_cast(aligned_malloc(sizeof(T)*size)); - EIGEN_TRY - { - return construct_elements_of_array(result, size); - } - EIGEN_CATCH(...) - { - aligned_free(result); - EIGEN_THROW; - } - return result; -} - -template EIGEN_DEVICE_FUNC inline T* conditional_aligned_new(std::size_t size) -{ - check_size_for_overflow(size); - T *result = reinterpret_cast(conditional_aligned_malloc(sizeof(T)*size)); - EIGEN_TRY - { - return construct_elements_of_array(result, size); - } - EIGEN_CATCH(...) - { - conditional_aligned_free(result); - EIGEN_THROW; - } - return result; -} - -/** \internal Deletes objects constructed with aligned_new - * The \a size parameters tells on how many objects to call the destructor of T. - */ -template EIGEN_DEVICE_FUNC inline void aligned_delete(T *ptr, std::size_t size) -{ - destruct_elements_of_array(ptr, size); - aligned_free(ptr); -} - -/** \internal Deletes objects constructed with conditional_aligned_new - * The \a size parameters tells on how many objects to call the destructor of T. - */ -template EIGEN_DEVICE_FUNC inline void conditional_aligned_delete(T *ptr, std::size_t size) -{ - destruct_elements_of_array(ptr, size); - conditional_aligned_free(ptr); -} - -template EIGEN_DEVICE_FUNC inline T* conditional_aligned_realloc_new(T* pts, std::size_t new_size, std::size_t old_size) -{ - check_size_for_overflow(new_size); - check_size_for_overflow(old_size); - if(new_size < old_size) - destruct_elements_of_array(pts+new_size, old_size-new_size); - T *result = reinterpret_cast(conditional_aligned_realloc(reinterpret_cast(pts), sizeof(T)*new_size, sizeof(T)*old_size)); - if(new_size > old_size) - { - EIGEN_TRY - { - construct_elements_of_array(result+old_size, new_size-old_size); - } - EIGEN_CATCH(...) - { - conditional_aligned_free(result); - EIGEN_THROW; - } - } - return result; -} - - -template EIGEN_DEVICE_FUNC inline T* conditional_aligned_new_auto(std::size_t size) -{ - if(size==0) - return 0; // short-cut. Also fixes Bug 884 - check_size_for_overflow(size); - T *result = reinterpret_cast(conditional_aligned_malloc(sizeof(T)*size)); - if(NumTraits::RequireInitialization) - { - EIGEN_TRY - { - construct_elements_of_array(result, size); - } - EIGEN_CATCH(...) - { - conditional_aligned_free(result); - EIGEN_THROW; - } - } - return result; -} - -template inline T* conditional_aligned_realloc_new_auto(T* pts, std::size_t new_size, std::size_t old_size) -{ - check_size_for_overflow(new_size); - check_size_for_overflow(old_size); - if(NumTraits::RequireInitialization && (new_size < old_size)) - destruct_elements_of_array(pts+new_size, old_size-new_size); - T *result = reinterpret_cast(conditional_aligned_realloc(reinterpret_cast(pts), sizeof(T)*new_size, sizeof(T)*old_size)); - if(NumTraits::RequireInitialization && (new_size > old_size)) - { - EIGEN_TRY - { - construct_elements_of_array(result+old_size, new_size-old_size); - } - EIGEN_CATCH(...) - { - conditional_aligned_free(result); - EIGEN_THROW; - } - } - return result; -} - -template EIGEN_DEVICE_FUNC inline void conditional_aligned_delete_auto(T *ptr, std::size_t size) -{ - if(NumTraits::RequireInitialization) - destruct_elements_of_array(ptr, size); - conditional_aligned_free(ptr); -} - -/****************************************************************************/ - -/** \internal Returns the index of the first element of the array that is well aligned with respect to the requested \a Alignment. - * - * \tparam Alignment requested alignment in Bytes. - * \param array the address of the start of the array - * \param size the size of the array - * - * \note If no element of the array is well aligned or the requested alignment is not a multiple of a scalar, - * the size of the array is returned. For example with SSE, the requested alignment is typically 16-bytes. If - * packet size for the given scalar type is 1, then everything is considered well-aligned. - * - * \note Otherwise, if the Alignment is larger that the scalar size, we rely on the assumptions that sizeof(Scalar) is a - * power of 2. On the other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails for - * example with Scalar=double on certain 32-bit platforms, see bug #79. - * - * There is also the variant first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h. - * \sa first_default_aligned() - */ -template -EIGEN_DEVICE_FUNC inline Index first_aligned(const Scalar* array, Index size) -{ - const Index ScalarSize = sizeof(Scalar); - const Index AlignmentSize = Alignment / ScalarSize; - const Index AlignmentMask = AlignmentSize-1; - - if(AlignmentSize<=1) - { - // Either the requested alignment if smaller than a scalar, or it exactly match a 1 scalar - // so that all elements of the array have the same alignment. - return 0; - } - else if( (UIntPtr(array) & (sizeof(Scalar)-1)) || (Alignment%ScalarSize)!=0) - { - // The array is not aligned to the size of a single scalar, or the requested alignment is not a multiple of the scalar size. - // Consequently, no element of the array is well aligned. - return size; - } - else - { - Index first = (AlignmentSize - (Index((UIntPtr(array)/sizeof(Scalar))) & AlignmentMask)) & AlignmentMask; - return (first < size) ? first : size; - } -} - -/** \internal Returns the index of the first element of the array that is well aligned with respect the largest packet requirement. - * \sa first_aligned(Scalar*,Index) and first_default_aligned(DenseBase) */ -template -EIGEN_DEVICE_FUNC inline Index first_default_aligned(const Scalar* array, Index size) -{ - typedef typename packet_traits::type DefaultPacketType; - return first_aligned::alignment>(array, size); -} - -/** \internal Returns the smallest integer multiple of \a base and greater or equal to \a size - */ -template -inline Index first_multiple(Index size, Index base) -{ - return ((size+base-1)/base)*base; -} - -// std::copy is much slower than memcpy, so let's introduce a smart_copy which -// use memcpy on trivial types, i.e., on types that does not require an initialization ctor. -template struct smart_copy_helper; - -template EIGEN_DEVICE_FUNC void smart_copy(const T* start, const T* end, T* target) -{ - smart_copy_helper::RequireInitialization>::run(start, end, target); -} - -template struct smart_copy_helper { - EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target) - { - IntPtr size = IntPtr(end)-IntPtr(start); - if(size==0) return; - eigen_internal_assert(start!=0 && end!=0 && target!=0); - std::memcpy(target, start, size); - } -}; - -template struct smart_copy_helper { - EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target) - { std::copy(start, end, target); } -}; - -// intelligent memmove. falls back to std::memmove for POD types, uses std::copy otherwise. -template struct smart_memmove_helper; - -template void smart_memmove(const T* start, const T* end, T* target) -{ - smart_memmove_helper::RequireInitialization>::run(start, end, target); -} - -template struct smart_memmove_helper { - static inline void run(const T* start, const T* end, T* target) - { - IntPtr size = IntPtr(end)-IntPtr(start); - if(size==0) return; - eigen_internal_assert(start!=0 && end!=0 && target!=0); - std::memmove(target, start, size); - } -}; - -template struct smart_memmove_helper { - static inline void run(const T* start, const T* end, T* target) - { - if (UIntPtr(target) < UIntPtr(start)) - { - std::copy(start, end, target); - } - else - { - std::ptrdiff_t count = (std::ptrdiff_t(end)-std::ptrdiff_t(start)) / sizeof(T); - std::copy_backward(start, end, target + count); - } - } -}; - - -/***************************************************************************** -*** Implementation of runtime stack allocation (falling back to malloc) *** -*****************************************************************************/ - -// you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA -// to the appropriate stack allocation function -#ifndef EIGEN_ALLOCA - #if EIGEN_OS_LINUX || EIGEN_OS_MAC || (defined alloca) - #define EIGEN_ALLOCA alloca - #elif EIGEN_COMP_MSVC - #define EIGEN_ALLOCA _alloca - #endif -#endif - -// This helper class construct the allocated memory, and takes care of destructing and freeing the handled data -// at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions. -template class aligned_stack_memory_handler : noncopyable -{ - public: - /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size. - * Note that \a ptr can be 0 regardless of the other parameters. - * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits::RequireInitialization). - * In this case, the buffer elements will also be destructed when this handler will be destructed. - * Finally, if \a dealloc is true, then the pointer \a ptr is freed. - **/ - aligned_stack_memory_handler(T* ptr, std::size_t size, bool dealloc) - : m_ptr(ptr), m_size(size), m_deallocate(dealloc) - { - if(NumTraits::RequireInitialization && m_ptr) - Eigen::internal::construct_elements_of_array(m_ptr, size); - } - ~aligned_stack_memory_handler() - { - if(NumTraits::RequireInitialization && m_ptr) - Eigen::internal::destruct_elements_of_array(m_ptr, m_size); - if(m_deallocate) - Eigen::internal::aligned_free(m_ptr); - } - protected: - T* m_ptr; - std::size_t m_size; - bool m_deallocate; -}; - -template class scoped_array : noncopyable -{ - T* m_ptr; -public: - explicit scoped_array(std::ptrdiff_t size) - { - m_ptr = new T[size]; - } - ~scoped_array() - { - delete[] m_ptr; - } - T& operator[](std::ptrdiff_t i) { return m_ptr[i]; } - const T& operator[](std::ptrdiff_t i) const { return m_ptr[i]; } - T* &ptr() { return m_ptr; } - const T* ptr() const { return m_ptr; } - operator const T*() const { return m_ptr; } -}; - -template void swap(scoped_array &a,scoped_array &b) -{ - std::swap(a.ptr(),b.ptr()); -} - -} // end namespace internal - -/** \internal - * Declares, allocates and construct an aligned buffer named NAME of SIZE elements of type TYPE on the stack - * if SIZE is smaller than EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the platform - * (currently, this is Linux and Visual Studio only). Otherwise the memory is allocated on the heap. - * The allocated buffer is automatically deleted when exiting the scope of this declaration. - * If BUFFER is non null, then the declared variable is simply an alias for BUFFER, and no allocation/deletion occurs. - * Here is an example: - * \code - * { - * ei_declare_aligned_stack_constructed_variable(float,data,size,0); - * // use data[0] to data[size-1] - * } - * \endcode - * The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token. - */ -#ifdef EIGEN_ALLOCA - - #if EIGEN_DEFAULT_ALIGN_BYTES>0 - // We always manually re-align the result of EIGEN_ALLOCA. - // If alloca is already aligned, the compiler should be smart enough to optimize away the re-alignment. - #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast((internal::UIntPtr(EIGEN_ALLOCA(SIZE+EIGEN_DEFAULT_ALIGN_BYTES-1)) + EIGEN_DEFAULT_ALIGN_BYTES-1) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) - #else - #define EIGEN_ALIGNED_ALLOCA(SIZE) EIGEN_ALLOCA(SIZE) - #endif - - #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \ - Eigen::internal::check_size_for_overflow(SIZE); \ - TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \ - : reinterpret_cast( \ - (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \ - : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) ); \ - Eigen::internal::aligned_stack_memory_handler EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT) - -#else - - #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \ - Eigen::internal::check_size_for_overflow(SIZE); \ - TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE)); \ - Eigen::internal::aligned_stack_memory_handler EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true) - -#endif - - -/***************************************************************************** -*** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] *** -*****************************************************************************/ - -#if EIGEN_MAX_ALIGN_BYTES!=0 - #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ - void* operator new(std::size_t size, const std::nothrow_t&) EIGEN_NO_THROW { \ - EIGEN_TRY { return Eigen::internal::conditional_aligned_malloc(size); } \ - EIGEN_CATCH (...) { return 0; } \ - } - #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \ - void *operator new(std::size_t size) { \ - return Eigen::internal::conditional_aligned_malloc(size); \ - } \ - void *operator new[](std::size_t size) { \ - return Eigen::internal::conditional_aligned_malloc(size); \ - } \ - void operator delete(void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free(ptr); } \ - void operator delete[](void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free(ptr); } \ - void operator delete(void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free(ptr); } \ - void operator delete[](void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free(ptr); } \ - /* in-place new and delete. since (at least afaik) there is no actual */ \ - /* memory allocated we can safely let the default implementation handle */ \ - /* this particular case. */ \ - static void *operator new(std::size_t size, void *ptr) { return ::operator new(size,ptr); } \ - static void *operator new[](std::size_t size, void* ptr) { return ::operator new[](size,ptr); } \ - void operator delete(void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete(memory,ptr); } \ - void operator delete[](void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete[](memory,ptr); } \ - /* nothrow-new (returns zero instead of std::bad_alloc) */ \ - EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ - void operator delete(void *ptr, const std::nothrow_t&) EIGEN_NO_THROW { \ - Eigen::internal::conditional_aligned_free(ptr); \ - } \ - typedef void eigen_aligned_operator_new_marker_type; -#else - #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) -#endif - -#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true) -#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \ - EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%EIGEN_MAX_ALIGN_BYTES==0))) - -/****************************************************************************/ - -/** \class aligned_allocator -* \ingroup Core_Module -* -* \brief STL compatible allocator to use with types requiring a non standrad alignment. -* -* The memory is aligned as for dynamically aligned matrix/array types such as MatrixXd. -* By default, it will thus provide at least 16 bytes alignment and more in following cases: -* - 32 bytes alignment if AVX is enabled. -* - 64 bytes alignment if AVX512 is enabled. -* -* This can be controled using the \c EIGEN_MAX_ALIGN_BYTES macro as documented -* \link TopicPreprocessorDirectivesPerformance there \endlink. -* -* Example: -* \code -* // Matrix4f requires 16 bytes alignment: -* std::map< int, Matrix4f, std::less, -* aligned_allocator > > my_map_mat4; -* // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator: -* std::map< int, Vector3f > my_map_vec3; -* \endcode -* -* \sa \blank \ref TopicStlContainers. -*/ -template -class aligned_allocator : public std::allocator -{ -public: - typedef std::size_t size_type; - typedef std::ptrdiff_t difference_type; - typedef T* pointer; - typedef const T* const_pointer; - typedef T& reference; - typedef const T& const_reference; - typedef T value_type; - - template - struct rebind - { - typedef aligned_allocator other; - }; - - aligned_allocator() : std::allocator() {} - - aligned_allocator(const aligned_allocator& other) : std::allocator(other) {} - - template - aligned_allocator(const aligned_allocator& other) : std::allocator(other) {} - - ~aligned_allocator() {} - - pointer allocate(size_type num, const void* /*hint*/ = 0) - { - internal::check_size_for_overflow(num); - size_type size = num * sizeof(T); -#if EIGEN_COMP_GNUC_STRICT && EIGEN_GNUC_AT_LEAST(7,0) - // workaround gcc bug https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87544 - // It triggered eigen/Eigen/src/Core/util/Memory.h:189:12: warning: argument 1 value '18446744073709551612' exceeds maximum object size 9223372036854775807 - if(size>=std::size_t((std::numeric_limits::max)())) - return 0; - else -#endif - return static_cast( internal::aligned_malloc(size) ); - } - - void deallocate(pointer p, size_type /*num*/) - { - internal::aligned_free(p); - } -}; - -//---------- Cache sizes ---------- - -#if !defined(EIGEN_NO_CPUID) -# if EIGEN_COMP_GNUC && EIGEN_ARCH_i386_OR_x86_64 -# if defined(__PIC__) && EIGEN_ARCH_i386 - // Case for x86 with PIC -# define EIGEN_CPUID(abcd,func,id) \ - __asm__ __volatile__ ("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id)); -# elif defined(__PIC__) && EIGEN_ARCH_x86_64 - // Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with the default small code model. - // However, we cannot detect which code model is used, and the xchg overhead is negligible anyway. -# define EIGEN_CPUID(abcd,func,id) \ - __asm__ __volatile__ ("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id)); -# else - // Case for x86_64 or x86 w/o PIC -# define EIGEN_CPUID(abcd,func,id) \ - __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id) ); -# endif -# elif EIGEN_COMP_MSVC -# if (EIGEN_COMP_MSVC > 1500) && EIGEN_ARCH_i386_OR_x86_64 -# define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id) -# endif -# endif -#endif - -namespace internal { - -#ifdef EIGEN_CPUID - -inline bool cpuid_is_vendor(int abcd[4], const int vendor[3]) -{ - return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2]; -} - -inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3) -{ - int abcd[4]; - l1 = l2 = l3 = 0; - int cache_id = 0; - int cache_type = 0; - do { - abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; - EIGEN_CPUID(abcd,0x4,cache_id); - cache_type = (abcd[0] & 0x0F) >> 0; - if(cache_type==1||cache_type==3) // data or unified cache - { - int cache_level = (abcd[0] & 0xE0) >> 5; // A[7:5] - int ways = (abcd[1] & 0xFFC00000) >> 22; // B[31:22] - int partitions = (abcd[1] & 0x003FF000) >> 12; // B[21:12] - int line_size = (abcd[1] & 0x00000FFF) >> 0; // B[11:0] - int sets = (abcd[2]); // C[31:0] - - int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1); - - switch(cache_level) - { - case 1: l1 = cache_size; break; - case 2: l2 = cache_size; break; - case 3: l3 = cache_size; break; - default: break; - } - } - cache_id++; - } while(cache_type>0 && cache_id<16); -} - -inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3) -{ - int abcd[4]; - abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; - l1 = l2 = l3 = 0; - EIGEN_CPUID(abcd,0x00000002,0); - unsigned char * bytes = reinterpret_cast(abcd)+2; - bool check_for_p2_core2 = false; - for(int i=0; i<14; ++i) - { - switch(bytes[i]) - { - case 0x0A: l1 = 8; break; // 0Ah data L1 cache, 8 KB, 2 ways, 32 byte lines - case 0x0C: l1 = 16; break; // 0Ch data L1 cache, 16 KB, 4 ways, 32 byte lines - case 0x0E: l1 = 24; break; // 0Eh data L1 cache, 24 KB, 6 ways, 64 byte lines - case 0x10: l1 = 16; break; // 10h data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64) - case 0x15: l1 = 16; break; // 15h code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64) - case 0x2C: l1 = 32; break; // 2Ch data L1 cache, 32 KB, 8 ways, 64 byte lines - case 0x30: l1 = 32; break; // 30h code L1 cache, 32 KB, 8 ways, 64 byte lines - case 0x60: l1 = 16; break; // 60h data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored - case 0x66: l1 = 8; break; // 66h data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored - case 0x67: l1 = 16; break; // 67h data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored - case 0x68: l1 = 32; break; // 68h data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored - case 0x1A: l2 = 96; break; // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64) - case 0x22: l3 = 512; break; // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored - case 0x23: l3 = 1024; break; // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored - case 0x25: l3 = 2048; break; // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored - case 0x29: l3 = 4096; break; // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored - case 0x39: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored - case 0x3A: l2 = 192; break; // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored - case 0x3B: l2 = 128; break; // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored - case 0x3C: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored - case 0x3D: l2 = 384; break; // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored - case 0x3E: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored - case 0x40: l2 = 0; break; // no integrated L2 cache (P6 core) or L3 cache (P4 core) - case 0x41: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 32 byte lines - case 0x42: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 32 byte lines - case 0x43: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 32 byte lines - case 0x44: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines - case 0x45: l2 = 2048; break; // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines - case 0x46: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines - case 0x47: l3 = 8192; break; // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines - case 0x48: l2 = 3072; break; // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines - case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2 - case 0x4A: l3 = 6144; break; // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines - case 0x4B: l3 = 8192; break; // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines - case 0x4C: l3 = 12288; break; // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines - case 0x4D: l3 = 16384; break; // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines - case 0x4E: l2 = 6144; break; // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines - case 0x78: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines - case 0x79: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored - case 0x7A: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored - case 0x7B: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored - case 0x7C: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored - case 0x7D: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines - case 0x7E: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64) - case 0x7F: l2 = 512; break; // code and data L2 cache, 512 KB, 2 ways, 64 byte lines - case 0x80: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines - case 0x81: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 32 byte lines - case 0x82: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 32 byte lines - case 0x83: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 32 byte lines - case 0x84: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines - case 0x85: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines - case 0x86: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines - case 0x87: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines - case 0x88: l3 = 2048; break; // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64) - case 0x89: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64) - case 0x8A: l3 = 8192; break; // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64) - case 0x8D: l3 = 3072; break; // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64) - - default: break; - } - } - if(check_for_p2_core2 && l2 == l3) - l3 = 0; - l1 *= 1024; - l2 *= 1024; - l3 *= 1024; -} - -inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs) -{ - if(max_std_funcs>=4) - queryCacheSizes_intel_direct(l1,l2,l3); - else - queryCacheSizes_intel_codes(l1,l2,l3); -} - -inline void queryCacheSizes_amd(int& l1, int& l2, int& l3) -{ - int abcd[4]; - abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; - EIGEN_CPUID(abcd,0x80000005,0); - l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB - abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; - EIGEN_CPUID(abcd,0x80000006,0); - l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB - l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB -} -#endif - -/** \internal - * Queries and returns the cache sizes in Bytes of the L1, L2, and L3 data caches respectively */ -inline void queryCacheSizes(int& l1, int& l2, int& l3) -{ - #ifdef EIGEN_CPUID - int abcd[4]; - const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e}; - const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163}; - const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!" - - // identify the CPU vendor - EIGEN_CPUID(abcd,0x0,0); - int max_std_funcs = abcd[1]; - if(cpuid_is_vendor(abcd,GenuineIntel)) - queryCacheSizes_intel(l1,l2,l3,max_std_funcs); - else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_)) - queryCacheSizes_amd(l1,l2,l3); - else - // by default let's use Intel's API - queryCacheSizes_intel(l1,l2,l3,max_std_funcs); - - // here is the list of other vendors: -// ||cpuid_is_vendor(abcd,"VIA VIA VIA ") -// ||cpuid_is_vendor(abcd,"CyrixInstead") -// ||cpuid_is_vendor(abcd,"CentaurHauls") -// ||cpuid_is_vendor(abcd,"GenuineTMx86") -// ||cpuid_is_vendor(abcd,"TransmetaCPU") -// ||cpuid_is_vendor(abcd,"RiseRiseRise") -// ||cpuid_is_vendor(abcd,"Geode by NSC") -// ||cpuid_is_vendor(abcd,"SiS SiS SiS ") -// ||cpuid_is_vendor(abcd,"UMC UMC UMC ") -// ||cpuid_is_vendor(abcd,"NexGenDriven") - #else - l1 = l2 = l3 = -1; - #endif -} - -/** \internal - * \returns the size in Bytes of the L1 data cache */ -inline int queryL1CacheSize() -{ - int l1(-1), l2, l3; - queryCacheSizes(l1,l2,l3); - return l1; -} - -/** \internal - * \returns the size in Bytes of the L2 or L3 cache if this later is present */ -inline int queryTopLevelCacheSize() -{ - int l1, l2(-1), l3(-1); - queryCacheSizes(l1,l2,l3); - return (std::max)(l2,l3); -} - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_MEMORY_H diff --git a/src/math_meigen/Eigen/src/Core/util/Meta.h b/src/math_meigen/Eigen/src/Core/util/Meta.h deleted file mode 100755 index d31e95411..000000000 --- a/src/math_meigen/Eigen/src/Core/util/Meta.h +++ /dev/null @@ -1,534 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2015 Gael Guennebaud -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_META_H -#define EIGEN_META_H - -#if defined(__CUDA_ARCH__) -#include -#include -#endif - -#if EIGEN_COMP_ICC>=1600 && __cplusplus >= 201103L -#include -#endif - -namespace Eigen { - -typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex; - -/** - * \brief The Index type as used for the API. - * \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE. - * \sa \blank \ref TopicPreprocessorDirectives, StorageIndex. - */ - -typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE Index; - -namespace internal { - -/** \internal - * \file Meta.h - * This file contains generic metaprogramming classes which are not specifically related to Eigen. - * \note In case you wonder, yes we're aware that Boost already provides all these features, - * we however don't want to add a dependency to Boost. - */ - -// Only recent versions of ICC complain about using ptrdiff_t to hold pointers, -// and older versions do not provide *intptr_t types. -#if EIGEN_COMP_ICC>=1600 && __cplusplus >= 201103L -typedef std::intptr_t IntPtr; -typedef std::uintptr_t UIntPtr; -#else -typedef std::ptrdiff_t IntPtr; -typedef std::size_t UIntPtr; -#endif - -struct true_type { enum { value = 1 }; }; -struct false_type { enum { value = 0 }; }; - -template -struct conditional { typedef Then type; }; - -template -struct conditional { typedef Else type; }; - -template struct is_same { enum { value = 0 }; }; -template struct is_same { enum { value = 1 }; }; - -template struct remove_reference { typedef T type; }; -template struct remove_reference { typedef T type; }; - -template struct remove_pointer { typedef T type; }; -template struct remove_pointer { typedef T type; }; -template struct remove_pointer { typedef T type; }; - -template struct remove_const { typedef T type; }; -template struct remove_const { typedef T type; }; -template struct remove_const { typedef T type[]; }; -template struct remove_const { typedef T type[Size]; }; - -template struct remove_all { typedef T type; }; -template struct remove_all { typedef typename remove_all::type type; }; -template struct remove_all { typedef typename remove_all::type type; }; -template struct remove_all { typedef typename remove_all::type type; }; -template struct remove_all { typedef typename remove_all::type type; }; -template struct remove_all { typedef typename remove_all::type type; }; - -template struct is_arithmetic { enum { value = false }; }; -template<> struct is_arithmetic { enum { value = true }; }; -template<> struct is_arithmetic { enum { value = true }; }; -template<> struct is_arithmetic { enum { value = true }; }; -template<> struct is_arithmetic { enum { value = true }; }; -template<> struct is_arithmetic { enum { value = true }; }; -template<> struct is_arithmetic { enum { value = true }; }; -template<> struct is_arithmetic { enum { value = true }; }; -template<> struct is_arithmetic { enum { value = true }; }; -template<> struct is_arithmetic{ enum { value = true }; }; -template<> struct is_arithmetic { enum { value = true }; }; -template<> struct is_arithmetic { enum { value = true }; }; -template<> struct is_arithmetic { enum { value = true }; }; -template<> struct is_arithmetic { enum { value = true }; }; - -template struct is_integral { enum { value = false }; }; -template<> struct is_integral { enum { value = true }; }; -template<> struct is_integral { enum { value = true }; }; -template<> struct is_integral { enum { value = true }; }; -template<> struct is_integral { enum { value = true }; }; -template<> struct is_integral { enum { value = true }; }; -template<> struct is_integral { enum { value = true }; }; -template<> struct is_integral { enum { value = true }; }; -template<> struct is_integral { enum { value = true }; }; -template<> struct is_integral { enum { value = true }; }; -template<> struct is_integral { enum { value = true }; }; - -#if EIGEN_HAS_CXX11 -using std::make_unsigned; -#else -// TODO: Possibly improve this implementation of make_unsigned. -// It is currently used only by -// template struct random_default_impl. -template struct make_unsigned; -template<> struct make_unsigned { typedef unsigned char type; }; -template<> struct make_unsigned { typedef unsigned char type; }; -template<> struct make_unsigned { typedef unsigned char type; }; -template<> struct make_unsigned { typedef unsigned short type; }; -template<> struct make_unsigned { typedef unsigned short type; }; -template<> struct make_unsigned { typedef unsigned int type; }; -template<> struct make_unsigned { typedef unsigned int type; }; -template<> struct make_unsigned { typedef unsigned long type; }; -template<> struct make_unsigned { typedef unsigned long type; }; -#if EIGEN_COMP_MSVC -template<> struct make_unsigned { typedef unsigned __int64 type; }; -template<> struct make_unsigned { typedef unsigned __int64 type; }; -#endif -#endif - -template struct add_const { typedef const T type; }; -template struct add_const { typedef T& type; }; - -template struct is_const { enum { value = 0 }; }; -template struct is_const { enum { value = 1 }; }; - -template struct add_const_on_value_type { typedef const T type; }; -template struct add_const_on_value_type { typedef T const& type; }; -template struct add_const_on_value_type { typedef T const* type; }; -template struct add_const_on_value_type { typedef T const* const type; }; -template struct add_const_on_value_type { typedef T const* const type; }; - - -template -struct is_convertible_impl -{ -private: - struct any_conversion - { - template any_conversion(const volatile T&); - template any_conversion(T&); - }; - struct yes {int a[1];}; - struct no {int a[2];}; - - static yes test(const To&, int); - static no test(any_conversion, ...); - -public: - static From ms_from; -#ifdef __INTEL_COMPILER - #pragma warning push - #pragma warning ( disable : 2259 ) -#endif - enum { value = sizeof(test(ms_from, 0))==sizeof(yes) }; -#ifdef __INTEL_COMPILER - #pragma warning pop -#endif -}; - -template -struct is_convertible -{ - enum { value = is_convertible_impl::type, - typename remove_all::type>::value }; -}; - -/** \internal Allows to enable/disable an overload - * according to a compile time condition. - */ -template struct enable_if; - -template struct enable_if -{ typedef T type; }; - -#if defined(__CUDA_ARCH__) -#if !defined(__FLT_EPSILON__) -#define __FLT_EPSILON__ FLT_EPSILON -#define __DBL_EPSILON__ DBL_EPSILON -#endif - -namespace device { - -template struct numeric_limits -{ - EIGEN_DEVICE_FUNC - static T epsilon() { return 0; } - static T (max)() { assert(false && "Highest not supported for this type"); } - static T (min)() { assert(false && "Lowest not supported for this type"); } - static T infinity() { assert(false && "Infinity not supported for this type"); } - static T quiet_NaN() { assert(false && "quiet_NaN not supported for this type"); } -}; -template<> struct numeric_limits -{ - EIGEN_DEVICE_FUNC - static float epsilon() { return __FLT_EPSILON__; } - EIGEN_DEVICE_FUNC - static float (max)() { return CUDART_MAX_NORMAL_F; } - EIGEN_DEVICE_FUNC - static float (min)() { return FLT_MIN; } - EIGEN_DEVICE_FUNC - static float infinity() { return CUDART_INF_F; } - EIGEN_DEVICE_FUNC - static float quiet_NaN() { return CUDART_NAN_F; } -}; -template<> struct numeric_limits -{ - EIGEN_DEVICE_FUNC - static double epsilon() { return __DBL_EPSILON__; } - EIGEN_DEVICE_FUNC - static double (max)() { return DBL_MAX; } - EIGEN_DEVICE_FUNC - static double (min)() { return DBL_MIN; } - EIGEN_DEVICE_FUNC - static double infinity() { return CUDART_INF; } - EIGEN_DEVICE_FUNC - static double quiet_NaN() { return CUDART_NAN; } -}; -template<> struct numeric_limits -{ - EIGEN_DEVICE_FUNC - static int epsilon() { return 0; } - EIGEN_DEVICE_FUNC - static int (max)() { return INT_MAX; } - EIGEN_DEVICE_FUNC - static int (min)() { return INT_MIN; } -}; -template<> struct numeric_limits -{ - EIGEN_DEVICE_FUNC - static unsigned int epsilon() { return 0; } - EIGEN_DEVICE_FUNC - static unsigned int (max)() { return UINT_MAX; } - EIGEN_DEVICE_FUNC - static unsigned int (min)() { return 0; } -}; -template<> struct numeric_limits -{ - EIGEN_DEVICE_FUNC - static long epsilon() { return 0; } - EIGEN_DEVICE_FUNC - static long (max)() { return LONG_MAX; } - EIGEN_DEVICE_FUNC - static long (min)() { return LONG_MIN; } -}; -template<> struct numeric_limits -{ - EIGEN_DEVICE_FUNC - static unsigned long epsilon() { return 0; } - EIGEN_DEVICE_FUNC - static unsigned long (max)() { return ULONG_MAX; } - EIGEN_DEVICE_FUNC - static unsigned long (min)() { return 0; } -}; -template<> struct numeric_limits -{ - EIGEN_DEVICE_FUNC - static long long epsilon() { return 0; } - EIGEN_DEVICE_FUNC - static long long (max)() { return LLONG_MAX; } - EIGEN_DEVICE_FUNC - static long long (min)() { return LLONG_MIN; } -}; -template<> struct numeric_limits -{ - EIGEN_DEVICE_FUNC - static unsigned long long epsilon() { return 0; } - EIGEN_DEVICE_FUNC - static unsigned long long (max)() { return ULLONG_MAX; } - EIGEN_DEVICE_FUNC - static unsigned long long (min)() { return 0; } -}; - -} - -#endif - -/** \internal - * A base class do disable default copy ctor and copy assignement operator. - */ -class noncopyable -{ - EIGEN_DEVICE_FUNC noncopyable(const noncopyable&); - EIGEN_DEVICE_FUNC const noncopyable& operator=(const noncopyable&); -protected: - EIGEN_DEVICE_FUNC noncopyable() {} - EIGEN_DEVICE_FUNC ~noncopyable() {} -}; - -/** \internal - * Convenient struct to get the result type of a unary or binary functor. - * - * It supports both the current STL mechanism (using the result_type member) as well as - * upcoming next STL generation (using a templated result member). - * If none of these members is provided, then the type of the first argument is returned. FIXME, that behavior is a pretty bad hack. - */ -#if EIGEN_HAS_STD_RESULT_OF -template struct result_of { - typedef typename std::result_of::type type1; - typedef typename remove_all::type type; -}; -#else -template struct result_of { }; - -struct has_none {int a[1];}; -struct has_std_result_type {int a[2];}; -struct has_tr1_result {int a[3];}; - -template -struct unary_result_of_select {typedef typename internal::remove_all::type type;}; - -template -struct unary_result_of_select {typedef typename Func::result_type type;}; - -template -struct unary_result_of_select {typedef typename Func::template result::type type;}; - -template -struct result_of { - template - static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0); - template - static has_tr1_result testFunctor(T const *, typename T::template result::type const * = 0); - static has_none testFunctor(...); - - // note that the following indirection is needed for gcc-3.3 - enum {FunctorType = sizeof(testFunctor(static_cast(0)))}; - typedef typename unary_result_of_select::type type; -}; - -template -struct binary_result_of_select {typedef typename internal::remove_all::type type;}; - -template -struct binary_result_of_select -{typedef typename Func::result_type type;}; - -template -struct binary_result_of_select -{typedef typename Func::template result::type type;}; - -template -struct result_of { - template - static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0); - template - static has_tr1_result testFunctor(T const *, typename T::template result::type const * = 0); - static has_none testFunctor(...); - - // note that the following indirection is needed for gcc-3.3 - enum {FunctorType = sizeof(testFunctor(static_cast(0)))}; - typedef typename binary_result_of_select::type type; -}; - -template -struct ternary_result_of_select {typedef typename internal::remove_all::type type;}; - -template -struct ternary_result_of_select -{typedef typename Func::result_type type;}; - -template -struct ternary_result_of_select -{typedef typename Func::template result::type type;}; - -template -struct result_of { - template - static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0); - template - static has_tr1_result testFunctor(T const *, typename T::template result::type const * = 0); - static has_none testFunctor(...); - - // note that the following indirection is needed for gcc-3.3 - enum {FunctorType = sizeof(testFunctor(static_cast(0)))}; - typedef typename ternary_result_of_select::type type; -}; -#endif - -struct meta_yes { char a[1]; }; -struct meta_no { char a[2]; }; - -// Check whether T::ReturnType does exist -template -struct has_ReturnType -{ - template static meta_yes testFunctor(typename C::ReturnType const *); - template static meta_no testFunctor(...); - - enum { value = sizeof(testFunctor(0)) == sizeof(meta_yes) }; -}; - -template const T* return_ptr(); - -template -struct has_nullary_operator -{ - template static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr()->operator()())>0)>::type * = 0); - static meta_no testFunctor(...); - - enum { value = sizeof(testFunctor(static_cast(0))) == sizeof(meta_yes) }; -}; - -template -struct has_unary_operator -{ - template static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr()->operator()(IndexType(0)))>0)>::type * = 0); - static meta_no testFunctor(...); - - enum { value = sizeof(testFunctor(static_cast(0))) == sizeof(meta_yes) }; -}; - -template -struct has_binary_operator -{ - template static meta_yes testFunctor(C const *,typename enable_if<(sizeof(return_ptr()->operator()(IndexType(0),IndexType(0)))>0)>::type * = 0); - static meta_no testFunctor(...); - - enum { value = sizeof(testFunctor(static_cast(0))) == sizeof(meta_yes) }; -}; - -/** \internal In short, it computes int(sqrt(\a Y)) with \a Y an integer. - * Usage example: \code meta_sqrt<1023>::ret \endcode - */ -template Y))) > - // use ?: instead of || just to shut up a stupid gcc 4.3 warning -class meta_sqrt -{ - enum { - MidX = (InfX+SupX)/2, - TakeInf = MidX*MidX > Y ? 1 : 0, - NewInf = int(TakeInf) ? InfX : int(MidX), - NewSup = int(TakeInf) ? int(MidX) : SupX - }; - public: - enum { ret = meta_sqrt::ret }; -}; - -template -class meta_sqrt { public: enum { ret = (SupX*SupX <= Y) ? SupX : InfX }; }; - - -/** \internal Computes the least common multiple of two positive integer A and B - * at compile-time. It implements a naive algorithm testing all multiples of A. - * It thus works better if A>=B. - */ -template -struct meta_least_common_multiple -{ - enum { ret = meta_least_common_multiple::ret }; -}; -template -struct meta_least_common_multiple -{ - enum { ret = A*K }; -}; - -/** \internal determines whether the product of two numeric types is allowed and what the return type is */ -template struct scalar_product_traits -{ - enum { Defined = 0 }; -}; - -// FIXME quick workaround around current limitation of result_of -// template -// struct result_of(ArgType0,ArgType1)> { -// typedef typename scalar_product_traits::type, typename remove_all::type>::ReturnType type; -// }; - -} // end namespace internal - -namespace numext { - -#if defined(__CUDA_ARCH__) -template EIGEN_DEVICE_FUNC void swap(T &a, T &b) { T tmp = b; b = a; a = tmp; } -#else -template EIGEN_STRONG_INLINE void swap(T &a, T &b) { std::swap(a,b); } -#endif - -#if defined(__CUDA_ARCH__) -using internal::device::numeric_limits; -#else -using std::numeric_limits; -#endif - -// Integer division with rounding up. -// T is assumed to be an integer type with a>=0, and b>0 -template -T div_ceil(const T &a, const T &b) -{ - return (a+b-1) / b; -} - -// The aim of the following functions is to bypass -Wfloat-equal warnings -// when we really want a strict equality comparison on floating points. -template EIGEN_STRONG_INLINE -bool equal_strict(const X& x,const Y& y) { return x == y; } - -template<> EIGEN_STRONG_INLINE -bool equal_strict(const float& x,const float& y) { return std::equal_to()(x,y); } - -template<> EIGEN_STRONG_INLINE -bool equal_strict(const double& x,const double& y) { return std::equal_to()(x,y); } - -template EIGEN_STRONG_INLINE -bool not_equal_strict(const X& x,const Y& y) { return x != y; } - -template<> EIGEN_STRONG_INLINE -bool not_equal_strict(const float& x,const float& y) { return std::not_equal_to()(x,y); } - -template<> EIGEN_STRONG_INLINE -bool not_equal_strict(const double& x,const double& y) { return std::not_equal_to()(x,y); } - -} // end namespace numext - -} // end namespace Eigen - -#endif // EIGEN_META_H diff --git a/src/math_meigen/Eigen/src/Core/util/NonMPL2.h b/src/math_meigen/Eigen/src/Core/util/NonMPL2.h deleted file mode 100755 index 1af67cf18..000000000 --- a/src/math_meigen/Eigen/src/Core/util/NonMPL2.h +++ /dev/null @@ -1,3 +0,0 @@ -#ifdef EIGEN_MPL2_ONLY -#error Including non-MPL2 code in EIGEN_MPL2_ONLY mode -#endif diff --git a/src/math_meigen/Eigen/src/Core/util/ReenableStupidWarnings.h b/src/math_meigen/Eigen/src/Core/util/ReenableStupidWarnings.h deleted file mode 100755 index ecc82b7c8..000000000 --- a/src/math_meigen/Eigen/src/Core/util/ReenableStupidWarnings.h +++ /dev/null @@ -1,27 +0,0 @@ -#ifdef EIGEN_WARNINGS_DISABLED -#undef EIGEN_WARNINGS_DISABLED - -#ifndef EIGEN_PERMANENTLY_DISABLE_STUPID_WARNINGS - #ifdef _MSC_VER - #pragma warning( pop ) - #elif defined __INTEL_COMPILER - #pragma warning pop - #elif defined __clang__ - #pragma clang diagnostic pop - #elif defined __GNUC__ && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)) - #pragma GCC diagnostic pop - #endif - - #if defined __NVCC__ -// Don't reenable the diagnostic messages, as it turns out these messages need -// to be disabled at the point of the template instantiation (i.e the user code) -// otherwise they'll be triggered by nvcc. -// #pragma diag_default code_is_unreachable -// #pragma diag_default initialization_not_reachable -// #pragma diag_default 2651 -// #pragma diag_default 2653 - #endif - -#endif - -#endif // EIGEN_WARNINGS_DISABLED diff --git a/src/math_meigen/Eigen/src/Core/util/StaticAssert.h b/src/math_meigen/Eigen/src/Core/util/StaticAssert.h deleted file mode 100755 index 500e47792..000000000 --- a/src/math_meigen/Eigen/src/Core/util/StaticAssert.h +++ /dev/null @@ -1,218 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_STATIC_ASSERT_H -#define EIGEN_STATIC_ASSERT_H - -/* Some notes on Eigen's static assertion mechanism: - * - * - in EIGEN_STATIC_ASSERT(CONDITION,MSG) the parameter CONDITION must be a compile time boolean - * expression, and MSG an enum listed in struct internal::static_assertion - * - * - define EIGEN_NO_STATIC_ASSERT to disable them (and save compilation time) - * in that case, the static assertion is converted to the following runtime assert: - * eigen_assert(CONDITION && "MSG") - * - * - currently EIGEN_STATIC_ASSERT can only be used in function scope - * - */ - -#ifndef EIGEN_STATIC_ASSERT -#ifndef EIGEN_NO_STATIC_ASSERT - - #if EIGEN_MAX_CPP_VER>=11 && (__has_feature(cxx_static_assert) || (defined(__cplusplus) && __cplusplus >= 201103L) || (EIGEN_COMP_MSVC >= 1600)) - - // if native static_assert is enabled, let's use it - #define EIGEN_STATIC_ASSERT(X,MSG) static_assert(X,#MSG); - - #else // not CXX0X - - namespace Eigen { - - namespace internal { - - template - struct static_assertion {}; - - template<> - struct static_assertion - { - enum { - YOU_TRIED_CALLING_A_VECTOR_METHOD_ON_A_MATRIX=1, - YOU_MIXED_VECTORS_OF_DIFFERENT_SIZES=1, - YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES=1, - THIS_METHOD_IS_ONLY_FOR_VECTORS_OF_A_SPECIFIC_SIZE=1, - THIS_METHOD_IS_ONLY_FOR_MATRICES_OF_A_SPECIFIC_SIZE=1, - THIS_METHOD_IS_ONLY_FOR_OBJECTS_OF_A_SPECIFIC_SIZE=1, - OUT_OF_RANGE_ACCESS=1, - YOU_MADE_A_PROGRAMMING_MISTAKE=1, - EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT=1, - EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE=1, - YOU_CALLED_A_FIXED_SIZE_METHOD_ON_A_DYNAMIC_SIZE_MATRIX_OR_VECTOR=1, - YOU_CALLED_A_DYNAMIC_SIZE_METHOD_ON_A_FIXED_SIZE_MATRIX_OR_VECTOR=1, - UNALIGNED_LOAD_AND_STORE_OPERATIONS_UNIMPLEMENTED_ON_ALTIVEC=1, - THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES=1, - FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED=1, - NUMERIC_TYPE_MUST_BE_REAL=1, - COEFFICIENT_WRITE_ACCESS_TO_SELFADJOINT_NOT_SUPPORTED=1, - WRITING_TO_TRIANGULAR_PART_WITH_UNIT_DIAGONAL_IS_NOT_SUPPORTED=1, - THIS_METHOD_IS_ONLY_FOR_FIXED_SIZE=1, - INVALID_MATRIX_PRODUCT=1, - INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS=1, - INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION=1, - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY=1, - THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES=1, - THIS_METHOD_IS_ONLY_FOR_ROW_MAJOR_MATRICES=1, - INVALID_MATRIX_TEMPLATE_PARAMETERS=1, - INVALID_MATRIXBASE_TEMPLATE_PARAMETERS=1, - BOTH_MATRICES_MUST_HAVE_THE_SAME_STORAGE_ORDER=1, - THIS_METHOD_IS_ONLY_FOR_DIAGONAL_MATRIX=1, - THE_MATRIX_OR_EXPRESSION_THAT_YOU_PASSED_DOES_NOT_HAVE_THE_EXPECTED_TYPE=1, - THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES=1, - YOU_ALREADY_SPECIFIED_THIS_STRIDE=1, - INVALID_STORAGE_ORDER_FOR_THIS_VECTOR_EXPRESSION=1, - THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD=1, - PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1=1, - THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS=1, - YOU_CANNOT_MIX_ARRAYS_AND_MATRICES=1, - YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION=1, - THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY=1, - YOU_ARE_TRYING_TO_USE_AN_INDEX_BASED_ACCESSOR_ON_AN_EXPRESSION_THAT_DOES_NOT_SUPPORT_THAT=1, - THIS_METHOD_IS_ONLY_FOR_1x1_EXPRESSIONS=1, - THIS_METHOD_IS_ONLY_FOR_INNER_OR_LAZY_PRODUCTS=1, - THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_OF_BOOL=1, - THIS_METHOD_IS_ONLY_FOR_ARRAYS_NOT_MATRICES=1, - YOU_PASSED_A_ROW_VECTOR_BUT_A_COLUMN_VECTOR_WAS_EXPECTED=1, - YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED=1, - THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE=1, - THE_STORAGE_ORDER_OF_BOTH_SIDES_MUST_MATCH=1, - OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG=1, - IMPLICIT_CONVERSION_TO_SCALAR_IS_FOR_INNER_PRODUCT_ONLY=1, - STORAGE_LAYOUT_DOES_NOT_MATCH=1, - EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT__INVALID_COST_VALUE=1, - THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS=1, - MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY=1, - THIS_TYPE_IS_NOT_SUPPORTED=1, - STORAGE_KIND_MUST_MATCH=1, - STORAGE_INDEX_MUST_MATCH=1, - CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY=1, - SELFADJOINTVIEW_ACCEPTS_UPPER_AND_LOWER_MODE_ONLY=1 - }; - }; - - } // end namespace internal - - } // end namespace Eigen - - // Specialized implementation for MSVC to avoid "conditional - // expression is constant" warnings. This implementation doesn't - // appear to work under GCC, hence the multiple implementations. - #if EIGEN_COMP_MSVC - - #define EIGEN_STATIC_ASSERT(CONDITION,MSG) \ - {Eigen::internal::static_assertion::MSG;} - - #else - // In some cases clang interprets bool(CONDITION) as function declaration - #define EIGEN_STATIC_ASSERT(CONDITION,MSG) \ - if (Eigen::internal::static_assertion(CONDITION)>::MSG) {} - - #endif - - #endif // not CXX0X - -#else // EIGEN_NO_STATIC_ASSERT - - #define EIGEN_STATIC_ASSERT(CONDITION,MSG) eigen_assert((CONDITION) && #MSG); - -#endif // EIGEN_NO_STATIC_ASSERT -#endif // EIGEN_STATIC_ASSERT - -// static assertion failing if the type \a TYPE is not a vector type -#define EIGEN_STATIC_ASSERT_VECTOR_ONLY(TYPE) \ - EIGEN_STATIC_ASSERT(TYPE::IsVectorAtCompileTime, \ - YOU_TRIED_CALLING_A_VECTOR_METHOD_ON_A_MATRIX) - -// static assertion failing if the type \a TYPE is not fixed-size -#define EIGEN_STATIC_ASSERT_FIXED_SIZE(TYPE) \ - EIGEN_STATIC_ASSERT(TYPE::SizeAtCompileTime!=Eigen::Dynamic, \ - YOU_CALLED_A_FIXED_SIZE_METHOD_ON_A_DYNAMIC_SIZE_MATRIX_OR_VECTOR) - -// static assertion failing if the type \a TYPE is not dynamic-size -#define EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(TYPE) \ - EIGEN_STATIC_ASSERT(TYPE::SizeAtCompileTime==Eigen::Dynamic, \ - YOU_CALLED_A_DYNAMIC_SIZE_METHOD_ON_A_FIXED_SIZE_MATRIX_OR_VECTOR) - -// static assertion failing if the type \a TYPE is not a vector type of the given size -#define EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(TYPE, SIZE) \ - EIGEN_STATIC_ASSERT(TYPE::IsVectorAtCompileTime && TYPE::SizeAtCompileTime==SIZE, \ - THIS_METHOD_IS_ONLY_FOR_VECTORS_OF_A_SPECIFIC_SIZE) - -// static assertion failing if the type \a TYPE is not a vector type of the given size -#define EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(TYPE, ROWS, COLS) \ - EIGEN_STATIC_ASSERT(TYPE::RowsAtCompileTime==ROWS && TYPE::ColsAtCompileTime==COLS, \ - THIS_METHOD_IS_ONLY_FOR_MATRICES_OF_A_SPECIFIC_SIZE) - -// static assertion failing if the two vector expression types are not compatible (same fixed-size or dynamic size) -#define EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(TYPE0,TYPE1) \ - EIGEN_STATIC_ASSERT( \ - (int(TYPE0::SizeAtCompileTime)==Eigen::Dynamic \ - || int(TYPE1::SizeAtCompileTime)==Eigen::Dynamic \ - || int(TYPE0::SizeAtCompileTime)==int(TYPE1::SizeAtCompileTime)),\ - YOU_MIXED_VECTORS_OF_DIFFERENT_SIZES) - -#define EIGEN_PREDICATE_SAME_MATRIX_SIZE(TYPE0,TYPE1) \ - ( \ - (int(Eigen::internal::size_of_xpr_at_compile_time::ret)==0 && int(Eigen::internal::size_of_xpr_at_compile_time::ret)==0) \ - || (\ - (int(TYPE0::RowsAtCompileTime)==Eigen::Dynamic \ - || int(TYPE1::RowsAtCompileTime)==Eigen::Dynamic \ - || int(TYPE0::RowsAtCompileTime)==int(TYPE1::RowsAtCompileTime)) \ - && (int(TYPE0::ColsAtCompileTime)==Eigen::Dynamic \ - || int(TYPE1::ColsAtCompileTime)==Eigen::Dynamic \ - || int(TYPE0::ColsAtCompileTime)==int(TYPE1::ColsAtCompileTime))\ - ) \ - ) - -#define EIGEN_STATIC_ASSERT_NON_INTEGER(TYPE) \ - EIGEN_STATIC_ASSERT(!NumTraits::IsInteger, THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES) - - -// static assertion failing if it is guaranteed at compile-time that the two matrix expression types have different sizes -#define EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(TYPE0,TYPE1) \ - EIGEN_STATIC_ASSERT( \ - EIGEN_PREDICATE_SAME_MATRIX_SIZE(TYPE0,TYPE1),\ - YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES) - -#define EIGEN_STATIC_ASSERT_SIZE_1x1(TYPE) \ - EIGEN_STATIC_ASSERT((TYPE::RowsAtCompileTime == 1 || TYPE::RowsAtCompileTime == Dynamic) && \ - (TYPE::ColsAtCompileTime == 1 || TYPE::ColsAtCompileTime == Dynamic), \ - THIS_METHOD_IS_ONLY_FOR_1x1_EXPRESSIONS) - -#define EIGEN_STATIC_ASSERT_LVALUE(Derived) \ - EIGEN_STATIC_ASSERT(Eigen::internal::is_lvalue::value, \ - THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY) - -#define EIGEN_STATIC_ASSERT_ARRAYXPR(Derived) \ - EIGEN_STATIC_ASSERT((Eigen::internal::is_same::XprKind, ArrayXpr>::value), \ - THIS_METHOD_IS_ONLY_FOR_ARRAYS_NOT_MATRICES) - -#define EIGEN_STATIC_ASSERT_SAME_XPR_KIND(Derived1, Derived2) \ - EIGEN_STATIC_ASSERT((Eigen::internal::is_same::XprKind, \ - typename Eigen::internal::traits::XprKind \ - >::value), \ - YOU_CANNOT_MIX_ARRAYS_AND_MATRICES) - -// Check that a cost value is positive, and that is stay within a reasonable range -// TODO this check could be enabled for internal debugging only -#define EIGEN_INTERNAL_CHECK_COST_VALUE(C) \ - EIGEN_STATIC_ASSERT((C)>=0 && (C)<=HugeCost*HugeCost, EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT__INVALID_COST_VALUE); - -#endif // EIGEN_STATIC_ASSERT_H diff --git a/src/math_meigen/Eigen/src/Core/util/XprHelper.h b/src/math_meigen/Eigen/src/Core/util/XprHelper.h deleted file mode 100755 index ba5bd186d..000000000 --- a/src/math_meigen/Eigen/src/Core/util/XprHelper.h +++ /dev/null @@ -1,821 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_XPRHELPER_H -#define EIGEN_XPRHELPER_H - -// just a workaround because GCC seems to not really like empty structs -// FIXME: gcc 4.3 generates bad code when strict-aliasing is enabled -// so currently we simply disable this optimization for gcc 4.3 -#if EIGEN_COMP_GNUC && !EIGEN_GNUC_AT(4,3) - #define EIGEN_EMPTY_STRUCT_CTOR(X) \ - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE X() {} \ - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE X(const X& ) {} -#else - #define EIGEN_EMPTY_STRUCT_CTOR(X) -#endif - -namespace Eigen { - -namespace internal { - -template -EIGEN_DEVICE_FUNC -inline IndexDest convert_index(const IndexSrc& idx) { - // for sizeof(IndexDest)>=sizeof(IndexSrc) compilers should be able to optimize this away: - eigen_internal_assert(idx <= NumTraits::highest() && "Index value to big for target type"); - return IndexDest(idx); -} - - -// promote_scalar_arg is an helper used in operation between an expression and a scalar, like: -// expression * scalar -// Its role is to determine how the type T of the scalar operand should be promoted given the scalar type ExprScalar of the given expression. -// The IsSupported template parameter must be provided by the caller as: internal::has_ReturnType >::value using the proper order for ExprScalar and T. -// Then the logic is as follows: -// - if the operation is natively supported as defined by IsSupported, then the scalar type is not promoted, and T is returned. -// - otherwise, NumTraits::Literal is returned if T is implicitly convertible to NumTraits::Literal AND that this does not imply a float to integer conversion. -// - otherwise, ExprScalar is returned if T is implicitly convertible to ExprScalar AND that this does not imply a float to integer conversion. -// - In all other cases, the promoted type is not defined, and the respective operation is thus invalid and not available (SFINAE). -template -struct promote_scalar_arg; - -template -struct promote_scalar_arg -{ - typedef T type; -}; - -// Recursively check safe conversion to PromotedType, and then ExprScalar if they are different. -template::value, - bool IsSafe = NumTraits::IsInteger || !NumTraits::IsInteger> -struct promote_scalar_arg_unsupported; - -// Start recursion with NumTraits::Literal -template -struct promote_scalar_arg : promote_scalar_arg_unsupported::Literal> {}; - -// We found a match! -template -struct promote_scalar_arg_unsupported -{ - typedef PromotedType type; -}; - -// No match, but no real-to-integer issues, and ExprScalar and current PromotedType are different, -// so let's try to promote to ExprScalar -template -struct promote_scalar_arg_unsupported - : promote_scalar_arg_unsupported -{}; - -// Unsafe real-to-integer, let's stop. -template -struct promote_scalar_arg_unsupported {}; - -// T is not even convertible to ExprScalar, let's stop. -template -struct promote_scalar_arg_unsupported {}; - -//classes inheriting no_assignment_operator don't generate a default operator=. -class no_assignment_operator -{ - private: - no_assignment_operator& operator=(const no_assignment_operator&); -}; - -/** \internal return the index type with the largest number of bits */ -template -struct promote_index_type -{ - typedef typename conditional<(sizeof(I1)::type type; -}; - -/** \internal If the template parameter Value is Dynamic, this class is just a wrapper around a T variable that - * can be accessed using value() and setValue(). - * Otherwise, this class is an empty structure and value() just returns the template parameter Value. - */ -template class variable_if_dynamic -{ - public: - EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamic) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit variable_if_dynamic(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); eigen_assert(v == T(Value)); } - EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE T value() { return T(Value); } - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void setValue(T) {} -}; - -template class variable_if_dynamic -{ - T m_value; - EIGEN_DEVICE_FUNC variable_if_dynamic() { eigen_assert(false); } - public: - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit variable_if_dynamic(T value) : m_value(value) {} - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T value() const { return m_value; } - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void setValue(T value) { m_value = value; } -}; - -/** \internal like variable_if_dynamic but for DynamicIndex - */ -template class variable_if_dynamicindex -{ - public: - EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamicindex) - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit variable_if_dynamicindex(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); eigen_assert(v == T(Value)); } - EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE T value() { return T(Value); } - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void setValue(T) {} -}; - -template class variable_if_dynamicindex -{ - T m_value; - EIGEN_DEVICE_FUNC variable_if_dynamicindex() { eigen_assert(false); } - public: - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit variable_if_dynamicindex(T value) : m_value(value) {} - EIGEN_DEVICE_FUNC T EIGEN_STRONG_INLINE value() const { return m_value; } - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void setValue(T value) { m_value = value; } -}; - -template struct functor_traits -{ - enum - { - Cost = 10, - PacketAccess = false, - IsRepeatable = false - }; -}; - -template struct packet_traits; - -template struct unpacket_traits -{ - typedef T type; - typedef T half; - enum - { - size = 1, - alignment = 1 - }; -}; - -template::size)==0 || is_same::half>::value> -struct find_best_packet_helper; - -template< int Size, typename PacketType> -struct find_best_packet_helper -{ - typedef PacketType type; -}; - -template -struct find_best_packet_helper -{ - typedef typename find_best_packet_helper::half>::type type; -}; - -template -struct find_best_packet -{ - typedef typename find_best_packet_helper::type>::type type; -}; - -#if EIGEN_MAX_STATIC_ALIGN_BYTES>0 -template -struct compute_default_alignment_helper -{ - enum { value = 0 }; -}; - -template -struct compute_default_alignment_helper // Match -{ - enum { value = AlignmentBytes }; -}; - -template -struct compute_default_alignment_helper // Try-half -{ - // current packet too large, try with an half-packet - enum { value = compute_default_alignment_helper::value }; -}; -#else -// If static alignment is disabled, no need to bother. -// This also avoids a division by zero in "bool Match = bool((ArrayBytes%AlignmentBytes)==0)" -template -struct compute_default_alignment_helper -{ - enum { value = 0 }; -}; -#endif - -template struct compute_default_alignment { - enum { value = compute_default_alignment_helper::value }; -}; - -template struct compute_default_alignment { - enum { value = EIGEN_MAX_ALIGN_BYTES }; -}; - -template class make_proper_matrix_type -{ - enum { - IsColVector = _Cols==1 && _Rows!=1, - IsRowVector = _Rows==1 && _Cols!=1, - Options = IsColVector ? (_Options | ColMajor) & ~RowMajor - : IsRowVector ? (_Options | RowMajor) & ~ColMajor - : _Options - }; - public: - typedef Matrix<_Scalar, _Rows, _Cols, Options, _MaxRows, _MaxCols> type; -}; - -template -class compute_matrix_flags -{ - enum { row_major_bit = Options&RowMajor ? RowMajorBit : 0 }; - public: - // FIXME currently we still have to handle DirectAccessBit at the expression level to handle DenseCoeffsBase<> - // and then propagate this information to the evaluator's flags. - // However, I (Gael) think that DirectAccessBit should only matter at the evaluation stage. - enum { ret = DirectAccessBit | LvalueBit | NestByRefBit | row_major_bit }; -}; - -template struct size_at_compile_time -{ - enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols }; -}; - -template struct size_of_xpr_at_compile_time -{ - enum { ret = size_at_compile_time::RowsAtCompileTime,traits::ColsAtCompileTime>::ret }; -}; - -/* plain_matrix_type : the difference from eval is that plain_matrix_type is always a plain matrix type, - * whereas eval is a const reference in the case of a matrix - */ - -template::StorageKind> struct plain_matrix_type; -template struct plain_matrix_type_dense; -template struct plain_matrix_type -{ - typedef typename plain_matrix_type_dense::XprKind, traits::Flags>::type type; -}; -template struct plain_matrix_type -{ - typedef typename T::PlainObject type; -}; - -template struct plain_matrix_type_dense -{ - typedef Matrix::Scalar, - traits::RowsAtCompileTime, - traits::ColsAtCompileTime, - AutoAlign | (Flags&RowMajorBit ? RowMajor : ColMajor), - traits::MaxRowsAtCompileTime, - traits::MaxColsAtCompileTime - > type; -}; - -template struct plain_matrix_type_dense -{ - typedef Array::Scalar, - traits::RowsAtCompileTime, - traits::ColsAtCompileTime, - AutoAlign | (Flags&RowMajorBit ? RowMajor : ColMajor), - traits::MaxRowsAtCompileTime, - traits::MaxColsAtCompileTime - > type; -}; - -/* eval : the return type of eval(). For matrices, this is just a const reference - * in order to avoid a useless copy - */ - -template::StorageKind> struct eval; - -template struct eval -{ - typedef typename plain_matrix_type::type type; -// typedef typename T::PlainObject type; -// typedef T::Matrix::Scalar, -// traits::RowsAtCompileTime, -// traits::ColsAtCompileTime, -// AutoAlign | (traits::Flags&RowMajorBit ? RowMajor : ColMajor), -// traits::MaxRowsAtCompileTime, -// traits::MaxColsAtCompileTime -// > type; -}; - -template struct eval -{ - typedef typename plain_matrix_type::type type; -}; - -// for matrices, no need to evaluate, just use a const reference to avoid a useless copy -template -struct eval, Dense> -{ - typedef const Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type; -}; - -template -struct eval, Dense> -{ - typedef const Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type; -}; - - -/* similar to plain_matrix_type, but using the evaluator's Flags */ -template::StorageKind> struct plain_object_eval; - -template -struct plain_object_eval -{ - typedef typename plain_matrix_type_dense::XprKind, evaluator::Flags>::type type; -}; - - -/* plain_matrix_type_column_major : same as plain_matrix_type but guaranteed to be column-major - */ -template struct plain_matrix_type_column_major -{ - enum { Rows = traits::RowsAtCompileTime, - Cols = traits::ColsAtCompileTime, - MaxRows = traits::MaxRowsAtCompileTime, - MaxCols = traits::MaxColsAtCompileTime - }; - typedef Matrix::Scalar, - Rows, - Cols, - (MaxRows==1&&MaxCols!=1) ? RowMajor : ColMajor, - MaxRows, - MaxCols - > type; -}; - -/* plain_matrix_type_row_major : same as plain_matrix_type but guaranteed to be row-major - */ -template struct plain_matrix_type_row_major -{ - enum { Rows = traits::RowsAtCompileTime, - Cols = traits::ColsAtCompileTime, - MaxRows = traits::MaxRowsAtCompileTime, - MaxCols = traits::MaxColsAtCompileTime - }; - typedef Matrix::Scalar, - Rows, - Cols, - (MaxCols==1&&MaxRows!=1) ? RowMajor : ColMajor, - MaxRows, - MaxCols - > type; -}; - -/** \internal The reference selector for template expressions. The idea is that we don't - * need to use references for expressions since they are light weight proxy - * objects which should generate no copying overhead. */ -template -struct ref_selector -{ - typedef typename conditional< - bool(traits::Flags & NestByRefBit), - T const&, - const T - >::type type; - - typedef typename conditional< - bool(traits::Flags & NestByRefBit), - T &, - T - >::type non_const_type; -}; - -/** \internal Adds the const qualifier on the value-type of T2 if and only if T1 is a const type */ -template -struct transfer_constness -{ - typedef typename conditional< - bool(internal::is_const::value), - typename internal::add_const_on_value_type::type, - T2 - >::type type; -}; - - -// However, we still need a mechanism to detect whether an expression which is evaluated multiple time -// has to be evaluated into a temporary. -// That's the purpose of this new nested_eval helper: -/** \internal Determines how a given expression should be nested when evaluated multiple times. - * For example, when you do a * (b+c), Eigen will determine how the expression b+c should be - * evaluated into the bigger product expression. The choice is between nesting the expression b+c as-is, or - * evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is - * a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes - * many coefficient accesses in the nested expressions -- as is the case with matrix product for example. - * - * \tparam T the type of the expression being nested. - * \tparam n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression. - * \tparam PlainObject the type of the temporary if needed. - */ -template::type> struct nested_eval -{ - enum { - ScalarReadCost = NumTraits::Scalar>::ReadCost, - CoeffReadCost = evaluator::CoeffReadCost, // NOTE What if an evaluator evaluate itself into a tempory? - // Then CoeffReadCost will be small (e.g., 1) but we still have to evaluate, especially if n>1. - // This situation is already taken care by the EvalBeforeNestingBit flag, which is turned ON - // for all evaluator creating a temporary. This flag is then propagated by the parent evaluators. - // Another solution could be to count the number of temps? - NAsInteger = n == Dynamic ? HugeCost : n, - CostEval = (NAsInteger+1) * ScalarReadCost + CoeffReadCost, - CostNoEval = NAsInteger * CoeffReadCost, - Evaluate = (int(evaluator::Flags) & EvalBeforeNestingBit) || (int(CostEval) < int(CostNoEval)) - }; - - typedef typename conditional::type>::type type; -}; - -template -EIGEN_DEVICE_FUNC -inline T* const_cast_ptr(const T* ptr) -{ - return const_cast(ptr); -} - -template::XprKind> -struct dense_xpr_base -{ - /* dense_xpr_base should only ever be used on dense expressions, thus falling either into the MatrixXpr or into the ArrayXpr cases */ -}; - -template -struct dense_xpr_base -{ - typedef MatrixBase type; -}; - -template -struct dense_xpr_base -{ - typedef ArrayBase type; -}; - -template::XprKind, typename StorageKind = typename traits::StorageKind> -struct generic_xpr_base; - -template -struct generic_xpr_base -{ - typedef typename dense_xpr_base::type type; -}; - -template struct cast_return_type -{ - typedef typename XprType::Scalar CurrentScalarType; - typedef typename remove_all::type _CastType; - typedef typename _CastType::Scalar NewScalarType; - typedef typename conditional::value, - const XprType&,CastType>::type type; -}; - -template struct promote_storage_type; - -template struct promote_storage_type -{ - typedef A ret; -}; -template struct promote_storage_type -{ - typedef A ret; -}; -template struct promote_storage_type -{ - typedef A ret; -}; - -/** \internal Specify the "storage kind" of applying a coefficient-wise - * binary operations between two expressions of kinds A and B respectively. - * The template parameter Functor permits to specialize the resulting storage kind wrt to - * the functor. - * The default rules are as follows: - * \code - * A op A -> A - * A op dense -> dense - * dense op B -> dense - * sparse op dense -> sparse - * dense op sparse -> sparse - * \endcode - */ -template struct cwise_promote_storage_type; - -template struct cwise_promote_storage_type { typedef A ret; }; -template struct cwise_promote_storage_type { typedef Dense ret; }; -template struct cwise_promote_storage_type { typedef Dense ret; }; -template struct cwise_promote_storage_type { typedef Dense ret; }; -template struct cwise_promote_storage_type { typedef Sparse ret; }; -template struct cwise_promote_storage_type { typedef Sparse ret; }; - -template struct cwise_promote_storage_order { - enum { value = LhsOrder }; -}; - -template struct cwise_promote_storage_order { enum { value = RhsOrder }; }; -template struct cwise_promote_storage_order { enum { value = LhsOrder }; }; -template struct cwise_promote_storage_order { enum { value = Order }; }; - - -/** \internal Specify the "storage kind" of multiplying an expression of kind A with kind B. - * The template parameter ProductTag permits to specialize the resulting storage kind wrt to - * some compile-time properties of the product: GemmProduct, GemvProduct, OuterProduct, InnerProduct. - * The default rules are as follows: - * \code - * K * K -> K - * dense * K -> dense - * K * dense -> dense - * diag * K -> K - * K * diag -> K - * Perm * K -> K - * K * Perm -> K - * \endcode - */ -template struct product_promote_storage_type; - -template struct product_promote_storage_type { typedef A ret;}; -template struct product_promote_storage_type { typedef Dense ret;}; -template struct product_promote_storage_type { typedef Dense ret; }; -template struct product_promote_storage_type { typedef Dense ret; }; - -template struct product_promote_storage_type { typedef A ret; }; -template struct product_promote_storage_type { typedef B ret; }; -template struct product_promote_storage_type { typedef Dense ret; }; -template struct product_promote_storage_type { typedef Dense ret; }; - -template struct product_promote_storage_type { typedef A ret; }; -template struct product_promote_storage_type { typedef B ret; }; -template struct product_promote_storage_type { typedef Dense ret; }; -template struct product_promote_storage_type { typedef Dense ret; }; - -/** \internal gives the plain matrix or array type to store a row/column/diagonal of a matrix type. - * \tparam Scalar optional parameter allowing to pass a different scalar type than the one of the MatrixType. - */ -template -struct plain_row_type -{ - typedef Matrix MatrixRowType; - typedef Array ArrayRowType; - - typedef typename conditional< - is_same< typename traits::XprKind, MatrixXpr >::value, - MatrixRowType, - ArrayRowType - >::type type; -}; - -template -struct plain_col_type -{ - typedef Matrix MatrixColType; - typedef Array ArrayColType; - - typedef typename conditional< - is_same< typename traits::XprKind, MatrixXpr >::value, - MatrixColType, - ArrayColType - >::type type; -}; - -template -struct plain_diag_type -{ - enum { diag_size = EIGEN_SIZE_MIN_PREFER_DYNAMIC(ExpressionType::RowsAtCompileTime, ExpressionType::ColsAtCompileTime), - max_diag_size = EIGEN_SIZE_MIN_PREFER_FIXED(ExpressionType::MaxRowsAtCompileTime, ExpressionType::MaxColsAtCompileTime) - }; - typedef Matrix MatrixDiagType; - typedef Array ArrayDiagType; - - typedef typename conditional< - is_same< typename traits::XprKind, MatrixXpr >::value, - MatrixDiagType, - ArrayDiagType - >::type type; -}; - -template -struct plain_constant_type -{ - enum { Options = (traits::Flags&RowMajorBit)?RowMajor:0 }; - - typedef Array::RowsAtCompileTime, traits::ColsAtCompileTime, - Options, traits::MaxRowsAtCompileTime,traits::MaxColsAtCompileTime> array_type; - - typedef Matrix::RowsAtCompileTime, traits::ColsAtCompileTime, - Options, traits::MaxRowsAtCompileTime,traits::MaxColsAtCompileTime> matrix_type; - - typedef CwiseNullaryOp, const typename conditional::XprKind, MatrixXpr >::value, matrix_type, array_type>::type > type; -}; - -template -struct is_lvalue -{ - enum { value = (!bool(is_const::value)) && - bool(traits::Flags & LvalueBit) }; -}; - -template struct is_diagonal -{ enum { ret = false }; }; - -template struct is_diagonal > -{ enum { ret = true }; }; - -template struct is_diagonal > -{ enum { ret = true }; }; - -template struct is_diagonal > -{ enum { ret = true }; }; - -template struct glue_shapes; -template<> struct glue_shapes { typedef TriangularShape type; }; - -template -bool is_same_dense(const T1 &mat1, const T2 &mat2, typename enable_if::ret&&has_direct_access::ret, T1>::type * = 0) -{ - return (mat1.data()==mat2.data()) && (mat1.innerStride()==mat2.innerStride()) && (mat1.outerStride()==mat2.outerStride()); -} - -template -bool is_same_dense(const T1 &, const T2 &, typename enable_if::ret&&has_direct_access::ret), T1>::type * = 0) -{ - return false; -} - -// Internal helper defining the cost of a scalar division for the type T. -// The default heuristic can be specialized for each scalar type and architecture. -template -struct scalar_div_cost { - enum { value = 8*NumTraits::MulCost }; -}; - -template -struct scalar_div_cost, Vectorized> { - enum { value = 2*scalar_div_cost::value - + 6*NumTraits::MulCost - + 3*NumTraits::AddCost - }; -}; - - -template -struct scalar_div_cost::type> { enum { value = 24 }; }; -template -struct scalar_div_cost::type> { enum { value = 21 }; }; - - -#ifdef EIGEN_DEBUG_ASSIGN -std::string demangle_traversal(int t) -{ - if(t==DefaultTraversal) return "DefaultTraversal"; - if(t==LinearTraversal) return "LinearTraversal"; - if(t==InnerVectorizedTraversal) return "InnerVectorizedTraversal"; - if(t==LinearVectorizedTraversal) return "LinearVectorizedTraversal"; - if(t==SliceVectorizedTraversal) return "SliceVectorizedTraversal"; - return "?"; -} -std::string demangle_unrolling(int t) -{ - if(t==NoUnrolling) return "NoUnrolling"; - if(t==InnerUnrolling) return "InnerUnrolling"; - if(t==CompleteUnrolling) return "CompleteUnrolling"; - return "?"; -} -std::string demangle_flags(int f) -{ - std::string res; - if(f&RowMajorBit) res += " | RowMajor"; - if(f&PacketAccessBit) res += " | Packet"; - if(f&LinearAccessBit) res += " | Linear"; - if(f&LvalueBit) res += " | Lvalue"; - if(f&DirectAccessBit) res += " | Direct"; - if(f&NestByRefBit) res += " | NestByRef"; - if(f&NoPreferredStorageOrderBit) res += " | NoPreferredStorageOrderBit"; - - return res; -} -#endif - -} // end namespace internal - - -/** \class ScalarBinaryOpTraits - * \ingroup Core_Module - * - * \brief Determines whether the given binary operation of two numeric types is allowed and what the scalar return type is. - * - * This class permits to control the scalar return type of any binary operation performed on two different scalar types through (partial) template specializations. - * - * For instance, let \c U1, \c U2 and \c U3 be three user defined scalar types for which most operations between instances of \c U1 and \c U2 returns an \c U3. - * You can let %Eigen knows that by defining: - \code - template - struct ScalarBinaryOpTraits { typedef U3 ReturnType; }; - template - struct ScalarBinaryOpTraits { typedef U3 ReturnType; }; - \endcode - * You can then explicitly disable some particular operations to get more explicit error messages: - \code - template<> - struct ScalarBinaryOpTraits > {}; - \endcode - * Or customize the return type for individual operation: - \code - template<> - struct ScalarBinaryOpTraits > { typedef U1 ReturnType; }; - \endcode - * - * By default, the following generic combinations are supported: - - - - - -
ScalarAScalarBBinaryOpReturnTypeNote
\c T \c T \c * \c T
\c NumTraits::Real \c T \c * \c T Only if \c NumTraits::IsComplex
\c T \c NumTraits::Real \c * \c T Only if \c NumTraits::IsComplex
- * - * \sa CwiseBinaryOp - */ -template > -struct ScalarBinaryOpTraits -#ifndef EIGEN_PARSED_BY_DOXYGEN - // for backward compatibility, use the hints given by the (deprecated) internal::scalar_product_traits class. - : internal::scalar_product_traits -#endif // EIGEN_PARSED_BY_DOXYGEN -{}; - -template -struct ScalarBinaryOpTraits -{ - typedef T ReturnType; -}; - -template -struct ScalarBinaryOpTraits::IsComplex,T>::type>::Real, BinaryOp> -{ - typedef T ReturnType; -}; -template -struct ScalarBinaryOpTraits::IsComplex,T>::type>::Real, T, BinaryOp> -{ - typedef T ReturnType; -}; - -// For Matrix * Permutation -template -struct ScalarBinaryOpTraits -{ - typedef T ReturnType; -}; - -// For Permutation * Matrix -template -struct ScalarBinaryOpTraits -{ - typedef T ReturnType; -}; - -// for Permutation*Permutation -template -struct ScalarBinaryOpTraits -{ - typedef void ReturnType; -}; - -// We require Lhs and Rhs to have "compatible" scalar types. -// It is tempting to always allow mixing different types but remember that this is often impossible in the vectorized paths. -// So allowing mixing different types gives very unexpected errors when enabling vectorization, when the user tries to -// add together a float matrix and a double matrix. -#define EIGEN_CHECK_BINARY_COMPATIBILIY(BINOP,LHS,RHS) \ - EIGEN_STATIC_ASSERT((Eigen::internal::has_ReturnType >::value), \ - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - -} // end namespace Eigen - -#endif // EIGEN_XPRHELPER_H diff --git a/src/math_meigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h b/src/math_meigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h deleted file mode 100755 index dc5fae06a..000000000 --- a/src/math_meigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +++ /dev/null @@ -1,346 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Claire Maurice -// Copyright (C) 2009 Gael Guennebaud -// Copyright (C) 2010,2012 Jitse Niesen -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H -#define EIGEN_COMPLEX_EIGEN_SOLVER_H - -#include "./ComplexSchur.h" - -namespace Eigen { - -/** \eigenvalues_module \ingroup Eigenvalues_Module - * - * - * \class ComplexEigenSolver - * - * \brief Computes eigenvalues and eigenvectors of general complex matrices - * - * \tparam _MatrixType the type of the matrix of which we are - * computing the eigendecomposition; this is expected to be an - * instantiation of the Matrix class template. - * - * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars - * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v - * \f$. If \f$ D \f$ is a diagonal matrix with the eigenvalues on - * the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as - * its columns, then \f$ A V = V D \f$. The matrix \f$ V \f$ is - * almost always invertible, in which case we have \f$ A = V D V^{-1} - * \f$. This is called the eigendecomposition. - * - * The main function in this class is compute(), which computes the - * eigenvalues and eigenvectors of a given function. The - * documentation for that function contains an example showing the - * main features of the class. - * - * \sa class EigenSolver, class SelfAdjointEigenSolver - */ -template class ComplexEigenSolver -{ - public: - - /** \brief Synonym for the template parameter \p _MatrixType. */ - typedef _MatrixType MatrixType; - - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - Options = MatrixType::Options, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime - }; - - /** \brief Scalar type for matrices of type #MatrixType. */ - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 - - /** \brief Complex scalar type for #MatrixType. - * - * This is \c std::complex if #Scalar is real (e.g., - * \c float or \c double) and just \c Scalar if #Scalar is - * complex. - */ - typedef std::complex ComplexScalar; - - /** \brief Type for vector of eigenvalues as returned by eigenvalues(). - * - * This is a column vector with entries of type #ComplexScalar. - * The length of the vector is the size of #MatrixType. - */ - typedef Matrix EigenvalueType; - - /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). - * - * This is a square matrix with entries of type #ComplexScalar. - * The size is the same as the size of #MatrixType. - */ - typedef Matrix EigenvectorType; - - /** \brief Default constructor. - * - * The default constructor is useful in cases in which the user intends to - * perform decompositions via compute(). - */ - ComplexEigenSolver() - : m_eivec(), - m_eivalues(), - m_schur(), - m_isInitialized(false), - m_eigenvectorsOk(false), - m_matX() - {} - - /** \brief Default Constructor with memory preallocation - * - * Like the default constructor but with preallocation of the internal data - * according to the specified problem \a size. - * \sa ComplexEigenSolver() - */ - explicit ComplexEigenSolver(Index size) - : m_eivec(size, size), - m_eivalues(size), - m_schur(size), - m_isInitialized(false), - m_eigenvectorsOk(false), - m_matX(size, size) - {} - - /** \brief Constructor; computes eigendecomposition of given matrix. - * - * \param[in] matrix Square matrix whose eigendecomposition is to be computed. - * \param[in] computeEigenvectors If true, both the eigenvectors and the - * eigenvalues are computed; if false, only the eigenvalues are - * computed. - * - * This constructor calls compute() to compute the eigendecomposition. - */ - template - explicit ComplexEigenSolver(const EigenBase& matrix, bool computeEigenvectors = true) - : m_eivec(matrix.rows(),matrix.cols()), - m_eivalues(matrix.cols()), - m_schur(matrix.rows()), - m_isInitialized(false), - m_eigenvectorsOk(false), - m_matX(matrix.rows(),matrix.cols()) - { - compute(matrix.derived(), computeEigenvectors); - } - - /** \brief Returns the eigenvectors of given matrix. - * - * \returns A const reference to the matrix whose columns are the eigenvectors. - * - * \pre Either the constructor - * ComplexEigenSolver(const MatrixType& matrix, bool) or the member - * function compute(const MatrixType& matrix, bool) has been called before - * to compute the eigendecomposition of a matrix, and - * \p computeEigenvectors was set to true (the default). - * - * This function returns a matrix whose columns are the eigenvectors. Column - * \f$ k \f$ is an eigenvector corresponding to eigenvalue number \f$ k - * \f$ as returned by eigenvalues(). The eigenvectors are normalized to - * have (Euclidean) norm equal to one. The matrix returned by this - * function is the matrix \f$ V \f$ in the eigendecomposition \f$ A = V D - * V^{-1} \f$, if it exists. - * - * Example: \include ComplexEigenSolver_eigenvectors.cpp - * Output: \verbinclude ComplexEigenSolver_eigenvectors.out - */ - const EigenvectorType& eigenvectors() const - { - eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); - eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); - return m_eivec; - } - - /** \brief Returns the eigenvalues of given matrix. - * - * \returns A const reference to the column vector containing the eigenvalues. - * - * \pre Either the constructor - * ComplexEigenSolver(const MatrixType& matrix, bool) or the member - * function compute(const MatrixType& matrix, bool) has been called before - * to compute the eigendecomposition of a matrix. - * - * This function returns a column vector containing the - * eigenvalues. Eigenvalues are repeated according to their - * algebraic multiplicity, so there are as many eigenvalues as - * rows in the matrix. The eigenvalues are not sorted in any particular - * order. - * - * Example: \include ComplexEigenSolver_eigenvalues.cpp - * Output: \verbinclude ComplexEigenSolver_eigenvalues.out - */ - const EigenvalueType& eigenvalues() const - { - eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); - return m_eivalues; - } - - /** \brief Computes eigendecomposition of given matrix. - * - * \param[in] matrix Square matrix whose eigendecomposition is to be computed. - * \param[in] computeEigenvectors If true, both the eigenvectors and the - * eigenvalues are computed; if false, only the eigenvalues are - * computed. - * \returns Reference to \c *this - * - * This function computes the eigenvalues of the complex matrix \p matrix. - * The eigenvalues() function can be used to retrieve them. If - * \p computeEigenvectors is true, then the eigenvectors are also computed - * and can be retrieved by calling eigenvectors(). - * - * The matrix is first reduced to Schur form using the - * ComplexSchur class. The Schur decomposition is then used to - * compute the eigenvalues and eigenvectors. - * - * The cost of the computation is dominated by the cost of the - * Schur decomposition, which is \f$ O(n^3) \f$ where \f$ n \f$ - * is the size of the matrix. - * - * Example: \include ComplexEigenSolver_compute.cpp - * Output: \verbinclude ComplexEigenSolver_compute.out - */ - template - ComplexEigenSolver& compute(const EigenBase& matrix, bool computeEigenvectors = true); - - /** \brief Reports whether previous computation was successful. - * - * \returns \c Success if computation was succesful, \c NoConvergence otherwise. - */ - ComputationInfo info() const - { - eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); - return m_schur.info(); - } - - /** \brief Sets the maximum number of iterations allowed. */ - ComplexEigenSolver& setMaxIterations(Index maxIters) - { - m_schur.setMaxIterations(maxIters); - return *this; - } - - /** \brief Returns the maximum number of iterations. */ - Index getMaxIterations() - { - return m_schur.getMaxIterations(); - } - - protected: - - static void check_template_parameters() - { - EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); - } - - EigenvectorType m_eivec; - EigenvalueType m_eivalues; - ComplexSchur m_schur; - bool m_isInitialized; - bool m_eigenvectorsOk; - EigenvectorType m_matX; - - private: - void doComputeEigenvectors(RealScalar matrixnorm); - void sortEigenvalues(bool computeEigenvectors); -}; - - -template -template -ComplexEigenSolver& -ComplexEigenSolver::compute(const EigenBase& matrix, bool computeEigenvectors) -{ - check_template_parameters(); - - // this code is inspired from Jampack - eigen_assert(matrix.cols() == matrix.rows()); - - // Do a complex Schur decomposition, A = U T U^* - // The eigenvalues are on the diagonal of T. - m_schur.compute(matrix.derived(), computeEigenvectors); - - if(m_schur.info() == Success) - { - m_eivalues = m_schur.matrixT().diagonal(); - if(computeEigenvectors) - doComputeEigenvectors(m_schur.matrixT().norm()); - sortEigenvalues(computeEigenvectors); - } - - m_isInitialized = true; - m_eigenvectorsOk = computeEigenvectors; - return *this; -} - - -template -void ComplexEigenSolver::doComputeEigenvectors(RealScalar matrixnorm) -{ - const Index n = m_eivalues.size(); - - matrixnorm = numext::maxi(matrixnorm,(std::numeric_limits::min)()); - - // Compute X such that T = X D X^(-1), where D is the diagonal of T. - // The matrix X is unit triangular. - m_matX = EigenvectorType::Zero(n, n); - for(Index k=n-1 ; k>=0 ; k--) - { - m_matX.coeffRef(k,k) = ComplexScalar(1.0,0.0); - // Compute X(i,k) using the (i,k) entry of the equation X T = D X - for(Index i=k-1 ; i>=0 ; i--) - { - m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k); - if(k-i-1>0) - m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k-i-1)).value(); - ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k); - if(z==ComplexScalar(0)) - { - // If the i-th and k-th eigenvalue are equal, then z equals 0. - // Use a small value instead, to prevent division by zero. - numext::real_ref(z) = NumTraits::epsilon() * matrixnorm; - } - m_matX.coeffRef(i,k) = m_matX.coeff(i,k) / z; - } - } - - // Compute V as V = U X; now A = U T U^* = U X D X^(-1) U^* = V D V^(-1) - m_eivec.noalias() = m_schur.matrixU() * m_matX; - // .. and normalize the eigenvectors - for(Index k=0 ; k -void ComplexEigenSolver::sortEigenvalues(bool computeEigenvectors) -{ - const Index n = m_eivalues.size(); - for (Index i=0; i -// Copyright (C) 2010,2012 Jitse Niesen -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_COMPLEX_SCHUR_H -#define EIGEN_COMPLEX_SCHUR_H - -#include "./HessenbergDecomposition.h" - -namespace Eigen { - -namespace internal { -template struct complex_schur_reduce_to_hessenberg; -} - -/** \eigenvalues_module \ingroup Eigenvalues_Module - * - * - * \class ComplexSchur - * - * \brief Performs a complex Schur decomposition of a real or complex square matrix - * - * \tparam _MatrixType the type of the matrix of which we are - * computing the Schur decomposition; this is expected to be an - * instantiation of the Matrix class template. - * - * Given a real or complex square matrix A, this class computes the - * Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary - * complex matrix, and T is a complex upper triangular matrix. The - * diagonal of the matrix T corresponds to the eigenvalues of the - * matrix A. - * - * Call the function compute() to compute the Schur decomposition of - * a given matrix. Alternatively, you can use the - * ComplexSchur(const MatrixType&, bool) constructor which computes - * the Schur decomposition at construction time. Once the - * decomposition is computed, you can use the matrixU() and matrixT() - * functions to retrieve the matrices U and V in the decomposition. - * - * \note This code is inspired from Jampack - * - * \sa class RealSchur, class EigenSolver, class ComplexEigenSolver - */ -template class ComplexSchur -{ - public: - typedef _MatrixType MatrixType; - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - Options = MatrixType::Options, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime - }; - - /** \brief Scalar type for matrices of type \p _MatrixType. */ - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 - - /** \brief Complex scalar type for \p _MatrixType. - * - * This is \c std::complex if #Scalar is real (e.g., - * \c float or \c double) and just \c Scalar if #Scalar is - * complex. - */ - typedef std::complex ComplexScalar; - - /** \brief Type for the matrices in the Schur decomposition. - * - * This is a square matrix with entries of type #ComplexScalar. - * The size is the same as the size of \p _MatrixType. - */ - typedef Matrix ComplexMatrixType; - - /** \brief Default constructor. - * - * \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed. - * - * The default constructor is useful in cases in which the user - * intends to perform decompositions via compute(). The \p size - * parameter is only used as a hint. It is not an error to give a - * wrong \p size, but it may impair performance. - * - * \sa compute() for an example. - */ - explicit ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) - : m_matT(size,size), - m_matU(size,size), - m_hess(size), - m_isInitialized(false), - m_matUisUptodate(false), - m_maxIters(-1) - {} - - /** \brief Constructor; computes Schur decomposition of given matrix. - * - * \param[in] matrix Square matrix whose Schur decomposition is to be computed. - * \param[in] computeU If true, both T and U are computed; if false, only T is computed. - * - * This constructor calls compute() to compute the Schur decomposition. - * - * \sa matrixT() and matrixU() for examples. - */ - template - explicit ComplexSchur(const EigenBase& matrix, bool computeU = true) - : m_matT(matrix.rows(),matrix.cols()), - m_matU(matrix.rows(),matrix.cols()), - m_hess(matrix.rows()), - m_isInitialized(false), - m_matUisUptodate(false), - m_maxIters(-1) - { - compute(matrix.derived(), computeU); - } - - /** \brief Returns the unitary matrix in the Schur decomposition. - * - * \returns A const reference to the matrix U. - * - * It is assumed that either the constructor - * ComplexSchur(const MatrixType& matrix, bool computeU) or the - * member function compute(const MatrixType& matrix, bool computeU) - * has been called before to compute the Schur decomposition of a - * matrix, and that \p computeU was set to true (the default - * value). - * - * Example: \include ComplexSchur_matrixU.cpp - * Output: \verbinclude ComplexSchur_matrixU.out - */ - const ComplexMatrixType& matrixU() const - { - eigen_assert(m_isInitialized && "ComplexSchur is not initialized."); - eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition."); - return m_matU; - } - - /** \brief Returns the triangular matrix in the Schur decomposition. - * - * \returns A const reference to the matrix T. - * - * It is assumed that either the constructor - * ComplexSchur(const MatrixType& matrix, bool computeU) or the - * member function compute(const MatrixType& matrix, bool computeU) - * has been called before to compute the Schur decomposition of a - * matrix. - * - * Note that this function returns a plain square matrix. If you want to reference - * only the upper triangular part, use: - * \code schur.matrixT().triangularView() \endcode - * - * Example: \include ComplexSchur_matrixT.cpp - * Output: \verbinclude ComplexSchur_matrixT.out - */ - const ComplexMatrixType& matrixT() const - { - eigen_assert(m_isInitialized && "ComplexSchur is not initialized."); - return m_matT; - } - - /** \brief Computes Schur decomposition of given matrix. - * - * \param[in] matrix Square matrix whose Schur decomposition is to be computed. - * \param[in] computeU If true, both T and U are computed; if false, only T is computed. - - * \returns Reference to \c *this - * - * The Schur decomposition is computed by first reducing the - * matrix to Hessenberg form using the class - * HessenbergDecomposition. The Hessenberg matrix is then reduced - * to triangular form by performing QR iterations with a single - * shift. The cost of computing the Schur decomposition depends - * on the number of iterations; as a rough guide, it may be taken - * on the number of iterations; as a rough guide, it may be taken - * to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops - * if \a computeU is false. - * - * Example: \include ComplexSchur_compute.cpp - * Output: \verbinclude ComplexSchur_compute.out - * - * \sa compute(const MatrixType&, bool, Index) - */ - template - ComplexSchur& compute(const EigenBase& matrix, bool computeU = true); - - /** \brief Compute Schur decomposition from a given Hessenberg matrix - * \param[in] matrixH Matrix in Hessenberg form H - * \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T - * \param computeU Computes the matriX U of the Schur vectors - * \return Reference to \c *this - * - * This routine assumes that the matrix is already reduced in Hessenberg form matrixH - * using either the class HessenbergDecomposition or another mean. - * It computes the upper quasi-triangular matrix T of the Schur decomposition of H - * When computeU is true, this routine computes the matrix U such that - * A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix - * - * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix - * is not available, the user should give an identity matrix (Q.setIdentity()) - * - * \sa compute(const MatrixType&, bool) - */ - template - ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU=true); - - /** \brief Reports whether previous computation was successful. - * - * \returns \c Success if computation was succesful, \c NoConvergence otherwise. - */ - ComputationInfo info() const - { - eigen_assert(m_isInitialized && "ComplexSchur is not initialized."); - return m_info; - } - - /** \brief Sets the maximum number of iterations allowed. - * - * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size - * of the matrix. - */ - ComplexSchur& setMaxIterations(Index maxIters) - { - m_maxIters = maxIters; - return *this; - } - - /** \brief Returns the maximum number of iterations. */ - Index getMaxIterations() - { - return m_maxIters; - } - - /** \brief Maximum number of iterations per row. - * - * If not otherwise specified, the maximum number of iterations is this number times the size of the - * matrix. It is currently set to 30. - */ - static const int m_maxIterationsPerRow = 30; - - protected: - ComplexMatrixType m_matT, m_matU; - HessenbergDecomposition m_hess; - ComputationInfo m_info; - bool m_isInitialized; - bool m_matUisUptodate; - Index m_maxIters; - - private: - bool subdiagonalEntryIsNeglegible(Index i); - ComplexScalar computeShift(Index iu, Index iter); - void reduceToTriangularForm(bool computeU); - friend struct internal::complex_schur_reduce_to_hessenberg::IsComplex>; -}; - -/** If m_matT(i+1,i) is neglegible in floating point arithmetic - * compared to m_matT(i,i) and m_matT(j,j), then set it to zero and - * return true, else return false. */ -template -inline bool ComplexSchur::subdiagonalEntryIsNeglegible(Index i) -{ - RealScalar d = numext::norm1(m_matT.coeff(i,i)) + numext::norm1(m_matT.coeff(i+1,i+1)); - RealScalar sd = numext::norm1(m_matT.coeff(i+1,i)); - if (internal::isMuchSmallerThan(sd, d, NumTraits::epsilon())) - { - m_matT.coeffRef(i+1,i) = ComplexScalar(0); - return true; - } - return false; -} - - -/** Compute the shift in the current QR iteration. */ -template -typename ComplexSchur::ComplexScalar ComplexSchur::computeShift(Index iu, Index iter) -{ - using std::abs; - if (iter == 10 || iter == 20) - { - // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f - return abs(numext::real(m_matT.coeff(iu,iu-1))) + abs(numext::real(m_matT.coeff(iu-1,iu-2))); - } - - // compute the shift as one of the eigenvalues of t, the 2x2 - // diagonal block on the bottom of the active submatrix - Matrix t = m_matT.template block<2,2>(iu-1,iu-1); - RealScalar normt = t.cwiseAbs().sum(); - t /= normt; // the normalization by sf is to avoid under/overflow - - ComplexScalar b = t.coeff(0,1) * t.coeff(1,0); - ComplexScalar c = t.coeff(0,0) - t.coeff(1,1); - ComplexScalar disc = sqrt(c*c + RealScalar(4)*b); - ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b; - ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1); - ComplexScalar eival1 = (trace + disc) / RealScalar(2); - ComplexScalar eival2 = (trace - disc) / RealScalar(2); - - if(numext::norm1(eival1) > numext::norm1(eival2)) - eival2 = det / eival1; - else - eival1 = det / eival2; - - // choose the eigenvalue closest to the bottom entry of the diagonal - if(numext::norm1(eival1-t.coeff(1,1)) < numext::norm1(eival2-t.coeff(1,1))) - return normt * eival1; - else - return normt * eival2; -} - - -template -template -ComplexSchur& ComplexSchur::compute(const EigenBase& matrix, bool computeU) -{ - m_matUisUptodate = false; - eigen_assert(matrix.cols() == matrix.rows()); - - if(matrix.cols() == 1) - { - m_matT = matrix.derived().template cast(); - if(computeU) m_matU = ComplexMatrixType::Identity(1,1); - m_info = Success; - m_isInitialized = true; - m_matUisUptodate = computeU; - return *this; - } - - internal::complex_schur_reduce_to_hessenberg::IsComplex>::run(*this, matrix.derived(), computeU); - computeFromHessenberg(m_matT, m_matU, computeU); - return *this; -} - -template -template -ComplexSchur& ComplexSchur::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU) -{ - m_matT = matrixH; - if(computeU) - m_matU = matrixQ; - reduceToTriangularForm(computeU); - return *this; -} -namespace internal { - -/* Reduce given matrix to Hessenberg form */ -template -struct complex_schur_reduce_to_hessenberg -{ - // this is the implementation for the case IsComplex = true - static void run(ComplexSchur& _this, const MatrixType& matrix, bool computeU) - { - _this.m_hess.compute(matrix); - _this.m_matT = _this.m_hess.matrixH(); - if(computeU) _this.m_matU = _this.m_hess.matrixQ(); - } -}; - -template -struct complex_schur_reduce_to_hessenberg -{ - static void run(ComplexSchur& _this, const MatrixType& matrix, bool computeU) - { - typedef typename ComplexSchur::ComplexScalar ComplexScalar; - - // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar - _this.m_hess.compute(matrix); - _this.m_matT = _this.m_hess.matrixH().template cast(); - if(computeU) - { - // This may cause an allocation which seems to be avoidable - MatrixType Q = _this.m_hess.matrixQ(); - _this.m_matU = Q.template cast(); - } - } -}; - -} // end namespace internal - -// Reduce the Hessenberg matrix m_matT to triangular form by QR iteration. -template -void ComplexSchur::reduceToTriangularForm(bool computeU) -{ - Index maxIters = m_maxIters; - if (maxIters == -1) - maxIters = m_maxIterationsPerRow * m_matT.rows(); - - // The matrix m_matT is divided in three parts. - // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero. - // Rows il,...,iu is the part we are working on (the active submatrix). - // Rows iu+1,...,end are already brought in triangular form. - Index iu = m_matT.cols() - 1; - Index il; - Index iter = 0; // number of iterations we are working on the (iu,iu) element - Index totalIter = 0; // number of iterations for whole matrix - - while(true) - { - // find iu, the bottom row of the active submatrix - while(iu > 0) - { - if(!subdiagonalEntryIsNeglegible(iu-1)) break; - iter = 0; - --iu; - } - - // if iu is zero then we are done; the whole matrix is triangularized - if(iu==0) break; - - // if we spent too many iterations, we give up - iter++; - totalIter++; - if(totalIter > maxIters) break; - - // find il, the top row of the active submatrix - il = iu-1; - while(il > 0 && !subdiagonalEntryIsNeglegible(il-1)) - { - --il; - } - - /* perform the QR step using Givens rotations. The first rotation - creates a bulge; the (il+2,il) element becomes nonzero. This - bulge is chased down to the bottom of the active submatrix. */ - - ComplexScalar shift = computeShift(iu, iter); - JacobiRotation rot; - rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il)); - m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint()); - m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot); - if(computeU) m_matU.applyOnTheRight(il, il+1, rot); - - for(Index i=il+1 ; i template inline \ -ComplexSchur >& \ -ComplexSchur >::compute(const EigenBase& matrix, bool computeU) \ -{ \ - typedef Matrix MatrixType; \ - typedef MatrixType::RealScalar RealScalar; \ - typedef std::complex ComplexScalar; \ -\ - eigen_assert(matrix.cols() == matrix.rows()); \ -\ - m_matUisUptodate = false; \ - if(matrix.cols() == 1) \ - { \ - m_matT = matrix.derived().template cast(); \ - if(computeU) m_matU = ComplexMatrixType::Identity(1,1); \ - m_info = Success; \ - m_isInitialized = true; \ - m_matUisUptodate = computeU; \ - return *this; \ - } \ - lapack_int n = internal::convert_index(matrix.cols()), sdim, info; \ - lapack_int matrix_order = LAPACKE_COLROW; \ - char jobvs, sort='N'; \ - LAPACK_##LAPACKE_PREFIX_U##_SELECT1 select = 0; \ - jobvs = (computeU) ? 'V' : 'N'; \ - m_matU.resize(n, n); \ - lapack_int ldvs = internal::convert_index(m_matU.outerStride()); \ - m_matT = matrix; \ - lapack_int lda = internal::convert_index(m_matT.outerStride()); \ - Matrix w; \ - w.resize(n, 1);\ - info = LAPACKE_##LAPACKE_PREFIX##gees( matrix_order, jobvs, sort, select, n, (LAPACKE_TYPE*)m_matT.data(), lda, &sdim, (LAPACKE_TYPE*)w.data(), (LAPACKE_TYPE*)m_matU.data(), ldvs ); \ - if(info == 0) \ - m_info = Success; \ - else \ - m_info = NoConvergence; \ -\ - m_isInitialized = true; \ - m_matUisUptodate = computeU; \ - return *this; \ -\ -} - -EIGEN_LAPACKE_SCHUR_COMPLEX(dcomplex, lapack_complex_double, z, Z, ColMajor, LAPACK_COL_MAJOR) -EIGEN_LAPACKE_SCHUR_COMPLEX(scomplex, lapack_complex_float, c, C, ColMajor, LAPACK_COL_MAJOR) -EIGEN_LAPACKE_SCHUR_COMPLEX(dcomplex, lapack_complex_double, z, Z, RowMajor, LAPACK_ROW_MAJOR) -EIGEN_LAPACKE_SCHUR_COMPLEX(scomplex, lapack_complex_float, c, C, RowMajor, LAPACK_ROW_MAJOR) - -} // end namespace Eigen - -#endif // EIGEN_COMPLEX_SCHUR_LAPACKE_H diff --git a/src/math_meigen/Eigen/src/Eigenvalues/EigenSolver.h b/src/math_meigen/Eigen/src/Eigenvalues/EigenSolver.h deleted file mode 100755 index f205b185d..000000000 --- a/src/math_meigen/Eigen/src/Eigenvalues/EigenSolver.h +++ /dev/null @@ -1,622 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2010,2012 Jitse Niesen -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_EIGENSOLVER_H -#define EIGEN_EIGENSOLVER_H - -#include "./RealSchur.h" - -namespace Eigen { - -/** \eigenvalues_module \ingroup Eigenvalues_Module - * - * - * \class EigenSolver - * - * \brief Computes eigenvalues and eigenvectors of general matrices - * - * \tparam _MatrixType the type of the matrix of which we are computing the - * eigendecomposition; this is expected to be an instantiation of the Matrix - * class template. Currently, only real matrices are supported. - * - * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars - * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v \f$. If - * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and - * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V = - * V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we - * have \f$ A = V D V^{-1} \f$. This is called the eigendecomposition. - * - * The eigenvalues and eigenvectors of a matrix may be complex, even when the - * matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D - * \f$ satisfying \f$ A V = V D \f$, just like the eigendecomposition, if the - * matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to - * have blocks of the form - * \f[ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f] - * (where \f$ u \f$ and \f$ v \f$ are real numbers) on the diagonal. These - * blocks correspond to complex eigenvalue pairs \f$ u \pm iv \f$. We call - * this variant of the eigendecomposition the pseudo-eigendecomposition. - * - * Call the function compute() to compute the eigenvalues and eigenvectors of - * a given matrix. Alternatively, you can use the - * EigenSolver(const MatrixType&, bool) constructor which computes the - * eigenvalues and eigenvectors at construction time. Once the eigenvalue and - * eigenvectors are computed, they can be retrieved with the eigenvalues() and - * eigenvectors() functions. The pseudoEigenvalueMatrix() and - * pseudoEigenvectors() methods allow the construction of the - * pseudo-eigendecomposition. - * - * The documentation for EigenSolver(const MatrixType&, bool) contains an - * example of the typical use of this class. - * - * \note The implementation is adapted from - * JAMA (public domain). - * Their code is based on EISPACK. - * - * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver - */ -template class EigenSolver -{ - public: - - /** \brief Synonym for the template parameter \p _MatrixType. */ - typedef _MatrixType MatrixType; - - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - Options = MatrixType::Options, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime - }; - - /** \brief Scalar type for matrices of type #MatrixType. */ - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 - - /** \brief Complex scalar type for #MatrixType. - * - * This is \c std::complex if #Scalar is real (e.g., - * \c float or \c double) and just \c Scalar if #Scalar is - * complex. - */ - typedef std::complex ComplexScalar; - - /** \brief Type for vector of eigenvalues as returned by eigenvalues(). - * - * This is a column vector with entries of type #ComplexScalar. - * The length of the vector is the size of #MatrixType. - */ - typedef Matrix EigenvalueType; - - /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). - * - * This is a square matrix with entries of type #ComplexScalar. - * The size is the same as the size of #MatrixType. - */ - typedef Matrix EigenvectorsType; - - /** \brief Default constructor. - * - * The default constructor is useful in cases in which the user intends to - * perform decompositions via EigenSolver::compute(const MatrixType&, bool). - * - * \sa compute() for an example. - */ - EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_realSchur(), m_matT(), m_tmp() {} - - /** \brief Default constructor with memory preallocation - * - * Like the default constructor but with preallocation of the internal data - * according to the specified problem \a size. - * \sa EigenSolver() - */ - explicit EigenSolver(Index size) - : m_eivec(size, size), - m_eivalues(size), - m_isInitialized(false), - m_eigenvectorsOk(false), - m_realSchur(size), - m_matT(size, size), - m_tmp(size) - {} - - /** \brief Constructor; computes eigendecomposition of given matrix. - * - * \param[in] matrix Square matrix whose eigendecomposition is to be computed. - * \param[in] computeEigenvectors If true, both the eigenvectors and the - * eigenvalues are computed; if false, only the eigenvalues are - * computed. - * - * This constructor calls compute() to compute the eigenvalues - * and eigenvectors. - * - * Example: \include EigenSolver_EigenSolver_MatrixType.cpp - * Output: \verbinclude EigenSolver_EigenSolver_MatrixType.out - * - * \sa compute() - */ - template - explicit EigenSolver(const EigenBase& matrix, bool computeEigenvectors = true) - : m_eivec(matrix.rows(), matrix.cols()), - m_eivalues(matrix.cols()), - m_isInitialized(false), - m_eigenvectorsOk(false), - m_realSchur(matrix.cols()), - m_matT(matrix.rows(), matrix.cols()), - m_tmp(matrix.cols()) - { - compute(matrix.derived(), computeEigenvectors); - } - - /** \brief Returns the eigenvectors of given matrix. - * - * \returns %Matrix whose columns are the (possibly complex) eigenvectors. - * - * \pre Either the constructor - * EigenSolver(const MatrixType&,bool) or the member function - * compute(const MatrixType&, bool) has been called before, and - * \p computeEigenvectors was set to true (the default). - * - * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding - * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The - * eigenvectors are normalized to have (Euclidean) norm equal to one. The - * matrix returned by this function is the matrix \f$ V \f$ in the - * eigendecomposition \f$ A = V D V^{-1} \f$, if it exists. - * - * Example: \include EigenSolver_eigenvectors.cpp - * Output: \verbinclude EigenSolver_eigenvectors.out - * - * \sa eigenvalues(), pseudoEigenvectors() - */ - EigenvectorsType eigenvectors() const; - - /** \brief Returns the pseudo-eigenvectors of given matrix. - * - * \returns Const reference to matrix whose columns are the pseudo-eigenvectors. - * - * \pre Either the constructor - * EigenSolver(const MatrixType&,bool) or the member function - * compute(const MatrixType&, bool) has been called before, and - * \p computeEigenvectors was set to true (the default). - * - * The real matrix \f$ V \f$ returned by this function and the - * block-diagonal matrix \f$ D \f$ returned by pseudoEigenvalueMatrix() - * satisfy \f$ AV = VD \f$. - * - * Example: \include EigenSolver_pseudoEigenvectors.cpp - * Output: \verbinclude EigenSolver_pseudoEigenvectors.out - * - * \sa pseudoEigenvalueMatrix(), eigenvectors() - */ - const MatrixType& pseudoEigenvectors() const - { - eigen_assert(m_isInitialized && "EigenSolver is not initialized."); - eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); - return m_eivec; - } - - /** \brief Returns the block-diagonal matrix in the pseudo-eigendecomposition. - * - * \returns A block-diagonal matrix. - * - * \pre Either the constructor - * EigenSolver(const MatrixType&,bool) or the member function - * compute(const MatrixType&, bool) has been called before. - * - * The matrix \f$ D \f$ returned by this function is real and - * block-diagonal. The blocks on the diagonal are either 1-by-1 or 2-by-2 - * blocks of the form - * \f$ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f$. - * These blocks are not sorted in any particular order. - * The matrix \f$ D \f$ and the matrix \f$ V \f$ returned by - * pseudoEigenvectors() satisfy \f$ AV = VD \f$. - * - * \sa pseudoEigenvectors() for an example, eigenvalues() - */ - MatrixType pseudoEigenvalueMatrix() const; - - /** \brief Returns the eigenvalues of given matrix. - * - * \returns A const reference to the column vector containing the eigenvalues. - * - * \pre Either the constructor - * EigenSolver(const MatrixType&,bool) or the member function - * compute(const MatrixType&, bool) has been called before. - * - * The eigenvalues are repeated according to their algebraic multiplicity, - * so there are as many eigenvalues as rows in the matrix. The eigenvalues - * are not sorted in any particular order. - * - * Example: \include EigenSolver_eigenvalues.cpp - * Output: \verbinclude EigenSolver_eigenvalues.out - * - * \sa eigenvectors(), pseudoEigenvalueMatrix(), - * MatrixBase::eigenvalues() - */ - const EigenvalueType& eigenvalues() const - { - eigen_assert(m_isInitialized && "EigenSolver is not initialized."); - return m_eivalues; - } - - /** \brief Computes eigendecomposition of given matrix. - * - * \param[in] matrix Square matrix whose eigendecomposition is to be computed. - * \param[in] computeEigenvectors If true, both the eigenvectors and the - * eigenvalues are computed; if false, only the eigenvalues are - * computed. - * \returns Reference to \c *this - * - * This function computes the eigenvalues of the real matrix \p matrix. - * The eigenvalues() function can be used to retrieve them. If - * \p computeEigenvectors is true, then the eigenvectors are also computed - * and can be retrieved by calling eigenvectors(). - * - * The matrix is first reduced to real Schur form using the RealSchur - * class. The Schur decomposition is then used to compute the eigenvalues - * and eigenvectors. - * - * The cost of the computation is dominated by the cost of the - * Schur decomposition, which is very approximately \f$ 25n^3 \f$ - * (where \f$ n \f$ is the size of the matrix) if \p computeEigenvectors - * is true, and \f$ 10n^3 \f$ if \p computeEigenvectors is false. - * - * This method reuses of the allocated data in the EigenSolver object. - * - * Example: \include EigenSolver_compute.cpp - * Output: \verbinclude EigenSolver_compute.out - */ - template - EigenSolver& compute(const EigenBase& matrix, bool computeEigenvectors = true); - - /** \returns NumericalIssue if the input contains INF or NaN values or overflow occured. Returns Success otherwise. */ - ComputationInfo info() const - { - eigen_assert(m_isInitialized && "EigenSolver is not initialized."); - return m_info; - } - - /** \brief Sets the maximum number of iterations allowed. */ - EigenSolver& setMaxIterations(Index maxIters) - { - m_realSchur.setMaxIterations(maxIters); - return *this; - } - - /** \brief Returns the maximum number of iterations. */ - Index getMaxIterations() - { - return m_realSchur.getMaxIterations(); - } - - private: - void doComputeEigenvectors(); - - protected: - - static void check_template_parameters() - { - EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); - EIGEN_STATIC_ASSERT(!NumTraits::IsComplex, NUMERIC_TYPE_MUST_BE_REAL); - } - - MatrixType m_eivec; - EigenvalueType m_eivalues; - bool m_isInitialized; - bool m_eigenvectorsOk; - ComputationInfo m_info; - RealSchur m_realSchur; - MatrixType m_matT; - - typedef Matrix ColumnVectorType; - ColumnVectorType m_tmp; -}; - -template -MatrixType EigenSolver::pseudoEigenvalueMatrix() const -{ - eigen_assert(m_isInitialized && "EigenSolver is not initialized."); - const RealScalar precision = RealScalar(2)*NumTraits::epsilon(); - Index n = m_eivalues.rows(); - MatrixType matD = MatrixType::Zero(n,n); - for (Index i=0; i(i,i) << numext::real(m_eivalues.coeff(i)), numext::imag(m_eivalues.coeff(i)), - -numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i)); - ++i; - } - } - return matD; -} - -template -typename EigenSolver::EigenvectorsType EigenSolver::eigenvectors() const -{ - eigen_assert(m_isInitialized && "EigenSolver is not initialized."); - eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); - const RealScalar precision = RealScalar(2)*NumTraits::epsilon(); - Index n = m_eivec.cols(); - EigenvectorsType matV(n,n); - for (Index j=0; j(); - matV.col(j).normalize(); - } - else - { - // we have a pair of complex eigen values - for (Index i=0; i -template -EigenSolver& -EigenSolver::compute(const EigenBase& matrix, bool computeEigenvectors) -{ - check_template_parameters(); - - using std::sqrt; - using std::abs; - using numext::isfinite; - eigen_assert(matrix.cols() == matrix.rows()); - - // Reduce to real Schur form. - m_realSchur.compute(matrix.derived(), computeEigenvectors); - - m_info = m_realSchur.info(); - - if (m_info == Success) - { - m_matT = m_realSchur.matrixT(); - if (computeEigenvectors) - m_eivec = m_realSchur.matrixU(); - - // Compute eigenvalues from matT - m_eivalues.resize(matrix.cols()); - Index i = 0; - while (i < matrix.cols()) - { - if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) == Scalar(0)) - { - m_eivalues.coeffRef(i) = m_matT.coeff(i, i); - if(!(isfinite)(m_eivalues.coeffRef(i))) - { - m_isInitialized = true; - m_eigenvectorsOk = false; - m_info = NumericalIssue; - return *this; - } - ++i; - } - else - { - Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1)); - Scalar z; - // Compute z = sqrt(abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1))); - // without overflow - { - Scalar t0 = m_matT.coeff(i+1, i); - Scalar t1 = m_matT.coeff(i, i+1); - Scalar maxval = numext::maxi(abs(p),numext::maxi(abs(t0),abs(t1))); - t0 /= maxval; - t1 /= maxval; - Scalar p0 = p/maxval; - z = maxval * sqrt(abs(p0 * p0 + t0 * t1)); - } - - m_eivalues.coeffRef(i) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, z); - m_eivalues.coeffRef(i+1) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z); - if(!((isfinite)(m_eivalues.coeffRef(i)) && (isfinite)(m_eivalues.coeffRef(i+1)))) - { - m_isInitialized = true; - m_eigenvectorsOk = false; - m_info = NumericalIssue; - return *this; - } - i += 2; - } - } - - // Compute eigenvectors. - if (computeEigenvectors) - doComputeEigenvectors(); - } - - m_isInitialized = true; - m_eigenvectorsOk = computeEigenvectors; - - return *this; -} - - -template -void EigenSolver::doComputeEigenvectors() -{ - using std::abs; - const Index size = m_eivec.cols(); - const Scalar eps = NumTraits::epsilon(); - - // inefficient! this is already computed in RealSchur - Scalar norm(0); - for (Index j = 0; j < size; ++j) - { - norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum(); - } - - // Backsubstitute to find vectors of upper triangular form - if (norm == Scalar(0)) - { - return; - } - - for (Index n = size-1; n >= 0; n--) - { - Scalar p = m_eivalues.coeff(n).real(); - Scalar q = m_eivalues.coeff(n).imag(); - - // Scalar vector - if (q == Scalar(0)) - { - Scalar lastr(0), lastw(0); - Index l = n; - - m_matT.coeffRef(n,n) = Scalar(1); - for (Index i = n-1; i >= 0; i--) - { - Scalar w = m_matT.coeff(i,i) - p; - Scalar r = m_matT.row(i).segment(l,n-l+1).dot(m_matT.col(n).segment(l, n-l+1)); - - if (m_eivalues.coeff(i).imag() < Scalar(0)) - { - lastw = w; - lastr = r; - } - else - { - l = i; - if (m_eivalues.coeff(i).imag() == Scalar(0)) - { - if (w != Scalar(0)) - m_matT.coeffRef(i,n) = -r / w; - else - m_matT.coeffRef(i,n) = -r / (eps * norm); - } - else // Solve real equations - { - Scalar x = m_matT.coeff(i,i+1); - Scalar y = m_matT.coeff(i+1,i); - Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag(); - Scalar t = (x * lastr - lastw * r) / denom; - m_matT.coeffRef(i,n) = t; - if (abs(x) > abs(lastw)) - m_matT.coeffRef(i+1,n) = (-r - w * t) / x; - else - m_matT.coeffRef(i+1,n) = (-lastr - y * t) / lastw; - } - - // Overflow control - Scalar t = abs(m_matT.coeff(i,n)); - if ((eps * t) * t > Scalar(1)) - m_matT.col(n).tail(size-i) /= t; - } - } - } - else if (q < Scalar(0) && n > 0) // Complex vector - { - Scalar lastra(0), lastsa(0), lastw(0); - Index l = n-1; - - // Last vector component imaginary so matrix is triangular - if (abs(m_matT.coeff(n,n-1)) > abs(m_matT.coeff(n-1,n))) - { - m_matT.coeffRef(n-1,n-1) = q / m_matT.coeff(n,n-1); - m_matT.coeffRef(n-1,n) = -(m_matT.coeff(n,n) - p) / m_matT.coeff(n,n-1); - } - else - { - ComplexScalar cc = ComplexScalar(Scalar(0),-m_matT.coeff(n-1,n)) / ComplexScalar(m_matT.coeff(n-1,n-1)-p,q); - m_matT.coeffRef(n-1,n-1) = numext::real(cc); - m_matT.coeffRef(n-1,n) = numext::imag(cc); - } - m_matT.coeffRef(n,n-1) = Scalar(0); - m_matT.coeffRef(n,n) = Scalar(1); - for (Index i = n-2; i >= 0; i--) - { - Scalar ra = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n-1).segment(l, n-l+1)); - Scalar sa = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n).segment(l, n-l+1)); - Scalar w = m_matT.coeff(i,i) - p; - - if (m_eivalues.coeff(i).imag() < Scalar(0)) - { - lastw = w; - lastra = ra; - lastsa = sa; - } - else - { - l = i; - if (m_eivalues.coeff(i).imag() == RealScalar(0)) - { - ComplexScalar cc = ComplexScalar(-ra,-sa) / ComplexScalar(w,q); - m_matT.coeffRef(i,n-1) = numext::real(cc); - m_matT.coeffRef(i,n) = numext::imag(cc); - } - else - { - // Solve complex equations - Scalar x = m_matT.coeff(i,i+1); - Scalar y = m_matT.coeff(i+1,i); - Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q; - Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q; - if ((vr == Scalar(0)) && (vi == Scalar(0))) - vr = eps * norm * (abs(w) + abs(q) + abs(x) + abs(y) + abs(lastw)); - - ComplexScalar cc = ComplexScalar(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra) / ComplexScalar(vr,vi); - m_matT.coeffRef(i,n-1) = numext::real(cc); - m_matT.coeffRef(i,n) = numext::imag(cc); - if (abs(x) > (abs(lastw) + abs(q))) - { - m_matT.coeffRef(i+1,n-1) = (-ra - w * m_matT.coeff(i,n-1) + q * m_matT.coeff(i,n)) / x; - m_matT.coeffRef(i+1,n) = (-sa - w * m_matT.coeff(i,n) - q * m_matT.coeff(i,n-1)) / x; - } - else - { - cc = ComplexScalar(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n)) / ComplexScalar(lastw,q); - m_matT.coeffRef(i+1,n-1) = numext::real(cc); - m_matT.coeffRef(i+1,n) = numext::imag(cc); - } - } - - // Overflow control - Scalar t = numext::maxi(abs(m_matT.coeff(i,n-1)),abs(m_matT.coeff(i,n))); - if ((eps * t) * t > Scalar(1)) - m_matT.block(i, n-1, size-i, 2) /= t; - - } - } - - // We handled a pair of complex conjugate eigenvalues, so need to skip them both - n--; - } - else - { - eigen_assert(0 && "Internal bug in EigenSolver (INF or NaN has not been detected)"); // this should not happen - } - } - - // Back transformation to get eigenvectors of original matrix - for (Index j = size-1; j >= 0; j--) - { - m_tmp.noalias() = m_eivec.leftCols(j+1) * m_matT.col(j).segment(0, j+1); - m_eivec.col(j) = m_tmp; - } -} - -} // end namespace Eigen - -#endif // EIGEN_EIGENSOLVER_H diff --git a/src/math_meigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h b/src/math_meigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h deleted file mode 100755 index 87d789b3f..000000000 --- a/src/math_meigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +++ /dev/null @@ -1,418 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012-2016 Gael Guennebaud -// Copyright (C) 2010,2012 Jitse Niesen -// Copyright (C) 2016 Tobias Wood -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_GENERALIZEDEIGENSOLVER_H -#define EIGEN_GENERALIZEDEIGENSOLVER_H - -#include "./RealQZ.h" - -namespace Eigen { - -/** \eigenvalues_module \ingroup Eigenvalues_Module - * - * - * \class GeneralizedEigenSolver - * - * \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices - * - * \tparam _MatrixType the type of the matrices of which we are computing the - * eigen-decomposition; this is expected to be an instantiation of the Matrix - * class template. Currently, only real matrices are supported. - * - * The generalized eigenvalues and eigenvectors of a matrix pair \f$ A \f$ and \f$ B \f$ are scalars - * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda Bv \f$. If - * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and - * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V = - * B V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we - * have \f$ A = B V D V^{-1} \f$. This is called the generalized eigen-decomposition. - * - * The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the - * matrices are real. Moreover, the generalized eigenvalue might be infinite if the matrix B is - * singular. To workaround this difficulty, the eigenvalues are provided as a pair of complex \f$ \alpha \f$ - * and real \f$ \beta \f$ such that: \f$ \lambda_i = \alpha_i / \beta_i \f$. If \f$ \beta_i \f$ is (nearly) zero, - * then one can consider the well defined left eigenvalue \f$ \mu = \beta_i / \alpha_i\f$ such that: - * \f$ \mu_i A v_i = B v_i \f$, or even \f$ \mu_i u_i^T A = u_i^T B \f$ where \f$ u_i \f$ is - * called the left eigenvector. - * - * Call the function compute() to compute the generalized eigenvalues and eigenvectors of - * a given matrix pair. Alternatively, you can use the - * GeneralizedEigenSolver(const MatrixType&, const MatrixType&, bool) constructor which computes the - * eigenvalues and eigenvectors at construction time. Once the eigenvalue and - * eigenvectors are computed, they can be retrieved with the eigenvalues() and - * eigenvectors() functions. - * - * Here is an usage example of this class: - * Example: \include GeneralizedEigenSolver.cpp - * Output: \verbinclude GeneralizedEigenSolver.out - * - * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver - */ -template class GeneralizedEigenSolver -{ - public: - - /** \brief Synonym for the template parameter \p _MatrixType. */ - typedef _MatrixType MatrixType; - - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - Options = MatrixType::Options, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime - }; - - /** \brief Scalar type for matrices of type #MatrixType. */ - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 - - /** \brief Complex scalar type for #MatrixType. - * - * This is \c std::complex if #Scalar is real (e.g., - * \c float or \c double) and just \c Scalar if #Scalar is - * complex. - */ - typedef std::complex ComplexScalar; - - /** \brief Type for vector of real scalar values eigenvalues as returned by betas(). - * - * This is a column vector with entries of type #Scalar. - * The length of the vector is the size of #MatrixType. - */ - typedef Matrix VectorType; - - /** \brief Type for vector of complex scalar values eigenvalues as returned by alphas(). - * - * This is a column vector with entries of type #ComplexScalar. - * The length of the vector is the size of #MatrixType. - */ - typedef Matrix ComplexVectorType; - - /** \brief Expression type for the eigenvalues as returned by eigenvalues(). - */ - typedef CwiseBinaryOp,ComplexVectorType,VectorType> EigenvalueType; - - /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). - * - * This is a square matrix with entries of type #ComplexScalar. - * The size is the same as the size of #MatrixType. - */ - typedef Matrix EigenvectorsType; - - /** \brief Default constructor. - * - * The default constructor is useful in cases in which the user intends to - * perform decompositions via EigenSolver::compute(const MatrixType&, bool). - * - * \sa compute() for an example. - */ - GeneralizedEigenSolver() - : m_eivec(), - m_alphas(), - m_betas(), - m_valuesOkay(false), - m_vectorsOkay(false), - m_realQZ() - {} - - /** \brief Default constructor with memory preallocation - * - * Like the default constructor but with preallocation of the internal data - * according to the specified problem \a size. - * \sa GeneralizedEigenSolver() - */ - explicit GeneralizedEigenSolver(Index size) - : m_eivec(size, size), - m_alphas(size), - m_betas(size), - m_valuesOkay(false), - m_vectorsOkay(false), - m_realQZ(size), - m_tmp(size) - {} - - /** \brief Constructor; computes the generalized eigendecomposition of given matrix pair. - * - * \param[in] A Square matrix whose eigendecomposition is to be computed. - * \param[in] B Square matrix whose eigendecomposition is to be computed. - * \param[in] computeEigenvectors If true, both the eigenvectors and the - * eigenvalues are computed; if false, only the eigenvalues are computed. - * - * This constructor calls compute() to compute the generalized eigenvalues - * and eigenvectors. - * - * \sa compute() - */ - GeneralizedEigenSolver(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true) - : m_eivec(A.rows(), A.cols()), - m_alphas(A.cols()), - m_betas(A.cols()), - m_valuesOkay(false), - m_vectorsOkay(false), - m_realQZ(A.cols()), - m_tmp(A.cols()) - { - compute(A, B, computeEigenvectors); - } - - /* \brief Returns the computed generalized eigenvectors. - * - * \returns %Matrix whose columns are the (possibly complex) right eigenvectors. - * i.e. the eigenvectors that solve (A - l*B)x = 0. The ordering matches the eigenvalues. - * - * \pre Either the constructor - * GeneralizedEigenSolver(const MatrixType&,const MatrixType&, bool) or the member function - * compute(const MatrixType&, const MatrixType& bool) has been called before, and - * \p computeEigenvectors was set to true (the default). - * - * \sa eigenvalues() - */ - EigenvectorsType eigenvectors() const { - eigen_assert(m_vectorsOkay && "Eigenvectors for GeneralizedEigenSolver were not calculated."); - return m_eivec; - } - - /** \brief Returns an expression of the computed generalized eigenvalues. - * - * \returns An expression of the column vector containing the eigenvalues. - * - * It is a shortcut for \code this->alphas().cwiseQuotient(this->betas()); \endcode - * Not that betas might contain zeros. It is therefore not recommended to use this function, - * but rather directly deal with the alphas and betas vectors. - * - * \pre Either the constructor - * GeneralizedEigenSolver(const MatrixType&,const MatrixType&,bool) or the member function - * compute(const MatrixType&,const MatrixType&,bool) has been called before. - * - * The eigenvalues are repeated according to their algebraic multiplicity, - * so there are as many eigenvalues as rows in the matrix. The eigenvalues - * are not sorted in any particular order. - * - * \sa alphas(), betas(), eigenvectors() - */ - EigenvalueType eigenvalues() const - { - eigen_assert(m_valuesOkay && "GeneralizedEigenSolver is not initialized."); - return EigenvalueType(m_alphas,m_betas); - } - - /** \returns A const reference to the vectors containing the alpha values - * - * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j). - * - * \sa betas(), eigenvalues() */ - ComplexVectorType alphas() const - { - eigen_assert(m_valuesOkay && "GeneralizedEigenSolver is not initialized."); - return m_alphas; - } - - /** \returns A const reference to the vectors containing the beta values - * - * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j). - * - * \sa alphas(), eigenvalues() */ - VectorType betas() const - { - eigen_assert(m_valuesOkay && "GeneralizedEigenSolver is not initialized."); - return m_betas; - } - - /** \brief Computes generalized eigendecomposition of given matrix. - * - * \param[in] A Square matrix whose eigendecomposition is to be computed. - * \param[in] B Square matrix whose eigendecomposition is to be computed. - * \param[in] computeEigenvectors If true, both the eigenvectors and the - * eigenvalues are computed; if false, only the eigenvalues are - * computed. - * \returns Reference to \c *this - * - * This function computes the eigenvalues of the real matrix \p matrix. - * The eigenvalues() function can be used to retrieve them. If - * \p computeEigenvectors is true, then the eigenvectors are also computed - * and can be retrieved by calling eigenvectors(). - * - * The matrix is first reduced to real generalized Schur form using the RealQZ - * class. The generalized Schur decomposition is then used to compute the eigenvalues - * and eigenvectors. - * - * The cost of the computation is dominated by the cost of the - * generalized Schur decomposition. - * - * This method reuses of the allocated data in the GeneralizedEigenSolver object. - */ - GeneralizedEigenSolver& compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true); - - ComputationInfo info() const - { - eigen_assert(m_valuesOkay && "EigenSolver is not initialized."); - return m_realQZ.info(); - } - - /** Sets the maximal number of iterations allowed. - */ - GeneralizedEigenSolver& setMaxIterations(Index maxIters) - { - m_realQZ.setMaxIterations(maxIters); - return *this; - } - - protected: - - static void check_template_parameters() - { - EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); - EIGEN_STATIC_ASSERT(!NumTraits::IsComplex, NUMERIC_TYPE_MUST_BE_REAL); - } - - EigenvectorsType m_eivec; - ComplexVectorType m_alphas; - VectorType m_betas; - bool m_valuesOkay, m_vectorsOkay; - RealQZ m_realQZ; - ComplexVectorType m_tmp; -}; - -template -GeneralizedEigenSolver& -GeneralizedEigenSolver::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors) -{ - check_template_parameters(); - - using std::sqrt; - using std::abs; - eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows()); - Index size = A.cols(); - m_valuesOkay = false; - m_vectorsOkay = false; - // Reduce to generalized real Schur form: - // A = Q S Z and B = Q T Z - m_realQZ.compute(A, B, computeEigenvectors); - if (m_realQZ.info() == Success) - { - // Resize storage - m_alphas.resize(size); - m_betas.resize(size); - if (computeEigenvectors) - { - m_eivec.resize(size,size); - m_tmp.resize(size); - } - - // Aliases: - Map v(reinterpret_cast(m_tmp.data()), size); - ComplexVectorType &cv = m_tmp; - const MatrixType &mS = m_realQZ.matrixS(); - const MatrixType &mT = m_realQZ.matrixT(); - - Index i = 0; - while (i < size) - { - if (i == size - 1 || mS.coeff(i+1, i) == Scalar(0)) - { - // Real eigenvalue - m_alphas.coeffRef(i) = mS.diagonal().coeff(i); - m_betas.coeffRef(i) = mT.diagonal().coeff(i); - if (computeEigenvectors) - { - v.setConstant(Scalar(0.0)); - v.coeffRef(i) = Scalar(1.0); - // For singular eigenvalues do nothing more - if(abs(m_betas.coeffRef(i)) >= (std::numeric_limits::min)()) - { - // Non-singular eigenvalue - const Scalar alpha = real(m_alphas.coeffRef(i)); - const Scalar beta = m_betas.coeffRef(i); - for (Index j = i-1; j >= 0; j--) - { - const Index st = j+1; - const Index sz = i-j; - if (j > 0 && mS.coeff(j, j-1) != Scalar(0)) - { - // 2x2 block - Matrix rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( v.segment(st,sz) ); - Matrix lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1); - v.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs); - j--; - } - else - { - v.coeffRef(j) = -v.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum() / (beta*mS.coeffRef(j,j) - alpha*mT.coeffRef(j,j)); - } - } - } - m_eivec.col(i).real().noalias() = m_realQZ.matrixZ().transpose() * v; - m_eivec.col(i).real().normalize(); - m_eivec.col(i).imag().setConstant(0); - } - ++i; - } - else - { - // We need to extract the generalized eigenvalues of the pair of a general 2x2 block S and a positive diagonal 2x2 block T - // Then taking beta=T_00*T_11, we can avoid any division, and alpha is the eigenvalues of A = (U^-1 * S * U) * diag(T_11,T_00): - - // T = [a 0] - // [0 b] - RealScalar a = mT.diagonal().coeff(i), - b = mT.diagonal().coeff(i+1); - const RealScalar beta = m_betas.coeffRef(i) = m_betas.coeffRef(i+1) = a*b; - - // ^^ NOTE: using diagonal()(i) instead of coeff(i,i) workarounds a MSVC bug. - Matrix S2 = mS.template block<2,2>(i,i) * Matrix(b,a).asDiagonal(); - - Scalar p = Scalar(0.5) * (S2.coeff(0,0) - S2.coeff(1,1)); - Scalar z = sqrt(abs(p * p + S2.coeff(1,0) * S2.coeff(0,1))); - const ComplexScalar alpha = ComplexScalar(S2.coeff(1,1) + p, (beta > 0) ? z : -z); - m_alphas.coeffRef(i) = conj(alpha); - m_alphas.coeffRef(i+1) = alpha; - - if (computeEigenvectors) { - // Compute eigenvector in position (i+1) and then position (i) is just the conjugate - cv.setZero(); - cv.coeffRef(i+1) = Scalar(1.0); - // here, the "static_cast" workaound expression template issues. - cv.coeffRef(i) = -(static_cast(beta*mS.coeffRef(i,i+1)) - alpha*mT.coeffRef(i,i+1)) - / (static_cast(beta*mS.coeffRef(i,i)) - alpha*mT.coeffRef(i,i)); - for (Index j = i-1; j >= 0; j--) - { - const Index st = j+1; - const Index sz = i+1-j; - if (j > 0 && mS.coeff(j, j-1) != Scalar(0)) - { - // 2x2 block - Matrix rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( cv.segment(st,sz) ); - Matrix lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1); - cv.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs); - j--; - } else { - cv.coeffRef(j) = cv.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum() - / (alpha*mT.coeffRef(j,j) - static_cast(beta*mS.coeffRef(j,j))); - } - } - m_eivec.col(i+1).noalias() = (m_realQZ.matrixZ().transpose() * cv); - m_eivec.col(i+1).normalize(); - m_eivec.col(i) = m_eivec.col(i+1).conjugate(); - } - i += 2; - } - } - - m_valuesOkay = true; - m_vectorsOkay = computeEigenvectors; - } - return *this; -} - -} // end namespace Eigen - -#endif // EIGEN_GENERALIZEDEIGENSOLVER_H diff --git a/src/math_meigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h b/src/math_meigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h deleted file mode 100755 index 5f6bb8289..000000000 --- a/src/math_meigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +++ /dev/null @@ -1,226 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2010 Gael Guennebaud -// Copyright (C) 2010 Jitse Niesen -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H -#define EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H - -#include "./Tridiagonalization.h" - -namespace Eigen { - -/** \eigenvalues_module \ingroup Eigenvalues_Module - * - * - * \class GeneralizedSelfAdjointEigenSolver - * - * \brief Computes eigenvalues and eigenvectors of the generalized selfadjoint eigen problem - * - * \tparam _MatrixType the type of the matrix of which we are computing the - * eigendecomposition; this is expected to be an instantiation of the Matrix - * class template. - * - * This class solves the generalized eigenvalue problem - * \f$ Av = \lambda Bv \f$. In this case, the matrix \f$ A \f$ should be - * selfadjoint and the matrix \f$ B \f$ should be positive definite. - * - * Only the \b lower \b triangular \b part of the input matrix is referenced. - * - * Call the function compute() to compute the eigenvalues and eigenvectors of - * a given matrix. Alternatively, you can use the - * GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int) - * constructor which computes the eigenvalues and eigenvectors at construction time. - * Once the eigenvalue and eigenvectors are computed, they can be retrieved with the eigenvalues() - * and eigenvectors() functions. - * - * The documentation for GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int) - * contains an example of the typical use of this class. - * - * \sa class SelfAdjointEigenSolver, class EigenSolver, class ComplexEigenSolver - */ -template -class GeneralizedSelfAdjointEigenSolver : public SelfAdjointEigenSolver<_MatrixType> -{ - typedef SelfAdjointEigenSolver<_MatrixType> Base; - public: - - typedef _MatrixType MatrixType; - - /** \brief Default constructor for fixed-size matrices. - * - * The default constructor is useful in cases in which the user intends to - * perform decompositions via compute(). This constructor - * can only be used if \p _MatrixType is a fixed-size matrix; use - * GeneralizedSelfAdjointEigenSolver(Index) for dynamic-size matrices. - */ - GeneralizedSelfAdjointEigenSolver() : Base() {} - - /** \brief Constructor, pre-allocates memory for dynamic-size matrices. - * - * \param [in] size Positive integer, size of the matrix whose - * eigenvalues and eigenvectors will be computed. - * - * This constructor is useful for dynamic-size matrices, when the user - * intends to perform decompositions via compute(). The \p size - * parameter is only used as a hint. It is not an error to give a wrong - * \p size, but it may impair performance. - * - * \sa compute() for an example - */ - explicit GeneralizedSelfAdjointEigenSolver(Index size) - : Base(size) - {} - - /** \brief Constructor; computes generalized eigendecomposition of given matrix pencil. - * - * \param[in] matA Selfadjoint matrix in matrix pencil. - * Only the lower triangular part of the matrix is referenced. - * \param[in] matB Positive-definite matrix in matrix pencil. - * Only the lower triangular part of the matrix is referenced. - * \param[in] options A or-ed set of flags {#ComputeEigenvectors,#EigenvaluesOnly} | {#Ax_lBx,#ABx_lx,#BAx_lx}. - * Default is #ComputeEigenvectors|#Ax_lBx. - * - * This constructor calls compute(const MatrixType&, const MatrixType&, int) - * to compute the eigenvalues and (if requested) the eigenvectors of the - * generalized eigenproblem \f$ Ax = \lambda B x \f$ with \a matA the - * selfadjoint matrix \f$ A \f$ and \a matB the positive definite matrix - * \f$ B \f$. Each eigenvector \f$ x \f$ satisfies the property - * \f$ x^* B x = 1 \f$. The eigenvectors are computed if - * \a options contains ComputeEigenvectors. - * - * In addition, the two following variants can be solved via \p options: - * - \c ABx_lx: \f$ ABx = \lambda x \f$ - * - \c BAx_lx: \f$ BAx = \lambda x \f$ - * - * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp - * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.out - * - * \sa compute(const MatrixType&, const MatrixType&, int) - */ - GeneralizedSelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, - int options = ComputeEigenvectors|Ax_lBx) - : Base(matA.cols()) - { - compute(matA, matB, options); - } - - /** \brief Computes generalized eigendecomposition of given matrix pencil. - * - * \param[in] matA Selfadjoint matrix in matrix pencil. - * Only the lower triangular part of the matrix is referenced. - * \param[in] matB Positive-definite matrix in matrix pencil. - * Only the lower triangular part of the matrix is referenced. - * \param[in] options A or-ed set of flags {#ComputeEigenvectors,#EigenvaluesOnly} | {#Ax_lBx,#ABx_lx,#BAx_lx}. - * Default is #ComputeEigenvectors|#Ax_lBx. - * - * \returns Reference to \c *this - * - * Accoring to \p options, this function computes eigenvalues and (if requested) - * the eigenvectors of one of the following three generalized eigenproblems: - * - \c Ax_lBx: \f$ Ax = \lambda B x \f$ - * - \c ABx_lx: \f$ ABx = \lambda x \f$ - * - \c BAx_lx: \f$ BAx = \lambda x \f$ - * with \a matA the selfadjoint matrix \f$ A \f$ and \a matB the positive definite - * matrix \f$ B \f$. - * In addition, each eigenvector \f$ x \f$ satisfies the property \f$ x^* B x = 1 \f$. - * - * The eigenvalues() function can be used to retrieve - * the eigenvalues. If \p options contains ComputeEigenvectors, then the - * eigenvectors are also computed and can be retrieved by calling - * eigenvectors(). - * - * The implementation uses LLT to compute the Cholesky decomposition - * \f$ B = LL^* \f$ and computes the classical eigendecomposition - * of the selfadjoint matrix \f$ L^{-1} A (L^*)^{-1} \f$ if \p options contains Ax_lBx - * and of \f$ L^{*} A L \f$ otherwise. This solves the - * generalized eigenproblem, because any solution of the generalized - * eigenproblem \f$ Ax = \lambda B x \f$ corresponds to a solution - * \f$ L^{-1} A (L^*)^{-1} (L^* x) = \lambda (L^* x) \f$ of the - * eigenproblem for \f$ L^{-1} A (L^*)^{-1} \f$. Similar statements - * can be made for the two other variants. - * - * Example: \include SelfAdjointEigenSolver_compute_MatrixType2.cpp - * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType2.out - * - * \sa GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int) - */ - GeneralizedSelfAdjointEigenSolver& compute(const MatrixType& matA, const MatrixType& matB, - int options = ComputeEigenvectors|Ax_lBx); - - protected: - -}; - - -template -GeneralizedSelfAdjointEigenSolver& GeneralizedSelfAdjointEigenSolver:: -compute(const MatrixType& matA, const MatrixType& matB, int options) -{ - eigen_assert(matA.cols()==matA.rows() && matB.rows()==matA.rows() && matB.cols()==matB.rows()); - eigen_assert((options&~(EigVecMask|GenEigMask))==0 - && (options&EigVecMask)!=EigVecMask - && ((options&GenEigMask)==0 || (options&GenEigMask)==Ax_lBx - || (options&GenEigMask)==ABx_lx || (options&GenEigMask)==BAx_lx) - && "invalid option parameter"); - - bool computeEigVecs = ((options&EigVecMask)==0) || ((options&EigVecMask)==ComputeEigenvectors); - - // Compute the cholesky decomposition of matB = L L' = U'U - LLT cholB(matB); - - int type = (options&GenEigMask); - if(type==0) - type = Ax_lBx; - - if(type==Ax_lBx) - { - // compute C = inv(L) A inv(L') - MatrixType matC = matA.template selfadjointView(); - cholB.matrixL().template solveInPlace(matC); - cholB.matrixU().template solveInPlace(matC); - - Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly ); - - // transform back the eigen vectors: evecs = inv(U) * evecs - if(computeEigVecs) - cholB.matrixU().solveInPlace(Base::m_eivec); - } - else if(type==ABx_lx) - { - // compute C = L' A L - MatrixType matC = matA.template selfadjointView(); - matC = matC * cholB.matrixL(); - matC = cholB.matrixU() * matC; - - Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly); - - // transform back the eigen vectors: evecs = inv(U) * evecs - if(computeEigVecs) - cholB.matrixU().solveInPlace(Base::m_eivec); - } - else if(type==BAx_lx) - { - // compute C = L' A L - MatrixType matC = matA.template selfadjointView(); - matC = matC * cholB.matrixL(); - matC = cholB.matrixU() * matC; - - Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly); - - // transform back the eigen vectors: evecs = L * evecs - if(computeEigVecs) - Base::m_eivec = cholB.matrixL() * Base::m_eivec; - } - - return *this; -} - -} // end namespace Eigen - -#endif // EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H diff --git a/src/math_meigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h b/src/math_meigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h deleted file mode 100755 index f647f69b0..000000000 --- a/src/math_meigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +++ /dev/null @@ -1,374 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2009 Gael Guennebaud -// Copyright (C) 2010 Jitse Niesen -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_HESSENBERGDECOMPOSITION_H -#define EIGEN_HESSENBERGDECOMPOSITION_H - -namespace Eigen { - -namespace internal { - -template struct HessenbergDecompositionMatrixHReturnType; -template -struct traits > -{ - typedef MatrixType ReturnType; -}; - -} - -/** \eigenvalues_module \ingroup Eigenvalues_Module - * - * - * \class HessenbergDecomposition - * - * \brief Reduces a square matrix to Hessenberg form by an orthogonal similarity transformation - * - * \tparam _MatrixType the type of the matrix of which we are computing the Hessenberg decomposition - * - * This class performs an Hessenberg decomposition of a matrix \f$ A \f$. In - * the real case, the Hessenberg decomposition consists of an orthogonal - * matrix \f$ Q \f$ and a Hessenberg matrix \f$ H \f$ such that \f$ A = Q H - * Q^T \f$. An orthogonal matrix is a matrix whose inverse equals its - * transpose (\f$ Q^{-1} = Q^T \f$). A Hessenberg matrix has zeros below the - * subdiagonal, so it is almost upper triangular. The Hessenberg decomposition - * of a complex matrix is \f$ A = Q H Q^* \f$ with \f$ Q \f$ unitary (that is, - * \f$ Q^{-1} = Q^* \f$). - * - * Call the function compute() to compute the Hessenberg decomposition of a - * given matrix. Alternatively, you can use the - * HessenbergDecomposition(const MatrixType&) constructor which computes the - * Hessenberg decomposition at construction time. Once the decomposition is - * computed, you can use the matrixH() and matrixQ() functions to construct - * the matrices H and Q in the decomposition. - * - * The documentation for matrixH() contains an example of the typical use of - * this class. - * - * \sa class ComplexSchur, class Tridiagonalization, \ref QR_Module "QR Module" - */ -template class HessenbergDecomposition -{ - public: - - /** \brief Synonym for the template parameter \p _MatrixType. */ - typedef _MatrixType MatrixType; - - enum { - Size = MatrixType::RowsAtCompileTime, - SizeMinusOne = Size == Dynamic ? Dynamic : Size - 1, - Options = MatrixType::Options, - MaxSize = MatrixType::MaxRowsAtCompileTime, - MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : MaxSize - 1 - }; - - /** \brief Scalar type for matrices of type #MatrixType. */ - typedef typename MatrixType::Scalar Scalar; - typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 - - /** \brief Type for vector of Householder coefficients. - * - * This is column vector with entries of type #Scalar. The length of the - * vector is one less than the size of #MatrixType, if it is a fixed-side - * type. - */ - typedef Matrix CoeffVectorType; - - /** \brief Return type of matrixQ() */ - typedef HouseholderSequence::type> HouseholderSequenceType; - - typedef internal::HessenbergDecompositionMatrixHReturnType MatrixHReturnType; - - /** \brief Default constructor; the decomposition will be computed later. - * - * \param [in] size The size of the matrix whose Hessenberg decomposition will be computed. - * - * The default constructor is useful in cases in which the user intends to - * perform decompositions via compute(). The \p size parameter is only - * used as a hint. It is not an error to give a wrong \p size, but it may - * impair performance. - * - * \sa compute() for an example. - */ - explicit HessenbergDecomposition(Index size = Size==Dynamic ? 2 : Size) - : m_matrix(size,size), - m_temp(size), - m_isInitialized(false) - { - if(size>1) - m_hCoeffs.resize(size-1); - } - - /** \brief Constructor; computes Hessenberg decomposition of given matrix. - * - * \param[in] matrix Square matrix whose Hessenberg decomposition is to be computed. - * - * This constructor calls compute() to compute the Hessenberg - * decomposition. - * - * \sa matrixH() for an example. - */ - template - explicit HessenbergDecomposition(const EigenBase& matrix) - : m_matrix(matrix.derived()), - m_temp(matrix.rows()), - m_isInitialized(false) - { - if(matrix.rows()<2) - { - m_isInitialized = true; - return; - } - m_hCoeffs.resize(matrix.rows()-1,1); - _compute(m_matrix, m_hCoeffs, m_temp); - m_isInitialized = true; - } - - /** \brief Computes Hessenberg decomposition of given matrix. - * - * \param[in] matrix Square matrix whose Hessenberg decomposition is to be computed. - * \returns Reference to \c *this - * - * The Hessenberg decomposition is computed by bringing the columns of the - * matrix successively in the required form using Householder reflections - * (see, e.g., Algorithm 7.4.2 in Golub \& Van Loan, %Matrix - * Computations). The cost is \f$ 10n^3/3 \f$ flops, where \f$ n \f$ - * denotes the size of the given matrix. - * - * This method reuses of the allocated data in the HessenbergDecomposition - * object. - * - * Example: \include HessenbergDecomposition_compute.cpp - * Output: \verbinclude HessenbergDecomposition_compute.out - */ - template - HessenbergDecomposition& compute(const EigenBase& matrix) - { - m_matrix = matrix.derived(); - if(matrix.rows()<2) - { - m_isInitialized = true; - return *this; - } - m_hCoeffs.resize(matrix.rows()-1,1); - _compute(m_matrix, m_hCoeffs, m_temp); - m_isInitialized = true; - return *this; - } - - /** \brief Returns the Householder coefficients. - * - * \returns a const reference to the vector of Householder coefficients - * - * \pre Either the constructor HessenbergDecomposition(const MatrixType&) - * or the member function compute(const MatrixType&) has been called - * before to compute the Hessenberg decomposition of a matrix. - * - * The Householder coefficients allow the reconstruction of the matrix - * \f$ Q \f$ in the Hessenberg decomposition from the packed data. - * - * \sa packedMatrix(), \ref Householder_Module "Householder module" - */ - const CoeffVectorType& householderCoefficients() const - { - eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized."); - return m_hCoeffs; - } - - /** \brief Returns the internal representation of the decomposition - * - * \returns a const reference to a matrix with the internal representation - * of the decomposition. - * - * \pre Either the constructor HessenbergDecomposition(const MatrixType&) - * or the member function compute(const MatrixType&) has been called - * before to compute the Hessenberg decomposition of a matrix. - * - * The returned matrix contains the following information: - * - the upper part and lower sub-diagonal represent the Hessenberg matrix H - * - the rest of the lower part contains the Householder vectors that, combined with - * Householder coefficients returned by householderCoefficients(), - * allows to reconstruct the matrix Q as - * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$. - * Here, the matrices \f$ H_i \f$ are the Householder transformations - * \f$ H_i = (I - h_i v_i v_i^T) \f$ - * where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and - * \f$ v_i \f$ is the Householder vector defined by - * \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$ - * with M the matrix returned by this function. - * - * See LAPACK for further details on this packed storage. - * - * Example: \include HessenbergDecomposition_packedMatrix.cpp - * Output: \verbinclude HessenbergDecomposition_packedMatrix.out - * - * \sa householderCoefficients() - */ - const MatrixType& packedMatrix() const - { - eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized."); - return m_matrix; - } - - /** \brief Reconstructs the orthogonal matrix Q in the decomposition - * - * \returns object representing the matrix Q - * - * \pre Either the constructor HessenbergDecomposition(const MatrixType&) - * or the member function compute(const MatrixType&) has been called - * before to compute the Hessenberg decomposition of a matrix. - * - * This function returns a light-weight object of template class - * HouseholderSequence. You can either apply it directly to a matrix or - * you can convert it to a matrix of type #MatrixType. - * - * \sa matrixH() for an example, class HouseholderSequence - */ - HouseholderSequenceType matrixQ() const - { - eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized."); - return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate()) - .setLength(m_matrix.rows() - 1) - .setShift(1); - } - - /** \brief Constructs the Hessenberg matrix H in the decomposition - * - * \returns expression object representing the matrix H - * - * \pre Either the constructor HessenbergDecomposition(const MatrixType&) - * or the member function compute(const MatrixType&) has been called - * before to compute the Hessenberg decomposition of a matrix. - * - * The object returned by this function constructs the Hessenberg matrix H - * when it is assigned to a matrix or otherwise evaluated. The matrix H is - * constructed from the packed matrix as returned by packedMatrix(): The - * upper part (including the subdiagonal) of the packed matrix contains - * the matrix H. It may sometimes be better to directly use the packed - * matrix instead of constructing the matrix H. - * - * Example: \include HessenbergDecomposition_matrixH.cpp - * Output: \verbinclude HessenbergDecomposition_matrixH.out - * - * \sa matrixQ(), packedMatrix() - */ - MatrixHReturnType matrixH() const - { - eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized."); - return MatrixHReturnType(*this); - } - - private: - - typedef Matrix VectorType; - typedef typename NumTraits::Real RealScalar; - static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp); - - protected: - MatrixType m_matrix; - CoeffVectorType m_hCoeffs; - VectorType m_temp; - bool m_isInitialized; -}; - -/** \internal - * Performs a tridiagonal decomposition of \a matA in place. - * - * \param matA the input selfadjoint matrix - * \param hCoeffs returned Householder coefficients - * - * The result is written in the lower triangular part of \a matA. - * - * Implemented from Golub's "%Matrix Computations", algorithm 8.3.1. - * - * \sa packedMatrix() - */ -template -void HessenbergDecomposition::_compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp) -{ - eigen_assert(matA.rows()==matA.cols()); - Index n = matA.rows(); - temp.resize(n); - for (Index i = 0; i struct HessenbergDecompositionMatrixHReturnType -: public ReturnByValue > -{ - public: - /** \brief Constructor. - * - * \param[in] hess Hessenberg decomposition - */ - HessenbergDecompositionMatrixHReturnType(const HessenbergDecomposition& hess) : m_hess(hess) { } - - /** \brief Hessenberg matrix in decomposition. - * - * \param[out] result Hessenberg matrix in decomposition \p hess which - * was passed to the constructor - */ - template - inline void evalTo(ResultType& result) const - { - result = m_hess.packedMatrix(); - Index n = result.rows(); - if (n>2) - result.bottomLeftCorner(n-2, n-2).template triangularView().setZero(); - } - - Index rows() const { return m_hess.packedMatrix().rows(); } - Index cols() const { return m_hess.packedMatrix().cols(); } - - protected: - const HessenbergDecomposition& m_hess; -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_HESSENBERGDECOMPOSITION_H diff --git a/src/math_meigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h b/src/math_meigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h deleted file mode 100755 index e4e426071..000000000 --- a/src/math_meigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +++ /dev/null @@ -1,158 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2010 Jitse Niesen -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_MATRIXBASEEIGENVALUES_H -#define EIGEN_MATRIXBASEEIGENVALUES_H - -namespace Eigen { - -namespace internal { - -template -struct eigenvalues_selector -{ - // this is the implementation for the case IsComplex = true - static inline typename MatrixBase::EigenvaluesReturnType const - run(const MatrixBase& m) - { - typedef typename Derived::PlainObject PlainObject; - PlainObject m_eval(m); - return ComplexEigenSolver(m_eval, false).eigenvalues(); - } -}; - -template -struct eigenvalues_selector -{ - static inline typename MatrixBase::EigenvaluesReturnType const - run(const MatrixBase& m) - { - typedef typename Derived::PlainObject PlainObject; - PlainObject m_eval(m); - return EigenSolver(m_eval, false).eigenvalues(); - } -}; - -} // end namespace internal - -/** \brief Computes the eigenvalues of a matrix - * \returns Column vector containing the eigenvalues. - * - * \eigenvalues_module - * This function computes the eigenvalues with the help of the EigenSolver - * class (for real matrices) or the ComplexEigenSolver class (for complex - * matrices). - * - * The eigenvalues are repeated according to their algebraic multiplicity, - * so there are as many eigenvalues as rows in the matrix. - * - * The SelfAdjointView class provides a better algorithm for selfadjoint - * matrices. - * - * Example: \include MatrixBase_eigenvalues.cpp - * Output: \verbinclude MatrixBase_eigenvalues.out - * - * \sa EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(), - * SelfAdjointView::eigenvalues() - */ -template -inline typename MatrixBase::EigenvaluesReturnType -MatrixBase::eigenvalues() const -{ - return internal::eigenvalues_selector::IsComplex>::run(derived()); -} - -/** \brief Computes the eigenvalues of a matrix - * \returns Column vector containing the eigenvalues. - * - * \eigenvalues_module - * This function computes the eigenvalues with the help of the - * SelfAdjointEigenSolver class. The eigenvalues are repeated according to - * their algebraic multiplicity, so there are as many eigenvalues as rows in - * the matrix. - * - * Example: \include SelfAdjointView_eigenvalues.cpp - * Output: \verbinclude SelfAdjointView_eigenvalues.out - * - * \sa SelfAdjointEigenSolver::eigenvalues(), MatrixBase::eigenvalues() - */ -template -inline typename SelfAdjointView::EigenvaluesReturnType -SelfAdjointView::eigenvalues() const -{ - PlainObject thisAsMatrix(*this); - return SelfAdjointEigenSolver(thisAsMatrix, false).eigenvalues(); -} - - - -/** \brief Computes the L2 operator norm - * \returns Operator norm of the matrix. - * - * \eigenvalues_module - * This function computes the L2 operator norm of a matrix, which is also - * known as the spectral norm. The norm of a matrix \f$ A \f$ is defined to be - * \f[ \|A\|_2 = \max_x \frac{\|Ax\|_2}{\|x\|_2} \f] - * where the maximum is over all vectors and the norm on the right is the - * Euclidean vector norm. The norm equals the largest singular value, which is - * the square root of the largest eigenvalue of the positive semi-definite - * matrix \f$ A^*A \f$. - * - * The current implementation uses the eigenvalues of \f$ A^*A \f$, as computed - * by SelfAdjointView::eigenvalues(), to compute the operator norm of a - * matrix. The SelfAdjointView class provides a better algorithm for - * selfadjoint matrices. - * - * Example: \include MatrixBase_operatorNorm.cpp - * Output: \verbinclude MatrixBase_operatorNorm.out - * - * \sa SelfAdjointView::eigenvalues(), SelfAdjointView::operatorNorm() - */ -template -inline typename MatrixBase::RealScalar -MatrixBase::operatorNorm() const -{ - using std::sqrt; - typename Derived::PlainObject m_eval(derived()); - // FIXME if it is really guaranteed that the eigenvalues are already sorted, - // then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough. - return sqrt((m_eval*m_eval.adjoint()) - .eval() - .template selfadjointView() - .eigenvalues() - .maxCoeff() - ); -} - -/** \brief Computes the L2 operator norm - * \returns Operator norm of the matrix. - * - * \eigenvalues_module - * This function computes the L2 operator norm of a self-adjoint matrix. For a - * self-adjoint matrix, the operator norm is the largest eigenvalue. - * - * The current implementation uses the eigenvalues of the matrix, as computed - * by eigenvalues(), to compute the operator norm of the matrix. - * - * Example: \include SelfAdjointView_operatorNorm.cpp - * Output: \verbinclude SelfAdjointView_operatorNorm.out - * - * \sa eigenvalues(), MatrixBase::operatorNorm() - */ -template -inline typename SelfAdjointView::RealScalar -SelfAdjointView::operatorNorm() const -{ - return eigenvalues().cwiseAbs().maxCoeff(); -} - -} // end namespace Eigen - -#endif diff --git a/src/math_meigen/Eigen/src/Eigenvalues/RealQZ.h b/src/math_meigen/Eigen/src/Eigenvalues/RealQZ.h deleted file mode 100755 index b3a910dd9..000000000 --- a/src/math_meigen/Eigen/src/Eigenvalues/RealQZ.h +++ /dev/null @@ -1,654 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Alexey Korepanov -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_REAL_QZ_H -#define EIGEN_REAL_QZ_H - -namespace Eigen { - - /** \eigenvalues_module \ingroup Eigenvalues_Module - * - * - * \class RealQZ - * - * \brief Performs a real QZ decomposition of a pair of square matrices - * - * \tparam _MatrixType the type of the matrix of which we are computing the - * real QZ decomposition; this is expected to be an instantiation of the - * Matrix class template. - * - * Given a real square matrices A and B, this class computes the real QZ - * decomposition: \f$ A = Q S Z \f$, \f$ B = Q T Z \f$ where Q and Z are - * real orthogonal matrixes, T is upper-triangular matrix, and S is upper - * quasi-triangular matrix. An orthogonal matrix is a matrix whose - * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular - * matrix is a block-triangular matrix whose diagonal consists of 1-by-1 - * blocks and 2-by-2 blocks where further reduction is impossible due to - * complex eigenvalues. - * - * The eigenvalues of the pencil \f$ A - z B \f$ can be obtained from - * 1x1 and 2x2 blocks on the diagonals of S and T. - * - * Call the function compute() to compute the real QZ decomposition of a - * given pair of matrices. Alternatively, you can use the - * RealQZ(const MatrixType& B, const MatrixType& B, bool computeQZ) - * constructor which computes the real QZ decomposition at construction - * time. Once the decomposition is computed, you can use the matrixS(), - * matrixT(), matrixQ() and matrixZ() functions to retrieve the matrices - * S, T, Q and Z in the decomposition. If computeQZ==false, some time - * is saved by not computing matrices Q and Z. - * - * Example: \include RealQZ_compute.cpp - * Output: \include RealQZ_compute.out - * - * \note The implementation is based on the algorithm in "Matrix Computations" - * by Gene H. Golub and Charles F. Van Loan, and a paper "An algorithm for - * generalized eigenvalue problems" by C.B.Moler and G.W.Stewart. - * - * \sa class RealSchur, class ComplexSchur, class EigenSolver, class ComplexEigenSolver - */ - - template class RealQZ - { - public: - typedef _MatrixType MatrixType; - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - Options = MatrixType::Options, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime - }; - typedef typename MatrixType::Scalar Scalar; - typedef std::complex::Real> ComplexScalar; - typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 - - typedef Matrix EigenvalueType; - typedef Matrix ColumnVectorType; - - /** \brief Default constructor. - * - * \param [in] size Positive integer, size of the matrix whose QZ decomposition will be computed. - * - * The default constructor is useful in cases in which the user intends to - * perform decompositions via compute(). The \p size parameter is only - * used as a hint. It is not an error to give a wrong \p size, but it may - * impair performance. - * - * \sa compute() for an example. - */ - explicit RealQZ(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) : - m_S(size, size), - m_T(size, size), - m_Q(size, size), - m_Z(size, size), - m_workspace(size*2), - m_maxIters(400), - m_isInitialized(false) - { } - - /** \brief Constructor; computes real QZ decomposition of given matrices - * - * \param[in] A Matrix A. - * \param[in] B Matrix B. - * \param[in] computeQZ If false, A and Z are not computed. - * - * This constructor calls compute() to compute the QZ decomposition. - */ - RealQZ(const MatrixType& A, const MatrixType& B, bool computeQZ = true) : - m_S(A.rows(),A.cols()), - m_T(A.rows(),A.cols()), - m_Q(A.rows(),A.cols()), - m_Z(A.rows(),A.cols()), - m_workspace(A.rows()*2), - m_maxIters(400), - m_isInitialized(false) { - compute(A, B, computeQZ); - } - - /** \brief Returns matrix Q in the QZ decomposition. - * - * \returns A const reference to the matrix Q. - */ - const MatrixType& matrixQ() const { - eigen_assert(m_isInitialized && "RealQZ is not initialized."); - eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition."); - return m_Q; - } - - /** \brief Returns matrix Z in the QZ decomposition. - * - * \returns A const reference to the matrix Z. - */ - const MatrixType& matrixZ() const { - eigen_assert(m_isInitialized && "RealQZ is not initialized."); - eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition."); - return m_Z; - } - - /** \brief Returns matrix S in the QZ decomposition. - * - * \returns A const reference to the matrix S. - */ - const MatrixType& matrixS() const { - eigen_assert(m_isInitialized && "RealQZ is not initialized."); - return m_S; - } - - /** \brief Returns matrix S in the QZ decomposition. - * - * \returns A const reference to the matrix S. - */ - const MatrixType& matrixT() const { - eigen_assert(m_isInitialized && "RealQZ is not initialized."); - return m_T; - } - - /** \brief Computes QZ decomposition of given matrix. - * - * \param[in] A Matrix A. - * \param[in] B Matrix B. - * \param[in] computeQZ If false, A and Z are not computed. - * \returns Reference to \c *this - */ - RealQZ& compute(const MatrixType& A, const MatrixType& B, bool computeQZ = true); - - /** \brief Reports whether previous computation was successful. - * - * \returns \c Success if computation was succesful, \c NoConvergence otherwise. - */ - ComputationInfo info() const - { - eigen_assert(m_isInitialized && "RealQZ is not initialized."); - return m_info; - } - - /** \brief Returns number of performed QR-like iterations. - */ - Index iterations() const - { - eigen_assert(m_isInitialized && "RealQZ is not initialized."); - return m_global_iter; - } - - /** Sets the maximal number of iterations allowed to converge to one eigenvalue - * or decouple the problem. - */ - RealQZ& setMaxIterations(Index maxIters) - { - m_maxIters = maxIters; - return *this; - } - - private: - - MatrixType m_S, m_T, m_Q, m_Z; - Matrix m_workspace; - ComputationInfo m_info; - Index m_maxIters; - bool m_isInitialized; - bool m_computeQZ; - Scalar m_normOfT, m_normOfS; - Index m_global_iter; - - typedef Matrix Vector3s; - typedef Matrix Vector2s; - typedef Matrix Matrix2s; - typedef JacobiRotation JRs; - - void hessenbergTriangular(); - void computeNorms(); - Index findSmallSubdiagEntry(Index iu); - Index findSmallDiagEntry(Index f, Index l); - void splitOffTwoRows(Index i); - void pushDownZero(Index z, Index f, Index l); - void step(Index f, Index l, Index iter); - - }; // RealQZ - - /** \internal Reduces S and T to upper Hessenberg - triangular form */ - template - void RealQZ::hessenbergTriangular() - { - - const Index dim = m_S.cols(); - - // perform QR decomposition of T, overwrite T with R, save Q - HouseholderQR qrT(m_T); - m_T = qrT.matrixQR(); - m_T.template triangularView().setZero(); - m_Q = qrT.householderQ(); - // overwrite S with Q* S - m_S.applyOnTheLeft(m_Q.adjoint()); - // init Z as Identity - if (m_computeQZ) - m_Z = MatrixType::Identity(dim,dim); - // reduce S to upper Hessenberg with Givens rotations - for (Index j=0; j<=dim-3; j++) { - for (Index i=dim-1; i>=j+2; i--) { - JRs G; - // kill S(i,j) - if(m_S.coeff(i,j) != 0) - { - G.makeGivens(m_S.coeff(i-1,j), m_S.coeff(i,j), &m_S.coeffRef(i-1, j)); - m_S.coeffRef(i,j) = Scalar(0.0); - m_S.rightCols(dim-j-1).applyOnTheLeft(i-1,i,G.adjoint()); - m_T.rightCols(dim-i+1).applyOnTheLeft(i-1,i,G.adjoint()); - // update Q - if (m_computeQZ) - m_Q.applyOnTheRight(i-1,i,G); - } - // kill T(i,i-1) - if(m_T.coeff(i,i-1)!=Scalar(0)) - { - G.makeGivens(m_T.coeff(i,i), m_T.coeff(i,i-1), &m_T.coeffRef(i,i)); - m_T.coeffRef(i,i-1) = Scalar(0.0); - m_S.applyOnTheRight(i,i-1,G); - m_T.topRows(i).applyOnTheRight(i,i-1,G); - // update Z - if (m_computeQZ) - m_Z.applyOnTheLeft(i,i-1,G.adjoint()); - } - } - } - } - - /** \internal Computes vector L1 norms of S and T when in Hessenberg-Triangular form already */ - template - inline void RealQZ::computeNorms() - { - const Index size = m_S.cols(); - m_normOfS = Scalar(0.0); - m_normOfT = Scalar(0.0); - for (Index j = 0; j < size; ++j) - { - m_normOfS += m_S.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum(); - m_normOfT += m_T.row(j).segment(j, size - j).cwiseAbs().sum(); - } - } - - - /** \internal Look for single small sub-diagonal element S(res, res-1) and return res (or 0) */ - template - inline Index RealQZ::findSmallSubdiagEntry(Index iu) - { - using std::abs; - Index res = iu; - while (res > 0) - { - Scalar s = abs(m_S.coeff(res-1,res-1)) + abs(m_S.coeff(res,res)); - if (s == Scalar(0.0)) - s = m_normOfS; - if (abs(m_S.coeff(res,res-1)) < NumTraits::epsilon() * s) - break; - res--; - } - return res; - } - - /** \internal Look for single small diagonal element T(res, res) for res between f and l, and return res (or f-1) */ - template - inline Index RealQZ::findSmallDiagEntry(Index f, Index l) - { - using std::abs; - Index res = l; - while (res >= f) { - if (abs(m_T.coeff(res,res)) <= NumTraits::epsilon() * m_normOfT) - break; - res--; - } - return res; - } - - /** \internal decouple 2x2 diagonal block in rows i, i+1 if eigenvalues are real */ - template - inline void RealQZ::splitOffTwoRows(Index i) - { - using std::abs; - using std::sqrt; - const Index dim=m_S.cols(); - if (abs(m_S.coeff(i+1,i))==Scalar(0)) - return; - Index j = findSmallDiagEntry(i,i+1); - if (j==i-1) - { - // block of (S T^{-1}) - Matrix2s STi = m_T.template block<2,2>(i,i).template triangularView(). - template solve(m_S.template block<2,2>(i,i)); - Scalar p = Scalar(0.5)*(STi(0,0)-STi(1,1)); - Scalar q = p*p + STi(1,0)*STi(0,1); - if (q>=0) { - Scalar z = sqrt(q); - // one QR-like iteration for ABi - lambda I - // is enough - when we know exact eigenvalue in advance, - // convergence is immediate - JRs G; - if (p>=0) - G.makeGivens(p + z, STi(1,0)); - else - G.makeGivens(p - z, STi(1,0)); - m_S.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint()); - m_T.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint()); - // update Q - if (m_computeQZ) - m_Q.applyOnTheRight(i,i+1,G); - - G.makeGivens(m_T.coeff(i+1,i+1), m_T.coeff(i+1,i)); - m_S.topRows(i+2).applyOnTheRight(i+1,i,G); - m_T.topRows(i+2).applyOnTheRight(i+1,i,G); - // update Z - if (m_computeQZ) - m_Z.applyOnTheLeft(i+1,i,G.adjoint()); - - m_S.coeffRef(i+1,i) = Scalar(0.0); - m_T.coeffRef(i+1,i) = Scalar(0.0); - } - } - else - { - pushDownZero(j,i,i+1); - } - } - - /** \internal use zero in T(z,z) to zero S(l,l-1), working in block f..l */ - template - inline void RealQZ::pushDownZero(Index z, Index f, Index l) - { - JRs G; - const Index dim = m_S.cols(); - for (Index zz=z; zzf ? (zz-1) : zz; - G.makeGivens(m_T.coeff(zz, zz+1), m_T.coeff(zz+1, zz+1)); - m_S.rightCols(dim-firstColS).applyOnTheLeft(zz,zz+1,G.adjoint()); - m_T.rightCols(dim-zz).applyOnTheLeft(zz,zz+1,G.adjoint()); - m_T.coeffRef(zz+1,zz+1) = Scalar(0.0); - // update Q - if (m_computeQZ) - m_Q.applyOnTheRight(zz,zz+1,G); - // kill S(zz+1, zz-1) - if (zz>f) - { - G.makeGivens(m_S.coeff(zz+1, zz), m_S.coeff(zz+1,zz-1)); - m_S.topRows(zz+2).applyOnTheRight(zz, zz-1,G); - m_T.topRows(zz+1).applyOnTheRight(zz, zz-1,G); - m_S.coeffRef(zz+1,zz-1) = Scalar(0.0); - // update Z - if (m_computeQZ) - m_Z.applyOnTheLeft(zz,zz-1,G.adjoint()); - } - } - // finally kill S(l,l-1) - G.makeGivens(m_S.coeff(l,l), m_S.coeff(l,l-1)); - m_S.applyOnTheRight(l,l-1,G); - m_T.applyOnTheRight(l,l-1,G); - m_S.coeffRef(l,l-1)=Scalar(0.0); - // update Z - if (m_computeQZ) - m_Z.applyOnTheLeft(l,l-1,G.adjoint()); - } - - /** \internal QR-like iterative step for block f..l */ - template - inline void RealQZ::step(Index f, Index l, Index iter) - { - using std::abs; - const Index dim = m_S.cols(); - - // x, y, z - Scalar x, y, z; - if (iter==10) - { - // Wilkinson ad hoc shift - const Scalar - a11=m_S.coeff(f+0,f+0), a12=m_S.coeff(f+0,f+1), - a21=m_S.coeff(f+1,f+0), a22=m_S.coeff(f+1,f+1), a32=m_S.coeff(f+2,f+1), - b12=m_T.coeff(f+0,f+1), - b11i=Scalar(1.0)/m_T.coeff(f+0,f+0), - b22i=Scalar(1.0)/m_T.coeff(f+1,f+1), - a87=m_S.coeff(l-1,l-2), - a98=m_S.coeff(l-0,l-1), - b77i=Scalar(1.0)/m_T.coeff(l-2,l-2), - b88i=Scalar(1.0)/m_T.coeff(l-1,l-1); - Scalar ss = abs(a87*b77i) + abs(a98*b88i), - lpl = Scalar(1.5)*ss, - ll = ss*ss; - x = ll + a11*a11*b11i*b11i - lpl*a11*b11i + a12*a21*b11i*b22i - - a11*a21*b12*b11i*b11i*b22i; - y = a11*a21*b11i*b11i - lpl*a21*b11i + a21*a22*b11i*b22i - - a21*a21*b12*b11i*b11i*b22i; - z = a21*a32*b11i*b22i; - } - else if (iter==16) - { - // another exceptional shift - x = m_S.coeff(f,f)/m_T.coeff(f,f)-m_S.coeff(l,l)/m_T.coeff(l,l) + m_S.coeff(l,l-1)*m_T.coeff(l-1,l) / - (m_T.coeff(l-1,l-1)*m_T.coeff(l,l)); - y = m_S.coeff(f+1,f)/m_T.coeff(f,f); - z = 0; - } - else if (iter>23 && !(iter%8)) - { - // extremely exceptional shift - x = internal::random(-1.0,1.0); - y = internal::random(-1.0,1.0); - z = internal::random(-1.0,1.0); - } - else - { - // Compute the shifts: (x,y,z,0...) = (AB^-1 - l1 I) (AB^-1 - l2 I) e1 - // where l1 and l2 are the eigenvalues of the 2x2 matrix C = U V^-1 where - // U and V are 2x2 bottom right sub matrices of A and B. Thus: - // = AB^-1AB^-1 + l1 l2 I - (l1+l2)(AB^-1) - // = AB^-1AB^-1 + det(M) - tr(M)(AB^-1) - // Since we are only interested in having x, y, z with a correct ratio, we have: - const Scalar - a11 = m_S.coeff(f,f), a12 = m_S.coeff(f,f+1), - a21 = m_S.coeff(f+1,f), a22 = m_S.coeff(f+1,f+1), - a32 = m_S.coeff(f+2,f+1), - - a88 = m_S.coeff(l-1,l-1), a89 = m_S.coeff(l-1,l), - a98 = m_S.coeff(l,l-1), a99 = m_S.coeff(l,l), - - b11 = m_T.coeff(f,f), b12 = m_T.coeff(f,f+1), - b22 = m_T.coeff(f+1,f+1), - - b88 = m_T.coeff(l-1,l-1), b89 = m_T.coeff(l-1,l), - b99 = m_T.coeff(l,l); - - x = ( (a88/b88 - a11/b11)*(a99/b99 - a11/b11) - (a89/b99)*(a98/b88) + (a98/b88)*(b89/b99)*(a11/b11) ) * (b11/a21) - + a12/b22 - (a11/b11)*(b12/b22); - y = (a22/b22-a11/b11) - (a21/b11)*(b12/b22) - (a88/b88-a11/b11) - (a99/b99-a11/b11) + (a98/b88)*(b89/b99); - z = a32/b22; - } - - JRs G; - - for (Index k=f; k<=l-2; k++) - { - // variables for Householder reflections - Vector2s essential2; - Scalar tau, beta; - - Vector3s hr(x,y,z); - - // Q_k to annihilate S(k+1,k-1) and S(k+2,k-1) - hr.makeHouseholderInPlace(tau, beta); - essential2 = hr.template bottomRows<2>(); - Index fc=(std::max)(k-1,Index(0)); // first col to update - m_S.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data()); - m_T.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data()); - if (m_computeQZ) - m_Q.template middleCols<3>(k).applyHouseholderOnTheRight(essential2, tau, m_workspace.data()); - if (k>f) - m_S.coeffRef(k+2,k-1) = m_S.coeffRef(k+1,k-1) = Scalar(0.0); - - // Z_{k1} to annihilate T(k+2,k+1) and T(k+2,k) - hr << m_T.coeff(k+2,k+2),m_T.coeff(k+2,k),m_T.coeff(k+2,k+1); - hr.makeHouseholderInPlace(tau, beta); - essential2 = hr.template bottomRows<2>(); - { - Index lr = (std::min)(k+4,dim); // last row to update - Map > tmp(m_workspace.data(),lr); - // S - tmp = m_S.template middleCols<2>(k).topRows(lr) * essential2; - tmp += m_S.col(k+2).head(lr); - m_S.col(k+2).head(lr) -= tau*tmp; - m_S.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint(); - // T - tmp = m_T.template middleCols<2>(k).topRows(lr) * essential2; - tmp += m_T.col(k+2).head(lr); - m_T.col(k+2).head(lr) -= tau*tmp; - m_T.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint(); - } - if (m_computeQZ) - { - // Z - Map > tmp(m_workspace.data(),dim); - tmp = essential2.adjoint()*(m_Z.template middleRows<2>(k)); - tmp += m_Z.row(k+2); - m_Z.row(k+2) -= tau*tmp; - m_Z.template middleRows<2>(k) -= essential2 * (tau*tmp); - } - m_T.coeffRef(k+2,k) = m_T.coeffRef(k+2,k+1) = Scalar(0.0); - - // Z_{k2} to annihilate T(k+1,k) - G.makeGivens(m_T.coeff(k+1,k+1), m_T.coeff(k+1,k)); - m_S.applyOnTheRight(k+1,k,G); - m_T.applyOnTheRight(k+1,k,G); - // update Z - if (m_computeQZ) - m_Z.applyOnTheLeft(k+1,k,G.adjoint()); - m_T.coeffRef(k+1,k) = Scalar(0.0); - - // update x,y,z - x = m_S.coeff(k+1,k); - y = m_S.coeff(k+2,k); - if (k < l-2) - z = m_S.coeff(k+3,k); - } // loop over k - - // Q_{n-1} to annihilate y = S(l,l-2) - G.makeGivens(x,y); - m_S.applyOnTheLeft(l-1,l,G.adjoint()); - m_T.applyOnTheLeft(l-1,l,G.adjoint()); - if (m_computeQZ) - m_Q.applyOnTheRight(l-1,l,G); - m_S.coeffRef(l,l-2) = Scalar(0.0); - - // Z_{n-1} to annihilate T(l,l-1) - G.makeGivens(m_T.coeff(l,l),m_T.coeff(l,l-1)); - m_S.applyOnTheRight(l,l-1,G); - m_T.applyOnTheRight(l,l-1,G); - if (m_computeQZ) - m_Z.applyOnTheLeft(l,l-1,G.adjoint()); - m_T.coeffRef(l,l-1) = Scalar(0.0); - } - - template - RealQZ& RealQZ::compute(const MatrixType& A_in, const MatrixType& B_in, bool computeQZ) - { - - const Index dim = A_in.cols(); - - eigen_assert (A_in.rows()==dim && A_in.cols()==dim - && B_in.rows()==dim && B_in.cols()==dim - && "Need square matrices of the same dimension"); - - m_isInitialized = true; - m_computeQZ = computeQZ; - m_S = A_in; m_T = B_in; - m_workspace.resize(dim*2); - m_global_iter = 0; - - // entrance point: hessenberg triangular decomposition - hessenbergTriangular(); - // compute L1 vector norms of T, S into m_normOfS, m_normOfT - computeNorms(); - - Index l = dim-1, - f, - local_iter = 0; - - while (l>0 && local_iter0) m_S.coeffRef(f,f-1) = Scalar(0.0); - if (f == l) // One root found - { - l--; - local_iter = 0; - } - else if (f == l-1) // Two roots found - { - splitOffTwoRows(f); - l -= 2; - local_iter = 0; - } - else // No convergence yet - { - // if there's zero on diagonal of T, we can isolate an eigenvalue with Givens rotations - Index z = findSmallDiagEntry(f,l); - if (z>=f) - { - // zero found - pushDownZero(z,f,l); - } - else - { - // We are sure now that S.block(f,f, l-f+1,l-f+1) is underuced upper-Hessenberg - // and T.block(f,f, l-f+1,l-f+1) is invertible uper-triangular, which allows to - // apply a QR-like iteration to rows and columns f..l. - step(f,l, local_iter); - local_iter++; - m_global_iter++; - } - } - } - // check if we converged before reaching iterations limit - m_info = (local_iter j_left, j_right; - internal::real_2x2_jacobi_svd(m_T, i, i+1, &j_left, &j_right); - - // Apply resulting Jacobi rotations - m_S.applyOnTheLeft(i,i+1,j_left); - m_S.applyOnTheRight(i,i+1,j_right); - m_T.applyOnTheLeft(i,i+1,j_left); - m_T.applyOnTheRight(i,i+1,j_right); - m_T(i+1,i) = m_T(i,i+1) = Scalar(0); - - if(m_computeQZ) { - m_Q.applyOnTheRight(i,i+1,j_left.transpose()); - m_Z.applyOnTheLeft(i,i+1,j_right.transpose()); - } - - i++; - } - } - } - - return *this; - } // end compute - -} // end namespace Eigen - -#endif //EIGEN_REAL_QZ diff --git a/src/math_meigen/Eigen/src/Eigenvalues/RealSchur.h b/src/math_meigen/Eigen/src/Eigenvalues/RealSchur.h deleted file mode 100755 index 17ea903f5..000000000 --- a/src/math_meigen/Eigen/src/Eigenvalues/RealSchur.h +++ /dev/null @@ -1,546 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2010,2012 Jitse Niesen -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_REAL_SCHUR_H -#define EIGEN_REAL_SCHUR_H - -#include "./HessenbergDecomposition.h" - -namespace Eigen { - -/** \eigenvalues_module \ingroup Eigenvalues_Module - * - * - * \class RealSchur - * - * \brief Performs a real Schur decomposition of a square matrix - * - * \tparam _MatrixType the type of the matrix of which we are computing the - * real Schur decomposition; this is expected to be an instantiation of the - * Matrix class template. - * - * Given a real square matrix A, this class computes the real Schur - * decomposition: \f$ A = U T U^T \f$ where U is a real orthogonal matrix and - * T is a real quasi-triangular matrix. An orthogonal matrix is a matrix whose - * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular - * matrix is a block-triangular matrix whose diagonal consists of 1-by-1 - * blocks and 2-by-2 blocks with complex eigenvalues. The eigenvalues of the - * blocks on the diagonal of T are the same as the eigenvalues of the matrix - * A, and thus the real Schur decomposition is used in EigenSolver to compute - * the eigendecomposition of a matrix. - * - * Call the function compute() to compute the real Schur decomposition of a - * given matrix. Alternatively, you can use the RealSchur(const MatrixType&, bool) - * constructor which computes the real Schur decomposition at construction - * time. Once the decomposition is computed, you can use the matrixU() and - * matrixT() functions to retrieve the matrices U and T in the decomposition. - * - * The documentation of RealSchur(const MatrixType&, bool) contains an example - * of the typical use of this class. - * - * \note The implementation is adapted from - * JAMA (public domain). - * Their code is based on EISPACK. - * - * \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver - */ -template class RealSchur -{ - public: - typedef _MatrixType MatrixType; - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - Options = MatrixType::Options, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime - }; - typedef typename MatrixType::Scalar Scalar; - typedef std::complex::Real> ComplexScalar; - typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 - - typedef Matrix EigenvalueType; - typedef Matrix ColumnVectorType; - - /** \brief Default constructor. - * - * \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed. - * - * The default constructor is useful in cases in which the user intends to - * perform decompositions via compute(). The \p size parameter is only - * used as a hint. It is not an error to give a wrong \p size, but it may - * impair performance. - * - * \sa compute() for an example. - */ - explicit RealSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) - : m_matT(size, size), - m_matU(size, size), - m_workspaceVector(size), - m_hess(size), - m_isInitialized(false), - m_matUisUptodate(false), - m_maxIters(-1) - { } - - /** \brief Constructor; computes real Schur decomposition of given matrix. - * - * \param[in] matrix Square matrix whose Schur decomposition is to be computed. - * \param[in] computeU If true, both T and U are computed; if false, only T is computed. - * - * This constructor calls compute() to compute the Schur decomposition. - * - * Example: \include RealSchur_RealSchur_MatrixType.cpp - * Output: \verbinclude RealSchur_RealSchur_MatrixType.out - */ - template - explicit RealSchur(const EigenBase& matrix, bool computeU = true) - : m_matT(matrix.rows(),matrix.cols()), - m_matU(matrix.rows(),matrix.cols()), - m_workspaceVector(matrix.rows()), - m_hess(matrix.rows()), - m_isInitialized(false), - m_matUisUptodate(false), - m_maxIters(-1) - { - compute(matrix.derived(), computeU); - } - - /** \brief Returns the orthogonal matrix in the Schur decomposition. - * - * \returns A const reference to the matrix U. - * - * \pre Either the constructor RealSchur(const MatrixType&, bool) or the - * member function compute(const MatrixType&, bool) has been called before - * to compute the Schur decomposition of a matrix, and \p computeU was set - * to true (the default value). - * - * \sa RealSchur(const MatrixType&, bool) for an example - */ - const MatrixType& matrixU() const - { - eigen_assert(m_isInitialized && "RealSchur is not initialized."); - eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition."); - return m_matU; - } - - /** \brief Returns the quasi-triangular matrix in the Schur decomposition. - * - * \returns A const reference to the matrix T. - * - * \pre Either the constructor RealSchur(const MatrixType&, bool) or the - * member function compute(const MatrixType&, bool) has been called before - * to compute the Schur decomposition of a matrix. - * - * \sa RealSchur(const MatrixType&, bool) for an example - */ - const MatrixType& matrixT() const - { - eigen_assert(m_isInitialized && "RealSchur is not initialized."); - return m_matT; - } - - /** \brief Computes Schur decomposition of given matrix. - * - * \param[in] matrix Square matrix whose Schur decomposition is to be computed. - * \param[in] computeU If true, both T and U are computed; if false, only T is computed. - * \returns Reference to \c *this - * - * The Schur decomposition is computed by first reducing the matrix to - * Hessenberg form using the class HessenbergDecomposition. The Hessenberg - * matrix is then reduced to triangular form by performing Francis QR - * iterations with implicit double shift. The cost of computing the Schur - * decomposition depends on the number of iterations; as a rough guide, it - * may be taken to be \f$25n^3\f$ flops if \a computeU is true and - * \f$10n^3\f$ flops if \a computeU is false. - * - * Example: \include RealSchur_compute.cpp - * Output: \verbinclude RealSchur_compute.out - * - * \sa compute(const MatrixType&, bool, Index) - */ - template - RealSchur& compute(const EigenBase& matrix, bool computeU = true); - - /** \brief Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T - * \param[in] matrixH Matrix in Hessenberg form H - * \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T - * \param computeU Computes the matriX U of the Schur vectors - * \return Reference to \c *this - * - * This routine assumes that the matrix is already reduced in Hessenberg form matrixH - * using either the class HessenbergDecomposition or another mean. - * It computes the upper quasi-triangular matrix T of the Schur decomposition of H - * When computeU is true, this routine computes the matrix U such that - * A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix - * - * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix - * is not available, the user should give an identity matrix (Q.setIdentity()) - * - * \sa compute(const MatrixType&, bool) - */ - template - RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU); - /** \brief Reports whether previous computation was successful. - * - * \returns \c Success if computation was succesful, \c NoConvergence otherwise. - */ - ComputationInfo info() const - { - eigen_assert(m_isInitialized && "RealSchur is not initialized."); - return m_info; - } - - /** \brief Sets the maximum number of iterations allowed. - * - * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size - * of the matrix. - */ - RealSchur& setMaxIterations(Index maxIters) - { - m_maxIters = maxIters; - return *this; - } - - /** \brief Returns the maximum number of iterations. */ - Index getMaxIterations() - { - return m_maxIters; - } - - /** \brief Maximum number of iterations per row. - * - * If not otherwise specified, the maximum number of iterations is this number times the size of the - * matrix. It is currently set to 40. - */ - static const int m_maxIterationsPerRow = 40; - - private: - - MatrixType m_matT; - MatrixType m_matU; - ColumnVectorType m_workspaceVector; - HessenbergDecomposition m_hess; - ComputationInfo m_info; - bool m_isInitialized; - bool m_matUisUptodate; - Index m_maxIters; - - typedef Matrix Vector3s; - - Scalar computeNormOfT(); - Index findSmallSubdiagEntry(Index iu); - void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift); - void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo); - void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector); - void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace); -}; - - -template -template -RealSchur& RealSchur::compute(const EigenBase& matrix, bool computeU) -{ - const Scalar considerAsZero = (std::numeric_limits::min)(); - - eigen_assert(matrix.cols() == matrix.rows()); - Index maxIters = m_maxIters; - if (maxIters == -1) - maxIters = m_maxIterationsPerRow * matrix.rows(); - - Scalar scale = matrix.derived().cwiseAbs().maxCoeff(); - if(scale -template -RealSchur& RealSchur::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU) -{ - using std::abs; - - m_matT = matrixH; - if(computeU) - m_matU = matrixQ; - - Index maxIters = m_maxIters; - if (maxIters == -1) - maxIters = m_maxIterationsPerRow * matrixH.rows(); - m_workspaceVector.resize(m_matT.cols()); - Scalar* workspace = &m_workspaceVector.coeffRef(0); - - // The matrix m_matT is divided in three parts. - // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero. - // Rows il,...,iu is the part we are working on (the active window). - // Rows iu+1,...,end are already brought in triangular form. - Index iu = m_matT.cols() - 1; - Index iter = 0; // iteration count for current eigenvalue - Index totalIter = 0; // iteration count for whole matrix - Scalar exshift(0); // sum of exceptional shifts - Scalar norm = computeNormOfT(); - - if(norm!=Scalar(0)) - { - while (iu >= 0) - { - Index il = findSmallSubdiagEntry(iu); - - // Check for convergence - if (il == iu) // One root found - { - m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift; - if (iu > 0) - m_matT.coeffRef(iu, iu-1) = Scalar(0); - iu--; - iter = 0; - } - else if (il == iu-1) // Two roots found - { - splitOffTwoRows(iu, computeU, exshift); - iu -= 2; - iter = 0; - } - else // No convergence yet - { - // The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG ) - Vector3s firstHouseholderVector = Vector3s::Zero(), shiftInfo; - computeShift(iu, iter, exshift, shiftInfo); - iter = iter + 1; - totalIter = totalIter + 1; - if (totalIter > maxIters) break; - Index im; - initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector); - performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace); - } - } - } - if(totalIter <= maxIters) - m_info = Success; - else - m_info = NoConvergence; - - m_isInitialized = true; - m_matUisUptodate = computeU; - return *this; -} - -/** \internal Computes and returns vector L1 norm of T */ -template -inline typename MatrixType::Scalar RealSchur::computeNormOfT() -{ - const Index size = m_matT.cols(); - // FIXME to be efficient the following would requires a triangular reduxion code - // Scalar norm = m_matT.upper().cwiseAbs().sum() - // + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum(); - Scalar norm(0); - for (Index j = 0; j < size; ++j) - norm += m_matT.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum(); - return norm; -} - -/** \internal Look for single small sub-diagonal element and returns its index */ -template -inline Index RealSchur::findSmallSubdiagEntry(Index iu) -{ - using std::abs; - Index res = iu; - while (res > 0) - { - Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res)); - if (abs(m_matT.coeff(res,res-1)) <= NumTraits::epsilon() * s) - break; - res--; - } - return res; -} - -/** \internal Update T given that rows iu-1 and iu decouple from the rest. */ -template -inline void RealSchur::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift) -{ - using std::sqrt; - using std::abs; - const Index size = m_matT.cols(); - - // The eigenvalues of the 2x2 matrix [a b; c d] are - // trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc - Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu)); - Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); // q = tr^2 / 4 - det = discr/4 - m_matT.coeffRef(iu,iu) += exshift; - m_matT.coeffRef(iu-1,iu-1) += exshift; - - if (q >= Scalar(0)) // Two real eigenvalues - { - Scalar z = sqrt(abs(q)); - JacobiRotation rot; - if (p >= Scalar(0)) - rot.makeGivens(p + z, m_matT.coeff(iu, iu-1)); - else - rot.makeGivens(p - z, m_matT.coeff(iu, iu-1)); - - m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint()); - m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot); - m_matT.coeffRef(iu, iu-1) = Scalar(0); - if (computeU) - m_matU.applyOnTheRight(iu-1, iu, rot); - } - - if (iu > 1) - m_matT.coeffRef(iu-1, iu-2) = Scalar(0); -} - -/** \internal Form shift in shiftInfo, and update exshift if an exceptional shift is performed. */ -template -inline void RealSchur::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo) -{ - using std::sqrt; - using std::abs; - shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu); - shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1); - shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); - - // Wilkinson's original ad hoc shift - if (iter == 10) - { - exshift += shiftInfo.coeff(0); - for (Index i = 0; i <= iu; ++i) - m_matT.coeffRef(i,i) -= shiftInfo.coeff(0); - Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2)); - shiftInfo.coeffRef(0) = Scalar(0.75) * s; - shiftInfo.coeffRef(1) = Scalar(0.75) * s; - shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s; - } - - // MATLAB's new ad hoc shift - if (iter == 30) - { - Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0); - s = s * s + shiftInfo.coeff(2); - if (s > Scalar(0)) - { - s = sqrt(s); - if (shiftInfo.coeff(1) < shiftInfo.coeff(0)) - s = -s; - s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0); - s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s; - exshift += s; - for (Index i = 0; i <= iu; ++i) - m_matT.coeffRef(i,i) -= s; - shiftInfo.setConstant(Scalar(0.964)); - } - } -} - -/** \internal Compute index im at which Francis QR step starts and the first Householder vector. */ -template -inline void RealSchur::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector) -{ - using std::abs; - Vector3s& v = firstHouseholderVector; // alias to save typing - - for (im = iu-2; im >= il; --im) - { - const Scalar Tmm = m_matT.coeff(im,im); - const Scalar r = shiftInfo.coeff(0) - Tmm; - const Scalar s = shiftInfo.coeff(1) - Tmm; - v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1); - v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s; - v.coeffRef(2) = m_matT.coeff(im+2,im+1); - if (im == il) { - break; - } - const Scalar lhs = m_matT.coeff(im,im-1) * (abs(v.coeff(1)) + abs(v.coeff(2))); - const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im-1,im-1)) + abs(Tmm) + abs(m_matT.coeff(im+1,im+1))); - if (abs(lhs) < NumTraits::epsilon() * rhs) - break; - } -} - -/** \internal Perform a Francis QR step involving rows il:iu and columns im:iu. */ -template -inline void RealSchur::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace) -{ - eigen_assert(im >= il); - eigen_assert(im <= iu-2); - - const Index size = m_matT.cols(); - - for (Index k = im; k <= iu-2; ++k) - { - bool firstIteration = (k == im); - - Vector3s v; - if (firstIteration) - v = firstHouseholderVector; - else - v = m_matT.template block<3,1>(k,k-1); - - Scalar tau, beta; - Matrix ess; - v.makeHouseholder(ess, tau, beta); - - if (beta != Scalar(0)) // if v is not zero - { - if (firstIteration && k > il) - m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1); - else if (!firstIteration) - m_matT.coeffRef(k,k-1) = beta; - - // These Householder transformations form the O(n^3) part of the algorithm - m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace); - m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace); - if (computeU) - m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace); - } - } - - Matrix v = m_matT.template block<2,1>(iu-1, iu-2); - Scalar tau, beta; - Matrix ess; - v.makeHouseholder(ess, tau, beta); - - if (beta != Scalar(0)) // if v is not zero - { - m_matT.coeffRef(iu-1, iu-2) = beta; - m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace); - m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace); - if (computeU) - m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace); - } - - // clean up pollution due to round-off errors - for (Index i = im+2; i <= iu; ++i) - { - m_matT.coeffRef(i,i-2) = Scalar(0); - if (i > im+2) - m_matT.coeffRef(i,i-3) = Scalar(0); - } -} - -} // end namespace Eigen - -#endif // EIGEN_REAL_SCHUR_H diff --git a/src/math_meigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h b/src/math_meigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h deleted file mode 100755 index 2c2251715..000000000 --- a/src/math_meigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +++ /dev/null @@ -1,77 +0,0 @@ -/* - Copyright (c) 2011, Intel Corporation. All rights reserved. - - Redistribution and use in source and binary forms, with or without modification, - are permitted provided that the following conditions are met: - - * Redistributions of source code must retain the above copyright notice, this - list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above copyright notice, - this list of conditions and the following disclaimer in the documentation - and/or other materials provided with the distribution. - * Neither the name of Intel Corporation nor the names of its contributors may - be used to endorse or promote products derived from this software without - specific prior written permission. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND - ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED - WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR - ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES - (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON - ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - - ******************************************************************************** - * Content : Eigen bindings to LAPACKe - * Real Schur needed to real unsymmetrical eigenvalues/eigenvectors. - ******************************************************************************** -*/ - -#ifndef EIGEN_REAL_SCHUR_LAPACKE_H -#define EIGEN_REAL_SCHUR_LAPACKE_H - -namespace Eigen { - -/** \internal Specialization for the data types supported by LAPACKe */ - -#define EIGEN_LAPACKE_SCHUR_REAL(EIGTYPE, LAPACKE_TYPE, LAPACKE_PREFIX, LAPACKE_PREFIX_U, EIGCOLROW, LAPACKE_COLROW) \ -template<> template inline \ -RealSchur >& \ -RealSchur >::compute(const EigenBase& matrix, bool computeU) \ -{ \ - eigen_assert(matrix.cols() == matrix.rows()); \ -\ - lapack_int n = internal::convert_index(matrix.cols()), sdim, info; \ - lapack_int matrix_order = LAPACKE_COLROW; \ - char jobvs, sort='N'; \ - LAPACK_##LAPACKE_PREFIX_U##_SELECT2 select = 0; \ - jobvs = (computeU) ? 'V' : 'N'; \ - m_matU.resize(n, n); \ - lapack_int ldvs = internal::convert_index(m_matU.outerStride()); \ - m_matT = matrix; \ - lapack_int lda = internal::convert_index(m_matT.outerStride()); \ - Matrix wr, wi; \ - wr.resize(n, 1); wi.resize(n, 1); \ - info = LAPACKE_##LAPACKE_PREFIX##gees( matrix_order, jobvs, sort, select, n, (LAPACKE_TYPE*)m_matT.data(), lda, &sdim, (LAPACKE_TYPE*)wr.data(), (LAPACKE_TYPE*)wi.data(), (LAPACKE_TYPE*)m_matU.data(), ldvs ); \ - if(info == 0) \ - m_info = Success; \ - else \ - m_info = NoConvergence; \ -\ - m_isInitialized = true; \ - m_matUisUptodate = computeU; \ - return *this; \ -\ -} - -EIGEN_LAPACKE_SCHUR_REAL(double, double, d, D, ColMajor, LAPACK_COL_MAJOR) -EIGEN_LAPACKE_SCHUR_REAL(float, float, s, S, ColMajor, LAPACK_COL_MAJOR) -EIGEN_LAPACKE_SCHUR_REAL(double, double, d, D, RowMajor, LAPACK_ROW_MAJOR) -EIGEN_LAPACKE_SCHUR_REAL(float, float, s, S, RowMajor, LAPACK_ROW_MAJOR) - -} // end namespace Eigen - -#endif // EIGEN_REAL_SCHUR_LAPACKE_H diff --git a/src/math_meigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h b/src/math_meigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h deleted file mode 100755 index 9ddd553f2..000000000 --- a/src/math_meigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +++ /dev/null @@ -1,870 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2010 Gael Guennebaud -// Copyright (C) 2010 Jitse Niesen -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SELFADJOINTEIGENSOLVER_H -#define EIGEN_SELFADJOINTEIGENSOLVER_H - -#include "./Tridiagonalization.h" - -namespace Eigen { - -template -class GeneralizedSelfAdjointEigenSolver; - -namespace internal { -template struct direct_selfadjoint_eigenvalues; -template -ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec); -} - -/** \eigenvalues_module \ingroup Eigenvalues_Module - * - * - * \class SelfAdjointEigenSolver - * - * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices - * - * \tparam _MatrixType the type of the matrix of which we are computing the - * eigendecomposition; this is expected to be an instantiation of the Matrix - * class template. - * - * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real - * matrices, this means that the matrix is symmetric: it equals its - * transpose. This class computes the eigenvalues and eigenvectors of a - * selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors - * \f$ v \f$ such that \f$ Av = \lambda v \f$. The eigenvalues of a - * selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with - * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the - * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$ (for selfadjoint - * matrices, the matrix \f$ V \f$ is always invertible). This is called the - * eigendecomposition. - * - * The algorithm exploits the fact that the matrix is selfadjoint, making it - * faster and more accurate than the general purpose eigenvalue algorithms - * implemented in EigenSolver and ComplexEigenSolver. - * - * Only the \b lower \b triangular \b part of the input matrix is referenced. - * - * Call the function compute() to compute the eigenvalues and eigenvectors of - * a given matrix. Alternatively, you can use the - * SelfAdjointEigenSolver(const MatrixType&, int) constructor which computes - * the eigenvalues and eigenvectors at construction time. Once the eigenvalue - * and eigenvectors are computed, they can be retrieved with the eigenvalues() - * and eigenvectors() functions. - * - * The documentation for SelfAdjointEigenSolver(const MatrixType&, int) - * contains an example of the typical use of this class. - * - * To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and - * the likes, see the class GeneralizedSelfAdjointEigenSolver. - * - * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver - */ -template class SelfAdjointEigenSolver -{ - public: - - typedef _MatrixType MatrixType; - enum { - Size = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - Options = MatrixType::Options, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime - }; - - /** \brief Scalar type for matrices of type \p _MatrixType. */ - typedef typename MatrixType::Scalar Scalar; - typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 - - typedef Matrix EigenvectorsType; - - /** \brief Real scalar type for \p _MatrixType. - * - * This is just \c Scalar if #Scalar is real (e.g., \c float or - * \c double), and the type of the real part of \c Scalar if #Scalar is - * complex. - */ - typedef typename NumTraits::Real RealScalar; - - friend struct internal::direct_selfadjoint_eigenvalues::IsComplex>; - - /** \brief Type for vector of eigenvalues as returned by eigenvalues(). - * - * This is a column vector with entries of type #RealScalar. - * The length of the vector is the size of \p _MatrixType. - */ - typedef typename internal::plain_col_type::type RealVectorType; - typedef Tridiagonalization TridiagonalizationType; - typedef typename TridiagonalizationType::SubDiagonalType SubDiagonalType; - - /** \brief Default constructor for fixed-size matrices. - * - * The default constructor is useful in cases in which the user intends to - * perform decompositions via compute(). This constructor - * can only be used if \p _MatrixType is a fixed-size matrix; use - * SelfAdjointEigenSolver(Index) for dynamic-size matrices. - * - * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp - * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out - */ - EIGEN_DEVICE_FUNC - SelfAdjointEigenSolver() - : m_eivec(), - m_eivalues(), - m_subdiag(), - m_isInitialized(false) - { } - - /** \brief Constructor, pre-allocates memory for dynamic-size matrices. - * - * \param [in] size Positive integer, size of the matrix whose - * eigenvalues and eigenvectors will be computed. - * - * This constructor is useful for dynamic-size matrices, when the user - * intends to perform decompositions via compute(). The \p size - * parameter is only used as a hint. It is not an error to give a wrong - * \p size, but it may impair performance. - * - * \sa compute() for an example - */ - EIGEN_DEVICE_FUNC - explicit SelfAdjointEigenSolver(Index size) - : m_eivec(size, size), - m_eivalues(size), - m_subdiag(size > 1 ? size - 1 : 1), - m_isInitialized(false) - {} - - /** \brief Constructor; computes eigendecomposition of given matrix. - * - * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to - * be computed. Only the lower triangular part of the matrix is referenced. - * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. - * - * This constructor calls compute(const MatrixType&, int) to compute the - * eigenvalues of the matrix \p matrix. The eigenvectors are computed if - * \p options equals #ComputeEigenvectors. - * - * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp - * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out - * - * \sa compute(const MatrixType&, int) - */ - template - EIGEN_DEVICE_FUNC - explicit SelfAdjointEigenSolver(const EigenBase& matrix, int options = ComputeEigenvectors) - : m_eivec(matrix.rows(), matrix.cols()), - m_eivalues(matrix.cols()), - m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1), - m_isInitialized(false) - { - compute(matrix.derived(), options); - } - - /** \brief Computes eigendecomposition of given matrix. - * - * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to - * be computed. Only the lower triangular part of the matrix is referenced. - * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. - * \returns Reference to \c *this - * - * This function computes the eigenvalues of \p matrix. The eigenvalues() - * function can be used to retrieve them. If \p options equals #ComputeEigenvectors, - * then the eigenvectors are also computed and can be retrieved by - * calling eigenvectors(). - * - * This implementation uses a symmetric QR algorithm. The matrix is first - * reduced to tridiagonal form using the Tridiagonalization class. The - * tridiagonal matrix is then brought to diagonal form with implicit - * symmetric QR steps with Wilkinson shift. Details can be found in - * Section 8.3 of Golub \& Van Loan, %Matrix Computations. - * - * The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors - * are required and \f$ 4n^3/3 \f$ if they are not required. - * - * This method reuses the memory in the SelfAdjointEigenSolver object that - * was allocated when the object was constructed, if the size of the - * matrix does not change. - * - * Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp - * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out - * - * \sa SelfAdjointEigenSolver(const MatrixType&, int) - */ - template - EIGEN_DEVICE_FUNC - SelfAdjointEigenSolver& compute(const EigenBase& matrix, int options = ComputeEigenvectors); - - /** \brief Computes eigendecomposition of given matrix using a closed-form algorithm - * - * This is a variant of compute(const MatrixType&, int options) which - * directly solves the underlying polynomial equation. - * - * Currently only 2x2 and 3x3 matrices for which the sizes are known at compile time are supported (e.g., Matrix3d). - * - * This method is usually significantly faster than the QR iterative algorithm - * but it might also be less accurate. It is also worth noting that - * for 3x3 matrices it involves trigonometric operations which are - * not necessarily available for all scalar types. - * - * For the 3x3 case, we observed the following worst case relative error regarding the eigenvalues: - * - double: 1e-8 - * - float: 1e-3 - * - * \sa compute(const MatrixType&, int options) - */ - EIGEN_DEVICE_FUNC - SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors); - - /** - *\brief Computes the eigen decomposition from a tridiagonal symmetric matrix - * - * \param[in] diag The vector containing the diagonal of the matrix. - * \param[in] subdiag The subdiagonal of the matrix. - * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. - * \returns Reference to \c *this - * - * This function assumes that the matrix has been reduced to tridiagonal form. - * - * \sa compute(const MatrixType&, int) for more information - */ - SelfAdjointEigenSolver& computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options=ComputeEigenvectors); - - /** \brief Returns the eigenvectors of given matrix. - * - * \returns A const reference to the matrix whose columns are the eigenvectors. - * - * \pre The eigenvectors have been computed before. - * - * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding - * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The - * eigenvectors are normalized to have (Euclidean) norm equal to one. If - * this object was used to solve the eigenproblem for the selfadjoint - * matrix \f$ A \f$, then the matrix returned by this function is the - * matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$. - * - * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp - * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out - * - * \sa eigenvalues() - */ - EIGEN_DEVICE_FUNC - const EigenvectorsType& eigenvectors() const - { - eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); - eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); - return m_eivec; - } - - /** \brief Returns the eigenvalues of given matrix. - * - * \returns A const reference to the column vector containing the eigenvalues. - * - * \pre The eigenvalues have been computed before. - * - * The eigenvalues are repeated according to their algebraic multiplicity, - * so there are as many eigenvalues as rows in the matrix. The eigenvalues - * are sorted in increasing order. - * - * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp - * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out - * - * \sa eigenvectors(), MatrixBase::eigenvalues() - */ - EIGEN_DEVICE_FUNC - const RealVectorType& eigenvalues() const - { - eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); - return m_eivalues; - } - - /** \brief Computes the positive-definite square root of the matrix. - * - * \returns the positive-definite square root of the matrix - * - * \pre The eigenvalues and eigenvectors of a positive-definite matrix - * have been computed before. - * - * The square root of a positive-definite matrix \f$ A \f$ is the - * positive-definite matrix whose square equals \f$ A \f$. This function - * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the - * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$. - * - * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp - * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out - * - * \sa operatorInverseSqrt(), MatrixFunctions Module - */ - EIGEN_DEVICE_FUNC - MatrixType operatorSqrt() const - { - eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); - eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); - return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint(); - } - - /** \brief Computes the inverse square root of the matrix. - * - * \returns the inverse positive-definite square root of the matrix - * - * \pre The eigenvalues and eigenvectors of a positive-definite matrix - * have been computed before. - * - * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to - * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is - * cheaper than first computing the square root with operatorSqrt() and - * then its inverse with MatrixBase::inverse(). - * - * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp - * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out - * - * \sa operatorSqrt(), MatrixBase::inverse(), MatrixFunctions Module - */ - EIGEN_DEVICE_FUNC - MatrixType operatorInverseSqrt() const - { - eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); - eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); - return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint(); - } - - /** \brief Reports whether previous computation was successful. - * - * \returns \c Success if computation was succesful, \c NoConvergence otherwise. - */ - EIGEN_DEVICE_FUNC - ComputationInfo info() const - { - eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); - return m_info; - } - - /** \brief Maximum number of iterations. - * - * The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n - * denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK). - */ - static const int m_maxIterations = 30; - - protected: - static void check_template_parameters() - { - EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); - } - - EigenvectorsType m_eivec; - RealVectorType m_eivalues; - typename TridiagonalizationType::SubDiagonalType m_subdiag; - ComputationInfo m_info; - bool m_isInitialized; - bool m_eigenvectorsOk; -}; - -namespace internal { -/** \internal - * - * \eigenvalues_module \ingroup Eigenvalues_Module - * - * Performs a QR step on a tridiagonal symmetric matrix represented as a - * pair of two vectors \a diag and \a subdiag. - * - * \param diag the diagonal part of the input selfadjoint tridiagonal matrix - * \param subdiag the sub-diagonal part of the input selfadjoint tridiagonal matrix - * \param start starting index of the submatrix to work on - * \param end last+1 index of the submatrix to work on - * \param matrixQ pointer to the column-major matrix holding the eigenvectors, can be 0 - * \param n size of the input matrix - * - * For compilation efficiency reasons, this procedure does not use eigen expression - * for its arguments. - * - * Implemented from Golub's "Matrix Computations", algorithm 8.3.2: - * "implicit symmetric QR step with Wilkinson shift" - */ -template -EIGEN_DEVICE_FUNC -static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n); -} - -template -template -EIGEN_DEVICE_FUNC -SelfAdjointEigenSolver& SelfAdjointEigenSolver -::compute(const EigenBase& a_matrix, int options) -{ - check_template_parameters(); - - const InputType &matrix(a_matrix.derived()); - - using std::abs; - eigen_assert(matrix.cols() == matrix.rows()); - eigen_assert((options&~(EigVecMask|GenEigMask))==0 - && (options&EigVecMask)!=EigVecMask - && "invalid option parameter"); - bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; - Index n = matrix.cols(); - m_eivalues.resize(n,1); - - if(n==1) - { - m_eivec = matrix; - m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0)); - if(computeEigenvectors) - m_eivec.setOnes(n,n); - m_info = Success; - m_isInitialized = true; - m_eigenvectorsOk = computeEigenvectors; - return *this; - } - - // declare some aliases - RealVectorType& diag = m_eivalues; - EigenvectorsType& mat = m_eivec; - - // map the matrix coefficients to [-1:1] to avoid over- and underflow. - mat = matrix.template triangularView(); - RealScalar scale = mat.cwiseAbs().maxCoeff(); - if(scale==RealScalar(0)) scale = RealScalar(1); - mat.template triangularView() /= scale; - m_subdiag.resize(n-1); - internal::tridiagonalization_inplace(mat, diag, m_subdiag, computeEigenvectors); - - m_info = internal::computeFromTridiagonal_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec); - - // scale back the eigen values - m_eivalues *= scale; - - m_isInitialized = true; - m_eigenvectorsOk = computeEigenvectors; - return *this; -} - -template -SelfAdjointEigenSolver& SelfAdjointEigenSolver -::computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options) -{ - //TODO : Add an option to scale the values beforehand - bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; - - m_eivalues = diag; - m_subdiag = subdiag; - if (computeEigenvectors) - { - m_eivec.setIdentity(diag.size(), diag.size()); - } - m_info = internal::computeFromTridiagonal_impl(m_eivalues, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec); - - m_isInitialized = true; - m_eigenvectorsOk = computeEigenvectors; - return *this; -} - -namespace internal { -/** - * \internal - * \brief Compute the eigendecomposition from a tridiagonal matrix - * - * \param[in,out] diag : On input, the diagonal of the matrix, on output the eigenvalues - * \param[in,out] subdiag : The subdiagonal part of the matrix (entries are modified during the decomposition) - * \param[in] maxIterations : the maximum number of iterations - * \param[in] computeEigenvectors : whether the eigenvectors have to be computed or not - * \param[out] eivec : The matrix to store the eigenvectors if computeEigenvectors==true. Must be allocated on input. - * \returns \c Success or \c NoConvergence - */ -template -ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec) -{ - using std::abs; - - ComputationInfo info; - typedef typename MatrixType::Scalar Scalar; - - Index n = diag.size(); - Index end = n-1; - Index start = 0; - Index iter = 0; // total number of iterations - - typedef typename DiagType::RealScalar RealScalar; - const RealScalar considerAsZero = (std::numeric_limits::min)(); - const RealScalar precision = RealScalar(2)*NumTraits::epsilon(); - - while (end>0) - { - for (Index i = start; i0 && subdiag[end-1]==RealScalar(0)) - { - end--; - } - if (end<=0) - break; - - // if we spent too many iterations, we give up - iter++; - if(iter > maxIterations * n) break; - - start = end - 1; - while (start>0 && subdiag[start-1]!=0) - start--; - - internal::tridiagonal_qr_step(diag.data(), subdiag.data(), start, end, computeEigenvectors ? eivec.data() : (Scalar*)0, n); - } - if (iter <= maxIterations * n) - info = Success; - else - info = NoConvergence; - - // Sort eigenvalues and corresponding vectors. - // TODO make the sort optional ? - // TODO use a better sort algorithm !! - if (info == Success) - { - for (Index i = 0; i < n-1; ++i) - { - Index k; - diag.segment(i,n-i).minCoeff(&k); - if (k > 0) - { - std::swap(diag[i], diag[k+i]); - if(computeEigenvectors) - eivec.col(i).swap(eivec.col(k+i)); - } - } - } - return info; -} - -template struct direct_selfadjoint_eigenvalues -{ - EIGEN_DEVICE_FUNC - static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options) - { eig.compute(A,options); } -}; - -template struct direct_selfadjoint_eigenvalues -{ - typedef typename SolverType::MatrixType MatrixType; - typedef typename SolverType::RealVectorType VectorType; - typedef typename SolverType::Scalar Scalar; - typedef typename SolverType::EigenvectorsType EigenvectorsType; - - - /** \internal - * Computes the roots of the characteristic polynomial of \a m. - * For numerical stability m.trace() should be near zero and to avoid over- or underflow m should be normalized. - */ - EIGEN_DEVICE_FUNC - static inline void computeRoots(const MatrixType& m, VectorType& roots) - { - EIGEN_USING_STD_MATH(sqrt) - EIGEN_USING_STD_MATH(atan2) - EIGEN_USING_STD_MATH(cos) - EIGEN_USING_STD_MATH(sin) - const Scalar s_inv3 = Scalar(1)/Scalar(3); - const Scalar s_sqrt3 = sqrt(Scalar(3)); - - // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The - // eigenvalues are the roots to this equation, all guaranteed to be - // real-valued, because the matrix is symmetric. - Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(1,0)*m(2,0)*m(2,1) - m(0,0)*m(2,1)*m(2,1) - m(1,1)*m(2,0)*m(2,0) - m(2,2)*m(1,0)*m(1,0); - Scalar c1 = m(0,0)*m(1,1) - m(1,0)*m(1,0) + m(0,0)*m(2,2) - m(2,0)*m(2,0) + m(1,1)*m(2,2) - m(2,1)*m(2,1); - Scalar c2 = m(0,0) + m(1,1) + m(2,2); - - // Construct the parameters used in classifying the roots of the equation - // and in solving the equation for the roots in closed form. - Scalar c2_over_3 = c2*s_inv3; - Scalar a_over_3 = (c2*c2_over_3 - c1)*s_inv3; - a_over_3 = numext::maxi(a_over_3, Scalar(0)); - - Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1)); - - Scalar q = a_over_3*a_over_3*a_over_3 - half_b*half_b; - q = numext::maxi(q, Scalar(0)); - - // Compute the eigenvalues by solving for the roots of the polynomial. - Scalar rho = sqrt(a_over_3); - Scalar theta = atan2(sqrt(q),half_b)*s_inv3; // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3] - Scalar cos_theta = cos(theta); - Scalar sin_theta = sin(theta); - // roots are already sorted, since cos is monotonically decreasing on [0, pi] - roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); // == 2*rho*cos(theta+2pi/3) - roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); // == 2*rho*cos(theta+ pi/3) - roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta; - } - - EIGEN_DEVICE_FUNC - static inline bool extract_kernel(MatrixType& mat, Ref res, Ref representative) - { - using std::abs; - Index i0; - // Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal): - mat.diagonal().cwiseAbs().maxCoeff(&i0); - // mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector, - // so let's save it: - representative = mat.col(i0); - Scalar n0, n1; - VectorType c0, c1; - n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm(); - n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm(); - if(n0>n1) res = c0/std::sqrt(n0); - else res = c1/std::sqrt(n1); - - return true; - } - - EIGEN_DEVICE_FUNC - static inline void run(SolverType& solver, const MatrixType& mat, int options) - { - eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows()); - eigen_assert((options&~(EigVecMask|GenEigMask))==0 - && (options&EigVecMask)!=EigVecMask - && "invalid option parameter"); - bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; - - EigenvectorsType& eivecs = solver.m_eivec; - VectorType& eivals = solver.m_eivalues; - - // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow. - Scalar shift = mat.trace() / Scalar(3); - // TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for computing the eigenvectors later - MatrixType scaledMat = mat.template selfadjointView(); - scaledMat.diagonal().array() -= shift; - Scalar scale = scaledMat.cwiseAbs().maxCoeff(); - if(scale > 0) scaledMat /= scale; // TODO for scale==0 we could save the remaining operations - - // compute the eigenvalues - computeRoots(scaledMat,eivals); - - // compute the eigenvectors - if(computeEigenvectors) - { - if((eivals(2)-eivals(0))<=Eigen::NumTraits::epsilon()) - { - // All three eigenvalues are numerically the same - eivecs.setIdentity(); - } - else - { - MatrixType tmp; - tmp = scaledMat; - - // Compute the eigenvector of the most distinct eigenvalue - Scalar d0 = eivals(2) - eivals(1); - Scalar d1 = eivals(1) - eivals(0); - Index k(0), l(2); - if(d0 > d1) - { - numext::swap(k,l); - d0 = d1; - } - - // Compute the eigenvector of index k - { - tmp.diagonal().array () -= eivals(k); - // By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector. - extract_kernel(tmp, eivecs.col(k), eivecs.col(l)); - } - - // Compute eigenvector of index l - if(d0<=2*Eigen::NumTraits::epsilon()*d1) - { - // If d0 is too small, then the two other eigenvalues are numerically the same, - // and thus we only have to ortho-normalize the near orthogonal vector we saved above. - eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l))*eivecs.col(l); - eivecs.col(l).normalize(); - } - else - { - tmp = scaledMat; - tmp.diagonal().array () -= eivals(l); - - VectorType dummy; - extract_kernel(tmp, eivecs.col(l), dummy); - } - - // Compute last eigenvector from the other two - eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized(); - } - } - - // Rescale back to the original size. - eivals *= scale; - eivals.array() += shift; - - solver.m_info = Success; - solver.m_isInitialized = true; - solver.m_eigenvectorsOk = computeEigenvectors; - } -}; - -// 2x2 direct eigenvalues decomposition, code from Hauke Heibel -template -struct direct_selfadjoint_eigenvalues -{ - typedef typename SolverType::MatrixType MatrixType; - typedef typename SolverType::RealVectorType VectorType; - typedef typename SolverType::Scalar Scalar; - typedef typename SolverType::EigenvectorsType EigenvectorsType; - - EIGEN_DEVICE_FUNC - static inline void computeRoots(const MatrixType& m, VectorType& roots) - { - using std::sqrt; - const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0))); - const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1)); - roots(0) = t1 - t0; - roots(1) = t1 + t0; - } - - EIGEN_DEVICE_FUNC - static inline void run(SolverType& solver, const MatrixType& mat, int options) - { - EIGEN_USING_STD_MATH(sqrt); - EIGEN_USING_STD_MATH(abs); - - eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows()); - eigen_assert((options&~(EigVecMask|GenEigMask))==0 - && (options&EigVecMask)!=EigVecMask - && "invalid option parameter"); - bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; - - EigenvectorsType& eivecs = solver.m_eivec; - VectorType& eivals = solver.m_eivalues; - - // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow. - Scalar shift = mat.trace() / Scalar(2); - MatrixType scaledMat = mat; - scaledMat.coeffRef(0,1) = mat.coeff(1,0); - scaledMat.diagonal().array() -= shift; - Scalar scale = scaledMat.cwiseAbs().maxCoeff(); - if(scale > Scalar(0)) - scaledMat /= scale; - - // Compute the eigenvalues - computeRoots(scaledMat,eivals); - - // compute the eigen vectors - if(computeEigenvectors) - { - if((eivals(1)-eivals(0))<=abs(eivals(1))*Eigen::NumTraits::epsilon()) - { - eivecs.setIdentity(); - } - else - { - scaledMat.diagonal().array () -= eivals(1); - Scalar a2 = numext::abs2(scaledMat(0,0)); - Scalar c2 = numext::abs2(scaledMat(1,1)); - Scalar b2 = numext::abs2(scaledMat(1,0)); - if(a2>c2) - { - eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0); - eivecs.col(1) /= sqrt(a2+b2); - } - else - { - eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0); - eivecs.col(1) /= sqrt(c2+b2); - } - - eivecs.col(0) << eivecs.col(1).unitOrthogonal(); - } - } - - // Rescale back to the original size. - eivals *= scale; - eivals.array() += shift; - - solver.m_info = Success; - solver.m_isInitialized = true; - solver.m_eigenvectorsOk = computeEigenvectors; - } -}; - -} - -template -EIGEN_DEVICE_FUNC -SelfAdjointEigenSolver& SelfAdjointEigenSolver -::computeDirect(const MatrixType& matrix, int options) -{ - internal::direct_selfadjoint_eigenvalues::IsComplex>::run(*this,matrix,options); - return *this; -} - -namespace internal { -template -EIGEN_DEVICE_FUNC -static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n) -{ - using std::abs; - RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5); - RealScalar e = subdiag[end-1]; - // Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still - // underflow thus leading to inf/NaN values when using the following commented code: -// RealScalar e2 = numext::abs2(subdiag[end-1]); -// RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2)); - // This explain the following, somewhat more complicated, version: - RealScalar mu = diag[end]; - if(td==RealScalar(0)) - mu -= abs(e); - else - { - RealScalar e2 = numext::abs2(subdiag[end-1]); - RealScalar h = numext::hypot(td,e); - if(e2==RealScalar(0)) mu -= (e / (td + (td>RealScalar(0) ? RealScalar(1) : RealScalar(-1)))) * (e / h); - else mu -= e2 / (td + (td>RealScalar(0) ? h : -h)); - } - - RealScalar x = diag[start] - mu; - RealScalar z = subdiag[start]; - for (Index k = start; k < end; ++k) - { - JacobiRotation rot; - rot.makeGivens(x, z); - - // do T = G' T G - RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k]; - RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1]; - - diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]); - diag[k+1] = rot.s() * sdk + rot.c() * dkp1; - subdiag[k] = rot.c() * sdk - rot.s() * dkp1; - - - if (k > start) - subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z; - - x = subdiag[k]; - - if (k < end - 1) - { - z = -rot.s() * subdiag[k+1]; - subdiag[k + 1] = rot.c() * subdiag[k+1]; - } - - // apply the givens rotation to the unit matrix Q = Q * G - if (matrixQ) - { - // FIXME if StorageOrder == RowMajor this operation is not very efficient - Map > q(matrixQ,n,n); - q.applyOnTheRight(k,k+1,rot); - } - } -} - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_SELFADJOINTEIGENSOLVER_H diff --git a/src/math_meigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h b/src/math_meigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h deleted file mode 100755 index b0c947dc0..000000000 --- a/src/math_meigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +++ /dev/null @@ -1,87 +0,0 @@ -/* - Copyright (c) 2011, Intel Corporation. All rights reserved. - - Redistribution and use in source and binary forms, with or without modification, - are permitted provided that the following conditions are met: - - * Redistributions of source code must retain the above copyright notice, this - list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above copyright notice, - this list of conditions and the following disclaimer in the documentation - and/or other materials provided with the distribution. - * Neither the name of Intel Corporation nor the names of its contributors may - be used to endorse or promote products derived from this software without - specific prior written permission. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND - ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED - WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR - ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES - (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON - ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - - ******************************************************************************** - * Content : Eigen bindings to LAPACKe - * Self-adjoint eigenvalues/eigenvectors. - ******************************************************************************** -*/ - -#ifndef EIGEN_SAEIGENSOLVER_LAPACKE_H -#define EIGEN_SAEIGENSOLVER_LAPACKE_H - -namespace Eigen { - -/** \internal Specialization for the data types supported by LAPACKe */ - -#define EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, EIGCOLROW ) \ -template<> template inline \ -SelfAdjointEigenSolver >& \ -SelfAdjointEigenSolver >::compute(const EigenBase& matrix, int options) \ -{ \ - eigen_assert(matrix.cols() == matrix.rows()); \ - eigen_assert((options&~(EigVecMask|GenEigMask))==0 \ - && (options&EigVecMask)!=EigVecMask \ - && "invalid option parameter"); \ - bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; \ - lapack_int n = internal::convert_index(matrix.cols()), lda, info; \ - m_eivalues.resize(n,1); \ - m_subdiag.resize(n-1); \ - m_eivec = matrix; \ -\ - if(n==1) \ - { \ - m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0)); \ - if(computeEigenvectors) m_eivec.setOnes(n,n); \ - m_info = Success; \ - m_isInitialized = true; \ - m_eigenvectorsOk = computeEigenvectors; \ - return *this; \ - } \ -\ - lda = internal::convert_index(m_eivec.outerStride()); \ - char jobz, uplo='L'/*, range='A'*/; \ - jobz = computeEigenvectors ? 'V' : 'N'; \ -\ - info = LAPACKE_##LAPACKE_NAME( LAPACK_COL_MAJOR, jobz, uplo, n, (LAPACKE_TYPE*)m_eivec.data(), lda, (LAPACKE_RTYPE*)m_eivalues.data() ); \ - m_info = (info==0) ? Success : NoConvergence; \ - m_isInitialized = true; \ - m_eigenvectorsOk = computeEigenvectors; \ - return *this; \ -} - -#define EIGEN_LAPACKE_EIG_SELFADJ(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME ) \ - EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, ColMajor ) \ - EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, RowMajor ) - -EIGEN_LAPACKE_EIG_SELFADJ(double, double, double, dsyev) -EIGEN_LAPACKE_EIG_SELFADJ(float, float, float, ssyev) -EIGEN_LAPACKE_EIG_SELFADJ(dcomplex, lapack_complex_double, double, zheev) -EIGEN_LAPACKE_EIG_SELFADJ(scomplex, lapack_complex_float, float, cheev) - -} // end namespace Eigen - -#endif // EIGEN_SAEIGENSOLVER_H diff --git a/src/math_meigen/Eigen/src/Eigenvalues/Tridiagonalization.h b/src/math_meigen/Eigen/src/Eigenvalues/Tridiagonalization.h deleted file mode 100755 index 1d102c17b..000000000 --- a/src/math_meigen/Eigen/src/Eigenvalues/Tridiagonalization.h +++ /dev/null @@ -1,556 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2010 Jitse Niesen -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_TRIDIAGONALIZATION_H -#define EIGEN_TRIDIAGONALIZATION_H - -namespace Eigen { - -namespace internal { - -template struct TridiagonalizationMatrixTReturnType; -template -struct traits > - : public traits -{ - typedef typename MatrixType::PlainObject ReturnType; // FIXME shall it be a BandMatrix? - enum { Flags = 0 }; -}; - -template -void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs); -} - -/** \eigenvalues_module \ingroup Eigenvalues_Module - * - * - * \class Tridiagonalization - * - * \brief Tridiagonal decomposition of a selfadjoint matrix - * - * \tparam _MatrixType the type of the matrix of which we are computing the - * tridiagonal decomposition; this is expected to be an instantiation of the - * Matrix class template. - * - * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that: - * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix. - * - * A tridiagonal matrix is a matrix which has nonzero elements only on the - * main diagonal and the first diagonal below and above it. The Hessenberg - * decomposition of a selfadjoint matrix is in fact a tridiagonal - * decomposition. This class is used in SelfAdjointEigenSolver to compute the - * eigenvalues and eigenvectors of a selfadjoint matrix. - * - * Call the function compute() to compute the tridiagonal decomposition of a - * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&) - * constructor which computes the tridiagonal Schur decomposition at - * construction time. Once the decomposition is computed, you can use the - * matrixQ() and matrixT() functions to retrieve the matrices Q and T in the - * decomposition. - * - * The documentation of Tridiagonalization(const MatrixType&) contains an - * example of the typical use of this class. - * - * \sa class HessenbergDecomposition, class SelfAdjointEigenSolver - */ -template class Tridiagonalization -{ - public: - - /** \brief Synonym for the template parameter \p _MatrixType. */ - typedef _MatrixType MatrixType; - - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 - - enum { - Size = MatrixType::RowsAtCompileTime, - SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1), - Options = MatrixType::Options, - MaxSize = MatrixType::MaxRowsAtCompileTime, - MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1) - }; - - typedef Matrix CoeffVectorType; - typedef typename internal::plain_col_type::type DiagonalType; - typedef Matrix SubDiagonalType; - typedef typename internal::remove_all::type MatrixTypeRealView; - typedef internal::TridiagonalizationMatrixTReturnType MatrixTReturnType; - - typedef typename internal::conditional::IsComplex, - typename internal::add_const_on_value_type::RealReturnType>::type, - const Diagonal - >::type DiagonalReturnType; - - typedef typename internal::conditional::IsComplex, - typename internal::add_const_on_value_type::RealReturnType>::type, - const Diagonal - >::type SubDiagonalReturnType; - - /** \brief Return type of matrixQ() */ - typedef HouseholderSequence::type> HouseholderSequenceType; - - /** \brief Default constructor. - * - * \param [in] size Positive integer, size of the matrix whose tridiagonal - * decomposition will be computed. - * - * The default constructor is useful in cases in which the user intends to - * perform decompositions via compute(). The \p size parameter is only - * used as a hint. It is not an error to give a wrong \p size, but it may - * impair performance. - * - * \sa compute() for an example. - */ - explicit Tridiagonalization(Index size = Size==Dynamic ? 2 : Size) - : m_matrix(size,size), - m_hCoeffs(size > 1 ? size-1 : 1), - m_isInitialized(false) - {} - - /** \brief Constructor; computes tridiagonal decomposition of given matrix. - * - * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition - * is to be computed. - * - * This constructor calls compute() to compute the tridiagonal decomposition. - * - * Example: \include Tridiagonalization_Tridiagonalization_MatrixType.cpp - * Output: \verbinclude Tridiagonalization_Tridiagonalization_MatrixType.out - */ - template - explicit Tridiagonalization(const EigenBase& matrix) - : m_matrix(matrix.derived()), - m_hCoeffs(matrix.cols() > 1 ? matrix.cols()-1 : 1), - m_isInitialized(false) - { - internal::tridiagonalization_inplace(m_matrix, m_hCoeffs); - m_isInitialized = true; - } - - /** \brief Computes tridiagonal decomposition of given matrix. - * - * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition - * is to be computed. - * \returns Reference to \c *this - * - * The tridiagonal decomposition is computed by bringing the columns of - * the matrix successively in the required form using Householder - * reflections. The cost is \f$ 4n^3/3 \f$ flops, where \f$ n \f$ denotes - * the size of the given matrix. - * - * This method reuses of the allocated data in the Tridiagonalization - * object, if the size of the matrix does not change. - * - * Example: \include Tridiagonalization_compute.cpp - * Output: \verbinclude Tridiagonalization_compute.out - */ - template - Tridiagonalization& compute(const EigenBase& matrix) - { - m_matrix = matrix.derived(); - m_hCoeffs.resize(matrix.rows()-1, 1); - internal::tridiagonalization_inplace(m_matrix, m_hCoeffs); - m_isInitialized = true; - return *this; - } - - /** \brief Returns the Householder coefficients. - * - * \returns a const reference to the vector of Householder coefficients - * - * \pre Either the constructor Tridiagonalization(const MatrixType&) or - * the member function compute(const MatrixType&) has been called before - * to compute the tridiagonal decomposition of a matrix. - * - * The Householder coefficients allow the reconstruction of the matrix - * \f$ Q \f$ in the tridiagonal decomposition from the packed data. - * - * Example: \include Tridiagonalization_householderCoefficients.cpp - * Output: \verbinclude Tridiagonalization_householderCoefficients.out - * - * \sa packedMatrix(), \ref Householder_Module "Householder module" - */ - inline CoeffVectorType householderCoefficients() const - { - eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); - return m_hCoeffs; - } - - /** \brief Returns the internal representation of the decomposition - * - * \returns a const reference to a matrix with the internal representation - * of the decomposition. - * - * \pre Either the constructor Tridiagonalization(const MatrixType&) or - * the member function compute(const MatrixType&) has been called before - * to compute the tridiagonal decomposition of a matrix. - * - * The returned matrix contains the following information: - * - the strict upper triangular part is equal to the input matrix A. - * - the diagonal and lower sub-diagonal represent the real tridiagonal - * symmetric matrix T. - * - the rest of the lower part contains the Householder vectors that, - * combined with Householder coefficients returned by - * householderCoefficients(), allows to reconstruct the matrix Q as - * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$. - * Here, the matrices \f$ H_i \f$ are the Householder transformations - * \f$ H_i = (I - h_i v_i v_i^T) \f$ - * where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and - * \f$ v_i \f$ is the Householder vector defined by - * \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$ - * with M the matrix returned by this function. - * - * See LAPACK for further details on this packed storage. - * - * Example: \include Tridiagonalization_packedMatrix.cpp - * Output: \verbinclude Tridiagonalization_packedMatrix.out - * - * \sa householderCoefficients() - */ - inline const MatrixType& packedMatrix() const - { - eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); - return m_matrix; - } - - /** \brief Returns the unitary matrix Q in the decomposition - * - * \returns object representing the matrix Q - * - * \pre Either the constructor Tridiagonalization(const MatrixType&) or - * the member function compute(const MatrixType&) has been called before - * to compute the tridiagonal decomposition of a matrix. - * - * This function returns a light-weight object of template class - * HouseholderSequence. You can either apply it directly to a matrix or - * you can convert it to a matrix of type #MatrixType. - * - * \sa Tridiagonalization(const MatrixType&) for an example, - * matrixT(), class HouseholderSequence - */ - HouseholderSequenceType matrixQ() const - { - eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); - return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate()) - .setLength(m_matrix.rows() - 1) - .setShift(1); - } - - /** \brief Returns an expression of the tridiagonal matrix T in the decomposition - * - * \returns expression object representing the matrix T - * - * \pre Either the constructor Tridiagonalization(const MatrixType&) or - * the member function compute(const MatrixType&) has been called before - * to compute the tridiagonal decomposition of a matrix. - * - * Currently, this function can be used to extract the matrix T from internal - * data and copy it to a dense matrix object. In most cases, it may be - * sufficient to directly use the packed matrix or the vector expressions - * returned by diagonal() and subDiagonal() instead of creating a new - * dense copy matrix with this function. - * - * \sa Tridiagonalization(const MatrixType&) for an example, - * matrixQ(), packedMatrix(), diagonal(), subDiagonal() - */ - MatrixTReturnType matrixT() const - { - eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); - return MatrixTReturnType(m_matrix.real()); - } - - /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition. - * - * \returns expression representing the diagonal of T - * - * \pre Either the constructor Tridiagonalization(const MatrixType&) or - * the member function compute(const MatrixType&) has been called before - * to compute the tridiagonal decomposition of a matrix. - * - * Example: \include Tridiagonalization_diagonal.cpp - * Output: \verbinclude Tridiagonalization_diagonal.out - * - * \sa matrixT(), subDiagonal() - */ - DiagonalReturnType diagonal() const; - - /** \brief Returns the subdiagonal of the tridiagonal matrix T in the decomposition. - * - * \returns expression representing the subdiagonal of T - * - * \pre Either the constructor Tridiagonalization(const MatrixType&) or - * the member function compute(const MatrixType&) has been called before - * to compute the tridiagonal decomposition of a matrix. - * - * \sa diagonal() for an example, matrixT() - */ - SubDiagonalReturnType subDiagonal() const; - - protected: - - MatrixType m_matrix; - CoeffVectorType m_hCoeffs; - bool m_isInitialized; -}; - -template -typename Tridiagonalization::DiagonalReturnType -Tridiagonalization::diagonal() const -{ - eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); - return m_matrix.diagonal().real(); -} - -template -typename Tridiagonalization::SubDiagonalReturnType -Tridiagonalization::subDiagonal() const -{ - eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); - return m_matrix.template diagonal<-1>().real(); -} - -namespace internal { - -/** \internal - * Performs a tridiagonal decomposition of the selfadjoint matrix \a matA in-place. - * - * \param[in,out] matA On input the selfadjoint matrix. Only the \b lower triangular part is referenced. - * On output, the strict upper part is left unchanged, and the lower triangular part - * represents the T and Q matrices in packed format has detailed below. - * \param[out] hCoeffs returned Householder coefficients (see below) - * - * On output, the tridiagonal selfadjoint matrix T is stored in the diagonal - * and lower sub-diagonal of the matrix \a matA. - * The unitary matrix Q is represented in a compact way as a product of - * Householder reflectors \f$ H_i \f$ such that: - * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$. - * The Householder reflectors are defined as - * \f$ H_i = (I - h_i v_i v_i^T) \f$ - * where \f$ h_i = hCoeffs[i]\f$ is the \f$ i \f$th Householder coefficient and - * \f$ v_i \f$ is the Householder vector defined by - * \f$ v_i = [ 0, \ldots, 0, 1, matA(i+2,i), \ldots, matA(N-1,i) ]^T \f$. - * - * Implemented from Golub's "Matrix Computations", algorithm 8.3.1. - * - * \sa Tridiagonalization::packedMatrix() - */ -template -void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs) -{ - using numext::conj; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - Index n = matA.rows(); - eigen_assert(n==matA.cols()); - eigen_assert(n==hCoeffs.size()+1 || n==1); - - for (Index i = 0; i() - * (conj(h) * matA.col(i).tail(remainingSize))); - - hCoeffs.tail(n-i-1) += (conj(h)*RealScalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1); - - matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView() - .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1)); - - matA.col(i).coeffRef(i+1) = beta; - hCoeffs.coeffRef(i) = h; - } -} - -// forward declaration, implementation at the end of this file -template::IsComplex> -struct tridiagonalization_inplace_selector; - -/** \brief Performs a full tridiagonalization in place - * - * \param[in,out] mat On input, the selfadjoint matrix whose tridiagonal - * decomposition is to be computed. Only the lower triangular part referenced. - * The rest is left unchanged. On output, the orthogonal matrix Q - * in the decomposition if \p extractQ is true. - * \param[out] diag The diagonal of the tridiagonal matrix T in the - * decomposition. - * \param[out] subdiag The subdiagonal of the tridiagonal matrix T in - * the decomposition. - * \param[in] extractQ If true, the orthogonal matrix Q in the - * decomposition is computed and stored in \p mat. - * - * Computes the tridiagonal decomposition of the selfadjoint matrix \p mat in place - * such that \f$ mat = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real - * symmetric tridiagonal matrix. - * - * The tridiagonal matrix T is passed to the output parameters \p diag and \p subdiag. If - * \p extractQ is true, then the orthogonal matrix Q is passed to \p mat. Otherwise the lower - * part of the matrix \p mat is destroyed. - * - * The vectors \p diag and \p subdiag are not resized. The function - * assumes that they are already of the correct size. The length of the - * vector \p diag should equal the number of rows in \p mat, and the - * length of the vector \p subdiag should be one left. - * - * This implementation contains an optimized path for 3-by-3 matrices - * which is especially useful for plane fitting. - * - * \note Currently, it requires two temporary vectors to hold the intermediate - * Householder coefficients, and to reconstruct the matrix Q from the Householder - * reflectors. - * - * Example (this uses the same matrix as the example in - * Tridiagonalization::Tridiagonalization(const MatrixType&)): - * \include Tridiagonalization_decomposeInPlace.cpp - * Output: \verbinclude Tridiagonalization_decomposeInPlace.out - * - * \sa class Tridiagonalization - */ -template -void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) -{ - eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1); - tridiagonalization_inplace_selector::run(mat, diag, subdiag, extractQ); -} - -/** \internal - * General full tridiagonalization - */ -template -struct tridiagonalization_inplace_selector -{ - typedef typename Tridiagonalization::CoeffVectorType CoeffVectorType; - typedef typename Tridiagonalization::HouseholderSequenceType HouseholderSequenceType; - template - static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) - { - CoeffVectorType hCoeffs(mat.cols()-1); - tridiagonalization_inplace(mat,hCoeffs); - diag = mat.diagonal().real(); - subdiag = mat.template diagonal<-1>().real(); - if(extractQ) - mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) - .setLength(mat.rows() - 1) - .setShift(1); - } -}; - -/** \internal - * Specialization for 3x3 real matrices. - * Especially useful for plane fitting. - */ -template -struct tridiagonalization_inplace_selector -{ - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - - template - static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) - { - using std::sqrt; - const RealScalar tol = (std::numeric_limits::min)(); - diag[0] = mat(0,0); - RealScalar v1norm2 = numext::abs2(mat(2,0)); - if(v1norm2 <= tol) - { - diag[1] = mat(1,1); - diag[2] = mat(2,2); - subdiag[0] = mat(1,0); - subdiag[1] = mat(2,1); - if (extractQ) - mat.setIdentity(); - } - else - { - RealScalar beta = sqrt(numext::abs2(mat(1,0)) + v1norm2); - RealScalar invBeta = RealScalar(1)/beta; - Scalar m01 = mat(1,0) * invBeta; - Scalar m02 = mat(2,0) * invBeta; - Scalar q = RealScalar(2)*m01*mat(2,1) + m02*(mat(2,2) - mat(1,1)); - diag[1] = mat(1,1) + m02*q; - diag[2] = mat(2,2) - m02*q; - subdiag[0] = beta; - subdiag[1] = mat(2,1) - m01 * q; - if (extractQ) - { - mat << 1, 0, 0, - 0, m01, m02, - 0, m02, -m01; - } - } - } -}; - -/** \internal - * Trivial specialization for 1x1 matrices - */ -template -struct tridiagonalization_inplace_selector -{ - typedef typename MatrixType::Scalar Scalar; - - template - static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&, bool extractQ) - { - diag(0,0) = numext::real(mat(0,0)); - if(extractQ) - mat(0,0) = Scalar(1); - } -}; - -/** \internal - * \eigenvalues_module \ingroup Eigenvalues_Module - * - * \brief Expression type for return value of Tridiagonalization::matrixT() - * - * \tparam MatrixType type of underlying dense matrix - */ -template struct TridiagonalizationMatrixTReturnType -: public ReturnByValue > -{ - public: - /** \brief Constructor. - * - * \param[in] mat The underlying dense matrix - */ - TridiagonalizationMatrixTReturnType(const MatrixType& mat) : m_matrix(mat) { } - - template - inline void evalTo(ResultType& result) const - { - result.setZero(); - result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate(); - result.diagonal() = m_matrix.diagonal(); - result.template diagonal<-1>() = m_matrix.template diagonal<-1>(); - } - - Index rows() const { return m_matrix.rows(); } - Index cols() const { return m_matrix.cols(); } - - protected: - typename MatrixType::Nested m_matrix; -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_TRIDIAGONALIZATION_H diff --git a/src/math_meigen/Eigen/src/Geometry/AlignedBox.h b/src/math_meigen/Eigen/src/Geometry/AlignedBox.h deleted file mode 100755 index 066eae4f9..000000000 --- a/src/math_meigen/Eigen/src/Geometry/AlignedBox.h +++ /dev/null @@ -1,392 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_ALIGNEDBOX_H -#define EIGEN_ALIGNEDBOX_H - -namespace Eigen { - -/** \geometry_module \ingroup Geometry_Module - * - * - * \class AlignedBox - * - * \brief An axis aligned box - * - * \tparam _Scalar the type of the scalar coefficients - * \tparam _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. - * - * This class represents an axis aligned box as a pair of the minimal and maximal corners. - * \warning The result of most methods is undefined when applied to an empty box. You can check for empty boxes using isEmpty(). - * \sa alignedboxtypedefs - */ -template -class AlignedBox -{ -public: -EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim) - enum { AmbientDimAtCompileTime = _AmbientDim }; - typedef _Scalar Scalar; - typedef NumTraits ScalarTraits; - typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 - typedef typename ScalarTraits::Real RealScalar; - typedef typename ScalarTraits::NonInteger NonInteger; - typedef Matrix VectorType; - typedef CwiseBinaryOp, const VectorType, const VectorType> VectorTypeSum; - - /** Define constants to name the corners of a 1D, 2D or 3D axis aligned bounding box */ - enum CornerType - { - /** 1D names @{ */ - Min=0, Max=1, - /** @} */ - - /** Identifier for 2D corner @{ */ - BottomLeft=0, BottomRight=1, - TopLeft=2, TopRight=3, - /** @} */ - - /** Identifier for 3D corner @{ */ - BottomLeftFloor=0, BottomRightFloor=1, - TopLeftFloor=2, TopRightFloor=3, - BottomLeftCeil=4, BottomRightCeil=5, - TopLeftCeil=6, TopRightCeil=7 - /** @} */ - }; - - - /** Default constructor initializing a null box. */ - EIGEN_DEVICE_FUNC inline AlignedBox() - { if (AmbientDimAtCompileTime!=Dynamic) setEmpty(); } - - /** Constructs a null box with \a _dim the dimension of the ambient space. */ - EIGEN_DEVICE_FUNC inline explicit AlignedBox(Index _dim) : m_min(_dim), m_max(_dim) - { setEmpty(); } - - /** Constructs a box with extremities \a _min and \a _max. - * \warning If either component of \a _min is larger than the same component of \a _max, the constructed box is empty. */ - template - EIGEN_DEVICE_FUNC inline AlignedBox(const OtherVectorType1& _min, const OtherVectorType2& _max) : m_min(_min), m_max(_max) {} - - /** Constructs a box containing a single point \a p. */ - template - EIGEN_DEVICE_FUNC inline explicit AlignedBox(const MatrixBase& p) : m_min(p), m_max(m_min) - { } - - EIGEN_DEVICE_FUNC ~AlignedBox() {} - - /** \returns the dimension in which the box holds */ - EIGEN_DEVICE_FUNC inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size() : Index(AmbientDimAtCompileTime); } - - /** \deprecated use isEmpty() */ - EIGEN_DEVICE_FUNC inline bool isNull() const { return isEmpty(); } - - /** \deprecated use setEmpty() */ - EIGEN_DEVICE_FUNC inline void setNull() { setEmpty(); } - - /** \returns true if the box is empty. - * \sa setEmpty */ - EIGEN_DEVICE_FUNC inline bool isEmpty() const { return (m_min.array() > m_max.array()).any(); } - - /** Makes \c *this an empty box. - * \sa isEmpty */ - EIGEN_DEVICE_FUNC inline void setEmpty() - { - m_min.setConstant( ScalarTraits::highest() ); - m_max.setConstant( ScalarTraits::lowest() ); - } - - /** \returns the minimal corner */ - EIGEN_DEVICE_FUNC inline const VectorType& (min)() const { return m_min; } - /** \returns a non const reference to the minimal corner */ - EIGEN_DEVICE_FUNC inline VectorType& (min)() { return m_min; } - /** \returns the maximal corner */ - EIGEN_DEVICE_FUNC inline const VectorType& (max)() const { return m_max; } - /** \returns a non const reference to the maximal corner */ - EIGEN_DEVICE_FUNC inline VectorType& (max)() { return m_max; } - - /** \returns the center of the box */ - EIGEN_DEVICE_FUNC inline const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(VectorTypeSum, RealScalar, quotient) - center() const - { return (m_min+m_max)/RealScalar(2); } - - /** \returns the lengths of the sides of the bounding box. - * Note that this function does not get the same - * result for integral or floating scalar types: see - */ - EIGEN_DEVICE_FUNC inline const CwiseBinaryOp< internal::scalar_difference_op, const VectorType, const VectorType> sizes() const - { return m_max - m_min; } - - /** \returns the volume of the bounding box */ - EIGEN_DEVICE_FUNC inline Scalar volume() const - { return sizes().prod(); } - - /** \returns an expression for the bounding box diagonal vector - * if the length of the diagonal is needed: diagonal().norm() - * will provide it. - */ - EIGEN_DEVICE_FUNC inline CwiseBinaryOp< internal::scalar_difference_op, const VectorType, const VectorType> diagonal() const - { return sizes(); } - - /** \returns the vertex of the bounding box at the corner defined by - * the corner-id corner. It works only for a 1D, 2D or 3D bounding box. - * For 1D bounding boxes corners are named by 2 enum constants: - * BottomLeft and BottomRight. - * For 2D bounding boxes, corners are named by 4 enum constants: - * BottomLeft, BottomRight, TopLeft, TopRight. - * For 3D bounding boxes, the following names are added: - * BottomLeftCeil, BottomRightCeil, TopLeftCeil, TopRightCeil. - */ - EIGEN_DEVICE_FUNC inline VectorType corner(CornerType corner) const - { - EIGEN_STATIC_ASSERT(_AmbientDim <= 3, THIS_METHOD_IS_ONLY_FOR_VECTORS_OF_A_SPECIFIC_SIZE); - - VectorType res; - - Index mult = 1; - for(Index d=0; d(Scalar(0), Scalar(1)); - } - else - r[d] = internal::random(m_min[d], m_max[d]); - } - return r; - } - - /** \returns true if the point \a p is inside the box \c *this. */ - template - EIGEN_DEVICE_FUNC inline bool contains(const MatrixBase& p) const - { - typename internal::nested_eval::type p_n(p.derived()); - return (m_min.array()<=p_n.array()).all() && (p_n.array()<=m_max.array()).all(); - } - - /** \returns true if the box \a b is entirely inside the box \c *this. */ - EIGEN_DEVICE_FUNC inline bool contains(const AlignedBox& b) const - { return (m_min.array()<=(b.min)().array()).all() && ((b.max)().array()<=m_max.array()).all(); } - - /** \returns true if the box \a b is intersecting the box \c *this. - * \sa intersection, clamp */ - EIGEN_DEVICE_FUNC inline bool intersects(const AlignedBox& b) const - { return (m_min.array()<=(b.max)().array()).all() && ((b.min)().array()<=m_max.array()).all(); } - - /** Extends \c *this such that it contains the point \a p and returns a reference to \c *this. - * \sa extend(const AlignedBox&) */ - template - EIGEN_DEVICE_FUNC inline AlignedBox& extend(const MatrixBase& p) - { - typename internal::nested_eval::type p_n(p.derived()); - m_min = m_min.cwiseMin(p_n); - m_max = m_max.cwiseMax(p_n); - return *this; - } - - /** Extends \c *this such that it contains the box \a b and returns a reference to \c *this. - * \sa merged, extend(const MatrixBase&) */ - EIGEN_DEVICE_FUNC inline AlignedBox& extend(const AlignedBox& b) - { - m_min = m_min.cwiseMin(b.m_min); - m_max = m_max.cwiseMax(b.m_max); - return *this; - } - - /** Clamps \c *this by the box \a b and returns a reference to \c *this. - * \note If the boxes don't intersect, the resulting box is empty. - * \sa intersection(), intersects() */ - EIGEN_DEVICE_FUNC inline AlignedBox& clamp(const AlignedBox& b) - { - m_min = m_min.cwiseMax(b.m_min); - m_max = m_max.cwiseMin(b.m_max); - return *this; - } - - /** Returns an AlignedBox that is the intersection of \a b and \c *this - * \note If the boxes don't intersect, the resulting box is empty. - * \sa intersects(), clamp, contains() */ - EIGEN_DEVICE_FUNC inline AlignedBox intersection(const AlignedBox& b) const - {return AlignedBox(m_min.cwiseMax(b.m_min), m_max.cwiseMin(b.m_max)); } - - /** Returns an AlignedBox that is the union of \a b and \c *this. - * \note Merging with an empty box may result in a box bigger than \c *this. - * \sa extend(const AlignedBox&) */ - EIGEN_DEVICE_FUNC inline AlignedBox merged(const AlignedBox& b) const - { return AlignedBox(m_min.cwiseMin(b.m_min), m_max.cwiseMax(b.m_max)); } - - /** Translate \c *this by the vector \a t and returns a reference to \c *this. */ - template - EIGEN_DEVICE_FUNC inline AlignedBox& translate(const MatrixBase& a_t) - { - const typename internal::nested_eval::type t(a_t.derived()); - m_min += t; - m_max += t; - return *this; - } - - /** \returns the squared distance between the point \a p and the box \c *this, - * and zero if \a p is inside the box. - * \sa exteriorDistance(const MatrixBase&), squaredExteriorDistance(const AlignedBox&) - */ - template - EIGEN_DEVICE_FUNC inline Scalar squaredExteriorDistance(const MatrixBase& p) const; - - /** \returns the squared distance between the boxes \a b and \c *this, - * and zero if the boxes intersect. - * \sa exteriorDistance(const AlignedBox&), squaredExteriorDistance(const MatrixBase&) - */ - EIGEN_DEVICE_FUNC inline Scalar squaredExteriorDistance(const AlignedBox& b) const; - - /** \returns the distance between the point \a p and the box \c *this, - * and zero if \a p is inside the box. - * \sa squaredExteriorDistance(const MatrixBase&), exteriorDistance(const AlignedBox&) - */ - template - EIGEN_DEVICE_FUNC inline NonInteger exteriorDistance(const MatrixBase& p) const - { EIGEN_USING_STD_MATH(sqrt) return sqrt(NonInteger(squaredExteriorDistance(p))); } - - /** \returns the distance between the boxes \a b and \c *this, - * and zero if the boxes intersect. - * \sa squaredExteriorDistance(const AlignedBox&), exteriorDistance(const MatrixBase&) - */ - EIGEN_DEVICE_FUNC inline NonInteger exteriorDistance(const AlignedBox& b) const - { EIGEN_USING_STD_MATH(sqrt) return sqrt(NonInteger(squaredExteriorDistance(b))); } - - /** \returns \c *this with scalar type casted to \a NewScalarType - * - * Note that if \a NewScalarType is equal to the current scalar type of \c *this - * then this function smartly returns a const reference to \c *this. - */ - template - EIGEN_DEVICE_FUNC inline typename internal::cast_return_type >::type cast() const - { - return typename internal::cast_return_type >::type(*this); - } - - /** Copy constructor with scalar type conversion */ - template - EIGEN_DEVICE_FUNC inline explicit AlignedBox(const AlignedBox& other) - { - m_min = (other.min)().template cast(); - m_max = (other.max)().template cast(); - } - - /** \returns \c true if \c *this is approximately equal to \a other, within the precision - * determined by \a prec. - * - * \sa MatrixBase::isApprox() */ - EIGEN_DEVICE_FUNC bool isApprox(const AlignedBox& other, const RealScalar& prec = ScalarTraits::dummy_precision()) const - { return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); } - -protected: - - VectorType m_min, m_max; -}; - - - -template -template -EIGEN_DEVICE_FUNC inline Scalar AlignedBox::squaredExteriorDistance(const MatrixBase& a_p) const -{ - typename internal::nested_eval::type p(a_p.derived()); - Scalar dist2(0); - Scalar aux; - for (Index k=0; k p[k] ) - { - aux = m_min[k] - p[k]; - dist2 += aux*aux; - } - else if( p[k] > m_max[k] ) - { - aux = p[k] - m_max[k]; - dist2 += aux*aux; - } - } - return dist2; -} - -template -EIGEN_DEVICE_FUNC inline Scalar AlignedBox::squaredExteriorDistance(const AlignedBox& b) const -{ - Scalar dist2(0); - Scalar aux; - for (Index k=0; k b.m_max[k] ) - { - aux = m_min[k] - b.m_max[k]; - dist2 += aux*aux; - } - else if( b.m_min[k] > m_max[k] ) - { - aux = b.m_min[k] - m_max[k]; - dist2 += aux*aux; - } - } - return dist2; -} - -/** \defgroup alignedboxtypedefs Global aligned box typedefs - * - * \ingroup Geometry_Module - * - * Eigen defines several typedef shortcuts for most common aligned box types. - * - * The general patterns are the following: - * - * \c AlignedBoxSizeType where \c Size can be \c 1, \c 2,\c 3,\c 4 for fixed size boxes or \c X for dynamic size, - * and where \c Type can be \c i for integer, \c f for float, \c d for double. - * - * For example, \c AlignedBox3d is a fixed-size 3x3 aligned box type of doubles, and \c AlignedBoxXf is a dynamic-size aligned box of floats. - * - * \sa class AlignedBox - */ - -#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \ -/** \ingroup alignedboxtypedefs */ \ -typedef AlignedBox AlignedBox##SizeSuffix##TypeSuffix; - -#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \ -EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 1, 1) \ -EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \ -EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \ -EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \ -EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) - -EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i) -EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f) -EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d) - -#undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES -#undef EIGEN_MAKE_TYPEDEFS - -} // end namespace Eigen - -#endif // EIGEN_ALIGNEDBOX_H diff --git a/src/math_meigen/Eigen/src/Geometry/AngleAxis.h b/src/math_meigen/Eigen/src/Geometry/AngleAxis.h deleted file mode 100755 index 83ee1be46..000000000 --- a/src/math_meigen/Eigen/src/Geometry/AngleAxis.h +++ /dev/null @@ -1,247 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_ANGLEAXIS_H -#define EIGEN_ANGLEAXIS_H - -namespace Eigen { - -/** \geometry_module \ingroup Geometry_Module - * - * \class AngleAxis - * - * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis - * - * \param _Scalar the scalar type, i.e., the type of the coefficients. - * - * \warning When setting up an AngleAxis object, the axis vector \b must \b be \b normalized. - * - * The following two typedefs are provided for convenience: - * \li \c AngleAxisf for \c float - * \li \c AngleAxisd for \c double - * - * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily - * mimic Euler-angles. Here is an example: - * \include AngleAxis_mimic_euler.cpp - * Output: \verbinclude AngleAxis_mimic_euler.out - * - * \note This class is not aimed to be used to store a rotation transformation, - * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix) - * and transformation objects. - * - * \sa class Quaternion, class Transform, MatrixBase::UnitX() - */ - -namespace internal { -template struct traits > -{ - typedef _Scalar Scalar; -}; -} - -template -class AngleAxis : public RotationBase,3> -{ - typedef RotationBase,3> Base; - -public: - - using Base::operator*; - - enum { Dim = 3 }; - /** the scalar type of the coefficients */ - typedef _Scalar Scalar; - typedef Matrix Matrix3; - typedef Matrix Vector3; - typedef Quaternion QuaternionType; - -protected: - - Vector3 m_axis; - Scalar m_angle; - -public: - - /** Default constructor without initialization. */ - EIGEN_DEVICE_FUNC AngleAxis() {} - /** Constructs and initialize the angle-axis rotation from an \a angle in radian - * and an \a axis which \b must \b be \b normalized. - * - * \warning If the \a axis vector is not normalized, then the angle-axis object - * represents an invalid rotation. */ - template - EIGEN_DEVICE_FUNC - inline AngleAxis(const Scalar& angle, const MatrixBase& axis) : m_axis(axis), m_angle(angle) {} - /** Constructs and initialize the angle-axis rotation from a quaternion \a q. - * This function implicitly normalizes the quaternion \a q. - */ - template - EIGEN_DEVICE_FUNC inline explicit AngleAxis(const QuaternionBase& q) { *this = q; } - /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */ - template - EIGEN_DEVICE_FUNC inline explicit AngleAxis(const MatrixBase& m) { *this = m; } - - /** \returns the value of the rotation angle in radian */ - EIGEN_DEVICE_FUNC Scalar angle() const { return m_angle; } - /** \returns a read-write reference to the stored angle in radian */ - EIGEN_DEVICE_FUNC Scalar& angle() { return m_angle; } - - /** \returns the rotation axis */ - EIGEN_DEVICE_FUNC const Vector3& axis() const { return m_axis; } - /** \returns a read-write reference to the stored rotation axis. - * - * \warning The rotation axis must remain a \b unit vector. - */ - EIGEN_DEVICE_FUNC Vector3& axis() { return m_axis; } - - /** Concatenates two rotations */ - EIGEN_DEVICE_FUNC inline QuaternionType operator* (const AngleAxis& other) const - { return QuaternionType(*this) * QuaternionType(other); } - - /** Concatenates two rotations */ - EIGEN_DEVICE_FUNC inline QuaternionType operator* (const QuaternionType& other) const - { return QuaternionType(*this) * other; } - - /** Concatenates two rotations */ - friend EIGEN_DEVICE_FUNC inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b) - { return a * QuaternionType(b); } - - /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */ - EIGEN_DEVICE_FUNC AngleAxis inverse() const - { return AngleAxis(-m_angle, m_axis); } - - template - EIGEN_DEVICE_FUNC AngleAxis& operator=(const QuaternionBase& q); - template - EIGEN_DEVICE_FUNC AngleAxis& operator=(const MatrixBase& m); - - template - EIGEN_DEVICE_FUNC AngleAxis& fromRotationMatrix(const MatrixBase& m); - EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix(void) const; - - /** \returns \c *this with scalar type casted to \a NewScalarType - * - * Note that if \a NewScalarType is equal to the current scalar type of \c *this - * then this function smartly returns a const reference to \c *this. - */ - template - EIGEN_DEVICE_FUNC inline typename internal::cast_return_type >::type cast() const - { return typename internal::cast_return_type >::type(*this); } - - /** Copy constructor with scalar type conversion */ - template - EIGEN_DEVICE_FUNC inline explicit AngleAxis(const AngleAxis& other) - { - m_axis = other.axis().template cast(); - m_angle = Scalar(other.angle()); - } - - EIGEN_DEVICE_FUNC static inline const AngleAxis Identity() { return AngleAxis(Scalar(0), Vector3::UnitX()); } - - /** \returns \c true if \c *this is approximately equal to \a other, within the precision - * determined by \a prec. - * - * \sa MatrixBase::isApprox() */ - EIGEN_DEVICE_FUNC bool isApprox(const AngleAxis& other, const typename NumTraits::Real& prec = NumTraits::dummy_precision()) const - { return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); } -}; - -/** \ingroup Geometry_Module - * single precision angle-axis type */ -typedef AngleAxis AngleAxisf; -/** \ingroup Geometry_Module - * double precision angle-axis type */ -typedef AngleAxis AngleAxisd; - -/** Set \c *this from a \b unit quaternion. - * - * The resulting axis is normalized, and the computed angle is in the [0,pi] range. - * - * This function implicitly normalizes the quaternion \a q. - */ -template -template -EIGEN_DEVICE_FUNC AngleAxis& AngleAxis::operator=(const QuaternionBase& q) -{ - EIGEN_USING_STD_MATH(atan2) - EIGEN_USING_STD_MATH(abs) - Scalar n = q.vec().norm(); - if(n::epsilon()) - n = q.vec().stableNorm(); - - if (n != Scalar(0)) - { - m_angle = Scalar(2)*atan2(n, abs(q.w())); - if(q.w() < Scalar(0)) - n = -n; - m_axis = q.vec() / n; - } - else - { - m_angle = Scalar(0); - m_axis << Scalar(1), Scalar(0), Scalar(0); - } - return *this; -} - -/** Set \c *this from a 3x3 rotation matrix \a mat. - */ -template -template -EIGEN_DEVICE_FUNC AngleAxis& AngleAxis::operator=(const MatrixBase& mat) -{ - // Since a direct conversion would not be really faster, - // let's use the robust Quaternion implementation: - return *this = QuaternionType(mat); -} - -/** -* \brief Sets \c *this from a 3x3 rotation matrix. -**/ -template -template -EIGEN_DEVICE_FUNC AngleAxis& AngleAxis::fromRotationMatrix(const MatrixBase& mat) -{ - return *this = QuaternionType(mat); -} - -/** Constructs and \returns an equivalent 3x3 rotation matrix. - */ -template -typename AngleAxis::Matrix3 -EIGEN_DEVICE_FUNC AngleAxis::toRotationMatrix(void) const -{ - EIGEN_USING_STD_MATH(sin) - EIGEN_USING_STD_MATH(cos) - Matrix3 res; - Vector3 sin_axis = sin(m_angle) * m_axis; - Scalar c = cos(m_angle); - Vector3 cos1_axis = (Scalar(1)-c) * m_axis; - - Scalar tmp; - tmp = cos1_axis.x() * m_axis.y(); - res.coeffRef(0,1) = tmp - sin_axis.z(); - res.coeffRef(1,0) = tmp + sin_axis.z(); - - tmp = cos1_axis.x() * m_axis.z(); - res.coeffRef(0,2) = tmp + sin_axis.y(); - res.coeffRef(2,0) = tmp - sin_axis.y(); - - tmp = cos1_axis.y() * m_axis.z(); - res.coeffRef(1,2) = tmp - sin_axis.x(); - res.coeffRef(2,1) = tmp + sin_axis.x(); - - res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c; - - return res; -} - -} // end namespace Eigen - -#endif // EIGEN_ANGLEAXIS_H diff --git a/src/math_meigen/Eigen/src/Geometry/EulerAngles.h b/src/math_meigen/Eigen/src/Geometry/EulerAngles.h deleted file mode 100755 index c633268af..000000000 --- a/src/math_meigen/Eigen/src/Geometry/EulerAngles.h +++ /dev/null @@ -1,114 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_EULERANGLES_H -#define EIGEN_EULERANGLES_H - -namespace Eigen { - -/** \geometry_module \ingroup Geometry_Module - * - * - * \returns the Euler-angles of the rotation matrix \c *this using the convention defined by the triplet (\a a0,\a a1,\a a2) - * - * Each of the three parameters \a a0,\a a1,\a a2 represents the respective rotation axis as an integer in {0,1,2}. - * For instance, in: - * \code Vector3f ea = mat.eulerAngles(2, 0, 2); \endcode - * "2" represents the z axis and "0" the x axis, etc. The returned angles are such that - * we have the following equality: - * \code - * mat == AngleAxisf(ea[0], Vector3f::UnitZ()) - * * AngleAxisf(ea[1], Vector3f::UnitX()) - * * AngleAxisf(ea[2], Vector3f::UnitZ()); \endcode - * This corresponds to the right-multiply conventions (with right hand side frames). - * - * The returned angles are in the ranges [0:pi]x[-pi:pi]x[-pi:pi]. - * - * \sa class AngleAxis - */ -template -EIGEN_DEVICE_FUNC inline Matrix::Scalar,3,1> -MatrixBase::eulerAngles(Index a0, Index a1, Index a2) const -{ - EIGEN_USING_STD_MATH(atan2) - EIGEN_USING_STD_MATH(sin) - EIGEN_USING_STD_MATH(cos) - /* Implemented from Graphics Gems IV */ - EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived,3,3) - - Matrix res; - typedef Matrix Vector2; - - const Index odd = ((a0+1)%3 == a1) ? 0 : 1; - const Index i = a0; - const Index j = (a0 + 1 + odd)%3; - const Index k = (a0 + 2 - odd)%3; - - if (a0==a2) - { - res[0] = atan2(coeff(j,i), coeff(k,i)); - if((odd && res[0]Scalar(0))) - { - if(res[0] > Scalar(0)) { - res[0] -= Scalar(EIGEN_PI); - } - else { - res[0] += Scalar(EIGEN_PI); - } - Scalar s2 = Vector2(coeff(j,i), coeff(k,i)).norm(); - res[1] = -atan2(s2, coeff(i,i)); - } - else - { - Scalar s2 = Vector2(coeff(j,i), coeff(k,i)).norm(); - res[1] = atan2(s2, coeff(i,i)); - } - - // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles, - // we can compute their respective rotation, and apply its inverse to M. Since the result must - // be a rotation around x, we have: - // - // c2 s1.s2 c1.s2 1 0 0 - // 0 c1 -s1 * M = 0 c3 s3 - // -s2 s1.c2 c1.c2 0 -s3 c3 - // - // Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3 - - Scalar s1 = sin(res[0]); - Scalar c1 = cos(res[0]); - res[2] = atan2(c1*coeff(j,k)-s1*coeff(k,k), c1*coeff(j,j) - s1 * coeff(k,j)); - } - else - { - res[0] = atan2(coeff(j,k), coeff(k,k)); - Scalar c2 = Vector2(coeff(i,i), coeff(i,j)).norm(); - if((odd && res[0]Scalar(0))) { - if(res[0] > Scalar(0)) { - res[0] -= Scalar(EIGEN_PI); - } - else { - res[0] += Scalar(EIGEN_PI); - } - res[1] = atan2(-coeff(i,k), -c2); - } - else - res[1] = atan2(-coeff(i,k), c2); - Scalar s1 = sin(res[0]); - Scalar c1 = cos(res[0]); - res[2] = atan2(s1*coeff(k,i)-c1*coeff(j,i), c1*coeff(j,j) - s1 * coeff(k,j)); - } - if (!odd) - res = -res; - - return res; -} - -} // end namespace Eigen - -#endif // EIGEN_EULERANGLES_H diff --git a/src/math_meigen/Eigen/src/Geometry/Homogeneous.h b/src/math_meigen/Eigen/src/Geometry/Homogeneous.h deleted file mode 100755 index 5f0da1a9e..000000000 --- a/src/math_meigen/Eigen/src/Geometry/Homogeneous.h +++ /dev/null @@ -1,497 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009-2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_HOMOGENEOUS_H -#define EIGEN_HOMOGENEOUS_H - -namespace Eigen { - -/** \geometry_module \ingroup Geometry_Module - * - * \class Homogeneous - * - * \brief Expression of one (or a set of) homogeneous vector(s) - * - * \param MatrixType the type of the object in which we are making homogeneous - * - * This class represents an expression of one (or a set of) homogeneous vector(s). - * It is the return type of MatrixBase::homogeneous() and most of the time - * this is the only way it is used. - * - * \sa MatrixBase::homogeneous() - */ - -namespace internal { - -template -struct traits > - : traits -{ - typedef typename traits::StorageKind StorageKind; - typedef typename ref_selector::type MatrixTypeNested; - typedef typename remove_reference::type _MatrixTypeNested; - enum { - RowsPlusOne = (MatrixType::RowsAtCompileTime != Dynamic) ? - int(MatrixType::RowsAtCompileTime) + 1 : Dynamic, - ColsPlusOne = (MatrixType::ColsAtCompileTime != Dynamic) ? - int(MatrixType::ColsAtCompileTime) + 1 : Dynamic, - RowsAtCompileTime = Direction==Vertical ? RowsPlusOne : MatrixType::RowsAtCompileTime, - ColsAtCompileTime = Direction==Horizontal ? ColsPlusOne : MatrixType::ColsAtCompileTime, - MaxRowsAtCompileTime = RowsAtCompileTime, - MaxColsAtCompileTime = ColsAtCompileTime, - TmpFlags = _MatrixTypeNested::Flags & HereditaryBits, - Flags = ColsAtCompileTime==1 ? (TmpFlags & ~RowMajorBit) - : RowsAtCompileTime==1 ? (TmpFlags | RowMajorBit) - : TmpFlags - }; -}; - -template struct homogeneous_left_product_impl; -template struct homogeneous_right_product_impl; - -} // end namespace internal - -template class Homogeneous - : public MatrixBase >, internal::no_assignment_operator -{ - public: - - typedef MatrixType NestedExpression; - enum { Direction = _Direction }; - - typedef MatrixBase Base; - EIGEN_DENSE_PUBLIC_INTERFACE(Homogeneous) - - EIGEN_DEVICE_FUNC explicit inline Homogeneous(const MatrixType& matrix) - : m_matrix(matrix) - {} - - EIGEN_DEVICE_FUNC inline Index rows() const { return m_matrix.rows() + (int(Direction)==Vertical ? 1 : 0); } - EIGEN_DEVICE_FUNC inline Index cols() const { return m_matrix.cols() + (int(Direction)==Horizontal ? 1 : 0); } - - EIGEN_DEVICE_FUNC const NestedExpression& nestedExpression() const { return m_matrix; } - - template - EIGEN_DEVICE_FUNC inline const Product - operator* (const MatrixBase& rhs) const - { - eigen_assert(int(Direction)==Horizontal); - return Product(*this,rhs.derived()); - } - - template friend - EIGEN_DEVICE_FUNC inline const Product - operator* (const MatrixBase& lhs, const Homogeneous& rhs) - { - eigen_assert(int(Direction)==Vertical); - return Product(lhs.derived(),rhs); - } - - template friend - EIGEN_DEVICE_FUNC inline const Product, Homogeneous > - operator* (const Transform& lhs, const Homogeneous& rhs) - { - eigen_assert(int(Direction)==Vertical); - return Product, Homogeneous>(lhs,rhs); - } - - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::result_of::type - redux(const Func& func) const - { - return func(m_matrix.redux(func), Scalar(1)); - } - - protected: - typename MatrixType::Nested m_matrix; -}; - -/** \geometry_module \ingroup Geometry_Module - * - * \returns a vector expression that is one longer than the vector argument, with the value 1 symbolically appended as the last coefficient. - * - * This can be used to convert affine coordinates to homogeneous coordinates. - * - * \only_for_vectors - * - * Example: \include MatrixBase_homogeneous.cpp - * Output: \verbinclude MatrixBase_homogeneous.out - * - * \sa VectorwiseOp::homogeneous(), class Homogeneous - */ -template -EIGEN_DEVICE_FUNC inline typename MatrixBase::HomogeneousReturnType -MatrixBase::homogeneous() const -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); - return HomogeneousReturnType(derived()); -} - -/** \geometry_module \ingroup Geometry_Module - * - * \returns an expression where the value 1 is symbolically appended as the final coefficient to each column (or row) of the matrix. - * - * This can be used to convert affine coordinates to homogeneous coordinates. - * - * Example: \include VectorwiseOp_homogeneous.cpp - * Output: \verbinclude VectorwiseOp_homogeneous.out - * - * \sa MatrixBase::homogeneous(), class Homogeneous */ -template -EIGEN_DEVICE_FUNC inline Homogeneous -VectorwiseOp::homogeneous() const -{ - return HomogeneousReturnType(_expression()); -} - -/** \geometry_module \ingroup Geometry_Module - * - * \brief homogeneous normalization - * - * \returns a vector expression of the N-1 first coefficients of \c *this divided by that last coefficient. - * - * This can be used to convert homogeneous coordinates to affine coordinates. - * - * It is essentially a shortcut for: - * \code - this->head(this->size()-1)/this->coeff(this->size()-1); - \endcode - * - * Example: \include MatrixBase_hnormalized.cpp - * Output: \verbinclude MatrixBase_hnormalized.out - * - * \sa VectorwiseOp::hnormalized() */ -template -EIGEN_DEVICE_FUNC inline const typename MatrixBase::HNormalizedReturnType -MatrixBase::hnormalized() const -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); - return ConstStartMinusOne(derived(),0,0, - ColsAtCompileTime==1?size()-1:1, - ColsAtCompileTime==1?1:size()-1) / coeff(size()-1); -} - -/** \geometry_module \ingroup Geometry_Module - * - * \brief column or row-wise homogeneous normalization - * - * \returns an expression of the first N-1 coefficients of each column (or row) of \c *this divided by the last coefficient of each column (or row). - * - * This can be used to convert homogeneous coordinates to affine coordinates. - * - * It is conceptually equivalent to calling MatrixBase::hnormalized() to each column (or row) of \c *this. - * - * Example: \include DirectionWise_hnormalized.cpp - * Output: \verbinclude DirectionWise_hnormalized.out - * - * \sa MatrixBase::hnormalized() */ -template -EIGEN_DEVICE_FUNC inline const typename VectorwiseOp::HNormalizedReturnType -VectorwiseOp::hnormalized() const -{ - return HNormalized_Block(_expression(),0,0, - Direction==Vertical ? _expression().rows()-1 : _expression().rows(), - Direction==Horizontal ? _expression().cols()-1 : _expression().cols()).cwiseQuotient( - Replicate - (HNormalized_Factors(_expression(), - Direction==Vertical ? _expression().rows()-1:0, - Direction==Horizontal ? _expression().cols()-1:0, - Direction==Vertical ? 1 : _expression().rows(), - Direction==Horizontal ? 1 : _expression().cols()), - Direction==Vertical ? _expression().rows()-1 : 1, - Direction==Horizontal ? _expression().cols()-1 : 1)); -} - -namespace internal { - -template -struct take_matrix_for_product -{ - typedef MatrixOrTransformType type; - EIGEN_DEVICE_FUNC static const type& run(const type &x) { return x; } -}; - -template -struct take_matrix_for_product > -{ - typedef Transform TransformType; - typedef typename internal::add_const::type type; - EIGEN_DEVICE_FUNC static type run (const TransformType& x) { return x.affine(); } -}; - -template -struct take_matrix_for_product > -{ - typedef Transform TransformType; - typedef typename TransformType::MatrixType type; - EIGEN_DEVICE_FUNC static const type& run (const TransformType& x) { return x.matrix(); } -}; - -template -struct traits,Lhs> > -{ - typedef typename take_matrix_for_product::type LhsMatrixType; - typedef typename remove_all::type MatrixTypeCleaned; - typedef typename remove_all::type LhsMatrixTypeCleaned; - typedef typename make_proper_matrix_type< - typename traits::Scalar, - LhsMatrixTypeCleaned::RowsAtCompileTime, - MatrixTypeCleaned::ColsAtCompileTime, - MatrixTypeCleaned::PlainObject::Options, - LhsMatrixTypeCleaned::MaxRowsAtCompileTime, - MatrixTypeCleaned::MaxColsAtCompileTime>::type ReturnType; -}; - -template -struct homogeneous_left_product_impl,Lhs> - : public ReturnByValue,Lhs> > -{ - typedef typename traits::LhsMatrixType LhsMatrixType; - typedef typename remove_all::type LhsMatrixTypeCleaned; - typedef typename remove_all::type LhsMatrixTypeNested; - EIGEN_DEVICE_FUNC homogeneous_left_product_impl(const Lhs& lhs, const MatrixType& rhs) - : m_lhs(take_matrix_for_product::run(lhs)), - m_rhs(rhs) - {} - - EIGEN_DEVICE_FUNC inline Index rows() const { return m_lhs.rows(); } - EIGEN_DEVICE_FUNC inline Index cols() const { return m_rhs.cols(); } - - template EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const - { - // FIXME investigate how to allow lazy evaluation of this product when possible - dst = Block - (m_lhs,0,0,m_lhs.rows(),m_lhs.cols()-1) * m_rhs; - dst += m_lhs.col(m_lhs.cols()-1).rowwise() - .template replicate(m_rhs.cols()); - } - - typename LhsMatrixTypeCleaned::Nested m_lhs; - typename MatrixType::Nested m_rhs; -}; - -template -struct traits,Rhs> > -{ - typedef typename make_proper_matrix_type::Scalar, - MatrixType::RowsAtCompileTime, - Rhs::ColsAtCompileTime, - MatrixType::PlainObject::Options, - MatrixType::MaxRowsAtCompileTime, - Rhs::MaxColsAtCompileTime>::type ReturnType; -}; - -template -struct homogeneous_right_product_impl,Rhs> - : public ReturnByValue,Rhs> > -{ - typedef typename remove_all::type RhsNested; - EIGEN_DEVICE_FUNC homogeneous_right_product_impl(const MatrixType& lhs, const Rhs& rhs) - : m_lhs(lhs), m_rhs(rhs) - {} - - EIGEN_DEVICE_FUNC inline Index rows() const { return m_lhs.rows(); } - EIGEN_DEVICE_FUNC inline Index cols() const { return m_rhs.cols(); } - - template EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const - { - // FIXME investigate how to allow lazy evaluation of this product when possible - dst = m_lhs * Block - (m_rhs,0,0,m_rhs.rows()-1,m_rhs.cols()); - dst += m_rhs.row(m_rhs.rows()-1).colwise() - .template replicate(m_lhs.rows()); - } - - typename MatrixType::Nested m_lhs; - typename Rhs::Nested m_rhs; -}; - -template -struct evaluator_traits > -{ - typedef typename storage_kind_to_evaluator_kind::Kind Kind; - typedef HomogeneousShape Shape; -}; - -template<> struct AssignmentKind { typedef Dense2Dense Kind; }; - - -template -struct unary_evaluator, IndexBased> - : evaluator::PlainObject > -{ - typedef Homogeneous XprType; - typedef typename XprType::PlainObject PlainObject; - typedef evaluator Base; - - EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op) - : Base(), m_temp(op) - { - ::new (static_cast(this)) Base(m_temp); - } - -protected: - PlainObject m_temp; -}; - -// dense = homogeneous -template< typename DstXprType, typename ArgType, typename Scalar> -struct Assignment, internal::assign_op, Dense2Dense> -{ - typedef Homogeneous SrcXprType; - EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) - { - Index dstRows = src.rows(); - Index dstCols = src.cols(); - if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) - dst.resize(dstRows, dstCols); - - dst.template topRows(src.nestedExpression().rows()) = src.nestedExpression(); - dst.row(dst.rows()-1).setOnes(); - } -}; - -// dense = homogeneous -template< typename DstXprType, typename ArgType, typename Scalar> -struct Assignment, internal::assign_op, Dense2Dense> -{ - typedef Homogeneous SrcXprType; - EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) - { - Index dstRows = src.rows(); - Index dstCols = src.cols(); - if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) - dst.resize(dstRows, dstCols); - - dst.template leftCols(src.nestedExpression().cols()) = src.nestedExpression(); - dst.col(dst.cols()-1).setOnes(); - } -}; - -template -struct generic_product_impl, Rhs, HomogeneousShape, DenseShape, ProductTag> -{ - template - EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Homogeneous& lhs, const Rhs& rhs) - { - homogeneous_right_product_impl, Rhs>(lhs.nestedExpression(), rhs).evalTo(dst); - } -}; - -template -struct homogeneous_right_product_refactoring_helper -{ - enum { - Dim = Lhs::ColsAtCompileTime, - Rows = Lhs::RowsAtCompileTime - }; - typedef typename Rhs::template ConstNRowsBlockXpr::Type LinearBlockConst; - typedef typename remove_const::type LinearBlock; - typedef typename Rhs::ConstRowXpr ConstantColumn; - typedef Replicate ConstantBlock; - typedef Product LinearProduct; - typedef CwiseBinaryOp, const LinearProduct, const ConstantBlock> Xpr; -}; - -template -struct product_evaluator, ProductTag, HomogeneousShape, DenseShape> - : public evaluator::Xpr> -{ - typedef Product XprType; - typedef homogeneous_right_product_refactoring_helper helper; - typedef typename helper::ConstantBlock ConstantBlock; - typedef typename helper::Xpr RefactoredXpr; - typedef evaluator Base; - - EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) - : Base( xpr.lhs().nestedExpression() .lazyProduct( xpr.rhs().template topRows(xpr.lhs().nestedExpression().cols()) ) - + ConstantBlock(xpr.rhs().row(xpr.rhs().rows()-1),xpr.lhs().rows(), 1) ) - {} -}; - -template -struct generic_product_impl, DenseShape, HomogeneousShape, ProductTag> -{ - template - EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous& rhs) - { - homogeneous_left_product_impl, Lhs>(lhs, rhs.nestedExpression()).evalTo(dst); - } -}; - -// TODO: the following specialization is to address a regression from 3.2 to 3.3 -// In the future, this path should be optimized. -template -struct generic_product_impl, TriangularShape, HomogeneousShape, ProductTag> -{ - template - static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous& rhs) - { - dst.noalias() = lhs * rhs.eval(); - } -}; - -template -struct homogeneous_left_product_refactoring_helper -{ - enum { - Dim = Rhs::RowsAtCompileTime, - Cols = Rhs::ColsAtCompileTime - }; - typedef typename Lhs::template ConstNColsBlockXpr::Type LinearBlockConst; - typedef typename remove_const::type LinearBlock; - typedef typename Lhs::ConstColXpr ConstantColumn; - typedef Replicate ConstantBlock; - typedef Product LinearProduct; - typedef CwiseBinaryOp, const LinearProduct, const ConstantBlock> Xpr; -}; - -template -struct product_evaluator, ProductTag, DenseShape, HomogeneousShape> - : public evaluator::Xpr> -{ - typedef Product XprType; - typedef homogeneous_left_product_refactoring_helper helper; - typedef typename helper::ConstantBlock ConstantBlock; - typedef typename helper::Xpr RefactoredXpr; - typedef evaluator Base; - - EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) - : Base( xpr.lhs().template leftCols(xpr.rhs().nestedExpression().rows()) .lazyProduct( xpr.rhs().nestedExpression() ) - + ConstantBlock(xpr.lhs().col(xpr.lhs().cols()-1),1,xpr.rhs().cols()) ) - {} -}; - -template -struct generic_product_impl, Homogeneous, DenseShape, HomogeneousShape, ProductTag> -{ - typedef Transform TransformType; - template - EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const TransformType& lhs, const Homogeneous& rhs) - { - homogeneous_left_product_impl, TransformType>(lhs, rhs.nestedExpression()).evalTo(dst); - } -}; - -template -struct permutation_matrix_product - : public permutation_matrix_product -{}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_HOMOGENEOUS_H diff --git a/src/math_meigen/Eigen/src/Geometry/Hyperplane.h b/src/math_meigen/Eigen/src/Geometry/Hyperplane.h deleted file mode 100755 index 05929b299..000000000 --- a/src/math_meigen/Eigen/src/Geometry/Hyperplane.h +++ /dev/null @@ -1,282 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_HYPERPLANE_H -#define EIGEN_HYPERPLANE_H - -namespace Eigen { - -/** \geometry_module \ingroup Geometry_Module - * - * \class Hyperplane - * - * \brief A hyperplane - * - * A hyperplane is an affine subspace of dimension n-1 in a space of dimension n. - * For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane. - * - * \tparam _Scalar the scalar type, i.e., the type of the coefficients - * \tparam _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. - * Notice that the dimension of the hyperplane is _AmbientDim-1. - * - * This class represents an hyperplane as the zero set of the implicit equation - * \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part) - * and \f$ d \f$ is the distance (offset) to the origin. - */ -template -class Hyperplane -{ -public: - EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1) - enum { - AmbientDimAtCompileTime = _AmbientDim, - Options = _Options - }; - typedef _Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 - typedef Matrix VectorType; - typedef Matrix Coefficients; - typedef Block NormalReturnType; - typedef const Block ConstNormalReturnType; - - /** Default constructor without initialization */ - EIGEN_DEVICE_FUNC inline Hyperplane() {} - - template - EIGEN_DEVICE_FUNC Hyperplane(const Hyperplane& other) - : m_coeffs(other.coeffs()) - {} - - /** Constructs a dynamic-size hyperplane with \a _dim the dimension - * of the ambient space */ - EIGEN_DEVICE_FUNC inline explicit Hyperplane(Index _dim) : m_coeffs(_dim+1) {} - - /** Construct a plane from its normal \a n and a point \a e onto the plane. - * \warning the vector normal is assumed to be normalized. - */ - EIGEN_DEVICE_FUNC inline Hyperplane(const VectorType& n, const VectorType& e) - : m_coeffs(n.size()+1) - { - normal() = n; - offset() = -n.dot(e); - } - - /** Constructs a plane from its normal \a n and distance to the origin \a d - * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$. - * \warning the vector normal is assumed to be normalized. - */ - EIGEN_DEVICE_FUNC inline Hyperplane(const VectorType& n, const Scalar& d) - : m_coeffs(n.size()+1) - { - normal() = n; - offset() = d; - } - - /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space - * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made. - */ - EIGEN_DEVICE_FUNC static inline Hyperplane Through(const VectorType& p0, const VectorType& p1) - { - Hyperplane result(p0.size()); - result.normal() = (p1 - p0).unitOrthogonal(); - result.offset() = -p0.dot(result.normal()); - return result; - } - - /** Constructs a hyperplane passing through the three points. The dimension of the ambient space - * is required to be exactly 3. - */ - EIGEN_DEVICE_FUNC static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2) - { - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3) - Hyperplane result(p0.size()); - VectorType v0(p2 - p0), v1(p1 - p0); - result.normal() = v0.cross(v1); - RealScalar norm = result.normal().norm(); - if(norm <= v0.norm() * v1.norm() * NumTraits::epsilon()) - { - Matrix m; m << v0.transpose(), v1.transpose(); - JacobiSVD > svd(m, ComputeFullV); - result.normal() = svd.matrixV().col(2); - } - else - result.normal() /= norm; - result.offset() = -p0.dot(result.normal()); - return result; - } - - /** Constructs a hyperplane passing through the parametrized line \a parametrized. - * If the dimension of the ambient space is greater than 2, then there isn't uniqueness, - * so an arbitrary choice is made. - */ - // FIXME to be consitent with the rest this could be implemented as a static Through function ?? - EIGEN_DEVICE_FUNC explicit Hyperplane(const ParametrizedLine& parametrized) - { - normal() = parametrized.direction().unitOrthogonal(); - offset() = -parametrized.origin().dot(normal()); - } - - EIGEN_DEVICE_FUNC ~Hyperplane() {} - - /** \returns the dimension in which the plane holds */ - EIGEN_DEVICE_FUNC inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_coeffs.size()-1 : Index(AmbientDimAtCompileTime); } - - /** normalizes \c *this */ - EIGEN_DEVICE_FUNC void normalize(void) - { - m_coeffs /= normal().norm(); - } - - /** \returns the signed distance between the plane \c *this and a point \a p. - * \sa absDistance() - */ - EIGEN_DEVICE_FUNC inline Scalar signedDistance(const VectorType& p) const { return normal().dot(p) + offset(); } - - /** \returns the absolute distance between the plane \c *this and a point \a p. - * \sa signedDistance() - */ - EIGEN_DEVICE_FUNC inline Scalar absDistance(const VectorType& p) const { return numext::abs(signedDistance(p)); } - - /** \returns the projection of a point \a p onto the plane \c *this. - */ - EIGEN_DEVICE_FUNC inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); } - - /** \returns a constant reference to the unit normal vector of the plane, which corresponds - * to the linear part of the implicit equation. - */ - EIGEN_DEVICE_FUNC inline ConstNormalReturnType normal() const { return ConstNormalReturnType(m_coeffs,0,0,dim(),1); } - - /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds - * to the linear part of the implicit equation. - */ - EIGEN_DEVICE_FUNC inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); } - - /** \returns the distance to the origin, which is also the "constant term" of the implicit equation - * \warning the vector normal is assumed to be normalized. - */ - EIGEN_DEVICE_FUNC inline const Scalar& offset() const { return m_coeffs.coeff(dim()); } - - /** \returns a non-constant reference to the distance to the origin, which is also the constant part - * of the implicit equation */ - EIGEN_DEVICE_FUNC inline Scalar& offset() { return m_coeffs(dim()); } - - /** \returns a constant reference to the coefficients c_i of the plane equation: - * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$ - */ - EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; } - - /** \returns a non-constant reference to the coefficients c_i of the plane equation: - * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$ - */ - EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; } - - /** \returns the intersection of *this with \a other. - * - * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines. - * - * \note If \a other is approximately parallel to *this, this method will return any point on *this. - */ - EIGEN_DEVICE_FUNC VectorType intersection(const Hyperplane& other) const - { - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2) - Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0); - // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests - // whether the two lines are approximately parallel. - if(internal::isMuchSmallerThan(det, Scalar(1))) - { // special case where the two lines are approximately parallel. Pick any point on the first line. - if(numext::abs(coeffs().coeff(1))>numext::abs(coeffs().coeff(0))) - return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0)); - else - return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0)); - } - else - { // general case - Scalar invdet = Scalar(1) / det; - return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)), - invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2))); - } - } - - /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this. - * - * \param mat the Dim x Dim transformation matrix - * \param traits specifies whether the matrix \a mat represents an #Isometry - * or a more generic #Affine transformation. The default is #Affine. - */ - template - EIGEN_DEVICE_FUNC inline Hyperplane& transform(const MatrixBase& mat, TransformTraits traits = Affine) - { - if (traits==Affine) - { - normal() = mat.inverse().transpose() * normal(); - m_coeffs /= normal().norm(); - } - else if (traits==Isometry) - normal() = mat * normal(); - else - { - eigen_assert(0 && "invalid traits value in Hyperplane::transform()"); - } - return *this; - } - - /** Applies the transformation \a t to \c *this and returns a reference to \c *this. - * - * \param t the transformation of dimension Dim - * \param traits specifies whether the transformation \a t represents an #Isometry - * or a more generic #Affine transformation. The default is #Affine. - * Other kind of transformations are not supported. - */ - template - EIGEN_DEVICE_FUNC inline Hyperplane& transform(const Transform& t, - TransformTraits traits = Affine) - { - transform(t.linear(), traits); - offset() -= normal().dot(t.translation()); - return *this; - } - - /** \returns \c *this with scalar type casted to \a NewScalarType - * - * Note that if \a NewScalarType is equal to the current scalar type of \c *this - * then this function smartly returns a const reference to \c *this. - */ - template - EIGEN_DEVICE_FUNC inline typename internal::cast_return_type >::type cast() const - { - return typename internal::cast_return_type >::type(*this); - } - - /** Copy constructor with scalar type conversion */ - template - EIGEN_DEVICE_FUNC inline explicit Hyperplane(const Hyperplane& other) - { m_coeffs = other.coeffs().template cast(); } - - /** \returns \c true if \c *this is approximately equal to \a other, within the precision - * determined by \a prec. - * - * \sa MatrixBase::isApprox() */ - template - EIGEN_DEVICE_FUNC bool isApprox(const Hyperplane& other, const typename NumTraits::Real& prec = NumTraits::dummy_precision()) const - { return m_coeffs.isApprox(other.m_coeffs, prec); } - -protected: - - Coefficients m_coeffs; -}; - -} // end namespace Eigen - -#endif // EIGEN_HYPERPLANE_H diff --git a/src/math_meigen/Eigen/src/Geometry/OrthoMethods.h b/src/math_meigen/Eigen/src/Geometry/OrthoMethods.h deleted file mode 100755 index a035e6310..000000000 --- a/src/math_meigen/Eigen/src/Geometry/OrthoMethods.h +++ /dev/null @@ -1,234 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2009 Gael Guennebaud -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_ORTHOMETHODS_H -#define EIGEN_ORTHOMETHODS_H - -namespace Eigen { - -/** \geometry_module \ingroup Geometry_Module - * - * \returns the cross product of \c *this and \a other - * - * Here is a very good explanation of cross-product: http://xkcd.com/199/ - * - * With complex numbers, the cross product is implemented as - * \f$ (\mathbf{a}+i\mathbf{b}) \times (\mathbf{c}+i\mathbf{d}) = (\mathbf{a} \times \mathbf{c} - \mathbf{b} \times \mathbf{d}) - i(\mathbf{a} \times \mathbf{d} - \mathbf{b} \times \mathbf{c})\f$ - * - * \sa MatrixBase::cross3() - */ -template -template -#ifndef EIGEN_PARSED_BY_DOXYGEN -EIGEN_DEVICE_FUNC inline typename MatrixBase::template cross_product_return_type::type -#else -inline typename MatrixBase::PlainObject -#endif -MatrixBase::cross(const MatrixBase& other) const -{ - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,3) - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3) - - // Note that there is no need for an expression here since the compiler - // optimize such a small temporary very well (even within a complex expression) - typename internal::nested_eval::type lhs(derived()); - typename internal::nested_eval::type rhs(other.derived()); - return typename cross_product_return_type::type( - numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)), - numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)), - numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)) - ); -} - -namespace internal { - -template< int Arch,typename VectorLhs,typename VectorRhs, - typename Scalar = typename VectorLhs::Scalar, - bool Vectorizable = bool((VectorLhs::Flags&VectorRhs::Flags)&PacketAccessBit)> -struct cross3_impl { - EIGEN_DEVICE_FUNC static inline typename internal::plain_matrix_type::type - run(const VectorLhs& lhs, const VectorRhs& rhs) - { - return typename internal::plain_matrix_type::type( - numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)), - numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)), - numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)), - 0 - ); - } -}; - -} - -/** \geometry_module \ingroup Geometry_Module - * - * \returns the cross product of \c *this and \a other using only the x, y, and z coefficients - * - * The size of \c *this and \a other must be four. This function is especially useful - * when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization. - * - * \sa MatrixBase::cross() - */ -template -template -EIGEN_DEVICE_FUNC inline typename MatrixBase::PlainObject -MatrixBase::cross3(const MatrixBase& other) const -{ - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,4) - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,4) - - typedef typename internal::nested_eval::type DerivedNested; - typedef typename internal::nested_eval::type OtherDerivedNested; - DerivedNested lhs(derived()); - OtherDerivedNested rhs(other.derived()); - - return internal::cross3_impl::type, - typename internal::remove_all::type>::run(lhs,rhs); -} - -/** \geometry_module \ingroup Geometry_Module - * - * \returns a matrix expression of the cross product of each column or row - * of the referenced expression with the \a other vector. - * - * The referenced matrix must have one dimension equal to 3. - * The result matrix has the same dimensions than the referenced one. - * - * \sa MatrixBase::cross() */ -template -template -EIGEN_DEVICE_FUNC -const typename VectorwiseOp::CrossReturnType -VectorwiseOp::cross(const MatrixBase& other) const -{ - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3) - EIGEN_STATIC_ASSERT((internal::is_same::value), - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - - typename internal::nested_eval::type mat(_expression()); - typename internal::nested_eval::type vec(other.derived()); - - CrossReturnType res(_expression().rows(),_expression().cols()); - if(Direction==Vertical) - { - eigen_assert(CrossReturnType::RowsAtCompileTime==3 && "the matrix must have exactly 3 rows"); - res.row(0) = (mat.row(1) * vec.coeff(2) - mat.row(2) * vec.coeff(1)).conjugate(); - res.row(1) = (mat.row(2) * vec.coeff(0) - mat.row(0) * vec.coeff(2)).conjugate(); - res.row(2) = (mat.row(0) * vec.coeff(1) - mat.row(1) * vec.coeff(0)).conjugate(); - } - else - { - eigen_assert(CrossReturnType::ColsAtCompileTime==3 && "the matrix must have exactly 3 columns"); - res.col(0) = (mat.col(1) * vec.coeff(2) - mat.col(2) * vec.coeff(1)).conjugate(); - res.col(1) = (mat.col(2) * vec.coeff(0) - mat.col(0) * vec.coeff(2)).conjugate(); - res.col(2) = (mat.col(0) * vec.coeff(1) - mat.col(1) * vec.coeff(0)).conjugate(); - } - return res; -} - -namespace internal { - -template -struct unitOrthogonal_selector -{ - typedef typename plain_matrix_type::type VectorType; - typedef typename traits::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Matrix Vector2; - EIGEN_DEVICE_FUNC - static inline VectorType run(const Derived& src) - { - VectorType perp = VectorType::Zero(src.size()); - Index maxi = 0; - Index sndi = 0; - src.cwiseAbs().maxCoeff(&maxi); - if (maxi==0) - sndi = 1; - RealScalar invnm = RealScalar(1)/(Vector2() << src.coeff(sndi),src.coeff(maxi)).finished().norm(); - perp.coeffRef(maxi) = -numext::conj(src.coeff(sndi)) * invnm; - perp.coeffRef(sndi) = numext::conj(src.coeff(maxi)) * invnm; - - return perp; - } -}; - -template -struct unitOrthogonal_selector -{ - typedef typename plain_matrix_type::type VectorType; - typedef typename traits::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - EIGEN_DEVICE_FUNC - static inline VectorType run(const Derived& src) - { - VectorType perp; - /* Let us compute the crossed product of *this with a vector - * that is not too close to being colinear to *this. - */ - - /* unless the x and y coords are both close to zero, we can - * simply take ( -y, x, 0 ) and normalize it. - */ - if((!isMuchSmallerThan(src.x(), src.z())) - || (!isMuchSmallerThan(src.y(), src.z()))) - { - RealScalar invnm = RealScalar(1)/src.template head<2>().norm(); - perp.coeffRef(0) = -numext::conj(src.y())*invnm; - perp.coeffRef(1) = numext::conj(src.x())*invnm; - perp.coeffRef(2) = 0; - } - /* if both x and y are close to zero, then the vector is close - * to the z-axis, so it's far from colinear to the x-axis for instance. - * So we take the crossed product with (1,0,0) and normalize it. - */ - else - { - RealScalar invnm = RealScalar(1)/src.template tail<2>().norm(); - perp.coeffRef(0) = 0; - perp.coeffRef(1) = -numext::conj(src.z())*invnm; - perp.coeffRef(2) = numext::conj(src.y())*invnm; - } - - return perp; - } -}; - -template -struct unitOrthogonal_selector -{ - typedef typename plain_matrix_type::type VectorType; - EIGEN_DEVICE_FUNC - static inline VectorType run(const Derived& src) - { return VectorType(-numext::conj(src.y()), numext::conj(src.x())).normalized(); } -}; - -} // end namespace internal - -/** \geometry_module \ingroup Geometry_Module - * - * \returns a unit vector which is orthogonal to \c *this - * - * The size of \c *this must be at least 2. If the size is exactly 2, - * then the returned vector is a counter clock wise rotation of \c *this, i.e., (-y,x).normalized(). - * - * \sa cross() - */ -template -EIGEN_DEVICE_FUNC typename MatrixBase::PlainObject -MatrixBase::unitOrthogonal() const -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return internal::unitOrthogonal_selector::run(derived()); -} - -} // end namespace Eigen - -#endif // EIGEN_ORTHOMETHODS_H diff --git a/src/math_meigen/Eigen/src/Geometry/ParametrizedLine.h b/src/math_meigen/Eigen/src/Geometry/ParametrizedLine.h deleted file mode 100755 index 1e985d8cd..000000000 --- a/src/math_meigen/Eigen/src/Geometry/ParametrizedLine.h +++ /dev/null @@ -1,195 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_PARAMETRIZEDLINE_H -#define EIGEN_PARAMETRIZEDLINE_H - -namespace Eigen { - -/** \geometry_module \ingroup Geometry_Module - * - * \class ParametrizedLine - * - * \brief A parametrized line - * - * A parametrized line is defined by an origin point \f$ \mathbf{o} \f$ and a unit - * direction vector \f$ \mathbf{d} \f$ such that the line corresponds to - * the set \f$ l(t) = \mathbf{o} + t \mathbf{d} \f$, \f$ t \in \mathbf{R} \f$. - * - * \tparam _Scalar the scalar type, i.e., the type of the coefficients - * \tparam _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. - */ -template -class ParametrizedLine -{ -public: - EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim) - enum { - AmbientDimAtCompileTime = _AmbientDim, - Options = _Options - }; - typedef _Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 - typedef Matrix VectorType; - - /** Default constructor without initialization */ - EIGEN_DEVICE_FUNC inline ParametrizedLine() {} - - template - EIGEN_DEVICE_FUNC ParametrizedLine(const ParametrizedLine& other) - : m_origin(other.origin()), m_direction(other.direction()) - {} - - /** Constructs a dynamic-size line with \a _dim the dimension - * of the ambient space */ - EIGEN_DEVICE_FUNC inline explicit ParametrizedLine(Index _dim) : m_origin(_dim), m_direction(_dim) {} - - /** Initializes a parametrized line of direction \a direction and origin \a origin. - * \warning the vector direction is assumed to be normalized. - */ - EIGEN_DEVICE_FUNC ParametrizedLine(const VectorType& origin, const VectorType& direction) - : m_origin(origin), m_direction(direction) {} - - template - EIGEN_DEVICE_FUNC explicit ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane); - - /** Constructs a parametrized line going from \a p0 to \a p1. */ - EIGEN_DEVICE_FUNC static inline ParametrizedLine Through(const VectorType& p0, const VectorType& p1) - { return ParametrizedLine(p0, (p1-p0).normalized()); } - - EIGEN_DEVICE_FUNC ~ParametrizedLine() {} - - /** \returns the dimension in which the line holds */ - EIGEN_DEVICE_FUNC inline Index dim() const { return m_direction.size(); } - - EIGEN_DEVICE_FUNC const VectorType& origin() const { return m_origin; } - EIGEN_DEVICE_FUNC VectorType& origin() { return m_origin; } - - EIGEN_DEVICE_FUNC const VectorType& direction() const { return m_direction; } - EIGEN_DEVICE_FUNC VectorType& direction() { return m_direction; } - - /** \returns the squared distance of a point \a p to its projection onto the line \c *this. - * \sa distance() - */ - EIGEN_DEVICE_FUNC RealScalar squaredDistance(const VectorType& p) const - { - VectorType diff = p - origin(); - return (diff - direction().dot(diff) * direction()).squaredNorm(); - } - /** \returns the distance of a point \a p to its projection onto the line \c *this. - * \sa squaredDistance() - */ - EIGEN_DEVICE_FUNC RealScalar distance(const VectorType& p) const { EIGEN_USING_STD_MATH(sqrt) return sqrt(squaredDistance(p)); } - - /** \returns the projection of a point \a p onto the line \c *this. */ - EIGEN_DEVICE_FUNC VectorType projection(const VectorType& p) const - { return origin() + direction().dot(p-origin()) * direction(); } - - EIGEN_DEVICE_FUNC VectorType pointAt(const Scalar& t) const; - - template - EIGEN_DEVICE_FUNC Scalar intersectionParameter(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const; - - template - EIGEN_DEVICE_FUNC Scalar intersection(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const; - - template - EIGEN_DEVICE_FUNC VectorType intersectionPoint(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const; - - /** \returns \c *this with scalar type casted to \a NewScalarType - * - * Note that if \a NewScalarType is equal to the current scalar type of \c *this - * then this function smartly returns a const reference to \c *this. - */ - template - EIGEN_DEVICE_FUNC inline typename internal::cast_return_type >::type cast() const - { - return typename internal::cast_return_type >::type(*this); - } - - /** Copy constructor with scalar type conversion */ - template - EIGEN_DEVICE_FUNC inline explicit ParametrizedLine(const ParametrizedLine& other) - { - m_origin = other.origin().template cast(); - m_direction = other.direction().template cast(); - } - - /** \returns \c true if \c *this is approximately equal to \a other, within the precision - * determined by \a prec. - * - * \sa MatrixBase::isApprox() */ - EIGEN_DEVICE_FUNC bool isApprox(const ParametrizedLine& other, const typename NumTraits::Real& prec = NumTraits::dummy_precision()) const - { return m_origin.isApprox(other.m_origin, prec) && m_direction.isApprox(other.m_direction, prec); } - -protected: - - VectorType m_origin, m_direction; -}; - -/** Constructs a parametrized line from a 2D hyperplane - * - * \warning the ambient space must have dimension 2 such that the hyperplane actually describes a line - */ -template -template -EIGEN_DEVICE_FUNC inline ParametrizedLine<_Scalar, _AmbientDim,_Options>::ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim,OtherOptions>& hyperplane) -{ - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2) - direction() = hyperplane.normal().unitOrthogonal(); - origin() = -hyperplane.normal()*hyperplane.offset(); -} - -/** \returns the point at \a t along this line - */ -template -EIGEN_DEVICE_FUNC inline typename ParametrizedLine<_Scalar, _AmbientDim,_Options>::VectorType -ParametrizedLine<_Scalar, _AmbientDim,_Options>::pointAt(const _Scalar& t) const -{ - return origin() + (direction()*t); -} - -/** \returns the parameter value of the intersection between \c *this and the given \a hyperplane - */ -template -template -EIGEN_DEVICE_FUNC inline _Scalar ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersectionParameter(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const -{ - return -(hyperplane.offset()+hyperplane.normal().dot(origin())) - / hyperplane.normal().dot(direction()); -} - - -/** \deprecated use intersectionParameter() - * \returns the parameter value of the intersection between \c *this and the given \a hyperplane - */ -template -template -EIGEN_DEVICE_FUNC inline _Scalar ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersection(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const -{ - return intersectionParameter(hyperplane); -} - -/** \returns the point of the intersection between \c *this and the given hyperplane - */ -template -template -EIGEN_DEVICE_FUNC inline typename ParametrizedLine<_Scalar, _AmbientDim,_Options>::VectorType -ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersectionPoint(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const -{ - return pointAt(intersectionParameter(hyperplane)); -} - -} // end namespace Eigen - -#endif // EIGEN_PARAMETRIZEDLINE_H diff --git a/src/math_meigen/Eigen/src/Geometry/Quaternion.h b/src/math_meigen/Eigen/src/Geometry/Quaternion.h deleted file mode 100755 index c3fd8c3e0..000000000 --- a/src/math_meigen/Eigen/src/Geometry/Quaternion.h +++ /dev/null @@ -1,814 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2010 Gael Guennebaud -// Copyright (C) 2009 Mathieu Gautier -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_QUATERNION_H -#define EIGEN_QUATERNION_H -namespace Eigen { - - -/*************************************************************************** -* Definition of QuaternionBase -* The implementation is at the end of the file -***************************************************************************/ - -namespace internal { -template -struct quaternionbase_assign_impl; -} - -/** \geometry_module \ingroup Geometry_Module - * \class QuaternionBase - * \brief Base class for quaternion expressions - * \tparam Derived derived type (CRTP) - * \sa class Quaternion - */ -template -class QuaternionBase : public RotationBase -{ - public: - typedef RotationBase Base; - - using Base::operator*; - using Base::derived; - - typedef typename internal::traits::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef typename internal::traits::Coefficients Coefficients; - typedef typename Coefficients::CoeffReturnType CoeffReturnType; - typedef typename internal::conditional::Flags&LvalueBit), - Scalar&, CoeffReturnType>::type NonConstCoeffReturnType; - - - enum { - Flags = Eigen::internal::traits::Flags - }; - - // typedef typename Matrix Coefficients; - /** the type of a 3D vector */ - typedef Matrix Vector3; - /** the equivalent rotation matrix type */ - typedef Matrix Matrix3; - /** the equivalent angle-axis type */ - typedef AngleAxis AngleAxisType; - - - - /** \returns the \c x coefficient */ - EIGEN_DEVICE_FUNC inline CoeffReturnType x() const { return this->derived().coeffs().coeff(0); } - /** \returns the \c y coefficient */ - EIGEN_DEVICE_FUNC inline CoeffReturnType y() const { return this->derived().coeffs().coeff(1); } - /** \returns the \c z coefficient */ - EIGEN_DEVICE_FUNC inline CoeffReturnType z() const { return this->derived().coeffs().coeff(2); } - /** \returns the \c w coefficient */ - EIGEN_DEVICE_FUNC inline CoeffReturnType w() const { return this->derived().coeffs().coeff(3); } - - /** \returns a reference to the \c x coefficient (if Derived is a non-const lvalue) */ - EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType x() { return this->derived().coeffs().x(); } - /** \returns a reference to the \c y coefficient (if Derived is a non-const lvalue) */ - EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType y() { return this->derived().coeffs().y(); } - /** \returns a reference to the \c z coefficient (if Derived is a non-const lvalue) */ - EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType z() { return this->derived().coeffs().z(); } - /** \returns a reference to the \c w coefficient (if Derived is a non-const lvalue) */ - EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType w() { return this->derived().coeffs().w(); } - - /** \returns a read-only vector expression of the imaginary part (x,y,z) */ - EIGEN_DEVICE_FUNC inline const VectorBlock vec() const { return coeffs().template head<3>(); } - - /** \returns a vector expression of the imaginary part (x,y,z) */ - EIGEN_DEVICE_FUNC inline VectorBlock vec() { return coeffs().template head<3>(); } - - /** \returns a read-only vector expression of the coefficients (x,y,z,w) */ - EIGEN_DEVICE_FUNC inline const typename internal::traits::Coefficients& coeffs() const { return derived().coeffs(); } - - /** \returns a vector expression of the coefficients (x,y,z,w) */ - EIGEN_DEVICE_FUNC inline typename internal::traits::Coefficients& coeffs() { return derived().coeffs(); } - - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase& operator=(const QuaternionBase& other); - template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase& other); - -// disabled this copy operator as it is giving very strange compilation errors when compiling -// test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's -// useful; however notice that we already have the templated operator= above and e.g. in MatrixBase -// we didn't have to add, in addition to templated operator=, such a non-templated copy operator. -// Derived& operator=(const QuaternionBase& other) -// { return operator=(other); } - - EIGEN_DEVICE_FUNC Derived& operator=(const AngleAxisType& aa); - template EIGEN_DEVICE_FUNC Derived& operator=(const MatrixBase& m); - - /** \returns a quaternion representing an identity rotation - * \sa MatrixBase::Identity() - */ - EIGEN_DEVICE_FUNC static inline Quaternion Identity() { return Quaternion(Scalar(1), Scalar(0), Scalar(0), Scalar(0)); } - - /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity() - */ - EIGEN_DEVICE_FUNC inline QuaternionBase& setIdentity() { coeffs() << Scalar(0), Scalar(0), Scalar(0), Scalar(1); return *this; } - - /** \returns the squared norm of the quaternion's coefficients - * \sa QuaternionBase::norm(), MatrixBase::squaredNorm() - */ - EIGEN_DEVICE_FUNC inline Scalar squaredNorm() const { return coeffs().squaredNorm(); } - - /** \returns the norm of the quaternion's coefficients - * \sa QuaternionBase::squaredNorm(), MatrixBase::norm() - */ - EIGEN_DEVICE_FUNC inline Scalar norm() const { return coeffs().norm(); } - - /** Normalizes the quaternion \c *this - * \sa normalized(), MatrixBase::normalize() */ - EIGEN_DEVICE_FUNC inline void normalize() { coeffs().normalize(); } - /** \returns a normalized copy of \c *this - * \sa normalize(), MatrixBase::normalized() */ - EIGEN_DEVICE_FUNC inline Quaternion normalized() const { return Quaternion(coeffs().normalized()); } - - /** \returns the dot product of \c *this and \a other - * Geometrically speaking, the dot product of two unit quaternions - * corresponds to the cosine of half the angle between the two rotations. - * \sa angularDistance() - */ - template EIGEN_DEVICE_FUNC inline Scalar dot(const QuaternionBase& other) const { return coeffs().dot(other.coeffs()); } - - template EIGEN_DEVICE_FUNC Scalar angularDistance(const QuaternionBase& other) const; - - /** \returns an equivalent 3x3 rotation matrix */ - EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix() const; - - /** \returns the quaternion which transform \a a into \a b through a rotation */ - template - EIGEN_DEVICE_FUNC Derived& setFromTwoVectors(const MatrixBase& a, const MatrixBase& b); - - template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion operator* (const QuaternionBase& q) const; - template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase& q); - - /** \returns the quaternion describing the inverse rotation */ - EIGEN_DEVICE_FUNC Quaternion inverse() const; - - /** \returns the conjugated quaternion */ - EIGEN_DEVICE_FUNC Quaternion conjugate() const; - - template EIGEN_DEVICE_FUNC Quaternion slerp(const Scalar& t, const QuaternionBase& other) const; - - /** \returns \c true if \c *this is approximately equal to \a other, within the precision - * determined by \a prec. - * - * \sa MatrixBase::isApprox() */ - template - EIGEN_DEVICE_FUNC bool isApprox(const QuaternionBase& other, const RealScalar& prec = NumTraits::dummy_precision()) const - { return coeffs().isApprox(other.coeffs(), prec); } - - /** return the result vector of \a v through the rotation*/ - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const; - - /** \returns \c *this with scalar type casted to \a NewScalarType - * - * Note that if \a NewScalarType is equal to the current scalar type of \c *this - * then this function smartly returns a const reference to \c *this. - */ - template - EIGEN_DEVICE_FUNC inline typename internal::cast_return_type >::type cast() const - { - return typename internal::cast_return_type >::type(derived()); - } - -#ifdef EIGEN_QUATERNIONBASE_PLUGIN -# include EIGEN_QUATERNIONBASE_PLUGIN -#endif -}; - -/*************************************************************************** -* Definition/implementation of Quaternion -***************************************************************************/ - -/** \geometry_module \ingroup Geometry_Module - * - * \class Quaternion - * - * \brief The quaternion class used to represent 3D orientations and rotations - * - * \tparam _Scalar the scalar type, i.e., the type of the coefficients - * \tparam _Options controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign. - * - * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of - * orientations and rotations of objects in three dimensions. Compared to other representations - * like Euler angles or 3x3 matrices, quaternions offer the following advantages: - * \li \b compact storage (4 scalars) - * \li \b efficient to compose (28 flops), - * \li \b stable spherical interpolation - * - * The following two typedefs are provided for convenience: - * \li \c Quaternionf for \c float - * \li \c Quaterniond for \c double - * - * \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized. - * - * \sa class AngleAxis, class Transform - */ - -namespace internal { -template -struct traits > -{ - typedef Quaternion<_Scalar,_Options> PlainObject; - typedef _Scalar Scalar; - typedef Matrix<_Scalar,4,1,_Options> Coefficients; - enum{ - Alignment = internal::traits::Alignment, - Flags = LvalueBit - }; -}; -} - -template -class Quaternion : public QuaternionBase > -{ -public: - typedef QuaternionBase > Base; - enum { NeedsAlignment = internal::traits::Alignment>0 }; - - typedef _Scalar Scalar; - - EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion) - using Base::operator*=; - - typedef typename internal::traits::Coefficients Coefficients; - typedef typename Base::AngleAxisType AngleAxisType; - - /** Default constructor leaving the quaternion uninitialized. */ - EIGEN_DEVICE_FUNC inline Quaternion() {} - - /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from - * its four coefficients \a w, \a x, \a y and \a z. - * - * \warning Note the order of the arguments: the real \a w coefficient first, - * while internally the coefficients are stored in the following order: - * [\c x, \c y, \c z, \c w] - */ - EIGEN_DEVICE_FUNC inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){} - - /** Constructs and initialize a quaternion from the array data */ - EIGEN_DEVICE_FUNC explicit inline Quaternion(const Scalar* data) : m_coeffs(data) {} - - /** Copy constructor */ - template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion(const QuaternionBase& other) { this->Base::operator=(other); } - - /** Constructs and initializes a quaternion from the angle-axis \a aa */ - EIGEN_DEVICE_FUNC explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; } - - /** Constructs and initializes a quaternion from either: - * - a rotation matrix expression, - * - a 4D vector expression representing quaternion coefficients. - */ - template - EIGEN_DEVICE_FUNC explicit inline Quaternion(const MatrixBase& other) { *this = other; } - - /** Explicit copy constructor with scalar conversion */ - template - EIGEN_DEVICE_FUNC explicit inline Quaternion(const Quaternion& other) - { m_coeffs = other.coeffs().template cast(); } - - EIGEN_DEVICE_FUNC static Quaternion UnitRandom(); - - template - EIGEN_DEVICE_FUNC static Quaternion FromTwoVectors(const MatrixBase& a, const MatrixBase& b); - - EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs;} - EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;} - - EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(NeedsAlignment)) - -#ifdef EIGEN_QUATERNION_PLUGIN -# include EIGEN_QUATERNION_PLUGIN -#endif - -protected: - Coefficients m_coeffs; - -#ifndef EIGEN_PARSED_BY_DOXYGEN - static EIGEN_STRONG_INLINE void _check_template_params() - { - EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options, - INVALID_MATRIX_TEMPLATE_PARAMETERS) - } -#endif -}; - -/** \ingroup Geometry_Module - * single precision quaternion type */ -typedef Quaternion Quaternionf; -/** \ingroup Geometry_Module - * double precision quaternion type */ -typedef Quaternion Quaterniond; - -/*************************************************************************** -* Specialization of Map> -***************************************************************************/ - -namespace internal { - template - struct traits, _Options> > : traits > - { - typedef Map, _Options> Coefficients; - }; -} - -namespace internal { - template - struct traits, _Options> > : traits > - { - typedef Map, _Options> Coefficients; - typedef traits > TraitsBase; - enum { - Flags = TraitsBase::Flags & ~LvalueBit - }; - }; -} - -/** \ingroup Geometry_Module - * \brief Quaternion expression mapping a constant memory buffer - * - * \tparam _Scalar the type of the Quaternion coefficients - * \tparam _Options see class Map - * - * This is a specialization of class Map for Quaternion. This class allows to view - * a 4 scalar memory buffer as an Eigen's Quaternion object. - * - * \sa class Map, class Quaternion, class QuaternionBase - */ -template -class Map, _Options > - : public QuaternionBase, _Options> > -{ - public: - typedef QuaternionBase, _Options> > Base; - - typedef _Scalar Scalar; - typedef typename internal::traits::Coefficients Coefficients; - EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map) - using Base::operator*=; - - /** Constructs a Mapped Quaternion object from the pointer \a coeffs - * - * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order: - * \code *coeffs == {x, y, z, w} \endcode - * - * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */ - EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {} - - EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;} - - protected: - const Coefficients m_coeffs; -}; - -/** \ingroup Geometry_Module - * \brief Expression of a quaternion from a memory buffer - * - * \tparam _Scalar the type of the Quaternion coefficients - * \tparam _Options see class Map - * - * This is a specialization of class Map for Quaternion. This class allows to view - * a 4 scalar memory buffer as an Eigen's Quaternion object. - * - * \sa class Map, class Quaternion, class QuaternionBase - */ -template -class Map, _Options > - : public QuaternionBase, _Options> > -{ - public: - typedef QuaternionBase, _Options> > Base; - - typedef _Scalar Scalar; - typedef typename internal::traits::Coefficients Coefficients; - EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map) - using Base::operator*=; - - /** Constructs a Mapped Quaternion object from the pointer \a coeffs - * - * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order: - * \code *coeffs == {x, y, z, w} \endcode - * - * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */ - EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {} - - EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; } - EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; } - - protected: - Coefficients m_coeffs; -}; - -/** \ingroup Geometry_Module - * Map an unaligned array of single precision scalars as a quaternion */ -typedef Map, 0> QuaternionMapf; -/** \ingroup Geometry_Module - * Map an unaligned array of double precision scalars as a quaternion */ -typedef Map, 0> QuaternionMapd; -/** \ingroup Geometry_Module - * Map a 16-byte aligned array of single precision scalars as a quaternion */ -typedef Map, Aligned> QuaternionMapAlignedf; -/** \ingroup Geometry_Module - * Map a 16-byte aligned array of double precision scalars as a quaternion */ -typedef Map, Aligned> QuaternionMapAlignedd; - -/*************************************************************************** -* Implementation of QuaternionBase methods -***************************************************************************/ - -// Generic Quaternion * Quaternion product -// This product can be specialized for a given architecture via the Arch template argument. -namespace internal { -template struct quat_product -{ - EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion run(const QuaternionBase& a, const QuaternionBase& b){ - return Quaternion - ( - a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(), - a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(), - a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(), - a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x() - ); - } -}; -} - -/** \returns the concatenation of two rotations as a quaternion-quaternion product */ -template -template -EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion::Scalar> -QuaternionBase::operator* (const QuaternionBase& other) const -{ - EIGEN_STATIC_ASSERT((internal::is_same::value), - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - return internal::quat_product::Scalar>::run(*this, other); -} - -/** \sa operator*(Quaternion) */ -template -template -EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase::operator*= (const QuaternionBase& other) -{ - derived() = derived() * other.derived(); - return derived(); -} - -/** Rotation of a vector by a quaternion. - * \remarks If the quaternion is used to rotate several points (>1) - * then it is much more efficient to first convert it to a 3x3 Matrix. - * Comparison of the operation cost for n transformations: - * - Quaternion2: 30n - * - Via a Matrix3: 24 + 15n - */ -template -EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename QuaternionBase::Vector3 -QuaternionBase::_transformVector(const Vector3& v) const -{ - // Note that this algorithm comes from the optimization by hand - // of the conversion to a Matrix followed by a Matrix/Vector product. - // It appears to be much faster than the common algorithm found - // in the literature (30 versus 39 flops). It also requires two - // Vector3 as temporaries. - Vector3 uv = this->vec().cross(v); - uv += uv; - return v + this->w() * uv + this->vec().cross(uv); -} - -template -EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase& QuaternionBase::operator=(const QuaternionBase& other) -{ - coeffs() = other.coeffs(); - return derived(); -} - -template -template -EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase::operator=(const QuaternionBase& other) -{ - coeffs() = other.coeffs(); - return derived(); -} - -/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this - */ -template -EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase::operator=(const AngleAxisType& aa) -{ - EIGEN_USING_STD_MATH(cos) - EIGEN_USING_STD_MATH(sin) - Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings - this->w() = cos(ha); - this->vec() = sin(ha) * aa.axis(); - return derived(); -} - -/** Set \c *this from the expression \a xpr: - * - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion - * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix - * and \a xpr is converted to a quaternion - */ - -template -template -EIGEN_DEVICE_FUNC inline Derived& QuaternionBase::operator=(const MatrixBase& xpr) -{ - EIGEN_STATIC_ASSERT((internal::is_same::value), - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - internal::quaternionbase_assign_impl::run(*this, xpr.derived()); - return derived(); -} - -/** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to - * be normalized, otherwise the result is undefined. - */ -template -EIGEN_DEVICE_FUNC inline typename QuaternionBase::Matrix3 -QuaternionBase::toRotationMatrix(void) const -{ - // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!) - // if not inlined then the cost of the return by value is huge ~ +35%, - // however, not inlining this function is an order of magnitude slower, so - // it has to be inlined, and so the return by value is not an issue - Matrix3 res; - - const Scalar tx = Scalar(2)*this->x(); - const Scalar ty = Scalar(2)*this->y(); - const Scalar tz = Scalar(2)*this->z(); - const Scalar twx = tx*this->w(); - const Scalar twy = ty*this->w(); - const Scalar twz = tz*this->w(); - const Scalar txx = tx*this->x(); - const Scalar txy = ty*this->x(); - const Scalar txz = tz*this->x(); - const Scalar tyy = ty*this->y(); - const Scalar tyz = tz*this->y(); - const Scalar tzz = tz*this->z(); - - res.coeffRef(0,0) = Scalar(1)-(tyy+tzz); - res.coeffRef(0,1) = txy-twz; - res.coeffRef(0,2) = txz+twy; - res.coeffRef(1,0) = txy+twz; - res.coeffRef(1,1) = Scalar(1)-(txx+tzz); - res.coeffRef(1,2) = tyz-twx; - res.coeffRef(2,0) = txz-twy; - res.coeffRef(2,1) = tyz+twx; - res.coeffRef(2,2) = Scalar(1)-(txx+tyy); - - return res; -} - -/** Sets \c *this to be a quaternion representing a rotation between - * the two arbitrary vectors \a a and \a b. In other words, the built - * rotation represent a rotation sending the line of direction \a a - * to the line of direction \a b, both lines passing through the origin. - * - * \returns a reference to \c *this. - * - * Note that the two input vectors do \b not have to be normalized, and - * do not need to have the same norm. - */ -template -template -EIGEN_DEVICE_FUNC inline Derived& QuaternionBase::setFromTwoVectors(const MatrixBase& a, const MatrixBase& b) -{ - EIGEN_USING_STD_MATH(sqrt) - Vector3 v0 = a.normalized(); - Vector3 v1 = b.normalized(); - Scalar c = v1.dot(v0); - - // if dot == -1, vectors are nearly opposites - // => accurately compute the rotation axis by computing the - // intersection of the two planes. This is done by solving: - // x^T v0 = 0 - // x^T v1 = 0 - // under the constraint: - // ||x|| = 1 - // which yields a singular value problem - if (c < Scalar(-1)+NumTraits::dummy_precision()) - { - c = numext::maxi(c,Scalar(-1)); - Matrix m; m << v0.transpose(), v1.transpose(); - JacobiSVD > svd(m, ComputeFullV); - Vector3 axis = svd.matrixV().col(2); - - Scalar w2 = (Scalar(1)+c)*Scalar(0.5); - this->w() = sqrt(w2); - this->vec() = axis * sqrt(Scalar(1) - w2); - return derived(); - } - Vector3 axis = v0.cross(v1); - Scalar s = sqrt((Scalar(1)+c)*Scalar(2)); - Scalar invs = Scalar(1)/s; - this->vec() = axis * invs; - this->w() = s * Scalar(0.5); - - return derived(); -} - -/** \returns a random unit quaternion following a uniform distribution law on SO(3) - * - * \note The implementation is based on http://planning.cs.uiuc.edu/node198.html - */ -template -EIGEN_DEVICE_FUNC Quaternion Quaternion::UnitRandom() -{ - EIGEN_USING_STD_MATH(sqrt) - EIGEN_USING_STD_MATH(sin) - EIGEN_USING_STD_MATH(cos) - const Scalar u1 = internal::random(0, 1), - u2 = internal::random(0, 2*EIGEN_PI), - u3 = internal::random(0, 2*EIGEN_PI); - const Scalar a = sqrt(1 - u1), - b = sqrt(u1); - return Quaternion (a * sin(u2), a * cos(u2), b * sin(u3), b * cos(u3)); -} - - -/** Returns a quaternion representing a rotation between - * the two arbitrary vectors \a a and \a b. In other words, the built - * rotation represent a rotation sending the line of direction \a a - * to the line of direction \a b, both lines passing through the origin. - * - * \returns resulting quaternion - * - * Note that the two input vectors do \b not have to be normalized, and - * do not need to have the same norm. - */ -template -template -EIGEN_DEVICE_FUNC Quaternion Quaternion::FromTwoVectors(const MatrixBase& a, const MatrixBase& b) -{ - Quaternion quat; - quat.setFromTwoVectors(a, b); - return quat; -} - - -/** \returns the multiplicative inverse of \c *this - * Note that in most cases, i.e., if you simply want the opposite rotation, - * and/or the quaternion is normalized, then it is enough to use the conjugate. - * - * \sa QuaternionBase::conjugate() - */ -template -EIGEN_DEVICE_FUNC inline Quaternion::Scalar> QuaternionBase::inverse() const -{ - // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ?? - Scalar n2 = this->squaredNorm(); - if (n2 > Scalar(0)) - return Quaternion(conjugate().coeffs() / n2); - else - { - // return an invalid result to flag the error - return Quaternion(Coefficients::Zero()); - } -} - -// Generic conjugate of a Quaternion -namespace internal { -template struct quat_conj -{ - EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion run(const QuaternionBase& q){ - return Quaternion(q.w(),-q.x(),-q.y(),-q.z()); - } -}; -} - -/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse - * if the quaternion is normalized. - * The conjugate of a quaternion represents the opposite rotation. - * - * \sa Quaternion2::inverse() - */ -template -EIGEN_DEVICE_FUNC inline Quaternion::Scalar> -QuaternionBase::conjugate() const -{ - return internal::quat_conj::Scalar>::run(*this); - -} - -/** \returns the angle (in radian) between two rotations - * \sa dot() - */ -template -template -EIGEN_DEVICE_FUNC inline typename internal::traits::Scalar -QuaternionBase::angularDistance(const QuaternionBase& other) const -{ - EIGEN_USING_STD_MATH(atan2) - Quaternion d = (*this) * other.conjugate(); - return Scalar(2) * atan2( d.vec().norm(), numext::abs(d.w()) ); -} - - - -/** \returns the spherical linear interpolation between the two quaternions - * \c *this and \a other at the parameter \a t in [0;1]. - * - * This represents an interpolation for a constant motion between \c *this and \a other, - * see also http://en.wikipedia.org/wiki/Slerp. - */ -template -template -EIGEN_DEVICE_FUNC Quaternion::Scalar> -QuaternionBase::slerp(const Scalar& t, const QuaternionBase& other) const -{ - EIGEN_USING_STD_MATH(acos) - EIGEN_USING_STD_MATH(sin) - const Scalar one = Scalar(1) - NumTraits::epsilon(); - Scalar d = this->dot(other); - Scalar absD = numext::abs(d); - - Scalar scale0; - Scalar scale1; - - if(absD>=one) - { - scale0 = Scalar(1) - t; - scale1 = t; - } - else - { - // theta is the angle between the 2 quaternions - Scalar theta = acos(absD); - Scalar sinTheta = sin(theta); - - scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta; - scale1 = sin( ( t * theta) ) / sinTheta; - } - if(d(scale0 * coeffs() + scale1 * other.coeffs()); -} - -namespace internal { - -// set from a rotation matrix -template -struct quaternionbase_assign_impl -{ - typedef typename Other::Scalar Scalar; - template EIGEN_DEVICE_FUNC static inline void run(QuaternionBase& q, const Other& a_mat) - { - const typename internal::nested_eval::type mat(a_mat); - EIGEN_USING_STD_MATH(sqrt) - // This algorithm comes from "Quaternion Calculus and Fast Animation", - // Ken Shoemake, 1987 SIGGRAPH course notes - Scalar t = mat.trace(); - if (t > Scalar(0)) - { - t = sqrt(t + Scalar(1.0)); - q.w() = Scalar(0.5)*t; - t = Scalar(0.5)/t; - q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t; - q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t; - q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t; - } - else - { - Index i = 0; - if (mat.coeff(1,1) > mat.coeff(0,0)) - i = 1; - if (mat.coeff(2,2) > mat.coeff(i,i)) - i = 2; - Index j = (i+1)%3; - Index k = (j+1)%3; - - t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0)); - q.coeffs().coeffRef(i) = Scalar(0.5) * t; - t = Scalar(0.5)/t; - q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t; - q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t; - q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t; - } - } -}; - -// set from a vector of coefficients assumed to be a quaternion -template -struct quaternionbase_assign_impl -{ - typedef typename Other::Scalar Scalar; - template EIGEN_DEVICE_FUNC static inline void run(QuaternionBase& q, const Other& vec) - { - q.coeffs() = vec; - } -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_QUATERNION_H diff --git a/src/math_meigen/Eigen/src/Geometry/Rotation2D.h b/src/math_meigen/Eigen/src/Geometry/Rotation2D.h deleted file mode 100755 index 884b7d0ee..000000000 --- a/src/math_meigen/Eigen/src/Geometry/Rotation2D.h +++ /dev/null @@ -1,199 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_ROTATION2D_H -#define EIGEN_ROTATION2D_H - -namespace Eigen { - -/** \geometry_module \ingroup Geometry_Module - * - * \class Rotation2D - * - * \brief Represents a rotation/orientation in a 2 dimensional space. - * - * \tparam _Scalar the scalar type, i.e., the type of the coefficients - * - * This class is equivalent to a single scalar representing a counter clock wise rotation - * as a single angle in radian. It provides some additional features such as the automatic - * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar - * interface to Quaternion in order to facilitate the writing of generic algorithms - * dealing with rotations. - * - * \sa class Quaternion, class Transform - */ - -namespace internal { - -template struct traits > -{ - typedef _Scalar Scalar; -}; -} // end namespace internal - -template -class Rotation2D : public RotationBase,2> -{ - typedef RotationBase,2> Base; - -public: - - using Base::operator*; - - enum { Dim = 2 }; - /** the scalar type of the coefficients */ - typedef _Scalar Scalar; - typedef Matrix Vector2; - typedef Matrix Matrix2; - -protected: - - Scalar m_angle; - -public: - - /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */ - EIGEN_DEVICE_FUNC explicit inline Rotation2D(const Scalar& a) : m_angle(a) {} - - /** Default constructor wihtout initialization. The represented rotation is undefined. */ - EIGEN_DEVICE_FUNC Rotation2D() {} - - /** Construct a 2D rotation from a 2x2 rotation matrix \a mat. - * - * \sa fromRotationMatrix() - */ - template - EIGEN_DEVICE_FUNC explicit Rotation2D(const MatrixBase& m) - { - fromRotationMatrix(m.derived()); - } - - /** \returns the rotation angle */ - EIGEN_DEVICE_FUNC inline Scalar angle() const { return m_angle; } - - /** \returns a read-write reference to the rotation angle */ - EIGEN_DEVICE_FUNC inline Scalar& angle() { return m_angle; } - - /** \returns the rotation angle in [0,2pi] */ - EIGEN_DEVICE_FUNC inline Scalar smallestPositiveAngle() const { - Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI)); - return tmpScalar(EIGEN_PI)) tmp -= Scalar(2*EIGEN_PI); - else if(tmp<-Scalar(EIGEN_PI)) tmp += Scalar(2*EIGEN_PI); - return tmp; - } - - /** \returns the inverse rotation */ - EIGEN_DEVICE_FUNC inline Rotation2D inverse() const { return Rotation2D(-m_angle); } - - /** Concatenates two rotations */ - EIGEN_DEVICE_FUNC inline Rotation2D operator*(const Rotation2D& other) const - { return Rotation2D(m_angle + other.m_angle); } - - /** Concatenates two rotations */ - EIGEN_DEVICE_FUNC inline Rotation2D& operator*=(const Rotation2D& other) - { m_angle += other.m_angle; return *this; } - - /** Applies the rotation to a 2D vector */ - EIGEN_DEVICE_FUNC Vector2 operator* (const Vector2& vec) const - { return toRotationMatrix() * vec; } - - template - EIGEN_DEVICE_FUNC Rotation2D& fromRotationMatrix(const MatrixBase& m); - EIGEN_DEVICE_FUNC Matrix2 toRotationMatrix() const; - - /** Set \c *this from a 2x2 rotation matrix \a mat. - * In other words, this function extract the rotation angle from the rotation matrix. - * - * This method is an alias for fromRotationMatrix() - * - * \sa fromRotationMatrix() - */ - template - EIGEN_DEVICE_FUNC Rotation2D& operator=(const MatrixBase& m) - { return fromRotationMatrix(m.derived()); } - - /** \returns the spherical interpolation between \c *this and \a other using - * parameter \a t. It is in fact equivalent to a linear interpolation. - */ - EIGEN_DEVICE_FUNC inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const - { - Scalar dist = Rotation2D(other.m_angle-m_angle).smallestAngle(); - return Rotation2D(m_angle + dist*t); - } - - /** \returns \c *this with scalar type casted to \a NewScalarType - * - * Note that if \a NewScalarType is equal to the current scalar type of \c *this - * then this function smartly returns a const reference to \c *this. - */ - template - EIGEN_DEVICE_FUNC inline typename internal::cast_return_type >::type cast() const - { return typename internal::cast_return_type >::type(*this); } - - /** Copy constructor with scalar type conversion */ - template - EIGEN_DEVICE_FUNC inline explicit Rotation2D(const Rotation2D& other) - { - m_angle = Scalar(other.angle()); - } - - EIGEN_DEVICE_FUNC static inline Rotation2D Identity() { return Rotation2D(0); } - - /** \returns \c true if \c *this is approximately equal to \a other, within the precision - * determined by \a prec. - * - * \sa MatrixBase::isApprox() */ - EIGEN_DEVICE_FUNC bool isApprox(const Rotation2D& other, const typename NumTraits::Real& prec = NumTraits::dummy_precision()) const - { return internal::isApprox(m_angle,other.m_angle, prec); } - -}; - -/** \ingroup Geometry_Module - * single precision 2D rotation type */ -typedef Rotation2D Rotation2Df; -/** \ingroup Geometry_Module - * double precision 2D rotation type */ -typedef Rotation2D Rotation2Dd; - -/** Set \c *this from a 2x2 rotation matrix \a mat. - * In other words, this function extract the rotation angle - * from the rotation matrix. - */ -template -template -EIGEN_DEVICE_FUNC Rotation2D& Rotation2D::fromRotationMatrix(const MatrixBase& mat) -{ - EIGEN_USING_STD_MATH(atan2) - EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE) - m_angle = atan2(mat.coeff(1,0), mat.coeff(0,0)); - return *this; -} - -/** Constructs and \returns an equivalent 2x2 rotation matrix. - */ -template -typename Rotation2D::Matrix2 -EIGEN_DEVICE_FUNC Rotation2D::toRotationMatrix(void) const -{ - EIGEN_USING_STD_MATH(sin) - EIGEN_USING_STD_MATH(cos) - Scalar sinA = sin(m_angle); - Scalar cosA = cos(m_angle); - return (Matrix2() << cosA, -sinA, sinA, cosA).finished(); -} - -} // end namespace Eigen - -#endif // EIGEN_ROTATION2D_H diff --git a/src/math_meigen/Eigen/src/Geometry/RotationBase.h b/src/math_meigen/Eigen/src/Geometry/RotationBase.h deleted file mode 100755 index f0ee0bd03..000000000 --- a/src/math_meigen/Eigen/src/Geometry/RotationBase.h +++ /dev/null @@ -1,206 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_ROTATIONBASE_H -#define EIGEN_ROTATIONBASE_H - -namespace Eigen { - -// forward declaration -namespace internal { -template -struct rotation_base_generic_product_selector; -} - -/** \class RotationBase - * - * \brief Common base class for compact rotation representations - * - * \tparam Derived is the derived type, i.e., a rotation type - * \tparam _Dim the dimension of the space - */ -template -class RotationBase -{ - public: - enum { Dim = _Dim }; - /** the scalar type of the coefficients */ - typedef typename internal::traits::Scalar Scalar; - - /** corresponding linear transformation matrix type */ - typedef Matrix RotationMatrixType; - typedef Matrix VectorType; - - public: - EIGEN_DEVICE_FUNC inline const Derived& derived() const { return *static_cast(this); } - EIGEN_DEVICE_FUNC inline Derived& derived() { return *static_cast(this); } - - /** \returns an equivalent rotation matrix */ - EIGEN_DEVICE_FUNC inline RotationMatrixType toRotationMatrix() const { return derived().toRotationMatrix(); } - - /** \returns an equivalent rotation matrix - * This function is added to be conform with the Transform class' naming scheme. - */ - EIGEN_DEVICE_FUNC inline RotationMatrixType matrix() const { return derived().toRotationMatrix(); } - - /** \returns the inverse rotation */ - EIGEN_DEVICE_FUNC inline Derived inverse() const { return derived().inverse(); } - - /** \returns the concatenation of the rotation \c *this with a translation \a t */ - EIGEN_DEVICE_FUNC inline Transform operator*(const Translation& t) const - { return Transform(*this) * t; } - - /** \returns the concatenation of the rotation \c *this with a uniform scaling \a s */ - EIGEN_DEVICE_FUNC inline RotationMatrixType operator*(const UniformScaling& s) const - { return toRotationMatrix() * s.factor(); } - - /** \returns the concatenation of the rotation \c *this with a generic expression \a e - * \a e can be: - * - a DimxDim linear transformation matrix - * - a DimxDim diagonal matrix (axis aligned scaling) - * - a vector of size Dim - */ - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::rotation_base_generic_product_selector::ReturnType - operator*(const EigenBase& e) const - { return internal::rotation_base_generic_product_selector::run(derived(), e.derived()); } - - /** \returns the concatenation of a linear transformation \a l with the rotation \a r */ - template friend - EIGEN_DEVICE_FUNC inline RotationMatrixType operator*(const EigenBase& l, const Derived& r) - { return l.derived() * r.toRotationMatrix(); } - - /** \returns the concatenation of a scaling \a l with the rotation \a r */ - EIGEN_DEVICE_FUNC friend inline Transform operator*(const DiagonalMatrix& l, const Derived& r) - { - Transform res(r); - res.linear().applyOnTheLeft(l); - return res; - } - - /** \returns the concatenation of the rotation \c *this with a transformation \a t */ - template - EIGEN_DEVICE_FUNC inline Transform operator*(const Transform& t) const - { return toRotationMatrix() * t; } - - template - EIGEN_DEVICE_FUNC inline VectorType _transformVector(const OtherVectorType& v) const - { return toRotationMatrix() * v; } -}; - -namespace internal { - -// implementation of the generic product rotation * matrix -template -struct rotation_base_generic_product_selector -{ - enum { Dim = RotationDerived::Dim }; - typedef Matrix ReturnType; - EIGEN_DEVICE_FUNC static inline ReturnType run(const RotationDerived& r, const MatrixType& m) - { return r.toRotationMatrix() * m; } -}; - -template -struct rotation_base_generic_product_selector< RotationDerived, DiagonalMatrix, false > -{ - typedef Transform ReturnType; - EIGEN_DEVICE_FUNC static inline ReturnType run(const RotationDerived& r, const DiagonalMatrix& m) - { - ReturnType res(r); - res.linear() *= m; - return res; - } -}; - -template -struct rotation_base_generic_product_selector -{ - enum { Dim = RotationDerived::Dim }; - typedef Matrix ReturnType; - EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE ReturnType run(const RotationDerived& r, const OtherVectorType& v) - { - return r._transformVector(v); - } -}; - -} // end namespace internal - -/** \geometry_module - * - * \brief Constructs a Dim x Dim rotation matrix from the rotation \a r - */ -template -template -EIGEN_DEVICE_FUNC Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols> -::Matrix(const RotationBase& r) -{ - EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim)) - *this = r.toRotationMatrix(); -} - -/** \geometry_module - * - * \brief Set a Dim x Dim rotation matrix from the rotation \a r - */ -template -template -EIGEN_DEVICE_FUNC Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>& -Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols> -::operator=(const RotationBase& r) -{ - EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim)) - return *this = r.toRotationMatrix(); -} - -namespace internal { - -/** \internal - * - * Helper function to return an arbitrary rotation object to a rotation matrix. - * - * \tparam Scalar the numeric type of the matrix coefficients - * \tparam Dim the dimension of the current space - * - * It returns a Dim x Dim fixed size matrix. - * - * Default specializations are provided for: - * - any scalar type (2D), - * - any matrix expression, - * - any type based on RotationBase (e.g., Quaternion, AngleAxis, Rotation2D) - * - * Currently toRotationMatrix is only used by Transform. - * - * \sa class Transform, class Rotation2D, class Quaternion, class AngleAxis - */ -template -EIGEN_DEVICE_FUNC static inline Matrix toRotationMatrix(const Scalar& s) -{ - EIGEN_STATIC_ASSERT(Dim==2,YOU_MADE_A_PROGRAMMING_MISTAKE) - return Rotation2D(s).toRotationMatrix(); -} - -template -EIGEN_DEVICE_FUNC static inline Matrix toRotationMatrix(const RotationBase& r) -{ - return r.toRotationMatrix(); -} - -template -EIGEN_DEVICE_FUNC static inline const MatrixBase& toRotationMatrix(const MatrixBase& mat) -{ - EIGEN_STATIC_ASSERT(OtherDerived::RowsAtCompileTime==Dim && OtherDerived::ColsAtCompileTime==Dim, - YOU_MADE_A_PROGRAMMING_MISTAKE) - return mat; -} - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_ROTATIONBASE_H diff --git a/src/math_meigen/Eigen/src/Geometry/Scaling.h b/src/math_meigen/Eigen/src/Geometry/Scaling.h deleted file mode 100755 index f58ca03d9..000000000 --- a/src/math_meigen/Eigen/src/Geometry/Scaling.h +++ /dev/null @@ -1,170 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SCALING_H -#define EIGEN_SCALING_H - -namespace Eigen { - -/** \geometry_module \ingroup Geometry_Module - * - * \class Scaling - * - * \brief Represents a generic uniform scaling transformation - * - * \tparam _Scalar the scalar type, i.e., the type of the coefficients. - * - * This class represent a uniform scaling transformation. It is the return - * type of Scaling(Scalar), and most of the time this is the only way it - * is used. In particular, this class is not aimed to be used to store a scaling transformation, - * but rather to make easier the constructions and updates of Transform objects. - * - * To represent an axis aligned scaling, use the DiagonalMatrix class. - * - * \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform - */ -template -class UniformScaling -{ -public: - /** the scalar type of the coefficients */ - typedef _Scalar Scalar; - -protected: - - Scalar m_factor; - -public: - - /** Default constructor without initialization. */ - UniformScaling() {} - /** Constructs and initialize a uniform scaling transformation */ - explicit inline UniformScaling(const Scalar& s) : m_factor(s) {} - - inline const Scalar& factor() const { return m_factor; } - inline Scalar& factor() { return m_factor; } - - /** Concatenates two uniform scaling */ - inline UniformScaling operator* (const UniformScaling& other) const - { return UniformScaling(m_factor * other.factor()); } - - /** Concatenates a uniform scaling and a translation */ - template - inline Transform operator* (const Translation& t) const; - - /** Concatenates a uniform scaling and an affine transformation */ - template - inline Transform operator* (const Transform& t) const - { - Transform res = t; - res.prescale(factor()); - return res; - } - - /** Concatenates a uniform scaling and a linear transformation matrix */ - // TODO returns an expression - template - inline typename internal::plain_matrix_type::type operator* (const MatrixBase& other) const - { return other * m_factor; } - - template - inline Matrix operator*(const RotationBase& r) const - { return r.toRotationMatrix() * m_factor; } - - /** \returns the inverse scaling */ - inline UniformScaling inverse() const - { return UniformScaling(Scalar(1)/m_factor); } - - /** \returns \c *this with scalar type casted to \a NewScalarType - * - * Note that if \a NewScalarType is equal to the current scalar type of \c *this - * then this function smartly returns a const reference to \c *this. - */ - template - inline UniformScaling cast() const - { return UniformScaling(NewScalarType(m_factor)); } - - /** Copy constructor with scalar type conversion */ - template - inline explicit UniformScaling(const UniformScaling& other) - { m_factor = Scalar(other.factor()); } - - /** \returns \c true if \c *this is approximately equal to \a other, within the precision - * determined by \a prec. - * - * \sa MatrixBase::isApprox() */ - bool isApprox(const UniformScaling& other, const typename NumTraits::Real& prec = NumTraits::dummy_precision()) const - { return internal::isApprox(m_factor, other.factor(), prec); } - -}; - -/** \addtogroup Geometry_Module */ -//@{ - -/** Concatenates a linear transformation matrix and a uniform scaling - * \relates UniformScaling - */ -// NOTE this operator is defiend in MatrixBase and not as a friend function -// of UniformScaling to fix an internal crash of Intel's ICC -template -EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,Scalar,product) -operator*(const MatrixBase& matrix, const UniformScaling& s) -{ return matrix.derived() * s.factor(); } - -/** Constructs a uniform scaling from scale factor \a s */ -inline UniformScaling Scaling(float s) { return UniformScaling(s); } -/** Constructs a uniform scaling from scale factor \a s */ -inline UniformScaling Scaling(double s) { return UniformScaling(s); } -/** Constructs a uniform scaling from scale factor \a s */ -template -inline UniformScaling > Scaling(const std::complex& s) -{ return UniformScaling >(s); } - -/** Constructs a 2D axis aligned scaling */ -template -inline DiagonalMatrix Scaling(const Scalar& sx, const Scalar& sy) -{ return DiagonalMatrix(sx, sy); } -/** Constructs a 3D axis aligned scaling */ -template -inline DiagonalMatrix Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz) -{ return DiagonalMatrix(sx, sy, sz); } - -/** Constructs an axis aligned scaling expression from vector expression \a coeffs - * This is an alias for coeffs.asDiagonal() - */ -template -inline const DiagonalWrapper Scaling(const MatrixBase& coeffs) -{ return coeffs.asDiagonal(); } - -/** \deprecated */ -typedef DiagonalMatrix AlignedScaling2f; -/** \deprecated */ -typedef DiagonalMatrix AlignedScaling2d; -/** \deprecated */ -typedef DiagonalMatrix AlignedScaling3f; -/** \deprecated */ -typedef DiagonalMatrix AlignedScaling3d; -//@} - -template -template -inline Transform -UniformScaling::operator* (const Translation& t) const -{ - Transform res; - res.matrix().setZero(); - res.linear().diagonal().fill(factor()); - res.translation() = factor() * t.vector(); - res(Dim,Dim) = Scalar(1); - return res; -} - -} // end namespace Eigen - -#endif // EIGEN_SCALING_H diff --git a/src/math_meigen/Eigen/src/Geometry/Transform.h b/src/math_meigen/Eigen/src/Geometry/Transform.h deleted file mode 100755 index 3f31ee45d..000000000 --- a/src/math_meigen/Eigen/src/Geometry/Transform.h +++ /dev/null @@ -1,1542 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// Copyright (C) 2009 Benoit Jacob -// Copyright (C) 2010 Hauke Heibel -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_TRANSFORM_H -#define EIGEN_TRANSFORM_H - -namespace Eigen { - -namespace internal { - -template -struct transform_traits -{ - enum - { - Dim = Transform::Dim, - HDim = Transform::HDim, - Mode = Transform::Mode, - IsProjective = (int(Mode)==int(Projective)) - }; -}; - -template< typename TransformType, - typename MatrixType, - int Case = transform_traits::IsProjective ? 0 - : int(MatrixType::RowsAtCompileTime) == int(transform_traits::HDim) ? 1 - : 2, - int RhsCols = MatrixType::ColsAtCompileTime> -struct transform_right_product_impl; - -template< typename Other, - int Mode, - int Options, - int Dim, - int HDim, - int OtherRows=Other::RowsAtCompileTime, - int OtherCols=Other::ColsAtCompileTime> -struct transform_left_product_impl; - -template< typename Lhs, - typename Rhs, - bool AnyProjective = - transform_traits::IsProjective || - transform_traits::IsProjective> -struct transform_transform_product_impl; - -template< typename Other, - int Mode, - int Options, - int Dim, - int HDim, - int OtherRows=Other::RowsAtCompileTime, - int OtherCols=Other::ColsAtCompileTime> -struct transform_construct_from_matrix; - -template struct transform_take_affine_part; - -template -struct traits > -{ - typedef _Scalar Scalar; - typedef Eigen::Index StorageIndex; - typedef Dense StorageKind; - enum { - Dim1 = _Dim==Dynamic ? _Dim : _Dim + 1, - RowsAtCompileTime = _Mode==Projective ? Dim1 : _Dim, - ColsAtCompileTime = Dim1, - MaxRowsAtCompileTime = RowsAtCompileTime, - MaxColsAtCompileTime = ColsAtCompileTime, - Flags = 0 - }; -}; - -template struct transform_make_affine; - -} // end namespace internal - -/** \geometry_module \ingroup Geometry_Module - * - * \class Transform - * - * \brief Represents an homogeneous transformation in a N dimensional space - * - * \tparam _Scalar the scalar type, i.e., the type of the coefficients - * \tparam _Dim the dimension of the space - * \tparam _Mode the type of the transformation. Can be: - * - #Affine: the transformation is stored as a (Dim+1)^2 matrix, - * where the last row is assumed to be [0 ... 0 1]. - * - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix. - * - #Projective: the transformation is stored as a (Dim+1)^2 matrix - * without any assumption. - * \tparam _Options has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor. - * These Options are passed directly to the underlying matrix type. - * - * The homography is internally represented and stored by a matrix which - * is available through the matrix() method. To understand the behavior of - * this class you have to think a Transform object as its internal - * matrix representation. The chosen convention is right multiply: - * - * \code v' = T * v \endcode - * - * Therefore, an affine transformation matrix M is shaped like this: - * - * \f$ \left( \begin{array}{cc} - * linear & translation\\ - * 0 ... 0 & 1 - * \end{array} \right) \f$ - * - * Note that for a projective transformation the last row can be anything, - * and then the interpretation of different parts might be sightly different. - * - * However, unlike a plain matrix, the Transform class provides many features - * simplifying both its assembly and usage. In particular, it can be composed - * with any other transformations (Transform,Translation,RotationBase,DiagonalMatrix) - * and can be directly used to transform implicit homogeneous vectors. All these - * operations are handled via the operator*. For the composition of transformations, - * its principle consists to first convert the right/left hand sides of the product - * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product. - * Of course, internally, operator* tries to perform the minimal number of operations - * according to the nature of each terms. Likewise, when applying the transform - * to points, the latters are automatically promoted to homogeneous vectors - * before doing the matrix product. The conventions to homogeneous representations - * are performed as follow: - * - * \b Translation t (Dim)x(1): - * \f$ \left( \begin{array}{cc} - * I & t \\ - * 0\,...\,0 & 1 - * \end{array} \right) \f$ - * - * \b Rotation R (Dim)x(Dim): - * \f$ \left( \begin{array}{cc} - * R & 0\\ - * 0\,...\,0 & 1 - * \end{array} \right) \f$ - * - * \b Scaling \b DiagonalMatrix S (Dim)x(Dim): - * \f$ \left( \begin{array}{cc} - * S & 0\\ - * 0\,...\,0 & 1 - * \end{array} \right) \f$ - * - * \b Column \b point v (Dim)x(1): - * \f$ \left( \begin{array}{c} - * v\\ - * 1 - * \end{array} \right) \f$ - * - * \b Set \b of \b column \b points V1...Vn (Dim)x(n): - * \f$ \left( \begin{array}{ccc} - * v_1 & ... & v_n\\ - * 1 & ... & 1 - * \end{array} \right) \f$ - * - * The concatenation of a Transform object with any kind of other transformation - * always returns a Transform object. - * - * A little exception to the "as pure matrix product" rule is the case of the - * transformation of non homogeneous vectors by an affine transformation. In - * that case the last matrix row can be ignored, and the product returns non - * homogeneous vectors. - * - * Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation, - * it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix. - * The solution is either to use a Dim x Dynamic matrix or explicitly request a - * vector transformation by making the vector homogeneous: - * \code - * m' = T * m.colwise().homogeneous(); - * \endcode - * Note that there is zero overhead. - * - * Conversion methods from/to Qt's QMatrix and QTransform are available if the - * preprocessor token EIGEN_QT_SUPPORT is defined. - * - * This class can be extended with the help of the plugin mechanism described on the page - * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_TRANSFORM_PLUGIN. - * - * \sa class Matrix, class Quaternion - */ -template -class Transform -{ -public: - EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1)) - enum { - Mode = _Mode, - Options = _Options, - Dim = _Dim, ///< space dimension in which the transformation holds - HDim = _Dim+1, ///< size of a respective homogeneous vector - Rows = int(Mode)==(AffineCompact) ? Dim : HDim - }; - /** the scalar type of the coefficients */ - typedef _Scalar Scalar; - typedef Eigen::Index StorageIndex; - typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 - /** type of the matrix used to represent the transformation */ - typedef typename internal::make_proper_matrix_type::type MatrixType; - /** constified MatrixType */ - typedef const MatrixType ConstMatrixType; - /** type of the matrix used to represent the linear part of the transformation */ - typedef Matrix LinearMatrixType; - /** type of read/write reference to the linear part of the transformation */ - typedef Block LinearPart; - /** type of read reference to the linear part of the transformation */ - typedef const Block ConstLinearPart; - /** type of read/write reference to the affine part of the transformation */ - typedef typename internal::conditional >::type AffinePart; - /** type of read reference to the affine part of the transformation */ - typedef typename internal::conditional >::type ConstAffinePart; - /** type of a vector */ - typedef Matrix VectorType; - /** type of a read/write reference to the translation part of the rotation */ - typedef Block::Flags & RowMajorBit)> TranslationPart; - /** type of a read reference to the translation part of the rotation */ - typedef const Block::Flags & RowMajorBit)> ConstTranslationPart; - /** corresponding translation type */ - typedef Translation TranslationType; - - // this intermediate enum is needed to avoid an ICE with gcc 3.4 and 4.0 - enum { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) }; - /** The return type of the product between a diagonal matrix and a transform */ - typedef Transform TransformTimeDiagonalReturnType; - -protected: - - MatrixType m_matrix; - -public: - - /** Default constructor without initialization of the meaningful coefficients. - * If Mode==Affine, then the last row is set to [0 ... 0 1] */ - EIGEN_DEVICE_FUNC inline Transform() - { - check_template_params(); - internal::transform_make_affine<(int(Mode)==Affine) ? Affine : AffineCompact>::run(m_matrix); - } - - EIGEN_DEVICE_FUNC inline Transform(const Transform& other) - { - check_template_params(); - m_matrix = other.m_matrix; - } - - EIGEN_DEVICE_FUNC inline explicit Transform(const TranslationType& t) - { - check_template_params(); - *this = t; - } - EIGEN_DEVICE_FUNC inline explicit Transform(const UniformScaling& s) - { - check_template_params(); - *this = s; - } - template - EIGEN_DEVICE_FUNC inline explicit Transform(const RotationBase& r) - { - check_template_params(); - *this = r; - } - - EIGEN_DEVICE_FUNC inline Transform& operator=(const Transform& other) - { m_matrix = other.m_matrix; return *this; } - - typedef internal::transform_take_affine_part take_affine_part; - - /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */ - template - EIGEN_DEVICE_FUNC inline explicit Transform(const EigenBase& other) - { - EIGEN_STATIC_ASSERT((internal::is_same::value), - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY); - - check_template_params(); - internal::transform_construct_from_matrix::run(this, other.derived()); - } - - /** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */ - template - EIGEN_DEVICE_FUNC inline Transform& operator=(const EigenBase& other) - { - EIGEN_STATIC_ASSERT((internal::is_same::value), - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY); - - internal::transform_construct_from_matrix::run(this, other.derived()); - return *this; - } - - template - EIGEN_DEVICE_FUNC inline Transform(const Transform& other) - { - check_template_params(); - // only the options change, we can directly copy the matrices - m_matrix = other.matrix(); - } - - template - EIGEN_DEVICE_FUNC inline Transform(const Transform& other) - { - check_template_params(); - // prevent conversions as: - // Affine | AffineCompact | Isometry = Projective - EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Projective), Mode==int(Projective)), - YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION) - - // prevent conversions as: - // Isometry = Affine | AffineCompact - EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Affine)||OtherMode==int(AffineCompact), Mode!=int(Isometry)), - YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION) - - enum { ModeIsAffineCompact = Mode == int(AffineCompact), - OtherModeIsAffineCompact = OtherMode == int(AffineCompact) - }; - - if(ModeIsAffineCompact == OtherModeIsAffineCompact) - { - // We need the block expression because the code is compiled for all - // combinations of transformations and will trigger a compile time error - // if one tries to assign the matrices directly - m_matrix.template block(0,0) = other.matrix().template block(0,0); - makeAffine(); - } - else if(OtherModeIsAffineCompact) - { - typedef typename Transform::MatrixType OtherMatrixType; - internal::transform_construct_from_matrix::run(this, other.matrix()); - } - else - { - // here we know that Mode == AffineCompact and OtherMode != AffineCompact. - // if OtherMode were Projective, the static assert above would already have caught it. - // So the only possibility is that OtherMode == Affine - linear() = other.linear(); - translation() = other.translation(); - } - } - - template - EIGEN_DEVICE_FUNC Transform(const ReturnByValue& other) - { - check_template_params(); - other.evalTo(*this); - } - - template - EIGEN_DEVICE_FUNC Transform& operator=(const ReturnByValue& other) - { - other.evalTo(*this); - return *this; - } - - #ifdef EIGEN_QT_SUPPORT - inline Transform(const QMatrix& other); - inline Transform& operator=(const QMatrix& other); - inline QMatrix toQMatrix(void) const; - inline Transform(const QTransform& other); - inline Transform& operator=(const QTransform& other); - inline QTransform toQTransform(void) const; - #endif - - EIGEN_DEVICE_FUNC Index rows() const { return int(Mode)==int(Projective) ? m_matrix.cols() : (m_matrix.cols()-1); } - EIGEN_DEVICE_FUNC Index cols() const { return m_matrix.cols(); } - - /** shortcut for m_matrix(row,col); - * \sa MatrixBase::operator(Index,Index) const */ - EIGEN_DEVICE_FUNC inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); } - /** shortcut for m_matrix(row,col); - * \sa MatrixBase::operator(Index,Index) */ - EIGEN_DEVICE_FUNC inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); } - - /** \returns a read-only expression of the transformation matrix */ - EIGEN_DEVICE_FUNC inline const MatrixType& matrix() const { return m_matrix; } - /** \returns a writable expression of the transformation matrix */ - EIGEN_DEVICE_FUNC inline MatrixType& matrix() { return m_matrix; } - - /** \returns a read-only expression of the linear part of the transformation */ - EIGEN_DEVICE_FUNC inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix,0,0); } - /** \returns a writable expression of the linear part of the transformation */ - EIGEN_DEVICE_FUNC inline LinearPart linear() { return LinearPart(m_matrix,0,0); } - - /** \returns a read-only expression of the Dim x HDim affine part of the transformation */ - EIGEN_DEVICE_FUNC inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); } - /** \returns a writable expression of the Dim x HDim affine part of the transformation */ - EIGEN_DEVICE_FUNC inline AffinePart affine() { return take_affine_part::run(m_matrix); } - - /** \returns a read-only expression of the translation vector of the transformation */ - EIGEN_DEVICE_FUNC inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix,0,Dim); } - /** \returns a writable expression of the translation vector of the transformation */ - EIGEN_DEVICE_FUNC inline TranslationPart translation() { return TranslationPart(m_matrix,0,Dim); } - - /** \returns an expression of the product between the transform \c *this and a matrix expression \a other. - * - * The right-hand-side \a other can be either: - * \li an homogeneous vector of size Dim+1, - * \li a set of homogeneous vectors of size Dim+1 x N, - * \li a transformation matrix of size Dim+1 x Dim+1. - * - * Moreover, if \c *this represents an affine transformation (i.e., Mode!=Projective), then \a other can also be: - * \li a point of size Dim (computes: \code this->linear() * other + this->translation()\endcode), - * \li a set of N points as a Dim x N matrix (computes: \code (this->linear() * other).colwise() + this->translation()\endcode), - * - * In all cases, the return type is a matrix or vector of same sizes as the right-hand-side \a other. - * - * If you want to interpret \a other as a linear or affine transformation, then first convert it to a Transform<> type, - * or do your own cooking. - * - * Finally, if you want to apply Affine transformations to vectors, then explicitly apply the linear part only: - * \code - * Affine3f A; - * Vector3f v1, v2; - * v2 = A.linear() * v1; - * \endcode - * - */ - // note: this function is defined here because some compilers cannot find the respective declaration - template - EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename internal::transform_right_product_impl::ResultType - operator * (const EigenBase &other) const - { return internal::transform_right_product_impl::run(*this,other.derived()); } - - /** \returns the product expression of a transformation matrix \a a times a transform \a b - * - * The left hand side \a other can be either: - * \li a linear transformation matrix of size Dim x Dim, - * \li an affine transformation matrix of size Dim x Dim+1, - * \li a general transformation matrix of size Dim+1 x Dim+1. - */ - template friend - EIGEN_DEVICE_FUNC inline const typename internal::transform_left_product_impl::ResultType - operator * (const EigenBase &a, const Transform &b) - { return internal::transform_left_product_impl::run(a.derived(),b); } - - /** \returns The product expression of a transform \a a times a diagonal matrix \a b - * - * The rhs diagonal matrix is interpreted as an affine scaling transformation. The - * product results in a Transform of the same type (mode) as the lhs only if the lhs - * mode is no isometry. In that case, the returned transform is an affinity. - */ - template - EIGEN_DEVICE_FUNC inline const TransformTimeDiagonalReturnType - operator * (const DiagonalBase &b) const - { - TransformTimeDiagonalReturnType res(*this); - res.linearExt() *= b; - return res; - } - - /** \returns The product expression of a diagonal matrix \a a times a transform \a b - * - * The lhs diagonal matrix is interpreted as an affine scaling transformation. The - * product results in a Transform of the same type (mode) as the lhs only if the lhs - * mode is no isometry. In that case, the returned transform is an affinity. - */ - template - EIGEN_DEVICE_FUNC friend inline TransformTimeDiagonalReturnType - operator * (const DiagonalBase &a, const Transform &b) - { - TransformTimeDiagonalReturnType res; - res.linear().noalias() = a*b.linear(); - res.translation().noalias() = a*b.translation(); - if (Mode!=int(AffineCompact)) - res.matrix().row(Dim) = b.matrix().row(Dim); - return res; - } - - template - EIGEN_DEVICE_FUNC inline Transform& operator*=(const EigenBase& other) { return *this = *this * other; } - - /** Concatenates two transformations */ - EIGEN_DEVICE_FUNC inline const Transform operator * (const Transform& other) const - { - return internal::transform_transform_product_impl::run(*this,other); - } - - #if EIGEN_COMP_ICC -private: - // this intermediate structure permits to workaround a bug in ICC 11: - // error: template instantiation resulted in unexpected function type of "Eigen::Transform - // (const Eigen::Transform &) const" - // (the meaning of a name may have changed since the template declaration -- the type of the template is: - // "Eigen::internal::transform_transform_product_impl, - // Eigen::Transform, >::ResultType (const Eigen::Transform &) const") - // - template struct icc_11_workaround - { - typedef internal::transform_transform_product_impl > ProductType; - typedef typename ProductType::ResultType ResultType; - }; - -public: - /** Concatenates two different transformations */ - template - inline typename icc_11_workaround::ResultType - operator * (const Transform& other) const - { - typedef typename icc_11_workaround::ProductType ProductType; - return ProductType::run(*this,other); - } - #else - /** Concatenates two different transformations */ - template - EIGEN_DEVICE_FUNC inline typename internal::transform_transform_product_impl >::ResultType - operator * (const Transform& other) const - { - return internal::transform_transform_product_impl >::run(*this,other); - } - #endif - - /** \sa MatrixBase::setIdentity() */ - EIGEN_DEVICE_FUNC void setIdentity() { m_matrix.setIdentity(); } - - /** - * \brief Returns an identity transformation. - * \todo In the future this function should be returning a Transform expression. - */ - EIGEN_DEVICE_FUNC static const Transform Identity() - { - return Transform(MatrixType::Identity()); - } - - template - EIGEN_DEVICE_FUNC - inline Transform& scale(const MatrixBase &other); - - template - EIGEN_DEVICE_FUNC - inline Transform& prescale(const MatrixBase &other); - - EIGEN_DEVICE_FUNC inline Transform& scale(const Scalar& s); - EIGEN_DEVICE_FUNC inline Transform& prescale(const Scalar& s); - - template - EIGEN_DEVICE_FUNC - inline Transform& translate(const MatrixBase &other); - - template - EIGEN_DEVICE_FUNC - inline Transform& pretranslate(const MatrixBase &other); - - template - EIGEN_DEVICE_FUNC - inline Transform& rotate(const RotationType& rotation); - - template - EIGEN_DEVICE_FUNC - inline Transform& prerotate(const RotationType& rotation); - - EIGEN_DEVICE_FUNC Transform& shear(const Scalar& sx, const Scalar& sy); - EIGEN_DEVICE_FUNC Transform& preshear(const Scalar& sx, const Scalar& sy); - - EIGEN_DEVICE_FUNC inline Transform& operator=(const TranslationType& t); - - EIGEN_DEVICE_FUNC - inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); } - - EIGEN_DEVICE_FUNC inline Transform operator*(const TranslationType& t) const; - - EIGEN_DEVICE_FUNC - inline Transform& operator=(const UniformScaling& t); - - EIGEN_DEVICE_FUNC - inline Transform& operator*=(const UniformScaling& s) { return scale(s.factor()); } - - EIGEN_DEVICE_FUNC - inline TransformTimeDiagonalReturnType operator*(const UniformScaling& s) const - { - TransformTimeDiagonalReturnType res = *this; - res.scale(s.factor()); - return res; - } - - EIGEN_DEVICE_FUNC - inline Transform& operator*=(const DiagonalMatrix& s) { linearExt() *= s; return *this; } - - template - EIGEN_DEVICE_FUNC inline Transform& operator=(const RotationBase& r); - template - EIGEN_DEVICE_FUNC inline Transform& operator*=(const RotationBase& r) { return rotate(r.toRotationMatrix()); } - template - EIGEN_DEVICE_FUNC inline Transform operator*(const RotationBase& r) const; - - EIGEN_DEVICE_FUNC const LinearMatrixType rotation() const; - template - EIGEN_DEVICE_FUNC - void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const; - template - EIGEN_DEVICE_FUNC - void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const; - - template - EIGEN_DEVICE_FUNC - Transform& fromPositionOrientationScale(const MatrixBase &position, - const OrientationType& orientation, const MatrixBase &scale); - - EIGEN_DEVICE_FUNC - inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const; - - /** \returns a const pointer to the column major internal matrix */ - EIGEN_DEVICE_FUNC const Scalar* data() const { return m_matrix.data(); } - /** \returns a non-const pointer to the column major internal matrix */ - EIGEN_DEVICE_FUNC Scalar* data() { return m_matrix.data(); } - - /** \returns \c *this with scalar type casted to \a NewScalarType - * - * Note that if \a NewScalarType is equal to the current scalar type of \c *this - * then this function smartly returns a const reference to \c *this. - */ - template - EIGEN_DEVICE_FUNC inline typename internal::cast_return_type >::type cast() const - { return typename internal::cast_return_type >::type(*this); } - - /** Copy constructor with scalar type conversion */ - template - EIGEN_DEVICE_FUNC inline explicit Transform(const Transform& other) - { - check_template_params(); - m_matrix = other.matrix().template cast(); - } - - /** \returns \c true if \c *this is approximately equal to \a other, within the precision - * determined by \a prec. - * - * \sa MatrixBase::isApprox() */ - EIGEN_DEVICE_FUNC bool isApprox(const Transform& other, const typename NumTraits::Real& prec = NumTraits::dummy_precision()) const - { return m_matrix.isApprox(other.m_matrix, prec); } - - /** Sets the last row to [0 ... 0 1] - */ - EIGEN_DEVICE_FUNC void makeAffine() - { - internal::transform_make_affine::run(m_matrix); - } - - /** \internal - * \returns the Dim x Dim linear part if the transformation is affine, - * and the HDim x Dim part for projective transformations. - */ - EIGEN_DEVICE_FUNC inline Block linearExt() - { return m_matrix.template block(0,0); } - /** \internal - * \returns the Dim x Dim linear part if the transformation is affine, - * and the HDim x Dim part for projective transformations. - */ - EIGEN_DEVICE_FUNC inline const Block linearExt() const - { return m_matrix.template block(0,0); } - - /** \internal - * \returns the translation part if the transformation is affine, - * and the last column for projective transformations. - */ - EIGEN_DEVICE_FUNC inline Block translationExt() - { return m_matrix.template block(0,Dim); } - /** \internal - * \returns the translation part if the transformation is affine, - * and the last column for projective transformations. - */ - EIGEN_DEVICE_FUNC inline const Block translationExt() const - { return m_matrix.template block(0,Dim); } - - - #ifdef EIGEN_TRANSFORM_PLUGIN - #include EIGEN_TRANSFORM_PLUGIN - #endif - -protected: - #ifndef EIGEN_PARSED_BY_DOXYGEN - EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void check_template_params() - { - EIGEN_STATIC_ASSERT((Options & (DontAlign|RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS) - } - #endif - -}; - -/** \ingroup Geometry_Module */ -typedef Transform Isometry2f; -/** \ingroup Geometry_Module */ -typedef Transform Isometry3f; -/** \ingroup Geometry_Module */ -typedef Transform Isometry2d; -/** \ingroup Geometry_Module */ -typedef Transform Isometry3d; - -/** \ingroup Geometry_Module */ -typedef Transform Affine2f; -/** \ingroup Geometry_Module */ -typedef Transform Affine3f; -/** \ingroup Geometry_Module */ -typedef Transform Affine2d; -/** \ingroup Geometry_Module */ -typedef Transform Affine3d; - -/** \ingroup Geometry_Module */ -typedef Transform AffineCompact2f; -/** \ingroup Geometry_Module */ -typedef Transform AffineCompact3f; -/** \ingroup Geometry_Module */ -typedef Transform AffineCompact2d; -/** \ingroup Geometry_Module */ -typedef Transform AffineCompact3d; - -/** \ingroup Geometry_Module */ -typedef Transform Projective2f; -/** \ingroup Geometry_Module */ -typedef Transform Projective3f; -/** \ingroup Geometry_Module */ -typedef Transform Projective2d; -/** \ingroup Geometry_Module */ -typedef Transform Projective3d; - -/************************** -*** Optional QT support *** -**************************/ - -#ifdef EIGEN_QT_SUPPORT -/** Initializes \c *this from a QMatrix assuming the dimension is 2. - * - * This function is available only if the token EIGEN_QT_SUPPORT is defined. - */ -template -Transform::Transform(const QMatrix& other) -{ - check_template_params(); - *this = other; -} - -/** Set \c *this from a QMatrix assuming the dimension is 2. - * - * This function is available only if the token EIGEN_QT_SUPPORT is defined. - */ -template -Transform& Transform::operator=(const QMatrix& other) -{ - EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) - if (Mode == int(AffineCompact)) - m_matrix << other.m11(), other.m21(), other.dx(), - other.m12(), other.m22(), other.dy(); - else - m_matrix << other.m11(), other.m21(), other.dx(), - other.m12(), other.m22(), other.dy(), - 0, 0, 1; - return *this; -} - -/** \returns a QMatrix from \c *this assuming the dimension is 2. - * - * \warning this conversion might loss data if \c *this is not affine - * - * This function is available only if the token EIGEN_QT_SUPPORT is defined. - */ -template -QMatrix Transform::toQMatrix(void) const -{ - check_template_params(); - EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) - return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0), - m_matrix.coeff(0,1), m_matrix.coeff(1,1), - m_matrix.coeff(0,2), m_matrix.coeff(1,2)); -} - -/** Initializes \c *this from a QTransform assuming the dimension is 2. - * - * This function is available only if the token EIGEN_QT_SUPPORT is defined. - */ -template -Transform::Transform(const QTransform& other) -{ - check_template_params(); - *this = other; -} - -/** Set \c *this from a QTransform assuming the dimension is 2. - * - * This function is available only if the token EIGEN_QT_SUPPORT is defined. - */ -template -Transform& Transform::operator=(const QTransform& other) -{ - check_template_params(); - EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) - if (Mode == int(AffineCompact)) - m_matrix << other.m11(), other.m21(), other.dx(), - other.m12(), other.m22(), other.dy(); - else - m_matrix << other.m11(), other.m21(), other.dx(), - other.m12(), other.m22(), other.dy(), - other.m13(), other.m23(), other.m33(); - return *this; -} - -/** \returns a QTransform from \c *this assuming the dimension is 2. - * - * This function is available only if the token EIGEN_QT_SUPPORT is defined. - */ -template -QTransform Transform::toQTransform(void) const -{ - EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) - if (Mode == int(AffineCompact)) - return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), - m_matrix.coeff(0,1), m_matrix.coeff(1,1), - m_matrix.coeff(0,2), m_matrix.coeff(1,2)); - else - return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0), - m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1), - m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2)); -} -#endif - -/********************* -*** Procedural API *** -*********************/ - -/** Applies on the right the non uniform scale transformation represented - * by the vector \a other to \c *this and returns a reference to \c *this. - * \sa prescale() - */ -template -template -EIGEN_DEVICE_FUNC Transform& -Transform::scale(const MatrixBase &other) -{ - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) - EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) - linearExt().noalias() = (linearExt() * other.asDiagonal()); - return *this; -} - -/** Applies on the right a uniform scale of a factor \a c to \c *this - * and returns a reference to \c *this. - * \sa prescale(Scalar) - */ -template -EIGEN_DEVICE_FUNC inline Transform& Transform::scale(const Scalar& s) -{ - EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) - linearExt() *= s; - return *this; -} - -/** Applies on the left the non uniform scale transformation represented - * by the vector \a other to \c *this and returns a reference to \c *this. - * \sa scale() - */ -template -template -EIGEN_DEVICE_FUNC Transform& -Transform::prescale(const MatrixBase &other) -{ - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) - EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) - affine().noalias() = (other.asDiagonal() * affine()); - return *this; -} - -/** Applies on the left a uniform scale of a factor \a c to \c *this - * and returns a reference to \c *this. - * \sa scale(Scalar) - */ -template -EIGEN_DEVICE_FUNC inline Transform& Transform::prescale(const Scalar& s) -{ - EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) - m_matrix.template topRows() *= s; - return *this; -} - -/** Applies on the right the translation matrix represented by the vector \a other - * to \c *this and returns a reference to \c *this. - * \sa pretranslate() - */ -template -template -EIGEN_DEVICE_FUNC Transform& -Transform::translate(const MatrixBase &other) -{ - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) - translationExt() += linearExt() * other; - return *this; -} - -/** Applies on the left the translation matrix represented by the vector \a other - * to \c *this and returns a reference to \c *this. - * \sa translate() - */ -template -template -EIGEN_DEVICE_FUNC Transform& -Transform::pretranslate(const MatrixBase &other) -{ - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) - if(int(Mode)==int(Projective)) - affine() += other * m_matrix.row(Dim); - else - translation() += other; - return *this; -} - -/** Applies on the right the rotation represented by the rotation \a rotation - * to \c *this and returns a reference to \c *this. - * - * The template parameter \a RotationType is the type of the rotation which - * must be known by internal::toRotationMatrix<>. - * - * Natively supported types includes: - * - any scalar (2D), - * - a Dim x Dim matrix expression, - * - a Quaternion (3D), - * - a AngleAxis (3D) - * - * This mechanism is easily extendable to support user types such as Euler angles, - * or a pair of Quaternion for 4D rotations. - * - * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType) - */ -template -template -EIGEN_DEVICE_FUNC Transform& -Transform::rotate(const RotationType& rotation) -{ - linearExt() *= internal::toRotationMatrix(rotation); - return *this; -} - -/** Applies on the left the rotation represented by the rotation \a rotation - * to \c *this and returns a reference to \c *this. - * - * See rotate() for further details. - * - * \sa rotate() - */ -template -template -EIGEN_DEVICE_FUNC Transform& -Transform::prerotate(const RotationType& rotation) -{ - m_matrix.template block(0,0) = internal::toRotationMatrix(rotation) - * m_matrix.template block(0,0); - return *this; -} - -/** Applies on the right the shear transformation represented - * by the vector \a other to \c *this and returns a reference to \c *this. - * \warning 2D only. - * \sa preshear() - */ -template -EIGEN_DEVICE_FUNC Transform& -Transform::shear(const Scalar& sx, const Scalar& sy) -{ - EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) - EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) - VectorType tmp = linear().col(0)*sy + linear().col(1); - linear() << linear().col(0) + linear().col(1)*sx, tmp; - return *this; -} - -/** Applies on the left the shear transformation represented - * by the vector \a other to \c *this and returns a reference to \c *this. - * \warning 2D only. - * \sa shear() - */ -template -EIGEN_DEVICE_FUNC Transform& -Transform::preshear(const Scalar& sx, const Scalar& sy) -{ - EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) - EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) - m_matrix.template block(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block(0,0); - return *this; -} - -/****************************************************** -*** Scaling, Translation and Rotation compatibility *** -******************************************************/ - -template -EIGEN_DEVICE_FUNC inline Transform& Transform::operator=(const TranslationType& t) -{ - linear().setIdentity(); - translation() = t.vector(); - makeAffine(); - return *this; -} - -template -EIGEN_DEVICE_FUNC inline Transform Transform::operator*(const TranslationType& t) const -{ - Transform res = *this; - res.translate(t.vector()); - return res; -} - -template -EIGEN_DEVICE_FUNC inline Transform& Transform::operator=(const UniformScaling& s) -{ - m_matrix.setZero(); - linear().diagonal().fill(s.factor()); - makeAffine(); - return *this; -} - -template -template -EIGEN_DEVICE_FUNC inline Transform& Transform::operator=(const RotationBase& r) -{ - linear() = internal::toRotationMatrix(r); - translation().setZero(); - makeAffine(); - return *this; -} - -template -template -EIGEN_DEVICE_FUNC inline Transform Transform::operator*(const RotationBase& r) const -{ - Transform res = *this; - res.rotate(r.derived()); - return res; -} - -/************************ -*** Special functions *** -************************/ - -/** \returns the rotation part of the transformation - * - * - * \svd_module - * - * \sa computeRotationScaling(), computeScalingRotation(), class SVD - */ -template -EIGEN_DEVICE_FUNC const typename Transform::LinearMatrixType -Transform::rotation() const -{ - LinearMatrixType result; - computeRotationScaling(&result, (LinearMatrixType*)0); - return result; -} - - -/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being - * not necessarily positive. - * - * If either pointer is zero, the corresponding computation is skipped. - * - * - * - * \svd_module - * - * \sa computeScalingRotation(), rotation(), class SVD - */ -template -template -EIGEN_DEVICE_FUNC void Transform::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const -{ - JacobiSVD svd(linear(), ComputeFullU | ComputeFullV); - - Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 - VectorType sv(svd.singularValues()); - sv.coeffRef(0) *= x; - if(scaling) scaling->lazyAssign(svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint()); - if(rotation) - { - LinearMatrixType m(svd.matrixU()); - m.col(0) /= x; - rotation->lazyAssign(m * svd.matrixV().adjoint()); - } -} - -/** decomposes the linear part of the transformation as a product scaling x rotation, the scaling being - * not necessarily positive. - * - * If either pointer is zero, the corresponding computation is skipped. - * - * - * - * \svd_module - * - * \sa computeRotationScaling(), rotation(), class SVD - */ -template -template -EIGEN_DEVICE_FUNC void Transform::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const -{ - JacobiSVD svd(linear(), ComputeFullU | ComputeFullV); - - Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 - VectorType sv(svd.singularValues()); - sv.coeffRef(0) *= x; - if(scaling) scaling->lazyAssign(svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint()); - if(rotation) - { - LinearMatrixType m(svd.matrixU()); - m.col(0) /= x; - rotation->lazyAssign(m * svd.matrixV().adjoint()); - } -} - -/** Convenient method to set \c *this from a position, orientation and scale - * of a 3D object. - */ -template -template -EIGEN_DEVICE_FUNC Transform& -Transform::fromPositionOrientationScale(const MatrixBase &position, - const OrientationType& orientation, const MatrixBase &scale) -{ - linear() = internal::toRotationMatrix(orientation); - linear() *= scale.asDiagonal(); - translation() = position; - makeAffine(); - return *this; -} - -namespace internal { - -template -struct transform_make_affine -{ - template - EIGEN_DEVICE_FUNC static void run(MatrixType &mat) - { - static const int Dim = MatrixType::ColsAtCompileTime-1; - mat.template block<1,Dim>(Dim,0).setZero(); - mat.coeffRef(Dim,Dim) = typename MatrixType::Scalar(1); - } -}; - -template<> -struct transform_make_affine -{ - template EIGEN_DEVICE_FUNC static void run(MatrixType &) { } -}; - -// selector needed to avoid taking the inverse of a 3x4 matrix -template -struct projective_transform_inverse -{ - EIGEN_DEVICE_FUNC static inline void run(const TransformType&, TransformType&) - {} -}; - -template -struct projective_transform_inverse -{ - EIGEN_DEVICE_FUNC static inline void run(const TransformType& m, TransformType& res) - { - res.matrix() = m.matrix().inverse(); - } -}; - -} // end namespace internal - - -/** - * - * \returns the inverse transformation according to some given knowledge - * on \c *this. - * - * \param hint allows to optimize the inversion process when the transformation - * is known to be not a general transformation (optional). The possible values are: - * - #Projective if the transformation is not necessarily affine, i.e., if the - * last row is not guaranteed to be [0 ... 0 1] - * - #Affine if the last row can be assumed to be [0 ... 0 1] - * - #Isometry if the transformation is only a concatenations of translations - * and rotations. - * The default is the template class parameter \c Mode. - * - * \warning unless \a traits is always set to NoShear or NoScaling, this function - * requires the generic inverse method of MatrixBase defined in the LU module. If - * you forget to include this module, then you will get hard to debug linking errors. - * - * \sa MatrixBase::inverse() - */ -template -EIGEN_DEVICE_FUNC Transform -Transform::inverse(TransformTraits hint) const -{ - Transform res; - if (hint == Projective) - { - internal::projective_transform_inverse::run(*this, res); - } - else - { - if (hint == Isometry) - { - res.matrix().template topLeftCorner() = linear().transpose(); - } - else if(hint&Affine) - { - res.matrix().template topLeftCorner() = linear().inverse(); - } - else - { - eigen_assert(false && "Invalid transform traits in Transform::Inverse"); - } - // translation and remaining parts - res.matrix().template topRightCorner() - = - res.matrix().template topLeftCorner() * translation(); - res.makeAffine(); // we do need this, because in the beginning res is uninitialized - } - return res; -} - -namespace internal { - -/***************************************************** -*** Specializations of take affine part *** -*****************************************************/ - -template struct transform_take_affine_part { - typedef typename TransformType::MatrixType MatrixType; - typedef typename TransformType::AffinePart AffinePart; - typedef typename TransformType::ConstAffinePart ConstAffinePart; - static inline AffinePart run(MatrixType& m) - { return m.template block(0,0); } - static inline ConstAffinePart run(const MatrixType& m) - { return m.template block(0,0); } -}; - -template -struct transform_take_affine_part > { - typedef typename Transform::MatrixType MatrixType; - static inline MatrixType& run(MatrixType& m) { return m; } - static inline const MatrixType& run(const MatrixType& m) { return m; } -}; - -/***************************************************** -*** Specializations of construct from matrix *** -*****************************************************/ - -template -struct transform_construct_from_matrix -{ - static inline void run(Transform *transform, const Other& other) - { - transform->linear() = other; - transform->translation().setZero(); - transform->makeAffine(); - } -}; - -template -struct transform_construct_from_matrix -{ - static inline void run(Transform *transform, const Other& other) - { - transform->affine() = other; - transform->makeAffine(); - } -}; - -template -struct transform_construct_from_matrix -{ - static inline void run(Transform *transform, const Other& other) - { transform->matrix() = other; } -}; - -template -struct transform_construct_from_matrix -{ - static inline void run(Transform *transform, const Other& other) - { transform->matrix() = other.template block(0,0); } -}; - -/********************************************************** -*** Specializations of operator* with rhs EigenBase *** -**********************************************************/ - -template -struct transform_product_result -{ - enum - { - Mode = - (LhsMode == (int)Projective || RhsMode == (int)Projective ) ? Projective : - (LhsMode == (int)Affine || RhsMode == (int)Affine ) ? Affine : - (LhsMode == (int)AffineCompact || RhsMode == (int)AffineCompact ) ? AffineCompact : - (LhsMode == (int)Isometry || RhsMode == (int)Isometry ) ? Isometry : Projective - }; -}; - -template< typename TransformType, typename MatrixType, int RhsCols> -struct transform_right_product_impl< TransformType, MatrixType, 0, RhsCols> -{ - typedef typename MatrixType::PlainObject ResultType; - - static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) - { - return T.matrix() * other; - } -}; - -template< typename TransformType, typename MatrixType, int RhsCols> -struct transform_right_product_impl< TransformType, MatrixType, 1, RhsCols> -{ - enum { - Dim = TransformType::Dim, - HDim = TransformType::HDim, - OtherRows = MatrixType::RowsAtCompileTime, - OtherCols = MatrixType::ColsAtCompileTime - }; - - typedef typename MatrixType::PlainObject ResultType; - - static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) - { - EIGEN_STATIC_ASSERT(OtherRows==HDim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); - - typedef Block TopLeftLhs; - - ResultType res(other.rows(),other.cols()); - TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() = T.affine() * other; - res.row(OtherRows-1) = other.row(OtherRows-1); - - return res; - } -}; - -template< typename TransformType, typename MatrixType, int RhsCols> -struct transform_right_product_impl< TransformType, MatrixType, 2, RhsCols> -{ - enum { - Dim = TransformType::Dim, - HDim = TransformType::HDim, - OtherRows = MatrixType::RowsAtCompileTime, - OtherCols = MatrixType::ColsAtCompileTime - }; - - typedef typename MatrixType::PlainObject ResultType; - - static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) - { - EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); - - typedef Block TopLeftLhs; - ResultType res(Replicate(T.translation(),1,other.cols())); - TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() += T.linear() * other; - - return res; - } -}; - -template< typename TransformType, typename MatrixType > -struct transform_right_product_impl< TransformType, MatrixType, 2, 1> // rhs is a vector of size Dim -{ - typedef typename TransformType::MatrixType TransformMatrix; - enum { - Dim = TransformType::Dim, - HDim = TransformType::HDim, - OtherRows = MatrixType::RowsAtCompileTime, - WorkingRows = EIGEN_PLAIN_ENUM_MIN(TransformMatrix::RowsAtCompileTime,HDim) - }; - - typedef typename MatrixType::PlainObject ResultType; - - static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) - { - EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); - - Matrix rhs; - rhs.template head() = other; rhs[Dim] = typename ResultType::Scalar(1); - Matrix res(T.matrix() * rhs); - return res.template head(); - } -}; - -/********************************************************** -*** Specializations of operator* with lhs EigenBase *** -**********************************************************/ - -// generic HDim x HDim matrix * T => Projective -template -struct transform_left_product_impl -{ - typedef Transform TransformType; - typedef typename TransformType::MatrixType MatrixType; - typedef Transform ResultType; - static ResultType run(const Other& other,const TransformType& tr) - { return ResultType(other * tr.matrix()); } -}; - -// generic HDim x HDim matrix * AffineCompact => Projective -template -struct transform_left_product_impl -{ - typedef Transform TransformType; - typedef typename TransformType::MatrixType MatrixType; - typedef Transform ResultType; - static ResultType run(const Other& other,const TransformType& tr) - { - ResultType res; - res.matrix().noalias() = other.template block(0,0) * tr.matrix(); - res.matrix().col(Dim) += other.col(Dim); - return res; - } -}; - -// affine matrix * T -template -struct transform_left_product_impl -{ - typedef Transform TransformType; - typedef typename TransformType::MatrixType MatrixType; - typedef TransformType ResultType; - static ResultType run(const Other& other,const TransformType& tr) - { - ResultType res; - res.affine().noalias() = other * tr.matrix(); - res.matrix().row(Dim) = tr.matrix().row(Dim); - return res; - } -}; - -// affine matrix * AffineCompact -template -struct transform_left_product_impl -{ - typedef Transform TransformType; - typedef typename TransformType::MatrixType MatrixType; - typedef TransformType ResultType; - static ResultType run(const Other& other,const TransformType& tr) - { - ResultType res; - res.matrix().noalias() = other.template block(0,0) * tr.matrix(); - res.translation() += other.col(Dim); - return res; - } -}; - -// linear matrix * T -template -struct transform_left_product_impl -{ - typedef Transform TransformType; - typedef typename TransformType::MatrixType MatrixType; - typedef TransformType ResultType; - static ResultType run(const Other& other, const TransformType& tr) - { - TransformType res; - if(Mode!=int(AffineCompact)) - res.matrix().row(Dim) = tr.matrix().row(Dim); - res.matrix().template topRows().noalias() - = other * tr.matrix().template topRows(); - return res; - } -}; - -/********************************************************** -*** Specializations of operator* with another Transform *** -**********************************************************/ - -template -struct transform_transform_product_impl,Transform,false > -{ - enum { ResultMode = transform_product_result::Mode }; - typedef Transform Lhs; - typedef Transform Rhs; - typedef Transform ResultType; - static ResultType run(const Lhs& lhs, const Rhs& rhs) - { - ResultType res; - res.linear() = lhs.linear() * rhs.linear(); - res.translation() = lhs.linear() * rhs.translation() + lhs.translation(); - res.makeAffine(); - return res; - } -}; - -template -struct transform_transform_product_impl,Transform,true > -{ - typedef Transform Lhs; - typedef Transform Rhs; - typedef Transform ResultType; - static ResultType run(const Lhs& lhs, const Rhs& rhs) - { - return ResultType( lhs.matrix() * rhs.matrix() ); - } -}; - -template -struct transform_transform_product_impl,Transform,true > -{ - typedef Transform Lhs; - typedef Transform Rhs; - typedef Transform ResultType; - static ResultType run(const Lhs& lhs, const Rhs& rhs) - { - ResultType res; - res.matrix().template topRows() = lhs.matrix() * rhs.matrix(); - res.matrix().row(Dim) = rhs.matrix().row(Dim); - return res; - } -}; - -template -struct transform_transform_product_impl,Transform,true > -{ - typedef Transform Lhs; - typedef Transform Rhs; - typedef Transform ResultType; - static ResultType run(const Lhs& lhs, const Rhs& rhs) - { - ResultType res(lhs.matrix().template leftCols() * rhs.matrix()); - res.matrix().col(Dim) += lhs.matrix().col(Dim); - return res; - } -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_TRANSFORM_H diff --git a/src/math_meigen/Eigen/src/Geometry/Translation.h b/src/math_meigen/Eigen/src/Geometry/Translation.h deleted file mode 100755 index 51d9a82eb..000000000 --- a/src/math_meigen/Eigen/src/Geometry/Translation.h +++ /dev/null @@ -1,208 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_TRANSLATION_H -#define EIGEN_TRANSLATION_H - -namespace Eigen { - -/** \geometry_module \ingroup Geometry_Module - * - * \class Translation - * - * \brief Represents a translation transformation - * - * \tparam _Scalar the scalar type, i.e., the type of the coefficients. - * \tparam _Dim the dimension of the space, can be a compile time value or Dynamic - * - * \note This class is not aimed to be used to store a translation transformation, - * but rather to make easier the constructions and updates of Transform objects. - * - * \sa class Scaling, class Transform - */ -template -class Translation -{ -public: - EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim) - /** dimension of the space */ - enum { Dim = _Dim }; - /** the scalar type of the coefficients */ - typedef _Scalar Scalar; - /** corresponding vector type */ - typedef Matrix VectorType; - /** corresponding linear transformation matrix type */ - typedef Matrix LinearMatrixType; - /** corresponding affine transformation type */ - typedef Transform AffineTransformType; - /** corresponding isometric transformation type */ - typedef Transform IsometryTransformType; - -protected: - - VectorType m_coeffs; - -public: - - /** Default constructor without initialization. */ - EIGEN_DEVICE_FUNC Translation() {} - /** */ - EIGEN_DEVICE_FUNC inline Translation(const Scalar& sx, const Scalar& sy) - { - eigen_assert(Dim==2); - m_coeffs.x() = sx; - m_coeffs.y() = sy; - } - /** */ - EIGEN_DEVICE_FUNC inline Translation(const Scalar& sx, const Scalar& sy, const Scalar& sz) - { - eigen_assert(Dim==3); - m_coeffs.x() = sx; - m_coeffs.y() = sy; - m_coeffs.z() = sz; - } - /** Constructs and initialize the translation transformation from a vector of translation coefficients */ - EIGEN_DEVICE_FUNC explicit inline Translation(const VectorType& vector) : m_coeffs(vector) {} - - /** \brief Retruns the x-translation by value. **/ - EIGEN_DEVICE_FUNC inline Scalar x() const { return m_coeffs.x(); } - /** \brief Retruns the y-translation by value. **/ - EIGEN_DEVICE_FUNC inline Scalar y() const { return m_coeffs.y(); } - /** \brief Retruns the z-translation by value. **/ - EIGEN_DEVICE_FUNC inline Scalar z() const { return m_coeffs.z(); } - - /** \brief Retruns the x-translation as a reference. **/ - EIGEN_DEVICE_FUNC inline Scalar& x() { return m_coeffs.x(); } - /** \brief Retruns the y-translation as a reference. **/ - EIGEN_DEVICE_FUNC inline Scalar& y() { return m_coeffs.y(); } - /** \brief Retruns the z-translation as a reference. **/ - EIGEN_DEVICE_FUNC inline Scalar& z() { return m_coeffs.z(); } - - EIGEN_DEVICE_FUNC const VectorType& vector() const { return m_coeffs; } - EIGEN_DEVICE_FUNC VectorType& vector() { return m_coeffs; } - - EIGEN_DEVICE_FUNC const VectorType& translation() const { return m_coeffs; } - EIGEN_DEVICE_FUNC VectorType& translation() { return m_coeffs; } - - /** Concatenates two translation */ - EIGEN_DEVICE_FUNC inline Translation operator* (const Translation& other) const - { return Translation(m_coeffs + other.m_coeffs); } - - /** Concatenates a translation and a uniform scaling */ - EIGEN_DEVICE_FUNC inline AffineTransformType operator* (const UniformScaling& other) const; - - /** Concatenates a translation and a linear transformation */ - template - EIGEN_DEVICE_FUNC inline AffineTransformType operator* (const EigenBase& linear) const; - - /** Concatenates a translation and a rotation */ - template - EIGEN_DEVICE_FUNC inline IsometryTransformType operator*(const RotationBase& r) const - { return *this * IsometryTransformType(r); } - - /** \returns the concatenation of a linear transformation \a l with the translation \a t */ - // its a nightmare to define a templated friend function outside its declaration - template friend - EIGEN_DEVICE_FUNC inline AffineTransformType operator*(const EigenBase& linear, const Translation& t) - { - AffineTransformType res; - res.matrix().setZero(); - res.linear() = linear.derived(); - res.translation() = linear.derived() * t.m_coeffs; - res.matrix().row(Dim).setZero(); - res(Dim,Dim) = Scalar(1); - return res; - } - - /** Concatenates a translation and a transformation */ - template - EIGEN_DEVICE_FUNC inline Transform operator* (const Transform& t) const - { - Transform res = t; - res.pretranslate(m_coeffs); - return res; - } - - /** Applies translation to vector */ - template - inline typename internal::enable_if::type - operator* (const MatrixBase& vec) const - { return m_coeffs + vec.derived(); } - - /** \returns the inverse translation (opposite) */ - Translation inverse() const { return Translation(-m_coeffs); } - - Translation& operator=(const Translation& other) - { - m_coeffs = other.m_coeffs; - return *this; - } - - static const Translation Identity() { return Translation(VectorType::Zero()); } - - /** \returns \c *this with scalar type casted to \a NewScalarType - * - * Note that if \a NewScalarType is equal to the current scalar type of \c *this - * then this function smartly returns a const reference to \c *this. - */ - template - EIGEN_DEVICE_FUNC inline typename internal::cast_return_type >::type cast() const - { return typename internal::cast_return_type >::type(*this); } - - /** Copy constructor with scalar type conversion */ - template - EIGEN_DEVICE_FUNC inline explicit Translation(const Translation& other) - { m_coeffs = other.vector().template cast(); } - - /** \returns \c true if \c *this is approximately equal to \a other, within the precision - * determined by \a prec. - * - * \sa MatrixBase::isApprox() */ - EIGEN_DEVICE_FUNC bool isApprox(const Translation& other, const typename NumTraits::Real& prec = NumTraits::dummy_precision()) const - { return m_coeffs.isApprox(other.m_coeffs, prec); } - -}; - -/** \addtogroup Geometry_Module */ -//@{ -typedef Translation Translation2f; -typedef Translation Translation2d; -typedef Translation Translation3f; -typedef Translation Translation3d; -//@} - -template -EIGEN_DEVICE_FUNC inline typename Translation::AffineTransformType -Translation::operator* (const UniformScaling& other) const -{ - AffineTransformType res; - res.matrix().setZero(); - res.linear().diagonal().fill(other.factor()); - res.translation() = m_coeffs; - res(Dim,Dim) = Scalar(1); - return res; -} - -template -template -EIGEN_DEVICE_FUNC inline typename Translation::AffineTransformType -Translation::operator* (const EigenBase& linear) const -{ - AffineTransformType res; - res.matrix().setZero(); - res.linear() = linear.derived(); - res.translation() = m_coeffs; - res.matrix().row(Dim).setZero(); - res(Dim,Dim) = Scalar(1); - return res; -} - -} // end namespace Eigen - -#endif // EIGEN_TRANSLATION_H diff --git a/src/math_meigen/Eigen/src/Geometry/Umeyama.h b/src/math_meigen/Eigen/src/Geometry/Umeyama.h deleted file mode 100755 index 7e933fca1..000000000 --- a/src/math_meigen/Eigen/src/Geometry/Umeyama.h +++ /dev/null @@ -1,166 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Hauke Heibel -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_UMEYAMA_H -#define EIGEN_UMEYAMA_H - -// This file requires the user to include -// * Eigen/Core -// * Eigen/LU -// * Eigen/SVD -// * Eigen/Array - -namespace Eigen { - -#ifndef EIGEN_PARSED_BY_DOXYGEN - -// These helpers are required since it allows to use mixed types as parameters -// for the Umeyama. The problem with mixed parameters is that the return type -// cannot trivially be deduced when float and double types are mixed. -namespace internal { - -// Compile time return type deduction for different MatrixBase types. -// Different means here different alignment and parameters but the same underlying -// real scalar type. -template -struct umeyama_transform_matrix_type -{ - enum { - MinRowsAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, OtherMatrixType::RowsAtCompileTime), - - // When possible we want to choose some small fixed size value since the result - // is likely to fit on the stack. So here, EIGEN_SIZE_MIN_PREFER_DYNAMIC is not what we want. - HomogeneousDimension = int(MinRowsAtCompileTime) == Dynamic ? Dynamic : int(MinRowsAtCompileTime)+1 - }; - - typedef Matrix::Scalar, - HomogeneousDimension, - HomogeneousDimension, - AutoAlign | (traits::Flags & RowMajorBit ? RowMajor : ColMajor), - HomogeneousDimension, - HomogeneousDimension - > type; -}; - -} - -#endif - -/** -* \geometry_module \ingroup Geometry_Module -* -* \brief Returns the transformation between two point sets. -* -* The algorithm is based on: -* "Least-squares estimation of transformation parameters between two point patterns", -* Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573 -* -* It estimates parameters \f$ c, \mathbf{R}, \f$ and \f$ \mathbf{t} \f$ such that -* \f{align*} -* \frac{1}{n} \sum_{i=1}^n \vert\vert y_i - (c\mathbf{R}x_i + \mathbf{t}) \vert\vert_2^2 -* \f} -* is minimized. -* -* The algorithm is based on the analysis of the covariance matrix -* \f$ \Sigma_{\mathbf{x}\mathbf{y}} \in \mathbb{R}^{d \times d} \f$ -* of the input point sets \f$ \mathbf{x} \f$ and \f$ \mathbf{y} \f$ where -* \f$d\f$ is corresponding to the dimension (which is typically small). -* The analysis is involving the SVD having a complexity of \f$O(d^3)\f$ -* though the actual computational effort lies in the covariance -* matrix computation which has an asymptotic lower bound of \f$O(dm)\f$ when -* the input point sets have dimension \f$d \times m\f$. -* -* Currently the method is working only for floating point matrices. -* -* \todo Should the return type of umeyama() become a Transform? -* -* \param src Source points \f$ \mathbf{x} = \left( x_1, \hdots, x_n \right) \f$. -* \param dst Destination points \f$ \mathbf{y} = \left( y_1, \hdots, y_n \right) \f$. -* \param with_scaling Sets \f$ c=1 \f$ when false is passed. -* \return The homogeneous transformation -* \f{align*} -* T = \begin{bmatrix} c\mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} -* \f} -* minimizing the resudiual above. This transformation is always returned as an -* Eigen::Matrix. -*/ -template -typename internal::umeyama_transform_matrix_type::type -umeyama(const MatrixBase& src, const MatrixBase& dst, bool with_scaling = true) -{ - typedef typename internal::umeyama_transform_matrix_type::type TransformationMatrixType; - typedef typename internal::traits::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - - EIGEN_STATIC_ASSERT(!NumTraits::IsComplex, NUMERIC_TYPE_MUST_BE_REAL) - EIGEN_STATIC_ASSERT((internal::is_same::Scalar>::value), - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - - enum { Dimension = EIGEN_SIZE_MIN_PREFER_DYNAMIC(Derived::RowsAtCompileTime, OtherDerived::RowsAtCompileTime) }; - - typedef Matrix VectorType; - typedef Matrix MatrixType; - typedef typename internal::plain_matrix_type_row_major::type RowMajorMatrixType; - - const Index m = src.rows(); // dimension - const Index n = src.cols(); // number of measurements - - // required for demeaning ... - const RealScalar one_over_n = RealScalar(1) / static_cast(n); - - // computation of mean - const VectorType src_mean = src.rowwise().sum() * one_over_n; - const VectorType dst_mean = dst.rowwise().sum() * one_over_n; - - // demeaning of src and dst points - const RowMajorMatrixType src_demean = src.colwise() - src_mean; - const RowMajorMatrixType dst_demean = dst.colwise() - dst_mean; - - // Eq. (36)-(37) - const Scalar src_var = src_demean.rowwise().squaredNorm().sum() * one_over_n; - - // Eq. (38) - const MatrixType sigma = one_over_n * dst_demean * src_demean.transpose(); - - JacobiSVD svd(sigma, ComputeFullU | ComputeFullV); - - // Initialize the resulting transformation with an identity matrix... - TransformationMatrixType Rt = TransformationMatrixType::Identity(m+1,m+1); - - // Eq. (39) - VectorType S = VectorType::Ones(m); - - if ( svd.matrixU().determinant() * svd.matrixV().determinant() < 0 ) - S(m-1) = -1; - - // Eq. (40) and (43) - Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose(); - - if (with_scaling) - { - // Eq. (42) - const Scalar c = Scalar(1)/src_var * svd.singularValues().dot(S); - - // Eq. (41) - Rt.col(m).head(m) = dst_mean; - Rt.col(m).head(m).noalias() -= c*Rt.topLeftCorner(m,m)*src_mean; - Rt.block(0,0,m,m) *= c; - } - else - { - Rt.col(m).head(m) = dst_mean; - Rt.col(m).head(m).noalias() -= Rt.topLeftCorner(m,m)*src_mean; - } - - return Rt; -} - -} // end namespace Eigen - -#endif // EIGEN_UMEYAMA_H diff --git a/src/math_meigen/Eigen/src/Geometry/arch/Geometry_SSE.h b/src/math_meigen/Eigen/src/Geometry/arch/Geometry_SSE.h deleted file mode 100755 index f68cab583..000000000 --- a/src/math_meigen/Eigen/src/Geometry/arch/Geometry_SSE.h +++ /dev/null @@ -1,161 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Rohit Garg -// Copyright (C) 2009-2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_GEOMETRY_SSE_H -#define EIGEN_GEOMETRY_SSE_H - -namespace Eigen { - -namespace internal { - -template -struct quat_product -{ - enum { - AAlignment = traits::Alignment, - BAlignment = traits::Alignment, - ResAlignment = traits >::Alignment - }; - static inline Quaternion run(const QuaternionBase& _a, const QuaternionBase& _b) - { - Quaternion res; - const __m128 mask = _mm_setr_ps(0.f,0.f,0.f,-0.f); - __m128 a = _a.coeffs().template packet(0); - __m128 b = _b.coeffs().template packet(0); - __m128 s1 = _mm_mul_ps(vec4f_swizzle1(a,1,2,0,2),vec4f_swizzle1(b,2,0,1,2)); - __m128 s2 = _mm_mul_ps(vec4f_swizzle1(a,3,3,3,1),vec4f_swizzle1(b,0,1,2,1)); - pstoret( - &res.x(), - _mm_add_ps(_mm_sub_ps(_mm_mul_ps(a,vec4f_swizzle1(b,3,3,3,3)), - _mm_mul_ps(vec4f_swizzle1(a,2,0,1,0), - vec4f_swizzle1(b,1,2,0,0))), - _mm_xor_ps(mask,_mm_add_ps(s1,s2)))); - - return res; - } -}; - -template -struct quat_conj -{ - enum { - ResAlignment = traits >::Alignment - }; - static inline Quaternion run(const QuaternionBase& q) - { - Quaternion res; - const __m128 mask = _mm_setr_ps(-0.f,-0.f,-0.f,0.f); - pstoret(&res.x(), _mm_xor_ps(mask, q.coeffs().template packet::Alignment>(0))); - return res; - } -}; - - -template -struct cross3_impl -{ - enum { - ResAlignment = traits::type>::Alignment - }; - static inline typename plain_matrix_type::type - run(const VectorLhs& lhs, const VectorRhs& rhs) - { - __m128 a = lhs.template packet::Alignment>(0); - __m128 b = rhs.template packet::Alignment>(0); - __m128 mul1=_mm_mul_ps(vec4f_swizzle1(a,1,2,0,3),vec4f_swizzle1(b,2,0,1,3)); - __m128 mul2=_mm_mul_ps(vec4f_swizzle1(a,2,0,1,3),vec4f_swizzle1(b,1,2,0,3)); - typename plain_matrix_type::type res; - pstoret(&res.x(),_mm_sub_ps(mul1,mul2)); - return res; - } -}; - - - - -template -struct quat_product -{ - enum { - BAlignment = traits::Alignment, - ResAlignment = traits >::Alignment - }; - - static inline Quaternion run(const QuaternionBase& _a, const QuaternionBase& _b) - { - const Packet2d mask = _mm_castsi128_pd(_mm_set_epi32(0x0,0x0,0x80000000,0x0)); - - Quaternion res; - - const double* a = _a.coeffs().data(); - Packet2d b_xy = _b.coeffs().template packet(0); - Packet2d b_zw = _b.coeffs().template packet(2); - Packet2d a_xx = pset1(a[0]); - Packet2d a_yy = pset1(a[1]); - Packet2d a_zz = pset1(a[2]); - Packet2d a_ww = pset1(a[3]); - - // two temporaries: - Packet2d t1, t2; - - /* - * t1 = ww*xy + yy*zw - * t2 = zz*xy - xx*zw - * res.xy = t1 +/- swap(t2) - */ - t1 = padd(pmul(a_ww, b_xy), pmul(a_yy, b_zw)); - t2 = psub(pmul(a_zz, b_xy), pmul(a_xx, b_zw)); -#ifdef EIGEN_VECTORIZE_SSE3 - EIGEN_UNUSED_VARIABLE(mask) - pstoret(&res.x(), _mm_addsub_pd(t1, preverse(t2))); -#else - pstoret(&res.x(), padd(t1, pxor(mask,preverse(t2)))); -#endif - - /* - * t1 = ww*zw - yy*xy - * t2 = zz*zw + xx*xy - * res.zw = t1 -/+ swap(t2) = swap( swap(t1) +/- t2) - */ - t1 = psub(pmul(a_ww, b_zw), pmul(a_yy, b_xy)); - t2 = padd(pmul(a_zz, b_zw), pmul(a_xx, b_xy)); -#ifdef EIGEN_VECTORIZE_SSE3 - EIGEN_UNUSED_VARIABLE(mask) - pstoret(&res.z(), preverse(_mm_addsub_pd(preverse(t1), t2))); -#else - pstoret(&res.z(), psub(t1, pxor(mask,preverse(t2)))); -#endif - - return res; -} -}; - -template -struct quat_conj -{ - enum { - ResAlignment = traits >::Alignment - }; - static inline Quaternion run(const QuaternionBase& q) - { - Quaternion res; - const __m128d mask0 = _mm_setr_pd(-0.,-0.); - const __m128d mask2 = _mm_setr_pd(-0.,0.); - pstoret(&res.x(), _mm_xor_pd(mask0, q.coeffs().template packet::Alignment>(0))); - pstoret(&res.z(), _mm_xor_pd(mask2, q.coeffs().template packet::Alignment>(2))); - return res; - } -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_GEOMETRY_SSE_H diff --git a/src/math_meigen/Eigen/src/Householder/BlockHouseholder.h b/src/math_meigen/Eigen/src/Householder/BlockHouseholder.h deleted file mode 100755 index 01a7ed188..000000000 --- a/src/math_meigen/Eigen/src/Householder/BlockHouseholder.h +++ /dev/null @@ -1,103 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2010 Vincent Lejeune -// Copyright (C) 2010 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_BLOCK_HOUSEHOLDER_H -#define EIGEN_BLOCK_HOUSEHOLDER_H - -// This file contains some helper function to deal with block householder reflectors - -namespace Eigen { - -namespace internal { - -/** \internal */ -// template -// void make_block_householder_triangular_factor(TriangularFactorType& triFactor, const VectorsType& vectors, const CoeffsType& hCoeffs) -// { -// typedef typename VectorsType::Scalar Scalar; -// const Index nbVecs = vectors.cols(); -// eigen_assert(triFactor.rows() == nbVecs && triFactor.cols() == nbVecs && vectors.rows()>=nbVecs); -// -// for(Index i = 0; i < nbVecs; i++) -// { -// Index rs = vectors.rows() - i; -// // Warning, note that hCoeffs may alias with vectors. -// // It is then necessary to copy it before modifying vectors(i,i). -// typename CoeffsType::Scalar h = hCoeffs(i); -// // This hack permits to pass trough nested Block<> and Transpose<> expressions. -// Scalar *Vii_ptr = const_cast(vectors.data() + vectors.outerStride()*i + vectors.innerStride()*i); -// Scalar Vii = *Vii_ptr; -// *Vii_ptr = Scalar(1); -// triFactor.col(i).head(i).noalias() = -h * vectors.block(i, 0, rs, i).adjoint() -// * vectors.col(i).tail(rs); -// *Vii_ptr = Vii; -// // FIXME add .noalias() once the triangular product can work inplace -// triFactor.col(i).head(i) = triFactor.block(0,0,i,i).template triangularView() -// * triFactor.col(i).head(i); -// triFactor(i,i) = hCoeffs(i); -// } -// } - -/** \internal */ -// This variant avoid modifications in vectors -template -void make_block_householder_triangular_factor(TriangularFactorType& triFactor, const VectorsType& vectors, const CoeffsType& hCoeffs) -{ - const Index nbVecs = vectors.cols(); - eigen_assert(triFactor.rows() == nbVecs && triFactor.cols() == nbVecs && vectors.rows()>=nbVecs); - - for(Index i = nbVecs-1; i >=0 ; --i) - { - Index rs = vectors.rows() - i - 1; - Index rt = nbVecs-i-1; - - if(rt>0) - { - triFactor.row(i).tail(rt).noalias() = -hCoeffs(i) * vectors.col(i).tail(rs).adjoint() - * vectors.bottomRightCorner(rs, rt).template triangularView(); - - // FIXME add .noalias() once the triangular product can work inplace - triFactor.row(i).tail(rt) = triFactor.row(i).tail(rt) * triFactor.bottomRightCorner(rt,rt).template triangularView(); - - } - triFactor(i,i) = hCoeffs(i); - } -} - -/** \internal - * if forward then perform mat = H0 * H1 * H2 * mat - * otherwise perform mat = H2 * H1 * H0 * mat - */ -template -void apply_block_householder_on_the_left(MatrixType& mat, const VectorsType& vectors, const CoeffsType& hCoeffs, bool forward) -{ - enum { TFactorSize = MatrixType::ColsAtCompileTime }; - Index nbVecs = vectors.cols(); - Matrix T(nbVecs,nbVecs); - - if(forward) make_block_householder_triangular_factor(T, vectors, hCoeffs); - else make_block_householder_triangular_factor(T, vectors, hCoeffs.conjugate()); - const TriangularView V(vectors); - - // A -= V T V^* A - Matrix tmp = V.adjoint() * mat; - // FIXME add .noalias() once the triangular product can work inplace - if(forward) tmp = T.template triangularView() * tmp; - else tmp = T.template triangularView().adjoint() * tmp; - mat.noalias() -= V * tmp; -} - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_BLOCK_HOUSEHOLDER_H diff --git a/src/math_meigen/Eigen/src/Householder/Householder.h b/src/math_meigen/Eigen/src/Householder/Householder.h deleted file mode 100755 index 80de2c305..000000000 --- a/src/math_meigen/Eigen/src/Householder/Householder.h +++ /dev/null @@ -1,172 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2010 Benoit Jacob -// Copyright (C) 2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_HOUSEHOLDER_H -#define EIGEN_HOUSEHOLDER_H - -namespace Eigen { - -namespace internal { -template struct decrement_size -{ - enum { - ret = n==Dynamic ? n : n-1 - }; -}; -} - -/** Computes the elementary reflector H such that: - * \f$ H *this = [ beta 0 ... 0]^T \f$ - * where the transformation H is: - * \f$ H = I - tau v v^*\f$ - * and the vector v is: - * \f$ v^T = [1 essential^T] \f$ - * - * The essential part of the vector \c v is stored in *this. - * - * On output: - * \param tau the scaling factor of the Householder transformation - * \param beta the result of H * \c *this - * - * \sa MatrixBase::makeHouseholder(), MatrixBase::applyHouseholderOnTheLeft(), - * MatrixBase::applyHouseholderOnTheRight() - */ -template -void MatrixBase::makeHouseholderInPlace(Scalar& tau, RealScalar& beta) -{ - VectorBlock::ret> essentialPart(derived(), 1, size()-1); - makeHouseholder(essentialPart, tau, beta); -} - -/** Computes the elementary reflector H such that: - * \f$ H *this = [ beta 0 ... 0]^T \f$ - * where the transformation H is: - * \f$ H = I - tau v v^*\f$ - * and the vector v is: - * \f$ v^T = [1 essential^T] \f$ - * - * On output: - * \param essential the essential part of the vector \c v - * \param tau the scaling factor of the Householder transformation - * \param beta the result of H * \c *this - * - * \sa MatrixBase::makeHouseholderInPlace(), MatrixBase::applyHouseholderOnTheLeft(), - * MatrixBase::applyHouseholderOnTheRight() - */ -template -template -void MatrixBase::makeHouseholder( - EssentialPart& essential, - Scalar& tau, - RealScalar& beta) const -{ - using std::sqrt; - using numext::conj; - - EIGEN_STATIC_ASSERT_VECTOR_ONLY(EssentialPart) - VectorBlock tail(derived(), 1, size()-1); - - RealScalar tailSqNorm = size()==1 ? RealScalar(0) : tail.squaredNorm(); - Scalar c0 = coeff(0); - const RealScalar tol = (std::numeric_limits::min)(); - - if(tailSqNorm <= tol && numext::abs2(numext::imag(c0))<=tol) - { - tau = RealScalar(0); - beta = numext::real(c0); - essential.setZero(); - } - else - { - beta = sqrt(numext::abs2(c0) + tailSqNorm); - if (numext::real(c0)>=RealScalar(0)) - beta = -beta; - essential = tail / (c0 - beta); - tau = conj((beta - c0) / beta); - } -} - -/** Apply the elementary reflector H given by - * \f$ H = I - tau v v^*\f$ - * with - * \f$ v^T = [1 essential^T] \f$ - * from the left to a vector or matrix. - * - * On input: - * \param essential the essential part of the vector \c v - * \param tau the scaling factor of the Householder transformation - * \param workspace a pointer to working space with at least - * this->cols() * essential.size() entries - * - * \sa MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(), - * MatrixBase::applyHouseholderOnTheRight() - */ -template -template -void MatrixBase::applyHouseholderOnTheLeft( - const EssentialPart& essential, - const Scalar& tau, - Scalar* workspace) -{ - if(rows() == 1) - { - *this *= Scalar(1)-tau; - } - else if(tau!=Scalar(0)) - { - Map::type> tmp(workspace,cols()); - Block bottom(derived(), 1, 0, rows()-1, cols()); - tmp.noalias() = essential.adjoint() * bottom; - tmp += this->row(0); - this->row(0) -= tau * tmp; - bottom.noalias() -= tau * essential * tmp; - } -} - -/** Apply the elementary reflector H given by - * \f$ H = I - tau v v^*\f$ - * with - * \f$ v^T = [1 essential^T] \f$ - * from the right to a vector or matrix. - * - * On input: - * \param essential the essential part of the vector \c v - * \param tau the scaling factor of the Householder transformation - * \param workspace a pointer to working space with at least - * this->cols() * essential.size() entries - * - * \sa MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(), - * MatrixBase::applyHouseholderOnTheLeft() - */ -template -template -void MatrixBase::applyHouseholderOnTheRight( - const EssentialPart& essential, - const Scalar& tau, - Scalar* workspace) -{ - if(cols() == 1) - { - *this *= Scalar(1)-tau; - } - else if(tau!=Scalar(0)) - { - Map::type> tmp(workspace,rows()); - Block right(derived(), 0, 1, rows(), cols()-1); - tmp.noalias() = right * essential.conjugate(); - tmp += this->col(0); - this->col(0) -= tau * tmp; - right.noalias() -= tau * tmp * essential.transpose(); - } -} - -} // end namespace Eigen - -#endif // EIGEN_HOUSEHOLDER_H diff --git a/src/math_meigen/Eigen/src/Householder/HouseholderSequence.h b/src/math_meigen/Eigen/src/Householder/HouseholderSequence.h deleted file mode 100755 index 3ce0a693d..000000000 --- a/src/math_meigen/Eigen/src/Householder/HouseholderSequence.h +++ /dev/null @@ -1,470 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Gael Guennebaud -// Copyright (C) 2010 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_HOUSEHOLDER_SEQUENCE_H -#define EIGEN_HOUSEHOLDER_SEQUENCE_H - -namespace Eigen { - -/** \ingroup Householder_Module - * \householder_module - * \class HouseholderSequence - * \brief Sequence of Householder reflections acting on subspaces with decreasing size - * \tparam VectorsType type of matrix containing the Householder vectors - * \tparam CoeffsType type of vector containing the Householder coefficients - * \tparam Side either OnTheLeft (the default) or OnTheRight - * - * This class represents a product sequence of Householder reflections where the first Householder reflection - * acts on the whole space, the second Householder reflection leaves the one-dimensional subspace spanned by - * the first unit vector invariant, the third Householder reflection leaves the two-dimensional subspace - * spanned by the first two unit vectors invariant, and so on up to the last reflection which leaves all but - * one dimensions invariant and acts only on the last dimension. Such sequences of Householder reflections - * are used in several algorithms to zero out certain parts of a matrix. Indeed, the methods - * HessenbergDecomposition::matrixQ(), Tridiagonalization::matrixQ(), HouseholderQR::householderQ(), - * and ColPivHouseholderQR::householderQ() all return a %HouseholderSequence. - * - * More precisely, the class %HouseholderSequence represents an \f$ n \times n \f$ matrix \f$ H \f$ of the - * form \f$ H = \prod_{i=0}^{n-1} H_i \f$ where the i-th Householder reflection is \f$ H_i = I - h_i v_i - * v_i^* \f$. The i-th Householder coefficient \f$ h_i \f$ is a scalar and the i-th Householder vector \f$ - * v_i \f$ is a vector of the form - * \f[ - * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. - * \f] - * The last \f$ n-i \f$ entries of \f$ v_i \f$ are called the essential part of the Householder vector. - * - * Typical usages are listed below, where H is a HouseholderSequence: - * \code - * A.applyOnTheRight(H); // A = A * H - * A.applyOnTheLeft(H); // A = H * A - * A.applyOnTheRight(H.adjoint()); // A = A * H^* - * A.applyOnTheLeft(H.adjoint()); // A = H^* * A - * MatrixXd Q = H; // conversion to a dense matrix - * \endcode - * In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators. - * - * See the documentation for HouseholderSequence(const VectorsType&, const CoeffsType&) for an example. - * - * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() - */ - -namespace internal { - -template -struct traits > -{ - typedef typename VectorsType::Scalar Scalar; - typedef typename VectorsType::StorageIndex StorageIndex; - typedef typename VectorsType::StorageKind StorageKind; - enum { - RowsAtCompileTime = Side==OnTheLeft ? traits::RowsAtCompileTime - : traits::ColsAtCompileTime, - ColsAtCompileTime = RowsAtCompileTime, - MaxRowsAtCompileTime = Side==OnTheLeft ? traits::MaxRowsAtCompileTime - : traits::MaxColsAtCompileTime, - MaxColsAtCompileTime = MaxRowsAtCompileTime, - Flags = 0 - }; -}; - -struct HouseholderSequenceShape {}; - -template -struct evaluator_traits > - : public evaluator_traits_base > -{ - typedef HouseholderSequenceShape Shape; -}; - -template -struct hseq_side_dependent_impl -{ - typedef Block EssentialVectorType; - typedef HouseholderSequence HouseholderSequenceType; - static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k) - { - Index start = k+1+h.m_shift; - return Block(h.m_vectors, start, k, h.rows()-start, 1); - } -}; - -template -struct hseq_side_dependent_impl -{ - typedef Transpose > EssentialVectorType; - typedef HouseholderSequence HouseholderSequenceType; - static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k) - { - Index start = k+1+h.m_shift; - return Block(h.m_vectors, k, start, 1, h.rows()-start).transpose(); - } -}; - -template struct matrix_type_times_scalar_type -{ - typedef typename ScalarBinaryOpTraits::ReturnType - ResultScalar; - typedef Matrix Type; -}; - -} // end namespace internal - -template class HouseholderSequence - : public EigenBase > -{ - typedef typename internal::hseq_side_dependent_impl::EssentialVectorType EssentialVectorType; - - public: - enum { - RowsAtCompileTime = internal::traits::RowsAtCompileTime, - ColsAtCompileTime = internal::traits::ColsAtCompileTime, - MaxRowsAtCompileTime = internal::traits::MaxRowsAtCompileTime, - MaxColsAtCompileTime = internal::traits::MaxColsAtCompileTime - }; - typedef typename internal::traits::Scalar Scalar; - - typedef HouseholderSequence< - typename internal::conditional::IsComplex, - typename internal::remove_all::type, - VectorsType>::type, - typename internal::conditional::IsComplex, - typename internal::remove_all::type, - CoeffsType>::type, - Side - > ConjugateReturnType; - - /** \brief Constructor. - * \param[in] v %Matrix containing the essential parts of the Householder vectors - * \param[in] h Vector containing the Householder coefficients - * - * Constructs the Householder sequence with coefficients given by \p h and vectors given by \p v. The - * i-th Householder coefficient \f$ h_i \f$ is given by \p h(i) and the essential part of the i-th - * Householder vector \f$ v_i \f$ is given by \p v(k,i) with \p k > \p i (the subdiagonal part of the - * i-th column). If \p v has fewer columns than rows, then the Householder sequence contains as many - * Householder reflections as there are columns. - * - * \note The %HouseholderSequence object stores \p v and \p h by reference. - * - * Example: \include HouseholderSequence_HouseholderSequence.cpp - * Output: \verbinclude HouseholderSequence_HouseholderSequence.out - * - * \sa setLength(), setShift() - */ - HouseholderSequence(const VectorsType& v, const CoeffsType& h) - : m_vectors(v), m_coeffs(h), m_trans(false), m_length(v.diagonalSize()), - m_shift(0) - { - } - - /** \brief Copy constructor. */ - HouseholderSequence(const HouseholderSequence& other) - : m_vectors(other.m_vectors), - m_coeffs(other.m_coeffs), - m_trans(other.m_trans), - m_length(other.m_length), - m_shift(other.m_shift) - { - } - - /** \brief Number of rows of transformation viewed as a matrix. - * \returns Number of rows - * \details This equals the dimension of the space that the transformation acts on. - */ - Index rows() const { return Side==OnTheLeft ? m_vectors.rows() : m_vectors.cols(); } - - /** \brief Number of columns of transformation viewed as a matrix. - * \returns Number of columns - * \details This equals the dimension of the space that the transformation acts on. - */ - Index cols() const { return rows(); } - - /** \brief Essential part of a Householder vector. - * \param[in] k Index of Householder reflection - * \returns Vector containing non-trivial entries of k-th Householder vector - * - * This function returns the essential part of the Householder vector \f$ v_i \f$. This is a vector of - * length \f$ n-i \f$ containing the last \f$ n-i \f$ entries of the vector - * \f[ - * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. - * \f] - * The index \f$ i \f$ equals \p k + shift(), corresponding to the k-th column of the matrix \p v - * passed to the constructor. - * - * \sa setShift(), shift() - */ - const EssentialVectorType essentialVector(Index k) const - { - eigen_assert(k >= 0 && k < m_length); - return internal::hseq_side_dependent_impl::essentialVector(*this, k); - } - - /** \brief %Transpose of the Householder sequence. */ - HouseholderSequence transpose() const - { - return HouseholderSequence(*this).setTrans(!m_trans); - } - - /** \brief Complex conjugate of the Householder sequence. */ - ConjugateReturnType conjugate() const - { - return ConjugateReturnType(m_vectors.conjugate(), m_coeffs.conjugate()) - .setTrans(m_trans) - .setLength(m_length) - .setShift(m_shift); - } - - /** \brief Adjoint (conjugate transpose) of the Householder sequence. */ - ConjugateReturnType adjoint() const - { - return conjugate().setTrans(!m_trans); - } - - /** \brief Inverse of the Householder sequence (equals the adjoint). */ - ConjugateReturnType inverse() const { return adjoint(); } - - /** \internal */ - template inline void evalTo(DestType& dst) const - { - Matrix workspace(rows()); - evalTo(dst, workspace); - } - - /** \internal */ - template - void evalTo(Dest& dst, Workspace& workspace) const - { - workspace.resize(rows()); - Index vecs = m_length; - if(internal::is_same_dense(dst,m_vectors)) - { - // in-place - dst.diagonal().setOnes(); - dst.template triangularView().setZero(); - for(Index k = vecs-1; k >= 0; --k) - { - Index cornerSize = rows() - k - m_shift; - if(m_trans) - dst.bottomRightCorner(cornerSize, cornerSize) - .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data()); - else - dst.bottomRightCorner(cornerSize, cornerSize) - .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data()); - - // clear the off diagonal vector - dst.col(k).tail(rows()-k-1).setZero(); - } - // clear the remaining columns if needed - for(Index k = 0; k= 0; --k) - { - Index cornerSize = rows() - k - m_shift; - if(m_trans) - dst.bottomRightCorner(cornerSize, cornerSize) - .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0)); - else - dst.bottomRightCorner(cornerSize, cornerSize) - .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0)); - } - } - } - - /** \internal */ - template inline void applyThisOnTheRight(Dest& dst) const - { - Matrix workspace(dst.rows()); - applyThisOnTheRight(dst, workspace); - } - - /** \internal */ - template - inline void applyThisOnTheRight(Dest& dst, Workspace& workspace) const - { - workspace.resize(dst.rows()); - for(Index k = 0; k < m_length; ++k) - { - Index actual_k = m_trans ? m_length-k-1 : k; - dst.rightCols(rows()-m_shift-actual_k) - .applyHouseholderOnTheRight(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data()); - } - } - - /** \internal */ - template inline void applyThisOnTheLeft(Dest& dst) const - { - Matrix workspace; - applyThisOnTheLeft(dst, workspace); - } - - /** \internal */ - template - inline void applyThisOnTheLeft(Dest& dst, Workspace& workspace) const - { - const Index BlockSize = 48; - // if the entries are large enough, then apply the reflectors by block - if(m_length>=BlockSize && dst.cols()>1) - { - for(Index i = 0; i < m_length; i+=BlockSize) - { - Index end = m_trans ? (std::min)(m_length,i+BlockSize) : m_length-i; - Index k = m_trans ? i : (std::max)(Index(0),end-BlockSize); - Index bs = end-k; - Index start = k + m_shift; - - typedef Block::type,Dynamic,Dynamic> SubVectorsType; - SubVectorsType sub_vecs1(m_vectors.const_cast_derived(), Side==OnTheRight ? k : start, - Side==OnTheRight ? start : k, - Side==OnTheRight ? bs : m_vectors.rows()-start, - Side==OnTheRight ? m_vectors.cols()-start : bs); - typename internal::conditional, SubVectorsType&>::type sub_vecs(sub_vecs1); - Block sub_dst(dst,dst.rows()-rows()+m_shift+k,0, rows()-m_shift-k,dst.cols()); - apply_block_householder_on_the_left(sub_dst, sub_vecs, m_coeffs.segment(k, bs), !m_trans); - } - } - else - { - workspace.resize(dst.cols()); - for(Index k = 0; k < m_length; ++k) - { - Index actual_k = m_trans ? k : m_length-k-1; - dst.bottomRows(rows()-m_shift-actual_k) - .applyHouseholderOnTheLeft(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data()); - } - } - } - - /** \brief Computes the product of a Householder sequence with a matrix. - * \param[in] other %Matrix being multiplied. - * \returns Expression object representing the product. - * - * This function computes \f$ HM \f$ where \f$ H \f$ is the Householder sequence represented by \p *this - * and \f$ M \f$ is the matrix \p other. - */ - template - typename internal::matrix_type_times_scalar_type::Type operator*(const MatrixBase& other) const - { - typename internal::matrix_type_times_scalar_type::Type - res(other.template cast::ResultScalar>()); - applyThisOnTheLeft(res); - return res; - } - - template friend struct internal::hseq_side_dependent_impl; - - /** \brief Sets the length of the Householder sequence. - * \param [in] length New value for the length. - * - * By default, the length \f$ n \f$ of the Householder sequence \f$ H = H_0 H_1 \ldots H_{n-1} \f$ is set - * to the number of columns of the matrix \p v passed to the constructor, or the number of rows if that - * is smaller. After this function is called, the length equals \p length. - * - * \sa length() - */ - HouseholderSequence& setLength(Index length) - { - m_length = length; - return *this; - } - - /** \brief Sets the shift of the Householder sequence. - * \param [in] shift New value for the shift. - * - * By default, a %HouseholderSequence object represents \f$ H = H_0 H_1 \ldots H_{n-1} \f$ and the i-th - * column of the matrix \p v passed to the constructor corresponds to the i-th Householder - * reflection. After this function is called, the object represents \f$ H = H_{\mathrm{shift}} - * H_{\mathrm{shift}+1} \ldots H_{n-1} \f$ and the i-th column of \p v corresponds to the (shift+i)-th - * Householder reflection. - * - * \sa shift() - */ - HouseholderSequence& setShift(Index shift) - { - m_shift = shift; - return *this; - } - - Index length() const { return m_length; } /**< \brief Returns the length of the Householder sequence. */ - Index shift() const { return m_shift; } /**< \brief Returns the shift of the Householder sequence. */ - - /* Necessary for .adjoint() and .conjugate() */ - template friend class HouseholderSequence; - - protected: - - /** \brief Sets the transpose flag. - * \param [in] trans New value of the transpose flag. - * - * By default, the transpose flag is not set. If the transpose flag is set, then this object represents - * \f$ H^T = H_{n-1}^T \ldots H_1^T H_0^T \f$ instead of \f$ H = H_0 H_1 \ldots H_{n-1} \f$. - * - * \sa trans() - */ - HouseholderSequence& setTrans(bool trans) - { - m_trans = trans; - return *this; - } - - bool trans() const { return m_trans; } /**< \brief Returns the transpose flag. */ - - typename VectorsType::Nested m_vectors; - typename CoeffsType::Nested m_coeffs; - bool m_trans; - Index m_length; - Index m_shift; -}; - -/** \brief Computes the product of a matrix with a Householder sequence. - * \param[in] other %Matrix being multiplied. - * \param[in] h %HouseholderSequence being multiplied. - * \returns Expression object representing the product. - * - * This function computes \f$ MH \f$ where \f$ M \f$ is the matrix \p other and \f$ H \f$ is the - * Householder sequence represented by \p h. - */ -template -typename internal::matrix_type_times_scalar_type::Type operator*(const MatrixBase& other, const HouseholderSequence& h) -{ - typename internal::matrix_type_times_scalar_type::Type - res(other.template cast::ResultScalar>()); - h.applyThisOnTheRight(res); - return res; -} - -/** \ingroup Householder_Module \householder_module - * \brief Convenience function for constructing a Householder sequence. - * \returns A HouseholderSequence constructed from the specified arguments. - */ -template -HouseholderSequence householderSequence(const VectorsType& v, const CoeffsType& h) -{ - return HouseholderSequence(v, h); -} - -/** \ingroup Householder_Module \householder_module - * \brief Convenience function for constructing a Householder sequence. - * \returns A HouseholderSequence constructed from the specified arguments. - * \details This function differs from householderSequence() in that the template argument \p OnTheSide of - * the constructed HouseholderSequence is set to OnTheRight, instead of the default OnTheLeft. - */ -template -HouseholderSequence rightHouseholderSequence(const VectorsType& v, const CoeffsType& h) -{ - return HouseholderSequence(v, h); -} - -} // end namespace Eigen - -#endif // EIGEN_HOUSEHOLDER_SEQUENCE_H diff --git a/src/math_meigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h b/src/math_meigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h deleted file mode 100755 index f66c846ef..000000000 --- a/src/math_meigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +++ /dev/null @@ -1,226 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2011-2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_BASIC_PRECONDITIONERS_H -#define EIGEN_BASIC_PRECONDITIONERS_H - -namespace Eigen { - -/** \ingroup IterativeLinearSolvers_Module - * \brief A preconditioner based on the digonal entries - * - * This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix. - * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for: - \code - A.diagonal().asDiagonal() . x = b - \endcode - * - * \tparam _Scalar the type of the scalar. - * - * \implsparsesolverconcept - * - * This preconditioner is suitable for both selfadjoint and general problems. - * The diagonal entries are pre-inverted and stored into a dense vector. - * - * \note A variant that has yet to be implemented would attempt to preserve the norm of each column. - * - * \sa class LeastSquareDiagonalPreconditioner, class ConjugateGradient - */ -template -class DiagonalPreconditioner -{ - typedef _Scalar Scalar; - typedef Matrix Vector; - public: - typedef typename Vector::StorageIndex StorageIndex; - enum { - ColsAtCompileTime = Dynamic, - MaxColsAtCompileTime = Dynamic - }; - - DiagonalPreconditioner() : m_isInitialized(false) {} - - template - explicit DiagonalPreconditioner(const MatType& mat) : m_invdiag(mat.cols()) - { - compute(mat); - } - - Index rows() const { return m_invdiag.size(); } - Index cols() const { return m_invdiag.size(); } - - template - DiagonalPreconditioner& analyzePattern(const MatType& ) - { - return *this; - } - - template - DiagonalPreconditioner& factorize(const MatType& mat) - { - m_invdiag.resize(mat.cols()); - for(int j=0; j - DiagonalPreconditioner& compute(const MatType& mat) - { - return factorize(mat); - } - - /** \internal */ - template - void _solve_impl(const Rhs& b, Dest& x) const - { - x = m_invdiag.array() * b.array() ; - } - - template inline const Solve - solve(const MatrixBase& b) const - { - eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized."); - eigen_assert(m_invdiag.size()==b.rows() - && "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b"); - return Solve(*this, b.derived()); - } - - ComputationInfo info() { return Success; } - - protected: - Vector m_invdiag; - bool m_isInitialized; -}; - -/** \ingroup IterativeLinearSolvers_Module - * \brief Jacobi preconditioner for LeastSquaresConjugateGradient - * - * This class allows to approximately solve for A' A x = A' b problems assuming A' A is a diagonal matrix. - * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for: - \code - (A.adjoint() * A).diagonal().asDiagonal() * x = b - \endcode - * - * \tparam _Scalar the type of the scalar. - * - * \implsparsesolverconcept - * - * The diagonal entries are pre-inverted and stored into a dense vector. - * - * \sa class LeastSquaresConjugateGradient, class DiagonalPreconditioner - */ -template -class LeastSquareDiagonalPreconditioner : public DiagonalPreconditioner<_Scalar> -{ - typedef _Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef DiagonalPreconditioner<_Scalar> Base; - using Base::m_invdiag; - public: - - LeastSquareDiagonalPreconditioner() : Base() {} - - template - explicit LeastSquareDiagonalPreconditioner(const MatType& mat) : Base() - { - compute(mat); - } - - template - LeastSquareDiagonalPreconditioner& analyzePattern(const MatType& ) - { - return *this; - } - - template - LeastSquareDiagonalPreconditioner& factorize(const MatType& mat) - { - // Compute the inverse squared-norm of each column of mat - m_invdiag.resize(mat.cols()); - if(MatType::IsRowMajor) - { - m_invdiag.setZero(); - for(Index j=0; jRealScalar(0)) - m_invdiag(j) = RealScalar(1)/numext::real(m_invdiag(j)); - } - else - { - for(Index j=0; jRealScalar(0)) - m_invdiag(j) = RealScalar(1)/sum; - else - m_invdiag(j) = RealScalar(1); - } - } - Base::m_isInitialized = true; - return *this; - } - - template - LeastSquareDiagonalPreconditioner& compute(const MatType& mat) - { - return factorize(mat); - } - - ComputationInfo info() { return Success; } - - protected: -}; - -/** \ingroup IterativeLinearSolvers_Module - * \brief A naive preconditioner which approximates any matrix as the identity matrix - * - * \implsparsesolverconcept - * - * \sa class DiagonalPreconditioner - */ -class IdentityPreconditioner -{ - public: - - IdentityPreconditioner() {} - - template - explicit IdentityPreconditioner(const MatrixType& ) {} - - template - IdentityPreconditioner& analyzePattern(const MatrixType& ) { return *this; } - - template - IdentityPreconditioner& factorize(const MatrixType& ) { return *this; } - - template - IdentityPreconditioner& compute(const MatrixType& ) { return *this; } - - template - inline const Rhs& solve(const Rhs& b) const { return b; } - - ComputationInfo info() { return Success; } -}; - -} // end namespace Eigen - -#endif // EIGEN_BASIC_PRECONDITIONERS_H diff --git a/src/math_meigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h b/src/math_meigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h deleted file mode 100755 index 454f46814..000000000 --- a/src/math_meigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +++ /dev/null @@ -1,228 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2011-2014 Gael Guennebaud -// Copyright (C) 2012 Désiré Nuentsa-Wakam -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_BICGSTAB_H -#define EIGEN_BICGSTAB_H - -namespace Eigen { - -namespace internal { - -/** \internal Low-level bi conjugate gradient stabilized algorithm - * \param mat The matrix A - * \param rhs The right hand side vector b - * \param x On input and initial solution, on output the computed solution. - * \param precond A preconditioner being able to efficiently solve for an - * approximation of Ax=b (regardless of b) - * \param iters On input the max number of iteration, on output the number of performed iterations. - * \param tol_error On input the tolerance error, on output an estimation of the relative error. - * \return false in the case of numerical issue, for example a break down of BiCGSTAB. - */ -template -bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x, - const Preconditioner& precond, Index& iters, - typename Dest::RealScalar& tol_error) -{ - using std::sqrt; - using std::abs; - typedef typename Dest::RealScalar RealScalar; - typedef typename Dest::Scalar Scalar; - typedef Matrix VectorType; - RealScalar tol = tol_error; - Index maxIters = iters; - - Index n = mat.cols(); - VectorType r = rhs - mat * x; - VectorType r0 = r; - - RealScalar r0_sqnorm = r0.squaredNorm(); - RealScalar rhs_sqnorm = rhs.squaredNorm(); - if(rhs_sqnorm == 0) - { - x.setZero(); - return true; - } - Scalar rho = 1; - Scalar alpha = 1; - Scalar w = 1; - - VectorType v = VectorType::Zero(n), p = VectorType::Zero(n); - VectorType y(n), z(n); - VectorType kt(n), ks(n); - - VectorType s(n), t(n); - - RealScalar tol2 = tol*tol*rhs_sqnorm; - RealScalar eps2 = NumTraits::epsilon()*NumTraits::epsilon(); - Index i = 0; - Index restarts = 0; - - while ( r.squaredNorm() > tol2 && iRealScalar(0)) - w = t.dot(s) / tmp; - else - w = Scalar(0); - x += alpha * y + w * z; - r = s - w * t; - ++i; - } - tol_error = sqrt(r.squaredNorm()/rhs_sqnorm); - iters = i; - return true; -} - -} - -template< typename _MatrixType, - typename _Preconditioner = DiagonalPreconditioner > -class BiCGSTAB; - -namespace internal { - -template< typename _MatrixType, typename _Preconditioner> -struct traits > -{ - typedef _MatrixType MatrixType; - typedef _Preconditioner Preconditioner; -}; - -} - -/** \ingroup IterativeLinearSolvers_Module - * \brief A bi conjugate gradient stabilized solver for sparse square problems - * - * This class allows to solve for A.x = b sparse linear problems using a bi conjugate gradient - * stabilized algorithm. The vectors x and b can be either dense or sparse. - * - * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix. - * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner - * - * \implsparsesolverconcept - * - * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() - * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations - * and NumTraits::epsilon() for the tolerance. - * - * The tolerance corresponds to the relative residual error: |Ax-b|/|b| - * - * \b Performance: when using sparse matrices, best performance is achied for a row-major sparse matrix format. - * Moreover, in this case multi-threading can be exploited if the user code is compiled with OpenMP enabled. - * See \ref TopicMultiThreading for details. - * - * This class can be used as the direct solver classes. Here is a typical usage example: - * \include BiCGSTAB_simple.cpp - * - * By default the iterations start with x=0 as an initial guess of the solution. - * One can control the start using the solveWithGuess() method. - * - * BiCGSTAB can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink. - * - * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner - */ -template< typename _MatrixType, typename _Preconditioner> -class BiCGSTAB : public IterativeSolverBase > -{ - typedef IterativeSolverBase Base; - using Base::matrix; - using Base::m_error; - using Base::m_iterations; - using Base::m_info; - using Base::m_isInitialized; -public: - typedef _MatrixType MatrixType; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef _Preconditioner Preconditioner; - -public: - - /** Default constructor. */ - BiCGSTAB() : Base() {} - - /** Initialize the solver with matrix \a A for further \c Ax=b solving. - * - * This constructor is a shortcut for the default constructor followed - * by a call to compute(). - * - * \warning this class stores a reference to the matrix A as well as some - * precomputed values that depend on it. Therefore, if \a A is changed - * this class becomes invalid. Call compute() to update it with the new - * matrix A, or modify a copy of A. - */ - template - explicit BiCGSTAB(const EigenBase& A) : Base(A.derived()) {} - - ~BiCGSTAB() {} - - /** \internal */ - template - void _solve_with_guess_impl(const Rhs& b, Dest& x) const - { - bool failed = false; - for(Index j=0; j - void _solve_impl(const MatrixBase& b, Dest& x) const - { - x.resize(this->rows(),b.cols()); - x.setZero(); - _solve_with_guess_impl(b,x); - } - -protected: - -}; - -} // end namespace Eigen - -#endif // EIGEN_BICGSTAB_H diff --git a/src/math_meigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h b/src/math_meigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h deleted file mode 100755 index f7ce47134..000000000 --- a/src/math_meigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +++ /dev/null @@ -1,246 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2011-2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_CONJUGATE_GRADIENT_H -#define EIGEN_CONJUGATE_GRADIENT_H - -namespace Eigen { - -namespace internal { - -/** \internal Low-level conjugate gradient algorithm - * \param mat The matrix A - * \param rhs The right hand side vector b - * \param x On input and initial solution, on output the computed solution. - * \param precond A preconditioner being able to efficiently solve for an - * approximation of Ax=b (regardless of b) - * \param iters On input the max number of iteration, on output the number of performed iterations. - * \param tol_error On input the tolerance error, on output an estimation of the relative error. - */ -template -EIGEN_DONT_INLINE -void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x, - const Preconditioner& precond, Index& iters, - typename Dest::RealScalar& tol_error) -{ - using std::sqrt; - using std::abs; - typedef typename Dest::RealScalar RealScalar; - typedef typename Dest::Scalar Scalar; - typedef Matrix VectorType; - - RealScalar tol = tol_error; - Index maxIters = iters; - - Index n = mat.cols(); - - VectorType residual = rhs - mat * x; //initial residual - - RealScalar rhsNorm2 = rhs.squaredNorm(); - if(rhsNorm2 == 0) - { - x.setZero(); - iters = 0; - tol_error = 0; - return; - } - const RealScalar considerAsZero = (std::numeric_limits::min)(); - RealScalar threshold = numext::maxi(tol*tol*rhsNorm2,considerAsZero); - RealScalar residualNorm2 = residual.squaredNorm(); - if (residualNorm2 < threshold) - { - iters = 0; - tol_error = sqrt(residualNorm2 / rhsNorm2); - return; - } - - VectorType p(n); - p = precond.solve(residual); // initial search direction - - VectorType z(n), tmp(n); - RealScalar absNew = numext::real(residual.dot(p)); // the square of the absolute value of r scaled by invM - Index i = 0; - while(i < maxIters) - { - tmp.noalias() = mat * p; // the bottleneck of the algorithm - - Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir - x += alpha * p; // update solution - residual -= alpha * tmp; // update residual - - residualNorm2 = residual.squaredNorm(); - if(residualNorm2 < threshold) - break; - - z = precond.solve(residual); // approximately solve for "A z = residual" - - RealScalar absOld = absNew; - absNew = numext::real(residual.dot(z)); // update the absolute value of r - RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction - p = z + beta * p; // update search direction - i++; - } - tol_error = sqrt(residualNorm2 / rhsNorm2); - iters = i; -} - -} - -template< typename _MatrixType, int _UpLo=Lower, - typename _Preconditioner = DiagonalPreconditioner > -class ConjugateGradient; - -namespace internal { - -template< typename _MatrixType, int _UpLo, typename _Preconditioner> -struct traits > -{ - typedef _MatrixType MatrixType; - typedef _Preconditioner Preconditioner; -}; - -} - -/** \ingroup IterativeLinearSolvers_Module - * \brief A conjugate gradient solver for sparse (or dense) self-adjoint problems - * - * This class allows to solve for A.x = b linear problems using an iterative conjugate gradient algorithm. - * The matrix A must be selfadjoint. The matrix A and the vectors x and b can be either dense or sparse. - * - * \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix. - * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower, - * \c Upper, or \c Lower|Upper in which the full matrix entries will be considered. - * Default is \c Lower, best performance is \c Lower|Upper. - * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner - * - * \implsparsesolverconcept - * - * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() - * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations - * and NumTraits::epsilon() for the tolerance. - * - * The tolerance corresponds to the relative residual error: |Ax-b|/|b| - * - * \b Performance: Even though the default value of \c _UpLo is \c Lower, significantly higher performance is - * achieved when using a complete matrix and \b Lower|Upper as the \a _UpLo template parameter. Moreover, in this - * case multi-threading can be exploited if the user code is compiled with OpenMP enabled. - * See \ref TopicMultiThreading for details. - * - * This class can be used as the direct solver classes. Here is a typical usage example: - \code - int n = 10000; - VectorXd x(n), b(n); - SparseMatrix A(n,n); - // fill A and b - ConjugateGradient, Lower|Upper> cg; - cg.compute(A); - x = cg.solve(b); - std::cout << "#iterations: " << cg.iterations() << std::endl; - std::cout << "estimated error: " << cg.error() << std::endl; - // update b, and solve again - x = cg.solve(b); - \endcode - * - * By default the iterations start with x=0 as an initial guess of the solution. - * One can control the start using the solveWithGuess() method. - * - * ConjugateGradient can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink. - * - * \sa class LeastSquaresConjugateGradient, class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner - */ -template< typename _MatrixType, int _UpLo, typename _Preconditioner> -class ConjugateGradient : public IterativeSolverBase > -{ - typedef IterativeSolverBase Base; - using Base::matrix; - using Base::m_error; - using Base::m_iterations; - using Base::m_info; - using Base::m_isInitialized; -public: - typedef _MatrixType MatrixType; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef _Preconditioner Preconditioner; - - enum { - UpLo = _UpLo - }; - -public: - - /** Default constructor. */ - ConjugateGradient() : Base() {} - - /** Initialize the solver with matrix \a A for further \c Ax=b solving. - * - * This constructor is a shortcut for the default constructor followed - * by a call to compute(). - * - * \warning this class stores a reference to the matrix A as well as some - * precomputed values that depend on it. Therefore, if \a A is changed - * this class becomes invalid. Call compute() to update it with the new - * matrix A, or modify a copy of A. - */ - template - explicit ConjugateGradient(const EigenBase& A) : Base(A.derived()) {} - - ~ConjugateGradient() {} - - /** \internal */ - template - void _solve_with_guess_impl(const Rhs& b, Dest& x) const - { - typedef typename Base::MatrixWrapper MatrixWrapper; - typedef typename Base::ActualMatrixType ActualMatrixType; - enum { - TransposeInput = (!MatrixWrapper::MatrixFree) - && (UpLo==(Lower|Upper)) - && (!MatrixType::IsRowMajor) - && (!NumTraits::IsComplex) - }; - typedef typename internal::conditional, ActualMatrixType const&>::type RowMajorWrapper; - EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(MatrixWrapper::MatrixFree,UpLo==(Lower|Upper)),MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY); - typedef typename internal::conditional::Type - >::type SelfAdjointWrapper; - m_iterations = Base::maxIterations(); - m_error = Base::m_tolerance; - - for(Index j=0; j - void _solve_impl(const MatrixBase& b, Dest& x) const - { - x.setZero(); - _solve_with_guess_impl(b.derived(),x); - } - -protected: - -}; - -} // end namespace Eigen - -#endif // EIGEN_CONJUGATE_GRADIENT_H diff --git a/src/math_meigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h b/src/math_meigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h deleted file mode 100755 index e45c272b4..000000000 --- a/src/math_meigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +++ /dev/null @@ -1,400 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Désiré Nuentsa-Wakam -// Copyright (C) 2015 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_INCOMPLETE_CHOlESKY_H -#define EIGEN_INCOMPLETE_CHOlESKY_H - -#include -#include - -namespace Eigen { -/** - * \brief Modified Incomplete Cholesky with dual threshold - * - * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with - * Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999 - * - * \tparam Scalar the scalar type of the input matrices - * \tparam _UpLo The triangular part that will be used for the computations. It can be Lower - * or Upper. Default is Lower. - * \tparam _OrderingType The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering, - * unless EIGEN_MPL2_ONLY is defined, in which case the default is NaturalOrdering. - * - * \implsparsesolverconcept - * - * It performs the following incomplete factorization: \f$ S P A P' S \approx L L' \f$ - * where L is a lower triangular factor, S is a diagonal scaling matrix, and P is a - * fill-in reducing permutation as computed by the ordering method. - * - * \b Shifting \b strategy: Let \f$ B = S P A P' S \f$ be the scaled matrix on which the factorization is carried out, - * and \f$ \beta \f$ be the minimum value of the diagonal. If \f$ \beta > 0 \f$ then, the factorization is directly performed - * on the matrix B. Otherwise, the factorization is performed on the shifted matrix \f$ B + (\sigma+|\beta| I \f$ where - * \f$ \sigma \f$ is the initial shift value as returned and set by setInitialShift() method. The default value is \f$ \sigma = 10^{-3} \f$. - * If the factorization fails, then the shift in doubled until it succeed or a maximum of ten attempts. If it still fails, as returned by - * the info() method, then you can either increase the initial shift, or better use another preconditioning technique. - * - */ -template -#else -NaturalOrdering -#endif -> -class IncompleteCholesky : public SparseSolverBase > -{ - protected: - typedef SparseSolverBase > Base; - using Base::m_isInitialized; - public: - typedef typename NumTraits::Real RealScalar; - typedef _OrderingType OrderingType; - typedef typename OrderingType::PermutationType PermutationType; - typedef typename PermutationType::StorageIndex StorageIndex; - typedef SparseMatrix FactorType; - typedef Matrix VectorSx; - typedef Matrix VectorRx; - typedef Matrix VectorIx; - typedef std::vector > VectorList; - enum { UpLo = _UpLo }; - enum { - ColsAtCompileTime = Dynamic, - MaxColsAtCompileTime = Dynamic - }; - public: - - /** Default constructor leaving the object in a partly non-initialized stage. - * - * You must call compute() or the pair analyzePattern()/factorize() to make it valid. - * - * \sa IncompleteCholesky(const MatrixType&) - */ - IncompleteCholesky() : m_initialShift(1e-3),m_factorizationIsOk(false) {} - - /** Constructor computing the incomplete factorization for the given matrix \a matrix. - */ - template - IncompleteCholesky(const MatrixType& matrix) : m_initialShift(1e-3),m_factorizationIsOk(false) - { - compute(matrix); - } - - /** \returns number of rows of the factored matrix */ - Index rows() const { return m_L.rows(); } - - /** \returns number of columns of the factored matrix */ - Index cols() const { return m_L.cols(); } - - - /** \brief Reports whether previous computation was successful. - * - * It triggers an assertion if \c *this has not been initialized through the respective constructor, - * or a call to compute() or analyzePattern(). - * - * \returns \c Success if computation was successful, - * \c NumericalIssue if the matrix appears to be negative. - */ - ComputationInfo info() const - { - eigen_assert(m_isInitialized && "IncompleteCholesky is not initialized."); - return m_info; - } - - /** \brief Set the initial shift parameter \f$ \sigma \f$. - */ - void setInitialShift(RealScalar shift) { m_initialShift = shift; } - - /** \brief Computes the fill reducing permutation vector using the sparsity pattern of \a mat - */ - template - void analyzePattern(const MatrixType& mat) - { - OrderingType ord; - PermutationType pinv; - ord(mat.template selfadjointView(), pinv); - if(pinv.size()>0) m_perm = pinv.inverse(); - else m_perm.resize(0); - m_L.resize(mat.rows(), mat.cols()); - m_analysisIsOk = true; - m_isInitialized = true; - m_info = Success; - } - - /** \brief Performs the numerical factorization of the input matrix \a mat - * - * The method analyzePattern() or compute() must have been called beforehand - * with a matrix having the same pattern. - * - * \sa compute(), analyzePattern() - */ - template - void factorize(const MatrixType& mat); - - /** Computes or re-computes the incomplete Cholesky factorization of the input matrix \a mat - * - * It is a shortcut for a sequential call to the analyzePattern() and factorize() methods. - * - * \sa analyzePattern(), factorize() - */ - template - void compute(const MatrixType& mat) - { - analyzePattern(mat); - factorize(mat); - } - - // internal - template - void _solve_impl(const Rhs& b, Dest& x) const - { - eigen_assert(m_factorizationIsOk && "factorize() should be called first"); - if (m_perm.rows() == b.rows()) x = m_perm * b; - else x = b; - x = m_scale.asDiagonal() * x; - x = m_L.template triangularView().solve(x); - x = m_L.adjoint().template triangularView().solve(x); - x = m_scale.asDiagonal() * x; - if (m_perm.rows() == b.rows()) - x = m_perm.inverse() * x; - } - - /** \returns the sparse lower triangular factor L */ - const FactorType& matrixL() const { eigen_assert("m_factorizationIsOk"); return m_L; } - - /** \returns a vector representing the scaling factor S */ - const VectorRx& scalingS() const { eigen_assert("m_factorizationIsOk"); return m_scale; } - - /** \returns the fill-in reducing permutation P (can be empty for a natural ordering) */ - const PermutationType& permutationP() const { eigen_assert("m_analysisIsOk"); return m_perm; } - - protected: - FactorType m_L; // The lower part stored in CSC - VectorRx m_scale; // The vector for scaling the matrix - RealScalar m_initialShift; // The initial shift parameter - bool m_analysisIsOk; - bool m_factorizationIsOk; - ComputationInfo m_info; - PermutationType m_perm; - - private: - inline void updateList(Ref colPtr, Ref rowIdx, Ref vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol); -}; - -// Based on the following paper: -// C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with -// Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999 -// http://ftp.mcs.anl.gov/pub/tech_reports/reports/P682.pdf -template -template -void IncompleteCholesky::factorize(const _MatrixType& mat) -{ - using std::sqrt; - eigen_assert(m_analysisIsOk && "analyzePattern() should be called first"); - - // Dropping strategy : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added - - // Apply the fill-reducing permutation computed in analyzePattern() - if (m_perm.rows() == mat.rows() ) // To detect the null permutation - { - // The temporary is needed to make sure that the diagonal entry is properly sorted - FactorType tmp(mat.rows(), mat.cols()); - tmp = mat.template selfadjointView<_UpLo>().twistedBy(m_perm); - m_L.template selfadjointView() = tmp.template selfadjointView(); - } - else - { - m_L.template selfadjointView() = mat.template selfadjointView<_UpLo>(); - } - - Index n = m_L.cols(); - Index nnz = m_L.nonZeros(); - Map vals(m_L.valuePtr(), nnz); //values - Map rowIdx(m_L.innerIndexPtr(), nnz); //Row indices - Map colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row - VectorIx firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization - VectorList listCol(n); // listCol(j) is a linked list of columns to update column j - VectorSx col_vals(n); // Store a nonzero values in each column - VectorIx col_irow(n); // Row indices of nonzero elements in each column - VectorIx col_pattern(n); - col_pattern.fill(-1); - StorageIndex col_nnz; - - - // Computes the scaling factors - m_scale.resize(n); - m_scale.setZero(); - for (Index j = 0; j < n; j++) - for (Index k = colPtr[j]; k < colPtr[j+1]; k++) - { - m_scale(j) += numext::abs2(vals(k)); - if(rowIdx[k]!=j) - m_scale(rowIdx[k]) += numext::abs2(vals(k)); - } - - m_scale = m_scale.cwiseSqrt().cwiseSqrt(); - - for (Index j = 0; j < n; ++j) - if(m_scale(j)>(std::numeric_limits::min)()) - m_scale(j) = RealScalar(1)/m_scale(j); - else - m_scale(j) = 1; - - // TODO disable scaling if not needed, i.e., if it is roughly uniform? (this will make solve() faster) - - // Scale and compute the shift for the matrix - RealScalar mindiag = NumTraits::highest(); - for (Index j = 0; j < n; j++) - { - for (Index k = colPtr[j]; k < colPtr[j+1]; k++) - vals[k] *= (m_scale(j)*m_scale(rowIdx[k])); - eigen_internal_assert(rowIdx[colPtr[j]]==j && "IncompleteCholesky: only the lower triangular part must be stored"); - mindiag = numext::mini(numext::real(vals[colPtr[j]]), mindiag); - } - - FactorType L_save = m_L; - - RealScalar shift = 0; - if(mindiag <= RealScalar(0.)) - shift = m_initialShift - mindiag; - - m_info = NumericalIssue; - - // Try to perform the incomplete factorization using the current shift - int iter = 0; - do - { - // Apply the shift to the diagonal elements of the matrix - for (Index j = 0; j < n; j++) - vals[colPtr[j]] += shift; - - // jki version of the Cholesky factorization - Index j=0; - for (; j < n; ++j) - { - // Left-looking factorization of the j-th column - // First, load the j-th column into col_vals - Scalar diag = vals[colPtr[j]]; // It is assumed that only the lower part is stored - col_nnz = 0; - for (Index i = colPtr[j] + 1; i < colPtr[j+1]; i++) - { - StorageIndex l = rowIdx[i]; - col_vals(col_nnz) = vals[i]; - col_irow(col_nnz) = l; - col_pattern(l) = col_nnz; - col_nnz++; - } - { - typename std::list::iterator k; - // Browse all previous columns that will update column j - for(k = listCol[j].begin(); k != listCol[j].end(); k++) - { - Index jk = firstElt(*k); // First element to use in the column - eigen_internal_assert(rowIdx[jk]==j); - Scalar v_j_jk = numext::conj(vals[jk]); - - jk += 1; - for (Index i = jk; i < colPtr[*k+1]; i++) - { - StorageIndex l = rowIdx[i]; - if(col_pattern[l]<0) - { - col_vals(col_nnz) = vals[i] * v_j_jk; - col_irow[col_nnz] = l; - col_pattern(l) = col_nnz; - col_nnz++; - } - else - col_vals(col_pattern[l]) -= vals[i] * v_j_jk; - } - updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol); - } - } - - // Scale the current column - if(numext::real(diag) <= 0) - { - if(++iter>=10) - return; - - // increase shift - shift = numext::maxi(m_initialShift,RealScalar(2)*shift); - // restore m_L, col_pattern, and listCol - vals = Map(L_save.valuePtr(), nnz); - rowIdx = Map(L_save.innerIndexPtr(), nnz); - colPtr = Map(L_save.outerIndexPtr(), n+1); - col_pattern.fill(-1); - for(Index i=0; i cvals = col_vals.head(col_nnz); - Ref cirow = col_irow.head(col_nnz); - internal::QuickSplit(cvals,cirow, p); - // Insert the largest p elements in the matrix - Index cpt = 0; - for (Index i = colPtr[j]+1; i < colPtr[j+1]; i++) - { - vals[i] = col_vals(cpt); - rowIdx[i] = col_irow(cpt); - // restore col_pattern: - col_pattern(col_irow(cpt)) = -1; - cpt++; - } - // Get the first smallest row index and put it after the diagonal element - Index jk = colPtr(j)+1; - updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol); - } - - if(j==n) - { - m_factorizationIsOk = true; - m_info = Success; - } - } while(m_info!=Success); -} - -template -inline void IncompleteCholesky::updateList(Ref colPtr, Ref rowIdx, Ref vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol) -{ - if (jk < colPtr(col+1) ) - { - Index p = colPtr(col+1) - jk; - Index minpos; - rowIdx.segment(jk,p).minCoeff(&minpos); - minpos += jk; - if (rowIdx(minpos) != rowIdx(jk)) - { - //Swap - std::swap(rowIdx(jk),rowIdx(minpos)); - std::swap(vals(jk),vals(minpos)); - } - firstElt(col) = internal::convert_index(jk); - listCol[rowIdx(jk)].push_back(internal::convert_index(col)); - } -} - -} // end namespace Eigen - -#endif diff --git a/src/math_meigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h b/src/math_meigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h deleted file mode 100755 index 338e6f10a..000000000 --- a/src/math_meigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +++ /dev/null @@ -1,462 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Désiré Nuentsa-Wakam -// Copyright (C) 2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_INCOMPLETE_LUT_H -#define EIGEN_INCOMPLETE_LUT_H - - -namespace Eigen { - -namespace internal { - -/** \internal - * Compute a quick-sort split of a vector - * On output, the vector row is permuted such that its elements satisfy - * abs(row(i)) >= abs(row(ncut)) if incut - * \param row The vector of values - * \param ind The array of index for the elements in @p row - * \param ncut The number of largest elements to keep - **/ -template -Index QuickSplit(VectorV &row, VectorI &ind, Index ncut) -{ - typedef typename VectorV::RealScalar RealScalar; - using std::swap; - using std::abs; - Index mid; - Index n = row.size(); /* length of the vector */ - Index first, last ; - - ncut--; /* to fit the zero-based indices */ - first = 0; - last = n-1; - if (ncut < first || ncut > last ) return 0; - - do { - mid = first; - RealScalar abskey = abs(row(mid)); - for (Index j = first + 1; j <= last; j++) { - if ( abs(row(j)) > abskey) { - ++mid; - swap(row(mid), row(j)); - swap(ind(mid), ind(j)); - } - } - /* Interchange for the pivot element */ - swap(row(mid), row(first)); - swap(ind(mid), ind(first)); - - if (mid > ncut) last = mid - 1; - else if (mid < ncut ) first = mid + 1; - } while (mid != ncut ); - - return 0; /* mid is equal to ncut */ -} - -}// end namespace internal - -/** \ingroup IterativeLinearSolvers_Module - * \class IncompleteLUT - * \brief Incomplete LU factorization with dual-threshold strategy - * - * \implsparsesolverconcept - * - * During the numerical factorization, two dropping rules are used : - * 1) any element whose magnitude is less than some tolerance is dropped. - * This tolerance is obtained by multiplying the input tolerance @p droptol - * by the average magnitude of all the original elements in the current row. - * 2) After the elimination of the row, only the @p fill largest elements in - * the L part and the @p fill largest elements in the U part are kept - * (in addition to the diagonal element ). Note that @p fill is computed from - * the input parameter @p fillfactor which is used the ratio to control the fill_in - * relatively to the initial number of nonzero elements. - * - * The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements) - * and when @p fill=n/2 with @p droptol being different to zero. - * - * References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization, - * Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994. - * - * NOTE : The following implementation is derived from the ILUT implementation - * in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota - * released under the terms of the GNU LGPL: - * http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README - * However, Yousef Saad gave us permission to relicense his ILUT code to MPL2. - * See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012: - * http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html - * alternatively, on GMANE: - * http://comments.gmane.org/gmane.comp.lib.eigen/3302 - */ -template -class IncompleteLUT : public SparseSolverBase > -{ - protected: - typedef SparseSolverBase Base; - using Base::m_isInitialized; - public: - typedef _Scalar Scalar; - typedef _StorageIndex StorageIndex; - typedef typename NumTraits::Real RealScalar; - typedef Matrix Vector; - typedef Matrix VectorI; - typedef SparseMatrix FactorType; - - enum { - ColsAtCompileTime = Dynamic, - MaxColsAtCompileTime = Dynamic - }; - - public: - - IncompleteLUT() - : m_droptol(NumTraits::dummy_precision()), m_fillfactor(10), - m_analysisIsOk(false), m_factorizationIsOk(false) - {} - - template - explicit IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits::dummy_precision(), int fillfactor = 10) - : m_droptol(droptol),m_fillfactor(fillfactor), - m_analysisIsOk(false),m_factorizationIsOk(false) - { - eigen_assert(fillfactor != 0); - compute(mat); - } - - Index rows() const { return m_lu.rows(); } - - Index cols() const { return m_lu.cols(); } - - /** \brief Reports whether previous computation was successful. - * - * \returns \c Success if computation was succesful, - * \c NumericalIssue if the matrix.appears to be negative. - */ - ComputationInfo info() const - { - eigen_assert(m_isInitialized && "IncompleteLUT is not initialized."); - return m_info; - } - - template - void analyzePattern(const MatrixType& amat); - - template - void factorize(const MatrixType& amat); - - /** - * Compute an incomplete LU factorization with dual threshold on the matrix mat - * No pivoting is done in this version - * - **/ - template - IncompleteLUT& compute(const MatrixType& amat) - { - analyzePattern(amat); - factorize(amat); - return *this; - } - - void setDroptol(const RealScalar& droptol); - void setFillfactor(int fillfactor); - - template - void _solve_impl(const Rhs& b, Dest& x) const - { - x = m_Pinv * b; - x = m_lu.template triangularView().solve(x); - x = m_lu.template triangularView().solve(x); - x = m_P * x; - } - -protected: - - /** keeps off-diagonal entries; drops diagonal entries */ - struct keep_diag { - inline bool operator() (const Index& row, const Index& col, const Scalar&) const - { - return row!=col; - } - }; - -protected: - - FactorType m_lu; - RealScalar m_droptol; - int m_fillfactor; - bool m_analysisIsOk; - bool m_factorizationIsOk; - ComputationInfo m_info; - PermutationMatrix m_P; // Fill-reducing permutation - PermutationMatrix m_Pinv; // Inverse permutation -}; - -/** - * Set control parameter droptol - * \param droptol Drop any element whose magnitude is less than this tolerance - **/ -template -void IncompleteLUT::setDroptol(const RealScalar& droptol) -{ - this->m_droptol = droptol; -} - -/** - * Set control parameter fillfactor - * \param fillfactor This is used to compute the number @p fill_in of largest elements to keep on each row. - **/ -template -void IncompleteLUT::setFillfactor(int fillfactor) -{ - this->m_fillfactor = fillfactor; -} - -template -template -void IncompleteLUT::analyzePattern(const _MatrixType& amat) -{ - // Compute the Fill-reducing permutation - // Since ILUT does not perform any numerical pivoting, - // it is highly preferable to keep the diagonal through symmetric permutations. -#ifndef EIGEN_MPL2_ONLY - // To this end, let's symmetrize the pattern and perform AMD on it. - SparseMatrix mat1 = amat; - SparseMatrix mat2 = amat.transpose(); - // FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice. - // on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered... - SparseMatrix AtA = mat2 + mat1; - AMDOrdering ordering; - ordering(AtA,m_P); - m_Pinv = m_P.inverse(); // cache the inverse permutation -#else - // If AMD is not available, (MPL2-only), then let's use the slower COLAMD routine. - SparseMatrix mat1 = amat; - COLAMDOrdering ordering; - ordering(mat1,m_Pinv); - m_P = m_Pinv.inverse(); -#endif - - m_analysisIsOk = true; - m_factorizationIsOk = false; - m_isInitialized = true; -} - -template -template -void IncompleteLUT::factorize(const _MatrixType& amat) -{ - using std::sqrt; - using std::swap; - using std::abs; - using internal::convert_index; - - eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix"); - Index n = amat.cols(); // Size of the matrix - m_lu.resize(n,n); - // Declare Working vectors and variables - Vector u(n) ; // real values of the row -- maximum size is n -- - VectorI ju(n); // column position of the values in u -- maximum size is n - VectorI jr(n); // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1 - - // Apply the fill-reducing permutation - eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); - SparseMatrix mat; - mat = amat.twistedBy(m_Pinv); - - // Initialization - jr.fill(-1); - ju.fill(0); - u.fill(0); - - // number of largest elements to keep in each row: - Index fill_in = (amat.nonZeros()*m_fillfactor)/n + 1; - if (fill_in > n) fill_in = n; - - // number of largest nonzero elements to keep in the L and the U part of the current row: - Index nnzL = fill_in/2; - Index nnzU = nnzL; - m_lu.reserve(n * (nnzL + nnzU + 1)); - - // global loop over the rows of the sparse matrix - for (Index ii = 0; ii < n; ii++) - { - // 1 - copy the lower and the upper part of the row i of mat in the working vector u - - Index sizeu = 1; // number of nonzero elements in the upper part of the current row - Index sizel = 0; // number of nonzero elements in the lower part of the current row - ju(ii) = convert_index(ii); - u(ii) = 0; - jr(ii) = convert_index(ii); - RealScalar rownorm = 0; - - typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii - for (; j_it; ++j_it) - { - Index k = j_it.index(); - if (k < ii) - { - // copy the lower part - ju(sizel) = convert_index(k); - u(sizel) = j_it.value(); - jr(k) = convert_index(sizel); - ++sizel; - } - else if (k == ii) - { - u(ii) = j_it.value(); - } - else - { - // copy the upper part - Index jpos = ii + sizeu; - ju(jpos) = convert_index(k); - u(jpos) = j_it.value(); - jr(k) = convert_index(jpos); - ++sizeu; - } - rownorm += numext::abs2(j_it.value()); - } - - // 2 - detect possible zero row - if(rownorm==0) - { - m_info = NumericalIssue; - return; - } - // Take the 2-norm of the current row as a relative tolerance - rownorm = sqrt(rownorm); - - // 3 - eliminate the previous nonzero rows - Index jj = 0; - Index len = 0; - while (jj < sizel) - { - // In order to eliminate in the correct order, - // we must select first the smallest column index among ju(jj:sizel) - Index k; - Index minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment - k += jj; - if (minrow != ju(jj)) - { - // swap the two locations - Index j = ju(jj); - swap(ju(jj), ju(k)); - jr(minrow) = convert_index(jj); - jr(j) = convert_index(k); - swap(u(jj), u(k)); - } - // Reset this location - jr(minrow) = -1; - - // Start elimination - typename FactorType::InnerIterator ki_it(m_lu, minrow); - while (ki_it && ki_it.index() < minrow) ++ki_it; - eigen_internal_assert(ki_it && ki_it.col()==minrow); - Scalar fact = u(jj) / ki_it.value(); - - // drop too small elements - if(abs(fact) <= m_droptol) - { - jj++; - continue; - } - - // linear combination of the current row ii and the row minrow - ++ki_it; - for (; ki_it; ++ki_it) - { - Scalar prod = fact * ki_it.value(); - Index j = ki_it.index(); - Index jpos = jr(j); - if (jpos == -1) // fill-in element - { - Index newpos; - if (j >= ii) // dealing with the upper part - { - newpos = ii + sizeu; - sizeu++; - eigen_internal_assert(sizeu<=n); - } - else // dealing with the lower part - { - newpos = sizel; - sizel++; - eigen_internal_assert(sizel<=ii); - } - ju(newpos) = convert_index(j); - u(newpos) = -prod; - jr(j) = convert_index(newpos); - } - else - u(jpos) -= prod; - } - // store the pivot element - u(len) = fact; - ju(len) = convert_index(minrow); - ++len; - - jj++; - } // end of the elimination on the row ii - - // reset the upper part of the pointer jr to zero - for(Index k = 0; k m_droptol * rownorm ) - { - ++len; - u(ii + len) = u(ii + k); - ju(ii + len) = ju(ii + k); - } - } - sizeu = len + 1; // +1 to take into account the diagonal element - len = (std::min)(sizeu, nnzU); - typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1)); - typename VectorI::SegmentReturnType juu(ju.segment(ii+1, sizeu-1)); - internal::QuickSplit(uu, juu, len); - - // store the largest elements of the U part - for(Index k = ii + 1; k < ii + len; k++) - m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k); - } - m_lu.finalize(); - m_lu.makeCompressed(); - - m_factorizationIsOk = true; - m_info = Success; -} - -} // end namespace Eigen - -#endif // EIGEN_INCOMPLETE_LUT_H diff --git a/src/math_meigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h b/src/math_meigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h deleted file mode 100755 index 7c2326eb7..000000000 --- a/src/math_meigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +++ /dev/null @@ -1,394 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2011-2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_ITERATIVE_SOLVER_BASE_H -#define EIGEN_ITERATIVE_SOLVER_BASE_H - -namespace Eigen { - -namespace internal { - -template -struct is_ref_compatible_impl -{ -private: - template - struct any_conversion - { - template any_conversion(const volatile T&); - template any_conversion(T&); - }; - struct yes {int a[1];}; - struct no {int a[2];}; - - template - static yes test(const Ref&, int); - template - static no test(any_conversion, ...); - -public: - static MatrixType ms_from; - enum { value = sizeof(test(ms_from, 0))==sizeof(yes) }; -}; - -template -struct is_ref_compatible -{ - enum { value = is_ref_compatible_impl::type>::value }; -}; - -template::value> -class generic_matrix_wrapper; - -// We have an explicit matrix at hand, compatible with Ref<> -template -class generic_matrix_wrapper -{ -public: - typedef Ref ActualMatrixType; - template struct ConstSelfAdjointViewReturnType { - typedef typename ActualMatrixType::template ConstSelfAdjointViewReturnType::Type Type; - }; - - enum { - MatrixFree = false - }; - - generic_matrix_wrapper() - : m_dummy(0,0), m_matrix(m_dummy) - {} - - template - generic_matrix_wrapper(const InputType &mat) - : m_matrix(mat) - {} - - const ActualMatrixType& matrix() const - { - return m_matrix; - } - - template - void grab(const EigenBase &mat) - { - m_matrix.~Ref(); - ::new (&m_matrix) Ref(mat.derived()); - } - - void grab(const Ref &mat) - { - if(&(mat.derived()) != &m_matrix) - { - m_matrix.~Ref(); - ::new (&m_matrix) Ref(mat); - } - } - -protected: - MatrixType m_dummy; // used to default initialize the Ref<> object - ActualMatrixType m_matrix; -}; - -// MatrixType is not compatible with Ref<> -> matrix-free wrapper -template -class generic_matrix_wrapper -{ -public: - typedef MatrixType ActualMatrixType; - template struct ConstSelfAdjointViewReturnType - { - typedef ActualMatrixType Type; - }; - - enum { - MatrixFree = true - }; - - generic_matrix_wrapper() - : mp_matrix(0) - {} - - generic_matrix_wrapper(const MatrixType &mat) - : mp_matrix(&mat) - {} - - const ActualMatrixType& matrix() const - { - return *mp_matrix; - } - - void grab(const MatrixType &mat) - { - mp_matrix = &mat; - } - -protected: - const ActualMatrixType *mp_matrix; -}; - -} - -/** \ingroup IterativeLinearSolvers_Module - * \brief Base class for linear iterative solvers - * - * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner - */ -template< typename Derived> -class IterativeSolverBase : public SparseSolverBase -{ -protected: - typedef SparseSolverBase Base; - using Base::m_isInitialized; - -public: - typedef typename internal::traits::MatrixType MatrixType; - typedef typename internal::traits::Preconditioner Preconditioner; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::StorageIndex StorageIndex; - typedef typename MatrixType::RealScalar RealScalar; - - enum { - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime - }; - -public: - - using Base::derived; - - /** Default constructor. */ - IterativeSolverBase() - { - init(); - } - - /** Initialize the solver with matrix \a A for further \c Ax=b solving. - * - * This constructor is a shortcut for the default constructor followed - * by a call to compute(). - * - * \warning this class stores a reference to the matrix A as well as some - * precomputed values that depend on it. Therefore, if \a A is changed - * this class becomes invalid. Call compute() to update it with the new - * matrix A, or modify a copy of A. - */ - template - explicit IterativeSolverBase(const EigenBase& A) - : m_matrixWrapper(A.derived()) - { - init(); - compute(matrix()); - } - - ~IterativeSolverBase() {} - - /** Initializes the iterative solver for the sparsity pattern of the matrix \a A for further solving \c Ax=b problems. - * - * Currently, this function mostly calls analyzePattern on the preconditioner. In the future - * we might, for instance, implement column reordering for faster matrix vector products. - */ - template - Derived& analyzePattern(const EigenBase& A) - { - grab(A.derived()); - m_preconditioner.analyzePattern(matrix()); - m_isInitialized = true; - m_analysisIsOk = true; - m_info = m_preconditioner.info(); - return derived(); - } - - /** Initializes the iterative solver with the numerical values of the matrix \a A for further solving \c Ax=b problems. - * - * Currently, this function mostly calls factorize on the preconditioner. - * - * \warning this class stores a reference to the matrix A as well as some - * precomputed values that depend on it. Therefore, if \a A is changed - * this class becomes invalid. Call compute() to update it with the new - * matrix A, or modify a copy of A. - */ - template - Derived& factorize(const EigenBase& A) - { - eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); - grab(A.derived()); - m_preconditioner.factorize(matrix()); - m_factorizationIsOk = true; - m_info = m_preconditioner.info(); - return derived(); - } - - /** Initializes the iterative solver with the matrix \a A for further solving \c Ax=b problems. - * - * Currently, this function mostly initializes/computes the preconditioner. In the future - * we might, for instance, implement column reordering for faster matrix vector products. - * - * \warning this class stores a reference to the matrix A as well as some - * precomputed values that depend on it. Therefore, if \a A is changed - * this class becomes invalid. Call compute() to update it with the new - * matrix A, or modify a copy of A. - */ - template - Derived& compute(const EigenBase& A) - { - grab(A.derived()); - m_preconditioner.compute(matrix()); - m_isInitialized = true; - m_analysisIsOk = true; - m_factorizationIsOk = true; - m_info = m_preconditioner.info(); - return derived(); - } - - /** \internal */ - Index rows() const { return matrix().rows(); } - - /** \internal */ - Index cols() const { return matrix().cols(); } - - /** \returns the tolerance threshold used by the stopping criteria. - * \sa setTolerance() - */ - RealScalar tolerance() const { return m_tolerance; } - - /** Sets the tolerance threshold used by the stopping criteria. - * - * This value is used as an upper bound to the relative residual error: |Ax-b|/|b|. - * The default value is the machine precision given by NumTraits::epsilon() - */ - Derived& setTolerance(const RealScalar& tolerance) - { - m_tolerance = tolerance; - return derived(); - } - - /** \returns a read-write reference to the preconditioner for custom configuration. */ - Preconditioner& preconditioner() { return m_preconditioner; } - - /** \returns a read-only reference to the preconditioner. */ - const Preconditioner& preconditioner() const { return m_preconditioner; } - - /** \returns the max number of iterations. - * It is either the value setted by setMaxIterations or, by default, - * twice the number of columns of the matrix. - */ - Index maxIterations() const - { - return (m_maxIterations<0) ? 2*matrix().cols() : m_maxIterations; - } - - /** Sets the max number of iterations. - * Default is twice the number of columns of the matrix. - */ - Derived& setMaxIterations(Index maxIters) - { - m_maxIterations = maxIters; - return derived(); - } - - /** \returns the number of iterations performed during the last solve */ - Index iterations() const - { - eigen_assert(m_isInitialized && "ConjugateGradient is not initialized."); - return m_iterations; - } - - /** \returns the tolerance error reached during the last solve. - * It is a close approximation of the true relative residual error |Ax-b|/|b|. - */ - RealScalar error() const - { - eigen_assert(m_isInitialized && "ConjugateGradient is not initialized."); - return m_error; - } - - /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A - * and \a x0 as an initial solution. - * - * \sa solve(), compute() - */ - template - inline const SolveWithGuess - solveWithGuess(const MatrixBase& b, const Guess& x0) const - { - eigen_assert(m_isInitialized && "Solver is not initialized."); - eigen_assert(derived().rows()==b.rows() && "solve(): invalid number of rows of the right hand side matrix b"); - return SolveWithGuess(derived(), b.derived(), x0); - } - - /** \returns Success if the iterations converged, and NoConvergence otherwise. */ - ComputationInfo info() const - { - eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized."); - return m_info; - } - - /** \internal */ - template - void _solve_impl(const Rhs& b, SparseMatrixBase &aDest) const - { - eigen_assert(rows()==b.rows()); - - Index rhsCols = b.cols(); - Index size = b.rows(); - DestDerived& dest(aDest.derived()); - typedef typename DestDerived::Scalar DestScalar; - Eigen::Matrix tb(size); - Eigen::Matrix tx(cols()); - // We do not directly fill dest because sparse expressions have to be free of aliasing issue. - // For non square least-square problems, b and dest might not have the same size whereas they might alias each-other. - typename DestDerived::PlainObject tmp(cols(),rhsCols); - for(Index k=0; k::epsilon(); - } - - typedef internal::generic_matrix_wrapper MatrixWrapper; - typedef typename MatrixWrapper::ActualMatrixType ActualMatrixType; - - const ActualMatrixType& matrix() const - { - return m_matrixWrapper.matrix(); - } - - template - void grab(const InputType &A) - { - m_matrixWrapper.grab(A); - } - - MatrixWrapper m_matrixWrapper; - Preconditioner m_preconditioner; - - Index m_maxIterations; - RealScalar m_tolerance; - - mutable RealScalar m_error; - mutable Index m_iterations; - mutable ComputationInfo m_info; - mutable bool m_analysisIsOk, m_factorizationIsOk; -}; - -} // end namespace Eigen - -#endif // EIGEN_ITERATIVE_SOLVER_BASE_H diff --git a/src/math_meigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h b/src/math_meigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h deleted file mode 100755 index 0aea0e099..000000000 --- a/src/math_meigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +++ /dev/null @@ -1,216 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2015 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H -#define EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H - -namespace Eigen { - -namespace internal { - -/** \internal Low-level conjugate gradient algorithm for least-square problems - * \param mat The matrix A - * \param rhs The right hand side vector b - * \param x On input and initial solution, on output the computed solution. - * \param precond A preconditioner being able to efficiently solve for an - * approximation of A'Ax=b (regardless of b) - * \param iters On input the max number of iteration, on output the number of performed iterations. - * \param tol_error On input the tolerance error, on output an estimation of the relative error. - */ -template -EIGEN_DONT_INLINE -void least_square_conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x, - const Preconditioner& precond, Index& iters, - typename Dest::RealScalar& tol_error) -{ - using std::sqrt; - using std::abs; - typedef typename Dest::RealScalar RealScalar; - typedef typename Dest::Scalar Scalar; - typedef Matrix VectorType; - - RealScalar tol = tol_error; - Index maxIters = iters; - - Index m = mat.rows(), n = mat.cols(); - - VectorType residual = rhs - mat * x; - VectorType normal_residual = mat.adjoint() * residual; - - RealScalar rhsNorm2 = (mat.adjoint()*rhs).squaredNorm(); - if(rhsNorm2 == 0) - { - x.setZero(); - iters = 0; - tol_error = 0; - return; - } - RealScalar threshold = tol*tol*rhsNorm2; - RealScalar residualNorm2 = normal_residual.squaredNorm(); - if (residualNorm2 < threshold) - { - iters = 0; - tol_error = sqrt(residualNorm2 / rhsNorm2); - return; - } - - VectorType p(n); - p = precond.solve(normal_residual); // initial search direction - - VectorType z(n), tmp(m); - RealScalar absNew = numext::real(normal_residual.dot(p)); // the square of the absolute value of r scaled by invM - Index i = 0; - while(i < maxIters) - { - tmp.noalias() = mat * p; - - Scalar alpha = absNew / tmp.squaredNorm(); // the amount we travel on dir - x += alpha * p; // update solution - residual -= alpha * tmp; // update residual - normal_residual = mat.adjoint() * residual; // update residual of the normal equation - - residualNorm2 = normal_residual.squaredNorm(); - if(residualNorm2 < threshold) - break; - - z = precond.solve(normal_residual); // approximately solve for "A'A z = normal_residual" - - RealScalar absOld = absNew; - absNew = numext::real(normal_residual.dot(z)); // update the absolute value of r - RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction - p = z + beta * p; // update search direction - i++; - } - tol_error = sqrt(residualNorm2 / rhsNorm2); - iters = i; -} - -} - -template< typename _MatrixType, - typename _Preconditioner = LeastSquareDiagonalPreconditioner > -class LeastSquaresConjugateGradient; - -namespace internal { - -template< typename _MatrixType, typename _Preconditioner> -struct traits > -{ - typedef _MatrixType MatrixType; - typedef _Preconditioner Preconditioner; -}; - -} - -/** \ingroup IterativeLinearSolvers_Module - * \brief A conjugate gradient solver for sparse (or dense) least-square problems - * - * This class allows to solve for A x = b linear problems using an iterative conjugate gradient algorithm. - * The matrix A can be non symmetric and rectangular, but the matrix A' A should be positive-definite to guaranty stability. - * Otherwise, the SparseLU or SparseQR classes might be preferable. - * The matrix A and the vectors x and b can be either dense or sparse. - * - * \tparam _MatrixType the type of the matrix A, can be a dense or a sparse matrix. - * \tparam _Preconditioner the type of the preconditioner. Default is LeastSquareDiagonalPreconditioner - * - * \implsparsesolverconcept - * - * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() - * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations - * and NumTraits::epsilon() for the tolerance. - * - * This class can be used as the direct solver classes. Here is a typical usage example: - \code - int m=1000000, n = 10000; - VectorXd x(n), b(m); - SparseMatrix A(m,n); - // fill A and b - LeastSquaresConjugateGradient > lscg; - lscg.compute(A); - x = lscg.solve(b); - std::cout << "#iterations: " << lscg.iterations() << std::endl; - std::cout << "estimated error: " << lscg.error() << std::endl; - // update b, and solve again - x = lscg.solve(b); - \endcode - * - * By default the iterations start with x=0 as an initial guess of the solution. - * One can control the start using the solveWithGuess() method. - * - * \sa class ConjugateGradient, SparseLU, SparseQR - */ -template< typename _MatrixType, typename _Preconditioner> -class LeastSquaresConjugateGradient : public IterativeSolverBase > -{ - typedef IterativeSolverBase Base; - using Base::matrix; - using Base::m_error; - using Base::m_iterations; - using Base::m_info; - using Base::m_isInitialized; -public: - typedef _MatrixType MatrixType; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef _Preconditioner Preconditioner; - -public: - - /** Default constructor. */ - LeastSquaresConjugateGradient() : Base() {} - - /** Initialize the solver with matrix \a A for further \c Ax=b solving. - * - * This constructor is a shortcut for the default constructor followed - * by a call to compute(). - * - * \warning this class stores a reference to the matrix A as well as some - * precomputed values that depend on it. Therefore, if \a A is changed - * this class becomes invalid. Call compute() to update it with the new - * matrix A, or modify a copy of A. - */ - template - explicit LeastSquaresConjugateGradient(const EigenBase& A) : Base(A.derived()) {} - - ~LeastSquaresConjugateGradient() {} - - /** \internal */ - template - void _solve_with_guess_impl(const Rhs& b, Dest& x) const - { - m_iterations = Base::maxIterations(); - m_error = Base::m_tolerance; - - for(Index j=0; j - void _solve_impl(const MatrixBase& b, Dest& x) const - { - x.setZero(); - _solve_with_guess_impl(b.derived(),x); - } - -}; - -} // end namespace Eigen - -#endif // EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H diff --git a/src/math_meigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h b/src/math_meigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h deleted file mode 100755 index 0ace45177..000000000 --- a/src/math_meigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +++ /dev/null @@ -1,115 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SOLVEWITHGUESS_H -#define EIGEN_SOLVEWITHGUESS_H - -namespace Eigen { - -template class SolveWithGuess; - -/** \class SolveWithGuess - * \ingroup IterativeLinearSolvers_Module - * - * \brief Pseudo expression representing a solving operation - * - * \tparam Decomposition the type of the matrix or decomposion object - * \tparam Rhstype the type of the right-hand side - * - * This class represents an expression of A.solve(B) - * and most of the time this is the only way it is used. - * - */ -namespace internal { - - -template -struct traits > - : traits > -{}; - -} - - -template -class SolveWithGuess : public internal::generic_xpr_base, MatrixXpr, typename internal::traits::StorageKind>::type -{ -public: - typedef typename internal::traits::Scalar Scalar; - typedef typename internal::traits::PlainObject PlainObject; - typedef typename internal::generic_xpr_base, MatrixXpr, typename internal::traits::StorageKind>::type Base; - typedef typename internal::ref_selector::type Nested; - - SolveWithGuess(const Decomposition &dec, const RhsType &rhs, const GuessType &guess) - : m_dec(dec), m_rhs(rhs), m_guess(guess) - {} - - EIGEN_DEVICE_FUNC Index rows() const { return m_dec.cols(); } - EIGEN_DEVICE_FUNC Index cols() const { return m_rhs.cols(); } - - EIGEN_DEVICE_FUNC const Decomposition& dec() const { return m_dec; } - EIGEN_DEVICE_FUNC const RhsType& rhs() const { return m_rhs; } - EIGEN_DEVICE_FUNC const GuessType& guess() const { return m_guess; } - -protected: - const Decomposition &m_dec; - const RhsType &m_rhs; - const GuessType &m_guess; - -private: - Scalar coeff(Index row, Index col) const; - Scalar coeff(Index i) const; -}; - -namespace internal { - -// Evaluator of SolveWithGuess -> eval into a temporary -template -struct evaluator > - : public evaluator::PlainObject> -{ - typedef SolveWithGuess SolveType; - typedef typename SolveType::PlainObject PlainObject; - typedef evaluator Base; - - evaluator(const SolveType& solve) - : m_result(solve.rows(), solve.cols()) - { - ::new (static_cast(this)) Base(m_result); - m_result = solve.guess(); - solve.dec()._solve_with_guess_impl(solve.rhs(), m_result); - } - -protected: - PlainObject m_result; -}; - -// Specialization for "dst = dec.solveWithGuess(rhs)" -// NOTE we need to specialize it for Dense2Dense to avoid ambiguous specialization error and a Sparse2Sparse specialization must exist somewhere -template -struct Assignment, internal::assign_op, Dense2Dense> -{ - typedef SolveWithGuess SrcXprType; - static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) - { - Index dstRows = src.rows(); - Index dstCols = src.cols(); - if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) - dst.resize(dstRows, dstCols); - - dst = src.guess(); - src.dec()._solve_with_guess_impl(src.rhs(), dst/*, src.guess()*/); - } -}; - -} // end namepsace internal - -} // end namespace Eigen - -#endif // EIGEN_SOLVEWITHGUESS_H diff --git a/src/math_meigen/Eigen/src/Jacobi/Jacobi.h b/src/math_meigen/Eigen/src/Jacobi/Jacobi.h deleted file mode 100755 index 1998c6322..000000000 --- a/src/math_meigen/Eigen/src/Jacobi/Jacobi.h +++ /dev/null @@ -1,462 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Benoit Jacob -// Copyright (C) 2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_JACOBI_H -#define EIGEN_JACOBI_H - -namespace Eigen { - -/** \ingroup Jacobi_Module - * \jacobi_module - * \class JacobiRotation - * \brief Rotation given by a cosine-sine pair. - * - * This class represents a Jacobi or Givens rotation. - * This is a 2D rotation in the plane \c J of angle \f$ \theta \f$ defined by - * its cosine \c c and sine \c s as follow: - * \f$ J = \left ( \begin{array}{cc} c & \overline s \\ -s & \overline c \end{array} \right ) \f$ - * - * You can apply the respective counter-clockwise rotation to a column vector \c v by - * applying its adjoint on the left: \f$ v = J^* v \f$ that translates to the following Eigen code: - * \code - * v.applyOnTheLeft(J.adjoint()); - * \endcode - * - * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() - */ -template class JacobiRotation -{ - public: - typedef typename NumTraits::Real RealScalar; - - /** Default constructor without any initialization. */ - JacobiRotation() {} - - /** Construct a planar rotation from a cosine-sine pair (\a c, \c s). */ - JacobiRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {} - - Scalar& c() { return m_c; } - Scalar c() const { return m_c; } - Scalar& s() { return m_s; } - Scalar s() const { return m_s; } - - /** Concatenates two planar rotation */ - JacobiRotation operator*(const JacobiRotation& other) - { - using numext::conj; - return JacobiRotation(m_c * other.m_c - conj(m_s) * other.m_s, - conj(m_c * conj(other.m_s) + conj(m_s) * conj(other.m_c))); - } - - /** Returns the transposed transformation */ - JacobiRotation transpose() const { using numext::conj; return JacobiRotation(m_c, -conj(m_s)); } - - /** Returns the adjoint transformation */ - JacobiRotation adjoint() const { using numext::conj; return JacobiRotation(conj(m_c), -m_s); } - - template - bool makeJacobi(const MatrixBase&, Index p, Index q); - bool makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z); - - void makeGivens(const Scalar& p, const Scalar& q, Scalar* r=0); - - protected: - void makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type); - void makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type); - - Scalar m_c, m_s; -}; - -/** Makes \c *this as a Jacobi rotation \a J such that applying \a J on both the right and left sides of the selfadjoint 2x2 matrix - * \f$ B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )\f$ yields a diagonal matrix \f$ A = J^* B J \f$ - * - * \sa MatrixBase::makeJacobi(const MatrixBase&, Index, Index), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() - */ -template -bool JacobiRotation::makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z) -{ - using std::sqrt; - using std::abs; - RealScalar deno = RealScalar(2)*abs(y); - if(deno < (std::numeric_limits::min)()) - { - m_c = Scalar(1); - m_s = Scalar(0); - return false; - } - else - { - RealScalar tau = (x-z)/deno; - RealScalar w = sqrt(numext::abs2(tau) + RealScalar(1)); - RealScalar t; - if(tau>RealScalar(0)) - { - t = RealScalar(1) / (tau + w); - } - else - { - t = RealScalar(1) / (tau - w); - } - RealScalar sign_t = t > RealScalar(0) ? RealScalar(1) : RealScalar(-1); - RealScalar n = RealScalar(1) / sqrt(numext::abs2(t)+RealScalar(1)); - m_s = - sign_t * (numext::conj(y) / abs(y)) * abs(t) * n; - m_c = n; - return true; - } -} - -/** Makes \c *this as a Jacobi rotation \c J such that applying \a J on both the right and left sides of the 2x2 selfadjoint matrix - * \f$ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )\f$ yields - * a diagonal matrix \f$ A = J^* B J \f$ - * - * Example: \include Jacobi_makeJacobi.cpp - * Output: \verbinclude Jacobi_makeJacobi.out - * - * \sa JacobiRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() - */ -template -template -inline bool JacobiRotation::makeJacobi(const MatrixBase& m, Index p, Index q) -{ - return makeJacobi(numext::real(m.coeff(p,p)), m.coeff(p,q), numext::real(m.coeff(q,q))); -} - -/** Makes \c *this as a Givens rotation \c G such that applying \f$ G^* \f$ to the left of the vector - * \f$ V = \left ( \begin{array}{c} p \\ q \end{array} \right )\f$ yields: - * \f$ G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )\f$. - * - * The value of \a r is returned if \a r is not null (the default is null). - * Also note that G is built such that the cosine is always real. - * - * Example: \include Jacobi_makeGivens.cpp - * Output: \verbinclude Jacobi_makeGivens.out - * - * This function implements the continuous Givens rotation generation algorithm - * found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem. - * LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000. - * - * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() - */ -template -void JacobiRotation::makeGivens(const Scalar& p, const Scalar& q, Scalar* r) -{ - makeGivens(p, q, r, typename internal::conditional::IsComplex, internal::true_type, internal::false_type>::type()); -} - - -// specialization for complexes -template -void JacobiRotation::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type) -{ - using std::sqrt; - using std::abs; - using numext::conj; - - if(q==Scalar(0)) - { - m_c = numext::real(p)<0 ? Scalar(-1) : Scalar(1); - m_s = 0; - if(r) *r = m_c * p; - } - else if(p==Scalar(0)) - { - m_c = 0; - m_s = -q/abs(q); - if(r) *r = abs(q); - } - else - { - RealScalar p1 = numext::norm1(p); - RealScalar q1 = numext::norm1(q); - if(p1>=q1) - { - Scalar ps = p / p1; - RealScalar p2 = numext::abs2(ps); - Scalar qs = q / p1; - RealScalar q2 = numext::abs2(qs); - - RealScalar u = sqrt(RealScalar(1) + q2/p2); - if(numext::real(p) -void JacobiRotation::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type) -{ - using std::sqrt; - using std::abs; - if(q==Scalar(0)) - { - m_c = p abs(q)) - { - Scalar t = q/p; - Scalar u = sqrt(Scalar(1) + numext::abs2(t)); - if(p -void apply_rotation_in_the_plane(DenseBase& xpr_x, DenseBase& xpr_y, const JacobiRotation& j); -} - -/** \jacobi_module - * Applies the rotation in the plane \a j to the rows \a p and \a q of \c *this, i.e., it computes B = J * B, - * with \f$ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \f$. - * - * \sa class JacobiRotation, MatrixBase::applyOnTheRight(), internal::apply_rotation_in_the_plane() - */ -template -template -inline void MatrixBase::applyOnTheLeft(Index p, Index q, const JacobiRotation& j) -{ - RowXpr x(this->row(p)); - RowXpr y(this->row(q)); - internal::apply_rotation_in_the_plane(x, y, j); -} - -/** \ingroup Jacobi_Module - * Applies the rotation in the plane \a j to the columns \a p and \a q of \c *this, i.e., it computes B = B * J - * with \f$ B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \f$. - * - * \sa class JacobiRotation, MatrixBase::applyOnTheLeft(), internal::apply_rotation_in_the_plane() - */ -template -template -inline void MatrixBase::applyOnTheRight(Index p, Index q, const JacobiRotation& j) -{ - ColXpr x(this->col(p)); - ColXpr y(this->col(q)); - internal::apply_rotation_in_the_plane(x, y, j.transpose()); -} - -namespace internal { - -template -struct apply_rotation_in_the_plane_selector -{ - static inline void run(Scalar *x, Index incrx, Scalar *y, Index incry, Index size, OtherScalar c, OtherScalar s) - { - for(Index i=0; i -struct apply_rotation_in_the_plane_selector -{ - static inline void run(Scalar *x, Index incrx, Scalar *y, Index incry, Index size, OtherScalar c, OtherScalar s) - { - enum { - PacketSize = packet_traits::size, - OtherPacketSize = packet_traits::size - }; - typedef typename packet_traits::type Packet; - typedef typename packet_traits::type OtherPacket; - - /*** dynamic-size vectorized paths ***/ - if(SizeAtCompileTime == Dynamic && ((incrx==1 && incry==1) || PacketSize == 1)) - { - // both vectors are sequentially stored in memory => vectorization - enum { Peeling = 2 }; - - Index alignedStart = internal::first_default_aligned(y, size); - Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize; - - const OtherPacket pc = pset1(c); - const OtherPacket ps = pset1(s); - conj_helper::IsComplex,false> pcj; - conj_helper pm; - - for(Index i=0; i(px); - Packet yi = pload(py); - pstore(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi))); - pstore(py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi))); - px += PacketSize; - py += PacketSize; - } - } - else - { - Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize); - for(Index i=alignedStart; i(px); - Packet xi1 = ploadu(px+PacketSize); - Packet yi = pload (py); - Packet yi1 = pload (py+PacketSize); - pstoreu(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi))); - pstoreu(px+PacketSize, padd(pm.pmul(pc,xi1),pcj.pmul(ps,yi1))); - pstore (py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi))); - pstore (py+PacketSize, psub(pcj.pmul(pc,yi1),pm.pmul(ps,xi1))); - px += Peeling*PacketSize; - py += Peeling*PacketSize; - } - if(alignedEnd!=peelingEnd) - { - Packet xi = ploadu(x+peelingEnd); - Packet yi = pload (y+peelingEnd); - pstoreu(x+peelingEnd, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi))); - pstore (y+peelingEnd, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi))); - } - } - - for(Index i=alignedEnd; i0) // FIXME should be compared to the required alignment - { - const OtherPacket pc = pset1(c); - const OtherPacket ps = pset1(s); - conj_helper::IsComplex,false> pcj; - conj_helper pm; - Scalar* EIGEN_RESTRICT px = x; - Scalar* EIGEN_RESTRICT py = y; - for(Index i=0; i(px); - Packet yi = pload(py); - pstore(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi))); - pstore(py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi))); - px += PacketSize; - py += PacketSize; - } - } - - /*** non-vectorized path ***/ - else - { - apply_rotation_in_the_plane_selector::run(x,incrx,y,incry,size,c,s); - } - } -}; - -template -void /*EIGEN_DONT_INLINE*/ apply_rotation_in_the_plane(DenseBase& xpr_x, DenseBase& xpr_y, const JacobiRotation& j) -{ - typedef typename VectorX::Scalar Scalar; - const bool Vectorizable = (VectorX::Flags & VectorY::Flags & PacketAccessBit) - && (int(packet_traits::size) == int(packet_traits::size)); - - eigen_assert(xpr_x.size() == xpr_y.size()); - Index size = xpr_x.size(); - Index incrx = xpr_x.derived().innerStride(); - Index incry = xpr_y.derived().innerStride(); - - Scalar* EIGEN_RESTRICT x = &xpr_x.derived().coeffRef(0); - Scalar* EIGEN_RESTRICT y = &xpr_y.derived().coeffRef(0); - - OtherScalar c = j.c(); - OtherScalar s = j.s(); - if (c==OtherScalar(1) && s==OtherScalar(0)) - return; - - apply_rotation_in_the_plane_selector< - Scalar,OtherScalar, - VectorX::SizeAtCompileTime, - EIGEN_PLAIN_ENUM_MIN(evaluator::Alignment, evaluator::Alignment), - Vectorizable>::run(x,incrx,y,incry,size,c,s); -} - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_JACOBI_H diff --git a/src/math_meigen/Eigen/src/LU/Determinant.h b/src/math_meigen/Eigen/src/LU/Determinant.h deleted file mode 100755 index d6a3c1e5a..000000000 --- a/src/math_meigen/Eigen/src/LU/Determinant.h +++ /dev/null @@ -1,101 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_DETERMINANT_H -#define EIGEN_DETERMINANT_H - -namespace Eigen { - -namespace internal { - -template -inline const typename Derived::Scalar bruteforce_det3_helper -(const MatrixBase& matrix, int a, int b, int c) -{ - return matrix.coeff(0,a) - * (matrix.coeff(1,b) * matrix.coeff(2,c) - matrix.coeff(1,c) * matrix.coeff(2,b)); -} - -template -const typename Derived::Scalar bruteforce_det4_helper -(const MatrixBase& matrix, int j, int k, int m, int n) -{ - return (matrix.coeff(j,0) * matrix.coeff(k,1) - matrix.coeff(k,0) * matrix.coeff(j,1)) - * (matrix.coeff(m,2) * matrix.coeff(n,3) - matrix.coeff(n,2) * matrix.coeff(m,3)); -} - -template struct determinant_impl -{ - static inline typename traits::Scalar run(const Derived& m) - { - if(Derived::ColsAtCompileTime==Dynamic && m.rows()==0) - return typename traits::Scalar(1); - return m.partialPivLu().determinant(); - } -}; - -template struct determinant_impl -{ - static inline typename traits::Scalar run(const Derived& m) - { - return m.coeff(0,0); - } -}; - -template struct determinant_impl -{ - static inline typename traits::Scalar run(const Derived& m) - { - return m.coeff(0,0) * m.coeff(1,1) - m.coeff(1,0) * m.coeff(0,1); - } -}; - -template struct determinant_impl -{ - static inline typename traits::Scalar run(const Derived& m) - { - return bruteforce_det3_helper(m,0,1,2) - - bruteforce_det3_helper(m,1,0,2) - + bruteforce_det3_helper(m,2,0,1); - } -}; - -template struct determinant_impl -{ - static typename traits::Scalar run(const Derived& m) - { - // trick by Martin Costabel to compute 4x4 det with only 30 muls - return bruteforce_det4_helper(m,0,1,2,3) - - bruteforce_det4_helper(m,0,2,1,3) - + bruteforce_det4_helper(m,0,3,1,2) - + bruteforce_det4_helper(m,1,2,0,3) - - bruteforce_det4_helper(m,1,3,0,2) - + bruteforce_det4_helper(m,2,3,0,1); - } -}; - -} // end namespace internal - -/** \lu_module - * - * \returns the determinant of this matrix - */ -template -inline typename internal::traits::Scalar MatrixBase::determinant() const -{ - eigen_assert(rows() == cols()); - typedef typename internal::nested_eval::type Nested; - return internal::determinant_impl::type>::run(derived()); -} - -} // end namespace Eigen - -#endif // EIGEN_DETERMINANT_H diff --git a/src/math_meigen/Eigen/src/LU/FullPivLU.h b/src/math_meigen/Eigen/src/LU/FullPivLU.h deleted file mode 100755 index 03b6af706..000000000 --- a/src/math_meigen/Eigen/src/LU/FullPivLU.h +++ /dev/null @@ -1,891 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2006-2009 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_LU_H -#define EIGEN_LU_H - -namespace Eigen { - -namespace internal { -template struct traits > - : traits<_MatrixType> -{ - typedef MatrixXpr XprKind; - typedef SolverStorage StorageKind; - enum { Flags = 0 }; -}; - -} // end namespace internal - -/** \ingroup LU_Module - * - * \class FullPivLU - * - * \brief LU decomposition of a matrix with complete pivoting, and related features - * - * \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition - * - * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is - * decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is - * upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU - * decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any - * zeros are at the end. - * - * This decomposition provides the generic approach to solving systems of linear equations, computing - * the rank, invertibility, inverse, kernel, and determinant. - * - * This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD - * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix, - * working with the SVD allows to select the smallest singular values of the matrix, something that - * the LU decomposition doesn't see. - * - * The data of the LU decomposition can be directly accessed through the methods matrixLU(), - * permutationP(), permutationQ(). - * - * As an exemple, here is how the original matrix can be retrieved: - * \include class_FullPivLU.cpp - * Output: \verbinclude class_FullPivLU.out - * - * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. - * - * \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse() - */ -template class FullPivLU - : public SolverBase > -{ - public: - typedef _MatrixType MatrixType; - typedef SolverBase Base; - - EIGEN_GENERIC_PUBLIC_INTERFACE(FullPivLU) - // FIXME StorageIndex defined in EIGEN_GENERIC_PUBLIC_INTERFACE should be int - enum { - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime - }; - typedef typename internal::plain_row_type::type IntRowVectorType; - typedef typename internal::plain_col_type::type IntColVectorType; - typedef PermutationMatrix PermutationQType; - typedef PermutationMatrix PermutationPType; - typedef typename MatrixType::PlainObject PlainObject; - - /** - * \brief Default Constructor. - * - * The default constructor is useful in cases in which the user intends to - * perform decompositions via LU::compute(const MatrixType&). - */ - FullPivLU(); - - /** \brief Default Constructor with memory preallocation - * - * Like the default constructor but with preallocation of the internal data - * according to the specified problem \a size. - * \sa FullPivLU() - */ - FullPivLU(Index rows, Index cols); - - /** Constructor. - * - * \param matrix the matrix of which to compute the LU decomposition. - * It is required to be nonzero. - */ - template - explicit FullPivLU(const EigenBase& matrix); - - /** \brief Constructs a LU factorization from a given matrix - * - * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. - * - * \sa FullPivLU(const EigenBase&) - */ - template - explicit FullPivLU(EigenBase& matrix); - - /** Computes the LU decomposition of the given matrix. - * - * \param matrix the matrix of which to compute the LU decomposition. - * It is required to be nonzero. - * - * \returns a reference to *this - */ - template - FullPivLU& compute(const EigenBase& matrix) { - m_lu = matrix.derived(); - computeInPlace(); - return *this; - } - - /** \returns the LU decomposition matrix: the upper-triangular part is U, the - * unit-lower-triangular part is L (at least for square matrices; in the non-square - * case, special care is needed, see the documentation of class FullPivLU). - * - * \sa matrixL(), matrixU() - */ - inline const MatrixType& matrixLU() const - { - eigen_assert(m_isInitialized && "LU is not initialized."); - return m_lu; - } - - /** \returns the number of nonzero pivots in the LU decomposition. - * Here nonzero is meant in the exact sense, not in a fuzzy sense. - * So that notion isn't really intrinsically interesting, but it is - * still useful when implementing algorithms. - * - * \sa rank() - */ - inline Index nonzeroPivots() const - { - eigen_assert(m_isInitialized && "LU is not initialized."); - return m_nonzero_pivots; - } - - /** \returns the absolute value of the biggest pivot, i.e. the biggest - * diagonal coefficient of U. - */ - RealScalar maxPivot() const { return m_maxpivot; } - - /** \returns the permutation matrix P - * - * \sa permutationQ() - */ - EIGEN_DEVICE_FUNC inline const PermutationPType& permutationP() const - { - eigen_assert(m_isInitialized && "LU is not initialized."); - return m_p; - } - - /** \returns the permutation matrix Q - * - * \sa permutationP() - */ - inline const PermutationQType& permutationQ() const - { - eigen_assert(m_isInitialized && "LU is not initialized."); - return m_q; - } - - /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix - * will form a basis of the kernel. - * - * \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros. - * - * \note This method has to determine which pivots should be considered nonzero. - * For that, it uses the threshold value that you can control by calling - * setThreshold(const RealScalar&). - * - * Example: \include FullPivLU_kernel.cpp - * Output: \verbinclude FullPivLU_kernel.out - * - * \sa image() - */ - inline const internal::kernel_retval kernel() const - { - eigen_assert(m_isInitialized && "LU is not initialized."); - return internal::kernel_retval(*this); - } - - /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix - * will form a basis of the image (column-space). - * - * \param originalMatrix the original matrix, of which *this is the LU decomposition. - * The reason why it is needed to pass it here, is that this allows - * a large optimization, as otherwise this method would need to reconstruct it - * from the LU decomposition. - * - * \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros. - * - * \note This method has to determine which pivots should be considered nonzero. - * For that, it uses the threshold value that you can control by calling - * setThreshold(const RealScalar&). - * - * Example: \include FullPivLU_image.cpp - * Output: \verbinclude FullPivLU_image.out - * - * \sa kernel() - */ - inline const internal::image_retval - image(const MatrixType& originalMatrix) const - { - eigen_assert(m_isInitialized && "LU is not initialized."); - return internal::image_retval(*this, originalMatrix); - } - - /** \return a solution x to the equation Ax=b, where A is the matrix of which - * *this is the LU decomposition. - * - * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, - * the only requirement in order for the equation to make sense is that - * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. - * - * \returns a solution. - * - * \note_about_checking_solutions - * - * \note_about_arbitrary_choice_of_solution - * \note_about_using_kernel_to_study_multiple_solutions - * - * Example: \include FullPivLU_solve.cpp - * Output: \verbinclude FullPivLU_solve.out - * - * \sa TriangularView::solve(), kernel(), inverse() - */ - // FIXME this is a copy-paste of the base-class member to add the isInitialized assertion. - template - inline const Solve - solve(const MatrixBase& b) const - { - eigen_assert(m_isInitialized && "LU is not initialized."); - return Solve(*this, b.derived()); - } - - /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is - the LU decomposition. - */ - inline RealScalar rcond() const - { - eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); - return internal::rcond_estimate_helper(m_l1_norm, *this); - } - - /** \returns the determinant of the matrix of which - * *this is the LU decomposition. It has only linear complexity - * (that is, O(n) where n is the dimension of the square matrix) - * as the LU decomposition has already been computed. - * - * \note This is only for square matrices. - * - * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers - * optimized paths. - * - * \warning a determinant can be very big or small, so for matrices - * of large enough dimension, there is a risk of overflow/underflow. - * - * \sa MatrixBase::determinant() - */ - typename internal::traits::Scalar determinant() const; - - /** Allows to prescribe a threshold to be used by certain methods, such as rank(), - * who need to determine when pivots are to be considered nonzero. This is not used for the - * LU decomposition itself. - * - * When it needs to get the threshold value, Eigen calls threshold(). By default, this - * uses a formula to automatically determine a reasonable threshold. - * Once you have called the present method setThreshold(const RealScalar&), - * your value is used instead. - * - * \param threshold The new value to use as the threshold. - * - * A pivot will be considered nonzero if its absolute value is strictly greater than - * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ - * where maxpivot is the biggest pivot. - * - * If you want to come back to the default behavior, call setThreshold(Default_t) - */ - FullPivLU& setThreshold(const RealScalar& threshold) - { - m_usePrescribedThreshold = true; - m_prescribedThreshold = threshold; - return *this; - } - - /** Allows to come back to the default behavior, letting Eigen use its default formula for - * determining the threshold. - * - * You should pass the special object Eigen::Default as parameter here. - * \code lu.setThreshold(Eigen::Default); \endcode - * - * See the documentation of setThreshold(const RealScalar&). - */ - FullPivLU& setThreshold(Default_t) - { - m_usePrescribedThreshold = false; - return *this; - } - - /** Returns the threshold that will be used by certain methods such as rank(). - * - * See the documentation of setThreshold(const RealScalar&). - */ - RealScalar threshold() const - { - eigen_assert(m_isInitialized || m_usePrescribedThreshold); - return m_usePrescribedThreshold ? m_prescribedThreshold - // this formula comes from experimenting (see "LU precision tuning" thread on the list) - // and turns out to be identical to Higham's formula used already in LDLt. - : NumTraits::epsilon() * m_lu.diagonalSize(); - } - - /** \returns the rank of the matrix of which *this is the LU decomposition. - * - * \note This method has to determine which pivots should be considered nonzero. - * For that, it uses the threshold value that you can control by calling - * setThreshold(const RealScalar&). - */ - inline Index rank() const - { - using std::abs; - eigen_assert(m_isInitialized && "LU is not initialized."); - RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); - Index result = 0; - for(Index i = 0; i < m_nonzero_pivots; ++i) - result += (abs(m_lu.coeff(i,i)) > premultiplied_threshold); - return result; - } - - /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition. - * - * \note This method has to determine which pivots should be considered nonzero. - * For that, it uses the threshold value that you can control by calling - * setThreshold(const RealScalar&). - */ - inline Index dimensionOfKernel() const - { - eigen_assert(m_isInitialized && "LU is not initialized."); - return cols() - rank(); - } - - /** \returns true if the matrix of which *this is the LU decomposition represents an injective - * linear map, i.e. has trivial kernel; false otherwise. - * - * \note This method has to determine which pivots should be considered nonzero. - * For that, it uses the threshold value that you can control by calling - * setThreshold(const RealScalar&). - */ - inline bool isInjective() const - { - eigen_assert(m_isInitialized && "LU is not initialized."); - return rank() == cols(); - } - - /** \returns true if the matrix of which *this is the LU decomposition represents a surjective - * linear map; false otherwise. - * - * \note This method has to determine which pivots should be considered nonzero. - * For that, it uses the threshold value that you can control by calling - * setThreshold(const RealScalar&). - */ - inline bool isSurjective() const - { - eigen_assert(m_isInitialized && "LU is not initialized."); - return rank() == rows(); - } - - /** \returns true if the matrix of which *this is the LU decomposition is invertible. - * - * \note This method has to determine which pivots should be considered nonzero. - * For that, it uses the threshold value that you can control by calling - * setThreshold(const RealScalar&). - */ - inline bool isInvertible() const - { - eigen_assert(m_isInitialized && "LU is not initialized."); - return isInjective() && (m_lu.rows() == m_lu.cols()); - } - - /** \returns the inverse of the matrix of which *this is the LU decomposition. - * - * \note If this matrix is not invertible, the returned matrix has undefined coefficients. - * Use isInvertible() to first determine whether this matrix is invertible. - * - * \sa MatrixBase::inverse() - */ - inline const Inverse inverse() const - { - eigen_assert(m_isInitialized && "LU is not initialized."); - eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!"); - return Inverse(*this); - } - - MatrixType reconstructedMatrix() const; - - EIGEN_DEVICE_FUNC inline Index rows() const { return m_lu.rows(); } - EIGEN_DEVICE_FUNC inline Index cols() const { return m_lu.cols(); } - - #ifndef EIGEN_PARSED_BY_DOXYGEN - template - EIGEN_DEVICE_FUNC - void _solve_impl(const RhsType &rhs, DstType &dst) const; - - template - EIGEN_DEVICE_FUNC - void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; - #endif - - protected: - - static void check_template_parameters() - { - EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); - } - - void computeInPlace(); - - MatrixType m_lu; - PermutationPType m_p; - PermutationQType m_q; - IntColVectorType m_rowsTranspositions; - IntRowVectorType m_colsTranspositions; - Index m_nonzero_pivots; - RealScalar m_l1_norm; - RealScalar m_maxpivot, m_prescribedThreshold; - signed char m_det_pq; - bool m_isInitialized, m_usePrescribedThreshold; -}; - -template -FullPivLU::FullPivLU() - : m_isInitialized(false), m_usePrescribedThreshold(false) -{ -} - -template -FullPivLU::FullPivLU(Index rows, Index cols) - : m_lu(rows, cols), - m_p(rows), - m_q(cols), - m_rowsTranspositions(rows), - m_colsTranspositions(cols), - m_isInitialized(false), - m_usePrescribedThreshold(false) -{ -} - -template -template -FullPivLU::FullPivLU(const EigenBase& matrix) - : m_lu(matrix.rows(), matrix.cols()), - m_p(matrix.rows()), - m_q(matrix.cols()), - m_rowsTranspositions(matrix.rows()), - m_colsTranspositions(matrix.cols()), - m_isInitialized(false), - m_usePrescribedThreshold(false) -{ - compute(matrix.derived()); -} - -template -template -FullPivLU::FullPivLU(EigenBase& matrix) - : m_lu(matrix.derived()), - m_p(matrix.rows()), - m_q(matrix.cols()), - m_rowsTranspositions(matrix.rows()), - m_colsTranspositions(matrix.cols()), - m_isInitialized(false), - m_usePrescribedThreshold(false) -{ - computeInPlace(); -} - -template -void FullPivLU::computeInPlace() -{ - check_template_parameters(); - - // the permutations are stored as int indices, so just to be sure: - eigen_assert(m_lu.rows()<=NumTraits::highest() && m_lu.cols()<=NumTraits::highest()); - - m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff(); - - const Index size = m_lu.diagonalSize(); - const Index rows = m_lu.rows(); - const Index cols = m_lu.cols(); - - // will store the transpositions, before we accumulate them at the end. - // can't accumulate on-the-fly because that will be done in reverse order for the rows. - m_rowsTranspositions.resize(m_lu.rows()); - m_colsTranspositions.resize(m_lu.cols()); - Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i - - m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) - m_maxpivot = RealScalar(0); - - for(Index k = 0; k < size; ++k) - { - // First, we need to find the pivot. - - // biggest coefficient in the remaining bottom-right corner (starting at row k, col k) - Index row_of_biggest_in_corner, col_of_biggest_in_corner; - typedef internal::scalar_score_coeff_op Scoring; - typedef typename Scoring::result_type Score; - Score biggest_in_corner; - biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k) - .unaryExpr(Scoring()) - .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner); - row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner, - col_of_biggest_in_corner += k; // need to add k to them. - - if(biggest_in_corner==Score(0)) - { - // before exiting, make sure to initialize the still uninitialized transpositions - // in a sane state without destroying what we already have. - m_nonzero_pivots = k; - for(Index i = k; i < size; ++i) - { - m_rowsTranspositions.coeffRef(i) = i; - m_colsTranspositions.coeffRef(i) = i; - } - break; - } - - RealScalar abs_pivot = internal::abs_knowing_score()(m_lu(row_of_biggest_in_corner, col_of_biggest_in_corner), biggest_in_corner); - if(abs_pivot > m_maxpivot) m_maxpivot = abs_pivot; - - // Now that we've found the pivot, we need to apply the row/col swaps to - // bring it to the location (k,k). - - m_rowsTranspositions.coeffRef(k) = row_of_biggest_in_corner; - m_colsTranspositions.coeffRef(k) = col_of_biggest_in_corner; - if(k != row_of_biggest_in_corner) { - m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner)); - ++number_of_transpositions; - } - if(k != col_of_biggest_in_corner) { - m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner)); - ++number_of_transpositions; - } - - // Now that the pivot is at the right location, we update the remaining - // bottom-right corner by Gaussian elimination. - - if(k= 0; --k) - m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k)); - - m_q.setIdentity(cols); - for(Index k = 0; k < size; ++k) - m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k)); - - m_det_pq = (number_of_transpositions%2) ? -1 : 1; - - m_isInitialized = true; -} - -template -typename internal::traits::Scalar FullPivLU::determinant() const -{ - eigen_assert(m_isInitialized && "LU is not initialized."); - eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!"); - return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod()); -} - -/** \returns the matrix represented by the decomposition, - * i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$. - * This function is provided for debug purposes. */ -template -MatrixType FullPivLU::reconstructedMatrix() const -{ - eigen_assert(m_isInitialized && "LU is not initialized."); - const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols()); - // LU - MatrixType res(m_lu.rows(),m_lu.cols()); - // FIXME the .toDenseMatrix() should not be needed... - res = m_lu.leftCols(smalldim) - .template triangularView().toDenseMatrix() - * m_lu.topRows(smalldim) - .template triangularView().toDenseMatrix(); - - // P^{-1}(LU) - res = m_p.inverse() * res; - - // (P^{-1}LU)Q^{-1} - res = res * m_q.inverse(); - - return res; -} - -/********* Implementation of kernel() **************************************************/ - -namespace internal { -template -struct kernel_retval > - : kernel_retval_base > -{ - EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>) - - enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED( - MatrixType::MaxColsAtCompileTime, - MatrixType::MaxRowsAtCompileTime) - }; - - template void evalTo(Dest& dst) const - { - using std::abs; - const Index cols = dec().matrixLU().cols(), dimker = cols - rank(); - if(dimker == 0) - { - // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's - // avoid crashing/asserting as that depends on floating point calculations. Let's - // just return a single column vector filled with zeros. - dst.setZero(); - return; - } - - /* Let us use the following lemma: - * - * Lemma: If the matrix A has the LU decomposition PAQ = LU, - * then Ker A = Q(Ker U). - * - * Proof: trivial: just keep in mind that P, Q, L are invertible. - */ - - /* Thus, all we need to do is to compute Ker U, and then apply Q. - * - * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end. - * Thus, the diagonal of U ends with exactly - * dimKer zero's. Let us use that to construct dimKer linearly - * independent vectors in Ker U. - */ - - Matrix pivots(rank()); - RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold(); - Index p = 0; - for(Index i = 0; i < dec().nonzeroPivots(); ++i) - if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold) - pivots.coeffRef(p++) = i; - eigen_internal_assert(p == rank()); - - // we construct a temporaty trapezoid matrix m, by taking the U matrix and - // permuting the rows and cols to bring the nonnegligible pivots to the top of - // the main diagonal. We need that to be able to apply our triangular solvers. - // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified - Matrix - m(dec().matrixLU().block(0, 0, rank(), cols)); - for(Index i = 0; i < rank(); ++i) - { - if(i) m.row(i).head(i).setZero(); - m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i); - } - m.block(0, 0, rank(), rank()); - m.block(0, 0, rank(), rank()).template triangularView().setZero(); - for(Index i = 0; i < rank(); ++i) - m.col(i).swap(m.col(pivots.coeff(i))); - - // ok, we have our trapezoid matrix, we can apply the triangular solver. - // notice that the math behind this suggests that we should apply this to the - // negative of the RHS, but for performance we just put the negative sign elsewhere, see below. - m.topLeftCorner(rank(), rank()) - .template triangularView().solveInPlace( - m.topRightCorner(rank(), dimker) - ); - - // now we must undo the column permutation that we had applied! - for(Index i = rank()-1; i >= 0; --i) - m.col(i).swap(m.col(pivots.coeff(i))); - - // see the negative sign in the next line, that's what we were talking about above. - for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker); - for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero(); - for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1); - } -}; - -/***** Implementation of image() *****************************************************/ - -template -struct image_retval > - : image_retval_base > -{ - EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>) - - enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED( - MatrixType::MaxColsAtCompileTime, - MatrixType::MaxRowsAtCompileTime) - }; - - template void evalTo(Dest& dst) const - { - using std::abs; - if(rank() == 0) - { - // The Image is just {0}, so it doesn't have a basis properly speaking, but let's - // avoid crashing/asserting as that depends on floating point calculations. Let's - // just return a single column vector filled with zeros. - dst.setZero(); - return; - } - - Matrix pivots(rank()); - RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold(); - Index p = 0; - for(Index i = 0; i < dec().nonzeroPivots(); ++i) - if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold) - pivots.coeffRef(p++) = i; - eigen_internal_assert(p == rank()); - - for(Index i = 0; i < rank(); ++i) - dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i))); - } -}; - -/***** Implementation of solve() *****************************************************/ - -} // end namespace internal - -#ifndef EIGEN_PARSED_BY_DOXYGEN -template -template -void FullPivLU<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const -{ - /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}. - * So we proceed as follows: - * Step 1: compute c = P * rhs. - * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible. - * Step 3: replace c by the solution x to Ux = c. May or may not exist. - * Step 4: result = Q * c; - */ - - const Index rows = this->rows(), - cols = this->cols(), - nonzero_pivots = this->rank(); - eigen_assert(rhs.rows() == rows); - const Index smalldim = (std::min)(rows, cols); - - if(nonzero_pivots == 0) - { - dst.setZero(); - return; - } - - typename RhsType::PlainObject c(rhs.rows(), rhs.cols()); - - // Step 1 - c = permutationP() * rhs; - - // Step 2 - m_lu.topLeftCorner(smalldim,smalldim) - .template triangularView() - .solveInPlace(c.topRows(smalldim)); - if(rows>cols) - c.bottomRows(rows-cols) -= m_lu.bottomRows(rows-cols) * c.topRows(cols); - - // Step 3 - m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots) - .template triangularView() - .solveInPlace(c.topRows(nonzero_pivots)); - - // Step 4 - for(Index i = 0; i < nonzero_pivots; ++i) - dst.row(permutationQ().indices().coeff(i)) = c.row(i); - for(Index i = nonzero_pivots; i < m_lu.cols(); ++i) - dst.row(permutationQ().indices().coeff(i)).setZero(); -} - -template -template -void FullPivLU<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const -{ - /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}, - * and since permutations are real and unitary, we can write this - * as A^T = Q U^T L^T P, - * So we proceed as follows: - * Step 1: compute c = Q^T rhs. - * Step 2: replace c by the solution x to U^T x = c. May or may not exist. - * Step 3: replace c by the solution x to L^T x = c. - * Step 4: result = P^T c. - * If Conjugate is true, replace "^T" by "^*" above. - */ - - const Index rows = this->rows(), cols = this->cols(), - nonzero_pivots = this->rank(); - eigen_assert(rhs.rows() == cols); - const Index smalldim = (std::min)(rows, cols); - - if(nonzero_pivots == 0) - { - dst.setZero(); - return; - } - - typename RhsType::PlainObject c(rhs.rows(), rhs.cols()); - - // Step 1 - c = permutationQ().inverse() * rhs; - - if (Conjugate) { - // Step 2 - m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots) - .template triangularView() - .adjoint() - .solveInPlace(c.topRows(nonzero_pivots)); - // Step 3 - m_lu.topLeftCorner(smalldim, smalldim) - .template triangularView() - .adjoint() - .solveInPlace(c.topRows(smalldim)); - } else { - // Step 2 - m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots) - .template triangularView() - .transpose() - .solveInPlace(c.topRows(nonzero_pivots)); - // Step 3 - m_lu.topLeftCorner(smalldim, smalldim) - .template triangularView() - .transpose() - .solveInPlace(c.topRows(smalldim)); - } - - // Step 4 - PermutationPType invp = permutationP().inverse().eval(); - for(Index i = 0; i < smalldim; ++i) - dst.row(invp.indices().coeff(i)) = c.row(i); - for(Index i = smalldim; i < rows; ++i) - dst.row(invp.indices().coeff(i)).setZero(); -} - -#endif - -namespace internal { - - -/***** Implementation of inverse() *****************************************************/ -template -struct Assignment >, internal::assign_op::Scalar>, Dense2Dense> -{ - typedef FullPivLU LuType; - typedef Inverse SrcXprType; - static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) - { - dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); - } -}; -} // end namespace internal - -/******* MatrixBase methods *****************************************************************/ - -/** \lu_module - * - * \return the full-pivoting LU decomposition of \c *this. - * - * \sa class FullPivLU - */ -template -inline const FullPivLU::PlainObject> -MatrixBase::fullPivLu() const -{ - return FullPivLU(eval()); -} - -} // end namespace Eigen - -#endif // EIGEN_LU_H diff --git a/src/math_meigen/Eigen/src/LU/InverseImpl.h b/src/math_meigen/Eigen/src/LU/InverseImpl.h deleted file mode 100755 index f49f23360..000000000 --- a/src/math_meigen/Eigen/src/LU/InverseImpl.h +++ /dev/null @@ -1,415 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2010 Benoit Jacob -// Copyright (C) 2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_INVERSE_IMPL_H -#define EIGEN_INVERSE_IMPL_H - -namespace Eigen { - -namespace internal { - -/********************************** -*** General case implementation *** -**********************************/ - -template -struct compute_inverse -{ - EIGEN_DEVICE_FUNC - static inline void run(const MatrixType& matrix, ResultType& result) - { - result = matrix.partialPivLu().inverse(); - } -}; - -template -struct compute_inverse_and_det_with_check { /* nothing! general case not supported. */ }; - -/**************************** -*** Size 1 implementation *** -****************************/ - -template -struct compute_inverse -{ - EIGEN_DEVICE_FUNC - static inline void run(const MatrixType& matrix, ResultType& result) - { - typedef typename MatrixType::Scalar Scalar; - internal::evaluator matrixEval(matrix); - result.coeffRef(0,0) = Scalar(1) / matrixEval.coeff(0,0); - } -}; - -template -struct compute_inverse_and_det_with_check -{ - EIGEN_DEVICE_FUNC - static inline void run( - const MatrixType& matrix, - const typename MatrixType::RealScalar& absDeterminantThreshold, - ResultType& result, - typename ResultType::Scalar& determinant, - bool& invertible - ) - { - using std::abs; - determinant = matrix.coeff(0,0); - invertible = abs(determinant) > absDeterminantThreshold; - if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant; - } -}; - -/**************************** -*** Size 2 implementation *** -****************************/ - -template -EIGEN_DEVICE_FUNC -inline void compute_inverse_size2_helper( - const MatrixType& matrix, const typename ResultType::Scalar& invdet, - ResultType& result) -{ - result.coeffRef(0,0) = matrix.coeff(1,1) * invdet; - result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet; - result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet; - result.coeffRef(1,1) = matrix.coeff(0,0) * invdet; -} - -template -struct compute_inverse -{ - EIGEN_DEVICE_FUNC - static inline void run(const MatrixType& matrix, ResultType& result) - { - typedef typename ResultType::Scalar Scalar; - const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant(); - compute_inverse_size2_helper(matrix, invdet, result); - } -}; - -template -struct compute_inverse_and_det_with_check -{ - EIGEN_DEVICE_FUNC - static inline void run( - const MatrixType& matrix, - const typename MatrixType::RealScalar& absDeterminantThreshold, - ResultType& inverse, - typename ResultType::Scalar& determinant, - bool& invertible - ) - { - using std::abs; - typedef typename ResultType::Scalar Scalar; - determinant = matrix.determinant(); - invertible = abs(determinant) > absDeterminantThreshold; - if(!invertible) return; - const Scalar invdet = Scalar(1) / determinant; - compute_inverse_size2_helper(matrix, invdet, inverse); - } -}; - -/**************************** -*** Size 3 implementation *** -****************************/ - -template -EIGEN_DEVICE_FUNC -inline typename MatrixType::Scalar cofactor_3x3(const MatrixType& m) -{ - enum { - i1 = (i+1) % 3, - i2 = (i+2) % 3, - j1 = (j+1) % 3, - j2 = (j+2) % 3 - }; - return m.coeff(i1, j1) * m.coeff(i2, j2) - - m.coeff(i1, j2) * m.coeff(i2, j1); -} - -template -EIGEN_DEVICE_FUNC -inline void compute_inverse_size3_helper( - const MatrixType& matrix, - const typename ResultType::Scalar& invdet, - const Matrix& cofactors_col0, - ResultType& result) -{ - result.row(0) = cofactors_col0 * invdet; - result.coeffRef(1,0) = cofactor_3x3(matrix) * invdet; - result.coeffRef(1,1) = cofactor_3x3(matrix) * invdet; - result.coeffRef(1,2) = cofactor_3x3(matrix) * invdet; - result.coeffRef(2,0) = cofactor_3x3(matrix) * invdet; - result.coeffRef(2,1) = cofactor_3x3(matrix) * invdet; - result.coeffRef(2,2) = cofactor_3x3(matrix) * invdet; -} - -template -struct compute_inverse -{ - EIGEN_DEVICE_FUNC - static inline void run(const MatrixType& matrix, ResultType& result) - { - typedef typename ResultType::Scalar Scalar; - Matrix cofactors_col0; - cofactors_col0.coeffRef(0) = cofactor_3x3(matrix); - cofactors_col0.coeffRef(1) = cofactor_3x3(matrix); - cofactors_col0.coeffRef(2) = cofactor_3x3(matrix); - const Scalar det = (cofactors_col0.cwiseProduct(matrix.col(0))).sum(); - const Scalar invdet = Scalar(1) / det; - compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result); - } -}; - -template -struct compute_inverse_and_det_with_check -{ - EIGEN_DEVICE_FUNC - static inline void run( - const MatrixType& matrix, - const typename MatrixType::RealScalar& absDeterminantThreshold, - ResultType& inverse, - typename ResultType::Scalar& determinant, - bool& invertible - ) - { - using std::abs; - typedef typename ResultType::Scalar Scalar; - Matrix cofactors_col0; - cofactors_col0.coeffRef(0) = cofactor_3x3(matrix); - cofactors_col0.coeffRef(1) = cofactor_3x3(matrix); - cofactors_col0.coeffRef(2) = cofactor_3x3(matrix); - determinant = (cofactors_col0.cwiseProduct(matrix.col(0))).sum(); - invertible = abs(determinant) > absDeterminantThreshold; - if(!invertible) return; - const Scalar invdet = Scalar(1) / determinant; - compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse); - } -}; - -/**************************** -*** Size 4 implementation *** -****************************/ - -template -EIGEN_DEVICE_FUNC -inline const typename Derived::Scalar general_det3_helper -(const MatrixBase& matrix, int i1, int i2, int i3, int j1, int j2, int j3) -{ - return matrix.coeff(i1,j1) - * (matrix.coeff(i2,j2) * matrix.coeff(i3,j3) - matrix.coeff(i2,j3) * matrix.coeff(i3,j2)); -} - -template -EIGEN_DEVICE_FUNC -inline typename MatrixType::Scalar cofactor_4x4(const MatrixType& matrix) -{ - enum { - i1 = (i+1) % 4, - i2 = (i+2) % 4, - i3 = (i+3) % 4, - j1 = (j+1) % 4, - j2 = (j+2) % 4, - j3 = (j+3) % 4 - }; - return general_det3_helper(matrix, i1, i2, i3, j1, j2, j3) - + general_det3_helper(matrix, i2, i3, i1, j1, j2, j3) - + general_det3_helper(matrix, i3, i1, i2, j1, j2, j3); -} - -template -struct compute_inverse_size4 -{ - EIGEN_DEVICE_FUNC - static void run(const MatrixType& matrix, ResultType& result) - { - result.coeffRef(0,0) = cofactor_4x4(matrix); - result.coeffRef(1,0) = -cofactor_4x4(matrix); - result.coeffRef(2,0) = cofactor_4x4(matrix); - result.coeffRef(3,0) = -cofactor_4x4(matrix); - result.coeffRef(0,2) = cofactor_4x4(matrix); - result.coeffRef(1,2) = -cofactor_4x4(matrix); - result.coeffRef(2,2) = cofactor_4x4(matrix); - result.coeffRef(3,2) = -cofactor_4x4(matrix); - result.coeffRef(0,1) = -cofactor_4x4(matrix); - result.coeffRef(1,1) = cofactor_4x4(matrix); - result.coeffRef(2,1) = -cofactor_4x4(matrix); - result.coeffRef(3,1) = cofactor_4x4(matrix); - result.coeffRef(0,3) = -cofactor_4x4(matrix); - result.coeffRef(1,3) = cofactor_4x4(matrix); - result.coeffRef(2,3) = -cofactor_4x4(matrix); - result.coeffRef(3,3) = cofactor_4x4(matrix); - result /= (matrix.col(0).cwiseProduct(result.row(0).transpose())).sum(); - } -}; - -template -struct compute_inverse - : compute_inverse_size4 -{ -}; - -template -struct compute_inverse_and_det_with_check -{ - EIGEN_DEVICE_FUNC - static inline void run( - const MatrixType& matrix, - const typename MatrixType::RealScalar& absDeterminantThreshold, - ResultType& inverse, - typename ResultType::Scalar& determinant, - bool& invertible - ) - { - using std::abs; - determinant = matrix.determinant(); - invertible = abs(determinant) > absDeterminantThreshold; - if(invertible) compute_inverse::run(matrix, inverse); - } -}; - -/************************* -*** MatrixBase methods *** -*************************/ - -} // end namespace internal - -namespace internal { - -// Specialization for "dense = dense_xpr.inverse()" -template -struct Assignment, internal::assign_op, Dense2Dense> -{ - typedef Inverse SrcXprType; - static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) - { - Index dstRows = src.rows(); - Index dstCols = src.cols(); - if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) - dst.resize(dstRows, dstCols); - - const int Size = EIGEN_PLAIN_ENUM_MIN(XprType::ColsAtCompileTime,DstXprType::ColsAtCompileTime); - EIGEN_ONLY_USED_FOR_DEBUG(Size); - eigen_assert(( (Size<=1) || (Size>4) || (extract_data(src.nestedExpression())!=extract_data(dst))) - && "Aliasing problem detected in inverse(), you need to do inverse().eval() here."); - - typedef typename internal::nested_eval::type ActualXprType; - typedef typename internal::remove_all::type ActualXprTypeCleanded; - - ActualXprType actual_xpr(src.nestedExpression()); - - compute_inverse::run(actual_xpr, dst); - } -}; - - -} // end namespace internal - -/** \lu_module - * - * \returns the matrix inverse of this matrix. - * - * For small fixed sizes up to 4x4, this method uses cofactors. - * In the general case, this method uses class PartialPivLU. - * - * \note This matrix must be invertible, otherwise the result is undefined. If you need an - * invertibility check, do the following: - * \li for fixed sizes up to 4x4, use computeInverseAndDetWithCheck(). - * \li for the general case, use class FullPivLU. - * - * Example: \include MatrixBase_inverse.cpp - * Output: \verbinclude MatrixBase_inverse.out - * - * \sa computeInverseAndDetWithCheck() - */ -template -inline const Inverse MatrixBase::inverse() const -{ - EIGEN_STATIC_ASSERT(!NumTraits::IsInteger,THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES) - eigen_assert(rows() == cols()); - return Inverse(derived()); -} - -/** \lu_module - * - * Computation of matrix inverse and determinant, with invertibility check. - * - * This is only for fixed-size square matrices of size up to 4x4. - * - * \param inverse Reference to the matrix in which to store the inverse. - * \param determinant Reference to the variable in which to store the determinant. - * \param invertible Reference to the bool variable in which to store whether the matrix is invertible. - * \param absDeterminantThreshold Optional parameter controlling the invertibility check. - * The matrix will be declared invertible if the absolute value of its - * determinant is greater than this threshold. - * - * Example: \include MatrixBase_computeInverseAndDetWithCheck.cpp - * Output: \verbinclude MatrixBase_computeInverseAndDetWithCheck.out - * - * \sa inverse(), computeInverseWithCheck() - */ -template -template -inline void MatrixBase::computeInverseAndDetWithCheck( - ResultType& inverse, - typename ResultType::Scalar& determinant, - bool& invertible, - const RealScalar& absDeterminantThreshold - ) const -{ - // i'd love to put some static assertions there, but SFINAE means that they have no effect... - eigen_assert(rows() == cols()); - // for 2x2, it's worth giving a chance to avoid evaluating. - // for larger sizes, evaluating has negligible cost and limits code size. - typedef typename internal::conditional< - RowsAtCompileTime == 2, - typename internal::remove_all::type>::type, - PlainObject - >::type MatrixType; - internal::compute_inverse_and_det_with_check::run - (derived(), absDeterminantThreshold, inverse, determinant, invertible); -} - -/** \lu_module - * - * Computation of matrix inverse, with invertibility check. - * - * This is only for fixed-size square matrices of size up to 4x4. - * - * \param inverse Reference to the matrix in which to store the inverse. - * \param invertible Reference to the bool variable in which to store whether the matrix is invertible. - * \param absDeterminantThreshold Optional parameter controlling the invertibility check. - * The matrix will be declared invertible if the absolute value of its - * determinant is greater than this threshold. - * - * Example: \include MatrixBase_computeInverseWithCheck.cpp - * Output: \verbinclude MatrixBase_computeInverseWithCheck.out - * - * \sa inverse(), computeInverseAndDetWithCheck() - */ -template -template -inline void MatrixBase::computeInverseWithCheck( - ResultType& inverse, - bool& invertible, - const RealScalar& absDeterminantThreshold - ) const -{ - Scalar determinant; - // i'd love to put some static assertions there, but SFINAE means that they have no effect... - eigen_assert(rows() == cols()); - computeInverseAndDetWithCheck(inverse,determinant,invertible,absDeterminantThreshold); -} - -} // end namespace Eigen - -#endif // EIGEN_INVERSE_IMPL_H diff --git a/src/math_meigen/Eigen/src/LU/PartialPivLU.h b/src/math_meigen/Eigen/src/LU/PartialPivLU.h deleted file mode 100755 index d43961887..000000000 --- a/src/math_meigen/Eigen/src/LU/PartialPivLU.h +++ /dev/null @@ -1,611 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2006-2009 Benoit Jacob -// Copyright (C) 2009 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_PARTIALLU_H -#define EIGEN_PARTIALLU_H - -namespace Eigen { - -namespace internal { -template struct traits > - : traits<_MatrixType> -{ - typedef MatrixXpr XprKind; - typedef SolverStorage StorageKind; - typedef traits<_MatrixType> BaseTraits; - enum { - Flags = BaseTraits::Flags & RowMajorBit, - CoeffReadCost = Dynamic - }; -}; - -template -struct enable_if_ref; -// { -// typedef Derived type; -// }; - -template -struct enable_if_ref,Derived> { - typedef Derived type; -}; - -} // end namespace internal - -/** \ingroup LU_Module - * - * \class PartialPivLU - * - * \brief LU decomposition of a matrix with partial pivoting, and related features - * - * \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition - * - * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A - * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P - * is a permutation matrix. - * - * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible - * matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class - * does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the - * matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices. - * - * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided - * by class FullPivLU. - * - * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class, - * such as rank computation. If you need these features, use class FullPivLU. - * - * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses - * in the general case. - * On the other hand, it is \b not suitable to determine whether a given matrix is invertible. - * - * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP(). - * - * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. - * - * \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU - */ -template class PartialPivLU - : public SolverBase > -{ - public: - - typedef _MatrixType MatrixType; - typedef SolverBase Base; - EIGEN_GENERIC_PUBLIC_INTERFACE(PartialPivLU) - // FIXME StorageIndex defined in EIGEN_GENERIC_PUBLIC_INTERFACE should be int - enum { - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime - }; - typedef PermutationMatrix PermutationType; - typedef Transpositions TranspositionType; - typedef typename MatrixType::PlainObject PlainObject; - - /** - * \brief Default Constructor. - * - * The default constructor is useful in cases in which the user intends to - * perform decompositions via PartialPivLU::compute(const MatrixType&). - */ - PartialPivLU(); - - /** \brief Default Constructor with memory preallocation - * - * Like the default constructor but with preallocation of the internal data - * according to the specified problem \a size. - * \sa PartialPivLU() - */ - explicit PartialPivLU(Index size); - - /** Constructor. - * - * \param matrix the matrix of which to compute the LU decomposition. - * - * \warning The matrix should have full rank (e.g. if it's square, it should be invertible). - * If you need to deal with non-full rank, use class FullPivLU instead. - */ - template - explicit PartialPivLU(const EigenBase& matrix); - - /** Constructor for \link InplaceDecomposition inplace decomposition \endlink - * - * \param matrix the matrix of which to compute the LU decomposition. - * - * \warning The matrix should have full rank (e.g. if it's square, it should be invertible). - * If you need to deal with non-full rank, use class FullPivLU instead. - */ - template - explicit PartialPivLU(EigenBase& matrix); - - template - PartialPivLU& compute(const EigenBase& matrix) { - m_lu = matrix.derived(); - compute(); - return *this; - } - - /** \returns the LU decomposition matrix: the upper-triangular part is U, the - * unit-lower-triangular part is L (at least for square matrices; in the non-square - * case, special care is needed, see the documentation of class FullPivLU). - * - * \sa matrixL(), matrixU() - */ - inline const MatrixType& matrixLU() const - { - eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); - return m_lu; - } - - /** \returns the permutation matrix P. - */ - inline const PermutationType& permutationP() const - { - eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); - return m_p; - } - - /** This method returns the solution x to the equation Ax=b, where A is the matrix of which - * *this is the LU decomposition. - * - * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, - * the only requirement in order for the equation to make sense is that - * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. - * - * \returns the solution. - * - * Example: \include PartialPivLU_solve.cpp - * Output: \verbinclude PartialPivLU_solve.out - * - * Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution - * theoretically exists and is unique regardless of b. - * - * \sa TriangularView::solve(), inverse(), computeInverse() - */ - // FIXME this is a copy-paste of the base-class member to add the isInitialized assertion. - template - inline const Solve - solve(const MatrixBase& b) const - { - eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); - return Solve(*this, b.derived()); - } - - /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is - the LU decomposition. - */ - inline RealScalar rcond() const - { - eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); - return internal::rcond_estimate_helper(m_l1_norm, *this); - } - - /** \returns the inverse of the matrix of which *this is the LU decomposition. - * - * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for - * invertibility, use class FullPivLU instead. - * - * \sa MatrixBase::inverse(), LU::inverse() - */ - inline const Inverse inverse() const - { - eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); - return Inverse(*this); - } - - /** \returns the determinant of the matrix of which - * *this is the LU decomposition. It has only linear complexity - * (that is, O(n) where n is the dimension of the square matrix) - * as the LU decomposition has already been computed. - * - * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers - * optimized paths. - * - * \warning a determinant can be very big or small, so for matrices - * of large enough dimension, there is a risk of overflow/underflow. - * - * \sa MatrixBase::determinant() - */ - Scalar determinant() const; - - MatrixType reconstructedMatrix() const; - - inline Index rows() const { return m_lu.rows(); } - inline Index cols() const { return m_lu.cols(); } - - #ifndef EIGEN_PARSED_BY_DOXYGEN - template - EIGEN_DEVICE_FUNC - void _solve_impl(const RhsType &rhs, DstType &dst) const { - /* The decomposition PA = LU can be rewritten as A = P^{-1} L U. - * So we proceed as follows: - * Step 1: compute c = Pb. - * Step 2: replace c by the solution x to Lx = c. - * Step 3: replace c by the solution x to Ux = c. - */ - - eigen_assert(rhs.rows() == m_lu.rows()); - - // Step 1 - dst = permutationP() * rhs; - - // Step 2 - m_lu.template triangularView().solveInPlace(dst); - - // Step 3 - m_lu.template triangularView().solveInPlace(dst); - } - - template - EIGEN_DEVICE_FUNC - void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const { - /* The decomposition PA = LU can be rewritten as A = P^{-1} L U. - * So we proceed as follows: - * Step 1: compute c = Pb. - * Step 2: replace c by the solution x to Lx = c. - * Step 3: replace c by the solution x to Ux = c. - */ - - eigen_assert(rhs.rows() == m_lu.cols()); - - if (Conjugate) { - // Step 1 - dst = m_lu.template triangularView().adjoint().solve(rhs); - // Step 2 - m_lu.template triangularView().adjoint().solveInPlace(dst); - } else { - // Step 1 - dst = m_lu.template triangularView().transpose().solve(rhs); - // Step 2 - m_lu.template triangularView().transpose().solveInPlace(dst); - } - // Step 3 - dst = permutationP().transpose() * dst; - } - #endif - - protected: - - static void check_template_parameters() - { - EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); - } - - void compute(); - - MatrixType m_lu; - PermutationType m_p; - TranspositionType m_rowsTranspositions; - RealScalar m_l1_norm; - signed char m_det_p; - bool m_isInitialized; -}; - -template -PartialPivLU::PartialPivLU() - : m_lu(), - m_p(), - m_rowsTranspositions(), - m_l1_norm(0), - m_det_p(0), - m_isInitialized(false) -{ -} - -template -PartialPivLU::PartialPivLU(Index size) - : m_lu(size, size), - m_p(size), - m_rowsTranspositions(size), - m_l1_norm(0), - m_det_p(0), - m_isInitialized(false) -{ -} - -template -template -PartialPivLU::PartialPivLU(const EigenBase& matrix) - : m_lu(matrix.rows(),matrix.cols()), - m_p(matrix.rows()), - m_rowsTranspositions(matrix.rows()), - m_l1_norm(0), - m_det_p(0), - m_isInitialized(false) -{ - compute(matrix.derived()); -} - -template -template -PartialPivLU::PartialPivLU(EigenBase& matrix) - : m_lu(matrix.derived()), - m_p(matrix.rows()), - m_rowsTranspositions(matrix.rows()), - m_l1_norm(0), - m_det_p(0), - m_isInitialized(false) -{ - compute(); -} - -namespace internal { - -/** \internal This is the blocked version of fullpivlu_unblocked() */ -template -struct partial_lu_impl -{ - // FIXME add a stride to Map, so that the following mapping becomes easier, - // another option would be to create an expression being able to automatically - // warp any Map, Matrix, and Block expressions as a unique type, but since that's exactly - // a Map + stride, why not adding a stride to Map, and convenient ctors from a Matrix, - // and Block. - typedef Map > MapLU; - typedef Block MatrixType; - typedef Block BlockType; - typedef typename MatrixType::RealScalar RealScalar; - - /** \internal performs the LU decomposition in-place of the matrix \a lu - * using an unblocked algorithm. - * - * In addition, this function returns the row transpositions in the - * vector \a row_transpositions which must have a size equal to the number - * of columns of the matrix \a lu, and an integer \a nb_transpositions - * which returns the actual number of transpositions. - * - * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise. - */ - static Index unblocked_lu(MatrixType& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions) - { - typedef scalar_score_coeff_op Scoring; - typedef typename Scoring::result_type Score; - const Index rows = lu.rows(); - const Index cols = lu.cols(); - const Index size = (std::min)(rows,cols); - nb_transpositions = 0; - Index first_zero_pivot = -1; - for(Index k = 0; k < size; ++k) - { - Index rrows = rows-k-1; - Index rcols = cols-k-1; - - Index row_of_biggest_in_col; - Score biggest_in_corner - = lu.col(k).tail(rows-k).unaryExpr(Scoring()).maxCoeff(&row_of_biggest_in_col); - row_of_biggest_in_col += k; - - row_transpositions[k] = PivIndex(row_of_biggest_in_col); - - if(biggest_in_corner != Score(0)) - { - if(k != row_of_biggest_in_col) - { - lu.row(k).swap(lu.row(row_of_biggest_in_col)); - ++nb_transpositions; - } - - // FIXME shall we introduce a safe quotient expression in cas 1/lu.coeff(k,k) - // overflow but not the actual quotient? - lu.col(k).tail(rrows) /= lu.coeff(k,k); - } - else if(first_zero_pivot==-1) - { - // the pivot is exactly zero, we record the index of the first pivot which is exactly 0, - // and continue the factorization such we still have A = PLU - first_zero_pivot = k; - } - - if(k > > - */ - static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256) - { - MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols); - MatrixType lu(lu1,0,0,rows,cols); - - const Index size = (std::min)(rows,cols); - - // if the matrix is too small, no blocking: - if(size<=16) - { - return unblocked_lu(lu, row_transpositions, nb_transpositions); - } - - // automatically adjust the number of subdivisions to the size - // of the matrix so that there is enough sub blocks: - Index blockSize; - { - blockSize = size/8; - blockSize = (blockSize/16)*16; - blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize); - } - - nb_transpositions = 0; - Index first_zero_pivot = -1; - for(Index k = 0; k < size; k+=blockSize) - { - Index bs = (std::min)(size-k,blockSize); // actual size of the block - Index trows = rows - k - bs; // trailing rows - Index tsize = size - k - bs; // trailing size - - // partition the matrix: - // A00 | A01 | A02 - // lu = A_0 | A_1 | A_2 = A10 | A11 | A12 - // A20 | A21 | A22 - BlockType A_0(lu,0,0,rows,k); - BlockType A_2(lu,0,k+bs,rows,tsize); - BlockType A11(lu,k,k,bs,bs); - BlockType A12(lu,k,k+bs,bs,tsize); - BlockType A21(lu,k+bs,k,trows,bs); - BlockType A22(lu,k+bs,k+bs,trows,tsize); - - PivIndex nb_transpositions_in_panel; - // recursively call the blocked LU algorithm on [A11^T A21^T]^T - // with a very small blocking size: - Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride, - row_transpositions+k, nb_transpositions_in_panel, 16); - if(ret>=0 && first_zero_pivot==-1) - first_zero_pivot = k+ret; - - nb_transpositions += nb_transpositions_in_panel; - // update permutations and apply them to A_0 - for(Index i=k; i(k)); - A_0.row(i).swap(A_0.row(piv)); - } - - if(trows) - { - // apply permutations to A_2 - for(Index i=k;i().solveInPlace(A12); - - A22.noalias() -= A21 * A12; - } - } - return first_zero_pivot; - } -}; - -/** \internal performs the LU decomposition with partial pivoting in-place. - */ -template -void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::StorageIndex& nb_transpositions) -{ - eigen_assert(lu.cols() == row_transpositions.size()); - eigen_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1); - - partial_lu_impl - - ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions); -} - -} // end namespace internal - -template -void PartialPivLU::compute() -{ - check_template_parameters(); - - // the row permutation is stored as int indices, so just to be sure: - eigen_assert(m_lu.rows()::highest()); - - m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff(); - - eigen_assert(m_lu.rows() == m_lu.cols() && "PartialPivLU is only for square (and moreover invertible) matrices"); - const Index size = m_lu.rows(); - - m_rowsTranspositions.resize(size); - - typename TranspositionType::StorageIndex nb_transpositions; - internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions); - m_det_p = (nb_transpositions%2) ? -1 : 1; - - m_p = m_rowsTranspositions; - - m_isInitialized = true; -} - -template -typename PartialPivLU::Scalar PartialPivLU::determinant() const -{ - eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); - return Scalar(m_det_p) * m_lu.diagonal().prod(); -} - -/** \returns the matrix represented by the decomposition, - * i.e., it returns the product: P^{-1} L U. - * This function is provided for debug purpose. */ -template -MatrixType PartialPivLU::reconstructedMatrix() const -{ - eigen_assert(m_isInitialized && "LU is not initialized."); - // LU - MatrixType res = m_lu.template triangularView().toDenseMatrix() - * m_lu.template triangularView(); - - // P^{-1}(LU) - res = m_p.inverse() * res; - - return res; -} - -/***** Implementation details *****************************************************/ - -namespace internal { - -/***** Implementation of inverse() *****************************************************/ -template -struct Assignment >, internal::assign_op::Scalar>, Dense2Dense> -{ - typedef PartialPivLU LuType; - typedef Inverse SrcXprType; - static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) - { - dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); - } -}; -} // end namespace internal - -/******** MatrixBase methods *******/ - -/** \lu_module - * - * \return the partial-pivoting LU decomposition of \c *this. - * - * \sa class PartialPivLU - */ -template -inline const PartialPivLU::PlainObject> -MatrixBase::partialPivLu() const -{ - return PartialPivLU(eval()); -} - -/** \lu_module - * - * Synonym of partialPivLu(). - * - * \return the partial-pivoting LU decomposition of \c *this. - * - * \sa class PartialPivLU - */ -template -inline const PartialPivLU::PlainObject> -MatrixBase::lu() const -{ - return PartialPivLU(eval()); -} - -} // end namespace Eigen - -#endif // EIGEN_PARTIALLU_H diff --git a/src/math_meigen/Eigen/src/LU/PartialPivLU_LAPACKE.h b/src/math_meigen/Eigen/src/LU/PartialPivLU_LAPACKE.h deleted file mode 100755 index 755168a94..000000000 --- a/src/math_meigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +++ /dev/null @@ -1,83 +0,0 @@ -/* - Copyright (c) 2011, Intel Corporation. All rights reserved. - - Redistribution and use in source and binary forms, with or without modification, - are permitted provided that the following conditions are met: - - * Redistributions of source code must retain the above copyright notice, this - list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above copyright notice, - this list of conditions and the following disclaimer in the documentation - and/or other materials provided with the distribution. - * Neither the name of Intel Corporation nor the names of its contributors may - be used to endorse or promote products derived from this software without - specific prior written permission. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND - ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED - WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR - ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES - (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON - ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - - ******************************************************************************** - * Content : Eigen bindings to LAPACKe - * LU decomposition with partial pivoting based on LAPACKE_?getrf function. - ******************************************************************************** -*/ - -#ifndef EIGEN_PARTIALLU_LAPACK_H -#define EIGEN_PARTIALLU_LAPACK_H - -namespace Eigen { - -namespace internal { - -/** \internal Specialization for the data types supported by LAPACKe */ - -#define EIGEN_LAPACKE_LU_PARTPIV(EIGTYPE, LAPACKE_TYPE, LAPACKE_PREFIX) \ -template \ -struct partial_lu_impl \ -{ \ - /* \internal performs the LU decomposition in-place of the matrix represented */ \ - static lapack_int blocked_lu(Index rows, Index cols, EIGTYPE* lu_data, Index luStride, lapack_int* row_transpositions, lapack_int& nb_transpositions, lapack_int maxBlockSize=256) \ - { \ - EIGEN_UNUSED_VARIABLE(maxBlockSize);\ - lapack_int matrix_order, first_zero_pivot; \ - lapack_int m, n, lda, *ipiv, info; \ - EIGTYPE* a; \ -/* Set up parameters for ?getrf */ \ - matrix_order = StorageOrder==RowMajor ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \ - lda = convert_index(luStride); \ - a = lu_data; \ - ipiv = row_transpositions; \ - m = convert_index(rows); \ - n = convert_index(cols); \ - nb_transpositions = 0; \ -\ - info = LAPACKE_##LAPACKE_PREFIX##getrf( matrix_order, m, n, (LAPACKE_TYPE*)a, lda, ipiv ); \ -\ - for(int i=0;i= 0); \ -/* something should be done with nb_transpositions */ \ -\ - first_zero_pivot = info; \ - return first_zero_pivot; \ - } \ -}; - -EIGEN_LAPACKE_LU_PARTPIV(double, double, d) -EIGEN_LAPACKE_LU_PARTPIV(float, float, s) -EIGEN_LAPACKE_LU_PARTPIV(dcomplex, lapack_complex_double, z) -EIGEN_LAPACKE_LU_PARTPIV(scomplex, lapack_complex_float, c) - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_PARTIALLU_LAPACK_H diff --git a/src/math_meigen/Eigen/src/LU/arch/Inverse_SSE.h b/src/math_meigen/Eigen/src/LU/arch/Inverse_SSE.h deleted file mode 100755 index ebb64a62b..000000000 --- a/src/math_meigen/Eigen/src/LU/arch/Inverse_SSE.h +++ /dev/null @@ -1,338 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2001 Intel Corporation -// Copyright (C) 2010 Gael Guennebaud -// Copyright (C) 2009 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -// The SSE code for the 4x4 float and double matrix inverse in this file -// comes from the following Intel's library: -// http://software.intel.com/en-us/articles/optimized-matrix-library-for-use-with-the-intel-pentiumr-4-processors-sse2-instructions/ -// -// Here is the respective copyright and license statement: -// -// Copyright (c) 2001 Intel Corporation. -// -// Permition is granted to use, copy, distribute and prepare derivative works -// of this library for any purpose and without fee, provided, that the above -// copyright notice and this statement appear in all copies. -// Intel makes no representations about the suitability of this software for -// any purpose, and specifically disclaims all warranties. -// See LEGAL.TXT for all the legal information. - -#ifndef EIGEN_INVERSE_SSE_H -#define EIGEN_INVERSE_SSE_H - -namespace Eigen { - -namespace internal { - -template -struct compute_inverse_size4 -{ - enum { - MatrixAlignment = traits::Alignment, - ResultAlignment = traits::Alignment, - StorageOrdersMatch = (MatrixType::Flags&RowMajorBit) == (ResultType::Flags&RowMajorBit) - }; - typedef typename conditional<(MatrixType::Flags&LinearAccessBit),MatrixType const &,typename MatrixType::PlainObject>::type ActualMatrixType; - - static void run(const MatrixType& mat, ResultType& result) - { - ActualMatrixType matrix(mat); - EIGEN_ALIGN16 const unsigned int _Sign_PNNP[4] = { 0x00000000, 0x80000000, 0x80000000, 0x00000000 }; - - // Load the full matrix into registers - __m128 _L1 = matrix.template packet( 0); - __m128 _L2 = matrix.template packet( 4); - __m128 _L3 = matrix.template packet( 8); - __m128 _L4 = matrix.template packet(12); - - // The inverse is calculated using "Divide and Conquer" technique. The - // original matrix is divide into four 2x2 sub-matrices. Since each - // register holds four matrix element, the smaller matrices are - // represented as a registers. Hence we get a better locality of the - // calculations. - - __m128 A, B, C, D; // the four sub-matrices - if(!StorageOrdersMatch) - { - A = _mm_unpacklo_ps(_L1, _L2); - B = _mm_unpacklo_ps(_L3, _L4); - C = _mm_unpackhi_ps(_L1, _L2); - D = _mm_unpackhi_ps(_L3, _L4); - } - else - { - A = _mm_movelh_ps(_L1, _L2); - B = _mm_movehl_ps(_L2, _L1); - C = _mm_movelh_ps(_L3, _L4); - D = _mm_movehl_ps(_L4, _L3); - } - - __m128 iA, iB, iC, iD, // partial inverse of the sub-matrices - DC, AB; - __m128 dA, dB, dC, dD; // determinant of the sub-matrices - __m128 det, d, d1, d2; - __m128 rd; // reciprocal of the determinant - - // AB = A# * B - AB = _mm_mul_ps(_mm_shuffle_ps(A,A,0x0F), B); - AB = _mm_sub_ps(AB,_mm_mul_ps(_mm_shuffle_ps(A,A,0xA5), _mm_shuffle_ps(B,B,0x4E))); - // DC = D# * C - DC = _mm_mul_ps(_mm_shuffle_ps(D,D,0x0F), C); - DC = _mm_sub_ps(DC,_mm_mul_ps(_mm_shuffle_ps(D,D,0xA5), _mm_shuffle_ps(C,C,0x4E))); - - // dA = |A| - dA = _mm_mul_ps(_mm_shuffle_ps(A, A, 0x5F),A); - dA = _mm_sub_ss(dA, _mm_movehl_ps(dA,dA)); - // dB = |B| - dB = _mm_mul_ps(_mm_shuffle_ps(B, B, 0x5F),B); - dB = _mm_sub_ss(dB, _mm_movehl_ps(dB,dB)); - - // dC = |C| - dC = _mm_mul_ps(_mm_shuffle_ps(C, C, 0x5F),C); - dC = _mm_sub_ss(dC, _mm_movehl_ps(dC,dC)); - // dD = |D| - dD = _mm_mul_ps(_mm_shuffle_ps(D, D, 0x5F),D); - dD = _mm_sub_ss(dD, _mm_movehl_ps(dD,dD)); - - // d = trace(AB*DC) = trace(A#*B*D#*C) - d = _mm_mul_ps(_mm_shuffle_ps(DC,DC,0xD8),AB); - - // iD = C*A#*B - iD = _mm_mul_ps(_mm_shuffle_ps(C,C,0xA0), _mm_movelh_ps(AB,AB)); - iD = _mm_add_ps(iD,_mm_mul_ps(_mm_shuffle_ps(C,C,0xF5), _mm_movehl_ps(AB,AB))); - // iA = B*D#*C - iA = _mm_mul_ps(_mm_shuffle_ps(B,B,0xA0), _mm_movelh_ps(DC,DC)); - iA = _mm_add_ps(iA,_mm_mul_ps(_mm_shuffle_ps(B,B,0xF5), _mm_movehl_ps(DC,DC))); - - // d = trace(AB*DC) = trace(A#*B*D#*C) [continue] - d = _mm_add_ps(d, _mm_movehl_ps(d, d)); - d = _mm_add_ss(d, _mm_shuffle_ps(d, d, 1)); - d1 = _mm_mul_ss(dA,dD); - d2 = _mm_mul_ss(dB,dC); - - // iD = D*|A| - C*A#*B - iD = _mm_sub_ps(_mm_mul_ps(D,_mm_shuffle_ps(dA,dA,0)), iD); - - // iA = A*|D| - B*D#*C; - iA = _mm_sub_ps(_mm_mul_ps(A,_mm_shuffle_ps(dD,dD,0)), iA); - - // det = |A|*|D| + |B|*|C| - trace(A#*B*D#*C) - det = _mm_sub_ss(_mm_add_ss(d1,d2),d); - rd = _mm_div_ss(_mm_set_ss(1.0f), det); - -// #ifdef ZERO_SINGULAR -// rd = _mm_and_ps(_mm_cmpneq_ss(det,_mm_setzero_ps()), rd); -// #endif - - // iB = D * (A#B)# = D*B#*A - iB = _mm_mul_ps(D, _mm_shuffle_ps(AB,AB,0x33)); - iB = _mm_sub_ps(iB, _mm_mul_ps(_mm_shuffle_ps(D,D,0xB1), _mm_shuffle_ps(AB,AB,0x66))); - // iC = A * (D#C)# = A*C#*D - iC = _mm_mul_ps(A, _mm_shuffle_ps(DC,DC,0x33)); - iC = _mm_sub_ps(iC, _mm_mul_ps(_mm_shuffle_ps(A,A,0xB1), _mm_shuffle_ps(DC,DC,0x66))); - - rd = _mm_shuffle_ps(rd,rd,0); - rd = _mm_xor_ps(rd, _mm_load_ps((float*)_Sign_PNNP)); - - // iB = C*|B| - D*B#*A - iB = _mm_sub_ps(_mm_mul_ps(C,_mm_shuffle_ps(dB,dB,0)), iB); - - // iC = B*|C| - A*C#*D; - iC = _mm_sub_ps(_mm_mul_ps(B,_mm_shuffle_ps(dC,dC,0)), iC); - - // iX = iX / det - iA = _mm_mul_ps(rd,iA); - iB = _mm_mul_ps(rd,iB); - iC = _mm_mul_ps(rd,iC); - iD = _mm_mul_ps(rd,iD); - - Index res_stride = result.outerStride(); - float* res = result.data(); - pstoret(res+0, _mm_shuffle_ps(iA,iB,0x77)); - pstoret(res+res_stride, _mm_shuffle_ps(iA,iB,0x22)); - pstoret(res+2*res_stride, _mm_shuffle_ps(iC,iD,0x77)); - pstoret(res+3*res_stride, _mm_shuffle_ps(iC,iD,0x22)); - } - -}; - -template -struct compute_inverse_size4 -{ - enum { - MatrixAlignment = traits::Alignment, - ResultAlignment = traits::Alignment, - StorageOrdersMatch = (MatrixType::Flags&RowMajorBit) == (ResultType::Flags&RowMajorBit) - }; - typedef typename conditional<(MatrixType::Flags&LinearAccessBit),MatrixType const &,typename MatrixType::PlainObject>::type ActualMatrixType; - - static void run(const MatrixType& mat, ResultType& result) - { - ActualMatrixType matrix(mat); - const __m128d _Sign_NP = _mm_castsi128_pd(_mm_set_epi32(0x0,0x0,0x80000000,0x0)); - const __m128d _Sign_PN = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0)); - - // The inverse is calculated using "Divide and Conquer" technique. The - // original matrix is divide into four 2x2 sub-matrices. Since each - // register of the matrix holds two elements, the smaller matrices are - // consisted of two registers. Hence we get a better locality of the - // calculations. - - // the four sub-matrices - __m128d A1, A2, B1, B2, C1, C2, D1, D2; - - if(StorageOrdersMatch) - { - A1 = matrix.template packet( 0); B1 = matrix.template packet( 2); - A2 = matrix.template packet( 4); B2 = matrix.template packet( 6); - C1 = matrix.template packet( 8); D1 = matrix.template packet(10); - C2 = matrix.template packet(12); D2 = matrix.template packet(14); - } - else - { - __m128d tmp; - A1 = matrix.template packet( 0); C1 = matrix.template packet( 2); - A2 = matrix.template packet( 4); C2 = matrix.template packet( 6); - tmp = A1; - A1 = _mm_unpacklo_pd(A1,A2); - A2 = _mm_unpackhi_pd(tmp,A2); - tmp = C1; - C1 = _mm_unpacklo_pd(C1,C2); - C2 = _mm_unpackhi_pd(tmp,C2); - - B1 = matrix.template packet( 8); D1 = matrix.template packet(10); - B2 = matrix.template packet(12); D2 = matrix.template packet(14); - tmp = B1; - B1 = _mm_unpacklo_pd(B1,B2); - B2 = _mm_unpackhi_pd(tmp,B2); - tmp = D1; - D1 = _mm_unpacklo_pd(D1,D2); - D2 = _mm_unpackhi_pd(tmp,D2); - } - - __m128d iA1, iA2, iB1, iB2, iC1, iC2, iD1, iD2, // partial invese of the sub-matrices - DC1, DC2, AB1, AB2; - __m128d dA, dB, dC, dD; // determinant of the sub-matrices - __m128d det, d1, d2, rd; - - // dA = |A| - dA = _mm_shuffle_pd(A2, A2, 1); - dA = _mm_mul_pd(A1, dA); - dA = _mm_sub_sd(dA, _mm_shuffle_pd(dA,dA,3)); - // dB = |B| - dB = _mm_shuffle_pd(B2, B2, 1); - dB = _mm_mul_pd(B1, dB); - dB = _mm_sub_sd(dB, _mm_shuffle_pd(dB,dB,3)); - - // AB = A# * B - AB1 = _mm_mul_pd(B1, _mm_shuffle_pd(A2,A2,3)); - AB2 = _mm_mul_pd(B2, _mm_shuffle_pd(A1,A1,0)); - AB1 = _mm_sub_pd(AB1, _mm_mul_pd(B2, _mm_shuffle_pd(A1,A1,3))); - AB2 = _mm_sub_pd(AB2, _mm_mul_pd(B1, _mm_shuffle_pd(A2,A2,0))); - - // dC = |C| - dC = _mm_shuffle_pd(C2, C2, 1); - dC = _mm_mul_pd(C1, dC); - dC = _mm_sub_sd(dC, _mm_shuffle_pd(dC,dC,3)); - // dD = |D| - dD = _mm_shuffle_pd(D2, D2, 1); - dD = _mm_mul_pd(D1, dD); - dD = _mm_sub_sd(dD, _mm_shuffle_pd(dD,dD,3)); - - // DC = D# * C - DC1 = _mm_mul_pd(C1, _mm_shuffle_pd(D2,D2,3)); - DC2 = _mm_mul_pd(C2, _mm_shuffle_pd(D1,D1,0)); - DC1 = _mm_sub_pd(DC1, _mm_mul_pd(C2, _mm_shuffle_pd(D1,D1,3))); - DC2 = _mm_sub_pd(DC2, _mm_mul_pd(C1, _mm_shuffle_pd(D2,D2,0))); - - // rd = trace(AB*DC) = trace(A#*B*D#*C) - d1 = _mm_mul_pd(AB1, _mm_shuffle_pd(DC1, DC2, 0)); - d2 = _mm_mul_pd(AB2, _mm_shuffle_pd(DC1, DC2, 3)); - rd = _mm_add_pd(d1, d2); - rd = _mm_add_sd(rd, _mm_shuffle_pd(rd, rd,3)); - - // iD = C*A#*B - iD1 = _mm_mul_pd(AB1, _mm_shuffle_pd(C1,C1,0)); - iD2 = _mm_mul_pd(AB1, _mm_shuffle_pd(C2,C2,0)); - iD1 = _mm_add_pd(iD1, _mm_mul_pd(AB2, _mm_shuffle_pd(C1,C1,3))); - iD2 = _mm_add_pd(iD2, _mm_mul_pd(AB2, _mm_shuffle_pd(C2,C2,3))); - - // iA = B*D#*C - iA1 = _mm_mul_pd(DC1, _mm_shuffle_pd(B1,B1,0)); - iA2 = _mm_mul_pd(DC1, _mm_shuffle_pd(B2,B2,0)); - iA1 = _mm_add_pd(iA1, _mm_mul_pd(DC2, _mm_shuffle_pd(B1,B1,3))); - iA2 = _mm_add_pd(iA2, _mm_mul_pd(DC2, _mm_shuffle_pd(B2,B2,3))); - - // iD = D*|A| - C*A#*B - dA = _mm_shuffle_pd(dA,dA,0); - iD1 = _mm_sub_pd(_mm_mul_pd(D1, dA), iD1); - iD2 = _mm_sub_pd(_mm_mul_pd(D2, dA), iD2); - - // iA = A*|D| - B*D#*C; - dD = _mm_shuffle_pd(dD,dD,0); - iA1 = _mm_sub_pd(_mm_mul_pd(A1, dD), iA1); - iA2 = _mm_sub_pd(_mm_mul_pd(A2, dD), iA2); - - d1 = _mm_mul_sd(dA, dD); - d2 = _mm_mul_sd(dB, dC); - - // iB = D * (A#B)# = D*B#*A - iB1 = _mm_mul_pd(D1, _mm_shuffle_pd(AB2,AB1,1)); - iB2 = _mm_mul_pd(D2, _mm_shuffle_pd(AB2,AB1,1)); - iB1 = _mm_sub_pd(iB1, _mm_mul_pd(_mm_shuffle_pd(D1,D1,1), _mm_shuffle_pd(AB2,AB1,2))); - iB2 = _mm_sub_pd(iB2, _mm_mul_pd(_mm_shuffle_pd(D2,D2,1), _mm_shuffle_pd(AB2,AB1,2))); - - // det = |A|*|D| + |B|*|C| - trace(A#*B*D#*C) - det = _mm_add_sd(d1, d2); - det = _mm_sub_sd(det, rd); - - // iC = A * (D#C)# = A*C#*D - iC1 = _mm_mul_pd(A1, _mm_shuffle_pd(DC2,DC1,1)); - iC2 = _mm_mul_pd(A2, _mm_shuffle_pd(DC2,DC1,1)); - iC1 = _mm_sub_pd(iC1, _mm_mul_pd(_mm_shuffle_pd(A1,A1,1), _mm_shuffle_pd(DC2,DC1,2))); - iC2 = _mm_sub_pd(iC2, _mm_mul_pd(_mm_shuffle_pd(A2,A2,1), _mm_shuffle_pd(DC2,DC1,2))); - - rd = _mm_div_sd(_mm_set_sd(1.0), det); -// #ifdef ZERO_SINGULAR -// rd = _mm_and_pd(_mm_cmpneq_sd(det,_mm_setzero_pd()), rd); -// #endif - rd = _mm_shuffle_pd(rd,rd,0); - - // iB = C*|B| - D*B#*A - dB = _mm_shuffle_pd(dB,dB,0); - iB1 = _mm_sub_pd(_mm_mul_pd(C1, dB), iB1); - iB2 = _mm_sub_pd(_mm_mul_pd(C2, dB), iB2); - - d1 = _mm_xor_pd(rd, _Sign_PN); - d2 = _mm_xor_pd(rd, _Sign_NP); - - // iC = B*|C| - A*C#*D; - dC = _mm_shuffle_pd(dC,dC,0); - iC1 = _mm_sub_pd(_mm_mul_pd(B1, dC), iC1); - iC2 = _mm_sub_pd(_mm_mul_pd(B2, dC), iC2); - - Index res_stride = result.outerStride(); - double* res = result.data(); - pstoret(res+0, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 3), d1)); - pstoret(res+res_stride, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 0), d2)); - pstoret(res+2, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 3), d1)); - pstoret(res+res_stride+2, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 0), d2)); - pstoret(res+2*res_stride, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 3), d1)); - pstoret(res+3*res_stride, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 0), d2)); - pstoret(res+2*res_stride+2,_mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 3), d1)); - pstoret(res+3*res_stride+2,_mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 0), d2)); - } -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_INVERSE_SSE_H diff --git a/src/math_meigen/Eigen/src/MetisSupport/MetisSupport.h b/src/math_meigen/Eigen/src/MetisSupport/MetisSupport.h deleted file mode 100755 index 4c15304ad..000000000 --- a/src/math_meigen/Eigen/src/MetisSupport/MetisSupport.h +++ /dev/null @@ -1,137 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Désiré Nuentsa-Wakam -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. -#ifndef METIS_SUPPORT_H -#define METIS_SUPPORT_H - -namespace Eigen { -/** - * Get the fill-reducing ordering from the METIS package - * - * If A is the original matrix and Ap is the permuted matrix, - * the fill-reducing permutation is defined as follows : - * Row (column) i of A is the matperm(i) row (column) of Ap. - * WARNING: As computed by METIS, this corresponds to the vector iperm (instead of perm) - */ -template -class MetisOrdering -{ -public: - typedef PermutationMatrix PermutationType; - typedef Matrix IndexVector; - - template - void get_symmetrized_graph(const MatrixType& A) - { - Index m = A.cols(); - eigen_assert((A.rows() == A.cols()) && "ONLY FOR SQUARED MATRICES"); - // Get the transpose of the input matrix - MatrixType At = A.transpose(); - // Get the number of nonzeros elements in each row/col of At+A - Index TotNz = 0; - IndexVector visited(m); - visited.setConstant(-1); - for (StorageIndex j = 0; j < m; j++) - { - // Compute the union structure of of A(j,:) and At(j,:) - visited(j) = j; // Do not include the diagonal element - // Get the nonzeros in row/column j of A - for (typename MatrixType::InnerIterator it(A, j); it; ++it) - { - Index idx = it.index(); // Get the row index (for column major) or column index (for row major) - if (visited(idx) != j ) - { - visited(idx) = j; - ++TotNz; - } - } - //Get the nonzeros in row/column j of At - for (typename MatrixType::InnerIterator it(At, j); it; ++it) - { - Index idx = it.index(); - if(visited(idx) != j) - { - visited(idx) = j; - ++TotNz; - } - } - } - // Reserve place for A + At - m_indexPtr.resize(m+1); - m_innerIndices.resize(TotNz); - - // Now compute the real adjacency list of each column/row - visited.setConstant(-1); - StorageIndex CurNz = 0; - for (StorageIndex j = 0; j < m; j++) - { - m_indexPtr(j) = CurNz; - - visited(j) = j; // Do not include the diagonal element - // Add the pattern of row/column j of A to A+At - for (typename MatrixType::InnerIterator it(A,j); it; ++it) - { - StorageIndex idx = it.index(); // Get the row index (for column major) or column index (for row major) - if (visited(idx) != j ) - { - visited(idx) = j; - m_innerIndices(CurNz) = idx; - CurNz++; - } - } - //Add the pattern of row/column j of At to A+At - for (typename MatrixType::InnerIterator it(At, j); it; ++it) - { - StorageIndex idx = it.index(); - if(visited(idx) != j) - { - visited(idx) = j; - m_innerIndices(CurNz) = idx; - ++CurNz; - } - } - } - m_indexPtr(m) = CurNz; - } - - template - void operator() (const MatrixType& A, PermutationType& matperm) - { - StorageIndex m = internal::convert_index(A.cols()); // must be StorageIndex, because it is passed by address to METIS - IndexVector perm(m),iperm(m); - // First, symmetrize the matrix graph. - get_symmetrized_graph(A); - int output_error; - - // Call the fill-reducing routine from METIS - output_error = METIS_NodeND(&m, m_indexPtr.data(), m_innerIndices.data(), NULL, NULL, perm.data(), iperm.data()); - - if(output_error != METIS_OK) - { - //FIXME The ordering interface should define a class of possible errors - std::cerr << "ERROR WHILE CALLING THE METIS PACKAGE \n"; - return; - } - - // Get the fill-reducing permutation - //NOTE: If Ap is the permuted matrix then perm and iperm vectors are defined as follows - // Row (column) i of Ap is the perm(i) row(column) of A, and row (column) i of A is the iperm(i) row(column) of Ap - - matperm.resize(m); - for (int j = 0; j < m; j++) - matperm.indices()(iperm(j)) = j; - - } - - protected: - IndexVector m_indexPtr; // Pointer to the adjacenccy list of each row/column - IndexVector m_innerIndices; // Adjacency list -}; - -}// end namespace eigen -#endif diff --git a/src/math_meigen/Eigen/src/OrderingMethods/Amd.h b/src/math_meigen/Eigen/src/OrderingMethods/Amd.h deleted file mode 100755 index f91ecb24e..000000000 --- a/src/math_meigen/Eigen/src/OrderingMethods/Amd.h +++ /dev/null @@ -1,445 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2010 Gael Guennebaud - -/* - -NOTE: this routine has been adapted from the CSparse library: - -Copyright (c) 2006, Timothy A. Davis. -http://www.suitesparse.com - -CSparse is free software; you can redistribute it and/or -modify it under the terms of the GNU Lesser General Public -License as published by the Free Software Foundation; either -version 2.1 of the License, or (at your option) any later version. - -CSparse is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -Lesser General Public License for more details. - -You should have received a copy of the GNU Lesser General Public -License along with this Module; if not, write to the Free Software -Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA - -*/ - -#include "../Core/util/NonMPL2.h" - -#ifndef EIGEN_SPARSE_AMD_H -#define EIGEN_SPARSE_AMD_H - -namespace Eigen { - -namespace internal { - -template inline T amd_flip(const T& i) { return -i-2; } -template inline T amd_unflip(const T& i) { return i<0 ? amd_flip(i) : i; } -template inline bool amd_marked(const T0* w, const T1& j) { return w[j]<0; } -template inline void amd_mark(const T0* w, const T1& j) { return w[j] = amd_flip(w[j]); } - -/* clear w */ -template -static StorageIndex cs_wclear (StorageIndex mark, StorageIndex lemax, StorageIndex *w, StorageIndex n) -{ - StorageIndex k; - if(mark < 2 || (mark + lemax < 0)) - { - for(k = 0; k < n; k++) - if(w[k] != 0) - w[k] = 1; - mark = 2; - } - return (mark); /* at this point, w[0..n-1] < mark holds */ -} - -/* depth-first search and postorder of a tree rooted at node j */ -template -StorageIndex cs_tdfs(StorageIndex j, StorageIndex k, StorageIndex *head, const StorageIndex *next, StorageIndex *post, StorageIndex *stack) -{ - StorageIndex i, p, top = 0; - if(!head || !next || !post || !stack) return (-1); /* check inputs */ - stack[0] = j; /* place j on the stack */ - while (top >= 0) /* while (stack is not empty) */ - { - p = stack[top]; /* p = top of stack */ - i = head[p]; /* i = youngest child of p */ - if(i == -1) - { - top--; /* p has no unordered children left */ - post[k++] = p; /* node p is the kth postordered node */ - } - else - { - head[p] = next[i]; /* remove i from children of p */ - stack[++top] = i; /* start dfs on child node i */ - } - } - return k; -} - - -/** \internal - * \ingroup OrderingMethods_Module - * Approximate minimum degree ordering algorithm. - * - * \param[in] C the input selfadjoint matrix stored in compressed column major format. - * \param[out] perm the permutation P reducing the fill-in of the input matrix \a C - * - * Note that the input matrix \a C must be complete, that is both the upper and lower parts have to be stored, as well as the diagonal entries. - * On exit the values of C are destroyed */ -template -void minimum_degree_ordering(SparseMatrix& C, PermutationMatrix& perm) -{ - using std::sqrt; - - StorageIndex d, dk, dext, lemax = 0, e, elenk, eln, i, j, k, k1, - k2, k3, jlast, ln, dense, nzmax, mindeg = 0, nvi, nvj, nvk, mark, wnvi, - ok, nel = 0, p, p1, p2, p3, p4, pj, pk, pk1, pk2, pn, q, t, h; - - StorageIndex n = StorageIndex(C.cols()); - dense = std::max (16, StorageIndex(10 * sqrt(double(n)))); /* find dense threshold */ - dense = (std::min)(n-2, dense); - - StorageIndex cnz = StorageIndex(C.nonZeros()); - perm.resize(n+1); - t = cnz + cnz/5 + 2*n; /* add elbow room to C */ - C.resizeNonZeros(t); - - // get workspace - ei_declare_aligned_stack_constructed_variable(StorageIndex,W,8*(n+1),0); - StorageIndex* len = W; - StorageIndex* nv = W + (n+1); - StorageIndex* next = W + 2*(n+1); - StorageIndex* head = W + 3*(n+1); - StorageIndex* elen = W + 4*(n+1); - StorageIndex* degree = W + 5*(n+1); - StorageIndex* w = W + 6*(n+1); - StorageIndex* hhead = W + 7*(n+1); - StorageIndex* last = perm.indices().data(); /* use P as workspace for last */ - - /* --- Initialize quotient graph ---------------------------------------- */ - StorageIndex* Cp = C.outerIndexPtr(); - StorageIndex* Ci = C.innerIndexPtr(); - for(k = 0; k < n; k++) - len[k] = Cp[k+1] - Cp[k]; - len[n] = 0; - nzmax = t; - - for(i = 0; i <= n; i++) - { - head[i] = -1; // degree list i is empty - last[i] = -1; - next[i] = -1; - hhead[i] = -1; // hash list i is empty - nv[i] = 1; // node i is just one node - w[i] = 1; // node i is alive - elen[i] = 0; // Ek of node i is empty - degree[i] = len[i]; // degree of node i - } - mark = internal::cs_wclear(0, 0, w, n); /* clear w */ - - /* --- Initialize degree lists ------------------------------------------ */ - for(i = 0; i < n; i++) - { - bool has_diag = false; - for(p = Cp[i]; p dense || !has_diag) /* node i is dense or has no structural diagonal element */ - { - nv[i] = 0; /* absorb i into element n */ - elen[i] = -1; /* node i is dead */ - nel++; - Cp[i] = amd_flip (n); - nv[n]++; - } - else - { - if(head[d] != -1) last[head[d]] = i; - next[i] = head[d]; /* put node i in degree list d */ - head[d] = i; - } - } - - elen[n] = -2; /* n is a dead element */ - Cp[n] = -1; /* n is a root of assembly tree */ - w[n] = 0; /* n is a dead element */ - - while (nel < n) /* while (selecting pivots) do */ - { - /* --- Select node of minimum approximate degree -------------------- */ - for(k = -1; mindeg < n && (k = head[mindeg]) == -1; mindeg++) {} - if(next[k] != -1) last[next[k]] = -1; - head[mindeg] = next[k]; /* remove k from degree list */ - elenk = elen[k]; /* elenk = |Ek| */ - nvk = nv[k]; /* # of nodes k represents */ - nel += nvk; /* nv[k] nodes of A eliminated */ - - /* --- Garbage collection ------------------------------------------- */ - if(elenk > 0 && cnz + mindeg >= nzmax) - { - for(j = 0; j < n; j++) - { - if((p = Cp[j]) >= 0) /* j is a live node or element */ - { - Cp[j] = Ci[p]; /* save first entry of object */ - Ci[p] = amd_flip (j); /* first entry is now amd_flip(j) */ - } - } - for(q = 0, p = 0; p < cnz; ) /* scan all of memory */ - { - if((j = amd_flip (Ci[p++])) >= 0) /* found object j */ - { - Ci[q] = Cp[j]; /* restore first entry of object */ - Cp[j] = q++; /* new pointer to object j */ - for(k3 = 0; k3 < len[j]-1; k3++) Ci[q++] = Ci[p++]; - } - } - cnz = q; /* Ci[cnz...nzmax-1] now free */ - } - - /* --- Construct new element ---------------------------------------- */ - dk = 0; - nv[k] = -nvk; /* flag k as in Lk */ - p = Cp[k]; - pk1 = (elenk == 0) ? p : cnz; /* do in place if elen[k] == 0 */ - pk2 = pk1; - for(k1 = 1; k1 <= elenk + 1; k1++) - { - if(k1 > elenk) - { - e = k; /* search the nodes in k */ - pj = p; /* list of nodes starts at Ci[pj]*/ - ln = len[k] - elenk; /* length of list of nodes in k */ - } - else - { - e = Ci[p++]; /* search the nodes in e */ - pj = Cp[e]; - ln = len[e]; /* length of list of nodes in e */ - } - for(k2 = 1; k2 <= ln; k2++) - { - i = Ci[pj++]; - if((nvi = nv[i]) <= 0) continue; /* node i dead, or seen */ - dk += nvi; /* degree[Lk] += size of node i */ - nv[i] = -nvi; /* negate nv[i] to denote i in Lk*/ - Ci[pk2++] = i; /* place i in Lk */ - if(next[i] != -1) last[next[i]] = last[i]; - if(last[i] != -1) /* remove i from degree list */ - { - next[last[i]] = next[i]; - } - else - { - head[degree[i]] = next[i]; - } - } - if(e != k) - { - Cp[e] = amd_flip (k); /* absorb e into k */ - w[e] = 0; /* e is now a dead element */ - } - } - if(elenk != 0) cnz = pk2; /* Ci[cnz...nzmax] is free */ - degree[k] = dk; /* external degree of k - |Lk\i| */ - Cp[k] = pk1; /* element k is in Ci[pk1..pk2-1] */ - len[k] = pk2 - pk1; - elen[k] = -2; /* k is now an element */ - - /* --- Find set differences ----------------------------------------- */ - mark = internal::cs_wclear(mark, lemax, w, n); /* clear w if necessary */ - for(pk = pk1; pk < pk2; pk++) /* scan 1: find |Le\Lk| */ - { - i = Ci[pk]; - if((eln = elen[i]) <= 0) continue;/* skip if elen[i] empty */ - nvi = -nv[i]; /* nv[i] was negated */ - wnvi = mark - nvi; - for(p = Cp[i]; p <= Cp[i] + eln - 1; p++) /* scan Ei */ - { - e = Ci[p]; - if(w[e] >= mark) - { - w[e] -= nvi; /* decrement |Le\Lk| */ - } - else if(w[e] != 0) /* ensure e is a live element */ - { - w[e] = degree[e] + wnvi; /* 1st time e seen in scan 1 */ - } - } - } - - /* --- Degree update ------------------------------------------------ */ - for(pk = pk1; pk < pk2; pk++) /* scan2: degree update */ - { - i = Ci[pk]; /* consider node i in Lk */ - p1 = Cp[i]; - p2 = p1 + elen[i] - 1; - pn = p1; - for(h = 0, d = 0, p = p1; p <= p2; p++) /* scan Ei */ - { - e = Ci[p]; - if(w[e] != 0) /* e is an unabsorbed element */ - { - dext = w[e] - mark; /* dext = |Le\Lk| */ - if(dext > 0) - { - d += dext; /* sum up the set differences */ - Ci[pn++] = e; /* keep e in Ei */ - h += e; /* compute the hash of node i */ - } - else - { - Cp[e] = amd_flip (k); /* aggressive absorb. e->k */ - w[e] = 0; /* e is a dead element */ - } - } - } - elen[i] = pn - p1 + 1; /* elen[i] = |Ei| */ - p3 = pn; - p4 = p1 + len[i]; - for(p = p2 + 1; p < p4; p++) /* prune edges in Ai */ - { - j = Ci[p]; - if((nvj = nv[j]) <= 0) continue; /* node j dead or in Lk */ - d += nvj; /* degree(i) += |j| */ - Ci[pn++] = j; /* place j in node list of i */ - h += j; /* compute hash for node i */ - } - if(d == 0) /* check for mass elimination */ - { - Cp[i] = amd_flip (k); /* absorb i into k */ - nvi = -nv[i]; - dk -= nvi; /* |Lk| -= |i| */ - nvk += nvi; /* |k| += nv[i] */ - nel += nvi; - nv[i] = 0; - elen[i] = -1; /* node i is dead */ - } - else - { - degree[i] = std::min (degree[i], d); /* update degree(i) */ - Ci[pn] = Ci[p3]; /* move first node to end */ - Ci[p3] = Ci[p1]; /* move 1st el. to end of Ei */ - Ci[p1] = k; /* add k as 1st element in of Ei */ - len[i] = pn - p1 + 1; /* new len of adj. list of node i */ - h %= n; /* finalize hash of i */ - next[i] = hhead[h]; /* place i in hash bucket */ - hhead[h] = i; - last[i] = h; /* save hash of i in last[i] */ - } - } /* scan2 is done */ - degree[k] = dk; /* finalize |Lk| */ - lemax = std::max(lemax, dk); - mark = internal::cs_wclear(mark+lemax, lemax, w, n); /* clear w */ - - /* --- Supernode detection ------------------------------------------ */ - for(pk = pk1; pk < pk2; pk++) - { - i = Ci[pk]; - if(nv[i] >= 0) continue; /* skip if i is dead */ - h = last[i]; /* scan hash bucket of node i */ - i = hhead[h]; - hhead[h] = -1; /* hash bucket will be empty */ - for(; i != -1 && next[i] != -1; i = next[i], mark++) - { - ln = len[i]; - eln = elen[i]; - for(p = Cp[i]+1; p <= Cp[i] + ln-1; p++) w[Ci[p]] = mark; - jlast = i; - for(j = next[i]; j != -1; ) /* compare i with all j */ - { - ok = (len[j] == ln) && (elen[j] == eln); - for(p = Cp[j] + 1; ok && p <= Cp[j] + ln - 1; p++) - { - if(w[Ci[p]] != mark) ok = 0; /* compare i and j*/ - } - if(ok) /* i and j are identical */ - { - Cp[j] = amd_flip (i); /* absorb j into i */ - nv[i] += nv[j]; - nv[j] = 0; - elen[j] = -1; /* node j is dead */ - j = next[j]; /* delete j from hash bucket */ - next[jlast] = j; - } - else - { - jlast = j; /* j and i are different */ - j = next[j]; - } - } - } - } - - /* --- Finalize new element------------------------------------------ */ - for(p = pk1, pk = pk1; pk < pk2; pk++) /* finalize Lk */ - { - i = Ci[pk]; - if((nvi = -nv[i]) <= 0) continue;/* skip if i is dead */ - nv[i] = nvi; /* restore nv[i] */ - d = degree[i] + dk - nvi; /* compute external degree(i) */ - d = std::min (d, n - nel - nvi); - if(head[d] != -1) last[head[d]] = i; - next[i] = head[d]; /* put i back in degree list */ - last[i] = -1; - head[d] = i; - mindeg = std::min (mindeg, d); /* find new minimum degree */ - degree[i] = d; - Ci[p++] = i; /* place i in Lk */ - } - nv[k] = nvk; /* # nodes absorbed into k */ - if((len[k] = p-pk1) == 0) /* length of adj list of element k*/ - { - Cp[k] = -1; /* k is a root of the tree */ - w[k] = 0; /* k is now a dead element */ - } - if(elenk != 0) cnz = p; /* free unused space in Lk */ - } - - /* --- Postordering ----------------------------------------------------- */ - for(i = 0; i < n; i++) Cp[i] = amd_flip (Cp[i]);/* fix assembly tree */ - for(j = 0; j <= n; j++) head[j] = -1; - for(j = n; j >= 0; j--) /* place unordered nodes in lists */ - { - if(nv[j] > 0) continue; /* skip if j is an element */ - next[j] = head[Cp[j]]; /* place j in list of its parent */ - head[Cp[j]] = j; - } - for(e = n; e >= 0; e--) /* place elements in lists */ - { - if(nv[e] <= 0) continue; /* skip unless e is an element */ - if(Cp[e] != -1) - { - next[e] = head[Cp[e]]; /* place e in list of its parent */ - head[Cp[e]] = e; - } - } - for(k = 0, i = 0; i <= n; i++) /* postorder the assembly tree */ - { - if(Cp[i] == -1) k = internal::cs_tdfs(i, k, head, next, perm.indices().data(), w); - } - - perm.indices().conservativeResize(n); -} - -} // namespace internal - -} // end namespace Eigen - -#endif // EIGEN_SPARSE_AMD_H diff --git a/src/math_meigen/Eigen/src/OrderingMethods/Eigen_Colamd.h b/src/math_meigen/Eigen/src/OrderingMethods/Eigen_Colamd.h deleted file mode 100755 index da85b4d6e..000000000 --- a/src/math_meigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +++ /dev/null @@ -1,1843 +0,0 @@ -// // This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Desire Nuentsa Wakam -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -// This file is modified from the colamd/symamd library. The copyright is below - -// The authors of the code itself are Stefan I. Larimore and Timothy A. -// Davis (davis@cise.ufl.edu), University of Florida. The algorithm was -// developed in collaboration with John Gilbert, Xerox PARC, and Esmond -// Ng, Oak Ridge National Laboratory. -// -// Date: -// -// September 8, 2003. Version 2.3. -// -// Acknowledgements: -// -// This work was supported by the National Science Foundation, under -// grants DMS-9504974 and DMS-9803599. -// -// Notice: -// -// Copyright (c) 1998-2003 by the University of Florida. -// All Rights Reserved. -// -// THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY -// EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. -// -// Permission is hereby granted to use, copy, modify, and/or distribute -// this program, provided that the Copyright, this License, and the -// Availability of the original version is retained on all copies and made -// accessible to the end-user of any code or package that includes COLAMD -// or any modified version of COLAMD. -// -// Availability: -// -// The colamd/symamd library is available at -// -// http://www.suitesparse.com - - -#ifndef EIGEN_COLAMD_H -#define EIGEN_COLAMD_H - -namespace internal { -/* Ensure that debugging is turned off: */ -#ifndef COLAMD_NDEBUG -#define COLAMD_NDEBUG -#endif /* NDEBUG */ -/* ========================================================================== */ -/* === Knob and statistics definitions ====================================== */ -/* ========================================================================== */ - -/* size of the knobs [ ] array. Only knobs [0..1] are currently used. */ -#define COLAMD_KNOBS 20 - -/* number of output statistics. Only stats [0..6] are currently used. */ -#define COLAMD_STATS 20 - -/* knobs [0] and stats [0]: dense row knob and output statistic. */ -#define COLAMD_DENSE_ROW 0 - -/* knobs [1] and stats [1]: dense column knob and output statistic. */ -#define COLAMD_DENSE_COL 1 - -/* stats [2]: memory defragmentation count output statistic */ -#define COLAMD_DEFRAG_COUNT 2 - -/* stats [3]: colamd status: zero OK, > 0 warning or notice, < 0 error */ -#define COLAMD_STATUS 3 - -/* stats [4..6]: error info, or info on jumbled columns */ -#define COLAMD_INFO1 4 -#define COLAMD_INFO2 5 -#define COLAMD_INFO3 6 - -/* error codes returned in stats [3]: */ -#define COLAMD_OK (0) -#define COLAMD_OK_BUT_JUMBLED (1) -#define COLAMD_ERROR_A_not_present (-1) -#define COLAMD_ERROR_p_not_present (-2) -#define COLAMD_ERROR_nrow_negative (-3) -#define COLAMD_ERROR_ncol_negative (-4) -#define COLAMD_ERROR_nnz_negative (-5) -#define COLAMD_ERROR_p0_nonzero (-6) -#define COLAMD_ERROR_A_too_small (-7) -#define COLAMD_ERROR_col_length_negative (-8) -#define COLAMD_ERROR_row_index_out_of_bounds (-9) -#define COLAMD_ERROR_out_of_memory (-10) -#define COLAMD_ERROR_internal_error (-999) - -/* ========================================================================== */ -/* === Definitions ========================================================== */ -/* ========================================================================== */ - -#define ONES_COMPLEMENT(r) (-(r)-1) - -/* -------------------------------------------------------------------------- */ - -#define COLAMD_EMPTY (-1) - -/* Row and column status */ -#define ALIVE (0) -#define DEAD (-1) - -/* Column status */ -#define DEAD_PRINCIPAL (-1) -#define DEAD_NON_PRINCIPAL (-2) - -/* Macros for row and column status update and checking. */ -#define ROW_IS_DEAD(r) ROW_IS_MARKED_DEAD (Row[r].shared2.mark) -#define ROW_IS_MARKED_DEAD(row_mark) (row_mark < ALIVE) -#define ROW_IS_ALIVE(r) (Row [r].shared2.mark >= ALIVE) -#define COL_IS_DEAD(c) (Col [c].start < ALIVE) -#define COL_IS_ALIVE(c) (Col [c].start >= ALIVE) -#define COL_IS_DEAD_PRINCIPAL(c) (Col [c].start == DEAD_PRINCIPAL) -#define KILL_ROW(r) { Row [r].shared2.mark = DEAD ; } -#define KILL_PRINCIPAL_COL(c) { Col [c].start = DEAD_PRINCIPAL ; } -#define KILL_NON_PRINCIPAL_COL(c) { Col [c].start = DEAD_NON_PRINCIPAL ; } - -/* ========================================================================== */ -/* === Colamd reporting mechanism =========================================== */ -/* ========================================================================== */ - -// == Row and Column structures == -template -struct colamd_col -{ - IndexType start ; /* index for A of first row in this column, or DEAD */ - /* if column is dead */ - IndexType length ; /* number of rows in this column */ - union - { - IndexType thickness ; /* number of original columns represented by this */ - /* col, if the column is alive */ - IndexType parent ; /* parent in parent tree super-column structure, if */ - /* the column is dead */ - } shared1 ; - union - { - IndexType score ; /* the score used to maintain heap, if col is alive */ - IndexType order ; /* pivot ordering of this column, if col is dead */ - } shared2 ; - union - { - IndexType headhash ; /* head of a hash bucket, if col is at the head of */ - /* a degree list */ - IndexType hash ; /* hash value, if col is not in a degree list */ - IndexType prev ; /* previous column in degree list, if col is in a */ - /* degree list (but not at the head of a degree list) */ - } shared3 ; - union - { - IndexType degree_next ; /* next column, if col is in a degree list */ - IndexType hash_next ; /* next column, if col is in a hash list */ - } shared4 ; - -}; - -template -struct Colamd_Row -{ - IndexType start ; /* index for A of first col in this row */ - IndexType length ; /* number of principal columns in this row */ - union - { - IndexType degree ; /* number of principal & non-principal columns in row */ - IndexType p ; /* used as a row pointer in init_rows_cols () */ - } shared1 ; - union - { - IndexType mark ; /* for computing set differences and marking dead rows*/ - IndexType first_column ;/* first column in row (used in garbage collection) */ - } shared2 ; - -}; - -/* ========================================================================== */ -/* === Colamd recommended memory size ======================================= */ -/* ========================================================================== */ - -/* - The recommended length Alen of the array A passed to colamd is given by - the COLAMD_RECOMMENDED (nnz, n_row, n_col) macro. It returns -1 if any - argument is negative. 2*nnz space is required for the row and column - indices of the matrix. colamd_c (n_col) + colamd_r (n_row) space is - required for the Col and Row arrays, respectively, which are internal to - colamd. An additional n_col space is the minimal amount of "elbow room", - and nnz/5 more space is recommended for run time efficiency. - - This macro is not needed when using symamd. - - Explicit typecast to IndexType added Sept. 23, 2002, COLAMD version 2.2, to avoid - gcc -pedantic warning messages. -*/ -template -inline IndexType colamd_c(IndexType n_col) -{ return IndexType( ((n_col) + 1) * sizeof (colamd_col) / sizeof (IndexType) ) ; } - -template -inline IndexType colamd_r(IndexType n_row) -{ return IndexType(((n_row) + 1) * sizeof (Colamd_Row) / sizeof (IndexType)); } - -// Prototypes of non-user callable routines -template -static IndexType init_rows_cols (IndexType n_row, IndexType n_col, Colamd_Row Row [], colamd_col col [], IndexType A [], IndexType p [], IndexType stats[COLAMD_STATS] ); - -template -static void init_scoring (IndexType n_row, IndexType n_col, Colamd_Row Row [], colamd_col Col [], IndexType A [], IndexType head [], double knobs[COLAMD_KNOBS], IndexType *p_n_row2, IndexType *p_n_col2, IndexType *p_max_deg); - -template -static IndexType find_ordering (IndexType n_row, IndexType n_col, IndexType Alen, Colamd_Row Row [], colamd_col Col [], IndexType A [], IndexType head [], IndexType n_col2, IndexType max_deg, IndexType pfree); - -template -static void order_children (IndexType n_col, colamd_col Col [], IndexType p []); - -template -static void detect_super_cols (colamd_col Col [], IndexType A [], IndexType head [], IndexType row_start, IndexType row_length ) ; - -template -static IndexType garbage_collection (IndexType n_row, IndexType n_col, Colamd_Row Row [], colamd_col Col [], IndexType A [], IndexType *pfree) ; - -template -static inline IndexType clear_mark (IndexType n_row, Colamd_Row Row [] ) ; - -/* === No debugging ========================================================= */ - -#define COLAMD_DEBUG0(params) ; -#define COLAMD_DEBUG1(params) ; -#define COLAMD_DEBUG2(params) ; -#define COLAMD_DEBUG3(params) ; -#define COLAMD_DEBUG4(params) ; - -#define COLAMD_ASSERT(expression) ((void) 0) - - -/** - * \brief Returns the recommended value of Alen - * - * Returns recommended value of Alen for use by colamd. - * Returns -1 if any input argument is negative. - * The use of this routine or macro is optional. - * Note that the macro uses its arguments more than once, - * so be careful for side effects, if you pass expressions as arguments to COLAMD_RECOMMENDED. - * - * \param nnz nonzeros in A - * \param n_row number of rows in A - * \param n_col number of columns in A - * \return recommended value of Alen for use by colamd - */ -template -inline IndexType colamd_recommended ( IndexType nnz, IndexType n_row, IndexType n_col) -{ - if ((nnz) < 0 || (n_row) < 0 || (n_col) < 0) - return (-1); - else - return (2 * (nnz) + colamd_c (n_col) + colamd_r (n_row) + (n_col) + ((nnz) / 5)); -} - -/** - * \brief set default parameters The use of this routine is optional. - * - * Colamd: rows with more than (knobs [COLAMD_DENSE_ROW] * n_col) - * entries are removed prior to ordering. Columns with more than - * (knobs [COLAMD_DENSE_COL] * n_row) entries are removed prior to - * ordering, and placed last in the output column ordering. - * - * COLAMD_DENSE_ROW and COLAMD_DENSE_COL are defined as 0 and 1, - * respectively, in colamd.h. Default values of these two knobs - * are both 0.5. Currently, only knobs [0] and knobs [1] are - * used, but future versions may use more knobs. If so, they will - * be properly set to their defaults by the future version of - * colamd_set_defaults, so that the code that calls colamd will - * not need to change, assuming that you either use - * colamd_set_defaults, or pass a (double *) NULL pointer as the - * knobs array to colamd or symamd. - * - * \param knobs parameter settings for colamd - */ - -static inline void colamd_set_defaults(double knobs[COLAMD_KNOBS]) -{ - /* === Local variables ================================================== */ - - int i ; - - if (!knobs) - { - return ; /* no knobs to initialize */ - } - for (i = 0 ; i < COLAMD_KNOBS ; i++) - { - knobs [i] = 0 ; - } - knobs [COLAMD_DENSE_ROW] = 0.5 ; /* ignore rows over 50% dense */ - knobs [COLAMD_DENSE_COL] = 0.5 ; /* ignore columns over 50% dense */ -} - -/** - * \brief Computes a column ordering using the column approximate minimum degree ordering - * - * Computes a column ordering (Q) of A such that P(AQ)=LU or - * (AQ)'AQ=LL' have less fill-in and require fewer floating point - * operations than factorizing the unpermuted matrix A or A'A, - * respectively. - * - * - * \param n_row number of rows in A - * \param n_col number of columns in A - * \param Alen, size of the array A - * \param A row indices of the matrix, of size ALen - * \param p column pointers of A, of size n_col+1 - * \param knobs parameter settings for colamd - * \param stats colamd output statistics and error codes - */ -template -static bool colamd(IndexType n_row, IndexType n_col, IndexType Alen, IndexType *A, IndexType *p, double knobs[COLAMD_KNOBS], IndexType stats[COLAMD_STATS]) -{ - /* === Local variables ================================================== */ - - IndexType i ; /* loop index */ - IndexType nnz ; /* nonzeros in A */ - IndexType Row_size ; /* size of Row [], in integers */ - IndexType Col_size ; /* size of Col [], in integers */ - IndexType need ; /* minimum required length of A */ - Colamd_Row *Row ; /* pointer into A of Row [0..n_row] array */ - colamd_col *Col ; /* pointer into A of Col [0..n_col] array */ - IndexType n_col2 ; /* number of non-dense, non-empty columns */ - IndexType n_row2 ; /* number of non-dense, non-empty rows */ - IndexType ngarbage ; /* number of garbage collections performed */ - IndexType max_deg ; /* maximum row degree */ - double default_knobs [COLAMD_KNOBS] ; /* default knobs array */ - - - /* === Check the input arguments ======================================== */ - - if (!stats) - { - COLAMD_DEBUG0 (("colamd: stats not present\n")) ; - return (false) ; - } - for (i = 0 ; i < COLAMD_STATS ; i++) - { - stats [i] = 0 ; - } - stats [COLAMD_STATUS] = COLAMD_OK ; - stats [COLAMD_INFO1] = -1 ; - stats [COLAMD_INFO2] = -1 ; - - if (!A) /* A is not present */ - { - stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ; - COLAMD_DEBUG0 (("colamd: A not present\n")) ; - return (false) ; - } - - if (!p) /* p is not present */ - { - stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ; - COLAMD_DEBUG0 (("colamd: p not present\n")) ; - return (false) ; - } - - if (n_row < 0) /* n_row must be >= 0 */ - { - stats [COLAMD_STATUS] = COLAMD_ERROR_nrow_negative ; - stats [COLAMD_INFO1] = n_row ; - COLAMD_DEBUG0 (("colamd: nrow negative %d\n", n_row)) ; - return (false) ; - } - - if (n_col < 0) /* n_col must be >= 0 */ - { - stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ; - stats [COLAMD_INFO1] = n_col ; - COLAMD_DEBUG0 (("colamd: ncol negative %d\n", n_col)) ; - return (false) ; - } - - nnz = p [n_col] ; - if (nnz < 0) /* nnz must be >= 0 */ - { - stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ; - stats [COLAMD_INFO1] = nnz ; - COLAMD_DEBUG0 (("colamd: number of entries negative %d\n", nnz)) ; - return (false) ; - } - - if (p [0] != 0) - { - stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ; - stats [COLAMD_INFO1] = p [0] ; - COLAMD_DEBUG0 (("colamd: p[0] not zero %d\n", p [0])) ; - return (false) ; - } - - /* === If no knobs, set default knobs =================================== */ - - if (!knobs) - { - colamd_set_defaults (default_knobs) ; - knobs = default_knobs ; - } - - /* === Allocate the Row and Col arrays from array A ===================== */ - - Col_size = colamd_c (n_col) ; - Row_size = colamd_r (n_row) ; - need = 2*nnz + n_col + Col_size + Row_size ; - - if (need > Alen) - { - /* not enough space in array A to perform the ordering */ - stats [COLAMD_STATUS] = COLAMD_ERROR_A_too_small ; - stats [COLAMD_INFO1] = need ; - stats [COLAMD_INFO2] = Alen ; - COLAMD_DEBUG0 (("colamd: Need Alen >= %d, given only Alen = %d\n", need,Alen)); - return (false) ; - } - - Alen -= Col_size + Row_size ; - Col = (colamd_col *) &A [Alen] ; - Row = (Colamd_Row *) &A [Alen + Col_size] ; - - /* === Construct the row and column data structures ===================== */ - - if (!Eigen::internal::init_rows_cols (n_row, n_col, Row, Col, A, p, stats)) - { - /* input matrix is invalid */ - COLAMD_DEBUG0 (("colamd: Matrix invalid\n")) ; - return (false) ; - } - - /* === Initialize scores, kill dense rows/columns ======================= */ - - Eigen::internal::init_scoring (n_row, n_col, Row, Col, A, p, knobs, - &n_row2, &n_col2, &max_deg) ; - - /* === Order the supercolumns =========================================== */ - - ngarbage = Eigen::internal::find_ordering (n_row, n_col, Alen, Row, Col, A, p, - n_col2, max_deg, 2*nnz) ; - - /* === Order the non-principal columns ================================== */ - - Eigen::internal::order_children (n_col, Col, p) ; - - /* === Return statistics in stats ======================================= */ - - stats [COLAMD_DENSE_ROW] = n_row - n_row2 ; - stats [COLAMD_DENSE_COL] = n_col - n_col2 ; - stats [COLAMD_DEFRAG_COUNT] = ngarbage ; - COLAMD_DEBUG0 (("colamd: done.\n")) ; - return (true) ; -} - -/* ========================================================================== */ -/* === NON-USER-CALLABLE ROUTINES: ========================================== */ -/* ========================================================================== */ - -/* There are no user-callable routines beyond this point in the file */ - - -/* ========================================================================== */ -/* === init_rows_cols ======================================================= */ -/* ========================================================================== */ - -/* - Takes the column form of the matrix in A and creates the row form of the - matrix. Also, row and column attributes are stored in the Col and Row - structs. If the columns are un-sorted or contain duplicate row indices, - this routine will also sort and remove duplicate row indices from the - column form of the matrix. Returns false if the matrix is invalid, - true otherwise. Not user-callable. -*/ -template -static IndexType init_rows_cols /* returns true if OK, or false otherwise */ - ( - /* === Parameters ======================================================= */ - - IndexType n_row, /* number of rows of A */ - IndexType n_col, /* number of columns of A */ - Colamd_Row Row [], /* of size n_row+1 */ - colamd_col Col [], /* of size n_col+1 */ - IndexType A [], /* row indices of A, of size Alen */ - IndexType p [], /* pointers to columns in A, of size n_col+1 */ - IndexType stats [COLAMD_STATS] /* colamd statistics */ - ) -{ - /* === Local variables ================================================== */ - - IndexType col ; /* a column index */ - IndexType row ; /* a row index */ - IndexType *cp ; /* a column pointer */ - IndexType *cp_end ; /* a pointer to the end of a column */ - IndexType *rp ; /* a row pointer */ - IndexType *rp_end ; /* a pointer to the end of a row */ - IndexType last_row ; /* previous row */ - - /* === Initialize columns, and check column pointers ==================== */ - - for (col = 0 ; col < n_col ; col++) - { - Col [col].start = p [col] ; - Col [col].length = p [col+1] - p [col] ; - - if ((Col [col].length) < 0) // extra parentheses to work-around gcc bug 10200 - { - /* column pointers must be non-decreasing */ - stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ; - stats [COLAMD_INFO1] = col ; - stats [COLAMD_INFO2] = Col [col].length ; - COLAMD_DEBUG0 (("colamd: col %d length %d < 0\n", col, Col [col].length)) ; - return (false) ; - } - - Col [col].shared1.thickness = 1 ; - Col [col].shared2.score = 0 ; - Col [col].shared3.prev = COLAMD_EMPTY ; - Col [col].shared4.degree_next = COLAMD_EMPTY ; - } - - /* p [0..n_col] no longer needed, used as "head" in subsequent routines */ - - /* === Scan columns, compute row degrees, and check row indices ========= */ - - stats [COLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/ - - for (row = 0 ; row < n_row ; row++) - { - Row [row].length = 0 ; - Row [row].shared2.mark = -1 ; - } - - for (col = 0 ; col < n_col ; col++) - { - last_row = -1 ; - - cp = &A [p [col]] ; - cp_end = &A [p [col+1]] ; - - while (cp < cp_end) - { - row = *cp++ ; - - /* make sure row indices within range */ - if (row < 0 || row >= n_row) - { - stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ; - stats [COLAMD_INFO1] = col ; - stats [COLAMD_INFO2] = row ; - stats [COLAMD_INFO3] = n_row ; - COLAMD_DEBUG0 (("colamd: row %d col %d out of bounds\n", row, col)) ; - return (false) ; - } - - if (row <= last_row || Row [row].shared2.mark == col) - { - /* row index are unsorted or repeated (or both), thus col */ - /* is jumbled. This is a notice, not an error condition. */ - stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ; - stats [COLAMD_INFO1] = col ; - stats [COLAMD_INFO2] = row ; - (stats [COLAMD_INFO3]) ++ ; - COLAMD_DEBUG1 (("colamd: row %d col %d unsorted/duplicate\n",row,col)); - } - - if (Row [row].shared2.mark != col) - { - Row [row].length++ ; - } - else - { - /* this is a repeated entry in the column, */ - /* it will be removed */ - Col [col].length-- ; - } - - /* mark the row as having been seen in this column */ - Row [row].shared2.mark = col ; - - last_row = row ; - } - } - - /* === Compute row pointers ============================================= */ - - /* row form of the matrix starts directly after the column */ - /* form of matrix in A */ - Row [0].start = p [n_col] ; - Row [0].shared1.p = Row [0].start ; - Row [0].shared2.mark = -1 ; - for (row = 1 ; row < n_row ; row++) - { - Row [row].start = Row [row-1].start + Row [row-1].length ; - Row [row].shared1.p = Row [row].start ; - Row [row].shared2.mark = -1 ; - } - - /* === Create row form ================================================== */ - - if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED) - { - /* if cols jumbled, watch for repeated row indices */ - for (col = 0 ; col < n_col ; col++) - { - cp = &A [p [col]] ; - cp_end = &A [p [col+1]] ; - while (cp < cp_end) - { - row = *cp++ ; - if (Row [row].shared2.mark != col) - { - A [(Row [row].shared1.p)++] = col ; - Row [row].shared2.mark = col ; - } - } - } - } - else - { - /* if cols not jumbled, we don't need the mark (this is faster) */ - for (col = 0 ; col < n_col ; col++) - { - cp = &A [p [col]] ; - cp_end = &A [p [col+1]] ; - while (cp < cp_end) - { - A [(Row [*cp++].shared1.p)++] = col ; - } - } - } - - /* === Clear the row marks and set row degrees ========================== */ - - for (row = 0 ; row < n_row ; row++) - { - Row [row].shared2.mark = 0 ; - Row [row].shared1.degree = Row [row].length ; - } - - /* === See if we need to re-create columns ============================== */ - - if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED) - { - COLAMD_DEBUG0 (("colamd: reconstructing column form, matrix jumbled\n")) ; - - - /* === Compute col pointers ========================================= */ - - /* col form of the matrix starts at A [0]. */ - /* Note, we may have a gap between the col form and the row */ - /* form if there were duplicate entries, if so, it will be */ - /* removed upon the first garbage collection */ - Col [0].start = 0 ; - p [0] = Col [0].start ; - for (col = 1 ; col < n_col ; col++) - { - /* note that the lengths here are for pruned columns, i.e. */ - /* no duplicate row indices will exist for these columns */ - Col [col].start = Col [col-1].start + Col [col-1].length ; - p [col] = Col [col].start ; - } - - /* === Re-create col form =========================================== */ - - for (row = 0 ; row < n_row ; row++) - { - rp = &A [Row [row].start] ; - rp_end = rp + Row [row].length ; - while (rp < rp_end) - { - A [(p [*rp++])++] = row ; - } - } - } - - /* === Done. Matrix is not (or no longer) jumbled ====================== */ - - return (true) ; -} - - -/* ========================================================================== */ -/* === init_scoring ========================================================= */ -/* ========================================================================== */ - -/* - Kills dense or empty columns and rows, calculates an initial score for - each column, and places all columns in the degree lists. Not user-callable. -*/ -template -static void init_scoring - ( - /* === Parameters ======================================================= */ - - IndexType n_row, /* number of rows of A */ - IndexType n_col, /* number of columns of A */ - Colamd_Row Row [], /* of size n_row+1 */ - colamd_col Col [], /* of size n_col+1 */ - IndexType A [], /* column form and row form of A */ - IndexType head [], /* of size n_col+1 */ - double knobs [COLAMD_KNOBS],/* parameters */ - IndexType *p_n_row2, /* number of non-dense, non-empty rows */ - IndexType *p_n_col2, /* number of non-dense, non-empty columns */ - IndexType *p_max_deg /* maximum row degree */ - ) -{ - /* === Local variables ================================================== */ - - IndexType c ; /* a column index */ - IndexType r, row ; /* a row index */ - IndexType *cp ; /* a column pointer */ - IndexType deg ; /* degree of a row or column */ - IndexType *cp_end ; /* a pointer to the end of a column */ - IndexType *new_cp ; /* new column pointer */ - IndexType col_length ; /* length of pruned column */ - IndexType score ; /* current column score */ - IndexType n_col2 ; /* number of non-dense, non-empty columns */ - IndexType n_row2 ; /* number of non-dense, non-empty rows */ - IndexType dense_row_count ; /* remove rows with more entries than this */ - IndexType dense_col_count ; /* remove cols with more entries than this */ - IndexType min_score ; /* smallest column score */ - IndexType max_deg ; /* maximum row degree */ - IndexType next_col ; /* Used to add to degree list.*/ - - - /* === Extract knobs ==================================================== */ - - dense_row_count = numext::maxi(IndexType(0), numext::mini(IndexType(knobs [COLAMD_DENSE_ROW] * n_col), n_col)) ; - dense_col_count = numext::maxi(IndexType(0), numext::mini(IndexType(knobs [COLAMD_DENSE_COL] * n_row), n_row)) ; - COLAMD_DEBUG1 (("colamd: densecount: %d %d\n", dense_row_count, dense_col_count)) ; - max_deg = 0 ; - n_col2 = n_col ; - n_row2 = n_row ; - - /* === Kill empty columns =============================================== */ - - /* Put the empty columns at the end in their natural order, so that LU */ - /* factorization can proceed as far as possible. */ - for (c = n_col-1 ; c >= 0 ; c--) - { - deg = Col [c].length ; - if (deg == 0) - { - /* this is a empty column, kill and order it last */ - Col [c].shared2.order = --n_col2 ; - KILL_PRINCIPAL_COL (c) ; - } - } - COLAMD_DEBUG1 (("colamd: null columns killed: %d\n", n_col - n_col2)) ; - - /* === Kill dense columns =============================================== */ - - /* Put the dense columns at the end, in their natural order */ - for (c = n_col-1 ; c >= 0 ; c--) - { - /* skip any dead columns */ - if (COL_IS_DEAD (c)) - { - continue ; - } - deg = Col [c].length ; - if (deg > dense_col_count) - { - /* this is a dense column, kill and order it last */ - Col [c].shared2.order = --n_col2 ; - /* decrement the row degrees */ - cp = &A [Col [c].start] ; - cp_end = cp + Col [c].length ; - while (cp < cp_end) - { - Row [*cp++].shared1.degree-- ; - } - KILL_PRINCIPAL_COL (c) ; - } - } - COLAMD_DEBUG1 (("colamd: Dense and null columns killed: %d\n", n_col - n_col2)) ; - - /* === Kill dense and empty rows ======================================== */ - - for (r = 0 ; r < n_row ; r++) - { - deg = Row [r].shared1.degree ; - COLAMD_ASSERT (deg >= 0 && deg <= n_col) ; - if (deg > dense_row_count || deg == 0) - { - /* kill a dense or empty row */ - KILL_ROW (r) ; - --n_row2 ; - } - else - { - /* keep track of max degree of remaining rows */ - max_deg = numext::maxi(max_deg, deg) ; - } - } - COLAMD_DEBUG1 (("colamd: Dense and null rows killed: %d\n", n_row - n_row2)) ; - - /* === Compute initial column scores ==================================== */ - - /* At this point the row degrees are accurate. They reflect the number */ - /* of "live" (non-dense) columns in each row. No empty rows exist. */ - /* Some "live" columns may contain only dead rows, however. These are */ - /* pruned in the code below. */ - - /* now find the initial matlab score for each column */ - for (c = n_col-1 ; c >= 0 ; c--) - { - /* skip dead column */ - if (COL_IS_DEAD (c)) - { - continue ; - } - score = 0 ; - cp = &A [Col [c].start] ; - new_cp = cp ; - cp_end = cp + Col [c].length ; - while (cp < cp_end) - { - /* get a row */ - row = *cp++ ; - /* skip if dead */ - if (ROW_IS_DEAD (row)) - { - continue ; - } - /* compact the column */ - *new_cp++ = row ; - /* add row's external degree */ - score += Row [row].shared1.degree - 1 ; - /* guard against integer overflow */ - score = numext::mini(score, n_col) ; - } - /* determine pruned column length */ - col_length = (IndexType) (new_cp - &A [Col [c].start]) ; - if (col_length == 0) - { - /* a newly-made null column (all rows in this col are "dense" */ - /* and have already been killed) */ - COLAMD_DEBUG2 (("Newly null killed: %d\n", c)) ; - Col [c].shared2.order = --n_col2 ; - KILL_PRINCIPAL_COL (c) ; - } - else - { - /* set column length and set score */ - COLAMD_ASSERT (score >= 0) ; - COLAMD_ASSERT (score <= n_col) ; - Col [c].length = col_length ; - Col [c].shared2.score = score ; - } - } - COLAMD_DEBUG1 (("colamd: Dense, null, and newly-null columns killed: %d\n", - n_col-n_col2)) ; - - /* At this point, all empty rows and columns are dead. All live columns */ - /* are "clean" (containing no dead rows) and simplicial (no supercolumns */ - /* yet). Rows may contain dead columns, but all live rows contain at */ - /* least one live column. */ - - /* === Initialize degree lists ========================================== */ - - - /* clear the hash buckets */ - for (c = 0 ; c <= n_col ; c++) - { - head [c] = COLAMD_EMPTY ; - } - min_score = n_col ; - /* place in reverse order, so low column indices are at the front */ - /* of the lists. This is to encourage natural tie-breaking */ - for (c = n_col-1 ; c >= 0 ; c--) - { - /* only add principal columns to degree lists */ - if (COL_IS_ALIVE (c)) - { - COLAMD_DEBUG4 (("place %d score %d minscore %d ncol %d\n", - c, Col [c].shared2.score, min_score, n_col)) ; - - /* === Add columns score to DList =============================== */ - - score = Col [c].shared2.score ; - - COLAMD_ASSERT (min_score >= 0) ; - COLAMD_ASSERT (min_score <= n_col) ; - COLAMD_ASSERT (score >= 0) ; - COLAMD_ASSERT (score <= n_col) ; - COLAMD_ASSERT (head [score] >= COLAMD_EMPTY) ; - - /* now add this column to dList at proper score location */ - next_col = head [score] ; - Col [c].shared3.prev = COLAMD_EMPTY ; - Col [c].shared4.degree_next = next_col ; - - /* if there already was a column with the same score, set its */ - /* previous pointer to this new column */ - if (next_col != COLAMD_EMPTY) - { - Col [next_col].shared3.prev = c ; - } - head [score] = c ; - - /* see if this score is less than current min */ - min_score = numext::mini(min_score, score) ; - - - } - } - - - /* === Return number of remaining columns, and max row degree =========== */ - - *p_n_col2 = n_col2 ; - *p_n_row2 = n_row2 ; - *p_max_deg = max_deg ; -} - - -/* ========================================================================== */ -/* === find_ordering ======================================================== */ -/* ========================================================================== */ - -/* - Order the principal columns of the supercolumn form of the matrix - (no supercolumns on input). Uses a minimum approximate column minimum - degree ordering method. Not user-callable. -*/ -template -static IndexType find_ordering /* return the number of garbage collections */ - ( - /* === Parameters ======================================================= */ - - IndexType n_row, /* number of rows of A */ - IndexType n_col, /* number of columns of A */ - IndexType Alen, /* size of A, 2*nnz + n_col or larger */ - Colamd_Row Row [], /* of size n_row+1 */ - colamd_col Col [], /* of size n_col+1 */ - IndexType A [], /* column form and row form of A */ - IndexType head [], /* of size n_col+1 */ - IndexType n_col2, /* Remaining columns to order */ - IndexType max_deg, /* Maximum row degree */ - IndexType pfree /* index of first free slot (2*nnz on entry) */ - ) -{ - /* === Local variables ================================================== */ - - IndexType k ; /* current pivot ordering step */ - IndexType pivot_col ; /* current pivot column */ - IndexType *cp ; /* a column pointer */ - IndexType *rp ; /* a row pointer */ - IndexType pivot_row ; /* current pivot row */ - IndexType *new_cp ; /* modified column pointer */ - IndexType *new_rp ; /* modified row pointer */ - IndexType pivot_row_start ; /* pointer to start of pivot row */ - IndexType pivot_row_degree ; /* number of columns in pivot row */ - IndexType pivot_row_length ; /* number of supercolumns in pivot row */ - IndexType pivot_col_score ; /* score of pivot column */ - IndexType needed_memory ; /* free space needed for pivot row */ - IndexType *cp_end ; /* pointer to the end of a column */ - IndexType *rp_end ; /* pointer to the end of a row */ - IndexType row ; /* a row index */ - IndexType col ; /* a column index */ - IndexType max_score ; /* maximum possible score */ - IndexType cur_score ; /* score of current column */ - unsigned int hash ; /* hash value for supernode detection */ - IndexType head_column ; /* head of hash bucket */ - IndexType first_col ; /* first column in hash bucket */ - IndexType tag_mark ; /* marker value for mark array */ - IndexType row_mark ; /* Row [row].shared2.mark */ - IndexType set_difference ; /* set difference size of row with pivot row */ - IndexType min_score ; /* smallest column score */ - IndexType col_thickness ; /* "thickness" (no. of columns in a supercol) */ - IndexType max_mark ; /* maximum value of tag_mark */ - IndexType pivot_col_thickness ; /* number of columns represented by pivot col */ - IndexType prev_col ; /* Used by Dlist operations. */ - IndexType next_col ; /* Used by Dlist operations. */ - IndexType ngarbage ; /* number of garbage collections performed */ - - - /* === Initialization and clear mark ==================================== */ - - max_mark = INT_MAX - n_col ; /* INT_MAX defined in */ - tag_mark = Eigen::internal::clear_mark (n_row, Row) ; - min_score = 0 ; - ngarbage = 0 ; - COLAMD_DEBUG1 (("colamd: Ordering, n_col2=%d\n", n_col2)) ; - - /* === Order the columns ================================================ */ - - for (k = 0 ; k < n_col2 ; /* 'k' is incremented below */) - { - - /* === Select pivot column, and order it ============================ */ - - /* make sure degree list isn't empty */ - COLAMD_ASSERT (min_score >= 0) ; - COLAMD_ASSERT (min_score <= n_col) ; - COLAMD_ASSERT (head [min_score] >= COLAMD_EMPTY) ; - - /* get pivot column from head of minimum degree list */ - while (min_score < n_col && head [min_score] == COLAMD_EMPTY) - { - min_score++ ; - } - pivot_col = head [min_score] ; - COLAMD_ASSERT (pivot_col >= 0 && pivot_col <= n_col) ; - next_col = Col [pivot_col].shared4.degree_next ; - head [min_score] = next_col ; - if (next_col != COLAMD_EMPTY) - { - Col [next_col].shared3.prev = COLAMD_EMPTY ; - } - - COLAMD_ASSERT (COL_IS_ALIVE (pivot_col)) ; - COLAMD_DEBUG3 (("Pivot col: %d\n", pivot_col)) ; - - /* remember score for defrag check */ - pivot_col_score = Col [pivot_col].shared2.score ; - - /* the pivot column is the kth column in the pivot order */ - Col [pivot_col].shared2.order = k ; - - /* increment order count by column thickness */ - pivot_col_thickness = Col [pivot_col].shared1.thickness ; - k += pivot_col_thickness ; - COLAMD_ASSERT (pivot_col_thickness > 0) ; - - /* === Garbage_collection, if necessary ============================= */ - - needed_memory = numext::mini(pivot_col_score, n_col - k) ; - if (pfree + needed_memory >= Alen) - { - pfree = Eigen::internal::garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ; - ngarbage++ ; - /* after garbage collection we will have enough */ - COLAMD_ASSERT (pfree + needed_memory < Alen) ; - /* garbage collection has wiped out the Row[].shared2.mark array */ - tag_mark = Eigen::internal::clear_mark (n_row, Row) ; - - } - - /* === Compute pivot row pattern ==================================== */ - - /* get starting location for this new merged row */ - pivot_row_start = pfree ; - - /* initialize new row counts to zero */ - pivot_row_degree = 0 ; - - /* tag pivot column as having been visited so it isn't included */ - /* in merged pivot row */ - Col [pivot_col].shared1.thickness = -pivot_col_thickness ; - - /* pivot row is the union of all rows in the pivot column pattern */ - cp = &A [Col [pivot_col].start] ; - cp_end = cp + Col [pivot_col].length ; - while (cp < cp_end) - { - /* get a row */ - row = *cp++ ; - COLAMD_DEBUG4 (("Pivot col pattern %d %d\n", ROW_IS_ALIVE (row), row)) ; - /* skip if row is dead */ - if (ROW_IS_DEAD (row)) - { - continue ; - } - rp = &A [Row [row].start] ; - rp_end = rp + Row [row].length ; - while (rp < rp_end) - { - /* get a column */ - col = *rp++ ; - /* add the column, if alive and untagged */ - col_thickness = Col [col].shared1.thickness ; - if (col_thickness > 0 && COL_IS_ALIVE (col)) - { - /* tag column in pivot row */ - Col [col].shared1.thickness = -col_thickness ; - COLAMD_ASSERT (pfree < Alen) ; - /* place column in pivot row */ - A [pfree++] = col ; - pivot_row_degree += col_thickness ; - } - } - } - - /* clear tag on pivot column */ - Col [pivot_col].shared1.thickness = pivot_col_thickness ; - max_deg = numext::maxi(max_deg, pivot_row_degree) ; - - - /* === Kill all rows used to construct pivot row ==================== */ - - /* also kill pivot row, temporarily */ - cp = &A [Col [pivot_col].start] ; - cp_end = cp + Col [pivot_col].length ; - while (cp < cp_end) - { - /* may be killing an already dead row */ - row = *cp++ ; - COLAMD_DEBUG3 (("Kill row in pivot col: %d\n", row)) ; - KILL_ROW (row) ; - } - - /* === Select a row index to use as the new pivot row =============== */ - - pivot_row_length = pfree - pivot_row_start ; - if (pivot_row_length > 0) - { - /* pick the "pivot" row arbitrarily (first row in col) */ - pivot_row = A [Col [pivot_col].start] ; - COLAMD_DEBUG3 (("Pivotal row is %d\n", pivot_row)) ; - } - else - { - /* there is no pivot row, since it is of zero length */ - pivot_row = COLAMD_EMPTY ; - COLAMD_ASSERT (pivot_row_length == 0) ; - } - COLAMD_ASSERT (Col [pivot_col].length > 0 || pivot_row_length == 0) ; - - /* === Approximate degree computation =============================== */ - - /* Here begins the computation of the approximate degree. The column */ - /* score is the sum of the pivot row "length", plus the size of the */ - /* set differences of each row in the column minus the pattern of the */ - /* pivot row itself. The column ("thickness") itself is also */ - /* excluded from the column score (we thus use an approximate */ - /* external degree). */ - - /* The time taken by the following code (compute set differences, and */ - /* add them up) is proportional to the size of the data structure */ - /* being scanned - that is, the sum of the sizes of each column in */ - /* the pivot row. Thus, the amortized time to compute a column score */ - /* is proportional to the size of that column (where size, in this */ - /* context, is the column "length", or the number of row indices */ - /* in that column). The number of row indices in a column is */ - /* monotonically non-decreasing, from the length of the original */ - /* column on input to colamd. */ - - /* === Compute set differences ====================================== */ - - COLAMD_DEBUG3 (("** Computing set differences phase. **\n")) ; - - /* pivot row is currently dead - it will be revived later. */ - - COLAMD_DEBUG3 (("Pivot row: ")) ; - /* for each column in pivot row */ - rp = &A [pivot_row_start] ; - rp_end = rp + pivot_row_length ; - while (rp < rp_end) - { - col = *rp++ ; - COLAMD_ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ; - COLAMD_DEBUG3 (("Col: %d\n", col)) ; - - /* clear tags used to construct pivot row pattern */ - col_thickness = -Col [col].shared1.thickness ; - COLAMD_ASSERT (col_thickness > 0) ; - Col [col].shared1.thickness = col_thickness ; - - /* === Remove column from degree list =========================== */ - - cur_score = Col [col].shared2.score ; - prev_col = Col [col].shared3.prev ; - next_col = Col [col].shared4.degree_next ; - COLAMD_ASSERT (cur_score >= 0) ; - COLAMD_ASSERT (cur_score <= n_col) ; - COLAMD_ASSERT (cur_score >= COLAMD_EMPTY) ; - if (prev_col == COLAMD_EMPTY) - { - head [cur_score] = next_col ; - } - else - { - Col [prev_col].shared4.degree_next = next_col ; - } - if (next_col != COLAMD_EMPTY) - { - Col [next_col].shared3.prev = prev_col ; - } - - /* === Scan the column ========================================== */ - - cp = &A [Col [col].start] ; - cp_end = cp + Col [col].length ; - while (cp < cp_end) - { - /* get a row */ - row = *cp++ ; - row_mark = Row [row].shared2.mark ; - /* skip if dead */ - if (ROW_IS_MARKED_DEAD (row_mark)) - { - continue ; - } - COLAMD_ASSERT (row != pivot_row) ; - set_difference = row_mark - tag_mark ; - /* check if the row has been seen yet */ - if (set_difference < 0) - { - COLAMD_ASSERT (Row [row].shared1.degree <= max_deg) ; - set_difference = Row [row].shared1.degree ; - } - /* subtract column thickness from this row's set difference */ - set_difference -= col_thickness ; - COLAMD_ASSERT (set_difference >= 0) ; - /* absorb this row if the set difference becomes zero */ - if (set_difference == 0) - { - COLAMD_DEBUG3 (("aggressive absorption. Row: %d\n", row)) ; - KILL_ROW (row) ; - } - else - { - /* save the new mark */ - Row [row].shared2.mark = set_difference + tag_mark ; - } - } - } - - - /* === Add up set differences for each column ======================= */ - - COLAMD_DEBUG3 (("** Adding set differences phase. **\n")) ; - - /* for each column in pivot row */ - rp = &A [pivot_row_start] ; - rp_end = rp + pivot_row_length ; - while (rp < rp_end) - { - /* get a column */ - col = *rp++ ; - COLAMD_ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ; - hash = 0 ; - cur_score = 0 ; - cp = &A [Col [col].start] ; - /* compact the column */ - new_cp = cp ; - cp_end = cp + Col [col].length ; - - COLAMD_DEBUG4 (("Adding set diffs for Col: %d.\n", col)) ; - - while (cp < cp_end) - { - /* get a row */ - row = *cp++ ; - COLAMD_ASSERT(row >= 0 && row < n_row) ; - row_mark = Row [row].shared2.mark ; - /* skip if dead */ - if (ROW_IS_MARKED_DEAD (row_mark)) - { - continue ; - } - COLAMD_ASSERT (row_mark > tag_mark) ; - /* compact the column */ - *new_cp++ = row ; - /* compute hash function */ - hash += row ; - /* add set difference */ - cur_score += row_mark - tag_mark ; - /* integer overflow... */ - cur_score = numext::mini(cur_score, n_col) ; - } - - /* recompute the column's length */ - Col [col].length = (IndexType) (new_cp - &A [Col [col].start]) ; - - /* === Further mass elimination ================================= */ - - if (Col [col].length == 0) - { - COLAMD_DEBUG4 (("further mass elimination. Col: %d\n", col)) ; - /* nothing left but the pivot row in this column */ - KILL_PRINCIPAL_COL (col) ; - pivot_row_degree -= Col [col].shared1.thickness ; - COLAMD_ASSERT (pivot_row_degree >= 0) ; - /* order it */ - Col [col].shared2.order = k ; - /* increment order count by column thickness */ - k += Col [col].shared1.thickness ; - } - else - { - /* === Prepare for supercolumn detection ==================== */ - - COLAMD_DEBUG4 (("Preparing supercol detection for Col: %d.\n", col)) ; - - /* save score so far */ - Col [col].shared2.score = cur_score ; - - /* add column to hash table, for supercolumn detection */ - hash %= n_col + 1 ; - - COLAMD_DEBUG4 ((" Hash = %d, n_col = %d.\n", hash, n_col)) ; - COLAMD_ASSERT (hash <= n_col) ; - - head_column = head [hash] ; - if (head_column > COLAMD_EMPTY) - { - /* degree list "hash" is non-empty, use prev (shared3) of */ - /* first column in degree list as head of hash bucket */ - first_col = Col [head_column].shared3.headhash ; - Col [head_column].shared3.headhash = col ; - } - else - { - /* degree list "hash" is empty, use head as hash bucket */ - first_col = - (head_column + 2) ; - head [hash] = - (col + 2) ; - } - Col [col].shared4.hash_next = first_col ; - - /* save hash function in Col [col].shared3.hash */ - Col [col].shared3.hash = (IndexType) hash ; - COLAMD_ASSERT (COL_IS_ALIVE (col)) ; - } - } - - /* The approximate external column degree is now computed. */ - - /* === Supercolumn detection ======================================== */ - - COLAMD_DEBUG3 (("** Supercolumn detection phase. **\n")) ; - - Eigen::internal::detect_super_cols (Col, A, head, pivot_row_start, pivot_row_length) ; - - /* === Kill the pivotal column ====================================== */ - - KILL_PRINCIPAL_COL (pivot_col) ; - - /* === Clear mark =================================================== */ - - tag_mark += (max_deg + 1) ; - if (tag_mark >= max_mark) - { - COLAMD_DEBUG2 (("clearing tag_mark\n")) ; - tag_mark = Eigen::internal::clear_mark (n_row, Row) ; - } - - /* === Finalize the new pivot row, and column scores ================ */ - - COLAMD_DEBUG3 (("** Finalize scores phase. **\n")) ; - - /* for each column in pivot row */ - rp = &A [pivot_row_start] ; - /* compact the pivot row */ - new_rp = rp ; - rp_end = rp + pivot_row_length ; - while (rp < rp_end) - { - col = *rp++ ; - /* skip dead columns */ - if (COL_IS_DEAD (col)) - { - continue ; - } - *new_rp++ = col ; - /* add new pivot row to column */ - A [Col [col].start + (Col [col].length++)] = pivot_row ; - - /* retrieve score so far and add on pivot row's degree. */ - /* (we wait until here for this in case the pivot */ - /* row's degree was reduced due to mass elimination). */ - cur_score = Col [col].shared2.score + pivot_row_degree ; - - /* calculate the max possible score as the number of */ - /* external columns minus the 'k' value minus the */ - /* columns thickness */ - max_score = n_col - k - Col [col].shared1.thickness ; - - /* make the score the external degree of the union-of-rows */ - cur_score -= Col [col].shared1.thickness ; - - /* make sure score is less or equal than the max score */ - cur_score = numext::mini(cur_score, max_score) ; - COLAMD_ASSERT (cur_score >= 0) ; - - /* store updated score */ - Col [col].shared2.score = cur_score ; - - /* === Place column back in degree list ========================= */ - - COLAMD_ASSERT (min_score >= 0) ; - COLAMD_ASSERT (min_score <= n_col) ; - COLAMD_ASSERT (cur_score >= 0) ; - COLAMD_ASSERT (cur_score <= n_col) ; - COLAMD_ASSERT (head [cur_score] >= COLAMD_EMPTY) ; - next_col = head [cur_score] ; - Col [col].shared4.degree_next = next_col ; - Col [col].shared3.prev = COLAMD_EMPTY ; - if (next_col != COLAMD_EMPTY) - { - Col [next_col].shared3.prev = col ; - } - head [cur_score] = col ; - - /* see if this score is less than current min */ - min_score = numext::mini(min_score, cur_score) ; - - } - - /* === Resurrect the new pivot row ================================== */ - - if (pivot_row_degree > 0) - { - /* update pivot row length to reflect any cols that were killed */ - /* during super-col detection and mass elimination */ - Row [pivot_row].start = pivot_row_start ; - Row [pivot_row].length = (IndexType) (new_rp - &A[pivot_row_start]) ; - Row [pivot_row].shared1.degree = pivot_row_degree ; - Row [pivot_row].shared2.mark = 0 ; - /* pivot row is no longer dead */ - } - } - - /* === All principal columns have now been ordered ====================== */ - - return (ngarbage) ; -} - - -/* ========================================================================== */ -/* === order_children ======================================================= */ -/* ========================================================================== */ - -/* - The find_ordering routine has ordered all of the principal columns (the - representatives of the supercolumns). The non-principal columns have not - yet been ordered. This routine orders those columns by walking up the - parent tree (a column is a child of the column which absorbed it). The - final permutation vector is then placed in p [0 ... n_col-1], with p [0] - being the first column, and p [n_col-1] being the last. It doesn't look - like it at first glance, but be assured that this routine takes time linear - in the number of columns. Although not immediately obvious, the time - taken by this routine is O (n_col), that is, linear in the number of - columns. Not user-callable. -*/ -template -static inline void order_children -( - /* === Parameters ======================================================= */ - - IndexType n_col, /* number of columns of A */ - colamd_col Col [], /* of size n_col+1 */ - IndexType p [] /* p [0 ... n_col-1] is the column permutation*/ - ) -{ - /* === Local variables ================================================== */ - - IndexType i ; /* loop counter for all columns */ - IndexType c ; /* column index */ - IndexType parent ; /* index of column's parent */ - IndexType order ; /* column's order */ - - /* === Order each non-principal column ================================== */ - - for (i = 0 ; i < n_col ; i++) - { - /* find an un-ordered non-principal column */ - COLAMD_ASSERT (COL_IS_DEAD (i)) ; - if (!COL_IS_DEAD_PRINCIPAL (i) && Col [i].shared2.order == COLAMD_EMPTY) - { - parent = i ; - /* once found, find its principal parent */ - do - { - parent = Col [parent].shared1.parent ; - } while (!COL_IS_DEAD_PRINCIPAL (parent)) ; - - /* now, order all un-ordered non-principal columns along path */ - /* to this parent. collapse tree at the same time */ - c = i ; - /* get order of parent */ - order = Col [parent].shared2.order ; - - do - { - COLAMD_ASSERT (Col [c].shared2.order == COLAMD_EMPTY) ; - - /* order this column */ - Col [c].shared2.order = order++ ; - /* collaps tree */ - Col [c].shared1.parent = parent ; - - /* get immediate parent of this column */ - c = Col [c].shared1.parent ; - - /* continue until we hit an ordered column. There are */ - /* guarranteed not to be anymore unordered columns */ - /* above an ordered column */ - } while (Col [c].shared2.order == COLAMD_EMPTY) ; - - /* re-order the super_col parent to largest order for this group */ - Col [parent].shared2.order = order ; - } - } - - /* === Generate the permutation ========================================= */ - - for (c = 0 ; c < n_col ; c++) - { - p [Col [c].shared2.order] = c ; - } -} - - -/* ========================================================================== */ -/* === detect_super_cols ==================================================== */ -/* ========================================================================== */ - -/* - Detects supercolumns by finding matches between columns in the hash buckets. - Check amongst columns in the set A [row_start ... row_start + row_length-1]. - The columns under consideration are currently *not* in the degree lists, - and have already been placed in the hash buckets. - - The hash bucket for columns whose hash function is equal to h is stored - as follows: - - if head [h] is >= 0, then head [h] contains a degree list, so: - - head [h] is the first column in degree bucket h. - Col [head [h]].headhash gives the first column in hash bucket h. - - otherwise, the degree list is empty, and: - - -(head [h] + 2) is the first column in hash bucket h. - - For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous - column" pointer. Col [c].shared3.hash is used instead as the hash number - for that column. The value of Col [c].shared4.hash_next is the next column - in the same hash bucket. - - Assuming no, or "few" hash collisions, the time taken by this routine is - linear in the sum of the sizes (lengths) of each column whose score has - just been computed in the approximate degree computation. - Not user-callable. -*/ -template -static void detect_super_cols -( - /* === Parameters ======================================================= */ - - colamd_col Col [], /* of size n_col+1 */ - IndexType A [], /* row indices of A */ - IndexType head [], /* head of degree lists and hash buckets */ - IndexType row_start, /* pointer to set of columns to check */ - IndexType row_length /* number of columns to check */ -) -{ - /* === Local variables ================================================== */ - - IndexType hash ; /* hash value for a column */ - IndexType *rp ; /* pointer to a row */ - IndexType c ; /* a column index */ - IndexType super_c ; /* column index of the column to absorb into */ - IndexType *cp1 ; /* column pointer for column super_c */ - IndexType *cp2 ; /* column pointer for column c */ - IndexType length ; /* length of column super_c */ - IndexType prev_c ; /* column preceding c in hash bucket */ - IndexType i ; /* loop counter */ - IndexType *rp_end ; /* pointer to the end of the row */ - IndexType col ; /* a column index in the row to check */ - IndexType head_column ; /* first column in hash bucket or degree list */ - IndexType first_col ; /* first column in hash bucket */ - - /* === Consider each column in the row ================================== */ - - rp = &A [row_start] ; - rp_end = rp + row_length ; - while (rp < rp_end) - { - col = *rp++ ; - if (COL_IS_DEAD (col)) - { - continue ; - } - - /* get hash number for this column */ - hash = Col [col].shared3.hash ; - COLAMD_ASSERT (hash <= n_col) ; - - /* === Get the first column in this hash bucket ===================== */ - - head_column = head [hash] ; - if (head_column > COLAMD_EMPTY) - { - first_col = Col [head_column].shared3.headhash ; - } - else - { - first_col = - (head_column + 2) ; - } - - /* === Consider each column in the hash bucket ====================== */ - - for (super_c = first_col ; super_c != COLAMD_EMPTY ; - super_c = Col [super_c].shared4.hash_next) - { - COLAMD_ASSERT (COL_IS_ALIVE (super_c)) ; - COLAMD_ASSERT (Col [super_c].shared3.hash == hash) ; - length = Col [super_c].length ; - - /* prev_c is the column preceding column c in the hash bucket */ - prev_c = super_c ; - - /* === Compare super_c with all columns after it ================ */ - - for (c = Col [super_c].shared4.hash_next ; - c != COLAMD_EMPTY ; c = Col [c].shared4.hash_next) - { - COLAMD_ASSERT (c != super_c) ; - COLAMD_ASSERT (COL_IS_ALIVE (c)) ; - COLAMD_ASSERT (Col [c].shared3.hash == hash) ; - - /* not identical if lengths or scores are different */ - if (Col [c].length != length || - Col [c].shared2.score != Col [super_c].shared2.score) - { - prev_c = c ; - continue ; - } - - /* compare the two columns */ - cp1 = &A [Col [super_c].start] ; - cp2 = &A [Col [c].start] ; - - for (i = 0 ; i < length ; i++) - { - /* the columns are "clean" (no dead rows) */ - COLAMD_ASSERT (ROW_IS_ALIVE (*cp1)) ; - COLAMD_ASSERT (ROW_IS_ALIVE (*cp2)) ; - /* row indices will same order for both supercols, */ - /* no gather scatter nessasary */ - if (*cp1++ != *cp2++) - { - break ; - } - } - - /* the two columns are different if the for-loop "broke" */ - if (i != length) - { - prev_c = c ; - continue ; - } - - /* === Got it! two columns are identical =================== */ - - COLAMD_ASSERT (Col [c].shared2.score == Col [super_c].shared2.score) ; - - Col [super_c].shared1.thickness += Col [c].shared1.thickness ; - Col [c].shared1.parent = super_c ; - KILL_NON_PRINCIPAL_COL (c) ; - /* order c later, in order_children() */ - Col [c].shared2.order = COLAMD_EMPTY ; - /* remove c from hash bucket */ - Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ; - } - } - - /* === Empty this hash bucket ======================================= */ - - if (head_column > COLAMD_EMPTY) - { - /* corresponding degree list "hash" is not empty */ - Col [head_column].shared3.headhash = COLAMD_EMPTY ; - } - else - { - /* corresponding degree list "hash" is empty */ - head [hash] = COLAMD_EMPTY ; - } - } -} - - -/* ========================================================================== */ -/* === garbage_collection =================================================== */ -/* ========================================================================== */ - -/* - Defragments and compacts columns and rows in the workspace A. Used when - all avaliable memory has been used while performing row merging. Returns - the index of the first free position in A, after garbage collection. The - time taken by this routine is linear is the size of the array A, which is - itself linear in the number of nonzeros in the input matrix. - Not user-callable. -*/ -template -static IndexType garbage_collection /* returns the new value of pfree */ - ( - /* === Parameters ======================================================= */ - - IndexType n_row, /* number of rows */ - IndexType n_col, /* number of columns */ - Colamd_Row Row [], /* row info */ - colamd_col Col [], /* column info */ - IndexType A [], /* A [0 ... Alen-1] holds the matrix */ - IndexType *pfree /* &A [0] ... pfree is in use */ - ) -{ - /* === Local variables ================================================== */ - - IndexType *psrc ; /* source pointer */ - IndexType *pdest ; /* destination pointer */ - IndexType j ; /* counter */ - IndexType r ; /* a row index */ - IndexType c ; /* a column index */ - IndexType length ; /* length of a row or column */ - - /* === Defragment the columns =========================================== */ - - pdest = &A[0] ; - for (c = 0 ; c < n_col ; c++) - { - if (COL_IS_ALIVE (c)) - { - psrc = &A [Col [c].start] ; - - /* move and compact the column */ - COLAMD_ASSERT (pdest <= psrc) ; - Col [c].start = (IndexType) (pdest - &A [0]) ; - length = Col [c].length ; - for (j = 0 ; j < length ; j++) - { - r = *psrc++ ; - if (ROW_IS_ALIVE (r)) - { - *pdest++ = r ; - } - } - Col [c].length = (IndexType) (pdest - &A [Col [c].start]) ; - } - } - - /* === Prepare to defragment the rows =================================== */ - - for (r = 0 ; r < n_row ; r++) - { - if (ROW_IS_ALIVE (r)) - { - if (Row [r].length == 0) - { - /* this row is of zero length. cannot compact it, so kill it */ - COLAMD_DEBUG3 (("Defrag row kill\n")) ; - KILL_ROW (r) ; - } - else - { - /* save first column index in Row [r].shared2.first_column */ - psrc = &A [Row [r].start] ; - Row [r].shared2.first_column = *psrc ; - COLAMD_ASSERT (ROW_IS_ALIVE (r)) ; - /* flag the start of the row with the one's complement of row */ - *psrc = ONES_COMPLEMENT (r) ; - - } - } - } - - /* === Defragment the rows ============================================== */ - - psrc = pdest ; - while (psrc < pfree) - { - /* find a negative number ... the start of a row */ - if (*psrc++ < 0) - { - psrc-- ; - /* get the row index */ - r = ONES_COMPLEMENT (*psrc) ; - COLAMD_ASSERT (r >= 0 && r < n_row) ; - /* restore first column index */ - *psrc = Row [r].shared2.first_column ; - COLAMD_ASSERT (ROW_IS_ALIVE (r)) ; - - /* move and compact the row */ - COLAMD_ASSERT (pdest <= psrc) ; - Row [r].start = (IndexType) (pdest - &A [0]) ; - length = Row [r].length ; - for (j = 0 ; j < length ; j++) - { - c = *psrc++ ; - if (COL_IS_ALIVE (c)) - { - *pdest++ = c ; - } - } - Row [r].length = (IndexType) (pdest - &A [Row [r].start]) ; - - } - } - /* ensure we found all the rows */ - COLAMD_ASSERT (debug_rows == 0) ; - - /* === Return the new value of pfree ==================================== */ - - return ((IndexType) (pdest - &A [0])) ; -} - - -/* ========================================================================== */ -/* === clear_mark =========================================================== */ -/* ========================================================================== */ - -/* - Clears the Row [].shared2.mark array, and returns the new tag_mark. - Return value is the new tag_mark. Not user-callable. -*/ -template -static inline IndexType clear_mark /* return the new value for tag_mark */ - ( - /* === Parameters ======================================================= */ - - IndexType n_row, /* number of rows in A */ - Colamd_Row Row [] /* Row [0 ... n_row-1].shared2.mark is set to zero */ - ) -{ - /* === Local variables ================================================== */ - - IndexType r ; - - for (r = 0 ; r < n_row ; r++) - { - if (ROW_IS_ALIVE (r)) - { - Row [r].shared2.mark = 0 ; - } - } - return (1) ; -} - - -} // namespace internal -#endif diff --git a/src/math_meigen/Eigen/src/OrderingMethods/Ordering.h b/src/math_meigen/Eigen/src/OrderingMethods/Ordering.h deleted file mode 100755 index 7ea9b14d7..000000000 --- a/src/math_meigen/Eigen/src/OrderingMethods/Ordering.h +++ /dev/null @@ -1,157 +0,0 @@ - -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Désiré Nuentsa-Wakam -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_ORDERING_H -#define EIGEN_ORDERING_H - -namespace Eigen { - -#include "Eigen_Colamd.h" - -namespace internal { - -/** \internal - * \ingroup OrderingMethods_Module - * \param[in] A the input non-symmetric matrix - * \param[out] symmat the symmetric pattern A^T+A from the input matrix \a A. - * FIXME: The values should not be considered here - */ -template -void ordering_helper_at_plus_a(const MatrixType& A, MatrixType& symmat) -{ - MatrixType C; - C = A.transpose(); // NOTE: Could be costly - for (int i = 0; i < C.rows(); i++) - { - for (typename MatrixType::InnerIterator it(C, i); it; ++it) - it.valueRef() = 0.0; - } - symmat = C + A; -} - -} - -#ifndef EIGEN_MPL2_ONLY - -/** \ingroup OrderingMethods_Module - * \class AMDOrdering - * - * Functor computing the \em approximate \em minimum \em degree ordering - * If the matrix is not structurally symmetric, an ordering of A^T+A is computed - * \tparam StorageIndex The type of indices of the matrix - * \sa COLAMDOrdering - */ -template -class AMDOrdering -{ - public: - typedef PermutationMatrix PermutationType; - - /** Compute the permutation vector from a sparse matrix - * This routine is much faster if the input matrix is column-major - */ - template - void operator()(const MatrixType& mat, PermutationType& perm) - { - // Compute the symmetric pattern - SparseMatrix symm; - internal::ordering_helper_at_plus_a(mat,symm); - - // Call the AMD routine - //m_mat.prune(keep_diag()); - internal::minimum_degree_ordering(symm, perm); - } - - /** Compute the permutation with a selfadjoint matrix */ - template - void operator()(const SparseSelfAdjointView& mat, PermutationType& perm) - { - SparseMatrix C; C = mat; - - // Call the AMD routine - // m_mat.prune(keep_diag()); //Remove the diagonal elements - internal::minimum_degree_ordering(C, perm); - } -}; - -#endif // EIGEN_MPL2_ONLY - -/** \ingroup OrderingMethods_Module - * \class NaturalOrdering - * - * Functor computing the natural ordering (identity) - * - * \note Returns an empty permutation matrix - * \tparam StorageIndex The type of indices of the matrix - */ -template -class NaturalOrdering -{ - public: - typedef PermutationMatrix PermutationType; - - /** Compute the permutation vector from a column-major sparse matrix */ - template - void operator()(const MatrixType& /*mat*/, PermutationType& perm) - { - perm.resize(0); - } - -}; - -/** \ingroup OrderingMethods_Module - * \class COLAMDOrdering - * - * \tparam StorageIndex The type of indices of the matrix - * - * Functor computing the \em column \em approximate \em minimum \em degree ordering - * The matrix should be in column-major and \b compressed format (see SparseMatrix::makeCompressed()). - */ -template -class COLAMDOrdering -{ - public: - typedef PermutationMatrix PermutationType; - typedef Matrix IndexVector; - - /** Compute the permutation vector \a perm form the sparse matrix \a mat - * \warning The input sparse matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()). - */ - template - void operator() (const MatrixType& mat, PermutationType& perm) - { - eigen_assert(mat.isCompressed() && "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to COLAMDOrdering"); - - StorageIndex m = StorageIndex(mat.rows()); - StorageIndex n = StorageIndex(mat.cols()); - StorageIndex nnz = StorageIndex(mat.nonZeros()); - // Get the recommended value of Alen to be used by colamd - StorageIndex Alen = internal::colamd_recommended(nnz, m, n); - // Set the default parameters - double knobs [COLAMD_KNOBS]; - StorageIndex stats [COLAMD_STATS]; - internal::colamd_set_defaults(knobs); - - IndexVector p(n+1), A(Alen); - for(StorageIndex i=0; i <= n; i++) p(i) = mat.outerIndexPtr()[i]; - for(StorageIndex i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()[i]; - // Call Colamd routine to compute the ordering - StorageIndex info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats); - EIGEN_UNUSED_VARIABLE(info); - eigen_assert( info && "COLAMD failed " ); - - perm.resize(n); - for (StorageIndex i = 0; i < n; i++) perm.indices()(p(i)) = i; - } -}; - -} // end namespace Eigen - -#endif diff --git a/src/math_meigen/Eigen/src/PaStiXSupport/PaStiXSupport.h b/src/math_meigen/Eigen/src/PaStiXSupport/PaStiXSupport.h deleted file mode 100755 index 160d8a523..000000000 --- a/src/math_meigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +++ /dev/null @@ -1,678 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Désiré Nuentsa-Wakam -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_PASTIXSUPPORT_H -#define EIGEN_PASTIXSUPPORT_H - -namespace Eigen { - -#if defined(DCOMPLEX) - #define PASTIX_COMPLEX COMPLEX - #define PASTIX_DCOMPLEX DCOMPLEX -#else - #define PASTIX_COMPLEX std::complex - #define PASTIX_DCOMPLEX std::complex -#endif - -/** \ingroup PaStiXSupport_Module - * \brief Interface to the PaStix solver - * - * This class is used to solve the linear systems A.X = B via the PaStix library. - * The matrix can be either real or complex, symmetric or not. - * - * \sa TutorialSparseDirectSolvers - */ -template class PastixLU; -template class PastixLLT; -template class PastixLDLT; - -namespace internal -{ - - template struct pastix_traits; - - template - struct pastix_traits< PastixLU<_MatrixType> > - { - typedef _MatrixType MatrixType; - typedef typename _MatrixType::Scalar Scalar; - typedef typename _MatrixType::RealScalar RealScalar; - typedef typename _MatrixType::StorageIndex StorageIndex; - }; - - template - struct pastix_traits< PastixLLT<_MatrixType,Options> > - { - typedef _MatrixType MatrixType; - typedef typename _MatrixType::Scalar Scalar; - typedef typename _MatrixType::RealScalar RealScalar; - typedef typename _MatrixType::StorageIndex StorageIndex; - }; - - template - struct pastix_traits< PastixLDLT<_MatrixType,Options> > - { - typedef _MatrixType MatrixType; - typedef typename _MatrixType::Scalar Scalar; - typedef typename _MatrixType::RealScalar RealScalar; - typedef typename _MatrixType::StorageIndex StorageIndex; - }; - - inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, float *vals, int *perm, int * invp, float *x, int nbrhs, int *iparm, double *dparm) - { - if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; } - if (nbrhs == 0) {x = NULL; nbrhs=1;} - s_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm); - } - - inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, double *vals, int *perm, int * invp, double *x, int nbrhs, int *iparm, double *dparm) - { - if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; } - if (nbrhs == 0) {x = NULL; nbrhs=1;} - d_pastix(pastix_data, pastix_comm, n, ptr, idx, vals, perm, invp, x, nbrhs, iparm, dparm); - } - - inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex *vals, int *perm, int * invp, std::complex *x, int nbrhs, int *iparm, double *dparm) - { - if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; } - if (nbrhs == 0) {x = NULL; nbrhs=1;} - c_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast(vals), perm, invp, reinterpret_cast(x), nbrhs, iparm, dparm); - } - - inline void eigen_pastix(pastix_data_t **pastix_data, int pastix_comm, int n, int *ptr, int *idx, std::complex *vals, int *perm, int * invp, std::complex *x, int nbrhs, int *iparm, double *dparm) - { - if (n == 0) { ptr = NULL; idx = NULL; vals = NULL; } - if (nbrhs == 0) {x = NULL; nbrhs=1;} - z_pastix(pastix_data, pastix_comm, n, ptr, idx, reinterpret_cast(vals), perm, invp, reinterpret_cast(x), nbrhs, iparm, dparm); - } - - // Convert the matrix to Fortran-style Numbering - template - void c_to_fortran_numbering (MatrixType& mat) - { - if ( !(mat.outerIndexPtr()[0]) ) - { - int i; - for(i = 0; i <= mat.rows(); ++i) - ++mat.outerIndexPtr()[i]; - for(i = 0; i < mat.nonZeros(); ++i) - ++mat.innerIndexPtr()[i]; - } - } - - // Convert to C-style Numbering - template - void fortran_to_c_numbering (MatrixType& mat) - { - // Check the Numbering - if ( mat.outerIndexPtr()[0] == 1 ) - { // Convert to C-style numbering - int i; - for(i = 0; i <= mat.rows(); ++i) - --mat.outerIndexPtr()[i]; - for(i = 0; i < mat.nonZeros(); ++i) - --mat.innerIndexPtr()[i]; - } - } -} - -// This is the base class to interface with PaStiX functions. -// Users should not used this class directly. -template -class PastixBase : public SparseSolverBase -{ - protected: - typedef SparseSolverBase Base; - using Base::derived; - using Base::m_isInitialized; - public: - using Base::_solve_impl; - - typedef typename internal::pastix_traits::MatrixType _MatrixType; - typedef _MatrixType MatrixType; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef typename MatrixType::StorageIndex StorageIndex; - typedef Matrix Vector; - typedef SparseMatrix ColSpMatrix; - enum { - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime - }; - - public: - - PastixBase() : m_initisOk(false), m_analysisIsOk(false), m_factorizationIsOk(false), m_pastixdata(0), m_size(0) - { - init(); - } - - ~PastixBase() - { - clean(); - } - - template - bool _solve_impl(const MatrixBase &b, MatrixBase &x) const; - - /** Returns a reference to the integer vector IPARM of PaStiX parameters - * to modify the default parameters. - * The statistics related to the different phases of factorization and solve are saved here as well - * \sa analyzePattern() factorize() - */ - Array& iparm() - { - return m_iparm; - } - - /** Return a reference to a particular index parameter of the IPARM vector - * \sa iparm() - */ - - int& iparm(int idxparam) - { - return m_iparm(idxparam); - } - - /** Returns a reference to the double vector DPARM of PaStiX parameters - * The statistics related to the different phases of factorization and solve are saved here as well - * \sa analyzePattern() factorize() - */ - Array& dparm() - { - return m_dparm; - } - - - /** Return a reference to a particular index parameter of the DPARM vector - * \sa dparm() - */ - double& dparm(int idxparam) - { - return m_dparm(idxparam); - } - - inline Index cols() const { return m_size; } - inline Index rows() const { return m_size; } - - /** \brief Reports whether previous computation was successful. - * - * \returns \c Success if computation was succesful, - * \c NumericalIssue if the PaStiX reports a problem - * \c InvalidInput if the input matrix is invalid - * - * \sa iparm() - */ - ComputationInfo info() const - { - eigen_assert(m_isInitialized && "Decomposition is not initialized."); - return m_info; - } - - protected: - - // Initialize the Pastix data structure, check the matrix - void init(); - - // Compute the ordering and the symbolic factorization - void analyzePattern(ColSpMatrix& mat); - - // Compute the numerical factorization - void factorize(ColSpMatrix& mat); - - // Free all the data allocated by Pastix - void clean() - { - eigen_assert(m_initisOk && "The Pastix structure should be allocated first"); - m_iparm(IPARM_START_TASK) = API_TASK_CLEAN; - m_iparm(IPARM_END_TASK) = API_TASK_CLEAN; - internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0, - m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data()); - } - - void compute(ColSpMatrix& mat); - - int m_initisOk; - int m_analysisIsOk; - int m_factorizationIsOk; - mutable ComputationInfo m_info; - mutable pastix_data_t *m_pastixdata; // Data structure for pastix - mutable int m_comm; // The MPI communicator identifier - mutable Array m_iparm; // integer vector for the input parameters - mutable Array m_dparm; // Scalar vector for the input parameters - mutable Matrix m_perm; // Permutation vector - mutable Matrix m_invp; // Inverse permutation vector - mutable int m_size; // Size of the matrix -}; - - /** Initialize the PaStiX data structure. - *A first call to this function fills iparm and dparm with the default PaStiX parameters - * \sa iparm() dparm() - */ -template -void PastixBase::init() -{ - m_size = 0; - m_iparm.setZero(IPARM_SIZE); - m_dparm.setZero(DPARM_SIZE); - - m_iparm(IPARM_MODIFY_PARAMETER) = API_NO; - pastix(&m_pastixdata, MPI_COMM_WORLD, - 0, 0, 0, 0, - 0, 0, 0, 1, m_iparm.data(), m_dparm.data()); - - m_iparm[IPARM_MATRIX_VERIFICATION] = API_NO; - m_iparm[IPARM_VERBOSE] = API_VERBOSE_NOT; - m_iparm[IPARM_ORDERING] = API_ORDER_SCOTCH; - m_iparm[IPARM_INCOMPLETE] = API_NO; - m_iparm[IPARM_OOC_LIMIT] = 2000; - m_iparm[IPARM_RHS_MAKING] = API_RHS_B; - m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO; - - m_iparm(IPARM_START_TASK) = API_TASK_INIT; - m_iparm(IPARM_END_TASK) = API_TASK_INIT; - internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, 0, 0, 0, (Scalar*)0, - 0, 0, 0, 0, m_iparm.data(), m_dparm.data()); - - // Check the returned error - if(m_iparm(IPARM_ERROR_NUMBER)) { - m_info = InvalidInput; - m_initisOk = false; - } - else { - m_info = Success; - m_initisOk = true; - } -} - -template -void PastixBase::compute(ColSpMatrix& mat) -{ - eigen_assert(mat.rows() == mat.cols() && "The input matrix should be squared"); - - analyzePattern(mat); - factorize(mat); - - m_iparm(IPARM_MATRIX_VERIFICATION) = API_NO; -} - - -template -void PastixBase::analyzePattern(ColSpMatrix& mat) -{ - eigen_assert(m_initisOk && "The initialization of PaSTiX failed"); - - // clean previous calls - if(m_size>0) - clean(); - - m_size = internal::convert_index(mat.rows()); - m_perm.resize(m_size); - m_invp.resize(m_size); - - m_iparm(IPARM_START_TASK) = API_TASK_ORDERING; - m_iparm(IPARM_END_TASK) = API_TASK_ANALYSE; - internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(), - mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data()); - - // Check the returned error - if(m_iparm(IPARM_ERROR_NUMBER)) - { - m_info = NumericalIssue; - m_analysisIsOk = false; - } - else - { - m_info = Success; - m_analysisIsOk = true; - } -} - -template -void PastixBase::factorize(ColSpMatrix& mat) -{ -// if(&m_cpyMat != &mat) m_cpyMat = mat; - eigen_assert(m_analysisIsOk && "The analysis phase should be called before the factorization phase"); - m_iparm(IPARM_START_TASK) = API_TASK_NUMFACT; - m_iparm(IPARM_END_TASK) = API_TASK_NUMFACT; - m_size = internal::convert_index(mat.rows()); - - internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, m_size, mat.outerIndexPtr(), mat.innerIndexPtr(), - mat.valuePtr(), m_perm.data(), m_invp.data(), 0, 0, m_iparm.data(), m_dparm.data()); - - // Check the returned error - if(m_iparm(IPARM_ERROR_NUMBER)) - { - m_info = NumericalIssue; - m_factorizationIsOk = false; - m_isInitialized = false; - } - else - { - m_info = Success; - m_factorizationIsOk = true; - m_isInitialized = true; - } -} - -/* Solve the system */ -template -template -bool PastixBase::_solve_impl(const MatrixBase &b, MatrixBase &x) const -{ - eigen_assert(m_isInitialized && "The matrix should be factorized first"); - EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0, - THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); - int rhs = 1; - - x = b; /* on return, x is overwritten by the computed solution */ - - for (int i = 0; i < b.cols(); i++){ - m_iparm[IPARM_START_TASK] = API_TASK_SOLVE; - m_iparm[IPARM_END_TASK] = API_TASK_REFINE; - - internal::eigen_pastix(&m_pastixdata, MPI_COMM_WORLD, internal::convert_index(x.rows()), 0, 0, 0, - m_perm.data(), m_invp.data(), &x(0, i), rhs, m_iparm.data(), m_dparm.data()); - } - - // Check the returned error - m_info = m_iparm(IPARM_ERROR_NUMBER)==0 ? Success : NumericalIssue; - - return m_iparm(IPARM_ERROR_NUMBER)==0; -} - -/** \ingroup PaStiXSupport_Module - * \class PastixLU - * \brief Sparse direct LU solver based on PaStiX library - * - * This class is used to solve the linear systems A.X = B with a supernodal LU - * factorization in the PaStiX library. The matrix A should be squared and nonsingular - * PaStiX requires that the matrix A has a symmetric structural pattern. - * This interface can symmetrize the input matrix otherwise. - * The vectors or matrices X and B can be either dense or sparse. - * - * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> - * \tparam IsStrSym Indicates if the input matrix has a symmetric pattern, default is false - * NOTE : Note that if the analysis and factorization phase are called separately, - * the input matrix will be symmetrized at each call, hence it is advised to - * symmetrize the matrix in a end-user program and set \p IsStrSym to true - * - * \implsparsesolverconcept - * - * \sa \ref TutorialSparseSolverConcept, class SparseLU - * - */ -template -class PastixLU : public PastixBase< PastixLU<_MatrixType> > -{ - public: - typedef _MatrixType MatrixType; - typedef PastixBase > Base; - typedef typename Base::ColSpMatrix ColSpMatrix; - typedef typename MatrixType::StorageIndex StorageIndex; - - public: - PastixLU() : Base() - { - init(); - } - - explicit PastixLU(const MatrixType& matrix):Base() - { - init(); - compute(matrix); - } - /** Compute the LU supernodal factorization of \p matrix. - * iparm and dparm can be used to tune the PaStiX parameters. - * see the PaStiX user's manual - * \sa analyzePattern() factorize() - */ - void compute (const MatrixType& matrix) - { - m_structureIsUptodate = false; - ColSpMatrix temp; - grabMatrix(matrix, temp); - Base::compute(temp); - } - /** Compute the LU symbolic factorization of \p matrix using its sparsity pattern. - * Several ordering methods can be used at this step. See the PaStiX user's manual. - * The result of this operation can be used with successive matrices having the same pattern as \p matrix - * \sa factorize() - */ - void analyzePattern(const MatrixType& matrix) - { - m_structureIsUptodate = false; - ColSpMatrix temp; - grabMatrix(matrix, temp); - Base::analyzePattern(temp); - } - - /** Compute the LU supernodal factorization of \p matrix - * WARNING The matrix \p matrix should have the same structural pattern - * as the same used in the analysis phase. - * \sa analyzePattern() - */ - void factorize(const MatrixType& matrix) - { - ColSpMatrix temp; - grabMatrix(matrix, temp); - Base::factorize(temp); - } - protected: - - void init() - { - m_structureIsUptodate = false; - m_iparm(IPARM_SYM) = API_SYM_NO; - m_iparm(IPARM_FACTORIZATION) = API_FACT_LU; - } - - void grabMatrix(const MatrixType& matrix, ColSpMatrix& out) - { - if(IsStrSym) - out = matrix; - else - { - if(!m_structureIsUptodate) - { - // update the transposed structure - m_transposedStructure = matrix.transpose(); - - // Set the elements of the matrix to zero - for (Index j=0; j - * \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX - * - * \implsparsesolverconcept - * - * \sa \ref TutorialSparseSolverConcept, class SimplicialLLT - */ -template -class PastixLLT : public PastixBase< PastixLLT<_MatrixType, _UpLo> > -{ - public: - typedef _MatrixType MatrixType; - typedef PastixBase > Base; - typedef typename Base::ColSpMatrix ColSpMatrix; - - public: - enum { UpLo = _UpLo }; - PastixLLT() : Base() - { - init(); - } - - explicit PastixLLT(const MatrixType& matrix):Base() - { - init(); - compute(matrix); - } - - /** Compute the L factor of the LL^T supernodal factorization of \p matrix - * \sa analyzePattern() factorize() - */ - void compute (const MatrixType& matrix) - { - ColSpMatrix temp; - grabMatrix(matrix, temp); - Base::compute(temp); - } - - /** Compute the LL^T symbolic factorization of \p matrix using its sparsity pattern - * The result of this operation can be used with successive matrices having the same pattern as \p matrix - * \sa factorize() - */ - void analyzePattern(const MatrixType& matrix) - { - ColSpMatrix temp; - grabMatrix(matrix, temp); - Base::analyzePattern(temp); - } - /** Compute the LL^T supernodal numerical factorization of \p matrix - * \sa analyzePattern() - */ - void factorize(const MatrixType& matrix) - { - ColSpMatrix temp; - grabMatrix(matrix, temp); - Base::factorize(temp); - } - protected: - using Base::m_iparm; - - void init() - { - m_iparm(IPARM_SYM) = API_SYM_YES; - m_iparm(IPARM_FACTORIZATION) = API_FACT_LLT; - } - - void grabMatrix(const MatrixType& matrix, ColSpMatrix& out) - { - out.resize(matrix.rows(), matrix.cols()); - // Pastix supports only lower, column-major matrices - out.template selfadjointView() = matrix.template selfadjointView(); - internal::c_to_fortran_numbering(out); - } -}; - -/** \ingroup PaStiXSupport_Module - * \class PastixLDLT - * \brief A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library - * - * This class is used to solve the linear systems A.X = B via a LDL^T supernodal Cholesky factorization - * available in the PaStiX library. The matrix A should be symmetric and positive definite - * WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX - * The vectors or matrices X and B can be either dense or sparse - * - * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> - * \tparam UpLo The part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX - * - * \implsparsesolverconcept - * - * \sa \ref TutorialSparseSolverConcept, class SimplicialLDLT - */ -template -class PastixLDLT : public PastixBase< PastixLDLT<_MatrixType, _UpLo> > -{ - public: - typedef _MatrixType MatrixType; - typedef PastixBase > Base; - typedef typename Base::ColSpMatrix ColSpMatrix; - - public: - enum { UpLo = _UpLo }; - PastixLDLT():Base() - { - init(); - } - - explicit PastixLDLT(const MatrixType& matrix):Base() - { - init(); - compute(matrix); - } - - /** Compute the L and D factors of the LDL^T factorization of \p matrix - * \sa analyzePattern() factorize() - */ - void compute (const MatrixType& matrix) - { - ColSpMatrix temp; - grabMatrix(matrix, temp); - Base::compute(temp); - } - - /** Compute the LDL^T symbolic factorization of \p matrix using its sparsity pattern - * The result of this operation can be used with successive matrices having the same pattern as \p matrix - * \sa factorize() - */ - void analyzePattern(const MatrixType& matrix) - { - ColSpMatrix temp; - grabMatrix(matrix, temp); - Base::analyzePattern(temp); - } - /** Compute the LDL^T supernodal numerical factorization of \p matrix - * - */ - void factorize(const MatrixType& matrix) - { - ColSpMatrix temp; - grabMatrix(matrix, temp); - Base::factorize(temp); - } - - protected: - using Base::m_iparm; - - void init() - { - m_iparm(IPARM_SYM) = API_SYM_YES; - m_iparm(IPARM_FACTORIZATION) = API_FACT_LDLT; - } - - void grabMatrix(const MatrixType& matrix, ColSpMatrix& out) - { - // Pastix supports only lower, column-major matrices - out.resize(matrix.rows(), matrix.cols()); - out.template selfadjointView() = matrix.template selfadjointView(); - internal::c_to_fortran_numbering(out); - } -}; - -} // end namespace Eigen - -#endif diff --git a/src/math_meigen/Eigen/src/PardisoSupport/PardisoSupport.h b/src/math_meigen/Eigen/src/PardisoSupport/PardisoSupport.h deleted file mode 100755 index 091c3970e..000000000 --- a/src/math_meigen/Eigen/src/PardisoSupport/PardisoSupport.h +++ /dev/null @@ -1,543 +0,0 @@ -/* - Copyright (c) 2011, Intel Corporation. All rights reserved. - - Redistribution and use in source and binary forms, with or without modification, - are permitted provided that the following conditions are met: - - * Redistributions of source code must retain the above copyright notice, this - list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above copyright notice, - this list of conditions and the following disclaimer in the documentation - and/or other materials provided with the distribution. - * Neither the name of Intel Corporation nor the names of its contributors may - be used to endorse or promote products derived from this software without - specific prior written permission. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND - ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED - WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR - ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES - (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON - ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - - ******************************************************************************** - * Content : Eigen bindings to Intel(R) MKL PARDISO - ******************************************************************************** -*/ - -#ifndef EIGEN_PARDISOSUPPORT_H -#define EIGEN_PARDISOSUPPORT_H - -namespace Eigen { - -template class PardisoLU; -template class PardisoLLT; -template class PardisoLDLT; - -namespace internal -{ - template - struct pardiso_run_selector - { - static IndexType run( _MKL_DSS_HANDLE_t pt, IndexType maxfct, IndexType mnum, IndexType type, IndexType phase, IndexType n, void *a, - IndexType *ia, IndexType *ja, IndexType *perm, IndexType nrhs, IndexType *iparm, IndexType msglvl, void *b, void *x) - { - IndexType error = 0; - ::pardiso(pt, &maxfct, &mnum, &type, &phase, &n, a, ia, ja, perm, &nrhs, iparm, &msglvl, b, x, &error); - return error; - } - }; - template<> - struct pardiso_run_selector - { - typedef long long int IndexType; - static IndexType run( _MKL_DSS_HANDLE_t pt, IndexType maxfct, IndexType mnum, IndexType type, IndexType phase, IndexType n, void *a, - IndexType *ia, IndexType *ja, IndexType *perm, IndexType nrhs, IndexType *iparm, IndexType msglvl, void *b, void *x) - { - IndexType error = 0; - ::pardiso_64(pt, &maxfct, &mnum, &type, &phase, &n, a, ia, ja, perm, &nrhs, iparm, &msglvl, b, x, &error); - return error; - } - }; - - template struct pardiso_traits; - - template - struct pardiso_traits< PardisoLU<_MatrixType> > - { - typedef _MatrixType MatrixType; - typedef typename _MatrixType::Scalar Scalar; - typedef typename _MatrixType::RealScalar RealScalar; - typedef typename _MatrixType::StorageIndex StorageIndex; - }; - - template - struct pardiso_traits< PardisoLLT<_MatrixType, Options> > - { - typedef _MatrixType MatrixType; - typedef typename _MatrixType::Scalar Scalar; - typedef typename _MatrixType::RealScalar RealScalar; - typedef typename _MatrixType::StorageIndex StorageIndex; - }; - - template - struct pardiso_traits< PardisoLDLT<_MatrixType, Options> > - { - typedef _MatrixType MatrixType; - typedef typename _MatrixType::Scalar Scalar; - typedef typename _MatrixType::RealScalar RealScalar; - typedef typename _MatrixType::StorageIndex StorageIndex; - }; - -} // end namespace internal - -template -class PardisoImpl : public SparseSolverBase -{ - protected: - typedef SparseSolverBase Base; - using Base::derived; - using Base::m_isInitialized; - - typedef internal::pardiso_traits Traits; - public: - using Base::_solve_impl; - - typedef typename Traits::MatrixType MatrixType; - typedef typename Traits::Scalar Scalar; - typedef typename Traits::RealScalar RealScalar; - typedef typename Traits::StorageIndex StorageIndex; - typedef SparseMatrix SparseMatrixType; - typedef Matrix VectorType; - typedef Matrix IntRowVectorType; - typedef Matrix IntColVectorType; - typedef Array ParameterType; - enum { - ScalarIsComplex = NumTraits::IsComplex, - ColsAtCompileTime = Dynamic, - MaxColsAtCompileTime = Dynamic - }; - - PardisoImpl() - { - eigen_assert((sizeof(StorageIndex) >= sizeof(_INTEGER_t) && sizeof(StorageIndex) <= 8) && "Non-supported index type"); - m_iparm.setZero(); - m_msglvl = 0; // No output - m_isInitialized = false; - } - - ~PardisoImpl() - { - pardisoRelease(); - } - - inline Index cols() const { return m_size; } - inline Index rows() const { return m_size; } - - /** \brief Reports whether previous computation was successful. - * - * \returns \c Success if computation was succesful, - * \c NumericalIssue if the matrix appears to be negative. - */ - ComputationInfo info() const - { - eigen_assert(m_isInitialized && "Decomposition is not initialized."); - return m_info; - } - - /** \warning for advanced usage only. - * \returns a reference to the parameter array controlling PARDISO. - * See the PARDISO manual to know how to use it. */ - ParameterType& pardisoParameterArray() - { - return m_iparm; - } - - /** Performs a symbolic decomposition on the sparcity of \a matrix. - * - * This function is particularly useful when solving for several problems having the same structure. - * - * \sa factorize() - */ - Derived& analyzePattern(const MatrixType& matrix); - - /** Performs a numeric decomposition of \a matrix - * - * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. - * - * \sa analyzePattern() - */ - Derived& factorize(const MatrixType& matrix); - - Derived& compute(const MatrixType& matrix); - - template - void _solve_impl(const MatrixBase &b, MatrixBase &dest) const; - - protected: - void pardisoRelease() - { - if(m_isInitialized) // Factorization ran at least once - { - internal::pardiso_run_selector::run(m_pt, 1, 1, m_type, -1, internal::convert_index(m_size),0, 0, 0, m_perm.data(), 0, - m_iparm.data(), m_msglvl, NULL, NULL); - m_isInitialized = false; - } - } - - void pardisoInit(int type) - { - m_type = type; - bool symmetric = std::abs(m_type) < 10; - m_iparm[0] = 1; // No solver default - m_iparm[1] = 2; // use Metis for the ordering - m_iparm[2] = 0; // Reserved. Set to zero. (??Numbers of processors, value of OMP_NUM_THREADS??) - m_iparm[3] = 0; // No iterative-direct algorithm - m_iparm[4] = 0; // No user fill-in reducing permutation - m_iparm[5] = 0; // Write solution into x, b is left unchanged - m_iparm[6] = 0; // Not in use - m_iparm[7] = 2; // Max numbers of iterative refinement steps - m_iparm[8] = 0; // Not in use - m_iparm[9] = 13; // Perturb the pivot elements with 1E-13 - m_iparm[10] = symmetric ? 0 : 1; // Use nonsymmetric permutation and scaling MPS - m_iparm[11] = 0; // Not in use - m_iparm[12] = symmetric ? 0 : 1; // Maximum weighted matching algorithm is switched-off (default for symmetric). - // Try m_iparm[12] = 1 in case of inappropriate accuracy - m_iparm[13] = 0; // Output: Number of perturbed pivots - m_iparm[14] = 0; // Not in use - m_iparm[15] = 0; // Not in use - m_iparm[16] = 0; // Not in use - m_iparm[17] = -1; // Output: Number of nonzeros in the factor LU - m_iparm[18] = -1; // Output: Mflops for LU factorization - m_iparm[19] = 0; // Output: Numbers of CG Iterations - - m_iparm[20] = 0; // 1x1 pivoting - m_iparm[26] = 0; // No matrix checker - m_iparm[27] = (sizeof(RealScalar) == 4) ? 1 : 0; - m_iparm[34] = 1; // C indexing - m_iparm[36] = 0; // CSR - m_iparm[59] = 0; // 0 - In-Core ; 1 - Automatic switch between In-Core and Out-of-Core modes ; 2 - Out-of-Core - - memset(m_pt, 0, sizeof(m_pt)); - } - - protected: - // cached data to reduce reallocation, etc. - - void manageErrorCode(Index error) const - { - switch(error) - { - case 0: - m_info = Success; - break; - case -4: - case -7: - m_info = NumericalIssue; - break; - default: - m_info = InvalidInput; - } - } - - mutable SparseMatrixType m_matrix; - mutable ComputationInfo m_info; - bool m_analysisIsOk, m_factorizationIsOk; - StorageIndex m_type, m_msglvl; - mutable void *m_pt[64]; - mutable ParameterType m_iparm; - mutable IntColVectorType m_perm; - Index m_size; - -}; - -template -Derived& PardisoImpl::compute(const MatrixType& a) -{ - m_size = a.rows(); - eigen_assert(a.rows() == a.cols()); - - pardisoRelease(); - m_perm.setZero(m_size); - derived().getMatrix(a); - - Index error; - error = internal::pardiso_run_selector::run(m_pt, 1, 1, m_type, 12, internal::convert_index(m_size), - m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(), - m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL); - manageErrorCode(error); - m_analysisIsOk = true; - m_factorizationIsOk = true; - m_isInitialized = true; - return derived(); -} - -template -Derived& PardisoImpl::analyzePattern(const MatrixType& a) -{ - m_size = a.rows(); - eigen_assert(m_size == a.cols()); - - pardisoRelease(); - m_perm.setZero(m_size); - derived().getMatrix(a); - - Index error; - error = internal::pardiso_run_selector::run(m_pt, 1, 1, m_type, 11, internal::convert_index(m_size), - m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(), - m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL); - - manageErrorCode(error); - m_analysisIsOk = true; - m_factorizationIsOk = false; - m_isInitialized = true; - return derived(); -} - -template -Derived& PardisoImpl::factorize(const MatrixType& a) -{ - eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); - eigen_assert(m_size == a.rows() && m_size == a.cols()); - - derived().getMatrix(a); - - Index error; - error = internal::pardiso_run_selector::run(m_pt, 1, 1, m_type, 22, internal::convert_index(m_size), - m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(), - m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL); - - manageErrorCode(error); - m_factorizationIsOk = true; - return derived(); -} - -template -template -void PardisoImpl::_solve_impl(const MatrixBase &b, MatrixBase& x) const -{ - if(m_iparm[0] == 0) // Factorization was not computed - { - m_info = InvalidInput; - return; - } - - //Index n = m_matrix.rows(); - Index nrhs = Index(b.cols()); - eigen_assert(m_size==b.rows()); - eigen_assert(((MatrixBase::Flags & RowMajorBit) == 0 || nrhs == 1) && "Row-major right hand sides are not supported"); - eigen_assert(((MatrixBase::Flags & RowMajorBit) == 0 || nrhs == 1) && "Row-major matrices of unknowns are not supported"); - eigen_assert(((nrhs == 1) || b.outerStride() == b.rows())); - - -// switch (transposed) { -// case SvNoTrans : m_iparm[11] = 0 ; break; -// case SvTranspose : m_iparm[11] = 2 ; break; -// case SvAdjoint : m_iparm[11] = 1 ; break; -// default: -// //std::cerr << "Eigen: transposition option \"" << transposed << "\" not supported by the PARDISO backend\n"; -// m_iparm[11] = 0; -// } - - Scalar* rhs_ptr = const_cast(b.derived().data()); - Matrix tmp; - - // Pardiso cannot solve in-place - if(rhs_ptr == x.derived().data()) - { - tmp = b; - rhs_ptr = tmp.data(); - } - - Index error; - error = internal::pardiso_run_selector::run(m_pt, 1, 1, m_type, 33, internal::convert_index(m_size), - m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(), - m_perm.data(), internal::convert_index(nrhs), m_iparm.data(), m_msglvl, - rhs_ptr, x.derived().data()); - - manageErrorCode(error); -} - - -/** \ingroup PardisoSupport_Module - * \class PardisoLU - * \brief A sparse direct LU factorization and solver based on the PARDISO library - * - * This class allows to solve for A.X = B sparse linear problems via a direct LU factorization - * using the Intel MKL PARDISO library. The sparse matrix A must be squared and invertible. - * The vectors or matrices X and B can be either dense or sparse. - * - * By default, it runs in in-core mode. To enable PARDISO's out-of-core feature, set: - * \code solver.pardisoParameterArray()[59] = 1; \endcode - * - * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> - * - * \implsparsesolverconcept - * - * \sa \ref TutorialSparseSolverConcept, class SparseLU - */ -template -class PardisoLU : public PardisoImpl< PardisoLU > -{ - protected: - typedef PardisoImpl Base; - typedef typename Base::Scalar Scalar; - typedef typename Base::RealScalar RealScalar; - using Base::pardisoInit; - using Base::m_matrix; - friend class PardisoImpl< PardisoLU >; - - public: - - using Base::compute; - using Base::solve; - - PardisoLU() - : Base() - { - pardisoInit(Base::ScalarIsComplex ? 13 : 11); - } - - explicit PardisoLU(const MatrixType& matrix) - : Base() - { - pardisoInit(Base::ScalarIsComplex ? 13 : 11); - compute(matrix); - } - protected: - void getMatrix(const MatrixType& matrix) - { - m_matrix = matrix; - m_matrix.makeCompressed(); - } -}; - -/** \ingroup PardisoSupport_Module - * \class PardisoLLT - * \brief A sparse direct Cholesky (LLT) factorization and solver based on the PARDISO library - * - * This class allows to solve for A.X = B sparse linear problems via a LL^T Cholesky factorization - * using the Intel MKL PARDISO library. The sparse matrix A must be selfajoint and positive definite. - * The vectors or matrices X and B can be either dense or sparse. - * - * By default, it runs in in-core mode. To enable PARDISO's out-of-core feature, set: - * \code solver.pardisoParameterArray()[59] = 1; \endcode - * - * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> - * \tparam UpLo can be any bitwise combination of Upper, Lower. The default is Upper, meaning only the upper triangular part has to be used. - * Upper|Lower can be used to tell both triangular parts can be used as input. - * - * \implsparsesolverconcept - * - * \sa \ref TutorialSparseSolverConcept, class SimplicialLLT - */ -template -class PardisoLLT : public PardisoImpl< PardisoLLT > -{ - protected: - typedef PardisoImpl< PardisoLLT > Base; - typedef typename Base::Scalar Scalar; - typedef typename Base::RealScalar RealScalar; - using Base::pardisoInit; - using Base::m_matrix; - friend class PardisoImpl< PardisoLLT >; - - public: - - typedef typename Base::StorageIndex StorageIndex; - enum { UpLo = _UpLo }; - using Base::compute; - - PardisoLLT() - : Base() - { - pardisoInit(Base::ScalarIsComplex ? 4 : 2); - } - - explicit PardisoLLT(const MatrixType& matrix) - : Base() - { - pardisoInit(Base::ScalarIsComplex ? 4 : 2); - compute(matrix); - } - - protected: - - void getMatrix(const MatrixType& matrix) - { - // PARDISO supports only upper, row-major matrices - PermutationMatrix p_null; - m_matrix.resize(matrix.rows(), matrix.cols()); - m_matrix.template selfadjointView() = matrix.template selfadjointView().twistedBy(p_null); - m_matrix.makeCompressed(); - } -}; - -/** \ingroup PardisoSupport_Module - * \class PardisoLDLT - * \brief A sparse direct Cholesky (LDLT) factorization and solver based on the PARDISO library - * - * This class allows to solve for A.X = B sparse linear problems via a LDL^T Cholesky factorization - * using the Intel MKL PARDISO library. The sparse matrix A is assumed to be selfajoint and positive definite. - * For complex matrices, A can also be symmetric only, see the \a Options template parameter. - * The vectors or matrices X and B can be either dense or sparse. - * - * By default, it runs in in-core mode. To enable PARDISO's out-of-core feature, set: - * \code solver.pardisoParameterArray()[59] = 1; \endcode - * - * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> - * \tparam Options can be any bitwise combination of Upper, Lower, and Symmetric. The default is Upper, meaning only the upper triangular part has to be used. - * Symmetric can be used for symmetric, non-selfadjoint complex matrices, the default being to assume a selfadjoint matrix. - * Upper|Lower can be used to tell both triangular parts can be used as input. - * - * \implsparsesolverconcept - * - * \sa \ref TutorialSparseSolverConcept, class SimplicialLDLT - */ -template -class PardisoLDLT : public PardisoImpl< PardisoLDLT > -{ - protected: - typedef PardisoImpl< PardisoLDLT > Base; - typedef typename Base::Scalar Scalar; - typedef typename Base::RealScalar RealScalar; - using Base::pardisoInit; - using Base::m_matrix; - friend class PardisoImpl< PardisoLDLT >; - - public: - - typedef typename Base::StorageIndex StorageIndex; - using Base::compute; - enum { UpLo = Options&(Upper|Lower) }; - - PardisoLDLT() - : Base() - { - pardisoInit(Base::ScalarIsComplex ? ( bool(Options&Symmetric) ? 6 : -4 ) : -2); - } - - explicit PardisoLDLT(const MatrixType& matrix) - : Base() - { - pardisoInit(Base::ScalarIsComplex ? ( bool(Options&Symmetric) ? 6 : -4 ) : -2); - compute(matrix); - } - - void getMatrix(const MatrixType& matrix) - { - // PARDISO supports only upper, row-major matrices - PermutationMatrix p_null; - m_matrix.resize(matrix.rows(), matrix.cols()); - m_matrix.template selfadjointView() = matrix.template selfadjointView().twistedBy(p_null); - m_matrix.makeCompressed(); - } -}; - -} // end namespace Eigen - -#endif // EIGEN_PARDISOSUPPORT_H diff --git a/src/math_meigen/Eigen/src/QR/ColPivHouseholderQR.h b/src/math_meigen/Eigen/src/QR/ColPivHouseholderQR.h deleted file mode 100755 index a7b47d55d..000000000 --- a/src/math_meigen/Eigen/src/QR/ColPivHouseholderQR.h +++ /dev/null @@ -1,653 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2009 Gael Guennebaud -// Copyright (C) 2009 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H -#define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H - -namespace Eigen { - -namespace internal { -template struct traits > - : traits<_MatrixType> -{ - enum { Flags = 0 }; -}; - -} // end namespace internal - -/** \ingroup QR_Module - * - * \class ColPivHouseholderQR - * - * \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting - * - * \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition - * - * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R - * such that - * \f[ - * \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R} - * \f] - * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an - * upper triangular matrix. - * - * This decomposition performs column pivoting in order to be rank-revealing and improve - * numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR. - * - * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. - * - * \sa MatrixBase::colPivHouseholderQr() - */ -template class ColPivHouseholderQR -{ - public: - - typedef _MatrixType MatrixType; - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime - }; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - // FIXME should be int - typedef typename MatrixType::StorageIndex StorageIndex; - typedef typename internal::plain_diag_type::type HCoeffsType; - typedef PermutationMatrix PermutationType; - typedef typename internal::plain_row_type::type IntRowVectorType; - typedef typename internal::plain_row_type::type RowVectorType; - typedef typename internal::plain_row_type::type RealRowVectorType; - typedef HouseholderSequence::type> HouseholderSequenceType; - typedef typename MatrixType::PlainObject PlainObject; - - private: - - typedef typename PermutationType::StorageIndex PermIndexType; - - public: - - /** - * \brief Default Constructor. - * - * The default constructor is useful in cases in which the user intends to - * perform decompositions via ColPivHouseholderQR::compute(const MatrixType&). - */ - ColPivHouseholderQR() - : m_qr(), - m_hCoeffs(), - m_colsPermutation(), - m_colsTranspositions(), - m_temp(), - m_colNormsUpdated(), - m_colNormsDirect(), - m_isInitialized(false), - m_usePrescribedThreshold(false) {} - - /** \brief Default Constructor with memory preallocation - * - * Like the default constructor but with preallocation of the internal data - * according to the specified problem \a size. - * \sa ColPivHouseholderQR() - */ - ColPivHouseholderQR(Index rows, Index cols) - : m_qr(rows, cols), - m_hCoeffs((std::min)(rows,cols)), - m_colsPermutation(PermIndexType(cols)), - m_colsTranspositions(cols), - m_temp(cols), - m_colNormsUpdated(cols), - m_colNormsDirect(cols), - m_isInitialized(false), - m_usePrescribedThreshold(false) {} - - /** \brief Constructs a QR factorization from a given matrix - * - * This constructor computes the QR factorization of the matrix \a matrix by calling - * the method compute(). It is a short cut for: - * - * \code - * ColPivHouseholderQR qr(matrix.rows(), matrix.cols()); - * qr.compute(matrix); - * \endcode - * - * \sa compute() - */ - template - explicit ColPivHouseholderQR(const EigenBase& matrix) - : m_qr(matrix.rows(), matrix.cols()), - m_hCoeffs((std::min)(matrix.rows(),matrix.cols())), - m_colsPermutation(PermIndexType(matrix.cols())), - m_colsTranspositions(matrix.cols()), - m_temp(matrix.cols()), - m_colNormsUpdated(matrix.cols()), - m_colNormsDirect(matrix.cols()), - m_isInitialized(false), - m_usePrescribedThreshold(false) - { - compute(matrix.derived()); - } - - /** \brief Constructs a QR factorization from a given matrix - * - * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. - * - * \sa ColPivHouseholderQR(const EigenBase&) - */ - template - explicit ColPivHouseholderQR(EigenBase& matrix) - : m_qr(matrix.derived()), - m_hCoeffs((std::min)(matrix.rows(),matrix.cols())), - m_colsPermutation(PermIndexType(matrix.cols())), - m_colsTranspositions(matrix.cols()), - m_temp(matrix.cols()), - m_colNormsUpdated(matrix.cols()), - m_colNormsDirect(matrix.cols()), - m_isInitialized(false), - m_usePrescribedThreshold(false) - { - computeInPlace(); - } - - /** This method finds a solution x to the equation Ax=b, where A is the matrix of which - * *this is the QR decomposition, if any exists. - * - * \param b the right-hand-side of the equation to solve. - * - * \returns a solution. - * - * \note_about_checking_solutions - * - * \note_about_arbitrary_choice_of_solution - * - * Example: \include ColPivHouseholderQR_solve.cpp - * Output: \verbinclude ColPivHouseholderQR_solve.out - */ - template - inline const Solve - solve(const MatrixBase& b) const - { - eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); - return Solve(*this, b.derived()); - } - - HouseholderSequenceType householderQ() const; - HouseholderSequenceType matrixQ() const - { - return householderQ(); - } - - /** \returns a reference to the matrix where the Householder QR decomposition is stored - */ - const MatrixType& matrixQR() const - { - eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); - return m_qr; - } - - /** \returns a reference to the matrix where the result Householder QR is stored - * \warning The strict lower part of this matrix contains internal values. - * Only the upper triangular part should be referenced. To get it, use - * \code matrixR().template triangularView() \endcode - * For rank-deficient matrices, use - * \code - * matrixR().topLeftCorner(rank(), rank()).template triangularView() - * \endcode - */ - const MatrixType& matrixR() const - { - eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); - return m_qr; - } - - template - ColPivHouseholderQR& compute(const EigenBase& matrix); - - /** \returns a const reference to the column permutation matrix */ - const PermutationType& colsPermutation() const - { - eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); - return m_colsPermutation; - } - - /** \returns the absolute value of the determinant of the matrix of which - * *this is the QR decomposition. It has only linear complexity - * (that is, O(n) where n is the dimension of the square matrix) - * as the QR decomposition has already been computed. - * - * \note This is only for square matrices. - * - * \warning a determinant can be very big or small, so for matrices - * of large enough dimension, there is a risk of overflow/underflow. - * One way to work around that is to use logAbsDeterminant() instead. - * - * \sa logAbsDeterminant(), MatrixBase::determinant() - */ - typename MatrixType::RealScalar absDeterminant() const; - - /** \returns the natural log of the absolute value of the determinant of the matrix of which - * *this is the QR decomposition. It has only linear complexity - * (that is, O(n) where n is the dimension of the square matrix) - * as the QR decomposition has already been computed. - * - * \note This is only for square matrices. - * - * \note This method is useful to work around the risk of overflow/underflow that's inherent - * to determinant computation. - * - * \sa absDeterminant(), MatrixBase::determinant() - */ - typename MatrixType::RealScalar logAbsDeterminant() const; - - /** \returns the rank of the matrix of which *this is the QR decomposition. - * - * \note This method has to determine which pivots should be considered nonzero. - * For that, it uses the threshold value that you can control by calling - * setThreshold(const RealScalar&). - */ - inline Index rank() const - { - using std::abs; - eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); - RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); - Index result = 0; - for(Index i = 0; i < m_nonzero_pivots; ++i) - result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold); - return result; - } - - /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition. - * - * \note This method has to determine which pivots should be considered nonzero. - * For that, it uses the threshold value that you can control by calling - * setThreshold(const RealScalar&). - */ - inline Index dimensionOfKernel() const - { - eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); - return cols() - rank(); - } - - /** \returns true if the matrix of which *this is the QR decomposition represents an injective - * linear map, i.e. has trivial kernel; false otherwise. - * - * \note This method has to determine which pivots should be considered nonzero. - * For that, it uses the threshold value that you can control by calling - * setThreshold(const RealScalar&). - */ - inline bool isInjective() const - { - eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); - return rank() == cols(); - } - - /** \returns true if the matrix of which *this is the QR decomposition represents a surjective - * linear map; false otherwise. - * - * \note This method has to determine which pivots should be considered nonzero. - * For that, it uses the threshold value that you can control by calling - * setThreshold(const RealScalar&). - */ - inline bool isSurjective() const - { - eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); - return rank() == rows(); - } - - /** \returns true if the matrix of which *this is the QR decomposition is invertible. - * - * \note This method has to determine which pivots should be considered nonzero. - * For that, it uses the threshold value that you can control by calling - * setThreshold(const RealScalar&). - */ - inline bool isInvertible() const - { - eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); - return isInjective() && isSurjective(); - } - - /** \returns the inverse of the matrix of which *this is the QR decomposition. - * - * \note If this matrix is not invertible, the returned matrix has undefined coefficients. - * Use isInvertible() to first determine whether this matrix is invertible. - */ - inline const Inverse inverse() const - { - eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); - return Inverse(*this); - } - - inline Index rows() const { return m_qr.rows(); } - inline Index cols() const { return m_qr.cols(); } - - /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q. - * - * For advanced uses only. - */ - const HCoeffsType& hCoeffs() const { return m_hCoeffs; } - - /** Allows to prescribe a threshold to be used by certain methods, such as rank(), - * who need to determine when pivots are to be considered nonzero. This is not used for the - * QR decomposition itself. - * - * When it needs to get the threshold value, Eigen calls threshold(). By default, this - * uses a formula to automatically determine a reasonable threshold. - * Once you have called the present method setThreshold(const RealScalar&), - * your value is used instead. - * - * \param threshold The new value to use as the threshold. - * - * A pivot will be considered nonzero if its absolute value is strictly greater than - * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ - * where maxpivot is the biggest pivot. - * - * If you want to come back to the default behavior, call setThreshold(Default_t) - */ - ColPivHouseholderQR& setThreshold(const RealScalar& threshold) - { - m_usePrescribedThreshold = true; - m_prescribedThreshold = threshold; - return *this; - } - - /** Allows to come back to the default behavior, letting Eigen use its default formula for - * determining the threshold. - * - * You should pass the special object Eigen::Default as parameter here. - * \code qr.setThreshold(Eigen::Default); \endcode - * - * See the documentation of setThreshold(const RealScalar&). - */ - ColPivHouseholderQR& setThreshold(Default_t) - { - m_usePrescribedThreshold = false; - return *this; - } - - /** Returns the threshold that will be used by certain methods such as rank(). - * - * See the documentation of setThreshold(const RealScalar&). - */ - RealScalar threshold() const - { - eigen_assert(m_isInitialized || m_usePrescribedThreshold); - return m_usePrescribedThreshold ? m_prescribedThreshold - // this formula comes from experimenting (see "LU precision tuning" thread on the list) - // and turns out to be identical to Higham's formula used already in LDLt. - : NumTraits::epsilon() * RealScalar(m_qr.diagonalSize()); - } - - /** \returns the number of nonzero pivots in the QR decomposition. - * Here nonzero is meant in the exact sense, not in a fuzzy sense. - * So that notion isn't really intrinsically interesting, but it is - * still useful when implementing algorithms. - * - * \sa rank() - */ - inline Index nonzeroPivots() const - { - eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); - return m_nonzero_pivots; - } - - /** \returns the absolute value of the biggest pivot, i.e. the biggest - * diagonal coefficient of R. - */ - RealScalar maxPivot() const { return m_maxpivot; } - - /** \brief Reports whether the QR factorization was succesful. - * - * \note This function always returns \c Success. It is provided for compatibility - * with other factorization routines. - * \returns \c Success - */ - ComputationInfo info() const - { - eigen_assert(m_isInitialized && "Decomposition is not initialized."); - return Success; - } - - #ifndef EIGEN_PARSED_BY_DOXYGEN - template - EIGEN_DEVICE_FUNC - void _solve_impl(const RhsType &rhs, DstType &dst) const; - #endif - - protected: - - friend class CompleteOrthogonalDecomposition; - - static void check_template_parameters() - { - EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); - } - - void computeInPlace(); - - MatrixType m_qr; - HCoeffsType m_hCoeffs; - PermutationType m_colsPermutation; - IntRowVectorType m_colsTranspositions; - RowVectorType m_temp; - RealRowVectorType m_colNormsUpdated; - RealRowVectorType m_colNormsDirect; - bool m_isInitialized, m_usePrescribedThreshold; - RealScalar m_prescribedThreshold, m_maxpivot; - Index m_nonzero_pivots; - Index m_det_pq; -}; - -template -typename MatrixType::RealScalar ColPivHouseholderQR::absDeterminant() const -{ - using std::abs; - eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); - eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); - return abs(m_qr.diagonal().prod()); -} - -template -typename MatrixType::RealScalar ColPivHouseholderQR::logAbsDeterminant() const -{ - eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); - eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); - return m_qr.diagonal().cwiseAbs().array().log().sum(); -} - -/** Performs the QR factorization of the given matrix \a matrix. The result of - * the factorization is stored into \c *this, and a reference to \c *this - * is returned. - * - * \sa class ColPivHouseholderQR, ColPivHouseholderQR(const MatrixType&) - */ -template -template -ColPivHouseholderQR& ColPivHouseholderQR::compute(const EigenBase& matrix) -{ - m_qr = matrix.derived(); - computeInPlace(); - return *this; -} - -template -void ColPivHouseholderQR::computeInPlace() -{ - check_template_parameters(); - - // the column permutation is stored as int indices, so just to be sure: - eigen_assert(m_qr.cols()<=NumTraits::highest()); - - using std::abs; - - Index rows = m_qr.rows(); - Index cols = m_qr.cols(); - Index size = m_qr.diagonalSize(); - - m_hCoeffs.resize(size); - - m_temp.resize(cols); - - m_colsTranspositions.resize(m_qr.cols()); - Index number_of_transpositions = 0; - - m_colNormsUpdated.resize(cols); - m_colNormsDirect.resize(cols); - for (Index k = 0; k < cols; ++k) { - // colNormsDirect(k) caches the most recent directly computed norm of - // column k. - m_colNormsDirect.coeffRef(k) = m_qr.col(k).norm(); - m_colNormsUpdated.coeffRef(k) = m_colNormsDirect.coeffRef(k); - } - - RealScalar threshold_helper = numext::abs2(m_colNormsUpdated.maxCoeff() * NumTraits::epsilon()) / RealScalar(rows); - RealScalar norm_downdate_threshold = numext::sqrt(NumTraits::epsilon()); - - m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) - m_maxpivot = RealScalar(0); - - for(Index k = 0; k < size; ++k) - { - // first, we look up in our table m_colNormsUpdated which column has the biggest norm - Index biggest_col_index; - RealScalar biggest_col_sq_norm = numext::abs2(m_colNormsUpdated.tail(cols-k).maxCoeff(&biggest_col_index)); - biggest_col_index += k; - - // Track the number of meaningful pivots but do not stop the decomposition to make - // sure that the initial matrix is properly reproduced. See bug 941. - if(m_nonzero_pivots==size && biggest_col_sq_norm < threshold_helper * RealScalar(rows-k)) - m_nonzero_pivots = k; - - // apply the transposition to the columns - m_colsTranspositions.coeffRef(k) = biggest_col_index; - if(k != biggest_col_index) { - m_qr.col(k).swap(m_qr.col(biggest_col_index)); - std::swap(m_colNormsUpdated.coeffRef(k), m_colNormsUpdated.coeffRef(biggest_col_index)); - std::swap(m_colNormsDirect.coeffRef(k), m_colNormsDirect.coeffRef(biggest_col_index)); - ++number_of_transpositions; - } - - // generate the householder vector, store it below the diagonal - RealScalar beta; - m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta); - - // apply the householder transformation to the diagonal coefficient - m_qr.coeffRef(k,k) = beta; - - // remember the maximum absolute value of diagonal coefficients - if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta); - - // apply the householder transformation - m_qr.bottomRightCorner(rows-k, cols-k-1) - .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1)); - - // update our table of norms of the columns - for (Index j = k + 1; j < cols; ++j) { - // The following implements the stable norm downgrade step discussed in - // http://www.netlib.org/lapack/lawnspdf/lawn176.pdf - // and used in LAPACK routines xGEQPF and xGEQP3. - // See lines 278-297 in http://www.netlib.org/lapack/explore-html/dc/df4/sgeqpf_8f_source.html - if (m_colNormsUpdated.coeffRef(j) != RealScalar(0)) { - RealScalar temp = abs(m_qr.coeffRef(k, j)) / m_colNormsUpdated.coeffRef(j); - temp = (RealScalar(1) + temp) * (RealScalar(1) - temp); - temp = temp < RealScalar(0) ? RealScalar(0) : temp; - RealScalar temp2 = temp * numext::abs2(m_colNormsUpdated.coeffRef(j) / - m_colNormsDirect.coeffRef(j)); - if (temp2 <= norm_downdate_threshold) { - // The updated norm has become too inaccurate so re-compute the column - // norm directly. - m_colNormsDirect.coeffRef(j) = m_qr.col(j).tail(rows - k - 1).norm(); - m_colNormsUpdated.coeffRef(j) = m_colNormsDirect.coeffRef(j); - } else { - m_colNormsUpdated.coeffRef(j) *= numext::sqrt(temp); - } - } - } - } - - m_colsPermutation.setIdentity(PermIndexType(cols)); - for(PermIndexType k = 0; k < size/*m_nonzero_pivots*/; ++k) - m_colsPermutation.applyTranspositionOnTheRight(k, PermIndexType(m_colsTranspositions.coeff(k))); - - m_det_pq = (number_of_transpositions%2) ? -1 : 1; - m_isInitialized = true; -} - -#ifndef EIGEN_PARSED_BY_DOXYGEN -template -template -void ColPivHouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const -{ - eigen_assert(rhs.rows() == rows()); - - const Index nonzero_pivots = nonzeroPivots(); - - if(nonzero_pivots == 0) - { - dst.setZero(); - return; - } - - typename RhsType::PlainObject c(rhs); - - // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T - c.applyOnTheLeft(householderSequence(m_qr, m_hCoeffs) - .setLength(nonzero_pivots) - .transpose() - ); - - m_qr.topLeftCorner(nonzero_pivots, nonzero_pivots) - .template triangularView() - .solveInPlace(c.topRows(nonzero_pivots)); - - for(Index i = 0; i < nonzero_pivots; ++i) dst.row(m_colsPermutation.indices().coeff(i)) = c.row(i); - for(Index i = nonzero_pivots; i < cols(); ++i) dst.row(m_colsPermutation.indices().coeff(i)).setZero(); -} -#endif - -namespace internal { - -template -struct Assignment >, internal::assign_op::Scalar>, Dense2Dense> -{ - typedef ColPivHouseholderQR QrType; - typedef Inverse SrcXprType; - static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) - { - dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); - } -}; - -} // end namespace internal - -/** \returns the matrix Q as a sequence of householder transformations. - * You can extract the meaningful part only by using: - * \code qr.householderQ().setLength(qr.nonzeroPivots()) \endcode*/ -template -typename ColPivHouseholderQR::HouseholderSequenceType ColPivHouseholderQR - ::householderQ() const -{ - eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); - return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()); -} - -/** \return the column-pivoting Householder QR decomposition of \c *this. - * - * \sa class ColPivHouseholderQR - */ -template -const ColPivHouseholderQR::PlainObject> -MatrixBase::colPivHouseholderQr() const -{ - return ColPivHouseholderQR(eval()); -} - -} // end namespace Eigen - -#endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_H diff --git a/src/math_meigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h b/src/math_meigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h deleted file mode 100755 index 4e9651f83..000000000 --- a/src/math_meigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +++ /dev/null @@ -1,97 +0,0 @@ -/* - Copyright (c) 2011, Intel Corporation. All rights reserved. - - Redistribution and use in source and binary forms, with or without modification, - are permitted provided that the following conditions are met: - - * Redistributions of source code must retain the above copyright notice, this - list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above copyright notice, - this list of conditions and the following disclaimer in the documentation - and/or other materials provided with the distribution. - * Neither the name of Intel Corporation nor the names of its contributors may - be used to endorse or promote products derived from this software without - specific prior written permission. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND - ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED - WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR - ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES - (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON - ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - - ******************************************************************************** - * Content : Eigen bindings to LAPACKe - * Householder QR decomposition of a matrix with column pivoting based on - * LAPACKE_?geqp3 function. - ******************************************************************************** -*/ - -#ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_LAPACKE_H -#define EIGEN_COLPIVOTINGHOUSEHOLDERQR_LAPACKE_H - -namespace Eigen { - -/** \internal Specialization for the data types supported by LAPACKe */ - -#define EIGEN_LAPACKE_QR_COLPIV(EIGTYPE, LAPACKE_TYPE, LAPACKE_PREFIX, EIGCOLROW, LAPACKE_COLROW) \ -template<> template inline \ -ColPivHouseholderQR >& \ -ColPivHouseholderQR >::compute( \ - const EigenBase& matrix) \ -\ -{ \ - using std::abs; \ - typedef Matrix MatrixType; \ - typedef MatrixType::RealScalar RealScalar; \ - Index rows = matrix.rows();\ - Index cols = matrix.cols();\ -\ - m_qr = matrix;\ - Index size = m_qr.diagonalSize();\ - m_hCoeffs.resize(size);\ -\ - m_colsTranspositions.resize(cols);\ - /*Index number_of_transpositions = 0;*/ \ -\ - m_nonzero_pivots = 0; \ - m_maxpivot = RealScalar(0);\ - m_colsPermutation.resize(cols); \ - m_colsPermutation.indices().setZero(); \ -\ - lapack_int lda = internal::convert_index(m_qr.outerStride()); \ - lapack_int matrix_order = LAPACKE_COLROW; \ - LAPACKE_##LAPACKE_PREFIX##geqp3( matrix_order, internal::convert_index(rows), internal::convert_index(cols), \ - (LAPACKE_TYPE*)m_qr.data(), lda, (lapack_int*)m_colsPermutation.indices().data(), (LAPACKE_TYPE*)m_hCoeffs.data()); \ - m_isInitialized = true; \ - m_maxpivot=m_qr.diagonal().cwiseAbs().maxCoeff(); \ - m_hCoeffs.adjointInPlace(); \ - RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); \ - lapack_int *perm = m_colsPermutation.indices().data(); \ - for(Index i=0;i premultiplied_threshold);\ - } \ - for(Index i=0;i -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H -#define EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H - -namespace Eigen { - -namespace internal { -template -struct traits > - : traits<_MatrixType> { - enum { Flags = 0 }; -}; - -} // end namespace internal - -/** \ingroup QR_Module - * - * \class CompleteOrthogonalDecomposition - * - * \brief Complete orthogonal decomposition (COD) of a matrix. - * - * \param MatrixType the type of the matrix of which we are computing the COD. - * - * This class performs a rank-revealing complete orthogonal decomposition of a - * matrix \b A into matrices \b P, \b Q, \b T, and \b Z such that - * \f[ - * \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, - * \begin{bmatrix} \mathbf{T} & \mathbf{0} \\ - * \mathbf{0} & \mathbf{0} \end{bmatrix} \, \mathbf{Z} - * \f] - * by using Householder transformations. Here, \b P is a permutation matrix, - * \b Q and \b Z are unitary matrices and \b T an upper triangular matrix of - * size rank-by-rank. \b A may be rank deficient. - * - * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. - * - * \sa MatrixBase::completeOrthogonalDecomposition() - */ -template -class CompleteOrthogonalDecomposition { - public: - typedef _MatrixType MatrixType; - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime - }; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef typename MatrixType::StorageIndex StorageIndex; - typedef typename internal::plain_diag_type::type HCoeffsType; - typedef PermutationMatrix - PermutationType; - typedef typename internal::plain_row_type::type - IntRowVectorType; - typedef typename internal::plain_row_type::type RowVectorType; - typedef typename internal::plain_row_type::type - RealRowVectorType; - typedef HouseholderSequence< - MatrixType, typename internal::remove_all< - typename HCoeffsType::ConjugateReturnType>::type> - HouseholderSequenceType; - typedef typename MatrixType::PlainObject PlainObject; - - private: - typedef typename PermutationType::Index PermIndexType; - - public: - /** - * \brief Default Constructor. - * - * The default constructor is useful in cases in which the user intends to - * perform decompositions via - * \c CompleteOrthogonalDecomposition::compute(const* MatrixType&). - */ - CompleteOrthogonalDecomposition() : m_cpqr(), m_zCoeffs(), m_temp() {} - - /** \brief Default Constructor with memory preallocation - * - * Like the default constructor but with preallocation of the internal data - * according to the specified problem \a size. - * \sa CompleteOrthogonalDecomposition() - */ - CompleteOrthogonalDecomposition(Index rows, Index cols) - : m_cpqr(rows, cols), m_zCoeffs((std::min)(rows, cols)), m_temp(cols) {} - - /** \brief Constructs a complete orthogonal decomposition from a given - * matrix. - * - * This constructor computes the complete orthogonal decomposition of the - * matrix \a matrix by calling the method compute(). The default - * threshold for rank determination will be used. It is a short cut for: - * - * \code - * CompleteOrthogonalDecomposition cod(matrix.rows(), - * matrix.cols()); - * cod.setThreshold(Default); - * cod.compute(matrix); - * \endcode - * - * \sa compute() - */ - template - explicit CompleteOrthogonalDecomposition(const EigenBase& matrix) - : m_cpqr(matrix.rows(), matrix.cols()), - m_zCoeffs((std::min)(matrix.rows(), matrix.cols())), - m_temp(matrix.cols()) - { - compute(matrix.derived()); - } - - /** \brief Constructs a complete orthogonal decomposition from a given matrix - * - * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. - * - * \sa CompleteOrthogonalDecomposition(const EigenBase&) - */ - template - explicit CompleteOrthogonalDecomposition(EigenBase& matrix) - : m_cpqr(matrix.derived()), - m_zCoeffs((std::min)(matrix.rows(), matrix.cols())), - m_temp(matrix.cols()) - { - computeInPlace(); - } - - - /** This method computes the minimum-norm solution X to a least squares - * problem \f[\mathrm{minimize} \|A X - B\|, \f] where \b A is the matrix of - * which \c *this is the complete orthogonal decomposition. - * - * \param b the right-hand sides of the problem to solve. - * - * \returns a solution. - * - */ - template - inline const Solve solve( - const MatrixBase& b) const { - eigen_assert(m_cpqr.m_isInitialized && - "CompleteOrthogonalDecomposition is not initialized."); - return Solve(*this, b.derived()); - } - - HouseholderSequenceType householderQ(void) const; - HouseholderSequenceType matrixQ(void) const { return m_cpqr.householderQ(); } - - /** \returns the matrix \b Z. - */ - MatrixType matrixZ() const { - MatrixType Z = MatrixType::Identity(m_cpqr.cols(), m_cpqr.cols()); - applyZAdjointOnTheLeftInPlace(Z); - return Z.adjoint(); - } - - /** \returns a reference to the matrix where the complete orthogonal - * decomposition is stored - */ - const MatrixType& matrixQTZ() const { return m_cpqr.matrixQR(); } - - /** \returns a reference to the matrix where the complete orthogonal - * decomposition is stored. - * \warning The strict lower part and \code cols() - rank() \endcode right - * columns of this matrix contains internal values. - * Only the upper triangular part should be referenced. To get it, use - * \code matrixT().template triangularView() \endcode - * For rank-deficient matrices, use - * \code - * matrixR().topLeftCorner(rank(), rank()).template triangularView() - * \endcode - */ - const MatrixType& matrixT() const { return m_cpqr.matrixQR(); } - - template - CompleteOrthogonalDecomposition& compute(const EigenBase& matrix) { - // Compute the column pivoted QR factorization A P = Q R. - m_cpqr.compute(matrix); - computeInPlace(); - return *this; - } - - /** \returns a const reference to the column permutation matrix */ - const PermutationType& colsPermutation() const { - return m_cpqr.colsPermutation(); - } - - /** \returns the absolute value of the determinant of the matrix of which - * *this is the complete orthogonal decomposition. It has only linear - * complexity (that is, O(n) where n is the dimension of the square matrix) - * as the complete orthogonal decomposition has already been computed. - * - * \note This is only for square matrices. - * - * \warning a determinant can be very big or small, so for matrices - * of large enough dimension, there is a risk of overflow/underflow. - * One way to work around that is to use logAbsDeterminant() instead. - * - * \sa logAbsDeterminant(), MatrixBase::determinant() - */ - typename MatrixType::RealScalar absDeterminant() const; - - /** \returns the natural log of the absolute value of the determinant of the - * matrix of which *this is the complete orthogonal decomposition. It has - * only linear complexity (that is, O(n) where n is the dimension of the - * square matrix) as the complete orthogonal decomposition has already been - * computed. - * - * \note This is only for square matrices. - * - * \note This method is useful to work around the risk of overflow/underflow - * that's inherent to determinant computation. - * - * \sa absDeterminant(), MatrixBase::determinant() - */ - typename MatrixType::RealScalar logAbsDeterminant() const; - - /** \returns the rank of the matrix of which *this is the complete orthogonal - * decomposition. - * - * \note This method has to determine which pivots should be considered - * nonzero. For that, it uses the threshold value that you can control by - * calling setThreshold(const RealScalar&). - */ - inline Index rank() const { return m_cpqr.rank(); } - - /** \returns the dimension of the kernel of the matrix of which *this is the - * complete orthogonal decomposition. - * - * \note This method has to determine which pivots should be considered - * nonzero. For that, it uses the threshold value that you can control by - * calling setThreshold(const RealScalar&). - */ - inline Index dimensionOfKernel() const { return m_cpqr.dimensionOfKernel(); } - - /** \returns true if the matrix of which *this is the decomposition represents - * an injective linear map, i.e. has trivial kernel; false otherwise. - * - * \note This method has to determine which pivots should be considered - * nonzero. For that, it uses the threshold value that you can control by - * calling setThreshold(const RealScalar&). - */ - inline bool isInjective() const { return m_cpqr.isInjective(); } - - /** \returns true if the matrix of which *this is the decomposition represents - * a surjective linear map; false otherwise. - * - * \note This method has to determine which pivots should be considered - * nonzero. For that, it uses the threshold value that you can control by - * calling setThreshold(const RealScalar&). - */ - inline bool isSurjective() const { return m_cpqr.isSurjective(); } - - /** \returns true if the matrix of which *this is the complete orthogonal - * decomposition is invertible. - * - * \note This method has to determine which pivots should be considered - * nonzero. For that, it uses the threshold value that you can control by - * calling setThreshold(const RealScalar&). - */ - inline bool isInvertible() const { return m_cpqr.isInvertible(); } - - /** \returns the pseudo-inverse of the matrix of which *this is the complete - * orthogonal decomposition. - * \warning: Do not compute \c this->pseudoInverse()*rhs to solve a linear systems. - * It is more efficient and numerically stable to call \c this->solve(rhs). - */ - inline const Inverse pseudoInverse() const - { - return Inverse(*this); - } - - inline Index rows() const { return m_cpqr.rows(); } - inline Index cols() const { return m_cpqr.cols(); } - - /** \returns a const reference to the vector of Householder coefficients used - * to represent the factor \c Q. - * - * For advanced uses only. - */ - inline const HCoeffsType& hCoeffs() const { return m_cpqr.hCoeffs(); } - - /** \returns a const reference to the vector of Householder coefficients - * used to represent the factor \c Z. - * - * For advanced uses only. - */ - const HCoeffsType& zCoeffs() const { return m_zCoeffs; } - - /** Allows to prescribe a threshold to be used by certain methods, such as - * rank(), who need to determine when pivots are to be considered nonzero. - * Most be called before calling compute(). - * - * When it needs to get the threshold value, Eigen calls threshold(). By - * default, this uses a formula to automatically determine a reasonable - * threshold. Once you have called the present method - * setThreshold(const RealScalar&), your value is used instead. - * - * \param threshold The new value to use as the threshold. - * - * A pivot will be considered nonzero if its absolute value is strictly - * greater than - * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ - * where maxpivot is the biggest pivot. - * - * If you want to come back to the default behavior, call - * setThreshold(Default_t) - */ - CompleteOrthogonalDecomposition& setThreshold(const RealScalar& threshold) { - m_cpqr.setThreshold(threshold); - return *this; - } - - /** Allows to come back to the default behavior, letting Eigen use its default - * formula for determining the threshold. - * - * You should pass the special object Eigen::Default as parameter here. - * \code qr.setThreshold(Eigen::Default); \endcode - * - * See the documentation of setThreshold(const RealScalar&). - */ - CompleteOrthogonalDecomposition& setThreshold(Default_t) { - m_cpqr.setThreshold(Default); - return *this; - } - - /** Returns the threshold that will be used by certain methods such as rank(). - * - * See the documentation of setThreshold(const RealScalar&). - */ - RealScalar threshold() const { return m_cpqr.threshold(); } - - /** \returns the number of nonzero pivots in the complete orthogonal - * decomposition. Here nonzero is meant in the exact sense, not in a - * fuzzy sense. So that notion isn't really intrinsically interesting, - * but it is still useful when implementing algorithms. - * - * \sa rank() - */ - inline Index nonzeroPivots() const { return m_cpqr.nonzeroPivots(); } - - /** \returns the absolute value of the biggest pivot, i.e. the biggest - * diagonal coefficient of R. - */ - inline RealScalar maxPivot() const { return m_cpqr.maxPivot(); } - - /** \brief Reports whether the complete orthogonal decomposition was - * succesful. - * - * \note This function always returns \c Success. It is provided for - * compatibility - * with other factorization routines. - * \returns \c Success - */ - ComputationInfo info() const { - eigen_assert(m_cpqr.m_isInitialized && "Decomposition is not initialized."); - return Success; - } - -#ifndef EIGEN_PARSED_BY_DOXYGEN - template - EIGEN_DEVICE_FUNC void _solve_impl(const RhsType& rhs, DstType& dst) const; -#endif - - protected: - static void check_template_parameters() { - EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); - } - - void computeInPlace(); - - /** Overwrites \b rhs with \f$ \mathbf{Z}^* * \mathbf{rhs} \f$. - */ - template - void applyZAdjointOnTheLeftInPlace(Rhs& rhs) const; - - ColPivHouseholderQR m_cpqr; - HCoeffsType m_zCoeffs; - RowVectorType m_temp; -}; - -template -typename MatrixType::RealScalar -CompleteOrthogonalDecomposition::absDeterminant() const { - return m_cpqr.absDeterminant(); -} - -template -typename MatrixType::RealScalar -CompleteOrthogonalDecomposition::logAbsDeterminant() const { - return m_cpqr.logAbsDeterminant(); -} - -/** Performs the complete orthogonal decomposition of the given matrix \a - * matrix. The result of the factorization is stored into \c *this, and a - * reference to \c *this is returned. - * - * \sa class CompleteOrthogonalDecomposition, - * CompleteOrthogonalDecomposition(const MatrixType&) - */ -template -void CompleteOrthogonalDecomposition::computeInPlace() -{ - check_template_parameters(); - - // the column permutation is stored as int indices, so just to be sure: - eigen_assert(m_cpqr.cols() <= NumTraits::highest()); - - const Index rank = m_cpqr.rank(); - const Index cols = m_cpqr.cols(); - const Index rows = m_cpqr.rows(); - m_zCoeffs.resize((std::min)(rows, cols)); - m_temp.resize(cols); - - if (rank < cols) { - // We have reduced the (permuted) matrix to the form - // [R11 R12] - // [ 0 R22] - // where R11 is r-by-r (r = rank) upper triangular, R12 is - // r-by-(n-r), and R22 is empty or the norm of R22 is negligible. - // We now compute the complete orthogonal decomposition by applying - // Householder transformations from the right to the upper trapezoidal - // matrix X = [R11 R12] to zero out R12 and obtain the factorization - // [R11 R12] = [T11 0] * Z, where T11 is r-by-r upper triangular and - // Z = Z(0) * Z(1) ... Z(r-1) is an n-by-n orthogonal matrix. - // We store the data representing Z in R12 and m_zCoeffs. - for (Index k = rank - 1; k >= 0; --k) { - if (k != rank - 1) { - // Given the API for Householder reflectors, it is more convenient if - // we swap the leading parts of columns k and r-1 (zero-based) to form - // the matrix X_k = [X(0:k, k), X(0:k, r:n)] - m_cpqr.m_qr.col(k).head(k + 1).swap( - m_cpqr.m_qr.col(rank - 1).head(k + 1)); - } - // Construct Householder reflector Z(k) to zero out the last row of X_k, - // i.e. choose Z(k) such that - // [X(k, k), X(k, r:n)] * Z(k) = [beta, 0, .., 0]. - RealScalar beta; - m_cpqr.m_qr.row(k) - .tail(cols - rank + 1) - .makeHouseholderInPlace(m_zCoeffs(k), beta); - m_cpqr.m_qr(k, rank - 1) = beta; - if (k > 0) { - // Apply Z(k) to the first k rows of X_k - m_cpqr.m_qr.topRightCorner(k, cols - rank + 1) - .applyHouseholderOnTheRight( - m_cpqr.m_qr.row(k).tail(cols - rank).transpose(), m_zCoeffs(k), - &m_temp(0)); - } - if (k != rank - 1) { - // Swap X(0:k,k) back to its proper location. - m_cpqr.m_qr.col(k).head(k + 1).swap( - m_cpqr.m_qr.col(rank - 1).head(k + 1)); - } - } - } -} - -template -template -void CompleteOrthogonalDecomposition::applyZAdjointOnTheLeftInPlace( - Rhs& rhs) const { - const Index cols = this->cols(); - const Index nrhs = rhs.cols(); - const Index rank = this->rank(); - Matrix temp((std::max)(cols, nrhs)); - for (Index k = 0; k < rank; ++k) { - if (k != rank - 1) { - rhs.row(k).swap(rhs.row(rank - 1)); - } - rhs.middleRows(rank - 1, cols - rank + 1) - .applyHouseholderOnTheLeft( - matrixQTZ().row(k).tail(cols - rank).adjoint(), zCoeffs()(k), - &temp(0)); - if (k != rank - 1) { - rhs.row(k).swap(rhs.row(rank - 1)); - } - } -} - -#ifndef EIGEN_PARSED_BY_DOXYGEN -template -template -void CompleteOrthogonalDecomposition<_MatrixType>::_solve_impl( - const RhsType& rhs, DstType& dst) const { - eigen_assert(rhs.rows() == this->rows()); - - const Index rank = this->rank(); - if (rank == 0) { - dst.setZero(); - return; - } - - // Compute c = Q^* * rhs - // Note that the matrix Q = H_0^* H_1^*... so its inverse is - // Q^* = (H_0 H_1 ...)^T - typename RhsType::PlainObject c(rhs); - c.applyOnTheLeft( - householderSequence(matrixQTZ(), hCoeffs()).setLength(rank).transpose()); - - // Solve T z = c(1:rank, :) - dst.topRows(rank) = matrixT() - .topLeftCorner(rank, rank) - .template triangularView() - .solve(c.topRows(rank)); - - const Index cols = this->cols(); - if (rank < cols) { - // Compute y = Z^* * [ z ] - // [ 0 ] - dst.bottomRows(cols - rank).setZero(); - applyZAdjointOnTheLeftInPlace(dst); - } - - // Undo permutation to get x = P^{-1} * y. - dst = colsPermutation() * dst; -} -#endif - -namespace internal { - -template -struct Assignment >, internal::assign_op::Scalar>, Dense2Dense> -{ - typedef CompleteOrthogonalDecomposition CodType; - typedef Inverse SrcXprType; - static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) - { - dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.rows())); - } -}; - -} // end namespace internal - -/** \returns the matrix Q as a sequence of householder transformations */ -template -typename CompleteOrthogonalDecomposition::HouseholderSequenceType -CompleteOrthogonalDecomposition::householderQ() const { - return m_cpqr.householderQ(); -} - -/** \return the complete orthogonal decomposition of \c *this. - * - * \sa class CompleteOrthogonalDecomposition - */ -template -const CompleteOrthogonalDecomposition::PlainObject> -MatrixBase::completeOrthogonalDecomposition() const { - return CompleteOrthogonalDecomposition(eval()); -} - -} // end namespace Eigen - -#endif // EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H diff --git a/src/math_meigen/Eigen/src/QR/FullPivHouseholderQR.h b/src/math_meigen/Eigen/src/QR/FullPivHouseholderQR.h deleted file mode 100755 index e489bddc2..000000000 --- a/src/math_meigen/Eigen/src/QR/FullPivHouseholderQR.h +++ /dev/null @@ -1,676 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2009 Gael Guennebaud -// Copyright (C) 2009 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H -#define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H - -namespace Eigen { - -namespace internal { - -template struct traits > - : traits<_MatrixType> -{ - enum { Flags = 0 }; -}; - -template struct FullPivHouseholderQRMatrixQReturnType; - -template -struct traits > -{ - typedef typename MatrixType::PlainObject ReturnType; -}; - -} // end namespace internal - -/** \ingroup QR_Module - * - * \class FullPivHouseholderQR - * - * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting - * - * \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition - * - * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b P', \b Q and \b R - * such that - * \f[ - * \mathbf{P} \, \mathbf{A} \, \mathbf{P}' = \mathbf{Q} \, \mathbf{R} - * \f] - * by using Householder transformations. Here, \b P and \b P' are permutation matrices, \b Q a unitary matrix - * and \b R an upper triangular matrix. - * - * This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal - * numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR. - * - * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. - * - * \sa MatrixBase::fullPivHouseholderQr() - */ -template class FullPivHouseholderQR -{ - public: - - typedef _MatrixType MatrixType; - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime - }; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - // FIXME should be int - typedef typename MatrixType::StorageIndex StorageIndex; - typedef internal::FullPivHouseholderQRMatrixQReturnType MatrixQReturnType; - typedef typename internal::plain_diag_type::type HCoeffsType; - typedef Matrix IntDiagSizeVectorType; - typedef PermutationMatrix PermutationType; - typedef typename internal::plain_row_type::type RowVectorType; - typedef typename internal::plain_col_type::type ColVectorType; - typedef typename MatrixType::PlainObject PlainObject; - - /** \brief Default Constructor. - * - * The default constructor is useful in cases in which the user intends to - * perform decompositions via FullPivHouseholderQR::compute(const MatrixType&). - */ - FullPivHouseholderQR() - : m_qr(), - m_hCoeffs(), - m_rows_transpositions(), - m_cols_transpositions(), - m_cols_permutation(), - m_temp(), - m_isInitialized(false), - m_usePrescribedThreshold(false) {} - - /** \brief Default Constructor with memory preallocation - * - * Like the default constructor but with preallocation of the internal data - * according to the specified problem \a size. - * \sa FullPivHouseholderQR() - */ - FullPivHouseholderQR(Index rows, Index cols) - : m_qr(rows, cols), - m_hCoeffs((std::min)(rows,cols)), - m_rows_transpositions((std::min)(rows,cols)), - m_cols_transpositions((std::min)(rows,cols)), - m_cols_permutation(cols), - m_temp(cols), - m_isInitialized(false), - m_usePrescribedThreshold(false) {} - - /** \brief Constructs a QR factorization from a given matrix - * - * This constructor computes the QR factorization of the matrix \a matrix by calling - * the method compute(). It is a short cut for: - * - * \code - * FullPivHouseholderQR qr(matrix.rows(), matrix.cols()); - * qr.compute(matrix); - * \endcode - * - * \sa compute() - */ - template - explicit FullPivHouseholderQR(const EigenBase& matrix) - : m_qr(matrix.rows(), matrix.cols()), - m_hCoeffs((std::min)(matrix.rows(), matrix.cols())), - m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())), - m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())), - m_cols_permutation(matrix.cols()), - m_temp(matrix.cols()), - m_isInitialized(false), - m_usePrescribedThreshold(false) - { - compute(matrix.derived()); - } - - /** \brief Constructs a QR factorization from a given matrix - * - * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. - * - * \sa FullPivHouseholderQR(const EigenBase&) - */ - template - explicit FullPivHouseholderQR(EigenBase& matrix) - : m_qr(matrix.derived()), - m_hCoeffs((std::min)(matrix.rows(), matrix.cols())), - m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())), - m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())), - m_cols_permutation(matrix.cols()), - m_temp(matrix.cols()), - m_isInitialized(false), - m_usePrescribedThreshold(false) - { - computeInPlace(); - } - - /** This method finds a solution x to the equation Ax=b, where A is the matrix of which - * \c *this is the QR decomposition. - * - * \param b the right-hand-side of the equation to solve. - * - * \returns the exact or least-square solution if the rank is greater or equal to the number of columns of A, - * and an arbitrary solution otherwise. - * - * \note_about_checking_solutions - * - * \note_about_arbitrary_choice_of_solution - * - * Example: \include FullPivHouseholderQR_solve.cpp - * Output: \verbinclude FullPivHouseholderQR_solve.out - */ - template - inline const Solve - solve(const MatrixBase& b) const - { - eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); - return Solve(*this, b.derived()); - } - - /** \returns Expression object representing the matrix Q - */ - MatrixQReturnType matrixQ(void) const; - - /** \returns a reference to the matrix where the Householder QR decomposition is stored - */ - const MatrixType& matrixQR() const - { - eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); - return m_qr; - } - - template - FullPivHouseholderQR& compute(const EigenBase& matrix); - - /** \returns a const reference to the column permutation matrix */ - const PermutationType& colsPermutation() const - { - eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); - return m_cols_permutation; - } - - /** \returns a const reference to the vector of indices representing the rows transpositions */ - const IntDiagSizeVectorType& rowsTranspositions() const - { - eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); - return m_rows_transpositions; - } - - /** \returns the absolute value of the determinant of the matrix of which - * *this is the QR decomposition. It has only linear complexity - * (that is, O(n) where n is the dimension of the square matrix) - * as the QR decomposition has already been computed. - * - * \note This is only for square matrices. - * - * \warning a determinant can be very big or small, so for matrices - * of large enough dimension, there is a risk of overflow/underflow. - * One way to work around that is to use logAbsDeterminant() instead. - * - * \sa logAbsDeterminant(), MatrixBase::determinant() - */ - typename MatrixType::RealScalar absDeterminant() const; - - /** \returns the natural log of the absolute value of the determinant of the matrix of which - * *this is the QR decomposition. It has only linear complexity - * (that is, O(n) where n is the dimension of the square matrix) - * as the QR decomposition has already been computed. - * - * \note This is only for square matrices. - * - * \note This method is useful to work around the risk of overflow/underflow that's inherent - * to determinant computation. - * - * \sa absDeterminant(), MatrixBase::determinant() - */ - typename MatrixType::RealScalar logAbsDeterminant() const; - - /** \returns the rank of the matrix of which *this is the QR decomposition. - * - * \note This method has to determine which pivots should be considered nonzero. - * For that, it uses the threshold value that you can control by calling - * setThreshold(const RealScalar&). - */ - inline Index rank() const - { - using std::abs; - eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); - RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); - Index result = 0; - for(Index i = 0; i < m_nonzero_pivots; ++i) - result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold); - return result; - } - - /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition. - * - * \note This method has to determine which pivots should be considered nonzero. - * For that, it uses the threshold value that you can control by calling - * setThreshold(const RealScalar&). - */ - inline Index dimensionOfKernel() const - { - eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); - return cols() - rank(); - } - - /** \returns true if the matrix of which *this is the QR decomposition represents an injective - * linear map, i.e. has trivial kernel; false otherwise. - * - * \note This method has to determine which pivots should be considered nonzero. - * For that, it uses the threshold value that you can control by calling - * setThreshold(const RealScalar&). - */ - inline bool isInjective() const - { - eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); - return rank() == cols(); - } - - /** \returns true if the matrix of which *this is the QR decomposition represents a surjective - * linear map; false otherwise. - * - * \note This method has to determine which pivots should be considered nonzero. - * For that, it uses the threshold value that you can control by calling - * setThreshold(const RealScalar&). - */ - inline bool isSurjective() const - { - eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); - return rank() == rows(); - } - - /** \returns true if the matrix of which *this is the QR decomposition is invertible. - * - * \note This method has to determine which pivots should be considered nonzero. - * For that, it uses the threshold value that you can control by calling - * setThreshold(const RealScalar&). - */ - inline bool isInvertible() const - { - eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); - return isInjective() && isSurjective(); - } - - /** \returns the inverse of the matrix of which *this is the QR decomposition. - * - * \note If this matrix is not invertible, the returned matrix has undefined coefficients. - * Use isInvertible() to first determine whether this matrix is invertible. - */ - inline const Inverse inverse() const - { - eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); - return Inverse(*this); - } - - inline Index rows() const { return m_qr.rows(); } - inline Index cols() const { return m_qr.cols(); } - - /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q. - * - * For advanced uses only. - */ - const HCoeffsType& hCoeffs() const { return m_hCoeffs; } - - /** Allows to prescribe a threshold to be used by certain methods, such as rank(), - * who need to determine when pivots are to be considered nonzero. This is not used for the - * QR decomposition itself. - * - * When it needs to get the threshold value, Eigen calls threshold(). By default, this - * uses a formula to automatically determine a reasonable threshold. - * Once you have called the present method setThreshold(const RealScalar&), - * your value is used instead. - * - * \param threshold The new value to use as the threshold. - * - * A pivot will be considered nonzero if its absolute value is strictly greater than - * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ - * where maxpivot is the biggest pivot. - * - * If you want to come back to the default behavior, call setThreshold(Default_t) - */ - FullPivHouseholderQR& setThreshold(const RealScalar& threshold) - { - m_usePrescribedThreshold = true; - m_prescribedThreshold = threshold; - return *this; - } - - /** Allows to come back to the default behavior, letting Eigen use its default formula for - * determining the threshold. - * - * You should pass the special object Eigen::Default as parameter here. - * \code qr.setThreshold(Eigen::Default); \endcode - * - * See the documentation of setThreshold(const RealScalar&). - */ - FullPivHouseholderQR& setThreshold(Default_t) - { - m_usePrescribedThreshold = false; - return *this; - } - - /** Returns the threshold that will be used by certain methods such as rank(). - * - * See the documentation of setThreshold(const RealScalar&). - */ - RealScalar threshold() const - { - eigen_assert(m_isInitialized || m_usePrescribedThreshold); - return m_usePrescribedThreshold ? m_prescribedThreshold - // this formula comes from experimenting (see "LU precision tuning" thread on the list) - // and turns out to be identical to Higham's formula used already in LDLt. - : NumTraits::epsilon() * RealScalar(m_qr.diagonalSize()); - } - - /** \returns the number of nonzero pivots in the QR decomposition. - * Here nonzero is meant in the exact sense, not in a fuzzy sense. - * So that notion isn't really intrinsically interesting, but it is - * still useful when implementing algorithms. - * - * \sa rank() - */ - inline Index nonzeroPivots() const - { - eigen_assert(m_isInitialized && "LU is not initialized."); - return m_nonzero_pivots; - } - - /** \returns the absolute value of the biggest pivot, i.e. the biggest - * diagonal coefficient of U. - */ - RealScalar maxPivot() const { return m_maxpivot; } - - #ifndef EIGEN_PARSED_BY_DOXYGEN - template - EIGEN_DEVICE_FUNC - void _solve_impl(const RhsType &rhs, DstType &dst) const; - #endif - - protected: - - static void check_template_parameters() - { - EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); - } - - void computeInPlace(); - - MatrixType m_qr; - HCoeffsType m_hCoeffs; - IntDiagSizeVectorType m_rows_transpositions; - IntDiagSizeVectorType m_cols_transpositions; - PermutationType m_cols_permutation; - RowVectorType m_temp; - bool m_isInitialized, m_usePrescribedThreshold; - RealScalar m_prescribedThreshold, m_maxpivot; - Index m_nonzero_pivots; - RealScalar m_precision; - Index m_det_pq; -}; - -template -typename MatrixType::RealScalar FullPivHouseholderQR::absDeterminant() const -{ - using std::abs; - eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); - eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); - return abs(m_qr.diagonal().prod()); -} - -template -typename MatrixType::RealScalar FullPivHouseholderQR::logAbsDeterminant() const -{ - eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); - eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); - return m_qr.diagonal().cwiseAbs().array().log().sum(); -} - -/** Performs the QR factorization of the given matrix \a matrix. The result of - * the factorization is stored into \c *this, and a reference to \c *this - * is returned. - * - * \sa class FullPivHouseholderQR, FullPivHouseholderQR(const MatrixType&) - */ -template -template -FullPivHouseholderQR& FullPivHouseholderQR::compute(const EigenBase& matrix) -{ - m_qr = matrix.derived(); - computeInPlace(); - return *this; -} - -template -void FullPivHouseholderQR::computeInPlace() -{ - check_template_parameters(); - - using std::abs; - Index rows = m_qr.rows(); - Index cols = m_qr.cols(); - Index size = (std::min)(rows,cols); - - - m_hCoeffs.resize(size); - - m_temp.resize(cols); - - m_precision = NumTraits::epsilon() * RealScalar(size); - - m_rows_transpositions.resize(size); - m_cols_transpositions.resize(size); - Index number_of_transpositions = 0; - - RealScalar biggest(0); - - m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) - m_maxpivot = RealScalar(0); - - for (Index k = 0; k < size; ++k) - { - Index row_of_biggest_in_corner, col_of_biggest_in_corner; - typedef internal::scalar_score_coeff_op Scoring; - typedef typename Scoring::result_type Score; - - Score score = m_qr.bottomRightCorner(rows-k, cols-k) - .unaryExpr(Scoring()) - .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner); - row_of_biggest_in_corner += k; - col_of_biggest_in_corner += k; - RealScalar biggest_in_corner = internal::abs_knowing_score()(m_qr(row_of_biggest_in_corner, col_of_biggest_in_corner), score); - if(k==0) biggest = biggest_in_corner; - - // if the corner is negligible, then we have less than full rank, and we can finish early - if(internal::isMuchSmallerThan(biggest_in_corner, biggest, m_precision)) - { - m_nonzero_pivots = k; - for(Index i = k; i < size; i++) - { - m_rows_transpositions.coeffRef(i) = i; - m_cols_transpositions.coeffRef(i) = i; - m_hCoeffs.coeffRef(i) = Scalar(0); - } - break; - } - - m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner; - m_cols_transpositions.coeffRef(k) = col_of_biggest_in_corner; - if(k != row_of_biggest_in_corner) { - m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k)); - ++number_of_transpositions; - } - if(k != col_of_biggest_in_corner) { - m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner)); - ++number_of_transpositions; - } - - RealScalar beta; - m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta); - m_qr.coeffRef(k,k) = beta; - - // remember the maximum absolute value of diagonal coefficients - if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta); - - m_qr.bottomRightCorner(rows-k, cols-k-1) - .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1)); - } - - m_cols_permutation.setIdentity(cols); - for(Index k = 0; k < size; ++k) - m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k)); - - m_det_pq = (number_of_transpositions%2) ? -1 : 1; - m_isInitialized = true; -} - -#ifndef EIGEN_PARSED_BY_DOXYGEN -template -template -void FullPivHouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const -{ - eigen_assert(rhs.rows() == rows()); - const Index l_rank = rank(); - - // FIXME introduce nonzeroPivots() and use it here. and more generally, - // make the same improvements in this dec as in FullPivLU. - if(l_rank==0) - { - dst.setZero(); - return; - } - - typename RhsType::PlainObject c(rhs); - - Matrix temp(rhs.cols()); - for (Index k = 0; k < l_rank; ++k) - { - Index remainingSize = rows()-k; - c.row(k).swap(c.row(m_rows_transpositions.coeff(k))); - c.bottomRightCorner(remainingSize, rhs.cols()) - .applyHouseholderOnTheLeft(m_qr.col(k).tail(remainingSize-1), - m_hCoeffs.coeff(k), &temp.coeffRef(0)); - } - - m_qr.topLeftCorner(l_rank, l_rank) - .template triangularView() - .solveInPlace(c.topRows(l_rank)); - - for(Index i = 0; i < l_rank; ++i) dst.row(m_cols_permutation.indices().coeff(i)) = c.row(i); - for(Index i = l_rank; i < cols(); ++i) dst.row(m_cols_permutation.indices().coeff(i)).setZero(); -} -#endif - -namespace internal { - -template -struct Assignment >, internal::assign_op::Scalar>, Dense2Dense> -{ - typedef FullPivHouseholderQR QrType; - typedef Inverse SrcXprType; - static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) - { - dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); - } -}; - -/** \ingroup QR_Module - * - * \brief Expression type for return value of FullPivHouseholderQR::matrixQ() - * - * \tparam MatrixType type of underlying dense matrix - */ -template struct FullPivHouseholderQRMatrixQReturnType - : public ReturnByValue > -{ -public: - typedef typename FullPivHouseholderQR::IntDiagSizeVectorType IntDiagSizeVectorType; - typedef typename internal::plain_diag_type::type HCoeffsType; - typedef Matrix WorkVectorType; - - FullPivHouseholderQRMatrixQReturnType(const MatrixType& qr, - const HCoeffsType& hCoeffs, - const IntDiagSizeVectorType& rowsTranspositions) - : m_qr(qr), - m_hCoeffs(hCoeffs), - m_rowsTranspositions(rowsTranspositions) - {} - - template - void evalTo(ResultType& result) const - { - const Index rows = m_qr.rows(); - WorkVectorType workspace(rows); - evalTo(result, workspace); - } - - template - void evalTo(ResultType& result, WorkVectorType& workspace) const - { - using numext::conj; - // compute the product H'_0 H'_1 ... H'_n-1, - // where H_k is the k-th Householder transformation I - h_k v_k v_k' - // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...] - const Index rows = m_qr.rows(); - const Index cols = m_qr.cols(); - const Index size = (std::min)(rows, cols); - workspace.resize(rows); - result.setIdentity(rows, rows); - for (Index k = size-1; k >= 0; k--) - { - result.block(k, k, rows-k, rows-k) - .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), conj(m_hCoeffs.coeff(k)), &workspace.coeffRef(k)); - result.row(k).swap(result.row(m_rowsTranspositions.coeff(k))); - } - } - - Index rows() const { return m_qr.rows(); } - Index cols() const { return m_qr.rows(); } - -protected: - typename MatrixType::Nested m_qr; - typename HCoeffsType::Nested m_hCoeffs; - typename IntDiagSizeVectorType::Nested m_rowsTranspositions; -}; - -// template -// struct evaluator > -// : public evaluator > > -// {}; - -} // end namespace internal - -template -inline typename FullPivHouseholderQR::MatrixQReturnType FullPivHouseholderQR::matrixQ() const -{ - eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); - return MatrixQReturnType(m_qr, m_hCoeffs, m_rows_transpositions); -} - -/** \return the full-pivoting Householder QR decomposition of \c *this. - * - * \sa class FullPivHouseholderQR - */ -template -const FullPivHouseholderQR::PlainObject> -MatrixBase::fullPivHouseholderQr() const -{ - return FullPivHouseholderQR(eval()); -} - -} // end namespace Eigen - -#endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H diff --git a/src/math_meigen/Eigen/src/QR/HouseholderQR.h b/src/math_meigen/Eigen/src/QR/HouseholderQR.h deleted file mode 100755 index 3513d995c..000000000 --- a/src/math_meigen/Eigen/src/QR/HouseholderQR.h +++ /dev/null @@ -1,409 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2010 Gael Guennebaud -// Copyright (C) 2009 Benoit Jacob -// Copyright (C) 2010 Vincent Lejeune -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_QR_H -#define EIGEN_QR_H - -namespace Eigen { - -/** \ingroup QR_Module - * - * - * \class HouseholderQR - * - * \brief Householder QR decomposition of a matrix - * - * \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition - * - * This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R - * such that - * \f[ - * \mathbf{A} = \mathbf{Q} \, \mathbf{R} - * \f] - * by using Householder transformations. Here, \b Q a unitary matrix and \b R an upper triangular matrix. - * The result is stored in a compact way compatible with LAPACK. - * - * Note that no pivoting is performed. This is \b not a rank-revealing decomposition. - * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead. - * - * This Householder QR decomposition is faster, but less numerically stable and less feature-full than - * FullPivHouseholderQR or ColPivHouseholderQR. - * - * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. - * - * \sa MatrixBase::householderQr() - */ -template class HouseholderQR -{ - public: - - typedef _MatrixType MatrixType; - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime - }; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - // FIXME should be int - typedef typename MatrixType::StorageIndex StorageIndex; - typedef Matrix MatrixQType; - typedef typename internal::plain_diag_type::type HCoeffsType; - typedef typename internal::plain_row_type::type RowVectorType; - typedef HouseholderSequence::type> HouseholderSequenceType; - - /** - * \brief Default Constructor. - * - * The default constructor is useful in cases in which the user intends to - * perform decompositions via HouseholderQR::compute(const MatrixType&). - */ - HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {} - - /** \brief Default Constructor with memory preallocation - * - * Like the default constructor but with preallocation of the internal data - * according to the specified problem \a size. - * \sa HouseholderQR() - */ - HouseholderQR(Index rows, Index cols) - : m_qr(rows, cols), - m_hCoeffs((std::min)(rows,cols)), - m_temp(cols), - m_isInitialized(false) {} - - /** \brief Constructs a QR factorization from a given matrix - * - * This constructor computes the QR factorization of the matrix \a matrix by calling - * the method compute(). It is a short cut for: - * - * \code - * HouseholderQR qr(matrix.rows(), matrix.cols()); - * qr.compute(matrix); - * \endcode - * - * \sa compute() - */ - template - explicit HouseholderQR(const EigenBase& matrix) - : m_qr(matrix.rows(), matrix.cols()), - m_hCoeffs((std::min)(matrix.rows(),matrix.cols())), - m_temp(matrix.cols()), - m_isInitialized(false) - { - compute(matrix.derived()); - } - - - /** \brief Constructs a QR factorization from a given matrix - * - * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when - * \c MatrixType is a Eigen::Ref. - * - * \sa HouseholderQR(const EigenBase&) - */ - template - explicit HouseholderQR(EigenBase& matrix) - : m_qr(matrix.derived()), - m_hCoeffs((std::min)(matrix.rows(),matrix.cols())), - m_temp(matrix.cols()), - m_isInitialized(false) - { - computeInPlace(); - } - - /** This method finds a solution x to the equation Ax=b, where A is the matrix of which - * *this is the QR decomposition, if any exists. - * - * \param b the right-hand-side of the equation to solve. - * - * \returns a solution. - * - * \note_about_checking_solutions - * - * \note_about_arbitrary_choice_of_solution - * - * Example: \include HouseholderQR_solve.cpp - * Output: \verbinclude HouseholderQR_solve.out - */ - template - inline const Solve - solve(const MatrixBase& b) const - { - eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); - return Solve(*this, b.derived()); - } - - /** This method returns an expression of the unitary matrix Q as a sequence of Householder transformations. - * - * The returned expression can directly be used to perform matrix products. It can also be assigned to a dense Matrix object. - * Here is an example showing how to recover the full or thin matrix Q, as well as how to perform matrix products using operator*: - * - * Example: \include HouseholderQR_householderQ.cpp - * Output: \verbinclude HouseholderQR_householderQ.out - */ - HouseholderSequenceType householderQ() const - { - eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); - return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()); - } - - /** \returns a reference to the matrix where the Householder QR decomposition is stored - * in a LAPACK-compatible way. - */ - const MatrixType& matrixQR() const - { - eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); - return m_qr; - } - - template - HouseholderQR& compute(const EigenBase& matrix) { - m_qr = matrix.derived(); - computeInPlace(); - return *this; - } - - /** \returns the absolute value of the determinant of the matrix of which - * *this is the QR decomposition. It has only linear complexity - * (that is, O(n) where n is the dimension of the square matrix) - * as the QR decomposition has already been computed. - * - * \note This is only for square matrices. - * - * \warning a determinant can be very big or small, so for matrices - * of large enough dimension, there is a risk of overflow/underflow. - * One way to work around that is to use logAbsDeterminant() instead. - * - * \sa logAbsDeterminant(), MatrixBase::determinant() - */ - typename MatrixType::RealScalar absDeterminant() const; - - /** \returns the natural log of the absolute value of the determinant of the matrix of which - * *this is the QR decomposition. It has only linear complexity - * (that is, O(n) where n is the dimension of the square matrix) - * as the QR decomposition has already been computed. - * - * \note This is only for square matrices. - * - * \note This method is useful to work around the risk of overflow/underflow that's inherent - * to determinant computation. - * - * \sa absDeterminant(), MatrixBase::determinant() - */ - typename MatrixType::RealScalar logAbsDeterminant() const; - - inline Index rows() const { return m_qr.rows(); } - inline Index cols() const { return m_qr.cols(); } - - /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q. - * - * For advanced uses only. - */ - const HCoeffsType& hCoeffs() const { return m_hCoeffs; } - - #ifndef EIGEN_PARSED_BY_DOXYGEN - template - EIGEN_DEVICE_FUNC - void _solve_impl(const RhsType &rhs, DstType &dst) const; - #endif - - protected: - - static void check_template_parameters() - { - EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); - } - - void computeInPlace(); - - MatrixType m_qr; - HCoeffsType m_hCoeffs; - RowVectorType m_temp; - bool m_isInitialized; -}; - -template -typename MatrixType::RealScalar HouseholderQR::absDeterminant() const -{ - using std::abs; - eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); - eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); - return abs(m_qr.diagonal().prod()); -} - -template -typename MatrixType::RealScalar HouseholderQR::logAbsDeterminant() const -{ - eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); - eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); - return m_qr.diagonal().cwiseAbs().array().log().sum(); -} - -namespace internal { - -/** \internal */ -template -void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0) -{ - typedef typename MatrixQR::Scalar Scalar; - typedef typename MatrixQR::RealScalar RealScalar; - Index rows = mat.rows(); - Index cols = mat.cols(); - Index size = (std::min)(rows,cols); - - eigen_assert(hCoeffs.size() == size); - - typedef Matrix TempType; - TempType tempVector; - if(tempData==0) - { - tempVector.resize(cols); - tempData = tempVector.data(); - } - - for(Index k = 0; k < size; ++k) - { - Index remainingRows = rows - k; - Index remainingCols = cols - k - 1; - - RealScalar beta; - mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta); - mat.coeffRef(k,k) = beta; - - // apply H to remaining part of m_qr from the left - mat.bottomRightCorner(remainingRows, remainingCols) - .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), hCoeffs.coeffRef(k), tempData+k+1); - } -} - -/** \internal */ -template -struct householder_qr_inplace_blocked -{ - // This is specialized for MKL-supported Scalar types in HouseholderQR_MKL.h - static void run(MatrixQR& mat, HCoeffs& hCoeffs, Index maxBlockSize=32, - typename MatrixQR::Scalar* tempData = 0) - { - typedef typename MatrixQR::Scalar Scalar; - typedef Block BlockType; - - Index rows = mat.rows(); - Index cols = mat.cols(); - Index size = (std::min)(rows, cols); - - typedef Matrix TempType; - TempType tempVector; - if(tempData==0) - { - tempVector.resize(cols); - tempData = tempVector.data(); - } - - Index blockSize = (std::min)(maxBlockSize,size); - - Index k = 0; - for (k = 0; k < size; k += blockSize) - { - Index bs = (std::min)(size-k,blockSize); // actual size of the block - Index tcols = cols - k - bs; // trailing columns - Index brows = rows-k; // rows of the block - - // partition the matrix: - // A00 | A01 | A02 - // mat = A10 | A11 | A12 - // A20 | A21 | A22 - // and performs the qr dec of [A11^T A12^T]^T - // and update [A21^T A22^T]^T using level 3 operations. - // Finally, the algorithm continue on A22 - - BlockType A11_21 = mat.block(k,k,brows,bs); - Block hCoeffsSegment = hCoeffs.segment(k,bs); - - householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData); - - if(tcols) - { - BlockType A21_22 = mat.block(k,k+bs,brows,tcols); - apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment, false); // false == backward - } - } - } -}; - -} // end namespace internal - -#ifndef EIGEN_PARSED_BY_DOXYGEN -template -template -void HouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const -{ - const Index rank = (std::min)(rows(), cols()); - eigen_assert(rhs.rows() == rows()); - - typename RhsType::PlainObject c(rhs); - - // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T - c.applyOnTheLeft(householderSequence( - m_qr.leftCols(rank), - m_hCoeffs.head(rank)).transpose() - ); - - m_qr.topLeftCorner(rank, rank) - .template triangularView() - .solveInPlace(c.topRows(rank)); - - dst.topRows(rank) = c.topRows(rank); - dst.bottomRows(cols()-rank).setZero(); -} -#endif - -/** Performs the QR factorization of the given matrix \a matrix. The result of - * the factorization is stored into \c *this, and a reference to \c *this - * is returned. - * - * \sa class HouseholderQR, HouseholderQR(const MatrixType&) - */ -template -void HouseholderQR::computeInPlace() -{ - check_template_parameters(); - - Index rows = m_qr.rows(); - Index cols = m_qr.cols(); - Index size = (std::min)(rows,cols); - - m_hCoeffs.resize(size); - - m_temp.resize(cols); - - internal::householder_qr_inplace_blocked::run(m_qr, m_hCoeffs, 48, m_temp.data()); - - m_isInitialized = true; -} - -/** \return the Householder QR decomposition of \c *this. - * - * \sa class HouseholderQR - */ -template -const HouseholderQR::PlainObject> -MatrixBase::householderQr() const -{ - return HouseholderQR(eval()); -} - -} // end namespace Eigen - -#endif // EIGEN_QR_H diff --git a/src/math_meigen/Eigen/src/QR/HouseholderQR_LAPACKE.h b/src/math_meigen/Eigen/src/QR/HouseholderQR_LAPACKE.h deleted file mode 100755 index 1dc7d5363..000000000 --- a/src/math_meigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +++ /dev/null @@ -1,68 +0,0 @@ -/* - Copyright (c) 2011, Intel Corporation. All rights reserved. - - Redistribution and use in source and binary forms, with or without modification, - are permitted provided that the following conditions are met: - - * Redistributions of source code must retain the above copyright notice, this - list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above copyright notice, - this list of conditions and the following disclaimer in the documentation - and/or other materials provided with the distribution. - * Neither the name of Intel Corporation nor the names of its contributors may - be used to endorse or promote products derived from this software without - specific prior written permission. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND - ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED - WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR - ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES - (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON - ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - - ******************************************************************************** - * Content : Eigen bindings to LAPACKe - * Householder QR decomposition of a matrix w/o pivoting based on - * LAPACKE_?geqrf function. - ******************************************************************************** -*/ - -#ifndef EIGEN_QR_LAPACKE_H -#define EIGEN_QR_LAPACKE_H - -namespace Eigen { - -namespace internal { - -/** \internal Specialization for the data types supported by LAPACKe */ - -#define EIGEN_LAPACKE_QR_NOPIV(EIGTYPE, LAPACKE_TYPE, LAPACKE_PREFIX) \ -template \ -struct householder_qr_inplace_blocked \ -{ \ - static void run(MatrixQR& mat, HCoeffs& hCoeffs, Index = 32, \ - typename MatrixQR::Scalar* = 0) \ - { \ - lapack_int m = (lapack_int) mat.rows(); \ - lapack_int n = (lapack_int) mat.cols(); \ - lapack_int lda = (lapack_int) mat.outerStride(); \ - lapack_int matrix_order = (MatrixQR::IsRowMajor) ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \ - LAPACKE_##LAPACKE_PREFIX##geqrf( matrix_order, m, n, (LAPACKE_TYPE*)mat.data(), lda, (LAPACKE_TYPE*)hCoeffs.data()); \ - hCoeffs.adjointInPlace(); \ - } \ -}; - -EIGEN_LAPACKE_QR_NOPIV(double, double, d) -EIGEN_LAPACKE_QR_NOPIV(float, float, s) -EIGEN_LAPACKE_QR_NOPIV(dcomplex, lapack_complex_double, z) -EIGEN_LAPACKE_QR_NOPIV(scomplex, lapack_complex_float, c) - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_QR_LAPACKE_H diff --git a/src/math_meigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h b/src/math_meigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h deleted file mode 100755 index 953d57c9d..000000000 --- a/src/math_meigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +++ /dev/null @@ -1,313 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Desire Nuentsa -// Copyright (C) 2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SUITESPARSEQRSUPPORT_H -#define EIGEN_SUITESPARSEQRSUPPORT_H - -namespace Eigen { - - template class SPQR; - template struct SPQRMatrixQReturnType; - template struct SPQRMatrixQTransposeReturnType; - template struct SPQR_QProduct; - namespace internal { - template struct traits > - { - typedef typename SPQRType::MatrixType ReturnType; - }; - template struct traits > - { - typedef typename SPQRType::MatrixType ReturnType; - }; - template struct traits > - { - typedef typename Derived::PlainObject ReturnType; - }; - } // End namespace internal - -/** - * \ingroup SPQRSupport_Module - * \class SPQR - * \brief Sparse QR factorization based on SuiteSparseQR library - * - * This class is used to perform a multithreaded and multifrontal rank-revealing QR decomposition - * of sparse matrices. The result is then used to solve linear leasts_square systems. - * Clearly, a QR factorization is returned such that A*P = Q*R where : - * - * P is the column permutation. Use colsPermutation() to get it. - * - * Q is the orthogonal matrix represented as Householder reflectors. - * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose. - * You can then apply it to a vector. - * - * R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix. - * NOTE : The Index type of R is always SuiteSparse_long. You can get it with SPQR::Index - * - * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<> - * - * \implsparsesolverconcept - * - * - */ -template -class SPQR : public SparseSolverBase > -{ - protected: - typedef SparseSolverBase > Base; - using Base::m_isInitialized; - public: - typedef typename _MatrixType::Scalar Scalar; - typedef typename _MatrixType::RealScalar RealScalar; - typedef SuiteSparse_long StorageIndex ; - typedef SparseMatrix MatrixType; - typedef Map > PermutationType; - enum { - ColsAtCompileTime = Dynamic, - MaxColsAtCompileTime = Dynamic - }; - public: - SPQR() - : m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits::epsilon()), m_useDefaultThreshold(true) - { - cholmod_l_start(&m_cc); - } - - explicit SPQR(const _MatrixType& matrix) - : m_ordering(SPQR_ORDERING_DEFAULT), m_allow_tol(SPQR_DEFAULT_TOL), m_tolerance (NumTraits::epsilon()), m_useDefaultThreshold(true) - { - cholmod_l_start(&m_cc); - compute(matrix); - } - - ~SPQR() - { - SPQR_free(); - cholmod_l_finish(&m_cc); - } - void SPQR_free() - { - cholmod_l_free_sparse(&m_H, &m_cc); - cholmod_l_free_sparse(&m_cR, &m_cc); - cholmod_l_free_dense(&m_HTau, &m_cc); - std::free(m_E); - std::free(m_HPinv); - } - - void compute(const _MatrixType& matrix) - { - if(m_isInitialized) SPQR_free(); - - MatrixType mat(matrix); - - /* Compute the default threshold as in MatLab, see: - * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing - * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3 - */ - RealScalar pivotThreshold = m_tolerance; - if(m_useDefaultThreshold) - { - RealScalar max2Norm = 0.0; - for (int j = 0; j < mat.cols(); j++) max2Norm = numext::maxi(max2Norm, mat.col(j).norm()); - if(max2Norm==RealScalar(0)) - max2Norm = RealScalar(1); - pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits::epsilon(); - } - cholmod_sparse A; - A = viewAsCholmod(mat); - m_rows = matrix.rows(); - Index col = matrix.cols(); - m_rank = SuiteSparseQR(m_ordering, pivotThreshold, col, &A, - &m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc); - - if (!m_cR) - { - m_info = NumericalIssue; - m_isInitialized = false; - return; - } - m_info = Success; - m_isInitialized = true; - m_isRUpToDate = false; - } - /** - * Get the number of rows of the input matrix and the Q matrix - */ - inline Index rows() const {return m_rows; } - - /** - * Get the number of columns of the input matrix. - */ - inline Index cols() const { return m_cR->ncol; } - - template - void _solve_impl(const MatrixBase &b, MatrixBase &dest) const - { - eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()"); - eigen_assert(b.cols()==1 && "This method is for vectors only"); - - //Compute Q^T * b - typename Dest::PlainObject y, y2; - y = matrixQ().transpose() * b; - - // Solves with the triangular matrix R - Index rk = this->rank(); - y2 = y; - y.resize((std::max)(cols(),Index(y.rows())),y.cols()); - y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView().solve(y2.topRows(rk)); - - // Apply the column permutation - // colsPermutation() performs a copy of the permutation, - // so let's apply it manually: - for(Index i = 0; i < rk; ++i) dest.row(m_E[i]) = y.row(i); - for(Index i = rk; i < cols(); ++i) dest.row(m_E[i]).setZero(); - -// y.bottomRows(y.rows()-rk).setZero(); -// dest = colsPermutation() * y.topRows(cols()); - - m_info = Success; - } - - /** \returns the sparse triangular factor R. It is a sparse matrix - */ - const MatrixType matrixR() const - { - eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()"); - if(!m_isRUpToDate) { - m_R = viewAsEigen(*m_cR); - m_isRUpToDate = true; - } - return m_R; - } - /// Get an expression of the matrix Q - SPQRMatrixQReturnType matrixQ() const - { - return SPQRMatrixQReturnType(*this); - } - /// Get the permutation that was applied to columns of A - PermutationType colsPermutation() const - { - eigen_assert(m_isInitialized && "Decomposition is not initialized."); - return PermutationType(m_E, m_cR->ncol); - } - /** - * Gets the rank of the matrix. - * It should be equal to matrixQR().cols if the matrix is full-rank - */ - Index rank() const - { - eigen_assert(m_isInitialized && "Decomposition is not initialized."); - return m_cc.SPQR_istat[4]; - } - /// Set the fill-reducing ordering method to be used - void setSPQROrdering(int ord) { m_ordering = ord;} - /// Set the tolerance tol to treat columns with 2-norm < =tol as zero - void setPivotThreshold(const RealScalar& tol) - { - m_useDefaultThreshold = false; - m_tolerance = tol; - } - - /** \returns a pointer to the SPQR workspace */ - cholmod_common *cholmodCommon() const { return &m_cc; } - - - /** \brief Reports whether previous computation was successful. - * - * \returns \c Success if computation was succesful, - * \c NumericalIssue if the sparse QR can not be computed - */ - ComputationInfo info() const - { - eigen_assert(m_isInitialized && "Decomposition is not initialized."); - return m_info; - } - protected: - bool m_analysisIsOk; - bool m_factorizationIsOk; - mutable bool m_isRUpToDate; - mutable ComputationInfo m_info; - int m_ordering; // Ordering method to use, see SPQR's manual - int m_allow_tol; // Allow to use some tolerance during numerical factorization. - RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero - mutable cholmod_sparse *m_cR; // The sparse R factor in cholmod format - mutable MatrixType m_R; // The sparse matrix R in Eigen format - mutable StorageIndex *m_E; // The permutation applied to columns - mutable cholmod_sparse *m_H; //The householder vectors - mutable StorageIndex *m_HPinv; // The row permutation of H - mutable cholmod_dense *m_HTau; // The Householder coefficients - mutable Index m_rank; // The rank of the matrix - mutable cholmod_common m_cc; // Workspace and parameters - bool m_useDefaultThreshold; // Use default threshold - Index m_rows; - template friend struct SPQR_QProduct; -}; - -template -struct SPQR_QProduct : ReturnByValue > -{ - typedef typename SPQRType::Scalar Scalar; - typedef typename SPQRType::StorageIndex StorageIndex; - //Define the constructor to get reference to argument types - SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {} - - inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); } - inline Index cols() const { return m_other.cols(); } - // Assign to a vector - template - void evalTo(ResType& res) const - { - cholmod_dense y_cd; - cholmod_dense *x_cd; - int method = m_transpose ? SPQR_QTX : SPQR_QX; - cholmod_common *cc = m_spqr.cholmodCommon(); - y_cd = viewAsCholmod(m_other.const_cast_derived()); - x_cd = SuiteSparseQR_qmult(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc); - res = Matrix::Map(reinterpret_cast(x_cd->x), x_cd->nrow, x_cd->ncol); - cholmod_l_free_dense(&x_cd, cc); - } - const SPQRType& m_spqr; - const Derived& m_other; - bool m_transpose; - -}; -template -struct SPQRMatrixQReturnType{ - - SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {} - template - SPQR_QProduct operator*(const MatrixBase& other) - { - return SPQR_QProduct(m_spqr,other.derived(),false); - } - SPQRMatrixQTransposeReturnType adjoint() const - { - return SPQRMatrixQTransposeReturnType(m_spqr); - } - // To use for operations with the transpose of Q - SPQRMatrixQTransposeReturnType transpose() const - { - return SPQRMatrixQTransposeReturnType(m_spqr); - } - const SPQRType& m_spqr; -}; - -template -struct SPQRMatrixQTransposeReturnType{ - SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {} - template - SPQR_QProduct operator*(const MatrixBase& other) - { - return SPQR_QProduct(m_spqr,other.derived(), true); - } - const SPQRType& m_spqr; -}; - -}// End namespace Eigen -#endif diff --git a/src/math_meigen/Eigen/src/SVD/BDCSVD.h b/src/math_meigen/Eigen/src/SVD/BDCSVD.h deleted file mode 100755 index 1134d66e7..000000000 --- a/src/math_meigen/Eigen/src/SVD/BDCSVD.h +++ /dev/null @@ -1,1246 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD" -// research report written by Ming Gu and Stanley C.Eisenstat -// The code variable names correspond to the names they used in their -// report -// -// Copyright (C) 2013 Gauthier Brun -// Copyright (C) 2013 Nicolas Carre -// Copyright (C) 2013 Jean Ceccato -// Copyright (C) 2013 Pierre Zoppitelli -// Copyright (C) 2013 Jitse Niesen -// Copyright (C) 2014-2017 Gael Guennebaud -// -// Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_BDCSVD_H -#define EIGEN_BDCSVD_H -// #define EIGEN_BDCSVD_DEBUG_VERBOSE -// #define EIGEN_BDCSVD_SANITY_CHECKS - -namespace Eigen { - -#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE -IOFormat bdcsvdfmt(8, 0, ", ", "\n", " [", "]"); -#endif - -template class BDCSVD; - -namespace internal { - -template -struct traits > -{ - typedef _MatrixType MatrixType; -}; - -} // end namespace internal - - -/** \ingroup SVD_Module - * - * - * \class BDCSVD - * - * \brief class Bidiagonal Divide and Conquer SVD - * - * \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition - * - * This class first reduces the input matrix to bi-diagonal form using class UpperBidiagonalization, - * and then performs a divide-and-conquer diagonalization. Small blocks are diagonalized using class JacobiSVD. - * You can control the switching size with the setSwitchSize() method, default is 16. - * For small matrice (<16), it is thus preferable to directly use JacobiSVD. For larger ones, BDCSVD is highly - * recommended and can several order of magnitude faster. - * - * \warning this algorithm is unlikely to provide accurate result when compiled with unsafe math optimizations. - * For instance, this concerns Intel's compiler (ICC), which perfroms such optimization by default unless - * you compile with the \c -fp-model \c precise option. Likewise, the \c -ffast-math option of GCC or clang will - * significantly degrade the accuracy. - * - * \sa class JacobiSVD - */ -template -class BDCSVD : public SVDBase > -{ - typedef SVDBase Base; - -public: - using Base::rows; - using Base::cols; - using Base::computeU; - using Base::computeV; - - typedef _MatrixType MatrixType; - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef typename NumTraits::Literal Literal; - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime), - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, - MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime, MaxColsAtCompileTime), - MatrixOptions = MatrixType::Options - }; - - typedef typename Base::MatrixUType MatrixUType; - typedef typename Base::MatrixVType MatrixVType; - typedef typename Base::SingularValuesType SingularValuesType; - - typedef Matrix MatrixX; - typedef Matrix MatrixXr; - typedef Matrix VectorType; - typedef Array ArrayXr; - typedef Array ArrayXi; - typedef Ref ArrayRef; - typedef Ref IndicesRef; - - /** \brief Default Constructor. - * - * The default constructor is useful in cases in which the user intends to - * perform decompositions via BDCSVD::compute(const MatrixType&). - */ - BDCSVD() : m_algoswap(16), m_numIters(0) - {} - - - /** \brief Default Constructor with memory preallocation - * - * Like the default constructor but with preallocation of the internal data - * according to the specified problem size. - * \sa BDCSVD() - */ - BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0) - : m_algoswap(16), m_numIters(0) - { - allocate(rows, cols, computationOptions); - } - - /** \brief Constructor performing the decomposition of given matrix. - * - * \param matrix the matrix to decompose - * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. - * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU, - * #ComputeFullV, #ComputeThinV. - * - * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not - * available with the (non - default) FullPivHouseholderQR preconditioner. - */ - BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0) - : m_algoswap(16), m_numIters(0) - { - compute(matrix, computationOptions); - } - - ~BDCSVD() - { - } - - /** \brief Method performing the decomposition of given matrix using custom options. - * - * \param matrix the matrix to decompose - * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. - * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU, - * #ComputeFullV, #ComputeThinV. - * - * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not - * available with the (non - default) FullPivHouseholderQR preconditioner. - */ - BDCSVD& compute(const MatrixType& matrix, unsigned int computationOptions); - - /** \brief Method performing the decomposition of given matrix using current options. - * - * \param matrix the matrix to decompose - * - * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int). - */ - BDCSVD& compute(const MatrixType& matrix) - { - return compute(matrix, this->m_computationOptions); - } - - void setSwitchSize(int s) - { - eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 3"); - m_algoswap = s; - } - -private: - void allocate(Index rows, Index cols, unsigned int computationOptions); - void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift); - void computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V); - void computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, VectorType& singVals, ArrayRef shifts, ArrayRef mus); - void perturbCol0(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat); - void computeSingVecs(const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V); - void deflation43(Index firstCol, Index shift, Index i, Index size); - void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size); - void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift); - template - void copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naivev); - void structured_update(Block A, const MatrixXr &B, Index n1); - static RealScalar secularEq(RealScalar x, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift); - -protected: - MatrixXr m_naiveU, m_naiveV; - MatrixXr m_computed; - Index m_nRec; - ArrayXr m_workspace; - ArrayXi m_workspaceI; - int m_algoswap; - bool m_isTranspose, m_compU, m_compV; - - using Base::m_singularValues; - using Base::m_diagSize; - using Base::m_computeFullU; - using Base::m_computeFullV; - using Base::m_computeThinU; - using Base::m_computeThinV; - using Base::m_matrixU; - using Base::m_matrixV; - using Base::m_isInitialized; - using Base::m_nonzeroSingularValues; - -public: - int m_numIters; -}; //end class BDCSVD - - -// Method to allocate and initialize matrix and attributes -template -void BDCSVD::allocate(Index rows, Index cols, unsigned int computationOptions) -{ - m_isTranspose = (cols > rows); - - if (Base::allocate(rows, cols, computationOptions)) - return; - - m_computed = MatrixXr::Zero(m_diagSize + 1, m_diagSize ); - m_compU = computeV(); - m_compV = computeU(); - if (m_isTranspose) - std::swap(m_compU, m_compV); - - if (m_compU) m_naiveU = MatrixXr::Zero(m_diagSize + 1, m_diagSize + 1 ); - else m_naiveU = MatrixXr::Zero(2, m_diagSize + 1 ); - - if (m_compV) m_naiveV = MatrixXr::Zero(m_diagSize, m_diagSize); - - m_workspace.resize((m_diagSize+1)*(m_diagSize+1)*3); - m_workspaceI.resize(3*m_diagSize); -}// end allocate - -template -BDCSVD& BDCSVD::compute(const MatrixType& matrix, unsigned int computationOptions) -{ -#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE - std::cout << "\n\n\n======================================================================================================================\n\n\n"; -#endif - allocate(matrix.rows(), matrix.cols(), computationOptions); - using std::abs; - - const RealScalar considerZero = (std::numeric_limits::min)(); - - //**** step -1 - If the problem is too small, directly falls back to JacobiSVD and return - if(matrix.cols() < m_algoswap) - { - // FIXME this line involves temporaries - JacobiSVD jsvd(matrix,computationOptions); - if(computeU()) m_matrixU = jsvd.matrixU(); - if(computeV()) m_matrixV = jsvd.matrixV(); - m_singularValues = jsvd.singularValues(); - m_nonzeroSingularValues = jsvd.nonzeroSingularValues(); - m_isInitialized = true; - return *this; - } - - //**** step 0 - Copy the input matrix and apply scaling to reduce over/under-flows - RealScalar scale = matrix.cwiseAbs().maxCoeff(); - if(scale==Literal(0)) scale = Literal(1); - MatrixX copy; - if (m_isTranspose) copy = matrix.adjoint()/scale; - else copy = matrix/scale; - - //**** step 1 - Bidiagonalization - // FIXME this line involves temporaries - internal::UpperBidiagonalization bid(copy); - - //**** step 2 - Divide & Conquer - m_naiveU.setZero(); - m_naiveV.setZero(); - // FIXME this line involves a temporary matrix - m_computed.topRows(m_diagSize) = bid.bidiagonal().toDenseMatrix().transpose(); - m_computed.template bottomRows<1>().setZero(); - divide(0, m_diagSize - 1, 0, 0, 0); - - //**** step 3 - Copy singular values and vectors - for (int i=0; i -template -void BDCSVD::copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naiveV) -{ - // Note exchange of U and V: m_matrixU is set from m_naiveV and vice versa - if (computeU()) - { - Index Ucols = m_computeThinU ? m_diagSize : householderU.cols(); - m_matrixU = MatrixX::Identity(householderU.cols(), Ucols); - m_matrixU.topLeftCorner(m_diagSize, m_diagSize) = naiveV.template cast().topLeftCorner(m_diagSize, m_diagSize); - householderU.applyThisOnTheLeft(m_matrixU); // FIXME this line involves a temporary buffer - } - if (computeV()) - { - Index Vcols = m_computeThinV ? m_diagSize : householderV.cols(); - m_matrixV = MatrixX::Identity(householderV.cols(), Vcols); - m_matrixV.topLeftCorner(m_diagSize, m_diagSize) = naiveU.template cast().topLeftCorner(m_diagSize, m_diagSize); - householderV.applyThisOnTheLeft(m_matrixV); // FIXME this line involves a temporary buffer - } -} - -/** \internal - * Performs A = A * B exploiting the special structure of the matrix A. Splitting A as: - * A = [A1] - * [A2] - * such that A1.rows()==n1, then we assume that at least half of the columns of A1 and A2 are zeros. - * We can thus pack them prior to the the matrix product. However, this is only worth the effort if the matrix is large - * enough. - */ -template -void BDCSVD::structured_update(Block A, const MatrixXr &B, Index n1) -{ - Index n = A.rows(); - if(n>100) - { - // If the matrices are large enough, let's exploit the sparse structure of A by - // splitting it in half (wrt n1), and packing the non-zero columns. - Index n2 = n - n1; - Map A1(m_workspace.data() , n1, n); - Map A2(m_workspace.data()+ n1*n, n2, n); - Map B1(m_workspace.data()+ n*n, n, n); - Map B2(m_workspace.data()+2*n*n, n, n); - Index k1=0, k2=0; - for(Index j=0; j tmp(m_workspace.data(),n,n); - tmp.noalias() = A*B; - A = tmp; - } -} - -// The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the -// place of the submatrix we are currently working on. - -//@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU; -//@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU; -// lastCol + 1 - firstCol is the size of the submatrix. -//@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W) -//@param firstRowW : Same as firstRowW with the column. -//@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix -// to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper. -template -void BDCSVD::divide (Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift) -{ - // requires rows = cols + 1; - using std::pow; - using std::sqrt; - using std::abs; - const Index n = lastCol - firstCol + 1; - const Index k = n/2; - const RealScalar considerZero = (std::numeric_limits::min)(); - RealScalar alphaK; - RealScalar betaK; - RealScalar r0; - RealScalar lambda, phi, c0, s0; - VectorType l, f; - // We use the other algorithm which is more efficient for small - // matrices. - if (n < m_algoswap) - { - // FIXME this line involves temporaries - JacobiSVD b(m_computed.block(firstCol, firstCol, n + 1, n), ComputeFullU | (m_compV ? ComputeFullV : 0)); - if (m_compU) - m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = b.matrixU(); - else - { - m_naiveU.row(0).segment(firstCol, n + 1).real() = b.matrixU().row(0); - m_naiveU.row(1).segment(firstCol, n + 1).real() = b.matrixU().row(n); - } - if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n).real() = b.matrixV(); - m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero(); - m_computed.diagonal().segment(firstCol + shift, n) = b.singularValues().head(n); - return; - } - // We use the divide and conquer algorithm - alphaK = m_computed(firstCol + k, firstCol + k); - betaK = m_computed(firstCol + k + 1, firstCol + k); - // The divide must be done in that order in order to have good results. Divide change the data inside the submatrices - // and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the - // right submatrix before the left one. - divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift); - divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1); - - if (m_compU) - { - lambda = m_naiveU(firstCol + k, firstCol + k); - phi = m_naiveU(firstCol + k + 1, lastCol + 1); - } - else - { - lambda = m_naiveU(1, firstCol + k); - phi = m_naiveU(0, lastCol + 1); - } - r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda)) + abs(betaK * phi) * abs(betaK * phi)); - if (m_compU) - { - l = m_naiveU.row(firstCol + k).segment(firstCol, k); - f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1); - } - else - { - l = m_naiveU.row(1).segment(firstCol, k); - f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1); - } - if (m_compV) m_naiveV(firstRowW+k, firstColW) = Literal(1); - if (r0= firstCol; i--) - m_naiveU.col(i + 1).segment(firstCol, k + 1) = m_naiveU.col(i).segment(firstCol, k + 1); - // we shift q1 at the left with a factor c0 - m_naiveU.col(firstCol).segment( firstCol, k + 1) = (q1 * c0); - // last column = q1 * - s0 - m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) = (q1 * ( - s0)); - // first column = q2 * s0 - m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) = m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) * s0; - // q2 *= c0 - m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0; - } - else - { - RealScalar q1 = m_naiveU(0, firstCol + k); - // we shift Q1 to the right - for (Index i = firstCol + k - 1; i >= firstCol; i--) - m_naiveU(0, i + 1) = m_naiveU(0, i); - // we shift q1 at the left with a factor c0 - m_naiveU(0, firstCol) = (q1 * c0); - // last column = q1 * - s0 - m_naiveU(0, lastCol + 1) = (q1 * ( - s0)); - // first column = q2 * s0 - m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0; - // q2 *= c0 - m_naiveU(1, lastCol + 1) *= c0; - m_naiveU.row(1).segment(firstCol + 1, k).setZero(); - m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero(); - } - -#ifdef EIGEN_BDCSVD_SANITY_CHECKS - assert(m_naiveU.allFinite()); - assert(m_naiveV.allFinite()); - assert(m_computed.allFinite()); -#endif - - m_computed(firstCol + shift, firstCol + shift) = r0; - m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) = alphaK * l.transpose().real(); - m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) = betaK * f.transpose().real(); - -#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE - ArrayXr tmp1 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues(); -#endif - // Second part: try to deflate singular values in combined matrix - deflation(firstCol, lastCol, k, firstRowW, firstColW, shift); -#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE - ArrayXr tmp2 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues(); - std::cout << "\n\nj1 = " << tmp1.transpose().format(bdcsvdfmt) << "\n"; - std::cout << "j2 = " << tmp2.transpose().format(bdcsvdfmt) << "\n\n"; - std::cout << "err: " << ((tmp1-tmp2).abs()>1e-12*tmp2.abs()).transpose() << "\n"; - static int count = 0; - std::cout << "# " << ++count << "\n\n"; - assert((tmp1-tmp2).matrix().norm() < 1e-14*tmp2.matrix().norm()); -// assert(count<681); -// assert(((tmp1-tmp2).abs()<1e-13*tmp2.abs()).all()); -#endif - - // Third part: compute SVD of combined matrix - MatrixXr UofSVD, VofSVD; - VectorType singVals; - computeSVDofM(firstCol + shift, n, UofSVD, singVals, VofSVD); - -#ifdef EIGEN_BDCSVD_SANITY_CHECKS - assert(UofSVD.allFinite()); - assert(VofSVD.allFinite()); -#endif - - if (m_compU) - structured_update(m_naiveU.block(firstCol, firstCol, n + 1, n + 1), UofSVD, (n+2)/2); - else - { - Map,Aligned> tmp(m_workspace.data(),2,n+1); - tmp.noalias() = m_naiveU.middleCols(firstCol, n+1) * UofSVD; - m_naiveU.middleCols(firstCol, n + 1) = tmp; - } - - if (m_compV) structured_update(m_naiveV.block(firstRowW, firstColW, n, n), VofSVD, (n+1)/2); - -#ifdef EIGEN_BDCSVD_SANITY_CHECKS - assert(m_naiveU.allFinite()); - assert(m_naiveV.allFinite()); - assert(m_computed.allFinite()); -#endif - - m_computed.block(firstCol + shift, firstCol + shift, n, n).setZero(); - m_computed.block(firstCol + shift, firstCol + shift, n, n).diagonal() = singVals; -}// end divide - -// Compute SVD of m_computed.block(firstCol, firstCol, n + 1, n); this block only has non-zeros in -// the first column and on the diagonal and has undergone deflation, so diagonal is in increasing -// order except for possibly the (0,0) entry. The computed SVD is stored U, singVals and V, except -// that if m_compV is false, then V is not computed. Singular values are sorted in decreasing order. -// -// TODO Opportunities for optimization: better root finding algo, better stopping criterion, better -// handling of round-off errors, be consistent in ordering -// For instance, to solve the secular equation using FMM, see http://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf -template -void BDCSVD::computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V) -{ - const RealScalar considerZero = (std::numeric_limits::min)(); - using std::abs; - ArrayRef col0 = m_computed.col(firstCol).segment(firstCol, n); - m_workspace.head(n) = m_computed.block(firstCol, firstCol, n, n).diagonal(); - ArrayRef diag = m_workspace.head(n); - diag(0) = Literal(0); - - // Allocate space for singular values and vectors - singVals.resize(n); - U.resize(n+1, n+1); - if (m_compV) V.resize(n, n); - -#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE - if (col0.hasNaN() || diag.hasNaN()) - std::cout << "\n\nHAS NAN\n\n"; -#endif - - // Many singular values might have been deflated, the zero ones have been moved to the end, - // but others are interleaved and we must ignore them at this stage. - // To this end, let's compute a permutation skipping them: - Index actual_n = n; - while(actual_n>1 && diag(actual_n-1)==Literal(0)) --actual_n; - Index m = 0; // size of the deflated problem - for(Index k=0;kconsiderZero) - m_workspaceI(m++) = k; - Map perm(m_workspaceI.data(),m); - - Map shifts(m_workspace.data()+1*n, n); - Map mus(m_workspace.data()+2*n, n); - Map zhat(m_workspace.data()+3*n, n); - -#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE - std::cout << "computeSVDofM using:\n"; - std::cout << " z: " << col0.transpose() << "\n"; - std::cout << " d: " << diag.transpose() << "\n"; -#endif - - // Compute singVals, shifts, and mus - computeSingVals(col0, diag, perm, singVals, shifts, mus); - -#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE - std::cout << " j: " << (m_computed.block(firstCol, firstCol, n, n)).jacobiSvd().singularValues().transpose().reverse() << "\n\n"; - std::cout << " sing-val: " << singVals.transpose() << "\n"; - std::cout << " mu: " << mus.transpose() << "\n"; - std::cout << " shift: " << shifts.transpose() << "\n"; - - { - Index actual_n = n; - while(actual_n>1 && abs(col0(actual_n-1))0) : " << ((singVals.array()-diag) / singVals.array()).head(actual_n).transpose() << "\n\n"; - std::cout << " check3 (>0) : " << ((diag.segment(1,actual_n-1)-singVals.head(actual_n-1).array()) / singVals.head(actual_n-1).array()).transpose() << "\n\n\n"; - std::cout << " check4 (>0) : " << ((singVals.segment(1,actual_n-1)-singVals.head(actual_n-1))).transpose() << "\n\n\n"; - } -#endif - -#ifdef EIGEN_BDCSVD_SANITY_CHECKS - assert(singVals.allFinite()); - assert(mus.allFinite()); - assert(shifts.allFinite()); -#endif - - // Compute zhat - perturbCol0(col0, diag, perm, singVals, shifts, mus, zhat); -#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE - std::cout << " zhat: " << zhat.transpose() << "\n"; -#endif - -#ifdef EIGEN_BDCSVD_SANITY_CHECKS - assert(zhat.allFinite()); -#endif - - computeSingVecs(zhat, diag, perm, singVals, shifts, mus, U, V); - -#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE - std::cout << "U^T U: " << (U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() << "\n"; - std::cout << "V^T V: " << (V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() << "\n"; -#endif - -#ifdef EIGEN_BDCSVD_SANITY_CHECKS - assert(U.allFinite()); - assert(V.allFinite()); - assert((U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() < 1e-14 * n); - assert((V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() < 1e-14 * n); - assert(m_naiveU.allFinite()); - assert(m_naiveV.allFinite()); - assert(m_computed.allFinite()); -#endif - - // Because of deflation, the singular values might not be completely sorted. - // Fortunately, reordering them is a O(n) problem - for(Index i=0; isingVals(i+1)) - { - using std::swap; - swap(singVals(i),singVals(i+1)); - U.col(i).swap(U.col(i+1)); - if(m_compV) V.col(i).swap(V.col(i+1)); - } - } - - // Reverse order so that singular values in increased order - // Because of deflation, the zeros singular-values are already at the end - singVals.head(actual_n).reverseInPlace(); - U.leftCols(actual_n).rowwise().reverseInPlace(); - if (m_compV) V.leftCols(actual_n).rowwise().reverseInPlace(); - -#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE - JacobiSVD jsvd(m_computed.block(firstCol, firstCol, n, n) ); - std::cout << " * j: " << jsvd.singularValues().transpose() << "\n\n"; - std::cout << " * sing-val: " << singVals.transpose() << "\n"; -// std::cout << " * err: " << ((jsvd.singularValues()-singVals)>1e-13*singVals.norm()).transpose() << "\n"; -#endif -} - -template -typename BDCSVD::RealScalar BDCSVD::secularEq(RealScalar mu, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift) -{ - Index m = perm.size(); - RealScalar res = Literal(1); - for(Index i=0; i -void BDCSVD::computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, - VectorType& singVals, ArrayRef shifts, ArrayRef mus) -{ - using std::abs; - using std::swap; - using std::sqrt; - - Index n = col0.size(); - Index actual_n = n; - // Note that here actual_n is computed based on col0(i)==0 instead of diag(i)==0 as above - // because 1) we have diag(i)==0 => col0(i)==0 and 2) if col0(i)==0, then diag(i) is already a singular value. - while(actual_n>1 && col0(actual_n-1)==Literal(0)) --actual_n; - - for (Index k = 0; k < n; ++k) - { - if (col0(k) == Literal(0) || actual_n==1) - { - // if col0(k) == 0, then entry is deflated, so singular value is on diagonal - // if actual_n==1, then the deflated problem is already diagonalized - singVals(k) = k==0 ? col0(0) : diag(k); - mus(k) = Literal(0); - shifts(k) = k==0 ? col0(0) : diag(k); - continue; - } - - // otherwise, use secular equation to find singular value - RealScalar left = diag(k); - RealScalar right; // was: = (k != actual_n-1) ? diag(k+1) : (diag(actual_n-1) + col0.matrix().norm()); - if(k==actual_n-1) - right = (diag(actual_n-1) + col0.matrix().norm()); - else - { - // Skip deflated singular values, - // recall that at this stage we assume that z[j]!=0 and all entries for which z[j]==0 have been put aside. - // This should be equivalent to using perm[] - Index l = k+1; - while(col0(l)==Literal(0)) { ++l; eigen_internal_assert(l Literal(0)) ? left : right; - - // measure everything relative to shift - Map diagShifted(m_workspace.data()+4*n, n); - diagShifted = diag - shift; - - // initial guess - RealScalar muPrev, muCur; - if (shift == left) - { - muPrev = (right - left) * RealScalar(0.1); - if (k == actual_n-1) muCur = right - left; - else muCur = (right - left) * RealScalar(0.5); - } - else - { - muPrev = -(right - left) * RealScalar(0.1); - muCur = -(right - left) * RealScalar(0.5); - } - - RealScalar fPrev = secularEq(muPrev, col0, diag, perm, diagShifted, shift); - RealScalar fCur = secularEq(muCur, col0, diag, perm, diagShifted, shift); - if (abs(fPrev) < abs(fCur)) - { - swap(fPrev, fCur); - swap(muPrev, muCur); - } - - // rational interpolation: fit a function of the form a / mu + b through the two previous - // iterates and use its zero to compute the next iterate - bool useBisection = fPrev*fCur>Literal(0); - while (fCur!=Literal(0) && abs(muCur - muPrev) > Literal(8) * NumTraits::epsilon() * numext::maxi(abs(muCur), abs(muPrev)) && abs(fCur - fPrev)>NumTraits::epsilon() && !useBisection) - { - ++m_numIters; - - // Find a and b such that the function f(mu) = a / mu + b matches the current and previous samples. - RealScalar a = (fCur - fPrev) / (Literal(1)/muCur - Literal(1)/muPrev); - RealScalar b = fCur - a / muCur; - // And find mu such that f(mu)==0: - RealScalar muZero = -a/b; - RealScalar fZero = secularEq(muZero, col0, diag, perm, diagShifted, shift); - - muPrev = muCur; - fPrev = fCur; - muCur = muZero; - fCur = fZero; - - - if (shift == left && (muCur < Literal(0) || muCur > right - left)) useBisection = true; - if (shift == right && (muCur < -(right - left) || muCur > Literal(0))) useBisection = true; - if (abs(fCur)>abs(fPrev)) useBisection = true; - } - - // fall back on bisection method if rational interpolation did not work - if (useBisection) - { -#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE - std::cout << "useBisection for k = " << k << ", actual_n = " << actual_n << "\n"; -#endif - RealScalar leftShifted, rightShifted; - if (shift == left) - { - // to avoid overflow, we must have mu > max(real_min, |z(k)|/sqrt(real_max)), - // the factor 2 is to be more conservative - leftShifted = numext::maxi( (std::numeric_limits::min)(), Literal(2) * abs(col0(k)) / sqrt((std::numeric_limits::max)()) ); - - // check that we did it right: - eigen_internal_assert( (numext::isfinite)( (col0(k)/leftShifted)*(col0(k)/(diag(k)+shift+leftShifted)) ) ); - // I don't understand why the case k==0 would be special there: - // if (k == 0) rightShifted = right - left; else - rightShifted = (k==actual_n-1) ? right : ((right - left) * RealScalar(0.51)); // theoretically we can take 0.5, but let's be safe - } - else - { - leftShifted = -(right - left) * RealScalar(0.51); - if(k+1( (std::numeric_limits::min)(), abs(col0(k+1)) / sqrt((std::numeric_limits::max)()) ); - else - rightShifted = -(std::numeric_limits::min)(); - } - - RealScalar fLeft = secularEq(leftShifted, col0, diag, perm, diagShifted, shift); - -#if defined EIGEN_INTERNAL_DEBUGGING || defined EIGEN_BDCSVD_DEBUG_VERBOSE - RealScalar fRight = secularEq(rightShifted, col0, diag, perm, diagShifted, shift); -#endif - -#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE - if(!(fLeft * fRight<0)) - { - std::cout << "fLeft: " << leftShifted << " - " << diagShifted.head(10).transpose() << "\n ; " << bool(left==shift) << " " << (left-shift) << "\n"; - std::cout << k << " : " << fLeft << " * " << fRight << " == " << fLeft * fRight << " ; " << left << " - " << right << " -> " << leftShifted << " " << rightShifted << " shift=" << shift << "\n"; - } -#endif - eigen_internal_assert(fLeft * fRight < Literal(0)); - - while (rightShifted - leftShifted > Literal(2) * NumTraits::epsilon() * numext::maxi(abs(leftShifted), abs(rightShifted))) - { - RealScalar midShifted = (leftShifted + rightShifted) / Literal(2); - fMid = secularEq(midShifted, col0, diag, perm, diagShifted, shift); - if (fLeft * fMid < Literal(0)) - { - rightShifted = midShifted; - } - else - { - leftShifted = midShifted; - fLeft = fMid; - } - } - - muCur = (leftShifted + rightShifted) / Literal(2); - } - - singVals[k] = shift + muCur; - shifts[k] = shift; - mus[k] = muCur; - - // perturb singular value slightly if it equals diagonal entry to avoid division by zero later - // (deflation is supposed to avoid this from happening) - // - this does no seem to be necessary anymore - -// if (singVals[k] == left) singVals[k] *= 1 + NumTraits::epsilon(); -// if (singVals[k] == right) singVals[k] *= 1 - NumTraits::epsilon(); - } -} - - -// zhat is perturbation of col0 for which singular vectors can be computed stably (see Section 3.1) -template -void BDCSVD::perturbCol0 - (const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals, - const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat) -{ - using std::sqrt; - Index n = col0.size(); - Index m = perm.size(); - if(m==0) - { - zhat.setZero(); - return; - } - Index last = perm(m-1); - // The offset permits to skip deflated entries while computing zhat - for (Index k = 0; k < n; ++k) - { - if (col0(k) == Literal(0)) // deflated - zhat(k) = Literal(0); - else - { - // see equation (3.6) - RealScalar dk = diag(k); - RealScalar prod = (singVals(last) + dk) * (mus(last) + (shifts(last) - dk)); - - for(Index l = 0; l 0.9 ) - std::cout << " " << ((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) << " == (" << (singVals(j)+dk) << " * " << (mus(j)+(shifts(j)-dk)) - << ") / (" << (diag(i)+dk) << " * " << (diag(i)-dk) << ")\n"; -#endif - } - } -#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE - std::cout << "zhat(" << k << ") = sqrt( " << prod << ") ; " << (singVals(last) + dk) << " * " << mus(last) + shifts(last) << " - " << dk << "\n"; -#endif - RealScalar tmp = sqrt(prod); - zhat(k) = col0(k) > Literal(0) ? tmp : -tmp; - } - } -} - -// compute singular vectors -template -void BDCSVD::computeSingVecs - (const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals, - const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V) -{ - Index n = zhat.size(); - Index m = perm.size(); - - for (Index k = 0; k < n; ++k) - { - if (zhat(k) == Literal(0)) - { - U.col(k) = VectorType::Unit(n+1, k); - if (m_compV) V.col(k) = VectorType::Unit(n, k); - } - else - { - U.col(k).setZero(); - for(Index l=0;l= 1, di almost null and zi non null. -// We use a rotation to zero out zi applied to the left of M -template -void BDCSVD::deflation43(Index firstCol, Index shift, Index i, Index size) -{ - using std::abs; - using std::sqrt; - using std::pow; - Index start = firstCol + shift; - RealScalar c = m_computed(start, start); - RealScalar s = m_computed(start+i, start); - RealScalar r = numext::hypot(c,s); - if (r == Literal(0)) - { - m_computed(start+i, start+i) = Literal(0); - return; - } - m_computed(start,start) = r; - m_computed(start+i, start) = Literal(0); - m_computed(start+i, start+i) = Literal(0); - - JacobiRotation J(c/r,-s/r); - if (m_compU) m_naiveU.middleRows(firstCol, size+1).applyOnTheRight(firstCol, firstCol+i, J); - else m_naiveU.applyOnTheRight(firstCol, firstCol+i, J); -}// end deflation 43 - - -// page 13 -// i,j >= 1, i!=j and |di - dj| < epsilon * norm2(M) -// We apply two rotations to have zj = 0; -// TODO deflation44 is still broken and not properly tested -template -void BDCSVD::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size) -{ - using std::abs; - using std::sqrt; - using std::conj; - using std::pow; - RealScalar c = m_computed(firstColm+i, firstColm); - RealScalar s = m_computed(firstColm+j, firstColm); - RealScalar r = sqrt(numext::abs2(c) + numext::abs2(s)); -#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE - std::cout << "deflation 4.4: " << i << "," << j << " -> " << c << " " << s << " " << r << " ; " - << m_computed(firstColm + i-1, firstColm) << " " - << m_computed(firstColm + i, firstColm) << " " - << m_computed(firstColm + i+1, firstColm) << " " - << m_computed(firstColm + i+2, firstColm) << "\n"; - std::cout << m_computed(firstColm + i-1, firstColm + i-1) << " " - << m_computed(firstColm + i, firstColm+i) << " " - << m_computed(firstColm + i+1, firstColm+i+1) << " " - << m_computed(firstColm + i+2, firstColm+i+2) << "\n"; -#endif - if (r==Literal(0)) - { - m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j); - return; - } - c/=r; - s/=r; - m_computed(firstColm + i, firstColm) = r; - m_computed(firstColm + j, firstColm + j) = m_computed(firstColm + i, firstColm + i); - m_computed(firstColm + j, firstColm) = Literal(0); - - JacobiRotation J(c,-s); - if (m_compU) m_naiveU.middleRows(firstColu, size+1).applyOnTheRight(firstColu + i, firstColu + j, J); - else m_naiveU.applyOnTheRight(firstColu+i, firstColu+j, J); - if (m_compV) m_naiveV.middleRows(firstRowW, size).applyOnTheRight(firstColW + i, firstColW + j, J); -}// end deflation 44 - - -// acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive] -template -void BDCSVD::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift) -{ - using std::sqrt; - using std::abs; - const Index length = lastCol + 1 - firstCol; - - Block col0(m_computed, firstCol+shift, firstCol+shift, length, 1); - Diagonal fulldiag(m_computed); - VectorBlock,Dynamic> diag(fulldiag, firstCol+shift, length); - - const RealScalar considerZero = (std::numeric_limits::min)(); - RealScalar maxDiag = diag.tail((std::max)(Index(1),length-1)).cwiseAbs().maxCoeff(); - RealScalar epsilon_strict = numext::maxi(considerZero,NumTraits::epsilon() * maxDiag); - RealScalar epsilon_coarse = Literal(8) * NumTraits::epsilon() * numext::maxi(col0.cwiseAbs().maxCoeff(), maxDiag); - -#ifdef EIGEN_BDCSVD_SANITY_CHECKS - assert(m_naiveU.allFinite()); - assert(m_naiveV.allFinite()); - assert(m_computed.allFinite()); -#endif - -#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE - std::cout << "\ndeflate:" << diag.head(k+1).transpose() << " | " << diag.segment(k+1,length-k-1).transpose() << "\n"; -#endif - - //condition 4.1 - if (diag(0) < epsilon_coarse) - { -#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE - std::cout << "deflation 4.1, because " << diag(0) << " < " << epsilon_coarse << "\n"; -#endif - diag(0) = epsilon_coarse; - } - - //condition 4.2 - for (Index i=1;i k) permutation[p] = j++; - else if (j >= length) permutation[p] = i++; - else if (diag(i) < diag(j)) permutation[p] = j++; - else permutation[p] = i++; - } - } - - // If we have a total deflation, then we have to insert diag(0) at the right place - if(total_deflation) - { - for(Index i=1; i0 && (abs(diag(i))1;--i) - if( (diag(i) - diag(i-1)) < NumTraits::epsilon()*maxDiag ) - { -#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE - std::cout << "deflation 4.4 with i = " << i << " because " << (diag(i) - diag(i-1)) << " < " << NumTraits::epsilon()*diag(i) << "\n"; -#endif - eigen_internal_assert(abs(diag(i) - diag(i-1)) -BDCSVD::PlainObject> -MatrixBase::bdcSvd(unsigned int computationOptions) const -{ - return BDCSVD(*this, computationOptions); -} -#endif - -} // end namespace Eigen - -#endif diff --git a/src/math_meigen/Eigen/src/SVD/JacobiSVD.h b/src/math_meigen/Eigen/src/SVD/JacobiSVD.h deleted file mode 100755 index 43488b1e0..000000000 --- a/src/math_meigen/Eigen/src/SVD/JacobiSVD.h +++ /dev/null @@ -1,804 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009-2010 Benoit Jacob -// Copyright (C) 2013-2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_JACOBISVD_H -#define EIGEN_JACOBISVD_H - -namespace Eigen { - -namespace internal { -// forward declaration (needed by ICC) -// the empty body is required by MSVC -template::IsComplex> -struct svd_precondition_2x2_block_to_be_real {}; - -/*** QR preconditioners (R-SVD) - *** - *** Their role is to reduce the problem of computing the SVD to the case of a square matrix. - *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for - *** JacobiSVD which by itself is only able to work on square matrices. - ***/ - -enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols }; - -template -struct qr_preconditioner_should_do_anything -{ - enum { a = MatrixType::RowsAtCompileTime != Dynamic && - MatrixType::ColsAtCompileTime != Dynamic && - MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime, - b = MatrixType::RowsAtCompileTime != Dynamic && - MatrixType::ColsAtCompileTime != Dynamic && - MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime, - ret = !( (QRPreconditioner == NoQRPreconditioner) || - (Case == PreconditionIfMoreColsThanRows && bool(a)) || - (Case == PreconditionIfMoreRowsThanCols && bool(b)) ) - }; -}; - -template::ret -> struct qr_preconditioner_impl {}; - -template -class qr_preconditioner_impl -{ -public: - void allocate(const JacobiSVD&) {} - bool run(JacobiSVD&, const MatrixType&) - { - return false; - } -}; - -/*** preconditioner using FullPivHouseholderQR ***/ - -template -class qr_preconditioner_impl -{ -public: - typedef typename MatrixType::Scalar Scalar; - enum - { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime - }; - typedef Matrix WorkspaceType; - - void allocate(const JacobiSVD& svd) - { - if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) - { - m_qr.~QRType(); - ::new (&m_qr) QRType(svd.rows(), svd.cols()); - } - if (svd.m_computeFullU) m_workspace.resize(svd.rows()); - } - - bool run(JacobiSVD& svd, const MatrixType& matrix) - { - if(matrix.rows() > matrix.cols()) - { - m_qr.compute(matrix); - svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView(); - if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace); - if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); - return true; - } - return false; - } -private: - typedef FullPivHouseholderQR QRType; - QRType m_qr; - WorkspaceType m_workspace; -}; - -template -class qr_preconditioner_impl -{ -public: - typedef typename MatrixType::Scalar Scalar; - enum - { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, - TrOptions = RowsAtCompileTime==1 ? (MatrixType::Options & ~(RowMajor)) - : ColsAtCompileTime==1 ? (MatrixType::Options | RowMajor) - : MatrixType::Options - }; - typedef Matrix - TransposeTypeWithSameStorageOrder; - - void allocate(const JacobiSVD& svd) - { - if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) - { - m_qr.~QRType(); - ::new (&m_qr) QRType(svd.cols(), svd.rows()); - } - m_adjoint.resize(svd.cols(), svd.rows()); - if (svd.m_computeFullV) m_workspace.resize(svd.cols()); - } - - bool run(JacobiSVD& svd, const MatrixType& matrix) - { - if(matrix.cols() > matrix.rows()) - { - m_adjoint = matrix.adjoint(); - m_qr.compute(m_adjoint); - svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView().adjoint(); - if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace); - if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); - return true; - } - else return false; - } -private: - typedef FullPivHouseholderQR QRType; - QRType m_qr; - TransposeTypeWithSameStorageOrder m_adjoint; - typename internal::plain_row_type::type m_workspace; -}; - -/*** preconditioner using ColPivHouseholderQR ***/ - -template -class qr_preconditioner_impl -{ -public: - void allocate(const JacobiSVD& svd) - { - if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) - { - m_qr.~QRType(); - ::new (&m_qr) QRType(svd.rows(), svd.cols()); - } - if (svd.m_computeFullU) m_workspace.resize(svd.rows()); - else if (svd.m_computeThinU) m_workspace.resize(svd.cols()); - } - - bool run(JacobiSVD& svd, const MatrixType& matrix) - { - if(matrix.rows() > matrix.cols()) - { - m_qr.compute(matrix); - svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView(); - if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); - else if(svd.m_computeThinU) - { - svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); - m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); - } - if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); - return true; - } - return false; - } - -private: - typedef ColPivHouseholderQR QRType; - QRType m_qr; - typename internal::plain_col_type::type m_workspace; -}; - -template -class qr_preconditioner_impl -{ -public: - typedef typename MatrixType::Scalar Scalar; - enum - { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, - TrOptions = RowsAtCompileTime==1 ? (MatrixType::Options & ~(RowMajor)) - : ColsAtCompileTime==1 ? (MatrixType::Options | RowMajor) - : MatrixType::Options - }; - - typedef Matrix - TransposeTypeWithSameStorageOrder; - - void allocate(const JacobiSVD& svd) - { - if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) - { - m_qr.~QRType(); - ::new (&m_qr) QRType(svd.cols(), svd.rows()); - } - if (svd.m_computeFullV) m_workspace.resize(svd.cols()); - else if (svd.m_computeThinV) m_workspace.resize(svd.rows()); - m_adjoint.resize(svd.cols(), svd.rows()); - } - - bool run(JacobiSVD& svd, const MatrixType& matrix) - { - if(matrix.cols() > matrix.rows()) - { - m_adjoint = matrix.adjoint(); - m_qr.compute(m_adjoint); - - svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView().adjoint(); - if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); - else if(svd.m_computeThinV) - { - svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); - m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); - } - if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); - return true; - } - else return false; - } - -private: - typedef ColPivHouseholderQR QRType; - QRType m_qr; - TransposeTypeWithSameStorageOrder m_adjoint; - typename internal::plain_row_type::type m_workspace; -}; - -/*** preconditioner using HouseholderQR ***/ - -template -class qr_preconditioner_impl -{ -public: - void allocate(const JacobiSVD& svd) - { - if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) - { - m_qr.~QRType(); - ::new (&m_qr) QRType(svd.rows(), svd.cols()); - } - if (svd.m_computeFullU) m_workspace.resize(svd.rows()); - else if (svd.m_computeThinU) m_workspace.resize(svd.cols()); - } - - bool run(JacobiSVD& svd, const MatrixType& matrix) - { - if(matrix.rows() > matrix.cols()) - { - m_qr.compute(matrix); - svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView(); - if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); - else if(svd.m_computeThinU) - { - svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); - m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); - } - if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols()); - return true; - } - return false; - } -private: - typedef HouseholderQR QRType; - QRType m_qr; - typename internal::plain_col_type::type m_workspace; -}; - -template -class qr_preconditioner_impl -{ -public: - typedef typename MatrixType::Scalar Scalar; - enum - { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, - Options = MatrixType::Options - }; - - typedef Matrix - TransposeTypeWithSameStorageOrder; - - void allocate(const JacobiSVD& svd) - { - if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) - { - m_qr.~QRType(); - ::new (&m_qr) QRType(svd.cols(), svd.rows()); - } - if (svd.m_computeFullV) m_workspace.resize(svd.cols()); - else if (svd.m_computeThinV) m_workspace.resize(svd.rows()); - m_adjoint.resize(svd.cols(), svd.rows()); - } - - bool run(JacobiSVD& svd, const MatrixType& matrix) - { - if(matrix.cols() > matrix.rows()) - { - m_adjoint = matrix.adjoint(); - m_qr.compute(m_adjoint); - - svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView().adjoint(); - if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); - else if(svd.m_computeThinV) - { - svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); - m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); - } - if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows()); - return true; - } - else return false; - } - -private: - typedef HouseholderQR QRType; - QRType m_qr; - TransposeTypeWithSameStorageOrder m_adjoint; - typename internal::plain_row_type::type m_workspace; -}; - -/*** 2x2 SVD implementation - *** - *** JacobiSVD consists in performing a series of 2x2 SVD subproblems - ***/ - -template -struct svd_precondition_2x2_block_to_be_real -{ - typedef JacobiSVD SVD; - typedef typename MatrixType::RealScalar RealScalar; - static bool run(typename SVD::WorkMatrixType&, SVD&, Index, Index, RealScalar&) { return true; } -}; - -template -struct svd_precondition_2x2_block_to_be_real -{ - typedef JacobiSVD SVD; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - static bool run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q, RealScalar& maxDiagEntry) - { - using std::sqrt; - using std::abs; - Scalar z; - JacobiRotation rot; - RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p))); - - const RealScalar considerAsZero = (std::numeric_limits::min)(); - const RealScalar precision = NumTraits::epsilon(); - - if(n==0) - { - // make sure first column is zero - work_matrix.coeffRef(p,p) = work_matrix.coeffRef(q,p) = Scalar(0); - - if(abs(numext::imag(work_matrix.coeff(p,q)))>considerAsZero) - { - // work_matrix.coeff(p,q) can be zero if work_matrix.coeff(q,p) is not zero but small enough to underflow when computing n - z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q); - work_matrix.row(p) *= z; - if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z); - } - if(abs(numext::imag(work_matrix.coeff(q,q)))>considerAsZero) - { - z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q); - work_matrix.row(q) *= z; - if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z); - } - // otherwise the second row is already zero, so we have nothing to do. - } - else - { - rot.c() = conj(work_matrix.coeff(p,p)) / n; - rot.s() = work_matrix.coeff(q,p) / n; - work_matrix.applyOnTheLeft(p,q,rot); - if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint()); - if(abs(numext::imag(work_matrix.coeff(p,q)))>considerAsZero) - { - z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q); - work_matrix.col(q) *= z; - if(svd.computeV()) svd.m_matrixV.col(q) *= z; - } - if(abs(numext::imag(work_matrix.coeff(q,q)))>considerAsZero) - { - z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q); - work_matrix.row(q) *= z; - if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z); - } - } - - // update largest diagonal entry - maxDiagEntry = numext::maxi(maxDiagEntry,numext::maxi(abs(work_matrix.coeff(p,p)), abs(work_matrix.coeff(q,q)))); - // and check whether the 2x2 block is already diagonal - RealScalar threshold = numext::maxi(considerAsZero, precision * maxDiagEntry); - return abs(work_matrix.coeff(p,q))>threshold || abs(work_matrix.coeff(q,p)) > threshold; - } -}; - -template -struct traits > -{ - typedef _MatrixType MatrixType; -}; - -} // end namespace internal - -/** \ingroup SVD_Module - * - * - * \class JacobiSVD - * - * \brief Two-sided Jacobi SVD decomposition of a rectangular matrix - * - * \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition - * \tparam QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally - * for the R-SVD step for non-square matrices. See discussion of possible values below. - * - * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product - * \f[ A = U S V^* \f] - * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal; - * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left - * and right \em singular \em vectors of \a A respectively. - * - * Singular values are always sorted in decreasing order. - * - * This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly. - * - * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the - * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual - * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, - * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving. - * - * Here's an example demonstrating basic usage: - * \include JacobiSVD_basic.cpp - * Output: \verbinclude JacobiSVD_basic.out - * - * This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than - * bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and - * \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms. - * In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension. - * - * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to - * terminate in finite (and reasonable) time. - * - * The possible values for QRPreconditioner are: - * \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR. - * \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR. - * Contrary to other QRs, it doesn't allow computing thin unitaries. - * \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR. - * This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization - * is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive - * process is more reliable than the optimized bidiagonal SVD iterations. - * \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing - * JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in - * faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking - * if QR preconditioning is needed before applying it anyway. - * - * \sa MatrixBase::jacobiSvd() - */ -template class JacobiSVD - : public SVDBase > -{ - typedef SVDBase Base; - public: - - typedef _MatrixType MatrixType; - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime), - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, - MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime), - MatrixOptions = MatrixType::Options - }; - - typedef typename Base::MatrixUType MatrixUType; - typedef typename Base::MatrixVType MatrixVType; - typedef typename Base::SingularValuesType SingularValuesType; - - typedef typename internal::plain_row_type::type RowType; - typedef typename internal::plain_col_type::type ColType; - typedef Matrix - WorkMatrixType; - - /** \brief Default Constructor. - * - * The default constructor is useful in cases in which the user intends to - * perform decompositions via JacobiSVD::compute(const MatrixType&). - */ - JacobiSVD() - {} - - - /** \brief Default Constructor with memory preallocation - * - * Like the default constructor but with preallocation of the internal data - * according to the specified problem size. - * \sa JacobiSVD() - */ - JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0) - { - allocate(rows, cols, computationOptions); - } - - /** \brief Constructor performing the decomposition of given matrix. - * - * \param matrix the matrix to decompose - * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. - * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU, - * #ComputeFullV, #ComputeThinV. - * - * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not - * available with the (non-default) FullPivHouseholderQR preconditioner. - */ - explicit JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0) - { - compute(matrix, computationOptions); - } - - /** \brief Method performing the decomposition of given matrix using custom options. - * - * \param matrix the matrix to decompose - * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. - * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU, - * #ComputeFullV, #ComputeThinV. - * - * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not - * available with the (non-default) FullPivHouseholderQR preconditioner. - */ - JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions); - - /** \brief Method performing the decomposition of given matrix using current options. - * - * \param matrix the matrix to decompose - * - * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int). - */ - JacobiSVD& compute(const MatrixType& matrix) - { - return compute(matrix, m_computationOptions); - } - - using Base::computeU; - using Base::computeV; - using Base::rows; - using Base::cols; - using Base::rank; - - private: - void allocate(Index rows, Index cols, unsigned int computationOptions); - - protected: - using Base::m_matrixU; - using Base::m_matrixV; - using Base::m_singularValues; - using Base::m_isInitialized; - using Base::m_isAllocated; - using Base::m_usePrescribedThreshold; - using Base::m_computeFullU; - using Base::m_computeThinU; - using Base::m_computeFullV; - using Base::m_computeThinV; - using Base::m_computationOptions; - using Base::m_nonzeroSingularValues; - using Base::m_rows; - using Base::m_cols; - using Base::m_diagSize; - using Base::m_prescribedThreshold; - WorkMatrixType m_workMatrix; - - template - friend struct internal::svd_precondition_2x2_block_to_be_real; - template - friend struct internal::qr_preconditioner_impl; - - internal::qr_preconditioner_impl m_qr_precond_morecols; - internal::qr_preconditioner_impl m_qr_precond_morerows; - MatrixType m_scaledMatrix; -}; - -template -void JacobiSVD::allocate(Index rows, Index cols, unsigned int computationOptions) -{ - eigen_assert(rows >= 0 && cols >= 0); - - if (m_isAllocated && - rows == m_rows && - cols == m_cols && - computationOptions == m_computationOptions) - { - return; - } - - m_rows = rows; - m_cols = cols; - m_isInitialized = false; - m_isAllocated = true; - m_computationOptions = computationOptions; - m_computeFullU = (computationOptions & ComputeFullU) != 0; - m_computeThinU = (computationOptions & ComputeThinU) != 0; - m_computeFullV = (computationOptions & ComputeFullV) != 0; - m_computeThinV = (computationOptions & ComputeThinV) != 0; - eigen_assert(!(m_computeFullU && m_computeThinU) && "JacobiSVD: you can't ask for both full and thin U"); - eigen_assert(!(m_computeFullV && m_computeThinV) && "JacobiSVD: you can't ask for both full and thin V"); - eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) && - "JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns."); - if (QRPreconditioner == FullPivHouseholderQRPreconditioner) - { - eigen_assert(!(m_computeThinU || m_computeThinV) && - "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. " - "Use the ColPivHouseholderQR preconditioner instead."); - } - m_diagSize = (std::min)(m_rows, m_cols); - m_singularValues.resize(m_diagSize); - if(RowsAtCompileTime==Dynamic) - m_matrixU.resize(m_rows, m_computeFullU ? m_rows - : m_computeThinU ? m_diagSize - : 0); - if(ColsAtCompileTime==Dynamic) - m_matrixV.resize(m_cols, m_computeFullV ? m_cols - : m_computeThinV ? m_diagSize - : 0); - m_workMatrix.resize(m_diagSize, m_diagSize); - - if(m_cols>m_rows) m_qr_precond_morecols.allocate(*this); - if(m_rows>m_cols) m_qr_precond_morerows.allocate(*this); - if(m_rows!=m_cols) m_scaledMatrix.resize(rows,cols); -} - -template -JacobiSVD& -JacobiSVD::compute(const MatrixType& matrix, unsigned int computationOptions) -{ - using std::abs; - allocate(matrix.rows(), matrix.cols(), computationOptions); - - // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations, - // only worsening the precision of U and V as we accumulate more rotations - const RealScalar precision = RealScalar(2) * NumTraits::epsilon(); - - // limit for denormal numbers to be considered zero in order to avoid infinite loops (see bug 286) - const RealScalar considerAsZero = (std::numeric_limits::min)(); - - // Scaling factor to reduce over/under-flows - RealScalar scale = matrix.cwiseAbs().maxCoeff(); - if(scale==RealScalar(0)) scale = RealScalar(1); - - /*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */ - - if(m_rows!=m_cols) - { - m_scaledMatrix = matrix / scale; - m_qr_precond_morecols.run(*this, m_scaledMatrix); - m_qr_precond_morerows.run(*this, m_scaledMatrix); - } - else - { - m_workMatrix = matrix.block(0,0,m_diagSize,m_diagSize) / scale; - if(m_computeFullU) m_matrixU.setIdentity(m_rows,m_rows); - if(m_computeThinU) m_matrixU.setIdentity(m_rows,m_diagSize); - if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols); - if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize); - } - - /*** step 2. The main Jacobi SVD iteration. ***/ - RealScalar maxDiagEntry = m_workMatrix.cwiseAbs().diagonal().maxCoeff(); - - bool finished = false; - while(!finished) - { - finished = true; - - // do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix - - for(Index p = 1; p < m_diagSize; ++p) - { - for(Index q = 0; q < p; ++q) - { - // if this 2x2 sub-matrix is not diagonal already... - // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't - // keep us iterating forever. Similarly, small denormal numbers are considered zero. - RealScalar threshold = numext::maxi(considerAsZero, precision * maxDiagEntry); - if(abs(m_workMatrix.coeff(p,q))>threshold || abs(m_workMatrix.coeff(q,p)) > threshold) - { - finished = false; - // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal - // the complex to real operation returns true if the updated 2x2 block is not already diagonal - if(internal::svd_precondition_2x2_block_to_be_real::run(m_workMatrix, *this, p, q, maxDiagEntry)) - { - JacobiRotation j_left, j_right; - internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right); - - // accumulate resulting Jacobi rotations - m_workMatrix.applyOnTheLeft(p,q,j_left); - if(computeU()) m_matrixU.applyOnTheRight(p,q,j_left.transpose()); - - m_workMatrix.applyOnTheRight(p,q,j_right); - if(computeV()) m_matrixV.applyOnTheRight(p,q,j_right); - - // keep track of the largest diagonal coefficient - maxDiagEntry = numext::maxi(maxDiagEntry,numext::maxi(abs(m_workMatrix.coeff(p,p)), abs(m_workMatrix.coeff(q,q)))); - } - } - } - } - } - - /*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/ - - for(Index i = 0; i < m_diagSize; ++i) - { - // For a complex matrix, some diagonal coefficients might note have been - // treated by svd_precondition_2x2_block_to_be_real, and the imaginary part - // of some diagonal entry might not be null. - if(NumTraits::IsComplex && abs(numext::imag(m_workMatrix.coeff(i,i)))>considerAsZero) - { - RealScalar a = abs(m_workMatrix.coeff(i,i)); - m_singularValues.coeffRef(i) = abs(a); - if(computeU()) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a; - } - else - { - // m_workMatrix.coeff(i,i) is already real, no difficulty: - RealScalar a = numext::real(m_workMatrix.coeff(i,i)); - m_singularValues.coeffRef(i) = abs(a); - if(computeU() && (a -JacobiSVD::PlainObject> -MatrixBase::jacobiSvd(unsigned int computationOptions) const -{ - return JacobiSVD(*this, computationOptions); -} - -} // end namespace Eigen - -#endif // EIGEN_JACOBISVD_H diff --git a/src/math_meigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h b/src/math_meigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h deleted file mode 100755 index ff0516f61..000000000 --- a/src/math_meigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +++ /dev/null @@ -1,91 +0,0 @@ -/* - Copyright (c) 2011, Intel Corporation. All rights reserved. - - Redistribution and use in source and binary forms, with or without modification, - are permitted provided that the following conditions are met: - - * Redistributions of source code must retain the above copyright notice, this - list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above copyright notice, - this list of conditions and the following disclaimer in the documentation - and/or other materials provided with the distribution. - * Neither the name of Intel Corporation nor the names of its contributors may - be used to endorse or promote products derived from this software without - specific prior written permission. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND - ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED - WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE - DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR - ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES - (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; - LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON - ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - - ******************************************************************************** - * Content : Eigen bindings to LAPACKe - * Singular Value Decomposition - SVD. - ******************************************************************************** -*/ - -#ifndef EIGEN_JACOBISVD_LAPACKE_H -#define EIGEN_JACOBISVD_LAPACKE_H - -namespace Eigen { - -/** \internal Specialization for the data types supported by LAPACKe */ - -#define EIGEN_LAPACKE_SVD(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_PREFIX, EIGCOLROW, LAPACKE_COLROW) \ -template<> inline \ -JacobiSVD, ColPivHouseholderQRPreconditioner>& \ -JacobiSVD, ColPivHouseholderQRPreconditioner>::compute(const Matrix& matrix, unsigned int computationOptions) \ -{ \ - typedef Matrix MatrixType; \ - /*typedef MatrixType::Scalar Scalar;*/ \ - /*typedef MatrixType::RealScalar RealScalar;*/ \ - allocate(matrix.rows(), matrix.cols(), computationOptions); \ -\ - /*const RealScalar precision = RealScalar(2) * NumTraits::epsilon();*/ \ - m_nonzeroSingularValues = m_diagSize; \ -\ - lapack_int lda = internal::convert_index(matrix.outerStride()), ldu, ldvt; \ - lapack_int matrix_order = LAPACKE_COLROW; \ - char jobu, jobvt; \ - LAPACKE_TYPE *u, *vt, dummy; \ - jobu = (m_computeFullU) ? 'A' : (m_computeThinU) ? 'S' : 'N'; \ - jobvt = (m_computeFullV) ? 'A' : (m_computeThinV) ? 'S' : 'N'; \ - if (computeU()) { \ - ldu = internal::convert_index(m_matrixU.outerStride()); \ - u = (LAPACKE_TYPE*)m_matrixU.data(); \ - } else { ldu=1; u=&dummy; }\ - MatrixType localV; \ - lapack_int vt_rows = (m_computeFullV) ? internal::convert_index(m_cols) : (m_computeThinV) ? internal::convert_index(m_diagSize) : 1; \ - if (computeV()) { \ - localV.resize(vt_rows, m_cols); \ - ldvt = internal::convert_index(localV.outerStride()); \ - vt = (LAPACKE_TYPE*)localV.data(); \ - } else { ldvt=1; vt=&dummy; }\ - Matrix superb; superb.resize(m_diagSize, 1); \ - MatrixType m_temp; m_temp = matrix; \ - LAPACKE_##LAPACKE_PREFIX##gesvd( matrix_order, jobu, jobvt, internal::convert_index(m_rows), internal::convert_index(m_cols), (LAPACKE_TYPE*)m_temp.data(), lda, (LAPACKE_RTYPE*)m_singularValues.data(), u, ldu, vt, ldvt, superb.data()); \ - if (computeV()) m_matrixV = localV.adjoint(); \ - /* for(int i=0;i -// Copyright (C) 2014 Gael Guennebaud -// -// Copyright (C) 2013 Gauthier Brun -// Copyright (C) 2013 Nicolas Carre -// Copyright (C) 2013 Jean Ceccato -// Copyright (C) 2013 Pierre Zoppitelli -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SVDBASE_H -#define EIGEN_SVDBASE_H - -namespace Eigen { -/** \ingroup SVD_Module - * - * - * \class SVDBase - * - * \brief Base class of SVD algorithms - * - * \tparam Derived the type of the actual SVD decomposition - * - * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product - * \f[ A = U S V^* \f] - * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal; - * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left - * and right \em singular \em vectors of \a A respectively. - * - * Singular values are always sorted in decreasing order. - * - * - * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the - * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual - * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, - * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving. - * - * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to - * terminate in finite (and reasonable) time. - * \sa class BDCSVD, class JacobiSVD - */ -template -class SVDBase -{ - -public: - typedef typename internal::traits::MatrixType MatrixType; - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef typename MatrixType::StorageIndex StorageIndex; - typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime), - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, - MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime), - MatrixOptions = MatrixType::Options - }; - - typedef Matrix MatrixUType; - typedef Matrix MatrixVType; - typedef typename internal::plain_diag_type::type SingularValuesType; - - Derived& derived() { return *static_cast(this); } - const Derived& derived() const { return *static_cast(this); } - - /** \returns the \a U matrix. - * - * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, - * the U matrix is n-by-n if you asked for \link Eigen::ComputeFullU ComputeFullU \endlink, and is n-by-m if you asked for \link Eigen::ComputeThinU ComputeThinU \endlink. - * - * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed. - * - * This method asserts that you asked for \a U to be computed. - */ - const MatrixUType& matrixU() const - { - eigen_assert(m_isInitialized && "SVD is not initialized."); - eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?"); - return m_matrixU; - } - - /** \returns the \a V matrix. - * - * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, - * the V matrix is p-by-p if you asked for \link Eigen::ComputeFullV ComputeFullV \endlink, and is p-by-m if you asked for \link Eigen::ComputeThinV ComputeThinV \endlink. - * - * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed. - * - * This method asserts that you asked for \a V to be computed. - */ - const MatrixVType& matrixV() const - { - eigen_assert(m_isInitialized && "SVD is not initialized."); - eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?"); - return m_matrixV; - } - - /** \returns the vector of singular values. - * - * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the - * returned vector has size \a m. Singular values are always sorted in decreasing order. - */ - const SingularValuesType& singularValues() const - { - eigen_assert(m_isInitialized && "SVD is not initialized."); - return m_singularValues; - } - - /** \returns the number of singular values that are not exactly 0 */ - Index nonzeroSingularValues() const - { - eigen_assert(m_isInitialized && "SVD is not initialized."); - return m_nonzeroSingularValues; - } - - /** \returns the rank of the matrix of which \c *this is the SVD. - * - * \note This method has to determine which singular values should be considered nonzero. - * For that, it uses the threshold value that you can control by calling - * setThreshold(const RealScalar&). - */ - inline Index rank() const - { - using std::abs; - eigen_assert(m_isInitialized && "JacobiSVD is not initialized."); - if(m_singularValues.size()==0) return 0; - RealScalar premultiplied_threshold = numext::maxi(m_singularValues.coeff(0) * threshold(), (std::numeric_limits::min)()); - Index i = m_nonzeroSingularValues-1; - while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i; - return i+1; - } - - /** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(), - * which need to determine when singular values are to be considered nonzero. - * This is not used for the SVD decomposition itself. - * - * When it needs to get the threshold value, Eigen calls threshold(). - * The default is \c NumTraits::epsilon() - * - * \param threshold The new value to use as the threshold. - * - * A singular value will be considered nonzero if its value is strictly greater than - * \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$. - * - * If you want to come back to the default behavior, call setThreshold(Default_t) - */ - Derived& setThreshold(const RealScalar& threshold) - { - m_usePrescribedThreshold = true; - m_prescribedThreshold = threshold; - return derived(); - } - - /** Allows to come back to the default behavior, letting Eigen use its default formula for - * determining the threshold. - * - * You should pass the special object Eigen::Default as parameter here. - * \code svd.setThreshold(Eigen::Default); \endcode - * - * See the documentation of setThreshold(const RealScalar&). - */ - Derived& setThreshold(Default_t) - { - m_usePrescribedThreshold = false; - return derived(); - } - - /** Returns the threshold that will be used by certain methods such as rank(). - * - * See the documentation of setThreshold(const RealScalar&). - */ - RealScalar threshold() const - { - eigen_assert(m_isInitialized || m_usePrescribedThreshold); - // this temporary is needed to workaround a MSVC issue - Index diagSize = (std::max)(1,m_diagSize); - return m_usePrescribedThreshold ? m_prescribedThreshold - : diagSize*NumTraits::epsilon(); - } - - /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */ - inline bool computeU() const { return m_computeFullU || m_computeThinU; } - /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */ - inline bool computeV() const { return m_computeFullV || m_computeThinV; } - - inline Index rows() const { return m_rows; } - inline Index cols() const { return m_cols; } - - /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A. - * - * \param b the right-hand-side of the equation to solve. - * - * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V. - * - * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving. - * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$. - */ - template - inline const Solve - solve(const MatrixBase& b) const - { - eigen_assert(m_isInitialized && "SVD is not initialized."); - eigen_assert(computeU() && computeV() && "SVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice)."); - return Solve(derived(), b.derived()); - } - - #ifndef EIGEN_PARSED_BY_DOXYGEN - template - EIGEN_DEVICE_FUNC - void _solve_impl(const RhsType &rhs, DstType &dst) const; - #endif - -protected: - - static void check_template_parameters() - { - EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); - } - - // return true if already allocated - bool allocate(Index rows, Index cols, unsigned int computationOptions) ; - - MatrixUType m_matrixU; - MatrixVType m_matrixV; - SingularValuesType m_singularValues; - bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold; - bool m_computeFullU, m_computeThinU; - bool m_computeFullV, m_computeThinV; - unsigned int m_computationOptions; - Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize; - RealScalar m_prescribedThreshold; - - /** \brief Default Constructor. - * - * Default constructor of SVDBase - */ - SVDBase() - : m_isInitialized(false), - m_isAllocated(false), - m_usePrescribedThreshold(false), - m_computationOptions(0), - m_rows(-1), m_cols(-1), m_diagSize(0) - { - check_template_parameters(); - } - - -}; - -#ifndef EIGEN_PARSED_BY_DOXYGEN -template -template -void SVDBase::_solve_impl(const RhsType &rhs, DstType &dst) const -{ - eigen_assert(rhs.rows() == rows()); - - // A = U S V^* - // So A^{-1} = V S^{-1} U^* - - Matrix tmp; - Index l_rank = rank(); - tmp.noalias() = m_matrixU.leftCols(l_rank).adjoint() * rhs; - tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp; - dst = m_matrixV.leftCols(l_rank) * tmp; -} -#endif - -template -bool SVDBase::allocate(Index rows, Index cols, unsigned int computationOptions) -{ - eigen_assert(rows >= 0 && cols >= 0); - - if (m_isAllocated && - rows == m_rows && - cols == m_cols && - computationOptions == m_computationOptions) - { - return true; - } - - m_rows = rows; - m_cols = cols; - m_isInitialized = false; - m_isAllocated = true; - m_computationOptions = computationOptions; - m_computeFullU = (computationOptions & ComputeFullU) != 0; - m_computeThinU = (computationOptions & ComputeThinU) != 0; - m_computeFullV = (computationOptions & ComputeFullV) != 0; - m_computeThinV = (computationOptions & ComputeThinV) != 0; - eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U"); - eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V"); - eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) && - "SVDBase: thin U and V are only available when your matrix has a dynamic number of columns."); - - m_diagSize = (std::min)(m_rows, m_cols); - m_singularValues.resize(m_diagSize); - if(RowsAtCompileTime==Dynamic) - m_matrixU.resize(m_rows, m_computeFullU ? m_rows : m_computeThinU ? m_diagSize : 0); - if(ColsAtCompileTime==Dynamic) - m_matrixV.resize(m_cols, m_computeFullV ? m_cols : m_computeThinV ? m_diagSize : 0); - - return false; -} - -}// end namespace - -#endif // EIGEN_SVDBASE_H diff --git a/src/math_meigen/Eigen/src/SVD/UpperBidiagonalization.h b/src/math_meigen/Eigen/src/SVD/UpperBidiagonalization.h deleted file mode 100755 index 11ac847e1..000000000 --- a/src/math_meigen/Eigen/src/SVD/UpperBidiagonalization.h +++ /dev/null @@ -1,414 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2010 Benoit Jacob -// Copyright (C) 2013-2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_BIDIAGONALIZATION_H -#define EIGEN_BIDIAGONALIZATION_H - -namespace Eigen { - -namespace internal { -// UpperBidiagonalization will probably be replaced by a Bidiagonalization class, don't want to make it stable API. -// At the same time, it's useful to keep for now as it's about the only thing that is testing the BandMatrix class. - -template class UpperBidiagonalization -{ - public: - - typedef _MatrixType MatrixType; - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - ColsAtCompileTimeMinusOne = internal::decrement_size::ret - }; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 - typedef Matrix RowVectorType; - typedef Matrix ColVectorType; - typedef BandMatrix BidiagonalType; - typedef Matrix DiagVectorType; - typedef Matrix SuperDiagVectorType; - typedef HouseholderSequence< - const MatrixType, - const typename internal::remove_all::ConjugateReturnType>::type - > HouseholderUSequenceType; - typedef HouseholderSequence< - const typename internal::remove_all::type, - Diagonal, - OnTheRight - > HouseholderVSequenceType; - - /** - * \brief Default Constructor. - * - * The default constructor is useful in cases in which the user intends to - * perform decompositions via Bidiagonalization::compute(const MatrixType&). - */ - UpperBidiagonalization() : m_householder(), m_bidiagonal(), m_isInitialized(false) {} - - explicit UpperBidiagonalization(const MatrixType& matrix) - : m_householder(matrix.rows(), matrix.cols()), - m_bidiagonal(matrix.cols(), matrix.cols()), - m_isInitialized(false) - { - compute(matrix); - } - - UpperBidiagonalization& compute(const MatrixType& matrix); - UpperBidiagonalization& computeUnblocked(const MatrixType& matrix); - - const MatrixType& householder() const { return m_householder; } - const BidiagonalType& bidiagonal() const { return m_bidiagonal; } - - const HouseholderUSequenceType householderU() const - { - eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized."); - return HouseholderUSequenceType(m_householder, m_householder.diagonal().conjugate()); - } - - const HouseholderVSequenceType householderV() // const here gives nasty errors and i'm lazy - { - eigen_assert(m_isInitialized && "UpperBidiagonalization is not initialized."); - return HouseholderVSequenceType(m_householder.conjugate(), m_householder.const_derived().template diagonal<1>()) - .setLength(m_householder.cols()-1) - .setShift(1); - } - - protected: - MatrixType m_householder; - BidiagonalType m_bidiagonal; - bool m_isInitialized; -}; - -// Standard upper bidiagonalization without fancy optimizations -// This version should be faster for small matrix size -template -void upperbidiagonalization_inplace_unblocked(MatrixType& mat, - typename MatrixType::RealScalar *diagonal, - typename MatrixType::RealScalar *upper_diagonal, - typename MatrixType::Scalar* tempData = 0) -{ - typedef typename MatrixType::Scalar Scalar; - - Index rows = mat.rows(); - Index cols = mat.cols(); - - typedef Matrix TempType; - TempType tempVector; - if(tempData==0) - { - tempVector.resize(rows); - tempData = tempVector.data(); - } - - for (Index k = 0; /* breaks at k==cols-1 below */ ; ++k) - { - Index remainingRows = rows - k; - Index remainingCols = cols - k - 1; - - // construct left householder transform in-place in A - mat.col(k).tail(remainingRows) - .makeHouseholderInPlace(mat.coeffRef(k,k), diagonal[k]); - // apply householder transform to remaining part of A on the left - mat.bottomRightCorner(remainingRows, remainingCols) - .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), mat.coeff(k,k), tempData); - - if(k == cols-1) break; - - // construct right householder transform in-place in mat - mat.row(k).tail(remainingCols) - .makeHouseholderInPlace(mat.coeffRef(k,k+1), upper_diagonal[k]); - // apply householder transform to remaining part of mat on the left - mat.bottomRightCorner(remainingRows-1, remainingCols) - .applyHouseholderOnTheRight(mat.row(k).tail(remainingCols-1).transpose(), mat.coeff(k,k+1), tempData); - } -} - -/** \internal - * Helper routine for the block reduction to upper bidiagonal form. - * - * Let's partition the matrix A: - * - * | A00 A01 | - * A = | | - * | A10 A11 | - * - * This function reduces to bidiagonal form the left \c rows x \a blockSize vertical panel [A00/A10] - * and the \a blockSize x \c cols horizontal panel [A00 A01] of the matrix \a A. The bottom-right block A11 - * is updated using matrix-matrix products: - * A22 -= V * Y^T - X * U^T - * where V and U contains the left and right Householder vectors. U and V are stored in A10, and A01 - * respectively, and the update matrices X and Y are computed during the reduction. - * - */ -template -void upperbidiagonalization_blocked_helper(MatrixType& A, - typename MatrixType::RealScalar *diagonal, - typename MatrixType::RealScalar *upper_diagonal, - Index bs, - Ref::Flags & RowMajorBit> > X, - Ref::Flags & RowMajorBit> > Y) -{ - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef typename NumTraits::Literal Literal; - enum { StorageOrder = traits::Flags & RowMajorBit }; - typedef InnerStride ColInnerStride; - typedef InnerStride RowInnerStride; - typedef Ref, 0, ColInnerStride> SubColumnType; - typedef Ref, 0, RowInnerStride> SubRowType; - typedef Ref > SubMatType; - - Index brows = A.rows(); - Index bcols = A.cols(); - - Scalar tau_u, tau_u_prev(0), tau_v; - - for(Index k = 0; k < bs; ++k) - { - Index remainingRows = brows - k; - Index remainingCols = bcols - k - 1; - - SubMatType X_k1( X.block(k,0, remainingRows,k) ); - SubMatType V_k1( A.block(k,0, remainingRows,k) ); - - // 1 - update the k-th column of A - SubColumnType v_k = A.col(k).tail(remainingRows); - v_k -= V_k1 * Y.row(k).head(k).adjoint(); - if(k) v_k -= X_k1 * A.col(k).head(k); - - // 2 - construct left Householder transform in-place - v_k.makeHouseholderInPlace(tau_v, diagonal[k]); - - if(k+10) A.coeffRef(k-1,k) = tau_u_prev; - tau_u_prev = tau_u; - } - else - A.coeffRef(k-1,k) = tau_u_prev; - - A.coeffRef(k,k) = tau_v; - } - - if(bsbs && brows>bs) - { - SubMatType A11( A.bottomRightCorner(brows-bs,bcols-bs) ); - SubMatType A10( A.block(bs,0, brows-bs,bs) ); - SubMatType A01( A.block(0,bs, bs,bcols-bs) ); - Scalar tmp = A01(bs-1,0); - A01(bs-1,0) = Literal(1); - A11.noalias() -= A10 * Y.topLeftCorner(bcols,bs).bottomRows(bcols-bs).adjoint(); - A11.noalias() -= X.topLeftCorner(brows,bs).bottomRows(brows-bs) * A01; - A01(bs-1,0) = tmp; - } -} - -/** \internal - * - * Implementation of a block-bidiagonal reduction. - * It is based on the following paper: - * The Design of a Parallel Dense Linear Algebra Software Library: Reduction to Hessenberg, Tridiagonal, and Bidiagonal Form. - * by Jaeyoung Choi, Jack J. Dongarra, David W. Walker. (1995) - * section 3.3 - */ -template -void upperbidiagonalization_inplace_blocked(MatrixType& A, BidiagType& bidiagonal, - Index maxBlockSize=32, - typename MatrixType::Scalar* /*tempData*/ = 0) -{ - typedef typename MatrixType::Scalar Scalar; - typedef Block BlockType; - - Index rows = A.rows(); - Index cols = A.cols(); - Index size = (std::min)(rows, cols); - - // X and Y are work space - enum { StorageOrder = traits::Flags & RowMajorBit }; - Matrix X(rows,maxBlockSize); - Matrix Y(cols,maxBlockSize); - Index blockSize = (std::min)(maxBlockSize,size); - - Index k = 0; - for(k = 0; k < size; k += blockSize) - { - Index bs = (std::min)(size-k,blockSize); // actual size of the block - Index brows = rows - k; // rows of the block - Index bcols = cols - k; // columns of the block - - // partition the matrix A: - // - // | A00 A01 A02 | - // | | - // A = | A10 A11 A12 | - // | | - // | A20 A21 A22 | - // - // where A11 is a bs x bs diagonal block, - // and let: - // | A11 A12 | - // B = | | - // | A21 A22 | - - BlockType B = A.block(k,k,brows,bcols); - - // This stage performs the bidiagonalization of A11, A21, A12, and updating of A22. - // Finally, the algorithm continue on the updated A22. - // - // However, if B is too small, or A22 empty, then let's use an unblocked strategy - if(k+bs==cols || bcols<48) // somewhat arbitrary threshold - { - upperbidiagonalization_inplace_unblocked(B, - &(bidiagonal.template diagonal<0>().coeffRef(k)), - &(bidiagonal.template diagonal<1>().coeffRef(k)), - X.data() - ); - break; // We're done - } - else - { - upperbidiagonalization_blocked_helper( B, - &(bidiagonal.template diagonal<0>().coeffRef(k)), - &(bidiagonal.template diagonal<1>().coeffRef(k)), - bs, - X.topLeftCorner(brows,bs), - Y.topLeftCorner(bcols,bs) - ); - } - } -} - -template -UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::computeUnblocked(const _MatrixType& matrix) -{ - Index rows = matrix.rows(); - Index cols = matrix.cols(); - EIGEN_ONLY_USED_FOR_DEBUG(cols); - - eigen_assert(rows >= cols && "UpperBidiagonalization is only for Arices satisfying rows>=cols."); - - m_householder = matrix; - - ColVectorType temp(rows); - - upperbidiagonalization_inplace_unblocked(m_householder, - &(m_bidiagonal.template diagonal<0>().coeffRef(0)), - &(m_bidiagonal.template diagonal<1>().coeffRef(0)), - temp.data()); - - m_isInitialized = true; - return *this; -} - -template -UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::compute(const _MatrixType& matrix) -{ - Index rows = matrix.rows(); - Index cols = matrix.cols(); - EIGEN_ONLY_USED_FOR_DEBUG(rows); - EIGEN_ONLY_USED_FOR_DEBUG(cols); - - eigen_assert(rows >= cols && "UpperBidiagonalization is only for Arices satisfying rows>=cols."); - - m_householder = matrix; - upperbidiagonalization_inplace_blocked(m_householder, m_bidiagonal); - - m_isInitialized = true; - return *this; -} - -#if 0 -/** \return the Householder QR decomposition of \c *this. - * - * \sa class Bidiagonalization - */ -template -const UpperBidiagonalization::PlainObject> -MatrixBase::bidiagonalization() const -{ - return UpperBidiagonalization(eval()); -} -#endif - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_BIDIAGONALIZATION_H diff --git a/src/math_meigen/Eigen/src/SparseCholesky/SimplicialCholesky.h b/src/math_meigen/Eigen/src/SparseCholesky/SimplicialCholesky.h deleted file mode 100755 index 2907f6529..000000000 --- a/src/math_meigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +++ /dev/null @@ -1,689 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2012 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SIMPLICIAL_CHOLESKY_H -#define EIGEN_SIMPLICIAL_CHOLESKY_H - -namespace Eigen { - -enum SimplicialCholeskyMode { - SimplicialCholeskyLLT, - SimplicialCholeskyLDLT -}; - -namespace internal { - template - struct simplicial_cholesky_grab_input { - typedef CholMatrixType const * ConstCholMatrixPtr; - static void run(const InputMatrixType& input, ConstCholMatrixPtr &pmat, CholMatrixType &tmp) - { - tmp = input; - pmat = &tmp; - } - }; - - template - struct simplicial_cholesky_grab_input { - typedef MatrixType const * ConstMatrixPtr; - static void run(const MatrixType& input, ConstMatrixPtr &pmat, MatrixType &/*tmp*/) - { - pmat = &input; - } - }; -} // end namespace internal - -/** \ingroup SparseCholesky_Module - * \brief A base class for direct sparse Cholesky factorizations - * - * This is a base class for LL^T and LDL^T Cholesky factorizations of sparse matrices that are - * selfadjoint and positive definite. These factorizations allow for solving A.X = B where - * X and B can be either dense or sparse. - * - * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization - * such that the factorized matrix is P A P^-1. - * - * \tparam Derived the type of the derived class, that is the actual factorization type. - * - */ -template -class SimplicialCholeskyBase : public SparseSolverBase -{ - typedef SparseSolverBase Base; - using Base::m_isInitialized; - - public: - typedef typename internal::traits::MatrixType MatrixType; - typedef typename internal::traits::OrderingType OrderingType; - enum { UpLo = internal::traits::UpLo }; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef typename MatrixType::StorageIndex StorageIndex; - typedef SparseMatrix CholMatrixType; - typedef CholMatrixType const * ConstCholMatrixPtr; - typedef Matrix VectorType; - typedef Matrix VectorI; - - enum { - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime - }; - - public: - - using Base::derived; - - /** Default constructor */ - SimplicialCholeskyBase() - : m_info(Success), m_shiftOffset(0), m_shiftScale(1) - {} - - explicit SimplicialCholeskyBase(const MatrixType& matrix) - : m_info(Success), m_shiftOffset(0), m_shiftScale(1) - { - derived().compute(matrix); - } - - ~SimplicialCholeskyBase() - { - } - - Derived& derived() { return *static_cast(this); } - const Derived& derived() const { return *static_cast(this); } - - inline Index cols() const { return m_matrix.cols(); } - inline Index rows() const { return m_matrix.rows(); } - - /** \brief Reports whether previous computation was successful. - * - * \returns \c Success if computation was succesful, - * \c NumericalIssue if the matrix.appears to be negative. - */ - ComputationInfo info() const - { - eigen_assert(m_isInitialized && "Decomposition is not initialized."); - return m_info; - } - - /** \returns the permutation P - * \sa permutationPinv() */ - const PermutationMatrix& permutationP() const - { return m_P; } - - /** \returns the inverse P^-1 of the permutation P - * \sa permutationP() */ - const PermutationMatrix& permutationPinv() const - { return m_Pinv; } - - /** Sets the shift parameters that will be used to adjust the diagonal coefficients during the numerical factorization. - * - * During the numerical factorization, the diagonal coefficients are transformed by the following linear model:\n - * \c d_ii = \a offset + \a scale * \c d_ii - * - * The default is the identity transformation with \a offset=0, and \a scale=1. - * - * \returns a reference to \c *this. - */ - Derived& setShift(const RealScalar& offset, const RealScalar& scale = 1) - { - m_shiftOffset = offset; - m_shiftScale = scale; - return derived(); - } - -#ifndef EIGEN_PARSED_BY_DOXYGEN - /** \internal */ - template - void dumpMemory(Stream& s) - { - int total = 0; - s << " L: " << ((total+=(m_matrix.cols()+1) * sizeof(int) + m_matrix.nonZeros()*(sizeof(int)+sizeof(Scalar))) >> 20) << "Mb" << "\n"; - s << " diag: " << ((total+=m_diag.size() * sizeof(Scalar)) >> 20) << "Mb" << "\n"; - s << " tree: " << ((total+=m_parent.size() * sizeof(int)) >> 20) << "Mb" << "\n"; - s << " nonzeros: " << ((total+=m_nonZerosPerCol.size() * sizeof(int)) >> 20) << "Mb" << "\n"; - s << " perm: " << ((total+=m_P.size() * sizeof(int)) >> 20) << "Mb" << "\n"; - s << " perm^-1: " << ((total+=m_Pinv.size() * sizeof(int)) >> 20) << "Mb" << "\n"; - s << " TOTAL: " << (total>> 20) << "Mb" << "\n"; - } - - /** \internal */ - template - void _solve_impl(const MatrixBase &b, MatrixBase &dest) const - { - eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); - eigen_assert(m_matrix.rows()==b.rows()); - - if(m_info!=Success) - return; - - if(m_P.size()>0) - dest = m_P * b; - else - dest = b; - - if(m_matrix.nonZeros()>0) // otherwise L==I - derived().matrixL().solveInPlace(dest); - - if(m_diag.size()>0) - dest = m_diag.asDiagonal().inverse() * dest; - - if (m_matrix.nonZeros()>0) // otherwise U==I - derived().matrixU().solveInPlace(dest); - - if(m_P.size()>0) - dest = m_Pinv * dest; - } - - template - void _solve_impl(const SparseMatrixBase &b, SparseMatrixBase &dest) const - { - internal::solve_sparse_through_dense_panels(derived(), b, dest); - } - -#endif // EIGEN_PARSED_BY_DOXYGEN - - protected: - - /** Computes the sparse Cholesky decomposition of \a matrix */ - template - void compute(const MatrixType& matrix) - { - eigen_assert(matrix.rows()==matrix.cols()); - Index size = matrix.cols(); - CholMatrixType tmp(size,size); - ConstCholMatrixPtr pmat; - ordering(matrix, pmat, tmp); - analyzePattern_preordered(*pmat, DoLDLT); - factorize_preordered(*pmat); - } - - template - void factorize(const MatrixType& a) - { - eigen_assert(a.rows()==a.cols()); - Index size = a.cols(); - CholMatrixType tmp(size,size); - ConstCholMatrixPtr pmat; - - if(m_P.size()==0 && (UpLo&Upper)==Upper) - { - // If there is no ordering, try to directly use the input matrix without any copy - internal::simplicial_cholesky_grab_input::run(a, pmat, tmp); - } - else - { - tmp.template selfadjointView() = a.template selfadjointView().twistedBy(m_P); - pmat = &tmp; - } - - factorize_preordered(*pmat); - } - - template - void factorize_preordered(const CholMatrixType& a); - - void analyzePattern(const MatrixType& a, bool doLDLT) - { - eigen_assert(a.rows()==a.cols()); - Index size = a.cols(); - CholMatrixType tmp(size,size); - ConstCholMatrixPtr pmat; - ordering(a, pmat, tmp); - analyzePattern_preordered(*pmat,doLDLT); - } - void analyzePattern_preordered(const CholMatrixType& a, bool doLDLT); - - void ordering(const MatrixType& a, ConstCholMatrixPtr &pmat, CholMatrixType& ap); - - /** keeps off-diagonal entries; drops diagonal entries */ - struct keep_diag { - inline bool operator() (const Index& row, const Index& col, const Scalar&) const - { - return row!=col; - } - }; - - mutable ComputationInfo m_info; - bool m_factorizationIsOk; - bool m_analysisIsOk; - - CholMatrixType m_matrix; - VectorType m_diag; // the diagonal coefficients (LDLT mode) - VectorI m_parent; // elimination tree - VectorI m_nonZerosPerCol; - PermutationMatrix m_P; // the permutation - PermutationMatrix m_Pinv; // the inverse permutation - - RealScalar m_shiftOffset; - RealScalar m_shiftScale; -}; - -template > class SimplicialLLT; -template > class SimplicialLDLT; -template > class SimplicialCholesky; - -namespace internal { - -template struct traits > -{ - typedef _MatrixType MatrixType; - typedef _Ordering OrderingType; - enum { UpLo = _UpLo }; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::StorageIndex StorageIndex; - typedef SparseMatrix CholMatrixType; - typedef TriangularView MatrixL; - typedef TriangularView MatrixU; - static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } - static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } -}; - -template struct traits > -{ - typedef _MatrixType MatrixType; - typedef _Ordering OrderingType; - enum { UpLo = _UpLo }; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::StorageIndex StorageIndex; - typedef SparseMatrix CholMatrixType; - typedef TriangularView MatrixL; - typedef TriangularView MatrixU; - static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } - static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } -}; - -template struct traits > -{ - typedef _MatrixType MatrixType; - typedef _Ordering OrderingType; - enum { UpLo = _UpLo }; -}; - -} - -/** \ingroup SparseCholesky_Module - * \class SimplicialLLT - * \brief A direct sparse LLT Cholesky factorizations - * - * This class provides a LL^T Cholesky factorizations of sparse matrices that are - * selfadjoint and positive definite. The factorization allows for solving A.X = B where - * X and B can be either dense or sparse. - * - * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization - * such that the factorized matrix is P A P^-1. - * - * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> - * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower - * or Upper. Default is Lower. - * \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<> - * - * \implsparsesolverconcept - * - * \sa class SimplicialLDLT, class AMDOrdering, class NaturalOrdering - */ -template - class SimplicialLLT : public SimplicialCholeskyBase > -{ -public: - typedef _MatrixType MatrixType; - enum { UpLo = _UpLo }; - typedef SimplicialCholeskyBase Base; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef typename MatrixType::StorageIndex StorageIndex; - typedef SparseMatrix CholMatrixType; - typedef Matrix VectorType; - typedef internal::traits Traits; - typedef typename Traits::MatrixL MatrixL; - typedef typename Traits::MatrixU MatrixU; -public: - /** Default constructor */ - SimplicialLLT() : Base() {} - /** Constructs and performs the LLT factorization of \a matrix */ - explicit SimplicialLLT(const MatrixType& matrix) - : Base(matrix) {} - - /** \returns an expression of the factor L */ - inline const MatrixL matrixL() const { - eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized"); - return Traits::getL(Base::m_matrix); - } - - /** \returns an expression of the factor U (= L^*) */ - inline const MatrixU matrixU() const { - eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized"); - return Traits::getU(Base::m_matrix); - } - - /** Computes the sparse Cholesky decomposition of \a matrix */ - SimplicialLLT& compute(const MatrixType& matrix) - { - Base::template compute(matrix); - return *this; - } - - /** Performs a symbolic decomposition on the sparcity of \a matrix. - * - * This function is particularly useful when solving for several problems having the same structure. - * - * \sa factorize() - */ - void analyzePattern(const MatrixType& a) - { - Base::analyzePattern(a, false); - } - - /** Performs a numeric decomposition of \a matrix - * - * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. - * - * \sa analyzePattern() - */ - void factorize(const MatrixType& a) - { - Base::template factorize(a); - } - - /** \returns the determinant of the underlying matrix from the current factorization */ - Scalar determinant() const - { - Scalar detL = Base::m_matrix.diagonal().prod(); - return numext::abs2(detL); - } -}; - -/** \ingroup SparseCholesky_Module - * \class SimplicialLDLT - * \brief A direct sparse LDLT Cholesky factorizations without square root. - * - * This class provides a LDL^T Cholesky factorizations without square root of sparse matrices that are - * selfadjoint and positive definite. The factorization allows for solving A.X = B where - * X and B can be either dense or sparse. - * - * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization - * such that the factorized matrix is P A P^-1. - * - * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> - * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower - * or Upper. Default is Lower. - * \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<> - * - * \implsparsesolverconcept - * - * \sa class SimplicialLLT, class AMDOrdering, class NaturalOrdering - */ -template - class SimplicialLDLT : public SimplicialCholeskyBase > -{ -public: - typedef _MatrixType MatrixType; - enum { UpLo = _UpLo }; - typedef SimplicialCholeskyBase Base; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef typename MatrixType::StorageIndex StorageIndex; - typedef SparseMatrix CholMatrixType; - typedef Matrix VectorType; - typedef internal::traits Traits; - typedef typename Traits::MatrixL MatrixL; - typedef typename Traits::MatrixU MatrixU; -public: - /** Default constructor */ - SimplicialLDLT() : Base() {} - - /** Constructs and performs the LLT factorization of \a matrix */ - explicit SimplicialLDLT(const MatrixType& matrix) - : Base(matrix) {} - - /** \returns a vector expression of the diagonal D */ - inline const VectorType vectorD() const { - eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized"); - return Base::m_diag; - } - /** \returns an expression of the factor L */ - inline const MatrixL matrixL() const { - eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized"); - return Traits::getL(Base::m_matrix); - } - - /** \returns an expression of the factor U (= L^*) */ - inline const MatrixU matrixU() const { - eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized"); - return Traits::getU(Base::m_matrix); - } - - /** Computes the sparse Cholesky decomposition of \a matrix */ - SimplicialLDLT& compute(const MatrixType& matrix) - { - Base::template compute(matrix); - return *this; - } - - /** Performs a symbolic decomposition on the sparcity of \a matrix. - * - * This function is particularly useful when solving for several problems having the same structure. - * - * \sa factorize() - */ - void analyzePattern(const MatrixType& a) - { - Base::analyzePattern(a, true); - } - - /** Performs a numeric decomposition of \a matrix - * - * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. - * - * \sa analyzePattern() - */ - void factorize(const MatrixType& a) - { - Base::template factorize(a); - } - - /** \returns the determinant of the underlying matrix from the current factorization */ - Scalar determinant() const - { - return Base::m_diag.prod(); - } -}; - -/** \deprecated use SimplicialLDLT or class SimplicialLLT - * \ingroup SparseCholesky_Module - * \class SimplicialCholesky - * - * \sa class SimplicialLDLT, class SimplicialLLT - */ -template - class SimplicialCholesky : public SimplicialCholeskyBase > -{ -public: - typedef _MatrixType MatrixType; - enum { UpLo = _UpLo }; - typedef SimplicialCholeskyBase Base; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef typename MatrixType::StorageIndex StorageIndex; - typedef SparseMatrix CholMatrixType; - typedef Matrix VectorType; - typedef internal::traits Traits; - typedef internal::traits > LDLTTraits; - typedef internal::traits > LLTTraits; - public: - SimplicialCholesky() : Base(), m_LDLT(true) {} - - explicit SimplicialCholesky(const MatrixType& matrix) - : Base(), m_LDLT(true) - { - compute(matrix); - } - - SimplicialCholesky& setMode(SimplicialCholeskyMode mode) - { - switch(mode) - { - case SimplicialCholeskyLLT: - m_LDLT = false; - break; - case SimplicialCholeskyLDLT: - m_LDLT = true; - break; - default: - break; - } - - return *this; - } - - inline const VectorType vectorD() const { - eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized"); - return Base::m_diag; - } - inline const CholMatrixType rawMatrix() const { - eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized"); - return Base::m_matrix; - } - - /** Computes the sparse Cholesky decomposition of \a matrix */ - SimplicialCholesky& compute(const MatrixType& matrix) - { - if(m_LDLT) - Base::template compute(matrix); - else - Base::template compute(matrix); - return *this; - } - - /** Performs a symbolic decomposition on the sparcity of \a matrix. - * - * This function is particularly useful when solving for several problems having the same structure. - * - * \sa factorize() - */ - void analyzePattern(const MatrixType& a) - { - Base::analyzePattern(a, m_LDLT); - } - - /** Performs a numeric decomposition of \a matrix - * - * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. - * - * \sa analyzePattern() - */ - void factorize(const MatrixType& a) - { - if(m_LDLT) - Base::template factorize(a); - else - Base::template factorize(a); - } - - /** \internal */ - template - void _solve_impl(const MatrixBase &b, MatrixBase &dest) const - { - eigen_assert(Base::m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); - eigen_assert(Base::m_matrix.rows()==b.rows()); - - if(Base::m_info!=Success) - return; - - if(Base::m_P.size()>0) - dest = Base::m_P * b; - else - dest = b; - - if(Base::m_matrix.nonZeros()>0) // otherwise L==I - { - if(m_LDLT) - LDLTTraits::getL(Base::m_matrix).solveInPlace(dest); - else - LLTTraits::getL(Base::m_matrix).solveInPlace(dest); - } - - if(Base::m_diag.size()>0) - dest = Base::m_diag.asDiagonal().inverse() * dest; - - if (Base::m_matrix.nonZeros()>0) // otherwise I==I - { - if(m_LDLT) - LDLTTraits::getU(Base::m_matrix).solveInPlace(dest); - else - LLTTraits::getU(Base::m_matrix).solveInPlace(dest); - } - - if(Base::m_P.size()>0) - dest = Base::m_Pinv * dest; - } - - /** \internal */ - template - void _solve_impl(const SparseMatrixBase &b, SparseMatrixBase &dest) const - { - internal::solve_sparse_through_dense_panels(*this, b, dest); - } - - Scalar determinant() const - { - if(m_LDLT) - { - return Base::m_diag.prod(); - } - else - { - Scalar detL = Diagonal(Base::m_matrix).prod(); - return numext::abs2(detL); - } - } - - protected: - bool m_LDLT; -}; - -template -void SimplicialCholeskyBase::ordering(const MatrixType& a, ConstCholMatrixPtr &pmat, CholMatrixType& ap) -{ - eigen_assert(a.rows()==a.cols()); - const Index size = a.rows(); - pmat = ≈ - // Note that ordering methods compute the inverse permutation - if(!internal::is_same >::value) - { - { - CholMatrixType C; - C = a.template selfadjointView(); - - OrderingType ordering; - ordering(C,m_Pinv); - } - - if(m_Pinv.size()>0) m_P = m_Pinv.inverse(); - else m_P.resize(0); - - ap.resize(size,size); - ap.template selfadjointView() = a.template selfadjointView().twistedBy(m_P); - } - else - { - m_Pinv.resize(0); - m_P.resize(0); - if(int(UpLo)==int(Lower) || MatrixType::IsRowMajor) - { - // we have to transpose the lower part to to the upper one - ap.resize(size,size); - ap.template selfadjointView() = a.template selfadjointView(); - } - else - internal::simplicial_cholesky_grab_input::run(a, pmat, ap); - } -} - -} // end namespace Eigen - -#endif // EIGEN_SIMPLICIAL_CHOLESKY_H diff --git a/src/math_meigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h b/src/math_meigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h deleted file mode 100755 index 31e06995b..000000000 --- a/src/math_meigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +++ /dev/null @@ -1,199 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2012 Gael Guennebaud - -/* - -NOTE: thes functions vave been adapted from the LDL library: - -LDL Copyright (c) 2005 by Timothy A. Davis. All Rights Reserved. - -LDL License: - - Your use or distribution of LDL or any modified version of - LDL implies that you agree to this License. - - This library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - This library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with this library; if not, write to the Free Software - Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 - USA - - Permission is hereby granted to use or copy this program under the - terms of the GNU LGPL, provided that the Copyright, this License, - and the Availability of the original version is retained on all copies. - User documentation of any code that uses this code or any modified - version of this code must cite the Copyright, this License, the - Availability note, and "Used by permission." Permission to modify - the code and to distribute modified code is granted, provided the - Copyright, this License, and the Availability note are retained, - and a notice that the code was modified is included. - */ - -#include "../Core/util/NonMPL2.h" - -#ifndef EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H -#define EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H - -namespace Eigen { - -template -void SimplicialCholeskyBase::analyzePattern_preordered(const CholMatrixType& ap, bool doLDLT) -{ - const StorageIndex size = StorageIndex(ap.rows()); - m_matrix.resize(size, size); - m_parent.resize(size); - m_nonZerosPerCol.resize(size); - - ei_declare_aligned_stack_constructed_variable(StorageIndex, tags, size, 0); - - for(StorageIndex k = 0; k < size; ++k) - { - /* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */ - m_parent[k] = -1; /* parent of k is not yet known */ - tags[k] = k; /* mark node k as visited */ - m_nonZerosPerCol[k] = 0; /* count of nonzeros in column k of L */ - for(typename CholMatrixType::InnerIterator it(ap,k); it; ++it) - { - StorageIndex i = it.index(); - if(i < k) - { - /* follow path from i to root of etree, stop at flagged node */ - for(; tags[i] != k; i = m_parent[i]) - { - /* find parent of i if not yet determined */ - if (m_parent[i] == -1) - m_parent[i] = k; - m_nonZerosPerCol[i]++; /* L (k,i) is nonzero */ - tags[i] = k; /* mark i as visited */ - } - } - } - } - - /* construct Lp index array from m_nonZerosPerCol column counts */ - StorageIndex* Lp = m_matrix.outerIndexPtr(); - Lp[0] = 0; - for(StorageIndex k = 0; k < size; ++k) - Lp[k+1] = Lp[k] + m_nonZerosPerCol[k] + (doLDLT ? 0 : 1); - - m_matrix.resizeNonZeros(Lp[size]); - - m_isInitialized = true; - m_info = Success; - m_analysisIsOk = true; - m_factorizationIsOk = false; -} - - -template -template -void SimplicialCholeskyBase::factorize_preordered(const CholMatrixType& ap) -{ - using std::sqrt; - - eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); - eigen_assert(ap.rows()==ap.cols()); - eigen_assert(m_parent.size()==ap.rows()); - eigen_assert(m_nonZerosPerCol.size()==ap.rows()); - - const StorageIndex size = StorageIndex(ap.rows()); - const StorageIndex* Lp = m_matrix.outerIndexPtr(); - StorageIndex* Li = m_matrix.innerIndexPtr(); - Scalar* Lx = m_matrix.valuePtr(); - - ei_declare_aligned_stack_constructed_variable(Scalar, y, size, 0); - ei_declare_aligned_stack_constructed_variable(StorageIndex, pattern, size, 0); - ei_declare_aligned_stack_constructed_variable(StorageIndex, tags, size, 0); - - bool ok = true; - m_diag.resize(DoLDLT ? size : 0); - - for(StorageIndex k = 0; k < size; ++k) - { - // compute nonzero pattern of kth row of L, in topological order - y[k] = 0.0; // Y(0:k) is now all zero - StorageIndex top = size; // stack for pattern is empty - tags[k] = k; // mark node k as visited - m_nonZerosPerCol[k] = 0; // count of nonzeros in column k of L - for(typename CholMatrixType::InnerIterator it(ap,k); it; ++it) - { - StorageIndex i = it.index(); - if(i <= k) - { - y[i] += numext::conj(it.value()); /* scatter A(i,k) into Y (sum duplicates) */ - Index len; - for(len = 0; tags[i] != k; i = m_parent[i]) - { - pattern[len++] = i; /* L(k,i) is nonzero */ - tags[i] = k; /* mark i as visited */ - } - while(len > 0) - pattern[--top] = pattern[--len]; - } - } - - /* compute numerical values kth row of L (a sparse triangular solve) */ - - RealScalar d = numext::real(y[k]) * m_shiftScale + m_shiftOffset; // get D(k,k), apply the shift function, and clear Y(k) - y[k] = 0.0; - for(; top < size; ++top) - { - Index i = pattern[top]; /* pattern[top:n-1] is pattern of L(:,k) */ - Scalar yi = y[i]; /* get and clear Y(i) */ - y[i] = 0.0; - - /* the nonzero entry L(k,i) */ - Scalar l_ki; - if(DoLDLT) - l_ki = yi / m_diag[i]; - else - yi = l_ki = yi / Lx[Lp[i]]; - - Index p2 = Lp[i] + m_nonZerosPerCol[i]; - Index p; - for(p = Lp[i] + (DoLDLT ? 0 : 1); p < p2; ++p) - y[Li[p]] -= numext::conj(Lx[p]) * yi; - d -= numext::real(l_ki * numext::conj(yi)); - Li[p] = k; /* store L(k,i) in column form of L */ - Lx[p] = l_ki; - ++m_nonZerosPerCol[i]; /* increment count of nonzeros in col i */ - } - if(DoLDLT) - { - m_diag[k] = d; - if(d == RealScalar(0)) - { - ok = false; /* failure, D(k,k) is zero */ - break; - } - } - else - { - Index p = Lp[k] + m_nonZerosPerCol[k]++; - Li[p] = k ; /* store L(k,k) = sqrt (d) in column k */ - if(d <= RealScalar(0)) { - ok = false; /* failure, matrix is not positive definite */ - break; - } - Lx[p] = sqrt(d) ; - } - } - - m_info = ok ? Success : NumericalIssue; - m_factorizationIsOk = true; -} - -} // end namespace Eigen - -#endif // EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H diff --git a/src/math_meigen/Eigen/src/SparseCore/AmbiVector.h b/src/math_meigen/Eigen/src/SparseCore/AmbiVector.h deleted file mode 100755 index e0295f2af..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/AmbiVector.h +++ /dev/null @@ -1,377 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_AMBIVECTOR_H -#define EIGEN_AMBIVECTOR_H - -namespace Eigen { - -namespace internal { - -/** \internal - * Hybrid sparse/dense vector class designed for intensive read-write operations. - * - * See BasicSparseLLT and SparseProduct for usage examples. - */ -template -class AmbiVector -{ - public: - typedef _Scalar Scalar; - typedef _StorageIndex StorageIndex; - typedef typename NumTraits::Real RealScalar; - - explicit AmbiVector(Index size) - : m_buffer(0), m_zero(0), m_size(0), m_allocatedSize(0), m_allocatedElements(0), m_mode(-1) - { - resize(size); - } - - void init(double estimatedDensity); - void init(int mode); - - Index nonZeros() const; - - /** Specifies a sub-vector to work on */ - void setBounds(Index start, Index end) { m_start = convert_index(start); m_end = convert_index(end); } - - void setZero(); - - void restart(); - Scalar& coeffRef(Index i); - Scalar& coeff(Index i); - - class Iterator; - - ~AmbiVector() { delete[] m_buffer; } - - void resize(Index size) - { - if (m_allocatedSize < size) - reallocate(size); - m_size = convert_index(size); - } - - StorageIndex size() const { return m_size; } - - protected: - StorageIndex convert_index(Index idx) - { - return internal::convert_index(idx); - } - - void reallocate(Index size) - { - // if the size of the matrix is not too large, let's allocate a bit more than needed such - // that we can handle dense vector even in sparse mode. - delete[] m_buffer; - if (size<1000) - { - Index allocSize = (size * sizeof(ListEl) + sizeof(Scalar) - 1)/sizeof(Scalar); - m_allocatedElements = convert_index((allocSize*sizeof(Scalar))/sizeof(ListEl)); - m_buffer = new Scalar[allocSize]; - } - else - { - m_allocatedElements = convert_index((size*sizeof(Scalar))/sizeof(ListEl)); - m_buffer = new Scalar[size]; - } - m_size = convert_index(size); - m_start = 0; - m_end = m_size; - } - - void reallocateSparse() - { - Index copyElements = m_allocatedElements; - m_allocatedElements = (std::min)(StorageIndex(m_allocatedElements*1.5),m_size); - Index allocSize = m_allocatedElements * sizeof(ListEl); - allocSize = (allocSize + sizeof(Scalar) - 1)/sizeof(Scalar); - Scalar* newBuffer = new Scalar[allocSize]; - std::memcpy(newBuffer, m_buffer, copyElements * sizeof(ListEl)); - delete[] m_buffer; - m_buffer = newBuffer; - } - - protected: - // element type of the linked list - struct ListEl - { - StorageIndex next; - StorageIndex index; - Scalar value; - }; - - // used to store data in both mode - Scalar* m_buffer; - Scalar m_zero; - StorageIndex m_size; - StorageIndex m_start; - StorageIndex m_end; - StorageIndex m_allocatedSize; - StorageIndex m_allocatedElements; - StorageIndex m_mode; - - // linked list mode - StorageIndex m_llStart; - StorageIndex m_llCurrent; - StorageIndex m_llSize; -}; - -/** \returns the number of non zeros in the current sub vector */ -template -Index AmbiVector<_Scalar,_StorageIndex>::nonZeros() const -{ - if (m_mode==IsSparse) - return m_llSize; - else - return m_end - m_start; -} - -template -void AmbiVector<_Scalar,_StorageIndex>::init(double estimatedDensity) -{ - if (estimatedDensity>0.1) - init(IsDense); - else - init(IsSparse); -} - -template -void AmbiVector<_Scalar,_StorageIndex>::init(int mode) -{ - m_mode = mode; - if (m_mode==IsSparse) - { - m_llSize = 0; - m_llStart = -1; - } -} - -/** Must be called whenever we might perform a write access - * with an index smaller than the previous one. - * - * Don't worry, this function is extremely cheap. - */ -template -void AmbiVector<_Scalar,_StorageIndex>::restart() -{ - m_llCurrent = m_llStart; -} - -/** Set all coefficients of current subvector to zero */ -template -void AmbiVector<_Scalar,_StorageIndex>::setZero() -{ - if (m_mode==IsDense) - { - for (Index i=m_start; i -_Scalar& AmbiVector<_Scalar,_StorageIndex>::coeffRef(Index i) -{ - if (m_mode==IsDense) - return m_buffer[i]; - else - { - ListEl* EIGEN_RESTRICT llElements = reinterpret_cast(m_buffer); - // TODO factorize the following code to reduce code generation - eigen_assert(m_mode==IsSparse); - if (m_llSize==0) - { - // this is the first element - m_llStart = 0; - m_llCurrent = 0; - ++m_llSize; - llElements[0].value = Scalar(0); - llElements[0].index = convert_index(i); - llElements[0].next = -1; - return llElements[0].value; - } - else if (i=llElements[m_llCurrent].index && "you must call restart() before inserting an element with lower or equal index"); - while (nextel >= 0 && llElements[nextel].index<=i) - { - m_llCurrent = nextel; - nextel = llElements[nextel].next; - } - - if (llElements[m_llCurrent].index==i) - { - // the coefficient already exists and we found it ! - return llElements[m_llCurrent].value; - } - else - { - if (m_llSize>=m_allocatedElements) - { - reallocateSparse(); - llElements = reinterpret_cast(m_buffer); - } - eigen_internal_assert(m_llSize -_Scalar& AmbiVector<_Scalar,_StorageIndex>::coeff(Index i) -{ - if (m_mode==IsDense) - return m_buffer[i]; - else - { - ListEl* EIGEN_RESTRICT llElements = reinterpret_cast(m_buffer); - eigen_assert(m_mode==IsSparse); - if ((m_llSize==0) || (i= 0 && llElements[elid].index -class AmbiVector<_Scalar,_StorageIndex>::Iterator -{ - public: - typedef _Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - - /** Default constructor - * \param vec the vector on which we iterate - * \param epsilon the minimal value used to prune zero coefficients. - * In practice, all coefficients having a magnitude smaller than \a epsilon - * are skipped. - */ - explicit Iterator(const AmbiVector& vec, const RealScalar& epsilon = 0) - : m_vector(vec) - { - using std::abs; - m_epsilon = epsilon; - m_isDense = m_vector.m_mode==IsDense; - if (m_isDense) - { - m_currentEl = 0; // this is to avoid a compilation warning - m_cachedValue = 0; // this is to avoid a compilation warning - m_cachedIndex = m_vector.m_start-1; - ++(*this); - } - else - { - ListEl* EIGEN_RESTRICT llElements = reinterpret_cast(m_vector.m_buffer); - m_currentEl = m_vector.m_llStart; - while (m_currentEl>=0 && abs(llElements[m_currentEl].value)<=m_epsilon) - m_currentEl = llElements[m_currentEl].next; - if (m_currentEl<0) - { - m_cachedValue = 0; // this is to avoid a compilation warning - m_cachedIndex = -1; - } - else - { - m_cachedIndex = llElements[m_currentEl].index; - m_cachedValue = llElements[m_currentEl].value; - } - } - } - - StorageIndex index() const { return m_cachedIndex; } - Scalar value() const { return m_cachedValue; } - - operator bool() const { return m_cachedIndex>=0; } - - Iterator& operator++() - { - using std::abs; - if (m_isDense) - { - do { - ++m_cachedIndex; - } while (m_cachedIndex(m_vector.m_buffer); - do { - m_currentEl = llElements[m_currentEl].next; - } while (m_currentEl>=0 && abs(llElements[m_currentEl].value)<=m_epsilon); - if (m_currentEl<0) - { - m_cachedIndex = -1; - } - else - { - m_cachedIndex = llElements[m_currentEl].index; - m_cachedValue = llElements[m_currentEl].value; - } - } - return *this; - } - - protected: - const AmbiVector& m_vector; // the target vector - StorageIndex m_currentEl; // the current element in sparse/linked-list mode - RealScalar m_epsilon; // epsilon used to prune zero coefficients - StorageIndex m_cachedIndex; // current coordinate - Scalar m_cachedValue; // current value - bool m_isDense; // mode of the vector -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_AMBIVECTOR_H diff --git a/src/math_meigen/Eigen/src/SparseCore/CompressedStorage.h b/src/math_meigen/Eigen/src/SparseCore/CompressedStorage.h deleted file mode 100755 index d89fa0dae..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/CompressedStorage.h +++ /dev/null @@ -1,258 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_COMPRESSED_STORAGE_H -#define EIGEN_COMPRESSED_STORAGE_H - -namespace Eigen { - -namespace internal { - -/** \internal - * Stores a sparse set of values as a list of values and a list of indices. - * - */ -template -class CompressedStorage -{ - public: - - typedef _Scalar Scalar; - typedef _StorageIndex StorageIndex; - - protected: - - typedef typename NumTraits::Real RealScalar; - - public: - - CompressedStorage() - : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) - {} - - explicit CompressedStorage(Index size) - : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) - { - resize(size); - } - - CompressedStorage(const CompressedStorage& other) - : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) - { - *this = other; - } - - CompressedStorage& operator=(const CompressedStorage& other) - { - resize(other.size()); - if(other.size()>0) - { - internal::smart_copy(other.m_values, other.m_values + m_size, m_values); - internal::smart_copy(other.m_indices, other.m_indices + m_size, m_indices); - } - return *this; - } - - void swap(CompressedStorage& other) - { - std::swap(m_values, other.m_values); - std::swap(m_indices, other.m_indices); - std::swap(m_size, other.m_size); - std::swap(m_allocatedSize, other.m_allocatedSize); - } - - ~CompressedStorage() - { - delete[] m_values; - delete[] m_indices; - } - - void reserve(Index size) - { - Index newAllocatedSize = m_size + size; - if (newAllocatedSize > m_allocatedSize) - reallocate(newAllocatedSize); - } - - void squeeze() - { - if (m_allocatedSize>m_size) - reallocate(m_size); - } - - void resize(Index size, double reserveSizeFactor = 0) - { - if (m_allocatedSize)(NumTraits::highest(), size + Index(reserveSizeFactor*double(size))); - if(realloc_size(i); - } - - inline Index size() const { return m_size; } - inline Index allocatedSize() const { return m_allocatedSize; } - inline void clear() { m_size = 0; } - - const Scalar* valuePtr() const { return m_values; } - Scalar* valuePtr() { return m_values; } - const StorageIndex* indexPtr() const { return m_indices; } - StorageIndex* indexPtr() { return m_indices; } - - inline Scalar& value(Index i) { eigen_internal_assert(m_values!=0); return m_values[i]; } - inline const Scalar& value(Index i) const { eigen_internal_assert(m_values!=0); return m_values[i]; } - - inline StorageIndex& index(Index i) { eigen_internal_assert(m_indices!=0); return m_indices[i]; } - inline const StorageIndex& index(Index i) const { eigen_internal_assert(m_indices!=0); return m_indices[i]; } - - /** \returns the largest \c k such that for all \c j in [0,k) index[\c j]\<\a key */ - inline Index searchLowerIndex(Index key) const - { - return searchLowerIndex(0, m_size, key); - } - - /** \returns the largest \c k in [start,end) such that for all \c j in [start,k) index[\c j]\<\a key */ - inline Index searchLowerIndex(Index start, Index end, Index key) const - { - while(end>start) - { - Index mid = (end+start)>>1; - if (m_indices[mid]=end) - return defaultValue; - else if (end>start && key==m_indices[end-1]) - return m_values[end-1]; - // ^^ optimization: let's first check if it is the last coefficient - // (very common in high level algorithms) - const Index id = searchLowerIndex(start,end-1,key); - return ((id=m_size || m_indices[id]!=key) - { - if (m_allocatedSize newValues(m_allocatedSize); - internal::scoped_array newIndices(m_allocatedSize); - - // copy first chunk - internal::smart_copy(m_values, m_values +id, newValues.ptr()); - internal::smart_copy(m_indices, m_indices+id, newIndices.ptr()); - - // copy the rest - if(m_size>id) - { - internal::smart_copy(m_values +id, m_values +m_size, newValues.ptr() +id+1); - internal::smart_copy(m_indices+id, m_indices+m_size, newIndices.ptr()+id+1); - } - std::swap(m_values,newValues.ptr()); - std::swap(m_indices,newIndices.ptr()); - } - else if(m_size>id) - { - internal::smart_memmove(m_values +id, m_values +m_size, m_values +id+1); - internal::smart_memmove(m_indices+id, m_indices+m_size, m_indices+id+1); - } - m_size++; - m_indices[id] = internal::convert_index(key); - m_values[id] = defaultValue; - } - return m_values[id]; - } - - void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits::dummy_precision()) - { - Index k = 0; - Index n = size(); - for (Index i=0; i newValues(size); - internal::scoped_array newIndices(size); - Index copySize = (std::min)(size, m_size); - if (copySize>0) { - internal::smart_copy(m_values, m_values+copySize, newValues.ptr()); - internal::smart_copy(m_indices, m_indices+copySize, newIndices.ptr()); - } - std::swap(m_values,newValues.ptr()); - std::swap(m_indices,newIndices.ptr()); - m_allocatedSize = size; - } - - protected: - Scalar* m_values; - StorageIndex* m_indices; - Index m_size; - Index m_allocatedSize; - -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_COMPRESSED_STORAGE_H diff --git a/src/math_meigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h b/src/math_meigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h deleted file mode 100755 index 9db119b67..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +++ /dev/null @@ -1,352 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2015 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H -#define EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H - -namespace Eigen { - -namespace internal { - -template -static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res, bool sortedInsertion = false) -{ - typedef typename remove_all::type::Scalar LhsScalar; - typedef typename remove_all::type::Scalar RhsScalar; - typedef typename remove_all::type::Scalar ResScalar; - - // make sure to call innerSize/outerSize since we fake the storage order. - Index rows = lhs.innerSize(); - Index cols = rhs.outerSize(); - eigen_assert(lhs.outerSize() == rhs.innerSize()); - - ei_declare_aligned_stack_constructed_variable(bool, mask, rows, 0); - ei_declare_aligned_stack_constructed_variable(ResScalar, values, rows, 0); - ei_declare_aligned_stack_constructed_variable(Index, indices, rows, 0); - - std::memset(mask,0,sizeof(bool)*rows); - - evaluator lhsEval(lhs); - evaluator rhsEval(rhs); - - // estimate the number of non zero entries - // given a rhs column containing Y non zeros, we assume that the respective Y columns - // of the lhs differs in average of one non zeros, thus the number of non zeros for - // the product of a rhs column with the lhs is X+Y where X is the average number of non zero - // per column of the lhs. - // Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs) - Index estimated_nnz_prod = lhsEval.nonZerosEstimate() + rhsEval.nonZerosEstimate(); - - res.setZero(); - res.reserve(Index(estimated_nnz_prod)); - // we compute each column of the result, one after the other - for (Index j=0; j::InnerIterator rhsIt(rhsEval, j); rhsIt; ++rhsIt) - { - RhsScalar y = rhsIt.value(); - Index k = rhsIt.index(); - for (typename evaluator::InnerIterator lhsIt(lhsEval, k); lhsIt; ++lhsIt) - { - Index i = lhsIt.index(); - LhsScalar x = lhsIt.value(); - if(!mask[i]) - { - mask[i] = true; - values[i] = x * y; - indices[nnz] = i; - ++nnz; - } - else - values[i] += x * y; - } - } - if(!sortedInsertion) - { - // unordered insertion - for(Index k=0; k use a quick sort - // otherwise => loop through the entire vector - // In order to avoid to perform an expensive log2 when the - // result is clearly very sparse we use a linear bound up to 200. - if((nnz<200 && nnz1) std::sort(indices,indices+nnz); - for(Index k=0; k::Flags&RowMajorBit) ? RowMajor : ColMajor, - int RhsStorageOrder = (traits::Flags&RowMajorBit) ? RowMajor : ColMajor, - int ResStorageOrder = (traits::Flags&RowMajorBit) ? RowMajor : ColMajor> -struct conservative_sparse_sparse_product_selector; - -template -struct conservative_sparse_sparse_product_selector -{ - typedef typename remove_all::type LhsCleaned; - typedef typename LhsCleaned::Scalar Scalar; - - static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) - { - typedef SparseMatrix RowMajorMatrix; - typedef SparseMatrix ColMajorMatrixAux; - typedef typename sparse_eval::type ColMajorMatrix; - - // If the result is tall and thin (in the extreme case a column vector) - // then it is faster to sort the coefficients inplace instead of transposing twice. - // FIXME, the following heuristic is probably not very good. - if(lhs.rows()>rhs.cols()) - { - ColMajorMatrix resCol(lhs.rows(),rhs.cols()); - // perform sorted insertion - internal::conservative_sparse_sparse_product_impl(lhs, rhs, resCol, true); - res = resCol.markAsRValue(); - } - else - { - ColMajorMatrixAux resCol(lhs.rows(),rhs.cols()); - // ressort to transpose to sort the entries - internal::conservative_sparse_sparse_product_impl(lhs, rhs, resCol, false); - RowMajorMatrix resRow(resCol); - res = resRow.markAsRValue(); - } - } -}; - -template -struct conservative_sparse_sparse_product_selector -{ - static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) - { - typedef SparseMatrix RowMajorRhs; - typedef SparseMatrix RowMajorRes; - RowMajorRhs rhsRow = rhs; - RowMajorRes resRow(lhs.rows(), rhs.cols()); - internal::conservative_sparse_sparse_product_impl(rhsRow, lhs, resRow); - res = resRow; - } -}; - -template -struct conservative_sparse_sparse_product_selector -{ - static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) - { - typedef SparseMatrix RowMajorLhs; - typedef SparseMatrix RowMajorRes; - RowMajorLhs lhsRow = lhs; - RowMajorRes resRow(lhs.rows(), rhs.cols()); - internal::conservative_sparse_sparse_product_impl(rhs, lhsRow, resRow); - res = resRow; - } -}; - -template -struct conservative_sparse_sparse_product_selector -{ - static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) - { - typedef SparseMatrix RowMajorMatrix; - RowMajorMatrix resRow(lhs.rows(), rhs.cols()); - internal::conservative_sparse_sparse_product_impl(rhs, lhs, resRow); - res = resRow; - } -}; - - -template -struct conservative_sparse_sparse_product_selector -{ - typedef typename traits::type>::Scalar Scalar; - - static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) - { - typedef SparseMatrix ColMajorMatrix; - ColMajorMatrix resCol(lhs.rows(), rhs.cols()); - internal::conservative_sparse_sparse_product_impl(lhs, rhs, resCol); - res = resCol; - } -}; - -template -struct conservative_sparse_sparse_product_selector -{ - static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) - { - typedef SparseMatrix ColMajorLhs; - typedef SparseMatrix ColMajorRes; - ColMajorLhs lhsCol = lhs; - ColMajorRes resCol(lhs.rows(), rhs.cols()); - internal::conservative_sparse_sparse_product_impl(lhsCol, rhs, resCol); - res = resCol; - } -}; - -template -struct conservative_sparse_sparse_product_selector -{ - static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) - { - typedef SparseMatrix ColMajorRhs; - typedef SparseMatrix ColMajorRes; - ColMajorRhs rhsCol = rhs; - ColMajorRes resCol(lhs.rows(), rhs.cols()); - internal::conservative_sparse_sparse_product_impl(lhs, rhsCol, resCol); - res = resCol; - } -}; - -template -struct conservative_sparse_sparse_product_selector -{ - static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) - { - typedef SparseMatrix RowMajorMatrix; - typedef SparseMatrix ColMajorMatrix; - RowMajorMatrix resRow(lhs.rows(),rhs.cols()); - internal::conservative_sparse_sparse_product_impl(rhs, lhs, resRow); - // sort the non zeros: - ColMajorMatrix resCol(resRow); - res = resCol; - } -}; - -} // end namespace internal - - -namespace internal { - -template -static void sparse_sparse_to_dense_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res) -{ - typedef typename remove_all::type::Scalar LhsScalar; - typedef typename remove_all::type::Scalar RhsScalar; - Index cols = rhs.outerSize(); - eigen_assert(lhs.outerSize() == rhs.innerSize()); - - evaluator lhsEval(lhs); - evaluator rhsEval(rhs); - - for (Index j=0; j::InnerIterator rhsIt(rhsEval, j); rhsIt; ++rhsIt) - { - RhsScalar y = rhsIt.value(); - Index k = rhsIt.index(); - for (typename evaluator::InnerIterator lhsIt(lhsEval, k); lhsIt; ++lhsIt) - { - Index i = lhsIt.index(); - LhsScalar x = lhsIt.value(); - res.coeffRef(i,j) += x * y; - } - } - } -} - - -} // end namespace internal - -namespace internal { - -template::Flags&RowMajorBit) ? RowMajor : ColMajor, - int RhsStorageOrder = (traits::Flags&RowMajorBit) ? RowMajor : ColMajor> -struct sparse_sparse_to_dense_product_selector; - -template -struct sparse_sparse_to_dense_product_selector -{ - static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) - { - internal::sparse_sparse_to_dense_product_impl(lhs, rhs, res); - } -}; - -template -struct sparse_sparse_to_dense_product_selector -{ - static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) - { - typedef SparseMatrix ColMajorLhs; - ColMajorLhs lhsCol(lhs); - internal::sparse_sparse_to_dense_product_impl(lhsCol, rhs, res); - } -}; - -template -struct sparse_sparse_to_dense_product_selector -{ - static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) - { - typedef SparseMatrix ColMajorRhs; - ColMajorRhs rhsCol(rhs); - internal::sparse_sparse_to_dense_product_impl(lhs, rhsCol, res); - } -}; - -template -struct sparse_sparse_to_dense_product_selector -{ - static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) - { - Transpose trRes(res); - internal::sparse_sparse_to_dense_product_impl >(rhs, lhs, trRes); - } -}; - - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H diff --git a/src/math_meigen/Eigen/src/SparseCore/MappedSparseMatrix.h b/src/math_meigen/Eigen/src/SparseCore/MappedSparseMatrix.h deleted file mode 100755 index 67718c85b..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/MappedSparseMatrix.h +++ /dev/null @@ -1,67 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_MAPPED_SPARSEMATRIX_H -#define EIGEN_MAPPED_SPARSEMATRIX_H - -namespace Eigen { - -/** \deprecated Use Map > - * \class MappedSparseMatrix - * - * \brief Sparse matrix - * - * \param _Scalar the scalar type, i.e. the type of the coefficients - * - * See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme. - * - */ -namespace internal { -template -struct traits > : traits > -{}; -} // end namespace internal - -template -class MappedSparseMatrix - : public Map > -{ - typedef Map > Base; - - public: - - typedef typename Base::StorageIndex StorageIndex; - typedef typename Base::Scalar Scalar; - - inline MappedSparseMatrix(Index rows, Index cols, Index nnz, StorageIndex* outerIndexPtr, StorageIndex* innerIndexPtr, Scalar* valuePtr, StorageIndex* innerNonZeroPtr = 0) - : Base(rows, cols, nnz, outerIndexPtr, innerIndexPtr, valuePtr, innerNonZeroPtr) - {} - - /** Empty destructor */ - inline ~MappedSparseMatrix() {} -}; - -namespace internal { - -template -struct evaluator > - : evaluator > > -{ - typedef MappedSparseMatrix<_Scalar,_Options,_StorageIndex> XprType; - typedef evaluator > Base; - - evaluator() : Base() {} - explicit evaluator(const XprType &mat) : Base(mat) {} -}; - -} - -} // end namespace Eigen - -#endif // EIGEN_MAPPED_SPARSEMATRIX_H diff --git a/src/math_meigen/Eigen/src/SparseCore/SparseAssign.h b/src/math_meigen/Eigen/src/SparseCore/SparseAssign.h deleted file mode 100755 index 18352a847..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/SparseAssign.h +++ /dev/null @@ -1,216 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSEASSIGN_H -#define EIGEN_SPARSEASSIGN_H - -namespace Eigen { - -template -template -Derived& SparseMatrixBase::operator=(const EigenBase &other) -{ - internal::call_assignment_no_alias(derived(), other.derived()); - return derived(); -} - -template -template -Derived& SparseMatrixBase::operator=(const ReturnByValue& other) -{ - // TODO use the evaluator mechanism - other.evalTo(derived()); - return derived(); -} - -template -template -inline Derived& SparseMatrixBase::operator=(const SparseMatrixBase& other) -{ - // by default sparse evaluation do not alias, so we can safely bypass the generic call_assignment routine - internal::Assignment > - ::run(derived(), other.derived(), internal::assign_op()); - return derived(); -} - -template -inline Derived& SparseMatrixBase::operator=(const Derived& other) -{ - internal::call_assignment_no_alias(derived(), other.derived()); - return derived(); -} - -namespace internal { - -template<> -struct storage_kind_to_evaluator_kind { - typedef IteratorBased Kind; -}; - -template<> -struct storage_kind_to_shape { - typedef SparseShape Shape; -}; - -struct Sparse2Sparse {}; -struct Sparse2Dense {}; - -template<> struct AssignmentKind { typedef Sparse2Sparse Kind; }; -template<> struct AssignmentKind { typedef Sparse2Sparse Kind; }; -template<> struct AssignmentKind { typedef Sparse2Dense Kind; }; -template<> struct AssignmentKind { typedef Sparse2Dense Kind; }; - - -template -void assign_sparse_to_sparse(DstXprType &dst, const SrcXprType &src) -{ - typedef typename DstXprType::Scalar Scalar; - typedef internal::evaluator DstEvaluatorType; - typedef internal::evaluator SrcEvaluatorType; - - SrcEvaluatorType srcEvaluator(src); - - const bool transpose = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit); - const Index outerEvaluationSize = (SrcEvaluatorType::Flags&RowMajorBit) ? src.rows() : src.cols(); - if ((!transpose) && src.isRValue()) - { - // eval without temporary - dst.resize(src.rows(), src.cols()); - dst.setZero(); - dst.reserve((std::max)(src.rows(),src.cols())*2); - for (Index j=0; j::SupportedAccessPatterns & OuterRandomAccessPattern)==OuterRandomAccessPattern) || - (!((DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit)))) && - "the transpose operation is supposed to be handled in SparseMatrix::operator="); - - enum { Flip = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit) }; - - - DstXprType temp(src.rows(), src.cols()); - - temp.reserve((std::max)(src.rows(),src.cols())*2); - for (Index j=0; j -struct Assignment -{ - static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &/*func*/) - { - assign_sparse_to_sparse(dst.derived(), src.derived()); - } -}; - -// Generic Sparse to Dense assignment -template< typename DstXprType, typename SrcXprType, typename Functor> -struct Assignment -{ - static void run(DstXprType &dst, const SrcXprType &src, const Functor &func) - { - if(internal::is_same >::value) - dst.setZero(); - - internal::evaluator srcEval(src); - resize_if_allowed(dst, src, func); - internal::evaluator dstEval(dst); - - const Index outerEvaluationSize = (internal::evaluator::Flags&RowMajorBit) ? src.rows() : src.cols(); - for (Index j=0; j::InnerIterator i(srcEval,j); i; ++i) - func.assignCoeff(dstEval.coeffRef(i.row(),i.col()), i.value()); - } -}; - -// Specialization for "dst = dec.solve(rhs)" -// NOTE we need to specialize it for Sparse2Sparse to avoid ambiguous specialization error -template -struct Assignment, internal::assign_op, Sparse2Sparse> -{ - typedef Solve SrcXprType; - static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) - { - Index dstRows = src.rows(); - Index dstCols = src.cols(); - if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) - dst.resize(dstRows, dstCols); - - src.dec()._solve_impl(src.rhs(), dst); - } -}; - -struct Diagonal2Sparse {}; - -template<> struct AssignmentKind { typedef Diagonal2Sparse Kind; }; - -template< typename DstXprType, typename SrcXprType, typename Functor> -struct Assignment -{ - typedef typename DstXprType::StorageIndex StorageIndex; - typedef typename DstXprType::Scalar Scalar; - typedef Array ArrayXI; - typedef Array ArrayXS; - template - static void run(SparseMatrix &dst, const SrcXprType &src, const internal::assign_op &/*func*/) - { - Index dstRows = src.rows(); - Index dstCols = src.cols(); - if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) - dst.resize(dstRows, dstCols); - - Index size = src.diagonal().size(); - dst.makeCompressed(); - dst.resizeNonZeros(size); - Map(dst.innerIndexPtr(), size).setLinSpaced(0,StorageIndex(size)-1); - Map(dst.outerIndexPtr(), size+1).setLinSpaced(0,StorageIndex(size)); - Map(dst.valuePtr(), size) = src.diagonal(); - } - - template - static void run(SparseMatrixBase &dst, const SrcXprType &src, const internal::assign_op &/*func*/) - { - dst.diagonal() = src.diagonal(); - } - - static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op &/*func*/) - { dst.diagonal() += src.diagonal(); } - - static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op &/*func*/) - { dst.diagonal() -= src.diagonal(); } -}; -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_SPARSEASSIGN_H diff --git a/src/math_meigen/Eigen/src/SparseCore/SparseBlock.h b/src/math_meigen/Eigen/src/SparseCore/SparseBlock.h deleted file mode 100755 index 511e92b2f..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/SparseBlock.h +++ /dev/null @@ -1,603 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSE_BLOCK_H -#define EIGEN_SPARSE_BLOCK_H - -namespace Eigen { - -// Subset of columns or rows -template -class BlockImpl - : public SparseMatrixBase > -{ - typedef typename internal::remove_all::type _MatrixTypeNested; - typedef Block BlockType; -public: - enum { IsRowMajor = internal::traits::IsRowMajor }; -protected: - enum { OuterSize = IsRowMajor ? BlockRows : BlockCols }; - typedef SparseMatrixBase Base; - using Base::convert_index; -public: - EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType) - - inline BlockImpl(XprType& xpr, Index i) - : m_matrix(xpr), m_outerStart(convert_index(i)), m_outerSize(OuterSize) - {} - - inline BlockImpl(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols) - : m_matrix(xpr), m_outerStart(convert_index(IsRowMajor ? startRow : startCol)), m_outerSize(convert_index(IsRowMajor ? blockRows : blockCols)) - {} - - EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); } - EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); } - - Index nonZeros() const - { - typedef internal::evaluator EvaluatorType; - EvaluatorType matEval(m_matrix); - Index nnz = 0; - Index end = m_outerStart + m_outerSize.value(); - for(Index j=m_outerStart; j::non_const_type m_matrix; - Index m_outerStart; - const internal::variable_if_dynamic m_outerSize; - - protected: - // Disable assignment with clear error message. - // Note that simply removing operator= yields compilation errors with ICC+MSVC - template - BlockImpl& operator=(const T&) - { - EIGEN_STATIC_ASSERT(sizeof(T)==0, THIS_SPARSE_BLOCK_SUBEXPRESSION_IS_READ_ONLY); - return *this; - } -}; - - -/*************************************************************************** -* specialization for SparseMatrix -***************************************************************************/ - -namespace internal { - -template -class sparse_matrix_block_impl - : public SparseCompressedBase > -{ - typedef typename internal::remove_all::type _MatrixTypeNested; - typedef Block BlockType; - typedef SparseCompressedBase > Base; - using Base::convert_index; -public: - enum { IsRowMajor = internal::traits::IsRowMajor }; - EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType) -protected: - typedef typename Base::IndexVector IndexVector; - enum { OuterSize = IsRowMajor ? BlockRows : BlockCols }; -public: - - inline sparse_matrix_block_impl(SparseMatrixType& xpr, Index i) - : m_matrix(xpr), m_outerStart(convert_index(i)), m_outerSize(OuterSize) - {} - - inline sparse_matrix_block_impl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols) - : m_matrix(xpr), m_outerStart(convert_index(IsRowMajor ? startRow : startCol)), m_outerSize(convert_index(IsRowMajor ? blockRows : blockCols)) - {} - - template - inline BlockType& operator=(const SparseMatrixBase& other) - { - typedef typename internal::remove_all::type _NestedMatrixType; - _NestedMatrixType& matrix = m_matrix; - // This assignment is slow if this vector set is not empty - // and/or it is not at the end of the nonzeros of the underlying matrix. - - // 1 - eval to a temporary to avoid transposition and/or aliasing issues - Ref > tmp(other.derived()); - eigen_internal_assert(tmp.outerSize()==m_outerSize.value()); - - // 2 - let's check whether there is enough allocated memory - Index nnz = tmp.nonZeros(); - Index start = m_outerStart==0 ? 0 : m_matrix.outerIndexPtr()[m_outerStart]; // starting position of the current block - Index end = m_matrix.outerIndexPtr()[m_outerStart+m_outerSize.value()]; // ending position of the current block - Index block_size = end - start; // available room in the current block - Index tail_size = m_matrix.outerIndexPtr()[m_matrix.outerSize()] - end; - - Index free_size = m_matrix.isCompressed() - ? Index(matrix.data().allocatedSize()) + block_size - : block_size; - - Index tmp_start = tmp.outerIndexPtr()[0]; - - bool update_trailing_pointers = false; - if(nnz>free_size) - { - // realloc manually to reduce copies - typename SparseMatrixType::Storage newdata(m_matrix.data().allocatedSize() - block_size + nnz); - - internal::smart_copy(m_matrix.valuePtr(), m_matrix.valuePtr() + start, newdata.valuePtr()); - internal::smart_copy(m_matrix.innerIndexPtr(), m_matrix.innerIndexPtr() + start, newdata.indexPtr()); - - internal::smart_copy(tmp.valuePtr() + tmp_start, tmp.valuePtr() + tmp_start + nnz, newdata.valuePtr() + start); - internal::smart_copy(tmp.innerIndexPtr() + tmp_start, tmp.innerIndexPtr() + tmp_start + nnz, newdata.indexPtr() + start); - - internal::smart_copy(matrix.valuePtr()+end, matrix.valuePtr()+end + tail_size, newdata.valuePtr()+start+nnz); - internal::smart_copy(matrix.innerIndexPtr()+end, matrix.innerIndexPtr()+end + tail_size, newdata.indexPtr()+start+nnz); - - newdata.resize(m_matrix.outerIndexPtr()[m_matrix.outerSize()] - block_size + nnz); - - matrix.data().swap(newdata); - - update_trailing_pointers = true; - } - else - { - if(m_matrix.isCompressed()) - { - // no need to realloc, simply copy the tail at its respective position and insert tmp - matrix.data().resize(start + nnz + tail_size); - - internal::smart_memmove(matrix.valuePtr()+end, matrix.valuePtr() + end+tail_size, matrix.valuePtr() + start+nnz); - internal::smart_memmove(matrix.innerIndexPtr()+end, matrix.innerIndexPtr() + end+tail_size, matrix.innerIndexPtr() + start+nnz); - - update_trailing_pointers = true; - } - - internal::smart_copy(tmp.valuePtr() + tmp_start, tmp.valuePtr() + tmp_start + nnz, matrix.valuePtr() + start); - internal::smart_copy(tmp.innerIndexPtr() + tmp_start, tmp.innerIndexPtr() + tmp_start + nnz, matrix.innerIndexPtr() + start); - } - - // update outer index pointers and innerNonZeros - if(IsVectorAtCompileTime) - { - if(!m_matrix.isCompressed()) - matrix.innerNonZeroPtr()[m_outerStart] = StorageIndex(nnz); - matrix.outerIndexPtr()[m_outerStart] = StorageIndex(start); - } - else - { - StorageIndex p = StorageIndex(start); - for(Index k=0; k(tmp.innerVector(k).nonZeros()); - if(!m_matrix.isCompressed()) - matrix.innerNonZeroPtr()[m_outerStart+k] = nnz_k; - matrix.outerIndexPtr()[m_outerStart+k] = p; - p += nnz_k; - } - } - - if(update_trailing_pointers) - { - StorageIndex offset = internal::convert_index(nnz - block_size); - for(Index k = m_outerStart + m_outerSize.value(); k<=matrix.outerSize(); ++k) - { - matrix.outerIndexPtr()[k] += offset; - } - } - - return derived(); - } - - inline BlockType& operator=(const BlockType& other) - { - return operator=(other); - } - - inline const Scalar* valuePtr() const - { return m_matrix.valuePtr(); } - inline Scalar* valuePtr() - { return m_matrix.valuePtr(); } - - inline const StorageIndex* innerIndexPtr() const - { return m_matrix.innerIndexPtr(); } - inline StorageIndex* innerIndexPtr() - { return m_matrix.innerIndexPtr(); } - - inline const StorageIndex* outerIndexPtr() const - { return m_matrix.outerIndexPtr() + m_outerStart; } - inline StorageIndex* outerIndexPtr() - { return m_matrix.outerIndexPtr() + m_outerStart; } - - inline const StorageIndex* innerNonZeroPtr() const - { return isCompressed() ? 0 : (m_matrix.innerNonZeroPtr()+m_outerStart); } - inline StorageIndex* innerNonZeroPtr() - { return isCompressed() ? 0 : (m_matrix.innerNonZeroPtr()+m_outerStart); } - - bool isCompressed() const { return m_matrix.innerNonZeroPtr()==0; } - - inline Scalar& coeffRef(Index row, Index col) - { - return m_matrix.coeffRef(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart)); - } - - inline const Scalar coeff(Index row, Index col) const - { - return m_matrix.coeff(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart)); - } - - inline const Scalar coeff(Index index) const - { - return m_matrix.coeff(IsRowMajor ? m_outerStart : index, IsRowMajor ? index : m_outerStart); - } - - const Scalar& lastCoeff() const - { - EIGEN_STATIC_ASSERT_VECTOR_ONLY(sparse_matrix_block_impl); - eigen_assert(Base::nonZeros()>0); - if(m_matrix.isCompressed()) - return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart+1]-1]; - else - return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart]+m_matrix.innerNonZeroPtr()[m_outerStart]-1]; - } - - EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); } - EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); } - - inline const SparseMatrixType& nestedExpression() const { return m_matrix; } - inline SparseMatrixType& nestedExpression() { return m_matrix; } - Index startRow() const { return IsRowMajor ? m_outerStart : 0; } - Index startCol() const { return IsRowMajor ? 0 : m_outerStart; } - Index blockRows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); } - Index blockCols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); } - - protected: - - typename internal::ref_selector::non_const_type m_matrix; - Index m_outerStart; - const internal::variable_if_dynamic m_outerSize; - -}; - -} // namespace internal - -template -class BlockImpl,BlockRows,BlockCols,true,Sparse> - : public internal::sparse_matrix_block_impl,BlockRows,BlockCols> -{ -public: - typedef _StorageIndex StorageIndex; - typedef SparseMatrix<_Scalar, _Options, _StorageIndex> SparseMatrixType; - typedef internal::sparse_matrix_block_impl Base; - inline BlockImpl(SparseMatrixType& xpr, Index i) - : Base(xpr, i) - {} - - inline BlockImpl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols) - : Base(xpr, startRow, startCol, blockRows, blockCols) - {} - - using Base::operator=; -}; - -template -class BlockImpl,BlockRows,BlockCols,true,Sparse> - : public internal::sparse_matrix_block_impl,BlockRows,BlockCols> -{ -public: - typedef _StorageIndex StorageIndex; - typedef const SparseMatrix<_Scalar, _Options, _StorageIndex> SparseMatrixType; - typedef internal::sparse_matrix_block_impl Base; - inline BlockImpl(SparseMatrixType& xpr, Index i) - : Base(xpr, i) - {} - - inline BlockImpl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols) - : Base(xpr, startRow, startCol, blockRows, blockCols) - {} - - using Base::operator=; -private: - template BlockImpl(const SparseMatrixBase& xpr, Index i); - template BlockImpl(const SparseMatrixBase& xpr); -}; - -//---------- - -/** \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this - * is col-major (resp. row-major). - */ -template -typename SparseMatrixBase::InnerVectorReturnType SparseMatrixBase::innerVector(Index outer) -{ return InnerVectorReturnType(derived(), outer); } - -/** \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this - * is col-major (resp. row-major). Read-only. - */ -template -const typename SparseMatrixBase::ConstInnerVectorReturnType SparseMatrixBase::innerVector(Index outer) const -{ return ConstInnerVectorReturnType(derived(), outer); } - -/** \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this - * is col-major (resp. row-major). - */ -template -typename SparseMatrixBase::InnerVectorsReturnType -SparseMatrixBase::innerVectors(Index outerStart, Index outerSize) -{ - return Block(derived(), - IsRowMajor ? outerStart : 0, IsRowMajor ? 0 : outerStart, - IsRowMajor ? outerSize : rows(), IsRowMajor ? cols() : outerSize); - -} - -/** \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this - * is col-major (resp. row-major). Read-only. - */ -template -const typename SparseMatrixBase::ConstInnerVectorsReturnType -SparseMatrixBase::innerVectors(Index outerStart, Index outerSize) const -{ - return Block(derived(), - IsRowMajor ? outerStart : 0, IsRowMajor ? 0 : outerStart, - IsRowMajor ? outerSize : rows(), IsRowMajor ? cols() : outerSize); - -} - -/** Generic implementation of sparse Block expression. - * Real-only. - */ -template -class BlockImpl - : public SparseMatrixBase >, internal::no_assignment_operator -{ - typedef Block BlockType; - typedef SparseMatrixBase Base; - using Base::convert_index; -public: - enum { IsRowMajor = internal::traits::IsRowMajor }; - EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType) - - typedef typename internal::remove_all::type _MatrixTypeNested; - - /** Column or Row constructor - */ - inline BlockImpl(XprType& xpr, Index i) - : m_matrix(xpr), - m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? convert_index(i) : 0), - m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? convert_index(i) : 0), - m_blockRows(BlockRows==1 ? 1 : xpr.rows()), - m_blockCols(BlockCols==1 ? 1 : xpr.cols()) - {} - - /** Dynamic-size constructor - */ - inline BlockImpl(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols) - : m_matrix(xpr), m_startRow(convert_index(startRow)), m_startCol(convert_index(startCol)), m_blockRows(convert_index(blockRows)), m_blockCols(convert_index(blockCols)) - {} - - inline Index rows() const { return m_blockRows.value(); } - inline Index cols() const { return m_blockCols.value(); } - - inline Scalar& coeffRef(Index row, Index col) - { - return m_matrix.coeffRef(row + m_startRow.value(), col + m_startCol.value()); - } - - inline const Scalar coeff(Index row, Index col) const - { - return m_matrix.coeff(row + m_startRow.value(), col + m_startCol.value()); - } - - inline Scalar& coeffRef(Index index) - { - return m_matrix.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), - m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0)); - } - - inline const Scalar coeff(Index index) const - { - return m_matrix.coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), - m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0)); - } - - inline const XprType& nestedExpression() const { return m_matrix; } - inline XprType& nestedExpression() { return m_matrix; } - Index startRow() const { return m_startRow.value(); } - Index startCol() const { return m_startCol.value(); } - Index blockRows() const { return m_blockRows.value(); } - Index blockCols() const { return m_blockCols.value(); } - - protected: -// friend class internal::GenericSparseBlockInnerIteratorImpl; - friend struct internal::unary_evaluator, internal::IteratorBased, Scalar >; - - Index nonZeros() const { return Dynamic; } - - typename internal::ref_selector::non_const_type m_matrix; - const internal::variable_if_dynamic m_startRow; - const internal::variable_if_dynamic m_startCol; - const internal::variable_if_dynamic m_blockRows; - const internal::variable_if_dynamic m_blockCols; - - protected: - // Disable assignment with clear error message. - // Note that simply removing operator= yields compilation errors with ICC+MSVC - template - BlockImpl& operator=(const T&) - { - EIGEN_STATIC_ASSERT(sizeof(T)==0, THIS_SPARSE_BLOCK_SUBEXPRESSION_IS_READ_ONLY); - return *this; - } - -}; - -namespace internal { - -template -struct unary_evaluator, IteratorBased > - : public evaluator_base > -{ - class InnerVectorInnerIterator; - class OuterVectorInnerIterator; - public: - typedef Block XprType; - typedef typename XprType::StorageIndex StorageIndex; - typedef typename XprType::Scalar Scalar; - - enum { - IsRowMajor = XprType::IsRowMajor, - - OuterVector = (BlockCols==1 && ArgType::IsRowMajor) - | // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&". - // revert to || as soon as not needed anymore. - (BlockRows==1 && !ArgType::IsRowMajor), - - CoeffReadCost = evaluator::CoeffReadCost, - Flags = XprType::Flags - }; - - typedef typename internal::conditional::type InnerIterator; - - explicit unary_evaluator(const XprType& op) - : m_argImpl(op.nestedExpression()), m_block(op) - {} - - inline Index nonZerosEstimate() const { - Index nnz = m_block.nonZeros(); - if(nnz<0) - return m_argImpl.nonZerosEstimate() * m_block.size() / m_block.nestedExpression().size(); - return nnz; - } - - protected: - typedef typename evaluator::InnerIterator EvalIterator; - - evaluator m_argImpl; - const XprType &m_block; -}; - -template -class unary_evaluator, IteratorBased>::InnerVectorInnerIterator - : public EvalIterator -{ - enum { IsRowMajor = unary_evaluator::IsRowMajor }; - const XprType& m_block; - Index m_end; -public: - - EIGEN_STRONG_INLINE InnerVectorInnerIterator(const unary_evaluator& aEval, Index outer) - : EvalIterator(aEval.m_argImpl, outer + (IsRowMajor ? aEval.m_block.startRow() : aEval.m_block.startCol())), - m_block(aEval.m_block), - m_end(IsRowMajor ? aEval.m_block.startCol()+aEval.m_block.blockCols() : aEval.m_block.startRow()+aEval.m_block.blockRows()) - { - while( (EvalIterator::operator bool()) && (EvalIterator::index() < (IsRowMajor ? m_block.startCol() : m_block.startRow())) ) - EvalIterator::operator++(); - } - - inline StorageIndex index() const { return EvalIterator::index() - convert_index(IsRowMajor ? m_block.startCol() : m_block.startRow()); } - inline Index outer() const { return EvalIterator::outer() - (IsRowMajor ? m_block.startRow() : m_block.startCol()); } - inline Index row() const { return EvalIterator::row() - m_block.startRow(); } - inline Index col() const { return EvalIterator::col() - m_block.startCol(); } - - inline operator bool() const { return EvalIterator::operator bool() && EvalIterator::index() < m_end; } -}; - -template -class unary_evaluator, IteratorBased>::OuterVectorInnerIterator -{ - enum { IsRowMajor = unary_evaluator::IsRowMajor }; - const unary_evaluator& m_eval; - Index m_outerPos; - const Index m_innerIndex; - Index m_end; - EvalIterator m_it; -public: - - EIGEN_STRONG_INLINE OuterVectorInnerIterator(const unary_evaluator& aEval, Index outer) - : m_eval(aEval), - m_outerPos( (IsRowMajor ? aEval.m_block.startCol() : aEval.m_block.startRow()) ), - m_innerIndex(IsRowMajor ? aEval.m_block.startRow() : aEval.m_block.startCol()), - m_end(IsRowMajor ? aEval.m_block.startCol()+aEval.m_block.blockCols() : aEval.m_block.startRow()+aEval.m_block.blockRows()), - m_it(m_eval.m_argImpl, m_outerPos) - { - EIGEN_UNUSED_VARIABLE(outer); - eigen_assert(outer==0); - - while(m_it && m_it.index() < m_innerIndex) ++m_it; - if((!m_it) || (m_it.index()!=m_innerIndex)) - ++(*this); - } - - inline StorageIndex index() const { return convert_index(m_outerPos - (IsRowMajor ? m_eval.m_block.startCol() : m_eval.m_block.startRow())); } - inline Index outer() const { return 0; } - inline Index row() const { return IsRowMajor ? 0 : index(); } - inline Index col() const { return IsRowMajor ? index() : 0; } - - inline Scalar value() const { return m_it.value(); } - inline Scalar& valueRef() { return m_it.valueRef(); } - - inline OuterVectorInnerIterator& operator++() - { - // search next non-zero entry - while(++m_outerPos -struct unary_evaluator,BlockRows,BlockCols,true>, IteratorBased> - : evaluator,BlockRows,BlockCols,true> > > -{ - typedef Block,BlockRows,BlockCols,true> XprType; - typedef evaluator > Base; - explicit unary_evaluator(const XprType &xpr) : Base(xpr) {} -}; - -template -struct unary_evaluator,BlockRows,BlockCols,true>, IteratorBased> - : evaluator,BlockRows,BlockCols,true> > > -{ - typedef Block,BlockRows,BlockCols,true> XprType; - typedef evaluator > Base; - explicit unary_evaluator(const XprType &xpr) : Base(xpr) {} -}; - -} // end namespace internal - - -} // end namespace Eigen - -#endif // EIGEN_SPARSE_BLOCK_H diff --git a/src/math_meigen/Eigen/src/SparseCore/SparseColEtree.h b/src/math_meigen/Eigen/src/SparseCore/SparseColEtree.h deleted file mode 100755 index ebe02d1ab..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/SparseColEtree.h +++ /dev/null @@ -1,206 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Désiré Nuentsa-Wakam -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - - -/* - - * NOTE: This file is the modified version of sp_coletree.c file in SuperLU - - * -- SuperLU routine (version 3.1) -- - * Univ. of California Berkeley, Xerox Palo Alto Research Center, - * and Lawrence Berkeley National Lab. - * August 1, 2008 - * - * Copyright (c) 1994 by Xerox Corporation. All rights reserved. - * - * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY - * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. - * - * Permission is hereby granted to use or copy this program for any - * purpose, provided the above notices are retained on all copies. - * Permission to modify the code and to distribute modified code is - * granted, provided the above notices are retained, and a notice that - * the code was modified is included with the above copyright notice. - */ -#ifndef SPARSE_COLETREE_H -#define SPARSE_COLETREE_H - -namespace Eigen { - -namespace internal { - -/** Find the root of the tree/set containing the vertex i : Use Path halving */ -template -Index etree_find (Index i, IndexVector& pp) -{ - Index p = pp(i); // Parent - Index gp = pp(p); // Grand parent - while (gp != p) - { - pp(i) = gp; // Parent pointer on find path is changed to former grand parent - i = gp; - p = pp(i); - gp = pp(p); - } - return p; -} - -/** Compute the column elimination tree of a sparse matrix - * \param mat The matrix in column-major format. - * \param parent The elimination tree - * \param firstRowElt The column index of the first element in each row - * \param perm The permutation to apply to the column of \b mat - */ -template -int coletree(const MatrixType& mat, IndexVector& parent, IndexVector& firstRowElt, typename MatrixType::StorageIndex *perm=0) -{ - typedef typename MatrixType::StorageIndex StorageIndex; - StorageIndex nc = convert_index(mat.cols()); // Number of columns - StorageIndex m = convert_index(mat.rows()); - StorageIndex diagSize = (std::min)(nc,m); - IndexVector root(nc); // root of subtree of etree - root.setZero(); - IndexVector pp(nc); // disjoint sets - pp.setZero(); // Initialize disjoint sets - parent.resize(mat.cols()); - //Compute first nonzero column in each row - firstRowElt.resize(m); - firstRowElt.setConstant(nc); - firstRowElt.segment(0, diagSize).setLinSpaced(diagSize, 0, diagSize-1); - bool found_diag; - for (StorageIndex col = 0; col < nc; col++) - { - StorageIndex pcol = col; - if(perm) pcol = perm[col]; - for (typename MatrixType::InnerIterator it(mat, pcol); it; ++it) - { - Index row = it.row(); - firstRowElt(row) = (std::min)(firstRowElt(row), col); - } - } - /* Compute etree by Liu's algorithm for symmetric matrices, - except use (firstRowElt[r],c) in place of an edge (r,c) of A. - Thus each row clique in A'*A is replaced by a star - centered at its first vertex, which has the same fill. */ - StorageIndex rset, cset, rroot; - for (StorageIndex col = 0; col < nc; col++) - { - found_diag = col>=m; - pp(col) = col; - cset = col; - root(cset) = col; - parent(col) = nc; - /* The diagonal element is treated here even if it does not exist in the matrix - * hence the loop is executed once more */ - StorageIndex pcol = col; - if(perm) pcol = perm[col]; - for (typename MatrixType::InnerIterator it(mat, pcol); it||!found_diag; ++it) - { // A sequence of interleaved find and union is performed - Index i = col; - if(it) i = it.index(); - if (i == col) found_diag = true; - - StorageIndex row = firstRowElt(i); - if (row >= col) continue; - rset = internal::etree_find(row, pp); // Find the name of the set containing row - rroot = root(rset); - if (rroot != col) - { - parent(rroot) = col; - pp(cset) = rset; - cset = rset; - root(cset) = col; - } - } - } - return 0; -} - -/** - * Depth-first search from vertex n. No recursion. - * This routine was contributed by Cédric Doucet, CEDRAT Group, Meylan, France. -*/ -template -void nr_etdfs (typename IndexVector::Scalar n, IndexVector& parent, IndexVector& first_kid, IndexVector& next_kid, IndexVector& post, typename IndexVector::Scalar postnum) -{ - typedef typename IndexVector::Scalar StorageIndex; - StorageIndex current = n, first, next; - while (postnum != n) - { - // No kid for the current node - first = first_kid(current); - - // no kid for the current node - if (first == -1) - { - // Numbering this node because it has no kid - post(current) = postnum++; - - // looking for the next kid - next = next_kid(current); - while (next == -1) - { - // No more kids : back to the parent node - current = parent(current); - // numbering the parent node - post(current) = postnum++; - - // Get the next kid - next = next_kid(current); - } - // stopping criterion - if (postnum == n+1) return; - - // Updating current node - current = next; - } - else - { - current = first; - } - } -} - - -/** - * \brief Post order a tree - * \param n the number of nodes - * \param parent Input tree - * \param post postordered tree - */ -template -void treePostorder(typename IndexVector::Scalar n, IndexVector& parent, IndexVector& post) -{ - typedef typename IndexVector::Scalar StorageIndex; - IndexVector first_kid, next_kid; // Linked list of children - StorageIndex postnum; - // Allocate storage for working arrays and results - first_kid.resize(n+1); - next_kid.setZero(n+1); - post.setZero(n+1); - - // Set up structure describing children - first_kid.setConstant(-1); - for (StorageIndex v = n-1; v >= 0; v--) - { - StorageIndex dad = parent(v); - next_kid(v) = first_kid(dad); - first_kid(dad) = v; - } - - // Depth-first search from dummy root vertex #n - postnum = 0; - internal::nr_etdfs(n, parent, first_kid, next_kid, post, postnum); -} - -} // end namespace internal - -} // end namespace Eigen - -#endif // SPARSE_COLETREE_H diff --git a/src/math_meigen/Eigen/src/SparseCore/SparseCompressedBase.h b/src/math_meigen/Eigen/src/SparseCore/SparseCompressedBase.h deleted file mode 100755 index 5ccb46656..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/SparseCompressedBase.h +++ /dev/null @@ -1,341 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2015 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSE_COMPRESSED_BASE_H -#define EIGEN_SPARSE_COMPRESSED_BASE_H - -namespace Eigen { - -template class SparseCompressedBase; - -namespace internal { - -template -struct traits > : traits -{}; - -} // end namespace internal - -/** \ingroup SparseCore_Module - * \class SparseCompressedBase - * \brief Common base class for sparse [compressed]-{row|column}-storage format. - * - * This class defines the common interface for all derived classes implementing the compressed sparse storage format, such as: - * - SparseMatrix - * - Ref - * - Map - * - */ -template -class SparseCompressedBase - : public SparseMatrixBase -{ - public: - typedef SparseMatrixBase Base; - EIGEN_SPARSE_PUBLIC_INTERFACE(SparseCompressedBase) - using Base::operator=; - using Base::IsRowMajor; - - class InnerIterator; - class ReverseInnerIterator; - - protected: - typedef typename Base::IndexVector IndexVector; - Eigen::Map innerNonZeros() { return Eigen::Map(innerNonZeroPtr(), isCompressed()?0:derived().outerSize()); } - const Eigen::Map innerNonZeros() const { return Eigen::Map(innerNonZeroPtr(), isCompressed()?0:derived().outerSize()); } - - public: - - /** \returns the number of non zero coefficients */ - inline Index nonZeros() const - { - if(Derived::IsVectorAtCompileTime && outerIndexPtr()==0) - return derived().nonZeros(); - else if(isCompressed()) - return outerIndexPtr()[derived().outerSize()]-outerIndexPtr()[0]; - else if(derived().outerSize()==0) - return 0; - else - return innerNonZeros().sum(); - } - - /** \returns a const pointer to the array of values. - * This function is aimed at interoperability with other libraries. - * \sa innerIndexPtr(), outerIndexPtr() */ - inline const Scalar* valuePtr() const { return derived().valuePtr(); } - /** \returns a non-const pointer to the array of values. - * This function is aimed at interoperability with other libraries. - * \sa innerIndexPtr(), outerIndexPtr() */ - inline Scalar* valuePtr() { return derived().valuePtr(); } - - /** \returns a const pointer to the array of inner indices. - * This function is aimed at interoperability with other libraries. - * \sa valuePtr(), outerIndexPtr() */ - inline const StorageIndex* innerIndexPtr() const { return derived().innerIndexPtr(); } - /** \returns a non-const pointer to the array of inner indices. - * This function is aimed at interoperability with other libraries. - * \sa valuePtr(), outerIndexPtr() */ - inline StorageIndex* innerIndexPtr() { return derived().innerIndexPtr(); } - - /** \returns a const pointer to the array of the starting positions of the inner vectors. - * This function is aimed at interoperability with other libraries. - * \warning it returns the null pointer 0 for SparseVector - * \sa valuePtr(), innerIndexPtr() */ - inline const StorageIndex* outerIndexPtr() const { return derived().outerIndexPtr(); } - /** \returns a non-const pointer to the array of the starting positions of the inner vectors. - * This function is aimed at interoperability with other libraries. - * \warning it returns the null pointer 0 for SparseVector - * \sa valuePtr(), innerIndexPtr() */ - inline StorageIndex* outerIndexPtr() { return derived().outerIndexPtr(); } - - /** \returns a const pointer to the array of the number of non zeros of the inner vectors. - * This function is aimed at interoperability with other libraries. - * \warning it returns the null pointer 0 in compressed mode */ - inline const StorageIndex* innerNonZeroPtr() const { return derived().innerNonZeroPtr(); } - /** \returns a non-const pointer to the array of the number of non zeros of the inner vectors. - * This function is aimed at interoperability with other libraries. - * \warning it returns the null pointer 0 in compressed mode */ - inline StorageIndex* innerNonZeroPtr() { return derived().innerNonZeroPtr(); } - - /** \returns whether \c *this is in compressed form. */ - inline bool isCompressed() const { return innerNonZeroPtr()==0; } - - /** \returns a read-only view of the stored coefficients as a 1D array expression. - * - * \warning this method is for \b compressed \b storage \b only, and it will trigger an assertion otherwise. - * - * \sa valuePtr(), isCompressed() */ - const Map > coeffs() const { eigen_assert(isCompressed()); return Array::Map(valuePtr(),nonZeros()); } - - /** \returns a read-write view of the stored coefficients as a 1D array expression - * - * \warning this method is for \b compressed \b storage \b only, and it will trigger an assertion otherwise. - * - * Here is an example: - * \include SparseMatrix_coeffs.cpp - * and the output is: - * \include SparseMatrix_coeffs.out - * - * \sa valuePtr(), isCompressed() */ - Map > coeffs() { eigen_assert(isCompressed()); return Array::Map(valuePtr(),nonZeros()); } - - protected: - /** Default constructor. Do nothing. */ - SparseCompressedBase() {} - private: - template explicit SparseCompressedBase(const SparseCompressedBase&); -}; - -template -class SparseCompressedBase::InnerIterator -{ - public: - InnerIterator() - : m_values(0), m_indices(0), m_outer(0), m_id(0), m_end(0) - {} - - InnerIterator(const InnerIterator& other) - : m_values(other.m_values), m_indices(other.m_indices), m_outer(other.m_outer), m_id(other.m_id), m_end(other.m_end) - {} - - InnerIterator& operator=(const InnerIterator& other) - { - m_values = other.m_values; - m_indices = other.m_indices; - const_cast(m_outer).setValue(other.m_outer.value()); - m_id = other.m_id; - m_end = other.m_end; - return *this; - } - - InnerIterator(const SparseCompressedBase& mat, Index outer) - : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer) - { - if(Derived::IsVectorAtCompileTime && mat.outerIndexPtr()==0) - { - m_id = 0; - m_end = mat.nonZeros(); - } - else - { - m_id = mat.outerIndexPtr()[outer]; - if(mat.isCompressed()) - m_end = mat.outerIndexPtr()[outer+1]; - else - m_end = m_id + mat.innerNonZeroPtr()[outer]; - } - } - - explicit InnerIterator(const SparseCompressedBase& mat) - : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(0), m_id(0), m_end(mat.nonZeros()) - { - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); - } - - explicit InnerIterator(const internal::CompressedStorage& data) - : m_values(data.valuePtr()), m_indices(data.indexPtr()), m_outer(0), m_id(0), m_end(data.size()) - { - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); - } - - inline InnerIterator& operator++() { m_id++; return *this; } - - inline const Scalar& value() const { return m_values[m_id]; } - inline Scalar& valueRef() { return const_cast(m_values[m_id]); } - - inline StorageIndex index() const { return m_indices[m_id]; } - inline Index outer() const { return m_outer.value(); } - inline Index row() const { return IsRowMajor ? m_outer.value() : index(); } - inline Index col() const { return IsRowMajor ? index() : m_outer.value(); } - - inline operator bool() const { return (m_id < m_end); } - - protected: - const Scalar* m_values; - const StorageIndex* m_indices; - typedef internal::variable_if_dynamic OuterType; - const OuterType m_outer; - Index m_id; - Index m_end; - private: - // If you get here, then you're not using the right InnerIterator type, e.g.: - // SparseMatrix A; - // SparseMatrix::InnerIterator it(A,0); - template InnerIterator(const SparseMatrixBase&, Index outer); -}; - -template -class SparseCompressedBase::ReverseInnerIterator -{ - public: - ReverseInnerIterator(const SparseCompressedBase& mat, Index outer) - : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer) - { - if(Derived::IsVectorAtCompileTime && mat.outerIndexPtr()==0) - { - m_start = 0; - m_id = mat.nonZeros(); - } - else - { - m_start = mat.outerIndexPtr()[outer]; - if(mat.isCompressed()) - m_id = mat.outerIndexPtr()[outer+1]; - else - m_id = m_start + mat.innerNonZeroPtr()[outer]; - } - } - - explicit ReverseInnerIterator(const SparseCompressedBase& mat) - : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(0), m_start(0), m_id(mat.nonZeros()) - { - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); - } - - explicit ReverseInnerIterator(const internal::CompressedStorage& data) - : m_values(data.valuePtr()), m_indices(data.indexPtr()), m_outer(0), m_start(0), m_id(data.size()) - { - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); - } - - inline ReverseInnerIterator& operator--() { --m_id; return *this; } - - inline const Scalar& value() const { return m_values[m_id-1]; } - inline Scalar& valueRef() { return const_cast(m_values[m_id-1]); } - - inline StorageIndex index() const { return m_indices[m_id-1]; } - inline Index outer() const { return m_outer.value(); } - inline Index row() const { return IsRowMajor ? m_outer.value() : index(); } - inline Index col() const { return IsRowMajor ? index() : m_outer.value(); } - - inline operator bool() const { return (m_id > m_start); } - - protected: - const Scalar* m_values; - const StorageIndex* m_indices; - typedef internal::variable_if_dynamic OuterType; - const OuterType m_outer; - Index m_start; - Index m_id; -}; - -namespace internal { - -template -struct evaluator > - : evaluator_base -{ - typedef typename Derived::Scalar Scalar; - typedef typename Derived::InnerIterator InnerIterator; - - enum { - CoeffReadCost = NumTraits::ReadCost, - Flags = Derived::Flags - }; - - evaluator() : m_matrix(0), m_zero(0) - { - EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); - } - explicit evaluator(const Derived &mat) : m_matrix(&mat), m_zero(0) - { - EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); - } - - inline Index nonZerosEstimate() const { - return m_matrix->nonZeros(); - } - - operator Derived&() { return m_matrix->const_cast_derived(); } - operator const Derived&() const { return *m_matrix; } - - typedef typename DenseCoeffsBase::CoeffReturnType CoeffReturnType; - const Scalar& coeff(Index row, Index col) const - { - Index p = find(row,col); - - if(p==Dynamic) - return m_zero; - else - return m_matrix->const_cast_derived().valuePtr()[p]; - } - - Scalar& coeffRef(Index row, Index col) - { - Index p = find(row,col); - eigen_assert(p!=Dynamic && "written coefficient does not exist"); - return m_matrix->const_cast_derived().valuePtr()[p]; - } - -protected: - - Index find(Index row, Index col) const - { - eigen_internal_assert(row>=0 && rowrows() && col>=0 && colcols()); - - const Index outer = Derived::IsRowMajor ? row : col; - const Index inner = Derived::IsRowMajor ? col : row; - - Index start = m_matrix->outerIndexPtr()[outer]; - Index end = m_matrix->isCompressed() ? m_matrix->outerIndexPtr()[outer+1] : m_matrix->outerIndexPtr()[outer] + m_matrix->innerNonZeroPtr()[outer]; - eigen_assert(end>=start && "you are using a non finalized sparse matrix or written coefficient does not exist"); - const Index p = std::lower_bound(m_matrix->innerIndexPtr()+start, m_matrix->innerIndexPtr()+end,inner) - m_matrix->innerIndexPtr(); - - return ((pinnerIndexPtr()[p]==inner)) ? p : Dynamic; - } - - const Derived *m_matrix; - const Scalar m_zero; -}; - -} - -} // end namespace Eigen - -#endif // EIGEN_SPARSE_COMPRESSED_BASE_H diff --git a/src/math_meigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h b/src/math_meigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h deleted file mode 100755 index e315e3550..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +++ /dev/null @@ -1,726 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSE_CWISE_BINARY_OP_H -#define EIGEN_SPARSE_CWISE_BINARY_OP_H - -namespace Eigen { - -// Here we have to handle 3 cases: -// 1 - sparse op dense -// 2 - dense op sparse -// 3 - sparse op sparse -// We also need to implement a 4th iterator for: -// 4 - dense op dense -// Finally, we also need to distinguish between the product and other operations : -// configuration returned mode -// 1 - sparse op dense product sparse -// generic dense -// 2 - dense op sparse product sparse -// generic dense -// 3 - sparse op sparse product sparse -// generic sparse -// 4 - dense op dense product dense -// generic dense -// -// TODO to ease compiler job, we could specialize product/quotient with a scalar -// and fallback to cwise-unary evaluator using bind1st_op and bind2nd_op. - -template -class CwiseBinaryOpImpl - : public SparseMatrixBase > -{ - public: - typedef CwiseBinaryOp Derived; - typedef SparseMatrixBase Base; - EIGEN_SPARSE_PUBLIC_INTERFACE(Derived) - CwiseBinaryOpImpl() - { - EIGEN_STATIC_ASSERT(( - (!internal::is_same::StorageKind, - typename internal::traits::StorageKind>::value) - || ((internal::evaluator::Flags&RowMajorBit) == (internal::evaluator::Flags&RowMajorBit))), - THE_STORAGE_ORDER_OF_BOTH_SIDES_MUST_MATCH); - } -}; - -namespace internal { - - -// Generic "sparse OP sparse" -template struct binary_sparse_evaluator; - -template -struct binary_evaluator, IteratorBased, IteratorBased> - : evaluator_base > -{ -protected: - typedef typename evaluator::InnerIterator LhsIterator; - typedef typename evaluator::InnerIterator RhsIterator; - typedef CwiseBinaryOp XprType; - typedef typename traits::Scalar Scalar; - typedef typename XprType::StorageIndex StorageIndex; -public: - - class InnerIterator - { - public: - - EIGEN_STRONG_INLINE InnerIterator(const binary_evaluator& aEval, Index outer) - : m_lhsIter(aEval.m_lhsImpl,outer), m_rhsIter(aEval.m_rhsImpl,outer), m_functor(aEval.m_functor) - { - this->operator++(); - } - - EIGEN_STRONG_INLINE InnerIterator& operator++() - { - if (m_lhsIter && m_rhsIter && (m_lhsIter.index() == m_rhsIter.index())) - { - m_id = m_lhsIter.index(); - m_value = m_functor(m_lhsIter.value(), m_rhsIter.value()); - ++m_lhsIter; - ++m_rhsIter; - } - else if (m_lhsIter && (!m_rhsIter || (m_lhsIter.index() < m_rhsIter.index()))) - { - m_id = m_lhsIter.index(); - m_value = m_functor(m_lhsIter.value(), Scalar(0)); - ++m_lhsIter; - } - else if (m_rhsIter && (!m_lhsIter || (m_lhsIter.index() > m_rhsIter.index()))) - { - m_id = m_rhsIter.index(); - m_value = m_functor(Scalar(0), m_rhsIter.value()); - ++m_rhsIter; - } - else - { - m_value = 0; // this is to avoid a compilation warning - m_id = -1; - } - return *this; - } - - EIGEN_STRONG_INLINE Scalar value() const { return m_value; } - - EIGEN_STRONG_INLINE StorageIndex index() const { return m_id; } - EIGEN_STRONG_INLINE Index outer() const { return m_lhsIter.outer(); } - EIGEN_STRONG_INLINE Index row() const { return Lhs::IsRowMajor ? m_lhsIter.row() : index(); } - EIGEN_STRONG_INLINE Index col() const { return Lhs::IsRowMajor ? index() : m_lhsIter.col(); } - - EIGEN_STRONG_INLINE operator bool() const { return m_id>=0; } - - protected: - LhsIterator m_lhsIter; - RhsIterator m_rhsIter; - const BinaryOp& m_functor; - Scalar m_value; - StorageIndex m_id; - }; - - - enum { - CoeffReadCost = evaluator::CoeffReadCost + evaluator::CoeffReadCost + functor_traits::Cost, - Flags = XprType::Flags - }; - - explicit binary_evaluator(const XprType& xpr) - : m_functor(xpr.functor()), - m_lhsImpl(xpr.lhs()), - m_rhsImpl(xpr.rhs()) - { - EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); - EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); - } - - inline Index nonZerosEstimate() const { - return m_lhsImpl.nonZerosEstimate() + m_rhsImpl.nonZerosEstimate(); - } - -protected: - const BinaryOp m_functor; - evaluator m_lhsImpl; - evaluator m_rhsImpl; -}; - -// dense op sparse -template -struct binary_evaluator, IndexBased, IteratorBased> - : evaluator_base > -{ -protected: - typedef typename evaluator::InnerIterator RhsIterator; - typedef CwiseBinaryOp XprType; - typedef typename traits::Scalar Scalar; - typedef typename XprType::StorageIndex StorageIndex; -public: - - class InnerIterator - { - enum { IsRowMajor = (int(Rhs::Flags)&RowMajorBit)==RowMajorBit }; - public: - - EIGEN_STRONG_INLINE InnerIterator(const binary_evaluator& aEval, Index outer) - : m_lhsEval(aEval.m_lhsImpl), m_rhsIter(aEval.m_rhsImpl,outer), m_functor(aEval.m_functor), m_value(0), m_id(-1), m_innerSize(aEval.m_expr.rhs().innerSize()) - { - this->operator++(); - } - - EIGEN_STRONG_INLINE InnerIterator& operator++() - { - ++m_id; - if(m_id &m_lhsEval; - RhsIterator m_rhsIter; - const BinaryOp& m_functor; - Scalar m_value; - StorageIndex m_id; - StorageIndex m_innerSize; - }; - - - enum { - CoeffReadCost = evaluator::CoeffReadCost + evaluator::CoeffReadCost + functor_traits::Cost, - // Expose storage order of the sparse expression - Flags = (XprType::Flags & ~RowMajorBit) | (int(Rhs::Flags)&RowMajorBit) - }; - - explicit binary_evaluator(const XprType& xpr) - : m_functor(xpr.functor()), - m_lhsImpl(xpr.lhs()), - m_rhsImpl(xpr.rhs()), - m_expr(xpr) - { - EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); - EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); - } - - inline Index nonZerosEstimate() const { - return m_expr.size(); - } - -protected: - const BinaryOp m_functor; - evaluator m_lhsImpl; - evaluator m_rhsImpl; - const XprType &m_expr; -}; - -// sparse op dense -template -struct binary_evaluator, IteratorBased, IndexBased> - : evaluator_base > -{ -protected: - typedef typename evaluator::InnerIterator LhsIterator; - typedef CwiseBinaryOp XprType; - typedef typename traits::Scalar Scalar; - typedef typename XprType::StorageIndex StorageIndex; -public: - - class InnerIterator - { - enum { IsRowMajor = (int(Lhs::Flags)&RowMajorBit)==RowMajorBit }; - public: - - EIGEN_STRONG_INLINE InnerIterator(const binary_evaluator& aEval, Index outer) - : m_lhsIter(aEval.m_lhsImpl,outer), m_rhsEval(aEval.m_rhsImpl), m_functor(aEval.m_functor), m_value(0), m_id(-1), m_innerSize(aEval.m_expr.lhs().innerSize()) - { - this->operator++(); - } - - EIGEN_STRONG_INLINE InnerIterator& operator++() - { - ++m_id; - if(m_id &m_rhsEval; - const BinaryOp& m_functor; - Scalar m_value; - StorageIndex m_id; - StorageIndex m_innerSize; - }; - - - enum { - CoeffReadCost = evaluator::CoeffReadCost + evaluator::CoeffReadCost + functor_traits::Cost, - // Expose storage order of the sparse expression - Flags = (XprType::Flags & ~RowMajorBit) | (int(Lhs::Flags)&RowMajorBit) - }; - - explicit binary_evaluator(const XprType& xpr) - : m_functor(xpr.functor()), - m_lhsImpl(xpr.lhs()), - m_rhsImpl(xpr.rhs()), - m_expr(xpr) - { - EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); - EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); - } - - inline Index nonZerosEstimate() const { - return m_expr.size(); - } - -protected: - const BinaryOp m_functor; - evaluator m_lhsImpl; - evaluator m_rhsImpl; - const XprType &m_expr; -}; - -template::Kind, - typename RhsKind = typename evaluator_traits::Kind, - typename LhsScalar = typename traits::Scalar, - typename RhsScalar = typename traits::Scalar> struct sparse_conjunction_evaluator; - -// "sparse .* sparse" -template -struct binary_evaluator, Lhs, Rhs>, IteratorBased, IteratorBased> - : sparse_conjunction_evaluator, Lhs, Rhs> > -{ - typedef CwiseBinaryOp, Lhs, Rhs> XprType; - typedef sparse_conjunction_evaluator Base; - explicit binary_evaluator(const XprType& xpr) : Base(xpr) {} -}; -// "dense .* sparse" -template -struct binary_evaluator, Lhs, Rhs>, IndexBased, IteratorBased> - : sparse_conjunction_evaluator, Lhs, Rhs> > -{ - typedef CwiseBinaryOp, Lhs, Rhs> XprType; - typedef sparse_conjunction_evaluator Base; - explicit binary_evaluator(const XprType& xpr) : Base(xpr) {} -}; -// "sparse .* dense" -template -struct binary_evaluator, Lhs, Rhs>, IteratorBased, IndexBased> - : sparse_conjunction_evaluator, Lhs, Rhs> > -{ - typedef CwiseBinaryOp, Lhs, Rhs> XprType; - typedef sparse_conjunction_evaluator Base; - explicit binary_evaluator(const XprType& xpr) : Base(xpr) {} -}; - -// "sparse ./ dense" -template -struct binary_evaluator, Lhs, Rhs>, IteratorBased, IndexBased> - : sparse_conjunction_evaluator, Lhs, Rhs> > -{ - typedef CwiseBinaryOp, Lhs, Rhs> XprType; - typedef sparse_conjunction_evaluator Base; - explicit binary_evaluator(const XprType& xpr) : Base(xpr) {} -}; - -// "sparse && sparse" -template -struct binary_evaluator, IteratorBased, IteratorBased> - : sparse_conjunction_evaluator > -{ - typedef CwiseBinaryOp XprType; - typedef sparse_conjunction_evaluator Base; - explicit binary_evaluator(const XprType& xpr) : Base(xpr) {} -}; -// "dense && sparse" -template -struct binary_evaluator, IndexBased, IteratorBased> - : sparse_conjunction_evaluator > -{ - typedef CwiseBinaryOp XprType; - typedef sparse_conjunction_evaluator Base; - explicit binary_evaluator(const XprType& xpr) : Base(xpr) {} -}; -// "sparse && dense" -template -struct binary_evaluator, IteratorBased, IndexBased> - : sparse_conjunction_evaluator > -{ - typedef CwiseBinaryOp XprType; - typedef sparse_conjunction_evaluator Base; - explicit binary_evaluator(const XprType& xpr) : Base(xpr) {} -}; - -// "sparse ^ sparse" -template -struct sparse_conjunction_evaluator - : evaluator_base -{ -protected: - typedef typename XprType::Functor BinaryOp; - typedef typename XprType::Lhs LhsArg; - typedef typename XprType::Rhs RhsArg; - typedef typename evaluator::InnerIterator LhsIterator; - typedef typename evaluator::InnerIterator RhsIterator; - typedef typename XprType::StorageIndex StorageIndex; - typedef typename traits::Scalar Scalar; -public: - - class InnerIterator - { - public: - - EIGEN_STRONG_INLINE InnerIterator(const sparse_conjunction_evaluator& aEval, Index outer) - : m_lhsIter(aEval.m_lhsImpl,outer), m_rhsIter(aEval.m_rhsImpl,outer), m_functor(aEval.m_functor) - { - while (m_lhsIter && m_rhsIter && (m_lhsIter.index() != m_rhsIter.index())) - { - if (m_lhsIter.index() < m_rhsIter.index()) - ++m_lhsIter; - else - ++m_rhsIter; - } - } - - EIGEN_STRONG_INLINE InnerIterator& operator++() - { - ++m_lhsIter; - ++m_rhsIter; - while (m_lhsIter && m_rhsIter && (m_lhsIter.index() != m_rhsIter.index())) - { - if (m_lhsIter.index() < m_rhsIter.index()) - ++m_lhsIter; - else - ++m_rhsIter; - } - return *this; - } - - EIGEN_STRONG_INLINE Scalar value() const { return m_functor(m_lhsIter.value(), m_rhsIter.value()); } - - EIGEN_STRONG_INLINE StorageIndex index() const { return m_lhsIter.index(); } - EIGEN_STRONG_INLINE Index outer() const { return m_lhsIter.outer(); } - EIGEN_STRONG_INLINE Index row() const { return m_lhsIter.row(); } - EIGEN_STRONG_INLINE Index col() const { return m_lhsIter.col(); } - - EIGEN_STRONG_INLINE operator bool() const { return (m_lhsIter && m_rhsIter); } - - protected: - LhsIterator m_lhsIter; - RhsIterator m_rhsIter; - const BinaryOp& m_functor; - }; - - - enum { - CoeffReadCost = evaluator::CoeffReadCost + evaluator::CoeffReadCost + functor_traits::Cost, - Flags = XprType::Flags - }; - - explicit sparse_conjunction_evaluator(const XprType& xpr) - : m_functor(xpr.functor()), - m_lhsImpl(xpr.lhs()), - m_rhsImpl(xpr.rhs()) - { - EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); - EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); - } - - inline Index nonZerosEstimate() const { - return (std::min)(m_lhsImpl.nonZerosEstimate(), m_rhsImpl.nonZerosEstimate()); - } - -protected: - const BinaryOp m_functor; - evaluator m_lhsImpl; - evaluator m_rhsImpl; -}; - -// "dense ^ sparse" -template -struct sparse_conjunction_evaluator - : evaluator_base -{ -protected: - typedef typename XprType::Functor BinaryOp; - typedef typename XprType::Lhs LhsArg; - typedef typename XprType::Rhs RhsArg; - typedef evaluator LhsEvaluator; - typedef typename evaluator::InnerIterator RhsIterator; - typedef typename XprType::StorageIndex StorageIndex; - typedef typename traits::Scalar Scalar; -public: - - class InnerIterator - { - enum { IsRowMajor = (int(RhsArg::Flags)&RowMajorBit)==RowMajorBit }; - - public: - - EIGEN_STRONG_INLINE InnerIterator(const sparse_conjunction_evaluator& aEval, Index outer) - : m_lhsEval(aEval.m_lhsImpl), m_rhsIter(aEval.m_rhsImpl,outer), m_functor(aEval.m_functor), m_outer(outer) - {} - - EIGEN_STRONG_INLINE InnerIterator& operator++() - { - ++m_rhsIter; - return *this; - } - - EIGEN_STRONG_INLINE Scalar value() const - { return m_functor(m_lhsEval.coeff(IsRowMajor?m_outer:m_rhsIter.index(),IsRowMajor?m_rhsIter.index():m_outer), m_rhsIter.value()); } - - EIGEN_STRONG_INLINE StorageIndex index() const { return m_rhsIter.index(); } - EIGEN_STRONG_INLINE Index outer() const { return m_rhsIter.outer(); } - EIGEN_STRONG_INLINE Index row() const { return m_rhsIter.row(); } - EIGEN_STRONG_INLINE Index col() const { return m_rhsIter.col(); } - - EIGEN_STRONG_INLINE operator bool() const { return m_rhsIter; } - - protected: - const LhsEvaluator &m_lhsEval; - RhsIterator m_rhsIter; - const BinaryOp& m_functor; - const Index m_outer; - }; - - - enum { - CoeffReadCost = evaluator::CoeffReadCost + evaluator::CoeffReadCost + functor_traits::Cost, - // Expose storage order of the sparse expression - Flags = (XprType::Flags & ~RowMajorBit) | (int(RhsArg::Flags)&RowMajorBit) - }; - - explicit sparse_conjunction_evaluator(const XprType& xpr) - : m_functor(xpr.functor()), - m_lhsImpl(xpr.lhs()), - m_rhsImpl(xpr.rhs()) - { - EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); - EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); - } - - inline Index nonZerosEstimate() const { - return m_rhsImpl.nonZerosEstimate(); - } - -protected: - const BinaryOp m_functor; - evaluator m_lhsImpl; - evaluator m_rhsImpl; -}; - -// "sparse ^ dense" -template -struct sparse_conjunction_evaluator - : evaluator_base -{ -protected: - typedef typename XprType::Functor BinaryOp; - typedef typename XprType::Lhs LhsArg; - typedef typename XprType::Rhs RhsArg; - typedef typename evaluator::InnerIterator LhsIterator; - typedef evaluator RhsEvaluator; - typedef typename XprType::StorageIndex StorageIndex; - typedef typename traits::Scalar Scalar; -public: - - class InnerIterator - { - enum { IsRowMajor = (int(LhsArg::Flags)&RowMajorBit)==RowMajorBit }; - - public: - - EIGEN_STRONG_INLINE InnerIterator(const sparse_conjunction_evaluator& aEval, Index outer) - : m_lhsIter(aEval.m_lhsImpl,outer), m_rhsEval(aEval.m_rhsImpl), m_functor(aEval.m_functor), m_outer(outer) - {} - - EIGEN_STRONG_INLINE InnerIterator& operator++() - { - ++m_lhsIter; - return *this; - } - - EIGEN_STRONG_INLINE Scalar value() const - { return m_functor(m_lhsIter.value(), - m_rhsEval.coeff(IsRowMajor?m_outer:m_lhsIter.index(),IsRowMajor?m_lhsIter.index():m_outer)); } - - EIGEN_STRONG_INLINE StorageIndex index() const { return m_lhsIter.index(); } - EIGEN_STRONG_INLINE Index outer() const { return m_lhsIter.outer(); } - EIGEN_STRONG_INLINE Index row() const { return m_lhsIter.row(); } - EIGEN_STRONG_INLINE Index col() const { return m_lhsIter.col(); } - - EIGEN_STRONG_INLINE operator bool() const { return m_lhsIter; } - - protected: - LhsIterator m_lhsIter; - const evaluator &m_rhsEval; - const BinaryOp& m_functor; - const Index m_outer; - }; - - - enum { - CoeffReadCost = evaluator::CoeffReadCost + evaluator::CoeffReadCost + functor_traits::Cost, - // Expose storage order of the sparse expression - Flags = (XprType::Flags & ~RowMajorBit) | (int(LhsArg::Flags)&RowMajorBit) - }; - - explicit sparse_conjunction_evaluator(const XprType& xpr) - : m_functor(xpr.functor()), - m_lhsImpl(xpr.lhs()), - m_rhsImpl(xpr.rhs()) - { - EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); - EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); - } - - inline Index nonZerosEstimate() const { - return m_lhsImpl.nonZerosEstimate(); - } - -protected: - const BinaryOp m_functor; - evaluator m_lhsImpl; - evaluator m_rhsImpl; -}; - -} - -/*************************************************************************** -* Implementation of SparseMatrixBase and SparseCwise functions/operators -***************************************************************************/ - -template -template -Derived& SparseMatrixBase::operator+=(const EigenBase &other) -{ - call_assignment(derived(), other.derived(), internal::add_assign_op()); - return derived(); -} - -template -template -Derived& SparseMatrixBase::operator-=(const EigenBase &other) -{ - call_assignment(derived(), other.derived(), internal::assign_op()); - return derived(); -} - -template -template -EIGEN_STRONG_INLINE Derived & -SparseMatrixBase::operator-=(const SparseMatrixBase &other) -{ - return derived() = derived() - other.derived(); -} - -template -template -EIGEN_STRONG_INLINE Derived & -SparseMatrixBase::operator+=(const SparseMatrixBase& other) -{ - return derived() = derived() + other.derived(); -} - -template -template -Derived& SparseMatrixBase::operator+=(const DiagonalBase& other) -{ - call_assignment_no_alias(derived(), other.derived(), internal::add_assign_op()); - return derived(); -} - -template -template -Derived& SparseMatrixBase::operator-=(const DiagonalBase& other) -{ - call_assignment_no_alias(derived(), other.derived(), internal::sub_assign_op()); - return derived(); -} - -template -template -EIGEN_STRONG_INLINE const typename SparseMatrixBase::template CwiseProductDenseReturnType::Type -SparseMatrixBase::cwiseProduct(const MatrixBase &other) const -{ - return typename CwiseProductDenseReturnType::Type(derived(), other.derived()); -} - -template -EIGEN_STRONG_INLINE const CwiseBinaryOp, const DenseDerived, const SparseDerived> -operator+(const MatrixBase &a, const SparseMatrixBase &b) -{ - return CwiseBinaryOp, const DenseDerived, const SparseDerived>(a.derived(), b.derived()); -} - -template -EIGEN_STRONG_INLINE const CwiseBinaryOp, const SparseDerived, const DenseDerived> -operator+(const SparseMatrixBase &a, const MatrixBase &b) -{ - return CwiseBinaryOp, const SparseDerived, const DenseDerived>(a.derived(), b.derived()); -} - -template -EIGEN_STRONG_INLINE const CwiseBinaryOp, const DenseDerived, const SparseDerived> -operator-(const MatrixBase &a, const SparseMatrixBase &b) -{ - return CwiseBinaryOp, const DenseDerived, const SparseDerived>(a.derived(), b.derived()); -} - -template -EIGEN_STRONG_INLINE const CwiseBinaryOp, const SparseDerived, const DenseDerived> -operator-(const SparseMatrixBase &a, const MatrixBase &b) -{ - return CwiseBinaryOp, const SparseDerived, const DenseDerived>(a.derived(), b.derived()); -} - -} // end namespace Eigen - -#endif // EIGEN_SPARSE_CWISE_BINARY_OP_H diff --git a/src/math_meigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h b/src/math_meigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h deleted file mode 100755 index ea7973790..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +++ /dev/null @@ -1,148 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2015 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSE_CWISE_UNARY_OP_H -#define EIGEN_SPARSE_CWISE_UNARY_OP_H - -namespace Eigen { - -namespace internal { - -template -struct unary_evaluator, IteratorBased> - : public evaluator_base > -{ - public: - typedef CwiseUnaryOp XprType; - - class InnerIterator; - - enum { - CoeffReadCost = evaluator::CoeffReadCost + functor_traits::Cost, - Flags = XprType::Flags - }; - - explicit unary_evaluator(const XprType& op) : m_functor(op.functor()), m_argImpl(op.nestedExpression()) - { - EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); - EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); - } - - inline Index nonZerosEstimate() const { - return m_argImpl.nonZerosEstimate(); - } - - protected: - typedef typename evaluator::InnerIterator EvalIterator; - - const UnaryOp m_functor; - evaluator m_argImpl; -}; - -template -class unary_evaluator, IteratorBased>::InnerIterator - : public unary_evaluator, IteratorBased>::EvalIterator -{ - typedef typename XprType::Scalar Scalar; - typedef typename unary_evaluator, IteratorBased>::EvalIterator Base; - public: - - EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& unaryOp, Index outer) - : Base(unaryOp.m_argImpl,outer), m_functor(unaryOp.m_functor) - {} - - EIGEN_STRONG_INLINE InnerIterator& operator++() - { Base::operator++(); return *this; } - - EIGEN_STRONG_INLINE Scalar value() const { return m_functor(Base::value()); } - - protected: - const UnaryOp m_functor; - private: - Scalar& valueRef(); -}; - -template -struct unary_evaluator, IteratorBased> - : public evaluator_base > -{ - public: - typedef CwiseUnaryView XprType; - - class InnerIterator; - - enum { - CoeffReadCost = evaluator::CoeffReadCost + functor_traits::Cost, - Flags = XprType::Flags - }; - - explicit unary_evaluator(const XprType& op) : m_functor(op.functor()), m_argImpl(op.nestedExpression()) - { - EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); - EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); - } - - protected: - typedef typename evaluator::InnerIterator EvalIterator; - - const ViewOp m_functor; - evaluator m_argImpl; -}; - -template -class unary_evaluator, IteratorBased>::InnerIterator - : public unary_evaluator, IteratorBased>::EvalIterator -{ - typedef typename XprType::Scalar Scalar; - typedef typename unary_evaluator, IteratorBased>::EvalIterator Base; - public: - - EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& unaryOp, Index outer) - : Base(unaryOp.m_argImpl,outer), m_functor(unaryOp.m_functor) - {} - - EIGEN_STRONG_INLINE InnerIterator& operator++() - { Base::operator++(); return *this; } - - EIGEN_STRONG_INLINE Scalar value() const { return m_functor(Base::value()); } - EIGEN_STRONG_INLINE Scalar& valueRef() { return m_functor(Base::valueRef()); } - - protected: - const ViewOp m_functor; -}; - -} // end namespace internal - -template -EIGEN_STRONG_INLINE Derived& -SparseMatrixBase::operator*=(const Scalar& other) -{ - typedef typename internal::evaluator::InnerIterator EvalIterator; - internal::evaluator thisEval(derived()); - for (Index j=0; j -EIGEN_STRONG_INLINE Derived& -SparseMatrixBase::operator/=(const Scalar& other) -{ - typedef typename internal::evaluator::InnerIterator EvalIterator; - internal::evaluator thisEval(derived()); - for (Index j=0; j -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSEDENSEPRODUCT_H -#define EIGEN_SPARSEDENSEPRODUCT_H - -namespace Eigen { - -namespace internal { - -template <> struct product_promote_storage_type { typedef Sparse ret; }; -template <> struct product_promote_storage_type { typedef Sparse ret; }; - -template -struct sparse_time_dense_product_impl; - -template -struct sparse_time_dense_product_impl -{ - typedef typename internal::remove_all::type Lhs; - typedef typename internal::remove_all::type Rhs; - typedef typename internal::remove_all::type Res; - typedef typename evaluator::InnerIterator LhsInnerIterator; - typedef evaluator LhsEval; - static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha) - { - LhsEval lhsEval(lhs); - - Index n = lhs.outerSize(); -#ifdef EIGEN_HAS_OPENMP - Eigen::initParallel(); - Index threads = Eigen::nbThreads(); -#endif - - for(Index c=0; c1 && lhsEval.nonZerosEstimate() > 20000) - { - #pragma omp parallel for schedule(dynamic,(n+threads*4-1)/(threads*4)) num_threads(threads) - for(Index i=0; i let's disable it for now as it is conflicting with generic scalar*matrix and matrix*scalar operators -// template -// struct ScalarBinaryOpTraits > -// { -// enum { -// Defined = 1 -// }; -// typedef typename CwiseUnaryOp, T2>::PlainObject ReturnType; -// }; - -template -struct sparse_time_dense_product_impl -{ - typedef typename internal::remove_all::type Lhs; - typedef typename internal::remove_all::type Rhs; - typedef typename internal::remove_all::type Res; - typedef typename evaluator::InnerIterator LhsInnerIterator; - static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha) - { - evaluator lhsEval(lhs); - for(Index c=0; c::ReturnType rhs_j(alpha * rhs.coeff(j,c)); - for(LhsInnerIterator it(lhsEval,j); it ;++it) - res.coeffRef(it.index(),c) += it.value() * rhs_j; - } - } - } -}; - -template -struct sparse_time_dense_product_impl -{ - typedef typename internal::remove_all::type Lhs; - typedef typename internal::remove_all::type Rhs; - typedef typename internal::remove_all::type Res; - typedef typename evaluator::InnerIterator LhsInnerIterator; - static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha) - { - evaluator lhsEval(lhs); - for(Index j=0; j -struct sparse_time_dense_product_impl -{ - typedef typename internal::remove_all::type Lhs; - typedef typename internal::remove_all::type Rhs; - typedef typename internal::remove_all::type Res; - typedef typename evaluator::InnerIterator LhsInnerIterator; - static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha) - { - evaluator lhsEval(lhs); - for(Index j=0; j -inline void sparse_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha) -{ - sparse_time_dense_product_impl::run(lhs, rhs, res, alpha); -} - -} // end namespace internal - -namespace internal { - -template -struct generic_product_impl - : generic_product_impl_base > -{ - typedef typename Product::Scalar Scalar; - - template - static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) - { - typedef typename nested_eval::type LhsNested; - typedef typename nested_eval::type RhsNested; - LhsNested lhsNested(lhs); - RhsNested rhsNested(rhs); - internal::sparse_time_dense_product(lhsNested, rhsNested, dst, alpha); - } -}; - -template -struct generic_product_impl - : generic_product_impl -{}; - -template -struct generic_product_impl - : generic_product_impl_base > -{ - typedef typename Product::Scalar Scalar; - - template - static void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha) - { - typedef typename nested_eval::type LhsNested; - typedef typename nested_eval::type RhsNested; - LhsNested lhsNested(lhs); - RhsNested rhsNested(rhs); - - // transpose everything - Transpose dstT(dst); - internal::sparse_time_dense_product(rhsNested.transpose(), lhsNested.transpose(), dstT, alpha); - } -}; - -template -struct generic_product_impl - : generic_product_impl -{}; - -template -struct sparse_dense_outer_product_evaluator -{ -protected: - typedef typename conditional::type Lhs1; - typedef typename conditional::type ActualRhs; - typedef Product ProdXprType; - - // if the actual left-hand side is a dense vector, - // then build a sparse-view so that we can seamlessly iterate over it. - typedef typename conditional::StorageKind,Sparse>::value, - Lhs1, SparseView >::type ActualLhs; - typedef typename conditional::StorageKind,Sparse>::value, - Lhs1 const&, SparseView >::type LhsArg; - - typedef evaluator LhsEval; - typedef evaluator RhsEval; - typedef typename evaluator::InnerIterator LhsIterator; - typedef typename ProdXprType::Scalar Scalar; - -public: - enum { - Flags = NeedToTranspose ? RowMajorBit : 0, - CoeffReadCost = HugeCost - }; - - class InnerIterator : public LhsIterator - { - public: - InnerIterator(const sparse_dense_outer_product_evaluator &xprEval, Index outer) - : LhsIterator(xprEval.m_lhsXprImpl, 0), - m_outer(outer), - m_empty(false), - m_factor(get(xprEval.m_rhsXprImpl, outer, typename internal::traits::StorageKind() )) - {} - - EIGEN_STRONG_INLINE Index outer() const { return m_outer; } - EIGEN_STRONG_INLINE Index row() const { return NeedToTranspose ? m_outer : LhsIterator::index(); } - EIGEN_STRONG_INLINE Index col() const { return NeedToTranspose ? LhsIterator::index() : m_outer; } - - EIGEN_STRONG_INLINE Scalar value() const { return LhsIterator::value() * m_factor; } - EIGEN_STRONG_INLINE operator bool() const { return LhsIterator::operator bool() && (!m_empty); } - - protected: - Scalar get(const RhsEval &rhs, Index outer, Dense = Dense()) const - { - return rhs.coeff(outer); - } - - Scalar get(const RhsEval &rhs, Index outer, Sparse = Sparse()) - { - typename RhsEval::InnerIterator it(rhs, outer); - if (it && it.index()==0 && it.value()!=Scalar(0)) - return it.value(); - m_empty = true; - return Scalar(0); - } - - Index m_outer; - bool m_empty; - Scalar m_factor; - }; - - sparse_dense_outer_product_evaluator(const Lhs1 &lhs, const ActualRhs &rhs) - : m_lhs(lhs), m_lhsXprImpl(m_lhs), m_rhsXprImpl(rhs) - { - EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); - } - - // transpose case - sparse_dense_outer_product_evaluator(const ActualRhs &rhs, const Lhs1 &lhs) - : m_lhs(lhs), m_lhsXprImpl(m_lhs), m_rhsXprImpl(rhs) - { - EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); - } - -protected: - const LhsArg m_lhs; - evaluator m_lhsXprImpl; - evaluator m_rhsXprImpl; -}; - -// sparse * dense outer product -template -struct product_evaluator, OuterProduct, SparseShape, DenseShape> - : sparse_dense_outer_product_evaluator -{ - typedef sparse_dense_outer_product_evaluator Base; - - typedef Product XprType; - typedef typename XprType::PlainObject PlainObject; - - explicit product_evaluator(const XprType& xpr) - : Base(xpr.lhs(), xpr.rhs()) - {} - -}; - -template -struct product_evaluator, OuterProduct, DenseShape, SparseShape> - : sparse_dense_outer_product_evaluator -{ - typedef sparse_dense_outer_product_evaluator Base; - - typedef Product XprType; - typedef typename XprType::PlainObject PlainObject; - - explicit product_evaluator(const XprType& xpr) - : Base(xpr.lhs(), xpr.rhs()) - {} - -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_SPARSEDENSEPRODUCT_H diff --git a/src/math_meigen/Eigen/src/SparseCore/SparseDiagonalProduct.h b/src/math_meigen/Eigen/src/SparseCore/SparseDiagonalProduct.h deleted file mode 100755 index 941c03be3..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +++ /dev/null @@ -1,138 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009-2015 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSE_DIAGONAL_PRODUCT_H -#define EIGEN_SPARSE_DIAGONAL_PRODUCT_H - -namespace Eigen { - -// The product of a diagonal matrix with a sparse matrix can be easily -// implemented using expression template. -// We have two consider very different cases: -// 1 - diag * row-major sparse -// => each inner vector <=> scalar * sparse vector product -// => so we can reuse CwiseUnaryOp::InnerIterator -// 2 - diag * col-major sparse -// => each inner vector <=> densevector * sparse vector cwise product -// => again, we can reuse specialization of CwiseBinaryOp::InnerIterator -// for that particular case -// The two other cases are symmetric. - -namespace internal { - -enum { - SDP_AsScalarProduct, - SDP_AsCwiseProduct -}; - -template -struct sparse_diagonal_product_evaluator; - -template -struct product_evaluator, ProductTag, DiagonalShape, SparseShape> - : public sparse_diagonal_product_evaluator -{ - typedef Product XprType; - enum { CoeffReadCost = HugeCost, Flags = Rhs::Flags&RowMajorBit, Alignment = 0 }; // FIXME CoeffReadCost & Flags - - typedef sparse_diagonal_product_evaluator Base; - explicit product_evaluator(const XprType& xpr) : Base(xpr.rhs(), xpr.lhs().diagonal()) {} -}; - -template -struct product_evaluator, ProductTag, SparseShape, DiagonalShape> - : public sparse_diagonal_product_evaluator, Lhs::Flags&RowMajorBit?SDP_AsCwiseProduct:SDP_AsScalarProduct> -{ - typedef Product XprType; - enum { CoeffReadCost = HugeCost, Flags = Lhs::Flags&RowMajorBit, Alignment = 0 }; // FIXME CoeffReadCost & Flags - - typedef sparse_diagonal_product_evaluator, Lhs::Flags&RowMajorBit?SDP_AsCwiseProduct:SDP_AsScalarProduct> Base; - explicit product_evaluator(const XprType& xpr) : Base(xpr.lhs(), xpr.rhs().diagonal().transpose()) {} -}; - -template -struct sparse_diagonal_product_evaluator -{ -protected: - typedef typename evaluator::InnerIterator SparseXprInnerIterator; - typedef typename SparseXprType::Scalar Scalar; - -public: - class InnerIterator : public SparseXprInnerIterator - { - public: - InnerIterator(const sparse_diagonal_product_evaluator &xprEval, Index outer) - : SparseXprInnerIterator(xprEval.m_sparseXprImpl, outer), - m_coeff(xprEval.m_diagCoeffImpl.coeff(outer)) - {} - - EIGEN_STRONG_INLINE Scalar value() const { return m_coeff * SparseXprInnerIterator::value(); } - protected: - typename DiagonalCoeffType::Scalar m_coeff; - }; - - sparse_diagonal_product_evaluator(const SparseXprType &sparseXpr, const DiagonalCoeffType &diagCoeff) - : m_sparseXprImpl(sparseXpr), m_diagCoeffImpl(diagCoeff) - {} - - Index nonZerosEstimate() const { return m_sparseXprImpl.nonZerosEstimate(); } - -protected: - evaluator m_sparseXprImpl; - evaluator m_diagCoeffImpl; -}; - - -template -struct sparse_diagonal_product_evaluator -{ - typedef typename SparseXprType::Scalar Scalar; - typedef typename SparseXprType::StorageIndex StorageIndex; - - typedef typename nested_eval::type DiagCoeffNested; - - class InnerIterator - { - typedef typename evaluator::InnerIterator SparseXprIter; - public: - InnerIterator(const sparse_diagonal_product_evaluator &xprEval, Index outer) - : m_sparseIter(xprEval.m_sparseXprEval, outer), m_diagCoeffNested(xprEval.m_diagCoeffNested) - {} - - inline Scalar value() const { return m_sparseIter.value() * m_diagCoeffNested.coeff(index()); } - inline StorageIndex index() const { return m_sparseIter.index(); } - inline Index outer() const { return m_sparseIter.outer(); } - inline Index col() const { return SparseXprType::IsRowMajor ? m_sparseIter.index() : m_sparseIter.outer(); } - inline Index row() const { return SparseXprType::IsRowMajor ? m_sparseIter.outer() : m_sparseIter.index(); } - - EIGEN_STRONG_INLINE InnerIterator& operator++() { ++m_sparseIter; return *this; } - inline operator bool() const { return m_sparseIter; } - - protected: - SparseXprIter m_sparseIter; - DiagCoeffNested m_diagCoeffNested; - }; - - sparse_diagonal_product_evaluator(const SparseXprType &sparseXpr, const DiagCoeffType &diagCoeff) - : m_sparseXprEval(sparseXpr), m_diagCoeffNested(diagCoeff) - {} - - Index nonZerosEstimate() const { return m_sparseXprEval.nonZerosEstimate(); } - -protected: - evaluator m_sparseXprEval; - DiagCoeffNested m_diagCoeffNested; -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_SPARSE_DIAGONAL_PRODUCT_H diff --git a/src/math_meigen/Eigen/src/SparseCore/SparseDot.h b/src/math_meigen/Eigen/src/SparseCore/SparseDot.h deleted file mode 100755 index 38bc4aa9e..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/SparseDot.h +++ /dev/null @@ -1,98 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSE_DOT_H -#define EIGEN_SPARSE_DOT_H - -namespace Eigen { - -template -template -typename internal::traits::Scalar -SparseMatrixBase::dot(const MatrixBase& other) const -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) - EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived) - EIGEN_STATIC_ASSERT((internal::is_same::value), - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - - eigen_assert(size() == other.size()); - eigen_assert(other.size()>0 && "you are using a non initialized vector"); - - internal::evaluator thisEval(derived()); - typename internal::evaluator::InnerIterator i(thisEval, 0); - Scalar res(0); - while (i) - { - res += numext::conj(i.value()) * other.coeff(i.index()); - ++i; - } - return res; -} - -template -template -typename internal::traits::Scalar -SparseMatrixBase::dot(const SparseMatrixBase& other) const -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) - EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived) - EIGEN_STATIC_ASSERT((internal::is_same::value), - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - - eigen_assert(size() == other.size()); - - internal::evaluator thisEval(derived()); - typename internal::evaluator::InnerIterator i(thisEval, 0); - - internal::evaluator otherEval(other.derived()); - typename internal::evaluator::InnerIterator j(otherEval, 0); - - Scalar res(0); - while (i && j) - { - if (i.index()==j.index()) - { - res += numext::conj(i.value()) * j.value(); - ++i; ++j; - } - else if (i.index() -inline typename NumTraits::Scalar>::Real -SparseMatrixBase::squaredNorm() const -{ - return numext::real((*this).cwiseAbs2().sum()); -} - -template -inline typename NumTraits::Scalar>::Real -SparseMatrixBase::norm() const -{ - using std::sqrt; - return sqrt(squaredNorm()); -} - -template -inline typename NumTraits::Scalar>::Real -SparseMatrixBase::blueNorm() const -{ - return internal::blueNorm_impl(*this); -} -} // end namespace Eigen - -#endif // EIGEN_SPARSE_DOT_H diff --git a/src/math_meigen/Eigen/src/SparseCore/SparseFuzzy.h b/src/math_meigen/Eigen/src/SparseCore/SparseFuzzy.h deleted file mode 100755 index 7d47eb94d..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/SparseFuzzy.h +++ /dev/null @@ -1,29 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSE_FUZZY_H -#define EIGEN_SPARSE_FUZZY_H - -namespace Eigen { - -template -template -bool SparseMatrixBase::isApprox(const SparseMatrixBase& other, const RealScalar &prec) const -{ - const typename internal::nested_eval::type actualA(derived()); - typename internal::conditional::type, - const PlainObject>::type actualB(other.derived()); - - return (actualA - actualB).squaredNorm() <= prec * prec * numext::mini(actualA.squaredNorm(), actualB.squaredNorm()); -} - -} // end namespace Eigen - -#endif // EIGEN_SPARSE_FUZZY_H diff --git a/src/math_meigen/Eigen/src/SparseCore/SparseMap.h b/src/math_meigen/Eigen/src/SparseCore/SparseMap.h deleted file mode 100755 index f99be3379..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/SparseMap.h +++ /dev/null @@ -1,305 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2015 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSE_MAP_H -#define EIGEN_SPARSE_MAP_H - -namespace Eigen { - -namespace internal { - -template -struct traits, Options, StrideType> > - : public traits > -{ - typedef SparseMatrix PlainObjectType; - typedef traits TraitsBase; - enum { - Flags = TraitsBase::Flags & (~NestByRefBit) - }; -}; - -template -struct traits, Options, StrideType> > - : public traits > -{ - typedef SparseMatrix PlainObjectType; - typedef traits TraitsBase; - enum { - Flags = TraitsBase::Flags & (~ (NestByRefBit | LvalueBit)) - }; -}; - -} // end namespace internal - -template::has_write_access ? WriteAccessors : ReadOnlyAccessors -> class SparseMapBase; - -/** \ingroup SparseCore_Module - * class SparseMapBase - * \brief Common base class for Map and Ref instance of sparse matrix and vector. - */ -template -class SparseMapBase - : public SparseCompressedBase -{ - public: - typedef SparseCompressedBase Base; - typedef typename Base::Scalar Scalar; - typedef typename Base::StorageIndex StorageIndex; - enum { IsRowMajor = Base::IsRowMajor }; - using Base::operator=; - protected: - - typedef typename internal::conditional< - bool(internal::is_lvalue::value), - Scalar *, const Scalar *>::type ScalarPointer; - typedef typename internal::conditional< - bool(internal::is_lvalue::value), - StorageIndex *, const StorageIndex *>::type IndexPointer; - - Index m_outerSize; - Index m_innerSize; - Array m_zero_nnz; - IndexPointer m_outerIndex; - IndexPointer m_innerIndices; - ScalarPointer m_values; - IndexPointer m_innerNonZeros; - - public: - - /** \copydoc SparseMatrixBase::rows() */ - inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; } - /** \copydoc SparseMatrixBase::cols() */ - inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; } - /** \copydoc SparseMatrixBase::innerSize() */ - inline Index innerSize() const { return m_innerSize; } - /** \copydoc SparseMatrixBase::outerSize() */ - inline Index outerSize() const { return m_outerSize; } - /** \copydoc SparseCompressedBase::nonZeros */ - inline Index nonZeros() const { return m_zero_nnz[1]; } - - /** \copydoc SparseCompressedBase::isCompressed */ - bool isCompressed() const { return m_innerNonZeros==0; } - - //---------------------------------------- - // direct access interface - /** \copydoc SparseMatrix::valuePtr */ - inline const Scalar* valuePtr() const { return m_values; } - /** \copydoc SparseMatrix::innerIndexPtr */ - inline const StorageIndex* innerIndexPtr() const { return m_innerIndices; } - /** \copydoc SparseMatrix::outerIndexPtr */ - inline const StorageIndex* outerIndexPtr() const { return m_outerIndex; } - /** \copydoc SparseMatrix::innerNonZeroPtr */ - inline const StorageIndex* innerNonZeroPtr() const { return m_innerNonZeros; } - //---------------------------------------- - - /** \copydoc SparseMatrix::coeff */ - inline Scalar coeff(Index row, Index col) const - { - const Index outer = IsRowMajor ? row : col; - const Index inner = IsRowMajor ? col : row; - - Index start = m_outerIndex[outer]; - Index end = isCompressed() ? m_outerIndex[outer+1] : start + m_innerNonZeros[outer]; - if (start==end) - return Scalar(0); - else if (end>0 && inner==m_innerIndices[end-1]) - return m_values[end-1]; - // ^^ optimization: let's first check if it is the last coefficient - // (very common in high level algorithms) - - const StorageIndex* r = std::lower_bound(&m_innerIndices[start],&m_innerIndices[end-1],inner); - const Index id = r-&m_innerIndices[0]; - return ((*r==inner) && (id(nnz)), m_outerIndex(outerIndexPtr), - m_innerIndices(innerIndexPtr), m_values(valuePtr), m_innerNonZeros(innerNonZerosPtr) - {} - - // for vectors - inline SparseMapBase(Index size, Index nnz, IndexPointer innerIndexPtr, ScalarPointer valuePtr) - : m_outerSize(1), m_innerSize(size), m_zero_nnz(0,internal::convert_index(nnz)), m_outerIndex(m_zero_nnz.data()), - m_innerIndices(innerIndexPtr), m_values(valuePtr), m_innerNonZeros(0) - {} - - /** Empty destructor */ - inline ~SparseMapBase() {} - - protected: - inline SparseMapBase() {} -}; - -/** \ingroup SparseCore_Module - * class SparseMapBase - * \brief Common base class for writable Map and Ref instance of sparse matrix and vector. - */ -template -class SparseMapBase - : public SparseMapBase -{ - typedef MapBase ReadOnlyMapBase; - - public: - typedef SparseMapBase Base; - typedef typename Base::Scalar Scalar; - typedef typename Base::StorageIndex StorageIndex; - enum { IsRowMajor = Base::IsRowMajor }; - - using Base::operator=; - - public: - - //---------------------------------------- - // direct access interface - using Base::valuePtr; - using Base::innerIndexPtr; - using Base::outerIndexPtr; - using Base::innerNonZeroPtr; - /** \copydoc SparseMatrix::valuePtr */ - inline Scalar* valuePtr() { return Base::m_values; } - /** \copydoc SparseMatrix::innerIndexPtr */ - inline StorageIndex* innerIndexPtr() { return Base::m_innerIndices; } - /** \copydoc SparseMatrix::outerIndexPtr */ - inline StorageIndex* outerIndexPtr() { return Base::m_outerIndex; } - /** \copydoc SparseMatrix::innerNonZeroPtr */ - inline StorageIndex* innerNonZeroPtr() { return Base::m_innerNonZeros; } - //---------------------------------------- - - /** \copydoc SparseMatrix::coeffRef */ - inline Scalar& coeffRef(Index row, Index col) - { - const Index outer = IsRowMajor ? row : col; - const Index inner = IsRowMajor ? col : row; - - Index start = Base::m_outerIndex[outer]; - Index end = Base::isCompressed() ? Base::m_outerIndex[outer+1] : start + Base::m_innerNonZeros[outer]; - eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix"); - eigen_assert(end>start && "coeffRef cannot be called on a zero coefficient"); - StorageIndex* r = std::lower_bound(&Base::m_innerIndices[start],&Base::m_innerIndices[end],inner); - const Index id = r - &Base::m_innerIndices[0]; - eigen_assert((*r==inner) && (id(Base::m_values)[id]; - } - - inline SparseMapBase(Index rows, Index cols, Index nnz, StorageIndex* outerIndexPtr, StorageIndex* innerIndexPtr, - Scalar* valuePtr, StorageIndex* innerNonZerosPtr = 0) - : Base(rows, cols, nnz, outerIndexPtr, innerIndexPtr, valuePtr, innerNonZerosPtr) - {} - - // for vectors - inline SparseMapBase(Index size, Index nnz, StorageIndex* innerIndexPtr, Scalar* valuePtr) - : Base(size, nnz, innerIndexPtr, valuePtr) - {} - - /** Empty destructor */ - inline ~SparseMapBase() {} - - protected: - inline SparseMapBase() {} -}; - -/** \ingroup SparseCore_Module - * - * \brief Specialization of class Map for SparseMatrix-like storage. - * - * \tparam SparseMatrixType the equivalent sparse matrix type of the referenced data, it must be a template instance of class SparseMatrix. - * - * \sa class Map, class SparseMatrix, class Ref - */ -#ifndef EIGEN_PARSED_BY_DOXYGEN -template -class Map, Options, StrideType> - : public SparseMapBase, Options, StrideType> > -#else -template -class Map - : public SparseMapBase -#endif -{ - public: - typedef SparseMapBase Base; - EIGEN_SPARSE_PUBLIC_INTERFACE(Map) - enum { IsRowMajor = Base::IsRowMajor }; - - public: - - /** Constructs a read-write Map to a sparse matrix of size \a rows x \a cols, containing \a nnz non-zero coefficients, - * stored as a sparse format as defined by the pointers \a outerIndexPtr, \a innerIndexPtr, and \a valuePtr. - * If the optional parameter \a innerNonZerosPtr is the null pointer, then a standard compressed format is assumed. - * - * This constructor is available only if \c SparseMatrixType is non-const. - * - * More details on the expected storage schemes are given in the \ref TutorialSparse "manual pages". - */ - inline Map(Index rows, Index cols, Index nnz, StorageIndex* outerIndexPtr, - StorageIndex* innerIndexPtr, Scalar* valuePtr, StorageIndex* innerNonZerosPtr = 0) - : Base(rows, cols, nnz, outerIndexPtr, innerIndexPtr, valuePtr, innerNonZerosPtr) - {} -#ifndef EIGEN_PARSED_BY_DOXYGEN - /** Empty destructor */ - inline ~Map() {} -}; - -template -class Map, Options, StrideType> - : public SparseMapBase, Options, StrideType> > -{ - public: - typedef SparseMapBase Base; - EIGEN_SPARSE_PUBLIC_INTERFACE(Map) - enum { IsRowMajor = Base::IsRowMajor }; - - public: -#endif - /** This is the const version of the above constructor. - * - * This constructor is available only if \c SparseMatrixType is const, e.g.: - * \code Map > \endcode - */ - inline Map(Index rows, Index cols, Index nnz, const StorageIndex* outerIndexPtr, - const StorageIndex* innerIndexPtr, const Scalar* valuePtr, const StorageIndex* innerNonZerosPtr = 0) - : Base(rows, cols, nnz, outerIndexPtr, innerIndexPtr, valuePtr, innerNonZerosPtr) - {} - - /** Empty destructor */ - inline ~Map() {} -}; - -namespace internal { - -template -struct evaluator, Options, StrideType> > - : evaluator, Options, StrideType> > > -{ - typedef evaluator, Options, StrideType> > > Base; - typedef Map, Options, StrideType> XprType; - evaluator() : Base() {} - explicit evaluator(const XprType &mat) : Base(mat) {} -}; - -template -struct evaluator, Options, StrideType> > - : evaluator, Options, StrideType> > > -{ - typedef evaluator, Options, StrideType> > > Base; - typedef Map, Options, StrideType> XprType; - evaluator() : Base() {} - explicit evaluator(const XprType &mat) : Base(mat) {} -}; - -} - -} // end namespace Eigen - -#endif // EIGEN_SPARSE_MAP_H diff --git a/src/math_meigen/Eigen/src/SparseCore/SparseMatrix.h b/src/math_meigen/Eigen/src/SparseCore/SparseMatrix.h deleted file mode 100755 index 0a2490bcc..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/SparseMatrix.h +++ /dev/null @@ -1,1403 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSEMATRIX_H -#define EIGEN_SPARSEMATRIX_H - -namespace Eigen { - -/** \ingroup SparseCore_Module - * - * \class SparseMatrix - * - * \brief A versatible sparse matrix representation - * - * This class implements a more versatile variants of the common \em compressed row/column storage format. - * Each colmun's (resp. row) non zeros are stored as a pair of value with associated row (resp. colmiun) index. - * All the non zeros are stored in a single large buffer. Unlike the \em compressed format, there might be extra - * space inbetween the nonzeros of two successive colmuns (resp. rows) such that insertion of new non-zero - * can be done with limited memory reallocation and copies. - * - * A call to the function makeCompressed() turns the matrix into the standard \em compressed format - * compatible with many library. - * - * More details on this storage sceheme are given in the \ref TutorialSparse "manual pages". - * - * \tparam _Scalar the scalar type, i.e. the type of the coefficients - * \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility - * is ColMajor or RowMajor. The default is 0 which means column-major. - * \tparam _StorageIndex the type of the indices. It has to be a \b signed type (e.g., short, int, std::ptrdiff_t). Default is \c int. - * - * \warning In %Eigen 3.2, the undocumented type \c SparseMatrix::Index was improperly defined as the storage index type (e.g., int), - * whereas it is now (starting from %Eigen 3.3) deprecated and always defined as Eigen::Index. - * Codes making use of \c SparseMatrix::Index, might thus likely have to be changed to use \c SparseMatrix::StorageIndex instead. - * - * This class can be extended with the help of the plugin mechanism described on the page - * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN. - */ - -namespace internal { -template -struct traits > -{ - typedef _Scalar Scalar; - typedef _StorageIndex StorageIndex; - typedef Sparse StorageKind; - typedef MatrixXpr XprKind; - enum { - RowsAtCompileTime = Dynamic, - ColsAtCompileTime = Dynamic, - MaxRowsAtCompileTime = Dynamic, - MaxColsAtCompileTime = Dynamic, - Flags = _Options | NestByRefBit | LvalueBit | CompressedAccessBit, - SupportedAccessPatterns = InnerRandomAccessPattern - }; -}; - -template -struct traits, DiagIndex> > -{ - typedef SparseMatrix<_Scalar, _Options, _StorageIndex> MatrixType; - typedef typename ref_selector::type MatrixTypeNested; - typedef typename remove_reference::type _MatrixTypeNested; - - typedef _Scalar Scalar; - typedef Dense StorageKind; - typedef _StorageIndex StorageIndex; - typedef MatrixXpr XprKind; - - enum { - RowsAtCompileTime = Dynamic, - ColsAtCompileTime = 1, - MaxRowsAtCompileTime = Dynamic, - MaxColsAtCompileTime = 1, - Flags = LvalueBit - }; -}; - -template -struct traits, DiagIndex> > - : public traits, DiagIndex> > -{ - enum { - Flags = 0 - }; -}; - -} // end namespace internal - -template -class SparseMatrix - : public SparseCompressedBase > -{ - typedef SparseCompressedBase Base; - using Base::convert_index; - friend class SparseVector<_Scalar,0,_StorageIndex>; - public: - using Base::isCompressed; - using Base::nonZeros; - EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix) - using Base::operator+=; - using Base::operator-=; - - typedef MappedSparseMatrix Map; - typedef Diagonal DiagonalReturnType; - typedef Diagonal ConstDiagonalReturnType; - typedef typename Base::InnerIterator InnerIterator; - typedef typename Base::ReverseInnerIterator ReverseInnerIterator; - - - using Base::IsRowMajor; - typedef internal::CompressedStorage Storage; - enum { - Options = _Options - }; - - typedef typename Base::IndexVector IndexVector; - typedef typename Base::ScalarVector ScalarVector; - protected: - typedef SparseMatrix TransposedSparseMatrix; - - Index m_outerSize; - Index m_innerSize; - StorageIndex* m_outerIndex; - StorageIndex* m_innerNonZeros; // optional, if null then the data is compressed - Storage m_data; - - public: - - /** \returns the number of rows of the matrix */ - inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; } - /** \returns the number of columns of the matrix */ - inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; } - - /** \returns the number of rows (resp. columns) of the matrix if the storage order column major (resp. row major) */ - inline Index innerSize() const { return m_innerSize; } - /** \returns the number of columns (resp. rows) of the matrix if the storage order column major (resp. row major) */ - inline Index outerSize() const { return m_outerSize; } - - /** \returns a const pointer to the array of values. - * This function is aimed at interoperability with other libraries. - * \sa innerIndexPtr(), outerIndexPtr() */ - inline const Scalar* valuePtr() const { return m_data.valuePtr(); } - /** \returns a non-const pointer to the array of values. - * This function is aimed at interoperability with other libraries. - * \sa innerIndexPtr(), outerIndexPtr() */ - inline Scalar* valuePtr() { return m_data.valuePtr(); } - - /** \returns a const pointer to the array of inner indices. - * This function is aimed at interoperability with other libraries. - * \sa valuePtr(), outerIndexPtr() */ - inline const StorageIndex* innerIndexPtr() const { return m_data.indexPtr(); } - /** \returns a non-const pointer to the array of inner indices. - * This function is aimed at interoperability with other libraries. - * \sa valuePtr(), outerIndexPtr() */ - inline StorageIndex* innerIndexPtr() { return m_data.indexPtr(); } - - /** \returns a const pointer to the array of the starting positions of the inner vectors. - * This function is aimed at interoperability with other libraries. - * \sa valuePtr(), innerIndexPtr() */ - inline const StorageIndex* outerIndexPtr() const { return m_outerIndex; } - /** \returns a non-const pointer to the array of the starting positions of the inner vectors. - * This function is aimed at interoperability with other libraries. - * \sa valuePtr(), innerIndexPtr() */ - inline StorageIndex* outerIndexPtr() { return m_outerIndex; } - - /** \returns a const pointer to the array of the number of non zeros of the inner vectors. - * This function is aimed at interoperability with other libraries. - * \warning it returns the null pointer 0 in compressed mode */ - inline const StorageIndex* innerNonZeroPtr() const { return m_innerNonZeros; } - /** \returns a non-const pointer to the array of the number of non zeros of the inner vectors. - * This function is aimed at interoperability with other libraries. - * \warning it returns the null pointer 0 in compressed mode */ - inline StorageIndex* innerNonZeroPtr() { return m_innerNonZeros; } - - /** \internal */ - inline Storage& data() { return m_data; } - /** \internal */ - inline const Storage& data() const { return m_data; } - - /** \returns the value of the matrix at position \a i, \a j - * This function returns Scalar(0) if the element is an explicit \em zero */ - inline Scalar coeff(Index row, Index col) const - { - eigen_assert(row>=0 && row=0 && col=0 && row=0 && col=start && "you probably called coeffRef on a non finalized matrix"); - if(end<=start) - return insert(row,col); - const Index p = m_data.searchLowerIndex(start,end-1,StorageIndex(inner)); - if((pinnerSize() non zeros if reserve(Index) has not been called earlier. - * In this case, the insertion procedure is optimized for a \e sequential insertion mode where elements are assumed to be - * inserted by increasing outer-indices. - * - * If that's not the case, then it is strongly recommended to either use a triplet-list to assemble the matrix, or to first - * call reserve(const SizesType &) to reserve the appropriate number of non-zero elements per inner vector. - * - * Assuming memory has been appropriately reserved, this function performs a sorted insertion in O(1) - * if the elements of each inner vector are inserted in increasing inner index order, and in O(nnz_j) for a random insertion. - * - */ - Scalar& insert(Index row, Index col); - - public: - - /** Removes all non zeros but keep allocated memory - * - * This function does not free the currently allocated memory. To release as much as memory as possible, - * call \code mat.data().squeeze(); \endcode after resizing it. - * - * \sa resize(Index,Index), data() - */ - inline void setZero() - { - m_data.clear(); - memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(StorageIndex)); - if(m_innerNonZeros) - memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(StorageIndex)); - } - - /** Preallocates \a reserveSize non zeros. - * - * Precondition: the matrix must be in compressed mode. */ - inline void reserve(Index reserveSize) - { - eigen_assert(isCompressed() && "This function does not make sense in non compressed mode."); - m_data.reserve(reserveSize); - } - - #ifdef EIGEN_PARSED_BY_DOXYGEN - /** Preallocates \a reserveSize[\c j] non zeros for each column (resp. row) \c j. - * - * This function turns the matrix in non-compressed mode. - * - * The type \c SizesType must expose the following interface: - \code - typedef value_type; - const value_type& operator[](i) const; - \endcode - * for \c i in the [0,this->outerSize()[ range. - * Typical choices include std::vector, Eigen::VectorXi, Eigen::VectorXi::Constant, etc. - */ - template - inline void reserve(const SizesType& reserveSizes); - #else - template - inline void reserve(const SizesType& reserveSizes, const typename SizesType::value_type& enableif = - #if (!EIGEN_COMP_MSVC) || (EIGEN_COMP_MSVC>=1500) // MSVC 2005 fails to compile with this typename - typename - #endif - SizesType::value_type()) - { - EIGEN_UNUSED_VARIABLE(enableif); - reserveInnerVectors(reserveSizes); - } - #endif // EIGEN_PARSED_BY_DOXYGEN - protected: - template - inline void reserveInnerVectors(const SizesType& reserveSizes) - { - if(isCompressed()) - { - Index totalReserveSize = 0; - // turn the matrix into non-compressed mode - m_innerNonZeros = static_cast(std::malloc(m_outerSize * sizeof(StorageIndex))); - if (!m_innerNonZeros) internal::throw_std_bad_alloc(); - - // temporarily use m_innerSizes to hold the new starting points. - StorageIndex* newOuterIndex = m_innerNonZeros; - - StorageIndex count = 0; - for(Index j=0; j=0; --j) - { - StorageIndex innerNNZ = previousOuterIndex - m_outerIndex[j]; - for(Index i=innerNNZ-1; i>=0; --i) - { - m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i); - m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i); - } - previousOuterIndex = m_outerIndex[j]; - m_outerIndex[j] = newOuterIndex[j]; - m_innerNonZeros[j] = innerNNZ; - } - m_outerIndex[m_outerSize] = m_outerIndex[m_outerSize-1] + m_innerNonZeros[m_outerSize-1] + reserveSizes[m_outerSize-1]; - - m_data.resize(m_outerIndex[m_outerSize]); - } - else - { - StorageIndex* newOuterIndex = static_cast(std::malloc((m_outerSize+1)*sizeof(StorageIndex))); - if (!newOuterIndex) internal::throw_std_bad_alloc(); - - StorageIndex count = 0; - for(Index j=0; j(reserveSizes[j], alreadyReserved); - count += toReserve + m_innerNonZeros[j]; - } - newOuterIndex[m_outerSize] = count; - - m_data.resize(count); - for(Index j=m_outerSize-1; j>=0; --j) - { - Index offset = newOuterIndex[j] - m_outerIndex[j]; - if(offset>0) - { - StorageIndex innerNNZ = m_innerNonZeros[j]; - for(Index i=innerNNZ-1; i>=0; --i) - { - m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i); - m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i); - } - } - } - - std::swap(m_outerIndex, newOuterIndex); - std::free(newOuterIndex); - } - - } - public: - - //--- low level purely coherent filling --- - - /** \internal - * \returns a reference to the non zero coefficient at position \a row, \a col assuming that: - * - the nonzero does not already exist - * - the new coefficient is the last one according to the storage order - * - * Before filling a given inner vector you must call the statVec(Index) function. - * - * After an insertion session, you should call the finalize() function. - * - * \sa insert, insertBackByOuterInner, startVec */ - inline Scalar& insertBack(Index row, Index col) - { - return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row); - } - - /** \internal - * \sa insertBack, startVec */ - inline Scalar& insertBackByOuterInner(Index outer, Index inner) - { - eigen_assert(Index(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)"); - eigen_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)(m_data.size()); - Index i = m_outerSize; - // find the last filled column - while (i>=0 && m_outerIndex[i]==0) - --i; - ++i; - while (i<=m_outerSize) - { - m_outerIndex[i] = size; - ++i; - } - } - } - - //--- - - template - void setFromTriplets(const InputIterators& begin, const InputIterators& end); - - template - void setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func); - - void sumupDuplicates() { collapseDuplicates(internal::scalar_sum_op()); } - - template - void collapseDuplicates(DupFunctor dup_func = DupFunctor()); - - //--- - - /** \internal - * same as insert(Index,Index) except that the indices are given relative to the storage order */ - Scalar& insertByOuterInner(Index j, Index i) - { - return insert(IsRowMajor ? j : i, IsRowMajor ? i : j); - } - - /** Turns the matrix into the \em compressed format. - */ - void makeCompressed() - { - if(isCompressed()) - return; - - eigen_internal_assert(m_outerIndex!=0 && m_outerSize>0); - - Index oldStart = m_outerIndex[1]; - m_outerIndex[1] = m_innerNonZeros[0]; - for(Index j=1; j0) - { - for(Index k=0; k(std::malloc(m_outerSize * sizeof(StorageIndex))); - for (Index i = 0; i < m_outerSize; i++) - { - m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i]; - } - } - - /** Suppresses all nonzeros which are \b much \b smaller \b than \a reference under the tolerence \a epsilon */ - void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits::dummy_precision()) - { - prune(default_prunning_func(reference,epsilon)); - } - - /** Turns the matrix into compressed format, and suppresses all nonzeros which do not satisfy the predicate \a keep. - * The functor type \a KeepFunc must implement the following function: - * \code - * bool operator() (const Index& row, const Index& col, const Scalar& value) const; - * \endcode - * \sa prune(Scalar,RealScalar) - */ - template - void prune(const KeepFunc& keep = KeepFunc()) - { - // TODO optimize the uncompressed mode to avoid moving and allocating the data twice - makeCompressed(); - - StorageIndex k = 0; - for(Index j=0; jrows() == rows && this->cols() == cols) return; - - // If one dimension is null, then there is nothing to be preserved - if(rows==0 || cols==0) return resize(rows,cols); - - Index innerChange = IsRowMajor ? cols - this->cols() : rows - this->rows(); - Index outerChange = IsRowMajor ? rows - this->rows() : cols - this->cols(); - StorageIndex newInnerSize = convert_index(IsRowMajor ? cols : rows); - - // Deals with inner non zeros - if (m_innerNonZeros) - { - // Resize m_innerNonZeros - StorageIndex *newInnerNonZeros = static_cast(std::realloc(m_innerNonZeros, (m_outerSize + outerChange) * sizeof(StorageIndex))); - if (!newInnerNonZeros) internal::throw_std_bad_alloc(); - m_innerNonZeros = newInnerNonZeros; - - for(Index i=m_outerSize; i(std::malloc((m_outerSize+outerChange+1) * sizeof(StorageIndex))); - if (!m_innerNonZeros) internal::throw_std_bad_alloc(); - for(Index i = 0; i < m_outerSize; i++) - m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i]; - } - - // Change the m_innerNonZeros in case of a decrease of inner size - if (m_innerNonZeros && innerChange < 0) - { - for(Index i = 0; i < m_outerSize + (std::min)(outerChange, Index(0)); i++) - { - StorageIndex &n = m_innerNonZeros[i]; - StorageIndex start = m_outerIndex[i]; - while (n > 0 && m_data.index(start+n-1) >= newInnerSize) --n; - } - } - - m_innerSize = newInnerSize; - - // Re-allocate outer index structure if necessary - if (outerChange == 0) - return; - - StorageIndex *newOuterIndex = static_cast(std::realloc(m_outerIndex, (m_outerSize + outerChange + 1) * sizeof(StorageIndex))); - if (!newOuterIndex) internal::throw_std_bad_alloc(); - m_outerIndex = newOuterIndex; - if (outerChange > 0) - { - StorageIndex last = m_outerSize == 0 ? 0 : m_outerIndex[m_outerSize]; - for(Index i=m_outerSize; i(std::malloc((outerSize + 1) * sizeof(StorageIndex))); - if (!m_outerIndex) internal::throw_std_bad_alloc(); - - m_outerSize = outerSize; - } - if(m_innerNonZeros) - { - std::free(m_innerNonZeros); - m_innerNonZeros = 0; - } - memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(StorageIndex)); - } - - /** \internal - * Resize the nonzero vector to \a size */ - void resizeNonZeros(Index size) - { - m_data.resize(size); - } - - /** \returns a const expression of the diagonal coefficients. */ - const ConstDiagonalReturnType diagonal() const { return ConstDiagonalReturnType(*this); } - - /** \returns a read-write expression of the diagonal coefficients. - * \warning If the diagonal entries are written, then all diagonal - * entries \b must already exist, otherwise an assertion will be raised. - */ - DiagonalReturnType diagonal() { return DiagonalReturnType(*this); } - - /** Default constructor yielding an empty \c 0 \c x \c 0 matrix */ - inline SparseMatrix() - : m_outerSize(-1), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) - { - check_template_parameters(); - resize(0, 0); - } - - /** Constructs a \a rows \c x \a cols empty matrix */ - inline SparseMatrix(Index rows, Index cols) - : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) - { - check_template_parameters(); - resize(rows, cols); - } - - /** Constructs a sparse matrix from the sparse expression \a other */ - template - inline SparseMatrix(const SparseMatrixBase& other) - : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) - { - EIGEN_STATIC_ASSERT((internal::is_same::value), - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - check_template_parameters(); - const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator::Flags & RowMajorBit); - if (needToTranspose) - *this = other.derived(); - else - { - #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN - EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN - #endif - internal::call_assignment_no_alias(*this, other.derived()); - } - } - - /** Constructs a sparse matrix from the sparse selfadjoint view \a other */ - template - inline SparseMatrix(const SparseSelfAdjointView& other) - : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) - { - check_template_parameters(); - Base::operator=(other); - } - - /** Copy constructor (it performs a deep copy) */ - inline SparseMatrix(const SparseMatrix& other) - : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) - { - check_template_parameters(); - *this = other.derived(); - } - - /** \brief Copy constructor with in-place evaluation */ - template - SparseMatrix(const ReturnByValue& other) - : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) - { - check_template_parameters(); - initAssignment(other); - other.evalTo(*this); - } - - /** \brief Copy constructor with in-place evaluation */ - template - explicit SparseMatrix(const DiagonalBase& other) - : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) - { - check_template_parameters(); - *this = other.derived(); - } - - /** Swaps the content of two sparse matrices of the same type. - * This is a fast operation that simply swaps the underlying pointers and parameters. */ - inline void swap(SparseMatrix& other) - { - //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n"); - std::swap(m_outerIndex, other.m_outerIndex); - std::swap(m_innerSize, other.m_innerSize); - std::swap(m_outerSize, other.m_outerSize); - std::swap(m_innerNonZeros, other.m_innerNonZeros); - m_data.swap(other.m_data); - } - - /** Sets *this to the identity matrix. - * This function also turns the matrix into compressed mode, and drop any reserved memory. */ - inline void setIdentity() - { - eigen_assert(rows() == cols() && "ONLY FOR SQUARED MATRICES"); - this->m_data.resize(rows()); - Eigen::Map(this->m_data.indexPtr(), rows()).setLinSpaced(0, StorageIndex(rows()-1)); - Eigen::Map(this->m_data.valuePtr(), rows()).setOnes(); - Eigen::Map(this->m_outerIndex, rows()+1).setLinSpaced(0, StorageIndex(rows())); - std::free(m_innerNonZeros); - m_innerNonZeros = 0; - } - inline SparseMatrix& operator=(const SparseMatrix& other) - { - if (other.isRValue()) - { - swap(other.const_cast_derived()); - } - else if(this!=&other) - { - #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN - EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN - #endif - initAssignment(other); - if(other.isCompressed()) - { - internal::smart_copy(other.m_outerIndex, other.m_outerIndex + m_outerSize + 1, m_outerIndex); - m_data = other.m_data; - } - else - { - Base::operator=(other); - } - } - return *this; - } - -#ifndef EIGEN_PARSED_BY_DOXYGEN - template - inline SparseMatrix& operator=(const EigenBase& other) - { return Base::operator=(other.derived()); } -#endif // EIGEN_PARSED_BY_DOXYGEN - - template - EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase& other); - - friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m) - { - EIGEN_DBG_SPARSE( - s << "Nonzero entries:\n"; - if(m.isCompressed()) - { - for (Index i=0; i&>(m); - return s; - } - - /** Destructor */ - inline ~SparseMatrix() - { - std::free(m_outerIndex); - std::free(m_innerNonZeros); - } - - /** Overloaded for performance */ - Scalar sum() const; - -# ifdef EIGEN_SPARSEMATRIX_PLUGIN -# include EIGEN_SPARSEMATRIX_PLUGIN -# endif - -protected: - - template - void initAssignment(const Other& other) - { - resize(other.rows(), other.cols()); - if(m_innerNonZeros) - { - std::free(m_innerNonZeros); - m_innerNonZeros = 0; - } - } - - /** \internal - * \sa insert(Index,Index) */ - EIGEN_DONT_INLINE Scalar& insertCompressed(Index row, Index col); - - /** \internal - * A vector object that is equal to 0 everywhere but v at the position i */ - class SingletonVector - { - StorageIndex m_index; - StorageIndex m_value; - public: - typedef StorageIndex value_type; - SingletonVector(Index i, Index v) - : m_index(convert_index(i)), m_value(convert_index(v)) - {} - - StorageIndex operator[](Index i) const { return i==m_index ? m_value : 0; } - }; - - /** \internal - * \sa insert(Index,Index) */ - EIGEN_DONT_INLINE Scalar& insertUncompressed(Index row, Index col); - -public: - /** \internal - * \sa insert(Index,Index) */ - EIGEN_STRONG_INLINE Scalar& insertBackUncompressed(Index row, Index col) - { - const Index outer = IsRowMajor ? row : col; - const Index inner = IsRowMajor ? col : row; - - eigen_assert(!isCompressed()); - eigen_assert(m_innerNonZeros[outer]<=(m_outerIndex[outer+1] - m_outerIndex[outer])); - - Index p = m_outerIndex[outer] + m_innerNonZeros[outer]++; - m_data.index(p) = convert_index(inner); - return (m_data.value(p) = Scalar(0)); - } - -private: - static void check_template_parameters() - { - EIGEN_STATIC_ASSERT(NumTraits::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE); - EIGEN_STATIC_ASSERT((Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS); - } - - struct default_prunning_func { - default_prunning_func(const Scalar& ref, const RealScalar& eps) : reference(ref), epsilon(eps) {} - inline bool operator() (const Index&, const Index&, const Scalar& value) const - { - return !internal::isMuchSmallerThan(value, reference, epsilon); - } - Scalar reference; - RealScalar epsilon; - }; -}; - -namespace internal { - -template -void set_from_triplets(const InputIterator& begin, const InputIterator& end, SparseMatrixType& mat, DupFunctor dup_func) -{ - enum { IsRowMajor = SparseMatrixType::IsRowMajor }; - typedef typename SparseMatrixType::Scalar Scalar; - typedef typename SparseMatrixType::StorageIndex StorageIndex; - SparseMatrix trMat(mat.rows(),mat.cols()); - - if(begin!=end) - { - // pass 1: count the nnz per inner-vector - typename SparseMatrixType::IndexVector wi(trMat.outerSize()); - wi.setZero(); - for(InputIterator it(begin); it!=end; ++it) - { - eigen_assert(it->row()>=0 && it->row()col()>=0 && it->col()col() : it->row())++; - } - - // pass 2: insert all the elements into trMat - trMat.reserve(wi); - for(InputIterator it(begin); it!=end; ++it) - trMat.insertBackUncompressed(it->row(),it->col()) = it->value(); - - // pass 3: - trMat.collapseDuplicates(dup_func); - } - - // pass 4: transposed copy -> implicit sorting - mat = trMat; -} - -} - - -/** Fill the matrix \c *this with the list of \em triplets defined by the iterator range \a begin - \a end. - * - * A \em triplet is a tuple (i,j,value) defining a non-zero element. - * The input list of triplets does not have to be sorted, and can contains duplicated elements. - * In any case, the result is a \b sorted and \b compressed sparse matrix where the duplicates have been summed up. - * This is a \em O(n) operation, with \em n the number of triplet elements. - * The initial contents of \c *this is destroyed. - * The matrix \c *this must be properly resized beforehand using the SparseMatrix(Index,Index) constructor, - * or the resize(Index,Index) method. The sizes are not extracted from the triplet list. - * - * The \a InputIterators value_type must provide the following interface: - * \code - * Scalar value() const; // the value - * Scalar row() const; // the row index i - * Scalar col() const; // the column index j - * \endcode - * See for instance the Eigen::Triplet template class. - * - * Here is a typical usage example: - * \code - typedef Triplet T; - std::vector tripletList; - triplets.reserve(estimation_of_entries); - for(...) - { - // ... - tripletList.push_back(T(i,j,v_ij)); - } - SparseMatrixType m(rows,cols); - m.setFromTriplets(tripletList.begin(), tripletList.end()); - // m is ready to go! - * \endcode - * - * \warning The list of triplets is read multiple times (at least twice). Therefore, it is not recommended to define - * an abstract iterator over a complex data-structure that would be expensive to evaluate. The triplets should rather - * be explicitely stored into a std::vector for instance. - */ -template -template -void SparseMatrix::setFromTriplets(const InputIterators& begin, const InputIterators& end) -{ - internal::set_from_triplets >(begin, end, *this, internal::scalar_sum_op()); -} - -/** The same as setFromTriplets but when duplicates are met the functor \a dup_func is applied: - * \code - * value = dup_func(OldValue, NewValue) - * \endcode - * Here is a C++11 example keeping the latest entry only: - * \code - * mat.setFromTriplets(triplets.begin(), triplets.end(), [] (const Scalar&,const Scalar &b) { return b; }); - * \endcode - */ -template -template -void SparseMatrix::setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func) -{ - internal::set_from_triplets, DupFunctor>(begin, end, *this, dup_func); -} - -/** \internal */ -template -template -void SparseMatrix::collapseDuplicates(DupFunctor dup_func) -{ - eigen_assert(!isCompressed()); - // TODO, in practice we should be able to use m_innerNonZeros for that task - IndexVector wi(innerSize()); - wi.fill(-1); - StorageIndex count = 0; - // for each inner-vector, wi[inner_index] will hold the position of first element into the index/value buffers - for(Index j=0; j=start) - { - // we already meet this entry => accumulate it - m_data.value(wi(i)) = dup_func(m_data.value(wi(i)), m_data.value(k)); - } - else - { - m_data.value(count) = m_data.value(k); - m_data.index(count) = m_data.index(k); - wi(i) = count; - ++count; - } - } - m_outerIndex[j] = start; - } - m_outerIndex[m_outerSize] = count; - - // turn the matrix into compressed form - std::free(m_innerNonZeros); - m_innerNonZeros = 0; - m_data.resize(m_outerIndex[m_outerSize]); -} - -template -template -EIGEN_DONT_INLINE SparseMatrix& SparseMatrix::operator=(const SparseMatrixBase& other) -{ - EIGEN_STATIC_ASSERT((internal::is_same::value), - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - - #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN - EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN - #endif - - const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator::Flags & RowMajorBit); - if (needToTranspose) - { - #ifdef EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN - EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN - #endif - // two passes algorithm: - // 1 - compute the number of coeffs per dest inner vector - // 2 - do the actual copy/eval - // Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed - typedef typename internal::nested_eval::type >::type OtherCopy; - typedef typename internal::remove_all::type _OtherCopy; - typedef internal::evaluator<_OtherCopy> OtherCopyEval; - OtherCopy otherCopy(other.derived()); - OtherCopyEval otherCopyEval(otherCopy); - - SparseMatrix dest(other.rows(),other.cols()); - Eigen::Map (dest.m_outerIndex,dest.outerSize()).setZero(); - - // pass 1 - // FIXME the above copy could be merged with that pass - for (Index j=0; jswap(dest); - return *this; - } - else - { - if(other.isRValue()) - { - initAssignment(other.derived()); - } - // there is no special optimization - return Base::operator=(other.derived()); - } -} - -template -typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insert(Index row, Index col) -{ - eigen_assert(row>=0 && row=0 && col(std::malloc(m_outerSize * sizeof(StorageIndex))); - if(!m_innerNonZeros) internal::throw_std_bad_alloc(); - - memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(StorageIndex)); - - // pack all inner-vectors to the end of the pre-allocated space - // and allocate the entire free-space to the first inner-vector - StorageIndex end = convert_index(m_data.allocatedSize()); - for(Index j=1; j<=m_outerSize; ++j) - m_outerIndex[j] = end; - } - else - { - // turn the matrix into non-compressed mode - m_innerNonZeros = static_cast(std::malloc(m_outerSize * sizeof(StorageIndex))); - if(!m_innerNonZeros) internal::throw_std_bad_alloc(); - for(Index j=0; j=0 && m_innerNonZeros[j]==0) - m_outerIndex[j--] = p; - - // push back the new element - ++m_innerNonZeros[outer]; - m_data.append(Scalar(0), inner); - - // check for reallocation - if(data_end != m_data.allocatedSize()) - { - // m_data has been reallocated - // -> move remaining inner-vectors back to the end of the free-space - // so that the entire free-space is allocated to the current inner-vector. - eigen_internal_assert(data_end < m_data.allocatedSize()); - StorageIndex new_end = convert_index(m_data.allocatedSize()); - for(Index k=outer+1; k<=m_outerSize; ++k) - if(m_outerIndex[k]==data_end) - m_outerIndex[k] = new_end; - } - return m_data.value(p); - } - - // Second case: the next inner-vector is packed to the end - // and the current inner-vector end match the used-space. - if(m_outerIndex[outer+1]==data_end && m_outerIndex[outer]+m_innerNonZeros[outer]==m_data.size()) - { - eigen_internal_assert(outer+1==m_outerSize || m_innerNonZeros[outer+1]==0); - - // add space for the new element - ++m_innerNonZeros[outer]; - m_data.resize(m_data.size()+1); - - // check for reallocation - if(data_end != m_data.allocatedSize()) - { - // m_data has been reallocated - // -> move remaining inner-vectors back to the end of the free-space - // so that the entire free-space is allocated to the current inner-vector. - eigen_internal_assert(data_end < m_data.allocatedSize()); - StorageIndex new_end = convert_index(m_data.allocatedSize()); - for(Index k=outer+1; k<=m_outerSize; ++k) - if(m_outerIndex[k]==data_end) - m_outerIndex[k] = new_end; - } - - // and insert it at the right position (sorted insertion) - Index startId = m_outerIndex[outer]; - Index p = m_outerIndex[outer]+m_innerNonZeros[outer]-1; - while ( (p > startId) && (m_data.index(p-1) > inner) ) - { - m_data.index(p) = m_data.index(p-1); - m_data.value(p) = m_data.value(p-1); - --p; - } - - m_data.index(p) = convert_index(inner); - return (m_data.value(p) = 0); - } - - if(m_data.size() != m_data.allocatedSize()) - { - // make sure the matrix is compatible to random un-compressed insertion: - m_data.resize(m_data.allocatedSize()); - this->reserveInnerVectors(Array::Constant(m_outerSize, 2)); - } - - return insertUncompressed(row,col); -} - -template -EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insertUncompressed(Index row, Index col) -{ - eigen_assert(!isCompressed()); - - const Index outer = IsRowMajor ? row : col; - const StorageIndex inner = convert_index(IsRowMajor ? col : row); - - Index room = m_outerIndex[outer+1] - m_outerIndex[outer]; - StorageIndex innerNNZ = m_innerNonZeros[outer]; - if(innerNNZ>=room) - { - // this inner vector is full, we need to reallocate the whole buffer :( - reserve(SingletonVector(outer,std::max(2,innerNNZ))); - } - - Index startId = m_outerIndex[outer]; - Index p = startId + m_innerNonZeros[outer]; - while ( (p > startId) && (m_data.index(p-1) > inner) ) - { - m_data.index(p) = m_data.index(p-1); - m_data.value(p) = m_data.value(p-1); - --p; - } - eigen_assert((p<=startId || m_data.index(p-1)!=inner) && "you cannot insert an element that already exists, you must call coeffRef to this end"); - - m_innerNonZeros[outer]++; - - m_data.index(p) = inner; - return (m_data.value(p) = Scalar(0)); -} - -template -EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insertCompressed(Index row, Index col) -{ - eigen_assert(isCompressed()); - - const Index outer = IsRowMajor ? row : col; - const Index inner = IsRowMajor ? col : row; - - Index previousOuter = outer; - if (m_outerIndex[outer+1]==0) - { - // we start a new inner vector - while (previousOuter>=0 && m_outerIndex[previousOuter]==0) - { - m_outerIndex[previousOuter] = convert_index(m_data.size()); - --previousOuter; - } - m_outerIndex[outer+1] = m_outerIndex[outer]; - } - - // here we have to handle the tricky case where the outerIndex array - // starts with: [ 0 0 0 0 0 1 ...] and we are inserted in, e.g., - // the 2nd inner vector... - bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0)) - && (std::size_t(m_outerIndex[outer+1]) == m_data.size()); - - std::size_t startId = m_outerIndex[outer]; - // FIXME let's make sure sizeof(long int) == sizeof(std::size_t) - std::size_t p = m_outerIndex[outer+1]; - ++m_outerIndex[outer+1]; - - double reallocRatio = 1; - if (m_data.allocatedSize()<=m_data.size()) - { - // if there is no preallocated memory, let's reserve a minimum of 32 elements - if (m_data.size()==0) - { - m_data.reserve(32); - } - else - { - // we need to reallocate the data, to reduce multiple reallocations - // we use a smart resize algorithm based on the current filling ratio - // in addition, we use double to avoid integers overflows - double nnzEstimate = double(m_outerIndex[outer])*double(m_outerSize)/double(outer+1); - reallocRatio = (nnzEstimate-double(m_data.size()))/double(m_data.size()); - // furthermore we bound the realloc ratio to: - // 1) reduce multiple minor realloc when the matrix is almost filled - // 2) avoid to allocate too much memory when the matrix is almost empty - reallocRatio = (std::min)((std::max)(reallocRatio,1.5),8.); - } - } - m_data.resize(m_data.size()+1,reallocRatio); - - if (!isLastVec) - { - if (previousOuter==-1) - { - // oops wrong guess. - // let's correct the outer offsets - for (Index k=0; k<=(outer+1); ++k) - m_outerIndex[k] = 0; - Index k=outer+1; - while(m_outerIndex[k]==0) - m_outerIndex[k++] = 1; - while (k<=m_outerSize && m_outerIndex[k]!=0) - m_outerIndex[k++]++; - p = 0; - --k; - k = m_outerIndex[k]-1; - while (k>0) - { - m_data.index(k) = m_data.index(k-1); - m_data.value(k) = m_data.value(k-1); - k--; - } - } - else - { - // we are not inserting into the last inner vec - // update outer indices: - Index j = outer+2; - while (j<=m_outerSize && m_outerIndex[j]!=0) - m_outerIndex[j++]++; - --j; - // shift data of last vecs: - Index k = m_outerIndex[j]-1; - while (k>=Index(p)) - { - m_data.index(k) = m_data.index(k-1); - m_data.value(k) = m_data.value(k-1); - k--; - } - } - } - - while ( (p > startId) && (m_data.index(p-1) > inner) ) - { - m_data.index(p) = m_data.index(p-1); - m_data.value(p) = m_data.value(p-1); - --p; - } - - m_data.index(p) = inner; - return (m_data.value(p) = Scalar(0)); -} - -namespace internal { - -template -struct evaluator > - : evaluator > > -{ - typedef evaluator > > Base; - typedef SparseMatrix<_Scalar,_Options,_StorageIndex> SparseMatrixType; - evaluator() : Base() {} - explicit evaluator(const SparseMatrixType &mat) : Base(mat) {} -}; - -} - -} // end namespace Eigen - -#endif // EIGEN_SPARSEMATRIX_H diff --git a/src/math_meigen/Eigen/src/SparseCore/SparseMatrixBase.h b/src/math_meigen/Eigen/src/SparseCore/SparseMatrixBase.h deleted file mode 100755 index c6b548f11..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/SparseMatrixBase.h +++ /dev/null @@ -1,405 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSEMATRIXBASE_H -#define EIGEN_SPARSEMATRIXBASE_H - -namespace Eigen { - -/** \ingroup SparseCore_Module - * - * \class SparseMatrixBase - * - * \brief Base class of any sparse matrices or sparse expressions - * - * \tparam Derived is the derived type, e.g. a sparse matrix type, or an expression, etc. - * - * This class can be extended with the help of the plugin mechanism described on the page - * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEMATRIXBASE_PLUGIN. - */ -template class SparseMatrixBase - : public EigenBase -{ - public: - - typedef typename internal::traits::Scalar Scalar; - - /** The numeric type of the expression' coefficients, e.g. float, double, int or std::complex, etc. - * - * It is an alias for the Scalar type */ - typedef Scalar value_type; - - typedef typename internal::packet_traits::type PacketScalar; - typedef typename internal::traits::StorageKind StorageKind; - - /** The integer type used to \b store indices within a SparseMatrix. - * For a \c SparseMatrix it an alias of the third template parameter \c IndexType. */ - typedef typename internal::traits::StorageIndex StorageIndex; - - typedef typename internal::add_const_on_value_type_if_arithmetic< - typename internal::packet_traits::type - >::type PacketReturnType; - - typedef SparseMatrixBase StorageBaseType; - - typedef Matrix IndexVector; - typedef Matrix ScalarVector; - - template - Derived& operator=(const EigenBase &other); - - enum { - - RowsAtCompileTime = internal::traits::RowsAtCompileTime, - /**< The number of rows at compile-time. This is just a copy of the value provided - * by the \a Derived type. If a value is not known at compile-time, - * it is set to the \a Dynamic constant. - * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */ - - ColsAtCompileTime = internal::traits::ColsAtCompileTime, - /**< The number of columns at compile-time. This is just a copy of the value provided - * by the \a Derived type. If a value is not known at compile-time, - * it is set to the \a Dynamic constant. - * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */ - - - SizeAtCompileTime = (internal::size_at_compile_time::RowsAtCompileTime, - internal::traits::ColsAtCompileTime>::ret), - /**< This is equal to the number of coefficients, i.e. the number of - * rows times the number of columns, or to \a Dynamic if this is not - * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */ - - MaxRowsAtCompileTime = RowsAtCompileTime, - MaxColsAtCompileTime = ColsAtCompileTime, - - MaxSizeAtCompileTime = (internal::size_at_compile_time::ret), - - IsVectorAtCompileTime = RowsAtCompileTime == 1 || ColsAtCompileTime == 1, - /**< This is set to true if either the number of rows or the number of - * columns is known at compile-time to be equal to 1. Indeed, in that case, - * we are dealing with a column-vector (if there is only one column) or with - * a row-vector (if there is only one row). */ - - Flags = internal::traits::Flags, - /**< This stores expression \ref flags flags which may or may not be inherited by new expressions - * constructed from this one. See the \ref flags "list of flags". - */ - - IsRowMajor = Flags&RowMajorBit ? 1 : 0, - - InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime) - : int(IsRowMajor) ? int(ColsAtCompileTime) : int(RowsAtCompileTime), - - #ifndef EIGEN_PARSED_BY_DOXYGEN - _HasDirectAccess = (int(Flags)&DirectAccessBit) ? 1 : 0 // workaround sunCC - #endif - }; - - /** \internal the return type of MatrixBase::adjoint() */ - typedef typename internal::conditional::IsComplex, - CwiseUnaryOp, Eigen::Transpose >, - Transpose - >::type AdjointReturnType; - typedef Transpose TransposeReturnType; - typedef typename internal::add_const >::type ConstTransposeReturnType; - - // FIXME storage order do not match evaluator storage order - typedef SparseMatrix PlainObject; - -#ifndef EIGEN_PARSED_BY_DOXYGEN - /** This is the "real scalar" type; if the \a Scalar type is already real numbers - * (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If - * \a Scalar is \a std::complex then RealScalar is \a T. - * - * \sa class NumTraits - */ - typedef typename NumTraits::Real RealScalar; - - /** \internal the return type of coeff() - */ - typedef typename internal::conditional<_HasDirectAccess, const Scalar&, Scalar>::type CoeffReturnType; - - /** \internal Represents a matrix with all coefficients equal to one another*/ - typedef CwiseNullaryOp,Matrix > ConstantReturnType; - - /** type of the equivalent dense matrix */ - typedef Matrix DenseMatrixType; - /** type of the equivalent square matrix */ - typedef Matrix SquareMatrixType; - - inline const Derived& derived() const { return *static_cast(this); } - inline Derived& derived() { return *static_cast(this); } - inline Derived& const_cast_derived() const - { return *static_cast(const_cast(this)); } - - typedef EigenBase Base; - -#endif // not EIGEN_PARSED_BY_DOXYGEN - -#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::SparseMatrixBase -#ifdef EIGEN_PARSED_BY_DOXYGEN -#define EIGEN_DOC_UNARY_ADDONS(METHOD,OP) /**

This method does not change the sparsity of \c *this: the OP is applied to explicitly stored coefficients only. \sa SparseCompressedBase::coeffs()

*/ -#define EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL /**

\warning This method returns a read-only expression for any sparse matrices. \sa \ref TutorialSparse_SubMatrices "Sparse block operations"

*/ -#define EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(COND) /**

\warning This method returns a read-write expression for COND sparse matrices only. Otherwise, the returned expression is read-only. \sa \ref TutorialSparse_SubMatrices "Sparse block operations"

*/ -#else -#define EIGEN_DOC_UNARY_ADDONS(X,Y) -#define EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL -#define EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(COND) -#endif -# include "../plugins/CommonCwiseUnaryOps.h" -# include "../plugins/CommonCwiseBinaryOps.h" -# include "../plugins/MatrixCwiseUnaryOps.h" -# include "../plugins/MatrixCwiseBinaryOps.h" -# include "../plugins/BlockMethods.h" -# ifdef EIGEN_SPARSEMATRIXBASE_PLUGIN -# include EIGEN_SPARSEMATRIXBASE_PLUGIN -# endif -#undef EIGEN_CURRENT_STORAGE_BASE_CLASS -#undef EIGEN_DOC_UNARY_ADDONS -#undef EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL -#undef EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF - - /** \returns the number of rows. \sa cols() */ - inline Index rows() const { return derived().rows(); } - /** \returns the number of columns. \sa rows() */ - inline Index cols() const { return derived().cols(); } - /** \returns the number of coefficients, which is \a rows()*cols(). - * \sa rows(), cols(). */ - inline Index size() const { return rows() * cols(); } - /** \returns true if either the number of rows or the number of columns is equal to 1. - * In other words, this function returns - * \code rows()==1 || cols()==1 \endcode - * \sa rows(), cols(), IsVectorAtCompileTime. */ - inline bool isVector() const { return rows()==1 || cols()==1; } - /** \returns the size of the storage major dimension, - * i.e., the number of columns for a columns major matrix, and the number of rows otherwise */ - Index outerSize() const { return (int(Flags)&RowMajorBit) ? this->rows() : this->cols(); } - /** \returns the size of the inner dimension according to the storage order, - * i.e., the number of rows for a columns major matrix, and the number of cols otherwise */ - Index innerSize() const { return (int(Flags)&RowMajorBit) ? this->cols() : this->rows(); } - - bool isRValue() const { return m_isRValue; } - Derived& markAsRValue() { m_isRValue = true; return derived(); } - - SparseMatrixBase() : m_isRValue(false) { /* TODO check flags */ } - - - template - Derived& operator=(const ReturnByValue& other); - - template - inline Derived& operator=(const SparseMatrixBase& other); - - inline Derived& operator=(const Derived& other); - - protected: - - template - inline Derived& assign(const OtherDerived& other); - - template - inline void assignGeneric(const OtherDerived& other); - - public: - - friend std::ostream & operator << (std::ostream & s, const SparseMatrixBase& m) - { - typedef typename Derived::Nested Nested; - typedef typename internal::remove_all::type NestedCleaned; - - if (Flags&RowMajorBit) - { - Nested nm(m.derived()); - internal::evaluator thisEval(nm); - for (Index row=0; row::InnerIterator it(thisEval, row); it; ++it) - { - for ( ; col thisEval(nm); - if (m.cols() == 1) { - Index row = 0; - for (typename internal::evaluator::InnerIterator it(thisEval, 0); it; ++it) - { - for ( ; row trans = m; - s << static_cast >&>(trans); - } - } - return s; - } - - template - Derived& operator+=(const SparseMatrixBase& other); - template - Derived& operator-=(const SparseMatrixBase& other); - - template - Derived& operator+=(const DiagonalBase& other); - template - Derived& operator-=(const DiagonalBase& other); - - template - Derived& operator+=(const EigenBase &other); - template - Derived& operator-=(const EigenBase &other); - - Derived& operator*=(const Scalar& other); - Derived& operator/=(const Scalar& other); - - template struct CwiseProductDenseReturnType { - typedef CwiseBinaryOp::Scalar, - typename internal::traits::Scalar - >::ReturnType>, - const Derived, - const OtherDerived - > Type; - }; - - template - EIGEN_STRONG_INLINE const typename CwiseProductDenseReturnType::Type - cwiseProduct(const MatrixBase &other) const; - - // sparse * diagonal - template - const Product - operator*(const DiagonalBase &other) const - { return Product(derived(), other.derived()); } - - // diagonal * sparse - template friend - const Product - operator*(const DiagonalBase &lhs, const SparseMatrixBase& rhs) - { return Product(lhs.derived(), rhs.derived()); } - - // sparse * sparse - template - const Product - operator*(const SparseMatrixBase &other) const; - - // sparse * dense - template - const Product - operator*(const MatrixBase &other) const - { return Product(derived(), other.derived()); } - - // dense * sparse - template friend - const Product - operator*(const MatrixBase &lhs, const SparseMatrixBase& rhs) - { return Product(lhs.derived(), rhs.derived()); } - - /** \returns an expression of P H P^-1 where H is the matrix represented by \c *this */ - SparseSymmetricPermutationProduct twistedBy(const PermutationMatrix& perm) const - { - return SparseSymmetricPermutationProduct(derived(), perm); - } - - template - Derived& operator*=(const SparseMatrixBase& other); - - template - inline const TriangularView triangularView() const; - - template struct SelfAdjointViewReturnType { typedef SparseSelfAdjointView Type; }; - template struct ConstSelfAdjointViewReturnType { typedef const SparseSelfAdjointView Type; }; - - template inline - typename ConstSelfAdjointViewReturnType::Type selfadjointView() const; - template inline - typename SelfAdjointViewReturnType::Type selfadjointView(); - - template Scalar dot(const MatrixBase& other) const; - template Scalar dot(const SparseMatrixBase& other) const; - RealScalar squaredNorm() const; - RealScalar norm() const; - RealScalar blueNorm() const; - - TransposeReturnType transpose() { return TransposeReturnType(derived()); } - const ConstTransposeReturnType transpose() const { return ConstTransposeReturnType(derived()); } - const AdjointReturnType adjoint() const { return AdjointReturnType(transpose()); } - - // inner-vector - typedef Block InnerVectorReturnType; - typedef Block ConstInnerVectorReturnType; - InnerVectorReturnType innerVector(Index outer); - const ConstInnerVectorReturnType innerVector(Index outer) const; - - // set of inner-vectors - typedef Block InnerVectorsReturnType; - typedef Block ConstInnerVectorsReturnType; - InnerVectorsReturnType innerVectors(Index outerStart, Index outerSize); - const ConstInnerVectorsReturnType innerVectors(Index outerStart, Index outerSize) const; - - DenseMatrixType toDense() const - { - return DenseMatrixType(derived()); - } - - template - bool isApprox(const SparseMatrixBase& other, - const RealScalar& prec = NumTraits::dummy_precision()) const; - - template - bool isApprox(const MatrixBase& other, - const RealScalar& prec = NumTraits::dummy_precision()) const - { return toDense().isApprox(other,prec); } - - /** \returns the matrix or vector obtained by evaluating this expression. - * - * Notice that in the case of a plain matrix or vector (not an expression) this function just returns - * a const reference, in order to avoid a useless copy. - */ - inline const typename internal::eval::type eval() const - { return typename internal::eval::type(derived()); } - - Scalar sum() const; - - inline const SparseView - pruned(const Scalar& reference = Scalar(0), const RealScalar& epsilon = NumTraits::dummy_precision()) const; - - protected: - - bool m_isRValue; - - static inline StorageIndex convert_index(const Index idx) { - return internal::convert_index(idx); - } - private: - template void evalTo(Dest &) const; -}; - -} // end namespace Eigen - -#endif // EIGEN_SPARSEMATRIXBASE_H diff --git a/src/math_meigen/Eigen/src/SparseCore/SparsePermutation.h b/src/math_meigen/Eigen/src/SparseCore/SparsePermutation.h deleted file mode 100755 index ef38357ae..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/SparsePermutation.h +++ /dev/null @@ -1,178 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSE_PERMUTATION_H -#define EIGEN_SPARSE_PERMUTATION_H - -// This file implements sparse * permutation products - -namespace Eigen { - -namespace internal { - -template -struct permutation_matrix_product -{ - typedef typename nested_eval::type MatrixType; - typedef typename remove_all::type MatrixTypeCleaned; - - typedef typename MatrixTypeCleaned::Scalar Scalar; - typedef typename MatrixTypeCleaned::StorageIndex StorageIndex; - - enum { - SrcStorageOrder = MatrixTypeCleaned::Flags&RowMajorBit ? RowMajor : ColMajor, - MoveOuter = SrcStorageOrder==RowMajor ? Side==OnTheLeft : Side==OnTheRight - }; - - typedef typename internal::conditional, - SparseMatrix >::type ReturnType; - - template - static inline void run(Dest& dst, const PermutationType& perm, const ExpressionType& xpr) - { - MatrixType mat(xpr); - if(MoveOuter) - { - SparseMatrix tmp(mat.rows(), mat.cols()); - Matrix sizes(mat.outerSize()); - for(Index j=0; j tmp(mat.rows(), mat.cols()); - Matrix sizes(tmp.outerSize()); - sizes.setZero(); - PermutationMatrix perm_cpy; - if((Side==OnTheLeft) ^ Transposed) - perm_cpy = perm; - else - perm_cpy = perm.transpose(); - - for(Index j=0; j struct product_promote_storage_type { typedef Sparse ret; }; -template struct product_promote_storage_type { typedef Sparse ret; }; - -// TODO, the following two overloads are only needed to define the right temporary type through -// typename traits >::ReturnType -// whereas it should be correctly handled by traits >::PlainObject - -template -struct product_evaluator, ProductTag, PermutationShape, SparseShape> - : public evaluator::ReturnType> -{ - typedef Product XprType; - typedef typename permutation_matrix_product::ReturnType PlainObject; - typedef evaluator Base; - - enum { - Flags = Base::Flags | EvalBeforeNestingBit - }; - - explicit product_evaluator(const XprType& xpr) - : m_result(xpr.rows(), xpr.cols()) - { - ::new (static_cast(this)) Base(m_result); - generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); - } - -protected: - PlainObject m_result; -}; - -template -struct product_evaluator, ProductTag, SparseShape, PermutationShape > - : public evaluator::ReturnType> -{ - typedef Product XprType; - typedef typename permutation_matrix_product::ReturnType PlainObject; - typedef evaluator Base; - - enum { - Flags = Base::Flags | EvalBeforeNestingBit - }; - - explicit product_evaluator(const XprType& xpr) - : m_result(xpr.rows(), xpr.cols()) - { - ::new (static_cast(this)) Base(m_result); - generic_product_impl::evalTo(m_result, xpr.lhs(), xpr.rhs()); - } - -protected: - PlainObject m_result; -}; - -} // end namespace internal - -/** \returns the matrix with the permutation applied to the columns - */ -template -inline const Product -operator*(const SparseMatrixBase& matrix, const PermutationBase& perm) -{ return Product(matrix.derived(), perm.derived()); } - -/** \returns the matrix with the permutation applied to the rows - */ -template -inline const Product -operator*( const PermutationBase& perm, const SparseMatrixBase& matrix) -{ return Product(perm.derived(), matrix.derived()); } - - -/** \returns the matrix with the inverse permutation applied to the columns. - */ -template -inline const Product, AliasFreeProduct> -operator*(const SparseMatrixBase& matrix, const InverseImpl& tperm) -{ - return Product, AliasFreeProduct>(matrix.derived(), tperm.derived()); -} - -/** \returns the matrix with the inverse permutation applied to the rows. - */ -template -inline const Product, SparseDerived, AliasFreeProduct> -operator*(const InverseImpl& tperm, const SparseMatrixBase& matrix) -{ - return Product, SparseDerived, AliasFreeProduct>(tperm.derived(), matrix.derived()); -} - -} // end namespace Eigen - -#endif // EIGEN_SPARSE_SELFADJOINTVIEW_H diff --git a/src/math_meigen/Eigen/src/SparseCore/SparseProduct.h b/src/math_meigen/Eigen/src/SparseCore/SparseProduct.h deleted file mode 100755 index 4cbf68781..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/SparseProduct.h +++ /dev/null @@ -1,169 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2015 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSEPRODUCT_H -#define EIGEN_SPARSEPRODUCT_H - -namespace Eigen { - -/** \returns an expression of the product of two sparse matrices. - * By default a conservative product preserving the symbolic non zeros is performed. - * The automatic pruning of the small values can be achieved by calling the pruned() function - * in which case a totally different product algorithm is employed: - * \code - * C = (A*B).pruned(); // supress numerical zeros (exact) - * C = (A*B).pruned(ref); - * C = (A*B).pruned(ref,epsilon); - * \endcode - * where \c ref is a meaningful non zero reference value. - * */ -template -template -inline const Product -SparseMatrixBase::operator*(const SparseMatrixBase &other) const -{ - return Product(derived(), other.derived()); -} - -namespace internal { - -// sparse * sparse -template -struct generic_product_impl -{ - template - static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs) - { - evalTo(dst, lhs, rhs, typename evaluator_traits::Shape()); - } - - // dense += sparse * sparse - template - static void addTo(Dest& dst, const ActualLhs& lhs, const Rhs& rhs, typename enable_if::Shape,DenseShape>::value,int*>::type* = 0) - { - typedef typename nested_eval::type LhsNested; - typedef typename nested_eval::type RhsNested; - LhsNested lhsNested(lhs); - RhsNested rhsNested(rhs); - internal::sparse_sparse_to_dense_product_selector::type, - typename remove_all::type, Dest>::run(lhsNested,rhsNested,dst); - } - - // dense -= sparse * sparse - template - static void subTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, typename enable_if::Shape,DenseShape>::value,int*>::type* = 0) - { - addTo(dst, -lhs, rhs); - } - -protected: - - // sparse = sparse * sparse - template - static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, SparseShape) - { - typedef typename nested_eval::type LhsNested; - typedef typename nested_eval::type RhsNested; - LhsNested lhsNested(lhs); - RhsNested rhsNested(rhs); - internal::conservative_sparse_sparse_product_selector::type, - typename remove_all::type, Dest>::run(lhsNested,rhsNested,dst); - } - - // dense = sparse * sparse - template - static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, DenseShape) - { - dst.setZero(); - addTo(dst, lhs, rhs); - } -}; - -// sparse * sparse-triangular -template -struct generic_product_impl - : public generic_product_impl -{}; - -// sparse-triangular * sparse -template -struct generic_product_impl - : public generic_product_impl -{}; - -// dense = sparse-product (can be sparse*sparse, sparse*perm, etc.) -template< typename DstXprType, typename Lhs, typename Rhs> -struct Assignment, internal::assign_op::Scalar>, Sparse2Dense> -{ - typedef Product SrcXprType; - static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) - { - Index dstRows = src.rows(); - Index dstCols = src.cols(); - if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) - dst.resize(dstRows, dstCols); - - generic_product_impl::evalTo(dst,src.lhs(),src.rhs()); - } -}; - -// dense += sparse-product (can be sparse*sparse, sparse*perm, etc.) -template< typename DstXprType, typename Lhs, typename Rhs> -struct Assignment, internal::add_assign_op::Scalar>, Sparse2Dense> -{ - typedef Product SrcXprType; - static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op &) - { - generic_product_impl::addTo(dst,src.lhs(),src.rhs()); - } -}; - -// dense -= sparse-product (can be sparse*sparse, sparse*perm, etc.) -template< typename DstXprType, typename Lhs, typename Rhs> -struct Assignment, internal::sub_assign_op::Scalar>, Sparse2Dense> -{ - typedef Product SrcXprType; - static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op &) - { - generic_product_impl::subTo(dst,src.lhs(),src.rhs()); - } -}; - -template -struct unary_evaluator >, IteratorBased> - : public evaluator::PlainObject> -{ - typedef SparseView > XprType; - typedef typename XprType::PlainObject PlainObject; - typedef evaluator Base; - - explicit unary_evaluator(const XprType& xpr) - : m_result(xpr.rows(), xpr.cols()) - { - using std::abs; - ::new (static_cast(this)) Base(m_result); - typedef typename nested_eval::type LhsNested; - typedef typename nested_eval::type RhsNested; - LhsNested lhsNested(xpr.nestedExpression().lhs()); - RhsNested rhsNested(xpr.nestedExpression().rhs()); - - internal::sparse_sparse_product_with_pruning_selector::type, - typename remove_all::type, PlainObject>::run(lhsNested,rhsNested,m_result, - abs(xpr.reference())*xpr.epsilon()); - } - -protected: - PlainObject m_result; -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_SPARSEPRODUCT_H diff --git a/src/math_meigen/Eigen/src/SparseCore/SparseRedux.h b/src/math_meigen/Eigen/src/SparseCore/SparseRedux.h deleted file mode 100755 index 458774962..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/SparseRedux.h +++ /dev/null @@ -1,49 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSEREDUX_H -#define EIGEN_SPARSEREDUX_H - -namespace Eigen { - -template -typename internal::traits::Scalar -SparseMatrixBase::sum() const -{ - eigen_assert(rows()>0 && cols()>0 && "you are using a non initialized matrix"); - Scalar res(0); - internal::evaluator thisEval(derived()); - for (Index j=0; j::InnerIterator iter(thisEval,j); iter; ++iter) - res += iter.value(); - return res; -} - -template -typename internal::traits >::Scalar -SparseMatrix<_Scalar,_Options,_Index>::sum() const -{ - eigen_assert(rows()>0 && cols()>0 && "you are using a non initialized matrix"); - if(this->isCompressed()) - return Matrix::Map(m_data.valuePtr(), m_data.size()).sum(); - else - return Base::sum(); -} - -template -typename internal::traits >::Scalar -SparseVector<_Scalar,_Options,_Index>::sum() const -{ - eigen_assert(rows()>0 && cols()>0 && "you are using a non initialized matrix"); - return Matrix::Map(m_data.valuePtr(), m_data.size()).sum(); -} - -} // end namespace Eigen - -#endif // EIGEN_SPARSEREDUX_H diff --git a/src/math_meigen/Eigen/src/SparseCore/SparseRef.h b/src/math_meigen/Eigen/src/SparseCore/SparseRef.h deleted file mode 100755 index d91f38f97..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/SparseRef.h +++ /dev/null @@ -1,397 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2015 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSE_REF_H -#define EIGEN_SPARSE_REF_H - -namespace Eigen { - -enum { - StandardCompressedFormat = 2 /**< used by Ref to specify whether the input storage must be in standard compressed form */ -}; - -namespace internal { - -template class SparseRefBase; - -template -struct traits, _Options, _StrideType> > - : public traits > -{ - typedef SparseMatrix PlainObjectType; - enum { - Options = _Options, - Flags = traits::Flags | CompressedAccessBit | NestByRefBit - }; - - template struct match { - enum { - StorageOrderMatch = PlainObjectType::IsVectorAtCompileTime || Derived::IsVectorAtCompileTime || ((PlainObjectType::Flags&RowMajorBit)==(Derived::Flags&RowMajorBit)), - MatchAtCompileTime = (Derived::Flags&CompressedAccessBit) && StorageOrderMatch - }; - typedef typename internal::conditional::type type; - }; - -}; - -template -struct traits, _Options, _StrideType> > - : public traits, _Options, _StrideType> > -{ - enum { - Flags = (traits >::Flags | CompressedAccessBit | NestByRefBit) & ~LvalueBit - }; -}; - -template -struct traits, _Options, _StrideType> > - : public traits > -{ - typedef SparseVector PlainObjectType; - enum { - Options = _Options, - Flags = traits::Flags | CompressedAccessBit | NestByRefBit - }; - - template struct match { - enum { - MatchAtCompileTime = (Derived::Flags&CompressedAccessBit) && Derived::IsVectorAtCompileTime - }; - typedef typename internal::conditional::type type; - }; - -}; - -template -struct traits, _Options, _StrideType> > - : public traits, _Options, _StrideType> > -{ - enum { - Flags = (traits >::Flags | CompressedAccessBit | NestByRefBit) & ~LvalueBit - }; -}; - -template -struct traits > : public traits {}; - -template class SparseRefBase - : public SparseMapBase -{ -public: - - typedef SparseMapBase Base; - EIGEN_SPARSE_PUBLIC_INTERFACE(SparseRefBase) - - SparseRefBase() - : Base(RowsAtCompileTime==Dynamic?0:RowsAtCompileTime,ColsAtCompileTime==Dynamic?0:ColsAtCompileTime, 0, 0, 0, 0, 0) - {} - -protected: - - template - void construct(Expression& expr) - { - if(expr.outerIndexPtr()==0) - ::new (static_cast(this)) Base(expr.size(), expr.nonZeros(), expr.innerIndexPtr(), expr.valuePtr()); - else - ::new (static_cast(this)) Base(expr.rows(), expr.cols(), expr.nonZeros(), expr.outerIndexPtr(), expr.innerIndexPtr(), expr.valuePtr(), expr.innerNonZeroPtr()); - } -}; - -} // namespace internal - - -/** - * \ingroup SparseCore_Module - * - * \brief A sparse matrix expression referencing an existing sparse expression - * - * \tparam SparseMatrixType the equivalent sparse matrix type of the referenced data, it must be a template instance of class SparseMatrix. - * \tparam Options specifies whether the a standard compressed format is required \c Options is \c #StandardCompressedFormat, or \c 0. - * The default is \c 0. - * - * \sa class Ref - */ -#ifndef EIGEN_PARSED_BY_DOXYGEN -template -class Ref, Options, StrideType > - : public internal::SparseRefBase, Options, StrideType > > -#else -template -class Ref - : public SparseMapBase // yes, that's weird to use Derived here, but that works! -#endif -{ - typedef SparseMatrix PlainObjectType; - typedef internal::traits Traits; - template - inline Ref(const SparseMatrix& expr); - template - inline Ref(const MappedSparseMatrix& expr); - public: - - typedef internal::SparseRefBase Base; - EIGEN_SPARSE_PUBLIC_INTERFACE(Ref) - - - #ifndef EIGEN_PARSED_BY_DOXYGEN - template - inline Ref(SparseMatrix& expr) - { - EIGEN_STATIC_ASSERT(bool(Traits::template match >::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); - eigen_assert( ((Options & int(StandardCompressedFormat))==0) || (expr.isCompressed()) ); - Base::construct(expr.derived()); - } - - template - inline Ref(MappedSparseMatrix& expr) - { - EIGEN_STATIC_ASSERT(bool(Traits::template match >::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); - eigen_assert( ((Options & int(StandardCompressedFormat))==0) || (expr.isCompressed()) ); - Base::construct(expr.derived()); - } - - template - inline Ref(const SparseCompressedBase& expr) - #else - /** Implicit constructor from any sparse expression (2D matrix or 1D vector) */ - template - inline Ref(SparseCompressedBase& expr) - #endif - { - EIGEN_STATIC_ASSERT(bool(internal::is_lvalue::value), THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY); - EIGEN_STATIC_ASSERT(bool(Traits::template match::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); - eigen_assert( ((Options & int(StandardCompressedFormat))==0) || (expr.isCompressed()) ); - Base::construct(expr.const_cast_derived()); - } -}; - -// this is the const ref version -template -class Ref, Options, StrideType> - : public internal::SparseRefBase, Options, StrideType> > -{ - typedef SparseMatrix TPlainObjectType; - typedef internal::traits Traits; - public: - - typedef internal::SparseRefBase Base; - EIGEN_SPARSE_PUBLIC_INTERFACE(Ref) - - template - inline Ref(const SparseMatrixBase& expr) : m_hasCopy(false) - { - construct(expr.derived(), typename Traits::template match::type()); - } - - inline Ref(const Ref& other) : Base(other), m_hasCopy(false) { - // copy constructor shall not copy the m_object, to avoid unnecessary malloc and copy - } - - template - inline Ref(const RefBase& other) : m_hasCopy(false) { - construct(other.derived(), typename Traits::template match::type()); - } - - ~Ref() { - if(m_hasCopy) { - TPlainObjectType* obj = reinterpret_cast(m_object_bytes); - obj->~TPlainObjectType(); - } - } - - protected: - - template - void construct(const Expression& expr,internal::true_type) - { - if((Options & int(StandardCompressedFormat)) && (!expr.isCompressed())) - { - TPlainObjectType* obj = reinterpret_cast(m_object_bytes); - ::new (obj) TPlainObjectType(expr); - m_hasCopy = true; - Base::construct(*obj); - } - else - { - Base::construct(expr); - } - } - - template - void construct(const Expression& expr, internal::false_type) - { - TPlainObjectType* obj = reinterpret_cast(m_object_bytes); - ::new (obj) TPlainObjectType(expr); - m_hasCopy = true; - Base::construct(*obj); - } - - protected: - char m_object_bytes[sizeof(TPlainObjectType)]; - bool m_hasCopy; -}; - - - -/** - * \ingroup SparseCore_Module - * - * \brief A sparse vector expression referencing an existing sparse vector expression - * - * \tparam SparseVectorType the equivalent sparse vector type of the referenced data, it must be a template instance of class SparseVector. - * - * \sa class Ref - */ -#ifndef EIGEN_PARSED_BY_DOXYGEN -template -class Ref, Options, StrideType > - : public internal::SparseRefBase, Options, StrideType > > -#else -template -class Ref - : public SparseMapBase -#endif -{ - typedef SparseVector PlainObjectType; - typedef internal::traits Traits; - template - inline Ref(const SparseVector& expr); - public: - - typedef internal::SparseRefBase Base; - EIGEN_SPARSE_PUBLIC_INTERFACE(Ref) - - #ifndef EIGEN_PARSED_BY_DOXYGEN - template - inline Ref(SparseVector& expr) - { - EIGEN_STATIC_ASSERT(bool(Traits::template match >::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); - Base::construct(expr.derived()); - } - - template - inline Ref(const SparseCompressedBase& expr) - #else - /** Implicit constructor from any 1D sparse vector expression */ - template - inline Ref(SparseCompressedBase& expr) - #endif - { - EIGEN_STATIC_ASSERT(bool(internal::is_lvalue::value), THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY); - EIGEN_STATIC_ASSERT(bool(Traits::template match::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); - Base::construct(expr.const_cast_derived()); - } -}; - -// this is the const ref version -template -class Ref, Options, StrideType> - : public internal::SparseRefBase, Options, StrideType> > -{ - typedef SparseVector TPlainObjectType; - typedef internal::traits Traits; - public: - - typedef internal::SparseRefBase Base; - EIGEN_SPARSE_PUBLIC_INTERFACE(Ref) - - template - inline Ref(const SparseMatrixBase& expr) : m_hasCopy(false) - { - construct(expr.derived(), typename Traits::template match::type()); - } - - inline Ref(const Ref& other) : Base(other), m_hasCopy(false) { - // copy constructor shall not copy the m_object, to avoid unnecessary malloc and copy - } - - template - inline Ref(const RefBase& other) : m_hasCopy(false) { - construct(other.derived(), typename Traits::template match::type()); - } - - ~Ref() { - if(m_hasCopy) { - TPlainObjectType* obj = reinterpret_cast(m_object_bytes); - obj->~TPlainObjectType(); - } - } - - protected: - - template - void construct(const Expression& expr,internal::true_type) - { - Base::construct(expr); - } - - template - void construct(const Expression& expr, internal::false_type) - { - TPlainObjectType* obj = reinterpret_cast(m_object_bytes); - ::new (obj) TPlainObjectType(expr); - m_hasCopy = true; - Base::construct(*obj); - } - - protected: - char m_object_bytes[sizeof(TPlainObjectType)]; - bool m_hasCopy; -}; - -namespace internal { - -// FIXME shall we introduce a general evaluatior_ref that we can specialize for any sparse object once, and thus remove this copy-pasta thing... - -template -struct evaluator, Options, StrideType> > - : evaluator, Options, StrideType> > > -{ - typedef evaluator, Options, StrideType> > > Base; - typedef Ref, Options, StrideType> XprType; - evaluator() : Base() {} - explicit evaluator(const XprType &mat) : Base(mat) {} -}; - -template -struct evaluator, Options, StrideType> > - : evaluator, Options, StrideType> > > -{ - typedef evaluator, Options, StrideType> > > Base; - typedef Ref, Options, StrideType> XprType; - evaluator() : Base() {} - explicit evaluator(const XprType &mat) : Base(mat) {} -}; - -template -struct evaluator, Options, StrideType> > - : evaluator, Options, StrideType> > > -{ - typedef evaluator, Options, StrideType> > > Base; - typedef Ref, Options, StrideType> XprType; - evaluator() : Base() {} - explicit evaluator(const XprType &mat) : Base(mat) {} -}; - -template -struct evaluator, Options, StrideType> > - : evaluator, Options, StrideType> > > -{ - typedef evaluator, Options, StrideType> > > Base; - typedef Ref, Options, StrideType> XprType; - evaluator() : Base() {} - explicit evaluator(const XprType &mat) : Base(mat) {} -}; - -} - -} // end namespace Eigen - -#endif // EIGEN_SPARSE_REF_H diff --git a/src/math_meigen/Eigen/src/SparseCore/SparseSelfAdjointView.h b/src/math_meigen/Eigen/src/SparseCore/SparseSelfAdjointView.h deleted file mode 100755 index 65611b3d4..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +++ /dev/null @@ -1,656 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009-2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSE_SELFADJOINTVIEW_H -#define EIGEN_SPARSE_SELFADJOINTVIEW_H - -namespace Eigen { - -/** \ingroup SparseCore_Module - * \class SparseSelfAdjointView - * - * \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix. - * - * \param MatrixType the type of the dense matrix storing the coefficients - * \param Mode can be either \c #Lower or \c #Upper - * - * This class is an expression of a sefladjoint matrix from a triangular part of a matrix - * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView() - * and most of the time this is the only way that it is used. - * - * \sa SparseMatrixBase::selfadjointView() - */ -namespace internal { - -template -struct traits > : traits { -}; - -template -void permute_symm_to_symm(const MatrixType& mat, SparseMatrix& _dest, const typename MatrixType::StorageIndex* perm = 0); - -template -void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix& _dest, const typename MatrixType::StorageIndex* perm = 0); - -} - -template class SparseSelfAdjointView - : public EigenBase > -{ - public: - - enum { - Mode = _Mode, - TransposeMode = ((Mode & Upper) ? Lower : 0) | ((Mode & Lower) ? Upper : 0), - RowsAtCompileTime = internal::traits::RowsAtCompileTime, - ColsAtCompileTime = internal::traits::ColsAtCompileTime - }; - - typedef EigenBase Base; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::StorageIndex StorageIndex; - typedef Matrix VectorI; - typedef typename internal::ref_selector::non_const_type MatrixTypeNested; - typedef typename internal::remove_all::type _MatrixTypeNested; - - explicit inline SparseSelfAdjointView(MatrixType& matrix) : m_matrix(matrix) - { - eigen_assert(rows()==cols() && "SelfAdjointView is only for squared matrices"); - } - - inline Index rows() const { return m_matrix.rows(); } - inline Index cols() const { return m_matrix.cols(); } - - /** \internal \returns a reference to the nested matrix */ - const _MatrixTypeNested& matrix() const { return m_matrix; } - typename internal::remove_reference::type& matrix() { return m_matrix; } - - /** \returns an expression of the matrix product between a sparse self-adjoint matrix \c *this and a sparse matrix \a rhs. - * - * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product. - * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product. - */ - template - Product - operator*(const SparseMatrixBase& rhs) const - { - return Product(*this, rhs.derived()); - } - - /** \returns an expression of the matrix product between a sparse matrix \a lhs and a sparse self-adjoint matrix \a rhs. - * - * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product. - * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product. - */ - template friend - Product - operator*(const SparseMatrixBase& lhs, const SparseSelfAdjointView& rhs) - { - return Product(lhs.derived(), rhs); - } - - /** Efficient sparse self-adjoint matrix times dense vector/matrix product */ - template - Product - operator*(const MatrixBase& rhs) const - { - return Product(*this, rhs.derived()); - } - - /** Efficient dense vector/matrix times sparse self-adjoint matrix product */ - template friend - Product - operator*(const MatrixBase& lhs, const SparseSelfAdjointView& rhs) - { - return Product(lhs.derived(), rhs); - } - - /** Perform a symmetric rank K update of the selfadjoint matrix \c *this: - * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix. - * - * \returns a reference to \c *this - * - * To perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply - * call this function with u.adjoint(). - */ - template - SparseSelfAdjointView& rankUpdate(const SparseMatrixBase& u, const Scalar& alpha = Scalar(1)); - - /** \returns an expression of P H P^-1 */ - // TODO implement twists in a more evaluator friendly fashion - SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode> twistedBy(const PermutationMatrix& perm) const - { - return SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode>(m_matrix, perm); - } - - template - SparseSelfAdjointView& operator=(const SparseSymmetricPermutationProduct& permutedMatrix) - { - internal::call_assignment_no_alias_no_transpose(*this, permutedMatrix); - return *this; - } - - SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src) - { - PermutationMatrix pnull; - return *this = src.twistedBy(pnull); - } - - template - SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src) - { - PermutationMatrix pnull; - return *this = src.twistedBy(pnull); - } - - void resize(Index rows, Index cols) - { - EIGEN_ONLY_USED_FOR_DEBUG(rows); - EIGEN_ONLY_USED_FOR_DEBUG(cols); - eigen_assert(rows == this->rows() && cols == this->cols() - && "SparseSelfadjointView::resize() does not actually allow to resize."); - } - - protected: - - MatrixTypeNested m_matrix; - //mutable VectorI m_countPerRow; - //mutable VectorI m_countPerCol; - private: - template void evalTo(Dest &) const; -}; - -/*************************************************************************** -* Implementation of SparseMatrixBase methods -***************************************************************************/ - -template -template -typename SparseMatrixBase::template ConstSelfAdjointViewReturnType::Type SparseMatrixBase::selfadjointView() const -{ - return SparseSelfAdjointView(derived()); -} - -template -template -typename SparseMatrixBase::template SelfAdjointViewReturnType::Type SparseMatrixBase::selfadjointView() -{ - return SparseSelfAdjointView(derived()); -} - -/*************************************************************************** -* Implementation of SparseSelfAdjointView methods -***************************************************************************/ - -template -template -SparseSelfAdjointView& -SparseSelfAdjointView::rankUpdate(const SparseMatrixBase& u, const Scalar& alpha) -{ - SparseMatrix tmp = u * u.adjoint(); - if(alpha==Scalar(0)) - m_matrix = tmp.template triangularView(); - else - m_matrix += alpha * tmp.template triangularView(); - - return *this; -} - -namespace internal { - -// TODO currently a selfadjoint expression has the form SelfAdjointView<.,.> -// in the future selfadjoint-ness should be defined by the expression traits -// such that Transpose > is valid. (currently TriangularBase::transpose() is overloaded to make it work) -template -struct evaluator_traits > -{ - typedef typename storage_kind_to_evaluator_kind::Kind Kind; - typedef SparseSelfAdjointShape Shape; -}; - -struct SparseSelfAdjoint2Sparse {}; - -template<> struct AssignmentKind { typedef SparseSelfAdjoint2Sparse Kind; }; -template<> struct AssignmentKind { typedef Sparse2Sparse Kind; }; - -template< typename DstXprType, typename SrcXprType, typename Functor> -struct Assignment -{ - typedef typename DstXprType::StorageIndex StorageIndex; - typedef internal::assign_op AssignOpType; - - template - static void run(SparseMatrix &dst, const SrcXprType &src, const AssignOpType&/*func*/) - { - internal::permute_symm_to_fullsymm(src.matrix(), dst); - } - - // FIXME: the handling of += and -= in sparse matrices should be cleanup so that next two overloads could be reduced to: - template - static void run(SparseMatrix &dst, const SrcXprType &src, const AssignFunc& func) - { - SparseMatrix tmp(src.rows(),src.cols()); - run(tmp, src, AssignOpType()); - call_assignment_no_alias_no_transpose(dst, tmp, func); - } - - template - static void run(SparseMatrix &dst, const SrcXprType &src, - const internal::add_assign_op& /* func */) - { - SparseMatrix tmp(src.rows(),src.cols()); - run(tmp, src, AssignOpType()); - dst += tmp; - } - - template - static void run(SparseMatrix &dst, const SrcXprType &src, - const internal::sub_assign_op& /* func */) - { - SparseMatrix tmp(src.rows(),src.cols()); - run(tmp, src, AssignOpType()); - dst -= tmp; - } - - template - static void run(DynamicSparseMatrix& dst, const SrcXprType &src, const AssignOpType&/*func*/) - { - // TODO directly evaluate into dst; - SparseMatrix tmp(dst.rows(),dst.cols()); - internal::permute_symm_to_fullsymm(src.matrix(), tmp); - dst = tmp; - } -}; - -} // end namespace internal - -/*************************************************************************** -* Implementation of sparse self-adjoint time dense matrix -***************************************************************************/ - -namespace internal { - -template -inline void sparse_selfadjoint_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha) -{ - EIGEN_ONLY_USED_FOR_DEBUG(alpha); - - typedef typename internal::nested_eval::type SparseLhsTypeNested; - typedef typename internal::remove_all::type SparseLhsTypeNestedCleaned; - typedef evaluator LhsEval; - typedef typename LhsEval::InnerIterator LhsIterator; - typedef typename SparseLhsType::Scalar LhsScalar; - - enum { - LhsIsRowMajor = (LhsEval::Flags&RowMajorBit)==RowMajorBit, - ProcessFirstHalf = - ((Mode&(Upper|Lower))==(Upper|Lower)) - || ( (Mode&Upper) && !LhsIsRowMajor) - || ( (Mode&Lower) && LhsIsRowMajor), - ProcessSecondHalf = !ProcessFirstHalf - }; - - SparseLhsTypeNested lhs_nested(lhs); - LhsEval lhsEval(lhs_nested); - - // work on one column at once - for (Index k=0; k::ReturnType rhs_j(alpha*rhs(j,k)); - // accumulator for partial scalar product - typename DenseResType::Scalar res_j(0); - for(; (ProcessFirstHalf ? i && i.index() < j : i) ; ++i) - { - LhsScalar lhs_ij = i.value(); - if(!LhsIsRowMajor) lhs_ij = numext::conj(lhs_ij); - res_j += lhs_ij * rhs.coeff(i.index(),k); - res(i.index(),k) += numext::conj(lhs_ij) * rhs_j; - } - res.coeffRef(j,k) += alpha * res_j; - - // handle diagonal coeff - if (ProcessFirstHalf && i && (i.index()==j)) - res.coeffRef(j,k) += alpha * i.value() * rhs.coeff(j,k); - } - } -} - - -template -struct generic_product_impl -: generic_product_impl_base > -{ - template - static void scaleAndAddTo(Dest& dst, const LhsView& lhsView, const Rhs& rhs, const typename Dest::Scalar& alpha) - { - typedef typename LhsView::_MatrixTypeNested Lhs; - typedef typename nested_eval::type LhsNested; - typedef typename nested_eval::type RhsNested; - LhsNested lhsNested(lhsView.matrix()); - RhsNested rhsNested(rhs); - - internal::sparse_selfadjoint_time_dense_product(lhsNested, rhsNested, dst, alpha); - } -}; - -template -struct generic_product_impl -: generic_product_impl_base > -{ - template - static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const RhsView& rhsView, const typename Dest::Scalar& alpha) - { - typedef typename RhsView::_MatrixTypeNested Rhs; - typedef typename nested_eval::type LhsNested; - typedef typename nested_eval::type RhsNested; - LhsNested lhsNested(lhs); - RhsNested rhsNested(rhsView.matrix()); - - // transpose everything - Transpose dstT(dst); - internal::sparse_selfadjoint_time_dense_product(rhsNested.transpose(), lhsNested.transpose(), dstT, alpha); - } -}; - -// NOTE: these two overloads are needed to evaluate the sparse selfadjoint view into a full sparse matrix -// TODO: maybe the copy could be handled by generic_product_impl so that these overloads would not be needed anymore - -template -struct product_evaluator, ProductTag, SparseSelfAdjointShape, SparseShape> - : public evaluator::PlainObject> -{ - typedef Product XprType; - typedef typename XprType::PlainObject PlainObject; - typedef evaluator Base; - - product_evaluator(const XprType& xpr) - : m_lhs(xpr.lhs()), m_result(xpr.rows(), xpr.cols()) - { - ::new (static_cast(this)) Base(m_result); - generic_product_impl::evalTo(m_result, m_lhs, xpr.rhs()); - } - -protected: - typename Rhs::PlainObject m_lhs; - PlainObject m_result; -}; - -template -struct product_evaluator, ProductTag, SparseShape, SparseSelfAdjointShape> - : public evaluator::PlainObject> -{ - typedef Product XprType; - typedef typename XprType::PlainObject PlainObject; - typedef evaluator Base; - - product_evaluator(const XprType& xpr) - : m_rhs(xpr.rhs()), m_result(xpr.rows(), xpr.cols()) - { - ::new (static_cast(this)) Base(m_result); - generic_product_impl::evalTo(m_result, xpr.lhs(), m_rhs); - } - -protected: - typename Lhs::PlainObject m_rhs; - PlainObject m_result; -}; - -} // namespace internal - -/*************************************************************************** -* Implementation of symmetric copies and permutations -***************************************************************************/ -namespace internal { - -template -void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix& _dest, const typename MatrixType::StorageIndex* perm) -{ - typedef typename MatrixType::StorageIndex StorageIndex; - typedef typename MatrixType::Scalar Scalar; - typedef SparseMatrix Dest; - typedef Matrix VectorI; - typedef evaluator MatEval; - typedef typename evaluator::InnerIterator MatIterator; - - MatEval matEval(mat); - Dest& dest(_dest.derived()); - enum { - StorageOrderMatch = int(Dest::IsRowMajor) == int(MatrixType::IsRowMajor) - }; - - Index size = mat.rows(); - VectorI count; - count.resize(size); - count.setZero(); - dest.resize(size,size); - for(Index j = 0; jc) || ( Mode==Upper && r(it.index()); - Index r = it.row(); - Index c = it.col(); - - StorageIndex jp = perm ? perm[j] : j; - StorageIndex ip = perm ? perm[i] : i; - - if(Mode==(Upper|Lower)) - { - Index k = count[StorageOrderMatch ? jp : ip]++; - dest.innerIndexPtr()[k] = StorageOrderMatch ? ip : jp; - dest.valuePtr()[k] = it.value(); - } - else if(r==c) - { - Index k = count[ip]++; - dest.innerIndexPtr()[k] = ip; - dest.valuePtr()[k] = it.value(); - } - else if(( (Mode&Lower)==Lower && r>c) || ( (Mode&Upper)==Upper && r -void permute_symm_to_symm(const MatrixType& mat, SparseMatrix& _dest, const typename MatrixType::StorageIndex* perm) -{ - typedef typename MatrixType::StorageIndex StorageIndex; - typedef typename MatrixType::Scalar Scalar; - SparseMatrix& dest(_dest.derived()); - typedef Matrix VectorI; - typedef evaluator MatEval; - typedef typename evaluator::InnerIterator MatIterator; - - enum { - SrcOrder = MatrixType::IsRowMajor ? RowMajor : ColMajor, - StorageOrderMatch = int(SrcOrder) == int(DstOrder), - DstMode = DstOrder==RowMajor ? (_DstMode==Upper ? Lower : Upper) : _DstMode, - SrcMode = SrcOrder==RowMajor ? (_SrcMode==Upper ? Lower : Upper) : _SrcMode - }; - - MatEval matEval(mat); - - Index size = mat.rows(); - VectorI count(size); - count.setZero(); - dest.resize(size,size); - for(StorageIndex j = 0; jj)) - continue; - - StorageIndex ip = perm ? perm[i] : i; - count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++; - } - } - dest.outerIndexPtr()[0] = 0; - for(Index j=0; jj)) - continue; - - StorageIndex jp = perm ? perm[j] : j; - StorageIndex ip = perm? perm[i] : i; - - Index k = count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++; - dest.innerIndexPtr()[k] = int(DstMode)==int(Lower) ? (std::max)(ip,jp) : (std::min)(ip,jp); - - if(!StorageOrderMatch) std::swap(ip,jp); - if( ((int(DstMode)==int(Lower) && ipjp))) - dest.valuePtr()[k] = numext::conj(it.value()); - else - dest.valuePtr()[k] = it.value(); - } - } -} - -} - -// TODO implement twists in a more evaluator friendly fashion - -namespace internal { - -template -struct traits > : traits { -}; - -} - -template -class SparseSymmetricPermutationProduct - : public EigenBase > -{ - public: - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::StorageIndex StorageIndex; - enum { - RowsAtCompileTime = internal::traits::RowsAtCompileTime, - ColsAtCompileTime = internal::traits::ColsAtCompileTime - }; - protected: - typedef PermutationMatrix Perm; - public: - typedef Matrix VectorI; - typedef typename MatrixType::Nested MatrixTypeNested; - typedef typename internal::remove_all::type NestedExpression; - - SparseSymmetricPermutationProduct(const MatrixType& mat, const Perm& perm) - : m_matrix(mat), m_perm(perm) - {} - - inline Index rows() const { return m_matrix.rows(); } - inline Index cols() const { return m_matrix.cols(); } - - const NestedExpression& matrix() const { return m_matrix; } - const Perm& perm() const { return m_perm; } - - protected: - MatrixTypeNested m_matrix; - const Perm& m_perm; - -}; - -namespace internal { - -template -struct Assignment, internal::assign_op, Sparse2Sparse> -{ - typedef SparseSymmetricPermutationProduct SrcXprType; - typedef typename DstXprType::StorageIndex DstIndex; - template - static void run(SparseMatrix &dst, const SrcXprType &src, const internal::assign_op &) - { - // internal::permute_symm_to_fullsymm(m_matrix,_dest,m_perm.indices().data()); - SparseMatrix tmp; - internal::permute_symm_to_fullsymm(src.matrix(),tmp,src.perm().indices().data()); - dst = tmp; - } - - template - static void run(SparseSelfAdjointView& dst, const SrcXprType &src, const internal::assign_op &) - { - internal::permute_symm_to_symm(src.matrix(),dst.matrix(),src.perm().indices().data()); - } -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_SPARSE_SELFADJOINTVIEW_H diff --git a/src/math_meigen/Eigen/src/SparseCore/SparseSolverBase.h b/src/math_meigen/Eigen/src/SparseCore/SparseSolverBase.h deleted file mode 100755 index b4c9a422f..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/SparseSolverBase.h +++ /dev/null @@ -1,124 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSESOLVERBASE_H -#define EIGEN_SPARSESOLVERBASE_H - -namespace Eigen { - -namespace internal { - - /** \internal - * Helper functions to solve with a sparse right-hand-side and result. - * The rhs is decomposed into small vertical panels which are solved through dense temporaries. - */ -template -typename enable_if::type -solve_sparse_through_dense_panels(const Decomposition &dec, const Rhs& rhs, Dest &dest) -{ - EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); - typedef typename Dest::Scalar DestScalar; - // we process the sparse rhs per block of NbColsAtOnce columns temporarily stored into a dense matrix. - static const Index NbColsAtOnce = 4; - Index rhsCols = rhs.cols(); - Index size = rhs.rows(); - // the temporary matrices do not need more columns than NbColsAtOnce: - Index tmpCols = (std::min)(rhsCols, NbColsAtOnce); - Eigen::Matrix tmp(size,tmpCols); - Eigen::Matrix tmpX(size,tmpCols); - for(Index k=0; k(rhsCols-k, NbColsAtOnce); - tmp.leftCols(actualCols) = rhs.middleCols(k,actualCols); - tmpX.leftCols(actualCols) = dec.solve(tmp.leftCols(actualCols)); - dest.middleCols(k,actualCols) = tmpX.leftCols(actualCols).sparseView(); - } -} - -// Overload for vector as rhs -template -typename enable_if::type -solve_sparse_through_dense_panels(const Decomposition &dec, const Rhs& rhs, Dest &dest) -{ - typedef typename Dest::Scalar DestScalar; - Index size = rhs.rows(); - Eigen::Matrix rhs_dense(rhs); - Eigen::Matrix dest_dense(size); - dest_dense = dec.solve(rhs_dense); - dest = dest_dense.sparseView(); -} - -} // end namespace internal - -/** \class SparseSolverBase - * \ingroup SparseCore_Module - * \brief A base class for sparse solvers - * - * \tparam Derived the actual type of the solver. - * - */ -template -class SparseSolverBase : internal::noncopyable -{ - public: - - /** Default constructor */ - SparseSolverBase() - : m_isInitialized(false) - {} - - ~SparseSolverBase() - {} - - Derived& derived() { return *static_cast(this); } - const Derived& derived() const { return *static_cast(this); } - - /** \returns an expression of the solution x of \f$ A x = b \f$ using the current decomposition of A. - * - * \sa compute() - */ - template - inline const Solve - solve(const MatrixBase& b) const - { - eigen_assert(m_isInitialized && "Solver is not initialized."); - eigen_assert(derived().rows()==b.rows() && "solve(): invalid number of rows of the right hand side matrix b"); - return Solve(derived(), b.derived()); - } - - /** \returns an expression of the solution x of \f$ A x = b \f$ using the current decomposition of A. - * - * \sa compute() - */ - template - inline const Solve - solve(const SparseMatrixBase& b) const - { - eigen_assert(m_isInitialized && "Solver is not initialized."); - eigen_assert(derived().rows()==b.rows() && "solve(): invalid number of rows of the right hand side matrix b"); - return Solve(derived(), b.derived()); - } - - #ifndef EIGEN_PARSED_BY_DOXYGEN - /** \internal default implementation of solving with a sparse rhs */ - template - void _solve_impl(const SparseMatrixBase &b, SparseMatrixBase &dest) const - { - internal::solve_sparse_through_dense_panels(derived(), b.derived(), dest.derived()); - } - #endif // EIGEN_PARSED_BY_DOXYGEN - - protected: - - mutable bool m_isInitialized; -}; - -} // end namespace Eigen - -#endif // EIGEN_SPARSESOLVERBASE_H diff --git a/src/math_meigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h b/src/math_meigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h deleted file mode 100755 index 88820a48f..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +++ /dev/null @@ -1,198 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H -#define EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H - -namespace Eigen { - -namespace internal { - - -// perform a pseudo in-place sparse * sparse product assuming all matrices are col major -template -static void sparse_sparse_product_with_pruning_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res, const typename ResultType::RealScalar& tolerance) -{ - // return sparse_sparse_product_with_pruning_impl2(lhs,rhs,res); - - typedef typename remove_all::type::Scalar RhsScalar; - typedef typename remove_all::type::Scalar ResScalar; - typedef typename remove_all::type::StorageIndex StorageIndex; - - // make sure to call innerSize/outerSize since we fake the storage order. - Index rows = lhs.innerSize(); - Index cols = rhs.outerSize(); - //Index size = lhs.outerSize(); - eigen_assert(lhs.outerSize() == rhs.innerSize()); - - // allocate a temporary buffer - AmbiVector tempVector(rows); - - // mimics a resizeByInnerOuter: - if(ResultType::IsRowMajor) - res.resize(cols, rows); - else - res.resize(rows, cols); - - evaluator lhsEval(lhs); - evaluator rhsEval(rhs); - - // estimate the number of non zero entries - // given a rhs column containing Y non zeros, we assume that the respective Y columns - // of the lhs differs in average of one non zeros, thus the number of non zeros for - // the product of a rhs column with the lhs is X+Y where X is the average number of non zero - // per column of the lhs. - // Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs) - Index estimated_nnz_prod = lhsEval.nonZerosEstimate() + rhsEval.nonZerosEstimate(); - - res.reserve(estimated_nnz_prod); - double ratioColRes = double(estimated_nnz_prod)/(double(lhs.rows())*double(rhs.cols())); - for (Index j=0; j::InnerIterator rhsIt(rhsEval, j); rhsIt; ++rhsIt) - { - // FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index()) - tempVector.restart(); - RhsScalar x = rhsIt.value(); - for (typename evaluator::InnerIterator lhsIt(lhsEval, rhsIt.index()); lhsIt; ++lhsIt) - { - tempVector.coeffRef(lhsIt.index()) += lhsIt.value() * x; - } - } - res.startVec(j); - for (typename AmbiVector::Iterator it(tempVector,tolerance); it; ++it) - res.insertBackByOuterInner(j,it.index()) = it.value(); - } - res.finalize(); -} - -template::Flags&RowMajorBit, - int RhsStorageOrder = traits::Flags&RowMajorBit, - int ResStorageOrder = traits::Flags&RowMajorBit> -struct sparse_sparse_product_with_pruning_selector; - -template -struct sparse_sparse_product_with_pruning_selector -{ - typedef typename ResultType::RealScalar RealScalar; - - static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) - { - typename remove_all::type _res(res.rows(), res.cols()); - internal::sparse_sparse_product_with_pruning_impl(lhs, rhs, _res, tolerance); - res.swap(_res); - } -}; - -template -struct sparse_sparse_product_with_pruning_selector -{ - typedef typename ResultType::RealScalar RealScalar; - static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) - { - // we need a col-major matrix to hold the result - typedef SparseMatrix SparseTemporaryType; - SparseTemporaryType _res(res.rows(), res.cols()); - internal::sparse_sparse_product_with_pruning_impl(lhs, rhs, _res, tolerance); - res = _res; - } -}; - -template -struct sparse_sparse_product_with_pruning_selector -{ - typedef typename ResultType::RealScalar RealScalar; - static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) - { - // let's transpose the product to get a column x column product - typename remove_all::type _res(res.rows(), res.cols()); - internal::sparse_sparse_product_with_pruning_impl(rhs, lhs, _res, tolerance); - res.swap(_res); - } -}; - -template -struct sparse_sparse_product_with_pruning_selector -{ - typedef typename ResultType::RealScalar RealScalar; - static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) - { - typedef SparseMatrix ColMajorMatrixLhs; - typedef SparseMatrix ColMajorMatrixRhs; - ColMajorMatrixLhs colLhs(lhs); - ColMajorMatrixRhs colRhs(rhs); - internal::sparse_sparse_product_with_pruning_impl(colLhs, colRhs, res, tolerance); - - // let's transpose the product to get a column x column product -// typedef SparseMatrix SparseTemporaryType; -// SparseTemporaryType _res(res.cols(), res.rows()); -// sparse_sparse_product_with_pruning_impl(rhs, lhs, _res); -// res = _res.transpose(); - } -}; - -template -struct sparse_sparse_product_with_pruning_selector -{ - typedef typename ResultType::RealScalar RealScalar; - static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) - { - typedef SparseMatrix RowMajorMatrixLhs; - RowMajorMatrixLhs rowLhs(lhs); - sparse_sparse_product_with_pruning_selector(rowLhs,rhs,res,tolerance); - } -}; - -template -struct sparse_sparse_product_with_pruning_selector -{ - typedef typename ResultType::RealScalar RealScalar; - static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) - { - typedef SparseMatrix RowMajorMatrixRhs; - RowMajorMatrixRhs rowRhs(rhs); - sparse_sparse_product_with_pruning_selector(lhs,rowRhs,res,tolerance); - } -}; - -template -struct sparse_sparse_product_with_pruning_selector -{ - typedef typename ResultType::RealScalar RealScalar; - static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) - { - typedef SparseMatrix ColMajorMatrixRhs; - ColMajorMatrixRhs colRhs(rhs); - internal::sparse_sparse_product_with_pruning_impl(lhs, colRhs, res, tolerance); - } -}; - -template -struct sparse_sparse_product_with_pruning_selector -{ - typedef typename ResultType::RealScalar RealScalar; - static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance) - { - typedef SparseMatrix ColMajorMatrixLhs; - ColMajorMatrixLhs colLhs(lhs); - internal::sparse_sparse_product_with_pruning_impl(colLhs, rhs, res, tolerance); - } -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H diff --git a/src/math_meigen/Eigen/src/SparseCore/SparseTranspose.h b/src/math_meigen/Eigen/src/SparseCore/SparseTranspose.h deleted file mode 100755 index 3757d4c6b..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/SparseTranspose.h +++ /dev/null @@ -1,92 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2015 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSETRANSPOSE_H -#define EIGEN_SPARSETRANSPOSE_H - -namespace Eigen { - -namespace internal { - template - class SparseTransposeImpl - : public SparseMatrixBase > - {}; - - template - class SparseTransposeImpl - : public SparseCompressedBase > - { - typedef SparseCompressedBase > Base; - public: - using Base::derived; - typedef typename Base::Scalar Scalar; - typedef typename Base::StorageIndex StorageIndex; - - inline Index nonZeros() const { return derived().nestedExpression().nonZeros(); } - - inline const Scalar* valuePtr() const { return derived().nestedExpression().valuePtr(); } - inline const StorageIndex* innerIndexPtr() const { return derived().nestedExpression().innerIndexPtr(); } - inline const StorageIndex* outerIndexPtr() const { return derived().nestedExpression().outerIndexPtr(); } - inline const StorageIndex* innerNonZeroPtr() const { return derived().nestedExpression().innerNonZeroPtr(); } - - inline Scalar* valuePtr() { return derived().nestedExpression().valuePtr(); } - inline StorageIndex* innerIndexPtr() { return derived().nestedExpression().innerIndexPtr(); } - inline StorageIndex* outerIndexPtr() { return derived().nestedExpression().outerIndexPtr(); } - inline StorageIndex* innerNonZeroPtr() { return derived().nestedExpression().innerNonZeroPtr(); } - }; -} - -template class TransposeImpl - : public internal::SparseTransposeImpl -{ - protected: - typedef internal::SparseTransposeImpl Base; -}; - -namespace internal { - -template -struct unary_evaluator, IteratorBased> - : public evaluator_base > -{ - typedef typename evaluator::InnerIterator EvalIterator; - public: - typedef Transpose XprType; - - inline Index nonZerosEstimate() const { - return m_argImpl.nonZerosEstimate(); - } - - class InnerIterator : public EvalIterator - { - public: - EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& unaryOp, Index outer) - : EvalIterator(unaryOp.m_argImpl,outer) - {} - - Index row() const { return EvalIterator::col(); } - Index col() const { return EvalIterator::row(); } - }; - - enum { - CoeffReadCost = evaluator::CoeffReadCost, - Flags = XprType::Flags - }; - - explicit unary_evaluator(const XprType& op) :m_argImpl(op.nestedExpression()) {} - - protected: - evaluator m_argImpl; -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_SPARSETRANSPOSE_H diff --git a/src/math_meigen/Eigen/src/SparseCore/SparseTriangularView.h b/src/math_meigen/Eigen/src/SparseCore/SparseTriangularView.h deleted file mode 100755 index 9ac120266..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/SparseTriangularView.h +++ /dev/null @@ -1,189 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009-2015 Gael Guennebaud -// Copyright (C) 2012 Désiré Nuentsa-Wakam -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSE_TRIANGULARVIEW_H -#define EIGEN_SPARSE_TRIANGULARVIEW_H - -namespace Eigen { - -/** \ingroup SparseCore_Module - * - * \brief Base class for a triangular part in a \b sparse matrix - * - * This class is an abstract base class of class TriangularView, and objects of type TriangularViewImpl cannot be instantiated. - * It extends class TriangularView with additional methods which are available for sparse expressions only. - * - * \sa class TriangularView, SparseMatrixBase::triangularView() - */ -template class TriangularViewImpl - : public SparseMatrixBase > -{ - enum { SkipFirst = ((Mode&Lower) && !(MatrixType::Flags&RowMajorBit)) - || ((Mode&Upper) && (MatrixType::Flags&RowMajorBit)), - SkipLast = !SkipFirst, - SkipDiag = (Mode&ZeroDiag) ? 1 : 0, - HasUnitDiag = (Mode&UnitDiag) ? 1 : 0 - }; - - typedef TriangularView TriangularViewType; - - protected: - // dummy solve function to make TriangularView happy. - void solve() const; - - typedef SparseMatrixBase Base; - public: - - EIGEN_SPARSE_PUBLIC_INTERFACE(TriangularViewType) - - typedef typename MatrixType::Nested MatrixTypeNested; - typedef typename internal::remove_reference::type MatrixTypeNestedNonRef; - typedef typename internal::remove_all::type MatrixTypeNestedCleaned; - - template - EIGEN_DEVICE_FUNC - EIGEN_STRONG_INLINE void _solve_impl(const RhsType &rhs, DstType &dst) const { - if(!(internal::is_same::value && internal::extract_data(dst) == internal::extract_data(rhs))) - dst = rhs; - this->solveInPlace(dst); - } - - /** Applies the inverse of \c *this to the dense vector or matrix \a other, "in-place" */ - template void solveInPlace(MatrixBase& other) const; - - /** Applies the inverse of \c *this to the sparse vector or matrix \a other, "in-place" */ - template void solveInPlace(SparseMatrixBase& other) const; - -}; - -namespace internal { - -template -struct unary_evaluator, IteratorBased> - : evaluator_base > -{ - typedef TriangularView XprType; - -protected: - - typedef typename XprType::Scalar Scalar; - typedef typename XprType::StorageIndex StorageIndex; - typedef typename evaluator::InnerIterator EvalIterator; - - enum { SkipFirst = ((Mode&Lower) && !(ArgType::Flags&RowMajorBit)) - || ((Mode&Upper) && (ArgType::Flags&RowMajorBit)), - SkipLast = !SkipFirst, - SkipDiag = (Mode&ZeroDiag) ? 1 : 0, - HasUnitDiag = (Mode&UnitDiag) ? 1 : 0 - }; - -public: - - enum { - CoeffReadCost = evaluator::CoeffReadCost, - Flags = XprType::Flags - }; - - explicit unary_evaluator(const XprType &xpr) : m_argImpl(xpr.nestedExpression()), m_arg(xpr.nestedExpression()) {} - - inline Index nonZerosEstimate() const { - return m_argImpl.nonZerosEstimate(); - } - - class InnerIterator : public EvalIterator - { - typedef EvalIterator Base; - public: - - EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& xprEval, Index outer) - : Base(xprEval.m_argImpl,outer), m_returnOne(false), m_containsDiag(Base::outer()index()<=outer : this->index()=Base::outer())) - { - if((!SkipFirst) && Base::operator bool()) - Base::operator++(); - m_returnOne = m_containsDiag; - } - } - - EIGEN_STRONG_INLINE InnerIterator& operator++() - { - if(HasUnitDiag && m_returnOne) - m_returnOne = false; - else - { - Base::operator++(); - if(HasUnitDiag && (!SkipFirst) && ((!Base::operator bool()) || Base::index()>=Base::outer())) - { - if((!SkipFirst) && Base::operator bool()) - Base::operator++(); - m_returnOne = m_containsDiag; - } - } - return *this; - } - - EIGEN_STRONG_INLINE operator bool() const - { - if(HasUnitDiag && m_returnOne) - return true; - if(SkipFirst) return Base::operator bool(); - else - { - if (SkipDiag) return (Base::operator bool() && this->index() < this->outer()); - else return (Base::operator bool() && this->index() <= this->outer()); - } - } - -// inline Index row() const { return (ArgType::Flags&RowMajorBit ? Base::outer() : this->index()); } -// inline Index col() const { return (ArgType::Flags&RowMajorBit ? this->index() : Base::outer()); } - inline StorageIndex index() const - { - if(HasUnitDiag && m_returnOne) return internal::convert_index(Base::outer()); - else return Base::index(); - } - inline Scalar value() const - { - if(HasUnitDiag && m_returnOne) return Scalar(1); - else return Base::value(); - } - - protected: - bool m_returnOne; - bool m_containsDiag; - private: - Scalar& valueRef(); - }; - -protected: - evaluator m_argImpl; - const ArgType& m_arg; -}; - -} // end namespace internal - -template -template -inline const TriangularView -SparseMatrixBase::triangularView() const -{ - return TriangularView(derived()); -} - -} // end namespace Eigen - -#endif // EIGEN_SPARSE_TRIANGULARVIEW_H diff --git a/src/math_meigen/Eigen/src/SparseCore/SparseUtil.h b/src/math_meigen/Eigen/src/SparseCore/SparseUtil.h deleted file mode 100755 index 74df0d496..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/SparseUtil.h +++ /dev/null @@ -1,178 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSEUTIL_H -#define EIGEN_SPARSEUTIL_H - -namespace Eigen { - -#ifdef NDEBUG -#define EIGEN_DBG_SPARSE(X) -#else -#define EIGEN_DBG_SPARSE(X) X -#endif - -#define EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(Derived, Op) \ -template \ -EIGEN_STRONG_INLINE Derived& operator Op(const Eigen::SparseMatrixBase& other) \ -{ \ - return Base::operator Op(other.derived()); \ -} \ -EIGEN_STRONG_INLINE Derived& operator Op(const Derived& other) \ -{ \ - return Base::operator Op(other); \ -} - -#define EIGEN_SPARSE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, Op) \ -template \ -EIGEN_STRONG_INLINE Derived& operator Op(const Other& scalar) \ -{ \ - return Base::operator Op(scalar); \ -} - -#define EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATORS(Derived) \ -EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(Derived, =) - - -#define EIGEN_SPARSE_PUBLIC_INTERFACE(Derived) \ - EIGEN_GENERIC_PUBLIC_INTERFACE(Derived) - - -const int CoherentAccessPattern = 0x1; -const int InnerRandomAccessPattern = 0x2 | CoherentAccessPattern; -const int OuterRandomAccessPattern = 0x4 | CoherentAccessPattern; -const int RandomAccessPattern = 0x8 | OuterRandomAccessPattern | InnerRandomAccessPattern; - -template class SparseMatrix; -template class DynamicSparseMatrix; -template class SparseVector; -template class MappedSparseMatrix; - -template class SparseSelfAdjointView; -template class SparseDiagonalProduct; -template class SparseView; - -template class SparseSparseProduct; -template class SparseTimeDenseProduct; -template class DenseTimeSparseProduct; -template class SparseDenseOuterProduct; - -template struct SparseSparseProductReturnType; -template::ColsAtCompileTime,internal::traits::RowsAtCompileTime)> struct DenseSparseProductReturnType; - -template::ColsAtCompileTime,internal::traits::RowsAtCompileTime)> struct SparseDenseProductReturnType; -template class SparseSymmetricPermutationProduct; - -namespace internal { - -template struct sparse_eval; - -template struct eval - : sparse_eval::RowsAtCompileTime,traits::ColsAtCompileTime,traits::Flags> -{}; - -template struct sparse_eval { - typedef typename traits::Scalar _Scalar; - typedef typename traits::StorageIndex _StorageIndex; - public: - typedef SparseVector<_Scalar, RowMajor, _StorageIndex> type; -}; - -template struct sparse_eval { - typedef typename traits::Scalar _Scalar; - typedef typename traits::StorageIndex _StorageIndex; - public: - typedef SparseVector<_Scalar, ColMajor, _StorageIndex> type; -}; - -// TODO this seems almost identical to plain_matrix_type -template struct sparse_eval { - typedef typename traits::Scalar _Scalar; - typedef typename traits::StorageIndex _StorageIndex; - enum { _Options = ((Flags&RowMajorBit)==RowMajorBit) ? RowMajor : ColMajor }; - public: - typedef SparseMatrix<_Scalar, _Options, _StorageIndex> type; -}; - -template struct sparse_eval { - typedef typename traits::Scalar _Scalar; - public: - typedef Matrix<_Scalar, 1, 1> type; -}; - -template struct plain_matrix_type -{ - typedef typename traits::Scalar _Scalar; - typedef typename traits::StorageIndex _StorageIndex; - enum { _Options = ((evaluator::Flags&RowMajorBit)==RowMajorBit) ? RowMajor : ColMajor }; - public: - typedef SparseMatrix<_Scalar, _Options, _StorageIndex> type; -}; - -template -struct plain_object_eval - : sparse_eval::RowsAtCompileTime,traits::ColsAtCompileTime, evaluator::Flags> -{}; - -template -struct solve_traits -{ - typedef typename sparse_eval::Flags>::type PlainObject; -}; - -template -struct generic_xpr_base -{ - typedef SparseMatrixBase type; -}; - -struct SparseTriangularShape { static std::string debugName() { return "SparseTriangularShape"; } }; -struct SparseSelfAdjointShape { static std::string debugName() { return "SparseSelfAdjointShape"; } }; - -template<> struct glue_shapes { typedef SparseSelfAdjointShape type; }; -template<> struct glue_shapes { typedef SparseTriangularShape type; }; - -} // end namespace internal - -/** \ingroup SparseCore_Module - * - * \class Triplet - * - * \brief A small structure to hold a non zero as a triplet (i,j,value). - * - * \sa SparseMatrix::setFromTriplets() - */ -template::StorageIndex > -class Triplet -{ -public: - Triplet() : m_row(0), m_col(0), m_value(0) {} - - Triplet(const StorageIndex& i, const StorageIndex& j, const Scalar& v = Scalar(0)) - : m_row(i), m_col(j), m_value(v) - {} - - /** \returns the row index of the element */ - const StorageIndex& row() const { return m_row; } - - /** \returns the column index of the element */ - const StorageIndex& col() const { return m_col; } - - /** \returns the value of the element */ - const Scalar& value() const { return m_value; } -protected: - StorageIndex m_row, m_col; - Scalar m_value; -}; - -} // end namespace Eigen - -#endif // EIGEN_SPARSEUTIL_H diff --git a/src/math_meigen/Eigen/src/SparseCore/SparseVector.h b/src/math_meigen/Eigen/src/SparseCore/SparseVector.h deleted file mode 100755 index 19b0fbc9d..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/SparseVector.h +++ /dev/null @@ -1,478 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2015 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSEVECTOR_H -#define EIGEN_SPARSEVECTOR_H - -namespace Eigen { - -/** \ingroup SparseCore_Module - * \class SparseVector - * - * \brief a sparse vector class - * - * \tparam _Scalar the scalar type, i.e. the type of the coefficients - * - * See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme. - * - * This class can be extended with the help of the plugin mechanism described on the page - * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEVECTOR_PLUGIN. - */ - -namespace internal { -template -struct traits > -{ - typedef _Scalar Scalar; - typedef _StorageIndex StorageIndex; - typedef Sparse StorageKind; - typedef MatrixXpr XprKind; - enum { - IsColVector = (_Options & RowMajorBit) ? 0 : 1, - - RowsAtCompileTime = IsColVector ? Dynamic : 1, - ColsAtCompileTime = IsColVector ? 1 : Dynamic, - MaxRowsAtCompileTime = RowsAtCompileTime, - MaxColsAtCompileTime = ColsAtCompileTime, - Flags = _Options | NestByRefBit | LvalueBit | (IsColVector ? 0 : RowMajorBit) | CompressedAccessBit, - SupportedAccessPatterns = InnerRandomAccessPattern - }; -}; - -// Sparse-Vector-Assignment kinds: -enum { - SVA_RuntimeSwitch, - SVA_Inner, - SVA_Outer -}; - -template< typename Dest, typename Src, - int AssignmentKind = !bool(Src::IsVectorAtCompileTime) ? SVA_RuntimeSwitch - : Src::InnerSizeAtCompileTime==1 ? SVA_Outer - : SVA_Inner> -struct sparse_vector_assign_selector; - -} - -template -class SparseVector - : public SparseCompressedBase > -{ - typedef SparseCompressedBase Base; - using Base::convert_index; - public: - EIGEN_SPARSE_PUBLIC_INTERFACE(SparseVector) - EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, +=) - EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, -=) - - typedef internal::CompressedStorage Storage; - enum { IsColVector = internal::traits::IsColVector }; - - enum { - Options = _Options - }; - - EIGEN_STRONG_INLINE Index rows() const { return IsColVector ? m_size : 1; } - EIGEN_STRONG_INLINE Index cols() const { return IsColVector ? 1 : m_size; } - EIGEN_STRONG_INLINE Index innerSize() const { return m_size; } - EIGEN_STRONG_INLINE Index outerSize() const { return 1; } - - EIGEN_STRONG_INLINE const Scalar* valuePtr() const { return m_data.valuePtr(); } - EIGEN_STRONG_INLINE Scalar* valuePtr() { return m_data.valuePtr(); } - - EIGEN_STRONG_INLINE const StorageIndex* innerIndexPtr() const { return m_data.indexPtr(); } - EIGEN_STRONG_INLINE StorageIndex* innerIndexPtr() { return m_data.indexPtr(); } - - inline const StorageIndex* outerIndexPtr() const { return 0; } - inline StorageIndex* outerIndexPtr() { return 0; } - inline const StorageIndex* innerNonZeroPtr() const { return 0; } - inline StorageIndex* innerNonZeroPtr() { return 0; } - - /** \internal */ - inline Storage& data() { return m_data; } - /** \internal */ - inline const Storage& data() const { return m_data; } - - inline Scalar coeff(Index row, Index col) const - { - eigen_assert(IsColVector ? (col==0 && row>=0 && row=0 && col=0 && i=0 && row=0 && col=0 && i=0 && row=0 && col=0 && i= startId) && (m_data.index(p) > i) ) - { - m_data.index(p+1) = m_data.index(p); - m_data.value(p+1) = m_data.value(p); - --p; - } - m_data.index(p+1) = convert_index(i); - m_data.value(p+1) = 0; - return m_data.value(p+1); - } - - /** - */ - inline void reserve(Index reserveSize) { m_data.reserve(reserveSize); } - - - inline void finalize() {} - - /** \copydoc SparseMatrix::prune(const Scalar&,const RealScalar&) */ - void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits::dummy_precision()) - { - m_data.prune(reference,epsilon); - } - - /** Resizes the sparse vector to \a rows x \a cols - * - * This method is provided for compatibility with matrices. - * For a column vector, \a cols must be equal to 1. - * For a row vector, \a rows must be equal to 1. - * - * \sa resize(Index) - */ - void resize(Index rows, Index cols) - { - eigen_assert((IsColVector ? cols : rows)==1 && "Outer dimension must equal 1"); - resize(IsColVector ? rows : cols); - } - - /** Resizes the sparse vector to \a newSize - * This method deletes all entries, thus leaving an empty sparse vector - * - * \sa conservativeResize(), setZero() */ - void resize(Index newSize) - { - m_size = newSize; - m_data.clear(); - } - - /** Resizes the sparse vector to \a newSize, while leaving old values untouched. - * - * If the size of the vector is decreased, then the storage of the out-of bounds coefficients is kept and reserved. - * Call .data().squeeze() to free extra memory. - * - * \sa reserve(), setZero() - */ - void conservativeResize(Index newSize) - { - if (newSize < m_size) - { - Index i = 0; - while (i - inline SparseVector(const SparseMatrixBase& other) - : m_size(0) - { - #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN - EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN - #endif - check_template_parameters(); - *this = other.derived(); - } - - inline SparseVector(const SparseVector& other) - : Base(other), m_size(0) - { - check_template_parameters(); - *this = other.derived(); - } - - /** Swaps the values of \c *this and \a other. - * Overloaded for performance: this version performs a \em shallow swap by swaping pointers and attributes only. - * \sa SparseMatrixBase::swap() - */ - inline void swap(SparseVector& other) - { - std::swap(m_size, other.m_size); - m_data.swap(other.m_data); - } - - template - inline void swap(SparseMatrix& other) - { - eigen_assert(other.outerSize()==1); - std::swap(m_size, other.m_innerSize); - m_data.swap(other.m_data); - } - - inline SparseVector& operator=(const SparseVector& other) - { - if (other.isRValue()) - { - swap(other.const_cast_derived()); - } - else - { - resize(other.size()); - m_data = other.m_data; - } - return *this; - } - - template - inline SparseVector& operator=(const SparseMatrixBase& other) - { - SparseVector tmp(other.size()); - internal::sparse_vector_assign_selector::run(tmp,other.derived()); - this->swap(tmp); - return *this; - } - - #ifndef EIGEN_PARSED_BY_DOXYGEN - template - inline SparseVector& operator=(const SparseSparseProduct& product) - { - return Base::operator=(product); - } - #endif - - friend std::ostream & operator << (std::ostream & s, const SparseVector& m) - { - for (Index i=0; i::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE); - EIGEN_STATIC_ASSERT((_Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS); - } - - Storage m_data; - Index m_size; -}; - -namespace internal { - -template -struct evaluator > - : evaluator_base > -{ - typedef SparseVector<_Scalar,_Options,_Index> SparseVectorType; - typedef evaluator_base Base; - typedef typename SparseVectorType::InnerIterator InnerIterator; - typedef typename SparseVectorType::ReverseInnerIterator ReverseInnerIterator; - - enum { - CoeffReadCost = NumTraits<_Scalar>::ReadCost, - Flags = SparseVectorType::Flags - }; - - evaluator() : Base() {} - - explicit evaluator(const SparseVectorType &mat) : m_matrix(&mat) - { - EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); - } - - inline Index nonZerosEstimate() const { - return m_matrix->nonZeros(); - } - - operator SparseVectorType&() { return m_matrix->const_cast_derived(); } - operator const SparseVectorType&() const { return *m_matrix; } - - const SparseVectorType *m_matrix; -}; - -template< typename Dest, typename Src> -struct sparse_vector_assign_selector { - static void run(Dest& dst, const Src& src) { - eigen_internal_assert(src.innerSize()==src.size()); - typedef internal::evaluator SrcEvaluatorType; - SrcEvaluatorType srcEval(src); - for(typename SrcEvaluatorType::InnerIterator it(srcEval, 0); it; ++it) - dst.insert(it.index()) = it.value(); - } -}; - -template< typename Dest, typename Src> -struct sparse_vector_assign_selector { - static void run(Dest& dst, const Src& src) { - eigen_internal_assert(src.outerSize()==src.size()); - typedef internal::evaluator SrcEvaluatorType; - SrcEvaluatorType srcEval(src); - for(Index i=0; i -struct sparse_vector_assign_selector { - static void run(Dest& dst, const Src& src) { - if(src.outerSize()==1) sparse_vector_assign_selector::run(dst, src); - else sparse_vector_assign_selector::run(dst, src); - } -}; - -} - -} // end namespace Eigen - -#endif // EIGEN_SPARSEVECTOR_H diff --git a/src/math_meigen/Eigen/src/SparseCore/SparseView.h b/src/math_meigen/Eigen/src/SparseCore/SparseView.h deleted file mode 100755 index 7c4aea743..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/SparseView.h +++ /dev/null @@ -1,253 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2011-2014 Gael Guennebaud -// Copyright (C) 2010 Daniel Lowengrub -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSEVIEW_H -#define EIGEN_SPARSEVIEW_H - -namespace Eigen { - -namespace internal { - -template -struct traits > : traits -{ - typedef typename MatrixType::StorageIndex StorageIndex; - typedef Sparse StorageKind; - enum { - Flags = int(traits::Flags) & (RowMajorBit) - }; -}; - -} // end namespace internal - -/** \ingroup SparseCore_Module - * \class SparseView - * - * \brief Expression of a dense or sparse matrix with zero or too small values removed - * - * \tparam MatrixType the type of the object of which we are removing the small entries - * - * This class represents an expression of a given dense or sparse matrix with - * entries smaller than \c reference * \c epsilon are removed. - * It is the return type of MatrixBase::sparseView() and SparseMatrixBase::pruned() - * and most of the time this is the only way it is used. - * - * \sa MatrixBase::sparseView(), SparseMatrixBase::pruned() - */ -template -class SparseView : public SparseMatrixBase > -{ - typedef typename MatrixType::Nested MatrixTypeNested; - typedef typename internal::remove_all::type _MatrixTypeNested; - typedef SparseMatrixBase Base; -public: - EIGEN_SPARSE_PUBLIC_INTERFACE(SparseView) - typedef typename internal::remove_all::type NestedExpression; - - explicit SparseView(const MatrixType& mat, const Scalar& reference = Scalar(0), - const RealScalar &epsilon = NumTraits::dummy_precision()) - : m_matrix(mat), m_reference(reference), m_epsilon(epsilon) {} - - inline Index rows() const { return m_matrix.rows(); } - inline Index cols() const { return m_matrix.cols(); } - - inline Index innerSize() const { return m_matrix.innerSize(); } - inline Index outerSize() const { return m_matrix.outerSize(); } - - /** \returns the nested expression */ - const typename internal::remove_all::type& - nestedExpression() const { return m_matrix; } - - Scalar reference() const { return m_reference; } - RealScalar epsilon() const { return m_epsilon; } - -protected: - MatrixTypeNested m_matrix; - Scalar m_reference; - RealScalar m_epsilon; -}; - -namespace internal { - -// TODO find a way to unify the two following variants -// This is tricky because implementing an inner iterator on top of an IndexBased evaluator is -// not easy because the evaluators do not expose the sizes of the underlying expression. - -template -struct unary_evaluator, IteratorBased> - : public evaluator_base > -{ - typedef typename evaluator::InnerIterator EvalIterator; - public: - typedef SparseView XprType; - - class InnerIterator : public EvalIterator - { - typedef typename XprType::Scalar Scalar; - public: - - EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& sve, Index outer) - : EvalIterator(sve.m_argImpl,outer), m_view(sve.m_view) - { - incrementToNonZero(); - } - - EIGEN_STRONG_INLINE InnerIterator& operator++() - { - EvalIterator::operator++(); - incrementToNonZero(); - return *this; - } - - using EvalIterator::value; - - protected: - const XprType &m_view; - - private: - void incrementToNonZero() - { - while((bool(*this)) && internal::isMuchSmallerThan(value(), m_view.reference(), m_view.epsilon())) - { - EvalIterator::operator++(); - } - } - }; - - enum { - CoeffReadCost = evaluator::CoeffReadCost, - Flags = XprType::Flags - }; - - explicit unary_evaluator(const XprType& xpr) : m_argImpl(xpr.nestedExpression()), m_view(xpr) {} - - protected: - evaluator m_argImpl; - const XprType &m_view; -}; - -template -struct unary_evaluator, IndexBased> - : public evaluator_base > -{ - public: - typedef SparseView XprType; - protected: - enum { IsRowMajor = (XprType::Flags&RowMajorBit)==RowMajorBit }; - typedef typename XprType::Scalar Scalar; - typedef typename XprType::StorageIndex StorageIndex; - public: - - class InnerIterator - { - public: - - EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& sve, Index outer) - : m_sve(sve), m_inner(0), m_outer(outer), m_end(sve.m_view.innerSize()) - { - incrementToNonZero(); - } - - EIGEN_STRONG_INLINE InnerIterator& operator++() - { - m_inner++; - incrementToNonZero(); - return *this; - } - - EIGEN_STRONG_INLINE Scalar value() const - { - return (IsRowMajor) ? m_sve.m_argImpl.coeff(m_outer, m_inner) - : m_sve.m_argImpl.coeff(m_inner, m_outer); - } - - EIGEN_STRONG_INLINE StorageIndex index() const { return m_inner; } - inline Index row() const { return IsRowMajor ? m_outer : index(); } - inline Index col() const { return IsRowMajor ? index() : m_outer; } - - EIGEN_STRONG_INLINE operator bool() const { return m_inner < m_end && m_inner>=0; } - - protected: - const unary_evaluator &m_sve; - Index m_inner; - const Index m_outer; - const Index m_end; - - private: - void incrementToNonZero() - { - while((bool(*this)) && internal::isMuchSmallerThan(value(), m_sve.m_view.reference(), m_sve.m_view.epsilon())) - { - m_inner++; - } - } - }; - - enum { - CoeffReadCost = evaluator::CoeffReadCost, - Flags = XprType::Flags - }; - - explicit unary_evaluator(const XprType& xpr) : m_argImpl(xpr.nestedExpression()), m_view(xpr) {} - - protected: - evaluator m_argImpl; - const XprType &m_view; -}; - -} // end namespace internal - -/** \ingroup SparseCore_Module - * - * \returns a sparse expression of the dense expression \c *this with values smaller than - * \a reference * \a epsilon removed. - * - * This method is typically used when prototyping to convert a quickly assembled dense Matrix \c D to a SparseMatrix \c S: - * \code - * MatrixXd D(n,m); - * SparseMatrix S; - * S = D.sparseView(); // suppress numerical zeros (exact) - * S = D.sparseView(reference); - * S = D.sparseView(reference,epsilon); - * \endcode - * where \a reference is a meaningful non zero reference value, - * and \a epsilon is a tolerance factor defaulting to NumTraits::dummy_precision(). - * - * \sa SparseMatrixBase::pruned(), class SparseView */ -template -const SparseView MatrixBase::sparseView(const Scalar& reference, - const typename NumTraits::Real& epsilon) const -{ - return SparseView(derived(), reference, epsilon); -} - -/** \returns an expression of \c *this with values smaller than - * \a reference * \a epsilon removed. - * - * This method is typically used in conjunction with the product of two sparse matrices - * to automatically prune the smallest values as follows: - * \code - * C = (A*B).pruned(); // suppress numerical zeros (exact) - * C = (A*B).pruned(ref); - * C = (A*B).pruned(ref,epsilon); - * \endcode - * where \c ref is a meaningful non zero reference value. - * */ -template -const SparseView -SparseMatrixBase::pruned(const Scalar& reference, - const RealScalar& epsilon) const -{ - return SparseView(derived(), reference, epsilon); -} - -} // end namespace Eigen - -#endif diff --git a/src/math_meigen/Eigen/src/SparseCore/TriangularSolver.h b/src/math_meigen/Eigen/src/SparseCore/TriangularSolver.h deleted file mode 100755 index f9c56ba79..000000000 --- a/src/math_meigen/Eigen/src/SparseCore/TriangularSolver.h +++ /dev/null @@ -1,315 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSETRIANGULARSOLVER_H -#define EIGEN_SPARSETRIANGULARSOLVER_H - -namespace Eigen { - -namespace internal { - -template::Flags) & RowMajorBit> -struct sparse_solve_triangular_selector; - -// forward substitution, row-major -template -struct sparse_solve_triangular_selector -{ - typedef typename Rhs::Scalar Scalar; - typedef evaluator LhsEval; - typedef typename evaluator::InnerIterator LhsIterator; - static void run(const Lhs& lhs, Rhs& other) - { - LhsEval lhsEval(lhs); - for(Index col=0 ; col -struct sparse_solve_triangular_selector -{ - typedef typename Rhs::Scalar Scalar; - typedef evaluator LhsEval; - typedef typename evaluator::InnerIterator LhsIterator; - static void run(const Lhs& lhs, Rhs& other) - { - LhsEval lhsEval(lhs); - for(Index col=0 ; col=0 ; --i) - { - Scalar tmp = other.coeff(i,col); - Scalar l_ii(0); - LhsIterator it(lhsEval, i); - while(it && it.index() -struct sparse_solve_triangular_selector -{ - typedef typename Rhs::Scalar Scalar; - typedef evaluator LhsEval; - typedef typename evaluator::InnerIterator LhsIterator; - static void run(const Lhs& lhs, Rhs& other) - { - LhsEval lhsEval(lhs); - for(Index col=0 ; col -struct sparse_solve_triangular_selector -{ - typedef typename Rhs::Scalar Scalar; - typedef evaluator LhsEval; - typedef typename evaluator::InnerIterator LhsIterator; - static void run(const Lhs& lhs, Rhs& other) - { - LhsEval lhsEval(lhs); - for(Index col=0 ; col=0; --i) - { - Scalar& tmp = other.coeffRef(i,col); - if (tmp!=Scalar(0)) // optimization when other is actually sparse - { - if(!(Mode & UnitDiag)) - { - // TODO replace this by a binary search. make sure the binary search is safe for partially sorted elements - LhsIterator it(lhsEval, i); - while(it && it.index()!=i) - ++it; - eigen_assert(it && it.index()==i); - other.coeffRef(i,col) /= it.value(); - } - LhsIterator it(lhsEval, i); - for(; it && it.index() -template -void TriangularViewImpl::solveInPlace(MatrixBase& other) const -{ - eigen_assert(derived().cols() == derived().rows() && derived().cols() == other.rows()); - eigen_assert((!(Mode & ZeroDiag)) && bool(Mode & (Upper|Lower))); - - enum { copy = internal::traits::Flags & RowMajorBit }; - - typedef typename internal::conditional::type, OtherDerived&>::type OtherCopy; - OtherCopy otherCopy(other.derived()); - - internal::sparse_solve_triangular_selector::type, Mode>::run(derived().nestedExpression(), otherCopy); - - if (copy) - other = otherCopy; -} -#endif - -// pure sparse path - -namespace internal { - -template -struct sparse_solve_triangular_sparse_selector; - -// forward substitution, col-major -template -struct sparse_solve_triangular_sparse_selector -{ - typedef typename Rhs::Scalar Scalar; - typedef typename promote_index_type::StorageIndex, - typename traits::StorageIndex>::type StorageIndex; - static void run(const Lhs& lhs, Rhs& other) - { - const bool IsLower = (UpLo==Lower); - AmbiVector tempVector(other.rows()*2); - tempVector.setBounds(0,other.rows()); - - Rhs res(other.rows(), other.cols()); - res.reserve(other.nonZeros()); - - for(Index col=0 ; col=0; - i+=IsLower?1:-1) - { - tempVector.restart(); - Scalar& ci = tempVector.coeffRef(i); - if (ci!=Scalar(0)) - { - // find - typename Lhs::InnerIterator it(lhs, i); - if(!(Mode & UnitDiag)) - { - if (IsLower) - { - eigen_assert(it.index()==i); - ci /= it.value(); - } - else - ci /= lhs.coeff(i,i); - } - tempVector.restart(); - if (IsLower) - { - if (it.index()==i) - ++it; - for(; it; ++it) - tempVector.coeffRef(it.index()) -= ci * it.value(); - } - else - { - for(; it && it.index()::Iterator it(tempVector/*,1e-12*/); it; ++it) - { - ++ count; -// std::cerr << "fill " << it.index() << ", " << col << "\n"; -// std::cout << it.value() << " "; - // FIXME use insertBack - res.insert(it.index(), col) = it.value(); - } -// std::cout << "tempVector.nonZeros() == " << int(count) << " / " << (other.rows()) << "\n"; - } - res.finalize(); - other = res.markAsRValue(); - } -}; - -} // end namespace internal - -#ifndef EIGEN_PARSED_BY_DOXYGEN -template -template -void TriangularViewImpl::solveInPlace(SparseMatrixBase& other) const -{ - eigen_assert(derived().cols() == derived().rows() && derived().cols() == other.rows()); - eigen_assert( (!(Mode & ZeroDiag)) && bool(Mode & (Upper|Lower))); - -// enum { copy = internal::traits::Flags & RowMajorBit }; - -// typedef typename internal::conditional::type, OtherDerived&>::type OtherCopy; -// OtherCopy otherCopy(other.derived()); - - internal::sparse_solve_triangular_sparse_selector::run(derived().nestedExpression(), other.derived()); - -// if (copy) -// other = otherCopy; -} -#endif - -} // end namespace Eigen - -#endif // EIGEN_SPARSETRIANGULARSOLVER_H diff --git a/src/math_meigen/Eigen/src/SparseLU/SparseLU.h b/src/math_meigen/Eigen/src/SparseLU/SparseLU.h deleted file mode 100755 index 7104831c0..000000000 --- a/src/math_meigen/Eigen/src/SparseLU/SparseLU.h +++ /dev/null @@ -1,773 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Désiré Nuentsa-Wakam -// Copyright (C) 2012-2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - - -#ifndef EIGEN_SPARSE_LU_H -#define EIGEN_SPARSE_LU_H - -namespace Eigen { - -template > class SparseLU; -template struct SparseLUMatrixLReturnType; -template struct SparseLUMatrixUReturnType; - -/** \ingroup SparseLU_Module - * \class SparseLU - * - * \brief Sparse supernodal LU factorization for general matrices - * - * This class implements the supernodal LU factorization for general matrices. - * It uses the main techniques from the sequential SuperLU package - * (http://crd-legacy.lbl.gov/~xiaoye/SuperLU/). It handles transparently real - * and complex arithmetics with single and double precision, depending on the - * scalar type of your input matrix. - * The code has been optimized to provide BLAS-3 operations during supernode-panel updates. - * It benefits directly from the built-in high-performant Eigen BLAS routines. - * Moreover, when the size of a supernode is very small, the BLAS calls are avoided to - * enable a better optimization from the compiler. For best performance, - * you should compile it with NDEBUG flag to avoid the numerous bounds checking on vectors. - * - * An important parameter of this class is the ordering method. It is used to reorder the columns - * (and eventually the rows) of the matrix to reduce the number of new elements that are created during - * numerical factorization. The cheapest method available is COLAMD. - * See \link OrderingMethods_Module the OrderingMethods module \endlink for the list of - * built-in and external ordering methods. - * - * Simple example with key steps - * \code - * VectorXd x(n), b(n); - * SparseMatrix A; - * SparseLU, COLAMDOrdering > solver; - * // fill A and b; - * // Compute the ordering permutation vector from the structural pattern of A - * solver.analyzePattern(A); - * // Compute the numerical factorization - * solver.factorize(A); - * //Use the factors to solve the linear system - * x = solver.solve(b); - * \endcode - * - * \warning The input matrix A should be in a \b compressed and \b column-major form. - * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix. - * - * \note Unlike the initial SuperLU implementation, there is no step to equilibrate the matrix. - * For badly scaled matrices, this step can be useful to reduce the pivoting during factorization. - * If this is the case for your matrices, you can try the basic scaling method at - * "unsupported/Eigen/src/IterativeSolvers/Scaling.h" - * - * \tparam _MatrixType The type of the sparse matrix. It must be a column-major SparseMatrix<> - * \tparam _OrderingType The ordering method to use, either AMD, COLAMD or METIS. Default is COLMAD - * - * \implsparsesolverconcept - * - * \sa \ref TutorialSparseSolverConcept - * \sa \ref OrderingMethods_Module - */ -template -class SparseLU : public SparseSolverBase >, public internal::SparseLUImpl -{ - protected: - typedef SparseSolverBase > APIBase; - using APIBase::m_isInitialized; - public: - using APIBase::_solve_impl; - - typedef _MatrixType MatrixType; - typedef _OrderingType OrderingType; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef typename MatrixType::StorageIndex StorageIndex; - typedef SparseMatrix NCMatrix; - typedef internal::MappedSuperNodalMatrix SCMatrix; - typedef Matrix ScalarVector; - typedef Matrix IndexVector; - typedef PermutationMatrix PermutationType; - typedef internal::SparseLUImpl Base; - - enum { - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime - }; - - public: - SparseLU():m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1) - { - initperfvalues(); - } - explicit SparseLU(const MatrixType& matrix) - : m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1) - { - initperfvalues(); - compute(matrix); - } - - ~SparseLU() - { - // Free all explicit dynamic pointers - } - - void analyzePattern (const MatrixType& matrix); - void factorize (const MatrixType& matrix); - void simplicialfactorize(const MatrixType& matrix); - - /** - * Compute the symbolic and numeric factorization of the input sparse matrix. - * The input matrix should be in column-major storage. - */ - void compute (const MatrixType& matrix) - { - // Analyze - analyzePattern(matrix); - //Factorize - factorize(matrix); - } - - inline Index rows() const { return m_mat.rows(); } - inline Index cols() const { return m_mat.cols(); } - /** Indicate that the pattern of the input matrix is symmetric */ - void isSymmetric(bool sym) - { - m_symmetricmode = sym; - } - - /** \returns an expression of the matrix L, internally stored as supernodes - * The only operation available with this expression is the triangular solve - * \code - * y = b; matrixL().solveInPlace(y); - * \endcode - */ - SparseLUMatrixLReturnType matrixL() const - { - return SparseLUMatrixLReturnType(m_Lstore); - } - /** \returns an expression of the matrix U, - * The only operation available with this expression is the triangular solve - * \code - * y = b; matrixU().solveInPlace(y); - * \endcode - */ - SparseLUMatrixUReturnType > matrixU() const - { - return SparseLUMatrixUReturnType >(m_Lstore, m_Ustore); - } - - /** - * \returns a reference to the row matrix permutation \f$ P_r \f$ such that \f$P_r A P_c^T = L U\f$ - * \sa colsPermutation() - */ - inline const PermutationType& rowsPermutation() const - { - return m_perm_r; - } - /** - * \returns a reference to the column matrix permutation\f$ P_c^T \f$ such that \f$P_r A P_c^T = L U\f$ - * \sa rowsPermutation() - */ - inline const PermutationType& colsPermutation() const - { - return m_perm_c; - } - /** Set the threshold used for a diagonal entry to be an acceptable pivot. */ - void setPivotThreshold(const RealScalar& thresh) - { - m_diagpivotthresh = thresh; - } - -#ifdef EIGEN_PARSED_BY_DOXYGEN - /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A. - * - * \warning the destination matrix X in X = this->solve(B) must be colmun-major. - * - * \sa compute() - */ - template - inline const Solve solve(const MatrixBase& B) const; -#endif // EIGEN_PARSED_BY_DOXYGEN - - /** \brief Reports whether previous computation was successful. - * - * \returns \c Success if computation was succesful, - * \c NumericalIssue if the LU factorization reports a problem, zero diagonal for instance - * \c InvalidInput if the input matrix is invalid - * - * \sa iparm() - */ - ComputationInfo info() const - { - eigen_assert(m_isInitialized && "Decomposition is not initialized."); - return m_info; - } - - /** - * \returns A string describing the type of error - */ - std::string lastErrorMessage() const - { - return m_lastError; - } - - template - bool _solve_impl(const MatrixBase &B, MatrixBase &X_base) const - { - Dest& X(X_base.derived()); - eigen_assert(m_factorizationIsOk && "The matrix should be factorized first"); - EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0, - THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); - - // Permute the right hand side to form X = Pr*B - // on return, X is overwritten by the computed solution - X.resize(B.rows(),B.cols()); - - // this ugly const_cast_derived() helps to detect aliasing when applying the permutations - for(Index j = 0; j < B.cols(); ++j) - X.col(j) = rowsPermutation() * B.const_cast_derived().col(j); - - //Forward substitution with L - this->matrixL().solveInPlace(X); - this->matrixU().solveInPlace(X); - - // Permute back the solution - for (Index j = 0; j < B.cols(); ++j) - X.col(j) = colsPermutation().inverse() * X.col(j); - - return true; - } - - /** - * \returns the absolute value of the determinant of the matrix of which - * *this is the QR decomposition. - * - * \warning a determinant can be very big or small, so for matrices - * of large enough dimension, there is a risk of overflow/underflow. - * One way to work around that is to use logAbsDeterminant() instead. - * - * \sa logAbsDeterminant(), signDeterminant() - */ - Scalar absDeterminant() - { - using std::abs; - eigen_assert(m_factorizationIsOk && "The matrix should be factorized first."); - // Initialize with the determinant of the row matrix - Scalar det = Scalar(1.); - // Note that the diagonal blocks of U are stored in supernodes, - // which are available in the L part :) - for (Index j = 0; j < this->cols(); ++j) - { - for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it) - { - if(it.index() == j) - { - det *= abs(it.value()); - break; - } - } - } - return det; - } - - /** \returns the natural log of the absolute value of the determinant of the matrix - * of which **this is the QR decomposition - * - * \note This method is useful to work around the risk of overflow/underflow that's - * inherent to the determinant computation. - * - * \sa absDeterminant(), signDeterminant() - */ - Scalar logAbsDeterminant() const - { - using std::log; - using std::abs; - - eigen_assert(m_factorizationIsOk && "The matrix should be factorized first."); - Scalar det = Scalar(0.); - for (Index j = 0; j < this->cols(); ++j) - { - for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it) - { - if(it.row() < j) continue; - if(it.row() == j) - { - det += log(abs(it.value())); - break; - } - } - } - return det; - } - - /** \returns A number representing the sign of the determinant - * - * \sa absDeterminant(), logAbsDeterminant() - */ - Scalar signDeterminant() - { - eigen_assert(m_factorizationIsOk && "The matrix should be factorized first."); - // Initialize with the determinant of the row matrix - Index det = 1; - // Note that the diagonal blocks of U are stored in supernodes, - // which are available in the L part :) - for (Index j = 0; j < this->cols(); ++j) - { - for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it) - { - if(it.index() == j) - { - if(it.value()<0) - det = -det; - else if(it.value()==0) - return 0; - break; - } - } - } - return det * m_detPermR * m_detPermC; - } - - /** \returns The determinant of the matrix. - * - * \sa absDeterminant(), logAbsDeterminant() - */ - Scalar determinant() - { - eigen_assert(m_factorizationIsOk && "The matrix should be factorized first."); - // Initialize with the determinant of the row matrix - Scalar det = Scalar(1.); - // Note that the diagonal blocks of U are stored in supernodes, - // which are available in the L part :) - for (Index j = 0; j < this->cols(); ++j) - { - for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it) - { - if(it.index() == j) - { - det *= it.value(); - break; - } - } - } - return (m_detPermR * m_detPermC) > 0 ? det : -det; - } - - protected: - // Functions - void initperfvalues() - { - m_perfv.panel_size = 16; - m_perfv.relax = 1; - m_perfv.maxsuper = 128; - m_perfv.rowblk = 16; - m_perfv.colblk = 8; - m_perfv.fillfactor = 20; - } - - // Variables - mutable ComputationInfo m_info; - bool m_factorizationIsOk; - bool m_analysisIsOk; - std::string m_lastError; - NCMatrix m_mat; // The input (permuted ) matrix - SCMatrix m_Lstore; // The lower triangular matrix (supernodal) - MappedSparseMatrix m_Ustore; // The upper triangular matrix - PermutationType m_perm_c; // Column permutation - PermutationType m_perm_r ; // Row permutation - IndexVector m_etree; // Column elimination tree - - typename Base::GlobalLU_t m_glu; - - // SparseLU options - bool m_symmetricmode; - // values for performance - internal::perfvalues m_perfv; - RealScalar m_diagpivotthresh; // Specifies the threshold used for a diagonal entry to be an acceptable pivot - Index m_nnzL, m_nnzU; // Nonzeros in L and U factors - Index m_detPermR, m_detPermC; // Determinants of the permutation matrices - private: - // Disable copy constructor - SparseLU (const SparseLU& ); - -}; // End class SparseLU - - - -// Functions needed by the anaysis phase -/** - * Compute the column permutation to minimize the fill-in - * - * - Apply this permutation to the input matrix - - * - * - Compute the column elimination tree on the permuted matrix - * - * - Postorder the elimination tree and the column permutation - * - */ -template -void SparseLU::analyzePattern(const MatrixType& mat) -{ - - //TODO It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat. - - // Firstly, copy the whole input matrix. - m_mat = mat; - - // Compute fill-in ordering - OrderingType ord; - ord(m_mat,m_perm_c); - - // Apply the permutation to the column of the input matrix - if (m_perm_c.size()) - { - m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. FIXME : This vector is filled but not subsequently used. - // Then, permute only the column pointers - ei_declare_aligned_stack_constructed_variable(StorageIndex,outerIndexPtr,mat.cols()+1,mat.isCompressed()?const_cast(mat.outerIndexPtr()):0); - - // If the input matrix 'mat' is uncompressed, then the outer-indices do not match the ones of m_mat, and a copy is thus needed. - if(!mat.isCompressed()) - IndexVector::Map(outerIndexPtr, mat.cols()+1) = IndexVector::Map(m_mat.outerIndexPtr(),mat.cols()+1); - - // Apply the permutation and compute the nnz per column. - for (Index i = 0; i < mat.cols(); i++) - { - m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i]; - m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i]; - } - } - - // Compute the column elimination tree of the permuted matrix - IndexVector firstRowElt; - internal::coletree(m_mat, m_etree,firstRowElt); - - // In symmetric mode, do not do postorder here - if (!m_symmetricmode) { - IndexVector post, iwork; - // Post order etree - internal::treePostorder(StorageIndex(m_mat.cols()), m_etree, post); - - - // Renumber etree in postorder - Index m = m_mat.cols(); - iwork.resize(m+1); - for (Index i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i)); - m_etree = iwork; - - // Postmultiply A*Pc by post, i.e reorder the matrix according to the postorder of the etree - PermutationType post_perm(m); - for (Index i = 0; i < m; i++) - post_perm.indices()(i) = post(i); - - // Combine the two permutations : postorder the permutation for future use - if(m_perm_c.size()) { - m_perm_c = post_perm * m_perm_c; - } - - } // end postordering - - m_analysisIsOk = true; -} - -// Functions needed by the numerical factorization phase - - -/** - * - Numerical factorization - * - Interleaved with the symbolic factorization - * On exit, info is - * - * = 0: successful factorization - * - * > 0: if info = i, and i is - * - * <= A->ncol: U(i,i) is exactly zero. The factorization has - * been completed, but the factor U is exactly singular, - * and division by zero will occur if it is used to solve a - * system of equations. - * - * > A->ncol: number of bytes allocated when memory allocation - * failure occurred, plus A->ncol. If lwork = -1, it is - * the estimated amount of space needed, plus A->ncol. - */ -template -void SparseLU::factorize(const MatrixType& matrix) -{ - using internal::emptyIdxLU; - eigen_assert(m_analysisIsOk && "analyzePattern() should be called first"); - eigen_assert((matrix.rows() == matrix.cols()) && "Only for squared matrices"); - - m_isInitialized = true; - - - // Apply the column permutation computed in analyzepattern() - // m_mat = matrix * m_perm_c.inverse(); - m_mat = matrix; - if (m_perm_c.size()) - { - m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. - //Then, permute only the column pointers - const StorageIndex * outerIndexPtr; - if (matrix.isCompressed()) outerIndexPtr = matrix.outerIndexPtr(); - else - { - StorageIndex* outerIndexPtr_t = new StorageIndex[matrix.cols()+1]; - for(Index i = 0; i <= matrix.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i]; - outerIndexPtr = outerIndexPtr_t; - } - for (Index i = 0; i < matrix.cols(); i++) - { - m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i]; - m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i]; - } - if(!matrix.isCompressed()) delete[] outerIndexPtr; - } - else - { //FIXME This should not be needed if the empty permutation is handled transparently - m_perm_c.resize(matrix.cols()); - for(StorageIndex i = 0; i < matrix.cols(); ++i) m_perm_c.indices()(i) = i; - } - - Index m = m_mat.rows(); - Index n = m_mat.cols(); - Index nnz = m_mat.nonZeros(); - Index maxpanel = m_perfv.panel_size * m; - // Allocate working storage common to the factor routines - Index lwork = 0; - Index info = Base::memInit(m, n, nnz, lwork, m_perfv.fillfactor, m_perfv.panel_size, m_glu); - if (info) - { - m_lastError = "UNABLE TO ALLOCATE WORKING MEMORY\n\n" ; - m_factorizationIsOk = false; - return ; - } - - // Set up pointers for integer working arrays - IndexVector segrep(m); segrep.setZero(); - IndexVector parent(m); parent.setZero(); - IndexVector xplore(m); xplore.setZero(); - IndexVector repfnz(maxpanel); - IndexVector panel_lsub(maxpanel); - IndexVector xprune(n); xprune.setZero(); - IndexVector marker(m*internal::LUNoMarker); marker.setZero(); - - repfnz.setConstant(-1); - panel_lsub.setConstant(-1); - - // Set up pointers for scalar working arrays - ScalarVector dense; - dense.setZero(maxpanel); - ScalarVector tempv; - tempv.setZero(internal::LUnumTempV(m, m_perfv.panel_size, m_perfv.maxsuper, /*m_perfv.rowblk*/m) ); - - // Compute the inverse of perm_c - PermutationType iperm_c(m_perm_c.inverse()); - - // Identify initial relaxed snodes - IndexVector relax_end(n); - if ( m_symmetricmode == true ) - Base::heap_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end); - else - Base::relax_snode(n, m_etree, m_perfv.relax, marker, relax_end); - - - m_perm_r.resize(m); - m_perm_r.indices().setConstant(-1); - marker.setConstant(-1); - m_detPermR = 1; // Record the determinant of the row permutation - - m_glu.supno(0) = emptyIdxLU; m_glu.xsup.setConstant(0); - m_glu.xsup(0) = m_glu.xlsub(0) = m_glu.xusub(0) = m_glu.xlusup(0) = Index(0); - - // Work on one 'panel' at a time. A panel is one of the following : - // (a) a relaxed supernode at the bottom of the etree, or - // (b) panel_size contiguous columns, defined by the user - Index jcol; - IndexVector panel_histo(n); - Index pivrow; // Pivotal row number in the original row matrix - Index nseg1; // Number of segments in U-column above panel row jcol - Index nseg; // Number of segments in each U-column - Index irep; - Index i, k, jj; - for (jcol = 0; jcol < n; ) - { - // Adjust panel size so that a panel won't overlap with the next relaxed snode. - Index panel_size = m_perfv.panel_size; // upper bound on panel width - for (k = jcol + 1; k < (std::min)(jcol+panel_size, n); k++) - { - if (relax_end(k) != emptyIdxLU) - { - panel_size = k - jcol; - break; - } - } - if (k == n) - panel_size = n - jcol; - - // Symbolic outer factorization on a panel of columns - Base::panel_dfs(m, panel_size, jcol, m_mat, m_perm_r.indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune, marker, parent, xplore, m_glu); - - // Numeric sup-panel updates in topological order - Base::panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_glu); - - // Sparse LU within the panel, and below the panel diagonal - for ( jj = jcol; jj< jcol + panel_size; jj++) - { - k = (jj - jcol) * m; // Column index for w-wide arrays - - nseg = nseg1; // begin after all the panel segments - //Depth-first-search for the current column - VectorBlock panel_lsubk(panel_lsub, k, m); - VectorBlock repfnz_k(repfnz, k, m); - info = Base::column_dfs(m, jj, m_perm_r.indices(), m_perfv.maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune, marker, parent, xplore, m_glu); - if ( info ) - { - m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_DFS() "; - m_info = NumericalIssue; - m_factorizationIsOk = false; - return; - } - // Numeric updates to this column - VectorBlock dense_k(dense, k, m); - VectorBlock segrep_k(segrep, nseg1, m-nseg1); - info = Base::column_bmod(jj, (nseg - nseg1), dense_k, tempv, segrep_k, repfnz_k, jcol, m_glu); - if ( info ) - { - m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() "; - m_info = NumericalIssue; - m_factorizationIsOk = false; - return; - } - - // Copy the U-segments to ucol(*) - info = Base::copy_to_ucol(jj, nseg, segrep, repfnz_k ,m_perm_r.indices(), dense_k, m_glu); - if ( info ) - { - m_lastError = "UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() "; - m_info = NumericalIssue; - m_factorizationIsOk = false; - return; - } - - // Form the L-segment - info = Base::pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu); - if ( info ) - { - m_lastError = "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT "; - std::ostringstream returnInfo; - returnInfo << info; - m_lastError += returnInfo.str(); - m_info = NumericalIssue; - m_factorizationIsOk = false; - return; - } - - // Update the determinant of the row permutation matrix - // FIXME: the following test is not correct, we should probably take iperm_c into account and pivrow is not directly the row pivot. - if (pivrow != jj) m_detPermR = -m_detPermR; - - // Prune columns (0:jj-1) using column jj - Base::pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu); - - // Reset repfnz for this column - for (i = 0; i < nseg; i++) - { - irep = segrep(i); - repfnz_k(irep) = emptyIdxLU; - } - } // end SparseLU within the panel - jcol += panel_size; // Move to the next panel - } // end for -- end elimination - - m_detPermR = m_perm_r.determinant(); - m_detPermC = m_perm_c.determinant(); - - // Count the number of nonzeros in factors - Base::countnz(n, m_nnzL, m_nnzU, m_glu); - // Apply permutation to the L subscripts - Base::fixupL(n, m_perm_r.indices(), m_glu); - - // Create supernode matrix L - m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup); - // Create the column major upper sparse matrix U; - new (&m_Ustore) MappedSparseMatrix ( m, n, m_nnzU, m_glu.xusub.data(), m_glu.usub.data(), m_glu.ucol.data() ); - - m_info = Success; - m_factorizationIsOk = true; -} - -template -struct SparseLUMatrixLReturnType : internal::no_assignment_operator -{ - typedef typename MappedSupernodalType::Scalar Scalar; - explicit SparseLUMatrixLReturnType(const MappedSupernodalType& mapL) : m_mapL(mapL) - { } - Index rows() { return m_mapL.rows(); } - Index cols() { return m_mapL.cols(); } - template - void solveInPlace( MatrixBase &X) const - { - m_mapL.solveInPlace(X); - } - const MappedSupernodalType& m_mapL; -}; - -template -struct SparseLUMatrixUReturnType : internal::no_assignment_operator -{ - typedef typename MatrixLType::Scalar Scalar; - SparseLUMatrixUReturnType(const MatrixLType& mapL, const MatrixUType& mapU) - : m_mapL(mapL),m_mapU(mapU) - { } - Index rows() { return m_mapL.rows(); } - Index cols() { return m_mapL.cols(); } - - template void solveInPlace(MatrixBase &X) const - { - Index nrhs = X.cols(); - Index n = X.rows(); - // Backward solve with U - for (Index k = m_mapL.nsuper(); k >= 0; k--) - { - Index fsupc = m_mapL.supToCol()[k]; - Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension - Index nsupc = m_mapL.supToCol()[k+1] - fsupc; - Index luptr = m_mapL.colIndexPtr()[fsupc]; - - if (nsupc == 1) - { - for (Index j = 0; j < nrhs; j++) - { - X(fsupc, j) /= m_mapL.valuePtr()[luptr]; - } - } - else - { - Map, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) ); - Map< Matrix, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) ); - U = A.template triangularView().solve(U); - } - - for (Index j = 0; j < nrhs; ++j) - { - for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++) - { - typename MatrixUType::InnerIterator it(m_mapU, jcol); - for ( ; it; ++it) - { - Index irow = it.index(); - X(irow, j) -= X(jcol, j) * it.value(); - } - } - } - } // End For U-solve - } - const MatrixLType& m_mapL; - const MatrixUType& m_mapU; -}; - -} // End namespace Eigen - -#endif diff --git a/src/math_meigen/Eigen/src/SparseLU/SparseLUImpl.h b/src/math_meigen/Eigen/src/SparseLU/SparseLUImpl.h deleted file mode 100755 index fc0cfc4de..000000000 --- a/src/math_meigen/Eigen/src/SparseLU/SparseLUImpl.h +++ /dev/null @@ -1,66 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Désiré Nuentsa-Wakam -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. -#ifndef SPARSELU_IMPL_H -#define SPARSELU_IMPL_H - -namespace Eigen { -namespace internal { - -/** \ingroup SparseLU_Module - * \class SparseLUImpl - * Base class for sparseLU - */ -template -class SparseLUImpl -{ - public: - typedef Matrix ScalarVector; - typedef Matrix IndexVector; - typedef Matrix ScalarMatrix; - typedef Map > MappedMatrixBlock; - typedef typename ScalarVector::RealScalar RealScalar; - typedef Ref > BlockScalarVector; - typedef Ref > BlockIndexVector; - typedef LU_GlobalLU_t GlobalLU_t; - typedef SparseMatrix MatrixType; - - protected: - template - Index expand(VectorType& vec, Index& length, Index nbElts, Index keep_prev, Index& num_expansions); - Index memInit(Index m, Index n, Index annz, Index lwork, Index fillratio, Index panel_size, GlobalLU_t& glu); - template - Index memXpand(VectorType& vec, Index& maxlen, Index nbElts, MemType memtype, Index& num_expansions); - void heap_relax_snode (const Index n, IndexVector& et, const Index relax_columns, IndexVector& descendants, IndexVector& relax_end); - void relax_snode (const Index n, IndexVector& et, const Index relax_columns, IndexVector& descendants, IndexVector& relax_end); - Index snode_dfs(const Index jcol, const Index kcol,const MatrixType& mat, IndexVector& xprune, IndexVector& marker, GlobalLU_t& glu); - Index snode_bmod (const Index jcol, const Index fsupc, ScalarVector& dense, GlobalLU_t& glu); - Index pivotL(const Index jcol, const RealScalar& diagpivotthresh, IndexVector& perm_r, IndexVector& iperm_c, Index& pivrow, GlobalLU_t& glu); - template - void dfs_kernel(const StorageIndex jj, IndexVector& perm_r, - Index& nseg, IndexVector& panel_lsub, IndexVector& segrep, - Ref repfnz_col, IndexVector& xprune, Ref marker, IndexVector& parent, - IndexVector& xplore, GlobalLU_t& glu, Index& nextl_col, Index krow, Traits& traits); - void panel_dfs(const Index m, const Index w, const Index jcol, MatrixType& A, IndexVector& perm_r, Index& nseg, ScalarVector& dense, IndexVector& panel_lsub, IndexVector& segrep, IndexVector& repfnz, IndexVector& xprune, IndexVector& marker, IndexVector& parent, IndexVector& xplore, GlobalLU_t& glu); - - void panel_bmod(const Index m, const Index w, const Index jcol, const Index nseg, ScalarVector& dense, ScalarVector& tempv, IndexVector& segrep, IndexVector& repfnz, GlobalLU_t& glu); - Index column_dfs(const Index m, const Index jcol, IndexVector& perm_r, Index maxsuper, Index& nseg, BlockIndexVector lsub_col, IndexVector& segrep, BlockIndexVector repfnz, IndexVector& xprune, IndexVector& marker, IndexVector& parent, IndexVector& xplore, GlobalLU_t& glu); - Index column_bmod(const Index jcol, const Index nseg, BlockScalarVector dense, ScalarVector& tempv, BlockIndexVector segrep, BlockIndexVector repfnz, Index fpanelc, GlobalLU_t& glu); - Index copy_to_ucol(const Index jcol, const Index nseg, IndexVector& segrep, BlockIndexVector repfnz ,IndexVector& perm_r, BlockScalarVector dense, GlobalLU_t& glu); - void pruneL(const Index jcol, const IndexVector& perm_r, const Index pivrow, const Index nseg, const IndexVector& segrep, BlockIndexVector repfnz, IndexVector& xprune, GlobalLU_t& glu); - void countnz(const Index n, Index& nnzL, Index& nnzU, GlobalLU_t& glu); - void fixupL(const Index n, const IndexVector& perm_r, GlobalLU_t& glu); - - template - friend struct column_dfs_traits; -}; - -} // end namespace internal -} // namespace Eigen - -#endif diff --git a/src/math_meigen/Eigen/src/SparseLU/SparseLU_Memory.h b/src/math_meigen/Eigen/src/SparseLU/SparseLU_Memory.h deleted file mode 100755 index 4dc42e87b..000000000 --- a/src/math_meigen/Eigen/src/SparseLU/SparseLU_Memory.h +++ /dev/null @@ -1,226 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Désiré Nuentsa-Wakam -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -/* - - * NOTE: This file is the modified version of [s,d,c,z]memory.c files in SuperLU - - * -- SuperLU routine (version 3.1) -- - * Univ. of California Berkeley, Xerox Palo Alto Research Center, - * and Lawrence Berkeley National Lab. - * August 1, 2008 - * - * Copyright (c) 1994 by Xerox Corporation. All rights reserved. - * - * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY - * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. - * - * Permission is hereby granted to use or copy this program for any - * purpose, provided the above notices are retained on all copies. - * Permission to modify the code and to distribute modified code is - * granted, provided the above notices are retained, and a notice that - * the code was modified is included with the above copyright notice. - */ - -#ifndef EIGEN_SPARSELU_MEMORY -#define EIGEN_SPARSELU_MEMORY - -namespace Eigen { -namespace internal { - -enum { LUNoMarker = 3 }; -enum {emptyIdxLU = -1}; -inline Index LUnumTempV(Index& m, Index& w, Index& t, Index& b) -{ - return (std::max)(m, (t+b)*w); -} - -template< typename Scalar> -inline Index LUTempSpace(Index&m, Index& w) -{ - return (2*w + 4 + LUNoMarker) * m * sizeof(Index) + (w + 1) * m * sizeof(Scalar); -} - - - - -/** - * Expand the existing storage to accomodate more fill-ins - * \param vec Valid pointer to the vector to allocate or expand - * \param[in,out] length At input, contain the current length of the vector that is to be increased. At output, length of the newly allocated vector - * \param[in] nbElts Current number of elements in the factors - * \param keep_prev 1: use length and do not expand the vector; 0: compute new_len and expand - * \param[in,out] num_expansions Number of times the memory has been expanded - */ -template -template -Index SparseLUImpl::expand(VectorType& vec, Index& length, Index nbElts, Index keep_prev, Index& num_expansions) -{ - - float alpha = 1.5; // Ratio of the memory increase - Index new_len; // New size of the allocated memory - - if(num_expansions == 0 || keep_prev) - new_len = length ; // First time allocate requested - else - new_len = (std::max)(length+1,Index(alpha * length)); - - VectorType old_vec; // Temporary vector to hold the previous values - if (nbElts > 0 ) - old_vec = vec.segment(0,nbElts); - - //Allocate or expand the current vector -#ifdef EIGEN_EXCEPTIONS - try -#endif - { - vec.resize(new_len); - } -#ifdef EIGEN_EXCEPTIONS - catch(std::bad_alloc& ) -#else - if(!vec.size()) -#endif - { - if (!num_expansions) - { - // First time to allocate from LUMemInit() - // Let LUMemInit() deals with it. - return -1; - } - if (keep_prev) - { - // In this case, the memory length should not not be reduced - return new_len; - } - else - { - // Reduce the size and increase again - Index tries = 0; // Number of attempts - do - { - alpha = (alpha + 1)/2; - new_len = (std::max)(length+1,Index(alpha * length)); -#ifdef EIGEN_EXCEPTIONS - try -#endif - { - vec.resize(new_len); - } -#ifdef EIGEN_EXCEPTIONS - catch(std::bad_alloc& ) -#else - if (!vec.size()) -#endif - { - tries += 1; - if ( tries > 10) return new_len; - } - } while (!vec.size()); - } - } - //Copy the previous values to the newly allocated space - if (nbElts > 0) - vec.segment(0, nbElts) = old_vec; - - - length = new_len; - if(num_expansions) ++num_expansions; - return 0; -} - -/** - * \brief Allocate various working space for the numerical factorization phase. - * \param m number of rows of the input matrix - * \param n number of columns - * \param annz number of initial nonzeros in the matrix - * \param lwork if lwork=-1, this routine returns an estimated size of the required memory - * \param glu persistent data to facilitate multiple factors : will be deleted later ?? - * \param fillratio estimated ratio of fill in the factors - * \param panel_size Size of a panel - * \return an estimated size of the required memory if lwork = -1; otherwise, return the size of actually allocated memory when allocation failed, and 0 on success - * \note Unlike SuperLU, this routine does not support successive factorization with the same pattern and the same row permutation - */ -template -Index SparseLUImpl::memInit(Index m, Index n, Index annz, Index lwork, Index fillratio, Index panel_size, GlobalLU_t& glu) -{ - Index& num_expansions = glu.num_expansions; //No memory expansions so far - num_expansions = 0; - glu.nzumax = glu.nzlumax = (std::min)(fillratio * (annz+1) / n, m) * n; // estimated number of nonzeros in U - glu.nzlmax = (std::max)(Index(4), fillratio) * (annz+1) / 4; // estimated nnz in L factor - // Return the estimated size to the user if necessary - Index tempSpace; - tempSpace = (2*panel_size + 4 + LUNoMarker) * m * sizeof(Index) + (panel_size + 1) * m * sizeof(Scalar); - if (lwork == emptyIdxLU) - { - Index estimated_size; - estimated_size = (5 * n + 5) * sizeof(Index) + tempSpace - + (glu.nzlmax + glu.nzumax) * sizeof(Index) + (glu.nzlumax+glu.nzumax) * sizeof(Scalar) + n; - return estimated_size; - } - - // Setup the required space - - // First allocate Integer pointers for L\U factors - glu.xsup.resize(n+1); - glu.supno.resize(n+1); - glu.xlsub.resize(n+1); - glu.xlusup.resize(n+1); - glu.xusub.resize(n+1); - - // Reserve memory for L/U factors - do - { - if( (expand(glu.lusup, glu.nzlumax, 0, 0, num_expansions)<0) - || (expand(glu.ucol, glu.nzumax, 0, 0, num_expansions)<0) - || (expand (glu.lsub, glu.nzlmax, 0, 0, num_expansions)<0) - || (expand (glu.usub, glu.nzumax, 0, 1, num_expansions)<0) ) - { - //Reduce the estimated size and retry - glu.nzlumax /= 2; - glu.nzumax /= 2; - glu.nzlmax /= 2; - if (glu.nzlumax < annz ) return glu.nzlumax; - } - } while (!glu.lusup.size() || !glu.ucol.size() || !glu.lsub.size() || !glu.usub.size()); - - ++num_expansions; - return 0; - -} // end LuMemInit - -/** - * \brief Expand the existing storage - * \param vec vector to expand - * \param[in,out] maxlen On input, previous size of vec (Number of elements to copy ). on output, new size - * \param nbElts current number of elements in the vector. - * \param memtype Type of the element to expand - * \param num_expansions Number of expansions - * \return 0 on success, > 0 size of the memory allocated so far - */ -template -template -Index SparseLUImpl::memXpand(VectorType& vec, Index& maxlen, Index nbElts, MemType memtype, Index& num_expansions) -{ - Index failed_size; - if (memtype == USUB) - failed_size = this->expand(vec, maxlen, nbElts, 1, num_expansions); - else - failed_size = this->expand(vec, maxlen, nbElts, 0, num_expansions); - - if (failed_size) - return failed_size; - - return 0 ; -} - -} // end namespace internal - -} // end namespace Eigen -#endif // EIGEN_SPARSELU_MEMORY diff --git a/src/math_meigen/Eigen/src/SparseLU/SparseLU_Structs.h b/src/math_meigen/Eigen/src/SparseLU/SparseLU_Structs.h deleted file mode 100755 index cf5ec449b..000000000 --- a/src/math_meigen/Eigen/src/SparseLU/SparseLU_Structs.h +++ /dev/null @@ -1,110 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Désiré Nuentsa-Wakam -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -/* - * NOTE: This file comes from a partly modified version of files slu_[s,d,c,z]defs.h - * -- SuperLU routine (version 4.1) -- - * Univ. of California Berkeley, Xerox Palo Alto Research Center, - * and Lawrence Berkeley National Lab. - * November, 2010 - * - * Global data structures used in LU factorization - - * - * nsuper: #supernodes = nsuper + 1, numbered [0, nsuper]. - * (xsup,supno): supno[i] is the supernode no to which i belongs; - * xsup(s) points to the beginning of the s-th supernode. - * e.g. supno 0 1 2 2 3 3 3 4 4 4 4 4 (n=12) - * xsup 0 1 2 4 7 12 - * Note: dfs will be performed on supernode rep. relative to the new - * row pivoting ordering - * - * (xlsub,lsub): lsub[*] contains the compressed subscript of - * rectangular supernodes; xlsub[j] points to the starting - * location of the j-th column in lsub[*]. Note that xlsub - * is indexed by column. - * Storage: original row subscripts - * - * During the course of sparse LU factorization, we also use - * (xlsub,lsub) for the purpose of symmetric pruning. For each - * supernode {s,s+1,...,t=s+r} with first column s and last - * column t, the subscript set - * lsub[j], j=xlsub[s], .., xlsub[s+1]-1 - * is the structure of column s (i.e. structure of this supernode). - * It is used for the storage of numerical values. - * Furthermore, - * lsub[j], j=xlsub[t], .., xlsub[t+1]-1 - * is the structure of the last column t of this supernode. - * It is for the purpose of symmetric pruning. Therefore, the - * structural subscripts can be rearranged without making physical - * interchanges among the numerical values. - * - * However, if the supernode has only one column, then we - * only keep one set of subscripts. For any subscript interchange - * performed, similar interchange must be done on the numerical - * values. - * - * The last column structures (for pruning) will be removed - * after the numercial LU factorization phase. - * - * (xlusup,lusup): lusup[*] contains the numerical values of the - * rectangular supernodes; xlusup[j] points to the starting - * location of the j-th column in storage vector lusup[*] - * Note: xlusup is indexed by column. - * Each rectangular supernode is stored by column-major - * scheme, consistent with Fortran 2-dim array storage. - * - * (xusub,ucol,usub): ucol[*] stores the numerical values of - * U-columns outside the rectangular supernodes. The row - * subscript of nonzero ucol[k] is stored in usub[k]. - * xusub[i] points to the starting location of column i in ucol. - * Storage: new row subscripts; that is subscripts of PA. - */ - -#ifndef EIGEN_LU_STRUCTS -#define EIGEN_LU_STRUCTS -namespace Eigen { -namespace internal { - -typedef enum {LUSUP, UCOL, LSUB, USUB, LLVL, ULVL} MemType; - -template -struct LU_GlobalLU_t { - typedef typename IndexVector::Scalar StorageIndex; - IndexVector xsup; //First supernode column ... xsup(s) points to the beginning of the s-th supernode - IndexVector supno; // Supernode number corresponding to this column (column to supernode mapping) - ScalarVector lusup; // nonzero values of L ordered by columns - IndexVector lsub; // Compressed row indices of L rectangular supernodes. - IndexVector xlusup; // pointers to the beginning of each column in lusup - IndexVector xlsub; // pointers to the beginning of each column in lsub - Index nzlmax; // Current max size of lsub - Index nzlumax; // Current max size of lusup - ScalarVector ucol; // nonzero values of U ordered by columns - IndexVector usub; // row indices of U columns in ucol - IndexVector xusub; // Pointers to the beginning of each column of U in ucol - Index nzumax; // Current max size of ucol - Index n; // Number of columns in the matrix - Index num_expansions; -}; - -// Values to set for performance -struct perfvalues { - Index panel_size; // a panel consists of at most consecutive columns - Index relax; // To control degree of relaxing supernodes. If the number of nodes (columns) - // in a subtree of the elimination tree is less than relax, this subtree is considered - // as one supernode regardless of the row structures of those columns - Index maxsuper; // The maximum size for a supernode in complete LU - Index rowblk; // The minimum row dimension for 2-D blocking to be used; - Index colblk; // The minimum column dimension for 2-D blocking to be used; - Index fillfactor; // The estimated fills factors for L and U, compared with A -}; - -} // end namespace internal - -} // end namespace Eigen -#endif // EIGEN_LU_STRUCTS diff --git a/src/math_meigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h b/src/math_meigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h deleted file mode 100755 index 721e1883b..000000000 --- a/src/math_meigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +++ /dev/null @@ -1,301 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Désiré Nuentsa-Wakam -// Copyright (C) 2012 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSELU_SUPERNODAL_MATRIX_H -#define EIGEN_SPARSELU_SUPERNODAL_MATRIX_H - -namespace Eigen { -namespace internal { - -/** \ingroup SparseLU_Module - * \brief a class to manipulate the L supernodal factor from the SparseLU factorization - * - * This class contain the data to easily store - * and manipulate the supernodes during the factorization and solution phase of Sparse LU. - * Only the lower triangular matrix has supernodes. - * - * NOTE : This class corresponds to the SCformat structure in SuperLU - * - */ -/* TODO - * InnerIterator as for sparsematrix - * SuperInnerIterator to iterate through all supernodes - * Function for triangular solve - */ -template -class MappedSuperNodalMatrix -{ - public: - typedef _Scalar Scalar; - typedef _StorageIndex StorageIndex; - typedef Matrix IndexVector; - typedef Matrix ScalarVector; - public: - MappedSuperNodalMatrix() - { - - } - MappedSuperNodalMatrix(Index m, Index n, ScalarVector& nzval, IndexVector& nzval_colptr, IndexVector& rowind, - IndexVector& rowind_colptr, IndexVector& col_to_sup, IndexVector& sup_to_col ) - { - setInfos(m, n, nzval, nzval_colptr, rowind, rowind_colptr, col_to_sup, sup_to_col); - } - - ~MappedSuperNodalMatrix() - { - - } - /** - * Set appropriate pointers for the lower triangular supernodal matrix - * These infos are available at the end of the numerical factorization - * FIXME This class will be modified such that it can be use in the course - * of the factorization. - */ - void setInfos(Index m, Index n, ScalarVector& nzval, IndexVector& nzval_colptr, IndexVector& rowind, - IndexVector& rowind_colptr, IndexVector& col_to_sup, IndexVector& sup_to_col ) - { - m_row = m; - m_col = n; - m_nzval = nzval.data(); - m_nzval_colptr = nzval_colptr.data(); - m_rowind = rowind.data(); - m_rowind_colptr = rowind_colptr.data(); - m_nsuper = col_to_sup(n); - m_col_to_sup = col_to_sup.data(); - m_sup_to_col = sup_to_col.data(); - } - - /** - * Number of rows - */ - Index rows() { return m_row; } - - /** - * Number of columns - */ - Index cols() { return m_col; } - - /** - * Return the array of nonzero values packed by column - * - * The size is nnz - */ - Scalar* valuePtr() { return m_nzval; } - - const Scalar* valuePtr() const - { - return m_nzval; - } - /** - * Return the pointers to the beginning of each column in \ref valuePtr() - */ - StorageIndex* colIndexPtr() - { - return m_nzval_colptr; - } - - const StorageIndex* colIndexPtr() const - { - return m_nzval_colptr; - } - - /** - * Return the array of compressed row indices of all supernodes - */ - StorageIndex* rowIndex() { return m_rowind; } - - const StorageIndex* rowIndex() const - { - return m_rowind; - } - - /** - * Return the location in \em rowvaluePtr() which starts each column - */ - StorageIndex* rowIndexPtr() { return m_rowind_colptr; } - - const StorageIndex* rowIndexPtr() const - { - return m_rowind_colptr; - } - - /** - * Return the array of column-to-supernode mapping - */ - StorageIndex* colToSup() { return m_col_to_sup; } - - const StorageIndex* colToSup() const - { - return m_col_to_sup; - } - /** - * Return the array of supernode-to-column mapping - */ - StorageIndex* supToCol() { return m_sup_to_col; } - - const StorageIndex* supToCol() const - { - return m_sup_to_col; - } - - /** - * Return the number of supernodes - */ - Index nsuper() const - { - return m_nsuper; - } - - class InnerIterator; - template - void solveInPlace( MatrixBase&X) const; - - - - - protected: - Index m_row; // Number of rows - Index m_col; // Number of columns - Index m_nsuper; // Number of supernodes - Scalar* m_nzval; //array of nonzero values packed by column - StorageIndex* m_nzval_colptr; //nzval_colptr[j] Stores the location in nzval[] which starts column j - StorageIndex* m_rowind; // Array of compressed row indices of rectangular supernodes - StorageIndex* m_rowind_colptr; //rowind_colptr[j] stores the location in rowind[] which starts column j - StorageIndex* m_col_to_sup; // col_to_sup[j] is the supernode number to which column j belongs - StorageIndex* m_sup_to_col; //sup_to_col[s] points to the starting column of the s-th supernode - - private : -}; - -/** - * \brief InnerIterator class to iterate over nonzero values of the current column in the supernodal matrix L - * - */ -template -class MappedSuperNodalMatrix::InnerIterator -{ - public: - InnerIterator(const MappedSuperNodalMatrix& mat, Index outer) - : m_matrix(mat), - m_outer(outer), - m_supno(mat.colToSup()[outer]), - m_idval(mat.colIndexPtr()[outer]), - m_startidval(m_idval), - m_endidval(mat.colIndexPtr()[outer+1]), - m_idrow(mat.rowIndexPtr()[mat.supToCol()[mat.colToSup()[outer]]]), - m_endidrow(mat.rowIndexPtr()[mat.supToCol()[mat.colToSup()[outer]]+1]) - {} - inline InnerIterator& operator++() - { - m_idval++; - m_idrow++; - return *this; - } - inline Scalar value() const { return m_matrix.valuePtr()[m_idval]; } - - inline Scalar& valueRef() { return const_cast(m_matrix.valuePtr()[m_idval]); } - - inline Index index() const { return m_matrix.rowIndex()[m_idrow]; } - inline Index row() const { return index(); } - inline Index col() const { return m_outer; } - - inline Index supIndex() const { return m_supno; } - - inline operator bool() const - { - return ( (m_idval < m_endidval) && (m_idval >= m_startidval) - && (m_idrow < m_endidrow) ); - } - - protected: - const MappedSuperNodalMatrix& m_matrix; // Supernodal lower triangular matrix - const Index m_outer; // Current column - const Index m_supno; // Current SuperNode number - Index m_idval; // Index to browse the values in the current column - const Index m_startidval; // Start of the column value - const Index m_endidval; // End of the column value - Index m_idrow; // Index to browse the row indices - Index m_endidrow; // End index of row indices of the current column -}; - -/** - * \brief Solve with the supernode triangular matrix - * - */ -template -template -void MappedSuperNodalMatrix::solveInPlace( MatrixBase&X) const -{ - /* Explicit type conversion as the Index type of MatrixBase may be wider than Index */ -// eigen_assert(X.rows() <= NumTraits::highest()); -// eigen_assert(X.cols() <= NumTraits::highest()); - Index n = int(X.rows()); - Index nrhs = Index(X.cols()); - const Scalar * Lval = valuePtr(); // Nonzero values - Matrix work(n, nrhs); // working vector - work.setZero(); - for (Index k = 0; k <= nsuper(); k ++) - { - Index fsupc = supToCol()[k]; // First column of the current supernode - Index istart = rowIndexPtr()[fsupc]; // Pointer index to the subscript of the current column - Index nsupr = rowIndexPtr()[fsupc+1] - istart; // Number of rows in the current supernode - Index nsupc = supToCol()[k+1] - fsupc; // Number of columns in the current supernode - Index nrow = nsupr - nsupc; // Number of rows in the non-diagonal part of the supernode - Index irow; //Current index row - - if (nsupc == 1 ) - { - for (Index j = 0; j < nrhs; j++) - { - InnerIterator it(*this, fsupc); - ++it; // Skip the diagonal element - for (; it; ++it) - { - irow = it.row(); - X(irow, j) -= X(fsupc, j) * it.value(); - } - } - } - else - { - // The supernode has more than one column - Index luptr = colIndexPtr()[fsupc]; - Index lda = colIndexPtr()[fsupc+1] - luptr; - - // Triangular solve - Map, 0, OuterStride<> > A( &(Lval[luptr]), nsupc, nsupc, OuterStride<>(lda) ); - Map< Matrix, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) ); - U = A.template triangularView().solve(U); - - // Matrix-vector product - new (&A) Map, 0, OuterStride<> > ( &(Lval[luptr+nsupc]), nrow, nsupc, OuterStride<>(lda) ); - work.topRows(nrow).noalias() = A * U; - - //Begin Scatter - for (Index j = 0; j < nrhs; j++) - { - Index iptr = istart + nsupc; - for (Index i = 0; i < nrow; i++) - { - irow = rowIndex()[iptr]; - X(irow, j) -= work(i, j); // Scatter operation - work(i, j) = Scalar(0); - iptr++; - } - } - } - } -} - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_SPARSELU_MATRIX_H diff --git a/src/math_meigen/Eigen/src/SparseLU/SparseLU_Utils.h b/src/math_meigen/Eigen/src/SparseLU/SparseLU_Utils.h deleted file mode 100755 index 9e3dab44d..000000000 --- a/src/math_meigen/Eigen/src/SparseLU/SparseLU_Utils.h +++ /dev/null @@ -1,80 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Désiré Nuentsa-Wakam -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - - -#ifndef EIGEN_SPARSELU_UTILS_H -#define EIGEN_SPARSELU_UTILS_H - -namespace Eigen { -namespace internal { - -/** - * \brief Count Nonzero elements in the factors - */ -template -void SparseLUImpl::countnz(const Index n, Index& nnzL, Index& nnzU, GlobalLU_t& glu) -{ - nnzL = 0; - nnzU = (glu.xusub)(n); - Index nsuper = (glu.supno)(n); - Index jlen; - Index i, j, fsupc; - if (n <= 0 ) return; - // For each supernode - for (i = 0; i <= nsuper; i++) - { - fsupc = glu.xsup(i); - jlen = glu.xlsub(fsupc+1) - glu.xlsub(fsupc); - - for (j = fsupc; j < glu.xsup(i+1); j++) - { - nnzL += jlen; - nnzU += j - fsupc + 1; - jlen--; - } - } -} - -/** - * \brief Fix up the data storage lsub for L-subscripts. - * - * It removes the subscripts sets for structural pruning, - * and applies permutation to the remaining subscripts - * - */ -template -void SparseLUImpl::fixupL(const Index n, const IndexVector& perm_r, GlobalLU_t& glu) -{ - Index fsupc, i, j, k, jstart; - - StorageIndex nextl = 0; - Index nsuper = (glu.supno)(n); - - // For each supernode - for (i = 0; i <= nsuper; i++) - { - fsupc = glu.xsup(i); - jstart = glu.xlsub(fsupc); - glu.xlsub(fsupc) = nextl; - for (j = jstart; j < glu.xlsub(fsupc + 1); j++) - { - glu.lsub(nextl) = perm_r(glu.lsub(j)); // Now indexed into P*A - nextl++; - } - for (k = fsupc+1; k < glu.xsup(i+1); k++) - glu.xlsub(k) = nextl; // other columns in supernode i - } - - glu.xlsub(n) = nextl; -} - -} // end namespace internal - -} // end namespace Eigen -#endif // EIGEN_SPARSELU_UTILS_H diff --git a/src/math_meigen/Eigen/src/SparseLU/SparseLU_column_bmod.h b/src/math_meigen/Eigen/src/SparseLU/SparseLU_column_bmod.h deleted file mode 100755 index b57f06802..000000000 --- a/src/math_meigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +++ /dev/null @@ -1,181 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Désiré Nuentsa-Wakam -// Copyright (C) 2012 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -/* - - * NOTE: This file is the modified version of xcolumn_bmod.c file in SuperLU - - * -- SuperLU routine (version 3.0) -- - * Univ. of California Berkeley, Xerox Palo Alto Research Center, - * and Lawrence Berkeley National Lab. - * October 15, 2003 - * - * Copyright (c) 1994 by Xerox Corporation. All rights reserved. - * - * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY - * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. - * - * Permission is hereby granted to use or copy this program for any - * purpose, provided the above notices are retained on all copies. - * Permission to modify the code and to distribute modified code is - * granted, provided the above notices are retained, and a notice that - * the code was modified is included with the above copyright notice. - */ -#ifndef SPARSELU_COLUMN_BMOD_H -#define SPARSELU_COLUMN_BMOD_H - -namespace Eigen { - -namespace internal { -/** - * \brief Performs numeric block updates (sup-col) in topological order - * - * \param jcol current column to update - * \param nseg Number of segments in the U part - * \param dense Store the full representation of the column - * \param tempv working array - * \param segrep segment representative ... - * \param repfnz ??? First nonzero column in each row ??? ... - * \param fpanelc First column in the current panel - * \param glu Global LU data. - * \return 0 - successful return - * > 0 - number of bytes allocated when run out of space - * - */ -template -Index SparseLUImpl::column_bmod(const Index jcol, const Index nseg, BlockScalarVector dense, ScalarVector& tempv, - BlockIndexVector segrep, BlockIndexVector repfnz, Index fpanelc, GlobalLU_t& glu) -{ - Index jsupno, k, ksub, krep, ksupno; - Index lptr, nrow, isub, irow, nextlu, new_next, ufirst; - Index fsupc, nsupc, nsupr, luptr, kfnz, no_zeros; - /* krep = representative of current k-th supernode - * fsupc = first supernodal column - * nsupc = number of columns in a supernode - * nsupr = number of rows in a supernode - * luptr = location of supernodal LU-block in storage - * kfnz = first nonz in the k-th supernodal segment - * no_zeros = no lf leading zeros in a supernodal U-segment - */ - - jsupno = glu.supno(jcol); - // For each nonzero supernode segment of U[*,j] in topological order - k = nseg - 1; - Index d_fsupc; // distance between the first column of the current panel and the - // first column of the current snode - Index fst_col; // First column within small LU update - Index segsize; - for (ksub = 0; ksub < nseg; ksub++) - { - krep = segrep(k); k--; - ksupno = glu.supno(krep); - if (jsupno != ksupno ) - { - // outside the rectangular supernode - fsupc = glu.xsup(ksupno); - fst_col = (std::max)(fsupc, fpanelc); - - // Distance from the current supernode to the current panel; - // d_fsupc = 0 if fsupc > fpanelc - d_fsupc = fst_col - fsupc; - - luptr = glu.xlusup(fst_col) + d_fsupc; - lptr = glu.xlsub(fsupc) + d_fsupc; - - kfnz = repfnz(krep); - kfnz = (std::max)(kfnz, fpanelc); - - segsize = krep - kfnz + 1; - nsupc = krep - fst_col + 1; - nsupr = glu.xlsub(fsupc+1) - glu.xlsub(fsupc); - nrow = nsupr - d_fsupc - nsupc; - Index lda = glu.xlusup(fst_col+1) - glu.xlusup(fst_col); - - - // Perform a triangular solver and block update, - // then scatter the result of sup-col update to dense - no_zeros = kfnz - fst_col; - if(segsize==1) - LU_kernel_bmod<1>::run(segsize, dense, tempv, glu.lusup, luptr, lda, nrow, glu.lsub, lptr, no_zeros); - else - LU_kernel_bmod::run(segsize, dense, tempv, glu.lusup, luptr, lda, nrow, glu.lsub, lptr, no_zeros); - } // end if jsupno - } // end for each segment - - // Process the supernodal portion of L\U[*,j] - nextlu = glu.xlusup(jcol); - fsupc = glu.xsup(jsupno); - - // copy the SPA dense into L\U[*,j] - Index mem; - new_next = nextlu + glu.xlsub(fsupc + 1) - glu.xlsub(fsupc); - Index offset = internal::first_multiple(new_next, internal::packet_traits::size) - new_next; - if(offset) - new_next += offset; - while (new_next > glu.nzlumax ) - { - mem = memXpand(glu.lusup, glu.nzlumax, nextlu, LUSUP, glu.num_expansions); - if (mem) return mem; - } - - for (isub = glu.xlsub(fsupc); isub < glu.xlsub(fsupc+1); isub++) - { - irow = glu.lsub(isub); - glu.lusup(nextlu) = dense(irow); - dense(irow) = Scalar(0.0); - ++nextlu; - } - - if(offset) - { - glu.lusup.segment(nextlu,offset).setZero(); - nextlu += offset; - } - glu.xlusup(jcol + 1) = StorageIndex(nextlu); // close L\U(*,jcol); - - /* For more updates within the panel (also within the current supernode), - * should start from the first column of the panel, or the first column - * of the supernode, whichever is bigger. There are two cases: - * 1) fsupc < fpanelc, then fst_col <-- fpanelc - * 2) fsupc >= fpanelc, then fst_col <-- fsupc - */ - fst_col = (std::max)(fsupc, fpanelc); - - if (fst_col < jcol) - { - // Distance between the current supernode and the current panel - // d_fsupc = 0 if fsupc >= fpanelc - d_fsupc = fst_col - fsupc; - - lptr = glu.xlsub(fsupc) + d_fsupc; - luptr = glu.xlusup(fst_col) + d_fsupc; - nsupr = glu.xlsub(fsupc+1) - glu.xlsub(fsupc); // leading dimension - nsupc = jcol - fst_col; // excluding jcol - nrow = nsupr - d_fsupc - nsupc; - - // points to the beginning of jcol in snode L\U(jsupno) - ufirst = glu.xlusup(jcol) + d_fsupc; - Index lda = glu.xlusup(jcol+1) - glu.xlusup(jcol); - MappedMatrixBlock A( &(glu.lusup.data()[luptr]), nsupc, nsupc, OuterStride<>(lda) ); - VectorBlock u(glu.lusup, ufirst, nsupc); - u = A.template triangularView().solve(u); - - new (&A) MappedMatrixBlock ( &(glu.lusup.data()[luptr+nsupc]), nrow, nsupc, OuterStride<>(lda) ); - VectorBlock l(glu.lusup, ufirst+nsupc, nrow); - l.noalias() -= A * u; - - } // End if fst_col - return 0; -} - -} // end namespace internal -} // end namespace Eigen - -#endif // SPARSELU_COLUMN_BMOD_H diff --git a/src/math_meigen/Eigen/src/SparseLU/SparseLU_column_dfs.h b/src/math_meigen/Eigen/src/SparseLU/SparseLU_column_dfs.h deleted file mode 100755 index c98b30e32..000000000 --- a/src/math_meigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +++ /dev/null @@ -1,179 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Désiré Nuentsa-Wakam -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -/* - - * NOTE: This file is the modified version of [s,d,c,z]column_dfs.c file in SuperLU - - * -- SuperLU routine (version 2.0) -- - * Univ. of California Berkeley, Xerox Palo Alto Research Center, - * and Lawrence Berkeley National Lab. - * November 15, 1997 - * - * Copyright (c) 1994 by Xerox Corporation. All rights reserved. - * - * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY - * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. - * - * Permission is hereby granted to use or copy this program for any - * purpose, provided the above notices are retained on all copies. - * Permission to modify the code and to distribute modified code is - * granted, provided the above notices are retained, and a notice that - * the code was modified is included with the above copyright notice. - */ -#ifndef SPARSELU_COLUMN_DFS_H -#define SPARSELU_COLUMN_DFS_H - -template class SparseLUImpl; -namespace Eigen { - -namespace internal { - -template -struct column_dfs_traits : no_assignment_operator -{ - typedef typename ScalarVector::Scalar Scalar; - typedef typename IndexVector::Scalar StorageIndex; - column_dfs_traits(Index jcol, Index& jsuper, typename SparseLUImpl::GlobalLU_t& glu, SparseLUImpl& luImpl) - : m_jcol(jcol), m_jsuper_ref(jsuper), m_glu(glu), m_luImpl(luImpl) - {} - bool update_segrep(Index /*krep*/, Index /*jj*/) - { - return true; - } - void mem_expand(IndexVector& lsub, Index& nextl, Index chmark) - { - if (nextl >= m_glu.nzlmax) - m_luImpl.memXpand(lsub, m_glu.nzlmax, nextl, LSUB, m_glu.num_expansions); - if (chmark != (m_jcol-1)) m_jsuper_ref = emptyIdxLU; - } - enum { ExpandMem = true }; - - Index m_jcol; - Index& m_jsuper_ref; - typename SparseLUImpl::GlobalLU_t& m_glu; - SparseLUImpl& m_luImpl; -}; - - -/** - * \brief Performs a symbolic factorization on column jcol and decide the supernode boundary - * - * A supernode representative is the last column of a supernode. - * The nonzeros in U[*,j] are segments that end at supernodes representatives. - * The routine returns a list of the supernodal representatives - * in topological order of the dfs that generates them. - * The location of the first nonzero in each supernodal segment - * (supernodal entry location) is also returned. - * - * \param m number of rows in the matrix - * \param jcol Current column - * \param perm_r Row permutation - * \param maxsuper Maximum number of column allowed in a supernode - * \param [in,out] nseg Number of segments in current U[*,j] - new segments appended - * \param lsub_col defines the rhs vector to start the dfs - * \param [in,out] segrep Segment representatives - new segments appended - * \param repfnz First nonzero location in each row - * \param xprune - * \param marker marker[i] == jj, if i was visited during dfs of current column jj; - * \param parent - * \param xplore working array - * \param glu global LU data - * \return 0 success - * > 0 number of bytes allocated when run out of space - * - */ -template -Index SparseLUImpl::column_dfs(const Index m, const Index jcol, IndexVector& perm_r, Index maxsuper, Index& nseg, - BlockIndexVector lsub_col, IndexVector& segrep, BlockIndexVector repfnz, IndexVector& xprune, - IndexVector& marker, IndexVector& parent, IndexVector& xplore, GlobalLU_t& glu) -{ - - Index jsuper = glu.supno(jcol); - Index nextl = glu.xlsub(jcol); - VectorBlock marker2(marker, 2*m, m); - - - column_dfs_traits traits(jcol, jsuper, glu, *this); - - // For each nonzero in A(*,jcol) do dfs - for (Index k = 0; ((k < m) ? lsub_col[k] != emptyIdxLU : false) ; k++) - { - Index krow = lsub_col(k); - lsub_col(k) = emptyIdxLU; - Index kmark = marker2(krow); - - // krow was visited before, go to the next nonz; - if (kmark == jcol) continue; - - dfs_kernel(StorageIndex(jcol), perm_r, nseg, glu.lsub, segrep, repfnz, xprune, marker2, parent, - xplore, glu, nextl, krow, traits); - } // for each nonzero ... - - Index fsupc; - StorageIndex nsuper = glu.supno(jcol); - StorageIndex jcolp1 = StorageIndex(jcol) + 1; - Index jcolm1 = jcol - 1; - - // check to see if j belongs in the same supernode as j-1 - if ( jcol == 0 ) - { // Do nothing for column 0 - nsuper = glu.supno(0) = 0 ; - } - else - { - fsupc = glu.xsup(nsuper); - StorageIndex jptr = glu.xlsub(jcol); // Not yet compressed - StorageIndex jm1ptr = glu.xlsub(jcolm1); - - // Use supernodes of type T2 : see SuperLU paper - if ( (nextl-jptr != jptr-jm1ptr-1) ) jsuper = emptyIdxLU; - - // Make sure the number of columns in a supernode doesn't - // exceed threshold - if ( (jcol - fsupc) >= maxsuper) jsuper = emptyIdxLU; - - /* If jcol starts a new supernode, reclaim storage space in - * glu.lsub from previous supernode. Note we only store - * the subscript set of the first and last columns of - * a supernode. (first for num values, last for pruning) - */ - if (jsuper == emptyIdxLU) - { // starts a new supernode - if ( (fsupc < jcolm1-1) ) - { // >= 3 columns in nsuper - StorageIndex ito = glu.xlsub(fsupc+1); - glu.xlsub(jcolm1) = ito; - StorageIndex istop = ito + jptr - jm1ptr; - xprune(jcolm1) = istop; // intialize xprune(jcol-1) - glu.xlsub(jcol) = istop; - - for (StorageIndex ifrom = jm1ptr; ifrom < nextl; ++ifrom, ++ito) - glu.lsub(ito) = glu.lsub(ifrom); - nextl = ito; // = istop + length(jcol) - } - nsuper++; - glu.supno(jcol) = nsuper; - } // if a new supernode - } // end else: jcol > 0 - - // Tidy up the pointers before exit - glu.xsup(nsuper+1) = jcolp1; - glu.supno(jcolp1) = nsuper; - xprune(jcol) = StorageIndex(nextl); // Intialize upper bound for pruning - glu.xlsub(jcolp1) = StorageIndex(nextl); - - return 0; -} - -} // end namespace internal - -} // end namespace Eigen - -#endif diff --git a/src/math_meigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h b/src/math_meigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h deleted file mode 100755 index c32d8d8b1..000000000 --- a/src/math_meigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +++ /dev/null @@ -1,107 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Désiré Nuentsa-Wakam -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. -/* - - * NOTE: This file is the modified version of [s,d,c,z]copy_to_ucol.c file in SuperLU - - * -- SuperLU routine (version 2.0) -- - * Univ. of California Berkeley, Xerox Palo Alto Research Center, - * and Lawrence Berkeley National Lab. - * November 15, 1997 - * - * Copyright (c) 1994 by Xerox Corporation. All rights reserved. - * - * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY - * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. - * - * Permission is hereby granted to use or copy this program for any - * purpose, provided the above notices are retained on all copies. - * Permission to modify the code and to distribute modified code is - * granted, provided the above notices are retained, and a notice that - * the code was modified is included with the above copyright notice. - */ -#ifndef SPARSELU_COPY_TO_UCOL_H -#define SPARSELU_COPY_TO_UCOL_H - -namespace Eigen { -namespace internal { - -/** - * \brief Performs numeric block updates (sup-col) in topological order - * - * \param jcol current column to update - * \param nseg Number of segments in the U part - * \param segrep segment representative ... - * \param repfnz First nonzero column in each row ... - * \param perm_r Row permutation - * \param dense Store the full representation of the column - * \param glu Global LU data. - * \return 0 - successful return - * > 0 - number of bytes allocated when run out of space - * - */ -template -Index SparseLUImpl::copy_to_ucol(const Index jcol, const Index nseg, IndexVector& segrep, - BlockIndexVector repfnz ,IndexVector& perm_r, BlockScalarVector dense, GlobalLU_t& glu) -{ - Index ksub, krep, ksupno; - - Index jsupno = glu.supno(jcol); - - // For each nonzero supernode segment of U[*,j] in topological order - Index k = nseg - 1, i; - StorageIndex nextu = glu.xusub(jcol); - Index kfnz, isub, segsize; - Index new_next,irow; - Index fsupc, mem; - for (ksub = 0; ksub < nseg; ksub++) - { - krep = segrep(k); k--; - ksupno = glu.supno(krep); - if (jsupno != ksupno ) // should go into ucol(); - { - kfnz = repfnz(krep); - if (kfnz != emptyIdxLU) - { // Nonzero U-segment - fsupc = glu.xsup(ksupno); - isub = glu.xlsub(fsupc) + kfnz - fsupc; - segsize = krep - kfnz + 1; - new_next = nextu + segsize; - while (new_next > glu.nzumax) - { - mem = memXpand(glu.ucol, glu.nzumax, nextu, UCOL, glu.num_expansions); - if (mem) return mem; - mem = memXpand(glu.usub, glu.nzumax, nextu, USUB, glu.num_expansions); - if (mem) return mem; - - } - - for (i = 0; i < segsize; i++) - { - irow = glu.lsub(isub); - glu.usub(nextu) = perm_r(irow); // Unlike the L part, the U part is stored in its final order - glu.ucol(nextu) = dense(irow); - dense(irow) = Scalar(0.0); - nextu++; - isub++; - } - - } // end nonzero U-segment - - } // end if jsupno - - } // end for each segment - glu.xusub(jcol + 1) = nextu; // close U(*,jcol) - return 0; -} - -} // namespace internal -} // end namespace Eigen - -#endif // SPARSELU_COPY_TO_UCOL_H diff --git a/src/math_meigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h b/src/math_meigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h deleted file mode 100755 index 95ba7413f..000000000 --- a/src/math_meigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +++ /dev/null @@ -1,280 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSELU_GEMM_KERNEL_H -#define EIGEN_SPARSELU_GEMM_KERNEL_H - -namespace Eigen { - -namespace internal { - - -/** \internal - * A general matrix-matrix product kernel optimized for the SparseLU factorization. - * - A, B, and C must be column major - * - lda and ldc must be multiples of the respective packet size - * - C must have the same alignment as A - */ -template -EIGEN_DONT_INLINE -void sparselu_gemm(Index m, Index n, Index d, const Scalar* A, Index lda, const Scalar* B, Index ldb, Scalar* C, Index ldc) -{ - using namespace Eigen::internal; - - typedef typename packet_traits::type Packet; - enum { - NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS, - PacketSize = packet_traits::size, - PM = 8, // peeling in M - RN = 2, // register blocking - RK = NumberOfRegisters>=16 ? 4 : 2, // register blocking - BM = 4096/sizeof(Scalar), // number of rows of A-C per chunk - SM = PM*PacketSize // step along M - }; - Index d_end = (d/RK)*RK; // number of columns of A (rows of B) suitable for full register blocking - Index n_end = (n/RN)*RN; // number of columns of B-C suitable for processing RN columns at once - Index i0 = internal::first_default_aligned(A,m); - - eigen_internal_assert(((lda%PacketSize)==0) && ((ldc%PacketSize)==0) && (i0==internal::first_default_aligned(C,m))); - - // handle the non aligned rows of A and C without any optimization: - for(Index i=0; i(BM, m-ib); // actual number of rows - Index actual_b_end1 = (actual_b/SM)*SM; // actual number of rows suitable for peeling - Index actual_b_end2 = (actual_b/PacketSize)*PacketSize; // actual number of rows suitable for vectorization - - // Let's process two columns of B-C at once - for(Index j=0; j(Bc0[0]); } - { b10 = pset1(Bc0[1]); } - if(RK==4) { b20 = pset1(Bc0[2]); } - if(RK==4) { b30 = pset1(Bc0[3]); } - { b01 = pset1(Bc1[0]); } - { b11 = pset1(Bc1[1]); } - if(RK==4) { b21 = pset1(Bc1[2]); } - if(RK==4) { b31 = pset1(Bc1[3]); } - - Packet a0, a1, a2, a3, c0, c1, t0, t1; - - const Scalar* A0 = A+ib+(k+0)*lda; - const Scalar* A1 = A+ib+(k+1)*lda; - const Scalar* A2 = A+ib+(k+2)*lda; - const Scalar* A3 = A+ib+(k+3)*lda; - - Scalar* C0 = C+ib+(j+0)*ldc; - Scalar* C1 = C+ib+(j+1)*ldc; - - a0 = pload(A0); - a1 = pload(A1); - if(RK==4) - { - a2 = pload(A2); - a3 = pload(A3); - } - else - { - // workaround "may be used uninitialized in this function" warning - a2 = a3 = a0; - } - -#define KMADD(c, a, b, tmp) {tmp = b; tmp = pmul(a,tmp); c = padd(c,tmp);} -#define WORK(I) \ - c0 = pload(C0+i+(I)*PacketSize); \ - c1 = pload(C1+i+(I)*PacketSize); \ - KMADD(c0, a0, b00, t0) \ - KMADD(c1, a0, b01, t1) \ - a0 = pload(A0+i+(I+1)*PacketSize); \ - KMADD(c0, a1, b10, t0) \ - KMADD(c1, a1, b11, t1) \ - a1 = pload(A1+i+(I+1)*PacketSize); \ - if(RK==4){ KMADD(c0, a2, b20, t0) }\ - if(RK==4){ KMADD(c1, a2, b21, t1) }\ - if(RK==4){ a2 = pload(A2+i+(I+1)*PacketSize); }\ - if(RK==4){ KMADD(c0, a3, b30, t0) }\ - if(RK==4){ KMADD(c1, a3, b31, t1) }\ - if(RK==4){ a3 = pload(A3+i+(I+1)*PacketSize); }\ - pstore(C0+i+(I)*PacketSize, c0); \ - pstore(C1+i+(I)*PacketSize, c1) - - // process rows of A' - C' with aggressive vectorization and peeling - for(Index i=0; i0) - { - const Scalar* Bc0 = B+(n-1)*ldb; - - for(Index k=0; k(Bc0[0]); - b10 = pset1(Bc0[1]); - if(RK==4) b20 = pset1(Bc0[2]); - if(RK==4) b30 = pset1(Bc0[3]); - - Packet a0, a1, a2, a3, c0, t0/*, t1*/; - - const Scalar* A0 = A+ib+(k+0)*lda; - const Scalar* A1 = A+ib+(k+1)*lda; - const Scalar* A2 = A+ib+(k+2)*lda; - const Scalar* A3 = A+ib+(k+3)*lda; - - Scalar* C0 = C+ib+(n_end)*ldc; - - a0 = pload(A0); - a1 = pload(A1); - if(RK==4) - { - a2 = pload(A2); - a3 = pload(A3); - } - else - { - // workaround "may be used uninitialized in this function" warning - a2 = a3 = a0; - } - -#define WORK(I) \ - c0 = pload(C0+i+(I)*PacketSize); \ - KMADD(c0, a0, b00, t0) \ - a0 = pload(A0+i+(I+1)*PacketSize); \ - KMADD(c0, a1, b10, t0) \ - a1 = pload(A1+i+(I+1)*PacketSize); \ - if(RK==4){ KMADD(c0, a2, b20, t0) }\ - if(RK==4){ a2 = pload(A2+i+(I+1)*PacketSize); }\ - if(RK==4){ KMADD(c0, a3, b30, t0) }\ - if(RK==4){ a3 = pload(A3+i+(I+1)*PacketSize); }\ - pstore(C0+i+(I)*PacketSize, c0); - - // agressive vectorization and peeling - for(Index i=0; i0) - { - for(Index j=0; j1 ? Aligned : 0 - }; - typedef Map, Alignment > MapVector; - typedef Map, Alignment > ConstMapVector; - if(rd==1) MapVector(C+j*ldc+ib,actual_b) += B[0+d_end+j*ldb] * ConstMapVector(A+(d_end+0)*lda+ib, actual_b); - - else if(rd==2) MapVector(C+j*ldc+ib,actual_b) += B[0+d_end+j*ldb] * ConstMapVector(A+(d_end+0)*lda+ib, actual_b) - + B[1+d_end+j*ldb] * ConstMapVector(A+(d_end+1)*lda+ib, actual_b); - - else MapVector(C+j*ldc+ib,actual_b) += B[0+d_end+j*ldb] * ConstMapVector(A+(d_end+0)*lda+ib, actual_b) - + B[1+d_end+j*ldb] * ConstMapVector(A+(d_end+1)*lda+ib, actual_b) - + B[2+d_end+j*ldb] * ConstMapVector(A+(d_end+2)*lda+ib, actual_b); - } - } - - } // blocking on the rows of A and C -} -#undef KMADD - -} // namespace internal - -} // namespace Eigen - -#endif // EIGEN_SPARSELU_GEMM_KERNEL_H diff --git a/src/math_meigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h b/src/math_meigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h deleted file mode 100755 index 6f75d500e..000000000 --- a/src/math_meigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +++ /dev/null @@ -1,126 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Désiré Nuentsa-Wakam -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -/* This file is a modified version of heap_relax_snode.c file in SuperLU - * -- SuperLU routine (version 3.0) -- - * Univ. of California Berkeley, Xerox Palo Alto Research Center, - * and Lawrence Berkeley National Lab. - * October 15, 2003 - * - * Copyright (c) 1994 by Xerox Corporation. All rights reserved. - * - * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY - * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. - * - * Permission is hereby granted to use or copy this program for any - * purpose, provided the above notices are retained on all copies. - * Permission to modify the code and to distribute modified code is - * granted, provided the above notices are retained, and a notice that - * the code was modified is included with the above copyright notice. - */ - -#ifndef SPARSELU_HEAP_RELAX_SNODE_H -#define SPARSELU_HEAP_RELAX_SNODE_H - -namespace Eigen { -namespace internal { - -/** - * \brief Identify the initial relaxed supernodes - * - * This routine applied to a symmetric elimination tree. - * It assumes that the matrix has been reordered according to the postorder of the etree - * \param n The number of columns - * \param et elimination tree - * \param relax_columns Maximum number of columns allowed in a relaxed snode - * \param descendants Number of descendants of each node in the etree - * \param relax_end last column in a supernode - */ -template -void SparseLUImpl::heap_relax_snode (const Index n, IndexVector& et, const Index relax_columns, IndexVector& descendants, IndexVector& relax_end) -{ - - // The etree may not be postordered, but its heap ordered - IndexVector post; - internal::treePostorder(StorageIndex(n), et, post); // Post order etree - IndexVector inv_post(n+1); - for (StorageIndex i = 0; i < n+1; ++i) inv_post(post(i)) = i; // inv_post = post.inverse()??? - - // Renumber etree in postorder - IndexVector iwork(n); - IndexVector et_save(n+1); - for (Index i = 0; i < n; ++i) - { - iwork(post(i)) = post(et(i)); - } - et_save = et; // Save the original etree - et = iwork; - - // compute the number of descendants of each node in the etree - relax_end.setConstant(emptyIdxLU); - Index j, parent; - descendants.setZero(); - for (j = 0; j < n; j++) - { - parent = et(j); - if (parent != n) // not the dummy root - descendants(parent) += descendants(j) + 1; - } - // Identify the relaxed supernodes by postorder traversal of the etree - Index snode_start; // beginning of a snode - StorageIndex k; - Index nsuper_et_post = 0; // Number of relaxed snodes in postordered etree - Index nsuper_et = 0; // Number of relaxed snodes in the original etree - StorageIndex l; - for (j = 0; j < n; ) - { - parent = et(j); - snode_start = j; - while ( parent != n && descendants(parent) < relax_columns ) - { - j = parent; - parent = et(j); - } - // Found a supernode in postordered etree, j is the last column - ++nsuper_et_post; - k = StorageIndex(n); - for (Index i = snode_start; i <= j; ++i) - k = (std::min)(k, inv_post(i)); - l = inv_post(j); - if ( (l - k) == (j - snode_start) ) // Same number of columns in the snode - { - // This is also a supernode in the original etree - relax_end(k) = l; // Record last column - ++nsuper_et; - } - else - { - for (Index i = snode_start; i <= j; ++i) - { - l = inv_post(i); - if (descendants(i) == 0) - { - relax_end(l) = l; - ++nsuper_et; - } - } - } - j++; - // Search for a new leaf - while (descendants(j) != 0 && j < n) j++; - } // End postorder traversal of the etree - - // Recover the original etree - et = et_save; -} - -} // end namespace internal - -} // end namespace Eigen -#endif // SPARSELU_HEAP_RELAX_SNODE_H diff --git a/src/math_meigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h b/src/math_meigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h deleted file mode 100755 index 8c1b3e8bc..000000000 --- a/src/math_meigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +++ /dev/null @@ -1,130 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Désiré Nuentsa-Wakam -// Copyright (C) 2012 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef SPARSELU_KERNEL_BMOD_H -#define SPARSELU_KERNEL_BMOD_H - -namespace Eigen { -namespace internal { - -template struct LU_kernel_bmod -{ - /** \internal - * \brief Performs numeric block updates from a given supernode to a single column - * - * \param segsize Size of the segment (and blocks ) to use for updates - * \param[in,out] dense Packed values of the original matrix - * \param tempv temporary vector to use for updates - * \param lusup array containing the supernodes - * \param lda Leading dimension in the supernode - * \param nrow Number of rows in the rectangular part of the supernode - * \param lsub compressed row subscripts of supernodes - * \param lptr pointer to the first column of the current supernode in lsub - * \param no_zeros Number of nonzeros elements before the diagonal part of the supernode - */ - template - static EIGEN_DONT_INLINE void run(const Index segsize, BlockScalarVector& dense, ScalarVector& tempv, ScalarVector& lusup, Index& luptr, const Index lda, - const Index nrow, IndexVector& lsub, const Index lptr, const Index no_zeros); -}; - -template -template -EIGEN_DONT_INLINE void LU_kernel_bmod::run(const Index segsize, BlockScalarVector& dense, ScalarVector& tempv, ScalarVector& lusup, Index& luptr, const Index lda, - const Index nrow, IndexVector& lsub, const Index lptr, const Index no_zeros) -{ - typedef typename ScalarVector::Scalar Scalar; - // First, copy U[*,j] segment from dense(*) to tempv(*) - // The result of triangular solve is in tempv[*]; - // The result of matric-vector update is in dense[*] - Index isub = lptr + no_zeros; - Index i; - Index irow; - for (i = 0; i < ((SegSizeAtCompileTime==Dynamic)?segsize:SegSizeAtCompileTime); i++) - { - irow = lsub(isub); - tempv(i) = dense(irow); - ++isub; - } - // Dense triangular solve -- start effective triangle - luptr += lda * no_zeros + no_zeros; - // Form Eigen matrix and vector - Map, 0, OuterStride<> > A( &(lusup.data()[luptr]), segsize, segsize, OuterStride<>(lda) ); - Map > u(tempv.data(), segsize); - - u = A.template triangularView().solve(u); - - // Dense matrix-vector product y <-- B*x - luptr += segsize; - const Index PacketSize = internal::packet_traits::size; - Index ldl = internal::first_multiple(nrow, PacketSize); - Map, 0, OuterStride<> > B( &(lusup.data()[luptr]), nrow, segsize, OuterStride<>(lda) ); - Index aligned_offset = internal::first_default_aligned(tempv.data()+segsize, PacketSize); - Index aligned_with_B_offset = (PacketSize-internal::first_default_aligned(B.data(), PacketSize))%PacketSize; - Map, 0, OuterStride<> > l(tempv.data()+segsize+aligned_offset+aligned_with_B_offset, nrow, OuterStride<>(ldl) ); - - l.setZero(); - internal::sparselu_gemm(l.rows(), l.cols(), B.cols(), B.data(), B.outerStride(), u.data(), u.outerStride(), l.data(), l.outerStride()); - - // Scatter tempv[] into SPA dense[] as a temporary storage - isub = lptr + no_zeros; - for (i = 0; i < ((SegSizeAtCompileTime==Dynamic)?segsize:SegSizeAtCompileTime); i++) - { - irow = lsub(isub++); - dense(irow) = tempv(i); - } - - // Scatter l into SPA dense[] - for (i = 0; i < nrow; i++) - { - irow = lsub(isub++); - dense(irow) -= l(i); - } -} - -template <> struct LU_kernel_bmod<1> -{ - template - static EIGEN_DONT_INLINE void run(const Index /*segsize*/, BlockScalarVector& dense, ScalarVector& /*tempv*/, ScalarVector& lusup, Index& luptr, - const Index lda, const Index nrow, IndexVector& lsub, const Index lptr, const Index no_zeros); -}; - - -template -EIGEN_DONT_INLINE void LU_kernel_bmod<1>::run(const Index /*segsize*/, BlockScalarVector& dense, ScalarVector& /*tempv*/, ScalarVector& lusup, Index& luptr, - const Index lda, const Index nrow, IndexVector& lsub, const Index lptr, const Index no_zeros) -{ - typedef typename ScalarVector::Scalar Scalar; - typedef typename IndexVector::Scalar StorageIndex; - Scalar f = dense(lsub(lptr + no_zeros)); - luptr += lda * no_zeros + no_zeros + 1; - const Scalar* a(lusup.data() + luptr); - const StorageIndex* irow(lsub.data()+lptr + no_zeros + 1); - Index i = 0; - for (; i+1 < nrow; i+=2) - { - Index i0 = *(irow++); - Index i1 = *(irow++); - Scalar a0 = *(a++); - Scalar a1 = *(a++); - Scalar d0 = dense.coeff(i0); - Scalar d1 = dense.coeff(i1); - d0 -= f*a0; - d1 -= f*a1; - dense.coeffRef(i0) = d0; - dense.coeffRef(i1) = d1; - } - if(i -// Copyright (C) 2012 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -/* - - * NOTE: This file is the modified version of [s,d,c,z]panel_bmod.c file in SuperLU - - * -- SuperLU routine (version 3.0) -- - * Univ. of California Berkeley, Xerox Palo Alto Research Center, - * and Lawrence Berkeley National Lab. - * October 15, 2003 - * - * Copyright (c) 1994 by Xerox Corporation. All rights reserved. - * - * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY - * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. - * - * Permission is hereby granted to use or copy this program for any - * purpose, provided the above notices are retained on all copies. - * Permission to modify the code and to distribute modified code is - * granted, provided the above notices are retained, and a notice that - * the code was modified is included with the above copyright notice. - */ -#ifndef SPARSELU_PANEL_BMOD_H -#define SPARSELU_PANEL_BMOD_H - -namespace Eigen { -namespace internal { - -/** - * \brief Performs numeric block updates (sup-panel) in topological order. - * - * Before entering this routine, the original nonzeros in the panel - * were already copied i nto the spa[m,w] - * - * \param m number of rows in the matrix - * \param w Panel size - * \param jcol Starting column of the panel - * \param nseg Number of segments in the U part - * \param dense Store the full representation of the panel - * \param tempv working array - * \param segrep segment representative... first row in the segment - * \param repfnz First nonzero rows - * \param glu Global LU data. - * - * - */ -template -void SparseLUImpl::panel_bmod(const Index m, const Index w, const Index jcol, - const Index nseg, ScalarVector& dense, ScalarVector& tempv, - IndexVector& segrep, IndexVector& repfnz, GlobalLU_t& glu) -{ - - Index ksub,jj,nextl_col; - Index fsupc, nsupc, nsupr, nrow; - Index krep, kfnz; - Index lptr; // points to the row subscripts of a supernode - Index luptr; // ... - Index segsize,no_zeros ; - // For each nonz supernode segment of U[*,j] in topological order - Index k = nseg - 1; - const Index PacketSize = internal::packet_traits::size; - - for (ksub = 0; ksub < nseg; ksub++) - { // For each updating supernode - /* krep = representative of current k-th supernode - * fsupc = first supernodal column - * nsupc = number of columns in a supernode - * nsupr = number of rows in a supernode - */ - krep = segrep(k); k--; - fsupc = glu.xsup(glu.supno(krep)); - nsupc = krep - fsupc + 1; - nsupr = glu.xlsub(fsupc+1) - glu.xlsub(fsupc); - nrow = nsupr - nsupc; - lptr = glu.xlsub(fsupc); - - // loop over the panel columns to detect the actual number of columns and rows - Index u_rows = 0; - Index u_cols = 0; - for (jj = jcol; jj < jcol + w; jj++) - { - nextl_col = (jj-jcol) * m; - VectorBlock repfnz_col(repfnz, nextl_col, m); // First nonzero column index for each row - - kfnz = repfnz_col(krep); - if ( kfnz == emptyIdxLU ) - continue; // skip any zero segment - - segsize = krep - kfnz + 1; - u_cols++; - u_rows = (std::max)(segsize,u_rows); - } - - if(nsupc >= 2) - { - Index ldu = internal::first_multiple(u_rows, PacketSize); - Map > U(tempv.data(), u_rows, u_cols, OuterStride<>(ldu)); - - // gather U - Index u_col = 0; - for (jj = jcol; jj < jcol + w; jj++) - { - nextl_col = (jj-jcol) * m; - VectorBlock repfnz_col(repfnz, nextl_col, m); // First nonzero column index for each row - VectorBlock dense_col(dense, nextl_col, m); // Scatter/gather entire matrix column from/to here - - kfnz = repfnz_col(krep); - if ( kfnz == emptyIdxLU ) - continue; // skip any zero segment - - segsize = krep - kfnz + 1; - luptr = glu.xlusup(fsupc); - no_zeros = kfnz - fsupc; - - Index isub = lptr + no_zeros; - Index off = u_rows-segsize; - for (Index i = 0; i < off; i++) U(i,u_col) = 0; - for (Index i = 0; i < segsize; i++) - { - Index irow = glu.lsub(isub); - U(i+off,u_col) = dense_col(irow); - ++isub; - } - u_col++; - } - // solve U = A^-1 U - luptr = glu.xlusup(fsupc); - Index lda = glu.xlusup(fsupc+1) - glu.xlusup(fsupc); - no_zeros = (krep - u_rows + 1) - fsupc; - luptr += lda * no_zeros + no_zeros; - MappedMatrixBlock A(glu.lusup.data()+luptr, u_rows, u_rows, OuterStride<>(lda) ); - U = A.template triangularView().solve(U); - - // update - luptr += u_rows; - MappedMatrixBlock B(glu.lusup.data()+luptr, nrow, u_rows, OuterStride<>(lda) ); - eigen_assert(tempv.size()>w*ldu + nrow*w + 1); - - Index ldl = internal::first_multiple(nrow, PacketSize); - Index offset = (PacketSize-internal::first_default_aligned(B.data(), PacketSize)) % PacketSize; - MappedMatrixBlock L(tempv.data()+w*ldu+offset, nrow, u_cols, OuterStride<>(ldl)); - - L.setZero(); - internal::sparselu_gemm(L.rows(), L.cols(), B.cols(), B.data(), B.outerStride(), U.data(), U.outerStride(), L.data(), L.outerStride()); - - // scatter U and L - u_col = 0; - for (jj = jcol; jj < jcol + w; jj++) - { - nextl_col = (jj-jcol) * m; - VectorBlock repfnz_col(repfnz, nextl_col, m); // First nonzero column index for each row - VectorBlock dense_col(dense, nextl_col, m); // Scatter/gather entire matrix column from/to here - - kfnz = repfnz_col(krep); - if ( kfnz == emptyIdxLU ) - continue; // skip any zero segment - - segsize = krep - kfnz + 1; - no_zeros = kfnz - fsupc; - Index isub = lptr + no_zeros; - - Index off = u_rows-segsize; - for (Index i = 0; i < segsize; i++) - { - Index irow = glu.lsub(isub++); - dense_col(irow) = U.coeff(i+off,u_col); - U.coeffRef(i+off,u_col) = 0; - } - - // Scatter l into SPA dense[] - for (Index i = 0; i < nrow; i++) - { - Index irow = glu.lsub(isub++); - dense_col(irow) -= L.coeff(i,u_col); - L.coeffRef(i,u_col) = 0; - } - u_col++; - } - } - else // level 2 only - { - // Sequence through each column in the panel - for (jj = jcol; jj < jcol + w; jj++) - { - nextl_col = (jj-jcol) * m; - VectorBlock repfnz_col(repfnz, nextl_col, m); // First nonzero column index for each row - VectorBlock dense_col(dense, nextl_col, m); // Scatter/gather entire matrix column from/to here - - kfnz = repfnz_col(krep); - if ( kfnz == emptyIdxLU ) - continue; // skip any zero segment - - segsize = krep - kfnz + 1; - luptr = glu.xlusup(fsupc); - - Index lda = glu.xlusup(fsupc+1)-glu.xlusup(fsupc);// nsupr - - // Perform a trianglar solve and block update, - // then scatter the result of sup-col update to dense[] - no_zeros = kfnz - fsupc; - if(segsize==1) LU_kernel_bmod<1>::run(segsize, dense_col, tempv, glu.lusup, luptr, lda, nrow, glu.lsub, lptr, no_zeros); - else if(segsize==2) LU_kernel_bmod<2>::run(segsize, dense_col, tempv, glu.lusup, luptr, lda, nrow, glu.lsub, lptr, no_zeros); - else if(segsize==3) LU_kernel_bmod<3>::run(segsize, dense_col, tempv, glu.lusup, luptr, lda, nrow, glu.lsub, lptr, no_zeros); - else LU_kernel_bmod::run(segsize, dense_col, tempv, glu.lusup, luptr, lda, nrow, glu.lsub, lptr, no_zeros); - } // End for each column in the panel - } - - } // End for each updating supernode -} // end panel bmod - -} // end namespace internal - -} // end namespace Eigen - -#endif // SPARSELU_PANEL_BMOD_H diff --git a/src/math_meigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h b/src/math_meigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h deleted file mode 100755 index 155df7336..000000000 --- a/src/math_meigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +++ /dev/null @@ -1,258 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Désiré Nuentsa-Wakam -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -/* - - * NOTE: This file is the modified version of [s,d,c,z]panel_dfs.c file in SuperLU - - * -- SuperLU routine (version 2.0) -- - * Univ. of California Berkeley, Xerox Palo Alto Research Center, - * and Lawrence Berkeley National Lab. - * November 15, 1997 - * - * Copyright (c) 1994 by Xerox Corporation. All rights reserved. - * - * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY - * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. - * - * Permission is hereby granted to use or copy this program for any - * purpose, provided the above notices are retained on all copies. - * Permission to modify the code and to distribute modified code is - * granted, provided the above notices are retained, and a notice that - * the code was modified is included with the above copyright notice. - */ -#ifndef SPARSELU_PANEL_DFS_H -#define SPARSELU_PANEL_DFS_H - -namespace Eigen { - -namespace internal { - -template -struct panel_dfs_traits -{ - typedef typename IndexVector::Scalar StorageIndex; - panel_dfs_traits(Index jcol, StorageIndex* marker) - : m_jcol(jcol), m_marker(marker) - {} - bool update_segrep(Index krep, StorageIndex jj) - { - if(m_marker[krep] -template -void SparseLUImpl::dfs_kernel(const StorageIndex jj, IndexVector& perm_r, - Index& nseg, IndexVector& panel_lsub, IndexVector& segrep, - Ref repfnz_col, IndexVector& xprune, Ref marker, IndexVector& parent, - IndexVector& xplore, GlobalLU_t& glu, - Index& nextl_col, Index krow, Traits& traits - ) -{ - - StorageIndex kmark = marker(krow); - - // For each unmarked krow of jj - marker(krow) = jj; - StorageIndex kperm = perm_r(krow); - if (kperm == emptyIdxLU ) { - // krow is in L : place it in structure of L(*, jj) - panel_lsub(nextl_col++) = StorageIndex(krow); // krow is indexed into A - - traits.mem_expand(panel_lsub, nextl_col, kmark); - } - else - { - // krow is in U : if its supernode-representative krep - // has been explored, update repfnz(*) - // krep = supernode representative of the current row - StorageIndex krep = glu.xsup(glu.supno(kperm)+1) - 1; - // First nonzero element in the current column: - StorageIndex myfnz = repfnz_col(krep); - - if (myfnz != emptyIdxLU ) - { - // Representative visited before - if (myfnz > kperm ) repfnz_col(krep) = kperm; - - } - else - { - // Otherwise, perform dfs starting at krep - StorageIndex oldrep = emptyIdxLU; - parent(krep) = oldrep; - repfnz_col(krep) = kperm; - StorageIndex xdfs = glu.xlsub(krep); - Index maxdfs = xprune(krep); - - StorageIndex kpar; - do - { - // For each unmarked kchild of krep - while (xdfs < maxdfs) - { - StorageIndex kchild = glu.lsub(xdfs); - xdfs++; - StorageIndex chmark = marker(kchild); - - if (chmark != jj ) - { - marker(kchild) = jj; - StorageIndex chperm = perm_r(kchild); - - if (chperm == emptyIdxLU) - { - // case kchild is in L: place it in L(*, j) - panel_lsub(nextl_col++) = kchild; - traits.mem_expand(panel_lsub, nextl_col, chmark); - } - else - { - // case kchild is in U : - // chrep = its supernode-rep. If its rep has been explored, - // update its repfnz(*) - StorageIndex chrep = glu.xsup(glu.supno(chperm)+1) - 1; - myfnz = repfnz_col(chrep); - - if (myfnz != emptyIdxLU) - { // Visited before - if (myfnz > chperm) - repfnz_col(chrep) = chperm; - } - else - { // Cont. dfs at snode-rep of kchild - xplore(krep) = xdfs; - oldrep = krep; - krep = chrep; // Go deeper down G(L) - parent(krep) = oldrep; - repfnz_col(krep) = chperm; - xdfs = glu.xlsub(krep); - maxdfs = xprune(krep); - - } // end if myfnz != -1 - } // end if chperm == -1 - - } // end if chmark !=jj - } // end while xdfs < maxdfs - - // krow has no more unexplored nbrs : - // Place snode-rep krep in postorder DFS, if this - // segment is seen for the first time. (Note that - // "repfnz(krep)" may change later.) - // Baktrack dfs to its parent - if(traits.update_segrep(krep,jj)) - //if (marker1(krep) < jcol ) - { - segrep(nseg) = krep; - ++nseg; - //marker1(krep) = jj; - } - - kpar = parent(krep); // Pop recursion, mimic recursion - if (kpar == emptyIdxLU) - break; // dfs done - krep = kpar; - xdfs = xplore(krep); - maxdfs = xprune(krep); - - } while (kpar != emptyIdxLU); // Do until empty stack - - } // end if (myfnz = -1) - - } // end if (kperm == -1) -} - -/** - * \brief Performs a symbolic factorization on a panel of columns [jcol, jcol+w) - * - * A supernode representative is the last column of a supernode. - * The nonzeros in U[*,j] are segments that end at supernodes representatives - * - * The routine returns a list of the supernodal representatives - * in topological order of the dfs that generates them. This list is - * a superset of the topological order of each individual column within - * the panel. - * The location of the first nonzero in each supernodal segment - * (supernodal entry location) is also returned. Each column has - * a separate list for this purpose. - * - * Two markers arrays are used for dfs : - * marker[i] == jj, if i was visited during dfs of current column jj; - * marker1[i] >= jcol, if i was visited by earlier columns in this panel; - * - * \param[in] m number of rows in the matrix - * \param[in] w Panel size - * \param[in] jcol Starting column of the panel - * \param[in] A Input matrix in column-major storage - * \param[in] perm_r Row permutation - * \param[out] nseg Number of U segments - * \param[out] dense Accumulate the column vectors of the panel - * \param[out] panel_lsub Subscripts of the row in the panel - * \param[out] segrep Segment representative i.e first nonzero row of each segment - * \param[out] repfnz First nonzero location in each row - * \param[out] xprune The pruned elimination tree - * \param[out] marker work vector - * \param parent The elimination tree - * \param xplore work vector - * \param glu The global data structure - * - */ - -template -void SparseLUImpl::panel_dfs(const Index m, const Index w, const Index jcol, MatrixType& A, IndexVector& perm_r, Index& nseg, ScalarVector& dense, IndexVector& panel_lsub, IndexVector& segrep, IndexVector& repfnz, IndexVector& xprune, IndexVector& marker, IndexVector& parent, IndexVector& xplore, GlobalLU_t& glu) -{ - Index nextl_col; // Next available position in panel_lsub[*,jj] - - // Initialize pointers - VectorBlock marker1(marker, m, m); - nseg = 0; - - panel_dfs_traits traits(jcol, marker1.data()); - - // For each column in the panel - for (StorageIndex jj = StorageIndex(jcol); jj < jcol + w; jj++) - { - nextl_col = (jj - jcol) * m; - - VectorBlock repfnz_col(repfnz, nextl_col, m); // First nonzero location in each row - VectorBlock dense_col(dense,nextl_col, m); // Accumulate a column vector here - - - // For each nnz in A[*, jj] do depth first search - for (typename MatrixType::InnerIterator it(A, jj); it; ++it) - { - Index krow = it.row(); - dense_col(krow) = it.value(); - - StorageIndex kmark = marker(krow); - if (kmark == jj) - continue; // krow visited before, go to the next nonzero - - dfs_kernel(jj, perm_r, nseg, panel_lsub, segrep, repfnz_col, xprune, marker, parent, - xplore, glu, nextl_col, krow, traits); - }// end for nonzeros in column jj - - } // end for column jj -} - -} // end namespace internal -} // end namespace Eigen - -#endif // SPARSELU_PANEL_DFS_H diff --git a/src/math_meigen/Eigen/src/SparseLU/SparseLU_pivotL.h b/src/math_meigen/Eigen/src/SparseLU/SparseLU_pivotL.h deleted file mode 100755 index a86dac93f..000000000 --- a/src/math_meigen/Eigen/src/SparseLU/SparseLU_pivotL.h +++ /dev/null @@ -1,137 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Désiré Nuentsa-Wakam -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -/* - - * NOTE: This file is the modified version of xpivotL.c file in SuperLU - - * -- SuperLU routine (version 3.0) -- - * Univ. of California Berkeley, Xerox Palo Alto Research Center, - * and Lawrence Berkeley National Lab. - * October 15, 2003 - * - * Copyright (c) 1994 by Xerox Corporation. All rights reserved. - * - * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY - * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. - * - * Permission is hereby granted to use or copy this program for any - * purpose, provided the above notices are retained on all copies. - * Permission to modify the code and to distribute modified code is - * granted, provided the above notices are retained, and a notice that - * the code was modified is included with the above copyright notice. - */ -#ifndef SPARSELU_PIVOTL_H -#define SPARSELU_PIVOTL_H - -namespace Eigen { -namespace internal { - -/** - * \brief Performs the numerical pivotin on the current column of L, and the CDIV operation. - * - * Pivot policy : - * (1) Compute thresh = u * max_(i>=j) abs(A_ij); - * (2) IF user specifies pivot row k and abs(A_kj) >= thresh THEN - * pivot row = k; - * ELSE IF abs(A_jj) >= thresh THEN - * pivot row = j; - * ELSE - * pivot row = m; - * - * Note: If you absolutely want to use a given pivot order, then set u=0.0. - * - * \param jcol The current column of L - * \param diagpivotthresh diagonal pivoting threshold - * \param[in,out] perm_r Row permutation (threshold pivoting) - * \param[in] iperm_c column permutation - used to finf diagonal of Pc*A*Pc' - * \param[out] pivrow The pivot row - * \param glu Global LU data - * \return 0 if success, i > 0 if U(i,i) is exactly zero - * - */ -template -Index SparseLUImpl::pivotL(const Index jcol, const RealScalar& diagpivotthresh, IndexVector& perm_r, IndexVector& iperm_c, Index& pivrow, GlobalLU_t& glu) -{ - - Index fsupc = (glu.xsup)((glu.supno)(jcol)); // First column in the supernode containing the column jcol - Index nsupc = jcol - fsupc; // Number of columns in the supernode portion, excluding jcol; nsupc >=0 - Index lptr = glu.xlsub(fsupc); // pointer to the starting location of the row subscripts for this supernode portion - Index nsupr = glu.xlsub(fsupc+1) - lptr; // Number of rows in the supernode - Index lda = glu.xlusup(fsupc+1) - glu.xlusup(fsupc); // leading dimension - Scalar* lu_sup_ptr = &(glu.lusup.data()[glu.xlusup(fsupc)]); // Start of the current supernode - Scalar* lu_col_ptr = &(glu.lusup.data()[glu.xlusup(jcol)]); // Start of jcol in the supernode - StorageIndex* lsub_ptr = &(glu.lsub.data()[lptr]); // Start of row indices of the supernode - - // Determine the largest abs numerical value for partial pivoting - Index diagind = iperm_c(jcol); // diagonal index - RealScalar pivmax(-1.0); - Index pivptr = nsupc; - Index diag = emptyIdxLU; - RealScalar rtemp; - Index isub, icol, itemp, k; - for (isub = nsupc; isub < nsupr; ++isub) { - using std::abs; - rtemp = abs(lu_col_ptr[isub]); - if (rtemp > pivmax) { - pivmax = rtemp; - pivptr = isub; - } - if (lsub_ptr[isub] == diagind) diag = isub; - } - - // Test for singularity - if ( pivmax <= RealScalar(0.0) ) { - // if pivmax == -1, the column is structurally empty, otherwise it is only numerically zero - pivrow = pivmax < RealScalar(0.0) ? diagind : lsub_ptr[pivptr]; - perm_r(pivrow) = StorageIndex(jcol); - return (jcol+1); - } - - RealScalar thresh = diagpivotthresh * pivmax; - - // Choose appropriate pivotal element - - { - // Test if the diagonal element can be used as a pivot (given the threshold value) - if (diag >= 0 ) - { - // Diagonal element exists - using std::abs; - rtemp = abs(lu_col_ptr[diag]); - if (rtemp != RealScalar(0.0) && rtemp >= thresh) pivptr = diag; - } - pivrow = lsub_ptr[pivptr]; - } - - // Record pivot row - perm_r(pivrow) = StorageIndex(jcol); - // Interchange row subscripts - if (pivptr != nsupc ) - { - std::swap( lsub_ptr[pivptr], lsub_ptr[nsupc] ); - // Interchange numerical values as well, for the two rows in the whole snode - // such that L is indexed the same way as A - for (icol = 0; icol <= nsupc; icol++) - { - itemp = pivptr + icol * lda; - std::swap(lu_sup_ptr[itemp], lu_sup_ptr[nsupc + icol * lda]); - } - } - // cdiv operations - Scalar temp = Scalar(1.0) / lu_col_ptr[nsupc]; - for (k = nsupc+1; k < nsupr; k++) - lu_col_ptr[k] *= temp; - return 0; -} - -} // end namespace internal -} // end namespace Eigen - -#endif // SPARSELU_PIVOTL_H diff --git a/src/math_meigen/Eigen/src/SparseLU/SparseLU_pruneL.h b/src/math_meigen/Eigen/src/SparseLU/SparseLU_pruneL.h deleted file mode 100755 index ad32fed5e..000000000 --- a/src/math_meigen/Eigen/src/SparseLU/SparseLU_pruneL.h +++ /dev/null @@ -1,136 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Désiré Nuentsa-Wakam -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -/* - - * NOTE: This file is the modified version of [s,d,c,z]pruneL.c file in SuperLU - - * -- SuperLU routine (version 2.0) -- - * Univ. of California Berkeley, Xerox Palo Alto Research Center, - * and Lawrence Berkeley National Lab. - * November 15, 1997 - * - * Copyright (c) 1994 by Xerox Corporation. All rights reserved. - * - * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY - * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. - * - * Permission is hereby granted to use or copy this program for any - * purpose, provided the above notices are retained on all copies. - * Permission to modify the code and to distribute modified code is - * granted, provided the above notices are retained, and a notice that - * the code was modified is included with the above copyright notice. - */ -#ifndef SPARSELU_PRUNEL_H -#define SPARSELU_PRUNEL_H - -namespace Eigen { -namespace internal { - -/** - * \brief Prunes the L-structure. - * - * It prunes the L-structure of supernodes whose L-structure contains the current pivot row "pivrow" - * - * - * \param jcol The current column of L - * \param[in] perm_r Row permutation - * \param[out] pivrow The pivot row - * \param nseg Number of segments - * \param segrep - * \param repfnz - * \param[out] xprune - * \param glu Global LU data - * - */ -template -void SparseLUImpl::pruneL(const Index jcol, const IndexVector& perm_r, const Index pivrow, const Index nseg, - const IndexVector& segrep, BlockIndexVector repfnz, IndexVector& xprune, GlobalLU_t& glu) -{ - // For each supernode-rep irep in U(*,j] - Index jsupno = glu.supno(jcol); - Index i,irep,irep1; - bool movnum, do_prune = false; - Index kmin = 0, kmax = 0, minloc, maxloc,krow; - for (i = 0; i < nseg; i++) - { - irep = segrep(i); - irep1 = irep + 1; - do_prune = false; - - // Don't prune with a zero U-segment - if (repfnz(irep) == emptyIdxLU) continue; - - // If a snode overlaps with the next panel, then the U-segment - // is fragmented into two parts -- irep and irep1. We should let - // pruning occur at the rep-column in irep1s snode. - if (glu.supno(irep) == glu.supno(irep1) ) continue; // don't prune - - // If it has not been pruned & it has a nonz in row L(pivrow,i) - if (glu.supno(irep) != jsupno ) - { - if ( xprune (irep) >= glu.xlsub(irep1) ) - { - kmin = glu.xlsub(irep); - kmax = glu.xlsub(irep1) - 1; - for (krow = kmin; krow <= kmax; krow++) - { - if (glu.lsub(krow) == pivrow) - { - do_prune = true; - break; - } - } - } - - if (do_prune) - { - // do a quicksort-type partition - // movnum=true means that the num values have to be exchanged - movnum = false; - if (irep == glu.xsup(glu.supno(irep)) ) // Snode of size 1 - movnum = true; - - while (kmin <= kmax) - { - if (perm_r(glu.lsub(kmax)) == emptyIdxLU) - kmax--; - else if ( perm_r(glu.lsub(kmin)) != emptyIdxLU) - kmin++; - else - { - // kmin below pivrow (not yet pivoted), and kmax - // above pivrow: interchange the two suscripts - std::swap(glu.lsub(kmin), glu.lsub(kmax)); - - // If the supernode has only one column, then we - // only keep one set of subscripts. For any subscript - // intercnahge performed, similar interchange must be - // done on the numerical values. - if (movnum) - { - minloc = glu.xlusup(irep) + ( kmin - glu.xlsub(irep) ); - maxloc = glu.xlusup(irep) + ( kmax - glu.xlsub(irep) ); - std::swap(glu.lusup(minloc), glu.lusup(maxloc)); - } - kmin++; - kmax--; - } - } // end while - - xprune(irep) = StorageIndex(kmin); //Pruning - } // end if do_prune - } // end pruning - } // End for each U-segment -} - -} // end namespace internal -} // end namespace Eigen - -#endif // SPARSELU_PRUNEL_H diff --git a/src/math_meigen/Eigen/src/SparseLU/SparseLU_relax_snode.h b/src/math_meigen/Eigen/src/SparseLU/SparseLU_relax_snode.h deleted file mode 100755 index c408d01b4..000000000 --- a/src/math_meigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +++ /dev/null @@ -1,83 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012 Désiré Nuentsa-Wakam -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -/* This file is a modified version of heap_relax_snode.c file in SuperLU - * -- SuperLU routine (version 3.0) -- - * Univ. of California Berkeley, Xerox Palo Alto Research Center, - * and Lawrence Berkeley National Lab. - * October 15, 2003 - * - * Copyright (c) 1994 by Xerox Corporation. All rights reserved. - * - * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY - * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. - * - * Permission is hereby granted to use or copy this program for any - * purpose, provided the above notices are retained on all copies. - * Permission to modify the code and to distribute modified code is - * granted, provided the above notices are retained, and a notice that - * the code was modified is included with the above copyright notice. - */ - -#ifndef SPARSELU_RELAX_SNODE_H -#define SPARSELU_RELAX_SNODE_H - -namespace Eigen { - -namespace internal { - -/** - * \brief Identify the initial relaxed supernodes - * - * This routine is applied to a column elimination tree. - * It assumes that the matrix has been reordered according to the postorder of the etree - * \param n the number of columns - * \param et elimination tree - * \param relax_columns Maximum number of columns allowed in a relaxed snode - * \param descendants Number of descendants of each node in the etree - * \param relax_end last column in a supernode - */ -template -void SparseLUImpl::relax_snode (const Index n, IndexVector& et, const Index relax_columns, IndexVector& descendants, IndexVector& relax_end) -{ - - // compute the number of descendants of each node in the etree - Index parent; - relax_end.setConstant(emptyIdxLU); - descendants.setZero(); - for (Index j = 0; j < n; j++) - { - parent = et(j); - if (parent != n) // not the dummy root - descendants(parent) += descendants(j) + 1; - } - // Identify the relaxed supernodes by postorder traversal of the etree - Index snode_start; // beginning of a snode - for (Index j = 0; j < n; ) - { - parent = et(j); - snode_start = j; - while ( parent != n && descendants(parent) < relax_columns ) - { - j = parent; - parent = et(j); - } - // Found a supernode in postordered etree, j is the last column - relax_end(snode_start) = StorageIndex(j); // Record last column - j++; - // Search for a new leaf - while (descendants(j) != 0 && j < n) j++; - } // End postorder traversal of the etree - -} - -} // end namespace internal - -} // end namespace Eigen -#endif diff --git a/src/math_meigen/Eigen/src/SparseQR/SparseQR.h b/src/math_meigen/Eigen/src/SparseQR/SparseQR.h deleted file mode 100755 index 7409fcae9..000000000 --- a/src/math_meigen/Eigen/src/SparseQR/SparseQR.h +++ /dev/null @@ -1,745 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2012-2013 Desire Nuentsa -// Copyright (C) 2012-2014 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SPARSE_QR_H -#define EIGEN_SPARSE_QR_H - -namespace Eigen { - -template class SparseQR; -template struct SparseQRMatrixQReturnType; -template struct SparseQRMatrixQTransposeReturnType; -template struct SparseQR_QProduct; -namespace internal { - template struct traits > - { - typedef typename SparseQRType::MatrixType ReturnType; - typedef typename ReturnType::StorageIndex StorageIndex; - typedef typename ReturnType::StorageKind StorageKind; - enum { - RowsAtCompileTime = Dynamic, - ColsAtCompileTime = Dynamic - }; - }; - template struct traits > - { - typedef typename SparseQRType::MatrixType ReturnType; - }; - template struct traits > - { - typedef typename Derived::PlainObject ReturnType; - }; -} // End namespace internal - -/** - * \ingroup SparseQR_Module - * \class SparseQR - * \brief Sparse left-looking rank-revealing QR factorization - * - * This class implements a left-looking rank-revealing QR decomposition - * of sparse matrices. When a column has a norm less than a given tolerance - * it is implicitly permuted to the end. The QR factorization thus obtained is - * given by A*P = Q*R where R is upper triangular or trapezoidal. - * - * P is the column permutation which is the product of the fill-reducing and the - * rank-revealing permutations. Use colsPermutation() to get it. - * - * Q is the orthogonal matrix represented as products of Householder reflectors. - * Use matrixQ() to get an expression and matrixQ().adjoint() to get the adjoint. - * You can then apply it to a vector. - * - * R is the sparse triangular or trapezoidal matrix. The later occurs when A is rank-deficient. - * matrixR().topLeftCorner(rank(), rank()) always returns a triangular factor of full rank. - * - * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<> - * \tparam _OrderingType The fill-reducing ordering method. See the \link OrderingMethods_Module - * OrderingMethods \endlink module for the list of built-in and external ordering methods. - * - * \implsparsesolverconcept - * - * \warning The input sparse matrix A must be in compressed mode (see SparseMatrix::makeCompressed()). - * \warning For complex matrices matrixQ().transpose() will actually return the adjoint matrix. - * - */ -template -class SparseQR : public SparseSolverBase > -{ - protected: - typedef SparseSolverBase > Base; - using Base::m_isInitialized; - public: - using Base::_solve_impl; - typedef _MatrixType MatrixType; - typedef _OrderingType OrderingType; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef typename MatrixType::StorageIndex StorageIndex; - typedef SparseMatrix QRMatrixType; - typedef Matrix IndexVector; - typedef Matrix ScalarVector; - typedef PermutationMatrix PermutationType; - - enum { - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime - }; - - public: - SparseQR () : m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false) - { } - - /** Construct a QR factorization of the matrix \a mat. - * - * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()). - * - * \sa compute() - */ - explicit SparseQR(const MatrixType& mat) : m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false) - { - compute(mat); - } - - /** Computes the QR factorization of the sparse matrix \a mat. - * - * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()). - * - * \sa analyzePattern(), factorize() - */ - void compute(const MatrixType& mat) - { - analyzePattern(mat); - factorize(mat); - } - void analyzePattern(const MatrixType& mat); - void factorize(const MatrixType& mat); - - /** \returns the number of rows of the represented matrix. - */ - inline Index rows() const { return m_pmat.rows(); } - - /** \returns the number of columns of the represented matrix. - */ - inline Index cols() const { return m_pmat.cols();} - - /** \returns a const reference to the \b sparse upper triangular matrix R of the QR factorization. - * \warning The entries of the returned matrix are not sorted. This means that using it in algorithms - * expecting sorted entries will fail. This include random coefficient accesses (SpaseMatrix::coeff()), - * and coefficient-wise operations. Matrix products and triangular solves are fine though. - * - * To sort the entries, you can assign it to a row-major matrix, and if a column-major matrix - * is required, you can copy it again: - * \code - * SparseMatrix R = qr.matrixR(); // column-major, not sorted! - * SparseMatrix Rr = qr.matrixR(); // row-major, sorted - * SparseMatrix Rc = Rr; // column-major, sorted - * \endcode - */ - const QRMatrixType& matrixR() const { return m_R; } - - /** \returns the number of non linearly dependent columns as determined by the pivoting threshold. - * - * \sa setPivotThreshold() - */ - Index rank() const - { - eigen_assert(m_isInitialized && "The factorization should be called first, use compute()"); - return m_nonzeropivots; - } - - /** \returns an expression of the matrix Q as products of sparse Householder reflectors. - * The common usage of this function is to apply it to a dense matrix or vector - * \code - * VectorXd B1, B2; - * // Initialize B1 - * B2 = matrixQ() * B1; - * \endcode - * - * To get a plain SparseMatrix representation of Q: - * \code - * SparseMatrix Q; - * Q = SparseQR >(A).matrixQ(); - * \endcode - * Internally, this call simply performs a sparse product between the matrix Q - * and a sparse identity matrix. However, due to the fact that the sparse - * reflectors are stored unsorted, two transpositions are needed to sort - * them before performing the product. - */ - SparseQRMatrixQReturnType matrixQ() const - { return SparseQRMatrixQReturnType(*this); } - - /** \returns a const reference to the column permutation P that was applied to A such that A*P = Q*R - * It is the combination of the fill-in reducing permutation and numerical column pivoting. - */ - const PermutationType& colsPermutation() const - { - eigen_assert(m_isInitialized && "Decomposition is not initialized."); - return m_outputPerm_c; - } - - /** \returns A string describing the type of error. - * This method is provided to ease debugging, not to handle errors. - */ - std::string lastErrorMessage() const { return m_lastError; } - - /** \internal */ - template - bool _solve_impl(const MatrixBase &B, MatrixBase &dest) const - { - eigen_assert(m_isInitialized && "The factorization should be called first, use compute()"); - eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix"); - - Index rank = this->rank(); - - // Compute Q^* * b; - typename Dest::PlainObject y, b; - y = this->matrixQ().adjoint() * B; - b = y; - - // Solve with the triangular matrix R - y.resize((std::max)(cols(),y.rows()),y.cols()); - y.topRows(rank) = this->matrixR().topLeftCorner(rank, rank).template triangularView().solve(b.topRows(rank)); - y.bottomRows(y.rows()-rank).setZero(); - - // Apply the column permutation - if (m_perm_c.size()) dest = colsPermutation() * y.topRows(cols()); - else dest = y.topRows(cols()); - - m_info = Success; - return true; - } - - /** Sets the threshold that is used to determine linearly dependent columns during the factorization. - * - * In practice, if during the factorization the norm of the column that has to be eliminated is below - * this threshold, then the entire column is treated as zero, and it is moved at the end. - */ - void setPivotThreshold(const RealScalar& threshold) - { - m_useDefaultThreshold = false; - m_threshold = threshold; - } - - /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A. - * - * \sa compute() - */ - template - inline const Solve solve(const MatrixBase& B) const - { - eigen_assert(m_isInitialized && "The factorization should be called first, use compute()"); - eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix"); - return Solve(*this, B.derived()); - } - template - inline const Solve solve(const SparseMatrixBase& B) const - { - eigen_assert(m_isInitialized && "The factorization should be called first, use compute()"); - eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix"); - return Solve(*this, B.derived()); - } - - /** \brief Reports whether previous computation was successful. - * - * \returns \c Success if computation was successful, - * \c NumericalIssue if the QR factorization reports a numerical problem - * \c InvalidInput if the input matrix is invalid - * - * \sa iparm() - */ - ComputationInfo info() const - { - eigen_assert(m_isInitialized && "Decomposition is not initialized."); - return m_info; - } - - - /** \internal */ - inline void _sort_matrix_Q() - { - if(this->m_isQSorted) return; - // The matrix Q is sorted during the transposition - SparseMatrix mQrm(this->m_Q); - this->m_Q = mQrm; - this->m_isQSorted = true; - } - - - protected: - bool m_analysisIsok; - bool m_factorizationIsok; - mutable ComputationInfo m_info; - std::string m_lastError; - QRMatrixType m_pmat; // Temporary matrix - QRMatrixType m_R; // The triangular factor matrix - QRMatrixType m_Q; // The orthogonal reflectors - ScalarVector m_hcoeffs; // The Householder coefficients - PermutationType m_perm_c; // Fill-reducing Column permutation - PermutationType m_pivotperm; // The permutation for rank revealing - PermutationType m_outputPerm_c; // The final column permutation - RealScalar m_threshold; // Threshold to determine null Householder reflections - bool m_useDefaultThreshold; // Use default threshold - Index m_nonzeropivots; // Number of non zero pivots found - IndexVector m_etree; // Column elimination tree - IndexVector m_firstRowElt; // First element in each row - bool m_isQSorted; // whether Q is sorted or not - bool m_isEtreeOk; // whether the elimination tree match the initial input matrix - - template friend struct SparseQR_QProduct; - -}; - -/** \brief Preprocessing step of a QR factorization - * - * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()). - * - * In this step, the fill-reducing permutation is computed and applied to the columns of A - * and the column elimination tree is computed as well. Only the sparsity pattern of \a mat is exploited. - * - * \note In this step it is assumed that there is no empty row in the matrix \a mat. - */ -template -void SparseQR::analyzePattern(const MatrixType& mat) -{ - eigen_assert(mat.isCompressed() && "SparseQR requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to SparseQR"); - // Copy to a column major matrix if the input is rowmajor - typename internal::conditional::type matCpy(mat); - // Compute the column fill reducing ordering - OrderingType ord; - ord(matCpy, m_perm_c); - Index n = mat.cols(); - Index m = mat.rows(); - Index diagSize = (std::min)(m,n); - - if (!m_perm_c.size()) - { - m_perm_c.resize(n); - m_perm_c.indices().setLinSpaced(n, 0,StorageIndex(n-1)); - } - - // Compute the column elimination tree of the permuted matrix - m_outputPerm_c = m_perm_c.inverse(); - internal::coletree(matCpy, m_etree, m_firstRowElt, m_outputPerm_c.indices().data()); - m_isEtreeOk = true; - - m_R.resize(m, n); - m_Q.resize(m, diagSize); - - // Allocate space for nonzero elements : rough estimation - m_R.reserve(2*mat.nonZeros()); //FIXME Get a more accurate estimation through symbolic factorization with the etree - m_Q.reserve(2*mat.nonZeros()); - m_hcoeffs.resize(diagSize); - m_analysisIsok = true; -} - -/** \brief Performs the numerical QR factorization of the input matrix - * - * The function SparseQR::analyzePattern(const MatrixType&) must have been called beforehand with - * a matrix having the same sparsity pattern than \a mat. - * - * \param mat The sparse column-major matrix - */ -template -void SparseQR::factorize(const MatrixType& mat) -{ - using std::abs; - - eigen_assert(m_analysisIsok && "analyzePattern() should be called before this step"); - StorageIndex m = StorageIndex(mat.rows()); - StorageIndex n = StorageIndex(mat.cols()); - StorageIndex diagSize = (std::min)(m,n); - IndexVector mark((std::max)(m,n)); mark.setConstant(-1); // Record the visited nodes - IndexVector Ridx(n), Qidx(m); // Store temporarily the row indexes for the current column of R and Q - Index nzcolR, nzcolQ; // Number of nonzero for the current column of R and Q - ScalarVector tval(m); // The dense vector used to compute the current column - RealScalar pivotThreshold = m_threshold; - - m_R.setZero(); - m_Q.setZero(); - m_pmat = mat; - if(!m_isEtreeOk) - { - m_outputPerm_c = m_perm_c.inverse(); - internal::coletree(m_pmat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data()); - m_isEtreeOk = true; - } - - m_pmat.uncompress(); // To have the innerNonZeroPtr allocated - - // Apply the fill-in reducing permutation lazily: - { - // If the input is row major, copy the original column indices, - // otherwise directly use the input matrix - // - IndexVector originalOuterIndicesCpy; - const StorageIndex *originalOuterIndices = mat.outerIndexPtr(); - if(MatrixType::IsRowMajor) - { - originalOuterIndicesCpy = IndexVector::Map(m_pmat.outerIndexPtr(),n+1); - originalOuterIndices = originalOuterIndicesCpy.data(); - } - - for (int i = 0; i < n; i++) - { - Index p = m_perm_c.size() ? m_perm_c.indices()(i) : i; - m_pmat.outerIndexPtr()[p] = originalOuterIndices[i]; - m_pmat.innerNonZeroPtr()[p] = originalOuterIndices[i+1] - originalOuterIndices[i]; - } - } - - /* Compute the default threshold as in MatLab, see: - * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing - * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3 - */ - if(m_useDefaultThreshold) - { - RealScalar max2Norm = 0.0; - for (int j = 0; j < n; j++) max2Norm = numext::maxi(max2Norm, m_pmat.col(j).norm()); - if(max2Norm==RealScalar(0)) - max2Norm = RealScalar(1); - pivotThreshold = 20 * (m + n) * max2Norm * NumTraits::epsilon(); - } - - // Initialize the numerical permutation - m_pivotperm.setIdentity(n); - - StorageIndex nonzeroCol = 0; // Record the number of valid pivots - m_Q.startVec(0); - - // Left looking rank-revealing QR factorization: compute a column of R and Q at a time - for (StorageIndex col = 0; col < n; ++col) - { - mark.setConstant(-1); - m_R.startVec(col); - mark(nonzeroCol) = col; - Qidx(0) = nonzeroCol; - nzcolR = 0; nzcolQ = 1; - bool found_diag = nonzeroCol>=m; - tval.setZero(); - - // Symbolic factorization: find the nonzero locations of the column k of the factors R and Q, i.e., - // all the nodes (with indexes lower than rank) reachable through the column elimination tree (etree) rooted at node k. - // Note: if the diagonal entry does not exist, then its contribution must be explicitly added, - // thus the trick with found_diag that permits to do one more iteration on the diagonal element if this one has not been found. - for (typename QRMatrixType::InnerIterator itp(m_pmat, col); itp || !found_diag; ++itp) - { - StorageIndex curIdx = nonzeroCol; - if(itp) curIdx = StorageIndex(itp.row()); - if(curIdx == nonzeroCol) found_diag = true; - - // Get the nonzeros indexes of the current column of R - StorageIndex st = m_firstRowElt(curIdx); // The traversal of the etree starts here - if (st < 0 ) - { - m_lastError = "Empty row found during numerical factorization"; - m_info = InvalidInput; - return; - } - - // Traverse the etree - Index bi = nzcolR; - for (; mark(st) != col; st = m_etree(st)) - { - Ridx(nzcolR) = st; // Add this row to the list, - mark(st) = col; // and mark this row as visited - nzcolR++; - } - - // Reverse the list to get the topological ordering - Index nt = nzcolR-bi; - for(Index i = 0; i < nt/2; i++) std::swap(Ridx(bi+i), Ridx(nzcolR-i-1)); - - // Copy the current (curIdx,pcol) value of the input matrix - if(itp) tval(curIdx) = itp.value(); - else tval(curIdx) = Scalar(0); - - // Compute the pattern of Q(:,k) - if(curIdx > nonzeroCol && mark(curIdx) != col ) - { - Qidx(nzcolQ) = curIdx; // Add this row to the pattern of Q, - mark(curIdx) = col; // and mark it as visited - nzcolQ++; - } - } - - // Browse all the indexes of R(:,col) in reverse order - for (Index i = nzcolR-1; i >= 0; i--) - { - Index curIdx = Ridx(i); - - // Apply the curIdx-th householder vector to the current column (temporarily stored into tval) - Scalar tdot(0); - - // First compute q' * tval - tdot = m_Q.col(curIdx).dot(tval); - - tdot *= m_hcoeffs(curIdx); - - // Then update tval = tval - q * tau - // FIXME: tval -= tdot * m_Q.col(curIdx) should amount to the same (need to check/add support for efficient "dense ?= sparse") - for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq) - tval(itq.row()) -= itq.value() * tdot; - - // Detect fill-in for the current column of Q - if(m_etree(Ridx(i)) == nonzeroCol) - { - for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq) - { - StorageIndex iQ = StorageIndex(itq.row()); - if (mark(iQ) != col) - { - Qidx(nzcolQ++) = iQ; // Add this row to the pattern of Q, - mark(iQ) = col; // and mark it as visited - } - } - } - } // End update current column - - Scalar tau = RealScalar(0); - RealScalar beta = 0; - - if(nonzeroCol < diagSize) - { - // Compute the Householder reflection that eliminate the current column - // FIXME this step should call the Householder module. - Scalar c0 = nzcolQ ? tval(Qidx(0)) : Scalar(0); - - // First, the squared norm of Q((col+1):m, col) - RealScalar sqrNorm = 0.; - for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += numext::abs2(tval(Qidx(itq))); - if(sqrNorm == RealScalar(0) && numext::imag(c0) == RealScalar(0)) - { - beta = numext::real(c0); - tval(Qidx(0)) = 1; - } - else - { - using std::sqrt; - beta = sqrt(numext::abs2(c0) + sqrNorm); - if(numext::real(c0) >= RealScalar(0)) - beta = -beta; - tval(Qidx(0)) = 1; - for (Index itq = 1; itq < nzcolQ; ++itq) - tval(Qidx(itq)) /= (c0 - beta); - tau = numext::conj((beta-c0) / beta); - - } - } - - // Insert values in R - for (Index i = nzcolR-1; i >= 0; i--) - { - Index curIdx = Ridx(i); - if(curIdx < nonzeroCol) - { - m_R.insertBackByOuterInnerUnordered(col, curIdx) = tval(curIdx); - tval(curIdx) = Scalar(0.); - } - } - - if(nonzeroCol < diagSize && abs(beta) >= pivotThreshold) - { - m_R.insertBackByOuterInner(col, nonzeroCol) = beta; - // The householder coefficient - m_hcoeffs(nonzeroCol) = tau; - // Record the householder reflections - for (Index itq = 0; itq < nzcolQ; ++itq) - { - Index iQ = Qidx(itq); - m_Q.insertBackByOuterInnerUnordered(nonzeroCol,iQ) = tval(iQ); - tval(iQ) = Scalar(0.); - } - nonzeroCol++; - if(nonzeroCol -struct SparseQR_QProduct : ReturnByValue > -{ - typedef typename SparseQRType::QRMatrixType MatrixType; - typedef typename SparseQRType::Scalar Scalar; - // Get the references - SparseQR_QProduct(const SparseQRType& qr, const Derived& other, bool transpose) : - m_qr(qr),m_other(other),m_transpose(transpose) {} - inline Index rows() const { return m_qr.matrixQ().rows(); } - inline Index cols() const { return m_other.cols(); } - - // Assign to a vector - template - void evalTo(DesType& res) const - { - Index m = m_qr.rows(); - Index n = m_qr.cols(); - Index diagSize = (std::min)(m,n); - res = m_other; - if (m_transpose) - { - eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes"); - //Compute res = Q' * other column by column - for(Index j = 0; j < res.cols(); j++){ - for (Index k = 0; k < diagSize; k++) - { - Scalar tau = Scalar(0); - tau = m_qr.m_Q.col(k).dot(res.col(j)); - if(tau==Scalar(0)) continue; - tau = tau * m_qr.m_hcoeffs(k); - res.col(j) -= tau * m_qr.m_Q.col(k); - } - } - } - else - { - eigen_assert(m_qr.matrixQ().cols() == m_other.rows() && "Non conforming object sizes"); - - res.conservativeResize(rows(), cols()); - - // Compute res = Q * other column by column - for(Index j = 0; j < res.cols(); j++) - { - for (Index k = diagSize-1; k >=0; k--) - { - Scalar tau = Scalar(0); - tau = m_qr.m_Q.col(k).dot(res.col(j)); - if(tau==Scalar(0)) continue; - tau = tau * numext::conj(m_qr.m_hcoeffs(k)); - res.col(j) -= tau * m_qr.m_Q.col(k); - } - } - } - } - - const SparseQRType& m_qr; - const Derived& m_other; - bool m_transpose; // TODO this actually means adjoint -}; - -template -struct SparseQRMatrixQReturnType : public EigenBase > -{ - typedef typename SparseQRType::Scalar Scalar; - typedef Matrix DenseMatrix; - enum { - RowsAtCompileTime = Dynamic, - ColsAtCompileTime = Dynamic - }; - explicit SparseQRMatrixQReturnType(const SparseQRType& qr) : m_qr(qr) {} - template - SparseQR_QProduct operator*(const MatrixBase& other) - { - return SparseQR_QProduct(m_qr,other.derived(),false); - } - // To use for operations with the adjoint of Q - SparseQRMatrixQTransposeReturnType adjoint() const - { - return SparseQRMatrixQTransposeReturnType(m_qr); - } - inline Index rows() const { return m_qr.rows(); } - inline Index cols() const { return m_qr.rows(); } - // To use for operations with the transpose of Q FIXME this is the same as adjoint at the moment - SparseQRMatrixQTransposeReturnType transpose() const - { - return SparseQRMatrixQTransposeReturnType(m_qr); - } - const SparseQRType& m_qr; -}; - -// TODO this actually represents the adjoint of Q -template -struct SparseQRMatrixQTransposeReturnType -{ - explicit SparseQRMatrixQTransposeReturnType(const SparseQRType& qr) : m_qr(qr) {} - template - SparseQR_QProduct operator*(const MatrixBase& other) - { - return SparseQR_QProduct(m_qr,other.derived(), true); - } - const SparseQRType& m_qr; -}; - -namespace internal { - -template -struct evaluator_traits > -{ - typedef typename SparseQRType::MatrixType MatrixType; - typedef typename storage_kind_to_evaluator_kind::Kind Kind; - typedef SparseShape Shape; -}; - -template< typename DstXprType, typename SparseQRType> -struct Assignment, internal::assign_op, Sparse2Sparse> -{ - typedef SparseQRMatrixQReturnType SrcXprType; - typedef typename DstXprType::Scalar Scalar; - typedef typename DstXprType::StorageIndex StorageIndex; - static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &/*func*/) - { - typename DstXprType::PlainObject idMat(src.rows(), src.cols()); - idMat.setIdentity(); - // Sort the sparse householder reflectors if needed - const_cast(&src.m_qr)->_sort_matrix_Q(); - dst = SparseQR_QProduct(src.m_qr, idMat, false); - } -}; - -template< typename DstXprType, typename SparseQRType> -struct Assignment, internal::assign_op, Sparse2Dense> -{ - typedef SparseQRMatrixQReturnType SrcXprType; - typedef typename DstXprType::Scalar Scalar; - typedef typename DstXprType::StorageIndex StorageIndex; - static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &/*func*/) - { - dst = src.m_qr.matrixQ() * DstXprType::Identity(src.m_qr.rows(), src.m_qr.rows()); - } -}; - -} // end namespace internal - -} // end namespace Eigen - -#endif diff --git a/src/math_meigen/Eigen/src/StlSupport/StdDeque.h b/src/math_meigen/Eigen/src/StlSupport/StdDeque.h deleted file mode 100755 index cf1fedf92..000000000 --- a/src/math_meigen/Eigen/src/StlSupport/StdDeque.h +++ /dev/null @@ -1,126 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Gael Guennebaud -// Copyright (C) 2009 Hauke Heibel -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_STDDEQUE_H -#define EIGEN_STDDEQUE_H - -#include "details.h" - -/** - * This section contains a convenience MACRO which allows an easy specialization of - * std::deque such that for data types with alignment issues the correct allocator - * is used automatically. - */ -#define EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(...) \ -namespace std \ -{ \ - template<> \ - class deque<__VA_ARGS__, std::allocator<__VA_ARGS__> > \ - : public deque<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> > \ - { \ - typedef deque<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> > deque_base; \ - public: \ - typedef __VA_ARGS__ value_type; \ - typedef deque_base::allocator_type allocator_type; \ - typedef deque_base::size_type size_type; \ - typedef deque_base::iterator iterator; \ - explicit deque(const allocator_type& a = allocator_type()) : deque_base(a) {} \ - template \ - deque(InputIterator first, InputIterator last, const allocator_type& a = allocator_type()) : deque_base(first, last, a) {} \ - deque(const deque& c) : deque_base(c) {} \ - explicit deque(size_type num, const value_type& val = value_type()) : deque_base(num, val) {} \ - deque(iterator start, iterator end) : deque_base(start, end) {} \ - deque& operator=(const deque& x) { \ - deque_base::operator=(x); \ - return *this; \ - } \ - }; \ -} - -// check whether we really need the std::deque specialization -#if !EIGEN_HAS_CXX11_CONTAINERS && !(defined(_GLIBCXX_DEQUE) && (!EIGEN_GNUC_AT_LEAST(4,1))) /* Note that before gcc-4.1 we already have: std::deque::resize(size_type,const T&). */ - -namespace std { - -#define EIGEN_STD_DEQUE_SPECIALIZATION_BODY \ - public: \ - typedef T value_type; \ - typedef typename deque_base::allocator_type allocator_type; \ - typedef typename deque_base::size_type size_type; \ - typedef typename deque_base::iterator iterator; \ - typedef typename deque_base::const_iterator const_iterator; \ - explicit deque(const allocator_type& a = allocator_type()) : deque_base(a) {} \ - template \ - deque(InputIterator first, InputIterator last, const allocator_type& a = allocator_type()) \ - : deque_base(first, last, a) {} \ - deque(const deque& c) : deque_base(c) {} \ - explicit deque(size_type num, const value_type& val = value_type()) : deque_base(num, val) {} \ - deque(iterator start, iterator end) : deque_base(start, end) {} \ - deque& operator=(const deque& x) { \ - deque_base::operator=(x); \ - return *this; \ - } - - template - class deque > - : public deque > -{ - typedef deque > deque_base; - EIGEN_STD_DEQUE_SPECIALIZATION_BODY - - void resize(size_type new_size) - { resize(new_size, T()); } - -#if defined(_DEQUE_) - // workaround MSVC std::deque implementation - void resize(size_type new_size, const value_type& x) - { - if (deque_base::size() < new_size) - deque_base::_Insert_n(deque_base::end(), new_size - deque_base::size(), x); - else if (new_size < deque_base::size()) - deque_base::erase(deque_base::begin() + new_size, deque_base::end()); - } - void push_back(const value_type& x) - { deque_base::push_back(x); } - void push_front(const value_type& x) - { deque_base::push_front(x); } - using deque_base::insert; - iterator insert(const_iterator position, const value_type& x) - { return deque_base::insert(position,x); } - void insert(const_iterator position, size_type new_size, const value_type& x) - { deque_base::insert(position, new_size, x); } -#elif defined(_GLIBCXX_DEQUE) && EIGEN_GNUC_AT_LEAST(4,2) - // workaround GCC std::deque implementation - void resize(size_type new_size, const value_type& x) - { - if (new_size < deque_base::size()) - deque_base::_M_erase_at_end(this->_M_impl._M_start + new_size); - else - deque_base::insert(deque_base::end(), new_size - deque_base::size(), x); - } -#else - // either GCC 4.1 or non-GCC - // default implementation which should always work. - void resize(size_type new_size, const value_type& x) - { - if (new_size < deque_base::size()) - deque_base::erase(deque_base::begin() + new_size, deque_base::end()); - else if (new_size > deque_base::size()) - deque_base::insert(deque_base::end(), new_size - deque_base::size(), x); - } -#endif - }; -} - -#endif // check whether specialization is actually required - -#endif // EIGEN_STDDEQUE_H diff --git a/src/math_meigen/Eigen/src/StlSupport/StdList.h b/src/math_meigen/Eigen/src/StlSupport/StdList.h deleted file mode 100755 index e1eba4985..000000000 --- a/src/math_meigen/Eigen/src/StlSupport/StdList.h +++ /dev/null @@ -1,106 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Hauke Heibel -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_STDLIST_H -#define EIGEN_STDLIST_H - -#include "details.h" - -/** - * This section contains a convenience MACRO which allows an easy specialization of - * std::list such that for data types with alignment issues the correct allocator - * is used automatically. - */ -#define EIGEN_DEFINE_STL_LIST_SPECIALIZATION(...) \ -namespace std \ -{ \ - template<> \ - class list<__VA_ARGS__, std::allocator<__VA_ARGS__> > \ - : public list<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> > \ - { \ - typedef list<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> > list_base; \ - public: \ - typedef __VA_ARGS__ value_type; \ - typedef list_base::allocator_type allocator_type; \ - typedef list_base::size_type size_type; \ - typedef list_base::iterator iterator; \ - explicit list(const allocator_type& a = allocator_type()) : list_base(a) {} \ - template \ - list(InputIterator first, InputIterator last, const allocator_type& a = allocator_type()) : list_base(first, last, a) {} \ - list(const list& c) : list_base(c) {} \ - explicit list(size_type num, const value_type& val = value_type()) : list_base(num, val) {} \ - list(iterator start, iterator end) : list_base(start, end) {} \ - list& operator=(const list& x) { \ - list_base::operator=(x); \ - return *this; \ - } \ - }; \ -} - -// check whether we really need the std::list specialization -#if !EIGEN_HAS_CXX11_CONTAINERS && !(defined(_GLIBCXX_LIST) && (!EIGEN_GNUC_AT_LEAST(4,1))) /* Note that before gcc-4.1 we already have: std::list::resize(size_type,const T&). */ - -namespace std -{ - -#define EIGEN_STD_LIST_SPECIALIZATION_BODY \ - public: \ - typedef T value_type; \ - typedef typename list_base::allocator_type allocator_type; \ - typedef typename list_base::size_type size_type; \ - typedef typename list_base::iterator iterator; \ - typedef typename list_base::const_iterator const_iterator; \ - explicit list(const allocator_type& a = allocator_type()) : list_base(a) {} \ - template \ - list(InputIterator first, InputIterator last, const allocator_type& a = allocator_type()) \ - : list_base(first, last, a) {} \ - list(const list& c) : list_base(c) {} \ - explicit list(size_type num, const value_type& val = value_type()) : list_base(num, val) {} \ - list(iterator start, iterator end) : list_base(start, end) {} \ - list& operator=(const list& x) { \ - list_base::operator=(x); \ - return *this; \ - } - - template - class list > - : public list > - { - typedef list > list_base; - EIGEN_STD_LIST_SPECIALIZATION_BODY - - void resize(size_type new_size) - { resize(new_size, T()); } - - void resize(size_type new_size, const value_type& x) - { - if (list_base::size() < new_size) - list_base::insert(list_base::end(), new_size - list_base::size(), x); - else - while (new_size < list_base::size()) list_base::pop_back(); - } - -#if defined(_LIST_) - // workaround MSVC std::list implementation - void push_back(const value_type& x) - { list_base::push_back(x); } - using list_base::insert; - iterator insert(const_iterator position, const value_type& x) - { return list_base::insert(position,x); } - void insert(const_iterator position, size_type new_size, const value_type& x) - { list_base::insert(position, new_size, x); } -#endif - }; -} - -#endif // check whether specialization is actually required - -#endif // EIGEN_STDLIST_H diff --git a/src/math_meigen/Eigen/src/StlSupport/StdVector.h b/src/math_meigen/Eigen/src/StlSupport/StdVector.h deleted file mode 100755 index ec22821d2..000000000 --- a/src/math_meigen/Eigen/src/StlSupport/StdVector.h +++ /dev/null @@ -1,131 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Gael Guennebaud -// Copyright (C) 2009 Hauke Heibel -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_STDVECTOR_H -#define EIGEN_STDVECTOR_H - -#include "details.h" - -/** - * This section contains a convenience MACRO which allows an easy specialization of - * std::vector such that for data types with alignment issues the correct allocator - * is used automatically. - */ -#define EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(...) \ -namespace std \ -{ \ - template<> \ - class vector<__VA_ARGS__, std::allocator<__VA_ARGS__> > \ - : public vector<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> > \ - { \ - typedef vector<__VA_ARGS__, EIGEN_ALIGNED_ALLOCATOR<__VA_ARGS__> > vector_base; \ - public: \ - typedef __VA_ARGS__ value_type; \ - typedef vector_base::allocator_type allocator_type; \ - typedef vector_base::size_type size_type; \ - typedef vector_base::iterator iterator; \ - explicit vector(const allocator_type& a = allocator_type()) : vector_base(a) {} \ - template \ - vector(InputIterator first, InputIterator last, const allocator_type& a = allocator_type()) : vector_base(first, last, a) {} \ - vector(const vector& c) : vector_base(c) {} \ - explicit vector(size_type num, const value_type& val = value_type()) : vector_base(num, val) {} \ - vector(iterator start, iterator end) : vector_base(start, end) {} \ - vector& operator=(const vector& x) { \ - vector_base::operator=(x); \ - return *this; \ - } \ - }; \ -} - -// Don't specialize if containers are implemented according to C++11 -#if !EIGEN_HAS_CXX11_CONTAINERS - -namespace std { - -#define EIGEN_STD_VECTOR_SPECIALIZATION_BODY \ - public: \ - typedef T value_type; \ - typedef typename vector_base::allocator_type allocator_type; \ - typedef typename vector_base::size_type size_type; \ - typedef typename vector_base::iterator iterator; \ - typedef typename vector_base::const_iterator const_iterator; \ - explicit vector(const allocator_type& a = allocator_type()) : vector_base(a) {} \ - template \ - vector(InputIterator first, InputIterator last, const allocator_type& a = allocator_type()) \ - : vector_base(first, last, a) {} \ - vector(const vector& c) : vector_base(c) {} \ - explicit vector(size_type num, const value_type& val = value_type()) : vector_base(num, val) {} \ - vector(iterator start, iterator end) : vector_base(start, end) {} \ - vector& operator=(const vector& x) { \ - vector_base::operator=(x); \ - return *this; \ - } - - template - class vector > - : public vector > -{ - typedef vector > vector_base; - EIGEN_STD_VECTOR_SPECIALIZATION_BODY - - void resize(size_type new_size) - { resize(new_size, T()); } - -#if defined(_VECTOR_) - // workaround MSVC std::vector implementation - void resize(size_type new_size, const value_type& x) - { - if (vector_base::size() < new_size) - vector_base::_Insert_n(vector_base::end(), new_size - vector_base::size(), x); - else if (new_size < vector_base::size()) - vector_base::erase(vector_base::begin() + new_size, vector_base::end()); - } - void push_back(const value_type& x) - { vector_base::push_back(x); } - using vector_base::insert; - iterator insert(const_iterator position, const value_type& x) - { return vector_base::insert(position,x); } - void insert(const_iterator position, size_type new_size, const value_type& x) - { vector_base::insert(position, new_size, x); } -#elif defined(_GLIBCXX_VECTOR) && (!(EIGEN_GNUC_AT_LEAST(4,1))) - /* Note that before gcc-4.1 we already have: std::vector::resize(size_type,const T&). - * However, this specialization is still needed to make the above EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION trick to work. */ - void resize(size_type new_size, const value_type& x) - { - vector_base::resize(new_size,x); - } -#elif defined(_GLIBCXX_VECTOR) && EIGEN_GNUC_AT_LEAST(4,2) - // workaround GCC std::vector implementation - void resize(size_type new_size, const value_type& x) - { - if (new_size < vector_base::size()) - vector_base::_M_erase_at_end(this->_M_impl._M_start + new_size); - else - vector_base::insert(vector_base::end(), new_size - vector_base::size(), x); - } -#else - // either GCC 4.1 or non-GCC - // default implementation which should always work. - void resize(size_type new_size, const value_type& x) - { - if (new_size < vector_base::size()) - vector_base::erase(vector_base::begin() + new_size, vector_base::end()); - else if (new_size > vector_base::size()) - vector_base::insert(vector_base::end(), new_size - vector_base::size(), x); - } -#endif - }; -} -#endif // !EIGEN_HAS_CXX11_CONTAINERS - - -#endif // EIGEN_STDVECTOR_H diff --git a/src/math_meigen/Eigen/src/StlSupport/details.h b/src/math_meigen/Eigen/src/StlSupport/details.h deleted file mode 100755 index 2cfd13e03..000000000 --- a/src/math_meigen/Eigen/src/StlSupport/details.h +++ /dev/null @@ -1,84 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Gael Guennebaud -// Copyright (C) 2009 Hauke Heibel -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_STL_DETAILS_H -#define EIGEN_STL_DETAILS_H - -#ifndef EIGEN_ALIGNED_ALLOCATOR - #define EIGEN_ALIGNED_ALLOCATOR Eigen::aligned_allocator -#endif - -namespace Eigen { - - // This one is needed to prevent reimplementing the whole std::vector. - template - class aligned_allocator_indirection : public EIGEN_ALIGNED_ALLOCATOR - { - public: - typedef std::size_t size_type; - typedef std::ptrdiff_t difference_type; - typedef T* pointer; - typedef const T* const_pointer; - typedef T& reference; - typedef const T& const_reference; - typedef T value_type; - - template - struct rebind - { - typedef aligned_allocator_indirection other; - }; - - aligned_allocator_indirection() {} - aligned_allocator_indirection(const aligned_allocator_indirection& ) : EIGEN_ALIGNED_ALLOCATOR() {} - aligned_allocator_indirection(const EIGEN_ALIGNED_ALLOCATOR& ) {} - template - aligned_allocator_indirection(const aligned_allocator_indirection& ) {} - template - aligned_allocator_indirection(const EIGEN_ALIGNED_ALLOCATOR& ) {} - ~aligned_allocator_indirection() {} - }; - -#if EIGEN_COMP_MSVC - - // sometimes, MSVC detects, at compile time, that the argument x - // in std::vector::resize(size_t s,T x) won't be aligned and generate an error - // even if this function is never called. Whence this little wrapper. -#define EIGEN_WORKAROUND_MSVC_STL_SUPPORT(T) \ - typename Eigen::internal::conditional< \ - Eigen::internal::is_arithmetic::value, \ - T, \ - Eigen::internal::workaround_msvc_stl_support \ - >::type - - namespace internal { - template struct workaround_msvc_stl_support : public T - { - inline workaround_msvc_stl_support() : T() {} - inline workaround_msvc_stl_support(const T& other) : T(other) {} - inline operator T& () { return *static_cast(this); } - inline operator const T& () const { return *static_cast(this); } - template - inline T& operator=(const OtherT& other) - { T::operator=(other); return *this; } - inline workaround_msvc_stl_support& operator=(const workaround_msvc_stl_support& other) - { T::operator=(other); return *this; } - }; - } - -#else - -#define EIGEN_WORKAROUND_MSVC_STL_SUPPORT(T) T - -#endif - -} - -#endif // EIGEN_STL_DETAILS_H diff --git a/src/math_meigen/Eigen/src/SuperLUSupport/SuperLUSupport.h b/src/math_meigen/Eigen/src/SuperLUSupport/SuperLUSupport.h deleted file mode 100755 index 7261c7d0f..000000000 --- a/src/math_meigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +++ /dev/null @@ -1,1027 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2015 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SUPERLUSUPPORT_H -#define EIGEN_SUPERLUSUPPORT_H - -namespace Eigen { - -#if defined(SUPERLU_MAJOR_VERSION) && (SUPERLU_MAJOR_VERSION >= 5) -#define DECL_GSSVX(PREFIX,FLOATTYPE,KEYTYPE) \ - extern "C" { \ - extern void PREFIX##gssvx(superlu_options_t *, SuperMatrix *, int *, int *, int *, \ - char *, FLOATTYPE *, FLOATTYPE *, SuperMatrix *, SuperMatrix *, \ - void *, int, SuperMatrix *, SuperMatrix *, \ - FLOATTYPE *, FLOATTYPE *, FLOATTYPE *, FLOATTYPE *, \ - GlobalLU_t *, mem_usage_t *, SuperLUStat_t *, int *); \ - } \ - inline float SuperLU_gssvx(superlu_options_t *options, SuperMatrix *A, \ - int *perm_c, int *perm_r, int *etree, char *equed, \ - FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L, \ - SuperMatrix *U, void *work, int lwork, \ - SuperMatrix *B, SuperMatrix *X, \ - FLOATTYPE *recip_pivot_growth, \ - FLOATTYPE *rcond, FLOATTYPE *ferr, FLOATTYPE *berr, \ - SuperLUStat_t *stats, int *info, KEYTYPE) { \ - mem_usage_t mem_usage; \ - GlobalLU_t gLU; \ - PREFIX##gssvx(options, A, perm_c, perm_r, etree, equed, R, C, L, \ - U, work, lwork, B, X, recip_pivot_growth, rcond, \ - ferr, berr, &gLU, &mem_usage, stats, info); \ - return mem_usage.for_lu; /* bytes used by the factor storage */ \ - } -#else // version < 5.0 -#define DECL_GSSVX(PREFIX,FLOATTYPE,KEYTYPE) \ - extern "C" { \ - extern void PREFIX##gssvx(superlu_options_t *, SuperMatrix *, int *, int *, int *, \ - char *, FLOATTYPE *, FLOATTYPE *, SuperMatrix *, SuperMatrix *, \ - void *, int, SuperMatrix *, SuperMatrix *, \ - FLOATTYPE *, FLOATTYPE *, FLOATTYPE *, FLOATTYPE *, \ - mem_usage_t *, SuperLUStat_t *, int *); \ - } \ - inline float SuperLU_gssvx(superlu_options_t *options, SuperMatrix *A, \ - int *perm_c, int *perm_r, int *etree, char *equed, \ - FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L, \ - SuperMatrix *U, void *work, int lwork, \ - SuperMatrix *B, SuperMatrix *X, \ - FLOATTYPE *recip_pivot_growth, \ - FLOATTYPE *rcond, FLOATTYPE *ferr, FLOATTYPE *berr, \ - SuperLUStat_t *stats, int *info, KEYTYPE) { \ - mem_usage_t mem_usage; \ - PREFIX##gssvx(options, A, perm_c, perm_r, etree, equed, R, C, L, \ - U, work, lwork, B, X, recip_pivot_growth, rcond, \ - ferr, berr, &mem_usage, stats, info); \ - return mem_usage.for_lu; /* bytes used by the factor storage */ \ - } -#endif - -DECL_GSSVX(s,float,float) -DECL_GSSVX(c,float,std::complex) -DECL_GSSVX(d,double,double) -DECL_GSSVX(z,double,std::complex) - -#ifdef MILU_ALPHA -#define EIGEN_SUPERLU_HAS_ILU -#endif - -#ifdef EIGEN_SUPERLU_HAS_ILU - -// similarly for the incomplete factorization using gsisx -#define DECL_GSISX(PREFIX,FLOATTYPE,KEYTYPE) \ - extern "C" { \ - extern void PREFIX##gsisx(superlu_options_t *, SuperMatrix *, int *, int *, int *, \ - char *, FLOATTYPE *, FLOATTYPE *, SuperMatrix *, SuperMatrix *, \ - void *, int, SuperMatrix *, SuperMatrix *, FLOATTYPE *, FLOATTYPE *, \ - mem_usage_t *, SuperLUStat_t *, int *); \ - } \ - inline float SuperLU_gsisx(superlu_options_t *options, SuperMatrix *A, \ - int *perm_c, int *perm_r, int *etree, char *equed, \ - FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L, \ - SuperMatrix *U, void *work, int lwork, \ - SuperMatrix *B, SuperMatrix *X, \ - FLOATTYPE *recip_pivot_growth, \ - FLOATTYPE *rcond, \ - SuperLUStat_t *stats, int *info, KEYTYPE) { \ - mem_usage_t mem_usage; \ - PREFIX##gsisx(options, A, perm_c, perm_r, etree, equed, R, C, L, \ - U, work, lwork, B, X, recip_pivot_growth, rcond, \ - &mem_usage, stats, info); \ - return mem_usage.for_lu; /* bytes used by the factor storage */ \ - } - -DECL_GSISX(s,float,float) -DECL_GSISX(c,float,std::complex) -DECL_GSISX(d,double,double) -DECL_GSISX(z,double,std::complex) - -#endif - -template -struct SluMatrixMapHelper; - -/** \internal - * - * A wrapper class for SuperLU matrices. It supports only compressed sparse matrices - * and dense matrices. Supernodal and other fancy format are not supported by this wrapper. - * - * This wrapper class mainly aims to avoids the need of dynamic allocation of the storage structure. - */ -struct SluMatrix : SuperMatrix -{ - SluMatrix() - { - Store = &storage; - } - - SluMatrix(const SluMatrix& other) - : SuperMatrix(other) - { - Store = &storage; - storage = other.storage; - } - - SluMatrix& operator=(const SluMatrix& other) - { - SuperMatrix::operator=(static_cast(other)); - Store = &storage; - storage = other.storage; - return *this; - } - - struct - { - union {int nnz;int lda;}; - void *values; - int *innerInd; - int *outerInd; - } storage; - - void setStorageType(Stype_t t) - { - Stype = t; - if (t==SLU_NC || t==SLU_NR || t==SLU_DN) - Store = &storage; - else - { - eigen_assert(false && "storage type not supported"); - Store = 0; - } - } - - template - void setScalarType() - { - if (internal::is_same::value) - Dtype = SLU_S; - else if (internal::is_same::value) - Dtype = SLU_D; - else if (internal::is_same >::value) - Dtype = SLU_C; - else if (internal::is_same >::value) - Dtype = SLU_Z; - else - { - eigen_assert(false && "Scalar type not supported by SuperLU"); - } - } - - template - static SluMatrix Map(MatrixBase& _mat) - { - MatrixType& mat(_mat.derived()); - eigen_assert( ((MatrixType::Flags&RowMajorBit)!=RowMajorBit) && "row-major dense matrices are not supported by SuperLU"); - SluMatrix res; - res.setStorageType(SLU_DN); - res.setScalarType(); - res.Mtype = SLU_GE; - - res.nrow = internal::convert_index(mat.rows()); - res.ncol = internal::convert_index(mat.cols()); - - res.storage.lda = internal::convert_index(MatrixType::IsVectorAtCompileTime ? mat.size() : mat.outerStride()); - res.storage.values = (void*)(mat.data()); - return res; - } - - template - static SluMatrix Map(SparseMatrixBase& a_mat) - { - MatrixType &mat(a_mat.derived()); - SluMatrix res; - if ((MatrixType::Flags&RowMajorBit)==RowMajorBit) - { - res.setStorageType(SLU_NR); - res.nrow = internal::convert_index(mat.cols()); - res.ncol = internal::convert_index(mat.rows()); - } - else - { - res.setStorageType(SLU_NC); - res.nrow = internal::convert_index(mat.rows()); - res.ncol = internal::convert_index(mat.cols()); - } - - res.Mtype = SLU_GE; - - res.storage.nnz = internal::convert_index(mat.nonZeros()); - res.storage.values = mat.valuePtr(); - res.storage.innerInd = mat.innerIndexPtr(); - res.storage.outerInd = mat.outerIndexPtr(); - - res.setScalarType(); - - // FIXME the following is not very accurate - if (MatrixType::Flags & Upper) - res.Mtype = SLU_TRU; - if (MatrixType::Flags & Lower) - res.Mtype = SLU_TRL; - - eigen_assert(((MatrixType::Flags & SelfAdjoint)==0) && "SelfAdjoint matrix shape not supported by SuperLU"); - - return res; - } -}; - -template -struct SluMatrixMapHelper > -{ - typedef Matrix MatrixType; - static void run(MatrixType& mat, SluMatrix& res) - { - eigen_assert( ((Options&RowMajor)!=RowMajor) && "row-major dense matrices is not supported by SuperLU"); - res.setStorageType(SLU_DN); - res.setScalarType(); - res.Mtype = SLU_GE; - - res.nrow = mat.rows(); - res.ncol = mat.cols(); - - res.storage.lda = mat.outerStride(); - res.storage.values = mat.data(); - } -}; - -template -struct SluMatrixMapHelper > -{ - typedef Derived MatrixType; - static void run(MatrixType& mat, SluMatrix& res) - { - if ((MatrixType::Flags&RowMajorBit)==RowMajorBit) - { - res.setStorageType(SLU_NR); - res.nrow = mat.cols(); - res.ncol = mat.rows(); - } - else - { - res.setStorageType(SLU_NC); - res.nrow = mat.rows(); - res.ncol = mat.cols(); - } - - res.Mtype = SLU_GE; - - res.storage.nnz = mat.nonZeros(); - res.storage.values = mat.valuePtr(); - res.storage.innerInd = mat.innerIndexPtr(); - res.storage.outerInd = mat.outerIndexPtr(); - - res.setScalarType(); - - // FIXME the following is not very accurate - if (MatrixType::Flags & Upper) - res.Mtype = SLU_TRU; - if (MatrixType::Flags & Lower) - res.Mtype = SLU_TRL; - - eigen_assert(((MatrixType::Flags & SelfAdjoint)==0) && "SelfAdjoint matrix shape not supported by SuperLU"); - } -}; - -namespace internal { - -template -SluMatrix asSluMatrix(MatrixType& mat) -{ - return SluMatrix::Map(mat); -} - -/** View a Super LU matrix as an Eigen expression */ -template -MappedSparseMatrix map_superlu(SluMatrix& sluMat) -{ - eigen_assert(((Flags&RowMajor)==RowMajor && sluMat.Stype == SLU_NR) - || ((Flags&ColMajor)==ColMajor && sluMat.Stype == SLU_NC)); - - Index outerSize = (Flags&RowMajor)==RowMajor ? sluMat.ncol : sluMat.nrow; - - return MappedSparseMatrix( - sluMat.nrow, sluMat.ncol, sluMat.storage.outerInd[outerSize], - sluMat.storage.outerInd, sluMat.storage.innerInd, reinterpret_cast(sluMat.storage.values) ); -} - -} // end namespace internal - -/** \ingroup SuperLUSupport_Module - * \class SuperLUBase - * \brief The base class for the direct and incomplete LU factorization of SuperLU - */ -template -class SuperLUBase : public SparseSolverBase -{ - protected: - typedef SparseSolverBase Base; - using Base::derived; - using Base::m_isInitialized; - public: - typedef _MatrixType MatrixType; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef typename MatrixType::StorageIndex StorageIndex; - typedef Matrix Vector; - typedef Matrix IntRowVectorType; - typedef Matrix IntColVectorType; - typedef Map > PermutationMap; - typedef SparseMatrix LUMatrixType; - enum { - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime - }; - - public: - - SuperLUBase() {} - - ~SuperLUBase() - { - clearFactors(); - } - - inline Index rows() const { return m_matrix.rows(); } - inline Index cols() const { return m_matrix.cols(); } - - /** \returns a reference to the Super LU option object to configure the Super LU algorithms. */ - inline superlu_options_t& options() { return m_sluOptions; } - - /** \brief Reports whether previous computation was successful. - * - * \returns \c Success if computation was succesful, - * \c NumericalIssue if the matrix.appears to be negative. - */ - ComputationInfo info() const - { - eigen_assert(m_isInitialized && "Decomposition is not initialized."); - return m_info; - } - - /** Computes the sparse Cholesky decomposition of \a matrix */ - void compute(const MatrixType& matrix) - { - derived().analyzePattern(matrix); - derived().factorize(matrix); - } - - /** Performs a symbolic decomposition on the sparcity of \a matrix. - * - * This function is particularly useful when solving for several problems having the same structure. - * - * \sa factorize() - */ - void analyzePattern(const MatrixType& /*matrix*/) - { - m_isInitialized = true; - m_info = Success; - m_analysisIsOk = true; - m_factorizationIsOk = false; - } - - template - void dumpMemory(Stream& /*s*/) - {} - - protected: - - void initFactorization(const MatrixType& a) - { - set_default_options(&this->m_sluOptions); - - const Index size = a.rows(); - m_matrix = a; - - m_sluA = internal::asSluMatrix(m_matrix); - clearFactors(); - - m_p.resize(size); - m_q.resize(size); - m_sluRscale.resize(size); - m_sluCscale.resize(size); - m_sluEtree.resize(size); - - // set empty B and X - m_sluB.setStorageType(SLU_DN); - m_sluB.setScalarType(); - m_sluB.Mtype = SLU_GE; - m_sluB.storage.values = 0; - m_sluB.nrow = 0; - m_sluB.ncol = 0; - m_sluB.storage.lda = internal::convert_index(size); - m_sluX = m_sluB; - - m_extractedDataAreDirty = true; - } - - void init() - { - m_info = InvalidInput; - m_isInitialized = false; - m_sluL.Store = 0; - m_sluU.Store = 0; - } - - void extractData() const; - - void clearFactors() - { - if(m_sluL.Store) - Destroy_SuperNode_Matrix(&m_sluL); - if(m_sluU.Store) - Destroy_CompCol_Matrix(&m_sluU); - - m_sluL.Store = 0; - m_sluU.Store = 0; - - memset(&m_sluL,0,sizeof m_sluL); - memset(&m_sluU,0,sizeof m_sluU); - } - - // cached data to reduce reallocation, etc. - mutable LUMatrixType m_l; - mutable LUMatrixType m_u; - mutable IntColVectorType m_p; - mutable IntRowVectorType m_q; - - mutable LUMatrixType m_matrix; // copy of the factorized matrix - mutable SluMatrix m_sluA; - mutable SuperMatrix m_sluL, m_sluU; - mutable SluMatrix m_sluB, m_sluX; - mutable SuperLUStat_t m_sluStat; - mutable superlu_options_t m_sluOptions; - mutable std::vector m_sluEtree; - mutable Matrix m_sluRscale, m_sluCscale; - mutable Matrix m_sluFerr, m_sluBerr; - mutable char m_sluEqued; - - mutable ComputationInfo m_info; - int m_factorizationIsOk; - int m_analysisIsOk; - mutable bool m_extractedDataAreDirty; - - private: - SuperLUBase(SuperLUBase& ) { } -}; - - -/** \ingroup SuperLUSupport_Module - * \class SuperLU - * \brief A sparse direct LU factorization and solver based on the SuperLU library - * - * This class allows to solve for A.X = B sparse linear problems via a direct LU factorization - * using the SuperLU library. The sparse matrix A must be squared and invertible. The vectors or matrices - * X and B can be either dense or sparse. - * - * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> - * - * \warning This class is only for the 4.x versions of SuperLU. The 3.x and 5.x versions are not supported. - * - * \implsparsesolverconcept - * - * \sa \ref TutorialSparseSolverConcept, class SparseLU - */ -template -class SuperLU : public SuperLUBase<_MatrixType,SuperLU<_MatrixType> > -{ - public: - typedef SuperLUBase<_MatrixType,SuperLU> Base; - typedef _MatrixType MatrixType; - typedef typename Base::Scalar Scalar; - typedef typename Base::RealScalar RealScalar; - typedef typename Base::StorageIndex StorageIndex; - typedef typename Base::IntRowVectorType IntRowVectorType; - typedef typename Base::IntColVectorType IntColVectorType; - typedef typename Base::PermutationMap PermutationMap; - typedef typename Base::LUMatrixType LUMatrixType; - typedef TriangularView LMatrixType; - typedef TriangularView UMatrixType; - - public: - using Base::_solve_impl; - - SuperLU() : Base() { init(); } - - explicit SuperLU(const MatrixType& matrix) : Base() - { - init(); - Base::compute(matrix); - } - - ~SuperLU() - { - } - - /** Performs a symbolic decomposition on the sparcity of \a matrix. - * - * This function is particularly useful when solving for several problems having the same structure. - * - * \sa factorize() - */ - void analyzePattern(const MatrixType& matrix) - { - m_info = InvalidInput; - m_isInitialized = false; - Base::analyzePattern(matrix); - } - - /** Performs a numeric decomposition of \a matrix - * - * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. - * - * \sa analyzePattern() - */ - void factorize(const MatrixType& matrix); - - /** \internal */ - template - void _solve_impl(const MatrixBase &b, MatrixBase &dest) const; - - inline const LMatrixType& matrixL() const - { - if (m_extractedDataAreDirty) this->extractData(); - return m_l; - } - - inline const UMatrixType& matrixU() const - { - if (m_extractedDataAreDirty) this->extractData(); - return m_u; - } - - inline const IntColVectorType& permutationP() const - { - if (m_extractedDataAreDirty) this->extractData(); - return m_p; - } - - inline const IntRowVectorType& permutationQ() const - { - if (m_extractedDataAreDirty) this->extractData(); - return m_q; - } - - Scalar determinant() const; - - protected: - - using Base::m_matrix; - using Base::m_sluOptions; - using Base::m_sluA; - using Base::m_sluB; - using Base::m_sluX; - using Base::m_p; - using Base::m_q; - using Base::m_sluEtree; - using Base::m_sluEqued; - using Base::m_sluRscale; - using Base::m_sluCscale; - using Base::m_sluL; - using Base::m_sluU; - using Base::m_sluStat; - using Base::m_sluFerr; - using Base::m_sluBerr; - using Base::m_l; - using Base::m_u; - - using Base::m_analysisIsOk; - using Base::m_factorizationIsOk; - using Base::m_extractedDataAreDirty; - using Base::m_isInitialized; - using Base::m_info; - - void init() - { - Base::init(); - - set_default_options(&this->m_sluOptions); - m_sluOptions.PrintStat = NO; - m_sluOptions.ConditionNumber = NO; - m_sluOptions.Trans = NOTRANS; - m_sluOptions.ColPerm = COLAMD; - } - - - private: - SuperLU(SuperLU& ) { } -}; - -template -void SuperLU::factorize(const MatrixType& a) -{ - eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); - if(!m_analysisIsOk) - { - m_info = InvalidInput; - return; - } - - this->initFactorization(a); - - m_sluOptions.ColPerm = COLAMD; - int info = 0; - RealScalar recip_pivot_growth, rcond; - RealScalar ferr, berr; - - StatInit(&m_sluStat); - SuperLU_gssvx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0], - &m_sluEqued, &m_sluRscale[0], &m_sluCscale[0], - &m_sluL, &m_sluU, - NULL, 0, - &m_sluB, &m_sluX, - &recip_pivot_growth, &rcond, - &ferr, &berr, - &m_sluStat, &info, Scalar()); - StatFree(&m_sluStat); - - m_extractedDataAreDirty = true; - - // FIXME how to better check for errors ??? - m_info = info == 0 ? Success : NumericalIssue; - m_factorizationIsOk = true; -} - -template -template -void SuperLU::_solve_impl(const MatrixBase &b, MatrixBase& x) const -{ - eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or analyzePattern()/factorize()"); - - const Index size = m_matrix.rows(); - const Index rhsCols = b.cols(); - eigen_assert(size==b.rows()); - - m_sluOptions.Trans = NOTRANS; - m_sluOptions.Fact = FACTORED; - m_sluOptions.IterRefine = NOREFINE; - - - m_sluFerr.resize(rhsCols); - m_sluBerr.resize(rhsCols); - - Ref > b_ref(b); - Ref > x_ref(x); - - m_sluB = SluMatrix::Map(b_ref.const_cast_derived()); - m_sluX = SluMatrix::Map(x_ref.const_cast_derived()); - - typename Rhs::PlainObject b_cpy; - if(m_sluEqued!='N') - { - b_cpy = b; - m_sluB = SluMatrix::Map(b_cpy.const_cast_derived()); - } - - StatInit(&m_sluStat); - int info = 0; - RealScalar recip_pivot_growth, rcond; - SuperLU_gssvx(&m_sluOptions, &m_sluA, - m_q.data(), m_p.data(), - &m_sluEtree[0], &m_sluEqued, - &m_sluRscale[0], &m_sluCscale[0], - &m_sluL, &m_sluU, - NULL, 0, - &m_sluB, &m_sluX, - &recip_pivot_growth, &rcond, - &m_sluFerr[0], &m_sluBerr[0], - &m_sluStat, &info, Scalar()); - StatFree(&m_sluStat); - - if(x.derived().data() != x_ref.data()) - x = x_ref; - - m_info = info==0 ? Success : NumericalIssue; -} - -// the code of this extractData() function has been adapted from the SuperLU's Matlab support code, -// -// Copyright (c) 1994 by Xerox Corporation. All rights reserved. -// -// THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY -// EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. -// -template -void SuperLUBase::extractData() const -{ - eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for extracting factors, you must first call either compute() or analyzePattern()/factorize()"); - if (m_extractedDataAreDirty) - { - int upper; - int fsupc, istart, nsupr; - int lastl = 0, lastu = 0; - SCformat *Lstore = static_cast(m_sluL.Store); - NCformat *Ustore = static_cast(m_sluU.Store); - Scalar *SNptr; - - const Index size = m_matrix.rows(); - m_l.resize(size,size); - m_l.resizeNonZeros(Lstore->nnz); - m_u.resize(size,size); - m_u.resizeNonZeros(Ustore->nnz); - - int* Lcol = m_l.outerIndexPtr(); - int* Lrow = m_l.innerIndexPtr(); - Scalar* Lval = m_l.valuePtr(); - - int* Ucol = m_u.outerIndexPtr(); - int* Urow = m_u.innerIndexPtr(); - Scalar* Uval = m_u.valuePtr(); - - Ucol[0] = 0; - Ucol[0] = 0; - - /* for each supernode */ - for (int k = 0; k <= Lstore->nsuper; ++k) - { - fsupc = L_FST_SUPC(k); - istart = L_SUB_START(fsupc); - nsupr = L_SUB_START(fsupc+1) - istart; - upper = 1; - - /* for each column in the supernode */ - for (int j = fsupc; j < L_FST_SUPC(k+1); ++j) - { - SNptr = &((Scalar*)Lstore->nzval)[L_NZ_START(j)]; - - /* Extract U */ - for (int i = U_NZ_START(j); i < U_NZ_START(j+1); ++i) - { - Uval[lastu] = ((Scalar*)Ustore->nzval)[i]; - /* Matlab doesn't like explicit zero. */ - if (Uval[lastu] != 0.0) - Urow[lastu++] = U_SUB(i); - } - for (int i = 0; i < upper; ++i) - { - /* upper triangle in the supernode */ - Uval[lastu] = SNptr[i]; - /* Matlab doesn't like explicit zero. */ - if (Uval[lastu] != 0.0) - Urow[lastu++] = L_SUB(istart+i); - } - Ucol[j+1] = lastu; - - /* Extract L */ - Lval[lastl] = 1.0; /* unit diagonal */ - Lrow[lastl++] = L_SUB(istart + upper - 1); - for (int i = upper; i < nsupr; ++i) - { - Lval[lastl] = SNptr[i]; - /* Matlab doesn't like explicit zero. */ - if (Lval[lastl] != 0.0) - Lrow[lastl++] = L_SUB(istart+i); - } - Lcol[j+1] = lastl; - - ++upper; - } /* for j ... */ - - } /* for k ... */ - - // squeeze the matrices : - m_l.resizeNonZeros(lastl); - m_u.resizeNonZeros(lastu); - - m_extractedDataAreDirty = false; - } -} - -template -typename SuperLU::Scalar SuperLU::determinant() const -{ - eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for computing the determinant, you must first call either compute() or analyzePattern()/factorize()"); - - if (m_extractedDataAreDirty) - this->extractData(); - - Scalar det = Scalar(1); - for (int j=0; j 0) - { - int lastId = m_u.outerIndexPtr()[j+1]-1; - eigen_assert(m_u.innerIndexPtr()[lastId]<=j); - if (m_u.innerIndexPtr()[lastId]==j) - det *= m_u.valuePtr()[lastId]; - } - } - if(PermutationMap(m_p.data(),m_p.size()).determinant()*PermutationMap(m_q.data(),m_q.size()).determinant()<0) - det = -det; - if(m_sluEqued!='N') - return det/m_sluRscale.prod()/m_sluCscale.prod(); - else - return det; -} - -#ifdef EIGEN_PARSED_BY_DOXYGEN -#define EIGEN_SUPERLU_HAS_ILU -#endif - -#ifdef EIGEN_SUPERLU_HAS_ILU - -/** \ingroup SuperLUSupport_Module - * \class SuperILU - * \brief A sparse direct \b incomplete LU factorization and solver based on the SuperLU library - * - * This class allows to solve for an approximate solution of A.X = B sparse linear problems via an incomplete LU factorization - * using the SuperLU library. This class is aimed to be used as a preconditioner of the iterative linear solvers. - * - * \warning This class is only for the 4.x versions of SuperLU. The 3.x and 5.x versions are not supported. - * - * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> - * - * \implsparsesolverconcept - * - * \sa \ref TutorialSparseSolverConcept, class IncompleteLUT, class ConjugateGradient, class BiCGSTAB - */ - -template -class SuperILU : public SuperLUBase<_MatrixType,SuperILU<_MatrixType> > -{ - public: - typedef SuperLUBase<_MatrixType,SuperILU> Base; - typedef _MatrixType MatrixType; - typedef typename Base::Scalar Scalar; - typedef typename Base::RealScalar RealScalar; - - public: - using Base::_solve_impl; - - SuperILU() : Base() { init(); } - - SuperILU(const MatrixType& matrix) : Base() - { - init(); - Base::compute(matrix); - } - - ~SuperILU() - { - } - - /** Performs a symbolic decomposition on the sparcity of \a matrix. - * - * This function is particularly useful when solving for several problems having the same structure. - * - * \sa factorize() - */ - void analyzePattern(const MatrixType& matrix) - { - Base::analyzePattern(matrix); - } - - /** Performs a numeric decomposition of \a matrix - * - * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. - * - * \sa analyzePattern() - */ - void factorize(const MatrixType& matrix); - - #ifndef EIGEN_PARSED_BY_DOXYGEN - /** \internal */ - template - void _solve_impl(const MatrixBase &b, MatrixBase &dest) const; - #endif // EIGEN_PARSED_BY_DOXYGEN - - protected: - - using Base::m_matrix; - using Base::m_sluOptions; - using Base::m_sluA; - using Base::m_sluB; - using Base::m_sluX; - using Base::m_p; - using Base::m_q; - using Base::m_sluEtree; - using Base::m_sluEqued; - using Base::m_sluRscale; - using Base::m_sluCscale; - using Base::m_sluL; - using Base::m_sluU; - using Base::m_sluStat; - using Base::m_sluFerr; - using Base::m_sluBerr; - using Base::m_l; - using Base::m_u; - - using Base::m_analysisIsOk; - using Base::m_factorizationIsOk; - using Base::m_extractedDataAreDirty; - using Base::m_isInitialized; - using Base::m_info; - - void init() - { - Base::init(); - - ilu_set_default_options(&m_sluOptions); - m_sluOptions.PrintStat = NO; - m_sluOptions.ConditionNumber = NO; - m_sluOptions.Trans = NOTRANS; - m_sluOptions.ColPerm = MMD_AT_PLUS_A; - - // no attempt to preserve column sum - m_sluOptions.ILU_MILU = SILU; - // only basic ILU(k) support -- no direct control over memory consumption - // better to use ILU_DropRule = DROP_BASIC | DROP_AREA - // and set ILU_FillFactor to max memory growth - m_sluOptions.ILU_DropRule = DROP_BASIC; - m_sluOptions.ILU_DropTol = NumTraits::dummy_precision()*10; - } - - private: - SuperILU(SuperILU& ) { } -}; - -template -void SuperILU::factorize(const MatrixType& a) -{ - eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); - if(!m_analysisIsOk) - { - m_info = InvalidInput; - return; - } - - this->initFactorization(a); - - int info = 0; - RealScalar recip_pivot_growth, rcond; - - StatInit(&m_sluStat); - SuperLU_gsisx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0], - &m_sluEqued, &m_sluRscale[0], &m_sluCscale[0], - &m_sluL, &m_sluU, - NULL, 0, - &m_sluB, &m_sluX, - &recip_pivot_growth, &rcond, - &m_sluStat, &info, Scalar()); - StatFree(&m_sluStat); - - // FIXME how to better check for errors ??? - m_info = info == 0 ? Success : NumericalIssue; - m_factorizationIsOk = true; -} - -#ifndef EIGEN_PARSED_BY_DOXYGEN -template -template -void SuperILU::_solve_impl(const MatrixBase &b, MatrixBase& x) const -{ - eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or analyzePattern()/factorize()"); - - const int size = m_matrix.rows(); - const int rhsCols = b.cols(); - eigen_assert(size==b.rows()); - - m_sluOptions.Trans = NOTRANS; - m_sluOptions.Fact = FACTORED; - m_sluOptions.IterRefine = NOREFINE; - - m_sluFerr.resize(rhsCols); - m_sluBerr.resize(rhsCols); - - Ref > b_ref(b); - Ref > x_ref(x); - - m_sluB = SluMatrix::Map(b_ref.const_cast_derived()); - m_sluX = SluMatrix::Map(x_ref.const_cast_derived()); - - typename Rhs::PlainObject b_cpy; - if(m_sluEqued!='N') - { - b_cpy = b; - m_sluB = SluMatrix::Map(b_cpy.const_cast_derived()); - } - - int info = 0; - RealScalar recip_pivot_growth, rcond; - - StatInit(&m_sluStat); - SuperLU_gsisx(&m_sluOptions, &m_sluA, - m_q.data(), m_p.data(), - &m_sluEtree[0], &m_sluEqued, - &m_sluRscale[0], &m_sluCscale[0], - &m_sluL, &m_sluU, - NULL, 0, - &m_sluB, &m_sluX, - &recip_pivot_growth, &rcond, - &m_sluStat, &info, Scalar()); - StatFree(&m_sluStat); - - if(x.derived().data() != x_ref.data()) - x = x_ref; - - m_info = info==0 ? Success : NumericalIssue; -} -#endif - -#endif - -} // end namespace Eigen - -#endif // EIGEN_SUPERLUSUPPORT_H diff --git a/src/math_meigen/Eigen/src/UmfPackSupport/UmfPackSupport.h b/src/math_meigen/Eigen/src/UmfPackSupport/UmfPackSupport.h deleted file mode 100755 index 91c09ab13..000000000 --- a/src/math_meigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +++ /dev/null @@ -1,506 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2011 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_UMFPACKSUPPORT_H -#define EIGEN_UMFPACKSUPPORT_H - -namespace Eigen { - -/* TODO extract L, extract U, compute det, etc... */ - -// generic double/complex wrapper functions: - - -inline void umfpack_defaults(double control[UMFPACK_CONTROL], double) -{ umfpack_di_defaults(control); } - -inline void umfpack_defaults(double control[UMFPACK_CONTROL], std::complex) -{ umfpack_zi_defaults(control); } - -inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], double) -{ umfpack_di_report_info(control, info);} - -inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], std::complex) -{ umfpack_zi_report_info(control, info);} - -inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, double) -{ umfpack_di_report_status(control, status);} - -inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, std::complex) -{ umfpack_zi_report_status(control, status);} - -inline void umfpack_report_control(double control[UMFPACK_CONTROL], double) -{ umfpack_di_report_control(control);} - -inline void umfpack_report_control(double control[UMFPACK_CONTROL], std::complex) -{ umfpack_zi_report_control(control);} - -inline void umfpack_free_numeric(void **Numeric, double) -{ umfpack_di_free_numeric(Numeric); *Numeric = 0; } - -inline void umfpack_free_numeric(void **Numeric, std::complex) -{ umfpack_zi_free_numeric(Numeric); *Numeric = 0; } - -inline void umfpack_free_symbolic(void **Symbolic, double) -{ umfpack_di_free_symbolic(Symbolic); *Symbolic = 0; } - -inline void umfpack_free_symbolic(void **Symbolic, std::complex) -{ umfpack_zi_free_symbolic(Symbolic); *Symbolic = 0; } - -inline int umfpack_symbolic(int n_row,int n_col, - const int Ap[], const int Ai[], const double Ax[], void **Symbolic, - const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) -{ - return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info); -} - -inline int umfpack_symbolic(int n_row,int n_col, - const int Ap[], const int Ai[], const std::complex Ax[], void **Symbolic, - const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) -{ - return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Control,Info); -} - -inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[], - void *Symbolic, void **Numeric, - const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO]) -{ - return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info); -} - -inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex Ax[], - void *Symbolic, void **Numeric, - const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO]) -{ - return umfpack_zi_numeric(Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Numeric,Control,Info); -} - -inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[], - double X[], const double B[], void *Numeric, - const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) -{ - return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info); -} - -inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const std::complex Ax[], - std::complex X[], const std::complex B[], void *Numeric, - const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) -{ - return umfpack_zi_solve(sys,Ap,Ai,&numext::real_ref(Ax[0]),0,&numext::real_ref(X[0]),0,&numext::real_ref(B[0]),0,Numeric,Control,Info); -} - -inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double) -{ - return umfpack_di_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric); -} - -inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex) -{ - return umfpack_zi_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric); -} - -inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[], - int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric) -{ - return umfpack_di_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric); -} - -inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex Lx[], int Up[], int Ui[], std::complex Ux[], - int P[], int Q[], std::complex Dx[], int *do_recip, double Rs[], void *Numeric) -{ - double& lx0_real = numext::real_ref(Lx[0]); - double& ux0_real = numext::real_ref(Ux[0]); - double& dx0_real = numext::real_ref(Dx[0]); - return umfpack_zi_get_numeric(Lp,Lj,Lx?&lx0_real:0,0,Up,Ui,Ux?&ux0_real:0,0,P,Q, - Dx?&dx0_real:0,0,do_recip,Rs,Numeric); -} - -inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO]) -{ - return umfpack_di_get_determinant(Mx,Ex,NumericHandle,User_Info); -} - -inline int umfpack_get_determinant(std::complex *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO]) -{ - double& mx_real = numext::real_ref(*Mx); - return umfpack_zi_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info); -} - - -/** \ingroup UmfPackSupport_Module - * \brief A sparse LU factorization and solver based on UmfPack - * - * This class allows to solve for A.X = B sparse linear problems via a LU factorization - * using the UmfPack library. The sparse matrix A must be squared and full rank. - * The vectors or matrices X and B can be either dense or sparse. - * - * \warning The input matrix A should be in a \b compressed and \b column-major form. - * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix. - * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> - * - * \implsparsesolverconcept - * - * \sa \ref TutorialSparseSolverConcept, class SparseLU - */ -template -class UmfPackLU : public SparseSolverBase > -{ - protected: - typedef SparseSolverBase > Base; - using Base::m_isInitialized; - public: - using Base::_solve_impl; - typedef _MatrixType MatrixType; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef typename MatrixType::StorageIndex StorageIndex; - typedef Matrix Vector; - typedef Matrix IntRowVectorType; - typedef Matrix IntColVectorType; - typedef SparseMatrix LUMatrixType; - typedef SparseMatrix UmfpackMatrixType; - typedef Ref UmfpackMatrixRef; - enum { - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime - }; - - public: - - typedef Array UmfpackControl; - typedef Array UmfpackInfo; - - UmfPackLU() - : m_dummy(0,0), mp_matrix(m_dummy) - { - init(); - } - - template - explicit UmfPackLU(const InputMatrixType& matrix) - : mp_matrix(matrix) - { - init(); - compute(matrix); - } - - ~UmfPackLU() - { - if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar()); - if(m_numeric) umfpack_free_numeric(&m_numeric,Scalar()); - } - - inline Index rows() const { return mp_matrix.rows(); } - inline Index cols() const { return mp_matrix.cols(); } - - /** \brief Reports whether previous computation was successful. - * - * \returns \c Success if computation was succesful, - * \c NumericalIssue if the matrix.appears to be negative. - */ - ComputationInfo info() const - { - eigen_assert(m_isInitialized && "Decomposition is not initialized."); - return m_info; - } - - inline const LUMatrixType& matrixL() const - { - if (m_extractedDataAreDirty) extractData(); - return m_l; - } - - inline const LUMatrixType& matrixU() const - { - if (m_extractedDataAreDirty) extractData(); - return m_u; - } - - inline const IntColVectorType& permutationP() const - { - if (m_extractedDataAreDirty) extractData(); - return m_p; - } - - inline const IntRowVectorType& permutationQ() const - { - if (m_extractedDataAreDirty) extractData(); - return m_q; - } - - /** Computes the sparse Cholesky decomposition of \a matrix - * Note that the matrix should be column-major, and in compressed format for best performance. - * \sa SparseMatrix::makeCompressed(). - */ - template - void compute(const InputMatrixType& matrix) - { - if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar()); - if(m_numeric) umfpack_free_numeric(&m_numeric,Scalar()); - grab(matrix.derived()); - analyzePattern_impl(); - factorize_impl(); - } - - /** Performs a symbolic decomposition on the sparcity of \a matrix. - * - * This function is particularly useful when solving for several problems having the same structure. - * - * \sa factorize(), compute() - */ - template - void analyzePattern(const InputMatrixType& matrix) - { - if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar()); - if(m_numeric) umfpack_free_numeric(&m_numeric,Scalar()); - - grab(matrix.derived()); - - analyzePattern_impl(); - } - - /** Provides the return status code returned by UmfPack during the numeric - * factorization. - * - * \sa factorize(), compute() - */ - inline int umfpackFactorizeReturncode() const - { - eigen_assert(m_numeric && "UmfPackLU: you must first call factorize()"); - return m_fact_errorCode; - } - - /** Provides access to the control settings array used by UmfPack. - * - * If this array contains NaN's, the default values are used. - * - * See UMFPACK documentation for details. - */ - inline const UmfpackControl& umfpackControl() const - { - return m_control; - } - - /** Provides access to the control settings array used by UmfPack. - * - * If this array contains NaN's, the default values are used. - * - * See UMFPACK documentation for details. - */ - inline UmfpackControl& umfpackControl() - { - return m_control; - } - - /** Performs a numeric decomposition of \a matrix - * - * The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed. - * - * \sa analyzePattern(), compute() - */ - template - void factorize(const InputMatrixType& matrix) - { - eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()"); - if(m_numeric) - umfpack_free_numeric(&m_numeric,Scalar()); - - grab(matrix.derived()); - - factorize_impl(); - } - - /** Prints the current UmfPack control settings. - * - * \sa umfpackControl() - */ - void umfpackReportControl() - { - umfpack_report_control(m_control.data(), Scalar()); - } - - /** Prints statistics collected by UmfPack. - * - * \sa analyzePattern(), compute() - */ - void umfpackReportInfo() - { - eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()"); - umfpack_report_info(m_control.data(), m_umfpackInfo.data(), Scalar()); - } - - /** Prints the status of the previous factorization operation performed by UmfPack (symbolic or numerical factorization). - * - * \sa analyzePattern(), compute() - */ - void umfpackReportStatus() { - eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()"); - umfpack_report_status(m_control.data(), m_fact_errorCode, Scalar()); - } - - /** \internal */ - template - bool _solve_impl(const MatrixBase &b, MatrixBase &x) const; - - Scalar determinant() const; - - void extractData() const; - - protected: - - void init() - { - m_info = InvalidInput; - m_isInitialized = false; - m_numeric = 0; - m_symbolic = 0; - m_extractedDataAreDirty = true; - - umfpack_defaults(m_control.data(), Scalar()); - } - - void analyzePattern_impl() - { - m_fact_errorCode = umfpack_symbolic(internal::convert_index(mp_matrix.rows()), - internal::convert_index(mp_matrix.cols()), - mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(), - &m_symbolic, m_control.data(), m_umfpackInfo.data()); - - m_isInitialized = true; - m_info = m_fact_errorCode ? InvalidInput : Success; - m_analysisIsOk = true; - m_factorizationIsOk = false; - m_extractedDataAreDirty = true; - } - - void factorize_impl() - { - - m_fact_errorCode = umfpack_numeric(mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(), - m_symbolic, &m_numeric, m_control.data(), m_umfpackInfo.data()); - - m_info = m_fact_errorCode == UMFPACK_OK ? Success : NumericalIssue; - m_factorizationIsOk = true; - m_extractedDataAreDirty = true; - } - - template - void grab(const EigenBase &A) - { - mp_matrix.~UmfpackMatrixRef(); - ::new (&mp_matrix) UmfpackMatrixRef(A.derived()); - } - - void grab(const UmfpackMatrixRef &A) - { - if(&(A.derived()) != &mp_matrix) - { - mp_matrix.~UmfpackMatrixRef(); - ::new (&mp_matrix) UmfpackMatrixRef(A); - } - } - - // cached data to reduce reallocation, etc. - mutable LUMatrixType m_l; - int m_fact_errorCode; - UmfpackControl m_control; - mutable UmfpackInfo m_umfpackInfo; - - mutable LUMatrixType m_u; - mutable IntColVectorType m_p; - mutable IntRowVectorType m_q; - - UmfpackMatrixType m_dummy; - UmfpackMatrixRef mp_matrix; - - void* m_numeric; - void* m_symbolic; - - mutable ComputationInfo m_info; - int m_factorizationIsOk; - int m_analysisIsOk; - mutable bool m_extractedDataAreDirty; - - private: - UmfPackLU(const UmfPackLU& ) { } -}; - - -template -void UmfPackLU::extractData() const -{ - if (m_extractedDataAreDirty) - { - // get size of the data - int lnz, unz, rows, cols, nz_udiag; - umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar()); - - // allocate data - m_l.resize(rows,(std::min)(rows,cols)); - m_l.resizeNonZeros(lnz); - - m_u.resize((std::min)(rows,cols),cols); - m_u.resizeNonZeros(unz); - - m_p.resize(rows); - m_q.resize(cols); - - // extract - umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(), - m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(), - m_p.data(), m_q.data(), 0, 0, 0, m_numeric); - - m_extractedDataAreDirty = false; - } -} - -template -typename UmfPackLU::Scalar UmfPackLU::determinant() const -{ - Scalar det; - umfpack_get_determinant(&det, 0, m_numeric, 0); - return det; -} - -template -template -bool UmfPackLU::_solve_impl(const MatrixBase &b, MatrixBase &x) const -{ - Index rhsCols = b.cols(); - eigen_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major rhs yet"); - eigen_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major result yet"); - eigen_assert(b.derived().data() != x.derived().data() && " Umfpack does not support inplace solve"); - - int errorCode; - Scalar* x_ptr = 0; - Matrix x_tmp; - if(x.innerStride()!=1) - { - x_tmp.resize(x.rows()); - x_ptr = x_tmp.data(); - } - for (int j=0; j -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_MISC_IMAGE_H -#define EIGEN_MISC_IMAGE_H - -namespace Eigen { - -namespace internal { - -/** \class image_retval_base - * - */ -template -struct traits > -{ - typedef typename DecompositionType::MatrixType MatrixType; - typedef Matrix< - typename MatrixType::Scalar, - MatrixType::RowsAtCompileTime, // the image is a subspace of the destination space, whose - // dimension is the number of rows of the original matrix - Dynamic, // we don't know at compile time the dimension of the image (the rank) - MatrixType::Options, - MatrixType::MaxRowsAtCompileTime, // the image matrix will consist of columns from the original matrix, - MatrixType::MaxColsAtCompileTime // so it has the same number of rows and at most as many columns. - > ReturnType; -}; - -template struct image_retval_base - : public ReturnByValue > -{ - typedef _DecompositionType DecompositionType; - typedef typename DecompositionType::MatrixType MatrixType; - typedef ReturnByValue Base; - - image_retval_base(const DecompositionType& dec, const MatrixType& originalMatrix) - : m_dec(dec), m_rank(dec.rank()), - m_cols(m_rank == 0 ? 1 : m_rank), - m_originalMatrix(originalMatrix) - {} - - inline Index rows() const { return m_dec.rows(); } - inline Index cols() const { return m_cols; } - inline Index rank() const { return m_rank; } - inline const DecompositionType& dec() const { return m_dec; } - inline const MatrixType& originalMatrix() const { return m_originalMatrix; } - - template inline void evalTo(Dest& dst) const - { - static_cast*>(this)->evalTo(dst); - } - - protected: - const DecompositionType& m_dec; - Index m_rank, m_cols; - const MatrixType& m_originalMatrix; -}; - -} // end namespace internal - -#define EIGEN_MAKE_IMAGE_HELPERS(DecompositionType) \ - typedef typename DecompositionType::MatrixType MatrixType; \ - typedef typename MatrixType::Scalar Scalar; \ - typedef typename MatrixType::RealScalar RealScalar; \ - typedef Eigen::internal::image_retval_base Base; \ - using Base::dec; \ - using Base::originalMatrix; \ - using Base::rank; \ - using Base::rows; \ - using Base::cols; \ - image_retval(const DecompositionType& dec, const MatrixType& originalMatrix) \ - : Base(dec, originalMatrix) {} - -} // end namespace Eigen - -#endif // EIGEN_MISC_IMAGE_H diff --git a/src/math_meigen/Eigen/src/misc/Kernel.h b/src/math_meigen/Eigen/src/misc/Kernel.h deleted file mode 100755 index bef5d6ff5..000000000 --- a/src/math_meigen/Eigen/src/misc/Kernel.h +++ /dev/null @@ -1,79 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_MISC_KERNEL_H -#define EIGEN_MISC_KERNEL_H - -namespace Eigen { - -namespace internal { - -/** \class kernel_retval_base - * - */ -template -struct traits > -{ - typedef typename DecompositionType::MatrixType MatrixType; - typedef Matrix< - typename MatrixType::Scalar, - MatrixType::ColsAtCompileTime, // the number of rows in the "kernel matrix" - // is the number of cols of the original matrix - // so that the product "matrix * kernel = zero" makes sense - Dynamic, // we don't know at compile-time the dimension of the kernel - MatrixType::Options, - MatrixType::MaxColsAtCompileTime, // see explanation for 2nd template parameter - MatrixType::MaxColsAtCompileTime // the kernel is a subspace of the domain space, - // whose dimension is the number of columns of the original matrix - > ReturnType; -}; - -template struct kernel_retval_base - : public ReturnByValue > -{ - typedef _DecompositionType DecompositionType; - typedef ReturnByValue Base; - - explicit kernel_retval_base(const DecompositionType& dec) - : m_dec(dec), - m_rank(dec.rank()), - m_cols(m_rank==dec.cols() ? 1 : dec.cols() - m_rank) - {} - - inline Index rows() const { return m_dec.cols(); } - inline Index cols() const { return m_cols; } - inline Index rank() const { return m_rank; } - inline const DecompositionType& dec() const { return m_dec; } - - template inline void evalTo(Dest& dst) const - { - static_cast*>(this)->evalTo(dst); - } - - protected: - const DecompositionType& m_dec; - Index m_rank, m_cols; -}; - -} // end namespace internal - -#define EIGEN_MAKE_KERNEL_HELPERS(DecompositionType) \ - typedef typename DecompositionType::MatrixType MatrixType; \ - typedef typename MatrixType::Scalar Scalar; \ - typedef typename MatrixType::RealScalar RealScalar; \ - typedef Eigen::internal::kernel_retval_base Base; \ - using Base::dec; \ - using Base::rank; \ - using Base::rows; \ - using Base::cols; \ - kernel_retval(const DecompositionType& dec) : Base(dec) {} - -} // end namespace Eigen - -#endif // EIGEN_MISC_KERNEL_H diff --git a/src/math_meigen/Eigen/src/misc/RealSvd2x2.h b/src/math_meigen/Eigen/src/misc/RealSvd2x2.h deleted file mode 100755 index abb4d3c2f..000000000 --- a/src/math_meigen/Eigen/src/misc/RealSvd2x2.h +++ /dev/null @@ -1,55 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009-2010 Benoit Jacob -// Copyright (C) 2013-2016 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_REALSVD2X2_H -#define EIGEN_REALSVD2X2_H - -namespace Eigen { - -namespace internal { - -template -void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q, - JacobiRotation *j_left, - JacobiRotation *j_right) -{ - using std::sqrt; - using std::abs; - Matrix m; - m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)), - numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q)); - JacobiRotation rot1; - RealScalar t = m.coeff(0,0) + m.coeff(1,1); - RealScalar d = m.coeff(1,0) - m.coeff(0,1); - - if(abs(d) < (std::numeric_limits::min)()) - { - rot1.s() = RealScalar(0); - rot1.c() = RealScalar(1); - } - else - { - // If d!=0, then t/d cannot overflow because the magnitude of the - // entries forming d are not too small compared to the ones forming t. - RealScalar u = t / d; - RealScalar tmp = sqrt(RealScalar(1) + numext::abs2(u)); - rot1.s() = RealScalar(1) / tmp; - rot1.c() = u / tmp; - } - m.applyOnTheLeft(0,1,rot1); - j_right->makeJacobi(m,0,1); - *j_left = rot1 * j_right->transpose(); -} - -} // end namespace internal - -} // end namespace Eigen - -#endif // EIGEN_REALSVD2X2_H diff --git a/src/math_meigen/Eigen/src/misc/blas.h b/src/math_meigen/Eigen/src/misc/blas.h deleted file mode 100755 index 25215b15e..000000000 --- a/src/math_meigen/Eigen/src/misc/blas.h +++ /dev/null @@ -1,440 +0,0 @@ -#ifndef BLAS_H -#define BLAS_H - -#ifdef __cplusplus -extern "C" -{ -#endif - -#define BLASFUNC(FUNC) FUNC##_ - -#ifdef __WIN64__ -typedef long long BLASLONG; -typedef unsigned long long BLASULONG; -#else -typedef long BLASLONG; -typedef unsigned long BLASULONG; -#endif - -int BLASFUNC(xerbla)(const char *, int *info, int); - -float BLASFUNC(sdot) (int *, float *, int *, float *, int *); -float BLASFUNC(sdsdot)(int *, float *, float *, int *, float *, int *); - -double BLASFUNC(dsdot) (int *, float *, int *, float *, int *); -double BLASFUNC(ddot) (int *, double *, int *, double *, int *); -double BLASFUNC(qdot) (int *, double *, int *, double *, int *); - -int BLASFUNC(cdotuw) (int *, float *, int *, float *, int *, float*); -int BLASFUNC(cdotcw) (int *, float *, int *, float *, int *, float*); -int BLASFUNC(zdotuw) (int *, double *, int *, double *, int *, double*); -int BLASFUNC(zdotcw) (int *, double *, int *, double *, int *, double*); - -int BLASFUNC(saxpy) (const int *, const float *, const float *, const int *, float *, const int *); -int BLASFUNC(daxpy) (const int *, const double *, const double *, const int *, double *, const int *); -int BLASFUNC(qaxpy) (const int *, const double *, const double *, const int *, double *, const int *); -int BLASFUNC(caxpy) (const int *, const float *, const float *, const int *, float *, const int *); -int BLASFUNC(zaxpy) (const int *, const double *, const double *, const int *, double *, const int *); -int BLASFUNC(xaxpy) (const int *, const double *, const double *, const int *, double *, const int *); -int BLASFUNC(caxpyc)(const int *, const float *, const float *, const int *, float *, const int *); -int BLASFUNC(zaxpyc)(const int *, const double *, const double *, const int *, double *, const int *); -int BLASFUNC(xaxpyc)(const int *, const double *, const double *, const int *, double *, const int *); - -int BLASFUNC(scopy) (int *, float *, int *, float *, int *); -int BLASFUNC(dcopy) (int *, double *, int *, double *, int *); -int BLASFUNC(qcopy) (int *, double *, int *, double *, int *); -int BLASFUNC(ccopy) (int *, float *, int *, float *, int *); -int BLASFUNC(zcopy) (int *, double *, int *, double *, int *); -int BLASFUNC(xcopy) (int *, double *, int *, double *, int *); - -int BLASFUNC(sswap) (int *, float *, int *, float *, int *); -int BLASFUNC(dswap) (int *, double *, int *, double *, int *); -int BLASFUNC(qswap) (int *, double *, int *, double *, int *); -int BLASFUNC(cswap) (int *, float *, int *, float *, int *); -int BLASFUNC(zswap) (int *, double *, int *, double *, int *); -int BLASFUNC(xswap) (int *, double *, int *, double *, int *); - -float BLASFUNC(sasum) (int *, float *, int *); -float BLASFUNC(scasum)(int *, float *, int *); -double BLASFUNC(dasum) (int *, double *, int *); -double BLASFUNC(qasum) (int *, double *, int *); -double BLASFUNC(dzasum)(int *, double *, int *); -double BLASFUNC(qxasum)(int *, double *, int *); - -int BLASFUNC(isamax)(int *, float *, int *); -int BLASFUNC(idamax)(int *, double *, int *); -int BLASFUNC(iqamax)(int *, double *, int *); -int BLASFUNC(icamax)(int *, float *, int *); -int BLASFUNC(izamax)(int *, double *, int *); -int BLASFUNC(ixamax)(int *, double *, int *); - -int BLASFUNC(ismax) (int *, float *, int *); -int BLASFUNC(idmax) (int *, double *, int *); -int BLASFUNC(iqmax) (int *, double *, int *); -int BLASFUNC(icmax) (int *, float *, int *); -int BLASFUNC(izmax) (int *, double *, int *); -int BLASFUNC(ixmax) (int *, double *, int *); - -int BLASFUNC(isamin)(int *, float *, int *); -int BLASFUNC(idamin)(int *, double *, int *); -int BLASFUNC(iqamin)(int *, double *, int *); -int BLASFUNC(icamin)(int *, float *, int *); -int BLASFUNC(izamin)(int *, double *, int *); -int BLASFUNC(ixamin)(int *, double *, int *); - -int BLASFUNC(ismin)(int *, float *, int *); -int BLASFUNC(idmin)(int *, double *, int *); -int BLASFUNC(iqmin)(int *, double *, int *); -int BLASFUNC(icmin)(int *, float *, int *); -int BLASFUNC(izmin)(int *, double *, int *); -int BLASFUNC(ixmin)(int *, double *, int *); - -float BLASFUNC(samax) (int *, float *, int *); -double BLASFUNC(damax) (int *, double *, int *); -double BLASFUNC(qamax) (int *, double *, int *); -float BLASFUNC(scamax)(int *, float *, int *); -double BLASFUNC(dzamax)(int *, double *, int *); -double BLASFUNC(qxamax)(int *, double *, int *); - -float BLASFUNC(samin) (int *, float *, int *); -double BLASFUNC(damin) (int *, double *, int *); -double BLASFUNC(qamin) (int *, double *, int *); -float BLASFUNC(scamin)(int *, float *, int *); -double BLASFUNC(dzamin)(int *, double *, int *); -double BLASFUNC(qxamin)(int *, double *, int *); - -float BLASFUNC(smax) (int *, float *, int *); -double BLASFUNC(dmax) (int *, double *, int *); -double BLASFUNC(qmax) (int *, double *, int *); -float BLASFUNC(scmax) (int *, float *, int *); -double BLASFUNC(dzmax) (int *, double *, int *); -double BLASFUNC(qxmax) (int *, double *, int *); - -float BLASFUNC(smin) (int *, float *, int *); -double BLASFUNC(dmin) (int *, double *, int *); -double BLASFUNC(qmin) (int *, double *, int *); -float BLASFUNC(scmin) (int *, float *, int *); -double BLASFUNC(dzmin) (int *, double *, int *); -double BLASFUNC(qxmin) (int *, double *, int *); - -int BLASFUNC(sscal) (int *, float *, float *, int *); -int BLASFUNC(dscal) (int *, double *, double *, int *); -int BLASFUNC(qscal) (int *, double *, double *, int *); -int BLASFUNC(cscal) (int *, float *, float *, int *); -int BLASFUNC(zscal) (int *, double *, double *, int *); -int BLASFUNC(xscal) (int *, double *, double *, int *); -int BLASFUNC(csscal)(int *, float *, float *, int *); -int BLASFUNC(zdscal)(int *, double *, double *, int *); -int BLASFUNC(xqscal)(int *, double *, double *, int *); - -float BLASFUNC(snrm2) (int *, float *, int *); -float BLASFUNC(scnrm2)(int *, float *, int *); - -double BLASFUNC(dnrm2) (int *, double *, int *); -double BLASFUNC(qnrm2) (int *, double *, int *); -double BLASFUNC(dznrm2)(int *, double *, int *); -double BLASFUNC(qxnrm2)(int *, double *, int *); - -int BLASFUNC(srot) (int *, float *, int *, float *, int *, float *, float *); -int BLASFUNC(drot) (int *, double *, int *, double *, int *, double *, double *); -int BLASFUNC(qrot) (int *, double *, int *, double *, int *, double *, double *); -int BLASFUNC(csrot) (int *, float *, int *, float *, int *, float *, float *); -int BLASFUNC(zdrot) (int *, double *, int *, double *, int *, double *, double *); -int BLASFUNC(xqrot) (int *, double *, int *, double *, int *, double *, double *); - -int BLASFUNC(srotg) (float *, float *, float *, float *); -int BLASFUNC(drotg) (double *, double *, double *, double *); -int BLASFUNC(qrotg) (double *, double *, double *, double *); -int BLASFUNC(crotg) (float *, float *, float *, float *); -int BLASFUNC(zrotg) (double *, double *, double *, double *); -int BLASFUNC(xrotg) (double *, double *, double *, double *); - -int BLASFUNC(srotmg)(float *, float *, float *, float *, float *); -int BLASFUNC(drotmg)(double *, double *, double *, double *, double *); - -int BLASFUNC(srotm) (int *, float *, int *, float *, int *, float *); -int BLASFUNC(drotm) (int *, double *, int *, double *, int *, double *); -int BLASFUNC(qrotm) (int *, double *, int *, double *, int *, double *); - -/* Level 2 routines */ - -int BLASFUNC(sger)(int *, int *, float *, float *, int *, - float *, int *, float *, int *); -int BLASFUNC(dger)(int *, int *, double *, double *, int *, - double *, int *, double *, int *); -int BLASFUNC(qger)(int *, int *, double *, double *, int *, - double *, int *, double *, int *); -int BLASFUNC(cgeru)(int *, int *, float *, float *, int *, - float *, int *, float *, int *); -int BLASFUNC(cgerc)(int *, int *, float *, float *, int *, - float *, int *, float *, int *); -int BLASFUNC(zgeru)(int *, int *, double *, double *, int *, - double *, int *, double *, int *); -int BLASFUNC(zgerc)(int *, int *, double *, double *, int *, - double *, int *, double *, int *); -int BLASFUNC(xgeru)(int *, int *, double *, double *, int *, - double *, int *, double *, int *); -int BLASFUNC(xgerc)(int *, int *, double *, double *, int *, - double *, int *, double *, int *); - -int BLASFUNC(sgemv)(const char *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); -int BLASFUNC(dgemv)(const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); -int BLASFUNC(qgemv)(const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); -int BLASFUNC(cgemv)(const char *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); -int BLASFUNC(zgemv)(const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); -int BLASFUNC(xgemv)(const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); - -int BLASFUNC(strsv) (const char *, const char *, const char *, const int *, const float *, const int *, float *, const int *); -int BLASFUNC(dtrsv) (const char *, const char *, const char *, const int *, const double *, const int *, double *, const int *); -int BLASFUNC(qtrsv) (const char *, const char *, const char *, const int *, const double *, const int *, double *, const int *); -int BLASFUNC(ctrsv) (const char *, const char *, const char *, const int *, const float *, const int *, float *, const int *); -int BLASFUNC(ztrsv) (const char *, const char *, const char *, const int *, const double *, const int *, double *, const int *); -int BLASFUNC(xtrsv) (const char *, const char *, const char *, const int *, const double *, const int *, double *, const int *); - -int BLASFUNC(stpsv) (char *, char *, char *, int *, float *, float *, int *); -int BLASFUNC(dtpsv) (char *, char *, char *, int *, double *, double *, int *); -int BLASFUNC(qtpsv) (char *, char *, char *, int *, double *, double *, int *); -int BLASFUNC(ctpsv) (char *, char *, char *, int *, float *, float *, int *); -int BLASFUNC(ztpsv) (char *, char *, char *, int *, double *, double *, int *); -int BLASFUNC(xtpsv) (char *, char *, char *, int *, double *, double *, int *); - -int BLASFUNC(strmv) (const char *, const char *, const char *, const int *, const float *, const int *, float *, const int *); -int BLASFUNC(dtrmv) (const char *, const char *, const char *, const int *, const double *, const int *, double *, const int *); -int BLASFUNC(qtrmv) (const char *, const char *, const char *, const int *, const double *, const int *, double *, const int *); -int BLASFUNC(ctrmv) (const char *, const char *, const char *, const int *, const float *, const int *, float *, const int *); -int BLASFUNC(ztrmv) (const char *, const char *, const char *, const int *, const double *, const int *, double *, const int *); -int BLASFUNC(xtrmv) (const char *, const char *, const char *, const int *, const double *, const int *, double *, const int *); - -int BLASFUNC(stpmv) (char *, char *, char *, int *, float *, float *, int *); -int BLASFUNC(dtpmv) (char *, char *, char *, int *, double *, double *, int *); -int BLASFUNC(qtpmv) (char *, char *, char *, int *, double *, double *, int *); -int BLASFUNC(ctpmv) (char *, char *, char *, int *, float *, float *, int *); -int BLASFUNC(ztpmv) (char *, char *, char *, int *, double *, double *, int *); -int BLASFUNC(xtpmv) (char *, char *, char *, int *, double *, double *, int *); - -int BLASFUNC(stbmv) (char *, char *, char *, int *, int *, float *, int *, float *, int *); -int BLASFUNC(dtbmv) (char *, char *, char *, int *, int *, double *, int *, double *, int *); -int BLASFUNC(qtbmv) (char *, char *, char *, int *, int *, double *, int *, double *, int *); -int BLASFUNC(ctbmv) (char *, char *, char *, int *, int *, float *, int *, float *, int *); -int BLASFUNC(ztbmv) (char *, char *, char *, int *, int *, double *, int *, double *, int *); -int BLASFUNC(xtbmv) (char *, char *, char *, int *, int *, double *, int *, double *, int *); - -int BLASFUNC(stbsv) (char *, char *, char *, int *, int *, float *, int *, float *, int *); -int BLASFUNC(dtbsv) (char *, char *, char *, int *, int *, double *, int *, double *, int *); -int BLASFUNC(qtbsv) (char *, char *, char *, int *, int *, double *, int *, double *, int *); -int BLASFUNC(ctbsv) (char *, char *, char *, int *, int *, float *, int *, float *, int *); -int BLASFUNC(ztbsv) (char *, char *, char *, int *, int *, double *, int *, double *, int *); -int BLASFUNC(xtbsv) (char *, char *, char *, int *, int *, double *, int *, double *, int *); - -int BLASFUNC(ssymv) (const char *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); -int BLASFUNC(dsymv) (const char *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); -int BLASFUNC(qsymv) (const char *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); - -int BLASFUNC(sspmv) (char *, int *, float *, float *, - float *, int *, float *, float *, int *); -int BLASFUNC(dspmv) (char *, int *, double *, double *, - double *, int *, double *, double *, int *); -int BLASFUNC(qspmv) (char *, int *, double *, double *, - double *, int *, double *, double *, int *); - -int BLASFUNC(ssyr) (const char *, const int *, const float *, const float *, const int *, float *, const int *); -int BLASFUNC(dsyr) (const char *, const int *, const double *, const double *, const int *, double *, const int *); -int BLASFUNC(qsyr) (const char *, const int *, const double *, const double *, const int *, double *, const int *); - -int BLASFUNC(ssyr2) (const char *, const int *, const float *, const float *, const int *, const float *, const int *, float *, const int *); -int BLASFUNC(dsyr2) (const char *, const int *, const double *, const double *, const int *, const double *, const int *, double *, const int *); -int BLASFUNC(qsyr2) (const char *, const int *, const double *, const double *, const int *, const double *, const int *, double *, const int *); -int BLASFUNC(csyr2) (const char *, const int *, const float *, const float *, const int *, const float *, const int *, float *, const int *); -int BLASFUNC(zsyr2) (const char *, const int *, const double *, const double *, const int *, const double *, const int *, double *, const int *); -int BLASFUNC(xsyr2) (const char *, const int *, const double *, const double *, const int *, const double *, const int *, double *, const int *); - -int BLASFUNC(sspr) (char *, int *, float *, float *, int *, - float *); -int BLASFUNC(dspr) (char *, int *, double *, double *, int *, - double *); -int BLASFUNC(qspr) (char *, int *, double *, double *, int *, - double *); - -int BLASFUNC(sspr2) (char *, int *, float *, - float *, int *, float *, int *, float *); -int BLASFUNC(dspr2) (char *, int *, double *, - double *, int *, double *, int *, double *); -int BLASFUNC(qspr2) (char *, int *, double *, - double *, int *, double *, int *, double *); -int BLASFUNC(cspr2) (char *, int *, float *, - float *, int *, float *, int *, float *); -int BLASFUNC(zspr2) (char *, int *, double *, - double *, int *, double *, int *, double *); -int BLASFUNC(xspr2) (char *, int *, double *, - double *, int *, double *, int *, double *); - -int BLASFUNC(cher) (char *, int *, float *, float *, int *, - float *, int *); -int BLASFUNC(zher) (char *, int *, double *, double *, int *, - double *, int *); -int BLASFUNC(xher) (char *, int *, double *, double *, int *, - double *, int *); - -int BLASFUNC(chpr) (char *, int *, float *, float *, int *, float *); -int BLASFUNC(zhpr) (char *, int *, double *, double *, int *, double *); -int BLASFUNC(xhpr) (char *, int *, double *, double *, int *, double *); - -int BLASFUNC(cher2) (char *, int *, float *, - float *, int *, float *, int *, float *, int *); -int BLASFUNC(zher2) (char *, int *, double *, - double *, int *, double *, int *, double *, int *); -int BLASFUNC(xher2) (char *, int *, double *, - double *, int *, double *, int *, double *, int *); - -int BLASFUNC(chpr2) (char *, int *, float *, - float *, int *, float *, int *, float *); -int BLASFUNC(zhpr2) (char *, int *, double *, - double *, int *, double *, int *, double *); -int BLASFUNC(xhpr2) (char *, int *, double *, - double *, int *, double *, int *, double *); - -int BLASFUNC(chemv) (const char *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); -int BLASFUNC(zhemv) (const char *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); -int BLASFUNC(xhemv) (const char *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); - -int BLASFUNC(chpmv) (char *, int *, float *, float *, - float *, int *, float *, float *, int *); -int BLASFUNC(zhpmv) (char *, int *, double *, double *, - double *, int *, double *, double *, int *); -int BLASFUNC(xhpmv) (char *, int *, double *, double *, - double *, int *, double *, double *, int *); - -int BLASFUNC(snorm)(char *, int *, int *, float *, int *); -int BLASFUNC(dnorm)(char *, int *, int *, double *, int *); -int BLASFUNC(cnorm)(char *, int *, int *, float *, int *); -int BLASFUNC(znorm)(char *, int *, int *, double *, int *); - -int BLASFUNC(sgbmv)(char *, int *, int *, int *, int *, float *, float *, int *, - float *, int *, float *, float *, int *); -int BLASFUNC(dgbmv)(char *, int *, int *, int *, int *, double *, double *, int *, - double *, int *, double *, double *, int *); -int BLASFUNC(qgbmv)(char *, int *, int *, int *, int *, double *, double *, int *, - double *, int *, double *, double *, int *); -int BLASFUNC(cgbmv)(char *, int *, int *, int *, int *, float *, float *, int *, - float *, int *, float *, float *, int *); -int BLASFUNC(zgbmv)(char *, int *, int *, int *, int *, double *, double *, int *, - double *, int *, double *, double *, int *); -int BLASFUNC(xgbmv)(char *, int *, int *, int *, int *, double *, double *, int *, - double *, int *, double *, double *, int *); - -int BLASFUNC(ssbmv)(char *, int *, int *, float *, float *, int *, - float *, int *, float *, float *, int *); -int BLASFUNC(dsbmv)(char *, int *, int *, double *, double *, int *, - double *, int *, double *, double *, int *); -int BLASFUNC(qsbmv)(char *, int *, int *, double *, double *, int *, - double *, int *, double *, double *, int *); -int BLASFUNC(csbmv)(char *, int *, int *, float *, float *, int *, - float *, int *, float *, float *, int *); -int BLASFUNC(zsbmv)(char *, int *, int *, double *, double *, int *, - double *, int *, double *, double *, int *); -int BLASFUNC(xsbmv)(char *, int *, int *, double *, double *, int *, - double *, int *, double *, double *, int *); - -int BLASFUNC(chbmv)(char *, int *, int *, float *, float *, int *, - float *, int *, float *, float *, int *); -int BLASFUNC(zhbmv)(char *, int *, int *, double *, double *, int *, - double *, int *, double *, double *, int *); -int BLASFUNC(xhbmv)(char *, int *, int *, double *, double *, int *, - double *, int *, double *, double *, int *); - -/* Level 3 routines */ - -int BLASFUNC(sgemm)(const char *, const char *, const int *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); -int BLASFUNC(dgemm)(const char *, const char *, const int *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); -int BLASFUNC(qgemm)(const char *, const char *, const int *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); -int BLASFUNC(cgemm)(const char *, const char *, const int *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); -int BLASFUNC(zgemm)(const char *, const char *, const int *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); -int BLASFUNC(xgemm)(const char *, const char *, const int *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); - -int BLASFUNC(cgemm3m)(char *, char *, int *, int *, int *, float *, - float *, int *, float *, int *, float *, float *, int *); -int BLASFUNC(zgemm3m)(char *, char *, int *, int *, int *, double *, - double *, int *, double *, int *, double *, double *, int *); -int BLASFUNC(xgemm3m)(char *, char *, int *, int *, int *, double *, - double *, int *, double *, int *, double *, double *, int *); - -int BLASFUNC(sge2mm)(char *, char *, char *, int *, int *, - float *, float *, int *, float *, int *, - float *, float *, int *); -int BLASFUNC(dge2mm)(char *, char *, char *, int *, int *, - double *, double *, int *, double *, int *, - double *, double *, int *); -int BLASFUNC(cge2mm)(char *, char *, char *, int *, int *, - float *, float *, int *, float *, int *, - float *, float *, int *); -int BLASFUNC(zge2mm)(char *, char *, char *, int *, int *, - double *, double *, int *, double *, int *, - double *, double *, int *); - -int BLASFUNC(strsm)(const char *, const char *, const char *, const char *, const int *, const int *, const float *, const float *, const int *, float *, const int *); -int BLASFUNC(dtrsm)(const char *, const char *, const char *, const char *, const int *, const int *, const double *, const double *, const int *, double *, const int *); -int BLASFUNC(qtrsm)(const char *, const char *, const char *, const char *, const int *, const int *, const double *, const double *, const int *, double *, const int *); -int BLASFUNC(ctrsm)(const char *, const char *, const char *, const char *, const int *, const int *, const float *, const float *, const int *, float *, const int *); -int BLASFUNC(ztrsm)(const char *, const char *, const char *, const char *, const int *, const int *, const double *, const double *, const int *, double *, const int *); -int BLASFUNC(xtrsm)(const char *, const char *, const char *, const char *, const int *, const int *, const double *, const double *, const int *, double *, const int *); - -int BLASFUNC(strmm)(const char *, const char *, const char *, const char *, const int *, const int *, const float *, const float *, const int *, float *, const int *); -int BLASFUNC(dtrmm)(const char *, const char *, const char *, const char *, const int *, const int *, const double *, const double *, const int *, double *, const int *); -int BLASFUNC(qtrmm)(const char *, const char *, const char *, const char *, const int *, const int *, const double *, const double *, const int *, double *, const int *); -int BLASFUNC(ctrmm)(const char *, const char *, const char *, const char *, const int *, const int *, const float *, const float *, const int *, float *, const int *); -int BLASFUNC(ztrmm)(const char *, const char *, const char *, const char *, const int *, const int *, const double *, const double *, const int *, double *, const int *); -int BLASFUNC(xtrmm)(const char *, const char *, const char *, const char *, const int *, const int *, const double *, const double *, const int *, double *, const int *); - -int BLASFUNC(ssymm)(const char *, const char *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); -int BLASFUNC(dsymm)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); -int BLASFUNC(qsymm)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); -int BLASFUNC(csymm)(const char *, const char *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); -int BLASFUNC(zsymm)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); -int BLASFUNC(xsymm)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); - -int BLASFUNC(csymm3m)(char *, char *, int *, int *, float *, float *, int *, float *, int *, float *, float *, int *); -int BLASFUNC(zsymm3m)(char *, char *, int *, int *, double *, double *, int *, double *, int *, double *, double *, int *); -int BLASFUNC(xsymm3m)(char *, char *, int *, int *, double *, double *, int *, double *, int *, double *, double *, int *); - -int BLASFUNC(ssyrk)(const char *, const char *, const int *, const int *, const float *, const float *, const int *, const float *, float *, const int *); -int BLASFUNC(dsyrk)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, double *, const int *); -int BLASFUNC(qsyrk)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, double *, const int *); -int BLASFUNC(csyrk)(const char *, const char *, const int *, const int *, const float *, const float *, const int *, const float *, float *, const int *); -int BLASFUNC(zsyrk)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, double *, const int *); -int BLASFUNC(xsyrk)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, double *, const int *); - -int BLASFUNC(ssyr2k)(const char *, const char *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); -int BLASFUNC(dsyr2k)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double*, const int *, const double *, double *, const int *); -int BLASFUNC(qsyr2k)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double*, const int *, const double *, double *, const int *); -int BLASFUNC(csyr2k)(const char *, const char *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); -int BLASFUNC(zsyr2k)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double*, const int *, const double *, double *, const int *); -int BLASFUNC(xsyr2k)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double*, const int *, const double *, double *, const int *); - -int BLASFUNC(chemm)(const char *, const char *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); -int BLASFUNC(zhemm)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); -int BLASFUNC(xhemm)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); - -int BLASFUNC(chemm3m)(char *, char *, int *, int *, float *, float *, int *, - float *, int *, float *, float *, int *); -int BLASFUNC(zhemm3m)(char *, char *, int *, int *, double *, double *, int *, - double *, int *, double *, double *, int *); -int BLASFUNC(xhemm3m)(char *, char *, int *, int *, double *, double *, int *, - double *, int *, double *, double *, int *); - -int BLASFUNC(cherk)(const char *, const char *, const int *, const int *, const float *, const float *, const int *, const float *, float *, const int *); -int BLASFUNC(zherk)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, double *, const int *); -int BLASFUNC(xherk)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, double *, const int *); - -int BLASFUNC(cher2k)(const char *, const char *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); -int BLASFUNC(zher2k)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); -int BLASFUNC(xher2k)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); -int BLASFUNC(cher2m)(const char *, const char *, const char *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); -int BLASFUNC(zher2m)(const char *, const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double*, const int *, const double *, double *, const int *); -int BLASFUNC(xher2m)(const char *, const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double*, const int *, const double *, double *, const int *); - - -#ifdef __cplusplus -} -#endif - -#endif diff --git a/src/math_meigen/Eigen/src/misc/lapack.h b/src/math_meigen/Eigen/src/misc/lapack.h deleted file mode 100755 index 249f3575c..000000000 --- a/src/math_meigen/Eigen/src/misc/lapack.h +++ /dev/null @@ -1,152 +0,0 @@ -#ifndef LAPACK_H -#define LAPACK_H - -#include "blas.h" - -#ifdef __cplusplus -extern "C" -{ -#endif - -int BLASFUNC(csymv) (const char *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); -int BLASFUNC(zsymv) (const char *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); -int BLASFUNC(xsymv) (const char *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); - - -int BLASFUNC(cspmv) (char *, int *, float *, float *, - float *, int *, float *, float *, int *); -int BLASFUNC(zspmv) (char *, int *, double *, double *, - double *, int *, double *, double *, int *); -int BLASFUNC(xspmv) (char *, int *, double *, double *, - double *, int *, double *, double *, int *); - -int BLASFUNC(csyr) (char *, int *, float *, float *, int *, - float *, int *); -int BLASFUNC(zsyr) (char *, int *, double *, double *, int *, - double *, int *); -int BLASFUNC(xsyr) (char *, int *, double *, double *, int *, - double *, int *); - -int BLASFUNC(cspr) (char *, int *, float *, float *, int *, - float *); -int BLASFUNC(zspr) (char *, int *, double *, double *, int *, - double *); -int BLASFUNC(xspr) (char *, int *, double *, double *, int *, - double *); - -int BLASFUNC(sgemt)(char *, int *, int *, float *, float *, int *, - float *, int *); -int BLASFUNC(dgemt)(char *, int *, int *, double *, double *, int *, - double *, int *); -int BLASFUNC(cgemt)(char *, int *, int *, float *, float *, int *, - float *, int *); -int BLASFUNC(zgemt)(char *, int *, int *, double *, double *, int *, - double *, int *); - -int BLASFUNC(sgema)(char *, char *, int *, int *, float *, - float *, int *, float *, float *, int *, float *, int *); -int BLASFUNC(dgema)(char *, char *, int *, int *, double *, - double *, int *, double*, double *, int *, double*, int *); -int BLASFUNC(cgema)(char *, char *, int *, int *, float *, - float *, int *, float *, float *, int *, float *, int *); -int BLASFUNC(zgema)(char *, char *, int *, int *, double *, - double *, int *, double*, double *, int *, double*, int *); - -int BLASFUNC(sgems)(char *, char *, int *, int *, float *, - float *, int *, float *, float *, int *, float *, int *); -int BLASFUNC(dgems)(char *, char *, int *, int *, double *, - double *, int *, double*, double *, int *, double*, int *); -int BLASFUNC(cgems)(char *, char *, int *, int *, float *, - float *, int *, float *, float *, int *, float *, int *); -int BLASFUNC(zgems)(char *, char *, int *, int *, double *, - double *, int *, double*, double *, int *, double*, int *); - -int BLASFUNC(sgetf2)(int *, int *, float *, int *, int *, int *); -int BLASFUNC(dgetf2)(int *, int *, double *, int *, int *, int *); -int BLASFUNC(qgetf2)(int *, int *, double *, int *, int *, int *); -int BLASFUNC(cgetf2)(int *, int *, float *, int *, int *, int *); -int BLASFUNC(zgetf2)(int *, int *, double *, int *, int *, int *); -int BLASFUNC(xgetf2)(int *, int *, double *, int *, int *, int *); - -int BLASFUNC(sgetrf)(int *, int *, float *, int *, int *, int *); -int BLASFUNC(dgetrf)(int *, int *, double *, int *, int *, int *); -int BLASFUNC(qgetrf)(int *, int *, double *, int *, int *, int *); -int BLASFUNC(cgetrf)(int *, int *, float *, int *, int *, int *); -int BLASFUNC(zgetrf)(int *, int *, double *, int *, int *, int *); -int BLASFUNC(xgetrf)(int *, int *, double *, int *, int *, int *); - -int BLASFUNC(slaswp)(int *, float *, int *, int *, int *, int *, int *); -int BLASFUNC(dlaswp)(int *, double *, int *, int *, int *, int *, int *); -int BLASFUNC(qlaswp)(int *, double *, int *, int *, int *, int *, int *); -int BLASFUNC(claswp)(int *, float *, int *, int *, int *, int *, int *); -int BLASFUNC(zlaswp)(int *, double *, int *, int *, int *, int *, int *); -int BLASFUNC(xlaswp)(int *, double *, int *, int *, int *, int *, int *); - -int BLASFUNC(sgetrs)(char *, int *, int *, float *, int *, int *, float *, int *, int *); -int BLASFUNC(dgetrs)(char *, int *, int *, double *, int *, int *, double *, int *, int *); -int BLASFUNC(qgetrs)(char *, int *, int *, double *, int *, int *, double *, int *, int *); -int BLASFUNC(cgetrs)(char *, int *, int *, float *, int *, int *, float *, int *, int *); -int BLASFUNC(zgetrs)(char *, int *, int *, double *, int *, int *, double *, int *, int *); -int BLASFUNC(xgetrs)(char *, int *, int *, double *, int *, int *, double *, int *, int *); - -int BLASFUNC(sgesv)(int *, int *, float *, int *, int *, float *, int *, int *); -int BLASFUNC(dgesv)(int *, int *, double *, int *, int *, double*, int *, int *); -int BLASFUNC(qgesv)(int *, int *, double *, int *, int *, double*, int *, int *); -int BLASFUNC(cgesv)(int *, int *, float *, int *, int *, float *, int *, int *); -int BLASFUNC(zgesv)(int *, int *, double *, int *, int *, double*, int *, int *); -int BLASFUNC(xgesv)(int *, int *, double *, int *, int *, double*, int *, int *); - -int BLASFUNC(spotf2)(char *, int *, float *, int *, int *); -int BLASFUNC(dpotf2)(char *, int *, double *, int *, int *); -int BLASFUNC(qpotf2)(char *, int *, double *, int *, int *); -int BLASFUNC(cpotf2)(char *, int *, float *, int *, int *); -int BLASFUNC(zpotf2)(char *, int *, double *, int *, int *); -int BLASFUNC(xpotf2)(char *, int *, double *, int *, int *); - -int BLASFUNC(spotrf)(char *, int *, float *, int *, int *); -int BLASFUNC(dpotrf)(char *, int *, double *, int *, int *); -int BLASFUNC(qpotrf)(char *, int *, double *, int *, int *); -int BLASFUNC(cpotrf)(char *, int *, float *, int *, int *); -int BLASFUNC(zpotrf)(char *, int *, double *, int *, int *); -int BLASFUNC(xpotrf)(char *, int *, double *, int *, int *); - -int BLASFUNC(slauu2)(char *, int *, float *, int *, int *); -int BLASFUNC(dlauu2)(char *, int *, double *, int *, int *); -int BLASFUNC(qlauu2)(char *, int *, double *, int *, int *); -int BLASFUNC(clauu2)(char *, int *, float *, int *, int *); -int BLASFUNC(zlauu2)(char *, int *, double *, int *, int *); -int BLASFUNC(xlauu2)(char *, int *, double *, int *, int *); - -int BLASFUNC(slauum)(char *, int *, float *, int *, int *); -int BLASFUNC(dlauum)(char *, int *, double *, int *, int *); -int BLASFUNC(qlauum)(char *, int *, double *, int *, int *); -int BLASFUNC(clauum)(char *, int *, float *, int *, int *); -int BLASFUNC(zlauum)(char *, int *, double *, int *, int *); -int BLASFUNC(xlauum)(char *, int *, double *, int *, int *); - -int BLASFUNC(strti2)(char *, char *, int *, float *, int *, int *); -int BLASFUNC(dtrti2)(char *, char *, int *, double *, int *, int *); -int BLASFUNC(qtrti2)(char *, char *, int *, double *, int *, int *); -int BLASFUNC(ctrti2)(char *, char *, int *, float *, int *, int *); -int BLASFUNC(ztrti2)(char *, char *, int *, double *, int *, int *); -int BLASFUNC(xtrti2)(char *, char *, int *, double *, int *, int *); - -int BLASFUNC(strtri)(char *, char *, int *, float *, int *, int *); -int BLASFUNC(dtrtri)(char *, char *, int *, double *, int *, int *); -int BLASFUNC(qtrtri)(char *, char *, int *, double *, int *, int *); -int BLASFUNC(ctrtri)(char *, char *, int *, float *, int *, int *); -int BLASFUNC(ztrtri)(char *, char *, int *, double *, int *, int *); -int BLASFUNC(xtrtri)(char *, char *, int *, double *, int *, int *); - -int BLASFUNC(spotri)(char *, int *, float *, int *, int *); -int BLASFUNC(dpotri)(char *, int *, double *, int *, int *); -int BLASFUNC(qpotri)(char *, int *, double *, int *, int *); -int BLASFUNC(cpotri)(char *, int *, float *, int *, int *); -int BLASFUNC(zpotri)(char *, int *, double *, int *, int *); -int BLASFUNC(xpotri)(char *, int *, double *, int *, int *); - -#ifdef __cplusplus -} -#endif - -#endif diff --git a/src/math_meigen/Eigen/src/misc/lapacke.h b/src/math_meigen/Eigen/src/misc/lapacke.h deleted file mode 100755 index 8c7e79b03..000000000 --- a/src/math_meigen/Eigen/src/misc/lapacke.h +++ /dev/null @@ -1,16291 +0,0 @@ -/***************************************************************************** - Copyright (c) 2010, Intel Corp. - All rights reserved. - - Redistribution and use in source and binary forms, with or without - modification, are permitted provided that the following conditions are met: - - * Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - * Neither the name of Intel Corporation nor the names of its contributors - may be used to endorse or promote products derived from this software - without specific prior written permission. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" - AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE - LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS - INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN - CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF - THE POSSIBILITY OF SUCH DAMAGE. -****************************************************************************** -* Contents: Native C interface to LAPACK -* Author: Intel Corporation -* Generated November, 2011 -*****************************************************************************/ - -#ifndef _MKL_LAPACKE_H_ - -#ifndef _LAPACKE_H_ -#define _LAPACKE_H_ - -/* -* Turn on HAVE_LAPACK_CONFIG_H to redefine C-LAPACK datatypes -*/ -#ifdef HAVE_LAPACK_CONFIG_H -#include "lapacke_config.h" -#endif - -#ifdef __cplusplus -extern "C" { -#endif /* __cplusplus */ - -#include - -#ifndef lapack_int -#define lapack_int int -#endif - -#ifndef lapack_logical -#define lapack_logical lapack_int -#endif - -/* Complex types are structures equivalent to the -* Fortran complex types COMPLEX(4) and COMPLEX(8). -* -* One can also redefine the types with his own types -* for example by including in the code definitions like -* -* #define lapack_complex_float std::complex -* #define lapack_complex_double std::complex -* -* or define these types in the command line: -* -* -Dlapack_complex_float="std::complex" -* -Dlapack_complex_double="std::complex" -*/ - -#ifndef LAPACK_COMPLEX_CUSTOM - -/* Complex type (single precision) */ -#ifndef lapack_complex_float -#include -#define lapack_complex_float float _Complex -#endif - -#ifndef lapack_complex_float_real -#define lapack_complex_float_real(z) (creal(z)) -#endif - -#ifndef lapack_complex_float_imag -#define lapack_complex_float_imag(z) (cimag(z)) -#endif - -lapack_complex_float lapack_make_complex_float( float re, float im ); - -/* Complex type (double precision) */ -#ifndef lapack_complex_double -#include -#define lapack_complex_double double _Complex -#endif - -#ifndef lapack_complex_double_real -#define lapack_complex_double_real(z) (creal(z)) -#endif - -#ifndef lapack_complex_double_imag -#define lapack_complex_double_imag(z) (cimag(z)) -#endif - -lapack_complex_double lapack_make_complex_double( double re, double im ); - -#endif - -#ifndef LAPACKE_malloc -#define LAPACKE_malloc( size ) malloc( size ) -#endif -#ifndef LAPACKE_free -#define LAPACKE_free( p ) free( p ) -#endif - -#define LAPACK_C2INT( x ) (lapack_int)(*((float*)&x )) -#define LAPACK_Z2INT( x ) (lapack_int)(*((double*)&x )) - -#define LAPACK_ROW_MAJOR 101 -#define LAPACK_COL_MAJOR 102 - -#define LAPACK_WORK_MEMORY_ERROR -1010 -#define LAPACK_TRANSPOSE_MEMORY_ERROR -1011 - -/* Callback logical functions of one, two, or three arguments are used -* to select eigenvalues to sort to the top left of the Schur form. -* The value is selected if function returns TRUE (non-zero). */ - -typedef lapack_logical (*LAPACK_S_SELECT2) ( const float*, const float* ); -typedef lapack_logical (*LAPACK_S_SELECT3) - ( const float*, const float*, const float* ); -typedef lapack_logical (*LAPACK_D_SELECT2) ( const double*, const double* ); -typedef lapack_logical (*LAPACK_D_SELECT3) - ( const double*, const double*, const double* ); - -typedef lapack_logical (*LAPACK_C_SELECT1) ( const lapack_complex_float* ); -typedef lapack_logical (*LAPACK_C_SELECT2) - ( const lapack_complex_float*, const lapack_complex_float* ); -typedef lapack_logical (*LAPACK_Z_SELECT1) ( const lapack_complex_double* ); -typedef lapack_logical (*LAPACK_Z_SELECT2) - ( const lapack_complex_double*, const lapack_complex_double* ); - -#include "lapacke_mangling.h" - -#define LAPACK_lsame LAPACK_GLOBAL(lsame,LSAME) -lapack_logical LAPACK_lsame( char* ca, char* cb, - lapack_int lca, lapack_int lcb ); - -/* C-LAPACK function prototypes */ - -lapack_int LAPACKE_sbdsdc( int matrix_order, char uplo, char compq, - lapack_int n, float* d, float* e, float* u, - lapack_int ldu, float* vt, lapack_int ldvt, float* q, - lapack_int* iq ); -lapack_int LAPACKE_dbdsdc( int matrix_order, char uplo, char compq, - lapack_int n, double* d, double* e, double* u, - lapack_int ldu, double* vt, lapack_int ldvt, - double* q, lapack_int* iq ); - -lapack_int LAPACKE_sbdsqr( int matrix_order, char uplo, lapack_int n, - lapack_int ncvt, lapack_int nru, lapack_int ncc, - float* d, float* e, float* vt, lapack_int ldvt, - float* u, lapack_int ldu, float* c, lapack_int ldc ); -lapack_int LAPACKE_dbdsqr( int matrix_order, char uplo, lapack_int n, - lapack_int ncvt, lapack_int nru, lapack_int ncc, - double* d, double* e, double* vt, lapack_int ldvt, - double* u, lapack_int ldu, double* c, - lapack_int ldc ); -lapack_int LAPACKE_cbdsqr( int matrix_order, char uplo, lapack_int n, - lapack_int ncvt, lapack_int nru, lapack_int ncc, - float* d, float* e, lapack_complex_float* vt, - lapack_int ldvt, lapack_complex_float* u, - lapack_int ldu, lapack_complex_float* c, - lapack_int ldc ); -lapack_int LAPACKE_zbdsqr( int matrix_order, char uplo, lapack_int n, - lapack_int ncvt, lapack_int nru, lapack_int ncc, - double* d, double* e, lapack_complex_double* vt, - lapack_int ldvt, lapack_complex_double* u, - lapack_int ldu, lapack_complex_double* c, - lapack_int ldc ); - -lapack_int LAPACKE_sdisna( char job, lapack_int m, lapack_int n, const float* d, - float* sep ); -lapack_int LAPACKE_ddisna( char job, lapack_int m, lapack_int n, - const double* d, double* sep ); - -lapack_int LAPACKE_sgbbrd( int matrix_order, char vect, lapack_int m, - lapack_int n, lapack_int ncc, lapack_int kl, - lapack_int ku, float* ab, lapack_int ldab, float* d, - float* e, float* q, lapack_int ldq, float* pt, - lapack_int ldpt, float* c, lapack_int ldc ); -lapack_int LAPACKE_dgbbrd( int matrix_order, char vect, lapack_int m, - lapack_int n, lapack_int ncc, lapack_int kl, - lapack_int ku, double* ab, lapack_int ldab, - double* d, double* e, double* q, lapack_int ldq, - double* pt, lapack_int ldpt, double* c, - lapack_int ldc ); -lapack_int LAPACKE_cgbbrd( int matrix_order, char vect, lapack_int m, - lapack_int n, lapack_int ncc, lapack_int kl, - lapack_int ku, lapack_complex_float* ab, - lapack_int ldab, float* d, float* e, - lapack_complex_float* q, lapack_int ldq, - lapack_complex_float* pt, lapack_int ldpt, - lapack_complex_float* c, lapack_int ldc ); -lapack_int LAPACKE_zgbbrd( int matrix_order, char vect, lapack_int m, - lapack_int n, lapack_int ncc, lapack_int kl, - lapack_int ku, lapack_complex_double* ab, - lapack_int ldab, double* d, double* e, - lapack_complex_double* q, lapack_int ldq, - lapack_complex_double* pt, lapack_int ldpt, - lapack_complex_double* c, lapack_int ldc ); - -lapack_int LAPACKE_sgbcon( int matrix_order, char norm, lapack_int n, - lapack_int kl, lapack_int ku, const float* ab, - lapack_int ldab, const lapack_int* ipiv, float anorm, - float* rcond ); -lapack_int LAPACKE_dgbcon( int matrix_order, char norm, lapack_int n, - lapack_int kl, lapack_int ku, const double* ab, - lapack_int ldab, const lapack_int* ipiv, - double anorm, double* rcond ); -lapack_int LAPACKE_cgbcon( int matrix_order, char norm, lapack_int n, - lapack_int kl, lapack_int ku, - const lapack_complex_float* ab, lapack_int ldab, - const lapack_int* ipiv, float anorm, float* rcond ); -lapack_int LAPACKE_zgbcon( int matrix_order, char norm, lapack_int n, - lapack_int kl, lapack_int ku, - const lapack_complex_double* ab, lapack_int ldab, - const lapack_int* ipiv, double anorm, - double* rcond ); - -lapack_int LAPACKE_sgbequ( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, const float* ab, - lapack_int ldab, float* r, float* c, float* rowcnd, - float* colcnd, float* amax ); -lapack_int LAPACKE_dgbequ( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, const double* ab, - lapack_int ldab, double* r, double* c, - double* rowcnd, double* colcnd, double* amax ); -lapack_int LAPACKE_cgbequ( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, - const lapack_complex_float* ab, lapack_int ldab, - float* r, float* c, float* rowcnd, float* colcnd, - float* amax ); -lapack_int LAPACKE_zgbequ( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, - const lapack_complex_double* ab, lapack_int ldab, - double* r, double* c, double* rowcnd, double* colcnd, - double* amax ); - -lapack_int LAPACKE_sgbequb( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, const float* ab, - lapack_int ldab, float* r, float* c, float* rowcnd, - float* colcnd, float* amax ); -lapack_int LAPACKE_dgbequb( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, const double* ab, - lapack_int ldab, double* r, double* c, - double* rowcnd, double* colcnd, double* amax ); -lapack_int LAPACKE_cgbequb( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, - const lapack_complex_float* ab, lapack_int ldab, - float* r, float* c, float* rowcnd, float* colcnd, - float* amax ); -lapack_int LAPACKE_zgbequb( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, - const lapack_complex_double* ab, lapack_int ldab, - double* r, double* c, double* rowcnd, - double* colcnd, double* amax ); - -lapack_int LAPACKE_sgbrfs( int matrix_order, char trans, lapack_int n, - lapack_int kl, lapack_int ku, lapack_int nrhs, - const float* ab, lapack_int ldab, const float* afb, - lapack_int ldafb, const lapack_int* ipiv, - const float* b, lapack_int ldb, float* x, - lapack_int ldx, float* ferr, float* berr ); -lapack_int LAPACKE_dgbrfs( int matrix_order, char trans, lapack_int n, - lapack_int kl, lapack_int ku, lapack_int nrhs, - const double* ab, lapack_int ldab, const double* afb, - lapack_int ldafb, const lapack_int* ipiv, - const double* b, lapack_int ldb, double* x, - lapack_int ldx, double* ferr, double* berr ); -lapack_int LAPACKE_cgbrfs( int matrix_order, char trans, lapack_int n, - lapack_int kl, lapack_int ku, lapack_int nrhs, - const lapack_complex_float* ab, lapack_int ldab, - const lapack_complex_float* afb, lapack_int ldafb, - const lapack_int* ipiv, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, float* ferr, - float* berr ); -lapack_int LAPACKE_zgbrfs( int matrix_order, char trans, lapack_int n, - lapack_int kl, lapack_int ku, lapack_int nrhs, - const lapack_complex_double* ab, lapack_int ldab, - const lapack_complex_double* afb, lapack_int ldafb, - const lapack_int* ipiv, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* ferr, double* berr ); - -lapack_int LAPACKE_sgbrfsx( int matrix_order, char trans, char equed, - lapack_int n, lapack_int kl, lapack_int ku, - lapack_int nrhs, const float* ab, lapack_int ldab, - const float* afb, lapack_int ldafb, - const lapack_int* ipiv, const float* r, - const float* c, const float* b, lapack_int ldb, - float* x, lapack_int ldx, float* rcond, float* berr, - lapack_int n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int nparams, - float* params ); -lapack_int LAPACKE_dgbrfsx( int matrix_order, char trans, char equed, - lapack_int n, lapack_int kl, lapack_int ku, - lapack_int nrhs, const double* ab, lapack_int ldab, - const double* afb, lapack_int ldafb, - const lapack_int* ipiv, const double* r, - const double* c, const double* b, lapack_int ldb, - double* x, lapack_int ldx, double* rcond, - double* berr, lapack_int n_err_bnds, - double* err_bnds_norm, double* err_bnds_comp, - lapack_int nparams, double* params ); -lapack_int LAPACKE_cgbrfsx( int matrix_order, char trans, char equed, - lapack_int n, lapack_int kl, lapack_int ku, - lapack_int nrhs, const lapack_complex_float* ab, - lapack_int ldab, const lapack_complex_float* afb, - lapack_int ldafb, const lapack_int* ipiv, - const float* r, const float* c, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* rcond, float* berr, lapack_int n_err_bnds, - float* err_bnds_norm, float* err_bnds_comp, - lapack_int nparams, float* params ); -lapack_int LAPACKE_zgbrfsx( int matrix_order, char trans, char equed, - lapack_int n, lapack_int kl, lapack_int ku, - lapack_int nrhs, const lapack_complex_double* ab, - lapack_int ldab, const lapack_complex_double* afb, - lapack_int ldafb, const lapack_int* ipiv, - const double* r, const double* c, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* berr, lapack_int n_err_bnds, - double* err_bnds_norm, double* err_bnds_comp, - lapack_int nparams, double* params ); - -lapack_int LAPACKE_sgbsv( int matrix_order, lapack_int n, lapack_int kl, - lapack_int ku, lapack_int nrhs, float* ab, - lapack_int ldab, lapack_int* ipiv, float* b, - lapack_int ldb ); -lapack_int LAPACKE_dgbsv( int matrix_order, lapack_int n, lapack_int kl, - lapack_int ku, lapack_int nrhs, double* ab, - lapack_int ldab, lapack_int* ipiv, double* b, - lapack_int ldb ); -lapack_int LAPACKE_cgbsv( int matrix_order, lapack_int n, lapack_int kl, - lapack_int ku, lapack_int nrhs, - lapack_complex_float* ab, lapack_int ldab, - lapack_int* ipiv, lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_zgbsv( int matrix_order, lapack_int n, lapack_int kl, - lapack_int ku, lapack_int nrhs, - lapack_complex_double* ab, lapack_int ldab, - lapack_int* ipiv, lapack_complex_double* b, - lapack_int ldb ); - -lapack_int LAPACKE_sgbsvx( int matrix_order, char fact, char trans, - lapack_int n, lapack_int kl, lapack_int ku, - lapack_int nrhs, float* ab, lapack_int ldab, - float* afb, lapack_int ldafb, lapack_int* ipiv, - char* equed, float* r, float* c, float* b, - lapack_int ldb, float* x, lapack_int ldx, - float* rcond, float* ferr, float* berr, - float* rpivot ); -lapack_int LAPACKE_dgbsvx( int matrix_order, char fact, char trans, - lapack_int n, lapack_int kl, lapack_int ku, - lapack_int nrhs, double* ab, lapack_int ldab, - double* afb, lapack_int ldafb, lapack_int* ipiv, - char* equed, double* r, double* c, double* b, - lapack_int ldb, double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr, - double* rpivot ); -lapack_int LAPACKE_cgbsvx( int matrix_order, char fact, char trans, - lapack_int n, lapack_int kl, lapack_int ku, - lapack_int nrhs, lapack_complex_float* ab, - lapack_int ldab, lapack_complex_float* afb, - lapack_int ldafb, lapack_int* ipiv, char* equed, - float* r, float* c, lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* x, - lapack_int ldx, float* rcond, float* ferr, - float* berr, float* rpivot ); -lapack_int LAPACKE_zgbsvx( int matrix_order, char fact, char trans, - lapack_int n, lapack_int kl, lapack_int ku, - lapack_int nrhs, lapack_complex_double* ab, - lapack_int ldab, lapack_complex_double* afb, - lapack_int ldafb, lapack_int* ipiv, char* equed, - double* r, double* c, lapack_complex_double* b, - lapack_int ldb, lapack_complex_double* x, - lapack_int ldx, double* rcond, double* ferr, - double* berr, double* rpivot ); - -lapack_int LAPACKE_sgbsvxx( int matrix_order, char fact, char trans, - lapack_int n, lapack_int kl, lapack_int ku, - lapack_int nrhs, float* ab, lapack_int ldab, - float* afb, lapack_int ldafb, lapack_int* ipiv, - char* equed, float* r, float* c, float* b, - lapack_int ldb, float* x, lapack_int ldx, - float* rcond, float* rpvgrw, float* berr, - lapack_int n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int nparams, - float* params ); -lapack_int LAPACKE_dgbsvxx( int matrix_order, char fact, char trans, - lapack_int n, lapack_int kl, lapack_int ku, - lapack_int nrhs, double* ab, lapack_int ldab, - double* afb, lapack_int ldafb, lapack_int* ipiv, - char* equed, double* r, double* c, double* b, - lapack_int ldb, double* x, lapack_int ldx, - double* rcond, double* rpvgrw, double* berr, - lapack_int n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int nparams, - double* params ); -lapack_int LAPACKE_cgbsvxx( int matrix_order, char fact, char trans, - lapack_int n, lapack_int kl, lapack_int ku, - lapack_int nrhs, lapack_complex_float* ab, - lapack_int ldab, lapack_complex_float* afb, - lapack_int ldafb, lapack_int* ipiv, char* equed, - float* r, float* c, lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* x, - lapack_int ldx, float* rcond, float* rpvgrw, - float* berr, lapack_int n_err_bnds, - float* err_bnds_norm, float* err_bnds_comp, - lapack_int nparams, float* params ); -lapack_int LAPACKE_zgbsvxx( int matrix_order, char fact, char trans, - lapack_int n, lapack_int kl, lapack_int ku, - lapack_int nrhs, lapack_complex_double* ab, - lapack_int ldab, lapack_complex_double* afb, - lapack_int ldafb, lapack_int* ipiv, char* equed, - double* r, double* c, lapack_complex_double* b, - lapack_int ldb, lapack_complex_double* x, - lapack_int ldx, double* rcond, double* rpvgrw, - double* berr, lapack_int n_err_bnds, - double* err_bnds_norm, double* err_bnds_comp, - lapack_int nparams, double* params ); - -lapack_int LAPACKE_sgbtrf( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, float* ab, - lapack_int ldab, lapack_int* ipiv ); -lapack_int LAPACKE_dgbtrf( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, double* ab, - lapack_int ldab, lapack_int* ipiv ); -lapack_int LAPACKE_cgbtrf( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, - lapack_complex_float* ab, lapack_int ldab, - lapack_int* ipiv ); -lapack_int LAPACKE_zgbtrf( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, - lapack_complex_double* ab, lapack_int ldab, - lapack_int* ipiv ); - -lapack_int LAPACKE_sgbtrs( int matrix_order, char trans, lapack_int n, - lapack_int kl, lapack_int ku, lapack_int nrhs, - const float* ab, lapack_int ldab, - const lapack_int* ipiv, float* b, lapack_int ldb ); -lapack_int LAPACKE_dgbtrs( int matrix_order, char trans, lapack_int n, - lapack_int kl, lapack_int ku, lapack_int nrhs, - const double* ab, lapack_int ldab, - const lapack_int* ipiv, double* b, lapack_int ldb ); -lapack_int LAPACKE_cgbtrs( int matrix_order, char trans, lapack_int n, - lapack_int kl, lapack_int ku, lapack_int nrhs, - const lapack_complex_float* ab, lapack_int ldab, - const lapack_int* ipiv, lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_zgbtrs( int matrix_order, char trans, lapack_int n, - lapack_int kl, lapack_int ku, lapack_int nrhs, - const lapack_complex_double* ab, lapack_int ldab, - const lapack_int* ipiv, lapack_complex_double* b, - lapack_int ldb ); - -lapack_int LAPACKE_sgebak( int matrix_order, char job, char side, lapack_int n, - lapack_int ilo, lapack_int ihi, const float* scale, - lapack_int m, float* v, lapack_int ldv ); -lapack_int LAPACKE_dgebak( int matrix_order, char job, char side, lapack_int n, - lapack_int ilo, lapack_int ihi, const double* scale, - lapack_int m, double* v, lapack_int ldv ); -lapack_int LAPACKE_cgebak( int matrix_order, char job, char side, lapack_int n, - lapack_int ilo, lapack_int ihi, const float* scale, - lapack_int m, lapack_complex_float* v, - lapack_int ldv ); -lapack_int LAPACKE_zgebak( int matrix_order, char job, char side, lapack_int n, - lapack_int ilo, lapack_int ihi, const double* scale, - lapack_int m, lapack_complex_double* v, - lapack_int ldv ); - -lapack_int LAPACKE_sgebal( int matrix_order, char job, lapack_int n, float* a, - lapack_int lda, lapack_int* ilo, lapack_int* ihi, - float* scale ); -lapack_int LAPACKE_dgebal( int matrix_order, char job, lapack_int n, double* a, - lapack_int lda, lapack_int* ilo, lapack_int* ihi, - double* scale ); -lapack_int LAPACKE_cgebal( int matrix_order, char job, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_int* ilo, lapack_int* ihi, float* scale ); -lapack_int LAPACKE_zgebal( int matrix_order, char job, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_int* ilo, lapack_int* ihi, double* scale ); - -lapack_int LAPACKE_sgebrd( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, float* d, float* e, - float* tauq, float* taup ); -lapack_int LAPACKE_dgebrd( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, double* d, double* e, - double* tauq, double* taup ); -lapack_int LAPACKE_cgebrd( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, float* d, - float* e, lapack_complex_float* tauq, - lapack_complex_float* taup ); -lapack_int LAPACKE_zgebrd( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, double* d, - double* e, lapack_complex_double* tauq, - lapack_complex_double* taup ); - -lapack_int LAPACKE_sgecon( int matrix_order, char norm, lapack_int n, - const float* a, lapack_int lda, float anorm, - float* rcond ); -lapack_int LAPACKE_dgecon( int matrix_order, char norm, lapack_int n, - const double* a, lapack_int lda, double anorm, - double* rcond ); -lapack_int LAPACKE_cgecon( int matrix_order, char norm, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - float anorm, float* rcond ); -lapack_int LAPACKE_zgecon( int matrix_order, char norm, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - double anorm, double* rcond ); - -lapack_int LAPACKE_sgeequ( int matrix_order, lapack_int m, lapack_int n, - const float* a, lapack_int lda, float* r, float* c, - float* rowcnd, float* colcnd, float* amax ); -lapack_int LAPACKE_dgeequ( int matrix_order, lapack_int m, lapack_int n, - const double* a, lapack_int lda, double* r, - double* c, double* rowcnd, double* colcnd, - double* amax ); -lapack_int LAPACKE_cgeequ( int matrix_order, lapack_int m, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - float* r, float* c, float* rowcnd, float* colcnd, - float* amax ); -lapack_int LAPACKE_zgeequ( int matrix_order, lapack_int m, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - double* r, double* c, double* rowcnd, double* colcnd, - double* amax ); - -lapack_int LAPACKE_sgeequb( int matrix_order, lapack_int m, lapack_int n, - const float* a, lapack_int lda, float* r, float* c, - float* rowcnd, float* colcnd, float* amax ); -lapack_int LAPACKE_dgeequb( int matrix_order, lapack_int m, lapack_int n, - const double* a, lapack_int lda, double* r, - double* c, double* rowcnd, double* colcnd, - double* amax ); -lapack_int LAPACKE_cgeequb( int matrix_order, lapack_int m, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - float* r, float* c, float* rowcnd, float* colcnd, - float* amax ); -lapack_int LAPACKE_zgeequb( int matrix_order, lapack_int m, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - double* r, double* c, double* rowcnd, - double* colcnd, double* amax ); - -lapack_int LAPACKE_sgees( int matrix_order, char jobvs, char sort, - LAPACK_S_SELECT2 select, lapack_int n, float* a, - lapack_int lda, lapack_int* sdim, float* wr, - float* wi, float* vs, lapack_int ldvs ); -lapack_int LAPACKE_dgees( int matrix_order, char jobvs, char sort, - LAPACK_D_SELECT2 select, lapack_int n, double* a, - lapack_int lda, lapack_int* sdim, double* wr, - double* wi, double* vs, lapack_int ldvs ); -lapack_int LAPACKE_cgees( int matrix_order, char jobvs, char sort, - LAPACK_C_SELECT1 select, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_int* sdim, lapack_complex_float* w, - lapack_complex_float* vs, lapack_int ldvs ); -lapack_int LAPACKE_zgees( int matrix_order, char jobvs, char sort, - LAPACK_Z_SELECT1 select, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_int* sdim, lapack_complex_double* w, - lapack_complex_double* vs, lapack_int ldvs ); - -lapack_int LAPACKE_sgeesx( int matrix_order, char jobvs, char sort, - LAPACK_S_SELECT2 select, char sense, lapack_int n, - float* a, lapack_int lda, lapack_int* sdim, - float* wr, float* wi, float* vs, lapack_int ldvs, - float* rconde, float* rcondv ); -lapack_int LAPACKE_dgeesx( int matrix_order, char jobvs, char sort, - LAPACK_D_SELECT2 select, char sense, lapack_int n, - double* a, lapack_int lda, lapack_int* sdim, - double* wr, double* wi, double* vs, lapack_int ldvs, - double* rconde, double* rcondv ); -lapack_int LAPACKE_cgeesx( int matrix_order, char jobvs, char sort, - LAPACK_C_SELECT1 select, char sense, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_int* sdim, lapack_complex_float* w, - lapack_complex_float* vs, lapack_int ldvs, - float* rconde, float* rcondv ); -lapack_int LAPACKE_zgeesx( int matrix_order, char jobvs, char sort, - LAPACK_Z_SELECT1 select, char sense, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_int* sdim, lapack_complex_double* w, - lapack_complex_double* vs, lapack_int ldvs, - double* rconde, double* rcondv ); - -lapack_int LAPACKE_sgeev( int matrix_order, char jobvl, char jobvr, - lapack_int n, float* a, lapack_int lda, float* wr, - float* wi, float* vl, lapack_int ldvl, float* vr, - lapack_int ldvr ); -lapack_int LAPACKE_dgeev( int matrix_order, char jobvl, char jobvr, - lapack_int n, double* a, lapack_int lda, double* wr, - double* wi, double* vl, lapack_int ldvl, double* vr, - lapack_int ldvr ); -lapack_int LAPACKE_cgeev( int matrix_order, char jobvl, char jobvr, - lapack_int n, lapack_complex_float* a, lapack_int lda, - lapack_complex_float* w, lapack_complex_float* vl, - lapack_int ldvl, lapack_complex_float* vr, - lapack_int ldvr ); -lapack_int LAPACKE_zgeev( int matrix_order, char jobvl, char jobvr, - lapack_int n, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* w, - lapack_complex_double* vl, lapack_int ldvl, - lapack_complex_double* vr, lapack_int ldvr ); - -lapack_int LAPACKE_sgeevx( int matrix_order, char balanc, char jobvl, - char jobvr, char sense, lapack_int n, float* a, - lapack_int lda, float* wr, float* wi, float* vl, - lapack_int ldvl, float* vr, lapack_int ldvr, - lapack_int* ilo, lapack_int* ihi, float* scale, - float* abnrm, float* rconde, float* rcondv ); -lapack_int LAPACKE_dgeevx( int matrix_order, char balanc, char jobvl, - char jobvr, char sense, lapack_int n, double* a, - lapack_int lda, double* wr, double* wi, double* vl, - lapack_int ldvl, double* vr, lapack_int ldvr, - lapack_int* ilo, lapack_int* ihi, double* scale, - double* abnrm, double* rconde, double* rcondv ); -lapack_int LAPACKE_cgeevx( int matrix_order, char balanc, char jobvl, - char jobvr, char sense, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* w, lapack_complex_float* vl, - lapack_int ldvl, lapack_complex_float* vr, - lapack_int ldvr, lapack_int* ilo, lapack_int* ihi, - float* scale, float* abnrm, float* rconde, - float* rcondv ); -lapack_int LAPACKE_zgeevx( int matrix_order, char balanc, char jobvl, - char jobvr, char sense, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* w, lapack_complex_double* vl, - lapack_int ldvl, lapack_complex_double* vr, - lapack_int ldvr, lapack_int* ilo, lapack_int* ihi, - double* scale, double* abnrm, double* rconde, - double* rcondv ); - -lapack_int LAPACKE_sgehrd( int matrix_order, lapack_int n, lapack_int ilo, - lapack_int ihi, float* a, lapack_int lda, - float* tau ); -lapack_int LAPACKE_dgehrd( int matrix_order, lapack_int n, lapack_int ilo, - lapack_int ihi, double* a, lapack_int lda, - double* tau ); -lapack_int LAPACKE_cgehrd( int matrix_order, lapack_int n, lapack_int ilo, - lapack_int ihi, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* tau ); -lapack_int LAPACKE_zgehrd( int matrix_order, lapack_int n, lapack_int ilo, - lapack_int ihi, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* tau ); - -lapack_int LAPACKE_sgejsv( int matrix_order, char joba, char jobu, char jobv, - char jobr, char jobt, char jobp, lapack_int m, - lapack_int n, float* a, lapack_int lda, float* sva, - float* u, lapack_int ldu, float* v, lapack_int ldv, - float* stat, lapack_int* istat ); -lapack_int LAPACKE_dgejsv( int matrix_order, char joba, char jobu, char jobv, - char jobr, char jobt, char jobp, lapack_int m, - lapack_int n, double* a, lapack_int lda, double* sva, - double* u, lapack_int ldu, double* v, lapack_int ldv, - double* stat, lapack_int* istat ); - -lapack_int LAPACKE_sgelq2( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, float* tau ); -lapack_int LAPACKE_dgelq2( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, double* tau ); -lapack_int LAPACKE_cgelq2( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* tau ); -lapack_int LAPACKE_zgelq2( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* tau ); - -lapack_int LAPACKE_sgelqf( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, float* tau ); -lapack_int LAPACKE_dgelqf( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, double* tau ); -lapack_int LAPACKE_cgelqf( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* tau ); -lapack_int LAPACKE_zgelqf( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* tau ); - -lapack_int LAPACKE_sgels( int matrix_order, char trans, lapack_int m, - lapack_int n, lapack_int nrhs, float* a, - lapack_int lda, float* b, lapack_int ldb ); -lapack_int LAPACKE_dgels( int matrix_order, char trans, lapack_int m, - lapack_int n, lapack_int nrhs, double* a, - lapack_int lda, double* b, lapack_int ldb ); -lapack_int LAPACKE_cgels( int matrix_order, char trans, lapack_int m, - lapack_int n, lapack_int nrhs, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_zgels( int matrix_order, char trans, lapack_int m, - lapack_int n, lapack_int nrhs, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_sgelsd( int matrix_order, lapack_int m, lapack_int n, - lapack_int nrhs, float* a, lapack_int lda, float* b, - lapack_int ldb, float* s, float rcond, - lapack_int* rank ); -lapack_int LAPACKE_dgelsd( int matrix_order, lapack_int m, lapack_int n, - lapack_int nrhs, double* a, lapack_int lda, - double* b, lapack_int ldb, double* s, double rcond, - lapack_int* rank ); -lapack_int LAPACKE_cgelsd( int matrix_order, lapack_int m, lapack_int n, - lapack_int nrhs, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* b, - lapack_int ldb, float* s, float rcond, - lapack_int* rank ); -lapack_int LAPACKE_zgelsd( int matrix_order, lapack_int m, lapack_int n, - lapack_int nrhs, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb, double* s, double rcond, - lapack_int* rank ); - -lapack_int LAPACKE_sgelss( int matrix_order, lapack_int m, lapack_int n, - lapack_int nrhs, float* a, lapack_int lda, float* b, - lapack_int ldb, float* s, float rcond, - lapack_int* rank ); -lapack_int LAPACKE_dgelss( int matrix_order, lapack_int m, lapack_int n, - lapack_int nrhs, double* a, lapack_int lda, - double* b, lapack_int ldb, double* s, double rcond, - lapack_int* rank ); -lapack_int LAPACKE_cgelss( int matrix_order, lapack_int m, lapack_int n, - lapack_int nrhs, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* b, - lapack_int ldb, float* s, float rcond, - lapack_int* rank ); -lapack_int LAPACKE_zgelss( int matrix_order, lapack_int m, lapack_int n, - lapack_int nrhs, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb, double* s, double rcond, - lapack_int* rank ); - -lapack_int LAPACKE_sgelsy( int matrix_order, lapack_int m, lapack_int n, - lapack_int nrhs, float* a, lapack_int lda, float* b, - lapack_int ldb, lapack_int* jpvt, float rcond, - lapack_int* rank ); -lapack_int LAPACKE_dgelsy( int matrix_order, lapack_int m, lapack_int n, - lapack_int nrhs, double* a, lapack_int lda, - double* b, lapack_int ldb, lapack_int* jpvt, - double rcond, lapack_int* rank ); -lapack_int LAPACKE_cgelsy( int matrix_order, lapack_int m, lapack_int n, - lapack_int nrhs, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* b, - lapack_int ldb, lapack_int* jpvt, float rcond, - lapack_int* rank ); -lapack_int LAPACKE_zgelsy( int matrix_order, lapack_int m, lapack_int n, - lapack_int nrhs, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb, lapack_int* jpvt, double rcond, - lapack_int* rank ); - -lapack_int LAPACKE_sgeqlf( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, float* tau ); -lapack_int LAPACKE_dgeqlf( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, double* tau ); -lapack_int LAPACKE_cgeqlf( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* tau ); -lapack_int LAPACKE_zgeqlf( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* tau ); - -lapack_int LAPACKE_sgeqp3( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, lapack_int* jpvt, - float* tau ); -lapack_int LAPACKE_dgeqp3( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, lapack_int* jpvt, - double* tau ); -lapack_int LAPACKE_cgeqp3( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_int* jpvt, lapack_complex_float* tau ); -lapack_int LAPACKE_zgeqp3( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_int* jpvt, lapack_complex_double* tau ); - -lapack_int LAPACKE_sgeqpf( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, lapack_int* jpvt, - float* tau ); -lapack_int LAPACKE_dgeqpf( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, lapack_int* jpvt, - double* tau ); -lapack_int LAPACKE_cgeqpf( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_int* jpvt, lapack_complex_float* tau ); -lapack_int LAPACKE_zgeqpf( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_int* jpvt, lapack_complex_double* tau ); - -lapack_int LAPACKE_sgeqr2( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, float* tau ); -lapack_int LAPACKE_dgeqr2( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, double* tau ); -lapack_int LAPACKE_cgeqr2( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* tau ); -lapack_int LAPACKE_zgeqr2( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* tau ); - -lapack_int LAPACKE_sgeqrf( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, float* tau ); -lapack_int LAPACKE_dgeqrf( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, double* tau ); -lapack_int LAPACKE_cgeqrf( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* tau ); -lapack_int LAPACKE_zgeqrf( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* tau ); - -lapack_int LAPACKE_sgeqrfp( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, float* tau ); -lapack_int LAPACKE_dgeqrfp( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, double* tau ); -lapack_int LAPACKE_cgeqrfp( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* tau ); -lapack_int LAPACKE_zgeqrfp( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* tau ); - -lapack_int LAPACKE_sgerfs( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const float* a, lapack_int lda, - const float* af, lapack_int ldaf, - const lapack_int* ipiv, const float* b, - lapack_int ldb, float* x, lapack_int ldx, - float* ferr, float* berr ); -lapack_int LAPACKE_dgerfs( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const double* a, lapack_int lda, - const double* af, lapack_int ldaf, - const lapack_int* ipiv, const double* b, - lapack_int ldb, double* x, lapack_int ldx, - double* ferr, double* berr ); -lapack_int LAPACKE_cgerfs( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* af, - lapack_int ldaf, const lapack_int* ipiv, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, float* ferr, - float* berr ); -lapack_int LAPACKE_zgerfs( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const lapack_complex_double* a, - lapack_int lda, const lapack_complex_double* af, - lapack_int ldaf, const lapack_int* ipiv, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* ferr, double* berr ); - -lapack_int LAPACKE_sgerfsx( int matrix_order, char trans, char equed, - lapack_int n, lapack_int nrhs, const float* a, - lapack_int lda, const float* af, lapack_int ldaf, - const lapack_int* ipiv, const float* r, - const float* c, const float* b, lapack_int ldb, - float* x, lapack_int ldx, float* rcond, float* berr, - lapack_int n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int nparams, - float* params ); -lapack_int LAPACKE_dgerfsx( int matrix_order, char trans, char equed, - lapack_int n, lapack_int nrhs, const double* a, - lapack_int lda, const double* af, lapack_int ldaf, - const lapack_int* ipiv, const double* r, - const double* c, const double* b, lapack_int ldb, - double* x, lapack_int ldx, double* rcond, - double* berr, lapack_int n_err_bnds, - double* err_bnds_norm, double* err_bnds_comp, - lapack_int nparams, double* params ); -lapack_int LAPACKE_cgerfsx( int matrix_order, char trans, char equed, - lapack_int n, lapack_int nrhs, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* af, lapack_int ldaf, - const lapack_int* ipiv, const float* r, - const float* c, const lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* x, - lapack_int ldx, float* rcond, float* berr, - lapack_int n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int nparams, - float* params ); -lapack_int LAPACKE_zgerfsx( int matrix_order, char trans, char equed, - lapack_int n, lapack_int nrhs, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* af, lapack_int ldaf, - const lapack_int* ipiv, const double* r, - const double* c, const lapack_complex_double* b, - lapack_int ldb, lapack_complex_double* x, - lapack_int ldx, double* rcond, double* berr, - lapack_int n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int nparams, - double* params ); - -lapack_int LAPACKE_sgerqf( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, float* tau ); -lapack_int LAPACKE_dgerqf( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, double* tau ); -lapack_int LAPACKE_cgerqf( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* tau ); -lapack_int LAPACKE_zgerqf( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* tau ); - -lapack_int LAPACKE_sgesdd( int matrix_order, char jobz, lapack_int m, - lapack_int n, float* a, lapack_int lda, float* s, - float* u, lapack_int ldu, float* vt, - lapack_int ldvt ); -lapack_int LAPACKE_dgesdd( int matrix_order, char jobz, lapack_int m, - lapack_int n, double* a, lapack_int lda, double* s, - double* u, lapack_int ldu, double* vt, - lapack_int ldvt ); -lapack_int LAPACKE_cgesdd( int matrix_order, char jobz, lapack_int m, - lapack_int n, lapack_complex_float* a, - lapack_int lda, float* s, lapack_complex_float* u, - lapack_int ldu, lapack_complex_float* vt, - lapack_int ldvt ); -lapack_int LAPACKE_zgesdd( int matrix_order, char jobz, lapack_int m, - lapack_int n, lapack_complex_double* a, - lapack_int lda, double* s, lapack_complex_double* u, - lapack_int ldu, lapack_complex_double* vt, - lapack_int ldvt ); - -lapack_int LAPACKE_sgesv( int matrix_order, lapack_int n, lapack_int nrhs, - float* a, lapack_int lda, lapack_int* ipiv, float* b, - lapack_int ldb ); -lapack_int LAPACKE_dgesv( int matrix_order, lapack_int n, lapack_int nrhs, - double* a, lapack_int lda, lapack_int* ipiv, - double* b, lapack_int ldb ); -lapack_int LAPACKE_cgesv( int matrix_order, lapack_int n, lapack_int nrhs, - lapack_complex_float* a, lapack_int lda, - lapack_int* ipiv, lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_zgesv( int matrix_order, lapack_int n, lapack_int nrhs, - lapack_complex_double* a, lapack_int lda, - lapack_int* ipiv, lapack_complex_double* b, - lapack_int ldb ); -lapack_int LAPACKE_dsgesv( int matrix_order, lapack_int n, lapack_int nrhs, - double* a, lapack_int lda, lapack_int* ipiv, - double* b, lapack_int ldb, double* x, lapack_int ldx, - lapack_int* iter ); -lapack_int LAPACKE_zcgesv( int matrix_order, lapack_int n, lapack_int nrhs, - lapack_complex_double* a, lapack_int lda, - lapack_int* ipiv, lapack_complex_double* b, - lapack_int ldb, lapack_complex_double* x, - lapack_int ldx, lapack_int* iter ); - -lapack_int LAPACKE_sgesvd( int matrix_order, char jobu, char jobvt, - lapack_int m, lapack_int n, float* a, lapack_int lda, - float* s, float* u, lapack_int ldu, float* vt, - lapack_int ldvt, float* superb ); -lapack_int LAPACKE_dgesvd( int matrix_order, char jobu, char jobvt, - lapack_int m, lapack_int n, double* a, - lapack_int lda, double* s, double* u, lapack_int ldu, - double* vt, lapack_int ldvt, double* superb ); -lapack_int LAPACKE_cgesvd( int matrix_order, char jobu, char jobvt, - lapack_int m, lapack_int n, lapack_complex_float* a, - lapack_int lda, float* s, lapack_complex_float* u, - lapack_int ldu, lapack_complex_float* vt, - lapack_int ldvt, float* superb ); -lapack_int LAPACKE_zgesvd( int matrix_order, char jobu, char jobvt, - lapack_int m, lapack_int n, lapack_complex_double* a, - lapack_int lda, double* s, lapack_complex_double* u, - lapack_int ldu, lapack_complex_double* vt, - lapack_int ldvt, double* superb ); - -lapack_int LAPACKE_sgesvj( int matrix_order, char joba, char jobu, char jobv, - lapack_int m, lapack_int n, float* a, lapack_int lda, - float* sva, lapack_int mv, float* v, lapack_int ldv, - float* stat ); -lapack_int LAPACKE_dgesvj( int matrix_order, char joba, char jobu, char jobv, - lapack_int m, lapack_int n, double* a, - lapack_int lda, double* sva, lapack_int mv, - double* v, lapack_int ldv, double* stat ); - -lapack_int LAPACKE_sgesvx( int matrix_order, char fact, char trans, - lapack_int n, lapack_int nrhs, float* a, - lapack_int lda, float* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, float* r, float* c, - float* b, lapack_int ldb, float* x, lapack_int ldx, - float* rcond, float* ferr, float* berr, - float* rpivot ); -lapack_int LAPACKE_dgesvx( int matrix_order, char fact, char trans, - lapack_int n, lapack_int nrhs, double* a, - lapack_int lda, double* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, double* r, double* c, - double* b, lapack_int ldb, double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr, - double* rpivot ); -lapack_int LAPACKE_cgesvx( int matrix_order, char fact, char trans, - lapack_int n, lapack_int nrhs, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, float* r, float* c, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* rcond, float* ferr, float* berr, - float* rpivot ); -lapack_int LAPACKE_zgesvx( int matrix_order, char fact, char trans, - lapack_int n, lapack_int nrhs, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, double* r, double* c, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr, - double* rpivot ); - -lapack_int LAPACKE_sgesvxx( int matrix_order, char fact, char trans, - lapack_int n, lapack_int nrhs, float* a, - lapack_int lda, float* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, float* r, float* c, - float* b, lapack_int ldb, float* x, lapack_int ldx, - float* rcond, float* rpvgrw, float* berr, - lapack_int n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int nparams, - float* params ); -lapack_int LAPACKE_dgesvxx( int matrix_order, char fact, char trans, - lapack_int n, lapack_int nrhs, double* a, - lapack_int lda, double* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, double* r, double* c, - double* b, lapack_int ldb, double* x, - lapack_int ldx, double* rcond, double* rpvgrw, - double* berr, lapack_int n_err_bnds, - double* err_bnds_norm, double* err_bnds_comp, - lapack_int nparams, double* params ); -lapack_int LAPACKE_cgesvxx( int matrix_order, char fact, char trans, - lapack_int n, lapack_int nrhs, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, float* r, float* c, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* rcond, float* rpvgrw, float* berr, - lapack_int n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int nparams, - float* params ); -lapack_int LAPACKE_zgesvxx( int matrix_order, char fact, char trans, - lapack_int n, lapack_int nrhs, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, double* r, double* c, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* rpvgrw, double* berr, - lapack_int n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int nparams, - double* params ); - -lapack_int LAPACKE_sgetf2( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, lapack_int* ipiv ); -lapack_int LAPACKE_dgetf2( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, lapack_int* ipiv ); -lapack_int LAPACKE_cgetf2( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_int* ipiv ); -lapack_int LAPACKE_zgetf2( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_int* ipiv ); - -lapack_int LAPACKE_sgetrf( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, lapack_int* ipiv ); -lapack_int LAPACKE_dgetrf( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, lapack_int* ipiv ); -lapack_int LAPACKE_cgetrf( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_int* ipiv ); -lapack_int LAPACKE_zgetrf( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_int* ipiv ); - -lapack_int LAPACKE_sgetri( int matrix_order, lapack_int n, float* a, - lapack_int lda, const lapack_int* ipiv ); -lapack_int LAPACKE_dgetri( int matrix_order, lapack_int n, double* a, - lapack_int lda, const lapack_int* ipiv ); -lapack_int LAPACKE_cgetri( int matrix_order, lapack_int n, - lapack_complex_float* a, lapack_int lda, - const lapack_int* ipiv ); -lapack_int LAPACKE_zgetri( int matrix_order, lapack_int n, - lapack_complex_double* a, lapack_int lda, - const lapack_int* ipiv ); - -lapack_int LAPACKE_sgetrs( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const float* a, lapack_int lda, - const lapack_int* ipiv, float* b, lapack_int ldb ); -lapack_int LAPACKE_dgetrs( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const double* a, lapack_int lda, - const lapack_int* ipiv, double* b, lapack_int ldb ); -lapack_int LAPACKE_cgetrs( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const lapack_complex_float* a, - lapack_int lda, const lapack_int* ipiv, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_zgetrs( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const lapack_complex_double* a, - lapack_int lda, const lapack_int* ipiv, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_sggbak( int matrix_order, char job, char side, lapack_int n, - lapack_int ilo, lapack_int ihi, const float* lscale, - const float* rscale, lapack_int m, float* v, - lapack_int ldv ); -lapack_int LAPACKE_dggbak( int matrix_order, char job, char side, lapack_int n, - lapack_int ilo, lapack_int ihi, const double* lscale, - const double* rscale, lapack_int m, double* v, - lapack_int ldv ); -lapack_int LAPACKE_cggbak( int matrix_order, char job, char side, lapack_int n, - lapack_int ilo, lapack_int ihi, const float* lscale, - const float* rscale, lapack_int m, - lapack_complex_float* v, lapack_int ldv ); -lapack_int LAPACKE_zggbak( int matrix_order, char job, char side, lapack_int n, - lapack_int ilo, lapack_int ihi, const double* lscale, - const double* rscale, lapack_int m, - lapack_complex_double* v, lapack_int ldv ); - -lapack_int LAPACKE_sggbal( int matrix_order, char job, lapack_int n, float* a, - lapack_int lda, float* b, lapack_int ldb, - lapack_int* ilo, lapack_int* ihi, float* lscale, - float* rscale ); -lapack_int LAPACKE_dggbal( int matrix_order, char job, lapack_int n, double* a, - lapack_int lda, double* b, lapack_int ldb, - lapack_int* ilo, lapack_int* ihi, double* lscale, - double* rscale ); -lapack_int LAPACKE_cggbal( int matrix_order, char job, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, - lapack_int* ilo, lapack_int* ihi, float* lscale, - float* rscale ); -lapack_int LAPACKE_zggbal( int matrix_order, char job, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - lapack_int* ilo, lapack_int* ihi, double* lscale, - double* rscale ); - -lapack_int LAPACKE_sgges( int matrix_order, char jobvsl, char jobvsr, char sort, - LAPACK_S_SELECT3 selctg, lapack_int n, float* a, - lapack_int lda, float* b, lapack_int ldb, - lapack_int* sdim, float* alphar, float* alphai, - float* beta, float* vsl, lapack_int ldvsl, float* vsr, - lapack_int ldvsr ); -lapack_int LAPACKE_dgges( int matrix_order, char jobvsl, char jobvsr, char sort, - LAPACK_D_SELECT3 selctg, lapack_int n, double* a, - lapack_int lda, double* b, lapack_int ldb, - lapack_int* sdim, double* alphar, double* alphai, - double* beta, double* vsl, lapack_int ldvsl, - double* vsr, lapack_int ldvsr ); -lapack_int LAPACKE_cgges( int matrix_order, char jobvsl, char jobvsr, char sort, - LAPACK_C_SELECT2 selctg, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, - lapack_int* sdim, lapack_complex_float* alpha, - lapack_complex_float* beta, lapack_complex_float* vsl, - lapack_int ldvsl, lapack_complex_float* vsr, - lapack_int ldvsr ); -lapack_int LAPACKE_zgges( int matrix_order, char jobvsl, char jobvsr, char sort, - LAPACK_Z_SELECT2 selctg, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - lapack_int* sdim, lapack_complex_double* alpha, - lapack_complex_double* beta, - lapack_complex_double* vsl, lapack_int ldvsl, - lapack_complex_double* vsr, lapack_int ldvsr ); - -lapack_int LAPACKE_sggesx( int matrix_order, char jobvsl, char jobvsr, - char sort, LAPACK_S_SELECT3 selctg, char sense, - lapack_int n, float* a, lapack_int lda, float* b, - lapack_int ldb, lapack_int* sdim, float* alphar, - float* alphai, float* beta, float* vsl, - lapack_int ldvsl, float* vsr, lapack_int ldvsr, - float* rconde, float* rcondv ); -lapack_int LAPACKE_dggesx( int matrix_order, char jobvsl, char jobvsr, - char sort, LAPACK_D_SELECT3 selctg, char sense, - lapack_int n, double* a, lapack_int lda, double* b, - lapack_int ldb, lapack_int* sdim, double* alphar, - double* alphai, double* beta, double* vsl, - lapack_int ldvsl, double* vsr, lapack_int ldvsr, - double* rconde, double* rcondv ); -lapack_int LAPACKE_cggesx( int matrix_order, char jobvsl, char jobvsr, - char sort, LAPACK_C_SELECT2 selctg, char sense, - lapack_int n, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* b, - lapack_int ldb, lapack_int* sdim, - lapack_complex_float* alpha, - lapack_complex_float* beta, - lapack_complex_float* vsl, lapack_int ldvsl, - lapack_complex_float* vsr, lapack_int ldvsr, - float* rconde, float* rcondv ); -lapack_int LAPACKE_zggesx( int matrix_order, char jobvsl, char jobvsr, - char sort, LAPACK_Z_SELECT2 selctg, char sense, - lapack_int n, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb, lapack_int* sdim, - lapack_complex_double* alpha, - lapack_complex_double* beta, - lapack_complex_double* vsl, lapack_int ldvsl, - lapack_complex_double* vsr, lapack_int ldvsr, - double* rconde, double* rcondv ); - -lapack_int LAPACKE_sggev( int matrix_order, char jobvl, char jobvr, - lapack_int n, float* a, lapack_int lda, float* b, - lapack_int ldb, float* alphar, float* alphai, - float* beta, float* vl, lapack_int ldvl, float* vr, - lapack_int ldvr ); -lapack_int LAPACKE_dggev( int matrix_order, char jobvl, char jobvr, - lapack_int n, double* a, lapack_int lda, double* b, - lapack_int ldb, double* alphar, double* alphai, - double* beta, double* vl, lapack_int ldvl, double* vr, - lapack_int ldvr ); -lapack_int LAPACKE_cggev( int matrix_order, char jobvl, char jobvr, - lapack_int n, lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* alpha, - lapack_complex_float* beta, lapack_complex_float* vl, - lapack_int ldvl, lapack_complex_float* vr, - lapack_int ldvr ); -lapack_int LAPACKE_zggev( int matrix_order, char jobvl, char jobvr, - lapack_int n, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb, lapack_complex_double* alpha, - lapack_complex_double* beta, - lapack_complex_double* vl, lapack_int ldvl, - lapack_complex_double* vr, lapack_int ldvr ); - -lapack_int LAPACKE_sggevx( int matrix_order, char balanc, char jobvl, - char jobvr, char sense, lapack_int n, float* a, - lapack_int lda, float* b, lapack_int ldb, - float* alphar, float* alphai, float* beta, float* vl, - lapack_int ldvl, float* vr, lapack_int ldvr, - lapack_int* ilo, lapack_int* ihi, float* lscale, - float* rscale, float* abnrm, float* bbnrm, - float* rconde, float* rcondv ); -lapack_int LAPACKE_dggevx( int matrix_order, char balanc, char jobvl, - char jobvr, char sense, lapack_int n, double* a, - lapack_int lda, double* b, lapack_int ldb, - double* alphar, double* alphai, double* beta, - double* vl, lapack_int ldvl, double* vr, - lapack_int ldvr, lapack_int* ilo, lapack_int* ihi, - double* lscale, double* rscale, double* abnrm, - double* bbnrm, double* rconde, double* rcondv ); -lapack_int LAPACKE_cggevx( int matrix_order, char balanc, char jobvl, - char jobvr, char sense, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* alpha, - lapack_complex_float* beta, lapack_complex_float* vl, - lapack_int ldvl, lapack_complex_float* vr, - lapack_int ldvr, lapack_int* ilo, lapack_int* ihi, - float* lscale, float* rscale, float* abnrm, - float* bbnrm, float* rconde, float* rcondv ); -lapack_int LAPACKE_zggevx( int matrix_order, char balanc, char jobvl, - char jobvr, char sense, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* alpha, - lapack_complex_double* beta, - lapack_complex_double* vl, lapack_int ldvl, - lapack_complex_double* vr, lapack_int ldvr, - lapack_int* ilo, lapack_int* ihi, double* lscale, - double* rscale, double* abnrm, double* bbnrm, - double* rconde, double* rcondv ); - -lapack_int LAPACKE_sggglm( int matrix_order, lapack_int n, lapack_int m, - lapack_int p, float* a, lapack_int lda, float* b, - lapack_int ldb, float* d, float* x, float* y ); -lapack_int LAPACKE_dggglm( int matrix_order, lapack_int n, lapack_int m, - lapack_int p, double* a, lapack_int lda, double* b, - lapack_int ldb, double* d, double* x, double* y ); -lapack_int LAPACKE_cggglm( int matrix_order, lapack_int n, lapack_int m, - lapack_int p, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* d, - lapack_complex_float* x, lapack_complex_float* y ); -lapack_int LAPACKE_zggglm( int matrix_order, lapack_int n, lapack_int m, - lapack_int p, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb, lapack_complex_double* d, - lapack_complex_double* x, lapack_complex_double* y ); - -lapack_int LAPACKE_sgghrd( int matrix_order, char compq, char compz, - lapack_int n, lapack_int ilo, lapack_int ihi, - float* a, lapack_int lda, float* b, lapack_int ldb, - float* q, lapack_int ldq, float* z, lapack_int ldz ); -lapack_int LAPACKE_dgghrd( int matrix_order, char compq, char compz, - lapack_int n, lapack_int ilo, lapack_int ihi, - double* a, lapack_int lda, double* b, lapack_int ldb, - double* q, lapack_int ldq, double* z, - lapack_int ldz ); -lapack_int LAPACKE_cgghrd( int matrix_order, char compq, char compz, - lapack_int n, lapack_int ilo, lapack_int ihi, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* q, lapack_int ldq, - lapack_complex_float* z, lapack_int ldz ); -lapack_int LAPACKE_zgghrd( int matrix_order, char compq, char compz, - lapack_int n, lapack_int ilo, lapack_int ihi, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* q, lapack_int ldq, - lapack_complex_double* z, lapack_int ldz ); - -lapack_int LAPACKE_sgglse( int matrix_order, lapack_int m, lapack_int n, - lapack_int p, float* a, lapack_int lda, float* b, - lapack_int ldb, float* c, float* d, float* x ); -lapack_int LAPACKE_dgglse( int matrix_order, lapack_int m, lapack_int n, - lapack_int p, double* a, lapack_int lda, double* b, - lapack_int ldb, double* c, double* d, double* x ); -lapack_int LAPACKE_cgglse( int matrix_order, lapack_int m, lapack_int n, - lapack_int p, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* c, - lapack_complex_float* d, lapack_complex_float* x ); -lapack_int LAPACKE_zgglse( int matrix_order, lapack_int m, lapack_int n, - lapack_int p, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb, lapack_complex_double* c, - lapack_complex_double* d, lapack_complex_double* x ); - -lapack_int LAPACKE_sggqrf( int matrix_order, lapack_int n, lapack_int m, - lapack_int p, float* a, lapack_int lda, float* taua, - float* b, lapack_int ldb, float* taub ); -lapack_int LAPACKE_dggqrf( int matrix_order, lapack_int n, lapack_int m, - lapack_int p, double* a, lapack_int lda, - double* taua, double* b, lapack_int ldb, - double* taub ); -lapack_int LAPACKE_cggqrf( int matrix_order, lapack_int n, lapack_int m, - lapack_int p, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* taua, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* taub ); -lapack_int LAPACKE_zggqrf( int matrix_order, lapack_int n, lapack_int m, - lapack_int p, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* taua, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* taub ); - -lapack_int LAPACKE_sggrqf( int matrix_order, lapack_int m, lapack_int p, - lapack_int n, float* a, lapack_int lda, float* taua, - float* b, lapack_int ldb, float* taub ); -lapack_int LAPACKE_dggrqf( int matrix_order, lapack_int m, lapack_int p, - lapack_int n, double* a, lapack_int lda, - double* taua, double* b, lapack_int ldb, - double* taub ); -lapack_int LAPACKE_cggrqf( int matrix_order, lapack_int m, lapack_int p, - lapack_int n, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* taua, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* taub ); -lapack_int LAPACKE_zggrqf( int matrix_order, lapack_int m, lapack_int p, - lapack_int n, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* taua, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* taub ); - -lapack_int LAPACKE_sggsvd( int matrix_order, char jobu, char jobv, char jobq, - lapack_int m, lapack_int n, lapack_int p, - lapack_int* k, lapack_int* l, float* a, - lapack_int lda, float* b, lapack_int ldb, - float* alpha, float* beta, float* u, lapack_int ldu, - float* v, lapack_int ldv, float* q, lapack_int ldq, - lapack_int* iwork ); -lapack_int LAPACKE_dggsvd( int matrix_order, char jobu, char jobv, char jobq, - lapack_int m, lapack_int n, lapack_int p, - lapack_int* k, lapack_int* l, double* a, - lapack_int lda, double* b, lapack_int ldb, - double* alpha, double* beta, double* u, - lapack_int ldu, double* v, lapack_int ldv, double* q, - lapack_int ldq, lapack_int* iwork ); -lapack_int LAPACKE_cggsvd( int matrix_order, char jobu, char jobv, char jobq, - lapack_int m, lapack_int n, lapack_int p, - lapack_int* k, lapack_int* l, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, - float* alpha, float* beta, lapack_complex_float* u, - lapack_int ldu, lapack_complex_float* v, - lapack_int ldv, lapack_complex_float* q, - lapack_int ldq, lapack_int* iwork ); -lapack_int LAPACKE_zggsvd( int matrix_order, char jobu, char jobv, char jobq, - lapack_int m, lapack_int n, lapack_int p, - lapack_int* k, lapack_int* l, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - double* alpha, double* beta, - lapack_complex_double* u, lapack_int ldu, - lapack_complex_double* v, lapack_int ldv, - lapack_complex_double* q, lapack_int ldq, - lapack_int* iwork ); - -lapack_int LAPACKE_sggsvp( int matrix_order, char jobu, char jobv, char jobq, - lapack_int m, lapack_int p, lapack_int n, float* a, - lapack_int lda, float* b, lapack_int ldb, float tola, - float tolb, lapack_int* k, lapack_int* l, float* u, - lapack_int ldu, float* v, lapack_int ldv, float* q, - lapack_int ldq ); -lapack_int LAPACKE_dggsvp( int matrix_order, char jobu, char jobv, char jobq, - lapack_int m, lapack_int p, lapack_int n, double* a, - lapack_int lda, double* b, lapack_int ldb, - double tola, double tolb, lapack_int* k, - lapack_int* l, double* u, lapack_int ldu, double* v, - lapack_int ldv, double* q, lapack_int ldq ); -lapack_int LAPACKE_cggsvp( int matrix_order, char jobu, char jobv, char jobq, - lapack_int m, lapack_int p, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, float tola, - float tolb, lapack_int* k, lapack_int* l, - lapack_complex_float* u, lapack_int ldu, - lapack_complex_float* v, lapack_int ldv, - lapack_complex_float* q, lapack_int ldq ); -lapack_int LAPACKE_zggsvp( int matrix_order, char jobu, char jobv, char jobq, - lapack_int m, lapack_int p, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - double tola, double tolb, lapack_int* k, - lapack_int* l, lapack_complex_double* u, - lapack_int ldu, lapack_complex_double* v, - lapack_int ldv, lapack_complex_double* q, - lapack_int ldq ); - -lapack_int LAPACKE_sgtcon( char norm, lapack_int n, const float* dl, - const float* d, const float* du, const float* du2, - const lapack_int* ipiv, float anorm, float* rcond ); -lapack_int LAPACKE_dgtcon( char norm, lapack_int n, const double* dl, - const double* d, const double* du, const double* du2, - const lapack_int* ipiv, double anorm, - double* rcond ); -lapack_int LAPACKE_cgtcon( char norm, lapack_int n, - const lapack_complex_float* dl, - const lapack_complex_float* d, - const lapack_complex_float* du, - const lapack_complex_float* du2, - const lapack_int* ipiv, float anorm, float* rcond ); -lapack_int LAPACKE_zgtcon( char norm, lapack_int n, - const lapack_complex_double* dl, - const lapack_complex_double* d, - const lapack_complex_double* du, - const lapack_complex_double* du2, - const lapack_int* ipiv, double anorm, - double* rcond ); - -lapack_int LAPACKE_sgtrfs( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const float* dl, const float* d, - const float* du, const float* dlf, const float* df, - const float* duf, const float* du2, - const lapack_int* ipiv, const float* b, - lapack_int ldb, float* x, lapack_int ldx, - float* ferr, float* berr ); -lapack_int LAPACKE_dgtrfs( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const double* dl, const double* d, - const double* du, const double* dlf, - const double* df, const double* duf, - const double* du2, const lapack_int* ipiv, - const double* b, lapack_int ldb, double* x, - lapack_int ldx, double* ferr, double* berr ); -lapack_int LAPACKE_cgtrfs( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const lapack_complex_float* dl, - const lapack_complex_float* d, - const lapack_complex_float* du, - const lapack_complex_float* dlf, - const lapack_complex_float* df, - const lapack_complex_float* duf, - const lapack_complex_float* du2, - const lapack_int* ipiv, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, float* ferr, - float* berr ); -lapack_int LAPACKE_zgtrfs( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const lapack_complex_double* dl, - const lapack_complex_double* d, - const lapack_complex_double* du, - const lapack_complex_double* dlf, - const lapack_complex_double* df, - const lapack_complex_double* duf, - const lapack_complex_double* du2, - const lapack_int* ipiv, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* ferr, double* berr ); - -lapack_int LAPACKE_sgtsv( int matrix_order, lapack_int n, lapack_int nrhs, - float* dl, float* d, float* du, float* b, - lapack_int ldb ); -lapack_int LAPACKE_dgtsv( int matrix_order, lapack_int n, lapack_int nrhs, - double* dl, double* d, double* du, double* b, - lapack_int ldb ); -lapack_int LAPACKE_cgtsv( int matrix_order, lapack_int n, lapack_int nrhs, - lapack_complex_float* dl, lapack_complex_float* d, - lapack_complex_float* du, lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_zgtsv( int matrix_order, lapack_int n, lapack_int nrhs, - lapack_complex_double* dl, lapack_complex_double* d, - lapack_complex_double* du, lapack_complex_double* b, - lapack_int ldb ); - -lapack_int LAPACKE_sgtsvx( int matrix_order, char fact, char trans, - lapack_int n, lapack_int nrhs, const float* dl, - const float* d, const float* du, float* dlf, - float* df, float* duf, float* du2, lapack_int* ipiv, - const float* b, lapack_int ldb, float* x, - lapack_int ldx, float* rcond, float* ferr, - float* berr ); -lapack_int LAPACKE_dgtsvx( int matrix_order, char fact, char trans, - lapack_int n, lapack_int nrhs, const double* dl, - const double* d, const double* du, double* dlf, - double* df, double* duf, double* du2, - lapack_int* ipiv, const double* b, lapack_int ldb, - double* x, lapack_int ldx, double* rcond, - double* ferr, double* berr ); -lapack_int LAPACKE_cgtsvx( int matrix_order, char fact, char trans, - lapack_int n, lapack_int nrhs, - const lapack_complex_float* dl, - const lapack_complex_float* d, - const lapack_complex_float* du, - lapack_complex_float* dlf, lapack_complex_float* df, - lapack_complex_float* duf, lapack_complex_float* du2, - lapack_int* ipiv, const lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* x, - lapack_int ldx, float* rcond, float* ferr, - float* berr ); -lapack_int LAPACKE_zgtsvx( int matrix_order, char fact, char trans, - lapack_int n, lapack_int nrhs, - const lapack_complex_double* dl, - const lapack_complex_double* d, - const lapack_complex_double* du, - lapack_complex_double* dlf, - lapack_complex_double* df, - lapack_complex_double* duf, - lapack_complex_double* du2, lapack_int* ipiv, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr ); - -lapack_int LAPACKE_sgttrf( lapack_int n, float* dl, float* d, float* du, - float* du2, lapack_int* ipiv ); -lapack_int LAPACKE_dgttrf( lapack_int n, double* dl, double* d, double* du, - double* du2, lapack_int* ipiv ); -lapack_int LAPACKE_cgttrf( lapack_int n, lapack_complex_float* dl, - lapack_complex_float* d, lapack_complex_float* du, - lapack_complex_float* du2, lapack_int* ipiv ); -lapack_int LAPACKE_zgttrf( lapack_int n, lapack_complex_double* dl, - lapack_complex_double* d, lapack_complex_double* du, - lapack_complex_double* du2, lapack_int* ipiv ); - -lapack_int LAPACKE_sgttrs( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const float* dl, const float* d, - const float* du, const float* du2, - const lapack_int* ipiv, float* b, lapack_int ldb ); -lapack_int LAPACKE_dgttrs( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const double* dl, const double* d, - const double* du, const double* du2, - const lapack_int* ipiv, double* b, lapack_int ldb ); -lapack_int LAPACKE_cgttrs( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const lapack_complex_float* dl, - const lapack_complex_float* d, - const lapack_complex_float* du, - const lapack_complex_float* du2, - const lapack_int* ipiv, lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_zgttrs( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const lapack_complex_double* dl, - const lapack_complex_double* d, - const lapack_complex_double* du, - const lapack_complex_double* du2, - const lapack_int* ipiv, lapack_complex_double* b, - lapack_int ldb ); - -lapack_int LAPACKE_chbev( int matrix_order, char jobz, char uplo, lapack_int n, - lapack_int kd, lapack_complex_float* ab, - lapack_int ldab, float* w, lapack_complex_float* z, - lapack_int ldz ); -lapack_int LAPACKE_zhbev( int matrix_order, char jobz, char uplo, lapack_int n, - lapack_int kd, lapack_complex_double* ab, - lapack_int ldab, double* w, lapack_complex_double* z, - lapack_int ldz ); - -lapack_int LAPACKE_chbevd( int matrix_order, char jobz, char uplo, lapack_int n, - lapack_int kd, lapack_complex_float* ab, - lapack_int ldab, float* w, lapack_complex_float* z, - lapack_int ldz ); -lapack_int LAPACKE_zhbevd( int matrix_order, char jobz, char uplo, lapack_int n, - lapack_int kd, lapack_complex_double* ab, - lapack_int ldab, double* w, lapack_complex_double* z, - lapack_int ldz ); - -lapack_int LAPACKE_chbevx( int matrix_order, char jobz, char range, char uplo, - lapack_int n, lapack_int kd, - lapack_complex_float* ab, lapack_int ldab, - lapack_complex_float* q, lapack_int ldq, float vl, - float vu, lapack_int il, lapack_int iu, float abstol, - lapack_int* m, float* w, lapack_complex_float* z, - lapack_int ldz, lapack_int* ifail ); -lapack_int LAPACKE_zhbevx( int matrix_order, char jobz, char range, char uplo, - lapack_int n, lapack_int kd, - lapack_complex_double* ab, lapack_int ldab, - lapack_complex_double* q, lapack_int ldq, double vl, - double vu, lapack_int il, lapack_int iu, - double abstol, lapack_int* m, double* w, - lapack_complex_double* z, lapack_int ldz, - lapack_int* ifail ); - -lapack_int LAPACKE_chbgst( int matrix_order, char vect, char uplo, lapack_int n, - lapack_int ka, lapack_int kb, - lapack_complex_float* ab, lapack_int ldab, - const lapack_complex_float* bb, lapack_int ldbb, - lapack_complex_float* x, lapack_int ldx ); -lapack_int LAPACKE_zhbgst( int matrix_order, char vect, char uplo, lapack_int n, - lapack_int ka, lapack_int kb, - lapack_complex_double* ab, lapack_int ldab, - const lapack_complex_double* bb, lapack_int ldbb, - lapack_complex_double* x, lapack_int ldx ); - -lapack_int LAPACKE_chbgv( int matrix_order, char jobz, char uplo, lapack_int n, - lapack_int ka, lapack_int kb, - lapack_complex_float* ab, lapack_int ldab, - lapack_complex_float* bb, lapack_int ldbb, float* w, - lapack_complex_float* z, lapack_int ldz ); -lapack_int LAPACKE_zhbgv( int matrix_order, char jobz, char uplo, lapack_int n, - lapack_int ka, lapack_int kb, - lapack_complex_double* ab, lapack_int ldab, - lapack_complex_double* bb, lapack_int ldbb, double* w, - lapack_complex_double* z, lapack_int ldz ); - -lapack_int LAPACKE_chbgvd( int matrix_order, char jobz, char uplo, lapack_int n, - lapack_int ka, lapack_int kb, - lapack_complex_float* ab, lapack_int ldab, - lapack_complex_float* bb, lapack_int ldbb, float* w, - lapack_complex_float* z, lapack_int ldz ); -lapack_int LAPACKE_zhbgvd( int matrix_order, char jobz, char uplo, lapack_int n, - lapack_int ka, lapack_int kb, - lapack_complex_double* ab, lapack_int ldab, - lapack_complex_double* bb, lapack_int ldbb, - double* w, lapack_complex_double* z, - lapack_int ldz ); - -lapack_int LAPACKE_chbgvx( int matrix_order, char jobz, char range, char uplo, - lapack_int n, lapack_int ka, lapack_int kb, - lapack_complex_float* ab, lapack_int ldab, - lapack_complex_float* bb, lapack_int ldbb, - lapack_complex_float* q, lapack_int ldq, float vl, - float vu, lapack_int il, lapack_int iu, float abstol, - lapack_int* m, float* w, lapack_complex_float* z, - lapack_int ldz, lapack_int* ifail ); -lapack_int LAPACKE_zhbgvx( int matrix_order, char jobz, char range, char uplo, - lapack_int n, lapack_int ka, lapack_int kb, - lapack_complex_double* ab, lapack_int ldab, - lapack_complex_double* bb, lapack_int ldbb, - lapack_complex_double* q, lapack_int ldq, double vl, - double vu, lapack_int il, lapack_int iu, - double abstol, lapack_int* m, double* w, - lapack_complex_double* z, lapack_int ldz, - lapack_int* ifail ); - -lapack_int LAPACKE_chbtrd( int matrix_order, char vect, char uplo, lapack_int n, - lapack_int kd, lapack_complex_float* ab, - lapack_int ldab, float* d, float* e, - lapack_complex_float* q, lapack_int ldq ); -lapack_int LAPACKE_zhbtrd( int matrix_order, char vect, char uplo, lapack_int n, - lapack_int kd, lapack_complex_double* ab, - lapack_int ldab, double* d, double* e, - lapack_complex_double* q, lapack_int ldq ); - -lapack_int LAPACKE_checon( int matrix_order, char uplo, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - const lapack_int* ipiv, float anorm, float* rcond ); -lapack_int LAPACKE_zhecon( int matrix_order, char uplo, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - const lapack_int* ipiv, double anorm, - double* rcond ); - -lapack_int LAPACKE_cheequb( int matrix_order, char uplo, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - float* s, float* scond, float* amax ); -lapack_int LAPACKE_zheequb( int matrix_order, char uplo, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - double* s, double* scond, double* amax ); - -lapack_int LAPACKE_cheev( int matrix_order, char jobz, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, float* w ); -lapack_int LAPACKE_zheev( int matrix_order, char jobz, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, double* w ); - -lapack_int LAPACKE_cheevd( int matrix_order, char jobz, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, float* w ); -lapack_int LAPACKE_zheevd( int matrix_order, char jobz, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - double* w ); - -lapack_int LAPACKE_cheevr( int matrix_order, char jobz, char range, char uplo, - lapack_int n, lapack_complex_float* a, - lapack_int lda, float vl, float vu, lapack_int il, - lapack_int iu, float abstol, lapack_int* m, float* w, - lapack_complex_float* z, lapack_int ldz, - lapack_int* isuppz ); -lapack_int LAPACKE_zheevr( int matrix_order, char jobz, char range, char uplo, - lapack_int n, lapack_complex_double* a, - lapack_int lda, double vl, double vu, lapack_int il, - lapack_int iu, double abstol, lapack_int* m, - double* w, lapack_complex_double* z, lapack_int ldz, - lapack_int* isuppz ); - -lapack_int LAPACKE_cheevx( int matrix_order, char jobz, char range, char uplo, - lapack_int n, lapack_complex_float* a, - lapack_int lda, float vl, float vu, lapack_int il, - lapack_int iu, float abstol, lapack_int* m, float* w, - lapack_complex_float* z, lapack_int ldz, - lapack_int* ifail ); -lapack_int LAPACKE_zheevx( int matrix_order, char jobz, char range, char uplo, - lapack_int n, lapack_complex_double* a, - lapack_int lda, double vl, double vu, lapack_int il, - lapack_int iu, double abstol, lapack_int* m, - double* w, lapack_complex_double* z, lapack_int ldz, - lapack_int* ifail ); - -lapack_int LAPACKE_chegst( int matrix_order, lapack_int itype, char uplo, - lapack_int n, lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_zhegst( int matrix_order, lapack_int itype, char uplo, - lapack_int n, lapack_complex_double* a, - lapack_int lda, const lapack_complex_double* b, - lapack_int ldb ); - -lapack_int LAPACKE_chegv( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* b, - lapack_int ldb, float* w ); -lapack_int LAPACKE_zhegv( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb, double* w ); - -lapack_int LAPACKE_chegvd( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* b, - lapack_int ldb, float* w ); -lapack_int LAPACKE_zhegvd( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb, double* w ); - -lapack_int LAPACKE_chegvx( int matrix_order, lapack_int itype, char jobz, - char range, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, float vl, - float vu, lapack_int il, lapack_int iu, float abstol, - lapack_int* m, float* w, lapack_complex_float* z, - lapack_int ldz, lapack_int* ifail ); -lapack_int LAPACKE_zhegvx( int matrix_order, lapack_int itype, char jobz, - char range, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, double vl, - double vu, lapack_int il, lapack_int iu, - double abstol, lapack_int* m, double* w, - lapack_complex_double* z, lapack_int ldz, - lapack_int* ifail ); - -lapack_int LAPACKE_cherfs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* af, - lapack_int ldaf, const lapack_int* ipiv, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, float* ferr, - float* berr ); -lapack_int LAPACKE_zherfs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* a, - lapack_int lda, const lapack_complex_double* af, - lapack_int ldaf, const lapack_int* ipiv, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* ferr, double* berr ); - -lapack_int LAPACKE_cherfsx( int matrix_order, char uplo, char equed, - lapack_int n, lapack_int nrhs, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* af, lapack_int ldaf, - const lapack_int* ipiv, const float* s, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* rcond, float* berr, lapack_int n_err_bnds, - float* err_bnds_norm, float* err_bnds_comp, - lapack_int nparams, float* params ); -lapack_int LAPACKE_zherfsx( int matrix_order, char uplo, char equed, - lapack_int n, lapack_int nrhs, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* af, lapack_int ldaf, - const lapack_int* ipiv, const double* s, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* berr, lapack_int n_err_bnds, - double* err_bnds_norm, double* err_bnds_comp, - lapack_int nparams, double* params ); - -lapack_int LAPACKE_chesv( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_float* a, - lapack_int lda, lapack_int* ipiv, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_zhesv( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_double* a, - lapack_int lda, lapack_int* ipiv, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_chesvx( int matrix_order, char fact, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* a, - lapack_int lda, lapack_complex_float* af, - lapack_int ldaf, lapack_int* ipiv, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* rcond, float* ferr, float* berr ); -lapack_int LAPACKE_zhesvx( int matrix_order, char fact, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* a, - lapack_int lda, lapack_complex_double* af, - lapack_int ldaf, lapack_int* ipiv, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr ); - -lapack_int LAPACKE_chesvxx( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, float* s, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* rcond, float* rpvgrw, float* berr, - lapack_int n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int nparams, - float* params ); -lapack_int LAPACKE_zhesvxx( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, double* s, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* rpvgrw, double* berr, - lapack_int n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int nparams, - double* params ); - -lapack_int LAPACKE_chetrd( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, float* d, - float* e, lapack_complex_float* tau ); -lapack_int LAPACKE_zhetrd( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, double* d, - double* e, lapack_complex_double* tau ); - -lapack_int LAPACKE_chetrf( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_int* ipiv ); -lapack_int LAPACKE_zhetrf( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_int* ipiv ); - -lapack_int LAPACKE_chetri( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - const lapack_int* ipiv ); -lapack_int LAPACKE_zhetri( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - const lapack_int* ipiv ); - -lapack_int LAPACKE_chetrs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* a, - lapack_int lda, const lapack_int* ipiv, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_zhetrs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* a, - lapack_int lda, const lapack_int* ipiv, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_chfrk( int matrix_order, char transr, char uplo, char trans, - lapack_int n, lapack_int k, float alpha, - const lapack_complex_float* a, lapack_int lda, - float beta, lapack_complex_float* c ); -lapack_int LAPACKE_zhfrk( int matrix_order, char transr, char uplo, char trans, - lapack_int n, lapack_int k, double alpha, - const lapack_complex_double* a, lapack_int lda, - double beta, lapack_complex_double* c ); - -lapack_int LAPACKE_shgeqz( int matrix_order, char job, char compq, char compz, - lapack_int n, lapack_int ilo, lapack_int ihi, - float* h, lapack_int ldh, float* t, lapack_int ldt, - float* alphar, float* alphai, float* beta, float* q, - lapack_int ldq, float* z, lapack_int ldz ); -lapack_int LAPACKE_dhgeqz( int matrix_order, char job, char compq, char compz, - lapack_int n, lapack_int ilo, lapack_int ihi, - double* h, lapack_int ldh, double* t, lapack_int ldt, - double* alphar, double* alphai, double* beta, - double* q, lapack_int ldq, double* z, - lapack_int ldz ); -lapack_int LAPACKE_chgeqz( int matrix_order, char job, char compq, char compz, - lapack_int n, lapack_int ilo, lapack_int ihi, - lapack_complex_float* h, lapack_int ldh, - lapack_complex_float* t, lapack_int ldt, - lapack_complex_float* alpha, - lapack_complex_float* beta, lapack_complex_float* q, - lapack_int ldq, lapack_complex_float* z, - lapack_int ldz ); -lapack_int LAPACKE_zhgeqz( int matrix_order, char job, char compq, char compz, - lapack_int n, lapack_int ilo, lapack_int ihi, - lapack_complex_double* h, lapack_int ldh, - lapack_complex_double* t, lapack_int ldt, - lapack_complex_double* alpha, - lapack_complex_double* beta, - lapack_complex_double* q, lapack_int ldq, - lapack_complex_double* z, lapack_int ldz ); - -lapack_int LAPACKE_chpcon( int matrix_order, char uplo, lapack_int n, - const lapack_complex_float* ap, - const lapack_int* ipiv, float anorm, float* rcond ); -lapack_int LAPACKE_zhpcon( int matrix_order, char uplo, lapack_int n, - const lapack_complex_double* ap, - const lapack_int* ipiv, double anorm, - double* rcond ); - -lapack_int LAPACKE_chpev( int matrix_order, char jobz, char uplo, lapack_int n, - lapack_complex_float* ap, float* w, - lapack_complex_float* z, lapack_int ldz ); -lapack_int LAPACKE_zhpev( int matrix_order, char jobz, char uplo, lapack_int n, - lapack_complex_double* ap, double* w, - lapack_complex_double* z, lapack_int ldz ); - -lapack_int LAPACKE_chpevd( int matrix_order, char jobz, char uplo, lapack_int n, - lapack_complex_float* ap, float* w, - lapack_complex_float* z, lapack_int ldz ); -lapack_int LAPACKE_zhpevd( int matrix_order, char jobz, char uplo, lapack_int n, - lapack_complex_double* ap, double* w, - lapack_complex_double* z, lapack_int ldz ); - -lapack_int LAPACKE_chpevx( int matrix_order, char jobz, char range, char uplo, - lapack_int n, lapack_complex_float* ap, float vl, - float vu, lapack_int il, lapack_int iu, float abstol, - lapack_int* m, float* w, lapack_complex_float* z, - lapack_int ldz, lapack_int* ifail ); -lapack_int LAPACKE_zhpevx( int matrix_order, char jobz, char range, char uplo, - lapack_int n, lapack_complex_double* ap, double vl, - double vu, lapack_int il, lapack_int iu, - double abstol, lapack_int* m, double* w, - lapack_complex_double* z, lapack_int ldz, - lapack_int* ifail ); - -lapack_int LAPACKE_chpgst( int matrix_order, lapack_int itype, char uplo, - lapack_int n, lapack_complex_float* ap, - const lapack_complex_float* bp ); -lapack_int LAPACKE_zhpgst( int matrix_order, lapack_int itype, char uplo, - lapack_int n, lapack_complex_double* ap, - const lapack_complex_double* bp ); - -lapack_int LAPACKE_chpgv( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, lapack_complex_float* ap, - lapack_complex_float* bp, float* w, - lapack_complex_float* z, lapack_int ldz ); -lapack_int LAPACKE_zhpgv( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, lapack_complex_double* ap, - lapack_complex_double* bp, double* w, - lapack_complex_double* z, lapack_int ldz ); - -lapack_int LAPACKE_chpgvd( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, lapack_complex_float* ap, - lapack_complex_float* bp, float* w, - lapack_complex_float* z, lapack_int ldz ); -lapack_int LAPACKE_zhpgvd( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, lapack_complex_double* ap, - lapack_complex_double* bp, double* w, - lapack_complex_double* z, lapack_int ldz ); - -lapack_int LAPACKE_chpgvx( int matrix_order, lapack_int itype, char jobz, - char range, char uplo, lapack_int n, - lapack_complex_float* ap, lapack_complex_float* bp, - float vl, float vu, lapack_int il, lapack_int iu, - float abstol, lapack_int* m, float* w, - lapack_complex_float* z, lapack_int ldz, - lapack_int* ifail ); -lapack_int LAPACKE_zhpgvx( int matrix_order, lapack_int itype, char jobz, - char range, char uplo, lapack_int n, - lapack_complex_double* ap, lapack_complex_double* bp, - double vl, double vu, lapack_int il, lapack_int iu, - double abstol, lapack_int* m, double* w, - lapack_complex_double* z, lapack_int ldz, - lapack_int* ifail ); - -lapack_int LAPACKE_chprfs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* ap, - const lapack_complex_float* afp, - const lapack_int* ipiv, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, float* ferr, - float* berr ); -lapack_int LAPACKE_zhprfs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* ap, - const lapack_complex_double* afp, - const lapack_int* ipiv, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* ferr, double* berr ); - -lapack_int LAPACKE_chpsv( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_float* ap, - lapack_int* ipiv, lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_zhpsv( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_double* ap, - lapack_int* ipiv, lapack_complex_double* b, - lapack_int ldb ); - -lapack_int LAPACKE_chpsvx( int matrix_order, char fact, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* ap, - lapack_complex_float* afp, lapack_int* ipiv, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* rcond, float* ferr, float* berr ); -lapack_int LAPACKE_zhpsvx( int matrix_order, char fact, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* ap, - lapack_complex_double* afp, lapack_int* ipiv, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr ); - -lapack_int LAPACKE_chptrd( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* ap, float* d, float* e, - lapack_complex_float* tau ); -lapack_int LAPACKE_zhptrd( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* ap, double* d, double* e, - lapack_complex_double* tau ); - -lapack_int LAPACKE_chptrf( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* ap, lapack_int* ipiv ); -lapack_int LAPACKE_zhptrf( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* ap, lapack_int* ipiv ); - -lapack_int LAPACKE_chptri( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* ap, const lapack_int* ipiv ); -lapack_int LAPACKE_zhptri( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* ap, const lapack_int* ipiv ); - -lapack_int LAPACKE_chptrs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* ap, - const lapack_int* ipiv, lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_zhptrs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* ap, - const lapack_int* ipiv, lapack_complex_double* b, - lapack_int ldb ); - -lapack_int LAPACKE_shsein( int matrix_order, char job, char eigsrc, char initv, - lapack_logical* select, lapack_int n, const float* h, - lapack_int ldh, float* wr, const float* wi, - float* vl, lapack_int ldvl, float* vr, - lapack_int ldvr, lapack_int mm, lapack_int* m, - lapack_int* ifaill, lapack_int* ifailr ); -lapack_int LAPACKE_dhsein( int matrix_order, char job, char eigsrc, char initv, - lapack_logical* select, lapack_int n, - const double* h, lapack_int ldh, double* wr, - const double* wi, double* vl, lapack_int ldvl, - double* vr, lapack_int ldvr, lapack_int mm, - lapack_int* m, lapack_int* ifaill, - lapack_int* ifailr ); -lapack_int LAPACKE_chsein( int matrix_order, char job, char eigsrc, char initv, - const lapack_logical* select, lapack_int n, - const lapack_complex_float* h, lapack_int ldh, - lapack_complex_float* w, lapack_complex_float* vl, - lapack_int ldvl, lapack_complex_float* vr, - lapack_int ldvr, lapack_int mm, lapack_int* m, - lapack_int* ifaill, lapack_int* ifailr ); -lapack_int LAPACKE_zhsein( int matrix_order, char job, char eigsrc, char initv, - const lapack_logical* select, lapack_int n, - const lapack_complex_double* h, lapack_int ldh, - lapack_complex_double* w, lapack_complex_double* vl, - lapack_int ldvl, lapack_complex_double* vr, - lapack_int ldvr, lapack_int mm, lapack_int* m, - lapack_int* ifaill, lapack_int* ifailr ); - -lapack_int LAPACKE_shseqr( int matrix_order, char job, char compz, lapack_int n, - lapack_int ilo, lapack_int ihi, float* h, - lapack_int ldh, float* wr, float* wi, float* z, - lapack_int ldz ); -lapack_int LAPACKE_dhseqr( int matrix_order, char job, char compz, lapack_int n, - lapack_int ilo, lapack_int ihi, double* h, - lapack_int ldh, double* wr, double* wi, double* z, - lapack_int ldz ); -lapack_int LAPACKE_chseqr( int matrix_order, char job, char compz, lapack_int n, - lapack_int ilo, lapack_int ihi, - lapack_complex_float* h, lapack_int ldh, - lapack_complex_float* w, lapack_complex_float* z, - lapack_int ldz ); -lapack_int LAPACKE_zhseqr( int matrix_order, char job, char compz, lapack_int n, - lapack_int ilo, lapack_int ihi, - lapack_complex_double* h, lapack_int ldh, - lapack_complex_double* w, lapack_complex_double* z, - lapack_int ldz ); - -lapack_int LAPACKE_clacgv( lapack_int n, lapack_complex_float* x, - lapack_int incx ); -lapack_int LAPACKE_zlacgv( lapack_int n, lapack_complex_double* x, - lapack_int incx ); - -lapack_int LAPACKE_slacpy( int matrix_order, char uplo, lapack_int m, - lapack_int n, const float* a, lapack_int lda, float* b, - lapack_int ldb ); -lapack_int LAPACKE_dlacpy( int matrix_order, char uplo, lapack_int m, - lapack_int n, const double* a, lapack_int lda, double* b, - lapack_int ldb ); -lapack_int LAPACKE_clacpy( int matrix_order, char uplo, lapack_int m, - lapack_int n, const lapack_complex_float* a, - lapack_int lda, lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_zlacpy( int matrix_order, char uplo, lapack_int m, - lapack_int n, const lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb ); - -lapack_int LAPACKE_zlag2c( int matrix_order, lapack_int m, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - lapack_complex_float* sa, lapack_int ldsa ); - -lapack_int LAPACKE_slag2d( int matrix_order, lapack_int m, lapack_int n, - const float* sa, lapack_int ldsa, double* a, - lapack_int lda ); - -lapack_int LAPACKE_dlag2s( int matrix_order, lapack_int m, lapack_int n, - const double* a, lapack_int lda, float* sa, - lapack_int ldsa ); - -lapack_int LAPACKE_clag2z( int matrix_order, lapack_int m, lapack_int n, - const lapack_complex_float* sa, lapack_int ldsa, - lapack_complex_double* a, lapack_int lda ); - -lapack_int LAPACKE_slagge( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, const float* d, - float* a, lapack_int lda, lapack_int* iseed ); -lapack_int LAPACKE_dlagge( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, const double* d, - double* a, lapack_int lda, lapack_int* iseed ); -lapack_int LAPACKE_clagge( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, const float* d, - lapack_complex_float* a, lapack_int lda, - lapack_int* iseed ); -lapack_int LAPACKE_zlagge( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, const double* d, - lapack_complex_double* a, lapack_int lda, - lapack_int* iseed ); - -float LAPACKE_slamch( char cmach ); -double LAPACKE_dlamch( char cmach ); - -float LAPACKE_slange( int matrix_order, char norm, lapack_int m, - lapack_int n, const float* a, lapack_int lda ); -double LAPACKE_dlange( int matrix_order, char norm, lapack_int m, - lapack_int n, const double* a, lapack_int lda ); -float LAPACKE_clange( int matrix_order, char norm, lapack_int m, - lapack_int n, const lapack_complex_float* a, - lapack_int lda ); -double LAPACKE_zlange( int matrix_order, char norm, lapack_int m, - lapack_int n, const lapack_complex_double* a, - lapack_int lda ); - -float LAPACKE_clanhe( int matrix_order, char norm, char uplo, lapack_int n, - const lapack_complex_float* a, lapack_int lda ); -double LAPACKE_zlanhe( int matrix_order, char norm, char uplo, lapack_int n, - const lapack_complex_double* a, lapack_int lda ); - -float LAPACKE_slansy( int matrix_order, char norm, char uplo, lapack_int n, - const float* a, lapack_int lda ); -double LAPACKE_dlansy( int matrix_order, char norm, char uplo, lapack_int n, - const double* a, lapack_int lda ); -float LAPACKE_clansy( int matrix_order, char norm, char uplo, lapack_int n, - const lapack_complex_float* a, lapack_int lda ); -double LAPACKE_zlansy( int matrix_order, char norm, char uplo, lapack_int n, - const lapack_complex_double* a, lapack_int lda ); - -float LAPACKE_slantr( int matrix_order, char norm, char uplo, char diag, - lapack_int m, lapack_int n, const float* a, - lapack_int lda ); -double LAPACKE_dlantr( int matrix_order, char norm, char uplo, char diag, - lapack_int m, lapack_int n, const double* a, - lapack_int lda ); -float LAPACKE_clantr( int matrix_order, char norm, char uplo, char diag, - lapack_int m, lapack_int n, const lapack_complex_float* a, - lapack_int lda ); -double LAPACKE_zlantr( int matrix_order, char norm, char uplo, char diag, - lapack_int m, lapack_int n, const lapack_complex_double* a, - lapack_int lda ); - - -lapack_int LAPACKE_slarfb( int matrix_order, char side, char trans, char direct, - char storev, lapack_int m, lapack_int n, - lapack_int k, const float* v, lapack_int ldv, - const float* t, lapack_int ldt, float* c, - lapack_int ldc ); -lapack_int LAPACKE_dlarfb( int matrix_order, char side, char trans, char direct, - char storev, lapack_int m, lapack_int n, - lapack_int k, const double* v, lapack_int ldv, - const double* t, lapack_int ldt, double* c, - lapack_int ldc ); -lapack_int LAPACKE_clarfb( int matrix_order, char side, char trans, char direct, - char storev, lapack_int m, lapack_int n, - lapack_int k, const lapack_complex_float* v, - lapack_int ldv, const lapack_complex_float* t, - lapack_int ldt, lapack_complex_float* c, - lapack_int ldc ); -lapack_int LAPACKE_zlarfb( int matrix_order, char side, char trans, char direct, - char storev, lapack_int m, lapack_int n, - lapack_int k, const lapack_complex_double* v, - lapack_int ldv, const lapack_complex_double* t, - lapack_int ldt, lapack_complex_double* c, - lapack_int ldc ); - -lapack_int LAPACKE_slarfg( lapack_int n, float* alpha, float* x, - lapack_int incx, float* tau ); -lapack_int LAPACKE_dlarfg( lapack_int n, double* alpha, double* x, - lapack_int incx, double* tau ); -lapack_int LAPACKE_clarfg( lapack_int n, lapack_complex_float* alpha, - lapack_complex_float* x, lapack_int incx, - lapack_complex_float* tau ); -lapack_int LAPACKE_zlarfg( lapack_int n, lapack_complex_double* alpha, - lapack_complex_double* x, lapack_int incx, - lapack_complex_double* tau ); - -lapack_int LAPACKE_slarft( int matrix_order, char direct, char storev, - lapack_int n, lapack_int k, const float* v, - lapack_int ldv, const float* tau, float* t, - lapack_int ldt ); -lapack_int LAPACKE_dlarft( int matrix_order, char direct, char storev, - lapack_int n, lapack_int k, const double* v, - lapack_int ldv, const double* tau, double* t, - lapack_int ldt ); -lapack_int LAPACKE_clarft( int matrix_order, char direct, char storev, - lapack_int n, lapack_int k, - const lapack_complex_float* v, lapack_int ldv, - const lapack_complex_float* tau, - lapack_complex_float* t, lapack_int ldt ); -lapack_int LAPACKE_zlarft( int matrix_order, char direct, char storev, - lapack_int n, lapack_int k, - const lapack_complex_double* v, lapack_int ldv, - const lapack_complex_double* tau, - lapack_complex_double* t, lapack_int ldt ); - -lapack_int LAPACKE_slarfx( int matrix_order, char side, lapack_int m, - lapack_int n, const float* v, float tau, float* c, - lapack_int ldc, float* work ); -lapack_int LAPACKE_dlarfx( int matrix_order, char side, lapack_int m, - lapack_int n, const double* v, double tau, double* c, - lapack_int ldc, double* work ); -lapack_int LAPACKE_clarfx( int matrix_order, char side, lapack_int m, - lapack_int n, const lapack_complex_float* v, - lapack_complex_float tau, lapack_complex_float* c, - lapack_int ldc, lapack_complex_float* work ); -lapack_int LAPACKE_zlarfx( int matrix_order, char side, lapack_int m, - lapack_int n, const lapack_complex_double* v, - lapack_complex_double tau, lapack_complex_double* c, - lapack_int ldc, lapack_complex_double* work ); - -lapack_int LAPACKE_slarnv( lapack_int idist, lapack_int* iseed, lapack_int n, - float* x ); -lapack_int LAPACKE_dlarnv( lapack_int idist, lapack_int* iseed, lapack_int n, - double* x ); -lapack_int LAPACKE_clarnv( lapack_int idist, lapack_int* iseed, lapack_int n, - lapack_complex_float* x ); -lapack_int LAPACKE_zlarnv( lapack_int idist, lapack_int* iseed, lapack_int n, - lapack_complex_double* x ); - -lapack_int LAPACKE_slaset( int matrix_order, char uplo, lapack_int m, - lapack_int n, float alpha, float beta, float* a, - lapack_int lda ); -lapack_int LAPACKE_dlaset( int matrix_order, char uplo, lapack_int m, - lapack_int n, double alpha, double beta, double* a, - lapack_int lda ); -lapack_int LAPACKE_claset( int matrix_order, char uplo, lapack_int m, - lapack_int n, lapack_complex_float alpha, - lapack_complex_float beta, lapack_complex_float* a, - lapack_int lda ); -lapack_int LAPACKE_zlaset( int matrix_order, char uplo, lapack_int m, - lapack_int n, lapack_complex_double alpha, - lapack_complex_double beta, lapack_complex_double* a, - lapack_int lda ); - -lapack_int LAPACKE_slasrt( char id, lapack_int n, float* d ); -lapack_int LAPACKE_dlasrt( char id, lapack_int n, double* d ); - -lapack_int LAPACKE_slaswp( int matrix_order, lapack_int n, float* a, - lapack_int lda, lapack_int k1, lapack_int k2, - const lapack_int* ipiv, lapack_int incx ); -lapack_int LAPACKE_dlaswp( int matrix_order, lapack_int n, double* a, - lapack_int lda, lapack_int k1, lapack_int k2, - const lapack_int* ipiv, lapack_int incx ); -lapack_int LAPACKE_claswp( int matrix_order, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_int k1, lapack_int k2, const lapack_int* ipiv, - lapack_int incx ); -lapack_int LAPACKE_zlaswp( int matrix_order, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_int k1, lapack_int k2, const lapack_int* ipiv, - lapack_int incx ); - -lapack_int LAPACKE_slatms( int matrix_order, lapack_int m, lapack_int n, - char dist, lapack_int* iseed, char sym, float* d, - lapack_int mode, float cond, float dmax, - lapack_int kl, lapack_int ku, char pack, float* a, - lapack_int lda ); -lapack_int LAPACKE_dlatms( int matrix_order, lapack_int m, lapack_int n, - char dist, lapack_int* iseed, char sym, double* d, - lapack_int mode, double cond, double dmax, - lapack_int kl, lapack_int ku, char pack, double* a, - lapack_int lda ); -lapack_int LAPACKE_clatms( int matrix_order, lapack_int m, lapack_int n, - char dist, lapack_int* iseed, char sym, float* d, - lapack_int mode, float cond, float dmax, - lapack_int kl, lapack_int ku, char pack, - lapack_complex_float* a, lapack_int lda ); -lapack_int LAPACKE_zlatms( int matrix_order, lapack_int m, lapack_int n, - char dist, lapack_int* iseed, char sym, double* d, - lapack_int mode, double cond, double dmax, - lapack_int kl, lapack_int ku, char pack, - lapack_complex_double* a, lapack_int lda ); - -lapack_int LAPACKE_slauum( int matrix_order, char uplo, lapack_int n, float* a, - lapack_int lda ); -lapack_int LAPACKE_dlauum( int matrix_order, char uplo, lapack_int n, double* a, - lapack_int lda ); -lapack_int LAPACKE_clauum( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda ); -lapack_int LAPACKE_zlauum( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda ); - -lapack_int LAPACKE_sopgtr( int matrix_order, char uplo, lapack_int n, - const float* ap, const float* tau, float* q, - lapack_int ldq ); -lapack_int LAPACKE_dopgtr( int matrix_order, char uplo, lapack_int n, - const double* ap, const double* tau, double* q, - lapack_int ldq ); - -lapack_int LAPACKE_sopmtr( int matrix_order, char side, char uplo, char trans, - lapack_int m, lapack_int n, const float* ap, - const float* tau, float* c, lapack_int ldc ); -lapack_int LAPACKE_dopmtr( int matrix_order, char side, char uplo, char trans, - lapack_int m, lapack_int n, const double* ap, - const double* tau, double* c, lapack_int ldc ); - -lapack_int LAPACKE_sorgbr( int matrix_order, char vect, lapack_int m, - lapack_int n, lapack_int k, float* a, lapack_int lda, - const float* tau ); -lapack_int LAPACKE_dorgbr( int matrix_order, char vect, lapack_int m, - lapack_int n, lapack_int k, double* a, - lapack_int lda, const double* tau ); - -lapack_int LAPACKE_sorghr( int matrix_order, lapack_int n, lapack_int ilo, - lapack_int ihi, float* a, lapack_int lda, - const float* tau ); -lapack_int LAPACKE_dorghr( int matrix_order, lapack_int n, lapack_int ilo, - lapack_int ihi, double* a, lapack_int lda, - const double* tau ); - -lapack_int LAPACKE_sorglq( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, float* a, lapack_int lda, - const float* tau ); -lapack_int LAPACKE_dorglq( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, double* a, lapack_int lda, - const double* tau ); - -lapack_int LAPACKE_sorgql( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, float* a, lapack_int lda, - const float* tau ); -lapack_int LAPACKE_dorgql( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, double* a, lapack_int lda, - const double* tau ); - -lapack_int LAPACKE_sorgqr( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, float* a, lapack_int lda, - const float* tau ); -lapack_int LAPACKE_dorgqr( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, double* a, lapack_int lda, - const double* tau ); - -lapack_int LAPACKE_sorgrq( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, float* a, lapack_int lda, - const float* tau ); -lapack_int LAPACKE_dorgrq( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, double* a, lapack_int lda, - const double* tau ); - -lapack_int LAPACKE_sorgtr( int matrix_order, char uplo, lapack_int n, float* a, - lapack_int lda, const float* tau ); -lapack_int LAPACKE_dorgtr( int matrix_order, char uplo, lapack_int n, double* a, - lapack_int lda, const double* tau ); - -lapack_int LAPACKE_sormbr( int matrix_order, char vect, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const float* a, lapack_int lda, const float* tau, - float* c, lapack_int ldc ); -lapack_int LAPACKE_dormbr( int matrix_order, char vect, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const double* a, lapack_int lda, const double* tau, - double* c, lapack_int ldc ); - -lapack_int LAPACKE_sormhr( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int ilo, - lapack_int ihi, const float* a, lapack_int lda, - const float* tau, float* c, lapack_int ldc ); -lapack_int LAPACKE_dormhr( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int ilo, - lapack_int ihi, const double* a, lapack_int lda, - const double* tau, double* c, lapack_int ldc ); - -lapack_int LAPACKE_sormlq( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const float* a, lapack_int lda, const float* tau, - float* c, lapack_int ldc ); -lapack_int LAPACKE_dormlq( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const double* a, lapack_int lda, const double* tau, - double* c, lapack_int ldc ); - -lapack_int LAPACKE_sormql( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const float* a, lapack_int lda, const float* tau, - float* c, lapack_int ldc ); -lapack_int LAPACKE_dormql( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const double* a, lapack_int lda, const double* tau, - double* c, lapack_int ldc ); - -lapack_int LAPACKE_sormqr( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const float* a, lapack_int lda, const float* tau, - float* c, lapack_int ldc ); -lapack_int LAPACKE_dormqr( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const double* a, lapack_int lda, const double* tau, - double* c, lapack_int ldc ); - -lapack_int LAPACKE_sormrq( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const float* a, lapack_int lda, const float* tau, - float* c, lapack_int ldc ); -lapack_int LAPACKE_dormrq( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const double* a, lapack_int lda, const double* tau, - double* c, lapack_int ldc ); - -lapack_int LAPACKE_sormrz( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - lapack_int l, const float* a, lapack_int lda, - const float* tau, float* c, lapack_int ldc ); -lapack_int LAPACKE_dormrz( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - lapack_int l, const double* a, lapack_int lda, - const double* tau, double* c, lapack_int ldc ); - -lapack_int LAPACKE_sormtr( int matrix_order, char side, char uplo, char trans, - lapack_int m, lapack_int n, const float* a, - lapack_int lda, const float* tau, float* c, - lapack_int ldc ); -lapack_int LAPACKE_dormtr( int matrix_order, char side, char uplo, char trans, - lapack_int m, lapack_int n, const double* a, - lapack_int lda, const double* tau, double* c, - lapack_int ldc ); - -lapack_int LAPACKE_spbcon( int matrix_order, char uplo, lapack_int n, - lapack_int kd, const float* ab, lapack_int ldab, - float anorm, float* rcond ); -lapack_int LAPACKE_dpbcon( int matrix_order, char uplo, lapack_int n, - lapack_int kd, const double* ab, lapack_int ldab, - double anorm, double* rcond ); -lapack_int LAPACKE_cpbcon( int matrix_order, char uplo, lapack_int n, - lapack_int kd, const lapack_complex_float* ab, - lapack_int ldab, float anorm, float* rcond ); -lapack_int LAPACKE_zpbcon( int matrix_order, char uplo, lapack_int n, - lapack_int kd, const lapack_complex_double* ab, - lapack_int ldab, double anorm, double* rcond ); - -lapack_int LAPACKE_spbequ( int matrix_order, char uplo, lapack_int n, - lapack_int kd, const float* ab, lapack_int ldab, - float* s, float* scond, float* amax ); -lapack_int LAPACKE_dpbequ( int matrix_order, char uplo, lapack_int n, - lapack_int kd, const double* ab, lapack_int ldab, - double* s, double* scond, double* amax ); -lapack_int LAPACKE_cpbequ( int matrix_order, char uplo, lapack_int n, - lapack_int kd, const lapack_complex_float* ab, - lapack_int ldab, float* s, float* scond, - float* amax ); -lapack_int LAPACKE_zpbequ( int matrix_order, char uplo, lapack_int n, - lapack_int kd, const lapack_complex_double* ab, - lapack_int ldab, double* s, double* scond, - double* amax ); - -lapack_int LAPACKE_spbrfs( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, const float* ab, - lapack_int ldab, const float* afb, lapack_int ldafb, - const float* b, lapack_int ldb, float* x, - lapack_int ldx, float* ferr, float* berr ); -lapack_int LAPACKE_dpbrfs( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, const double* ab, - lapack_int ldab, const double* afb, lapack_int ldafb, - const double* b, lapack_int ldb, double* x, - lapack_int ldx, double* ferr, double* berr ); -lapack_int LAPACKE_cpbrfs( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, - const lapack_complex_float* ab, lapack_int ldab, - const lapack_complex_float* afb, lapack_int ldafb, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, float* ferr, - float* berr ); -lapack_int LAPACKE_zpbrfs( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, - const lapack_complex_double* ab, lapack_int ldab, - const lapack_complex_double* afb, lapack_int ldafb, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* ferr, double* berr ); - -lapack_int LAPACKE_spbstf( int matrix_order, char uplo, lapack_int n, - lapack_int kb, float* bb, lapack_int ldbb ); -lapack_int LAPACKE_dpbstf( int matrix_order, char uplo, lapack_int n, - lapack_int kb, double* bb, lapack_int ldbb ); -lapack_int LAPACKE_cpbstf( int matrix_order, char uplo, lapack_int n, - lapack_int kb, lapack_complex_float* bb, - lapack_int ldbb ); -lapack_int LAPACKE_zpbstf( int matrix_order, char uplo, lapack_int n, - lapack_int kb, lapack_complex_double* bb, - lapack_int ldbb ); - -lapack_int LAPACKE_spbsv( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, float* ab, - lapack_int ldab, float* b, lapack_int ldb ); -lapack_int LAPACKE_dpbsv( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, double* ab, - lapack_int ldab, double* b, lapack_int ldb ); -lapack_int LAPACKE_cpbsv( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, - lapack_complex_float* ab, lapack_int ldab, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_zpbsv( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, - lapack_complex_double* ab, lapack_int ldab, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_spbsvx( int matrix_order, char fact, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, float* ab, - lapack_int ldab, float* afb, lapack_int ldafb, - char* equed, float* s, float* b, lapack_int ldb, - float* x, lapack_int ldx, float* rcond, float* ferr, - float* berr ); -lapack_int LAPACKE_dpbsvx( int matrix_order, char fact, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, double* ab, - lapack_int ldab, double* afb, lapack_int ldafb, - char* equed, double* s, double* b, lapack_int ldb, - double* x, lapack_int ldx, double* rcond, - double* ferr, double* berr ); -lapack_int LAPACKE_cpbsvx( int matrix_order, char fact, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, - lapack_complex_float* ab, lapack_int ldab, - lapack_complex_float* afb, lapack_int ldafb, - char* equed, float* s, lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* x, - lapack_int ldx, float* rcond, float* ferr, - float* berr ); -lapack_int LAPACKE_zpbsvx( int matrix_order, char fact, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, - lapack_complex_double* ab, lapack_int ldab, - lapack_complex_double* afb, lapack_int ldafb, - char* equed, double* s, lapack_complex_double* b, - lapack_int ldb, lapack_complex_double* x, - lapack_int ldx, double* rcond, double* ferr, - double* berr ); - -lapack_int LAPACKE_spbtrf( int matrix_order, char uplo, lapack_int n, - lapack_int kd, float* ab, lapack_int ldab ); -lapack_int LAPACKE_dpbtrf( int matrix_order, char uplo, lapack_int n, - lapack_int kd, double* ab, lapack_int ldab ); -lapack_int LAPACKE_cpbtrf( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_complex_float* ab, - lapack_int ldab ); -lapack_int LAPACKE_zpbtrf( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_complex_double* ab, - lapack_int ldab ); - -lapack_int LAPACKE_spbtrs( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, const float* ab, - lapack_int ldab, float* b, lapack_int ldb ); -lapack_int LAPACKE_dpbtrs( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, const double* ab, - lapack_int ldab, double* b, lapack_int ldb ); -lapack_int LAPACKE_cpbtrs( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, - const lapack_complex_float* ab, lapack_int ldab, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_zpbtrs( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, - const lapack_complex_double* ab, lapack_int ldab, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_spftrf( int matrix_order, char transr, char uplo, - lapack_int n, float* a ); -lapack_int LAPACKE_dpftrf( int matrix_order, char transr, char uplo, - lapack_int n, double* a ); -lapack_int LAPACKE_cpftrf( int matrix_order, char transr, char uplo, - lapack_int n, lapack_complex_float* a ); -lapack_int LAPACKE_zpftrf( int matrix_order, char transr, char uplo, - lapack_int n, lapack_complex_double* a ); - -lapack_int LAPACKE_spftri( int matrix_order, char transr, char uplo, - lapack_int n, float* a ); -lapack_int LAPACKE_dpftri( int matrix_order, char transr, char uplo, - lapack_int n, double* a ); -lapack_int LAPACKE_cpftri( int matrix_order, char transr, char uplo, - lapack_int n, lapack_complex_float* a ); -lapack_int LAPACKE_zpftri( int matrix_order, char transr, char uplo, - lapack_int n, lapack_complex_double* a ); - -lapack_int LAPACKE_spftrs( int matrix_order, char transr, char uplo, - lapack_int n, lapack_int nrhs, const float* a, - float* b, lapack_int ldb ); -lapack_int LAPACKE_dpftrs( int matrix_order, char transr, char uplo, - lapack_int n, lapack_int nrhs, const double* a, - double* b, lapack_int ldb ); -lapack_int LAPACKE_cpftrs( int matrix_order, char transr, char uplo, - lapack_int n, lapack_int nrhs, - const lapack_complex_float* a, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_zpftrs( int matrix_order, char transr, char uplo, - lapack_int n, lapack_int nrhs, - const lapack_complex_double* a, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_spocon( int matrix_order, char uplo, lapack_int n, - const float* a, lapack_int lda, float anorm, - float* rcond ); -lapack_int LAPACKE_dpocon( int matrix_order, char uplo, lapack_int n, - const double* a, lapack_int lda, double anorm, - double* rcond ); -lapack_int LAPACKE_cpocon( int matrix_order, char uplo, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - float anorm, float* rcond ); -lapack_int LAPACKE_zpocon( int matrix_order, char uplo, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - double anorm, double* rcond ); - -lapack_int LAPACKE_spoequ( int matrix_order, lapack_int n, const float* a, - lapack_int lda, float* s, float* scond, - float* amax ); -lapack_int LAPACKE_dpoequ( int matrix_order, lapack_int n, const double* a, - lapack_int lda, double* s, double* scond, - double* amax ); -lapack_int LAPACKE_cpoequ( int matrix_order, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - float* s, float* scond, float* amax ); -lapack_int LAPACKE_zpoequ( int matrix_order, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - double* s, double* scond, double* amax ); - -lapack_int LAPACKE_spoequb( int matrix_order, lapack_int n, const float* a, - lapack_int lda, float* s, float* scond, - float* amax ); -lapack_int LAPACKE_dpoequb( int matrix_order, lapack_int n, const double* a, - lapack_int lda, double* s, double* scond, - double* amax ); -lapack_int LAPACKE_cpoequb( int matrix_order, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - float* s, float* scond, float* amax ); -lapack_int LAPACKE_zpoequb( int matrix_order, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - double* s, double* scond, double* amax ); - -lapack_int LAPACKE_sporfs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const float* a, lapack_int lda, - const float* af, lapack_int ldaf, const float* b, - lapack_int ldb, float* x, lapack_int ldx, - float* ferr, float* berr ); -lapack_int LAPACKE_dporfs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const double* a, lapack_int lda, - const double* af, lapack_int ldaf, const double* b, - lapack_int ldb, double* x, lapack_int ldx, - double* ferr, double* berr ); -lapack_int LAPACKE_cporfs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* af, - lapack_int ldaf, const lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* x, - lapack_int ldx, float* ferr, float* berr ); -lapack_int LAPACKE_zporfs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* a, - lapack_int lda, const lapack_complex_double* af, - lapack_int ldaf, const lapack_complex_double* b, - lapack_int ldb, lapack_complex_double* x, - lapack_int ldx, double* ferr, double* berr ); - -lapack_int LAPACKE_sporfsx( int matrix_order, char uplo, char equed, - lapack_int n, lapack_int nrhs, const float* a, - lapack_int lda, const float* af, lapack_int ldaf, - const float* s, const float* b, lapack_int ldb, - float* x, lapack_int ldx, float* rcond, float* berr, - lapack_int n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int nparams, - float* params ); -lapack_int LAPACKE_dporfsx( int matrix_order, char uplo, char equed, - lapack_int n, lapack_int nrhs, const double* a, - lapack_int lda, const double* af, lapack_int ldaf, - const double* s, const double* b, lapack_int ldb, - double* x, lapack_int ldx, double* rcond, - double* berr, lapack_int n_err_bnds, - double* err_bnds_norm, double* err_bnds_comp, - lapack_int nparams, double* params ); -lapack_int LAPACKE_cporfsx( int matrix_order, char uplo, char equed, - lapack_int n, lapack_int nrhs, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* af, lapack_int ldaf, - const float* s, const lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* x, - lapack_int ldx, float* rcond, float* berr, - lapack_int n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int nparams, - float* params ); -lapack_int LAPACKE_zporfsx( int matrix_order, char uplo, char equed, - lapack_int n, lapack_int nrhs, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* af, lapack_int ldaf, - const double* s, const lapack_complex_double* b, - lapack_int ldb, lapack_complex_double* x, - lapack_int ldx, double* rcond, double* berr, - lapack_int n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int nparams, - double* params ); - -lapack_int LAPACKE_sposv( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, float* a, lapack_int lda, float* b, - lapack_int ldb ); -lapack_int LAPACKE_dposv( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, double* a, lapack_int lda, double* b, - lapack_int ldb ); -lapack_int LAPACKE_cposv( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_zposv( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb ); -lapack_int LAPACKE_dsposv( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, double* a, lapack_int lda, - double* b, lapack_int ldb, double* x, lapack_int ldx, - lapack_int* iter ); -lapack_int LAPACKE_zcposv( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb, lapack_complex_double* x, - lapack_int ldx, lapack_int* iter ); - -lapack_int LAPACKE_sposvx( int matrix_order, char fact, char uplo, lapack_int n, - lapack_int nrhs, float* a, lapack_int lda, float* af, - lapack_int ldaf, char* equed, float* s, float* b, - lapack_int ldb, float* x, lapack_int ldx, - float* rcond, float* ferr, float* berr ); -lapack_int LAPACKE_dposvx( int matrix_order, char fact, char uplo, lapack_int n, - lapack_int nrhs, double* a, lapack_int lda, - double* af, lapack_int ldaf, char* equed, double* s, - double* b, lapack_int ldb, double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr ); -lapack_int LAPACKE_cposvx( int matrix_order, char fact, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* af, - lapack_int ldaf, char* equed, float* s, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* rcond, float* ferr, float* berr ); -lapack_int LAPACKE_zposvx( int matrix_order, char fact, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* af, - lapack_int ldaf, char* equed, double* s, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr ); - -lapack_int LAPACKE_sposvxx( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, float* a, - lapack_int lda, float* af, lapack_int ldaf, - char* equed, float* s, float* b, lapack_int ldb, - float* x, lapack_int ldx, float* rcond, - float* rpvgrw, float* berr, lapack_int n_err_bnds, - float* err_bnds_norm, float* err_bnds_comp, - lapack_int nparams, float* params ); -lapack_int LAPACKE_dposvxx( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, double* a, - lapack_int lda, double* af, lapack_int ldaf, - char* equed, double* s, double* b, lapack_int ldb, - double* x, lapack_int ldx, double* rcond, - double* rpvgrw, double* berr, lapack_int n_err_bnds, - double* err_bnds_norm, double* err_bnds_comp, - lapack_int nparams, double* params ); -lapack_int LAPACKE_cposvxx( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* af, lapack_int ldaf, - char* equed, float* s, lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* x, - lapack_int ldx, float* rcond, float* rpvgrw, - float* berr, lapack_int n_err_bnds, - float* err_bnds_norm, float* err_bnds_comp, - lapack_int nparams, float* params ); -lapack_int LAPACKE_zposvxx( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* af, lapack_int ldaf, - char* equed, double* s, lapack_complex_double* b, - lapack_int ldb, lapack_complex_double* x, - lapack_int ldx, double* rcond, double* rpvgrw, - double* berr, lapack_int n_err_bnds, - double* err_bnds_norm, double* err_bnds_comp, - lapack_int nparams, double* params ); - -lapack_int LAPACKE_spotrf( int matrix_order, char uplo, lapack_int n, float* a, - lapack_int lda ); -lapack_int LAPACKE_dpotrf( int matrix_order, char uplo, lapack_int n, double* a, - lapack_int lda ); -lapack_int LAPACKE_cpotrf( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda ); -lapack_int LAPACKE_zpotrf( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda ); - -lapack_int LAPACKE_spotri( int matrix_order, char uplo, lapack_int n, float* a, - lapack_int lda ); -lapack_int LAPACKE_dpotri( int matrix_order, char uplo, lapack_int n, double* a, - lapack_int lda ); -lapack_int LAPACKE_cpotri( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda ); -lapack_int LAPACKE_zpotri( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda ); - -lapack_int LAPACKE_spotrs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const float* a, lapack_int lda, - float* b, lapack_int ldb ); -lapack_int LAPACKE_dpotrs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const double* a, lapack_int lda, - double* b, lapack_int ldb ); -lapack_int LAPACKE_cpotrs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* a, - lapack_int lda, lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_zpotrs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb ); - -lapack_int LAPACKE_sppcon( int matrix_order, char uplo, lapack_int n, - const float* ap, float anorm, float* rcond ); -lapack_int LAPACKE_dppcon( int matrix_order, char uplo, lapack_int n, - const double* ap, double anorm, double* rcond ); -lapack_int LAPACKE_cppcon( int matrix_order, char uplo, lapack_int n, - const lapack_complex_float* ap, float anorm, - float* rcond ); -lapack_int LAPACKE_zppcon( int matrix_order, char uplo, lapack_int n, - const lapack_complex_double* ap, double anorm, - double* rcond ); - -lapack_int LAPACKE_sppequ( int matrix_order, char uplo, lapack_int n, - const float* ap, float* s, float* scond, - float* amax ); -lapack_int LAPACKE_dppequ( int matrix_order, char uplo, lapack_int n, - const double* ap, double* s, double* scond, - double* amax ); -lapack_int LAPACKE_cppequ( int matrix_order, char uplo, lapack_int n, - const lapack_complex_float* ap, float* s, - float* scond, float* amax ); -lapack_int LAPACKE_zppequ( int matrix_order, char uplo, lapack_int n, - const lapack_complex_double* ap, double* s, - double* scond, double* amax ); - -lapack_int LAPACKE_spprfs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const float* ap, const float* afp, - const float* b, lapack_int ldb, float* x, - lapack_int ldx, float* ferr, float* berr ); -lapack_int LAPACKE_dpprfs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const double* ap, const double* afp, - const double* b, lapack_int ldb, double* x, - lapack_int ldx, double* ferr, double* berr ); -lapack_int LAPACKE_cpprfs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* ap, - const lapack_complex_float* afp, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, float* ferr, - float* berr ); -lapack_int LAPACKE_zpprfs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* ap, - const lapack_complex_double* afp, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* ferr, double* berr ); - -lapack_int LAPACKE_sppsv( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, float* ap, float* b, - lapack_int ldb ); -lapack_int LAPACKE_dppsv( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, double* ap, double* b, - lapack_int ldb ); -lapack_int LAPACKE_cppsv( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_float* ap, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_zppsv( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_double* ap, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_sppsvx( int matrix_order, char fact, char uplo, lapack_int n, - lapack_int nrhs, float* ap, float* afp, char* equed, - float* s, float* b, lapack_int ldb, float* x, - lapack_int ldx, float* rcond, float* ferr, - float* berr ); -lapack_int LAPACKE_dppsvx( int matrix_order, char fact, char uplo, lapack_int n, - lapack_int nrhs, double* ap, double* afp, - char* equed, double* s, double* b, lapack_int ldb, - double* x, lapack_int ldx, double* rcond, - double* ferr, double* berr ); -lapack_int LAPACKE_cppsvx( int matrix_order, char fact, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_float* ap, - lapack_complex_float* afp, char* equed, float* s, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* rcond, float* ferr, float* berr ); -lapack_int LAPACKE_zppsvx( int matrix_order, char fact, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_double* ap, - lapack_complex_double* afp, char* equed, double* s, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr ); - -lapack_int LAPACKE_spptrf( int matrix_order, char uplo, lapack_int n, - float* ap ); -lapack_int LAPACKE_dpptrf( int matrix_order, char uplo, lapack_int n, - double* ap ); -lapack_int LAPACKE_cpptrf( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* ap ); -lapack_int LAPACKE_zpptrf( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* ap ); - -lapack_int LAPACKE_spptri( int matrix_order, char uplo, lapack_int n, - float* ap ); -lapack_int LAPACKE_dpptri( int matrix_order, char uplo, lapack_int n, - double* ap ); -lapack_int LAPACKE_cpptri( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* ap ); -lapack_int LAPACKE_zpptri( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* ap ); - -lapack_int LAPACKE_spptrs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const float* ap, float* b, - lapack_int ldb ); -lapack_int LAPACKE_dpptrs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const double* ap, double* b, - lapack_int ldb ); -lapack_int LAPACKE_cpptrs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* ap, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_zpptrs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* ap, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_spstrf( int matrix_order, char uplo, lapack_int n, float* a, - lapack_int lda, lapack_int* piv, lapack_int* rank, - float tol ); -lapack_int LAPACKE_dpstrf( int matrix_order, char uplo, lapack_int n, double* a, - lapack_int lda, lapack_int* piv, lapack_int* rank, - double tol ); -lapack_int LAPACKE_cpstrf( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_int* piv, lapack_int* rank, float tol ); -lapack_int LAPACKE_zpstrf( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_int* piv, lapack_int* rank, double tol ); - -lapack_int LAPACKE_sptcon( lapack_int n, const float* d, const float* e, - float anorm, float* rcond ); -lapack_int LAPACKE_dptcon( lapack_int n, const double* d, const double* e, - double anorm, double* rcond ); -lapack_int LAPACKE_cptcon( lapack_int n, const float* d, - const lapack_complex_float* e, float anorm, - float* rcond ); -lapack_int LAPACKE_zptcon( lapack_int n, const double* d, - const lapack_complex_double* e, double anorm, - double* rcond ); - -lapack_int LAPACKE_spteqr( int matrix_order, char compz, lapack_int n, float* d, - float* e, float* z, lapack_int ldz ); -lapack_int LAPACKE_dpteqr( int matrix_order, char compz, lapack_int n, - double* d, double* e, double* z, lapack_int ldz ); -lapack_int LAPACKE_cpteqr( int matrix_order, char compz, lapack_int n, float* d, - float* e, lapack_complex_float* z, lapack_int ldz ); -lapack_int LAPACKE_zpteqr( int matrix_order, char compz, lapack_int n, - double* d, double* e, lapack_complex_double* z, - lapack_int ldz ); - -lapack_int LAPACKE_sptrfs( int matrix_order, lapack_int n, lapack_int nrhs, - const float* d, const float* e, const float* df, - const float* ef, const float* b, lapack_int ldb, - float* x, lapack_int ldx, float* ferr, float* berr ); -lapack_int LAPACKE_dptrfs( int matrix_order, lapack_int n, lapack_int nrhs, - const double* d, const double* e, const double* df, - const double* ef, const double* b, lapack_int ldb, - double* x, lapack_int ldx, double* ferr, - double* berr ); -lapack_int LAPACKE_cptrfs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const float* d, - const lapack_complex_float* e, const float* df, - const lapack_complex_float* ef, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, float* ferr, - float* berr ); -lapack_int LAPACKE_zptrfs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const double* d, - const lapack_complex_double* e, const double* df, - const lapack_complex_double* ef, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* ferr, double* berr ); - -lapack_int LAPACKE_sptsv( int matrix_order, lapack_int n, lapack_int nrhs, - float* d, float* e, float* b, lapack_int ldb ); -lapack_int LAPACKE_dptsv( int matrix_order, lapack_int n, lapack_int nrhs, - double* d, double* e, double* b, lapack_int ldb ); -lapack_int LAPACKE_cptsv( int matrix_order, lapack_int n, lapack_int nrhs, - float* d, lapack_complex_float* e, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_zptsv( int matrix_order, lapack_int n, lapack_int nrhs, - double* d, lapack_complex_double* e, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_sptsvx( int matrix_order, char fact, lapack_int n, - lapack_int nrhs, const float* d, const float* e, - float* df, float* ef, const float* b, lapack_int ldb, - float* x, lapack_int ldx, float* rcond, float* ferr, - float* berr ); -lapack_int LAPACKE_dptsvx( int matrix_order, char fact, lapack_int n, - lapack_int nrhs, const double* d, const double* e, - double* df, double* ef, const double* b, - lapack_int ldb, double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr ); -lapack_int LAPACKE_cptsvx( int matrix_order, char fact, lapack_int n, - lapack_int nrhs, const float* d, - const lapack_complex_float* e, float* df, - lapack_complex_float* ef, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* rcond, float* ferr, float* berr ); -lapack_int LAPACKE_zptsvx( int matrix_order, char fact, lapack_int n, - lapack_int nrhs, const double* d, - const lapack_complex_double* e, double* df, - lapack_complex_double* ef, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr ); - -lapack_int LAPACKE_spttrf( lapack_int n, float* d, float* e ); -lapack_int LAPACKE_dpttrf( lapack_int n, double* d, double* e ); -lapack_int LAPACKE_cpttrf( lapack_int n, float* d, lapack_complex_float* e ); -lapack_int LAPACKE_zpttrf( lapack_int n, double* d, lapack_complex_double* e ); - -lapack_int LAPACKE_spttrs( int matrix_order, lapack_int n, lapack_int nrhs, - const float* d, const float* e, float* b, - lapack_int ldb ); -lapack_int LAPACKE_dpttrs( int matrix_order, lapack_int n, lapack_int nrhs, - const double* d, const double* e, double* b, - lapack_int ldb ); -lapack_int LAPACKE_cpttrs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const float* d, - const lapack_complex_float* e, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_zpttrs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const double* d, - const lapack_complex_double* e, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_ssbev( int matrix_order, char jobz, char uplo, lapack_int n, - lapack_int kd, float* ab, lapack_int ldab, float* w, - float* z, lapack_int ldz ); -lapack_int LAPACKE_dsbev( int matrix_order, char jobz, char uplo, lapack_int n, - lapack_int kd, double* ab, lapack_int ldab, double* w, - double* z, lapack_int ldz ); - -lapack_int LAPACKE_ssbevd( int matrix_order, char jobz, char uplo, lapack_int n, - lapack_int kd, float* ab, lapack_int ldab, float* w, - float* z, lapack_int ldz ); -lapack_int LAPACKE_dsbevd( int matrix_order, char jobz, char uplo, lapack_int n, - lapack_int kd, double* ab, lapack_int ldab, - double* w, double* z, lapack_int ldz ); - -lapack_int LAPACKE_ssbevx( int matrix_order, char jobz, char range, char uplo, - lapack_int n, lapack_int kd, float* ab, - lapack_int ldab, float* q, lapack_int ldq, float vl, - float vu, lapack_int il, lapack_int iu, float abstol, - lapack_int* m, float* w, float* z, lapack_int ldz, - lapack_int* ifail ); -lapack_int LAPACKE_dsbevx( int matrix_order, char jobz, char range, char uplo, - lapack_int n, lapack_int kd, double* ab, - lapack_int ldab, double* q, lapack_int ldq, - double vl, double vu, lapack_int il, lapack_int iu, - double abstol, lapack_int* m, double* w, double* z, - lapack_int ldz, lapack_int* ifail ); - -lapack_int LAPACKE_ssbgst( int matrix_order, char vect, char uplo, lapack_int n, - lapack_int ka, lapack_int kb, float* ab, - lapack_int ldab, const float* bb, lapack_int ldbb, - float* x, lapack_int ldx ); -lapack_int LAPACKE_dsbgst( int matrix_order, char vect, char uplo, lapack_int n, - lapack_int ka, lapack_int kb, double* ab, - lapack_int ldab, const double* bb, lapack_int ldbb, - double* x, lapack_int ldx ); - -lapack_int LAPACKE_ssbgv( int matrix_order, char jobz, char uplo, lapack_int n, - lapack_int ka, lapack_int kb, float* ab, - lapack_int ldab, float* bb, lapack_int ldbb, float* w, - float* z, lapack_int ldz ); -lapack_int LAPACKE_dsbgv( int matrix_order, char jobz, char uplo, lapack_int n, - lapack_int ka, lapack_int kb, double* ab, - lapack_int ldab, double* bb, lapack_int ldbb, - double* w, double* z, lapack_int ldz ); - -lapack_int LAPACKE_ssbgvd( int matrix_order, char jobz, char uplo, lapack_int n, - lapack_int ka, lapack_int kb, float* ab, - lapack_int ldab, float* bb, lapack_int ldbb, - float* w, float* z, lapack_int ldz ); -lapack_int LAPACKE_dsbgvd( int matrix_order, char jobz, char uplo, lapack_int n, - lapack_int ka, lapack_int kb, double* ab, - lapack_int ldab, double* bb, lapack_int ldbb, - double* w, double* z, lapack_int ldz ); - -lapack_int LAPACKE_ssbgvx( int matrix_order, char jobz, char range, char uplo, - lapack_int n, lapack_int ka, lapack_int kb, - float* ab, lapack_int ldab, float* bb, - lapack_int ldbb, float* q, lapack_int ldq, float vl, - float vu, lapack_int il, lapack_int iu, float abstol, - lapack_int* m, float* w, float* z, lapack_int ldz, - lapack_int* ifail ); -lapack_int LAPACKE_dsbgvx( int matrix_order, char jobz, char range, char uplo, - lapack_int n, lapack_int ka, lapack_int kb, - double* ab, lapack_int ldab, double* bb, - lapack_int ldbb, double* q, lapack_int ldq, - double vl, double vu, lapack_int il, lapack_int iu, - double abstol, lapack_int* m, double* w, double* z, - lapack_int ldz, lapack_int* ifail ); - -lapack_int LAPACKE_ssbtrd( int matrix_order, char vect, char uplo, lapack_int n, - lapack_int kd, float* ab, lapack_int ldab, float* d, - float* e, float* q, lapack_int ldq ); -lapack_int LAPACKE_dsbtrd( int matrix_order, char vect, char uplo, lapack_int n, - lapack_int kd, double* ab, lapack_int ldab, - double* d, double* e, double* q, lapack_int ldq ); - -lapack_int LAPACKE_ssfrk( int matrix_order, char transr, char uplo, char trans, - lapack_int n, lapack_int k, float alpha, - const float* a, lapack_int lda, float beta, - float* c ); -lapack_int LAPACKE_dsfrk( int matrix_order, char transr, char uplo, char trans, - lapack_int n, lapack_int k, double alpha, - const double* a, lapack_int lda, double beta, - double* c ); - -lapack_int LAPACKE_sspcon( int matrix_order, char uplo, lapack_int n, - const float* ap, const lapack_int* ipiv, float anorm, - float* rcond ); -lapack_int LAPACKE_dspcon( int matrix_order, char uplo, lapack_int n, - const double* ap, const lapack_int* ipiv, - double anorm, double* rcond ); -lapack_int LAPACKE_cspcon( int matrix_order, char uplo, lapack_int n, - const lapack_complex_float* ap, - const lapack_int* ipiv, float anorm, float* rcond ); -lapack_int LAPACKE_zspcon( int matrix_order, char uplo, lapack_int n, - const lapack_complex_double* ap, - const lapack_int* ipiv, double anorm, - double* rcond ); - -lapack_int LAPACKE_sspev( int matrix_order, char jobz, char uplo, lapack_int n, - float* ap, float* w, float* z, lapack_int ldz ); -lapack_int LAPACKE_dspev( int matrix_order, char jobz, char uplo, lapack_int n, - double* ap, double* w, double* z, lapack_int ldz ); - -lapack_int LAPACKE_sspevd( int matrix_order, char jobz, char uplo, lapack_int n, - float* ap, float* w, float* z, lapack_int ldz ); -lapack_int LAPACKE_dspevd( int matrix_order, char jobz, char uplo, lapack_int n, - double* ap, double* w, double* z, lapack_int ldz ); - -lapack_int LAPACKE_sspevx( int matrix_order, char jobz, char range, char uplo, - lapack_int n, float* ap, float vl, float vu, - lapack_int il, lapack_int iu, float abstol, - lapack_int* m, float* w, float* z, lapack_int ldz, - lapack_int* ifail ); -lapack_int LAPACKE_dspevx( int matrix_order, char jobz, char range, char uplo, - lapack_int n, double* ap, double vl, double vu, - lapack_int il, lapack_int iu, double abstol, - lapack_int* m, double* w, double* z, lapack_int ldz, - lapack_int* ifail ); - -lapack_int LAPACKE_sspgst( int matrix_order, lapack_int itype, char uplo, - lapack_int n, float* ap, const float* bp ); -lapack_int LAPACKE_dspgst( int matrix_order, lapack_int itype, char uplo, - lapack_int n, double* ap, const double* bp ); - -lapack_int LAPACKE_sspgv( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, float* ap, float* bp, - float* w, float* z, lapack_int ldz ); -lapack_int LAPACKE_dspgv( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, double* ap, double* bp, - double* w, double* z, lapack_int ldz ); - -lapack_int LAPACKE_sspgvd( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, float* ap, float* bp, - float* w, float* z, lapack_int ldz ); -lapack_int LAPACKE_dspgvd( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, double* ap, double* bp, - double* w, double* z, lapack_int ldz ); - -lapack_int LAPACKE_sspgvx( int matrix_order, lapack_int itype, char jobz, - char range, char uplo, lapack_int n, float* ap, - float* bp, float vl, float vu, lapack_int il, - lapack_int iu, float abstol, lapack_int* m, float* w, - float* z, lapack_int ldz, lapack_int* ifail ); -lapack_int LAPACKE_dspgvx( int matrix_order, lapack_int itype, char jobz, - char range, char uplo, lapack_int n, double* ap, - double* bp, double vl, double vu, lapack_int il, - lapack_int iu, double abstol, lapack_int* m, - double* w, double* z, lapack_int ldz, - lapack_int* ifail ); - -lapack_int LAPACKE_ssprfs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const float* ap, const float* afp, - const lapack_int* ipiv, const float* b, - lapack_int ldb, float* x, lapack_int ldx, - float* ferr, float* berr ); -lapack_int LAPACKE_dsprfs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const double* ap, const double* afp, - const lapack_int* ipiv, const double* b, - lapack_int ldb, double* x, lapack_int ldx, - double* ferr, double* berr ); -lapack_int LAPACKE_csprfs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* ap, - const lapack_complex_float* afp, - const lapack_int* ipiv, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, float* ferr, - float* berr ); -lapack_int LAPACKE_zsprfs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* ap, - const lapack_complex_double* afp, - const lapack_int* ipiv, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* ferr, double* berr ); - -lapack_int LAPACKE_sspsv( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, float* ap, lapack_int* ipiv, - float* b, lapack_int ldb ); -lapack_int LAPACKE_dspsv( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, double* ap, lapack_int* ipiv, - double* b, lapack_int ldb ); -lapack_int LAPACKE_cspsv( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_float* ap, - lapack_int* ipiv, lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_zspsv( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_double* ap, - lapack_int* ipiv, lapack_complex_double* b, - lapack_int ldb ); - -lapack_int LAPACKE_sspsvx( int matrix_order, char fact, char uplo, lapack_int n, - lapack_int nrhs, const float* ap, float* afp, - lapack_int* ipiv, const float* b, lapack_int ldb, - float* x, lapack_int ldx, float* rcond, float* ferr, - float* berr ); -lapack_int LAPACKE_dspsvx( int matrix_order, char fact, char uplo, lapack_int n, - lapack_int nrhs, const double* ap, double* afp, - lapack_int* ipiv, const double* b, lapack_int ldb, - double* x, lapack_int ldx, double* rcond, - double* ferr, double* berr ); -lapack_int LAPACKE_cspsvx( int matrix_order, char fact, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* ap, - lapack_complex_float* afp, lapack_int* ipiv, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* rcond, float* ferr, float* berr ); -lapack_int LAPACKE_zspsvx( int matrix_order, char fact, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* ap, - lapack_complex_double* afp, lapack_int* ipiv, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr ); - -lapack_int LAPACKE_ssptrd( int matrix_order, char uplo, lapack_int n, float* ap, - float* d, float* e, float* tau ); -lapack_int LAPACKE_dsptrd( int matrix_order, char uplo, lapack_int n, - double* ap, double* d, double* e, double* tau ); - -lapack_int LAPACKE_ssptrf( int matrix_order, char uplo, lapack_int n, float* ap, - lapack_int* ipiv ); -lapack_int LAPACKE_dsptrf( int matrix_order, char uplo, lapack_int n, - double* ap, lapack_int* ipiv ); -lapack_int LAPACKE_csptrf( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* ap, lapack_int* ipiv ); -lapack_int LAPACKE_zsptrf( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* ap, lapack_int* ipiv ); - -lapack_int LAPACKE_ssptri( int matrix_order, char uplo, lapack_int n, float* ap, - const lapack_int* ipiv ); -lapack_int LAPACKE_dsptri( int matrix_order, char uplo, lapack_int n, - double* ap, const lapack_int* ipiv ); -lapack_int LAPACKE_csptri( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* ap, const lapack_int* ipiv ); -lapack_int LAPACKE_zsptri( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* ap, const lapack_int* ipiv ); - -lapack_int LAPACKE_ssptrs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const float* ap, - const lapack_int* ipiv, float* b, lapack_int ldb ); -lapack_int LAPACKE_dsptrs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const double* ap, - const lapack_int* ipiv, double* b, lapack_int ldb ); -lapack_int LAPACKE_csptrs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* ap, - const lapack_int* ipiv, lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_zsptrs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* ap, - const lapack_int* ipiv, lapack_complex_double* b, - lapack_int ldb ); - -lapack_int LAPACKE_sstebz( char range, char order, lapack_int n, float vl, - float vu, lapack_int il, lapack_int iu, float abstol, - const float* d, const float* e, lapack_int* m, - lapack_int* nsplit, float* w, lapack_int* iblock, - lapack_int* isplit ); -lapack_int LAPACKE_dstebz( char range, char order, lapack_int n, double vl, - double vu, lapack_int il, lapack_int iu, - double abstol, const double* d, const double* e, - lapack_int* m, lapack_int* nsplit, double* w, - lapack_int* iblock, lapack_int* isplit ); - -lapack_int LAPACKE_sstedc( int matrix_order, char compz, lapack_int n, float* d, - float* e, float* z, lapack_int ldz ); -lapack_int LAPACKE_dstedc( int matrix_order, char compz, lapack_int n, - double* d, double* e, double* z, lapack_int ldz ); -lapack_int LAPACKE_cstedc( int matrix_order, char compz, lapack_int n, float* d, - float* e, lapack_complex_float* z, lapack_int ldz ); -lapack_int LAPACKE_zstedc( int matrix_order, char compz, lapack_int n, - double* d, double* e, lapack_complex_double* z, - lapack_int ldz ); - -lapack_int LAPACKE_sstegr( int matrix_order, char jobz, char range, - lapack_int n, float* d, float* e, float vl, float vu, - lapack_int il, lapack_int iu, float abstol, - lapack_int* m, float* w, float* z, lapack_int ldz, - lapack_int* isuppz ); -lapack_int LAPACKE_dstegr( int matrix_order, char jobz, char range, - lapack_int n, double* d, double* e, double vl, - double vu, lapack_int il, lapack_int iu, - double abstol, lapack_int* m, double* w, double* z, - lapack_int ldz, lapack_int* isuppz ); -lapack_int LAPACKE_cstegr( int matrix_order, char jobz, char range, - lapack_int n, float* d, float* e, float vl, float vu, - lapack_int il, lapack_int iu, float abstol, - lapack_int* m, float* w, lapack_complex_float* z, - lapack_int ldz, lapack_int* isuppz ); -lapack_int LAPACKE_zstegr( int matrix_order, char jobz, char range, - lapack_int n, double* d, double* e, double vl, - double vu, lapack_int il, lapack_int iu, - double abstol, lapack_int* m, double* w, - lapack_complex_double* z, lapack_int ldz, - lapack_int* isuppz ); - -lapack_int LAPACKE_sstein( int matrix_order, lapack_int n, const float* d, - const float* e, lapack_int m, const float* w, - const lapack_int* iblock, const lapack_int* isplit, - float* z, lapack_int ldz, lapack_int* ifailv ); -lapack_int LAPACKE_dstein( int matrix_order, lapack_int n, const double* d, - const double* e, lapack_int m, const double* w, - const lapack_int* iblock, const lapack_int* isplit, - double* z, lapack_int ldz, lapack_int* ifailv ); -lapack_int LAPACKE_cstein( int matrix_order, lapack_int n, const float* d, - const float* e, lapack_int m, const float* w, - const lapack_int* iblock, const lapack_int* isplit, - lapack_complex_float* z, lapack_int ldz, - lapack_int* ifailv ); -lapack_int LAPACKE_zstein( int matrix_order, lapack_int n, const double* d, - const double* e, lapack_int m, const double* w, - const lapack_int* iblock, const lapack_int* isplit, - lapack_complex_double* z, lapack_int ldz, - lapack_int* ifailv ); - -lapack_int LAPACKE_sstemr( int matrix_order, char jobz, char range, - lapack_int n, float* d, float* e, float vl, float vu, - lapack_int il, lapack_int iu, lapack_int* m, - float* w, float* z, lapack_int ldz, lapack_int nzc, - lapack_int* isuppz, lapack_logical* tryrac ); -lapack_int LAPACKE_dstemr( int matrix_order, char jobz, char range, - lapack_int n, double* d, double* e, double vl, - double vu, lapack_int il, lapack_int iu, - lapack_int* m, double* w, double* z, lapack_int ldz, - lapack_int nzc, lapack_int* isuppz, - lapack_logical* tryrac ); -lapack_int LAPACKE_cstemr( int matrix_order, char jobz, char range, - lapack_int n, float* d, float* e, float vl, float vu, - lapack_int il, lapack_int iu, lapack_int* m, - float* w, lapack_complex_float* z, lapack_int ldz, - lapack_int nzc, lapack_int* isuppz, - lapack_logical* tryrac ); -lapack_int LAPACKE_zstemr( int matrix_order, char jobz, char range, - lapack_int n, double* d, double* e, double vl, - double vu, lapack_int il, lapack_int iu, - lapack_int* m, double* w, lapack_complex_double* z, - lapack_int ldz, lapack_int nzc, lapack_int* isuppz, - lapack_logical* tryrac ); - -lapack_int LAPACKE_ssteqr( int matrix_order, char compz, lapack_int n, float* d, - float* e, float* z, lapack_int ldz ); -lapack_int LAPACKE_dsteqr( int matrix_order, char compz, lapack_int n, - double* d, double* e, double* z, lapack_int ldz ); -lapack_int LAPACKE_csteqr( int matrix_order, char compz, lapack_int n, float* d, - float* e, lapack_complex_float* z, lapack_int ldz ); -lapack_int LAPACKE_zsteqr( int matrix_order, char compz, lapack_int n, - double* d, double* e, lapack_complex_double* z, - lapack_int ldz ); - -lapack_int LAPACKE_ssterf( lapack_int n, float* d, float* e ); -lapack_int LAPACKE_dsterf( lapack_int n, double* d, double* e ); - -lapack_int LAPACKE_sstev( int matrix_order, char jobz, lapack_int n, float* d, - float* e, float* z, lapack_int ldz ); -lapack_int LAPACKE_dstev( int matrix_order, char jobz, lapack_int n, double* d, - double* e, double* z, lapack_int ldz ); - -lapack_int LAPACKE_sstevd( int matrix_order, char jobz, lapack_int n, float* d, - float* e, float* z, lapack_int ldz ); -lapack_int LAPACKE_dstevd( int matrix_order, char jobz, lapack_int n, double* d, - double* e, double* z, lapack_int ldz ); - -lapack_int LAPACKE_sstevr( int matrix_order, char jobz, char range, - lapack_int n, float* d, float* e, float vl, float vu, - lapack_int il, lapack_int iu, float abstol, - lapack_int* m, float* w, float* z, lapack_int ldz, - lapack_int* isuppz ); -lapack_int LAPACKE_dstevr( int matrix_order, char jobz, char range, - lapack_int n, double* d, double* e, double vl, - double vu, lapack_int il, lapack_int iu, - double abstol, lapack_int* m, double* w, double* z, - lapack_int ldz, lapack_int* isuppz ); - -lapack_int LAPACKE_sstevx( int matrix_order, char jobz, char range, - lapack_int n, float* d, float* e, float vl, float vu, - lapack_int il, lapack_int iu, float abstol, - lapack_int* m, float* w, float* z, lapack_int ldz, - lapack_int* ifail ); -lapack_int LAPACKE_dstevx( int matrix_order, char jobz, char range, - lapack_int n, double* d, double* e, double vl, - double vu, lapack_int il, lapack_int iu, - double abstol, lapack_int* m, double* w, double* z, - lapack_int ldz, lapack_int* ifail ); - -lapack_int LAPACKE_ssycon( int matrix_order, char uplo, lapack_int n, - const float* a, lapack_int lda, - const lapack_int* ipiv, float anorm, float* rcond ); -lapack_int LAPACKE_dsycon( int matrix_order, char uplo, lapack_int n, - const double* a, lapack_int lda, - const lapack_int* ipiv, double anorm, - double* rcond ); -lapack_int LAPACKE_csycon( int matrix_order, char uplo, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - const lapack_int* ipiv, float anorm, float* rcond ); -lapack_int LAPACKE_zsycon( int matrix_order, char uplo, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - const lapack_int* ipiv, double anorm, - double* rcond ); - -lapack_int LAPACKE_ssyequb( int matrix_order, char uplo, lapack_int n, - const float* a, lapack_int lda, float* s, - float* scond, float* amax ); -lapack_int LAPACKE_dsyequb( int matrix_order, char uplo, lapack_int n, - const double* a, lapack_int lda, double* s, - double* scond, double* amax ); -lapack_int LAPACKE_csyequb( int matrix_order, char uplo, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - float* s, float* scond, float* amax ); -lapack_int LAPACKE_zsyequb( int matrix_order, char uplo, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - double* s, double* scond, double* amax ); - -lapack_int LAPACKE_ssyev( int matrix_order, char jobz, char uplo, lapack_int n, - float* a, lapack_int lda, float* w ); -lapack_int LAPACKE_dsyev( int matrix_order, char jobz, char uplo, lapack_int n, - double* a, lapack_int lda, double* w ); - -lapack_int LAPACKE_ssyevd( int matrix_order, char jobz, char uplo, lapack_int n, - float* a, lapack_int lda, float* w ); -lapack_int LAPACKE_dsyevd( int matrix_order, char jobz, char uplo, lapack_int n, - double* a, lapack_int lda, double* w ); - -lapack_int LAPACKE_ssyevr( int matrix_order, char jobz, char range, char uplo, - lapack_int n, float* a, lapack_int lda, float vl, - float vu, lapack_int il, lapack_int iu, float abstol, - lapack_int* m, float* w, float* z, lapack_int ldz, - lapack_int* isuppz ); -lapack_int LAPACKE_dsyevr( int matrix_order, char jobz, char range, char uplo, - lapack_int n, double* a, lapack_int lda, double vl, - double vu, lapack_int il, lapack_int iu, - double abstol, lapack_int* m, double* w, double* z, - lapack_int ldz, lapack_int* isuppz ); - -lapack_int LAPACKE_ssyevx( int matrix_order, char jobz, char range, char uplo, - lapack_int n, float* a, lapack_int lda, float vl, - float vu, lapack_int il, lapack_int iu, float abstol, - lapack_int* m, float* w, float* z, lapack_int ldz, - lapack_int* ifail ); -lapack_int LAPACKE_dsyevx( int matrix_order, char jobz, char range, char uplo, - lapack_int n, double* a, lapack_int lda, double vl, - double vu, lapack_int il, lapack_int iu, - double abstol, lapack_int* m, double* w, double* z, - lapack_int ldz, lapack_int* ifail ); - -lapack_int LAPACKE_ssygst( int matrix_order, lapack_int itype, char uplo, - lapack_int n, float* a, lapack_int lda, - const float* b, lapack_int ldb ); -lapack_int LAPACKE_dsygst( int matrix_order, lapack_int itype, char uplo, - lapack_int n, double* a, lapack_int lda, - const double* b, lapack_int ldb ); - -lapack_int LAPACKE_ssygv( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, float* a, lapack_int lda, - float* b, lapack_int ldb, float* w ); -lapack_int LAPACKE_dsygv( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, double* a, lapack_int lda, - double* b, lapack_int ldb, double* w ); - -lapack_int LAPACKE_ssygvd( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, float* a, lapack_int lda, - float* b, lapack_int ldb, float* w ); -lapack_int LAPACKE_dsygvd( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, double* a, lapack_int lda, - double* b, lapack_int ldb, double* w ); - -lapack_int LAPACKE_ssygvx( int matrix_order, lapack_int itype, char jobz, - char range, char uplo, lapack_int n, float* a, - lapack_int lda, float* b, lapack_int ldb, float vl, - float vu, lapack_int il, lapack_int iu, float abstol, - lapack_int* m, float* w, float* z, lapack_int ldz, - lapack_int* ifail ); -lapack_int LAPACKE_dsygvx( int matrix_order, lapack_int itype, char jobz, - char range, char uplo, lapack_int n, double* a, - lapack_int lda, double* b, lapack_int ldb, double vl, - double vu, lapack_int il, lapack_int iu, - double abstol, lapack_int* m, double* w, double* z, - lapack_int ldz, lapack_int* ifail ); - -lapack_int LAPACKE_ssyrfs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const float* a, lapack_int lda, - const float* af, lapack_int ldaf, - const lapack_int* ipiv, const float* b, - lapack_int ldb, float* x, lapack_int ldx, - float* ferr, float* berr ); -lapack_int LAPACKE_dsyrfs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const double* a, lapack_int lda, - const double* af, lapack_int ldaf, - const lapack_int* ipiv, const double* b, - lapack_int ldb, double* x, lapack_int ldx, - double* ferr, double* berr ); -lapack_int LAPACKE_csyrfs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* af, - lapack_int ldaf, const lapack_int* ipiv, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, float* ferr, - float* berr ); -lapack_int LAPACKE_zsyrfs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* a, - lapack_int lda, const lapack_complex_double* af, - lapack_int ldaf, const lapack_int* ipiv, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* ferr, double* berr ); - -lapack_int LAPACKE_ssyrfsx( int matrix_order, char uplo, char equed, - lapack_int n, lapack_int nrhs, const float* a, - lapack_int lda, const float* af, lapack_int ldaf, - const lapack_int* ipiv, const float* s, - const float* b, lapack_int ldb, float* x, - lapack_int ldx, float* rcond, float* berr, - lapack_int n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int nparams, - float* params ); -lapack_int LAPACKE_dsyrfsx( int matrix_order, char uplo, char equed, - lapack_int n, lapack_int nrhs, const double* a, - lapack_int lda, const double* af, lapack_int ldaf, - const lapack_int* ipiv, const double* s, - const double* b, lapack_int ldb, double* x, - lapack_int ldx, double* rcond, double* berr, - lapack_int n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int nparams, - double* params ); -lapack_int LAPACKE_csyrfsx( int matrix_order, char uplo, char equed, - lapack_int n, lapack_int nrhs, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* af, lapack_int ldaf, - const lapack_int* ipiv, const float* s, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* rcond, float* berr, lapack_int n_err_bnds, - float* err_bnds_norm, float* err_bnds_comp, - lapack_int nparams, float* params ); -lapack_int LAPACKE_zsyrfsx( int matrix_order, char uplo, char equed, - lapack_int n, lapack_int nrhs, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* af, lapack_int ldaf, - const lapack_int* ipiv, const double* s, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* berr, lapack_int n_err_bnds, - double* err_bnds_norm, double* err_bnds_comp, - lapack_int nparams, double* params ); - -lapack_int LAPACKE_ssysv( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, float* a, lapack_int lda, - lapack_int* ipiv, float* b, lapack_int ldb ); -lapack_int LAPACKE_dsysv( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, double* a, lapack_int lda, - lapack_int* ipiv, double* b, lapack_int ldb ); -lapack_int LAPACKE_csysv( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_float* a, - lapack_int lda, lapack_int* ipiv, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_zsysv( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_double* a, - lapack_int lda, lapack_int* ipiv, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_ssysvx( int matrix_order, char fact, char uplo, lapack_int n, - lapack_int nrhs, const float* a, lapack_int lda, - float* af, lapack_int ldaf, lapack_int* ipiv, - const float* b, lapack_int ldb, float* x, - lapack_int ldx, float* rcond, float* ferr, - float* berr ); -lapack_int LAPACKE_dsysvx( int matrix_order, char fact, char uplo, lapack_int n, - lapack_int nrhs, const double* a, lapack_int lda, - double* af, lapack_int ldaf, lapack_int* ipiv, - const double* b, lapack_int ldb, double* x, - lapack_int ldx, double* rcond, double* ferr, - double* berr ); -lapack_int LAPACKE_csysvx( int matrix_order, char fact, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* a, - lapack_int lda, lapack_complex_float* af, - lapack_int ldaf, lapack_int* ipiv, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* rcond, float* ferr, float* berr ); -lapack_int LAPACKE_zsysvx( int matrix_order, char fact, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* a, - lapack_int lda, lapack_complex_double* af, - lapack_int ldaf, lapack_int* ipiv, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr ); - -lapack_int LAPACKE_ssysvxx( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, float* a, - lapack_int lda, float* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, float* s, float* b, - lapack_int ldb, float* x, lapack_int ldx, - float* rcond, float* rpvgrw, float* berr, - lapack_int n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int nparams, - float* params ); -lapack_int LAPACKE_dsysvxx( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, double* a, - lapack_int lda, double* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, double* s, double* b, - lapack_int ldb, double* x, lapack_int ldx, - double* rcond, double* rpvgrw, double* berr, - lapack_int n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int nparams, - double* params ); -lapack_int LAPACKE_csysvxx( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, float* s, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* rcond, float* rpvgrw, float* berr, - lapack_int n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int nparams, - float* params ); -lapack_int LAPACKE_zsysvxx( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, double* s, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* rpvgrw, double* berr, - lapack_int n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int nparams, - double* params ); - -lapack_int LAPACKE_ssytrd( int matrix_order, char uplo, lapack_int n, float* a, - lapack_int lda, float* d, float* e, float* tau ); -lapack_int LAPACKE_dsytrd( int matrix_order, char uplo, lapack_int n, double* a, - lapack_int lda, double* d, double* e, double* tau ); - -lapack_int LAPACKE_ssytrf( int matrix_order, char uplo, lapack_int n, float* a, - lapack_int lda, lapack_int* ipiv ); -lapack_int LAPACKE_dsytrf( int matrix_order, char uplo, lapack_int n, double* a, - lapack_int lda, lapack_int* ipiv ); -lapack_int LAPACKE_csytrf( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_int* ipiv ); -lapack_int LAPACKE_zsytrf( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_int* ipiv ); - -lapack_int LAPACKE_ssytri( int matrix_order, char uplo, lapack_int n, float* a, - lapack_int lda, const lapack_int* ipiv ); -lapack_int LAPACKE_dsytri( int matrix_order, char uplo, lapack_int n, double* a, - lapack_int lda, const lapack_int* ipiv ); -lapack_int LAPACKE_csytri( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - const lapack_int* ipiv ); -lapack_int LAPACKE_zsytri( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - const lapack_int* ipiv ); - -lapack_int LAPACKE_ssytrs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const float* a, lapack_int lda, - const lapack_int* ipiv, float* b, lapack_int ldb ); -lapack_int LAPACKE_dsytrs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const double* a, lapack_int lda, - const lapack_int* ipiv, double* b, lapack_int ldb ); -lapack_int LAPACKE_csytrs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* a, - lapack_int lda, const lapack_int* ipiv, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_zsytrs( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* a, - lapack_int lda, const lapack_int* ipiv, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_stbcon( int matrix_order, char norm, char uplo, char diag, - lapack_int n, lapack_int kd, const float* ab, - lapack_int ldab, float* rcond ); -lapack_int LAPACKE_dtbcon( int matrix_order, char norm, char uplo, char diag, - lapack_int n, lapack_int kd, const double* ab, - lapack_int ldab, double* rcond ); -lapack_int LAPACKE_ctbcon( int matrix_order, char norm, char uplo, char diag, - lapack_int n, lapack_int kd, - const lapack_complex_float* ab, lapack_int ldab, - float* rcond ); -lapack_int LAPACKE_ztbcon( int matrix_order, char norm, char uplo, char diag, - lapack_int n, lapack_int kd, - const lapack_complex_double* ab, lapack_int ldab, - double* rcond ); - -lapack_int LAPACKE_stbrfs( int matrix_order, char uplo, char trans, char diag, - lapack_int n, lapack_int kd, lapack_int nrhs, - const float* ab, lapack_int ldab, const float* b, - lapack_int ldb, const float* x, lapack_int ldx, - float* ferr, float* berr ); -lapack_int LAPACKE_dtbrfs( int matrix_order, char uplo, char trans, char diag, - lapack_int n, lapack_int kd, lapack_int nrhs, - const double* ab, lapack_int ldab, const double* b, - lapack_int ldb, const double* x, lapack_int ldx, - double* ferr, double* berr ); -lapack_int LAPACKE_ctbrfs( int matrix_order, char uplo, char trans, char diag, - lapack_int n, lapack_int kd, lapack_int nrhs, - const lapack_complex_float* ab, lapack_int ldab, - const lapack_complex_float* b, lapack_int ldb, - const lapack_complex_float* x, lapack_int ldx, - float* ferr, float* berr ); -lapack_int LAPACKE_ztbrfs( int matrix_order, char uplo, char trans, char diag, - lapack_int n, lapack_int kd, lapack_int nrhs, - const lapack_complex_double* ab, lapack_int ldab, - const lapack_complex_double* b, lapack_int ldb, - const lapack_complex_double* x, lapack_int ldx, - double* ferr, double* berr ); - -lapack_int LAPACKE_stbtrs( int matrix_order, char uplo, char trans, char diag, - lapack_int n, lapack_int kd, lapack_int nrhs, - const float* ab, lapack_int ldab, float* b, - lapack_int ldb ); -lapack_int LAPACKE_dtbtrs( int matrix_order, char uplo, char trans, char diag, - lapack_int n, lapack_int kd, lapack_int nrhs, - const double* ab, lapack_int ldab, double* b, - lapack_int ldb ); -lapack_int LAPACKE_ctbtrs( int matrix_order, char uplo, char trans, char diag, - lapack_int n, lapack_int kd, lapack_int nrhs, - const lapack_complex_float* ab, lapack_int ldab, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_ztbtrs( int matrix_order, char uplo, char trans, char diag, - lapack_int n, lapack_int kd, lapack_int nrhs, - const lapack_complex_double* ab, lapack_int ldab, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_stfsm( int matrix_order, char transr, char side, char uplo, - char trans, char diag, lapack_int m, lapack_int n, - float alpha, const float* a, float* b, - lapack_int ldb ); -lapack_int LAPACKE_dtfsm( int matrix_order, char transr, char side, char uplo, - char trans, char diag, lapack_int m, lapack_int n, - double alpha, const double* a, double* b, - lapack_int ldb ); -lapack_int LAPACKE_ctfsm( int matrix_order, char transr, char side, char uplo, - char trans, char diag, lapack_int m, lapack_int n, - lapack_complex_float alpha, - const lapack_complex_float* a, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_ztfsm( int matrix_order, char transr, char side, char uplo, - char trans, char diag, lapack_int m, lapack_int n, - lapack_complex_double alpha, - const lapack_complex_double* a, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_stftri( int matrix_order, char transr, char uplo, char diag, - lapack_int n, float* a ); -lapack_int LAPACKE_dtftri( int matrix_order, char transr, char uplo, char diag, - lapack_int n, double* a ); -lapack_int LAPACKE_ctftri( int matrix_order, char transr, char uplo, char diag, - lapack_int n, lapack_complex_float* a ); -lapack_int LAPACKE_ztftri( int matrix_order, char transr, char uplo, char diag, - lapack_int n, lapack_complex_double* a ); - -lapack_int LAPACKE_stfttp( int matrix_order, char transr, char uplo, - lapack_int n, const float* arf, float* ap ); -lapack_int LAPACKE_dtfttp( int matrix_order, char transr, char uplo, - lapack_int n, const double* arf, double* ap ); -lapack_int LAPACKE_ctfttp( int matrix_order, char transr, char uplo, - lapack_int n, const lapack_complex_float* arf, - lapack_complex_float* ap ); -lapack_int LAPACKE_ztfttp( int matrix_order, char transr, char uplo, - lapack_int n, const lapack_complex_double* arf, - lapack_complex_double* ap ); - -lapack_int LAPACKE_stfttr( int matrix_order, char transr, char uplo, - lapack_int n, const float* arf, float* a, - lapack_int lda ); -lapack_int LAPACKE_dtfttr( int matrix_order, char transr, char uplo, - lapack_int n, const double* arf, double* a, - lapack_int lda ); -lapack_int LAPACKE_ctfttr( int matrix_order, char transr, char uplo, - lapack_int n, const lapack_complex_float* arf, - lapack_complex_float* a, lapack_int lda ); -lapack_int LAPACKE_ztfttr( int matrix_order, char transr, char uplo, - lapack_int n, const lapack_complex_double* arf, - lapack_complex_double* a, lapack_int lda ); - -lapack_int LAPACKE_stgevc( int matrix_order, char side, char howmny, - const lapack_logical* select, lapack_int n, - const float* s, lapack_int lds, const float* p, - lapack_int ldp, float* vl, lapack_int ldvl, - float* vr, lapack_int ldvr, lapack_int mm, - lapack_int* m ); -lapack_int LAPACKE_dtgevc( int matrix_order, char side, char howmny, - const lapack_logical* select, lapack_int n, - const double* s, lapack_int lds, const double* p, - lapack_int ldp, double* vl, lapack_int ldvl, - double* vr, lapack_int ldvr, lapack_int mm, - lapack_int* m ); -lapack_int LAPACKE_ctgevc( int matrix_order, char side, char howmny, - const lapack_logical* select, lapack_int n, - const lapack_complex_float* s, lapack_int lds, - const lapack_complex_float* p, lapack_int ldp, - lapack_complex_float* vl, lapack_int ldvl, - lapack_complex_float* vr, lapack_int ldvr, - lapack_int mm, lapack_int* m ); -lapack_int LAPACKE_ztgevc( int matrix_order, char side, char howmny, - const lapack_logical* select, lapack_int n, - const lapack_complex_double* s, lapack_int lds, - const lapack_complex_double* p, lapack_int ldp, - lapack_complex_double* vl, lapack_int ldvl, - lapack_complex_double* vr, lapack_int ldvr, - lapack_int mm, lapack_int* m ); - -lapack_int LAPACKE_stgexc( int matrix_order, lapack_logical wantq, - lapack_logical wantz, lapack_int n, float* a, - lapack_int lda, float* b, lapack_int ldb, float* q, - lapack_int ldq, float* z, lapack_int ldz, - lapack_int* ifst, lapack_int* ilst ); -lapack_int LAPACKE_dtgexc( int matrix_order, lapack_logical wantq, - lapack_logical wantz, lapack_int n, double* a, - lapack_int lda, double* b, lapack_int ldb, double* q, - lapack_int ldq, double* z, lapack_int ldz, - lapack_int* ifst, lapack_int* ilst ); -lapack_int LAPACKE_ctgexc( int matrix_order, lapack_logical wantq, - lapack_logical wantz, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* q, lapack_int ldq, - lapack_complex_float* z, lapack_int ldz, - lapack_int ifst, lapack_int ilst ); -lapack_int LAPACKE_ztgexc( int matrix_order, lapack_logical wantq, - lapack_logical wantz, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* q, lapack_int ldq, - lapack_complex_double* z, lapack_int ldz, - lapack_int ifst, lapack_int ilst ); - -lapack_int LAPACKE_stgsen( int matrix_order, lapack_int ijob, - lapack_logical wantq, lapack_logical wantz, - const lapack_logical* select, lapack_int n, float* a, - lapack_int lda, float* b, lapack_int ldb, - float* alphar, float* alphai, float* beta, float* q, - lapack_int ldq, float* z, lapack_int ldz, - lapack_int* m, float* pl, float* pr, float* dif ); -lapack_int LAPACKE_dtgsen( int matrix_order, lapack_int ijob, - lapack_logical wantq, lapack_logical wantz, - const lapack_logical* select, lapack_int n, - double* a, lapack_int lda, double* b, lapack_int ldb, - double* alphar, double* alphai, double* beta, - double* q, lapack_int ldq, double* z, lapack_int ldz, - lapack_int* m, double* pl, double* pr, double* dif ); -lapack_int LAPACKE_ctgsen( int matrix_order, lapack_int ijob, - lapack_logical wantq, lapack_logical wantz, - const lapack_logical* select, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* alpha, - lapack_complex_float* beta, lapack_complex_float* q, - lapack_int ldq, lapack_complex_float* z, - lapack_int ldz, lapack_int* m, float* pl, float* pr, - float* dif ); -lapack_int LAPACKE_ztgsen( int matrix_order, lapack_int ijob, - lapack_logical wantq, lapack_logical wantz, - const lapack_logical* select, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* alpha, - lapack_complex_double* beta, - lapack_complex_double* q, lapack_int ldq, - lapack_complex_double* z, lapack_int ldz, - lapack_int* m, double* pl, double* pr, double* dif ); - -lapack_int LAPACKE_stgsja( int matrix_order, char jobu, char jobv, char jobq, - lapack_int m, lapack_int p, lapack_int n, - lapack_int k, lapack_int l, float* a, lapack_int lda, - float* b, lapack_int ldb, float tola, float tolb, - float* alpha, float* beta, float* u, lapack_int ldu, - float* v, lapack_int ldv, float* q, lapack_int ldq, - lapack_int* ncycle ); -lapack_int LAPACKE_dtgsja( int matrix_order, char jobu, char jobv, char jobq, - lapack_int m, lapack_int p, lapack_int n, - lapack_int k, lapack_int l, double* a, - lapack_int lda, double* b, lapack_int ldb, - double tola, double tolb, double* alpha, - double* beta, double* u, lapack_int ldu, double* v, - lapack_int ldv, double* q, lapack_int ldq, - lapack_int* ncycle ); -lapack_int LAPACKE_ctgsja( int matrix_order, char jobu, char jobv, char jobq, - lapack_int m, lapack_int p, lapack_int n, - lapack_int k, lapack_int l, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* b, - lapack_int ldb, float tola, float tolb, float* alpha, - float* beta, lapack_complex_float* u, lapack_int ldu, - lapack_complex_float* v, lapack_int ldv, - lapack_complex_float* q, lapack_int ldq, - lapack_int* ncycle ); -lapack_int LAPACKE_ztgsja( int matrix_order, char jobu, char jobv, char jobq, - lapack_int m, lapack_int p, lapack_int n, - lapack_int k, lapack_int l, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb, double tola, double tolb, - double* alpha, double* beta, - lapack_complex_double* u, lapack_int ldu, - lapack_complex_double* v, lapack_int ldv, - lapack_complex_double* q, lapack_int ldq, - lapack_int* ncycle ); - -lapack_int LAPACKE_stgsna( int matrix_order, char job, char howmny, - const lapack_logical* select, lapack_int n, - const float* a, lapack_int lda, const float* b, - lapack_int ldb, const float* vl, lapack_int ldvl, - const float* vr, lapack_int ldvr, float* s, - float* dif, lapack_int mm, lapack_int* m ); -lapack_int LAPACKE_dtgsna( int matrix_order, char job, char howmny, - const lapack_logical* select, lapack_int n, - const double* a, lapack_int lda, const double* b, - lapack_int ldb, const double* vl, lapack_int ldvl, - const double* vr, lapack_int ldvr, double* s, - double* dif, lapack_int mm, lapack_int* m ); -lapack_int LAPACKE_ctgsna( int matrix_order, char job, char howmny, - const lapack_logical* select, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* b, lapack_int ldb, - const lapack_complex_float* vl, lapack_int ldvl, - const lapack_complex_float* vr, lapack_int ldvr, - float* s, float* dif, lapack_int mm, lapack_int* m ); -lapack_int LAPACKE_ztgsna( int matrix_order, char job, char howmny, - const lapack_logical* select, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* b, lapack_int ldb, - const lapack_complex_double* vl, lapack_int ldvl, - const lapack_complex_double* vr, lapack_int ldvr, - double* s, double* dif, lapack_int mm, - lapack_int* m ); - -lapack_int LAPACKE_stgsyl( int matrix_order, char trans, lapack_int ijob, - lapack_int m, lapack_int n, const float* a, - lapack_int lda, const float* b, lapack_int ldb, - float* c, lapack_int ldc, const float* d, - lapack_int ldd, const float* e, lapack_int lde, - float* f, lapack_int ldf, float* scale, float* dif ); -lapack_int LAPACKE_dtgsyl( int matrix_order, char trans, lapack_int ijob, - lapack_int m, lapack_int n, const double* a, - lapack_int lda, const double* b, lapack_int ldb, - double* c, lapack_int ldc, const double* d, - lapack_int ldd, const double* e, lapack_int lde, - double* f, lapack_int ldf, double* scale, - double* dif ); -lapack_int LAPACKE_ctgsyl( int matrix_order, char trans, lapack_int ijob, - lapack_int m, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* c, lapack_int ldc, - const lapack_complex_float* d, lapack_int ldd, - const lapack_complex_float* e, lapack_int lde, - lapack_complex_float* f, lapack_int ldf, - float* scale, float* dif ); -lapack_int LAPACKE_ztgsyl( int matrix_order, char trans, lapack_int ijob, - lapack_int m, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* c, lapack_int ldc, - const lapack_complex_double* d, lapack_int ldd, - const lapack_complex_double* e, lapack_int lde, - lapack_complex_double* f, lapack_int ldf, - double* scale, double* dif ); - -lapack_int LAPACKE_stpcon( int matrix_order, char norm, char uplo, char diag, - lapack_int n, const float* ap, float* rcond ); -lapack_int LAPACKE_dtpcon( int matrix_order, char norm, char uplo, char diag, - lapack_int n, const double* ap, double* rcond ); -lapack_int LAPACKE_ctpcon( int matrix_order, char norm, char uplo, char diag, - lapack_int n, const lapack_complex_float* ap, - float* rcond ); -lapack_int LAPACKE_ztpcon( int matrix_order, char norm, char uplo, char diag, - lapack_int n, const lapack_complex_double* ap, - double* rcond ); - -lapack_int LAPACKE_stprfs( int matrix_order, char uplo, char trans, char diag, - lapack_int n, lapack_int nrhs, const float* ap, - const float* b, lapack_int ldb, const float* x, - lapack_int ldx, float* ferr, float* berr ); -lapack_int LAPACKE_dtprfs( int matrix_order, char uplo, char trans, char diag, - lapack_int n, lapack_int nrhs, const double* ap, - const double* b, lapack_int ldb, const double* x, - lapack_int ldx, double* ferr, double* berr ); -lapack_int LAPACKE_ctprfs( int matrix_order, char uplo, char trans, char diag, - lapack_int n, lapack_int nrhs, - const lapack_complex_float* ap, - const lapack_complex_float* b, lapack_int ldb, - const lapack_complex_float* x, lapack_int ldx, - float* ferr, float* berr ); -lapack_int LAPACKE_ztprfs( int matrix_order, char uplo, char trans, char diag, - lapack_int n, lapack_int nrhs, - const lapack_complex_double* ap, - const lapack_complex_double* b, lapack_int ldb, - const lapack_complex_double* x, lapack_int ldx, - double* ferr, double* berr ); - -lapack_int LAPACKE_stptri( int matrix_order, char uplo, char diag, lapack_int n, - float* ap ); -lapack_int LAPACKE_dtptri( int matrix_order, char uplo, char diag, lapack_int n, - double* ap ); -lapack_int LAPACKE_ctptri( int matrix_order, char uplo, char diag, lapack_int n, - lapack_complex_float* ap ); -lapack_int LAPACKE_ztptri( int matrix_order, char uplo, char diag, lapack_int n, - lapack_complex_double* ap ); - -lapack_int LAPACKE_stptrs( int matrix_order, char uplo, char trans, char diag, - lapack_int n, lapack_int nrhs, const float* ap, - float* b, lapack_int ldb ); -lapack_int LAPACKE_dtptrs( int matrix_order, char uplo, char trans, char diag, - lapack_int n, lapack_int nrhs, const double* ap, - double* b, lapack_int ldb ); -lapack_int LAPACKE_ctptrs( int matrix_order, char uplo, char trans, char diag, - lapack_int n, lapack_int nrhs, - const lapack_complex_float* ap, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_ztptrs( int matrix_order, char uplo, char trans, char diag, - lapack_int n, lapack_int nrhs, - const lapack_complex_double* ap, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_stpttf( int matrix_order, char transr, char uplo, - lapack_int n, const float* ap, float* arf ); -lapack_int LAPACKE_dtpttf( int matrix_order, char transr, char uplo, - lapack_int n, const double* ap, double* arf ); -lapack_int LAPACKE_ctpttf( int matrix_order, char transr, char uplo, - lapack_int n, const lapack_complex_float* ap, - lapack_complex_float* arf ); -lapack_int LAPACKE_ztpttf( int matrix_order, char transr, char uplo, - lapack_int n, const lapack_complex_double* ap, - lapack_complex_double* arf ); - -lapack_int LAPACKE_stpttr( int matrix_order, char uplo, lapack_int n, - const float* ap, float* a, lapack_int lda ); -lapack_int LAPACKE_dtpttr( int matrix_order, char uplo, lapack_int n, - const double* ap, double* a, lapack_int lda ); -lapack_int LAPACKE_ctpttr( int matrix_order, char uplo, lapack_int n, - const lapack_complex_float* ap, - lapack_complex_float* a, lapack_int lda ); -lapack_int LAPACKE_ztpttr( int matrix_order, char uplo, lapack_int n, - const lapack_complex_double* ap, - lapack_complex_double* a, lapack_int lda ); - -lapack_int LAPACKE_strcon( int matrix_order, char norm, char uplo, char diag, - lapack_int n, const float* a, lapack_int lda, - float* rcond ); -lapack_int LAPACKE_dtrcon( int matrix_order, char norm, char uplo, char diag, - lapack_int n, const double* a, lapack_int lda, - double* rcond ); -lapack_int LAPACKE_ctrcon( int matrix_order, char norm, char uplo, char diag, - lapack_int n, const lapack_complex_float* a, - lapack_int lda, float* rcond ); -lapack_int LAPACKE_ztrcon( int matrix_order, char norm, char uplo, char diag, - lapack_int n, const lapack_complex_double* a, - lapack_int lda, double* rcond ); - -lapack_int LAPACKE_strevc( int matrix_order, char side, char howmny, - lapack_logical* select, lapack_int n, const float* t, - lapack_int ldt, float* vl, lapack_int ldvl, - float* vr, lapack_int ldvr, lapack_int mm, - lapack_int* m ); -lapack_int LAPACKE_dtrevc( int matrix_order, char side, char howmny, - lapack_logical* select, lapack_int n, - const double* t, lapack_int ldt, double* vl, - lapack_int ldvl, double* vr, lapack_int ldvr, - lapack_int mm, lapack_int* m ); -lapack_int LAPACKE_ctrevc( int matrix_order, char side, char howmny, - const lapack_logical* select, lapack_int n, - lapack_complex_float* t, lapack_int ldt, - lapack_complex_float* vl, lapack_int ldvl, - lapack_complex_float* vr, lapack_int ldvr, - lapack_int mm, lapack_int* m ); -lapack_int LAPACKE_ztrevc( int matrix_order, char side, char howmny, - const lapack_logical* select, lapack_int n, - lapack_complex_double* t, lapack_int ldt, - lapack_complex_double* vl, lapack_int ldvl, - lapack_complex_double* vr, lapack_int ldvr, - lapack_int mm, lapack_int* m ); - -lapack_int LAPACKE_strexc( int matrix_order, char compq, lapack_int n, float* t, - lapack_int ldt, float* q, lapack_int ldq, - lapack_int* ifst, lapack_int* ilst ); -lapack_int LAPACKE_dtrexc( int matrix_order, char compq, lapack_int n, - double* t, lapack_int ldt, double* q, lapack_int ldq, - lapack_int* ifst, lapack_int* ilst ); -lapack_int LAPACKE_ctrexc( int matrix_order, char compq, lapack_int n, - lapack_complex_float* t, lapack_int ldt, - lapack_complex_float* q, lapack_int ldq, - lapack_int ifst, lapack_int ilst ); -lapack_int LAPACKE_ztrexc( int matrix_order, char compq, lapack_int n, - lapack_complex_double* t, lapack_int ldt, - lapack_complex_double* q, lapack_int ldq, - lapack_int ifst, lapack_int ilst ); - -lapack_int LAPACKE_strrfs( int matrix_order, char uplo, char trans, char diag, - lapack_int n, lapack_int nrhs, const float* a, - lapack_int lda, const float* b, lapack_int ldb, - const float* x, lapack_int ldx, float* ferr, - float* berr ); -lapack_int LAPACKE_dtrrfs( int matrix_order, char uplo, char trans, char diag, - lapack_int n, lapack_int nrhs, const double* a, - lapack_int lda, const double* b, lapack_int ldb, - const double* x, lapack_int ldx, double* ferr, - double* berr ); -lapack_int LAPACKE_ctrrfs( int matrix_order, char uplo, char trans, char diag, - lapack_int n, lapack_int nrhs, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* b, lapack_int ldb, - const lapack_complex_float* x, lapack_int ldx, - float* ferr, float* berr ); -lapack_int LAPACKE_ztrrfs( int matrix_order, char uplo, char trans, char diag, - lapack_int n, lapack_int nrhs, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* b, lapack_int ldb, - const lapack_complex_double* x, lapack_int ldx, - double* ferr, double* berr ); - -lapack_int LAPACKE_strsen( int matrix_order, char job, char compq, - const lapack_logical* select, lapack_int n, float* t, - lapack_int ldt, float* q, lapack_int ldq, float* wr, - float* wi, lapack_int* m, float* s, float* sep ); -lapack_int LAPACKE_dtrsen( int matrix_order, char job, char compq, - const lapack_logical* select, lapack_int n, - double* t, lapack_int ldt, double* q, lapack_int ldq, - double* wr, double* wi, lapack_int* m, double* s, - double* sep ); -lapack_int LAPACKE_ctrsen( int matrix_order, char job, char compq, - const lapack_logical* select, lapack_int n, - lapack_complex_float* t, lapack_int ldt, - lapack_complex_float* q, lapack_int ldq, - lapack_complex_float* w, lapack_int* m, float* s, - float* sep ); -lapack_int LAPACKE_ztrsen( int matrix_order, char job, char compq, - const lapack_logical* select, lapack_int n, - lapack_complex_double* t, lapack_int ldt, - lapack_complex_double* q, lapack_int ldq, - lapack_complex_double* w, lapack_int* m, double* s, - double* sep ); - -lapack_int LAPACKE_strsna( int matrix_order, char job, char howmny, - const lapack_logical* select, lapack_int n, - const float* t, lapack_int ldt, const float* vl, - lapack_int ldvl, const float* vr, lapack_int ldvr, - float* s, float* sep, lapack_int mm, lapack_int* m ); -lapack_int LAPACKE_dtrsna( int matrix_order, char job, char howmny, - const lapack_logical* select, lapack_int n, - const double* t, lapack_int ldt, const double* vl, - lapack_int ldvl, const double* vr, lapack_int ldvr, - double* s, double* sep, lapack_int mm, - lapack_int* m ); -lapack_int LAPACKE_ctrsna( int matrix_order, char job, char howmny, - const lapack_logical* select, lapack_int n, - const lapack_complex_float* t, lapack_int ldt, - const lapack_complex_float* vl, lapack_int ldvl, - const lapack_complex_float* vr, lapack_int ldvr, - float* s, float* sep, lapack_int mm, lapack_int* m ); -lapack_int LAPACKE_ztrsna( int matrix_order, char job, char howmny, - const lapack_logical* select, lapack_int n, - const lapack_complex_double* t, lapack_int ldt, - const lapack_complex_double* vl, lapack_int ldvl, - const lapack_complex_double* vr, lapack_int ldvr, - double* s, double* sep, lapack_int mm, - lapack_int* m ); - -lapack_int LAPACKE_strsyl( int matrix_order, char trana, char tranb, - lapack_int isgn, lapack_int m, lapack_int n, - const float* a, lapack_int lda, const float* b, - lapack_int ldb, float* c, lapack_int ldc, - float* scale ); -lapack_int LAPACKE_dtrsyl( int matrix_order, char trana, char tranb, - lapack_int isgn, lapack_int m, lapack_int n, - const double* a, lapack_int lda, const double* b, - lapack_int ldb, double* c, lapack_int ldc, - double* scale ); -lapack_int LAPACKE_ctrsyl( int matrix_order, char trana, char tranb, - lapack_int isgn, lapack_int m, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* c, lapack_int ldc, - float* scale ); -lapack_int LAPACKE_ztrsyl( int matrix_order, char trana, char tranb, - lapack_int isgn, lapack_int m, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* c, lapack_int ldc, - double* scale ); - -lapack_int LAPACKE_strtri( int matrix_order, char uplo, char diag, lapack_int n, - float* a, lapack_int lda ); -lapack_int LAPACKE_dtrtri( int matrix_order, char uplo, char diag, lapack_int n, - double* a, lapack_int lda ); -lapack_int LAPACKE_ctrtri( int matrix_order, char uplo, char diag, lapack_int n, - lapack_complex_float* a, lapack_int lda ); -lapack_int LAPACKE_ztrtri( int matrix_order, char uplo, char diag, lapack_int n, - lapack_complex_double* a, lapack_int lda ); - -lapack_int LAPACKE_strtrs( int matrix_order, char uplo, char trans, char diag, - lapack_int n, lapack_int nrhs, const float* a, - lapack_int lda, float* b, lapack_int ldb ); -lapack_int LAPACKE_dtrtrs( int matrix_order, char uplo, char trans, char diag, - lapack_int n, lapack_int nrhs, const double* a, - lapack_int lda, double* b, lapack_int ldb ); -lapack_int LAPACKE_ctrtrs( int matrix_order, char uplo, char trans, char diag, - lapack_int n, lapack_int nrhs, - const lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_ztrtrs( int matrix_order, char uplo, char trans, char diag, - lapack_int n, lapack_int nrhs, - const lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_strttf( int matrix_order, char transr, char uplo, - lapack_int n, const float* a, lapack_int lda, - float* arf ); -lapack_int LAPACKE_dtrttf( int matrix_order, char transr, char uplo, - lapack_int n, const double* a, lapack_int lda, - double* arf ); -lapack_int LAPACKE_ctrttf( int matrix_order, char transr, char uplo, - lapack_int n, const lapack_complex_float* a, - lapack_int lda, lapack_complex_float* arf ); -lapack_int LAPACKE_ztrttf( int matrix_order, char transr, char uplo, - lapack_int n, const lapack_complex_double* a, - lapack_int lda, lapack_complex_double* arf ); - -lapack_int LAPACKE_strttp( int matrix_order, char uplo, lapack_int n, - const float* a, lapack_int lda, float* ap ); -lapack_int LAPACKE_dtrttp( int matrix_order, char uplo, lapack_int n, - const double* a, lapack_int lda, double* ap ); -lapack_int LAPACKE_ctrttp( int matrix_order, char uplo, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - lapack_complex_float* ap ); -lapack_int LAPACKE_ztrttp( int matrix_order, char uplo, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - lapack_complex_double* ap ); - -lapack_int LAPACKE_stzrzf( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, float* tau ); -lapack_int LAPACKE_dtzrzf( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, double* tau ); -lapack_int LAPACKE_ctzrzf( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* tau ); -lapack_int LAPACKE_ztzrzf( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* tau ); - -lapack_int LAPACKE_cungbr( int matrix_order, char vect, lapack_int m, - lapack_int n, lapack_int k, lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* tau ); -lapack_int LAPACKE_zungbr( int matrix_order, char vect, lapack_int m, - lapack_int n, lapack_int k, lapack_complex_double* a, - lapack_int lda, const lapack_complex_double* tau ); - -lapack_int LAPACKE_cunghr( int matrix_order, lapack_int n, lapack_int ilo, - lapack_int ihi, lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* tau ); -lapack_int LAPACKE_zunghr( int matrix_order, lapack_int n, lapack_int ilo, - lapack_int ihi, lapack_complex_double* a, - lapack_int lda, const lapack_complex_double* tau ); - -lapack_int LAPACKE_cunglq( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* tau ); -lapack_int LAPACKE_zunglq( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, lapack_complex_double* a, - lapack_int lda, const lapack_complex_double* tau ); - -lapack_int LAPACKE_cungql( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* tau ); -lapack_int LAPACKE_zungql( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, lapack_complex_double* a, - lapack_int lda, const lapack_complex_double* tau ); - -lapack_int LAPACKE_cungqr( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* tau ); -lapack_int LAPACKE_zungqr( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, lapack_complex_double* a, - lapack_int lda, const lapack_complex_double* tau ); - -lapack_int LAPACKE_cungrq( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* tau ); -lapack_int LAPACKE_zungrq( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, lapack_complex_double* a, - lapack_int lda, const lapack_complex_double* tau ); - -lapack_int LAPACKE_cungtr( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* tau ); -lapack_int LAPACKE_zungtr( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* tau ); - -lapack_int LAPACKE_cunmbr( int matrix_order, char vect, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* tau, - lapack_complex_float* c, lapack_int ldc ); -lapack_int LAPACKE_zunmbr( int matrix_order, char vect, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* tau, - lapack_complex_double* c, lapack_int ldc ); - -lapack_int LAPACKE_cunmhr( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int ilo, - lapack_int ihi, const lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* tau, - lapack_complex_float* c, lapack_int ldc ); -lapack_int LAPACKE_zunmhr( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int ilo, - lapack_int ihi, const lapack_complex_double* a, - lapack_int lda, const lapack_complex_double* tau, - lapack_complex_double* c, lapack_int ldc ); - -lapack_int LAPACKE_cunmlq( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* tau, - lapack_complex_float* c, lapack_int ldc ); -lapack_int LAPACKE_zunmlq( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* tau, - lapack_complex_double* c, lapack_int ldc ); - -lapack_int LAPACKE_cunmql( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* tau, - lapack_complex_float* c, lapack_int ldc ); -lapack_int LAPACKE_zunmql( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* tau, - lapack_complex_double* c, lapack_int ldc ); - -lapack_int LAPACKE_cunmqr( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* tau, - lapack_complex_float* c, lapack_int ldc ); -lapack_int LAPACKE_zunmqr( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* tau, - lapack_complex_double* c, lapack_int ldc ); - -lapack_int LAPACKE_cunmrq( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* tau, - lapack_complex_float* c, lapack_int ldc ); -lapack_int LAPACKE_zunmrq( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* tau, - lapack_complex_double* c, lapack_int ldc ); - -lapack_int LAPACKE_cunmrz( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - lapack_int l, const lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* tau, - lapack_complex_float* c, lapack_int ldc ); -lapack_int LAPACKE_zunmrz( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - lapack_int l, const lapack_complex_double* a, - lapack_int lda, const lapack_complex_double* tau, - lapack_complex_double* c, lapack_int ldc ); - -lapack_int LAPACKE_cunmtr( int matrix_order, char side, char uplo, char trans, - lapack_int m, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* tau, - lapack_complex_float* c, lapack_int ldc ); -lapack_int LAPACKE_zunmtr( int matrix_order, char side, char uplo, char trans, - lapack_int m, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* tau, - lapack_complex_double* c, lapack_int ldc ); - -lapack_int LAPACKE_cupgtr( int matrix_order, char uplo, lapack_int n, - const lapack_complex_float* ap, - const lapack_complex_float* tau, - lapack_complex_float* q, lapack_int ldq ); -lapack_int LAPACKE_zupgtr( int matrix_order, char uplo, lapack_int n, - const lapack_complex_double* ap, - const lapack_complex_double* tau, - lapack_complex_double* q, lapack_int ldq ); - -lapack_int LAPACKE_cupmtr( int matrix_order, char side, char uplo, char trans, - lapack_int m, lapack_int n, - const lapack_complex_float* ap, - const lapack_complex_float* tau, - lapack_complex_float* c, lapack_int ldc ); -lapack_int LAPACKE_zupmtr( int matrix_order, char side, char uplo, char trans, - lapack_int m, lapack_int n, - const lapack_complex_double* ap, - const lapack_complex_double* tau, - lapack_complex_double* c, lapack_int ldc ); - -lapack_int LAPACKE_sbdsdc_work( int matrix_order, char uplo, char compq, - lapack_int n, float* d, float* e, float* u, - lapack_int ldu, float* vt, lapack_int ldvt, - float* q, lapack_int* iq, float* work, - lapack_int* iwork ); -lapack_int LAPACKE_dbdsdc_work( int matrix_order, char uplo, char compq, - lapack_int n, double* d, double* e, double* u, - lapack_int ldu, double* vt, lapack_int ldvt, - double* q, lapack_int* iq, double* work, - lapack_int* iwork ); - -lapack_int LAPACKE_sbdsqr_work( int matrix_order, char uplo, lapack_int n, - lapack_int ncvt, lapack_int nru, lapack_int ncc, - float* d, float* e, float* vt, lapack_int ldvt, - float* u, lapack_int ldu, float* c, - lapack_int ldc, float* work ); -lapack_int LAPACKE_dbdsqr_work( int matrix_order, char uplo, lapack_int n, - lapack_int ncvt, lapack_int nru, lapack_int ncc, - double* d, double* e, double* vt, - lapack_int ldvt, double* u, lapack_int ldu, - double* c, lapack_int ldc, double* work ); -lapack_int LAPACKE_cbdsqr_work( int matrix_order, char uplo, lapack_int n, - lapack_int ncvt, lapack_int nru, lapack_int ncc, - float* d, float* e, lapack_complex_float* vt, - lapack_int ldvt, lapack_complex_float* u, - lapack_int ldu, lapack_complex_float* c, - lapack_int ldc, float* work ); -lapack_int LAPACKE_zbdsqr_work( int matrix_order, char uplo, lapack_int n, - lapack_int ncvt, lapack_int nru, lapack_int ncc, - double* d, double* e, lapack_complex_double* vt, - lapack_int ldvt, lapack_complex_double* u, - lapack_int ldu, lapack_complex_double* c, - lapack_int ldc, double* work ); - -lapack_int LAPACKE_sdisna_work( char job, lapack_int m, lapack_int n, - const float* d, float* sep ); -lapack_int LAPACKE_ddisna_work( char job, lapack_int m, lapack_int n, - const double* d, double* sep ); - -lapack_int LAPACKE_sgbbrd_work( int matrix_order, char vect, lapack_int m, - lapack_int n, lapack_int ncc, lapack_int kl, - lapack_int ku, float* ab, lapack_int ldab, - float* d, float* e, float* q, lapack_int ldq, - float* pt, lapack_int ldpt, float* c, - lapack_int ldc, float* work ); -lapack_int LAPACKE_dgbbrd_work( int matrix_order, char vect, lapack_int m, - lapack_int n, lapack_int ncc, lapack_int kl, - lapack_int ku, double* ab, lapack_int ldab, - double* d, double* e, double* q, lapack_int ldq, - double* pt, lapack_int ldpt, double* c, - lapack_int ldc, double* work ); -lapack_int LAPACKE_cgbbrd_work( int matrix_order, char vect, lapack_int m, - lapack_int n, lapack_int ncc, lapack_int kl, - lapack_int ku, lapack_complex_float* ab, - lapack_int ldab, float* d, float* e, - lapack_complex_float* q, lapack_int ldq, - lapack_complex_float* pt, lapack_int ldpt, - lapack_complex_float* c, lapack_int ldc, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_zgbbrd_work( int matrix_order, char vect, lapack_int m, - lapack_int n, lapack_int ncc, lapack_int kl, - lapack_int ku, lapack_complex_double* ab, - lapack_int ldab, double* d, double* e, - lapack_complex_double* q, lapack_int ldq, - lapack_complex_double* pt, lapack_int ldpt, - lapack_complex_double* c, lapack_int ldc, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_sgbcon_work( int matrix_order, char norm, lapack_int n, - lapack_int kl, lapack_int ku, const float* ab, - lapack_int ldab, const lapack_int* ipiv, - float anorm, float* rcond, float* work, - lapack_int* iwork ); -lapack_int LAPACKE_dgbcon_work( int matrix_order, char norm, lapack_int n, - lapack_int kl, lapack_int ku, const double* ab, - lapack_int ldab, const lapack_int* ipiv, - double anorm, double* rcond, double* work, - lapack_int* iwork ); -lapack_int LAPACKE_cgbcon_work( int matrix_order, char norm, lapack_int n, - lapack_int kl, lapack_int ku, - const lapack_complex_float* ab, lapack_int ldab, - const lapack_int* ipiv, float anorm, - float* rcond, lapack_complex_float* work, - float* rwork ); -lapack_int LAPACKE_zgbcon_work( int matrix_order, char norm, lapack_int n, - lapack_int kl, lapack_int ku, - const lapack_complex_double* ab, - lapack_int ldab, const lapack_int* ipiv, - double anorm, double* rcond, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_sgbequ_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, const float* ab, - lapack_int ldab, float* r, float* c, - float* rowcnd, float* colcnd, float* amax ); -lapack_int LAPACKE_dgbequ_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, const double* ab, - lapack_int ldab, double* r, double* c, - double* rowcnd, double* colcnd, double* amax ); -lapack_int LAPACKE_cgbequ_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, - const lapack_complex_float* ab, lapack_int ldab, - float* r, float* c, float* rowcnd, - float* colcnd, float* amax ); -lapack_int LAPACKE_zgbequ_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, - const lapack_complex_double* ab, - lapack_int ldab, double* r, double* c, - double* rowcnd, double* colcnd, double* amax ); - -lapack_int LAPACKE_sgbequb_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, const float* ab, - lapack_int ldab, float* r, float* c, - float* rowcnd, float* colcnd, float* amax ); -lapack_int LAPACKE_dgbequb_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, const double* ab, - lapack_int ldab, double* r, double* c, - double* rowcnd, double* colcnd, double* amax ); -lapack_int LAPACKE_cgbequb_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, - const lapack_complex_float* ab, - lapack_int ldab, float* r, float* c, - float* rowcnd, float* colcnd, float* amax ); -lapack_int LAPACKE_zgbequb_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, - const lapack_complex_double* ab, - lapack_int ldab, double* r, double* c, - double* rowcnd, double* colcnd, double* amax ); - -lapack_int LAPACKE_sgbrfs_work( int matrix_order, char trans, lapack_int n, - lapack_int kl, lapack_int ku, lapack_int nrhs, - const float* ab, lapack_int ldab, - const float* afb, lapack_int ldafb, - const lapack_int* ipiv, const float* b, - lapack_int ldb, float* x, lapack_int ldx, - float* ferr, float* berr, float* work, - lapack_int* iwork ); -lapack_int LAPACKE_dgbrfs_work( int matrix_order, char trans, lapack_int n, - lapack_int kl, lapack_int ku, lapack_int nrhs, - const double* ab, lapack_int ldab, - const double* afb, lapack_int ldafb, - const lapack_int* ipiv, const double* b, - lapack_int ldb, double* x, lapack_int ldx, - double* ferr, double* berr, double* work, - lapack_int* iwork ); -lapack_int LAPACKE_cgbrfs_work( int matrix_order, char trans, lapack_int n, - lapack_int kl, lapack_int ku, lapack_int nrhs, - const lapack_complex_float* ab, lapack_int ldab, - const lapack_complex_float* afb, - lapack_int ldafb, const lapack_int* ipiv, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* ferr, float* berr, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_zgbrfs_work( int matrix_order, char trans, lapack_int n, - lapack_int kl, lapack_int ku, lapack_int nrhs, - const lapack_complex_double* ab, - lapack_int ldab, - const lapack_complex_double* afb, - lapack_int ldafb, const lapack_int* ipiv, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* ferr, double* berr, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_sgbrfsx_work( int matrix_order, char trans, char equed, - lapack_int n, lapack_int kl, lapack_int ku, - lapack_int nrhs, const float* ab, - lapack_int ldab, const float* afb, - lapack_int ldafb, const lapack_int* ipiv, - const float* r, const float* c, const float* b, - lapack_int ldb, float* x, lapack_int ldx, - float* rcond, float* berr, - lapack_int n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int nparams, - float* params, float* work, - lapack_int* iwork ); -lapack_int LAPACKE_dgbrfsx_work( int matrix_order, char trans, char equed, - lapack_int n, lapack_int kl, lapack_int ku, - lapack_int nrhs, const double* ab, - lapack_int ldab, const double* afb, - lapack_int ldafb, const lapack_int* ipiv, - const double* r, const double* c, - const double* b, lapack_int ldb, double* x, - lapack_int ldx, double* rcond, double* berr, - lapack_int n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int nparams, - double* params, double* work, - lapack_int* iwork ); -lapack_int LAPACKE_cgbrfsx_work( int matrix_order, char trans, char equed, - lapack_int n, lapack_int kl, lapack_int ku, - lapack_int nrhs, - const lapack_complex_float* ab, - lapack_int ldab, - const lapack_complex_float* afb, - lapack_int ldafb, const lapack_int* ipiv, - const float* r, const float* c, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* rcond, float* berr, - lapack_int n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int nparams, - float* params, lapack_complex_float* work, - float* rwork ); -lapack_int LAPACKE_zgbrfsx_work( int matrix_order, char trans, char equed, - lapack_int n, lapack_int kl, lapack_int ku, - lapack_int nrhs, - const lapack_complex_double* ab, - lapack_int ldab, - const lapack_complex_double* afb, - lapack_int ldafb, const lapack_int* ipiv, - const double* r, const double* c, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* berr, - lapack_int n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int nparams, - double* params, lapack_complex_double* work, - double* rwork ); - -lapack_int LAPACKE_sgbsv_work( int matrix_order, lapack_int n, lapack_int kl, - lapack_int ku, lapack_int nrhs, float* ab, - lapack_int ldab, lapack_int* ipiv, float* b, - lapack_int ldb ); -lapack_int LAPACKE_dgbsv_work( int matrix_order, lapack_int n, lapack_int kl, - lapack_int ku, lapack_int nrhs, double* ab, - lapack_int ldab, lapack_int* ipiv, double* b, - lapack_int ldb ); -lapack_int LAPACKE_cgbsv_work( int matrix_order, lapack_int n, lapack_int kl, - lapack_int ku, lapack_int nrhs, - lapack_complex_float* ab, lapack_int ldab, - lapack_int* ipiv, lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_zgbsv_work( int matrix_order, lapack_int n, lapack_int kl, - lapack_int ku, lapack_int nrhs, - lapack_complex_double* ab, lapack_int ldab, - lapack_int* ipiv, lapack_complex_double* b, - lapack_int ldb ); - -lapack_int LAPACKE_sgbsvx_work( int matrix_order, char fact, char trans, - lapack_int n, lapack_int kl, lapack_int ku, - lapack_int nrhs, float* ab, lapack_int ldab, - float* afb, lapack_int ldafb, lapack_int* ipiv, - char* equed, float* r, float* c, float* b, - lapack_int ldb, float* x, lapack_int ldx, - float* rcond, float* ferr, float* berr, - float* work, lapack_int* iwork ); -lapack_int LAPACKE_dgbsvx_work( int matrix_order, char fact, char trans, - lapack_int n, lapack_int kl, lapack_int ku, - lapack_int nrhs, double* ab, lapack_int ldab, - double* afb, lapack_int ldafb, lapack_int* ipiv, - char* equed, double* r, double* c, double* b, - lapack_int ldb, double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr, - double* work, lapack_int* iwork ); -lapack_int LAPACKE_cgbsvx_work( int matrix_order, char fact, char trans, - lapack_int n, lapack_int kl, lapack_int ku, - lapack_int nrhs, lapack_complex_float* ab, - lapack_int ldab, lapack_complex_float* afb, - lapack_int ldafb, lapack_int* ipiv, char* equed, - float* r, float* c, lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* x, - lapack_int ldx, float* rcond, float* ferr, - float* berr, lapack_complex_float* work, - float* rwork ); -lapack_int LAPACKE_zgbsvx_work( int matrix_order, char fact, char trans, - lapack_int n, lapack_int kl, lapack_int ku, - lapack_int nrhs, lapack_complex_double* ab, - lapack_int ldab, lapack_complex_double* afb, - lapack_int ldafb, lapack_int* ipiv, char* equed, - double* r, double* c, lapack_complex_double* b, - lapack_int ldb, lapack_complex_double* x, - lapack_int ldx, double* rcond, double* ferr, - double* berr, lapack_complex_double* work, - double* rwork ); - -lapack_int LAPACKE_sgbsvxx_work( int matrix_order, char fact, char trans, - lapack_int n, lapack_int kl, lapack_int ku, - lapack_int nrhs, float* ab, lapack_int ldab, - float* afb, lapack_int ldafb, lapack_int* ipiv, - char* equed, float* r, float* c, float* b, - lapack_int ldb, float* x, lapack_int ldx, - float* rcond, float* rpvgrw, float* berr, - lapack_int n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int nparams, - float* params, float* work, - lapack_int* iwork ); -lapack_int LAPACKE_dgbsvxx_work( int matrix_order, char fact, char trans, - lapack_int n, lapack_int kl, lapack_int ku, - lapack_int nrhs, double* ab, lapack_int ldab, - double* afb, lapack_int ldafb, - lapack_int* ipiv, char* equed, double* r, - double* c, double* b, lapack_int ldb, - double* x, lapack_int ldx, double* rcond, - double* rpvgrw, double* berr, - lapack_int n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int nparams, - double* params, double* work, - lapack_int* iwork ); -lapack_int LAPACKE_cgbsvxx_work( int matrix_order, char fact, char trans, - lapack_int n, lapack_int kl, lapack_int ku, - lapack_int nrhs, lapack_complex_float* ab, - lapack_int ldab, lapack_complex_float* afb, - lapack_int ldafb, lapack_int* ipiv, - char* equed, float* r, float* c, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* rcond, float* rpvgrw, float* berr, - lapack_int n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int nparams, - float* params, lapack_complex_float* work, - float* rwork ); -lapack_int LAPACKE_zgbsvxx_work( int matrix_order, char fact, char trans, - lapack_int n, lapack_int kl, lapack_int ku, - lapack_int nrhs, lapack_complex_double* ab, - lapack_int ldab, lapack_complex_double* afb, - lapack_int ldafb, lapack_int* ipiv, - char* equed, double* r, double* c, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* rpvgrw, double* berr, - lapack_int n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int nparams, - double* params, lapack_complex_double* work, - double* rwork ); - -lapack_int LAPACKE_sgbtrf_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, float* ab, - lapack_int ldab, lapack_int* ipiv ); -lapack_int LAPACKE_dgbtrf_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, double* ab, - lapack_int ldab, lapack_int* ipiv ); -lapack_int LAPACKE_cgbtrf_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, - lapack_complex_float* ab, lapack_int ldab, - lapack_int* ipiv ); -lapack_int LAPACKE_zgbtrf_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, - lapack_complex_double* ab, lapack_int ldab, - lapack_int* ipiv ); - -lapack_int LAPACKE_sgbtrs_work( int matrix_order, char trans, lapack_int n, - lapack_int kl, lapack_int ku, lapack_int nrhs, - const float* ab, lapack_int ldab, - const lapack_int* ipiv, float* b, - lapack_int ldb ); -lapack_int LAPACKE_dgbtrs_work( int matrix_order, char trans, lapack_int n, - lapack_int kl, lapack_int ku, lapack_int nrhs, - const double* ab, lapack_int ldab, - const lapack_int* ipiv, double* b, - lapack_int ldb ); -lapack_int LAPACKE_cgbtrs_work( int matrix_order, char trans, lapack_int n, - lapack_int kl, lapack_int ku, lapack_int nrhs, - const lapack_complex_float* ab, lapack_int ldab, - const lapack_int* ipiv, lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_zgbtrs_work( int matrix_order, char trans, lapack_int n, - lapack_int kl, lapack_int ku, lapack_int nrhs, - const lapack_complex_double* ab, - lapack_int ldab, const lapack_int* ipiv, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_sgebak_work( int matrix_order, char job, char side, - lapack_int n, lapack_int ilo, lapack_int ihi, - const float* scale, lapack_int m, float* v, - lapack_int ldv ); -lapack_int LAPACKE_dgebak_work( int matrix_order, char job, char side, - lapack_int n, lapack_int ilo, lapack_int ihi, - const double* scale, lapack_int m, double* v, - lapack_int ldv ); -lapack_int LAPACKE_cgebak_work( int matrix_order, char job, char side, - lapack_int n, lapack_int ilo, lapack_int ihi, - const float* scale, lapack_int m, - lapack_complex_float* v, lapack_int ldv ); -lapack_int LAPACKE_zgebak_work( int matrix_order, char job, char side, - lapack_int n, lapack_int ilo, lapack_int ihi, - const double* scale, lapack_int m, - lapack_complex_double* v, lapack_int ldv ); - -lapack_int LAPACKE_sgebal_work( int matrix_order, char job, lapack_int n, - float* a, lapack_int lda, lapack_int* ilo, - lapack_int* ihi, float* scale ); -lapack_int LAPACKE_dgebal_work( int matrix_order, char job, lapack_int n, - double* a, lapack_int lda, lapack_int* ilo, - lapack_int* ihi, double* scale ); -lapack_int LAPACKE_cgebal_work( int matrix_order, char job, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_int* ilo, lapack_int* ihi, - float* scale ); -lapack_int LAPACKE_zgebal_work( int matrix_order, char job, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_int* ilo, lapack_int* ihi, - double* scale ); - -lapack_int LAPACKE_sgebrd_work( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, float* d, float* e, - float* tauq, float* taup, float* work, - lapack_int lwork ); -lapack_int LAPACKE_dgebrd_work( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, double* d, double* e, - double* tauq, double* taup, double* work, - lapack_int lwork ); -lapack_int LAPACKE_cgebrd_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - float* d, float* e, lapack_complex_float* tauq, - lapack_complex_float* taup, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zgebrd_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - double* d, double* e, - lapack_complex_double* tauq, - lapack_complex_double* taup, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_sgecon_work( int matrix_order, char norm, lapack_int n, - const float* a, lapack_int lda, float anorm, - float* rcond, float* work, lapack_int* iwork ); -lapack_int LAPACKE_dgecon_work( int matrix_order, char norm, lapack_int n, - const double* a, lapack_int lda, double anorm, - double* rcond, double* work, - lapack_int* iwork ); -lapack_int LAPACKE_cgecon_work( int matrix_order, char norm, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - float anorm, float* rcond, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_zgecon_work( int matrix_order, char norm, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - double anorm, double* rcond, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_sgeequ_work( int matrix_order, lapack_int m, lapack_int n, - const float* a, lapack_int lda, float* r, - float* c, float* rowcnd, float* colcnd, - float* amax ); -lapack_int LAPACKE_dgeequ_work( int matrix_order, lapack_int m, lapack_int n, - const double* a, lapack_int lda, double* r, - double* c, double* rowcnd, double* colcnd, - double* amax ); -lapack_int LAPACKE_cgeequ_work( int matrix_order, lapack_int m, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - float* r, float* c, float* rowcnd, - float* colcnd, float* amax ); -lapack_int LAPACKE_zgeequ_work( int matrix_order, lapack_int m, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - double* r, double* c, double* rowcnd, - double* colcnd, double* amax ); - -lapack_int LAPACKE_sgeequb_work( int matrix_order, lapack_int m, lapack_int n, - const float* a, lapack_int lda, float* r, - float* c, float* rowcnd, float* colcnd, - float* amax ); -lapack_int LAPACKE_dgeequb_work( int matrix_order, lapack_int m, lapack_int n, - const double* a, lapack_int lda, double* r, - double* c, double* rowcnd, double* colcnd, - double* amax ); -lapack_int LAPACKE_cgeequb_work( int matrix_order, lapack_int m, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - float* r, float* c, float* rowcnd, - float* colcnd, float* amax ); -lapack_int LAPACKE_zgeequb_work( int matrix_order, lapack_int m, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - double* r, double* c, double* rowcnd, - double* colcnd, double* amax ); - -lapack_int LAPACKE_sgees_work( int matrix_order, char jobvs, char sort, - LAPACK_S_SELECT2 select, lapack_int n, float* a, - lapack_int lda, lapack_int* sdim, float* wr, - float* wi, float* vs, lapack_int ldvs, - float* work, lapack_int lwork, - lapack_logical* bwork ); -lapack_int LAPACKE_dgees_work( int matrix_order, char jobvs, char sort, - LAPACK_D_SELECT2 select, lapack_int n, double* a, - lapack_int lda, lapack_int* sdim, double* wr, - double* wi, double* vs, lapack_int ldvs, - double* work, lapack_int lwork, - lapack_logical* bwork ); -lapack_int LAPACKE_cgees_work( int matrix_order, char jobvs, char sort, - LAPACK_C_SELECT1 select, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_int* sdim, lapack_complex_float* w, - lapack_complex_float* vs, lapack_int ldvs, - lapack_complex_float* work, lapack_int lwork, - float* rwork, lapack_logical* bwork ); -lapack_int LAPACKE_zgees_work( int matrix_order, char jobvs, char sort, - LAPACK_Z_SELECT1 select, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_int* sdim, lapack_complex_double* w, - lapack_complex_double* vs, lapack_int ldvs, - lapack_complex_double* work, lapack_int lwork, - double* rwork, lapack_logical* bwork ); - -lapack_int LAPACKE_sgeesx_work( int matrix_order, char jobvs, char sort, - LAPACK_S_SELECT2 select, char sense, - lapack_int n, float* a, lapack_int lda, - lapack_int* sdim, float* wr, float* wi, - float* vs, lapack_int ldvs, float* rconde, - float* rcondv, float* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork, - lapack_logical* bwork ); -lapack_int LAPACKE_dgeesx_work( int matrix_order, char jobvs, char sort, - LAPACK_D_SELECT2 select, char sense, - lapack_int n, double* a, lapack_int lda, - lapack_int* sdim, double* wr, double* wi, - double* vs, lapack_int ldvs, double* rconde, - double* rcondv, double* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork, - lapack_logical* bwork ); -lapack_int LAPACKE_cgeesx_work( int matrix_order, char jobvs, char sort, - LAPACK_C_SELECT1 select, char sense, - lapack_int n, lapack_complex_float* a, - lapack_int lda, lapack_int* sdim, - lapack_complex_float* w, - lapack_complex_float* vs, lapack_int ldvs, - float* rconde, float* rcondv, - lapack_complex_float* work, lapack_int lwork, - float* rwork, lapack_logical* bwork ); -lapack_int LAPACKE_zgeesx_work( int matrix_order, char jobvs, char sort, - LAPACK_Z_SELECT1 select, char sense, - lapack_int n, lapack_complex_double* a, - lapack_int lda, lapack_int* sdim, - lapack_complex_double* w, - lapack_complex_double* vs, lapack_int ldvs, - double* rconde, double* rcondv, - lapack_complex_double* work, lapack_int lwork, - double* rwork, lapack_logical* bwork ); - -lapack_int LAPACKE_sgeev_work( int matrix_order, char jobvl, char jobvr, - lapack_int n, float* a, lapack_int lda, - float* wr, float* wi, float* vl, lapack_int ldvl, - float* vr, lapack_int ldvr, float* work, - lapack_int lwork ); -lapack_int LAPACKE_dgeev_work( int matrix_order, char jobvl, char jobvr, - lapack_int n, double* a, lapack_int lda, - double* wr, double* wi, double* vl, - lapack_int ldvl, double* vr, lapack_int ldvr, - double* work, lapack_int lwork ); -lapack_int LAPACKE_cgeev_work( int matrix_order, char jobvl, char jobvr, - lapack_int n, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* w, - lapack_complex_float* vl, lapack_int ldvl, - lapack_complex_float* vr, lapack_int ldvr, - lapack_complex_float* work, lapack_int lwork, - float* rwork ); -lapack_int LAPACKE_zgeev_work( int matrix_order, char jobvl, char jobvr, - lapack_int n, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* w, - lapack_complex_double* vl, lapack_int ldvl, - lapack_complex_double* vr, lapack_int ldvr, - lapack_complex_double* work, lapack_int lwork, - double* rwork ); - -lapack_int LAPACKE_sgeevx_work( int matrix_order, char balanc, char jobvl, - char jobvr, char sense, lapack_int n, float* a, - lapack_int lda, float* wr, float* wi, float* vl, - lapack_int ldvl, float* vr, lapack_int ldvr, - lapack_int* ilo, lapack_int* ihi, float* scale, - float* abnrm, float* rconde, float* rcondv, - float* work, lapack_int lwork, - lapack_int* iwork ); -lapack_int LAPACKE_dgeevx_work( int matrix_order, char balanc, char jobvl, - char jobvr, char sense, lapack_int n, double* a, - lapack_int lda, double* wr, double* wi, - double* vl, lapack_int ldvl, double* vr, - lapack_int ldvr, lapack_int* ilo, - lapack_int* ihi, double* scale, double* abnrm, - double* rconde, double* rcondv, double* work, - lapack_int lwork, lapack_int* iwork ); -lapack_int LAPACKE_cgeevx_work( int matrix_order, char balanc, char jobvl, - char jobvr, char sense, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* w, - lapack_complex_float* vl, lapack_int ldvl, - lapack_complex_float* vr, lapack_int ldvr, - lapack_int* ilo, lapack_int* ihi, float* scale, - float* abnrm, float* rconde, float* rcondv, - lapack_complex_float* work, lapack_int lwork, - float* rwork ); -lapack_int LAPACKE_zgeevx_work( int matrix_order, char balanc, char jobvl, - char jobvr, char sense, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* w, - lapack_complex_double* vl, lapack_int ldvl, - lapack_complex_double* vr, lapack_int ldvr, - lapack_int* ilo, lapack_int* ihi, double* scale, - double* abnrm, double* rconde, double* rcondv, - lapack_complex_double* work, lapack_int lwork, - double* rwork ); - -lapack_int LAPACKE_sgehrd_work( int matrix_order, lapack_int n, lapack_int ilo, - lapack_int ihi, float* a, lapack_int lda, - float* tau, float* work, lapack_int lwork ); -lapack_int LAPACKE_dgehrd_work( int matrix_order, lapack_int n, lapack_int ilo, - lapack_int ihi, double* a, lapack_int lda, - double* tau, double* work, lapack_int lwork ); -lapack_int LAPACKE_cgehrd_work( int matrix_order, lapack_int n, lapack_int ilo, - lapack_int ihi, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* tau, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zgehrd_work( int matrix_order, lapack_int n, lapack_int ilo, - lapack_int ihi, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* tau, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_sgejsv_work( int matrix_order, char joba, char jobu, - char jobv, char jobr, char jobt, char jobp, - lapack_int m, lapack_int n, float* a, - lapack_int lda, float* sva, float* u, - lapack_int ldu, float* v, lapack_int ldv, - float* work, lapack_int lwork, - lapack_int* iwork ); -lapack_int LAPACKE_dgejsv_work( int matrix_order, char joba, char jobu, - char jobv, char jobr, char jobt, char jobp, - lapack_int m, lapack_int n, double* a, - lapack_int lda, double* sva, double* u, - lapack_int ldu, double* v, lapack_int ldv, - double* work, lapack_int lwork, - lapack_int* iwork ); - -lapack_int LAPACKE_sgelq2_work( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, float* tau, - float* work ); -lapack_int LAPACKE_dgelq2_work( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, double* tau, - double* work ); -lapack_int LAPACKE_cgelq2_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* tau, - lapack_complex_float* work ); -lapack_int LAPACKE_zgelq2_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* tau, - lapack_complex_double* work ); - -lapack_int LAPACKE_sgelqf_work( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, float* tau, - float* work, lapack_int lwork ); -lapack_int LAPACKE_dgelqf_work( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, double* tau, - double* work, lapack_int lwork ); -lapack_int LAPACKE_cgelqf_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* tau, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zgelqf_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* tau, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_sgels_work( int matrix_order, char trans, lapack_int m, - lapack_int n, lapack_int nrhs, float* a, - lapack_int lda, float* b, lapack_int ldb, - float* work, lapack_int lwork ); -lapack_int LAPACKE_dgels_work( int matrix_order, char trans, lapack_int m, - lapack_int n, lapack_int nrhs, double* a, - lapack_int lda, double* b, lapack_int ldb, - double* work, lapack_int lwork ); -lapack_int LAPACKE_cgels_work( int matrix_order, char trans, lapack_int m, - lapack_int n, lapack_int nrhs, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zgels_work( int matrix_order, char trans, lapack_int m, - lapack_int n, lapack_int nrhs, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_sgelsd_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int nrhs, float* a, lapack_int lda, - float* b, lapack_int ldb, float* s, float rcond, - lapack_int* rank, float* work, lapack_int lwork, - lapack_int* iwork ); -lapack_int LAPACKE_dgelsd_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int nrhs, double* a, lapack_int lda, - double* b, lapack_int ldb, double* s, - double rcond, lapack_int* rank, double* work, - lapack_int lwork, lapack_int* iwork ); -lapack_int LAPACKE_cgelsd_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int nrhs, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* b, - lapack_int ldb, float* s, float rcond, - lapack_int* rank, lapack_complex_float* work, - lapack_int lwork, float* rwork, - lapack_int* iwork ); -lapack_int LAPACKE_zgelsd_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int nrhs, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb, double* s, double rcond, - lapack_int* rank, lapack_complex_double* work, - lapack_int lwork, double* rwork, - lapack_int* iwork ); - -lapack_int LAPACKE_sgelss_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int nrhs, float* a, lapack_int lda, - float* b, lapack_int ldb, float* s, float rcond, - lapack_int* rank, float* work, - lapack_int lwork ); -lapack_int LAPACKE_dgelss_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int nrhs, double* a, lapack_int lda, - double* b, lapack_int ldb, double* s, - double rcond, lapack_int* rank, double* work, - lapack_int lwork ); -lapack_int LAPACKE_cgelss_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int nrhs, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* b, - lapack_int ldb, float* s, float rcond, - lapack_int* rank, lapack_complex_float* work, - lapack_int lwork, float* rwork ); -lapack_int LAPACKE_zgelss_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int nrhs, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb, double* s, double rcond, - lapack_int* rank, lapack_complex_double* work, - lapack_int lwork, double* rwork ); - -lapack_int LAPACKE_sgelsy_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int nrhs, float* a, lapack_int lda, - float* b, lapack_int ldb, lapack_int* jpvt, - float rcond, lapack_int* rank, float* work, - lapack_int lwork ); -lapack_int LAPACKE_dgelsy_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int nrhs, double* a, lapack_int lda, - double* b, lapack_int ldb, lapack_int* jpvt, - double rcond, lapack_int* rank, double* work, - lapack_int lwork ); -lapack_int LAPACKE_cgelsy_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int nrhs, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* b, - lapack_int ldb, lapack_int* jpvt, float rcond, - lapack_int* rank, lapack_complex_float* work, - lapack_int lwork, float* rwork ); -lapack_int LAPACKE_zgelsy_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int nrhs, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb, lapack_int* jpvt, double rcond, - lapack_int* rank, lapack_complex_double* work, - lapack_int lwork, double* rwork ); - -lapack_int LAPACKE_sgeqlf_work( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, float* tau, - float* work, lapack_int lwork ); -lapack_int LAPACKE_dgeqlf_work( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, double* tau, - double* work, lapack_int lwork ); -lapack_int LAPACKE_cgeqlf_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* tau, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zgeqlf_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* tau, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_sgeqp3_work( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, lapack_int* jpvt, - float* tau, float* work, lapack_int lwork ); -lapack_int LAPACKE_dgeqp3_work( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, lapack_int* jpvt, - double* tau, double* work, lapack_int lwork ); -lapack_int LAPACKE_cgeqp3_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_int* jpvt, lapack_complex_float* tau, - lapack_complex_float* work, lapack_int lwork, - float* rwork ); -lapack_int LAPACKE_zgeqp3_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_int* jpvt, lapack_complex_double* tau, - lapack_complex_double* work, lapack_int lwork, - double* rwork ); - -lapack_int LAPACKE_sgeqpf_work( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, lapack_int* jpvt, - float* tau, float* work ); -lapack_int LAPACKE_dgeqpf_work( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, lapack_int* jpvt, - double* tau, double* work ); -lapack_int LAPACKE_cgeqpf_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_int* jpvt, lapack_complex_float* tau, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_zgeqpf_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_int* jpvt, lapack_complex_double* tau, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_sgeqr2_work( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, float* tau, - float* work ); -lapack_int LAPACKE_dgeqr2_work( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, double* tau, - double* work ); -lapack_int LAPACKE_cgeqr2_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* tau, - lapack_complex_float* work ); -lapack_int LAPACKE_zgeqr2_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* tau, - lapack_complex_double* work ); - -lapack_int LAPACKE_sgeqrf_work( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, float* tau, - float* work, lapack_int lwork ); -lapack_int LAPACKE_dgeqrf_work( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, double* tau, - double* work, lapack_int lwork ); -lapack_int LAPACKE_cgeqrf_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* tau, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zgeqrf_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* tau, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_sgeqrfp_work( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, float* tau, - float* work, lapack_int lwork ); -lapack_int LAPACKE_dgeqrfp_work( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, double* tau, - double* work, lapack_int lwork ); -lapack_int LAPACKE_cgeqrfp_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* tau, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zgeqrfp_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* tau, - lapack_complex_double* work, - lapack_int lwork ); - -lapack_int LAPACKE_sgerfs_work( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const float* a, lapack_int lda, - const float* af, lapack_int ldaf, - const lapack_int* ipiv, const float* b, - lapack_int ldb, float* x, lapack_int ldx, - float* ferr, float* berr, float* work, - lapack_int* iwork ); -lapack_int LAPACKE_dgerfs_work( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const double* a, - lapack_int lda, const double* af, - lapack_int ldaf, const lapack_int* ipiv, - const double* b, lapack_int ldb, double* x, - lapack_int ldx, double* ferr, double* berr, - double* work, lapack_int* iwork ); -lapack_int LAPACKE_cgerfs_work( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* af, - lapack_int ldaf, const lapack_int* ipiv, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* ferr, float* berr, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_zgerfs_work( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const lapack_complex_double* a, - lapack_int lda, const lapack_complex_double* af, - lapack_int ldaf, const lapack_int* ipiv, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* ferr, double* berr, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_sgerfsx_work( int matrix_order, char trans, char equed, - lapack_int n, lapack_int nrhs, const float* a, - lapack_int lda, const float* af, - lapack_int ldaf, const lapack_int* ipiv, - const float* r, const float* c, const float* b, - lapack_int ldb, float* x, lapack_int ldx, - float* rcond, float* berr, - lapack_int n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int nparams, - float* params, float* work, - lapack_int* iwork ); -lapack_int LAPACKE_dgerfsx_work( int matrix_order, char trans, char equed, - lapack_int n, lapack_int nrhs, const double* a, - lapack_int lda, const double* af, - lapack_int ldaf, const lapack_int* ipiv, - const double* r, const double* c, - const double* b, lapack_int ldb, double* x, - lapack_int ldx, double* rcond, double* berr, - lapack_int n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int nparams, - double* params, double* work, - lapack_int* iwork ); -lapack_int LAPACKE_cgerfsx_work( int matrix_order, char trans, char equed, - lapack_int n, lapack_int nrhs, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* af, - lapack_int ldaf, const lapack_int* ipiv, - const float* r, const float* c, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* rcond, float* berr, - lapack_int n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int nparams, - float* params, lapack_complex_float* work, - float* rwork ); -lapack_int LAPACKE_zgerfsx_work( int matrix_order, char trans, char equed, - lapack_int n, lapack_int nrhs, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* af, - lapack_int ldaf, const lapack_int* ipiv, - const double* r, const double* c, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* berr, - lapack_int n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int nparams, - double* params, lapack_complex_double* work, - double* rwork ); - -lapack_int LAPACKE_sgerqf_work( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, float* tau, - float* work, lapack_int lwork ); -lapack_int LAPACKE_dgerqf_work( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, double* tau, - double* work, lapack_int lwork ); -lapack_int LAPACKE_cgerqf_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* tau, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zgerqf_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* tau, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_sgesdd_work( int matrix_order, char jobz, lapack_int m, - lapack_int n, float* a, lapack_int lda, - float* s, float* u, lapack_int ldu, float* vt, - lapack_int ldvt, float* work, lapack_int lwork, - lapack_int* iwork ); -lapack_int LAPACKE_dgesdd_work( int matrix_order, char jobz, lapack_int m, - lapack_int n, double* a, lapack_int lda, - double* s, double* u, lapack_int ldu, - double* vt, lapack_int ldvt, double* work, - lapack_int lwork, lapack_int* iwork ); -lapack_int LAPACKE_cgesdd_work( int matrix_order, char jobz, lapack_int m, - lapack_int n, lapack_complex_float* a, - lapack_int lda, float* s, - lapack_complex_float* u, lapack_int ldu, - lapack_complex_float* vt, lapack_int ldvt, - lapack_complex_float* work, lapack_int lwork, - float* rwork, lapack_int* iwork ); -lapack_int LAPACKE_zgesdd_work( int matrix_order, char jobz, lapack_int m, - lapack_int n, lapack_complex_double* a, - lapack_int lda, double* s, - lapack_complex_double* u, lapack_int ldu, - lapack_complex_double* vt, lapack_int ldvt, - lapack_complex_double* work, lapack_int lwork, - double* rwork, lapack_int* iwork ); - -lapack_int LAPACKE_sgesv_work( int matrix_order, lapack_int n, lapack_int nrhs, - float* a, lapack_int lda, lapack_int* ipiv, - float* b, lapack_int ldb ); -lapack_int LAPACKE_dgesv_work( int matrix_order, lapack_int n, lapack_int nrhs, - double* a, lapack_int lda, lapack_int* ipiv, - double* b, lapack_int ldb ); -lapack_int LAPACKE_cgesv_work( int matrix_order, lapack_int n, lapack_int nrhs, - lapack_complex_float* a, lapack_int lda, - lapack_int* ipiv, lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_zgesv_work( int matrix_order, lapack_int n, lapack_int nrhs, - lapack_complex_double* a, lapack_int lda, - lapack_int* ipiv, lapack_complex_double* b, - lapack_int ldb ); -lapack_int LAPACKE_dsgesv_work( int matrix_order, lapack_int n, lapack_int nrhs, - double* a, lapack_int lda, lapack_int* ipiv, - double* b, lapack_int ldb, double* x, - lapack_int ldx, double* work, float* swork, - lapack_int* iter ); -lapack_int LAPACKE_zcgesv_work( int matrix_order, lapack_int n, lapack_int nrhs, - lapack_complex_double* a, lapack_int lda, - lapack_int* ipiv, lapack_complex_double* b, - lapack_int ldb, lapack_complex_double* x, - lapack_int ldx, lapack_complex_double* work, - lapack_complex_float* swork, double* rwork, - lapack_int* iter ); - -lapack_int LAPACKE_sgesvd_work( int matrix_order, char jobu, char jobvt, - lapack_int m, lapack_int n, float* a, - lapack_int lda, float* s, float* u, - lapack_int ldu, float* vt, lapack_int ldvt, - float* work, lapack_int lwork ); -lapack_int LAPACKE_dgesvd_work( int matrix_order, char jobu, char jobvt, - lapack_int m, lapack_int n, double* a, - lapack_int lda, double* s, double* u, - lapack_int ldu, double* vt, lapack_int ldvt, - double* work, lapack_int lwork ); -lapack_int LAPACKE_cgesvd_work( int matrix_order, char jobu, char jobvt, - lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - float* s, lapack_complex_float* u, - lapack_int ldu, lapack_complex_float* vt, - lapack_int ldvt, lapack_complex_float* work, - lapack_int lwork, float* rwork ); -lapack_int LAPACKE_zgesvd_work( int matrix_order, char jobu, char jobvt, - lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - double* s, lapack_complex_double* u, - lapack_int ldu, lapack_complex_double* vt, - lapack_int ldvt, lapack_complex_double* work, - lapack_int lwork, double* rwork ); - -lapack_int LAPACKE_sgesvj_work( int matrix_order, char joba, char jobu, - char jobv, lapack_int m, lapack_int n, float* a, - lapack_int lda, float* sva, lapack_int mv, - float* v, lapack_int ldv, float* work, - lapack_int lwork ); -lapack_int LAPACKE_dgesvj_work( int matrix_order, char joba, char jobu, - char jobv, lapack_int m, lapack_int n, - double* a, lapack_int lda, double* sva, - lapack_int mv, double* v, lapack_int ldv, - double* work, lapack_int lwork ); - -lapack_int LAPACKE_sgesvx_work( int matrix_order, char fact, char trans, - lapack_int n, lapack_int nrhs, float* a, - lapack_int lda, float* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, float* r, - float* c, float* b, lapack_int ldb, float* x, - lapack_int ldx, float* rcond, float* ferr, - float* berr, float* work, lapack_int* iwork ); -lapack_int LAPACKE_dgesvx_work( int matrix_order, char fact, char trans, - lapack_int n, lapack_int nrhs, double* a, - lapack_int lda, double* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, double* r, - double* c, double* b, lapack_int ldb, double* x, - lapack_int ldx, double* rcond, double* ferr, - double* berr, double* work, lapack_int* iwork ); -lapack_int LAPACKE_cgesvx_work( int matrix_order, char fact, char trans, - lapack_int n, lapack_int nrhs, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, float* r, - float* c, lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* x, - lapack_int ldx, float* rcond, float* ferr, - float* berr, lapack_complex_float* work, - float* rwork ); -lapack_int LAPACKE_zgesvx_work( int matrix_order, char fact, char trans, - lapack_int n, lapack_int nrhs, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, double* r, - double* c, lapack_complex_double* b, - lapack_int ldb, lapack_complex_double* x, - lapack_int ldx, double* rcond, double* ferr, - double* berr, lapack_complex_double* work, - double* rwork ); - -lapack_int LAPACKE_sgesvxx_work( int matrix_order, char fact, char trans, - lapack_int n, lapack_int nrhs, float* a, - lapack_int lda, float* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, float* r, - float* c, float* b, lapack_int ldb, float* x, - lapack_int ldx, float* rcond, float* rpvgrw, - float* berr, lapack_int n_err_bnds, - float* err_bnds_norm, float* err_bnds_comp, - lapack_int nparams, float* params, float* work, - lapack_int* iwork ); -lapack_int LAPACKE_dgesvxx_work( int matrix_order, char fact, char trans, - lapack_int n, lapack_int nrhs, double* a, - lapack_int lda, double* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, double* r, - double* c, double* b, lapack_int ldb, - double* x, lapack_int ldx, double* rcond, - double* rpvgrw, double* berr, - lapack_int n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int nparams, - double* params, double* work, - lapack_int* iwork ); -lapack_int LAPACKE_cgesvxx_work( int matrix_order, char fact, char trans, - lapack_int n, lapack_int nrhs, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, float* r, - float* c, lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* x, - lapack_int ldx, float* rcond, float* rpvgrw, - float* berr, lapack_int n_err_bnds, - float* err_bnds_norm, float* err_bnds_comp, - lapack_int nparams, float* params, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_zgesvxx_work( int matrix_order, char fact, char trans, - lapack_int n, lapack_int nrhs, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, double* r, - double* c, lapack_complex_double* b, - lapack_int ldb, lapack_complex_double* x, - lapack_int ldx, double* rcond, double* rpvgrw, - double* berr, lapack_int n_err_bnds, - double* err_bnds_norm, double* err_bnds_comp, - lapack_int nparams, double* params, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_sgetf2_work( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, lapack_int* ipiv ); -lapack_int LAPACKE_dgetf2_work( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, lapack_int* ipiv ); -lapack_int LAPACKE_cgetf2_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_int* ipiv ); -lapack_int LAPACKE_zgetf2_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_int* ipiv ); - -lapack_int LAPACKE_sgetrf_work( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, lapack_int* ipiv ); -lapack_int LAPACKE_dgetrf_work( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, lapack_int* ipiv ); -lapack_int LAPACKE_cgetrf_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_int* ipiv ); -lapack_int LAPACKE_zgetrf_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_int* ipiv ); - -lapack_int LAPACKE_sgetri_work( int matrix_order, lapack_int n, float* a, - lapack_int lda, const lapack_int* ipiv, - float* work, lapack_int lwork ); -lapack_int LAPACKE_dgetri_work( int matrix_order, lapack_int n, double* a, - lapack_int lda, const lapack_int* ipiv, - double* work, lapack_int lwork ); -lapack_int LAPACKE_cgetri_work( int matrix_order, lapack_int n, - lapack_complex_float* a, lapack_int lda, - const lapack_int* ipiv, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zgetri_work( int matrix_order, lapack_int n, - lapack_complex_double* a, lapack_int lda, - const lapack_int* ipiv, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_sgetrs_work( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const float* a, lapack_int lda, - const lapack_int* ipiv, float* b, - lapack_int ldb ); -lapack_int LAPACKE_dgetrs_work( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const double* a, - lapack_int lda, const lapack_int* ipiv, - double* b, lapack_int ldb ); -lapack_int LAPACKE_cgetrs_work( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const lapack_complex_float* a, - lapack_int lda, const lapack_int* ipiv, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_zgetrs_work( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const lapack_complex_double* a, - lapack_int lda, const lapack_int* ipiv, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_sggbak_work( int matrix_order, char job, char side, - lapack_int n, lapack_int ilo, lapack_int ihi, - const float* lscale, const float* rscale, - lapack_int m, float* v, lapack_int ldv ); -lapack_int LAPACKE_dggbak_work( int matrix_order, char job, char side, - lapack_int n, lapack_int ilo, lapack_int ihi, - const double* lscale, const double* rscale, - lapack_int m, double* v, lapack_int ldv ); -lapack_int LAPACKE_cggbak_work( int matrix_order, char job, char side, - lapack_int n, lapack_int ilo, lapack_int ihi, - const float* lscale, const float* rscale, - lapack_int m, lapack_complex_float* v, - lapack_int ldv ); -lapack_int LAPACKE_zggbak_work( int matrix_order, char job, char side, - lapack_int n, lapack_int ilo, lapack_int ihi, - const double* lscale, const double* rscale, - lapack_int m, lapack_complex_double* v, - lapack_int ldv ); - -lapack_int LAPACKE_sggbal_work( int matrix_order, char job, lapack_int n, - float* a, lapack_int lda, float* b, - lapack_int ldb, lapack_int* ilo, - lapack_int* ihi, float* lscale, float* rscale, - float* work ); -lapack_int LAPACKE_dggbal_work( int matrix_order, char job, lapack_int n, - double* a, lapack_int lda, double* b, - lapack_int ldb, lapack_int* ilo, - lapack_int* ihi, double* lscale, double* rscale, - double* work ); -lapack_int LAPACKE_cggbal_work( int matrix_order, char job, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, - lapack_int* ilo, lapack_int* ihi, float* lscale, - float* rscale, float* work ); -lapack_int LAPACKE_zggbal_work( int matrix_order, char job, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - lapack_int* ilo, lapack_int* ihi, - double* lscale, double* rscale, double* work ); - -lapack_int LAPACKE_sgges_work( int matrix_order, char jobvsl, char jobvsr, - char sort, LAPACK_S_SELECT3 selctg, lapack_int n, - float* a, lapack_int lda, float* b, - lapack_int ldb, lapack_int* sdim, float* alphar, - float* alphai, float* beta, float* vsl, - lapack_int ldvsl, float* vsr, lapack_int ldvsr, - float* work, lapack_int lwork, - lapack_logical* bwork ); -lapack_int LAPACKE_dgges_work( int matrix_order, char jobvsl, char jobvsr, - char sort, LAPACK_D_SELECT3 selctg, lapack_int n, - double* a, lapack_int lda, double* b, - lapack_int ldb, lapack_int* sdim, double* alphar, - double* alphai, double* beta, double* vsl, - lapack_int ldvsl, double* vsr, lapack_int ldvsr, - double* work, lapack_int lwork, - lapack_logical* bwork ); -lapack_int LAPACKE_cgges_work( int matrix_order, char jobvsl, char jobvsr, - char sort, LAPACK_C_SELECT2 selctg, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, - lapack_int* sdim, lapack_complex_float* alpha, - lapack_complex_float* beta, - lapack_complex_float* vsl, lapack_int ldvsl, - lapack_complex_float* vsr, lapack_int ldvsr, - lapack_complex_float* work, lapack_int lwork, - float* rwork, lapack_logical* bwork ); -lapack_int LAPACKE_zgges_work( int matrix_order, char jobvsl, char jobvsr, - char sort, LAPACK_Z_SELECT2 selctg, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - lapack_int* sdim, lapack_complex_double* alpha, - lapack_complex_double* beta, - lapack_complex_double* vsl, lapack_int ldvsl, - lapack_complex_double* vsr, lapack_int ldvsr, - lapack_complex_double* work, lapack_int lwork, - double* rwork, lapack_logical* bwork ); - -lapack_int LAPACKE_sggesx_work( int matrix_order, char jobvsl, char jobvsr, - char sort, LAPACK_S_SELECT3 selctg, char sense, - lapack_int n, float* a, lapack_int lda, - float* b, lapack_int ldb, lapack_int* sdim, - float* alphar, float* alphai, float* beta, - float* vsl, lapack_int ldvsl, float* vsr, - lapack_int ldvsr, float* rconde, float* rcondv, - float* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork, - lapack_logical* bwork ); -lapack_int LAPACKE_dggesx_work( int matrix_order, char jobvsl, char jobvsr, - char sort, LAPACK_D_SELECT3 selctg, char sense, - lapack_int n, double* a, lapack_int lda, - double* b, lapack_int ldb, lapack_int* sdim, - double* alphar, double* alphai, double* beta, - double* vsl, lapack_int ldvsl, double* vsr, - lapack_int ldvsr, double* rconde, - double* rcondv, double* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork, - lapack_logical* bwork ); -lapack_int LAPACKE_cggesx_work( int matrix_order, char jobvsl, char jobvsr, - char sort, LAPACK_C_SELECT2 selctg, char sense, - lapack_int n, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* b, - lapack_int ldb, lapack_int* sdim, - lapack_complex_float* alpha, - lapack_complex_float* beta, - lapack_complex_float* vsl, lapack_int ldvsl, - lapack_complex_float* vsr, lapack_int ldvsr, - float* rconde, float* rcondv, - lapack_complex_float* work, lapack_int lwork, - float* rwork, lapack_int* iwork, - lapack_int liwork, lapack_logical* bwork ); -lapack_int LAPACKE_zggesx_work( int matrix_order, char jobvsl, char jobvsr, - char sort, LAPACK_Z_SELECT2 selctg, char sense, - lapack_int n, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb, lapack_int* sdim, - lapack_complex_double* alpha, - lapack_complex_double* beta, - lapack_complex_double* vsl, lapack_int ldvsl, - lapack_complex_double* vsr, lapack_int ldvsr, - double* rconde, double* rcondv, - lapack_complex_double* work, lapack_int lwork, - double* rwork, lapack_int* iwork, - lapack_int liwork, lapack_logical* bwork ); - -lapack_int LAPACKE_sggev_work( int matrix_order, char jobvl, char jobvr, - lapack_int n, float* a, lapack_int lda, float* b, - lapack_int ldb, float* alphar, float* alphai, - float* beta, float* vl, lapack_int ldvl, - float* vr, lapack_int ldvr, float* work, - lapack_int lwork ); -lapack_int LAPACKE_dggev_work( int matrix_order, char jobvl, char jobvr, - lapack_int n, double* a, lapack_int lda, - double* b, lapack_int ldb, double* alphar, - double* alphai, double* beta, double* vl, - lapack_int ldvl, double* vr, lapack_int ldvr, - double* work, lapack_int lwork ); -lapack_int LAPACKE_cggev_work( int matrix_order, char jobvl, char jobvr, - lapack_int n, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* alpha, - lapack_complex_float* beta, - lapack_complex_float* vl, lapack_int ldvl, - lapack_complex_float* vr, lapack_int ldvr, - lapack_complex_float* work, lapack_int lwork, - float* rwork ); -lapack_int LAPACKE_zggev_work( int matrix_order, char jobvl, char jobvr, - lapack_int n, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb, lapack_complex_double* alpha, - lapack_complex_double* beta, - lapack_complex_double* vl, lapack_int ldvl, - lapack_complex_double* vr, lapack_int ldvr, - lapack_complex_double* work, lapack_int lwork, - double* rwork ); - -lapack_int LAPACKE_sggevx_work( int matrix_order, char balanc, char jobvl, - char jobvr, char sense, lapack_int n, float* a, - lapack_int lda, float* b, lapack_int ldb, - float* alphar, float* alphai, float* beta, - float* vl, lapack_int ldvl, float* vr, - lapack_int ldvr, lapack_int* ilo, - lapack_int* ihi, float* lscale, float* rscale, - float* abnrm, float* bbnrm, float* rconde, - float* rcondv, float* work, lapack_int lwork, - lapack_int* iwork, lapack_logical* bwork ); -lapack_int LAPACKE_dggevx_work( int matrix_order, char balanc, char jobvl, - char jobvr, char sense, lapack_int n, double* a, - lapack_int lda, double* b, lapack_int ldb, - double* alphar, double* alphai, double* beta, - double* vl, lapack_int ldvl, double* vr, - lapack_int ldvr, lapack_int* ilo, - lapack_int* ihi, double* lscale, double* rscale, - double* abnrm, double* bbnrm, double* rconde, - double* rcondv, double* work, lapack_int lwork, - lapack_int* iwork, lapack_logical* bwork ); -lapack_int LAPACKE_cggevx_work( int matrix_order, char balanc, char jobvl, - char jobvr, char sense, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* alpha, - lapack_complex_float* beta, - lapack_complex_float* vl, lapack_int ldvl, - lapack_complex_float* vr, lapack_int ldvr, - lapack_int* ilo, lapack_int* ihi, float* lscale, - float* rscale, float* abnrm, float* bbnrm, - float* rconde, float* rcondv, - lapack_complex_float* work, lapack_int lwork, - float* rwork, lapack_int* iwork, - lapack_logical* bwork ); -lapack_int LAPACKE_zggevx_work( int matrix_order, char balanc, char jobvl, - char jobvr, char sense, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* alpha, - lapack_complex_double* beta, - lapack_complex_double* vl, lapack_int ldvl, - lapack_complex_double* vr, lapack_int ldvr, - lapack_int* ilo, lapack_int* ihi, - double* lscale, double* rscale, double* abnrm, - double* bbnrm, double* rconde, double* rcondv, - lapack_complex_double* work, lapack_int lwork, - double* rwork, lapack_int* iwork, - lapack_logical* bwork ); - -lapack_int LAPACKE_sggglm_work( int matrix_order, lapack_int n, lapack_int m, - lapack_int p, float* a, lapack_int lda, - float* b, lapack_int ldb, float* d, float* x, - float* y, float* work, lapack_int lwork ); -lapack_int LAPACKE_dggglm_work( int matrix_order, lapack_int n, lapack_int m, - lapack_int p, double* a, lapack_int lda, - double* b, lapack_int ldb, double* d, double* x, - double* y, double* work, lapack_int lwork ); -lapack_int LAPACKE_cggglm_work( int matrix_order, lapack_int n, lapack_int m, - lapack_int p, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* d, - lapack_complex_float* x, - lapack_complex_float* y, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zggglm_work( int matrix_order, lapack_int n, lapack_int m, - lapack_int p, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb, lapack_complex_double* d, - lapack_complex_double* x, - lapack_complex_double* y, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_sgghrd_work( int matrix_order, char compq, char compz, - lapack_int n, lapack_int ilo, lapack_int ihi, - float* a, lapack_int lda, float* b, - lapack_int ldb, float* q, lapack_int ldq, - float* z, lapack_int ldz ); -lapack_int LAPACKE_dgghrd_work( int matrix_order, char compq, char compz, - lapack_int n, lapack_int ilo, lapack_int ihi, - double* a, lapack_int lda, double* b, - lapack_int ldb, double* q, lapack_int ldq, - double* z, lapack_int ldz ); -lapack_int LAPACKE_cgghrd_work( int matrix_order, char compq, char compz, - lapack_int n, lapack_int ilo, lapack_int ihi, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* q, lapack_int ldq, - lapack_complex_float* z, lapack_int ldz ); -lapack_int LAPACKE_zgghrd_work( int matrix_order, char compq, char compz, - lapack_int n, lapack_int ilo, lapack_int ihi, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* q, lapack_int ldq, - lapack_complex_double* z, lapack_int ldz ); - -lapack_int LAPACKE_sgglse_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int p, float* a, lapack_int lda, - float* b, lapack_int ldb, float* c, float* d, - float* x, float* work, lapack_int lwork ); -lapack_int LAPACKE_dgglse_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int p, double* a, lapack_int lda, - double* b, lapack_int ldb, double* c, double* d, - double* x, double* work, lapack_int lwork ); -lapack_int LAPACKE_cgglse_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int p, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* c, - lapack_complex_float* d, - lapack_complex_float* x, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zgglse_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int p, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb, lapack_complex_double* c, - lapack_complex_double* d, - lapack_complex_double* x, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_sggqrf_work( int matrix_order, lapack_int n, lapack_int m, - lapack_int p, float* a, lapack_int lda, - float* taua, float* b, lapack_int ldb, - float* taub, float* work, lapack_int lwork ); -lapack_int LAPACKE_dggqrf_work( int matrix_order, lapack_int n, lapack_int m, - lapack_int p, double* a, lapack_int lda, - double* taua, double* b, lapack_int ldb, - double* taub, double* work, lapack_int lwork ); -lapack_int LAPACKE_cggqrf_work( int matrix_order, lapack_int n, lapack_int m, - lapack_int p, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* taua, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* taub, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zggqrf_work( int matrix_order, lapack_int n, lapack_int m, - lapack_int p, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* taua, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* taub, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_sggrqf_work( int matrix_order, lapack_int m, lapack_int p, - lapack_int n, float* a, lapack_int lda, - float* taua, float* b, lapack_int ldb, - float* taub, float* work, lapack_int lwork ); -lapack_int LAPACKE_dggrqf_work( int matrix_order, lapack_int m, lapack_int p, - lapack_int n, double* a, lapack_int lda, - double* taua, double* b, lapack_int ldb, - double* taub, double* work, lapack_int lwork ); -lapack_int LAPACKE_cggrqf_work( int matrix_order, lapack_int m, lapack_int p, - lapack_int n, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* taua, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* taub, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zggrqf_work( int matrix_order, lapack_int m, lapack_int p, - lapack_int n, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* taua, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* taub, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_sggsvd_work( int matrix_order, char jobu, char jobv, - char jobq, lapack_int m, lapack_int n, - lapack_int p, lapack_int* k, lapack_int* l, - float* a, lapack_int lda, float* b, - lapack_int ldb, float* alpha, float* beta, - float* u, lapack_int ldu, float* v, - lapack_int ldv, float* q, lapack_int ldq, - float* work, lapack_int* iwork ); -lapack_int LAPACKE_dggsvd_work( int matrix_order, char jobu, char jobv, - char jobq, lapack_int m, lapack_int n, - lapack_int p, lapack_int* k, lapack_int* l, - double* a, lapack_int lda, double* b, - lapack_int ldb, double* alpha, double* beta, - double* u, lapack_int ldu, double* v, - lapack_int ldv, double* q, lapack_int ldq, - double* work, lapack_int* iwork ); -lapack_int LAPACKE_cggsvd_work( int matrix_order, char jobu, char jobv, - char jobq, lapack_int m, lapack_int n, - lapack_int p, lapack_int* k, lapack_int* l, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, - float* alpha, float* beta, - lapack_complex_float* u, lapack_int ldu, - lapack_complex_float* v, lapack_int ldv, - lapack_complex_float* q, lapack_int ldq, - lapack_complex_float* work, float* rwork, - lapack_int* iwork ); -lapack_int LAPACKE_zggsvd_work( int matrix_order, char jobu, char jobv, - char jobq, lapack_int m, lapack_int n, - lapack_int p, lapack_int* k, lapack_int* l, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - double* alpha, double* beta, - lapack_complex_double* u, lapack_int ldu, - lapack_complex_double* v, lapack_int ldv, - lapack_complex_double* q, lapack_int ldq, - lapack_complex_double* work, double* rwork, - lapack_int* iwork ); - -lapack_int LAPACKE_sggsvp_work( int matrix_order, char jobu, char jobv, - char jobq, lapack_int m, lapack_int p, - lapack_int n, float* a, lapack_int lda, - float* b, lapack_int ldb, float tola, - float tolb, lapack_int* k, lapack_int* l, - float* u, lapack_int ldu, float* v, - lapack_int ldv, float* q, lapack_int ldq, - lapack_int* iwork, float* tau, float* work ); -lapack_int LAPACKE_dggsvp_work( int matrix_order, char jobu, char jobv, - char jobq, lapack_int m, lapack_int p, - lapack_int n, double* a, lapack_int lda, - double* b, lapack_int ldb, double tola, - double tolb, lapack_int* k, lapack_int* l, - double* u, lapack_int ldu, double* v, - lapack_int ldv, double* q, lapack_int ldq, - lapack_int* iwork, double* tau, double* work ); -lapack_int LAPACKE_cggsvp_work( int matrix_order, char jobu, char jobv, - char jobq, lapack_int m, lapack_int p, - lapack_int n, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* b, - lapack_int ldb, float tola, float tolb, - lapack_int* k, lapack_int* l, - lapack_complex_float* u, lapack_int ldu, - lapack_complex_float* v, lapack_int ldv, - lapack_complex_float* q, lapack_int ldq, - lapack_int* iwork, float* rwork, - lapack_complex_float* tau, - lapack_complex_float* work ); -lapack_int LAPACKE_zggsvp_work( int matrix_order, char jobu, char jobv, - char jobq, lapack_int m, lapack_int p, - lapack_int n, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb, double tola, double tolb, - lapack_int* k, lapack_int* l, - lapack_complex_double* u, lapack_int ldu, - lapack_complex_double* v, lapack_int ldv, - lapack_complex_double* q, lapack_int ldq, - lapack_int* iwork, double* rwork, - lapack_complex_double* tau, - lapack_complex_double* work ); - -lapack_int LAPACKE_sgtcon_work( char norm, lapack_int n, const float* dl, - const float* d, const float* du, - const float* du2, const lapack_int* ipiv, - float anorm, float* rcond, float* work, - lapack_int* iwork ); -lapack_int LAPACKE_dgtcon_work( char norm, lapack_int n, const double* dl, - const double* d, const double* du, - const double* du2, const lapack_int* ipiv, - double anorm, double* rcond, double* work, - lapack_int* iwork ); -lapack_int LAPACKE_cgtcon_work( char norm, lapack_int n, - const lapack_complex_float* dl, - const lapack_complex_float* d, - const lapack_complex_float* du, - const lapack_complex_float* du2, - const lapack_int* ipiv, float anorm, - float* rcond, lapack_complex_float* work ); -lapack_int LAPACKE_zgtcon_work( char norm, lapack_int n, - const lapack_complex_double* dl, - const lapack_complex_double* d, - const lapack_complex_double* du, - const lapack_complex_double* du2, - const lapack_int* ipiv, double anorm, - double* rcond, lapack_complex_double* work ); - -lapack_int LAPACKE_sgtrfs_work( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const float* dl, - const float* d, const float* du, - const float* dlf, const float* df, - const float* duf, const float* du2, - const lapack_int* ipiv, const float* b, - lapack_int ldb, float* x, lapack_int ldx, - float* ferr, float* berr, float* work, - lapack_int* iwork ); -lapack_int LAPACKE_dgtrfs_work( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const double* dl, - const double* d, const double* du, - const double* dlf, const double* df, - const double* duf, const double* du2, - const lapack_int* ipiv, const double* b, - lapack_int ldb, double* x, lapack_int ldx, - double* ferr, double* berr, double* work, - lapack_int* iwork ); -lapack_int LAPACKE_cgtrfs_work( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const lapack_complex_float* dl, - const lapack_complex_float* d, - const lapack_complex_float* du, - const lapack_complex_float* dlf, - const lapack_complex_float* df, - const lapack_complex_float* duf, - const lapack_complex_float* du2, - const lapack_int* ipiv, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* ferr, float* berr, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_zgtrfs_work( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, - const lapack_complex_double* dl, - const lapack_complex_double* d, - const lapack_complex_double* du, - const lapack_complex_double* dlf, - const lapack_complex_double* df, - const lapack_complex_double* duf, - const lapack_complex_double* du2, - const lapack_int* ipiv, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* ferr, double* berr, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_sgtsv_work( int matrix_order, lapack_int n, lapack_int nrhs, - float* dl, float* d, float* du, float* b, - lapack_int ldb ); -lapack_int LAPACKE_dgtsv_work( int matrix_order, lapack_int n, lapack_int nrhs, - double* dl, double* d, double* du, double* b, - lapack_int ldb ); -lapack_int LAPACKE_cgtsv_work( int matrix_order, lapack_int n, lapack_int nrhs, - lapack_complex_float* dl, - lapack_complex_float* d, - lapack_complex_float* du, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_zgtsv_work( int matrix_order, lapack_int n, lapack_int nrhs, - lapack_complex_double* dl, - lapack_complex_double* d, - lapack_complex_double* du, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_sgtsvx_work( int matrix_order, char fact, char trans, - lapack_int n, lapack_int nrhs, const float* dl, - const float* d, const float* du, float* dlf, - float* df, float* duf, float* du2, - lapack_int* ipiv, const float* b, - lapack_int ldb, float* x, lapack_int ldx, - float* rcond, float* ferr, float* berr, - float* work, lapack_int* iwork ); -lapack_int LAPACKE_dgtsvx_work( int matrix_order, char fact, char trans, - lapack_int n, lapack_int nrhs, const double* dl, - const double* d, const double* du, double* dlf, - double* df, double* duf, double* du2, - lapack_int* ipiv, const double* b, - lapack_int ldb, double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr, - double* work, lapack_int* iwork ); -lapack_int LAPACKE_cgtsvx_work( int matrix_order, char fact, char trans, - lapack_int n, lapack_int nrhs, - const lapack_complex_float* dl, - const lapack_complex_float* d, - const lapack_complex_float* du, - lapack_complex_float* dlf, - lapack_complex_float* df, - lapack_complex_float* duf, - lapack_complex_float* du2, lapack_int* ipiv, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* rcond, float* ferr, float* berr, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_zgtsvx_work( int matrix_order, char fact, char trans, - lapack_int n, lapack_int nrhs, - const lapack_complex_double* dl, - const lapack_complex_double* d, - const lapack_complex_double* du, - lapack_complex_double* dlf, - lapack_complex_double* df, - lapack_complex_double* duf, - lapack_complex_double* du2, lapack_int* ipiv, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_sgttrf_work( lapack_int n, float* dl, float* d, float* du, - float* du2, lapack_int* ipiv ); -lapack_int LAPACKE_dgttrf_work( lapack_int n, double* dl, double* d, double* du, - double* du2, lapack_int* ipiv ); -lapack_int LAPACKE_cgttrf_work( lapack_int n, lapack_complex_float* dl, - lapack_complex_float* d, - lapack_complex_float* du, - lapack_complex_float* du2, lapack_int* ipiv ); -lapack_int LAPACKE_zgttrf_work( lapack_int n, lapack_complex_double* dl, - lapack_complex_double* d, - lapack_complex_double* du, - lapack_complex_double* du2, lapack_int* ipiv ); - -lapack_int LAPACKE_sgttrs_work( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const float* dl, - const float* d, const float* du, - const float* du2, const lapack_int* ipiv, - float* b, lapack_int ldb ); -lapack_int LAPACKE_dgttrs_work( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const double* dl, - const double* d, const double* du, - const double* du2, const lapack_int* ipiv, - double* b, lapack_int ldb ); -lapack_int LAPACKE_cgttrs_work( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, const lapack_complex_float* dl, - const lapack_complex_float* d, - const lapack_complex_float* du, - const lapack_complex_float* du2, - const lapack_int* ipiv, lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_zgttrs_work( int matrix_order, char trans, lapack_int n, - lapack_int nrhs, - const lapack_complex_double* dl, - const lapack_complex_double* d, - const lapack_complex_double* du, - const lapack_complex_double* du2, - const lapack_int* ipiv, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_chbev_work( int matrix_order, char jobz, char uplo, - lapack_int n, lapack_int kd, - lapack_complex_float* ab, lapack_int ldab, - float* w, lapack_complex_float* z, - lapack_int ldz, lapack_complex_float* work, - float* rwork ); -lapack_int LAPACKE_zhbev_work( int matrix_order, char jobz, char uplo, - lapack_int n, lapack_int kd, - lapack_complex_double* ab, lapack_int ldab, - double* w, lapack_complex_double* z, - lapack_int ldz, lapack_complex_double* work, - double* rwork ); - -lapack_int LAPACKE_chbevd_work( int matrix_order, char jobz, char uplo, - lapack_int n, lapack_int kd, - lapack_complex_float* ab, lapack_int ldab, - float* w, lapack_complex_float* z, - lapack_int ldz, lapack_complex_float* work, - lapack_int lwork, float* rwork, - lapack_int lrwork, lapack_int* iwork, - lapack_int liwork ); -lapack_int LAPACKE_zhbevd_work( int matrix_order, char jobz, char uplo, - lapack_int n, lapack_int kd, - lapack_complex_double* ab, lapack_int ldab, - double* w, lapack_complex_double* z, - lapack_int ldz, lapack_complex_double* work, - lapack_int lwork, double* rwork, - lapack_int lrwork, lapack_int* iwork, - lapack_int liwork ); - -lapack_int LAPACKE_chbevx_work( int matrix_order, char jobz, char range, - char uplo, lapack_int n, lapack_int kd, - lapack_complex_float* ab, lapack_int ldab, - lapack_complex_float* q, lapack_int ldq, - float vl, float vu, lapack_int il, - lapack_int iu, float abstol, lapack_int* m, - float* w, lapack_complex_float* z, - lapack_int ldz, lapack_complex_float* work, - float* rwork, lapack_int* iwork, - lapack_int* ifail ); -lapack_int LAPACKE_zhbevx_work( int matrix_order, char jobz, char range, - char uplo, lapack_int n, lapack_int kd, - lapack_complex_double* ab, lapack_int ldab, - lapack_complex_double* q, lapack_int ldq, - double vl, double vu, lapack_int il, - lapack_int iu, double abstol, lapack_int* m, - double* w, lapack_complex_double* z, - lapack_int ldz, lapack_complex_double* work, - double* rwork, lapack_int* iwork, - lapack_int* ifail ); - -lapack_int LAPACKE_chbgst_work( int matrix_order, char vect, char uplo, - lapack_int n, lapack_int ka, lapack_int kb, - lapack_complex_float* ab, lapack_int ldab, - const lapack_complex_float* bb, lapack_int ldbb, - lapack_complex_float* x, lapack_int ldx, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_zhbgst_work( int matrix_order, char vect, char uplo, - lapack_int n, lapack_int ka, lapack_int kb, - lapack_complex_double* ab, lapack_int ldab, - const lapack_complex_double* bb, - lapack_int ldbb, lapack_complex_double* x, - lapack_int ldx, lapack_complex_double* work, - double* rwork ); - -lapack_int LAPACKE_chbgv_work( int matrix_order, char jobz, char uplo, - lapack_int n, lapack_int ka, lapack_int kb, - lapack_complex_float* ab, lapack_int ldab, - lapack_complex_float* bb, lapack_int ldbb, - float* w, lapack_complex_float* z, - lapack_int ldz, lapack_complex_float* work, - float* rwork ); -lapack_int LAPACKE_zhbgv_work( int matrix_order, char jobz, char uplo, - lapack_int n, lapack_int ka, lapack_int kb, - lapack_complex_double* ab, lapack_int ldab, - lapack_complex_double* bb, lapack_int ldbb, - double* w, lapack_complex_double* z, - lapack_int ldz, lapack_complex_double* work, - double* rwork ); - -lapack_int LAPACKE_chbgvd_work( int matrix_order, char jobz, char uplo, - lapack_int n, lapack_int ka, lapack_int kb, - lapack_complex_float* ab, lapack_int ldab, - lapack_complex_float* bb, lapack_int ldbb, - float* w, lapack_complex_float* z, - lapack_int ldz, lapack_complex_float* work, - lapack_int lwork, float* rwork, - lapack_int lrwork, lapack_int* iwork, - lapack_int liwork ); -lapack_int LAPACKE_zhbgvd_work( int matrix_order, char jobz, char uplo, - lapack_int n, lapack_int ka, lapack_int kb, - lapack_complex_double* ab, lapack_int ldab, - lapack_complex_double* bb, lapack_int ldbb, - double* w, lapack_complex_double* z, - lapack_int ldz, lapack_complex_double* work, - lapack_int lwork, double* rwork, - lapack_int lrwork, lapack_int* iwork, - lapack_int liwork ); - -lapack_int LAPACKE_chbgvx_work( int matrix_order, char jobz, char range, - char uplo, lapack_int n, lapack_int ka, - lapack_int kb, lapack_complex_float* ab, - lapack_int ldab, lapack_complex_float* bb, - lapack_int ldbb, lapack_complex_float* q, - lapack_int ldq, float vl, float vu, - lapack_int il, lapack_int iu, float abstol, - lapack_int* m, float* w, - lapack_complex_float* z, lapack_int ldz, - lapack_complex_float* work, float* rwork, - lapack_int* iwork, lapack_int* ifail ); -lapack_int LAPACKE_zhbgvx_work( int matrix_order, char jobz, char range, - char uplo, lapack_int n, lapack_int ka, - lapack_int kb, lapack_complex_double* ab, - lapack_int ldab, lapack_complex_double* bb, - lapack_int ldbb, lapack_complex_double* q, - lapack_int ldq, double vl, double vu, - lapack_int il, lapack_int iu, double abstol, - lapack_int* m, double* w, - lapack_complex_double* z, lapack_int ldz, - lapack_complex_double* work, double* rwork, - lapack_int* iwork, lapack_int* ifail ); - -lapack_int LAPACKE_chbtrd_work( int matrix_order, char vect, char uplo, - lapack_int n, lapack_int kd, - lapack_complex_float* ab, lapack_int ldab, - float* d, float* e, lapack_complex_float* q, - lapack_int ldq, lapack_complex_float* work ); -lapack_int LAPACKE_zhbtrd_work( int matrix_order, char vect, char uplo, - lapack_int n, lapack_int kd, - lapack_complex_double* ab, lapack_int ldab, - double* d, double* e, lapack_complex_double* q, - lapack_int ldq, lapack_complex_double* work ); - -lapack_int LAPACKE_checon_work( int matrix_order, char uplo, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - const lapack_int* ipiv, float anorm, - float* rcond, lapack_complex_float* work ); -lapack_int LAPACKE_zhecon_work( int matrix_order, char uplo, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - const lapack_int* ipiv, double anorm, - double* rcond, lapack_complex_double* work ); - -lapack_int LAPACKE_cheequb_work( int matrix_order, char uplo, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - float* s, float* scond, float* amax, - lapack_complex_float* work ); -lapack_int LAPACKE_zheequb_work( int matrix_order, char uplo, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - double* s, double* scond, double* amax, - lapack_complex_double* work ); - -lapack_int LAPACKE_cheev_work( int matrix_order, char jobz, char uplo, - lapack_int n, lapack_complex_float* a, - lapack_int lda, float* w, - lapack_complex_float* work, lapack_int lwork, - float* rwork ); -lapack_int LAPACKE_zheev_work( int matrix_order, char jobz, char uplo, - lapack_int n, lapack_complex_double* a, - lapack_int lda, double* w, - lapack_complex_double* work, lapack_int lwork, - double* rwork ); - -lapack_int LAPACKE_cheevd_work( int matrix_order, char jobz, char uplo, - lapack_int n, lapack_complex_float* a, - lapack_int lda, float* w, - lapack_complex_float* work, lapack_int lwork, - float* rwork, lapack_int lrwork, - lapack_int* iwork, lapack_int liwork ); -lapack_int LAPACKE_zheevd_work( int matrix_order, char jobz, char uplo, - lapack_int n, lapack_complex_double* a, - lapack_int lda, double* w, - lapack_complex_double* work, lapack_int lwork, - double* rwork, lapack_int lrwork, - lapack_int* iwork, lapack_int liwork ); - -lapack_int LAPACKE_cheevr_work( int matrix_order, char jobz, char range, - char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - float vl, float vu, lapack_int il, - lapack_int iu, float abstol, lapack_int* m, - float* w, lapack_complex_float* z, - lapack_int ldz, lapack_int* isuppz, - lapack_complex_float* work, lapack_int lwork, - float* rwork, lapack_int lrwork, - lapack_int* iwork, lapack_int liwork ); -lapack_int LAPACKE_zheevr_work( int matrix_order, char jobz, char range, - char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - double vl, double vu, lapack_int il, - lapack_int iu, double abstol, lapack_int* m, - double* w, lapack_complex_double* z, - lapack_int ldz, lapack_int* isuppz, - lapack_complex_double* work, lapack_int lwork, - double* rwork, lapack_int lrwork, - lapack_int* iwork, lapack_int liwork ); - -lapack_int LAPACKE_cheevx_work( int matrix_order, char jobz, char range, - char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - float vl, float vu, lapack_int il, - lapack_int iu, float abstol, lapack_int* m, - float* w, lapack_complex_float* z, - lapack_int ldz, lapack_complex_float* work, - lapack_int lwork, float* rwork, - lapack_int* iwork, lapack_int* ifail ); -lapack_int LAPACKE_zheevx_work( int matrix_order, char jobz, char range, - char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - double vl, double vu, lapack_int il, - lapack_int iu, double abstol, lapack_int* m, - double* w, lapack_complex_double* z, - lapack_int ldz, lapack_complex_double* work, - lapack_int lwork, double* rwork, - lapack_int* iwork, lapack_int* ifail ); - -lapack_int LAPACKE_chegst_work( int matrix_order, lapack_int itype, char uplo, - lapack_int n, lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_zhegst_work( int matrix_order, lapack_int itype, char uplo, - lapack_int n, lapack_complex_double* a, - lapack_int lda, const lapack_complex_double* b, - lapack_int ldb ); - -lapack_int LAPACKE_chegv_work( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* b, - lapack_int ldb, float* w, - lapack_complex_float* work, lapack_int lwork, - float* rwork ); -lapack_int LAPACKE_zhegv_work( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - double* w, lapack_complex_double* work, - lapack_int lwork, double* rwork ); - -lapack_int LAPACKE_chegvd_work( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, - float* w, lapack_complex_float* work, - lapack_int lwork, float* rwork, - lapack_int lrwork, lapack_int* iwork, - lapack_int liwork ); -lapack_int LAPACKE_zhegvd_work( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - double* w, lapack_complex_double* work, - lapack_int lwork, double* rwork, - lapack_int lrwork, lapack_int* iwork, - lapack_int liwork ); - -lapack_int LAPACKE_chegvx_work( int matrix_order, lapack_int itype, char jobz, - char range, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, - float vl, float vu, lapack_int il, - lapack_int iu, float abstol, lapack_int* m, - float* w, lapack_complex_float* z, - lapack_int ldz, lapack_complex_float* work, - lapack_int lwork, float* rwork, - lapack_int* iwork, lapack_int* ifail ); -lapack_int LAPACKE_zhegvx_work( int matrix_order, lapack_int itype, char jobz, - char range, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - double vl, double vu, lapack_int il, - lapack_int iu, double abstol, lapack_int* m, - double* w, lapack_complex_double* z, - lapack_int ldz, lapack_complex_double* work, - lapack_int lwork, double* rwork, - lapack_int* iwork, lapack_int* ifail ); - -lapack_int LAPACKE_cherfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* af, - lapack_int ldaf, const lapack_int* ipiv, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* ferr, float* berr, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_zherfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* a, - lapack_int lda, const lapack_complex_double* af, - lapack_int ldaf, const lapack_int* ipiv, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* ferr, double* berr, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_cherfsx_work( int matrix_order, char uplo, char equed, - lapack_int n, lapack_int nrhs, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* af, - lapack_int ldaf, const lapack_int* ipiv, - const float* s, const lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* x, - lapack_int ldx, float* rcond, float* berr, - lapack_int n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int nparams, - float* params, lapack_complex_float* work, - float* rwork ); -lapack_int LAPACKE_zherfsx_work( int matrix_order, char uplo, char equed, - lapack_int n, lapack_int nrhs, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* af, - lapack_int ldaf, const lapack_int* ipiv, - const double* s, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* berr, - lapack_int n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int nparams, - double* params, lapack_complex_double* work, - double* rwork ); - -lapack_int LAPACKE_chesv_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_float* a, - lapack_int lda, lapack_int* ipiv, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zhesv_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_double* a, - lapack_int lda, lapack_int* ipiv, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_chesvx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, - const lapack_complex_float* a, lapack_int lda, - lapack_complex_float* af, lapack_int ldaf, - lapack_int* ipiv, const lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* x, - lapack_int ldx, float* rcond, float* ferr, - float* berr, lapack_complex_float* work, - lapack_int lwork, float* rwork ); -lapack_int LAPACKE_zhesvx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, - const lapack_complex_double* a, lapack_int lda, - lapack_complex_double* af, lapack_int ldaf, - lapack_int* ipiv, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr, - lapack_complex_double* work, lapack_int lwork, - double* rwork ); - -lapack_int LAPACKE_chesvxx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, float* s, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* rcond, float* rpvgrw, float* berr, - lapack_int n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int nparams, - float* params, lapack_complex_float* work, - float* rwork ); -lapack_int LAPACKE_zhesvxx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, double* s, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* rpvgrw, double* berr, - lapack_int n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int nparams, - double* params, lapack_complex_double* work, - double* rwork ); - -lapack_int LAPACKE_chetrd_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - float* d, float* e, lapack_complex_float* tau, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zhetrd_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - double* d, double* e, - lapack_complex_double* tau, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_chetrf_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_int* ipiv, lapack_complex_float* work, - lapack_int lwork ); -lapack_int LAPACKE_zhetrf_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_int* ipiv, lapack_complex_double* work, - lapack_int lwork ); - -lapack_int LAPACKE_chetri_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - const lapack_int* ipiv, - lapack_complex_float* work ); -lapack_int LAPACKE_zhetri_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - const lapack_int* ipiv, - lapack_complex_double* work ); - -lapack_int LAPACKE_chetrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* a, - lapack_int lda, const lapack_int* ipiv, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_zhetrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* a, - lapack_int lda, const lapack_int* ipiv, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_chfrk_work( int matrix_order, char transr, char uplo, - char trans, lapack_int n, lapack_int k, - float alpha, const lapack_complex_float* a, - lapack_int lda, float beta, - lapack_complex_float* c ); -lapack_int LAPACKE_zhfrk_work( int matrix_order, char transr, char uplo, - char trans, lapack_int n, lapack_int k, - double alpha, const lapack_complex_double* a, - lapack_int lda, double beta, - lapack_complex_double* c ); - -lapack_int LAPACKE_shgeqz_work( int matrix_order, char job, char compq, - char compz, lapack_int n, lapack_int ilo, - lapack_int ihi, float* h, lapack_int ldh, - float* t, lapack_int ldt, float* alphar, - float* alphai, float* beta, float* q, - lapack_int ldq, float* z, lapack_int ldz, - float* work, lapack_int lwork ); -lapack_int LAPACKE_dhgeqz_work( int matrix_order, char job, char compq, - char compz, lapack_int n, lapack_int ilo, - lapack_int ihi, double* h, lapack_int ldh, - double* t, lapack_int ldt, double* alphar, - double* alphai, double* beta, double* q, - lapack_int ldq, double* z, lapack_int ldz, - double* work, lapack_int lwork ); -lapack_int LAPACKE_chgeqz_work( int matrix_order, char job, char compq, - char compz, lapack_int n, lapack_int ilo, - lapack_int ihi, lapack_complex_float* h, - lapack_int ldh, lapack_complex_float* t, - lapack_int ldt, lapack_complex_float* alpha, - lapack_complex_float* beta, - lapack_complex_float* q, lapack_int ldq, - lapack_complex_float* z, lapack_int ldz, - lapack_complex_float* work, lapack_int lwork, - float* rwork ); -lapack_int LAPACKE_zhgeqz_work( int matrix_order, char job, char compq, - char compz, lapack_int n, lapack_int ilo, - lapack_int ihi, lapack_complex_double* h, - lapack_int ldh, lapack_complex_double* t, - lapack_int ldt, lapack_complex_double* alpha, - lapack_complex_double* beta, - lapack_complex_double* q, lapack_int ldq, - lapack_complex_double* z, lapack_int ldz, - lapack_complex_double* work, lapack_int lwork, - double* rwork ); - -lapack_int LAPACKE_chpcon_work( int matrix_order, char uplo, lapack_int n, - const lapack_complex_float* ap, - const lapack_int* ipiv, float anorm, - float* rcond, lapack_complex_float* work ); -lapack_int LAPACKE_zhpcon_work( int matrix_order, char uplo, lapack_int n, - const lapack_complex_double* ap, - const lapack_int* ipiv, double anorm, - double* rcond, lapack_complex_double* work ); - -lapack_int LAPACKE_chpev_work( int matrix_order, char jobz, char uplo, - lapack_int n, lapack_complex_float* ap, float* w, - lapack_complex_float* z, lapack_int ldz, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_zhpev_work( int matrix_order, char jobz, char uplo, - lapack_int n, lapack_complex_double* ap, - double* w, lapack_complex_double* z, - lapack_int ldz, lapack_complex_double* work, - double* rwork ); - -lapack_int LAPACKE_chpevd_work( int matrix_order, char jobz, char uplo, - lapack_int n, lapack_complex_float* ap, - float* w, lapack_complex_float* z, - lapack_int ldz, lapack_complex_float* work, - lapack_int lwork, float* rwork, - lapack_int lrwork, lapack_int* iwork, - lapack_int liwork ); -lapack_int LAPACKE_zhpevd_work( int matrix_order, char jobz, char uplo, - lapack_int n, lapack_complex_double* ap, - double* w, lapack_complex_double* z, - lapack_int ldz, lapack_complex_double* work, - lapack_int lwork, double* rwork, - lapack_int lrwork, lapack_int* iwork, - lapack_int liwork ); - -lapack_int LAPACKE_chpevx_work( int matrix_order, char jobz, char range, - char uplo, lapack_int n, - lapack_complex_float* ap, float vl, float vu, - lapack_int il, lapack_int iu, float abstol, - lapack_int* m, float* w, - lapack_complex_float* z, lapack_int ldz, - lapack_complex_float* work, float* rwork, - lapack_int* iwork, lapack_int* ifail ); -lapack_int LAPACKE_zhpevx_work( int matrix_order, char jobz, char range, - char uplo, lapack_int n, - lapack_complex_double* ap, double vl, double vu, - lapack_int il, lapack_int iu, double abstol, - lapack_int* m, double* w, - lapack_complex_double* z, lapack_int ldz, - lapack_complex_double* work, double* rwork, - lapack_int* iwork, lapack_int* ifail ); - -lapack_int LAPACKE_chpgst_work( int matrix_order, lapack_int itype, char uplo, - lapack_int n, lapack_complex_float* ap, - const lapack_complex_float* bp ); -lapack_int LAPACKE_zhpgst_work( int matrix_order, lapack_int itype, char uplo, - lapack_int n, lapack_complex_double* ap, - const lapack_complex_double* bp ); - -lapack_int LAPACKE_chpgv_work( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, - lapack_complex_float* ap, - lapack_complex_float* bp, float* w, - lapack_complex_float* z, lapack_int ldz, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_zhpgv_work( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, - lapack_complex_double* ap, - lapack_complex_double* bp, double* w, - lapack_complex_double* z, lapack_int ldz, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_chpgvd_work( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, - lapack_complex_float* ap, - lapack_complex_float* bp, float* w, - lapack_complex_float* z, lapack_int ldz, - lapack_complex_float* work, lapack_int lwork, - float* rwork, lapack_int lrwork, - lapack_int* iwork, lapack_int liwork ); -lapack_int LAPACKE_zhpgvd_work( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, - lapack_complex_double* ap, - lapack_complex_double* bp, double* w, - lapack_complex_double* z, lapack_int ldz, - lapack_complex_double* work, lapack_int lwork, - double* rwork, lapack_int lrwork, - lapack_int* iwork, lapack_int liwork ); - -lapack_int LAPACKE_chpgvx_work( int matrix_order, lapack_int itype, char jobz, - char range, char uplo, lapack_int n, - lapack_complex_float* ap, - lapack_complex_float* bp, float vl, float vu, - lapack_int il, lapack_int iu, float abstol, - lapack_int* m, float* w, - lapack_complex_float* z, lapack_int ldz, - lapack_complex_float* work, float* rwork, - lapack_int* iwork, lapack_int* ifail ); -lapack_int LAPACKE_zhpgvx_work( int matrix_order, lapack_int itype, char jobz, - char range, char uplo, lapack_int n, - lapack_complex_double* ap, - lapack_complex_double* bp, double vl, double vu, - lapack_int il, lapack_int iu, double abstol, - lapack_int* m, double* w, - lapack_complex_double* z, lapack_int ldz, - lapack_complex_double* work, double* rwork, - lapack_int* iwork, lapack_int* ifail ); - -lapack_int LAPACKE_chprfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* ap, - const lapack_complex_float* afp, - const lapack_int* ipiv, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* ferr, float* berr, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_zhprfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, - const lapack_complex_double* ap, - const lapack_complex_double* afp, - const lapack_int* ipiv, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* ferr, double* berr, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_chpsv_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_float* ap, - lapack_int* ipiv, lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_zhpsv_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_double* ap, - lapack_int* ipiv, lapack_complex_double* b, - lapack_int ldb ); - -lapack_int LAPACKE_chpsvx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, - const lapack_complex_float* ap, - lapack_complex_float* afp, lapack_int* ipiv, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* rcond, float* ferr, float* berr, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_zhpsvx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, - const lapack_complex_double* ap, - lapack_complex_double* afp, lapack_int* ipiv, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_chptrd_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* ap, float* d, float* e, - lapack_complex_float* tau ); -lapack_int LAPACKE_zhptrd_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* ap, double* d, double* e, - lapack_complex_double* tau ); - -lapack_int LAPACKE_chptrf_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* ap, lapack_int* ipiv ); -lapack_int LAPACKE_zhptrf_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* ap, lapack_int* ipiv ); - -lapack_int LAPACKE_chptri_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* ap, - const lapack_int* ipiv, - lapack_complex_float* work ); -lapack_int LAPACKE_zhptri_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* ap, - const lapack_int* ipiv, - lapack_complex_double* work ); - -lapack_int LAPACKE_chptrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* ap, - const lapack_int* ipiv, lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_zhptrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, - const lapack_complex_double* ap, - const lapack_int* ipiv, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_shsein_work( int matrix_order, char job, char eigsrc, - char initv, lapack_logical* select, - lapack_int n, const float* h, lapack_int ldh, - float* wr, const float* wi, float* vl, - lapack_int ldvl, float* vr, lapack_int ldvr, - lapack_int mm, lapack_int* m, float* work, - lapack_int* ifaill, lapack_int* ifailr ); -lapack_int LAPACKE_dhsein_work( int matrix_order, char job, char eigsrc, - char initv, lapack_logical* select, - lapack_int n, const double* h, lapack_int ldh, - double* wr, const double* wi, double* vl, - lapack_int ldvl, double* vr, lapack_int ldvr, - lapack_int mm, lapack_int* m, double* work, - lapack_int* ifaill, lapack_int* ifailr ); -lapack_int LAPACKE_chsein_work( int matrix_order, char job, char eigsrc, - char initv, const lapack_logical* select, - lapack_int n, const lapack_complex_float* h, - lapack_int ldh, lapack_complex_float* w, - lapack_complex_float* vl, lapack_int ldvl, - lapack_complex_float* vr, lapack_int ldvr, - lapack_int mm, lapack_int* m, - lapack_complex_float* work, float* rwork, - lapack_int* ifaill, lapack_int* ifailr ); -lapack_int LAPACKE_zhsein_work( int matrix_order, char job, char eigsrc, - char initv, const lapack_logical* select, - lapack_int n, const lapack_complex_double* h, - lapack_int ldh, lapack_complex_double* w, - lapack_complex_double* vl, lapack_int ldvl, - lapack_complex_double* vr, lapack_int ldvr, - lapack_int mm, lapack_int* m, - lapack_complex_double* work, double* rwork, - lapack_int* ifaill, lapack_int* ifailr ); - -lapack_int LAPACKE_shseqr_work( int matrix_order, char job, char compz, - lapack_int n, lapack_int ilo, lapack_int ihi, - float* h, lapack_int ldh, float* wr, float* wi, - float* z, lapack_int ldz, float* work, - lapack_int lwork ); -lapack_int LAPACKE_dhseqr_work( int matrix_order, char job, char compz, - lapack_int n, lapack_int ilo, lapack_int ihi, - double* h, lapack_int ldh, double* wr, - double* wi, double* z, lapack_int ldz, - double* work, lapack_int lwork ); -lapack_int LAPACKE_chseqr_work( int matrix_order, char job, char compz, - lapack_int n, lapack_int ilo, lapack_int ihi, - lapack_complex_float* h, lapack_int ldh, - lapack_complex_float* w, - lapack_complex_float* z, lapack_int ldz, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zhseqr_work( int matrix_order, char job, char compz, - lapack_int n, lapack_int ilo, lapack_int ihi, - lapack_complex_double* h, lapack_int ldh, - lapack_complex_double* w, - lapack_complex_double* z, lapack_int ldz, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_clacgv_work( lapack_int n, lapack_complex_float* x, - lapack_int incx ); -lapack_int LAPACKE_zlacgv_work( lapack_int n, lapack_complex_double* x, - lapack_int incx ); - -lapack_int LAPACKE_slacpy_work( int matrix_order, char uplo, lapack_int m, - lapack_int n, const float* a, lapack_int lda, - float* b, lapack_int ldb ); -lapack_int LAPACKE_dlacpy_work( int matrix_order, char uplo, lapack_int m, - lapack_int n, const double* a, lapack_int lda, - double* b, lapack_int ldb ); -lapack_int LAPACKE_clacpy_work( int matrix_order, char uplo, lapack_int m, - lapack_int n, const lapack_complex_float* a, - lapack_int lda, lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_zlacpy_work( int matrix_order, char uplo, lapack_int m, - lapack_int n, const lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb ); - -lapack_int LAPACKE_zlag2c_work( int matrix_order, lapack_int m, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - lapack_complex_float* sa, lapack_int ldsa ); - -lapack_int LAPACKE_slag2d_work( int matrix_order, lapack_int m, lapack_int n, - const float* sa, lapack_int ldsa, double* a, - lapack_int lda ); - -lapack_int LAPACKE_dlag2s_work( int matrix_order, lapack_int m, lapack_int n, - const double* a, lapack_int lda, float* sa, - lapack_int ldsa ); - -lapack_int LAPACKE_clag2z_work( int matrix_order, lapack_int m, lapack_int n, - const lapack_complex_float* sa, lapack_int ldsa, - lapack_complex_double* a, lapack_int lda ); - -lapack_int LAPACKE_slagge_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, const float* d, - float* a, lapack_int lda, lapack_int* iseed, - float* work ); -lapack_int LAPACKE_dlagge_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, const double* d, - double* a, lapack_int lda, lapack_int* iseed, - double* work ); -lapack_int LAPACKE_clagge_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, const float* d, - lapack_complex_float* a, lapack_int lda, - lapack_int* iseed, lapack_complex_float* work ); -lapack_int LAPACKE_zlagge_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int kl, lapack_int ku, const double* d, - lapack_complex_double* a, lapack_int lda, - lapack_int* iseed, - lapack_complex_double* work ); - -lapack_int LAPACKE_claghe_work( int matrix_order, lapack_int n, lapack_int k, - const float* d, lapack_complex_float* a, - lapack_int lda, lapack_int* iseed, - lapack_complex_float* work ); -lapack_int LAPACKE_zlaghe_work( int matrix_order, lapack_int n, lapack_int k, - const double* d, lapack_complex_double* a, - lapack_int lda, lapack_int* iseed, - lapack_complex_double* work ); - -lapack_int LAPACKE_slagsy_work( int matrix_order, lapack_int n, lapack_int k, - const float* d, float* a, lapack_int lda, - lapack_int* iseed, float* work ); -lapack_int LAPACKE_dlagsy_work( int matrix_order, lapack_int n, lapack_int k, - const double* d, double* a, lapack_int lda, - lapack_int* iseed, double* work ); -lapack_int LAPACKE_clagsy_work( int matrix_order, lapack_int n, lapack_int k, - const float* d, lapack_complex_float* a, - lapack_int lda, lapack_int* iseed, - lapack_complex_float* work ); -lapack_int LAPACKE_zlagsy_work( int matrix_order, lapack_int n, lapack_int k, - const double* d, lapack_complex_double* a, - lapack_int lda, lapack_int* iseed, - lapack_complex_double* work ); - -lapack_int LAPACKE_slapmr_work( int matrix_order, lapack_logical forwrd, - lapack_int m, lapack_int n, float* x, - lapack_int ldx, lapack_int* k ); -lapack_int LAPACKE_dlapmr_work( int matrix_order, lapack_logical forwrd, - lapack_int m, lapack_int n, double* x, - lapack_int ldx, lapack_int* k ); -lapack_int LAPACKE_clapmr_work( int matrix_order, lapack_logical forwrd, - lapack_int m, lapack_int n, - lapack_complex_float* x, lapack_int ldx, - lapack_int* k ); -lapack_int LAPACKE_zlapmr_work( int matrix_order, lapack_logical forwrd, - lapack_int m, lapack_int n, - lapack_complex_double* x, lapack_int ldx, - lapack_int* k ); - -lapack_int LAPACKE_slartgp_work( float f, float g, float* cs, float* sn, - float* r ); -lapack_int LAPACKE_dlartgp_work( double f, double g, double* cs, double* sn, - double* r ); - -lapack_int LAPACKE_slartgs_work( float x, float y, float sigma, float* cs, - float* sn ); -lapack_int LAPACKE_dlartgs_work( double x, double y, double sigma, double* cs, - double* sn ); - -float LAPACKE_slapy2_work( float x, float y ); -double LAPACKE_dlapy2_work( double x, double y ); - -float LAPACKE_slapy3_work( float x, float y, float z ); -double LAPACKE_dlapy3_work( double x, double y, double z ); - -float LAPACKE_slamch_work( char cmach ); -double LAPACKE_dlamch_work( char cmach ); - -float LAPACKE_slange_work( int matrix_order, char norm, lapack_int m, - lapack_int n, const float* a, lapack_int lda, - float* work ); -double LAPACKE_dlange_work( int matrix_order, char norm, lapack_int m, - lapack_int n, const double* a, lapack_int lda, - double* work ); -float LAPACKE_clange_work( int matrix_order, char norm, lapack_int m, - lapack_int n, const lapack_complex_float* a, - lapack_int lda, float* work ); -double LAPACKE_zlange_work( int matrix_order, char norm, lapack_int m, - lapack_int n, const lapack_complex_double* a, - lapack_int lda, double* work ); - -float LAPACKE_clanhe_work( int matrix_order, char norm, char uplo, - lapack_int n, const lapack_complex_float* a, - lapack_int lda, float* work ); -double LAPACKE_zlanhe_work( int matrix_order, char norm, char uplo, - lapack_int n, const lapack_complex_double* a, - lapack_int lda, double* work ); - -float LAPACKE_slansy_work( int matrix_order, char norm, char uplo, - lapack_int n, const float* a, lapack_int lda, - float* work ); -double LAPACKE_dlansy_work( int matrix_order, char norm, char uplo, - lapack_int n, const double* a, lapack_int lda, - double* work ); -float LAPACKE_clansy_work( int matrix_order, char norm, char uplo, - lapack_int n, const lapack_complex_float* a, - lapack_int lda, float* work ); -double LAPACKE_zlansy_work( int matrix_order, char norm, char uplo, - lapack_int n, const lapack_complex_double* a, - lapack_int lda, double* work ); - -float LAPACKE_slantr_work( int matrix_order, char norm, char uplo, - char diag, lapack_int m, lapack_int n, const float* a, - lapack_int lda, float* work ); -double LAPACKE_dlantr_work( int matrix_order, char norm, char uplo, - char diag, lapack_int m, lapack_int n, - const double* a, lapack_int lda, double* work ); -float LAPACKE_clantr_work( int matrix_order, char norm, char uplo, - char diag, lapack_int m, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - float* work ); -double LAPACKE_zlantr_work( int matrix_order, char norm, char uplo, - char diag, lapack_int m, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - double* work ); - -lapack_int LAPACKE_slarfb_work( int matrix_order, char side, char trans, - char direct, char storev, lapack_int m, - lapack_int n, lapack_int k, const float* v, - lapack_int ldv, const float* t, lapack_int ldt, - float* c, lapack_int ldc, float* work, - lapack_int ldwork ); -lapack_int LAPACKE_dlarfb_work( int matrix_order, char side, char trans, - char direct, char storev, lapack_int m, - lapack_int n, lapack_int k, const double* v, - lapack_int ldv, const double* t, lapack_int ldt, - double* c, lapack_int ldc, double* work, - lapack_int ldwork ); -lapack_int LAPACKE_clarfb_work( int matrix_order, char side, char trans, - char direct, char storev, lapack_int m, - lapack_int n, lapack_int k, - const lapack_complex_float* v, lapack_int ldv, - const lapack_complex_float* t, lapack_int ldt, - lapack_complex_float* c, lapack_int ldc, - lapack_complex_float* work, lapack_int ldwork ); -lapack_int LAPACKE_zlarfb_work( int matrix_order, char side, char trans, - char direct, char storev, lapack_int m, - lapack_int n, lapack_int k, - const lapack_complex_double* v, lapack_int ldv, - const lapack_complex_double* t, lapack_int ldt, - lapack_complex_double* c, lapack_int ldc, - lapack_complex_double* work, - lapack_int ldwork ); - -lapack_int LAPACKE_slarfg_work( lapack_int n, float* alpha, float* x, - lapack_int incx, float* tau ); -lapack_int LAPACKE_dlarfg_work( lapack_int n, double* alpha, double* x, - lapack_int incx, double* tau ); -lapack_int LAPACKE_clarfg_work( lapack_int n, lapack_complex_float* alpha, - lapack_complex_float* x, lapack_int incx, - lapack_complex_float* tau ); -lapack_int LAPACKE_zlarfg_work( lapack_int n, lapack_complex_double* alpha, - lapack_complex_double* x, lapack_int incx, - lapack_complex_double* tau ); - -lapack_int LAPACKE_slarft_work( int matrix_order, char direct, char storev, - lapack_int n, lapack_int k, const float* v, - lapack_int ldv, const float* tau, float* t, - lapack_int ldt ); -lapack_int LAPACKE_dlarft_work( int matrix_order, char direct, char storev, - lapack_int n, lapack_int k, const double* v, - lapack_int ldv, const double* tau, double* t, - lapack_int ldt ); -lapack_int LAPACKE_clarft_work( int matrix_order, char direct, char storev, - lapack_int n, lapack_int k, - const lapack_complex_float* v, lapack_int ldv, - const lapack_complex_float* tau, - lapack_complex_float* t, lapack_int ldt ); -lapack_int LAPACKE_zlarft_work( int matrix_order, char direct, char storev, - lapack_int n, lapack_int k, - const lapack_complex_double* v, lapack_int ldv, - const lapack_complex_double* tau, - lapack_complex_double* t, lapack_int ldt ); - -lapack_int LAPACKE_slarfx_work( int matrix_order, char side, lapack_int m, - lapack_int n, const float* v, float tau, - float* c, lapack_int ldc, float* work ); -lapack_int LAPACKE_dlarfx_work( int matrix_order, char side, lapack_int m, - lapack_int n, const double* v, double tau, - double* c, lapack_int ldc, double* work ); -lapack_int LAPACKE_clarfx_work( int matrix_order, char side, lapack_int m, - lapack_int n, const lapack_complex_float* v, - lapack_complex_float tau, - lapack_complex_float* c, lapack_int ldc, - lapack_complex_float* work ); -lapack_int LAPACKE_zlarfx_work( int matrix_order, char side, lapack_int m, - lapack_int n, const lapack_complex_double* v, - lapack_complex_double tau, - lapack_complex_double* c, lapack_int ldc, - lapack_complex_double* work ); - -lapack_int LAPACKE_slarnv_work( lapack_int idist, lapack_int* iseed, - lapack_int n, float* x ); -lapack_int LAPACKE_dlarnv_work( lapack_int idist, lapack_int* iseed, - lapack_int n, double* x ); -lapack_int LAPACKE_clarnv_work( lapack_int idist, lapack_int* iseed, - lapack_int n, lapack_complex_float* x ); -lapack_int LAPACKE_zlarnv_work( lapack_int idist, lapack_int* iseed, - lapack_int n, lapack_complex_double* x ); - -lapack_int LAPACKE_slaset_work( int matrix_order, char uplo, lapack_int m, - lapack_int n, float alpha, float beta, float* a, - lapack_int lda ); -lapack_int LAPACKE_dlaset_work( int matrix_order, char uplo, lapack_int m, - lapack_int n, double alpha, double beta, - double* a, lapack_int lda ); -lapack_int LAPACKE_claset_work( int matrix_order, char uplo, lapack_int m, - lapack_int n, lapack_complex_float alpha, - lapack_complex_float beta, - lapack_complex_float* a, lapack_int lda ); -lapack_int LAPACKE_zlaset_work( int matrix_order, char uplo, lapack_int m, - lapack_int n, lapack_complex_double alpha, - lapack_complex_double beta, - lapack_complex_double* a, lapack_int lda ); - -lapack_int LAPACKE_slasrt_work( char id, lapack_int n, float* d ); -lapack_int LAPACKE_dlasrt_work( char id, lapack_int n, double* d ); - -lapack_int LAPACKE_slaswp_work( int matrix_order, lapack_int n, float* a, - lapack_int lda, lapack_int k1, lapack_int k2, - const lapack_int* ipiv, lapack_int incx ); -lapack_int LAPACKE_dlaswp_work( int matrix_order, lapack_int n, double* a, - lapack_int lda, lapack_int k1, lapack_int k2, - const lapack_int* ipiv, lapack_int incx ); -lapack_int LAPACKE_claswp_work( int matrix_order, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_int k1, lapack_int k2, - const lapack_int* ipiv, lapack_int incx ); -lapack_int LAPACKE_zlaswp_work( int matrix_order, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_int k1, lapack_int k2, - const lapack_int* ipiv, lapack_int incx ); - -lapack_int LAPACKE_slatms_work( int matrix_order, lapack_int m, lapack_int n, - char dist, lapack_int* iseed, char sym, - float* d, lapack_int mode, float cond, - float dmax, lapack_int kl, lapack_int ku, - char pack, float* a, lapack_int lda, - float* work ); -lapack_int LAPACKE_dlatms_work( int matrix_order, lapack_int m, lapack_int n, - char dist, lapack_int* iseed, char sym, - double* d, lapack_int mode, double cond, - double dmax, lapack_int kl, lapack_int ku, - char pack, double* a, lapack_int lda, - double* work ); -lapack_int LAPACKE_clatms_work( int matrix_order, lapack_int m, lapack_int n, - char dist, lapack_int* iseed, char sym, - float* d, lapack_int mode, float cond, - float dmax, lapack_int kl, lapack_int ku, - char pack, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* work ); -lapack_int LAPACKE_zlatms_work( int matrix_order, lapack_int m, lapack_int n, - char dist, lapack_int* iseed, char sym, - double* d, lapack_int mode, double cond, - double dmax, lapack_int kl, lapack_int ku, - char pack, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* work ); - -lapack_int LAPACKE_slauum_work( int matrix_order, char uplo, lapack_int n, - float* a, lapack_int lda ); -lapack_int LAPACKE_dlauum_work( int matrix_order, char uplo, lapack_int n, - double* a, lapack_int lda ); -lapack_int LAPACKE_clauum_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda ); -lapack_int LAPACKE_zlauum_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda ); - -lapack_int LAPACKE_sopgtr_work( int matrix_order, char uplo, lapack_int n, - const float* ap, const float* tau, float* q, - lapack_int ldq, float* work ); -lapack_int LAPACKE_dopgtr_work( int matrix_order, char uplo, lapack_int n, - const double* ap, const double* tau, double* q, - lapack_int ldq, double* work ); - -lapack_int LAPACKE_sopmtr_work( int matrix_order, char side, char uplo, - char trans, lapack_int m, lapack_int n, - const float* ap, const float* tau, float* c, - lapack_int ldc, float* work ); -lapack_int LAPACKE_dopmtr_work( int matrix_order, char side, char uplo, - char trans, lapack_int m, lapack_int n, - const double* ap, const double* tau, double* c, - lapack_int ldc, double* work ); - -lapack_int LAPACKE_sorgbr_work( int matrix_order, char vect, lapack_int m, - lapack_int n, lapack_int k, float* a, - lapack_int lda, const float* tau, float* work, - lapack_int lwork ); -lapack_int LAPACKE_dorgbr_work( int matrix_order, char vect, lapack_int m, - lapack_int n, lapack_int k, double* a, - lapack_int lda, const double* tau, double* work, - lapack_int lwork ); - -lapack_int LAPACKE_sorghr_work( int matrix_order, lapack_int n, lapack_int ilo, - lapack_int ihi, float* a, lapack_int lda, - const float* tau, float* work, - lapack_int lwork ); -lapack_int LAPACKE_dorghr_work( int matrix_order, lapack_int n, lapack_int ilo, - lapack_int ihi, double* a, lapack_int lda, - const double* tau, double* work, - lapack_int lwork ); - -lapack_int LAPACKE_sorglq_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, float* a, lapack_int lda, - const float* tau, float* work, - lapack_int lwork ); -lapack_int LAPACKE_dorglq_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, double* a, lapack_int lda, - const double* tau, double* work, - lapack_int lwork ); - -lapack_int LAPACKE_sorgql_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, float* a, lapack_int lda, - const float* tau, float* work, - lapack_int lwork ); -lapack_int LAPACKE_dorgql_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, double* a, lapack_int lda, - const double* tau, double* work, - lapack_int lwork ); - -lapack_int LAPACKE_sorgqr_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, float* a, lapack_int lda, - const float* tau, float* work, - lapack_int lwork ); -lapack_int LAPACKE_dorgqr_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, double* a, lapack_int lda, - const double* tau, double* work, - lapack_int lwork ); - -lapack_int LAPACKE_sorgrq_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, float* a, lapack_int lda, - const float* tau, float* work, - lapack_int lwork ); -lapack_int LAPACKE_dorgrq_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, double* a, lapack_int lda, - const double* tau, double* work, - lapack_int lwork ); - -lapack_int LAPACKE_sorgtr_work( int matrix_order, char uplo, lapack_int n, - float* a, lapack_int lda, const float* tau, - float* work, lapack_int lwork ); -lapack_int LAPACKE_dorgtr_work( int matrix_order, char uplo, lapack_int n, - double* a, lapack_int lda, const double* tau, - double* work, lapack_int lwork ); - -lapack_int LAPACKE_sormbr_work( int matrix_order, char vect, char side, - char trans, lapack_int m, lapack_int n, - lapack_int k, const float* a, lapack_int lda, - const float* tau, float* c, lapack_int ldc, - float* work, lapack_int lwork ); -lapack_int LAPACKE_dormbr_work( int matrix_order, char vect, char side, - char trans, lapack_int m, lapack_int n, - lapack_int k, const double* a, lapack_int lda, - const double* tau, double* c, lapack_int ldc, - double* work, lapack_int lwork ); - -lapack_int LAPACKE_sormhr_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int ilo, - lapack_int ihi, const float* a, lapack_int lda, - const float* tau, float* c, lapack_int ldc, - float* work, lapack_int lwork ); -lapack_int LAPACKE_dormhr_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int ilo, - lapack_int ihi, const double* a, lapack_int lda, - const double* tau, double* c, lapack_int ldc, - double* work, lapack_int lwork ); - -lapack_int LAPACKE_sormlq_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const float* a, lapack_int lda, - const float* tau, float* c, lapack_int ldc, - float* work, lapack_int lwork ); -lapack_int LAPACKE_dormlq_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const double* a, lapack_int lda, - const double* tau, double* c, lapack_int ldc, - double* work, lapack_int lwork ); - -lapack_int LAPACKE_sormql_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const float* a, lapack_int lda, - const float* tau, float* c, lapack_int ldc, - float* work, lapack_int lwork ); -lapack_int LAPACKE_dormql_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const double* a, lapack_int lda, - const double* tau, double* c, lapack_int ldc, - double* work, lapack_int lwork ); - -lapack_int LAPACKE_sormqr_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const float* a, lapack_int lda, - const float* tau, float* c, lapack_int ldc, - float* work, lapack_int lwork ); -lapack_int LAPACKE_dormqr_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const double* a, lapack_int lda, - const double* tau, double* c, lapack_int ldc, - double* work, lapack_int lwork ); - -lapack_int LAPACKE_sormrq_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const float* a, lapack_int lda, - const float* tau, float* c, lapack_int ldc, - float* work, lapack_int lwork ); -lapack_int LAPACKE_dormrq_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const double* a, lapack_int lda, - const double* tau, double* c, lapack_int ldc, - double* work, lapack_int lwork ); - -lapack_int LAPACKE_sormrz_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - lapack_int l, const float* a, lapack_int lda, - const float* tau, float* c, lapack_int ldc, - float* work, lapack_int lwork ); -lapack_int LAPACKE_dormrz_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - lapack_int l, const double* a, lapack_int lda, - const double* tau, double* c, lapack_int ldc, - double* work, lapack_int lwork ); - -lapack_int LAPACKE_sormtr_work( int matrix_order, char side, char uplo, - char trans, lapack_int m, lapack_int n, - const float* a, lapack_int lda, - const float* tau, float* c, lapack_int ldc, - float* work, lapack_int lwork ); -lapack_int LAPACKE_dormtr_work( int matrix_order, char side, char uplo, - char trans, lapack_int m, lapack_int n, - const double* a, lapack_int lda, - const double* tau, double* c, lapack_int ldc, - double* work, lapack_int lwork ); - -lapack_int LAPACKE_spbcon_work( int matrix_order, char uplo, lapack_int n, - lapack_int kd, const float* ab, lapack_int ldab, - float anorm, float* rcond, float* work, - lapack_int* iwork ); -lapack_int LAPACKE_dpbcon_work( int matrix_order, char uplo, lapack_int n, - lapack_int kd, const double* ab, - lapack_int ldab, double anorm, double* rcond, - double* work, lapack_int* iwork ); -lapack_int LAPACKE_cpbcon_work( int matrix_order, char uplo, lapack_int n, - lapack_int kd, const lapack_complex_float* ab, - lapack_int ldab, float anorm, float* rcond, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_zpbcon_work( int matrix_order, char uplo, lapack_int n, - lapack_int kd, const lapack_complex_double* ab, - lapack_int ldab, double anorm, double* rcond, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_spbequ_work( int matrix_order, char uplo, lapack_int n, - lapack_int kd, const float* ab, lapack_int ldab, - float* s, float* scond, float* amax ); -lapack_int LAPACKE_dpbequ_work( int matrix_order, char uplo, lapack_int n, - lapack_int kd, const double* ab, - lapack_int ldab, double* s, double* scond, - double* amax ); -lapack_int LAPACKE_cpbequ_work( int matrix_order, char uplo, lapack_int n, - lapack_int kd, const lapack_complex_float* ab, - lapack_int ldab, float* s, float* scond, - float* amax ); -lapack_int LAPACKE_zpbequ_work( int matrix_order, char uplo, lapack_int n, - lapack_int kd, const lapack_complex_double* ab, - lapack_int ldab, double* s, double* scond, - double* amax ); - -lapack_int LAPACKE_spbrfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, const float* ab, - lapack_int ldab, const float* afb, - lapack_int ldafb, const float* b, - lapack_int ldb, float* x, lapack_int ldx, - float* ferr, float* berr, float* work, - lapack_int* iwork ); -lapack_int LAPACKE_dpbrfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, - const double* ab, lapack_int ldab, - const double* afb, lapack_int ldafb, - const double* b, lapack_int ldb, double* x, - lapack_int ldx, double* ferr, double* berr, - double* work, lapack_int* iwork ); -lapack_int LAPACKE_cpbrfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, - const lapack_complex_float* ab, lapack_int ldab, - const lapack_complex_float* afb, - lapack_int ldafb, const lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* x, - lapack_int ldx, float* ferr, float* berr, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_zpbrfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, - const lapack_complex_double* ab, - lapack_int ldab, - const lapack_complex_double* afb, - lapack_int ldafb, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* ferr, double* berr, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_spbstf_work( int matrix_order, char uplo, lapack_int n, - lapack_int kb, float* bb, lapack_int ldbb ); -lapack_int LAPACKE_dpbstf_work( int matrix_order, char uplo, lapack_int n, - lapack_int kb, double* bb, lapack_int ldbb ); -lapack_int LAPACKE_cpbstf_work( int matrix_order, char uplo, lapack_int n, - lapack_int kb, lapack_complex_float* bb, - lapack_int ldbb ); -lapack_int LAPACKE_zpbstf_work( int matrix_order, char uplo, lapack_int n, - lapack_int kb, lapack_complex_double* bb, - lapack_int ldbb ); - -lapack_int LAPACKE_spbsv_work( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, float* ab, - lapack_int ldab, float* b, lapack_int ldb ); -lapack_int LAPACKE_dpbsv_work( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, double* ab, - lapack_int ldab, double* b, lapack_int ldb ); -lapack_int LAPACKE_cpbsv_work( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, - lapack_complex_float* ab, lapack_int ldab, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_zpbsv_work( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, - lapack_complex_double* ab, lapack_int ldab, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_spbsvx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int kd, lapack_int nrhs, - float* ab, lapack_int ldab, float* afb, - lapack_int ldafb, char* equed, float* s, - float* b, lapack_int ldb, float* x, - lapack_int ldx, float* rcond, float* ferr, - float* berr, float* work, lapack_int* iwork ); -lapack_int LAPACKE_dpbsvx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int kd, lapack_int nrhs, - double* ab, lapack_int ldab, double* afb, - lapack_int ldafb, char* equed, double* s, - double* b, lapack_int ldb, double* x, - lapack_int ldx, double* rcond, double* ferr, - double* berr, double* work, lapack_int* iwork ); -lapack_int LAPACKE_cpbsvx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int kd, lapack_int nrhs, - lapack_complex_float* ab, lapack_int ldab, - lapack_complex_float* afb, lapack_int ldafb, - char* equed, float* s, lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* x, - lapack_int ldx, float* rcond, float* ferr, - float* berr, lapack_complex_float* work, - float* rwork ); -lapack_int LAPACKE_zpbsvx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int kd, lapack_int nrhs, - lapack_complex_double* ab, lapack_int ldab, - lapack_complex_double* afb, lapack_int ldafb, - char* equed, double* s, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_spbtrf_work( int matrix_order, char uplo, lapack_int n, - lapack_int kd, float* ab, lapack_int ldab ); -lapack_int LAPACKE_dpbtrf_work( int matrix_order, char uplo, lapack_int n, - lapack_int kd, double* ab, lapack_int ldab ); -lapack_int LAPACKE_cpbtrf_work( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_complex_float* ab, - lapack_int ldab ); -lapack_int LAPACKE_zpbtrf_work( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_complex_double* ab, - lapack_int ldab ); - -lapack_int LAPACKE_spbtrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, const float* ab, - lapack_int ldab, float* b, lapack_int ldb ); -lapack_int LAPACKE_dpbtrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, - const double* ab, lapack_int ldab, double* b, - lapack_int ldb ); -lapack_int LAPACKE_cpbtrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, - const lapack_complex_float* ab, lapack_int ldab, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_zpbtrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int kd, lapack_int nrhs, - const lapack_complex_double* ab, - lapack_int ldab, lapack_complex_double* b, - lapack_int ldb ); - -lapack_int LAPACKE_spftrf_work( int matrix_order, char transr, char uplo, - lapack_int n, float* a ); -lapack_int LAPACKE_dpftrf_work( int matrix_order, char transr, char uplo, - lapack_int n, double* a ); -lapack_int LAPACKE_cpftrf_work( int matrix_order, char transr, char uplo, - lapack_int n, lapack_complex_float* a ); -lapack_int LAPACKE_zpftrf_work( int matrix_order, char transr, char uplo, - lapack_int n, lapack_complex_double* a ); - -lapack_int LAPACKE_spftri_work( int matrix_order, char transr, char uplo, - lapack_int n, float* a ); -lapack_int LAPACKE_dpftri_work( int matrix_order, char transr, char uplo, - lapack_int n, double* a ); -lapack_int LAPACKE_cpftri_work( int matrix_order, char transr, char uplo, - lapack_int n, lapack_complex_float* a ); -lapack_int LAPACKE_zpftri_work( int matrix_order, char transr, char uplo, - lapack_int n, lapack_complex_double* a ); - -lapack_int LAPACKE_spftrs_work( int matrix_order, char transr, char uplo, - lapack_int n, lapack_int nrhs, const float* a, - float* b, lapack_int ldb ); -lapack_int LAPACKE_dpftrs_work( int matrix_order, char transr, char uplo, - lapack_int n, lapack_int nrhs, const double* a, - double* b, lapack_int ldb ); -lapack_int LAPACKE_cpftrs_work( int matrix_order, char transr, char uplo, - lapack_int n, lapack_int nrhs, - const lapack_complex_float* a, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_zpftrs_work( int matrix_order, char transr, char uplo, - lapack_int n, lapack_int nrhs, - const lapack_complex_double* a, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_spocon_work( int matrix_order, char uplo, lapack_int n, - const float* a, lapack_int lda, float anorm, - float* rcond, float* work, lapack_int* iwork ); -lapack_int LAPACKE_dpocon_work( int matrix_order, char uplo, lapack_int n, - const double* a, lapack_int lda, double anorm, - double* rcond, double* work, - lapack_int* iwork ); -lapack_int LAPACKE_cpocon_work( int matrix_order, char uplo, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - float anorm, float* rcond, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_zpocon_work( int matrix_order, char uplo, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - double anorm, double* rcond, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_spoequ_work( int matrix_order, lapack_int n, const float* a, - lapack_int lda, float* s, float* scond, - float* amax ); -lapack_int LAPACKE_dpoequ_work( int matrix_order, lapack_int n, const double* a, - lapack_int lda, double* s, double* scond, - double* amax ); -lapack_int LAPACKE_cpoequ_work( int matrix_order, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - float* s, float* scond, float* amax ); -lapack_int LAPACKE_zpoequ_work( int matrix_order, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - double* s, double* scond, double* amax ); - -lapack_int LAPACKE_spoequb_work( int matrix_order, lapack_int n, const float* a, - lapack_int lda, float* s, float* scond, - float* amax ); -lapack_int LAPACKE_dpoequb_work( int matrix_order, lapack_int n, - const double* a, lapack_int lda, double* s, - double* scond, double* amax ); -lapack_int LAPACKE_cpoequb_work( int matrix_order, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - float* s, float* scond, float* amax ); -lapack_int LAPACKE_zpoequb_work( int matrix_order, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - double* s, double* scond, double* amax ); - -lapack_int LAPACKE_sporfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const float* a, lapack_int lda, - const float* af, lapack_int ldaf, - const float* b, lapack_int ldb, float* x, - lapack_int ldx, float* ferr, float* berr, - float* work, lapack_int* iwork ); -lapack_int LAPACKE_dporfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const double* a, - lapack_int lda, const double* af, - lapack_int ldaf, const double* b, - lapack_int ldb, double* x, lapack_int ldx, - double* ferr, double* berr, double* work, - lapack_int* iwork ); -lapack_int LAPACKE_cporfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* af, - lapack_int ldaf, const lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* x, - lapack_int ldx, float* ferr, float* berr, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_zporfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* a, - lapack_int lda, const lapack_complex_double* af, - lapack_int ldaf, const lapack_complex_double* b, - lapack_int ldb, lapack_complex_double* x, - lapack_int ldx, double* ferr, double* berr, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_sporfsx_work( int matrix_order, char uplo, char equed, - lapack_int n, lapack_int nrhs, const float* a, - lapack_int lda, const float* af, - lapack_int ldaf, const float* s, - const float* b, lapack_int ldb, float* x, - lapack_int ldx, float* rcond, float* berr, - lapack_int n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int nparams, - float* params, float* work, - lapack_int* iwork ); -lapack_int LAPACKE_dporfsx_work( int matrix_order, char uplo, char equed, - lapack_int n, lapack_int nrhs, const double* a, - lapack_int lda, const double* af, - lapack_int ldaf, const double* s, - const double* b, lapack_int ldb, double* x, - lapack_int ldx, double* rcond, double* berr, - lapack_int n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int nparams, - double* params, double* work, - lapack_int* iwork ); -lapack_int LAPACKE_cporfsx_work( int matrix_order, char uplo, char equed, - lapack_int n, lapack_int nrhs, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* af, - lapack_int ldaf, const float* s, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* rcond, float* berr, - lapack_int n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int nparams, - float* params, lapack_complex_float* work, - float* rwork ); -lapack_int LAPACKE_zporfsx_work( int matrix_order, char uplo, char equed, - lapack_int n, lapack_int nrhs, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* af, - lapack_int ldaf, const double* s, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* berr, - lapack_int n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int nparams, - double* params, lapack_complex_double* work, - double* rwork ); - -lapack_int LAPACKE_sposv_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, float* a, lapack_int lda, - float* b, lapack_int ldb ); -lapack_int LAPACKE_dposv_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, double* a, lapack_int lda, - double* b, lapack_int ldb ); -lapack_int LAPACKE_cposv_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_zposv_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb ); -lapack_int LAPACKE_dsposv_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, double* a, lapack_int lda, - double* b, lapack_int ldb, double* x, - lapack_int ldx, double* work, float* swork, - lapack_int* iter ); -lapack_int LAPACKE_zcposv_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb, lapack_complex_double* x, - lapack_int ldx, lapack_complex_double* work, - lapack_complex_float* swork, double* rwork, - lapack_int* iter ); - -lapack_int LAPACKE_sposvx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, float* a, - lapack_int lda, float* af, lapack_int ldaf, - char* equed, float* s, float* b, lapack_int ldb, - float* x, lapack_int ldx, float* rcond, - float* ferr, float* berr, float* work, - lapack_int* iwork ); -lapack_int LAPACKE_dposvx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, double* a, - lapack_int lda, double* af, lapack_int ldaf, - char* equed, double* s, double* b, - lapack_int ldb, double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr, - double* work, lapack_int* iwork ); -lapack_int LAPACKE_cposvx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* af, lapack_int ldaf, - char* equed, float* s, lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* x, - lapack_int ldx, float* rcond, float* ferr, - float* berr, lapack_complex_float* work, - float* rwork ); -lapack_int LAPACKE_zposvx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* af, lapack_int ldaf, - char* equed, double* s, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_sposvxx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, float* a, - lapack_int lda, float* af, lapack_int ldaf, - char* equed, float* s, float* b, - lapack_int ldb, float* x, lapack_int ldx, - float* rcond, float* rpvgrw, float* berr, - lapack_int n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int nparams, - float* params, float* work, - lapack_int* iwork ); -lapack_int LAPACKE_dposvxx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, double* a, - lapack_int lda, double* af, lapack_int ldaf, - char* equed, double* s, double* b, - lapack_int ldb, double* x, lapack_int ldx, - double* rcond, double* rpvgrw, double* berr, - lapack_int n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int nparams, - double* params, double* work, - lapack_int* iwork ); -lapack_int LAPACKE_cposvxx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* af, lapack_int ldaf, - char* equed, float* s, lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* x, - lapack_int ldx, float* rcond, float* rpvgrw, - float* berr, lapack_int n_err_bnds, - float* err_bnds_norm, float* err_bnds_comp, - lapack_int nparams, float* params, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_zposvxx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* af, lapack_int ldaf, - char* equed, double* s, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* rpvgrw, double* berr, - lapack_int n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int nparams, - double* params, lapack_complex_double* work, - double* rwork ); - -lapack_int LAPACKE_spotrf_work( int matrix_order, char uplo, lapack_int n, - float* a, lapack_int lda ); -lapack_int LAPACKE_dpotrf_work( int matrix_order, char uplo, lapack_int n, - double* a, lapack_int lda ); -lapack_int LAPACKE_cpotrf_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda ); -lapack_int LAPACKE_zpotrf_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda ); - -lapack_int LAPACKE_spotri_work( int matrix_order, char uplo, lapack_int n, - float* a, lapack_int lda ); -lapack_int LAPACKE_dpotri_work( int matrix_order, char uplo, lapack_int n, - double* a, lapack_int lda ); -lapack_int LAPACKE_cpotri_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda ); -lapack_int LAPACKE_zpotri_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda ); - -lapack_int LAPACKE_spotrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const float* a, lapack_int lda, - float* b, lapack_int ldb ); -lapack_int LAPACKE_dpotrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const double* a, - lapack_int lda, double* b, lapack_int ldb ); -lapack_int LAPACKE_cpotrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* a, - lapack_int lda, lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_zpotrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* a, - lapack_int lda, lapack_complex_double* b, - lapack_int ldb ); - -lapack_int LAPACKE_sppcon_work( int matrix_order, char uplo, lapack_int n, - const float* ap, float anorm, float* rcond, - float* work, lapack_int* iwork ); -lapack_int LAPACKE_dppcon_work( int matrix_order, char uplo, lapack_int n, - const double* ap, double anorm, double* rcond, - double* work, lapack_int* iwork ); -lapack_int LAPACKE_cppcon_work( int matrix_order, char uplo, lapack_int n, - const lapack_complex_float* ap, float anorm, - float* rcond, lapack_complex_float* work, - float* rwork ); -lapack_int LAPACKE_zppcon_work( int matrix_order, char uplo, lapack_int n, - const lapack_complex_double* ap, double anorm, - double* rcond, lapack_complex_double* work, - double* rwork ); - -lapack_int LAPACKE_sppequ_work( int matrix_order, char uplo, lapack_int n, - const float* ap, float* s, float* scond, - float* amax ); -lapack_int LAPACKE_dppequ_work( int matrix_order, char uplo, lapack_int n, - const double* ap, double* s, double* scond, - double* amax ); -lapack_int LAPACKE_cppequ_work( int matrix_order, char uplo, lapack_int n, - const lapack_complex_float* ap, float* s, - float* scond, float* amax ); -lapack_int LAPACKE_zppequ_work( int matrix_order, char uplo, lapack_int n, - const lapack_complex_double* ap, double* s, - double* scond, double* amax ); - -lapack_int LAPACKE_spprfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const float* ap, - const float* afp, const float* b, - lapack_int ldb, float* x, lapack_int ldx, - float* ferr, float* berr, float* work, - lapack_int* iwork ); -lapack_int LAPACKE_dpprfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const double* ap, - const double* afp, const double* b, - lapack_int ldb, double* x, lapack_int ldx, - double* ferr, double* berr, double* work, - lapack_int* iwork ); -lapack_int LAPACKE_cpprfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* ap, - const lapack_complex_float* afp, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* ferr, float* berr, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_zpprfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, - const lapack_complex_double* ap, - const lapack_complex_double* afp, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* ferr, double* berr, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_sppsv_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, float* ap, float* b, - lapack_int ldb ); -lapack_int LAPACKE_dppsv_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, double* ap, double* b, - lapack_int ldb ); -lapack_int LAPACKE_cppsv_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_float* ap, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_zppsv_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_double* ap, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_sppsvx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, float* ap, - float* afp, char* equed, float* s, float* b, - lapack_int ldb, float* x, lapack_int ldx, - float* rcond, float* ferr, float* berr, - float* work, lapack_int* iwork ); -lapack_int LAPACKE_dppsvx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, double* ap, - double* afp, char* equed, double* s, double* b, - lapack_int ldb, double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr, - double* work, lapack_int* iwork ); -lapack_int LAPACKE_cppsvx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, - lapack_complex_float* ap, - lapack_complex_float* afp, char* equed, - float* s, lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* x, - lapack_int ldx, float* rcond, float* ferr, - float* berr, lapack_complex_float* work, - float* rwork ); -lapack_int LAPACKE_zppsvx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, - lapack_complex_double* ap, - lapack_complex_double* afp, char* equed, - double* s, lapack_complex_double* b, - lapack_int ldb, lapack_complex_double* x, - lapack_int ldx, double* rcond, double* ferr, - double* berr, lapack_complex_double* work, - double* rwork ); - -lapack_int LAPACKE_spptrf_work( int matrix_order, char uplo, lapack_int n, - float* ap ); -lapack_int LAPACKE_dpptrf_work( int matrix_order, char uplo, lapack_int n, - double* ap ); -lapack_int LAPACKE_cpptrf_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* ap ); -lapack_int LAPACKE_zpptrf_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* ap ); - -lapack_int LAPACKE_spptri_work( int matrix_order, char uplo, lapack_int n, - float* ap ); -lapack_int LAPACKE_dpptri_work( int matrix_order, char uplo, lapack_int n, - double* ap ); -lapack_int LAPACKE_cpptri_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* ap ); -lapack_int LAPACKE_zpptri_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* ap ); - -lapack_int LAPACKE_spptrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const float* ap, float* b, - lapack_int ldb ); -lapack_int LAPACKE_dpptrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const double* ap, double* b, - lapack_int ldb ); -lapack_int LAPACKE_cpptrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* ap, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_zpptrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, - const lapack_complex_double* ap, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_spstrf_work( int matrix_order, char uplo, lapack_int n, - float* a, lapack_int lda, lapack_int* piv, - lapack_int* rank, float tol, float* work ); -lapack_int LAPACKE_dpstrf_work( int matrix_order, char uplo, lapack_int n, - double* a, lapack_int lda, lapack_int* piv, - lapack_int* rank, double tol, double* work ); -lapack_int LAPACKE_cpstrf_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_int* piv, lapack_int* rank, float tol, - float* work ); -lapack_int LAPACKE_zpstrf_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_int* piv, lapack_int* rank, double tol, - double* work ); - -lapack_int LAPACKE_sptcon_work( lapack_int n, const float* d, const float* e, - float anorm, float* rcond, float* work ); -lapack_int LAPACKE_dptcon_work( lapack_int n, const double* d, const double* e, - double anorm, double* rcond, double* work ); -lapack_int LAPACKE_cptcon_work( lapack_int n, const float* d, - const lapack_complex_float* e, float anorm, - float* rcond, float* work ); -lapack_int LAPACKE_zptcon_work( lapack_int n, const double* d, - const lapack_complex_double* e, double anorm, - double* rcond, double* work ); - -lapack_int LAPACKE_spteqr_work( int matrix_order, char compz, lapack_int n, - float* d, float* e, float* z, lapack_int ldz, - float* work ); -lapack_int LAPACKE_dpteqr_work( int matrix_order, char compz, lapack_int n, - double* d, double* e, double* z, lapack_int ldz, - double* work ); -lapack_int LAPACKE_cpteqr_work( int matrix_order, char compz, lapack_int n, - float* d, float* e, lapack_complex_float* z, - lapack_int ldz, float* work ); -lapack_int LAPACKE_zpteqr_work( int matrix_order, char compz, lapack_int n, - double* d, double* e, lapack_complex_double* z, - lapack_int ldz, double* work ); - -lapack_int LAPACKE_sptrfs_work( int matrix_order, lapack_int n, lapack_int nrhs, - const float* d, const float* e, const float* df, - const float* ef, const float* b, lapack_int ldb, - float* x, lapack_int ldx, float* ferr, - float* berr, float* work ); -lapack_int LAPACKE_dptrfs_work( int matrix_order, lapack_int n, lapack_int nrhs, - const double* d, const double* e, - const double* df, const double* ef, - const double* b, lapack_int ldb, double* x, - lapack_int ldx, double* ferr, double* berr, - double* work ); -lapack_int LAPACKE_cptrfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const float* d, - const lapack_complex_float* e, const float* df, - const lapack_complex_float* ef, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* ferr, float* berr, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_zptrfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const double* d, - const lapack_complex_double* e, - const double* df, - const lapack_complex_double* ef, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* ferr, double* berr, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_sptsv_work( int matrix_order, lapack_int n, lapack_int nrhs, - float* d, float* e, float* b, lapack_int ldb ); -lapack_int LAPACKE_dptsv_work( int matrix_order, lapack_int n, lapack_int nrhs, - double* d, double* e, double* b, - lapack_int ldb ); -lapack_int LAPACKE_cptsv_work( int matrix_order, lapack_int n, lapack_int nrhs, - float* d, lapack_complex_float* e, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_zptsv_work( int matrix_order, lapack_int n, lapack_int nrhs, - double* d, lapack_complex_double* e, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_sptsvx_work( int matrix_order, char fact, lapack_int n, - lapack_int nrhs, const float* d, const float* e, - float* df, float* ef, const float* b, - lapack_int ldb, float* x, lapack_int ldx, - float* rcond, float* ferr, float* berr, - float* work ); -lapack_int LAPACKE_dptsvx_work( int matrix_order, char fact, lapack_int n, - lapack_int nrhs, const double* d, - const double* e, double* df, double* ef, - const double* b, lapack_int ldb, double* x, - lapack_int ldx, double* rcond, double* ferr, - double* berr, double* work ); -lapack_int LAPACKE_cptsvx_work( int matrix_order, char fact, lapack_int n, - lapack_int nrhs, const float* d, - const lapack_complex_float* e, float* df, - lapack_complex_float* ef, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* rcond, float* ferr, float* berr, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_zptsvx_work( int matrix_order, char fact, lapack_int n, - lapack_int nrhs, const double* d, - const lapack_complex_double* e, double* df, - lapack_complex_double* ef, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_spttrf_work( lapack_int n, float* d, float* e ); -lapack_int LAPACKE_dpttrf_work( lapack_int n, double* d, double* e ); -lapack_int LAPACKE_cpttrf_work( lapack_int n, float* d, - lapack_complex_float* e ); -lapack_int LAPACKE_zpttrf_work( lapack_int n, double* d, - lapack_complex_double* e ); - -lapack_int LAPACKE_spttrs_work( int matrix_order, lapack_int n, lapack_int nrhs, - const float* d, const float* e, float* b, - lapack_int ldb ); -lapack_int LAPACKE_dpttrs_work( int matrix_order, lapack_int n, lapack_int nrhs, - const double* d, const double* e, double* b, - lapack_int ldb ); -lapack_int LAPACKE_cpttrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const float* d, - const lapack_complex_float* e, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_zpttrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const double* d, - const lapack_complex_double* e, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_ssbev_work( int matrix_order, char jobz, char uplo, - lapack_int n, lapack_int kd, float* ab, - lapack_int ldab, float* w, float* z, - lapack_int ldz, float* work ); -lapack_int LAPACKE_dsbev_work( int matrix_order, char jobz, char uplo, - lapack_int n, lapack_int kd, double* ab, - lapack_int ldab, double* w, double* z, - lapack_int ldz, double* work ); - -lapack_int LAPACKE_ssbevd_work( int matrix_order, char jobz, char uplo, - lapack_int n, lapack_int kd, float* ab, - lapack_int ldab, float* w, float* z, - lapack_int ldz, float* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork ); -lapack_int LAPACKE_dsbevd_work( int matrix_order, char jobz, char uplo, - lapack_int n, lapack_int kd, double* ab, - lapack_int ldab, double* w, double* z, - lapack_int ldz, double* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork ); - -lapack_int LAPACKE_ssbevx_work( int matrix_order, char jobz, char range, - char uplo, lapack_int n, lapack_int kd, - float* ab, lapack_int ldab, float* q, - lapack_int ldq, float vl, float vu, - lapack_int il, lapack_int iu, float abstol, - lapack_int* m, float* w, float* z, - lapack_int ldz, float* work, lapack_int* iwork, - lapack_int* ifail ); -lapack_int LAPACKE_dsbevx_work( int matrix_order, char jobz, char range, - char uplo, lapack_int n, lapack_int kd, - double* ab, lapack_int ldab, double* q, - lapack_int ldq, double vl, double vu, - lapack_int il, lapack_int iu, double abstol, - lapack_int* m, double* w, double* z, - lapack_int ldz, double* work, lapack_int* iwork, - lapack_int* ifail ); - -lapack_int LAPACKE_ssbgst_work( int matrix_order, char vect, char uplo, - lapack_int n, lapack_int ka, lapack_int kb, - float* ab, lapack_int ldab, const float* bb, - lapack_int ldbb, float* x, lapack_int ldx, - float* work ); -lapack_int LAPACKE_dsbgst_work( int matrix_order, char vect, char uplo, - lapack_int n, lapack_int ka, lapack_int kb, - double* ab, lapack_int ldab, const double* bb, - lapack_int ldbb, double* x, lapack_int ldx, - double* work ); - -lapack_int LAPACKE_ssbgv_work( int matrix_order, char jobz, char uplo, - lapack_int n, lapack_int ka, lapack_int kb, - float* ab, lapack_int ldab, float* bb, - lapack_int ldbb, float* w, float* z, - lapack_int ldz, float* work ); -lapack_int LAPACKE_dsbgv_work( int matrix_order, char jobz, char uplo, - lapack_int n, lapack_int ka, lapack_int kb, - double* ab, lapack_int ldab, double* bb, - lapack_int ldbb, double* w, double* z, - lapack_int ldz, double* work ); - -lapack_int LAPACKE_ssbgvd_work( int matrix_order, char jobz, char uplo, - lapack_int n, lapack_int ka, lapack_int kb, - float* ab, lapack_int ldab, float* bb, - lapack_int ldbb, float* w, float* z, - lapack_int ldz, float* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork ); -lapack_int LAPACKE_dsbgvd_work( int matrix_order, char jobz, char uplo, - lapack_int n, lapack_int ka, lapack_int kb, - double* ab, lapack_int ldab, double* bb, - lapack_int ldbb, double* w, double* z, - lapack_int ldz, double* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork ); - -lapack_int LAPACKE_ssbgvx_work( int matrix_order, char jobz, char range, - char uplo, lapack_int n, lapack_int ka, - lapack_int kb, float* ab, lapack_int ldab, - float* bb, lapack_int ldbb, float* q, - lapack_int ldq, float vl, float vu, - lapack_int il, lapack_int iu, float abstol, - lapack_int* m, float* w, float* z, - lapack_int ldz, float* work, lapack_int* iwork, - lapack_int* ifail ); -lapack_int LAPACKE_dsbgvx_work( int matrix_order, char jobz, char range, - char uplo, lapack_int n, lapack_int ka, - lapack_int kb, double* ab, lapack_int ldab, - double* bb, lapack_int ldbb, double* q, - lapack_int ldq, double vl, double vu, - lapack_int il, lapack_int iu, double abstol, - lapack_int* m, double* w, double* z, - lapack_int ldz, double* work, lapack_int* iwork, - lapack_int* ifail ); - -lapack_int LAPACKE_ssbtrd_work( int matrix_order, char vect, char uplo, - lapack_int n, lapack_int kd, float* ab, - lapack_int ldab, float* d, float* e, float* q, - lapack_int ldq, float* work ); -lapack_int LAPACKE_dsbtrd_work( int matrix_order, char vect, char uplo, - lapack_int n, lapack_int kd, double* ab, - lapack_int ldab, double* d, double* e, - double* q, lapack_int ldq, double* work ); - -lapack_int LAPACKE_ssfrk_work( int matrix_order, char transr, char uplo, - char trans, lapack_int n, lapack_int k, - float alpha, const float* a, lapack_int lda, - float beta, float* c ); -lapack_int LAPACKE_dsfrk_work( int matrix_order, char transr, char uplo, - char trans, lapack_int n, lapack_int k, - double alpha, const double* a, lapack_int lda, - double beta, double* c ); - -lapack_int LAPACKE_sspcon_work( int matrix_order, char uplo, lapack_int n, - const float* ap, const lapack_int* ipiv, - float anorm, float* rcond, float* work, - lapack_int* iwork ); -lapack_int LAPACKE_dspcon_work( int matrix_order, char uplo, lapack_int n, - const double* ap, const lapack_int* ipiv, - double anorm, double* rcond, double* work, - lapack_int* iwork ); -lapack_int LAPACKE_cspcon_work( int matrix_order, char uplo, lapack_int n, - const lapack_complex_float* ap, - const lapack_int* ipiv, float anorm, - float* rcond, lapack_complex_float* work ); -lapack_int LAPACKE_zspcon_work( int matrix_order, char uplo, lapack_int n, - const lapack_complex_double* ap, - const lapack_int* ipiv, double anorm, - double* rcond, lapack_complex_double* work ); - -lapack_int LAPACKE_sspev_work( int matrix_order, char jobz, char uplo, - lapack_int n, float* ap, float* w, float* z, - lapack_int ldz, float* work ); -lapack_int LAPACKE_dspev_work( int matrix_order, char jobz, char uplo, - lapack_int n, double* ap, double* w, double* z, - lapack_int ldz, double* work ); - -lapack_int LAPACKE_sspevd_work( int matrix_order, char jobz, char uplo, - lapack_int n, float* ap, float* w, float* z, - lapack_int ldz, float* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork ); -lapack_int LAPACKE_dspevd_work( int matrix_order, char jobz, char uplo, - lapack_int n, double* ap, double* w, double* z, - lapack_int ldz, double* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork ); - -lapack_int LAPACKE_sspevx_work( int matrix_order, char jobz, char range, - char uplo, lapack_int n, float* ap, float vl, - float vu, lapack_int il, lapack_int iu, - float abstol, lapack_int* m, float* w, float* z, - lapack_int ldz, float* work, lapack_int* iwork, - lapack_int* ifail ); -lapack_int LAPACKE_dspevx_work( int matrix_order, char jobz, char range, - char uplo, lapack_int n, double* ap, double vl, - double vu, lapack_int il, lapack_int iu, - double abstol, lapack_int* m, double* w, - double* z, lapack_int ldz, double* work, - lapack_int* iwork, lapack_int* ifail ); - -lapack_int LAPACKE_sspgst_work( int matrix_order, lapack_int itype, char uplo, - lapack_int n, float* ap, const float* bp ); -lapack_int LAPACKE_dspgst_work( int matrix_order, lapack_int itype, char uplo, - lapack_int n, double* ap, const double* bp ); - -lapack_int LAPACKE_sspgv_work( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, float* ap, float* bp, - float* w, float* z, lapack_int ldz, - float* work ); -lapack_int LAPACKE_dspgv_work( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, double* ap, double* bp, - double* w, double* z, lapack_int ldz, - double* work ); - -lapack_int LAPACKE_sspgvd_work( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, float* ap, float* bp, - float* w, float* z, lapack_int ldz, float* work, - lapack_int lwork, lapack_int* iwork, - lapack_int liwork ); -lapack_int LAPACKE_dspgvd_work( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, double* ap, double* bp, - double* w, double* z, lapack_int ldz, - double* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork ); - -lapack_int LAPACKE_sspgvx_work( int matrix_order, lapack_int itype, char jobz, - char range, char uplo, lapack_int n, float* ap, - float* bp, float vl, float vu, lapack_int il, - lapack_int iu, float abstol, lapack_int* m, - float* w, float* z, lapack_int ldz, float* work, - lapack_int* iwork, lapack_int* ifail ); -lapack_int LAPACKE_dspgvx_work( int matrix_order, lapack_int itype, char jobz, - char range, char uplo, lapack_int n, double* ap, - double* bp, double vl, double vu, lapack_int il, - lapack_int iu, double abstol, lapack_int* m, - double* w, double* z, lapack_int ldz, - double* work, lapack_int* iwork, - lapack_int* ifail ); - -lapack_int LAPACKE_ssprfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const float* ap, - const float* afp, const lapack_int* ipiv, - const float* b, lapack_int ldb, float* x, - lapack_int ldx, float* ferr, float* berr, - float* work, lapack_int* iwork ); -lapack_int LAPACKE_dsprfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const double* ap, - const double* afp, const lapack_int* ipiv, - const double* b, lapack_int ldb, double* x, - lapack_int ldx, double* ferr, double* berr, - double* work, lapack_int* iwork ); -lapack_int LAPACKE_csprfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* ap, - const lapack_complex_float* afp, - const lapack_int* ipiv, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* ferr, float* berr, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_zsprfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, - const lapack_complex_double* ap, - const lapack_complex_double* afp, - const lapack_int* ipiv, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* ferr, double* berr, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_sspsv_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, float* ap, lapack_int* ipiv, - float* b, lapack_int ldb ); -lapack_int LAPACKE_dspsv_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, double* ap, lapack_int* ipiv, - double* b, lapack_int ldb ); -lapack_int LAPACKE_cspsv_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_float* ap, - lapack_int* ipiv, lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_zspsv_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_double* ap, - lapack_int* ipiv, lapack_complex_double* b, - lapack_int ldb ); - -lapack_int LAPACKE_sspsvx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, const float* ap, - float* afp, lapack_int* ipiv, const float* b, - lapack_int ldb, float* x, lapack_int ldx, - float* rcond, float* ferr, float* berr, - float* work, lapack_int* iwork ); -lapack_int LAPACKE_dspsvx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, const double* ap, - double* afp, lapack_int* ipiv, const double* b, - lapack_int ldb, double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr, - double* work, lapack_int* iwork ); -lapack_int LAPACKE_cspsvx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, - const lapack_complex_float* ap, - lapack_complex_float* afp, lapack_int* ipiv, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* rcond, float* ferr, float* berr, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_zspsvx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, - const lapack_complex_double* ap, - lapack_complex_double* afp, lapack_int* ipiv, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_ssptrd_work( int matrix_order, char uplo, lapack_int n, - float* ap, float* d, float* e, float* tau ); -lapack_int LAPACKE_dsptrd_work( int matrix_order, char uplo, lapack_int n, - double* ap, double* d, double* e, double* tau ); - -lapack_int LAPACKE_ssptrf_work( int matrix_order, char uplo, lapack_int n, - float* ap, lapack_int* ipiv ); -lapack_int LAPACKE_dsptrf_work( int matrix_order, char uplo, lapack_int n, - double* ap, lapack_int* ipiv ); -lapack_int LAPACKE_csptrf_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* ap, lapack_int* ipiv ); -lapack_int LAPACKE_zsptrf_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* ap, lapack_int* ipiv ); - -lapack_int LAPACKE_ssptri_work( int matrix_order, char uplo, lapack_int n, - float* ap, const lapack_int* ipiv, - float* work ); -lapack_int LAPACKE_dsptri_work( int matrix_order, char uplo, lapack_int n, - double* ap, const lapack_int* ipiv, - double* work ); -lapack_int LAPACKE_csptri_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* ap, - const lapack_int* ipiv, - lapack_complex_float* work ); -lapack_int LAPACKE_zsptri_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* ap, - const lapack_int* ipiv, - lapack_complex_double* work ); - -lapack_int LAPACKE_ssptrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const float* ap, - const lapack_int* ipiv, float* b, - lapack_int ldb ); -lapack_int LAPACKE_dsptrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const double* ap, - const lapack_int* ipiv, double* b, - lapack_int ldb ); -lapack_int LAPACKE_csptrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* ap, - const lapack_int* ipiv, lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_zsptrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, - const lapack_complex_double* ap, - const lapack_int* ipiv, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_sstebz_work( char range, char order, lapack_int n, float vl, - float vu, lapack_int il, lapack_int iu, - float abstol, const float* d, const float* e, - lapack_int* m, lapack_int* nsplit, float* w, - lapack_int* iblock, lapack_int* isplit, - float* work, lapack_int* iwork ); -lapack_int LAPACKE_dstebz_work( char range, char order, lapack_int n, double vl, - double vu, lapack_int il, lapack_int iu, - double abstol, const double* d, const double* e, - lapack_int* m, lapack_int* nsplit, double* w, - lapack_int* iblock, lapack_int* isplit, - double* work, lapack_int* iwork ); - -lapack_int LAPACKE_sstedc_work( int matrix_order, char compz, lapack_int n, - float* d, float* e, float* z, lapack_int ldz, - float* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork ); -lapack_int LAPACKE_dstedc_work( int matrix_order, char compz, lapack_int n, - double* d, double* e, double* z, lapack_int ldz, - double* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork ); -lapack_int LAPACKE_cstedc_work( int matrix_order, char compz, lapack_int n, - float* d, float* e, lapack_complex_float* z, - lapack_int ldz, lapack_complex_float* work, - lapack_int lwork, float* rwork, - lapack_int lrwork, lapack_int* iwork, - lapack_int liwork ); -lapack_int LAPACKE_zstedc_work( int matrix_order, char compz, lapack_int n, - double* d, double* e, lapack_complex_double* z, - lapack_int ldz, lapack_complex_double* work, - lapack_int lwork, double* rwork, - lapack_int lrwork, lapack_int* iwork, - lapack_int liwork ); - -lapack_int LAPACKE_sstegr_work( int matrix_order, char jobz, char range, - lapack_int n, float* d, float* e, float vl, - float vu, lapack_int il, lapack_int iu, - float abstol, lapack_int* m, float* w, float* z, - lapack_int ldz, lapack_int* isuppz, float* work, - lapack_int lwork, lapack_int* iwork, - lapack_int liwork ); -lapack_int LAPACKE_dstegr_work( int matrix_order, char jobz, char range, - lapack_int n, double* d, double* e, double vl, - double vu, lapack_int il, lapack_int iu, - double abstol, lapack_int* m, double* w, - double* z, lapack_int ldz, lapack_int* isuppz, - double* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork ); -lapack_int LAPACKE_cstegr_work( int matrix_order, char jobz, char range, - lapack_int n, float* d, float* e, float vl, - float vu, lapack_int il, lapack_int iu, - float abstol, lapack_int* m, float* w, - lapack_complex_float* z, lapack_int ldz, - lapack_int* isuppz, float* work, - lapack_int lwork, lapack_int* iwork, - lapack_int liwork ); -lapack_int LAPACKE_zstegr_work( int matrix_order, char jobz, char range, - lapack_int n, double* d, double* e, double vl, - double vu, lapack_int il, lapack_int iu, - double abstol, lapack_int* m, double* w, - lapack_complex_double* z, lapack_int ldz, - lapack_int* isuppz, double* work, - lapack_int lwork, lapack_int* iwork, - lapack_int liwork ); - -lapack_int LAPACKE_sstein_work( int matrix_order, lapack_int n, const float* d, - const float* e, lapack_int m, const float* w, - const lapack_int* iblock, - const lapack_int* isplit, float* z, - lapack_int ldz, float* work, lapack_int* iwork, - lapack_int* ifailv ); -lapack_int LAPACKE_dstein_work( int matrix_order, lapack_int n, const double* d, - const double* e, lapack_int m, const double* w, - const lapack_int* iblock, - const lapack_int* isplit, double* z, - lapack_int ldz, double* work, lapack_int* iwork, - lapack_int* ifailv ); -lapack_int LAPACKE_cstein_work( int matrix_order, lapack_int n, const float* d, - const float* e, lapack_int m, const float* w, - const lapack_int* iblock, - const lapack_int* isplit, - lapack_complex_float* z, lapack_int ldz, - float* work, lapack_int* iwork, - lapack_int* ifailv ); -lapack_int LAPACKE_zstein_work( int matrix_order, lapack_int n, const double* d, - const double* e, lapack_int m, const double* w, - const lapack_int* iblock, - const lapack_int* isplit, - lapack_complex_double* z, lapack_int ldz, - double* work, lapack_int* iwork, - lapack_int* ifailv ); - -lapack_int LAPACKE_sstemr_work( int matrix_order, char jobz, char range, - lapack_int n, float* d, float* e, float vl, - float vu, lapack_int il, lapack_int iu, - lapack_int* m, float* w, float* z, - lapack_int ldz, lapack_int nzc, - lapack_int* isuppz, lapack_logical* tryrac, - float* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork ); -lapack_int LAPACKE_dstemr_work( int matrix_order, char jobz, char range, - lapack_int n, double* d, double* e, double vl, - double vu, lapack_int il, lapack_int iu, - lapack_int* m, double* w, double* z, - lapack_int ldz, lapack_int nzc, - lapack_int* isuppz, lapack_logical* tryrac, - double* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork ); -lapack_int LAPACKE_cstemr_work( int matrix_order, char jobz, char range, - lapack_int n, float* d, float* e, float vl, - float vu, lapack_int il, lapack_int iu, - lapack_int* m, float* w, - lapack_complex_float* z, lapack_int ldz, - lapack_int nzc, lapack_int* isuppz, - lapack_logical* tryrac, float* work, - lapack_int lwork, lapack_int* iwork, - lapack_int liwork ); -lapack_int LAPACKE_zstemr_work( int matrix_order, char jobz, char range, - lapack_int n, double* d, double* e, double vl, - double vu, lapack_int il, lapack_int iu, - lapack_int* m, double* w, - lapack_complex_double* z, lapack_int ldz, - lapack_int nzc, lapack_int* isuppz, - lapack_logical* tryrac, double* work, - lapack_int lwork, lapack_int* iwork, - lapack_int liwork ); - -lapack_int LAPACKE_ssteqr_work( int matrix_order, char compz, lapack_int n, - float* d, float* e, float* z, lapack_int ldz, - float* work ); -lapack_int LAPACKE_dsteqr_work( int matrix_order, char compz, lapack_int n, - double* d, double* e, double* z, lapack_int ldz, - double* work ); -lapack_int LAPACKE_csteqr_work( int matrix_order, char compz, lapack_int n, - float* d, float* e, lapack_complex_float* z, - lapack_int ldz, float* work ); -lapack_int LAPACKE_zsteqr_work( int matrix_order, char compz, lapack_int n, - double* d, double* e, lapack_complex_double* z, - lapack_int ldz, double* work ); - -lapack_int LAPACKE_ssterf_work( lapack_int n, float* d, float* e ); -lapack_int LAPACKE_dsterf_work( lapack_int n, double* d, double* e ); - -lapack_int LAPACKE_sstev_work( int matrix_order, char jobz, lapack_int n, - float* d, float* e, float* z, lapack_int ldz, - float* work ); -lapack_int LAPACKE_dstev_work( int matrix_order, char jobz, lapack_int n, - double* d, double* e, double* z, lapack_int ldz, - double* work ); - -lapack_int LAPACKE_sstevd_work( int matrix_order, char jobz, lapack_int n, - float* d, float* e, float* z, lapack_int ldz, - float* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork ); -lapack_int LAPACKE_dstevd_work( int matrix_order, char jobz, lapack_int n, - double* d, double* e, double* z, lapack_int ldz, - double* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork ); - -lapack_int LAPACKE_sstevr_work( int matrix_order, char jobz, char range, - lapack_int n, float* d, float* e, float vl, - float vu, lapack_int il, lapack_int iu, - float abstol, lapack_int* m, float* w, float* z, - lapack_int ldz, lapack_int* isuppz, float* work, - lapack_int lwork, lapack_int* iwork, - lapack_int liwork ); -lapack_int LAPACKE_dstevr_work( int matrix_order, char jobz, char range, - lapack_int n, double* d, double* e, double vl, - double vu, lapack_int il, lapack_int iu, - double abstol, lapack_int* m, double* w, - double* z, lapack_int ldz, lapack_int* isuppz, - double* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork ); - -lapack_int LAPACKE_sstevx_work( int matrix_order, char jobz, char range, - lapack_int n, float* d, float* e, float vl, - float vu, lapack_int il, lapack_int iu, - float abstol, lapack_int* m, float* w, float* z, - lapack_int ldz, float* work, lapack_int* iwork, - lapack_int* ifail ); -lapack_int LAPACKE_dstevx_work( int matrix_order, char jobz, char range, - lapack_int n, double* d, double* e, double vl, - double vu, lapack_int il, lapack_int iu, - double abstol, lapack_int* m, double* w, - double* z, lapack_int ldz, double* work, - lapack_int* iwork, lapack_int* ifail ); - -lapack_int LAPACKE_ssycon_work( int matrix_order, char uplo, lapack_int n, - const float* a, lapack_int lda, - const lapack_int* ipiv, float anorm, - float* rcond, float* work, lapack_int* iwork ); -lapack_int LAPACKE_dsycon_work( int matrix_order, char uplo, lapack_int n, - const double* a, lapack_int lda, - const lapack_int* ipiv, double anorm, - double* rcond, double* work, - lapack_int* iwork ); -lapack_int LAPACKE_csycon_work( int matrix_order, char uplo, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - const lapack_int* ipiv, float anorm, - float* rcond, lapack_complex_float* work ); -lapack_int LAPACKE_zsycon_work( int matrix_order, char uplo, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - const lapack_int* ipiv, double anorm, - double* rcond, lapack_complex_double* work ); - -lapack_int LAPACKE_ssyequb_work( int matrix_order, char uplo, lapack_int n, - const float* a, lapack_int lda, float* s, - float* scond, float* amax, float* work ); -lapack_int LAPACKE_dsyequb_work( int matrix_order, char uplo, lapack_int n, - const double* a, lapack_int lda, double* s, - double* scond, double* amax, double* work ); -lapack_int LAPACKE_csyequb_work( int matrix_order, char uplo, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - float* s, float* scond, float* amax, - lapack_complex_float* work ); -lapack_int LAPACKE_zsyequb_work( int matrix_order, char uplo, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - double* s, double* scond, double* amax, - lapack_complex_double* work ); - -lapack_int LAPACKE_ssyev_work( int matrix_order, char jobz, char uplo, - lapack_int n, float* a, lapack_int lda, float* w, - float* work, lapack_int lwork ); -lapack_int LAPACKE_dsyev_work( int matrix_order, char jobz, char uplo, - lapack_int n, double* a, lapack_int lda, - double* w, double* work, lapack_int lwork ); - -lapack_int LAPACKE_ssyevd_work( int matrix_order, char jobz, char uplo, - lapack_int n, float* a, lapack_int lda, - float* w, float* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork ); -lapack_int LAPACKE_dsyevd_work( int matrix_order, char jobz, char uplo, - lapack_int n, double* a, lapack_int lda, - double* w, double* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork ); - -lapack_int LAPACKE_ssyevr_work( int matrix_order, char jobz, char range, - char uplo, lapack_int n, float* a, - lapack_int lda, float vl, float vu, - lapack_int il, lapack_int iu, float abstol, - lapack_int* m, float* w, float* z, - lapack_int ldz, lapack_int* isuppz, float* work, - lapack_int lwork, lapack_int* iwork, - lapack_int liwork ); -lapack_int LAPACKE_dsyevr_work( int matrix_order, char jobz, char range, - char uplo, lapack_int n, double* a, - lapack_int lda, double vl, double vu, - lapack_int il, lapack_int iu, double abstol, - lapack_int* m, double* w, double* z, - lapack_int ldz, lapack_int* isuppz, - double* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork ); - -lapack_int LAPACKE_ssyevx_work( int matrix_order, char jobz, char range, - char uplo, lapack_int n, float* a, - lapack_int lda, float vl, float vu, - lapack_int il, lapack_int iu, float abstol, - lapack_int* m, float* w, float* z, - lapack_int ldz, float* work, lapack_int lwork, - lapack_int* iwork, lapack_int* ifail ); -lapack_int LAPACKE_dsyevx_work( int matrix_order, char jobz, char range, - char uplo, lapack_int n, double* a, - lapack_int lda, double vl, double vu, - lapack_int il, lapack_int iu, double abstol, - lapack_int* m, double* w, double* z, - lapack_int ldz, double* work, lapack_int lwork, - lapack_int* iwork, lapack_int* ifail ); - -lapack_int LAPACKE_ssygst_work( int matrix_order, lapack_int itype, char uplo, - lapack_int n, float* a, lapack_int lda, - const float* b, lapack_int ldb ); -lapack_int LAPACKE_dsygst_work( int matrix_order, lapack_int itype, char uplo, - lapack_int n, double* a, lapack_int lda, - const double* b, lapack_int ldb ); - -lapack_int LAPACKE_ssygv_work( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, float* a, - lapack_int lda, float* b, lapack_int ldb, - float* w, float* work, lapack_int lwork ); -lapack_int LAPACKE_dsygv_work( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, double* a, - lapack_int lda, double* b, lapack_int ldb, - double* w, double* work, lapack_int lwork ); - -lapack_int LAPACKE_ssygvd_work( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, float* a, - lapack_int lda, float* b, lapack_int ldb, - float* w, float* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork ); -lapack_int LAPACKE_dsygvd_work( int matrix_order, lapack_int itype, char jobz, - char uplo, lapack_int n, double* a, - lapack_int lda, double* b, lapack_int ldb, - double* w, double* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork ); - -lapack_int LAPACKE_ssygvx_work( int matrix_order, lapack_int itype, char jobz, - char range, char uplo, lapack_int n, float* a, - lapack_int lda, float* b, lapack_int ldb, - float vl, float vu, lapack_int il, - lapack_int iu, float abstol, lapack_int* m, - float* w, float* z, lapack_int ldz, float* work, - lapack_int lwork, lapack_int* iwork, - lapack_int* ifail ); -lapack_int LAPACKE_dsygvx_work( int matrix_order, lapack_int itype, char jobz, - char range, char uplo, lapack_int n, double* a, - lapack_int lda, double* b, lapack_int ldb, - double vl, double vu, lapack_int il, - lapack_int iu, double abstol, lapack_int* m, - double* w, double* z, lapack_int ldz, - double* work, lapack_int lwork, - lapack_int* iwork, lapack_int* ifail ); - -lapack_int LAPACKE_ssyrfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const float* a, lapack_int lda, - const float* af, lapack_int ldaf, - const lapack_int* ipiv, const float* b, - lapack_int ldb, float* x, lapack_int ldx, - float* ferr, float* berr, float* work, - lapack_int* iwork ); -lapack_int LAPACKE_dsyrfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const double* a, - lapack_int lda, const double* af, - lapack_int ldaf, const lapack_int* ipiv, - const double* b, lapack_int ldb, double* x, - lapack_int ldx, double* ferr, double* berr, - double* work, lapack_int* iwork ); -lapack_int LAPACKE_csyrfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* af, - lapack_int ldaf, const lapack_int* ipiv, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* ferr, float* berr, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_zsyrfs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* a, - lapack_int lda, const lapack_complex_double* af, - lapack_int ldaf, const lapack_int* ipiv, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* ferr, double* berr, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_ssyrfsx_work( int matrix_order, char uplo, char equed, - lapack_int n, lapack_int nrhs, const float* a, - lapack_int lda, const float* af, - lapack_int ldaf, const lapack_int* ipiv, - const float* s, const float* b, lapack_int ldb, - float* x, lapack_int ldx, float* rcond, - float* berr, lapack_int n_err_bnds, - float* err_bnds_norm, float* err_bnds_comp, - lapack_int nparams, float* params, float* work, - lapack_int* iwork ); -lapack_int LAPACKE_dsyrfsx_work( int matrix_order, char uplo, char equed, - lapack_int n, lapack_int nrhs, const double* a, - lapack_int lda, const double* af, - lapack_int ldaf, const lapack_int* ipiv, - const double* s, const double* b, - lapack_int ldb, double* x, lapack_int ldx, - double* rcond, double* berr, - lapack_int n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int nparams, - double* params, double* work, - lapack_int* iwork ); -lapack_int LAPACKE_csyrfsx_work( int matrix_order, char uplo, char equed, - lapack_int n, lapack_int nrhs, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* af, - lapack_int ldaf, const lapack_int* ipiv, - const float* s, const lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* x, - lapack_int ldx, float* rcond, float* berr, - lapack_int n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int nparams, - float* params, lapack_complex_float* work, - float* rwork ); -lapack_int LAPACKE_zsyrfsx_work( int matrix_order, char uplo, char equed, - lapack_int n, lapack_int nrhs, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* af, - lapack_int ldaf, const lapack_int* ipiv, - const double* s, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* berr, - lapack_int n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int nparams, - double* params, lapack_complex_double* work, - double* rwork ); - -lapack_int LAPACKE_ssysv_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, float* a, lapack_int lda, - lapack_int* ipiv, float* b, lapack_int ldb, - float* work, lapack_int lwork ); -lapack_int LAPACKE_dsysv_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, double* a, lapack_int lda, - lapack_int* ipiv, double* b, lapack_int ldb, - double* work, lapack_int lwork ); -lapack_int LAPACKE_csysv_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_float* a, - lapack_int lda, lapack_int* ipiv, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zsysv_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, lapack_complex_double* a, - lapack_int lda, lapack_int* ipiv, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_ssysvx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, const float* a, - lapack_int lda, float* af, lapack_int ldaf, - lapack_int* ipiv, const float* b, - lapack_int ldb, float* x, lapack_int ldx, - float* rcond, float* ferr, float* berr, - float* work, lapack_int lwork, - lapack_int* iwork ); -lapack_int LAPACKE_dsysvx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, const double* a, - lapack_int lda, double* af, lapack_int ldaf, - lapack_int* ipiv, const double* b, - lapack_int ldb, double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr, - double* work, lapack_int lwork, - lapack_int* iwork ); -lapack_int LAPACKE_csysvx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, - const lapack_complex_float* a, lapack_int lda, - lapack_complex_float* af, lapack_int ldaf, - lapack_int* ipiv, const lapack_complex_float* b, - lapack_int ldb, lapack_complex_float* x, - lapack_int ldx, float* rcond, float* ferr, - float* berr, lapack_complex_float* work, - lapack_int lwork, float* rwork ); -lapack_int LAPACKE_zsysvx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, - const lapack_complex_double* a, lapack_int lda, - lapack_complex_double* af, lapack_int ldaf, - lapack_int* ipiv, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* ferr, double* berr, - lapack_complex_double* work, lapack_int lwork, - double* rwork ); - -lapack_int LAPACKE_ssysvxx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, float* a, - lapack_int lda, float* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, float* s, - float* b, lapack_int ldb, float* x, - lapack_int ldx, float* rcond, float* rpvgrw, - float* berr, lapack_int n_err_bnds, - float* err_bnds_norm, float* err_bnds_comp, - lapack_int nparams, float* params, float* work, - lapack_int* iwork ); -lapack_int LAPACKE_dsysvxx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, double* a, - lapack_int lda, double* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, double* s, - double* b, lapack_int ldb, double* x, - lapack_int ldx, double* rcond, double* rpvgrw, - double* berr, lapack_int n_err_bnds, - double* err_bnds_norm, double* err_bnds_comp, - lapack_int nparams, double* params, - double* work, lapack_int* iwork ); -lapack_int LAPACKE_csysvxx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, float* s, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* x, lapack_int ldx, - float* rcond, float* rpvgrw, float* berr, - lapack_int n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int nparams, - float* params, lapack_complex_float* work, - float* rwork ); -lapack_int LAPACKE_zsysvxx_work( int matrix_order, char fact, char uplo, - lapack_int n, lapack_int nrhs, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* af, lapack_int ldaf, - lapack_int* ipiv, char* equed, double* s, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* x, lapack_int ldx, - double* rcond, double* rpvgrw, double* berr, - lapack_int n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int nparams, - double* params, lapack_complex_double* work, - double* rwork ); - -lapack_int LAPACKE_ssytrd_work( int matrix_order, char uplo, lapack_int n, - float* a, lapack_int lda, float* d, float* e, - float* tau, float* work, lapack_int lwork ); -lapack_int LAPACKE_dsytrd_work( int matrix_order, char uplo, lapack_int n, - double* a, lapack_int lda, double* d, double* e, - double* tau, double* work, lapack_int lwork ); - -lapack_int LAPACKE_ssytrf_work( int matrix_order, char uplo, lapack_int n, - float* a, lapack_int lda, lapack_int* ipiv, - float* work, lapack_int lwork ); -lapack_int LAPACKE_dsytrf_work( int matrix_order, char uplo, lapack_int n, - double* a, lapack_int lda, lapack_int* ipiv, - double* work, lapack_int lwork ); -lapack_int LAPACKE_csytrf_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_int* ipiv, lapack_complex_float* work, - lapack_int lwork ); -lapack_int LAPACKE_zsytrf_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_int* ipiv, lapack_complex_double* work, - lapack_int lwork ); - -lapack_int LAPACKE_ssytri_work( int matrix_order, char uplo, lapack_int n, - float* a, lapack_int lda, - const lapack_int* ipiv, float* work ); -lapack_int LAPACKE_dsytri_work( int matrix_order, char uplo, lapack_int n, - double* a, lapack_int lda, - const lapack_int* ipiv, double* work ); -lapack_int LAPACKE_csytri_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - const lapack_int* ipiv, - lapack_complex_float* work ); -lapack_int LAPACKE_zsytri_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - const lapack_int* ipiv, - lapack_complex_double* work ); - -lapack_int LAPACKE_ssytrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const float* a, lapack_int lda, - const lapack_int* ipiv, float* b, - lapack_int ldb ); -lapack_int LAPACKE_dsytrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const double* a, - lapack_int lda, const lapack_int* ipiv, - double* b, lapack_int ldb ); -lapack_int LAPACKE_csytrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* a, - lapack_int lda, const lapack_int* ipiv, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_zsytrs_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* a, - lapack_int lda, const lapack_int* ipiv, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_stbcon_work( int matrix_order, char norm, char uplo, - char diag, lapack_int n, lapack_int kd, - const float* ab, lapack_int ldab, float* rcond, - float* work, lapack_int* iwork ); -lapack_int LAPACKE_dtbcon_work( int matrix_order, char norm, char uplo, - char diag, lapack_int n, lapack_int kd, - const double* ab, lapack_int ldab, - double* rcond, double* work, - lapack_int* iwork ); -lapack_int LAPACKE_ctbcon_work( int matrix_order, char norm, char uplo, - char diag, lapack_int n, lapack_int kd, - const lapack_complex_float* ab, lapack_int ldab, - float* rcond, lapack_complex_float* work, - float* rwork ); -lapack_int LAPACKE_ztbcon_work( int matrix_order, char norm, char uplo, - char diag, lapack_int n, lapack_int kd, - const lapack_complex_double* ab, - lapack_int ldab, double* rcond, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_stbrfs_work( int matrix_order, char uplo, char trans, - char diag, lapack_int n, lapack_int kd, - lapack_int nrhs, const float* ab, - lapack_int ldab, const float* b, lapack_int ldb, - const float* x, lapack_int ldx, float* ferr, - float* berr, float* work, lapack_int* iwork ); -lapack_int LAPACKE_dtbrfs_work( int matrix_order, char uplo, char trans, - char diag, lapack_int n, lapack_int kd, - lapack_int nrhs, const double* ab, - lapack_int ldab, const double* b, - lapack_int ldb, const double* x, lapack_int ldx, - double* ferr, double* berr, double* work, - lapack_int* iwork ); -lapack_int LAPACKE_ctbrfs_work( int matrix_order, char uplo, char trans, - char diag, lapack_int n, lapack_int kd, - lapack_int nrhs, const lapack_complex_float* ab, - lapack_int ldab, const lapack_complex_float* b, - lapack_int ldb, const lapack_complex_float* x, - lapack_int ldx, float* ferr, float* berr, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_ztbrfs_work( int matrix_order, char uplo, char trans, - char diag, lapack_int n, lapack_int kd, - lapack_int nrhs, - const lapack_complex_double* ab, - lapack_int ldab, const lapack_complex_double* b, - lapack_int ldb, const lapack_complex_double* x, - lapack_int ldx, double* ferr, double* berr, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_stbtrs_work( int matrix_order, char uplo, char trans, - char diag, lapack_int n, lapack_int kd, - lapack_int nrhs, const float* ab, - lapack_int ldab, float* b, lapack_int ldb ); -lapack_int LAPACKE_dtbtrs_work( int matrix_order, char uplo, char trans, - char diag, lapack_int n, lapack_int kd, - lapack_int nrhs, const double* ab, - lapack_int ldab, double* b, lapack_int ldb ); -lapack_int LAPACKE_ctbtrs_work( int matrix_order, char uplo, char trans, - char diag, lapack_int n, lapack_int kd, - lapack_int nrhs, const lapack_complex_float* ab, - lapack_int ldab, lapack_complex_float* b, - lapack_int ldb ); -lapack_int LAPACKE_ztbtrs_work( int matrix_order, char uplo, char trans, - char diag, lapack_int n, lapack_int kd, - lapack_int nrhs, - const lapack_complex_double* ab, - lapack_int ldab, lapack_complex_double* b, - lapack_int ldb ); - -lapack_int LAPACKE_stfsm_work( int matrix_order, char transr, char side, - char uplo, char trans, char diag, lapack_int m, - lapack_int n, float alpha, const float* a, - float* b, lapack_int ldb ); -lapack_int LAPACKE_dtfsm_work( int matrix_order, char transr, char side, - char uplo, char trans, char diag, lapack_int m, - lapack_int n, double alpha, const double* a, - double* b, lapack_int ldb ); -lapack_int LAPACKE_ctfsm_work( int matrix_order, char transr, char side, - char uplo, char trans, char diag, lapack_int m, - lapack_int n, lapack_complex_float alpha, - const lapack_complex_float* a, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_ztfsm_work( int matrix_order, char transr, char side, - char uplo, char trans, char diag, lapack_int m, - lapack_int n, lapack_complex_double alpha, - const lapack_complex_double* a, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_stftri_work( int matrix_order, char transr, char uplo, - char diag, lapack_int n, float* a ); -lapack_int LAPACKE_dtftri_work( int matrix_order, char transr, char uplo, - char diag, lapack_int n, double* a ); -lapack_int LAPACKE_ctftri_work( int matrix_order, char transr, char uplo, - char diag, lapack_int n, - lapack_complex_float* a ); -lapack_int LAPACKE_ztftri_work( int matrix_order, char transr, char uplo, - char diag, lapack_int n, - lapack_complex_double* a ); - -lapack_int LAPACKE_stfttp_work( int matrix_order, char transr, char uplo, - lapack_int n, const float* arf, float* ap ); -lapack_int LAPACKE_dtfttp_work( int matrix_order, char transr, char uplo, - lapack_int n, const double* arf, double* ap ); -lapack_int LAPACKE_ctfttp_work( int matrix_order, char transr, char uplo, - lapack_int n, const lapack_complex_float* arf, - lapack_complex_float* ap ); -lapack_int LAPACKE_ztfttp_work( int matrix_order, char transr, char uplo, - lapack_int n, const lapack_complex_double* arf, - lapack_complex_double* ap ); - -lapack_int LAPACKE_stfttr_work( int matrix_order, char transr, char uplo, - lapack_int n, const float* arf, float* a, - lapack_int lda ); -lapack_int LAPACKE_dtfttr_work( int matrix_order, char transr, char uplo, - lapack_int n, const double* arf, double* a, - lapack_int lda ); -lapack_int LAPACKE_ctfttr_work( int matrix_order, char transr, char uplo, - lapack_int n, const lapack_complex_float* arf, - lapack_complex_float* a, lapack_int lda ); -lapack_int LAPACKE_ztfttr_work( int matrix_order, char transr, char uplo, - lapack_int n, const lapack_complex_double* arf, - lapack_complex_double* a, lapack_int lda ); - -lapack_int LAPACKE_stgevc_work( int matrix_order, char side, char howmny, - const lapack_logical* select, lapack_int n, - const float* s, lapack_int lds, const float* p, - lapack_int ldp, float* vl, lapack_int ldvl, - float* vr, lapack_int ldvr, lapack_int mm, - lapack_int* m, float* work ); -lapack_int LAPACKE_dtgevc_work( int matrix_order, char side, char howmny, - const lapack_logical* select, lapack_int n, - const double* s, lapack_int lds, - const double* p, lapack_int ldp, double* vl, - lapack_int ldvl, double* vr, lapack_int ldvr, - lapack_int mm, lapack_int* m, double* work ); -lapack_int LAPACKE_ctgevc_work( int matrix_order, char side, char howmny, - const lapack_logical* select, lapack_int n, - const lapack_complex_float* s, lapack_int lds, - const lapack_complex_float* p, lapack_int ldp, - lapack_complex_float* vl, lapack_int ldvl, - lapack_complex_float* vr, lapack_int ldvr, - lapack_int mm, lapack_int* m, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_ztgevc_work( int matrix_order, char side, char howmny, - const lapack_logical* select, lapack_int n, - const lapack_complex_double* s, lapack_int lds, - const lapack_complex_double* p, lapack_int ldp, - lapack_complex_double* vl, lapack_int ldvl, - lapack_complex_double* vr, lapack_int ldvr, - lapack_int mm, lapack_int* m, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_stgexc_work( int matrix_order, lapack_logical wantq, - lapack_logical wantz, lapack_int n, float* a, - lapack_int lda, float* b, lapack_int ldb, - float* q, lapack_int ldq, float* z, - lapack_int ldz, lapack_int* ifst, - lapack_int* ilst, float* work, - lapack_int lwork ); -lapack_int LAPACKE_dtgexc_work( int matrix_order, lapack_logical wantq, - lapack_logical wantz, lapack_int n, double* a, - lapack_int lda, double* b, lapack_int ldb, - double* q, lapack_int ldq, double* z, - lapack_int ldz, lapack_int* ifst, - lapack_int* ilst, double* work, - lapack_int lwork ); -lapack_int LAPACKE_ctgexc_work( int matrix_order, lapack_logical wantq, - lapack_logical wantz, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* q, lapack_int ldq, - lapack_complex_float* z, lapack_int ldz, - lapack_int ifst, lapack_int ilst ); -lapack_int LAPACKE_ztgexc_work( int matrix_order, lapack_logical wantq, - lapack_logical wantz, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* q, lapack_int ldq, - lapack_complex_double* z, lapack_int ldz, - lapack_int ifst, lapack_int ilst ); - -lapack_int LAPACKE_stgsen_work( int matrix_order, lapack_int ijob, - lapack_logical wantq, lapack_logical wantz, - const lapack_logical* select, lapack_int n, - float* a, lapack_int lda, float* b, - lapack_int ldb, float* alphar, float* alphai, - float* beta, float* q, lapack_int ldq, float* z, - lapack_int ldz, lapack_int* m, float* pl, - float* pr, float* dif, float* work, - lapack_int lwork, lapack_int* iwork, - lapack_int liwork ); -lapack_int LAPACKE_dtgsen_work( int matrix_order, lapack_int ijob, - lapack_logical wantq, lapack_logical wantz, - const lapack_logical* select, lapack_int n, - double* a, lapack_int lda, double* b, - lapack_int ldb, double* alphar, double* alphai, - double* beta, double* q, lapack_int ldq, - double* z, lapack_int ldz, lapack_int* m, - double* pl, double* pr, double* dif, - double* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork ); -lapack_int LAPACKE_ctgsen_work( int matrix_order, lapack_int ijob, - lapack_logical wantq, lapack_logical wantz, - const lapack_logical* select, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* alpha, - lapack_complex_float* beta, - lapack_complex_float* q, lapack_int ldq, - lapack_complex_float* z, lapack_int ldz, - lapack_int* m, float* pl, float* pr, float* dif, - lapack_complex_float* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork ); -lapack_int LAPACKE_ztgsen_work( int matrix_order, lapack_int ijob, - lapack_logical wantq, lapack_logical wantz, - const lapack_logical* select, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* alpha, - lapack_complex_double* beta, - lapack_complex_double* q, lapack_int ldq, - lapack_complex_double* z, lapack_int ldz, - lapack_int* m, double* pl, double* pr, - double* dif, lapack_complex_double* work, - lapack_int lwork, lapack_int* iwork, - lapack_int liwork ); - -lapack_int LAPACKE_stgsja_work( int matrix_order, char jobu, char jobv, - char jobq, lapack_int m, lapack_int p, - lapack_int n, lapack_int k, lapack_int l, - float* a, lapack_int lda, float* b, - lapack_int ldb, float tola, float tolb, - float* alpha, float* beta, float* u, - lapack_int ldu, float* v, lapack_int ldv, - float* q, lapack_int ldq, float* work, - lapack_int* ncycle ); -lapack_int LAPACKE_dtgsja_work( int matrix_order, char jobu, char jobv, - char jobq, lapack_int m, lapack_int p, - lapack_int n, lapack_int k, lapack_int l, - double* a, lapack_int lda, double* b, - lapack_int ldb, double tola, double tolb, - double* alpha, double* beta, double* u, - lapack_int ldu, double* v, lapack_int ldv, - double* q, lapack_int ldq, double* work, - lapack_int* ncycle ); -lapack_int LAPACKE_ctgsja_work( int matrix_order, char jobu, char jobv, - char jobq, lapack_int m, lapack_int p, - lapack_int n, lapack_int k, lapack_int l, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, - float tola, float tolb, float* alpha, - float* beta, lapack_complex_float* u, - lapack_int ldu, lapack_complex_float* v, - lapack_int ldv, lapack_complex_float* q, - lapack_int ldq, lapack_complex_float* work, - lapack_int* ncycle ); -lapack_int LAPACKE_ztgsja_work( int matrix_order, char jobu, char jobv, - char jobq, lapack_int m, lapack_int p, - lapack_int n, lapack_int k, lapack_int l, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - double tola, double tolb, double* alpha, - double* beta, lapack_complex_double* u, - lapack_int ldu, lapack_complex_double* v, - lapack_int ldv, lapack_complex_double* q, - lapack_int ldq, lapack_complex_double* work, - lapack_int* ncycle ); - -lapack_int LAPACKE_stgsna_work( int matrix_order, char job, char howmny, - const lapack_logical* select, lapack_int n, - const float* a, lapack_int lda, const float* b, - lapack_int ldb, const float* vl, - lapack_int ldvl, const float* vr, - lapack_int ldvr, float* s, float* dif, - lapack_int mm, lapack_int* m, float* work, - lapack_int lwork, lapack_int* iwork ); -lapack_int LAPACKE_dtgsna_work( int matrix_order, char job, char howmny, - const lapack_logical* select, lapack_int n, - const double* a, lapack_int lda, - const double* b, lapack_int ldb, - const double* vl, lapack_int ldvl, - const double* vr, lapack_int ldvr, double* s, - double* dif, lapack_int mm, lapack_int* m, - double* work, lapack_int lwork, - lapack_int* iwork ); -lapack_int LAPACKE_ctgsna_work( int matrix_order, char job, char howmny, - const lapack_logical* select, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* b, lapack_int ldb, - const lapack_complex_float* vl, lapack_int ldvl, - const lapack_complex_float* vr, lapack_int ldvr, - float* s, float* dif, lapack_int mm, - lapack_int* m, lapack_complex_float* work, - lapack_int lwork, lapack_int* iwork ); -lapack_int LAPACKE_ztgsna_work( int matrix_order, char job, char howmny, - const lapack_logical* select, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* b, lapack_int ldb, - const lapack_complex_double* vl, - lapack_int ldvl, - const lapack_complex_double* vr, - lapack_int ldvr, double* s, double* dif, - lapack_int mm, lapack_int* m, - lapack_complex_double* work, lapack_int lwork, - lapack_int* iwork ); - -lapack_int LAPACKE_stgsyl_work( int matrix_order, char trans, lapack_int ijob, - lapack_int m, lapack_int n, const float* a, - lapack_int lda, const float* b, lapack_int ldb, - float* c, lapack_int ldc, const float* d, - lapack_int ldd, const float* e, lapack_int lde, - float* f, lapack_int ldf, float* scale, - float* dif, float* work, lapack_int lwork, - lapack_int* iwork ); -lapack_int LAPACKE_dtgsyl_work( int matrix_order, char trans, lapack_int ijob, - lapack_int m, lapack_int n, const double* a, - lapack_int lda, const double* b, lapack_int ldb, - double* c, lapack_int ldc, const double* d, - lapack_int ldd, const double* e, lapack_int lde, - double* f, lapack_int ldf, double* scale, - double* dif, double* work, lapack_int lwork, - lapack_int* iwork ); -lapack_int LAPACKE_ctgsyl_work( int matrix_order, char trans, lapack_int ijob, - lapack_int m, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* c, lapack_int ldc, - const lapack_complex_float* d, lapack_int ldd, - const lapack_complex_float* e, lapack_int lde, - lapack_complex_float* f, lapack_int ldf, - float* scale, float* dif, - lapack_complex_float* work, lapack_int lwork, - lapack_int* iwork ); -lapack_int LAPACKE_ztgsyl_work( int matrix_order, char trans, lapack_int ijob, - lapack_int m, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* c, lapack_int ldc, - const lapack_complex_double* d, lapack_int ldd, - const lapack_complex_double* e, lapack_int lde, - lapack_complex_double* f, lapack_int ldf, - double* scale, double* dif, - lapack_complex_double* work, lapack_int lwork, - lapack_int* iwork ); - -lapack_int LAPACKE_stpcon_work( int matrix_order, char norm, char uplo, - char diag, lapack_int n, const float* ap, - float* rcond, float* work, lapack_int* iwork ); -lapack_int LAPACKE_dtpcon_work( int matrix_order, char norm, char uplo, - char diag, lapack_int n, const double* ap, - double* rcond, double* work, - lapack_int* iwork ); -lapack_int LAPACKE_ctpcon_work( int matrix_order, char norm, char uplo, - char diag, lapack_int n, - const lapack_complex_float* ap, float* rcond, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_ztpcon_work( int matrix_order, char norm, char uplo, - char diag, lapack_int n, - const lapack_complex_double* ap, double* rcond, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_stprfs_work( int matrix_order, char uplo, char trans, - char diag, lapack_int n, lapack_int nrhs, - const float* ap, const float* b, lapack_int ldb, - const float* x, lapack_int ldx, float* ferr, - float* berr, float* work, lapack_int* iwork ); -lapack_int LAPACKE_dtprfs_work( int matrix_order, char uplo, char trans, - char diag, lapack_int n, lapack_int nrhs, - const double* ap, const double* b, - lapack_int ldb, const double* x, lapack_int ldx, - double* ferr, double* berr, double* work, - lapack_int* iwork ); -lapack_int LAPACKE_ctprfs_work( int matrix_order, char uplo, char trans, - char diag, lapack_int n, lapack_int nrhs, - const lapack_complex_float* ap, - const lapack_complex_float* b, lapack_int ldb, - const lapack_complex_float* x, lapack_int ldx, - float* ferr, float* berr, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_ztprfs_work( int matrix_order, char uplo, char trans, - char diag, lapack_int n, lapack_int nrhs, - const lapack_complex_double* ap, - const lapack_complex_double* b, lapack_int ldb, - const lapack_complex_double* x, lapack_int ldx, - double* ferr, double* berr, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_stptri_work( int matrix_order, char uplo, char diag, - lapack_int n, float* ap ); -lapack_int LAPACKE_dtptri_work( int matrix_order, char uplo, char diag, - lapack_int n, double* ap ); -lapack_int LAPACKE_ctptri_work( int matrix_order, char uplo, char diag, - lapack_int n, lapack_complex_float* ap ); -lapack_int LAPACKE_ztptri_work( int matrix_order, char uplo, char diag, - lapack_int n, lapack_complex_double* ap ); - -lapack_int LAPACKE_stptrs_work( int matrix_order, char uplo, char trans, - char diag, lapack_int n, lapack_int nrhs, - const float* ap, float* b, lapack_int ldb ); -lapack_int LAPACKE_dtptrs_work( int matrix_order, char uplo, char trans, - char diag, lapack_int n, lapack_int nrhs, - const double* ap, double* b, lapack_int ldb ); -lapack_int LAPACKE_ctptrs_work( int matrix_order, char uplo, char trans, - char diag, lapack_int n, lapack_int nrhs, - const lapack_complex_float* ap, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_ztptrs_work( int matrix_order, char uplo, char trans, - char diag, lapack_int n, lapack_int nrhs, - const lapack_complex_double* ap, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_stpttf_work( int matrix_order, char transr, char uplo, - lapack_int n, const float* ap, float* arf ); -lapack_int LAPACKE_dtpttf_work( int matrix_order, char transr, char uplo, - lapack_int n, const double* ap, double* arf ); -lapack_int LAPACKE_ctpttf_work( int matrix_order, char transr, char uplo, - lapack_int n, const lapack_complex_float* ap, - lapack_complex_float* arf ); -lapack_int LAPACKE_ztpttf_work( int matrix_order, char transr, char uplo, - lapack_int n, const lapack_complex_double* ap, - lapack_complex_double* arf ); - -lapack_int LAPACKE_stpttr_work( int matrix_order, char uplo, lapack_int n, - const float* ap, float* a, lapack_int lda ); -lapack_int LAPACKE_dtpttr_work( int matrix_order, char uplo, lapack_int n, - const double* ap, double* a, lapack_int lda ); -lapack_int LAPACKE_ctpttr_work( int matrix_order, char uplo, lapack_int n, - const lapack_complex_float* ap, - lapack_complex_float* a, lapack_int lda ); -lapack_int LAPACKE_ztpttr_work( int matrix_order, char uplo, lapack_int n, - const lapack_complex_double* ap, - lapack_complex_double* a, lapack_int lda ); - -lapack_int LAPACKE_strcon_work( int matrix_order, char norm, char uplo, - char diag, lapack_int n, const float* a, - lapack_int lda, float* rcond, float* work, - lapack_int* iwork ); -lapack_int LAPACKE_dtrcon_work( int matrix_order, char norm, char uplo, - char diag, lapack_int n, const double* a, - lapack_int lda, double* rcond, double* work, - lapack_int* iwork ); -lapack_int LAPACKE_ctrcon_work( int matrix_order, char norm, char uplo, - char diag, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - float* rcond, lapack_complex_float* work, - float* rwork ); -lapack_int LAPACKE_ztrcon_work( int matrix_order, char norm, char uplo, - char diag, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - double* rcond, lapack_complex_double* work, - double* rwork ); - -lapack_int LAPACKE_strevc_work( int matrix_order, char side, char howmny, - lapack_logical* select, lapack_int n, - const float* t, lapack_int ldt, float* vl, - lapack_int ldvl, float* vr, lapack_int ldvr, - lapack_int mm, lapack_int* m, float* work ); -lapack_int LAPACKE_dtrevc_work( int matrix_order, char side, char howmny, - lapack_logical* select, lapack_int n, - const double* t, lapack_int ldt, double* vl, - lapack_int ldvl, double* vr, lapack_int ldvr, - lapack_int mm, lapack_int* m, double* work ); -lapack_int LAPACKE_ctrevc_work( int matrix_order, char side, char howmny, - const lapack_logical* select, lapack_int n, - lapack_complex_float* t, lapack_int ldt, - lapack_complex_float* vl, lapack_int ldvl, - lapack_complex_float* vr, lapack_int ldvr, - lapack_int mm, lapack_int* m, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_ztrevc_work( int matrix_order, char side, char howmny, - const lapack_logical* select, lapack_int n, - lapack_complex_double* t, lapack_int ldt, - lapack_complex_double* vl, lapack_int ldvl, - lapack_complex_double* vr, lapack_int ldvr, - lapack_int mm, lapack_int* m, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_strexc_work( int matrix_order, char compq, lapack_int n, - float* t, lapack_int ldt, float* q, - lapack_int ldq, lapack_int* ifst, - lapack_int* ilst, float* work ); -lapack_int LAPACKE_dtrexc_work( int matrix_order, char compq, lapack_int n, - double* t, lapack_int ldt, double* q, - lapack_int ldq, lapack_int* ifst, - lapack_int* ilst, double* work ); -lapack_int LAPACKE_ctrexc_work( int matrix_order, char compq, lapack_int n, - lapack_complex_float* t, lapack_int ldt, - lapack_complex_float* q, lapack_int ldq, - lapack_int ifst, lapack_int ilst ); -lapack_int LAPACKE_ztrexc_work( int matrix_order, char compq, lapack_int n, - lapack_complex_double* t, lapack_int ldt, - lapack_complex_double* q, lapack_int ldq, - lapack_int ifst, lapack_int ilst ); - -lapack_int LAPACKE_strrfs_work( int matrix_order, char uplo, char trans, - char diag, lapack_int n, lapack_int nrhs, - const float* a, lapack_int lda, const float* b, - lapack_int ldb, const float* x, lapack_int ldx, - float* ferr, float* berr, float* work, - lapack_int* iwork ); -lapack_int LAPACKE_dtrrfs_work( int matrix_order, char uplo, char trans, - char diag, lapack_int n, lapack_int nrhs, - const double* a, lapack_int lda, - const double* b, lapack_int ldb, - const double* x, lapack_int ldx, double* ferr, - double* berr, double* work, lapack_int* iwork ); -lapack_int LAPACKE_ctrrfs_work( int matrix_order, char uplo, char trans, - char diag, lapack_int n, lapack_int nrhs, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* b, lapack_int ldb, - const lapack_complex_float* x, lapack_int ldx, - float* ferr, float* berr, - lapack_complex_float* work, float* rwork ); -lapack_int LAPACKE_ztrrfs_work( int matrix_order, char uplo, char trans, - char diag, lapack_int n, lapack_int nrhs, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* b, lapack_int ldb, - const lapack_complex_double* x, lapack_int ldx, - double* ferr, double* berr, - lapack_complex_double* work, double* rwork ); - -lapack_int LAPACKE_strsen_work( int matrix_order, char job, char compq, - const lapack_logical* select, lapack_int n, - float* t, lapack_int ldt, float* q, - lapack_int ldq, float* wr, float* wi, - lapack_int* m, float* s, float* sep, - float* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork ); -lapack_int LAPACKE_dtrsen_work( int matrix_order, char job, char compq, - const lapack_logical* select, lapack_int n, - double* t, lapack_int ldt, double* q, - lapack_int ldq, double* wr, double* wi, - lapack_int* m, double* s, double* sep, - double* work, lapack_int lwork, - lapack_int* iwork, lapack_int liwork ); -lapack_int LAPACKE_ctrsen_work( int matrix_order, char job, char compq, - const lapack_logical* select, lapack_int n, - lapack_complex_float* t, lapack_int ldt, - lapack_complex_float* q, lapack_int ldq, - lapack_complex_float* w, lapack_int* m, - float* s, float* sep, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_ztrsen_work( int matrix_order, char job, char compq, - const lapack_logical* select, lapack_int n, - lapack_complex_double* t, lapack_int ldt, - lapack_complex_double* q, lapack_int ldq, - lapack_complex_double* w, lapack_int* m, - double* s, double* sep, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_strsna_work( int matrix_order, char job, char howmny, - const lapack_logical* select, lapack_int n, - const float* t, lapack_int ldt, const float* vl, - lapack_int ldvl, const float* vr, - lapack_int ldvr, float* s, float* sep, - lapack_int mm, lapack_int* m, float* work, - lapack_int ldwork, lapack_int* iwork ); -lapack_int LAPACKE_dtrsna_work( int matrix_order, char job, char howmny, - const lapack_logical* select, lapack_int n, - const double* t, lapack_int ldt, - const double* vl, lapack_int ldvl, - const double* vr, lapack_int ldvr, double* s, - double* sep, lapack_int mm, lapack_int* m, - double* work, lapack_int ldwork, - lapack_int* iwork ); -lapack_int LAPACKE_ctrsna_work( int matrix_order, char job, char howmny, - const lapack_logical* select, lapack_int n, - const lapack_complex_float* t, lapack_int ldt, - const lapack_complex_float* vl, lapack_int ldvl, - const lapack_complex_float* vr, lapack_int ldvr, - float* s, float* sep, lapack_int mm, - lapack_int* m, lapack_complex_float* work, - lapack_int ldwork, float* rwork ); -lapack_int LAPACKE_ztrsna_work( int matrix_order, char job, char howmny, - const lapack_logical* select, lapack_int n, - const lapack_complex_double* t, lapack_int ldt, - const lapack_complex_double* vl, - lapack_int ldvl, - const lapack_complex_double* vr, - lapack_int ldvr, double* s, double* sep, - lapack_int mm, lapack_int* m, - lapack_complex_double* work, lapack_int ldwork, - double* rwork ); - -lapack_int LAPACKE_strsyl_work( int matrix_order, char trana, char tranb, - lapack_int isgn, lapack_int m, lapack_int n, - const float* a, lapack_int lda, const float* b, - lapack_int ldb, float* c, lapack_int ldc, - float* scale ); -lapack_int LAPACKE_dtrsyl_work( int matrix_order, char trana, char tranb, - lapack_int isgn, lapack_int m, lapack_int n, - const double* a, lapack_int lda, - const double* b, lapack_int ldb, double* c, - lapack_int ldc, double* scale ); -lapack_int LAPACKE_ctrsyl_work( int matrix_order, char trana, char tranb, - lapack_int isgn, lapack_int m, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* c, lapack_int ldc, - float* scale ); -lapack_int LAPACKE_ztrsyl_work( int matrix_order, char trana, char tranb, - lapack_int isgn, lapack_int m, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* c, lapack_int ldc, - double* scale ); - -lapack_int LAPACKE_strtri_work( int matrix_order, char uplo, char diag, - lapack_int n, float* a, lapack_int lda ); -lapack_int LAPACKE_dtrtri_work( int matrix_order, char uplo, char diag, - lapack_int n, double* a, lapack_int lda ); -lapack_int LAPACKE_ctrtri_work( int matrix_order, char uplo, char diag, - lapack_int n, lapack_complex_float* a, - lapack_int lda ); -lapack_int LAPACKE_ztrtri_work( int matrix_order, char uplo, char diag, - lapack_int n, lapack_complex_double* a, - lapack_int lda ); - -lapack_int LAPACKE_strtrs_work( int matrix_order, char uplo, char trans, - char diag, lapack_int n, lapack_int nrhs, - const float* a, lapack_int lda, float* b, - lapack_int ldb ); -lapack_int LAPACKE_dtrtrs_work( int matrix_order, char uplo, char trans, - char diag, lapack_int n, lapack_int nrhs, - const double* a, lapack_int lda, double* b, - lapack_int ldb ); -lapack_int LAPACKE_ctrtrs_work( int matrix_order, char uplo, char trans, - char diag, lapack_int n, lapack_int nrhs, - const lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_ztrtrs_work( int matrix_order, char uplo, char trans, - char diag, lapack_int n, lapack_int nrhs, - const lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_strttf_work( int matrix_order, char transr, char uplo, - lapack_int n, const float* a, lapack_int lda, - float* arf ); -lapack_int LAPACKE_dtrttf_work( int matrix_order, char transr, char uplo, - lapack_int n, const double* a, lapack_int lda, - double* arf ); -lapack_int LAPACKE_ctrttf_work( int matrix_order, char transr, char uplo, - lapack_int n, const lapack_complex_float* a, - lapack_int lda, lapack_complex_float* arf ); -lapack_int LAPACKE_ztrttf_work( int matrix_order, char transr, char uplo, - lapack_int n, const lapack_complex_double* a, - lapack_int lda, lapack_complex_double* arf ); - -lapack_int LAPACKE_strttp_work( int matrix_order, char uplo, lapack_int n, - const float* a, lapack_int lda, float* ap ); -lapack_int LAPACKE_dtrttp_work( int matrix_order, char uplo, lapack_int n, - const double* a, lapack_int lda, double* ap ); -lapack_int LAPACKE_ctrttp_work( int matrix_order, char uplo, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - lapack_complex_float* ap ); -lapack_int LAPACKE_ztrttp_work( int matrix_order, char uplo, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - lapack_complex_double* ap ); - -lapack_int LAPACKE_stzrzf_work( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, float* tau, - float* work, lapack_int lwork ); -lapack_int LAPACKE_dtzrzf_work( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, double* tau, - double* work, lapack_int lwork ); -lapack_int LAPACKE_ctzrzf_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* tau, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_ztzrzf_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* tau, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_cungbr_work( int matrix_order, char vect, lapack_int m, - lapack_int n, lapack_int k, - lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* tau, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zungbr_work( int matrix_order, char vect, lapack_int m, - lapack_int n, lapack_int k, - lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* tau, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_cunghr_work( int matrix_order, lapack_int n, lapack_int ilo, - lapack_int ihi, lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* tau, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zunghr_work( int matrix_order, lapack_int n, lapack_int ilo, - lapack_int ihi, lapack_complex_double* a, - lapack_int lda, - const lapack_complex_double* tau, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_cunglq_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* tau, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zunglq_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, lapack_complex_double* a, - lapack_int lda, - const lapack_complex_double* tau, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_cungql_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* tau, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zungql_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, lapack_complex_double* a, - lapack_int lda, - const lapack_complex_double* tau, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_cungqr_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* tau, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zungqr_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, lapack_complex_double* a, - lapack_int lda, - const lapack_complex_double* tau, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_cungrq_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* tau, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zungrq_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int k, lapack_complex_double* a, - lapack_int lda, - const lapack_complex_double* tau, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_cungtr_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* tau, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zungtr_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* tau, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_cunmbr_work( int matrix_order, char vect, char side, - char trans, lapack_int m, lapack_int n, - lapack_int k, const lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* tau, - lapack_complex_float* c, lapack_int ldc, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zunmbr_work( int matrix_order, char vect, char side, - char trans, lapack_int m, lapack_int n, - lapack_int k, const lapack_complex_double* a, - lapack_int lda, - const lapack_complex_double* tau, - lapack_complex_double* c, lapack_int ldc, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_cunmhr_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int ilo, - lapack_int ihi, const lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* tau, - lapack_complex_float* c, lapack_int ldc, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zunmhr_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int ilo, - lapack_int ihi, const lapack_complex_double* a, - lapack_int lda, - const lapack_complex_double* tau, - lapack_complex_double* c, lapack_int ldc, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_cunmlq_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* tau, - lapack_complex_float* c, lapack_int ldc, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zunmlq_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* tau, - lapack_complex_double* c, lapack_int ldc, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_cunmql_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* tau, - lapack_complex_float* c, lapack_int ldc, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zunmql_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* tau, - lapack_complex_double* c, lapack_int ldc, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_cunmqr_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* tau, - lapack_complex_float* c, lapack_int ldc, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zunmqr_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* tau, - lapack_complex_double* c, lapack_int ldc, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_cunmrq_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* tau, - lapack_complex_float* c, lapack_int ldc, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zunmrq_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* tau, - lapack_complex_double* c, lapack_int ldc, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_cunmrz_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - lapack_int l, const lapack_complex_float* a, - lapack_int lda, const lapack_complex_float* tau, - lapack_complex_float* c, lapack_int ldc, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zunmrz_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - lapack_int l, const lapack_complex_double* a, - lapack_int lda, - const lapack_complex_double* tau, - lapack_complex_double* c, lapack_int ldc, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_cunmtr_work( int matrix_order, char side, char uplo, - char trans, lapack_int m, lapack_int n, - const lapack_complex_float* a, lapack_int lda, - const lapack_complex_float* tau, - lapack_complex_float* c, lapack_int ldc, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_zunmtr_work( int matrix_order, char side, char uplo, - char trans, lapack_int m, lapack_int n, - const lapack_complex_double* a, lapack_int lda, - const lapack_complex_double* tau, - lapack_complex_double* c, lapack_int ldc, - lapack_complex_double* work, lapack_int lwork ); - -lapack_int LAPACKE_cupgtr_work( int matrix_order, char uplo, lapack_int n, - const lapack_complex_float* ap, - const lapack_complex_float* tau, - lapack_complex_float* q, lapack_int ldq, - lapack_complex_float* work ); -lapack_int LAPACKE_zupgtr_work( int matrix_order, char uplo, lapack_int n, - const lapack_complex_double* ap, - const lapack_complex_double* tau, - lapack_complex_double* q, lapack_int ldq, - lapack_complex_double* work ); - -lapack_int LAPACKE_cupmtr_work( int matrix_order, char side, char uplo, - char trans, lapack_int m, lapack_int n, - const lapack_complex_float* ap, - const lapack_complex_float* tau, - lapack_complex_float* c, lapack_int ldc, - lapack_complex_float* work ); -lapack_int LAPACKE_zupmtr_work( int matrix_order, char side, char uplo, - char trans, lapack_int m, lapack_int n, - const lapack_complex_double* ap, - const lapack_complex_double* tau, - lapack_complex_double* c, lapack_int ldc, - lapack_complex_double* work ); - -lapack_int LAPACKE_claghe( int matrix_order, lapack_int n, lapack_int k, - const float* d, lapack_complex_float* a, - lapack_int lda, lapack_int* iseed ); -lapack_int LAPACKE_zlaghe( int matrix_order, lapack_int n, lapack_int k, - const double* d, lapack_complex_double* a, - lapack_int lda, lapack_int* iseed ); - -lapack_int LAPACKE_slagsy( int matrix_order, lapack_int n, lapack_int k, - const float* d, float* a, lapack_int lda, - lapack_int* iseed ); -lapack_int LAPACKE_dlagsy( int matrix_order, lapack_int n, lapack_int k, - const double* d, double* a, lapack_int lda, - lapack_int* iseed ); -lapack_int LAPACKE_clagsy( int matrix_order, lapack_int n, lapack_int k, - const float* d, lapack_complex_float* a, - lapack_int lda, lapack_int* iseed ); -lapack_int LAPACKE_zlagsy( int matrix_order, lapack_int n, lapack_int k, - const double* d, lapack_complex_double* a, - lapack_int lda, lapack_int* iseed ); - -lapack_int LAPACKE_slapmr( int matrix_order, lapack_logical forwrd, - lapack_int m, lapack_int n, float* x, lapack_int ldx, - lapack_int* k ); -lapack_int LAPACKE_dlapmr( int matrix_order, lapack_logical forwrd, - lapack_int m, lapack_int n, double* x, - lapack_int ldx, lapack_int* k ); -lapack_int LAPACKE_clapmr( int matrix_order, lapack_logical forwrd, - lapack_int m, lapack_int n, lapack_complex_float* x, - lapack_int ldx, lapack_int* k ); -lapack_int LAPACKE_zlapmr( int matrix_order, lapack_logical forwrd, - lapack_int m, lapack_int n, lapack_complex_double* x, - lapack_int ldx, lapack_int* k ); - - -float LAPACKE_slapy2( float x, float y ); -double LAPACKE_dlapy2( double x, double y ); - -float LAPACKE_slapy3( float x, float y, float z ); -double LAPACKE_dlapy3( double x, double y, double z ); - -lapack_int LAPACKE_slartgp( float f, float g, float* cs, float* sn, float* r ); -lapack_int LAPACKE_dlartgp( double f, double g, double* cs, double* sn, - double* r ); - -lapack_int LAPACKE_slartgs( float x, float y, float sigma, float* cs, - float* sn ); -lapack_int LAPACKE_dlartgs( double x, double y, double sigma, double* cs, - double* sn ); - - -//LAPACK 3.3.0 -lapack_int LAPACKE_cbbcsd( int matrix_order, char jobu1, char jobu2, - char jobv1t, char jobv2t, char trans, lapack_int m, - lapack_int p, lapack_int q, float* theta, float* phi, - lapack_complex_float* u1, lapack_int ldu1, - lapack_complex_float* u2, lapack_int ldu2, - lapack_complex_float* v1t, lapack_int ldv1t, - lapack_complex_float* v2t, lapack_int ldv2t, - float* b11d, float* b11e, float* b12d, float* b12e, - float* b21d, float* b21e, float* b22d, float* b22e ); -lapack_int LAPACKE_cbbcsd_work( int matrix_order, char jobu1, char jobu2, - char jobv1t, char jobv2t, char trans, - lapack_int m, lapack_int p, lapack_int q, - float* theta, float* phi, - lapack_complex_float* u1, lapack_int ldu1, - lapack_complex_float* u2, lapack_int ldu2, - lapack_complex_float* v1t, lapack_int ldv1t, - lapack_complex_float* v2t, lapack_int ldv2t, - float* b11d, float* b11e, float* b12d, - float* b12e, float* b21d, float* b21e, - float* b22d, float* b22e, float* rwork, - lapack_int lrwork ); -lapack_int LAPACKE_cheswapr( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int i1, - lapack_int i2 ); -lapack_int LAPACKE_cheswapr_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int i1, - lapack_int i2 ); -lapack_int LAPACKE_chetri2( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - const lapack_int* ipiv ); -lapack_int LAPACKE_chetri2_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - const lapack_int* ipiv, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_chetri2x( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - const lapack_int* ipiv, lapack_int nb ); -lapack_int LAPACKE_chetri2x_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - const lapack_int* ipiv, - lapack_complex_float* work, lapack_int nb ); -lapack_int LAPACKE_chetrs2( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* a, - lapack_int lda, const lapack_int* ipiv, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_chetrs2_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* a, - lapack_int lda, const lapack_int* ipiv, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* work ); -lapack_int LAPACKE_csyconv( int matrix_order, char uplo, char way, lapack_int n, - lapack_complex_float* a, lapack_int lda, - const lapack_int* ipiv ); -lapack_int LAPACKE_csyconv_work( int matrix_order, char uplo, char way, - lapack_int n, lapack_complex_float* a, - lapack_int lda, const lapack_int* ipiv, - lapack_complex_float* work ); -lapack_int LAPACKE_csyswapr( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int i1, - lapack_int i2 ); -lapack_int LAPACKE_csyswapr_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int i1, - lapack_int i2 ); -lapack_int LAPACKE_csytri2( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - const lapack_int* ipiv ); -lapack_int LAPACKE_csytri2_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - const lapack_int* ipiv, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_csytri2x( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - const lapack_int* ipiv, lapack_int nb ); -lapack_int LAPACKE_csytri2x_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_float* a, lapack_int lda, - const lapack_int* ipiv, - lapack_complex_float* work, lapack_int nb ); -lapack_int LAPACKE_csytrs2( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* a, - lapack_int lda, const lapack_int* ipiv, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_csytrs2_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_float* a, - lapack_int lda, const lapack_int* ipiv, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* work ); -lapack_int LAPACKE_cunbdb( int matrix_order, char trans, char signs, - lapack_int m, lapack_int p, lapack_int q, - lapack_complex_float* x11, lapack_int ldx11, - lapack_complex_float* x12, lapack_int ldx12, - lapack_complex_float* x21, lapack_int ldx21, - lapack_complex_float* x22, lapack_int ldx22, - float* theta, float* phi, - lapack_complex_float* taup1, - lapack_complex_float* taup2, - lapack_complex_float* tauq1, - lapack_complex_float* tauq2 ); -lapack_int LAPACKE_cunbdb_work( int matrix_order, char trans, char signs, - lapack_int m, lapack_int p, lapack_int q, - lapack_complex_float* x11, lapack_int ldx11, - lapack_complex_float* x12, lapack_int ldx12, - lapack_complex_float* x21, lapack_int ldx21, - lapack_complex_float* x22, lapack_int ldx22, - float* theta, float* phi, - lapack_complex_float* taup1, - lapack_complex_float* taup2, - lapack_complex_float* tauq1, - lapack_complex_float* tauq2, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_cuncsd( int matrix_order, char jobu1, char jobu2, - char jobv1t, char jobv2t, char trans, char signs, - lapack_int m, lapack_int p, lapack_int q, - lapack_complex_float* x11, lapack_int ldx11, - lapack_complex_float* x12, lapack_int ldx12, - lapack_complex_float* x21, lapack_int ldx21, - lapack_complex_float* x22, lapack_int ldx22, - float* theta, lapack_complex_float* u1, - lapack_int ldu1, lapack_complex_float* u2, - lapack_int ldu2, lapack_complex_float* v1t, - lapack_int ldv1t, lapack_complex_float* v2t, - lapack_int ldv2t ); -lapack_int LAPACKE_cuncsd_work( int matrix_order, char jobu1, char jobu2, - char jobv1t, char jobv2t, char trans, - char signs, lapack_int m, lapack_int p, - lapack_int q, lapack_complex_float* x11, - lapack_int ldx11, lapack_complex_float* x12, - lapack_int ldx12, lapack_complex_float* x21, - lapack_int ldx21, lapack_complex_float* x22, - lapack_int ldx22, float* theta, - lapack_complex_float* u1, lapack_int ldu1, - lapack_complex_float* u2, lapack_int ldu2, - lapack_complex_float* v1t, lapack_int ldv1t, - lapack_complex_float* v2t, lapack_int ldv2t, - lapack_complex_float* work, lapack_int lwork, - float* rwork, lapack_int lrwork, - lapack_int* iwork ); -lapack_int LAPACKE_dbbcsd( int matrix_order, char jobu1, char jobu2, - char jobv1t, char jobv2t, char trans, lapack_int m, - lapack_int p, lapack_int q, double* theta, - double* phi, double* u1, lapack_int ldu1, double* u2, - lapack_int ldu2, double* v1t, lapack_int ldv1t, - double* v2t, lapack_int ldv2t, double* b11d, - double* b11e, double* b12d, double* b12e, - double* b21d, double* b21e, double* b22d, - double* b22e ); -lapack_int LAPACKE_dbbcsd_work( int matrix_order, char jobu1, char jobu2, - char jobv1t, char jobv2t, char trans, - lapack_int m, lapack_int p, lapack_int q, - double* theta, double* phi, double* u1, - lapack_int ldu1, double* u2, lapack_int ldu2, - double* v1t, lapack_int ldv1t, double* v2t, - lapack_int ldv2t, double* b11d, double* b11e, - double* b12d, double* b12e, double* b21d, - double* b21e, double* b22d, double* b22e, - double* work, lapack_int lwork ); -lapack_int LAPACKE_dorbdb( int matrix_order, char trans, char signs, - lapack_int m, lapack_int p, lapack_int q, - double* x11, lapack_int ldx11, double* x12, - lapack_int ldx12, double* x21, lapack_int ldx21, - double* x22, lapack_int ldx22, double* theta, - double* phi, double* taup1, double* taup2, - double* tauq1, double* tauq2 ); -lapack_int LAPACKE_dorbdb_work( int matrix_order, char trans, char signs, - lapack_int m, lapack_int p, lapack_int q, - double* x11, lapack_int ldx11, double* x12, - lapack_int ldx12, double* x21, lapack_int ldx21, - double* x22, lapack_int ldx22, double* theta, - double* phi, double* taup1, double* taup2, - double* tauq1, double* tauq2, double* work, - lapack_int lwork ); -lapack_int LAPACKE_dorcsd( int matrix_order, char jobu1, char jobu2, - char jobv1t, char jobv2t, char trans, char signs, - lapack_int m, lapack_int p, lapack_int q, - double* x11, lapack_int ldx11, double* x12, - lapack_int ldx12, double* x21, lapack_int ldx21, - double* x22, lapack_int ldx22, double* theta, - double* u1, lapack_int ldu1, double* u2, - lapack_int ldu2, double* v1t, lapack_int ldv1t, - double* v2t, lapack_int ldv2t ); -lapack_int LAPACKE_dorcsd_work( int matrix_order, char jobu1, char jobu2, - char jobv1t, char jobv2t, char trans, - char signs, lapack_int m, lapack_int p, - lapack_int q, double* x11, lapack_int ldx11, - double* x12, lapack_int ldx12, double* x21, - lapack_int ldx21, double* x22, lapack_int ldx22, - double* theta, double* u1, lapack_int ldu1, - double* u2, lapack_int ldu2, double* v1t, - lapack_int ldv1t, double* v2t, lapack_int ldv2t, - double* work, lapack_int lwork, - lapack_int* iwork ); -lapack_int LAPACKE_dsyconv( int matrix_order, char uplo, char way, lapack_int n, - double* a, lapack_int lda, const lapack_int* ipiv ); -lapack_int LAPACKE_dsyconv_work( int matrix_order, char uplo, char way, - lapack_int n, double* a, lapack_int lda, - const lapack_int* ipiv, double* work ); -lapack_int LAPACKE_dsyswapr( int matrix_order, char uplo, lapack_int n, - double* a, lapack_int i1, lapack_int i2 ); -lapack_int LAPACKE_dsyswapr_work( int matrix_order, char uplo, lapack_int n, - double* a, lapack_int i1, lapack_int i2 ); -lapack_int LAPACKE_dsytri2( int matrix_order, char uplo, lapack_int n, - double* a, lapack_int lda, const lapack_int* ipiv ); -lapack_int LAPACKE_dsytri2_work( int matrix_order, char uplo, lapack_int n, - double* a, lapack_int lda, - const lapack_int* ipiv, - lapack_complex_double* work, lapack_int lwork ); -lapack_int LAPACKE_dsytri2x( int matrix_order, char uplo, lapack_int n, - double* a, lapack_int lda, const lapack_int* ipiv, - lapack_int nb ); -lapack_int LAPACKE_dsytri2x_work( int matrix_order, char uplo, lapack_int n, - double* a, lapack_int lda, - const lapack_int* ipiv, double* work, - lapack_int nb ); -lapack_int LAPACKE_dsytrs2( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const double* a, lapack_int lda, - const lapack_int* ipiv, double* b, lapack_int ldb ); -lapack_int LAPACKE_dsytrs2_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const double* a, - lapack_int lda, const lapack_int* ipiv, - double* b, lapack_int ldb, double* work ); -lapack_int LAPACKE_sbbcsd( int matrix_order, char jobu1, char jobu2, - char jobv1t, char jobv2t, char trans, lapack_int m, - lapack_int p, lapack_int q, float* theta, float* phi, - float* u1, lapack_int ldu1, float* u2, - lapack_int ldu2, float* v1t, lapack_int ldv1t, - float* v2t, lapack_int ldv2t, float* b11d, - float* b11e, float* b12d, float* b12e, float* b21d, - float* b21e, float* b22d, float* b22e ); -lapack_int LAPACKE_sbbcsd_work( int matrix_order, char jobu1, char jobu2, - char jobv1t, char jobv2t, char trans, - lapack_int m, lapack_int p, lapack_int q, - float* theta, float* phi, float* u1, - lapack_int ldu1, float* u2, lapack_int ldu2, - float* v1t, lapack_int ldv1t, float* v2t, - lapack_int ldv2t, float* b11d, float* b11e, - float* b12d, float* b12e, float* b21d, - float* b21e, float* b22d, float* b22e, - float* work, lapack_int lwork ); -lapack_int LAPACKE_sorbdb( int matrix_order, char trans, char signs, - lapack_int m, lapack_int p, lapack_int q, float* x11, - lapack_int ldx11, float* x12, lapack_int ldx12, - float* x21, lapack_int ldx21, float* x22, - lapack_int ldx22, float* theta, float* phi, - float* taup1, float* taup2, float* tauq1, - float* tauq2 ); -lapack_int LAPACKE_sorbdb_work( int matrix_order, char trans, char signs, - lapack_int m, lapack_int p, lapack_int q, - float* x11, lapack_int ldx11, float* x12, - lapack_int ldx12, float* x21, lapack_int ldx21, - float* x22, lapack_int ldx22, float* theta, - float* phi, float* taup1, float* taup2, - float* tauq1, float* tauq2, float* work, - lapack_int lwork ); -lapack_int LAPACKE_sorcsd( int matrix_order, char jobu1, char jobu2, - char jobv1t, char jobv2t, char trans, char signs, - lapack_int m, lapack_int p, lapack_int q, float* x11, - lapack_int ldx11, float* x12, lapack_int ldx12, - float* x21, lapack_int ldx21, float* x22, - lapack_int ldx22, float* theta, float* u1, - lapack_int ldu1, float* u2, lapack_int ldu2, - float* v1t, lapack_int ldv1t, float* v2t, - lapack_int ldv2t ); -lapack_int LAPACKE_sorcsd_work( int matrix_order, char jobu1, char jobu2, - char jobv1t, char jobv2t, char trans, - char signs, lapack_int m, lapack_int p, - lapack_int q, float* x11, lapack_int ldx11, - float* x12, lapack_int ldx12, float* x21, - lapack_int ldx21, float* x22, lapack_int ldx22, - float* theta, float* u1, lapack_int ldu1, - float* u2, lapack_int ldu2, float* v1t, - lapack_int ldv1t, float* v2t, lapack_int ldv2t, - float* work, lapack_int lwork, - lapack_int* iwork ); -lapack_int LAPACKE_ssyconv( int matrix_order, char uplo, char way, lapack_int n, - float* a, lapack_int lda, const lapack_int* ipiv ); -lapack_int LAPACKE_ssyconv_work( int matrix_order, char uplo, char way, - lapack_int n, float* a, lapack_int lda, - const lapack_int* ipiv, float* work ); -lapack_int LAPACKE_ssyswapr( int matrix_order, char uplo, lapack_int n, - float* a, lapack_int i1, lapack_int i2 ); -lapack_int LAPACKE_ssyswapr_work( int matrix_order, char uplo, lapack_int n, - float* a, lapack_int i1, lapack_int i2 ); -lapack_int LAPACKE_ssytri2( int matrix_order, char uplo, lapack_int n, float* a, - lapack_int lda, const lapack_int* ipiv ); -lapack_int LAPACKE_ssytri2_work( int matrix_order, char uplo, lapack_int n, - float* a, lapack_int lda, - const lapack_int* ipiv, - lapack_complex_float* work, lapack_int lwork ); -lapack_int LAPACKE_ssytri2x( int matrix_order, char uplo, lapack_int n, - float* a, lapack_int lda, const lapack_int* ipiv, - lapack_int nb ); -lapack_int LAPACKE_ssytri2x_work( int matrix_order, char uplo, lapack_int n, - float* a, lapack_int lda, - const lapack_int* ipiv, float* work, - lapack_int nb ); -lapack_int LAPACKE_ssytrs2( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const float* a, lapack_int lda, - const lapack_int* ipiv, float* b, lapack_int ldb ); -lapack_int LAPACKE_ssytrs2_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const float* a, - lapack_int lda, const lapack_int* ipiv, - float* b, lapack_int ldb, float* work ); -lapack_int LAPACKE_zbbcsd( int matrix_order, char jobu1, char jobu2, - char jobv1t, char jobv2t, char trans, lapack_int m, - lapack_int p, lapack_int q, double* theta, - double* phi, lapack_complex_double* u1, - lapack_int ldu1, lapack_complex_double* u2, - lapack_int ldu2, lapack_complex_double* v1t, - lapack_int ldv1t, lapack_complex_double* v2t, - lapack_int ldv2t, double* b11d, double* b11e, - double* b12d, double* b12e, double* b21d, - double* b21e, double* b22d, double* b22e ); -lapack_int LAPACKE_zbbcsd_work( int matrix_order, char jobu1, char jobu2, - char jobv1t, char jobv2t, char trans, - lapack_int m, lapack_int p, lapack_int q, - double* theta, double* phi, - lapack_complex_double* u1, lapack_int ldu1, - lapack_complex_double* u2, lapack_int ldu2, - lapack_complex_double* v1t, lapack_int ldv1t, - lapack_complex_double* v2t, lapack_int ldv2t, - double* b11d, double* b11e, double* b12d, - double* b12e, double* b21d, double* b21e, - double* b22d, double* b22e, double* rwork, - lapack_int lrwork ); -lapack_int LAPACKE_zheswapr( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int i1, - lapack_int i2 ); -lapack_int LAPACKE_zheswapr_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int i1, - lapack_int i2 ); -lapack_int LAPACKE_zhetri2( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - const lapack_int* ipiv ); -lapack_int LAPACKE_zhetri2_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - const lapack_int* ipiv, - lapack_complex_double* work, lapack_int lwork ); -lapack_int LAPACKE_zhetri2x( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - const lapack_int* ipiv, lapack_int nb ); -lapack_int LAPACKE_zhetri2x_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - const lapack_int* ipiv, - lapack_complex_double* work, lapack_int nb ); -lapack_int LAPACKE_zhetrs2( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* a, - lapack_int lda, const lapack_int* ipiv, - lapack_complex_double* b, lapack_int ldb ); -lapack_int LAPACKE_zhetrs2_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* a, - lapack_int lda, const lapack_int* ipiv, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* work ); -lapack_int LAPACKE_zsyconv( int matrix_order, char uplo, char way, lapack_int n, - lapack_complex_double* a, lapack_int lda, - const lapack_int* ipiv ); -lapack_int LAPACKE_zsyconv_work( int matrix_order, char uplo, char way, - lapack_int n, lapack_complex_double* a, - lapack_int lda, const lapack_int* ipiv, - lapack_complex_double* work ); -lapack_int LAPACKE_zsyswapr( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int i1, - lapack_int i2 ); -lapack_int LAPACKE_zsyswapr_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int i1, - lapack_int i2 ); -lapack_int LAPACKE_zsytri2( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - const lapack_int* ipiv ); -lapack_int LAPACKE_zsytri2_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - const lapack_int* ipiv, - lapack_complex_double* work, lapack_int lwork ); -lapack_int LAPACKE_zsytri2x( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - const lapack_int* ipiv, lapack_int nb ); -lapack_int LAPACKE_zsytri2x_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_double* a, lapack_int lda, - const lapack_int* ipiv, - lapack_complex_double* work, lapack_int nb ); -lapack_int LAPACKE_zsytrs2( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* a, - lapack_int lda, const lapack_int* ipiv, - lapack_complex_double* b, lapack_int ldb ); -lapack_int LAPACKE_zsytrs2_work( int matrix_order, char uplo, lapack_int n, - lapack_int nrhs, const lapack_complex_double* a, - lapack_int lda, const lapack_int* ipiv, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* work ); -lapack_int LAPACKE_zunbdb( int matrix_order, char trans, char signs, - lapack_int m, lapack_int p, lapack_int q, - lapack_complex_double* x11, lapack_int ldx11, - lapack_complex_double* x12, lapack_int ldx12, - lapack_complex_double* x21, lapack_int ldx21, - lapack_complex_double* x22, lapack_int ldx22, - double* theta, double* phi, - lapack_complex_double* taup1, - lapack_complex_double* taup2, - lapack_complex_double* tauq1, - lapack_complex_double* tauq2 ); -lapack_int LAPACKE_zunbdb_work( int matrix_order, char trans, char signs, - lapack_int m, lapack_int p, lapack_int q, - lapack_complex_double* x11, lapack_int ldx11, - lapack_complex_double* x12, lapack_int ldx12, - lapack_complex_double* x21, lapack_int ldx21, - lapack_complex_double* x22, lapack_int ldx22, - double* theta, double* phi, - lapack_complex_double* taup1, - lapack_complex_double* taup2, - lapack_complex_double* tauq1, - lapack_complex_double* tauq2, - lapack_complex_double* work, lapack_int lwork ); -lapack_int LAPACKE_zuncsd( int matrix_order, char jobu1, char jobu2, - char jobv1t, char jobv2t, char trans, char signs, - lapack_int m, lapack_int p, lapack_int q, - lapack_complex_double* x11, lapack_int ldx11, - lapack_complex_double* x12, lapack_int ldx12, - lapack_complex_double* x21, lapack_int ldx21, - lapack_complex_double* x22, lapack_int ldx22, - double* theta, lapack_complex_double* u1, - lapack_int ldu1, lapack_complex_double* u2, - lapack_int ldu2, lapack_complex_double* v1t, - lapack_int ldv1t, lapack_complex_double* v2t, - lapack_int ldv2t ); -lapack_int LAPACKE_zuncsd_work( int matrix_order, char jobu1, char jobu2, - char jobv1t, char jobv2t, char trans, - char signs, lapack_int m, lapack_int p, - lapack_int q, lapack_complex_double* x11, - lapack_int ldx11, lapack_complex_double* x12, - lapack_int ldx12, lapack_complex_double* x21, - lapack_int ldx21, lapack_complex_double* x22, - lapack_int ldx22, double* theta, - lapack_complex_double* u1, lapack_int ldu1, - lapack_complex_double* u2, lapack_int ldu2, - lapack_complex_double* v1t, lapack_int ldv1t, - lapack_complex_double* v2t, lapack_int ldv2t, - lapack_complex_double* work, lapack_int lwork, - double* rwork, lapack_int lrwork, - lapack_int* iwork ); -//LAPACK 3.4.0 -lapack_int LAPACKE_sgemqrt( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - lapack_int nb, const float* v, lapack_int ldv, - const float* t, lapack_int ldt, float* c, - lapack_int ldc ); -lapack_int LAPACKE_dgemqrt( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - lapack_int nb, const double* v, lapack_int ldv, - const double* t, lapack_int ldt, double* c, - lapack_int ldc ); -lapack_int LAPACKE_cgemqrt( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - lapack_int nb, const lapack_complex_float* v, - lapack_int ldv, const lapack_complex_float* t, - lapack_int ldt, lapack_complex_float* c, - lapack_int ldc ); -lapack_int LAPACKE_zgemqrt( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - lapack_int nb, const lapack_complex_double* v, - lapack_int ldv, const lapack_complex_double* t, - lapack_int ldt, lapack_complex_double* c, - lapack_int ldc ); - -lapack_int LAPACKE_sgeqrt( int matrix_order, lapack_int m, lapack_int n, - lapack_int nb, float* a, lapack_int lda, float* t, - lapack_int ldt ); -lapack_int LAPACKE_dgeqrt( int matrix_order, lapack_int m, lapack_int n, - lapack_int nb, double* a, lapack_int lda, double* t, - lapack_int ldt ); -lapack_int LAPACKE_cgeqrt( int matrix_order, lapack_int m, lapack_int n, - lapack_int nb, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* t, - lapack_int ldt ); -lapack_int LAPACKE_zgeqrt( int matrix_order, lapack_int m, lapack_int n, - lapack_int nb, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* t, - lapack_int ldt ); - -lapack_int LAPACKE_sgeqrt2( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, float* t, - lapack_int ldt ); -lapack_int LAPACKE_dgeqrt2( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, double* t, - lapack_int ldt ); -lapack_int LAPACKE_cgeqrt2( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* t, lapack_int ldt ); -lapack_int LAPACKE_zgeqrt2( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* t, lapack_int ldt ); - -lapack_int LAPACKE_sgeqrt3( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, float* t, - lapack_int ldt ); -lapack_int LAPACKE_dgeqrt3( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, double* t, - lapack_int ldt ); -lapack_int LAPACKE_cgeqrt3( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* t, lapack_int ldt ); -lapack_int LAPACKE_zgeqrt3( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* t, lapack_int ldt ); - -lapack_int LAPACKE_stpmqrt( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - lapack_int l, lapack_int nb, const float* v, - lapack_int ldv, const float* t, lapack_int ldt, - float* a, lapack_int lda, float* b, - lapack_int ldb ); -lapack_int LAPACKE_dtpmqrt( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - lapack_int l, lapack_int nb, const double* v, - lapack_int ldv, const double* t, lapack_int ldt, - double* a, lapack_int lda, double* b, - lapack_int ldb ); -lapack_int LAPACKE_ctpmqrt( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - lapack_int l, lapack_int nb, - const lapack_complex_float* v, lapack_int ldv, - const lapack_complex_float* t, lapack_int ldt, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb ); -lapack_int LAPACKE_ztpmqrt( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - lapack_int l, lapack_int nb, - const lapack_complex_double* v, lapack_int ldv, - const lapack_complex_double* t, lapack_int ldt, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb ); - -lapack_int LAPACKE_dtpqrt( int matrix_order, lapack_int m, lapack_int n, - lapack_int l, lapack_int nb, double* a, - lapack_int lda, double* b, lapack_int ldb, double* t, - lapack_int ldt ); -lapack_int LAPACKE_ctpqrt( int matrix_order, lapack_int m, lapack_int n, - lapack_int l, lapack_int nb, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* t, - lapack_complex_float* b, lapack_int ldb, - lapack_int ldt ); -lapack_int LAPACKE_ztpqrt( int matrix_order, lapack_int m, lapack_int n, - lapack_int l, lapack_int nb, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* t, lapack_int ldt ); - -lapack_int LAPACKE_stpqrt2( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, float* b, lapack_int ldb, - float* t, lapack_int ldt ); -lapack_int LAPACKE_dtpqrt2( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, double* b, - lapack_int ldb, double* t, lapack_int ldt ); -lapack_int LAPACKE_ctpqrt2( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* t, lapack_int ldt ); -lapack_int LAPACKE_ztpqrt2( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* t, lapack_int ldt ); - -lapack_int LAPACKE_stprfb( int matrix_order, char side, char trans, char direct, - char storev, lapack_int m, lapack_int n, - lapack_int k, lapack_int l, const float* v, - lapack_int ldv, const float* t, lapack_int ldt, - float* a, lapack_int lda, float* b, lapack_int ldb, - lapack_int myldwork ); -lapack_int LAPACKE_dtprfb( int matrix_order, char side, char trans, char direct, - char storev, lapack_int m, lapack_int n, - lapack_int k, lapack_int l, const double* v, - lapack_int ldv, const double* t, lapack_int ldt, - double* a, lapack_int lda, double* b, lapack_int ldb, - lapack_int myldwork ); -lapack_int LAPACKE_ctprfb( int matrix_order, char side, char trans, char direct, - char storev, lapack_int m, lapack_int n, - lapack_int k, lapack_int l, - const lapack_complex_float* v, lapack_int ldv, - const lapack_complex_float* t, lapack_int ldt, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, - lapack_int myldwork ); -lapack_int LAPACKE_ztprfb( int matrix_order, char side, char trans, char direct, - char storev, lapack_int m, lapack_int n, - lapack_int k, lapack_int l, - const lapack_complex_double* v, lapack_int ldv, - const lapack_complex_double* t, lapack_int ldt, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - lapack_int myldwork ); - -lapack_int LAPACKE_sgemqrt_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - lapack_int nb, const float* v, lapack_int ldv, - const float* t, lapack_int ldt, float* c, - lapack_int ldc, float* work ); -lapack_int LAPACKE_dgemqrt_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - lapack_int nb, const double* v, lapack_int ldv, - const double* t, lapack_int ldt, double* c, - lapack_int ldc, double* work ); -lapack_int LAPACKE_cgemqrt_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - lapack_int nb, const lapack_complex_float* v, - lapack_int ldv, const lapack_complex_float* t, - lapack_int ldt, lapack_complex_float* c, - lapack_int ldc, lapack_complex_float* work ); -lapack_int LAPACKE_zgemqrt_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - lapack_int nb, const lapack_complex_double* v, - lapack_int ldv, const lapack_complex_double* t, - lapack_int ldt, lapack_complex_double* c, - lapack_int ldc, lapack_complex_double* work ); - -lapack_int LAPACKE_sgeqrt_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int nb, float* a, lapack_int lda, - float* t, lapack_int ldt, float* work ); -lapack_int LAPACKE_dgeqrt_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int nb, double* a, lapack_int lda, - double* t, lapack_int ldt, double* work ); -lapack_int LAPACKE_cgeqrt_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int nb, lapack_complex_float* a, - lapack_int lda, lapack_complex_float* t, - lapack_int ldt, lapack_complex_float* work ); -lapack_int LAPACKE_zgeqrt_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int nb, lapack_complex_double* a, - lapack_int lda, lapack_complex_double* t, - lapack_int ldt, lapack_complex_double* work ); - -lapack_int LAPACKE_sgeqrt2_work( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, float* t, - lapack_int ldt ); -lapack_int LAPACKE_dgeqrt2_work( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, double* t, - lapack_int ldt ); -lapack_int LAPACKE_cgeqrt2_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* t, lapack_int ldt ); -lapack_int LAPACKE_zgeqrt2_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* t, lapack_int ldt ); - -lapack_int LAPACKE_sgeqrt3_work( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, float* t, - lapack_int ldt ); -lapack_int LAPACKE_dgeqrt3_work( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, double* t, - lapack_int ldt ); -lapack_int LAPACKE_cgeqrt3_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* t, lapack_int ldt ); -lapack_int LAPACKE_zgeqrt3_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* t, lapack_int ldt ); - -lapack_int LAPACKE_stpmqrt_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - lapack_int l, lapack_int nb, const float* v, - lapack_int ldv, const float* t, lapack_int ldt, - float* a, lapack_int lda, float* b, - lapack_int ldb, float* work ); -lapack_int LAPACKE_dtpmqrt_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - lapack_int l, lapack_int nb, const double* v, - lapack_int ldv, const double* t, - lapack_int ldt, double* a, lapack_int lda, - double* b, lapack_int ldb, double* work ); -lapack_int LAPACKE_ctpmqrt_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - lapack_int l, lapack_int nb, - const lapack_complex_float* v, lapack_int ldv, - const lapack_complex_float* t, lapack_int ldt, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* work ); -lapack_int LAPACKE_ztpmqrt_work( int matrix_order, char side, char trans, - lapack_int m, lapack_int n, lapack_int k, - lapack_int l, lapack_int nb, - const lapack_complex_double* v, lapack_int ldv, - const lapack_complex_double* t, lapack_int ldt, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* work ); - -lapack_int LAPACKE_dtpqrt_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int l, lapack_int nb, double* a, - lapack_int lda, double* b, lapack_int ldb, - double* t, lapack_int ldt, double* work ); -lapack_int LAPACKE_ctpqrt_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int l, lapack_int nb, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* t, - lapack_complex_float* b, lapack_int ldb, - lapack_int ldt, lapack_complex_float* work ); -lapack_int LAPACKE_ztpqrt_work( int matrix_order, lapack_int m, lapack_int n, - lapack_int l, lapack_int nb, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* t, lapack_int ldt, - lapack_complex_double* work ); - -lapack_int LAPACKE_stpqrt2_work( int matrix_order, lapack_int m, lapack_int n, - float* a, lapack_int lda, float* b, - lapack_int ldb, float* t, lapack_int ldt ); -lapack_int LAPACKE_dtpqrt2_work( int matrix_order, lapack_int m, lapack_int n, - double* a, lapack_int lda, double* b, - lapack_int ldb, double* t, lapack_int ldt ); -lapack_int LAPACKE_ctpqrt2_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, - lapack_complex_float* t, lapack_int ldt ); -lapack_int LAPACKE_ztpqrt2_work( int matrix_order, lapack_int m, lapack_int n, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - lapack_complex_double* t, lapack_int ldt ); - -lapack_int LAPACKE_stprfb_work( int matrix_order, char side, char trans, - char direct, char storev, lapack_int m, - lapack_int n, lapack_int k, lapack_int l, - const float* v, lapack_int ldv, const float* t, - lapack_int ldt, float* a, lapack_int lda, - float* b, lapack_int ldb, const float* mywork, - lapack_int myldwork ); -lapack_int LAPACKE_dtprfb_work( int matrix_order, char side, char trans, - char direct, char storev, lapack_int m, - lapack_int n, lapack_int k, lapack_int l, - const double* v, lapack_int ldv, - const double* t, lapack_int ldt, double* a, - lapack_int lda, double* b, lapack_int ldb, - const double* mywork, lapack_int myldwork ); -lapack_int LAPACKE_ctprfb_work( int matrix_order, char side, char trans, - char direct, char storev, lapack_int m, - lapack_int n, lapack_int k, lapack_int l, - const lapack_complex_float* v, lapack_int ldv, - const lapack_complex_float* t, lapack_int ldt, - lapack_complex_float* a, lapack_int lda, - lapack_complex_float* b, lapack_int ldb, - const float* mywork, lapack_int myldwork ); -lapack_int LAPACKE_ztprfb_work( int matrix_order, char side, char trans, - char direct, char storev, lapack_int m, - lapack_int n, lapack_int k, lapack_int l, - const lapack_complex_double* v, lapack_int ldv, - const lapack_complex_double* t, lapack_int ldt, - lapack_complex_double* a, lapack_int lda, - lapack_complex_double* b, lapack_int ldb, - const double* mywork, lapack_int myldwork ); -//LAPACK 3.X.X -lapack_int LAPACKE_csyr( int matrix_order, char uplo, lapack_int n, - lapack_complex_float alpha, - const lapack_complex_float* x, lapack_int incx, - lapack_complex_float* a, lapack_int lda ); -lapack_int LAPACKE_zsyr( int matrix_order, char uplo, lapack_int n, - lapack_complex_double alpha, - const lapack_complex_double* x, lapack_int incx, - lapack_complex_double* a, lapack_int lda ); - -lapack_int LAPACKE_csyr_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_float alpha, - const lapack_complex_float* x, - lapack_int incx, lapack_complex_float* a, - lapack_int lda ); -lapack_int LAPACKE_zsyr_work( int matrix_order, char uplo, lapack_int n, - lapack_complex_double alpha, - const lapack_complex_double* x, - lapack_int incx, lapack_complex_double* a, - lapack_int lda ); - - - -#define LAPACK_sgetrf LAPACK_GLOBAL(sgetrf,SGETRF) -#define LAPACK_dgetrf LAPACK_GLOBAL(dgetrf,DGETRF) -#define LAPACK_cgetrf LAPACK_GLOBAL(cgetrf,CGETRF) -#define LAPACK_zgetrf LAPACK_GLOBAL(zgetrf,ZGETRF) -#define LAPACK_sgbtrf LAPACK_GLOBAL(sgbtrf,SGBTRF) -#define LAPACK_dgbtrf LAPACK_GLOBAL(dgbtrf,DGBTRF) -#define LAPACK_cgbtrf LAPACK_GLOBAL(cgbtrf,CGBTRF) -#define LAPACK_zgbtrf LAPACK_GLOBAL(zgbtrf,ZGBTRF) -#define LAPACK_sgttrf LAPACK_GLOBAL(sgttrf,SGTTRF) -#define LAPACK_dgttrf LAPACK_GLOBAL(dgttrf,DGTTRF) -#define LAPACK_cgttrf LAPACK_GLOBAL(cgttrf,CGTTRF) -#define LAPACK_zgttrf LAPACK_GLOBAL(zgttrf,ZGTTRF) -#define LAPACK_spotrf LAPACK_GLOBAL(spotrf,SPOTRF) -#define LAPACK_dpotrf LAPACK_GLOBAL(dpotrf,DPOTRF) -#define LAPACK_cpotrf LAPACK_GLOBAL(cpotrf,CPOTRF) -#define LAPACK_zpotrf LAPACK_GLOBAL(zpotrf,ZPOTRF) -#define LAPACK_dpstrf LAPACK_GLOBAL(dpstrf,DPSTRF) -#define LAPACK_spstrf LAPACK_GLOBAL(spstrf,SPSTRF) -#define LAPACK_zpstrf LAPACK_GLOBAL(zpstrf,ZPSTRF) -#define LAPACK_cpstrf LAPACK_GLOBAL(cpstrf,CPSTRF) -#define LAPACK_dpftrf LAPACK_GLOBAL(dpftrf,DPFTRF) -#define LAPACK_spftrf LAPACK_GLOBAL(spftrf,SPFTRF) -#define LAPACK_zpftrf LAPACK_GLOBAL(zpftrf,ZPFTRF) -#define LAPACK_cpftrf LAPACK_GLOBAL(cpftrf,CPFTRF) -#define LAPACK_spptrf LAPACK_GLOBAL(spptrf,SPPTRF) -#define LAPACK_dpptrf LAPACK_GLOBAL(dpptrf,DPPTRF) -#define LAPACK_cpptrf LAPACK_GLOBAL(cpptrf,CPPTRF) -#define LAPACK_zpptrf LAPACK_GLOBAL(zpptrf,ZPPTRF) -#define LAPACK_spbtrf LAPACK_GLOBAL(spbtrf,SPBTRF) -#define LAPACK_dpbtrf LAPACK_GLOBAL(dpbtrf,DPBTRF) -#define LAPACK_cpbtrf LAPACK_GLOBAL(cpbtrf,CPBTRF) -#define LAPACK_zpbtrf LAPACK_GLOBAL(zpbtrf,ZPBTRF) -#define LAPACK_spttrf LAPACK_GLOBAL(spttrf,SPTTRF) -#define LAPACK_dpttrf LAPACK_GLOBAL(dpttrf,DPTTRF) -#define LAPACK_cpttrf LAPACK_GLOBAL(cpttrf,CPTTRF) -#define LAPACK_zpttrf LAPACK_GLOBAL(zpttrf,ZPTTRF) -#define LAPACK_ssytrf LAPACK_GLOBAL(ssytrf,SSYTRF) -#define LAPACK_dsytrf LAPACK_GLOBAL(dsytrf,DSYTRF) -#define LAPACK_csytrf LAPACK_GLOBAL(csytrf,CSYTRF) -#define LAPACK_zsytrf LAPACK_GLOBAL(zsytrf,ZSYTRF) -#define LAPACK_chetrf LAPACK_GLOBAL(chetrf,CHETRF) -#define LAPACK_zhetrf LAPACK_GLOBAL(zhetrf,ZHETRF) -#define LAPACK_ssptrf LAPACK_GLOBAL(ssptrf,SSPTRF) -#define LAPACK_dsptrf LAPACK_GLOBAL(dsptrf,DSPTRF) -#define LAPACK_csptrf LAPACK_GLOBAL(csptrf,CSPTRF) -#define LAPACK_zsptrf LAPACK_GLOBAL(zsptrf,ZSPTRF) -#define LAPACK_chptrf LAPACK_GLOBAL(chptrf,CHPTRF) -#define LAPACK_zhptrf LAPACK_GLOBAL(zhptrf,ZHPTRF) -#define LAPACK_sgetrs LAPACK_GLOBAL(sgetrs,SGETRS) -#define LAPACK_dgetrs LAPACK_GLOBAL(dgetrs,DGETRS) -#define LAPACK_cgetrs LAPACK_GLOBAL(cgetrs,CGETRS) -#define LAPACK_zgetrs LAPACK_GLOBAL(zgetrs,ZGETRS) -#define LAPACK_sgbtrs LAPACK_GLOBAL(sgbtrs,SGBTRS) -#define LAPACK_dgbtrs LAPACK_GLOBAL(dgbtrs,DGBTRS) -#define LAPACK_cgbtrs LAPACK_GLOBAL(cgbtrs,CGBTRS) -#define LAPACK_zgbtrs LAPACK_GLOBAL(zgbtrs,ZGBTRS) -#define LAPACK_sgttrs LAPACK_GLOBAL(sgttrs,SGTTRS) -#define LAPACK_dgttrs LAPACK_GLOBAL(dgttrs,DGTTRS) -#define LAPACK_cgttrs LAPACK_GLOBAL(cgttrs,CGTTRS) -#define LAPACK_zgttrs LAPACK_GLOBAL(zgttrs,ZGTTRS) -#define LAPACK_spotrs LAPACK_GLOBAL(spotrs,SPOTRS) -#define LAPACK_dpotrs LAPACK_GLOBAL(dpotrs,DPOTRS) -#define LAPACK_cpotrs LAPACK_GLOBAL(cpotrs,CPOTRS) -#define LAPACK_zpotrs LAPACK_GLOBAL(zpotrs,ZPOTRS) -#define LAPACK_dpftrs LAPACK_GLOBAL(dpftrs,DPFTRS) -#define LAPACK_spftrs LAPACK_GLOBAL(spftrs,SPFTRS) -#define LAPACK_zpftrs LAPACK_GLOBAL(zpftrs,ZPFTRS) -#define LAPACK_cpftrs LAPACK_GLOBAL(cpftrs,CPFTRS) -#define LAPACK_spptrs LAPACK_GLOBAL(spptrs,SPPTRS) -#define LAPACK_dpptrs LAPACK_GLOBAL(dpptrs,DPPTRS) -#define LAPACK_cpptrs LAPACK_GLOBAL(cpptrs,CPPTRS) -#define LAPACK_zpptrs LAPACK_GLOBAL(zpptrs,ZPPTRS) -#define LAPACK_spbtrs LAPACK_GLOBAL(spbtrs,SPBTRS) -#define LAPACK_dpbtrs LAPACK_GLOBAL(dpbtrs,DPBTRS) -#define LAPACK_cpbtrs LAPACK_GLOBAL(cpbtrs,CPBTRS) -#define LAPACK_zpbtrs LAPACK_GLOBAL(zpbtrs,ZPBTRS) -#define LAPACK_spttrs LAPACK_GLOBAL(spttrs,SPTTRS) -#define LAPACK_dpttrs LAPACK_GLOBAL(dpttrs,DPTTRS) -#define LAPACK_cpttrs LAPACK_GLOBAL(cpttrs,CPTTRS) -#define LAPACK_zpttrs LAPACK_GLOBAL(zpttrs,ZPTTRS) -#define LAPACK_ssytrs LAPACK_GLOBAL(ssytrs,SSYTRS) -#define LAPACK_dsytrs LAPACK_GLOBAL(dsytrs,DSYTRS) -#define LAPACK_csytrs LAPACK_GLOBAL(csytrs,CSYTRS) -#define LAPACK_zsytrs LAPACK_GLOBAL(zsytrs,ZSYTRS) -#define LAPACK_chetrs LAPACK_GLOBAL(chetrs,CHETRS) -#define LAPACK_zhetrs LAPACK_GLOBAL(zhetrs,ZHETRS) -#define LAPACK_ssptrs LAPACK_GLOBAL(ssptrs,SSPTRS) -#define LAPACK_dsptrs LAPACK_GLOBAL(dsptrs,DSPTRS) -#define LAPACK_csptrs LAPACK_GLOBAL(csptrs,CSPTRS) -#define LAPACK_zsptrs LAPACK_GLOBAL(zsptrs,ZSPTRS) -#define LAPACK_chptrs LAPACK_GLOBAL(chptrs,CHPTRS) -#define LAPACK_zhptrs LAPACK_GLOBAL(zhptrs,ZHPTRS) -#define LAPACK_strtrs LAPACK_GLOBAL(strtrs,STRTRS) -#define LAPACK_dtrtrs LAPACK_GLOBAL(dtrtrs,DTRTRS) -#define LAPACK_ctrtrs LAPACK_GLOBAL(ctrtrs,CTRTRS) -#define LAPACK_ztrtrs LAPACK_GLOBAL(ztrtrs,ZTRTRS) -#define LAPACK_stptrs LAPACK_GLOBAL(stptrs,STPTRS) -#define LAPACK_dtptrs LAPACK_GLOBAL(dtptrs,DTPTRS) -#define LAPACK_ctptrs LAPACK_GLOBAL(ctptrs,CTPTRS) -#define LAPACK_ztptrs LAPACK_GLOBAL(ztptrs,ZTPTRS) -#define LAPACK_stbtrs LAPACK_GLOBAL(stbtrs,STBTRS) -#define LAPACK_dtbtrs LAPACK_GLOBAL(dtbtrs,DTBTRS) -#define LAPACK_ctbtrs LAPACK_GLOBAL(ctbtrs,CTBTRS) -#define LAPACK_ztbtrs LAPACK_GLOBAL(ztbtrs,ZTBTRS) -#define LAPACK_sgecon LAPACK_GLOBAL(sgecon,SGECON) -#define LAPACK_dgecon LAPACK_GLOBAL(dgecon,DGECON) -#define LAPACK_cgecon LAPACK_GLOBAL(cgecon,CGECON) -#define LAPACK_zgecon LAPACK_GLOBAL(zgecon,ZGECON) -#define LAPACK_sgbcon LAPACK_GLOBAL(sgbcon,SGBCON) -#define LAPACK_dgbcon LAPACK_GLOBAL(dgbcon,DGBCON) -#define LAPACK_cgbcon LAPACK_GLOBAL(cgbcon,CGBCON) -#define LAPACK_zgbcon LAPACK_GLOBAL(zgbcon,ZGBCON) -#define LAPACK_sgtcon LAPACK_GLOBAL(sgtcon,SGTCON) -#define LAPACK_dgtcon LAPACK_GLOBAL(dgtcon,DGTCON) -#define LAPACK_cgtcon LAPACK_GLOBAL(cgtcon,CGTCON) -#define LAPACK_zgtcon LAPACK_GLOBAL(zgtcon,ZGTCON) -#define LAPACK_spocon LAPACK_GLOBAL(spocon,SPOCON) -#define LAPACK_dpocon LAPACK_GLOBAL(dpocon,DPOCON) -#define LAPACK_cpocon LAPACK_GLOBAL(cpocon,CPOCON) -#define LAPACK_zpocon LAPACK_GLOBAL(zpocon,ZPOCON) -#define LAPACK_sppcon LAPACK_GLOBAL(sppcon,SPPCON) -#define LAPACK_dppcon LAPACK_GLOBAL(dppcon,DPPCON) -#define LAPACK_cppcon LAPACK_GLOBAL(cppcon,CPPCON) -#define LAPACK_zppcon LAPACK_GLOBAL(zppcon,ZPPCON) -#define LAPACK_spbcon LAPACK_GLOBAL(spbcon,SPBCON) -#define LAPACK_dpbcon LAPACK_GLOBAL(dpbcon,DPBCON) -#define LAPACK_cpbcon LAPACK_GLOBAL(cpbcon,CPBCON) -#define LAPACK_zpbcon LAPACK_GLOBAL(zpbcon,ZPBCON) -#define LAPACK_sptcon LAPACK_GLOBAL(sptcon,SPTCON) -#define LAPACK_dptcon LAPACK_GLOBAL(dptcon,DPTCON) -#define LAPACK_cptcon LAPACK_GLOBAL(cptcon,CPTCON) -#define LAPACK_zptcon LAPACK_GLOBAL(zptcon,ZPTCON) -#define LAPACK_ssycon LAPACK_GLOBAL(ssycon,SSYCON) -#define LAPACK_dsycon LAPACK_GLOBAL(dsycon,DSYCON) -#define LAPACK_csycon LAPACK_GLOBAL(csycon,CSYCON) -#define LAPACK_zsycon LAPACK_GLOBAL(zsycon,ZSYCON) -#define LAPACK_checon LAPACK_GLOBAL(checon,CHECON) -#define LAPACK_zhecon LAPACK_GLOBAL(zhecon,ZHECON) -#define LAPACK_sspcon LAPACK_GLOBAL(sspcon,SSPCON) -#define LAPACK_dspcon LAPACK_GLOBAL(dspcon,DSPCON) -#define LAPACK_cspcon LAPACK_GLOBAL(cspcon,CSPCON) -#define LAPACK_zspcon LAPACK_GLOBAL(zspcon,ZSPCON) -#define LAPACK_chpcon LAPACK_GLOBAL(chpcon,CHPCON) -#define LAPACK_zhpcon LAPACK_GLOBAL(zhpcon,ZHPCON) -#define LAPACK_strcon LAPACK_GLOBAL(strcon,STRCON) -#define LAPACK_dtrcon LAPACK_GLOBAL(dtrcon,DTRCON) -#define LAPACK_ctrcon LAPACK_GLOBAL(ctrcon,CTRCON) -#define LAPACK_ztrcon LAPACK_GLOBAL(ztrcon,ZTRCON) -#define LAPACK_stpcon LAPACK_GLOBAL(stpcon,STPCON) -#define LAPACK_dtpcon LAPACK_GLOBAL(dtpcon,DTPCON) -#define LAPACK_ctpcon LAPACK_GLOBAL(ctpcon,CTPCON) -#define LAPACK_ztpcon LAPACK_GLOBAL(ztpcon,ZTPCON) -#define LAPACK_stbcon LAPACK_GLOBAL(stbcon,STBCON) -#define LAPACK_dtbcon LAPACK_GLOBAL(dtbcon,DTBCON) -#define LAPACK_ctbcon LAPACK_GLOBAL(ctbcon,CTBCON) -#define LAPACK_ztbcon LAPACK_GLOBAL(ztbcon,ZTBCON) -#define LAPACK_sgerfs LAPACK_GLOBAL(sgerfs,SGERFS) -#define LAPACK_dgerfs LAPACK_GLOBAL(dgerfs,DGERFS) -#define LAPACK_cgerfs LAPACK_GLOBAL(cgerfs,CGERFS) -#define LAPACK_zgerfs LAPACK_GLOBAL(zgerfs,ZGERFS) -#define LAPACK_dgerfsx LAPACK_GLOBAL(dgerfsx,DGERFSX) -#define LAPACK_sgerfsx LAPACK_GLOBAL(sgerfsx,SGERFSX) -#define LAPACK_zgerfsx LAPACK_GLOBAL(zgerfsx,ZGERFSX) -#define LAPACK_cgerfsx LAPACK_GLOBAL(cgerfsx,CGERFSX) -#define LAPACK_sgbrfs LAPACK_GLOBAL(sgbrfs,SGBRFS) -#define LAPACK_dgbrfs LAPACK_GLOBAL(dgbrfs,DGBRFS) -#define LAPACK_cgbrfs LAPACK_GLOBAL(cgbrfs,CGBRFS) -#define LAPACK_zgbrfs LAPACK_GLOBAL(zgbrfs,ZGBRFS) -#define LAPACK_dgbrfsx LAPACK_GLOBAL(dgbrfsx,DGBRFSX) -#define LAPACK_sgbrfsx LAPACK_GLOBAL(sgbrfsx,SGBRFSX) -#define LAPACK_zgbrfsx LAPACK_GLOBAL(zgbrfsx,ZGBRFSX) -#define LAPACK_cgbrfsx LAPACK_GLOBAL(cgbrfsx,CGBRFSX) -#define LAPACK_sgtrfs LAPACK_GLOBAL(sgtrfs,SGTRFS) -#define LAPACK_dgtrfs LAPACK_GLOBAL(dgtrfs,DGTRFS) -#define LAPACK_cgtrfs LAPACK_GLOBAL(cgtrfs,CGTRFS) -#define LAPACK_zgtrfs LAPACK_GLOBAL(zgtrfs,ZGTRFS) -#define LAPACK_sporfs LAPACK_GLOBAL(sporfs,SPORFS) -#define LAPACK_dporfs LAPACK_GLOBAL(dporfs,DPORFS) -#define LAPACK_cporfs LAPACK_GLOBAL(cporfs,CPORFS) -#define LAPACK_zporfs LAPACK_GLOBAL(zporfs,ZPORFS) -#define LAPACK_dporfsx LAPACK_GLOBAL(dporfsx,DPORFSX) -#define LAPACK_sporfsx LAPACK_GLOBAL(sporfsx,SPORFSX) -#define LAPACK_zporfsx LAPACK_GLOBAL(zporfsx,ZPORFSX) -#define LAPACK_cporfsx LAPACK_GLOBAL(cporfsx,CPORFSX) -#define LAPACK_spprfs LAPACK_GLOBAL(spprfs,SPPRFS) -#define LAPACK_dpprfs LAPACK_GLOBAL(dpprfs,DPPRFS) -#define LAPACK_cpprfs LAPACK_GLOBAL(cpprfs,CPPRFS) -#define LAPACK_zpprfs LAPACK_GLOBAL(zpprfs,ZPPRFS) -#define LAPACK_spbrfs LAPACK_GLOBAL(spbrfs,SPBRFS) -#define LAPACK_dpbrfs LAPACK_GLOBAL(dpbrfs,DPBRFS) -#define LAPACK_cpbrfs LAPACK_GLOBAL(cpbrfs,CPBRFS) -#define LAPACK_zpbrfs LAPACK_GLOBAL(zpbrfs,ZPBRFS) -#define LAPACK_sptrfs LAPACK_GLOBAL(sptrfs,SPTRFS) -#define LAPACK_dptrfs LAPACK_GLOBAL(dptrfs,DPTRFS) -#define LAPACK_cptrfs LAPACK_GLOBAL(cptrfs,CPTRFS) -#define LAPACK_zptrfs LAPACK_GLOBAL(zptrfs,ZPTRFS) -#define LAPACK_ssyrfs LAPACK_GLOBAL(ssyrfs,SSYRFS) -#define LAPACK_dsyrfs LAPACK_GLOBAL(dsyrfs,DSYRFS) -#define LAPACK_csyrfs LAPACK_GLOBAL(csyrfs,CSYRFS) -#define LAPACK_zsyrfs LAPACK_GLOBAL(zsyrfs,ZSYRFS) -#define LAPACK_dsyrfsx LAPACK_GLOBAL(dsyrfsx,DSYRFSX) -#define LAPACK_ssyrfsx LAPACK_GLOBAL(ssyrfsx,SSYRFSX) -#define LAPACK_zsyrfsx LAPACK_GLOBAL(zsyrfsx,ZSYRFSX) -#define LAPACK_csyrfsx LAPACK_GLOBAL(csyrfsx,CSYRFSX) -#define LAPACK_cherfs LAPACK_GLOBAL(cherfs,CHERFS) -#define LAPACK_zherfs LAPACK_GLOBAL(zherfs,ZHERFS) -#define LAPACK_zherfsx LAPACK_GLOBAL(zherfsx,ZHERFSX) -#define LAPACK_cherfsx LAPACK_GLOBAL(cherfsx,CHERFSX) -#define LAPACK_ssprfs LAPACK_GLOBAL(ssprfs,SSPRFS) -#define LAPACK_dsprfs LAPACK_GLOBAL(dsprfs,DSPRFS) -#define LAPACK_csprfs LAPACK_GLOBAL(csprfs,CSPRFS) -#define LAPACK_zsprfs LAPACK_GLOBAL(zsprfs,ZSPRFS) -#define LAPACK_chprfs LAPACK_GLOBAL(chprfs,CHPRFS) -#define LAPACK_zhprfs LAPACK_GLOBAL(zhprfs,ZHPRFS) -#define LAPACK_strrfs LAPACK_GLOBAL(strrfs,STRRFS) -#define LAPACK_dtrrfs LAPACK_GLOBAL(dtrrfs,DTRRFS) -#define LAPACK_ctrrfs LAPACK_GLOBAL(ctrrfs,CTRRFS) -#define LAPACK_ztrrfs LAPACK_GLOBAL(ztrrfs,ZTRRFS) -#define LAPACK_stprfs LAPACK_GLOBAL(stprfs,STPRFS) -#define LAPACK_dtprfs LAPACK_GLOBAL(dtprfs,DTPRFS) -#define LAPACK_ctprfs LAPACK_GLOBAL(ctprfs,CTPRFS) -#define LAPACK_ztprfs LAPACK_GLOBAL(ztprfs,ZTPRFS) -#define LAPACK_stbrfs LAPACK_GLOBAL(stbrfs,STBRFS) -#define LAPACK_dtbrfs LAPACK_GLOBAL(dtbrfs,DTBRFS) -#define LAPACK_ctbrfs LAPACK_GLOBAL(ctbrfs,CTBRFS) -#define LAPACK_ztbrfs LAPACK_GLOBAL(ztbrfs,ZTBRFS) -#define LAPACK_sgetri LAPACK_GLOBAL(sgetri,SGETRI) -#define LAPACK_dgetri LAPACK_GLOBAL(dgetri,DGETRI) -#define LAPACK_cgetri LAPACK_GLOBAL(cgetri,CGETRI) -#define LAPACK_zgetri LAPACK_GLOBAL(zgetri,ZGETRI) -#define LAPACK_spotri LAPACK_GLOBAL(spotri,SPOTRI) -#define LAPACK_dpotri LAPACK_GLOBAL(dpotri,DPOTRI) -#define LAPACK_cpotri LAPACK_GLOBAL(cpotri,CPOTRI) -#define LAPACK_zpotri LAPACK_GLOBAL(zpotri,ZPOTRI) -#define LAPACK_dpftri LAPACK_GLOBAL(dpftri,DPFTRI) -#define LAPACK_spftri LAPACK_GLOBAL(spftri,SPFTRI) -#define LAPACK_zpftri LAPACK_GLOBAL(zpftri,ZPFTRI) -#define LAPACK_cpftri LAPACK_GLOBAL(cpftri,CPFTRI) -#define LAPACK_spptri LAPACK_GLOBAL(spptri,SPPTRI) -#define LAPACK_dpptri LAPACK_GLOBAL(dpptri,DPPTRI) -#define LAPACK_cpptri LAPACK_GLOBAL(cpptri,CPPTRI) -#define LAPACK_zpptri LAPACK_GLOBAL(zpptri,ZPPTRI) -#define LAPACK_ssytri LAPACK_GLOBAL(ssytri,SSYTRI) -#define LAPACK_dsytri LAPACK_GLOBAL(dsytri,DSYTRI) -#define LAPACK_csytri LAPACK_GLOBAL(csytri,CSYTRI) -#define LAPACK_zsytri LAPACK_GLOBAL(zsytri,ZSYTRI) -#define LAPACK_chetri LAPACK_GLOBAL(chetri,CHETRI) -#define LAPACK_zhetri LAPACK_GLOBAL(zhetri,ZHETRI) -#define LAPACK_ssptri LAPACK_GLOBAL(ssptri,SSPTRI) -#define LAPACK_dsptri LAPACK_GLOBAL(dsptri,DSPTRI) -#define LAPACK_csptri LAPACK_GLOBAL(csptri,CSPTRI) -#define LAPACK_zsptri LAPACK_GLOBAL(zsptri,ZSPTRI) -#define LAPACK_chptri LAPACK_GLOBAL(chptri,CHPTRI) -#define LAPACK_zhptri LAPACK_GLOBAL(zhptri,ZHPTRI) -#define LAPACK_strtri LAPACK_GLOBAL(strtri,STRTRI) -#define LAPACK_dtrtri LAPACK_GLOBAL(dtrtri,DTRTRI) -#define LAPACK_ctrtri LAPACK_GLOBAL(ctrtri,CTRTRI) -#define LAPACK_ztrtri LAPACK_GLOBAL(ztrtri,ZTRTRI) -#define LAPACK_dtftri LAPACK_GLOBAL(dtftri,DTFTRI) -#define LAPACK_stftri LAPACK_GLOBAL(stftri,STFTRI) -#define LAPACK_ztftri LAPACK_GLOBAL(ztftri,ZTFTRI) -#define LAPACK_ctftri LAPACK_GLOBAL(ctftri,CTFTRI) -#define LAPACK_stptri LAPACK_GLOBAL(stptri,STPTRI) -#define LAPACK_dtptri LAPACK_GLOBAL(dtptri,DTPTRI) -#define LAPACK_ctptri LAPACK_GLOBAL(ctptri,CTPTRI) -#define LAPACK_ztptri LAPACK_GLOBAL(ztptri,ZTPTRI) -#define LAPACK_sgeequ LAPACK_GLOBAL(sgeequ,SGEEQU) -#define LAPACK_dgeequ LAPACK_GLOBAL(dgeequ,DGEEQU) -#define LAPACK_cgeequ LAPACK_GLOBAL(cgeequ,CGEEQU) -#define LAPACK_zgeequ LAPACK_GLOBAL(zgeequ,ZGEEQU) -#define LAPACK_dgeequb LAPACK_GLOBAL(dgeequb,DGEEQUB) -#define LAPACK_sgeequb LAPACK_GLOBAL(sgeequb,SGEEQUB) -#define LAPACK_zgeequb LAPACK_GLOBAL(zgeequb,ZGEEQUB) -#define LAPACK_cgeequb LAPACK_GLOBAL(cgeequb,CGEEQUB) -#define LAPACK_sgbequ LAPACK_GLOBAL(sgbequ,SGBEQU) -#define LAPACK_dgbequ LAPACK_GLOBAL(dgbequ,DGBEQU) -#define LAPACK_cgbequ LAPACK_GLOBAL(cgbequ,CGBEQU) -#define LAPACK_zgbequ LAPACK_GLOBAL(zgbequ,ZGBEQU) -#define LAPACK_dgbequb LAPACK_GLOBAL(dgbequb,DGBEQUB) -#define LAPACK_sgbequb LAPACK_GLOBAL(sgbequb,SGBEQUB) -#define LAPACK_zgbequb LAPACK_GLOBAL(zgbequb,ZGBEQUB) -#define LAPACK_cgbequb LAPACK_GLOBAL(cgbequb,CGBEQUB) -#define LAPACK_spoequ LAPACK_GLOBAL(spoequ,SPOEQU) -#define LAPACK_dpoequ LAPACK_GLOBAL(dpoequ,DPOEQU) -#define LAPACK_cpoequ LAPACK_GLOBAL(cpoequ,CPOEQU) -#define LAPACK_zpoequ LAPACK_GLOBAL(zpoequ,ZPOEQU) -#define LAPACK_dpoequb LAPACK_GLOBAL(dpoequb,DPOEQUB) -#define LAPACK_spoequb LAPACK_GLOBAL(spoequb,SPOEQUB) -#define LAPACK_zpoequb LAPACK_GLOBAL(zpoequb,ZPOEQUB) -#define LAPACK_cpoequb LAPACK_GLOBAL(cpoequb,CPOEQUB) -#define LAPACK_sppequ LAPACK_GLOBAL(sppequ,SPPEQU) -#define LAPACK_dppequ LAPACK_GLOBAL(dppequ,DPPEQU) -#define LAPACK_cppequ LAPACK_GLOBAL(cppequ,CPPEQU) -#define LAPACK_zppequ LAPACK_GLOBAL(zppequ,ZPPEQU) -#define LAPACK_spbequ LAPACK_GLOBAL(spbequ,SPBEQU) -#define LAPACK_dpbequ LAPACK_GLOBAL(dpbequ,DPBEQU) -#define LAPACK_cpbequ LAPACK_GLOBAL(cpbequ,CPBEQU) -#define LAPACK_zpbequ LAPACK_GLOBAL(zpbequ,ZPBEQU) -#define LAPACK_dsyequb LAPACK_GLOBAL(dsyequb,DSYEQUB) -#define LAPACK_ssyequb LAPACK_GLOBAL(ssyequb,SSYEQUB) -#define LAPACK_zsyequb LAPACK_GLOBAL(zsyequb,ZSYEQUB) -#define LAPACK_csyequb LAPACK_GLOBAL(csyequb,CSYEQUB) -#define LAPACK_zheequb LAPACK_GLOBAL(zheequb,ZHEEQUB) -#define LAPACK_cheequb LAPACK_GLOBAL(cheequb,CHEEQUB) -#define LAPACK_sgesv LAPACK_GLOBAL(sgesv,SGESV) -#define LAPACK_dgesv LAPACK_GLOBAL(dgesv,DGESV) -#define LAPACK_cgesv LAPACK_GLOBAL(cgesv,CGESV) -#define LAPACK_zgesv LAPACK_GLOBAL(zgesv,ZGESV) -#define LAPACK_dsgesv LAPACK_GLOBAL(dsgesv,DSGESV) -#define LAPACK_zcgesv LAPACK_GLOBAL(zcgesv,ZCGESV) -#define LAPACK_sgesvx LAPACK_GLOBAL(sgesvx,SGESVX) -#define LAPACK_dgesvx LAPACK_GLOBAL(dgesvx,DGESVX) -#define LAPACK_cgesvx LAPACK_GLOBAL(cgesvx,CGESVX) -#define LAPACK_zgesvx LAPACK_GLOBAL(zgesvx,ZGESVX) -#define LAPACK_dgesvxx LAPACK_GLOBAL(dgesvxx,DGESVXX) -#define LAPACK_sgesvxx LAPACK_GLOBAL(sgesvxx,SGESVXX) -#define LAPACK_zgesvxx LAPACK_GLOBAL(zgesvxx,ZGESVXX) -#define LAPACK_cgesvxx LAPACK_GLOBAL(cgesvxx,CGESVXX) -#define LAPACK_sgbsv LAPACK_GLOBAL(sgbsv,SGBSV) -#define LAPACK_dgbsv LAPACK_GLOBAL(dgbsv,DGBSV) -#define LAPACK_cgbsv LAPACK_GLOBAL(cgbsv,CGBSV) -#define LAPACK_zgbsv LAPACK_GLOBAL(zgbsv,ZGBSV) -#define LAPACK_sgbsvx LAPACK_GLOBAL(sgbsvx,SGBSVX) -#define LAPACK_dgbsvx LAPACK_GLOBAL(dgbsvx,DGBSVX) -#define LAPACK_cgbsvx LAPACK_GLOBAL(cgbsvx,CGBSVX) -#define LAPACK_zgbsvx LAPACK_GLOBAL(zgbsvx,ZGBSVX) -#define LAPACK_dgbsvxx LAPACK_GLOBAL(dgbsvxx,DGBSVXX) -#define LAPACK_sgbsvxx LAPACK_GLOBAL(sgbsvxx,SGBSVXX) -#define LAPACK_zgbsvxx LAPACK_GLOBAL(zgbsvxx,ZGBSVXX) -#define LAPACK_cgbsvxx LAPACK_GLOBAL(cgbsvxx,CGBSVXX) -#define LAPACK_sgtsv LAPACK_GLOBAL(sgtsv,SGTSV) -#define LAPACK_dgtsv LAPACK_GLOBAL(dgtsv,DGTSV) -#define LAPACK_cgtsv LAPACK_GLOBAL(cgtsv,CGTSV) -#define LAPACK_zgtsv LAPACK_GLOBAL(zgtsv,ZGTSV) -#define LAPACK_sgtsvx LAPACK_GLOBAL(sgtsvx,SGTSVX) -#define LAPACK_dgtsvx LAPACK_GLOBAL(dgtsvx,DGTSVX) -#define LAPACK_cgtsvx LAPACK_GLOBAL(cgtsvx,CGTSVX) -#define LAPACK_zgtsvx LAPACK_GLOBAL(zgtsvx,ZGTSVX) -#define LAPACK_sposv LAPACK_GLOBAL(sposv,SPOSV) -#define LAPACK_dposv LAPACK_GLOBAL(dposv,DPOSV) -#define LAPACK_cposv LAPACK_GLOBAL(cposv,CPOSV) -#define LAPACK_zposv LAPACK_GLOBAL(zposv,ZPOSV) -#define LAPACK_dsposv LAPACK_GLOBAL(dsposv,DSPOSV) -#define LAPACK_zcposv LAPACK_GLOBAL(zcposv,ZCPOSV) -#define LAPACK_sposvx LAPACK_GLOBAL(sposvx,SPOSVX) -#define LAPACK_dposvx LAPACK_GLOBAL(dposvx,DPOSVX) -#define LAPACK_cposvx LAPACK_GLOBAL(cposvx,CPOSVX) -#define LAPACK_zposvx LAPACK_GLOBAL(zposvx,ZPOSVX) -#define LAPACK_dposvxx LAPACK_GLOBAL(dposvxx,DPOSVXX) -#define LAPACK_sposvxx LAPACK_GLOBAL(sposvxx,SPOSVXX) -#define LAPACK_zposvxx LAPACK_GLOBAL(zposvxx,ZPOSVXX) -#define LAPACK_cposvxx LAPACK_GLOBAL(cposvxx,CPOSVXX) -#define LAPACK_sppsv LAPACK_GLOBAL(sppsv,SPPSV) -#define LAPACK_dppsv LAPACK_GLOBAL(dppsv,DPPSV) -#define LAPACK_cppsv LAPACK_GLOBAL(cppsv,CPPSV) -#define LAPACK_zppsv LAPACK_GLOBAL(zppsv,ZPPSV) -#define LAPACK_sppsvx LAPACK_GLOBAL(sppsvx,SPPSVX) -#define LAPACK_dppsvx LAPACK_GLOBAL(dppsvx,DPPSVX) -#define LAPACK_cppsvx LAPACK_GLOBAL(cppsvx,CPPSVX) -#define LAPACK_zppsvx LAPACK_GLOBAL(zppsvx,ZPPSVX) -#define LAPACK_spbsv LAPACK_GLOBAL(spbsv,SPBSV) -#define LAPACK_dpbsv LAPACK_GLOBAL(dpbsv,DPBSV) -#define LAPACK_cpbsv LAPACK_GLOBAL(cpbsv,CPBSV) -#define LAPACK_zpbsv LAPACK_GLOBAL(zpbsv,ZPBSV) -#define LAPACK_spbsvx LAPACK_GLOBAL(spbsvx,SPBSVX) -#define LAPACK_dpbsvx LAPACK_GLOBAL(dpbsvx,DPBSVX) -#define LAPACK_cpbsvx LAPACK_GLOBAL(cpbsvx,CPBSVX) -#define LAPACK_zpbsvx LAPACK_GLOBAL(zpbsvx,ZPBSVX) -#define LAPACK_sptsv LAPACK_GLOBAL(sptsv,SPTSV) -#define LAPACK_dptsv LAPACK_GLOBAL(dptsv,DPTSV) -#define LAPACK_cptsv LAPACK_GLOBAL(cptsv,CPTSV) -#define LAPACK_zptsv LAPACK_GLOBAL(zptsv,ZPTSV) -#define LAPACK_sptsvx LAPACK_GLOBAL(sptsvx,SPTSVX) -#define LAPACK_dptsvx LAPACK_GLOBAL(dptsvx,DPTSVX) -#define LAPACK_cptsvx LAPACK_GLOBAL(cptsvx,CPTSVX) -#define LAPACK_zptsvx LAPACK_GLOBAL(zptsvx,ZPTSVX) -#define LAPACK_ssysv LAPACK_GLOBAL(ssysv,SSYSV) -#define LAPACK_dsysv LAPACK_GLOBAL(dsysv,DSYSV) -#define LAPACK_csysv LAPACK_GLOBAL(csysv,CSYSV) -#define LAPACK_zsysv LAPACK_GLOBAL(zsysv,ZSYSV) -#define LAPACK_ssysvx LAPACK_GLOBAL(ssysvx,SSYSVX) -#define LAPACK_dsysvx LAPACK_GLOBAL(dsysvx,DSYSVX) -#define LAPACK_csysvx LAPACK_GLOBAL(csysvx,CSYSVX) -#define LAPACK_zsysvx LAPACK_GLOBAL(zsysvx,ZSYSVX) -#define LAPACK_dsysvxx LAPACK_GLOBAL(dsysvxx,DSYSVXX) -#define LAPACK_ssysvxx LAPACK_GLOBAL(ssysvxx,SSYSVXX) -#define LAPACK_zsysvxx LAPACK_GLOBAL(zsysvxx,ZSYSVXX) -#define LAPACK_csysvxx LAPACK_GLOBAL(csysvxx,CSYSVXX) -#define LAPACK_chesv LAPACK_GLOBAL(chesv,CHESV) -#define LAPACK_zhesv LAPACK_GLOBAL(zhesv,ZHESV) -#define LAPACK_chesvx LAPACK_GLOBAL(chesvx,CHESVX) -#define LAPACK_zhesvx LAPACK_GLOBAL(zhesvx,ZHESVX) -#define LAPACK_zhesvxx LAPACK_GLOBAL(zhesvxx,ZHESVXX) -#define LAPACK_chesvxx LAPACK_GLOBAL(chesvxx,CHESVXX) -#define LAPACK_sspsv LAPACK_GLOBAL(sspsv,SSPSV) -#define LAPACK_dspsv LAPACK_GLOBAL(dspsv,DSPSV) -#define LAPACK_cspsv LAPACK_GLOBAL(cspsv,CSPSV) -#define LAPACK_zspsv LAPACK_GLOBAL(zspsv,ZSPSV) -#define LAPACK_sspsvx LAPACK_GLOBAL(sspsvx,SSPSVX) -#define LAPACK_dspsvx LAPACK_GLOBAL(dspsvx,DSPSVX) -#define LAPACK_cspsvx LAPACK_GLOBAL(cspsvx,CSPSVX) -#define LAPACK_zspsvx LAPACK_GLOBAL(zspsvx,ZSPSVX) -#define LAPACK_chpsv LAPACK_GLOBAL(chpsv,CHPSV) -#define LAPACK_zhpsv LAPACK_GLOBAL(zhpsv,ZHPSV) -#define LAPACK_chpsvx LAPACK_GLOBAL(chpsvx,CHPSVX) -#define LAPACK_zhpsvx LAPACK_GLOBAL(zhpsvx,ZHPSVX) -#define LAPACK_sgeqrf LAPACK_GLOBAL(sgeqrf,SGEQRF) -#define LAPACK_dgeqrf LAPACK_GLOBAL(dgeqrf,DGEQRF) -#define LAPACK_cgeqrf LAPACK_GLOBAL(cgeqrf,CGEQRF) -#define LAPACK_zgeqrf LAPACK_GLOBAL(zgeqrf,ZGEQRF) -#define LAPACK_sgeqpf LAPACK_GLOBAL(sgeqpf,SGEQPF) -#define LAPACK_dgeqpf LAPACK_GLOBAL(dgeqpf,DGEQPF) -#define LAPACK_cgeqpf LAPACK_GLOBAL(cgeqpf,CGEQPF) -#define LAPACK_zgeqpf LAPACK_GLOBAL(zgeqpf,ZGEQPF) -#define LAPACK_sgeqp3 LAPACK_GLOBAL(sgeqp3,SGEQP3) -#define LAPACK_dgeqp3 LAPACK_GLOBAL(dgeqp3,DGEQP3) -#define LAPACK_cgeqp3 LAPACK_GLOBAL(cgeqp3,CGEQP3) -#define LAPACK_zgeqp3 LAPACK_GLOBAL(zgeqp3,ZGEQP3) -#define LAPACK_sorgqr LAPACK_GLOBAL(sorgqr,SORGQR) -#define LAPACK_dorgqr LAPACK_GLOBAL(dorgqr,DORGQR) -#define LAPACK_sormqr LAPACK_GLOBAL(sormqr,SORMQR) -#define LAPACK_dormqr LAPACK_GLOBAL(dormqr,DORMQR) -#define LAPACK_cungqr LAPACK_GLOBAL(cungqr,CUNGQR) -#define LAPACK_zungqr LAPACK_GLOBAL(zungqr,ZUNGQR) -#define LAPACK_cunmqr LAPACK_GLOBAL(cunmqr,CUNMQR) -#define LAPACK_zunmqr LAPACK_GLOBAL(zunmqr,ZUNMQR) -#define LAPACK_sgelqf LAPACK_GLOBAL(sgelqf,SGELQF) -#define LAPACK_dgelqf LAPACK_GLOBAL(dgelqf,DGELQF) -#define LAPACK_cgelqf LAPACK_GLOBAL(cgelqf,CGELQF) -#define LAPACK_zgelqf LAPACK_GLOBAL(zgelqf,ZGELQF) -#define LAPACK_sorglq LAPACK_GLOBAL(sorglq,SORGLQ) -#define LAPACK_dorglq LAPACK_GLOBAL(dorglq,DORGLQ) -#define LAPACK_sormlq LAPACK_GLOBAL(sormlq,SORMLQ) -#define LAPACK_dormlq LAPACK_GLOBAL(dormlq,DORMLQ) -#define LAPACK_cunglq LAPACK_GLOBAL(cunglq,CUNGLQ) -#define LAPACK_zunglq LAPACK_GLOBAL(zunglq,ZUNGLQ) -#define LAPACK_cunmlq LAPACK_GLOBAL(cunmlq,CUNMLQ) -#define LAPACK_zunmlq LAPACK_GLOBAL(zunmlq,ZUNMLQ) -#define LAPACK_sgeqlf LAPACK_GLOBAL(sgeqlf,SGEQLF) -#define LAPACK_dgeqlf LAPACK_GLOBAL(dgeqlf,DGEQLF) -#define LAPACK_cgeqlf LAPACK_GLOBAL(cgeqlf,CGEQLF) -#define LAPACK_zgeqlf LAPACK_GLOBAL(zgeqlf,ZGEQLF) -#define LAPACK_sorgql LAPACK_GLOBAL(sorgql,SORGQL) -#define LAPACK_dorgql LAPACK_GLOBAL(dorgql,DORGQL) -#define LAPACK_cungql LAPACK_GLOBAL(cungql,CUNGQL) -#define LAPACK_zungql LAPACK_GLOBAL(zungql,ZUNGQL) -#define LAPACK_sormql LAPACK_GLOBAL(sormql,SORMQL) -#define LAPACK_dormql LAPACK_GLOBAL(dormql,DORMQL) -#define LAPACK_cunmql LAPACK_GLOBAL(cunmql,CUNMQL) -#define LAPACK_zunmql LAPACK_GLOBAL(zunmql,ZUNMQL) -#define LAPACK_sgerqf LAPACK_GLOBAL(sgerqf,SGERQF) -#define LAPACK_dgerqf LAPACK_GLOBAL(dgerqf,DGERQF) -#define LAPACK_cgerqf LAPACK_GLOBAL(cgerqf,CGERQF) -#define LAPACK_zgerqf LAPACK_GLOBAL(zgerqf,ZGERQF) -#define LAPACK_sorgrq LAPACK_GLOBAL(sorgrq,SORGRQ) -#define LAPACK_dorgrq LAPACK_GLOBAL(dorgrq,DORGRQ) -#define LAPACK_cungrq LAPACK_GLOBAL(cungrq,CUNGRQ) -#define LAPACK_zungrq LAPACK_GLOBAL(zungrq,ZUNGRQ) -#define LAPACK_sormrq LAPACK_GLOBAL(sormrq,SORMRQ) -#define LAPACK_dormrq LAPACK_GLOBAL(dormrq,DORMRQ) -#define LAPACK_cunmrq LAPACK_GLOBAL(cunmrq,CUNMRQ) -#define LAPACK_zunmrq LAPACK_GLOBAL(zunmrq,ZUNMRQ) -#define LAPACK_stzrzf LAPACK_GLOBAL(stzrzf,STZRZF) -#define LAPACK_dtzrzf LAPACK_GLOBAL(dtzrzf,DTZRZF) -#define LAPACK_ctzrzf LAPACK_GLOBAL(ctzrzf,CTZRZF) -#define LAPACK_ztzrzf LAPACK_GLOBAL(ztzrzf,ZTZRZF) -#define LAPACK_sormrz LAPACK_GLOBAL(sormrz,SORMRZ) -#define LAPACK_dormrz LAPACK_GLOBAL(dormrz,DORMRZ) -#define LAPACK_cunmrz LAPACK_GLOBAL(cunmrz,CUNMRZ) -#define LAPACK_zunmrz LAPACK_GLOBAL(zunmrz,ZUNMRZ) -#define LAPACK_sggqrf LAPACK_GLOBAL(sggqrf,SGGQRF) -#define LAPACK_dggqrf LAPACK_GLOBAL(dggqrf,DGGQRF) -#define LAPACK_cggqrf LAPACK_GLOBAL(cggqrf,CGGQRF) -#define LAPACK_zggqrf LAPACK_GLOBAL(zggqrf,ZGGQRF) -#define LAPACK_sggrqf LAPACK_GLOBAL(sggrqf,SGGRQF) -#define LAPACK_dggrqf LAPACK_GLOBAL(dggrqf,DGGRQF) -#define LAPACK_cggrqf LAPACK_GLOBAL(cggrqf,CGGRQF) -#define LAPACK_zggrqf LAPACK_GLOBAL(zggrqf,ZGGRQF) -#define LAPACK_sgebrd LAPACK_GLOBAL(sgebrd,SGEBRD) -#define LAPACK_dgebrd LAPACK_GLOBAL(dgebrd,DGEBRD) -#define LAPACK_cgebrd LAPACK_GLOBAL(cgebrd,CGEBRD) -#define LAPACK_zgebrd LAPACK_GLOBAL(zgebrd,ZGEBRD) -#define LAPACK_sgbbrd LAPACK_GLOBAL(sgbbrd,SGBBRD) -#define LAPACK_dgbbrd LAPACK_GLOBAL(dgbbrd,DGBBRD) -#define LAPACK_cgbbrd LAPACK_GLOBAL(cgbbrd,CGBBRD) -#define LAPACK_zgbbrd LAPACK_GLOBAL(zgbbrd,ZGBBRD) -#define LAPACK_sorgbr LAPACK_GLOBAL(sorgbr,SORGBR) -#define LAPACK_dorgbr LAPACK_GLOBAL(dorgbr,DORGBR) -#define LAPACK_sormbr LAPACK_GLOBAL(sormbr,SORMBR) -#define LAPACK_dormbr LAPACK_GLOBAL(dormbr,DORMBR) -#define LAPACK_cungbr LAPACK_GLOBAL(cungbr,CUNGBR) -#define LAPACK_zungbr LAPACK_GLOBAL(zungbr,ZUNGBR) -#define LAPACK_cunmbr LAPACK_GLOBAL(cunmbr,CUNMBR) -#define LAPACK_zunmbr LAPACK_GLOBAL(zunmbr,ZUNMBR) -#define LAPACK_sbdsqr LAPACK_GLOBAL(sbdsqr,SBDSQR) -#define LAPACK_dbdsqr LAPACK_GLOBAL(dbdsqr,DBDSQR) -#define LAPACK_cbdsqr LAPACK_GLOBAL(cbdsqr,CBDSQR) -#define LAPACK_zbdsqr LAPACK_GLOBAL(zbdsqr,ZBDSQR) -#define LAPACK_sbdsdc LAPACK_GLOBAL(sbdsdc,SBDSDC) -#define LAPACK_dbdsdc LAPACK_GLOBAL(dbdsdc,DBDSDC) -#define LAPACK_ssytrd LAPACK_GLOBAL(ssytrd,SSYTRD) -#define LAPACK_dsytrd LAPACK_GLOBAL(dsytrd,DSYTRD) -#define LAPACK_sorgtr LAPACK_GLOBAL(sorgtr,SORGTR) -#define LAPACK_dorgtr LAPACK_GLOBAL(dorgtr,DORGTR) -#define LAPACK_sormtr LAPACK_GLOBAL(sormtr,SORMTR) -#define LAPACK_dormtr LAPACK_GLOBAL(dormtr,DORMTR) -#define LAPACK_chetrd LAPACK_GLOBAL(chetrd,CHETRD) -#define LAPACK_zhetrd LAPACK_GLOBAL(zhetrd,ZHETRD) -#define LAPACK_cungtr LAPACK_GLOBAL(cungtr,CUNGTR) -#define LAPACK_zungtr LAPACK_GLOBAL(zungtr,ZUNGTR) -#define LAPACK_cunmtr LAPACK_GLOBAL(cunmtr,CUNMTR) -#define LAPACK_zunmtr LAPACK_GLOBAL(zunmtr,ZUNMTR) -#define LAPACK_ssptrd LAPACK_GLOBAL(ssptrd,SSPTRD) -#define LAPACK_dsptrd LAPACK_GLOBAL(dsptrd,DSPTRD) -#define LAPACK_sopgtr LAPACK_GLOBAL(sopgtr,SOPGTR) -#define LAPACK_dopgtr LAPACK_GLOBAL(dopgtr,DOPGTR) -#define LAPACK_sopmtr LAPACK_GLOBAL(sopmtr,SOPMTR) -#define LAPACK_dopmtr LAPACK_GLOBAL(dopmtr,DOPMTR) -#define LAPACK_chptrd LAPACK_GLOBAL(chptrd,CHPTRD) -#define LAPACK_zhptrd LAPACK_GLOBAL(zhptrd,ZHPTRD) -#define LAPACK_cupgtr LAPACK_GLOBAL(cupgtr,CUPGTR) -#define LAPACK_zupgtr LAPACK_GLOBAL(zupgtr,ZUPGTR) -#define LAPACK_cupmtr LAPACK_GLOBAL(cupmtr,CUPMTR) -#define LAPACK_zupmtr LAPACK_GLOBAL(zupmtr,ZUPMTR) -#define LAPACK_ssbtrd LAPACK_GLOBAL(ssbtrd,SSBTRD) -#define LAPACK_dsbtrd LAPACK_GLOBAL(dsbtrd,DSBTRD) -#define LAPACK_chbtrd LAPACK_GLOBAL(chbtrd,CHBTRD) -#define LAPACK_zhbtrd LAPACK_GLOBAL(zhbtrd,ZHBTRD) -#define LAPACK_ssterf LAPACK_GLOBAL(ssterf,SSTERF) -#define LAPACK_dsterf LAPACK_GLOBAL(dsterf,DSTERF) -#define LAPACK_ssteqr LAPACK_GLOBAL(ssteqr,SSTEQR) -#define LAPACK_dsteqr LAPACK_GLOBAL(dsteqr,DSTEQR) -#define LAPACK_csteqr LAPACK_GLOBAL(csteqr,CSTEQR) -#define LAPACK_zsteqr LAPACK_GLOBAL(zsteqr,ZSTEQR) -#define LAPACK_sstemr LAPACK_GLOBAL(sstemr,SSTEMR) -#define LAPACK_dstemr LAPACK_GLOBAL(dstemr,DSTEMR) -#define LAPACK_cstemr LAPACK_GLOBAL(cstemr,CSTEMR) -#define LAPACK_zstemr LAPACK_GLOBAL(zstemr,ZSTEMR) -#define LAPACK_sstedc LAPACK_GLOBAL(sstedc,SSTEDC) -#define LAPACK_dstedc LAPACK_GLOBAL(dstedc,DSTEDC) -#define LAPACK_cstedc LAPACK_GLOBAL(cstedc,CSTEDC) -#define LAPACK_zstedc LAPACK_GLOBAL(zstedc,ZSTEDC) -#define LAPACK_sstegr LAPACK_GLOBAL(sstegr,SSTEGR) -#define LAPACK_dstegr LAPACK_GLOBAL(dstegr,DSTEGR) -#define LAPACK_cstegr LAPACK_GLOBAL(cstegr,CSTEGR) -#define LAPACK_zstegr LAPACK_GLOBAL(zstegr,ZSTEGR) -#define LAPACK_spteqr LAPACK_GLOBAL(spteqr,SPTEQR) -#define LAPACK_dpteqr LAPACK_GLOBAL(dpteqr,DPTEQR) -#define LAPACK_cpteqr LAPACK_GLOBAL(cpteqr,CPTEQR) -#define LAPACK_zpteqr LAPACK_GLOBAL(zpteqr,ZPTEQR) -#define LAPACK_sstebz LAPACK_GLOBAL(sstebz,SSTEBZ) -#define LAPACK_dstebz LAPACK_GLOBAL(dstebz,DSTEBZ) -#define LAPACK_sstein LAPACK_GLOBAL(sstein,SSTEIN) -#define LAPACK_dstein LAPACK_GLOBAL(dstein,DSTEIN) -#define LAPACK_cstein LAPACK_GLOBAL(cstein,CSTEIN) -#define LAPACK_zstein LAPACK_GLOBAL(zstein,ZSTEIN) -#define LAPACK_sdisna LAPACK_GLOBAL(sdisna,SDISNA) -#define LAPACK_ddisna LAPACK_GLOBAL(ddisna,DDISNA) -#define LAPACK_ssygst LAPACK_GLOBAL(ssygst,SSYGST) -#define LAPACK_dsygst LAPACK_GLOBAL(dsygst,DSYGST) -#define LAPACK_chegst LAPACK_GLOBAL(chegst,CHEGST) -#define LAPACK_zhegst LAPACK_GLOBAL(zhegst,ZHEGST) -#define LAPACK_sspgst LAPACK_GLOBAL(sspgst,SSPGST) -#define LAPACK_dspgst LAPACK_GLOBAL(dspgst,DSPGST) -#define LAPACK_chpgst LAPACK_GLOBAL(chpgst,CHPGST) -#define LAPACK_zhpgst LAPACK_GLOBAL(zhpgst,ZHPGST) -#define LAPACK_ssbgst LAPACK_GLOBAL(ssbgst,SSBGST) -#define LAPACK_dsbgst LAPACK_GLOBAL(dsbgst,DSBGST) -#define LAPACK_chbgst LAPACK_GLOBAL(chbgst,CHBGST) -#define LAPACK_zhbgst LAPACK_GLOBAL(zhbgst,ZHBGST) -#define LAPACK_spbstf LAPACK_GLOBAL(spbstf,SPBSTF) -#define LAPACK_dpbstf LAPACK_GLOBAL(dpbstf,DPBSTF) -#define LAPACK_cpbstf LAPACK_GLOBAL(cpbstf,CPBSTF) -#define LAPACK_zpbstf LAPACK_GLOBAL(zpbstf,ZPBSTF) -#define LAPACK_sgehrd LAPACK_GLOBAL(sgehrd,SGEHRD) -#define LAPACK_dgehrd LAPACK_GLOBAL(dgehrd,DGEHRD) -#define LAPACK_cgehrd LAPACK_GLOBAL(cgehrd,CGEHRD) -#define LAPACK_zgehrd LAPACK_GLOBAL(zgehrd,ZGEHRD) -#define LAPACK_sorghr LAPACK_GLOBAL(sorghr,SORGHR) -#define LAPACK_dorghr LAPACK_GLOBAL(dorghr,DORGHR) -#define LAPACK_sormhr LAPACK_GLOBAL(sormhr,SORMHR) -#define LAPACK_dormhr LAPACK_GLOBAL(dormhr,DORMHR) -#define LAPACK_cunghr LAPACK_GLOBAL(cunghr,CUNGHR) -#define LAPACK_zunghr LAPACK_GLOBAL(zunghr,ZUNGHR) -#define LAPACK_cunmhr LAPACK_GLOBAL(cunmhr,CUNMHR) -#define LAPACK_zunmhr LAPACK_GLOBAL(zunmhr,ZUNMHR) -#define LAPACK_sgebal LAPACK_GLOBAL(sgebal,SGEBAL) -#define LAPACK_dgebal LAPACK_GLOBAL(dgebal,DGEBAL) -#define LAPACK_cgebal LAPACK_GLOBAL(cgebal,CGEBAL) -#define LAPACK_zgebal LAPACK_GLOBAL(zgebal,ZGEBAL) -#define LAPACK_sgebak LAPACK_GLOBAL(sgebak,SGEBAK) -#define LAPACK_dgebak LAPACK_GLOBAL(dgebak,DGEBAK) -#define LAPACK_cgebak LAPACK_GLOBAL(cgebak,CGEBAK) -#define LAPACK_zgebak LAPACK_GLOBAL(zgebak,ZGEBAK) -#define LAPACK_shseqr LAPACK_GLOBAL(shseqr,SHSEQR) -#define LAPACK_dhseqr LAPACK_GLOBAL(dhseqr,DHSEQR) -#define LAPACK_chseqr LAPACK_GLOBAL(chseqr,CHSEQR) -#define LAPACK_zhseqr LAPACK_GLOBAL(zhseqr,ZHSEQR) -#define LAPACK_shsein LAPACK_GLOBAL(shsein,SHSEIN) -#define LAPACK_dhsein LAPACK_GLOBAL(dhsein,DHSEIN) -#define LAPACK_chsein LAPACK_GLOBAL(chsein,CHSEIN) -#define LAPACK_zhsein LAPACK_GLOBAL(zhsein,ZHSEIN) -#define LAPACK_strevc LAPACK_GLOBAL(strevc,STREVC) -#define LAPACK_dtrevc LAPACK_GLOBAL(dtrevc,DTREVC) -#define LAPACK_ctrevc LAPACK_GLOBAL(ctrevc,CTREVC) -#define LAPACK_ztrevc LAPACK_GLOBAL(ztrevc,ZTREVC) -#define LAPACK_strsna LAPACK_GLOBAL(strsna,STRSNA) -#define LAPACK_dtrsna LAPACK_GLOBAL(dtrsna,DTRSNA) -#define LAPACK_ctrsna LAPACK_GLOBAL(ctrsna,CTRSNA) -#define LAPACK_ztrsna LAPACK_GLOBAL(ztrsna,ZTRSNA) -#define LAPACK_strexc LAPACK_GLOBAL(strexc,STREXC) -#define LAPACK_dtrexc LAPACK_GLOBAL(dtrexc,DTREXC) -#define LAPACK_ctrexc LAPACK_GLOBAL(ctrexc,CTREXC) -#define LAPACK_ztrexc LAPACK_GLOBAL(ztrexc,ZTREXC) -#define LAPACK_strsen LAPACK_GLOBAL(strsen,STRSEN) -#define LAPACK_dtrsen LAPACK_GLOBAL(dtrsen,DTRSEN) -#define LAPACK_ctrsen LAPACK_GLOBAL(ctrsen,CTRSEN) -#define LAPACK_ztrsen LAPACK_GLOBAL(ztrsen,ZTRSEN) -#define LAPACK_strsyl LAPACK_GLOBAL(strsyl,STRSYL) -#define LAPACK_dtrsyl LAPACK_GLOBAL(dtrsyl,DTRSYL) -#define LAPACK_ctrsyl LAPACK_GLOBAL(ctrsyl,CTRSYL) -#define LAPACK_ztrsyl LAPACK_GLOBAL(ztrsyl,ZTRSYL) -#define LAPACK_sgghrd LAPACK_GLOBAL(sgghrd,SGGHRD) -#define LAPACK_dgghrd LAPACK_GLOBAL(dgghrd,DGGHRD) -#define LAPACK_cgghrd LAPACK_GLOBAL(cgghrd,CGGHRD) -#define LAPACK_zgghrd LAPACK_GLOBAL(zgghrd,ZGGHRD) -#define LAPACK_sggbal LAPACK_GLOBAL(sggbal,SGGBAL) -#define LAPACK_dggbal LAPACK_GLOBAL(dggbal,DGGBAL) -#define LAPACK_cggbal LAPACK_GLOBAL(cggbal,CGGBAL) -#define LAPACK_zggbal LAPACK_GLOBAL(zggbal,ZGGBAL) -#define LAPACK_sggbak LAPACK_GLOBAL(sggbak,SGGBAK) -#define LAPACK_dggbak LAPACK_GLOBAL(dggbak,DGGBAK) -#define LAPACK_cggbak LAPACK_GLOBAL(cggbak,CGGBAK) -#define LAPACK_zggbak LAPACK_GLOBAL(zggbak,ZGGBAK) -#define LAPACK_shgeqz LAPACK_GLOBAL(shgeqz,SHGEQZ) -#define LAPACK_dhgeqz LAPACK_GLOBAL(dhgeqz,DHGEQZ) -#define LAPACK_chgeqz LAPACK_GLOBAL(chgeqz,CHGEQZ) -#define LAPACK_zhgeqz LAPACK_GLOBAL(zhgeqz,ZHGEQZ) -#define LAPACK_stgevc LAPACK_GLOBAL(stgevc,STGEVC) -#define LAPACK_dtgevc LAPACK_GLOBAL(dtgevc,DTGEVC) -#define LAPACK_ctgevc LAPACK_GLOBAL(ctgevc,CTGEVC) -#define LAPACK_ztgevc LAPACK_GLOBAL(ztgevc,ZTGEVC) -#define LAPACK_stgexc LAPACK_GLOBAL(stgexc,STGEXC) -#define LAPACK_dtgexc LAPACK_GLOBAL(dtgexc,DTGEXC) -#define LAPACK_ctgexc LAPACK_GLOBAL(ctgexc,CTGEXC) -#define LAPACK_ztgexc LAPACK_GLOBAL(ztgexc,ZTGEXC) -#define LAPACK_stgsen LAPACK_GLOBAL(stgsen,STGSEN) -#define LAPACK_dtgsen LAPACK_GLOBAL(dtgsen,DTGSEN) -#define LAPACK_ctgsen LAPACK_GLOBAL(ctgsen,CTGSEN) -#define LAPACK_ztgsen LAPACK_GLOBAL(ztgsen,ZTGSEN) -#define LAPACK_stgsyl LAPACK_GLOBAL(stgsyl,STGSYL) -#define LAPACK_dtgsyl LAPACK_GLOBAL(dtgsyl,DTGSYL) -#define LAPACK_ctgsyl LAPACK_GLOBAL(ctgsyl,CTGSYL) -#define LAPACK_ztgsyl LAPACK_GLOBAL(ztgsyl,ZTGSYL) -#define LAPACK_stgsna LAPACK_GLOBAL(stgsna,STGSNA) -#define LAPACK_dtgsna LAPACK_GLOBAL(dtgsna,DTGSNA) -#define LAPACK_ctgsna LAPACK_GLOBAL(ctgsna,CTGSNA) -#define LAPACK_ztgsna LAPACK_GLOBAL(ztgsna,ZTGSNA) -#define LAPACK_sggsvp LAPACK_GLOBAL(sggsvp,SGGSVP) -#define LAPACK_dggsvp LAPACK_GLOBAL(dggsvp,DGGSVP) -#define LAPACK_cggsvp LAPACK_GLOBAL(cggsvp,CGGSVP) -#define LAPACK_zggsvp LAPACK_GLOBAL(zggsvp,ZGGSVP) -#define LAPACK_stgsja LAPACK_GLOBAL(stgsja,STGSJA) -#define LAPACK_dtgsja LAPACK_GLOBAL(dtgsja,DTGSJA) -#define LAPACK_ctgsja LAPACK_GLOBAL(ctgsja,CTGSJA) -#define LAPACK_ztgsja LAPACK_GLOBAL(ztgsja,ZTGSJA) -#define LAPACK_sgels LAPACK_GLOBAL(sgels,SGELS) -#define LAPACK_dgels LAPACK_GLOBAL(dgels,DGELS) -#define LAPACK_cgels LAPACK_GLOBAL(cgels,CGELS) -#define LAPACK_zgels LAPACK_GLOBAL(zgels,ZGELS) -#define LAPACK_sgelsy LAPACK_GLOBAL(sgelsy,SGELSY) -#define LAPACK_dgelsy LAPACK_GLOBAL(dgelsy,DGELSY) -#define LAPACK_cgelsy LAPACK_GLOBAL(cgelsy,CGELSY) -#define LAPACK_zgelsy LAPACK_GLOBAL(zgelsy,ZGELSY) -#define LAPACK_sgelss LAPACK_GLOBAL(sgelss,SGELSS) -#define LAPACK_dgelss LAPACK_GLOBAL(dgelss,DGELSS) -#define LAPACK_cgelss LAPACK_GLOBAL(cgelss,CGELSS) -#define LAPACK_zgelss LAPACK_GLOBAL(zgelss,ZGELSS) -#define LAPACK_sgelsd LAPACK_GLOBAL(sgelsd,SGELSD) -#define LAPACK_dgelsd LAPACK_GLOBAL(dgelsd,DGELSD) -#define LAPACK_cgelsd LAPACK_GLOBAL(cgelsd,CGELSD) -#define LAPACK_zgelsd LAPACK_GLOBAL(zgelsd,ZGELSD) -#define LAPACK_sgglse LAPACK_GLOBAL(sgglse,SGGLSE) -#define LAPACK_dgglse LAPACK_GLOBAL(dgglse,DGGLSE) -#define LAPACK_cgglse LAPACK_GLOBAL(cgglse,CGGLSE) -#define LAPACK_zgglse LAPACK_GLOBAL(zgglse,ZGGLSE) -#define LAPACK_sggglm LAPACK_GLOBAL(sggglm,SGGGLM) -#define LAPACK_dggglm LAPACK_GLOBAL(dggglm,DGGGLM) -#define LAPACK_cggglm LAPACK_GLOBAL(cggglm,CGGGLM) -#define LAPACK_zggglm LAPACK_GLOBAL(zggglm,ZGGGLM) -#define LAPACK_ssyev LAPACK_GLOBAL(ssyev,SSYEV) -#define LAPACK_dsyev LAPACK_GLOBAL(dsyev,DSYEV) -#define LAPACK_cheev LAPACK_GLOBAL(cheev,CHEEV) -#define LAPACK_zheev LAPACK_GLOBAL(zheev,ZHEEV) -#define LAPACK_ssyevd LAPACK_GLOBAL(ssyevd,SSYEVD) -#define LAPACK_dsyevd LAPACK_GLOBAL(dsyevd,DSYEVD) -#define LAPACK_cheevd LAPACK_GLOBAL(cheevd,CHEEVD) -#define LAPACK_zheevd LAPACK_GLOBAL(zheevd,ZHEEVD) -#define LAPACK_ssyevx LAPACK_GLOBAL(ssyevx,SSYEVX) -#define LAPACK_dsyevx LAPACK_GLOBAL(dsyevx,DSYEVX) -#define LAPACK_cheevx LAPACK_GLOBAL(cheevx,CHEEVX) -#define LAPACK_zheevx LAPACK_GLOBAL(zheevx,ZHEEVX) -#define LAPACK_ssyevr LAPACK_GLOBAL(ssyevr,SSYEVR) -#define LAPACK_dsyevr LAPACK_GLOBAL(dsyevr,DSYEVR) -#define LAPACK_cheevr LAPACK_GLOBAL(cheevr,CHEEVR) -#define LAPACK_zheevr LAPACK_GLOBAL(zheevr,ZHEEVR) -#define LAPACK_sspev LAPACK_GLOBAL(sspev,SSPEV) -#define LAPACK_dspev LAPACK_GLOBAL(dspev,DSPEV) -#define LAPACK_chpev LAPACK_GLOBAL(chpev,CHPEV) -#define LAPACK_zhpev LAPACK_GLOBAL(zhpev,ZHPEV) -#define LAPACK_sspevd LAPACK_GLOBAL(sspevd,SSPEVD) -#define LAPACK_dspevd LAPACK_GLOBAL(dspevd,DSPEVD) -#define LAPACK_chpevd LAPACK_GLOBAL(chpevd,CHPEVD) -#define LAPACK_zhpevd LAPACK_GLOBAL(zhpevd,ZHPEVD) -#define LAPACK_sspevx LAPACK_GLOBAL(sspevx,SSPEVX) -#define LAPACK_dspevx LAPACK_GLOBAL(dspevx,DSPEVX) -#define LAPACK_chpevx LAPACK_GLOBAL(chpevx,CHPEVX) -#define LAPACK_zhpevx LAPACK_GLOBAL(zhpevx,ZHPEVX) -#define LAPACK_ssbev LAPACK_GLOBAL(ssbev,SSBEV) -#define LAPACK_dsbev LAPACK_GLOBAL(dsbev,DSBEV) -#define LAPACK_chbev LAPACK_GLOBAL(chbev,CHBEV) -#define LAPACK_zhbev LAPACK_GLOBAL(zhbev,ZHBEV) -#define LAPACK_ssbevd LAPACK_GLOBAL(ssbevd,SSBEVD) -#define LAPACK_dsbevd LAPACK_GLOBAL(dsbevd,DSBEVD) -#define LAPACK_chbevd LAPACK_GLOBAL(chbevd,CHBEVD) -#define LAPACK_zhbevd LAPACK_GLOBAL(zhbevd,ZHBEVD) -#define LAPACK_ssbevx LAPACK_GLOBAL(ssbevx,SSBEVX) -#define LAPACK_dsbevx LAPACK_GLOBAL(dsbevx,DSBEVX) -#define LAPACK_chbevx LAPACK_GLOBAL(chbevx,CHBEVX) -#define LAPACK_zhbevx LAPACK_GLOBAL(zhbevx,ZHBEVX) -#define LAPACK_sstev LAPACK_GLOBAL(sstev,SSTEV) -#define LAPACK_dstev LAPACK_GLOBAL(dstev,DSTEV) -#define LAPACK_sstevd LAPACK_GLOBAL(sstevd,SSTEVD) -#define LAPACK_dstevd LAPACK_GLOBAL(dstevd,DSTEVD) -#define LAPACK_sstevx LAPACK_GLOBAL(sstevx,SSTEVX) -#define LAPACK_dstevx LAPACK_GLOBAL(dstevx,DSTEVX) -#define LAPACK_sstevr LAPACK_GLOBAL(sstevr,SSTEVR) -#define LAPACK_dstevr LAPACK_GLOBAL(dstevr,DSTEVR) -#define LAPACK_sgees LAPACK_GLOBAL(sgees,SGEES) -#define LAPACK_dgees LAPACK_GLOBAL(dgees,DGEES) -#define LAPACK_cgees LAPACK_GLOBAL(cgees,CGEES) -#define LAPACK_zgees LAPACK_GLOBAL(zgees,ZGEES) -#define LAPACK_sgeesx LAPACK_GLOBAL(sgeesx,SGEESX) -#define LAPACK_dgeesx LAPACK_GLOBAL(dgeesx,DGEESX) -#define LAPACK_cgeesx LAPACK_GLOBAL(cgeesx,CGEESX) -#define LAPACK_zgeesx LAPACK_GLOBAL(zgeesx,ZGEESX) -#define LAPACK_sgeev LAPACK_GLOBAL(sgeev,SGEEV) -#define LAPACK_dgeev LAPACK_GLOBAL(dgeev,DGEEV) -#define LAPACK_cgeev LAPACK_GLOBAL(cgeev,CGEEV) -#define LAPACK_zgeev LAPACK_GLOBAL(zgeev,ZGEEV) -#define LAPACK_sgeevx LAPACK_GLOBAL(sgeevx,SGEEVX) -#define LAPACK_dgeevx LAPACK_GLOBAL(dgeevx,DGEEVX) -#define LAPACK_cgeevx LAPACK_GLOBAL(cgeevx,CGEEVX) -#define LAPACK_zgeevx LAPACK_GLOBAL(zgeevx,ZGEEVX) -#define LAPACK_sgesvd LAPACK_GLOBAL(sgesvd,SGESVD) -#define LAPACK_dgesvd LAPACK_GLOBAL(dgesvd,DGESVD) -#define LAPACK_cgesvd LAPACK_GLOBAL(cgesvd,CGESVD) -#define LAPACK_zgesvd LAPACK_GLOBAL(zgesvd,ZGESVD) -#define LAPACK_sgesdd LAPACK_GLOBAL(sgesdd,SGESDD) -#define LAPACK_dgesdd LAPACK_GLOBAL(dgesdd,DGESDD) -#define LAPACK_cgesdd LAPACK_GLOBAL(cgesdd,CGESDD) -#define LAPACK_zgesdd LAPACK_GLOBAL(zgesdd,ZGESDD) -#define LAPACK_dgejsv LAPACK_GLOBAL(dgejsv,DGEJSV) -#define LAPACK_sgejsv LAPACK_GLOBAL(sgejsv,SGEJSV) -#define LAPACK_dgesvj LAPACK_GLOBAL(dgesvj,DGESVJ) -#define LAPACK_sgesvj LAPACK_GLOBAL(sgesvj,SGESVJ) -#define LAPACK_sggsvd LAPACK_GLOBAL(sggsvd,SGGSVD) -#define LAPACK_dggsvd LAPACK_GLOBAL(dggsvd,DGGSVD) -#define LAPACK_cggsvd LAPACK_GLOBAL(cggsvd,CGGSVD) -#define LAPACK_zggsvd LAPACK_GLOBAL(zggsvd,ZGGSVD) -#define LAPACK_ssygv LAPACK_GLOBAL(ssygv,SSYGV) -#define LAPACK_dsygv LAPACK_GLOBAL(dsygv,DSYGV) -#define LAPACK_chegv LAPACK_GLOBAL(chegv,CHEGV) -#define LAPACK_zhegv LAPACK_GLOBAL(zhegv,ZHEGV) -#define LAPACK_ssygvd LAPACK_GLOBAL(ssygvd,SSYGVD) -#define LAPACK_dsygvd LAPACK_GLOBAL(dsygvd,DSYGVD) -#define LAPACK_chegvd LAPACK_GLOBAL(chegvd,CHEGVD) -#define LAPACK_zhegvd LAPACK_GLOBAL(zhegvd,ZHEGVD) -#define LAPACK_ssygvx LAPACK_GLOBAL(ssygvx,SSYGVX) -#define LAPACK_dsygvx LAPACK_GLOBAL(dsygvx,DSYGVX) -#define LAPACK_chegvx LAPACK_GLOBAL(chegvx,CHEGVX) -#define LAPACK_zhegvx LAPACK_GLOBAL(zhegvx,ZHEGVX) -#define LAPACK_sspgv LAPACK_GLOBAL(sspgv,SSPGV) -#define LAPACK_dspgv LAPACK_GLOBAL(dspgv,DSPGV) -#define LAPACK_chpgv LAPACK_GLOBAL(chpgv,CHPGV) -#define LAPACK_zhpgv LAPACK_GLOBAL(zhpgv,ZHPGV) -#define LAPACK_sspgvd LAPACK_GLOBAL(sspgvd,SSPGVD) -#define LAPACK_dspgvd LAPACK_GLOBAL(dspgvd,DSPGVD) -#define LAPACK_chpgvd LAPACK_GLOBAL(chpgvd,CHPGVD) -#define LAPACK_zhpgvd LAPACK_GLOBAL(zhpgvd,ZHPGVD) -#define LAPACK_sspgvx LAPACK_GLOBAL(sspgvx,SSPGVX) -#define LAPACK_dspgvx LAPACK_GLOBAL(dspgvx,DSPGVX) -#define LAPACK_chpgvx LAPACK_GLOBAL(chpgvx,CHPGVX) -#define LAPACK_zhpgvx LAPACK_GLOBAL(zhpgvx,ZHPGVX) -#define LAPACK_ssbgv LAPACK_GLOBAL(ssbgv,SSBGV) -#define LAPACK_dsbgv LAPACK_GLOBAL(dsbgv,DSBGV) -#define LAPACK_chbgv LAPACK_GLOBAL(chbgv,CHBGV) -#define LAPACK_zhbgv LAPACK_GLOBAL(zhbgv,ZHBGV) -#define LAPACK_ssbgvd LAPACK_GLOBAL(ssbgvd,SSBGVD) -#define LAPACK_dsbgvd LAPACK_GLOBAL(dsbgvd,DSBGVD) -#define LAPACK_chbgvd LAPACK_GLOBAL(chbgvd,CHBGVD) -#define LAPACK_zhbgvd LAPACK_GLOBAL(zhbgvd,ZHBGVD) -#define LAPACK_ssbgvx LAPACK_GLOBAL(ssbgvx,SSBGVX) -#define LAPACK_dsbgvx LAPACK_GLOBAL(dsbgvx,DSBGVX) -#define LAPACK_chbgvx LAPACK_GLOBAL(chbgvx,CHBGVX) -#define LAPACK_zhbgvx LAPACK_GLOBAL(zhbgvx,ZHBGVX) -#define LAPACK_sgges LAPACK_GLOBAL(sgges,SGGES) -#define LAPACK_dgges LAPACK_GLOBAL(dgges,DGGES) -#define LAPACK_cgges LAPACK_GLOBAL(cgges,CGGES) -#define LAPACK_zgges LAPACK_GLOBAL(zgges,ZGGES) -#define LAPACK_sggesx LAPACK_GLOBAL(sggesx,SGGESX) -#define LAPACK_dggesx LAPACK_GLOBAL(dggesx,DGGESX) -#define LAPACK_cggesx LAPACK_GLOBAL(cggesx,CGGESX) -#define LAPACK_zggesx LAPACK_GLOBAL(zggesx,ZGGESX) -#define LAPACK_sggev LAPACK_GLOBAL(sggev,SGGEV) -#define LAPACK_dggev LAPACK_GLOBAL(dggev,DGGEV) -#define LAPACK_cggev LAPACK_GLOBAL(cggev,CGGEV) -#define LAPACK_zggev LAPACK_GLOBAL(zggev,ZGGEV) -#define LAPACK_sggevx LAPACK_GLOBAL(sggevx,SGGEVX) -#define LAPACK_dggevx LAPACK_GLOBAL(dggevx,DGGEVX) -#define LAPACK_cggevx LAPACK_GLOBAL(cggevx,CGGEVX) -#define LAPACK_zggevx LAPACK_GLOBAL(zggevx,ZGGEVX) -#define LAPACK_dsfrk LAPACK_GLOBAL(dsfrk,DSFRK) -#define LAPACK_ssfrk LAPACK_GLOBAL(ssfrk,SSFRK) -#define LAPACK_zhfrk LAPACK_GLOBAL(zhfrk,ZHFRK) -#define LAPACK_chfrk LAPACK_GLOBAL(chfrk,CHFRK) -#define LAPACK_dtfsm LAPACK_GLOBAL(dtfsm,DTFSM) -#define LAPACK_stfsm LAPACK_GLOBAL(stfsm,STFSM) -#define LAPACK_ztfsm LAPACK_GLOBAL(ztfsm,ZTFSM) -#define LAPACK_ctfsm LAPACK_GLOBAL(ctfsm,CTFSM) -#define LAPACK_dtfttp LAPACK_GLOBAL(dtfttp,DTFTTP) -#define LAPACK_stfttp LAPACK_GLOBAL(stfttp,STFTTP) -#define LAPACK_ztfttp LAPACK_GLOBAL(ztfttp,ZTFTTP) -#define LAPACK_ctfttp LAPACK_GLOBAL(ctfttp,CTFTTP) -#define LAPACK_dtfttr LAPACK_GLOBAL(dtfttr,DTFTTR) -#define LAPACK_stfttr LAPACK_GLOBAL(stfttr,STFTTR) -#define LAPACK_ztfttr LAPACK_GLOBAL(ztfttr,ZTFTTR) -#define LAPACK_ctfttr LAPACK_GLOBAL(ctfttr,CTFTTR) -#define LAPACK_dtpttf LAPACK_GLOBAL(dtpttf,DTPTTF) -#define LAPACK_stpttf LAPACK_GLOBAL(stpttf,STPTTF) -#define LAPACK_ztpttf LAPACK_GLOBAL(ztpttf,ZTPTTF) -#define LAPACK_ctpttf LAPACK_GLOBAL(ctpttf,CTPTTF) -#define LAPACK_dtpttr LAPACK_GLOBAL(dtpttr,DTPTTR) -#define LAPACK_stpttr LAPACK_GLOBAL(stpttr,STPTTR) -#define LAPACK_ztpttr LAPACK_GLOBAL(ztpttr,ZTPTTR) -#define LAPACK_ctpttr LAPACK_GLOBAL(ctpttr,CTPTTR) -#define LAPACK_dtrttf LAPACK_GLOBAL(dtrttf,DTRTTF) -#define LAPACK_strttf LAPACK_GLOBAL(strttf,STRTTF) -#define LAPACK_ztrttf LAPACK_GLOBAL(ztrttf,ZTRTTF) -#define LAPACK_ctrttf LAPACK_GLOBAL(ctrttf,CTRTTF) -#define LAPACK_dtrttp LAPACK_GLOBAL(dtrttp,DTRTTP) -#define LAPACK_strttp LAPACK_GLOBAL(strttp,STRTTP) -#define LAPACK_ztrttp LAPACK_GLOBAL(ztrttp,ZTRTTP) -#define LAPACK_ctrttp LAPACK_GLOBAL(ctrttp,CTRTTP) -#define LAPACK_sgeqrfp LAPACK_GLOBAL(sgeqrfp,SGEQRFP) -#define LAPACK_dgeqrfp LAPACK_GLOBAL(dgeqrfp,DGEQRFP) -#define LAPACK_cgeqrfp LAPACK_GLOBAL(cgeqrfp,CGEQRFP) -#define LAPACK_zgeqrfp LAPACK_GLOBAL(zgeqrfp,ZGEQRFP) -#define LAPACK_clacgv LAPACK_GLOBAL(clacgv,CLACGV) -#define LAPACK_zlacgv LAPACK_GLOBAL(zlacgv,ZLACGV) -#define LAPACK_slarnv LAPACK_GLOBAL(slarnv,SLARNV) -#define LAPACK_dlarnv LAPACK_GLOBAL(dlarnv,DLARNV) -#define LAPACK_clarnv LAPACK_GLOBAL(clarnv,CLARNV) -#define LAPACK_zlarnv LAPACK_GLOBAL(zlarnv,ZLARNV) -#define LAPACK_sgeqr2 LAPACK_GLOBAL(sgeqr2,SGEQR2) -#define LAPACK_dgeqr2 LAPACK_GLOBAL(dgeqr2,DGEQR2) -#define LAPACK_cgeqr2 LAPACK_GLOBAL(cgeqr2,CGEQR2) -#define LAPACK_zgeqr2 LAPACK_GLOBAL(zgeqr2,ZGEQR2) -#define LAPACK_slacpy LAPACK_GLOBAL(slacpy,SLACPY) -#define LAPACK_dlacpy LAPACK_GLOBAL(dlacpy,DLACPY) -#define LAPACK_clacpy LAPACK_GLOBAL(clacpy,CLACPY) -#define LAPACK_zlacpy LAPACK_GLOBAL(zlacpy,ZLACPY) -#define LAPACK_sgetf2 LAPACK_GLOBAL(sgetf2,SGETF2) -#define LAPACK_dgetf2 LAPACK_GLOBAL(dgetf2,DGETF2) -#define LAPACK_cgetf2 LAPACK_GLOBAL(cgetf2,CGETF2) -#define LAPACK_zgetf2 LAPACK_GLOBAL(zgetf2,ZGETF2) -#define LAPACK_slaswp LAPACK_GLOBAL(slaswp,SLASWP) -#define LAPACK_dlaswp LAPACK_GLOBAL(dlaswp,DLASWP) -#define LAPACK_claswp LAPACK_GLOBAL(claswp,CLASWP) -#define LAPACK_zlaswp LAPACK_GLOBAL(zlaswp,ZLASWP) -#define LAPACK_slange LAPACK_GLOBAL(slange,SLANGE) -#define LAPACK_dlange LAPACK_GLOBAL(dlange,DLANGE) -#define LAPACK_clange LAPACK_GLOBAL(clange,CLANGE) -#define LAPACK_zlange LAPACK_GLOBAL(zlange,ZLANGE) -#define LAPACK_clanhe LAPACK_GLOBAL(clanhe,CLANHE) -#define LAPACK_zlanhe LAPACK_GLOBAL(zlanhe,ZLANHE) -#define LAPACK_slansy LAPACK_GLOBAL(slansy,SLANSY) -#define LAPACK_dlansy LAPACK_GLOBAL(dlansy,DLANSY) -#define LAPACK_clansy LAPACK_GLOBAL(clansy,CLANSY) -#define LAPACK_zlansy LAPACK_GLOBAL(zlansy,ZLANSY) -#define LAPACK_slantr LAPACK_GLOBAL(slantr,SLANTR) -#define LAPACK_dlantr LAPACK_GLOBAL(dlantr,DLANTR) -#define LAPACK_clantr LAPACK_GLOBAL(clantr,CLANTR) -#define LAPACK_zlantr LAPACK_GLOBAL(zlantr,ZLANTR) -#define LAPACK_slamch LAPACK_GLOBAL(slamch,SLAMCH) -#define LAPACK_dlamch LAPACK_GLOBAL(dlamch,DLAMCH) -#define LAPACK_sgelq2 LAPACK_GLOBAL(sgelq2,SGELQ2) -#define LAPACK_dgelq2 LAPACK_GLOBAL(dgelq2,DGELQ2) -#define LAPACK_cgelq2 LAPACK_GLOBAL(cgelq2,CGELQ2) -#define LAPACK_zgelq2 LAPACK_GLOBAL(zgelq2,ZGELQ2) -#define LAPACK_slarfb LAPACK_GLOBAL(slarfb,SLARFB) -#define LAPACK_dlarfb LAPACK_GLOBAL(dlarfb,DLARFB) -#define LAPACK_clarfb LAPACK_GLOBAL(clarfb,CLARFB) -#define LAPACK_zlarfb LAPACK_GLOBAL(zlarfb,ZLARFB) -#define LAPACK_slarfg LAPACK_GLOBAL(slarfg,SLARFG) -#define LAPACK_dlarfg LAPACK_GLOBAL(dlarfg,DLARFG) -#define LAPACK_clarfg LAPACK_GLOBAL(clarfg,CLARFG) -#define LAPACK_zlarfg LAPACK_GLOBAL(zlarfg,ZLARFG) -#define LAPACK_slarft LAPACK_GLOBAL(slarft,SLARFT) -#define LAPACK_dlarft LAPACK_GLOBAL(dlarft,DLARFT) -#define LAPACK_clarft LAPACK_GLOBAL(clarft,CLARFT) -#define LAPACK_zlarft LAPACK_GLOBAL(zlarft,ZLARFT) -#define LAPACK_slarfx LAPACK_GLOBAL(slarfx,SLARFX) -#define LAPACK_dlarfx LAPACK_GLOBAL(dlarfx,DLARFX) -#define LAPACK_clarfx LAPACK_GLOBAL(clarfx,CLARFX) -#define LAPACK_zlarfx LAPACK_GLOBAL(zlarfx,ZLARFX) -#define LAPACK_slatms LAPACK_GLOBAL(slatms,SLATMS) -#define LAPACK_dlatms LAPACK_GLOBAL(dlatms,DLATMS) -#define LAPACK_clatms LAPACK_GLOBAL(clatms,CLATMS) -#define LAPACK_zlatms LAPACK_GLOBAL(zlatms,ZLATMS) -#define LAPACK_slag2d LAPACK_GLOBAL(slag2d,SLAG2D) -#define LAPACK_dlag2s LAPACK_GLOBAL(dlag2s,DLAG2S) -#define LAPACK_clag2z LAPACK_GLOBAL(clag2z,CLAG2Z) -#define LAPACK_zlag2c LAPACK_GLOBAL(zlag2c,ZLAG2C) -#define LAPACK_slauum LAPACK_GLOBAL(slauum,SLAUUM) -#define LAPACK_dlauum LAPACK_GLOBAL(dlauum,DLAUUM) -#define LAPACK_clauum LAPACK_GLOBAL(clauum,CLAUUM) -#define LAPACK_zlauum LAPACK_GLOBAL(zlauum,ZLAUUM) -#define LAPACK_slagge LAPACK_GLOBAL(slagge,SLAGGE) -#define LAPACK_dlagge LAPACK_GLOBAL(dlagge,DLAGGE) -#define LAPACK_clagge LAPACK_GLOBAL(clagge,CLAGGE) -#define LAPACK_zlagge LAPACK_GLOBAL(zlagge,ZLAGGE) -#define LAPACK_slaset LAPACK_GLOBAL(slaset,SLASET) -#define LAPACK_dlaset LAPACK_GLOBAL(dlaset,DLASET) -#define LAPACK_claset LAPACK_GLOBAL(claset,CLASET) -#define LAPACK_zlaset LAPACK_GLOBAL(zlaset,ZLASET) -#define LAPACK_slasrt LAPACK_GLOBAL(slasrt,SLASRT) -#define LAPACK_dlasrt LAPACK_GLOBAL(dlasrt,DLASRT) -#define LAPACK_slagsy LAPACK_GLOBAL(slagsy,SLAGSY) -#define LAPACK_dlagsy LAPACK_GLOBAL(dlagsy,DLAGSY) -#define LAPACK_clagsy LAPACK_GLOBAL(clagsy,CLAGSY) -#define LAPACK_zlagsy LAPACK_GLOBAL(zlagsy,ZLAGSY) -#define LAPACK_claghe LAPACK_GLOBAL(claghe,CLAGHE) -#define LAPACK_zlaghe LAPACK_GLOBAL(zlaghe,ZLAGHE) -#define LAPACK_slapmr LAPACK_GLOBAL(slapmr,SLAPMR) -#define LAPACK_dlapmr LAPACK_GLOBAL(dlapmr,DLAPMR) -#define LAPACK_clapmr LAPACK_GLOBAL(clapmr,CLAPMR) -#define LAPACK_zlapmr LAPACK_GLOBAL(zlapmr,ZLAPMR) -#define LAPACK_slapy2 LAPACK_GLOBAL(slapy2,SLAPY2) -#define LAPACK_dlapy2 LAPACK_GLOBAL(dlapy2,DLAPY2) -#define LAPACK_slapy3 LAPACK_GLOBAL(slapy3,SLAPY3) -#define LAPACK_dlapy3 LAPACK_GLOBAL(dlapy3,DLAPY3) -#define LAPACK_slartgp LAPACK_GLOBAL(slartgp,SLARTGP) -#define LAPACK_dlartgp LAPACK_GLOBAL(dlartgp,DLARTGP) -#define LAPACK_slartgs LAPACK_GLOBAL(slartgs,SLARTGS) -#define LAPACK_dlartgs LAPACK_GLOBAL(dlartgs,DLARTGS) -// LAPACK 3.3.0 -#define LAPACK_cbbcsd LAPACK_GLOBAL(cbbcsd,CBBCSD) -#define LAPACK_cheswapr LAPACK_GLOBAL(cheswapr,CHESWAPR) -#define LAPACK_chetri2 LAPACK_GLOBAL(chetri2,CHETRI2) -#define LAPACK_chetri2x LAPACK_GLOBAL(chetri2x,CHETRI2X) -#define LAPACK_chetrs2 LAPACK_GLOBAL(chetrs2,CHETRS2) -#define LAPACK_csyconv LAPACK_GLOBAL(csyconv,CSYCONV) -#define LAPACK_csyswapr LAPACK_GLOBAL(csyswapr,CSYSWAPR) -#define LAPACK_csytri2 LAPACK_GLOBAL(csytri2,CSYTRI2) -#define LAPACK_csytri2x LAPACK_GLOBAL(csytri2x,CSYTRI2X) -#define LAPACK_csytrs2 LAPACK_GLOBAL(csytrs2,CSYTRS2) -#define LAPACK_cunbdb LAPACK_GLOBAL(cunbdb,CUNBDB) -#define LAPACK_cuncsd LAPACK_GLOBAL(cuncsd,CUNCSD) -#define LAPACK_dbbcsd LAPACK_GLOBAL(dbbcsd,DBBCSD) -#define LAPACK_dorbdb LAPACK_GLOBAL(dorbdb,DORBDB) -#define LAPACK_dorcsd LAPACK_GLOBAL(dorcsd,DORCSD) -#define LAPACK_dsyconv LAPACK_GLOBAL(dsyconv,DSYCONV) -#define LAPACK_dsyswapr LAPACK_GLOBAL(dsyswapr,DSYSWAPR) -#define LAPACK_dsytri2 LAPACK_GLOBAL(dsytri2,DSYTRI2) -#define LAPACK_dsytri2x LAPACK_GLOBAL(dsytri2x,DSYTRI2X) -#define LAPACK_dsytrs2 LAPACK_GLOBAL(dsytrs2,DSYTRS2) -#define LAPACK_sbbcsd LAPACK_GLOBAL(sbbcsd,SBBCSD) -#define LAPACK_sorbdb LAPACK_GLOBAL(sorbdb,SORBDB) -#define LAPACK_sorcsd LAPACK_GLOBAL(sorcsd,SORCSD) -#define LAPACK_ssyconv LAPACK_GLOBAL(ssyconv,SSYCONV) -#define LAPACK_ssyswapr LAPACK_GLOBAL(ssyswapr,SSYSWAPR) -#define LAPACK_ssytri2 LAPACK_GLOBAL(ssytri2,SSYTRI2) -#define LAPACK_ssytri2x LAPACK_GLOBAL(ssytri2x,SSYTRI2X) -#define LAPACK_ssytrs2 LAPACK_GLOBAL(ssytrs2,SSYTRS2) -#define LAPACK_zbbcsd LAPACK_GLOBAL(zbbcsd,ZBBCSD) -#define LAPACK_zheswapr LAPACK_GLOBAL(zheswapr,ZHESWAPR) -#define LAPACK_zhetri2 LAPACK_GLOBAL(zhetri2,ZHETRI2) -#define LAPACK_zhetri2x LAPACK_GLOBAL(zhetri2x,ZHETRI2X) -#define LAPACK_zhetrs2 LAPACK_GLOBAL(zhetrs2,ZHETRS2) -#define LAPACK_zsyconv LAPACK_GLOBAL(zsyconv,ZSYCONV) -#define LAPACK_zsyswapr LAPACK_GLOBAL(zsyswapr,ZSYSWAPR) -#define LAPACK_zsytri2 LAPACK_GLOBAL(zsytri2,ZSYTRI2) -#define LAPACK_zsytri2x LAPACK_GLOBAL(zsytri2x,ZSYTRI2X) -#define LAPACK_zsytrs2 LAPACK_GLOBAL(zsytrs2,ZSYTRS2) -#define LAPACK_zunbdb LAPACK_GLOBAL(zunbdb,ZUNBDB) -#define LAPACK_zuncsd LAPACK_GLOBAL(zuncsd,ZUNCSD) -// LAPACK 3.4.0 -#define LAPACK_sgemqrt LAPACK_GLOBAL(sgemqrt,SGEMQRT) -#define LAPACK_dgemqrt LAPACK_GLOBAL(dgemqrt,DGEMQRT) -#define LAPACK_cgemqrt LAPACK_GLOBAL(cgemqrt,CGEMQRT) -#define LAPACK_zgemqrt LAPACK_GLOBAL(zgemqrt,ZGEMQRT) -#define LAPACK_sgeqrt LAPACK_GLOBAL(sgeqrt,SGEQRT) -#define LAPACK_dgeqrt LAPACK_GLOBAL(dgeqrt,DGEQRT) -#define LAPACK_cgeqrt LAPACK_GLOBAL(cgeqrt,CGEQRT) -#define LAPACK_zgeqrt LAPACK_GLOBAL(zgeqrt,ZGEQRT) -#define LAPACK_sgeqrt2 LAPACK_GLOBAL(sgeqrt2,SGEQRT2) -#define LAPACK_dgeqrt2 LAPACK_GLOBAL(dgeqrt2,DGEQRT2) -#define LAPACK_cgeqrt2 LAPACK_GLOBAL(cgeqrt2,CGEQRT2) -#define LAPACK_zgeqrt2 LAPACK_GLOBAL(zgeqrt2,ZGEQRT2) -#define LAPACK_sgeqrt3 LAPACK_GLOBAL(sgeqrt3,SGEQRT3) -#define LAPACK_dgeqrt3 LAPACK_GLOBAL(dgeqrt3,DGEQRT3) -#define LAPACK_cgeqrt3 LAPACK_GLOBAL(cgeqrt3,CGEQRT3) -#define LAPACK_zgeqrt3 LAPACK_GLOBAL(zgeqrt3,ZGEQRT3) -#define LAPACK_stpmqrt LAPACK_GLOBAL(stpmqrt,STPMQRT) -#define LAPACK_dtpmqrt LAPACK_GLOBAL(dtpmqrt,DTPMQRT) -#define LAPACK_ctpmqrt LAPACK_GLOBAL(ctpmqrt,CTPMQRT) -#define LAPACK_ztpmqrt LAPACK_GLOBAL(ztpmqrt,ZTPMQRT) -#define LAPACK_dtpqrt LAPACK_GLOBAL(dtpqrt,DTPQRT) -#define LAPACK_ctpqrt LAPACK_GLOBAL(ctpqrt,CTPQRT) -#define LAPACK_ztpqrt LAPACK_GLOBAL(ztpqrt,ZTPQRT) -#define LAPACK_stpqrt2 LAPACK_GLOBAL(stpqrt2,STPQRT2) -#define LAPACK_dtpqrt2 LAPACK_GLOBAL(dtpqrt2,DTPQRT2) -#define LAPACK_ctpqrt2 LAPACK_GLOBAL(ctpqrt2,CTPQRT2) -#define LAPACK_ztpqrt2 LAPACK_GLOBAL(ztpqrt2,ZTPQRT2) -#define LAPACK_stprfb LAPACK_GLOBAL(stprfb,STPRFB) -#define LAPACK_dtprfb LAPACK_GLOBAL(dtprfb,DTPRFB) -#define LAPACK_ctprfb LAPACK_GLOBAL(ctprfb,CTPRFB) -#define LAPACK_ztprfb LAPACK_GLOBAL(ztprfb,ZTPRFB) -// LAPACK 3.X.X -#define LAPACK_csyr LAPACK_GLOBAL(csyr,CSYR) -#define LAPACK_zsyr LAPACK_GLOBAL(zsyr,ZSYR) - - -void LAPACK_sgetrf( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, - lapack_int* ipiv, lapack_int *info ); -void LAPACK_dgetrf( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, - lapack_int* ipiv, lapack_int *info ); -void LAPACK_cgetrf( lapack_int* m, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, lapack_int* ipiv, lapack_int *info ); -void LAPACK_zgetrf( lapack_int* m, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, lapack_int* ipiv, lapack_int *info ); -void LAPACK_sgbtrf( lapack_int* m, lapack_int* n, lapack_int* kl, - lapack_int* ku, float* ab, lapack_int* ldab, - lapack_int* ipiv, lapack_int *info ); -void LAPACK_dgbtrf( lapack_int* m, lapack_int* n, lapack_int* kl, - lapack_int* ku, double* ab, lapack_int* ldab, - lapack_int* ipiv, lapack_int *info ); -void LAPACK_cgbtrf( lapack_int* m, lapack_int* n, lapack_int* kl, - lapack_int* ku, lapack_complex_float* ab, lapack_int* ldab, - lapack_int* ipiv, lapack_int *info ); -void LAPACK_zgbtrf( lapack_int* m, lapack_int* n, lapack_int* kl, - lapack_int* ku, lapack_complex_double* ab, lapack_int* ldab, - lapack_int* ipiv, lapack_int *info ); -void LAPACK_sgttrf( lapack_int* n, float* dl, float* d, float* du, float* du2, - lapack_int* ipiv, lapack_int *info ); -void LAPACK_dgttrf( lapack_int* n, double* dl, double* d, double* du, - double* du2, lapack_int* ipiv, lapack_int *info ); -void LAPACK_cgttrf( lapack_int* n, lapack_complex_float* dl, - lapack_complex_float* d, lapack_complex_float* du, - lapack_complex_float* du2, lapack_int* ipiv, - lapack_int *info ); -void LAPACK_zgttrf( lapack_int* n, lapack_complex_double* dl, - lapack_complex_double* d, lapack_complex_double* du, - lapack_complex_double* du2, lapack_int* ipiv, - lapack_int *info ); -void LAPACK_spotrf( char* uplo, lapack_int* n, float* a, lapack_int* lda, - lapack_int *info ); -void LAPACK_dpotrf( char* uplo, lapack_int* n, double* a, lapack_int* lda, - lapack_int *info ); -void LAPACK_cpotrf( char* uplo, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, lapack_int *info ); -void LAPACK_zpotrf( char* uplo, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, lapack_int *info ); -void LAPACK_dpstrf( char* uplo, lapack_int* n, double* a, lapack_int* lda, - lapack_int* piv, lapack_int* rank, double* tol, - double* work, lapack_int *info ); -void LAPACK_spstrf( char* uplo, lapack_int* n, float* a, lapack_int* lda, - lapack_int* piv, lapack_int* rank, float* tol, float* work, - lapack_int *info ); -void LAPACK_zpstrf( char* uplo, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, lapack_int* piv, lapack_int* rank, - double* tol, double* work, lapack_int *info ); -void LAPACK_cpstrf( char* uplo, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, lapack_int* piv, lapack_int* rank, - float* tol, float* work, lapack_int *info ); -void LAPACK_dpftrf( char* transr, char* uplo, lapack_int* n, double* a, - lapack_int *info ); -void LAPACK_spftrf( char* transr, char* uplo, lapack_int* n, float* a, - lapack_int *info ); -void LAPACK_zpftrf( char* transr, char* uplo, lapack_int* n, - lapack_complex_double* a, lapack_int *info ); -void LAPACK_cpftrf( char* transr, char* uplo, lapack_int* n, - lapack_complex_float* a, lapack_int *info ); -void LAPACK_spptrf( char* uplo, lapack_int* n, float* ap, lapack_int *info ); -void LAPACK_dpptrf( char* uplo, lapack_int* n, double* ap, lapack_int *info ); -void LAPACK_cpptrf( char* uplo, lapack_int* n, lapack_complex_float* ap, - lapack_int *info ); -void LAPACK_zpptrf( char* uplo, lapack_int* n, lapack_complex_double* ap, - lapack_int *info ); -void LAPACK_spbtrf( char* uplo, lapack_int* n, lapack_int* kd, float* ab, - lapack_int* ldab, lapack_int *info ); -void LAPACK_dpbtrf( char* uplo, lapack_int* n, lapack_int* kd, double* ab, - lapack_int* ldab, lapack_int *info ); -void LAPACK_cpbtrf( char* uplo, lapack_int* n, lapack_int* kd, - lapack_complex_float* ab, lapack_int* ldab, - lapack_int *info ); -void LAPACK_zpbtrf( char* uplo, lapack_int* n, lapack_int* kd, - lapack_complex_double* ab, lapack_int* ldab, - lapack_int *info ); -void LAPACK_spttrf( lapack_int* n, float* d, float* e, lapack_int *info ); -void LAPACK_dpttrf( lapack_int* n, double* d, double* e, lapack_int *info ); -void LAPACK_cpttrf( lapack_int* n, float* d, lapack_complex_float* e, - lapack_int *info ); -void LAPACK_zpttrf( lapack_int* n, double* d, lapack_complex_double* e, - lapack_int *info ); -void LAPACK_ssytrf( char* uplo, lapack_int* n, float* a, lapack_int* lda, - lapack_int* ipiv, float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_dsytrf( char* uplo, lapack_int* n, double* a, lapack_int* lda, - lapack_int* ipiv, double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_csytrf( char* uplo, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, lapack_int* ipiv, - lapack_complex_float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_zsytrf( char* uplo, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, lapack_int* ipiv, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_chetrf( char* uplo, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, lapack_int* ipiv, - lapack_complex_float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_zhetrf( char* uplo, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, lapack_int* ipiv, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_ssptrf( char* uplo, lapack_int* n, float* ap, lapack_int* ipiv, - lapack_int *info ); -void LAPACK_dsptrf( char* uplo, lapack_int* n, double* ap, lapack_int* ipiv, - lapack_int *info ); -void LAPACK_csptrf( char* uplo, lapack_int* n, lapack_complex_float* ap, - lapack_int* ipiv, lapack_int *info ); -void LAPACK_zsptrf( char* uplo, lapack_int* n, lapack_complex_double* ap, - lapack_int* ipiv, lapack_int *info ); -void LAPACK_chptrf( char* uplo, lapack_int* n, lapack_complex_float* ap, - lapack_int* ipiv, lapack_int *info ); -void LAPACK_zhptrf( char* uplo, lapack_int* n, lapack_complex_double* ap, - lapack_int* ipiv, lapack_int *info ); -void LAPACK_sgetrs( char* trans, lapack_int* n, lapack_int* nrhs, - const float* a, lapack_int* lda, const lapack_int* ipiv, - float* b, lapack_int* ldb, lapack_int *info ); -void LAPACK_dgetrs( char* trans, lapack_int* n, lapack_int* nrhs, - const double* a, lapack_int* lda, const lapack_int* ipiv, - double* b, lapack_int* ldb, lapack_int *info ); -void LAPACK_cgetrs( char* trans, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* a, lapack_int* lda, - const lapack_int* ipiv, lapack_complex_float* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_zgetrs( char* trans, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* a, lapack_int* lda, - const lapack_int* ipiv, lapack_complex_double* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_sgbtrs( char* trans, lapack_int* n, lapack_int* kl, lapack_int* ku, - lapack_int* nrhs, const float* ab, lapack_int* ldab, - const lapack_int* ipiv, float* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_dgbtrs( char* trans, lapack_int* n, lapack_int* kl, lapack_int* ku, - lapack_int* nrhs, const double* ab, lapack_int* ldab, - const lapack_int* ipiv, double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_cgbtrs( char* trans, lapack_int* n, lapack_int* kl, lapack_int* ku, - lapack_int* nrhs, const lapack_complex_float* ab, - lapack_int* ldab, const lapack_int* ipiv, - lapack_complex_float* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_zgbtrs( char* trans, lapack_int* n, lapack_int* kl, lapack_int* ku, - lapack_int* nrhs, const lapack_complex_double* ab, - lapack_int* ldab, const lapack_int* ipiv, - lapack_complex_double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_sgttrs( char* trans, lapack_int* n, lapack_int* nrhs, - const float* dl, const float* d, const float* du, - const float* du2, const lapack_int* ipiv, float* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_dgttrs( char* trans, lapack_int* n, lapack_int* nrhs, - const double* dl, const double* d, const double* du, - const double* du2, const lapack_int* ipiv, double* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_cgttrs( char* trans, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* dl, - const lapack_complex_float* d, - const lapack_complex_float* du, - const lapack_complex_float* du2, const lapack_int* ipiv, - lapack_complex_float* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_zgttrs( char* trans, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* dl, - const lapack_complex_double* d, - const lapack_complex_double* du, - const lapack_complex_double* du2, const lapack_int* ipiv, - lapack_complex_double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_spotrs( char* uplo, lapack_int* n, lapack_int* nrhs, const float* a, - lapack_int* lda, float* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_dpotrs( char* uplo, lapack_int* n, lapack_int* nrhs, - const double* a, lapack_int* lda, double* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_cpotrs( char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_zpotrs( char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_dpftrs( char* transr, char* uplo, lapack_int* n, lapack_int* nrhs, - const double* a, double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_spftrs( char* transr, char* uplo, lapack_int* n, lapack_int* nrhs, - const float* a, float* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_zpftrs( char* transr, char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* a, lapack_complex_double* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_cpftrs( char* transr, char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* a, lapack_complex_float* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_spptrs( char* uplo, lapack_int* n, lapack_int* nrhs, - const float* ap, float* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_dpptrs( char* uplo, lapack_int* n, lapack_int* nrhs, - const double* ap, double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_cpptrs( char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* ap, lapack_complex_float* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_zpptrs( char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* ap, lapack_complex_double* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_spbtrs( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, - const float* ab, lapack_int* ldab, float* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_dpbtrs( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, - const double* ab, lapack_int* ldab, double* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_cpbtrs( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, - const lapack_complex_float* ab, lapack_int* ldab, - lapack_complex_float* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_zpbtrs( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, - const lapack_complex_double* ab, lapack_int* ldab, - lapack_complex_double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_spttrs( lapack_int* n, lapack_int* nrhs, const float* d, - const float* e, float* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_dpttrs( lapack_int* n, lapack_int* nrhs, const double* d, - const double* e, double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_cpttrs( char* uplo, lapack_int* n, lapack_int* nrhs, const float* d, - const lapack_complex_float* e, lapack_complex_float* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_zpttrs( char* uplo, lapack_int* n, lapack_int* nrhs, - const double* d, const lapack_complex_double* e, - lapack_complex_double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_ssytrs( char* uplo, lapack_int* n, lapack_int* nrhs, const float* a, - lapack_int* lda, const lapack_int* ipiv, float* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_dsytrs( char* uplo, lapack_int* n, lapack_int* nrhs, - const double* a, lapack_int* lda, const lapack_int* ipiv, - double* b, lapack_int* ldb, lapack_int *info ); -void LAPACK_csytrs( char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* a, lapack_int* lda, - const lapack_int* ipiv, lapack_complex_float* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_zsytrs( char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* a, lapack_int* lda, - const lapack_int* ipiv, lapack_complex_double* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_chetrs( char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* a, lapack_int* lda, - const lapack_int* ipiv, lapack_complex_float* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_zhetrs( char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* a, lapack_int* lda, - const lapack_int* ipiv, lapack_complex_double* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_ssptrs( char* uplo, lapack_int* n, lapack_int* nrhs, - const float* ap, const lapack_int* ipiv, float* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_dsptrs( char* uplo, lapack_int* n, lapack_int* nrhs, - const double* ap, const lapack_int* ipiv, double* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_csptrs( char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* ap, const lapack_int* ipiv, - lapack_complex_float* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_zsptrs( char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* ap, const lapack_int* ipiv, - lapack_complex_double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_chptrs( char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* ap, const lapack_int* ipiv, - lapack_complex_float* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_zhptrs( char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* ap, const lapack_int* ipiv, - lapack_complex_double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_strtrs( char* uplo, char* trans, char* diag, lapack_int* n, - lapack_int* nrhs, const float* a, lapack_int* lda, float* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_dtrtrs( char* uplo, char* trans, char* diag, lapack_int* n, - lapack_int* nrhs, const double* a, lapack_int* lda, - double* b, lapack_int* ldb, lapack_int *info ); -void LAPACK_ctrtrs( char* uplo, char* trans, char* diag, lapack_int* n, - lapack_int* nrhs, const lapack_complex_float* a, - lapack_int* lda, lapack_complex_float* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_ztrtrs( char* uplo, char* trans, char* diag, lapack_int* n, - lapack_int* nrhs, const lapack_complex_double* a, - lapack_int* lda, lapack_complex_double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_stptrs( char* uplo, char* trans, char* diag, lapack_int* n, - lapack_int* nrhs, const float* ap, float* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_dtptrs( char* uplo, char* trans, char* diag, lapack_int* n, - lapack_int* nrhs, const double* ap, double* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_ctptrs( char* uplo, char* trans, char* diag, lapack_int* n, - lapack_int* nrhs, const lapack_complex_float* ap, - lapack_complex_float* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_ztptrs( char* uplo, char* trans, char* diag, lapack_int* n, - lapack_int* nrhs, const lapack_complex_double* ap, - lapack_complex_double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_stbtrs( char* uplo, char* trans, char* diag, lapack_int* n, - lapack_int* kd, lapack_int* nrhs, const float* ab, - lapack_int* ldab, float* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_dtbtrs( char* uplo, char* trans, char* diag, lapack_int* n, - lapack_int* kd, lapack_int* nrhs, const double* ab, - lapack_int* ldab, double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_ctbtrs( char* uplo, char* trans, char* diag, lapack_int* n, - lapack_int* kd, lapack_int* nrhs, - const lapack_complex_float* ab, lapack_int* ldab, - lapack_complex_float* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_ztbtrs( char* uplo, char* trans, char* diag, lapack_int* n, - lapack_int* kd, lapack_int* nrhs, - const lapack_complex_double* ab, lapack_int* ldab, - lapack_complex_double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_sgecon( char* norm, lapack_int* n, const float* a, lapack_int* lda, - float* anorm, float* rcond, float* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_dgecon( char* norm, lapack_int* n, const double* a, lapack_int* lda, - double* anorm, double* rcond, double* work, - lapack_int* iwork, lapack_int *info ); -void LAPACK_cgecon( char* norm, lapack_int* n, const lapack_complex_float* a, - lapack_int* lda, float* anorm, float* rcond, - lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_zgecon( char* norm, lapack_int* n, const lapack_complex_double* a, - lapack_int* lda, double* anorm, double* rcond, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_sgbcon( char* norm, lapack_int* n, lapack_int* kl, lapack_int* ku, - const float* ab, lapack_int* ldab, const lapack_int* ipiv, - float* anorm, float* rcond, float* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_dgbcon( char* norm, lapack_int* n, lapack_int* kl, lapack_int* ku, - const double* ab, lapack_int* ldab, const lapack_int* ipiv, - double* anorm, double* rcond, double* work, - lapack_int* iwork, lapack_int *info ); -void LAPACK_cgbcon( char* norm, lapack_int* n, lapack_int* kl, lapack_int* ku, - const lapack_complex_float* ab, lapack_int* ldab, - const lapack_int* ipiv, float* anorm, float* rcond, - lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_zgbcon( char* norm, lapack_int* n, lapack_int* kl, lapack_int* ku, - const lapack_complex_double* ab, lapack_int* ldab, - const lapack_int* ipiv, double* anorm, double* rcond, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_sgtcon( char* norm, lapack_int* n, const float* dl, const float* d, - const float* du, const float* du2, const lapack_int* ipiv, - float* anorm, float* rcond, float* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_dgtcon( char* norm, lapack_int* n, const double* dl, - const double* d, const double* du, const double* du2, - const lapack_int* ipiv, double* anorm, double* rcond, - double* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_cgtcon( char* norm, lapack_int* n, const lapack_complex_float* dl, - const lapack_complex_float* d, - const lapack_complex_float* du, - const lapack_complex_float* du2, const lapack_int* ipiv, - float* anorm, float* rcond, lapack_complex_float* work, - lapack_int *info ); -void LAPACK_zgtcon( char* norm, lapack_int* n, const lapack_complex_double* dl, - const lapack_complex_double* d, - const lapack_complex_double* du, - const lapack_complex_double* du2, const lapack_int* ipiv, - double* anorm, double* rcond, lapack_complex_double* work, - lapack_int *info ); -void LAPACK_spocon( char* uplo, lapack_int* n, const float* a, lapack_int* lda, - float* anorm, float* rcond, float* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_dpocon( char* uplo, lapack_int* n, const double* a, lapack_int* lda, - double* anorm, double* rcond, double* work, - lapack_int* iwork, lapack_int *info ); -void LAPACK_cpocon( char* uplo, lapack_int* n, const lapack_complex_float* a, - lapack_int* lda, float* anorm, float* rcond, - lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_zpocon( char* uplo, lapack_int* n, const lapack_complex_double* a, - lapack_int* lda, double* anorm, double* rcond, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_sppcon( char* uplo, lapack_int* n, const float* ap, float* anorm, - float* rcond, float* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_dppcon( char* uplo, lapack_int* n, const double* ap, double* anorm, - double* rcond, double* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_cppcon( char* uplo, lapack_int* n, const lapack_complex_float* ap, - float* anorm, float* rcond, lapack_complex_float* work, - float* rwork, lapack_int *info ); -void LAPACK_zppcon( char* uplo, lapack_int* n, const lapack_complex_double* ap, - double* anorm, double* rcond, lapack_complex_double* work, - double* rwork, lapack_int *info ); -void LAPACK_spbcon( char* uplo, lapack_int* n, lapack_int* kd, const float* ab, - lapack_int* ldab, float* anorm, float* rcond, float* work, - lapack_int* iwork, lapack_int *info ); -void LAPACK_dpbcon( char* uplo, lapack_int* n, lapack_int* kd, const double* ab, - lapack_int* ldab, double* anorm, double* rcond, - double* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_cpbcon( char* uplo, lapack_int* n, lapack_int* kd, - const lapack_complex_float* ab, lapack_int* ldab, - float* anorm, float* rcond, lapack_complex_float* work, - float* rwork, lapack_int *info ); -void LAPACK_zpbcon( char* uplo, lapack_int* n, lapack_int* kd, - const lapack_complex_double* ab, lapack_int* ldab, - double* anorm, double* rcond, lapack_complex_double* work, - double* rwork, lapack_int *info ); -void LAPACK_sptcon( lapack_int* n, const float* d, const float* e, float* anorm, - float* rcond, float* work, lapack_int *info ); -void LAPACK_dptcon( lapack_int* n, const double* d, const double* e, - double* anorm, double* rcond, double* work, - lapack_int *info ); -void LAPACK_cptcon( lapack_int* n, const float* d, - const lapack_complex_float* e, float* anorm, float* rcond, - float* work, lapack_int *info ); -void LAPACK_zptcon( lapack_int* n, const double* d, - const lapack_complex_double* e, double* anorm, - double* rcond, double* work, lapack_int *info ); -void LAPACK_ssycon( char* uplo, lapack_int* n, const float* a, lapack_int* lda, - const lapack_int* ipiv, float* anorm, float* rcond, - float* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_dsycon( char* uplo, lapack_int* n, const double* a, lapack_int* lda, - const lapack_int* ipiv, double* anorm, double* rcond, - double* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_csycon( char* uplo, lapack_int* n, const lapack_complex_float* a, - lapack_int* lda, const lapack_int* ipiv, float* anorm, - float* rcond, lapack_complex_float* work, - lapack_int *info ); -void LAPACK_zsycon( char* uplo, lapack_int* n, const lapack_complex_double* a, - lapack_int* lda, const lapack_int* ipiv, double* anorm, - double* rcond, lapack_complex_double* work, - lapack_int *info ); -void LAPACK_checon( char* uplo, lapack_int* n, const lapack_complex_float* a, - lapack_int* lda, const lapack_int* ipiv, float* anorm, - float* rcond, lapack_complex_float* work, - lapack_int *info ); -void LAPACK_zhecon( char* uplo, lapack_int* n, const lapack_complex_double* a, - lapack_int* lda, const lapack_int* ipiv, double* anorm, - double* rcond, lapack_complex_double* work, - lapack_int *info ); -void LAPACK_sspcon( char* uplo, lapack_int* n, const float* ap, - const lapack_int* ipiv, float* anorm, float* rcond, - float* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_dspcon( char* uplo, lapack_int* n, const double* ap, - const lapack_int* ipiv, double* anorm, double* rcond, - double* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_cspcon( char* uplo, lapack_int* n, const lapack_complex_float* ap, - const lapack_int* ipiv, float* anorm, float* rcond, - lapack_complex_float* work, lapack_int *info ); -void LAPACK_zspcon( char* uplo, lapack_int* n, const lapack_complex_double* ap, - const lapack_int* ipiv, double* anorm, double* rcond, - lapack_complex_double* work, lapack_int *info ); -void LAPACK_chpcon( char* uplo, lapack_int* n, const lapack_complex_float* ap, - const lapack_int* ipiv, float* anorm, float* rcond, - lapack_complex_float* work, lapack_int *info ); -void LAPACK_zhpcon( char* uplo, lapack_int* n, const lapack_complex_double* ap, - const lapack_int* ipiv, double* anorm, double* rcond, - lapack_complex_double* work, lapack_int *info ); -void LAPACK_strcon( char* norm, char* uplo, char* diag, lapack_int* n, - const float* a, lapack_int* lda, float* rcond, float* work, - lapack_int* iwork, lapack_int *info ); -void LAPACK_dtrcon( char* norm, char* uplo, char* diag, lapack_int* n, - const double* a, lapack_int* lda, double* rcond, - double* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_ctrcon( char* norm, char* uplo, char* diag, lapack_int* n, - const lapack_complex_float* a, lapack_int* lda, - float* rcond, lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_ztrcon( char* norm, char* uplo, char* diag, lapack_int* n, - const lapack_complex_double* a, lapack_int* lda, - double* rcond, lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_stpcon( char* norm, char* uplo, char* diag, lapack_int* n, - const float* ap, float* rcond, float* work, - lapack_int* iwork, lapack_int *info ); -void LAPACK_dtpcon( char* norm, char* uplo, char* diag, lapack_int* n, - const double* ap, double* rcond, double* work, - lapack_int* iwork, lapack_int *info ); -void LAPACK_ctpcon( char* norm, char* uplo, char* diag, lapack_int* n, - const lapack_complex_float* ap, float* rcond, - lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_ztpcon( char* norm, char* uplo, char* diag, lapack_int* n, - const lapack_complex_double* ap, double* rcond, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_stbcon( char* norm, char* uplo, char* diag, lapack_int* n, - lapack_int* kd, const float* ab, lapack_int* ldab, - float* rcond, float* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_dtbcon( char* norm, char* uplo, char* diag, lapack_int* n, - lapack_int* kd, const double* ab, lapack_int* ldab, - double* rcond, double* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_ctbcon( char* norm, char* uplo, char* diag, lapack_int* n, - lapack_int* kd, const lapack_complex_float* ab, - lapack_int* ldab, float* rcond, lapack_complex_float* work, - float* rwork, lapack_int *info ); -void LAPACK_ztbcon( char* norm, char* uplo, char* diag, lapack_int* n, - lapack_int* kd, const lapack_complex_double* ab, - lapack_int* ldab, double* rcond, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_sgerfs( char* trans, lapack_int* n, lapack_int* nrhs, - const float* a, lapack_int* lda, const float* af, - lapack_int* ldaf, const lapack_int* ipiv, const float* b, - lapack_int* ldb, float* x, lapack_int* ldx, float* ferr, - float* berr, float* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_dgerfs( char* trans, lapack_int* n, lapack_int* nrhs, - const double* a, lapack_int* lda, const double* af, - lapack_int* ldaf, const lapack_int* ipiv, const double* b, - lapack_int* ldb, double* x, lapack_int* ldx, double* ferr, - double* berr, double* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_cgerfs( char* trans, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* a, lapack_int* lda, - const lapack_complex_float* af, lapack_int* ldaf, - const lapack_int* ipiv, const lapack_complex_float* b, - lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, - float* ferr, float* berr, lapack_complex_float* work, - float* rwork, lapack_int *info ); -void LAPACK_zgerfs( char* trans, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* a, lapack_int* lda, - const lapack_complex_double* af, lapack_int* ldaf, - const lapack_int* ipiv, const lapack_complex_double* b, - lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, - double* ferr, double* berr, lapack_complex_double* work, - double* rwork, lapack_int *info ); -void LAPACK_dgerfsx( char* trans, char* equed, lapack_int* n, lapack_int* nrhs, - const double* a, lapack_int* lda, const double* af, - lapack_int* ldaf, const lapack_int* ipiv, const double* r, - const double* c, const double* b, lapack_int* ldb, - double* x, lapack_int* ldx, double* rcond, double* berr, - lapack_int* n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int* nparams, double* params, - double* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_sgerfsx( char* trans, char* equed, lapack_int* n, lapack_int* nrhs, - const float* a, lapack_int* lda, const float* af, - lapack_int* ldaf, const lapack_int* ipiv, const float* r, - const float* c, const float* b, lapack_int* ldb, float* x, - lapack_int* ldx, float* rcond, float* berr, - lapack_int* n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int* nparams, float* params, - float* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_zgerfsx( char* trans, char* equed, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* a, lapack_int* lda, - const lapack_complex_double* af, lapack_int* ldaf, - const lapack_int* ipiv, const double* r, const double* c, - const lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* x, lapack_int* ldx, double* rcond, - double* berr, lapack_int* n_err_bnds, - double* err_bnds_norm, double* err_bnds_comp, - lapack_int* nparams, double* params, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_cgerfsx( char* trans, char* equed, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* a, lapack_int* lda, - const lapack_complex_float* af, lapack_int* ldaf, - const lapack_int* ipiv, const float* r, const float* c, - const lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* x, lapack_int* ldx, float* rcond, - float* berr, lapack_int* n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int* nparams, float* params, - lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_sgbrfs( char* trans, lapack_int* n, lapack_int* kl, lapack_int* ku, - lapack_int* nrhs, const float* ab, lapack_int* ldab, - const float* afb, lapack_int* ldafb, const lapack_int* ipiv, - const float* b, lapack_int* ldb, float* x, lapack_int* ldx, - float* ferr, float* berr, float* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_dgbrfs( char* trans, lapack_int* n, lapack_int* kl, lapack_int* ku, - lapack_int* nrhs, const double* ab, lapack_int* ldab, - const double* afb, lapack_int* ldafb, - const lapack_int* ipiv, const double* b, lapack_int* ldb, - double* x, lapack_int* ldx, double* ferr, double* berr, - double* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_cgbrfs( char* trans, lapack_int* n, lapack_int* kl, lapack_int* ku, - lapack_int* nrhs, const lapack_complex_float* ab, - lapack_int* ldab, const lapack_complex_float* afb, - lapack_int* ldafb, const lapack_int* ipiv, - const lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* x, lapack_int* ldx, float* ferr, - float* berr, lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_zgbrfs( char* trans, lapack_int* n, lapack_int* kl, lapack_int* ku, - lapack_int* nrhs, const lapack_complex_double* ab, - lapack_int* ldab, const lapack_complex_double* afb, - lapack_int* ldafb, const lapack_int* ipiv, - const lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* x, lapack_int* ldx, double* ferr, - double* berr, lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_dgbrfsx( char* trans, char* equed, lapack_int* n, lapack_int* kl, - lapack_int* ku, lapack_int* nrhs, const double* ab, - lapack_int* ldab, const double* afb, lapack_int* ldafb, - const lapack_int* ipiv, const double* r, const double* c, - const double* b, lapack_int* ldb, double* x, - lapack_int* ldx, double* rcond, double* berr, - lapack_int* n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int* nparams, double* params, - double* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_sgbrfsx( char* trans, char* equed, lapack_int* n, lapack_int* kl, - lapack_int* ku, lapack_int* nrhs, const float* ab, - lapack_int* ldab, const float* afb, lapack_int* ldafb, - const lapack_int* ipiv, const float* r, const float* c, - const float* b, lapack_int* ldb, float* x, lapack_int* ldx, - float* rcond, float* berr, lapack_int* n_err_bnds, - float* err_bnds_norm, float* err_bnds_comp, - lapack_int* nparams, float* params, float* work, - lapack_int* iwork, lapack_int *info ); -void LAPACK_zgbrfsx( char* trans, char* equed, lapack_int* n, lapack_int* kl, - lapack_int* ku, lapack_int* nrhs, - const lapack_complex_double* ab, lapack_int* ldab, - const lapack_complex_double* afb, lapack_int* ldafb, - const lapack_int* ipiv, const double* r, const double* c, - const lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* x, lapack_int* ldx, double* rcond, - double* berr, lapack_int* n_err_bnds, - double* err_bnds_norm, double* err_bnds_comp, - lapack_int* nparams, double* params, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_cgbrfsx( char* trans, char* equed, lapack_int* n, lapack_int* kl, - lapack_int* ku, lapack_int* nrhs, - const lapack_complex_float* ab, lapack_int* ldab, - const lapack_complex_float* afb, lapack_int* ldafb, - const lapack_int* ipiv, const float* r, const float* c, - const lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* x, lapack_int* ldx, float* rcond, - float* berr, lapack_int* n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int* nparams, float* params, - lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_sgtrfs( char* trans, lapack_int* n, lapack_int* nrhs, - const float* dl, const float* d, const float* du, - const float* dlf, const float* df, const float* duf, - const float* du2, const lapack_int* ipiv, const float* b, - lapack_int* ldb, float* x, lapack_int* ldx, float* ferr, - float* berr, float* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_dgtrfs( char* trans, lapack_int* n, lapack_int* nrhs, - const double* dl, const double* d, const double* du, - const double* dlf, const double* df, const double* duf, - const double* du2, const lapack_int* ipiv, const double* b, - lapack_int* ldb, double* x, lapack_int* ldx, double* ferr, - double* berr, double* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_cgtrfs( char* trans, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* dl, - const lapack_complex_float* d, - const lapack_complex_float* du, - const lapack_complex_float* dlf, - const lapack_complex_float* df, - const lapack_complex_float* duf, - const lapack_complex_float* du2, const lapack_int* ipiv, - const lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* x, lapack_int* ldx, float* ferr, - float* berr, lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_zgtrfs( char* trans, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* dl, - const lapack_complex_double* d, - const lapack_complex_double* du, - const lapack_complex_double* dlf, - const lapack_complex_double* df, - const lapack_complex_double* duf, - const lapack_complex_double* du2, const lapack_int* ipiv, - const lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* x, lapack_int* ldx, double* ferr, - double* berr, lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_sporfs( char* uplo, lapack_int* n, lapack_int* nrhs, const float* a, - lapack_int* lda, const float* af, lapack_int* ldaf, - const float* b, lapack_int* ldb, float* x, lapack_int* ldx, - float* ferr, float* berr, float* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_dporfs( char* uplo, lapack_int* n, lapack_int* nrhs, - const double* a, lapack_int* lda, const double* af, - lapack_int* ldaf, const double* b, lapack_int* ldb, - double* x, lapack_int* ldx, double* ferr, double* berr, - double* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_cporfs( char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* a, lapack_int* lda, - const lapack_complex_float* af, lapack_int* ldaf, - const lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* x, lapack_int* ldx, float* ferr, - float* berr, lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_zporfs( char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* a, lapack_int* lda, - const lapack_complex_double* af, lapack_int* ldaf, - const lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* x, lapack_int* ldx, double* ferr, - double* berr, lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_dporfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, - const double* a, lapack_int* lda, const double* af, - lapack_int* ldaf, const double* s, const double* b, - lapack_int* ldb, double* x, lapack_int* ldx, double* rcond, - double* berr, lapack_int* n_err_bnds, - double* err_bnds_norm, double* err_bnds_comp, - lapack_int* nparams, double* params, double* work, - lapack_int* iwork, lapack_int *info ); -void LAPACK_sporfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, - const float* a, lapack_int* lda, const float* af, - lapack_int* ldaf, const float* s, const float* b, - lapack_int* ldb, float* x, lapack_int* ldx, float* rcond, - float* berr, lapack_int* n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int* nparams, float* params, - float* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_zporfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* a, lapack_int* lda, - const lapack_complex_double* af, lapack_int* ldaf, - const double* s, const lapack_complex_double* b, - lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, - double* rcond, double* berr, lapack_int* n_err_bnds, - double* err_bnds_norm, double* err_bnds_comp, - lapack_int* nparams, double* params, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_cporfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* a, lapack_int* lda, - const lapack_complex_float* af, lapack_int* ldaf, - const float* s, const lapack_complex_float* b, - lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, - float* rcond, float* berr, lapack_int* n_err_bnds, - float* err_bnds_norm, float* err_bnds_comp, - lapack_int* nparams, float* params, - lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_spprfs( char* uplo, lapack_int* n, lapack_int* nrhs, - const float* ap, const float* afp, const float* b, - lapack_int* ldb, float* x, lapack_int* ldx, float* ferr, - float* berr, float* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_dpprfs( char* uplo, lapack_int* n, lapack_int* nrhs, - const double* ap, const double* afp, const double* b, - lapack_int* ldb, double* x, lapack_int* ldx, double* ferr, - double* berr, double* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_cpprfs( char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* ap, - const lapack_complex_float* afp, - const lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* x, lapack_int* ldx, float* ferr, - float* berr, lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_zpprfs( char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* ap, - const lapack_complex_double* afp, - const lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* x, lapack_int* ldx, double* ferr, - double* berr, lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_spbrfs( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, - const float* ab, lapack_int* ldab, const float* afb, - lapack_int* ldafb, const float* b, lapack_int* ldb, - float* x, lapack_int* ldx, float* ferr, float* berr, - float* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_dpbrfs( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, - const double* ab, lapack_int* ldab, const double* afb, - lapack_int* ldafb, const double* b, lapack_int* ldb, - double* x, lapack_int* ldx, double* ferr, double* berr, - double* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_cpbrfs( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, - const lapack_complex_float* ab, lapack_int* ldab, - const lapack_complex_float* afb, lapack_int* ldafb, - const lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* x, lapack_int* ldx, float* ferr, - float* berr, lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_zpbrfs( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, - const lapack_complex_double* ab, lapack_int* ldab, - const lapack_complex_double* afb, lapack_int* ldafb, - const lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* x, lapack_int* ldx, double* ferr, - double* berr, lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_sptrfs( lapack_int* n, lapack_int* nrhs, const float* d, - const float* e, const float* df, const float* ef, - const float* b, lapack_int* ldb, float* x, lapack_int* ldx, - float* ferr, float* berr, float* work, lapack_int *info ); -void LAPACK_dptrfs( lapack_int* n, lapack_int* nrhs, const double* d, - const double* e, const double* df, const double* ef, - const double* b, lapack_int* ldb, double* x, - lapack_int* ldx, double* ferr, double* berr, double* work, - lapack_int *info ); -void LAPACK_cptrfs( char* uplo, lapack_int* n, lapack_int* nrhs, const float* d, - const lapack_complex_float* e, const float* df, - const lapack_complex_float* ef, - const lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* x, lapack_int* ldx, float* ferr, - float* berr, lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_zptrfs( char* uplo, lapack_int* n, lapack_int* nrhs, - const double* d, const lapack_complex_double* e, - const double* df, const lapack_complex_double* ef, - const lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* x, lapack_int* ldx, double* ferr, - double* berr, lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_ssyrfs( char* uplo, lapack_int* n, lapack_int* nrhs, const float* a, - lapack_int* lda, const float* af, lapack_int* ldaf, - const lapack_int* ipiv, const float* b, lapack_int* ldb, - float* x, lapack_int* ldx, float* ferr, float* berr, - float* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_dsyrfs( char* uplo, lapack_int* n, lapack_int* nrhs, - const double* a, lapack_int* lda, const double* af, - lapack_int* ldaf, const lapack_int* ipiv, const double* b, - lapack_int* ldb, double* x, lapack_int* ldx, double* ferr, - double* berr, double* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_csyrfs( char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* a, lapack_int* lda, - const lapack_complex_float* af, lapack_int* ldaf, - const lapack_int* ipiv, const lapack_complex_float* b, - lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, - float* ferr, float* berr, lapack_complex_float* work, - float* rwork, lapack_int *info ); -void LAPACK_zsyrfs( char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* a, lapack_int* lda, - const lapack_complex_double* af, lapack_int* ldaf, - const lapack_int* ipiv, const lapack_complex_double* b, - lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, - double* ferr, double* berr, lapack_complex_double* work, - double* rwork, lapack_int *info ); -void LAPACK_dsyrfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, - const double* a, lapack_int* lda, const double* af, - lapack_int* ldaf, const lapack_int* ipiv, const double* s, - const double* b, lapack_int* ldb, double* x, - lapack_int* ldx, double* rcond, double* berr, - lapack_int* n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int* nparams, double* params, - double* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_ssyrfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, - const float* a, lapack_int* lda, const float* af, - lapack_int* ldaf, const lapack_int* ipiv, const float* s, - const float* b, lapack_int* ldb, float* x, lapack_int* ldx, - float* rcond, float* berr, lapack_int* n_err_bnds, - float* err_bnds_norm, float* err_bnds_comp, - lapack_int* nparams, float* params, float* work, - lapack_int* iwork, lapack_int *info ); -void LAPACK_zsyrfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* a, lapack_int* lda, - const lapack_complex_double* af, lapack_int* ldaf, - const lapack_int* ipiv, const double* s, - const lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* x, lapack_int* ldx, double* rcond, - double* berr, lapack_int* n_err_bnds, - double* err_bnds_norm, double* err_bnds_comp, - lapack_int* nparams, double* params, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_csyrfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* a, lapack_int* lda, - const lapack_complex_float* af, lapack_int* ldaf, - const lapack_int* ipiv, const float* s, - const lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* x, lapack_int* ldx, float* rcond, - float* berr, lapack_int* n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int* nparams, float* params, - lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_cherfs( char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* a, lapack_int* lda, - const lapack_complex_float* af, lapack_int* ldaf, - const lapack_int* ipiv, const lapack_complex_float* b, - lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, - float* ferr, float* berr, lapack_complex_float* work, - float* rwork, lapack_int *info ); -void LAPACK_zherfs( char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* a, lapack_int* lda, - const lapack_complex_double* af, lapack_int* ldaf, - const lapack_int* ipiv, const lapack_complex_double* b, - lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, - double* ferr, double* berr, lapack_complex_double* work, - double* rwork, lapack_int *info ); -void LAPACK_zherfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* a, lapack_int* lda, - const lapack_complex_double* af, lapack_int* ldaf, - const lapack_int* ipiv, const double* s, - const lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* x, lapack_int* ldx, double* rcond, - double* berr, lapack_int* n_err_bnds, - double* err_bnds_norm, double* err_bnds_comp, - lapack_int* nparams, double* params, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_cherfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* a, lapack_int* lda, - const lapack_complex_float* af, lapack_int* ldaf, - const lapack_int* ipiv, const float* s, - const lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* x, lapack_int* ldx, float* rcond, - float* berr, lapack_int* n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int* nparams, float* params, - lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_ssprfs( char* uplo, lapack_int* n, lapack_int* nrhs, - const float* ap, const float* afp, const lapack_int* ipiv, - const float* b, lapack_int* ldb, float* x, lapack_int* ldx, - float* ferr, float* berr, float* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_dsprfs( char* uplo, lapack_int* n, lapack_int* nrhs, - const double* ap, const double* afp, const lapack_int* ipiv, - const double* b, lapack_int* ldb, double* x, - lapack_int* ldx, double* ferr, double* berr, double* work, - lapack_int* iwork, lapack_int *info ); -void LAPACK_csprfs( char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* ap, - const lapack_complex_float* afp, const lapack_int* ipiv, - const lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* x, lapack_int* ldx, float* ferr, - float* berr, lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_zsprfs( char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* ap, - const lapack_complex_double* afp, const lapack_int* ipiv, - const lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* x, lapack_int* ldx, double* ferr, - double* berr, lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_chprfs( char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* ap, - const lapack_complex_float* afp, const lapack_int* ipiv, - const lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* x, lapack_int* ldx, float* ferr, - float* berr, lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_zhprfs( char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* ap, - const lapack_complex_double* afp, const lapack_int* ipiv, - const lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* x, lapack_int* ldx, double* ferr, - double* berr, lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_strrfs( char* uplo, char* trans, char* diag, lapack_int* n, - lapack_int* nrhs, const float* a, lapack_int* lda, - const float* b, lapack_int* ldb, const float* x, - lapack_int* ldx, float* ferr, float* berr, float* work, - lapack_int* iwork, lapack_int *info ); -void LAPACK_dtrrfs( char* uplo, char* trans, char* diag, lapack_int* n, - lapack_int* nrhs, const double* a, lapack_int* lda, - const double* b, lapack_int* ldb, const double* x, - lapack_int* ldx, double* ferr, double* berr, double* work, - lapack_int* iwork, lapack_int *info ); -void LAPACK_ctrrfs( char* uplo, char* trans, char* diag, lapack_int* n, - lapack_int* nrhs, const lapack_complex_float* a, - lapack_int* lda, const lapack_complex_float* b, - lapack_int* ldb, const lapack_complex_float* x, - lapack_int* ldx, float* ferr, float* berr, - lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_ztrrfs( char* uplo, char* trans, char* diag, lapack_int* n, - lapack_int* nrhs, const lapack_complex_double* a, - lapack_int* lda, const lapack_complex_double* b, - lapack_int* ldb, const lapack_complex_double* x, - lapack_int* ldx, double* ferr, double* berr, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_stprfs( char* uplo, char* trans, char* diag, lapack_int* n, - lapack_int* nrhs, const float* ap, const float* b, - lapack_int* ldb, const float* x, lapack_int* ldx, - float* ferr, float* berr, float* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_dtprfs( char* uplo, char* trans, char* diag, lapack_int* n, - lapack_int* nrhs, const double* ap, const double* b, - lapack_int* ldb, const double* x, lapack_int* ldx, - double* ferr, double* berr, double* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_ctprfs( char* uplo, char* trans, char* diag, lapack_int* n, - lapack_int* nrhs, const lapack_complex_float* ap, - const lapack_complex_float* b, lapack_int* ldb, - const lapack_complex_float* x, lapack_int* ldx, float* ferr, - float* berr, lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_ztprfs( char* uplo, char* trans, char* diag, lapack_int* n, - lapack_int* nrhs, const lapack_complex_double* ap, - const lapack_complex_double* b, lapack_int* ldb, - const lapack_complex_double* x, lapack_int* ldx, - double* ferr, double* berr, lapack_complex_double* work, - double* rwork, lapack_int *info ); -void LAPACK_stbrfs( char* uplo, char* trans, char* diag, lapack_int* n, - lapack_int* kd, lapack_int* nrhs, const float* ab, - lapack_int* ldab, const float* b, lapack_int* ldb, - const float* x, lapack_int* ldx, float* ferr, float* berr, - float* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_dtbrfs( char* uplo, char* trans, char* diag, lapack_int* n, - lapack_int* kd, lapack_int* nrhs, const double* ab, - lapack_int* ldab, const double* b, lapack_int* ldb, - const double* x, lapack_int* ldx, double* ferr, - double* berr, double* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_ctbrfs( char* uplo, char* trans, char* diag, lapack_int* n, - lapack_int* kd, lapack_int* nrhs, - const lapack_complex_float* ab, lapack_int* ldab, - const lapack_complex_float* b, lapack_int* ldb, - const lapack_complex_float* x, lapack_int* ldx, float* ferr, - float* berr, lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_ztbrfs( char* uplo, char* trans, char* diag, lapack_int* n, - lapack_int* kd, lapack_int* nrhs, - const lapack_complex_double* ab, lapack_int* ldab, - const lapack_complex_double* b, lapack_int* ldb, - const lapack_complex_double* x, lapack_int* ldx, - double* ferr, double* berr, lapack_complex_double* work, - double* rwork, lapack_int *info ); -void LAPACK_sgetri( lapack_int* n, float* a, lapack_int* lda, - const lapack_int* ipiv, float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_dgetri( lapack_int* n, double* a, lapack_int* lda, - const lapack_int* ipiv, double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_cgetri( lapack_int* n, lapack_complex_float* a, lapack_int* lda, - const lapack_int* ipiv, lapack_complex_float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_zgetri( lapack_int* n, lapack_complex_double* a, lapack_int* lda, - const lapack_int* ipiv, lapack_complex_double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_spotri( char* uplo, lapack_int* n, float* a, lapack_int* lda, - lapack_int *info ); -void LAPACK_dpotri( char* uplo, lapack_int* n, double* a, lapack_int* lda, - lapack_int *info ); -void LAPACK_cpotri( char* uplo, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, lapack_int *info ); -void LAPACK_zpotri( char* uplo, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, lapack_int *info ); -void LAPACK_dpftri( char* transr, char* uplo, lapack_int* n, double* a, - lapack_int *info ); -void LAPACK_spftri( char* transr, char* uplo, lapack_int* n, float* a, - lapack_int *info ); -void LAPACK_zpftri( char* transr, char* uplo, lapack_int* n, - lapack_complex_double* a, lapack_int *info ); -void LAPACK_cpftri( char* transr, char* uplo, lapack_int* n, - lapack_complex_float* a, lapack_int *info ); -void LAPACK_spptri( char* uplo, lapack_int* n, float* ap, lapack_int *info ); -void LAPACK_dpptri( char* uplo, lapack_int* n, double* ap, lapack_int *info ); -void LAPACK_cpptri( char* uplo, lapack_int* n, lapack_complex_float* ap, - lapack_int *info ); -void LAPACK_zpptri( char* uplo, lapack_int* n, lapack_complex_double* ap, - lapack_int *info ); -void LAPACK_ssytri( char* uplo, lapack_int* n, float* a, lapack_int* lda, - const lapack_int* ipiv, float* work, lapack_int *info ); -void LAPACK_dsytri( char* uplo, lapack_int* n, double* a, lapack_int* lda, - const lapack_int* ipiv, double* work, lapack_int *info ); -void LAPACK_csytri( char* uplo, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, const lapack_int* ipiv, - lapack_complex_float* work, lapack_int *info ); -void LAPACK_zsytri( char* uplo, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, const lapack_int* ipiv, - lapack_complex_double* work, lapack_int *info ); -void LAPACK_chetri( char* uplo, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, const lapack_int* ipiv, - lapack_complex_float* work, lapack_int *info ); -void LAPACK_zhetri( char* uplo, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, const lapack_int* ipiv, - lapack_complex_double* work, lapack_int *info ); -void LAPACK_ssptri( char* uplo, lapack_int* n, float* ap, - const lapack_int* ipiv, float* work, lapack_int *info ); -void LAPACK_dsptri( char* uplo, lapack_int* n, double* ap, - const lapack_int* ipiv, double* work, lapack_int *info ); -void LAPACK_csptri( char* uplo, lapack_int* n, lapack_complex_float* ap, - const lapack_int* ipiv, lapack_complex_float* work, - lapack_int *info ); -void LAPACK_zsptri( char* uplo, lapack_int* n, lapack_complex_double* ap, - const lapack_int* ipiv, lapack_complex_double* work, - lapack_int *info ); -void LAPACK_chptri( char* uplo, lapack_int* n, lapack_complex_float* ap, - const lapack_int* ipiv, lapack_complex_float* work, - lapack_int *info ); -void LAPACK_zhptri( char* uplo, lapack_int* n, lapack_complex_double* ap, - const lapack_int* ipiv, lapack_complex_double* work, - lapack_int *info ); -void LAPACK_strtri( char* uplo, char* diag, lapack_int* n, float* a, - lapack_int* lda, lapack_int *info ); -void LAPACK_dtrtri( char* uplo, char* diag, lapack_int* n, double* a, - lapack_int* lda, lapack_int *info ); -void LAPACK_ctrtri( char* uplo, char* diag, lapack_int* n, - lapack_complex_float* a, lapack_int* lda, - lapack_int *info ); -void LAPACK_ztrtri( char* uplo, char* diag, lapack_int* n, - lapack_complex_double* a, lapack_int* lda, - lapack_int *info ); -void LAPACK_dtftri( char* transr, char* uplo, char* diag, lapack_int* n, - double* a, lapack_int *info ); -void LAPACK_stftri( char* transr, char* uplo, char* diag, lapack_int* n, - float* a, lapack_int *info ); -void LAPACK_ztftri( char* transr, char* uplo, char* diag, lapack_int* n, - lapack_complex_double* a, lapack_int *info ); -void LAPACK_ctftri( char* transr, char* uplo, char* diag, lapack_int* n, - lapack_complex_float* a, lapack_int *info ); -void LAPACK_stptri( char* uplo, char* diag, lapack_int* n, float* ap, - lapack_int *info ); -void LAPACK_dtptri( char* uplo, char* diag, lapack_int* n, double* ap, - lapack_int *info ); -void LAPACK_ctptri( char* uplo, char* diag, lapack_int* n, - lapack_complex_float* ap, lapack_int *info ); -void LAPACK_ztptri( char* uplo, char* diag, lapack_int* n, - lapack_complex_double* ap, lapack_int *info ); -void LAPACK_sgeequ( lapack_int* m, lapack_int* n, const float* a, - lapack_int* lda, float* r, float* c, float* rowcnd, - float* colcnd, float* amax, lapack_int *info ); -void LAPACK_dgeequ( lapack_int* m, lapack_int* n, const double* a, - lapack_int* lda, double* r, double* c, double* rowcnd, - double* colcnd, double* amax, lapack_int *info ); -void LAPACK_cgeequ( lapack_int* m, lapack_int* n, const lapack_complex_float* a, - lapack_int* lda, float* r, float* c, float* rowcnd, - float* colcnd, float* amax, lapack_int *info ); -void LAPACK_zgeequ( lapack_int* m, lapack_int* n, - const lapack_complex_double* a, lapack_int* lda, double* r, - double* c, double* rowcnd, double* colcnd, double* amax, - lapack_int *info ); -void LAPACK_dgeequb( lapack_int* m, lapack_int* n, const double* a, - lapack_int* lda, double* r, double* c, double* rowcnd, - double* colcnd, double* amax, lapack_int *info ); -void LAPACK_sgeequb( lapack_int* m, lapack_int* n, const float* a, - lapack_int* lda, float* r, float* c, float* rowcnd, - float* colcnd, float* amax, lapack_int *info ); -void LAPACK_zgeequb( lapack_int* m, lapack_int* n, - const lapack_complex_double* a, lapack_int* lda, double* r, - double* c, double* rowcnd, double* colcnd, double* amax, - lapack_int *info ); -void LAPACK_cgeequb( lapack_int* m, lapack_int* n, - const lapack_complex_float* a, lapack_int* lda, float* r, - float* c, float* rowcnd, float* colcnd, float* amax, - lapack_int *info ); -void LAPACK_sgbequ( lapack_int* m, lapack_int* n, lapack_int* kl, - lapack_int* ku, const float* ab, lapack_int* ldab, float* r, - float* c, float* rowcnd, float* colcnd, float* amax, - lapack_int *info ); -void LAPACK_dgbequ( lapack_int* m, lapack_int* n, lapack_int* kl, - lapack_int* ku, const double* ab, lapack_int* ldab, - double* r, double* c, double* rowcnd, double* colcnd, - double* amax, lapack_int *info ); -void LAPACK_cgbequ( lapack_int* m, lapack_int* n, lapack_int* kl, - lapack_int* ku, const lapack_complex_float* ab, - lapack_int* ldab, float* r, float* c, float* rowcnd, - float* colcnd, float* amax, lapack_int *info ); -void LAPACK_zgbequ( lapack_int* m, lapack_int* n, lapack_int* kl, - lapack_int* ku, const lapack_complex_double* ab, - lapack_int* ldab, double* r, double* c, double* rowcnd, - double* colcnd, double* amax, lapack_int *info ); -void LAPACK_dgbequb( lapack_int* m, lapack_int* n, lapack_int* kl, - lapack_int* ku, const double* ab, lapack_int* ldab, - double* r, double* c, double* rowcnd, double* colcnd, - double* amax, lapack_int *info ); -void LAPACK_sgbequb( lapack_int* m, lapack_int* n, lapack_int* kl, - lapack_int* ku, const float* ab, lapack_int* ldab, - float* r, float* c, float* rowcnd, float* colcnd, - float* amax, lapack_int *info ); -void LAPACK_zgbequb( lapack_int* m, lapack_int* n, lapack_int* kl, - lapack_int* ku, const lapack_complex_double* ab, - lapack_int* ldab, double* r, double* c, double* rowcnd, - double* colcnd, double* amax, lapack_int *info ); -void LAPACK_cgbequb( lapack_int* m, lapack_int* n, lapack_int* kl, - lapack_int* ku, const lapack_complex_float* ab, - lapack_int* ldab, float* r, float* c, float* rowcnd, - float* colcnd, float* amax, lapack_int *info ); -void LAPACK_spoequ( lapack_int* n, const float* a, lapack_int* lda, float* s, - float* scond, float* amax, lapack_int *info ); -void LAPACK_dpoequ( lapack_int* n, const double* a, lapack_int* lda, double* s, - double* scond, double* amax, lapack_int *info ); -void LAPACK_cpoequ( lapack_int* n, const lapack_complex_float* a, - lapack_int* lda, float* s, float* scond, float* amax, - lapack_int *info ); -void LAPACK_zpoequ( lapack_int* n, const lapack_complex_double* a, - lapack_int* lda, double* s, double* scond, double* amax, - lapack_int *info ); -void LAPACK_dpoequb( lapack_int* n, const double* a, lapack_int* lda, double* s, - double* scond, double* amax, lapack_int *info ); -void LAPACK_spoequb( lapack_int* n, const float* a, lapack_int* lda, float* s, - float* scond, float* amax, lapack_int *info ); -void LAPACK_zpoequb( lapack_int* n, const lapack_complex_double* a, - lapack_int* lda, double* s, double* scond, double* amax, - lapack_int *info ); -void LAPACK_cpoequb( lapack_int* n, const lapack_complex_float* a, - lapack_int* lda, float* s, float* scond, float* amax, - lapack_int *info ); -void LAPACK_sppequ( char* uplo, lapack_int* n, const float* ap, float* s, - float* scond, float* amax, lapack_int *info ); -void LAPACK_dppequ( char* uplo, lapack_int* n, const double* ap, double* s, - double* scond, double* amax, lapack_int *info ); -void LAPACK_cppequ( char* uplo, lapack_int* n, const lapack_complex_float* ap, - float* s, float* scond, float* amax, lapack_int *info ); -void LAPACK_zppequ( char* uplo, lapack_int* n, const lapack_complex_double* ap, - double* s, double* scond, double* amax, lapack_int *info ); -void LAPACK_spbequ( char* uplo, lapack_int* n, lapack_int* kd, const float* ab, - lapack_int* ldab, float* s, float* scond, float* amax, - lapack_int *info ); -void LAPACK_dpbequ( char* uplo, lapack_int* n, lapack_int* kd, const double* ab, - lapack_int* ldab, double* s, double* scond, double* amax, - lapack_int *info ); -void LAPACK_cpbequ( char* uplo, lapack_int* n, lapack_int* kd, - const lapack_complex_float* ab, lapack_int* ldab, float* s, - float* scond, float* amax, lapack_int *info ); -void LAPACK_zpbequ( char* uplo, lapack_int* n, lapack_int* kd, - const lapack_complex_double* ab, lapack_int* ldab, - double* s, double* scond, double* amax, lapack_int *info ); -void LAPACK_dsyequb( char* uplo, lapack_int* n, const double* a, - lapack_int* lda, double* s, double* scond, double* amax, - double* work, lapack_int *info ); -void LAPACK_ssyequb( char* uplo, lapack_int* n, const float* a, lapack_int* lda, - float* s, float* scond, float* amax, float* work, - lapack_int *info ); -void LAPACK_zsyequb( char* uplo, lapack_int* n, const lapack_complex_double* a, - lapack_int* lda, double* s, double* scond, double* amax, - lapack_complex_double* work, lapack_int *info ); -void LAPACK_csyequb( char* uplo, lapack_int* n, const lapack_complex_float* a, - lapack_int* lda, float* s, float* scond, float* amax, - lapack_complex_float* work, lapack_int *info ); -void LAPACK_zheequb( char* uplo, lapack_int* n, const lapack_complex_double* a, - lapack_int* lda, double* s, double* scond, double* amax, - lapack_complex_double* work, lapack_int *info ); -void LAPACK_cheequb( char* uplo, lapack_int* n, const lapack_complex_float* a, - lapack_int* lda, float* s, float* scond, float* amax, - lapack_complex_float* work, lapack_int *info ); -void LAPACK_sgesv( lapack_int* n, lapack_int* nrhs, float* a, lapack_int* lda, - lapack_int* ipiv, float* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_dgesv( lapack_int* n, lapack_int* nrhs, double* a, lapack_int* lda, - lapack_int* ipiv, double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_cgesv( lapack_int* n, lapack_int* nrhs, lapack_complex_float* a, - lapack_int* lda, lapack_int* ipiv, lapack_complex_float* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_zgesv( lapack_int* n, lapack_int* nrhs, lapack_complex_double* a, - lapack_int* lda, lapack_int* ipiv, lapack_complex_double* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_dsgesv( lapack_int* n, lapack_int* nrhs, double* a, lapack_int* lda, - lapack_int* ipiv, double* b, lapack_int* ldb, double* x, - lapack_int* ldx, double* work, float* swork, - lapack_int* iter, lapack_int *info ); -void LAPACK_zcgesv( lapack_int* n, lapack_int* nrhs, lapack_complex_double* a, - lapack_int* lda, lapack_int* ipiv, lapack_complex_double* b, - lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, - lapack_complex_double* work, lapack_complex_float* swork, - double* rwork, lapack_int* iter, lapack_int *info ); -void LAPACK_sgesvx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, - float* a, lapack_int* lda, float* af, lapack_int* ldaf, - lapack_int* ipiv, char* equed, float* r, float* c, float* b, - lapack_int* ldb, float* x, lapack_int* ldx, float* rcond, - float* ferr, float* berr, float* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_dgesvx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, - double* a, lapack_int* lda, double* af, lapack_int* ldaf, - lapack_int* ipiv, char* equed, double* r, double* c, - double* b, lapack_int* ldb, double* x, lapack_int* ldx, - double* rcond, double* ferr, double* berr, double* work, - lapack_int* iwork, lapack_int *info ); -void LAPACK_cgesvx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* af, lapack_int* ldaf, - lapack_int* ipiv, char* equed, float* r, float* c, - lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* x, lapack_int* ldx, float* rcond, - float* ferr, float* berr, lapack_complex_float* work, - float* rwork, lapack_int *info ); -void LAPACK_zgesvx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* af, lapack_int* ldaf, - lapack_int* ipiv, char* equed, double* r, double* c, - lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* x, lapack_int* ldx, double* rcond, - double* ferr, double* berr, lapack_complex_double* work, - double* rwork, lapack_int *info ); -void LAPACK_dgesvxx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, - double* a, lapack_int* lda, double* af, lapack_int* ldaf, - lapack_int* ipiv, char* equed, double* r, double* c, - double* b, lapack_int* ldb, double* x, lapack_int* ldx, - double* rcond, double* rpvgrw, double* berr, - lapack_int* n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int* nparams, double* params, - double* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_sgesvxx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, - float* a, lapack_int* lda, float* af, lapack_int* ldaf, - lapack_int* ipiv, char* equed, float* r, float* c, - float* b, lapack_int* ldb, float* x, lapack_int* ldx, - float* rcond, float* rpvgrw, float* berr, - lapack_int* n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int* nparams, float* params, - float* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_zgesvxx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* af, lapack_int* ldaf, - lapack_int* ipiv, char* equed, double* r, double* c, - lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* x, lapack_int* ldx, double* rcond, - double* rpvgrw, double* berr, lapack_int* n_err_bnds, - double* err_bnds_norm, double* err_bnds_comp, - lapack_int* nparams, double* params, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_cgesvxx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* af, lapack_int* ldaf, - lapack_int* ipiv, char* equed, float* r, float* c, - lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* x, lapack_int* ldx, float* rcond, - float* rpvgrw, float* berr, lapack_int* n_err_bnds, - float* err_bnds_norm, float* err_bnds_comp, - lapack_int* nparams, float* params, - lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_sgbsv( lapack_int* n, lapack_int* kl, lapack_int* ku, - lapack_int* nrhs, float* ab, lapack_int* ldab, - lapack_int* ipiv, float* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_dgbsv( lapack_int* n, lapack_int* kl, lapack_int* ku, - lapack_int* nrhs, double* ab, lapack_int* ldab, - lapack_int* ipiv, double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_cgbsv( lapack_int* n, lapack_int* kl, lapack_int* ku, - lapack_int* nrhs, lapack_complex_float* ab, lapack_int* ldab, - lapack_int* ipiv, lapack_complex_float* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_zgbsv( lapack_int* n, lapack_int* kl, lapack_int* ku, - lapack_int* nrhs, lapack_complex_double* ab, - lapack_int* ldab, lapack_int* ipiv, lapack_complex_double* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_sgbsvx( char* fact, char* trans, lapack_int* n, lapack_int* kl, - lapack_int* ku, lapack_int* nrhs, float* ab, - lapack_int* ldab, float* afb, lapack_int* ldafb, - lapack_int* ipiv, char* equed, float* r, float* c, float* b, - lapack_int* ldb, float* x, lapack_int* ldx, float* rcond, - float* ferr, float* berr, float* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_dgbsvx( char* fact, char* trans, lapack_int* n, lapack_int* kl, - lapack_int* ku, lapack_int* nrhs, double* ab, - lapack_int* ldab, double* afb, lapack_int* ldafb, - lapack_int* ipiv, char* equed, double* r, double* c, - double* b, lapack_int* ldb, double* x, lapack_int* ldx, - double* rcond, double* ferr, double* berr, double* work, - lapack_int* iwork, lapack_int *info ); -void LAPACK_cgbsvx( char* fact, char* trans, lapack_int* n, lapack_int* kl, - lapack_int* ku, lapack_int* nrhs, lapack_complex_float* ab, - lapack_int* ldab, lapack_complex_float* afb, - lapack_int* ldafb, lapack_int* ipiv, char* equed, float* r, - float* c, lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* x, lapack_int* ldx, float* rcond, - float* ferr, float* berr, lapack_complex_float* work, - float* rwork, lapack_int *info ); -void LAPACK_zgbsvx( char* fact, char* trans, lapack_int* n, lapack_int* kl, - lapack_int* ku, lapack_int* nrhs, lapack_complex_double* ab, - lapack_int* ldab, lapack_complex_double* afb, - lapack_int* ldafb, lapack_int* ipiv, char* equed, double* r, - double* c, lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* x, lapack_int* ldx, double* rcond, - double* ferr, double* berr, lapack_complex_double* work, - double* rwork, lapack_int *info ); -void LAPACK_dgbsvxx( char* fact, char* trans, lapack_int* n, lapack_int* kl, - lapack_int* ku, lapack_int* nrhs, double* ab, - lapack_int* ldab, double* afb, lapack_int* ldafb, - lapack_int* ipiv, char* equed, double* r, double* c, - double* b, lapack_int* ldb, double* x, lapack_int* ldx, - double* rcond, double* rpvgrw, double* berr, - lapack_int* n_err_bnds, double* err_bnds_norm, - double* err_bnds_comp, lapack_int* nparams, double* params, - double* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_sgbsvxx( char* fact, char* trans, lapack_int* n, lapack_int* kl, - lapack_int* ku, lapack_int* nrhs, float* ab, - lapack_int* ldab, float* afb, lapack_int* ldafb, - lapack_int* ipiv, char* equed, float* r, float* c, - float* b, lapack_int* ldb, float* x, lapack_int* ldx, - float* rcond, float* rpvgrw, float* berr, - lapack_int* n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int* nparams, float* params, - float* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_zgbsvxx( char* fact, char* trans, lapack_int* n, lapack_int* kl, - lapack_int* ku, lapack_int* nrhs, - lapack_complex_double* ab, lapack_int* ldab, - lapack_complex_double* afb, lapack_int* ldafb, - lapack_int* ipiv, char* equed, double* r, double* c, - lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* x, lapack_int* ldx, double* rcond, - double* rpvgrw, double* berr, lapack_int* n_err_bnds, - double* err_bnds_norm, double* err_bnds_comp, - lapack_int* nparams, double* params, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_cgbsvxx( char* fact, char* trans, lapack_int* n, lapack_int* kl, - lapack_int* ku, lapack_int* nrhs, lapack_complex_float* ab, - lapack_int* ldab, lapack_complex_float* afb, - lapack_int* ldafb, lapack_int* ipiv, char* equed, float* r, - float* c, lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* x, lapack_int* ldx, float* rcond, - float* rpvgrw, float* berr, lapack_int* n_err_bnds, - float* err_bnds_norm, float* err_bnds_comp, - lapack_int* nparams, float* params, - lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_sgtsv( lapack_int* n, lapack_int* nrhs, float* dl, float* d, - float* du, float* b, lapack_int* ldb, lapack_int *info ); -void LAPACK_dgtsv( lapack_int* n, lapack_int* nrhs, double* dl, double* d, - double* du, double* b, lapack_int* ldb, lapack_int *info ); -void LAPACK_cgtsv( lapack_int* n, lapack_int* nrhs, lapack_complex_float* dl, - lapack_complex_float* d, lapack_complex_float* du, - lapack_complex_float* b, lapack_int* ldb, lapack_int *info ); -void LAPACK_zgtsv( lapack_int* n, lapack_int* nrhs, lapack_complex_double* dl, - lapack_complex_double* d, lapack_complex_double* du, - lapack_complex_double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_sgtsvx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, - const float* dl, const float* d, const float* du, - float* dlf, float* df, float* duf, float* du2, - lapack_int* ipiv, const float* b, lapack_int* ldb, float* x, - lapack_int* ldx, float* rcond, float* ferr, float* berr, - float* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_dgtsvx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, - const double* dl, const double* d, const double* du, - double* dlf, double* df, double* duf, double* du2, - lapack_int* ipiv, const double* b, lapack_int* ldb, - double* x, lapack_int* ldx, double* rcond, double* ferr, - double* berr, double* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_cgtsvx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* dl, - const lapack_complex_float* d, - const lapack_complex_float* du, lapack_complex_float* dlf, - lapack_complex_float* df, lapack_complex_float* duf, - lapack_complex_float* du2, lapack_int* ipiv, - const lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* x, lapack_int* ldx, float* rcond, - float* ferr, float* berr, lapack_complex_float* work, - float* rwork, lapack_int *info ); -void LAPACK_zgtsvx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* dl, - const lapack_complex_double* d, - const lapack_complex_double* du, lapack_complex_double* dlf, - lapack_complex_double* df, lapack_complex_double* duf, - lapack_complex_double* du2, lapack_int* ipiv, - const lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* x, lapack_int* ldx, double* rcond, - double* ferr, double* berr, lapack_complex_double* work, - double* rwork, lapack_int *info ); -void LAPACK_sposv( char* uplo, lapack_int* n, lapack_int* nrhs, float* a, - lapack_int* lda, float* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_dposv( char* uplo, lapack_int* n, lapack_int* nrhs, double* a, - lapack_int* lda, double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_cposv( char* uplo, lapack_int* n, lapack_int* nrhs, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* b, lapack_int* ldb, lapack_int *info ); -void LAPACK_zposv( char* uplo, lapack_int* n, lapack_int* nrhs, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_dsposv( char* uplo, lapack_int* n, lapack_int* nrhs, double* a, - lapack_int* lda, double* b, lapack_int* ldb, double* x, - lapack_int* ldx, double* work, float* swork, - lapack_int* iter, lapack_int *info ); -void LAPACK_zcposv( char* uplo, lapack_int* n, lapack_int* nrhs, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* x, lapack_int* ldx, - lapack_complex_double* work, lapack_complex_float* swork, - double* rwork, lapack_int* iter, lapack_int *info ); -void LAPACK_sposvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - float* a, lapack_int* lda, float* af, lapack_int* ldaf, - char* equed, float* s, float* b, lapack_int* ldb, float* x, - lapack_int* ldx, float* rcond, float* ferr, float* berr, - float* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_dposvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - double* a, lapack_int* lda, double* af, lapack_int* ldaf, - char* equed, double* s, double* b, lapack_int* ldb, - double* x, lapack_int* ldx, double* rcond, double* ferr, - double* berr, double* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_cposvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* af, lapack_int* ldaf, char* equed, - float* s, lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* x, lapack_int* ldx, float* rcond, - float* ferr, float* berr, lapack_complex_float* work, - float* rwork, lapack_int *info ); -void LAPACK_zposvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* af, lapack_int* ldaf, char* equed, - double* s, lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* x, lapack_int* ldx, double* rcond, - double* ferr, double* berr, lapack_complex_double* work, - double* rwork, lapack_int *info ); -void LAPACK_dposvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - double* a, lapack_int* lda, double* af, lapack_int* ldaf, - char* equed, double* s, double* b, lapack_int* ldb, - double* x, lapack_int* ldx, double* rcond, double* rpvgrw, - double* berr, lapack_int* n_err_bnds, - double* err_bnds_norm, double* err_bnds_comp, - lapack_int* nparams, double* params, double* work, - lapack_int* iwork, lapack_int *info ); -void LAPACK_sposvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - float* a, lapack_int* lda, float* af, lapack_int* ldaf, - char* equed, float* s, float* b, lapack_int* ldb, float* x, - lapack_int* ldx, float* rcond, float* rpvgrw, float* berr, - lapack_int* n_err_bnds, float* err_bnds_norm, - float* err_bnds_comp, lapack_int* nparams, float* params, - float* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_zposvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* af, lapack_int* ldaf, char* equed, - double* s, lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* x, lapack_int* ldx, double* rcond, - double* rpvgrw, double* berr, lapack_int* n_err_bnds, - double* err_bnds_norm, double* err_bnds_comp, - lapack_int* nparams, double* params, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_cposvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* af, lapack_int* ldaf, char* equed, - float* s, lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* x, lapack_int* ldx, float* rcond, - float* rpvgrw, float* berr, lapack_int* n_err_bnds, - float* err_bnds_norm, float* err_bnds_comp, - lapack_int* nparams, float* params, - lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_sppsv( char* uplo, lapack_int* n, lapack_int* nrhs, float* ap, - float* b, lapack_int* ldb, lapack_int *info ); -void LAPACK_dppsv( char* uplo, lapack_int* n, lapack_int* nrhs, double* ap, - double* b, lapack_int* ldb, lapack_int *info ); -void LAPACK_cppsv( char* uplo, lapack_int* n, lapack_int* nrhs, - lapack_complex_float* ap, lapack_complex_float* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_zppsv( char* uplo, lapack_int* n, lapack_int* nrhs, - lapack_complex_double* ap, lapack_complex_double* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_sppsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - float* ap, float* afp, char* equed, float* s, float* b, - lapack_int* ldb, float* x, lapack_int* ldx, float* rcond, - float* ferr, float* berr, float* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_dppsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - double* ap, double* afp, char* equed, double* s, double* b, - lapack_int* ldb, double* x, lapack_int* ldx, double* rcond, - double* ferr, double* berr, double* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_cppsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - lapack_complex_float* ap, lapack_complex_float* afp, - char* equed, float* s, lapack_complex_float* b, - lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, - float* rcond, float* ferr, float* berr, - lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_zppsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - lapack_complex_double* ap, lapack_complex_double* afp, - char* equed, double* s, lapack_complex_double* b, - lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, - double* rcond, double* ferr, double* berr, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_spbsv( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, - float* ab, lapack_int* ldab, float* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_dpbsv( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, - double* ab, lapack_int* ldab, double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_cpbsv( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, - lapack_complex_float* ab, lapack_int* ldab, - lapack_complex_float* b, lapack_int* ldb, lapack_int *info ); -void LAPACK_zpbsv( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, - lapack_complex_double* ab, lapack_int* ldab, - lapack_complex_double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_spbsvx( char* fact, char* uplo, lapack_int* n, lapack_int* kd, - lapack_int* nrhs, float* ab, lapack_int* ldab, float* afb, - lapack_int* ldafb, char* equed, float* s, float* b, - lapack_int* ldb, float* x, lapack_int* ldx, float* rcond, - float* ferr, float* berr, float* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_dpbsvx( char* fact, char* uplo, lapack_int* n, lapack_int* kd, - lapack_int* nrhs, double* ab, lapack_int* ldab, double* afb, - lapack_int* ldafb, char* equed, double* s, double* b, - lapack_int* ldb, double* x, lapack_int* ldx, double* rcond, - double* ferr, double* berr, double* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_cpbsvx( char* fact, char* uplo, lapack_int* n, lapack_int* kd, - lapack_int* nrhs, lapack_complex_float* ab, - lapack_int* ldab, lapack_complex_float* afb, - lapack_int* ldafb, char* equed, float* s, - lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* x, lapack_int* ldx, float* rcond, - float* ferr, float* berr, lapack_complex_float* work, - float* rwork, lapack_int *info ); -void LAPACK_zpbsvx( char* fact, char* uplo, lapack_int* n, lapack_int* kd, - lapack_int* nrhs, lapack_complex_double* ab, - lapack_int* ldab, lapack_complex_double* afb, - lapack_int* ldafb, char* equed, double* s, - lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* x, lapack_int* ldx, double* rcond, - double* ferr, double* berr, lapack_complex_double* work, - double* rwork, lapack_int *info ); -void LAPACK_sptsv( lapack_int* n, lapack_int* nrhs, float* d, float* e, - float* b, lapack_int* ldb, lapack_int *info ); -void LAPACK_dptsv( lapack_int* n, lapack_int* nrhs, double* d, double* e, - double* b, lapack_int* ldb, lapack_int *info ); -void LAPACK_cptsv( lapack_int* n, lapack_int* nrhs, float* d, - lapack_complex_float* e, lapack_complex_float* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_zptsv( lapack_int* n, lapack_int* nrhs, double* d, - lapack_complex_double* e, lapack_complex_double* b, - lapack_int* ldb, lapack_int *info ); -void LAPACK_sptsvx( char* fact, lapack_int* n, lapack_int* nrhs, const float* d, - const float* e, float* df, float* ef, const float* b, - lapack_int* ldb, float* x, lapack_int* ldx, float* rcond, - float* ferr, float* berr, float* work, lapack_int *info ); -void LAPACK_dptsvx( char* fact, lapack_int* n, lapack_int* nrhs, - const double* d, const double* e, double* df, double* ef, - const double* b, lapack_int* ldb, double* x, - lapack_int* ldx, double* rcond, double* ferr, double* berr, - double* work, lapack_int *info ); -void LAPACK_cptsvx( char* fact, lapack_int* n, lapack_int* nrhs, const float* d, - const lapack_complex_float* e, float* df, - lapack_complex_float* ef, const lapack_complex_float* b, - lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, - float* rcond, float* ferr, float* berr, - lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_zptsvx( char* fact, lapack_int* n, lapack_int* nrhs, - const double* d, const lapack_complex_double* e, double* df, - lapack_complex_double* ef, const lapack_complex_double* b, - lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, - double* rcond, double* ferr, double* berr, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_ssysv( char* uplo, lapack_int* n, lapack_int* nrhs, float* a, - lapack_int* lda, lapack_int* ipiv, float* b, lapack_int* ldb, - float* work, lapack_int* lwork, lapack_int *info ); -void LAPACK_dsysv( char* uplo, lapack_int* n, lapack_int* nrhs, double* a, - lapack_int* lda, lapack_int* ipiv, double* b, - lapack_int* ldb, double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_csysv( char* uplo, lapack_int* n, lapack_int* nrhs, - lapack_complex_float* a, lapack_int* lda, lapack_int* ipiv, - lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_zsysv( char* uplo, lapack_int* n, lapack_int* nrhs, - lapack_complex_double* a, lapack_int* lda, lapack_int* ipiv, - lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_ssysvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - const float* a, lapack_int* lda, float* af, - lapack_int* ldaf, lapack_int* ipiv, const float* b, - lapack_int* ldb, float* x, lapack_int* ldx, float* rcond, - float* ferr, float* berr, float* work, lapack_int* lwork, - lapack_int* iwork, lapack_int *info ); -void LAPACK_dsysvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - const double* a, lapack_int* lda, double* af, - lapack_int* ldaf, lapack_int* ipiv, const double* b, - lapack_int* ldb, double* x, lapack_int* ldx, double* rcond, - double* ferr, double* berr, double* work, lapack_int* lwork, - lapack_int* iwork, lapack_int *info ); -void LAPACK_csysvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* af, lapack_int* ldaf, - lapack_int* ipiv, const lapack_complex_float* b, - lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, - float* rcond, float* ferr, float* berr, - lapack_complex_float* work, lapack_int* lwork, float* rwork, - lapack_int *info ); -void LAPACK_zsysvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* af, lapack_int* ldaf, - lapack_int* ipiv, const lapack_complex_double* b, - lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, - double* rcond, double* ferr, double* berr, - lapack_complex_double* work, lapack_int* lwork, - double* rwork, lapack_int *info ); -void LAPACK_dsysvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - double* a, lapack_int* lda, double* af, lapack_int* ldaf, - lapack_int* ipiv, char* equed, double* s, double* b, - lapack_int* ldb, double* x, lapack_int* ldx, double* rcond, - double* rpvgrw, double* berr, lapack_int* n_err_bnds, - double* err_bnds_norm, double* err_bnds_comp, - lapack_int* nparams, double* params, double* work, - lapack_int* iwork, lapack_int *info ); -void LAPACK_ssysvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - float* a, lapack_int* lda, float* af, lapack_int* ldaf, - lapack_int* ipiv, char* equed, float* s, float* b, - lapack_int* ldb, float* x, lapack_int* ldx, float* rcond, - float* rpvgrw, float* berr, lapack_int* n_err_bnds, - float* err_bnds_norm, float* err_bnds_comp, - lapack_int* nparams, float* params, float* work, - lapack_int* iwork, lapack_int *info ); -void LAPACK_zsysvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* af, lapack_int* ldaf, - lapack_int* ipiv, char* equed, double* s, - lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* x, lapack_int* ldx, double* rcond, - double* rpvgrw, double* berr, lapack_int* n_err_bnds, - double* err_bnds_norm, double* err_bnds_comp, - lapack_int* nparams, double* params, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_csysvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* af, lapack_int* ldaf, - lapack_int* ipiv, char* equed, float* s, - lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* x, lapack_int* ldx, float* rcond, - float* rpvgrw, float* berr, lapack_int* n_err_bnds, - float* err_bnds_norm, float* err_bnds_comp, - lapack_int* nparams, float* params, - lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_chesv( char* uplo, lapack_int* n, lapack_int* nrhs, - lapack_complex_float* a, lapack_int* lda, lapack_int* ipiv, - lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_zhesv( char* uplo, lapack_int* n, lapack_int* nrhs, - lapack_complex_double* a, lapack_int* lda, lapack_int* ipiv, - lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_chesvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* af, lapack_int* ldaf, - lapack_int* ipiv, const lapack_complex_float* b, - lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, - float* rcond, float* ferr, float* berr, - lapack_complex_float* work, lapack_int* lwork, float* rwork, - lapack_int *info ); -void LAPACK_zhesvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* af, lapack_int* ldaf, - lapack_int* ipiv, const lapack_complex_double* b, - lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, - double* rcond, double* ferr, double* berr, - lapack_complex_double* work, lapack_int* lwork, - double* rwork, lapack_int *info ); -void LAPACK_zhesvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* af, lapack_int* ldaf, - lapack_int* ipiv, char* equed, double* s, - lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* x, lapack_int* ldx, double* rcond, - double* rpvgrw, double* berr, lapack_int* n_err_bnds, - double* err_bnds_norm, double* err_bnds_comp, - lapack_int* nparams, double* params, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_chesvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* af, lapack_int* ldaf, - lapack_int* ipiv, char* equed, float* s, - lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* x, lapack_int* ldx, float* rcond, - float* rpvgrw, float* berr, lapack_int* n_err_bnds, - float* err_bnds_norm, float* err_bnds_comp, - lapack_int* nparams, float* params, - lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_sspsv( char* uplo, lapack_int* n, lapack_int* nrhs, float* ap, - lapack_int* ipiv, float* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_dspsv( char* uplo, lapack_int* n, lapack_int* nrhs, double* ap, - lapack_int* ipiv, double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_cspsv( char* uplo, lapack_int* n, lapack_int* nrhs, - lapack_complex_float* ap, lapack_int* ipiv, - lapack_complex_float* b, lapack_int* ldb, lapack_int *info ); -void LAPACK_zspsv( char* uplo, lapack_int* n, lapack_int* nrhs, - lapack_complex_double* ap, lapack_int* ipiv, - lapack_complex_double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_sspsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - const float* ap, float* afp, lapack_int* ipiv, - const float* b, lapack_int* ldb, float* x, lapack_int* ldx, - float* rcond, float* ferr, float* berr, float* work, - lapack_int* iwork, lapack_int *info ); -void LAPACK_dspsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - const double* ap, double* afp, lapack_int* ipiv, - const double* b, lapack_int* ldb, double* x, - lapack_int* ldx, double* rcond, double* ferr, double* berr, - double* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_cspsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* ap, lapack_complex_float* afp, - lapack_int* ipiv, const lapack_complex_float* b, - lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, - float* rcond, float* ferr, float* berr, - lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_zspsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* ap, lapack_complex_double* afp, - lapack_int* ipiv, const lapack_complex_double* b, - lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, - double* rcond, double* ferr, double* berr, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_chpsv( char* uplo, lapack_int* n, lapack_int* nrhs, - lapack_complex_float* ap, lapack_int* ipiv, - lapack_complex_float* b, lapack_int* ldb, lapack_int *info ); -void LAPACK_zhpsv( char* uplo, lapack_int* n, lapack_int* nrhs, - lapack_complex_double* ap, lapack_int* ipiv, - lapack_complex_double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_chpsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_float* ap, lapack_complex_float* afp, - lapack_int* ipiv, const lapack_complex_float* b, - lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, - float* rcond, float* ferr, float* berr, - lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_zhpsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, - const lapack_complex_double* ap, lapack_complex_double* afp, - lapack_int* ipiv, const lapack_complex_double* b, - lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, - double* rcond, double* ferr, double* berr, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_sgeqrf( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, - float* tau, float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_dgeqrf( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, - double* tau, double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_cgeqrf( lapack_int* m, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, lapack_complex_float* tau, - lapack_complex_float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_zgeqrf( lapack_int* m, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, lapack_complex_double* tau, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_sgeqpf( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, - lapack_int* jpvt, float* tau, float* work, - lapack_int *info ); -void LAPACK_dgeqpf( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, - lapack_int* jpvt, double* tau, double* work, - lapack_int *info ); -void LAPACK_cgeqpf( lapack_int* m, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, lapack_int* jpvt, - lapack_complex_float* tau, lapack_complex_float* work, - float* rwork, lapack_int *info ); -void LAPACK_zgeqpf( lapack_int* m, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, lapack_int* jpvt, - lapack_complex_double* tau, lapack_complex_double* work, - double* rwork, lapack_int *info ); -void LAPACK_sgeqp3( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, - lapack_int* jpvt, float* tau, float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_dgeqp3( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, - lapack_int* jpvt, double* tau, double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_cgeqp3( lapack_int* m, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, lapack_int* jpvt, - lapack_complex_float* tau, lapack_complex_float* work, - lapack_int* lwork, float* rwork, lapack_int *info ); -void LAPACK_zgeqp3( lapack_int* m, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, lapack_int* jpvt, - lapack_complex_double* tau, lapack_complex_double* work, - lapack_int* lwork, double* rwork, lapack_int *info ); -void LAPACK_sorgqr( lapack_int* m, lapack_int* n, lapack_int* k, float* a, - lapack_int* lda, const float* tau, float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_dorgqr( lapack_int* m, lapack_int* n, lapack_int* k, double* a, - lapack_int* lda, const double* tau, double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_sormqr( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, const float* a, lapack_int* lda, - const float* tau, float* c, lapack_int* ldc, float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_dormqr( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, const double* a, lapack_int* lda, - const double* tau, double* c, lapack_int* ldc, double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_cungqr( lapack_int* m, lapack_int* n, lapack_int* k, - lapack_complex_float* a, lapack_int* lda, - const lapack_complex_float* tau, lapack_complex_float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_zungqr( lapack_int* m, lapack_int* n, lapack_int* k, - lapack_complex_double* a, lapack_int* lda, - const lapack_complex_double* tau, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_cunmqr( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, const lapack_complex_float* a, - lapack_int* lda, const lapack_complex_float* tau, - lapack_complex_float* c, lapack_int* ldc, - lapack_complex_float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_zunmqr( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, const lapack_complex_double* a, - lapack_int* lda, const lapack_complex_double* tau, - lapack_complex_double* c, lapack_int* ldc, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_sgelqf( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, - float* tau, float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_dgelqf( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, - double* tau, double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_cgelqf( lapack_int* m, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, lapack_complex_float* tau, - lapack_complex_float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_zgelqf( lapack_int* m, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, lapack_complex_double* tau, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_sorglq( lapack_int* m, lapack_int* n, lapack_int* k, float* a, - lapack_int* lda, const float* tau, float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_dorglq( lapack_int* m, lapack_int* n, lapack_int* k, double* a, - lapack_int* lda, const double* tau, double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_sormlq( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, const float* a, lapack_int* lda, - const float* tau, float* c, lapack_int* ldc, float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_dormlq( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, const double* a, lapack_int* lda, - const double* tau, double* c, lapack_int* ldc, double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_cunglq( lapack_int* m, lapack_int* n, lapack_int* k, - lapack_complex_float* a, lapack_int* lda, - const lapack_complex_float* tau, lapack_complex_float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_zunglq( lapack_int* m, lapack_int* n, lapack_int* k, - lapack_complex_double* a, lapack_int* lda, - const lapack_complex_double* tau, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_cunmlq( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, const lapack_complex_float* a, - lapack_int* lda, const lapack_complex_float* tau, - lapack_complex_float* c, lapack_int* ldc, - lapack_complex_float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_zunmlq( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, const lapack_complex_double* a, - lapack_int* lda, const lapack_complex_double* tau, - lapack_complex_double* c, lapack_int* ldc, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_sgeqlf( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, - float* tau, float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_dgeqlf( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, - double* tau, double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_cgeqlf( lapack_int* m, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, lapack_complex_float* tau, - lapack_complex_float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_zgeqlf( lapack_int* m, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, lapack_complex_double* tau, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_sorgql( lapack_int* m, lapack_int* n, lapack_int* k, float* a, - lapack_int* lda, const float* tau, float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_dorgql( lapack_int* m, lapack_int* n, lapack_int* k, double* a, - lapack_int* lda, const double* tau, double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_cungql( lapack_int* m, lapack_int* n, lapack_int* k, - lapack_complex_float* a, lapack_int* lda, - const lapack_complex_float* tau, lapack_complex_float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_zungql( lapack_int* m, lapack_int* n, lapack_int* k, - lapack_complex_double* a, lapack_int* lda, - const lapack_complex_double* tau, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_sormql( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, const float* a, lapack_int* lda, - const float* tau, float* c, lapack_int* ldc, float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_dormql( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, const double* a, lapack_int* lda, - const double* tau, double* c, lapack_int* ldc, double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_cunmql( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, const lapack_complex_float* a, - lapack_int* lda, const lapack_complex_float* tau, - lapack_complex_float* c, lapack_int* ldc, - lapack_complex_float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_zunmql( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, const lapack_complex_double* a, - lapack_int* lda, const lapack_complex_double* tau, - lapack_complex_double* c, lapack_int* ldc, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_sgerqf( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, - float* tau, float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_dgerqf( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, - double* tau, double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_cgerqf( lapack_int* m, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, lapack_complex_float* tau, - lapack_complex_float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_zgerqf( lapack_int* m, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, lapack_complex_double* tau, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_sorgrq( lapack_int* m, lapack_int* n, lapack_int* k, float* a, - lapack_int* lda, const float* tau, float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_dorgrq( lapack_int* m, lapack_int* n, lapack_int* k, double* a, - lapack_int* lda, const double* tau, double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_cungrq( lapack_int* m, lapack_int* n, lapack_int* k, - lapack_complex_float* a, lapack_int* lda, - const lapack_complex_float* tau, lapack_complex_float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_zungrq( lapack_int* m, lapack_int* n, lapack_int* k, - lapack_complex_double* a, lapack_int* lda, - const lapack_complex_double* tau, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_sormrq( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, const float* a, lapack_int* lda, - const float* tau, float* c, lapack_int* ldc, float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_dormrq( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, const double* a, lapack_int* lda, - const double* tau, double* c, lapack_int* ldc, double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_cunmrq( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, const lapack_complex_float* a, - lapack_int* lda, const lapack_complex_float* tau, - lapack_complex_float* c, lapack_int* ldc, - lapack_complex_float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_zunmrq( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, const lapack_complex_double* a, - lapack_int* lda, const lapack_complex_double* tau, - lapack_complex_double* c, lapack_int* ldc, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_stzrzf( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, - float* tau, float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_dtzrzf( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, - double* tau, double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_ctzrzf( lapack_int* m, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, lapack_complex_float* tau, - lapack_complex_float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_ztzrzf( lapack_int* m, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, lapack_complex_double* tau, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_sormrz( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, lapack_int* l, const float* a, - lapack_int* lda, const float* tau, float* c, - lapack_int* ldc, float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_dormrz( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, lapack_int* l, const double* a, - lapack_int* lda, const double* tau, double* c, - lapack_int* ldc, double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_cunmrz( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, lapack_int* l, const lapack_complex_float* a, - lapack_int* lda, const lapack_complex_float* tau, - lapack_complex_float* c, lapack_int* ldc, - lapack_complex_float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_zunmrz( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, lapack_int* l, - const lapack_complex_double* a, lapack_int* lda, - const lapack_complex_double* tau, lapack_complex_double* c, - lapack_int* ldc, lapack_complex_double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_sggqrf( lapack_int* n, lapack_int* m, lapack_int* p, float* a, - lapack_int* lda, float* taua, float* b, lapack_int* ldb, - float* taub, float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_dggqrf( lapack_int* n, lapack_int* m, lapack_int* p, double* a, - lapack_int* lda, double* taua, double* b, lapack_int* ldb, - double* taub, double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_cggqrf( lapack_int* n, lapack_int* m, lapack_int* p, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* taua, lapack_complex_float* b, - lapack_int* ldb, lapack_complex_float* taub, - lapack_complex_float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_zggqrf( lapack_int* n, lapack_int* m, lapack_int* p, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* taua, lapack_complex_double* b, - lapack_int* ldb, lapack_complex_double* taub, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_sggrqf( lapack_int* m, lapack_int* p, lapack_int* n, float* a, - lapack_int* lda, float* taua, float* b, lapack_int* ldb, - float* taub, float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_dggrqf( lapack_int* m, lapack_int* p, lapack_int* n, double* a, - lapack_int* lda, double* taua, double* b, lapack_int* ldb, - double* taub, double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_cggrqf( lapack_int* m, lapack_int* p, lapack_int* n, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* taua, lapack_complex_float* b, - lapack_int* ldb, lapack_complex_float* taub, - lapack_complex_float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_zggrqf( lapack_int* m, lapack_int* p, lapack_int* n, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* taua, lapack_complex_double* b, - lapack_int* ldb, lapack_complex_double* taub, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_sgebrd( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, - float* d, float* e, float* tauq, float* taup, float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_dgebrd( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, - double* d, double* e, double* tauq, double* taup, - double* work, lapack_int* lwork, lapack_int *info ); -void LAPACK_cgebrd( lapack_int* m, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, float* d, float* e, - lapack_complex_float* tauq, lapack_complex_float* taup, - lapack_complex_float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_zgebrd( lapack_int* m, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, double* d, double* e, - lapack_complex_double* tauq, lapack_complex_double* taup, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_sgbbrd( char* vect, lapack_int* m, lapack_int* n, lapack_int* ncc, - lapack_int* kl, lapack_int* ku, float* ab, lapack_int* ldab, - float* d, float* e, float* q, lapack_int* ldq, float* pt, - lapack_int* ldpt, float* c, lapack_int* ldc, float* work, - lapack_int *info ); -void LAPACK_dgbbrd( char* vect, lapack_int* m, lapack_int* n, lapack_int* ncc, - lapack_int* kl, lapack_int* ku, double* ab, - lapack_int* ldab, double* d, double* e, double* q, - lapack_int* ldq, double* pt, lapack_int* ldpt, double* c, - lapack_int* ldc, double* work, lapack_int *info ); -void LAPACK_cgbbrd( char* vect, lapack_int* m, lapack_int* n, lapack_int* ncc, - lapack_int* kl, lapack_int* ku, lapack_complex_float* ab, - lapack_int* ldab, float* d, float* e, - lapack_complex_float* q, lapack_int* ldq, - lapack_complex_float* pt, lapack_int* ldpt, - lapack_complex_float* c, lapack_int* ldc, - lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_zgbbrd( char* vect, lapack_int* m, lapack_int* n, lapack_int* ncc, - lapack_int* kl, lapack_int* ku, lapack_complex_double* ab, - lapack_int* ldab, double* d, double* e, - lapack_complex_double* q, lapack_int* ldq, - lapack_complex_double* pt, lapack_int* ldpt, - lapack_complex_double* c, lapack_int* ldc, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_sorgbr( char* vect, lapack_int* m, lapack_int* n, lapack_int* k, - float* a, lapack_int* lda, const float* tau, float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_dorgbr( char* vect, lapack_int* m, lapack_int* n, lapack_int* k, - double* a, lapack_int* lda, const double* tau, double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_sormbr( char* vect, char* side, char* trans, lapack_int* m, - lapack_int* n, lapack_int* k, const float* a, - lapack_int* lda, const float* tau, float* c, - lapack_int* ldc, float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_dormbr( char* vect, char* side, char* trans, lapack_int* m, - lapack_int* n, lapack_int* k, const double* a, - lapack_int* lda, const double* tau, double* c, - lapack_int* ldc, double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_cungbr( char* vect, lapack_int* m, lapack_int* n, lapack_int* k, - lapack_complex_float* a, lapack_int* lda, - const lapack_complex_float* tau, lapack_complex_float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_zungbr( char* vect, lapack_int* m, lapack_int* n, lapack_int* k, - lapack_complex_double* a, lapack_int* lda, - const lapack_complex_double* tau, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_cunmbr( char* vect, char* side, char* trans, lapack_int* m, - lapack_int* n, lapack_int* k, const lapack_complex_float* a, - lapack_int* lda, const lapack_complex_float* tau, - lapack_complex_float* c, lapack_int* ldc, - lapack_complex_float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_zunmbr( char* vect, char* side, char* trans, lapack_int* m, - lapack_int* n, lapack_int* k, - const lapack_complex_double* a, lapack_int* lda, - const lapack_complex_double* tau, lapack_complex_double* c, - lapack_int* ldc, lapack_complex_double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_sbdsqr( char* uplo, lapack_int* n, lapack_int* ncvt, - lapack_int* nru, lapack_int* ncc, float* d, float* e, - float* vt, lapack_int* ldvt, float* u, lapack_int* ldu, - float* c, lapack_int* ldc, float* work, lapack_int *info ); -void LAPACK_dbdsqr( char* uplo, lapack_int* n, lapack_int* ncvt, - lapack_int* nru, lapack_int* ncc, double* d, double* e, - double* vt, lapack_int* ldvt, double* u, lapack_int* ldu, - double* c, lapack_int* ldc, double* work, - lapack_int *info ); -void LAPACK_cbdsqr( char* uplo, lapack_int* n, lapack_int* ncvt, - lapack_int* nru, lapack_int* ncc, float* d, float* e, - lapack_complex_float* vt, lapack_int* ldvt, - lapack_complex_float* u, lapack_int* ldu, - lapack_complex_float* c, lapack_int* ldc, float* work, - lapack_int *info ); -void LAPACK_zbdsqr( char* uplo, lapack_int* n, lapack_int* ncvt, - lapack_int* nru, lapack_int* ncc, double* d, double* e, - lapack_complex_double* vt, lapack_int* ldvt, - lapack_complex_double* u, lapack_int* ldu, - lapack_complex_double* c, lapack_int* ldc, double* work, - lapack_int *info ); -void LAPACK_sbdsdc( char* uplo, char* compq, lapack_int* n, float* d, float* e, - float* u, lapack_int* ldu, float* vt, lapack_int* ldvt, - float* q, lapack_int* iq, float* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_dbdsdc( char* uplo, char* compq, lapack_int* n, double* d, - double* e, double* u, lapack_int* ldu, double* vt, - lapack_int* ldvt, double* q, lapack_int* iq, double* work, - lapack_int* iwork, lapack_int *info ); -void LAPACK_ssytrd( char* uplo, lapack_int* n, float* a, lapack_int* lda, - float* d, float* e, float* tau, float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_dsytrd( char* uplo, lapack_int* n, double* a, lapack_int* lda, - double* d, double* e, double* tau, double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_sorgtr( char* uplo, lapack_int* n, float* a, lapack_int* lda, - const float* tau, float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_dorgtr( char* uplo, lapack_int* n, double* a, lapack_int* lda, - const double* tau, double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_sormtr( char* side, char* uplo, char* trans, lapack_int* m, - lapack_int* n, const float* a, lapack_int* lda, - const float* tau, float* c, lapack_int* ldc, float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_dormtr( char* side, char* uplo, char* trans, lapack_int* m, - lapack_int* n, const double* a, lapack_int* lda, - const double* tau, double* c, lapack_int* ldc, double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_chetrd( char* uplo, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, float* d, float* e, - lapack_complex_float* tau, lapack_complex_float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_zhetrd( char* uplo, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, double* d, double* e, - lapack_complex_double* tau, lapack_complex_double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_cungtr( char* uplo, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, const lapack_complex_float* tau, - lapack_complex_float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_zungtr( char* uplo, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, const lapack_complex_double* tau, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_cunmtr( char* side, char* uplo, char* trans, lapack_int* m, - lapack_int* n, const lapack_complex_float* a, - lapack_int* lda, const lapack_complex_float* tau, - lapack_complex_float* c, lapack_int* ldc, - lapack_complex_float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_zunmtr( char* side, char* uplo, char* trans, lapack_int* m, - lapack_int* n, const lapack_complex_double* a, - lapack_int* lda, const lapack_complex_double* tau, - lapack_complex_double* c, lapack_int* ldc, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_ssptrd( char* uplo, lapack_int* n, float* ap, float* d, float* e, - float* tau, lapack_int *info ); -void LAPACK_dsptrd( char* uplo, lapack_int* n, double* ap, double* d, double* e, - double* tau, lapack_int *info ); -void LAPACK_sopgtr( char* uplo, lapack_int* n, const float* ap, - const float* tau, float* q, lapack_int* ldq, float* work, - lapack_int *info ); -void LAPACK_dopgtr( char* uplo, lapack_int* n, const double* ap, - const double* tau, double* q, lapack_int* ldq, double* work, - lapack_int *info ); -void LAPACK_sopmtr( char* side, char* uplo, char* trans, lapack_int* m, - lapack_int* n, const float* ap, const float* tau, float* c, - lapack_int* ldc, float* work, lapack_int *info ); -void LAPACK_dopmtr( char* side, char* uplo, char* trans, lapack_int* m, - lapack_int* n, const double* ap, const double* tau, - double* c, lapack_int* ldc, double* work, - lapack_int *info ); -void LAPACK_chptrd( char* uplo, lapack_int* n, lapack_complex_float* ap, - float* d, float* e, lapack_complex_float* tau, - lapack_int *info ); -void LAPACK_zhptrd( char* uplo, lapack_int* n, lapack_complex_double* ap, - double* d, double* e, lapack_complex_double* tau, - lapack_int *info ); -void LAPACK_cupgtr( char* uplo, lapack_int* n, const lapack_complex_float* ap, - const lapack_complex_float* tau, lapack_complex_float* q, - lapack_int* ldq, lapack_complex_float* work, - lapack_int *info ); -void LAPACK_zupgtr( char* uplo, lapack_int* n, const lapack_complex_double* ap, - const lapack_complex_double* tau, lapack_complex_double* q, - lapack_int* ldq, lapack_complex_double* work, - lapack_int *info ); -void LAPACK_cupmtr( char* side, char* uplo, char* trans, lapack_int* m, - lapack_int* n, const lapack_complex_float* ap, - const lapack_complex_float* tau, lapack_complex_float* c, - lapack_int* ldc, lapack_complex_float* work, - lapack_int *info ); -void LAPACK_zupmtr( char* side, char* uplo, char* trans, lapack_int* m, - lapack_int* n, const lapack_complex_double* ap, - const lapack_complex_double* tau, lapack_complex_double* c, - lapack_int* ldc, lapack_complex_double* work, - lapack_int *info ); -void LAPACK_ssbtrd( char* vect, char* uplo, lapack_int* n, lapack_int* kd, - float* ab, lapack_int* ldab, float* d, float* e, float* q, - lapack_int* ldq, float* work, lapack_int *info ); -void LAPACK_dsbtrd( char* vect, char* uplo, lapack_int* n, lapack_int* kd, - double* ab, lapack_int* ldab, double* d, double* e, - double* q, lapack_int* ldq, double* work, - lapack_int *info ); -void LAPACK_chbtrd( char* vect, char* uplo, lapack_int* n, lapack_int* kd, - lapack_complex_float* ab, lapack_int* ldab, float* d, - float* e, lapack_complex_float* q, lapack_int* ldq, - lapack_complex_float* work, lapack_int *info ); -void LAPACK_zhbtrd( char* vect, char* uplo, lapack_int* n, lapack_int* kd, - lapack_complex_double* ab, lapack_int* ldab, double* d, - double* e, lapack_complex_double* q, lapack_int* ldq, - lapack_complex_double* work, lapack_int *info ); -void LAPACK_ssterf( lapack_int* n, float* d, float* e, lapack_int *info ); -void LAPACK_dsterf( lapack_int* n, double* d, double* e, lapack_int *info ); -void LAPACK_ssteqr( char* compz, lapack_int* n, float* d, float* e, float* z, - lapack_int* ldz, float* work, lapack_int *info ); -void LAPACK_dsteqr( char* compz, lapack_int* n, double* d, double* e, double* z, - lapack_int* ldz, double* work, lapack_int *info ); -void LAPACK_csteqr( char* compz, lapack_int* n, float* d, float* e, - lapack_complex_float* z, lapack_int* ldz, float* work, - lapack_int *info ); -void LAPACK_zsteqr( char* compz, lapack_int* n, double* d, double* e, - lapack_complex_double* z, lapack_int* ldz, double* work, - lapack_int *info ); -void LAPACK_sstemr( char* jobz, char* range, lapack_int* n, float* d, float* e, - float* vl, float* vu, lapack_int* il, lapack_int* iu, - lapack_int* m, float* w, float* z, lapack_int* ldz, - lapack_int* nzc, lapack_int* isuppz, lapack_logical* tryrac, - float* work, lapack_int* lwork, lapack_int* iwork, - lapack_int* liwork, lapack_int *info ); -void LAPACK_dstemr( char* jobz, char* range, lapack_int* n, double* d, - double* e, double* vl, double* vu, lapack_int* il, - lapack_int* iu, lapack_int* m, double* w, double* z, - lapack_int* ldz, lapack_int* nzc, lapack_int* isuppz, - lapack_logical* tryrac, double* work, lapack_int* lwork, - lapack_int* iwork, lapack_int* liwork, lapack_int *info ); -void LAPACK_cstemr( char* jobz, char* range, lapack_int* n, float* d, float* e, - float* vl, float* vu, lapack_int* il, lapack_int* iu, - lapack_int* m, float* w, lapack_complex_float* z, - lapack_int* ldz, lapack_int* nzc, lapack_int* isuppz, - lapack_logical* tryrac, float* work, lapack_int* lwork, - lapack_int* iwork, lapack_int* liwork, lapack_int *info ); -void LAPACK_zstemr( char* jobz, char* range, lapack_int* n, double* d, - double* e, double* vl, double* vu, lapack_int* il, - lapack_int* iu, lapack_int* m, double* w, - lapack_complex_double* z, lapack_int* ldz, lapack_int* nzc, - lapack_int* isuppz, lapack_logical* tryrac, double* work, - lapack_int* lwork, lapack_int* iwork, lapack_int* liwork, - lapack_int *info ); -void LAPACK_sstedc( char* compz, lapack_int* n, float* d, float* e, float* z, - lapack_int* ldz, float* work, lapack_int* lwork, - lapack_int* iwork, lapack_int* liwork, lapack_int *info ); -void LAPACK_dstedc( char* compz, lapack_int* n, double* d, double* e, double* z, - lapack_int* ldz, double* work, lapack_int* lwork, - lapack_int* iwork, lapack_int* liwork, lapack_int *info ); -void LAPACK_cstedc( char* compz, lapack_int* n, float* d, float* e, - lapack_complex_float* z, lapack_int* ldz, - lapack_complex_float* work, lapack_int* lwork, float* rwork, - lapack_int* lrwork, lapack_int* iwork, lapack_int* liwork, - lapack_int *info ); -void LAPACK_zstedc( char* compz, lapack_int* n, double* d, double* e, - lapack_complex_double* z, lapack_int* ldz, - lapack_complex_double* work, lapack_int* lwork, - double* rwork, lapack_int* lrwork, lapack_int* iwork, - lapack_int* liwork, lapack_int *info ); -void LAPACK_sstegr( char* jobz, char* range, lapack_int* n, float* d, float* e, - float* vl, float* vu, lapack_int* il, lapack_int* iu, - float* abstol, lapack_int* m, float* w, float* z, - lapack_int* ldz, lapack_int* isuppz, float* work, - lapack_int* lwork, lapack_int* iwork, lapack_int* liwork, - lapack_int *info ); -void LAPACK_dstegr( char* jobz, char* range, lapack_int* n, double* d, - double* e, double* vl, double* vu, lapack_int* il, - lapack_int* iu, double* abstol, lapack_int* m, double* w, - double* z, lapack_int* ldz, lapack_int* isuppz, - double* work, lapack_int* lwork, lapack_int* iwork, - lapack_int* liwork, lapack_int *info ); -void LAPACK_cstegr( char* jobz, char* range, lapack_int* n, float* d, float* e, - float* vl, float* vu, lapack_int* il, lapack_int* iu, - float* abstol, lapack_int* m, float* w, - lapack_complex_float* z, lapack_int* ldz, - lapack_int* isuppz, float* work, lapack_int* lwork, - lapack_int* iwork, lapack_int* liwork, lapack_int *info ); -void LAPACK_zstegr( char* jobz, char* range, lapack_int* n, double* d, - double* e, double* vl, double* vu, lapack_int* il, - lapack_int* iu, double* abstol, lapack_int* m, double* w, - lapack_complex_double* z, lapack_int* ldz, - lapack_int* isuppz, double* work, lapack_int* lwork, - lapack_int* iwork, lapack_int* liwork, lapack_int *info ); -void LAPACK_spteqr( char* compz, lapack_int* n, float* d, float* e, float* z, - lapack_int* ldz, float* work, lapack_int *info ); -void LAPACK_dpteqr( char* compz, lapack_int* n, double* d, double* e, double* z, - lapack_int* ldz, double* work, lapack_int *info ); -void LAPACK_cpteqr( char* compz, lapack_int* n, float* d, float* e, - lapack_complex_float* z, lapack_int* ldz, float* work, - lapack_int *info ); -void LAPACK_zpteqr( char* compz, lapack_int* n, double* d, double* e, - lapack_complex_double* z, lapack_int* ldz, double* work, - lapack_int *info ); -void LAPACK_sstebz( char* range, char* order, lapack_int* n, float* vl, - float* vu, lapack_int* il, lapack_int* iu, float* abstol, - const float* d, const float* e, lapack_int* m, - lapack_int* nsplit, float* w, lapack_int* iblock, - lapack_int* isplit, float* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_dstebz( char* range, char* order, lapack_int* n, double* vl, - double* vu, lapack_int* il, lapack_int* iu, double* abstol, - const double* d, const double* e, lapack_int* m, - lapack_int* nsplit, double* w, lapack_int* iblock, - lapack_int* isplit, double* work, lapack_int* iwork, - lapack_int *info ); -void LAPACK_sstein( lapack_int* n, const float* d, const float* e, - lapack_int* m, const float* w, const lapack_int* iblock, - const lapack_int* isplit, float* z, lapack_int* ldz, - float* work, lapack_int* iwork, lapack_int* ifailv, - lapack_int *info ); -void LAPACK_dstein( lapack_int* n, const double* d, const double* e, - lapack_int* m, const double* w, const lapack_int* iblock, - const lapack_int* isplit, double* z, lapack_int* ldz, - double* work, lapack_int* iwork, lapack_int* ifailv, - lapack_int *info ); -void LAPACK_cstein( lapack_int* n, const float* d, const float* e, - lapack_int* m, const float* w, const lapack_int* iblock, - const lapack_int* isplit, lapack_complex_float* z, - lapack_int* ldz, float* work, lapack_int* iwork, - lapack_int* ifailv, lapack_int *info ); -void LAPACK_zstein( lapack_int* n, const double* d, const double* e, - lapack_int* m, const double* w, const lapack_int* iblock, - const lapack_int* isplit, lapack_complex_double* z, - lapack_int* ldz, double* work, lapack_int* iwork, - lapack_int* ifailv, lapack_int *info ); -void LAPACK_sdisna( char* job, lapack_int* m, lapack_int* n, const float* d, - float* sep, lapack_int *info ); -void LAPACK_ddisna( char* job, lapack_int* m, lapack_int* n, const double* d, - double* sep, lapack_int *info ); -void LAPACK_ssygst( lapack_int* itype, char* uplo, lapack_int* n, float* a, - lapack_int* lda, const float* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_dsygst( lapack_int* itype, char* uplo, lapack_int* n, double* a, - lapack_int* lda, const double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_chegst( lapack_int* itype, char* uplo, lapack_int* n, - lapack_complex_float* a, lapack_int* lda, - const lapack_complex_float* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_zhegst( lapack_int* itype, char* uplo, lapack_int* n, - lapack_complex_double* a, lapack_int* lda, - const lapack_complex_double* b, lapack_int* ldb, - lapack_int *info ); -void LAPACK_sspgst( lapack_int* itype, char* uplo, lapack_int* n, float* ap, - const float* bp, lapack_int *info ); -void LAPACK_dspgst( lapack_int* itype, char* uplo, lapack_int* n, double* ap, - const double* bp, lapack_int *info ); -void LAPACK_chpgst( lapack_int* itype, char* uplo, lapack_int* n, - lapack_complex_float* ap, const lapack_complex_float* bp, - lapack_int *info ); -void LAPACK_zhpgst( lapack_int* itype, char* uplo, lapack_int* n, - lapack_complex_double* ap, const lapack_complex_double* bp, - lapack_int *info ); -void LAPACK_ssbgst( char* vect, char* uplo, lapack_int* n, lapack_int* ka, - lapack_int* kb, float* ab, lapack_int* ldab, - const float* bb, lapack_int* ldbb, float* x, - lapack_int* ldx, float* work, lapack_int *info ); -void LAPACK_dsbgst( char* vect, char* uplo, lapack_int* n, lapack_int* ka, - lapack_int* kb, double* ab, lapack_int* ldab, - const double* bb, lapack_int* ldbb, double* x, - lapack_int* ldx, double* work, lapack_int *info ); -void LAPACK_chbgst( char* vect, char* uplo, lapack_int* n, lapack_int* ka, - lapack_int* kb, lapack_complex_float* ab, lapack_int* ldab, - const lapack_complex_float* bb, lapack_int* ldbb, - lapack_complex_float* x, lapack_int* ldx, - lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_zhbgst( char* vect, char* uplo, lapack_int* n, lapack_int* ka, - lapack_int* kb, lapack_complex_double* ab, lapack_int* ldab, - const lapack_complex_double* bb, lapack_int* ldbb, - lapack_complex_double* x, lapack_int* ldx, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_spbstf( char* uplo, lapack_int* n, lapack_int* kb, float* bb, - lapack_int* ldbb, lapack_int *info ); -void LAPACK_dpbstf( char* uplo, lapack_int* n, lapack_int* kb, double* bb, - lapack_int* ldbb, lapack_int *info ); -void LAPACK_cpbstf( char* uplo, lapack_int* n, lapack_int* kb, - lapack_complex_float* bb, lapack_int* ldbb, - lapack_int *info ); -void LAPACK_zpbstf( char* uplo, lapack_int* n, lapack_int* kb, - lapack_complex_double* bb, lapack_int* ldbb, - lapack_int *info ); -void LAPACK_sgehrd( lapack_int* n, lapack_int* ilo, lapack_int* ihi, float* a, - lapack_int* lda, float* tau, float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_dgehrd( lapack_int* n, lapack_int* ilo, lapack_int* ihi, double* a, - lapack_int* lda, double* tau, double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_cgehrd( lapack_int* n, lapack_int* ilo, lapack_int* ihi, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* tau, lapack_complex_float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_zgehrd( lapack_int* n, lapack_int* ilo, lapack_int* ihi, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* tau, lapack_complex_double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_sorghr( lapack_int* n, lapack_int* ilo, lapack_int* ihi, float* a, - lapack_int* lda, const float* tau, float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_dorghr( lapack_int* n, lapack_int* ilo, lapack_int* ihi, double* a, - lapack_int* lda, const double* tau, double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_sormhr( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* ilo, lapack_int* ihi, const float* a, - lapack_int* lda, const float* tau, float* c, - lapack_int* ldc, float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_dormhr( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* ilo, lapack_int* ihi, const double* a, - lapack_int* lda, const double* tau, double* c, - lapack_int* ldc, double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_cunghr( lapack_int* n, lapack_int* ilo, lapack_int* ihi, - lapack_complex_float* a, lapack_int* lda, - const lapack_complex_float* tau, lapack_complex_float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_zunghr( lapack_int* n, lapack_int* ilo, lapack_int* ihi, - lapack_complex_double* a, lapack_int* lda, - const lapack_complex_double* tau, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_cunmhr( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* ilo, lapack_int* ihi, - const lapack_complex_float* a, lapack_int* lda, - const lapack_complex_float* tau, lapack_complex_float* c, - lapack_int* ldc, lapack_complex_float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_zunmhr( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* ilo, lapack_int* ihi, - const lapack_complex_double* a, lapack_int* lda, - const lapack_complex_double* tau, lapack_complex_double* c, - lapack_int* ldc, lapack_complex_double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_sgebal( char* job, lapack_int* n, float* a, lapack_int* lda, - lapack_int* ilo, lapack_int* ihi, float* scale, - lapack_int *info ); -void LAPACK_dgebal( char* job, lapack_int* n, double* a, lapack_int* lda, - lapack_int* ilo, lapack_int* ihi, double* scale, - lapack_int *info ); -void LAPACK_cgebal( char* job, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, lapack_int* ilo, lapack_int* ihi, - float* scale, lapack_int *info ); -void LAPACK_zgebal( char* job, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, lapack_int* ilo, lapack_int* ihi, - double* scale, lapack_int *info ); -void LAPACK_sgebak( char* job, char* side, lapack_int* n, lapack_int* ilo, - lapack_int* ihi, const float* scale, lapack_int* m, - float* v, lapack_int* ldv, lapack_int *info ); -void LAPACK_dgebak( char* job, char* side, lapack_int* n, lapack_int* ilo, - lapack_int* ihi, const double* scale, lapack_int* m, - double* v, lapack_int* ldv, lapack_int *info ); -void LAPACK_cgebak( char* job, char* side, lapack_int* n, lapack_int* ilo, - lapack_int* ihi, const float* scale, lapack_int* m, - lapack_complex_float* v, lapack_int* ldv, - lapack_int *info ); -void LAPACK_zgebak( char* job, char* side, lapack_int* n, lapack_int* ilo, - lapack_int* ihi, const double* scale, lapack_int* m, - lapack_complex_double* v, lapack_int* ldv, - lapack_int *info ); -void LAPACK_shseqr( char* job, char* compz, lapack_int* n, lapack_int* ilo, - lapack_int* ihi, float* h, lapack_int* ldh, float* wr, - float* wi, float* z, lapack_int* ldz, float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_dhseqr( char* job, char* compz, lapack_int* n, lapack_int* ilo, - lapack_int* ihi, double* h, lapack_int* ldh, double* wr, - double* wi, double* z, lapack_int* ldz, double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_chseqr( char* job, char* compz, lapack_int* n, lapack_int* ilo, - lapack_int* ihi, lapack_complex_float* h, lapack_int* ldh, - lapack_complex_float* w, lapack_complex_float* z, - lapack_int* ldz, lapack_complex_float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_zhseqr( char* job, char* compz, lapack_int* n, lapack_int* ilo, - lapack_int* ihi, lapack_complex_double* h, lapack_int* ldh, - lapack_complex_double* w, lapack_complex_double* z, - lapack_int* ldz, lapack_complex_double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_shsein( char* job, char* eigsrc, char* initv, - lapack_logical* select, lapack_int* n, const float* h, - lapack_int* ldh, float* wr, const float* wi, float* vl, - lapack_int* ldvl, float* vr, lapack_int* ldvr, - lapack_int* mm, lapack_int* m, float* work, - lapack_int* ifaill, lapack_int* ifailr, lapack_int *info ); -void LAPACK_dhsein( char* job, char* eigsrc, char* initv, - lapack_logical* select, lapack_int* n, const double* h, - lapack_int* ldh, double* wr, const double* wi, double* vl, - lapack_int* ldvl, double* vr, lapack_int* ldvr, - lapack_int* mm, lapack_int* m, double* work, - lapack_int* ifaill, lapack_int* ifailr, lapack_int *info ); -void LAPACK_chsein( char* job, char* eigsrc, char* initv, - const lapack_logical* select, lapack_int* n, - const lapack_complex_float* h, lapack_int* ldh, - lapack_complex_float* w, lapack_complex_float* vl, - lapack_int* ldvl, lapack_complex_float* vr, - lapack_int* ldvr, lapack_int* mm, lapack_int* m, - lapack_complex_float* work, float* rwork, - lapack_int* ifaill, lapack_int* ifailr, lapack_int *info ); -void LAPACK_zhsein( char* job, char* eigsrc, char* initv, - const lapack_logical* select, lapack_int* n, - const lapack_complex_double* h, lapack_int* ldh, - lapack_complex_double* w, lapack_complex_double* vl, - lapack_int* ldvl, lapack_complex_double* vr, - lapack_int* ldvr, lapack_int* mm, lapack_int* m, - lapack_complex_double* work, double* rwork, - lapack_int* ifaill, lapack_int* ifailr, lapack_int *info ); -void LAPACK_strevc( char* side, char* howmny, lapack_logical* select, - lapack_int* n, const float* t, lapack_int* ldt, float* vl, - lapack_int* ldvl, float* vr, lapack_int* ldvr, - lapack_int* mm, lapack_int* m, float* work, - lapack_int *info ); -void LAPACK_dtrevc( char* side, char* howmny, lapack_logical* select, - lapack_int* n, const double* t, lapack_int* ldt, double* vl, - lapack_int* ldvl, double* vr, lapack_int* ldvr, - lapack_int* mm, lapack_int* m, double* work, - lapack_int *info ); -void LAPACK_ctrevc( char* side, char* howmny, const lapack_logical* select, - lapack_int* n, lapack_complex_float* t, lapack_int* ldt, - lapack_complex_float* vl, lapack_int* ldvl, - lapack_complex_float* vr, lapack_int* ldvr, lapack_int* mm, - lapack_int* m, lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_ztrevc( char* side, char* howmny, const lapack_logical* select, - lapack_int* n, lapack_complex_double* t, lapack_int* ldt, - lapack_complex_double* vl, lapack_int* ldvl, - lapack_complex_double* vr, lapack_int* ldvr, lapack_int* mm, - lapack_int* m, lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_strsna( char* job, char* howmny, const lapack_logical* select, - lapack_int* n, const float* t, lapack_int* ldt, - const float* vl, lapack_int* ldvl, const float* vr, - lapack_int* ldvr, float* s, float* sep, lapack_int* mm, - lapack_int* m, float* work, lapack_int* ldwork, - lapack_int* iwork, lapack_int *info ); -void LAPACK_dtrsna( char* job, char* howmny, const lapack_logical* select, - lapack_int* n, const double* t, lapack_int* ldt, - const double* vl, lapack_int* ldvl, const double* vr, - lapack_int* ldvr, double* s, double* sep, lapack_int* mm, - lapack_int* m, double* work, lapack_int* ldwork, - lapack_int* iwork, lapack_int *info ); -void LAPACK_ctrsna( char* job, char* howmny, const lapack_logical* select, - lapack_int* n, const lapack_complex_float* t, - lapack_int* ldt, const lapack_complex_float* vl, - lapack_int* ldvl, const lapack_complex_float* vr, - lapack_int* ldvr, float* s, float* sep, lapack_int* mm, - lapack_int* m, lapack_complex_float* work, - lapack_int* ldwork, float* rwork, lapack_int *info ); -void LAPACK_ztrsna( char* job, char* howmny, const lapack_logical* select, - lapack_int* n, const lapack_complex_double* t, - lapack_int* ldt, const lapack_complex_double* vl, - lapack_int* ldvl, const lapack_complex_double* vr, - lapack_int* ldvr, double* s, double* sep, lapack_int* mm, - lapack_int* m, lapack_complex_double* work, - lapack_int* ldwork, double* rwork, lapack_int *info ); -void LAPACK_strexc( char* compq, lapack_int* n, float* t, lapack_int* ldt, - float* q, lapack_int* ldq, lapack_int* ifst, - lapack_int* ilst, float* work, lapack_int *info ); -void LAPACK_dtrexc( char* compq, lapack_int* n, double* t, lapack_int* ldt, - double* q, lapack_int* ldq, lapack_int* ifst, - lapack_int* ilst, double* work, lapack_int *info ); -void LAPACK_ctrexc( char* compq, lapack_int* n, lapack_complex_float* t, - lapack_int* ldt, lapack_complex_float* q, lapack_int* ldq, - lapack_int* ifst, lapack_int* ilst, lapack_int *info ); -void LAPACK_ztrexc( char* compq, lapack_int* n, lapack_complex_double* t, - lapack_int* ldt, lapack_complex_double* q, lapack_int* ldq, - lapack_int* ifst, lapack_int* ilst, lapack_int *info ); -void LAPACK_strsen( char* job, char* compq, const lapack_logical* select, - lapack_int* n, float* t, lapack_int* ldt, float* q, - lapack_int* ldq, float* wr, float* wi, lapack_int* m, - float* s, float* sep, float* work, lapack_int* lwork, - lapack_int* iwork, lapack_int* liwork, lapack_int *info ); -void LAPACK_dtrsen( char* job, char* compq, const lapack_logical* select, - lapack_int* n, double* t, lapack_int* ldt, double* q, - lapack_int* ldq, double* wr, double* wi, lapack_int* m, - double* s, double* sep, double* work, lapack_int* lwork, - lapack_int* iwork, lapack_int* liwork, lapack_int *info ); -void LAPACK_ctrsen( char* job, char* compq, const lapack_logical* select, - lapack_int* n, lapack_complex_float* t, lapack_int* ldt, - lapack_complex_float* q, lapack_int* ldq, - lapack_complex_float* w, lapack_int* m, float* s, - float* sep, lapack_complex_float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_ztrsen( char* job, char* compq, const lapack_logical* select, - lapack_int* n, lapack_complex_double* t, lapack_int* ldt, - lapack_complex_double* q, lapack_int* ldq, - lapack_complex_double* w, lapack_int* m, double* s, - double* sep, lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_strsyl( char* trana, char* tranb, lapack_int* isgn, lapack_int* m, - lapack_int* n, const float* a, lapack_int* lda, - const float* b, lapack_int* ldb, float* c, lapack_int* ldc, - float* scale, lapack_int *info ); -void LAPACK_dtrsyl( char* trana, char* tranb, lapack_int* isgn, lapack_int* m, - lapack_int* n, const double* a, lapack_int* lda, - const double* b, lapack_int* ldb, double* c, - lapack_int* ldc, double* scale, lapack_int *info ); -void LAPACK_ctrsyl( char* trana, char* tranb, lapack_int* isgn, lapack_int* m, - lapack_int* n, const lapack_complex_float* a, - lapack_int* lda, const lapack_complex_float* b, - lapack_int* ldb, lapack_complex_float* c, lapack_int* ldc, - float* scale, lapack_int *info ); -void LAPACK_ztrsyl( char* trana, char* tranb, lapack_int* isgn, lapack_int* m, - lapack_int* n, const lapack_complex_double* a, - lapack_int* lda, const lapack_complex_double* b, - lapack_int* ldb, lapack_complex_double* c, lapack_int* ldc, - double* scale, lapack_int *info ); -void LAPACK_sgghrd( char* compq, char* compz, lapack_int* n, lapack_int* ilo, - lapack_int* ihi, float* a, lapack_int* lda, float* b, - lapack_int* ldb, float* q, lapack_int* ldq, float* z, - lapack_int* ldz, lapack_int *info ); -void LAPACK_dgghrd( char* compq, char* compz, lapack_int* n, lapack_int* ilo, - lapack_int* ihi, double* a, lapack_int* lda, double* b, - lapack_int* ldb, double* q, lapack_int* ldq, double* z, - lapack_int* ldz, lapack_int *info ); -void LAPACK_cgghrd( char* compq, char* compz, lapack_int* n, lapack_int* ilo, - lapack_int* ihi, lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* q, lapack_int* ldq, - lapack_complex_float* z, lapack_int* ldz, - lapack_int *info ); -void LAPACK_zgghrd( char* compq, char* compz, lapack_int* n, lapack_int* ilo, - lapack_int* ihi, lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* q, lapack_int* ldq, - lapack_complex_double* z, lapack_int* ldz, - lapack_int *info ); -void LAPACK_sggbal( char* job, lapack_int* n, float* a, lapack_int* lda, - float* b, lapack_int* ldb, lapack_int* ilo, lapack_int* ihi, - float* lscale, float* rscale, float* work, - lapack_int *info ); -void LAPACK_dggbal( char* job, lapack_int* n, double* a, lapack_int* lda, - double* b, lapack_int* ldb, lapack_int* ilo, - lapack_int* ihi, double* lscale, double* rscale, - double* work, lapack_int *info ); -void LAPACK_cggbal( char* job, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, lapack_complex_float* b, lapack_int* ldb, - lapack_int* ilo, lapack_int* ihi, float* lscale, - float* rscale, float* work, lapack_int *info ); -void LAPACK_zggbal( char* job, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, lapack_complex_double* b, lapack_int* ldb, - lapack_int* ilo, lapack_int* ihi, double* lscale, - double* rscale, double* work, lapack_int *info ); -void LAPACK_sggbak( char* job, char* side, lapack_int* n, lapack_int* ilo, - lapack_int* ihi, const float* lscale, const float* rscale, - lapack_int* m, float* v, lapack_int* ldv, - lapack_int *info ); -void LAPACK_dggbak( char* job, char* side, lapack_int* n, lapack_int* ilo, - lapack_int* ihi, const double* lscale, const double* rscale, - lapack_int* m, double* v, lapack_int* ldv, - lapack_int *info ); -void LAPACK_cggbak( char* job, char* side, lapack_int* n, lapack_int* ilo, - lapack_int* ihi, const float* lscale, const float* rscale, - lapack_int* m, lapack_complex_float* v, lapack_int* ldv, - lapack_int *info ); -void LAPACK_zggbak( char* job, char* side, lapack_int* n, lapack_int* ilo, - lapack_int* ihi, const double* lscale, const double* rscale, - lapack_int* m, lapack_complex_double* v, lapack_int* ldv, - lapack_int *info ); -void LAPACK_shgeqz( char* job, char* compq, char* compz, lapack_int* n, - lapack_int* ilo, lapack_int* ihi, float* h, lapack_int* ldh, - float* t, lapack_int* ldt, float* alphar, float* alphai, - float* beta, float* q, lapack_int* ldq, float* z, - lapack_int* ldz, float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_dhgeqz( char* job, char* compq, char* compz, lapack_int* n, - lapack_int* ilo, lapack_int* ihi, double* h, - lapack_int* ldh, double* t, lapack_int* ldt, double* alphar, - double* alphai, double* beta, double* q, lapack_int* ldq, - double* z, lapack_int* ldz, double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_chgeqz( char* job, char* compq, char* compz, lapack_int* n, - lapack_int* ilo, lapack_int* ihi, lapack_complex_float* h, - lapack_int* ldh, lapack_complex_float* t, lapack_int* ldt, - lapack_complex_float* alpha, lapack_complex_float* beta, - lapack_complex_float* q, lapack_int* ldq, - lapack_complex_float* z, lapack_int* ldz, - lapack_complex_float* work, lapack_int* lwork, float* rwork, - lapack_int *info ); -void LAPACK_zhgeqz( char* job, char* compq, char* compz, lapack_int* n, - lapack_int* ilo, lapack_int* ihi, lapack_complex_double* h, - lapack_int* ldh, lapack_complex_double* t, lapack_int* ldt, - lapack_complex_double* alpha, lapack_complex_double* beta, - lapack_complex_double* q, lapack_int* ldq, - lapack_complex_double* z, lapack_int* ldz, - lapack_complex_double* work, lapack_int* lwork, - double* rwork, lapack_int *info ); -void LAPACK_stgevc( char* side, char* howmny, const lapack_logical* select, - lapack_int* n, const float* s, lapack_int* lds, - const float* p, lapack_int* ldp, float* vl, - lapack_int* ldvl, float* vr, lapack_int* ldvr, - lapack_int* mm, lapack_int* m, float* work, - lapack_int *info ); -void LAPACK_dtgevc( char* side, char* howmny, const lapack_logical* select, - lapack_int* n, const double* s, lapack_int* lds, - const double* p, lapack_int* ldp, double* vl, - lapack_int* ldvl, double* vr, lapack_int* ldvr, - lapack_int* mm, lapack_int* m, double* work, - lapack_int *info ); -void LAPACK_ctgevc( char* side, char* howmny, const lapack_logical* select, - lapack_int* n, const lapack_complex_float* s, - lapack_int* lds, const lapack_complex_float* p, - lapack_int* ldp, lapack_complex_float* vl, lapack_int* ldvl, - lapack_complex_float* vr, lapack_int* ldvr, lapack_int* mm, - lapack_int* m, lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_ztgevc( char* side, char* howmny, const lapack_logical* select, - lapack_int* n, const lapack_complex_double* s, - lapack_int* lds, const lapack_complex_double* p, - lapack_int* ldp, lapack_complex_double* vl, - lapack_int* ldvl, lapack_complex_double* vr, - lapack_int* ldvr, lapack_int* mm, lapack_int* m, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_stgexc( lapack_logical* wantq, lapack_logical* wantz, lapack_int* n, - float* a, lapack_int* lda, float* b, lapack_int* ldb, - float* q, lapack_int* ldq, float* z, lapack_int* ldz, - lapack_int* ifst, lapack_int* ilst, float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_dtgexc( lapack_logical* wantq, lapack_logical* wantz, lapack_int* n, - double* a, lapack_int* lda, double* b, lapack_int* ldb, - double* q, lapack_int* ldq, double* z, lapack_int* ldz, - lapack_int* ifst, lapack_int* ilst, double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_ctgexc( lapack_logical* wantq, lapack_logical* wantz, lapack_int* n, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* q, lapack_int* ldq, - lapack_complex_float* z, lapack_int* ldz, lapack_int* ifst, - lapack_int* ilst, lapack_int *info ); -void LAPACK_ztgexc( lapack_logical* wantq, lapack_logical* wantz, lapack_int* n, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* q, lapack_int* ldq, - lapack_complex_double* z, lapack_int* ldz, lapack_int* ifst, - lapack_int* ilst, lapack_int *info ); -void LAPACK_stgsen( lapack_int* ijob, lapack_logical* wantq, - lapack_logical* wantz, const lapack_logical* select, - lapack_int* n, float* a, lapack_int* lda, float* b, - lapack_int* ldb, float* alphar, float* alphai, float* beta, - float* q, lapack_int* ldq, float* z, lapack_int* ldz, - lapack_int* m, float* pl, float* pr, float* dif, - float* work, lapack_int* lwork, lapack_int* iwork, - lapack_int* liwork, lapack_int *info ); -void LAPACK_dtgsen( lapack_int* ijob, lapack_logical* wantq, - lapack_logical* wantz, const lapack_logical* select, - lapack_int* n, double* a, lapack_int* lda, double* b, - lapack_int* ldb, double* alphar, double* alphai, - double* beta, double* q, lapack_int* ldq, double* z, - lapack_int* ldz, lapack_int* m, double* pl, double* pr, - double* dif, double* work, lapack_int* lwork, - lapack_int* iwork, lapack_int* liwork, lapack_int *info ); -void LAPACK_ctgsen( lapack_int* ijob, lapack_logical* wantq, - lapack_logical* wantz, const lapack_logical* select, - lapack_int* n, lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* alpha, lapack_complex_float* beta, - lapack_complex_float* q, lapack_int* ldq, - lapack_complex_float* z, lapack_int* ldz, lapack_int* m, - float* pl, float* pr, float* dif, - lapack_complex_float* work, lapack_int* lwork, - lapack_int* iwork, lapack_int* liwork, lapack_int *info ); -void LAPACK_ztgsen( lapack_int* ijob, lapack_logical* wantq, - lapack_logical* wantz, const lapack_logical* select, - lapack_int* n, lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* alpha, lapack_complex_double* beta, - lapack_complex_double* q, lapack_int* ldq, - lapack_complex_double* z, lapack_int* ldz, lapack_int* m, - double* pl, double* pr, double* dif, - lapack_complex_double* work, lapack_int* lwork, - lapack_int* iwork, lapack_int* liwork, lapack_int *info ); -void LAPACK_stgsyl( char* trans, lapack_int* ijob, lapack_int* m, lapack_int* n, - const float* a, lapack_int* lda, const float* b, - lapack_int* ldb, float* c, lapack_int* ldc, const float* d, - lapack_int* ldd, const float* e, lapack_int* lde, float* f, - lapack_int* ldf, float* scale, float* dif, float* work, - lapack_int* lwork, lapack_int* iwork, lapack_int *info ); -void LAPACK_dtgsyl( char* trans, lapack_int* ijob, lapack_int* m, lapack_int* n, - const double* a, lapack_int* lda, const double* b, - lapack_int* ldb, double* c, lapack_int* ldc, - const double* d, lapack_int* ldd, const double* e, - lapack_int* lde, double* f, lapack_int* ldf, double* scale, - double* dif, double* work, lapack_int* lwork, - lapack_int* iwork, lapack_int *info ); -void LAPACK_ctgsyl( char* trans, lapack_int* ijob, lapack_int* m, lapack_int* n, - const lapack_complex_float* a, lapack_int* lda, - const lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* c, lapack_int* ldc, - const lapack_complex_float* d, lapack_int* ldd, - const lapack_complex_float* e, lapack_int* lde, - lapack_complex_float* f, lapack_int* ldf, float* scale, - float* dif, lapack_complex_float* work, lapack_int* lwork, - lapack_int* iwork, lapack_int *info ); -void LAPACK_ztgsyl( char* trans, lapack_int* ijob, lapack_int* m, lapack_int* n, - const lapack_complex_double* a, lapack_int* lda, - const lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* c, lapack_int* ldc, - const lapack_complex_double* d, lapack_int* ldd, - const lapack_complex_double* e, lapack_int* lde, - lapack_complex_double* f, lapack_int* ldf, double* scale, - double* dif, lapack_complex_double* work, lapack_int* lwork, - lapack_int* iwork, lapack_int *info ); -void LAPACK_stgsna( char* job, char* howmny, const lapack_logical* select, - lapack_int* n, const float* a, lapack_int* lda, - const float* b, lapack_int* ldb, const float* vl, - lapack_int* ldvl, const float* vr, lapack_int* ldvr, - float* s, float* dif, lapack_int* mm, lapack_int* m, - float* work, lapack_int* lwork, lapack_int* iwork, - lapack_int *info ); -void LAPACK_dtgsna( char* job, char* howmny, const lapack_logical* select, - lapack_int* n, const double* a, lapack_int* lda, - const double* b, lapack_int* ldb, const double* vl, - lapack_int* ldvl, const double* vr, lapack_int* ldvr, - double* s, double* dif, lapack_int* mm, lapack_int* m, - double* work, lapack_int* lwork, lapack_int* iwork, - lapack_int *info ); -void LAPACK_ctgsna( char* job, char* howmny, const lapack_logical* select, - lapack_int* n, const lapack_complex_float* a, - lapack_int* lda, const lapack_complex_float* b, - lapack_int* ldb, const lapack_complex_float* vl, - lapack_int* ldvl, const lapack_complex_float* vr, - lapack_int* ldvr, float* s, float* dif, lapack_int* mm, - lapack_int* m, lapack_complex_float* work, - lapack_int* lwork, lapack_int* iwork, lapack_int *info ); -void LAPACK_ztgsna( char* job, char* howmny, const lapack_logical* select, - lapack_int* n, const lapack_complex_double* a, - lapack_int* lda, const lapack_complex_double* b, - lapack_int* ldb, const lapack_complex_double* vl, - lapack_int* ldvl, const lapack_complex_double* vr, - lapack_int* ldvr, double* s, double* dif, lapack_int* mm, - lapack_int* m, lapack_complex_double* work, - lapack_int* lwork, lapack_int* iwork, lapack_int *info ); -void LAPACK_sggsvp( char* jobu, char* jobv, char* jobq, lapack_int* m, - lapack_int* p, lapack_int* n, float* a, lapack_int* lda, - float* b, lapack_int* ldb, float* tola, float* tolb, - lapack_int* k, lapack_int* l, float* u, lapack_int* ldu, - float* v, lapack_int* ldv, float* q, lapack_int* ldq, - lapack_int* iwork, float* tau, float* work, - lapack_int *info ); -void LAPACK_dggsvp( char* jobu, char* jobv, char* jobq, lapack_int* m, - lapack_int* p, lapack_int* n, double* a, lapack_int* lda, - double* b, lapack_int* ldb, double* tola, double* tolb, - lapack_int* k, lapack_int* l, double* u, lapack_int* ldu, - double* v, lapack_int* ldv, double* q, lapack_int* ldq, - lapack_int* iwork, double* tau, double* work, - lapack_int *info ); -void LAPACK_cggsvp( char* jobu, char* jobv, char* jobq, lapack_int* m, - lapack_int* p, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, lapack_complex_float* b, lapack_int* ldb, - float* tola, float* tolb, lapack_int* k, lapack_int* l, - lapack_complex_float* u, lapack_int* ldu, - lapack_complex_float* v, lapack_int* ldv, - lapack_complex_float* q, lapack_int* ldq, lapack_int* iwork, - float* rwork, lapack_complex_float* tau, - lapack_complex_float* work, lapack_int *info ); -void LAPACK_zggsvp( char* jobu, char* jobv, char* jobq, lapack_int* m, - lapack_int* p, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, lapack_complex_double* b, lapack_int* ldb, - double* tola, double* tolb, lapack_int* k, lapack_int* l, - lapack_complex_double* u, lapack_int* ldu, - lapack_complex_double* v, lapack_int* ldv, - lapack_complex_double* q, lapack_int* ldq, - lapack_int* iwork, double* rwork, - lapack_complex_double* tau, lapack_complex_double* work, - lapack_int *info ); -void LAPACK_stgsja( char* jobu, char* jobv, char* jobq, lapack_int* m, - lapack_int* p, lapack_int* n, lapack_int* k, lapack_int* l, - float* a, lapack_int* lda, float* b, lapack_int* ldb, - float* tola, float* tolb, float* alpha, float* beta, - float* u, lapack_int* ldu, float* v, lapack_int* ldv, - float* q, lapack_int* ldq, float* work, lapack_int* ncycle, - lapack_int *info ); -void LAPACK_dtgsja( char* jobu, char* jobv, char* jobq, lapack_int* m, - lapack_int* p, lapack_int* n, lapack_int* k, lapack_int* l, - double* a, lapack_int* lda, double* b, lapack_int* ldb, - double* tola, double* tolb, double* alpha, double* beta, - double* u, lapack_int* ldu, double* v, lapack_int* ldv, - double* q, lapack_int* ldq, double* work, - lapack_int* ncycle, lapack_int *info ); -void LAPACK_ctgsja( char* jobu, char* jobv, char* jobq, lapack_int* m, - lapack_int* p, lapack_int* n, lapack_int* k, lapack_int* l, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* b, lapack_int* ldb, float* tola, - float* tolb, float* alpha, float* beta, - lapack_complex_float* u, lapack_int* ldu, - lapack_complex_float* v, lapack_int* ldv, - lapack_complex_float* q, lapack_int* ldq, - lapack_complex_float* work, lapack_int* ncycle, - lapack_int *info ); -void LAPACK_ztgsja( char* jobu, char* jobv, char* jobq, lapack_int* m, - lapack_int* p, lapack_int* n, lapack_int* k, lapack_int* l, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* b, lapack_int* ldb, double* tola, - double* tolb, double* alpha, double* beta, - lapack_complex_double* u, lapack_int* ldu, - lapack_complex_double* v, lapack_int* ldv, - lapack_complex_double* q, lapack_int* ldq, - lapack_complex_double* work, lapack_int* ncycle, - lapack_int *info ); -void LAPACK_sgels( char* trans, lapack_int* m, lapack_int* n, lapack_int* nrhs, - float* a, lapack_int* lda, float* b, lapack_int* ldb, - float* work, lapack_int* lwork, lapack_int *info ); -void LAPACK_dgels( char* trans, lapack_int* m, lapack_int* n, lapack_int* nrhs, - double* a, lapack_int* lda, double* b, lapack_int* ldb, - double* work, lapack_int* lwork, lapack_int *info ); -void LAPACK_cgels( char* trans, lapack_int* m, lapack_int* n, lapack_int* nrhs, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_zgels( char* trans, lapack_int* m, lapack_int* n, lapack_int* nrhs, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_sgelsy( lapack_int* m, lapack_int* n, lapack_int* nrhs, float* a, - lapack_int* lda, float* b, lapack_int* ldb, - lapack_int* jpvt, float* rcond, lapack_int* rank, - float* work, lapack_int* lwork, lapack_int *info ); -void LAPACK_dgelsy( lapack_int* m, lapack_int* n, lapack_int* nrhs, double* a, - lapack_int* lda, double* b, lapack_int* ldb, - lapack_int* jpvt, double* rcond, lapack_int* rank, - double* work, lapack_int* lwork, lapack_int *info ); -void LAPACK_cgelsy( lapack_int* m, lapack_int* n, lapack_int* nrhs, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* b, lapack_int* ldb, lapack_int* jpvt, - float* rcond, lapack_int* rank, lapack_complex_float* work, - lapack_int* lwork, float* rwork, lapack_int *info ); -void LAPACK_zgelsy( lapack_int* m, lapack_int* n, lapack_int* nrhs, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* b, lapack_int* ldb, lapack_int* jpvt, - double* rcond, lapack_int* rank, - lapack_complex_double* work, lapack_int* lwork, - double* rwork, lapack_int *info ); -void LAPACK_sgelss( lapack_int* m, lapack_int* n, lapack_int* nrhs, float* a, - lapack_int* lda, float* b, lapack_int* ldb, float* s, - float* rcond, lapack_int* rank, float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_dgelss( lapack_int* m, lapack_int* n, lapack_int* nrhs, double* a, - lapack_int* lda, double* b, lapack_int* ldb, double* s, - double* rcond, lapack_int* rank, double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_cgelss( lapack_int* m, lapack_int* n, lapack_int* nrhs, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* b, lapack_int* ldb, float* s, - float* rcond, lapack_int* rank, lapack_complex_float* work, - lapack_int* lwork, float* rwork, lapack_int *info ); -void LAPACK_zgelss( lapack_int* m, lapack_int* n, lapack_int* nrhs, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* b, lapack_int* ldb, double* s, - double* rcond, lapack_int* rank, - lapack_complex_double* work, lapack_int* lwork, - double* rwork, lapack_int *info ); -void LAPACK_sgelsd( lapack_int* m, lapack_int* n, lapack_int* nrhs, float* a, - lapack_int* lda, float* b, lapack_int* ldb, float* s, - float* rcond, lapack_int* rank, float* work, - lapack_int* lwork, lapack_int* iwork, lapack_int *info ); -void LAPACK_dgelsd( lapack_int* m, lapack_int* n, lapack_int* nrhs, double* a, - lapack_int* lda, double* b, lapack_int* ldb, double* s, - double* rcond, lapack_int* rank, double* work, - lapack_int* lwork, lapack_int* iwork, lapack_int *info ); -void LAPACK_cgelsd( lapack_int* m, lapack_int* n, lapack_int* nrhs, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* b, lapack_int* ldb, float* s, - float* rcond, lapack_int* rank, lapack_complex_float* work, - lapack_int* lwork, float* rwork, lapack_int* iwork, - lapack_int *info ); -void LAPACK_zgelsd( lapack_int* m, lapack_int* n, lapack_int* nrhs, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* b, lapack_int* ldb, double* s, - double* rcond, lapack_int* rank, - lapack_complex_double* work, lapack_int* lwork, - double* rwork, lapack_int* iwork, lapack_int *info ); -void LAPACK_sgglse( lapack_int* m, lapack_int* n, lapack_int* p, float* a, - lapack_int* lda, float* b, lapack_int* ldb, float* c, - float* d, float* x, float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_dgglse( lapack_int* m, lapack_int* n, lapack_int* p, double* a, - lapack_int* lda, double* b, lapack_int* ldb, double* c, - double* d, double* x, double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_cgglse( lapack_int* m, lapack_int* n, lapack_int* p, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* c, lapack_complex_float* d, - lapack_complex_float* x, lapack_complex_float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_zgglse( lapack_int* m, lapack_int* n, lapack_int* p, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* c, lapack_complex_double* d, - lapack_complex_double* x, lapack_complex_double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_sggglm( lapack_int* n, lapack_int* m, lapack_int* p, float* a, - lapack_int* lda, float* b, lapack_int* ldb, float* d, - float* x, float* y, float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_dggglm( lapack_int* n, lapack_int* m, lapack_int* p, double* a, - lapack_int* lda, double* b, lapack_int* ldb, double* d, - double* x, double* y, double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_cggglm( lapack_int* n, lapack_int* m, lapack_int* p, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* d, lapack_complex_float* x, - lapack_complex_float* y, lapack_complex_float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_zggglm( lapack_int* n, lapack_int* m, lapack_int* p, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* d, lapack_complex_double* x, - lapack_complex_double* y, lapack_complex_double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_ssyev( char* jobz, char* uplo, lapack_int* n, float* a, - lapack_int* lda, float* w, float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_dsyev( char* jobz, char* uplo, lapack_int* n, double* a, - lapack_int* lda, double* w, double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_cheev( char* jobz, char* uplo, lapack_int* n, - lapack_complex_float* a, lapack_int* lda, float* w, - lapack_complex_float* work, lapack_int* lwork, float* rwork, - lapack_int *info ); -void LAPACK_zheev( char* jobz, char* uplo, lapack_int* n, - lapack_complex_double* a, lapack_int* lda, double* w, - lapack_complex_double* work, lapack_int* lwork, - double* rwork, lapack_int *info ); -void LAPACK_ssyevd( char* jobz, char* uplo, lapack_int* n, float* a, - lapack_int* lda, float* w, float* work, lapack_int* lwork, - lapack_int* iwork, lapack_int* liwork, lapack_int *info ); -void LAPACK_dsyevd( char* jobz, char* uplo, lapack_int* n, double* a, - lapack_int* lda, double* w, double* work, lapack_int* lwork, - lapack_int* iwork, lapack_int* liwork, lapack_int *info ); -void LAPACK_cheevd( char* jobz, char* uplo, lapack_int* n, - lapack_complex_float* a, lapack_int* lda, float* w, - lapack_complex_float* work, lapack_int* lwork, float* rwork, - lapack_int* lrwork, lapack_int* iwork, lapack_int* liwork, - lapack_int *info ); -void LAPACK_zheevd( char* jobz, char* uplo, lapack_int* n, - lapack_complex_double* a, lapack_int* lda, double* w, - lapack_complex_double* work, lapack_int* lwork, - double* rwork, lapack_int* lrwork, lapack_int* iwork, - lapack_int* liwork, lapack_int *info ); -void LAPACK_ssyevx( char* jobz, char* range, char* uplo, lapack_int* n, - float* a, lapack_int* lda, float* vl, float* vu, - lapack_int* il, lapack_int* iu, float* abstol, - lapack_int* m, float* w, float* z, lapack_int* ldz, - float* work, lapack_int* lwork, lapack_int* iwork, - lapack_int* ifail, lapack_int *info ); -void LAPACK_dsyevx( char* jobz, char* range, char* uplo, lapack_int* n, - double* a, lapack_int* lda, double* vl, double* vu, - lapack_int* il, lapack_int* iu, double* abstol, - lapack_int* m, double* w, double* z, lapack_int* ldz, - double* work, lapack_int* lwork, lapack_int* iwork, - lapack_int* ifail, lapack_int *info ); -void LAPACK_cheevx( char* jobz, char* range, char* uplo, lapack_int* n, - lapack_complex_float* a, lapack_int* lda, float* vl, - float* vu, lapack_int* il, lapack_int* iu, float* abstol, - lapack_int* m, float* w, lapack_complex_float* z, - lapack_int* ldz, lapack_complex_float* work, - lapack_int* lwork, float* rwork, lapack_int* iwork, - lapack_int* ifail, lapack_int *info ); -void LAPACK_zheevx( char* jobz, char* range, char* uplo, lapack_int* n, - lapack_complex_double* a, lapack_int* lda, double* vl, - double* vu, lapack_int* il, lapack_int* iu, double* abstol, - lapack_int* m, double* w, lapack_complex_double* z, - lapack_int* ldz, lapack_complex_double* work, - lapack_int* lwork, double* rwork, lapack_int* iwork, - lapack_int* ifail, lapack_int *info ); -void LAPACK_ssyevr( char* jobz, char* range, char* uplo, lapack_int* n, - float* a, lapack_int* lda, float* vl, float* vu, - lapack_int* il, lapack_int* iu, float* abstol, - lapack_int* m, float* w, float* z, lapack_int* ldz, - lapack_int* isuppz, float* work, lapack_int* lwork, - lapack_int* iwork, lapack_int* liwork, lapack_int *info ); -void LAPACK_dsyevr( char* jobz, char* range, char* uplo, lapack_int* n, - double* a, lapack_int* lda, double* vl, double* vu, - lapack_int* il, lapack_int* iu, double* abstol, - lapack_int* m, double* w, double* z, lapack_int* ldz, - lapack_int* isuppz, double* work, lapack_int* lwork, - lapack_int* iwork, lapack_int* liwork, lapack_int *info ); -void LAPACK_cheevr( char* jobz, char* range, char* uplo, lapack_int* n, - lapack_complex_float* a, lapack_int* lda, float* vl, - float* vu, lapack_int* il, lapack_int* iu, float* abstol, - lapack_int* m, float* w, lapack_complex_float* z, - lapack_int* ldz, lapack_int* isuppz, - lapack_complex_float* work, lapack_int* lwork, float* rwork, - lapack_int* lrwork, lapack_int* iwork, lapack_int* liwork, - lapack_int *info ); -void LAPACK_zheevr( char* jobz, char* range, char* uplo, lapack_int* n, - lapack_complex_double* a, lapack_int* lda, double* vl, - double* vu, lapack_int* il, lapack_int* iu, double* abstol, - lapack_int* m, double* w, lapack_complex_double* z, - lapack_int* ldz, lapack_int* isuppz, - lapack_complex_double* work, lapack_int* lwork, - double* rwork, lapack_int* lrwork, lapack_int* iwork, - lapack_int* liwork, lapack_int *info ); -void LAPACK_sspev( char* jobz, char* uplo, lapack_int* n, float* ap, float* w, - float* z, lapack_int* ldz, float* work, lapack_int *info ); -void LAPACK_dspev( char* jobz, char* uplo, lapack_int* n, double* ap, double* w, - double* z, lapack_int* ldz, double* work, lapack_int *info ); -void LAPACK_chpev( char* jobz, char* uplo, lapack_int* n, - lapack_complex_float* ap, float* w, lapack_complex_float* z, - lapack_int* ldz, lapack_complex_float* work, float* rwork, - lapack_int *info ); -void LAPACK_zhpev( char* jobz, char* uplo, lapack_int* n, - lapack_complex_double* ap, double* w, - lapack_complex_double* z, lapack_int* ldz, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_sspevd( char* jobz, char* uplo, lapack_int* n, float* ap, float* w, - float* z, lapack_int* ldz, float* work, lapack_int* lwork, - lapack_int* iwork, lapack_int* liwork, lapack_int *info ); -void LAPACK_dspevd( char* jobz, char* uplo, lapack_int* n, double* ap, - double* w, double* z, lapack_int* ldz, double* work, - lapack_int* lwork, lapack_int* iwork, lapack_int* liwork, - lapack_int *info ); -void LAPACK_chpevd( char* jobz, char* uplo, lapack_int* n, - lapack_complex_float* ap, float* w, lapack_complex_float* z, - lapack_int* ldz, lapack_complex_float* work, - lapack_int* lwork, float* rwork, lapack_int* lrwork, - lapack_int* iwork, lapack_int* liwork, lapack_int *info ); -void LAPACK_zhpevd( char* jobz, char* uplo, lapack_int* n, - lapack_complex_double* ap, double* w, - lapack_complex_double* z, lapack_int* ldz, - lapack_complex_double* work, lapack_int* lwork, - double* rwork, lapack_int* lrwork, lapack_int* iwork, - lapack_int* liwork, lapack_int *info ); -void LAPACK_sspevx( char* jobz, char* range, char* uplo, lapack_int* n, - float* ap, float* vl, float* vu, lapack_int* il, - lapack_int* iu, float* abstol, lapack_int* m, float* w, - float* z, lapack_int* ldz, float* work, lapack_int* iwork, - lapack_int* ifail, lapack_int *info ); -void LAPACK_dspevx( char* jobz, char* range, char* uplo, lapack_int* n, - double* ap, double* vl, double* vu, lapack_int* il, - lapack_int* iu, double* abstol, lapack_int* m, double* w, - double* z, lapack_int* ldz, double* work, lapack_int* iwork, - lapack_int* ifail, lapack_int *info ); -void LAPACK_chpevx( char* jobz, char* range, char* uplo, lapack_int* n, - lapack_complex_float* ap, float* vl, float* vu, - lapack_int* il, lapack_int* iu, float* abstol, - lapack_int* m, float* w, lapack_complex_float* z, - lapack_int* ldz, lapack_complex_float* work, float* rwork, - lapack_int* iwork, lapack_int* ifail, lapack_int *info ); -void LAPACK_zhpevx( char* jobz, char* range, char* uplo, lapack_int* n, - lapack_complex_double* ap, double* vl, double* vu, - lapack_int* il, lapack_int* iu, double* abstol, - lapack_int* m, double* w, lapack_complex_double* z, - lapack_int* ldz, lapack_complex_double* work, double* rwork, - lapack_int* iwork, lapack_int* ifail, lapack_int *info ); -void LAPACK_ssbev( char* jobz, char* uplo, lapack_int* n, lapack_int* kd, - float* ab, lapack_int* ldab, float* w, float* z, - lapack_int* ldz, float* work, lapack_int *info ); -void LAPACK_dsbev( char* jobz, char* uplo, lapack_int* n, lapack_int* kd, - double* ab, lapack_int* ldab, double* w, double* z, - lapack_int* ldz, double* work, lapack_int *info ); -void LAPACK_chbev( char* jobz, char* uplo, lapack_int* n, lapack_int* kd, - lapack_complex_float* ab, lapack_int* ldab, float* w, - lapack_complex_float* z, lapack_int* ldz, - lapack_complex_float* work, float* rwork, lapack_int *info ); -void LAPACK_zhbev( char* jobz, char* uplo, lapack_int* n, lapack_int* kd, - lapack_complex_double* ab, lapack_int* ldab, double* w, - lapack_complex_double* z, lapack_int* ldz, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_ssbevd( char* jobz, char* uplo, lapack_int* n, lapack_int* kd, - float* ab, lapack_int* ldab, float* w, float* z, - lapack_int* ldz, float* work, lapack_int* lwork, - lapack_int* iwork, lapack_int* liwork, lapack_int *info ); -void LAPACK_dsbevd( char* jobz, char* uplo, lapack_int* n, lapack_int* kd, - double* ab, lapack_int* ldab, double* w, double* z, - lapack_int* ldz, double* work, lapack_int* lwork, - lapack_int* iwork, lapack_int* liwork, lapack_int *info ); -void LAPACK_chbevd( char* jobz, char* uplo, lapack_int* n, lapack_int* kd, - lapack_complex_float* ab, lapack_int* ldab, float* w, - lapack_complex_float* z, lapack_int* ldz, - lapack_complex_float* work, lapack_int* lwork, float* rwork, - lapack_int* lrwork, lapack_int* iwork, lapack_int* liwork, - lapack_int *info ); -void LAPACK_zhbevd( char* jobz, char* uplo, lapack_int* n, lapack_int* kd, - lapack_complex_double* ab, lapack_int* ldab, double* w, - lapack_complex_double* z, lapack_int* ldz, - lapack_complex_double* work, lapack_int* lwork, - double* rwork, lapack_int* lrwork, lapack_int* iwork, - lapack_int* liwork, lapack_int *info ); -void LAPACK_ssbevx( char* jobz, char* range, char* uplo, lapack_int* n, - lapack_int* kd, float* ab, lapack_int* ldab, float* q, - lapack_int* ldq, float* vl, float* vu, lapack_int* il, - lapack_int* iu, float* abstol, lapack_int* m, float* w, - float* z, lapack_int* ldz, float* work, lapack_int* iwork, - lapack_int* ifail, lapack_int *info ); -void LAPACK_dsbevx( char* jobz, char* range, char* uplo, lapack_int* n, - lapack_int* kd, double* ab, lapack_int* ldab, double* q, - lapack_int* ldq, double* vl, double* vu, lapack_int* il, - lapack_int* iu, double* abstol, lapack_int* m, double* w, - double* z, lapack_int* ldz, double* work, lapack_int* iwork, - lapack_int* ifail, lapack_int *info ); -void LAPACK_chbevx( char* jobz, char* range, char* uplo, lapack_int* n, - lapack_int* kd, lapack_complex_float* ab, lapack_int* ldab, - lapack_complex_float* q, lapack_int* ldq, float* vl, - float* vu, lapack_int* il, lapack_int* iu, float* abstol, - lapack_int* m, float* w, lapack_complex_float* z, - lapack_int* ldz, lapack_complex_float* work, float* rwork, - lapack_int* iwork, lapack_int* ifail, lapack_int *info ); -void LAPACK_zhbevx( char* jobz, char* range, char* uplo, lapack_int* n, - lapack_int* kd, lapack_complex_double* ab, lapack_int* ldab, - lapack_complex_double* q, lapack_int* ldq, double* vl, - double* vu, lapack_int* il, lapack_int* iu, double* abstol, - lapack_int* m, double* w, lapack_complex_double* z, - lapack_int* ldz, lapack_complex_double* work, double* rwork, - lapack_int* iwork, lapack_int* ifail, lapack_int *info ); -void LAPACK_sstev( char* jobz, lapack_int* n, float* d, float* e, float* z, - lapack_int* ldz, float* work, lapack_int *info ); -void LAPACK_dstev( char* jobz, lapack_int* n, double* d, double* e, double* z, - lapack_int* ldz, double* work, lapack_int *info ); -void LAPACK_sstevd( char* jobz, lapack_int* n, float* d, float* e, float* z, - lapack_int* ldz, float* work, lapack_int* lwork, - lapack_int* iwork, lapack_int* liwork, lapack_int *info ); -void LAPACK_dstevd( char* jobz, lapack_int* n, double* d, double* e, double* z, - lapack_int* ldz, double* work, lapack_int* lwork, - lapack_int* iwork, lapack_int* liwork, lapack_int *info ); -void LAPACK_sstevx( char* jobz, char* range, lapack_int* n, float* d, float* e, - float* vl, float* vu, lapack_int* il, lapack_int* iu, - float* abstol, lapack_int* m, float* w, float* z, - lapack_int* ldz, float* work, lapack_int* iwork, - lapack_int* ifail, lapack_int *info ); -void LAPACK_dstevx( char* jobz, char* range, lapack_int* n, double* d, - double* e, double* vl, double* vu, lapack_int* il, - lapack_int* iu, double* abstol, lapack_int* m, double* w, - double* z, lapack_int* ldz, double* work, lapack_int* iwork, - lapack_int* ifail, lapack_int *info ); -void LAPACK_sstevr( char* jobz, char* range, lapack_int* n, float* d, float* e, - float* vl, float* vu, lapack_int* il, lapack_int* iu, - float* abstol, lapack_int* m, float* w, float* z, - lapack_int* ldz, lapack_int* isuppz, float* work, - lapack_int* lwork, lapack_int* iwork, lapack_int* liwork, - lapack_int *info ); -void LAPACK_dstevr( char* jobz, char* range, lapack_int* n, double* d, - double* e, double* vl, double* vu, lapack_int* il, - lapack_int* iu, double* abstol, lapack_int* m, double* w, - double* z, lapack_int* ldz, lapack_int* isuppz, - double* work, lapack_int* lwork, lapack_int* iwork, - lapack_int* liwork, lapack_int *info ); -void LAPACK_sgees( char* jobvs, char* sort, LAPACK_S_SELECT2 select, - lapack_int* n, float* a, lapack_int* lda, lapack_int* sdim, - float* wr, float* wi, float* vs, lapack_int* ldvs, - float* work, lapack_int* lwork, lapack_logical* bwork, - lapack_int *info ); -void LAPACK_dgees( char* jobvs, char* sort, LAPACK_D_SELECT2 select, - lapack_int* n, double* a, lapack_int* lda, lapack_int* sdim, - double* wr, double* wi, double* vs, lapack_int* ldvs, - double* work, lapack_int* lwork, lapack_logical* bwork, - lapack_int *info ); -void LAPACK_cgees( char* jobvs, char* sort, LAPACK_C_SELECT1 select, - lapack_int* n, lapack_complex_float* a, lapack_int* lda, - lapack_int* sdim, lapack_complex_float* w, - lapack_complex_float* vs, lapack_int* ldvs, - lapack_complex_float* work, lapack_int* lwork, float* rwork, - lapack_logical* bwork, lapack_int *info ); -void LAPACK_zgees( char* jobvs, char* sort, LAPACK_Z_SELECT1 select, - lapack_int* n, lapack_complex_double* a, lapack_int* lda, - lapack_int* sdim, lapack_complex_double* w, - lapack_complex_double* vs, lapack_int* ldvs, - lapack_complex_double* work, lapack_int* lwork, - double* rwork, lapack_logical* bwork, lapack_int *info ); -void LAPACK_sgeesx( char* jobvs, char* sort, LAPACK_S_SELECT2 select, - char* sense, lapack_int* n, float* a, lapack_int* lda, - lapack_int* sdim, float* wr, float* wi, float* vs, - lapack_int* ldvs, float* rconde, float* rcondv, float* work, - lapack_int* lwork, lapack_int* iwork, lapack_int* liwork, - lapack_logical* bwork, lapack_int *info ); -void LAPACK_dgeesx( char* jobvs, char* sort, LAPACK_D_SELECT2 select, - char* sense, lapack_int* n, double* a, lapack_int* lda, - lapack_int* sdim, double* wr, double* wi, double* vs, - lapack_int* ldvs, double* rconde, double* rcondv, - double* work, lapack_int* lwork, lapack_int* iwork, - lapack_int* liwork, lapack_logical* bwork, - lapack_int *info ); -void LAPACK_cgeesx( char* jobvs, char* sort, LAPACK_C_SELECT1 select, - char* sense, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, lapack_int* sdim, lapack_complex_float* w, - lapack_complex_float* vs, lapack_int* ldvs, float* rconde, - float* rcondv, lapack_complex_float* work, - lapack_int* lwork, float* rwork, lapack_logical* bwork, - lapack_int *info ); -void LAPACK_zgeesx( char* jobvs, char* sort, LAPACK_Z_SELECT1 select, - char* sense, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, lapack_int* sdim, lapack_complex_double* w, - lapack_complex_double* vs, lapack_int* ldvs, double* rconde, - double* rcondv, lapack_complex_double* work, - lapack_int* lwork, double* rwork, lapack_logical* bwork, - lapack_int *info ); -void LAPACK_sgeev( char* jobvl, char* jobvr, lapack_int* n, float* a, - lapack_int* lda, float* wr, float* wi, float* vl, - lapack_int* ldvl, float* vr, lapack_int* ldvr, float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_dgeev( char* jobvl, char* jobvr, lapack_int* n, double* a, - lapack_int* lda, double* wr, double* wi, double* vl, - lapack_int* ldvl, double* vr, lapack_int* ldvr, double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_cgeev( char* jobvl, char* jobvr, lapack_int* n, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* w, lapack_complex_float* vl, - lapack_int* ldvl, lapack_complex_float* vr, lapack_int* ldvr, - lapack_complex_float* work, lapack_int* lwork, float* rwork, - lapack_int *info ); -void LAPACK_zgeev( char* jobvl, char* jobvr, lapack_int* n, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* w, lapack_complex_double* vl, - lapack_int* ldvl, lapack_complex_double* vr, - lapack_int* ldvr, lapack_complex_double* work, - lapack_int* lwork, double* rwork, lapack_int *info ); -void LAPACK_sgeevx( char* balanc, char* jobvl, char* jobvr, char* sense, - lapack_int* n, float* a, lapack_int* lda, float* wr, - float* wi, float* vl, lapack_int* ldvl, float* vr, - lapack_int* ldvr, lapack_int* ilo, lapack_int* ihi, - float* scale, float* abnrm, float* rconde, float* rcondv, - float* work, lapack_int* lwork, lapack_int* iwork, - lapack_int *info ); -void LAPACK_dgeevx( char* balanc, char* jobvl, char* jobvr, char* sense, - lapack_int* n, double* a, lapack_int* lda, double* wr, - double* wi, double* vl, lapack_int* ldvl, double* vr, - lapack_int* ldvr, lapack_int* ilo, lapack_int* ihi, - double* scale, double* abnrm, double* rconde, - double* rcondv, double* work, lapack_int* lwork, - lapack_int* iwork, lapack_int *info ); -void LAPACK_cgeevx( char* balanc, char* jobvl, char* jobvr, char* sense, - lapack_int* n, lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* w, lapack_complex_float* vl, - lapack_int* ldvl, lapack_complex_float* vr, - lapack_int* ldvr, lapack_int* ilo, lapack_int* ihi, - float* scale, float* abnrm, float* rconde, float* rcondv, - lapack_complex_float* work, lapack_int* lwork, float* rwork, - lapack_int *info ); -void LAPACK_zgeevx( char* balanc, char* jobvl, char* jobvr, char* sense, - lapack_int* n, lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* w, lapack_complex_double* vl, - lapack_int* ldvl, lapack_complex_double* vr, - lapack_int* ldvr, lapack_int* ilo, lapack_int* ihi, - double* scale, double* abnrm, double* rconde, - double* rcondv, lapack_complex_double* work, - lapack_int* lwork, double* rwork, lapack_int *info ); -void LAPACK_sgesvd( char* jobu, char* jobvt, lapack_int* m, lapack_int* n, - float* a, lapack_int* lda, float* s, float* u, - lapack_int* ldu, float* vt, lapack_int* ldvt, float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_dgesvd( char* jobu, char* jobvt, lapack_int* m, lapack_int* n, - double* a, lapack_int* lda, double* s, double* u, - lapack_int* ldu, double* vt, lapack_int* ldvt, double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_cgesvd( char* jobu, char* jobvt, lapack_int* m, lapack_int* n, - lapack_complex_float* a, lapack_int* lda, float* s, - lapack_complex_float* u, lapack_int* ldu, - lapack_complex_float* vt, lapack_int* ldvt, - lapack_complex_float* work, lapack_int* lwork, float* rwork, - lapack_int *info ); -void LAPACK_zgesvd( char* jobu, char* jobvt, lapack_int* m, lapack_int* n, - lapack_complex_double* a, lapack_int* lda, double* s, - lapack_complex_double* u, lapack_int* ldu, - lapack_complex_double* vt, lapack_int* ldvt, - lapack_complex_double* work, lapack_int* lwork, - double* rwork, lapack_int *info ); -void LAPACK_sgesdd( char* jobz, lapack_int* m, lapack_int* n, float* a, - lapack_int* lda, float* s, float* u, lapack_int* ldu, - float* vt, lapack_int* ldvt, float* work, lapack_int* lwork, - lapack_int* iwork, lapack_int *info ); -void LAPACK_dgesdd( char* jobz, lapack_int* m, lapack_int* n, double* a, - lapack_int* lda, double* s, double* u, lapack_int* ldu, - double* vt, lapack_int* ldvt, double* work, - lapack_int* lwork, lapack_int* iwork, lapack_int *info ); -void LAPACK_cgesdd( char* jobz, lapack_int* m, lapack_int* n, - lapack_complex_float* a, lapack_int* lda, float* s, - lapack_complex_float* u, lapack_int* ldu, - lapack_complex_float* vt, lapack_int* ldvt, - lapack_complex_float* work, lapack_int* lwork, float* rwork, - lapack_int* iwork, lapack_int *info ); -void LAPACK_zgesdd( char* jobz, lapack_int* m, lapack_int* n, - lapack_complex_double* a, lapack_int* lda, double* s, - lapack_complex_double* u, lapack_int* ldu, - lapack_complex_double* vt, lapack_int* ldvt, - lapack_complex_double* work, lapack_int* lwork, - double* rwork, lapack_int* iwork, lapack_int *info ); -void LAPACK_dgejsv( char* joba, char* jobu, char* jobv, char* jobr, char* jobt, - char* jobp, lapack_int* m, lapack_int* n, double* a, - lapack_int* lda, double* sva, double* u, lapack_int* ldu, - double* v, lapack_int* ldv, double* work, lapack_int* lwork, - lapack_int* iwork, lapack_int *info ); -void LAPACK_sgejsv( char* joba, char* jobu, char* jobv, char* jobr, char* jobt, - char* jobp, lapack_int* m, lapack_int* n, float* a, - lapack_int* lda, float* sva, float* u, lapack_int* ldu, - float* v, lapack_int* ldv, float* work, lapack_int* lwork, - lapack_int* iwork, lapack_int *info ); -void LAPACK_dgesvj( char* joba, char* jobu, char* jobv, lapack_int* m, - lapack_int* n, double* a, lapack_int* lda, double* sva, - lapack_int* mv, double* v, lapack_int* ldv, double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_sgesvj( char* joba, char* jobu, char* jobv, lapack_int* m, - lapack_int* n, float* a, lapack_int* lda, float* sva, - lapack_int* mv, float* v, lapack_int* ldv, float* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_sggsvd( char* jobu, char* jobv, char* jobq, lapack_int* m, - lapack_int* n, lapack_int* p, lapack_int* k, lapack_int* l, - float* a, lapack_int* lda, float* b, lapack_int* ldb, - float* alpha, float* beta, float* u, lapack_int* ldu, - float* v, lapack_int* ldv, float* q, lapack_int* ldq, - float* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_dggsvd( char* jobu, char* jobv, char* jobq, lapack_int* m, - lapack_int* n, lapack_int* p, lapack_int* k, lapack_int* l, - double* a, lapack_int* lda, double* b, lapack_int* ldb, - double* alpha, double* beta, double* u, lapack_int* ldu, - double* v, lapack_int* ldv, double* q, lapack_int* ldq, - double* work, lapack_int* iwork, lapack_int *info ); -void LAPACK_cggsvd( char* jobu, char* jobv, char* jobq, lapack_int* m, - lapack_int* n, lapack_int* p, lapack_int* k, lapack_int* l, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* b, lapack_int* ldb, float* alpha, - float* beta, lapack_complex_float* u, lapack_int* ldu, - lapack_complex_float* v, lapack_int* ldv, - lapack_complex_float* q, lapack_int* ldq, - lapack_complex_float* work, float* rwork, lapack_int* iwork, - lapack_int *info ); -void LAPACK_zggsvd( char* jobu, char* jobv, char* jobq, lapack_int* m, - lapack_int* n, lapack_int* p, lapack_int* k, lapack_int* l, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* b, lapack_int* ldb, double* alpha, - double* beta, lapack_complex_double* u, lapack_int* ldu, - lapack_complex_double* v, lapack_int* ldv, - lapack_complex_double* q, lapack_int* ldq, - lapack_complex_double* work, double* rwork, - lapack_int* iwork, lapack_int *info ); -void LAPACK_ssygv( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, - float* a, lapack_int* lda, float* b, lapack_int* ldb, - float* w, float* work, lapack_int* lwork, lapack_int *info ); -void LAPACK_dsygv( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, - double* a, lapack_int* lda, double* b, lapack_int* ldb, - double* w, double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_chegv( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* b, lapack_int* ldb, float* w, - lapack_complex_float* work, lapack_int* lwork, float* rwork, - lapack_int *info ); -void LAPACK_zhegv( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* b, lapack_int* ldb, double* w, - lapack_complex_double* work, lapack_int* lwork, - double* rwork, lapack_int *info ); -void LAPACK_ssygvd( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, - float* a, lapack_int* lda, float* b, lapack_int* ldb, - float* w, float* work, lapack_int* lwork, lapack_int* iwork, - lapack_int* liwork, lapack_int *info ); -void LAPACK_dsygvd( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, - double* a, lapack_int* lda, double* b, lapack_int* ldb, - double* w, double* work, lapack_int* lwork, - lapack_int* iwork, lapack_int* liwork, lapack_int *info ); -void LAPACK_chegvd( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* b, lapack_int* ldb, float* w, - lapack_complex_float* work, lapack_int* lwork, float* rwork, - lapack_int* lrwork, lapack_int* iwork, lapack_int* liwork, - lapack_int *info ); -void LAPACK_zhegvd( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* b, lapack_int* ldb, double* w, - lapack_complex_double* work, lapack_int* lwork, - double* rwork, lapack_int* lrwork, lapack_int* iwork, - lapack_int* liwork, lapack_int *info ); -void LAPACK_ssygvx( lapack_int* itype, char* jobz, char* range, char* uplo, - lapack_int* n, float* a, lapack_int* lda, float* b, - lapack_int* ldb, float* vl, float* vu, lapack_int* il, - lapack_int* iu, float* abstol, lapack_int* m, float* w, - float* z, lapack_int* ldz, float* work, lapack_int* lwork, - lapack_int* iwork, lapack_int* ifail, lapack_int *info ); -void LAPACK_dsygvx( lapack_int* itype, char* jobz, char* range, char* uplo, - lapack_int* n, double* a, lapack_int* lda, double* b, - lapack_int* ldb, double* vl, double* vu, lapack_int* il, - lapack_int* iu, double* abstol, lapack_int* m, double* w, - double* z, lapack_int* ldz, double* work, lapack_int* lwork, - lapack_int* iwork, lapack_int* ifail, lapack_int *info ); -void LAPACK_chegvx( lapack_int* itype, char* jobz, char* range, char* uplo, - lapack_int* n, lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* b, lapack_int* ldb, float* vl, - float* vu, lapack_int* il, lapack_int* iu, float* abstol, - lapack_int* m, float* w, lapack_complex_float* z, - lapack_int* ldz, lapack_complex_float* work, - lapack_int* lwork, float* rwork, lapack_int* iwork, - lapack_int* ifail, lapack_int *info ); -void LAPACK_zhegvx( lapack_int* itype, char* jobz, char* range, char* uplo, - lapack_int* n, lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* b, lapack_int* ldb, double* vl, - double* vu, lapack_int* il, lapack_int* iu, double* abstol, - lapack_int* m, double* w, lapack_complex_double* z, - lapack_int* ldz, lapack_complex_double* work, - lapack_int* lwork, double* rwork, lapack_int* iwork, - lapack_int* ifail, lapack_int *info ); -void LAPACK_sspgv( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, - float* ap, float* bp, float* w, float* z, lapack_int* ldz, - float* work, lapack_int *info ); -void LAPACK_dspgv( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, - double* ap, double* bp, double* w, double* z, - lapack_int* ldz, double* work, lapack_int *info ); -void LAPACK_chpgv( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, - lapack_complex_float* ap, lapack_complex_float* bp, float* w, - lapack_complex_float* z, lapack_int* ldz, - lapack_complex_float* work, float* rwork, lapack_int *info ); -void LAPACK_zhpgv( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, - lapack_complex_double* ap, lapack_complex_double* bp, - double* w, lapack_complex_double* z, lapack_int* ldz, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_sspgvd( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, - float* ap, float* bp, float* w, float* z, lapack_int* ldz, - float* work, lapack_int* lwork, lapack_int* iwork, - lapack_int* liwork, lapack_int *info ); -void LAPACK_dspgvd( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, - double* ap, double* bp, double* w, double* z, - lapack_int* ldz, double* work, lapack_int* lwork, - lapack_int* iwork, lapack_int* liwork, lapack_int *info ); -void LAPACK_chpgvd( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, - lapack_complex_float* ap, lapack_complex_float* bp, - float* w, lapack_complex_float* z, lapack_int* ldz, - lapack_complex_float* work, lapack_int* lwork, float* rwork, - lapack_int* lrwork, lapack_int* iwork, lapack_int* liwork, - lapack_int *info ); -void LAPACK_zhpgvd( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, - lapack_complex_double* ap, lapack_complex_double* bp, - double* w, lapack_complex_double* z, lapack_int* ldz, - lapack_complex_double* work, lapack_int* lwork, - double* rwork, lapack_int* lrwork, lapack_int* iwork, - lapack_int* liwork, lapack_int *info ); -void LAPACK_sspgvx( lapack_int* itype, char* jobz, char* range, char* uplo, - lapack_int* n, float* ap, float* bp, float* vl, float* vu, - lapack_int* il, lapack_int* iu, float* abstol, - lapack_int* m, float* w, float* z, lapack_int* ldz, - float* work, lapack_int* iwork, lapack_int* ifail, - lapack_int *info ); -void LAPACK_dspgvx( lapack_int* itype, char* jobz, char* range, char* uplo, - lapack_int* n, double* ap, double* bp, double* vl, - double* vu, lapack_int* il, lapack_int* iu, double* abstol, - lapack_int* m, double* w, double* z, lapack_int* ldz, - double* work, lapack_int* iwork, lapack_int* ifail, - lapack_int *info ); -void LAPACK_chpgvx( lapack_int* itype, char* jobz, char* range, char* uplo, - lapack_int* n, lapack_complex_float* ap, - lapack_complex_float* bp, float* vl, float* vu, - lapack_int* il, lapack_int* iu, float* abstol, - lapack_int* m, float* w, lapack_complex_float* z, - lapack_int* ldz, lapack_complex_float* work, float* rwork, - lapack_int* iwork, lapack_int* ifail, lapack_int *info ); -void LAPACK_zhpgvx( lapack_int* itype, char* jobz, char* range, char* uplo, - lapack_int* n, lapack_complex_double* ap, - lapack_complex_double* bp, double* vl, double* vu, - lapack_int* il, lapack_int* iu, double* abstol, - lapack_int* m, double* w, lapack_complex_double* z, - lapack_int* ldz, lapack_complex_double* work, double* rwork, - lapack_int* iwork, lapack_int* ifail, lapack_int *info ); -void LAPACK_ssbgv( char* jobz, char* uplo, lapack_int* n, lapack_int* ka, - lapack_int* kb, float* ab, lapack_int* ldab, float* bb, - lapack_int* ldbb, float* w, float* z, lapack_int* ldz, - float* work, lapack_int *info ); -void LAPACK_dsbgv( char* jobz, char* uplo, lapack_int* n, lapack_int* ka, - lapack_int* kb, double* ab, lapack_int* ldab, double* bb, - lapack_int* ldbb, double* w, double* z, lapack_int* ldz, - double* work, lapack_int *info ); -void LAPACK_chbgv( char* jobz, char* uplo, lapack_int* n, lapack_int* ka, - lapack_int* kb, lapack_complex_float* ab, lapack_int* ldab, - lapack_complex_float* bb, lapack_int* ldbb, float* w, - lapack_complex_float* z, lapack_int* ldz, - lapack_complex_float* work, float* rwork, lapack_int *info ); -void LAPACK_zhbgv( char* jobz, char* uplo, lapack_int* n, lapack_int* ka, - lapack_int* kb, lapack_complex_double* ab, lapack_int* ldab, - lapack_complex_double* bb, lapack_int* ldbb, double* w, - lapack_complex_double* z, lapack_int* ldz, - lapack_complex_double* work, double* rwork, - lapack_int *info ); -void LAPACK_ssbgvd( char* jobz, char* uplo, lapack_int* n, lapack_int* ka, - lapack_int* kb, float* ab, lapack_int* ldab, float* bb, - lapack_int* ldbb, float* w, float* z, lapack_int* ldz, - float* work, lapack_int* lwork, lapack_int* iwork, - lapack_int* liwork, lapack_int *info ); -void LAPACK_dsbgvd( char* jobz, char* uplo, lapack_int* n, lapack_int* ka, - lapack_int* kb, double* ab, lapack_int* ldab, double* bb, - lapack_int* ldbb, double* w, double* z, lapack_int* ldz, - double* work, lapack_int* lwork, lapack_int* iwork, - lapack_int* liwork, lapack_int *info ); -void LAPACK_chbgvd( char* jobz, char* uplo, lapack_int* n, lapack_int* ka, - lapack_int* kb, lapack_complex_float* ab, lapack_int* ldab, - lapack_complex_float* bb, lapack_int* ldbb, float* w, - lapack_complex_float* z, lapack_int* ldz, - lapack_complex_float* work, lapack_int* lwork, float* rwork, - lapack_int* lrwork, lapack_int* iwork, lapack_int* liwork, - lapack_int *info ); -void LAPACK_zhbgvd( char* jobz, char* uplo, lapack_int* n, lapack_int* ka, - lapack_int* kb, lapack_complex_double* ab, lapack_int* ldab, - lapack_complex_double* bb, lapack_int* ldbb, double* w, - lapack_complex_double* z, lapack_int* ldz, - lapack_complex_double* work, lapack_int* lwork, - double* rwork, lapack_int* lrwork, lapack_int* iwork, - lapack_int* liwork, lapack_int *info ); -void LAPACK_ssbgvx( char* jobz, char* range, char* uplo, lapack_int* n, - lapack_int* ka, lapack_int* kb, float* ab, lapack_int* ldab, - float* bb, lapack_int* ldbb, float* q, lapack_int* ldq, - float* vl, float* vu, lapack_int* il, lapack_int* iu, - float* abstol, lapack_int* m, float* w, float* z, - lapack_int* ldz, float* work, lapack_int* iwork, - lapack_int* ifail, lapack_int *info ); -void LAPACK_dsbgvx( char* jobz, char* range, char* uplo, lapack_int* n, - lapack_int* ka, lapack_int* kb, double* ab, - lapack_int* ldab, double* bb, lapack_int* ldbb, double* q, - lapack_int* ldq, double* vl, double* vu, lapack_int* il, - lapack_int* iu, double* abstol, lapack_int* m, double* w, - double* z, lapack_int* ldz, double* work, lapack_int* iwork, - lapack_int* ifail, lapack_int *info ); -void LAPACK_chbgvx( char* jobz, char* range, char* uplo, lapack_int* n, - lapack_int* ka, lapack_int* kb, lapack_complex_float* ab, - lapack_int* ldab, lapack_complex_float* bb, - lapack_int* ldbb, lapack_complex_float* q, lapack_int* ldq, - float* vl, float* vu, lapack_int* il, lapack_int* iu, - float* abstol, lapack_int* m, float* w, - lapack_complex_float* z, lapack_int* ldz, - lapack_complex_float* work, float* rwork, lapack_int* iwork, - lapack_int* ifail, lapack_int *info ); -void LAPACK_zhbgvx( char* jobz, char* range, char* uplo, lapack_int* n, - lapack_int* ka, lapack_int* kb, lapack_complex_double* ab, - lapack_int* ldab, lapack_complex_double* bb, - lapack_int* ldbb, lapack_complex_double* q, lapack_int* ldq, - double* vl, double* vu, lapack_int* il, lapack_int* iu, - double* abstol, lapack_int* m, double* w, - lapack_complex_double* z, lapack_int* ldz, - lapack_complex_double* work, double* rwork, - lapack_int* iwork, lapack_int* ifail, lapack_int *info ); -void LAPACK_sgges( char* jobvsl, char* jobvsr, char* sort, - LAPACK_S_SELECT3 selctg, lapack_int* n, float* a, - lapack_int* lda, float* b, lapack_int* ldb, lapack_int* sdim, - float* alphar, float* alphai, float* beta, float* vsl, - lapack_int* ldvsl, float* vsr, lapack_int* ldvsr, - float* work, lapack_int* lwork, lapack_logical* bwork, - lapack_int *info ); -void LAPACK_dgges( char* jobvsl, char* jobvsr, char* sort, - LAPACK_D_SELECT3 selctg, lapack_int* n, double* a, - lapack_int* lda, double* b, lapack_int* ldb, - lapack_int* sdim, double* alphar, double* alphai, - double* beta, double* vsl, lapack_int* ldvsl, double* vsr, - lapack_int* ldvsr, double* work, lapack_int* lwork, - lapack_logical* bwork, lapack_int *info ); -void LAPACK_cgges( char* jobvsl, char* jobvsr, char* sort, - LAPACK_C_SELECT2 selctg, lapack_int* n, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* b, lapack_int* ldb, lapack_int* sdim, - lapack_complex_float* alpha, lapack_complex_float* beta, - lapack_complex_float* vsl, lapack_int* ldvsl, - lapack_complex_float* vsr, lapack_int* ldvsr, - lapack_complex_float* work, lapack_int* lwork, float* rwork, - lapack_logical* bwork, lapack_int *info ); -void LAPACK_zgges( char* jobvsl, char* jobvsr, char* sort, - LAPACK_Z_SELECT2 selctg, lapack_int* n, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* b, lapack_int* ldb, lapack_int* sdim, - lapack_complex_double* alpha, lapack_complex_double* beta, - lapack_complex_double* vsl, lapack_int* ldvsl, - lapack_complex_double* vsr, lapack_int* ldvsr, - lapack_complex_double* work, lapack_int* lwork, - double* rwork, lapack_logical* bwork, lapack_int *info ); -void LAPACK_sggesx( char* jobvsl, char* jobvsr, char* sort, - LAPACK_S_SELECT3 selctg, char* sense, lapack_int* n, - float* a, lapack_int* lda, float* b, lapack_int* ldb, - lapack_int* sdim, float* alphar, float* alphai, float* beta, - float* vsl, lapack_int* ldvsl, float* vsr, - lapack_int* ldvsr, float* rconde, float* rcondv, - float* work, lapack_int* lwork, lapack_int* iwork, - lapack_int* liwork, lapack_logical* bwork, - lapack_int *info ); -void LAPACK_dggesx( char* jobvsl, char* jobvsr, char* sort, - LAPACK_D_SELECT3 selctg, char* sense, lapack_int* n, - double* a, lapack_int* lda, double* b, lapack_int* ldb, - lapack_int* sdim, double* alphar, double* alphai, - double* beta, double* vsl, lapack_int* ldvsl, double* vsr, - lapack_int* ldvsr, double* rconde, double* rcondv, - double* work, lapack_int* lwork, lapack_int* iwork, - lapack_int* liwork, lapack_logical* bwork, - lapack_int *info ); -void LAPACK_cggesx( char* jobvsl, char* jobvsr, char* sort, - LAPACK_C_SELECT2 selctg, char* sense, lapack_int* n, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* b, lapack_int* ldb, lapack_int* sdim, - lapack_complex_float* alpha, lapack_complex_float* beta, - lapack_complex_float* vsl, lapack_int* ldvsl, - lapack_complex_float* vsr, lapack_int* ldvsr, float* rconde, - float* rcondv, lapack_complex_float* work, - lapack_int* lwork, float* rwork, lapack_int* iwork, - lapack_int* liwork, lapack_logical* bwork, - lapack_int *info ); -void LAPACK_zggesx( char* jobvsl, char* jobvsr, char* sort, - LAPACK_Z_SELECT2 selctg, char* sense, lapack_int* n, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* b, lapack_int* ldb, lapack_int* sdim, - lapack_complex_double* alpha, lapack_complex_double* beta, - lapack_complex_double* vsl, lapack_int* ldvsl, - lapack_complex_double* vsr, lapack_int* ldvsr, - double* rconde, double* rcondv, lapack_complex_double* work, - lapack_int* lwork, double* rwork, lapack_int* iwork, - lapack_int* liwork, lapack_logical* bwork, - lapack_int *info ); -void LAPACK_sggev( char* jobvl, char* jobvr, lapack_int* n, float* a, - lapack_int* lda, float* b, lapack_int* ldb, float* alphar, - float* alphai, float* beta, float* vl, lapack_int* ldvl, - float* vr, lapack_int* ldvr, float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_dggev( char* jobvl, char* jobvr, lapack_int* n, double* a, - lapack_int* lda, double* b, lapack_int* ldb, double* alphar, - double* alphai, double* beta, double* vl, lapack_int* ldvl, - double* vr, lapack_int* ldvr, double* work, - lapack_int* lwork, lapack_int *info ); -void LAPACK_cggev( char* jobvl, char* jobvr, lapack_int* n, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* alpha, lapack_complex_float* beta, - lapack_complex_float* vl, lapack_int* ldvl, - lapack_complex_float* vr, lapack_int* ldvr, - lapack_complex_float* work, lapack_int* lwork, float* rwork, - lapack_int *info ); -void LAPACK_zggev( char* jobvl, char* jobvr, lapack_int* n, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* alpha, lapack_complex_double* beta, - lapack_complex_double* vl, lapack_int* ldvl, - lapack_complex_double* vr, lapack_int* ldvr, - lapack_complex_double* work, lapack_int* lwork, - double* rwork, lapack_int *info ); -void LAPACK_sggevx( char* balanc, char* jobvl, char* jobvr, char* sense, - lapack_int* n, float* a, lapack_int* lda, float* b, - lapack_int* ldb, float* alphar, float* alphai, float* beta, - float* vl, lapack_int* ldvl, float* vr, lapack_int* ldvr, - lapack_int* ilo, lapack_int* ihi, float* lscale, - float* rscale, float* abnrm, float* bbnrm, float* rconde, - float* rcondv, float* work, lapack_int* lwork, - lapack_int* iwork, lapack_logical* bwork, - lapack_int *info ); -void LAPACK_dggevx( char* balanc, char* jobvl, char* jobvr, char* sense, - lapack_int* n, double* a, lapack_int* lda, double* b, - lapack_int* ldb, double* alphar, double* alphai, - double* beta, double* vl, lapack_int* ldvl, double* vr, - lapack_int* ldvr, lapack_int* ilo, lapack_int* ihi, - double* lscale, double* rscale, double* abnrm, - double* bbnrm, double* rconde, double* rcondv, double* work, - lapack_int* lwork, lapack_int* iwork, lapack_logical* bwork, - lapack_int *info ); -void LAPACK_cggevx( char* balanc, char* jobvl, char* jobvr, char* sense, - lapack_int* n, lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* alpha, lapack_complex_float* beta, - lapack_complex_float* vl, lapack_int* ldvl, - lapack_complex_float* vr, lapack_int* ldvr, lapack_int* ilo, - lapack_int* ihi, float* lscale, float* rscale, float* abnrm, - float* bbnrm, float* rconde, float* rcondv, - lapack_complex_float* work, lapack_int* lwork, float* rwork, - lapack_int* iwork, lapack_logical* bwork, - lapack_int *info ); -void LAPACK_zggevx( char* balanc, char* jobvl, char* jobvr, char* sense, - lapack_int* n, lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* alpha, lapack_complex_double* beta, - lapack_complex_double* vl, lapack_int* ldvl, - lapack_complex_double* vr, lapack_int* ldvr, - lapack_int* ilo, lapack_int* ihi, double* lscale, - double* rscale, double* abnrm, double* bbnrm, - double* rconde, double* rcondv, lapack_complex_double* work, - lapack_int* lwork, double* rwork, lapack_int* iwork, - lapack_logical* bwork, lapack_int *info ); -void LAPACK_dsfrk( char* transr, char* uplo, char* trans, lapack_int* n, - lapack_int* k, double* alpha, const double* a, - lapack_int* lda, double* beta, double* c ); -void LAPACK_ssfrk( char* transr, char* uplo, char* trans, lapack_int* n, - lapack_int* k, float* alpha, const float* a, lapack_int* lda, - float* beta, float* c ); -void LAPACK_zhfrk( char* transr, char* uplo, char* trans, lapack_int* n, - lapack_int* k, double* alpha, const lapack_complex_double* a, - lapack_int* lda, double* beta, lapack_complex_double* c ); -void LAPACK_chfrk( char* transr, char* uplo, char* trans, lapack_int* n, - lapack_int* k, float* alpha, const lapack_complex_float* a, - lapack_int* lda, float* beta, lapack_complex_float* c ); -void LAPACK_dtfsm( char* transr, char* side, char* uplo, char* trans, - char* diag, lapack_int* m, lapack_int* n, double* alpha, - const double* a, double* b, lapack_int* ldb ); -void LAPACK_stfsm( char* transr, char* side, char* uplo, char* trans, - char* diag, lapack_int* m, lapack_int* n, float* alpha, - const float* a, float* b, lapack_int* ldb ); -void LAPACK_ztfsm( char* transr, char* side, char* uplo, char* trans, - char* diag, lapack_int* m, lapack_int* n, - lapack_complex_double* alpha, const lapack_complex_double* a, - lapack_complex_double* b, lapack_int* ldb ); -void LAPACK_ctfsm( char* transr, char* side, char* uplo, char* trans, - char* diag, lapack_int* m, lapack_int* n, - lapack_complex_float* alpha, const lapack_complex_float* a, - lapack_complex_float* b, lapack_int* ldb ); -void LAPACK_dtfttp( char* transr, char* uplo, lapack_int* n, const double* arf, - double* ap, lapack_int *info ); -void LAPACK_stfttp( char* transr, char* uplo, lapack_int* n, const float* arf, - float* ap, lapack_int *info ); -void LAPACK_ztfttp( char* transr, char* uplo, lapack_int* n, - const lapack_complex_double* arf, lapack_complex_double* ap, - lapack_int *info ); -void LAPACK_ctfttp( char* transr, char* uplo, lapack_int* n, - const lapack_complex_float* arf, lapack_complex_float* ap, - lapack_int *info ); -void LAPACK_dtfttr( char* transr, char* uplo, lapack_int* n, const double* arf, - double* a, lapack_int* lda, lapack_int *info ); -void LAPACK_stfttr( char* transr, char* uplo, lapack_int* n, const float* arf, - float* a, lapack_int* lda, lapack_int *info ); -void LAPACK_ztfttr( char* transr, char* uplo, lapack_int* n, - const lapack_complex_double* arf, lapack_complex_double* a, - lapack_int* lda, lapack_int *info ); -void LAPACK_ctfttr( char* transr, char* uplo, lapack_int* n, - const lapack_complex_float* arf, lapack_complex_float* a, - lapack_int* lda, lapack_int *info ); -void LAPACK_dtpttf( char* transr, char* uplo, lapack_int* n, const double* ap, - double* arf, lapack_int *info ); -void LAPACK_stpttf( char* transr, char* uplo, lapack_int* n, const float* ap, - float* arf, lapack_int *info ); -void LAPACK_ztpttf( char* transr, char* uplo, lapack_int* n, - const lapack_complex_double* ap, lapack_complex_double* arf, - lapack_int *info ); -void LAPACK_ctpttf( char* transr, char* uplo, lapack_int* n, - const lapack_complex_float* ap, lapack_complex_float* arf, - lapack_int *info ); -void LAPACK_dtpttr( char* uplo, lapack_int* n, const double* ap, double* a, - lapack_int* lda, lapack_int *info ); -void LAPACK_stpttr( char* uplo, lapack_int* n, const float* ap, float* a, - lapack_int* lda, lapack_int *info ); -void LAPACK_ztpttr( char* uplo, lapack_int* n, const lapack_complex_double* ap, - lapack_complex_double* a, lapack_int* lda, - lapack_int *info ); -void LAPACK_ctpttr( char* uplo, lapack_int* n, const lapack_complex_float* ap, - lapack_complex_float* a, lapack_int* lda, - lapack_int *info ); -void LAPACK_dtrttf( char* transr, char* uplo, lapack_int* n, const double* a, - lapack_int* lda, double* arf, lapack_int *info ); -void LAPACK_strttf( char* transr, char* uplo, lapack_int* n, const float* a, - lapack_int* lda, float* arf, lapack_int *info ); -void LAPACK_ztrttf( char* transr, char* uplo, lapack_int* n, - const lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* arf, lapack_int *info ); -void LAPACK_ctrttf( char* transr, char* uplo, lapack_int* n, - const lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* arf, lapack_int *info ); -void LAPACK_dtrttp( char* uplo, lapack_int* n, const double* a, lapack_int* lda, - double* ap, lapack_int *info ); -void LAPACK_strttp( char* uplo, lapack_int* n, const float* a, lapack_int* lda, - float* ap, lapack_int *info ); -void LAPACK_ztrttp( char* uplo, lapack_int* n, const lapack_complex_double* a, - lapack_int* lda, lapack_complex_double* ap, - lapack_int *info ); -void LAPACK_ctrttp( char* uplo, lapack_int* n, const lapack_complex_float* a, - lapack_int* lda, lapack_complex_float* ap, - lapack_int *info ); -void LAPACK_sgeqrfp( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, - float* tau, float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_dgeqrfp( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, - double* tau, double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_cgeqrfp( lapack_int* m, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, lapack_complex_float* tau, - lapack_complex_float* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_zgeqrfp( lapack_int* m, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, lapack_complex_double* tau, - lapack_complex_double* work, lapack_int* lwork, - lapack_int *info ); -void LAPACK_clacgv( lapack_int* n, lapack_complex_float* x, lapack_int* incx ); -void LAPACK_zlacgv( lapack_int* n, lapack_complex_double* x, lapack_int* incx ); -void LAPACK_slarnv( lapack_int* idist, lapack_int* iseed, lapack_int* n, - float* x ); -void LAPACK_dlarnv( lapack_int* idist, lapack_int* iseed, lapack_int* n, - double* x ); -void LAPACK_clarnv( lapack_int* idist, lapack_int* iseed, lapack_int* n, - lapack_complex_float* x ); -void LAPACK_zlarnv( lapack_int* idist, lapack_int* iseed, lapack_int* n, - lapack_complex_double* x ); -void LAPACK_sgeqr2( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, - float* tau, float* work, lapack_int *info ); -void LAPACK_dgeqr2( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, - double* tau, double* work, lapack_int *info ); -void LAPACK_cgeqr2( lapack_int* m, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, lapack_complex_float* tau, - lapack_complex_float* work, lapack_int *info ); -void LAPACK_zgeqr2( lapack_int* m, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, lapack_complex_double* tau, - lapack_complex_double* work, lapack_int *info ); -void LAPACK_slacpy( char* uplo, lapack_int* m, lapack_int* n, const float* a, - lapack_int* lda, float* b, lapack_int* ldb ); -void LAPACK_dlacpy( char* uplo, lapack_int* m, lapack_int* n, const double* a, - lapack_int* lda, double* b, lapack_int* ldb ); -void LAPACK_clacpy( char* uplo, lapack_int* m, lapack_int* n, - const lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* b, lapack_int* ldb ); -void LAPACK_zlacpy( char* uplo, lapack_int* m, lapack_int* n, - const lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* b, lapack_int* ldb ); -void LAPACK_sgetf2( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, - lapack_int* ipiv, lapack_int *info ); -void LAPACK_dgetf2( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, - lapack_int* ipiv, lapack_int *info ); -void LAPACK_cgetf2( lapack_int* m, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, lapack_int* ipiv, lapack_int *info ); -void LAPACK_zgetf2( lapack_int* m, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, lapack_int* ipiv, lapack_int *info ); -void LAPACK_slaswp( lapack_int* n, float* a, lapack_int* lda, lapack_int* k1, - lapack_int* k2, const lapack_int* ipiv, lapack_int* incx ); -void LAPACK_dlaswp( lapack_int* n, double* a, lapack_int* lda, lapack_int* k1, - lapack_int* k2, const lapack_int* ipiv, lapack_int* incx ); -void LAPACK_claswp( lapack_int* n, lapack_complex_float* a, lapack_int* lda, - lapack_int* k1, lapack_int* k2, const lapack_int* ipiv, - lapack_int* incx ); -void LAPACK_zlaswp( lapack_int* n, lapack_complex_double* a, lapack_int* lda, - lapack_int* k1, lapack_int* k2, const lapack_int* ipiv, - lapack_int* incx ); -float LAPACK_slange( char* norm, lapack_int* m, lapack_int* n, const float* a, - lapack_int* lda, float* work ); -double LAPACK_dlange( char* norm, lapack_int* m, lapack_int* n, const double* a, - lapack_int* lda, double* work ); -float LAPACK_clange( char* norm, lapack_int* m, lapack_int* n, - const lapack_complex_float* a, lapack_int* lda, float* work ); -double LAPACK_zlange( char* norm, lapack_int* m, lapack_int* n, - const lapack_complex_double* a, lapack_int* lda, double* work ); -float LAPACK_clanhe( char* norm, char* uplo, lapack_int* n, - const lapack_complex_float* a, lapack_int* lda, float* work ); -double LAPACK_zlanhe( char* norm, char* uplo, lapack_int* n, - const lapack_complex_double* a, lapack_int* lda, double* work ); -float LAPACK_slansy( char* norm, char* uplo, lapack_int* n, const float* a, - lapack_int* lda, float* work ); -double LAPACK_dlansy( char* norm, char* uplo, lapack_int* n, const double* a, - lapack_int* lda, double* work ); -float LAPACK_clansy( char* norm, char* uplo, lapack_int* n, - const lapack_complex_float* a, lapack_int* lda, float* work ); -double LAPACK_zlansy( char* norm, char* uplo, lapack_int* n, - const lapack_complex_double* a, lapack_int* lda, double* work ); -float LAPACK_slantr( char* norm, char* uplo, char* diag, lapack_int* m, - lapack_int* n, const float* a, lapack_int* lda, float* work ); -double LAPACK_dlantr( char* norm, char* uplo, char* diag, lapack_int* m, - lapack_int* n, const double* a, lapack_int* lda, double* work ); -float LAPACK_clantr( char* norm, char* uplo, char* diag, lapack_int* m, - lapack_int* n, const lapack_complex_float* a, lapack_int* lda, - float* work ); -double LAPACK_zlantr( char* norm, char* uplo, char* diag, lapack_int* m, - lapack_int* n, const lapack_complex_double* a, lapack_int* lda, - double* work ); -float LAPACK_slamch( char* cmach ); -double LAPACK_dlamch( char* cmach ); -void LAPACK_sgelq2( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, - float* tau, float* work, lapack_int *info ); -void LAPACK_dgelq2( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, - double* tau, double* work, lapack_int *info ); -void LAPACK_cgelq2( lapack_int* m, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, lapack_complex_float* tau, - lapack_complex_float* work, lapack_int *info ); -void LAPACK_zgelq2( lapack_int* m, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, lapack_complex_double* tau, - lapack_complex_double* work, lapack_int *info ); -void LAPACK_slarfb( char* side, char* trans, char* direct, char* storev, - lapack_int* m, lapack_int* n, lapack_int* k, const float* v, - lapack_int* ldv, const float* t, lapack_int* ldt, float* c, - lapack_int* ldc, float* work, lapack_int* ldwork ); -void LAPACK_dlarfb( char* side, char* trans, char* direct, char* storev, - lapack_int* m, lapack_int* n, lapack_int* k, - const double* v, lapack_int* ldv, const double* t, - lapack_int* ldt, double* c, lapack_int* ldc, double* work, - lapack_int* ldwork ); -void LAPACK_clarfb( char* side, char* trans, char* direct, char* storev, - lapack_int* m, lapack_int* n, lapack_int* k, - const lapack_complex_float* v, lapack_int* ldv, - const lapack_complex_float* t, lapack_int* ldt, - lapack_complex_float* c, lapack_int* ldc, - lapack_complex_float* work, lapack_int* ldwork ); -void LAPACK_zlarfb( char* side, char* trans, char* direct, char* storev, - lapack_int* m, lapack_int* n, lapack_int* k, - const lapack_complex_double* v, lapack_int* ldv, - const lapack_complex_double* t, lapack_int* ldt, - lapack_complex_double* c, lapack_int* ldc, - lapack_complex_double* work, lapack_int* ldwork ); -void LAPACK_slarfg( lapack_int* n, float* alpha, float* x, lapack_int* incx, - float* tau ); -void LAPACK_dlarfg( lapack_int* n, double* alpha, double* x, lapack_int* incx, - double* tau ); -void LAPACK_clarfg( lapack_int* n, lapack_complex_float* alpha, - lapack_complex_float* x, lapack_int* incx, - lapack_complex_float* tau ); -void LAPACK_zlarfg( lapack_int* n, lapack_complex_double* alpha, - lapack_complex_double* x, lapack_int* incx, - lapack_complex_double* tau ); -void LAPACK_slarft( char* direct, char* storev, lapack_int* n, lapack_int* k, - const float* v, lapack_int* ldv, const float* tau, float* t, - lapack_int* ldt ); -void LAPACK_dlarft( char* direct, char* storev, lapack_int* n, lapack_int* k, - const double* v, lapack_int* ldv, const double* tau, - double* t, lapack_int* ldt ); -void LAPACK_clarft( char* direct, char* storev, lapack_int* n, lapack_int* k, - const lapack_complex_float* v, lapack_int* ldv, - const lapack_complex_float* tau, lapack_complex_float* t, - lapack_int* ldt ); -void LAPACK_zlarft( char* direct, char* storev, lapack_int* n, lapack_int* k, - const lapack_complex_double* v, lapack_int* ldv, - const lapack_complex_double* tau, lapack_complex_double* t, - lapack_int* ldt ); -void LAPACK_slarfx( char* side, lapack_int* m, lapack_int* n, const float* v, - float* tau, float* c, lapack_int* ldc, float* work ); -void LAPACK_dlarfx( char* side, lapack_int* m, lapack_int* n, const double* v, - double* tau, double* c, lapack_int* ldc, double* work ); -void LAPACK_clarfx( char* side, lapack_int* m, lapack_int* n, - const lapack_complex_float* v, lapack_complex_float* tau, - lapack_complex_float* c, lapack_int* ldc, - lapack_complex_float* work ); -void LAPACK_zlarfx( char* side, lapack_int* m, lapack_int* n, - const lapack_complex_double* v, lapack_complex_double* tau, - lapack_complex_double* c, lapack_int* ldc, - lapack_complex_double* work ); -void LAPACK_slatms( lapack_int* m, lapack_int* n, char* dist, lapack_int* iseed, - char* sym, float* d, lapack_int* mode, float* cond, - float* dmax, lapack_int* kl, lapack_int* ku, char* pack, - float* a, lapack_int* lda, float* work, lapack_int *info ); -void LAPACK_dlatms( lapack_int* m, lapack_int* n, char* dist, lapack_int* iseed, - char* sym, double* d, lapack_int* mode, double* cond, - double* dmax, lapack_int* kl, lapack_int* ku, char* pack, - double* a, lapack_int* lda, double* work, - lapack_int *info ); -void LAPACK_clatms( lapack_int* m, lapack_int* n, char* dist, lapack_int* iseed, - char* sym, float* d, lapack_int* mode, float* cond, - float* dmax, lapack_int* kl, lapack_int* ku, char* pack, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* work, lapack_int *info ); -void LAPACK_zlatms( lapack_int* m, lapack_int* n, char* dist, lapack_int* iseed, - char* sym, double* d, lapack_int* mode, double* cond, - double* dmax, lapack_int* kl, lapack_int* ku, char* pack, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* work, lapack_int *info ); -void LAPACK_slag2d( lapack_int* m, lapack_int* n, const float* sa, - lapack_int* ldsa, double* a, lapack_int* lda, - lapack_int *info ); -void LAPACK_dlag2s( lapack_int* m, lapack_int* n, const double* a, - lapack_int* lda, float* sa, lapack_int* ldsa, - lapack_int *info ); -void LAPACK_clag2z( lapack_int* m, lapack_int* n, - const lapack_complex_float* sa, lapack_int* ldsa, - lapack_complex_double* a, lapack_int* lda, - lapack_int *info ); -void LAPACK_zlag2c( lapack_int* m, lapack_int* n, - const lapack_complex_double* a, lapack_int* lda, - lapack_complex_float* sa, lapack_int* ldsa, - lapack_int *info ); -void LAPACK_slauum( char* uplo, lapack_int* n, float* a, lapack_int* lda, - lapack_int *info ); -void LAPACK_dlauum( char* uplo, lapack_int* n, double* a, lapack_int* lda, - lapack_int *info ); -void LAPACK_clauum( char* uplo, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, lapack_int *info ); -void LAPACK_zlauum( char* uplo, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, lapack_int *info ); -void LAPACK_slagge( lapack_int* m, lapack_int* n, lapack_int* kl, - lapack_int* ku, const float* d, float* a, lapack_int* lda, - lapack_int* iseed, float* work, lapack_int *info ); -void LAPACK_dlagge( lapack_int* m, lapack_int* n, lapack_int* kl, - lapack_int* ku, const double* d, double* a, lapack_int* lda, - lapack_int* iseed, double* work, lapack_int *info ); -void LAPACK_clagge( lapack_int* m, lapack_int* n, lapack_int* kl, - lapack_int* ku, const float* d, lapack_complex_float* a, - lapack_int* lda, lapack_int* iseed, - lapack_complex_float* work, lapack_int *info ); -void LAPACK_zlagge( lapack_int* m, lapack_int* n, lapack_int* kl, - lapack_int* ku, const double* d, lapack_complex_double* a, - lapack_int* lda, lapack_int* iseed, - lapack_complex_double* work, lapack_int *info ); -void LAPACK_slaset( char* uplo, lapack_int* m, lapack_int* n, float* alpha, - float* beta, float* a, lapack_int* lda ); -void LAPACK_dlaset( char* uplo, lapack_int* m, lapack_int* n, double* alpha, - double* beta, double* a, lapack_int* lda ); -void LAPACK_claset( char* uplo, lapack_int* m, lapack_int* n, - lapack_complex_float* alpha, lapack_complex_float* beta, - lapack_complex_float* a, lapack_int* lda ); -void LAPACK_zlaset( char* uplo, lapack_int* m, lapack_int* n, - lapack_complex_double* alpha, lapack_complex_double* beta, - lapack_complex_double* a, lapack_int* lda ); -void LAPACK_slasrt( char* id, lapack_int* n, float* d, lapack_int *info ); -void LAPACK_dlasrt( char* id, lapack_int* n, double* d, lapack_int *info ); -void LAPACK_claghe( lapack_int* n, lapack_int* k, const float* d, - lapack_complex_float* a, lapack_int* lda, lapack_int* iseed, - lapack_complex_float* work, lapack_int *info ); -void LAPACK_zlaghe( lapack_int* n, lapack_int* k, const double* d, - lapack_complex_double* a, lapack_int* lda, - lapack_int* iseed, lapack_complex_double* work, - lapack_int *info ); -void LAPACK_slagsy( lapack_int* n, lapack_int* k, const float* d, float* a, - lapack_int* lda, lapack_int* iseed, float* work, - lapack_int *info ); -void LAPACK_dlagsy( lapack_int* n, lapack_int* k, const double* d, double* a, - lapack_int* lda, lapack_int* iseed, double* work, - lapack_int *info ); -void LAPACK_clagsy( lapack_int* n, lapack_int* k, const float* d, - lapack_complex_float* a, lapack_int* lda, lapack_int* iseed, - lapack_complex_float* work, lapack_int *info ); -void LAPACK_zlagsy( lapack_int* n, lapack_int* k, const double* d, - lapack_complex_double* a, lapack_int* lda, - lapack_int* iseed, lapack_complex_double* work, - lapack_int *info ); -void LAPACK_slapmr( lapack_logical* forwrd, lapack_int* m, lapack_int* n, - float* x, lapack_int* ldx, lapack_int* k ); -void LAPACK_dlapmr( lapack_logical* forwrd, lapack_int* m, lapack_int* n, - double* x, lapack_int* ldx, lapack_int* k ); -void LAPACK_clapmr( lapack_logical* forwrd, lapack_int* m, lapack_int* n, - lapack_complex_float* x, lapack_int* ldx, lapack_int* k ); -void LAPACK_zlapmr( lapack_logical* forwrd, lapack_int* m, lapack_int* n, - lapack_complex_double* x, lapack_int* ldx, lapack_int* k ); -float LAPACK_slapy2( float* x, float* y ); -double LAPACK_dlapy2( double* x, double* y ); -float LAPACK_slapy3( float* x, float* y, float* z ); -double LAPACK_dlapy3( double* x, double* y, double* z ); -void LAPACK_slartgp( float* f, float* g, float* cs, float* sn, float* r ); -void LAPACK_dlartgp( double* f, double* g, double* cs, double* sn, double* r ); -void LAPACK_slartgs( float* x, float* y, float* sigma, float* cs, float* sn ); -void LAPACK_dlartgs( double* x, double* y, double* sigma, double* cs, - double* sn ); -// LAPACK 3.3.0 -void LAPACK_cbbcsd( char* jobu1, char* jobu2, - char* jobv1t, char* jobv2t, char* trans, - lapack_int* m, lapack_int* p, lapack_int* q, - float* theta, float* phi, - lapack_complex_float* u1, lapack_int* ldu1, - lapack_complex_float* u2, lapack_int* ldu2, - lapack_complex_float* v1t, lapack_int* ldv1t, - lapack_complex_float* v2t, lapack_int* ldv2t, - float* b11d, float* b11e, float* b12d, - float* b12e, float* b21d, float* b21e, - float* b22d, float* b22e, float* rwork, - lapack_int* lrwork , lapack_int *info ); -void LAPACK_cheswapr( char* uplo, lapack_int* n, - lapack_complex_float* a, lapack_int* i1, - lapack_int* i2 ); -void LAPACK_chetri2( char* uplo, lapack_int* n, - lapack_complex_float* a, lapack_int* lda, - const lapack_int* ipiv, - lapack_complex_float* work, lapack_int* lwork , lapack_int *info ); -void LAPACK_chetri2x( char* uplo, lapack_int* n, - lapack_complex_float* a, lapack_int* lda, - const lapack_int* ipiv, - lapack_complex_float* work, lapack_int* nb , lapack_int *info ); -void LAPACK_chetrs2( char* uplo, lapack_int* n, - lapack_int* nrhs, const lapack_complex_float* a, - lapack_int* lda, const lapack_int* ipiv, - lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* work , lapack_int *info ); -void LAPACK_csyconv( char* uplo, char* way, - lapack_int* n, lapack_complex_float* a, - lapack_int* lda, const lapack_int* ipiv, - lapack_complex_float* work , lapack_int *info ); -void LAPACK_csyswapr( char* uplo, lapack_int* n, - lapack_complex_float* a, lapack_int* i1, - lapack_int* i2 ); -void LAPACK_csytri2( char* uplo, lapack_int* n, - lapack_complex_float* a, lapack_int* lda, - const lapack_int* ipiv, - lapack_complex_float* work, lapack_int* lwork , lapack_int *info ); -void LAPACK_csytri2x( char* uplo, lapack_int* n, - lapack_complex_float* a, lapack_int* lda, - const lapack_int* ipiv, - lapack_complex_float* work, lapack_int* nb , lapack_int *info ); -void LAPACK_csytrs2( char* uplo, lapack_int* n, - lapack_int* nrhs, const lapack_complex_float* a, - lapack_int* lda, const lapack_int* ipiv, - lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* work , lapack_int *info ); -void LAPACK_cunbdb( char* trans, char* signs, - lapack_int* m, lapack_int* p, lapack_int* q, - lapack_complex_float* x11, lapack_int* ldx11, - lapack_complex_float* x12, lapack_int* ldx12, - lapack_complex_float* x21, lapack_int* ldx21, - lapack_complex_float* x22, lapack_int* ldx22, - float* theta, float* phi, - lapack_complex_float* taup1, - lapack_complex_float* taup2, - lapack_complex_float* tauq1, - lapack_complex_float* tauq2, - lapack_complex_float* work, lapack_int* lwork , lapack_int *info ); -void LAPACK_cuncsd( char* jobu1, char* jobu2, - char* jobv1t, char* jobv2t, char* trans, - char* signs, lapack_int* m, lapack_int* p, - lapack_int* q, lapack_complex_float* x11, - lapack_int* ldx11, lapack_complex_float* x12, - lapack_int* ldx12, lapack_complex_float* x21, - lapack_int* ldx21, lapack_complex_float* x22, - lapack_int* ldx22, float* theta, - lapack_complex_float* u1, lapack_int* ldu1, - lapack_complex_float* u2, lapack_int* ldu2, - lapack_complex_float* v1t, lapack_int* ldv1t, - lapack_complex_float* v2t, lapack_int* ldv2t, - lapack_complex_float* work, lapack_int* lwork, - float* rwork, lapack_int* lrwork, - lapack_int* iwork , lapack_int *info ); -void LAPACK_dbbcsd( char* jobu1, char* jobu2, - char* jobv1t, char* jobv2t, char* trans, - lapack_int* m, lapack_int* p, lapack_int* q, - double* theta, double* phi, double* u1, - lapack_int* ldu1, double* u2, lapack_int* ldu2, - double* v1t, lapack_int* ldv1t, double* v2t, - lapack_int* ldv2t, double* b11d, double* b11e, - double* b12d, double* b12e, double* b21d, - double* b21e, double* b22d, double* b22e, - double* work, lapack_int* lwork , lapack_int *info ); -void LAPACK_dorbdb( char* trans, char* signs, - lapack_int* m, lapack_int* p, lapack_int* q, - double* x11, lapack_int* ldx11, double* x12, - lapack_int* ldx12, double* x21, lapack_int* ldx21, - double* x22, lapack_int* ldx22, double* theta, - double* phi, double* taup1, double* taup2, - double* tauq1, double* tauq2, double* work, - lapack_int* lwork , lapack_int *info ); -void LAPACK_dorcsd( char* jobu1, char* jobu2, - char* jobv1t, char* jobv2t, char* trans, - char* signs, lapack_int* m, lapack_int* p, - lapack_int* q, double* x11, lapack_int* ldx11, - double* x12, lapack_int* ldx12, double* x21, - lapack_int* ldx21, double* x22, lapack_int* ldx22, - double* theta, double* u1, lapack_int* ldu1, - double* u2, lapack_int* ldu2, double* v1t, - lapack_int* ldv1t, double* v2t, lapack_int* ldv2t, - double* work, lapack_int* lwork, - lapack_int* iwork , lapack_int *info ); -void LAPACK_dsyconv( char* uplo, char* way, - lapack_int* n, double* a, lapack_int* lda, - const lapack_int* ipiv, double* work , lapack_int *info ); -void LAPACK_dsyswapr( char* uplo, lapack_int* n, - double* a, lapack_int* i1, lapack_int* i2 ); -void LAPACK_dsytri2( char* uplo, lapack_int* n, - double* a, lapack_int* lda, - const lapack_int* ipiv, - lapack_complex_double* work, lapack_int* lwork , lapack_int *info ); -void LAPACK_dsytri2x( char* uplo, lapack_int* n, - double* a, lapack_int* lda, - const lapack_int* ipiv, double* work, - lapack_int* nb , lapack_int *info ); -void LAPACK_dsytrs2( char* uplo, lapack_int* n, - lapack_int* nrhs, const double* a, - lapack_int* lda, const lapack_int* ipiv, - double* b, lapack_int* ldb, double* work , lapack_int *info ); -void LAPACK_sbbcsd( char* jobu1, char* jobu2, - char* jobv1t, char* jobv2t, char* trans, - lapack_int* m, lapack_int* p, lapack_int* q, - float* theta, float* phi, float* u1, - lapack_int* ldu1, float* u2, lapack_int* ldu2, - float* v1t, lapack_int* ldv1t, float* v2t, - lapack_int* ldv2t, float* b11d, float* b11e, - float* b12d, float* b12e, float* b21d, - float* b21e, float* b22d, float* b22e, - float* work, lapack_int* lwork , lapack_int *info ); -void LAPACK_sorbdb( char* trans, char* signs, - lapack_int* m, lapack_int* p, lapack_int* q, - float* x11, lapack_int* ldx11, float* x12, - lapack_int* ldx12, float* x21, lapack_int* ldx21, - float* x22, lapack_int* ldx22, float* theta, - float* phi, float* taup1, float* taup2, - float* tauq1, float* tauq2, float* work, - lapack_int* lwork , lapack_int *info ); -void LAPACK_sorcsd( char* jobu1, char* jobu2, - char* jobv1t, char* jobv2t, char* trans, - char* signs, lapack_int* m, lapack_int* p, - lapack_int* q, float* x11, lapack_int* ldx11, - float* x12, lapack_int* ldx12, float* x21, - lapack_int* ldx21, float* x22, lapack_int* ldx22, - float* theta, float* u1, lapack_int* ldu1, - float* u2, lapack_int* ldu2, float* v1t, - lapack_int* ldv1t, float* v2t, lapack_int* ldv2t, - float* work, lapack_int* lwork, - lapack_int* iwork , lapack_int *info ); -void LAPACK_ssyconv( char* uplo, char* way, - lapack_int* n, float* a, lapack_int* lda, - const lapack_int* ipiv, float* work , lapack_int *info ); -void LAPACK_ssyswapr( char* uplo, lapack_int* n, - float* a, lapack_int* i1, lapack_int* i2 ); -void LAPACK_ssytri2( char* uplo, lapack_int* n, - float* a, lapack_int* lda, - const lapack_int* ipiv, - lapack_complex_float* work, lapack_int* lwork , lapack_int *info ); -void LAPACK_ssytri2x( char* uplo, lapack_int* n, - float* a, lapack_int* lda, - const lapack_int* ipiv, float* work, - lapack_int* nb , lapack_int *info ); -void LAPACK_ssytrs2( char* uplo, lapack_int* n, - lapack_int* nrhs, const float* a, - lapack_int* lda, const lapack_int* ipiv, - float* b, lapack_int* ldb, float* work , lapack_int *info ); -void LAPACK_zbbcsd( char* jobu1, char* jobu2, - char* jobv1t, char* jobv2t, char* trans, - lapack_int* m, lapack_int* p, lapack_int* q, - double* theta, double* phi, - lapack_complex_double* u1, lapack_int* ldu1, - lapack_complex_double* u2, lapack_int* ldu2, - lapack_complex_double* v1t, lapack_int* ldv1t, - lapack_complex_double* v2t, lapack_int* ldv2t, - double* b11d, double* b11e, double* b12d, - double* b12e, double* b21d, double* b21e, - double* b22d, double* b22e, double* rwork, - lapack_int* lrwork , lapack_int *info ); -void LAPACK_zheswapr( char* uplo, lapack_int* n, - lapack_complex_double* a, lapack_int* i1, - lapack_int* i2 ); -void LAPACK_zhetri2( char* uplo, lapack_int* n, - lapack_complex_double* a, lapack_int* lda, - const lapack_int* ipiv, - lapack_complex_double* work, lapack_int* lwork , lapack_int *info ); -void LAPACK_zhetri2x( char* uplo, lapack_int* n, - lapack_complex_double* a, lapack_int* lda, - const lapack_int* ipiv, - lapack_complex_double* work, lapack_int* nb , lapack_int *info ); -void LAPACK_zhetrs2( char* uplo, lapack_int* n, - lapack_int* nrhs, - const lapack_complex_double* a, lapack_int* lda, - const lapack_int* ipiv, - lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* work , lapack_int *info ); -void LAPACK_zsyconv( char* uplo, char* way, - lapack_int* n, lapack_complex_double* a, - lapack_int* lda, const lapack_int* ipiv, - lapack_complex_double* work , lapack_int *info ); -void LAPACK_zsyswapr( char* uplo, lapack_int* n, - lapack_complex_double* a, lapack_int* i1, - lapack_int* i2 ); -void LAPACK_zsytri2( char* uplo, lapack_int* n, - lapack_complex_double* a, lapack_int* lda, - const lapack_int* ipiv, - lapack_complex_double* work, lapack_int* lwork , lapack_int *info ); -void LAPACK_zsytri2x( char* uplo, lapack_int* n, - lapack_complex_double* a, lapack_int* lda, - const lapack_int* ipiv, - lapack_complex_double* work, lapack_int* nb , lapack_int *info ); -void LAPACK_zsytrs2( char* uplo, lapack_int* n, - lapack_int* nrhs, - const lapack_complex_double* a, lapack_int* lda, - const lapack_int* ipiv, - lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* work , lapack_int *info ); -void LAPACK_zunbdb( char* trans, char* signs, - lapack_int* m, lapack_int* p, lapack_int* q, - lapack_complex_double* x11, lapack_int* ldx11, - lapack_complex_double* x12, lapack_int* ldx12, - lapack_complex_double* x21, lapack_int* ldx21, - lapack_complex_double* x22, lapack_int* ldx22, - double* theta, double* phi, - lapack_complex_double* taup1, - lapack_complex_double* taup2, - lapack_complex_double* tauq1, - lapack_complex_double* tauq2, - lapack_complex_double* work, lapack_int* lwork , lapack_int *info ); -void LAPACK_zuncsd( char* jobu1, char* jobu2, - char* jobv1t, char* jobv2t, char* trans, - char* signs, lapack_int* m, lapack_int* p, - lapack_int* q, lapack_complex_double* x11, - lapack_int* ldx11, lapack_complex_double* x12, - lapack_int* ldx12, lapack_complex_double* x21, - lapack_int* ldx21, lapack_complex_double* x22, - lapack_int* ldx22, double* theta, - lapack_complex_double* u1, lapack_int* ldu1, - lapack_complex_double* u2, lapack_int* ldu2, - lapack_complex_double* v1t, lapack_int* ldv1t, - lapack_complex_double* v2t, lapack_int* ldv2t, - lapack_complex_double* work, lapack_int* lwork, - double* rwork, lapack_int* lrwork, - lapack_int* iwork , lapack_int *info ); -// LAPACK 3.4.0 -void LAPACK_sgemqrt( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, lapack_int* nb, const float* v, - lapack_int* ldv, const float* t, lapack_int* ldt, float* c, - lapack_int* ldc, float* work, lapack_int *info ); -void LAPACK_dgemqrt( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, lapack_int* nb, const double* v, - lapack_int* ldv, const double* t, lapack_int* ldt, - double* c, lapack_int* ldc, double* work, - lapack_int *info ); -void LAPACK_cgemqrt( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, lapack_int* nb, - const lapack_complex_float* v, lapack_int* ldv, - const lapack_complex_float* t, lapack_int* ldt, - lapack_complex_float* c, lapack_int* ldc, - lapack_complex_float* work, lapack_int *info ); -void LAPACK_zgemqrt( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, lapack_int* nb, - const lapack_complex_double* v, lapack_int* ldv, - const lapack_complex_double* t, lapack_int* ldt, - lapack_complex_double* c, lapack_int* ldc, - lapack_complex_double* work, lapack_int *info ); -void LAPACK_sgeqrt( lapack_int* m, lapack_int* n, lapack_int* nb, float* a, - lapack_int* lda, float* t, lapack_int* ldt, float* work, - lapack_int *info ); -void LAPACK_dgeqrt( lapack_int* m, lapack_int* n, lapack_int* nb, double* a, - lapack_int* lda, double* t, lapack_int* ldt, double* work, - lapack_int *info ); -void LAPACK_cgeqrt( lapack_int* m, lapack_int* n, lapack_int* nb, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* t, lapack_int* ldt, - lapack_complex_float* work, lapack_int *info ); -void LAPACK_zgeqrt( lapack_int* m, lapack_int* n, lapack_int* nb, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* t, lapack_int* ldt, - lapack_complex_double* work, lapack_int *info ); -void LAPACK_sgeqrt2( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, - float* t, lapack_int* ldt, lapack_int *info ); -void LAPACK_dgeqrt2( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, - double* t, lapack_int* ldt, lapack_int *info ); -void LAPACK_cgeqrt2( lapack_int* m, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, lapack_complex_float* t, lapack_int* ldt, - lapack_int *info ); -void LAPACK_zgeqrt2( lapack_int* m, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, lapack_complex_double* t, lapack_int* ldt, - lapack_int *info ); -void LAPACK_sgeqrt3( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, - float* t, lapack_int* ldt, lapack_int *info ); -void LAPACK_dgeqrt3( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, - double* t, lapack_int* ldt, lapack_int *info ); -void LAPACK_cgeqrt3( lapack_int* m, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, lapack_complex_float* t, lapack_int* ldt, - lapack_int *info ); -void LAPACK_zgeqrt3( lapack_int* m, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, lapack_complex_double* t, lapack_int* ldt, - lapack_int *info ); -void LAPACK_stpmqrt( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, lapack_int* l, lapack_int* nb, - const float* v, lapack_int* ldv, const float* t, - lapack_int* ldt, float* a, lapack_int* lda, float* b, - lapack_int* ldb, float* work, lapack_int *info ); -void LAPACK_dtpmqrt( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, lapack_int* l, lapack_int* nb, - const double* v, lapack_int* ldv, const double* t, - lapack_int* ldt, double* a, lapack_int* lda, double* b, - lapack_int* ldb, double* work, lapack_int *info ); -void LAPACK_ctpmqrt( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, lapack_int* l, lapack_int* nb, - const lapack_complex_float* v, lapack_int* ldv, - const lapack_complex_float* t, lapack_int* ldt, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* work, lapack_int *info ); -void LAPACK_ztpmqrt( char* side, char* trans, lapack_int* m, lapack_int* n, - lapack_int* k, lapack_int* l, lapack_int* nb, - const lapack_complex_double* v, lapack_int* ldv, - const lapack_complex_double* t, lapack_int* ldt, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* work, lapack_int *info ); -void LAPACK_dtpqrt( lapack_int* m, lapack_int* n, lapack_int* l, lapack_int* nb, - double* a, lapack_int* lda, double* b, lapack_int* ldb, - double* t, lapack_int* ldt, double* work, - lapack_int *info ); -void LAPACK_ctpqrt( lapack_int* m, lapack_int* n, lapack_int* l, lapack_int* nb, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* t, lapack_complex_float* b, - lapack_int* ldb, lapack_int* ldt, - lapack_complex_float* work, lapack_int *info ); -void LAPACK_ztpqrt( lapack_int* m, lapack_int* n, lapack_int* l, lapack_int* nb, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* t, lapack_int* ldt, - lapack_complex_double* work, lapack_int *info ); -void LAPACK_stpqrt2( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, - float* b, lapack_int* ldb, float* t, lapack_int* ldt, - lapack_int *info ); -void LAPACK_dtpqrt2( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, - double* b, lapack_int* ldb, double* t, lapack_int* ldt, - lapack_int *info ); -void LAPACK_ctpqrt2( lapack_int* m, lapack_int* n, lapack_complex_float* a, - lapack_int* lda, lapack_complex_float* b, lapack_int* ldb, - lapack_complex_float* t, lapack_int* ldt, - lapack_int *info ); -void LAPACK_ztpqrt2( lapack_int* m, lapack_int* n, lapack_complex_double* a, - lapack_int* lda, lapack_complex_double* b, lapack_int* ldb, - lapack_complex_double* t, lapack_int* ldt, - lapack_int *info ); -void LAPACK_stprfb( char* side, char* trans, char* direct, char* storev, - lapack_int* m, lapack_int* n, lapack_int* k, lapack_int* l, - const float* v, lapack_int* ldv, const float* t, - lapack_int* ldt, float* a, lapack_int* lda, float* b, - lapack_int* ldb, const float* mywork, - lapack_int* myldwork ); -void LAPACK_dtprfb( char* side, char* trans, char* direct, char* storev, - lapack_int* m, lapack_int* n, lapack_int* k, lapack_int* l, - const double* v, lapack_int* ldv, const double* t, - lapack_int* ldt, double* a, lapack_int* lda, double* b, - lapack_int* ldb, const double* mywork, - lapack_int* myldwork ); -void LAPACK_ctprfb( char* side, char* trans, char* direct, char* storev, - lapack_int* m, lapack_int* n, lapack_int* k, lapack_int* l, - const lapack_complex_float* v, lapack_int* ldv, - const lapack_complex_float* t, lapack_int* ldt, - lapack_complex_float* a, lapack_int* lda, - lapack_complex_float* b, lapack_int* ldb, - const float* mywork, lapack_int* myldwork ); -void LAPACK_ztprfb( char* side, char* trans, char* direct, char* storev, - lapack_int* m, lapack_int* n, lapack_int* k, lapack_int* l, - const lapack_complex_double* v, lapack_int* ldv, - const lapack_complex_double* t, lapack_int* ldt, - lapack_complex_double* a, lapack_int* lda, - lapack_complex_double* b, lapack_int* ldb, - const double* mywork, lapack_int* myldwork ); -// LAPACK 3.X.X -void LAPACK_csyr( char* uplo, lapack_int* n, lapack_complex_float* alpha, - const lapack_complex_float* x, lapack_int* incx, - lapack_complex_float* a, lapack_int* lda ); -void LAPACK_zsyr( char* uplo, lapack_int* n, lapack_complex_double* alpha, - const lapack_complex_double* x, lapack_int* incx, - lapack_complex_double* a, lapack_int* lda ); - -#ifdef __cplusplus -} -#endif /* __cplusplus */ - -#endif /* _LAPACKE_H_ */ - -#endif /* _MKL_LAPACKE_H_ */ diff --git a/src/math_meigen/Eigen/src/misc/lapacke_mangling.h b/src/math_meigen/Eigen/src/misc/lapacke_mangling.h deleted file mode 100755 index 6211fd144..000000000 --- a/src/math_meigen/Eigen/src/misc/lapacke_mangling.h +++ /dev/null @@ -1,17 +0,0 @@ -#ifndef LAPACK_HEADER_INCLUDED -#define LAPACK_HEADER_INCLUDED - -#ifndef LAPACK_GLOBAL -#if defined(LAPACK_GLOBAL_PATTERN_LC) || defined(ADD_) -#define LAPACK_GLOBAL(lcname,UCNAME) lcname##_ -#elif defined(LAPACK_GLOBAL_PATTERN_UC) || defined(UPPER) -#define LAPACK_GLOBAL(lcname,UCNAME) UCNAME -#elif defined(LAPACK_GLOBAL_PATTERN_MC) || defined(NOCHANGE) -#define LAPACK_GLOBAL(lcname,UCNAME) lcname -#else -#define LAPACK_GLOBAL(lcname,UCNAME) lcname##_ -#endif -#endif - -#endif - diff --git a/src/math_meigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h b/src/math_meigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h deleted file mode 100755 index 1f8a531af..000000000 --- a/src/math_meigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +++ /dev/null @@ -1,332 +0,0 @@ - -/** \returns an expression of the coefficient wise product of \c *this and \a other - * - * \sa MatrixBase::cwiseProduct - */ -template -EIGEN_DEVICE_FUNC -EIGEN_STRONG_INLINE const EIGEN_CWISE_BINARY_RETURN_TYPE(Derived,OtherDerived,product) -operator*(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const -{ - return EIGEN_CWISE_BINARY_RETURN_TYPE(Derived,OtherDerived,product)(derived(), other.derived()); -} - -/** \returns an expression of the coefficient wise quotient of \c *this and \a other - * - * \sa MatrixBase::cwiseQuotient - */ -template -EIGEN_DEVICE_FUNC -EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> -operator/(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const -{ - return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); -} - -/** \returns an expression of the coefficient-wise min of \c *this and \a other - * - * Example: \include Cwise_min.cpp - * Output: \verbinclude Cwise_min.out - * - * \sa max() - */ -EIGEN_MAKE_CWISE_BINARY_OP(min,min) - -/** \returns an expression of the coefficient-wise min of \c *this and scalar \a other - * - * \sa max() - */ -EIGEN_DEVICE_FUNC -EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, - const CwiseNullaryOp, PlainObject> > -#ifdef EIGEN_PARSED_BY_DOXYGEN -min -#else -(min) -#endif -(const Scalar &other) const -{ - return (min)(Derived::PlainObject::Constant(rows(), cols(), other)); -} - -/** \returns an expression of the coefficient-wise max of \c *this and \a other - * - * Example: \include Cwise_max.cpp - * Output: \verbinclude Cwise_max.out - * - * \sa min() - */ -EIGEN_MAKE_CWISE_BINARY_OP(max,max) - -/** \returns an expression of the coefficient-wise max of \c *this and scalar \a other - * - * \sa min() - */ -EIGEN_DEVICE_FUNC -EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, - const CwiseNullaryOp, PlainObject> > -#ifdef EIGEN_PARSED_BY_DOXYGEN -max -#else -(max) -#endif -(const Scalar &other) const -{ - return (max)(Derived::PlainObject::Constant(rows(), cols(), other)); -} - -/** \returns an expression of the coefficient-wise power of \c *this to the given array of \a exponents. - * - * This function computes the coefficient-wise power. - * - * Example: \include Cwise_array_power_array.cpp - * Output: \verbinclude Cwise_array_power_array.out - */ -EIGEN_MAKE_CWISE_BINARY_OP(pow,pow) - -#ifndef EIGEN_PARSED_BY_DOXYGEN -EIGEN_MAKE_SCALAR_BINARY_OP_ONTHERIGHT(pow,pow) -#else -/** \returns an expression of the coefficients of \c *this rasied to the constant power \a exponent - * - * \tparam T is the scalar type of \a exponent. It must be compatible with the scalar type of the given expression. - * - * This function computes the coefficient-wise power. The function MatrixBase::pow() in the - * unsupported module MatrixFunctions computes the matrix power. - * - * Example: \include Cwise_pow.cpp - * Output: \verbinclude Cwise_pow.out - * - * \sa ArrayBase::pow(ArrayBase), square(), cube(), exp(), log() - */ -template -const CwiseBinaryOp,Derived,Constant > pow(const T& exponent) const; -#endif - - -// TODO code generating macros could be moved to Macros.h and could include generation of documentation -#define EIGEN_MAKE_CWISE_COMP_OP(OP, COMPARATOR) \ -template \ -EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> \ -OP(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const \ -{ \ - return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); \ -}\ -typedef CwiseBinaryOp, const Derived, const CwiseNullaryOp, PlainObject> > Cmp ## COMPARATOR ## ReturnType; \ -typedef CwiseBinaryOp, const CwiseNullaryOp, PlainObject>, const Derived > RCmp ## COMPARATOR ## ReturnType; \ -EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Cmp ## COMPARATOR ## ReturnType \ -OP(const Scalar& s) const { \ - return this->OP(Derived::PlainObject::Constant(rows(), cols(), s)); \ -} \ -EIGEN_DEVICE_FUNC friend EIGEN_STRONG_INLINE const RCmp ## COMPARATOR ## ReturnType \ -OP(const Scalar& s, const Derived& d) { \ - return Derived::PlainObject::Constant(d.rows(), d.cols(), s).OP(d); \ -} - -#define EIGEN_MAKE_CWISE_COMP_R_OP(OP, R_OP, RCOMPARATOR) \ -template \ -EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseBinaryOp, const OtherDerived, const Derived> \ -OP(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const \ -{ \ - return CwiseBinaryOp, const OtherDerived, const Derived>(other.derived(), derived()); \ -} \ -EIGEN_DEVICE_FUNC \ -inline const RCmp ## RCOMPARATOR ## ReturnType \ -OP(const Scalar& s) const { \ - return Derived::PlainObject::Constant(rows(), cols(), s).R_OP(*this); \ -} \ -friend inline const Cmp ## RCOMPARATOR ## ReturnType \ -OP(const Scalar& s, const Derived& d) { \ - return d.R_OP(Derived::PlainObject::Constant(d.rows(), d.cols(), s)); \ -} - - - -/** \returns an expression of the coefficient-wise \< operator of *this and \a other - * - * Example: \include Cwise_less.cpp - * Output: \verbinclude Cwise_less.out - * - * \sa all(), any(), operator>(), operator<=() - */ -EIGEN_MAKE_CWISE_COMP_OP(operator<, LT) - -/** \returns an expression of the coefficient-wise \<= operator of *this and \a other - * - * Example: \include Cwise_less_equal.cpp - * Output: \verbinclude Cwise_less_equal.out - * - * \sa all(), any(), operator>=(), operator<() - */ -EIGEN_MAKE_CWISE_COMP_OP(operator<=, LE) - -/** \returns an expression of the coefficient-wise \> operator of *this and \a other - * - * Example: \include Cwise_greater.cpp - * Output: \verbinclude Cwise_greater.out - * - * \sa all(), any(), operator>=(), operator<() - */ -EIGEN_MAKE_CWISE_COMP_R_OP(operator>, operator<, LT) - -/** \returns an expression of the coefficient-wise \>= operator of *this and \a other - * - * Example: \include Cwise_greater_equal.cpp - * Output: \verbinclude Cwise_greater_equal.out - * - * \sa all(), any(), operator>(), operator<=() - */ -EIGEN_MAKE_CWISE_COMP_R_OP(operator>=, operator<=, LE) - -/** \returns an expression of the coefficient-wise == operator of *this and \a other - * - * \warning this performs an exact comparison, which is generally a bad idea with floating-point types. - * In order to check for equality between two vectors or matrices with floating-point coefficients, it is - * generally a far better idea to use a fuzzy comparison as provided by isApprox() and - * isMuchSmallerThan(). - * - * Example: \include Cwise_equal_equal.cpp - * Output: \verbinclude Cwise_equal_equal.out - * - * \sa all(), any(), isApprox(), isMuchSmallerThan() - */ -EIGEN_MAKE_CWISE_COMP_OP(operator==, EQ) - -/** \returns an expression of the coefficient-wise != operator of *this and \a other - * - * \warning this performs an exact comparison, which is generally a bad idea with floating-point types. - * In order to check for equality between two vectors or matrices with floating-point coefficients, it is - * generally a far better idea to use a fuzzy comparison as provided by isApprox() and - * isMuchSmallerThan(). - * - * Example: \include Cwise_not_equal.cpp - * Output: \verbinclude Cwise_not_equal.out - * - * \sa all(), any(), isApprox(), isMuchSmallerThan() - */ -EIGEN_MAKE_CWISE_COMP_OP(operator!=, NEQ) - - -#undef EIGEN_MAKE_CWISE_COMP_OP -#undef EIGEN_MAKE_CWISE_COMP_R_OP - -// scalar addition -#ifndef EIGEN_PARSED_BY_DOXYGEN -EIGEN_MAKE_SCALAR_BINARY_OP(operator+,sum) -#else -/** \returns an expression of \c *this with each coeff incremented by the constant \a scalar - * - * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. - * - * Example: \include Cwise_plus.cpp - * Output: \verbinclude Cwise_plus.out - * - * \sa operator+=(), operator-() - */ -template -const CwiseBinaryOp,Derived,Constant > operator+(const T& scalar) const; -/** \returns an expression of \a expr with each coeff incremented by the constant \a scalar - * - * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. - */ -template friend -const CwiseBinaryOp,Constant,Derived> operator+(const T& scalar, const StorageBaseType& expr); -#endif - -#ifndef EIGEN_PARSED_BY_DOXYGEN -EIGEN_MAKE_SCALAR_BINARY_OP(operator-,difference) -#else -/** \returns an expression of \c *this with each coeff decremented by the constant \a scalar - * - * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. - * - * Example: \include Cwise_minus.cpp - * Output: \verbinclude Cwise_minus.out - * - * \sa operator+=(), operator-() - */ -template -const CwiseBinaryOp,Derived,Constant > operator-(const T& scalar) const; -/** \returns an expression of the constant matrix of value \a scalar decremented by the coefficients of \a expr - * - * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. - */ -template friend -const CwiseBinaryOp,Constant,Derived> operator-(const T& scalar, const StorageBaseType& expr); -#endif - - -#ifndef EIGEN_PARSED_BY_DOXYGEN - EIGEN_MAKE_SCALAR_BINARY_OP_ONTHELEFT(operator/,quotient) -#else - /** - * \brief Component-wise division of the scalar \a s by array elements of \a a. - * - * \tparam Scalar is the scalar type of \a x. It must be compatible with the scalar type of the given array expression (\c Derived::Scalar). - */ - template friend - inline const CwiseBinaryOp,Constant,Derived> - operator/(const T& s,const StorageBaseType& a); -#endif - -/** \returns an expression of the coefficient-wise ^ operator of *this and \a other - * - * \warning this operator is for expression of bool only. - * - * Example: \include Cwise_boolean_xor.cpp - * Output: \verbinclude Cwise_boolean_xor.out - * - * \sa operator&&(), select() - */ -template -EIGEN_DEVICE_FUNC -inline const CwiseBinaryOp -operator^(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const -{ - EIGEN_STATIC_ASSERT((internal::is_same::value && internal::is_same::value), - THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_OF_BOOL); - return CwiseBinaryOp(derived(),other.derived()); -} - -// NOTE disabled until we agree on argument order -#if 0 -/** \cpp11 \returns an expression of the coefficient-wise polygamma function. - * - * \specialfunctions_module - * - * It returns the \a n -th derivative of the digamma(psi) evaluated at \c *this. - * - * \warning Be careful with the order of the parameters: x.polygamma(n) is equivalent to polygamma(n,x) - * - * \sa Eigen::polygamma() - */ -template -inline const CwiseBinaryOp, const DerivedN, const Derived> -polygamma(const EIGEN_CURRENT_STORAGE_BASE_CLASS &n) const -{ - return CwiseBinaryOp, const DerivedN, const Derived>(n.derived(), this->derived()); -} -#endif - -/** \returns an expression of the coefficient-wise zeta function. - * - * \specialfunctions_module - * - * It returns the Riemann zeta function of two arguments \c *this and \a q: - * - * \param *this is the exposent, it must be > 1 - * \param q is the shift, it must be > 0 - * - * \note This function supports only float and double scalar types. To support other scalar types, the user has - * to provide implementations of zeta(T,T) for any scalar type T to be supported. - * - * This method is an alias for zeta(*this,q); - * - * \sa Eigen::zeta() - */ -template -inline const CwiseBinaryOp, const Derived, const DerivedQ> -zeta(const EIGEN_CURRENT_STORAGE_BASE_CLASS &q) const -{ - return CwiseBinaryOp, const Derived, const DerivedQ>(this->derived(), q.derived()); -} diff --git a/src/math_meigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h b/src/math_meigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h deleted file mode 100755 index ebaa3f192..000000000 --- a/src/math_meigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +++ /dev/null @@ -1,552 +0,0 @@ - - -typedef CwiseUnaryOp, const Derived> AbsReturnType; -typedef CwiseUnaryOp, const Derived> ArgReturnType; -typedef CwiseUnaryOp, const Derived> Abs2ReturnType; -typedef CwiseUnaryOp, const Derived> SqrtReturnType; -typedef CwiseUnaryOp, const Derived> RsqrtReturnType; -typedef CwiseUnaryOp, const Derived> SignReturnType; -typedef CwiseUnaryOp, const Derived> InverseReturnType; -typedef CwiseUnaryOp, const Derived> BooleanNotReturnType; - -typedef CwiseUnaryOp, const Derived> ExpReturnType; -typedef CwiseUnaryOp, const Derived> LogReturnType; -typedef CwiseUnaryOp, const Derived> Log1pReturnType; -typedef CwiseUnaryOp, const Derived> Log10ReturnType; -typedef CwiseUnaryOp, const Derived> CosReturnType; -typedef CwiseUnaryOp, const Derived> SinReturnType; -typedef CwiseUnaryOp, const Derived> TanReturnType; -typedef CwiseUnaryOp, const Derived> AcosReturnType; -typedef CwiseUnaryOp, const Derived> AsinReturnType; -typedef CwiseUnaryOp, const Derived> AtanReturnType; -typedef CwiseUnaryOp, const Derived> TanhReturnType; -typedef CwiseUnaryOp, const Derived> SinhReturnType; -typedef CwiseUnaryOp, const Derived> CoshReturnType; -typedef CwiseUnaryOp, const Derived> SquareReturnType; -typedef CwiseUnaryOp, const Derived> CubeReturnType; -typedef CwiseUnaryOp, const Derived> RoundReturnType; -typedef CwiseUnaryOp, const Derived> FloorReturnType; -typedef CwiseUnaryOp, const Derived> CeilReturnType; -typedef CwiseUnaryOp, const Derived> IsNaNReturnType; -typedef CwiseUnaryOp, const Derived> IsInfReturnType; -typedef CwiseUnaryOp, const Derived> IsFiniteReturnType; - -/** \returns an expression of the coefficient-wise absolute value of \c *this - * - * Example: \include Cwise_abs.cpp - * Output: \verbinclude Cwise_abs.out - * - * \sa Math functions, abs2() - */ -EIGEN_DEVICE_FUNC -EIGEN_STRONG_INLINE const AbsReturnType -abs() const -{ - return AbsReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise phase angle of \c *this - * - * Example: \include Cwise_arg.cpp - * Output: \verbinclude Cwise_arg.out - * - * \sa abs() - */ -EIGEN_DEVICE_FUNC -EIGEN_STRONG_INLINE const ArgReturnType -arg() const -{ - return ArgReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise squared absolute value of \c *this - * - * Example: \include Cwise_abs2.cpp - * Output: \verbinclude Cwise_abs2.out - * - * \sa Math functions, abs(), square() - */ -EIGEN_DEVICE_FUNC -EIGEN_STRONG_INLINE const Abs2ReturnType -abs2() const -{ - return Abs2ReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise exponential of *this. - * - * This function computes the coefficient-wise exponential. The function MatrixBase::exp() in the - * unsupported module MatrixFunctions computes the matrix exponential. - * - * Example: \include Cwise_exp.cpp - * Output: \verbinclude Cwise_exp.out - * - * \sa Math functions, pow(), log(), sin(), cos() - */ -EIGEN_DEVICE_FUNC -inline const ExpReturnType -exp() const -{ - return ExpReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise logarithm of *this. - * - * This function computes the coefficient-wise logarithm. The function MatrixBase::log() in the - * unsupported module MatrixFunctions computes the matrix logarithm. - * - * Example: \include Cwise_log.cpp - * Output: \verbinclude Cwise_log.out - * - * \sa Math functions, exp() - */ -EIGEN_DEVICE_FUNC -inline const LogReturnType -log() const -{ - return LogReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise logarithm of 1 plus \c *this. - * - * In exact arithmetic, \c x.log() is equivalent to \c (x+1).log(), - * however, with finite precision, this function is much more accurate when \c x is close to zero. - * - * \sa Math functions, log() - */ -EIGEN_DEVICE_FUNC -inline const Log1pReturnType -log1p() const -{ - return Log1pReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise base-10 logarithm of *this. - * - * This function computes the coefficient-wise base-10 logarithm. - * - * Example: \include Cwise_log10.cpp - * Output: \verbinclude Cwise_log10.out - * - * \sa Math functions, log() - */ -EIGEN_DEVICE_FUNC -inline const Log10ReturnType -log10() const -{ - return Log10ReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise square root of *this. - * - * This function computes the coefficient-wise square root. The function MatrixBase::sqrt() in the - * unsupported module MatrixFunctions computes the matrix square root. - * - * Example: \include Cwise_sqrt.cpp - * Output: \verbinclude Cwise_sqrt.out - * - * \sa Math functions, pow(), square() - */ -EIGEN_DEVICE_FUNC -inline const SqrtReturnType -sqrt() const -{ - return SqrtReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise inverse square root of *this. - * - * This function computes the coefficient-wise inverse square root. - * - * Example: \include Cwise_sqrt.cpp - * Output: \verbinclude Cwise_sqrt.out - * - * \sa pow(), square() - */ -EIGEN_DEVICE_FUNC -inline const RsqrtReturnType -rsqrt() const -{ - return RsqrtReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise signum of *this. - * - * This function computes the coefficient-wise signum. - * - * Example: \include Cwise_sign.cpp - * Output: \verbinclude Cwise_sign.out - * - * \sa pow(), square() - */ -EIGEN_DEVICE_FUNC -inline const SignReturnType -sign() const -{ - return SignReturnType(derived()); -} - - -/** \returns an expression of the coefficient-wise cosine of *this. - * - * This function computes the coefficient-wise cosine. The function MatrixBase::cos() in the - * unsupported module MatrixFunctions computes the matrix cosine. - * - * Example: \include Cwise_cos.cpp - * Output: \verbinclude Cwise_cos.out - * - * \sa Math functions, sin(), acos() - */ -EIGEN_DEVICE_FUNC -inline const CosReturnType -cos() const -{ - return CosReturnType(derived()); -} - - -/** \returns an expression of the coefficient-wise sine of *this. - * - * This function computes the coefficient-wise sine. The function MatrixBase::sin() in the - * unsupported module MatrixFunctions computes the matrix sine. - * - * Example: \include Cwise_sin.cpp - * Output: \verbinclude Cwise_sin.out - * - * \sa Math functions, cos(), asin() - */ -EIGEN_DEVICE_FUNC -inline const SinReturnType -sin() const -{ - return SinReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise tan of *this. - * - * Example: \include Cwise_tan.cpp - * Output: \verbinclude Cwise_tan.out - * - * \sa Math functions, cos(), sin() - */ -EIGEN_DEVICE_FUNC -inline const TanReturnType -tan() const -{ - return TanReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise arc tan of *this. - * - * Example: \include Cwise_atan.cpp - * Output: \verbinclude Cwise_atan.out - * - * \sa Math functions, tan(), asin(), acos() - */ -EIGEN_DEVICE_FUNC -inline const AtanReturnType -atan() const -{ - return AtanReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise arc cosine of *this. - * - * Example: \include Cwise_acos.cpp - * Output: \verbinclude Cwise_acos.out - * - * \sa Math functions, cos(), asin() - */ -EIGEN_DEVICE_FUNC -inline const AcosReturnType -acos() const -{ - return AcosReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise arc sine of *this. - * - * Example: \include Cwise_asin.cpp - * Output: \verbinclude Cwise_asin.out - * - * \sa Math functions, sin(), acos() - */ -EIGEN_DEVICE_FUNC -inline const AsinReturnType -asin() const -{ - return AsinReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise hyperbolic tan of *this. - * - * Example: \include Cwise_tanh.cpp - * Output: \verbinclude Cwise_tanh.out - * - * \sa Math functions, tan(), sinh(), cosh() - */ -EIGEN_DEVICE_FUNC -inline const TanhReturnType -tanh() const -{ - return TanhReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise hyperbolic sin of *this. - * - * Example: \include Cwise_sinh.cpp - * Output: \verbinclude Cwise_sinh.out - * - * \sa Math functions, sin(), tanh(), cosh() - */ -EIGEN_DEVICE_FUNC -inline const SinhReturnType -sinh() const -{ - return SinhReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise hyperbolic cos of *this. - * - * Example: \include Cwise_cosh.cpp - * Output: \verbinclude Cwise_cosh.out - * - * \sa Math functions, tan(), sinh(), cosh() - */ -EIGEN_DEVICE_FUNC -inline const CoshReturnType -cosh() const -{ - return CoshReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise inverse of *this. - * - * Example: \include Cwise_inverse.cpp - * Output: \verbinclude Cwise_inverse.out - * - * \sa operator/(), operator*() - */ -EIGEN_DEVICE_FUNC -inline const InverseReturnType -inverse() const -{ - return InverseReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise square of *this. - * - * Example: \include Cwise_square.cpp - * Output: \verbinclude Cwise_square.out - * - * \sa Math functions, abs2(), cube(), pow() - */ -EIGEN_DEVICE_FUNC -inline const SquareReturnType -square() const -{ - return SquareReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise cube of *this. - * - * Example: \include Cwise_cube.cpp - * Output: \verbinclude Cwise_cube.out - * - * \sa Math functions, square(), pow() - */ -EIGEN_DEVICE_FUNC -inline const CubeReturnType -cube() const -{ - return CubeReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise round of *this. - * - * Example: \include Cwise_round.cpp - * Output: \verbinclude Cwise_round.out - * - * \sa Math functions, ceil(), floor() - */ -EIGEN_DEVICE_FUNC -inline const RoundReturnType -round() const -{ - return RoundReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise floor of *this. - * - * Example: \include Cwise_floor.cpp - * Output: \verbinclude Cwise_floor.out - * - * \sa Math functions, ceil(), round() - */ -EIGEN_DEVICE_FUNC -inline const FloorReturnType -floor() const -{ - return FloorReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise ceil of *this. - * - * Example: \include Cwise_ceil.cpp - * Output: \verbinclude Cwise_ceil.out - * - * \sa Math functions, floor(), round() - */ -EIGEN_DEVICE_FUNC -inline const CeilReturnType -ceil() const -{ - return CeilReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise isnan of *this. - * - * Example: \include Cwise_isNaN.cpp - * Output: \verbinclude Cwise_isNaN.out - * - * \sa isfinite(), isinf() - */ -EIGEN_DEVICE_FUNC -inline const IsNaNReturnType -isNaN() const -{ - return IsNaNReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise isinf of *this. - * - * Example: \include Cwise_isInf.cpp - * Output: \verbinclude Cwise_isInf.out - * - * \sa isnan(), isfinite() - */ -EIGEN_DEVICE_FUNC -inline const IsInfReturnType -isInf() const -{ - return IsInfReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise isfinite of *this. - * - * Example: \include Cwise_isFinite.cpp - * Output: \verbinclude Cwise_isFinite.out - * - * \sa isnan(), isinf() - */ -EIGEN_DEVICE_FUNC -inline const IsFiniteReturnType -isFinite() const -{ - return IsFiniteReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise ! operator of *this - * - * \warning this operator is for expression of bool only. - * - * Example: \include Cwise_boolean_not.cpp - * Output: \verbinclude Cwise_boolean_not.out - * - * \sa operator!=() - */ -EIGEN_DEVICE_FUNC -inline const BooleanNotReturnType -operator!() const -{ - EIGEN_STATIC_ASSERT((internal::is_same::value), - THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_OF_BOOL); - return BooleanNotReturnType(derived()); -} - - -// --- SpecialFunctions module --- - -typedef CwiseUnaryOp, const Derived> LgammaReturnType; -typedef CwiseUnaryOp, const Derived> DigammaReturnType; -typedef CwiseUnaryOp, const Derived> ErfReturnType; -typedef CwiseUnaryOp, const Derived> ErfcReturnType; - -/** \cpp11 \returns an expression of the coefficient-wise ln(|gamma(*this)|). - * - * \specialfunctions_module - * - * Example: \include Cwise_lgamma.cpp - * Output: \verbinclude Cwise_lgamma.out - * - * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types, - * or float/double in non c++11 mode, the user has to provide implementations of lgamma(T) for any scalar - * type T to be supported. - * - * \sa Math functions, digamma() - */ -EIGEN_DEVICE_FUNC -inline const LgammaReturnType -lgamma() const -{ - return LgammaReturnType(derived()); -} - -/** \returns an expression of the coefficient-wise digamma (psi, derivative of lgamma). - * - * \specialfunctions_module - * - * \note This function supports only float and double scalar types. To support other scalar types, - * the user has to provide implementations of digamma(T) for any scalar - * type T to be supported. - * - * \sa Math functions, Eigen::digamma(), Eigen::polygamma(), lgamma() - */ -EIGEN_DEVICE_FUNC -inline const DigammaReturnType -digamma() const -{ - return DigammaReturnType(derived()); -} - -/** \cpp11 \returns an expression of the coefficient-wise Gauss error - * function of *this. - * - * \specialfunctions_module - * - * Example: \include Cwise_erf.cpp - * Output: \verbinclude Cwise_erf.out - * - * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types, - * or float/double in non c++11 mode, the user has to provide implementations of erf(T) for any scalar - * type T to be supported. - * - * \sa Math functions, erfc() - */ -EIGEN_DEVICE_FUNC -inline const ErfReturnType -erf() const -{ - return ErfReturnType(derived()); -} - -/** \cpp11 \returns an expression of the coefficient-wise Complementary error - * function of *this. - * - * \specialfunctions_module - * - * Example: \include Cwise_erfc.cpp - * Output: \verbinclude Cwise_erfc.out - * - * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types, - * or float/double in non c++11 mode, the user has to provide implementations of erfc(T) for any scalar - * type T to be supported. - * - * \sa Math functions, erf() - */ -EIGEN_DEVICE_FUNC -inline const ErfcReturnType -erfc() const -{ - return ErfcReturnType(derived()); -} diff --git a/src/math_meigen/Eigen/src/plugins/BlockMethods.h b/src/math_meigen/Eigen/src/plugins/BlockMethods.h deleted file mode 100755 index ac35a0086..000000000 --- a/src/math_meigen/Eigen/src/plugins/BlockMethods.h +++ /dev/null @@ -1,1058 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2010 Gael Guennebaud -// Copyright (C) 2006-2010 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_PARSED_BY_DOXYGEN - -/// \internal expression type of a column */ -typedef Block::RowsAtCompileTime, 1, !IsRowMajor> ColXpr; -typedef const Block::RowsAtCompileTime, 1, !IsRowMajor> ConstColXpr; -/// \internal expression type of a row */ -typedef Block::ColsAtCompileTime, IsRowMajor> RowXpr; -typedef const Block::ColsAtCompileTime, IsRowMajor> ConstRowXpr; -/// \internal expression type of a block of whole columns */ -typedef Block::RowsAtCompileTime, Dynamic, !IsRowMajor> ColsBlockXpr; -typedef const Block::RowsAtCompileTime, Dynamic, !IsRowMajor> ConstColsBlockXpr; -/// \internal expression type of a block of whole rows */ -typedef Block::ColsAtCompileTime, IsRowMajor> RowsBlockXpr; -typedef const Block::ColsAtCompileTime, IsRowMajor> ConstRowsBlockXpr; -/// \internal expression type of a block of whole columns */ -template struct NColsBlockXpr { typedef Block::RowsAtCompileTime, N, !IsRowMajor> Type; }; -template struct ConstNColsBlockXpr { typedef const Block::RowsAtCompileTime, N, !IsRowMajor> Type; }; -/// \internal expression type of a block of whole rows */ -template struct NRowsBlockXpr { typedef Block::ColsAtCompileTime, IsRowMajor> Type; }; -template struct ConstNRowsBlockXpr { typedef const Block::ColsAtCompileTime, IsRowMajor> Type; }; -/// \internal expression of a block */ -typedef Block BlockXpr; -typedef const Block ConstBlockXpr; -/// \internal expression of a block of fixed sizes */ -template struct FixedBlockXpr { typedef Block Type; }; -template struct ConstFixedBlockXpr { typedef Block Type; }; - -typedef VectorBlock SegmentReturnType; -typedef const VectorBlock ConstSegmentReturnType; -template struct FixedSegmentReturnType { typedef VectorBlock Type; }; -template struct ConstFixedSegmentReturnType { typedef const VectorBlock Type; }; - -#endif // not EIGEN_PARSED_BY_DOXYGEN - -/// \returns a dynamic-size expression of a block in *this. -/// -/// \param startRow the first row in the block -/// \param startCol the first column in the block -/// \param blockRows the number of rows in the block -/// \param blockCols the number of columns in the block -/// -/// Example: \include MatrixBase_block_int_int_int_int.cpp -/// Output: \verbinclude MatrixBase_block_int_int_int_int.out -/// -/// \note Even though the returned expression has dynamic size, in the case -/// when it is applied to a fixed-size matrix, it inherits a fixed maximal size, -/// which means that evaluating it does not cause a dynamic memory allocation. -/// -EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL -/// -/// \sa class Block, block(Index,Index) -/// -EIGEN_DEVICE_FUNC -inline BlockXpr block(Index startRow, Index startCol, Index blockRows, Index blockCols) -{ - return BlockXpr(derived(), startRow, startCol, blockRows, blockCols); -} - -/// This is the const version of block(Index,Index,Index,Index). */ -EIGEN_DEVICE_FUNC -inline const ConstBlockXpr block(Index startRow, Index startCol, Index blockRows, Index blockCols) const -{ - return ConstBlockXpr(derived(), startRow, startCol, blockRows, blockCols); -} - - - - -/// \returns a dynamic-size expression of a top-right corner of *this. -/// -/// \param cRows the number of rows in the corner -/// \param cCols the number of columns in the corner -/// -/// Example: \include MatrixBase_topRightCorner_int_int.cpp -/// Output: \verbinclude MatrixBase_topRightCorner_int_int.out -/// -EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL -/// -/// \sa class Block, block(Index,Index,Index,Index) -/// -EIGEN_DEVICE_FUNC -inline BlockXpr topRightCorner(Index cRows, Index cCols) -{ - return BlockXpr(derived(), 0, cols() - cCols, cRows, cCols); -} - -/// This is the const version of topRightCorner(Index, Index). -EIGEN_DEVICE_FUNC -inline const ConstBlockXpr topRightCorner(Index cRows, Index cCols) const -{ - return ConstBlockXpr(derived(), 0, cols() - cCols, cRows, cCols); -} - -/// \returns an expression of a fixed-size top-right corner of *this. -/// -/// \tparam CRows the number of rows in the corner -/// \tparam CCols the number of columns in the corner -/// -/// Example: \include MatrixBase_template_int_int_topRightCorner.cpp -/// Output: \verbinclude MatrixBase_template_int_int_topRightCorner.out -/// -EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL -/// -/// \sa class Block, block(Index,Index) -/// -template -EIGEN_DEVICE_FUNC -inline typename FixedBlockXpr::Type topRightCorner() -{ - return typename FixedBlockXpr::Type(derived(), 0, cols() - CCols); -} - -/// This is the const version of topRightCorner(). -template -EIGEN_DEVICE_FUNC -inline const typename ConstFixedBlockXpr::Type topRightCorner() const -{ - return typename ConstFixedBlockXpr::Type(derived(), 0, cols() - CCols); -} - -/// \returns an expression of a top-right corner of *this. -/// -/// \tparam CRows number of rows in corner as specified at compile-time -/// \tparam CCols number of columns in corner as specified at compile-time -/// \param cRows number of rows in corner as specified at run-time -/// \param cCols number of columns in corner as specified at run-time -/// -/// This function is mainly useful for corners where the number of rows is specified at compile-time -/// and the number of columns is specified at run-time, or vice versa. The compile-time and run-time -/// information should not contradict. In other words, \a cRows should equal \a CRows unless -/// \a CRows is \a Dynamic, and the same for the number of columns. -/// -/// Example: \include MatrixBase_template_int_int_topRightCorner_int_int.cpp -/// Output: \verbinclude MatrixBase_template_int_int_topRightCorner_int_int.out -/// -EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL -/// -/// \sa class Block -/// -template -inline typename FixedBlockXpr::Type topRightCorner(Index cRows, Index cCols) -{ - return typename FixedBlockXpr::Type(derived(), 0, cols() - cCols, cRows, cCols); -} - -/// This is the const version of topRightCorner(Index, Index). -template -inline const typename ConstFixedBlockXpr::Type topRightCorner(Index cRows, Index cCols) const -{ - return typename ConstFixedBlockXpr::Type(derived(), 0, cols() - cCols, cRows, cCols); -} - - - -/// \returns a dynamic-size expression of a top-left corner of *this. -/// -/// \param cRows the number of rows in the corner -/// \param cCols the number of columns in the corner -/// -/// Example: \include MatrixBase_topLeftCorner_int_int.cpp -/// Output: \verbinclude MatrixBase_topLeftCorner_int_int.out -/// -EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL -/// -/// \sa class Block, block(Index,Index,Index,Index) -/// -EIGEN_DEVICE_FUNC -inline BlockXpr topLeftCorner(Index cRows, Index cCols) -{ - return BlockXpr(derived(), 0, 0, cRows, cCols); -} - -/// This is the const version of topLeftCorner(Index, Index). -EIGEN_DEVICE_FUNC -inline const ConstBlockXpr topLeftCorner(Index cRows, Index cCols) const -{ - return ConstBlockXpr(derived(), 0, 0, cRows, cCols); -} - -/// \returns an expression of a fixed-size top-left corner of *this. -/// -/// The template parameters CRows and CCols are the number of rows and columns in the corner. -/// -/// Example: \include MatrixBase_template_int_int_topLeftCorner.cpp -/// Output: \verbinclude MatrixBase_template_int_int_topLeftCorner.out -/// -EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL -/// -/// \sa class Block, block(Index,Index,Index,Index) -/// -template -EIGEN_DEVICE_FUNC -inline typename FixedBlockXpr::Type topLeftCorner() -{ - return typename FixedBlockXpr::Type(derived(), 0, 0); -} - -/// This is the const version of topLeftCorner(). -template -EIGEN_DEVICE_FUNC -inline const typename ConstFixedBlockXpr::Type topLeftCorner() const -{ - return typename ConstFixedBlockXpr::Type(derived(), 0, 0); -} - -/// \returns an expression of a top-left corner of *this. -/// -/// \tparam CRows number of rows in corner as specified at compile-time -/// \tparam CCols number of columns in corner as specified at compile-time -/// \param cRows number of rows in corner as specified at run-time -/// \param cCols number of columns in corner as specified at run-time -/// -/// This function is mainly useful for corners where the number of rows is specified at compile-time -/// and the number of columns is specified at run-time, or vice versa. The compile-time and run-time -/// information should not contradict. In other words, \a cRows should equal \a CRows unless -/// \a CRows is \a Dynamic, and the same for the number of columns. -/// -/// Example: \include MatrixBase_template_int_int_topLeftCorner_int_int.cpp -/// Output: \verbinclude MatrixBase_template_int_int_topLeftCorner_int_int.out -/// -EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL -/// -/// \sa class Block -/// -template -inline typename FixedBlockXpr::Type topLeftCorner(Index cRows, Index cCols) -{ - return typename FixedBlockXpr::Type(derived(), 0, 0, cRows, cCols); -} - -/// This is the const version of topLeftCorner(Index, Index). -template -inline const typename ConstFixedBlockXpr::Type topLeftCorner(Index cRows, Index cCols) const -{ - return typename ConstFixedBlockXpr::Type(derived(), 0, 0, cRows, cCols); -} - - - -/// \returns a dynamic-size expression of a bottom-right corner of *this. -/// -/// \param cRows the number of rows in the corner -/// \param cCols the number of columns in the corner -/// -/// Example: \include MatrixBase_bottomRightCorner_int_int.cpp -/// Output: \verbinclude MatrixBase_bottomRightCorner_int_int.out -/// -EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL -/// -/// \sa class Block, block(Index,Index,Index,Index) -/// -EIGEN_DEVICE_FUNC -inline BlockXpr bottomRightCorner(Index cRows, Index cCols) -{ - return BlockXpr(derived(), rows() - cRows, cols() - cCols, cRows, cCols); -} - -/// This is the const version of bottomRightCorner(Index, Index). -EIGEN_DEVICE_FUNC -inline const ConstBlockXpr bottomRightCorner(Index cRows, Index cCols) const -{ - return ConstBlockXpr(derived(), rows() - cRows, cols() - cCols, cRows, cCols); -} - -/// \returns an expression of a fixed-size bottom-right corner of *this. -/// -/// The template parameters CRows and CCols are the number of rows and columns in the corner. -/// -/// Example: \include MatrixBase_template_int_int_bottomRightCorner.cpp -/// Output: \verbinclude MatrixBase_template_int_int_bottomRightCorner.out -/// -EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL -/// -/// \sa class Block, block(Index,Index,Index,Index) -/// -template -EIGEN_DEVICE_FUNC -inline typename FixedBlockXpr::Type bottomRightCorner() -{ - return typename FixedBlockXpr::Type(derived(), rows() - CRows, cols() - CCols); -} - -/// This is the const version of bottomRightCorner(). -template -EIGEN_DEVICE_FUNC -inline const typename ConstFixedBlockXpr::Type bottomRightCorner() const -{ - return typename ConstFixedBlockXpr::Type(derived(), rows() - CRows, cols() - CCols); -} - -/// \returns an expression of a bottom-right corner of *this. -/// -/// \tparam CRows number of rows in corner as specified at compile-time -/// \tparam CCols number of columns in corner as specified at compile-time -/// \param cRows number of rows in corner as specified at run-time -/// \param cCols number of columns in corner as specified at run-time -/// -/// This function is mainly useful for corners where the number of rows is specified at compile-time -/// and the number of columns is specified at run-time, or vice versa. The compile-time and run-time -/// information should not contradict. In other words, \a cRows should equal \a CRows unless -/// \a CRows is \a Dynamic, and the same for the number of columns. -/// -/// Example: \include MatrixBase_template_int_int_bottomRightCorner_int_int.cpp -/// Output: \verbinclude MatrixBase_template_int_int_bottomRightCorner_int_int.out -/// -EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL -/// -/// \sa class Block -/// -template -inline typename FixedBlockXpr::Type bottomRightCorner(Index cRows, Index cCols) -{ - return typename FixedBlockXpr::Type(derived(), rows() - cRows, cols() - cCols, cRows, cCols); -} - -/// This is the const version of bottomRightCorner(Index, Index). -template -inline const typename ConstFixedBlockXpr::Type bottomRightCorner(Index cRows, Index cCols) const -{ - return typename ConstFixedBlockXpr::Type(derived(), rows() - cRows, cols() - cCols, cRows, cCols); -} - - - -/// \returns a dynamic-size expression of a bottom-left corner of *this. -/// -/// \param cRows the number of rows in the corner -/// \param cCols the number of columns in the corner -/// -/// Example: \include MatrixBase_bottomLeftCorner_int_int.cpp -/// Output: \verbinclude MatrixBase_bottomLeftCorner_int_int.out -/// -EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL -/// -/// \sa class Block, block(Index,Index,Index,Index) -/// -EIGEN_DEVICE_FUNC -inline BlockXpr bottomLeftCorner(Index cRows, Index cCols) -{ - return BlockXpr(derived(), rows() - cRows, 0, cRows, cCols); -} - -/// This is the const version of bottomLeftCorner(Index, Index). -EIGEN_DEVICE_FUNC -inline const ConstBlockXpr bottomLeftCorner(Index cRows, Index cCols) const -{ - return ConstBlockXpr(derived(), rows() - cRows, 0, cRows, cCols); -} - -/// \returns an expression of a fixed-size bottom-left corner of *this. -/// -/// The template parameters CRows and CCols are the number of rows and columns in the corner. -/// -/// Example: \include MatrixBase_template_int_int_bottomLeftCorner.cpp -/// Output: \verbinclude MatrixBase_template_int_int_bottomLeftCorner.out -/// -EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL -/// -/// \sa class Block, block(Index,Index,Index,Index) -/// -template -EIGEN_DEVICE_FUNC -inline typename FixedBlockXpr::Type bottomLeftCorner() -{ - return typename FixedBlockXpr::Type(derived(), rows() - CRows, 0); -} - -/// This is the const version of bottomLeftCorner(). -template -EIGEN_DEVICE_FUNC -inline const typename ConstFixedBlockXpr::Type bottomLeftCorner() const -{ - return typename ConstFixedBlockXpr::Type(derived(), rows() - CRows, 0); -} - -/// \returns an expression of a bottom-left corner of *this. -/// -/// \tparam CRows number of rows in corner as specified at compile-time -/// \tparam CCols number of columns in corner as specified at compile-time -/// \param cRows number of rows in corner as specified at run-time -/// \param cCols number of columns in corner as specified at run-time -/// -/// This function is mainly useful for corners where the number of rows is specified at compile-time -/// and the number of columns is specified at run-time, or vice versa. The compile-time and run-time -/// information should not contradict. In other words, \a cRows should equal \a CRows unless -/// \a CRows is \a Dynamic, and the same for the number of columns. -/// -/// Example: \include MatrixBase_template_int_int_bottomLeftCorner_int_int.cpp -/// Output: \verbinclude MatrixBase_template_int_int_bottomLeftCorner_int_int.out -/// -EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL -/// -/// \sa class Block -/// -template -inline typename FixedBlockXpr::Type bottomLeftCorner(Index cRows, Index cCols) -{ - return typename FixedBlockXpr::Type(derived(), rows() - cRows, 0, cRows, cCols); -} - -/// This is the const version of bottomLeftCorner(Index, Index). -template -inline const typename ConstFixedBlockXpr::Type bottomLeftCorner(Index cRows, Index cCols) const -{ - return typename ConstFixedBlockXpr::Type(derived(), rows() - cRows, 0, cRows, cCols); -} - - - -/// \returns a block consisting of the top rows of *this. -/// -/// \param n the number of rows in the block -/// -/// Example: \include MatrixBase_topRows_int.cpp -/// Output: \verbinclude MatrixBase_topRows_int.out -/// -EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(row-major) -/// -/// \sa class Block, block(Index,Index,Index,Index) -/// -EIGEN_DEVICE_FUNC -inline RowsBlockXpr topRows(Index n) -{ - return RowsBlockXpr(derived(), 0, 0, n, cols()); -} - -/// This is the const version of topRows(Index). -EIGEN_DEVICE_FUNC -inline ConstRowsBlockXpr topRows(Index n) const -{ - return ConstRowsBlockXpr(derived(), 0, 0, n, cols()); -} - -/// \returns a block consisting of the top rows of *this. -/// -/// \tparam N the number of rows in the block as specified at compile-time -/// \param n the number of rows in the block as specified at run-time -/// -/// The compile-time and run-time information should not contradict. In other words, -/// \a n should equal \a N unless \a N is \a Dynamic. -/// -/// Example: \include MatrixBase_template_int_topRows.cpp -/// Output: \verbinclude MatrixBase_template_int_topRows.out -/// -EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(row-major) -/// -/// \sa class Block, block(Index,Index,Index,Index) -/// -template -EIGEN_DEVICE_FUNC -inline typename NRowsBlockXpr::Type topRows(Index n = N) -{ - return typename NRowsBlockXpr::Type(derived(), 0, 0, n, cols()); -} - -/// This is the const version of topRows(). -template -EIGEN_DEVICE_FUNC -inline typename ConstNRowsBlockXpr::Type topRows(Index n = N) const -{ - return typename ConstNRowsBlockXpr::Type(derived(), 0, 0, n, cols()); -} - - - -/// \returns a block consisting of the bottom rows of *this. -/// -/// \param n the number of rows in the block -/// -/// Example: \include MatrixBase_bottomRows_int.cpp -/// Output: \verbinclude MatrixBase_bottomRows_int.out -/// -EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(row-major) -/// -/// \sa class Block, block(Index,Index,Index,Index) -/// -EIGEN_DEVICE_FUNC -inline RowsBlockXpr bottomRows(Index n) -{ - return RowsBlockXpr(derived(), rows() - n, 0, n, cols()); -} - -/// This is the const version of bottomRows(Index). -EIGEN_DEVICE_FUNC -inline ConstRowsBlockXpr bottomRows(Index n) const -{ - return ConstRowsBlockXpr(derived(), rows() - n, 0, n, cols()); -} - -/// \returns a block consisting of the bottom rows of *this. -/// -/// \tparam N the number of rows in the block as specified at compile-time -/// \param n the number of rows in the block as specified at run-time -/// -/// The compile-time and run-time information should not contradict. In other words, -/// \a n should equal \a N unless \a N is \a Dynamic. -/// -/// Example: \include MatrixBase_template_int_bottomRows.cpp -/// Output: \verbinclude MatrixBase_template_int_bottomRows.out -/// -EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(row-major) -/// -/// \sa class Block, block(Index,Index,Index,Index) -/// -template -EIGEN_DEVICE_FUNC -inline typename NRowsBlockXpr::Type bottomRows(Index n = N) -{ - return typename NRowsBlockXpr::Type(derived(), rows() - n, 0, n, cols()); -} - -/// This is the const version of bottomRows(). -template -EIGEN_DEVICE_FUNC -inline typename ConstNRowsBlockXpr::Type bottomRows(Index n = N) const -{ - return typename ConstNRowsBlockXpr::Type(derived(), rows() - n, 0, n, cols()); -} - - - -/// \returns a block consisting of a range of rows of *this. -/// -/// \param startRow the index of the first row in the block -/// \param n the number of rows in the block -/// -/// Example: \include DenseBase_middleRows_int.cpp -/// Output: \verbinclude DenseBase_middleRows_int.out -/// -EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(row-major) -/// -/// \sa class Block, block(Index,Index,Index,Index) -/// -EIGEN_DEVICE_FUNC -inline RowsBlockXpr middleRows(Index startRow, Index n) -{ - return RowsBlockXpr(derived(), startRow, 0, n, cols()); -} - -/// This is the const version of middleRows(Index,Index). -EIGEN_DEVICE_FUNC -inline ConstRowsBlockXpr middleRows(Index startRow, Index n) const -{ - return ConstRowsBlockXpr(derived(), startRow, 0, n, cols()); -} - -/// \returns a block consisting of a range of rows of *this. -/// -/// \tparam N the number of rows in the block as specified at compile-time -/// \param startRow the index of the first row in the block -/// \param n the number of rows in the block as specified at run-time -/// -/// The compile-time and run-time information should not contradict. In other words, -/// \a n should equal \a N unless \a N is \a Dynamic. -/// -/// Example: \include DenseBase_template_int_middleRows.cpp -/// Output: \verbinclude DenseBase_template_int_middleRows.out -/// -EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(row-major) -/// -/// \sa class Block, block(Index,Index,Index,Index) -/// -template -EIGEN_DEVICE_FUNC -inline typename NRowsBlockXpr::Type middleRows(Index startRow, Index n = N) -{ - return typename NRowsBlockXpr::Type(derived(), startRow, 0, n, cols()); -} - -/// This is the const version of middleRows(). -template -EIGEN_DEVICE_FUNC -inline typename ConstNRowsBlockXpr::Type middleRows(Index startRow, Index n = N) const -{ - return typename ConstNRowsBlockXpr::Type(derived(), startRow, 0, n, cols()); -} - - - -/// \returns a block consisting of the left columns of *this. -/// -/// \param n the number of columns in the block -/// -/// Example: \include MatrixBase_leftCols_int.cpp -/// Output: \verbinclude MatrixBase_leftCols_int.out -/// -EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(column-major) -/// -/// \sa class Block, block(Index,Index,Index,Index) -/// -EIGEN_DEVICE_FUNC -inline ColsBlockXpr leftCols(Index n) -{ - return ColsBlockXpr(derived(), 0, 0, rows(), n); -} - -/// This is the const version of leftCols(Index). -EIGEN_DEVICE_FUNC -inline ConstColsBlockXpr leftCols(Index n) const -{ - return ConstColsBlockXpr(derived(), 0, 0, rows(), n); -} - -/// \returns a block consisting of the left columns of *this. -/// -/// \tparam N the number of columns in the block as specified at compile-time -/// \param n the number of columns in the block as specified at run-time -/// -/// The compile-time and run-time information should not contradict. In other words, -/// \a n should equal \a N unless \a N is \a Dynamic. -/// -/// Example: \include MatrixBase_template_int_leftCols.cpp -/// Output: \verbinclude MatrixBase_template_int_leftCols.out -/// -EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(column-major) -/// -/// \sa class Block, block(Index,Index,Index,Index) -/// -template -EIGEN_DEVICE_FUNC -inline typename NColsBlockXpr::Type leftCols(Index n = N) -{ - return typename NColsBlockXpr::Type(derived(), 0, 0, rows(), n); -} - -/// This is the const version of leftCols(). -template -EIGEN_DEVICE_FUNC -inline typename ConstNColsBlockXpr::Type leftCols(Index n = N) const -{ - return typename ConstNColsBlockXpr::Type(derived(), 0, 0, rows(), n); -} - - - -/// \returns a block consisting of the right columns of *this. -/// -/// \param n the number of columns in the block -/// -/// Example: \include MatrixBase_rightCols_int.cpp -/// Output: \verbinclude MatrixBase_rightCols_int.out -/// -EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(column-major) -/// -/// \sa class Block, block(Index,Index,Index,Index) -/// -EIGEN_DEVICE_FUNC -inline ColsBlockXpr rightCols(Index n) -{ - return ColsBlockXpr(derived(), 0, cols() - n, rows(), n); -} - -/// This is the const version of rightCols(Index). -EIGEN_DEVICE_FUNC -inline ConstColsBlockXpr rightCols(Index n) const -{ - return ConstColsBlockXpr(derived(), 0, cols() - n, rows(), n); -} - -/// \returns a block consisting of the right columns of *this. -/// -/// \tparam N the number of columns in the block as specified at compile-time -/// \param n the number of columns in the block as specified at run-time -/// -/// The compile-time and run-time information should not contradict. In other words, -/// \a n should equal \a N unless \a N is \a Dynamic. -/// -/// Example: \include MatrixBase_template_int_rightCols.cpp -/// Output: \verbinclude MatrixBase_template_int_rightCols.out -/// -EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(column-major) -/// -/// \sa class Block, block(Index,Index,Index,Index) -/// -template -EIGEN_DEVICE_FUNC -inline typename NColsBlockXpr::Type rightCols(Index n = N) -{ - return typename NColsBlockXpr::Type(derived(), 0, cols() - n, rows(), n); -} - -/// This is the const version of rightCols(). -template -EIGEN_DEVICE_FUNC -inline typename ConstNColsBlockXpr::Type rightCols(Index n = N) const -{ - return typename ConstNColsBlockXpr::Type(derived(), 0, cols() - n, rows(), n); -} - - - -/// \returns a block consisting of a range of columns of *this. -/// -/// \param startCol the index of the first column in the block -/// \param numCols the number of columns in the block -/// -/// Example: \include DenseBase_middleCols_int.cpp -/// Output: \verbinclude DenseBase_middleCols_int.out -/// -EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(column-major) -/// -/// \sa class Block, block(Index,Index,Index,Index) -/// -EIGEN_DEVICE_FUNC -inline ColsBlockXpr middleCols(Index startCol, Index numCols) -{ - return ColsBlockXpr(derived(), 0, startCol, rows(), numCols); -} - -/// This is the const version of middleCols(Index,Index). -EIGEN_DEVICE_FUNC -inline ConstColsBlockXpr middleCols(Index startCol, Index numCols) const -{ - return ConstColsBlockXpr(derived(), 0, startCol, rows(), numCols); -} - -/// \returns a block consisting of a range of columns of *this. -/// -/// \tparam N the number of columns in the block as specified at compile-time -/// \param startCol the index of the first column in the block -/// \param n the number of columns in the block as specified at run-time -/// -/// The compile-time and run-time information should not contradict. In other words, -/// \a n should equal \a N unless \a N is \a Dynamic. -/// -/// Example: \include DenseBase_template_int_middleCols.cpp -/// Output: \verbinclude DenseBase_template_int_middleCols.out -/// -EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(column-major) -/// -/// \sa class Block, block(Index,Index,Index,Index) -/// -template -EIGEN_DEVICE_FUNC -inline typename NColsBlockXpr::Type middleCols(Index startCol, Index n = N) -{ - return typename NColsBlockXpr::Type(derived(), 0, startCol, rows(), n); -} - -/// This is the const version of middleCols(). -template -EIGEN_DEVICE_FUNC -inline typename ConstNColsBlockXpr::Type middleCols(Index startCol, Index n = N) const -{ - return typename ConstNColsBlockXpr::Type(derived(), 0, startCol, rows(), n); -} - - - -/// \returns a fixed-size expression of a block in *this. -/// -/// The template parameters \a NRows and \a NCols are the number of -/// rows and columns in the block. -/// -/// \param startRow the first row in the block -/// \param startCol the first column in the block -/// -/// Example: \include MatrixBase_block_int_int.cpp -/// Output: \verbinclude MatrixBase_block_int_int.out -/// -/// \note since block is a templated member, the keyword template has to be used -/// if the matrix type is also a template parameter: \code m.template block<3,3>(1,1); \endcode -/// -EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL -/// -/// \sa class Block, block(Index,Index,Index,Index) -/// -template -EIGEN_DEVICE_FUNC -inline typename FixedBlockXpr::Type block(Index startRow, Index startCol) -{ - return typename FixedBlockXpr::Type(derived(), startRow, startCol); -} - -/// This is the const version of block<>(Index, Index). */ -template -EIGEN_DEVICE_FUNC -inline const typename ConstFixedBlockXpr::Type block(Index startRow, Index startCol) const -{ - return typename ConstFixedBlockXpr::Type(derived(), startRow, startCol); -} - -/// \returns an expression of a block in *this. -/// -/// \tparam NRows number of rows in block as specified at compile-time -/// \tparam NCols number of columns in block as specified at compile-time -/// \param startRow the first row in the block -/// \param startCol the first column in the block -/// \param blockRows number of rows in block as specified at run-time -/// \param blockCols number of columns in block as specified at run-time -/// -/// This function is mainly useful for blocks where the number of rows is specified at compile-time -/// and the number of columns is specified at run-time, or vice versa. The compile-time and run-time -/// information should not contradict. In other words, \a blockRows should equal \a NRows unless -/// \a NRows is \a Dynamic, and the same for the number of columns. -/// -/// Example: \include MatrixBase_template_int_int_block_int_int_int_int.cpp -/// Output: \verbinclude MatrixBase_template_int_int_block_int_int_int_int.cpp -/// -EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL -/// -/// \sa class Block, block(Index,Index,Index,Index) -/// -template -inline typename FixedBlockXpr::Type block(Index startRow, Index startCol, - Index blockRows, Index blockCols) -{ - return typename FixedBlockXpr::Type(derived(), startRow, startCol, blockRows, blockCols); -} - -/// This is the const version of block<>(Index, Index, Index, Index). -template -inline const typename ConstFixedBlockXpr::Type block(Index startRow, Index startCol, - Index blockRows, Index blockCols) const -{ - return typename ConstFixedBlockXpr::Type(derived(), startRow, startCol, blockRows, blockCols); -} - -/// \returns an expression of the \a i-th column of *this. Note that the numbering starts at 0. -/// -/// Example: \include MatrixBase_col.cpp -/// Output: \verbinclude MatrixBase_col.out -/// -EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(column-major) -/** - * \sa row(), class Block */ -EIGEN_DEVICE_FUNC -inline ColXpr col(Index i) -{ - return ColXpr(derived(), i); -} - -/// This is the const version of col(). -EIGEN_DEVICE_FUNC -inline ConstColXpr col(Index i) const -{ - return ConstColXpr(derived(), i); -} - -/// \returns an expression of the \a i-th row of *this. Note that the numbering starts at 0. -/// -/// Example: \include MatrixBase_row.cpp -/// Output: \verbinclude MatrixBase_row.out -/// -EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(row-major) -/** - * \sa col(), class Block */ -EIGEN_DEVICE_FUNC -inline RowXpr row(Index i) -{ - return RowXpr(derived(), i); -} - -/// This is the const version of row(). */ -EIGEN_DEVICE_FUNC -inline ConstRowXpr row(Index i) const -{ - return ConstRowXpr(derived(), i); -} - -/// \returns a dynamic-size expression of a segment (i.e. a vector block) in *this. -/// -/// \only_for_vectors -/// -/// \param start the first coefficient in the segment -/// \param n the number of coefficients in the segment -/// -/// Example: \include MatrixBase_segment_int_int.cpp -/// Output: \verbinclude MatrixBase_segment_int_int.out -/// -/// \note Even though the returned expression has dynamic size, in the case -/// when it is applied to a fixed-size vector, it inherits a fixed maximal size, -/// which means that evaluating it does not cause a dynamic memory allocation. -/// -/// \sa class Block, segment(Index) -/// -EIGEN_DEVICE_FUNC -inline SegmentReturnType segment(Index start, Index n) -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return SegmentReturnType(derived(), start, n); -} - - -/// This is the const version of segment(Index,Index). -EIGEN_DEVICE_FUNC -inline ConstSegmentReturnType segment(Index start, Index n) const -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return ConstSegmentReturnType(derived(), start, n); -} - -/// \returns a dynamic-size expression of the first coefficients of *this. -/// -/// \only_for_vectors -/// -/// \param n the number of coefficients in the segment -/// -/// Example: \include MatrixBase_start_int.cpp -/// Output: \verbinclude MatrixBase_start_int.out -/// -/// \note Even though the returned expression has dynamic size, in the case -/// when it is applied to a fixed-size vector, it inherits a fixed maximal size, -/// which means that evaluating it does not cause a dynamic memory allocation. -/// -/// \sa class Block, block(Index,Index) -/// -EIGEN_DEVICE_FUNC -inline SegmentReturnType head(Index n) -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return SegmentReturnType(derived(), 0, n); -} - -/// This is the const version of head(Index). -EIGEN_DEVICE_FUNC -inline ConstSegmentReturnType head(Index n) const -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return ConstSegmentReturnType(derived(), 0, n); -} - -/// \returns a dynamic-size expression of the last coefficients of *this. -/// -/// \only_for_vectors -/// -/// \param n the number of coefficients in the segment -/// -/// Example: \include MatrixBase_end_int.cpp -/// Output: \verbinclude MatrixBase_end_int.out -/// -/// \note Even though the returned expression has dynamic size, in the case -/// when it is applied to a fixed-size vector, it inherits a fixed maximal size, -/// which means that evaluating it does not cause a dynamic memory allocation. -/// -/// \sa class Block, block(Index,Index) -/// -EIGEN_DEVICE_FUNC -inline SegmentReturnType tail(Index n) -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return SegmentReturnType(derived(), this->size() - n, n); -} - -/// This is the const version of tail(Index). -EIGEN_DEVICE_FUNC -inline ConstSegmentReturnType tail(Index n) const -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return ConstSegmentReturnType(derived(), this->size() - n, n); -} - -/// \returns a fixed-size expression of a segment (i.e. a vector block) in \c *this -/// -/// \only_for_vectors -/// -/// \tparam N the number of coefficients in the segment as specified at compile-time -/// \param start the index of the first element in the segment -/// \param n the number of coefficients in the segment as specified at compile-time -/// -/// The compile-time and run-time information should not contradict. In other words, -/// \a n should equal \a N unless \a N is \a Dynamic. -/// -/// Example: \include MatrixBase_template_int_segment.cpp -/// Output: \verbinclude MatrixBase_template_int_segment.out -/// -/// \sa class Block -/// -template -EIGEN_DEVICE_FUNC -inline typename FixedSegmentReturnType::Type segment(Index start, Index n = N) -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return typename FixedSegmentReturnType::Type(derived(), start, n); -} - -/// This is the const version of segment(Index). -template -EIGEN_DEVICE_FUNC -inline typename ConstFixedSegmentReturnType::Type segment(Index start, Index n = N) const -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return typename ConstFixedSegmentReturnType::Type(derived(), start, n); -} - -/// \returns a fixed-size expression of the first coefficients of *this. -/// -/// \only_for_vectors -/// -/// \tparam N the number of coefficients in the segment as specified at compile-time -/// \param n the number of coefficients in the segment as specified at run-time -/// -/// The compile-time and run-time information should not contradict. In other words, -/// \a n should equal \a N unless \a N is \a Dynamic. -/// -/// Example: \include MatrixBase_template_int_start.cpp -/// Output: \verbinclude MatrixBase_template_int_start.out -/// -/// \sa class Block -/// -template -EIGEN_DEVICE_FUNC -inline typename FixedSegmentReturnType::Type head(Index n = N) -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return typename FixedSegmentReturnType::Type(derived(), 0, n); -} - -/// This is the const version of head(). -template -EIGEN_DEVICE_FUNC -inline typename ConstFixedSegmentReturnType::Type head(Index n = N) const -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return typename ConstFixedSegmentReturnType::Type(derived(), 0, n); -} - -/// \returns a fixed-size expression of the last coefficients of *this. -/// -/// \only_for_vectors -/// -/// \tparam N the number of coefficients in the segment as specified at compile-time -/// \param n the number of coefficients in the segment as specified at run-time -/// -/// The compile-time and run-time information should not contradict. In other words, -/// \a n should equal \a N unless \a N is \a Dynamic. -/// -/// Example: \include MatrixBase_template_int_end.cpp -/// Output: \verbinclude MatrixBase_template_int_end.out -/// -/// \sa class Block -/// -template -EIGEN_DEVICE_FUNC -inline typename FixedSegmentReturnType::Type tail(Index n = N) -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return typename FixedSegmentReturnType::Type(derived(), size() - n); -} - -/// This is the const version of tail. -template -EIGEN_DEVICE_FUNC -inline typename ConstFixedSegmentReturnType::Type tail(Index n = N) const -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return typename ConstFixedSegmentReturnType::Type(derived(), size() - n); -} diff --git a/src/math_meigen/Eigen/src/plugins/CommonCwiseBinaryOps.h b/src/math_meigen/Eigen/src/plugins/CommonCwiseBinaryOps.h deleted file mode 100755 index 8b6730ede..000000000 --- a/src/math_meigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +++ /dev/null @@ -1,115 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2016 Gael Guennebaud -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -// This file is a base class plugin containing common coefficient wise functions. - -/** \returns an expression of the difference of \c *this and \a other - * - * \note If you want to substract a given scalar from all coefficients, see Cwise::operator-(). - * - * \sa class CwiseBinaryOp, operator-=() - */ -EIGEN_MAKE_CWISE_BINARY_OP(operator-,difference) - -/** \returns an expression of the sum of \c *this and \a other - * - * \note If you want to add a given scalar to all coefficients, see Cwise::operator+(). - * - * \sa class CwiseBinaryOp, operator+=() - */ -EIGEN_MAKE_CWISE_BINARY_OP(operator+,sum) - -/** \returns an expression of a custom coefficient-wise operator \a func of *this and \a other - * - * The template parameter \a CustomBinaryOp is the type of the functor - * of the custom operator (see class CwiseBinaryOp for an example) - * - * Here is an example illustrating the use of custom functors: - * \include class_CwiseBinaryOp.cpp - * Output: \verbinclude class_CwiseBinaryOp.out - * - * \sa class CwiseBinaryOp, operator+(), operator-(), cwiseProduct() - */ -template -EIGEN_DEVICE_FUNC -EIGEN_STRONG_INLINE const CwiseBinaryOp -binaryExpr(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other, const CustomBinaryOp& func = CustomBinaryOp()) const -{ - return CwiseBinaryOp(derived(), other.derived(), func); -} - - -#ifndef EIGEN_PARSED_BY_DOXYGEN -EIGEN_MAKE_SCALAR_BINARY_OP(operator*,product) -#else -/** \returns an expression of \c *this scaled by the scalar factor \a scalar - * - * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. - */ -template -const CwiseBinaryOp,Derived,Constant > operator*(const T& scalar) const; -/** \returns an expression of \a expr scaled by the scalar factor \a scalar - * - * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. - */ -template friend -const CwiseBinaryOp,Constant,Derived> operator*(const T& scalar, const StorageBaseType& expr); -#endif - - - -#ifndef EIGEN_PARSED_BY_DOXYGEN -EIGEN_MAKE_SCALAR_BINARY_OP_ONTHERIGHT(operator/,quotient) -#else -/** \returns an expression of \c *this divided by the scalar value \a scalar - * - * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. - */ -template -const CwiseBinaryOp,Derived,Constant > operator/(const T& scalar) const; -#endif - -/** \returns an expression of the coefficient-wise boolean \b and operator of \c *this and \a other - * - * \warning this operator is for expression of bool only. - * - * Example: \include Cwise_boolean_and.cpp - * Output: \verbinclude Cwise_boolean_and.out - * - * \sa operator||(), select() - */ -template -EIGEN_DEVICE_FUNC -inline const CwiseBinaryOp -operator&&(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const -{ - EIGEN_STATIC_ASSERT((internal::is_same::value && internal::is_same::value), - THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_OF_BOOL); - return CwiseBinaryOp(derived(),other.derived()); -} - -/** \returns an expression of the coefficient-wise boolean \b or operator of \c *this and \a other - * - * \warning this operator is for expression of bool only. - * - * Example: \include Cwise_boolean_or.cpp - * Output: \verbinclude Cwise_boolean_or.out - * - * \sa operator&&(), select() - */ -template -EIGEN_DEVICE_FUNC -inline const CwiseBinaryOp -operator||(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const -{ - EIGEN_STATIC_ASSERT((internal::is_same::value && internal::is_same::value), - THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_OF_BOOL); - return CwiseBinaryOp(derived(),other.derived()); -} diff --git a/src/math_meigen/Eigen/src/plugins/CommonCwiseUnaryOps.h b/src/math_meigen/Eigen/src/plugins/CommonCwiseUnaryOps.h deleted file mode 100755 index 89f4faaac..000000000 --- a/src/math_meigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +++ /dev/null @@ -1,163 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2009 Gael Guennebaud -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -// This file is a base class plugin containing common coefficient wise functions. - -#ifndef EIGEN_PARSED_BY_DOXYGEN - -/** \internal the return type of conjugate() */ -typedef typename internal::conditional::IsComplex, - const CwiseUnaryOp, const Derived>, - const Derived& - >::type ConjugateReturnType; -/** \internal the return type of real() const */ -typedef typename internal::conditional::IsComplex, - const CwiseUnaryOp, const Derived>, - const Derived& - >::type RealReturnType; -/** \internal the return type of real() */ -typedef typename internal::conditional::IsComplex, - CwiseUnaryView, Derived>, - Derived& - >::type NonConstRealReturnType; -/** \internal the return type of imag() const */ -typedef CwiseUnaryOp, const Derived> ImagReturnType; -/** \internal the return type of imag() */ -typedef CwiseUnaryView, Derived> NonConstImagReturnType; - -typedef CwiseUnaryOp, const Derived> NegativeReturnType; - -#endif // not EIGEN_PARSED_BY_DOXYGEN - -/// \returns an expression of the opposite of \c *this -/// -EIGEN_DOC_UNARY_ADDONS(operator-,opposite) -/// -EIGEN_DEVICE_FUNC -inline const NegativeReturnType -operator-() const { return NegativeReturnType(derived()); } - - -template struct CastXpr { typedef typename internal::cast_return_type, const Derived> >::type Type; }; - -/// \returns an expression of \c *this with the \a Scalar type casted to -/// \a NewScalar. -/// -/// The template parameter \a NewScalar is the type we are casting the scalars to. -/// -EIGEN_DOC_UNARY_ADDONS(cast,conversion function) -/// -/// \sa class CwiseUnaryOp -/// -template -EIGEN_DEVICE_FUNC -typename CastXpr::Type -cast() const -{ - return typename CastXpr::Type(derived()); -} - -/// \returns an expression of the complex conjugate of \c *this. -/// -EIGEN_DOC_UNARY_ADDONS(conjugate,complex conjugate) -/// -/// \sa Math functions, MatrixBase::adjoint() -EIGEN_DEVICE_FUNC -inline ConjugateReturnType -conjugate() const -{ - return ConjugateReturnType(derived()); -} - -/// \returns a read-only expression of the real part of \c *this. -/// -EIGEN_DOC_UNARY_ADDONS(real,real part function) -/// -/// \sa imag() -EIGEN_DEVICE_FUNC -inline RealReturnType -real() const { return RealReturnType(derived()); } - -/// \returns an read-only expression of the imaginary part of \c *this. -/// -EIGEN_DOC_UNARY_ADDONS(imag,imaginary part function) -/// -/// \sa real() -EIGEN_DEVICE_FUNC -inline const ImagReturnType -imag() const { return ImagReturnType(derived()); } - -/// \brief Apply a unary operator coefficient-wise -/// \param[in] func Functor implementing the unary operator -/// \tparam CustomUnaryOp Type of \a func -/// \returns An expression of a custom coefficient-wise unary operator \a func of *this -/// -/// The function \c ptr_fun() from the C++ standard library can be used to make functors out of normal functions. -/// -/// Example: -/// \include class_CwiseUnaryOp_ptrfun.cpp -/// Output: \verbinclude class_CwiseUnaryOp_ptrfun.out -/// -/// Genuine functors allow for more possibilities, for instance it may contain a state. -/// -/// Example: -/// \include class_CwiseUnaryOp.cpp -/// Output: \verbinclude class_CwiseUnaryOp.out -/// -EIGEN_DOC_UNARY_ADDONS(unaryExpr,unary function) -/// -/// \sa unaryViewExpr, binaryExpr, class CwiseUnaryOp -/// -template -EIGEN_DEVICE_FUNC -inline const CwiseUnaryOp -unaryExpr(const CustomUnaryOp& func = CustomUnaryOp()) const -{ - return CwiseUnaryOp(derived(), func); -} - -/// \returns an expression of a custom coefficient-wise unary operator \a func of *this -/// -/// The template parameter \a CustomUnaryOp is the type of the functor -/// of the custom unary operator. -/// -/// Example: -/// \include class_CwiseUnaryOp.cpp -/// Output: \verbinclude class_CwiseUnaryOp.out -/// -EIGEN_DOC_UNARY_ADDONS(unaryViewExpr,unary function) -/// -/// \sa unaryExpr, binaryExpr class CwiseUnaryOp -/// -template -EIGEN_DEVICE_FUNC -inline const CwiseUnaryView -unaryViewExpr(const CustomViewOp& func = CustomViewOp()) const -{ - return CwiseUnaryView(derived(), func); -} - -/// \returns a non const expression of the real part of \c *this. -/// -EIGEN_DOC_UNARY_ADDONS(real,real part function) -/// -/// \sa imag() -EIGEN_DEVICE_FUNC -inline NonConstRealReturnType -real() { return NonConstRealReturnType(derived()); } - -/// \returns a non const expression of the imaginary part of \c *this. -/// -EIGEN_DOC_UNARY_ADDONS(imag,imaginary part function) -/// -/// \sa real() -EIGEN_DEVICE_FUNC -inline NonConstImagReturnType -imag() { return NonConstImagReturnType(derived()); } diff --git a/src/math_meigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h b/src/math_meigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h deleted file mode 100755 index f1084abef..000000000 --- a/src/math_meigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +++ /dev/null @@ -1,152 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2009 Gael Guennebaud -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -// This file is a base class plugin containing matrix specifics coefficient wise functions. - -/** \returns an expression of the Schur product (coefficient wise product) of *this and \a other - * - * Example: \include MatrixBase_cwiseProduct.cpp - * Output: \verbinclude MatrixBase_cwiseProduct.out - * - * \sa class CwiseBinaryOp, cwiseAbs2 - */ -template -EIGEN_DEVICE_FUNC -EIGEN_STRONG_INLINE const EIGEN_CWISE_BINARY_RETURN_TYPE(Derived,OtherDerived,product) -cwiseProduct(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const -{ - return EIGEN_CWISE_BINARY_RETURN_TYPE(Derived,OtherDerived,product)(derived(), other.derived()); -} - -/** \returns an expression of the coefficient-wise == operator of *this and \a other - * - * \warning this performs an exact comparison, which is generally a bad idea with floating-point types. - * In order to check for equality between two vectors or matrices with floating-point coefficients, it is - * generally a far better idea to use a fuzzy comparison as provided by isApprox() and - * isMuchSmallerThan(). - * - * Example: \include MatrixBase_cwiseEqual.cpp - * Output: \verbinclude MatrixBase_cwiseEqual.out - * - * \sa cwiseNotEqual(), isApprox(), isMuchSmallerThan() - */ -template -EIGEN_DEVICE_FUNC -inline const CwiseBinaryOp, const Derived, const OtherDerived> -cwiseEqual(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const -{ - return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); -} - -/** \returns an expression of the coefficient-wise != operator of *this and \a other - * - * \warning this performs an exact comparison, which is generally a bad idea with floating-point types. - * In order to check for equality between two vectors or matrices with floating-point coefficients, it is - * generally a far better idea to use a fuzzy comparison as provided by isApprox() and - * isMuchSmallerThan(). - * - * Example: \include MatrixBase_cwiseNotEqual.cpp - * Output: \verbinclude MatrixBase_cwiseNotEqual.out - * - * \sa cwiseEqual(), isApprox(), isMuchSmallerThan() - */ -template -EIGEN_DEVICE_FUNC -inline const CwiseBinaryOp, const Derived, const OtherDerived> -cwiseNotEqual(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const -{ - return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); -} - -/** \returns an expression of the coefficient-wise min of *this and \a other - * - * Example: \include MatrixBase_cwiseMin.cpp - * Output: \verbinclude MatrixBase_cwiseMin.out - * - * \sa class CwiseBinaryOp, max() - */ -template -EIGEN_DEVICE_FUNC -EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> -cwiseMin(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const -{ - return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); -} - -/** \returns an expression of the coefficient-wise min of *this and scalar \a other - * - * \sa class CwiseBinaryOp, min() - */ -EIGEN_DEVICE_FUNC -EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const ConstantReturnType> -cwiseMin(const Scalar &other) const -{ - return cwiseMin(Derived::Constant(rows(), cols(), other)); -} - -/** \returns an expression of the coefficient-wise max of *this and \a other - * - * Example: \include MatrixBase_cwiseMax.cpp - * Output: \verbinclude MatrixBase_cwiseMax.out - * - * \sa class CwiseBinaryOp, min() - */ -template -EIGEN_DEVICE_FUNC -EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> -cwiseMax(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const -{ - return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); -} - -/** \returns an expression of the coefficient-wise max of *this and scalar \a other - * - * \sa class CwiseBinaryOp, min() - */ -EIGEN_DEVICE_FUNC -EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const ConstantReturnType> -cwiseMax(const Scalar &other) const -{ - return cwiseMax(Derived::Constant(rows(), cols(), other)); -} - - -/** \returns an expression of the coefficient-wise quotient of *this and \a other - * - * Example: \include MatrixBase_cwiseQuotient.cpp - * Output: \verbinclude MatrixBase_cwiseQuotient.out - * - * \sa class CwiseBinaryOp, cwiseProduct(), cwiseInverse() - */ -template -EIGEN_DEVICE_FUNC -EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> -cwiseQuotient(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const -{ - return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); -} - -typedef CwiseBinaryOp, const Derived, const ConstantReturnType> CwiseScalarEqualReturnType; - -/** \returns an expression of the coefficient-wise == operator of \c *this and a scalar \a s - * - * \warning this performs an exact comparison, which is generally a bad idea with floating-point types. - * In order to check for equality between two vectors or matrices with floating-point coefficients, it is - * generally a far better idea to use a fuzzy comparison as provided by isApprox() and - * isMuchSmallerThan(). - * - * \sa cwiseEqual(const MatrixBase &) const - */ -EIGEN_DEVICE_FUNC -inline const CwiseScalarEqualReturnType -cwiseEqual(const Scalar& s) const -{ - return CwiseScalarEqualReturnType(derived(), Derived::Constant(rows(), cols(), s), internal::scalar_cmp_op()); -} diff --git a/src/math_meigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h b/src/math_meigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h deleted file mode 100755 index b1be3d566..000000000 --- a/src/math_meigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +++ /dev/null @@ -1,85 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2009 Gael Guennebaud -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -// This file is included into the body of the base classes supporting matrix specific coefficient-wise functions. -// This include MatrixBase and SparseMatrixBase. - - -typedef CwiseUnaryOp, const Derived> CwiseAbsReturnType; -typedef CwiseUnaryOp, const Derived> CwiseAbs2ReturnType; -typedef CwiseUnaryOp, const Derived> CwiseSqrtReturnType; -typedef CwiseUnaryOp, const Derived> CwiseSignReturnType; -typedef CwiseUnaryOp, const Derived> CwiseInverseReturnType; - -/// \returns an expression of the coefficient-wise absolute value of \c *this -/// -/// Example: \include MatrixBase_cwiseAbs.cpp -/// Output: \verbinclude MatrixBase_cwiseAbs.out -/// -EIGEN_DOC_UNARY_ADDONS(cwiseAbs,absolute value) -/// -/// \sa cwiseAbs2() -/// -EIGEN_DEVICE_FUNC -EIGEN_STRONG_INLINE const CwiseAbsReturnType -cwiseAbs() const { return CwiseAbsReturnType(derived()); } - -/// \returns an expression of the coefficient-wise squared absolute value of \c *this -/// -/// Example: \include MatrixBase_cwiseAbs2.cpp -/// Output: \verbinclude MatrixBase_cwiseAbs2.out -/// -EIGEN_DOC_UNARY_ADDONS(cwiseAbs2,squared absolute value) -/// -/// \sa cwiseAbs() -/// -EIGEN_DEVICE_FUNC -EIGEN_STRONG_INLINE const CwiseAbs2ReturnType -cwiseAbs2() const { return CwiseAbs2ReturnType(derived()); } - -/// \returns an expression of the coefficient-wise square root of *this. -/// -/// Example: \include MatrixBase_cwiseSqrt.cpp -/// Output: \verbinclude MatrixBase_cwiseSqrt.out -/// -EIGEN_DOC_UNARY_ADDONS(cwiseSqrt,square-root) -/// -/// \sa cwisePow(), cwiseSquare() -/// -EIGEN_DEVICE_FUNC -inline const CwiseSqrtReturnType -cwiseSqrt() const { return CwiseSqrtReturnType(derived()); } - -/// \returns an expression of the coefficient-wise signum of *this. -/// -/// Example: \include MatrixBase_cwiseSign.cpp -/// Output: \verbinclude MatrixBase_cwiseSign.out -/// -EIGEN_DOC_UNARY_ADDONS(cwiseSign,sign function) -/// -EIGEN_DEVICE_FUNC -inline const CwiseSignReturnType -cwiseSign() const { return CwiseSignReturnType(derived()); } - - -/// \returns an expression of the coefficient-wise inverse of *this. -/// -/// Example: \include MatrixBase_cwiseInverse.cpp -/// Output: \verbinclude MatrixBase_cwiseInverse.out -/// -EIGEN_DOC_UNARY_ADDONS(cwiseInverse,inverse) -/// -/// \sa cwiseProduct() -/// -EIGEN_DEVICE_FUNC -inline const CwiseInverseReturnType -cwiseInverse() const { return CwiseInverseReturnType(derived()); } - - diff --git a/tests/test_CP2K_xTB/Readme.md b/tests/test_CP2K_xTB/Readme.md new file mode 100755 index 000000000..63e14e998 --- /dev/null +++ b/tests/test_CP2K_xTB/Readme.md @@ -0,0 +1,47 @@ +# Computing the molecular orbital overlaps for xTB calculations + +Here are the files for computing the MO overlaps for extended tight-binding calculations using CP2K. +We first need to run an OT calculations and then use the `wfn` file for diagonalization so that we can print out the +MOs in `molden` or `MOLog` file formats. + +Then we will use `libint2` to compute the AO overlap matrix to compute the MO overlaps. + +We first need to specify the correct variables in the `es_ot_template.inp` and `es_diag_template.inp` and +then specify the full paths to these files: + +* `res_dir` +* `all_pdosfiles` +* `all_logfiles` +* `cp2k_exe` +* `cp2k_ot_input_template` +* `cp2k_diag_input_template` +* `trajectory_xyz_filename` + +It is required to specify the + +* `nprocs` +* `init_state` +* `final_state` in the `run_template.py` + +but the `istep`, `fstep`, and `njobs` is defined in `distribute_jobs.py`. +If you want to submit the jobs (and not running as bash), set `run_slurm` to `True`. + +After specifying all the variables in both files you can run the calculations using `python distribute_jobs.py` + +The MO overlaps are saved as `.npz` format. +These files are binary files by `scipy.sparse` library. In order to load the saved files you can do this: + +``` +import numpy as np +import scipy.sparse + +# Load the sparse matrix +S = scipy.sparse.load_npz('./res/S_ks_0_re.npz') +# The dense matrix +S_dense = S.todense() + +# Show the diagonal elements of the dense matrix +np.diag(S_dense) +``` + + diff --git a/tests/test_CP2K_xTB/dftd3.dat b/tests/test_CP2K_xTB/dftd3.dat new file mode 100755 index 000000000..3b8aea8aa --- /dev/null +++ b/tests/test_CP2K_xTB/dftd3.dat @@ -0,0 +1,16194 @@ + 161925 32385 + 3.0267 1.0000 1.0000 0.9118 0.9118 2.0835 2.0000 1.0000 0.0000 0.9118 + 1.5583 2.0000 2.0000 0.0000 0.0000 38.9448 3.0000 1.0000 0.0000 0.9118 + 22.1508 3.0000 2.0000 0.0000 0.0000 1163.4454 3.0000 3.0000 0.0000 0.0000 + 24.4415 4.0000 1.0000 0.0000 0.9118 14.8246 4.0000 2.0000 0.0000 0.0000 + 494.6190 4.0000 3.0000 0.0000 0.0000 257.4863 4.0000 4.0000 0.0000 0.0000 + 17.3143 5.0000 1.0000 0.0000 0.9118 11.0975 5.0000 2.0000 0.0000 0.0000 + 283.7308 5.0000 3.0000 0.0000 0.0000 161.5971 5.0000 4.0000 0.0000 0.0000 + 107.1777 5.0000 5.0000 0.0000 0.0000 12.1402 6.0000 1.0000 0.0000 0.9118 + 8.1841 6.0000 2.0000 0.0000 0.0000 169.9030 6.0000 3.0000 0.0000 0.0000 + 102.9560 6.0000 4.0000 0.0000 0.0000 71.2794 6.0000 5.0000 0.0000 0.0000 + 49.1130 6.0000 6.0000 0.0000 0.0000 8.7171 7.0000 1.0000 0.0000 0.9118 + 6.1380 7.0000 2.0000 0.0000 0.0000 108.4854 7.0000 3.0000 0.0000 0.0000 + 68.6458 7.0000 4.0000 0.0000 0.0000 49.1132 7.0000 5.0000 0.0000 0.0000 + 34.8146 7.0000 6.0000 0.0000 0.0000 25.2685 7.0000 7.0000 0.0000 0.0000 + 6.7180 8.0000 1.0000 0.0000 0.9118 4.8949 8.0000 2.0000 0.0000 0.0000 + 76.9613 8.0000 3.0000 0.0000 0.0000 50.1252 8.0000 4.0000 0.0000 0.0000 + 36.7247 8.0000 5.0000 0.0000 0.0000 26.5929 8.0000 6.0000 0.0000 0.0000 + 19.6546 8.0000 7.0000 0.0000 0.0000 15.5059 8.0000 8.0000 0.0000 0.0000 + 5.1616 9.0000 1.0000 0.0000 0.9118 3.8825 9.0000 2.0000 0.0000 0.0000 + 55.0933 9.0000 3.0000 0.0000 0.0000 36.7453 9.0000 4.0000 0.0000 0.0000 + 27.4821 9.0000 5.0000 0.0000 0.0000 20.2827 9.0000 6.0000 0.0000 0.0000 + 15.2418 9.0000 7.0000 0.0000 0.0000 12.1834 9.0000 8.0000 0.0000 0.0000 + 9.6916 9.0000 9.0000 0.0000 0.0000 4.0112 10.0000 1.0000 0.0000 0.9118 + 3.1025 10.0000 2.0000 0.0000 0.0000 40.4731 10.0000 3.0000 0.0000 0.0000 + 27.4867 10.0000 4.0000 0.0000 0.0000 20.9022 10.0000 5.0000 0.0000 0.0000 + 15.6740 10.0000 6.0000 0.0000 0.0000 11.9479 10.0000 7.0000 0.0000 0.0000 + 9.6606 10.0000 8.0000 0.0000 0.0000 7.7691 10.0000 9.0000 0.0000 0.0000 + 6.2896 10.0000 10.0000 0.0000 0.0000 46.8232 11.0000 1.0000 0.0000 0.9118 + 26.8628 11.0000 2.0000 0.0000 0.0000 1367.3272 11.0000 3.0000 0.0000 0.0000 + 587.4563 11.0000 4.0000 0.0000 0.0000 338.7212 11.0000 5.0000 0.0000 0.0000 + 203.7631 11.0000 6.0000 0.0000 0.0000 130.6563 11.0000 7.0000 0.0000 0.0000 + 93.0263 11.0000 8.0000 0.0000 0.0000 66.8423 11.0000 9.0000 0.0000 0.0000 + 49.2799 11.0000 10.0000 0.0000 0.0000 1608.0286 11.0000 11.0000 0.0000 0.0000 + 38.3531 12.0000 1.0000 0.0000 0.9118 23.0320 12.0000 2.0000 0.0000 0.0000 + 830.8156 12.0000 3.0000 0.0000 0.0000 418.2164 12.0000 4.0000 0.0000 0.0000 + 258.1303 12.0000 5.0000 0.0000 0.0000 162.6082 12.0000 6.0000 0.0000 0.0000 + 107.6150 12.0000 7.0000 0.0000 0.0000 78.2250 12.0000 8.0000 0.0000 0.0000 + 57.1605 12.0000 9.0000 0.0000 0.0000 42.6771 12.0000 10.0000 0.0000 0.0000 + 985.1697 12.0000 11.0000 0.0000 0.0000 683.3758 12.0000 12.0000 0.0000 0.0000 + 36.2909 13.0000 1.0000 0.0000 0.9118 22.3224 13.0000 2.0000 0.0000 0.0000 + 705.8254 13.0000 3.0000 0.0000 0.0000 372.6302 13.0000 4.0000 0.0000 0.0000 + 236.4780 13.0000 5.0000 0.0000 0.0000 152.0934 13.0000 6.0000 0.0000 0.0000 + 102.2000 13.0000 7.0000 0.0000 0.0000 75.0755 13.0000 8.0000 0.0000 0.0000 + 55.3412 13.0000 9.0000 0.0000 0.0000 41.5966 13.0000 10.0000 0.0000 0.0000 + 838.9648 13.0000 11.0000 0.0000 0.0000 603.4689 13.0000 12.0000 0.0000 0.0000 + 540.5406 13.0000 13.0000 0.0000 0.0000 29.5947 14.0000 1.0000 0.0000 0.9118 + 18.8500 14.0000 2.0000 0.0000 0.0000 495.3449 14.0000 3.0000 0.0000 0.0000 + 279.7863 14.0000 4.0000 0.0000 0.0000 184.5111 14.0000 5.0000 0.0000 0.0000 + 122.1387 14.0000 6.0000 0.0000 0.0000 83.8498 14.0000 7.0000 0.0000 0.0000 + 62.5349 14.0000 8.0000 0.0000 0.0000 46.6936 14.0000 9.0000 0.0000 0.0000 + 35.4550 14.0000 10.0000 0.0000 0.0000 591.0458 14.0000 11.0000 0.0000 0.0000 + 447.6423 14.0000 12.0000 0.0000 0.0000 408.9606 14.0000 13.0000 0.0000 0.0000 + 317.8574 14.0000 14.0000 0.0000 0.0000 23.7604 15.0000 1.0000 0.0000 0.9118 + 15.6689 15.0000 2.0000 0.0000 0.0000 350.8030 15.0000 3.0000 0.0000 0.0000 + 208.7331 15.0000 4.0000 0.0000 0.0000 142.3481 15.0000 5.0000 0.0000 0.0000 + 96.7503 15.0000 6.0000 0.0000 0.0000 67.7873 15.0000 7.0000 0.0000 0.0000 + 51.3098 15.0000 8.0000 0.0000 0.0000 38.8084 15.0000 9.0000 0.0000 0.0000 + 29.7767 15.0000 10.0000 0.0000 0.0000 420.0064 15.0000 11.0000 0.0000 0.0000 + 330.7801 15.0000 12.0000 0.0000 0.0000 307.2965 15.0000 13.0000 0.0000 0.0000 + 244.3546 15.0000 14.0000 0.0000 0.0000 191.6887 15.0000 15.0000 0.0000 0.0000 + 20.0948 16.0000 1.0000 0.0000 0.9118 13.6108 16.0000 2.0000 0.0000 0.0000 + 273.7867 16.0000 3.0000 0.0000 0.0000 167.9513 16.0000 4.0000 0.0000 0.0000 + 117.1121 16.0000 5.0000 0.0000 0.0000 81.0919 16.0000 6.0000 0.0000 0.0000 + 57.6734 16.0000 7.0000 0.0000 0.0000 44.1470 16.0000 8.0000 0.0000 0.0000 + 33.7264 16.0000 9.0000 0.0000 0.0000 26.0940 16.0000 10.0000 0.0000 0.0000 + 328.5990 16.0000 11.0000 0.0000 0.0000 264.6665 16.0000 12.0000 0.0000 0.0000 + 248.5008 16.0000 13.0000 0.0000 0.0000 200.5374 16.0000 14.0000 0.0000 0.0000 + 159.4898 16.0000 15.0000 0.0000 0.0000 134.0066 16.0000 16.0000 0.0000 0.0000 + 16.7052 17.0000 1.0000 0.0000 0.9118 11.6302 17.0000 2.0000 0.0000 0.0000 + 210.6626 17.0000 3.0000 0.0000 0.0000 132.9808 17.0000 4.0000 0.0000 0.0000 + 94.7612 17.0000 5.0000 0.0000 0.0000 66.8407 17.0000 6.0000 0.0000 0.0000 + 48.2624 17.0000 7.0000 0.0000 0.0000 37.3688 17.0000 8.0000 0.0000 0.0000 + 28.8445 17.0000 9.0000 0.0000 0.0000 22.5121 17.0000 10.0000 0.0000 0.0000 + 253.5136 17.0000 11.0000 0.0000 0.0000 208.4978 17.0000 12.0000 0.0000 0.0000 + 197.7594 17.0000 13.0000 0.0000 0.0000 161.8686 17.0000 14.0000 0.0000 0.0000 + 130.4725 17.0000 15.0000 0.0000 0.0000 110.7006 17.0000 16.0000 0.0000 0.0000 + 92.3460 17.0000 17.0000 0.0000 0.0000 13.8700 18.0000 1.0000 0.0000 0.9118 + 9.9130 18.0000 2.0000 0.0000 0.0000 163.5497 18.0000 3.0000 0.0000 0.0000 + 105.7229 18.0000 4.0000 0.0000 0.0000 76.7949 18.0000 5.0000 0.0000 0.0000 + 55.0898 18.0000 6.0000 0.0000 0.0000 40.3435 18.0000 7.0000 0.0000 0.0000 + 31.5783 18.0000 8.0000 0.0000 0.0000 24.6178 18.0000 9.0000 0.0000 0.0000 + 19.3774 18.0000 10.0000 0.0000 0.0000 197.3440 18.0000 11.0000 0.0000 0.0000 + 165.1006 18.0000 12.0000 0.0000 0.0000 157.9595 18.0000 13.0000 0.0000 0.0000 + 130.8927 18.0000 14.0000 0.0000 0.0000 106.7698 18.0000 15.0000 0.0000 0.0000 + 91.4014 18.0000 16.0000 0.0000 0.0000 76.9383 18.0000 17.0000 0.0000 0.0000 + 64.6462 18.0000 18.0000 0.0000 0.0000 76.2376 19.0000 1.0000 0.0000 0.9118 + 44.0411 19.0000 2.0000 0.0000 0.0000 2387.1574 19.0000 3.0000 0.0000 0.0000 + 972.3197 19.0000 4.0000 0.0000 0.0000 554.1980 19.0000 5.0000 0.0000 0.0000 + 332.2694 19.0000 6.0000 0.0000 0.0000 213.2001 19.0000 7.0000 0.0000 0.0000 + 152.1420 19.0000 8.0000 0.0000 0.0000 109.6439 19.0000 9.0000 0.0000 0.0000 + 81.0861 19.0000 10.0000 0.0000 0.0000 2798.6124 19.0000 11.0000 0.0000 0.0000 + 1642.0587 19.0000 12.0000 0.0000 0.0000 1387.9361 19.0000 13.0000 0.0000 0.0000 + 967.6283 19.0000 14.0000 0.0000 0.0000 684.4968 19.0000 15.0000 0.0000 0.0000 + 535.2384 19.0000 16.0000 0.0000 0.0000 413.1512 19.0000 17.0000 0.0000 0.0000 + 322.1155 19.0000 18.0000 0.0000 0.0000 4983.5009 19.0000 19.0000 0.0000 0.0000 + 65.8180 20.0000 1.0000 0.0000 0.9118 39.0701 20.0000 2.0000 0.0000 0.0000 + 1614.4719 20.0000 3.0000 0.0000 0.0000 757.9070 20.0000 4.0000 0.0000 0.0000 + 454.8439 20.0000 5.0000 0.0000 0.0000 281.7035 20.0000 6.0000 0.0000 0.0000 + 184.5498 20.0000 7.0000 0.0000 0.0000 133.3847 20.0000 8.0000 0.0000 0.0000 + 97.0824 20.0000 9.0000 0.0000 0.0000 72.3072 20.0000 10.0000 0.0000 0.0000 + 1907.7081 20.0000 11.0000 0.0000 0.0000 1252.5932 20.0000 12.0000 0.0000 0.0000 + 1088.8420 20.0000 13.0000 0.0000 0.0000 790.6347 20.0000 14.0000 0.0000 0.0000 + 575.4627 20.0000 15.0000 0.0000 0.0000 456.8443 20.0000 16.0000 0.0000 0.0000 + 357.4737 20.0000 17.0000 0.0000 0.0000 281.6823 20.0000 18.0000 0.0000 0.0000 + 3240.4393 20.0000 19.0000 0.0000 0.0000 2352.6862 20.0000 20.0000 0.0000 0.0000 + 54.9669 21.0000 1.0000 0.0000 0.9118 32.8995 21.0000 2.0000 0.0000 0.0000 + 1278.1183 21.0000 3.0000 0.0000 0.0000 617.3358 21.0000 4.0000 0.0000 0.0000 + 375.0418 21.0000 5.0000 0.0000 0.0000 234.1950 21.0000 6.0000 0.0000 0.0000 + 154.2947 21.0000 7.0000 0.0000 0.0000 111.9359 21.0000 8.0000 0.0000 0.0000 + 81.7242 21.0000 9.0000 0.0000 0.0000 61.0154 21.0000 10.0000 0.0000 0.0000 + 1512.5338 21.0000 11.0000 0.0000 0.0000 1015.5454 21.0000 12.0000 0.0000 0.0000 + 888.6025 21.0000 13.0000 0.0000 0.0000 651.2040 21.0000 14.0000 0.0000 0.0000 + 477.2797 21.0000 15.0000 0.0000 0.0000 380.4107 21.0000 16.0000 0.0000 0.0000 + 298.7686 21.0000 17.0000 0.0000 0.0000 236.1417 21.0000 18.0000 0.0000 0.0000 + 2549.9412 21.0000 19.0000 0.0000 0.0000 1888.7902 21.0000 20.0000 0.0000 0.0000 + 1522.4676 21.0000 21.0000 0.0000 0.0000 53.6875 22.0000 1.0000 0.0000 0.9118 + 32.5316 22.0000 2.0000 0.0000 0.0000 1192.9128 22.0000 3.0000 0.0000 0.0000 + 587.4898 22.0000 4.0000 0.0000 0.0000 361.0865 22.0000 5.0000 0.0000 0.0000 + 227.5723 22.0000 6.0000 0.0000 0.0000 151.0199 22.0000 7.0000 0.0000 0.0000 + 110.1452 22.0000 8.0000 0.0000 0.0000 80.7975 22.0000 9.0000 0.0000 0.0000 + 60.5594 22.0000 10.0000 0.0000 0.0000 1413.1570 22.0000 11.0000 0.0000 0.0000 + 962.9831 22.0000 12.0000 0.0000 0.0000 847.4615 22.0000 13.0000 0.0000 0.0000 + 626.2353 22.0000 14.0000 0.0000 0.0000 462.3247 22.0000 15.0000 0.0000 0.0000 + 370.2631 22.0000 16.0000 0.0000 0.0000 292.1853 22.0000 17.0000 0.0000 0.0000 + 231.9208 22.0000 18.0000 0.0000 0.0000 2374.6690 22.0000 19.0000 0.0000 0.0000 + 1779.5162 22.0000 20.0000 0.0000 0.0000 1438.2841 22.0000 21.0000 0.0000 0.0000 + 1361.9185 22.0000 22.0000 0.0000 0.0000 49.4819 23.0000 1.0000 0.0000 0.9118 + 30.1851 23.0000 2.0000 0.0000 0.0000 1069.0426 23.0000 3.0000 0.0000 0.0000 + 533.3499 23.0000 4.0000 0.0000 0.0000 330.1023 23.0000 5.0000 0.0000 0.0000 + 209.1450 23.0000 6.0000 0.0000 0.0000 139.3512 23.0000 7.0000 0.0000 0.0000 + 101.9325 23.0000 8.0000 0.0000 0.0000 74.9671 23.0000 9.0000 0.0000 0.0000 + 56.3108 23.0000 10.0000 0.0000 0.0000 1267.3139 23.0000 11.0000 0.0000 0.0000 + 872.2579 23.0000 12.0000 0.0000 0.0000 770.3432 23.0000 13.0000 0.0000 0.0000 + 572.1129 23.0000 14.0000 0.0000 0.0000 424.1470 23.0000 15.0000 0.0000 0.0000 + 340.6020 23.0000 16.0000 0.0000 0.0000 269.4863 23.0000 17.0000 0.0000 0.0000 + 214.4002 23.0000 18.0000 0.0000 0.0000 2124.1985 23.0000 19.0000 0.0000 0.0000 + 1604.9178 23.0000 20.0000 0.0000 0.0000 1299.5197 23.0000 21.0000 0.0000 0.0000 + 1232.3235 23.0000 22.0000 0.0000 0.0000 1116.0984 23.0000 23.0000 0.0000 0.0000 + 39.1221 24.0000 1.0000 0.0000 0.9118 24.1463 24.0000 2.0000 0.0000 0.0000 + 844.0936 24.0000 3.0000 0.0000 0.0000 418.1635 24.0000 4.0000 0.0000 0.0000 + 259.3021 24.0000 5.0000 0.0000 0.0000 164.9882 24.0000 6.0000 0.0000 0.0000 + 110.4861 24.0000 7.0000 0.0000 0.0000 81.2000 24.0000 8.0000 0.0000 0.0000 + 60.0099 24.0000 9.0000 0.0000 0.0000 45.2820 24.0000 10.0000 0.0000 0.0000 + 1000.4652 24.0000 11.0000 0.0000 0.0000 684.4015 24.0000 12.0000 0.0000 0.0000 + 604.4071 24.0000 13.0000 0.0000 0.0000 449.2216 24.0000 14.0000 0.0000 0.0000 + 333.8380 24.0000 15.0000 0.0000 0.0000 268.8029 24.0000 16.0000 0.0000 0.0000 + 213.3668 24.0000 17.0000 0.0000 0.0000 170.3465 24.0000 18.0000 0.0000 0.0000 + 1683.6701 24.0000 19.0000 0.0000 0.0000 1263.0809 24.0000 20.0000 0.0000 0.0000 + 1021.6871 24.0000 21.0000 0.0000 0.0000 968.8565 24.0000 22.0000 0.0000 0.0000 + 877.3855 24.0000 23.0000 0.0000 0.0000 690.7425 24.0000 24.0000 0.0000 0.0000 + 43.0028 25.0000 1.0000 0.0000 0.9118 26.4978 25.0000 2.0000 0.0000 0.0000 + 891.9756 25.0000 3.0000 0.0000 0.0000 453.3686 25.0000 4.0000 0.0000 0.0000 + 283.4744 25.0000 5.0000 0.0000 0.0000 181.0035 25.0000 6.0000 0.0000 0.0000 + 121.3233 25.0000 7.0000 0.0000 0.0000 89.1346 25.0000 8.0000 0.0000 0.0000 + 65.8112 25.0000 9.0000 0.0000 0.0000 49.5959 25.0000 10.0000 0.0000 0.0000 + 1058.5103 25.0000 11.0000 0.0000 0.0000 739.0411 25.0000 12.0000 0.0000 0.0000 + 656.0738 25.0000 13.0000 0.0000 0.0000 490.8156 25.0000 14.0000 0.0000 0.0000 + 366.1204 25.0000 15.0000 0.0000 0.0000 295.1737 25.0000 16.0000 0.0000 0.0000 + 234.4533 25.0000 17.0000 0.0000 0.0000 187.1728 25.0000 18.0000 0.0000 0.0000 + 1768.0322 25.0000 19.0000 0.0000 0.0000 1351.4785 25.0000 20.0000 0.0000 0.0000 + 1097.1539 25.0000 21.0000 0.0000 0.0000 1042.6625 25.0000 22.0000 0.0000 0.0000 + 945.6072 25.0000 23.0000 0.0000 0.0000 743.3179 25.0000 24.0000 0.0000 0.0000 + 802.7484 25.0000 25.0000 0.0000 0.0000 33.9110 26.0000 1.0000 0.0000 0.9118 + 21.1750 26.0000 2.0000 0.0000 0.0000 698.4539 26.0000 3.0000 0.0000 0.0000 + 353.5358 26.0000 4.0000 0.0000 0.0000 221.7547 26.0000 5.0000 0.0000 0.0000 + 142.3467 26.0000 6.0000 0.0000 0.0000 95.9782 26.0000 7.0000 0.0000 0.0000 + 70.8942 26.0000 8.0000 0.0000 0.0000 52.6310 26.0000 9.0000 0.0000 0.0000 + 39.8659 26.0000 10.0000 0.0000 0.0000 828.8936 26.0000 11.0000 0.0000 0.0000 + 576.5121 26.0000 12.0000 0.0000 0.0000 512.0823 26.0000 13.0000 0.0000 0.0000 + 383.7445 26.0000 14.0000 0.0000 0.0000 287.1606 26.0000 15.0000 0.0000 0.0000 + 232.2625 26.0000 16.0000 0.0000 0.0000 185.1823 26.0000 17.0000 0.0000 0.0000 + 148.4319 26.0000 18.0000 0.0000 0.0000 1388.9522 26.0000 19.0000 0.0000 0.0000 + 1056.5193 26.0000 20.0000 0.0000 0.0000 857.1730 26.0000 21.0000 0.0000 0.0000 + 814.8402 26.0000 22.0000 0.0000 0.0000 739.0542 26.0000 23.0000 0.0000 0.0000 + 581.8114 26.0000 24.0000 0.0000 0.0000 627.5403 26.0000 25.0000 0.0000 0.0000 + 491.3349 26.0000 26.0000 0.0000 0.0000 36.3234 27.0000 1.0000 0.0000 0.9118 + 22.7233 27.0000 2.0000 0.0000 0.0000 701.5324 27.0000 3.0000 0.0000 0.0000 + 369.1928 27.0000 4.0000 0.0000 0.0000 234.8693 27.0000 5.0000 0.0000 0.0000 + 151.8703 27.0000 6.0000 0.0000 0.0000 102.7503 27.0000 7.0000 0.0000 0.0000 + 75.9912 27.0000 8.0000 0.0000 0.0000 56.4307 27.0000 9.0000 0.0000 0.0000 + 42.7270 27.0000 10.0000 0.0000 0.0000 834.1826 27.0000 11.0000 0.0000 0.0000 + 598.3302 27.0000 12.0000 0.0000 0.0000 535.9706 27.0000 13.0000 0.0000 0.0000 + 405.9907 27.0000 14.0000 0.0000 0.0000 305.9256 27.0000 15.0000 0.0000 0.0000 + 248.2116 27.0000 16.0000 0.0000 0.0000 198.3570 27.0000 17.0000 0.0000 0.0000 + 159.1957 27.0000 18.0000 0.0000 0.0000 1382.9771 27.0000 19.0000 0.0000 0.0000 + 1081.7690 27.0000 20.0000 0.0000 0.0000 882.4503 27.0000 21.0000 0.0000 0.0000 + 841.8335 27.0000 22.0000 0.0000 0.0000 765.3178 27.0000 23.0000 0.0000 0.0000 + 601.4178 27.0000 24.0000 0.0000 0.0000 651.9688 27.0000 25.0000 0.0000 0.0000 + 509.7764 27.0000 26.0000 0.0000 0.0000 532.7794 27.0000 27.0000 0.0000 0.0000 + 37.1596 28.0000 1.0000 0.0000 0.9118 23.0792 28.0000 2.0000 0.0000 0.0000 + 738.8580 28.0000 3.0000 0.0000 0.0000 383.9140 28.0000 4.0000 0.0000 0.0000 + 242.4174 28.0000 5.0000 0.0000 0.0000 155.8507 28.0000 6.0000 0.0000 0.0000 + 104.9834 28.0000 7.0000 0.0000 0.0000 77.4010 28.0000 8.0000 0.0000 0.0000 + 57.3248 28.0000 9.0000 0.0000 0.0000 43.3129 28.0000 10.0000 0.0000 0.0000 + 877.9354 28.0000 11.0000 0.0000 0.0000 623.6305 28.0000 12.0000 0.0000 0.0000 + 556.5389 28.0000 13.0000 0.0000 0.0000 419.3593 28.0000 14.0000 0.0000 0.0000 + 314.5698 28.0000 15.0000 0.0000 0.0000 254.4683 28.0000 16.0000 0.0000 0.0000 + 202.7705 28.0000 17.0000 0.0000 0.0000 162.3264 28.0000 18.0000 0.0000 0.0000 + 1458.4501 28.0000 19.0000 0.0000 0.0000 1132.1074 28.0000 20.0000 0.0000 0.0000 + 921.8990 28.0000 21.0000 0.0000 0.0000 878.0939 28.0000 22.0000 0.0000 0.0000 + 797.5195 28.0000 23.0000 0.0000 0.0000 626.6472 28.0000 24.0000 0.0000 0.0000 + 678.4531 28.0000 25.0000 0.0000 0.0000 530.3221 28.0000 26.0000 0.0000 0.0000 + 553.0834 28.0000 27.0000 0.0000 0.0000 574.7436 28.0000 28.0000 0.0000 0.0000 + 28.5940 29.0000 1.0000 0.0000 0.9118 18.0216 29.0000 2.0000 0.0000 0.0000 + 569.4526 29.0000 3.0000 0.0000 0.0000 292.7955 29.0000 4.0000 0.0000 0.0000 + 185.1741 29.0000 5.0000 0.0000 0.0000 119.6350 29.0000 6.0000 0.0000 0.0000 + 81.0855 29.0000 7.0000 0.0000 0.0000 60.1335 29.0000 8.0000 0.0000 0.0000 + 44.8098 29.0000 9.0000 0.0000 0.0000 34.0544 29.0000 10.0000 0.0000 0.0000 + 676.4773 29.0000 11.0000 0.0000 0.0000 476.2426 29.0000 12.0000 0.0000 0.0000 + 424.7723 29.0000 13.0000 0.0000 0.0000 320.1913 29.0000 14.0000 0.0000 0.0000 + 240.7974 29.0000 15.0000 0.0000 0.0000 195.4075 29.0000 16.0000 0.0000 0.0000 + 156.3161 29.0000 17.0000 0.0000 0.0000 125.6776 29.0000 18.0000 0.0000 0.0000 + 1129.9518 29.0000 19.0000 0.0000 0.0000 868.3674 29.0000 20.0000 0.0000 0.0000 + 706.0720 29.0000 21.0000 0.0000 0.0000 672.4128 29.0000 22.0000 0.0000 0.0000 + 610.5700 29.0000 23.0000 0.0000 0.0000 480.6938 29.0000 24.0000 0.0000 0.0000 + 519.3078 29.0000 25.0000 0.0000 0.0000 406.7268 29.0000 26.0000 0.0000 0.0000 + 423.0877 29.0000 27.0000 0.0000 0.0000 439.6365 29.0000 28.0000 0.0000 0.0000 + 337.1808 29.0000 29.0000 0.0000 0.0000 29.8689 30.0000 1.0000 0.0000 0.9118 + 18.9695 30.0000 2.0000 0.0000 0.0000 540.9160 30.0000 3.0000 0.0000 0.0000 + 293.3106 30.0000 4.0000 0.0000 0.0000 189.6293 30.0000 5.0000 0.0000 0.0000 + 124.1032 30.0000 6.0000 0.0000 0.0000 84.7311 30.0000 7.0000 0.0000 0.0000 + 63.0774 30.0000 8.0000 0.0000 0.0000 47.1122 30.0000 9.0000 0.0000 0.0000 + 35.8427 30.0000 10.0000 0.0000 0.0000 644.3408 30.0000 11.0000 0.0000 0.0000 + 472.9143 30.0000 12.0000 0.0000 0.0000 427.1610 30.0000 13.0000 0.0000 0.0000 + 327.2810 30.0000 14.0000 0.0000 0.0000 248.9743 30.0000 15.0000 0.0000 0.0000 + 203.2427 30.0000 16.0000 0.0000 0.0000 163.3848 30.0000 17.0000 0.0000 0.0000 + 131.8119 30.0000 18.0000 0.0000 0.0000 1062.5928 30.0000 19.0000 0.0000 0.0000 + 846.8527 30.0000 20.0000 0.0000 0.0000 693.6787 30.0000 21.0000 0.0000 0.0000 + 664.1009 30.0000 22.0000 0.0000 0.0000 605.0623 30.0000 23.0000 0.0000 0.0000 + 475.5594 30.0000 24.0000 0.0000 0.0000 517.0910 30.0000 25.0000 0.0000 0.0000 + 404.5558 30.0000 26.0000 0.0000 0.0000 424.8790 30.0000 27.0000 0.0000 0.0000 + 440.0900 30.0000 28.0000 0.0000 0.0000 336.6493 30.0000 29.0000 0.0000 0.0000 + 340.5213 30.0000 30.0000 0.0000 0.0000 35.1697 31.0000 1.0000 0.0000 0.9118 + 22.0458 31.0000 2.0000 0.0000 0.0000 656.7441 31.0000 3.0000 0.0000 0.0000 + 351.1141 31.0000 4.0000 0.0000 0.0000 225.3933 31.0000 5.0000 0.0000 0.0000 + 146.5544 31.0000 6.0000 0.0000 0.0000 99.4407 31.0000 7.0000 0.0000 0.0000 + 73.6253 31.0000 8.0000 0.0000 0.0000 54.6782 31.0000 9.0000 0.0000 0.0000 + 41.3681 31.0000 10.0000 0.0000 0.0000 781.3524 31.0000 11.0000 0.0000 0.0000 + 567.1638 31.0000 12.0000 0.0000 0.0000 510.5854 31.0000 13.0000 0.0000 0.0000 + 389.2656 31.0000 14.0000 0.0000 0.0000 294.7925 31.0000 15.0000 0.0000 0.0000 + 239.8183 31.0000 16.0000 0.0000 0.0000 192.0578 31.0000 17.0000 0.0000 0.0000 + 154.3423 31.0000 18.0000 0.0000 0.0000 1292.8121 31.0000 19.0000 0.0000 0.0000 + 1019.8835 31.0000 20.0000 0.0000 0.0000 833.7424 31.0000 21.0000 0.0000 0.0000 + 796.8617 31.0000 22.0000 0.0000 0.0000 725.2514 31.0000 23.0000 0.0000 0.0000 + 569.7645 31.0000 24.0000 0.0000 0.0000 618.8387 31.0000 25.0000 0.0000 0.0000 + 483.7815 31.0000 26.0000 0.0000 0.0000 507.1316 31.0000 27.0000 0.0000 0.0000 + 525.8162 31.0000 28.0000 0.0000 0.0000 401.9613 31.0000 29.0000 0.0000 0.0000 + 405.4565 31.0000 30.0000 0.0000 0.0000 483.7516 31.0000 31.0000 0.0000 0.0000 + 31.8170 32.0000 1.0000 0.0000 0.9118 20.4318 32.0000 2.0000 0.0000 0.0000 + 527.9268 32.0000 3.0000 0.0000 0.0000 298.4220 32.0000 4.0000 0.0000 0.0000 + 197.3448 32.0000 5.0000 0.0000 0.0000 131.0954 32.0000 6.0000 0.0000 0.0000 + 90.3328 32.0000 7.0000 0.0000 0.0000 67.5932 32.0000 8.0000 0.0000 0.0000 + 50.6412 32.0000 9.0000 0.0000 0.0000 38.5746 32.0000 10.0000 0.0000 0.0000 + 630.1041 32.0000 11.0000 0.0000 0.0000 477.3744 32.0000 12.0000 0.0000 0.0000 + 436.5060 32.0000 13.0000 0.0000 0.0000 339.8328 32.0000 14.0000 0.0000 0.0000 + 261.8235 32.0000 15.0000 0.0000 0.0000 215.3101 32.0000 16.0000 0.0000 0.0000 + 174.1969 32.0000 17.0000 0.0000 0.0000 141.2063 32.0000 18.0000 0.0000 0.0000 + 1032.6651 32.0000 19.0000 0.0000 0.0000 843.3644 32.0000 20.0000 0.0000 0.0000 + 694.7024 32.0000 21.0000 0.0000 0.0000 668.3786 32.0000 22.0000 0.0000 0.0000 + 610.7639 32.0000 23.0000 0.0000 0.0000 479.9639 32.0000 24.0000 0.0000 0.0000 + 524.1848 32.0000 25.0000 0.0000 0.0000 410.2106 32.0000 26.0000 0.0000 0.0000 + 433.8508 32.0000 27.0000 0.0000 0.0000 447.9868 32.0000 28.0000 0.0000 0.0000 + 342.4261 32.0000 29.0000 0.0000 0.0000 349.9885 32.0000 30.0000 0.0000 0.0000 + 415.9530 32.0000 31.0000 0.0000 0.0000 363.5474 32.0000 32.0000 0.0000 0.0000 + 27.7884 33.0000 1.0000 0.0000 0.9118 18.3284 33.0000 2.0000 0.0000 0.0000 + 415.1532 33.0000 3.0000 0.0000 0.0000 245.4831 33.0000 4.0000 0.0000 0.0000 + 166.9060 33.0000 5.0000 0.0000 0.0000 113.2616 33.0000 6.0000 0.0000 0.0000 + 79.3086 33.0000 7.0000 0.0000 0.0000 60.0289 33.0000 8.0000 0.0000 0.0000 + 45.4180 33.0000 9.0000 0.0000 0.0000 34.8686 33.0000 10.0000 0.0000 0.0000 + 496.9338 33.0000 11.0000 0.0000 0.0000 389.4927 33.0000 12.0000 0.0000 0.0000 + 361.1913 33.0000 13.0000 0.0000 0.0000 286.5909 33.0000 14.0000 0.0000 0.0000 + 224.4774 33.0000 15.0000 0.0000 0.0000 186.6348 33.0000 16.0000 0.0000 0.0000 + 152.6035 33.0000 17.0000 0.0000 0.0000 124.8561 33.0000 18.0000 0.0000 0.0000 + 810.6554 33.0000 19.0000 0.0000 0.0000 679.0044 33.0000 20.0000 0.0000 0.0000 + 562.6947 33.0000 21.0000 0.0000 0.0000 544.6797 33.0000 22.0000 0.0000 0.0000 + 499.4970 33.0000 23.0000 0.0000 0.0000 393.1922 33.0000 24.0000 0.0000 0.0000 + 430.9146 33.0000 25.0000 0.0000 0.0000 338.0096 33.0000 26.0000 0.0000 0.0000 + 359.7150 33.0000 27.0000 0.0000 0.0000 370.0359 33.0000 28.0000 0.0000 0.0000 + 283.3323 33.0000 29.0000 0.0000 0.0000 292.5030 33.0000 30.0000 0.0000 0.0000 + 346.3508 33.0000 31.0000 0.0000 0.0000 307.1010 33.0000 32.0000 0.0000 0.0000 + 262.9498 33.0000 33.0000 0.0000 0.0000 25.3098 34.0000 1.0000 0.0000 0.9118 + 17.0243 34.0000 2.0000 0.0000 0.0000 354.5429 34.0000 3.0000 0.0000 0.0000 + 215.0238 34.0000 4.0000 0.0000 0.0000 148.8008 34.0000 5.0000 0.0000 0.0000 + 102.4346 34.0000 6.0000 0.0000 0.0000 72.5403 34.0000 7.0000 0.0000 0.0000 + 55.3627 34.0000 8.0000 0.0000 0.0000 42.1923 34.0000 9.0000 0.0000 0.0000 + 32.5843 34.0000 10.0000 0.0000 0.0000 425.1864 34.0000 11.0000 0.0000 0.0000 + 339.5742 34.0000 12.0000 0.0000 0.0000 317.6182 34.0000 13.0000 0.0000 0.0000 + 255.0099 34.0000 14.0000 0.0000 0.0000 201.9019 34.0000 15.0000 0.0000 0.0000 + 169.1308 34.0000 16.0000 0.0000 0.0000 139.3163 34.0000 17.0000 0.0000 0.0000 + 114.7449 34.0000 18.0000 0.0000 0.0000 692.9116 34.0000 19.0000 0.0000 0.0000 + 587.9647 34.0000 20.0000 0.0000 0.0000 488.8715 34.0000 21.0000 0.0000 0.0000 + 475.0348 34.0000 22.0000 0.0000 0.0000 436.5718 34.0000 23.0000 0.0000 0.0000 + 344.2956 34.0000 24.0000 0.0000 0.0000 377.8276 34.0000 25.0000 0.0000 0.0000 + 297.0396 34.0000 26.0000 0.0000 0.0000 317.0174 34.0000 27.0000 0.0000 0.0000 + 325.3419 34.0000 28.0000 0.0000 0.0000 249.6385 34.0000 29.0000 0.0000 0.0000 + 259.0459 34.0000 30.0000 0.0000 0.0000 305.9501 34.0000 31.0000 0.0000 0.0000 + 273.6530 34.0000 32.0000 0.0000 0.0000 236.3473 34.0000 33.0000 0.0000 0.0000 + 213.6738 34.0000 34.0000 0.0000 0.0000 22.4834 35.0000 1.0000 0.0000 0.9118 + 15.4553 35.0000 2.0000 0.0000 0.0000 294.7897 35.0000 3.0000 0.0000 0.0000 + 183.3742 35.0000 4.0000 0.0000 0.0000 129.2495 35.0000 5.0000 0.0000 0.0000 + 90.3424 35.0000 6.0000 0.0000 0.0000 64.7632 35.0000 7.0000 0.0000 0.0000 + 49.8795 35.0000 8.0000 0.0000 0.0000 38.3225 35.0000 9.0000 0.0000 0.0000 + 29.7958 35.0000 10.0000 0.0000 0.0000 354.2869 35.0000 11.0000 0.0000 0.0000 + 288.2736 35.0000 12.0000 0.0000 0.0000 272.0098 35.0000 13.0000 0.0000 0.0000 + 221.0537 35.0000 14.0000 0.0000 0.0000 176.9930 35.0000 15.0000 0.0000 0.0000 + 149.4563 35.0000 16.0000 0.0000 0.0000 124.0909 35.0000 17.0000 0.0000 0.0000 + 102.9471 35.0000 18.0000 0.0000 0.0000 577.2318 35.0000 19.0000 0.0000 0.0000 + 495.9754 35.0000 20.0000 0.0000 0.0000 413.7468 35.0000 21.0000 0.0000 0.0000 + 403.6576 35.0000 22.0000 0.0000 0.0000 371.8071 35.0000 23.0000 0.0000 0.0000 + 293.9185 35.0000 24.0000 0.0000 0.0000 322.8433 35.0000 25.0000 0.0000 0.0000 + 254.5306 35.0000 26.0000 0.0000 0.0000 272.3053 35.0000 27.0000 0.0000 0.0000 + 278.7705 35.0000 28.0000 0.0000 0.0000 214.5059 35.0000 29.0000 0.0000 0.0000 + 223.6348 35.0000 30.0000 0.0000 0.0000 263.3458 35.0000 31.0000 0.0000 0.0000 + 237.6295 35.0000 32.0000 0.0000 0.0000 207.0772 35.0000 33.0000 0.0000 0.0000 + 188.3605 35.0000 34.0000 0.0000 0.0000 167.1297 35.0000 35.0000 0.0000 0.0000 + 19.8182 36.0000 1.0000 0.0000 0.9118 13.9211 36.0000 2.0000 0.0000 0.0000 + 244.5554 36.0000 3.0000 0.0000 0.0000 155.5616 36.0000 4.0000 0.0000 0.0000 + 111.5371 36.0000 5.0000 0.0000 0.0000 79.1080 36.0000 6.0000 0.0000 0.0000 + 57.3895 36.0000 7.0000 0.0000 0.0000 44.6003 36.0000 8.0000 0.0000 0.0000 + 34.5452 36.0000 9.0000 0.0000 0.0000 27.0430 36.0000 10.0000 0.0000 0.0000 + 294.5574 36.0000 11.0000 0.0000 0.0000 243.5965 36.0000 12.0000 0.0000 0.0000 + 231.6904 36.0000 13.0000 0.0000 0.0000 190.3934 36.0000 14.0000 0.0000 0.0000 + 154.0575 36.0000 15.0000 0.0000 0.0000 131.0928 36.0000 16.0000 0.0000 0.0000 + 109.6839 36.0000 17.0000 0.0000 0.0000 91.6430 36.0000 18.0000 0.0000 0.0000 + 480.2472 36.0000 19.0000 0.0000 0.0000 416.9777 36.0000 20.0000 0.0000 0.0000 + 348.8474 36.0000 21.0000 0.0000 0.0000 341.6273 36.0000 22.0000 0.0000 0.0000 + 315.3251 36.0000 23.0000 0.0000 0.0000 249.9413 36.0000 24.0000 0.0000 0.0000 + 274.6419 36.0000 25.0000 0.0000 0.0000 217.2071 36.0000 26.0000 0.0000 0.0000 + 232.7594 36.0000 27.0000 0.0000 0.0000 237.7447 36.0000 28.0000 0.0000 0.0000 + 183.5347 36.0000 29.0000 0.0000 0.0000 192.0484 36.0000 30.0000 0.0000 0.0000 + 225.4537 36.0000 31.0000 0.0000 0.0000 205.0598 36.0000 32.0000 0.0000 0.0000 + 180.1818 36.0000 33.0000 0.0000 0.0000 164.8494 36.0000 34.0000 0.0000 0.0000 + 147.1830 36.0000 35.0000 0.0000 0.0000 130.4017 36.0000 36.0000 0.0000 0.0000 + 85.9499 37.0000 1.0000 0.0000 0.9118 50.0491 37.0000 2.0000 0.0000 0.0000 + 2647.3331 37.0000 3.0000 0.0000 0.0000 1082.7052 37.0000 4.0000 0.0000 0.0000 + 620.0878 37.0000 5.0000 0.0000 0.0000 373.5384 37.0000 6.0000 0.0000 0.0000 + 240.6940 37.0000 7.0000 0.0000 0.0000 172.3398 37.0000 8.0000 0.0000 0.0000 + 124.5879 37.0000 9.0000 0.0000 0.0000 92.3827 37.0000 10.0000 0.0000 0.0000 + 3104.1016 37.0000 11.0000 0.0000 0.0000 1826.4648 37.0000 12.0000 0.0000 0.0000 + 1546.9229 37.0000 13.0000 0.0000 0.0000 1082.0563 37.0000 14.0000 0.0000 0.0000 + 768.1335 37.0000 15.0000 0.0000 0.0000 602.2221 37.0000 16.0000 0.0000 0.0000 + 466.1565 37.0000 17.0000 0.0000 0.0000 364.4067 37.0000 18.0000 0.0000 0.0000 + 5530.2806 37.0000 19.0000 0.0000 0.0000 3599.4349 37.0000 20.0000 0.0000 0.0000 + 2834.0920 37.0000 21.0000 0.0000 0.0000 2641.2435 37.0000 22.0000 0.0000 0.0000 + 2363.7175 37.0000 23.0000 0.0000 0.0000 1874.0326 37.0000 24.0000 0.0000 0.0000 + 1968.7631 37.0000 25.0000 0.0000 0.0000 1547.1982 37.0000 26.0000 0.0000 0.0000 + 1541.8997 37.0000 27.0000 0.0000 0.0000 1625.1034 37.0000 28.0000 0.0000 0.0000 + 1259.4427 37.0000 29.0000 0.0000 0.0000 1186.2631 37.0000 30.0000 0.0000 0.0000 + 1442.3807 37.0000 31.0000 0.0000 0.0000 1155.1526 37.0000 32.0000 0.0000 0.0000 + 909.4257 37.0000 33.0000 0.0000 0.0000 778.9204 37.0000 34.0000 0.0000 0.0000 + 650.3606 37.0000 35.0000 0.0000 0.0000 542.3160 37.0000 36.0000 0.0000 0.0000 + 6138.7755 37.0000 37.0000 0.0000 0.0000 78.3901 38.0000 1.0000 0.0000 0.9118 + 46.6658 38.0000 2.0000 0.0000 0.0000 1944.2260 38.0000 3.0000 0.0000 0.0000 + 903.9265 38.0000 4.0000 0.0000 0.0000 541.5729 38.0000 5.0000 0.0000 0.0000 + 335.4597 38.0000 6.0000 0.0000 0.0000 219.9608 38.0000 7.0000 0.0000 0.0000 + 159.1460 38.0000 8.0000 0.0000 0.0000 115.9647 38.0000 9.0000 0.0000 0.0000 + 86.4627 38.0000 10.0000 0.0000 0.0000 2296.1906 38.0000 11.0000 0.0000 0.0000 + 1495.8141 38.0000 12.0000 0.0000 0.0000 1298.5356 38.0000 13.0000 0.0000 0.0000 + 941.4121 38.0000 14.0000 0.0000 0.0000 684.9632 38.0000 15.0000 0.0000 0.0000 + 543.9627 38.0000 16.0000 0.0000 0.0000 425.8997 38.0000 17.0000 0.0000 0.0000 + 335.8690 38.0000 18.0000 0.0000 0.0000 3915.3529 38.0000 19.0000 0.0000 0.0000 + 2819.4935 38.0000 20.0000 0.0000 0.0000 2260.4217 38.0000 21.0000 0.0000 0.0000 + 2128.3951 38.0000 22.0000 0.0000 0.0000 1918.6941 38.0000 23.0000 0.0000 0.0000 + 1511.3043 38.0000 24.0000 0.0000 0.0000 1614.7190 38.0000 25.0000 0.0000 0.0000 + 1263.2327 38.0000 26.0000 0.0000 0.0000 1290.8718 38.0000 27.0000 0.0000 0.0000 + 1351.3702 38.0000 28.0000 0.0000 0.0000 1037.7284 38.0000 29.0000 0.0000 0.0000 + 1009.6809 38.0000 30.0000 0.0000 0.0000 1216.5138 38.0000 31.0000 0.0000 0.0000 + 1004.4824 38.0000 32.0000 0.0000 0.0000 808.3370 38.0000 33.0000 0.0000 0.0000 + 700.0532 38.0000 34.0000 0.0000 0.0000 590.7326 38.0000 35.0000 0.0000 0.0000 + 496.9120 38.0000 36.0000 0.0000 0.0000 4349.2577 38.0000 37.0000 0.0000 0.0000 + 3381.3672 38.0000 38.0000 0.0000 0.0000 70.0570 39.0000 1.0000 0.0000 0.9118 + 42.4195 39.0000 2.0000 0.0000 0.0000 1585.3950 39.0000 3.0000 0.0000 0.0000 + 771.4844 39.0000 4.0000 0.0000 0.0000 472.4364 39.0000 5.0000 0.0000 0.0000 + 297.2171 39.0000 6.0000 0.0000 0.0000 197.0611 39.0000 7.0000 0.0000 0.0000 + 143.6602 39.0000 8.0000 0.0000 0.0000 105.3447 39.0000 9.0000 0.0000 0.0000 + 78.9316 39.0000 10.0000 0.0000 0.0000 1876.8634 39.0000 11.0000 0.0000 0.0000 + 1266.7602 39.0000 12.0000 0.0000 0.0000 1112.2980 39.0000 13.0000 0.0000 0.0000 + 819.5418 39.0000 14.0000 0.0000 0.0000 603.9916 39.0000 15.0000 0.0000 0.0000 + 483.3797 39.0000 16.0000 0.0000 0.0000 381.2462 39.0000 17.0000 0.0000 0.0000 + 302.5143 39.0000 18.0000 0.0000 0.0000 3166.0625 39.0000 19.0000 0.0000 0.0000 + 2350.8018 39.0000 20.0000 0.0000 0.0000 1896.7809 39.0000 21.0000 0.0000 0.0000 + 1794.3180 39.0000 22.0000 0.0000 0.0000 1622.4689 39.0000 23.0000 0.0000 0.0000 + 1276.4352 39.0000 24.0000 0.0000 0.0000 1371.4492 39.0000 25.0000 0.0000 0.0000 + 1072.3265 39.0000 26.0000 0.0000 0.0000 1105.3016 39.0000 27.0000 0.0000 0.0000 + 1153.5737 39.0000 28.0000 0.0000 0.0000 884.1648 39.0000 29.0000 0.0000 0.0000 + 870.6935 39.0000 30.0000 0.0000 0.0000 1045.5505 39.0000 31.0000 0.0000 0.0000 + 874.7836 39.0000 32.0000 0.0000 0.0000 711.7506 39.0000 33.0000 0.0000 0.0000 + 620.3334 39.0000 34.0000 0.0000 0.0000 526.8299 39.0000 35.0000 0.0000 0.0000 + 445.7013 39.0000 36.0000 0.0000 0.0000 3520.9466 39.0000 37.0000 0.0000 0.0000 + 2813.7007 39.0000 38.0000 0.0000 0.0000 2365.8925 39.0000 39.0000 0.0000 0.0000 + 63.7801 40.0000 1.0000 0.0000 0.9118 39.1088 40.0000 2.0000 0.0000 0.0000 + 1363.2842 40.0000 3.0000 0.0000 0.0000 681.5283 40.0000 4.0000 0.0000 0.0000 + 423.2302 40.0000 5.0000 0.0000 0.0000 269.0490 40.0000 6.0000 0.0000 0.0000 + 179.7777 40.0000 7.0000 0.0000 0.0000 131.7852 40.0000 8.0000 0.0000 0.0000 + 97.0977 40.0000 9.0000 0.0000 0.0000 73.0315 40.0000 10.0000 0.0000 0.0000 + 1616.2863 40.0000 11.0000 0.0000 0.0000 1113.8339 40.0000 12.0000 0.0000 0.0000 + 985.0494 40.0000 13.0000 0.0000 0.0000 733.1807 40.0000 14.0000 0.0000 0.0000 + 544.8882 40.0000 15.0000 0.0000 0.0000 438.3890 40.0000 16.0000 0.0000 0.0000 + 347.5334 40.0000 17.0000 0.0000 0.0000 276.9908 40.0000 18.0000 0.0000 0.0000 + 2711.1542 40.0000 19.0000 0.0000 0.0000 2048.5251 40.0000 20.0000 0.0000 0.0000 + 1659.1156 40.0000 21.0000 0.0000 0.0000 1574.1401 40.0000 22.0000 0.0000 0.0000 + 1426.0687 40.0000 23.0000 0.0000 0.0000 1121.5489 40.0000 24.0000 0.0000 0.0000 + 1208.7451 40.0000 25.0000 0.0000 0.0000 945.1713 40.0000 26.0000 0.0000 0.0000 + 978.9767 40.0000 27.0000 0.0000 0.0000 1019.7589 40.0000 28.0000 0.0000 0.0000 + 781.1133 40.0000 29.0000 0.0000 0.0000 774.5871 40.0000 30.0000 0.0000 0.0000 + 928.1982 40.0000 31.0000 0.0000 0.0000 782.9442 40.0000 32.0000 0.0000 0.0000 + 641.5564 40.0000 33.0000 0.0000 0.0000 561.5474 40.0000 34.0000 0.0000 0.0000 + 479.0040 40.0000 35.0000 0.0000 0.0000 406.8727 40.0000 36.0000 0.0000 0.0000 + 3017.6856 40.0000 37.0000 0.0000 0.0000 2449.4723 40.0000 38.0000 0.0000 0.0000 + 2072.6170 40.0000 39.0000 0.0000 0.0000 1822.7181 40.0000 40.0000 0.0000 0.0000 + 58.6768 41.0000 1.0000 0.0000 0.9118 36.3418 41.0000 2.0000 0.0000 0.0000 + 1209.0304 41.0000 3.0000 0.0000 0.0000 613.9850 41.0000 4.0000 0.0000 0.0000 + 384.9072 41.0000 5.0000 0.0000 0.0000 246.5241 41.0000 6.0000 0.0000 0.0000 + 165.6943 41.0000 7.0000 0.0000 0.0000 121.9868 41.0000 8.0000 0.0000 0.0000 + 90.2234 41.0000 9.0000 0.0000 0.0000 68.0769 41.0000 10.0000 0.0000 0.0000 + 1434.6641 41.0000 11.0000 0.0000 0.0000 1000.5663 41.0000 12.0000 0.0000 0.0000 + 889.0302 41.0000 13.0000 0.0000 0.0000 666.1507 41.0000 14.0000 0.0000 0.0000 + 497.9703 41.0000 15.0000 0.0000 0.0000 402.1974 41.0000 16.0000 0.0000 0.0000 + 320.0676 41.0000 17.0000 0.0000 0.0000 255.9769 41.0000 18.0000 0.0000 0.0000 + 2400.6918 41.0000 19.0000 0.0000 0.0000 1830.8523 41.0000 20.0000 0.0000 0.0000 + 1486.0620 41.0000 21.0000 0.0000 0.0000 1412.6818 41.0000 22.0000 0.0000 0.0000 + 1281.3349 41.0000 23.0000 0.0000 0.0000 1007.8571 41.0000 24.0000 0.0000 0.0000 + 1087.9837 41.0000 25.0000 0.0000 0.0000 851.0634 41.0000 26.0000 0.0000 0.0000 + 883.8890 41.0000 27.0000 0.0000 0.0000 919.5354 41.0000 28.0000 0.0000 0.0000 + 704.3789 41.0000 29.0000 0.0000 0.0000 701.3549 41.0000 30.0000 0.0000 0.0000 + 839.2828 41.0000 31.0000 0.0000 0.0000 711.6823 41.0000 32.0000 0.0000 0.0000 + 586.0084 41.0000 33.0000 0.0000 0.0000 514.5077 41.0000 34.0000 0.0000 0.0000 + 440.2999 41.0000 35.0000 0.0000 0.0000 375.1339 41.0000 36.0000 0.0000 0.0000 + 2673.9344 41.0000 37.0000 0.0000 0.0000 2188.2864 41.0000 38.0000 0.0000 0.0000 + 1858.6377 41.0000 39.0000 0.0000 0.0000 1638.4938 41.0000 40.0000 0.0000 0.0000 + 1475.2500 41.0000 41.0000 0.0000 0.0000 46.0406 42.0000 1.0000 0.0000 0.9118 + 29.1617 42.0000 2.0000 0.0000 0.0000 890.5126 42.0000 3.0000 0.0000 0.0000 + 463.3065 42.0000 4.0000 0.0000 0.0000 295.3592 42.0000 5.0000 0.0000 0.0000 + 191.9528 42.0000 6.0000 0.0000 0.0000 130.6045 42.0000 7.0000 0.0000 0.0000 + 97.0675 42.0000 8.0000 0.0000 0.0000 72.4186 42.0000 9.0000 0.0000 0.0000 + 55.0487 42.0000 10.0000 0.0000 0.0000 1058.3899 42.0000 11.0000 0.0000 0.0000 + 751.6628 42.0000 12.0000 0.0000 0.0000 673.1193 42.0000 13.0000 0.0000 0.0000 + 510.2352 42.0000 14.0000 0.0000 0.0000 385.5895 42.0000 15.0000 0.0000 0.0000 + 313.8657 42.0000 16.0000 0.0000 0.0000 251.7723 42.0000 17.0000 0.0000 0.0000 + 202.8572 42.0000 18.0000 0.0000 0.0000 1765.8946 42.0000 19.0000 0.0000 0.0000 + 1365.4837 42.0000 20.0000 0.0000 0.0000 1112.0098 42.0000 21.0000 0.0000 0.0000 + 1060.6255 42.0000 22.0000 0.0000 0.0000 963.9434 42.0000 23.0000 0.0000 0.0000 + 758.9955 42.0000 24.0000 0.0000 0.0000 820.9313 42.0000 25.0000 0.0000 0.0000 + 643.1247 42.0000 26.0000 0.0000 0.0000 670.3490 42.0000 27.0000 0.0000 0.0000 + 695.8348 42.0000 28.0000 0.0000 0.0000 533.6535 42.0000 29.0000 0.0000 0.0000 + 534.5207 42.0000 30.0000 0.0000 0.0000 637.9233 42.0000 31.0000 0.0000 0.0000 + 545.7845 42.0000 32.0000 0.0000 0.0000 453.4186 42.0000 33.0000 0.0000 0.0000 + 400.4998 42.0000 34.0000 0.0000 0.0000 344.9826 42.0000 35.0000 0.0000 0.0000 + 295.7994 42.0000 36.0000 0.0000 0.0000 1969.4796 42.0000 37.0000 0.0000 0.0000 + 1631.5424 42.0000 38.0000 0.0000 0.0000 1394.0976 42.0000 39.0000 0.0000 0.0000 + 1233.9095 42.0000 40.0000 0.0000 0.0000 1114.0924 42.0000 41.0000 0.0000 0.0000 + 845.8972 42.0000 42.0000 0.0000 0.0000 51.0527 43.0000 1.0000 0.0000 0.9118 + 32.0588 43.0000 2.0000 0.0000 0.0000 1011.6099 43.0000 3.0000 0.0000 0.0000 + 521.4249 43.0000 4.0000 0.0000 0.0000 330.3257 43.0000 5.0000 0.0000 0.0000 + 213.4799 43.0000 6.0000 0.0000 0.0000 144.5697 43.0000 7.0000 0.0000 0.0000 + 107.0588 43.0000 8.0000 0.0000 0.0000 79.6121 43.0000 9.0000 0.0000 0.0000 + 60.3521 43.0000 10.0000 0.0000 0.0000 1201.5234 43.0000 11.0000 0.0000 0.0000 + 847.3497 43.0000 12.0000 0.0000 0.0000 756.6195 43.0000 13.0000 0.0000 0.0000 + 571.0501 43.0000 14.0000 0.0000 0.0000 429.7677 43.0000 15.0000 0.0000 0.0000 + 348.7744 43.0000 16.0000 0.0000 0.0000 278.9123 43.0000 17.0000 0.0000 0.0000 + 224.0794 43.0000 18.0000 0.0000 0.0000 2007.6137 43.0000 19.0000 0.0000 0.0000 + 1543.4258 43.0000 20.0000 0.0000 0.0000 1255.3446 43.0000 21.0000 0.0000 0.0000 + 1195.8434 43.0000 22.0000 0.0000 0.0000 1086.0231 43.0000 23.0000 0.0000 0.0000 + 854.7474 43.0000 24.0000 0.0000 0.0000 923.8743 43.0000 25.0000 0.0000 0.0000 + 723.3202 43.0000 26.0000 0.0000 0.0000 752.9678 43.0000 27.0000 0.0000 0.0000 + 782.2483 43.0000 28.0000 0.0000 0.0000 599.6192 43.0000 29.0000 0.0000 0.0000 + 599.3141 43.0000 30.0000 0.0000 0.0000 715.9811 43.0000 31.0000 0.0000 0.0000 + 610.5327 43.0000 32.0000 0.0000 0.0000 505.5091 43.0000 33.0000 0.0000 0.0000 + 445.4778 43.0000 34.0000 0.0000 0.0000 382.7591 43.0000 35.0000 0.0000 0.0000 + 327.3827 43.0000 36.0000 0.0000 0.0000 2237.9665 43.0000 37.0000 0.0000 0.0000 + 1844.3774 43.0000 38.0000 0.0000 0.0000 1572.3759 43.0000 39.0000 0.0000 0.0000 + 1389.5979 43.0000 40.0000 0.0000 0.0000 1253.3465 43.0000 41.0000 0.0000 0.0000 + 949.6490 43.0000 42.0000 0.0000 0.0000 1067.0169 43.0000 43.0000 0.0000 0.0000 + 39.5745 44.0000 1.0000 0.0000 0.9118 25.4622 44.0000 2.0000 0.0000 0.0000 + 730.5533 44.0000 3.0000 0.0000 0.0000 387.2681 44.0000 4.0000 0.0000 0.0000 + 249.9382 44.0000 5.0000 0.0000 0.0000 164.1279 44.0000 6.0000 0.0000 0.0000 + 112.6378 44.0000 7.0000 0.0000 0.0000 84.2725 44.0000 8.0000 0.0000 0.0000 + 63.2599 44.0000 9.0000 0.0000 0.0000 48.3429 44.0000 10.0000 0.0000 0.0000 + 869.3774 44.0000 11.0000 0.0000 0.0000 626.2104 44.0000 12.0000 0.0000 0.0000 + 564.0716 44.0000 13.0000 0.0000 0.0000 431.2132 44.0000 14.0000 0.0000 0.0000 + 328.4072 44.0000 15.0000 0.0000 0.0000 268.7824 44.0000 16.0000 0.0000 0.0000 + 216.8070 44.0000 17.0000 0.0000 0.0000 175.5876 44.0000 18.0000 0.0000 0.0000 + 1447.3048 44.0000 19.0000 0.0000 0.0000 1131.1769 44.0000 20.0000 0.0000 0.0000 + 923.5811 44.0000 21.0000 0.0000 0.0000 883.1492 44.0000 22.0000 0.0000 0.0000 + 803.8807 44.0000 23.0000 0.0000 0.0000 633.4394 44.0000 24.0000 0.0000 0.0000 + 686.1772 44.0000 25.0000 0.0000 0.0000 538.1435 44.0000 26.0000 0.0000 0.0000 + 562.4800 44.0000 27.0000 0.0000 0.0000 582.9014 44.0000 28.0000 0.0000 0.0000 + 447.4259 44.0000 29.0000 0.0000 0.0000 450.1543 44.0000 30.0000 0.0000 0.0000 + 536.1093 44.0000 31.0000 0.0000 0.0000 461.6795 44.0000 32.0000 0.0000 0.0000 + 385.9883 44.0000 33.0000 0.0000 0.0000 342.3814 44.0000 34.0000 0.0000 0.0000 + 296.2668 44.0000 35.0000 0.0000 0.0000 255.1516 44.0000 36.0000 0.0000 0.0000 + 1615.8387 44.0000 37.0000 0.0000 0.0000 1351.1988 44.0000 38.0000 0.0000 0.0000 + 1159.9071 44.0000 39.0000 0.0000 0.0000 1029.7665 44.0000 40.0000 0.0000 0.0000 + 931.7445 44.0000 41.0000 0.0000 0.0000 710.2837 44.0000 42.0000 0.0000 0.0000 + 796.1951 44.0000 43.0000 0.0000 0.0000 598.1988 44.0000 44.0000 0.0000 0.0000 + 43.1661 45.0000 1.0000 0.0000 0.9118 27.5745 45.0000 2.0000 0.0000 0.0000 + 794.2006 45.0000 3.0000 0.0000 0.0000 424.4120 45.0000 4.0000 0.0000 0.0000 + 273.7195 45.0000 5.0000 0.0000 0.0000 179.2708 45.0000 6.0000 0.0000 0.0000 + 122.6426 45.0000 7.0000 0.0000 0.0000 91.4959 45.0000 8.0000 0.0000 0.0000 + 68.4888 45.0000 9.0000 0.0000 0.0000 52.2072 45.0000 10.0000 0.0000 0.0000 + 945.4221 45.0000 11.0000 0.0000 0.0000 685.6628 45.0000 12.0000 0.0000 0.0000 + 617.9244 45.0000 13.0000 0.0000 0.0000 472.3738 45.0000 14.0000 0.0000 0.0000 + 359.2547 45.0000 15.0000 0.0000 0.0000 293.5214 45.0000 16.0000 0.0000 0.0000 + 236.2750 45.0000 17.0000 0.0000 0.0000 190.9352 45.0000 18.0000 0.0000 0.0000 + 1567.4954 45.0000 19.0000 0.0000 0.0000 1234.6013 45.0000 20.0000 0.0000 0.0000 + 1009.1933 45.0000 21.0000 0.0000 0.0000 965.2308 45.0000 22.0000 0.0000 0.0000 + 878.8027 45.0000 23.0000 0.0000 0.0000 691.6314 45.0000 24.0000 0.0000 0.0000 + 750.3251 45.0000 25.0000 0.0000 0.0000 587.7544 45.0000 26.0000 0.0000 0.0000 + 615.4364 45.0000 27.0000 0.0000 0.0000 637.7634 45.0000 28.0000 0.0000 0.0000 + 488.7501 45.0000 29.0000 0.0000 0.0000 492.6319 45.0000 30.0000 0.0000 0.0000 + 586.7732 45.0000 31.0000 0.0000 0.0000 505.4452 45.0000 32.0000 0.0000 0.0000 + 422.1971 45.0000 33.0000 0.0000 0.0000 374.0632 45.0000 34.0000 0.0000 0.0000 + 323.1941 45.0000 35.0000 0.0000 0.0000 277.8680 45.0000 36.0000 0.0000 0.0000 + 1749.7615 45.0000 37.0000 0.0000 0.0000 1473.5487 45.0000 38.0000 0.0000 0.0000 + 1266.8436 45.0000 39.0000 0.0000 0.0000 1125.3403 45.0000 40.0000 0.0000 0.0000 + 1018.2915 45.0000 41.0000 0.0000 0.0000 775.8353 45.0000 42.0000 0.0000 0.0000 + 869.8962 45.0000 43.0000 0.0000 0.0000 653.1775 45.0000 44.0000 0.0000 0.0000 + 713.9427 45.0000 45.0000 0.0000 0.0000 40.2372 46.0000 1.0000 0.0000 0.9118 + 25.8716 46.0000 2.0000 0.0000 0.0000 722.4294 46.0000 3.0000 0.0000 0.0000 + 390.4310 46.0000 4.0000 0.0000 0.0000 253.3425 46.0000 5.0000 0.0000 0.0000 + 166.7111 46.0000 6.0000 0.0000 0.0000 114.4763 46.0000 7.0000 0.0000 0.0000 + 85.6427 46.0000 8.0000 0.0000 0.0000 64.2707 46.0000 9.0000 0.0000 0.0000 + 49.0990 46.0000 10.0000 0.0000 0.0000 860.6209 46.0000 11.0000 0.0000 0.0000 + 629.5912 46.0000 12.0000 0.0000 0.0000 569.1410 46.0000 13.0000 0.0000 0.0000 + 436.9463 46.0000 14.0000 0.0000 0.0000 333.5219 46.0000 15.0000 0.0000 0.0000 + 273.1568 46.0000 16.0000 0.0000 0.0000 220.4099 46.0000 17.0000 0.0000 0.0000 + 178.5021 46.0000 18.0000 0.0000 0.0000 1424.0271 46.0000 19.0000 0.0000 0.0000 + 1129.6670 46.0000 20.0000 0.0000 0.0000 924.8556 46.0000 21.0000 0.0000 0.0000 + 885.7657 46.0000 22.0000 0.0000 0.0000 807.1258 46.0000 23.0000 0.0000 0.0000 + 635.3257 46.0000 24.0000 0.0000 0.0000 689.9647 46.0000 25.0000 0.0000 0.0000 + 540.6599 46.0000 26.0000 0.0000 0.0000 567.1044 46.0000 27.0000 0.0000 0.0000 + 587.1819 46.0000 28.0000 0.0000 0.0000 450.0559 46.0000 29.0000 0.0000 0.0000 + 454.8031 46.0000 30.0000 0.0000 0.0000 541.1501 46.0000 31.0000 0.0000 0.0000 + 467.7042 46.0000 32.0000 0.0000 0.0000 391.8528 46.0000 33.0000 0.0000 0.0000 + 347.8393 46.0000 34.0000 0.0000 0.0000 301.1390 46.0000 35.0000 0.0000 0.0000 + 259.3964 46.0000 36.0000 0.0000 0.0000 1590.4415 46.0000 37.0000 0.0000 0.0000 + 1347.9007 46.0000 38.0000 0.0000 0.0000 1161.9289 46.0000 39.0000 0.0000 0.0000 + 1033.8735 46.0000 40.0000 0.0000 0.0000 936.5528 46.0000 41.0000 0.0000 0.0000 + 714.9495 46.0000 42.0000 0.0000 0.0000 801.0442 46.0000 43.0000 0.0000 0.0000 + 602.7956 46.0000 44.0000 0.0000 0.0000 658.8753 46.0000 45.0000 0.0000 0.0000 + 608.5041 46.0000 46.0000 0.0000 0.0000 33.5413 47.0000 1.0000 0.0000 0.9118 + 21.7896 47.0000 2.0000 0.0000 0.0000 614.1477 47.0000 3.0000 0.0000 0.0000 + 325.5775 47.0000 4.0000 0.0000 0.0000 210.6811 47.0000 5.0000 0.0000 0.0000 + 138.8758 47.0000 6.0000 0.0000 0.0000 95.7137 47.0000 7.0000 0.0000 0.0000 + 71.8926 47.0000 8.0000 0.0000 0.0000 54.1903 47.0000 9.0000 0.0000 0.0000 + 41.5780 47.0000 10.0000 0.0000 0.0000 731.0832 47.0000 11.0000 0.0000 0.0000 + 526.4776 47.0000 12.0000 0.0000 0.0000 474.5713 47.0000 13.0000 0.0000 0.0000 + 363.3585 47.0000 14.0000 0.0000 0.0000 277.3577 47.0000 15.0000 0.0000 0.0000 + 227.5024 47.0000 16.0000 0.0000 0.0000 183.9876 47.0000 17.0000 0.0000 0.0000 + 149.4269 47.0000 18.0000 0.0000 0.0000 1218.4699 47.0000 19.0000 0.0000 0.0000 + 951.4935 47.0000 20.0000 0.0000 0.0000 776.8914 47.0000 21.0000 0.0000 0.0000 + 743.2041 47.0000 22.0000 0.0000 0.0000 676.6553 47.0000 23.0000 0.0000 0.0000 + 533.6878 47.0000 24.0000 0.0000 0.0000 577.8127 47.0000 25.0000 0.0000 0.0000 + 453.6327 47.0000 26.0000 0.0000 0.0000 473.9244 47.0000 27.0000 0.0000 0.0000 + 490.9783 47.0000 28.0000 0.0000 0.0000 377.3531 47.0000 29.0000 0.0000 0.0000 + 379.5655 47.0000 30.0000 0.0000 0.0000 451.5887 47.0000 31.0000 0.0000 0.0000 + 389.3075 47.0000 32.0000 0.0000 0.0000 326.0371 47.0000 33.0000 0.0000 0.0000 + 289.6469 47.0000 34.0000 0.0000 0.0000 251.1189 47.0000 35.0000 0.0000 0.0000 + 216.7336 47.0000 36.0000 0.0000 0.0000 1360.7517 47.0000 37.0000 0.0000 0.0000 + 1136.9099 47.0000 38.0000 0.0000 0.0000 976.2025 47.0000 39.0000 0.0000 0.0000 + 867.0056 47.0000 40.0000 0.0000 0.0000 784.8188 47.0000 41.0000 0.0000 0.0000 + 599.0530 47.0000 42.0000 0.0000 0.0000 671.1717 47.0000 43.0000 0.0000 0.0000 + 505.0269 47.0000 44.0000 0.0000 0.0000 551.0802 47.0000 45.0000 0.0000 0.0000 + 508.7742 47.0000 46.0000 0.0000 0.0000 426.7450 47.0000 47.0000 0.0000 0.0000 + 35.6879 48.0000 1.0000 0.0000 0.9118 23.1563 48.0000 2.0000 0.0000 0.0000 + 621.0536 48.0000 3.0000 0.0000 0.0000 340.4122 48.0000 4.0000 0.0000 0.0000 + 222.6273 48.0000 5.0000 0.0000 0.0000 147.4138 48.0000 6.0000 0.0000 0.0000 + 101.7377 48.0000 7.0000 0.0000 0.0000 76.4092 48.0000 8.0000 0.0000 0.0000 + 57.5500 48.0000 9.0000 0.0000 0.0000 44.1062 48.0000 10.0000 0.0000 0.0000 + 740.5787 48.0000 11.0000 0.0000 0.0000 547.6721 48.0000 12.0000 0.0000 0.0000 + 497.0337 48.0000 13.0000 0.0000 0.0000 383.6790 48.0000 14.0000 0.0000 0.0000 + 294.2465 48.0000 15.0000 0.0000 0.0000 241.7614 48.0000 16.0000 0.0000 0.0000 + 195.7044 48.0000 17.0000 0.0000 0.0000 158.9650 48.0000 18.0000 0.0000 0.0000 + 1222.5553 48.0000 19.0000 0.0000 0.0000 978.4251 48.0000 20.0000 0.0000 0.0000 + 802.6020 48.0000 21.0000 0.0000 0.0000 770.0303 48.0000 22.0000 0.0000 0.0000 + 702.4213 48.0000 23.0000 0.0000 0.0000 553.0919 48.0000 24.0000 0.0000 0.0000 + 601.4053 48.0000 25.0000 0.0000 0.0000 471.5329 48.0000 26.0000 0.0000 0.0000 + 495.6313 48.0000 27.0000 0.0000 0.0000 512.6220 48.0000 28.0000 0.0000 0.0000 + 393.0510 48.0000 29.0000 0.0000 0.0000 398.4572 48.0000 30.0000 0.0000 0.0000 + 473.4203 48.0000 31.0000 0.0000 0.0000 410.9058 48.0000 32.0000 0.0000 0.0000 + 345.6085 48.0000 33.0000 0.0000 0.0000 307.5539 48.0000 34.0000 0.0000 0.0000 + 266.9700 48.0000 35.0000 0.0000 0.0000 230.5493 48.0000 36.0000 0.0000 0.0000 + 1366.3938 48.0000 37.0000 0.0000 0.0000 1167.0471 48.0000 38.0000 0.0000 0.0000 + 1009.4418 48.0000 39.0000 0.0000 0.0000 900.1154 48.0000 40.0000 0.0000 0.0000 + 816.5495 48.0000 41.0000 0.0000 0.0000 624.9506 48.0000 42.0000 0.0000 0.0000 + 699.5382 48.0000 43.0000 0.0000 0.0000 527.9387 48.0000 44.0000 0.0000 0.0000 + 577.0107 48.0000 45.0000 0.0000 0.0000 533.4134 48.0000 46.0000 0.0000 0.0000 + 445.8701 48.0000 47.0000 0.0000 0.0000 468.1900 48.0000 48.0000 0.0000 0.0000 + 44.0417 49.0000 1.0000 0.0000 0.9118 27.9586 49.0000 2.0000 0.0000 0.0000 + 828.9673 49.0000 3.0000 0.0000 0.0000 438.3396 49.0000 4.0000 0.0000 0.0000 + 281.1737 49.0000 5.0000 0.0000 0.0000 183.3368 49.0000 6.0000 0.0000 0.0000 + 124.9798 49.0000 7.0000 0.0000 0.0000 92.9968 49.0000 8.0000 0.0000 0.0000 + 69.4558 49.0000 9.0000 0.0000 0.0000 52.8517 49.0000 10.0000 0.0000 0.0000 + 986.0999 49.0000 11.0000 0.0000 0.0000 709.3565 49.0000 12.0000 0.0000 0.0000 + 637.5832 49.0000 13.0000 0.0000 0.0000 485.5392 49.0000 14.0000 0.0000 0.0000 + 368.0275 49.0000 15.0000 0.0000 0.0000 299.9853 49.0000 16.0000 0.0000 0.0000 + 240.9104 49.0000 17.0000 0.0000 0.0000 194.2646 49.0000 18.0000 0.0000 0.0000 + 1638.8153 49.0000 19.0000 0.0000 0.0000 1281.2612 49.0000 20.0000 0.0000 0.0000 + 1045.8401 49.0000 21.0000 0.0000 0.0000 999.0971 49.0000 22.0000 0.0000 0.0000 + 908.9753 49.0000 23.0000 0.0000 0.0000 715.2799 49.0000 24.0000 0.0000 0.0000 + 775.2736 49.0000 25.0000 0.0000 0.0000 607.0964 49.0000 26.0000 0.0000 0.0000 + 634.7263 49.0000 27.0000 0.0000 0.0000 658.2526 49.0000 28.0000 0.0000 0.0000 + 504.3802 49.0000 29.0000 0.0000 0.0000 507.2452 49.0000 30.0000 0.0000 0.0000 + 604.7183 49.0000 31.0000 0.0000 0.0000 519.3501 49.0000 32.0000 0.0000 0.0000 + 432.6167 49.0000 33.0000 0.0000 0.0000 382.5968 49.0000 34.0000 0.0000 0.0000 + 329.9250 49.0000 35.0000 0.0000 0.0000 283.1269 49.0000 36.0000 0.0000 0.0000 + 1828.5696 49.0000 37.0000 0.0000 0.0000 1529.6862 49.0000 38.0000 0.0000 0.0000 + 1311.8922 49.0000 39.0000 0.0000 0.0000 1163.5963 49.0000 40.0000 0.0000 0.0000 + 1051.8917 49.0000 41.0000 0.0000 0.0000 799.9994 49.0000 42.0000 0.0000 0.0000 + 897.6451 49.0000 43.0000 0.0000 0.0000 672.6516 49.0000 44.0000 0.0000 0.0000 + 735.2525 49.0000 45.0000 0.0000 0.0000 678.0996 49.0000 46.0000 0.0000 0.0000 + 567.3303 49.0000 47.0000 0.0000 0.0000 593.3574 49.0000 48.0000 0.0000 0.0000 + 757.7397 49.0000 49.0000 0.0000 0.0000 41.5334 50.0000 1.0000 0.0000 0.9118 + 26.7862 50.0000 2.0000 0.0000 0.0000 708.4597 50.0000 3.0000 0.0000 0.0000 + 393.7991 50.0000 4.0000 0.0000 0.0000 258.7146 50.0000 5.0000 0.0000 0.0000 + 171.4367 50.0000 6.0000 0.0000 0.0000 118.1509 50.0000 7.0000 0.0000 0.0000 + 88.5408 50.0000 8.0000 0.0000 0.0000 66.4996 50.0000 9.0000 0.0000 0.0000 + 50.8110 50.0000 10.0000 0.0000 0.0000 845.1348 50.0000 11.0000 0.0000 0.0000 + 631.9434 50.0000 12.0000 0.0000 0.0000 575.4018 50.0000 13.0000 0.0000 0.0000 + 445.7623 50.0000 14.0000 0.0000 0.0000 342.4169 50.0000 15.0000 0.0000 0.0000 + 281.3255 50.0000 16.0000 0.0000 0.0000 227.5635 50.0000 17.0000 0.0000 0.0000 + 184.5845 50.0000 18.0000 0.0000 0.0000 1390.2912 50.0000 19.0000 0.0000 0.0000 + 1123.0616 50.0000 20.0000 0.0000 0.0000 923.0182 50.0000 21.0000 0.0000 0.0000 + 886.6318 50.0000 22.0000 0.0000 0.0000 809.4134 50.0000 23.0000 0.0000 0.0000 + 636.6561 50.0000 24.0000 0.0000 0.0000 693.7442 50.0000 25.0000 0.0000 0.0000 + 543.3629 50.0000 26.0000 0.0000 0.0000 572.8169 50.0000 27.0000 0.0000 0.0000 + 592.0464 50.0000 28.0000 0.0000 0.0000 453.2089 50.0000 29.0000 0.0000 0.0000 + 461.1971 50.0000 30.0000 0.0000 0.0000 548.0549 50.0000 31.0000 0.0000 0.0000 + 477.1034 50.0000 32.0000 0.0000 0.0000 401.9415 50.0000 33.0000 0.0000 0.0000 + 357.7871 50.0000 34.0000 0.0000 0.0000 310.5093 50.0000 35.0000 0.0000 0.0000 + 267.9532 50.0000 36.0000 0.0000 0.0000 1554.3698 50.0000 37.0000 0.0000 0.0000 + 1338.5665 50.0000 38.0000 0.0000 0.0000 1161.3674 50.0000 39.0000 0.0000 0.0000 + 1037.2812 50.0000 40.0000 0.0000 0.0000 941.7792 50.0000 41.0000 0.0000 0.0000 + 721.2906 50.0000 42.0000 0.0000 0.0000 807.2358 50.0000 43.0000 0.0000 0.0000 + 609.6152 50.0000 44.0000 0.0000 0.0000 666.8954 50.0000 45.0000 0.0000 0.0000 + 616.7522 50.0000 46.0000 0.0000 0.0000 514.4477 50.0000 47.0000 0.0000 0.0000 + 541.5490 50.0000 48.0000 0.0000 0.0000 685.6138 50.0000 49.0000 0.0000 0.0000 + 627.5677 50.0000 50.0000 0.0000 0.0000 37.7681 51.0000 1.0000 0.0000 0.9118 + 24.8583 51.0000 2.0000 0.0000 0.0000 586.6888 51.0000 3.0000 0.0000 0.0000 + 340.3030 51.0000 4.0000 0.0000 0.0000 229.0421 51.0000 5.0000 0.0000 0.0000 + 154.4851 51.0000 6.0000 0.0000 0.0000 107.8436 51.0000 7.0000 0.0000 0.0000 + 81.5358 51.0000 8.0000 0.0000 0.0000 61.6912 51.0000 9.0000 0.0000 0.0000 + 47.4073 51.0000 10.0000 0.0000 0.0000 701.6903 51.0000 11.0000 0.0000 0.0000 + 541.9826 51.0000 12.0000 0.0000 0.0000 499.7292 51.0000 13.0000 0.0000 0.0000 + 393.6899 51.0000 14.0000 0.0000 0.0000 306.6912 51.0000 15.0000 0.0000 0.0000 + 254.2418 51.0000 16.0000 0.0000 0.0000 207.4043 51.0000 17.0000 0.0000 0.0000 + 169.4533 51.0000 18.0000 0.0000 0.0000 1147.6700 51.0000 19.0000 0.0000 0.0000 + 950.6543 51.0000 20.0000 0.0000 0.0000 785.8323 51.0000 21.0000 0.0000 0.0000 + 758.9406 51.0000 22.0000 0.0000 0.0000 695.0683 51.0000 23.0000 0.0000 0.0000 + 547.1981 51.0000 24.0000 0.0000 0.0000 598.5168 51.0000 25.0000 0.0000 0.0000 + 469.4569 51.0000 26.0000 0.0000 0.0000 498.0472 51.0000 27.0000 0.0000 0.0000 + 513.0585 51.0000 28.0000 0.0000 0.0000 393.0249 51.0000 29.0000 0.0000 0.0000 + 403.8621 51.0000 30.0000 0.0000 0.0000 478.3993 51.0000 31.0000 0.0000 0.0000 + 421.8616 51.0000 32.0000 0.0000 0.0000 359.5564 51.0000 33.0000 0.0000 0.0000 + 322.3608 51.0000 34.0000 0.0000 0.0000 281.8050 51.0000 35.0000 0.0000 0.0000 + 244.7902 51.0000 36.0000 0.0000 0.0000 1286.1750 51.0000 37.0000 0.0000 0.0000 + 1132.1713 51.0000 38.0000 0.0000 0.0000 992.4001 51.0000 39.0000 0.0000 0.0000 + 892.0877 51.0000 40.0000 0.0000 0.0000 813.4345 51.0000 41.0000 0.0000 0.0000 + 627.6849 51.0000 42.0000 0.0000 0.0000 700.5163 51.0000 43.0000 0.0000 0.0000 + 533.3804 51.0000 44.0000 0.0000 0.0000 583.3346 51.0000 45.0000 0.0000 0.0000 + 540.9125 51.0000 46.0000 0.0000 0.0000 450.6427 51.0000 47.0000 0.0000 0.0000 + 476.5783 51.0000 48.0000 0.0000 0.0000 598.2891 51.0000 49.0000 0.0000 0.0000 + 553.3592 51.0000 50.0000 0.0000 0.0000 492.9379 51.0000 51.0000 0.0000 0.0000 + 35.4841 52.0000 1.0000 0.0000 0.9118 23.6911 52.0000 2.0000 0.0000 0.0000 + 521.2511 52.0000 3.0000 0.0000 0.0000 309.5439 52.0000 4.0000 0.0000 0.0000 + 211.4898 52.0000 5.0000 0.0000 0.0000 144.3032 52.0000 6.0000 0.0000 0.0000 + 101.6124 52.0000 7.0000 0.0000 0.0000 77.2970 52.0000 8.0000 0.0000 0.0000 + 58.7881 52.0000 9.0000 0.0000 0.0000 45.3613 52.0000 10.0000 0.0000 0.0000 + 624.4076 52.0000 11.0000 0.0000 0.0000 490.8760 52.0000 12.0000 0.0000 0.0000 + 456.0400 52.0000 13.0000 0.0000 0.0000 362.9518 52.0000 14.0000 0.0000 0.0000 + 285.2779 52.0000 15.0000 0.0000 0.0000 237.9018 52.0000 16.0000 0.0000 0.0000 + 195.1861 52.0000 17.0000 0.0000 0.0000 160.2674 52.0000 18.0000 0.0000 0.0000 + 1019.3121 52.0000 19.0000 0.0000 0.0000 855.1882 52.0000 20.0000 0.0000 0.0000 + 709.1303 52.0000 21.0000 0.0000 0.0000 687.1235 52.0000 22.0000 0.0000 0.0000 + 630.4901 52.0000 23.0000 0.0000 0.0000 496.9143 52.0000 24.0000 0.0000 0.0000 + 544.4156 52.0000 25.0000 0.0000 0.0000 427.6439 52.0000 26.0000 0.0000 0.0000 + 455.0836 52.0000 27.0000 0.0000 0.0000 467.8493 52.0000 28.0000 0.0000 0.0000 + 358.8167 52.0000 29.0000 0.0000 0.0000 370.5936 52.0000 30.0000 0.0000 0.0000 + 438.1102 52.0000 31.0000 0.0000 0.0000 389.2997 52.0000 32.0000 0.0000 0.0000 + 334.2234 52.0000 33.0000 0.0000 0.0000 301.0545 52.0000 34.0000 0.0000 0.0000 + 264.4516 52.0000 35.0000 0.0000 0.0000 230.7426 52.0000 36.0000 0.0000 0.0000 + 1144.1913 52.0000 37.0000 0.0000 0.0000 1018.3413 52.0000 38.0000 0.0000 0.0000 + 897.8043 52.0000 39.0000 0.0000 0.0000 810.1028 52.0000 40.0000 0.0000 0.0000 + 740.6211 52.0000 41.0000 0.0000 0.0000 574.2932 52.0000 42.0000 0.0000 0.0000 + 639.7465 52.0000 43.0000 0.0000 0.0000 489.6956 52.0000 44.0000 0.0000 0.0000 + 535.2189 52.0000 45.0000 0.0000 0.0000 497.0959 52.0000 46.0000 0.0000 0.0000 + 414.1512 52.0000 47.0000 0.0000 0.0000 438.8861 52.0000 48.0000 0.0000 0.0000 + 548.1267 52.0000 49.0000 0.0000 0.0000 509.9698 52.0000 50.0000 0.0000 0.0000 + 457.1057 52.0000 51.0000 0.0000 0.0000 425.5355 52.0000 52.0000 0.0000 0.0000 + 32.5171 53.0000 1.0000 0.0000 0.9118 22.0813 53.0000 2.0000 0.0000 0.0000 + 449.8512 53.0000 3.0000 0.0000 0.0000 273.7398 53.0000 4.0000 0.0000 0.0000 + 190.1094 53.0000 5.0000 0.0000 0.0000 131.4051 53.0000 6.0000 0.0000 0.0000 + 93.4562 53.0000 7.0000 0.0000 0.0000 71.6059 53.0000 8.0000 0.0000 0.0000 + 54.7990 53.0000 9.0000 0.0000 0.0000 42.4954 53.0000 10.0000 0.0000 0.0000 + 539.8536 53.0000 11.0000 0.0000 0.0000 432.1792 53.0000 12.0000 0.0000 0.0000 + 404.7631 53.0000 13.0000 0.0000 0.0000 325.6912 53.0000 14.0000 0.0000 0.0000 + 258.5121 53.0000 15.0000 0.0000 0.0000 217.0337 53.0000 16.0000 0.0000 0.0000 + 179.2306 53.0000 17.0000 0.0000 0.0000 148.0216 53.0000 18.0000 0.0000 0.0000 + 880.1741 53.0000 19.0000 0.0000 0.0000 747.9306 53.0000 20.0000 0.0000 0.0000 + 622.1841 53.0000 21.0000 0.0000 0.0000 605.0508 53.0000 22.0000 0.0000 0.0000 + 556.3166 53.0000 23.0000 0.0000 0.0000 439.1660 53.0000 24.0000 0.0000 0.0000 + 481.8077 53.0000 25.0000 0.0000 0.0000 379.2212 53.0000 26.0000 0.0000 0.0000 + 404.6929 53.0000 27.0000 0.0000 0.0000 415.1303 53.0000 28.0000 0.0000 0.0000 + 318.9642 53.0000 29.0000 0.0000 0.0000 331.0651 53.0000 30.0000 0.0000 0.0000 + 390.4542 53.0000 31.0000 0.0000 0.0000 349.7760 53.0000 32.0000 0.0000 0.0000 + 302.6743 53.0000 33.0000 0.0000 0.0000 274.0630 53.0000 34.0000 0.0000 0.0000 + 242.0556 53.0000 35.0000 0.0000 0.0000 212.2820 53.0000 36.0000 0.0000 0.0000 + 989.8921 53.0000 37.0000 0.0000 0.0000 890.6723 53.0000 38.0000 0.0000 0.0000 + 790.0257 53.0000 39.0000 0.0000 0.0000 715.7318 53.0000 40.0000 0.0000 0.0000 + 656.2276 53.0000 41.0000 0.0000 0.0000 511.6772 53.0000 42.0000 0.0000 0.0000 + 568.7909 53.0000 43.0000 0.0000 0.0000 437.9992 53.0000 44.0000 0.0000 0.0000 + 478.2481 53.0000 45.0000 0.0000 0.0000 444.9662 53.0000 46.0000 0.0000 0.0000 + 370.9344 53.0000 47.0000 0.0000 0.0000 393.7655 53.0000 48.0000 0.0000 0.0000 + 488.9709 53.0000 49.0000 0.0000 0.0000 457.7156 53.0000 50.0000 0.0000 0.0000 + 412.9852 53.0000 51.0000 0.0000 0.0000 386.0997 53.0000 52.0000 0.0000 0.0000 + 351.9667 53.0000 53.0000 0.0000 0.0000 29.6055 54.0000 1.0000 0.0000 0.9118 + 20.4594 54.0000 2.0000 0.0000 0.0000 386.9969 54.0000 3.0000 0.0000 0.0000 + 240.7689 54.0000 4.0000 0.0000 0.0000 169.8578 54.0000 5.0000 0.0000 0.0000 + 118.9178 54.0000 6.0000 0.0000 0.0000 85.4293 54.0000 7.0000 0.0000 0.0000 + 65.9403 54.0000 8.0000 0.0000 0.0000 50.7900 54.0000 9.0000 0.0000 0.0000 + 39.5951 54.0000 10.0000 0.0000 0.0000 465.2817 54.0000 11.0000 0.0000 0.0000 + 378.6134 54.0000 12.0000 0.0000 0.0000 357.2960 54.0000 13.0000 0.0000 0.0000 + 290.4985 54.0000 14.0000 0.0000 0.0000 232.7786 54.0000 15.0000 0.0000 0.0000 + 196.7374 54.0000 16.0000 0.0000 0.0000 163.5368 54.0000 17.0000 0.0000 0.0000 + 135.8592 54.0000 18.0000 0.0000 0.0000 758.3253 54.0000 19.0000 0.0000 0.0000 + 651.5392 54.0000 20.0000 0.0000 0.0000 543.5631 54.0000 21.0000 0.0000 0.0000 + 530.4312 54.0000 22.0000 0.0000 0.0000 488.6522 54.0000 23.0000 0.0000 0.0000 + 386.5067 54.0000 24.0000 0.0000 0.0000 424.4125 54.0000 25.0000 0.0000 0.0000 + 334.8259 54.0000 26.0000 0.0000 0.0000 358.0954 54.0000 27.0000 0.0000 0.0000 + 366.5597 54.0000 28.0000 0.0000 0.0000 282.2888 54.0000 29.0000 0.0000 0.0000 + 294.2138 54.0000 30.0000 0.0000 0.0000 346.1345 54.0000 31.0000 0.0000 0.0000 + 312.4265 54.0000 32.0000 0.0000 0.0000 272.4110 54.0000 33.0000 0.0000 0.0000 + 247.9275 54.0000 34.0000 0.0000 0.0000 220.1581 54.0000 35.0000 0.0000 0.0000 + 194.0699 54.0000 36.0000 0.0000 0.0000 854.5223 54.0000 37.0000 0.0000 0.0000 + 776.0859 54.0000 38.0000 0.0000 0.0000 692.2386 54.0000 39.0000 0.0000 0.0000 + 629.5230 54.0000 40.0000 0.0000 0.0000 578.7876 54.0000 41.0000 0.0000 0.0000 + 453.7998 54.0000 42.0000 0.0000 0.0000 503.3811 54.0000 43.0000 0.0000 0.0000 + 389.9532 54.0000 44.0000 0.0000 0.0000 425.2684 54.0000 45.0000 0.0000 0.0000 + 396.3468 54.0000 46.0000 0.0000 0.0000 330.7646 54.0000 47.0000 0.0000 0.0000 + 351.5285 54.0000 48.0000 0.0000 0.0000 434.0932 54.0000 49.0000 0.0000 0.0000 + 408.5952 54.0000 50.0000 0.0000 0.0000 370.9572 54.0000 51.0000 0.0000 0.0000 + 348.2239 54.0000 52.0000 0.0000 0.0000 318.8905 54.0000 53.0000 0.0000 0.0000 + 290.2223 54.0000 54.0000 0.0000 0.0000 105.0096 55.0000 1.0000 0.0000 0.9118 + 61.3184 55.0000 2.0000 0.0000 0.0000 3242.2404 55.0000 3.0000 0.0000 0.0000 + 1316.2189 55.0000 4.0000 0.0000 0.0000 754.9243 55.0000 5.0000 0.0000 0.0000 + 455.6960 55.0000 6.0000 0.0000 0.0000 294.1483 55.0000 7.0000 0.0000 0.0000 + 210.8672 55.0000 8.0000 0.0000 0.0000 152.5672 55.0000 9.0000 0.0000 0.0000 + 113.1764 55.0000 10.0000 0.0000 0.0000 3798.9439 55.0000 11.0000 0.0000 0.0000 + 2220.9652 55.0000 12.0000 0.0000 0.0000 1881.7164 55.0000 13.0000 0.0000 0.0000 + 1317.0056 55.0000 14.0000 0.0000 0.0000 936.3069 55.0000 15.0000 0.0000 0.0000 + 735.0061 55.0000 16.0000 0.0000 0.0000 569.6701 55.0000 17.0000 0.0000 0.0000 + 445.8171 55.0000 18.0000 0.0000 0.0000 6808.3900 55.0000 19.0000 0.0000 0.0000 + 4387.1669 55.0000 20.0000 0.0000 0.0000 3450.8369 55.0000 21.0000 0.0000 0.0000 + 3215.8544 55.0000 22.0000 0.0000 0.0000 2877.5279 55.0000 23.0000 0.0000 0.0000 + 2283.0674 55.0000 24.0000 0.0000 0.0000 2396.3445 55.0000 25.0000 0.0000 0.0000 + 1884.2824 55.0000 26.0000 0.0000 0.0000 1875.7209 55.0000 27.0000 0.0000 0.0000 + 1976.8609 55.0000 28.0000 0.0000 0.0000 1533.4063 55.0000 29.0000 0.0000 0.0000 + 1443.0004 55.0000 30.0000 0.0000 0.0000 1755.5105 55.0000 31.0000 0.0000 0.0000 + 1406.2206 55.0000 32.0000 0.0000 0.0000 1108.3145 55.0000 33.0000 0.0000 0.0000 + 950.1975 55.0000 34.0000 0.0000 0.0000 794.2184 55.0000 35.0000 0.0000 0.0000 + 662.9556 55.0000 36.0000 0.0000 0.0000 7560.4361 55.0000 37.0000 0.0000 0.0000 + 5305.1627 55.0000 38.0000 0.0000 0.0000 4289.6097 55.0000 39.0000 0.0000 0.0000 + 3674.8556 55.0000 40.0000 0.0000 0.0000 3256.3633 55.0000 41.0000 0.0000 0.0000 + 2398.7520 55.0000 42.0000 0.0000 0.0000 2726.0486 55.0000 43.0000 0.0000 0.0000 + 1968.3066 55.0000 44.0000 0.0000 0.0000 2129.9275 55.0000 45.0000 0.0000 0.0000 + 1935.8392 55.0000 46.0000 0.0000 0.0000 1657.7829 55.0000 47.0000 0.0000 0.0000 + 1663.0447 55.0000 48.0000 0.0000 0.0000 2226.4867 55.0000 49.0000 0.0000 0.0000 + 1891.9207 55.0000 50.0000 0.0000 0.0000 1566.5042 55.0000 51.0000 0.0000 0.0000 + 1394.5709 55.0000 52.0000 0.0000 0.0000 1207.5672 55.0000 53.0000 0.0000 0.0000 + 1043.3955 55.0000 54.0000 0.0000 0.0000 9330.7294 55.0000 55.0000 0.0000 0.0000 + 99.4579 56.0000 1.0000 0.0000 0.9118 59.1141 56.0000 2.0000 0.0000 0.0000 + 2551.5260 56.0000 3.0000 0.0000 0.0000 1160.4419 56.0000 4.0000 0.0000 0.0000 + 690.6852 56.0000 5.0000 0.0000 0.0000 426.3667 56.0000 6.0000 0.0000 0.0000 + 279.0742 56.0000 7.0000 0.0000 0.0000 201.7411 56.0000 8.0000 0.0000 0.0000 + 146.9174 56.0000 9.0000 0.0000 0.0000 109.5000 56.0000 10.0000 0.0000 0.0000 + 3009.7233 56.0000 11.0000 0.0000 0.0000 1926.3504 56.0000 12.0000 0.0000 0.0000 + 1665.7662 56.0000 13.0000 0.0000 0.0000 1201.2021 56.0000 14.0000 0.0000 0.0000 + 871.1647 56.0000 15.0000 0.0000 0.0000 690.8651 56.0000 16.0000 0.0000 0.0000 + 540.3160 56.0000 17.0000 0.0000 0.0000 425.7909 56.0000 18.0000 0.0000 0.0000 + 5171.2978 56.0000 19.0000 0.0000 0.0000 3659.1655 56.0000 20.0000 0.0000 0.0000 + 2924.4395 56.0000 21.0000 0.0000 0.0000 2748.9797 56.0000 22.0000 0.0000 0.0000 + 2475.1427 56.0000 23.0000 0.0000 0.0000 1952.1126 56.0000 24.0000 0.0000 0.0000 + 2079.4950 56.0000 25.0000 0.0000 0.0000 1628.4040 56.0000 26.0000 0.0000 0.0000 + 1656.9384 56.0000 27.0000 0.0000 0.0000 1736.3987 56.0000 28.0000 0.0000 0.0000 + 1335.7319 56.0000 29.0000 0.0000 0.0000 1292.6630 56.0000 30.0000 0.0000 0.0000 + 1559.7012 56.0000 31.0000 0.0000 0.0000 1281.9152 56.0000 32.0000 0.0000 0.0000 + 1028.5424 56.0000 33.0000 0.0000 0.0000 889.6147 56.0000 34.0000 0.0000 0.0000 + 749.8475 56.0000 35.0000 0.0000 0.0000 630.2436 56.0000 36.0000 0.0000 0.0000 + 5743.5673 56.0000 37.0000 0.0000 0.0000 4394.3607 56.0000 38.0000 0.0000 0.0000 + 3639.4735 56.0000 39.0000 0.0000 0.0000 3160.1776 56.0000 40.0000 0.0000 0.0000 + 2819.5147 56.0000 41.0000 0.0000 0.0000 2098.4813 56.0000 42.0000 0.0000 0.0000 + 2373.9131 56.0000 43.0000 0.0000 0.0000 1735.4827 56.0000 44.0000 0.0000 0.0000 + 1890.1371 56.0000 45.0000 0.0000 0.0000 1727.2738 56.0000 46.0000 0.0000 0.0000 + 1460.5858 56.0000 47.0000 0.0000 0.0000 1493.7369 56.0000 48.0000 0.0000 0.0000 + 1964.0913 56.0000 49.0000 0.0000 0.0000 1710.8832 56.0000 50.0000 0.0000 0.0000 + 1442.5135 56.0000 51.0000 0.0000 0.0000 1295.6354 56.0000 52.0000 0.0000 0.0000 + 1131.7221 56.0000 53.0000 0.0000 0.0000 985.1266 56.0000 54.0000 0.0000 0.0000 + 7016.4917 56.0000 55.0000 0.0000 0.0000 5726.9887 56.0000 56.0000 0.0000 0.0000 + 89.1018 57.0000 1.0000 0.0000 0.9118 53.7982 57.0000 2.0000 0.0000 0.0000 + 2085.0661 57.0000 3.0000 0.0000 0.0000 994.0316 57.0000 4.0000 0.0000 0.0000 + 604.4915 57.0000 5.0000 0.0000 0.0000 378.7928 57.0000 6.0000 0.0000 0.0000 + 250.5577 57.0000 7.0000 0.0000 0.0000 182.4075 57.0000 8.0000 0.0000 0.0000 + 133.6123 57.0000 9.0000 0.0000 0.0000 100.0277 57.0000 10.0000 0.0000 0.0000 + 2465.5965 57.0000 11.0000 0.0000 0.0000 1637.1586 57.0000 12.0000 0.0000 0.0000 + 1431.7496 57.0000 13.0000 0.0000 0.0000 1049.1934 57.0000 14.0000 0.0000 0.0000 + 770.4924 57.0000 15.0000 0.0000 0.0000 615.5559 57.0000 16.0000 0.0000 0.0000 + 484.7691 57.0000 17.0000 0.0000 0.0000 384.2306 57.0000 18.0000 0.0000 0.0000 + 4185.8968 57.0000 19.0000 0.0000 0.0000 3059.8941 57.0000 20.0000 0.0000 0.0000 + 2461.7619 57.0000 21.0000 0.0000 0.0000 2324.7454 57.0000 22.0000 0.0000 0.0000 + 2099.5853 57.0000 23.0000 0.0000 0.0000 1653.4435 57.0000 24.0000 0.0000 0.0000 + 1771.7653 57.0000 25.0000 0.0000 0.0000 1386.3132 57.0000 26.0000 0.0000 0.0000 + 1423.4023 57.0000 27.0000 0.0000 0.0000 1487.1454 57.0000 28.0000 0.0000 0.0000 + 1141.4078 57.0000 29.0000 0.0000 0.0000 1118.3973 57.0000 30.0000 0.0000 0.0000 + 1344.7968 57.0000 31.0000 0.0000 0.0000 1120.0021 57.0000 32.0000 0.0000 0.0000 + 908.3670 57.0000 33.0000 0.0000 0.0000 790.4855 57.0000 34.0000 0.0000 0.0000 + 670.3843 57.0000 35.0000 0.0000 0.0000 566.5101 57.0000 36.0000 0.0000 0.0000 + 4653.7454 57.0000 37.0000 0.0000 0.0000 3666.6556 57.0000 38.0000 0.0000 0.0000 + 3069.3037 57.0000 39.0000 0.0000 0.0000 2682.0879 57.0000 40.0000 0.0000 0.0000 + 2401.9326 57.0000 41.0000 0.0000 0.0000 1798.1970 57.0000 42.0000 0.0000 0.0000 + 2029.6163 57.0000 43.0000 0.0000 0.0000 1493.8895 57.0000 44.0000 0.0000 0.0000 + 1629.9126 57.0000 45.0000 0.0000 0.0000 1493.4855 57.0000 46.0000 0.0000 0.0000 + 1257.4297 57.0000 47.0000 0.0000 0.0000 1295.9364 57.0000 48.0000 0.0000 0.0000 + 1689.4085 57.0000 49.0000 0.0000 0.0000 1489.0440 57.0000 50.0000 0.0000 0.0000 + 1268.2622 57.0000 51.0000 0.0000 0.0000 1145.5595 57.0000 52.0000 0.0000 0.0000 + 1006.5104 57.0000 53.0000 0.0000 0.0000 880.8202 57.0000 54.0000 0.0000 0.0000 + 5675.7434 57.0000 55.0000 0.0000 0.0000 4754.4826 57.0000 56.0000 0.0000 0.0000 + 3990.6172 57.0000 57.0000 0.0000 0.0000 44.5104 58.0000 1.0000 2.7991 0.9118 + 29.3081 58.0000 2.0000 2.7991 0.0000 704.3345 58.0000 3.0000 2.7991 0.0000 + 403.7427 58.0000 4.0000 2.7991 0.0000 270.6187 58.0000 5.0000 2.7991 0.0000 + 182.2164 58.0000 6.0000 2.7991 0.0000 127.1355 58.0000 7.0000 2.7991 0.0000 + 96.1189 58.0000 8.0000 2.7991 0.0000 72.7359 58.0000 9.0000 2.7991 0.0000 + 55.9048 58.0000 10.0000 2.7991 0.0000 841.8986 58.0000 11.0000 2.7991 0.0000 + 644.2220 58.0000 12.0000 2.7991 0.0000 592.4047 58.0000 13.0000 2.7991 0.0000 + 465.2631 58.0000 14.0000 2.7991 0.0000 361.8015 58.0000 15.0000 2.7991 0.0000 + 299.7447 58.0000 16.0000 2.7991 0.0000 244.4468 58.0000 17.0000 2.7991 0.0000 + 199.7138 58.0000 18.0000 2.7991 0.0000 1381.0183 58.0000 19.0000 2.7991 0.0000 + 1134.6748 58.0000 20.0000 2.7991 0.0000 936.4068 58.0000 21.0000 2.7991 0.0000 + 903.3306 58.0000 22.0000 2.7991 0.0000 826.7047 58.0000 23.0000 2.7991 0.0000 + 651.1440 58.0000 24.0000 2.7991 0.0000 711.1423 58.0000 25.0000 2.7991 0.0000 + 558.0177 58.0000 26.0000 2.7991 0.0000 590.7387 58.0000 27.0000 2.7991 0.0000 + 608.9242 58.0000 28.0000 2.7991 0.0000 466.8110 58.0000 29.0000 2.7991 0.0000 + 478.3350 58.0000 30.0000 2.7991 0.0000 566.8783 58.0000 31.0000 2.7991 0.0000 + 498.6284 58.0000 32.0000 2.7991 0.0000 424.2906 58.0000 33.0000 2.7991 0.0000 + 380.1606 58.0000 34.0000 2.7991 0.0000 332.1884 58.0000 35.0000 2.7991 0.0000 + 288.5010 58.0000 36.0000 2.7991 0.0000 1547.0780 58.0000 37.0000 2.7991 0.0000 + 1352.0803 58.0000 38.0000 2.7991 0.0000 1182.0124 58.0000 39.0000 2.7991 0.0000 + 1060.9721 58.0000 40.0000 2.7991 0.0000 966.6201 58.0000 41.0000 2.7991 0.0000 + 745.1176 58.0000 42.0000 2.7991 0.0000 831.8360 58.0000 43.0000 2.7991 0.0000 + 632.6639 58.0000 44.0000 2.7991 0.0000 691.5646 58.0000 45.0000 2.7991 0.0000 + 640.9611 58.0000 46.0000 2.7991 0.0000 534.5993 58.0000 47.0000 2.7991 0.0000 + 564.3910 58.0000 48.0000 2.7991 0.0000 709.5009 58.0000 49.0000 2.7991 0.0000 + 654.6723 58.0000 50.0000 2.7991 0.0000 582.1618 58.0000 51.0000 2.7991 0.0000 + 539.4167 58.0000 52.0000 2.7991 0.0000 487.0333 58.0000 53.0000 2.7991 0.0000 + 437.2834 58.0000 54.0000 2.7991 0.0000 1884.4554 58.0000 55.0000 2.7991 0.0000 + 1724.7415 58.0000 56.0000 2.7991 0.0000 1512.2504 58.0000 57.0000 2.7991 0.0000 + 688.0353 58.0000 58.0000 2.7991 2.7991 88.6877 59.0000 1.0000 0.0000 0.9118 + 53.1523 59.0000 2.0000 0.0000 0.0000 2210.3168 59.0000 3.0000 0.0000 0.0000 + 1018.9540 59.0000 4.0000 0.0000 0.0000 610.7615 59.0000 5.0000 0.0000 0.0000 + 379.1038 59.0000 6.0000 0.0000 0.0000 249.2633 59.0000 7.0000 0.0000 0.0000 + 180.8383 59.0000 8.0000 0.0000 0.0000 132.1584 59.0000 9.0000 0.0000 0.0000 + 98.8220 59.0000 10.0000 0.0000 0.0000 2609.0440 59.0000 11.0000 0.0000 0.0000 + 1687.5419 59.0000 12.0000 0.0000 0.0000 1464.4446 59.0000 13.0000 0.0000 0.0000 + 1061.5213 59.0000 14.0000 0.0000 0.0000 773.1721 59.0000 15.0000 0.0000 0.0000 + 614.8652 59.0000 16.0000 0.0000 0.0000 482.2509 59.0000 17.0000 0.0000 0.0000 + 381.0503 59.0000 18.0000 0.0000 0.0000 4473.7784 59.0000 19.0000 0.0000 0.0000 + 3190.2086 59.0000 20.0000 0.0000 0.0000 2554.7353 59.0000 21.0000 0.0000 0.0000 + 2405.0561 59.0000 22.0000 0.0000 0.0000 2167.6325 59.0000 23.0000 0.0000 0.0000 + 1709.1137 59.0000 24.0000 0.0000 0.0000 1823.7858 59.0000 25.0000 0.0000 0.0000 + 1428.1039 59.0000 26.0000 0.0000 0.0000 1457.0358 59.0000 27.0000 0.0000 0.0000 + 1525.4141 59.0000 28.0000 0.0000 0.0000 1172.9549 59.0000 29.0000 0.0000 0.0000 + 1139.4352 59.0000 30.0000 0.0000 0.0000 1372.8649 59.0000 31.0000 0.0000 0.0000 + 1133.1627 59.0000 32.0000 0.0000 0.0000 912.5263 59.0000 33.0000 0.0000 0.0000 + 791.0214 59.0000 34.0000 0.0000 0.0000 668.3328 59.0000 35.0000 0.0000 0.0000 + 563.0156 59.0000 36.0000 0.0000 0.0000 4971.0778 59.0000 37.0000 0.0000 0.0000 + 3828.9626 59.0000 38.0000 0.0000 0.0000 3181.4405 59.0000 39.0000 0.0000 0.0000 + 2767.9894 59.0000 40.0000 0.0000 0.0000 2472.6905 59.0000 41.0000 0.0000 0.0000 + 1844.0715 59.0000 42.0000 0.0000 0.0000 2084.5975 59.0000 43.0000 0.0000 0.0000 + 1527.6056 59.0000 44.0000 0.0000 0.0000 1664.4640 59.0000 45.0000 0.0000 0.0000 + 1522.4806 59.0000 46.0000 0.0000 0.0000 1286.0441 59.0000 47.0000 0.0000 0.0000 + 1318.2791 59.0000 48.0000 0.0000 0.0000 1728.2162 59.0000 49.0000 0.0000 0.0000 + 1511.0459 59.0000 50.0000 0.0000 0.0000 1278.3406 59.0000 51.0000 0.0000 0.0000 + 1150.4200 59.0000 52.0000 0.0000 0.0000 1007.0198 59.0000 53.0000 0.0000 0.0000 + 878.3798 59.0000 54.0000 0.0000 0.0000 6073.8935 59.0000 55.0000 0.0000 0.0000 + 4983.3126 59.0000 56.0000 0.0000 0.0000 4150.3203 59.0000 57.0000 0.0000 0.0000 + 1527.1461 59.0000 58.0000 0.0000 2.7991 4342.2386 59.0000 59.0000 0.0000 0.0000 + 85.4080 60.0000 1.0000 0.0000 0.9118 51.2952 60.0000 2.0000 0.0000 0.0000 + 2091.5068 60.0000 3.0000 0.0000 0.0000 974.6167 60.0000 4.0000 0.0000 0.0000 + 586.1896 60.0000 5.0000 0.0000 0.0000 364.6519 60.0000 6.0000 0.0000 0.0000 + 240.1139 60.0000 7.0000 0.0000 0.0000 174.3678 60.0000 8.0000 0.0000 0.0000 + 127.5308 60.0000 9.0000 0.0000 0.0000 95.4202 60.0000 10.0000 0.0000 0.0000 + 2470.6020 60.0000 11.0000 0.0000 0.0000 1611.7831 60.0000 12.0000 0.0000 0.0000 + 1401.3191 60.0000 13.0000 0.0000 0.0000 1018.5098 60.0000 14.0000 0.0000 0.0000 + 743.2407 60.0000 15.0000 0.0000 0.0000 591.6752 60.0000 16.0000 0.0000 0.0000 + 464.5062 60.0000 17.0000 0.0000 0.0000 367.3163 60.0000 18.0000 0.0000 0.0000 + 4216.3998 60.0000 19.0000 0.0000 0.0000 3036.3662 60.0000 20.0000 0.0000 0.0000 + 2435.0889 60.0000 21.0000 0.0000 0.0000 2294.2857 60.0000 22.0000 0.0000 0.0000 + 2068.9809 60.0000 23.0000 0.0000 0.0000 1630.6018 60.0000 24.0000 0.0000 0.0000 + 1742.1942 60.0000 25.0000 0.0000 0.0000 1363.8456 60.0000 26.0000 0.0000 0.0000 + 1394.0822 60.0000 27.0000 0.0000 0.0000 1458.7399 60.0000 28.0000 0.0000 0.0000 + 1120.9931 60.0000 29.0000 0.0000 0.0000 1091.5722 60.0000 30.0000 0.0000 0.0000 + 1314.2306 60.0000 31.0000 0.0000 0.0000 1087.2533 60.0000 32.0000 0.0000 0.0000 + 877.0066 60.0000 33.0000 0.0000 0.0000 760.8949 60.0000 34.0000 0.0000 0.0000 + 643.4305 60.0000 35.0000 0.0000 0.0000 542.4383 60.0000 36.0000 0.0000 0.0000 + 4685.0846 60.0000 37.0000 0.0000 0.0000 3642.0492 60.0000 38.0000 0.0000 0.0000 + 3032.9183 60.0000 39.0000 0.0000 0.0000 2642.0526 60.0000 40.0000 0.0000 0.0000 + 2361.6974 60.0000 41.0000 0.0000 0.0000 1763.1139 60.0000 42.0000 0.0000 0.0000 + 1992.1534 60.0000 43.0000 0.0000 0.0000 1461.6458 60.0000 44.0000 0.0000 0.0000 + 1593.3696 60.0000 45.0000 0.0000 0.0000 1458.1671 60.0000 46.0000 0.0000 0.0000 + 1230.4969 60.0000 47.0000 0.0000 0.0000 1263.3482 60.0000 48.0000 0.0000 0.0000 + 1653.5039 60.0000 49.0000 0.0000 0.0000 1448.8711 60.0000 50.0000 0.0000 0.0000 + 1227.7455 60.0000 51.0000 0.0000 0.0000 1105.8143 60.0000 52.0000 0.0000 0.0000 + 968.7947 60.0000 53.0000 0.0000 0.0000 845.6703 60.0000 54.0000 0.0000 0.0000 + 5716.7999 60.0000 55.0000 0.0000 0.0000 4733.4185 60.0000 56.0000 0.0000 0.0000 + 3951.9956 60.0000 57.0000 0.0000 0.0000 1465.9695 60.0000 58.0000 0.0000 2.7991 + 4125.9023 60.0000 59.0000 0.0000 0.0000 3924.4211 60.0000 60.0000 0.0000 0.0000 + 83.3310 61.0000 1.0000 0.0000 0.9118 50.0748 61.0000 2.0000 0.0000 0.0000 + 2031.2740 61.0000 3.0000 0.0000 0.0000 949.1255 61.0000 4.0000 0.0000 0.0000 + 571.4113 61.0000 5.0000 0.0000 0.0000 355.6712 61.0000 6.0000 0.0000 0.0000 + 234.2913 61.0000 7.0000 0.0000 0.0000 170.1817 61.0000 8.0000 0.0000 0.0000 + 124.4946 61.0000 9.0000 0.0000 0.0000 93.1635 61.0000 10.0000 0.0000 0.0000 + 2399.8207 61.0000 11.0000 0.0000 0.0000 1568.9885 61.0000 12.0000 0.0000 0.0000 + 1364.8494 61.0000 13.0000 0.0000 0.0000 992.7507 61.0000 14.0000 0.0000 0.0000 + 724.8197 61.0000 15.0000 0.0000 0.0000 577.1696 61.0000 16.0000 0.0000 0.0000 + 453.2313 61.0000 17.0000 0.0000 0.0000 358.4721 61.0000 18.0000 0.0000 0.0000 + 4092.0575 61.0000 19.0000 0.0000 0.0000 2952.9794 61.0000 20.0000 0.0000 0.0000 + 2369.1244 61.0000 21.0000 0.0000 0.0000 2232.6503 61.0000 22.0000 0.0000 0.0000 + 2013.7194 61.0000 23.0000 0.0000 0.0000 1586.8512 61.0000 24.0000 0.0000 0.0000 + 1696.0441 61.0000 25.0000 0.0000 0.0000 1327.6064 61.0000 26.0000 0.0000 0.0000 + 1357.7395 61.0000 27.0000 0.0000 0.0000 1420.5045 61.0000 28.0000 0.0000 0.0000 + 1091.4214 61.0000 29.0000 0.0000 0.0000 1063.4898 61.0000 30.0000 0.0000 0.0000 + 1280.1762 61.0000 31.0000 0.0000 0.0000 1059.7536 61.0000 32.0000 0.0000 0.0000 + 855.2177 61.0000 33.0000 0.0000 0.0000 742.1649 61.0000 34.0000 0.0000 0.0000 + 627.7342 61.0000 35.0000 0.0000 0.0000 529.3070 61.0000 36.0000 0.0000 0.0000 + 4547.0720 61.0000 37.0000 0.0000 0.0000 3541.4930 61.0000 38.0000 0.0000 0.0000 + 2950.9303 61.0000 39.0000 0.0000 0.0000 2571.4964 61.0000 40.0000 0.0000 0.0000 + 2299.0481 61.0000 41.0000 0.0000 0.0000 1716.8038 61.0000 42.0000 0.0000 0.0000 + 1939.6215 61.0000 43.0000 0.0000 0.0000 1423.5531 61.0000 44.0000 0.0000 0.0000 + 1552.0522 61.0000 45.0000 0.0000 0.0000 1420.5469 61.0000 46.0000 0.0000 0.0000 + 1198.4194 61.0000 47.0000 0.0000 0.0000 1230.9598 61.0000 48.0000 0.0000 0.0000 + 1610.4142 61.0000 49.0000 0.0000 0.0000 1411.9588 61.0000 50.0000 0.0000 0.0000 + 1197.0157 61.0000 51.0000 0.0000 0.0000 1078.3854 61.0000 52.0000 0.0000 0.0000 + 944.9814 61.0000 53.0000 0.0000 0.0000 825.0473 61.0000 54.0000 0.0000 0.0000 + 5547.4900 61.0000 55.0000 0.0000 0.0000 4601.2171 61.0000 56.0000 0.0000 0.0000 + 3844.0367 61.0000 57.0000 0.0000 0.0000 1429.0690 61.0000 58.0000 0.0000 2.7991 + 4011.3635 61.0000 59.0000 0.0000 0.0000 3816.1118 61.0000 60.0000 0.0000 0.0000 + 3710.9375 61.0000 61.0000 0.0000 0.0000 81.4123 62.0000 1.0000 0.0000 0.9118 + 48.9406 62.0000 2.0000 0.0000 0.0000 1976.6955 62.0000 3.0000 0.0000 0.0000 + 925.8158 62.0000 4.0000 0.0000 0.0000 557.8380 62.0000 5.0000 0.0000 0.0000 + 347.3921 62.0000 6.0000 0.0000 0.0000 228.9065 62.0000 7.0000 0.0000 0.0000 + 166.3004 62.0000 8.0000 0.0000 0.0000 121.6727 62.0000 9.0000 0.0000 0.0000 + 91.0614 62.0000 10.0000 0.0000 0.0000 2335.6474 62.0000 11.0000 0.0000 0.0000 + 1529.9120 62.0000 12.0000 0.0000 0.0000 1331.4786 62.0000 13.0000 0.0000 0.0000 + 969.1026 62.0000 14.0000 0.0000 0.0000 707.8604 62.0000 15.0000 0.0000 0.0000 + 563.7890 62.0000 16.0000 0.0000 0.0000 442.8095 62.0000 17.0000 0.0000 0.0000 + 350.2812 62.0000 18.0000 0.0000 0.0000 3979.6309 62.0000 19.0000 0.0000 0.0000 + 2877.0680 62.0000 20.0000 0.0000 0.0000 2308.9962 62.0000 21.0000 0.0000 0.0000 + 2176.4184 62.0000 22.0000 0.0000 0.0000 1963.2723 62.0000 23.0000 0.0000 0.0000 + 1546.9195 62.0000 24.0000 0.0000 0.0000 1653.8773 62.0000 25.0000 0.0000 0.0000 + 1294.4951 62.0000 26.0000 0.0000 0.0000 1324.4770 62.0000 27.0000 0.0000 0.0000 + 1385.5313 62.0000 28.0000 0.0000 0.0000 1064.3798 62.0000 29.0000 0.0000 0.0000 + 1037.7490 62.0000 30.0000 0.0000 0.0000 1248.9915 62.0000 31.0000 0.0000 0.0000 + 1034.5024 62.0000 32.0000 0.0000 0.0000 835.1622 62.0000 33.0000 0.0000 0.0000 + 724.8987 62.0000 34.0000 0.0000 0.0000 613.2405 62.0000 35.0000 0.0000 0.0000 + 517.1617 62.0000 36.0000 0.0000 0.0000 4422.2696 62.0000 37.0000 0.0000 0.0000 + 3449.9906 62.0000 38.0000 0.0000 0.0000 2876.1716 62.0000 39.0000 0.0000 0.0000 + 2507.0805 62.0000 40.0000 0.0000 0.0000 2241.8085 62.0000 41.0000 0.0000 0.0000 + 1674.4360 62.0000 42.0000 0.0000 0.0000 1891.5883 62.0000 43.0000 0.0000 0.0000 + 1388.6668 62.0000 44.0000 0.0000 0.0000 1514.2016 62.0000 45.0000 0.0000 0.0000 + 1386.0622 62.0000 46.0000 0.0000 0.0000 1169.0360 62.0000 47.0000 0.0000 0.0000 + 1201.2473 62.0000 48.0000 0.0000 0.0000 1570.9643 62.0000 49.0000 0.0000 0.0000 + 1378.0830 62.0000 50.0000 0.0000 0.0000 1168.7524 62.0000 51.0000 0.0000 0.0000 + 1053.1255 62.0000 52.0000 0.0000 0.0000 923.0194 62.0000 53.0000 0.0000 0.0000 + 806.0002 62.0000 54.0000 0.0000 0.0000 5394.4846 62.0000 55.0000 0.0000 0.0000 + 4481.0449 62.0000 56.0000 0.0000 0.0000 3745.6921 62.0000 57.0000 0.0000 0.0000 + 1395.1471 62.0000 58.0000 0.0000 2.7991 3907.1923 62.0000 59.0000 0.0000 0.0000 + 3717.5407 62.0000 60.0000 0.0000 0.0000 3615.2067 62.0000 61.0000 0.0000 0.0000 + 3522.0508 62.0000 62.0000 0.0000 0.0000 79.7138 63.0000 1.0000 0.0000 0.9118 + 47.9365 63.0000 2.0000 0.0000 0.0000 1928.0810 63.0000 3.0000 0.0000 0.0000 + 905.1101 63.0000 4.0000 0.0000 0.0000 545.8015 63.0000 5.0000 0.0000 0.0000 + 340.0580 63.0000 6.0000 0.0000 0.0000 224.1383 63.0000 7.0000 0.0000 0.0000 + 162.8638 63.0000 8.0000 0.0000 0.0000 119.1734 63.0000 9.0000 0.0000 0.0000 + 89.1988 63.0000 10.0000 0.0000 0.0000 2278.4898 63.0000 11.0000 0.0000 0.0000 + 1495.1792 63.0000 12.0000 0.0000 0.0000 1301.8438 63.0000 13.0000 0.0000 0.0000 + 948.1288 63.0000 14.0000 0.0000 0.0000 692.8338 63.0000 15.0000 0.0000 0.0000 + 551.9390 63.0000 16.0000 0.0000 0.0000 433.5831 63.0000 17.0000 0.0000 0.0000 + 343.0307 63.0000 18.0000 0.0000 0.0000 3879.4729 63.0000 19.0000 0.0000 0.0000 + 2809.5233 63.0000 20.0000 0.0000 0.0000 2255.5157 63.0000 21.0000 0.0000 0.0000 + 2126.4190 63.0000 22.0000 0.0000 0.0000 1918.4254 63.0000 23.0000 0.0000 0.0000 + 1511.4156 63.0000 24.0000 0.0000 0.0000 1616.4023 63.0000 25.0000 0.0000 0.0000 + 1265.0643 63.0000 26.0000 0.0000 0.0000 1294.9313 63.0000 27.0000 0.0000 0.0000 + 1354.4595 63.0000 28.0000 0.0000 0.0000 1040.3490 63.0000 29.0000 0.0000 0.0000 + 1014.8959 63.0000 30.0000 0.0000 0.0000 1221.3030 63.0000 31.0000 0.0000 0.0000 + 1012.1053 63.0000 32.0000 0.0000 0.0000 817.3888 63.0000 33.0000 0.0000 0.0000 + 709.6039 63.0000 34.0000 0.0000 0.0000 600.4064 63.0000 35.0000 0.0000 0.0000 + 506.4098 63.0000 36.0000 0.0000 0.0000 4311.0961 63.0000 37.0000 0.0000 0.0000 + 3368.5646 63.0000 38.0000 0.0000 0.0000 2809.6885 63.0000 39.0000 0.0000 0.0000 + 2449.8188 63.0000 40.0000 0.0000 0.0000 2190.9387 63.0000 41.0000 0.0000 0.0000 + 1636.7956 63.0000 42.0000 0.0000 0.0000 1848.9097 63.0000 43.0000 0.0000 0.0000 + 1357.6810 63.0000 44.0000 0.0000 0.0000 1480.5878 63.0000 45.0000 0.0000 0.0000 + 1355.4425 63.0000 46.0000 0.0000 0.0000 1142.9352 63.0000 47.0000 0.0000 0.0000 + 1174.8699 63.0000 48.0000 0.0000 0.0000 1535.9254 63.0000 49.0000 0.0000 0.0000 + 1348.0216 63.0000 50.0000 0.0000 0.0000 1143.6919 63.0000 51.0000 0.0000 0.0000 + 1030.7380 63.0000 52.0000 0.0000 0.0000 903.5630 63.0000 53.0000 0.0000 0.0000 + 789.1320 63.0000 54.0000 0.0000 0.0000 5258.2068 63.0000 55.0000 0.0000 0.0000 + 4374.0826 63.0000 56.0000 0.0000 0.0000 3658.2120 63.0000 57.0000 0.0000 0.0000 + 1365.0615 63.0000 58.0000 0.0000 2.7991 3814.4921 63.0000 59.0000 0.0000 0.0000 + 3629.8268 63.0000 60.0000 0.0000 0.0000 3530.0228 63.0000 61.0000 0.0000 0.0000 + 3439.1601 63.0000 62.0000 0.0000 0.0000 3358.3122 63.0000 63.0000 0.0000 0.0000 + 64.1880 64.0000 1.0000 0.0000 0.9118 39.5786 64.0000 2.0000 0.0000 0.0000 + 1407.7335 64.0000 3.0000 0.0000 0.0000 689.9287 64.0000 4.0000 0.0000 0.0000 + 426.4897 64.0000 5.0000 0.0000 0.0000 270.9183 64.0000 6.0000 0.0000 0.0000 + 181.2581 64.0000 7.0000 0.0000 0.0000 133.1438 64.0000 8.0000 0.0000 0.0000 + 98.3573 64.0000 9.0000 0.0000 0.0000 74.1912 64.0000 10.0000 0.0000 0.0000 + 1667.3895 64.0000 11.0000 0.0000 0.0000 1130.8198 64.0000 12.0000 0.0000 0.0000 + 996.7924 64.0000 13.0000 0.0000 0.0000 739.0200 64.0000 14.0000 0.0000 0.0000 + 548.3633 64.0000 15.0000 0.0000 0.0000 441.2303 64.0000 16.0000 0.0000 0.0000 + 350.0369 64.0000 17.0000 0.0000 0.0000 279.3515 64.0000 18.0000 0.0000 0.0000 + 2817.6333 64.0000 19.0000 0.0000 0.0000 2094.5326 64.0000 20.0000 0.0000 0.0000 + 1691.7052 64.0000 21.0000 0.0000 0.0000 1602.8927 64.0000 22.0000 0.0000 0.0000 + 1450.7174 64.0000 23.0000 0.0000 0.0000 1142.7015 64.0000 24.0000 0.0000 0.0000 + 1228.0426 64.0000 25.0000 0.0000 0.0000 961.5600 64.0000 26.0000 0.0000 0.0000 + 992.0673 64.0000 27.0000 0.0000 0.0000 1034.1932 64.0000 28.0000 0.0000 0.0000 + 793.8763 64.0000 29.0000 0.0000 0.0000 783.5114 64.0000 30.0000 0.0000 0.0000 + 939.3652 64.0000 31.0000 0.0000 0.0000 789.6369 64.0000 32.0000 0.0000 0.0000 + 645.9849 64.0000 33.0000 0.0000 0.0000 565.2991 64.0000 34.0000 0.0000 0.0000 + 482.3172 64.0000 35.0000 0.0000 0.0000 409.9803 64.0000 36.0000 0.0000 0.0000 + 3135.9242 64.0000 37.0000 0.0000 0.0000 2507.7589 64.0000 38.0000 0.0000 0.0000 + 2113.2076 64.0000 39.0000 0.0000 0.0000 1854.4837 64.0000 40.0000 0.0000 0.0000 + 1665.4372 64.0000 41.0000 0.0000 0.0000 1253.0730 64.0000 42.0000 0.0000 0.0000 + 1411.6759 64.0000 43.0000 0.0000 0.0000 1045.0617 64.0000 44.0000 0.0000 0.0000 + 1140.4525 64.0000 45.0000 0.0000 0.0000 1047.1279 64.0000 46.0000 0.0000 0.0000 + 880.5313 64.0000 47.0000 0.0000 0.0000 911.0796 64.0000 48.0000 0.0000 0.0000 + 1179.9720 64.0000 49.0000 0.0000 0.0000 1048.0976 64.0000 50.0000 0.0000 0.0000 + 899.5162 64.0000 51.0000 0.0000 0.0000 816.3047 64.0000 52.0000 0.0000 0.0000 + 720.9847 64.0000 53.0000 0.0000 0.0000 634.2163 64.0000 54.0000 0.0000 0.0000 + 3823.8426 64.0000 55.0000 0.0000 0.0000 3243.6561 64.0000 56.0000 0.0000 0.0000 + 2740.5478 64.0000 57.0000 0.0000 0.0000 1070.9597 64.0000 58.0000 0.0000 2.7991 + 2838.1357 64.0000 59.0000 0.0000 0.0000 2705.6826 64.0000 60.0000 0.0000 0.0000 + 2632.6657 64.0000 61.0000 0.0000 0.0000 2566.0607 64.0000 62.0000 0.0000 0.0000 + 2506.8352 64.0000 63.0000 0.0000 0.0000 1891.6719 64.0000 64.0000 0.0000 0.0000 + 70.1794 65.0000 1.0000 0.0000 0.9118 42.3679 65.0000 2.0000 0.0000 0.0000 + 1802.3852 65.0000 3.0000 0.0000 0.0000 808.4866 65.0000 4.0000 0.0000 0.0000 + 482.7977 65.0000 5.0000 0.0000 0.0000 299.8469 65.0000 6.0000 0.0000 0.0000 + 197.6234 65.0000 7.0000 0.0000 0.0000 143.7754 65.0000 8.0000 0.0000 0.0000 + 105.3970 65.0000 9.0000 0.0000 0.0000 79.0484 65.0000 10.0000 0.0000 0.0000 + 2124.0831 65.0000 11.0000 0.0000 0.0000 1343.3651 65.0000 12.0000 0.0000 0.0000 + 1162.1560 65.0000 13.0000 0.0000 0.0000 839.1776 65.0000 14.0000 0.0000 0.0000 + 610.8318 65.0000 15.0000 0.0000 0.0000 486.2319 65.0000 16.0000 0.0000 0.0000 + 381.9584 65.0000 17.0000 0.0000 0.0000 302.4149 65.0000 18.0000 0.0000 0.0000 + 3687.6305 65.0000 19.0000 0.0000 0.0000 2564.1443 65.0000 20.0000 0.0000 0.0000 + 2045.4927 65.0000 21.0000 0.0000 0.0000 1922.8302 65.0000 22.0000 0.0000 0.0000 + 1730.9890 65.0000 23.0000 0.0000 0.0000 1368.0049 65.0000 24.0000 0.0000 0.0000 + 1454.1614 65.0000 25.0000 0.0000 0.0000 1140.8713 65.0000 26.0000 0.0000 0.0000 + 1157.9011 65.0000 27.0000 0.0000 0.0000 1213.2014 65.0000 28.0000 0.0000 0.0000 + 935.7544 65.0000 29.0000 0.0000 0.0000 903.5991 65.0000 30.0000 0.0000 0.0000 + 1090.0939 65.0000 31.0000 0.0000 0.0000 896.4651 65.0000 32.0000 0.0000 0.0000 + 721.2042 65.0000 33.0000 0.0000 0.0000 625.4480 65.0000 34.0000 0.0000 0.0000 + 528.9381 65.0000 35.0000 0.0000 0.0000 446.2084 65.0000 36.0000 0.0000 0.0000 + 4098.5678 65.0000 37.0000 0.0000 0.0000 3083.9899 65.0000 38.0000 0.0000 0.0000 + 2548.5911 65.0000 39.0000 0.0000 0.0000 2211.4907 65.0000 40.0000 0.0000 0.0000 + 1973.5648 65.0000 41.0000 0.0000 0.0000 1470.5265 65.0000 42.0000 0.0000 0.0000 + 1663.1347 65.0000 43.0000 0.0000 0.0000 1217.3511 65.0000 44.0000 0.0000 0.0000 + 1323.5223 65.0000 45.0000 0.0000 0.0000 1209.6847 65.0000 46.0000 0.0000 0.0000 + 1025.6835 65.0000 47.0000 0.0000 0.0000 1046.5789 65.0000 48.0000 0.0000 0.0000 + 1375.6067 65.0000 49.0000 0.0000 0.0000 1197.5597 65.0000 50.0000 0.0000 0.0000 + 1011.2975 65.0000 51.0000 0.0000 0.0000 909.9127 65.0000 52.0000 0.0000 0.0000 + 796.6995 65.0000 53.0000 0.0000 0.0000 695.4350 65.0000 54.0000 0.0000 0.0000 + 5022.6967 65.0000 55.0000 0.0000 0.0000 4030.0910 65.0000 56.0000 0.0000 0.0000 + 3335.7435 65.0000 57.0000 0.0000 0.0000 1209.6287 65.0000 58.0000 0.0000 2.7991 + 3507.1716 65.0000 59.0000 0.0000 0.0000 3325.0797 65.0000 60.0000 0.0000 0.0000 + 3231.3241 65.0000 61.0000 0.0000 0.0000 3146.1740 65.0000 62.0000 0.0000 0.0000 + 3070.3853 65.0000 63.0000 0.0000 0.0000 2276.2532 65.0000 64.0000 0.0000 0.0000 + 2851.6677 65.0000 65.0000 0.0000 0.0000 67.9580 66.0000 1.0000 0.0000 0.9118 + 41.1622 66.0000 2.0000 0.0000 0.0000 1720.7353 66.0000 3.0000 0.0000 0.0000 + 775.7718 66.0000 4.0000 0.0000 0.0000 465.2439 66.0000 5.0000 0.0000 0.0000 + 289.8455 66.0000 6.0000 0.0000 0.0000 191.4550 66.0000 7.0000 0.0000 0.0000 + 139.4937 66.0000 8.0000 0.0000 0.0000 102.3811 66.0000 9.0000 0.0000 0.0000 + 76.8557 66.0000 10.0000 0.0000 0.0000 2027.8568 66.0000 11.0000 0.0000 0.0000 + 1287.2471 66.0000 12.0000 0.0000 0.0000 1116.0341 66.0000 13.0000 0.0000 0.0000 + 808.3322 66.0000 14.0000 0.0000 0.0000 589.8941 66.0000 15.0000 0.0000 0.0000 + 470.2977 66.0000 16.0000 0.0000 0.0000 369.9833 66.0000 17.0000 0.0000 0.0000 + 293.2905 66.0000 18.0000 0.0000 0.0000 3526.9705 66.0000 19.0000 0.0000 0.0000 + 2451.7734 66.0000 20.0000 0.0000 0.0000 1957.4581 66.0000 21.0000 0.0000 0.0000 + 1841.5883 66.0000 22.0000 0.0000 0.0000 1658.7019 66.0000 23.0000 0.0000 0.0000 + 1310.7538 66.0000 24.0000 0.0000 0.0000 1394.4853 66.0000 25.0000 0.0000 0.0000 + 1094.0016 66.0000 26.0000 0.0000 0.0000 1111.8174 66.0000 27.0000 0.0000 0.0000 + 1164.2755 66.0000 28.0000 0.0000 0.0000 897.8373 66.0000 29.0000 0.0000 0.0000 + 868.7577 66.0000 30.0000 0.0000 0.0000 1047.5640 66.0000 31.0000 0.0000 0.0000 + 863.5860 66.0000 32.0000 0.0000 0.0000 696.2760 66.0000 33.0000 0.0000 0.0000 + 604.6048 66.0000 34.0000 0.0000 0.0000 511.9716 66.0000 35.0000 0.0000 0.0000 + 432.3893 66.0000 36.0000 0.0000 0.0000 3921.6962 66.0000 37.0000 0.0000 0.0000 + 2948.5688 66.0000 38.0000 0.0000 0.0000 2440.1762 66.0000 39.0000 0.0000 0.0000 + 2119.4908 66.0000 40.0000 0.0000 0.0000 1892.7858 66.0000 41.0000 0.0000 0.0000 + 1411.7363 66.0000 42.0000 0.0000 0.0000 1596.2074 66.0000 43.0000 0.0000 0.0000 + 1169.6785 66.0000 44.0000 0.0000 0.0000 1271.8937 66.0000 45.0000 0.0000 0.0000 + 1163.0374 66.0000 46.0000 0.0000 0.0000 985.5697 66.0000 47.0000 0.0000 0.0000 + 1006.8382 66.0000 48.0000 0.0000 0.0000 1321.5257 66.0000 49.0000 0.0000 0.0000 + 1152.7975 66.0000 50.0000 0.0000 0.0000 975.4435 66.0000 51.0000 0.0000 0.0000 + 878.6753 66.0000 52.0000 0.0000 0.0000 770.2908 66.0000 53.0000 0.0000 0.0000 + 673.1394 66.0000 54.0000 0.0000 0.0000 4812.3323 66.0000 55.0000 0.0000 0.0000 + 3852.2949 66.0000 56.0000 0.0000 0.0000 3192.4039 66.0000 57.0000 0.0000 0.0000 + 1166.1633 66.0000 58.0000 0.0000 2.7991 3355.8765 66.0000 59.0000 0.0000 0.0000 + 3179.9629 66.0000 60.0000 0.0000 0.0000 3090.4072 66.0000 61.0000 0.0000 0.0000 + 3009.0778 66.0000 62.0000 0.0000 0.0000 2936.7065 66.0000 63.0000 0.0000 0.0000 + 2181.0675 66.0000 64.0000 0.0000 0.0000 2729.9739 66.0000 65.0000 0.0000 0.0000 + 2617.3310 66.0000 66.0000 0.0000 0.0000 72.2203 67.0000 1.0000 0.0000 0.9118 + 43.5711 67.0000 2.0000 0.0000 0.0000 1704.9679 67.0000 3.0000 0.0000 0.0000 + 811.3688 67.0000 4.0000 0.0000 0.0000 491.8875 67.0000 5.0000 0.0000 0.0000 + 307.5198 67.0000 6.0000 0.0000 0.0000 203.1554 67.0000 7.0000 0.0000 0.0000 + 147.8355 67.0000 8.0000 0.0000 0.0000 108.3076 67.0000 9.0000 0.0000 0.0000 + 81.1416 67.0000 10.0000 0.0000 0.0000 2016.3392 67.0000 11.0000 0.0000 0.0000 + 1337.4783 67.0000 12.0000 0.0000 0.0000 1167.9358 67.0000 13.0000 0.0000 0.0000 + 854.0740 67.0000 14.0000 0.0000 0.0000 625.9394 67.0000 15.0000 0.0000 0.0000 + 499.4576 67.0000 16.0000 0.0000 0.0000 392.9385 67.0000 17.0000 0.0000 0.0000 + 311.2487 67.0000 18.0000 0.0000 0.0000 3419.5160 67.0000 19.0000 0.0000 0.0000 + 2501.4164 67.0000 20.0000 0.0000 0.0000 2012.0352 67.0000 21.0000 0.0000 0.0000 + 1899.2044 67.0000 22.0000 0.0000 0.0000 1714.8635 67.0000 23.0000 0.0000 0.0000 + 1350.2932 67.0000 24.0000 0.0000 0.0000 1446.6020 67.0000 25.0000 0.0000 0.0000 + 1131.7710 67.0000 26.0000 0.0000 0.0000 1161.4905 67.0000 27.0000 0.0000 0.0000 + 1213.9348 67.0000 28.0000 0.0000 0.0000 931.6793 67.0000 29.0000 0.0000 0.0000 + 912.0082 67.0000 30.0000 0.0000 0.0000 1096.4450 67.0000 31.0000 0.0000 0.0000 + 911.7223 67.0000 32.0000 0.0000 0.0000 738.2129 67.0000 33.0000 0.0000 0.0000 + 641.7452 67.0000 34.0000 0.0000 0.0000 543.7162 67.0000 35.0000 0.0000 0.0000 + 459.1205 67.0000 36.0000 0.0000 0.0000 3800.8304 67.0000 37.0000 0.0000 0.0000 + 2997.0212 67.0000 38.0000 0.0000 0.0000 2507.3572 67.0000 39.0000 0.0000 0.0000 + 2190.0272 67.0000 40.0000 0.0000 0.0000 1960.5194 67.0000 41.0000 0.0000 0.0000 + 1466.8017 67.0000 42.0000 0.0000 0.0000 1655.9466 67.0000 43.0000 0.0000 0.0000 + 1218.0651 67.0000 44.0000 0.0000 0.0000 1329.1426 67.0000 45.0000 0.0000 0.0000 + 1217.6582 67.0000 46.0000 0.0000 0.0000 1025.3902 67.0000 47.0000 0.0000 0.0000 + 1056.3718 67.0000 48.0000 0.0000 0.0000 1377.8901 67.0000 49.0000 0.0000 0.0000 + 1213.1043 67.0000 50.0000 0.0000 0.0000 1031.8071 67.0000 51.0000 0.0000 0.0000 + 931.1239 67.0000 52.0000 0.0000 0.0000 817.3220 67.0000 53.0000 0.0000 0.0000 + 714.6477 67.0000 54.0000 0.0000 0.0000 4632.8428 67.0000 55.0000 0.0000 0.0000 + 3885.5093 67.0000 56.0000 0.0000 0.0000 3259.9132 67.0000 57.0000 0.0000 0.0000 + 1230.5989 67.0000 58.0000 0.0000 2.7991 3391.5411 67.0000 59.0000 0.0000 0.0000 + 3229.8168 67.0000 60.0000 0.0000 0.0000 3141.6098 67.0000 61.0000 0.0000 0.0000 + 3061.2537 67.0000 62.0000 0.0000 0.0000 2989.7660 67.0000 63.0000 0.0000 0.0000 + 2237.9026 67.0000 64.0000 0.0000 0.0000 2724.3602 67.0000 65.0000 0.0000 0.0000 + 2606.5136 67.0000 66.0000 0.0000 0.0000 2664.1668 67.0000 67.0000 0.0000 0.0000 + 70.7154 68.0000 1.0000 0.0000 0.9118 42.6658 68.0000 2.0000 0.0000 0.0000 + 1664.7700 68.0000 3.0000 0.0000 0.0000 793.6877 68.0000 4.0000 0.0000 0.0000 + 481.4385 68.0000 5.0000 0.0000 0.0000 301.0692 68.0000 6.0000 0.0000 0.0000 + 198.9185 68.0000 7.0000 0.0000 0.0000 144.7587 68.0000 8.0000 0.0000 0.0000 + 106.0552 68.0000 9.0000 0.0000 0.0000 79.4539 68.0000 10.0000 0.0000 0.0000 + 1968.9928 68.0000 11.0000 0.0000 0.0000 1307.9814 68.0000 12.0000 0.0000 0.0000 + 1142.5656 68.0000 13.0000 0.0000 0.0000 835.8969 68.0000 14.0000 0.0000 0.0000 + 612.7809 68.0000 15.0000 0.0000 0.0000 489.0107 68.0000 16.0000 0.0000 0.0000 + 384.7496 68.0000 17.0000 0.0000 0.0000 304.7748 68.0000 18.0000 0.0000 0.0000 + 3337.2227 68.0000 19.0000 0.0000 0.0000 2444.6758 68.0000 20.0000 0.0000 0.0000 + 1966.9050 68.0000 21.0000 0.0000 0.0000 1856.8743 68.0000 22.0000 0.0000 0.0000 + 1676.8129 68.0000 23.0000 0.0000 0.0000 1320.1912 68.0000 24.0000 0.0000 0.0000 + 1414.7048 68.0000 25.0000 0.0000 0.0000 1106.7246 68.0000 26.0000 0.0000 0.0000 + 1136.1897 68.0000 27.0000 0.0000 0.0000 1187.3873 68.0000 28.0000 0.0000 0.0000 + 911.1707 68.0000 29.0000 0.0000 0.0000 892.3332 68.0000 30.0000 0.0000 0.0000 + 1072.6768 68.0000 31.0000 0.0000 0.0000 892.3017 68.0000 32.0000 0.0000 0.0000 + 722.6654 68.0000 33.0000 0.0000 0.0000 628.2934 68.0000 34.0000 0.0000 0.0000 + 532.3641 68.0000 35.0000 0.0000 0.0000 449.5592 68.0000 36.0000 0.0000 0.0000 + 3709.4297 68.0000 37.0000 0.0000 0.0000 2928.7164 68.0000 38.0000 0.0000 0.0000 + 2451.1775 68.0000 39.0000 0.0000 0.0000 2141.4202 68.0000 40.0000 0.0000 0.0000 + 1917.2203 68.0000 41.0000 0.0000 0.0000 1434.6130 68.0000 42.0000 0.0000 0.0000 + 1619.5186 68.0000 43.0000 0.0000 0.0000 1191.4716 68.0000 44.0000 0.0000 0.0000 + 1300.2637 68.0000 45.0000 0.0000 0.0000 1191.2962 68.0000 46.0000 0.0000 0.0000 + 1002.9797 68.0000 47.0000 0.0000 0.0000 1033.6009 68.0000 48.0000 0.0000 0.0000 + 1347.8497 68.0000 49.0000 0.0000 0.0000 1187.1040 68.0000 50.0000 0.0000 0.0000 + 1009.9583 68.0000 51.0000 0.0000 0.0000 911.5137 68.0000 52.0000 0.0000 0.0000 + 800.1918 68.0000 53.0000 0.0000 0.0000 699.7231 68.0000 54.0000 0.0000 0.0000 + 4520.9645 68.0000 55.0000 0.0000 0.0000 3796.0924 68.0000 56.0000 0.0000 0.0000 + 3186.2327 68.0000 57.0000 0.0000 0.0000 1204.4185 68.0000 58.0000 0.0000 2.7991 + 3313.8879 68.0000 59.0000 0.0000 0.0000 3156.1992 68.0000 60.0000 0.0000 0.0000 + 3070.0842 68.0000 61.0000 0.0000 0.0000 2991.6275 68.0000 62.0000 0.0000 0.0000 + 2921.8310 68.0000 63.0000 0.0000 0.0000 2187.7803 68.0000 64.0000 0.0000 0.0000 + 2661.1461 68.0000 65.0000 0.0000 0.0000 2546.1249 68.0000 66.0000 0.0000 0.0000 + 2603.9653 68.0000 67.0000 0.0000 0.0000 2545.1713 68.0000 68.0000 0.0000 0.0000 + 69.3791 69.0000 1.0000 0.0000 0.9118 41.8727 69.0000 2.0000 0.0000 0.0000 + 1627.0951 69.0000 3.0000 0.0000 0.0000 777.4602 69.0000 4.0000 0.0000 0.0000 + 471.9860 69.0000 5.0000 0.0000 0.0000 295.3014 69.0000 6.0000 0.0000 0.0000 + 195.1630 69.0000 7.0000 0.0000 0.0000 142.0478 69.0000 8.0000 0.0000 0.0000 + 104.0800 69.0000 9.0000 0.0000 0.0000 77.9788 69.0000 10.0000 0.0000 0.0000 + 1924.6593 69.0000 11.0000 0.0000 0.0000 1280.7911 69.0000 12.0000 0.0000 0.0000 + 1119.3391 69.0000 13.0000 0.0000 0.0000 819.4280 69.0000 14.0000 0.0000 0.0000 + 600.9701 69.0000 15.0000 0.0000 0.0000 479.6909 69.0000 16.0000 0.0000 0.0000 + 377.4873 69.0000 17.0000 0.0000 0.0000 299.0622 69.0000 18.0000 0.0000 0.0000 + 3259.9368 69.0000 19.0000 0.0000 0.0000 2391.9954 69.0000 20.0000 0.0000 0.0000 + 1925.1263 69.0000 21.0000 0.0000 0.0000 1817.7881 69.0000 22.0000 0.0000 0.0000 + 1641.7354 69.0000 23.0000 0.0000 0.0000 1292.4384 69.0000 24.0000 0.0000 0.0000 + 1385.3712 69.0000 25.0000 0.0000 0.0000 1083.6957 69.0000 26.0000 0.0000 0.0000 + 1113.0259 69.0000 27.0000 0.0000 0.0000 1163.0369 69.0000 28.0000 0.0000 0.0000 + 892.3516 69.0000 29.0000 0.0000 0.0000 874.3961 69.0000 30.0000 0.0000 0.0000 + 1050.9705 69.0000 31.0000 0.0000 0.0000 874.7132 69.0000 32.0000 0.0000 0.0000 + 708.6950 69.0000 33.0000 0.0000 0.0000 616.2658 69.0000 34.0000 0.0000 0.0000 + 522.2655 69.0000 35.0000 0.0000 0.0000 441.0932 69.0000 36.0000 0.0000 0.0000 + 3623.6511 69.0000 37.0000 0.0000 0.0000 2865.2613 69.0000 38.0000 0.0000 0.0000 + 2399.2487 69.0000 39.0000 0.0000 0.0000 2096.6400 69.0000 40.0000 0.0000 0.0000 + 1877.4174 69.0000 41.0000 0.0000 0.0000 1405.1352 69.0000 42.0000 0.0000 0.0000 + 1586.1100 69.0000 43.0000 0.0000 0.0000 1167.1878 69.0000 44.0000 0.0000 0.0000 + 1273.9026 69.0000 45.0000 0.0000 0.0000 1167.2707 69.0000 46.0000 0.0000 0.0000 + 982.5210 69.0000 47.0000 0.0000 0.0000 1012.8904 69.0000 48.0000 0.0000 0.0000 + 1320.3887 69.0000 49.0000 0.0000 0.0000 1163.4988 69.0000 50.0000 0.0000 0.0000 + 990.2588 69.0000 51.0000 0.0000 0.0000 893.9080 69.0000 52.0000 0.0000 0.0000 + 784.8841 69.0000 53.0000 0.0000 0.0000 686.4452 69.0000 54.0000 0.0000 0.0000 + 4415.9694 69.0000 55.0000 0.0000 0.0000 3712.8812 69.0000 56.0000 0.0000 0.0000 + 3118.0001 69.0000 57.0000 0.0000 0.0000 1180.7776 69.0000 58.0000 0.0000 2.7991 + 3241.7266 69.0000 59.0000 0.0000 0.0000 3087.8489 69.0000 60.0000 0.0000 0.0000 + 3003.6922 69.0000 61.0000 0.0000 0.0000 2927.0118 69.0000 62.0000 0.0000 0.0000 + 2858.7977 69.0000 63.0000 0.0000 0.0000 2141.5264 69.0000 64.0000 0.0000 0.0000 + 2602.3122 69.0000 65.0000 0.0000 0.0000 2489.9643 69.0000 66.0000 0.0000 0.0000 + 2548.1802 69.0000 67.0000 0.0000 0.0000 2490.6989 69.0000 68.0000 0.0000 0.0000 + 2437.4539 69.0000 69.0000 0.0000 0.0000 68.4949 70.0000 1.0000 0.0000 0.9118 + 41.2866 70.0000 2.0000 0.0000 0.0000 1612.7581 70.0000 3.0000 0.0000 0.0000 + 769.3983 70.0000 4.0000 0.0000 0.0000 466.6099 70.0000 5.0000 0.0000 0.0000 + 291.6817 70.0000 6.0000 0.0000 0.0000 192.6324 70.0000 7.0000 0.0000 0.0000 + 140.1300 70.0000 8.0000 0.0000 0.0000 102.6251 70.0000 9.0000 0.0000 0.0000 + 76.8581 70.0000 10.0000 0.0000 0.0000 1907.5332 70.0000 11.0000 0.0000 0.0000 + 1267.8866 70.0000 12.0000 0.0000 0.0000 1107.5215 70.0000 13.0000 0.0000 0.0000 + 810.1845 70.0000 14.0000 0.0000 0.0000 593.7911 70.0000 15.0000 0.0000 0.0000 + 473.7390 70.0000 16.0000 0.0000 0.0000 372.6267 70.0000 17.0000 0.0000 0.0000 + 295.0836 70.0000 18.0000 0.0000 0.0000 3231.7117 70.0000 19.0000 0.0000 0.0000 + 2369.0958 70.0000 20.0000 0.0000 0.0000 1906.2802 70.0000 21.0000 0.0000 0.0000 + 1799.6377 70.0000 22.0000 0.0000 0.0000 1625.1430 70.0000 23.0000 0.0000 0.0000 + 1279.3493 70.0000 24.0000 0.0000 0.0000 1371.1198 70.0000 25.0000 0.0000 0.0000 + 1072.4959 70.0000 26.0000 0.0000 0.0000 1101.2182 70.0000 27.0000 0.0000 0.0000 + 1150.8553 70.0000 28.0000 0.0000 0.0000 882.9919 70.0000 29.0000 0.0000 0.0000 + 864.8546 70.0000 30.0000 0.0000 0.0000 1039.6601 70.0000 31.0000 0.0000 0.0000 + 864.7996 70.0000 32.0000 0.0000 0.0000 700.2718 70.0000 33.0000 0.0000 0.0000 + 608.7174 70.0000 34.0000 0.0000 0.0000 515.6649 70.0000 35.0000 0.0000 0.0000 + 435.3535 70.0000 36.0000 0.0000 0.0000 3592.0465 70.0000 37.0000 0.0000 0.0000 + 2837.9423 70.0000 38.0000 0.0000 0.0000 2375.4679 70.0000 39.0000 0.0000 0.0000 + 2075.3417 70.0000 40.0000 0.0000 0.0000 1858.0353 70.0000 41.0000 0.0000 0.0000 + 1390.2059 70.0000 42.0000 0.0000 0.0000 1569.4426 70.0000 43.0000 0.0000 0.0000 + 1154.5209 70.0000 44.0000 0.0000 0.0000 1260.0764 70.0000 45.0000 0.0000 0.0000 + 1154.4639 70.0000 46.0000 0.0000 0.0000 971.8093 70.0000 47.0000 0.0000 0.0000 + 1001.6214 70.0000 48.0000 0.0000 0.0000 1306.2023 70.0000 49.0000 0.0000 0.0000 + 1150.4571 70.0000 50.0000 0.0000 0.0000 978.6871 70.0000 51.0000 0.0000 0.0000 + 883.1919 70.0000 52.0000 0.0000 0.0000 775.2091 70.0000 53.0000 0.0000 0.0000 + 677.7544 70.0000 54.0000 0.0000 0.0000 4377.4766 70.0000 55.0000 0.0000 0.0000 + 3677.9606 70.0000 56.0000 0.0000 0.0000 3087.5154 70.0000 57.0000 0.0000 0.0000 + 1167.0799 70.0000 58.0000 0.0000 2.7991 3210.8489 70.0000 59.0000 0.0000 0.0000 + 3058.2277 70.0000 60.0000 0.0000 0.0000 2974.8238 70.0000 61.0000 0.0000 0.0000 + 2898.8349 70.0000 62.0000 0.0000 0.0000 2831.2344 70.0000 63.0000 0.0000 0.0000 + 2119.9794 70.0000 64.0000 0.0000 0.0000 2577.8005 70.0000 65.0000 0.0000 0.0000 + 2466.3583 70.0000 66.0000 0.0000 0.0000 2523.3630 70.0000 67.0000 0.0000 0.0000 + 2466.4143 70.0000 68.0000 0.0000 0.0000 2413.6514 70.0000 69.0000 0.0000 0.0000 + 2390.1227 70.0000 70.0000 0.0000 0.0000 58.6519 71.0000 1.0000 0.0000 0.9118 + 35.9516 71.0000 2.0000 0.0000 0.0000 1294.7583 71.0000 3.0000 0.0000 0.0000 + 634.5881 71.0000 4.0000 0.0000 0.0000 391.4652 71.0000 5.0000 0.0000 0.0000 + 247.9557 71.0000 6.0000 0.0000 0.0000 165.4184 71.0000 7.0000 0.0000 0.0000 + 121.2148 71.0000 8.0000 0.0000 0.0000 89.3405 71.0000 9.0000 0.0000 0.0000 + 67.2575 71.0000 10.0000 0.0000 0.0000 1533.2675 71.0000 11.0000 0.0000 0.0000 + 1040.1825 71.0000 12.0000 0.0000 0.0000 916.3824 71.0000 13.0000 0.0000 0.0000 + 678.5541 71.0000 14.0000 0.0000 0.0000 502.5517 71.0000 15.0000 0.0000 0.0000 + 403.6718 71.0000 16.0000 0.0000 0.0000 319.6286 71.0000 17.0000 0.0000 0.0000 + 254.5979 71.0000 18.0000 0.0000 0.0000 2592.1299 71.0000 19.0000 0.0000 0.0000 + 1925.5453 71.0000 20.0000 0.0000 0.0000 1555.3939 71.0000 21.0000 0.0000 0.0000 + 1473.4091 71.0000 22.0000 0.0000 0.0000 1333.4027 71.0000 23.0000 0.0000 0.0000 + 1049.6142 71.0000 24.0000 0.0000 0.0000 1128.5309 71.0000 25.0000 0.0000 0.0000 + 883.0217 71.0000 26.0000 0.0000 0.0000 911.4150 71.0000 27.0000 0.0000 0.0000 + 950.3278 71.0000 28.0000 0.0000 0.0000 728.8926 71.0000 29.0000 0.0000 0.0000 + 719.5241 71.0000 30.0000 0.0000 0.0000 862.9139 71.0000 31.0000 0.0000 0.0000 + 724.7513 71.0000 32.0000 0.0000 0.0000 592.0587 71.0000 33.0000 0.0000 0.0000 + 517.4576 71.0000 34.0000 0.0000 0.0000 440.8428 71.0000 35.0000 0.0000 0.0000 + 374.1402 71.0000 36.0000 0.0000 0.0000 2884.7585 71.0000 37.0000 0.0000 0.0000 + 2304.8558 71.0000 38.0000 0.0000 0.0000 1942.1387 71.0000 39.0000 0.0000 0.0000 + 1704.0440 71.0000 40.0000 0.0000 0.0000 1529.9721 71.0000 41.0000 0.0000 0.0000 + 1150.1604 71.0000 42.0000 0.0000 0.0000 1296.2701 71.0000 43.0000 0.0000 0.0000 + 958.6992 71.0000 44.0000 0.0000 0.0000 1046.7597 71.0000 45.0000 0.0000 0.0000 + 960.9128 71.0000 46.0000 0.0000 0.0000 807.4406 71.0000 47.0000 0.0000 0.0000 + 835.8310 71.0000 48.0000 0.0000 0.0000 1083.3008 71.0000 49.0000 0.0000 0.0000 + 961.8402 71.0000 50.0000 0.0000 0.0000 824.6964 71.0000 51.0000 0.0000 0.0000 + 747.7579 71.0000 52.0000 0.0000 0.0000 659.7049 71.0000 53.0000 0.0000 0.0000 + 579.5911 71.0000 54.0000 0.0000 0.0000 3519.5236 71.0000 55.0000 0.0000 0.0000 + 2980.6436 71.0000 56.0000 0.0000 0.0000 2518.2192 71.0000 57.0000 0.0000 0.0000 + 981.7531 71.0000 58.0000 0.0000 2.7991 2608.9193 71.0000 59.0000 0.0000 0.0000 + 2486.1931 71.0000 60.0000 0.0000 0.0000 2419.1164 71.0000 61.0000 0.0000 0.0000 + 2357.9439 71.0000 62.0000 0.0000 0.0000 2303.5540 71.0000 63.0000 0.0000 0.0000 + 1737.6565 71.0000 64.0000 0.0000 0.0000 2091.9380 71.0000 65.0000 0.0000 0.0000 + 2005.9243 71.0000 66.0000 0.0000 0.0000 2056.5310 71.0000 67.0000 0.0000 0.0000 + 2010.5203 71.0000 68.0000 0.0000 0.0000 1968.0474 71.0000 69.0000 0.0000 0.0000 + 1948.3102 71.0000 70.0000 0.0000 0.0000 1597.4796 71.0000 71.0000 0.0000 0.0000 + 58.8504 72.0000 1.0000 0.0000 0.9118 36.5749 72.0000 2.0000 0.0000 0.0000 + 1177.2268 72.0000 3.0000 0.0000 0.0000 607.5859 72.0000 4.0000 0.0000 0.0000 + 383.5084 72.0000 5.0000 0.0000 0.0000 246.6826 72.0000 6.0000 0.0000 0.0000 + 166.2472 72.0000 7.0000 0.0000 0.0000 122.5913 72.0000 8.0000 0.0000 0.0000 + 90.7784 72.0000 9.0000 0.0000 0.0000 68.5505 72.0000 10.0000 0.0000 0.0000 + 1398.1254 72.0000 11.0000 0.0000 0.0000 987.5239 72.0000 12.0000 0.0000 0.0000 + 880.7902 72.0000 13.0000 0.0000 0.0000 663.3314 72.0000 14.0000 0.0000 0.0000 + 497.7015 72.0000 15.0000 0.0000 0.0000 402.7947 72.0000 16.0000 0.0000 0.0000 + 321.1145 72.0000 17.0000 0.0000 0.0000 257.1651 72.0000 18.0000 0.0000 0.0000 + 2330.0562 72.0000 19.0000 0.0000 0.0000 1797.1024 72.0000 20.0000 0.0000 0.0000 + 1461.9589 72.0000 21.0000 0.0000 0.0000 1391.9848 72.0000 22.0000 0.0000 0.0000 + 1263.8660 72.0000 23.0000 0.0000 0.0000 993.6282 72.0000 24.0000 0.0000 0.0000 + 1074.7287 72.0000 25.0000 0.0000 0.0000 840.4537 72.0000 26.0000 0.0000 0.0000 + 875.4336 72.0000 27.0000 0.0000 0.0000 909.8407 72.0000 28.0000 0.0000 0.0000 + 696.4283 72.0000 29.0000 0.0000 0.0000 696.2135 72.0000 30.0000 0.0000 0.0000 + 832.3249 72.0000 31.0000 0.0000 0.0000 708.6971 72.0000 32.0000 0.0000 0.0000 + 585.4250 72.0000 33.0000 0.0000 0.0000 514.8784 72.0000 34.0000 0.0000 0.0000 + 441.3377 72.0000 35.0000 0.0000 0.0000 376.5287 72.0000 36.0000 0.0000 0.0000 + 2596.4033 72.0000 37.0000 0.0000 0.0000 2146.4040 72.0000 38.0000 0.0000 0.0000 + 1829.7515 72.0000 39.0000 0.0000 0.0000 1616.4737 72.0000 40.0000 0.0000 0.0000 + 1457.2492 72.0000 41.0000 0.0000 0.0000 1102.5669 72.0000 42.0000 0.0000 0.0000 + 1239.5201 72.0000 43.0000 0.0000 0.0000 923.4198 72.0000 44.0000 0.0000 0.0000 + 1009.7527 72.0000 45.0000 0.0000 0.0000 929.4676 72.0000 46.0000 0.0000 0.0000 + 777.7995 72.0000 47.0000 0.0000 0.0000 811.2040 72.0000 48.0000 0.0000 0.0000 + 1042.2993 72.0000 49.0000 0.0000 0.0000 936.6361 72.0000 50.0000 0.0000 0.0000 + 811.4869 72.0000 51.0000 0.0000 0.0000 740.0669 72.0000 52.0000 0.0000 0.0000 + 656.8171 72.0000 53.0000 0.0000 0.0000 580.1377 72.0000 54.0000 0.0000 0.0000 + 3160.6446 72.0000 55.0000 0.0000 0.0000 2760.9094 72.0000 56.0000 0.0000 0.0000 + 2360.9186 72.0000 57.0000 0.0000 0.0000 963.4773 72.0000 58.0000 0.0000 2.7991 + 2424.0491 72.0000 59.0000 0.0000 0.0000 2317.0514 72.0000 60.0000 0.0000 0.0000 + 2256.0584 72.0000 61.0000 0.0000 0.0000 2200.2906 72.0000 62.0000 0.0000 0.0000 + 2150.7417 72.0000 63.0000 0.0000 0.0000 1640.6567 72.0000 64.0000 0.0000 0.0000 + 1930.9949 72.0000 65.0000 0.0000 0.0000 1852.9581 72.0000 66.0000 0.0000 0.0000 + 1926.5925 72.0000 67.0000 0.0000 0.0000 1884.3048 72.0000 68.0000 0.0000 0.0000 + 1845.5050 72.0000 69.0000 0.0000 0.0000 1826.2149 72.0000 70.0000 0.0000 0.0000 + 1507.2441 72.0000 71.0000 0.0000 0.0000 1441.2394 72.0000 72.0000 0.0000 0.0000 + 54.4015 73.0000 1.0000 0.0000 0.9118 34.2834 73.0000 2.0000 0.0000 0.0000 + 1027.3577 73.0000 3.0000 0.0000 0.0000 544.4355 73.0000 4.0000 0.0000 0.0000 + 348.6285 73.0000 5.0000 0.0000 0.0000 226.7159 73.0000 6.0000 0.0000 0.0000 + 154.0696 73.0000 7.0000 0.0000 0.0000 114.2967 73.0000 8.0000 0.0000 0.0000 + 85.0814 73.0000 9.0000 0.0000 0.0000 64.5238 73.0000 10.0000 0.0000 0.0000 + 1222.0335 73.0000 11.0000 0.0000 0.0000 880.8469 73.0000 12.0000 0.0000 0.0000 + 791.4135 73.0000 13.0000 0.0000 0.0000 602.1347 73.0000 14.0000 0.0000 0.0000 + 455.6970 73.0000 15.0000 0.0000 0.0000 370.8723 73.0000 16.0000 0.0000 0.0000 + 297.2839 73.0000 17.0000 0.0000 0.0000 239.2291 73.0000 18.0000 0.0000 0.0000 + 2026.6698 73.0000 19.0000 0.0000 0.0000 1589.4883 73.0000 20.0000 0.0000 0.0000 + 1297.7826 73.0000 21.0000 0.0000 0.0000 1239.5033 73.0000 22.0000 0.0000 0.0000 + 1127.5812 73.0000 23.0000 0.0000 0.0000 886.5880 73.0000 24.0000 0.0000 0.0000 + 961.5194 73.0000 25.0000 0.0000 0.0000 752.3104 73.0000 26.0000 0.0000 0.0000 + 787.0327 73.0000 27.0000 0.0000 0.0000 816.3455 73.0000 28.0000 0.0000 0.0000 + 624.8408 73.0000 29.0000 0.0000 0.0000 628.6741 73.0000 30.0000 0.0000 0.0000 + 749.9776 73.0000 31.0000 0.0000 0.0000 643.7301 73.0000 32.0000 0.0000 0.0000 + 535.6015 73.0000 33.0000 0.0000 0.0000 473.1685 73.0000 34.0000 0.0000 0.0000 + 407.4691 73.0000 35.0000 0.0000 0.0000 349.1305 73.0000 36.0000 0.0000 0.0000 + 2260.8400 73.0000 37.0000 0.0000 0.0000 1896.9799 73.0000 38.0000 0.0000 0.0000 + 1627.2670 73.0000 39.0000 0.0000 0.0000 1443.1973 73.0000 40.0000 0.0000 0.0000 + 1304.3213 73.0000 41.0000 0.0000 0.0000 991.1657 73.0000 42.0000 0.0000 0.0000 + 1112.4511 73.0000 43.0000 0.0000 0.0000 832.8191 73.0000 44.0000 0.0000 0.0000 + 910.8426 73.0000 45.0000 0.0000 0.0000 839.8351 73.0000 46.0000 0.0000 0.0000 + 701.9284 73.0000 47.0000 0.0000 0.0000 734.5659 73.0000 48.0000 0.0000 0.0000 + 938.7702 73.0000 49.0000 0.0000 0.0000 849.2579 73.0000 50.0000 0.0000 0.0000 + 740.5101 73.0000 51.0000 0.0000 0.0000 677.9430 73.0000 52.0000 0.0000 0.0000 + 604.1918 73.0000 53.0000 0.0000 0.0000 535.7773 73.0000 54.0000 0.0000 0.0000 + 2751.6509 73.0000 55.0000 0.0000 0.0000 2434.4207 73.0000 56.0000 0.0000 0.0000 + 2094.8531 73.0000 57.0000 0.0000 0.0000 878.1098 73.0000 58.0000 0.0000 2.7991 + 2141.7667 73.0000 59.0000 0.0000 0.0000 2049.6125 73.0000 60.0000 0.0000 0.0000 + 1996.2879 73.0000 61.0000 0.0000 0.0000 1947.4669 73.0000 62.0000 0.0000 0.0000 + 1904.1085 73.0000 63.0000 0.0000 0.0000 1462.3131 73.0000 64.0000 0.0000 0.0000 + 1702.6705 73.0000 65.0000 0.0000 0.0000 1635.5752 73.0000 66.0000 0.0000 0.0000 + 1708.4912 73.0000 67.0000 0.0000 0.0000 1671.3110 73.0000 68.0000 0.0000 0.0000 + 1637.3225 73.0000 69.0000 0.0000 0.0000 1619.7710 73.0000 70.0000 0.0000 0.0000 + 1342.8697 73.0000 71.0000 0.0000 0.0000 1292.5836 73.0000 72.0000 0.0000 0.0000 + 1163.8241 73.0000 73.0000 0.0000 0.0000 46.4813 74.0000 1.0000 0.0000 0.9118 + 29.8206 74.0000 2.0000 0.0000 0.0000 842.4123 74.0000 3.0000 0.0000 0.0000 + 451.9861 74.0000 4.0000 0.0000 0.0000 292.9015 74.0000 5.0000 0.0000 0.0000 + 192.5984 74.0000 6.0000 0.0000 0.0000 132.1410 74.0000 7.0000 0.0000 0.0000 + 98.7666 74.0000 8.0000 0.0000 0.0000 74.0309 74.0000 9.0000 0.0000 0.0000 + 56.4767 74.0000 10.0000 0.0000 0.0000 1002.9508 74.0000 11.0000 0.0000 0.0000 + 729.3352 74.0000 12.0000 0.0000 0.0000 658.7471 74.0000 13.0000 0.0000 0.0000 + 505.1890 74.0000 14.0000 0.0000 0.0000 385.4109 74.0000 15.0000 0.0000 0.0000 + 315.5632 74.0000 16.0000 0.0000 0.0000 254.5287 74.0000 17.0000 0.0000 0.0000 + 206.0286 74.0000 18.0000 0.0000 0.0000 1664.4321 74.0000 19.0000 0.0000 0.0000 + 1311.7641 74.0000 20.0000 0.0000 0.0000 1072.8050 74.0000 21.0000 0.0000 0.0000 + 1026.9214 74.0000 22.0000 0.0000 0.0000 935.3859 74.0000 23.0000 0.0000 0.0000 + 736.5063 74.0000 24.0000 0.0000 0.0000 799.1758 74.0000 25.0000 0.0000 0.0000 + 626.3380 74.0000 26.0000 0.0000 0.0000 656.2260 74.0000 27.0000 0.0000 0.0000 + 679.6314 74.0000 28.0000 0.0000 0.0000 521.0822 74.0000 29.0000 0.0000 0.0000 + 525.8894 74.0000 30.0000 0.0000 0.0000 626.2203 74.0000 31.0000 0.0000 0.0000 + 540.6984 74.0000 32.0000 0.0000 0.0000 452.7837 74.0000 33.0000 0.0000 0.0000 + 401.8429 74.0000 34.0000 0.0000 0.0000 347.7963 74.0000 35.0000 0.0000 0.0000 + 299.4880 74.0000 36.0000 0.0000 0.0000 1858.7683 74.0000 37.0000 0.0000 0.0000 + 1565.9413 74.0000 38.0000 0.0000 0.0000 1347.8163 74.0000 39.0000 0.0000 0.0000 + 1198.3202 74.0000 40.0000 0.0000 0.0000 1085.0878 74.0000 41.0000 0.0000 0.0000 + 827.8625 74.0000 42.0000 0.0000 0.0000 927.7407 74.0000 43.0000 0.0000 0.0000 + 697.6346 74.0000 44.0000 0.0000 0.0000 762.2660 74.0000 45.0000 0.0000 0.0000 + 703.7619 74.0000 46.0000 0.0000 0.0000 588.7029 74.0000 47.0000 0.0000 0.0000 + 616.6410 74.0000 48.0000 0.0000 0.0000 784.7096 74.0000 49.0000 0.0000 0.0000 + 712.9494 74.0000 50.0000 0.0000 0.0000 624.9010 74.0000 51.0000 0.0000 0.0000 + 574.1584 74.0000 52.0000 0.0000 0.0000 513.8315 74.0000 53.0000 0.0000 0.0000 + 457.5853 74.0000 54.0000 0.0000 0.0000 2263.9013 74.0000 55.0000 0.0000 0.0000 + 2008.7751 74.0000 56.0000 0.0000 0.0000 1733.9129 74.0000 57.0000 0.0000 0.0000 + 740.6863 74.0000 58.0000 0.0000 2.7991 1769.4139 74.0000 59.0000 0.0000 0.0000 + 1693.8988 74.0000 60.0000 0.0000 0.0000 1650.0004 74.0000 61.0000 0.0000 0.0000 + 1609.7798 74.0000 62.0000 0.0000 0.0000 1574.0661 74.0000 63.0000 0.0000 0.0000 + 1214.4448 74.0000 64.0000 0.0000 0.0000 1407.8390 74.0000 65.0000 0.0000 0.0000 + 1353.3433 74.0000 66.0000 0.0000 0.0000 1413.2821 74.0000 67.0000 0.0000 0.0000 + 1382.5761 74.0000 68.0000 0.0000 0.0000 1354.5779 74.0000 69.0000 0.0000 0.0000 + 1339.7711 74.0000 70.0000 0.0000 0.0000 1114.3056 74.0000 71.0000 0.0000 0.0000 + 1076.3807 74.0000 72.0000 0.0000 0.0000 971.9524 74.0000 73.0000 0.0000 0.0000 + 814.3622 74.0000 74.0000 0.0000 0.0000 47.4814 75.0000 1.0000 0.0000 0.9118 + 30.5492 75.0000 2.0000 0.0000 0.0000 840.3029 75.0000 3.0000 0.0000 0.0000 + 456.8687 75.0000 4.0000 0.0000 0.0000 297.6936 75.0000 5.0000 0.0000 0.0000 + 196.4073 75.0000 6.0000 0.0000 0.0000 135.0406 75.0000 7.0000 0.0000 0.0000 + 101.0669 75.0000 8.0000 0.0000 0.0000 75.8337 75.0000 9.0000 0.0000 0.0000 + 57.8970 75.0000 10.0000 0.0000 0.0000 1001.1833 75.0000 11.0000 0.0000 0.0000 + 735.6553 75.0000 12.0000 0.0000 0.0000 666.5308 75.0000 13.0000 0.0000 0.0000 + 513.2145 75.0000 14.0000 0.0000 0.0000 392.6604 75.0000 15.0000 0.0000 0.0000 + 322.0022 75.0000 16.0000 0.0000 0.0000 260.0805 75.0000 17.0000 0.0000 0.0000 + 210.7497 75.0000 18.0000 0.0000 0.0000 1656.3829 75.0000 19.0000 0.0000 0.0000 + 1317.2961 75.0000 20.0000 0.0000 0.0000 1079.3168 75.0000 21.0000 0.0000 0.0000 + 1034.5489 75.0000 22.0000 0.0000 0.0000 943.1423 75.0000 23.0000 0.0000 0.0000 + 742.3839 75.0000 24.0000 0.0000 0.0000 806.7845 75.0000 25.0000 0.0000 0.0000 + 632.2088 75.0000 26.0000 0.0000 0.0000 663.8871 75.0000 27.0000 0.0000 0.0000 + 687.0143 75.0000 28.0000 0.0000 0.0000 526.4859 75.0000 29.0000 0.0000 0.0000 + 532.9962 75.0000 30.0000 0.0000 0.0000 634.1662 75.0000 31.0000 0.0000 0.0000 + 549.3281 75.0000 32.0000 0.0000 0.0000 461.1531 75.0000 33.0000 0.0000 0.0000 + 409.8108 75.0000 34.0000 0.0000 0.0000 355.1378 75.0000 35.0000 0.0000 0.0000 + 306.1306 75.0000 36.0000 0.0000 0.0000 1850.6131 75.0000 37.0000 0.0000 0.0000 + 1571.6863 75.0000 38.0000 0.0000 0.0000 1356.8533 75.0000 39.0000 0.0000 0.0000 + 1208.4737 75.0000 40.0000 0.0000 0.0000 1095.4282 75.0000 41.0000 0.0000 0.0000 + 837.0708 75.0000 42.0000 0.0000 0.0000 937.5301 75.0000 43.0000 0.0000 0.0000 + 706.2358 75.0000 44.0000 0.0000 0.0000 771.9567 75.0000 45.0000 0.0000 0.0000 + 713.1846 75.0000 46.0000 0.0000 0.0000 595.9980 75.0000 47.0000 0.0000 0.0000 + 625.4199 75.0000 48.0000 0.0000 0.0000 794.2301 75.0000 49.0000 0.0000 0.0000 + 723.6726 75.0000 50.0000 0.0000 0.0000 635.8161 75.0000 51.0000 0.0000 0.0000 + 584.9270 75.0000 52.0000 0.0000 0.0000 524.1275 75.0000 53.0000 0.0000 0.0000 + 467.2642 75.0000 54.0000 0.0000 0.0000 2253.5037 75.0000 55.0000 0.0000 0.0000 + 2013.4740 75.0000 56.0000 0.0000 0.0000 1743.3791 75.0000 57.0000 0.0000 0.0000 + 753.1369 75.0000 58.0000 0.0000 2.7991 1775.3357 75.0000 59.0000 0.0000 0.0000 + 1700.5706 75.0000 60.0000 0.0000 0.0000 1656.7768 75.0000 61.0000 0.0000 0.0000 + 1616.6266 75.0000 62.0000 0.0000 0.0000 1580.9835 75.0000 63.0000 0.0000 0.0000 + 1223.4224 75.0000 64.0000 0.0000 0.0000 1410.5904 75.0000 65.0000 0.0000 0.0000 + 1356.7115 75.0000 66.0000 0.0000 0.0000 1420.7081 75.0000 67.0000 0.0000 0.0000 + 1389.9934 75.0000 68.0000 0.0000 0.0000 1362.0334 75.0000 69.0000 0.0000 0.0000 + 1346.9951 75.0000 70.0000 0.0000 0.0000 1122.5706 75.0000 71.0000 0.0000 0.0000 + 1087.6931 75.0000 72.0000 0.0000 0.0000 983.7591 75.0000 73.0000 0.0000 0.0000 + 824.9615 75.0000 74.0000 0.0000 0.0000 836.3310 75.0000 75.0000 0.0000 0.0000 + 43.5027 76.0000 1.0000 0.0000 0.9118 28.3546 76.0000 2.0000 0.0000 0.0000 + 731.9234 76.0000 3.0000 0.0000 0.0000 407.1646 76.0000 4.0000 0.0000 0.0000 + 268.7304 76.0000 5.0000 0.0000 0.0000 179.0563 76.0000 6.0000 0.0000 0.0000 + 124.0510 76.0000 7.0000 0.0000 0.0000 93.3597 76.0000 8.0000 0.0000 0.0000 + 70.3954 76.0000 9.0000 0.0000 0.0000 53.9642 76.0000 10.0000 0.0000 0.0000 + 873.3589 76.0000 11.0000 0.0000 0.0000 653.0750 76.0000 12.0000 0.0000 0.0000 + 595.5628 76.0000 13.0000 0.0000 0.0000 462.6840 76.0000 14.0000 0.0000 0.0000 + 356.7088 76.0000 15.0000 0.0000 0.0000 294.0021 76.0000 16.0000 0.0000 0.0000 + 238.6415 76.0000 17.0000 0.0000 0.0000 194.2314 76.0000 18.0000 0.0000 0.0000 + 1439.6620 76.0000 19.0000 0.0000 0.0000 1161.2618 76.0000 20.0000 0.0000 0.0000 + 954.4533 76.0000 21.0000 0.0000 0.0000 917.4690 76.0000 22.0000 0.0000 0.0000 + 837.8455 76.0000 23.0000 0.0000 0.0000 659.8204 76.0000 24.0000 0.0000 0.0000 + 718.5059 76.0000 25.0000 0.0000 0.0000 563.5059 76.0000 26.0000 0.0000 0.0000 + 593.7533 76.0000 27.0000 0.0000 0.0000 613.3513 76.0000 28.0000 0.0000 0.0000 + 470.2553 76.0000 29.0000 0.0000 0.0000 478.5375 76.0000 30.0000 0.0000 0.0000 + 568.2251 76.0000 31.0000 0.0000 0.0000 495.6146 76.0000 32.0000 0.0000 0.0000 + 418.6892 76.0000 33.0000 0.0000 0.0000 373.5590 76.0000 34.0000 0.0000 0.0000 + 325.0694 76.0000 35.0000 0.0000 0.0000 281.3019 76.0000 36.0000 0.0000 0.0000 + 1610.3754 76.0000 37.0000 0.0000 0.0000 1384.8254 76.0000 38.0000 0.0000 0.0000 + 1202.1044 76.0000 39.0000 0.0000 0.0000 1074.3491 76.0000 40.0000 0.0000 0.0000 + 976.0842 76.0000 41.0000 0.0000 0.0000 748.9418 76.0000 42.0000 0.0000 0.0000 + 837.5275 76.0000 43.0000 0.0000 0.0000 633.7886 76.0000 44.0000 0.0000 0.0000 + 692.6754 76.0000 45.0000 0.0000 0.0000 640.8968 76.0000 46.0000 0.0000 0.0000 + 535.2869 76.0000 47.0000 0.0000 0.0000 563.1205 76.0000 48.0000 0.0000 0.0000 + 711.6973 76.0000 49.0000 0.0000 0.0000 652.1135 76.0000 50.0000 0.0000 0.0000 + 576.1075 76.0000 51.0000 0.0000 0.0000 531.7823 76.0000 52.0000 0.0000 0.0000 + 478.2557 76.0000 53.0000 0.0000 0.0000 427.8724 76.0000 54.0000 0.0000 0.0000 + 1961.0192 76.0000 55.0000 0.0000 0.0000 1770.7984 76.0000 56.0000 0.0000 0.0000 + 1541.6747 76.0000 57.0000 0.0000 0.0000 681.7868 76.0000 58.0000 0.0000 2.7991 + 1564.3082 76.0000 59.0000 0.0000 0.0000 1499.8732 76.0000 60.0000 0.0000 0.0000 + 1461.6315 76.0000 61.0000 0.0000 0.0000 1426.5281 76.0000 62.0000 0.0000 0.0000 + 1395.3763 76.0000 63.0000 0.0000 0.0000 1086.4242 76.0000 64.0000 0.0000 0.0000 + 1241.3205 76.0000 65.0000 0.0000 0.0000 1195.0783 76.0000 66.0000 0.0000 0.0000 + 1255.6728 76.0000 67.0000 0.0000 0.0000 1228.7111 76.0000 68.0000 0.0000 0.0000 + 1204.2523 76.0000 69.0000 0.0000 0.0000 1190.6528 76.0000 70.0000 0.0000 0.0000 + 996.3644 76.0000 71.0000 0.0000 0.0000 970.8013 76.0000 72.0000 0.0000 0.0000 + 881.0938 76.0000 73.0000 0.0000 0.0000 740.9559 76.0000 74.0000 0.0000 0.0000 + 752.1571 76.0000 75.0000 0.0000 0.0000 678.5278 76.0000 76.0000 0.0000 0.0000 + 40.1928 77.0000 1.0000 0.0000 0.9118 26.4936 77.0000 2.0000 0.0000 0.0000 + 649.2225 77.0000 3.0000 0.0000 0.0000 367.6819 77.0000 4.0000 0.0000 0.0000 + 245.2381 77.0000 5.0000 0.0000 0.0000 164.7586 77.0000 6.0000 0.0000 0.0000 + 114.8874 77.0000 7.0000 0.0000 0.0000 86.8793 77.0000 8.0000 0.0000 0.0000 + 65.7904 77.0000 9.0000 0.0000 0.0000 50.6159 77.0000 10.0000 0.0000 0.0000 + 775.6337 77.0000 11.0000 0.0000 0.0000 587.9487 77.0000 12.0000 0.0000 0.0000 + 538.9992 77.0000 13.0000 0.0000 0.0000 421.7839 77.0000 14.0000 0.0000 0.0000 + 327.2304 77.0000 15.0000 0.0000 0.0000 270.8551 77.0000 16.0000 0.0000 0.0000 + 220.7763 77.0000 17.0000 0.0000 0.0000 180.3711 77.0000 18.0000 0.0000 0.0000 + 1275.5198 77.0000 19.0000 0.0000 0.0000 1039.8993 77.0000 20.0000 0.0000 0.0000 + 856.7886 77.0000 21.0000 0.0000 0.0000 825.5125 77.0000 22.0000 0.0000 0.0000 + 754.9193 77.0000 23.0000 0.0000 0.0000 594.8728 77.0000 24.0000 0.0000 0.0000 + 648.7085 77.0000 25.0000 0.0000 0.0000 509.2181 77.0000 26.0000 0.0000 0.0000 + 537.8946 77.0000 27.0000 0.0000 0.0000 554.8479 77.0000 28.0000 0.0000 0.0000 + 425.6788 77.0000 29.0000 0.0000 0.0000 434.8792 77.0000 30.0000 0.0000 0.0000 + 515.5051 77.0000 31.0000 0.0000 0.0000 452.1256 77.0000 32.0000 0.0000 0.0000 + 383.9265 77.0000 33.0000 0.0000 0.0000 343.6833 77.0000 34.0000 0.0000 0.0000 + 300.1178 77.0000 35.0000 0.0000 0.0000 260.5672 77.0000 36.0000 0.0000 0.0000 + 1428.2493 77.0000 37.0000 0.0000 0.0000 1239.7351 77.0000 38.0000 0.0000 0.0000 + 1080.8340 77.0000 39.0000 0.0000 0.0000 968.6488 77.0000 40.0000 0.0000 0.0000 + 881.7101 77.0000 41.0000 0.0000 0.0000 678.8718 77.0000 42.0000 0.0000 0.0000 + 758.1834 77.0000 43.0000 0.0000 0.0000 575.9452 77.0000 44.0000 0.0000 0.0000 + 629.2909 77.0000 45.0000 0.0000 0.0000 582.9622 77.0000 46.0000 0.0000 0.0000 + 486.8131 77.0000 47.0000 0.0000 0.0000 513.0376 77.0000 48.0000 0.0000 0.0000 + 645.8629 77.0000 49.0000 0.0000 0.0000 594.4049 77.0000 50.0000 0.0000 0.0000 + 527.4681 77.0000 51.0000 0.0000 0.0000 488.2319 77.0000 52.0000 0.0000 0.0000 + 440.4247 77.0000 53.0000 0.0000 0.0000 395.1889 77.0000 54.0000 0.0000 0.0000 + 1739.4992 77.0000 55.0000 0.0000 0.0000 1583.1333 77.0000 56.0000 0.0000 0.0000 + 1384.2225 77.0000 57.0000 0.0000 0.0000 623.8114 77.0000 58.0000 0.0000 2.7991 + 1400.6813 77.0000 59.0000 0.0000 0.0000 1343.9514 77.0000 60.0000 0.0000 0.0000 + 1309.9454 77.0000 61.0000 0.0000 0.0000 1278.6986 77.0000 62.0000 0.0000 0.0000 + 1250.9767 77.0000 63.0000 0.0000 0.0000 978.8704 77.0000 64.0000 0.0000 0.0000 + 1110.6969 77.0000 65.0000 0.0000 0.0000 1070.1912 77.0000 66.0000 0.0000 0.0000 + 1126.9388 77.0000 67.0000 0.0000 0.0000 1102.8614 77.0000 68.0000 0.0000 0.0000 + 1081.0811 77.0000 69.0000 0.0000 0.0000 1068.6460 77.0000 70.0000 0.0000 0.0000 + 897.2915 77.0000 71.0000 0.0000 0.0000 878.0575 77.0000 72.0000 0.0000 0.0000 + 799.1686 77.0000 73.0000 0.0000 0.0000 673.7075 77.0000 74.0000 0.0000 0.0000 + 684.5855 77.0000 75.0000 0.0000 0.0000 619.1148 77.0000 76.0000 0.0000 0.0000 + 566.0660 77.0000 77.0000 0.0000 0.0000 33.7374 78.0000 1.0000 0.0000 0.9118 + 22.6550 78.0000 2.0000 0.0000 0.0000 523.2922 78.0000 3.0000 0.0000 0.0000 + 300.1624 78.0000 4.0000 0.0000 0.0000 202.5408 78.0000 5.0000 0.0000 0.0000 + 137.5762 78.0000 6.0000 0.0000 0.0000 96.8658 78.0000 7.0000 0.0000 0.0000 + 73.8183 78.0000 8.0000 0.0000 0.0000 56.3053 78.0000 9.0000 0.0000 0.0000 + 43.5930 78.0000 10.0000 0.0000 0.0000 625.9625 78.0000 11.0000 0.0000 0.0000 + 478.8535 78.0000 12.0000 0.0000 0.0000 441.2014 78.0000 13.0000 0.0000 0.0000 + 347.8817 78.0000 14.0000 0.0000 0.0000 271.9872 78.0000 15.0000 0.0000 0.0000 + 226.4710 78.0000 16.0000 0.0000 0.0000 185.7464 78.0000 17.0000 0.0000 0.0000 + 152.6567 78.0000 18.0000 0.0000 0.0000 1029.9899 78.0000 19.0000 0.0000 0.0000 + 844.4387 78.0000 20.0000 0.0000 0.0000 696.9272 78.0000 21.0000 0.0000 0.0000 + 673.0527 78.0000 22.0000 0.0000 0.0000 616.3066 78.0000 23.0000 0.0000 0.0000 + 486.5216 78.0000 24.0000 0.0000 0.0000 530.6527 78.0000 25.0000 0.0000 0.0000 + 417.4314 78.0000 26.0000 0.0000 0.0000 441.4021 78.0000 27.0000 0.0000 0.0000 + 454.6295 78.0000 28.0000 0.0000 0.0000 349.5803 78.0000 29.0000 0.0000 0.0000 + 358.0126 78.0000 30.0000 0.0000 0.0000 423.4292 78.0000 31.0000 0.0000 0.0000 + 373.4298 78.0000 32.0000 0.0000 0.0000 319.0409 78.0000 33.0000 0.0000 0.0000 + 286.8703 78.0000 34.0000 0.0000 0.0000 251.7482 78.0000 35.0000 0.0000 0.0000 + 219.6552 78.0000 36.0000 0.0000 0.0000 1154.7638 78.0000 37.0000 0.0000 0.0000 + 1007.0623 78.0000 38.0000 0.0000 0.0000 880.9993 78.0000 39.0000 0.0000 0.0000 + 791.5544 78.0000 40.0000 0.0000 0.0000 721.9340 78.0000 41.0000 0.0000 0.0000 + 558.2389 78.0000 42.0000 0.0000 0.0000 622.4222 78.0000 43.0000 0.0000 0.0000 + 475.0715 78.0000 44.0000 0.0000 0.0000 518.4595 78.0000 45.0000 0.0000 0.0000 + 480.9389 78.0000 46.0000 0.0000 0.0000 402.1915 78.0000 47.0000 0.0000 0.0000 + 424.0390 78.0000 48.0000 0.0000 0.0000 531.4442 78.0000 49.0000 0.0000 0.0000 + 491.0109 78.0000 50.0000 0.0000 0.0000 437.8209 78.0000 51.0000 0.0000 0.0000 + 406.6185 78.0000 52.0000 0.0000 0.0000 368.2592 78.0000 53.0000 0.0000 0.0000 + 331.7904 78.0000 54.0000 0.0000 0.0000 1407.1724 78.0000 55.0000 0.0000 0.0000 + 1285.4322 78.0000 56.0000 0.0000 0.0000 1127.5157 78.0000 57.0000 0.0000 0.0000 + 517.6857 78.0000 58.0000 0.0000 2.7991 1138.8994 78.0000 59.0000 0.0000 0.0000 + 1093.2462 78.0000 60.0000 0.0000 0.0000 1065.7050 78.0000 61.0000 0.0000 0.0000 + 1040.3742 78.0000 62.0000 0.0000 0.0000 1017.9032 78.0000 63.0000 0.0000 0.0000 + 800.3534 78.0000 64.0000 0.0000 0.0000 903.9594 78.0000 65.0000 0.0000 0.0000 + 871.5845 78.0000 66.0000 0.0000 0.0000 917.6041 78.0000 67.0000 0.0000 0.0000 + 898.0272 78.0000 68.0000 0.0000 0.0000 880.3643 78.0000 69.0000 0.0000 0.0000 + 870.0367 78.0000 70.0000 0.0000 0.0000 732.9185 78.0000 71.0000 0.0000 0.0000 + 719.5752 78.0000 72.0000 0.0000 0.0000 656.8212 78.0000 73.0000 0.0000 0.0000 + 555.6297 78.0000 74.0000 0.0000 0.0000 565.0264 78.0000 75.0000 0.0000 0.0000 + 512.4269 78.0000 76.0000 0.0000 0.0000 469.6664 78.0000 77.0000 0.0000 0.0000 + 391.1448 78.0000 78.0000 0.0000 0.0000 31.6431 79.0000 1.0000 0.0000 0.9118 + 21.4057 79.0000 2.0000 0.0000 0.0000 482.7120 79.0000 3.0000 0.0000 0.0000 + 278.4874 79.0000 4.0000 0.0000 0.0000 188.7859 79.0000 5.0000 0.0000 0.0000 + 128.7843 79.0000 6.0000 0.0000 0.0000 91.0210 79.0000 7.0000 0.0000 0.0000 + 69.5772 79.0000 8.0000 0.0000 0.0000 53.2258 79.0000 9.0000 0.0000 0.0000 + 41.3166 79.0000 10.0000 0.0000 0.0000 577.7550 79.0000 11.0000 0.0000 0.0000 + 443.8491 79.0000 12.0000 0.0000 0.0000 409.7864 79.0000 13.0000 0.0000 0.0000 + 324.0925 79.0000 14.0000 0.0000 0.0000 254.1496 79.0000 15.0000 0.0000 0.0000 + 212.1039 79.0000 16.0000 0.0000 0.0000 174.3808 79.0000 17.0000 0.0000 0.0000 + 143.6486 79.0000 18.0000 0.0000 0.0000 950.6218 79.0000 19.0000 0.0000 0.0000 + 781.6044 79.0000 20.0000 0.0000 0.0000 645.5750 79.0000 21.0000 0.0000 0.0000 + 624.0693 79.0000 22.0000 0.0000 0.0000 571.7746 79.0000 23.0000 0.0000 0.0000 + 451.6799 79.0000 24.0000 0.0000 0.0000 492.7268 79.0000 25.0000 0.0000 0.0000 + 387.9196 79.0000 26.0000 0.0000 0.0000 410.4068 79.0000 27.0000 0.0000 0.0000 + 422.4478 79.0000 28.0000 0.0000 0.0000 325.1198 79.0000 29.0000 0.0000 0.0000 + 333.3177 79.0000 30.0000 0.0000 0.0000 393.8227 79.0000 31.0000 0.0000 0.0000 + 348.0922 79.0000 32.0000 0.0000 0.0000 298.1013 79.0000 33.0000 0.0000 0.0000 + 268.5000 79.0000 34.0000 0.0000 0.0000 236.0765 79.0000 35.0000 0.0000 0.0000 + 206.3756 79.0000 36.0000 0.0000 0.0000 1066.3289 79.0000 37.0000 0.0000 0.0000 + 932.2055 79.0000 38.0000 0.0000 0.0000 816.7465 79.0000 39.0000 0.0000 0.0000 + 734.6152 79.0000 40.0000 0.0000 0.0000 670.5517 79.0000 41.0000 0.0000 0.0000 + 519.4100 79.0000 42.0000 0.0000 0.0000 578.7461 79.0000 43.0000 0.0000 0.0000 + 442.5921 79.0000 44.0000 0.0000 0.0000 482.8089 79.0000 45.0000 0.0000 0.0000 + 448.1216 79.0000 46.0000 0.0000 0.0000 374.9486 79.0000 47.0000 0.0000 0.0000 + 395.4149 79.0000 48.0000 0.0000 0.0000 494.6536 79.0000 49.0000 0.0000 0.0000 + 457.7529 79.0000 50.0000 0.0000 0.0000 408.9427 79.0000 51.0000 0.0000 0.0000 + 380.2911 79.0000 52.0000 0.0000 0.0000 344.9408 79.0000 53.0000 0.0000 0.0000 + 311.2700 79.0000 54.0000 0.0000 0.0000 1299.5975 79.0000 55.0000 0.0000 0.0000 + 1189.5405 79.0000 56.0000 0.0000 0.0000 1044.8996 79.0000 57.0000 0.0000 0.0000 + 483.4831 79.0000 58.0000 0.0000 2.7991 1054.6339 79.0000 59.0000 0.0000 0.0000 + 1012.5735 79.0000 60.0000 0.0000 0.0000 987.1216 79.0000 61.0000 0.0000 0.0000 + 963.7021 79.0000 62.0000 0.0000 0.0000 942.9274 79.0000 63.0000 0.0000 0.0000 + 742.9192 79.0000 64.0000 0.0000 0.0000 837.2921 79.0000 65.0000 0.0000 0.0000 + 807.5421 79.0000 66.0000 0.0000 0.0000 850.2954 79.0000 67.0000 0.0000 0.0000 + 832.1718 79.0000 68.0000 0.0000 0.0000 815.8376 79.0000 69.0000 0.0000 0.0000 + 806.1903 79.0000 70.0000 0.0000 0.0000 680.0731 79.0000 71.0000 0.0000 0.0000 + 668.6200 79.0000 72.0000 0.0000 0.0000 611.0386 79.0000 73.0000 0.0000 0.0000 + 517.6083 79.0000 74.0000 0.0000 0.0000 526.5370 79.0000 75.0000 0.0000 0.0000 + 478.0672 79.0000 76.0000 0.0000 0.0000 438.6083 79.0000 77.0000 0.0000 0.0000 + 365.8247 79.0000 78.0000 0.0000 0.0000 342.3526 79.0000 79.0000 0.0000 0.0000 + 32.6475 80.0000 1.0000 0.0000 0.9118 22.0837 80.0000 2.0000 0.0000 0.0000 + 487.4020 80.0000 3.0000 0.0000 0.0000 285.0617 80.0000 4.0000 0.0000 0.0000 + 194.1615 80.0000 5.0000 0.0000 0.0000 132.7317 80.0000 6.0000 0.0000 0.0000 + 93.8836 80.0000 7.0000 0.0000 0.0000 71.7760 80.0000 8.0000 0.0000 0.0000 + 54.9023 80.0000 9.0000 0.0000 0.0000 42.6085 80.0000 10.0000 0.0000 0.0000 + 583.7960 80.0000 11.0000 0.0000 0.0000 453.3596 80.0000 12.0000 0.0000 0.0000 + 419.8384 80.0000 13.0000 0.0000 0.0000 333.2167 80.0000 14.0000 0.0000 0.0000 + 261.8584 80.0000 15.0000 0.0000 0.0000 218.7185 80.0000 16.0000 0.0000 0.0000 + 179.9124 80.0000 17.0000 0.0000 0.0000 148.2325 80.0000 18.0000 0.0000 0.0000 + 957.3617 80.0000 19.0000 0.0000 0.0000 794.6585 80.0000 20.0000 0.0000 0.0000 + 657.5917 80.0000 21.0000 0.0000 0.0000 636.5210 80.0000 22.0000 0.0000 0.0000 + 583.6657 80.0000 23.0000 0.0000 0.0000 460.8509 80.0000 24.0000 0.0000 0.0000 + 503.5540 80.0000 25.0000 0.0000 0.0000 396.2999 80.0000 26.0000 0.0000 0.0000 + 420.2552 80.0000 27.0000 0.0000 0.0000 432.2741 80.0000 28.0000 0.0000 0.0000 + 332.4340 80.0000 29.0000 0.0000 0.0000 341.8710 80.0000 30.0000 0.0000 0.0000 + 403.7059 80.0000 31.0000 0.0000 0.0000 357.8455 80.0000 32.0000 0.0000 0.0000 + 307.0371 80.0000 33.0000 0.0000 0.0000 276.7697 80.0000 34.0000 0.0000 0.0000 + 243.4960 80.0000 35.0000 0.0000 0.0000 212.9356 80.0000 36.0000 0.0000 0.0000 + 1074.4128 80.0000 37.0000 0.0000 0.0000 947.2011 80.0000 38.0000 0.0000 0.0000 + 832.4222 80.0000 39.0000 0.0000 0.0000 749.9824 80.0000 40.0000 0.0000 0.0000 + 685.2385 80.0000 41.0000 0.0000 0.0000 531.4562 80.0000 42.0000 0.0000 0.0000 + 591.9216 80.0000 43.0000 0.0000 0.0000 453.2802 80.0000 44.0000 0.0000 0.0000 + 494.7186 80.0000 45.0000 0.0000 0.0000 459.4282 80.0000 46.0000 0.0000 0.0000 + 383.9518 80.0000 47.0000 0.0000 0.0000 405.6607 80.0000 48.0000 0.0000 0.0000 + 506.6451 80.0000 49.0000 0.0000 0.0000 470.0850 80.0000 50.0000 0.0000 0.0000 + 420.7932 80.0000 51.0000 0.0000 0.0000 391.6740 80.0000 52.0000 0.0000 0.0000 + 355.5497 80.0000 53.0000 0.0000 0.0000 321.0251 80.0000 54.0000 0.0000 0.0000 + 1309.2921 80.0000 55.0000 0.0000 0.0000 1207.0341 80.0000 56.0000 0.0000 0.0000 + 1063.6276 80.0000 57.0000 0.0000 0.0000 497.1530 80.0000 58.0000 0.0000 2.7991 + 1071.2093 80.0000 59.0000 0.0000 0.0000 1029.0835 80.0000 60.0000 0.0000 0.0000 + 1003.3846 80.0000 61.0000 0.0000 0.0000 979.7232 80.0000 62.0000 0.0000 0.0000 + 958.7397 80.0000 63.0000 0.0000 0.0000 757.5631 80.0000 64.0000 0.0000 0.0000 + 849.2266 80.0000 65.0000 0.0000 0.0000 819.5261 80.0000 66.0000 0.0000 0.0000 + 865.2963 80.0000 67.0000 0.0000 0.0000 846.9485 80.0000 68.0000 0.0000 0.0000 + 830.4419 80.0000 69.0000 0.0000 0.0000 820.5356 80.0000 70.0000 0.0000 0.0000 + 693.5479 80.0000 71.0000 0.0000 0.0000 683.9195 80.0000 72.0000 0.0000 0.0000 + 625.9201 80.0000 73.0000 0.0000 0.0000 530.5169 80.0000 74.0000 0.0000 0.0000 + 540.0504 80.0000 75.0000 0.0000 0.0000 490.8531 80.0000 76.0000 0.0000 0.0000 + 450.6821 80.0000 77.0000 0.0000 0.0000 376.0096 80.0000 78.0000 0.0000 0.0000 + 351.9350 80.0000 79.0000 0.0000 0.0000 362.0755 80.0000 80.0000 0.0000 0.0000 + 45.5659 81.0000 1.0000 0.0000 0.9118 29.3832 81.0000 2.0000 0.0000 0.0000 + 841.5620 81.0000 3.0000 0.0000 0.0000 445.0990 81.0000 4.0000 0.0000 0.0000 + 287.4346 81.0000 5.0000 0.0000 0.0000 188.9137 81.0000 6.0000 0.0000 0.0000 + 129.7759 81.0000 7.0000 0.0000 0.0000 97.1887 81.0000 8.0000 0.0000 0.0000 + 73.0353 81.0000 9.0000 0.0000 0.0000 55.8782 81.0000 10.0000 0.0000 0.0000 + 1001.3499 81.0000 11.0000 0.0000 0.0000 719.8428 81.0000 12.0000 0.0000 0.0000 + 648.5037 81.0000 13.0000 0.0000 0.0000 495.8892 81.0000 14.0000 0.0000 0.0000 + 377.8606 81.0000 15.0000 0.0000 0.0000 309.4057 81.0000 16.0000 0.0000 0.0000 + 249.7152 81.0000 17.0000 0.0000 0.0000 202.3639 81.0000 18.0000 0.0000 0.0000 + 1669.9732 81.0000 19.0000 0.0000 0.0000 1301.2325 81.0000 20.0000 0.0000 0.0000 + 1062.1257 81.0000 21.0000 0.0000 0.0000 1015.6676 81.0000 22.0000 0.0000 0.0000 + 924.5054 81.0000 23.0000 0.0000 0.0000 728.7526 81.0000 24.0000 0.0000 0.0000 + 789.1704 81.0000 25.0000 0.0000 0.0000 619.1214 81.0000 26.0000 0.0000 0.0000 + 646.8845 81.0000 27.0000 0.0000 0.0000 670.3436 81.0000 28.0000 0.0000 0.0000 + 514.7803 81.0000 29.0000 0.0000 0.0000 517.7713 81.0000 30.0000 0.0000 0.0000 + 616.5392 81.0000 31.0000 0.0000 0.0000 531.0148 81.0000 32.0000 0.0000 0.0000 + 444.1316 81.0000 33.0000 0.0000 0.0000 394.0893 81.0000 34.0000 0.0000 0.0000 + 341.1542 81.0000 35.0000 0.0000 0.0000 293.9464 81.0000 36.0000 0.0000 0.0000 + 1864.6164 81.0000 37.0000 0.0000 0.0000 1554.7036 81.0000 38.0000 0.0000 0.0000 + 1334.1432 81.0000 39.0000 0.0000 0.0000 1184.3558 81.0000 40.0000 0.0000 0.0000 + 1071.6858 81.0000 41.0000 0.0000 0.0000 817.1388 81.0000 42.0000 0.0000 0.0000 + 915.9493 81.0000 43.0000 0.0000 0.0000 688.3361 81.0000 44.0000 0.0000 0.0000 + 751.4117 81.0000 45.0000 0.0000 0.0000 693.4942 81.0000 46.0000 0.0000 0.0000 + 581.2740 81.0000 47.0000 0.0000 0.0000 607.4560 81.0000 48.0000 0.0000 0.0000 + 773.8833 81.0000 49.0000 0.0000 0.0000 701.3354 81.0000 50.0000 0.0000 0.0000 + 613.7965 81.0000 51.0000 0.0000 0.0000 563.6633 81.0000 52.0000 0.0000 0.0000 + 504.3185 81.0000 53.0000 0.0000 0.0000 449.1573 81.0000 54.0000 0.0000 0.0000 + 2272.4078 81.0000 55.0000 0.0000 0.0000 1997.7665 81.0000 56.0000 0.0000 0.0000 + 1718.7930 81.0000 57.0000 0.0000 0.0000 728.0207 81.0000 58.0000 0.0000 2.7991 + 1758.4731 81.0000 59.0000 0.0000 0.0000 1682.1281 81.0000 60.0000 0.0000 0.0000 + 1638.2173 81.0000 61.0000 0.0000 0.0000 1598.0083 81.0000 62.0000 0.0000 0.0000 + 1562.2939 81.0000 63.0000 0.0000 0.0000 1202.5229 81.0000 64.0000 0.0000 0.0000 + 1402.6627 81.0000 65.0000 0.0000 0.0000 1347.9037 81.0000 66.0000 0.0000 0.0000 + 1401.3832 81.0000 67.0000 0.0000 0.0000 1370.7449 81.0000 68.0000 0.0000 0.0000 + 1342.7654 81.0000 69.0000 0.0000 0.0000 1328.1907 81.0000 70.0000 0.0000 0.0000 + 1103.0932 81.0000 71.0000 0.0000 0.0000 1061.9960 81.0000 72.0000 0.0000 0.0000 + 957.8330 81.0000 73.0000 0.0000 0.0000 802.6285 81.0000 74.0000 0.0000 0.0000 + 812.4971 81.0000 75.0000 0.0000 0.0000 729.2402 81.0000 76.0000 0.0000 0.0000 + 662.7909 81.0000 77.0000 0.0000 0.0000 546.9172 81.0000 78.0000 0.0000 0.0000 + 509.6146 81.0000 79.0000 0.0000 0.0000 521.9091 81.0000 80.0000 0.0000 0.0000 + 792.2378 81.0000 81.0000 0.0000 0.0000 45.1786 82.0000 1.0000 0.0000 0.9118 + 29.3963 82.0000 2.0000 0.0000 0.0000 770.4985 82.0000 3.0000 0.0000 0.0000 + 425.9877 82.0000 4.0000 0.0000 0.0000 280.1714 82.0000 5.0000 0.0000 0.0000 + 186.2235 82.0000 6.0000 0.0000 0.0000 128.8243 82.0000 7.0000 0.0000 0.0000 + 96.8801 82.0000 8.0000 0.0000 0.0000 73.0285 82.0000 9.0000 0.0000 0.0000 + 55.9909 82.0000 10.0000 0.0000 0.0000 919.1257 82.0000 11.0000 0.0000 0.0000 + 684.1011 82.0000 12.0000 0.0000 0.0000 622.7134 82.0000 13.0000 0.0000 0.0000 + 482.5881 82.0000 14.0000 0.0000 0.0000 371.2939 82.0000 15.0000 0.0000 0.0000 + 305.6389 82.0000 16.0000 0.0000 0.0000 247.8141 82.0000 17.0000 0.0000 0.0000 + 201.5330 82.0000 18.0000 0.0000 0.0000 1516.4193 82.0000 19.0000 0.0000 0.0000 + 1218.7009 82.0000 20.0000 0.0000 0.0000 1000.8602 82.0000 21.0000 0.0000 0.0000 + 961.3718 82.0000 22.0000 0.0000 0.0000 877.5655 82.0000 23.0000 0.0000 0.0000 + 691.0834 82.0000 24.0000 0.0000 0.0000 752.1156 82.0000 25.0000 0.0000 0.0000 + 589.8085 82.0000 26.0000 0.0000 0.0000 620.8744 82.0000 27.0000 0.0000 0.0000 + 641.6764 82.0000 28.0000 0.0000 0.0000 491.9976 82.0000 29.0000 0.0000 0.0000 + 499.9322 82.0000 30.0000 0.0000 0.0000 593.7385 82.0000 31.0000 0.0000 0.0000 + 516.8932 82.0000 32.0000 0.0000 0.0000 435.9281 82.0000 33.0000 0.0000 0.0000 + 388.5373 82.0000 34.0000 0.0000 0.0000 337.7683 82.0000 35.0000 0.0000 0.0000 + 292.0472 82.0000 36.0000 0.0000 0.0000 1695.6909 82.0000 37.0000 0.0000 0.0000 + 1453.4745 82.0000 38.0000 0.0000 0.0000 1259.8691 82.0000 39.0000 0.0000 0.0000 + 1124.9617 82.0000 40.0000 0.0000 0.0000 1021.4733 82.0000 41.0000 0.0000 0.0000 + 782.9906 82.0000 42.0000 0.0000 0.0000 875.9582 82.0000 43.0000 0.0000 0.0000 + 662.1675 82.0000 44.0000 0.0000 0.0000 723.7046 82.0000 45.0000 0.0000 0.0000 + 669.3882 82.0000 46.0000 0.0000 0.0000 559.2710 82.0000 47.0000 0.0000 0.0000 + 587.9368 82.0000 48.0000 0.0000 0.0000 743.8797 82.0000 49.0000 0.0000 0.0000 + 680.5752 82.0000 50.0000 0.0000 0.0000 600.3714 82.0000 51.0000 0.0000 0.0000 + 553.6826 82.0000 52.0000 0.0000 0.0000 497.4872 82.0000 53.0000 0.0000 0.0000 + 444.7007 82.0000 54.0000 0.0000 0.0000 2064.6687 82.0000 55.0000 0.0000 0.0000 + 1859.4085 82.0000 56.0000 0.0000 0.0000 1616.4677 82.0000 57.0000 0.0000 0.0000 + 710.6289 82.0000 58.0000 0.0000 2.7991 1641.9885 82.0000 59.0000 0.0000 0.0000 + 1573.9763 82.0000 60.0000 0.0000 0.0000 1533.7469 82.0000 61.0000 0.0000 0.0000 + 1496.8291 82.0000 62.0000 0.0000 0.0000 1464.0624 82.0000 63.0000 0.0000 0.0000 + 1138.0979 82.0000 64.0000 0.0000 0.0000 1303.4316 82.0000 65.0000 0.0000 0.0000 + 1254.5335 82.0000 66.0000 0.0000 0.0000 1317.0177 82.0000 67.0000 0.0000 0.0000 + 1288.6907 82.0000 68.0000 0.0000 0.0000 1262.9662 82.0000 69.0000 0.0000 0.0000 + 1248.7891 82.0000 70.0000 0.0000 0.0000 1043.9034 82.0000 71.0000 0.0000 0.0000 + 1015.4887 82.0000 72.0000 0.0000 0.0000 920.8305 82.0000 73.0000 0.0000 0.0000 + 773.8526 82.0000 74.0000 0.0000 0.0000 785.2945 82.0000 75.0000 0.0000 0.0000 + 707.9009 82.0000 76.0000 0.0000 0.0000 645.5470 82.0000 77.0000 0.0000 0.0000 + 534.0207 82.0000 78.0000 0.0000 0.0000 498.1301 82.0000 79.0000 0.0000 0.0000 + 511.3145 82.0000 80.0000 0.0000 0.0000 761.9648 82.0000 81.0000 0.0000 0.0000 + 738.8156 82.0000 82.0000 0.0000 0.0000 42.2419 83.0000 1.0000 0.0000 0.9118 + 27.9329 83.0000 2.0000 0.0000 0.0000 661.5278 83.0000 3.0000 0.0000 0.0000 + 381.0307 83.0000 4.0000 0.0000 0.0000 256.0537 83.0000 5.0000 0.0000 0.0000 + 172.7831 83.0000 6.0000 0.0000 0.0000 120.7993 83.0000 7.0000 0.0000 0.0000 + 91.4934 83.0000 8.0000 0.0000 0.0000 69.3689 83.0000 9.0000 0.0000 0.0000 + 53.4204 83.0000 10.0000 0.0000 0.0000 791.0868 83.0000 11.0000 0.0000 0.0000 + 607.6008 83.0000 12.0000 0.0000 0.0000 559.4336 83.0000 13.0000 0.0000 0.0000 + 440.1343 83.0000 14.0000 0.0000 0.0000 342.7788 83.0000 15.0000 0.0000 0.0000 + 284.2948 83.0000 16.0000 0.0000 0.0000 232.1219 83.0000 17.0000 0.0000 0.0000 + 189.8756 83.0000 18.0000 0.0000 0.0000 1296.6253 83.0000 19.0000 0.0000 0.0000 + 1068.6331 83.0000 20.0000 0.0000 0.0000 882.5153 83.0000 21.0000 0.0000 0.0000 + 851.8855 83.0000 22.0000 0.0000 0.0000 779.9336 83.0000 23.0000 0.0000 0.0000 + 614.4509 83.0000 24.0000 0.0000 0.0000 671.3055 83.0000 25.0000 0.0000 0.0000 + 526.9321 83.0000 26.0000 0.0000 0.0000 558.1740 83.0000 27.0000 0.0000 0.0000 + 575.1487 83.0000 28.0000 0.0000 0.0000 441.0551 83.0000 29.0000 0.0000 0.0000 + 452.3678 83.0000 30.0000 0.0000 0.0000 535.7013 83.0000 31.0000 0.0000 0.0000 + 471.8376 83.0000 32.0000 0.0000 0.0000 401.9920 83.0000 33.0000 0.0000 0.0000 + 360.4735 83.0000 34.0000 0.0000 0.0000 315.2774 83.0000 35.0000 0.0000 0.0000 + 274.0755 83.0000 36.0000 0.0000 0.0000 1452.9418 83.0000 37.0000 0.0000 0.0000 + 1273.2370 83.0000 38.0000 0.0000 0.0000 1114.3977 83.0000 39.0000 0.0000 0.0000 + 1001.0315 83.0000 40.0000 0.0000 0.0000 912.4820 83.0000 41.0000 0.0000 0.0000 + 704.0713 83.0000 42.0000 0.0000 0.0000 785.7517 83.0000 43.0000 0.0000 0.0000 + 598.2792 83.0000 44.0000 0.0000 0.0000 653.9337 83.0000 45.0000 0.0000 0.0000 + 606.3128 83.0000 46.0000 0.0000 0.0000 505.7574 83.0000 47.0000 0.0000 0.0000 + 534.1714 83.0000 48.0000 0.0000 0.0000 670.7354 83.0000 49.0000 0.0000 0.0000 + 619.5827 83.0000 50.0000 0.0000 0.0000 551.5605 83.0000 51.0000 0.0000 0.0000 + 511.3976 83.0000 52.0000 0.0000 0.0000 462.0834 83.0000 53.0000 0.0000 0.0000 + 415.2011 83.0000 54.0000 0.0000 0.0000 1769.6390 83.0000 55.0000 0.0000 0.0000 + 1623.4740 83.0000 56.0000 0.0000 0.0000 1425.1223 83.0000 57.0000 0.0000 0.0000 + 651.7126 83.0000 58.0000 0.0000 2.7991 1438.2615 83.0000 59.0000 0.0000 0.0000 + 1380.9451 83.0000 60.0000 0.0000 0.0000 1346.2674 83.0000 61.0000 0.0000 0.0000 + 1314.3784 83.0000 62.0000 0.0000 0.0000 1286.0963 83.0000 63.0000 0.0000 0.0000 + 1010.3860 83.0000 64.0000 0.0000 0.0000 1139.0166 83.0000 65.0000 0.0000 0.0000 + 1098.3110 83.0000 66.0000 0.0000 0.0000 1159.7774 83.0000 67.0000 0.0000 0.0000 + 1135.1424 83.0000 68.0000 0.0000 0.0000 1112.9109 83.0000 69.0000 0.0000 0.0000 + 1099.9410 83.0000 70.0000 0.0000 0.0000 926.1291 83.0000 71.0000 0.0000 0.0000 + 909.8154 83.0000 72.0000 0.0000 0.0000 829.8285 83.0000 73.0000 0.0000 0.0000 + 700.4395 83.0000 74.0000 0.0000 0.0000 712.4170 83.0000 75.0000 0.0000 0.0000 + 645.3765 83.0000 76.0000 0.0000 0.0000 590.8505 83.0000 77.0000 0.0000 0.0000 + 490.7234 83.0000 78.0000 0.0000 0.0000 458.4726 83.0000 79.0000 0.0000 0.0000 + 471.5231 83.0000 80.0000 0.0000 0.0000 688.5655 83.0000 81.0000 0.0000 0.0000 + 672.6904 83.0000 82.0000 0.0000 0.0000 617.5296 83.0000 83.0000 0.0000 0.0000 + 40.7106 84.0000 1.0000 0.0000 0.9118 27.2118 84.0000 2.0000 0.0000 0.0000 + 607.3151 84.0000 3.0000 0.0000 0.0000 357.4603 84.0000 4.0000 0.0000 0.0000 + 243.3057 84.0000 5.0000 0.0000 0.0000 165.7327 84.0000 6.0000 0.0000 0.0000 + 116.6615 84.0000 7.0000 0.0000 0.0000 88.7736 84.0000 8.0000 0.0000 0.0000 + 67.5672 84.0000 9.0000 0.0000 0.0000 52.1881 84.0000 10.0000 0.0000 0.0000 + 727.2631 84.0000 11.0000 0.0000 0.0000 567.8072 84.0000 12.0000 0.0000 0.0000 + 526.2600 84.0000 13.0000 0.0000 0.0000 417.6844 84.0000 14.0000 0.0000 0.0000 + 327.7136 84.0000 15.0000 0.0000 0.0000 273.0995 84.0000 16.0000 0.0000 0.0000 + 223.9850 84.0000 17.0000 0.0000 0.0000 183.9223 84.0000 18.0000 0.0000 0.0000 + 1189.1902 84.0000 19.0000 0.0000 0.0000 992.2125 84.0000 20.0000 0.0000 0.0000 + 821.7825 84.0000 21.0000 0.0000 0.0000 795.5384 84.0000 22.0000 0.0000 0.0000 + 729.5657 84.0000 23.0000 0.0000 0.0000 575.1731 84.0000 24.0000 0.0000 0.0000 + 629.4810 84.0000 25.0000 0.0000 0.0000 494.5914 84.0000 26.0000 0.0000 0.0000 + 525.4979 84.0000 27.0000 0.0000 0.0000 540.5327 84.0000 28.0000 0.0000 0.0000 + 414.7869 84.0000 29.0000 0.0000 0.0000 427.4616 84.0000 30.0000 0.0000 0.0000 + 505.3600 84.0000 31.0000 0.0000 0.0000 448.0822 84.0000 32.0000 0.0000 0.0000 + 384.0853 84.0000 33.0000 0.0000 0.0000 345.7266 84.0000 34.0000 0.0000 0.0000 + 303.5448 84.0000 35.0000 0.0000 0.0000 264.7978 84.0000 36.0000 0.0000 0.0000 + 1334.3692 84.0000 37.0000 0.0000 0.0000 1181.8604 84.0000 38.0000 0.0000 0.0000 + 1039.8622 84.0000 39.0000 0.0000 0.0000 937.2036 84.0000 40.0000 0.0000 0.0000 + 856.2398 84.0000 41.0000 0.0000 0.0000 663.3608 84.0000 42.0000 0.0000 0.0000 + 739.1957 84.0000 43.0000 0.0000 0.0000 565.3141 84.0000 44.0000 0.0000 0.0000 + 617.6998 84.0000 45.0000 0.0000 0.0000 573.5099 84.0000 46.0000 0.0000 0.0000 + 478.2336 84.0000 47.0000 0.0000 0.0000 506.1686 84.0000 48.0000 0.0000 0.0000 + 632.7833 84.0000 49.0000 0.0000 0.0000 587.6097 84.0000 50.0000 0.0000 0.0000 + 525.8728 84.0000 51.0000 0.0000 0.0000 489.1640 84.0000 52.0000 0.0000 0.0000 + 443.5300 84.0000 53.0000 0.0000 0.0000 399.8335 84.0000 54.0000 0.0000 0.0000 + 1626.0419 84.0000 55.0000 0.0000 0.0000 1504.7607 84.0000 56.0000 0.0000 0.0000 + 1327.7397 84.0000 57.0000 0.0000 0.0000 620.8548 84.0000 58.0000 0.0000 2.7991 + 1335.4309 84.0000 59.0000 0.0000 0.0000 1283.2336 84.0000 60.0000 0.0000 0.0000 + 1251.2879 84.0000 61.0000 0.0000 0.0000 1221.8775 84.0000 62.0000 0.0000 0.0000 + 1195.8046 84.0000 63.0000 0.0000 0.0000 945.1570 84.0000 64.0000 0.0000 0.0000 + 1056.9864 84.0000 65.0000 0.0000 0.0000 1020.2790 84.0000 66.0000 0.0000 0.0000 + 1079.6889 84.0000 67.0000 0.0000 0.0000 1056.8831 84.0000 68.0000 0.0000 0.0000 + 1036.3788 84.0000 69.0000 0.0000 0.0000 1024.0338 84.0000 70.0000 0.0000 0.0000 + 865.8030 84.0000 71.0000 0.0000 0.0000 855.0439 84.0000 72.0000 0.0000 0.0000 + 782.4802 84.0000 73.0000 0.0000 0.0000 662.3820 84.0000 74.0000 0.0000 0.0000 + 674.4980 84.0000 75.0000 0.0000 0.0000 612.7772 84.0000 76.0000 0.0000 0.0000 + 562.3100 84.0000 77.0000 0.0000 0.0000 468.2525 84.0000 78.0000 0.0000 0.0000 + 437.9271 84.0000 79.0000 0.0000 0.0000 450.8074 84.0000 80.0000 0.0000 0.0000 + 650.7429 84.0000 81.0000 0.0000 0.0000 638.2251 84.0000 82.0000 0.0000 0.0000 + 588.6188 84.0000 83.0000 0.0000 0.0000 562.6011 84.0000 84.0000 0.0000 0.0000 + 38.0468 85.0000 1.0000 0.0000 0.9118 25.8071 85.0000 2.0000 0.0000 0.0000 + 535.6521 85.0000 3.0000 0.0000 0.0000 323.1540 85.0000 4.0000 0.0000 0.0000 + 223.3971 85.0000 5.0000 0.0000 0.0000 153.9883 85.0000 6.0000 0.0000 0.0000 + 109.3618 85.0000 7.0000 0.0000 0.0000 83.7437 85.0000 8.0000 0.0000 0.0000 + 64.0797 85.0000 9.0000 0.0000 0.0000 49.7043 85.0000 10.0000 0.0000 0.0000 + 642.5599 85.0000 11.0000 0.0000 0.0000 511.0472 85.0000 12.0000 0.0000 0.0000 + 477.3816 85.0000 13.0000 0.0000 0.0000 382.8914 85.0000 14.0000 0.0000 0.0000 + 303.1717 85.0000 15.0000 0.0000 0.0000 254.1899 85.0000 16.0000 0.0000 0.0000 + 209.6951 85.0000 17.0000 0.0000 0.0000 173.0668 85.0000 18.0000 0.0000 0.0000 + 1048.6754 85.0000 19.0000 0.0000 0.0000 886.7938 85.0000 20.0000 0.0000 0.0000 + 736.8768 85.0000 21.0000 0.0000 0.0000 715.8242 85.0000 22.0000 0.0000 0.0000 + 657.7700 85.0000 23.0000 0.0000 0.0000 519.2280 85.0000 24.0000 0.0000 0.0000 + 569.1850 85.0000 25.0000 0.0000 0.0000 447.9412 85.0000 26.0000 0.0000 0.0000 + 477.4046 85.0000 27.0000 0.0000 0.0000 490.0296 85.0000 28.0000 0.0000 0.0000 + 376.5450 85.0000 29.0000 0.0000 0.0000 390.0545 85.0000 30.0000 0.0000 0.0000 + 460.1323 85.0000 31.0000 0.0000 0.0000 411.1914 85.0000 32.0000 0.0000 0.0000 + 355.0899 85.0000 33.0000 0.0000 0.0000 321.1572 85.0000 34.0000 0.0000 0.0000 + 283.3626 85.0000 35.0000 0.0000 0.0000 248.3169 85.0000 36.0000 0.0000 0.0000 + 1178.7843 85.0000 37.0000 0.0000 0.0000 1056.1781 85.0000 38.0000 0.0000 0.0000 + 934.9280 85.0000 39.0000 0.0000 0.0000 845.9589 85.0000 40.0000 0.0000 0.0000 + 775.0077 85.0000 41.0000 0.0000 0.0000 603.5186 85.0000 42.0000 0.0000 0.0000 + 671.2092 85.0000 43.0000 0.0000 0.0000 516.1807 85.0000 44.0000 0.0000 0.0000 + 563.6134 85.0000 45.0000 0.0000 0.0000 524.1716 85.0000 46.0000 0.0000 0.0000 + 437.1628 85.0000 47.0000 0.0000 0.0000 463.6316 85.0000 48.0000 0.0000 0.0000 + 576.4869 85.0000 49.0000 0.0000 0.0000 538.5713 85.0000 50.0000 0.0000 0.0000 + 485.0366 85.0000 51.0000 0.0000 0.0000 452.9726 85.0000 52.0000 0.0000 0.0000 + 412.4929 85.0000 53.0000 0.0000 0.0000 373.3960 85.0000 54.0000 0.0000 0.0000 + 1437.5237 85.0000 55.0000 0.0000 0.0000 1342.7557 85.0000 56.0000 0.0000 0.0000 + 1191.8004 85.0000 57.0000 0.0000 0.0000 572.1988 85.0000 58.0000 0.0000 2.7991 + 1194.1552 85.0000 59.0000 0.0000 0.0000 1148.4879 85.0000 60.0000 0.0000 0.0000 + 1120.1674 85.0000 61.0000 0.0000 0.0000 1094.0580 85.0000 62.0000 0.0000 0.0000 + 1070.9219 85.0000 63.0000 0.0000 0.0000 852.6306 85.0000 64.0000 0.0000 0.0000 + 945.0450 85.0000 65.0000 0.0000 0.0000 913.3371 85.0000 66.0000 0.0000 0.0000 + 968.2587 85.0000 67.0000 0.0000 0.0000 947.9202 85.0000 68.0000 0.0000 0.0000 + 929.7163 85.0000 69.0000 0.0000 0.0000 918.3442 85.0000 70.0000 0.0000 0.0000 + 780.3151 85.0000 71.0000 0.0000 0.0000 775.2337 85.0000 72.0000 0.0000 0.0000 + 712.2888 85.0000 73.0000 0.0000 0.0000 605.2413 85.0000 74.0000 0.0000 0.0000 + 617.1068 85.0000 75.0000 0.0000 0.0000 562.5880 85.0000 76.0000 0.0000 0.0000 + 517.7285 85.0000 77.0000 0.0000 0.0000 432.6488 85.0000 78.0000 0.0000 0.0000 + 405.1802 85.0000 79.0000 0.0000 0.0000 417.4737 85.0000 80.0000 0.0000 0.0000 + 594.3497 85.0000 81.0000 0.0000 0.0000 585.4314 85.0000 82.0000 0.0000 0.0000 + 542.8744 85.0000 83.0000 0.0000 0.0000 520.5872 85.0000 84.0000 0.0000 0.0000 + 483.6536 85.0000 85.0000 0.0000 0.0000 35.2750 86.0000 1.0000 0.0000 0.9118 + 24.2886 86.0000 2.0000 0.0000 0.0000 471.2994 86.0000 3.0000 0.0000 0.0000 + 290.4079 86.0000 4.0000 0.0000 0.0000 203.6621 86.0000 5.0000 0.0000 0.0000 + 141.9946 86.0000 6.0000 0.0000 0.0000 101.7340 86.0000 7.0000 0.0000 0.0000 + 78.3993 86.0000 8.0000 0.0000 0.0000 60.3208 86.0000 9.0000 0.0000 0.0000 + 46.9970 86.0000 10.0000 0.0000 0.0000 566.3047 86.0000 11.0000 0.0000 0.0000 + 457.5207 86.0000 12.0000 0.0000 0.0000 430.4070 86.0000 13.0000 0.0000 0.0000 + 348.5324 86.0000 14.0000 0.0000 0.0000 278.3441 86.0000 15.0000 0.0000 0.0000 + 234.7563 86.0000 16.0000 0.0000 0.0000 194.7778 86.0000 17.0000 0.0000 0.0000 + 161.5778 86.0000 18.0000 0.0000 0.0000 923.4896 86.0000 19.0000 0.0000 0.0000 + 789.4651 86.0000 20.0000 0.0000 0.0000 657.8209 86.0000 21.0000 0.0000 0.0000 + 641.0689 86.0000 22.0000 0.0000 0.0000 590.1365 86.0000 23.0000 0.0000 0.0000 + 466.5786 86.0000 24.0000 0.0000 0.0000 512.0069 86.0000 25.0000 0.0000 0.0000 + 403.7162 86.0000 26.0000 0.0000 0.0000 431.2543 86.0000 27.0000 0.0000 0.0000 + 441.8052 86.0000 28.0000 0.0000 0.0000 340.1029 86.0000 29.0000 0.0000 0.0000 + 353.7569 86.0000 30.0000 0.0000 0.0000 416.4072 86.0000 31.0000 0.0000 0.0000 + 374.7378 86.0000 32.0000 0.0000 0.0000 325.8468 86.0000 33.0000 0.0000 0.0000 + 296.0591 86.0000 34.0000 0.0000 0.0000 262.4678 86.0000 35.0000 0.0000 0.0000 + 231.0392 86.0000 36.0000 0.0000 0.0000 1039.8788 86.0000 37.0000 0.0000 0.0000 + 940.3766 86.0000 38.0000 0.0000 0.0000 836.8244 86.0000 39.0000 0.0000 0.0000 + 759.8686 86.0000 40.0000 0.0000 0.0000 697.9075 86.0000 41.0000 0.0000 0.0000 + 546.1762 86.0000 42.0000 0.0000 0.0000 606.2881 86.0000 43.0000 0.0000 0.0000 + 468.7527 86.0000 44.0000 0.0000 0.0000 511.3370 86.0000 45.0000 0.0000 0.0000 + 476.2913 86.0000 46.0000 0.0000 0.0000 397.5123 86.0000 47.0000 0.0000 0.0000 + 422.1393 86.0000 48.0000 0.0000 0.0000 522.2524 86.0000 49.0000 0.0000 0.0000 + 490.4574 86.0000 50.0000 0.0000 0.0000 444.2351 86.0000 51.0000 0.0000 0.0000 + 416.4038 86.0000 52.0000 0.0000 0.0000 380.7463 86.0000 53.0000 0.0000 0.0000 + 346.0340 86.0000 54.0000 0.0000 0.0000 1269.1514 86.0000 55.0000 0.0000 0.0000 + 1194.2553 86.0000 56.0000 0.0000 0.0000 1065.3886 86.0000 57.0000 0.0000 0.0000 + 523.7999 86.0000 58.0000 0.0000 2.7991 1064.1113 86.0000 59.0000 0.0000 0.0000 + 1024.1601 86.0000 60.0000 0.0000 0.0000 999.1004 86.0000 61.0000 0.0000 0.0000 + 975.9671 86.0000 62.0000 0.0000 0.0000 955.4753 86.0000 63.0000 0.0000 0.0000 + 765.7754 86.0000 64.0000 0.0000 0.0000 842.4808 86.0000 65.0000 0.0000 0.0000 + 815.0810 86.0000 66.0000 0.0000 0.0000 864.8600 86.0000 67.0000 0.0000 0.0000 + 846.7641 86.0000 68.0000 0.0000 0.0000 830.6337 86.0000 69.0000 0.0000 0.0000 + 820.2223 86.0000 70.0000 0.0000 0.0000 700.0939 86.0000 71.0000 0.0000 0.0000 + 699.0850 86.0000 72.0000 0.0000 0.0000 644.6713 86.0000 73.0000 0.0000 0.0000 + 549.8392 86.0000 74.0000 0.0000 0.0000 561.2137 86.0000 75.0000 0.0000 0.0000 + 513.2761 86.0000 76.0000 0.0000 0.0000 473.6087 86.0000 77.0000 0.0000 0.0000 + 397.1906 86.0000 78.0000 0.0000 0.0000 372.4825 86.0000 79.0000 0.0000 0.0000 + 384.0241 86.0000 80.0000 0.0000 0.0000 539.9055 86.0000 81.0000 0.0000 0.0000 + 533.6984 86.0000 82.0000 0.0000 0.0000 497.2972 86.0000 83.0000 0.0000 0.0000 + 478.3113 86.0000 84.0000 0.0000 0.0000 446.0447 86.0000 85.0000 0.0000 0.0000 + 412.8275 86.0000 86.0000 0.0000 0.0000 100.7494 87.0000 1.0000 0.0000 0.9118 + 59.6594 87.0000 2.0000 0.0000 0.0000 2894.5966 87.0000 3.0000 0.0000 0.0000 + 1218.9348 87.0000 4.0000 0.0000 0.0000 710.6585 87.0000 5.0000 0.0000 0.0000 + 434.1967 87.0000 6.0000 0.0000 0.0000 282.7763 87.0000 7.0000 0.0000 0.0000 + 203.9723 87.0000 8.0000 0.0000 0.0000 148.3584 87.0000 9.0000 0.0000 0.0000 + 110.5120 87.0000 10.0000 0.0000 0.0000 3398.6461 87.0000 11.0000 0.0000 0.0000 + 2044.6296 87.0000 12.0000 0.0000 0.0000 1746.5418 87.0000 13.0000 0.0000 0.0000 + 1237.8269 87.0000 14.0000 0.0000 0.0000 888.8225 87.0000 15.0000 0.0000 0.0000 + 701.9761 87.0000 16.0000 0.0000 0.0000 547.2712 87.0000 17.0000 0.0000 0.0000 + 430.4468 87.0000 18.0000 0.0000 0.0000 6020.9123 87.0000 19.0000 0.0000 0.0000 + 3988.5535 87.0000 20.0000 0.0000 0.0000 3153.3933 87.0000 21.0000 0.0000 0.0000 + 2948.3214 87.0000 22.0000 0.0000 0.0000 2644.1348 87.0000 23.0000 0.0000 0.0000 + 2095.1563 87.0000 24.0000 0.0000 0.0000 2209.2516 87.0000 25.0000 0.0000 0.0000 + 1735.9767 87.0000 26.0000 0.0000 0.0000 1740.6013 87.0000 27.0000 0.0000 0.0000 + 1830.2286 87.0000 28.0000 0.0000 0.0000 1416.8737 87.0000 29.0000 0.0000 0.0000 + 1346.4975 87.0000 30.0000 0.0000 0.0000 1633.0869 87.0000 31.0000 0.0000 0.0000 + 1321.9669 87.0000 32.0000 0.0000 0.0000 1050.9064 87.0000 33.0000 0.0000 0.0000 + 905.4724 87.0000 34.0000 0.0000 0.0000 760.7086 87.0000 35.0000 0.0000 0.0000 + 637.9210 87.0000 36.0000 0.0000 0.0000 6687.9551 87.0000 37.0000 0.0000 0.0000 + 4814.0613 87.0000 38.0000 0.0000 0.0000 3923.8630 87.0000 39.0000 0.0000 0.0000 + 3377.7348 87.0000 40.0000 0.0000 0.0000 3001.2009 87.0000 41.0000 0.0000 0.0000 + 2220.8404 87.0000 42.0000 0.0000 0.0000 2518.9457 87.0000 43.0000 0.0000 0.0000 + 1828.6037 87.0000 44.0000 0.0000 0.0000 1981.9822 87.0000 45.0000 0.0000 0.0000 + 1805.2792 87.0000 46.0000 0.0000 0.0000 1540.3020 87.0000 47.0000 0.0000 0.0000 + 1555.0964 87.0000 48.0000 0.0000 0.0000 2067.1731 87.0000 49.0000 0.0000 0.0000 + 1773.2620 87.0000 50.0000 0.0000 0.0000 1480.1255 87.0000 51.0000 0.0000 0.0000 + 1323.6329 87.0000 52.0000 0.0000 0.0000 1151.6386 87.0000 53.0000 0.0000 0.0000 + 999.4993 87.0000 54.0000 0.0000 0.0000 8231.5280 87.0000 55.0000 0.0000 0.0000 + 6339.7235 87.0000 56.0000 0.0000 0.0000 5171.5628 87.0000 57.0000 0.0000 0.0000 + 1776.5919 87.0000 58.0000 0.0000 2.7991 5496.9601 87.0000 59.0000 0.0000 0.0000 + 5188.6826 87.0000 60.0000 0.0000 0.0000 5037.6830 87.0000 61.0000 0.0000 0.0000 + 4900.9739 87.0000 62.0000 0.0000 0.0000 4779.2385 87.0000 63.0000 0.0000 0.0000 + 3500.4650 87.0000 64.0000 0.0000 0.0000 4518.0145 87.0000 65.0000 0.0000 0.0000 + 4325.6882 87.0000 66.0000 0.0000 0.0000 4221.6216 87.0000 67.0000 0.0000 0.0000 + 4121.1013 87.0000 68.0000 0.0000 0.0000 4027.0614 87.0000 69.0000 0.0000 0.0000 + 3990.8778 87.0000 70.0000 0.0000 0.0000 3218.7704 87.0000 71.0000 0.0000 0.0000 + 2921.8119 87.0000 72.0000 0.0000 0.0000 2556.3295 87.0000 73.0000 0.0000 0.0000 + 2107.6991 87.0000 74.0000 0.0000 0.0000 2103.2454 87.0000 75.0000 0.0000 0.0000 + 1838.3882 87.0000 76.0000 0.0000 0.0000 1636.3884 87.0000 77.0000 0.0000 0.0000 + 1327.1181 87.0000 78.0000 0.0000 0.0000 1227.0914 87.0000 79.0000 0.0000 0.0000 + 1239.4986 87.0000 80.0000 0.0000 0.0000 2109.4753 87.0000 81.0000 0.0000 0.0000 + 1933.3025 87.0000 82.0000 0.0000 0.0000 1669.9965 87.0000 83.0000 0.0000 0.0000 + 1540.8317 87.0000 84.0000 0.0000 0.0000 1368.7363 87.0000 85.0000 0.0000 0.0000 + 1213.4959 87.0000 86.0000 0.0000 0.0000 7314.7398 87.0000 87.0000 0.0000 0.0000 + 99.4131 88.0000 1.0000 0.0000 0.9118 59.6740 88.0000 2.0000 0.0000 0.0000 + 2434.0697 88.0000 3.0000 0.0000 0.0000 1132.0344 88.0000 4.0000 0.0000 0.0000 + 681.3789 88.0000 5.0000 0.0000 0.0000 424.1613 88.0000 6.0000 0.0000 0.0000 + 279.3602 88.0000 7.0000 0.0000 0.0000 202.8260 88.0000 8.0000 0.0000 0.0000 + 148.2516 88.0000 9.0000 0.0000 0.0000 110.8126 88.0000 10.0000 0.0000 0.0000 + 2874.5717 88.0000 11.0000 0.0000 0.0000 1871.9600 88.0000 12.0000 0.0000 0.0000 + 1627.9493 88.0000 13.0000 0.0000 0.0000 1183.7103 88.0000 14.0000 0.0000 0.0000 + 864.3429 88.0000 15.0000 0.0000 0.0000 688.3756 88.0000 16.0000 0.0000 0.0000 + 540.5868 88.0000 17.0000 0.0000 0.0000 427.5147 88.0000 18.0000 0.0000 0.0000 + 4912.8581 88.0000 19.0000 0.0000 0.0000 3528.9590 88.0000 20.0000 0.0000 0.0000 + 2829.2273 88.0000 21.0000 0.0000 0.0000 2665.5950 88.0000 22.0000 0.0000 0.0000 + 2403.6878 88.0000 23.0000 0.0000 0.0000 1894.7707 88.0000 24.0000 0.0000 0.0000 + 2023.8919 88.0000 25.0000 0.0000 0.0000 1584.5838 88.0000 26.0000 0.0000 0.0000 + 1619.2221 88.0000 27.0000 0.0000 0.0000 1694.2469 88.0000 28.0000 0.0000 0.0000 + 1302.2136 88.0000 29.0000 0.0000 0.0000 1267.7966 88.0000 30.0000 0.0000 0.0000 + 1527.0149 88.0000 31.0000 0.0000 0.0000 1263.5730 88.0000 32.0000 0.0000 0.0000 + 1019.7251 88.0000 33.0000 0.0000 0.0000 885.0433 88.0000 34.0000 0.0000 0.0000 + 748.6502 88.0000 35.0000 0.0000 0.0000 631.2757 88.0000 36.0000 0.0000 0.0000 + 5459.4039 88.0000 37.0000 0.0000 0.0000 4233.9736 88.0000 38.0000 0.0000 0.0000 + 3524.6180 88.0000 39.0000 0.0000 0.0000 3070.0206 88.0000 40.0000 0.0000 0.0000 + 2744.2675 88.0000 41.0000 0.0000 0.0000 2048.8350 88.0000 42.0000 0.0000 0.0000 + 2314.9349 88.0000 43.0000 0.0000 0.0000 1698.4672 88.0000 44.0000 0.0000 0.0000 + 1851.1077 88.0000 45.0000 0.0000 0.0000 1693.9362 88.0000 46.0000 0.0000 0.0000 + 1429.6950 88.0000 47.0000 0.0000 0.0000 1467.4624 88.0000 48.0000 0.0000 0.0000 + 1921.0215 88.0000 49.0000 0.0000 0.0000 1683.2537 88.0000 50.0000 0.0000 0.0000 + 1426.7831 88.0000 51.0000 0.0000 0.0000 1285.4608 88.0000 52.0000 0.0000 0.0000 + 1126.5319 88.0000 53.0000 0.0000 0.0000 983.6337 88.0000 54.0000 0.0000 0.0000 + 6664.6049 88.0000 55.0000 0.0000 0.0000 5505.2582 88.0000 56.0000 0.0000 0.0000 + 4594.3095 88.0000 57.0000 0.0000 0.0000 1703.7104 88.0000 58.0000 0.0000 2.7991 + 4797.6061 88.0000 59.0000 0.0000 0.0000 4562.3865 88.0000 60.0000 0.0000 0.0000 + 4436.2592 88.0000 61.0000 0.0000 0.0000 4321.4914 88.0000 62.0000 0.0000 0.0000 + 4219.3690 88.0000 63.0000 0.0000 0.0000 3144.7184 88.0000 64.0000 0.0000 0.0000 + 3869.3475 88.0000 65.0000 0.0000 0.0000 3700.6978 88.0000 66.0000 0.0000 0.0000 + 3753.6534 88.0000 67.0000 0.0000 0.0000 3667.9746 88.0000 68.0000 0.0000 0.0000 + 3588.4351 88.0000 69.0000 0.0000 0.0000 3554.0067 88.0000 70.0000 0.0000 0.0000 + 2889.2983 88.0000 71.0000 0.0000 0.0000 2692.1229 88.0000 72.0000 0.0000 0.0000 + 2381.3318 88.0000 73.0000 0.0000 0.0000 1968.4730 88.0000 74.0000 0.0000 0.0000 + 1976.0672 88.0000 75.0000 0.0000 0.0000 1742.8522 88.0000 76.0000 0.0000 0.0000 + 1561.6887 88.0000 77.0000 0.0000 0.0000 1270.4258 88.0000 78.0000 0.0000 0.0000 + 1176.6222 88.0000 79.0000 0.0000 0.0000 1195.7573 88.0000 80.0000 0.0000 0.0000 + 1954.7292 88.0000 81.0000 0.0000 0.0000 1828.6515 88.0000 82.0000 0.0000 0.0000 + 1604.6349 88.0000 83.0000 0.0000 0.0000 1491.4089 88.0000 84.0000 0.0000 0.0000 + 1335.1632 88.0000 85.0000 0.0000 0.0000 1190.9286 88.0000 86.0000 0.0000 0.0000 + 6045.7168 88.0000 87.0000 0.0000 0.0000 5305.4399 88.0000 88.0000 0.0000 0.0000 + 89.4060 89.0000 1.0000 0.0000 0.9118 54.4613 89.0000 2.0000 0.0000 0.0000 + 2008.2591 89.0000 3.0000 0.0000 0.0000 977.2148 89.0000 4.0000 0.0000 0.0000 + 600.0533 89.0000 5.0000 0.0000 0.0000 378.6672 89.0000 6.0000 0.0000 0.0000 + 251.8086 89.0000 7.0000 0.0000 0.0000 184.0318 89.0000 8.0000 0.0000 0.0000 + 135.2792 89.0000 9.0000 0.0000 0.0000 101.5857 89.0000 10.0000 0.0000 0.0000 + 2377.4617 89.0000 11.0000 0.0000 0.0000 1604.0300 89.0000 12.0000 0.0000 0.0000 + 1409.8711 89.0000 13.0000 0.0000 0.0000 1040.5681 89.0000 14.0000 0.0000 0.0000 + 768.5132 89.0000 15.0000 0.0000 0.0000 616.1319 89.0000 16.0000 0.0000 0.0000 + 486.8835 89.0000 17.0000 0.0000 0.0000 387.0720 89.0000 18.0000 0.0000 0.0000 + 4017.4782 89.0000 19.0000 0.0000 0.0000 2977.1478 89.0000 20.0000 0.0000 0.0000 + 2402.1540 89.0000 21.0000 0.0000 0.0000 2273.2739 89.0000 22.0000 0.0000 0.0000 + 2055.9589 89.0000 23.0000 0.0000 0.0000 1618.3634 89.0000 24.0000 0.0000 0.0000 + 1738.4495 89.0000 25.0000 0.0000 0.0000 1360.0663 89.0000 26.0000 0.0000 0.0000 + 1401.7622 89.0000 27.0000 0.0000 0.0000 1462.5357 89.0000 28.0000 0.0000 0.0000 + 1121.7466 89.0000 29.0000 0.0000 0.0000 1104.9523 89.0000 30.0000 0.0000 0.0000 + 1326.3601 89.0000 31.0000 0.0000 0.0000 1111.0958 89.0000 32.0000 0.0000 0.0000 + 905.5342 89.0000 33.0000 0.0000 0.0000 790.2645 89.0000 34.0000 0.0000 0.0000 + 672.1658 89.0000 35.0000 0.0000 0.0000 569.5479 89.0000 36.0000 0.0000 0.0000 + 4469.0053 89.0000 37.0000 0.0000 0.0000 3564.3510 89.0000 38.0000 0.0000 0.0000 + 2997.7722 89.0000 39.0000 0.0000 0.0000 2627.0446 89.0000 40.0000 0.0000 0.0000 + 2356.7083 89.0000 41.0000 0.0000 0.0000 1769.2538 89.0000 42.0000 0.0000 0.0000 + 1994.8729 89.0000 43.0000 0.0000 0.0000 1473.0457 89.0000 44.0000 0.0000 0.0000 + 1608.1722 89.0000 45.0000 0.0000 0.0000 1475.3924 89.0000 46.0000 0.0000 0.0000 + 1240.2274 89.0000 47.0000 0.0000 0.0000 1282.2835 89.0000 48.0000 0.0000 0.0000 + 1665.0502 89.0000 49.0000 0.0000 0.0000 1475.1121 89.0000 50.0000 0.0000 0.0000 + 1262.0917 89.0000 51.0000 0.0000 0.0000 1142.9090 89.0000 52.0000 0.0000 0.0000 + 1006.9141 89.0000 53.0000 0.0000 0.0000 883.4140 89.0000 54.0000 0.0000 0.0000 + 5447.8929 89.0000 55.0000 0.0000 0.0000 4612.0247 89.0000 56.0000 0.0000 0.0000 + 3889.7052 89.0000 57.0000 0.0000 0.0000 1503.1569 89.0000 58.0000 0.0000 2.7991 + 4032.3992 89.0000 59.0000 0.0000 0.0000 3843.3536 89.0000 60.0000 0.0000 0.0000 + 3739.3646 89.0000 61.0000 0.0000 0.0000 3644.5469 89.0000 62.0000 0.0000 0.0000 + 3560.2278 89.0000 63.0000 0.0000 0.0000 2679.6802 89.0000 64.0000 0.0000 0.0000 + 3233.3681 89.0000 65.0000 0.0000 0.0000 3096.8078 89.0000 66.0000 0.0000 0.0000 + 3176.9406 89.0000 67.0000 0.0000 0.0000 3105.6847 89.0000 68.0000 0.0000 0.0000 + 3039.8461 89.0000 69.0000 0.0000 0.0000 3009.5999 89.0000 70.0000 0.0000 0.0000 + 2462.3774 89.0000 71.0000 0.0000 0.0000 2320.2277 89.0000 72.0000 0.0000 0.0000 + 2064.5670 89.0000 73.0000 0.0000 0.0000 1711.5570 89.0000 74.0000 0.0000 0.0000 + 1723.2231 89.0000 75.0000 0.0000 0.0000 1527.6535 89.0000 76.0000 0.0000 0.0000 + 1374.3640 89.0000 77.0000 0.0000 0.0000 1121.3924 89.0000 78.0000 0.0000 0.0000 + 1040.0238 89.0000 79.0000 0.0000 0.0000 1060.0607 89.0000 80.0000 0.0000 0.0000 + 1694.6605 89.0000 81.0000 0.0000 0.0000 1600.8616 89.0000 82.0000 0.0000 0.0000 + 1417.4346 89.0000 83.0000 0.0000 0.0000 1323.6360 89.0000 84.0000 0.0000 0.0000 + 1191.3272 89.0000 85.0000 0.0000 0.0000 1067.5065 89.0000 86.0000 0.0000 0.0000 + 4981.4961 89.0000 87.0000 0.0000 0.0000 4466.9584 89.0000 88.0000 0.0000 0.0000 + 3799.6565 89.0000 89.0000 0.0000 0.0000 82.0836 90.0000 1.0000 0.0000 0.9118 + 51.1103 90.0000 2.0000 0.0000 0.0000 1672.4768 90.0000 3.0000 0.0000 0.0000 + 852.5249 90.0000 4.0000 0.0000 0.0000 536.0858 90.0000 5.0000 0.0000 0.0000 + 344.3576 90.0000 6.0000 0.0000 0.0000 232.0723 90.0000 7.0000 0.0000 0.0000 + 171.2418 90.0000 8.0000 0.0000 0.0000 126.9393 90.0000 9.0000 0.0000 0.0000 + 95.9845 90.0000 10.0000 0.0000 0.0000 1985.2103 90.0000 11.0000 0.0000 0.0000 + 1388.3756 90.0000 12.0000 0.0000 0.0000 1235.2681 90.0000 13.0000 0.0000 0.0000 + 927.5107 90.0000 14.0000 0.0000 0.0000 694.7983 90.0000 15.0000 0.0000 0.0000 + 562.0636 90.0000 16.0000 0.0000 0.0000 448.0486 90.0000 17.0000 0.0000 0.0000 + 358.9273 90.0000 18.0000 0.0000 0.0000 3320.8171 90.0000 19.0000 0.0000 0.0000 + 2537.7308 90.0000 20.0000 0.0000 0.0000 2060.8901 90.0000 21.0000 0.0000 0.0000 + 1960.2827 90.0000 22.0000 0.0000 0.0000 1778.6546 90.0000 23.0000 0.0000 0.0000 + 1399.4778 90.0000 24.0000 0.0000 0.0000 1511.0816 90.0000 25.0000 0.0000 0.0000 + 1182.5093 90.0000 26.0000 0.0000 0.0000 1228.7380 90.0000 27.0000 0.0000 0.0000 + 1277.7896 90.0000 28.0000 0.0000 0.0000 979.1984 90.0000 29.0000 0.0000 0.0000 + 975.8856 90.0000 30.0000 0.0000 0.0000 1167.0583 90.0000 31.0000 0.0000 0.0000 + 991.2015 90.0000 32.0000 0.0000 0.0000 817.5552 90.0000 33.0000 0.0000 0.0000 + 718.6679 90.0000 34.0000 0.0000 0.0000 615.8505 90.0000 35.0000 0.0000 0.0000 + 525.4240 90.0000 36.0000 0.0000 0.0000 3699.6637 90.0000 37.0000 0.0000 0.0000 + 3033.1273 90.0000 38.0000 0.0000 0.0000 2578.7074 90.0000 39.0000 0.0000 0.0000 + 2274.8325 90.0000 40.0000 0.0000 0.0000 2049.2299 90.0000 41.0000 0.0000 0.0000 + 1549.1780 90.0000 42.0000 0.0000 0.0000 1742.1202 90.0000 43.0000 0.0000 0.0000 + 1296.6551 90.0000 44.0000 0.0000 0.0000 1416.8423 90.0000 45.0000 0.0000 0.0000 + 1303.6060 90.0000 46.0000 0.0000 0.0000 1092.5939 90.0000 47.0000 0.0000 0.0000 + 1137.1745 90.0000 48.0000 0.0000 0.0000 1463.1580 90.0000 49.0000 0.0000 0.0000 + 1311.5880 90.0000 50.0000 0.0000 0.0000 1134.4385 90.0000 51.0000 0.0000 0.0000 + 1033.8769 90.0000 52.0000 0.0000 0.0000 917.0920 90.0000 53.0000 0.0000 0.0000 + 809.8018 90.0000 54.0000 0.0000 0.0000 4505.5681 90.0000 55.0000 0.0000 0.0000 + 3907.1262 90.0000 56.0000 0.0000 0.0000 3331.5473 90.0000 57.0000 0.0000 0.0000 + 1347.8223 90.0000 58.0000 0.0000 2.7991 3427.7894 90.0000 59.0000 0.0000 0.0000 + 3274.4792 90.0000 60.0000 0.0000 0.0000 3187.7428 90.0000 61.0000 0.0000 0.0000 + 3108.4769 90.0000 62.0000 0.0000 0.0000 3038.0345 90.0000 63.0000 0.0000 0.0000 + 2312.2086 90.0000 64.0000 0.0000 0.0000 2735.8113 90.0000 65.0000 0.0000 0.0000 + 2624.1922 90.0000 66.0000 0.0000 0.0000 2719.1319 90.0000 67.0000 0.0000 0.0000 + 2659.1268 90.0000 68.0000 0.0000 0.0000 2604.0009 90.0000 69.0000 0.0000 0.0000 + 2576.9767 90.0000 70.0000 0.0000 0.0000 2123.6819 90.0000 71.0000 0.0000 0.0000 + 2024.8239 90.0000 72.0000 0.0000 0.0000 1813.7564 90.0000 73.0000 0.0000 0.0000 + 1510.1361 90.0000 74.0000 0.0000 0.0000 1524.9297 90.0000 75.0000 0.0000 0.0000 + 1359.8576 90.0000 76.0000 0.0000 0.0000 1229.2164 90.0000 77.0000 0.0000 0.0000 + 1007.4225 90.0000 78.0000 0.0000 0.0000 936.0958 90.0000 79.0000 0.0000 0.0000 + 956.8047 90.0000 80.0000 0.0000 0.0000 1491.5698 90.0000 81.0000 0.0000 0.0000 + 1422.9431 90.0000 82.0000 0.0000 0.0000 1272.6601 90.0000 83.0000 0.0000 0.0000 + 1195.1492 90.0000 84.0000 0.0000 0.0000 1082.8719 90.0000 85.0000 0.0000 0.0000 + 976.1417 90.0000 86.0000 0.0000 0.0000 4155.5932 90.0000 87.0000 0.0000 0.0000 + 3804.7750 90.0000 88.0000 0.0000 0.0000 3270.4258 90.0000 89.0000 0.0000 0.0000 + 2847.2704 90.0000 90.0000 0.0000 0.0000 80.7260 91.0000 1.0000 0.0000 0.9118 + 50.0052 91.0000 2.0000 0.0000 0.0000 1730.6038 91.0000 3.0000 0.0000 0.0000 + 857.6379 91.0000 4.0000 0.0000 0.0000 533.0818 91.0000 5.0000 0.0000 0.0000 + 339.9863 91.0000 6.0000 0.0000 0.0000 228.1333 91.0000 7.0000 0.0000 0.0000 + 167.9187 91.0000 8.0000 0.0000 0.0000 124.2642 91.0000 9.0000 0.0000 0.0000 + 93.8663 91.0000 10.0000 0.0000 0.0000 2051.1151 91.0000 11.0000 0.0000 0.0000 + 1403.0924 91.0000 12.0000 0.0000 0.0000 1240.3071 91.0000 13.0000 0.0000 0.0000 + 923.2496 91.0000 14.0000 0.0000 0.0000 687.2914 91.0000 15.0000 0.0000 0.0000 + 554.1274 91.0000 16.0000 0.0000 0.0000 440.4418 91.0000 17.0000 0.0000 0.0000 + 352.0743 91.0000 18.0000 0.0000 0.0000 3457.0434 91.0000 19.0000 0.0000 0.0000 + 2589.2888 91.0000 20.0000 0.0000 0.0000 2094.5389 91.0000 21.0000 0.0000 0.0000 + 1986.9265 91.0000 22.0000 0.0000 0.0000 1799.6577 91.0000 23.0000 0.0000 0.0000 + 1417.3421 91.0000 24.0000 0.0000 0.0000 1525.1022 91.0000 25.0000 0.0000 0.0000 + 1194.1778 91.0000 26.0000 0.0000 0.0000 1234.4914 91.0000 27.0000 0.0000 0.0000 + 1285.9300 91.0000 28.0000 0.0000 0.0000 986.8467 91.0000 29.0000 0.0000 0.0000 + 976.6865 91.0000 30.0000 0.0000 0.0000 1169.9494 91.0000 31.0000 0.0000 0.0000 + 986.6400 91.0000 32.0000 0.0000 0.0000 809.3754 91.0000 33.0000 0.0000 0.0000 + 709.4380 91.0000 34.0000 0.0000 0.0000 606.3026 91.0000 35.0000 0.0000 0.0000 + 516.1425 91.0000 36.0000 0.0000 0.0000 3848.8310 91.0000 37.0000 0.0000 0.0000 + 3098.7868 91.0000 38.0000 0.0000 0.0000 2617.9361 91.0000 39.0000 0.0000 0.0000 + 2300.9943 91.0000 40.0000 0.0000 0.0000 2068.4111 91.0000 41.0000 0.0000 0.0000 + 1558.7481 91.0000 42.0000 0.0000 0.0000 1754.9706 91.0000 43.0000 0.0000 0.0000 + 1301.5598 91.0000 44.0000 0.0000 0.0000 1420.7211 91.0000 45.0000 0.0000 0.0000 + 1305.3320 91.0000 46.0000 0.0000 0.0000 1096.8175 91.0000 47.0000 0.0000 0.0000 + 1136.7042 91.0000 48.0000 0.0000 0.0000 1469.0715 91.0000 49.0000 0.0000 0.0000 + 1308.5146 91.0000 50.0000 0.0000 0.0000 1125.8498 91.0000 51.0000 0.0000 0.0000 + 1023.1942 91.0000 52.0000 0.0000 0.0000 905.1141 91.0000 53.0000 0.0000 0.0000 + 797.3313 91.0000 54.0000 0.0000 0.0000 4691.6964 91.0000 55.0000 0.0000 0.0000 + 4003.7089 91.0000 56.0000 0.0000 0.0000 3391.5606 91.0000 57.0000 0.0000 0.0000 + 1339.6248 91.0000 58.0000 0.0000 2.7991 3505.9336 91.0000 59.0000 0.0000 0.0000 + 3344.2162 91.0000 60.0000 0.0000 0.0000 3254.4268 91.0000 61.0000 0.0000 0.0000 + 3172.4783 91.0000 62.0000 0.0000 0.0000 3099.6207 91.0000 63.0000 0.0000 0.0000 + 2345.0320 91.0000 64.0000 0.0000 0.0000 2808.4101 91.0000 65.0000 0.0000 0.0000 + 2691.7985 91.0000 66.0000 0.0000 0.0000 2769.0943 91.0000 67.0000 0.0000 0.0000 + 2707.3188 91.0000 68.0000 0.0000 0.0000 2650.3867 91.0000 69.0000 0.0000 0.0000 + 2623.4579 91.0000 70.0000 0.0000 0.0000 2153.8516 91.0000 71.0000 0.0000 0.0000 + 2039.3959 91.0000 72.0000 0.0000 0.0000 1820.5331 91.0000 73.0000 0.0000 0.0000 + 1513.3881 91.0000 74.0000 0.0000 0.0000 1525.6409 91.0000 75.0000 0.0000 0.0000 + 1356.6458 91.0000 76.0000 0.0000 0.0000 1223.6676 91.0000 77.0000 0.0000 0.0000 + 1001.4754 91.0000 78.0000 0.0000 0.0000 929.9943 91.0000 79.0000 0.0000 0.0000 + 948.9698 91.0000 80.0000 0.0000 0.0000 1497.6018 91.0000 81.0000 0.0000 0.0000 + 1420.6996 91.0000 82.0000 0.0000 0.0000 1264.2423 91.0000 83.0000 0.0000 0.0000 + 1184.1627 91.0000 84.0000 0.0000 0.0000 1069.8651 91.0000 85.0000 0.0000 0.0000 + 962.1768 91.0000 86.0000 0.0000 0.0000 4303.9645 91.0000 87.0000 0.0000 0.0000 + 3886.5716 91.0000 88.0000 0.0000 0.0000 3320.0764 91.0000 89.0000 0.0000 0.0000 + 2872.5136 91.0000 90.0000 0.0000 0.0000 2908.9206 91.0000 91.0000 0.0000 0.0000 + 78.2034 92.0000 1.0000 0.0000 0.9118 48.4980 92.0000 2.0000 0.0000 0.0000 + 1671.6156 92.0000 3.0000 0.0000 0.0000 829.7132 92.0000 4.0000 0.0000 0.0000 + 516.0195 92.0000 5.0000 0.0000 0.0000 329.2802 92.0000 6.0000 0.0000 0.0000 + 221.0659 92.0000 7.0000 0.0000 0.0000 162.7926 92.0000 8.0000 0.0000 0.0000 + 120.5290 92.0000 9.0000 0.0000 0.0000 91.0869 92.0000 10.0000 0.0000 0.0000 + 1981.4675 92.0000 11.0000 0.0000 0.0000 1357.1628 92.0000 12.0000 0.0000 0.0000 + 1200.0275 92.0000 13.0000 0.0000 0.0000 893.6444 92.0000 14.0000 0.0000 0.0000 + 665.4965 92.0000 15.0000 0.0000 0.0000 536.7089 92.0000 16.0000 0.0000 0.0000 + 426.7354 92.0000 17.0000 0.0000 0.0000 341.2340 92.0000 18.0000 0.0000 0.0000 + 3337.6961 92.0000 19.0000 0.0000 0.0000 2503.3576 92.0000 20.0000 0.0000 0.0000 + 2025.4740 92.0000 21.0000 0.0000 0.0000 1921.6819 92.0000 22.0000 0.0000 0.0000 + 1740.7294 92.0000 23.0000 0.0000 0.0000 1370.9264 92.0000 24.0000 0.0000 0.0000 + 1475.3669 92.0000 25.0000 0.0000 0.0000 1155.2737 92.0000 26.0000 0.0000 0.0000 + 1194.5389 92.0000 27.0000 0.0000 0.0000 1244.2037 92.0000 28.0000 0.0000 0.0000 + 954.8309 92.0000 29.0000 0.0000 0.0000 945.2775 92.0000 30.0000 0.0000 0.0000 + 1132.1107 92.0000 31.0000 0.0000 0.0000 955.0607 92.0000 32.0000 0.0000 0.0000 + 783.7069 92.0000 33.0000 0.0000 0.0000 687.0839 92.0000 34.0000 0.0000 0.0000 + 587.3450 92.0000 35.0000 0.0000 0.0000 500.1368 92.0000 36.0000 0.0000 0.0000 + 3716.0678 92.0000 37.0000 0.0000 0.0000 2995.7186 92.0000 38.0000 0.0000 0.0000 + 2531.7373 92.0000 39.0000 0.0000 0.0000 2225.6807 92.0000 40.0000 0.0000 0.0000 + 2000.9439 92.0000 41.0000 0.0000 0.0000 1508.2494 92.0000 42.0000 0.0000 0.0000 + 1697.9484 92.0000 43.0000 0.0000 0.0000 1259.6142 92.0000 44.0000 0.0000 0.0000 + 1374.9665 92.0000 45.0000 0.0000 0.0000 1263.4136 92.0000 46.0000 0.0000 0.0000 + 1061.5457 92.0000 47.0000 0.0000 0.0000 1100.3399 92.0000 48.0000 0.0000 0.0000 + 1421.6099 92.0000 49.0000 0.0000 0.0000 1266.6329 92.0000 50.0000 0.0000 0.0000 + 1090.1053 92.0000 51.0000 0.0000 0.0000 990.8696 92.0000 52.0000 0.0000 0.0000 + 876.6902 92.0000 53.0000 0.0000 0.0000 772.4519 92.0000 54.0000 0.0000 0.0000 + 4529.1727 92.0000 55.0000 0.0000 0.0000 3869.7611 92.0000 56.0000 0.0000 0.0000 + 3279.3360 92.0000 57.0000 0.0000 0.0000 1297.0461 92.0000 58.0000 0.0000 2.7991 + 3389.0395 92.0000 59.0000 0.0000 0.0000 3233.0975 92.0000 60.0000 0.0000 0.0000 + 3146.3690 92.0000 61.0000 0.0000 0.0000 3067.2053 92.0000 62.0000 0.0000 0.0000 + 2996.8237 92.0000 63.0000 0.0000 0.0000 2268.0138 92.0000 64.0000 0.0000 0.0000 + 2714.0296 92.0000 65.0000 0.0000 0.0000 2601.3226 92.0000 66.0000 0.0000 0.0000 + 2677.5672 92.0000 67.0000 0.0000 0.0000 2617.8718 92.0000 68.0000 0.0000 0.0000 + 2562.8645 92.0000 69.0000 0.0000 0.0000 2536.7915 92.0000 70.0000 0.0000 0.0000 + 2083.0385 92.0000 71.0000 0.0000 0.0000 1973.0821 92.0000 72.0000 0.0000 0.0000 + 1761.6844 92.0000 73.0000 0.0000 0.0000 1464.6529 92.0000 74.0000 0.0000 0.0000 + 1476.6337 92.0000 75.0000 0.0000 0.0000 1313.3066 92.0000 76.0000 0.0000 0.0000 + 1184.7530 92.0000 77.0000 0.0000 0.0000 969.8022 92.0000 78.0000 0.0000 0.0000 + 900.6562 92.0000 79.0000 0.0000 0.0000 919.0824 92.0000 80.0000 0.0000 0.0000 + 1449.3061 92.0000 81.0000 0.0000 0.0000 1375.2752 92.0000 82.0000 0.0000 0.0000 + 1224.1322 92.0000 83.0000 0.0000 0.0000 1146.7509 92.0000 84.0000 0.0000 0.0000 + 1036.2496 92.0000 85.0000 0.0000 0.0000 932.1121 92.0000 86.0000 0.0000 0.0000 + 4156.5121 92.0000 87.0000 0.0000 0.0000 3757.2430 92.0000 88.0000 0.0000 0.0000 + 3210.7560 92.0000 89.0000 0.0000 0.0000 2778.9432 92.0000 90.0000 0.0000 0.0000 + 2813.6269 92.0000 91.0000 0.0000 0.0000 2721.5209 92.0000 92.0000 0.0000 0.0000 + 79.4391 93.0000 1.0000 0.0000 0.9118 48.7241 93.0000 2.0000 0.0000 0.0000 + 1800.5066 93.0000 3.0000 0.0000 0.0000 869.5641 93.0000 4.0000 0.0000 0.0000 + 532.8988 93.0000 5.0000 0.0000 0.0000 336.4627 93.0000 6.0000 0.0000 0.0000 + 224.2094 93.0000 7.0000 0.0000 0.0000 164.2959 93.0000 8.0000 0.0000 0.0000 + 121.1667 93.0000 9.0000 0.0000 0.0000 91.3090 93.0000 10.0000 0.0000 0.0000 + 2131.3007 93.0000 11.0000 0.0000 0.0000 1429.4308 93.0000 12.0000 0.0000 0.0000 + 1254.3604 93.0000 13.0000 0.0000 0.0000 924.1970 93.0000 14.0000 0.0000 0.0000 + 682.2750 93.0000 15.0000 0.0000 0.0000 547.3189 93.0000 16.0000 0.0000 0.0000 + 433.0105 93.0000 17.0000 0.0000 0.0000 344.8305 93.0000 18.0000 0.0000 0.0000 + 3608.5602 93.0000 19.0000 0.0000 0.0000 2661.1178 93.0000 20.0000 0.0000 0.0000 + 2144.9232 93.0000 21.0000 0.0000 0.0000 2028.7846 93.0000 22.0000 0.0000 0.0000 + 1834.1800 93.0000 23.0000 0.0000 0.0000 1445.0682 93.0000 24.0000 0.0000 0.0000 + 1550.1899 93.0000 25.0000 0.0000 0.0000 1213.8708 93.0000 26.0000 0.0000 0.0000 + 1248.7909 93.0000 27.0000 0.0000 0.0000 1303.3334 93.0000 28.0000 0.0000 0.0000 + 1000.9549 93.0000 29.0000 0.0000 0.0000 983.7215 93.0000 30.0000 0.0000 0.0000 + 1180.4499 93.0000 31.0000 0.0000 0.0000 987.3751 93.0000 32.0000 0.0000 0.0000 + 804.2562 93.0000 33.0000 0.0000 0.0000 702.0311 93.0000 34.0000 0.0000 0.0000 + 597.5035 93.0000 35.0000 0.0000 0.0000 506.8216 93.0000 36.0000 0.0000 0.0000 + 4013.8973 93.0000 37.0000 0.0000 0.0000 3187.5734 93.0000 38.0000 0.0000 0.0000 + 2676.6472 93.0000 39.0000 0.0000 0.0000 2343.7586 93.0000 40.0000 0.0000 0.0000 + 2101.8417 93.0000 41.0000 0.0000 0.0000 1577.8736 93.0000 42.0000 0.0000 0.0000 + 1779.0323 93.0000 43.0000 0.0000 0.0000 1313.7158 93.0000 44.0000 0.0000 0.0000 + 1433.1563 93.0000 45.0000 0.0000 0.0000 1314.6561 93.0000 46.0000 0.0000 0.0000 + 1106.8617 93.0000 47.0000 0.0000 0.0000 1142.5196 93.0000 48.0000 0.0000 0.0000 + 1484.0150 93.0000 49.0000 0.0000 0.0000 1312.6653 93.0000 50.0000 0.0000 0.0000 + 1122.1440 93.0000 51.0000 0.0000 0.0000 1016.0025 93.0000 52.0000 0.0000 0.0000 + 895.2321 93.0000 53.0000 0.0000 0.0000 785.8038 93.0000 54.0000 0.0000 0.0000 + 4893.0436 93.0000 55.0000 0.0000 0.0000 4127.9330 93.0000 56.0000 0.0000 0.0000 + 3475.7124 93.0000 57.0000 0.0000 0.0000 1337.2850 93.0000 58.0000 0.0000 2.7991 + 3607.8825 93.0000 59.0000 0.0000 0.0000 3437.8544 93.0000 60.0000 0.0000 0.0000 + 3344.5279 93.0000 61.0000 0.0000 0.0000 3259.4431 93.0000 62.0000 0.0000 0.0000 + 3183.7627 93.0000 63.0000 0.0000 0.0000 2393.5584 93.0000 64.0000 0.0000 0.0000 + 2896.4080 93.0000 65.0000 0.0000 0.0000 2773.0351 93.0000 66.0000 0.0000 0.0000 + 2839.6469 93.0000 67.0000 0.0000 0.0000 2775.7424 93.0000 68.0000 0.0000 0.0000 + 2716.6522 93.0000 69.0000 0.0000 0.0000 2689.7033 93.0000 70.0000 0.0000 0.0000 + 2198.6632 93.0000 71.0000 0.0000 0.0000 2068.0029 93.0000 72.0000 0.0000 0.0000 + 1839.0464 93.0000 73.0000 0.0000 0.0000 1525.1115 93.0000 74.0000 0.0000 0.0000 + 1534.7972 93.0000 75.0000 0.0000 0.0000 1360.2378 93.0000 76.0000 0.0000 0.0000 + 1223.6448 93.0000 77.0000 0.0000 0.0000 999.2096 93.0000 78.0000 0.0000 0.0000 + 927.0285 93.0000 79.0000 0.0000 0.0000 944.2862 93.0000 80.0000 0.0000 0.0000 + 1511.6714 93.0000 81.0000 0.0000 0.0000 1425.8266 93.0000 82.0000 0.0000 0.0000 + 1261.2415 93.0000 83.0000 0.0000 0.0000 1177.4038 93.0000 84.0000 0.0000 0.0000 + 1059.6377 93.0000 85.0000 0.0000 0.0000 949.7554 93.0000 86.0000 0.0000 0.0000 + 4469.7774 93.0000 87.0000 0.0000 0.0000 3995.2606 93.0000 88.0000 0.0000 0.0000 + 3393.2601 93.0000 89.0000 0.0000 0.0000 2917.0992 93.0000 90.0000 0.0000 0.0000 + 2964.6668 93.0000 91.0000 0.0000 0.0000 2867.1025 93.0000 92.0000 0.0000 0.0000 + 3032.9760 93.0000 93.0000 0.0000 0.0000 77.1021 94.0000 1.0000 0.0000 0.9118 + 47.3798 94.0000 2.0000 0.0000 0.0000 1727.8140 94.0000 3.0000 0.0000 0.0000 + 839.4478 94.0000 4.0000 0.0000 0.0000 515.7977 94.0000 5.0000 0.0000 0.0000 + 326.2500 94.0000 6.0000 0.0000 0.0000 217.6765 94.0000 7.0000 0.0000 0.0000 + 159.6435 94.0000 8.0000 0.0000 0.0000 117.8193 94.0000 9.0000 0.0000 0.0000 + 88.8365 94.0000 10.0000 0.0000 0.0000 2045.9284 94.0000 11.0000 0.0000 0.0000 + 1378.5876 94.0000 12.0000 0.0000 0.0000 1211.4443 94.0000 13.0000 0.0000 0.0000 + 894.3255 94.0000 14.0000 0.0000 0.0000 661.2092 94.0000 15.0000 0.0000 0.0000 + 530.8828 94.0000 16.0000 0.0000 0.0000 420.3498 94.0000 17.0000 0.0000 0.0000 + 334.9759 94.0000 18.0000 0.0000 0.0000 3458.6883 94.0000 19.0000 0.0000 0.0000 + 2561.2750 94.0000 20.0000 0.0000 0.0000 2066.1768 94.0000 21.0000 0.0000 0.0000 + 1955.4505 94.0000 22.0000 0.0000 0.0000 1768.5649 94.0000 23.0000 0.0000 0.0000 + 1393.1385 94.0000 24.0000 0.0000 0.0000 1495.5657 94.0000 25.0000 0.0000 0.0000 + 1171.0013 94.0000 26.0000 0.0000 0.0000 1206.0158 94.0000 27.0000 0.0000 0.0000 + 1258.2170 94.0000 28.0000 0.0000 0.0000 966.0599 94.0000 29.0000 0.0000 0.0000 + 950.8603 94.0000 30.0000 0.0000 0.0000 1140.5197 94.0000 31.0000 0.0000 0.0000 + 955.5039 94.0000 32.0000 0.0000 0.0000 779.2976 94.0000 33.0000 0.0000 0.0000 + 680.7355 94.0000 34.0000 0.0000 0.0000 579.7956 94.0000 35.0000 0.0000 0.0000 + 492.1128 94.0000 36.0000 0.0000 0.0000 3847.7324 94.0000 37.0000 0.0000 0.0000 + 3067.1463 94.0000 38.0000 0.0000 0.0000 2579.0022 94.0000 39.0000 0.0000 0.0000 + 2260.0639 94.0000 40.0000 0.0000 0.0000 2027.7440 94.0000 41.0000 0.0000 0.0000 + 1523.3742 94.0000 42.0000 0.0000 0.0000 1717.1041 94.0000 43.0000 0.0000 0.0000 + 1269.0647 94.0000 44.0000 0.0000 0.0000 1384.7315 94.0000 45.0000 0.0000 0.0000 + 1270.6578 94.0000 46.0000 0.0000 0.0000 1069.2791 94.0000 47.0000 0.0000 0.0000 + 1104.7467 94.0000 48.0000 0.0000 0.0000 1433.4370 94.0000 49.0000 0.0000 0.0000 + 1269.7368 94.0000 50.0000 0.0000 0.0000 1086.7671 94.0000 51.0000 0.0000 0.0000 + 984.6291 94.0000 52.0000 0.0000 0.0000 868.1868 94.0000 53.0000 0.0000 0.0000 + 762.5407 94.0000 54.0000 0.0000 0.0000 4689.4909 94.0000 55.0000 0.0000 0.0000 + 3969.4488 94.0000 56.0000 0.0000 0.0000 3346.9278 94.0000 57.0000 0.0000 0.0000 + 1294.6997 94.0000 58.0000 0.0000 2.7991 3470.8103 94.0000 59.0000 0.0000 0.0000 + 3308.2782 94.0000 60.0000 0.0000 0.0000 3218.7253 94.0000 61.0000 0.0000 0.0000 + 3137.0576 94.0000 62.0000 0.0000 0.0000 3064.4224 94.0000 63.0000 0.0000 0.0000 + 2306.8366 94.0000 64.0000 0.0000 0.0000 2784.2586 94.0000 65.0000 0.0000 0.0000 + 2666.0816 94.0000 66.0000 0.0000 0.0000 2734.2974 94.0000 67.0000 0.0000 0.0000 + 2672.9042 94.0000 68.0000 0.0000 0.0000 2616.1724 94.0000 69.0000 0.0000 0.0000 + 2590.0957 94.0000 70.0000 0.0000 0.0000 2118.9811 94.0000 71.0000 0.0000 0.0000 + 1996.0266 94.0000 72.0000 0.0000 0.0000 1776.4187 94.0000 73.0000 0.0000 0.0000 + 1473.7544 94.0000 74.0000 0.0000 0.0000 1483.6747 94.0000 75.0000 0.0000 0.0000 + 1315.8080 94.0000 76.0000 0.0000 0.0000 1184.2955 94.0000 77.0000 0.0000 0.0000 + 967.4643 94.0000 78.0000 0.0000 0.0000 897.7386 94.0000 79.0000 0.0000 0.0000 + 914.7912 94.0000 80.0000 0.0000 0.0000 1460.2247 94.0000 81.0000 0.0000 0.0000 + 1379.0263 94.0000 82.0000 0.0000 0.0000 1221.2647 94.0000 83.0000 0.0000 0.0000 + 1140.7827 94.0000 84.0000 0.0000 0.0000 1027.3948 94.0000 85.0000 0.0000 0.0000 + 921.4047 94.0000 86.0000 0.0000 0.0000 4288.5858 94.0000 87.0000 0.0000 0.0000 + 3844.4325 94.0000 88.0000 0.0000 0.0000 3269.5288 94.0000 89.0000 0.0000 0.0000 + 2814.6033 94.0000 90.0000 0.0000 0.0000 2858.1875 94.0000 91.0000 0.0000 0.0000 + 2764.2585 94.0000 92.0000 0.0000 0.0000 2921.8223 94.0000 93.0000 0.0000 0.0000 + 2815.2366 94.0000 94.0000 0.0000 0.0000 4.7379 101.0000 1.0000 0.0000 0.9118 + 3.1287 101.0000 2.0000 0.0000 0.0000 68.9391 101.0000 3.0000 0.0000 0.0000 + 41.3078 101.0000 4.0000 0.0000 0.0000 28.2767 101.0000 5.0000 0.0000 0.0000 + 19.2653 101.0000 6.0000 0.0000 0.0000 13.5164 101.0000 7.0000 0.0000 0.0000 + 10.2371 101.0000 8.0000 0.0000 0.0000 7.7441 101.0000 9.0000 0.0000 0.0000 + 5.9403 101.0000 10.0000 0.0000 0.0000 82.5641 101.0000 11.0000 0.0000 0.0000 + 65.3703 101.0000 12.0000 0.0000 0.0000 60.8558 101.0000 13.0000 0.0000 0.0000 + 48.5182 101.0000 14.0000 0.0000 0.0000 38.1397 101.0000 15.0000 0.0000 0.0000 + 31.7713 101.0000 16.0000 0.0000 0.0000 26.0170 101.0000 17.0000 0.0000 0.0000 + 21.3055 101.0000 18.0000 0.0000 0.0000 134.4441 101.0000 19.0000 0.0000 0.0000 + 113.4857 101.0000 20.0000 0.0000 0.0000 94.2083 101.0000 21.0000 0.0000 0.0000 + 91.3334 101.0000 22.0000 0.0000 0.0000 83.8313 101.0000 23.0000 0.0000 0.0000 + 65.9837 101.0000 24.0000 0.0000 0.0000 72.4111 101.0000 25.0000 0.0000 0.0000 + 56.7993 101.0000 26.0000 0.0000 0.0000 60.5746 101.0000 27.0000 0.0000 0.0000 + 62.2532 101.0000 28.0000 0.0000 0.0000 47.6499 101.0000 29.0000 0.0000 0.0000 + 49.3469 101.0000 30.0000 0.0000 0.0000 58.4207 101.0000 31.0000 0.0000 0.0000 + 51.9905 101.0000 32.0000 0.0000 0.0000 44.6512 101.0000 33.0000 0.0000 0.0000 + 40.2010 101.0000 34.0000 0.0000 0.0000 35.2740 101.0000 35.0000 0.0000 0.0000 + 30.7261 101.0000 36.0000 0.0000 0.0000 150.9340 101.0000 37.0000 0.0000 0.0000 + 135.0664 101.0000 38.0000 0.0000 0.0000 119.2961 101.0000 39.0000 0.0000 0.0000 + 107.7306 101.0000 40.0000 0.0000 0.0000 98.5183 101.0000 41.0000 0.0000 0.0000 + 76.3661 101.0000 42.0000 0.0000 0.0000 85.0800 101.0000 43.0000 0.0000 0.0000 + 65.0863 101.0000 44.0000 0.0000 0.0000 71.1985 101.0000 45.0000 0.0000 0.0000 + 66.1211 101.0000 46.0000 0.0000 0.0000 54.9658 101.0000 47.0000 0.0000 0.0000 + 58.3568 101.0000 48.0000 0.0000 0.0000 72.9076 101.0000 49.0000 0.0000 0.0000 + 67.9430 101.0000 50.0000 0.0000 0.0000 60.9470 101.0000 51.0000 0.0000 0.0000 + 56.7427 101.0000 52.0000 0.0000 0.0000 51.4656 101.0000 53.0000 0.0000 0.0000 + 46.3794 101.0000 54.0000 0.0000 0.0000 184.0223 101.0000 55.0000 0.0000 0.0000 + 171.7033 101.0000 56.0000 0.0000 0.0000 152.1106 101.0000 57.0000 0.0000 0.0000 + 71.8830 101.0000 58.0000 0.0000 2.7991 152.4502 101.0000 59.0000 0.0000 0.0000 + 146.5851 101.0000 60.0000 0.0000 0.0000 142.9620 101.0000 61.0000 0.0000 0.0000 + 139.6254 101.0000 62.0000 0.0000 0.0000 136.6695 101.0000 63.0000 0.0000 0.0000 + 108.3662 101.0000 64.0000 0.0000 0.0000 120.4056 101.0000 65.0000 0.0000 0.0000 + 116.3178 101.0000 66.0000 0.0000 0.0000 123.5220 101.0000 67.0000 0.0000 0.0000 + 120.9302 101.0000 68.0000 0.0000 0.0000 118.6070 101.0000 69.0000 0.0000 0.0000 + 117.1811 101.0000 70.0000 0.0000 0.0000 99.2984 101.0000 71.0000 0.0000 0.0000 + 98.5136 101.0000 72.0000 0.0000 0.0000 90.2858 101.0000 73.0000 0.0000 0.0000 + 76.4150 101.0000 74.0000 0.0000 0.0000 77.8793 101.0000 75.0000 0.0000 0.0000 + 70.8024 101.0000 76.0000 0.0000 0.0000 64.9890 101.0000 77.0000 0.0000 0.0000 + 54.0451 101.0000 78.0000 0.0000 0.0000 50.5086 101.0000 79.0000 0.0000 0.0000 + 52.0547 101.0000 80.0000 0.0000 0.0000 74.8817 101.0000 81.0000 0.0000 0.0000 + 73.6692 101.0000 82.0000 0.0000 0.0000 68.1031 101.0000 83.0000 0.0000 0.0000 + 65.1605 101.0000 84.0000 0.0000 0.0000 60.3338 101.0000 85.0000 0.0000 0.0000 + 55.4345 101.0000 86.0000 0.0000 0.0000 174.9212 101.0000 87.0000 0.0000 0.0000 + 170.5082 101.0000 88.0000 0.0000 0.0000 151.8139 101.0000 89.0000 0.0000 0.0000 + 137.4724 101.0000 90.0000 0.0000 0.0000 135.8701 101.0000 91.0000 0.0000 0.0000 + 131.5644 101.0000 92.0000 0.0000 0.0000 134.7304 101.0000 93.0000 0.0000 0.0000 + 130.5946 101.0000 94.0000 0.0000 0.0000 7.5916 101.0000 101.0000 0.0000 0.0000 + 14.3165 103.0000 1.0000 0.9865 0.9118 8.7773 103.0000 2.0000 0.9865 0.0000 + 282.2106 103.0000 3.0000 0.9865 0.0000 148.1323 103.0000 4.0000 0.9865 0.0000 + 93.6729 103.0000 5.0000 0.9865 0.0000 60.0860 103.0000 6.0000 0.9865 0.0000 + 40.2944 103.0000 7.0000 0.9865 0.0000 29.5575 103.0000 8.0000 0.9865 0.0000 + 21.7605 103.0000 9.0000 0.9865 0.0000 16.3388 103.0000 10.0000 0.9865 0.0000 + 335.3450 103.0000 11.0000 0.9865 0.0000 240.1627 103.0000 12.0000 0.9865 0.0000 + 214.7265 103.0000 13.0000 0.9865 0.0000 162.0508 103.0000 14.0000 0.9865 0.0000 + 121.5067 103.0000 15.0000 0.9865 0.0000 98.1249 103.0000 16.0000 0.9865 0.0000 + 77.9865 103.0000 17.0000 0.9865 0.0000 62.2205 103.0000 18.0000 0.9865 0.0000 + 555.1516 103.0000 19.0000 0.9865 0.0000 434.1576 103.0000 20.0000 0.9865 0.0000 + 354.0317 103.0000 21.0000 0.9865 0.0000 337.3896 103.0000 22.0000 0.9865 0.0000 + 306.5482 103.0000 23.0000 0.9865 0.0000 240.5033 103.0000 24.0000 0.9865 0.0000 + 260.9019 103.0000 25.0000 0.9865 0.0000 203.6149 103.0000 26.0000 0.9865 0.0000 + 212.8978 103.0000 27.0000 0.9865 0.0000 221.1739 103.0000 28.0000 0.9865 0.0000 + 168.8075 103.0000 29.0000 0.9865 0.0000 169.4949 103.0000 30.0000 0.9865 0.0000 + 202.6900 103.0000 31.0000 0.9865 0.0000 172.9425 103.0000 32.0000 0.9865 0.0000 + 142.8471 103.0000 33.0000 0.9865 0.0000 125.4768 103.0000 34.0000 0.9865 0.0000 + 107.3380 103.0000 35.0000 0.9865 0.0000 91.3333 103.0000 36.0000 0.9865 0.0000 + 618.5681 103.0000 37.0000 0.9865 0.0000 517.8393 103.0000 38.0000 0.9865 0.0000 + 442.9448 103.0000 39.0000 0.9865 0.0000 391.9179 103.0000 40.0000 0.9865 0.0000 + 353.5008 103.0000 41.0000 0.9865 0.0000 267.3761 103.0000 42.0000 0.9865 0.0000 + 300.6533 103.0000 43.0000 0.9865 0.0000 223.8871 103.0000 44.0000 0.9865 0.0000 + 245.2561 103.0000 45.0000 0.9865 0.0000 225.8042 103.0000 46.0000 0.9865 0.0000 + 188.3374 103.0000 47.0000 0.9865 0.0000 197.0940 103.0000 48.0000 0.9865 0.0000 + 253.1370 103.0000 49.0000 0.9865 0.0000 228.0814 103.0000 50.0000 0.9865 0.0000 + 197.7698 103.0000 51.0000 0.9865 0.0000 180.3056 103.0000 52.0000 0.9865 0.0000 + 159.8670 103.0000 53.0000 0.9865 0.0000 140.9818 103.0000 54.0000 0.9865 0.0000 + 752.3418 103.0000 55.0000 0.9865 0.0000 664.5719 103.0000 56.0000 0.9865 0.0000 + 570.4266 103.0000 57.0000 0.9865 0.0000 234.5271 103.0000 58.0000 0.9865 2.7991 + 583.9797 103.0000 59.0000 0.9865 0.0000 558.6972 103.0000 60.0000 0.9865 0.0000 + 544.1232 103.0000 61.0000 0.9865 0.0000 530.7909 103.0000 62.0000 0.9865 0.0000 + 518.9498 103.0000 63.0000 0.9865 0.0000 396.7223 103.0000 64.0000 0.9865 0.0000 + 463.5442 103.0000 65.0000 0.9865 0.0000 445.0101 103.0000 66.0000 0.9865 0.0000 + 465.4100 103.0000 67.0000 0.9865 0.0000 455.2827 103.0000 68.0000 0.9865 0.0000 + 446.0030 103.0000 69.0000 0.9865 0.0000 441.3220 103.0000 70.0000 0.9865 0.0000 + 364.7467 103.0000 71.0000 0.9865 0.0000 350.0617 103.0000 72.0000 0.9865 0.0000 + 314.2483 103.0000 73.0000 0.9865 0.0000 261.3833 103.0000 74.0000 0.9865 0.0000 + 264.3697 103.0000 75.0000 0.9865 0.0000 236.0258 103.0000 76.0000 0.9865 0.0000 + 213.4644 103.0000 77.0000 0.9865 0.0000 174.6132 103.0000 78.0000 0.9865 0.0000 + 162.1342 103.0000 79.0000 0.9865 0.0000 166.0489 103.0000 80.0000 0.9865 0.0000 + 257.3823 103.0000 81.0000 0.9865 0.0000 246.8355 103.0000 82.0000 0.9865 0.0000 + 221.4325 103.0000 83.0000 0.9865 0.0000 208.1269 103.0000 84.0000 0.9865 0.0000 + 188.6073 103.0000 85.0000 0.9865 0.0000 169.8943 103.0000 86.0000 0.9865 0.0000 + 697.6449 103.0000 87.0000 0.9865 0.0000 649.0325 103.0000 88.0000 0.9865 0.0000 + 561.3519 103.0000 89.0000 0.9865 0.0000 491.0777 103.0000 90.0000 0.9865 0.0000 + 493.4651 103.0000 91.0000 0.9865 0.0000 477.4254 103.0000 92.0000 0.9865 0.0000 + 499.5202 103.0000 93.0000 0.9865 0.0000 482.3466 103.0000 94.0000 0.9865 0.0000 + 24.0573 103.0000 101.0000 0.9865 0.0000 85.3197 103.0000 103.0000 0.9865 0.9865 + 18.4656 104.0000 1.0000 0.9808 0.9118 11.4655 104.0000 2.0000 0.9808 0.0000 + 352.2160 104.0000 3.0000 0.9808 0.0000 186.3453 104.0000 4.0000 0.9808 0.0000 + 119.0815 104.0000 5.0000 0.9808 0.0000 77.0951 104.0000 6.0000 0.9808 0.0000 + 52.0852 104.0000 7.0000 0.9808 0.0000 38.4132 104.0000 8.0000 0.9808 0.0000 + 28.4098 104.0000 9.0000 0.9808 0.0000 21.4067 104.0000 10.0000 0.9808 0.0000 + 418.6488 104.0000 11.0000 0.9808 0.0000 301.3777 104.0000 12.0000 0.9808 0.0000 + 270.7461 104.0000 13.0000 0.9808 0.0000 205.7544 104.0000 14.0000 0.9808 0.0000 + 155.3644 104.0000 15.0000 0.9808 0.0000 126.0993 104.0000 16.0000 0.9808 0.0000 + 100.7212 104.0000 17.0000 0.9808 0.0000 80.7174 104.0000 18.0000 0.9808 0.0000 + 694.8596 104.0000 19.0000 0.9808 0.0000 543.5842 104.0000 20.0000 0.9808 0.0000 + 443.7190 104.0000 21.0000 0.9808 0.0000 423.6217 104.0000 22.0000 0.9808 0.0000 + 385.2754 104.0000 23.0000 0.9808 0.0000 302.6061 104.0000 24.0000 0.9808 0.0000 + 328.4012 104.0000 25.0000 0.9808 0.0000 256.6043 104.0000 26.0000 0.9808 0.0000 + 268.6284 104.0000 27.0000 0.9808 0.0000 278.7116 104.0000 28.0000 0.9808 0.0000 + 212.9797 104.0000 29.0000 0.9808 0.0000 214.4256 104.0000 30.0000 0.9808 0.0000 + 256.2049 104.0000 31.0000 0.9808 0.0000 219.7375 104.0000 32.0000 0.9808 0.0000 + 182.5338 104.0000 33.0000 0.9808 0.0000 160.9687 104.0000 34.0000 0.9808 0.0000 + 138.2747 104.0000 35.0000 0.9808 0.0000 118.1240 104.0000 36.0000 0.9808 0.0000 + 774.9656 104.0000 37.0000 0.9808 0.0000 648.6422 104.0000 38.0000 0.9808 0.0000 + 556.1503 104.0000 39.0000 0.9808 0.0000 493.0100 104.0000 40.0000 0.9808 0.0000 + 445.3736 104.0000 41.0000 0.9808 0.0000 337.9035 104.0000 42.0000 0.9808 0.0000 + 379.5254 104.0000 43.0000 0.9808 0.0000 283.5695 104.0000 44.0000 0.9808 0.0000 + 310.3781 104.0000 45.0000 0.9808 0.0000 286.0395 104.0000 46.0000 0.9808 0.0000 + 238.6962 104.0000 47.0000 0.9808 0.0000 249.9915 104.0000 48.0000 0.9808 0.0000 + 320.0912 104.0000 49.0000 0.9808 0.0000 289.4713 104.0000 50.0000 0.9808 0.0000 + 252.1649 104.0000 51.0000 0.9808 0.0000 230.6309 104.0000 52.0000 0.9808 0.0000 + 205.2237 104.0000 53.0000 0.9808 0.0000 181.6260 104.0000 54.0000 0.9808 0.0000 + 943.8547 104.0000 55.0000 0.9808 0.0000 832.6251 104.0000 56.0000 0.9808 0.0000 + 716.0758 104.0000 57.0000 0.9808 0.0000 298.8782 104.0000 58.0000 0.9808 2.7991 + 732.1642 104.0000 59.0000 0.9808 0.0000 700.4442 104.0000 60.0000 0.9808 0.0000 + 682.1901 104.0000 61.0000 0.9808 0.0000 665.4868 104.0000 62.0000 0.9808 0.0000 + 650.6557 104.0000 63.0000 0.9808 0.0000 499.1837 104.0000 64.0000 0.9808 0.0000 + 582.1224 104.0000 65.0000 0.9808 0.0000 559.2917 104.0000 66.0000 0.9808 0.0000 + 583.7067 104.0000 67.0000 0.9808 0.0000 571.0039 104.0000 68.0000 0.9808 0.0000 + 559.3898 104.0000 69.0000 0.9808 0.0000 553.4266 104.0000 70.0000 0.9808 0.0000 + 458.6582 104.0000 71.0000 0.9808 0.0000 441.3789 104.0000 72.0000 0.9808 0.0000 + 397.1312 104.0000 73.0000 0.9808 0.0000 331.2124 104.0000 74.0000 0.9808 0.0000 + 335.2261 104.0000 75.0000 0.9808 0.0000 299.9565 104.0000 76.0000 0.9808 0.0000 + 271.8119 104.0000 77.0000 0.9808 0.0000 222.9157 104.0000 78.0000 0.9808 0.0000 + 207.1831 104.0000 79.0000 0.9808 0.0000 212.3132 104.0000 80.0000 0.9808 0.0000 + 326.1068 104.0000 81.0000 0.9808 0.0000 313.4675 104.0000 82.0000 0.9808 0.0000 + 282.2935 104.0000 83.0000 0.9808 0.0000 266.0200 104.0000 84.0000 0.9808 0.0000 + 241.8688 104.0000 85.0000 0.9808 0.0000 218.5687 104.0000 86.0000 0.9808 0.0000 + 875.8563 104.0000 87.0000 0.9808 0.0000 814.1308 104.0000 88.0000 0.9808 0.0000 + 705.4011 104.0000 89.0000 0.9808 0.0000 619.0605 104.0000 90.0000 0.9808 0.0000 + 621.3399 104.0000 91.0000 0.9808 0.0000 601.1496 104.0000 92.0000 0.9808 0.0000 + 627.6385 104.0000 93.0000 0.9808 0.0000 606.2139 104.0000 94.0000 0.9808 0.0000 + 30.7866 104.0000 101.0000 0.9808 0.0000 107.5083 104.0000 103.0000 0.9808 0.9865 + 135.8445 104.0000 104.0000 0.9808 0.9808 14.7237 105.0000 1.0000 0.9706 0.9118 + 9.5836 105.0000 2.0000 0.9706 0.0000 231.4209 105.0000 3.0000 0.9706 0.0000 + 133.7265 105.0000 4.0000 0.9706 0.0000 89.7429 105.0000 5.0000 0.9706 0.0000 + 60.2996 105.0000 6.0000 0.9706 0.0000 41.9015 105.0000 7.0000 0.9706 0.0000 + 31.5354 105.0000 8.0000 0.9706 0.0000 23.7369 105.0000 9.0000 0.9706 0.0000 + 18.1424 105.0000 10.0000 0.9706 0.0000 276.5671 105.0000 11.0000 0.9706 0.0000 + 212.9979 105.0000 12.0000 0.9706 0.0000 196.2014 105.0000 13.0000 0.9706 0.0000 + 154.2901 105.0000 14.0000 0.9706 0.0000 119.9353 105.0000 15.0000 0.9706 0.0000 + 99.2159 105.0000 16.0000 0.9706 0.0000 80.7272 105.0000 17.0000 0.9706 0.0000 + 65.7580 105.0000 18.0000 0.9706 0.0000 452.5193 105.0000 19.0000 0.9706 0.0000 + 373.8815 105.0000 20.0000 0.9706 0.0000 308.8721 105.0000 21.0000 0.9706 0.0000 + 298.0871 105.0000 22.0000 0.9706 0.0000 272.8747 105.0000 23.0000 0.9706 0.0000 + 214.6360 105.0000 24.0000 0.9706 0.0000 234.8000 105.0000 25.0000 0.9706 0.0000 + 183.9737 105.0000 26.0000 0.9706 0.0000 195.1731 105.0000 27.0000 0.9706 0.0000 + 201.1351 105.0000 28.0000 0.9706 0.0000 153.8824 105.0000 29.0000 0.9706 0.0000 + 158.0848 105.0000 30.0000 0.9706 0.0000 187.5797 105.0000 31.0000 0.9706 0.0000 + 165.1930 105.0000 32.0000 0.9706 0.0000 140.5625 105.0000 33.0000 0.9706 0.0000 + 125.8437 105.0000 34.0000 0.9706 0.0000 109.8060 105.0000 35.0000 0.9706 0.0000 + 95.1763 105.0000 36.0000 0.9706 0.0000 506.9421 105.0000 37.0000 0.9706 0.0000 + 445.2608 105.0000 38.0000 0.9706 0.0000 389.8823 105.0000 39.0000 0.9706 0.0000 + 350.1970 105.0000 40.0000 0.9706 0.0000 319.1151 105.0000 41.0000 0.9706 0.0000 + 245.8527 105.0000 42.0000 0.9706 0.0000 274.5334 105.0000 43.0000 0.9706 0.0000 + 208.6362 105.0000 44.0000 0.9706 0.0000 228.2822 105.0000 45.0000 0.9706 0.0000 + 211.5559 105.0000 46.0000 0.9706 0.0000 176.0603 105.0000 47.0000 0.9706 0.0000 + 186.2199 105.0000 48.0000 0.9706 0.0000 234.2171 105.0000 49.0000 0.9706 0.0000 + 216.4276 105.0000 50.0000 0.9706 0.0000 192.5542 105.0000 51.0000 0.9706 0.0000 + 178.3919 105.0000 52.0000 0.9706 0.0000 160.9679 105.0000 53.0000 0.9706 0.0000 + 144.3697 105.0000 54.0000 0.9706 0.0000 617.6058 105.0000 55.0000 0.9706 0.0000 + 567.5136 105.0000 56.0000 0.9706 0.0000 498.4534 105.0000 57.0000 0.9706 0.0000 + 227.4189 105.0000 58.0000 0.9706 2.7991 502.4967 105.0000 59.0000 0.9706 0.0000 + 482.5077 105.0000 60.0000 0.9706 0.0000 470.4029 105.0000 61.0000 0.9706 0.0000 + 459.2753 105.0000 62.0000 0.9706 0.0000 449.4102 105.0000 63.0000 0.9706 0.0000 + 352.9087 105.0000 64.0000 0.9706 0.0000 397.4499 105.0000 65.0000 0.9706 0.0000 + 383.2952 105.0000 66.0000 0.9706 0.0000 405.3285 105.0000 67.0000 0.9706 0.0000 + 396.7377 105.0000 68.0000 0.9706 0.0000 388.9890 105.0000 69.0000 0.9706 0.0000 + 384.4701 105.0000 70.0000 0.9706 0.0000 323.6450 105.0000 71.0000 0.9706 0.0000 + 318.2872 105.0000 72.0000 0.9706 0.0000 290.1801 105.0000 73.0000 0.9706 0.0000 + 244.5675 105.0000 74.0000 0.9706 0.0000 248.7775 105.0000 75.0000 0.9706 0.0000 + 225.1819 105.0000 76.0000 0.9706 0.0000 205.9702 105.0000 77.0000 0.9706 0.0000 + 170.6556 105.0000 78.0000 0.9706 0.0000 159.2635 105.0000 79.0000 0.9706 0.0000 + 163.8820 105.0000 80.0000 0.9706 0.0000 240.0000 105.0000 81.0000 0.9706 0.0000 + 234.6048 105.0000 82.0000 0.9706 0.0000 215.3027 105.0000 83.0000 0.9706 0.0000 + 205.1334 105.0000 84.0000 0.9706 0.0000 188.9991 105.0000 85.0000 0.9706 0.0000 + 172.8854 105.0000 86.0000 0.9706 0.0000 582.9815 105.0000 87.0000 0.9706 0.0000 + 561.0086 105.0000 88.0000 0.9706 0.0000 495.6389 105.0000 89.0000 0.9706 0.0000 + 444.8102 105.0000 90.0000 0.9706 0.0000 441.5578 105.0000 91.0000 0.9706 0.0000 + 427.4807 105.0000 92.0000 0.9706 0.0000 440.2710 105.0000 93.0000 0.9706 0.0000 + 426.3255 105.0000 94.0000 0.9706 0.0000 23.8412 105.0000 101.0000 0.9706 0.0000 + 77.6633 105.0000 103.0000 0.9706 0.9865 98.9938 105.0000 104.0000 0.9706 0.9808 + 75.3686 105.0000 105.0000 0.9706 0.9706 11.3932 106.0000 1.0000 0.9868 0.9118 + 7.7065 106.0000 2.0000 0.9868 0.0000 160.4590 106.0000 3.0000 0.9868 0.0000 + 96.5431 106.0000 4.0000 0.9868 0.0000 66.7986 106.0000 5.0000 0.9868 0.0000 + 46.0681 106.0000 6.0000 0.9868 0.0000 32.7009 106.0000 7.0000 0.9868 0.0000 + 25.0097 106.0000 8.0000 0.9868 0.0000 19.0974 106.0000 9.0000 0.9868 0.0000 + 14.7716 106.0000 10.0000 0.9868 0.0000 192.3729 106.0000 11.0000 0.9868 0.0000 + 152.6130 106.0000 12.0000 0.9868 0.0000 142.6094 106.0000 13.0000 0.9868 0.0000 + 114.4405 106.0000 14.0000 0.9868 0.0000 90.6767 106.0000 15.0000 0.9868 0.0000 + 76.0552 106.0000 16.0000 0.9868 0.0000 62.7465 106.0000 17.0000 0.9868 0.0000 + 51.7684 106.0000 18.0000 0.9868 0.0000 314.5800 106.0000 19.0000 0.9868 0.0000 + 265.1206 106.0000 20.0000 0.9868 0.0000 220.1854 106.0000 21.0000 0.9868 0.0000 + 213.8682 106.0000 22.0000 0.9868 0.0000 196.4885 106.0000 23.0000 0.9868 0.0000 + 155.1171 106.0000 24.0000 0.9868 0.0000 169.9796 106.0000 25.0000 0.9868 0.0000 + 133.7700 106.0000 26.0000 0.9868 0.0000 142.5140 106.0000 27.0000 0.9868 0.0000 + 146.2711 106.0000 28.0000 0.9868 0.0000 112.3914 106.0000 29.0000 0.9868 0.0000 + 116.3987 106.0000 30.0000 0.9868 0.0000 137.4723 106.0000 31.0000 0.9868 0.0000 + 122.8805 106.0000 32.0000 0.9868 0.0000 106.1686 106.0000 33.0000 0.9868 0.0000 + 96.0599 106.0000 34.0000 0.9868 0.0000 84.7723 106.0000 35.0000 0.9868 0.0000 + 74.2865 106.0000 36.0000 0.9868 0.0000 353.6302 106.0000 37.0000 0.9868 0.0000 + 315.8923 106.0000 38.0000 0.9868 0.0000 279.4727 106.0000 39.0000 0.9868 0.0000 + 252.8213 106.0000 40.0000 0.9868 0.0000 231.5976 106.0000 41.0000 0.9868 0.0000 + 180.3390 106.0000 42.0000 0.9868 0.0000 200.5464 106.0000 43.0000 0.9868 0.0000 + 154.1938 106.0000 44.0000 0.9868 0.0000 168.3115 106.0000 45.0000 0.9868 0.0000 + 156.5006 106.0000 46.0000 0.9868 0.0000 130.5144 106.0000 47.0000 0.9868 0.0000 + 138.3672 106.0000 48.0000 0.9868 0.0000 172.1229 106.0000 49.0000 0.9868 0.0000 + 160.7910 106.0000 50.0000 0.9868 0.0000 144.8462 106.0000 51.0000 0.9868 0.0000 + 135.3122 106.0000 52.0000 0.9868 0.0000 123.2538 106.0000 53.0000 0.9868 0.0000 + 111.5923 106.0000 54.0000 0.9868 0.0000 431.5172 106.0000 55.0000 0.9868 0.0000 + 401.8774 106.0000 56.0000 0.9868 0.0000 356.4610 106.0000 57.0000 0.9868 0.0000 + 170.9262 106.0000 58.0000 0.9868 2.7991 357.1399 106.0000 59.0000 0.9868 0.0000 + 343.4153 106.0000 60.0000 0.9868 0.0000 334.9245 106.0000 61.0000 0.9868 0.0000 + 327.0991 106.0000 62.0000 0.9868 0.0000 320.1657 106.0000 63.0000 0.9868 0.0000 + 254.8122 106.0000 64.0000 0.9868 0.0000 282.8547 106.0000 65.0000 0.9868 0.0000 + 273.3375 106.0000 66.0000 0.9868 0.0000 289.3920 106.0000 67.0000 0.9868 0.0000 + 283.3001 106.0000 68.0000 0.9868 0.0000 277.8493 106.0000 69.0000 0.9868 0.0000 + 274.4500 106.0000 70.0000 0.9868 0.0000 233.1394 106.0000 71.0000 0.9868 0.0000 + 231.6334 106.0000 72.0000 0.9868 0.0000 212.8041 106.0000 73.0000 0.9868 0.0000 + 180.8462 106.0000 74.0000 0.9868 0.0000 184.3586 106.0000 75.0000 0.9868 0.0000 + 168.0477 106.0000 76.0000 0.9868 0.0000 154.6248 106.0000 77.0000 0.9868 0.0000 + 129.1835 106.0000 78.0000 0.9868 0.0000 120.9485 106.0000 79.0000 0.9868 0.0000 + 124.5951 106.0000 80.0000 0.9868 0.0000 177.4853 106.0000 81.0000 0.9868 0.0000 + 174.7675 106.0000 82.0000 0.9868 0.0000 162.0740 106.0000 83.0000 0.9868 0.0000 + 155.4506 106.0000 84.0000 0.9868 0.0000 144.4532 106.0000 85.0000 0.9868 0.0000 + 133.2432 106.0000 86.0000 0.9868 0.0000 410.5860 106.0000 87.0000 0.9868 0.0000 + 399.5225 106.0000 88.0000 0.9868 0.0000 356.1127 106.0000 89.0000 0.9868 0.0000 + 323.4959 106.0000 90.0000 0.9868 0.0000 319.6761 106.0000 91.0000 0.9868 0.0000 + 309.6082 106.0000 92.0000 0.9868 0.0000 316.5967 106.0000 93.0000 0.9868 0.0000 + 306.9303 106.0000 94.0000 0.9868 0.0000 18.0575 106.0000 101.0000 0.9868 0.0000 + 56.3468 106.0000 103.0000 0.9868 0.9865 72.3162 106.0000 104.0000 0.9868 0.9808 + 56.5295 106.0000 105.0000 0.9868 0.9706 43.2452 106.0000 106.0000 0.9868 0.9868 + 8.1417 107.0000 1.0000 0.9944 0.9118 5.7601 107.0000 2.0000 0.9944 0.0000 + 101.2701 107.0000 3.0000 0.9944 0.0000 63.8580 107.0000 4.0000 0.9944 0.0000 + 45.7319 107.0000 5.0000 0.9944 0.0000 32.4848 107.0000 6.0000 0.9944 0.0000 + 23.6295 107.0000 7.0000 0.9944 0.0000 18.4128 107.0000 8.0000 0.9944 0.0000 + 14.3015 107.0000 9.0000 0.9944 0.0000 11.2243 107.0000 10.0000 0.9944 0.0000 + 121.9601 107.0000 11.0000 0.9944 0.0000 100.1443 107.0000 12.0000 0.9944 0.0000 + 95.0916 107.0000 13.0000 0.9944 0.0000 78.0466 107.0000 14.0000 0.9944 0.0000 + 63.1669 107.0000 15.0000 0.9944 0.0000 53.8107 107.0000 16.0000 0.9944 0.0000 + 45.0952 107.0000 17.0000 0.9944 0.0000 37.7522 107.0000 18.0000 0.9944 0.0000 + 199.4405 107.0000 19.0000 0.9944 0.0000 172.0455 107.0000 20.0000 0.9944 0.0000 + 143.7658 107.0000 21.0000 0.9944 0.0000 140.7115 107.0000 22.0000 0.9944 0.0000 + 129.8297 107.0000 23.0000 0.9944 0.0000 103.0189 107.0000 24.0000 0.9944 0.0000 + 113.0248 107.0000 25.0000 0.9944 0.0000 89.4868 107.0000 26.0000 0.9944 0.0000 + 95.7051 107.0000 27.0000 0.9944 0.0000 97.7761 107.0000 28.0000 0.9944 0.0000 + 75.5987 107.0000 29.0000 0.9944 0.0000 78.9183 107.0000 30.0000 0.9944 0.0000 + 92.6025 107.0000 31.0000 0.9944 0.0000 84.1276 107.0000 32.0000 0.9944 0.0000 + 73.9142 107.0000 33.0000 0.9944 0.0000 67.6636 107.0000 34.0000 0.9944 0.0000 + 60.4728 107.0000 35.0000 0.9944 0.0000 53.6496 107.0000 36.0000 0.9944 0.0000 + 225.1919 107.0000 37.0000 0.9944 0.0000 205.1574 107.0000 38.0000 0.9944 0.0000 + 183.6851 107.0000 39.0000 0.9944 0.0000 167.5501 107.0000 40.0000 0.9944 0.0000 + 154.4356 107.0000 41.0000 0.9944 0.0000 121.8066 107.0000 42.0000 0.9944 0.0000 + 134.7887 107.0000 43.0000 0.9944 0.0000 105.0905 107.0000 44.0000 0.9944 0.0000 + 114.3496 107.0000 45.0000 0.9944 0.0000 106.7438 107.0000 46.0000 0.9944 0.0000 + 89.3419 107.0000 47.0000 0.9944 0.0000 94.8770 107.0000 48.0000 0.9944 0.0000 + 116.4959 107.0000 49.0000 0.9944 0.0000 110.0951 107.0000 50.0000 0.9944 0.0000 + 100.5182 107.0000 51.0000 0.9944 0.0000 94.7508 107.0000 52.0000 0.9944 0.0000 + 87.2028 107.0000 53.0000 0.9944 0.0000 79.7773 107.0000 54.0000 0.9944 0.0000 + 275.2567 107.0000 55.0000 0.9944 0.0000 260.4481 107.0000 56.0000 0.9944 0.0000 + 233.6619 107.0000 57.0000 0.9944 0.0000 118.5470 107.0000 58.0000 0.9944 2.7991 + 232.5783 107.0000 59.0000 0.9944 0.0000 224.0040 107.0000 60.0000 0.9944 0.0000 + 218.5611 107.0000 61.0000 0.9944 0.0000 213.5277 107.0000 62.0000 0.9944 0.0000 + 209.0700 107.0000 63.0000 0.9944 0.0000 169.0556 107.0000 64.0000 0.9944 0.0000 + 184.5904 107.0000 65.0000 0.9944 0.0000 178.8074 107.0000 66.0000 0.9944 0.0000 + 189.4531 107.0000 67.0000 0.9944 0.0000 185.4931 107.0000 68.0000 0.9944 0.0000 + 181.9823 107.0000 69.0000 0.9944 0.0000 179.6202 107.0000 70.0000 0.9944 0.0000 + 154.2292 107.0000 71.0000 0.9944 0.0000 154.9102 107.0000 72.0000 0.9944 0.0000 + 143.5763 107.0000 73.0000 0.9944 0.0000 123.2302 107.0000 74.0000 0.9944 0.0000 + 125.9121 107.0000 75.0000 0.9944 0.0000 115.6938 107.0000 76.0000 0.9944 0.0000 + 107.1775 107.0000 77.0000 0.9944 0.0000 90.4456 107.0000 78.0000 0.9944 0.0000 + 85.0146 107.0000 79.0000 0.9944 0.0000 87.6490 107.0000 80.0000 0.9944 0.0000 + 121.0800 107.0000 81.0000 0.9944 0.0000 120.1268 107.0000 82.0000 0.9944 0.0000 + 112.6485 107.0000 83.0000 0.9944 0.0000 108.8134 107.0000 84.0000 0.9944 0.0000 + 102.0524 107.0000 85.0000 0.9944 0.0000 94.9928 107.0000 86.0000 0.9944 0.0000 + 264.4430 107.0000 87.0000 0.9944 0.0000 260.6529 107.0000 88.0000 0.9944 0.0000 + 234.7652 107.0000 89.0000 0.9944 0.0000 216.3074 107.0000 90.0000 0.9944 0.0000 + 212.7456 107.0000 91.0000 0.9944 0.0000 206.1631 107.0000 92.0000 0.9944 0.0000 + 209.1524 107.0000 93.0000 0.9944 0.0000 203.0418 107.0000 94.0000 0.9944 0.0000 + 12.5980 107.0000 101.0000 0.9944 0.0000 37.4939 107.0000 103.0000 0.9944 0.9865 + 48.4885 107.0000 104.0000 0.9944 0.9808 39.0433 107.0000 105.0000 0.9944 0.9706 + 30.5410 107.0000 106.0000 0.9944 0.9868 22.1241 107.0000 107.0000 0.9944 0.9944 + 6.0575 108.0000 1.0000 0.9925 0.9118 4.4593 108.0000 2.0000 0.9925 0.0000 + 67.9312 108.0000 3.0000 0.9925 0.0000 44.4968 108.0000 4.0000 0.9925 0.0000 + 32.8136 108.0000 5.0000 0.9925 0.0000 23.9120 108.0000 6.0000 0.9925 0.0000 + 17.7698 108.0000 7.0000 0.9925 0.0000 14.0764 108.0000 8.0000 0.9925 0.0000 + 11.0994 108.0000 9.0000 0.9925 0.0000 8.8252 108.0000 10.0000 0.9925 0.0000 + 82.1820 108.0000 11.0000 0.9925 0.0000 69.3675 108.0000 12.0000 0.9925 0.0000 + 66.7451 108.0000 13.0000 0.9925 0.0000 55.8175 108.0000 14.0000 0.9925 0.0000 + 45.9937 108.0000 15.0000 0.9925 0.0000 39.7091 108.0000 16.0000 0.9925 0.0000 + 33.7313 108.0000 17.0000 0.9925 0.0000 28.6000 108.0000 18.0000 0.9925 0.0000 + 134.6508 108.0000 19.0000 0.9925 0.0000 118.2411 108.0000 20.0000 0.9925 0.0000 + 99.2939 108.0000 21.0000 0.9925 0.0000 97.8345 108.0000 22.0000 0.9925 0.0000 + 90.6007 108.0000 23.0000 0.9925 0.0000 72.2872 108.0000 24.0000 0.9925 0.0000 + 79.3047 108.0000 25.0000 0.9925 0.0000 63.1865 108.0000 26.0000 0.9925 0.0000 + 67.7117 108.0000 27.0000 0.9925 0.0000 68.9086 108.0000 28.0000 0.9925 0.0000 + 53.6420 108.0000 29.0000 0.9925 0.0000 56.2884 108.0000 30.0000 0.9925 0.0000 + 65.6214 108.0000 31.0000 0.9925 0.0000 60.4041 108.0000 32.0000 0.9925 0.0000 + 53.8153 108.0000 33.0000 0.9925 0.0000 49.7552 108.0000 34.0000 0.9925 0.0000 + 44.9510 108.0000 35.0000 0.9925 0.0000 40.3043 108.0000 36.0000 0.9925 0.0000 + 152.6757 108.0000 37.0000 0.9925 0.0000 141.1592 108.0000 38.0000 0.9925 0.0000 + 127.6282 108.0000 39.0000 0.9925 0.0000 117.2328 108.0000 40.0000 0.9925 0.0000 + 108.6378 108.0000 41.0000 0.9925 0.0000 86.6803 108.0000 42.0000 0.9925 0.0000 + 95.4966 108.0000 43.0000 0.9925 0.0000 75.3910 108.0000 44.0000 0.9925 0.0000 + 81.7640 108.0000 45.0000 0.9925 0.0000 76.5871 108.0000 46.0000 0.9925 0.0000 + 64.3880 108.0000 47.0000 0.9925 0.0000 68.3943 108.0000 48.0000 0.9925 0.0000 + 83.0278 108.0000 49.0000 0.9925 0.0000 79.1704 108.0000 50.0000 0.9925 0.0000 + 73.0718 108.0000 51.0000 0.9925 0.0000 69.3901 108.0000 52.0000 0.9925 0.0000 + 64.4141 108.0000 53.0000 0.9925 0.0000 59.4468 108.0000 54.0000 0.9925 0.0000 + 186.8791 108.0000 55.0000 0.9925 0.0000 178.9549 108.0000 56.0000 0.9925 0.0000 + 162.0371 108.0000 57.0000 0.9925 0.0000 86.1665 108.0000 58.0000 0.9925 2.7991 + 160.5233 108.0000 59.0000 0.9925 0.0000 154.8067 108.0000 60.0000 0.9925 0.0000 + 151.0970 108.0000 61.0000 0.9925 0.0000 147.6552 108.0000 62.0000 0.9925 0.0000 + 144.6075 108.0000 63.0000 0.9925 0.0000 118.5388 108.0000 64.0000 0.9925 0.0000 + 127.7828 108.0000 65.0000 0.9925 0.0000 124.0158 108.0000 66.0000 0.9925 0.0000 + 131.3004 108.0000 67.0000 0.9925 0.0000 128.5666 108.0000 68.0000 0.9925 0.0000 + 126.1614 108.0000 69.0000 0.9925 0.0000 124.4402 108.0000 70.0000 0.9925 0.0000 + 107.8351 108.0000 71.0000 0.9925 0.0000 109.2042 108.0000 72.0000 0.9925 0.0000 + 101.9734 108.0000 73.0000 0.9925 0.0000 88.3156 108.0000 74.0000 0.9925 0.0000 + 90.3918 108.0000 75.0000 0.9925 0.0000 83.6227 108.0000 76.0000 0.9925 0.0000 + 77.9194 108.0000 77.0000 0.9925 0.0000 66.3591 108.0000 78.0000 0.9925 0.0000 + 62.6008 108.0000 79.0000 0.9925 0.0000 64.5552 108.0000 80.0000 0.9925 0.0000 + 86.9552 108.0000 81.0000 0.9925 0.0000 86.7392 108.0000 82.0000 0.9925 0.0000 + 82.0559 108.0000 83.0000 0.9925 0.0000 79.7133 108.0000 84.0000 0.9925 0.0000 + 75.3268 108.0000 85.0000 0.9925 0.0000 70.6480 108.0000 86.0000 0.9925 0.0000 + 181.0055 108.0000 87.0000 0.9925 0.0000 180.0988 108.0000 88.0000 0.9925 0.0000 + 163.6042 108.0000 89.0000 0.9925 0.0000 152.5650 108.0000 90.0000 0.9925 0.0000 + 149.5551 108.0000 91.0000 0.9925 0.0000 145.0113 108.0000 92.0000 0.9925 0.0000 + 146.1928 108.0000 93.0000 0.9925 0.0000 142.0775 108.0000 94.0000 0.9925 0.0000 + 9.1812 108.0000 101.0000 0.9925 0.0000 26.2708 108.0000 103.0000 0.9925 0.9865 + 34.1983 108.0000 104.0000 0.9925 0.9808 28.2327 108.0000 105.0000 0.9925 0.9706 + 22.5178 108.0000 106.0000 0.9925 0.9868 16.6775 108.0000 107.0000 0.9925 0.9944 + 12.8161 108.0000 108.0000 0.9925 0.9925 4.2672 109.0000 1.0000 0.9982 0.9118 + 3.3077 109.0000 2.0000 0.9982 0.0000 42.0627 109.0000 3.0000 0.9982 0.0000 + 28.8615 109.0000 4.0000 0.9982 0.0000 22.0931 109.0000 5.0000 0.9982 0.0000 + 16.6373 109.0000 6.0000 0.9982 0.0000 12.7107 109.0000 7.0000 0.9982 0.0000 + 10.2867 109.0000 8.0000 0.9982 0.0000 8.2739 109.0000 9.0000 0.9982 0.0000 + 6.6950 109.0000 10.0000 0.9982 0.0000 51.2498 109.0000 11.0000 0.9982 0.0000 + 44.7141 109.0000 12.0000 0.9982 0.0000 43.7364 109.0000 13.0000 0.9982 0.0000 + 37.4421 109.0000 14.0000 0.9982 0.0000 31.5577 109.0000 15.0000 0.9982 0.0000 + 27.7137 109.0000 16.0000 0.9982 0.0000 23.9505 109.0000 17.0000 0.9982 0.0000 + 20.6394 109.0000 18.0000 0.9982 0.0000 84.3688 109.0000 19.0000 0.9982 0.0000 + 75.5850 109.0000 20.0000 0.9982 0.0000 63.8564 109.0000 21.0000 0.9982 0.0000 + 63.4748 109.0000 22.0000 0.9982 0.0000 59.0665 109.0000 23.0000 0.9982 0.0000 + 47.5318 109.0000 24.0000 0.9982 0.0000 52.0780 109.0000 25.0000 0.9982 0.0000 + 41.8942 109.0000 26.0000 0.9982 0.0000 44.9407 109.0000 27.0000 0.9982 0.0000 + 45.5155 109.0000 28.0000 0.9982 0.0000 35.8100 109.0000 29.0000 0.9982 0.0000 + 37.7559 109.0000 30.0000 0.9982 0.0000 43.5685 109.0000 31.0000 0.9982 0.0000 + 40.7500 109.0000 32.0000 0.9982 0.0000 36.9389 109.0000 33.0000 0.9982 0.0000 + 34.5792 109.0000 34.0000 0.9982 0.0000 31.6699 109.0000 35.0000 0.9982 0.0000 + 28.7800 109.0000 36.0000 0.9982 0.0000 96.2235 109.0000 37.0000 0.9982 0.0000 + 90.4081 109.0000 38.0000 0.9982 0.0000 82.7337 109.0000 39.0000 0.9982 0.0000 + 76.6712 109.0000 40.0000 0.9982 0.0000 71.5493 109.0000 41.0000 0.9982 0.0000 + 57.9784 109.0000 42.0000 0.9982 0.0000 63.5079 109.0000 43.0000 0.9982 0.0000 + 50.9770 109.0000 44.0000 0.9982 0.0000 55.0240 109.0000 45.0000 0.9982 0.0000 + 51.7740 109.0000 46.0000 0.9982 0.0000 43.8480 109.0000 47.0000 0.9982 0.0000 + 46.5340 109.0000 48.0000 0.9982 0.0000 55.6589 109.0000 49.0000 0.9982 0.0000 + 53.6243 109.0000 50.0000 0.9982 0.0000 50.1473 109.0000 51.0000 0.9982 0.0000 + 48.0535 109.0000 52.0000 0.9982 0.0000 45.0848 109.0000 53.0000 0.9982 0.0000 + 42.0634 109.0000 54.0000 0.9982 0.0000 117.9718 109.0000 55.0000 0.9982 0.0000 + 114.4676 109.0000 56.0000 0.9982 0.0000 104.8095 109.0000 57.0000 0.9982 0.0000 + 59.1379 109.0000 58.0000 0.9982 2.7991 103.3616 109.0000 59.0000 0.9982 0.0000 + 99.8331 109.0000 60.0000 0.9982 0.0000 97.4789 109.0000 61.0000 0.9982 0.0000 + 95.2846 109.0000 62.0000 0.9982 0.0000 93.3410 109.0000 63.0000 0.9982 0.0000 + 77.8742 109.0000 64.0000 0.9982 0.0000 82.7154 109.0000 65.0000 0.9982 0.0000 + 80.4607 109.0000 66.0000 0.9982 0.0000 84.9478 109.0000 67.0000 0.9982 0.0000 + 83.1827 109.0000 68.0000 0.9982 0.0000 81.6437 109.0000 69.0000 0.9982 0.0000 + 80.4575 109.0000 70.0000 0.9982 0.0000 70.5522 109.0000 71.0000 0.9982 0.0000 + 72.0887 109.0000 72.0000 0.9982 0.0000 67.9590 109.0000 73.0000 0.9982 0.0000 + 59.5758 109.0000 74.0000 0.9982 0.0000 61.0949 109.0000 75.0000 0.9982 0.0000 + 57.0111 109.0000 76.0000 0.9982 0.0000 53.5214 109.0000 77.0000 0.9982 0.0000 + 46.1442 109.0000 78.0000 0.9982 0.0000 43.7468 109.0000 79.0000 0.9982 0.0000 + 45.1205 109.0000 80.0000 0.9982 0.0000 58.9129 109.0000 81.0000 0.9982 0.0000 + 59.1097 109.0000 82.0000 0.9982 0.0000 56.5007 109.0000 83.0000 0.9982 0.0000 + 55.2614 109.0000 84.0000 0.9982 0.0000 52.7033 109.0000 85.0000 0.9982 0.0000 + 49.8927 109.0000 86.0000 0.9982 0.0000 115.4321 109.0000 87.0000 0.9982 0.0000 + 116.0062 109.0000 88.0000 0.9982 0.0000 106.5303 109.0000 89.0000 0.9982 0.0000 + 100.9029 109.0000 90.0000 0.9982 0.0000 98.5768 109.0000 91.0000 0.9982 0.0000 + 95.6625 109.0000 92.0000 0.9982 0.0000 95.7322 109.0000 93.0000 0.9982 0.0000 + 93.1614 109.0000 94.0000 0.9982 0.0000 6.3000 109.0000 101.0000 0.9982 0.0000 + 17.1733 109.0000 103.0000 0.9982 0.9865 22.5413 109.0000 104.0000 0.9982 0.9808 + 19.2029 109.0000 105.0000 0.9982 0.9706 15.6857 109.0000 106.0000 0.9982 0.9868 + 11.9470 109.0000 107.0000 0.9982 0.9944 9.4048 109.0000 108.0000 0.9982 0.9925 + 7.1341 109.0000 109.0000 0.9982 0.9982 20.7567 111.0000 1.0000 0.9684 0.9118 + 12.7287 111.0000 2.0000 0.9684 0.0000 425.7161 111.0000 3.0000 0.9684 0.0000 + 218.6572 111.0000 4.0000 0.9684 0.0000 136.9536 111.0000 5.0000 0.9684 0.0000 + 87.3956 111.0000 6.0000 0.9684 0.0000 58.4853 111.0000 7.0000 0.9684 0.0000 + 42.8911 111.0000 8.0000 0.9684 0.0000 31.6060 111.0000 9.0000 0.9684 0.0000 + 23.7745 111.0000 10.0000 0.9684 0.0000 505.4363 111.0000 11.0000 0.9684 0.0000 + 355.9180 111.0000 12.0000 0.9684 0.0000 316.4588 111.0000 13.0000 0.9684 0.0000 + 237.1326 111.0000 14.0000 0.9684 0.0000 176.9205 111.0000 15.0000 0.9684 0.0000 + 142.5430 111.0000 16.0000 0.9684 0.0000 113.1025 111.0000 17.0000 0.9684 0.0000 + 90.1735 111.0000 18.0000 0.9684 0.0000 840.8299 111.0000 19.0000 0.9684 0.0000 + 648.3105 111.0000 20.0000 0.9684 0.0000 527.0917 111.0000 21.0000 0.9684 0.0000 + 501.2393 111.0000 22.0000 0.9684 0.0000 454.8030 111.0000 23.0000 0.9684 0.0000 + 357.1508 111.0000 24.0000 0.9684 0.0000 386.3426 111.0000 25.0000 0.9684 0.0000 + 301.7401 111.0000 26.0000 0.9684 0.0000 314.1718 111.0000 27.0000 0.9684 0.0000 + 326.8271 111.0000 28.0000 0.9684 0.0000 249.8197 111.0000 29.0000 0.9684 0.0000 + 249.3925 111.0000 30.0000 0.9684 0.0000 298.4007 111.0000 31.0000 0.9684 0.0000 + 253.1433 111.0000 32.0000 0.9684 0.0000 208.1802 111.0000 33.0000 0.9684 0.0000 + 182.4744 111.0000 34.0000 0.9684 0.0000 155.8202 111.0000 35.0000 0.9684 0.0000 + 132.4348 111.0000 36.0000 0.9684 0.0000 936.3006 111.0000 37.0000 0.9684 0.0000 + 773.9854 111.0000 38.0000 0.9684 0.0000 658.7963 111.0000 39.0000 0.9684 0.0000 + 581.2480 111.0000 40.0000 0.9684 0.0000 523.4058 111.0000 41.0000 0.9684 0.0000 + 395.0058 111.0000 42.0000 0.9684 0.0000 444.5269 111.0000 43.0000 0.9684 0.0000 + 330.2273 111.0000 44.0000 0.9684 0.0000 361.4287 111.0000 45.0000 0.9684 0.0000 + 332.4392 111.0000 46.0000 0.9684 0.0000 277.9428 111.0000 47.0000 0.9684 0.0000 + 289.8474 111.0000 48.0000 0.9684 0.0000 373.3794 111.0000 49.0000 0.9684 0.0000 + 334.7023 111.0000 50.0000 0.9684 0.0000 288.9888 111.0000 51.0000 0.9684 0.0000 + 262.8846 111.0000 52.0000 0.9684 0.0000 232.6053 111.0000 53.0000 0.9684 0.0000 + 204.7986 111.0000 54.0000 0.9684 0.0000 1138.9256 111.0000 55.0000 0.9684 0.0000 + 995.3660 111.0000 56.0000 0.9684 0.0000 850.0768 111.0000 57.0000 0.9684 0.0000 + 343.1382 111.0000 58.0000 0.9684 2.7991 873.5134 111.0000 59.0000 0.9684 0.0000 + 834.9263 111.0000 60.0000 0.9684 0.0000 812.9350 111.0000 61.0000 0.9684 0.0000 + 792.8336 111.0000 62.0000 0.9684 0.0000 774.9719 111.0000 63.0000 0.9684 0.0000 + 589.6821 111.0000 64.0000 0.9684 0.0000 695.0211 111.0000 65.0000 0.9684 0.0000 + 666.6515 111.0000 66.0000 0.9684 0.0000 694.0742 111.0000 67.0000 0.9684 0.0000 + 678.8486 111.0000 68.0000 0.9684 0.0000 664.8580 111.0000 69.0000 0.9684 0.0000 + 657.9922 111.0000 70.0000 0.9684 0.0000 542.0872 111.0000 71.0000 0.9684 0.0000 + 517.4295 111.0000 72.0000 0.9684 0.0000 463.2724 111.0000 73.0000 0.9684 0.0000 + 384.9091 111.0000 74.0000 0.9684 0.0000 388.7971 111.0000 75.0000 0.9684 0.0000 + 346.3997 111.0000 76.0000 0.9684 0.0000 312.8132 111.0000 77.0000 0.9684 0.0000 + 255.7289 111.0000 78.0000 0.9684 0.0000 237.4044 111.0000 79.0000 0.9684 0.0000 + 242.7919 111.0000 80.0000 0.9684 0.0000 379.7209 111.0000 81.0000 0.9684 0.0000 + 362.5649 111.0000 82.0000 0.9684 0.0000 323.9350 111.0000 83.0000 0.9684 0.0000 + 303.8303 111.0000 84.0000 0.9684 0.0000 274.7315 111.0000 85.0000 0.9684 0.0000 + 247.0635 111.0000 86.0000 0.9684 0.0000 1052.1318 111.0000 87.0000 0.9684 0.0000 + 969.7421 111.0000 88.0000 0.9684 0.0000 834.8650 111.0000 89.0000 0.9684 0.0000 + 726.9387 111.0000 90.0000 0.9684 0.0000 732.6554 111.0000 91.0000 0.9684 0.0000 + 708.7936 111.0000 92.0000 0.9684 0.0000 743.9190 111.0000 93.0000 0.9684 0.0000 + 717.9100 111.0000 94.0000 0.9684 0.0000 34.9952 111.0000 101.0000 0.9684 0.0000 + 125.8245 111.0000 103.0000 0.9684 0.9865 158.3268 111.0000 104.0000 0.9684 0.9808 + 113.4016 111.0000 105.0000 0.9684 0.9706 82.0144 111.0000 106.0000 0.9684 0.9868 + 54.4454 111.0000 107.0000 0.9684 0.9944 38.1227 111.0000 108.0000 0.9684 0.9925 + 24.9560 111.0000 109.0000 0.9684 0.9982 186.1052 111.0000 111.0000 0.9684 0.9684 + 31.9913 112.0000 1.0000 0.9628 0.9118 19.4648 112.0000 2.0000 0.9628 0.0000 + 670.0330 112.0000 3.0000 0.9628 0.0000 340.2602 112.0000 4.0000 0.9628 0.0000 + 212.2180 112.0000 5.0000 0.9628 0.0000 134.9227 112.0000 6.0000 0.9628 0.0000 + 89.9646 112.0000 7.0000 0.9628 0.0000 65.7609 112.0000 8.0000 0.9628 0.0000 + 48.2865 112.0000 9.0000 0.9628 0.0000 36.1911 112.0000 10.0000 0.9628 0.0000 + 794.7597 112.0000 11.0000 0.9628 0.0000 554.5967 112.0000 12.0000 0.9628 0.0000 + 492.0829 112.0000 13.0000 0.9628 0.0000 367.5811 112.0000 14.0000 0.9628 0.0000 + 273.5268 112.0000 15.0000 0.9628 0.0000 219.9489 112.0000 16.0000 0.9628 0.0000 + 174.1399 112.0000 17.0000 0.9628 0.0000 138.5190 112.0000 18.0000 0.9628 0.0000 + 1327.3176 112.0000 19.0000 0.9628 0.0000 1013.7695 112.0000 20.0000 0.9628 0.0000 + 822.8957 112.0000 21.0000 0.9628 0.0000 781.6993 112.0000 22.0000 0.9628 0.0000 + 708.7684 112.0000 23.0000 0.9628 0.0000 556.6127 112.0000 24.0000 0.9628 0.0000 + 601.4499 112.0000 25.0000 0.9628 0.0000 469.6437 112.0000 26.0000 0.9628 0.0000 + 488.1715 112.0000 27.0000 0.9628 0.0000 508.1585 112.0000 28.0000 0.9628 0.0000 + 388.4209 112.0000 29.0000 0.9628 0.0000 386.8884 112.0000 30.0000 0.9628 0.0000 + 463.5691 112.0000 31.0000 0.9628 0.0000 392.2533 112.0000 32.0000 0.9628 0.0000 + 321.8732 112.0000 33.0000 0.9628 0.0000 281.7173 112.0000 34.0000 0.9628 0.0000 + 240.1565 112.0000 35.0000 0.9628 0.0000 203.7473 112.0000 36.0000 0.9628 0.0000 + 1477.6556 112.0000 37.0000 0.9628 0.0000 1210.9593 112.0000 38.0000 0.9628 0.0000 + 1028.1365 112.0000 39.0000 0.9628 0.0000 905.7750 112.0000 40.0000 0.9628 0.0000 + 814.9289 112.0000 41.0000 0.9628 0.0000 614.0265 112.0000 42.0000 0.9628 0.0000 + 691.4497 112.0000 43.0000 0.9628 0.0000 512.6759 112.0000 44.0000 0.9628 0.0000 + 561.0010 112.0000 45.0000 0.9628 0.0000 515.6457 112.0000 46.0000 0.9628 0.0000 + 431.2807 112.0000 47.0000 0.9628 0.0000 449.1567 112.0000 48.0000 0.9628 0.0000 + 579.9234 112.0000 49.0000 0.9628 0.0000 518.6518 112.0000 50.0000 0.9628 0.0000 + 446.9230 112.0000 51.0000 0.9628 0.0000 406.0728 112.0000 52.0000 0.9628 0.0000 + 358.8052 112.0000 53.0000 0.9628 0.0000 315.4581 112.0000 54.0000 0.9628 0.0000 + 1799.0180 112.0000 55.0000 0.9628 0.0000 1559.5050 112.0000 56.0000 0.9628 0.0000 + 1328.2510 112.0000 57.0000 0.9628 0.0000 530.8650 112.0000 58.0000 0.9628 2.7991 + 1367.2714 112.0000 59.0000 0.9628 0.0000 1305.9000 112.0000 60.0000 0.9628 0.0000 + 1271.2883 112.0000 61.0000 0.9628 0.0000 1239.6749 112.0000 62.0000 0.9628 0.0000 + 1211.5825 112.0000 63.0000 0.9628 0.0000 919.6329 112.0000 64.0000 0.9628 0.0000 + 1089.8214 112.0000 65.0000 0.9628 0.0000 1045.1961 112.0000 66.0000 0.9628 0.0000 + 1084.2313 112.0000 67.0000 0.9628 0.0000 1060.3386 112.0000 68.0000 0.9628 0.0000 + 1038.3601 112.0000 69.0000 0.9628 0.0000 1027.7356 112.0000 70.0000 0.9628 0.0000 + 845.5386 112.0000 71.0000 0.9628 0.0000 805.0014 112.0000 72.0000 0.9628 0.0000 + 719.7152 112.0000 73.0000 0.9628 0.0000 597.4344 112.0000 74.0000 0.9628 0.0000 + 603.0907 112.0000 75.0000 0.9628 0.0000 536.6221 112.0000 76.0000 0.9628 0.0000 + 484.0716 112.0000 77.0000 0.9628 0.0000 395.2401 112.0000 78.0000 0.9628 0.0000 + 366.7017 112.0000 79.0000 0.9628 0.0000 374.8552 112.0000 80.0000 0.9628 0.0000 + 589.5395 112.0000 81.0000 0.9628 0.0000 561.7298 112.0000 82.0000 0.9628 0.0000 + 500.9223 112.0000 83.0000 0.9628 0.0000 469.3523 112.0000 84.0000 0.9628 0.0000 + 423.8500 112.0000 85.0000 0.9628 0.0000 380.6793 112.0000 86.0000 0.9628 0.0000 + 1657.5070 112.0000 87.0000 0.9628 0.0000 1517.3457 112.0000 88.0000 0.9628 0.0000 + 1302.8376 112.0000 89.0000 0.9628 0.0000 1131.3898 112.0000 90.0000 0.9628 0.0000 + 1141.8668 112.0000 91.0000 0.9628 0.0000 1104.5083 112.0000 92.0000 0.9628 0.0000 + 1160.8135 112.0000 93.0000 0.9628 0.0000 1119.8466 112.0000 94.0000 0.9628 0.0000 + 54.1021 112.0000 101.0000 0.9628 0.0000 195.7057 112.0000 103.0000 0.9628 0.9865 + 246.2227 112.0000 104.0000 0.9628 0.9808 175.5646 112.0000 105.0000 0.9628 0.9706 + 126.6657 112.0000 106.0000 0.9628 0.9868 83.7703 112.0000 107.0000 0.9628 0.9944 + 58.4303 112.0000 108.0000 0.9628 0.9925 37.9884 112.0000 109.0000 0.9628 0.9982 + 289.6082 112.0000 111.0000 0.9628 0.9684 451.2708 112.0000 112.0000 0.9628 0.9628 + 33.1048 113.0000 1.0000 0.9648 0.9118 20.5158 113.0000 2.0000 0.9648 0.0000 + 627.5309 113.0000 3.0000 0.9648 0.0000 334.7335 113.0000 4.0000 0.9648 0.0000 + 213.8848 113.0000 5.0000 0.9648 0.0000 138.3254 113.0000 6.0000 0.9648 0.0000 + 93.3542 113.0000 7.0000 0.9648 0.0000 68.7983 113.0000 8.0000 0.9648 0.0000 + 50.8577 113.0000 9.0000 0.9648 0.0000 38.3154 113.0000 10.0000 0.9648 0.0000 + 746.3419 113.0000 11.0000 0.9648 0.0000 541.0285 113.0000 12.0000 0.9648 0.0000 + 486.2365 113.0000 13.0000 0.9648 0.0000 369.6232 113.0000 14.0000 0.9648 0.0000 + 278.9272 113.0000 15.0000 0.9648 0.0000 226.2156 113.0000 16.0000 0.9648 0.0000 + 180.5430 113.0000 17.0000 0.9648 0.0000 144.5798 113.0000 18.0000 0.9648 0.0000 + 1233.2237 113.0000 19.0000 0.9648 0.0000 973.0493 113.0000 20.0000 0.9648 0.0000 + 795.2206 113.0000 21.0000 0.9648 0.0000 759.4532 113.0000 22.0000 0.9648 0.0000 + 690.9156 113.0000 23.0000 0.9648 0.0000 542.2459 113.0000 24.0000 0.9648 0.0000 + 589.1475 113.0000 25.0000 0.9648 0.0000 460.0496 113.0000 26.0000 0.9648 0.0000 + 482.2990 113.0000 27.0000 0.9648 0.0000 500.3525 113.0000 28.0000 0.9648 0.0000 + 381.9923 113.0000 29.0000 0.9648 0.0000 385.1449 113.0000 30.0000 0.9648 0.0000 + 459.9544 113.0000 31.0000 0.9648 0.0000 394.6650 113.0000 32.0000 0.9648 0.0000 + 327.7229 113.0000 33.0000 0.9648 0.0000 288.8485 113.0000 34.0000 0.9648 0.0000 + 247.9692 113.0000 35.0000 0.9648 0.0000 211.6949 113.0000 36.0000 0.9648 0.0000 + 1375.2558 113.0000 37.0000 0.9648 0.0000 1160.2539 113.0000 38.0000 0.9648 0.0000 + 996.3757 113.0000 39.0000 0.9648 0.0000 883.8541 113.0000 40.0000 0.9648 0.0000 + 798.6094 113.0000 41.0000 0.9648 0.0000 605.9135 113.0000 42.0000 0.9648 0.0000 + 680.5427 113.0000 43.0000 0.9648 0.0000 508.5289 113.0000 44.0000 0.9648 0.0000 + 557.0043 113.0000 45.0000 0.9648 0.0000 513.4163 113.0000 46.0000 0.9648 0.0000 + 427.9962 113.0000 47.0000 0.9648 0.0000 448.8071 113.0000 48.0000 0.9648 0.0000 + 574.3420 113.0000 49.0000 0.9648 0.0000 519.8424 113.0000 50.0000 0.9648 0.0000 + 452.8494 113.0000 51.0000 0.9648 0.0000 414.0544 113.0000 52.0000 0.9648 0.0000 + 368.2792 113.0000 53.0000 0.9648 0.0000 325.7625 113.0000 54.0000 0.9648 0.0000 + 1673.1922 113.0000 55.0000 0.9648 0.0000 1487.2964 113.0000 56.0000 0.9648 0.0000 + 1281.5229 113.0000 57.0000 0.9648 0.0000 536.5626 113.0000 58.0000 0.9648 2.7991 + 1308.6041 113.0000 59.0000 0.9648 0.0000 1252.6928 113.0000 60.0000 0.9648 0.0000 + 1220.2246 113.0000 61.0000 0.9648 0.0000 1190.5003 113.0000 62.0000 0.9648 0.0000 + 1164.1089 113.0000 63.0000 0.9648 0.0000 893.9515 113.0000 64.0000 0.9648 0.0000 + 1038.1047 113.0000 65.0000 0.9648 0.0000 997.3837 113.0000 66.0000 0.9648 0.0000 + 1045.0038 113.0000 67.0000 0.9648 0.0000 1022.3674 113.0000 68.0000 0.9648 0.0000 + 1001.6784 113.0000 69.0000 0.9648 0.0000 990.9808 113.0000 70.0000 0.9648 0.0000 + 821.6005 113.0000 71.0000 0.9648 0.0000 791.8456 113.0000 72.0000 0.9648 0.0000 + 712.7422 113.0000 73.0000 0.9648 0.0000 594.1616 113.0000 74.0000 0.9648 0.0000 + 601.5780 113.0000 75.0000 0.9648 0.0000 538.3855 113.0000 76.0000 0.9648 0.0000 + 487.8984 113.0000 77.0000 0.9648 0.0000 399.9768 113.0000 78.0000 0.9648 0.0000 + 371.7210 113.0000 79.0000 0.9648 0.0000 381.0590 113.0000 80.0000 0.9648 0.0000 + 584.6972 113.0000 81.0000 0.9648 0.0000 562.6875 113.0000 82.0000 0.9648 0.0000 + 506.8663 113.0000 83.0000 0.9648 0.0000 477.5862 113.0000 84.0000 0.9648 0.0000 + 434.0969 113.0000 85.0000 0.9648 0.0000 392.1169 113.0000 86.0000 0.9648 0.0000 + 1555.8848 113.0000 87.0000 0.9648 0.0000 1455.4241 113.0000 88.0000 0.9648 0.0000 + 1263.3724 113.0000 89.0000 0.9648 0.0000 1110.0628 113.0000 90.0000 0.9648 0.0000 + 1113.0738 113.0000 91.0000 0.9648 0.0000 1077.0005 113.0000 92.0000 0.9648 0.0000 + 1123.8008 113.0000 93.0000 0.9648 0.0000 1085.6846 113.0000 94.0000 0.9648 0.0000 + 55.2636 113.0000 101.0000 0.9648 0.0000 193.0707 113.0000 103.0000 0.9648 0.9865 + 243.7612 113.0000 104.0000 0.9648 0.9808 177.7254 113.0000 105.0000 0.9648 0.9706 + 129.6922 113.0000 106.0000 0.9648 0.9868 86.8728 113.0000 107.0000 0.9648 0.9944 + 61.2175 113.0000 108.0000 0.9648 0.9925 40.3220 113.0000 109.0000 0.9648 0.9982 + 284.2251 113.0000 111.0000 0.9648 0.9684 441.7322 113.0000 112.0000 0.9648 0.9628 + 437.7575 113.0000 113.0000 0.9648 0.9648 27.4989 114.0000 1.0000 0.9507 0.9118 + 17.6356 114.0000 2.0000 0.9507 0.0000 450.9583 114.0000 3.0000 0.9507 0.0000 + 256.5881 114.0000 4.0000 0.9507 0.0000 170.1891 114.0000 5.0000 0.9507 0.0000 + 113.2046 114.0000 6.0000 0.9507 0.0000 78.0190 114.0000 7.0000 0.9507 0.0000 + 58.3557 114.0000 8.0000 0.9507 0.0000 43.6855 114.0000 9.0000 0.9507 0.0000 + 33.2416 114.0000 10.0000 0.9507 0.0000 538.3412 114.0000 11.0000 0.9507 0.0000 + 409.9174 114.0000 12.0000 0.9507 0.0000 375.5233 114.0000 13.0000 0.9507 0.0000 + 292.9994 114.0000 14.0000 0.9507 0.0000 226.0657 114.0000 15.0000 0.9507 0.0000 + 186.0051 114.0000 16.0000 0.9507 0.0000 150.5231 114.0000 17.0000 0.9507 0.0000 + 122.0012 114.0000 18.0000 0.9507 0.0000 881.2624 114.0000 19.0000 0.9507 0.0000 + 722.5111 114.0000 20.0000 0.9507 0.0000 595.6725 114.0000 21.0000 0.9507 0.0000 + 573.4988 114.0000 22.0000 0.9507 0.0000 524.2808 114.0000 23.0000 0.9507 0.0000 + 411.8879 114.0000 24.0000 0.9507 0.0000 450.2234 114.0000 25.0000 0.9507 0.0000 + 352.2408 114.0000 26.0000 0.9507 0.0000 373.0125 114.0000 27.0000 0.9507 0.0000 + 385.0048 114.0000 28.0000 0.9507 0.0000 294.1406 114.0000 29.0000 0.9507 0.0000 + 301.1709 114.0000 30.0000 0.9507 0.0000 357.9411 114.0000 31.0000 0.9507 0.0000 + 313.3911 114.0000 32.0000 0.9507 0.0000 265.0711 114.0000 33.0000 0.9507 0.0000 + 236.3323 114.0000 34.0000 0.9507 0.0000 205.2976 114.0000 35.0000 0.9507 0.0000 + 177.1811 114.0000 36.0000 0.9507 0.0000 986.0438 114.0000 37.0000 0.9507 0.0000 + 860.3421 114.0000 38.0000 0.9507 0.0000 750.3817 114.0000 39.0000 0.9507 0.0000 + 672.1834 114.0000 40.0000 0.9507 0.0000 611.3147 114.0000 41.0000 0.9507 0.0000 + 469.1092 114.0000 42.0000 0.9507 0.0000 524.6479 114.0000 43.0000 0.9507 0.0000 + 396.9862 114.0000 44.0000 0.9507 0.0000 434.7251 114.0000 45.0000 0.9507 0.0000 + 402.3662 114.0000 46.0000 0.9507 0.0000 334.6673 114.0000 47.0000 0.9507 0.0000 + 353.5976 114.0000 48.0000 0.9507 0.0000 446.5937 114.0000 49.0000 0.9507 0.0000 + 410.8960 114.0000 50.0000 0.9507 0.0000 363.7846 114.0000 51.0000 0.9507 0.0000 + 335.9240 114.0000 52.0000 0.9507 0.0000 301.9852 114.0000 53.0000 0.9507 0.0000 + 269.8372 114.0000 54.0000 0.9507 0.0000 1200.5803 114.0000 55.0000 0.9507 0.0000 + 1097.3980 114.0000 56.0000 0.9507 0.0000 960.2332 114.0000 57.0000 0.9507 0.0000 + 429.8074 114.0000 58.0000 0.9507 2.7991 970.3957 114.0000 59.0000 0.9507 0.0000 + 931.2917 114.0000 60.0000 0.9507 0.0000 907.7970 114.0000 61.0000 0.9507 0.0000 + 886.2193 114.0000 62.0000 0.9507 0.0000 867.0844 114.0000 63.0000 0.9507 0.0000 + 677.4806 114.0000 64.0000 0.9507 0.0000 767.3055 114.0000 65.0000 0.9507 0.0000 + 739.3975 114.0000 66.0000 0.9507 0.0000 781.3748 114.0000 67.0000 0.9507 0.0000 + 764.7668 114.0000 68.0000 0.9507 0.0000 749.7413 114.0000 69.0000 0.9507 0.0000 + 741.2030 114.0000 70.0000 0.9507 0.0000 621.8169 114.0000 71.0000 0.9507 0.0000 + 609.0608 114.0000 72.0000 0.9507 0.0000 553.6542 114.0000 73.0000 0.9507 0.0000 + 465.1942 114.0000 74.0000 0.9507 0.0000 472.7923 114.0000 75.0000 0.9507 0.0000 + 426.7980 114.0000 76.0000 0.9507 0.0000 389.4988 114.0000 77.0000 0.9507 0.0000 + 321.7183 114.0000 78.0000 0.9507 0.0000 299.8858 114.0000 79.0000 0.9507 0.0000 + 308.4263 114.0000 80.0000 0.9507 0.0000 456.5872 114.0000 81.0000 0.9507 0.0000 + 445.0036 114.0000 82.0000 0.9507 0.0000 406.7017 114.0000 83.0000 0.9507 0.0000 + 386.4675 114.0000 84.0000 0.9507 0.0000 354.8666 114.0000 85.0000 0.9507 0.0000 + 323.5411 114.0000 86.0000 0.9507 0.0000 1129.8915 114.0000 87.0000 0.9507 0.0000 + 1082.5018 114.0000 88.0000 0.9507 0.0000 953.1426 114.0000 89.0000 0.9507 0.0000 + 851.4758 114.0000 90.0000 0.9507 0.0000 846.7959 114.0000 91.0000 0.9507 0.0000 + 819.6856 114.0000 92.0000 0.9507 0.0000 846.5543 114.0000 93.0000 0.9507 0.0000 + 819.3698 114.0000 94.0000 0.9507 0.0000 44.9030 114.0000 101.0000 0.9507 0.0000 + 148.7478 114.0000 103.0000 0.9507 0.9865 189.1090 114.0000 104.0000 0.9507 0.9808 + 142.5123 114.0000 105.0000 0.9507 0.9706 106.0806 114.0000 106.0000 0.9507 0.9868 + 72.6373 114.0000 107.0000 0.9507 0.9944 52.1311 114.0000 108.0000 0.9507 0.9925 + 35.1290 114.0000 109.0000 0.9507 0.9982 217.5049 114.0000 111.0000 0.9507 0.9684 + 337.0250 114.0000 112.0000 0.9507 0.9628 339.6516 114.0000 113.0000 0.9507 0.9648 + 270.2650 114.0000 114.0000 0.9507 0.9507 23.0908 115.0000 1.0000 0.9947 0.9118 + 15.2619 115.0000 2.0000 0.9947 0.0000 339.6693 115.0000 3.0000 0.9947 0.0000 + 202.2282 115.0000 4.0000 0.9947 0.0000 138.0774 115.0000 5.0000 0.9947 0.0000 + 93.9663 115.0000 6.0000 0.9947 0.0000 65.9127 115.0000 7.0000 0.9947 0.0000 + 49.9374 115.0000 8.0000 0.9947 0.0000 37.8035 115.0000 9.0000 0.9947 0.0000 + 29.0280 115.0000 10.0000 0.9947 0.0000 406.7150 115.0000 11.0000 0.9947 0.0000 + 320.4176 115.0000 12.0000 0.9947 0.0000 297.8076 115.0000 13.0000 0.9947 0.0000 + 236.9864 115.0000 14.0000 0.9947 0.0000 186.0684 115.0000 15.0000 0.9947 0.0000 + 154.9229 115.0000 16.0000 0.9947 0.0000 126.8312 115.0000 17.0000 0.9947 0.0000 + 103.8653 115.0000 18.0000 0.9947 0.0000 663.1184 115.0000 19.0000 0.9947 0.0000 + 557.4255 115.0000 20.0000 0.9947 0.0000 462.3511 115.0000 21.0000 0.9947 0.0000 + 447.9590 115.0000 22.0000 0.9947 0.0000 411.0121 115.0000 23.0000 0.9947 0.0000 + 323.5914 115.0000 24.0000 0.9947 0.0000 354.8432 115.0000 25.0000 0.9947 0.0000 + 278.4020 115.0000 26.0000 0.9947 0.0000 296.5789 115.0000 27.0000 0.9947 0.0000 + 304.9145 115.0000 28.0000 0.9947 0.0000 233.4898 115.0000 29.0000 0.9947 0.0000 + 241.4380 115.0000 30.0000 0.9947 0.0000 285.8072 115.0000 31.0000 0.9947 0.0000 + 253.9744 115.0000 32.0000 0.9947 0.0000 217.8920 115.0000 33.0000 0.9947 0.0000 + 196.0806 115.0000 34.0000 0.9947 0.0000 171.9910 115.0000 35.0000 0.9947 0.0000 + 149.7933 115.0000 36.0000 0.9947 0.0000 744.2475 115.0000 37.0000 0.9947 0.0000 + 663.5656 115.0000 38.0000 0.9947 0.0000 585.2467 115.0000 39.0000 0.9947 0.0000 + 528.0841 115.0000 40.0000 0.9947 0.0000 482.7036 115.0000 41.0000 0.9947 0.0000 + 373.9427 115.0000 42.0000 0.9947 0.0000 416.7080 115.0000 43.0000 0.9947 0.0000 + 318.5912 115.0000 44.0000 0.9947 0.0000 348.4449 115.0000 45.0000 0.9947 0.0000 + 323.5276 115.0000 46.0000 0.9947 0.0000 269.1220 115.0000 47.0000 0.9947 0.0000 + 285.4802 115.0000 48.0000 0.9947 0.0000 356.9069 115.0000 49.0000 0.9947 0.0000 + 332.1722 115.0000 50.0000 0.9947 0.0000 297.6598 115.0000 51.0000 0.9947 0.0000 + 276.9809 115.0000 52.0000 0.9947 0.0000 251.1081 115.0000 53.0000 0.9947 0.0000 + 226.2211 115.0000 54.0000 0.9947 0.0000 907.2993 115.0000 55.0000 0.9947 0.0000 + 844.0120 115.0000 56.0000 0.9947 0.0000 746.5993 115.0000 57.0000 0.9947 0.0000 + 351.1585 115.0000 58.0000 0.9947 2.7991 749.1438 115.0000 59.0000 0.9947 0.0000 + 720.1450 115.0000 60.0000 0.9947 0.0000 702.2959 115.0000 61.0000 0.9947 0.0000 + 685.8620 115.0000 62.0000 0.9947 0.0000 671.3009 115.0000 63.0000 0.9947 0.0000 + 531.5424 115.0000 64.0000 0.9947 0.0000 592.0135 115.0000 65.0000 0.9947 0.0000 + 571.7481 115.0000 66.0000 0.9947 0.0000 606.4940 115.0000 67.0000 0.9947 0.0000 + 593.7403 115.0000 68.0000 0.9947 0.0000 582.2956 115.0000 69.0000 0.9947 0.0000 + 575.3262 115.0000 70.0000 0.9947 0.0000 487.0619 115.0000 71.0000 0.9947 0.0000 + 482.4616 115.0000 72.0000 0.9947 0.0000 441.8616 115.0000 73.0000 0.9947 0.0000 + 373.8654 115.0000 74.0000 0.9947 0.0000 380.9120 115.0000 75.0000 0.9947 0.0000 + 346.1326 115.0000 76.0000 0.9947 0.0000 317.6085 115.0000 77.0000 0.9947 0.0000 + 264.1091 115.0000 78.0000 0.9947 0.0000 246.8308 115.0000 79.0000 0.9947 0.0000 + 254.3128 115.0000 80.0000 0.9947 0.0000 366.5842 115.0000 81.0000 0.9947 0.0000 + 360.2631 115.0000 82.0000 0.9947 0.0000 332.7186 115.0000 83.0000 0.9947 0.0000 + 318.1841 115.0000 84.0000 0.9947 0.0000 294.4710 115.0000 85.0000 0.9947 0.0000 + 270.4677 115.0000 86.0000 0.9947 0.0000 861.3824 115.0000 87.0000 0.9947 0.0000 + 837.5128 115.0000 88.0000 0.9947 0.0000 744.7632 115.0000 89.0000 0.9947 0.0000 + 673.5688 115.0000 90.0000 0.9947 0.0000 666.2582 115.0000 91.0000 0.9947 0.0000 + 645.1405 115.0000 92.0000 0.9947 0.0000 661.2805 115.0000 93.0000 0.9947 0.0000 + 640.8761 115.0000 94.0000 0.9947 0.0000 37.0236 115.0000 101.0000 0.9947 0.0000 + 117.7472 115.0000 103.0000 0.9947 0.9865 150.6068 115.0000 104.0000 0.9947 0.9808 + 116.3818 115.0000 105.0000 0.9947 0.9706 88.0769 115.0000 106.0000 0.9947 0.9868 + 61.4286 115.0000 107.0000 0.9947 0.9944 44.7770 115.0000 108.0000 0.9947 0.9925 + 30.7688 115.0000 109.0000 0.9947 0.9982 171.4469 115.0000 111.0000 0.9947 0.9684 + 265.0378 115.0000 112.0000 0.9947 0.9628 270.3580 115.0000 113.0000 0.9947 0.9648 + 219.2863 115.0000 114.0000 0.9947 0.9507 180.6238 115.0000 115.0000 0.9947 0.9947 + 19.8667 116.0000 1.0000 0.9948 0.9118 13.4598 116.0000 2.0000 0.9948 0.0000 + 271.3011 116.0000 3.0000 0.9948 0.0000 166.1807 116.0000 4.0000 0.9948 0.0000 + 115.8168 116.0000 5.0000 0.9948 0.0000 80.1804 116.0000 6.0000 0.9948 0.0000 + 57.0255 116.0000 7.0000 0.9948 0.0000 43.6548 116.0000 8.0000 0.9948 0.0000 + 33.3550 116.0000 9.0000 0.9948 0.0000 25.8107 116.0000 10.0000 0.9948 0.0000 + 325.5969 116.0000 11.0000 0.9948 0.0000 261.9437 116.0000 12.0000 0.9948 0.0000 + 245.8568 116.0000 13.0000 0.9948 0.0000 198.3266 116.0000 14.0000 0.9948 0.0000 + 157.6971 116.0000 15.0000 0.9948 0.0000 132.4922 116.0000 16.0000 0.9948 0.0000 + 109.4486 116.0000 17.0000 0.9948 0.0000 90.3716 116.0000 18.0000 0.9948 0.0000 + 530.5192 116.0000 19.0000 0.9948 0.0000 452.3745 116.0000 20.0000 0.9948 0.0000 + 376.6142 116.0000 21.0000 0.9948 0.0000 366.5151 116.0000 22.0000 0.9948 0.0000 + 337.1250 116.0000 23.0000 0.9948 0.0000 266.0762 116.0000 24.0000 0.9948 0.0000 + 292.1257 116.0000 25.0000 0.9948 0.0000 229.8776 116.0000 26.0000 0.9948 0.0000 + 245.5988 116.0000 27.0000 0.9948 0.0000 251.8097 116.0000 28.0000 0.9948 0.0000 + 193.3865 116.0000 29.0000 0.9948 0.0000 201.0704 116.0000 30.0000 0.9948 0.0000 + 237.2563 116.0000 31.0000 0.9948 0.0000 212.9437 116.0000 32.0000 0.9948 0.0000 + 184.5467 116.0000 33.0000 0.9948 0.0000 167.2264 116.0000 34.0000 0.9948 0.0000 + 147.7679 116.0000 35.0000 0.9948 0.0000 129.6123 116.0000 36.0000 0.9948 0.0000 + 596.8763 116.0000 37.0000 0.9948 0.0000 538.6724 116.0000 38.0000 0.9948 0.0000 + 478.5204 116.0000 39.0000 0.9948 0.0000 433.9036 116.0000 40.0000 0.9948 0.0000 + 398.0419 116.0000 41.0000 0.9948 0.0000 310.5861 116.0000 42.0000 0.9948 0.0000 + 345.1434 116.0000 43.0000 0.9948 0.0000 265.9528 116.0000 44.0000 0.9948 0.0000 + 290.4146 116.0000 45.0000 0.9948 0.0000 270.2524 116.0000 46.0000 0.9948 0.0000 + 225.1181 116.0000 47.0000 0.9948 0.0000 239.1784 116.0000 48.0000 0.9948 0.0000 + 296.8214 116.0000 49.0000 0.9948 0.0000 278.2787 116.0000 50.0000 0.9948 0.0000 + 251.4344 116.0000 51.0000 0.9948 0.0000 235.2519 116.0000 52.0000 0.9948 0.0000 + 214.6002 116.0000 53.0000 0.9948 0.0000 194.5237 116.0000 54.0000 0.9948 0.0000 + 728.4653 116.0000 55.0000 0.9948 0.0000 684.2353 116.0000 56.0000 0.9948 0.0000 + 609.4420 116.0000 57.0000 0.9948 0.0000 296.4581 116.0000 58.0000 0.9948 2.7991 + 608.9119 116.0000 59.0000 0.9948 0.0000 585.9134 116.0000 60.0000 0.9948 0.0000 + 571.5397 116.0000 61.0000 0.9948 0.0000 558.2816 116.0000 62.0000 0.9948 0.0000 + 546.5395 116.0000 63.0000 0.9948 0.0000 436.7785 116.0000 64.0000 0.9948 0.0000 + 481.5894 116.0000 65.0000 0.9948 0.0000 465.7758 116.0000 66.0000 0.9948 0.0000 + 494.5285 116.0000 67.0000 0.9948 0.0000 484.1791 116.0000 68.0000 0.9948 0.0000 + 474.9443 116.0000 69.0000 0.9948 0.0000 469.0567 116.0000 70.0000 0.9948 0.0000 + 399.5952 116.0000 71.0000 0.9948 0.0000 398.5915 116.0000 72.0000 0.9948 0.0000 + 366.9477 116.0000 73.0000 0.9948 0.0000 312.2081 116.0000 74.0000 0.9948 0.0000 + 318.5556 116.0000 75.0000 0.9948 0.0000 290.8263 116.0000 76.0000 0.9948 0.0000 + 267.9114 116.0000 77.0000 0.9948 0.0000 224.0100 116.0000 78.0000 0.9948 0.0000 + 209.7998 116.0000 79.0000 0.9948 0.0000 216.3253 116.0000 80.0000 0.9948 0.0000 + 306.1509 116.0000 81.0000 0.9948 0.0000 302.3505 116.0000 82.0000 0.9948 0.0000 + 281.1773 116.0000 83.0000 0.9948 0.0000 270.0779 116.0000 84.0000 0.9948 0.0000 + 251.3550 116.0000 85.0000 0.9948 0.0000 232.1258 116.0000 86.0000 0.9948 0.0000 + 695.5353 116.0000 87.0000 0.9948 0.0000 681.6558 116.0000 88.0000 0.9948 0.0000 + 609.9341 116.0000 89.0000 0.9948 0.0000 556.2492 116.0000 90.0000 0.9948 0.0000 + 548.4971 116.0000 91.0000 0.9948 0.0000 531.2554 116.0000 92.0000 0.9948 0.0000 + 541.8703 116.0000 93.0000 0.9948 0.0000 525.5777 116.0000 94.0000 0.9948 0.0000 + 31.4127 116.0000 101.0000 0.9948 0.0000 97.0849 116.0000 103.0000 0.9948 0.9865 + 124.7512 116.0000 104.0000 0.9948 0.9808 98.1139 116.0000 105.0000 0.9948 0.9706 + 75.2039 116.0000 106.0000 0.9948 0.9868 53.2086 116.0000 107.0000 0.9948 0.9944 + 39.2683 116.0000 108.0000 0.9948 0.9925 27.4117 116.0000 109.0000 0.9948 0.9982 + 141.0599 116.0000 111.0000 0.9948 0.9684 217.6629 116.0000 112.0000 0.9948 0.9628 + 223.7942 116.0000 113.0000 0.9948 0.9648 183.9483 116.0000 114.0000 0.9948 0.9507 + 153.1823 116.0000 115.0000 0.9948 0.9947 130.9965 116.0000 116.0000 0.9948 0.9948 + 16.5273 117.0000 1.0000 0.9972 0.9118 11.5092 117.0000 2.0000 0.9972 0.0000 + 208.7743 117.0000 3.0000 0.9972 0.0000 131.6498 117.0000 4.0000 0.9972 0.0000 + 93.7743 117.0000 5.0000 0.9972 0.0000 66.1354 117.0000 6.0000 0.9972 0.0000 + 47.7540 117.0000 7.0000 0.9972 0.0000 36.9783 117.0000 8.0000 0.9972 0.0000 + 28.5468 117.0000 9.0000 0.9972 0.0000 22.2832 117.0000 10.0000 0.9972 0.0000 + 251.2326 117.0000 11.0000 0.9972 0.0000 206.4521 117.0000 12.0000 0.9972 0.0000 + 195.7647 117.0000 13.0000 0.9972 0.0000 160.1879 117.0000 14.0000 0.9972 0.0000 + 129.0956 117.0000 15.0000 0.9972 0.0000 109.5270 117.0000 16.0000 0.9972 0.0000 + 91.3667 117.0000 17.0000 0.9972 0.0000 76.1256 117.0000 18.0000 0.9972 0.0000 + 409.5105 117.0000 19.0000 0.9972 0.0000 354.0935 117.0000 20.0000 0.9972 0.0000 + 295.9028 117.0000 21.0000 0.9972 0.0000 289.3512 117.0000 22.0000 0.9972 0.0000 + 266.8557 117.0000 23.0000 0.9972 0.0000 211.2928 117.0000 24.0000 0.9972 0.0000 + 232.1447 117.0000 25.0000 0.9972 0.0000 183.3661 117.0000 26.0000 0.9972 0.0000 + 196.3755 117.0000 27.0000 0.9972 0.0000 200.7571 117.0000 28.0000 0.9972 0.0000 + 154.7756 117.0000 29.0000 0.9972 0.0000 161.7337 117.0000 30.0000 0.9972 0.0000 + 190.1139 117.0000 31.0000 0.9972 0.0000 172.3933 117.0000 32.0000 0.9972 0.0000 + 150.9999 117.0000 33.0000 0.9972 0.0000 137.8443 117.0000 34.0000 0.9972 0.0000 + 122.7763 117.0000 35.0000 0.9972 0.0000 108.5226 117.0000 36.0000 0.9972 0.0000 + 462.0252 117.0000 37.0000 0.9972 0.0000 421.8867 117.0000 38.0000 0.9972 0.0000 + 377.5642 117.0000 39.0000 0.9972 0.0000 344.1318 117.0000 40.0000 0.9972 0.0000 + 316.9110 117.0000 41.0000 0.9972 0.0000 249.2671 117.0000 42.0000 0.9972 0.0000 + 276.1455 117.0000 43.0000 0.9972 0.0000 214.6380 117.0000 44.0000 0.9972 0.0000 + 233.9031 117.0000 45.0000 0.9972 0.0000 218.1903 117.0000 46.0000 0.9972 0.0000 + 182.1547 117.0000 47.0000 0.9972 0.0000 193.7273 117.0000 48.0000 0.9972 0.0000 + 238.4988 117.0000 49.0000 0.9972 0.0000 225.2381 117.0000 50.0000 0.9972 0.0000 + 205.2512 117.0000 51.0000 0.9972 0.0000 193.1449 117.0000 52.0000 0.9972 0.0000 + 177.3458 117.0000 53.0000 0.9972 0.0000 161.8119 117.0000 54.0000 0.9972 0.0000 + 564.6006 117.0000 55.0000 0.9972 0.0000 535.2678 117.0000 56.0000 0.9972 0.0000 + 480.1244 117.0000 57.0000 0.9972 0.0000 241.9223 117.0000 58.0000 0.9972 2.7991 + 477.7197 117.0000 59.0000 0.9972 0.0000 460.1250 117.0000 60.0000 0.9972 0.0000 + 448.9517 117.0000 61.0000 0.9972 0.0000 438.6243 117.0000 62.0000 0.9972 0.0000 + 429.4810 117.0000 63.0000 0.9972 0.0000 346.6461 117.0000 64.0000 0.9972 0.0000 + 378.3984 117.0000 65.0000 0.9972 0.0000 366.5166 117.0000 66.0000 0.9972 0.0000 + 389.1985 117.0000 67.0000 0.9972 0.0000 381.0847 117.0000 68.0000 0.9972 0.0000 + 373.8878 117.0000 69.0000 0.9972 0.0000 369.0769 117.0000 70.0000 0.9972 0.0000 + 316.5327 117.0000 71.0000 0.9972 0.0000 317.9239 117.0000 72.0000 0.9972 0.0000 + 294.2982 117.0000 73.0000 0.9972 0.0000 251.9616 117.0000 74.0000 0.9972 0.0000 + 257.4447 117.0000 75.0000 0.9972 0.0000 236.2065 117.0000 76.0000 0.9972 0.0000 + 218.5134 117.0000 77.0000 0.9972 0.0000 183.8435 117.0000 78.0000 0.9972 0.0000 + 172.5955 117.0000 79.0000 0.9972 0.0000 178.0605 117.0000 80.0000 0.9972 0.0000 + 247.2190 117.0000 81.0000 0.9972 0.0000 245.2950 117.0000 82.0000 0.9972 0.0000 + 229.7267 117.0000 83.0000 0.9972 0.0000 221.6567 117.0000 84.0000 0.9972 0.0000 + 207.5008 117.0000 85.0000 0.9972 0.0000 192.7316 117.0000 86.0000 0.9972 0.0000 + 542.2953 117.0000 87.0000 0.9972 0.0000 535.4706 117.0000 88.0000 0.9972 0.0000 + 482.1772 117.0000 89.0000 0.9972 0.0000 443.6262 117.0000 90.0000 0.9972 0.0000 + 436.1526 117.0000 91.0000 0.9972 0.0000 422.5804 117.0000 92.0000 0.9972 0.0000 + 428.8619 117.0000 93.0000 0.9972 0.0000 416.3115 117.0000 94.0000 0.9972 0.0000 + 25.7414 117.0000 101.0000 0.9972 0.0000 77.2023 117.0000 103.0000 0.9972 0.9865 + 99.6995 117.0000 104.0000 0.9972 0.9808 79.8833 117.0000 105.0000 0.9972 0.9706 + 62.0864 117.0000 106.0000 0.9972 0.9868 44.6217 117.0000 107.0000 0.9972 0.9944 + 33.3801 117.0000 108.0000 0.9972 0.9925 23.7059 117.0000 109.0000 0.9972 0.9982 + 111.9829 117.0000 111.0000 0.9972 0.9684 172.4148 117.0000 112.0000 0.9972 0.9628 + 178.7127 117.0000 113.0000 0.9972 0.9648 148.9559 117.0000 114.0000 0.9972 0.9507 + 125.4930 117.0000 115.0000 0.9972 0.9947 108.2893 117.0000 116.0000 0.9972 0.9948 + 90.3985 117.0000 117.0000 0.9972 0.9972 29.3000 119.0000 1.0000 0.9767 0.9118 + 18.6655 119.0000 2.0000 0.9767 0.0000 560.2954 119.0000 3.0000 0.9767 0.0000 + 292.2224 119.0000 4.0000 0.9767 0.0000 186.9566 119.0000 5.0000 0.9767 0.0000 + 121.9292 119.0000 6.0000 0.9767 0.0000 83.2153 119.0000 7.0000 0.9767 0.0000 + 61.9948 119.0000 8.0000 0.9767 0.0000 46.3520 119.0000 9.0000 0.9767 0.0000 + 35.2969 119.0000 10.0000 0.9767 0.0000 666.0357 119.0000 11.0000 0.9767 0.0000 + 473.7661 119.0000 12.0000 0.9767 0.0000 424.8926 119.0000 13.0000 0.9767 0.0000 + 322.8233 119.0000 14.0000 0.9767 0.0000 244.5729 119.0000 15.0000 0.9767 0.0000 + 199.4672 119.0000 16.0000 0.9767 0.0000 160.3304 119.0000 17.0000 0.9767 0.0000 + 129.4283 119.0000 18.0000 0.9767 0.0000 1112.2277 119.0000 19.0000 0.9767 0.0000 + 860.1771 119.0000 20.0000 0.9767 0.0000 700.7281 119.0000 21.0000 0.9767 0.0000 + 668.7546 119.0000 22.0000 0.9767 0.0000 607.9951 119.0000 23.0000 0.9767 0.0000 + 478.9744 119.0000 24.0000 0.9767 0.0000 518.0583 119.0000 25.0000 0.9767 0.0000 + 406.0876 119.0000 26.0000 0.9767 0.0000 423.3809 119.0000 27.0000 0.9767 0.0000 + 439.2845 119.0000 28.0000 0.9767 0.0000 337.1117 119.0000 29.0000 0.9767 0.0000 + 337.8986 119.0000 30.0000 0.9767 0.0000 403.0745 119.0000 31.0000 0.9767 0.0000 + 345.4434 119.0000 32.0000 0.9767 0.0000 287.5535 119.0000 33.0000 0.9767 0.0000 + 254.3670 119.0000 34.0000 0.9767 0.0000 219.4647 119.0000 35.0000 0.9767 0.0000 + 188.4819 119.0000 36.0000 0.9767 0.0000 1240.8631 119.0000 37.0000 0.9767 0.0000 + 1027.9671 119.0000 38.0000 0.9767 0.0000 879.0346 119.0000 39.0000 0.9767 0.0000 + 778.5238 119.0000 40.0000 0.9767 0.0000 703.3060 119.0000 41.0000 0.9767 0.0000 + 534.6303 119.0000 42.0000 0.9767 0.0000 599.9302 119.0000 43.0000 0.9767 0.0000 + 449.3030 119.0000 44.0000 0.9767 0.0000 490.5807 119.0000 45.0000 0.9767 0.0000 + 452.2464 119.0000 46.0000 0.9767 0.0000 379.0836 119.0000 47.0000 0.9767 0.0000 + 395.5135 119.0000 48.0000 0.9767 0.0000 505.6838 119.0000 49.0000 0.9767 0.0000 + 456.4613 119.0000 50.0000 0.9767 0.0000 397.8416 119.0000 51.0000 0.9767 0.0000 + 364.4090 119.0000 52.0000 0.9767 0.0000 325.1068 119.0000 53.0000 0.9767 0.0000 + 288.7275 119.0000 54.0000 0.9767 0.0000 1511.8898 119.0000 55.0000 0.9767 0.0000 + 1322.2619 119.0000 56.0000 0.9767 0.0000 1133.7749 119.0000 57.0000 0.9767 0.0000 + 472.2455 119.0000 58.0000 0.9767 2.7991 1162.2835 119.0000 59.0000 0.9767 0.0000 + 1111.2638 119.0000 60.0000 0.9767 0.0000 1082.0865 119.0000 61.0000 0.9767 0.0000 + 1055.3891 119.0000 62.0000 0.9767 0.0000 1031.6716 119.0000 63.0000 0.9767 0.0000 + 790.7854 119.0000 64.0000 0.9767 0.0000 927.3672 119.0000 65.0000 0.9767 0.0000 + 890.5056 119.0000 66.0000 0.9767 0.0000 924.6197 119.0000 67.0000 0.9767 0.0000 + 904.3257 119.0000 68.0000 0.9767 0.0000 885.7538 119.0000 69.0000 0.9767 0.0000 + 876.2899 119.0000 70.0000 0.9767 0.0000 725.6441 119.0000 71.0000 0.9767 0.0000 + 696.1831 119.0000 72.0000 0.9767 0.0000 626.3442 119.0000 73.0000 0.9767 0.0000 + 523.6892 119.0000 74.0000 0.9767 0.0000 529.6249 119.0000 75.0000 0.9767 0.0000 + 474.2539 119.0000 76.0000 0.9767 0.0000 430.1964 119.0000 77.0000 0.9767 0.0000 + 354.1411 119.0000 78.0000 0.9767 0.0000 329.6471 119.0000 79.0000 0.9767 0.0000 + 337.3335 119.0000 80.0000 0.9767 0.0000 516.9533 119.0000 81.0000 0.9767 0.0000 + 495.6981 119.0000 82.0000 0.9767 0.0000 446.3033 119.0000 83.0000 0.9767 0.0000 + 420.8684 119.0000 84.0000 0.9767 0.0000 383.3533 119.0000 85.0000 0.9767 0.0000 + 347.3437 119.0000 86.0000 0.9767 0.0000 1400.1686 119.0000 87.0000 0.9767 0.0000 + 1291.5073 119.0000 88.0000 0.9767 0.0000 1115.9288 119.0000 89.0000 0.9767 0.0000 + 978.1928 119.0000 90.0000 0.9767 0.0000 983.9131 119.0000 91.0000 0.9767 0.0000 + 952.0627 119.0000 92.0000 0.9767 0.0000 995.3527 119.0000 93.0000 0.9767 0.0000 + 961.0543 119.0000 94.0000 0.9767 0.0000 48.4499 119.0000 101.0000 0.9767 0.0000 + 168.7412 119.0000 103.0000 0.9767 0.9865 213.4444 119.0000 104.0000 0.9767 0.9808 + 155.7781 119.0000 105.0000 0.9767 0.9706 114.5723 119.0000 106.0000 0.9767 0.9868 + 77.6317 119.0000 107.0000 0.9767 0.9944 55.4032 119.0000 108.0000 0.9767 0.9925 + 37.1982 119.0000 109.0000 0.9767 0.9982 249.2200 119.0000 111.0000 0.9767 0.9684 + 387.3349 119.0000 112.0000 0.9767 0.9628 382.6422 119.0000 113.0000 0.9767 0.9648 + 296.9409 119.0000 114.0000 0.9767 0.9507 237.2191 119.0000 115.0000 0.9767 0.9947 + 197.3806 119.0000 116.0000 0.9767 0.9948 158.7330 119.0000 117.0000 0.9767 0.9972 + 338.0207 119.0000 119.0000 0.9767 0.9767 52.9871 120.0000 1.0000 0.9831 0.9118 + 31.8796 120.0000 2.0000 0.9831 0.0000 1310.0314 120.0000 3.0000 0.9831 0.0000 + 602.5661 120.0000 4.0000 0.9831 0.0000 362.6862 120.0000 5.0000 0.9831 0.0000 + 225.9629 120.0000 6.0000 0.9831 0.0000 148.9793 120.0000 7.0000 0.9831 0.0000 + 108.2718 120.0000 8.0000 0.9831 0.0000 79.2218 120.0000 9.0000 0.9831 0.0000 + 59.2779 120.0000 10.0000 0.9831 0.0000 1545.7064 120.0000 11.0000 0.9831 0.0000 + 997.2486 120.0000 12.0000 0.9831 0.0000 866.9517 120.0000 13.0000 0.9831 0.0000 + 630.0456 120.0000 14.0000 0.9831 0.0000 460.2635 120.0000 15.0000 0.9831 0.0000 + 366.7711 120.0000 16.0000 0.9831 0.0000 288.2182 120.0000 17.0000 0.9831 0.0000 + 228.0892 120.0000 18.0000 0.9831 0.0000 2661.0830 120.0000 19.0000 0.9831 0.0000 + 1886.4221 120.0000 20.0000 0.9831 0.0000 1510.1427 120.0000 21.0000 0.9831 0.0000 + 1422.3244 120.0000 22.0000 0.9831 0.0000 1282.1610 120.0000 23.0000 0.9831 0.0000 + 1011.5955 120.0000 24.0000 0.9831 0.0000 1079.1532 120.0000 25.0000 0.9831 0.0000 + 845.4686 120.0000 26.0000 0.9831 0.0000 862.5036 120.0000 27.0000 0.9831 0.0000 + 902.6014 120.0000 28.0000 0.9831 0.0000 694.5058 120.0000 29.0000 0.9831 0.0000 + 675.0299 120.0000 30.0000 0.9831 0.0000 813.4943 120.0000 31.0000 0.9831 0.0000 + 672.6917 120.0000 32.0000 0.9831 0.0000 543.0123 120.0000 33.0000 0.9831 0.0000 + 471.4822 120.0000 34.0000 0.9831 0.0000 399.0226 120.0000 35.0000 0.9831 0.0000 + 336.6483 120.0000 36.0000 0.9831 0.0000 2958.0410 120.0000 37.0000 0.9831 0.0000 + 2265.4155 120.0000 38.0000 0.9831 0.0000 1882.1338 120.0000 39.0000 0.9831 0.0000 + 1637.9667 120.0000 40.0000 0.9831 0.0000 1463.8890 120.0000 41.0000 0.9831 0.0000 + 1092.6733 120.0000 42.0000 0.9831 0.0000 1234.9316 120.0000 43.0000 0.9831 0.0000 + 905.7515 120.0000 44.0000 0.9831 0.0000 986.3727 120.0000 45.0000 0.9831 0.0000 + 902.4405 120.0000 46.0000 0.9831 0.0000 762.6174 120.0000 47.0000 0.9831 0.0000 + 781.6600 120.0000 48.0000 0.9831 0.0000 1024.1614 120.0000 49.0000 0.9831 0.0000 + 896.4155 120.0000 50.0000 0.9831 0.0000 759.7988 120.0000 51.0000 0.9831 0.0000 + 684.7073 120.0000 52.0000 0.9831 0.0000 600.2698 120.0000 53.0000 0.9831 0.0000 + 524.3547 120.0000 54.0000 0.9831 0.0000 3619.2660 120.0000 55.0000 0.9831 0.0000 + 2951.3362 120.0000 56.0000 0.9831 0.0000 2456.7601 120.0000 57.0000 0.9831 0.0000 + 907.4012 120.0000 58.0000 0.9831 2.7991 2571.5319 120.0000 59.0000 0.9831 0.0000 + 2442.0495 120.0000 60.0000 0.9831 0.0000 2374.0445 120.0000 61.0000 0.9831 0.0000 + 2312.2147 120.0000 62.0000 0.9831 0.0000 2257.1993 120.0000 63.0000 0.9831 0.0000 + 1680.6338 120.0000 64.0000 0.9831 0.0000 2081.6173 120.0000 65.0000 0.9831 0.0000 + 1992.8728 120.0000 66.0000 0.9831 0.0000 2006.2958 120.0000 67.0000 0.9831 0.0000 + 1960.2391 120.0000 68.0000 0.9831 0.0000 1917.4640 120.0000 69.0000 0.9831 0.0000 + 1899.1306 120.0000 70.0000 0.9831 0.0000 1544.6852 120.0000 71.0000 0.9831 0.0000 + 1435.1503 120.0000 72.0000 0.9831 0.0000 1268.7518 120.0000 73.0000 0.9831 0.0000 + 1049.3296 120.0000 74.0000 0.9831 0.0000 1052.9922 120.0000 75.0000 0.9831 0.0000 + 928.4521 120.0000 76.0000 0.9831 0.0000 831.8752 120.0000 77.0000 0.9831 0.0000 + 676.9902 120.0000 78.0000 0.9831 0.0000 627.0853 120.0000 79.0000 0.9831 0.0000 + 637.1112 120.0000 80.0000 0.9831 0.0000 1043.0556 120.0000 81.0000 0.9831 0.0000 + 974.2845 120.0000 82.0000 0.9831 0.0000 854.6640 120.0000 83.0000 0.9831 0.0000 + 794.4491 120.0000 84.0000 0.9831 0.0000 711.4143 120.0000 85.0000 0.9831 0.0000 + 634.7921 120.0000 86.0000 0.9831 0.0000 3271.2563 120.0000 87.0000 0.9831 0.0000 + 2840.9447 120.0000 88.0000 0.9831 0.0000 2386.7637 120.0000 89.0000 0.9831 0.0000 + 2029.6245 120.0000 90.0000 0.9831 0.0000 2076.1172 120.0000 91.0000 0.9831 0.0000 + 2006.6915 120.0000 92.0000 0.9831 0.0000 2135.2269 120.0000 93.0000 0.9831 0.0000 + 2054.0131 120.0000 94.0000 0.9831 0.0000 90.7927 120.0000 101.0000 0.9831 0.0000 + 345.6120 120.0000 103.0000 0.9831 0.9865 434.0284 120.0000 104.0000 0.9831 0.9808 + 298.7264 120.0000 105.0000 0.9831 0.9706 212.8957 120.0000 106.0000 0.9831 0.9868 + 139.0219 120.0000 107.0000 0.9831 0.9944 96.1584 120.0000 108.0000 0.9831 0.9925 + 62.0580 120.0000 109.0000 0.9831 0.9982 516.6917 120.0000 111.0000 0.9831 0.9684 + 809.2182 120.0000 112.0000 0.9831 0.9628 775.0832 120.0000 113.0000 0.9831 0.9648 + 576.2962 120.0000 114.0000 0.9831 0.9507 446.0170 120.0000 115.0000 0.9831 0.9947 + 363.1951 120.0000 116.0000 0.9831 0.9948 285.4905 120.0000 117.0000 0.9831 0.9972 + 688.9911 120.0000 119.0000 0.9831 0.9767 1525.1891 120.0000 120.0000 0.9831 0.9831 + 29.9953 121.0000 1.0000 1.8627 0.9118 19.3841 121.0000 2.0000 1.8627 0.0000 + 504.8268 121.0000 3.0000 1.8627 0.0000 282.4420 121.0000 4.0000 1.8627 0.0000 + 186.1419 121.0000 5.0000 1.8627 0.0000 123.6379 121.0000 6.0000 1.8627 0.0000 + 85.3404 121.0000 7.0000 1.8627 0.0000 64.0072 121.0000 8.0000 1.8627 0.0000 + 48.0936 121.0000 9.0000 1.8627 0.0000 36.7468 121.0000 10.0000 1.8627 0.0000 + 602.4929 121.0000 11.0000 1.8627 0.0000 452.7600 121.0000 12.0000 1.8627 0.0000 + 412.9058 121.0000 13.0000 1.8627 0.0000 320.5896 121.0000 14.0000 1.8627 0.0000 + 246.7358 121.0000 15.0000 1.8627 0.0000 202.9672 121.0000 16.0000 1.8627 0.0000 + 164.3655 121.0000 17.0000 1.8627 0.0000 133.4404 121.0000 18.0000 1.8627 0.0000 + 988.5881 121.0000 19.0000 1.8627 0.0000 803.2380 121.0000 20.0000 1.8627 0.0000 + 660.6780 121.0000 21.0000 1.8627 0.0000 635.0457 121.0000 22.0000 1.8627 0.0000 + 579.9584 121.0000 23.0000 1.8627 0.0000 456.2023 121.0000 24.0000 1.8627 0.0000 + 497.3474 121.0000 25.0000 1.8627 0.0000 389.5974 121.0000 26.0000 1.8627 0.0000 + 411.0572 121.0000 27.0000 1.8627 0.0000 424.6693 121.0000 28.0000 1.8627 0.0000 + 325.0850 121.0000 29.0000 1.8627 0.0000 331.2310 121.0000 30.0000 1.8627 0.0000 + 393.5300 121.0000 31.0000 1.8627 0.0000 343.1679 121.0000 32.0000 1.8627 0.0000 + 289.5582 121.0000 33.0000 1.8627 0.0000 258.0084 121.0000 34.0000 1.8627 0.0000 + 224.1375 121.0000 35.0000 1.8627 0.0000 193.5868 121.0000 36.0000 1.8627 0.0000 + 1105.4608 121.0000 37.0000 1.8627 0.0000 957.2271 121.0000 38.0000 1.8627 0.0000 + 831.6679 121.0000 39.0000 1.8627 0.0000 743.4318 121.0000 40.0000 1.8627 0.0000 + 675.3314 121.0000 41.0000 1.8627 0.0000 517.7340 121.0000 42.0000 1.8627 0.0000 + 579.1623 121.0000 43.0000 1.8627 0.0000 437.8432 121.0000 44.0000 1.8627 0.0000 + 478.9598 121.0000 45.0000 1.8627 0.0000 443.0816 121.0000 46.0000 1.8627 0.0000 + 369.4933 121.0000 47.0000 1.8627 0.0000 389.1859 121.0000 48.0000 1.8627 0.0000 + 492.1904 121.0000 49.0000 1.8627 0.0000 451.1340 121.0000 50.0000 1.8627 0.0000 + 398.3152 121.0000 51.0000 1.8627 0.0000 367.3908 121.0000 52.0000 1.8627 0.0000 + 330.0418 121.0000 53.0000 1.8627 0.0000 294.8706 121.0000 54.0000 1.8627 0.0000 + 1344.5274 121.0000 55.0000 1.8627 0.0000 1222.7426 121.0000 56.0000 1.8627 0.0000 + 1065.8140 121.0000 57.0000 1.8627 0.0000 471.1854 121.0000 58.0000 1.8627 2.7991 + 1079.9647 121.0000 59.0000 1.8627 0.0000 1036.2055 121.0000 60.0000 1.8627 0.0000 + 1009.8893 121.0000 61.0000 1.8627 0.0000 985.7264 121.0000 62.0000 1.8627 0.0000 + 964.2855 121.0000 63.0000 1.8627 0.0000 750.7848 121.0000 64.0000 1.8627 0.0000 + 855.1471 121.0000 65.0000 1.8627 0.0000 822.8420 121.0000 66.0000 1.8627 0.0000 + 868.1104 121.0000 67.0000 1.8627 0.0000 849.5394 121.0000 68.0000 1.8627 0.0000 + 832.6961 121.0000 69.0000 1.8627 0.0000 823.3089 121.0000 70.0000 1.8627 0.0000 + 688.6242 121.0000 71.0000 1.8627 0.0000 671.9258 121.0000 72.0000 1.8627 0.0000 + 609.7515 121.0000 73.0000 1.8627 0.0000 512.2105 121.0000 74.0000 1.8627 0.0000 + 520.0578 121.0000 75.0000 1.8627 0.0000 468.9565 121.0000 76.0000 1.8627 0.0000 + 427.6845 121.0000 77.0000 1.8627 0.0000 353.4845 121.0000 78.0000 1.8627 0.0000 + 329.5985 121.0000 79.0000 1.8627 0.0000 338.5478 121.0000 80.0000 1.8627 0.0000 + 503.6393 121.0000 81.0000 1.8627 0.0000 489.2541 121.0000 82.0000 1.8627 0.0000 + 445.9231 121.0000 83.0000 1.8627 0.0000 423.2063 121.0000 84.0000 1.8627 0.0000 + 388.2122 121.0000 85.0000 1.8627 0.0000 353.8005 121.0000 86.0000 1.8627 0.0000 + 1263.0191 121.0000 87.0000 1.8627 0.0000 1203.9859 121.0000 88.0000 1.8627 0.0000 + 1056.3541 121.0000 89.0000 1.8627 0.0000 940.6241 121.0000 90.0000 1.8627 0.0000 + 937.6579 121.0000 91.0000 1.8627 0.0000 907.6956 121.0000 92.0000 1.8627 0.0000 + 939.8691 121.0000 93.0000 1.8627 0.0000 909.2895 121.0000 94.0000 1.8627 0.0000 + 48.9753 121.0000 101.0000 1.8627 0.0000 163.6446 121.0000 103.0000 1.8627 0.9865 + 207.8107 121.0000 104.0000 1.8627 0.9808 155.8228 121.0000 105.0000 1.8627 0.9706 + 115.9726 121.0000 106.0000 1.8627 0.9868 79.5383 121.0000 107.0000 1.8627 0.9944 + 57.2611 121.0000 108.0000 1.8627 0.9925 38.8097 121.0000 109.0000 1.8627 0.9982 + 239.9714 121.0000 111.0000 1.8627 0.9684 371.7768 121.0000 112.0000 1.8627 0.9628 + 373.1845 121.0000 113.0000 1.8627 0.9648 295.6101 121.0000 114.0000 1.8627 0.9507 + 239.3701 121.0000 115.0000 1.8627 0.9947 200.7622 121.0000 116.0000 1.8627 0.9948 + 162.6806 121.0000 117.0000 1.8627 0.9972 327.7092 121.0000 119.0000 1.8627 0.9767 + 640.7076 121.0000 120.0000 1.8627 0.9831 324.5068 121.0000 121.0000 1.8627 1.8627 + 29.0009 122.0000 1.0000 1.8299 0.9118 18.8084 122.0000 2.0000 1.8299 0.0000 + 488.2931 122.0000 3.0000 1.8299 0.0000 272.0201 122.0000 4.0000 1.8299 0.0000 + 179.5077 122.0000 5.0000 1.8299 0.0000 119.4376 122.0000 6.0000 1.8299 0.0000 + 82.5834 122.0000 7.0000 1.8299 0.0000 62.0309 122.0000 8.0000 1.8299 0.0000 + 46.6765 122.0000 9.0000 1.8299 0.0000 35.7117 122.0000 10.0000 1.8299 0.0000 + 582.5270 122.0000 11.0000 1.8299 0.0000 436.1091 122.0000 12.0000 1.8299 0.0000 + 397.8618 122.0000 13.0000 1.8299 0.0000 309.1081 122.0000 14.0000 1.8299 0.0000 + 238.1644 122.0000 15.0000 1.8299 0.0000 196.1128 122.0000 16.0000 1.8299 0.0000 + 158.9892 122.0000 17.0000 1.8299 0.0000 129.2180 122.0000 18.0000 1.8299 0.0000 + 960.3376 122.0000 19.0000 1.8299 0.0000 774.6863 122.0000 20.0000 1.8299 0.0000 + 636.8706 122.0000 21.0000 1.8299 0.0000 612.2225 122.0000 22.0000 1.8299 0.0000 + 559.1157 122.0000 23.0000 1.8299 0.0000 440.0762 122.0000 24.0000 1.8299 0.0000 + 479.4969 122.0000 25.0000 1.8299 0.0000 375.8242 122.0000 26.0000 1.8299 0.0000 + 396.2748 122.0000 27.0000 1.8299 0.0000 409.3555 122.0000 28.0000 1.8299 0.0000 + 313.6026 122.0000 29.0000 1.8299 0.0000 319.3834 122.0000 30.0000 1.8299 0.0000 + 379.4109 122.0000 31.0000 1.8299 0.0000 330.9710 122.0000 32.0000 1.8299 0.0000 + 279.4990 122.0000 33.0000 1.8299 0.0000 249.2258 122.0000 34.0000 1.8299 0.0000 + 216.6921 122.0000 35.0000 1.8299 0.0000 187.3231 122.0000 36.0000 1.8299 0.0000 + 1074.1973 122.0000 37.0000 1.8299 0.0000 923.6557 122.0000 38.0000 1.8299 0.0000 + 802.0324 122.0000 39.0000 1.8299 0.0000 716.8609 122.0000 40.0000 1.8299 0.0000 + 651.2847 122.0000 41.0000 1.8299 0.0000 499.5011 122.0000 42.0000 1.8299 0.0000 + 558.7211 122.0000 43.0000 1.8299 0.0000 422.5708 122.0000 44.0000 1.8299 0.0000 + 462.0314 122.0000 45.0000 1.8299 0.0000 427.4577 122.0000 46.0000 1.8299 0.0000 + 356.7245 122.0000 47.0000 1.8299 0.0000 375.5261 122.0000 48.0000 1.8299 0.0000 + 474.8112 122.0000 49.0000 1.8299 0.0000 435.1948 122.0000 50.0000 1.8299 0.0000 + 384.4487 122.0000 51.0000 1.8299 0.0000 354.7793 122.0000 52.0000 1.8299 0.0000 + 318.9171 122.0000 53.0000 1.8299 0.0000 285.1325 122.0000 54.0000 1.8299 0.0000 + 1308.6418 122.0000 55.0000 1.8299 0.0000 1180.9424 122.0000 56.0000 1.8299 0.0000 + 1028.4169 122.0000 57.0000 1.8299 0.0000 454.8200 122.0000 58.0000 1.8299 2.7991 + 1043.3187 122.0000 59.0000 1.8299 0.0000 1000.2155 122.0000 60.0000 1.8299 0.0000 + 974.7227 122.0000 61.0000 1.8299 0.0000 951.3257 122.0000 62.0000 1.8299 0.0000 + 930.5654 122.0000 63.0000 1.8299 0.0000 724.5886 122.0000 64.0000 1.8299 0.0000 + 827.7970 122.0000 65.0000 1.8299 0.0000 797.2364 122.0000 66.0000 1.8299 0.0000 + 837.4618 122.0000 67.0000 1.8299 0.0000 819.4973 122.0000 68.0000 1.8299 0.0000 + 803.2032 122.0000 69.0000 1.8299 0.0000 794.1404 122.0000 70.0000 1.8299 0.0000 + 664.7727 122.0000 71.0000 1.8299 0.0000 647.8746 122.0000 72.0000 1.8299 0.0000 + 587.9813 122.0000 73.0000 1.8299 0.0000 494.2357 122.0000 74.0000 1.8299 0.0000 + 501.7733 122.0000 75.0000 1.8299 0.0000 452.5726 122.0000 76.0000 1.8299 0.0000 + 412.8558 122.0000 77.0000 1.8299 0.0000 341.4540 122.0000 78.0000 1.8299 0.0000 + 318.4619 122.0000 79.0000 1.8299 0.0000 327.0770 122.0000 80.0000 1.8299 0.0000 + 486.2116 122.0000 81.0000 1.8299 0.0000 472.1552 122.0000 82.0000 1.8299 0.0000 + 430.4805 122.0000 83.0000 1.8299 0.0000 408.6951 122.0000 84.0000 1.8299 0.0000 + 375.1029 122.0000 85.0000 1.8299 0.0000 342.0575 122.0000 86.0000 1.8299 0.0000 + 1226.3970 122.0000 87.0000 1.8299 0.0000 1162.3660 122.0000 88.0000 1.8299 0.0000 + 1019.1422 122.0000 89.0000 1.8299 0.0000 907.2367 122.0000 90.0000 1.8299 0.0000 + 904.8331 122.0000 91.0000 1.8299 0.0000 875.8748 122.0000 92.0000 1.8299 0.0000 + 906.9616 122.0000 93.0000 1.8299 0.0000 877.3645 122.0000 94.0000 1.8299 0.0000 + 47.2755 122.0000 101.0000 1.8299 0.0000 157.6667 122.0000 103.0000 1.8299 0.9865 + 200.3669 122.0000 104.0000 1.8299 0.9808 150.3520 122.0000 105.0000 1.8299 0.9706 + 112.0523 122.0000 106.0000 1.8299 0.9868 76.9834 122.0000 107.0000 1.8299 0.9944 + 55.5160 122.0000 108.0000 1.8299 0.9925 37.7222 122.0000 109.0000 1.8299 0.9982 + 231.2612 122.0000 111.0000 1.8299 0.9684 358.3602 122.0000 112.0000 1.8299 0.9628 + 359.6497 122.0000 113.0000 1.8299 0.9648 285.0957 122.0000 114.0000 1.8299 0.9507 + 231.0773 122.0000 115.0000 1.8299 0.9947 193.9845 122.0000 116.0000 1.8299 0.9948 + 157.3604 122.0000 117.0000 1.8299 0.9972 316.2518 122.0000 119.0000 1.8299 0.9767 + 619.4301 122.0000 120.0000 1.8299 0.9831 312.9202 122.0000 121.0000 1.8299 1.8627 + 301.9988 122.0000 122.0000 1.8299 1.8299 28.4067 123.0000 1.0000 1.9138 0.9118 + 18.4359 123.0000 2.0000 1.9138 0.0000 479.1402 123.0000 3.0000 1.9138 0.0000 + 266.7050 123.0000 4.0000 1.9138 0.0000 175.8909 123.0000 5.0000 1.9138 0.0000 + 117.0098 123.0000 6.0000 1.9138 0.0000 80.9144 123.0000 7.0000 1.9138 0.0000 + 60.7933 123.0000 8.0000 1.9138 0.0000 45.7630 123.0000 9.0000 1.9138 0.0000 + 35.0290 123.0000 10.0000 1.9138 0.0000 571.6455 123.0000 11.0000 1.9138 0.0000 + 427.7156 123.0000 12.0000 1.9138 0.0000 390.0432 123.0000 13.0000 1.9138 0.0000 + 302.8985 123.0000 14.0000 1.9138 0.0000 233.3176 123.0000 15.0000 1.9138 0.0000 + 192.1113 123.0000 16.0000 1.9138 0.0000 155.7507 123.0000 17.0000 1.9138 0.0000 + 126.6027 123.0000 18.0000 1.9138 0.0000 941.9837 123.0000 19.0000 1.9138 0.0000 + 760.0718 123.0000 20.0000 1.9138 0.0000 624.7801 123.0000 21.0000 1.9138 0.0000 + 600.5221 123.0000 22.0000 1.9138 0.0000 548.3908 123.0000 23.0000 1.9138 0.0000 + 431.6683 123.0000 24.0000 1.9138 0.0000 470.2529 123.0000 25.0000 1.9138 0.0000 + 368.6136 123.0000 26.0000 1.9138 0.0000 388.5729 123.0000 27.0000 1.9138 0.0000 + 401.4329 123.0000 28.0000 1.9138 0.0000 307.5763 123.0000 29.0000 1.9138 0.0000 + 313.1286 123.0000 30.0000 1.9138 0.0000 371.9427 123.0000 31.0000 1.9138 0.0000 + 324.3435 123.0000 32.0000 1.9138 0.0000 273.8352 123.0000 33.0000 1.9138 0.0000 + 244.1554 123.0000 34.0000 1.9138 0.0000 212.2792 123.0000 35.0000 1.9138 0.0000 + 183.5171 123.0000 36.0000 1.9138 0.0000 1053.5834 123.0000 37.0000 1.9138 0.0000 + 906.2364 123.0000 38.0000 1.9138 0.0000 786.7255 123.0000 39.0000 1.9138 0.0000 + 703.0784 123.0000 40.0000 1.9138 0.0000 638.7014 123.0000 41.0000 1.9138 0.0000 + 489.8160 123.0000 42.0000 1.9138 0.0000 547.8906 123.0000 43.0000 1.9138 0.0000 + 414.3575 123.0000 44.0000 1.9138 0.0000 453.0262 123.0000 45.0000 1.9138 0.0000 + 419.1134 123.0000 46.0000 1.9138 0.0000 349.8288 123.0000 47.0000 1.9138 0.0000 + 368.1871 123.0000 48.0000 1.9138 0.0000 465.5647 123.0000 49.0000 1.9138 0.0000 + 426.5933 123.0000 50.0000 1.9138 0.0000 376.7544 123.0000 51.0000 1.9138 0.0000 + 347.6374 123.0000 52.0000 1.9138 0.0000 312.4714 123.0000 53.0000 1.9138 0.0000 + 279.3612 123.0000 54.0000 1.9138 0.0000 1283.1193 123.0000 55.0000 1.9138 0.0000 + 1158.6662 123.0000 56.0000 1.9138 0.0000 1008.8336 123.0000 57.0000 1.9138 0.0000 + 445.7570 123.0000 58.0000 1.9138 2.7991 1023.5395 123.0000 59.0000 1.9138 0.0000 + 981.3457 123.0000 60.0000 1.9138 0.0000 956.3321 123.0000 61.0000 1.9138 0.0000 + 933.3738 123.0000 62.0000 1.9138 0.0000 913.0014 123.0000 63.0000 1.9138 0.0000 + 710.7237 123.0000 64.0000 1.9138 0.0000 811.9905 123.0000 65.0000 1.9138 0.0000 + 781.8272 123.0000 66.0000 1.9138 0.0000 821.6274 123.0000 67.0000 1.9138 0.0000 + 803.9989 123.0000 68.0000 1.9138 0.0000 788.0064 123.0000 69.0000 1.9138 0.0000 + 779.1219 123.0000 70.0000 1.9138 0.0000 651.9794 123.0000 71.0000 1.9138 0.0000 + 635.2996 123.0000 72.0000 1.9138 0.0000 576.4946 123.0000 73.0000 1.9138 0.0000 + 484.5583 123.0000 74.0000 1.9138 0.0000 491.9120 123.0000 75.0000 1.9138 0.0000 + 443.6413 123.0000 76.0000 1.9138 0.0000 404.6864 123.0000 77.0000 1.9138 0.0000 + 334.7153 123.0000 78.0000 1.9138 0.0000 312.1873 123.0000 79.0000 1.9138 0.0000 + 320.6012 123.0000 80.0000 1.9138 0.0000 476.7596 123.0000 81.0000 1.9138 0.0000 + 462.8741 123.0000 82.0000 1.9138 0.0000 421.9181 123.0000 83.0000 1.9138 0.0000 + 400.5172 123.0000 84.0000 1.9138 0.0000 367.5588 123.0000 85.0000 1.9138 0.0000 + 335.1610 123.0000 86.0000 1.9138 0.0000 1202.7024 123.0000 87.0000 1.9138 0.0000 + 1140.3430 123.0000 88.0000 1.9138 0.0000 999.6552 123.0000 89.0000 1.9138 0.0000 + 889.7259 123.0000 90.0000 1.9138 0.0000 887.4880 123.0000 91.0000 1.9138 0.0000 + 859.0997 123.0000 92.0000 1.9138 0.0000 889.7719 123.0000 93.0000 1.9138 0.0000 + 860.7178 123.0000 94.0000 1.9138 0.0000 46.3089 123.0000 101.0000 1.9138 0.0000 + 154.5762 123.0000 103.0000 1.9138 0.9865 196.4027 123.0000 104.0000 1.9138 0.9808 + 147.3153 123.0000 105.0000 1.9138 0.9706 109.7797 123.0000 106.0000 1.9138 0.9868 + 75.4303 123.0000 107.0000 1.9138 0.9944 54.4109 123.0000 108.0000 1.9138 0.9925 + 36.9962 123.0000 109.0000 1.9138 0.9982 226.7886 123.0000 111.0000 1.9138 0.9684 + 351.3928 123.0000 112.0000 1.9138 0.9628 352.5575 123.0000 113.0000 1.9138 0.9648 + 279.3563 123.0000 114.0000 1.9138 0.9507 226.3767 123.0000 115.0000 1.9138 0.9947 + 190.0299 123.0000 116.0000 1.9138 0.9948 154.1576 123.0000 117.0000 1.9138 0.9972 + 310.1108 123.0000 119.0000 1.9138 0.9767 607.5571 123.0000 120.0000 1.9138 0.9831 + 306.7389 123.0000 121.0000 1.9138 1.8627 296.0029 123.0000 122.0000 1.9138 1.8299 + 290.1436 123.0000 123.0000 1.9138 1.9138 28.0562 124.0000 1.0000 1.8269 0.9118 + 18.1754 124.0000 2.0000 1.8269 0.0000 480.5944 124.0000 3.0000 1.8269 0.0000 + 265.4088 124.0000 4.0000 1.8269 0.0000 174.3719 124.0000 5.0000 1.8269 0.0000 + 115.7182 124.0000 6.0000 1.8269 0.0000 79.9024 124.0000 7.0000 1.8269 0.0000 + 59.9829 124.0000 8.0000 1.8269 0.0000 45.1290 124.0000 9.0000 1.8269 0.0000 + 34.5350 124.0000 10.0000 1.8269 0.0000 573.1436 124.0000 11.0000 1.8269 0.0000 + 426.2276 124.0000 12.0000 1.8269 0.0000 387.8695 124.0000 13.0000 1.8269 0.0000 + 300.3928 124.0000 14.0000 1.8269 0.0000 230.9090 124.0000 15.0000 1.8269 0.0000 + 189.9052 124.0000 16.0000 1.8269 0.0000 153.8057 124.0000 17.0000 1.8269 0.0000 + 124.9265 124.0000 18.0000 1.8269 0.0000 945.8700 124.0000 19.0000 1.8269 0.0000 + 759.3684 124.0000 20.0000 1.8269 0.0000 623.5332 124.0000 21.0000 1.8269 0.0000 + 598.7981 124.0000 22.0000 1.8269 0.0000 546.5244 124.0000 23.0000 1.8269 0.0000 + 430.2353 124.0000 24.0000 1.8269 0.0000 468.2961 124.0000 25.0000 1.8269 0.0000 + 367.0785 124.0000 26.0000 1.8269 0.0000 386.4486 124.0000 27.0000 1.8269 0.0000 + 399.4530 124.0000 28.0000 1.8269 0.0000 306.1181 124.0000 29.0000 1.8269 0.0000 + 311.0603 124.0000 30.0000 1.8269 0.0000 369.6302 124.0000 31.0000 1.8269 0.0000 + 321.6404 124.0000 32.0000 1.8269 0.0000 271.0770 124.0000 33.0000 1.8269 0.0000 + 241.4585 124.0000 34.0000 1.8269 0.0000 209.7393 124.0000 35.0000 1.8269 0.0000 + 181.1819 124.0000 36.0000 1.8269 0.0000 1057.5718 124.0000 37.0000 1.8269 0.0000 + 905.6187 124.0000 38.0000 1.8269 0.0000 784.7489 124.0000 39.0000 1.8269 0.0000 + 700.5432 124.0000 40.0000 1.8269 0.0000 635.9639 124.0000 41.0000 1.8269 0.0000 + 487.1911 124.0000 42.0000 1.8269 0.0000 545.1724 124.0000 43.0000 1.8269 0.0000 + 411.8187 124.0000 44.0000 1.8269 0.0000 450.1943 124.0000 45.0000 1.8269 0.0000 + 416.3230 124.0000 46.0000 1.8269 0.0000 347.6786 124.0000 47.0000 1.8269 0.0000 + 365.5531 124.0000 48.0000 1.8269 0.0000 462.8304 124.0000 49.0000 1.8269 0.0000 + 423.3208 124.0000 50.0000 1.8269 0.0000 373.2591 124.0000 51.0000 1.8269 0.0000 + 344.0982 124.0000 52.0000 1.8269 0.0000 309.0063 124.0000 53.0000 1.8269 0.0000 + 276.0406 124.0000 54.0000 1.8269 0.0000 1287.9616 124.0000 55.0000 1.8269 0.0000 + 1158.6672 124.0000 56.0000 1.8269 0.0000 1006.9636 124.0000 57.0000 1.8269 0.0000 + 441.7809 124.0000 58.0000 1.8269 2.7991 1022.9773 124.0000 59.0000 1.8269 0.0000 + 980.4829 124.0000 60.0000 1.8269 0.0000 955.4042 124.0000 61.0000 1.8269 0.0000 + 932.3946 124.0000 62.0000 1.8269 0.0000 911.9735 124.0000 63.0000 1.8269 0.0000 + 708.5769 124.0000 64.0000 1.8269 0.0000 812.0495 124.0000 65.0000 1.8269 0.0000 + 781.6260 124.0000 66.0000 1.8269 0.0000 820.3071 124.0000 67.0000 1.8269 0.0000 + 802.6609 124.0000 68.0000 1.8269 0.0000 786.6336 124.0000 69.0000 1.8269 0.0000 + 777.8232 124.0000 70.0000 1.8269 0.0000 650.0572 124.0000 71.0000 1.8269 0.0000 + 632.2099 124.0000 72.0000 1.8269 0.0000 573.0945 124.0000 73.0000 1.8269 0.0000 + 481.3814 124.0000 74.0000 1.8269 0.0000 488.4719 124.0000 75.0000 1.8269 0.0000 + 440.1655 124.0000 76.0000 1.8269 0.0000 401.2522 124.0000 77.0000 1.8269 0.0000 + 331.6965 124.0000 78.0000 1.8269 0.0000 309.3075 124.0000 79.0000 1.8269 0.0000 + 317.5149 124.0000 80.0000 1.8269 0.0000 473.8496 124.0000 81.0000 1.8269 0.0000 + 459.3743 124.0000 82.0000 1.8269 0.0000 418.1044 124.0000 83.0000 1.8269 0.0000 + 396.5736 124.0000 84.0000 1.8269 0.0000 363.6068 124.0000 85.0000 1.8269 0.0000 + 331.3014 124.0000 86.0000 1.8269 0.0000 1205.4436 124.0000 87.0000 1.8269 0.0000 + 1139.2761 124.0000 88.0000 1.8269 0.0000 997.0249 124.0000 89.0000 1.8269 0.0000 + 885.7661 124.0000 90.0000 1.8269 0.0000 884.4280 124.0000 91.0000 1.8269 0.0000 + 856.1039 124.0000 92.0000 1.8269 0.0000 887.7066 124.0000 93.0000 1.8269 0.0000 + 858.5302 124.0000 94.0000 1.8269 0.0000 45.8173 124.0000 101.0000 1.8269 0.0000 + 153.7539 124.0000 103.0000 1.8269 0.9865 195.2317 124.0000 104.0000 1.8269 0.9808 + 145.9477 124.0000 105.0000 1.8269 0.9706 108.5820 124.0000 106.0000 1.8269 0.9868 + 74.4890 124.0000 107.0000 1.8269 0.9944 53.6733 124.0000 108.0000 1.8269 0.9925 + 36.4594 124.0000 109.0000 1.8269 0.9982 225.7837 124.0000 111.0000 1.8269 0.9684 + 349.9328 124.0000 112.0000 1.8269 0.9628 350.4296 124.0000 113.0000 1.8269 0.9648 + 276.9512 124.0000 114.0000 1.8269 0.9507 224.0303 124.0000 115.0000 1.8269 0.9947 + 187.8570 124.0000 116.0000 1.8269 0.9948 152.2383 124.0000 117.0000 1.8269 0.9972 + 308.3901 124.0000 119.0000 1.8269 0.9767 607.0700 124.0000 120.0000 1.8269 0.9831 + 304.3094 124.0000 121.0000 1.8269 1.8627 293.6598 124.0000 122.0000 1.8269 1.8299 + 287.8657 124.0000 123.0000 1.8269 1.9138 285.6905 124.0000 124.0000 1.8269 1.8269 + 26.1810 125.0000 1.0000 1.6406 0.9118 17.1526 125.0000 2.0000 1.6406 0.0000 + 416.0836 125.0000 3.0000 1.6406 0.0000 238.9606 125.0000 4.0000 1.6406 0.0000 + 159.8492 125.0000 5.0000 1.6406 0.0000 107.3382 125.0000 6.0000 1.6406 0.0000 + 74.6998 125.0000 7.0000 1.6406 0.0000 56.3622 125.0000 8.0000 1.6406 0.0000 + 42.5764 125.0000 9.0000 1.6406 0.0000 32.6806 125.0000 10.0000 1.6406 0.0000 + 497.3582 125.0000 11.0000 1.6406 0.0000 381.2968 125.0000 12.0000 1.6406 0.0000 + 350.4522 125.0000 13.0000 1.6406 0.0000 274.9257 125.0000 14.0000 1.6406 0.0000 + 213.4101 125.0000 15.0000 1.6406 0.0000 176.5165 125.0000 16.0000 1.6406 0.0000 + 143.7001 125.0000 17.0000 1.6406 0.0000 117.2057 125.0000 18.0000 1.6406 0.0000 + 814.2468 125.0000 19.0000 1.6406 0.0000 670.8337 125.0000 20.0000 1.6406 0.0000 + 553.7931 125.0000 21.0000 1.6406 0.0000 534.1266 125.0000 22.0000 1.6406 0.0000 + 488.7947 125.0000 23.0000 1.6406 0.0000 384.6931 125.0000 24.0000 1.6406 0.0000 + 420.4207 125.0000 25.0000 1.6406 0.0000 329.6273 125.0000 26.0000 1.6406 0.0000 + 349.1941 125.0000 27.0000 1.6406 0.0000 360.0172 125.0000 28.0000 1.6406 0.0000 + 275.7206 125.0000 29.0000 1.6406 0.0000 282.6667 125.0000 30.0000 1.6406 0.0000 + 335.0615 125.0000 31.0000 1.6406 0.0000 294.5184 125.0000 32.0000 1.6406 0.0000 + 250.2831 125.0000 33.0000 1.6406 0.0000 223.9857 125.0000 34.0000 1.6406 0.0000 + 195.4536 125.0000 35.0000 1.6406 0.0000 169.5097 125.0000 36.0000 1.6406 0.0000 + 911.9433 125.0000 37.0000 1.6406 0.0000 799.0125 125.0000 38.0000 1.6406 0.0000 + 698.6760 125.0000 39.0000 1.6406 0.0000 627.0790 125.0000 40.0000 1.6406 0.0000 + 571.1862 125.0000 41.0000 1.6406 0.0000 439.9326 125.0000 42.0000 1.6406 0.0000 + 491.3210 125.0000 43.0000 1.6406 0.0000 373.3442 125.0000 44.0000 1.6406 0.0000 + 408.3677 125.0000 45.0000 1.6406 0.0000 378.4295 125.0000 46.0000 1.6406 0.0000 + 315.3482 125.0000 47.0000 1.6406 0.0000 333.1518 125.0000 48.0000 1.6406 0.0000 + 419.0707 125.0000 49.0000 1.6406 0.0000 386.6184 125.0000 50.0000 1.6406 0.0000 + 343.5205 125.0000 51.0000 1.6406 0.0000 318.0485 125.0000 52.0000 1.6406 0.0000 + 286.8720 125.0000 53.0000 1.6406 0.0000 257.2803 125.0000 54.0000 1.6406 0.0000 + 1110.3588 125.0000 55.0000 1.6406 0.0000 1018.6688 125.0000 56.0000 1.6406 0.0000 + 893.5056 125.0000 57.0000 1.6406 0.0000 405.8737 125.0000 58.0000 1.6406 2.7991 + 902.0482 125.0000 59.0000 1.6406 0.0000 866.0442 125.0000 60.0000 1.6406 0.0000 + 844.2856 125.0000 61.0000 1.6406 0.0000 824.2830 125.0000 62.0000 1.6406 0.0000 + 806.5432 125.0000 63.0000 1.6406 0.0000 632.5743 125.0000 64.0000 1.6406 0.0000 + 713.7552 125.0000 65.0000 1.6406 0.0000 688.1125 125.0000 66.0000 1.6406 0.0000 + 727.2378 125.0000 67.0000 1.6406 0.0000 711.8001 125.0000 68.0000 1.6406 0.0000 + 697.8565 125.0000 69.0000 1.6406 0.0000 689.7847 125.0000 70.0000 1.6406 0.0000 + 580.1287 125.0000 71.0000 1.6406 0.0000 569.4056 125.0000 72.0000 1.6406 0.0000 + 518.7905 125.0000 73.0000 1.6406 0.0000 437.2088 125.0000 74.0000 1.6406 0.0000 + 444.5997 125.0000 75.0000 1.6406 0.0000 402.3097 125.0000 76.0000 1.6406 0.0000 + 367.9454 125.0000 77.0000 1.6406 0.0000 305.0501 125.0000 78.0000 1.6406 0.0000 + 284.8018 125.0000 79.0000 1.6406 0.0000 292.9177 125.0000 80.0000 1.6406 0.0000 + 429.5951 125.0000 81.0000 1.6406 0.0000 419.4149 125.0000 82.0000 1.6406 0.0000 + 384.4496 125.0000 83.0000 1.6406 0.0000 366.0547 125.0000 84.0000 1.6406 0.0000 + 337.0928 125.0000 85.0000 1.6406 0.0000 308.2947 125.0000 86.0000 1.6406 0.0000 + 1047.2098 125.0000 87.0000 1.6406 0.0000 1006.2859 125.0000 88.0000 1.6406 0.0000 + 888.2300 125.0000 89.0000 1.6406 0.0000 796.3105 125.0000 90.0000 1.6406 0.0000 + 791.2577 125.0000 91.0000 1.6406 0.0000 766.0984 125.0000 92.0000 1.6406 0.0000 + 789.9235 125.0000 93.0000 1.6406 0.0000 764.8061 125.0000 94.0000 1.6406 0.0000 + 42.3927 125.0000 101.0000 1.6406 0.0000 138.7491 125.0000 103.0000 1.6406 0.9865 + 176.6817 125.0000 104.0000 1.6406 0.9808 134.2136 125.0000 105.0000 1.6406 0.9706 + 100.6463 125.0000 106.0000 1.6406 0.9868 69.6215 125.0000 107.0000 1.6406 0.9944 + 50.4858 125.0000 108.0000 1.6406 0.9925 34.5481 125.0000 109.0000 1.6406 0.9982 + 202.9676 125.0000 111.0000 1.6406 0.9684 314.0119 125.0000 112.0000 1.6406 0.9628 + 317.3287 125.0000 113.0000 1.6406 0.9648 253.8800 125.0000 114.0000 1.6406 0.9507 + 207.0995 125.0000 115.0000 1.6406 0.9947 174.5775 125.0000 116.0000 1.6406 0.9948 + 142.2151 125.0000 117.0000 1.6406 0.9972 278.7259 125.0000 119.0000 1.6406 0.9767 + 535.8149 125.0000 120.0000 1.6406 0.9831 278.1965 125.0000 121.0000 1.6406 1.8627 + 268.4657 125.0000 122.0000 1.6406 1.8299 263.1127 125.0000 123.0000 1.6406 1.9138 + 260.7773 125.0000 124.0000 1.6406 1.8269 239.5554 125.0000 125.0000 1.6406 1.6406 + 24.3452 126.0000 1.0000 1.6483 0.9118 16.0560 126.0000 2.0000 1.6483 0.0000 + 379.2117 126.0000 3.0000 1.6483 0.0000 219.4775 126.0000 4.0000 1.6483 0.0000 + 147.6298 126.0000 5.0000 1.6483 0.0000 99.5880 126.0000 6.0000 1.6483 0.0000 + 69.5638 126.0000 7.0000 1.6483 0.0000 52.6351 126.0000 8.0000 1.6483 0.0000 + 39.8628 126.0000 9.0000 1.6483 0.0000 30.6648 126.0000 10.0000 1.6483 0.0000 + 453.5444 126.0000 11.0000 1.6483 0.0000 349.7116 126.0000 12.0000 1.6483 0.0000 + 322.2781 126.0000 13.0000 1.6483 0.0000 253.7638 126.0000 14.0000 1.6483 0.0000 + 197.6569 126.0000 15.0000 1.6483 0.0000 163.8794 126.0000 16.0000 1.6483 0.0000 + 133.7324 126.0000 17.0000 1.6483 0.0000 109.3155 126.0000 18.0000 1.6483 0.0000 + 742.2520 126.0000 19.0000 1.6483 0.0000 613.9233 126.0000 20.0000 1.6483 0.0000 + 507.3401 126.0000 21.0000 1.6483 0.0000 489.8996 126.0000 22.0000 1.6483 0.0000 + 448.6262 126.0000 23.0000 1.6483 0.0000 353.2709 126.0000 24.0000 1.6483 0.0000 + 386.2602 126.0000 25.0000 1.6483 0.0000 303.0480 126.0000 26.0000 1.6483 0.0000 + 321.3448 126.0000 27.0000 1.6483 0.0000 331.0614 126.0000 28.0000 1.6483 0.0000 + 253.7038 126.0000 29.0000 1.6483 0.0000 260.5341 126.0000 30.0000 1.6483 0.0000 + 308.5529 126.0000 31.0000 1.6483 0.0000 271.9711 126.0000 32.0000 1.6483 0.0000 + 231.7618 126.0000 33.0000 1.6483 0.0000 207.7948 126.0000 34.0000 1.6483 0.0000 + 181.6836 126.0000 35.0000 1.6483 0.0000 157.8661 126.0000 36.0000 1.6483 0.0000 + 831.7960 126.0000 37.0000 1.6483 0.0000 731.2330 126.0000 38.0000 1.6483 0.0000 + 640.6641 126.0000 39.0000 1.6483 0.0000 575.7752 126.0000 40.0000 1.6483 0.0000 + 524.9588 126.0000 41.0000 1.6483 0.0000 405.0817 126.0000 42.0000 1.6483 0.0000 + 452.0831 126.0000 43.0000 1.6483 0.0000 344.2322 126.0000 44.0000 1.6483 0.0000 + 376.4045 126.0000 45.0000 1.6483 0.0000 349.0258 126.0000 46.0000 1.6483 0.0000 + 290.9083 126.0000 47.0000 1.6483 0.0000 307.5209 126.0000 48.0000 1.6483 0.0000 + 386.0628 126.0000 49.0000 1.6483 0.0000 356.9159 126.0000 50.0000 1.6483 0.0000 + 317.8624 126.0000 51.0000 1.6483 0.0000 294.7348 126.0000 52.0000 1.6483 0.0000 + 266.2910 126.0000 53.0000 1.6483 0.0000 239.2190 126.0000 54.0000 1.6483 0.0000 + 1013.0459 126.0000 55.0000 1.6483 0.0000 931.8610 126.0000 56.0000 1.6483 0.0000 + 818.8994 126.0000 57.0000 1.6483 0.0000 375.4568 126.0000 58.0000 1.6483 2.7991 + 825.7735 126.0000 59.0000 1.6483 0.0000 793.0239 126.0000 60.0000 1.6483 0.0000 + 773.1575 126.0000 61.0000 1.6483 0.0000 754.8861 126.0000 62.0000 1.6483 0.0000 + 738.6836 126.0000 63.0000 1.6483 0.0000 580.7773 126.0000 64.0000 1.6483 0.0000 + 653.4752 126.0000 65.0000 1.6483 0.0000 630.2533 126.0000 66.0000 1.6483 0.0000 + 666.3378 126.0000 67.0000 1.6483 0.0000 652.2155 126.0000 68.0000 1.6483 0.0000 + 639.4782 126.0000 69.0000 1.6483 0.0000 632.0123 126.0000 70.0000 1.6483 0.0000 + 532.4410 126.0000 71.0000 1.6483 0.0000 523.6122 126.0000 72.0000 1.6483 0.0000 + 477.7397 126.0000 73.0000 1.6483 0.0000 403.1860 126.0000 74.0000 1.6483 0.0000 + 410.1849 126.0000 75.0000 1.6483 0.0000 371.6448 126.0000 76.0000 1.6483 0.0000 + 340.2672 126.0000 77.0000 1.6483 0.0000 282.5056 126.0000 78.0000 1.6483 0.0000 + 263.9035 126.0000 79.0000 1.6483 0.0000 271.5075 126.0000 80.0000 1.6483 0.0000 + 396.1575 126.0000 81.0000 1.6483 0.0000 387.3404 126.0000 82.0000 1.6483 0.0000 + 355.7528 126.0000 83.0000 1.6483 0.0000 339.1478 126.0000 84.0000 1.6483 0.0000 + 312.7991 126.0000 85.0000 1.6483 0.0000 286.5017 126.0000 86.0000 1.6483 0.0000 + 956.8205 126.0000 87.0000 1.6483 0.0000 921.4913 126.0000 88.0000 1.6483 0.0000 + 814.8080 126.0000 89.0000 1.6483 0.0000 732.1547 126.0000 90.0000 1.6483 0.0000 + 726.8433 126.0000 91.0000 1.6483 0.0000 703.7787 126.0000 92.0000 1.6483 0.0000 + 724.6884 126.0000 93.0000 1.6483 0.0000 701.8063 126.0000 94.0000 1.6483 0.0000 + 39.2742 126.0000 101.0000 1.6483 0.0000 127.5492 126.0000 103.0000 1.6483 0.9865 + 162.6108 126.0000 104.0000 1.6483 0.9808 124.1170 126.0000 105.0000 1.6483 0.9706 + 93.3848 126.0000 106.0000 1.6483 0.9868 64.8468 126.0000 107.0000 1.6483 0.9944 + 47.1816 126.0000 108.0000 1.6483 0.9925 32.4321 126.0000 109.0000 1.6483 0.9982 + 186.4669 126.0000 111.0000 1.6483 0.9684 288.3371 126.0000 112.0000 1.6483 0.9628 + 292.0247 126.0000 113.0000 1.6483 0.9648 234.4843 126.0000 114.0000 1.6483 0.9507 + 191.8429 126.0000 115.0000 1.6483 0.9947 162.0750 126.0000 116.0000 1.6483 0.9948 + 132.3480 126.0000 117.0000 1.6483 0.9972 256.7579 126.0000 119.0000 1.6483 0.9767 + 490.7481 126.0000 120.0000 1.6483 0.9831 256.8889 126.0000 121.0000 1.6483 1.8627 + 247.9636 126.0000 122.0000 1.6483 1.8299 243.0148 126.0000 123.0000 1.6483 1.9138 + 240.7834 126.0000 124.0000 1.6483 1.8269 221.5340 126.0000 125.0000 1.6483 1.6406 + 204.9925 126.0000 126.0000 1.6483 1.6483 23.2310 127.0000 1.0000 1.7149 0.9118 + 15.3545 127.0000 2.0000 1.7149 0.0000 362.3746 127.0000 3.0000 1.7149 0.0000 + 209.2227 127.0000 4.0000 1.7149 0.0000 140.7428 127.0000 5.0000 1.7149 0.0000 + 95.0051 127.0000 6.0000 1.7149 0.0000 66.4218 127.0000 7.0000 1.7149 0.0000 + 50.3016 127.0000 8.0000 1.7149 0.0000 38.1313 127.0000 9.0000 1.7149 0.0000 + 29.3598 127.0000 10.0000 1.7149 0.0000 433.3736 127.0000 11.0000 1.7149 0.0000 + 333.4767 127.0000 12.0000 1.7149 0.0000 307.2540 127.0000 13.0000 1.7149 0.0000 + 241.9159 127.0000 14.0000 1.7149 0.0000 188.4852 127.0000 15.0000 1.7149 0.0000 + 156.3423 127.0000 16.0000 1.7149 0.0000 127.6513 127.0000 17.0000 1.7149 0.0000 + 104.4091 127.0000 18.0000 1.7149 0.0000 710.1818 127.0000 19.0000 1.7149 0.0000 + 585.9578 127.0000 20.0000 1.7149 0.0000 484.0723 127.0000 21.0000 1.7149 0.0000 + 467.3984 127.0000 22.0000 1.7149 0.0000 427.9936 127.0000 23.0000 1.7149 0.0000 + 337.1436 127.0000 24.0000 1.7149 0.0000 368.4719 127.0000 25.0000 1.7149 0.0000 + 289.1937 127.0000 26.0000 1.7149 0.0000 306.4968 127.0000 27.0000 1.7149 0.0000 + 315.7713 127.0000 28.0000 1.7149 0.0000 242.1030 127.0000 29.0000 1.7149 0.0000 + 248.4855 127.0000 30.0000 1.7149 0.0000 294.2408 127.0000 31.0000 1.7149 0.0000 + 259.3224 127.0000 32.0000 1.7149 0.0000 221.0233 127.0000 33.0000 1.7149 0.0000 + 198.2213 127.0000 34.0000 1.7149 0.0000 173.3793 127.0000 35.0000 1.7149 0.0000 + 150.7190 127.0000 36.0000 1.7149 0.0000 795.8859 127.0000 37.0000 1.7149 0.0000 + 698.0762 127.0000 38.0000 1.7149 0.0000 611.3403 127.0000 39.0000 1.7149 0.0000 + 549.3294 127.0000 40.0000 1.7149 0.0000 500.8355 127.0000 41.0000 1.7149 0.0000 + 386.5245 127.0000 42.0000 1.7149 0.0000 431.3478 127.0000 43.0000 1.7149 0.0000 + 328.5015 127.0000 44.0000 1.7149 0.0000 359.1057 127.0000 45.0000 1.7149 0.0000 + 332.9896 127.0000 46.0000 1.7149 0.0000 277.6823 127.0000 47.0000 1.7149 0.0000 + 293.4074 127.0000 48.0000 1.7149 0.0000 368.3224 127.0000 49.0000 1.7149 0.0000 + 340.4265 127.0000 50.0000 1.7149 0.0000 303.1856 127.0000 51.0000 1.7149 0.0000 + 281.1633 127.0000 52.0000 1.7149 0.0000 254.0877 127.0000 53.0000 1.7149 0.0000 + 228.3256 127.0000 54.0000 1.7149 0.0000 969.5462 127.0000 55.0000 1.7149 0.0000 + 889.9346 127.0000 56.0000 1.7149 0.0000 781.6350 127.0000 57.0000 1.7149 0.0000 + 358.1677 127.0000 58.0000 1.7149 2.7991 788.5809 127.0000 59.0000 1.7149 0.0000 + 757.1711 127.0000 60.0000 1.7149 0.0000 738.1748 127.0000 61.0000 1.7149 0.0000 + 720.7052 127.0000 62.0000 1.7149 0.0000 705.2129 127.0000 63.0000 1.7149 0.0000 + 554.3462 127.0000 64.0000 1.7149 0.0000 624.4481 127.0000 65.0000 1.7149 0.0000 + 602.2672 127.0000 66.0000 1.7149 0.0000 636.0357 127.0000 67.0000 1.7149 0.0000 + 622.5372 127.0000 68.0000 1.7149 0.0000 610.3600 127.0000 69.0000 1.7149 0.0000 + 603.2352 127.0000 70.0000 1.7149 0.0000 508.1631 127.0000 71.0000 1.7149 0.0000 + 499.4701 127.0000 72.0000 1.7149 0.0000 455.6866 127.0000 73.0000 1.7149 0.0000 + 384.6723 127.0000 74.0000 1.7149 0.0000 391.3110 127.0000 75.0000 1.7149 0.0000 + 354.5582 127.0000 76.0000 1.7149 0.0000 324.6491 127.0000 77.0000 1.7149 0.0000 + 269.6338 127.0000 78.0000 1.7149 0.0000 251.9151 127.0000 79.0000 1.7149 0.0000 + 259.1382 127.0000 80.0000 1.7149 0.0000 378.0913 127.0000 81.0000 1.7149 0.0000 + 369.5502 127.0000 82.0000 1.7149 0.0000 339.3939 127.0000 83.0000 1.7149 0.0000 + 323.5710 127.0000 84.0000 1.7149 0.0000 298.4799 127.0000 85.0000 1.7149 0.0000 + 273.4501 127.0000 86.0000 1.7149 0.0000 915.1610 127.0000 87.0000 1.7149 0.0000 + 879.8339 127.0000 88.0000 1.7149 0.0000 777.6165 127.0000 89.0000 1.7149 0.0000 + 698.5619 127.0000 90.0000 1.7149 0.0000 693.7143 127.0000 91.0000 1.7149 0.0000 + 671.7007 127.0000 92.0000 1.7149 0.0000 691.7985 127.0000 93.0000 1.7149 0.0000 + 669.9158 127.0000 94.0000 1.7149 0.0000 37.4496 127.0000 101.0000 1.7149 0.0000 + 121.6037 127.0000 103.0000 1.7149 0.9865 155.0554 127.0000 104.0000 1.7149 0.9808 + 118.3530 127.0000 105.0000 1.7149 0.9706 89.0992 127.0000 106.0000 1.7149 0.9868 + 61.9256 127.0000 107.0000 1.7149 0.9944 45.1002 127.0000 108.0000 1.7149 0.9925 + 31.0516 127.0000 109.0000 1.7149 0.9982 177.8355 127.0000 111.0000 1.7149 0.9684 + 274.9840 127.0000 112.0000 1.7149 0.9628 278.4173 127.0000 113.0000 1.7149 0.9648 + 223.5548 127.0000 114.0000 1.7149 0.9507 182.9511 127.0000 115.0000 1.7149 0.9947 + 154.6243 127.0000 116.0000 1.7149 0.9948 126.3319 127.0000 117.0000 1.7149 0.9972 + 245.0188 127.0000 119.0000 1.7149 0.9767 468.6899 127.0000 120.0000 1.7149 0.9831 + 245.0035 127.0000 121.0000 1.7149 1.8627 236.5325 127.0000 122.0000 1.7149 1.8299 + 231.8180 127.0000 123.0000 1.7149 1.9138 229.7022 127.0000 124.0000 1.7149 1.8269 + 211.3025 127.0000 125.0000 1.7149 1.6406 195.5430 127.0000 126.0000 1.7149 1.6483 + 186.5462 127.0000 127.0000 1.7149 1.7149 22.6822 128.0000 1.0000 1.7937 0.9118 + 14.9833 128.0000 2.0000 1.7937 0.0000 355.9606 128.0000 3.0000 1.7937 0.0000 + 204.9086 128.0000 4.0000 1.7937 0.0000 137.6254 128.0000 5.0000 1.7937 0.0000 + 92.8107 128.0000 6.0000 1.7937 0.0000 64.8519 128.0000 7.0000 1.7937 0.0000 + 49.0996 128.0000 8.0000 1.7937 0.0000 37.2158 128.0000 9.0000 1.7937 0.0000 + 28.6554 128.0000 10.0000 1.7937 0.0000 425.6455 128.0000 11.0000 1.7937 0.0000 + 326.7864 128.0000 12.0000 1.7937 0.0000 300.8271 128.0000 13.0000 1.7937 0.0000 + 236.5952 128.0000 14.0000 1.7937 0.0000 184.1847 128.0000 15.0000 1.7937 0.0000 + 152.7036 128.0000 16.0000 1.7937 0.0000 124.6317 128.0000 17.0000 1.7937 0.0000 + 101.9116 128.0000 18.0000 1.7937 0.0000 697.7650 128.0000 19.0000 1.7937 0.0000 + 574.7522 128.0000 20.0000 1.7937 0.0000 474.6254 128.0000 21.0000 1.7937 0.0000 + 458.1136 128.0000 22.0000 1.7937 0.0000 419.4037 128.0000 23.0000 1.7937 0.0000 + 330.3808 128.0000 24.0000 1.7937 0.0000 360.9692 128.0000 25.0000 1.7937 0.0000 + 283.3011 128.0000 26.0000 1.7937 0.0000 300.1055 128.0000 27.0000 1.7937 0.0000 + 309.2543 128.0000 28.0000 1.7937 0.0000 237.1200 128.0000 29.0000 1.7937 0.0000 + 243.1960 128.0000 30.0000 1.7937 0.0000 288.0073 128.0000 31.0000 1.7937 0.0000 + 253.6134 128.0000 32.0000 1.7937 0.0000 216.0043 128.0000 33.0000 1.7937 0.0000 + 193.6432 128.0000 34.0000 1.7937 0.0000 169.3133 128.0000 35.0000 1.7937 0.0000 + 147.1417 128.0000 36.0000 1.7937 0.0000 781.8441 128.0000 37.0000 1.7937 0.0000 + 684.7715 128.0000 38.0000 1.7937 0.0000 599.2652 128.0000 39.0000 1.7937 0.0000 + 538.2480 128.0000 40.0000 1.7937 0.0000 490.5973 128.0000 41.0000 1.7937 0.0000 + 378.4594 128.0000 42.0000 1.7937 0.0000 422.4144 128.0000 43.0000 1.7937 0.0000 + 321.5506 128.0000 44.0000 1.7937 0.0000 351.4986 128.0000 45.0000 1.7937 0.0000 + 325.8858 128.0000 46.0000 1.7937 0.0000 271.8088 128.0000 47.0000 1.7937 0.0000 + 287.0958 128.0000 48.0000 1.7937 0.0000 360.5731 128.0000 49.0000 1.7937 0.0000 + 333.0301 128.0000 50.0000 1.7937 0.0000 296.4064 128.0000 51.0000 1.7937 0.0000 + 274.7751 128.0000 52.0000 1.7937 0.0000 248.2237 128.0000 53.0000 1.7937 0.0000 + 222.9856 128.0000 54.0000 1.7937 0.0000 952.3401 128.0000 55.0000 1.7937 0.0000 + 873.1622 128.0000 56.0000 1.7937 0.0000 766.3677 128.0000 57.0000 1.7937 0.0000 + 350.2054 128.0000 58.0000 1.7937 2.7991 773.5549 128.0000 59.0000 1.7937 0.0000 + 742.6757 128.0000 60.0000 1.7937 0.0000 724.0207 128.0000 61.0000 1.7937 0.0000 + 706.8671 128.0000 62.0000 1.7937 0.0000 691.6538 128.0000 63.0000 1.7937 0.0000 + 543.2742 128.0000 64.0000 1.7937 0.0000 612.6329 128.0000 65.0000 1.7937 0.0000 + 590.7694 128.0000 66.0000 1.7937 0.0000 623.6996 128.0000 67.0000 1.7937 0.0000 + 610.4511 128.0000 68.0000 1.7937 0.0000 598.4935 128.0000 69.0000 1.7937 0.0000 + 591.5255 128.0000 70.0000 1.7937 0.0000 498.0253 128.0000 71.0000 1.7937 0.0000 + 489.1525 128.0000 72.0000 1.7937 0.0000 446.0916 128.0000 73.0000 1.7937 0.0000 + 376.4665 128.0000 74.0000 1.7937 0.0000 382.9012 128.0000 75.0000 1.7937 0.0000 + 346.8251 128.0000 76.0000 1.7937 0.0000 317.4884 128.0000 77.0000 1.7937 0.0000 + 263.6322 128.0000 78.0000 1.7937 0.0000 246.2902 128.0000 79.0000 1.7937 0.0000 + 253.3149 128.0000 80.0000 1.7937 0.0000 370.0933 128.0000 81.0000 1.7937 0.0000 + 361.5357 128.0000 82.0000 1.7937 0.0000 331.8393 128.0000 83.0000 1.7937 0.0000 + 316.2653 128.0000 84.0000 1.7937 0.0000 291.6345 128.0000 85.0000 1.7937 0.0000 + 267.0974 128.0000 86.0000 1.7937 0.0000 898.4706 128.0000 87.0000 1.7937 0.0000 + 862.9402 128.0000 88.0000 1.7937 0.0000 762.2073 128.0000 89.0000 1.7937 0.0000 + 684.2421 128.0000 90.0000 1.7937 0.0000 679.7492 128.0000 91.0000 1.7937 0.0000 + 658.1727 128.0000 92.0000 1.7937 0.0000 678.1856 128.0000 93.0000 1.7937 0.0000 + 656.6800 128.0000 94.0000 1.7937 0.0000 36.5901 128.0000 101.0000 1.7937 0.0000 + 119.0725 128.0000 103.0000 1.7937 0.9865 151.7798 128.0000 104.0000 1.7937 0.9808 + 115.7000 128.0000 105.0000 1.7937 0.9706 87.0432 128.0000 106.0000 1.7937 0.9868 + 60.4608 128.0000 107.0000 1.7937 0.9944 44.0173 128.0000 108.0000 1.7937 0.9925 + 30.3004 128.0000 109.0000 1.7937 0.9982 174.2001 128.0000 111.0000 1.7937 0.9684 + 269.3779 128.0000 112.0000 1.7937 0.9628 272.5409 128.0000 113.0000 1.7937 0.9648 + 218.6066 128.0000 114.0000 1.7937 0.9507 178.7735 128.0000 115.0000 1.7937 0.9947 + 151.0286 128.0000 116.0000 1.7937 0.9948 123.3457 128.0000 117.0000 1.7937 0.9972 + 239.8849 128.0000 119.0000 1.7937 0.9767 459.6812 128.0000 120.0000 1.7937 0.9831 + 239.6563 128.0000 121.0000 1.7937 1.8627 231.3631 128.0000 122.0000 1.7937 1.8299 + 226.7601 128.0000 123.0000 1.7937 1.9138 224.7176 128.0000 124.0000 1.7937 1.8269 + 206.6126 128.0000 125.0000 1.7937 1.6406 191.1798 128.0000 126.0000 1.7937 1.6483 + 182.3876 128.0000 127.0000 1.7937 1.7149 178.3311 128.0000 128.0000 1.7937 1.7937 + 22.1550 129.0000 1.0000 0.9576 0.9118 14.5147 129.0000 2.0000 0.9576 0.0000 + 367.4308 129.0000 3.0000 0.9576 0.0000 205.9313 129.0000 4.0000 0.9576 0.0000 + 136.3705 129.0000 5.0000 0.9576 0.0000 91.1025 129.0000 6.0000 0.9576 0.0000 + 63.2709 129.0000 7.0000 0.9576 0.0000 47.7239 129.0000 8.0000 0.9576 0.0000 + 36.0749 129.0000 9.0000 0.9576 0.0000 27.7282 129.0000 10.0000 0.9576 0.0000 + 438.7198 129.0000 11.0000 0.9576 0.0000 330.0018 129.0000 12.0000 0.9576 0.0000 + 301.4650 129.0000 13.0000 0.9576 0.0000 234.7548 129.0000 14.0000 0.9576 0.0000 + 181.3267 129.0000 15.0000 0.9576 0.0000 149.6421 129.0000 16.0000 0.9576 0.0000 + 121.6329 129.0000 17.0000 0.9576 0.0000 99.1398 129.0000 18.0000 0.9576 0.0000 + 722.0002 129.0000 19.0000 0.9576 0.0000 585.3704 129.0000 20.0000 0.9576 0.0000 + 481.6472 129.0000 21.0000 0.9576 0.0000 463.3924 129.0000 22.0000 0.9576 0.0000 + 423.4193 129.0000 23.0000 0.9576 0.0000 333.5014 129.0000 24.0000 0.9576 0.0000 + 363.4171 129.0000 25.0000 0.9576 0.0000 285.1018 129.0000 26.0000 0.9576 0.0000 + 300.7356 129.0000 27.0000 0.9576 0.0000 310.5133 129.0000 28.0000 0.9576 0.0000 + 238.1207 129.0000 29.0000 0.9576 0.0000 242.6893 129.0000 30.0000 0.9576 0.0000 + 287.8520 129.0000 31.0000 0.9576 0.0000 251.5386 129.0000 32.0000 0.9576 0.0000 + 212.8346 129.0000 33.0000 0.9576 0.0000 190.0771 129.0000 34.0000 0.9576 0.0000 + 165.5860 129.0000 35.0000 0.9576 0.0000 143.4525 129.0000 36.0000 0.9576 0.0000 + 807.8786 129.0000 37.0000 0.9576 0.0000 697.8623 129.0000 38.0000 0.9576 0.0000 + 606.8585 129.0000 39.0000 0.9576 0.0000 542.9499 129.0000 40.0000 0.9576 0.0000 + 493.6363 129.0000 41.0000 0.9576 0.0000 379.2299 129.0000 42.0000 0.9576 0.0000 + 423.9154 129.0000 43.0000 0.9576 0.0000 321.2502 129.0000 44.0000 0.9576 0.0000 + 351.1222 129.0000 45.0000 0.9576 0.0000 325.0466 129.0000 46.0000 0.9576 0.0000 + 271.4634 129.0000 47.0000 0.9576 0.0000 285.8180 129.0000 48.0000 0.9576 0.0000 + 360.6626 129.0000 49.0000 0.9576 0.0000 331.0063 129.0000 50.0000 0.9576 0.0000 + 292.8589 129.0000 51.0000 0.9576 0.0000 270.5526 129.0000 52.0000 0.9576 0.0000 + 243.5475 129.0000 53.0000 0.9576 0.0000 218.0929 129.0000 54.0000 0.9576 0.0000 + 983.5916 129.0000 55.0000 0.9576 0.0000 891.6885 129.0000 56.0000 0.9576 0.0000 + 777.7070 129.0000 57.0000 0.9576 0.0000 346.4374 129.0000 58.0000 0.9576 2.7991 + 788.3761 129.0000 59.0000 0.9576 0.0000 756.1577 129.0000 60.0000 0.9576 0.0000 + 736.9509 129.0000 61.0000 0.9576 0.0000 719.3118 129.0000 62.0000 0.9576 0.0000 + 703.6592 129.0000 63.0000 0.9576 0.0000 548.9119 129.0000 64.0000 0.9576 0.0000 + 625.2396 129.0000 65.0000 0.9576 0.0000 602.1416 129.0000 66.0000 0.9576 0.0000 + 633.5260 129.0000 67.0000 0.9576 0.0000 619.9597 129.0000 68.0000 0.9576 0.0000 + 607.6633 129.0000 69.0000 0.9576 0.0000 600.7572 129.0000 70.0000 0.9576 0.0000 + 503.3841 129.0000 71.0000 0.9576 0.0000 491.2212 129.0000 72.0000 0.9576 0.0000 + 446.2955 129.0000 73.0000 0.9576 0.0000 375.6084 129.0000 74.0000 0.9576 0.0000 + 381.4584 129.0000 75.0000 0.9576 0.0000 344.4429 129.0000 76.0000 0.9576 0.0000 + 314.5325 129.0000 77.0000 0.9576 0.0000 260.5785 129.0000 78.0000 0.9576 0.0000 + 243.2204 129.0000 79.0000 0.9576 0.0000 249.8231 129.0000 80.0000 0.9576 0.0000 + 369.7134 129.0000 81.0000 0.9576 0.0000 359.3822 129.0000 82.0000 0.9576 0.0000 + 328.0961 129.0000 83.0000 0.9576 0.0000 311.7543 129.0000 84.0000 0.9576 0.0000 + 286.4803 129.0000 85.0000 0.9576 0.0000 261.5923 129.0000 86.0000 0.9576 0.0000 + 923.4448 129.0000 87.0000 0.9576 0.0000 878.3888 129.0000 88.0000 0.9576 0.0000 + 771.3710 129.0000 89.0000 0.9576 0.0000 687.9851 129.0000 90.0000 0.9576 0.0000 + 685.7614 129.0000 91.0000 0.9576 0.0000 663.9085 129.0000 92.0000 0.9576 0.0000 + 686.9409 129.0000 93.0000 0.9576 0.0000 664.6581 129.0000 94.0000 0.9576 0.0000 + 35.9871 129.0000 101.0000 0.9576 0.0000 119.4397 129.0000 103.0000 0.9576 0.9865 + 151.8426 129.0000 104.0000 0.9576 0.9808 114.3466 129.0000 105.0000 0.9576 0.9706 + 85.4731 129.0000 106.0000 0.9576 0.9868 58.9903 129.0000 107.0000 0.9576 0.9944 + 42.7458 129.0000 108.0000 0.9576 0.9925 29.2808 129.0000 109.0000 0.9576 0.9982 + 175.2531 129.0000 111.0000 0.9576 0.9684 271.2755 129.0000 112.0000 0.9576 0.9628 + 272.6384 129.0000 113.0000 0.9576 0.9648 216.6154 129.0000 114.0000 0.9576 0.9507 + 175.9628 129.0000 115.0000 0.9576 0.9947 148.0244 129.0000 116.0000 0.9576 0.9948 + 120.3927 129.0000 117.0000 0.9576 0.9972 240.1791 129.0000 119.0000 0.9576 0.9767 + 467.9156 129.0000 120.0000 0.9576 0.9831 238.0128 129.0000 121.0000 0.9576 1.8627 + 229.7226 129.0000 122.0000 0.9576 1.8299 225.2020 129.0000 123.0000 0.9576 1.9138 + 223.4009 129.0000 124.0000 0.9576 1.8269 204.4480 129.0000 125.0000 0.9576 1.6406 + 188.9445 129.0000 126.0000 0.9576 1.6483 180.2719 129.0000 127.0000 0.9576 1.7149 + 176.3358 129.0000 128.0000 0.9576 1.7937 174.9969 129.0000 129.0000 0.9576 0.9576 + 21.2139 130.0000 1.0000 1.9419 0.9118 14.1185 130.0000 2.0000 1.9419 0.0000 + 317.8826 130.0000 3.0000 1.9419 0.0000 187.3012 130.0000 4.0000 1.9419 0.0000 + 127.2488 130.0000 5.0000 1.9419 0.0000 86.4709 130.0000 6.0000 1.9419 0.0000 + 60.7331 130.0000 7.0000 1.9419 0.0000 46.1355 130.0000 8.0000 1.9419 0.0000 + 35.0629 130.0000 9.0000 1.9419 0.0000 27.0524 130.0000 10.0000 1.9419 0.0000 + 380.6568 130.0000 11.0000 1.9419 0.0000 297.5440 130.0000 12.0000 1.9419 0.0000 + 275.6299 130.0000 13.0000 1.9419 0.0000 218.5282 130.0000 14.0000 1.9419 0.0000 + 171.1889 130.0000 15.0000 1.9419 0.0000 142.4591 130.0000 16.0000 1.9419 0.0000 + 116.6637 130.0000 17.0000 1.9419 0.0000 95.6586 130.0000 18.0000 1.9419 0.0000 + 621.4841 130.0000 19.0000 1.9419 0.0000 519.5182 130.0000 20.0000 1.9419 0.0000 + 430.3675 130.0000 21.0000 1.9419 0.0000 416.5328 130.0000 22.0000 1.9419 0.0000 + 381.9629 130.0000 23.0000 1.9419 0.0000 300.9323 130.0000 24.0000 1.9419 0.0000 + 329.5196 130.0000 25.0000 1.9419 0.0000 258.7290 130.0000 26.0000 1.9419 0.0000 + 275.0381 130.0000 27.0000 1.9419 0.0000 282.9656 130.0000 28.0000 1.9419 0.0000 + 216.9570 130.0000 29.0000 1.9419 0.0000 223.6622 130.0000 30.0000 1.9419 0.0000 + 264.4724 130.0000 31.0000 1.9419 0.0000 234.3407 130.0000 32.0000 1.9419 0.0000 + 200.6408 130.0000 33.0000 1.9419 0.0000 180.4189 130.0000 34.0000 1.9419 0.0000 + 158.2213 130.0000 35.0000 1.9419 0.0000 137.8590 130.0000 36.0000 1.9419 0.0000 + 697.2012 130.0000 37.0000 1.9419 0.0000 618.5928 130.0000 38.0000 1.9419 0.0000 + 544.3140 130.0000 39.0000 1.9419 0.0000 490.5097 130.0000 40.0000 1.9419 0.0000 + 448.0328 130.0000 41.0000 1.9419 0.0000 346.8387 130.0000 42.0000 1.9419 0.0000 + 386.6256 130.0000 43.0000 1.9419 0.0000 295.4307 130.0000 44.0000 1.9419 0.0000 + 322.9831 130.0000 45.0000 1.9419 0.0000 299.8317 130.0000 46.0000 1.9419 0.0000 + 249.8348 130.0000 47.0000 1.9419 0.0000 264.5716 130.0000 48.0000 1.9419 0.0000 + 330.9585 130.0000 49.0000 1.9419 0.0000 307.2635 130.0000 50.0000 1.9419 0.0000 + 274.7816 130.0000 51.0000 1.9419 0.0000 255.4289 130.0000 52.0000 1.9419 0.0000 + 231.4006 130.0000 53.0000 1.9419 0.0000 208.4055 130.0000 54.0000 1.9419 0.0000 + 849.3446 130.0000 55.0000 1.9419 0.0000 787.2771 130.0000 56.0000 1.9419 0.0000 + 694.7959 130.0000 57.0000 1.9419 0.0000 324.3365 130.0000 58.0000 1.9419 2.7991 + 698.7243 130.0000 59.0000 1.9419 0.0000 671.4732 130.0000 60.0000 1.9419 0.0000 + 654.7776 130.0000 61.0000 1.9419 0.0000 639.4075 130.0000 62.0000 1.9419 0.0000 + 625.7820 130.0000 63.0000 1.9419 0.0000 494.4243 130.0000 64.0000 1.9419 0.0000 + 552.5803 130.0000 65.0000 1.9419 0.0000 533.3938 130.0000 66.0000 1.9419 0.0000 + 565.0858 130.0000 67.0000 1.9419 0.0000 553.1687 130.0000 68.0000 1.9419 0.0000 + 542.4516 130.0000 69.0000 1.9419 0.0000 536.0077 130.0000 70.0000 1.9419 0.0000 + 453.0762 130.0000 71.0000 1.9419 0.0000 447.4432 130.0000 72.0000 1.9419 0.0000 + 409.3369 130.0000 73.0000 1.9419 0.0000 346.2360 130.0000 74.0000 1.9419 0.0000 + 352.5888 130.0000 75.0000 1.9419 0.0000 320.1959 130.0000 76.0000 1.9419 0.0000 + 293.7113 130.0000 77.0000 1.9419 0.0000 244.3721 130.0000 78.0000 1.9419 0.0000 + 228.4785 130.0000 79.0000 1.9419 0.0000 235.2469 130.0000 80.0000 1.9419 0.0000 + 340.0661 130.0000 81.0000 1.9419 0.0000 333.5577 130.0000 82.0000 1.9419 0.0000 + 307.4871 130.0000 83.0000 1.9419 0.0000 293.7622 130.0000 84.0000 1.9419 0.0000 + 271.6352 130.0000 85.0000 1.9419 0.0000 249.3809 130.0000 86.0000 1.9419 0.0000 + 804.9902 130.0000 87.0000 1.9419 0.0000 780.2675 130.0000 88.0000 1.9419 0.0000 + 692.6828 130.0000 89.0000 1.9419 0.0000 625.2933 130.0000 90.0000 1.9419 0.0000 + 619.4384 130.0000 91.0000 1.9419 0.0000 599.8559 130.0000 92.0000 1.9419 0.0000 + 615.9607 130.0000 93.0000 1.9419 0.0000 596.8169 130.0000 94.0000 1.9419 0.0000 + 34.0312 130.0000 101.0000 1.9419 0.0000 109.0127 130.0000 103.0000 1.9419 0.9865 + 139.2420 130.0000 104.0000 1.9419 0.9808 107.2026 130.0000 105.0000 1.9419 0.9706 + 81.0686 130.0000 106.0000 1.9419 0.9868 56.6140 130.0000 107.0000 1.9419 0.9944 + 41.3862 130.0000 108.0000 1.9419 0.9925 28.6291 130.0000 109.0000 1.9419 0.9982 + 159.1228 130.0000 111.0000 1.9419 0.9684 245.8054 130.0000 112.0000 1.9419 0.9628 + 250.0730 130.0000 113.0000 1.9419 0.9648 202.1306 130.0000 114.0000 1.9419 0.9507 + 166.1887 130.0000 115.0000 1.9419 0.9947 140.8804 130.0000 116.0000 1.9419 0.9948 + 115.4501 130.0000 117.0000 1.9419 0.9972 219.9852 130.0000 119.0000 1.9419 0.9767 + 415.5638 130.0000 120.0000 1.9419 0.9831 221.2467 130.0000 121.0000 1.9419 1.8627 + 213.6191 130.0000 122.0000 1.9419 1.8299 209.3428 130.0000 123.0000 1.9419 1.9138 + 207.2926 130.0000 124.0000 1.9419 1.8269 191.3125 130.0000 125.0000 1.9419 1.6406 + 177.2034 130.0000 126.0000 1.9419 1.6483 169.0461 130.0000 127.0000 1.9419 1.7149 + 165.2361 130.0000 128.0000 1.9419 1.7937 162.9236 130.0000 129.0000 1.9419 0.9576 + 153.4528 130.0000 130.0000 1.9419 1.9419 33.2515 131.0000 1.0000 0.9601 0.9118 + 20.9874 131.0000 2.0000 0.9601 0.0000 602.8104 131.0000 3.0000 0.9601 0.0000 + 326.6672 131.0000 4.0000 0.9601 0.0000 211.2756 131.0000 5.0000 0.9601 0.0000 + 138.1497 131.0000 6.0000 0.9601 0.0000 94.1329 131.0000 7.0000 0.9601 0.0000 + 69.9039 131.0000 8.0000 0.9601 0.0000 52.0476 131.0000 9.0000 0.9601 0.0000 + 39.4587 131.0000 10.0000 0.9601 0.0000 717.7531 131.0000 11.0000 0.9601 0.0000 + 526.4236 131.0000 12.0000 0.9601 0.0000 475.7318 131.0000 13.0000 0.9601 0.0000 + 364.6110 131.0000 14.0000 0.9601 0.0000 277.3523 131.0000 15.0000 0.9601 0.0000 + 226.2796 131.0000 16.0000 0.9601 0.0000 181.7178 131.0000 17.0000 0.9601 0.0000 + 146.3855 131.0000 18.0000 0.9601 0.0000 1184.8327 131.0000 19.0000 0.9601 0.0000 + 942.5828 131.0000 20.0000 0.9601 0.0000 771.9763 131.0000 21.0000 0.9601 0.0000 + 739.0281 131.0000 22.0000 0.9601 0.0000 673.2823 131.0000 23.0000 0.9601 0.0000 + 529.0006 131.0000 24.0000 0.9601 0.0000 575.3229 131.0000 25.0000 0.9601 0.0000 + 449.9040 131.0000 26.0000 0.9601 0.0000 472.6401 131.0000 27.0000 0.9601 0.0000 + 489.5499 131.0000 28.0000 0.9601 0.0000 374.2537 131.0000 29.0000 0.9601 0.0000 + 378.7329 131.0000 30.0000 0.9601 0.0000 451.4003 131.0000 31.0000 0.9601 0.0000 + 389.7370 131.0000 32.0000 0.9601 0.0000 325.7268 131.0000 33.0000 0.9601 0.0000 + 288.3934 131.0000 34.0000 0.9601 0.0000 248.8211 131.0000 35.0000 0.9601 0.0000 + 213.4821 131.0000 36.0000 0.9601 0.0000 1322.7322 131.0000 37.0000 0.9601 0.0000 + 1123.9167 131.0000 38.0000 0.9601 0.0000 969.0777 131.0000 39.0000 0.9601 0.0000 + 862.0363 131.0000 40.0000 0.9601 0.0000 780.4805 131.0000 41.0000 0.9601 0.0000 + 594.5765 131.0000 42.0000 0.9601 0.0000 666.7601 131.0000 43.0000 0.9601 0.0000 + 500.5162 131.0000 44.0000 0.9601 0.0000 547.8346 131.0000 45.0000 0.9601 0.0000 + 505.6698 131.0000 46.0000 0.9601 0.0000 421.7420 131.0000 47.0000 0.9601 0.0000 + 442.8639 131.0000 48.0000 0.9601 0.0000 564.1564 131.0000 49.0000 0.9601 0.0000 + 513.0315 131.0000 50.0000 0.9601 0.0000 449.3006 131.0000 51.0000 0.9601 0.0000 + 412.2793 131.0000 52.0000 0.9601 0.0000 368.2183 131.0000 53.0000 0.9601 0.0000 + 327.0838 131.0000 54.0000 0.9601 0.0000 1609.8951 131.0000 55.0000 0.9601 0.0000 + 1439.3610 131.0000 56.0000 0.9601 0.0000 1245.0382 131.0000 57.0000 0.9601 0.0000 + 532.0683 131.0000 58.0000 0.9601 2.7991 1268.2581 131.0000 59.0000 0.9601 0.0000 + 1214.7867 131.0000 60.0000 0.9601 0.0000 1183.4931 131.0000 61.0000 0.9601 0.0000 + 1154.8172 131.0000 62.0000 0.9601 0.0000 1129.3623 131.0000 63.0000 0.9601 0.0000 + 871.6966 131.0000 64.0000 0.9601 0.0000 1006.1273 131.0000 65.0000 0.9601 0.0000 + 967.4193 131.0000 66.0000 0.9601 0.0000 1014.7443 131.0000 67.0000 0.9601 0.0000 + 992.8398 131.0000 68.0000 0.9601 0.0000 972.8753 131.0000 69.0000 0.9601 0.0000 + 962.2681 131.0000 70.0000 0.9601 0.0000 800.5607 131.0000 71.0000 0.9601 0.0000 + 774.7949 131.0000 72.0000 0.9601 0.0000 699.5482 131.0000 73.0000 0.9601 0.0000 + 585.0069 131.0000 74.0000 0.9601 0.0000 592.9066 131.0000 75.0000 0.9601 0.0000 + 532.1950 131.0000 76.0000 0.9601 0.0000 483.5090 131.0000 77.0000 0.9601 0.0000 + 397.7391 131.0000 78.0000 0.9601 0.0000 370.1517 131.0000 79.0000 0.9601 0.0000 + 379.7092 131.0000 80.0000 0.9601 0.0000 575.6281 131.0000 81.0000 0.9601 0.0000 + 555.8307 131.0000 82.0000 0.9601 0.0000 502.9885 131.0000 83.0000 0.9601 0.0000 + 475.3134 131.0000 84.0000 0.9601 0.0000 433.6625 131.0000 85.0000 0.9601 0.0000 + 393.1850 131.0000 86.0000 0.9601 0.0000 1501.4541 131.0000 87.0000 0.9601 0.0000 + 1411.5217 131.0000 88.0000 0.9601 0.0000 1229.7307 131.0000 89.0000 0.9601 0.0000 + 1085.7394 131.0000 90.0000 0.9601 0.0000 1086.5380 131.0000 91.0000 0.9601 0.0000 + 1051.4942 131.0000 92.0000 0.9601 0.0000 1094.1031 131.0000 93.0000 0.9601 0.0000 + 1057.5095 131.0000 94.0000 0.9601 0.0000 54.9919 131.0000 101.0000 0.9601 0.0000 + 188.7622 131.0000 103.0000 0.9601 0.9865 238.9068 131.0000 104.0000 0.9601 0.9808 + 176.0976 131.0000 105.0000 0.9601 0.9706 129.5670 131.0000 106.0000 0.9601 0.9868 + 87.6645 131.0000 107.0000 0.9601 0.9944 62.3522 131.0000 108.0000 0.9601 0.9925 + 41.5909 131.0000 109.0000 0.9601 0.9982 277.5143 131.0000 111.0000 0.9601 0.9684 + 430.8297 131.0000 112.0000 0.9601 0.9628 428.9521 131.0000 113.0000 0.9601 0.9648 + 335.5206 131.0000 114.0000 0.9601 0.9507 268.9370 131.0000 115.0000 0.9601 0.9947 + 223.8453 131.0000 116.0000 0.9601 0.9948 179.8683 131.0000 117.0000 0.9601 0.9972 + 375.8495 131.0000 119.0000 0.9601 0.9767 751.8144 131.0000 120.0000 0.9601 0.9831 + 368.5417 131.0000 121.0000 0.9601 1.8627 355.3498 131.0000 122.0000 0.9601 1.8299 + 348.3293 131.0000 123.0000 0.9601 1.9138 345.9796 131.0000 124.0000 0.9601 1.8269 + 314.4244 131.0000 125.0000 0.9601 1.6406 289.7588 131.0000 126.0000 0.9601 1.6483 + 276.3130 131.0000 127.0000 0.9601 1.7149 270.4023 131.0000 128.0000 0.9601 1.7937 + 269.7344 131.0000 129.0000 0.9601 0.9576 248.7003 131.0000 130.0000 0.9601 1.9419 + 421.6497 131.0000 131.0000 0.9601 0.9601 29.9527 132.0000 1.0000 0.9434 0.9118 + 19.3761 132.0000 2.0000 0.9434 0.0000 484.0165 132.0000 3.0000 0.9434 0.0000 + 276.5717 132.0000 4.0000 0.9434 0.0000 184.2055 132.0000 5.0000 0.9434 0.0000 + 123.0574 132.0000 6.0000 0.9434 0.0000 85.1621 132.0000 7.0000 0.9434 0.0000 + 63.9245 132.0000 8.0000 0.9434 0.0000 48.0233 132.0000 9.0000 0.9434 0.0000 + 36.6615 132.0000 10.0000 0.9434 0.0000 578.0882 132.0000 11.0000 0.9434 0.0000 + 441.5239 132.0000 12.0000 0.9434 0.0000 405.1611 132.0000 13.0000 0.9434 0.0000 + 316.9700 132.0000 14.0000 0.9434 0.0000 245.2683 132.0000 15.0000 0.9434 0.0000 + 202.2863 132.0000 16.0000 0.9434 0.0000 164.1266 132.0000 17.0000 0.9434 0.0000 + 133.3794 132.0000 18.0000 0.9434 0.0000 946.5756 132.0000 19.0000 0.9434 0.0000 + 777.5361 132.0000 20.0000 0.9434 0.0000 641.4064 132.0000 21.0000 0.9434 0.0000 + 618.0401 132.0000 22.0000 0.9434 0.0000 565.2639 132.0000 23.0000 0.9434 0.0000 + 444.4196 132.0000 24.0000 0.9434 0.0000 485.7648 132.0000 25.0000 0.9434 0.0000 + 380.3853 132.0000 26.0000 0.9434 0.0000 402.9146 132.0000 27.0000 0.9434 0.0000 + 415.6439 132.0000 28.0000 0.9434 0.0000 317.8624 132.0000 29.0000 0.9434 0.0000 + 325.6928 132.0000 30.0000 0.9434 0.0000 386.7129 132.0000 31.0000 0.9434 0.0000 + 339.2404 132.0000 32.0000 0.9434 0.0000 287.5847 132.0000 33.0000 0.9434 0.0000 + 256.8517 132.0000 34.0000 0.9434 0.0000 223.5744 132.0000 35.0000 0.9434 0.0000 + 193.3634 132.0000 36.0000 0.9434 0.0000 1059.6044 132.0000 37.0000 0.9434 0.0000 + 926.0025 132.0000 38.0000 0.9434 0.0000 808.5991 132.0000 39.0000 0.9434 0.0000 + 724.9805 132.0000 40.0000 0.9434 0.0000 659.8039 132.0000 41.0000 0.9434 0.0000 + 507.1503 132.0000 42.0000 0.9434 0.0000 566.8294 132.0000 43.0000 0.9434 0.0000 + 429.6996 132.0000 44.0000 0.9434 0.0000 470.3078 132.0000 45.0000 0.9434 0.0000 + 435.5268 132.0000 46.0000 0.9434 0.0000 362.5076 132.0000 47.0000 0.9434 0.0000 + 383.0204 132.0000 48.0000 0.9434 0.0000 482.9115 132.0000 49.0000 0.9434 0.0000 + 444.9048 132.0000 50.0000 0.9434 0.0000 394.5822 132.0000 51.0000 0.9434 0.0000 + 364.8243 132.0000 52.0000 0.9434 0.0000 328.4750 132.0000 53.0000 0.9434 0.0000 + 293.9966 132.0000 54.0000 0.9434 0.0000 1290.3249 132.0000 55.0000 0.9434 0.0000 + 1180.9729 132.0000 56.0000 0.9434 0.0000 1034.4900 132.0000 57.0000 0.9434 0.0000 + 466.1880 132.0000 58.0000 0.9434 2.7991 1044.8624 132.0000 59.0000 0.9434 0.0000 + 1002.9138 132.0000 60.0000 0.9434 0.0000 977.6523 132.0000 61.0000 0.9434 0.0000 + 954.4431 132.0000 62.0000 0.9434 0.0000 933.8615 132.0000 63.0000 0.9434 0.0000 + 730.9227 132.0000 64.0000 0.9434 0.0000 826.5104 132.0000 65.0000 0.9434 0.0000 + 796.6299 132.0000 66.0000 0.9434 0.0000 841.7526 132.0000 67.0000 0.9434 0.0000 + 823.8687 132.0000 68.0000 0.9434 0.0000 807.7031 132.0000 69.0000 0.9434 0.0000 + 798.4380 132.0000 70.0000 0.9434 0.0000 670.6097 132.0000 71.0000 0.9434 0.0000 + 657.5565 132.0000 72.0000 0.9434 0.0000 598.3678 132.0000 73.0000 0.9434 0.0000 + 503.4431 132.0000 74.0000 0.9434 0.0000 511.7975 132.0000 75.0000 0.9434 0.0000 + 462.5042 132.0000 76.0000 0.9434 0.0000 422.4876 132.0000 77.0000 0.9434 0.0000 + 349.5160 132.0000 78.0000 0.9434 0.0000 326.0072 132.0000 79.0000 0.9434 0.0000 + 335.3045 132.0000 80.0000 0.9434 0.0000 494.2934 132.0000 81.0000 0.9434 0.0000 + 482.1548 132.0000 82.0000 0.9434 0.0000 441.2868 132.0000 83.0000 0.9434 0.0000 + 419.7407 132.0000 84.0000 0.9434 0.0000 385.9419 132.0000 85.0000 0.9434 0.0000 + 352.3749 132.0000 86.0000 0.9434 0.0000 1215.4454 132.0000 87.0000 0.9434 0.0000 + 1165.7107 132.0000 88.0000 0.9434 0.0000 1027.4859 132.0000 89.0000 0.9434 0.0000 + 919.3517 132.0000 90.0000 0.9434 0.0000 913.9023 132.0000 91.0000 0.9434 0.0000 + 884.7153 132.0000 92.0000 0.9434 0.0000 912.9705 132.0000 93.0000 0.9434 0.0000 + 883.7780 132.0000 94.0000 0.9434 0.0000 48.7247 132.0000 101.0000 0.9434 0.0000 + 160.4502 132.0000 103.0000 0.9434 0.9865 204.1690 132.0000 104.0000 0.9434 0.9808 + 154.4409 132.0000 105.0000 0.9434 0.9706 115.3488 132.0000 106.0000 0.9434 0.9868 + 79.3278 132.0000 107.0000 0.9434 0.9944 57.1752 132.0000 108.0000 0.9434 0.9925 + 38.7583 132.0000 109.0000 0.9434 0.9982 234.6048 132.0000 111.0000 0.9434 0.9684 + 363.3320 132.0000 112.0000 0.9434 0.9628 366.6561 132.0000 113.0000 0.9434 0.9648 + 292.5335 132.0000 114.0000 0.9434 0.9507 237.9580 132.0000 115.0000 0.9434 0.9947 + 200.0526 132.0000 116.0000 0.9434 0.9948 162.4206 132.0000 117.0000 0.9434 0.9972 + 321.1574 132.0000 119.0000 0.9434 0.9767 620.6735 132.0000 120.0000 0.9434 0.9831 + 320.1342 132.0000 121.0000 0.9434 1.8627 308.8304 132.0000 122.0000 0.9434 1.8299 + 302.6272 132.0000 123.0000 0.9434 1.9138 299.9706 132.0000 124.0000 0.9434 1.8269 + 275.2607 132.0000 125.0000 0.9434 1.6406 254.3735 132.0000 126.0000 0.9434 1.6483 + 242.5572 132.0000 127.0000 0.9434 1.7149 237.1737 132.0000 128.0000 0.9434 1.7937 + 234.8327 132.0000 129.0000 0.9434 0.9576 219.4508 132.0000 130.0000 0.9434 1.9419 + 362.6832 132.0000 131.0000 0.9434 0.9601 316.8521 132.0000 132.0000 0.9434 0.9434 + 27.3574 133.0000 1.0000 0.9889 0.9118 18.0816 133.0000 2.0000 0.9889 0.0000 + 406.3427 133.0000 3.0000 0.9889 0.0000 240.7559 133.0000 4.0000 0.9889 0.0000 + 163.9655 133.0000 5.0000 0.9889 0.0000 111.4257 133.0000 6.0000 0.9889 0.0000 + 78.1138 133.0000 7.0000 0.9889 0.0000 59.1764 133.0000 8.0000 0.9889 0.0000 + 44.8079 133.0000 9.0000 0.9889 0.0000 34.4226 133.0000 10.0000 0.9889 0.0000 + 486.4638 133.0000 11.0000 0.9889 0.0000 381.8396 133.0000 12.0000 0.9889 0.0000 + 354.3706 133.0000 13.0000 0.9889 0.0000 281.4893 133.0000 14.0000 0.9889 0.0000 + 220.7146 133.0000 15.0000 0.9889 0.0000 183.6462 133.0000 16.0000 0.9889 0.0000 + 150.2742 133.0000 17.0000 0.9889 0.0000 123.0358 133.0000 18.0000 0.9889 0.0000 + 793.6306 133.0000 19.0000 0.9889 0.0000 665.3221 133.0000 20.0000 0.9889 0.0000 + 551.4999 133.0000 21.0000 0.9889 0.0000 534.0266 133.0000 22.0000 0.9889 0.0000 + 489.8210 133.0000 23.0000 0.9889 0.0000 385.6577 133.0000 24.0000 0.9889 0.0000 + 422.6874 133.0000 25.0000 0.9889 0.0000 331.6389 133.0000 26.0000 0.9889 0.0000 + 353.0074 133.0000 27.0000 0.9889 0.0000 363.0566 133.0000 28.0000 0.9889 0.0000 + 278.0578 133.0000 29.0000 0.9889 0.0000 287.1778 133.0000 30.0000 0.9889 0.0000 + 339.9625 133.0000 31.0000 0.9889 0.0000 301.6800 133.0000 32.0000 0.9889 0.0000 + 258.5263 133.0000 33.0000 0.9889 0.0000 232.5072 133.0000 34.0000 0.9889 0.0000 + 203.8400 133.0000 35.0000 0.9889 0.0000 177.4716 133.0000 36.0000 0.9889 0.0000 + 890.4931 133.0000 37.0000 0.9889 0.0000 792.0816 133.0000 38.0000 0.9889 0.0000 + 697.8037 133.0000 39.0000 0.9889 0.0000 629.2190 133.0000 40.0000 0.9889 0.0000 + 574.9009 133.0000 41.0000 0.9889 0.0000 445.0799 133.0000 42.0000 0.9889 0.0000 + 496.1023 133.0000 43.0000 0.9889 0.0000 379.0427 133.0000 44.0000 0.9889 0.0000 + 414.5411 133.0000 45.0000 0.9889 0.0000 384.8152 133.0000 46.0000 0.9889 0.0000 + 320.2231 133.0000 47.0000 0.9889 0.0000 339.4814 133.0000 48.0000 0.9889 0.0000 + 424.7008 133.0000 49.0000 0.9889 0.0000 394.8165 133.0000 50.0000 0.9889 0.0000 + 353.4245 133.0000 51.0000 0.9889 0.0000 328.6756 133.0000 52.0000 0.9889 0.0000 + 297.8064 133.0000 53.0000 0.9889 0.0000 268.1700 133.0000 54.0000 0.9889 0.0000 + 1085.3677 133.0000 55.0000 0.9889 0.0000 1007.7913 133.0000 56.0000 0.9889 0.0000 + 890.4764 133.0000 57.0000 0.9889 0.0000 417.0350 133.0000 58.0000 0.9889 2.7991 + 894.2815 133.0000 59.0000 0.9889 0.0000 859.5248 133.0000 60.0000 0.9889 0.0000 + 838.1837 133.0000 61.0000 0.9889 0.0000 818.5381 133.0000 62.0000 0.9889 0.0000 + 801.1286 133.0000 63.0000 0.9889 0.0000 633.5809 133.0000 64.0000 0.9889 0.0000 + 706.8707 133.0000 65.0000 0.9889 0.0000 682.5126 133.0000 66.0000 0.9889 0.0000 + 723.6013 133.0000 67.0000 0.9889 0.0000 708.3653 133.0000 68.0000 0.9889 0.0000 + 694.6807 133.0000 69.0000 0.9889 0.0000 686.4011 133.0000 70.0000 0.9889 0.0000 + 580.6117 133.0000 71.0000 0.9889 0.0000 574.4090 133.0000 72.0000 0.9889 0.0000 + 525.7375 133.0000 73.0000 0.9889 0.0000 444.6486 133.0000 74.0000 0.9889 0.0000 + 452.9177 133.0000 75.0000 0.9889 0.0000 411.3669 133.0000 76.0000 0.9889 0.0000 + 377.3328 133.0000 77.0000 0.9889 0.0000 313.7040 133.0000 78.0000 0.9889 0.0000 + 293.1656 133.0000 79.0000 0.9889 0.0000 301.9723 133.0000 80.0000 0.9889 0.0000 + 436.1584 133.0000 81.0000 0.9889 0.0000 428.2639 133.0000 82.0000 0.9889 0.0000 + 395.1495 133.0000 83.0000 0.9889 0.0000 377.6873 133.0000 84.0000 0.9889 0.0000 + 349.3407 133.0000 85.0000 0.9889 0.0000 320.7197 133.0000 86.0000 0.9889 0.0000 + 1029.5399 133.0000 87.0000 0.9889 0.0000 999.4395 133.0000 88.0000 0.9889 0.0000 + 887.9112 133.0000 89.0000 0.9889 0.0000 802.1553 133.0000 90.0000 0.9889 0.0000 + 793.9473 133.0000 91.0000 0.9889 0.0000 768.7821 133.0000 92.0000 0.9889 0.0000 + 788.6402 133.0000 93.0000 0.9889 0.0000 764.2110 133.0000 94.0000 0.9889 0.0000 + 43.9067 133.0000 101.0000 0.9889 0.0000 140.1353 133.0000 103.0000 0.9889 0.9865 + 179.1390 133.0000 104.0000 0.9889 0.9808 138.1446 133.0000 105.0000 0.9889 0.9706 + 104.4532 133.0000 106.0000 0.9889 0.9868 72.8073 133.0000 107.0000 0.9889 0.9944 + 53.0645 133.0000 108.0000 0.9889 0.9925 36.4728 133.0000 109.0000 0.9889 0.9982 + 204.1937 133.0000 111.0000 0.9889 0.9684 315.6688 133.0000 112.0000 0.9889 0.9628 + 321.6043 133.0000 113.0000 0.9889 0.9648 260.4044 133.0000 114.0000 0.9889 0.9507 + 214.2514 133.0000 115.0000 0.9889 0.9947 181.5905 133.0000 116.0000 0.9889 0.9948 + 148.6943 133.0000 117.0000 0.9889 0.9972 282.3070 133.0000 119.0000 0.9889 0.9767 + 532.2461 133.0000 120.0000 0.9889 0.9831 284.4516 133.0000 121.0000 0.9889 1.8627 + 274.5929 133.0000 122.0000 0.9889 1.8299 269.0270 133.0000 123.0000 0.9889 1.9138 + 266.2939 133.0000 124.0000 0.9889 1.8269 245.9713 133.0000 125.0000 0.9889 1.6406 + 227.8113 133.0000 126.0000 0.9889 1.6483 217.2635 133.0000 127.0000 0.9889 1.7149 + 212.3221 133.0000 128.0000 0.9889 1.7937 209.1322 133.0000 129.0000 0.9889 0.9576 + 197.2771 133.0000 130.0000 0.9889 1.9419 319.7871 133.0000 131.0000 0.9889 0.9601 + 282.5717 133.0000 132.0000 0.9889 0.9434 254.1924 133.0000 133.0000 0.9889 0.9889 + 25.3149 134.0000 1.0000 0.9901 0.9118 17.0280 134.0000 2.0000 0.9901 0.0000 + 355.0450 134.0000 3.0000 0.9901 0.0000 215.1671 134.0000 4.0000 0.9901 0.0000 + 148.8590 134.0000 5.0000 0.9901 0.0000 102.4620 134.0000 6.0000 0.9901 0.0000 + 72.5567 134.0000 7.0000 0.9901 0.0000 55.3752 134.0000 8.0000 0.9901 0.0000 + 42.2027 134.0000 9.0000 0.9901 0.0000 32.5935 134.0000 10.0000 0.9901 0.0000 + 425.7733 134.0000 11.0000 0.9901 0.0000 339.8427 134.0000 12.0000 0.9901 0.0000 + 317.8133 134.0000 13.0000 0.9901 0.0000 255.1153 134.0000 14.0000 0.9901 0.0000 + 201.9603 134.0000 15.0000 0.9901 0.0000 169.1712 134.0000 16.0000 0.9901 0.0000 + 139.3453 134.0000 17.0000 0.9901 0.0000 114.7677 134.0000 18.0000 0.9901 0.0000 + 693.9818 134.0000 19.0000 0.9901 0.0000 588.5763 134.0000 20.0000 0.9901 0.0000 + 489.3305 134.0000 21.0000 0.9901 0.0000 475.4453 134.0000 22.0000 0.9901 0.0000 + 436.9293 134.0000 23.0000 0.9901 0.0000 344.5858 134.0000 24.0000 0.9901 0.0000 + 378.1133 134.0000 25.0000 0.9901 0.0000 297.2697 134.0000 26.0000 0.9901 0.0000 + 317.2233 134.0000 27.0000 0.9901 0.0000 325.5667 134.0000 28.0000 0.9901 0.0000 + 249.8210 134.0000 29.0000 0.9901 0.0000 259.1916 134.0000 30.0000 0.9901 0.0000 + 306.1275 134.0000 31.0000 0.9901 0.0000 273.7680 134.0000 32.0000 0.9901 0.0000 + 236.4206 134.0000 33.0000 0.9901 0.0000 213.7298 134.0000 34.0000 0.9901 0.0000 + 188.4031 134.0000 35.0000 0.9901 0.0000 164.8833 134.0000 36.0000 0.9901 0.0000 + 780.0986 134.0000 37.0000 0.9901 0.0000 700.8015 134.0000 38.0000 0.9901 0.0000 + 620.8918 134.0000 39.0000 0.9901 0.0000 562.0001 134.0000 40.0000 0.9901 0.0000 + 514.8945 134.0000 41.0000 0.9901 0.0000 400.7722 134.0000 42.0000 0.9901 0.0000 + 445.7916 134.0000 43.0000 0.9901 0.0000 342.5970 134.0000 44.0000 0.9901 0.0000 + 374.2900 134.0000 45.0000 0.9901 0.0000 348.0402 134.0000 46.0000 0.9901 0.0000 + 289.8328 134.0000 47.0000 0.9901 0.0000 307.7214 134.0000 48.0000 0.9901 0.0000 + 382.8381 134.0000 49.0000 0.9901 0.0000 357.9609 134.0000 50.0000 0.9901 0.0000 + 322.4812 134.0000 51.0000 0.9901 0.0000 301.1506 134.0000 52.0000 0.9901 0.0000 + 274.1377 134.0000 53.0000 0.9901 0.0000 247.9867 134.0000 54.0000 0.9901 0.0000 + 951.6305 134.0000 55.0000 0.9901 0.0000 890.6264 134.0000 56.0000 0.9901 0.0000 + 791.2471 134.0000 57.0000 0.9901 0.0000 380.3160 134.0000 58.0000 0.9901 2.7991 + 791.8817 134.0000 59.0000 0.9901 0.0000 761.6998 134.0000 60.0000 0.9901 0.0000 + 742.9435 134.0000 61.0000 0.9901 0.0000 725.6536 134.0000 62.0000 0.9901 0.0000 + 710.3376 134.0000 63.0000 0.9901 0.0000 565.7914 134.0000 64.0000 0.9901 0.0000 + 626.1705 134.0000 65.0000 0.9901 0.0000 605.2828 134.0000 66.0000 0.9901 0.0000 + 642.3795 134.0000 67.0000 0.9901 0.0000 628.9108 134.0000 68.0000 0.9901 0.0000 + 616.8666 134.0000 69.0000 0.9901 0.0000 609.3146 134.0000 70.0000 0.9901 0.0000 + 517.9069 134.0000 71.0000 0.9901 0.0000 515.2388 134.0000 72.0000 0.9901 0.0000 + 473.4619 134.0000 73.0000 0.9901 0.0000 402.0778 134.0000 74.0000 0.9901 0.0000 + 410.0352 134.0000 75.0000 0.9901 0.0000 373.7422 134.0000 76.0000 0.9901 0.0000 + 343.8376 134.0000 77.0000 0.9901 0.0000 286.9945 134.0000 78.0000 0.9901 0.0000 + 268.6145 134.0000 79.0000 0.9901 0.0000 276.8778 134.0000 80.0000 0.9901 0.0000 + 394.3385 134.0000 81.0000 0.9901 0.0000 388.7357 134.0000 82.0000 0.9901 0.0000 + 360.6185 134.0000 83.0000 0.9901 0.0000 345.8475 134.0000 84.0000 0.9901 0.0000 + 321.2528 134.0000 85.0000 0.9901 0.0000 296.1364 134.0000 86.0000 0.9901 0.0000 + 906.7065 134.0000 87.0000 0.9901 0.0000 885.9738 134.0000 88.0000 0.9901 0.0000 + 790.9717 134.0000 89.0000 0.9901 0.0000 719.2018 134.0000 90.0000 0.9901 0.0000 + 710.0299 134.0000 91.0000 0.9901 0.0000 687.6559 134.0000 92.0000 0.9901 0.0000 + 702.6880 134.0000 93.0000 0.9901 0.0000 681.3589 134.0000 94.0000 0.9901 0.0000 + 40.2117 134.0000 101.0000 0.9901 0.0000 125.5564 134.0000 103.0000 0.9901 0.9865 + 161.0637 134.0000 104.0000 0.9901 0.9808 125.8888 134.0000 105.0000 0.9901 0.9706 + 96.0872 134.0000 106.0000 0.9901 0.9868 67.6796 134.0000 107.0000 0.9901 0.9944 + 49.7665 134.0000 108.0000 0.9901 0.9925 34.5882 134.0000 109.0000 0.9901 0.9982 + 182.6062 134.0000 111.0000 0.9901 0.9684 281.9249 134.0000 112.0000 0.9901 0.9628 + 289.0163 134.0000 113.0000 0.9901 0.9648 236.4253 134.0000 114.0000 0.9901 0.9507 + 196.1374 134.0000 115.0000 0.9901 0.9947 167.2672 134.0000 116.0000 0.9901 0.9948 + 137.8735 134.0000 117.0000 0.9901 0.9972 254.5376 134.0000 119.0000 0.9901 0.9767 + 471.9821 134.0000 120.0000 0.9901 0.9831 258.1295 134.0000 121.0000 0.9901 1.8627 + 249.3437 134.0000 122.0000 0.9901 1.8299 244.2727 134.0000 123.0000 0.9901 1.9138 + 241.5803 134.0000 124.0000 0.9901 1.8269 224.0757 134.0000 125.0000 0.9901 1.6406 + 207.8748 134.0000 126.0000 0.9901 1.6483 198.2993 134.0000 127.0000 0.9901 1.7149 + 193.7213 134.0000 128.0000 0.9901 1.7937 190.1685 134.0000 129.0000 0.9901 0.9576 + 180.4812 134.0000 130.0000 0.9901 1.9419 288.5493 134.0000 131.0000 0.9901 0.9601 + 256.9523 134.0000 132.0000 0.9901 0.9434 232.5784 134.0000 133.0000 0.9901 0.9889 + 213.7862 134.0000 134.0000 0.9901 0.9901 22.6230 135.0000 1.0000 0.9974 0.9118 + 15.5387 135.0000 2.0000 0.9974 0.0000 297.6835 135.0000 3.0000 0.9974 0.0000 + 184.8832 135.0000 4.0000 0.9974 0.0000 130.1881 135.0000 5.0000 0.9974 0.0000 + 90.9343 135.0000 6.0000 0.9974 0.0000 65.1543 135.0000 7.0000 0.9974 0.0000 + 50.1632 135.0000 8.0000 0.9974 0.0000 38.5294 135.0000 9.0000 0.9974 0.0000 + 29.9501 135.0000 10.0000 0.9974 0.0000 357.7246 135.0000 11.0000 0.9974 0.0000 + 290.7276 135.0000 12.0000 0.9974 0.0000 274.1894 135.0000 13.0000 0.9974 0.0000 + 222.6812 135.0000 14.0000 0.9974 0.0000 178.1984 135.0000 15.0000 0.9974 0.0000 + 150.4203 135.0000 16.0000 0.9974 0.0000 124.8495 135.0000 17.0000 0.9974 0.0000 + 103.5467 135.0000 18.0000 0.9974 0.0000 582.8914 135.0000 19.0000 0.9974 0.0000 + 500.4152 135.0000 20.0000 0.9974 0.0000 417.3648 135.0000 21.0000 0.9974 0.0000 + 407.0970 135.0000 22.0000 0.9974 0.0000 374.9283 135.0000 23.0000 0.9974 0.0000 + 296.3607 135.0000 24.0000 0.9974 0.0000 325.4945 135.0000 25.0000 0.9974 0.0000 + 256.5939 135.0000 26.0000 0.9974 0.0000 274.4620 135.0000 27.0000 0.9974 0.0000 + 281.0154 135.0000 28.0000 0.9974 0.0000 216.2140 135.0000 29.0000 0.9974 0.0000 + 225.3457 135.0000 30.0000 0.9974 0.0000 265.3939 135.0000 31.0000 0.9974 0.0000 + 239.3636 135.0000 32.0000 0.9974 0.0000 208.4957 135.0000 33.0000 0.9974 0.0000 + 189.5974 135.0000 34.0000 0.9974 0.0000 168.1791 135.0000 35.0000 0.9974 0.0000 + 148.0689 135.0000 36.0000 0.9974 0.0000 656.6574 135.0000 37.0000 0.9974 0.0000 + 596.0214 135.0000 38.0000 0.9974 0.0000 531.3426 135.0000 39.0000 0.9974 0.0000 + 482.9873 135.0000 40.0000 0.9974 0.0000 443.8848 135.0000 41.0000 0.9974 0.0000 + 347.6800 135.0000 42.0000 0.9974 0.0000 385.7986 135.0000 43.0000 0.9974 0.0000 + 298.5174 135.0000 44.0000 0.9974 0.0000 325.6650 135.0000 45.0000 0.9974 0.0000 + 303.4107 135.0000 46.0000 0.9974 0.0000 253.0095 135.0000 47.0000 0.9974 0.0000 + 268.9491 135.0000 48.0000 0.9974 0.0000 332.4791 135.0000 49.0000 0.9974 0.0000 + 312.7994 135.0000 50.0000 0.9974 0.0000 283.7761 135.0000 51.0000 0.9974 0.0000 + 266.2386 135.0000 52.0000 0.9974 0.0000 243.6296 135.0000 53.0000 0.9974 0.0000 + 221.5367 135.0000 54.0000 0.9974 0.0000 801.8614 135.0000 55.0000 0.9974 0.0000 + 756.6271 135.0000 56.0000 0.9974 0.0000 676.1930 135.0000 57.0000 0.9974 0.0000 + 334.5262 135.0000 58.0000 0.9974 2.7991 674.2876 135.0000 59.0000 0.9974 0.0000 + 649.1282 135.0000 60.0000 0.9974 0.0000 633.2835 135.0000 61.0000 0.9974 0.0000 + 618.6540 135.0000 62.0000 0.9974 0.0000 605.6994 135.0000 63.0000 0.9974 0.0000 + 486.3444 135.0000 64.0000 0.9974 0.0000 533.6485 135.0000 65.0000 0.9974 0.0000 + 516.4905 135.0000 66.0000 0.9974 0.0000 548.4629 135.0000 67.0000 0.9974 0.0000 + 537.0079 135.0000 68.0000 0.9974 0.0000 526.8147 135.0000 69.0000 0.9974 0.0000 + 520.1674 135.0000 70.0000 0.9974 0.0000 444.5516 135.0000 71.0000 0.9974 0.0000 + 444.8851 135.0000 72.0000 0.9974 0.0000 410.6430 135.0000 73.0000 0.9974 0.0000 + 350.4234 135.0000 74.0000 0.9974 0.0000 357.7932 135.0000 75.0000 0.9974 0.0000 + 327.4317 135.0000 76.0000 0.9974 0.0000 302.2475 135.0000 77.0000 0.9974 0.0000 + 253.4816 135.0000 78.0000 0.9974 0.0000 237.6832 135.0000 79.0000 0.9974 0.0000 + 245.1411 135.0000 80.0000 0.9974 0.0000 343.7404 135.0000 81.0000 0.9974 0.0000 + 340.2422 135.0000 82.0000 0.9974 0.0000 317.4838 135.0000 83.0000 0.9974 0.0000 + 305.6097 135.0000 84.0000 0.9974 0.0000 285.2229 135.0000 85.0000 0.9974 0.0000 + 264.1334 135.0000 86.0000 0.9974 0.0000 767.7906 135.0000 87.0000 0.9974 0.0000 + 755.2617 135.0000 88.0000 0.9974 0.0000 677.8767 135.0000 89.0000 0.9974 0.0000 + 620.8260 135.0000 90.0000 0.9974 0.0000 611.3075 135.0000 91.0000 0.9974 0.0000 + 592.1871 135.0000 92.0000 0.9974 0.0000 602.5835 135.0000 93.0000 0.9974 0.0000 + 584.6998 135.0000 94.0000 0.9974 0.0000 35.5123 135.0000 101.0000 0.9974 0.0000 + 108.2048 135.0000 103.0000 0.9974 0.9865 139.3617 135.0000 104.0000 0.9974 0.9808 + 110.5802 135.0000 105.0000 0.9974 0.9706 85.3265 135.0000 106.0000 0.9974 0.9868 + 60.8359 135.0000 107.0000 0.9974 0.9944 45.2019 135.0000 108.0000 0.9974 0.9925 + 31.8313 135.0000 109.0000 0.9974 0.9982 157.1005 135.0000 111.0000 0.9974 0.9684 + 242.1476 135.0000 112.0000 0.9974 0.9628 249.9248 135.0000 113.0000 0.9974 0.9648 + 206.7880 135.0000 114.0000 0.9974 0.9507 173.1582 135.0000 115.0000 0.9974 0.9947 + 148.7219 135.0000 116.0000 0.9974 0.9948 123.5274 135.0000 117.0000 0.9974 0.9972 + 221.1642 135.0000 119.0000 0.9974 0.9767 402.5380 135.0000 120.0000 0.9974 0.9831 + 225.7784 135.0000 121.0000 0.9974 1.8627 218.2711 135.0000 122.0000 0.9974 1.8299 + 213.8276 135.0000 123.0000 0.9974 1.9138 211.2809 135.0000 124.0000 0.9974 1.8269 + 196.8395 135.0000 125.0000 0.9974 1.6406 182.9550 135.0000 126.0000 0.9974 1.6483 + 174.5910 135.0000 127.0000 0.9974 1.7149 170.5004 135.0000 128.0000 0.9974 1.7937 + 166.7816 135.0000 129.0000 0.9974 0.9576 159.3049 135.0000 130.0000 0.9974 1.9419 + 250.7247 135.0000 131.0000 0.9974 0.9601 225.1792 135.0000 132.0000 0.9974 0.9434 + 205.2305 135.0000 133.0000 0.9974 0.9889 189.6408 135.0000 134.0000 0.9974 0.9901 + 169.2375 135.0000 135.0000 0.9974 0.9974 35.1963 137.0000 1.0000 0.9738 0.9118 + 22.6231 137.0000 2.0000 0.9738 0.0000 657.4076 137.0000 3.0000 0.9738 0.0000 + 345.4378 137.0000 4.0000 0.9738 0.0000 222.5081 137.0000 5.0000 0.9738 0.0000 + 145.9974 137.0000 6.0000 0.9738 0.0000 100.1418 137.0000 7.0000 0.9738 0.0000 + 74.8868 137.0000 8.0000 0.9738 0.0000 56.1779 137.0000 9.0000 0.9738 0.0000 + 42.8957 137.0000 10.0000 0.9738 0.0000 781.8527 137.0000 11.0000 0.9738 0.0000 + 559.1337 137.0000 12.0000 0.9738 0.0000 502.9933 137.0000 13.0000 0.9738 0.0000 + 383.9084 137.0000 14.0000 0.9738 0.0000 292.1604 137.0000 15.0000 0.9738 0.0000 + 239.0572 137.0000 16.0000 0.9738 0.0000 192.7877 137.0000 17.0000 0.9738 0.0000 + 156.1010 137.0000 18.0000 0.9738 0.0000 1305.8840 137.0000 19.0000 0.9738 0.0000 + 1013.0706 137.0000 20.0000 0.9738 0.0000 826.1041 137.0000 21.0000 0.9738 0.0000 + 789.4117 137.0000 22.0000 0.9738 0.0000 718.2125 137.0000 23.0000 0.9738 0.0000 + 566.1856 137.0000 24.0000 0.9738 0.0000 612.6444 137.0000 25.0000 0.9738 0.0000 + 480.6236 137.0000 26.0000 0.9738 0.0000 501.5940 137.0000 27.0000 0.9738 0.0000 + 519.9826 137.0000 28.0000 0.9738 0.0000 399.3534 137.0000 29.0000 0.9738 0.0000 + 401.0548 137.0000 30.0000 0.9738 0.0000 477.9737 137.0000 31.0000 0.9738 0.0000 + 411.0389 137.0000 32.0000 0.9738 0.0000 343.3978 137.0000 33.0000 0.9738 0.0000 + 304.5312 137.0000 34.0000 0.9738 0.0000 263.4592 137.0000 35.0000 0.9738 0.0000 + 226.8590 137.0000 36.0000 0.9738 0.0000 1457.7817 137.0000 37.0000 0.9738 0.0000 + 1210.8108 137.0000 38.0000 0.9738 0.0000 1037.4434 137.0000 39.0000 0.9738 0.0000 + 920.1358 137.0000 40.0000 0.9738 0.0000 832.1368 137.0000 41.0000 0.9738 0.0000 + 633.9471 137.0000 42.0000 0.9738 0.0000 710.7779 137.0000 43.0000 0.9738 0.0000 + 533.6135 137.0000 44.0000 0.9738 0.0000 582.3742 137.0000 45.0000 0.9738 0.0000 + 537.2565 137.0000 46.0000 0.9738 0.0000 450.4714 137.0000 47.0000 0.9738 0.0000 + 470.3119 137.0000 48.0000 0.9738 0.0000 599.8987 137.0000 49.0000 0.9738 0.0000 + 542.8777 137.0000 50.0000 0.9738 0.0000 474.5641 137.0000 51.0000 0.9738 0.0000 + 435.5555 137.0000 52.0000 0.9738 0.0000 389.4684 137.0000 53.0000 0.9738 0.0000 + 346.6791 137.0000 54.0000 0.9738 0.0000 1776.8880 137.0000 55.0000 0.9738 0.0000 + 1556.9958 137.0000 56.0000 0.9738 0.0000 1337.5010 137.0000 57.0000 0.9738 0.0000 + 563.1480 137.0000 58.0000 0.9738 2.7991 1369.5245 137.0000 59.0000 0.9738 0.0000 + 1309.7014 137.0000 60.0000 0.9738 0.0000 1275.3968 137.0000 61.0000 0.9738 0.0000 + 1243.9950 137.0000 62.0000 0.9738 0.0000 1216.1018 137.0000 63.0000 0.9738 0.0000 + 934.6082 137.0000 64.0000 0.9738 0.0000 1093.0934 137.0000 65.0000 0.9738 0.0000 + 1050.0925 137.0000 66.0000 0.9738 0.0000 1090.3500 137.0000 67.0000 0.9738 0.0000 + 1066.4469 137.0000 68.0000 0.9738 0.0000 1044.6045 137.0000 69.0000 0.9738 0.0000 + 1033.3196 137.0000 70.0000 0.9738 0.0000 857.2478 137.0000 71.0000 0.9738 0.0000 + 824.2050 137.0000 72.0000 0.9738 0.0000 742.7397 137.0000 73.0000 0.9738 0.0000 + 622.0977 137.0000 74.0000 0.9738 0.0000 629.4728 137.0000 75.0000 0.9738 0.0000 + 564.5516 137.0000 76.0000 0.9738 0.0000 512.7966 137.0000 77.0000 0.9738 0.0000 + 422.9019 137.0000 78.0000 0.9738 0.0000 393.9288 137.0000 79.0000 0.9738 0.0000 + 403.2645 137.0000 80.0000 0.9738 0.0000 614.0469 137.0000 81.0000 0.9738 0.0000 + 589.8275 137.0000 82.0000 0.9738 0.0000 532.3907 137.0000 83.0000 0.9738 0.0000 + 502.8673 137.0000 84.0000 0.9738 0.0000 459.0005 137.0000 85.0000 0.9738 0.0000 + 416.7321 137.0000 86.0000 0.9738 0.0000 1647.6456 137.0000 87.0000 0.9738 0.0000 + 1522.3656 137.0000 88.0000 0.9738 0.0000 1317.6426 137.0000 89.0000 0.9738 0.0000 + 1157.8649 137.0000 90.0000 0.9738 0.0000 1163.4976 137.0000 91.0000 0.9738 0.0000 + 1125.9076 137.0000 92.0000 0.9738 0.0000 1175.3584 137.0000 93.0000 0.9738 0.0000 + 1135.1209 137.0000 94.0000 0.9738 0.0000 57.9039 137.0000 101.0000 0.9738 0.0000 + 199.6771 137.0000 103.0000 0.9738 0.9865 252.9574 137.0000 104.0000 0.9738 0.9808 + 185.7206 137.0000 105.0000 0.9738 0.9706 137.2125 137.0000 106.0000 0.9738 0.9868 + 93.4584 137.0000 107.0000 0.9738 0.9944 67.0045 137.0000 108.0000 0.9738 0.9925 + 45.2489 137.0000 109.0000 0.9738 0.9982 294.6795 137.0000 111.0000 0.9738 0.9684 + 457.7831 137.0000 112.0000 0.9738 0.9628 453.3636 137.0000 113.0000 0.9738 0.9648 + 353.4142 137.0000 114.0000 0.9738 0.9507 283.4368 137.0000 115.0000 0.9738 0.9947 + 236.5467 137.0000 116.0000 0.9738 0.9948 190.8602 137.0000 117.0000 0.9738 0.9972 + 401.0371 137.0000 119.0000 0.9738 0.9767 812.3489 137.0000 120.0000 0.9738 0.9831 + 389.9057 137.0000 121.0000 0.9738 1.8627 376.3919 137.0000 122.0000 0.9738 1.8299 + 369.0649 137.0000 123.0000 0.9738 1.9138 366.8686 137.0000 124.0000 0.9738 1.8269 + 332.2215 137.0000 125.0000 0.9738 1.6406 306.2720 137.0000 126.0000 0.9738 1.6483 + 292.2992 137.0000 127.0000 0.9738 1.7149 286.1241 137.0000 128.0000 0.9738 1.7937 + 286.0131 137.0000 129.0000 0.9738 0.9576 262.7332 137.0000 130.0000 0.9738 1.9419 + 446.0798 137.0000 131.0000 0.9738 0.9601 382.5012 137.0000 132.0000 0.9738 0.9434 + 337.2160 137.0000 133.0000 0.9738 0.9889 304.7279 137.0000 134.0000 0.9738 0.9901 + 265.4647 137.0000 135.0000 0.9738 0.9974 476.2591 137.0000 137.0000 0.9738 0.9738 + 64.4065 138.0000 1.0000 0.9801 0.9118 38.8333 138.0000 2.0000 0.9801 0.0000 + 1618.2465 138.0000 3.0000 0.9801 0.0000 734.7926 138.0000 4.0000 0.9801 0.0000 + 441.1261 138.0000 5.0000 0.9801 0.0000 274.7031 138.0000 6.0000 0.9801 0.0000 + 181.1973 138.0000 7.0000 0.9801 0.0000 131.7846 138.0000 8.0000 0.9801 0.0000 + 96.5080 138.0000 9.0000 0.9801 0.0000 72.2703 138.0000 10.0000 0.9801 0.0000 + 1907.9592 138.0000 11.0000 0.9801 0.0000 1218.1274 138.0000 12.0000 0.9801 0.0000 + 1057.0218 138.0000 13.0000 0.9801 0.0000 766.3847 138.0000 14.0000 0.9801 0.0000 + 559.3821 138.0000 15.0000 0.9801 0.0000 445.7860 138.0000 16.0000 0.9801 0.0000 + 350.4273 138.0000 17.0000 0.9801 0.0000 277.4759 138.0000 18.0000 0.9801 0.0000 + 3302.2504 138.0000 19.0000 0.9801 0.0000 2314.8420 138.0000 20.0000 0.9801 0.0000 + 1849.7319 138.0000 21.0000 0.9801 0.0000 1740.7410 138.0000 22.0000 0.9801 0.0000 + 1568.2263 138.0000 23.0000 0.9801 0.0000 1238.5036 138.0000 24.0000 0.9801 0.0000 + 1318.8096 138.0000 25.0000 0.9801 0.0000 1034.0602 138.0000 26.0000 0.9801 0.0000 + 1052.2336 138.0000 27.0000 0.9801 0.0000 1101.6666 138.0000 28.0000 0.9801 0.0000 + 848.7952 138.0000 29.0000 0.9801 0.0000 822.5167 138.0000 30.0000 0.9801 0.0000 + 991.9123 138.0000 31.0000 0.9801 0.0000 818.4887 138.0000 32.0000 0.9801 0.0000 + 660.0928 138.0000 33.0000 0.9801 0.0000 573.0850 138.0000 34.0000 0.9801 0.0000 + 485.0650 138.0000 35.0000 0.9801 0.0000 409.3761 138.0000 36.0000 0.9801 0.0000 + 3670.9261 138.0000 37.0000 0.9801 0.0000 2782.4577 138.0000 38.0000 0.9801 0.0000 + 2305.6086 138.0000 39.0000 0.9801 0.0000 2003.7829 138.0000 40.0000 0.9801 0.0000 + 1789.7638 138.0000 41.0000 0.9801 0.0000 1335.0700 138.0000 42.0000 0.9801 0.0000 + 1509.2981 138.0000 43.0000 0.9801 0.0000 1106.1259 138.0000 44.0000 0.9801 0.0000 + 1203.4301 138.0000 45.0000 0.9801 0.0000 1100.5370 138.0000 46.0000 0.9801 0.0000 + 931.6022 138.0000 47.0000 0.9801 0.0000 952.7533 138.0000 48.0000 0.9801 0.0000 + 1250.1173 138.0000 49.0000 0.9801 0.0000 1091.6636 138.0000 50.0000 0.9801 0.0000 + 924.1369 138.0000 51.0000 0.9801 0.0000 832.5060 138.0000 52.0000 0.9801 0.0000 + 729.7176 138.0000 53.0000 0.9801 0.0000 637.4660 138.0000 54.0000 0.9801 0.0000 + 4496.9846 138.0000 55.0000 0.9801 0.0000 3631.4540 138.0000 56.0000 0.9801 0.0000 + 3014.0781 138.0000 57.0000 0.9801 0.0000 1104.4325 138.0000 58.0000 0.9801 2.7991 + 3162.1198 138.0000 59.0000 0.9801 0.0000 2999.9283 138.0000 60.0000 0.9801 0.0000 + 2915.7949 138.0000 61.0000 0.9801 0.0000 2839.3501 138.0000 62.0000 0.9801 0.0000 + 2771.3234 138.0000 63.0000 0.9801 0.0000 2059.4692 138.0000 64.0000 0.9801 0.0000 + 2566.8729 138.0000 65.0000 0.9801 0.0000 2457.8402 138.0000 66.0000 0.9801 0.0000 + 2460.9470 138.0000 67.0000 0.9801 0.0000 2404.1111 138.0000 68.0000 0.9801 0.0000 + 2351.2803 138.0000 69.0000 0.9801 0.0000 2328.9369 138.0000 70.0000 0.9801 0.0000 + 1892.7447 138.0000 71.0000 0.9801 0.0000 1752.9565 138.0000 72.0000 0.9801 0.0000 + 1547.9897 138.0000 73.0000 0.9801 0.0000 1280.4929 138.0000 74.0000 0.9801 0.0000 + 1284.0434 138.0000 75.0000 0.9801 0.0000 1131.2913 138.0000 76.0000 0.9801 0.0000 + 1013.1095 138.0000 77.0000 0.9801 0.0000 824.6609 138.0000 78.0000 0.9801 0.0000 + 763.8853 138.0000 79.0000 0.9801 0.0000 775.5046 138.0000 80.0000 0.9801 0.0000 + 1274.2283 138.0000 81.0000 0.9801 0.0000 1187.3359 138.0000 82.0000 0.9801 0.0000 + 1040.0523 138.0000 83.0000 0.9801 0.0000 966.3035 138.0000 84.0000 0.9801 0.0000 + 865.0084 138.0000 85.0000 0.9801 0.0000 771.7877 138.0000 86.0000 0.9801 0.0000 + 4053.3897 138.0000 87.0000 0.9801 0.0000 3491.0837 138.0000 88.0000 0.9801 0.0000 + 2924.8174 138.0000 89.0000 0.9801 0.0000 2481.2627 138.0000 90.0000 0.9801 0.0000 + 2542.5532 138.0000 91.0000 0.9801 0.0000 2457.2393 138.0000 92.0000 0.9801 0.0000 + 2618.0036 138.0000 93.0000 0.9801 0.0000 2517.5053 138.0000 94.0000 0.9801 0.0000 + 110.3275 138.0000 101.0000 0.9801 0.0000 421.4610 138.0000 103.0000 0.9801 0.9865 + 529.5494 138.0000 104.0000 0.9801 0.9808 363.3607 138.0000 105.0000 0.9801 0.9706 + 258.9885 138.0000 106.0000 0.9801 0.9868 169.1772 138.0000 107.0000 0.9801 0.9944 + 117.1018 138.0000 108.0000 0.9801 0.9925 75.6758 138.0000 109.0000 0.9801 0.9982 + 630.8304 138.0000 111.0000 0.9801 0.9684 988.7857 138.0000 112.0000 0.9801 0.9628 + 944.7535 138.0000 113.0000 0.9801 0.9648 701.0009 138.0000 114.0000 0.9801 0.9507 + 542.1262 138.0000 115.0000 0.9801 0.9947 441.4719 138.0000 116.0000 0.9801 0.9948 + 347.1255 138.0000 117.0000 0.9801 0.9972 841.9983 138.0000 119.0000 0.9801 0.9767 + 1876.9417 138.0000 120.0000 0.9801 0.9831 779.9488 138.0000 121.0000 0.9801 1.8627 + 754.6753 138.0000 122.0000 0.9801 1.8299 740.1763 138.0000 123.0000 0.9801 1.9138 + 739.8315 138.0000 124.0000 0.9801 1.8269 651.8405 138.0000 125.0000 0.9801 1.6406 + 596.9767 138.0000 126.0000 0.9801 1.6483 570.3024 138.0000 127.0000 0.9801 1.7149 + 559.3883 138.0000 128.0000 0.9801 1.7937 569.9151 138.0000 129.0000 0.9801 0.9576 + 505.2608 138.0000 130.0000 0.9801 1.9419 916.2312 138.0000 131.0000 0.9801 0.9601 + 755.0584 138.0000 132.0000 0.9801 0.9434 647.0220 138.0000 133.0000 0.9801 0.9889 + 573.7135 138.0000 134.0000 0.9801 0.9901 489.3461 138.0000 135.0000 0.9801 0.9974 + 992.7970 138.0000 137.0000 0.9801 0.9738 2312.6602 138.0000 138.0000 0.9801 0.9801 + 51.2356 139.0000 1.0000 1.9153 0.9118 31.9889 139.0000 2.0000 1.9153 0.0000 + 1074.5875 139.0000 3.0000 1.9153 0.0000 532.5110 139.0000 4.0000 1.9153 0.0000 + 334.1351 139.0000 5.0000 1.9153 0.0000 214.7760 139.0000 6.0000 1.9153 0.0000 + 144.9207 139.0000 7.0000 1.9153 0.0000 107.0438 139.0000 8.0000 1.9153 0.0000 + 79.4076 139.0000 9.0000 1.9153 0.0000 60.0628 139.0000 10.0000 1.9153 0.0000 + 1272.7028 139.0000 11.0000 1.9153 0.0000 869.3739 139.0000 12.0000 1.9153 0.0000 + 771.8606 139.0000 13.0000 1.9153 0.0000 578.0550 139.0000 14.0000 1.9153 0.0000 + 433.0171 139.0000 15.0000 1.9153 0.0000 350.5775 139.0000 16.0000 1.9153 0.0000 + 279.7355 139.0000 17.0000 1.9153 0.0000 224.3126 139.0000 18.0000 1.9153 0.0000 + 2163.7031 139.0000 19.0000 1.9153 0.0000 1603.6362 139.0000 20.0000 1.9153 0.0000 + 1297.2964 139.0000 21.0000 1.9153 0.0000 1232.3433 139.0000 22.0000 1.9153 0.0000 + 1116.9531 139.0000 23.0000 1.9153 0.0000 880.6069 139.0000 24.0000 1.9153 0.0000 + 947.5834 139.0000 25.0000 1.9153 0.0000 742.6641 139.0000 26.0000 1.9153 0.0000 + 768.2107 139.0000 27.0000 1.9153 0.0000 799.3710 139.0000 28.0000 1.9153 0.0000 + 614.0983 139.0000 29.0000 1.9153 0.0000 609.0499 139.0000 30.0000 1.9153 0.0000 + 729.5813 139.0000 31.0000 1.9153 0.0000 617.9985 139.0000 32.0000 1.9153 0.0000 + 509.5503 139.0000 33.0000 1.9153 0.0000 448.1381 139.0000 34.0000 1.9153 0.0000 + 384.2901 139.0000 35.0000 1.9153 0.0000 328.1316 139.0000 36.0000 1.9153 0.0000 + 2411.4577 139.0000 37.0000 1.9153 0.0000 1920.9295 139.0000 38.0000 1.9153 0.0000 + 1624.3636 139.0000 39.0000 1.9153 0.0000 1429.3576 139.0000 40.0000 1.9153 0.0000 + 1286.4770 139.0000 41.0000 1.9153 0.0000 971.5959 139.0000 42.0000 1.9153 0.0000 + 1093.2424 139.0000 43.0000 1.9153 0.0000 812.6286 139.0000 44.0000 1.9153 0.0000 + 886.2750 139.0000 45.0000 1.9153 0.0000 814.8402 139.0000 46.0000 1.9153 0.0000 + 684.9796 139.0000 47.0000 1.9153 0.0000 710.2172 139.0000 48.0000 1.9153 0.0000 + 916.1592 139.0000 49.0000 1.9153 0.0000 818.4130 139.0000 50.0000 1.9153 0.0000 + 707.0933 139.0000 51.0000 1.9153 0.0000 644.4494 139.0000 52.0000 1.9153 0.0000 + 571.8432 139.0000 53.0000 1.9153 0.0000 505.2262 139.0000 54.0000 1.9153 0.0000 + 2950.2475 139.0000 55.0000 1.9153 0.0000 2485.6310 139.0000 56.0000 1.9153 0.0000 + 2105.7491 139.0000 57.0000 1.9153 0.0000 840.8410 139.0000 58.0000 1.9153 2.7991 + 2178.3229 139.0000 59.0000 1.9153 0.0000 2074.8807 139.0000 60.0000 1.9153 0.0000 + 2018.9224 139.0000 61.0000 1.9153 0.0000 1967.8827 139.0000 62.0000 1.9153 0.0000 + 1922.5226 139.0000 63.0000 1.9153 0.0000 1458.1969 139.0000 64.0000 1.9153 0.0000 + 1752.1144 139.0000 65.0000 1.9153 0.0000 1683.0549 139.0000 66.0000 1.9153 0.0000 + 1717.0123 139.0000 67.0000 1.9153 0.0000 1678.5781 139.0000 68.0000 1.9153 0.0000 + 1643.2139 139.0000 69.0000 1.9153 0.0000 1626.3339 139.0000 70.0000 1.9153 0.0000 + 1339.8149 139.0000 71.0000 1.9153 0.0000 1268.9492 139.0000 72.0000 1.9153 0.0000 + 1134.6407 139.0000 73.0000 1.9153 0.0000 945.4099 139.0000 74.0000 1.9153 0.0000 + 953.5634 139.0000 75.0000 1.9153 0.0000 849.3817 139.0000 76.0000 1.9153 0.0000 + 767.3003 139.0000 77.0000 1.9153 0.0000 629.1605 139.0000 78.0000 1.9153 0.0000 + 584.6353 139.0000 79.0000 1.9153 0.0000 596.9445 139.0000 80.0000 1.9153 0.0000 + 935.6299 139.0000 81.0000 1.9153 0.0000 888.8756 139.0000 82.0000 1.9153 0.0000 + 793.6701 139.0000 83.0000 1.9153 0.0000 745.1471 139.0000 84.0000 1.9153 0.0000 + 675.1842 139.0000 85.0000 1.9153 0.0000 608.8625 139.0000 86.0000 1.9153 0.0000 + 2698.0970 139.0000 87.0000 1.9153 0.0000 2413.4225 139.0000 88.0000 1.9153 0.0000 + 2062.2685 139.0000 89.0000 1.9153 0.0000 1787.1863 139.0000 90.0000 1.9153 0.0000 + 1809.2861 139.0000 91.0000 1.9153 0.0000 1749.7379 139.0000 92.0000 1.9153 0.0000 + 1840.6901 139.0000 93.0000 1.9153 0.0000 1774.6391 139.0000 94.0000 1.9153 0.0000 + 85.6815 139.0000 101.0000 1.9153 0.0000 306.8862 139.0000 103.0000 1.9153 0.9865 + 387.6564 139.0000 104.0000 1.9153 0.9808 277.4050 139.0000 105.0000 1.9153 0.9706 + 201.9744 139.0000 106.0000 1.9153 0.9868 135.1839 139.0000 107.0000 1.9153 0.9944 + 95.4458 139.0000 108.0000 1.9153 0.9925 63.1889 139.0000 109.0000 1.9153 0.9982 + 454.9928 139.0000 111.0000 1.9153 0.9684 709.6961 139.0000 112.0000 1.9153 0.9628 + 693.4732 139.0000 113.0000 1.9153 0.9648 530.8180 139.0000 114.0000 1.9153 0.9507 + 419.8718 139.0000 115.0000 1.9153 0.9947 346.9710 139.0000 116.0000 1.9153 0.9948 + 276.9773 139.0000 117.0000 1.9153 0.9972 613.8463 139.0000 119.0000 1.9153 0.9767 + 1293.5159 139.0000 120.0000 1.9153 0.9831 586.3135 139.0000 121.0000 1.9153 1.8627 + 566.8670 139.0000 122.0000 1.9153 1.8299 555.7215 139.0000 123.0000 1.9153 1.9138 + 553.4764 139.0000 124.0000 1.9153 1.8269 496.3331 139.0000 125.0000 1.9153 1.6406 + 456.3878 139.0000 126.0000 1.9153 1.6483 435.6701 139.0000 127.0000 1.9153 1.7149 + 426.7405 139.0000 128.0000 1.9153 1.7937 429.3743 139.0000 129.0000 1.9153 0.9576 + 389.5811 139.0000 130.0000 1.9153 1.9419 678.2590 139.0000 131.0000 1.9153 0.9601 + 573.2139 139.0000 132.0000 1.9153 0.9434 500.0071 139.0000 133.0000 1.9153 0.9889 + 448.4872 139.0000 134.0000 1.9153 0.9901 387.3876 139.0000 135.0000 1.9153 0.9974 + 726.8613 139.0000 137.0000 1.9153 0.9738 1586.5402 139.0000 138.0000 1.9153 0.9801 + 1132.2983 139.0000 139.0000 1.9153 1.9153 39.6669 140.0000 1.0000 1.9355 0.9118 + 25.7037 140.0000 2.0000 1.9355 0.0000 678.4810 140.0000 3.0000 1.9355 0.0000 + 374.0135 140.0000 4.0000 1.9355 0.0000 246.0147 140.0000 5.0000 1.9355 0.0000 + 163.4548 140.0000 6.0000 1.9355 0.0000 112.9339 140.0000 7.0000 1.9355 0.0000 + 84.7876 140.0000 8.0000 1.9355 0.0000 63.7680 140.0000 9.0000 1.9355 0.0000 + 48.7600 140.0000 10.0000 1.9355 0.0000 808.9973 140.0000 11.0000 1.9355 0.0000 + 600.5511 140.0000 12.0000 1.9355 0.0000 546.7176 140.0000 13.0000 1.9355 0.0000 + 423.6992 140.0000 14.0000 1.9355 0.0000 326.0087 140.0000 15.0000 1.9355 0.0000 + 268.3077 140.0000 16.0000 1.9355 0.0000 217.4322 140.0000 17.0000 1.9355 0.0000 + 176.6690 140.0000 18.0000 1.9355 0.0000 1335.9899 140.0000 19.0000 1.9355 0.0000 + 1070.9104 140.0000 20.0000 1.9355 0.0000 879.0165 140.0000 21.0000 1.9355 0.0000 + 844.1565 140.0000 22.0000 1.9355 0.0000 770.4185 140.0000 23.0000 1.9355 0.0000 + 606.7040 140.0000 24.0000 1.9355 0.0000 660.1005 140.0000 25.0000 1.9355 0.0000 + 517.5812 140.0000 26.0000 1.9355 0.0000 544.6643 140.0000 27.0000 1.9355 0.0000 + 562.9344 140.0000 28.0000 1.9355 0.0000 431.5544 140.0000 29.0000 1.9355 0.0000 + 438.4080 140.0000 30.0000 1.9355 0.0000 521.1802 140.0000 31.0000 1.9355 0.0000 + 453.6905 140.0000 32.0000 1.9355 0.0000 382.6458 140.0000 33.0000 1.9355 0.0000 + 341.0338 140.0000 34.0000 1.9355 0.0000 296.3944 140.0000 35.0000 1.9355 0.0000 + 256.1501 140.0000 36.0000 1.9355 0.0000 1493.7993 140.0000 37.0000 1.9355 0.0000 + 1277.5813 140.0000 38.0000 1.9355 0.0000 1106.6630 140.0000 39.0000 1.9355 0.0000 + 987.8257 140.0000 40.0000 1.9355 0.0000 896.7952 140.0000 41.0000 1.9355 0.0000 + 687.1848 140.0000 42.0000 1.9355 0.0000 768.8428 140.0000 43.0000 1.9355 0.0000 + 580.9007 140.0000 44.0000 1.9355 0.0000 634.8024 140.0000 45.0000 1.9355 0.0000 + 587.0202 140.0000 46.0000 1.9355 0.0000 490.3817 140.0000 47.0000 1.9355 0.0000 + 515.3861 140.0000 48.0000 1.9355 0.0000 652.5654 140.0000 49.0000 1.9355 0.0000 + 596.8919 140.0000 50.0000 1.9355 0.0000 526.5426 140.0000 51.0000 1.9355 0.0000 + 485.6176 140.0000 52.0000 1.9355 0.0000 436.3046 140.0000 53.0000 1.9355 0.0000 + 389.9385 140.0000 54.0000 1.9355 0.0000 1819.0406 140.0000 55.0000 1.9355 0.0000 + 1635.3622 140.0000 56.0000 1.9355 0.0000 1420.6192 140.0000 57.0000 1.9355 0.0000 + 623.2841 140.0000 58.0000 1.9355 2.7991 1442.9680 140.0000 59.0000 1.9355 0.0000 + 1383.2190 140.0000 60.0000 1.9355 0.0000 1347.7804 140.0000 61.0000 1.9355 0.0000 + 1315.2670 140.0000 62.0000 1.9355 0.0000 1286.4106 140.0000 63.0000 1.9355 0.0000 + 999.3615 140.0000 64.0000 1.9355 0.0000 1146.1276 140.0000 65.0000 1.9355 0.0000 + 1102.5614 140.0000 66.0000 1.9355 0.0000 1156.8729 140.0000 67.0000 1.9355 0.0000 + 1131.9421 140.0000 68.0000 1.9355 0.0000 1109.3035 140.0000 69.0000 1.9355 0.0000 + 1096.8681 140.0000 70.0000 1.9355 0.0000 916.2925 140.0000 71.0000 1.9355 0.0000 + 891.4100 140.0000 72.0000 1.9355 0.0000 808.1066 140.0000 73.0000 1.9355 0.0000 + 679.0458 140.0000 74.0000 1.9355 0.0000 688.9719 140.0000 75.0000 1.9355 0.0000 + 620.8894 140.0000 76.0000 1.9355 0.0000 566.0462 140.0000 77.0000 1.9355 0.0000 + 468.0246 140.0000 78.0000 1.9355 0.0000 436.4322 140.0000 79.0000 1.9355 0.0000 + 447.9663 140.0000 80.0000 1.9355 0.0000 668.3672 140.0000 81.0000 1.9355 0.0000 + 647.8165 140.0000 82.0000 1.9355 0.0000 589.7648 140.0000 83.0000 1.9355 0.0000 + 559.5643 140.0000 84.0000 1.9355 0.0000 513.2574 140.0000 85.0000 1.9355 0.0000 + 467.8458 140.0000 86.0000 1.9355 0.0000 1702.8592 140.0000 87.0000 1.9355 0.0000 + 1607.8178 140.0000 88.0000 1.9355 0.0000 1406.1219 140.0000 89.0000 1.9355 0.0000 + 1249.0250 140.0000 90.0000 1.9355 0.0000 1247.3212 140.0000 91.0000 1.9355 0.0000 + 1207.3349 140.0000 92.0000 1.9355 0.0000 1251.9154 140.0000 93.0000 1.9355 0.0000 + 1210.6981 140.0000 94.0000 1.9355 0.0000 64.7068 140.0000 101.0000 1.9355 0.0000 + 216.7170 140.0000 103.0000 1.9355 0.9865 275.3644 140.0000 104.0000 1.9355 0.9808 + 206.0014 140.0000 105.0000 1.9355 0.9706 153.4229 140.0000 106.0000 1.9355 0.9868 + 105.3151 140.0000 107.0000 1.9355 0.9944 75.8994 140.0000 108.0000 1.9355 0.9925 + 51.5158 140.0000 109.0000 1.9355 0.9982 318.1678 140.0000 111.0000 1.9355 0.9684 + 493.3057 140.0000 112.0000 1.9355 0.9628 494.0245 140.0000 113.0000 1.9355 0.9648 + 390.7192 140.0000 114.0000 1.9355 0.9507 316.3169 140.0000 115.0000 1.9355 0.9947 + 265.4089 140.0000 116.0000 1.9355 0.9948 215.2101 140.0000 117.0000 1.9355 0.9972 + 435.0649 140.0000 119.0000 1.9355 0.9767 856.7131 140.0000 120.0000 1.9355 0.9831 + 429.3019 140.0000 121.0000 1.9355 1.8627 414.2030 140.0000 122.0000 1.9355 1.8299 + 406.0223 140.0000 123.0000 1.9355 1.9138 402.9200 140.0000 124.0000 1.9355 1.8269 + 367.7937 140.0000 125.0000 1.9355 1.6406 339.6278 140.0000 126.0000 1.9355 1.6483 + 323.9921 140.0000 127.0000 1.9355 1.7149 316.9417 140.0000 128.0000 1.9355 1.7937 + 314.9908 140.0000 129.0000 1.9355 0.9576 292.4005 140.0000 130.0000 1.9355 1.9419 + 487.8759 140.0000 131.0000 1.9355 0.9601 423.2076 140.0000 132.0000 1.9355 0.9434 + 375.9179 140.0000 133.0000 1.9355 0.9889 341.2040 140.0000 134.0000 1.9355 0.9901 + 298.5634 140.0000 135.0000 1.9355 0.9974 517.6961 140.0000 137.0000 1.9355 0.9738 + 1044.3401 140.0000 138.0000 1.9355 0.9801 780.8212 140.0000 139.0000 1.9355 1.9153 + 568.6789 140.0000 140.0000 1.9355 1.9355 40.0304 141.0000 1.0000 1.9545 0.9118 + 25.9534 141.0000 2.0000 1.9545 0.0000 684.1040 141.0000 3.0000 1.9545 0.0000 + 377.9693 141.0000 4.0000 1.9545 0.0000 248.4266 141.0000 5.0000 1.9545 0.0000 + 164.9980 141.0000 6.0000 1.9545 0.0000 113.9989 141.0000 7.0000 1.9545 0.0000 + 85.6024 141.0000 8.0000 1.9545 0.0000 64.4010 141.0000 9.0000 1.9545 0.0000 + 49.2635 141.0000 10.0000 1.9545 0.0000 816.0317 141.0000 11.0000 1.9545 0.0000 + 607.0073 141.0000 12.0000 1.9545 0.0000 552.3550 141.0000 13.0000 1.9545 0.0000 + 427.8837 141.0000 14.0000 1.9545 0.0000 329.0947 141.0000 15.0000 1.9545 0.0000 + 270.8059 141.0000 16.0000 1.9545 0.0000 219.4462 141.0000 17.0000 1.9545 0.0000 + 178.3183 141.0000 18.0000 1.9545 0.0000 1343.3714 141.0000 19.0000 1.9545 0.0000 + 1081.9930 141.0000 20.0000 1.9545 0.0000 888.3356 141.0000 21.0000 1.9545 0.0000 + 853.0464 141.0000 22.0000 1.9545 0.0000 778.5266 141.0000 23.0000 1.9545 0.0000 + 613.0224 141.0000 24.0000 1.9545 0.0000 667.0305 141.0000 25.0000 1.9545 0.0000 + 523.0020 141.0000 26.0000 1.9545 0.0000 550.4092 141.0000 27.0000 1.9545 0.0000 + 568.9088 141.0000 28.0000 1.9545 0.0000 436.1042 141.0000 29.0000 1.9545 0.0000 + 442.9886 141.0000 30.0000 1.9545 0.0000 526.4964 141.0000 31.0000 1.9545 0.0000 + 458.1920 141.0000 32.0000 1.9545 0.0000 386.3091 141.0000 33.0000 1.9545 0.0000 + 344.2425 141.0000 34.0000 1.9545 0.0000 299.1535 141.0000 35.0000 1.9545 0.0000 + 258.5304 141.0000 36.0000 1.9545 0.0000 1501.7789 141.0000 37.0000 1.9545 0.0000 + 1290.4826 141.0000 38.0000 1.9545 0.0000 1118.1402 141.0000 39.0000 1.9545 0.0000 + 998.1224 141.0000 40.0000 1.9545 0.0000 906.0801 141.0000 41.0000 1.9545 0.0000 + 694.2983 141.0000 42.0000 1.9545 0.0000 776.7368 141.0000 43.0000 1.9545 0.0000 + 586.8945 141.0000 44.0000 1.9545 0.0000 641.4164 141.0000 45.0000 1.9545 0.0000 + 593.1414 141.0000 46.0000 1.9545 0.0000 495.4800 141.0000 47.0000 1.9545 0.0000 + 520.7629 141.0000 48.0000 1.9545 0.0000 659.2865 141.0000 49.0000 1.9545 0.0000 + 602.9692 141.0000 50.0000 1.9545 0.0000 531.7424 141.0000 51.0000 1.9545 0.0000 + 490.3206 141.0000 52.0000 1.9545 0.0000 440.4599 141.0000 53.0000 1.9545 0.0000 + 393.6121 141.0000 54.0000 1.9545 0.0000 1826.4461 141.0000 55.0000 1.9545 0.0000 + 1650.9334 141.0000 56.0000 1.9545 0.0000 1434.8956 141.0000 57.0000 1.9545 0.0000 + 629.4977 141.0000 58.0000 1.9545 2.7991 1456.5113 141.0000 59.0000 1.9545 0.0000 + 1397.0298 141.0000 60.0000 1.9545 0.0000 1361.3178 141.0000 61.0000 1.9545 0.0000 + 1328.5415 141.0000 62.0000 1.9545 0.0000 1299.4488 141.0000 63.0000 1.9545 0.0000 + 1009.4419 141.0000 64.0000 1.9545 0.0000 1155.3947 141.0000 65.0000 1.9545 0.0000 + 1110.6913 141.0000 66.0000 1.9545 0.0000 1168.8393 141.0000 67.0000 1.9545 0.0000 + 1143.6857 141.0000 68.0000 1.9545 0.0000 1120.8436 141.0000 69.0000 1.9545 0.0000 + 1108.2791 141.0000 70.0000 1.9545 0.0000 925.2266 141.0000 71.0000 1.9545 0.0000 + 900.6808 141.0000 72.0000 1.9545 0.0000 816.4974 141.0000 73.0000 1.9545 0.0000 + 685.9856 141.0000 74.0000 1.9545 0.0000 696.0040 141.0000 75.0000 1.9545 0.0000 + 627.2065 141.0000 76.0000 1.9545 0.0000 571.7793 141.0000 77.0000 1.9545 0.0000 + 472.7643 141.0000 78.0000 1.9545 0.0000 440.8597 141.0000 79.0000 1.9545 0.0000 + 452.4761 141.0000 80.0000 1.9545 0.0000 675.1518 141.0000 81.0000 1.9545 0.0000 + 654.4451 141.0000 82.0000 1.9545 0.0000 595.6640 141.0000 83.0000 1.9545 0.0000 + 565.0648 141.0000 84.0000 1.9545 0.0000 518.2124 141.0000 85.0000 1.9545 0.0000 + 472.3058 141.0000 86.0000 1.9545 0.0000 1712.7050 141.0000 87.0000 1.9545 0.0000 + 1623.5376 141.0000 88.0000 1.9545 0.0000 1420.3983 141.0000 89.0000 1.9545 0.0000 + 1261.9867 141.0000 90.0000 1.9545 0.0000 1260.0147 141.0000 91.0000 1.9545 0.0000 + 1219.7064 141.0000 92.0000 1.9545 0.0000 1264.8378 141.0000 93.0000 1.9545 0.0000 + 1223.2638 141.0000 94.0000 1.9545 0.0000 65.3129 141.0000 101.0000 1.9545 0.0000 + 218.9706 141.0000 103.0000 1.9545 0.9865 278.0881 141.0000 104.0000 1.9545 0.9808 + 207.9943 141.0000 105.0000 1.9545 0.9706 154.8764 141.0000 106.0000 1.9545 0.9868 + 106.3141 141.0000 107.0000 1.9545 0.9944 76.6347 141.0000 108.0000 1.9545 0.9925 + 52.0412 141.0000 109.0000 1.9545 0.9982 321.5378 141.0000 111.0000 1.9545 0.9684 + 498.3486 141.0000 112.0000 1.9545 0.9628 499.0761 141.0000 113.0000 1.9545 0.9648 + 394.5403 141.0000 114.0000 1.9545 0.9507 319.3099 141.0000 115.0000 1.9545 0.9947 + 267.8858 141.0000 116.0000 1.9545 0.9948 217.2078 141.0000 117.0000 1.9545 0.9972 + 439.5228 141.0000 119.0000 1.9545 0.9767 864.1411 141.0000 120.0000 1.9545 0.9831 + 433.7865 141.0000 121.0000 1.9545 1.8627 418.3068 141.0000 122.0000 1.9545 1.8299 + 410.1033 141.0000 123.0000 1.9545 1.9138 406.9894 141.0000 124.0000 1.9545 1.8269 + 371.4691 141.0000 125.0000 1.9545 1.6406 343.0012 141.0000 126.0000 1.9545 1.6483 + 327.1995 141.0000 127.0000 1.9545 1.7149 320.0960 141.0000 128.0000 1.9545 1.7937 + 318.2136 141.0000 129.0000 1.9545 0.9576 295.2762 141.0000 130.0000 1.9545 1.9419 + 492.8316 141.0000 131.0000 1.9545 0.9601 427.3622 141.0000 132.0000 1.9545 0.9434 + 379.5097 141.0000 133.0000 1.9545 0.9889 344.4169 141.0000 134.0000 1.9545 0.9901 + 301.3463 141.0000 135.0000 1.9545 0.9974 522.9449 141.0000 137.0000 1.9545 0.9738 + 1052.8629 141.0000 138.0000 1.9545 0.9801 787.4950 141.0000 139.0000 1.9545 1.9153 + 574.4591 141.0000 140.0000 1.9545 1.9355 580.5824 141.0000 141.0000 1.9545 1.9545 + 37.5478 142.0000 1.0000 1.9420 0.9118 24.5530 142.0000 2.0000 1.9420 0.0000 + 628.1817 142.0000 3.0000 1.9420 0.0000 349.1897 142.0000 4.0000 1.9420 0.0000 + 231.0449 142.0000 5.0000 1.9420 0.0000 154.3288 142.0000 6.0000 1.9420 0.0000 + 107.1304 142.0000 7.0000 1.9420 0.0000 80.7360 142.0000 8.0000 1.9420 0.0000 + 60.9414 142.0000 9.0000 1.9420 0.0000 46.7498 142.0000 10.0000 1.9420 0.0000 + 749.4974 142.0000 11.0000 1.9420 0.0000 559.8856 142.0000 12.0000 1.9420 0.0000 + 511.0810 142.0000 13.0000 1.9420 0.0000 397.6602 142.0000 14.0000 1.9420 0.0000 + 307.1384 142.0000 15.0000 1.9420 0.0000 253.4985 142.0000 16.0000 1.9420 0.0000 + 206.0459 142.0000 17.0000 1.9420 0.0000 167.9014 142.0000 18.0000 1.9420 0.0000 + 1237.9643 142.0000 19.0000 1.9420 0.0000 996.0157 142.0000 20.0000 1.9420 0.0000 + 818.5161 142.0000 21.0000 1.9420 0.0000 787.0565 142.0000 22.0000 1.9420 0.0000 + 718.8469 142.0000 23.0000 1.9420 0.0000 566.4300 142.0000 24.0000 1.9420 0.0000 + 616.5993 142.0000 25.0000 1.9420 0.0000 483.8537 142.0000 26.0000 1.9420 0.0000 + 509.6999 142.0000 27.0000 1.9420 0.0000 526.3795 142.0000 28.0000 1.9420 0.0000 + 403.8400 142.0000 29.0000 1.9420 0.0000 410.9866 142.0000 30.0000 1.9420 0.0000 + 487.9858 142.0000 31.0000 1.9420 0.0000 426.0703 142.0000 32.0000 1.9420 0.0000 + 360.4496 142.0000 33.0000 1.9420 0.0000 321.9415 142.0000 34.0000 1.9420 0.0000 + 280.4702 142.0000 35.0000 1.9420 0.0000 242.9684 142.0000 36.0000 1.9420 0.0000 + 1385.1228 142.0000 37.0000 1.9420 0.0000 1188.1982 142.0000 38.0000 1.9420 0.0000 + 1031.4745 142.0000 39.0000 1.9420 0.0000 922.0660 142.0000 40.0000 1.9420 0.0000 + 837.9849 142.0000 41.0000 1.9420 0.0000 643.4721 142.0000 42.0000 1.9420 0.0000 + 719.3659 142.0000 43.0000 1.9420 0.0000 544.8075 142.0000 44.0000 1.9420 0.0000 + 595.1503 142.0000 45.0000 1.9420 0.0000 550.7557 142.0000 46.0000 1.9420 0.0000 + 460.2367 142.0000 47.0000 1.9420 0.0000 484.0286 142.0000 48.0000 1.9420 0.0000 + 611.3911 142.0000 49.0000 1.9420 0.0000 560.5104 142.0000 50.0000 1.9420 0.0000 + 495.6948 142.0000 51.0000 1.9420 0.0000 457.9302 142.0000 52.0000 1.9420 0.0000 + 412.2275 142.0000 53.0000 1.9420 0.0000 369.1531 142.0000 54.0000 1.9420 0.0000 + 1687.7490 142.0000 55.0000 1.9420 0.0000 1520.1317 142.0000 56.0000 1.9420 0.0000 + 1323.2583 142.0000 57.0000 1.9420 0.0000 586.6430 142.0000 58.0000 1.9420 2.7991 + 1342.8116 142.0000 59.0000 1.9420 0.0000 1287.2763 142.0000 60.0000 1.9420 0.0000 + 1254.4039 142.0000 61.0000 1.9420 0.0000 1224.2314 142.0000 62.0000 1.9420 0.0000 + 1197.4564 142.0000 63.0000 1.9420 0.0000 932.8332 142.0000 64.0000 1.9420 0.0000 + 1066.7077 142.0000 65.0000 1.9420 0.0000 1027.1026 142.0000 66.0000 1.9420 0.0000 + 1077.4205 142.0000 67.0000 1.9420 0.0000 1054.2484 142.0000 68.0000 1.9420 0.0000 + 1033.2364 142.0000 69.0000 1.9420 0.0000 1021.5311 142.0000 70.0000 1.9420 0.0000 + 855.2457 142.0000 71.0000 1.9420 0.0000 833.4523 142.0000 72.0000 1.9420 0.0000 + 756.7532 142.0000 73.0000 1.9420 0.0000 636.9077 142.0000 74.0000 1.9420 0.0000 + 646.5495 142.0000 75.0000 1.9420 0.0000 583.5257 142.0000 76.0000 1.9420 0.0000 + 532.6579 142.0000 77.0000 1.9420 0.0000 441.1961 142.0000 78.0000 1.9420 0.0000 + 411.7136 142.0000 79.0000 1.9420 0.0000 422.7191 142.0000 80.0000 1.9420 0.0000 + 626.9326 142.0000 81.0000 1.9420 0.0000 608.6620 142.0000 82.0000 1.9420 0.0000 + 555.3255 142.0000 83.0000 1.9420 0.0000 527.5997 142.0000 84.0000 1.9420 0.0000 + 484.7890 142.0000 85.0000 1.9420 0.0000 442.6674 142.0000 86.0000 1.9420 0.0000 + 1581.5449 142.0000 87.0000 1.9420 0.0000 1496.2077 142.0000 88.0000 1.9420 0.0000 + 1311.2088 142.0000 89.0000 1.9420 0.0000 1167.6309 142.0000 90.0000 1.9420 0.0000 + 1164.9288 142.0000 91.0000 1.9420 0.0000 1127.6927 142.0000 92.0000 1.9420 0.0000 + 1167.6383 142.0000 93.0000 1.9420 0.0000 1129.4830 142.0000 94.0000 1.9420 0.0000 + 60.9773 142.0000 101.0000 1.9420 0.0000 202.5173 142.0000 103.0000 1.9420 0.9865 + 257.6088 142.0000 104.0000 1.9420 0.9808 193.7557 142.0000 105.0000 1.9420 0.9706 + 144.8738 142.0000 106.0000 1.9420 0.9868 99.9381 142.0000 107.0000 1.9420 0.9944 + 72.3520 142.0000 108.0000 1.9420 0.9925 49.4166 142.0000 109.0000 1.9420 0.9982 + 297.1713 142.0000 111.0000 1.9420 0.9684 460.4234 142.0000 112.0000 1.9420 0.9628 + 462.1678 142.0000 113.0000 1.9420 0.9648 366.9549 142.0000 114.0000 1.9420 0.9507 + 298.0661 142.0000 115.0000 1.9420 0.9947 250.7573 142.0000 116.0000 1.9420 0.9948 + 203.9397 142.0000 117.0000 1.9420 0.9972 407.5906 142.0000 119.0000 1.9420 0.9767 + 797.4773 142.0000 120.0000 1.9420 0.9831 403.1540 142.0000 121.0000 1.9420 1.8627 + 389.1787 142.0000 122.0000 1.9420 1.8299 381.4804 142.0000 123.0000 1.9420 1.9138 + 378.4474 142.0000 124.0000 1.9420 1.8269 346.0423 142.0000 125.0000 1.9420 1.6406 + 319.7637 142.0000 126.0000 1.9420 1.6483 305.0887 142.0000 127.0000 1.9420 1.7149 + 298.4129 142.0000 128.0000 1.9420 1.7937 296.1989 142.0000 129.0000 1.9420 0.9576 + 275.6055 142.0000 130.0000 1.9420 1.9419 457.1641 142.0000 131.0000 1.9420 0.9601 + 397.7592 142.0000 132.0000 1.9420 0.9434 354.1868 142.0000 133.0000 1.9420 0.9889 + 322.0978 142.0000 134.0000 1.9420 0.9901 282.4933 142.0000 135.0000 1.9420 0.9974 + 485.4129 142.0000 137.0000 1.9420 0.9738 972.1233 142.0000 138.0000 1.9420 0.9801 + 730.1446 142.0000 139.0000 1.9420 1.9153 534.0108 142.0000 140.0000 1.9420 1.9355 + 539.3532 142.0000 141.0000 1.9420 1.9545 502.0073 142.0000 142.0000 1.9420 1.9420 + 41.3385 143.0000 1.0000 1.6682 0.9118 26.6217 143.0000 2.0000 1.6682 0.0000 + 763.7814 143.0000 3.0000 1.6682 0.0000 402.7727 143.0000 4.0000 1.6682 0.0000 + 260.3796 143.0000 5.0000 1.6682 0.0000 171.2581 143.0000 6.0000 1.6682 0.0000 + 117.6479 143.0000 7.0000 1.6682 0.0000 88.0609 143.0000 8.0000 1.6682 0.0000 + 66.1093 143.0000 9.0000 1.6682 0.0000 50.5087 143.0000 10.0000 1.6682 0.0000 + 908.4025 143.0000 11.0000 1.6682 0.0000 651.2564 143.0000 12.0000 1.6682 0.0000 + 586.9862 143.0000 13.0000 1.6682 0.0000 449.1191 143.0000 14.0000 1.6682 0.0000 + 342.4883 143.0000 15.0000 1.6682 0.0000 280.5613 143.0000 16.0000 1.6682 0.0000 + 226.4833 143.0000 17.0000 1.6682 0.0000 183.5205 143.0000 18.0000 1.6682 0.0000 + 1518.8755 143.0000 19.0000 1.6682 0.0000 1178.3302 143.0000 20.0000 1.6682 0.0000 + 961.3657 143.0000 21.0000 1.6682 0.0000 919.3099 143.0000 22.0000 1.6682 0.0000 + 836.7341 143.0000 23.0000 1.6682 0.0000 659.7201 143.0000 24.0000 1.6682 0.0000 + 714.1830 143.0000 25.0000 1.6682 0.0000 560.3648 143.0000 26.0000 1.6682 0.0000 + 585.2935 143.0000 27.0000 1.6682 0.0000 606.4740 143.0000 28.0000 1.6682 0.0000 + 465.8147 143.0000 29.0000 1.6682 0.0000 468.4529 143.0000 30.0000 1.6682 0.0000 + 558.1522 143.0000 31.0000 1.6682 0.0000 480.8926 143.0000 32.0000 1.6682 0.0000 + 402.4540 143.0000 33.0000 1.6682 0.0000 357.2511 143.0000 34.0000 1.6682 0.0000 + 309.3530 143.0000 35.0000 1.6682 0.0000 266.5777 143.0000 36.0000 1.6682 0.0000 + 1696.1214 143.0000 37.0000 1.6682 0.0000 1408.3895 143.0000 38.0000 1.6682 0.0000 + 1207.9868 143.0000 39.0000 1.6682 0.0000 1072.1935 143.0000 40.0000 1.6682 0.0000 + 970.2070 143.0000 41.0000 1.6682 0.0000 739.7915 143.0000 42.0000 1.6682 0.0000 + 829.2408 143.0000 43.0000 1.6682 0.0000 623.1386 143.0000 44.0000 1.6682 0.0000 + 680.0524 143.0000 45.0000 1.6682 0.0000 627.5810 143.0000 46.0000 1.6682 0.0000 + 526.0977 143.0000 47.0000 1.6682 0.0000 549.6338 143.0000 48.0000 1.6682 0.0000 + 700.4229 143.0000 49.0000 1.6682 0.0000 634.7831 143.0000 50.0000 1.6682 0.0000 + 555.7794 143.0000 51.0000 1.6682 0.0000 510.5682 143.0000 52.0000 1.6682 0.0000 + 456.9707 143.0000 53.0000 1.6682 0.0000 407.0970 143.0000 54.0000 1.6682 0.0000 + 2068.8557 143.0000 55.0000 1.6682 0.0000 1811.0626 143.0000 56.0000 1.6682 0.0000 + 1557.0674 143.0000 57.0000 1.6682 0.0000 659.2348 143.0000 58.0000 1.6682 2.7991 + 1593.6331 143.0000 59.0000 1.6682 0.0000 1523.8714 143.0000 60.0000 1.6682 0.0000 + 1483.9817 143.0000 61.0000 1.6682 0.0000 1447.4665 143.0000 62.0000 1.6682 0.0000 + 1415.0358 143.0000 63.0000 1.6682 0.0000 1088.9839 143.0000 64.0000 1.6682 0.0000 + 1272.7235 143.0000 65.0000 1.6682 0.0000 1223.2739 143.0000 66.0000 1.6682 0.0000 + 1268.9174 143.0000 67.0000 1.6682 0.0000 1241.1151 143.0000 68.0000 1.6682 0.0000 + 1215.7298 143.0000 69.0000 1.6682 0.0000 1202.5314 143.0000 70.0000 1.6682 0.0000 + 998.8614 143.0000 71.0000 1.6682 0.0000 961.3192 143.0000 72.0000 1.6682 0.0000 + 867.0054 143.0000 73.0000 1.6682 0.0000 726.7066 143.0000 74.0000 1.6682 0.0000 + 735.5724 143.0000 75.0000 1.6682 0.0000 660.1870 143.0000 76.0000 1.6682 0.0000 + 600.0274 143.0000 77.0000 1.6682 0.0000 495.1176 143.0000 78.0000 1.6682 0.0000 + 461.3026 143.0000 79.0000 1.6682 0.0000 472.4233 143.0000 80.0000 1.6682 0.0000 + 717.2229 143.0000 81.0000 1.6682 0.0000 689.6435 143.0000 82.0000 1.6682 0.0000 + 623.3539 143.0000 83.0000 1.6682 0.0000 589.2725 143.0000 84.0000 1.6682 0.0000 + 538.3747 143.0000 85.0000 1.6682 0.0000 489.1862 143.0000 86.0000 1.6682 0.0000 + 1918.4029 143.0000 87.0000 1.6682 0.0000 1771.5639 143.0000 88.0000 1.6682 0.0000 + 1534.6792 143.0000 89.0000 1.6682 0.0000 1350.2400 143.0000 90.0000 1.6682 0.0000 + 1356.0504 143.0000 91.0000 1.6682 0.0000 1312.2121 143.0000 92.0000 1.6682 0.0000 + 1368.6610 143.0000 93.0000 1.6682 0.0000 1321.9594 143.0000 94.0000 1.6682 0.0000 + 67.8924 143.0000 101.0000 1.6682 0.0000 232.9539 143.0000 103.0000 1.6682 0.9865 + 295.3816 143.0000 104.0000 1.6682 0.9808 217.4762 143.0000 105.0000 1.6682 0.9706 + 160.9223 143.0000 106.0000 1.6682 0.9868 109.7755 143.0000 107.0000 1.6682 0.9944 + 78.7920 143.0000 108.0000 1.6682 0.9925 53.2880 143.0000 109.0000 1.6682 0.9982 + 343.5592 143.0000 111.0000 1.6682 0.9684 533.7085 143.0000 112.0000 1.6682 0.9628 + 529.3043 143.0000 113.0000 1.6682 0.9648 413.5991 143.0000 114.0000 1.6682 0.9507 + 332.2783 143.0000 115.0000 1.6682 0.9947 277.6002 143.0000 116.0000 1.6682 0.9948 + 224.2095 143.0000 117.0000 1.6682 0.9972 468.0977 143.0000 119.0000 1.6682 0.9767 + 945.9943 143.0000 120.0000 1.6682 0.9831 455.9109 143.0000 121.0000 1.6682 1.8627 + 440.2561 143.0000 122.0000 1.6682 1.8299 431.6391 143.0000 123.0000 1.6682 1.9138 + 428.9662 143.0000 124.0000 1.6682 1.8269 388.9066 143.0000 125.0000 1.6682 1.6406 + 358.6562 143.0000 126.0000 1.6682 1.6483 342.2979 143.0000 127.0000 1.6682 1.7149 + 335.0287 143.0000 128.0000 1.6682 1.7937 334.5615 143.0000 129.0000 1.6682 0.9576 + 307.8815 143.0000 130.0000 1.6682 1.9419 521.1441 143.0000 131.0000 1.6682 0.9601 + 447.7131 143.0000 132.0000 1.6682 0.9434 395.2472 143.0000 133.0000 1.6682 0.9889 + 357.4737 143.0000 134.0000 1.6682 0.9901 311.6901 143.0000 135.0000 1.6682 0.9974 + 556.1255 143.0000 137.0000 1.6682 0.9738 1156.2604 143.0000 138.0000 1.6682 0.9801 + 848.3727 143.0000 139.0000 1.6682 1.9153 605.3389 143.0000 140.0000 1.6682 1.9355 + 611.2764 143.0000 141.0000 1.6682 1.9545 567.7670 143.0000 142.0000 1.6682 1.9420 + 649.7143 143.0000 143.0000 1.6682 1.6682 33.1875 144.0000 1.0000 1.8584 0.9118 + 22.0616 144.0000 2.0000 1.8584 0.0000 517.3330 144.0000 3.0000 1.8584 0.0000 + 297.5186 144.0000 4.0000 1.8584 0.0000 200.3299 144.0000 5.0000 1.8584 0.0000 + 135.5517 144.0000 6.0000 1.8584 0.0000 95.0190 144.0000 7.0000 1.8584 0.0000 + 72.1173 144.0000 8.0000 1.8584 0.0000 54.7781 144.0000 9.0000 1.8584 0.0000 + 42.2432 144.0000 10.0000 1.8584 0.0000 618.6669 144.0000 11.0000 1.8584 0.0000 + 474.4180 144.0000 12.0000 1.8584 0.0000 437.0209 144.0000 13.0000 1.8584 0.0000 + 344.2113 144.0000 14.0000 1.8584 0.0000 268.5416 144.0000 15.0000 1.8584 0.0000 + 223.0883 144.0000 16.0000 1.8584 0.0000 182.4721 144.0000 17.0000 1.8584 0.0000 + 149.5222 144.0000 18.0000 1.8584 0.0000 1015.7997 144.0000 19.0000 1.8584 0.0000 + 835.2692 144.0000 20.0000 1.8584 0.0000 689.6088 144.0000 21.0000 1.8584 0.0000 + 665.8143 144.0000 22.0000 1.8584 0.0000 609.6159 144.0000 23.0000 1.8584 0.0000 + 480.6382 144.0000 24.0000 1.8584 0.0000 524.7748 144.0000 25.0000 1.8584 0.0000 + 412.2468 144.0000 26.0000 1.8584 0.0000 436.4054 144.0000 27.0000 1.8584 0.0000 + 449.5806 144.0000 28.0000 1.8584 0.0000 345.1043 144.0000 29.0000 1.8584 0.0000 + 353.7880 144.0000 30.0000 1.8584 0.0000 418.8573 144.0000 31.0000 1.8584 0.0000 + 369.1734 144.0000 32.0000 1.8584 0.0000 314.9253 144.0000 33.0000 1.8584 0.0000 + 282.7302 144.0000 34.0000 1.8584 0.0000 247.6203 144.0000 35.0000 1.8584 0.0000 + 215.5683 144.0000 36.0000 1.8584 0.0000 1138.5265 144.0000 37.0000 1.8584 0.0000 + 995.6116 144.0000 38.0000 1.8584 0.0000 871.2600 144.0000 39.0000 1.8584 0.0000 + 782.7166 144.0000 40.0000 1.8584 0.0000 713.6477 144.0000 41.0000 1.8584 0.0000 + 551.1240 144.0000 42.0000 1.8584 0.0000 614.8185 144.0000 43.0000 1.8584 0.0000 + 468.5695 144.0000 44.0000 1.8584 0.0000 511.8315 144.0000 45.0000 1.8584 0.0000 + 474.6369 144.0000 46.0000 1.8584 0.0000 396.2742 144.0000 47.0000 1.8584 0.0000 + 418.2579 144.0000 48.0000 1.8584 0.0000 524.8236 144.0000 49.0000 1.8584 0.0000 + 484.8855 144.0000 50.0000 1.8584 0.0000 431.9865 144.0000 51.0000 1.8584 0.0000 + 400.8319 144.0000 52.0000 1.8584 0.0000 362.5374 144.0000 53.0000 1.8584 0.0000 + 326.1157 144.0000 54.0000 1.8584 0.0000 1387.1242 144.0000 55.0000 1.8584 0.0000 + 1270.1002 144.0000 56.0000 1.8584 0.0000 1114.5962 144.0000 57.0000 1.8584 0.0000 + 510.5864 144.0000 58.0000 1.8584 2.7991 1125.1127 144.0000 59.0000 1.8584 0.0000 + 1080.1628 144.0000 60.0000 1.8584 0.0000 1052.9974 144.0000 61.0000 1.8584 0.0000 + 1028.0158 144.0000 62.0000 1.8584 0.0000 1005.8586 144.0000 63.0000 1.8584 0.0000 + 790.5176 144.0000 64.0000 1.8584 0.0000 891.8764 144.0000 65.0000 1.8584 0.0000 + 859.9729 144.0000 66.0000 1.8584 0.0000 906.9214 144.0000 67.0000 1.8584 0.0000 + 887.6202 144.0000 68.0000 1.8584 0.0000 870.2063 144.0000 69.0000 1.8584 0.0000 + 860.0345 144.0000 70.0000 1.8584 0.0000 724.2904 144.0000 71.0000 1.8584 0.0000 + 711.4779 144.0000 72.0000 1.8584 0.0000 649.1471 144.0000 73.0000 1.8584 0.0000 + 548.4212 144.0000 74.0000 1.8584 0.0000 557.7561 144.0000 75.0000 1.8584 0.0000 + 505.4933 144.0000 76.0000 1.8584 0.0000 462.9870 144.0000 77.0000 1.8584 0.0000 + 384.9146 144.0000 78.0000 1.8584 0.0000 359.7427 144.0000 79.0000 1.8584 0.0000 + 369.8952 144.0000 80.0000 1.8584 0.0000 539.2982 144.0000 81.0000 1.8584 0.0000 + 526.7738 144.0000 82.0000 1.8584 0.0000 483.8143 144.0000 83.0000 1.8584 0.0000 + 461.3936 144.0000 84.0000 1.8584 0.0000 425.8721 144.0000 85.0000 1.8584 0.0000 + 390.4711 144.0000 86.0000 1.8584 0.0000 1308.6904 144.0000 87.0000 1.8584 0.0000 + 1255.3593 144.0000 88.0000 1.8584 0.0000 1108.4934 144.0000 89.0000 1.8584 0.0000 + 995.4823 144.0000 90.0000 1.8584 0.0000 989.1364 144.0000 91.0000 1.8584 0.0000 + 957.7781 144.0000 92.0000 1.8584 0.0000 986.7352 144.0000 93.0000 1.8584 0.0000 + 955.4249 144.0000 94.0000 1.8584 0.0000 53.3648 144.0000 101.0000 1.8584 0.0000 + 172.9708 144.0000 103.0000 1.8584 0.9865 220.6746 144.0000 104.0000 1.8584 0.9808 + 168.5944 144.0000 105.0000 1.8584 0.9706 127.2125 144.0000 106.0000 1.8584 0.9868 + 88.6613 144.0000 107.0000 1.8584 0.9944 64.7448 144.0000 108.0000 1.8584 0.9925 + 44.7087 144.0000 109.0000 1.8584 0.9982 253.0900 144.0000 111.0000 1.8584 0.9684 + 391.3606 144.0000 112.0000 1.8584 0.9628 396.0634 144.0000 113.0000 1.8584 0.9648 + 318.1795 144.0000 114.0000 1.8584 0.9507 260.7012 144.0000 115.0000 1.8584 0.9947 + 220.6477 144.0000 116.0000 1.8584 0.9948 180.5916 144.0000 117.0000 1.8584 0.9972 + 349.4753 144.0000 119.0000 1.8584 0.9767 668.7646 144.0000 120.0000 1.8584 0.9831 + 349.0702 144.0000 121.0000 1.8584 1.8627 337.0553 144.0000 122.0000 1.8584 1.8299 + 330.3567 144.0000 123.0000 1.8584 1.9138 327.3553 144.0000 124.0000 1.8584 1.8269 + 301.0397 144.0000 125.0000 1.8584 1.6406 278.6526 144.0000 126.0000 1.8584 1.6483 + 265.8752 144.0000 127.0000 1.8584 1.7149 259.9472 144.0000 128.0000 1.8584 1.7937 + 256.9480 144.0000 129.0000 1.8584 0.9576 240.9124 144.0000 130.0000 1.8584 1.9419 + 393.3571 144.0000 131.0000 1.8584 0.9601 345.3872 144.0000 132.0000 1.8584 0.9434 + 309.6035 144.0000 133.0000 1.8584 0.9889 282.8460 144.0000 134.0000 1.8584 0.9901 + 249.3404 144.0000 135.0000 1.8584 0.9974 417.0831 144.0000 137.0000 1.8584 0.9738 + 814.1975 144.0000 138.0000 1.8584 0.9801 621.3058 144.0000 139.0000 1.8584 1.9153 + 461.9141 144.0000 140.0000 1.8584 1.9355 466.5358 144.0000 141.0000 1.8584 1.9545 + 435.1062 144.0000 142.0000 1.8584 1.9420 488.3264 144.0000 143.0000 1.8584 1.6682 + 379.2655 144.0000 144.0000 1.8584 1.8584 31.1024 145.0000 1.0000 1.9003 0.9118 + 20.7776 145.0000 2.0000 1.9003 0.0000 482.4342 145.0000 3.0000 1.9003 0.0000 + 277.4174 145.0000 4.0000 1.9003 0.0000 187.1327 145.0000 5.0000 1.9003 0.0000 + 126.9085 145.0000 6.0000 1.9003 0.0000 89.1659 145.0000 7.0000 1.9003 0.0000 + 67.8114 145.0000 8.0000 1.9003 0.0000 51.6117 145.0000 9.0000 1.9003 0.0000 + 39.8762 145.0000 10.0000 1.9003 0.0000 577.0181 145.0000 11.0000 1.9003 0.0000 + 442.3381 145.0000 12.0000 1.9003 0.0000 407.6999 145.0000 13.0000 1.9003 0.0000 + 321.4594 145.0000 14.0000 1.9003 0.0000 251.1477 145.0000 15.0000 1.9003 0.0000 + 208.9067 145.0000 16.0000 1.9003 0.0000 171.1187 145.0000 17.0000 1.9003 0.0000 + 140.4273 145.0000 18.0000 1.9003 0.0000 948.5140 145.0000 19.0000 1.9003 0.0000 + 779.0547 145.0000 20.0000 1.9003 0.0000 643.1893 145.0000 21.0000 1.9003 0.0000 + 621.1807 145.0000 22.0000 1.9003 0.0000 568.8348 145.0000 23.0000 1.9003 0.0000 + 448.7527 145.0000 24.0000 1.9003 0.0000 489.7933 145.0000 25.0000 1.9003 0.0000 + 385.0153 145.0000 26.0000 1.9003 0.0000 407.4574 145.0000 27.0000 1.9003 0.0000 + 419.6709 145.0000 28.0000 1.9003 0.0000 322.3988 145.0000 29.0000 1.9003 0.0000 + 330.4713 145.0000 30.0000 1.9003 0.0000 391.0508 145.0000 31.0000 1.9003 0.0000 + 344.9100 145.0000 32.0000 1.9003 0.0000 294.5421 145.0000 33.0000 1.9003 0.0000 + 264.6717 145.0000 34.0000 1.9003 0.0000 232.0580 145.0000 35.0000 1.9003 0.0000 + 202.2567 145.0000 36.0000 1.9003 0.0000 1063.3477 145.0000 37.0000 1.9003 0.0000 + 928.8255 145.0000 38.0000 1.9003 0.0000 812.9338 145.0000 39.0000 1.9003 0.0000 + 730.4970 145.0000 40.0000 1.9003 0.0000 666.2259 145.0000 41.0000 1.9003 0.0000 + 514.9128 145.0000 42.0000 1.9003 0.0000 574.2456 145.0000 43.0000 1.9003 0.0000 + 438.0426 145.0000 44.0000 1.9003 0.0000 478.2848 145.0000 45.0000 1.9003 0.0000 + 443.6280 145.0000 46.0000 1.9003 0.0000 370.6378 145.0000 47.0000 1.9003 0.0000 + 391.0675 145.0000 48.0000 1.9003 0.0000 490.3325 145.0000 49.0000 1.9003 0.0000 + 453.1794 145.0000 50.0000 1.9003 0.0000 404.0384 145.0000 51.0000 1.9003 0.0000 + 375.1303 145.0000 52.0000 1.9003 0.0000 339.5620 145.0000 53.0000 1.9003 0.0000 + 305.7201 145.0000 54.0000 1.9003 0.0000 1295.8507 145.0000 55.0000 1.9003 0.0000 + 1185.1747 145.0000 56.0000 1.9003 0.0000 1040.1066 145.0000 57.0000 1.9003 0.0000 + 477.5945 145.0000 58.0000 1.9003 2.7991 1050.0763 145.0000 59.0000 1.9003 0.0000 + 1008.0521 145.0000 60.0000 1.9003 0.0000 982.6875 145.0000 61.0000 1.9003 0.0000 + 959.3598 145.0000 62.0000 1.9003 0.0000 938.6688 145.0000 63.0000 1.9003 0.0000 + 738.1317 145.0000 64.0000 1.9003 0.0000 832.9670 145.0000 65.0000 1.9003 0.0000 + 803.2511 145.0000 66.0000 1.9003 0.0000 846.3103 145.0000 67.0000 1.9003 0.0000 + 828.2826 145.0000 68.0000 1.9003 0.0000 812.0214 145.0000 69.0000 1.9003 0.0000 + 802.5026 145.0000 70.0000 1.9003 0.0000 676.1320 145.0000 71.0000 1.9003 0.0000 + 664.1953 145.0000 72.0000 1.9003 0.0000 606.2463 145.0000 73.0000 1.9003 0.0000 + 512.5656 145.0000 74.0000 1.9003 0.0000 521.3061 145.0000 75.0000 1.9003 0.0000 + 472.6809 145.0000 76.0000 1.9003 0.0000 433.1292 145.0000 77.0000 1.9003 0.0000 + 360.4173 145.0000 78.0000 1.9003 0.0000 336.9714 145.0000 79.0000 1.9003 0.0000 + 346.4526 145.0000 80.0000 1.9003 0.0000 504.2404 145.0000 81.0000 1.9003 0.0000 + 492.5689 145.0000 82.0000 1.9003 0.0000 452.6451 145.0000 83.0000 1.9003 0.0000 + 431.8588 145.0000 84.0000 1.9003 0.0000 398.8768 145.0000 85.0000 1.9003 0.0000 + 365.9914 145.0000 86.0000 1.9003 0.0000 1222.4485 145.0000 87.0000 1.9003 0.0000 + 1171.5378 145.0000 88.0000 1.9003 0.0000 1034.5633 145.0000 89.0000 1.9003 0.0000 + 929.5319 145.0000 90.0000 1.9003 0.0000 923.6673 145.0000 91.0000 1.9003 0.0000 + 894.4135 145.0000 92.0000 1.9003 0.0000 921.2853 145.0000 93.0000 1.9003 0.0000 + 892.0641 145.0000 94.0000 1.9003 0.0000 49.9090 145.0000 101.0000 1.9003 0.0000 + 161.3499 145.0000 103.0000 1.9003 0.9865 205.9530 145.0000 104.0000 1.9003 0.9808 + 157.5949 145.0000 105.0000 1.9003 0.9706 119.1265 145.0000 106.0000 1.9003 0.9868 + 83.2227 145.0000 107.0000 1.9003 0.9944 60.9159 145.0000 108.0000 1.9003 0.9925 + 42.2084 145.0000 109.0000 1.9003 0.9982 236.1444 145.0000 111.0000 1.9003 0.9684 + 365.0705 145.0000 112.0000 1.9003 0.9628 369.5814 145.0000 113.0000 1.9003 0.9648 + 297.2339 145.0000 114.0000 1.9003 0.9507 243.8439 145.0000 115.0000 1.9003 0.9947 + 206.6258 145.0000 116.0000 1.9003 0.9948 169.3584 145.0000 117.0000 1.9003 0.9972 + 326.5947 145.0000 119.0000 1.9003 0.9767 624.2850 145.0000 120.0000 1.9003 0.9831 + 326.2503 145.0000 121.0000 1.9003 1.8627 315.0982 145.0000 122.0000 1.9003 1.8299 + 308.8482 145.0000 123.0000 1.9003 1.9138 306.0340 145.0000 124.0000 1.9003 1.8269 + 281.5134 145.0000 125.0000 1.9003 1.6406 260.6567 145.0000 126.0000 1.9003 1.6483 + 248.7388 145.0000 127.0000 1.9003 1.7149 243.1909 145.0000 128.0000 1.9003 1.7937 + 240.3260 145.0000 129.0000 1.9003 0.9576 225.4398 145.0000 130.0000 1.9003 1.9419 + 367.3197 145.0000 131.0000 1.9003 0.9601 322.7816 145.0000 132.0000 1.9003 0.9434 + 289.5934 145.0000 133.0000 1.9003 0.9889 264.7815 145.0000 134.0000 1.9003 0.9901 + 233.6608 145.0000 135.0000 1.9003 0.9974 389.9183 145.0000 137.0000 1.9003 0.9738 + 760.2437 145.0000 138.0000 1.9003 0.9801 580.4145 145.0000 139.0000 1.9003 1.9153 + 431.8288 145.0000 140.0000 1.9003 1.9355 436.1440 145.0000 141.0000 1.9003 1.9545 + 406.9338 145.0000 142.0000 1.9003 1.9420 456.5618 145.0000 143.0000 1.9003 1.6682 + 354.9282 145.0000 144.0000 1.9003 1.8584 332.2425 145.0000 145.0000 1.9003 1.9003 + 28.9661 146.0000 1.0000 1.8630 0.9118 19.4689 146.0000 2.0000 1.8630 0.0000 + 443.9106 146.0000 3.0000 1.8630 0.0000 256.2327 146.0000 4.0000 1.8630 0.0000 + 173.4360 146.0000 5.0000 1.8630 0.0000 118.0137 146.0000 6.0000 1.8630 0.0000 + 83.1710 146.0000 7.0000 1.8630 0.0000 63.4125 146.0000 8.0000 1.8630 0.0000 + 48.3824 146.0000 9.0000 1.8630 0.0000 37.4647 146.0000 10.0000 1.8630 0.0000 + 531.1676 146.0000 11.0000 1.8630 0.0000 408.3022 146.0000 12.0000 1.8630 0.0000 + 376.8776 146.0000 13.0000 1.8630 0.0000 297.8174 146.0000 14.0000 1.8630 0.0000 + 233.2106 146.0000 15.0000 1.8630 0.0000 194.3373 146.0000 16.0000 1.8630 0.0000 + 159.4914 146.0000 17.0000 1.8630 0.0000 131.1338 146.0000 18.0000 1.8630 0.0000 + 873.2984 146.0000 19.0000 1.8630 0.0000 718.4983 146.0000 20.0000 1.8630 0.0000 + 593.4994 146.0000 21.0000 1.8630 0.0000 573.5972 146.0000 22.0000 1.8630 0.0000 + 525.4732 146.0000 23.0000 1.8630 0.0000 414.7918 146.0000 24.0000 1.8630 0.0000 + 452.7353 146.0000 25.0000 1.8630 0.0000 356.1344 146.0000 26.0000 1.8630 0.0000 + 376.9928 146.0000 27.0000 1.8630 0.0000 388.1200 146.0000 28.0000 1.8630 0.0000 + 298.3894 146.0000 29.0000 1.8630 0.0000 306.0633 146.0000 30.0000 1.8630 0.0000 + 361.8780 146.0000 31.0000 1.8630 0.0000 319.6946 146.0000 32.0000 1.8630 0.0000 + 273.5010 146.0000 33.0000 1.8630 0.0000 246.0921 146.0000 34.0000 1.8630 0.0000 + 216.0945 146.0000 35.0000 1.8630 0.0000 188.6339 146.0000 36.0000 1.8630 0.0000 + 979.4032 146.0000 37.0000 1.8630 0.0000 856.7169 146.0000 38.0000 1.8630 0.0000 + 750.5933 146.0000 39.0000 1.8630 0.0000 674.9929 146.0000 40.0000 1.8630 0.0000 + 615.9759 146.0000 41.0000 1.8630 0.0000 476.7090 146.0000 42.0000 1.8630 0.0000 + 531.3700 146.0000 43.0000 1.8630 0.0000 405.9398 146.0000 44.0000 1.8630 0.0000 + 443.0659 146.0000 45.0000 1.8630 0.0000 411.1361 146.0000 46.0000 1.8630 0.0000 + 343.6707 146.0000 47.0000 1.8630 0.0000 362.6432 146.0000 48.0000 1.8630 0.0000 + 454.0576 146.0000 49.0000 1.8630 0.0000 420.1268 146.0000 50.0000 1.8630 0.0000 + 375.0995 146.0000 51.0000 1.8630 0.0000 348.6074 146.0000 52.0000 1.8630 0.0000 + 315.9288 146.0000 53.0000 1.8630 0.0000 284.7964 146.0000 54.0000 1.8630 0.0000 + 1193.7040 146.0000 55.0000 1.8630 0.0000 1093.0044 146.0000 56.0000 1.8630 0.0000 + 960.1346 146.0000 57.0000 1.8630 0.0000 443.3629 146.0000 58.0000 1.8630 2.7991 + 968.8758 146.0000 59.0000 1.8630 0.0000 930.2250 146.0000 60.0000 1.8630 0.0000 + 906.8511 146.0000 61.0000 1.8630 0.0000 885.3477 146.0000 62.0000 1.8630 0.0000 + 866.2748 146.0000 63.0000 1.8630 0.0000 682.2073 146.0000 64.0000 1.8630 0.0000 + 768.7904 146.0000 65.0000 1.8630 0.0000 741.5149 146.0000 66.0000 1.8630 0.0000 + 781.2040 146.0000 67.0000 1.8630 0.0000 764.5705 146.0000 68.0000 1.8630 0.0000 + 749.5779 146.0000 69.0000 1.8630 0.0000 740.7392 146.0000 70.0000 1.8630 0.0000 + 624.7157 146.0000 71.0000 1.8630 0.0000 614.2531 146.0000 72.0000 1.8630 0.0000 + 561.1517 146.0000 73.0000 1.8630 0.0000 474.9493 146.0000 74.0000 1.8630 0.0000 + 483.1569 146.0000 75.0000 1.8630 0.0000 438.4677 146.0000 76.0000 1.8630 0.0000 + 402.0834 146.0000 77.0000 1.8630 0.0000 334.9854 146.0000 78.0000 1.8630 0.0000 + 313.3483 146.0000 79.0000 1.8630 0.0000 322.1884 146.0000 80.0000 1.8630 0.0000 + 467.3571 146.0000 81.0000 1.8630 0.0000 456.8674 146.0000 82.0000 1.8630 0.0000 + 420.3274 146.0000 83.0000 1.8630 0.0000 401.3349 146.0000 84.0000 1.8630 0.0000 + 371.0728 146.0000 85.0000 1.8630 0.0000 340.8458 146.0000 86.0000 1.8630 0.0000 + 1126.9549 146.0000 87.0000 1.8630 0.0000 1081.0405 146.0000 88.0000 1.8630 0.0000 + 955.5359 146.0000 89.0000 1.8630 0.0000 859.6950 146.0000 90.0000 1.8630 0.0000 + 853.9373 146.0000 91.0000 1.8630 0.0000 826.9445 146.0000 92.0000 1.8630 0.0000 + 851.1916 146.0000 93.0000 1.8630 0.0000 824.2947 146.0000 94.0000 1.8630 0.0000 + 46.3489 146.0000 101.0000 1.8630 0.0000 149.1209 146.0000 103.0000 1.8630 0.9865 + 190.4826 146.0000 104.0000 1.8630 0.9808 146.2020 146.0000 105.0000 1.8630 0.9706 + 110.7946 146.0000 106.0000 1.8630 0.9868 77.6479 146.0000 107.0000 1.8630 0.9944 + 57.0049 146.0000 108.0000 1.8630 0.9925 39.6636 146.0000 109.0000 1.8630 0.9982 + 218.2333 146.0000 111.0000 1.8630 0.9684 337.2256 146.0000 112.0000 1.8630 0.9628 + 341.7946 146.0000 113.0000 1.8630 0.9648 275.4925 146.0000 114.0000 1.8630 0.9507 + 226.4605 146.0000 115.0000 1.8630 0.9947 192.2172 146.0000 116.0000 1.8630 0.9948 + 157.8524 146.0000 117.0000 1.8630 0.9972 302.4635 146.0000 119.0000 1.8630 0.9767 + 576.1374 146.0000 120.0000 1.8630 0.9831 302.4898 146.0000 121.0000 1.8630 1.8627 + 292.2135 146.0000 122.0000 1.8630 1.8299 286.4278 146.0000 123.0000 1.8630 1.9138 + 283.7785 146.0000 124.0000 1.8630 1.8269 261.2635 146.0000 125.0000 1.8630 1.6406 + 242.0147 146.0000 126.0000 1.8630 1.6483 230.9788 146.0000 127.0000 1.8630 1.7149 + 225.8165 146.0000 128.0000 1.8630 1.7937 223.0154 146.0000 129.0000 1.8630 0.9576 + 209.4546 146.0000 130.0000 1.8630 1.9419 340.0675 146.0000 131.0000 1.8630 0.9601 + 299.3280 146.0000 132.0000 1.8630 0.9434 268.9427 146.0000 133.0000 1.8630 0.9889 + 246.1937 146.0000 134.0000 1.8630 0.9901 217.5738 146.0000 135.0000 1.8630 0.9974 + 361.3047 146.0000 137.0000 1.8630 0.9738 701.6550 146.0000 138.0000 1.8630 0.9801 + 536.8566 146.0000 139.0000 1.8630 1.9153 400.4209 146.0000 140.0000 1.8630 1.9355 + 404.4300 146.0000 141.0000 1.8630 1.9545 377.5535 146.0000 142.0000 1.8630 1.9420 + 423.1279 146.0000 143.0000 1.8630 1.6682 329.6826 146.0000 144.0000 1.8630 1.8584 + 308.7059 146.0000 145.0000 1.8630 1.9003 286.9519 146.0000 146.0000 1.8630 1.8630 + 27.9518 147.0000 1.0000 0.9679 0.9118 18.7731 147.0000 2.0000 0.9679 0.0000 + 432.6078 147.0000 3.0000 0.9679 0.0000 248.6573 147.0000 4.0000 0.9679 0.0000 + 167.8350 147.0000 5.0000 0.9679 0.0000 113.9993 147.0000 6.0000 0.9679 0.0000 + 80.2663 147.0000 7.0000 0.9679 0.0000 61.1748 147.0000 8.0000 0.9679 0.0000 + 46.6726 147.0000 9.0000 0.9679 0.0000 36.1486 147.0000 10.0000 0.9679 0.0000 + 517.5680 147.0000 11.0000 0.9679 0.0000 396.6125 147.0000 12.0000 0.9679 0.0000 + 365.5269 147.0000 13.0000 0.9679 0.0000 288.2863 147.0000 14.0000 0.9679 0.0000 + 225.3945 147.0000 15.0000 0.9679 0.0000 187.6597 147.0000 16.0000 0.9679 0.0000 + 153.9032 147.0000 17.0000 0.9679 0.0000 126.4825 147.0000 18.0000 0.9679 0.0000 + 851.0088 147.0000 19.0000 0.9679 0.0000 698.8618 147.0000 20.0000 0.9679 0.0000 + 576.9636 147.0000 21.0000 0.9679 0.0000 557.2880 147.0000 22.0000 0.9679 0.0000 + 510.3644 147.0000 23.0000 0.9679 0.0000 402.8383 147.0000 24.0000 0.9679 0.0000 + 439.5099 147.0000 25.0000 0.9679 0.0000 345.6995 147.0000 26.0000 0.9679 0.0000 + 365.6925 147.0000 27.0000 0.9679 0.0000 376.6281 147.0000 28.0000 0.9679 0.0000 + 289.5580 147.0000 29.0000 0.9679 0.0000 296.6728 147.0000 30.0000 0.9679 0.0000 + 350.8010 147.0000 31.0000 0.9679 0.0000 309.4543 147.0000 32.0000 0.9679 0.0000 + 264.3957 147.0000 33.0000 0.9679 0.0000 237.7217 147.0000 34.0000 0.9679 0.0000 + 208.6044 147.0000 35.0000 0.9679 0.0000 182.0016 147.0000 36.0000 0.9679 0.0000 + 954.1320 147.0000 37.0000 0.9679 0.0000 833.3168 147.0000 38.0000 0.9679 0.0000 + 729.3316 147.0000 39.0000 0.9679 0.0000 655.4329 147.0000 40.0000 0.9679 0.0000 + 597.8528 147.0000 41.0000 0.9679 0.0000 462.3383 147.0000 42.0000 0.9679 0.0000 + 515.4953 147.0000 43.0000 0.9679 0.0000 393.5088 147.0000 44.0000 0.9679 0.0000 + 429.5143 147.0000 45.0000 0.9679 0.0000 398.4662 147.0000 46.0000 0.9679 0.0000 + 333.1583 147.0000 47.0000 0.9679 0.0000 351.3712 147.0000 48.0000 0.9679 0.0000 + 440.2733 147.0000 49.0000 0.9679 0.0000 406.9029 147.0000 50.0000 0.9679 0.0000 + 362.8740 147.0000 51.0000 0.9679 0.0000 337.0131 147.0000 52.0000 0.9679 0.0000 + 305.2122 147.0000 53.0000 0.9679 0.0000 274.9744 147.0000 54.0000 0.9679 0.0000 + 1162.5520 147.0000 55.0000 0.9679 0.0000 1063.3544 147.0000 56.0000 0.9679 0.0000 + 933.1680 147.0000 57.0000 0.9679 0.0000 428.9980 147.0000 58.0000 0.9679 2.7991 + 942.3547 147.0000 59.0000 0.9679 0.0000 904.6688 147.0000 60.0000 0.9679 0.0000 + 881.9071 147.0000 61.0000 0.9679 0.0000 860.9698 147.0000 62.0000 0.9679 0.0000 + 842.3966 147.0000 63.0000 0.9679 0.0000 662.6029 147.0000 64.0000 0.9679 0.0000 + 747.7247 147.0000 65.0000 0.9679 0.0000 721.0103 147.0000 66.0000 0.9679 0.0000 + 759.5084 147.0000 67.0000 0.9679 0.0000 743.3221 147.0000 68.0000 0.9679 0.0000 + 728.7203 147.0000 69.0000 0.9679 0.0000 720.1654 147.0000 70.0000 0.9679 0.0000 + 606.8313 147.0000 71.0000 0.9679 0.0000 595.9852 147.0000 72.0000 0.9679 0.0000 + 544.0985 147.0000 73.0000 0.9679 0.0000 460.2670 147.0000 74.0000 0.9679 0.0000 + 468.1084 147.0000 75.0000 0.9679 0.0000 424.5823 147.0000 76.0000 0.9679 0.0000 + 389.1870 147.0000 77.0000 0.9679 0.0000 324.1240 147.0000 78.0000 0.9679 0.0000 + 303.1555 147.0000 79.0000 0.9679 0.0000 311.6354 147.0000 80.0000 0.9679 0.0000 + 453.0455 147.0000 81.0000 0.9679 0.0000 442.5095 147.0000 82.0000 0.9679 0.0000 + 406.7084 147.0000 83.0000 0.9679 0.0000 388.1001 147.0000 84.0000 0.9679 0.0000 + 358.5954 147.0000 85.0000 0.9679 0.0000 329.1990 147.0000 86.0000 0.9679 0.0000 + 1096.8369 147.0000 87.0000 0.9679 0.0000 1051.1515 147.0000 88.0000 0.9679 0.0000 + 928.3302 147.0000 89.0000 0.9679 0.0000 834.3179 147.0000 90.0000 0.9679 0.0000 + 829.1923 147.0000 91.0000 0.9679 0.0000 802.9809 147.0000 92.0000 0.9679 0.0000 + 827.1613 147.0000 93.0000 0.9679 0.0000 800.9332 147.0000 94.0000 0.9679 0.0000 + 44.7835 147.0000 101.0000 0.9679 0.0000 144.6563 147.0000 103.0000 0.9679 0.9865 + 184.6530 147.0000 104.0000 0.9679 0.9808 141.4060 147.0000 105.0000 0.9679 0.9706 + 107.0286 147.0000 106.0000 0.9679 0.9868 74.9354 147.0000 107.0000 0.9679 0.9944 + 54.9856 147.0000 108.0000 0.9679 0.9925 38.2539 147.0000 109.0000 0.9679 0.9982 + 211.8419 147.0000 111.0000 0.9679 0.9684 327.3509 147.0000 112.0000 0.9679 0.9628 + 331.3832 147.0000 113.0000 0.9679 0.9648 266.6008 147.0000 114.0000 0.9679 0.9507 + 218.8617 147.0000 115.0000 0.9679 0.9947 185.6197 147.0000 116.0000 0.9679 0.9948 + 152.3270 147.0000 117.0000 0.9679 0.9972 293.2911 147.0000 119.0000 0.9679 0.9767 + 560.1298 147.0000 120.0000 0.9679 0.9831 292.9063 147.0000 121.0000 0.9679 1.8627 + 282.9332 147.0000 122.0000 0.9679 1.8299 277.3525 147.0000 123.0000 0.9679 1.9138 + 274.8452 147.0000 124.0000 0.9679 1.8269 252.8298 147.0000 125.0000 0.9679 1.6406 + 234.1511 147.0000 126.0000 0.9679 1.6483 223.4805 147.0000 127.0000 0.9679 1.7149 + 218.5075 147.0000 128.0000 0.9679 1.7937 215.9581 147.0000 129.0000 0.9679 0.9576 + 202.5685 147.0000 130.0000 0.9679 1.9419 329.5387 147.0000 131.0000 0.9679 0.9601 + 289.6411 147.0000 132.0000 0.9679 0.9434 259.9706 147.0000 133.0000 0.9679 0.9889 + 237.8238 147.0000 134.0000 0.9679 0.9901 210.0411 147.0000 135.0000 0.9679 0.9974 + 350.2295 147.0000 137.0000 0.9679 0.9738 682.1817 147.0000 138.0000 0.9679 0.9801 + 520.8724 147.0000 139.0000 0.9679 1.9153 387.7336 147.0000 140.0000 0.9679 1.9355 + 391.6637 147.0000 141.0000 0.9679 1.9545 365.5261 147.0000 142.0000 0.9679 1.9420 + 410.0667 147.0000 143.0000 0.9679 1.6682 318.9665 147.0000 144.0000 0.9679 1.8584 + 298.6678 147.0000 145.0000 0.9679 1.9003 277.6023 147.0000 146.0000 0.9679 1.8630 + 268.6130 147.0000 147.0000 0.9679 0.9679 27.9281 148.0000 1.0000 1.9539 0.9118 + 18.8607 148.0000 2.0000 1.9539 0.0000 408.4429 148.0000 3.0000 1.9539 0.0000 + 242.0950 148.0000 4.0000 1.9539 0.0000 165.6587 148.0000 5.0000 1.9539 0.0000 + 113.4369 148.0000 6.0000 1.9539 0.0000 80.2492 148.0000 7.0000 1.9539 0.0000 + 61.3234 148.0000 8.0000 1.9539 0.0000 46.8692 148.0000 9.0000 1.9539 0.0000 + 36.3401 148.0000 10.0000 1.9539 0.0000 489.5129 148.0000 11.0000 1.9539 0.0000 + 384.1728 148.0000 12.0000 1.9539 0.0000 356.8654 148.0000 13.0000 1.9539 0.0000 + 284.2139 148.0000 14.0000 1.9539 0.0000 223.7783 148.0000 15.0000 1.9539 0.0000 + 187.0163 148.0000 16.0000 1.9539 0.0000 153.8592 148.0000 17.0000 1.9539 0.0000 + 126.7356 148.0000 18.0000 1.9539 0.0000 800.2593 148.0000 19.0000 1.9539 0.0000 + 670.2633 148.0000 20.0000 1.9539 0.0000 555.6679 148.0000 21.0000 1.9539 0.0000 + 538.5502 148.0000 22.0000 1.9539 0.0000 494.2237 148.0000 23.0000 1.9539 0.0000 + 389.9953 148.0000 24.0000 1.9539 0.0000 426.8579 148.0000 25.0000 1.9539 0.0000 + 335.7642 148.0000 26.0000 1.9539 0.0000 356.9172 148.0000 27.0000 1.9539 0.0000 + 366.8668 148.0000 28.0000 1.9539 0.0000 281.8675 148.0000 29.0000 1.9539 0.0000 + 290.7895 148.0000 30.0000 1.9539 0.0000 343.2943 148.0000 31.0000 1.9539 0.0000 + 305.1468 148.0000 32.0000 1.9539 0.0000 262.2840 148.0000 33.0000 1.9539 0.0000 + 236.5779 148.0000 34.0000 1.9539 0.0000 208.2113 148.0000 35.0000 1.9539 0.0000 + 182.0867 148.0000 36.0000 1.9539 0.0000 898.5342 148.0000 37.0000 1.9539 0.0000 + 798.4528 148.0000 38.0000 1.9539 0.0000 703.7992 148.0000 39.0000 1.9539 0.0000 + 635.1370 148.0000 40.0000 1.9539 0.0000 580.8412 148.0000 41.0000 1.9539 0.0000 + 450.9776 148.0000 42.0000 1.9539 0.0000 502.1168 148.0000 43.0000 1.9539 0.0000 + 384.9436 148.0000 44.0000 1.9539 0.0000 420.3746 148.0000 45.0000 1.9539 0.0000 + 390.5770 148.0000 46.0000 1.9539 0.0000 325.9662 148.0000 47.0000 1.9539 0.0000 + 345.0599 148.0000 48.0000 1.9539 0.0000 430.3607 148.0000 49.0000 1.9539 0.0000 + 400.3474 148.0000 50.0000 1.9539 0.0000 359.0555 148.0000 51.0000 1.9539 0.0000 + 334.4917 148.0000 52.0000 1.9539 0.0000 303.8410 148.0000 53.0000 1.9539 0.0000 + 274.4407 148.0000 54.0000 1.9539 0.0000 1094.9943 148.0000 55.0000 1.9539 0.0000 + 1016.1802 148.0000 56.0000 1.9539 0.0000 898.2092 148.0000 57.0000 1.9539 0.0000 + 423.8910 148.0000 58.0000 1.9539 2.7991 902.6294 148.0000 59.0000 1.9539 0.0000 + 867.5938 148.0000 60.0000 1.9539 0.0000 846.0616 148.0000 61.0000 1.9539 0.0000 + 826.2261 148.0000 62.0000 1.9539 0.0000 808.6413 148.0000 63.0000 1.9539 0.0000 + 640.7393 148.0000 64.0000 1.9539 0.0000 714.6206 148.0000 65.0000 1.9539 0.0000 + 690.0423 148.0000 66.0000 1.9539 0.0000 730.4286 148.0000 67.0000 1.9539 0.0000 + 715.0198 148.0000 68.0000 1.9539 0.0000 701.1829 148.0000 69.0000 1.9539 0.0000 + 692.7504 148.0000 70.0000 1.9539 0.0000 586.6830 148.0000 71.0000 1.9539 0.0000 + 580.2796 148.0000 72.0000 1.9539 0.0000 531.7924 148.0000 73.0000 1.9539 0.0000 + 450.9360 148.0000 74.0000 1.9539 0.0000 459.3593 148.0000 75.0000 1.9539 0.0000 + 417.9082 148.0000 76.0000 1.9539 0.0000 383.9600 148.0000 77.0000 1.9539 0.0000 + 320.3640 148.0000 78.0000 1.9539 0.0000 299.8626 148.0000 79.0000 1.9539 0.0000 + 308.7059 148.0000 80.0000 1.9539 0.0000 443.2118 148.0000 81.0000 1.9539 0.0000 + 435.1964 148.0000 82.0000 1.9539 0.0000 402.0900 148.0000 83.0000 1.9539 0.0000 + 384.7622 148.0000 84.0000 1.9539 0.0000 356.5978 148.0000 85.0000 1.9539 0.0000 + 328.1840 148.0000 86.0000 1.9539 0.0000 1039.1920 148.0000 87.0000 1.9539 0.0000 + 1008.1792 148.0000 88.0000 1.9539 0.0000 896.3009 148.0000 89.0000 1.9539 0.0000 + 811.1482 148.0000 90.0000 1.9539 0.0000 803.1520 148.0000 91.0000 1.9539 0.0000 + 777.8763 148.0000 92.0000 1.9539 0.0000 797.7599 148.0000 93.0000 1.9539 0.0000 + 773.1193 148.0000 94.0000 1.9539 0.0000 44.5006 148.0000 101.0000 1.9539 0.0000 + 141.0901 148.0000 103.0000 1.9539 0.9865 180.5207 148.0000 104.0000 1.9539 0.9808 + 139.8793 148.0000 105.0000 1.9539 0.9706 106.4332 148.0000 106.0000 1.9539 0.9868 + 74.8925 148.0000 107.0000 1.9539 0.9944 55.1392 148.0000 108.0000 1.9539 0.9925 + 38.4906 148.0000 109.0000 1.9539 0.9982 205.9647 148.0000 111.0000 1.9539 0.9684 + 317.9002 148.0000 112.0000 1.9539 0.9628 324.0830 148.0000 113.0000 1.9539 0.9648 + 263.1438 148.0000 114.0000 1.9539 0.9507 217.3199 148.0000 115.0000 1.9539 0.9947 + 184.9522 148.0000 116.0000 1.9539 0.9948 152.2646 148.0000 117.0000 1.9539 0.9972 + 286.2735 148.0000 119.0000 1.9539 0.9767 537.0889 148.0000 120.0000 1.9539 0.9831 + 288.3875 148.0000 121.0000 1.9539 1.8627 278.5869 148.0000 122.0000 1.9539 1.8299 + 273.0331 148.0000 123.0000 1.9539 1.9138 270.2890 148.0000 124.0000 1.9539 1.8269 + 249.8201 148.0000 125.0000 1.9539 1.6406 231.6170 148.0000 126.0000 1.9539 1.6483 + 221.0248 148.0000 127.0000 1.9539 1.7149 216.0211 148.0000 128.0000 1.9539 1.7937 + 212.7468 148.0000 129.0000 1.9539 0.9576 200.8224 148.0000 130.0000 1.9539 1.9419 + 323.1080 148.0000 131.0000 1.9539 0.9601 286.0551 148.0000 132.0000 1.9539 0.9434 + 257.9689 148.0000 133.0000 1.9539 0.9889 236.6604 148.0000 134.0000 1.9539 0.9901 + 209.6083 148.0000 135.0000 1.9539 0.9974 342.3410 148.0000 137.0000 1.9539 0.9738 + 653.2782 148.0000 138.0000 1.9539 0.9801 505.6747 148.0000 139.0000 1.9539 1.9153 + 381.3405 148.0000 140.0000 1.9539 1.9355 385.1206 148.0000 141.0000 1.9539 1.9545 + 359.9059 148.0000 142.0000 1.9539 1.9420 401.2382 148.0000 143.0000 1.9539 1.6682 + 315.3365 148.0000 144.0000 1.9539 1.8584 295.3036 148.0000 145.0000 1.9539 1.9003 + 274.6154 148.0000 146.0000 1.9539 1.8630 265.5450 148.0000 147.0000 1.9539 0.9679 + 263.4508 148.0000 148.0000 1.9539 1.9539 42.2827 149.0000 1.0000 0.9633 0.9118 + 27.0236 149.0000 2.0000 0.9633 0.0000 769.2514 149.0000 3.0000 0.9633 0.0000 + 413.4965 149.0000 4.0000 0.9633 0.0000 267.4750 149.0000 5.0000 0.9633 0.0000 + 175.4585 149.0000 6.0000 0.9633 0.0000 120.1279 149.0000 7.0000 0.9633 0.0000 + 89.6520 149.0000 8.0000 0.9633 0.0000 67.1232 149.0000 9.0000 0.9633 0.0000 + 51.1747 149.0000 10.0000 0.9633 0.0000 915.9413 149.0000 11.0000 0.9633 0.0000 + 667.2844 149.0000 12.0000 0.9633 0.0000 602.4143 149.0000 13.0000 0.9633 0.0000 + 461.5093 149.0000 14.0000 0.9633 0.0000 351.5157 149.0000 15.0000 0.9633 0.0000 + 287.3922 149.0000 16.0000 0.9633 0.0000 231.4554 149.0000 17.0000 0.9633 0.0000 + 187.0916 149.0000 18.0000 0.9633 0.0000 1517.3687 149.0000 19.0000 0.9633 0.0000 + 1198.9287 149.0000 20.0000 0.9633 0.0000 980.8464 149.0000 21.0000 0.9633 0.0000 + 938.7641 149.0000 22.0000 0.9633 0.0000 855.0744 149.0000 23.0000 0.9633 0.0000 + 672.8526 149.0000 24.0000 0.9633 0.0000 730.5221 149.0000 25.0000 0.9633 0.0000 + 572.1729 149.0000 26.0000 0.9633 0.0000 599.8255 149.0000 27.0000 0.9633 0.0000 + 621.3305 149.0000 28.0000 0.9633 0.0000 476.0165 149.0000 29.0000 0.9633 0.0000 + 480.5972 149.0000 30.0000 0.9633 0.0000 572.2658 149.0000 31.0000 0.9633 0.0000 + 493.7984 149.0000 32.0000 0.9633 0.0000 413.0126 149.0000 33.0000 0.9633 0.0000 + 366.1519 149.0000 34.0000 0.9633 0.0000 316.5231 149.0000 35.0000 0.9633 0.0000 + 272.2288 149.0000 36.0000 0.9633 0.0000 1694.2091 149.0000 37.0000 0.9633 0.0000 + 1430.6640 149.0000 38.0000 0.9633 0.0000 1231.6979 149.0000 39.0000 0.9633 0.0000 + 1095.0419 149.0000 40.0000 0.9633 0.0000 991.4013 149.0000 41.0000 0.9633 0.0000 + 755.8918 149.0000 42.0000 0.9633 0.0000 847.3557 149.0000 43.0000 0.9633 0.0000 + 636.7480 149.0000 44.0000 0.9633 0.0000 696.1321 149.0000 45.0000 0.9633 0.0000 + 642.6456 149.0000 46.0000 0.9633 0.0000 537.2058 149.0000 47.0000 0.9633 0.0000 + 563.0312 149.0000 48.0000 0.9633 0.0000 716.7957 149.0000 49.0000 0.9633 0.0000 + 651.1403 149.0000 50.0000 0.9633 0.0000 570.3015 149.0000 51.0000 0.9633 0.0000 + 523.6131 149.0000 52.0000 0.9633 0.0000 468.1680 149.0000 53.0000 0.9633 0.0000 + 416.5053 149.0000 54.0000 0.9633 0.0000 2062.6273 149.0000 55.0000 0.9633 0.0000 + 1834.2595 149.0000 56.0000 0.9633 0.0000 1583.8792 149.0000 57.0000 0.9633 0.0000 + 675.7911 149.0000 58.0000 0.9633 2.7991 1615.9882 149.0000 59.0000 0.9633 0.0000 + 1547.2492 149.0000 60.0000 0.9633 0.0000 1507.2236 149.0000 61.0000 0.9633 0.0000 + 1470.5492 149.0000 62.0000 0.9633 0.0000 1437.9844 149.0000 63.0000 0.9633 0.0000 + 1109.2250 149.0000 64.0000 0.9633 0.0000 1284.5648 149.0000 65.0000 0.9633 0.0000 + 1234.8582 149.0000 66.0000 0.9633 0.0000 1291.3513 149.0000 67.0000 0.9633 0.0000 + 1263.3503 149.0000 68.0000 0.9633 0.0000 1237.8116 149.0000 69.0000 0.9633 0.0000 + 1224.3143 149.0000 70.0000 0.9633 0.0000 1018.1407 149.0000 71.0000 0.9633 0.0000 + 983.5647 149.0000 72.0000 0.9633 0.0000 887.9251 149.0000 73.0000 0.9633 0.0000 + 743.4035 149.0000 74.0000 0.9633 0.0000 753.1512 149.0000 75.0000 0.9633 0.0000 + 676.2340 149.0000 76.0000 0.9633 0.0000 614.6582 149.0000 77.0000 0.9633 0.0000 + 506.5442 149.0000 78.0000 0.9633 0.0000 471.7748 149.0000 79.0000 0.9633 0.0000 + 483.6313 149.0000 80.0000 0.9633 0.0000 732.5808 149.0000 81.0000 0.9633 0.0000 + 706.4446 149.0000 82.0000 0.9633 0.0000 639.1315 149.0000 83.0000 0.9633 0.0000 + 604.1082 149.0000 84.0000 0.9633 0.0000 551.5844 149.0000 85.0000 0.9633 0.0000 + 500.6786 149.0000 86.0000 0.9633 0.0000 1921.0063 149.0000 87.0000 0.9633 0.0000 + 1797.5569 149.0000 88.0000 0.9633 0.0000 1563.7265 149.0000 89.0000 0.9633 0.0000 + 1379.6361 149.0000 90.0000 0.9633 0.0000 1382.2903 149.0000 91.0000 0.9633 0.0000 + 1337.7839 149.0000 92.0000 0.9633 0.0000 1393.1101 149.0000 93.0000 0.9633 0.0000 + 1346.2697 149.0000 94.0000 0.9633 0.0000 69.6754 149.0000 101.0000 0.9633 0.0000 + 239.0419 149.0000 103.0000 0.9633 0.9865 302.6678 149.0000 104.0000 0.9633 0.9808 + 223.1629 149.0000 105.0000 0.9633 0.9706 164.6812 149.0000 106.0000 0.9633 0.9868 + 111.9707 149.0000 107.0000 0.9633 0.9944 80.0986 149.0000 108.0000 0.9633 0.9925 + 53.9364 149.0000 109.0000 0.9633 0.9982 352.0074 149.0000 111.0000 0.9633 0.9684 + 546.2762 149.0000 112.0000 0.9633 0.9628 543.2188 149.0000 113.0000 0.9633 0.9648 + 424.8293 149.0000 114.0000 0.9633 0.9507 340.9396 149.0000 115.0000 0.9633 0.9947 + 284.3350 149.0000 116.0000 0.9633 0.9948 229.1229 149.0000 117.0000 0.9633 0.9972 + 478.0141 149.0000 119.0000 0.9633 0.9767 957.9897 149.0000 120.0000 0.9633 0.9831 + 467.6700 149.0000 121.0000 0.9633 1.8627 451.1658 149.0000 122.0000 0.9633 1.8299 + 442.3420 149.0000 123.0000 0.9633 1.9138 439.4728 149.0000 124.0000 0.9633 1.8269 + 399.1079 149.0000 125.0000 0.9633 1.6406 367.9592 149.0000 126.0000 0.9633 1.6483 + 351.0300 149.0000 127.0000 0.9633 1.7149 343.5620 149.0000 128.0000 0.9633 1.7937 + 342.8931 149.0000 129.0000 0.9633 0.9576 315.9166 149.0000 130.0000 0.9633 1.9419 + 534.5127 149.0000 131.0000 0.9633 0.9601 459.6285 149.0000 132.0000 0.9633 0.9434 + 405.5453 149.0000 133.0000 0.9633 0.9889 366.3652 149.0000 134.0000 0.9633 0.9901 + 318.9305 149.0000 135.0000 0.9633 0.9974 567.6002 149.0000 137.0000 0.9633 0.9738 + 1168.5036 149.0000 138.0000 0.9633 0.9801 862.8833 149.0000 139.0000 0.9633 1.9153 + 619.6537 149.0000 140.0000 0.9633 1.9355 626.0254 149.0000 141.0000 0.9633 1.9545 + 581.0549 149.0000 142.0000 0.9633 1.9420 663.0380 149.0000 143.0000 0.9633 1.6682 + 500.1628 149.0000 144.0000 0.9633 1.8584 467.3771 149.0000 145.0000 0.9633 1.9003 + 432.9973 149.0000 146.0000 0.9633 1.8630 419.6868 149.0000 147.0000 0.9633 0.9679 + 411.1576 149.0000 148.0000 0.9633 1.9539 678.9920 149.0000 149.0000 0.9633 0.9633 + 39.0500 150.0000 1.0000 0.9514 0.9118 25.4105 150.0000 2.0000 0.9514 0.0000 + 642.4190 150.0000 3.0000 0.9514 0.0000 362.7434 150.0000 4.0000 0.9514 0.0000 + 240.5934 150.0000 5.0000 0.9514 0.0000 160.5876 150.0000 6.0000 0.9514 0.0000 + 111.2768 150.0000 7.0000 0.9514 0.0000 83.7120 150.0000 8.0000 0.9514 0.0000 + 63.0806 150.0000 9.0000 0.9514 0.0000 48.3258 150.0000 10.0000 0.9514 0.0000 + 767.0955 150.0000 11.0000 0.9514 0.0000 580.4500 150.0000 12.0000 0.9514 0.0000 + 531.0794 150.0000 13.0000 0.9514 0.0000 414.1403 150.0000 14.0000 0.9514 0.0000 + 319.9307 150.0000 15.0000 0.9514 0.0000 263.8277 150.0000 16.0000 0.9514 0.0000 + 214.1723 150.0000 17.0000 0.9514 0.0000 174.2639 150.0000 18.0000 0.9514 0.0000 + 1259.5964 150.0000 19.0000 0.9514 0.0000 1026.6097 150.0000 20.0000 0.9514 0.0000 + 845.5447 150.0000 21.0000 0.9514 0.0000 813.8964 150.0000 22.0000 0.9514 0.0000 + 743.9253 150.0000 23.0000 0.9514 0.0000 585.4069 150.0000 24.0000 0.9514 0.0000 + 638.7587 150.0000 25.0000 0.9514 0.0000 500.6304 150.0000 26.0000 0.9514 0.0000 + 528.9965 150.0000 27.0000 0.9514 0.0000 546.0473 150.0000 28.0000 0.9514 0.0000 + 418.1730 150.0000 29.0000 0.9514 0.0000 427.1025 150.0000 30.0000 0.9514 0.0000 + 506.8838 150.0000 31.0000 0.9514 0.0000 443.4892 150.0000 32.0000 0.9514 0.0000 + 375.3694 150.0000 33.0000 0.9514 0.0000 335.1182 150.0000 34.0000 0.9514 0.0000 + 291.7179 150.0000 35.0000 0.9514 0.0000 252.4408 150.0000 36.0000 0.9514 0.0000 + 1409.5386 150.0000 37.0000 0.9514 0.0000 1223.3073 150.0000 38.0000 0.9514 0.0000 + 1065.4342 150.0000 39.0000 0.9514 0.0000 953.9322 150.0000 40.0000 0.9514 0.0000 + 867.5475 150.0000 41.0000 0.9514 0.0000 666.4197 150.0000 42.0000 0.9514 0.0000 + 744.9993 150.0000 43.0000 0.9514 0.0000 564.4589 150.0000 44.0000 0.9514 0.0000 + 617.3791 150.0000 45.0000 0.9514 0.0000 571.5602 150.0000 46.0000 0.9514 0.0000 + 476.5966 150.0000 47.0000 0.9514 0.0000 502.5513 150.0000 48.0000 0.9514 0.0000 + 634.1195 150.0000 49.0000 0.9514 0.0000 582.7693 150.0000 50.0000 0.9514 0.0000 + 515.9467 150.0000 51.0000 0.9514 0.0000 476.6811 150.0000 52.0000 0.9514 0.0000 + 428.9963 150.0000 53.0000 0.9514 0.0000 383.9457 150.0000 54.0000 0.9514 0.0000 + 1716.1526 150.0000 55.0000 0.9514 0.0000 1561.8289 150.0000 56.0000 0.9514 0.0000 + 1364.4290 150.0000 57.0000 0.9514 0.0000 610.0042 150.0000 58.0000 0.9514 2.7991 + 1381.1677 150.0000 59.0000 0.9514 0.0000 1325.1151 150.0000 60.0000 0.9514 0.0000 + 1291.5707 150.0000 61.0000 0.9514 0.0000 1260.7608 150.0000 62.0000 0.9514 0.0000 + 1233.4280 150.0000 63.0000 0.9514 0.0000 963.2234 150.0000 64.0000 0.9514 0.0000 + 1094.0703 150.0000 65.0000 0.9514 0.0000 1053.9748 150.0000 66.0000 0.9514 0.0000 + 1111.0005 150.0000 67.0000 0.9514 0.0000 1087.2901 150.0000 68.0000 0.9514 0.0000 + 1065.8196 150.0000 69.0000 0.9514 0.0000 1053.6773 150.0000 70.0000 0.9514 0.0000 + 883.5921 150.0000 71.0000 0.9514 0.0000 863.8075 150.0000 72.0000 0.9514 0.0000 + 785.1771 150.0000 73.0000 0.9514 0.0000 660.5539 150.0000 74.0000 0.9514 0.0000 + 671.1013 150.0000 75.0000 0.9514 0.0000 606.0646 150.0000 76.0000 0.9514 0.0000 + 553.4201 150.0000 77.0000 0.9514 0.0000 458.0796 150.0000 78.0000 0.9514 0.0000 + 427.3948 150.0000 79.0000 0.9514 0.0000 439.2375 150.0000 80.0000 0.9514 0.0000 + 649.4752 150.0000 81.0000 0.9514 0.0000 632.1606 150.0000 82.0000 0.9514 0.0000 + 577.5750 150.0000 83.0000 0.9514 0.0000 548.9328 150.0000 84.0000 0.9514 0.0000 + 504.4140 150.0000 85.0000 0.9514 0.0000 460.4353 150.0000 86.0000 0.9514 0.0000 + 1613.2050 150.0000 87.0000 0.9514 0.0000 1539.6549 150.0000 88.0000 0.9514 0.0000 + 1353.9743 150.0000 89.0000 0.9514 0.0000 1208.8936 150.0000 90.0000 0.9514 0.0000 + 1203.7043 150.0000 91.0000 0.9514 0.0000 1165.2987 150.0000 92.0000 0.9514 0.0000 + 1204.5686 150.0000 93.0000 0.9514 0.0000 1165.7062 150.0000 94.0000 0.9514 0.0000 + 63.5189 150.0000 101.0000 0.9514 0.0000 210.3815 150.0000 103.0000 0.9514 0.9865 + 267.5036 150.0000 104.0000 0.9514 0.9808 201.6758 150.0000 105.0000 0.9514 0.9706 + 150.6040 150.0000 106.0000 0.9514 0.9868 103.7070 150.0000 107.0000 0.9514 0.9944 + 74.9289 150.0000 108.0000 0.9514 0.9925 51.0492 150.0000 109.0000 0.9514 0.9982 + 308.2470 150.0000 111.0000 0.9514 0.9684 477.2848 150.0000 112.0000 0.9514 0.9628 + 480.3735 150.0000 113.0000 0.9514 0.9648 382.1255 150.0000 114.0000 0.9514 0.9507 + 310.4238 150.0000 115.0000 0.9514 0.9947 260.9497 150.0000 116.0000 0.9514 0.9948 + 211.9709 150.0000 117.0000 0.9514 0.9972 422.0055 150.0000 119.0000 0.9514 0.9767 + 819.9926 150.0000 120.0000 0.9514 0.9831 419.1432 150.0000 121.0000 0.9514 1.8627 + 404.4378 150.0000 122.0000 0.9514 1.8299 396.4079 150.0000 123.0000 0.9514 1.9138 + 393.1215 150.0000 124.0000 0.9514 1.8269 360.1114 150.0000 125.0000 0.9514 1.6406 + 332.7595 150.0000 126.0000 0.9514 1.6483 317.3978 150.0000 127.0000 0.9514 1.7149 + 310.4237 150.0000 128.0000 0.9514 1.7937 307.8194 150.0000 129.0000 0.9514 0.9576 + 286.9464 150.0000 130.0000 0.9514 1.9419 475.1014 150.0000 131.0000 0.9514 0.9601 + 414.0613 150.0000 132.0000 0.9514 0.9434 368.8196 150.0000 133.0000 0.9514 0.9889 + 335.2667 150.0000 134.0000 0.9514 0.9901 293.8239 150.0000 135.0000 0.9514 0.9974 + 502.4986 150.0000 137.0000 0.9514 0.9738 998.1919 150.0000 138.0000 0.9514 0.9801 + 754.1146 150.0000 139.0000 0.9514 1.9153 554.4107 150.0000 140.0000 0.9514 1.9355 + 559.9850 150.0000 141.0000 0.9514 1.9545 521.1563 150.0000 142.0000 0.9514 1.9420 + 587.9355 150.0000 143.0000 0.9514 1.6682 452.1682 150.0000 144.0000 0.9514 1.8584 + 422.7438 150.0000 145.0000 0.9514 1.9003 392.1471 150.0000 146.0000 0.9514 1.8630 + 379.6335 150.0000 147.0000 0.9514 0.9679 374.3430 150.0000 148.0000 0.9514 1.9539 + 603.0965 150.0000 149.0000 0.9514 0.9633 542.0439 150.0000 150.0000 0.9514 0.9514 + 37.1186 151.0000 1.0000 0.9749 0.9118 24.5068 151.0000 2.0000 0.9749 0.0000 + 569.5020 151.0000 3.0000 0.9749 0.0000 332.0665 151.0000 4.0000 0.9749 0.0000 + 224.2438 151.0000 5.0000 0.9749 0.0000 151.6334 151.0000 6.0000 0.9749 0.0000 + 106.0538 151.0000 7.0000 0.9749 0.0000 80.2899 151.0000 8.0000 0.9749 0.0000 + 60.8174 151.0000 9.0000 0.9749 0.0000 46.7775 151.0000 10.0000 0.9749 0.0000 + 681.3650 151.0000 11.0000 0.9749 0.0000 528.3545 151.0000 12.0000 0.9749 0.0000 + 487.9847 151.0000 13.0000 0.9749 0.0000 385.3102 151.0000 14.0000 0.9749 0.0000 + 300.7558 151.0000 15.0000 0.9749 0.0000 249.6469 151.0000 16.0000 0.9749 0.0000 + 203.9103 151.0000 17.0000 0.9749 0.0000 166.7796 151.0000 18.0000 0.9749 0.0000 + 1113.9369 151.0000 19.0000 0.9749 0.0000 925.3266 151.0000 20.0000 0.9749 0.0000 + 765.4303 151.0000 21.0000 0.9749 0.0000 739.7751 151.0000 22.0000 0.9749 0.0000 + 677.8014 151.0000 23.0000 0.9749 0.0000 533.7253 151.0000 24.0000 0.9749 0.0000 + 584.0079 151.0000 25.0000 0.9749 0.0000 458.2135 151.0000 26.0000 0.9749 0.0000 + 486.4645 151.0000 27.0000 0.9749 0.0000 500.9011 151.0000 28.0000 0.9749 0.0000 + 383.8010 151.0000 29.0000 0.9749 0.0000 394.8434 151.0000 30.0000 0.9749 0.0000 + 467.5119 151.0000 31.0000 0.9749 0.0000 412.9661 151.0000 32.0000 0.9749 0.0000 + 352.5427 151.0000 33.0000 0.9749 0.0000 316.3984 151.0000 34.0000 0.9749 0.0000 + 276.8856 151.0000 35.0000 0.9749 0.0000 240.7515 151.0000 36.0000 0.9749 0.0000 + 1248.8109 151.0000 37.0000 0.9749 0.0000 1101.9644 151.0000 38.0000 0.9749 0.0000 + 967.1672 151.0000 39.0000 0.9749 0.0000 870.1334 151.0000 40.0000 0.9749 0.0000 + 793.8771 151.0000 41.0000 0.9749 0.0000 613.2470 151.0000 42.0000 0.9749 0.0000 + 684.1292 151.0000 43.0000 0.9749 0.0000 521.5071 151.0000 44.0000 0.9749 0.0000 + 570.2790 151.0000 45.0000 0.9749 0.0000 528.9954 151.0000 46.0000 0.9749 0.0000 + 440.7041 151.0000 47.0000 0.9749 0.0000 466.2941 151.0000 48.0000 0.9749 0.0000 + 584.7110 151.0000 49.0000 0.9749 0.0000 541.5209 151.0000 50.0000 0.9749 0.0000 + 483.0596 151.0000 51.0000 0.9749 0.0000 448.3333 151.0000 52.0000 0.9749 0.0000 + 405.4400 151.0000 53.0000 0.9749 0.0000 364.5064 151.0000 54.0000 0.9749 0.0000 + 1521.2386 151.0000 55.0000 0.9749 0.0000 1403.5743 151.0000 56.0000 0.9749 0.0000 + 1235.5723 151.0000 57.0000 0.9749 0.0000 570.3846 151.0000 58.0000 0.9749 2.7991 + 1244.3690 151.0000 59.0000 0.9749 0.0000 1195.3394 151.0000 60.0000 0.9749 0.0000 + 1165.4811 151.0000 61.0000 0.9749 0.0000 1138.0116 151.0000 62.0000 0.9749 0.0000 + 1113.6574 151.0000 63.0000 0.9749 0.0000 877.2337 151.0000 64.0000 0.9749 0.0000 + 984.3669 151.0000 65.0000 0.9749 0.0000 949.7160 151.0000 66.0000 0.9749 0.0000 + 1005.0059 151.0000 67.0000 0.9749 0.0000 983.7511 151.0000 68.0000 0.9749 0.0000 + 964.6052 151.0000 69.0000 0.9749 0.0000 953.2696 151.0000 70.0000 0.9749 0.0000 + 804.1231 151.0000 71.0000 0.9749 0.0000 792.2720 151.0000 72.0000 0.9749 0.0000 + 723.5937 151.0000 73.0000 0.9749 0.0000 611.1029 151.0000 74.0000 0.9749 0.0000 + 621.9565 151.0000 75.0000 0.9749 0.0000 563.9701 151.0000 76.0000 0.9749 0.0000 + 516.6717 151.0000 77.0000 0.9749 0.0000 429.1725 151.0000 78.0000 0.9749 0.0000 + 400.9781 151.0000 79.0000 0.9749 0.0000 412.6887 151.0000 80.0000 0.9749 0.0000 + 600.1676 151.0000 81.0000 0.9749 0.0000 587.6072 151.0000 82.0000 0.9749 0.0000 + 540.4832 151.0000 83.0000 0.9749 0.0000 515.6847 151.0000 84.0000 0.9749 0.0000 + 476.0591 151.0000 85.0000 0.9749 0.0000 436.3686 151.0000 86.0000 0.9749 0.0000 + 1438.7730 151.0000 87.0000 0.9749 0.0000 1389.2118 151.0000 88.0000 0.9749 0.0000 + 1230.2614 151.0000 89.0000 0.9749 0.0000 1107.3931 151.0000 90.0000 0.9749 0.0000 + 1098.3173 151.0000 91.0000 0.9749 0.0000 1063.4833 151.0000 92.0000 0.9749 0.0000 + 1093.7836 151.0000 93.0000 0.9749 0.0000 1059.4592 151.0000 94.0000 0.9749 0.0000 + 59.7796 151.0000 101.0000 0.9749 0.0000 193.0801 151.0000 103.0000 0.9749 0.9865 + 246.3580 151.0000 104.0000 0.9749 0.9808 188.6577 151.0000 105.0000 0.9749 0.9706 + 142.1737 151.0000 106.0000 0.9749 0.9868 98.8583 151.0000 107.0000 0.9749 0.9944 + 71.9816 151.0000 108.0000 0.9749 0.9925 49.4970 151.0000 109.0000 0.9749 0.9982 + 281.9923 151.0000 111.0000 0.9749 0.9684 435.9923 151.0000 112.0000 0.9749 0.9628 + 442.3946 151.0000 113.0000 0.9749 0.9648 356.1681 151.0000 114.0000 0.9749 0.9507 + 291.9225 151.0000 115.0000 0.9749 0.9947 246.8844 151.0000 116.0000 0.9749 0.9948 + 201.7898 151.0000 117.0000 0.9749 0.9972 388.7844 151.0000 119.0000 0.9749 0.9767 + 739.8380 151.0000 120.0000 0.9749 0.9831 389.8645 151.0000 121.0000 0.9749 1.8627 + 376.3336 151.0000 122.0000 0.9749 1.8299 368.7908 151.0000 123.0000 0.9749 1.9138 + 365.2940 151.0000 124.0000 0.9749 1.8269 336.5178 151.0000 125.0000 0.9749 1.6406 + 311.4859 151.0000 126.0000 0.9749 1.6483 297.1110 151.0000 127.0000 0.9749 1.7149 + 290.4433 151.0000 128.0000 0.9749 1.7937 286.7436 151.0000 129.0000 0.9749 0.9576 + 269.4208 151.0000 130.0000 0.9749 1.9419 439.2692 151.0000 131.0000 0.9749 0.9601 + 386.4260 151.0000 132.0000 0.9749 0.9434 346.5656 151.0000 133.0000 0.9749 0.9889 + 316.5125 151.0000 134.0000 0.9749 0.9901 278.8076 151.0000 135.0000 0.9749 0.9974 + 463.9632 151.0000 137.0000 0.9749 0.9738 899.7796 151.0000 138.0000 0.9749 0.9801 + 690.2435 151.0000 139.0000 0.9749 1.9153 515.3541 151.0000 140.0000 0.9749 1.9355 + 520.4182 151.0000 141.0000 0.9749 1.9545 485.3374 151.0000 142.0000 0.9749 1.9420 + 543.4822 151.0000 143.0000 0.9749 1.6682 423.3751 151.0000 144.0000 0.9749 1.8584 + 396.0359 151.0000 145.0000 0.9749 1.9003 367.7493 151.0000 146.0000 0.9749 1.8630 + 355.7080 151.0000 147.0000 0.9749 0.9679 352.2132 151.0000 148.0000 0.9749 1.9539 + 557.6272 151.0000 149.0000 0.9749 0.9633 505.1900 151.0000 150.0000 0.9749 0.9514 + 473.4703 151.0000 151.0000 0.9749 0.9749 35.4861 152.0000 1.0000 0.9811 0.9118 + 23.7100 152.0000 2.0000 0.9811 0.0000 519.4518 152.0000 3.0000 0.9811 0.0000 + 308.9426 152.0000 4.0000 0.9811 0.0000 211.2799 152.0000 5.0000 0.9811 0.0000 + 144.2600 152.0000 6.0000 0.9811 0.0000 101.6315 152.0000 7.0000 0.9811 0.0000 + 77.3365 152.0000 8.0000 0.9811 0.0000 58.8332 152.0000 9.0000 0.9811 0.0000 + 45.4044 152.0000 10.0000 0.9811 0.0000 622.3099 152.0000 11.0000 0.9811 0.0000 + 489.7820 152.0000 12.0000 0.9811 0.0000 455.2477 152.0000 13.0000 0.9811 0.0000 + 362.5561 152.0000 14.0000 0.9811 0.0000 285.1239 152.0000 15.0000 0.9811 0.0000 + 237.8571 152.0000 16.0000 0.9811 0.0000 195.2131 152.0000 17.0000 0.9811 0.0000 + 160.3331 152.0000 18.0000 0.9811 0.0000 1015.7738 152.0000 19.0000 0.9811 0.0000 + 852.9036 152.0000 20.0000 0.9811 0.0000 707.3769 152.0000 21.0000 0.9811 0.0000 + 685.5687 152.0000 22.0000 0.9811 0.0000 629.1390 152.0000 23.0000 0.9811 0.0000 + 495.8801 152.0000 24.0000 0.9811 0.0000 543.3438 152.0000 25.0000 0.9811 0.0000 + 426.8361 152.0000 26.0000 0.9811 0.0000 454.3170 152.0000 27.0000 0.9811 0.0000 + 467.0009 152.0000 28.0000 0.9811 0.0000 358.1870 152.0000 29.0000 0.9811 0.0000 + 370.0674 152.0000 30.0000 0.9811 0.0000 437.4417 152.0000 31.0000 0.9811 0.0000 + 388.8946 152.0000 32.0000 0.9811 0.0000 334.0263 152.0000 33.0000 0.9811 0.0000 + 300.9617 152.0000 34.0000 0.9811 0.0000 264.4446 152.0000 35.0000 0.9811 0.0000 + 230.7947 152.0000 36.0000 0.9811 0.0000 1140.3397 152.0000 37.0000 0.9811 0.0000 + 1015.6122 152.0000 38.0000 0.9811 0.0000 895.7304 152.0000 39.0000 0.9811 0.0000 + 808.4252 152.0000 40.0000 0.9811 0.0000 739.2097 152.0000 41.0000 0.9811 0.0000 + 573.3700 152.0000 42.0000 0.9811 0.0000 638.6462 152.0000 43.0000 0.9811 0.0000 + 489.0100 152.0000 44.0000 0.9811 0.0000 534.4511 152.0000 45.0000 0.9811 0.0000 + 496.4313 152.0000 46.0000 0.9811 0.0000 413.5913 152.0000 47.0000 0.9811 0.0000 + 438.3534 152.0000 48.0000 0.9811 0.0000 547.2913 152.0000 49.0000 0.9811 0.0000 + 509.3849 152.0000 50.0000 0.9811 0.0000 456.7589 152.0000 51.0000 0.9811 0.0000 + 425.3152 152.0000 52.0000 0.9811 0.0000 385.9988 152.0000 53.0000 0.9811 0.0000 + 348.2164 152.0000 54.0000 0.9811 0.0000 1389.9562 152.0000 55.0000 0.9811 0.0000 + 1292.0505 152.0000 56.0000 0.9811 0.0000 1142.8009 152.0000 57.0000 0.9811 0.0000 + 538.9780 152.0000 58.0000 0.9811 2.7991 1147.3718 152.0000 59.0000 0.9811 0.0000 + 1102.9411 152.0000 60.0000 0.9811 0.0000 1075.5989 152.0000 61.0000 0.9811 0.0000 + 1050.4168 152.0000 62.0000 0.9811 0.0000 1028.0990 152.0000 63.0000 0.9811 0.0000 + 814.5718 152.0000 64.0000 0.9811 0.0000 907.4929 152.0000 65.0000 0.9811 0.0000 + 876.4054 152.0000 66.0000 0.9811 0.0000 928.8165 152.0000 67.0000 0.9811 0.0000 + 909.2616 152.0000 68.0000 0.9811 0.0000 891.7106 152.0000 69.0000 0.9811 0.0000 + 881.0037 152.0000 70.0000 0.9811 0.0000 746.1308 152.0000 71.0000 0.9811 0.0000 + 738.7354 152.0000 72.0000 0.9811 0.0000 676.8865 152.0000 73.0000 0.9811 0.0000 + 573.3887 152.0000 74.0000 0.9811 0.0000 584.1896 152.0000 75.0000 0.9811 0.0000 + 531.2209 152.0000 76.0000 0.9811 0.0000 487.7978 152.0000 77.0000 0.9811 0.0000 + 406.3348 152.0000 78.0000 0.9811 0.0000 380.0529 152.0000 79.0000 0.9811 0.0000 + 391.4533 152.0000 80.0000 0.9811 0.0000 562.8815 152.0000 81.0000 0.9811 0.0000 + 553.0645 152.0000 82.0000 0.9811 0.0000 510.9988 152.0000 83.0000 0.9811 0.0000 + 488.8815 152.0000 84.0000 0.9811 0.0000 452.8206 152.0000 85.0000 0.9811 0.0000 + 416.3558 152.0000 86.0000 0.9811 0.0000 1319.6282 152.0000 87.0000 0.9811 0.0000 + 1282.1564 152.0000 88.0000 0.9811 0.0000 1140.3381 152.0000 89.0000 0.9811 0.0000 + 1031.9646 152.0000 90.0000 0.9811 0.0000 1021.1167 152.0000 91.0000 0.9811 0.0000 + 988.8657 152.0000 92.0000 0.9811 0.0000 1013.6901 152.0000 93.0000 0.9811 0.0000 + 982.4295 152.0000 94.0000 0.9811 0.0000 56.7156 152.0000 101.0000 0.9811 0.0000 + 179.9812 152.0000 103.0000 0.9811 0.9865 230.2641 152.0000 104.0000 0.9811 0.9808 + 178.2509 152.0000 105.0000 0.9811 0.9706 135.2720 152.0000 106.0000 0.9811 0.9868 + 94.7705 152.0000 107.0000 0.9811 0.9944 69.4317 152.0000 108.0000 0.9811 0.9925 + 48.1037 152.0000 109.0000 0.9811 0.9982 262.3697 152.0000 111.0000 0.9811 0.9684 + 405.2529 152.0000 112.0000 0.9811 0.9628 413.3856 152.0000 113.0000 0.9811 0.9648 + 335.5914 152.0000 114.0000 0.9811 0.9507 276.8372 152.0000 115.0000 0.9811 0.9947 + 235.2059 152.0000 116.0000 0.9811 0.9948 193.1704 152.0000 117.0000 0.9811 0.9972 + 363.8482 152.0000 119.0000 0.9811 0.9767 682.9621 152.0000 120.0000 0.9811 0.9831 + 366.9900 152.0000 121.0000 0.9811 1.8627 354.4029 152.0000 122.0000 0.9811 1.8299 + 347.2648 152.0000 123.0000 0.9811 1.9138 343.7087 152.0000 124.0000 0.9811 1.8269 + 317.7750 152.0000 125.0000 0.9811 1.6406 294.5079 152.0000 126.0000 0.9811 1.6483 + 280.9482 152.0000 127.0000 0.9811 1.7149 274.5580 152.0000 128.0000 0.9811 1.7937 + 270.2783 152.0000 129.0000 0.9811 0.9576 255.2713 152.0000 130.0000 0.9811 1.9419 + 411.7018 152.0000 131.0000 0.9811 0.9601 364.4882 152.0000 132.0000 0.9811 0.9434 + 328.4909 152.0000 133.0000 0.9811 0.9889 301.0567 152.0000 134.0000 0.9811 0.9901 + 266.2278 152.0000 135.0000 0.9811 0.9974 434.9391 152.0000 137.0000 0.9811 0.9738 + 830.3661 152.0000 138.0000 0.9811 0.9801 643.2697 152.0000 139.0000 0.9811 1.9153 + 485.0856 152.0000 140.0000 0.9811 1.9355 489.7750 152.0000 141.0000 0.9811 1.9545 + 457.4717 152.0000 142.0000 0.9811 1.9420 509.8781 152.0000 143.0000 0.9811 1.6682 + 400.5365 152.0000 144.0000 0.9811 1.8584 374.8656 152.0000 145.0000 0.9811 1.9003 + 348.3802 152.0000 146.0000 0.9811 1.8630 336.7771 152.0000 147.0000 0.9811 0.9679 + 334.3241 152.0000 148.0000 0.9811 1.9539 522.8863 152.0000 149.0000 0.9811 0.9633 + 476.2087 152.0000 150.0000 0.9811 0.9514 448.0173 152.0000 151.0000 0.9811 0.9749 + 425.1015 152.0000 152.0000 0.9811 0.9811 32.8151 153.0000 1.0000 0.9968 0.9118 + 22.2717 153.0000 2.0000 0.9968 0.0000 454.3954 153.0000 3.0000 0.9968 0.0000 + 276.4309 153.0000 4.0000 0.9968 0.0000 191.9273 153.0000 5.0000 0.9968 0.0000 + 132.6251 153.0000 6.0000 0.9968 0.0000 94.2991 153.0000 7.0000 0.9968 0.0000 + 72.2358 153.0000 8.0000 0.9968 0.0000 55.2689 153.0000 9.0000 0.9968 0.0000 + 42.8512 153.0000 10.0000 0.9968 0.0000 545.2855 153.0000 11.0000 0.9968 0.0000 + 436.4452 153.0000 12.0000 0.9968 0.0000 408.7149 153.0000 13.0000 0.9968 0.0000 + 328.8157 153.0000 14.0000 0.9968 0.0000 260.9446 153.0000 15.0000 0.9968 0.0000 + 219.0430 153.0000 16.0000 0.9968 0.0000 180.8604 153.0000 17.0000 0.9968 0.0000 + 149.3430 153.0000 18.0000 0.9968 0.0000 889.0026 153.0000 19.0000 0.9968 0.0000 + 755.3478 153.0000 20.0000 0.9968 0.0000 628.3317 153.0000 21.0000 0.9968 0.0000 + 610.9949 153.0000 22.0000 0.9968 0.0000 561.7643 153.0000 23.0000 0.9968 0.0000 + 443.4401 153.0000 24.0000 0.9968 0.0000 486.5025 153.0000 25.0000 0.9968 0.0000 + 382.8900 153.0000 26.0000 0.9968 0.0000 408.6064 153.0000 27.0000 0.9968 0.0000 + 419.1592 153.0000 28.0000 0.9968 0.0000 322.0346 153.0000 29.0000 0.9968 0.0000 + 334.2414 153.0000 30.0000 0.9968 0.0000 394.2289 153.0000 31.0000 0.9968 0.0000 + 353.1156 153.0000 32.0000 0.9968 0.0000 305.5214 153.0000 33.0000 0.9968 0.0000 + 276.6109 153.0000 34.0000 0.9968 0.0000 244.2752 153.0000 35.0000 0.9968 0.0000 + 214.2004 153.0000 36.0000 0.9968 0.0000 999.7871 153.0000 37.0000 0.9968 0.0000 + 899.4930 153.0000 38.0000 0.9968 0.0000 797.7901 153.0000 39.0000 0.9968 0.0000 + 722.7240 153.0000 40.0000 0.9968 0.0000 662.6068 153.0000 41.0000 0.9968 0.0000 + 516.5932 153.0000 42.0000 0.9968 0.0000 574.2805 153.0000 43.0000 0.9968 0.0000 + 442.1710 153.0000 44.0000 0.9968 0.0000 482.8217 153.0000 45.0000 0.9968 0.0000 + 449.2061 153.0000 46.0000 0.9968 0.0000 374.4467 153.0000 47.0000 0.9968 0.0000 + 397.4979 153.0000 48.0000 0.9968 0.0000 493.6625 153.0000 49.0000 0.9968 0.0000 + 462.0716 153.0000 50.0000 0.9968 0.0000 416.8715 153.0000 51.0000 0.9968 0.0000 + 389.7029 153.0000 52.0000 0.9968 0.0000 355.2175 153.0000 53.0000 0.9968 0.0000 + 321.8029 153.0000 54.0000 0.9968 0.0000 1219.6272 153.0000 55.0000 0.9968 0.0000 + 1142.9378 153.0000 56.0000 0.9968 0.0000 1016.4155 153.0000 57.0000 0.9968 0.0000 + 491.6150 153.0000 58.0000 0.9968 2.7991 1016.9588 153.0000 59.0000 0.9968 0.0000 + 978.3471 153.0000 60.0000 0.9968 0.0000 954.2967 153.0000 61.0000 0.9968 0.0000 + 932.1166 153.0000 62.0000 0.9968 0.0000 912.4671 153.0000 63.0000 0.9968 0.0000 + 728.0053 153.0000 64.0000 0.9968 0.0000 804.5343 153.0000 65.0000 0.9968 0.0000 + 777.8548 153.0000 66.0000 0.9968 0.0000 825.3644 153.0000 67.0000 0.9968 0.0000 + 808.0654 153.0000 68.0000 0.9968 0.0000 792.6061 153.0000 69.0000 0.9968 0.0000 + 782.8405 153.0000 70.0000 0.9968 0.0000 666.1479 153.0000 71.0000 0.9968 0.0000 + 663.1920 153.0000 72.0000 0.9968 0.0000 610.0143 153.0000 73.0000 0.9968 0.0000 + 518.7353 153.0000 74.0000 0.9968 0.0000 529.1221 153.0000 75.0000 0.9968 0.0000 + 482.7801 153.0000 76.0000 0.9968 0.0000 444.5640 153.0000 77.0000 0.9968 0.0000 + 371.6810 153.0000 78.0000 0.9968 0.0000 348.1308 153.0000 79.0000 0.9968 0.0000 + 358.8383 153.0000 80.0000 0.9968 0.0000 509.1150 153.0000 81.0000 0.9968 0.0000 + 502.1966 153.0000 82.0000 0.9968 0.0000 466.4183 153.0000 83.0000 0.9968 0.0000 + 447.6649 153.0000 84.0000 0.9968 0.0000 416.3043 153.0000 85.0000 0.9968 0.0000 + 384.2311 153.0000 86.0000 0.9968 0.0000 1163.0702 153.0000 87.0000 0.9968 0.0000 + 1137.6470 153.0000 88.0000 0.9968 0.0000 1016.7803 153.0000 89.0000 0.9968 0.0000 + 925.9812 153.0000 90.0000 0.9968 0.0000 913.9075 153.0000 91.0000 0.9968 0.0000 + 885.2021 153.0000 92.0000 0.9968 0.0000 903.9688 153.0000 93.0000 0.9968 0.0000 + 876.6519 153.0000 94.0000 0.9968 0.0000 51.9496 153.0000 101.0000 0.9968 0.0000 + 161.4303 153.0000 103.0000 0.9968 0.9865 207.2185 153.0000 104.0000 0.9968 0.9808 + 162.4939 153.0000 105.0000 0.9968 0.9706 124.3958 153.0000 106.0000 0.9968 0.9868 + 87.9869 153.0000 107.0000 0.9968 0.9944 64.9764 153.0000 108.0000 0.9968 0.9925 + 45.4618 153.0000 109.0000 0.9968 0.9982 234.8776 153.0000 111.0000 0.9968 0.9684 + 362.3258 153.0000 112.0000 0.9968 0.9628 371.8615 153.0000 113.0000 0.9968 0.9648 + 304.8715 153.0000 114.0000 0.9968 0.9507 253.4677 153.0000 115.0000 0.9968 0.9947 + 216.5866 153.0000 116.0000 0.9968 0.9948 178.9581 153.0000 117.0000 0.9968 0.9972 + 328.2207 153.0000 119.0000 0.9968 0.9767 606.1859 153.0000 120.0000 0.9968 0.9831 + 333.1801 153.0000 121.0000 0.9968 1.8627 321.9433 153.0000 122.0000 0.9968 1.8299 + 315.4349 153.0000 123.0000 0.9968 1.9138 311.9395 153.0000 124.0000 0.9968 1.8269 + 289.5784 153.0000 125.0000 0.9968 1.6406 268.7934 153.0000 126.0000 0.9968 1.6483 + 256.4721 153.0000 127.0000 0.9968 1.7149 250.5536 153.0000 128.0000 0.9968 1.7937 + 245.8435 153.0000 129.0000 0.9968 0.9576 233.5632 153.0000 130.0000 0.9968 1.9419 + 371.7655 153.0000 131.0000 0.9968 0.9601 331.5987 153.0000 132.0000 0.9968 0.9434 + 300.6043 153.0000 133.0000 0.9968 0.9889 276.6862 153.0000 134.0000 0.9968 0.9901 + 245.8647 153.0000 135.0000 0.9968 0.9974 393.1809 153.0000 137.0000 0.9968 0.9738 + 736.9021 153.0000 138.0000 0.9968 0.9801 577.3805 153.0000 139.0000 0.9968 1.9153 + 440.4474 153.0000 140.0000 0.9968 1.9355 444.6402 153.0000 141.0000 0.9968 1.9545 + 416.1207 153.0000 142.0000 0.9968 1.9420 461.3223 153.0000 143.0000 0.9968 1.6682 + 365.9282 153.0000 144.0000 0.9968 1.8584 342.7279 153.0000 145.0000 0.9968 1.9003 + 318.8629 153.0000 146.0000 0.9968 1.8630 308.0475 153.0000 147.0000 0.9968 0.9679 + 306.6549 153.0000 148.0000 0.9968 1.9539 472.6441 153.0000 149.0000 0.9968 0.9633 + 433.0589 153.0000 150.0000 0.9968 0.9514 409.2485 153.0000 151.0000 0.9968 0.9749 + 389.5996 153.0000 152.0000 0.9968 0.9811 358.4995 153.0000 153.0000 0.9968 0.9968 + 42.3058 155.0000 1.0000 0.9909 0.9118 27.4695 155.0000 2.0000 0.9909 0.0000 + 732.9120 155.0000 3.0000 0.9909 0.0000 399.4020 155.0000 4.0000 0.9909 0.0000 + 262.2387 155.0000 5.0000 0.9909 0.0000 174.2718 155.0000 6.0000 0.9909 0.0000 + 120.4982 155.0000 7.0000 0.9909 0.0000 90.5303 155.0000 8.0000 0.9909 0.0000 + 68.1239 155.0000 9.0000 0.9909 0.0000 52.1041 155.0000 10.0000 0.9909 0.0000 + 873.2665 155.0000 11.0000 0.9909 0.0000 642.1846 155.0000 12.0000 0.9909 0.0000 + 583.6850 155.0000 13.0000 0.9909 0.0000 451.6171 155.0000 14.0000 0.9909 0.0000 + 347.4030 155.0000 15.0000 0.9909 0.0000 286.0418 155.0000 16.0000 0.9909 0.0000 + 231.9483 155.0000 17.0000 0.9909 0.0000 188.5950 155.0000 18.0000 0.9909 0.0000 + 1449.5860 155.0000 19.0000 0.9909 0.0000 1149.8295 155.0000 20.0000 0.9909 0.0000 + 942.2745 155.0000 21.0000 0.9909 0.0000 904.2225 155.0000 22.0000 0.9909 0.0000 + 824.7780 155.0000 23.0000 0.9909 0.0000 650.0627 155.0000 24.0000 0.9909 0.0000 + 706.1412 155.0000 25.0000 0.9909 0.0000 554.0925 155.0000 26.0000 0.9909 0.0000 + 581.8458 155.0000 27.0000 0.9909 0.0000 601.5808 155.0000 28.0000 0.9909 0.0000 + 461.7019 155.0000 29.0000 0.9909 0.0000 467.8731 155.0000 30.0000 0.9909 0.0000 + 556.5016 155.0000 31.0000 0.9909 0.0000 483.7117 155.0000 32.0000 0.9909 0.0000 + 407.7958 155.0000 33.0000 0.9909 0.0000 363.5286 155.0000 34.0000 0.9909 0.0000 + 316.0700 155.0000 35.0000 0.9909 0.0000 273.2999 155.0000 36.0000 0.9909 0.0000 + 1620.7604 155.0000 37.0000 0.9909 0.0000 1372.8515 155.0000 38.0000 0.9909 0.0000 + 1186.3885 155.0000 39.0000 0.9909 0.0000 1057.7660 155.0000 40.0000 0.9909 0.0000 + 959.7908 155.0000 41.0000 0.9909 0.0000 735.1498 155.0000 42.0000 0.9909 0.0000 + 822.5829 155.0000 43.0000 0.9909 0.0000 621.1968 155.0000 44.0000 0.9909 0.0000 + 678.2767 155.0000 45.0000 0.9909 0.0000 627.0057 155.0000 46.0000 0.9909 0.0000 + 524.5075 155.0000 47.0000 0.9909 0.0000 550.2565 155.0000 48.0000 0.9909 0.0000 + 697.3745 155.0000 49.0000 0.9909 0.0000 636.7612 155.0000 50.0000 0.9909 0.0000 + 561.2533 155.0000 51.0000 0.9909 0.0000 517.5807 155.0000 52.0000 0.9909 0.0000 + 465.0703 155.0000 53.0000 0.9909 0.0000 415.7690 155.0000 54.0000 0.9909 0.0000 + 1975.9738 155.0000 55.0000 0.9909 0.0000 1760.0602 155.0000 56.0000 0.9909 0.0000 + 1524.9399 155.0000 57.0000 0.9909 0.0000 664.8346 155.0000 58.0000 0.9909 2.7991 + 1552.0845 155.0000 59.0000 0.9909 0.0000 1486.4897 155.0000 60.0000 0.9909 0.0000 + 1448.1464 155.0000 61.0000 0.9909 0.0000 1412.9908 155.0000 62.0000 0.9909 0.0000 + 1381.7863 155.0000 63.0000 0.9909 0.0000 1071.5717 155.0000 64.0000 0.9909 0.0000 + 1235.5701 155.0000 65.0000 0.9909 0.0000 1188.8012 155.0000 66.0000 0.9909 0.0000 + 1241.6267 155.0000 67.0000 0.9909 0.0000 1214.7181 155.0000 68.0000 0.9909 0.0000 + 1190.2611 155.0000 69.0000 0.9909 0.0000 1176.9746 155.0000 70.0000 0.9909 0.0000 + 982.4304 155.0000 71.0000 0.9909 0.0000 953.2721 155.0000 72.0000 0.9909 0.0000 + 863.4581 155.0000 73.0000 0.9909 0.0000 725.6991 155.0000 74.0000 0.9909 0.0000 + 735.8700 155.0000 75.0000 0.9909 0.0000 662.7976 155.0000 76.0000 0.9909 0.0000 + 604.0524 155.0000 77.0000 0.9909 0.0000 499.5938 155.0000 78.0000 0.9909 0.0000 + 465.8805 155.0000 79.0000 0.9909 0.0000 477.8859 155.0000 80.0000 0.9909 0.0000 + 714.7759 155.0000 81.0000 0.9909 0.0000 691.5234 155.0000 82.0000 0.9909 0.0000 + 628.9051 155.0000 83.0000 0.9909 0.0000 596.5387 155.0000 84.0000 0.9909 0.0000 + 547.1220 155.0000 85.0000 0.9909 0.0000 498.7871 155.0000 86.0000 0.9909 0.0000 + 1844.3405 155.0000 87.0000 0.9909 0.0000 1728.4117 155.0000 88.0000 0.9909 0.0000 + 1507.8114 155.0000 89.0000 0.9909 0.0000 1336.6572 155.0000 90.0000 0.9909 0.0000 + 1336.7673 155.0000 91.0000 0.9909 0.0000 1293.8174 155.0000 92.0000 0.9909 0.0000 + 1343.1115 155.0000 93.0000 0.9909 0.0000 1298.4675 155.0000 94.0000 0.9909 0.0000 + 68.9537 155.0000 101.0000 0.9909 0.0000 231.4165 155.0000 103.0000 0.9909 0.9865 + 294.1459 155.0000 104.0000 0.9909 0.9808 219.6387 155.0000 105.0000 0.9909 0.9706 + 163.6715 155.0000 106.0000 0.9909 0.9868 112.4278 155.0000 107.0000 0.9909 0.9944 + 81.0845 155.0000 108.0000 0.9909 0.9925 55.0786 155.0000 109.0000 0.9909 0.9982 + 340.0624 155.0000 111.0000 0.9909 0.9684 527.5630 155.0000 112.0000 0.9909 0.9628 + 527.3282 155.0000 113.0000 0.9909 0.9648 416.4861 155.0000 114.0000 0.9909 0.9507 + 337.1135 155.0000 115.0000 0.9909 0.9947 282.9669 155.0000 116.0000 0.9909 0.9948 + 229.5837 155.0000 117.0000 0.9909 0.9972 465.5182 155.0000 119.0000 0.9909 0.9767 + 921.7934 155.0000 120.0000 0.9909 0.9831 457.9012 155.0000 121.0000 0.9909 1.8627 + 442.0547 155.0000 122.0000 0.9909 1.8299 433.3139 155.0000 123.0000 0.9909 1.9138 + 430.1040 155.0000 124.0000 0.9909 1.8269 392.0831 155.0000 125.0000 0.9909 1.6406 + 362.0455 155.0000 126.0000 0.9909 1.6483 345.4470 155.0000 127.0000 0.9909 1.7149 + 337.9454 155.0000 128.0000 0.9909 1.7937 336.0821 155.0000 129.0000 0.9909 0.9576 + 311.5800 155.0000 130.0000 0.9909 1.9419 520.7490 155.0000 131.0000 0.9909 0.9601 + 451.1717 155.0000 132.0000 0.9909 0.9434 400.6439 155.0000 133.0000 0.9909 0.9889 + 363.7202 155.0000 134.0000 0.9909 0.9901 318.3827 155.0000 135.0000 0.9909 0.9974 + 553.9780 155.0000 137.0000 0.9909 0.9738 1124.9345 155.0000 138.0000 0.9909 0.9801 + 837.6135 155.0000 139.0000 0.9909 1.9153 607.1951 155.0000 140.0000 0.9909 1.9355 + 613.2010 155.0000 141.0000 0.9909 1.9545 570.2621 155.0000 142.0000 0.9909 1.9420 + 647.6686 155.0000 143.0000 0.9909 1.6682 492.8301 155.0000 144.0000 0.9909 1.8584 + 460.8194 155.0000 145.0000 0.9909 1.9003 427.3247 155.0000 146.0000 0.9909 1.8630 + 413.7796 155.0000 147.0000 0.9909 0.9679 406.5459 155.0000 148.0000 0.9909 1.9539 + 661.8423 155.0000 149.0000 0.9909 0.9633 591.2764 155.0000 150.0000 0.9909 0.9514 + 549.3044 155.0000 151.0000 0.9909 0.9749 517.0109 155.0000 152.0000 0.9909 0.9811 + 469.4818 155.0000 153.0000 0.9909 0.9968 649.0924 155.0000 155.0000 0.9909 0.9909 + 83.0141 156.0000 1.0000 0.9797 0.9118 49.9232 156.0000 2.0000 0.9797 0.0000 + 2180.4015 156.0000 3.0000 0.9797 0.0000 961.1049 156.0000 4.0000 0.9797 0.0000 + 572.3002 156.0000 5.0000 0.9797 0.0000 354.8466 156.0000 6.0000 0.9797 0.0000 + 233.5006 156.0000 7.0000 0.9797 0.0000 169.6030 156.0000 8.0000 0.9797 0.0000 + 124.0802 156.0000 9.0000 0.9797 0.0000 92.8494 156.0000 10.0000 0.9797 0.0000 + 2565.9398 156.0000 11.0000 0.9797 0.0000 1599.6001 156.0000 12.0000 0.9797 0.0000 + 1381.4389 156.0000 13.0000 0.9797 0.0000 994.8926 156.0000 14.0000 0.9797 0.0000 + 723.2504 156.0000 15.0000 0.9797 0.0000 575.3317 156.0000 16.0000 0.9797 0.0000 + 451.5825 156.0000 17.0000 0.9797 0.0000 357.1935 156.0000 18.0000 0.9797 0.0000 + 4495.8369 156.0000 19.0000 0.9797 0.0000 3070.4624 156.0000 20.0000 0.9797 0.0000 + 2443.4277 156.0000 21.0000 0.9797 0.0000 2294.6062 156.0000 22.0000 0.9797 0.0000 + 2064.0309 156.0000 23.0000 0.9797 0.0000 1632.7022 156.0000 24.0000 0.9797 0.0000 + 1732.0375 156.0000 25.0000 0.9797 0.0000 1359.6156 156.0000 26.0000 0.9797 0.0000 + 1375.9674 156.0000 27.0000 0.9797 0.0000 1442.5133 156.0000 28.0000 0.9797 0.0000 + 1113.8541 156.0000 29.0000 0.9797 0.0000 1072.0643 156.0000 30.0000 0.9797 0.0000 + 1295.4563 156.0000 31.0000 0.9797 0.0000 1062.7315 156.0000 32.0000 0.9797 0.0000 + 853.9157 156.0000 33.0000 0.9797 0.0000 740.1496 156.0000 34.0000 0.9797 0.0000 + 625.5504 156.0000 35.0000 0.9797 0.0000 527.3521 156.0000 36.0000 0.9797 0.0000 + 4997.9230 156.0000 37.0000 0.9797 0.0000 3697.6569 156.0000 38.0000 0.9797 0.0000 + 3045.1620 156.0000 39.0000 0.9797 0.0000 2637.6782 156.0000 40.0000 0.9797 0.0000 + 2352.1278 156.0000 41.0000 0.9797 0.0000 1750.3829 156.0000 42.0000 0.9797 0.0000 + 1980.9508 156.0000 43.0000 0.9797 0.0000 1447.6221 156.0000 44.0000 0.9797 0.0000 + 1572.3023 156.0000 45.0000 0.9797 0.0000 1436.0400 156.0000 46.0000 0.9797 0.0000 + 1219.4904 156.0000 47.0000 0.9797 0.0000 1241.2980 156.0000 48.0000 0.9797 0.0000 + 1635.6158 156.0000 49.0000 0.9797 0.0000 1420.0022 156.0000 50.0000 0.9797 0.0000 + 1197.3790 156.0000 51.0000 0.9797 0.0000 1076.7503 156.0000 52.0000 0.9797 0.0000 + 942.2524 156.0000 53.0000 0.9797 0.0000 822.0568 156.0000 54.0000 0.9797 0.0000 + 6141.9784 156.0000 55.0000 0.9797 0.0000 4845.1776 156.0000 56.0000 0.9797 0.0000 + 3994.2273 156.0000 57.0000 0.9797 0.0000 1433.0469 156.0000 58.0000 0.9797 2.7991 + 4213.9225 156.0000 59.0000 0.9797 0.0000 3987.3600 156.0000 60.0000 0.9797 0.0000 + 3873.7284 156.0000 61.0000 0.9797 0.0000 3770.6523 156.0000 62.0000 0.9797 0.0000 + 3678.9146 156.0000 63.0000 0.9797 0.0000 2720.7653 156.0000 64.0000 0.9797 0.0000 + 3441.9852 156.0000 65.0000 0.9797 0.0000 3298.9422 156.0000 66.0000 0.9797 0.0000 + 3259.8698 156.0000 67.0000 0.9797 0.0000 3183.6011 156.0000 68.0000 0.9797 0.0000 + 3112.5536 156.0000 69.0000 0.9797 0.0000 3083.5002 156.0000 70.0000 0.9797 0.0000 + 2501.9262 156.0000 71.0000 0.9797 0.0000 2298.7008 156.0000 72.0000 0.9797 0.0000 + 2023.7991 156.0000 73.0000 0.9797 0.0000 1673.2640 156.0000 74.0000 0.9797 0.0000 + 1675.1136 156.0000 75.0000 0.9797 0.0000 1472.2933 156.0000 76.0000 0.9797 0.0000 + 1316.2117 156.0000 77.0000 0.9797 0.0000 1070.6911 156.0000 78.0000 0.9797 0.0000 + 991.3919 156.0000 79.0000 0.9797 0.0000 1004.8014 156.0000 80.0000 0.9797 0.0000 + 1668.8986 156.0000 81.0000 0.9797 0.0000 1546.1030 156.0000 82.0000 0.9797 0.0000 + 1348.7488 156.0000 83.0000 0.9797 0.0000 1250.8513 156.0000 84.0000 0.9797 0.0000 + 1117.6702 156.0000 85.0000 0.9797 0.0000 995.8679 156.0000 86.0000 0.9797 0.0000 + 5497.9393 156.0000 87.0000 0.9797 0.0000 4643.3162 156.0000 88.0000 0.9797 0.0000 + 3865.6041 156.0000 89.0000 0.9797 0.0000 3259.7257 156.0000 90.0000 0.9797 0.0000 + 3353.8826 156.0000 91.0000 0.9797 0.0000 3240.2913 156.0000 92.0000 0.9797 0.0000 + 3463.0576 156.0000 93.0000 0.9797 0.0000 3327.2478 156.0000 94.0000 0.9797 0.0000 + 142.5680 156.0000 101.0000 0.9797 0.0000 551.0792 156.0000 103.0000 0.9797 0.9865 + 692.8415 156.0000 104.0000 0.9797 0.9808 471.0503 156.0000 105.0000 0.9797 0.9706 + 334.9207 156.0000 106.0000 0.9797 0.9868 218.1596 156.0000 107.0000 0.9797 0.9944 + 150.7056 156.0000 108.0000 0.9797 0.9925 97.1926 156.0000 109.0000 0.9797 0.9982 + 826.9565 156.0000 111.0000 0.9797 0.9684 1298.9425 156.0000 112.0000 0.9797 0.9628 + 1233.5817 156.0000 113.0000 0.9797 0.9648 909.6567 156.0000 114.0000 0.9797 0.9507 + 700.9983 156.0000 115.0000 0.9797 0.9947 569.8509 156.0000 116.0000 0.9797 0.9948 + 447.3680 156.0000 117.0000 0.9797 0.9972 1104.1068 156.0000 119.0000 0.9797 0.9767 + 2505.6537 156.0000 120.0000 0.9797 0.9831 1013.0298 156.0000 121.0000 0.9797 1.8627 + 982.3638 156.0000 122.0000 0.9797 1.8299 963.2725 156.0000 123.0000 0.9797 1.9138 + 963.6534 156.0000 124.0000 0.9797 1.8269 845.2119 156.0000 125.0000 0.9797 1.6406 + 773.6698 156.0000 126.0000 0.9797 1.6483 739.5090 156.0000 127.0000 0.9797 1.7149 + 725.5203 156.0000 128.0000 0.9797 1.7937 740.9872 156.0000 129.0000 0.9797 0.9576 + 653.7336 156.0000 130.0000 0.9797 1.9419 1194.8773 156.0000 131.0000 0.9797 0.9601 + 979.5742 156.0000 132.0000 0.9797 0.9434 836.9364 156.0000 133.0000 0.9797 0.9889 + 741.0220 156.0000 134.0000 0.9797 0.9901 631.1397 156.0000 135.0000 0.9797 0.9974 + 1301.3999 156.0000 137.0000 0.9797 0.9738 3095.7594 156.0000 138.0000 0.9797 0.9801 + 2101.0372 156.0000 139.0000 0.9797 1.9153 1360.4000 156.0000 140.0000 0.9797 1.9355 + 1369.3825 156.0000 141.0000 0.9797 1.9545 1266.0803 156.0000 142.0000 0.9797 1.9420 + 1516.2134 156.0000 143.0000 0.9797 1.6682 1056.4422 156.0000 144.0000 0.9797 1.8584 + 986.7643 156.0000 145.0000 0.9797 1.9003 910.5268 156.0000 146.0000 0.9797 1.8630 + 885.4039 156.0000 147.0000 0.9797 0.9679 845.1580 156.0000 148.0000 0.9797 1.9539 + 1525.9278 156.0000 149.0000 0.9797 0.9633 1296.6408 156.0000 150.0000 0.9797 0.9514 + 1165.3603 156.0000 151.0000 0.9797 0.9749 1073.8698 156.0000 152.0000 0.9797 0.9811 + 951.5410 156.0000 153.0000 0.9797 0.9968 1469.0705 156.0000 155.0000 0.9797 0.9909 + 4171.7842 156.0000 156.0000 0.9797 0.9797 64.6906 157.0000 1.0000 1.9373 0.9118 + 40.3329 157.0000 2.0000 1.9373 0.0000 1384.1283 157.0000 3.0000 1.9373 0.0000 + 676.7374 157.0000 4.0000 1.9373 0.0000 423.0815 157.0000 5.0000 1.9373 0.0000 + 271.4248 157.0000 6.0000 1.9373 0.0000 182.9391 157.0000 7.0000 1.9373 0.0000 + 135.0322 157.0000 8.0000 1.9373 0.0000 100.1090 157.0000 9.0000 1.9373 0.0000 + 75.6791 157.0000 10.0000 1.9373 0.0000 1637.7878 157.0000 11.0000 1.9373 0.0000 + 1106.7221 157.0000 12.0000 1.9373 0.0000 980.4376 157.0000 13.0000 1.9373 0.0000 + 732.1211 157.0000 14.0000 1.9373 0.0000 547.4653 157.0000 15.0000 1.9373 0.0000 + 442.8799 157.0000 16.0000 1.9373 0.0000 353.1467 157.0000 17.0000 1.9373 0.0000 + 283.0351 157.0000 18.0000 1.9373 0.0000 2800.9569 157.0000 19.0000 1.9373 0.0000 + 2050.4253 157.0000 20.0000 1.9373 0.0000 1655.7011 157.0000 21.0000 1.9373 0.0000 + 1571.2363 157.0000 22.0000 1.9373 0.0000 1423.1173 157.0000 23.0000 1.9373 0.0000 + 1122.6576 157.0000 24.0000 1.9373 0.0000 1206.1393 157.0000 25.0000 1.9373 0.0000 + 945.6808 157.0000 26.0000 1.9373 0.0000 975.9836 157.0000 27.0000 1.9373 0.0000 + 1016.1745 157.0000 28.0000 1.9373 0.0000 781.2881 157.0000 29.0000 1.9373 0.0000 + 772.6650 157.0000 30.0000 1.9373 0.0000 926.3723 157.0000 31.0000 1.9373 0.0000 + 782.7401 157.0000 32.0000 1.9373 0.0000 644.3560 157.0000 33.0000 1.9373 0.0000 + 566.2920 157.0000 34.0000 1.9373 0.0000 485.2955 157.0000 35.0000 1.9373 0.0000 + 414.1664 157.0000 36.0000 1.9373 0.0000 3121.5559 157.0000 37.0000 1.9373 0.0000 + 2458.0845 157.0000 38.0000 1.9373 0.0000 2072.7978 157.0000 39.0000 1.9373 0.0000 + 1821.2145 157.0000 40.0000 1.9373 0.0000 1637.9243 157.0000 41.0000 1.9373 0.0000 + 1235.6226 157.0000 42.0000 1.9373 0.0000 1390.9989 157.0000 43.0000 1.9373 0.0000 + 1032.5864 157.0000 44.0000 1.9373 0.0000 1125.4492 157.0000 45.0000 1.9373 0.0000 + 1034.1628 157.0000 46.0000 1.9373 0.0000 870.4102 157.0000 47.0000 1.9373 0.0000 + 900.7673 157.0000 48.0000 1.9373 0.0000 1164.0480 157.0000 49.0000 1.9373 0.0000 + 1037.3050 157.0000 50.0000 1.9373 0.0000 894.7026 157.0000 51.0000 1.9373 0.0000 + 814.8114 157.0000 52.0000 1.9373 0.0000 722.4932 157.0000 53.0000 1.9373 0.0000 + 637.9590 157.0000 54.0000 1.9373 0.0000 3825.0881 157.0000 55.0000 1.9373 0.0000 + 3186.2921 157.0000 56.0000 1.9373 0.0000 2690.9591 157.0000 57.0000 1.9373 0.0000 + 1064.5933 157.0000 58.0000 1.9373 2.7991 2790.9891 157.0000 59.0000 1.9373 0.0000 + 2655.1171 157.0000 60.0000 1.9373 0.0000 2582.9722 157.0000 61.0000 1.9373 0.0000 + 2517.2239 157.0000 62.0000 1.9373 0.0000 2458.7886 157.0000 63.0000 1.9373 0.0000 + 1860.7370 157.0000 64.0000 1.9373 0.0000 2250.9654 157.0000 65.0000 1.9373 0.0000 + 2163.4599 157.0000 66.0000 1.9373 0.0000 2193.8636 157.0000 67.0000 1.9373 0.0000 + 2144.4704 157.0000 68.0000 1.9373 0.0000 2098.9702 157.0000 69.0000 1.9373 0.0000 + 2077.5774 157.0000 70.0000 1.9373 0.0000 1710.3545 157.0000 71.0000 1.9373 0.0000 + 1614.0907 157.0000 72.0000 1.9373 0.0000 1441.3394 157.0000 73.0000 1.9373 0.0000 + 1200.5662 157.0000 74.0000 1.9373 0.0000 1210.0818 157.0000 75.0000 1.9373 0.0000 + 1076.7583 157.0000 76.0000 1.9373 0.0000 971.9737 157.0000 77.0000 1.9373 0.0000 + 796.7001 157.0000 78.0000 1.9373 0.0000 740.1675 157.0000 79.0000 1.9373 0.0000 + 755.2487 157.0000 80.0000 1.9373 0.0000 1189.1662 157.0000 81.0000 1.9373 0.0000 + 1127.0513 157.0000 82.0000 1.9373 0.0000 1004.5839 157.0000 83.0000 1.9373 0.0000 + 942.4352 157.0000 84.0000 1.9373 0.0000 853.2701 157.0000 85.0000 1.9373 0.0000 + 768.9982 157.0000 86.0000 1.9373 0.0000 3485.5386 157.0000 87.0000 1.9373 0.0000 + 3089.2071 157.0000 88.0000 1.9373 0.0000 2632.2561 157.0000 89.0000 1.9373 0.0000 + 2274.9680 157.0000 90.0000 1.9373 0.0000 2307.1665 157.0000 91.0000 1.9373 0.0000 + 2230.9267 157.0000 92.0000 1.9373 0.0000 2350.2253 157.0000 93.0000 1.9373 0.0000 + 2265.0122 157.0000 94.0000 1.9373 0.0000 108.3059 157.0000 101.0000 1.9373 0.0000 + 389.9070 157.0000 103.0000 1.9373 0.9865 492.5824 157.0000 104.0000 1.9373 0.9808 + 351.1166 157.0000 105.0000 1.9373 0.9706 255.3534 157.0000 106.0000 1.9373 0.9868 + 170.6938 157.0000 107.0000 1.9373 0.9944 120.4004 157.0000 108.0000 1.9373 0.9925 + 79.6151 157.0000 109.0000 1.9373 0.9982 578.7007 157.0000 111.0000 1.9373 0.9684 + 903.4563 157.0000 112.0000 1.9373 0.9628 880.4900 157.0000 113.0000 1.9373 0.9648 + 672.1591 157.0000 114.0000 1.9373 0.9507 530.8573 157.0000 115.0000 1.9373 0.9947 + 438.3496 157.0000 116.0000 1.9373 0.9948 349.6764 157.0000 117.0000 1.9373 0.9972 + 780.6806 157.0000 119.0000 1.9373 0.9767 1658.3459 157.0000 120.0000 1.9373 0.9831 + 742.6398 157.0000 121.0000 1.9373 1.8627 718.6782 157.0000 122.0000 1.9373 1.8299 + 704.4731 157.0000 123.0000 1.9373 1.9138 701.8768 157.0000 124.0000 1.9373 1.8269 + 628.2340 157.0000 125.0000 1.9373 1.6406 577.5263 157.0000 126.0000 1.9373 1.6483 + 551.4226 157.0000 127.0000 1.9373 1.7149 540.1679 157.0000 128.0000 1.9373 1.7937 + 544.0661 157.0000 129.0000 1.9373 0.9576 492.6342 157.0000 130.0000 1.9373 1.9419 + 860.6632 157.0000 131.0000 1.9373 0.9601 725.7474 157.0000 132.0000 1.9373 0.9434 + 632.2602 157.0000 133.0000 1.9373 0.9889 566.7513 157.0000 134.0000 1.9373 0.9901 + 489.2291 157.0000 135.0000 1.9373 0.9974 924.2203 157.0000 137.0000 1.9373 0.9738 + 2036.5362 157.0000 138.0000 1.9373 0.9801 1446.2394 157.0000 139.0000 1.9373 1.9153 + 990.1059 157.0000 140.0000 1.9373 1.9355 997.9222 157.0000 141.0000 1.9373 1.9545 + 925.8359 157.0000 142.0000 1.9373 1.9420 1078.7908 157.0000 143.0000 1.9373 1.6682 + 786.5886 157.0000 144.0000 1.9373 1.8584 734.8918 157.0000 145.0000 1.9373 1.9003 + 679.6572 157.0000 146.0000 1.9373 1.8630 659.4710 157.0000 147.0000 1.9373 0.9679 + 639.3832 157.0000 148.0000 1.9373 1.9539 1095.4590 157.0000 149.0000 1.9373 0.9633 + 955.2258 157.0000 150.0000 1.9373 0.9514 873.2287 157.0000 151.0000 1.9373 0.9749 + 813.2828 157.0000 152.0000 1.9373 0.9811 729.4949 157.0000 153.0000 1.9373 0.9968 + 1063.3274 157.0000 155.0000 1.9373 0.9909 2705.5816 157.0000 156.0000 1.9373 0.9797 + 1850.0003 157.0000 157.0000 1.9373 1.9373 43.2202 159.0000 1.0000 2.9425 0.9118 + 28.5060 159.0000 2.0000 2.9425 0.0000 680.2479 159.0000 3.0000 2.9425 0.0000 + 390.7983 159.0000 4.0000 2.9425 0.0000 262.3192 159.0000 5.0000 2.9425 0.0000 + 176.8339 159.0000 6.0000 2.9425 0.0000 123.4955 159.0000 7.0000 2.9425 0.0000 + 93.4327 159.0000 8.0000 2.9425 0.0000 70.7481 159.0000 9.0000 2.9425 0.0000 + 54.4061 159.0000 10.0000 2.9425 0.0000 813.2353 159.0000 11.0000 2.9425 0.0000 + 623.3223 159.0000 12.0000 2.9425 0.0000 573.5902 159.0000 13.0000 2.9425 0.0000 + 450.9253 159.0000 14.0000 2.9425 0.0000 350.9578 159.0000 15.0000 2.9425 0.0000 + 290.9369 159.0000 16.0000 2.9425 0.0000 237.4072 159.0000 17.0000 2.9425 0.0000 + 194.0698 159.0000 18.0000 2.9425 0.0000 1333.7958 159.0000 19.0000 2.9425 0.0000 + 1097.1659 159.0000 20.0000 2.9425 0.0000 905.7241 159.0000 21.0000 2.9425 0.0000 + 874.0066 159.0000 22.0000 2.9425 0.0000 800.0152 159.0000 23.0000 2.9425 0.0000 + 630.1961 159.0000 24.0000 2.9425 0.0000 688.3693 159.0000 25.0000 2.9425 0.0000 + 540.2311 159.0000 26.0000 2.9425 0.0000 572.0738 159.0000 27.0000 2.9425 0.0000 + 589.5695 159.0000 28.0000 2.9425 0.0000 452.0342 159.0000 29.0000 2.9425 0.0000 + 463.4148 159.0000 30.0000 2.9425 0.0000 549.0692 159.0000 31.0000 2.9425 0.0000 + 483.3174 159.0000 32.0000 2.9425 0.0000 411.5533 159.0000 33.0000 2.9425 0.0000 + 368.9206 159.0000 34.0000 2.9425 0.0000 322.5272 159.0000 35.0000 2.9425 0.0000 + 280.2438 159.0000 36.0000 2.9425 0.0000 1494.4074 159.0000 37.0000 2.9425 0.0000 + 1307.3665 159.0000 38.0000 2.9425 0.0000 1143.5524 159.0000 39.0000 2.9425 0.0000 + 1026.8226 159.0000 40.0000 2.9425 0.0000 935.7467 159.0000 41.0000 2.9425 0.0000 + 721.6673 159.0000 42.0000 2.9425 0.0000 805.5111 159.0000 43.0000 2.9425 0.0000 + 612.9682 159.0000 44.0000 2.9425 0.0000 669.9917 159.0000 45.0000 2.9425 0.0000 + 621.0687 159.0000 46.0000 2.9425 0.0000 518.0207 159.0000 47.0000 2.9425 0.0000 + 546.9938 159.0000 48.0000 2.9425 0.0000 687.2667 159.0000 49.0000 2.9425 0.0000 + 634.5156 159.0000 50.0000 2.9425 0.0000 564.5753 159.0000 51.0000 2.9425 0.0000 + 523.3205 159.0000 52.0000 2.9425 0.0000 472.7004 159.0000 53.0000 2.9425 0.0000 + 424.5915 159.0000 54.0000 2.9425 0.0000 1820.4201 159.0000 55.0000 2.9425 0.0000 + 1667.4685 159.0000 56.0000 2.9425 0.0000 1462.8142 159.0000 57.0000 2.9425 0.0000 + 667.2018 159.0000 58.0000 2.9425 2.7991 1476.7389 159.0000 59.0000 2.9425 0.0000 + 1417.6855 159.0000 60.0000 2.9425 0.0000 1382.0320 159.0000 61.0000 2.9425 0.0000 + 1349.2524 159.0000 62.0000 2.9425 0.0000 1320.1809 159.0000 63.0000 2.9425 0.0000 + 1036.4403 159.0000 64.0000 2.9425 0.0000 1169.6897 159.0000 65.0000 2.9425 0.0000 + 1127.7999 159.0000 66.0000 2.9425 0.0000 1190.2918 159.0000 67.0000 2.9425 0.0000 + 1164.9825 159.0000 68.0000 2.9425 0.0000 1142.1370 159.0000 69.0000 2.9425 0.0000 + 1128.8548 159.0000 70.0000 2.9425 0.0000 950.0421 159.0000 71.0000 2.9425 0.0000 + 932.8506 159.0000 72.0000 2.9425 0.0000 850.5162 159.0000 73.0000 2.9425 0.0000 + 717.6672 159.0000 74.0000 2.9425 0.0000 729.8230 159.0000 75.0000 2.9425 0.0000 + 660.9048 159.0000 76.0000 2.9425 0.0000 604.8753 159.0000 77.0000 2.9425 0.0000 + 502.1510 159.0000 78.0000 2.9425 0.0000 469.0422 159.0000 79.0000 2.9425 0.0000 + 482.3451 159.0000 80.0000 2.9425 0.0000 705.3782 159.0000 81.0000 2.9425 0.0000 + 688.8101 159.0000 82.0000 2.9425 0.0000 632.0313 159.0000 83.0000 2.9425 0.0000 + 602.2948 159.0000 84.0000 2.9425 0.0000 555.3114 159.0000 85.0000 2.9425 0.0000 + 508.5306 159.0000 86.0000 2.9425 0.0000 1716.9108 159.0000 87.0000 2.9425 0.0000 + 1647.6121 159.0000 88.0000 2.9425 0.0000 1454.3881 159.0000 89.0000 2.9425 0.0000 + 1304.8970 159.0000 90.0000 2.9425 0.0000 1296.6238 159.0000 91.0000 2.9425 0.0000 + 1255.4359 159.0000 92.0000 2.9425 0.0000 1293.9094 159.0000 93.0000 2.9425 0.0000 + 1252.7870 159.0000 94.0000 2.9425 0.0000 69.7341 159.0000 101.0000 2.9425 0.0000 + 227.0579 159.0000 103.0000 2.9425 0.9865 289.4434 159.0000 104.0000 2.9425 0.9808 + 220.5170 159.0000 105.0000 2.9425 0.9706 165.8805 159.0000 106.0000 2.9425 0.9868 + 115.1605 159.0000 107.0000 2.9425 0.9944 83.7765 159.0000 108.0000 2.9425 0.9925 + 57.5599 159.0000 109.0000 2.9425 0.9982 332.1495 159.0000 111.0000 2.9425 0.9684 + 513.7956 159.0000 112.0000 2.9425 0.9628 519.6165 159.0000 113.0000 2.9425 0.9648 + 416.6272 159.0000 114.0000 2.9425 0.9507 340.6470 159.0000 115.0000 2.9425 0.9947 + 287.7449 159.0000 116.0000 2.9425 0.9948 234.9544 159.0000 117.0000 2.9425 0.9972 + 457.4338 159.0000 119.0000 2.9425 0.9767 877.5528 159.0000 120.0000 2.9425 0.9831 + 456.7087 159.0000 121.0000 2.9425 1.8627 440.8726 159.0000 122.0000 2.9425 1.8299 + 432.0839 159.0000 123.0000 2.9425 1.9138 428.1936 159.0000 124.0000 2.9425 1.8269 + 393.5556 159.0000 125.0000 2.9425 1.6406 364.1170 159.0000 126.0000 2.9425 1.6483 + 347.3566 159.0000 127.0000 2.9425 1.7149 339.6232 159.0000 128.0000 2.9425 1.7937 + 335.8606 159.0000 129.0000 2.9425 0.9576 314.6193 159.0000 130.0000 2.9425 1.9419 + 515.4512 159.0000 131.0000 2.9425 0.9601 451.9571 159.0000 132.0000 2.9425 0.9434 + 404.5340 159.0000 133.0000 2.9425 0.9889 369.0697 159.0000 134.0000 2.9425 0.9901 + 324.7894 159.0000 135.0000 2.9425 0.9974 545.5917 159.0000 137.0000 2.9425 0.9738 + 1068.0684 159.0000 138.0000 2.9425 0.9801 814.0637 159.0000 139.0000 2.9425 1.9153 + 604.1250 159.0000 140.0000 2.9425 1.9355 610.1366 159.0000 141.0000 2.9425 1.9545 + 568.7148 159.0000 142.0000 2.9425 1.9420 638.7376 159.0000 143.0000 2.9425 1.6682 + 495.2056 159.0000 144.0000 2.9425 1.8584 463.2412 159.0000 145.0000 2.9425 1.9003 + 430.0863 159.0000 146.0000 2.9425 1.8630 416.1281 159.0000 147.0000 2.9425 0.9679 + 411.2941 159.0000 148.0000 2.9425 1.9539 654.7497 159.0000 149.0000 2.9425 0.9633 + 591.3671 159.0000 150.0000 2.9425 0.9514 553.2005 159.0000 151.0000 2.9425 0.9749 + 522.9067 159.0000 152.0000 2.9425 0.9811 477.1430 159.0000 153.0000 2.9425 0.9968 + 644.3858 159.0000 155.0000 2.9425 0.9909 1385.6402 159.0000 156.0000 2.9425 0.9797 + 1030.6163 159.0000 157.0000 2.9425 1.9373 647.0250 159.0000 159.0000 2.9425 2.9425 + 42.3343 160.0000 1.0000 2.9455 0.9118 27.9324 160.0000 2.0000 2.9455 0.0000 + 665.5329 160.0000 3.0000 2.9455 0.0000 382.5760 160.0000 4.0000 2.9455 0.0000 + 256.8646 160.0000 5.0000 2.9455 0.0000 173.1933 160.0000 6.0000 2.9455 0.0000 + 120.9759 160.0000 7.0000 2.9455 0.0000 91.5407 160.0000 8.0000 2.9455 0.0000 + 69.3261 160.0000 9.0000 2.9455 0.0000 53.3201 160.0000 10.0000 2.9455 0.0000 + 795.6873 160.0000 11.0000 2.9455 0.0000 610.1625 160.0000 12.0000 2.9455 0.0000 + 561.5498 160.0000 13.0000 2.9455 0.0000 441.5369 160.0000 14.0000 2.9455 0.0000 + 343.7019 160.0000 15.0000 2.9455 0.0000 284.9529 160.0000 16.0000 2.9455 0.0000 + 232.5513 160.0000 17.0000 2.9455 0.0000 190.1224 160.0000 18.0000 2.9455 0.0000 + 1304.7563 160.0000 19.0000 2.9455 0.0000 1073.8235 160.0000 20.0000 2.9455 0.0000 + 886.5266 160.0000 21.0000 2.9455 0.0000 855.5354 160.0000 22.0000 2.9455 0.0000 + 783.1386 160.0000 23.0000 2.9455 0.0000 616.9100 160.0000 24.0000 2.9455 0.0000 + 673.8862 160.0000 25.0000 2.9455 0.0000 528.8780 160.0000 26.0000 2.9455 0.0000 + 560.0917 160.0000 27.0000 2.9455 0.0000 577.1994 160.0000 28.0000 2.9455 0.0000 + 442.5579 160.0000 29.0000 2.9455 0.0000 453.7462 160.0000 30.0000 2.9455 0.0000 + 537.5790 160.0000 31.0000 2.9455 0.0000 473.2673 160.0000 32.0000 2.9455 0.0000 + 403.0441 160.0000 33.0000 2.9455 0.0000 361.3222 160.0000 34.0000 2.9455 0.0000 + 315.9132 160.0000 35.0000 2.9455 0.0000 274.5224 160.0000 36.0000 2.9455 0.0000 + 1461.9055 160.0000 37.0000 2.9455 0.0000 1279.5273 160.0000 38.0000 2.9455 0.0000 + 1119.3527 160.0000 39.0000 2.9455 0.0000 1005.1742 160.0000 40.0000 2.9455 0.0000 + 916.0648 160.0000 41.0000 2.9455 0.0000 706.5573 160.0000 42.0000 2.9455 0.0000 + 788.6151 160.0000 43.0000 2.9455 0.0000 600.1777 160.0000 44.0000 2.9455 0.0000 + 656.0092 160.0000 45.0000 2.9455 0.0000 608.1289 160.0000 46.0000 2.9455 0.0000 + 507.2269 160.0000 47.0000 2.9455 0.0000 535.6228 160.0000 48.0000 2.9455 0.0000 + 672.8996 160.0000 49.0000 2.9455 0.0000 621.3216 160.0000 50.0000 2.9455 0.0000 + 552.8934 160.0000 51.0000 2.9455 0.0000 512.5245 160.0000 52.0000 2.9455 0.0000 + 462.9825 160.0000 53.0000 2.9455 0.0000 415.8938 160.0000 54.0000 2.9455 0.0000 + 1780.7379 160.0000 55.0000 2.9455 0.0000 1631.8559 160.0000 56.0000 2.9455 0.0000 + 1431.7796 160.0000 57.0000 2.9455 0.0000 653.3875 160.0000 58.0000 2.9455 2.7991 + 1445.2611 160.0000 59.0000 2.9455 0.0000 1387.5284 160.0000 60.0000 2.9455 0.0000 + 1352.6449 160.0000 61.0000 2.9455 0.0000 1320.5717 160.0000 62.0000 2.9455 0.0000 + 1292.1268 160.0000 63.0000 2.9455 0.0000 1014.5593 160.0000 64.0000 2.9455 0.0000 + 1144.6770 160.0000 65.0000 2.9455 0.0000 1103.6788 160.0000 66.0000 2.9455 0.0000 + 1165.0450 160.0000 67.0000 2.9455 0.0000 1140.2779 160.0000 68.0000 2.9455 0.0000 + 1117.9234 160.0000 69.0000 2.9455 0.0000 1104.9164 160.0000 70.0000 2.9455 0.0000 + 929.9632 160.0000 71.0000 2.9455 0.0000 913.2638 160.0000 72.0000 2.9455 0.0000 + 832.7229 160.0000 73.0000 2.9455 0.0000 702.6966 160.0000 74.0000 2.9455 0.0000 + 714.6194 160.0000 75.0000 2.9455 0.0000 647.1814 160.0000 76.0000 2.9455 0.0000 + 592.3488 160.0000 77.0000 2.9455 0.0000 491.7873 160.0000 78.0000 2.9455 0.0000 + 459.3763 160.0000 79.0000 2.9455 0.0000 472.4123 160.0000 80.0000 2.9455 0.0000 + 690.6593 160.0000 81.0000 2.9455 0.0000 674.5000 160.0000 82.0000 2.9455 0.0000 + 618.9597 160.0000 83.0000 2.9455 0.0000 589.8694 160.0000 84.0000 2.9455 0.0000 + 543.8918 160.0000 85.0000 2.9455 0.0000 498.1057 160.0000 86.0000 2.9455 0.0000 + 1679.7710 160.0000 87.0000 2.9455 0.0000 1612.5437 160.0000 88.0000 2.9455 0.0000 + 1423.6214 160.0000 89.0000 2.9455 0.0000 1277.4745 160.0000 90.0000 2.9455 0.0000 + 1269.2909 160.0000 91.0000 2.9455 0.0000 1228.9809 160.0000 92.0000 2.9455 0.0000 + 1266.5506 160.0000 93.0000 2.9455 0.0000 1226.3194 160.0000 94.0000 2.9455 0.0000 + 68.2931 160.0000 101.0000 2.9455 0.0000 222.2883 160.0000 103.0000 2.9455 0.9865 + 283.3715 160.0000 104.0000 2.9455 0.9808 215.9438 160.0000 105.0000 2.9455 0.9706 + 162.4665 160.0000 106.0000 2.9455 0.9868 112.8134 160.0000 107.0000 2.9455 0.9944 + 82.0849 160.0000 108.0000 2.9455 0.9925 56.4117 160.0000 109.0000 2.9455 0.9982 + 325.1636 160.0000 111.0000 2.9455 0.9684 502.9655 160.0000 112.0000 2.9455 0.9628 + 508.7250 160.0000 113.0000 2.9455 0.9648 407.9629 160.0000 114.0000 2.9455 0.9507 + 333.6065 160.0000 115.0000 2.9455 0.9947 281.8265 160.0000 116.0000 2.9455 0.9948 + 230.1488 160.0000 117.0000 2.9455 0.9972 447.8636 160.0000 119.0000 2.9455 0.9767 + 858.8383 160.0000 120.0000 2.9455 0.9831 447.2220 160.0000 121.0000 2.9455 1.8627 + 431.7097 160.0000 122.0000 2.9455 1.8299 423.1055 160.0000 123.0000 2.9455 1.9138 + 419.2898 160.0000 124.0000 2.9455 1.8269 385.4043 160.0000 125.0000 2.9455 1.6406 + 356.5850 160.0000 126.0000 2.9455 1.6483 340.1719 160.0000 127.0000 2.9455 1.7149 + 332.5971 160.0000 128.0000 2.9455 1.7937 328.8954 160.0000 129.0000 2.9455 0.9576 + 308.1251 160.0000 130.0000 2.9455 1.9419 504.6830 160.0000 131.0000 2.9455 0.9601 + 442.5728 160.0000 132.0000 2.9455 0.9434 396.1729 160.0000 133.0000 2.9455 0.9889 + 361.4679 160.0000 134.0000 2.9455 0.9901 318.1278 160.0000 135.0000 2.9455 0.9974 + 534.1947 160.0000 137.0000 2.9455 0.9738 1045.2541 160.0000 138.0000 2.9455 0.9801 + 796.8844 160.0000 139.0000 2.9455 1.9153 591.5630 160.0000 140.0000 2.9455 1.9355 + 597.4603 160.0000 141.0000 2.9455 1.9545 556.9066 160.0000 142.0000 2.9455 1.9420 + 625.3966 160.0000 143.0000 2.9455 1.6682 484.9704 160.0000 144.0000 2.9455 1.8584 + 453.6734 160.0000 145.0000 2.9455 1.9003 421.2135 160.0000 146.0000 2.9455 1.8630 + 407.5420 160.0000 147.0000 2.9455 0.9679 402.8281 160.0000 148.0000 2.9455 1.9539 + 641.0897 160.0000 149.0000 2.9455 0.9633 579.0951 160.0000 150.0000 2.9455 0.9514 + 541.7614 160.0000 151.0000 2.9455 0.9749 512.1209 160.0000 152.0000 2.9455 0.9811 + 467.3327 160.0000 153.0000 2.9455 0.9968 630.9699 160.0000 155.0000 2.9455 0.9909 + 1355.8874 160.0000 156.0000 2.9455 0.9797 1008.8176 160.0000 157.0000 2.9455 1.9373 + 633.6333 160.0000 159.0000 2.9455 2.9425 620.5206 160.0000 160.0000 2.9455 2.9455 + 41.0356 161.0000 1.0000 2.9413 0.9118 27.1150 161.0000 2.0000 2.9413 0.0000 + 642.1808 161.0000 3.0000 2.9413 0.0000 369.8142 161.0000 4.0000 2.9413 0.0000 + 248.6071 161.0000 5.0000 2.9413 0.0000 167.7968 161.0000 6.0000 2.9413 0.0000 + 117.3026 161.0000 7.0000 2.9413 0.0000 88.8159 161.0000 8.0000 2.9413 0.0000 + 67.2999 161.0000 9.0000 2.9413 0.0000 51.7860 161.0000 10.0000 2.9413 0.0000 + 767.8676 161.0000 11.0000 2.9413 0.0000 589.6141 161.0000 12.0000 2.9413 0.0000 + 542.9683 161.0000 13.0000 2.9413 0.0000 427.2858 161.0000 14.0000 2.9413 0.0000 + 332.8624 161.0000 15.0000 2.9413 0.0000 276.1129 161.0000 16.0000 2.9413 0.0000 + 225.4562 161.0000 17.0000 2.9413 0.0000 184.4110 161.0000 18.0000 2.9413 0.0000 + 1259.0280 161.0000 19.0000 2.9413 0.0000 1037.1340 161.0000 20.0000 2.9413 0.0000 + 856.4434 161.0000 21.0000 2.9413 0.0000 826.7257 161.0000 22.0000 2.9413 0.0000 + 756.8843 161.0000 23.0000 2.9413 0.0000 596.2971 161.0000 24.0000 2.9413 0.0000 + 651.4438 161.0000 25.0000 2.9413 0.0000 511.3384 161.0000 26.0000 2.9413 0.0000 + 541.6401 161.0000 27.0000 2.9413 0.0000 558.0904 161.0000 28.0000 2.9413 0.0000 + 427.9630 161.0000 29.0000 2.9413 0.0000 438.9546 161.0000 30.0000 2.9413 0.0000 + 519.9536 161.0000 31.0000 2.9413 0.0000 458.0385 161.0000 32.0000 2.9413 0.0000 + 390.3161 161.0000 33.0000 2.9413 0.0000 350.0554 161.0000 34.0000 2.9413 0.0000 + 306.1959 161.0000 35.0000 2.9413 0.0000 266.1893 161.0000 36.0000 2.9413 0.0000 + 1410.8565 161.0000 37.0000 2.9413 0.0000 1235.8086 161.0000 38.0000 2.9413 0.0000 + 1081.5963 161.0000 39.0000 2.9413 0.0000 971.5644 161.0000 40.0000 2.9413 0.0000 + 885.6282 161.0000 41.0000 2.9413 0.0000 683.3681 161.0000 42.0000 2.9413 0.0000 + 762.6134 161.0000 43.0000 2.9413 0.0000 580.6563 161.0000 44.0000 2.9413 0.0000 + 634.6293 161.0000 45.0000 2.9413 0.0000 588.3919 161.0000 46.0000 2.9413 0.0000 + 490.7833 161.0000 47.0000 2.9413 0.0000 518.3356 161.0000 48.0000 2.9413 0.0000 + 650.8890 161.0000 49.0000 2.9413 0.0000 601.2862 161.0000 50.0000 2.9413 0.0000 + 535.3426 161.0000 51.0000 2.9413 0.0000 496.4206 161.0000 52.0000 2.9413 0.0000 + 448.6020 161.0000 53.0000 2.9413 0.0000 403.1233 161.0000 54.0000 2.9413 0.0000 + 1718.6565 161.0000 55.0000 2.9413 0.0000 1575.9396 161.0000 56.0000 2.9413 0.0000 + 1383.3184 161.0000 57.0000 2.9413 0.0000 632.6069 161.0000 58.0000 2.9413 2.7991 + 1395.9648 161.0000 59.0000 2.9413 0.0000 1340.2848 161.0000 60.0000 2.9413 0.0000 + 1306.6123 161.0000 61.0000 2.9413 0.0000 1275.6493 161.0000 62.0000 2.9413 0.0000 + 1248.1896 161.0000 63.0000 2.9413 0.0000 980.6114 161.0000 64.0000 2.9413 0.0000 + 1105.6577 161.0000 65.0000 2.9413 0.0000 1066.1553 161.0000 66.0000 2.9413 0.0000 + 1125.5430 161.0000 67.0000 2.9413 0.0000 1101.6251 161.0000 68.0000 2.9413 0.0000 + 1080.0441 161.0000 69.0000 2.9413 0.0000 1067.4513 161.0000 70.0000 2.9413 0.0000 + 898.7788 161.0000 71.0000 2.9413 0.0000 883.0338 161.0000 72.0000 2.9413 0.0000 + 805.4167 161.0000 73.0000 2.9413 0.0000 679.8696 161.0000 74.0000 2.9413 0.0000 + 691.4770 161.0000 75.0000 2.9413 0.0000 626.4046 161.0000 76.0000 2.9413 0.0000 + 573.4718 161.0000 77.0000 2.9413 0.0000 476.2653 161.0000 78.0000 2.9413 0.0000 + 444.9332 161.0000 79.0000 2.9413 0.0000 457.5914 161.0000 80.0000 2.9413 0.0000 + 668.2165 161.0000 81.0000 2.9413 0.0000 652.8035 161.0000 82.0000 2.9413 0.0000 + 599.3180 161.0000 83.0000 2.9413 0.0000 571.3076 161.0000 84.0000 2.9413 0.0000 + 526.9580 161.0000 85.0000 2.9413 0.0000 482.7555 161.0000 86.0000 2.9413 0.0000 + 1621.7509 161.0000 87.0000 2.9413 0.0000 1557.6603 161.0000 88.0000 2.9413 0.0000 + 1375.7224 161.0000 89.0000 2.9413 0.0000 1235.1334 161.0000 90.0000 2.9413 0.0000 + 1226.9612 161.0000 91.0000 2.9413 0.0000 1188.0136 161.0000 92.0000 2.9413 0.0000 + 1223.9539 161.0000 93.0000 2.9413 0.0000 1185.1389 161.0000 94.0000 2.9413 0.0000 + 66.1439 161.0000 101.0000 2.9413 0.0000 214.9157 161.0000 103.0000 2.9413 0.9865 + 274.0453 161.0000 104.0000 2.9413 0.9808 209.0627 161.0000 105.0000 2.9413 0.9706 + 157.4078 161.0000 106.0000 2.9413 0.9868 109.3944 161.0000 107.0000 2.9413 0.9944 + 79.6566 161.0000 108.0000 2.9413 0.9925 54.7947 161.0000 109.0000 2.9413 0.9982 + 314.3316 161.0000 111.0000 2.9413 0.9684 486.1582 161.0000 112.0000 2.9413 0.9628 + 491.9700 161.0000 113.0000 2.9413 0.9648 394.8501 161.0000 114.0000 2.9413 0.9507 + 323.0966 161.0000 115.0000 2.9413 0.9947 273.0819 161.0000 116.0000 2.9413 0.9948 + 223.1261 161.0000 117.0000 2.9413 0.9972 433.2074 161.0000 119.0000 2.9413 0.9767 + 829.6408 161.0000 120.0000 2.9413 0.9831 432.8276 161.0000 121.0000 2.9413 1.8627 + 417.8360 161.0000 122.0000 2.9413 1.8299 409.5058 161.0000 123.0000 2.9413 1.9138 + 405.7835 161.0000 124.0000 2.9413 1.8269 373.1223 161.0000 125.0000 2.9413 1.6406 + 345.2676 161.0000 126.0000 2.9413 1.6483 329.3812 161.0000 127.0000 2.9413 1.7149 + 322.0375 161.0000 128.0000 2.9413 1.7937 318.3642 161.0000 129.0000 2.9413 0.9576 + 298.4106 161.0000 130.0000 2.9413 1.9419 488.2162 161.0000 131.0000 2.9413 0.9601 + 428.4016 161.0000 132.0000 2.9413 0.9434 383.6775 161.0000 133.0000 2.9413 0.9889 + 350.1952 161.0000 134.0000 2.9413 0.9901 308.3361 161.0000 135.0000 2.9413 0.9974 + 516.8026 161.0000 137.0000 2.9413 0.9738 1009.7020 161.0000 138.0000 2.9413 0.9801 + 770.4895 161.0000 139.0000 2.9413 1.9153 572.5226 161.0000 140.0000 2.9413 1.9355 + 578.2213 161.0000 141.0000 2.9413 1.9545 539.0640 161.0000 142.0000 2.9413 1.9420 + 605.0829 161.0000 143.0000 2.9413 1.6682 469.6134 161.0000 144.0000 2.9413 1.8584 + 439.3361 161.0000 145.0000 2.9413 1.9003 407.9420 161.0000 146.0000 2.9413 1.8630 + 394.6814 161.0000 147.0000 2.9413 0.9679 390.2136 161.0000 148.0000 2.9413 1.9539 + 620.2296 161.0000 149.0000 2.9413 0.9633 560.5406 161.0000 150.0000 2.9413 0.9514 + 524.6028 161.0000 151.0000 2.9413 0.9749 496.0396 161.0000 152.0000 2.9413 0.9811 + 452.8135 161.0000 153.0000 2.9413 0.9968 610.6517 161.0000 155.0000 2.9413 0.9909 + 1309.6071 161.0000 156.0000 2.9413 0.9797 975.3429 161.0000 157.0000 2.9413 1.9373 + 613.5022 161.0000 159.0000 2.9413 2.9425 600.8101 161.0000 160.0000 2.9413 2.9455 + 581.7435 161.0000 161.0000 2.9413 2.9413 41.1186 162.0000 1.0000 2.9300 0.9118 + 27.0910 162.0000 2.0000 2.9300 0.0000 653.7125 162.0000 3.0000 2.9300 0.0000 + 373.3538 162.0000 4.0000 2.9300 0.0000 250.0690 162.0000 5.0000 2.9300 0.0000 + 168.3507 162.0000 6.0000 2.9300 0.0000 117.4740 162.0000 7.0000 2.9300 0.0000 + 88.8332 162.0000 8.0000 2.9300 0.0000 67.2415 162.0000 9.0000 2.9300 0.0000 + 51.6977 162.0000 10.0000 2.9300 0.0000 781.2050 162.0000 11.0000 2.9300 0.0000 + 596.0022 162.0000 12.0000 2.9300 0.0000 547.7742 162.0000 13.0000 2.9300 0.0000 + 429.9494 162.0000 14.0000 2.9300 0.0000 334.2517 162.0000 15.0000 2.9300 0.0000 + 276.9116 162.0000 16.0000 2.9300 0.0000 225.8370 162.0000 17.0000 2.9300 0.0000 + 184.5332 162.0000 18.0000 2.9300 0.0000 1283.6315 162.0000 19.0000 2.9300 0.0000 + 1050.9848 162.0000 20.0000 2.9300 0.0000 866.9228 162.0000 21.0000 2.9300 0.0000 + 836.0994 162.0000 22.0000 2.9300 0.0000 765.0512 162.0000 23.0000 2.9300 0.0000 + 602.7113 162.0000 24.0000 2.9300 0.0000 657.9635 162.0000 25.0000 2.9300 0.0000 + 516.3770 162.0000 26.0000 2.9300 0.0000 546.3363 162.0000 27.0000 2.9300 0.0000 + 563.2255 162.0000 28.0000 2.9300 0.0000 431.9033 162.0000 29.0000 2.9300 0.0000 + 442.2545 162.0000 30.0000 2.9300 0.0000 524.1676 162.0000 31.0000 2.9300 0.0000 + 460.8179 162.0000 32.0000 2.9300 0.0000 392.0139 162.0000 33.0000 2.9300 0.0000 + 351.2182 162.0000 34.0000 2.9300 0.0000 306.8959 162.0000 35.0000 2.9300 0.0000 + 266.5494 162.0000 36.0000 2.9300 0.0000 1437.9300 162.0000 37.0000 2.9300 0.0000 + 1252.6342 162.0000 38.0000 2.9300 0.0000 1094.2695 162.0000 39.0000 2.9300 0.0000 + 981.8553 162.0000 40.0000 2.9300 0.0000 894.3917 162.0000 41.0000 2.9300 0.0000 + 689.3091 162.0000 42.0000 2.9300 0.0000 769.5990 162.0000 43.0000 2.9300 0.0000 + 585.2065 162.0000 44.0000 2.9300 0.0000 639.5705 162.0000 45.0000 2.9300 0.0000 + 592.7151 162.0000 46.0000 2.9300 0.0000 494.5443 162.0000 47.0000 2.9300 0.0000 + 521.8571 162.0000 48.0000 2.9300 0.0000 656.2319 162.0000 49.0000 2.9300 0.0000 + 605.1903 162.0000 50.0000 2.9300 0.0000 537.9899 162.0000 51.0000 2.9300 0.0000 + 498.4291 162.0000 52.0000 2.9300 0.0000 449.9920 162.0000 53.0000 2.9300 0.0000 + 404.0174 162.0000 54.0000 2.9300 0.0000 1752.1410 162.0000 55.0000 2.9300 0.0000 + 1598.6396 162.0000 56.0000 2.9300 0.0000 1400.5068 162.0000 57.0000 2.9300 0.0000 + 635.9157 162.0000 58.0000 2.9300 2.7991 1415.2709 162.0000 59.0000 2.9300 0.0000 + 1358.1904 162.0000 60.0000 2.9300 0.0000 1323.9329 162.0000 61.0000 2.9300 0.0000 + 1292.4475 162.0000 62.0000 2.9300 0.0000 1264.5213 162.0000 63.0000 2.9300 0.0000 + 991.5176 162.0000 64.0000 2.9300 0.0000 1121.8549 162.0000 65.0000 2.9300 0.0000 + 1081.6001 162.0000 66.0000 2.9300 0.0000 1139.6825 162.0000 67.0000 2.9300 0.0000 + 1115.3978 162.0000 68.0000 2.9300 0.0000 1093.4602 162.0000 69.0000 2.9300 0.0000 + 1080.7974 162.0000 70.0000 2.9300 0.0000 908.9619 162.0000 71.0000 2.9300 0.0000 + 891.2789 162.0000 72.0000 2.9300 0.0000 812.0825 162.0000 73.0000 2.9300 0.0000 + 684.9903 162.0000 74.0000 2.9300 0.0000 696.4000 162.0000 75.0000 2.9300 0.0000 + 630.3137 162.0000 76.0000 2.9300 0.0000 576.6535 162.0000 77.0000 2.9300 0.0000 + 478.5731 162.0000 78.0000 2.9300 0.0000 446.9626 162.0000 79.0000 2.9300 0.0000 + 459.5280 162.0000 80.0000 2.9300 0.0000 673.4662 162.0000 81.0000 2.9300 0.0000 + 657.0227 162.0000 82.0000 2.9300 0.0000 602.3455 162.0000 83.0000 2.9300 0.0000 + 573.7478 162.0000 84.0000 2.9300 0.0000 528.7270 162.0000 85.0000 2.9300 0.0000 + 483.9827 162.0000 86.0000 2.9300 0.0000 1650.1361 162.0000 87.0000 2.9300 0.0000 + 1578.5123 162.0000 88.0000 2.9300 0.0000 1391.6728 162.0000 89.0000 2.9300 0.0000 + 1247.0771 162.0000 90.0000 2.9300 0.0000 1240.0445 162.0000 91.0000 2.9300 0.0000 + 1200.6028 162.0000 92.0000 2.9300 0.0000 1238.3187 162.0000 93.0000 2.9300 0.0000 + 1198.7720 162.0000 94.0000 2.9300 0.0000 66.4057 162.0000 101.0000 2.9300 0.0000 + 216.8695 162.0000 103.0000 2.9300 0.9865 276.3828 162.0000 104.0000 2.9300 0.9808 + 210.1448 162.0000 105.0000 2.9300 0.9706 157.9406 162.0000 106.0000 2.9300 0.9868 + 109.5523 162.0000 107.0000 2.9300 0.9944 79.6477 162.0000 108.0000 2.9300 0.9925 + 54.6852 162.0000 109.0000 2.9300 0.9982 317.4096 162.0000 111.0000 2.9300 0.9684 + 491.1385 162.0000 112.0000 2.9300 0.9628 496.0959 162.0000 113.0000 2.9300 0.9648 + 397.1752 162.0000 114.0000 2.9300 0.9507 324.4246 162.0000 115.0000 2.9300 0.9947 + 273.8804 162.0000 116.0000 2.9300 0.9948 223.5079 162.0000 117.0000 2.9300 0.9972 + 436.8854 162.0000 119.0000 2.9300 0.9767 841.0519 162.0000 120.0000 2.9300 0.9831 + 435.5172 162.0000 121.0000 2.9300 1.8627 420.4671 162.0000 122.0000 2.9300 1.8299 + 412.0874 162.0000 123.0000 2.9300 1.9138 408.4460 162.0000 124.0000 2.9300 1.8269 + 375.1051 162.0000 125.0000 2.9300 1.6406 346.9868 162.0000 126.0000 2.9300 1.6483 + 331.0282 162.0000 127.0000 2.9300 1.7149 323.6772 162.0000 128.0000 2.9300 1.7937 + 320.2684 162.0000 129.0000 2.9300 0.9576 299.7092 162.0000 130.0000 2.9300 1.9419 + 491.9157 162.0000 131.0000 2.9300 0.9601 430.8119 162.0000 132.0000 2.9300 0.9434 + 385.3099 162.0000 133.0000 2.9300 0.9889 351.3644 162.0000 134.0000 2.9300 0.9901 + 309.0575 162.0000 135.0000 2.9300 0.9974 520.9703 162.0000 137.0000 2.9300 0.9738 + 1024.0101 162.0000 138.0000 2.9300 0.9801 778.5614 162.0000 139.0000 2.9300 1.9153 + 576.2453 162.0000 140.0000 2.9300 1.9355 581.9305 162.0000 141.0000 2.9300 1.9545 + 542.3803 162.0000 142.0000 2.9300 1.9420 609.8655 162.0000 143.0000 2.9300 1.6682 + 471.9441 162.0000 144.0000 2.9300 1.8584 441.4769 162.0000 145.0000 2.9300 1.9003 + 409.8444 162.0000 146.0000 2.9300 1.8630 396.5804 162.0000 147.0000 2.9300 0.9679 + 391.7491 162.0000 148.0000 2.9300 1.9539 624.9431 162.0000 149.0000 2.9300 0.9633 + 563.8386 162.0000 150.0000 2.9300 0.9514 527.0919 162.0000 151.0000 2.9300 0.9749 + 498.0193 162.0000 152.0000 2.9300 0.9811 454.2236 162.0000 153.0000 2.9300 0.9968 + 614.7789 162.0000 155.0000 2.9300 0.9909 1329.7509 162.0000 156.0000 2.9300 0.9797 + 986.0439 162.0000 157.0000 2.9300 1.9373 616.6572 162.0000 159.0000 2.9300 2.9425 + 603.8868 162.0000 160.0000 2.9300 2.9455 584.6788 162.0000 161.0000 2.9300 2.9413 + 587.7891 162.0000 162.0000 2.9300 2.9300 39.2564 163.0000 1.0000 1.8286 0.9118 + 25.6913 163.0000 2.0000 1.8286 0.0000 653.6846 163.0000 3.0000 1.8286 0.0000 + 365.1112 163.0000 4.0000 1.8286 0.0000 241.6343 163.0000 5.0000 1.8286 0.0000 + 161.3933 163.0000 6.0000 1.8286 0.0000 112.0512 163.0000 7.0000 1.8286 0.0000 + 84.4731 163.0000 8.0000 1.8286 0.0000 63.7996 163.0000 9.0000 1.8286 0.0000 + 48.9809 163.0000 10.0000 1.8286 0.0000 780.2674 163.0000 11.0000 1.8286 0.0000 + 585.2367 163.0000 12.0000 1.8286 0.0000 534.3757 163.0000 13.0000 1.8286 0.0000 + 415.9150 163.0000 14.0000 1.8286 0.0000 321.2120 163.0000 15.0000 1.8286 0.0000 + 265.0869 163.0000 16.0000 1.8286 0.0000 215.4603 163.0000 17.0000 1.8286 0.0000 + 175.5908 163.0000 18.0000 1.8286 0.0000 1285.6965 163.0000 19.0000 1.8286 0.0000 + 1039.4662 163.0000 20.0000 1.8286 0.0000 854.8216 163.0000 21.0000 1.8286 0.0000 + 822.1810 163.0000 22.0000 1.8286 0.0000 751.0893 163.0000 23.0000 1.8286 0.0000 + 591.6660 163.0000 24.0000 1.8286 0.0000 644.4421 163.0000 25.0000 1.8286 0.0000 + 505.6064 163.0000 26.0000 1.8286 0.0000 533.0040 163.0000 27.0000 1.8286 0.0000 + 550.3952 163.0000 28.0000 1.8286 0.0000 422.1376 163.0000 29.0000 1.8286 0.0000 + 429.9304 163.0000 30.0000 1.8286 0.0000 510.2157 163.0000 31.0000 1.8286 0.0000 + 445.6375 163.0000 32.0000 1.8286 0.0000 376.9991 163.0000 33.0000 1.8286 0.0000 + 336.6910 163.0000 34.0000 1.8286 0.0000 293.3036 163.0000 35.0000 1.8286 0.0000 + 254.0859 163.0000 36.0000 1.8286 0.0000 1438.5445 163.0000 37.0000 1.8286 0.0000 + 1239.5504 163.0000 38.0000 1.8286 0.0000 1077.0858 163.0000 39.0000 1.8286 0.0000 + 963.2715 163.0000 40.0000 1.8286 0.0000 875.5931 163.0000 41.0000 1.8286 0.0000 + 672.4914 163.0000 42.0000 1.8286 0.0000 751.7567 163.0000 43.0000 1.8286 0.0000 + 569.5060 163.0000 44.0000 1.8286 0.0000 622.3214 163.0000 45.0000 1.8286 0.0000 + 575.9965 163.0000 46.0000 1.8286 0.0000 481.1524 163.0000 47.0000 1.8286 0.0000 + 506.3303 163.0000 48.0000 1.8286 0.0000 639.2239 163.0000 49.0000 1.8286 0.0000 + 586.3317 163.0000 50.0000 1.8286 0.0000 518.5975 163.0000 51.0000 1.8286 0.0000 + 479.0649 163.0000 52.0000 1.8286 0.0000 431.2267 163.0000 53.0000 1.8286 0.0000 + 386.1460 163.0000 54.0000 1.8286 0.0000 1751.8319 163.0000 55.0000 1.8286 0.0000 + 1584.5929 163.0000 56.0000 1.8286 0.0000 1380.9239 163.0000 57.0000 1.8286 0.0000 + 613.6537 163.0000 58.0000 1.8286 2.7991 1400.3880 163.0000 59.0000 1.8286 0.0000 + 1342.9247 163.0000 60.0000 1.8286 0.0000 1308.7424 163.0000 61.0000 1.8286 0.0000 + 1277.3568 163.0000 62.0000 1.8286 0.0000 1249.5054 163.0000 63.0000 1.8286 0.0000 + 974.0690 163.0000 64.0000 1.8286 0.0000 1111.1877 163.0000 65.0000 1.8286 0.0000 + 1069.9921 163.0000 66.0000 1.8286 0.0000 1124.6771 163.0000 67.0000 1.8286 0.0000 + 1100.5512 163.0000 68.0000 1.8286 0.0000 1078.6794 163.0000 69.0000 1.8286 0.0000 + 1066.4387 163.0000 70.0000 1.8286 0.0000 893.1687 163.0000 71.0000 1.8286 0.0000 + 871.1007 163.0000 72.0000 1.8286 0.0000 791.1814 163.0000 73.0000 1.8286 0.0000 + 665.8317 163.0000 74.0000 1.8286 0.0000 676.0576 163.0000 75.0000 1.8286 0.0000 + 610.2947 163.0000 76.0000 1.8286 0.0000 557.1805 163.0000 77.0000 1.8286 0.0000 + 461.5352 163.0000 78.0000 1.8286 0.0000 430.7311 163.0000 79.0000 1.8286 0.0000 + 442.3207 163.0000 80.0000 1.8286 0.0000 655.3276 163.0000 81.0000 1.8286 0.0000 + 636.6430 163.0000 82.0000 1.8286 0.0000 580.9983 163.0000 83.0000 1.8286 0.0000 + 551.9955 163.0000 84.0000 1.8286 0.0000 507.1942 163.0000 85.0000 1.8286 0.0000 + 463.1060 163.0000 86.0000 1.8286 0.0000 1643.6058 163.0000 87.0000 1.8286 0.0000 + 1560.4236 163.0000 88.0000 1.8286 0.0000 1369.0464 163.0000 89.0000 1.8286 0.0000 + 1220.1277 163.0000 90.0000 1.8286 0.0000 1216.6738 163.0000 91.0000 1.8286 0.0000 + 1177.8612 163.0000 92.0000 1.8286 0.0000 1219.1450 163.0000 93.0000 1.8286 0.0000 + 1179.4690 163.0000 94.0000 1.8286 0.0000 63.7629 163.0000 101.0000 1.8286 0.0000 + 211.7400 163.0000 103.0000 1.8286 0.9865 269.2305 163.0000 104.0000 1.8286 0.9808 + 202.6148 163.0000 105.0000 1.8286 0.9706 151.4713 163.0000 106.0000 1.8286 0.9868 + 104.5097 163.0000 107.0000 1.8286 0.9944 75.6908 163.0000 108.0000 1.8286 0.9925 + 51.7557 163.0000 109.0000 1.8286 0.9982 310.6864 163.0000 111.0000 1.8286 0.9684 + 481.1216 163.0000 112.0000 1.8286 0.9628 483.2415 163.0000 113.0000 1.8286 0.9648 + 383.7764 163.0000 114.0000 1.8286 0.9507 311.7158 163.0000 115.0000 1.8286 0.9947 + 262.2219 163.0000 116.0000 1.8286 0.9948 213.2614 163.0000 117.0000 1.8286 0.9972 + 425.9370 163.0000 119.0000 1.8286 0.9767 831.2750 163.0000 120.0000 1.8286 0.9831 + 421.6969 163.0000 121.0000 1.8286 1.8627 407.0094 163.0000 122.0000 1.8286 1.8299 + 398.9816 163.0000 123.0000 1.8286 1.9138 395.7987 163.0000 124.0000 1.8286 1.8269 + 362.0493 163.0000 125.0000 1.8286 1.6406 334.5615 163.0000 126.0000 1.8286 1.6483 + 319.1993 163.0000 127.0000 1.8286 1.7149 312.2221 163.0000 128.0000 1.8286 1.7937 + 309.8959 163.0000 129.0000 1.8286 0.9576 288.4004 163.0000 130.0000 1.8286 1.9419 + 478.0396 163.0000 131.0000 1.8286 0.9601 416.0190 163.0000 132.0000 1.8286 0.9434 + 370.4418 163.0000 133.0000 1.8286 0.9889 336.8539 163.0000 134.0000 1.8286 0.9901 + 295.4210 163.0000 135.0000 1.8286 0.9974 507.2285 163.0000 137.0000 1.8286 0.9738 + 1012.8078 163.0000 138.0000 1.8286 0.9801 762.0033 163.0000 139.0000 1.8286 1.9153 + 558.2951 163.0000 140.0000 1.8286 1.9355 563.9816 163.0000 141.0000 1.8286 1.9545 + 524.9085 163.0000 142.0000 1.8286 1.9420 593.2386 163.0000 143.0000 1.8286 1.6682 + 455.1389 163.0000 144.0000 1.8286 1.8584 425.6722 163.0000 145.0000 1.8286 1.9003 + 394.9658 163.0000 146.0000 1.8286 1.8630 382.4279 163.0000 147.0000 1.8286 0.9679 + 376.6190 163.0000 148.0000 1.8286 1.9539 607.6149 163.0000 149.0000 1.8286 0.9633 + 545.1890 163.0000 150.0000 1.8286 0.9514 507.7568 163.0000 151.0000 1.8286 0.9749 + 478.5801 163.0000 152.0000 1.8286 0.9811 435.2963 163.0000 153.0000 1.8286 0.9968 + 595.9499 163.0000 155.0000 1.8286 0.9909 1317.6067 163.0000 156.0000 1.8286 0.9797 + 965.8237 163.0000 157.0000 1.8286 1.9373 594.9070 163.0000 159.0000 1.8286 2.9425 + 582.5641 163.0000 160.0000 1.8286 2.9455 563.9015 163.0000 161.0000 1.8286 2.9413 + 567.3171 163.0000 162.0000 1.8286 2.9300 549.0281 163.0000 163.0000 1.8286 1.8286 + 41.3275 164.0000 1.0000 2.8732 0.9118 27.1595 164.0000 2.0000 2.8732 0.0000 + 659.0924 164.0000 3.0000 2.8732 0.0000 376.4610 164.0000 4.0000 2.8732 0.0000 + 251.8424 164.0000 5.0000 2.8732 0.0000 169.3159 164.0000 6.0000 2.8732 0.0000 + 117.9977 164.0000 7.0000 2.8732 0.0000 89.1359 164.0000 8.0000 2.8732 0.0000 + 67.4030 164.0000 9.0000 2.8732 0.0000 51.7756 164.0000 10.0000 2.8732 0.0000 + 787.6187 164.0000 11.0000 2.8732 0.0000 601.0384 164.0000 12.0000 2.8732 0.0000 + 552.1545 164.0000 13.0000 2.8732 0.0000 433.0662 164.0000 14.0000 2.8732 0.0000 + 336.3700 164.0000 15.0000 2.8732 0.0000 278.4551 164.0000 16.0000 2.8732 0.0000 + 226.9109 164.0000 17.0000 2.8732 0.0000 185.2621 164.0000 18.0000 2.8732 0.0000 + 1292.7733 164.0000 19.0000 2.8732 0.0000 1059.7192 164.0000 20.0000 2.8732 0.0000 + 874.1314 164.0000 21.0000 2.8732 0.0000 842.8840 164.0000 22.0000 2.8732 0.0000 + 771.1840 164.0000 23.0000 2.8732 0.0000 607.3487 164.0000 24.0000 2.8732 0.0000 + 663.1313 164.0000 25.0000 2.8732 0.0000 520.2569 164.0000 26.0000 2.8732 0.0000 + 550.5045 164.0000 27.0000 2.8732 0.0000 567.6026 164.0000 28.0000 2.8732 0.0000 + 435.0829 164.0000 29.0000 2.8732 0.0000 445.4982 164.0000 30.0000 2.8732 0.0000 + 528.1305 164.0000 31.0000 2.8732 0.0000 464.0671 164.0000 32.0000 2.8732 0.0000 + 394.5033 164.0000 33.0000 2.8732 0.0000 353.2521 164.0000 34.0000 2.8732 0.0000 + 308.4763 164.0000 35.0000 2.8732 0.0000 267.7464 164.0000 36.0000 2.8732 0.0000 + 1447.9360 164.0000 37.0000 2.8732 0.0000 1262.8491 164.0000 38.0000 2.8732 0.0000 + 1103.0742 164.0000 39.0000 2.8732 0.0000 989.5940 164.0000 40.0000 2.8732 0.0000 + 901.2747 164.0000 41.0000 2.8732 0.0000 694.2958 164.0000 42.0000 2.8732 0.0000 + 775.2973 164.0000 43.0000 2.8732 0.0000 589.2413 164.0000 44.0000 2.8732 0.0000 + 644.1313 164.0000 45.0000 2.8732 0.0000 596.8654 164.0000 46.0000 2.8732 0.0000 + 497.8410 164.0000 47.0000 2.8732 0.0000 525.4121 164.0000 48.0000 2.8732 0.0000 + 660.9815 164.0000 49.0000 2.8732 0.0000 609.4014 164.0000 50.0000 2.8732 0.0000 + 541.4600 164.0000 51.0000 2.8732 0.0000 501.4441 164.0000 52.0000 2.8732 0.0000 + 452.4916 164.0000 53.0000 2.8732 0.0000 406.0479 164.0000 54.0000 2.8732 0.0000 + 1763.6917 164.0000 55.0000 2.8732 0.0000 1611.3765 164.0000 56.0000 2.8732 0.0000 + 1411.6458 164.0000 57.0000 2.8732 0.0000 639.9970 164.0000 58.0000 2.8732 2.7991 + 1426.3405 164.0000 59.0000 2.8732 0.0000 1368.9945 164.0000 60.0000 2.8732 0.0000 + 1334.4823 164.0000 61.0000 2.8732 0.0000 1302.7626 164.0000 62.0000 2.8732 0.0000 + 1274.6283 164.0000 63.0000 2.8732 0.0000 999.0617 164.0000 64.0000 2.8732 0.0000 + 1130.0310 164.0000 65.0000 2.8732 0.0000 1089.2614 164.0000 66.0000 2.8732 0.0000 + 1148.8304 164.0000 67.0000 2.8732 0.0000 1124.3657 164.0000 68.0000 2.8732 0.0000 + 1102.2614 164.0000 69.0000 2.8732 0.0000 1089.5200 164.0000 70.0000 2.8732 0.0000 + 915.9380 164.0000 71.0000 2.8732 0.0000 898.1280 164.0000 72.0000 2.8732 0.0000 + 818.1189 164.0000 73.0000 2.8732 0.0000 689.7737 164.0000 74.0000 2.8732 0.0000 + 701.2413 164.0000 75.0000 2.8732 0.0000 634.5170 164.0000 76.0000 2.8732 0.0000 + 580.3452 164.0000 77.0000 2.8732 0.0000 481.4012 164.0000 78.0000 2.8732 0.0000 + 449.5181 164.0000 79.0000 2.8732 0.0000 462.1640 164.0000 80.0000 2.8732 0.0000 + 678.0494 164.0000 81.0000 2.8732 0.0000 661.4365 164.0000 82.0000 2.8732 0.0000 + 606.1609 164.0000 83.0000 2.8732 0.0000 577.2115 164.0000 84.0000 2.8732 0.0000 + 531.6950 164.0000 85.0000 2.8732 0.0000 486.4812 164.0000 86.0000 2.8732 0.0000 + 1661.5027 164.0000 87.0000 2.8732 0.0000 1591.0020 164.0000 88.0000 2.8732 0.0000 + 1402.6190 164.0000 89.0000 2.8732 0.0000 1256.5351 164.0000 90.0000 2.8732 0.0000 + 1249.4197 164.0000 91.0000 2.8732 0.0000 1209.6721 164.0000 92.0000 2.8732 0.0000 + 1247.8750 164.0000 93.0000 2.8732 0.0000 1208.0168 164.0000 94.0000 2.8732 0.0000 + 66.8235 164.0000 101.0000 2.8732 0.0000 218.6195 164.0000 103.0000 2.8732 0.9865 + 278.5080 164.0000 104.0000 2.8732 0.9808 211.5485 164.0000 105.0000 2.8732 0.9706 + 158.8301 164.0000 106.0000 2.8732 0.9868 110.0265 164.0000 107.0000 2.8732 0.9944 + 79.8949 164.0000 108.0000 2.8732 0.9925 54.7600 164.0000 109.0000 2.8732 0.9982 + 319.9572 164.0000 111.0000 2.8732 0.9684 495.1147 164.0000 112.0000 2.8732 0.9628 + 499.9820 164.0000 113.0000 2.8732 0.9648 399.9816 164.0000 114.0000 2.8732 0.9507 + 326.4592 164.0000 115.0000 2.8732 0.9947 275.4054 164.0000 116.0000 2.8732 0.9948 + 224.5698 164.0000 117.0000 2.8732 0.9972 439.9765 164.0000 119.0000 2.8732 0.9767 + 847.4486 164.0000 120.0000 2.8732 0.9831 438.5550 164.0000 121.0000 2.8732 1.8627 + 423.3069 164.0000 122.0000 2.8732 1.8299 414.8741 164.0000 123.0000 2.8732 1.9138 + 411.2230 164.0000 124.0000 2.8732 1.8269 377.5747 164.0000 125.0000 2.8732 1.6406 + 349.2095 164.0000 126.0000 2.8732 1.6483 333.1240 164.0000 127.0000 2.8732 1.7149 + 325.7328 164.0000 128.0000 2.8732 1.7937 322.3728 164.0000 129.0000 2.8732 0.9576 + 301.5583 164.0000 130.0000 2.8732 1.9419 495.5668 164.0000 131.0000 2.8732 0.9601 + 433.7675 164.0000 132.0000 2.8732 0.9434 387.7336 164.0000 133.0000 2.8732 0.9889 + 353.3989 164.0000 134.0000 2.8732 0.9901 310.6569 164.0000 135.0000 2.8732 0.9974 + 524.5374 164.0000 137.0000 2.8732 0.9738 1031.5808 164.0000 138.0000 2.8732 0.9801 + 784.0479 164.0000 139.0000 2.8732 1.9153 580.1629 164.0000 140.0000 2.8732 1.9355 + 585.9401 164.0000 141.0000 2.8732 1.9545 545.9255 164.0000 142.0000 2.8732 1.9420 + 613.9817 164.0000 143.0000 2.8732 1.6682 474.8590 164.0000 144.0000 2.8732 1.8584 + 444.1417 164.0000 145.0000 2.8732 1.9003 412.2532 164.0000 146.0000 2.8732 1.8630 + 398.9285 164.0000 147.0000 2.8732 0.9679 394.0161 164.0000 148.0000 2.8732 1.9539 + 629.3894 164.0000 149.0000 2.8732 0.9633 567.6368 164.0000 150.0000 2.8732 0.9514 + 530.4464 164.0000 151.0000 2.8732 0.9749 501.0205 164.0000 152.0000 2.8732 0.9811 + 456.7532 164.0000 153.0000 2.8732 0.9968 618.8508 164.0000 155.0000 2.8732 0.9909 + 1339.0290 164.0000 156.0000 2.8732 0.9797 992.8293 164.0000 157.0000 2.8732 1.9373 + 620.5881 164.0000 159.0000 2.8732 2.9425 607.7340 164.0000 160.0000 2.8732 2.9455 + 588.3813 164.0000 161.0000 2.8732 2.9413 591.5368 164.0000 162.0000 2.8732 2.9300 + 571.0450 164.0000 163.0000 2.8732 1.8286 595.3628 164.0000 164.0000 2.8732 2.8732 + 38.9150 165.0000 1.0000 2.9086 0.9118 25.6695 165.0000 2.0000 2.9086 0.0000 + 612.8166 165.0000 3.0000 2.9086 0.0000 352.0753 165.0000 4.0000 2.9086 0.0000 + 236.2659 165.0000 5.0000 2.9086 0.0000 159.2422 165.0000 6.0000 2.9086 0.0000 + 111.2043 165.0000 7.0000 2.9086 0.0000 84.1363 165.0000 8.0000 2.9086 0.0000 + 63.7152 165.0000 9.0000 2.9086 0.0000 49.0050 165.0000 10.0000 2.9086 0.0000 + 732.6457 165.0000 11.0000 2.9086 0.0000 561.5991 165.0000 12.0000 2.9086 0.0000 + 516.7263 165.0000 13.0000 2.9086 0.0000 406.1522 165.0000 14.0000 2.9086 0.0000 + 316.0555 165.0000 15.0000 2.9086 0.0000 261.9772 165.0000 16.0000 2.9086 0.0000 + 213.7617 165.0000 17.0000 2.9086 0.0000 174.7380 165.0000 18.0000 2.9086 0.0000 + 1201.3307 165.0000 19.0000 2.9086 0.0000 988.5095 165.0000 20.0000 2.9086 0.0000 + 816.0391 165.0000 21.0000 2.9086 0.0000 787.4378 165.0000 22.0000 2.9086 0.0000 + 720.7679 165.0000 23.0000 2.9086 0.0000 567.7536 165.0000 24.0000 2.9086 0.0000 + 620.1711 165.0000 25.0000 2.9086 0.0000 486.6971 165.0000 26.0000 2.9086 0.0000 + 515.3839 165.0000 27.0000 2.9086 0.0000 531.1595 165.0000 28.0000 2.9086 0.0000 + 407.2414 165.0000 29.0000 2.9086 0.0000 417.4763 165.0000 30.0000 2.9086 0.0000 + 494.6170 165.0000 31.0000 2.9086 0.0000 435.3339 165.0000 32.0000 2.9086 0.0000 + 370.6421 165.0000 33.0000 2.9086 0.0000 332.2173 165.0000 34.0000 2.9086 0.0000 + 290.4179 165.0000 35.0000 2.9086 0.0000 252.3325 165.0000 36.0000 2.9086 0.0000 + 1345.9552 165.0000 37.0000 2.9086 0.0000 1177.8523 165.0000 38.0000 2.9086 0.0000 + 1030.2577 165.0000 39.0000 2.9086 0.0000 925.0730 165.0000 40.0000 2.9086 0.0000 + 843.0014 165.0000 41.0000 2.9086 0.0000 650.1095 165.0000 42.0000 2.9086 0.0000 + 725.6560 165.0000 43.0000 2.9086 0.0000 552.1793 165.0000 44.0000 2.9086 0.0000 + 603.5669 165.0000 45.0000 2.9086 0.0000 559.4921 165.0000 46.0000 2.9086 0.0000 + 466.6597 165.0000 47.0000 2.9086 0.0000 492.7625 165.0000 48.0000 2.9086 0.0000 + 619.1366 165.0000 49.0000 2.9086 0.0000 571.5751 165.0000 50.0000 2.9086 0.0000 + 508.5171 165.0000 51.0000 2.9086 0.0000 471.3194 165.0000 52.0000 2.9086 0.0000 + 425.6942 165.0000 53.0000 2.9086 0.0000 382.3429 165.0000 54.0000 2.9086 0.0000 + 1639.3995 165.0000 55.0000 2.9086 0.0000 1502.1922 165.0000 56.0000 2.9086 0.0000 + 1317.8387 165.0000 57.0000 2.9086 0.0000 600.9518 165.0000 58.0000 2.9086 2.7991 + 1330.3810 165.0000 59.0000 2.9086 0.0000 1277.2241 165.0000 60.0000 2.9086 0.0000 + 1245.1109 165.0000 61.0000 2.9086 0.0000 1215.5853 165.0000 62.0000 2.9086 0.0000 + 1189.3991 165.0000 63.0000 2.9086 0.0000 933.7228 165.0000 64.0000 2.9086 0.0000 + 1053.6587 165.0000 65.0000 2.9086 0.0000 1015.8840 165.0000 66.0000 2.9086 0.0000 + 1072.3978 165.0000 67.0000 2.9086 0.0000 1049.5999 165.0000 68.0000 2.9086 0.0000 + 1029.0199 165.0000 69.0000 2.9086 0.0000 1017.0572 165.0000 70.0000 2.9086 0.0000 + 855.9031 165.0000 71.0000 2.9086 0.0000 840.3884 165.0000 72.0000 2.9086 0.0000 + 766.1883 165.0000 73.0000 2.9086 0.0000 646.4749 165.0000 74.0000 2.9086 0.0000 + 657.4249 165.0000 75.0000 2.9086 0.0000 595.3271 165.0000 76.0000 2.9086 0.0000 + 544.8458 165.0000 77.0000 2.9086 0.0000 452.3075 165.0000 78.0000 2.9086 0.0000 + 422.4876 165.0000 79.0000 2.9086 0.0000 434.4639 165.0000 80.0000 2.9086 0.0000 + 635.4277 165.0000 81.0000 2.9086 0.0000 620.4877 165.0000 82.0000 2.9086 0.0000 + 569.2956 165.0000 83.0000 2.9086 0.0000 542.4756 165.0000 84.0000 2.9086 0.0000 + 500.1207 165.0000 85.0000 2.9086 0.0000 457.9588 165.0000 86.0000 2.9086 0.0000 + 1546.3042 165.0000 87.0000 2.9086 0.0000 1484.2932 165.0000 88.0000 2.9086 0.0000 + 1310.2595 165.0000 89.0000 2.9086 0.0000 1175.5520 165.0000 90.0000 2.9086 0.0000 + 1168.1093 165.0000 91.0000 2.9086 0.0000 1131.0127 165.0000 92.0000 2.9086 0.0000 + 1165.7289 165.0000 93.0000 2.9086 0.0000 1128.6850 165.0000 94.0000 2.9086 0.0000 + 62.7971 165.0000 101.0000 2.9086 0.0000 204.5514 165.0000 103.0000 2.9086 0.9865 + 260.7245 165.0000 104.0000 2.9086 0.9808 198.6025 165.0000 105.0000 2.9086 0.9706 + 149.3811 165.0000 106.0000 2.9086 0.9868 103.7034 165.0000 107.0000 2.9086 0.9944 + 75.4465 165.0000 108.0000 2.9086 0.9925 51.8414 165.0000 109.0000 2.9086 0.9982 + 299.2468 165.0000 111.0000 2.9086 0.9684 462.8827 165.0000 112.0000 2.9086 0.9628 + 468.0868 165.0000 113.0000 2.9086 0.9648 375.2459 165.0000 114.0000 2.9086 0.9507 + 306.7678 165.0000 115.0000 2.9086 0.9947 259.1043 165.0000 116.0000 2.9086 0.9948 + 211.5547 165.0000 117.0000 2.9086 0.9972 412.0655 165.0000 119.0000 2.9086 0.9767 + 790.5227 165.0000 120.0000 2.9086 0.9831 411.3969 165.0000 121.0000 2.9086 1.8627 + 397.1190 165.0000 122.0000 2.9086 1.8299 389.2080 165.0000 123.0000 2.9086 1.9138 + 385.7107 165.0000 124.0000 2.9086 1.8269 354.4940 165.0000 125.0000 2.9086 1.6406 + 327.9705 165.0000 126.0000 2.9086 1.6483 312.8735 165.0000 127.0000 2.9086 1.7149 + 305.9112 165.0000 128.0000 2.9086 1.7937 302.5447 165.0000 129.0000 2.9086 0.9576 + 283.3765 165.0000 130.0000 2.9086 1.9419 464.3202 165.0000 131.0000 2.9086 0.9601 + 407.0718 165.0000 132.0000 2.9086 0.9434 364.3169 165.0000 133.0000 2.9086 0.9889 + 332.3519 165.0000 134.0000 2.9086 0.9901 292.4564 165.0000 135.0000 2.9086 0.9974 + 491.4621 165.0000 137.0000 2.9086 0.9738 962.0972 165.0000 138.0000 2.9086 0.9801 + 733.2622 165.0000 139.0000 2.9086 1.9153 544.1619 165.0000 140.0000 2.9086 1.9355 + 549.5950 165.0000 141.0000 2.9086 1.9545 512.2607 165.0000 142.0000 2.9086 1.9420 + 575.3515 165.0000 143.0000 2.9086 1.6682 446.0410 165.0000 144.0000 2.9086 1.8584 + 417.2520 165.0000 145.0000 2.9086 1.9003 387.3909 165.0000 146.0000 2.9086 1.8630 + 374.8322 165.0000 147.0000 2.9086 0.9679 370.4592 165.0000 148.0000 2.9086 1.9539 + 589.8300 165.0000 149.0000 2.9086 0.9633 532.6855 165.0000 150.0000 2.9086 0.9514 + 498.2630 165.0000 151.0000 2.9086 0.9749 470.9435 165.0000 152.0000 2.9086 0.9811 + 429.6945 165.0000 153.0000 2.9086 0.9968 580.3841 165.0000 155.0000 2.9086 0.9909 + 1248.0182 165.0000 156.0000 2.9086 0.9797 928.2705 165.0000 157.0000 2.9086 1.9373 + 582.7773 165.0000 159.0000 2.9086 2.9425 570.7175 165.0000 160.0000 2.9086 2.9455 + 552.5843 165.0000 161.0000 2.9086 2.9413 555.4295 165.0000 162.0000 2.9086 2.9300 + 535.8760 165.0000 163.0000 2.9086 1.8286 558.9762 165.0000 164.0000 2.9086 2.8732 + 524.9195 165.0000 165.0000 2.9086 2.9086 39.3967 166.0000 1.0000 2.8965 0.9118 + 25.8658 166.0000 2.0000 2.8965 0.0000 638.4850 166.0000 3.0000 2.8965 0.0000 + 361.1822 166.0000 4.0000 2.8965 0.0000 240.7836 166.0000 5.0000 2.8965 0.0000 + 161.5691 166.0000 6.0000 2.8965 0.0000 112.4836 166.0000 7.0000 2.8965 0.0000 + 84.9288 166.0000 8.0000 2.8965 0.0000 64.2056 166.0000 9.0000 2.8965 0.0000 + 49.3166 166.0000 10.0000 2.8965 0.0000 762.5439 166.0000 11.0000 2.8965 0.0000 + 577.4805 166.0000 12.0000 2.8965 0.0000 529.4209 166.0000 13.0000 2.8965 0.0000 + 414.1717 166.0000 14.0000 2.8965 0.0000 321.1363 166.0000 15.0000 2.8965 0.0000 + 265.6124 166.0000 16.0000 2.8965 0.0000 216.2940 166.0000 17.0000 2.8965 0.0000 + 176.5117 166.0000 18.0000 2.8965 0.0000 1255.3434 166.0000 19.0000 2.8965 0.0000 + 1021.3342 166.0000 20.0000 2.8965 0.0000 841.3784 166.0000 21.0000 2.8965 0.0000 + 810.5712 166.0000 22.0000 2.8965 0.0000 741.1995 166.0000 23.0000 2.8965 0.0000 + 583.8816 166.0000 24.0000 2.8965 0.0000 636.8428 166.0000 25.0000 2.8965 0.0000 + 499.7029 166.0000 26.0000 2.8965 0.0000 527.9435 166.0000 27.0000 2.8965 0.0000 + 544.6244 166.0000 28.0000 2.8965 0.0000 417.6349 166.0000 29.0000 2.8965 0.0000 + 426.7546 166.0000 30.0000 2.8965 0.0000 506.1315 166.0000 31.0000 2.8965 0.0000 + 443.8226 166.0000 32.0000 2.8965 0.0000 376.7249 166.0000 33.0000 2.8965 0.0000 + 337.0758 166.0000 34.0000 2.8965 0.0000 294.1510 166.0000 35.0000 2.8965 0.0000 + 255.1809 166.0000 36.0000 2.8965 0.0000 1405.6043 166.0000 37.0000 2.8965 0.0000 + 1217.6072 166.0000 38.0000 2.8965 0.0000 1061.3052 166.0000 39.0000 2.8965 0.0000 + 950.9922 166.0000 40.0000 2.8965 0.0000 865.5324 166.0000 41.0000 2.8965 0.0000 + 666.0895 166.0000 42.0000 2.8965 0.0000 744.0872 166.0000 43.0000 2.8965 0.0000 + 564.8984 166.0000 44.0000 2.8965 0.0000 617.3535 166.0000 45.0000 2.8965 0.0000 + 571.8202 166.0000 46.0000 2.8965 0.0000 477.2912 166.0000 47.0000 2.8965 0.0000 + 503.1205 166.0000 48.0000 2.8965 0.0000 633.7493 166.0000 49.0000 2.8965 0.0000 + 583.2130 166.0000 50.0000 2.8965 0.0000 517.4288 166.0000 51.0000 2.8965 0.0000 + 478.8244 166.0000 52.0000 2.8965 0.0000 431.7667 166.0000 53.0000 2.8965 0.0000 + 387.2187 166.0000 54.0000 2.8965 0.0000 1712.8830 166.0000 55.0000 2.8965 0.0000 + 1555.2120 166.0000 56.0000 2.8965 0.0000 1359.3802 166.0000 57.0000 2.8965 0.0000 + 611.8361 166.0000 58.0000 2.8965 2.7991 1375.8472 166.0000 59.0000 2.8965 0.0000 + 1319.7747 166.0000 60.0000 2.8965 0.0000 1286.3433 166.0000 61.0000 2.8965 0.0000 + 1255.6329 166.0000 62.0000 2.8965 0.0000 1228.3897 166.0000 63.0000 2.8965 0.0000 + 960.8995 166.0000 64.0000 2.8965 0.0000 1091.3776 166.0000 65.0000 2.8965 0.0000 + 1051.8609 166.0000 66.0000 2.8965 0.0000 1106.4740 166.0000 67.0000 2.8965 0.0000 + 1082.8259 166.0000 68.0000 2.8965 0.0000 1061.4329 166.0000 69.0000 2.8965 0.0000 + 1049.2440 166.0000 70.0000 2.8965 0.0000 881.0613 166.0000 71.0000 2.8965 0.0000 + 861.9439 166.0000 72.0000 2.8965 0.0000 784.3347 166.0000 73.0000 2.8965 0.0000 + 660.9578 166.0000 74.0000 2.8965 0.0000 671.6274 166.0000 75.0000 2.8965 0.0000 + 607.2319 166.0000 76.0000 2.8965 0.0000 555.0584 166.0000 77.0000 2.8965 0.0000 + 460.2517 166.0000 78.0000 2.8965 0.0000 429.7027 166.0000 79.0000 2.8965 0.0000 + 441.5957 166.0000 80.0000 2.8965 0.0000 650.0913 166.0000 81.0000 2.8965 0.0000 + 633.1471 166.0000 82.0000 2.8965 0.0000 579.4185 166.0000 83.0000 2.8965 0.0000 + 551.3547 166.0000 84.0000 2.8965 0.0000 507.4938 166.0000 85.0000 2.8965 0.0000 + 464.0615 166.0000 86.0000 2.8965 0.0000 1609.9709 166.0000 87.0000 2.8965 0.0000 + 1533.8391 166.0000 88.0000 2.8965 0.0000 1349.4846 166.0000 89.0000 2.8965 0.0000 + 1206.5102 166.0000 90.0000 2.8965 0.0000 1201.1049 166.0000 91.0000 2.8965 0.0000 + 1162.8261 166.0000 92.0000 2.8965 0.0000 1201.0327 166.0000 93.0000 2.8965 0.0000 + 1162.3643 166.0000 94.0000 2.8965 0.0000 63.7816 166.0000 101.0000 2.8965 0.0000 + 209.6685 166.0000 103.0000 2.8965 0.9865 266.9922 166.0000 104.0000 2.8965 0.9808 + 202.1595 166.0000 105.0000 2.8965 0.9706 151.5963 166.0000 106.0000 2.8965 0.9868 + 104.8991 166.0000 107.0000 2.8965 0.9944 76.1209 166.0000 108.0000 2.8965 0.9925 + 52.1454 166.0000 109.0000 2.8965 0.9982 307.1464 166.0000 111.0000 2.8965 0.9684 + 475.4827 166.0000 112.0000 2.8965 0.9628 479.1923 166.0000 113.0000 2.8965 0.9648 + 382.4286 166.0000 114.0000 2.8965 0.9507 311.6696 166.0000 115.0000 2.8965 0.9947 + 262.7163 166.0000 116.0000 2.8965 0.9948 214.0702 166.0000 117.0000 2.8965 0.9972 + 422.0535 166.0000 119.0000 2.8965 0.9767 817.4261 166.0000 120.0000 2.8965 0.9831 + 419.5774 166.0000 121.0000 2.8965 1.8627 405.0758 166.0000 122.0000 2.8965 1.8299 + 397.0180 166.0000 123.0000 2.8965 1.9138 393.6386 166.0000 124.0000 2.8965 1.8269 + 360.9437 166.0000 125.0000 2.8965 1.6406 333.7444 166.0000 126.0000 2.8965 1.6483 + 318.4010 166.0000 127.0000 2.8965 1.7149 311.3689 166.0000 128.0000 2.8965 1.7937 + 308.4467 166.0000 129.0000 2.8965 0.9576 288.0409 166.0000 130.0000 2.8965 1.9419 + 474.6781 166.0000 131.0000 2.8965 0.9601 414.6873 166.0000 132.0000 2.8965 0.9434 + 370.2368 166.0000 133.0000 2.8965 0.9889 337.2239 166.0000 134.0000 2.8965 0.9901 + 296.2434 166.0000 135.0000 2.8965 0.9974 503.0095 166.0000 137.0000 2.8965 0.9738 + 995.6332 166.0000 138.0000 2.8965 0.9801 753.6872 166.0000 139.0000 2.8965 1.9153 + 555.3166 166.0000 140.0000 2.8965 1.9355 560.7912 166.0000 141.0000 2.8965 1.9545 + 522.4406 166.0000 142.0000 2.8965 1.9420 588.6854 166.0000 143.0000 2.8965 1.6682 + 453.9296 166.0000 144.0000 2.8965 1.8584 424.5778 166.0000 145.0000 2.8965 1.9003 + 394.0563 166.0000 146.0000 2.8965 1.8630 381.3842 166.0000 147.0000 2.8965 0.9679 + 376.3121 166.0000 148.0000 2.8965 1.9539 603.0805 166.0000 149.0000 2.8965 0.9633 + 542.9404 166.0000 150.0000 2.8965 0.9514 506.8159 166.0000 151.0000 2.8965 0.9749 + 478.3961 166.0000 152.0000 2.8965 0.9811 435.8349 166.0000 153.0000 2.8965 0.9968 + 592.5973 166.0000 155.0000 2.8965 0.9909 1294.3501 166.0000 156.0000 2.8965 0.9797 + 954.9829 166.0000 157.0000 2.8965 1.9373 593.2406 166.0000 159.0000 2.8965 2.9425 + 580.9422 166.0000 160.0000 2.8965 2.9455 562.4103 166.0000 161.0000 2.8965 2.9413 + 565.5841 166.0000 162.0000 2.8965 2.9300 546.4196 166.0000 163.0000 2.8965 1.8286 + 569.2318 166.0000 164.0000 2.8965 2.8732 534.3480 166.0000 165.0000 2.8965 2.9086 + 544.4356 166.0000 166.0000 2.8965 2.8965 37.0295 167.0000 1.0000 2.9242 0.9118 + 24.4806 167.0000 2.0000 2.9242 0.0000 575.7499 167.0000 3.0000 2.9242 0.0000 + 332.8646 167.0000 4.0000 2.9242 0.0000 224.0856 167.0000 5.0000 2.9242 0.0000 + 151.3607 167.0000 6.0000 2.9242 0.0000 105.8582 167.0000 7.0000 2.9242 0.0000 + 80.1704 167.0000 8.0000 2.9242 0.0000 60.7598 167.0000 9.0000 2.9242 0.0000 + 46.7595 167.0000 10.0000 2.9242 0.0000 688.5910 167.0000 11.0000 2.9242 0.0000 + 530.3870 167.0000 12.0000 2.9242 0.0000 488.8472 167.0000 13.0000 2.9242 0.0000 + 385.0952 167.0000 14.0000 2.9242 0.0000 300.1974 167.0000 15.0000 2.9242 0.0000 + 249.0984 167.0000 16.0000 2.9242 0.0000 203.4529 167.0000 17.0000 2.9242 0.0000 + 166.4466 167.0000 18.0000 2.9242 0.0000 1127.9480 167.0000 19.0000 2.9242 0.0000 + 931.7443 167.0000 20.0000 2.9242 0.0000 769.8336 167.0000 21.0000 2.9242 0.0000 + 743.4069 167.0000 22.0000 2.9242 0.0000 680.7697 167.0000 23.0000 2.9242 0.0000 + 536.2731 167.0000 24.0000 2.9242 0.0000 586.1315 167.0000 25.0000 2.9242 0.0000 + 460.0415 167.0000 26.0000 2.9242 0.0000 487.6202 167.0000 27.0000 2.9242 0.0000 + 502.3206 167.0000 28.0000 2.9242 0.0000 385.1327 167.0000 29.0000 2.9242 0.0000 + 395.3654 167.0000 30.0000 2.9242 0.0000 468.2277 167.0000 31.0000 2.9242 0.0000 + 412.8162 167.0000 32.0000 2.9242 0.0000 351.9875 167.0000 33.0000 2.9242 0.0000 + 315.7701 167.0000 34.0000 2.9242 0.0000 276.2768 167.0000 35.0000 2.9242 0.0000 + 240.2275 167.0000 36.0000 2.9242 0.0000 1264.1518 167.0000 37.0000 2.9242 0.0000 + 1110.0442 167.0000 38.0000 2.9242 0.0000 972.3864 167.0000 39.0000 2.9242 0.0000 + 873.8994 167.0000 40.0000 2.9242 0.0000 796.8327 167.0000 41.0000 2.9242 0.0000 + 615.1052 167.0000 42.0000 2.9242 0.0000 686.3381 167.0000 43.0000 2.9242 0.0000 + 522.8164 167.0000 44.0000 2.9242 0.0000 571.4828 167.0000 45.0000 2.9242 0.0000 + 529.9388 167.0000 46.0000 2.9242 0.0000 441.8976 167.0000 47.0000 2.9242 0.0000 + 466.9433 167.0000 48.0000 2.9242 0.0000 586.0395 167.0000 49.0000 2.9242 0.0000 + 541.7910 167.0000 50.0000 2.9242 0.0000 482.6582 167.0000 51.0000 2.9242 0.0000 + 447.6960 167.0000 52.0000 2.9242 0.0000 404.6813 167.0000 53.0000 2.9242 0.0000 + 363.7360 167.0000 54.0000 2.9242 0.0000 1539.8453 167.0000 55.0000 2.9242 0.0000 + 1414.9943 167.0000 56.0000 2.9242 0.0000 1243.1883 167.0000 57.0000 2.9242 0.0000 + 570.2451 167.0000 58.0000 2.9242 2.7991 1253.7691 167.0000 59.0000 2.9242 0.0000 + 1203.9727 167.0000 60.0000 2.9242 0.0000 1173.7842 167.0000 61.0000 2.9242 0.0000 + 1146.0194 167.0000 62.0000 2.9242 0.0000 1121.3978 167.0000 63.0000 2.9242 0.0000 + 881.7549 167.0000 64.0000 2.9242 0.0000 992.6267 167.0000 65.0000 2.9242 0.0000 + 957.3153 167.0000 66.0000 2.9242 0.0000 1011.4677 167.0000 67.0000 2.9242 0.0000 + 990.0070 167.0000 68.0000 2.9242 0.0000 970.6528 167.0000 69.0000 2.9242 0.0000 + 959.3058 167.0000 70.0000 2.9242 0.0000 808.1903 167.0000 71.0000 2.9242 0.0000 + 794.7163 167.0000 72.0000 2.9242 0.0000 725.1773 167.0000 73.0000 2.9242 0.0000 + 612.2640 167.0000 74.0000 2.9242 0.0000 622.8462 167.0000 75.0000 2.9242 0.0000 + 564.4220 167.0000 76.0000 2.9242 0.0000 516.8575 167.0000 77.0000 2.9242 0.0000 + 429.3170 167.0000 78.0000 2.9242 0.0000 401.1039 167.0000 79.0000 2.9242 0.0000 + 412.5907 167.0000 80.0000 2.9242 0.0000 601.6516 167.0000 81.0000 2.9242 0.0000 + 588.1615 167.0000 82.0000 2.9242 0.0000 540.2841 167.0000 83.0000 2.9242 0.0000 + 515.1762 167.0000 84.0000 2.9242 0.0000 475.3226 167.0000 85.0000 2.9242 0.0000 + 435.5489 167.0000 86.0000 2.9242 0.0000 1454.1544 167.0000 87.0000 2.9242 0.0000 + 1399.2062 167.0000 88.0000 2.9242 0.0000 1236.8406 167.0000 89.0000 2.9242 0.0000 + 1111.3608 167.0000 90.0000 2.9242 0.0000 1103.4821 167.0000 91.0000 2.9242 0.0000 + 1068.4783 167.0000 92.0000 2.9242 0.0000 1100.2364 167.0000 93.0000 2.9242 0.0000 + 1065.4625 167.0000 94.0000 2.9242 0.0000 59.6586 167.0000 101.0000 2.9242 0.0000 + 193.4738 167.0000 103.0000 2.9242 0.9865 246.7464 167.0000 104.0000 2.9242 0.9808 + 188.4765 167.0000 105.0000 2.9242 0.9706 141.9797 167.0000 106.0000 2.9242 0.9868 + 98.7212 167.0000 107.0000 2.9242 0.9944 71.9104 167.0000 108.0000 2.9242 0.9925 + 49.4793 167.0000 109.0000 2.9242 0.9982 282.8651 167.0000 111.0000 2.9242 0.9684 + 437.4255 167.0000 112.0000 2.9242 0.9628 443.0078 167.0000 113.0000 2.9242 0.9648 + 355.8982 167.0000 114.0000 2.9242 0.9507 291.3907 167.0000 115.0000 2.9242 0.9947 + 246.3593 167.0000 116.0000 2.9242 0.9948 201.3478 167.0000 117.0000 2.9242 0.9972 + 389.9518 167.0000 119.0000 2.9242 0.9767 745.1781 167.0000 120.0000 2.9242 0.9831 + 390.0277 167.0000 121.0000 2.9242 1.8627 376.5089 167.0000 122.0000 2.9242 1.8299 + 368.9941 167.0000 123.0000 2.9242 1.9138 365.5972 167.0000 124.0000 2.9242 1.8269 + 336.3582 167.0000 125.0000 2.9242 1.6406 311.2798 167.0000 126.0000 2.9242 1.6483 + 296.9473 167.0000 127.0000 2.9242 1.7149 290.3139 167.0000 128.0000 2.9242 1.7937 + 286.8927 167.0000 129.0000 2.9242 0.9576 269.0965 167.0000 130.0000 2.9242 1.9419 + 439.7399 167.0000 131.0000 2.9242 0.9601 386.1634 167.0000 132.0000 2.9242 0.9434 + 346.0085 167.0000 133.0000 2.9242 0.9889 315.8929 167.0000 134.0000 2.9242 0.9901 + 278.2032 167.0000 135.0000 2.9242 0.9974 465.2606 167.0000 137.0000 2.9242 0.9738 + 906.7106 167.0000 138.0000 2.9242 0.9801 693.0607 167.0000 139.0000 2.9242 1.9153 + 515.8086 167.0000 140.0000 2.9242 1.9355 520.9380 167.0000 141.0000 2.9242 1.9545 + 485.7214 167.0000 142.0000 2.9242 1.9420 544.7906 167.0000 143.0000 2.9242 1.6682 + 423.3418 167.0000 144.0000 2.9242 1.8584 396.0475 167.0000 145.0000 2.9242 1.9003 + 367.7646 167.0000 146.0000 2.9242 1.8630 355.7893 167.0000 147.0000 2.9242 0.9679 + 351.9076 167.0000 148.0000 2.9242 1.9539 558.5785 167.0000 149.0000 2.9242 0.9633 + 505.1927 167.0000 150.0000 2.9242 0.9514 473.0076 167.0000 151.0000 2.9242 0.9749 + 447.3606 167.0000 152.0000 2.9242 0.9811 408.4793 167.0000 153.0000 2.9242 0.9968 + 550.0548 167.0000 155.0000 2.9242 0.9909 1175.4332 167.0000 156.0000 2.9242 0.9797 + 877.1478 167.0000 157.0000 2.9242 1.9373 553.0414 167.0000 159.0000 2.9242 2.9425 + 541.6048 167.0000 160.0000 2.9242 2.9455 524.4310 167.0000 161.0000 2.9242 2.9413 + 527.0243 167.0000 162.0000 2.9242 2.9300 508.1297 167.0000 163.0000 2.9242 1.8286 + 530.3616 167.0000 164.0000 2.9242 2.8732 498.1319 167.0000 165.0000 2.9242 2.9086 + 506.8895 167.0000 166.0000 2.9242 2.8965 472.7950 167.0000 167.0000 2.9242 2.9242 + 36.0084 168.0000 1.0000 2.9282 0.9118 23.8289 168.0000 2.0000 2.9282 0.0000 + 557.2454 168.0000 3.0000 2.9282 0.0000 322.8840 168.0000 4.0000 2.9282 0.0000 + 217.6279 168.0000 5.0000 2.9282 0.0000 147.1244 168.0000 6.0000 2.9282 0.0000 + 102.9588 168.0000 7.0000 2.9282 0.0000 78.0079 168.0000 8.0000 2.9282 0.0000 + 59.1423 168.0000 9.0000 2.9282 0.0000 45.5279 168.0000 10.0000 2.9282 0.0000 + 666.5534 168.0000 11.0000 2.9282 0.0000 514.2872 168.0000 12.0000 2.9282 0.0000 + 474.3095 168.0000 13.0000 2.9282 0.0000 373.9540 168.0000 14.0000 2.9282 0.0000 + 291.7100 168.0000 15.0000 2.9282 0.0000 242.1588 168.0000 16.0000 2.9282 0.0000 + 197.8642 168.0000 17.0000 2.9282 0.0000 161.9300 168.0000 18.0000 2.9282 0.0000 + 1091.5091 168.0000 19.0000 2.9282 0.0000 902.8445 168.0000 20.0000 2.9282 0.0000 + 746.1810 168.0000 21.0000 2.9282 0.0000 720.7667 168.0000 22.0000 2.9282 0.0000 + 660.1463 168.0000 23.0000 2.9282 0.0000 520.0492 168.0000 24.0000 2.9282 0.0000 + 568.5111 168.0000 25.0000 2.9282 0.0000 446.2432 168.0000 26.0000 2.9282 0.0000 + 473.1486 168.0000 27.0000 2.9282 0.0000 487.3312 168.0000 28.0000 2.9282 0.0000 + 373.6528 168.0000 29.0000 2.9282 0.0000 383.7696 168.0000 30.0000 2.9282 0.0000 + 454.4189 168.0000 31.0000 2.9282 0.0000 400.8971 168.0000 32.0000 2.9282 0.0000 + 342.0170 168.0000 33.0000 2.9282 0.0000 306.9300 168.0000 34.0000 2.9282 0.0000 + 268.6347 168.0000 35.0000 2.9282 0.0000 233.6551 168.0000 36.0000 2.9282 0.0000 + 1223.4668 168.0000 37.0000 2.9282 0.0000 1075.5659 168.0000 38.0000 2.9282 0.0000 + 942.6854 168.0000 39.0000 2.9282 0.0000 847.4869 168.0000 40.0000 2.9282 0.0000 + 772.9187 168.0000 41.0000 2.9282 0.0000 596.8707 168.0000 42.0000 2.9282 0.0000 + 665.8997 168.0000 43.0000 2.9282 0.0000 507.4568 168.0000 44.0000 2.9282 0.0000 + 554.6882 168.0000 45.0000 2.9282 0.0000 514.4346 168.0000 46.0000 2.9282 0.0000 + 428.9424 168.0000 47.0000 2.9282 0.0000 453.3608 168.0000 48.0000 2.9282 0.0000 + 568.7508 168.0000 49.0000 2.9282 0.0000 526.0806 168.0000 50.0000 2.9282 0.0000 + 468.8968 168.0000 51.0000 2.9282 0.0000 435.0603 168.0000 52.0000 2.9282 0.0000 + 393.3829 168.0000 53.0000 2.9282 0.0000 353.6841 168.0000 54.0000 2.9282 0.0000 + 1490.3329 168.0000 55.0000 2.9282 0.0000 1370.8120 168.0000 56.0000 2.9282 0.0000 + 1205.0073 168.0000 57.0000 2.9282 0.0000 553.9356 168.0000 58.0000 2.9282 2.7991 + 1214.8410 168.0000 59.0000 2.9282 0.0000 1166.6903 168.0000 60.0000 2.9282 0.0000 + 1137.4645 168.0000 61.0000 2.9282 0.0000 1110.5819 168.0000 62.0000 2.9282 0.0000 + 1086.7437 168.0000 63.0000 2.9282 0.0000 855.0138 168.0000 64.0000 2.9282 0.0000 + 961.7148 168.0000 65.0000 2.9282 0.0000 927.6008 168.0000 66.0000 2.9282 0.0000 + 980.3403 168.0000 67.0000 2.9282 0.0000 959.5536 168.0000 68.0000 2.9282 0.0000 + 940.8140 168.0000 69.0000 2.9282 0.0000 929.7929 168.0000 70.0000 2.9282 0.0000 + 783.6461 168.0000 71.0000 2.9282 0.0000 770.9874 168.0000 72.0000 2.9282 0.0000 + 703.7521 168.0000 73.0000 2.9282 0.0000 594.3280 168.0000 74.0000 2.9282 0.0000 + 604.6739 168.0000 75.0000 2.9282 0.0000 548.1047 168.0000 76.0000 2.9282 0.0000 + 502.0262 168.0000 77.0000 2.9282 0.0000 417.0965 168.0000 78.0000 2.9282 0.0000 + 389.7237 168.0000 79.0000 2.9282 0.0000 400.9238 168.0000 80.0000 2.9282 0.0000 + 583.9861 168.0000 81.0000 2.9282 0.0000 571.1195 168.0000 82.0000 2.9282 0.0000 + 524.8641 168.0000 83.0000 2.9282 0.0000 500.6005 168.0000 84.0000 2.9282 0.0000 + 462.0138 168.0000 85.0000 2.9282 0.0000 423.4681 168.0000 86.0000 2.9282 0.0000 + 1407.9944 168.0000 87.0000 2.9282 0.0000 1355.8908 168.0000 88.0000 2.9282 0.0000 + 1199.1383 168.0000 89.0000 2.9282 0.0000 1078.0836 168.0000 90.0000 2.9282 0.0000 + 1070.1540 168.0000 91.0000 2.9282 0.0000 1036.2222 168.0000 92.0000 2.9282 0.0000 + 1066.6560 168.0000 93.0000 2.9282 0.0000 1033.0090 168.0000 94.0000 2.9282 0.0000 + 57.9760 168.0000 101.0000 2.9282 0.0000 187.7050 168.0000 103.0000 2.9282 0.9865 + 239.4431 168.0000 104.0000 2.9282 0.9808 183.0885 168.0000 105.0000 2.9282 0.9706 + 138.0041 168.0000 106.0000 2.9282 0.9868 96.0193 168.0000 107.0000 2.9282 0.9944 + 69.9791 168.0000 108.0000 2.9282 0.9925 48.1805 168.0000 109.0000 2.9282 0.9982 + 274.3732 168.0000 111.0000 2.9282 0.9684 424.2493 168.0000 112.0000 2.9282 0.9628 + 429.8982 168.0000 113.0000 2.9282 0.9648 345.6425 168.0000 114.0000 2.9282 0.9507 + 283.1587 168.0000 115.0000 2.9282 0.9947 239.4936 168.0000 116.0000 2.9282 0.9948 + 195.8155 168.0000 117.0000 2.9282 0.9972 378.4205 168.0000 119.0000 2.9282 0.9767 + 722.1111 168.0000 120.0000 2.9282 0.9831 378.7408 168.0000 121.0000 2.9282 1.8627 + 365.6231 168.0000 122.0000 2.9282 1.8299 358.3213 168.0000 123.0000 2.9282 1.9138 + 354.9945 168.0000 124.0000 2.9282 1.8269 326.7279 168.0000 125.0000 2.9282 1.6406 + 302.4017 168.0000 126.0000 2.9282 1.6483 288.4783 168.0000 127.0000 2.9282 1.7149 + 282.0254 168.0000 128.0000 2.9282 1.7937 278.6211 168.0000 129.0000 2.9282 0.9576 + 261.4745 168.0000 130.0000 2.9282 1.9419 426.8411 168.0000 131.0000 2.9282 0.9601 + 375.0691 168.0000 132.0000 2.9282 0.9434 336.2183 168.0000 133.0000 2.9282 0.9889 + 307.0478 168.0000 134.0000 2.9282 0.9901 270.5030 168.0000 135.0000 2.9282 0.9974 + 451.5684 168.0000 137.0000 2.9282 0.9738 878.5837 168.0000 138.0000 2.9282 0.9801 + 672.2671 168.0000 139.0000 2.9282 1.9153 500.8568 168.0000 140.0000 2.9282 1.9355 + 505.8297 168.0000 141.0000 2.9282 1.9545 471.7011 168.0000 142.0000 2.9282 1.9420 + 528.8006 168.0000 143.0000 2.9282 1.6682 411.2731 168.0000 144.0000 2.9282 1.8584 + 384.7714 168.0000 145.0000 2.9282 1.9003 357.3192 168.0000 146.0000 2.9282 1.8630 + 345.6658 168.0000 147.0000 2.9282 0.9679 341.9894 168.0000 148.0000 2.9282 1.9539 + 542.1999 168.0000 149.0000 2.9282 0.9633 490.6416 168.0000 150.0000 2.9282 0.9514 + 459.5521 168.0000 151.0000 2.9282 0.9749 434.7424 168.0000 152.0000 2.9282 0.9811 + 397.0728 168.0000 153.0000 2.9282 0.9968 534.0818 168.0000 155.0000 2.9282 0.9909 + 1138.7329 168.0000 156.0000 2.9282 0.9797 850.7547 168.0000 157.0000 2.9282 1.9373 + 537.2399 168.0000 159.0000 2.9282 2.9425 526.1331 168.0000 160.0000 2.9282 2.9455 + 509.4631 168.0000 161.0000 2.9282 2.9413 511.9439 168.0000 162.0000 2.9282 2.9300 + 493.4684 168.0000 163.0000 2.9282 1.8286 515.1733 168.0000 164.0000 2.9282 2.8732 + 483.8982 168.0000 165.0000 2.9282 2.9086 492.3380 168.0000 166.0000 2.9282 2.8965 + 459.3155 168.0000 167.0000 2.9282 2.9242 446.2314 168.0000 168.0000 2.9282 2.9282 + 35.7480 169.0000 1.0000 2.9246 0.9118 23.6297 169.0000 2.0000 2.9246 0.0000 + 555.2598 169.0000 3.0000 2.9246 0.0000 321.2393 169.0000 4.0000 2.9246 0.0000 + 216.3099 169.0000 5.0000 2.9246 0.0000 146.1173 169.0000 6.0000 2.9246 0.0000 + 102.1888 169.0000 7.0000 2.9246 0.0000 77.3874 169.0000 8.0000 2.9246 0.0000 + 58.6465 169.0000 9.0000 2.9246 0.0000 45.1298 169.0000 10.0000 2.9246 0.0000 + 664.0994 169.0000 11.0000 2.9246 0.0000 511.8009 169.0000 12.0000 2.9246 0.0000 + 471.7945 169.0000 13.0000 2.9246 0.0000 371.7271 169.0000 14.0000 2.9246 0.0000 + 289.8009 169.0000 15.0000 2.9246 0.0000 240.4740 169.0000 16.0000 2.9246 0.0000 + 196.4062 169.0000 17.0000 2.9246 0.0000 160.6761 169.0000 18.0000 2.9246 0.0000 + 1087.6970 169.0000 19.0000 2.9246 0.0000 898.8634 169.0000 20.0000 2.9246 0.0000 + 742.7390 169.0000 21.0000 2.9246 0.0000 717.2897 169.0000 22.0000 2.9246 0.0000 + 656.8806 169.0000 23.0000 2.9246 0.0000 517.4322 169.0000 24.0000 2.9246 0.0000 + 565.5959 169.0000 25.0000 2.9246 0.0000 443.9051 169.0000 26.0000 2.9246 0.0000 + 470.5820 169.0000 27.0000 2.9246 0.0000 484.7511 169.0000 28.0000 2.9246 0.0000 + 371.6376 169.0000 29.0000 2.9246 0.0000 381.5809 169.0000 30.0000 2.9246 0.0000 + 451.9002 169.0000 31.0000 2.9246 0.0000 398.4787 169.0000 32.0000 2.9246 0.0000 + 339.7906 169.0000 33.0000 2.9246 0.0000 304.8342 169.0000 34.0000 2.9246 0.0000 + 266.7093 169.0000 35.0000 2.9246 0.0000 231.9047 169.0000 36.0000 2.9246 0.0000 + 1219.0706 169.0000 37.0000 2.9246 0.0000 1070.8351 169.0000 38.0000 2.9246 0.0000 + 938.1873 169.0000 39.0000 2.9246 0.0000 843.2361 169.0000 40.0000 2.9246 0.0000 + 768.9101 169.0000 41.0000 2.9246 0.0000 593.5778 169.0000 42.0000 2.9246 0.0000 + 662.3109 169.0000 43.0000 2.9246 0.0000 504.5373 169.0000 44.0000 2.9246 0.0000 + 551.5239 169.0000 45.0000 2.9246 0.0000 511.4434 169.0000 46.0000 2.9246 0.0000 + 426.4375 169.0000 47.0000 2.9246 0.0000 450.6589 169.0000 48.0000 2.9246 0.0000 + 565.5647 169.0000 49.0000 2.9246 0.0000 522.9356 169.0000 50.0000 2.9246 0.0000 + 465.9059 169.0000 51.0000 2.9246 0.0000 432.1732 169.0000 52.0000 2.9246 0.0000 + 390.6589 169.0000 53.0000 2.9246 0.0000 351.1344 169.0000 54.0000 2.9246 0.0000 + 1484.9661 169.0000 55.0000 2.9246 0.0000 1364.9240 169.0000 56.0000 2.9246 0.0000 + 1199.3874 169.0000 57.0000 2.9246 0.0000 550.4264 169.0000 58.0000 2.9246 2.7991 + 1209.4663 169.0000 59.0000 2.9246 0.0000 1161.4494 169.0000 60.0000 2.9246 0.0000 + 1132.3365 169.0000 61.0000 2.9246 0.0000 1105.5604 169.0000 62.0000 2.9246 0.0000 + 1081.8160 169.0000 63.0000 2.9246 0.0000 850.7546 169.0000 64.0000 2.9246 0.0000 + 957.4948 169.0000 65.0000 2.9246 0.0000 923.4785 169.0000 66.0000 2.9246 0.0000 + 975.8085 169.0000 67.0000 2.9246 0.0000 955.1104 169.0000 68.0000 2.9246 0.0000 + 936.4457 169.0000 69.0000 2.9246 0.0000 925.4944 169.0000 70.0000 2.9246 0.0000 + 779.7959 169.0000 71.0000 2.9246 0.0000 766.9085 169.0000 72.0000 2.9246 0.0000 + 699.8511 169.0000 73.0000 2.9246 0.0000 590.8890 169.0000 74.0000 2.9246 0.0000 + 601.1260 169.0000 75.0000 2.9246 0.0000 544.7646 169.0000 76.0000 2.9246 0.0000 + 498.8724 169.0000 77.0000 2.9246 0.0000 414.3742 169.0000 78.0000 2.9246 0.0000 + 387.1422 169.0000 79.0000 2.9246 0.0000 398.2465 169.0000 80.0000 2.9246 0.0000 + 580.6167 169.0000 81.0000 2.9246 0.0000 567.6688 169.0000 82.0000 2.9246 0.0000 + 521.5117 169.0000 83.0000 2.9246 0.0000 497.2973 169.0000 84.0000 2.9246 0.0000 + 458.8425 169.0000 85.0000 2.9246 0.0000 420.4539 169.0000 86.0000 2.9246 0.0000 + 1402.4613 169.0000 87.0000 2.9246 0.0000 1349.7931 169.0000 88.0000 2.9246 0.0000 + 1193.3412 169.0000 89.0000 2.9246 0.0000 1072.4182 169.0000 90.0000 2.9246 0.0000 + 1064.7199 169.0000 91.0000 2.9246 0.0000 1030.9456 169.0000 92.0000 2.9246 0.0000 + 1061.4860 169.0000 93.0000 2.9246 0.0000 1027.9565 169.0000 94.0000 2.9246 0.0000 + 57.5937 169.0000 101.0000 2.9246 0.0000 186.7210 169.0000 103.0000 2.9246 0.9865 + 238.1420 169.0000 104.0000 2.9246 0.9808 181.9383 169.0000 105.0000 2.9246 0.9706 + 137.0581 169.0000 106.0000 2.9246 0.9868 95.2979 169.0000 107.0000 2.9246 0.9944 + 69.4137 169.0000 108.0000 2.9246 0.9925 47.7551 169.0000 109.0000 2.9246 0.9982 + 272.9668 169.0000 111.0000 2.9246 0.9684 422.1177 169.0000 112.0000 2.9246 0.9628 + 427.5655 169.0000 113.0000 2.9246 0.9648 343.5475 169.0000 114.0000 2.9246 0.9507 + 281.2978 169.0000 115.0000 2.9246 0.9947 237.8283 169.0000 116.0000 2.9246 0.9948 + 194.3732 169.0000 117.0000 2.9246 0.9972 376.3047 169.0000 119.0000 2.9246 0.9767 + 718.8719 169.0000 120.0000 2.9246 0.9831 376.4552 169.0000 121.0000 2.9246 1.8627 + 363.4076 169.0000 122.0000 2.9246 1.8299 356.1503 169.0000 123.0000 2.9246 1.9138 + 352.8632 169.0000 124.0000 2.9246 1.8269 324.6761 169.0000 125.0000 2.9246 1.6406 + 300.4715 169.0000 126.0000 2.9246 1.6483 286.6332 169.0000 127.0000 2.9246 1.7149 + 280.2274 169.0000 128.0000 2.9246 1.7937 276.9038 169.0000 129.0000 2.9246 0.9576 + 259.7613 169.0000 130.0000 2.9246 1.9419 424.4203 169.0000 131.0000 2.9246 0.9601 + 372.7595 169.0000 132.0000 2.9246 0.9434 334.0190 169.0000 133.0000 2.9246 0.9889 + 304.9520 169.0000 134.0000 2.9246 0.9901 268.5684 169.0000 135.0000 2.9246 0.9974 + 448.9840 169.0000 137.0000 2.9246 0.9738 874.6707 169.0000 138.0000 2.9246 0.9801 + 668.7656 169.0000 139.0000 2.9246 1.9153 497.8395 169.0000 140.0000 2.9246 1.9355 + 502.7808 169.0000 141.0000 2.9246 1.9545 468.8041 169.0000 142.0000 2.9246 1.9420 + 525.7481 169.0000 143.0000 2.9246 1.6682 408.6237 169.0000 144.0000 2.9246 1.8584 + 382.2739 169.0000 145.0000 2.9246 1.9003 354.9728 169.0000 146.0000 2.9246 1.8630 + 343.4086 169.0000 147.0000 2.9246 0.9679 339.6919 169.0000 148.0000 2.9246 1.9539 + 539.0868 169.0000 149.0000 2.9246 0.9633 487.6285 169.0000 150.0000 2.9246 0.9514 + 456.5948 169.0000 151.0000 2.9246 0.9749 431.8507 169.0000 152.0000 2.9246 0.9811 + 394.3257 169.0000 153.0000 2.9246 0.9968 530.8706 169.0000 155.0000 2.9246 0.9909 + 1133.8329 169.0000 156.0000 2.9246 0.9797 846.3794 169.0000 157.0000 2.9246 1.9373 + 533.8225 169.0000 159.0000 2.9246 2.9425 522.7836 169.0000 160.0000 2.9246 2.9455 + 506.2081 169.0000 161.0000 2.9246 2.9413 508.7048 169.0000 162.0000 2.9246 2.9300 + 490.4334 169.0000 163.0000 2.9246 1.8286 511.9281 169.0000 164.0000 2.9246 2.8732 + 480.8218 169.0000 165.0000 2.9246 2.9086 489.2608 169.0000 166.0000 2.9246 2.8965 + 456.3728 169.0000 167.0000 2.9246 2.9242 443.3639 169.0000 168.0000 2.9246 2.9282 + 440.5228 169.0000 169.0000 2.9246 2.9246 37.3986 170.0000 1.0000 2.8482 0.9118 + 24.5435 170.0000 2.0000 2.8482 0.0000 592.3651 170.0000 3.0000 2.8482 0.0000 + 340.2385 170.0000 4.0000 2.8482 0.0000 227.8802 170.0000 5.0000 2.8482 0.0000 + 153.2146 170.0000 6.0000 2.8482 0.0000 106.7340 170.0000 7.0000 2.8482 0.0000 + 80.5863 170.0000 8.0000 2.8482 0.0000 60.9031 170.0000 9.0000 2.8482 0.0000 + 46.7569 170.0000 10.0000 2.8482 0.0000 708.0629 170.0000 11.0000 2.8482 0.0000 + 542.7763 170.0000 12.0000 2.8482 0.0000 499.1071 170.0000 13.0000 2.8482 0.0000 + 391.8451 170.0000 14.0000 2.8482 0.0000 304.4460 170.0000 15.0000 2.8482 0.0000 + 251.9975 170.0000 16.0000 2.8482 0.0000 205.2969 170.0000 17.0000 2.8482 0.0000 + 167.5526 170.0000 18.0000 2.8482 0.0000 1160.0767 170.0000 19.0000 2.8482 0.0000 + 955.0787 170.0000 20.0000 2.8482 0.0000 788.4325 170.0000 21.0000 2.8482 0.0000 + 760.5639 170.0000 22.0000 2.8482 0.0000 696.0633 170.0000 23.0000 2.8482 0.0000 + 547.9588 170.0000 24.0000 2.8482 0.0000 598.7622 170.0000 25.0000 2.8482 0.0000 + 469.5788 170.0000 26.0000 2.8482 0.0000 497.4063 170.0000 27.0000 2.8482 0.0000 + 512.7473 170.0000 28.0000 2.8482 0.0000 392.8083 170.0000 29.0000 2.8482 0.0000 + 402.7269 170.0000 30.0000 2.8482 0.0000 477.3755 170.0000 31.0000 2.8482 0.0000 + 419.8297 170.0000 32.0000 2.8482 0.0000 357.0217 170.0000 33.0000 2.8482 0.0000 + 319.6852 170.0000 34.0000 2.8482 0.0000 279.1274 170.0000 35.0000 2.8482 0.0000 + 242.2147 170.0000 36.0000 2.8482 0.0000 1299.4482 170.0000 37.0000 2.8482 0.0000 + 1137.7525 170.0000 38.0000 2.8482 0.0000 994.9869 170.0000 39.0000 2.8482 0.0000 + 893.1595 170.0000 40.0000 2.8482 0.0000 813.6798 170.0000 41.0000 2.8482 0.0000 + 626.9602 170.0000 42.0000 2.8482 0.0000 700.0676 170.0000 43.0000 2.8482 0.0000 + 532.1955 170.0000 44.0000 2.8482 0.0000 581.9866 170.0000 45.0000 2.8482 0.0000 + 539.3652 170.0000 46.0000 2.8482 0.0000 449.5606 170.0000 47.0000 2.8482 0.0000 + 474.8773 170.0000 48.0000 2.8482 0.0000 597.1466 170.0000 49.0000 2.8482 0.0000 + 551.0566 170.0000 50.0000 2.8482 0.0000 489.8686 170.0000 51.0000 2.8482 0.0000 + 453.7243 170.0000 52.0000 2.8482 0.0000 409.4407 170.0000 53.0000 2.8482 0.0000 + 367.3841 170.0000 54.0000 2.8482 0.0000 1582.5500 170.0000 55.0000 2.8482 0.0000 + 1450.7794 170.0000 56.0000 2.8482 0.0000 1272.5822 170.0000 57.0000 2.8482 0.0000 + 578.8340 170.0000 58.0000 2.8482 2.7991 1284.6682 170.0000 59.0000 2.8482 0.0000 + 1233.3365 170.0000 60.0000 2.8482 0.0000 1202.3371 170.0000 61.0000 2.8482 0.0000 + 1173.8392 170.0000 62.0000 2.8482 0.0000 1148.5655 170.0000 63.0000 2.8482 0.0000 + 901.1210 170.0000 64.0000 2.8482 0.0000 1016.9049 170.0000 65.0000 2.8482 0.0000 + 980.4326 170.0000 66.0000 2.8482 0.0000 1035.6000 170.0000 67.0000 2.8482 0.0000 + 1013.6038 170.0000 68.0000 2.8482 0.0000 993.7415 170.0000 69.0000 2.8482 0.0000 + 982.2266 170.0000 70.0000 2.8482 0.0000 826.2851 170.0000 71.0000 2.8482 0.0000 + 811.1571 170.0000 72.0000 2.8482 0.0000 739.2221 170.0000 73.0000 2.8482 0.0000 + 623.2250 170.0000 74.0000 2.8482 0.0000 633.7679 170.0000 75.0000 2.8482 0.0000 + 573.6203 170.0000 76.0000 2.8482 0.0000 524.7340 170.0000 77.0000 2.8482 0.0000 + 435.2009 170.0000 78.0000 2.8482 0.0000 406.3595 170.0000 79.0000 2.8482 0.0000 + 417.9202 170.0000 80.0000 2.8482 0.0000 612.3722 170.0000 81.0000 2.8482 0.0000 + 597.9109 170.0000 82.0000 2.8482 0.0000 548.2614 170.0000 83.0000 2.8482 0.0000 + 522.1794 170.0000 84.0000 2.8482 0.0000 481.0570 170.0000 85.0000 2.8482 0.0000 + 440.1420 170.0000 86.0000 2.8482 0.0000 1492.4670 170.0000 87.0000 2.8482 0.0000 + 1433.2640 170.0000 88.0000 2.8482 0.0000 1265.0809 170.0000 89.0000 2.8482 0.0000 + 1134.4175 170.0000 90.0000 2.8482 0.0000 1127.2049 170.0000 91.0000 2.8482 0.0000 + 1091.3656 170.0000 92.0000 2.8482 0.0000 1125.1094 170.0000 93.0000 2.8482 0.0000 + 1089.3370 170.0000 94.0000 2.8482 0.0000 60.4871 170.0000 101.0000 2.8482 0.0000 + 197.5946 170.0000 103.0000 2.8482 0.9865 251.7223 170.0000 104.0000 2.8482 0.9808 + 191.4109 170.0000 105.0000 2.8482 0.9706 143.6930 170.0000 106.0000 2.8482 0.9868 + 99.5059 170.0000 107.0000 2.8482 0.9944 72.2182 170.0000 108.0000 2.8482 0.9925 + 49.4502 170.0000 109.0000 2.8482 0.9982 289.0123 170.0000 111.0000 2.8482 0.9684 + 447.1652 170.0000 112.0000 2.8482 0.9628 452.0055 170.0000 113.0000 2.8482 0.9648 + 361.9140 170.0000 114.0000 2.8482 0.9507 295.4611 170.0000 115.0000 2.8482 0.9947 + 249.2287 170.0000 116.0000 2.8482 0.9948 203.1740 170.0000 117.0000 2.8482 0.9972 + 397.2856 170.0000 119.0000 2.8482 0.9767 763.2645 170.0000 120.0000 2.8482 0.9831 + 396.5845 170.0000 121.0000 2.8482 1.8627 382.7505 170.0000 122.0000 2.8482 1.8299 + 375.1083 170.0000 123.0000 2.8482 1.9138 371.7528 170.0000 124.0000 2.8482 1.8269 + 341.5632 170.0000 125.0000 2.8482 1.6406 315.9092 170.0000 126.0000 2.8482 1.6483 + 301.3273 170.0000 127.0000 2.8482 1.7149 294.6262 170.0000 128.0000 2.8482 1.7937 + 291.4639 170.0000 129.0000 2.8482 0.9576 272.8496 170.0000 130.0000 2.8482 1.9419 + 448.0328 170.0000 131.0000 2.8482 0.9601 392.4501 170.0000 132.0000 2.8482 0.9434 + 350.8906 170.0000 133.0000 2.8482 0.9889 319.8129 170.0000 134.0000 2.8482 0.9901 + 281.0990 170.0000 135.0000 2.8482 0.9974 473.6474 170.0000 137.0000 2.8482 0.9738 + 928.7123 170.0000 138.0000 2.8482 0.9801 707.3910 170.0000 139.0000 2.8482 1.9153 + 524.4245 170.0000 140.0000 2.8482 1.9355 529.6376 170.0000 141.0000 2.8482 1.9545 + 493.4814 170.0000 142.0000 2.8482 1.9420 554.4782 170.0000 143.0000 2.8482 1.6682 + 429.4167 170.0000 144.0000 2.8482 1.8584 401.5942 170.0000 145.0000 2.8482 1.9003 + 372.7391 170.0000 146.0000 2.8482 1.8630 360.6692 170.0000 147.0000 2.8482 0.9679 + 356.4206 170.0000 148.0000 2.8482 1.9539 568.7674 170.0000 149.0000 2.8482 0.9633 + 513.3804 170.0000 150.0000 2.8482 0.9514 479.9224 170.0000 151.0000 2.8482 0.9749 + 453.3459 170.0000 152.0000 2.8482 0.9811 413.3002 170.0000 153.0000 2.8482 0.9968 + 559.1868 170.0000 155.0000 2.8482 0.9909 1204.5119 170.0000 156.0000 2.8482 0.9797 + 895.4741 170.0000 157.0000 2.8482 1.9373 561.2873 170.0000 159.0000 2.8482 2.9425 + 549.6643 170.0000 160.0000 2.8482 2.9455 532.1653 170.0000 161.0000 2.8482 2.9413 + 534.9658 170.0000 162.0000 2.8482 2.9300 516.2412 170.0000 163.0000 2.8482 1.8286 + 538.4560 170.0000 164.0000 2.8482 2.8732 505.5690 170.0000 165.0000 2.8482 2.9086 + 514.7303 170.0000 166.0000 2.8482 2.8965 479.7320 170.0000 167.0000 2.8482 2.9242 + 466.0069 170.0000 168.0000 2.8482 2.9282 463.0696 170.0000 169.0000 2.8482 2.9246 + 487.0753 170.0000 170.0000 2.8482 2.8482 34.6012 171.0000 1.0000 2.9219 0.9118 + 22.8926 171.0000 2.0000 2.9219 0.0000 533.4581 171.0000 3.0000 2.9219 0.0000 + 309.8245 171.0000 4.0000 2.9219 0.0000 209.0059 171.0000 5.0000 2.9219 0.0000 + 141.3458 171.0000 6.0000 2.9219 0.0000 98.9223 171.0000 7.0000 2.9219 0.0000 + 74.9451 171.0000 8.0000 2.9219 0.0000 56.8124 171.0000 9.0000 2.9219 0.0000 + 43.7263 171.0000 10.0000 2.9219 0.0000 638.1634 171.0000 11.0000 2.9219 0.0000 + 493.2883 171.0000 12.0000 2.9219 0.0000 455.1960 171.0000 13.0000 2.9219 0.0000 + 359.1141 171.0000 14.0000 2.9219 0.0000 280.2406 171.0000 15.0000 2.9219 0.0000 + 232.6687 171.0000 16.0000 2.9219 0.0000 190.1219 171.0000 17.0000 2.9219 0.0000 + 155.5916 171.0000 18.0000 2.9219 0.0000 1044.4701 171.0000 19.0000 2.9219 0.0000 + 865.2829 171.0000 20.0000 2.9219 0.0000 715.3652 171.0000 21.0000 2.9219 0.0000 + 691.1573 171.0000 22.0000 2.9219 0.0000 633.1163 171.0000 23.0000 2.9219 0.0000 + 498.7053 171.0000 24.0000 2.9219 0.0000 545.3391 171.0000 25.0000 2.9219 0.0000 + 428.0177 171.0000 26.0000 2.9219 0.0000 454.0159 171.0000 27.0000 2.9219 0.0000 + 467.5642 171.0000 28.0000 2.9219 0.0000 358.4393 171.0000 29.0000 2.9219 0.0000 + 368.3520 171.0000 30.0000 2.9219 0.0000 436.1455 171.0000 31.0000 2.9219 0.0000 + 384.9740 171.0000 32.0000 2.9219 0.0000 328.5454 171.0000 33.0000 2.9219 0.0000 + 294.8812 171.0000 34.0000 2.9219 0.0000 258.1129 171.0000 35.0000 2.9219 0.0000 + 224.5110 171.0000 36.0000 2.9219 0.0000 1170.8400 171.0000 37.0000 2.9219 0.0000 + 1030.7165 171.0000 38.0000 2.9219 0.0000 903.8521 171.0000 39.0000 2.9219 0.0000 + 812.8125 171.0000 40.0000 2.9219 0.0000 741.4183 171.0000 41.0000 2.9219 0.0000 + 572.6625 171.0000 42.0000 2.9219 0.0000 638.8488 171.0000 43.0000 2.9219 0.0000 + 486.9465 171.0000 44.0000 2.9219 0.0000 532.3185 171.0000 45.0000 2.9219 0.0000 + 493.7318 171.0000 46.0000 2.9219 0.0000 411.5822 171.0000 47.0000 2.9219 0.0000 + 435.1594 171.0000 48.0000 2.9219 0.0000 545.7749 171.0000 49.0000 2.9219 0.0000 + 505.0671 171.0000 50.0000 2.9219 0.0000 450.3294 171.0000 51.0000 2.9219 0.0000 + 417.9025 171.0000 52.0000 2.9219 0.0000 377.9207 171.0000 53.0000 2.9219 0.0000 + 339.8125 171.0000 54.0000 2.9219 0.0000 1426.2370 171.0000 55.0000 2.9219 0.0000 + 1313.3618 171.0000 56.0000 2.9219 0.0000 1155.1299 171.0000 57.0000 2.9219 0.0000 + 531.9325 171.0000 58.0000 2.9219 2.7991 1164.0997 171.0000 59.0000 2.9219 0.0000 + 1118.0647 171.0000 60.0000 2.9219 0.0000 1090.0872 171.0000 61.0000 2.9219 0.0000 + 1064.3505 171.0000 62.0000 2.9219 0.0000 1041.5296 171.0000 63.0000 2.9219 0.0000 + 819.8468 171.0000 64.0000 2.9219 0.0000 921.3341 171.0000 65.0000 2.9219 0.0000 + 888.7453 171.0000 66.0000 2.9219 0.0000 939.6888 171.0000 67.0000 2.9219 0.0000 + 919.7818 171.0000 68.0000 2.9219 0.0000 901.8411 171.0000 69.0000 2.9219 0.0000 + 891.2608 171.0000 70.0000 2.9219 0.0000 751.4308 171.0000 71.0000 2.9219 0.0000 + 739.6916 171.0000 72.0000 2.9219 0.0000 675.3532 171.0000 73.0000 2.9219 0.0000 + 570.3969 171.0000 74.0000 2.9219 0.0000 580.3983 171.0000 75.0000 2.9219 0.0000 + 526.1934 171.0000 76.0000 2.9219 0.0000 482.0174 171.0000 77.0000 2.9219 0.0000 + 400.4829 171.0000 78.0000 2.9219 0.0000 374.2039 171.0000 79.0000 2.9219 0.0000 + 385.0072 171.0000 80.0000 2.9219 0.0000 560.3760 171.0000 81.0000 2.9219 0.0000 + 548.2519 171.0000 82.0000 2.9219 0.0000 504.0254 171.0000 83.0000 2.9219 0.0000 + 480.8059 171.0000 84.0000 2.9219 0.0000 443.8157 171.0000 85.0000 2.9219 0.0000 + 406.8304 171.0000 86.0000 2.9219 0.0000 1348.0198 171.0000 87.0000 2.9219 0.0000 + 1299.4057 171.0000 88.0000 2.9219 0.0000 1149.7484 171.0000 89.0000 2.9219 0.0000 + 1034.1669 171.0000 90.0000 2.9219 0.0000 1026.2543 171.0000 91.0000 2.9219 0.0000 + 993.7192 171.0000 92.0000 2.9219 0.0000 1022.5738 171.0000 93.0000 2.9219 0.0000 + 990.3800 171.0000 94.0000 2.9219 0.0000 55.7008 171.0000 101.0000 2.9219 0.0000 + 180.1292 171.0000 103.0000 2.9219 0.9865 229.8095 171.0000 104.0000 2.9219 0.9808 + 175.8502 171.0000 105.0000 2.9219 0.9706 132.5755 171.0000 106.0000 2.9219 0.9868 + 92.2512 171.0000 107.0000 2.9219 0.9944 67.2308 171.0000 108.0000 2.9219 0.9925 + 46.2772 171.0000 109.0000 2.9219 0.9982 263.2219 171.0000 111.0000 2.9219 0.9684 + 406.9926 171.0000 112.0000 2.9219 0.9628 412.6170 171.0000 113.0000 2.9219 0.9648 + 331.9451 171.0000 114.0000 2.9219 0.9507 272.0239 171.0000 115.0000 2.9219 0.9947 + 230.1040 171.0000 116.0000 2.9219 0.9948 188.1509 171.0000 117.0000 2.9219 0.9972 + 363.0799 171.0000 119.0000 2.9219 0.9767 692.0083 171.0000 120.0000 2.9219 0.9831 + 363.6319 171.0000 121.0000 2.9219 1.8627 351.0309 171.0000 122.0000 2.9219 1.8299 + 344.0112 171.0000 123.0000 2.9219 1.9138 340.7898 171.0000 124.0000 2.9219 1.8269 + 313.7616 171.0000 125.0000 2.9219 1.6406 290.4145 171.0000 126.0000 2.9219 1.6483 + 277.0338 171.0000 127.0000 2.9219 1.7149 270.8278 171.0000 128.0000 2.9219 1.7937 + 267.4892 171.0000 129.0000 2.9219 0.9576 251.1407 171.0000 130.0000 2.9219 1.9419 + 409.7279 171.0000 131.0000 2.9219 0.9601 360.2034 171.0000 132.0000 2.9219 0.9434 + 322.9784 171.0000 133.0000 2.9219 0.9889 294.9920 171.0000 134.0000 2.9219 0.9901 + 259.9055 171.0000 135.0000 2.9219 0.9974 433.2923 171.0000 137.0000 2.9219 0.9738 + 841.8543 171.0000 138.0000 2.9219 0.9801 644.8013 171.0000 139.0000 2.9219 1.9153 + 480.8236 171.0000 140.0000 2.9219 1.9355 485.5842 171.0000 141.0000 2.9219 1.9545 + 452.8490 171.0000 142.0000 2.9219 1.9420 507.4383 171.0000 143.0000 2.9219 1.6682 + 394.9305 171.0000 144.0000 2.9219 1.8584 369.4718 171.0000 145.0000 2.9219 1.9003 + 343.1104 171.0000 146.0000 2.9219 1.8630 331.9016 171.0000 147.0000 2.9219 0.9679 + 328.4628 171.0000 148.0000 2.9219 1.9539 520.3763 171.0000 149.0000 2.9219 0.9633 + 471.1069 171.0000 150.0000 2.9219 0.9514 441.3725 171.0000 151.0000 2.9219 0.9749 + 417.6022 171.0000 152.0000 2.9219 0.9811 381.4663 171.0000 153.0000 2.9219 0.9968 + 512.6658 171.0000 155.0000 2.9219 0.9909 1090.8422 171.0000 156.0000 2.9219 0.9797 + 815.9104 171.0000 157.0000 2.9219 1.9373 515.9075 171.0000 159.0000 2.9219 2.9425 + 505.2428 171.0000 160.0000 2.9219 2.9455 489.2407 171.0000 161.0000 2.9219 2.9413 + 491.5959 171.0000 162.0000 2.9219 2.9300 473.7482 171.0000 163.0000 2.9219 1.8286 + 494.7008 171.0000 164.0000 2.9219 2.8732 464.6828 171.0000 165.0000 2.9219 2.9086 + 472.7345 171.0000 166.0000 2.9219 2.8965 441.0999 171.0000 167.0000 2.9219 2.9242 + 428.5425 171.0000 168.0000 2.9219 2.9282 425.7852 171.0000 169.0000 2.9219 2.9246 + 447.5158 171.0000 170.0000 2.9219 2.8482 411.5665 171.0000 171.0000 2.9219 2.9219 + 45.3466 172.0000 1.0000 1.9254 0.9118 28.9986 172.0000 2.0000 1.9254 0.0000 + 833.4475 172.0000 3.0000 1.9254 0.0000 442.5636 172.0000 4.0000 1.9254 0.0000 + 286.2831 172.0000 5.0000 1.9254 0.0000 187.9882 172.0000 6.0000 1.9254 0.0000 + 128.7982 172.0000 7.0000 1.9254 0.0000 96.1424 172.0000 8.0000 1.9254 0.0000 + 71.9597 172.0000 9.0000 1.9254 0.0000 54.8167 172.0000 10.0000 1.9254 0.0000 + 991.3402 172.0000 11.0000 1.9254 0.0000 714.7572 172.0000 12.0000 1.9254 0.0000 + 644.9282 172.0000 13.0000 1.9254 0.0000 493.8480 172.0000 14.0000 1.9254 0.0000 + 376.4065 172.0000 15.0000 1.9254 0.0000 307.9813 172.0000 16.0000 1.9254 0.0000 + 248.2122 172.0000 17.0000 1.9254 0.0000 200.7343 172.0000 18.0000 1.9254 0.0000 + 1653.9476 172.0000 19.0000 1.9254 0.0000 1289.4650 172.0000 20.0000 1.9254 0.0000 + 1053.0789 172.0000 21.0000 1.9254 0.0000 1007.3778 172.0000 22.0000 1.9254 0.0000 + 917.1452 172.0000 23.0000 1.9254 0.0000 722.3849 172.0000 24.0000 1.9254 0.0000 + 783.0802 172.0000 25.0000 1.9254 0.0000 613.7862 172.0000 26.0000 1.9254 0.0000 + 642.1929 172.0000 27.0000 1.9254 0.0000 665.3265 172.0000 28.0000 1.9254 0.0000 + 510.2862 172.0000 29.0000 1.9254 0.0000 514.1902 172.0000 30.0000 1.9254 0.0000 + 612.8702 172.0000 31.0000 1.9254 0.0000 528.4721 172.0000 32.0000 1.9254 0.0000 + 442.1870 172.0000 33.0000 1.9254 0.0000 392.2456 172.0000 34.0000 1.9254 0.0000 + 339.2853 172.0000 35.0000 1.9254 0.0000 291.9645 172.0000 36.0000 1.9254 0.0000 + 1846.9699 172.0000 37.0000 1.9254 0.0000 1540.3424 172.0000 38.0000 1.9254 0.0000 + 1323.0311 172.0000 39.0000 1.9254 0.0000 1175.0345 172.0000 40.0000 1.9254 0.0000 + 1063.4756 172.0000 41.0000 1.9254 0.0000 810.6552 172.0000 42.0000 1.9254 0.0000 + 908.8421 172.0000 43.0000 1.9254 0.0000 682.6807 172.0000 44.0000 1.9254 0.0000 + 745.6550 172.0000 45.0000 1.9254 0.0000 688.1448 172.0000 46.0000 1.9254 0.0000 + 575.9550 172.0000 47.0000 1.9254 0.0000 602.6451 172.0000 48.0000 1.9254 0.0000 + 768.0103 172.0000 49.0000 1.9254 0.0000 696.8105 172.0000 50.0000 1.9254 0.0000 + 610.2527 172.0000 51.0000 1.9254 0.0000 560.4812 172.0000 52.0000 1.9254 0.0000 + 501.3621 172.0000 53.0000 1.9254 0.0000 446.2641 172.0000 54.0000 1.9254 0.0000 + 2252.8586 172.0000 55.0000 1.9254 0.0000 1978.9909 172.0000 56.0000 1.9254 0.0000 + 1704.0270 172.0000 57.0000 1.9254 0.0000 723.4456 172.0000 58.0000 1.9254 2.7991 + 1742.0729 172.0000 59.0000 1.9254 0.0000 1666.1615 172.0000 60.0000 1.9254 0.0000 + 1622.6978 172.0000 61.0000 1.9254 0.0000 1582.9071 172.0000 62.0000 1.9254 0.0000 + 1547.5750 172.0000 63.0000 1.9254 0.0000 1192.0226 172.0000 64.0000 1.9254 0.0000 + 1389.4684 172.0000 65.0000 1.9254 0.0000 1336.0613 172.0000 66.0000 1.9254 0.0000 + 1388.4173 172.0000 67.0000 1.9254 0.0000 1358.1065 172.0000 68.0000 1.9254 0.0000 + 1330.4473 172.0000 69.0000 1.9254 0.0000 1315.9859 172.0000 70.0000 1.9254 0.0000 + 1093.9351 172.0000 71.0000 1.9254 0.0000 1054.3108 172.0000 72.0000 1.9254 0.0000 + 951.1851 172.0000 73.0000 1.9254 0.0000 796.7662 172.0000 74.0000 1.9254 0.0000 + 806.7999 172.0000 75.0000 1.9254 0.0000 724.1296 172.0000 76.0000 1.9254 0.0000 + 658.0616 172.0000 77.0000 1.9254 0.0000 542.4547 172.0000 78.0000 1.9254 0.0000 + 505.2037 172.0000 79.0000 1.9254 0.0000 517.6710 172.0000 80.0000 1.9254 0.0000 + 785.6204 172.0000 81.0000 1.9254 0.0000 756.3377 172.0000 82.0000 1.9254 0.0000 + 683.9723 172.0000 83.0000 1.9254 0.0000 646.5746 172.0000 84.0000 1.9254 0.0000 + 590.5386 172.0000 85.0000 1.9254 0.0000 536.2567 172.0000 86.0000 1.9254 0.0000 + 2090.8542 172.0000 87.0000 1.9254 0.0000 1937.0166 172.0000 88.0000 1.9254 0.0000 + 1680.4201 172.0000 89.0000 1.9254 0.0000 1479.7956 172.0000 90.0000 1.9254 0.0000 + 1484.7146 172.0000 91.0000 1.9254 0.0000 1436.6817 172.0000 92.0000 1.9254 0.0000 + 1497.3302 172.0000 93.0000 1.9254 0.0000 1446.4901 172.0000 94.0000 1.9254 0.0000 + 74.6292 172.0000 101.0000 1.9254 0.0000 255.9208 172.0000 103.0000 1.9254 0.9865 + 324.4323 172.0000 104.0000 1.9254 0.9808 238.9767 172.0000 105.0000 1.9254 0.9706 + 176.5408 172.0000 106.0000 1.9254 0.9868 120.1068 172.0000 107.0000 1.9254 0.9944 + 85.9370 172.0000 108.0000 1.9254 0.9925 57.8272 172.0000 109.0000 1.9254 0.9982 + 376.9954 172.0000 111.0000 1.9254 0.9684 585.7053 172.0000 112.0000 1.9254 0.9628 + 581.5718 172.0000 113.0000 1.9254 0.9648 454.7127 172.0000 114.0000 1.9254 0.9507 + 365.1235 172.0000 115.0000 1.9254 0.9947 304.7056 172.0000 116.0000 1.9254 0.9948 + 245.7048 172.0000 117.0000 1.9254 0.9972 512.8153 172.0000 119.0000 1.9254 0.9767 + 1034.1456 172.0000 120.0000 1.9254 0.9831 500.4528 172.0000 121.0000 1.9254 1.8627 + 483.1691 172.0000 122.0000 1.9254 1.8299 473.6414 172.0000 123.0000 1.9254 1.9138 + 470.6076 172.0000 124.0000 1.9254 1.8269 426.9978 172.0000 125.0000 1.9254 1.6406 + 393.7053 172.0000 126.0000 1.9254 1.6483 375.6522 172.0000 127.0000 1.9254 1.7149 + 367.6414 172.0000 128.0000 1.9254 1.7937 366.9348 172.0000 129.0000 1.9254 0.9576 + 337.9629 172.0000 130.0000 1.9254 1.9419 572.3227 172.0000 131.0000 1.9254 0.9601 + 491.9738 172.0000 132.0000 1.9254 0.9434 434.2287 172.0000 133.0000 1.9254 0.9889 + 392.4775 172.0000 134.0000 1.9254 0.9901 341.8557 172.0000 135.0000 1.9254 0.9974 + 609.1048 172.0000 137.0000 1.9254 0.9738 1263.2459 172.0000 138.0000 1.9254 0.9801 + 929.1165 172.0000 139.0000 1.9254 1.9153 664.0037 172.0000 140.0000 1.9254 1.9355 + 670.4019 172.0000 141.0000 1.9254 1.9545 622.6203 172.0000 142.0000 1.9254 1.9420 + 711.7424 172.0000 143.0000 1.9254 1.6682 535.5402 172.0000 144.0000 1.9254 1.8584 + 500.5042 172.0000 145.0000 1.9254 1.9003 463.6824 172.0000 146.0000 1.9254 1.8630 + 449.3082 172.0000 147.0000 1.9254 0.9679 439.9774 172.0000 148.0000 1.9254 1.9539 + 727.2164 172.0000 149.0000 1.9254 0.9633 645.4042 172.0000 150.0000 1.9254 0.9514 + 596.7311 172.0000 151.0000 1.9254 0.9749 559.7227 172.0000 152.0000 1.9254 0.9811 + 506.1568 172.0000 153.0000 1.9254 0.9968 710.0379 172.0000 155.0000 1.9254 0.9909 + 1655.1217 172.0000 156.0000 1.9254 0.9797 1181.1130 172.0000 157.0000 1.9254 1.9373 + 700.9255 172.0000 159.0000 1.9254 2.9425 686.2763 172.0000 160.0000 1.9254 2.9455 + 663.9586 172.0000 161.0000 1.9254 2.9413 669.1728 172.0000 162.0000 1.9254 2.9300 + 650.5999 172.0000 163.0000 1.9254 1.8286 673.8022 172.0000 164.0000 1.9254 2.8732 + 631.3597 172.0000 165.0000 1.9254 2.9086 645.8704 172.0000 166.0000 1.9254 2.8965 + 597.8735 172.0000 167.0000 1.9254 2.9242 580.3335 172.0000 168.0000 1.9254 2.9282 + 577.0039 172.0000 169.0000 1.9254 2.9246 608.7142 172.0000 170.0000 1.9254 2.8482 + 556.9572 172.0000 171.0000 1.9254 2.9219 780.3872 172.0000 172.0000 1.9254 1.9254 + 42.5991 173.0000 1.0000 1.9459 0.9118 27.6208 173.0000 2.0000 1.9459 0.0000 + 738.8089 173.0000 3.0000 1.9459 0.0000 403.2239 173.0000 4.0000 1.9459 0.0000 + 264.5808 173.0000 5.0000 1.9459 0.0000 175.6268 173.0000 6.0000 1.9459 0.0000 + 121.3232 173.0000 7.0000 1.9459 0.0000 91.1025 173.0000 8.0000 1.9459 0.0000 + 68.5425 173.0000 9.0000 1.9459 0.0000 52.4358 173.0000 10.0000 1.9459 0.0000 + 880.3532 173.0000 11.0000 1.9459 0.0000 648.2981 173.0000 12.0000 1.9459 0.0000 + 589.2301 173.0000 13.0000 1.9459 0.0000 455.7565 173.0000 14.0000 1.9459 0.0000 + 350.3154 173.0000 15.0000 1.9459 0.0000 288.2197 173.0000 16.0000 1.9459 0.0000 + 233.5360 173.0000 17.0000 1.9459 0.0000 189.7641 173.0000 18.0000 1.9459 0.0000 + 1460.4707 173.0000 19.0000 1.9459 0.0000 1159.7504 173.0000 20.0000 1.9459 0.0000 + 950.6862 173.0000 21.0000 1.9459 0.0000 912.3291 173.0000 22.0000 1.9459 0.0000 + 832.2331 173.0000 23.0000 1.9459 0.0000 655.7091 173.0000 24.0000 1.9459 0.0000 + 712.5928 173.0000 25.0000 1.9459 0.0000 558.9541 173.0000 26.0000 1.9459 0.0000 + 587.2474 173.0000 27.0000 1.9459 0.0000 607.1928 173.0000 28.0000 1.9459 0.0000 + 465.8069 173.0000 29.0000 1.9459 0.0000 472.2547 173.0000 30.0000 1.9459 0.0000 + 561.6079 173.0000 31.0000 1.9459 0.0000 488.0790 173.0000 32.0000 1.9459 0.0000 + 411.2565 173.0000 33.0000 1.9459 0.0000 366.4067 173.0000 34.0000 1.9459 0.0000 + 318.3752 173.0000 35.0000 1.9459 0.0000 275.1274 173.0000 36.0000 1.9459 0.0000 + 1632.8526 173.0000 37.0000 1.9459 0.0000 1384.3496 173.0000 38.0000 1.9459 0.0000 + 1196.7064 173.0000 39.0000 1.9459 0.0000 1067.0698 173.0000 40.0000 1.9459 0.0000 + 968.2344 173.0000 41.0000 1.9459 0.0000 741.4202 173.0000 42.0000 1.9459 0.0000 + 829.7617 173.0000 43.0000 1.9459 0.0000 626.4527 173.0000 44.0000 1.9459 0.0000 + 684.2653 173.0000 45.0000 1.9459 0.0000 632.5574 173.0000 46.0000 1.9459 0.0000 + 528.9288 173.0000 47.0000 1.9459 0.0000 555.1674 173.0000 48.0000 1.9459 0.0000 + 703.6560 173.0000 49.0000 1.9459 0.0000 642.5725 173.0000 50.0000 1.9459 0.0000 + 566.2395 173.0000 51.0000 1.9459 0.0000 521.9983 173.0000 52.0000 1.9459 0.0000 + 468.8257 173.0000 53.0000 1.9459 0.0000 418.9139 173.0000 54.0000 1.9459 0.0000 + 1990.6514 173.0000 55.0000 1.9459 0.0000 1774.2433 173.0000 56.0000 1.9459 0.0000 + 1537.7374 173.0000 57.0000 1.9459 0.0000 670.5445 173.0000 58.0000 1.9459 2.7991 + 1565.0227 173.0000 59.0000 1.9459 0.0000 1498.8909 173.0000 60.0000 1.9459 0.0000 + 1460.2740 173.0000 61.0000 1.9459 0.0000 1424.8668 173.0000 62.0000 1.9459 0.0000 + 1393.4393 173.0000 63.0000 1.9459 0.0000 1080.7361 173.0000 64.0000 1.9459 0.0000 + 1245.4654 173.0000 65.0000 1.9459 0.0000 1198.5562 173.0000 66.0000 1.9459 0.0000 + 1252.2798 173.0000 67.0000 1.9459 0.0000 1225.1780 173.0000 68.0000 1.9459 0.0000 + 1200.5428 173.0000 69.0000 1.9459 0.0000 1187.1547 173.0000 70.0000 1.9459 0.0000 + 991.1575 173.0000 71.0000 1.9459 0.0000 961.7880 173.0000 72.0000 1.9459 0.0000 + 871.1517 173.0000 73.0000 1.9459 0.0000 731.9144 173.0000 74.0000 1.9459 0.0000 + 742.2751 173.0000 75.0000 1.9459 0.0000 668.5188 173.0000 76.0000 1.9459 0.0000 + 609.2192 173.0000 77.0000 1.9459 0.0000 503.7015 173.0000 78.0000 1.9459 0.0000 + 469.6866 173.0000 79.0000 1.9459 0.0000 481.8850 173.0000 80.0000 1.9459 0.0000 + 720.9145 173.0000 81.0000 1.9459 0.0000 697.6514 173.0000 82.0000 1.9459 0.0000 + 634.4345 173.0000 83.0000 1.9459 0.0000 601.6645 173.0000 84.0000 1.9459 0.0000 + 551.6379 173.0000 85.0000 1.9459 0.0000 502.6997 173.0000 86.0000 1.9459 0.0000 + 1858.0508 173.0000 87.0000 1.9459 0.0000 1742.4506 173.0000 88.0000 1.9459 0.0000 + 1520.8103 173.0000 89.0000 1.9459 0.0000 1348.4147 173.0000 90.0000 1.9459 0.0000 + 1348.2588 173.0000 91.0000 1.9459 0.0000 1304.9404 173.0000 92.0000 1.9459 0.0000 + 1354.5615 173.0000 93.0000 1.9459 0.0000 1309.6099 173.0000 94.0000 1.9459 0.0000 + 69.5172 173.0000 101.0000 1.9459 0.0000 233.6075 173.0000 103.0000 1.9459 0.9865 + 296.8173 173.0000 104.0000 1.9459 0.9808 221.5085 173.0000 105.0000 1.9459 0.9706 + 164.8922 173.0000 106.0000 1.9459 0.9868 113.1600 173.0000 107.0000 1.9459 0.9944 + 81.5610 173.0000 108.0000 1.9459 0.9925 55.3905 173.0000 109.0000 1.9459 0.9982 + 343.2801 173.0000 111.0000 1.9459 0.9684 532.4766 173.0000 112.0000 1.9459 0.9628 + 532.2864 173.0000 113.0000 1.9459 0.9648 420.2326 173.0000 114.0000 1.9459 0.9507 + 339.9122 173.0000 115.0000 1.9459 0.9947 285.1197 173.0000 116.0000 1.9459 0.9948 + 231.1571 173.0000 117.0000 1.9459 0.9972 469.4105 173.0000 119.0000 1.9459 0.9767 + 929.4379 173.0000 120.0000 1.9459 0.9831 461.9376 173.0000 121.0000 1.9459 1.8627 + 445.9579 173.0000 122.0000 1.9459 1.8299 437.1397 173.0000 123.0000 1.9459 1.9138 + 433.9122 173.0000 124.0000 1.9459 1.8269 395.6116 173.0000 125.0000 1.9459 1.6406 + 365.2742 173.0000 126.0000 1.9459 1.6483 348.5157 173.0000 127.0000 1.9459 1.7149 + 340.9580 173.0000 128.0000 1.9459 1.7937 339.1050 173.0000 129.0000 1.9459 0.9576 + 314.3617 173.0000 130.0000 1.9459 1.9419 525.5040 173.0000 131.0000 1.9459 0.9601 + 455.1833 173.0000 132.0000 1.9459 0.9434 404.0189 173.0000 133.0000 1.9459 0.9889 + 366.5983 173.0000 134.0000 1.9459 0.9901 320.7130 173.0000 135.0000 1.9459 0.9974 + 558.4919 173.0000 137.0000 1.9459 0.9738 1133.9963 173.0000 138.0000 1.9459 0.9801 + 844.7234 173.0000 139.0000 1.9459 1.9153 612.3192 173.0000 140.0000 1.9459 1.9355 + 618.3328 173.0000 141.0000 1.9459 1.9545 575.0447 173.0000 142.0000 1.9459 1.9420 + 653.0406 173.0000 143.0000 1.9459 1.6682 496.9704 173.0000 144.0000 1.9459 1.8584 + 464.6638 173.0000 145.0000 1.9459 1.9003 430.8712 173.0000 146.0000 1.9459 1.8630 + 417.2647 173.0000 147.0000 1.9459 0.9679 410.0279 173.0000 148.0000 1.9459 1.9539 + 667.8087 173.0000 149.0000 1.9459 0.9633 596.6150 173.0000 150.0000 1.9459 0.9514 + 554.1499 173.0000 151.0000 1.9459 0.9749 521.4107 173.0000 152.0000 1.9459 0.9811 + 473.2751 173.0000 153.0000 1.9459 0.9968 654.2488 173.0000 155.0000 1.9459 0.9909 + 1480.6088 173.0000 156.0000 1.9459 0.9797 1072.2142 173.0000 157.0000 1.9459 1.9373 + 649.9097 173.0000 159.0000 1.9459 2.9425 636.3801 173.0000 160.0000 1.9459 2.9455 + 615.8784 173.0000 161.0000 1.9459 2.9413 620.0622 173.0000 162.0000 1.9459 2.9300 + 601.0845 173.0000 163.0000 1.9459 1.8286 624.2011 173.0000 164.0000 1.9459 2.8732 + 585.3921 173.0000 165.0000 1.9459 2.9086 597.7144 173.0000 166.0000 1.9459 2.8965 + 554.7982 173.0000 167.0000 1.9459 2.9242 538.6874 173.0000 168.0000 1.9459 2.9282 + 535.4599 173.0000 169.0000 1.9459 2.9246 564.1072 173.0000 170.0000 1.9459 2.8482 + 517.0982 173.0000 171.0000 1.9459 2.9219 716.0992 173.0000 172.0000 1.9459 1.9254 + 659.7501 173.0000 173.0000 1.9459 1.9459 39.3530 174.0000 1.0000 1.9292 0.9118 + 25.8916 174.0000 2.0000 1.9292 0.0000 642.2239 174.0000 3.0000 1.9292 0.0000 + 360.7558 174.0000 4.0000 1.9292 0.0000 240.2982 174.0000 5.0000 1.9292 0.0000 + 161.3287 174.0000 6.0000 1.9292 0.0000 112.4138 174.0000 7.0000 1.9292 0.0000 + 84.9428 174.0000 8.0000 1.9292 0.0000 64.2604 174.0000 9.0000 1.9292 0.0000 + 49.3830 174.0000 10.0000 1.9292 0.0000 766.7477 174.0000 11.0000 1.9292 0.0000 + 577.3002 174.0000 12.0000 1.9292 0.0000 528.7559 174.0000 13.0000 1.9292 0.0000 + 413.3044 174.0000 14.0000 1.9292 0.0000 320.4932 174.0000 15.0000 1.9292 0.0000 + 265.2113 174.0000 16.0000 1.9292 0.0000 216.1034 174.0000 17.0000 1.9292 0.0000 + 176.4763 174.0000 18.0000 1.9292 0.0000 1265.2105 174.0000 19.0000 1.9292 0.0000 + 1023.7513 174.0000 20.0000 1.9292 0.0000 842.4987 174.0000 21.0000 1.9292 0.0000 + 811.2804 174.0000 22.0000 1.9292 0.0000 741.5955 174.0000 23.0000 1.9292 0.0000 + 584.5767 174.0000 24.0000 1.9292 0.0000 636.8972 174.0000 25.0000 1.9292 0.0000 + 500.0445 174.0000 26.0000 1.9292 0.0000 527.5583 174.0000 27.0000 1.9292 0.0000 + 544.3315 174.0000 28.0000 1.9292 0.0000 417.7679 174.0000 29.0000 1.9292 0.0000 + 426.2047 174.0000 30.0000 1.9292 0.0000 505.6085 174.0000 31.0000 1.9292 0.0000 + 442.9999 174.0000 32.0000 1.9292 0.0000 375.9984 174.0000 33.0000 1.9292 0.0000 + 336.5240 174.0000 34.0000 1.9292 0.0000 293.7958 174.0000 35.0000 1.9292 0.0000 + 255.0068 174.0000 36.0000 1.9292 0.0000 1416.5256 174.0000 37.0000 1.9292 0.0000 + 1221.1434 174.0000 38.0000 1.9292 0.0000 1062.8100 174.0000 39.0000 1.9292 0.0000 + 951.6708 174.0000 40.0000 1.9292 0.0000 865.8895 174.0000 41.0000 1.9292 0.0000 + 666.2938 174.0000 42.0000 1.9292 0.0000 744.2951 174.0000 43.0000 1.9292 0.0000 + 564.9808 174.0000 44.0000 1.9292 0.0000 617.0747 174.0000 45.0000 1.9292 0.0000 + 571.4589 174.0000 46.0000 1.9292 0.0000 477.4647 174.0000 47.0000 1.9292 0.0000 + 502.6948 174.0000 48.0000 1.9292 0.0000 633.5061 174.0000 49.0000 1.9292 0.0000 + 582.3842 174.0000 50.0000 1.9292 0.0000 516.4949 174.0000 51.0000 1.9292 0.0000 + 477.9825 174.0000 52.0000 1.9292 0.0000 431.0943 174.0000 53.0000 1.9292 0.0000 + 386.7440 174.0000 54.0000 1.9292 0.0000 1726.4733 174.0000 55.0000 1.9292 0.0000 + 1561.2112 174.0000 56.0000 1.9292 0.0000 1362.4276 174.0000 57.0000 1.9292 0.0000 + 610.9907 174.0000 58.0000 1.9292 2.7991 1380.2768 174.0000 59.0000 1.9292 0.0000 + 1323.6943 174.0000 60.0000 1.9292 0.0000 1290.0298 174.0000 61.0000 1.9292 0.0000 + 1259.1135 174.0000 62.0000 1.9292 0.0000 1231.6839 174.0000 63.0000 1.9292 0.0000 + 962.3975 174.0000 64.0000 1.9292 0.0000 1096.2341 174.0000 65.0000 1.9292 0.0000 + 1056.0748 174.0000 66.0000 1.9292 0.0000 1108.8832 174.0000 67.0000 1.9292 0.0000 + 1085.0974 174.0000 68.0000 1.9292 0.0000 1063.5675 174.0000 69.0000 1.9292 0.0000 + 1051.3822 174.0000 70.0000 1.9292 0.0000 882.0688 174.0000 71.0000 1.9292 0.0000 + 861.8734 174.0000 72.0000 1.9292 0.0000 783.9075 174.0000 73.0000 1.9292 0.0000 + 660.7636 174.0000 74.0000 1.9292 0.0000 671.1764 174.0000 75.0000 1.9292 0.0000 + 606.6699 174.0000 76.0000 1.9292 0.0000 554.4722 174.0000 77.0000 1.9292 0.0000 + 459.9210 174.0000 78.0000 1.9292 0.0000 429.4276 174.0000 79.0000 1.9292 0.0000 + 441.1250 174.0000 80.0000 1.9292 0.0000 650.2148 174.0000 81.0000 1.9292 0.0000 + 632.5527 174.0000 82.0000 1.9292 0.0000 578.5533 174.0000 83.0000 1.9292 0.0000 + 550.4809 174.0000 84.0000 1.9292 0.0000 506.7199 174.0000 85.0000 1.9292 0.0000 + 463.4551 174.0000 86.0000 1.9292 0.0000 1620.9287 174.0000 87.0000 1.9292 0.0000 + 1538.7012 174.0000 88.0000 1.9292 0.0000 1351.5716 174.0000 89.0000 1.9292 0.0000 + 1206.9993 174.0000 90.0000 1.9292 0.0000 1202.6346 174.0000 91.0000 1.9292 0.0000 + 1164.2737 174.0000 92.0000 1.9292 0.0000 1203.4096 174.0000 93.0000 1.9292 0.0000 + 1164.4393 174.0000 94.0000 1.9292 0.0000 63.6550 174.0000 101.0000 1.9292 0.0000 + 209.4301 174.0000 103.0000 1.9292 0.9865 266.7623 174.0000 104.0000 1.9292 0.9808 + 201.8058 174.0000 105.0000 1.9292 0.9706 151.4399 174.0000 106.0000 1.9292 0.9868 + 104.8796 174.0000 107.0000 1.9292 0.9944 76.1747 174.0000 108.0000 1.9292 0.9925 + 52.2335 174.0000 109.0000 1.9292 0.9982 306.9894 174.0000 111.0000 1.9292 0.9684 + 475.3884 174.0000 112.0000 1.9292 0.9628 478.5546 174.0000 113.0000 1.9292 0.9648 + 381.6600 174.0000 114.0000 1.9292 0.9507 311.0737 174.0000 115.0000 1.9292 0.9947 + 262.3293 174.0000 116.0000 1.9292 0.9948 213.8855 174.0000 117.0000 1.9292 0.9972 + 422.2410 174.0000 119.0000 1.9292 0.9767 820.1982 174.0000 120.0000 1.9292 0.9831 + 419.0383 174.0000 121.0000 1.9292 1.8627 404.5918 174.0000 122.0000 1.9292 1.8299 + 396.5636 174.0000 123.0000 1.9292 1.9138 393.2421 174.0000 124.0000 1.9292 1.8269 + 360.3043 174.0000 125.0000 1.9292 1.6406 333.1637 174.0000 126.0000 1.9292 1.6483 + 317.8847 174.0000 127.0000 1.9292 1.7149 310.8748 174.0000 128.0000 1.9292 1.7937 + 308.0717 174.0000 129.0000 1.9292 0.9576 287.4876 174.0000 130.0000 1.9292 1.9419 + 474.0968 174.0000 131.0000 1.9292 0.9601 413.9172 174.0000 132.0000 1.9292 0.9434 + 369.5395 174.0000 133.0000 1.9292 0.9889 336.6777 174.0000 134.0000 1.9292 0.9901 + 295.8832 174.0000 135.0000 1.9292 0.9974 503.2886 174.0000 137.0000 1.9292 0.9738 + 999.6018 174.0000 138.0000 1.9292 0.9801 754.6966 174.0000 139.0000 1.9292 1.9153 + 554.9737 174.0000 140.0000 1.9292 1.9355 560.4734 174.0000 141.0000 1.9292 1.9545 + 522.0897 174.0000 142.0000 1.9292 1.9420 588.9330 174.0000 143.0000 1.9292 1.6682 + 453.4263 174.0000 144.0000 1.9292 1.8584 424.1709 174.0000 145.0000 1.9292 1.9003 + 393.7124 174.0000 146.0000 1.9292 1.8630 381.0495 174.0000 147.0000 1.9292 0.9679 + 375.7548 174.0000 148.0000 1.9292 1.9539 602.6649 174.0000 149.0000 1.9292 0.9633 + 542.1055 174.0000 150.0000 1.9292 0.9514 505.9003 174.0000 151.0000 1.9292 0.9749 + 477.5563 174.0000 152.0000 1.9292 0.9811 435.1515 174.0000 153.0000 1.9292 0.9968 + 592.5618 174.0000 155.0000 1.9292 0.9909 1300.7753 174.0000 156.0000 1.9292 0.9797 + 956.5997 174.0000 157.0000 1.9292 1.9373 592.4190 174.0000 159.0000 1.9292 2.9425 + 580.1353 174.0000 160.0000 1.9292 2.9455 561.6319 174.0000 161.0000 1.9292 2.9413 + 564.8524 174.0000 162.0000 1.9292 2.9300 545.9102 174.0000 163.0000 1.9292 1.8286 + 568.4533 174.0000 164.0000 1.9292 2.8732 533.5946 174.0000 165.0000 1.9292 2.9086 + 543.7951 174.0000 166.0000 1.9292 2.8965 506.1324 174.0000 167.0000 1.9292 2.9242 + 491.5905 174.0000 168.0000 1.9292 2.9282 488.5154 174.0000 169.0000 1.9292 2.9246 + 513.8984 174.0000 170.0000 1.9292 2.8482 471.9859 174.0000 171.0000 1.9292 2.9219 + 645.8228 174.0000 172.0000 1.9292 1.9254 597.4746 174.0000 173.0000 1.9292 1.9459 + 543.4036 174.0000 174.0000 1.9292 1.9292 39.3902 175.0000 1.0000 1.8104 0.9118 + 25.6614 175.0000 2.0000 1.8104 0.0000 677.9021 175.0000 3.0000 1.8104 0.0000 + 371.1348 175.0000 4.0000 1.8104 0.0000 243.9489 175.0000 5.0000 1.8104 0.0000 + 162.2579 175.0000 6.0000 1.8104 0.0000 112.3265 175.0000 7.0000 1.8104 0.0000 + 84.5094 175.0000 8.0000 1.8104 0.0000 63.7099 175.0000 9.0000 1.8104 0.0000 + 48.8329 175.0000 10.0000 1.8104 0.0000 808.1000 175.0000 11.0000 1.8104 0.0000 + 596.5347 175.0000 12.0000 1.8104 0.0000 542.5411 175.0000 13.0000 1.8104 0.0000 + 420.1303 175.0000 14.0000 1.8104 0.0000 323.3397 175.0000 15.0000 1.8104 0.0000 + 266.3253 175.0000 16.0000 1.8104 0.0000 216.0769 175.0000 17.0000 1.8104 0.0000 + 175.8214 175.0000 18.0000 1.8104 0.0000 1339.3807 175.0000 19.0000 1.8104 0.0000 + 1066.4078 175.0000 20.0000 1.8104 0.0000 874.5439 175.0000 21.0000 1.8104 0.0000 + 839.5915 175.0000 22.0000 1.8104 0.0000 766.0701 175.0000 23.0000 1.8104 0.0000 + 603.7628 175.0000 24.0000 1.8104 0.0000 656.1838 175.0000 25.0000 1.8104 0.0000 + 514.9199 175.0000 26.0000 1.8104 0.0000 541.0981 175.0000 27.0000 1.8104 0.0000 + 559.3398 175.0000 28.0000 1.8104 0.0000 429.2869 175.0000 29.0000 1.8104 0.0000 + 435.3944 175.0000 30.0000 1.8104 0.0000 517.4305 175.0000 31.0000 1.8104 0.0000 + 450.0785 175.0000 32.0000 1.8104 0.0000 379.6101 175.0000 33.0000 1.8104 0.0000 + 338.4808 175.0000 34.0000 1.8104 0.0000 294.3973 175.0000 35.0000 1.8104 0.0000 + 254.6783 175.0000 36.0000 1.8104 0.0000 1497.7174 175.0000 37.0000 1.8104 0.0000 + 1272.8662 175.0000 38.0000 1.8104 0.0000 1101.1436 175.0000 39.0000 1.8104 0.0000 + 982.3390 175.0000 40.0000 1.8104 0.0000 891.6575 175.0000 41.0000 1.8104 0.0000 + 683.3399 175.0000 42.0000 1.8104 0.0000 764.5015 175.0000 43.0000 1.8104 0.0000 + 577.7356 175.0000 44.0000 1.8104 0.0000 630.9388 175.0000 45.0000 1.8104 0.0000 + 583.4257 175.0000 46.0000 1.8104 0.0000 488.0001 175.0000 47.0000 1.8104 0.0000 + 512.2533 175.0000 48.0000 1.8104 0.0000 648.6295 175.0000 49.0000 1.8104 0.0000 + 592.7114 175.0000 50.0000 1.8104 0.0000 522.6970 175.0000 51.0000 1.8104 0.0000 + 482.1223 175.0000 52.0000 1.8104 0.0000 433.3183 175.0000 53.0000 1.8104 0.0000 + 387.4941 175.0000 54.0000 1.8104 0.0000 1825.3618 175.0000 55.0000 1.8104 0.0000 + 1630.8213 175.0000 56.0000 1.8104 0.0000 1414.5400 175.0000 57.0000 1.8104 0.0000 + 618.9903 175.0000 58.0000 1.8104 2.7991 1438.9986 175.0000 59.0000 1.8104 0.0000 + 1378.5166 175.0000 60.0000 1.8104 0.0000 1343.0628 175.0000 61.0000 1.8104 0.0000 + 1310.5457 175.0000 62.0000 1.8104 0.0000 1281.6825 175.0000 63.0000 1.8104 0.0000 + 994.9501 175.0000 64.0000 1.8104 0.0000 1144.8282 175.0000 65.0000 1.8104 0.0000 + 1101.7061 175.0000 66.0000 1.8104 0.0000 1152.0955 175.0000 67.0000 1.8104 0.0000 + 1127.1846 175.0000 68.0000 1.8104 0.0000 1104.5493 175.0000 69.0000 1.8104 0.0000 + 1092.1865 175.0000 70.0000 1.8104 0.0000 912.2947 175.0000 71.0000 1.8104 0.0000 + 885.8757 175.0000 72.0000 1.8104 0.0000 802.8233 175.0000 73.0000 1.8104 0.0000 + 674.9099 175.0000 74.0000 1.8104 0.0000 684.5655 175.0000 75.0000 1.8104 0.0000 + 616.8796 175.0000 76.0000 1.8104 0.0000 562.4303 175.0000 77.0000 1.8104 0.0000 + 465.3898 175.0000 78.0000 1.8104 0.0000 434.1130 175.0000 79.0000 1.8104 0.0000 + 445.3947 175.0000 80.0000 1.8104 0.0000 664.8727 175.0000 81.0000 1.8104 0.0000 + 643.7406 175.0000 82.0000 1.8104 0.0000 585.7878 175.0000 83.0000 1.8104 0.0000 + 555.7623 175.0000 84.0000 1.8104 0.0000 509.8615 175.0000 85.0000 1.8104 0.0000 + 464.9384 175.0000 86.0000 1.8104 0.0000 1705.3318 175.0000 87.0000 1.8104 0.0000 + 1602.2866 175.0000 88.0000 1.8104 0.0000 1399.5346 175.0000 89.0000 1.8104 0.0000 + 1242.0205 175.0000 90.0000 1.8104 0.0000 1241.4957 175.0000 91.0000 1.8104 0.0000 + 1201.6927 175.0000 92.0000 1.8104 0.0000 1246.8949 175.0000 93.0000 1.8104 0.0000 + 1205.6353 175.0000 94.0000 1.8104 0.0000 64.1643 175.0000 101.0000 1.8104 0.0000 + 215.0782 175.0000 103.0000 1.8104 0.9865 273.3273 175.0000 104.0000 1.8104 0.9808 + 204.3487 175.0000 105.0000 1.8104 0.9706 152.3577 175.0000 106.0000 1.8104 0.9868 + 104.7918 175.0000 107.0000 1.8104 0.9944 75.7020 175.0000 108.0000 1.8104 0.9925 + 51.5881 175.0000 109.0000 1.8104 0.9982 316.0786 175.0000 111.0000 1.8104 0.9684 + 490.0563 175.0000 112.0000 1.8104 0.9628 490.2212 175.0000 113.0000 1.8104 0.9648 + 387.4693 175.0000 114.0000 1.8104 0.9507 313.7661 175.0000 115.0000 1.8104 0.9947 + 263.4658 175.0000 116.0000 1.8104 0.9948 213.8802 175.0000 117.0000 1.8104 0.9972 + 432.7098 175.0000 119.0000 1.8104 0.9767 854.4309 175.0000 120.0000 1.8104 0.9831 + 426.1339 175.0000 121.0000 1.8104 1.8627 411.3956 175.0000 122.0000 1.8104 1.8299 + 403.2898 175.0000 123.0000 1.8104 1.9138 400.2879 175.0000 124.0000 1.8104 1.8269 + 365.1369 175.0000 125.0000 1.8104 1.6406 337.2247 175.0000 126.0000 1.8104 1.6483 + 321.7792 175.0000 127.0000 1.8104 1.7149 314.7994 175.0000 128.0000 1.8104 1.7937 + 313.0042 175.0000 129.0000 1.8104 0.9576 290.3345 175.0000 130.0000 1.8104 1.9419 + 484.2884 175.0000 131.0000 1.8104 0.9601 419.8502 175.0000 132.0000 1.8104 0.9434 + 372.9591 175.0000 133.0000 1.8104 0.9889 338.6586 175.0000 134.0000 1.8104 0.9901 + 296.5487 175.0000 135.0000 1.8104 0.9974 514.9747 175.0000 137.0000 1.8104 0.9738 + 1042.3341 175.0000 138.0000 1.8104 0.9801 777.6237 175.0000 139.0000 1.8104 1.9153 + 564.8182 175.0000 140.0000 1.8104 1.9355 570.4594 175.0000 141.0000 1.8104 1.9545 + 530.6415 175.0000 142.0000 1.8104 1.9420 602.1357 175.0000 143.0000 1.8104 1.6682 + 458.9491 175.0000 144.0000 1.8104 1.8584 429.2047 175.0000 145.0000 1.8104 1.9003 + 398.1044 175.0000 146.0000 1.8104 1.8630 385.5420 175.0000 147.0000 1.8104 0.9679 + 378.9425 175.0000 148.0000 1.8104 1.9539 615.7554 175.0000 149.0000 1.8104 0.9633 + 550.4982 175.0000 150.0000 1.8104 0.9514 511.5956 175.0000 151.0000 1.8104 0.9749 + 481.5919 175.0000 152.0000 1.8104 0.9811 437.4187 175.0000 153.0000 1.8104 0.9968 + 603.4693 175.0000 155.0000 1.8104 0.9909 1360.1123 175.0000 156.0000 1.8104 0.9797 + 986.7987 175.0000 157.0000 1.8104 1.9373 599.9828 175.0000 159.0000 1.8104 2.9425 + 587.5060 175.0000 160.0000 1.8104 2.9455 568.6114 175.0000 161.0000 1.8104 2.9413 + 572.3836 175.0000 162.0000 1.8104 2.9300 554.7553 175.0000 163.0000 1.8104 1.8286 + 576.1570 175.0000 164.0000 1.8104 2.8732 540.4330 175.0000 165.0000 1.8104 2.9086 + 551.6661 175.0000 166.0000 1.8104 2.8965 512.2348 175.0000 167.0000 1.8104 2.9242 + 497.3797 175.0000 168.0000 1.8104 2.9282 494.3750 175.0000 169.0000 1.8104 2.9246 + 520.6678 175.0000 170.0000 1.8104 2.8482 477.4382 175.0000 171.0000 1.8104 2.9219 + 660.0846 175.0000 172.0000 1.8104 1.9254 608.5288 175.0000 173.0000 1.8104 1.9459 + 551.4629 175.0000 174.0000 1.8104 1.9292 561.4338 175.0000 175.0000 1.8104 1.8104 + 35.4646 176.0000 1.0000 1.8858 0.9118 23.8125 176.0000 2.0000 1.8858 0.0000 + 530.6603 176.0000 3.0000 1.8858 0.0000 310.5224 176.0000 4.0000 1.8858 0.0000 + 211.4105 176.0000 5.0000 1.8858 0.0000 144.2494 176.0000 6.0000 1.8858 0.0000 + 101.7420 176.0000 7.0000 1.8858 0.0000 77.5536 176.0000 8.0000 1.8858 0.0000 + 59.1204 176.0000 9.0000 1.8858 0.0000 45.7205 176.0000 10.0000 1.8858 0.0000 + 635.3072 176.0000 11.0000 1.8858 0.0000 493.5592 176.0000 12.0000 1.8858 0.0000 + 457.2124 176.0000 13.0000 1.8858 0.0000 362.8363 176.0000 14.0000 1.8858 0.0000 + 284.9170 176.0000 15.0000 1.8858 0.0000 237.7045 176.0000 16.0000 1.8858 0.0000 + 195.2190 176.0000 17.0000 1.8858 0.0000 160.5301 176.0000 18.0000 1.8858 0.0000 + 1042.0654 176.0000 19.0000 1.8858 0.0000 864.5271 176.0000 20.0000 1.8858 0.0000 + 715.4332 176.0000 21.0000 1.8858 0.0000 692.4339 176.0000 22.0000 1.8858 0.0000 + 634.8838 176.0000 23.0000 1.8858 0.0000 500.9367 176.0000 24.0000 1.8858 0.0000 + 547.6522 176.0000 25.0000 1.8858 0.0000 430.6457 176.0000 26.0000 1.8858 0.0000 + 456.9650 176.0000 27.0000 1.8858 0.0000 470.0557 176.0000 28.0000 1.8858 0.0000 + 361.1009 176.0000 29.0000 1.8858 0.0000 371.6253 176.0000 30.0000 1.8858 0.0000 + 439.3263 176.0000 31.0000 1.8858 0.0000 389.4139 176.0000 32.0000 1.8858 0.0000 + 333.9602 176.0000 33.0000 1.8858 0.0000 300.8318 176.0000 34.0000 1.8858 0.0000 + 264.3845 176.0000 35.0000 1.8858 0.0000 230.8914 176.0000 36.0000 1.8858 0.0000 + 1169.3798 176.0000 37.0000 1.8858 0.0000 1030.3644 176.0000 38.0000 1.8858 0.0000 + 905.5554 176.0000 39.0000 1.8858 0.0000 815.8051 176.0000 40.0000 1.8858 0.0000 + 745.2646 176.0000 41.0000 1.8858 0.0000 577.5839 176.0000 42.0000 1.8858 0.0000 + 643.4864 176.0000 43.0000 1.8858 0.0000 492.3082 176.0000 44.0000 1.8858 0.0000 + 537.5474 176.0000 45.0000 1.8858 0.0000 499.0781 176.0000 46.0000 1.8858 0.0000 + 416.6444 176.0000 47.0000 1.8858 0.0000 440.4737 176.0000 48.0000 1.8858 0.0000 + 550.6005 176.0000 49.0000 1.8858 0.0000 510.9494 176.0000 50.0000 1.8858 0.0000 + 457.2859 176.0000 51.0000 1.8858 0.0000 425.5116 176.0000 52.0000 1.8858 0.0000 + 386.0410 176.0000 53.0000 1.8858 0.0000 348.2720 176.0000 54.0000 1.8858 0.0000 + 1425.7528 176.0000 55.0000 1.8858 0.0000 1313.0562 176.0000 56.0000 1.8858 0.0000 + 1157.0873 176.0000 57.0000 1.8858 0.0000 540.1483 176.0000 58.0000 1.8858 2.7991 + 1164.9532 176.0000 59.0000 1.8858 0.0000 1118.9840 176.0000 60.0000 1.8858 0.0000 + 1091.0275 176.0000 61.0000 1.8858 0.0000 1065.2955 176.0000 62.0000 1.8858 0.0000 + 1042.4806 176.0000 63.0000 1.8858 0.0000 823.5136 176.0000 64.0000 1.8858 0.0000 + 923.3931 176.0000 65.0000 1.8858 0.0000 891.2960 176.0000 66.0000 1.8858 0.0000 + 940.8581 176.0000 67.0000 1.8858 0.0000 920.9170 176.0000 68.0000 1.8858 0.0000 + 902.9817 176.0000 69.0000 1.8858 0.0000 892.2274 176.0000 70.0000 1.8858 0.0000 + 754.1548 176.0000 71.0000 1.8858 0.0000 743.9213 176.0000 72.0000 1.8858 0.0000 + 680.6818 176.0000 73.0000 1.8858 0.0000 576.5535 176.0000 74.0000 1.8858 0.0000 + 586.9347 176.0000 75.0000 1.8858 0.0000 533.2555 176.0000 76.0000 1.8858 0.0000 + 489.4058 176.0000 77.0000 1.8858 0.0000 407.8571 176.0000 78.0000 1.8858 0.0000 + 381.5405 176.0000 79.0000 1.8858 0.0000 392.5934 176.0000 80.0000 1.8858 0.0000 + 566.7294 176.0000 81.0000 1.8858 0.0000 555.3413 176.0000 82.0000 1.8858 0.0000 + 512.0788 176.0000 83.0000 1.8858 0.0000 489.5085 176.0000 84.0000 1.8858 0.0000 + 453.1257 176.0000 85.0000 1.8858 0.0000 416.5637 176.0000 86.0000 1.8858 0.0000 + 1349.1716 176.0000 87.0000 1.8858 0.0000 1300.7391 176.0000 88.0000 1.8858 0.0000 + 1152.9664 176.0000 89.0000 1.8858 0.0000 1040.2935 176.0000 90.0000 1.8858 0.0000 + 1031.5219 176.0000 91.0000 1.8858 0.0000 998.9338 176.0000 92.0000 1.8858 0.0000 + 1026.1425 176.0000 93.0000 1.8858 0.0000 994.0746 176.0000 94.0000 1.8858 0.0000 + 56.6567 176.0000 101.0000 1.8858 0.0000 180.8322 176.0000 103.0000 1.8858 0.9865 + 231.2409 176.0000 104.0000 1.8858 0.9808 178.3469 176.0000 105.0000 1.8858 0.9706 + 135.3783 176.0000 106.0000 1.8858 0.9868 94.9612 176.0000 107.0000 1.8858 0.9944 + 69.7080 176.0000 108.0000 1.8858 0.9925 48.4383 176.0000 109.0000 1.8858 0.9982 + 264.1479 176.0000 111.0000 1.8858 0.9684 408.1131 176.0000 112.0000 1.8858 0.9628 + 414.9465 176.0000 113.0000 1.8858 0.9648 335.7886 176.0000 114.0000 1.8858 0.9507 + 276.6705 176.0000 115.0000 1.8858 0.9947 235.0860 176.0000 116.0000 1.8858 0.9948 + 193.1956 176.0000 117.0000 1.8858 0.9972 366.5511 176.0000 119.0000 1.8858 0.9767 + 693.1742 176.0000 120.0000 1.8858 0.9831 368.0285 176.0000 121.0000 1.8858 1.8627 + 355.5230 176.0000 122.0000 1.8858 1.8299 348.4172 176.0000 123.0000 1.8858 1.9138 + 345.0165 176.0000 124.0000 1.8858 1.8269 318.3043 176.0000 125.0000 1.8858 1.6406 + 294.9542 176.0000 126.0000 1.8858 1.6483 281.4541 176.0000 127.0000 1.8858 1.7149 + 275.1022 176.0000 128.0000 1.8858 1.7937 271.2314 176.0000 129.0000 1.8858 0.9576 + 255.4770 176.0000 130.0000 1.8858 1.9419 413.1839 176.0000 131.0000 1.8858 0.9601 + 364.8336 176.0000 132.0000 1.8858 0.9434 328.4253 176.0000 133.0000 1.8858 0.9889 + 300.9422 176.0000 134.0000 1.8858 0.9901 266.1757 176.0000 135.0000 1.8858 0.9974 + 438.0962 176.0000 137.0000 1.8858 0.9738 843.7177 176.0000 138.0000 1.8858 0.9801 + 649.4216 176.0000 139.0000 1.8858 1.9153 486.9432 176.0000 140.0000 1.8858 1.9355 + 491.7044 176.0000 141.0000 1.8858 1.9545 459.2650 176.0000 142.0000 1.8858 1.9420 + 513.2993 176.0000 143.0000 1.8858 1.6682 401.6241 176.0000 144.0000 1.8858 1.8584 + 376.0155 176.0000 145.0000 1.8858 1.9003 349.5179 176.0000 146.0000 1.8858 1.8630 + 337.9858 176.0000 147.0000 1.8858 0.9679 334.9141 176.0000 148.0000 1.8858 1.9539 + 525.5666 176.0000 149.0000 1.8858 0.9633 477.3501 176.0000 150.0000 1.8858 0.9514 + 448.4532 176.0000 151.0000 1.8858 0.9749 425.2725 176.0000 152.0000 1.8858 0.9811 + 389.6303 176.0000 153.0000 1.8858 0.9968 519.4875 176.0000 155.0000 1.8858 0.9909 + 1093.5492 176.0000 156.0000 1.8858 0.9797 821.7967 176.0000 157.0000 1.8858 1.9373 + 524.0238 176.0000 159.0000 1.8858 2.9425 513.2159 176.0000 160.0000 1.8858 2.9455 + 497.0855 176.0000 161.0000 1.8858 2.9413 499.2316 176.0000 162.0000 1.8858 2.9300 + 480.4028 176.0000 163.0000 1.8858 1.8286 502.1659 176.0000 164.0000 1.8858 2.8732 + 471.9717 176.0000 165.0000 1.8858 2.9086 479.7683 176.0000 166.0000 1.8858 2.8965 + 448.2099 176.0000 167.0000 1.8858 2.9242 435.5280 176.0000 168.0000 1.8858 2.9282 + 432.6420 176.0000 169.0000 1.8858 2.9246 454.1700 176.0000 170.0000 1.8858 2.8482 + 418.2771 176.0000 171.0000 1.8858 2.9219 562.8783 176.0000 172.0000 1.8858 1.9254 + 523.7538 176.0000 173.0000 1.8858 1.9459 479.2159 176.0000 174.0000 1.8858 1.9292 + 483.8673 176.0000 175.0000 1.8858 1.8104 426.1903 176.0000 176.0000 1.8858 1.8858 + 33.5117 177.0000 1.0000 1.8648 0.9118 22.6779 177.0000 2.0000 1.8648 0.0000 + 491.4721 177.0000 3.0000 1.8648 0.0000 289.8298 177.0000 4.0000 1.8648 0.0000 + 198.3807 177.0000 5.0000 1.8648 0.0000 136.0069 177.0000 6.0000 1.8648 0.0000 + 96.3243 177.0000 7.0000 1.8648 0.0000 73.6634 177.0000 8.0000 1.8648 0.0000 + 56.3268 177.0000 9.0000 1.8648 0.0000 43.6773 177.0000 10.0000 1.8648 0.0000 + 588.8318 177.0000 11.0000 1.8648 0.0000 460.1061 177.0000 12.0000 1.8648 0.0000 + 427.2647 177.0000 13.0000 1.8648 0.0000 340.2737 177.0000 14.0000 1.8648 0.0000 + 268.1083 177.0000 15.0000 1.8648 0.0000 224.2493 177.0000 16.0000 1.8648 0.0000 + 184.6517 177.0000 17.0000 1.8648 0.0000 152.2203 177.0000 18.0000 1.8648 0.0000 + 965.0626 177.0000 19.0000 1.8648 0.0000 804.3806 177.0000 20.0000 1.8648 0.0000 + 666.3424 177.0000 21.0000 1.8648 0.0000 645.6738 177.0000 22.0000 1.8648 0.0000 + 592.4083 177.0000 23.0000 1.8648 0.0000 467.7586 177.0000 24.0000 1.8648 0.0000 + 511.5236 177.0000 25.0000 1.8648 0.0000 402.5927 177.0000 26.0000 1.8648 0.0000 + 427.5064 177.0000 27.0000 1.8648 0.0000 439.4376 177.0000 28.0000 1.8648 0.0000 + 337.8831 177.0000 29.0000 1.8648 0.0000 348.2052 177.0000 30.0000 1.8648 0.0000 + 411.1836 177.0000 31.0000 1.8648 0.0000 365.4201 177.0000 32.0000 1.8648 0.0000 + 314.2292 177.0000 33.0000 1.8648 0.0000 283.5975 177.0000 34.0000 1.8648 0.0000 + 249.7617 177.0000 35.0000 1.8648 0.0000 218.5753 177.0000 36.0000 1.8648 0.0000 + 1083.6129 177.0000 37.0000 1.8648 0.0000 958.7110 177.0000 38.0000 1.8648 0.0000 + 844.2074 177.0000 39.0000 1.8648 0.0000 761.5371 177.0000 40.0000 1.8648 0.0000 + 696.3562 177.0000 41.0000 1.8648 0.0000 540.7615 177.0000 42.0000 1.8648 0.0000 + 601.9936 177.0000 43.0000 1.8648 0.0000 461.5865 177.0000 44.0000 1.8648 0.0000 + 503.7831 177.0000 45.0000 1.8648 0.0000 468.0316 177.0000 46.0000 1.8648 0.0000 + 390.9201 177.0000 47.0000 1.8648 0.0000 413.4353 177.0000 48.0000 1.8648 0.0000 + 515.7031 177.0000 49.0000 1.8648 0.0000 479.4837 177.0000 50.0000 1.8648 0.0000 + 430.0608 177.0000 51.0000 1.8648 0.0000 400.7639 177.0000 52.0000 1.8648 0.0000 + 364.2070 177.0000 53.0000 1.8648 0.0000 329.1439 177.0000 54.0000 1.8648 0.0000 + 1321.1273 177.0000 55.0000 1.8648 0.0000 1221.1564 177.0000 56.0000 1.8648 0.0000 + 1078.1412 177.0000 57.0000 1.8648 0.0000 507.9202 177.0000 58.0000 1.8648 2.7991 + 1084.2087 177.0000 59.0000 1.8648 0.0000 1041.8248 177.0000 60.0000 1.8648 0.0000 + 1015.8802 177.0000 61.0000 1.8648 0.0000 991.9857 177.0000 62.0000 1.8648 0.0000 + 970.8013 177.0000 63.0000 1.8648 0.0000 768.7768 177.0000 64.0000 1.8648 0.0000 + 859.3887 177.0000 65.0000 1.8648 0.0000 829.7023 177.0000 66.0000 1.8648 0.0000 + 876.5581 177.0000 67.0000 1.8648 0.0000 858.0085 177.0000 68.0000 1.8648 0.0000 + 841.3475 177.0000 69.0000 1.8648 0.0000 831.2323 177.0000 70.0000 1.8648 0.0000 + 703.6822 177.0000 71.0000 1.8648 0.0000 695.4461 177.0000 72.0000 1.8648 0.0000 + 637.2233 177.0000 73.0000 1.8648 0.0000 540.5667 177.0000 74.0000 1.8648 0.0000 + 550.5189 177.0000 75.0000 1.8648 0.0000 500.8242 177.0000 76.0000 1.8648 0.0000 + 460.1533 177.0000 77.0000 1.8648 0.0000 384.1033 177.0000 78.0000 1.8648 0.0000 + 359.5554 177.0000 79.0000 1.8648 0.0000 370.0382 177.0000 80.0000 1.8648 0.0000 + 531.4381 177.0000 81.0000 1.8648 0.0000 521.4465 177.0000 82.0000 1.8648 0.0000 + 481.7084 177.0000 83.0000 1.8648 0.0000 461.0120 177.0000 84.0000 1.8648 0.0000 + 427.3975 177.0000 85.0000 1.8648 0.0000 393.5069 177.0000 86.0000 1.8648 0.0000 + 1252.4472 177.0000 87.0000 1.8648 0.0000 1210.9999 177.0000 88.0000 1.8648 0.0000 + 1075.3003 177.0000 89.0000 1.8648 0.0000 972.4552 177.0000 90.0000 1.8648 0.0000 + 963.4557 177.0000 91.0000 1.8648 0.0000 933.1122 177.0000 92.0000 1.8648 0.0000 + 957.3348 177.0000 93.0000 1.8648 0.0000 927.6311 177.0000 94.0000 1.8648 0.0000 + 53.3255 177.0000 101.0000 1.8648 0.0000 168.9331 177.0000 103.0000 1.8648 0.9865 + 216.2569 177.0000 104.0000 1.8648 0.9808 167.5869 177.0000 105.0000 1.8648 0.9706 + 127.6665 177.0000 106.0000 1.8648 0.9868 89.9357 177.0000 107.0000 1.8648 0.9944 + 66.2743 177.0000 108.0000 1.8648 0.9925 46.2909 177.0000 109.0000 1.8648 0.9982 + 246.6792 177.0000 111.0000 1.8648 0.9684 380.8614 177.0000 112.0000 1.8648 0.9628 + 388.0383 177.0000 113.0000 1.8648 0.9648 315.1057 177.0000 114.0000 1.8648 0.9507 + 260.3972 177.0000 115.0000 1.8648 0.9947 221.7788 177.0000 116.0000 1.8648 0.9948 + 182.7385 177.0000 117.0000 1.8648 0.9972 343.3431 177.0000 119.0000 1.8648 0.9767 + 645.3069 177.0000 120.0000 1.8648 0.9831 345.4662 177.0000 121.0000 1.8648 1.8627 + 333.7845 177.0000 122.0000 1.8648 1.8299 327.1273 177.0000 123.0000 1.8648 1.9138 + 323.8511 177.0000 124.0000 1.8648 1.8269 299.1994 177.0000 125.0000 1.8648 1.6406 + 277.4241 177.0000 126.0000 1.8648 1.6483 264.7615 177.0000 127.0000 1.8648 1.7149 + 258.7633 177.0000 128.0000 1.8648 1.7937 254.8568 177.0000 129.0000 1.8648 0.9576 + 240.5235 177.0000 130.0000 1.8648 1.9419 386.9891 177.0000 131.0000 1.8648 0.9601 + 342.5994 177.0000 132.0000 1.8648 0.9434 309.0810 177.0000 133.0000 1.8648 0.9889 + 283.6992 177.0000 134.0000 1.8648 0.9901 251.4316 177.0000 135.0000 1.8648 0.9974 + 410.6850 177.0000 137.0000 1.8648 0.9738 785.3791 177.0000 138.0000 1.8648 0.9801 + 606.9087 177.0000 139.0000 1.8648 1.9153 457.1062 177.0000 140.0000 1.8648 1.9355 + 461.6166 177.0000 141.0000 1.8648 1.9545 431.4510 177.0000 142.0000 1.8648 1.9420 + 481.2881 177.0000 143.0000 1.8648 1.6682 377.9550 177.0000 144.0000 1.8648 1.8584 + 353.9897 177.0000 145.0000 1.8648 1.9003 329.2175 177.0000 146.0000 1.8648 1.8630 + 318.3105 177.0000 147.0000 1.8648 0.9679 315.6928 177.0000 148.0000 1.8648 1.9539 + 492.6242 177.0000 149.0000 1.8648 0.9633 448.3620 177.0000 150.0000 1.8648 0.9514 + 421.8885 177.0000 151.0000 1.8648 0.9749 400.5716 177.0000 152.0000 1.8648 0.9811 + 367.5765 177.0000 153.0000 1.8648 0.9968 487.6486 177.0000 155.0000 1.8648 0.9909 + 1017.1183 177.0000 156.0000 1.8648 0.9797 767.7182 177.0000 157.0000 1.8648 1.9373 + 492.8357 177.0000 159.0000 1.8648 2.9425 482.6888 177.0000 160.0000 1.8648 2.9455 + 467.5827 177.0000 161.0000 1.8648 2.9413 469.4397 177.0000 162.0000 1.8648 2.9300 + 451.3499 177.0000 163.0000 1.8648 1.8286 472.1095 177.0000 164.0000 1.8648 2.8732 + 443.8826 177.0000 165.0000 1.8648 2.9086 450.9533 177.0000 166.0000 1.8648 2.8965 + 421.6450 177.0000 167.0000 1.8648 2.9242 409.7587 177.0000 168.0000 1.8648 2.9282 + 406.9985 177.0000 169.0000 1.8648 2.9246 426.9698 177.0000 170.0000 1.8648 2.8482 + 393.5352 177.0000 171.0000 1.8648 2.9219 527.5531 177.0000 172.0000 1.8648 1.9254 + 491.5980 177.0000 173.0000 1.8648 1.9459 450.4800 177.0000 174.0000 1.8648 1.9292 + 454.3355 177.0000 175.0000 1.8648 1.8104 401.4889 177.0000 176.0000 1.8648 1.8858 + 378.4939 177.0000 177.0000 1.8648 1.8648 32.0917 178.0000 1.0000 1.9188 0.9118 + 21.8338 178.0000 2.0000 1.9188 0.0000 465.2011 178.0000 3.0000 1.9188 0.0000 + 275.4563 178.0000 4.0000 1.9188 0.0000 189.1485 178.0000 5.0000 1.9188 0.0000 + 130.0701 178.0000 6.0000 1.9188 0.0000 92.3710 178.0000 7.0000 1.9188 0.0000 + 70.7975 178.0000 8.0000 1.9188 0.0000 54.2516 178.0000 9.0000 1.9188 0.0000 + 42.1499 178.0000 10.0000 1.9188 0.0000 557.6048 178.0000 11.0000 1.9188 0.0000 + 437.0099 178.0000 12.0000 1.9188 0.0000 406.3872 178.0000 13.0000 1.9188 0.0000 + 324.3237 178.0000 14.0000 1.9188 0.0000 256.0743 178.0000 15.0000 1.9188 0.0000 + 214.5308 178.0000 16.0000 1.9188 0.0000 176.9516 178.0000 17.0000 1.9188 0.0000 + 146.1166 178.0000 18.0000 1.9188 0.0000 913.8533 178.0000 19.0000 1.9188 0.0000 + 763.2799 178.0000 20.0000 1.9188 0.0000 632.6433 178.0000 21.0000 1.9188 0.0000 + 613.4456 178.0000 22.0000 1.9188 0.0000 563.0626 178.0000 23.0000 1.9188 0.0000 + 444.8235 178.0000 24.0000 1.9188 0.0000 486.4755 178.0000 25.0000 1.9188 0.0000 + 383.1213 178.0000 26.0000 1.9188 0.0000 406.9549 178.0000 27.0000 1.9188 0.0000 + 418.1348 178.0000 28.0000 1.9188 0.0000 321.7223 178.0000 29.0000 1.9188 0.0000 + 331.7749 178.0000 30.0000 1.9188 0.0000 391.4844 178.0000 31.0000 1.9188 0.0000 + 348.4417 178.0000 32.0000 1.9188 0.0000 300.1211 178.0000 33.0000 1.9188 0.0000 + 271.1885 178.0000 34.0000 1.9188 0.0000 239.1551 178.0000 35.0000 1.9188 0.0000 + 209.5788 178.0000 36.0000 1.9188 0.0000 1026.5038 178.0000 37.0000 1.9188 0.0000 + 909.7880 178.0000 38.0000 1.9188 0.0000 801.9793 178.0000 39.0000 1.9188 0.0000 + 723.9927 178.0000 40.0000 1.9188 0.0000 662.4090 178.0000 41.0000 1.9188 0.0000 + 515.0442 178.0000 42.0000 1.9188 0.0000 573.0904 178.0000 43.0000 1.9188 0.0000 + 440.0378 178.0000 44.0000 1.9188 0.0000 480.1081 178.0000 45.0000 1.9188 0.0000 + 446.2157 178.0000 46.0000 1.9188 0.0000 372.8639 178.0000 47.0000 1.9188 0.0000 + 394.3855 178.0000 48.0000 1.9188 0.0000 491.2916 178.0000 49.0000 1.9188 0.0000 + 457.2796 178.0000 50.0000 1.9188 0.0000 410.6777 178.0000 51.0000 1.9188 0.0000 + 383.0432 178.0000 52.0000 1.9188 0.0000 348.4721 178.0000 53.0000 1.9188 0.0000 + 315.2717 178.0000 54.0000 1.9188 0.0000 1251.6079 178.0000 55.0000 1.9188 0.0000 + 1158.6040 178.0000 56.0000 1.9188 0.0000 1023.9496 178.0000 57.0000 1.9188 0.0000 + 485.0019 178.0000 58.0000 1.9188 2.7991 1029.1720 178.0000 59.0000 1.9188 0.0000 + 989.0920 178.0000 60.0000 1.9188 0.0000 964.5004 178.0000 61.0000 1.9188 0.0000 + 941.8445 178.0000 62.0000 1.9188 0.0000 921.7584 178.0000 63.0000 1.9188 0.0000 + 731.0021 178.0000 64.0000 1.9188 0.0000 815.9256 178.0000 65.0000 1.9188 0.0000 + 787.9003 178.0000 66.0000 1.9188 0.0000 832.4693 178.0000 67.0000 1.9188 0.0000 + 814.8639 178.0000 68.0000 1.9188 0.0000 799.0629 178.0000 69.0000 1.9188 0.0000 + 789.4020 178.0000 70.0000 1.9188 0.0000 668.9222 178.0000 71.0000 1.9188 0.0000 + 661.7144 178.0000 72.0000 1.9188 0.0000 606.8234 178.0000 73.0000 1.9188 0.0000 + 515.2852 178.0000 74.0000 1.9188 0.0000 524.8881 178.0000 75.0000 1.9188 0.0000 + 477.8907 178.0000 76.0000 1.9188 0.0000 439.3887 178.0000 77.0000 1.9188 0.0000 + 367.1687 178.0000 78.0000 1.9188 0.0000 343.8562 178.0000 79.0000 1.9188 0.0000 + 353.9070 178.0000 80.0000 1.9188 0.0000 506.6933 178.0000 81.0000 1.9188 0.0000 + 497.5175 178.0000 82.0000 1.9188 0.0000 460.0986 178.0000 83.0000 1.9188 0.0000 + 440.6380 178.0000 84.0000 1.9188 0.0000 408.8925 178.0000 85.0000 1.9188 0.0000 + 376.8288 178.0000 86.0000 1.9188 0.0000 1187.5608 178.0000 87.0000 1.9188 0.0000 + 1149.6435 178.0000 88.0000 1.9188 0.0000 1021.8132 178.0000 89.0000 1.9188 0.0000 + 925.3205 178.0000 90.0000 1.9188 0.0000 916.3816 178.0000 91.0000 1.9188 0.0000 + 887.5773 178.0000 92.0000 1.9188 0.0000 909.9850 178.0000 93.0000 1.9188 0.0000 + 881.8620 178.0000 94.0000 1.9188 0.0000 50.9366 178.0000 101.0000 1.9188 0.0000 + 160.6472 178.0000 103.0000 1.9188 0.9865 205.7859 178.0000 104.0000 1.9188 0.9808 + 159.9284 178.0000 105.0000 1.9188 0.9706 122.1108 178.0000 106.0000 1.9188 0.9868 + 86.2655 178.0000 107.0000 1.9188 0.9944 63.7364 178.0000 108.0000 1.9188 0.9925 + 44.6792 178.0000 109.0000 1.9188 0.9982 234.5604 178.0000 111.0000 1.9188 0.9684 + 361.9867 178.0000 112.0000 1.9188 0.9628 369.2333 178.0000 113.0000 1.9188 0.9648 + 300.4531 178.0000 114.0000 1.9188 0.9507 248.7407 178.0000 115.0000 1.9188 0.9947 + 212.1692 178.0000 116.0000 1.9188 0.9948 175.1199 178.0000 117.0000 1.9188 0.9972 + 327.1139 178.0000 119.0000 1.9188 0.9767 612.6615 178.0000 120.0000 1.9188 0.9831 + 329.5050 178.0000 121.0000 1.9188 1.8627 318.4217 178.0000 122.0000 1.9188 1.8299 + 312.0815 178.0000 123.0000 1.9188 1.9138 308.9151 178.0000 124.0000 1.9188 1.8269 + 285.6292 178.0000 125.0000 1.9188 1.6406 264.9478 178.0000 126.0000 1.9188 1.6483 + 252.8828 178.0000 127.0000 1.9188 1.7149 247.1432 178.0000 128.0000 1.9188 1.7937 + 243.2710 178.0000 129.0000 1.9188 0.9576 229.8439 178.0000 130.0000 1.9188 1.9419 + 368.6028 178.0000 131.0000 1.9188 0.9601 326.8247 178.0000 132.0000 1.9188 0.9434 + 295.2402 178.0000 133.0000 1.9188 0.9889 271.2851 178.0000 134.0000 1.9188 0.9901 + 240.7411 178.0000 135.0000 1.9188 0.9974 391.4685 178.0000 137.0000 1.9188 0.9738 + 745.6637 178.0000 138.0000 1.9188 0.9801 577.4945 178.0000 139.0000 1.9188 1.9153 + 436.0158 178.0000 140.0000 1.9188 1.9355 440.3304 178.0000 141.0000 1.9188 1.9545 + 411.7628 178.0000 142.0000 1.9188 1.9420 458.8333 178.0000 143.0000 1.9188 1.6682 + 361.0935 178.0000 144.0000 1.9188 1.8584 338.2908 178.0000 145.0000 1.9188 1.9003 + 314.7313 178.0000 146.0000 1.9188 1.8630 304.2865 178.0000 147.0000 1.9188 0.9679 + 301.9254 178.0000 148.0000 1.9188 1.9539 469.5087 178.0000 149.0000 1.9188 0.9633 + 427.8357 178.0000 150.0000 1.9188 0.9514 402.9521 178.0000 151.0000 1.9188 0.9749 + 382.8777 178.0000 152.0000 1.9188 0.9811 351.6847 178.0000 153.0000 1.9188 0.9968 + 465.1620 178.0000 155.0000 1.9188 0.9909 965.4054 178.0000 156.0000 1.9188 0.9797 + 730.4054 178.0000 157.0000 1.9188 1.9373 470.6459 178.0000 159.0000 1.9188 2.9425 + 460.9666 178.0000 160.0000 1.9188 2.9455 446.5800 178.0000 161.0000 1.9188 2.9413 + 448.2662 178.0000 162.0000 1.9188 2.9300 430.7861 178.0000 163.0000 1.9188 1.8286 + 450.7526 178.0000 164.0000 1.9188 2.8732 423.9004 178.0000 165.0000 1.9188 2.9086 + 430.5125 178.0000 166.0000 1.9188 2.8965 402.7253 178.0000 167.0000 1.9188 2.9242 + 391.3978 178.0000 168.0000 1.9188 2.9282 388.7344 178.0000 169.0000 1.9188 2.9246 + 407.6366 178.0000 170.0000 1.9188 2.8482 375.9010 178.0000 171.0000 1.9188 2.9219 + 502.7757 178.0000 172.0000 1.9188 1.9254 468.9124 178.0000 173.0000 1.9188 1.9459 + 430.0889 178.0000 174.0000 1.9188 1.9292 433.4852 178.0000 175.0000 1.9188 1.8104 + 383.8231 178.0000 176.0000 1.9188 1.8858 362.0121 178.0000 177.0000 1.9188 1.8648 + 346.3610 178.0000 178.0000 1.9188 1.9188 30.6757 179.0000 1.0000 0.9846 0.9118 + 20.9410 179.0000 2.0000 0.9846 0.0000 446.1908 179.0000 3.0000 0.9846 0.0000 + 263.2230 179.0000 4.0000 0.9846 0.0000 180.6582 179.0000 5.0000 0.9846 0.0000 + 124.3133 179.0000 6.0000 0.9846 0.0000 88.3915 179.0000 7.0000 0.9846 0.0000 + 67.8372 179.0000 8.0000 0.9846 0.0000 52.0610 179.0000 9.0000 0.9846 0.0000 + 40.5092 179.0000 10.0000 0.9846 0.0000 534.8076 179.0000 11.0000 0.9846 0.0000 + 417.8850 179.0000 12.0000 0.9846 0.0000 388.3446 179.0000 13.0000 0.9846 0.0000 + 309.7648 179.0000 14.0000 0.9846 0.0000 244.6055 179.0000 15.0000 0.9846 0.0000 + 205.0205 179.0000 16.0000 0.9846 0.0000 169.2271 179.0000 17.0000 0.9846 0.0000 + 139.8632 179.0000 18.0000 0.9846 0.0000 877.5783 179.0000 19.0000 0.9846 0.0000 + 730.9466 179.0000 20.0000 0.9846 0.0000 605.5453 179.0000 21.0000 0.9846 0.0000 + 587.0474 179.0000 22.0000 0.9846 0.0000 538.7579 179.0000 23.0000 0.9846 0.0000 + 425.8343 179.0000 24.0000 0.9846 0.0000 465.4003 179.0000 25.0000 0.9846 0.0000 + 366.7116 179.0000 26.0000 0.9846 0.0000 389.1957 179.0000 27.0000 0.9846 0.0000 + 399.9289 179.0000 28.0000 0.9846 0.0000 307.9352 179.0000 29.0000 0.9846 0.0000 + 317.2387 179.0000 30.0000 0.9846 0.0000 374.2118 179.0000 31.0000 0.9846 0.0000 + 332.9066 179.0000 32.0000 0.9846 0.0000 286.7352 179.0000 33.0000 0.9846 0.0000 + 259.1584 179.0000 34.0000 0.9846 0.0000 228.6485 179.0000 35.0000 0.9846 0.0000 + 200.4929 179.0000 36.0000 0.9846 0.0000 985.7235 179.0000 37.0000 0.9846 0.0000 + 871.4755 179.0000 38.0000 0.9846 0.0000 767.6316 179.0000 39.0000 0.9846 0.0000 + 692.7566 179.0000 40.0000 0.9846 0.0000 633.7593 179.0000 41.0000 0.9846 0.0000 + 492.8290 179.0000 42.0000 0.9846 0.0000 548.3376 179.0000 43.0000 0.9846 0.0000 + 421.1084 179.0000 44.0000 0.9846 0.0000 459.2862 179.0000 45.0000 0.9846 0.0000 + 426.8634 179.0000 46.0000 0.9846 0.0000 356.9743 179.0000 47.0000 0.9846 0.0000 + 377.3049 179.0000 48.0000 0.9846 0.0000 469.9893 179.0000 49.0000 0.9846 0.0000 + 437.1946 179.0000 50.0000 0.9846 0.0000 392.5551 179.0000 51.0000 0.9846 0.0000 + 366.1526 179.0000 52.0000 0.9846 0.0000 333.1695 179.0000 53.0000 0.9846 0.0000 + 301.5272 179.0000 54.0000 0.9846 0.0000 1201.8793 179.0000 55.0000 0.9846 0.0000 + 1110.2792 179.0000 56.0000 0.9846 0.0000 980.4416 179.0000 57.0000 0.9846 0.0000 + 463.7125 179.0000 58.0000 0.9846 2.7991 986.1407 179.0000 59.0000 0.9846 0.0000 + 947.5980 179.0000 60.0000 0.9846 0.0000 923.9968 179.0000 61.0000 0.9846 0.0000 + 902.2547 179.0000 62.0000 0.9846 0.0000 882.9759 179.0000 63.0000 0.9846 0.0000 + 699.9058 179.0000 64.0000 0.9846 0.0000 782.3247 179.0000 65.0000 0.9846 0.0000 + 755.3330 179.0000 66.0000 0.9846 0.0000 797.2622 179.0000 67.0000 0.9846 0.0000 + 780.3720 179.0000 68.0000 0.9846 0.0000 765.2056 179.0000 69.0000 0.9846 0.0000 + 755.9627 179.0000 70.0000 0.9846 0.0000 640.3593 179.0000 71.0000 0.9846 0.0000 + 632.9202 179.0000 72.0000 0.9846 0.0000 580.3136 179.0000 73.0000 0.9846 0.0000 + 492.9048 179.0000 74.0000 0.9846 0.0000 502.0034 179.0000 75.0000 0.9846 0.0000 + 457.0488 179.0000 76.0000 0.9846 0.0000 420.2519 179.0000 77.0000 0.9846 0.0000 + 351.3507 179.0000 78.0000 0.9846 0.0000 329.1138 179.0000 79.0000 0.9846 0.0000 + 338.6457 179.0000 80.0000 0.9846 0.0000 484.9543 179.0000 81.0000 0.9846 0.0000 + 475.8852 179.0000 82.0000 0.9846 0.0000 439.9646 179.0000 83.0000 0.9846 0.0000 + 421.3317 179.0000 84.0000 0.9846 0.0000 391.0097 179.0000 85.0000 0.9846 0.0000 + 360.4289 179.0000 86.0000 0.9846 0.0000 1139.6407 179.0000 87.0000 0.9846 0.0000 + 1101.2980 179.0000 88.0000 0.9846 0.0000 978.1710 179.0000 89.0000 0.9846 0.0000 + 885.3866 179.0000 90.0000 0.9846 0.0000 877.2848 179.0000 91.0000 0.9846 0.0000 + 849.7283 179.0000 92.0000 0.9846 0.0000 871.5724 179.0000 93.0000 0.9846 0.0000 + 844.5639 179.0000 94.0000 0.9846 0.0000 48.6478 179.0000 101.0000 0.9846 0.0000 + 153.5237 179.0000 103.0000 0.9846 0.9865 196.6570 179.0000 104.0000 0.9846 0.9808 + 152.7829 179.0000 105.0000 0.9846 0.9706 116.7335 179.0000 106.0000 0.9846 0.9868 + 82.5698 179.0000 107.0000 0.9846 0.9944 61.0971 179.0000 108.0000 0.9846 0.9925 + 42.9339 179.0000 109.0000 0.9846 0.9982 224.3164 179.0000 111.0000 0.9846 0.9684 + 346.1262 179.0000 112.0000 0.9846 0.9628 352.8244 179.0000 113.0000 0.9846 0.9648 + 286.9806 179.0000 114.0000 0.9846 0.9507 237.6179 179.0000 115.0000 0.9846 0.9947 + 202.7728 179.0000 116.0000 0.9846 0.9948 167.4819 179.0000 117.0000 0.9846 0.9972 + 313.0324 179.0000 119.0000 0.9846 0.9767 586.9804 179.0000 120.0000 0.9846 0.9831 + 315.0011 179.0000 121.0000 0.9846 1.8627 304.4479 179.0000 122.0000 0.9846 1.8299 + 298.4115 179.0000 123.0000 0.9846 1.9138 295.4222 179.0000 124.0000 0.9846 1.8269 + 273.0455 179.0000 125.0000 0.9846 1.6406 253.2986 179.0000 126.0000 0.9846 1.6483 + 241.7970 179.0000 127.0000 0.9846 1.7149 236.3233 179.0000 128.0000 0.9846 1.7937 + 232.6981 179.0000 129.0000 0.9846 0.9576 219.7411 179.0000 130.0000 0.9846 1.9419 + 352.3067 179.0000 131.0000 0.9846 0.9601 312.2554 179.0000 132.0000 0.9846 0.9434 + 282.0818 179.0000 133.0000 0.9846 0.9889 259.2551 179.0000 134.0000 0.9846 0.9901 + 230.1639 179.0000 135.0000 0.9846 0.9974 374.6446 179.0000 137.0000 0.9846 0.9738 + 714.6170 179.0000 138.0000 0.9846 0.9801 552.7272 179.0000 139.0000 0.9846 1.9153 + 416.9363 179.0000 140.0000 0.9846 1.9355 421.0958 179.0000 141.0000 0.9846 1.9545 + 393.8195 179.0000 142.0000 0.9846 1.9420 439.0720 179.0000 143.0000 0.9846 1.6682 + 345.3564 179.0000 144.0000 0.9846 1.8584 323.6165 179.0000 145.0000 0.9846 1.9003 + 301.1391 179.0000 146.0000 0.9846 1.8630 291.1810 179.0000 147.0000 0.9846 0.9679 + 288.8038 179.0000 148.0000 0.9846 1.9539 449.0836 179.0000 149.0000 0.9846 0.9633 + 409.0265 179.0000 150.0000 0.9846 0.9514 385.1704 179.0000 151.0000 0.9846 0.9749 + 365.9920 179.0000 152.0000 0.9846 0.9811 336.2337 179.0000 153.0000 0.9846 0.9968 + 444.8947 179.0000 155.0000 0.9846 0.9909 925.6464 179.0000 156.0000 0.9846 0.9797 + 699.1904 179.0000 157.0000 0.9846 1.9373 449.9954 179.0000 159.0000 0.9846 2.9425 + 440.7449 179.0000 160.0000 0.9846 2.9455 426.9974 179.0000 161.0000 0.9846 2.9413 + 428.6243 179.0000 162.0000 0.9846 2.9300 412.0345 179.0000 163.0000 0.9846 1.8286 + 430.9649 179.0000 164.0000 0.9846 2.8732 405.3113 179.0000 165.0000 0.9846 2.9086 + 411.6745 179.0000 166.0000 0.9846 2.8965 385.0469 179.0000 167.0000 0.9846 2.9242 + 374.2138 179.0000 168.0000 0.9846 2.9282 371.6619 179.0000 169.0000 0.9846 2.9246 + 389.6824 179.0000 170.0000 0.9846 2.8482 359.3743 179.0000 171.0000 0.9846 2.9219 + 480.9034 179.0000 172.0000 0.9846 1.9254 448.4784 179.0000 173.0000 0.9846 1.9459 + 411.3373 179.0000 174.0000 0.9846 1.9292 414.6705 179.0000 175.0000 0.9846 1.8104 + 367.0954 179.0000 176.0000 0.9846 1.8858 346.3075 179.0000 177.0000 0.9846 1.8648 + 331.3946 179.0000 178.0000 0.9846 1.9188 317.1561 179.0000 179.0000 0.9846 0.9846 + 29.9203 180.0000 1.0000 1.9896 0.9118 20.5852 180.0000 2.0000 1.9896 0.0000 + 413.1061 180.0000 3.0000 1.9896 0.0000 250.3021 180.0000 4.0000 1.9896 0.0000 + 174.0294 180.0000 5.0000 1.9896 0.0000 120.7605 180.0000 6.0000 1.9896 0.0000 + 86.3382 180.0000 7.0000 1.9896 0.0000 66.4937 180.0000 8.0000 1.9896 0.0000 + 51.1702 180.0000 9.0000 1.9896 0.0000 39.8974 180.0000 10.0000 1.9896 0.0000 + 496.0003 180.0000 11.0000 1.9896 0.0000 395.6174 180.0000 12.0000 1.9896 0.0000 + 370.2981 180.0000 13.0000 1.9896 0.0000 298.0483 180.0000 14.0000 1.9896 0.0000 + 236.9831 180.0000 15.0000 1.9896 0.0000 199.4350 180.0000 16.0000 1.9896 0.0000 + 165.2099 180.0000 17.0000 1.9896 0.0000 136.9373 180.0000 18.0000 1.9896 0.0000 + 810.5040 180.0000 19.0000 1.9896 0.0000 686.3343 180.0000 20.0000 1.9896 0.0000 + 570.6352 180.0000 21.0000 1.9896 0.0000 554.9678 180.0000 22.0000 1.9896 0.0000 + 510.2800 180.0000 23.0000 1.9896 0.0000 403.4450 180.0000 24.0000 1.9896 0.0000 + 441.9908 180.0000 25.0000 1.9896 0.0000 348.4756 180.0000 26.0000 1.9896 0.0000 + 371.2655 180.0000 27.0000 1.9896 0.0000 380.8039 180.0000 28.0000 1.9896 0.0000 + 293.2422 180.0000 29.0000 1.9896 0.0000 303.8144 180.0000 30.0000 1.9896 0.0000 + 357.7557 180.0000 31.0000 1.9896 0.0000 320.4732 180.0000 32.0000 1.9896 0.0000 + 277.6226 180.0000 33.0000 1.9896 0.0000 251.7520 180.0000 34.0000 1.9896 0.0000 + 222.8236 180.0000 35.0000 1.9896 0.0000 195.9211 180.0000 36.0000 1.9896 0.0000 + 911.7498 180.0000 37.0000 1.9896 0.0000 817.7856 180.0000 38.0000 1.9896 0.0000 + 724.8642 180.0000 39.0000 1.9896 0.0000 656.6420 180.0000 40.0000 1.9896 0.0000 + 602.1863 180.0000 41.0000 1.9896 0.0000 470.1749 180.0000 42.0000 1.9896 0.0000 + 522.3659 180.0000 43.0000 1.9896 0.0000 402.9111 180.0000 44.0000 1.9896 0.0000 + 439.4643 180.0000 45.0000 1.9896 0.0000 409.0280 180.0000 46.0000 1.9896 0.0000 + 341.7312 180.0000 47.0000 1.9896 0.0000 362.1982 180.0000 48.0000 1.9896 0.0000 + 449.1510 180.0000 49.0000 1.9896 0.0000 420.2043 180.0000 50.0000 1.9896 0.0000 + 379.2822 180.0000 51.0000 1.9896 0.0000 354.8294 180.0000 52.0000 1.9896 0.0000 + 323.8510 180.0000 53.0000 1.9896 0.0000 293.8935 180.0000 54.0000 1.9896 0.0000 + 1112.0309 180.0000 55.0000 1.9896 0.0000 1039.6919 180.0000 56.0000 1.9896 0.0000 + 923.8952 180.0000 57.0000 1.9896 0.0000 447.5622 180.0000 58.0000 1.9896 2.7991 + 925.4171 180.0000 59.0000 1.9896 0.0000 890.1694 180.0000 60.0000 1.9896 0.0000 + 868.2533 180.0000 61.0000 1.9896 0.0000 848.0353 180.0000 62.0000 1.9896 0.0000 + 830.1171 180.0000 63.0000 1.9896 0.0000 662.4939 180.0000 64.0000 1.9896 0.0000 + 733.1480 180.0000 65.0000 1.9896 0.0000 708.7240 180.0000 66.0000 1.9896 0.0000 + 750.7154 180.0000 67.0000 1.9896 0.0000 734.9381 180.0000 68.0000 1.9896 0.0000 + 720.8310 180.0000 69.0000 1.9896 0.0000 711.9240 180.0000 70.0000 1.9896 0.0000 + 605.8680 180.0000 71.0000 1.9896 0.0000 602.4838 180.0000 72.0000 1.9896 0.0000 + 554.3723 180.0000 73.0000 1.9896 0.0000 472.1102 180.0000 74.0000 1.9896 0.0000 + 481.4776 180.0000 75.0000 1.9896 0.0000 439.6238 180.0000 76.0000 1.9896 0.0000 + 405.1454 180.0000 77.0000 1.9896 0.0000 339.4738 180.0000 78.0000 1.9896 0.0000 + 318.2699 180.0000 79.0000 1.9896 0.0000 327.8549 180.0000 80.0000 1.9896 0.0000 + 464.0666 180.0000 81.0000 1.9896 0.0000 457.4132 180.0000 82.0000 1.9896 0.0000 + 424.8925 180.0000 83.0000 1.9896 0.0000 407.9616 180.0000 84.0000 1.9896 0.0000 + 379.7328 180.0000 85.0000 1.9896 0.0000 350.9349 180.0000 86.0000 1.9896 0.0000 + 1059.9693 180.0000 87.0000 1.9896 0.0000 1034.6573 180.0000 88.0000 1.9896 0.0000 + 924.2938 180.0000 89.0000 1.9896 0.0000 841.9253 180.0000 90.0000 1.9896 0.0000 + 831.6182 180.0000 91.0000 1.9896 0.0000 805.6197 180.0000 92.0000 1.9896 0.0000 + 823.0829 180.0000 93.0000 1.9896 0.0000 798.1652 180.0000 94.0000 1.9896 0.0000 + 47.1662 180.0000 101.0000 1.9896 0.0000 146.2575 180.0000 103.0000 1.9896 0.9865 + 187.7979 180.0000 104.0000 1.9896 0.9808 147.5240 180.0000 105.0000 1.9896 0.9706 + 113.3605 180.0000 106.0000 1.9896 0.9868 80.6471 180.0000 107.0000 1.9896 0.9944 + 59.9313 180.0000 108.0000 1.9896 0.9925 42.3195 180.0000 109.0000 1.9896 0.9982 + 213.1668 180.0000 111.0000 1.9896 0.9684 328.5343 180.0000 112.0000 1.9896 0.9628 + 336.9822 180.0000 113.0000 1.9896 0.9648 276.4586 180.0000 114.0000 1.9896 0.9507 + 230.2585 180.0000 115.0000 1.9896 0.9947 197.2252 180.0000 116.0000 1.9896 0.9948 + 163.4921 180.0000 117.0000 1.9896 0.9972 298.8719 180.0000 119.0000 1.9896 0.9767 + 551.4220 180.0000 120.0000 1.9896 0.9831 302.9513 180.0000 121.0000 1.9896 1.8627 + 292.8646 180.0000 122.0000 1.9896 1.8299 287.0169 180.0000 123.0000 1.9896 1.9138 + 283.8953 180.0000 124.0000 1.9896 1.8269 263.4745 180.0000 125.0000 1.9896 1.6406 + 244.6952 180.0000 126.0000 1.9896 1.6483 233.5761 180.0000 127.0000 1.9896 1.7149 + 228.2128 180.0000 128.0000 1.9896 1.7937 224.0178 180.0000 129.0000 1.9896 0.9576 + 212.7224 180.0000 130.0000 1.9896 1.9419 337.4141 180.0000 131.0000 1.9896 0.9601 + 301.0502 180.0000 132.0000 1.9896 0.9434 273.2027 180.0000 133.0000 1.9896 0.9889 + 251.8306 180.0000 134.0000 1.9896 0.9901 224.2620 180.0000 135.0000 1.9896 0.9974 + 358.2372 180.0000 137.0000 1.9896 0.9738 670.7266 180.0000 138.0000 1.9896 0.9801 + 525.1179 180.0000 139.0000 1.9896 1.9153 400.7170 180.0000 140.0000 1.9896 1.9355 + 404.6484 180.0000 141.0000 1.9896 1.9545 378.9707 180.0000 142.0000 1.9896 1.9420 + 420.2161 180.0000 143.0000 1.9896 1.6682 333.5982 180.0000 144.0000 1.9896 1.8584 + 312.6922 180.0000 145.0000 1.9896 1.9003 291.1622 180.0000 146.0000 1.9896 1.8630 + 281.3753 180.0000 147.0000 1.9896 0.9679 279.9099 180.0000 148.0000 1.9896 1.9539 + 430.0395 180.0000 149.0000 1.9896 0.9633 393.9527 180.0000 150.0000 1.9896 0.9514 + 372.3997 180.0000 151.0000 1.9896 0.9749 354.7399 180.0000 152.0000 1.9896 0.9811 + 326.8151 180.0000 153.0000 1.9896 0.9968 427.3067 180.0000 155.0000 1.9896 0.9909 + 866.5517 180.0000 156.0000 1.9896 0.9797 663.5595 180.0000 157.0000 1.9896 1.9373 + 434.4508 180.0000 159.0000 1.9896 2.9425 425.5424 180.0000 160.0000 1.9896 2.9455 + 412.3737 180.0000 161.0000 1.9896 2.9413 413.6180 180.0000 162.0000 1.9896 2.9300 + 396.5565 180.0000 163.0000 1.9896 1.8286 415.7879 180.0000 164.0000 1.9896 2.8732 + 391.2942 180.0000 165.0000 1.9896 2.9086 396.8572 180.0000 166.0000 1.9896 2.8965 + 371.9846 180.0000 167.0000 1.9896 2.9242 361.6111 180.0000 168.0000 1.9896 2.9282 + 359.0755 180.0000 169.0000 1.9896 2.9246 376.0903 180.0000 170.0000 1.9896 2.8482 + 347.3425 180.0000 171.0000 1.9896 2.9219 460.3936 180.0000 172.0000 1.9896 1.9254 + 430.7588 180.0000 173.0000 1.9896 1.9459 396.3937 180.0000 174.0000 1.9896 1.9292 + 398.4304 180.0000 175.0000 1.9896 1.8104 355.3847 180.0000 176.0000 1.9896 1.8858 + 335.5948 180.0000 177.0000 1.9896 1.8648 321.3306 180.0000 178.0000 1.9896 1.9188 + 307.4710 180.0000 179.0000 1.9896 0.9846 298.8616 180.0000 180.0000 1.9896 1.9896 + 45.6578 181.0000 1.0000 0.9267 0.9118 29.5289 181.0000 2.0000 0.9267 0.0000 + 818.9371 181.0000 3.0000 0.9267 0.0000 440.3147 181.0000 4.0000 0.9267 0.0000 + 286.2525 181.0000 5.0000 0.9267 0.0000 188.8968 181.0000 6.0000 0.9267 0.0000 + 130.0791 181.0000 7.0000 0.9267 0.0000 97.5510 181.0000 8.0000 0.9267 0.0000 + 73.3784 181.0000 9.0000 0.9267 0.0000 56.1746 181.0000 10.0000 0.9267 0.0000 + 975.3275 181.0000 11.0000 0.9267 0.0000 710.2404 181.0000 12.0000 0.9267 0.0000 + 642.2899 181.0000 13.0000 0.9267 0.0000 493.5629 181.0000 14.0000 0.9267 0.0000 + 377.4089 181.0000 15.0000 0.9267 0.0000 309.6161 181.0000 16.0000 0.9267 0.0000 + 250.2872 181.0000 17.0000 0.9267 0.0000 203.0702 181.0000 18.0000 0.9267 0.0000 + 1619.9398 181.0000 19.0000 0.9267 0.0000 1276.8842 181.0000 20.0000 0.9267 0.0000 + 1044.6215 181.0000 21.0000 0.9267 0.0000 1000.5590 181.0000 22.0000 0.9267 0.0000 + 911.7000 181.0000 23.0000 0.9267 0.0000 718.3558 181.0000 24.0000 0.9267 0.0000 + 779.3852 181.0000 25.0000 0.9267 0.0000 611.3115 181.0000 26.0000 0.9267 0.0000 + 640.5300 181.0000 27.0000 0.9267 0.0000 663.1102 181.0000 28.0000 0.9267 0.0000 + 508.8879 181.0000 29.0000 0.9267 0.0000 513.8120 181.0000 30.0000 0.9267 0.0000 + 611.2503 181.0000 31.0000 0.9267 0.0000 528.5509 181.0000 32.0000 0.9267 0.0000 + 443.4125 181.0000 33.0000 0.9267 0.0000 394.0800 181.0000 34.0000 0.9267 0.0000 + 341.6552 181.0000 35.0000 0.9267 0.0000 294.7351 181.0000 36.0000 0.9267 0.0000 + 1809.6860 181.0000 37.0000 0.9267 0.0000 1524.5549 181.0000 38.0000 0.9267 0.0000 + 1313.1378 181.0000 39.0000 0.9267 0.0000 1168.2143 181.0000 40.0000 0.9267 0.0000 + 1058.4151 181.0000 41.0000 0.9267 0.0000 808.5578 181.0000 42.0000 0.9267 0.0000 + 905.6928 181.0000 43.0000 0.9267 0.0000 682.0711 181.0000 44.0000 0.9267 0.0000 + 744.9376 181.0000 45.0000 0.9267 0.0000 688.0703 181.0000 46.0000 0.9267 0.0000 + 575.9928 181.0000 47.0000 0.9267 0.0000 603.3005 181.0000 48.0000 0.9267 0.0000 + 766.6573 181.0000 49.0000 0.9267 0.0000 697.2453 181.0000 50.0000 0.9267 0.0000 + 611.9984 181.0000 51.0000 0.9267 0.0000 562.8800 181.0000 52.0000 0.9267 0.0000 + 504.3841 181.0000 53.0000 0.9267 0.0000 449.8010 181.0000 54.0000 0.9267 0.0000 + 2204.6359 181.0000 55.0000 0.9267 0.0000 1955.7490 181.0000 56.0000 0.9267 0.0000 + 1689.1285 181.0000 57.0000 0.9267 0.0000 725.3191 181.0000 58.0000 0.9267 2.7991 + 1723.5094 181.0000 59.0000 0.9267 0.0000 1649.9797 181.0000 60.0000 0.9267 0.0000 + 1607.2448 181.0000 61.0000 0.9267 0.0000 1568.0817 181.0000 62.0000 0.9267 0.0000 + 1533.3057 181.0000 63.0000 0.9267 0.0000 1184.4744 181.0000 64.0000 0.9267 0.0000 + 1372.1977 181.0000 65.0000 0.9267 0.0000 1319.3709 181.0000 66.0000 0.9267 0.0000 + 1376.8441 181.0000 67.0000 0.9267 0.0000 1346.9267 181.0000 68.0000 0.9267 0.0000 + 1319.6608 181.0000 69.0000 0.9267 0.0000 1305.1597 181.0000 70.0000 0.9267 0.0000 + 1086.5229 181.0000 71.0000 0.9267 0.0000 1050.1050 181.0000 72.0000 0.9267 0.0000 + 948.9833 181.0000 73.0000 0.9267 0.0000 796.0121 181.0000 74.0000 0.9267 0.0000 + 806.5417 181.0000 75.0000 0.9267 0.0000 725.0493 181.0000 76.0000 0.9267 0.0000 + 659.7822 181.0000 77.0000 0.9267 0.0000 544.8994 181.0000 78.0000 0.9267 0.0000 + 507.9210 181.0000 79.0000 0.9267 0.0000 520.6273 181.0000 80.0000 0.9267 0.0000 + 784.9496 181.0000 81.0000 0.9267 0.0000 757.2566 181.0000 82.0000 0.9267 0.0000 + 686.2168 181.0000 83.0000 0.9267 0.0000 649.4501 181.0000 84.0000 0.9267 0.0000 + 594.0956 181.0000 85.0000 0.9267 0.0000 540.3621 181.0000 86.0000 0.9267 0.0000 + 2053.0994 181.0000 87.0000 0.9267 0.0000 1917.2106 181.0000 88.0000 0.9267 0.0000 + 1668.1370 181.0000 89.0000 0.9267 0.0000 1473.5523 181.0000 90.0000 0.9267 0.0000 + 1476.4021 181.0000 91.0000 0.9267 0.0000 1428.9400 181.0000 92.0000 0.9267 0.0000 + 1487.1204 181.0000 93.0000 0.9267 0.0000 1437.1768 181.0000 94.0000 0.9267 0.0000 + 74.8265 181.0000 101.0000 0.9267 0.0000 254.7991 181.0000 103.0000 0.9267 0.9865 + 323.0933 181.0000 104.0000 0.9267 0.9808 239.2545 181.0000 105.0000 0.9267 0.9706 + 177.3933 181.0000 106.0000 0.9267 0.9868 121.3356 181.0000 107.0000 0.9267 0.9944 + 87.2983 181.0000 108.0000 0.9267 0.9925 59.2550 181.0000 109.0000 0.9267 0.9982 + 375.2846 181.0000 111.0000 0.9267 0.9684 582.2068 181.0000 112.0000 0.9267 0.9628 + 579.5600 181.0000 113.0000 0.9267 0.9648 454.6872 181.0000 114.0000 0.9267 0.9507 + 366.1607 181.0000 115.0000 0.9267 0.9947 306.3303 181.0000 116.0000 0.9267 0.9948 + 247.7688 181.0000 117.0000 0.9267 0.9972 511.6460 181.0000 119.0000 0.9267 0.9767 + 1022.4025 181.0000 120.0000 0.9267 0.9831 500.9073 181.0000 121.0000 0.9267 1.8627 + 483.4915 181.0000 122.0000 0.9267 1.8299 474.0521 181.0000 123.0000 0.9267 1.9138 + 470.8995 181.0000 124.0000 0.9267 1.8269 428.0435 181.0000 125.0000 0.9267 1.6406 + 394.9339 181.0000 126.0000 0.9267 1.6483 376.8690 181.0000 127.0000 0.9267 1.7149 + 368.8212 181.0000 128.0000 0.9267 1.7937 367.7662 181.0000 129.0000 0.9267 0.9576 + 339.4098 181.0000 130.0000 0.9267 1.9419 571.2540 181.0000 131.0000 0.9267 0.9601 + 492.3727 181.0000 132.0000 0.9267 0.9434 435.5100 181.0000 133.0000 0.9267 0.9889 + 394.3108 181.0000 134.0000 0.9267 0.9901 344.2133 181.0000 135.0000 0.9267 0.9974 + 608.1170 181.0000 137.0000 0.9267 0.9738 1247.8398 181.0000 138.0000 0.9267 0.9801 + 922.8166 181.0000 139.0000 0.9267 1.9153 664.1554 181.0000 140.0000 0.9267 1.9355 + 670.9256 181.0000 141.0000 0.9267 1.9545 623.3449 181.0000 142.0000 0.9267 1.9420 + 710.5561 181.0000 143.0000 0.9267 1.6682 537.4115 181.0000 144.0000 0.9267 1.8584 + 502.4772 181.0000 145.0000 0.9267 1.9003 465.8349 181.0000 146.0000 0.9267 1.8630 + 451.4298 181.0000 147.0000 0.9267 0.9679 442.5069 181.0000 148.0000 0.9267 1.9539 + 726.6030 181.0000 149.0000 0.9267 0.9633 646.4014 181.0000 150.0000 0.9267 0.9514 + 598.6193 181.0000 151.0000 0.9267 0.9749 562.1551 181.0000 152.0000 0.9267 0.9811 + 509.1742 181.0000 153.0000 0.9267 0.9968 709.7641 181.0000 155.0000 0.9267 0.9909 + 1630.7553 181.0000 156.0000 0.9267 0.9797 1171.8156 181.0000 157.0000 0.9267 1.9373 + 702.8645 181.0000 159.0000 0.9267 2.9425 688.2219 181.0000 160.0000 0.9267 2.9455 + 665.9391 181.0000 161.0000 0.9267 2.9413 670.8247 181.0000 162.0000 0.9267 2.9300 + 651.7394 181.0000 163.0000 0.9267 1.8286 675.3785 181.0000 164.0000 0.9267 2.8732 + 633.1582 181.0000 165.0000 0.9267 2.9086 647.1351 181.0000 166.0000 0.9267 2.8965 + 599.7511 181.0000 167.0000 0.9267 2.9242 582.2268 181.0000 168.0000 0.9267 2.9282 + 578.8104 181.0000 169.0000 0.9267 2.9246 610.1764 181.0000 170.0000 0.9267 2.8482 + 558.7749 181.0000 171.0000 0.9267 2.9219 778.7039 181.0000 172.0000 0.9267 1.9254 + 715.9335 181.0000 173.0000 0.9267 1.9459 646.9731 181.0000 174.0000 0.9267 1.9292 + 660.3926 181.0000 175.0000 0.9267 1.8104 565.4035 181.0000 176.0000 0.9267 1.8858 + 530.4405 181.0000 177.0000 0.9267 1.8648 505.8634 181.0000 178.0000 0.9267 1.9188 + 484.0395 181.0000 179.0000 0.9267 0.9846 463.9553 181.0000 180.0000 0.9267 1.9896 + 778.6188 181.0000 181.0000 0.9267 0.9267 42.4340 182.0000 1.0000 0.9383 0.9118 + 27.9073 182.0000 2.0000 0.9383 0.0000 688.0756 182.0000 3.0000 0.9383 0.0000 + 389.4357 182.0000 4.0000 0.9383 0.0000 259.4598 182.0000 5.0000 0.9383 0.0000 + 174.0789 182.0000 6.0000 0.9383 0.0000 121.2408 182.0000 7.0000 0.9383 0.0000 + 91.6035 182.0000 8.0000 0.9383 0.0000 69.3207 182.0000 9.0000 0.9383 0.0000 + 53.3105 182.0000 10.0000 0.9383 0.0000 821.9796 182.0000 11.0000 0.9383 0.0000 + 622.8471 182.0000 12.0000 0.9383 0.0000 570.7867 182.0000 13.0000 0.9383 0.0000 + 446.3476 182.0000 14.0000 0.9383 0.0000 345.9762 182.0000 15.0000 0.9383 0.0000 + 286.1418 182.0000 16.0000 0.9383 0.0000 233.0385 182.0000 17.0000 0.9383 0.0000 + 190.2365 182.0000 18.0000 0.9383 0.0000 1351.4635 182.0000 19.0000 0.9383 0.0000 + 1101.5257 182.0000 20.0000 0.9383 0.0000 907.5192 182.0000 21.0000 0.9383 0.0000 + 874.2469 182.0000 22.0000 0.9383 0.0000 799.4271 182.0000 23.0000 0.9383 0.0000 + 629.7820 182.0000 24.0000 0.9383 0.0000 686.8786 182.0000 25.0000 0.9383 0.0000 + 539.0190 182.0000 26.0000 0.9383 0.0000 569.4339 182.0000 27.0000 0.9383 0.0000 + 587.4631 182.0000 28.0000 0.9383 0.0000 450.5486 182.0000 29.0000 0.9383 0.0000 + 460.2861 182.0000 30.0000 0.9383 0.0000 545.6804 182.0000 31.0000 0.9383 0.0000 + 478.3664 182.0000 32.0000 0.9383 0.0000 405.9374 182.0000 33.0000 0.9383 0.0000 + 363.1743 182.0000 34.0000 0.9383 0.0000 316.9271 182.0000 35.0000 0.9383 0.0000 + 274.9747 182.0000 36.0000 0.9383 0.0000 1513.1000 182.0000 37.0000 0.9383 0.0000 + 1313.0553 182.0000 38.0000 0.9383 0.0000 1144.5456 182.0000 39.0000 0.9383 0.0000 + 1025.5674 182.0000 40.0000 0.9383 0.0000 933.3741 182.0000 41.0000 0.9383 0.0000 + 718.3231 182.0000 42.0000 0.9383 0.0000 802.4242 182.0000 43.0000 0.9383 0.0000 + 609.2472 182.0000 44.0000 0.9383 0.0000 665.8346 182.0000 45.0000 0.9383 0.0000 + 616.7552 182.0000 46.0000 0.9383 0.0000 514.8930 182.0000 47.0000 0.9383 0.0000 + 542.7164 182.0000 48.0000 0.9383 0.0000 683.5217 182.0000 49.0000 0.9383 0.0000 + 628.9089 182.0000 50.0000 0.9383 0.0000 557.8416 182.0000 51.0000 0.9383 0.0000 + 516.1475 182.0000 52.0000 0.9383 0.0000 465.3787 182.0000 53.0000 0.9383 0.0000 + 417.3555 182.0000 54.0000 0.9383 0.0000 1842.7711 182.0000 55.0000 0.9383 0.0000 + 1676.7003 182.0000 56.0000 0.9383 0.0000 1465.7704 182.0000 57.0000 0.9383 0.0000 + 659.6273 182.0000 58.0000 0.9383 2.7991 1483.4234 182.0000 59.0000 0.9383 0.0000 + 1423.2913 182.0000 60.0000 0.9383 0.0000 1387.2742 182.0000 61.0000 0.9383 0.0000 + 1354.1823 182.0000 62.0000 0.9383 0.0000 1324.8237 182.0000 63.0000 0.9383 0.0000 + 1036.2745 182.0000 64.0000 0.9383 0.0000 1176.1635 182.0000 65.0000 0.9383 0.0000 + 1133.2571 182.0000 66.0000 0.9383 0.0000 1193.4379 182.0000 67.0000 0.9383 0.0000 + 1167.9468 182.0000 68.0000 0.9383 0.0000 1144.8817 182.0000 69.0000 0.9383 0.0000 + 1131.7397 182.0000 70.0000 0.9383 0.0000 950.0808 182.0000 71.0000 0.9383 0.0000 + 929.4880 182.0000 72.0000 0.9383 0.0000 845.7714 182.0000 73.0000 0.9383 0.0000 + 712.7080 182.0000 74.0000 0.9383 0.0000 724.2100 182.0000 75.0000 0.9383 0.0000 + 654.7815 182.0000 76.0000 0.9383 0.0000 598.5406 182.0000 77.0000 0.9383 0.0000 + 496.3904 182.0000 78.0000 0.9383 0.0000 463.4993 182.0000 79.0000 0.9383 0.0000 + 476.2993 182.0000 80.0000 0.9383 0.0000 701.1621 182.0000 81.0000 0.9383 0.0000 + 682.8545 182.0000 82.0000 0.9383 0.0000 624.8006 182.0000 83.0000 0.9383 0.0000 + 594.4628 182.0000 84.0000 0.9383 0.0000 547.1156 182.0000 85.0000 0.9383 0.0000 + 500.2711 182.0000 86.0000 0.9383 0.0000 1733.1333 182.0000 87.0000 0.9383 0.0000 + 1653.7357 182.0000 88.0000 0.9383 0.0000 1455.2479 182.0000 89.0000 0.9383 0.0000 + 1301.1870 182.0000 90.0000 0.9383 0.0000 1295.3664 182.0000 91.0000 0.9383 0.0000 + 1254.1422 182.0000 92.0000 0.9383 0.0000 1295.5258 182.0000 93.0000 0.9383 0.0000 + 1253.8462 182.0000 94.0000 0.9383 0.0000 68.7009 182.0000 101.0000 0.9383 0.0000 + 226.0586 182.0000 103.0000 0.9383 0.9865 287.7587 182.0000 104.0000 0.9383 0.9808 + 217.8236 182.0000 105.0000 0.9383 0.9706 163.3324 182.0000 106.0000 0.9383 0.9868 + 113.0674 182.0000 107.0000 0.9383 0.9944 82.1115 182.0000 108.0000 0.9383 0.9925 + 56.3445 182.0000 109.0000 0.9383 0.9982 331.2846 182.0000 111.0000 0.9383 0.9684 + 512.6793 182.0000 112.0000 0.9383 0.9628 516.5979 182.0000 113.0000 0.9383 0.9648 + 412.1123 182.0000 114.0000 0.9383 0.9507 335.7795 182.0000 115.0000 0.9383 0.9947 + 283.0298 182.0000 116.0000 0.9383 0.9948 230.6495 182.0000 117.0000 0.9383 0.9972 + 455.1207 182.0000 119.0000 0.9383 0.9767 880.9955 182.0000 120.0000 0.9383 0.9831 + 452.4223 182.0000 121.0000 0.9383 1.8627 436.7178 182.0000 122.0000 0.9383 1.8299 + 428.0767 182.0000 123.0000 0.9383 1.9138 424.4677 182.0000 124.0000 0.9383 1.8269 + 389.1761 182.0000 125.0000 0.9383 1.6406 359.8544 182.0000 126.0000 0.9383 1.6483 + 343.3252 182.0000 127.0000 0.9383 1.7149 335.7634 182.0000 128.0000 0.9383 1.7937 + 332.6986 182.0000 129.0000 0.9383 0.9576 310.5826 182.0000 130.0000 0.9383 1.9419 + 511.7453 182.0000 131.0000 0.9383 0.9601 446.9327 182.0000 132.0000 0.9383 0.9434 + 398.9425 182.0000 133.0000 0.9383 0.9889 363.3370 182.0000 134.0000 0.9383 0.9901 + 319.1845 182.0000 135.0000 0.9383 0.9974 542.3817 182.0000 137.0000 0.9383 0.9738 + 1072.8240 182.0000 138.0000 0.9383 0.9801 812.1311 182.0000 139.0000 0.9383 1.9153 + 598.6852 182.0000 140.0000 0.9383 1.9355 604.7275 182.0000 141.0000 0.9383 1.9545 + 563.2632 182.0000 142.0000 0.9383 1.9420 634.6944 182.0000 143.0000 0.9383 1.6682 + 489.4453 182.0000 144.0000 0.9383 1.8584 457.8376 182.0000 145.0000 0.9383 1.9003 + 424.9729 182.0000 146.0000 0.9383 1.8630 411.3726 182.0000 147.0000 0.9383 0.9679 + 405.8302 182.0000 148.0000 0.9383 1.9539 650.4220 182.0000 149.0000 0.9383 0.9633 + 585.4379 182.0000 150.0000 0.9383 0.9514 546.3819 182.0000 151.0000 0.9383 0.9749 + 515.6769 182.0000 152.0000 0.9383 0.9811 469.7578 182.0000 153.0000 0.9383 0.9968 + 638.7185 182.0000 155.0000 0.9383 0.9909 1393.8082 182.0000 156.0000 0.9383 0.9797 + 1028.7291 182.0000 157.0000 0.9383 1.9373 639.5798 182.0000 159.0000 0.9383 2.9425 + 626.3297 182.0000 160.0000 0.9383 2.9455 606.3508 182.0000 161.0000 0.9383 2.9413 + 609.7571 182.0000 162.0000 0.9383 2.9300 589.2403 182.0000 163.0000 0.9383 1.8286 + 613.6978 182.0000 164.0000 0.9383 2.8732 576.1155 182.0000 165.0000 0.9383 2.9086 + 586.9703 182.0000 166.0000 0.9383 2.8965 546.4944 182.0000 167.0000 0.9383 2.9242 + 530.8034 182.0000 168.0000 0.9383 2.9282 527.4833 182.0000 169.0000 0.9383 2.9246 + 554.9319 182.0000 170.0000 0.9383 2.8482 509.6521 182.0000 171.0000 0.9383 2.9219 + 696.2111 182.0000 172.0000 0.9383 1.9254 644.3437 182.0000 173.0000 0.9383 1.9459 + 586.2507 182.0000 174.0000 0.9383 1.9292 594.8032 182.0000 175.0000 0.9383 1.8104 + 517.2394 182.0000 176.0000 0.9383 1.8858 486.2350 182.0000 177.0000 0.9383 1.8648 + 464.2443 182.0000 178.0000 0.9383 1.9188 444.0034 182.0000 179.0000 0.9383 0.9846 + 427.9859 182.0000 180.0000 0.9383 1.9896 697.9570 182.0000 181.0000 0.9383 0.9267 + 632.9991 182.0000 182.0000 0.9383 0.9383 41.5964 183.0000 1.0000 0.9820 0.9118 + 27.6093 183.0000 2.0000 0.9820 0.0000 639.1391 183.0000 3.0000 0.9820 0.0000 + 371.4051 183.0000 4.0000 0.9820 0.0000 250.8181 183.0000 5.0000 0.9820 0.0000 + 169.8421 183.0000 6.0000 0.9820 0.0000 119.0347 183.0000 7.0000 0.9820 0.0000 + 90.3052 183.0000 8.0000 0.9820 0.0000 68.5593 183.0000 9.0000 0.9820 0.0000 + 52.8501 183.0000 10.0000 0.9820 0.0000 764.7264 183.0000 11.0000 0.9820 0.0000 + 591.3242 183.0000 12.0000 0.9820 0.0000 545.8655 183.0000 13.0000 0.9820 0.0000 + 430.9272 183.0000 14.0000 0.9820 0.0000 336.5482 183.0000 15.0000 0.9820 0.0000 + 279.6150 183.0000 16.0000 0.9820 0.0000 228.6709 183.0000 17.0000 0.9820 0.0000 + 187.3061 183.0000 18.0000 0.9820 0.0000 1251.9864 183.0000 19.0000 0.9820 0.0000 + 1037.1898 183.0000 20.0000 0.9820 0.0000 857.5695 183.0000 21.0000 0.9820 0.0000 + 828.7352 183.0000 22.0000 0.9820 0.0000 759.2415 183.0000 23.0000 0.9820 0.0000 + 598.2583 183.0000 24.0000 0.9820 0.0000 654.1216 183.0000 25.0000 0.9820 0.0000 + 513.5941 183.0000 26.0000 0.9820 0.0000 544.7508 183.0000 27.0000 0.9820 0.0000 + 560.9353 183.0000 28.0000 0.9820 0.0000 430.2160 183.0000 29.0000 0.9820 0.0000 + 442.1285 183.0000 30.0000 0.9820 0.0000 523.2478 183.0000 31.0000 0.9820 0.0000 + 462.0716 183.0000 32.0000 0.9820 0.0000 394.5852 183.0000 33.0000 0.9820 0.0000 + 354.3291 183.0000 34.0000 0.9820 0.0000 310.3386 183.0000 35.0000 0.9820 0.0000 + 270.1200 183.0000 36.0000 0.9820 0.0000 1403.6411 183.0000 37.0000 0.9820 0.0000 + 1235.5778 183.0000 38.0000 0.9820 0.0000 1083.7333 183.0000 39.0000 0.9820 0.0000 + 974.7789 183.0000 40.0000 0.9820 0.0000 889.3363 183.0000 41.0000 0.9820 0.0000 + 687.2609 183.0000 42.0000 0.9820 0.0000 766.5586 183.0000 43.0000 0.9820 0.0000 + 584.6336 183.0000 44.0000 0.9820 0.0000 638.9836 183.0000 45.0000 0.9820 0.0000 + 592.7690 183.0000 46.0000 0.9820 0.0000 494.3345 183.0000 47.0000 0.9820 0.0000 + 522.5960 183.0000 48.0000 0.9820 0.0000 655.0919 183.0000 49.0000 0.9820 0.0000 + 606.4077 183.0000 50.0000 0.9820 0.0000 540.9395 183.0000 51.0000 0.9820 0.0000 + 502.1650 183.0000 52.0000 0.9820 0.0000 454.3277 183.0000 53.0000 0.9820 0.0000 + 408.7212 183.0000 54.0000 0.9820 0.0000 1709.8764 183.0000 55.0000 0.9820 0.0000 + 1574.4445 183.0000 56.0000 0.9820 0.0000 1384.9862 183.0000 57.0000 0.9820 0.0000 + 638.9321 183.0000 58.0000 0.9820 2.7991 1395.8040 183.0000 59.0000 0.9820 0.0000 + 1340.6235 183.0000 60.0000 0.9820 0.0000 1307.0810 183.0000 61.0000 0.9820 0.0000 + 1276.2220 183.0000 62.0000 0.9820 0.0000 1248.8582 183.0000 63.0000 0.9820 0.0000 + 983.4716 183.0000 64.0000 0.9820 0.0000 1105.0192 183.0000 65.0000 0.9820 0.0000 + 1065.9790 183.0000 66.0000 0.9820 0.0000 1126.7767 183.0000 67.0000 0.9820 0.0000 + 1102.9019 183.0000 68.0000 0.9820 0.0000 1081.3880 183.0000 69.0000 0.9820 0.0000 + 1068.6785 183.0000 70.0000 0.9820 0.0000 901.2822 183.0000 71.0000 0.9820 0.0000 + 887.2966 183.0000 72.0000 0.9820 0.0000 810.3456 183.0000 73.0000 0.9820 0.0000 + 684.7157 183.0000 74.0000 0.9820 0.0000 696.7607 183.0000 75.0000 0.9820 0.0000 + 631.8903 183.0000 76.0000 0.9820 0.0000 579.0168 183.0000 77.0000 0.9820 0.0000 + 481.3486 183.0000 78.0000 0.9820 0.0000 449.8803 183.0000 79.0000 0.9820 0.0000 + 462.8708 183.0000 80.0000 0.9820 0.0000 672.9015 183.0000 81.0000 0.9820 0.0000 + 658.4391 183.0000 82.0000 0.9820 0.0000 605.5499 183.0000 83.0000 0.9820 0.0000 + 577.8074 183.0000 84.0000 0.9820 0.0000 533.5647 183.0000 85.0000 0.9820 0.0000 + 489.3116 183.0000 86.0000 0.9820 0.0000 1616.2977 183.0000 87.0000 0.9820 0.0000 + 1557.8929 183.0000 88.0000 0.9820 0.0000 1378.7984 183.0000 89.0000 0.9820 0.0000 + 1240.7328 183.0000 90.0000 0.9820 0.0000 1231.2018 183.0000 91.0000 0.9820 0.0000 + 1192.2019 183.0000 92.0000 0.9820 0.0000 1226.6358 183.0000 93.0000 0.9820 0.0000 + 1188.0528 183.0000 94.0000 0.9820 0.0000 66.8857 183.0000 101.0000 0.9820 0.0000 + 215.9908 183.0000 103.0000 0.9820 0.9865 275.6211 183.0000 104.0000 0.9820 0.9808 + 211.1078 183.0000 105.0000 0.9820 0.9706 159.3045 183.0000 106.0000 0.9820 0.9868 + 111.0078 183.0000 107.0000 0.9820 0.9944 81.0238 183.0000 108.0000 0.9820 0.9925 + 55.9216 183.0000 109.0000 0.9820 0.9982 315.6947 183.0000 111.0000 0.9820 0.9684 + 487.9884 183.0000 112.0000 0.9820 0.9628 494.8807 183.0000 113.0000 0.9820 0.9648 + 398.3895 183.0000 114.0000 0.9820 0.9507 326.7015 183.0000 115.0000 0.9820 0.9947 + 276.5367 183.0000 116.0000 0.9820 0.9948 226.3038 183.0000 117.0000 0.9820 0.9972 + 435.7852 183.0000 119.0000 0.9820 0.9767 829.7866 183.0000 120.0000 0.9820 0.9831 + 436.5563 183.0000 121.0000 0.9820 1.8627 421.4858 183.0000 122.0000 0.9820 1.8299 + 413.0794 183.0000 123.0000 0.9820 1.9138 409.2113 183.0000 124.0000 0.9820 1.8269 + 376.8524 183.0000 125.0000 0.9820 1.6406 348.8825 183.0000 126.0000 0.9820 1.6483 + 332.8405 183.0000 127.0000 0.9820 1.7149 325.3891 183.0000 128.0000 0.9820 1.7937 + 321.3335 183.0000 129.0000 0.9820 0.9576 301.7975 183.0000 130.0000 0.9820 1.9419 + 491.6232 183.0000 131.0000 0.9820 0.9601 432.4153 183.0000 132.0000 0.9820 0.9434 + 387.9210 183.0000 133.0000 0.9820 0.9889 354.4637 183.0000 134.0000 0.9820 0.9901 + 312.4875 183.0000 135.0000 0.9820 0.9974 520.1567 183.0000 137.0000 0.9820 0.9738 + 1009.5291 183.0000 138.0000 0.9820 0.9801 773.6203 183.0000 139.0000 0.9820 1.9153 + 577.2776 183.0000 140.0000 0.9820 1.9355 583.0094 183.0000 141.0000 0.9820 1.9545 + 543.8367 183.0000 142.0000 0.9820 1.9420 609.2320 183.0000 143.0000 0.9820 1.6682 + 474.4987 183.0000 144.0000 0.9820 1.8584 443.9926 183.0000 145.0000 0.9820 1.9003 + 412.4056 183.0000 146.0000 0.9820 1.8630 398.9498 183.0000 147.0000 0.9820 0.9679 + 394.8667 183.0000 148.0000 0.9820 1.9539 624.6910 183.0000 149.0000 0.9820 0.9633 + 565.7546 183.0000 150.0000 0.9820 0.9514 530.2215 183.0000 151.0000 0.9820 0.9749 + 501.8122 183.0000 152.0000 0.9820 0.9811 458.5808 183.0000 153.0000 0.9820 0.9968 + 615.4853 183.0000 155.0000 0.9820 0.9909 1308.1372 183.0000 156.0000 0.9820 0.9797 + 978.8763 183.0000 157.0000 0.9820 1.9373 619.7104 183.0000 159.0000 0.9820 2.9425 + 606.9059 183.0000 160.0000 0.9820 2.9455 587.7074 183.0000 161.0000 0.9820 2.9413 + 590.4967 183.0000 162.0000 0.9820 2.9300 568.9883 183.0000 163.0000 0.9820 1.8286 + 594.1781 183.0000 164.0000 0.9820 2.8732 558.1853 183.0000 165.0000 0.9820 2.9086 + 567.7973 183.0000 166.0000 0.9820 2.8965 529.8806 183.0000 167.0000 0.9820 2.9242 + 514.8088 183.0000 168.0000 0.9820 2.9282 511.4801 183.0000 169.0000 0.9820 2.9246 + 537.4797 183.0000 170.0000 0.9820 2.8482 494.4060 183.0000 171.0000 0.9820 2.9219 + 668.5211 183.0000 172.0000 0.9820 1.9254 620.8701 183.0000 173.0000 0.9820 1.9459 + 566.9046 183.0000 174.0000 0.9820 1.9292 573.3450 183.0000 175.0000 0.9820 1.8104 + 502.6732 183.0000 176.0000 0.9820 1.8858 473.0598 183.0000 177.0000 0.9820 1.8648 + 451.9506 183.0000 178.0000 0.9820 1.9188 432.1513 183.0000 179.0000 0.9820 0.9846 + 417.7789 183.0000 180.0000 0.9820 1.9896 671.0011 183.0000 181.0000 0.9820 0.9267 + 612.2366 183.0000 182.0000 0.9820 0.9383 594.0457 183.0000 183.0000 0.9820 0.9820 + 40.7840 184.0000 1.0000 0.9815 0.9118 27.2927 184.0000 2.0000 0.9815 0.0000 + 603.7828 184.0000 3.0000 0.9815 0.0000 356.6773 184.0000 4.0000 0.9815 0.0000 + 243.2553 184.0000 5.0000 0.9815 0.0000 165.9180 184.0000 6.0000 0.9815 0.0000 + 116.8921 184.0000 7.0000 0.9815 0.0000 88.9960 184.0000 8.0000 0.9815 0.0000 + 67.7625 184.0000 9.0000 0.9815 0.0000 52.3520 184.0000 10.0000 0.9815 0.0000 + 723.1832 184.0000 11.0000 0.9815 0.0000 566.1891 184.0000 12.0000 0.9815 0.0000 + 525.3265 184.0000 13.0000 0.9815 0.0000 417.5182 184.0000 14.0000 0.9815 0.0000 + 327.9420 184.0000 15.0000 0.9815 0.0000 273.4676 184.0000 16.0000 0.9815 0.0000 + 224.4164 184.0000 17.0000 0.9815 0.0000 184.3601 184.0000 18.0000 0.9815 0.0000 + 1181.9863 184.0000 19.0000 0.9815 0.0000 988.2709 184.0000 20.0000 0.9815 0.0000 + 818.9160 184.0000 21.0000 0.9815 0.0000 793.1270 184.0000 22.0000 0.9815 0.0000 + 727.5491 184.0000 23.0000 0.9815 0.0000 573.6157 184.0000 24.0000 0.9815 0.0000 + 627.9828 184.0000 25.0000 0.9815 0.0000 493.4612 184.0000 26.0000 0.9815 0.0000 + 524.5809 184.0000 27.0000 0.9815 0.0000 539.4410 184.0000 28.0000 0.9815 0.0000 + 413.9597 184.0000 29.0000 0.9815 0.0000 426.9611 184.0000 30.0000 0.9815 0.0000 + 504.6627 184.0000 31.0000 0.9815 0.0000 447.9342 184.0000 32.0000 0.9815 0.0000 + 384.3087 184.0000 33.0000 0.9815 0.0000 346.1124 184.0000 34.0000 0.9815 0.0000 + 304.0401 184.0000 35.0000 0.9815 0.0000 265.3465 184.0000 36.0000 0.9815 0.0000 + 1326.5708 184.0000 37.0000 0.9815 0.0000 1177.0902 184.0000 38.0000 0.9815 0.0000 + 1036.5660 184.0000 39.0000 0.9815 0.0000 934.7359 184.0000 40.0000 0.9815 0.0000 + 854.2884 184.0000 41.0000 0.9815 0.0000 662.2437 184.0000 42.0000 0.9815 0.0000 + 737.7893 184.0000 43.0000 0.9815 0.0000 564.5986 184.0000 44.0000 0.9815 0.0000 + 616.9108 184.0000 45.0000 0.9815 0.0000 572.8955 184.0000 46.0000 0.9815 0.0000 + 477.6572 184.0000 47.0000 0.9815 0.0000 505.7567 184.0000 48.0000 0.9815 0.0000 + 631.8602 184.0000 49.0000 0.9815 0.0000 587.2526 184.0000 50.0000 0.9815 0.0000 + 525.9823 184.0000 51.0000 0.9815 0.0000 489.5004 184.0000 52.0000 0.9815 0.0000 + 444.0535 184.0000 53.0000 0.9815 0.0000 400.4827 184.0000 54.0000 0.9815 0.0000 + 1616.6889 184.0000 55.0000 0.9815 0.0000 1498.3060 184.0000 56.0000 0.9815 0.0000 + 1323.1799 184.0000 57.0000 0.9815 0.0000 620.8891 184.0000 58.0000 0.9815 2.7991 + 1330.0657 184.0000 59.0000 0.9815 0.0000 1278.2459 184.0000 60.0000 0.9815 0.0000 + 1246.4709 184.0000 61.0000 0.9815 0.0000 1217.2125 184.0000 62.0000 0.9815 0.0000 + 1191.2765 184.0000 63.0000 0.9815 0.0000 942.4892 184.0000 64.0000 0.9815 0.0000 + 1052.6025 184.0000 65.0000 0.9815 0.0000 1016.2272 184.0000 66.0000 0.9815 0.0000 + 1075.8235 184.0000 67.0000 0.9815 0.0000 1053.1221 184.0000 68.0000 0.9815 0.0000 + 1032.7245 184.0000 69.0000 0.9815 0.0000 1020.3815 184.0000 70.0000 0.9815 0.0000 + 863.2925 184.0000 71.0000 0.9815 0.0000 853.3159 184.0000 72.0000 0.9815 0.0000 + 781.3051 184.0000 73.0000 0.9815 0.0000 661.6565 184.0000 74.0000 0.9815 0.0000 + 673.8893 184.0000 75.0000 0.9815 0.0000 612.4862 184.0000 76.0000 0.9815 0.0000 + 562.2334 184.0000 77.0000 0.9815 0.0000 468.3459 184.0000 78.0000 0.9815 0.0000 + 438.0702 184.0000 79.0000 0.9815 0.0000 451.0299 184.0000 80.0000 0.9815 0.0000 + 649.9322 184.0000 81.0000 0.9815 0.0000 637.8410 184.0000 82.0000 0.9815 0.0000 + 588.6922 184.0000 83.0000 0.9815 0.0000 562.9049 184.0000 84.0000 0.9815 0.0000 + 521.1177 184.0000 85.0000 0.9815 0.0000 478.9983 184.0000 86.0000 0.9815 0.0000 + 1533.0137 184.0000 87.0000 0.9815 0.0000 1485.6837 184.0000 88.0000 0.9815 0.0000 + 1319.5792 184.0000 89.0000 0.9815 0.0000 1192.5537 184.0000 90.0000 0.9815 0.0000 + 1181.0674 184.0000 91.0000 0.9815 0.0000 1143.7723 184.0000 92.0000 0.9815 0.0000 + 1173.6700 184.0000 93.0000 0.9815 0.0000 1137.2796 184.0000 94.0000 0.9815 0.0000 + 65.2146 184.0000 101.0000 0.9815 0.0000 207.7296 184.0000 103.0000 0.9815 0.9865 + 265.6196 184.0000 104.0000 0.9815 0.9808 205.1682 184.0000 105.0000 0.9815 0.9706 + 155.6188 184.0000 106.0000 0.9815 0.9868 109.0287 184.0000 107.0000 0.9815 0.9944 + 79.9230 184.0000 108.0000 0.9815 0.9925 55.4450 184.0000 109.0000 0.9815 0.9982 + 303.1305 184.0000 111.0000 0.9815 0.9684 468.2106 184.0000 112.0000 0.9815 0.9628 + 476.8590 184.0000 113.0000 0.9815 0.9648 386.3885 184.0000 114.0000 0.9815 0.9507 + 318.4162 184.0000 115.0000 0.9815 0.9947 270.4365 184.0000 116.0000 0.9815 0.9948 + 222.0800 184.0000 117.0000 0.9815 0.9972 420.2116 184.0000 119.0000 0.9815 0.9767 + 791.4164 184.0000 120.0000 0.9815 0.9831 422.9969 184.0000 121.0000 0.9815 1.8627 + 408.5100 184.0000 122.0000 0.9815 1.8299 400.3242 184.0000 123.0000 0.9815 1.9138 + 396.3285 184.0000 124.0000 0.9815 1.8269 366.0540 184.0000 125.0000 0.9815 1.6406 + 339.2062 184.0000 126.0000 0.9815 1.6483 323.6247 184.0000 127.0000 0.9815 1.7149 + 316.3002 184.0000 128.0000 0.9815 1.7937 311.6355 184.0000 129.0000 0.9815 0.9576 + 293.9063 184.0000 130.0000 0.9815 1.9419 474.7845 184.0000 131.0000 0.9815 0.9601 + 419.7026 184.0000 132.0000 0.9815 0.9434 377.9262 184.0000 133.0000 0.9815 0.9889 + 346.2301 184.0000 134.0000 0.9815 0.9901 306.0997 184.0000 135.0000 0.9815 0.9974 + 502.2018 184.0000 137.0000 0.9815 0.9738 962.5205 184.0000 138.0000 0.9815 0.9801 + 743.4991 184.0000 139.0000 0.9815 1.9153 559.2512 184.0000 140.0000 0.9815 1.9355 + 564.7260 184.0000 141.0000 0.9815 1.9545 527.3975 184.0000 142.0000 0.9815 1.9420 + 588.5768 184.0000 143.0000 0.9815 1.6682 461.4745 184.0000 144.0000 0.9815 1.8584 + 431.9526 184.0000 145.0000 0.9815 1.9003 401.4589 184.0000 146.0000 0.9815 1.8630 + 388.1797 184.0000 147.0000 0.9815 0.9679 385.0190 184.0000 148.0000 0.9815 1.9539 + 603.4075 184.0000 149.0000 0.9815 0.9633 548.7765 184.0000 150.0000 0.9815 0.9514 + 515.8479 184.0000 151.0000 0.9815 0.9749 489.2328 184.0000 152.0000 0.9815 0.9811 + 448.1906 184.0000 153.0000 0.9815 0.9968 596.1669 184.0000 155.0000 0.9815 0.9909 + 1245.5740 184.0000 156.0000 0.9815 0.9797 940.2295 184.0000 157.0000 0.9815 1.9373 + 602.3550 184.0000 159.0000 0.9815 2.9425 589.9322 184.0000 160.0000 0.9815 2.9455 + 571.3908 184.0000 161.0000 0.9815 2.9413 573.7638 184.0000 162.0000 0.9815 2.9300 + 551.7791 184.0000 163.0000 0.9815 1.8286 577.2075 184.0000 164.0000 0.9815 2.8732 + 542.5231 184.0000 165.0000 0.9815 2.9086 551.2842 184.0000 166.0000 0.9815 2.8965 + 515.2756 184.0000 167.0000 0.9815 2.9242 500.7166 184.0000 168.0000 0.9815 2.9282 + 497.3978 184.0000 169.0000 0.9815 2.9246 522.2000 184.0000 170.0000 0.9815 2.8482 + 480.9331 184.0000 171.0000 0.9815 2.9219 645.8443 184.0000 172.0000 0.9815 1.9254 + 601.2747 184.0000 173.0000 0.9815 1.9459 550.3934 184.0000 174.0000 0.9815 1.9292 + 555.4235 184.0000 175.0000 0.9815 1.8104 489.7675 184.0000 176.0000 0.9815 1.8858 + 461.3238 184.0000 177.0000 0.9815 1.8648 440.9723 184.0000 178.0000 0.9815 1.9188 + 421.6354 184.0000 179.0000 0.9815 0.9846 408.4221 184.0000 180.0000 0.9815 1.9896 + 648.7960 184.0000 181.0000 0.9815 0.9267 594.3640 184.0000 182.0000 0.9815 0.9383 + 577.9736 184.0000 183.0000 0.9815 0.9820 563.2463 184.0000 184.0000 0.9815 0.9815 + 38.5121 185.0000 1.0000 0.9954 0.9118 26.1111 185.0000 2.0000 0.9954 0.0000 + 541.7823 185.0000 3.0000 0.9954 0.0000 327.0460 185.0000 4.0000 0.9954 0.0000 + 226.1285 185.0000 5.0000 0.9954 0.0000 155.8682 185.0000 6.0000 0.9954 0.0000 + 110.6820 185.0000 7.0000 0.9954 0.0000 84.7401 185.0000 8.0000 0.9954 0.0000 + 64.8287 185.0000 9.0000 0.9954 0.0000 50.2741 185.0000 10.0000 0.9954 0.0000 + 649.9141 185.0000 11.0000 0.9954 0.0000 517.1372 185.0000 12.0000 0.9954 0.0000 + 483.1435 185.0000 13.0000 0.9954 0.0000 387.5689 185.0000 14.0000 0.9954 0.0000 + 306.8904 185.0000 15.0000 0.9954 0.0000 257.3000 185.0000 16.0000 0.9954 0.0000 + 212.2457 185.0000 17.0000 0.9954 0.0000 175.1529 185.0000 18.0000 0.9954 0.0000 + 1060.5365 185.0000 19.0000 0.9954 0.0000 897.1564 185.0000 20.0000 0.9954 0.0000 + 745.5450 185.0000 21.0000 0.9954 0.0000 724.2805 185.0000 22.0000 0.9954 0.0000 + 665.5600 185.0000 23.0000 0.9954 0.0000 525.3466 185.0000 24.0000 0.9954 0.0000 + 575.9477 185.0000 25.0000 0.9954 0.0000 453.2353 185.0000 26.0000 0.9954 0.0000 + 483.1101 185.0000 27.0000 0.9954 0.0000 495.8721 185.0000 28.0000 0.9954 0.0000 + 380.9995 185.0000 29.0000 0.9954 0.0000 394.7360 185.0000 30.0000 0.9954 0.0000 + 465.6773 185.0000 31.0000 0.9954 0.0000 416.1967 185.0000 32.0000 0.9954 0.0000 + 359.4322 185.0000 33.0000 0.9954 0.0000 325.0832 185.0000 34.0000 0.9954 0.0000 + 286.8165 185.0000 35.0000 0.9954 0.0000 251.3275 185.0000 36.0000 0.9954 0.0000 + 1192.1368 185.0000 37.0000 0.9954 0.0000 1068.4888 185.0000 38.0000 0.9954 0.0000 + 945.9470 185.0000 39.0000 0.9954 0.0000 855.9848 185.0000 40.0000 0.9954 0.0000 + 784.2171 185.0000 41.0000 0.9954 0.0000 610.6965 185.0000 42.0000 0.9954 0.0000 + 679.1913 185.0000 43.0000 0.9954 0.0000 522.3200 185.0000 44.0000 0.9954 0.0000 + 570.3414 185.0000 45.0000 0.9954 0.0000 530.4326 185.0000 46.0000 0.9954 0.0000 + 442.3361 185.0000 47.0000 0.9954 0.0000 469.1694 185.0000 48.0000 0.9954 0.0000 + 583.3654 185.0000 49.0000 0.9954 0.0000 545.0623 185.0000 50.0000 0.9954 0.0000 + 490.9194 185.0000 51.0000 0.9954 0.0000 458.4777 185.0000 52.0000 0.9954 0.0000 + 417.5070 185.0000 53.0000 0.9954 0.0000 377.9266 185.0000 54.0000 0.9954 0.0000 + 1453.8408 185.0000 55.0000 0.9954 0.0000 1358.3391 185.0000 56.0000 0.9954 0.0000 + 1205.7906 185.0000 57.0000 0.9954 0.0000 579.1142 185.0000 58.0000 0.9954 2.7991 + 1208.0329 185.0000 59.0000 0.9954 0.0000 1161.8576 185.0000 60.0000 0.9954 0.0000 + 1133.2140 185.0000 61.0000 0.9954 0.0000 1106.8065 185.0000 62.0000 0.9954 0.0000 + 1083.4069 185.0000 63.0000 0.9954 0.0000 862.6601 185.0000 64.0000 0.9954 0.0000 + 955.9642 185.0000 65.0000 0.9954 0.0000 923.9161 185.0000 66.0000 0.9954 0.0000 + 979.5788 185.0000 67.0000 0.9954 0.0000 959.0071 185.0000 68.0000 0.9954 0.0000 + 940.5964 185.0000 69.0000 0.9954 0.0000 929.0880 185.0000 70.0000 0.9954 0.0000 + 789.5044 185.0000 71.0000 0.9954 0.0000 784.4820 185.0000 72.0000 0.9954 0.0000 + 720.8197 185.0000 73.0000 0.9954 0.0000 612.4829 185.0000 74.0000 0.9954 0.0000 + 624.5088 185.0000 75.0000 0.9954 0.0000 569.3474 185.0000 76.0000 0.9954 0.0000 + 523.9520 185.0000 77.0000 0.9954 0.0000 437.8261 185.0000 78.0000 0.9954 0.0000 + 410.0181 185.0000 79.0000 0.9954 0.0000 422.4769 185.0000 80.0000 0.9954 0.0000 + 601.4113 185.0000 81.0000 0.9954 0.0000 592.4491 185.0000 82.0000 0.9954 0.0000 + 549.4248 185.0000 83.0000 0.9954 0.0000 526.8857 185.0000 84.0000 0.9954 0.0000 + 489.5133 185.0000 85.0000 0.9954 0.0000 451.4455 185.0000 86.0000 0.9954 0.0000 + 1384.4068 185.0000 87.0000 0.9954 0.0000 1350.7426 185.0000 88.0000 0.9954 0.0000 + 1205.3587 185.0000 89.0000 0.9954 0.0000 1095.7307 185.0000 90.0000 0.9954 0.0000 + 1082.4781 185.0000 91.0000 0.9954 0.0000 1048.4614 185.0000 92.0000 0.9954 0.0000 + 1072.0311 185.0000 93.0000 0.9954 0.0000 1039.4256 185.0000 94.0000 0.9954 0.0000 + 61.0757 185.0000 101.0000 0.9954 0.0000 190.8807 185.0000 103.0000 0.9954 0.9865 + 244.7940 185.0000 104.0000 0.9954 0.9808 191.3087 185.0000 105.0000 0.9954 0.9706 + 146.2118 185.0000 106.0000 0.9954 0.9868 103.2804 185.0000 107.0000 0.9954 0.9944 + 76.2186 185.0000 108.0000 0.9954 0.9925 53.3092 185.0000 109.0000 0.9954 0.9982 + 278.0094 185.0000 111.0000 0.9954 0.9684 428.9192 185.0000 112.0000 0.9954 0.9628 + 439.3457 185.0000 113.0000 0.9954 0.9648 359.2039 185.0000 114.0000 0.9954 0.9507 + 298.0806 185.0000 115.0000 0.9954 0.9947 254.4284 185.0000 116.0000 0.9954 0.9948 + 210.0233 185.0000 117.0000 0.9954 0.9972 387.9111 185.0000 119.0000 0.9954 0.9767 + 719.7141 185.0000 120.0000 0.9954 0.9831 392.8995 185.0000 121.0000 0.9954 1.8627 + 379.6269 185.0000 122.0000 0.9954 1.8299 371.9863 185.0000 123.0000 0.9954 1.9138 + 367.9773 185.0000 124.0000 0.9954 1.8269 341.1725 185.0000 125.0000 0.9954 1.6406 + 316.5839 185.0000 126.0000 0.9954 1.6483 302.0858 185.0000 127.0000 0.9954 1.7149 + 295.1541 185.0000 128.0000 0.9954 1.7937 289.9157 185.0000 129.0000 0.9954 0.9576 + 274.9260 185.0000 130.0000 0.9954 1.9419 438.9000 185.0000 131.0000 0.9954 0.9601 + 390.6452 185.0000 132.0000 0.9954 0.9434 353.6122 185.0000 133.0000 0.9954 0.9889 + 325.1791 185.0000 134.0000 0.9954 0.9901 288.6991 185.0000 135.0000 0.9954 0.9974 + 464.4598 185.0000 137.0000 0.9954 0.9738 875.0712 185.0000 138.0000 0.9954 0.9801 + 683.1977 185.0000 139.0000 0.9954 1.9153 519.4398 185.0000 140.0000 0.9954 1.9355 + 524.4449 185.0000 141.0000 0.9954 1.9545 490.6173 185.0000 142.0000 0.9954 1.9420 + 544.7930 185.0000 143.0000 0.9954 1.6682 431.0011 185.0000 144.0000 0.9954 1.8584 + 403.6693 185.0000 145.0000 0.9954 1.9003 375.5218 185.0000 146.0000 0.9954 1.8630 + 362.8851 185.0000 147.0000 0.9954 0.9679 360.8931 185.0000 148.0000 0.9954 1.9539 + 558.1846 185.0000 149.0000 0.9954 0.9633 510.5057 185.0000 150.0000 0.9954 0.9514 + 481.8362 185.0000 151.0000 0.9954 0.9749 458.3253 185.0000 152.0000 0.9954 0.9811 + 421.3660 185.0000 153.0000 0.9954 0.9968 553.6997 185.0000 155.0000 0.9954 0.9909 + 1130.6124 185.0000 156.0000 0.9954 0.9797 863.3805 185.0000 157.0000 0.9954 1.9373 + 562.0223 185.0000 159.0000 0.9954 2.9425 550.4639 185.0000 160.0000 0.9954 2.9455 + 533.3252 185.0000 161.0000 0.9954 2.9413 535.1107 185.0000 162.0000 0.9954 2.9300 + 513.2832 185.0000 163.0000 0.9954 1.8286 538.1196 185.0000 164.0000 0.9954 2.8732 + 506.1617 185.0000 165.0000 0.9954 2.9086 513.6130 185.0000 166.0000 0.9954 2.8965 + 481.0697 185.0000 167.0000 0.9954 2.9242 467.6013 185.0000 168.0000 0.9954 2.9282 + 464.3920 185.0000 169.0000 0.9954 2.9246 486.8802 185.0000 170.0000 0.9954 2.8482 + 449.1881 185.0000 171.0000 0.9954 2.9219 597.6183 185.0000 172.0000 0.9954 1.9254 + 558.2674 185.0000 173.0000 0.9954 1.9459 512.8204 185.0000 174.0000 0.9954 1.9292 + 515.9741 185.0000 175.0000 0.9954 1.8104 458.5923 185.0000 176.0000 0.9954 1.8858 + 432.5432 185.0000 177.0000 0.9954 1.8648 413.8059 185.0000 178.0000 0.9954 1.9188 + 395.6923 185.0000 179.0000 0.9954 0.9846 384.2979 185.0000 180.0000 0.9954 1.9896 + 601.1796 185.0000 181.0000 0.9954 0.9267 553.6959 185.0000 182.0000 0.9954 0.9383 + 540.0116 185.0000 183.0000 0.9954 0.9820 527.4278 185.0000 184.0000 0.9954 0.9815 + 495.4474 185.0000 185.0000 0.9954 0.9954 47.7016 187.0000 1.0000 0.9705 0.9118 + 30.9827 187.0000 2.0000 0.9705 0.0000 821.2898 187.0000 3.0000 0.9705 0.0000 + 449.0776 187.0000 4.0000 0.9705 0.0000 295.2992 187.0000 5.0000 0.9705 0.0000 + 196.4082 187.0000 6.0000 0.9705 0.0000 135.8619 187.0000 7.0000 0.9705 0.0000 + 102.0913 187.0000 8.0000 0.9705 0.0000 76.8281 187.0000 9.0000 0.9705 0.0000 + 58.7599 187.0000 10.0000 0.9705 0.0000 978.7272 187.0000 11.0000 0.9705 0.0000 + 721.6286 187.0000 12.0000 0.9705 0.0000 656.4658 187.0000 13.0000 0.9705 0.0000 + 508.4877 187.0000 14.0000 0.9705 0.0000 391.4528 187.0000 15.0000 0.9705 0.0000 + 322.4346 187.0000 16.0000 0.9705 0.0000 261.5363 187.0000 17.0000 0.9705 0.0000 + 212.6910 187.0000 18.0000 0.9705 0.0000 1623.5241 187.0000 19.0000 0.9705 0.0000 + 1290.6007 187.0000 20.0000 0.9705 0.0000 1058.1233 187.0000 21.0000 0.9705 0.0000 + 1015.7559 187.0000 22.0000 0.9705 0.0000 926.7170 187.0000 23.0000 0.9705 0.0000 + 730.3469 187.0000 24.0000 0.9705 0.0000 793.6663 187.0000 25.0000 0.9705 0.0000 + 622.7390 187.0000 26.0000 0.9705 0.0000 654.3215 187.0000 27.0000 0.9705 0.0000 + 676.3693 187.0000 28.0000 0.9705 0.0000 519.0234 187.0000 29.0000 0.9705 0.0000 + 526.3991 187.0000 30.0000 0.9705 0.0000 626.0266 187.0000 31.0000 0.9705 0.0000 + 544.6178 187.0000 32.0000 0.9705 0.0000 459.4511 187.0000 33.0000 0.9705 0.0000 + 409.7155 187.0000 34.0000 0.9705 0.0000 356.3324 187.0000 35.0000 0.9705 0.0000 + 308.1805 187.0000 36.0000 0.9705 0.0000 1815.4672 187.0000 37.0000 0.9705 0.0000 + 1540.7355 187.0000 38.0000 0.9705 0.0000 1332.5023 187.0000 39.0000 0.9705 0.0000 + 1188.5781 187.0000 40.0000 0.9705 0.0000 1078.7813 187.0000 41.0000 0.9705 0.0000 + 826.6191 187.0000 42.0000 0.9705 0.0000 924.7992 187.0000 43.0000 0.9705 0.0000 + 698.6886 187.0000 44.0000 0.9705 0.0000 762.9614 187.0000 45.0000 0.9705 0.0000 + 705.4029 187.0000 46.0000 0.9705 0.0000 589.9223 187.0000 47.0000 0.9705 0.0000 + 619.1778 187.0000 48.0000 0.9705 0.0000 784.3364 187.0000 49.0000 0.9705 0.0000 + 716.7123 187.0000 50.0000 0.9705 0.0000 632.1327 187.0000 51.0000 0.9705 0.0000 + 583.1447 187.0000 52.0000 0.9705 0.0000 524.1530 187.0000 53.0000 0.9705 0.0000 + 468.7123 187.0000 54.0000 0.9705 0.0000 2213.3513 187.0000 55.0000 0.9705 0.0000 + 1974.6939 187.0000 56.0000 0.9705 0.0000 1712.2469 187.0000 57.0000 0.9705 0.0000 + 748.6587 187.0000 58.0000 0.9705 2.7991 1741.7523 187.0000 59.0000 0.9705 0.0000 + 1668.3774 187.0000 60.0000 0.9705 0.0000 1625.4063 187.0000 61.0000 0.9705 0.0000 + 1586.0020 187.0000 62.0000 0.9705 0.0000 1551.0288 187.0000 63.0000 0.9705 0.0000 + 1203.7458 187.0000 64.0000 0.9705 0.0000 1386.1364 187.0000 65.0000 0.9705 0.0000 + 1333.8527 187.0000 66.0000 0.9705 0.0000 1393.9911 187.0000 67.0000 0.9705 0.0000 + 1363.8159 187.0000 68.0000 0.9705 0.0000 1336.4029 187.0000 69.0000 0.9705 0.0000 + 1321.4462 187.0000 70.0000 0.9705 0.0000 1103.6008 187.0000 71.0000 0.9705 0.0000 + 1071.7256 187.0000 72.0000 0.9705 0.0000 971.1579 187.0000 73.0000 0.9705 0.0000 + 816.3979 187.0000 74.0000 0.9705 0.0000 827.9983 187.0000 75.0000 0.9705 0.0000 + 746.0231 187.0000 76.0000 0.9705 0.0000 680.0703 187.0000 77.0000 0.9705 0.0000 + 562.5519 187.0000 78.0000 0.9705 0.0000 524.6217 187.0000 79.0000 0.9705 0.0000 + 538.2454 187.0000 80.0000 0.9705 0.0000 803.9335 187.0000 81.0000 0.9705 0.0000 + 778.2756 187.0000 82.0000 0.9705 0.0000 708.2327 187.0000 83.0000 0.9705 0.0000 + 671.9977 187.0000 84.0000 0.9705 0.0000 616.5395 187.0000 85.0000 0.9705 0.0000 + 562.2218 187.0000 86.0000 0.9705 0.0000 2067.1766 187.0000 87.0000 0.9705 0.0000 + 1939.9392 187.0000 88.0000 0.9705 0.0000 1693.5702 187.0000 89.0000 0.9705 0.0000 + 1502.4640 187.0000 90.0000 0.9705 0.0000 1501.9252 187.0000 91.0000 0.9705 0.0000 + 1453.6878 187.0000 92.0000 0.9705 0.0000 1508.3332 187.0000 93.0000 0.9705 0.0000 + 1458.3342 187.0000 94.0000 0.9705 0.0000 77.7055 187.0000 101.0000 0.9705 0.0000 + 260.2443 187.0000 103.0000 0.9705 0.9865 330.8667 187.0000 104.0000 0.9705 0.9808 + 247.3831 187.0000 105.0000 0.9705 0.9706 184.4431 187.0000 106.0000 0.9705 0.9868 + 126.7534 187.0000 107.0000 0.9705 0.9944 91.4388 187.0000 108.0000 0.9705 0.9925 + 62.1219 187.0000 109.0000 0.9705 0.9982 382.2708 187.0000 111.0000 0.9705 0.9684 + 592.9795 187.0000 112.0000 0.9705 0.9628 593.1905 187.0000 113.0000 0.9705 0.9648 + 468.9906 187.0000 114.0000 0.9705 0.9507 379.8612 187.0000 115.0000 0.9705 0.9947 + 318.9608 187.0000 116.0000 0.9705 0.9948 258.8652 187.0000 117.0000 0.9705 0.9972 + 523.4690 187.0000 119.0000 0.9705 0.9767 1034.5424 187.0000 120.0000 0.9705 0.9831 + 515.4409 187.0000 121.0000 0.9705 1.8627 497.5952 187.0000 122.0000 0.9705 1.8299 + 487.7415 187.0000 123.0000 0.9705 1.9138 484.0680 187.0000 124.0000 0.9705 1.8269 + 441.5259 187.0000 125.0000 0.9705 1.6406 407.7462 187.0000 126.0000 0.9705 1.6483 + 389.0394 187.0000 127.0000 0.9705 1.7149 380.5722 187.0000 128.0000 0.9705 1.7937 + 378.3131 187.0000 129.0000 0.9705 0.9576 350.9982 187.0000 130.0000 0.9705 1.9419 + 585.9332 187.0000 131.0000 0.9705 0.9601 508.0674 187.0000 132.0000 0.9705 0.9434 + 451.4064 187.0000 133.0000 0.9705 0.9889 409.9270 187.0000 134.0000 0.9705 0.9901 + 358.9324 187.0000 135.0000 0.9705 0.9974 623.0285 187.0000 137.0000 0.9705 0.9738 + 1262.3248 187.0000 138.0000 0.9705 0.9801 941.3182 187.0000 139.0000 0.9705 1.9153 + 683.3907 187.0000 140.0000 0.9705 1.9355 690.1339 187.0000 141.0000 0.9705 1.9545 + 641.8884 187.0000 142.0000 0.9705 1.9420 728.4795 187.0000 143.0000 0.9705 1.6682 + 554.9802 187.0000 144.0000 0.9705 1.8584 518.9273 187.0000 145.0000 0.9705 1.9003 + 481.2264 187.0000 146.0000 0.9705 1.8630 465.9323 187.0000 147.0000 0.9705 0.9679 + 457.9909 187.0000 148.0000 0.9705 1.9539 744.5626 187.0000 149.0000 0.9705 0.9633 + 665.6797 187.0000 150.0000 0.9705 0.9514 618.7237 187.0000 151.0000 0.9705 0.9749 + 582.5163 187.0000 152.0000 0.9705 0.9811 529.1245 187.0000 153.0000 0.9705 0.9968 + 730.4486 187.0000 155.0000 0.9705 0.9909 1647.8674 187.0000 156.0000 0.9705 0.9797 + 1194.7861 187.0000 157.0000 0.9705 1.9373 725.6535 187.0000 159.0000 0.9705 2.9425 + 710.5489 187.0000 160.0000 0.9705 2.9455 687.6857 187.0000 161.0000 0.9705 2.9413 + 692.2622 187.0000 162.0000 0.9705 2.9300 670.8149 187.0000 163.0000 0.9705 1.8286 + 696.8443 187.0000 164.0000 0.9705 2.8732 653.5744 187.0000 165.0000 0.9705 2.9086 + 667.1962 187.0000 166.0000 0.9705 2.8965 619.4760 187.0000 167.0000 0.9705 2.9242 + 601.5062 187.0000 168.0000 0.9705 2.9282 597.8777 187.0000 169.0000 0.9705 2.9246 + 629.7088 187.0000 170.0000 0.9705 2.8482 577.4083 187.0000 171.0000 0.9705 2.9219 + 798.7345 187.0000 172.0000 0.9705 1.9254 736.2614 187.0000 173.0000 0.9705 1.9459 + 667.1004 187.0000 174.0000 0.9705 1.9292 679.1219 187.0000 175.0000 0.9705 1.8104 + 585.1502 187.0000 176.0000 0.9705 1.8858 549.3298 187.0000 177.0000 0.9705 1.8648 + 524.0171 187.0000 178.0000 0.9705 1.9188 501.1487 187.0000 179.0000 0.9705 0.9846 + 481.5099 187.0000 180.0000 0.9705 1.9896 798.4879 187.0000 181.0000 0.9705 0.9267 + 719.0994 187.0000 182.0000 0.9705 0.9383 693.2115 187.0000 183.0000 0.9705 0.9820 + 671.6167 187.0000 184.0000 0.9705 0.9815 623.9602 187.0000 185.0000 0.9705 0.9954 + 822.0482 187.0000 187.0000 0.9705 0.9705 83.6090 188.0000 1.0000 0.9662 0.9118 + 50.7965 188.0000 2.0000 0.9662 0.0000 2063.7836 188.0000 3.0000 0.9662 0.0000 + 940.4274 188.0000 4.0000 0.9662 0.0000 567.8107 188.0000 5.0000 0.9662 0.0000 + 355.4860 188.0000 6.0000 0.9662 0.0000 235.5160 188.0000 7.0000 0.9662 0.0000 + 171.8472 188.0000 8.0000 0.9662 0.0000 126.1953 188.0000 9.0000 0.9662 0.0000 + 94.7035 188.0000 10.0000 0.9662 0.0000 2433.4034 188.0000 11.0000 0.9662 0.0000 + 1557.0501 188.0000 12.0000 0.9662 0.0000 1354.4541 188.0000 13.0000 0.9662 0.0000 + 985.8045 188.0000 14.0000 0.9662 0.0000 722.4419 188.0000 15.0000 0.9662 0.0000 + 577.4268 188.0000 16.0000 0.9662 0.0000 455.2593 188.0000 17.0000 0.9662 0.0000 + 361.4493 188.0000 18.0000 0.9662 0.0000 4218.9528 188.0000 19.0000 0.9662 0.0000 + 2955.5781 188.0000 20.0000 0.9662 0.0000 2362.8855 188.0000 21.0000 0.9662 0.0000 + 2225.6317 188.0000 22.0000 0.9662 0.0000 2006.0593 188.0000 23.0000 0.9662 0.0000 + 1585.0984 188.0000 24.0000 0.9662 0.0000 1688.3164 188.0000 25.0000 0.9662 0.0000 + 1324.5409 188.0000 26.0000 0.9662 0.0000 1348.7863 188.0000 27.0000 0.9662 0.0000 + 1411.1951 188.0000 28.0000 0.9662 0.0000 1087.8878 188.0000 29.0000 0.9662 0.0000 + 1055.8450 188.0000 30.0000 0.9662 0.0000 1272.6682 188.0000 31.0000 0.9662 0.0000 + 1053.2146 188.0000 32.0000 0.9662 0.0000 852.1795 188.0000 33.0000 0.9662 0.0000 + 741.5511 188.0000 34.0000 0.9662 0.0000 629.2099 188.0000 35.0000 0.9662 0.0000 + 532.2890 188.0000 36.0000 0.9662 0.0000 4692.0594 188.0000 37.0000 0.9662 0.0000 + 3553.3992 188.0000 38.0000 0.9662 0.0000 2947.7908 188.0000 39.0000 0.9662 0.0000 + 2564.3290 188.0000 40.0000 0.9662 0.0000 2292.2709 188.0000 41.0000 0.9662 0.0000 + 1712.6002 188.0000 42.0000 0.9662 0.0000 1934.9917 188.0000 43.0000 0.9662 0.0000 + 1420.5909 188.0000 44.0000 0.9662 0.0000 1544.9801 188.0000 45.0000 0.9662 0.0000 + 1413.6504 188.0000 46.0000 0.9662 0.0000 1196.8365 188.0000 47.0000 0.9662 0.0000 + 1224.7085 188.0000 48.0000 0.9662 0.0000 1604.2050 188.0000 49.0000 0.9662 0.0000 + 1403.7977 188.0000 50.0000 0.9662 0.0000 1191.5335 188.0000 51.0000 0.9662 0.0000 + 1075.3755 188.0000 52.0000 0.9662 0.0000 944.5951 188.0000 53.0000 0.9662 0.0000 + 826.9272 188.0000 54.0000 0.9662 0.0000 5752.8877 188.0000 55.0000 0.9662 0.0000 + 4638.3134 188.0000 56.0000 0.9662 0.0000 3853.2093 188.0000 57.0000 0.9662 0.0000 + 1423.5132 188.0000 58.0000 0.9662 2.7991 4040.7923 188.0000 59.0000 0.9662 0.0000 + 3832.7972 188.0000 60.0000 0.9662 0.0000 3725.3298 188.0000 61.0000 0.9662 0.0000 + 3627.6787 188.0000 62.0000 0.9662 0.0000 3540.7934 188.0000 63.0000 0.9662 0.0000 + 2635.9841 188.0000 64.0000 0.9662 0.0000 3283.0964 188.0000 65.0000 0.9662 0.0000 + 3145.7261 188.0000 66.0000 0.9662 0.0000 3144.6702 188.0000 67.0000 0.9662 0.0000 + 3072.0386 188.0000 68.0000 0.9662 0.0000 3004.5907 188.0000 69.0000 0.9662 0.0000 + 2975.8018 188.0000 70.0000 0.9662 0.0000 2422.3257 188.0000 71.0000 0.9662 0.0000 + 2246.0574 188.0000 72.0000 0.9662 0.0000 1985.8562 188.0000 73.0000 0.9662 0.0000 + 1644.9966 188.0000 74.0000 0.9662 0.0000 1650.2454 188.0000 75.0000 0.9662 0.0000 + 1455.7663 188.0000 76.0000 0.9662 0.0000 1305.1372 188.0000 77.0000 0.9662 0.0000 + 1063.8806 188.0000 78.0000 0.9662 0.0000 986.0081 188.0000 79.0000 0.9662 0.0000 + 1001.4312 188.0000 80.0000 0.9662 0.0000 1636.7789 188.0000 81.0000 0.9662 0.0000 + 1527.2655 188.0000 82.0000 0.9662 0.0000 1340.8219 188.0000 83.0000 0.9662 0.0000 + 1247.6338 188.0000 84.0000 0.9662 0.0000 1119.0260 188.0000 85.0000 0.9662 0.0000 + 1000.3262 188.0000 86.0000 0.9662 0.0000 5185.1636 188.0000 87.0000 0.9662 0.0000 + 4461.3947 188.0000 88.0000 0.9662 0.0000 3741.1085 188.0000 89.0000 0.9662 0.0000 + 3178.8167 188.0000 90.0000 0.9662 0.0000 3255.3913 188.0000 91.0000 0.9662 0.0000 + 3146.1615 188.0000 92.0000 0.9662 0.0000 3348.3818 188.0000 93.0000 0.9662 0.0000 + 3220.2388 188.0000 94.0000 0.9662 0.0000 142.5589 188.0000 101.0000 0.9662 0.0000 + 539.8661 188.0000 103.0000 0.9662 0.9865 679.2931 188.0000 104.0000 0.9662 0.9808 + 468.4069 188.0000 105.0000 0.9662 0.9706 335.1671 188.0000 106.0000 0.9662 0.9868 + 219.9373 188.0000 107.0000 0.9662 0.9944 152.8448 188.0000 108.0000 0.9662 0.9925 + 99.2802 188.0000 109.0000 0.9662 0.9982 807.4609 188.0000 111.0000 0.9662 0.9684 + 1265.5466 188.0000 112.0000 0.9662 0.9628 1211.4303 188.0000 113.0000 0.9662 0.9648 + 902.3443 188.0000 114.0000 0.9662 0.9507 700.2807 188.0000 115.0000 0.9662 0.9947 + 571.8025 188.0000 116.0000 0.9662 0.9948 450.9431 188.0000 117.0000 0.9662 0.9972 + 1080.6042 188.0000 119.0000 0.9662 0.9767 2400.4019 188.0000 120.0000 0.9662 0.9831 + 1003.1278 188.0000 121.0000 0.9662 1.8627 971.1709 188.0000 122.0000 0.9662 1.8299 + 952.3807 188.0000 123.0000 0.9662 1.9138 951.5840 188.0000 124.0000 0.9662 1.8269 + 839.8278 188.0000 125.0000 0.9662 1.6406 769.6531 188.0000 126.0000 0.9662 1.6483 + 735.3257 188.0000 127.0000 0.9662 1.7149 721.1155 188.0000 128.0000 0.9662 1.7937 + 733.5428 188.0000 129.0000 0.9662 0.9576 652.1404 188.0000 130.0000 0.9662 1.9419 + 1176.3896 188.0000 131.0000 0.9662 0.9601 972.4069 188.0000 132.0000 0.9662 0.9434 + 835.4911 188.0000 133.0000 0.9662 0.9889 742.3417 188.0000 134.0000 0.9662 0.9901 + 634.6807 188.0000 135.0000 0.9662 0.9974 1275.1297 188.0000 137.0000 0.9662 0.9738 + 2958.5401 188.0000 138.0000 0.9662 0.9801 2035.2098 188.0000 139.0000 0.9662 1.9153 + 1343.4836 188.0000 140.0000 0.9662 1.9355 1353.9176 188.0000 141.0000 0.9662 1.9545 + 1251.5281 188.0000 142.0000 0.9662 1.9420 1485.8293 188.0000 143.0000 0.9662 1.6682 + 1050.0362 188.0000 144.0000 0.9662 1.8584 980.7226 188.0000 145.0000 0.9662 1.9003 + 905.5129 188.0000 146.0000 0.9662 1.8630 880.0394 188.0000 147.0000 0.9662 0.9679 + 843.9803 188.0000 148.0000 0.9662 1.9539 1500.5632 188.0000 149.0000 0.9662 0.9633 + 1284.9412 188.0000 150.0000 0.9662 0.9514 1160.5961 188.0000 151.0000 0.9662 0.9749 + 1072.7423 188.0000 152.0000 0.9662 0.9811 953.8631 188.0000 153.0000 0.9662 0.9968 + 1447.5205 188.0000 155.0000 0.9662 0.9909 3962.7043 188.0000 156.0000 0.9662 0.9797 + 2613.0493 188.0000 157.0000 0.9662 1.9373 1376.8762 188.0000 159.0000 0.9662 2.9425 + 1347.4829 188.0000 160.0000 0.9662 2.9455 1301.8447 188.0000 161.0000 0.9662 2.9413 + 1319.8844 188.0000 162.0000 0.9662 2.9300 1303.6758 188.0000 163.0000 0.9662 1.8286 + 1329.3323 188.0000 164.0000 0.9662 2.8732 1240.1840 188.0000 165.0000 0.9662 2.9086 + 1282.7144 188.0000 166.0000 0.9662 2.8965 1169.1884 188.0000 167.0000 0.9662 2.9242 + 1133.0697 188.0000 168.0000 0.9662 2.9282 1127.9011 188.0000 169.0000 0.9662 2.9246 + 1196.8168 188.0000 170.0000 0.9662 2.8482 1085.7933 188.0000 171.0000 0.9662 2.9219 + 1623.2598 188.0000 172.0000 0.9662 1.9254 1458.9496 188.0000 173.0000 0.9662 1.9459 + 1287.8783 188.0000 174.0000 0.9662 1.9292 1341.1577 188.0000 175.0000 0.9662 1.8104 + 1089.6139 188.0000 176.0000 0.9662 1.8858 1014.8760 188.0000 177.0000 0.9662 1.8648 + 963.9239 188.0000 178.0000 0.9662 1.9188 923.7484 188.0000 179.0000 0.9662 0.9846 + 868.3132 188.0000 180.0000 0.9662 1.9896 1603.6402 188.0000 181.0000 0.9662 0.9267 + 1381.8325 188.0000 182.0000 0.9662 0.9383 1302.2054 188.0000 183.0000 0.9662 0.9820 + 1243.0479 188.0000 184.0000 0.9662 0.9815 1132.0728 188.0000 185.0000 0.9662 0.9954 + 1624.5332 188.0000 187.0000 0.9662 0.9705 3787.5943 188.0000 188.0000 0.9662 0.9662 + 51.1073 189.0000 1.0000 2.9070 0.9118 33.6398 189.0000 2.0000 2.9070 0.0000 + 806.0243 189.0000 3.0000 2.9070 0.0000 463.0230 189.0000 4.0000 2.9070 0.0000 + 310.5859 189.0000 5.0000 2.9070 0.0000 209.1858 189.0000 6.0000 2.9070 0.0000 + 145.9537 189.0000 7.0000 2.9070 0.0000 110.3333 189.0000 8.0000 2.9070 0.0000 + 83.4761 189.0000 9.0000 2.9070 0.0000 64.1443 189.0000 10.0000 2.9070 0.0000 + 963.5350 189.0000 11.0000 2.9070 0.0000 738.5419 189.0000 12.0000 2.9070 0.0000 + 679.4726 189.0000 13.0000 2.9070 0.0000 533.9456 189.0000 14.0000 2.9070 0.0000 + 415.3453 189.0000 15.0000 2.9070 0.0000 344.1377 189.0000 16.0000 2.9070 0.0000 + 280.6567 189.0000 17.0000 2.9070 0.0000 229.2849 189.0000 18.0000 2.9070 0.0000 + 1579.6611 189.0000 19.0000 2.9070 0.0000 1299.8428 189.0000 20.0000 2.9070 0.0000 + 1073.0233 189.0000 21.0000 2.9070 0.0000 1035.3252 189.0000 22.0000 2.9070 0.0000 + 947.6190 189.0000 23.0000 2.9070 0.0000 746.3020 189.0000 24.0000 2.9070 0.0000 + 815.2919 189.0000 25.0000 2.9070 0.0000 639.6818 189.0000 26.0000 2.9070 0.0000 + 677.4555 189.0000 27.0000 2.9070 0.0000 698.2313 189.0000 28.0000 2.9070 0.0000 + 535.1863 189.0000 29.0000 2.9070 0.0000 548.6812 189.0000 30.0000 2.9070 0.0000 + 650.2347 189.0000 31.0000 2.9070 0.0000 572.2109 189.0000 32.0000 2.9070 0.0000 + 487.0472 189.0000 33.0000 2.9070 0.0000 436.4377 189.0000 34.0000 2.9070 0.0000 + 381.3870 189.0000 35.0000 2.9070 0.0000 331.2301 189.0000 36.0000 2.9070 0.0000 + 1769.7228 189.0000 37.0000 2.9070 0.0000 1548.7458 189.0000 38.0000 2.9070 0.0000 + 1354.5806 189.0000 39.0000 2.9070 0.0000 1216.1834 189.0000 40.0000 2.9070 0.0000 + 1108.1864 189.0000 41.0000 2.9070 0.0000 854.3876 189.0000 42.0000 2.9070 0.0000 + 953.7682 189.0000 43.0000 2.9070 0.0000 725.5272 189.0000 44.0000 2.9070 0.0000 + 793.1478 189.0000 45.0000 2.9070 0.0000 735.1655 189.0000 46.0000 2.9070 0.0000 + 613.0271 189.0000 47.0000 2.9070 0.0000 647.3934 189.0000 48.0000 2.9070 0.0000 + 813.6674 189.0000 49.0000 2.9070 0.0000 751.1085 189.0000 50.0000 2.9070 0.0000 + 668.1278 189.0000 51.0000 2.9070 0.0000 619.1592 189.0000 52.0000 2.9070 0.0000 + 559.0941 189.0000 53.0000 2.9070 0.0000 502.0150 189.0000 54.0000 2.9070 0.0000 + 2155.5972 189.0000 55.0000 2.9070 0.0000 1975.1996 189.0000 56.0000 2.9070 0.0000 + 1732.7032 189.0000 57.0000 2.9070 0.0000 789.5403 189.0000 58.0000 2.9070 2.7991 + 1749.1123 189.0000 59.0000 2.9070 0.0000 1679.2118 189.0000 60.0000 2.9070 0.0000 + 1636.9858 189.0000 61.0000 2.9070 0.0000 1598.1651 189.0000 62.0000 2.9070 0.0000 + 1563.7364 189.0000 63.0000 2.9070 0.0000 1227.3570 189.0000 64.0000 2.9070 0.0000 + 1385.1029 189.0000 65.0000 2.9070 0.0000 1335.4249 189.0000 66.0000 2.9070 0.0000 + 1409.8902 189.0000 67.0000 2.9070 0.0000 1379.9203 189.0000 68.0000 2.9070 0.0000 + 1352.8654 189.0000 69.0000 2.9070 0.0000 1337.1510 189.0000 70.0000 2.9070 0.0000 + 1125.1350 189.0000 71.0000 2.9070 0.0000 1104.7547 189.0000 72.0000 2.9070 0.0000 + 1007.0882 189.0000 73.0000 2.9070 0.0000 849.5353 189.0000 74.0000 2.9070 0.0000 + 863.9112 189.0000 75.0000 2.9070 0.0000 782.1842 189.0000 76.0000 2.9070 0.0000 + 715.7449 189.0000 77.0000 2.9070 0.0000 593.9788 189.0000 78.0000 2.9070 0.0000 + 554.7341 189.0000 79.0000 2.9070 0.0000 570.4848 189.0000 80.0000 2.9070 0.0000 + 834.8644 189.0000 81.0000 2.9070 0.0000 815.2221 189.0000 82.0000 2.9070 0.0000 + 747.8662 189.0000 83.0000 2.9070 0.0000 712.5600 189.0000 84.0000 2.9070 0.0000 + 656.8053 189.0000 85.0000 2.9070 0.0000 601.2986 189.0000 86.0000 2.9070 0.0000 + 2033.0823 189.0000 87.0000 2.9070 0.0000 1951.5778 189.0000 88.0000 2.9070 0.0000 + 1722.6039 189.0000 89.0000 2.9070 0.0000 1545.2383 189.0000 90.0000 2.9070 0.0000 + 1535.4151 189.0000 91.0000 2.9070 0.0000 1486.6193 189.0000 92.0000 2.9070 0.0000 + 1532.2963 189.0000 93.0000 2.9070 0.0000 1483.5856 189.0000 94.0000 2.9070 0.0000 + 82.5273 189.0000 101.0000 2.9070 0.0000 268.9814 189.0000 103.0000 2.9070 0.9865 + 342.8238 189.0000 104.0000 2.9070 0.9808 261.0234 189.0000 105.0000 2.9070 0.9706 + 196.2138 189.0000 106.0000 2.9070 0.9868 136.0895 189.0000 107.0000 2.9070 0.9944 + 98.9080 189.0000 108.0000 2.9070 0.9925 67.8586 189.0000 109.0000 2.9070 0.9982 + 393.4383 189.0000 111.0000 2.9070 0.9684 608.6709 189.0000 112.0000 2.9070 0.9628 + 615.4785 189.0000 113.0000 2.9070 0.9648 493.2792 189.0000 114.0000 2.9070 0.9507 + 403.1240 189.0000 115.0000 2.9070 0.9947 340.3586 189.0000 116.0000 2.9070 0.9948 + 277.7545 189.0000 117.0000 2.9070 0.9972 541.5052 189.0000 119.0000 2.9070 0.9767 + 1039.3542 189.0000 120.0000 2.9070 0.9831 540.6254 189.0000 121.0000 2.9070 1.8627 + 521.8291 189.0000 122.0000 2.9070 1.8299 511.4188 189.0000 123.0000 2.9070 1.9138 + 506.8195 189.0000 124.0000 2.9070 1.8269 465.7690 189.0000 125.0000 2.9070 1.6406 + 430.8790 189.0000 126.0000 2.9070 1.6483 411.0232 189.0000 127.0000 2.9070 1.7149 + 401.8734 189.0000 128.0000 2.9070 1.7937 397.4563 189.0000 129.0000 2.9070 0.9576 + 372.2513 189.0000 130.0000 2.9070 1.9419 610.3734 189.0000 131.0000 2.9070 0.9601 + 535.0233 189.0000 132.0000 2.9070 0.9434 478.7221 189.0000 133.0000 2.9070 0.9889 + 436.6129 189.0000 134.0000 2.9070 0.9901 384.0680 189.0000 135.0000 2.9070 0.9974 + 645.7753 189.0000 137.0000 2.9070 0.9738 1264.8795 189.0000 138.0000 2.9070 0.9801 + 963.8486 189.0000 139.0000 2.9070 1.9153 715.0636 189.0000 140.0000 2.9070 1.9355 + 722.1816 189.0000 141.0000 2.9070 1.9545 673.0352 189.0000 142.0000 2.9070 1.9420 + 756.0091 189.0000 143.0000 2.9070 1.6682 585.8966 189.0000 144.0000 2.9070 1.8584 + 548.0198 189.0000 145.0000 2.9070 1.9003 508.7346 189.0000 146.0000 2.9070 1.8630 + 492.2252 189.0000 147.0000 2.9070 0.9679 486.4884 189.0000 148.0000 2.9070 1.9539 + 775.1141 189.0000 149.0000 2.9070 0.9633 699.9415 189.0000 150.0000 2.9070 0.9514 + 654.6342 189.0000 151.0000 2.9070 0.9749 618.6624 189.0000 152.0000 2.9070 0.9811 + 564.3552 189.0000 153.0000 2.9070 0.9968 762.6560 189.0000 155.0000 2.9070 0.9909 + 1640.7829 189.0000 156.0000 2.9070 0.9797 1220.1975 189.0000 157.0000 2.9070 1.9373 + 765.6416 189.0000 159.0000 2.9070 2.9425 749.7903 189.0000 160.0000 2.9070 2.9455 + 725.9504 189.0000 161.0000 2.9070 2.9413 729.7100 189.0000 162.0000 2.9070 2.9300 + 704.0229 189.0000 163.0000 2.9070 1.8286 734.4027 189.0000 164.0000 2.9070 2.8732 + 689.6145 189.0000 165.0000 2.9070 2.9086 702.0322 189.0000 166.0000 2.9070 2.8965 + 654.4084 189.0000 167.0000 2.9070 2.9242 635.7018 189.0000 168.0000 2.9070 2.9282 + 631.6705 189.0000 169.0000 2.9070 2.9246 664.2561 189.0000 170.0000 2.9070 2.8482 + 610.4673 189.0000 171.0000 2.9070 2.9219 829.7445 189.0000 172.0000 2.9070 1.9254 + 769.2156 189.0000 173.0000 2.9070 1.9459 701.0229 189.0000 174.0000 2.9070 1.9292 + 710.0608 189.0000 175.0000 2.9070 1.8104 619.8872 189.0000 176.0000 2.9070 1.8858 + 582.9054 189.0000 177.0000 2.9070 1.8648 556.5985 189.0000 178.0000 2.9070 1.9188 + 532.1308 189.0000 179.0000 2.9070 0.9846 513.6908 189.0000 180.0000 2.9070 1.9896 + 831.8853 189.0000 181.0000 2.9070 0.9267 756.8458 189.0000 182.0000 2.9070 0.9383 + 733.2479 189.0000 183.0000 2.9070 0.9820 712.6207 189.0000 184.0000 2.9070 0.9815 + 664.7508 189.0000 185.0000 2.9070 0.9954 858.8440 189.0000 187.0000 2.9070 0.9705 + 1630.4211 189.0000 188.0000 2.9070 0.9662 906.0448 189.0000 189.0000 2.9070 2.9070 + 58.0420 190.0000 1.0000 2.8844 0.9118 37.7171 190.0000 2.0000 2.8844 0.0000 + 1008.8719 190.0000 3.0000 2.8844 0.0000 548.4203 190.0000 4.0000 2.8844 0.0000 + 360.0553 190.0000 5.0000 2.8844 0.0000 239.2120 190.0000 6.0000 2.8844 0.0000 + 165.4117 190.0000 7.0000 2.8844 0.0000 124.3280 190.0000 8.0000 2.8844 0.0000 + 93.6408 190.0000 9.0000 2.8844 0.0000 71.7185 190.0000 10.0000 2.8844 0.0000 + 1201.7562 190.0000 11.0000 2.8844 0.0000 881.9628 190.0000 12.0000 2.8844 0.0000 + 801.6846 190.0000 13.0000 2.8844 0.0000 620.2040 190.0000 14.0000 2.8844 0.0000 + 476.9709 190.0000 15.0000 2.8844 0.0000 392.6218 190.0000 16.0000 2.8844 0.0000 + 318.3137 190.0000 17.0000 2.8844 0.0000 258.8120 190.0000 18.0000 2.8844 0.0000 + 2000.7417 190.0000 19.0000 2.8844 0.0000 1579.5049 190.0000 20.0000 2.8844 0.0000 + 1294.1588 190.0000 21.0000 2.8844 0.0000 1241.9423 190.0000 22.0000 2.8844 0.0000 + 1132.8667 190.0000 23.0000 2.8844 0.0000 892.9693 190.0000 24.0000 2.8844 0.0000 + 969.9993 190.0000 25.0000 2.8844 0.0000 761.1526 190.0000 26.0000 2.8844 0.0000 + 799.2515 190.0000 27.0000 2.8844 0.0000 826.3855 190.0000 28.0000 2.8844 0.0000 + 634.3124 190.0000 29.0000 2.8844 0.0000 642.8013 190.0000 30.0000 2.8844 0.0000 + 764.3388 190.0000 31.0000 2.8844 0.0000 664.3007 190.0000 32.0000 2.8844 0.0000 + 559.9626 190.0000 33.0000 2.8844 0.0000 499.0729 190.0000 34.0000 2.8844 0.0000 + 433.8409 190.0000 35.0000 2.8844 0.0000 375.0874 190.0000 36.0000 2.8844 0.0000 + 2237.2776 190.0000 37.0000 2.8844 0.0000 1886.0887 190.0000 38.0000 2.8844 0.0000 + 1629.4376 190.0000 39.0000 2.8844 0.0000 1452.6448 190.0000 40.0000 2.8844 0.0000 + 1318.1488 190.0000 41.0000 2.8844 0.0000 1009.5160 190.0000 42.0000 2.8844 0.0000 + 1129.8359 190.0000 43.0000 2.8844 0.0000 853.1336 190.0000 44.0000 2.8844 0.0000 + 931.5690 190.0000 45.0000 2.8844 0.0000 861.2012 190.0000 46.0000 2.8844 0.0000 + 720.5137 190.0000 47.0000 2.8844 0.0000 755.9211 190.0000 48.0000 2.8844 0.0000 + 958.1121 190.0000 49.0000 2.8844 0.0000 874.7967 190.0000 50.0000 2.8844 0.0000 + 771.0663 190.0000 51.0000 2.8844 0.0000 711.0022 190.0000 52.0000 2.8844 0.0000 + 638.7892 190.0000 53.0000 2.8844 0.0000 570.9952 190.0000 54.0000 2.8844 0.0000 + 2730.6836 190.0000 55.0000 2.8844 0.0000 2419.1244 190.0000 56.0000 2.8844 0.0000 + 2094.7841 190.0000 57.0000 2.8844 0.0000 913.1034 190.0000 58.0000 2.8844 2.7991 + 2134.1663 190.0000 59.0000 2.8844 0.0000 2042.6932 190.0000 60.0000 2.8844 0.0000 + 1989.9080 190.0000 61.0000 2.8844 0.0000 1941.5270 190.0000 62.0000 2.8844 0.0000 + 1898.5844 190.0000 63.0000 2.8844 0.0000 1472.3209 190.0000 64.0000 2.8844 0.0000 + 1701.1137 190.0000 65.0000 2.8844 0.0000 1637.9975 190.0000 66.0000 2.8844 0.0000 + 1705.7192 190.0000 67.0000 2.8844 0.0000 1668.7205 190.0000 68.0000 2.8844 0.0000 + 1635.0831 190.0000 69.0000 2.8844 0.0000 1616.8530 190.0000 70.0000 2.8844 0.0000 + 1350.5554 190.0000 71.0000 2.8844 0.0000 1309.1260 190.0000 72.0000 2.8844 0.0000 + 1185.7100 190.0000 73.0000 2.8844 0.0000 996.5668 190.0000 74.0000 2.8844 0.0000 + 1010.6039 190.0000 75.0000 2.8844 0.0000 910.2567 190.0000 76.0000 2.8844 0.0000 + 829.6271 190.0000 77.0000 2.8844 0.0000 686.2044 190.0000 78.0000 2.8844 0.0000 + 639.9749 190.0000 79.0000 2.8844 0.0000 656.5707 190.0000 80.0000 2.8844 0.0000 + 982.0691 190.0000 81.0000 2.8844 0.0000 950.0207 190.0000 82.0000 2.8844 0.0000 + 864.0413 190.0000 83.0000 2.8844 0.0000 819.5577 190.0000 84.0000 2.8844 0.0000 + 751.6266 190.0000 85.0000 2.8844 0.0000 685.1660 190.0000 86.0000 2.8844 0.0000 + 2544.0695 190.0000 87.0000 2.8844 0.0000 2374.8028 190.0000 88.0000 2.8844 0.0000 + 2071.3967 190.0000 89.0000 2.8844 0.0000 1835.9296 190.0000 90.0000 2.8844 0.0000 + 1836.5610 190.0000 91.0000 2.8844 0.0000 1777.4636 190.0000 92.0000 2.8844 0.0000 + 1845.3202 190.0000 93.0000 2.8844 0.0000 1783.9174 190.0000 94.0000 2.8844 0.0000 + 94.6418 190.0000 101.0000 2.8844 0.0000 317.8125 190.0000 103.0000 2.8844 0.9865 + 403.9969 190.0000 104.0000 2.8844 0.9808 301.5264 190.0000 105.0000 2.8844 0.9706 + 224.5876 190.0000 106.0000 2.8844 0.9868 154.2679 190.0000 107.0000 2.8844 0.9944 + 111.3012 190.0000 108.0000 2.8844 0.9925 75.7461 190.0000 109.0000 2.8844 0.9982 + 467.1567 190.0000 111.0000 2.8844 0.9684 724.7302 190.0000 112.0000 2.8844 0.9628 + 724.2663 190.0000 113.0000 2.8844 0.9648 571.9434 190.0000 114.0000 2.8844 0.9507 + 462.8322 190.0000 115.0000 2.8844 0.9947 388.4028 190.0000 116.0000 2.8844 0.9948 + 315.0738 190.0000 117.0000 2.8844 0.9972 639.2447 190.0000 119.0000 2.8844 0.9767 + 1268.2110 190.0000 120.0000 2.8844 0.9831 628.6370 190.0000 121.0000 2.8844 1.8627 + 607.2695 190.0000 122.0000 2.8844 1.8299 595.2252 190.0000 123.0000 2.8844 1.9138 + 590.8566 190.0000 124.0000 2.8844 1.8269 538.6686 190.0000 125.0000 2.8844 1.6406 + 497.4416 190.0000 126.0000 2.8844 1.6483 474.6874 190.0000 127.0000 2.8844 1.7149 + 464.3949 190.0000 128.0000 2.8844 1.7937 461.8329 190.0000 129.0000 2.8844 0.9576 + 428.1999 190.0000 130.0000 2.8844 1.9419 715.2085 190.0000 131.0000 2.8844 0.9601 + 619.6074 190.0000 132.0000 2.8844 0.9434 550.1341 190.0000 133.0000 2.8844 0.9889 + 499.3363 190.0000 134.0000 2.8844 0.9901 437.0198 190.0000 135.0000 2.8844 0.9974 + 760.6745 190.0000 137.0000 2.8844 0.9738 1548.2877 190.0000 138.0000 2.8844 0.9801 + 1152.2222 190.0000 139.0000 2.8844 1.9153 833.6152 190.0000 140.0000 2.8844 1.9355 + 841.4556 190.0000 141.0000 2.8844 1.9545 783.1123 190.0000 142.0000 2.8844 1.9420 + 889.7324 190.0000 143.0000 2.8844 1.6682 676.8518 190.0000 144.0000 2.8844 1.8584 + 632.9658 190.0000 145.0000 2.8844 1.9003 587.0236 190.0000 146.0000 2.8844 1.8630 + 568.4774 190.0000 147.0000 2.8844 0.9679 558.6293 190.0000 148.0000 2.8844 1.9539 + 909.2621 190.0000 149.0000 2.8844 0.9633 812.3380 190.0000 150.0000 2.8844 0.9514 + 754.6476 190.0000 151.0000 2.8844 0.9749 710.2120 190.0000 152.0000 2.8844 0.9811 + 644.8430 190.0000 153.0000 2.8844 0.9968 890.9761 190.0000 155.0000 2.8844 0.9909 + 2024.9316 190.0000 156.0000 2.8844 0.9797 1463.5069 190.0000 157.0000 2.8844 1.9373 + 885.0331 190.0000 159.0000 2.8844 2.9425 866.5978 190.0000 160.0000 2.8844 2.9455 + 838.7044 190.0000 161.0000 2.8844 2.9413 844.4774 190.0000 162.0000 2.8844 2.9300 + 818.5070 190.0000 163.0000 2.8844 1.8286 849.9827 190.0000 164.0000 2.8844 2.8732 + 797.1561 190.0000 165.0000 2.8844 2.9086 814.0621 190.0000 166.0000 2.8844 2.8965 + 755.5025 190.0000 167.0000 2.8844 2.9242 733.5732 190.0000 168.0000 2.8844 2.9282 + 729.1689 190.0000 169.0000 2.8844 2.9246 768.0874 190.0000 170.0000 2.8844 2.8482 + 704.1586 190.0000 171.0000 2.8844 2.9219 975.5099 190.0000 172.0000 2.8844 1.9254 + 898.5956 190.0000 173.0000 2.8844 1.9459 813.7423 190.0000 174.0000 2.8844 1.9292 + 828.8192 190.0000 175.0000 2.8844 1.8104 713.5078 190.0000 176.0000 2.8844 1.8858 + 669.7628 190.0000 177.0000 2.8844 1.8648 638.9352 190.0000 178.0000 2.8844 1.9188 + 611.1656 190.0000 179.0000 2.8844 0.9846 587.0867 190.0000 180.0000 2.8844 1.9896 + 975.1153 190.0000 181.0000 2.8844 0.9267 877.5231 190.0000 182.0000 2.8844 0.9383 + 845.6149 190.0000 183.0000 2.8844 0.9820 819.0422 190.0000 184.0000 2.8844 0.9815 + 760.6504 190.0000 185.0000 2.8844 0.9954 1002.6461 190.0000 187.0000 2.8844 0.9705 + 1992.6647 190.0000 188.0000 2.8844 0.9662 1047.4302 190.0000 189.0000 2.8844 2.9070 + 1224.5933 190.0000 190.0000 2.8844 2.8844 52.2645 191.0000 1.0000 2.8738 0.9118 + 34.3329 191.0000 2.0000 2.8738 0.0000 890.7015 191.0000 3.0000 2.8738 0.0000 + 485.0227 191.0000 4.0000 2.8738 0.0000 320.8497 191.0000 5.0000 2.8738 0.0000 + 214.6505 191.0000 6.0000 2.8738 0.0000 149.3047 191.0000 7.0000 2.8738 0.0000 + 112.7338 191.0000 8.0000 2.8738 0.0000 85.2621 191.0000 9.0000 2.8738 0.0000 + 65.5331 191.0000 10.0000 2.8738 0.0000 1060.8040 191.0000 11.0000 2.8738 0.0000 + 778.8806 191.0000 12.0000 2.8738 0.0000 710.3488 191.0000 13.0000 2.8738 0.0000 + 552.1913 191.0000 14.0000 2.8738 0.0000 426.8075 191.0000 15.0000 2.8738 0.0000 + 352.6477 191.0000 16.0000 2.8738 0.0000 286.9998 191.0000 17.0000 2.8738 0.0000 + 234.1847 191.0000 18.0000 2.8738 0.0000 1778.9468 191.0000 19.0000 2.8738 0.0000 + 1393.9683 191.0000 20.0000 2.8738 0.0000 1142.5935 191.0000 21.0000 2.8738 0.0000 + 1097.9705 191.0000 22.0000 2.8738 0.0000 1002.2471 191.0000 23.0000 2.8738 0.0000 + 790.9665 191.0000 24.0000 2.8738 0.0000 859.1044 191.0000 25.0000 2.8738 0.0000 + 674.9804 191.0000 26.0000 2.8738 0.0000 709.0047 191.0000 27.0000 2.8738 0.0000 + 732.4082 191.0000 28.0000 2.8738 0.0000 562.9964 191.0000 29.0000 2.8738 0.0000 + 571.3150 191.0000 30.0000 2.8738 0.0000 678.7016 191.0000 31.0000 2.8738 0.0000 + 591.9079 191.0000 32.0000 2.8738 0.0000 500.9407 191.0000 33.0000 2.8738 0.0000 + 447.7438 191.0000 34.0000 2.8738 0.0000 390.4314 191.0000 35.0000 2.8738 0.0000 + 338.5833 191.0000 36.0000 2.8738 0.0000 1991.3447 191.0000 37.0000 2.8738 0.0000 + 1665.6547 191.0000 38.0000 2.8738 0.0000 1440.7783 191.0000 39.0000 2.8738 0.0000 + 1286.0297 191.0000 40.0000 2.8738 0.0000 1168.3462 191.0000 41.0000 2.8738 0.0000 + 896.8839 191.0000 42.0000 2.8738 0.0000 1003.0323 191.0000 43.0000 2.8738 0.0000 + 759.3194 191.0000 44.0000 2.8738 0.0000 828.4128 191.0000 45.0000 2.8738 0.0000 + 766.4086 191.0000 46.0000 2.8738 0.0000 641.8200 191.0000 47.0000 2.8738 0.0000 + 673.4287 191.0000 48.0000 2.8738 0.0000 851.5874 191.0000 49.0000 2.8738 0.0000 + 779.2998 191.0000 50.0000 2.8738 0.0000 689.0793 191.0000 51.0000 2.8738 0.0000 + 636.8184 191.0000 52.0000 2.8738 0.0000 573.6121 191.0000 53.0000 2.8738 0.0000 + 514.0708 191.0000 54.0000 2.8738 0.0000 2438.1558 191.0000 55.0000 2.8738 0.0000 + 2138.2977 191.0000 56.0000 2.8738 0.0000 1852.6946 191.0000 57.0000 2.8738 0.0000 + 815.8444 191.0000 58.0000 2.8738 2.7991 1888.9925 191.0000 59.0000 2.8738 0.0000 + 1805.7716 191.0000 60.0000 2.8738 0.0000 1759.0005 191.0000 61.0000 2.8738 0.0000 + 1716.1451 191.0000 62.0000 2.8738 0.0000 1678.1174 191.0000 63.0000 2.8738 0.0000 + 1304.8651 191.0000 64.0000 2.8738 0.0000 1510.4078 191.0000 65.0000 2.8738 0.0000 + 1457.6760 191.0000 66.0000 2.8738 0.0000 1507.5770 191.0000 67.0000 2.8738 0.0000 + 1474.8115 191.0000 68.0000 2.8738 0.0000 1445.0628 191.0000 69.0000 2.8738 0.0000 + 1428.7766 191.0000 70.0000 2.8738 0.0000 1197.5147 191.0000 71.0000 2.8738 0.0000 + 1160.7498 191.0000 72.0000 2.8738 0.0000 1052.9859 191.0000 73.0000 2.8738 0.0000 + 886.9868 191.0000 74.0000 2.8738 0.0000 899.8672 191.0000 75.0000 2.8738 0.0000 + 811.8402 191.0000 76.0000 2.8738 0.0000 741.0211 191.0000 77.0000 2.8738 0.0000 + 614.2803 191.0000 78.0000 2.8738 0.0000 573.3940 191.0000 79.0000 2.8738 0.0000 + 588.4205 191.0000 80.0000 2.8738 0.0000 874.5378 191.0000 81.0000 2.8738 0.0000 + 846.9884 191.0000 82.0000 2.8738 0.0000 772.3273 191.0000 83.0000 2.8738 0.0000 + 733.8642 191.0000 84.0000 2.8738 0.0000 674.5988 191.0000 85.0000 2.8738 0.0000 + 616.3626 191.0000 86.0000 2.8738 0.0000 2265.5221 191.0000 87.0000 2.8738 0.0000 + 2100.0716 191.0000 88.0000 2.8738 0.0000 1833.4406 191.0000 89.0000 2.8738 0.0000 + 1628.0585 191.0000 90.0000 2.8738 0.0000 1628.1996 191.0000 91.0000 2.8738 0.0000 + 1575.7649 191.0000 92.0000 2.8738 0.0000 1633.6303 191.0000 93.0000 2.8738 0.0000 + 1579.4150 191.0000 94.0000 2.8738 0.0000 84.7238 191.0000 101.0000 2.8738 0.0000 + 281.4599 191.0000 103.0000 2.8738 0.9865 358.5914 191.0000 104.0000 2.8738 0.9808 + 269.2438 191.0000 105.0000 2.8738 0.9706 201.5799 191.0000 106.0000 2.8738 0.9868 + 139.3121 191.0000 107.0000 2.8738 0.9944 101.0579 191.0000 108.0000 2.8738 0.9925 + 69.2707 191.0000 109.0000 2.8738 0.9982 413.5128 191.0000 111.0000 2.8738 0.9684 + 641.4675 191.0000 112.0000 2.8738 0.9628 642.3616 191.0000 113.0000 2.8738 0.9648 + 509.7163 191.0000 114.0000 2.8738 0.9507 414.2703 191.0000 115.0000 2.8738 0.9947 + 348.8497 191.0000 116.0000 2.8738 0.9948 284.0725 191.0000 117.0000 2.8738 0.9972 + 568.3831 191.0000 119.0000 2.8738 0.9767 1124.3632 191.0000 120.0000 2.8738 0.9831 + 559.7347 191.0000 121.0000 2.8738 1.8627 541.6423 191.0000 122.0000 2.8738 1.8299 + 530.7576 191.0000 123.0000 2.8738 1.9138 526.6765 191.0000 124.0000 2.8738 1.8269 + 480.9895 191.0000 125.0000 2.8738 1.6406 444.5861 191.0000 126.0000 2.8738 1.6483 + 424.3835 191.0000 127.0000 2.8738 1.7149 415.0966 191.0000 128.0000 2.8738 1.7937 + 412.1000 191.0000 129.0000 2.8738 0.9576 383.2282 191.0000 130.0000 2.8738 1.9419 + 635.6287 191.0000 131.0000 2.8738 0.9601 552.6796 191.0000 132.0000 2.8738 0.9434 + 492.2929 191.0000 133.0000 2.8738 0.9889 447.9718 191.0000 134.0000 2.8738 0.9901 + 393.2367 191.0000 135.0000 2.8738 0.9974 677.1566 191.0000 137.0000 2.8738 0.9738 + 1374.3437 191.0000 138.0000 2.8738 0.9801 1026.0397 191.0000 139.0000 2.8738 1.9153 + 742.7923 191.0000 140.0000 2.8738 1.9355 748.9566 191.0000 141.0000 2.8738 1.9545 + 698.9235 191.0000 142.0000 2.8738 1.9420 792.7535 191.0000 143.0000 2.8738 1.6682 + 605.3587 191.0000 144.0000 2.8738 1.8584 566.4457 191.0000 145.0000 2.8738 1.9003 + 525.6960 191.0000 146.0000 2.8738 1.8630 508.8922 191.0000 147.0000 2.8738 0.9679 + 500.7569 191.0000 148.0000 2.8738 1.9539 808.8540 191.0000 149.0000 2.8738 0.9633 + 724.6244 191.0000 150.0000 2.8738 0.9514 674.7378 191.0000 151.0000 2.8738 0.9749 + 636.1967 191.0000 152.0000 2.8738 0.9811 579.0143 191.0000 153.0000 2.8738 0.9968 + 794.6552 191.0000 155.0000 2.8738 0.9909 1803.1914 191.0000 156.0000 2.8738 0.9797 + 1305.0880 191.0000 157.0000 2.8738 1.9373 790.9568 191.0000 159.0000 2.8738 2.9425 + 774.4819 191.0000 160.0000 2.8738 2.9455 749.7066 191.0000 161.0000 2.8738 2.9413 + 754.7334 191.0000 162.0000 2.8738 2.9300 730.3412 191.0000 163.0000 2.8738 1.8286 + 759.2581 191.0000 164.0000 2.8738 2.8732 712.3659 191.0000 165.0000 2.8738 2.9086 + 727.2306 191.0000 166.0000 2.8738 2.8965 675.3995 191.0000 167.0000 2.8738 2.9242 + 655.8988 191.0000 168.0000 2.8738 2.9282 651.8760 191.0000 169.0000 2.8738 2.9246 + 686.0502 191.0000 170.0000 2.8738 2.8482 629.6283 191.0000 171.0000 2.8738 2.9219 + 868.9592 191.0000 172.0000 2.8738 1.9254 801.4334 191.0000 173.0000 2.8738 1.9459 + 726.9520 191.0000 174.0000 2.8738 1.9292 739.3426 191.0000 175.0000 2.8738 1.8104 + 639.3109 191.0000 176.0000 2.8738 1.8858 600.5754 191.0000 177.0000 2.8738 1.8648 + 573.2853 191.0000 178.0000 2.8738 1.9188 548.4756 191.0000 179.0000 2.8738 0.9846 + 527.6731 191.0000 180.0000 2.8738 1.9896 868.6589 191.0000 181.0000 2.8738 0.9267 + 783.6367 191.0000 182.0000 2.8738 0.9383 756.3450 191.0000 183.0000 2.8738 0.9820 + 733.5848 191.0000 184.0000 2.8738 0.9815 682.6910 191.0000 185.0000 2.8738 0.9954 + 894.3510 191.0000 187.0000 2.8738 0.9705 1771.6049 191.0000 188.0000 2.8738 0.9662 + 935.8632 191.0000 189.0000 2.8738 2.9070 1093.4914 191.0000 190.0000 2.8738 2.8844 + 980.3758 191.0000 191.0000 2.8738 2.8738 46.7559 192.0000 1.0000 2.8878 0.9118 + 31.0746 192.0000 2.0000 2.8878 0.0000 731.9805 192.0000 3.0000 2.8878 0.0000 + 419.7564 192.0000 4.0000 2.8878 0.0000 282.4312 192.0000 5.0000 2.8878 0.0000 + 191.0223 192.0000 6.0000 2.8878 0.0000 133.8723 192.0000 7.0000 2.8878 0.0000 + 101.5996 192.0000 8.0000 2.8878 0.0000 77.1764 192.0000 9.0000 2.8878 0.0000 + 59.5271 192.0000 10.0000 2.8878 0.0000 875.1861 192.0000 11.0000 2.8878 0.0000 + 669.5851 192.0000 12.0000 2.8878 0.0000 616.5426 192.0000 13.0000 2.8878 0.0000 + 485.3372 192.0000 14.0000 2.8878 0.0000 378.5025 192.0000 15.0000 2.8878 0.0000 + 314.3700 192.0000 16.0000 2.8878 0.0000 257.0875 192.0000 17.0000 2.8878 0.0000 + 210.6366 192.0000 18.0000 2.8878 0.0000 1438.7994 192.0000 19.0000 2.8878 0.0000 + 1179.8248 192.0000 20.0000 2.8878 0.0000 973.7241 192.0000 21.0000 2.8878 0.0000 + 939.9375 192.0000 22.0000 2.8878 0.0000 860.4921 192.0000 23.0000 2.8878 0.0000 + 678.5052 192.0000 24.0000 2.8878 0.0000 740.6137 192.0000 25.0000 2.8878 0.0000 + 581.8378 192.0000 26.0000 2.8878 0.0000 615.6990 192.0000 27.0000 2.8878 0.0000 + 634.3664 192.0000 28.0000 2.8878 0.0000 487.0150 192.0000 29.0000 2.8878 0.0000 + 499.0319 192.0000 30.0000 2.8878 0.0000 590.8461 192.0000 31.0000 2.8878 0.0000 + 520.5268 192.0000 32.0000 2.8878 0.0000 443.9002 192.0000 33.0000 2.8878 0.0000 + 398.4493 192.0000 34.0000 2.8878 0.0000 348.9122 192.0000 35.0000 2.8878 0.0000 + 303.7081 192.0000 36.0000 2.8878 0.0000 1612.5430 192.0000 37.0000 2.8878 0.0000 + 1406.4978 192.0000 38.0000 2.8878 0.0000 1230.1136 192.0000 39.0000 2.8878 0.0000 + 1104.7666 192.0000 40.0000 2.8878 0.0000 1007.1282 192.0000 41.0000 2.8878 0.0000 + 777.5767 192.0000 42.0000 2.8878 0.0000 867.5508 192.0000 43.0000 2.8878 0.0000 + 661.0039 192.0000 44.0000 2.8878 0.0000 721.9817 192.0000 45.0000 2.8878 0.0000 + 669.4583 192.0000 46.0000 2.8878 0.0000 559.0440 192.0000 47.0000 2.8878 0.0000 + 589.8900 192.0000 48.0000 2.8878 0.0000 740.4324 192.0000 49.0000 2.8878 0.0000 + 683.8018 192.0000 50.0000 2.8878 0.0000 609.0253 192.0000 51.0000 2.8878 0.0000 + 565.0183 192.0000 52.0000 2.8878 0.0000 510.9612 192.0000 53.0000 2.8878 0.0000 + 459.5676 192.0000 54.0000 2.8878 0.0000 1965.2428 192.0000 55.0000 2.8878 0.0000 + 1794.9059 192.0000 56.0000 2.8878 0.0000 1574.0959 192.0000 57.0000 2.8878 0.0000 + 719.8572 192.0000 58.0000 2.8878 2.7991 1589.8595 192.0000 59.0000 2.8878 0.0000 + 1525.9822 192.0000 60.0000 2.8878 0.0000 1487.5408 192.0000 61.0000 2.8878 0.0000 + 1452.1965 192.0000 62.0000 2.8878 0.0000 1420.8475 192.0000 63.0000 2.8878 0.0000 + 1116.1138 192.0000 64.0000 2.8878 0.0000 1260.9766 192.0000 65.0000 2.8878 0.0000 + 1215.9398 192.0000 66.0000 2.8878 0.0000 1280.8410 192.0000 67.0000 2.8878 0.0000 + 1253.5493 192.0000 68.0000 2.8878 0.0000 1228.9183 192.0000 69.0000 2.8878 0.0000 + 1214.5773 192.0000 70.0000 2.8878 0.0000 1022.6803 192.0000 71.0000 2.8878 0.0000 + 1003.8975 192.0000 72.0000 2.8878 0.0000 915.7176 192.0000 73.0000 2.8878 0.0000 + 773.5594 192.0000 74.0000 2.8878 0.0000 786.6437 192.0000 75.0000 2.8878 0.0000 + 712.8037 192.0000 76.0000 2.8878 0.0000 652.7832 192.0000 77.0000 2.8878 0.0000 + 542.6655 192.0000 78.0000 2.8878 0.0000 507.1677 192.0000 79.0000 2.8878 0.0000 + 521.4539 192.0000 80.0000 2.8878 0.0000 760.8620 192.0000 81.0000 2.8878 0.0000 + 742.9015 192.0000 82.0000 2.8878 0.0000 682.1227 192.0000 83.0000 2.8878 0.0000 + 650.4249 192.0000 84.0000 2.8878 0.0000 600.2628 192.0000 85.0000 2.8878 0.0000 + 550.2995 192.0000 86.0000 2.8878 0.0000 1852.5059 192.0000 87.0000 2.8878 0.0000 + 1773.4791 192.0000 88.0000 2.8878 0.0000 1565.1457 192.0000 89.0000 2.8878 0.0000 + 1404.8813 192.0000 90.0000 2.8878 0.0000 1396.3790 192.0000 91.0000 2.8878 0.0000 + 1352.0713 192.0000 92.0000 2.8878 0.0000 1393.3621 192.0000 93.0000 2.8878 0.0000 + 1349.0495 192.0000 94.0000 2.8878 0.0000 75.2066 192.0000 101.0000 2.8878 0.0000 + 244.0301 192.0000 103.0000 2.8878 0.9865 311.3204 192.0000 104.0000 2.8878 0.9808 + 237.6634 192.0000 105.0000 2.8878 0.9706 179.2561 192.0000 106.0000 2.8878 0.9868 + 124.8931 192.0000 107.0000 2.8878 0.9944 91.1863 192.0000 108.0000 2.8878 0.9925 + 62.9867 192.0000 109.0000 2.8878 0.9982 357.1582 192.0000 111.0000 2.8878 0.9684 + 552.3275 192.0000 112.0000 2.8878 0.9628 558.7128 192.0000 113.0000 2.8878 0.9648 + 448.6113 192.0000 114.0000 2.8878 0.9507 367.4499 192.0000 115.0000 2.8878 0.9947 + 310.9334 192.0000 116.0000 2.8878 0.9948 254.4397 192.0000 117.0000 2.8878 0.9972 + 493.0590 192.0000 119.0000 2.8878 0.9767 945.1224 192.0000 120.0000 2.8878 0.9831 + 492.1797 192.0000 121.0000 2.8878 1.8627 475.3101 192.0000 122.0000 2.8878 1.8299 + 465.8648 192.0000 123.0000 2.8878 1.9138 461.6686 192.0000 124.0000 2.8878 1.8269 + 424.4375 192.0000 125.0000 2.8878 1.6406 392.8632 192.0000 126.0000 2.8878 1.6483 + 374.8659 192.0000 127.0000 2.8878 1.7149 366.5198 192.0000 128.0000 2.8878 1.7937 + 362.3594 192.0000 129.0000 2.8878 0.9576 339.6385 192.0000 130.0000 2.8878 1.9419 + 554.8107 192.0000 131.0000 2.8878 0.9601 486.9543 192.0000 132.0000 2.8878 0.9434 + 436.3941 192.0000 133.0000 2.8878 0.9889 398.6148 192.0000 134.0000 2.8878 0.9901 + 351.3396 192.0000 135.0000 2.8878 0.9974 588.3980 192.0000 137.0000 2.8878 0.9738 + 1150.9048 192.0000 138.0000 2.8878 0.9801 877.2823 192.0000 139.0000 2.8878 1.9153 + 651.3700 192.0000 140.0000 2.8878 1.9355 657.8233 192.0000 141.0000 2.8878 1.9545 + 613.5516 192.0000 142.0000 2.8878 1.9420 688.9511 192.0000 143.0000 2.8878 1.6682 + 534.6820 192.0000 144.0000 2.8878 1.8584 500.3844 192.0000 145.0000 2.8878 1.9003 + 464.7906 192.0000 146.0000 2.8878 1.8630 449.7034 192.0000 147.0000 2.8878 0.9679 + 444.5089 192.0000 148.0000 2.8878 1.9539 705.5371 192.0000 149.0000 2.8878 0.9633 + 637.5954 192.0000 150.0000 2.8878 0.9514 596.8656 192.0000 151.0000 2.8878 0.9749 + 564.5964 192.0000 152.0000 2.8878 0.9811 515.7402 192.0000 153.0000 2.8878 0.9968 + 695.0188 192.0000 155.0000 2.8878 0.9909 1494.2771 192.0000 156.0000 2.8878 0.9797 + 1110.9199 192.0000 157.0000 2.8878 1.9373 698.1614 192.0000 159.0000 2.8878 2.9425 + 683.7250 192.0000 160.0000 2.8878 2.9455 662.0663 192.0000 161.0000 2.8878 2.9413 + 665.4038 192.0000 162.0000 2.8878 2.9300 641.7930 192.0000 163.0000 2.8878 1.8286 + 669.4976 192.0000 164.0000 2.8878 2.8732 628.8409 192.0000 165.0000 2.8878 2.9086 + 640.0522 192.0000 166.0000 2.8878 2.8965 596.8094 192.0000 167.0000 2.8878 2.9242 + 579.7867 192.0000 168.0000 2.8878 2.9282 576.0576 192.0000 169.0000 2.8878 2.9246 + 605.4023 192.0000 170.0000 2.8878 2.8482 556.7361 192.0000 171.0000 2.8878 2.9219 + 755.5263 192.0000 172.0000 2.8878 1.9254 700.9176 192.0000 173.0000 2.8878 1.9459 + 639.3410 192.0000 174.0000 2.8878 1.9292 647.2708 192.0000 175.0000 2.8878 1.8104 + 566.1458 192.0000 176.0000 2.8878 1.8858 532.7520 192.0000 177.0000 2.8878 1.8648 + 508.9786 192.0000 178.0000 2.8878 1.9188 486.8177 192.0000 179.0000 2.8878 0.9846 + 470.1782 192.0000 180.0000 2.8878 1.9896 758.0815 192.0000 181.0000 2.8878 0.9267 + 690.1433 192.0000 182.0000 2.8878 0.9383 668.9514 192.0000 183.0000 2.8878 0.9820 + 650.5243 192.0000 184.0000 2.8878 0.9815 607.4890 192.0000 185.0000 2.8878 0.9954 + 782.6472 192.0000 187.0000 2.8878 0.9705 1484.2630 192.0000 188.0000 2.8878 0.9662 + 826.0152 192.0000 189.0000 2.8878 2.9070 954.7979 192.0000 190.0000 2.8878 2.8844 + 854.1002 192.0000 191.0000 2.8878 2.8738 753.8617 192.0000 192.0000 2.8878 2.8878 + 45.1236 193.0000 1.0000 2.9095 0.9118 30.0978 193.0000 2.0000 2.9095 0.0000 + 695.0128 193.0000 3.0000 2.9095 0.0000 401.9035 193.0000 4.0000 2.9095 0.0000 + 271.4539 193.0000 5.0000 2.9095 0.0000 184.1095 193.0000 6.0000 2.9095 0.0000 + 129.3004 193.0000 7.0000 2.9095 0.0000 98.2812 193.0000 8.0000 2.9095 0.0000 + 74.7584 193.0000 9.0000 2.9095 0.0000 57.7290 193.0000 10.0000 2.9095 0.0000 + 831.4952 193.0000 11.0000 2.9095 0.0000 640.3104 193.0000 12.0000 2.9095 0.0000 + 590.7744 193.0000 13.0000 2.9095 0.0000 466.3023 193.0000 14.0000 2.9095 0.0000 + 364.4433 193.0000 15.0000 2.9095 0.0000 303.1150 193.0000 16.0000 2.9095 0.0000 + 248.2186 193.0000 17.0000 2.9095 0.0000 203.6156 193.0000 18.0000 2.9095 0.0000 + 1364.3503 193.0000 19.0000 2.9095 0.0000 1125.4292 193.0000 20.0000 2.9095 0.0000 + 929.8813 193.0000 21.0000 2.9095 0.0000 898.4534 193.0000 22.0000 2.9095 0.0000 + 822.9830 193.0000 23.0000 2.9095 0.0000 648.9935 193.0000 24.0000 2.9095 0.0000 + 708.9086 193.0000 25.0000 2.9095 0.0000 557.0572 193.0000 26.0000 2.9095 0.0000 + 590.1554 193.0000 27.0000 2.9095 0.0000 607.7150 193.0000 28.0000 2.9095 0.0000 + 466.5966 193.0000 29.0000 2.9095 0.0000 478.9052 193.0000 30.0000 2.9095 0.0000 + 566.6240 193.0000 31.0000 2.9095 0.0000 500.2256 193.0000 32.0000 2.9095 0.0000 + 427.3508 193.0000 33.0000 2.9095 0.0000 384.0157 193.0000 34.0000 2.9095 0.0000 + 336.6552 193.0000 35.0000 2.9095 0.0000 293.3488 193.0000 36.0000 2.9095 0.0000 + 1529.6978 193.0000 37.0000 2.9095 0.0000 1341.3275 193.0000 38.0000 2.9095 0.0000 + 1175.3725 193.0000 39.0000 2.9095 0.0000 1056.8235 193.0000 40.0000 2.9095 0.0000 + 964.1266 193.0000 41.0000 2.9095 0.0000 745.3354 193.0000 42.0000 2.9095 0.0000 + 831.1709 193.0000 43.0000 2.9095 0.0000 634.1896 193.0000 44.0000 2.9095 0.0000 + 692.7026 193.0000 45.0000 2.9095 0.0000 642.6115 193.0000 46.0000 2.9095 0.0000 + 536.5037 193.0000 47.0000 2.9095 0.0000 566.5780 193.0000 48.0000 2.9095 0.0000 + 710.0936 193.0000 49.0000 2.9095 0.0000 656.9210 193.0000 50.0000 2.9095 0.0000 + 586.0168 193.0000 51.0000 2.9095 0.0000 544.1812 193.0000 52.0000 2.9095 0.0000 + 492.6132 193.0000 53.0000 2.9095 0.0000 443.4889 193.0000 54.0000 2.9095 0.0000 + 1863.8860 193.0000 55.0000 2.9095 0.0000 1710.4153 193.0000 56.0000 2.9095 0.0000 + 1502.9787 193.0000 57.0000 2.9095 0.0000 692.4695 193.0000 58.0000 2.9095 2.7991 + 1516.0160 193.0000 59.0000 2.9095 0.0000 1455.7245 193.0000 60.0000 2.9095 0.0000 + 1419.1992 193.0000 61.0000 2.9095 0.0000 1385.5997 193.0000 62.0000 2.9095 0.0000 + 1355.8015 193.0000 63.0000 2.9095 0.0000 1067.1944 193.0000 64.0000 2.9095 0.0000 + 1201.5530 193.0000 65.0000 2.9095 0.0000 1158.9243 193.0000 66.0000 2.9095 0.0000 + 1222.8454 193.0000 67.0000 2.9095 0.0000 1196.8607 193.0000 68.0000 2.9095 0.0000 + 1173.4369 193.0000 69.0000 2.9095 0.0000 1159.6457 193.0000 70.0000 2.9095 0.0000 + 977.6816 193.0000 71.0000 2.9095 0.0000 961.5684 193.0000 72.0000 2.9095 0.0000 + 878.0732 193.0000 73.0000 2.9095 0.0000 742.3682 193.0000 74.0000 2.9095 0.0000 + 755.2429 193.0000 75.0000 2.9095 0.0000 684.9879 193.0000 76.0000 2.9095 0.0000 + 627.7771 193.0000 77.0000 2.9095 0.0000 522.3028 193.0000 78.0000 2.9095 0.0000 + 488.3023 193.0000 79.0000 2.9095 0.0000 502.2150 193.0000 80.0000 2.9095 0.0000 + 730.0058 193.0000 81.0000 2.9095 0.0000 713.7674 193.0000 82.0000 2.9095 0.0000 + 656.3212 193.0000 83.0000 2.9095 0.0000 626.3259 193.0000 84.0000 2.9095 0.0000 + 578.5779 193.0000 85.0000 2.9095 0.0000 530.8832 193.0000 86.0000 2.9095 0.0000 + 1760.2462 193.0000 87.0000 2.9095 0.0000 1691.7254 193.0000 88.0000 2.9095 0.0000 + 1495.7351 193.0000 89.0000 2.9095 0.0000 1345.2345 193.0000 90.0000 2.9095 0.0000 + 1335.7938 193.0000 91.0000 2.9095 0.0000 1293.5031 193.0000 92.0000 2.9095 0.0000 + 1331.4737 193.0000 93.0000 2.9095 0.0000 1289.4340 193.0000 94.0000 2.9095 0.0000 + 72.4272 193.0000 101.0000 2.9095 0.0000 233.7727 193.0000 103.0000 2.9095 0.9865 + 298.4076 193.0000 104.0000 2.9095 0.9808 228.5997 193.0000 105.0000 2.9095 0.9706 + 172.7592 193.0000 106.0000 2.9095 0.9868 120.6357 193.0000 107.0000 2.9095 0.9944 + 88.2439 193.0000 108.0000 2.9095 0.9925 61.0993 193.0000 109.0000 2.9095 0.9982 + 341.9302 193.0000 111.0000 2.9095 0.9684 528.5114 193.0000 112.0000 2.9095 0.9628 + 535.6195 193.0000 113.0000 2.9095 0.9648 431.1741 193.0000 114.0000 2.9095 0.9507 + 353.8278 193.0000 115.0000 2.9095 0.9947 299.7938 193.0000 116.0000 2.9095 0.9948 + 245.6584 193.0000 117.0000 2.9095 0.9972 472.7221 193.0000 119.0000 2.9095 0.9767 + 901.2992 193.0000 120.0000 2.9095 0.9831 472.9397 193.0000 121.0000 2.9095 1.8627 + 456.7222 193.0000 122.0000 2.9095 1.8299 447.6449 193.0000 123.0000 2.9095 1.9138 + 443.5018 193.0000 124.0000 2.9095 1.8269 408.2523 193.0000 125.0000 2.9095 1.6406 + 378.0202 193.0000 126.0000 2.9095 1.6483 360.7035 193.0000 127.0000 2.9095 1.7149 + 352.6419 193.0000 128.0000 2.9095 1.7937 348.3305 193.0000 129.0000 2.9095 0.9576 + 327.0234 193.0000 130.0000 2.9095 1.9419 532.3546 193.0000 131.0000 2.9095 0.9601 + 468.1789 193.0000 132.0000 2.9095 0.9434 420.1677 193.0000 133.0000 2.9095 0.9889 + 384.1691 193.0000 134.0000 2.9095 0.9901 338.9784 193.0000 135.0000 2.9095 0.9974 + 564.3865 193.0000 137.0000 2.9095 0.9738 1097.1255 193.0000 138.0000 2.9095 0.9801 + 839.4370 193.0000 139.0000 2.9095 1.9153 625.7334 193.0000 140.0000 2.9095 1.9355 + 631.9749 193.0000 141.0000 2.9095 1.9545 589.6594 193.0000 142.0000 2.9095 1.9420 + 660.9505 193.0000 143.0000 2.9095 1.6682 514.5121 193.0000 144.0000 2.9095 1.8584 + 481.5720 193.0000 145.0000 2.9095 1.9003 447.4308 193.0000 146.0000 2.9095 1.8630 + 432.8514 193.0000 147.0000 2.9095 0.9679 428.2230 193.0000 148.0000 2.9095 1.9539 + 677.0498 193.0000 149.0000 2.9095 0.9633 612.9205 193.0000 150.0000 2.9095 0.9514 + 574.4363 193.0000 151.0000 2.9095 0.9749 543.8049 193.0000 152.0000 2.9095 0.9811 + 497.2105 193.0000 153.0000 2.9095 0.9968 667.5005 193.0000 155.0000 2.9095 0.9909 + 1422.8735 193.0000 156.0000 2.9095 0.9797 1062.5153 193.0000 157.0000 2.9095 1.9373 + 671.6646 193.0000 159.0000 2.9095 2.9425 657.7921 193.0000 160.0000 2.9095 2.9455 + 637.0076 193.0000 161.0000 2.9095 2.9413 640.0432 193.0000 162.0000 2.9095 2.9300 + 616.8768 193.0000 163.0000 2.9095 1.8286 643.9389 193.0000 164.0000 2.9095 2.8732 + 604.9769 193.0000 165.0000 2.9095 2.9086 615.4573 193.0000 166.0000 2.9095 2.8965 + 574.2815 193.0000 167.0000 2.9095 2.9242 557.9458 193.0000 168.0000 2.9095 2.9282 + 554.3201 193.0000 169.0000 2.9095 2.9246 582.3452 193.0000 170.0000 2.9095 2.8482 + 535.7905 193.0000 171.0000 2.9095 2.9219 724.8207 193.0000 172.0000 2.9095 1.9254 + 673.1665 193.0000 173.0000 2.9095 1.9459 614.7111 193.0000 174.0000 2.9095 1.9292 + 621.7658 193.0000 175.0000 2.9095 1.8104 545.1612 193.0000 176.0000 2.9095 1.8858 + 513.2058 193.0000 177.0000 2.9095 1.8648 490.4213 193.0000 178.0000 2.9095 1.9188 + 469.0722 193.0000 179.0000 2.9095 0.9846 453.4069 193.0000 180.0000 2.9095 1.9896 + 727.7134 193.0000 181.0000 2.9095 0.9267 663.6596 193.0000 182.0000 2.9095 0.9383 + 643.8495 193.0000 183.0000 2.9095 0.9820 626.4949 193.0000 184.0000 2.9095 0.9815 + 585.5441 193.0000 185.0000 2.9095 0.9954 751.7328 193.0000 187.0000 2.9095 0.9705 + 1415.3925 193.0000 188.0000 2.9095 0.9662 794.6231 193.0000 189.0000 2.9095 2.9070 + 916.9593 193.0000 190.0000 2.9095 2.8844 820.5208 193.0000 191.0000 2.9095 2.8738 + 725.3730 193.0000 192.0000 2.9095 2.8878 698.1644 193.0000 193.0000 2.9095 2.9095 + 52.3919 194.0000 1.0000 1.9209 0.9118 33.8615 194.0000 2.0000 1.9209 0.0000 + 977.2027 194.0000 3.0000 1.9209 0.0000 511.2028 194.0000 4.0000 1.9209 0.0000 + 330.0255 194.0000 5.0000 1.9209 0.0000 217.0925 194.0000 6.0000 1.9209 0.0000 + 149.2917 194.0000 7.0000 1.9209 0.0000 111.9054 194.0000 8.0000 1.9209 0.0000 + 84.1628 194.0000 9.0000 1.9209 0.0000 64.4333 194.0000 10.0000 1.9209 0.0000 + 1161.7208 194.0000 11.0000 1.9209 0.0000 827.4875 194.0000 12.0000 1.9209 0.0000 + 745.0109 194.0000 13.0000 1.9209 0.0000 569.3203 194.0000 14.0000 1.9209 0.0000 + 433.9874 194.0000 15.0000 1.9209 0.0000 355.5941 194.0000 16.0000 1.9209 0.0000 + 287.2061 194.0000 17.0000 1.9209 0.0000 232.9196 194.0000 18.0000 1.9209 0.0000 + 1950.9820 194.0000 19.0000 1.9209 0.0000 1501.0394 194.0000 20.0000 1.9209 0.0000 + 1223.4261 194.0000 21.0000 1.9209 0.0000 1169.4190 194.0000 22.0000 1.9209 0.0000 + 1064.0685 194.0000 23.0000 1.9209 0.0000 839.4969 194.0000 24.0000 1.9209 0.0000 + 907.8874 194.0000 25.0000 1.9209 0.0000 712.7577 194.0000 26.0000 1.9209 0.0000 + 743.4455 194.0000 27.0000 1.9209 0.0000 770.5407 194.0000 28.0000 1.9209 0.0000 + 592.3705 194.0000 29.0000 1.9209 0.0000 594.7593 194.0000 30.0000 1.9209 0.0000 + 708.5363 194.0000 31.0000 1.9209 0.0000 609.7912 194.0000 32.0000 1.9209 0.0000 + 510.1117 194.0000 33.0000 1.9209 0.0000 452.8313 194.0000 34.0000 1.9209 0.0000 + 392.2224 194.0000 35.0000 1.9209 0.0000 338.1547 194.0000 36.0000 1.9209 0.0000 + 2178.7996 194.0000 37.0000 1.9209 0.0000 1795.0359 194.0000 38.0000 1.9209 0.0000 + 1537.2794 194.0000 39.0000 1.9209 0.0000 1363.4850 194.0000 40.0000 1.9209 0.0000 + 1233.4617 194.0000 41.0000 1.9209 0.0000 940.3177 194.0000 42.0000 1.9209 0.0000 + 1054.1841 194.0000 43.0000 1.9209 0.0000 792.0047 194.0000 44.0000 1.9209 0.0000 + 863.9068 194.0000 45.0000 1.9209 0.0000 797.1537 194.0000 46.0000 1.9209 0.0000 + 668.9805 194.0000 47.0000 1.9209 0.0000 698.1124 194.0000 48.0000 1.9209 0.0000 + 890.0256 194.0000 49.0000 1.9209 0.0000 805.6716 194.0000 50.0000 1.9209 0.0000 + 704.9879 194.0000 51.0000 1.9209 0.0000 647.5375 194.0000 52.0000 1.9209 0.0000 + 579.5652 194.0000 53.0000 1.9209 0.0000 516.4077 194.0000 54.0000 1.9209 0.0000 + 2660.7475 194.0000 55.0000 1.9209 0.0000 2310.7445 194.0000 56.0000 1.9209 0.0000 + 1983.1026 194.0000 57.0000 1.9209 0.0000 836.4673 194.0000 58.0000 1.9209 2.7991 + 2033.3939 194.0000 59.0000 1.9209 0.0000 1942.7158 194.0000 60.0000 1.9209 0.0000 + 1891.6327 194.0000 61.0000 1.9209 0.0000 1844.8932 194.0000 62.0000 1.9209 0.0000 + 1803.3780 194.0000 63.0000 1.9209 0.0000 1386.4919 194.0000 64.0000 1.9209 0.0000 + 1627.1471 194.0000 65.0000 1.9209 0.0000 1564.8029 194.0000 66.0000 1.9209 0.0000 + 1616.2873 194.0000 67.0000 1.9209 0.0000 1580.7484 194.0000 68.0000 1.9209 0.0000 + 1548.2741 194.0000 69.0000 1.9209 0.0000 1531.5185 194.0000 70.0000 1.9209 0.0000 + 1272.1137 194.0000 71.0000 1.9209 0.0000 1221.5252 194.0000 72.0000 1.9209 0.0000 + 1101.1039 194.0000 73.0000 1.9209 0.0000 923.1055 194.0000 74.0000 1.9209 0.0000 + 934.0785 194.0000 75.0000 1.9209 0.0000 838.1292 194.0000 76.0000 1.9209 0.0000 + 761.6814 194.0000 77.0000 1.9209 0.0000 628.7765 194.0000 78.0000 1.9209 0.0000 + 585.9542 194.0000 79.0000 1.9209 0.0000 599.8711 194.0000 80.0000 1.9209 0.0000 + 911.8938 194.0000 81.0000 1.9209 0.0000 875.7658 194.0000 82.0000 1.9209 0.0000 + 791.0651 194.0000 83.0000 1.9209 0.0000 747.6461 194.0000 84.0000 1.9209 0.0000 + 683.0040 194.0000 85.0000 1.9209 0.0000 620.6546 194.0000 86.0000 1.9209 0.0000 + 2460.8767 194.0000 87.0000 1.9209 0.0000 2258.4201 194.0000 88.0000 1.9209 0.0000 + 1953.6369 194.0000 89.0000 1.9209 0.0000 1716.7267 194.0000 90.0000 1.9209 0.0000 + 1725.9338 194.0000 91.0000 1.9209 0.0000 1670.0620 194.0000 92.0000 1.9209 0.0000 + 1743.2351 194.0000 93.0000 1.9209 0.0000 1683.4151 194.0000 94.0000 1.9209 0.0000 + 86.0052 194.0000 101.0000 1.9209 0.0000 295.6875 194.0000 103.0000 1.9209 0.9865 + 374.9686 194.0000 104.0000 1.9209 0.9808 275.6697 194.0000 105.0000 1.9209 0.9706 + 204.0310 194.0000 106.0000 1.9209 0.9868 139.3230 194.0000 107.0000 1.9209 0.9944 + 100.1520 194.0000 108.0000 1.9209 0.9925 67.9514 194.0000 109.0000 1.9209 0.9982 + 436.5100 194.0000 111.0000 1.9209 0.9684 678.2067 194.0000 112.0000 1.9209 0.9628 + 671.6972 194.0000 113.0000 1.9209 0.9648 524.2927 194.0000 114.0000 1.9209 0.9507 + 421.0798 194.0000 115.0000 1.9209 0.9947 351.8623 194.0000 116.0000 1.9209 0.9948 + 284.3372 194.0000 117.0000 1.9209 0.9972 595.0456 194.0000 119.0000 1.9209 0.9767 + 1207.4896 194.0000 120.0000 1.9209 0.9831 578.2929 194.0000 121.0000 1.9209 1.8627 + 558.8652 194.0000 122.0000 1.9209 1.8299 547.9234 194.0000 123.0000 1.9209 1.9138 + 544.6560 194.0000 124.0000 1.9209 1.8269 493.3911 194.0000 125.0000 1.9209 1.6406 + 455.0423 194.0000 126.0000 1.9209 1.6483 434.3905 194.0000 127.0000 1.9209 1.7149 + 425.2003 194.0000 128.0000 1.9209 1.7937 424.8342 194.0000 129.0000 1.9209 0.9576 + 390.5948 194.0000 130.0000 1.9209 1.9419 661.3852 194.0000 131.0000 1.9209 0.9601 + 567.6729 194.0000 132.0000 1.9209 0.9434 500.9875 194.0000 133.0000 1.9209 0.9889 + 453.1242 194.0000 134.0000 1.9209 0.9901 395.1888 194.0000 135.0000 1.9209 0.9974 + 706.9587 194.0000 137.0000 1.9209 0.9738 1477.1099 194.0000 138.0000 1.9209 0.9801 + 1080.9253 194.0000 139.0000 1.9209 1.9153 768.2883 194.0000 140.0000 1.9209 1.9355 + 775.5180 194.0000 141.0000 1.9209 1.9545 720.8691 194.0000 142.0000 1.9209 1.9420 + 826.0448 194.0000 143.0000 1.9209 1.6682 619.7862 194.0000 144.0000 1.9209 1.8584 + 579.6349 194.0000 145.0000 1.9209 1.9003 537.2980 194.0000 146.0000 1.9209 1.8630 + 520.7925 194.0000 147.0000 1.9209 0.9679 509.2559 194.0000 148.0000 1.9209 1.9539 + 842.2184 194.0000 149.0000 1.9209 0.9633 746.0891 194.0000 150.0000 1.9209 0.9514 + 689.3625 194.0000 151.0000 1.9209 0.9749 646.6499 194.0000 152.0000 1.9209 0.9811 + 585.0709 194.0000 153.0000 1.9209 0.9968 822.4546 194.0000 155.0000 1.9209 0.9909 + 1941.1744 194.0000 156.0000 1.9209 0.9797 1375.7929 194.0000 157.0000 1.9209 1.9373 + 810.4687 194.0000 159.0000 1.9209 2.9425 793.5307 194.0000 160.0000 1.9209 2.9455 + 767.7628 194.0000 161.0000 1.9209 2.9413 774.0061 194.0000 162.0000 1.9209 2.9300 + 753.1870 194.0000 163.0000 1.9209 1.8286 779.0790 194.0000 164.0000 1.9209 2.8732 + 730.0477 194.0000 165.0000 1.9209 2.9086 747.2774 194.0000 166.0000 1.9209 2.8965 + 691.1980 194.0000 167.0000 1.9209 2.9242 670.8947 194.0000 168.0000 1.9209 2.9282 + 667.0261 194.0000 169.0000 1.9209 2.9246 703.4309 194.0000 170.0000 1.9209 2.8482 + 643.7358 194.0000 171.0000 1.9209 2.9219 904.5275 194.0000 172.0000 1.9209 1.9254 + 829.4186 194.0000 173.0000 1.9209 1.9459 747.6661 194.0000 174.0000 1.9209 1.9292 + 764.8182 194.0000 175.0000 1.9209 1.8104 651.4600 194.0000 176.0000 1.9209 1.8858 + 610.8863 194.0000 177.0000 1.9209 1.8648 582.4859 194.0000 178.0000 1.9209 1.9188 + 557.5775 194.0000 179.0000 1.9209 0.9846 533.4446 194.0000 180.0000 1.9209 1.9896 + 902.9730 194.0000 181.0000 1.9209 0.9267 805.7264 194.0000 182.0000 1.9209 0.9383 + 773.0528 194.0000 183.0000 1.9209 0.9820 746.7141 194.0000 184.0000 1.9209 0.9815 + 691.1128 194.0000 185.0000 1.9209 0.9954 924.9725 194.0000 187.0000 1.9209 0.9705 + 1898.5076 194.0000 188.0000 1.9209 0.9662 959.1590 194.0000 189.0000 1.9209 2.9070 + 1130.7742 194.0000 190.0000 1.9209 2.8844 1008.8729 194.0000 191.0000 1.9209 2.8738 + 874.6149 194.0000 192.0000 1.9209 2.8878 838.9569 194.0000 193.0000 1.9209 2.9095 + 1051.2468 194.0000 194.0000 1.9209 1.9209 12.5931 204.0000 1.0000 1.9697 0.9118 + 8.1628 204.0000 2.0000 1.9697 0.0000 194.7036 204.0000 3.0000 1.9697 0.0000 + 113.9677 204.0000 4.0000 1.9697 0.0000 76.7230 204.0000 5.0000 1.9697 0.0000 + 51.5628 204.0000 6.0000 1.9697 0.0000 35.7902 204.0000 7.0000 1.9697 0.0000 + 26.8954 204.0000 8.0000 1.9697 0.0000 20.2083 204.0000 9.0000 1.9697 0.0000 + 15.4176 204.0000 10.0000 1.9697 0.0000 232.8060 204.0000 11.0000 1.9697 0.0000 + 181.1653 204.0000 12.0000 1.9697 0.0000 167.2929 204.0000 13.0000 1.9697 0.0000 + 131.8920 204.0000 14.0000 1.9697 0.0000 102.6176 204.0000 15.0000 1.9697 0.0000 + 84.8691 204.0000 16.0000 1.9697 0.0000 69.0069 204.0000 17.0000 1.9697 0.0000 + 56.1517 204.0000 18.0000 1.9697 0.0000 379.4225 204.0000 19.0000 1.9697 0.0000 + 316.5102 204.0000 20.0000 1.9697 0.0000 261.9443 204.0000 21.0000 1.9697 0.0000 + 253.0543 204.0000 22.0000 1.9697 0.0000 231.8065 204.0000 23.0000 1.9697 0.0000 + 182.1558 204.0000 24.0000 1.9697 0.0000 199.6426 204.0000 25.0000 1.9697 0.0000 + 156.2845 204.0000 26.0000 1.9697 0.0000 166.2166 204.0000 27.0000 1.9697 0.0000 + 171.2043 204.0000 28.0000 1.9697 0.0000 130.8012 204.0000 29.0000 1.9697 0.0000 + 134.7933 204.0000 30.0000 1.9697 0.0000 159.9273 204.0000 31.0000 1.9697 0.0000 + 141.1489 204.0000 32.0000 1.9697 0.0000 120.2224 204.0000 33.0000 1.9697 0.0000 + 107.6371 204.0000 34.0000 1.9697 0.0000 93.8911 204.0000 35.0000 1.9697 0.0000 + 81.3306 204.0000 36.0000 1.9697 0.0000 425.1704 204.0000 37.0000 1.9697 0.0000 + 376.6468 204.0000 38.0000 1.9697 0.0000 330.7190 204.0000 39.0000 1.9697 0.0000 + 297.4750 204.0000 40.0000 1.9697 0.0000 271.2606 204.0000 41.0000 1.9697 0.0000 + 209.0959 204.0000 42.0000 1.9697 0.0000 233.4606 204.0000 43.0000 1.9697 0.0000 + 177.5174 204.0000 44.0000 1.9697 0.0000 194.3984 204.0000 45.0000 1.9697 0.0000 + 180.2178 204.0000 46.0000 1.9697 0.0000 149.7198 204.0000 47.0000 1.9697 0.0000 + 158.6937 204.0000 48.0000 1.9697 0.0000 199.4111 204.0000 49.0000 1.9697 0.0000 + 184.6849 204.0000 50.0000 1.9697 0.0000 164.5348 204.0000 51.0000 1.9697 0.0000 + 152.4956 204.0000 52.0000 1.9697 0.0000 137.6192 204.0000 53.0000 1.9697 0.0000 + 123.4070 204.0000 54.0000 1.9697 0.0000 517.8726 204.0000 55.0000 1.9697 0.0000 + 479.3661 204.0000 56.0000 1.9697 0.0000 422.2754 204.0000 57.0000 1.9697 0.0000 + 194.1728 204.0000 58.0000 1.9697 2.7991 424.7883 204.0000 59.0000 1.9697 0.0000 + 408.1203 204.0000 60.0000 1.9697 0.0000 397.9479 204.0000 61.0000 1.9697 0.0000 + 388.5925 204.0000 62.0000 1.9697 0.0000 380.3011 204.0000 63.0000 1.9697 0.0000 + 299.3233 204.0000 64.0000 1.9697 0.0000 335.3665 204.0000 65.0000 1.9697 0.0000 + 323.5941 204.0000 66.0000 1.9697 0.0000 343.2850 204.0000 67.0000 1.9697 0.0000 + 336.0507 204.0000 68.0000 1.9697 0.0000 329.5355 204.0000 69.0000 1.9697 0.0000 + 325.6844 204.0000 70.0000 1.9697 0.0000 274.5969 204.0000 71.0000 1.9697 0.0000 + 270.8085 204.0000 72.0000 1.9697 0.0000 247.1551 204.0000 73.0000 1.9697 0.0000 + 208.2905 204.0000 74.0000 1.9697 0.0000 212.0183 204.0000 75.0000 1.9697 0.0000 + 192.0317 204.0000 76.0000 1.9697 0.0000 175.7148 204.0000 77.0000 1.9697 0.0000 + 145.5219 204.0000 78.0000 1.9697 0.0000 135.7863 204.0000 79.0000 1.9697 0.0000 + 139.8351 204.0000 80.0000 1.9697 0.0000 204.1814 204.0000 81.0000 1.9697 0.0000 + 200.0235 204.0000 82.0000 1.9697 0.0000 183.8379 204.0000 83.0000 1.9697 0.0000 + 175.2516 204.0000 84.0000 1.9697 0.0000 161.5240 204.0000 85.0000 1.9697 0.0000 + 147.7541 204.0000 86.0000 1.9697 0.0000 490.0315 204.0000 87.0000 1.9697 0.0000 + 474.5100 204.0000 88.0000 1.9697 0.0000 420.3679 204.0000 89.0000 1.9697 0.0000 + 378.1169 204.0000 90.0000 1.9697 0.0000 374.7279 204.0000 91.0000 1.9697 0.0000 + 362.7869 204.0000 92.0000 1.9697 0.0000 373.0473 204.0000 93.0000 1.9697 0.0000 + 361.3553 204.0000 94.0000 1.9697 0.0000 20.4039 204.0000 101.0000 1.9697 0.0000 + 66.2009 204.0000 103.0000 1.9697 0.9865 84.4000 204.0000 104.0000 1.9697 0.9808 + 64.4301 204.0000 105.0000 1.9697 0.9706 48.3072 204.0000 106.0000 1.9697 0.9868 + 33.3274 204.0000 107.0000 1.9697 0.9944 24.0592 204.0000 108.0000 1.9697 0.9925 + 16.3185 204.0000 109.0000 1.9697 0.9982 96.5125 204.0000 111.0000 1.9697 0.9684 + 149.3832 204.0000 112.0000 1.9697 0.9628 151.5931 204.0000 113.0000 1.9697 0.9648 + 121.8333 204.0000 114.0000 1.9697 0.9507 99.5656 204.0000 115.0000 1.9697 0.9947 + 83.9181 204.0000 116.0000 1.9697 0.9948 68.2806 204.0000 117.0000 1.9697 0.9972 + 132.4751 204.0000 119.0000 1.9697 0.9767 252.5778 204.0000 120.0000 1.9697 0.9831 + 132.9868 204.0000 121.0000 1.9697 1.8627 128.2862 204.0000 122.0000 1.9697 1.8299 + 125.6778 204.0000 123.0000 1.9697 1.9138 124.4645 204.0000 124.0000 1.9697 1.8269 + 114.6465 204.0000 125.0000 1.9697 1.6406 106.0286 204.0000 126.0000 1.9697 1.6483 + 101.0801 204.0000 127.0000 1.9697 1.7149 98.8004 204.0000 128.0000 1.9697 1.7937 + 97.5340 204.0000 129.0000 1.9697 0.9576 91.6227 204.0000 130.0000 1.9697 1.9419 + 150.2148 204.0000 131.0000 1.9697 0.9601 131.9934 204.0000 132.0000 1.9697 0.9434 + 118.1520 204.0000 133.0000 1.9697 0.9889 107.6713 204.0000 134.0000 1.9697 0.9901 + 94.5515 204.0000 135.0000 1.9697 0.9974 157.9479 204.0000 137.0000 1.9697 0.9738 + 306.9433 204.0000 138.0000 1.9697 0.9801 235.5232 204.0000 139.0000 1.9697 1.9153 + 175.6564 204.0000 140.0000 1.9697 1.9355 177.3357 204.0000 141.0000 1.9697 1.9545 + 165.2066 204.0000 142.0000 1.9697 1.9420 185.0244 204.0000 143.0000 1.9697 1.6682 + 143.8851 204.0000 144.0000 1.9697 1.8584 134.4576 204.0000 145.0000 1.9697 1.9003 + 124.7151 204.0000 146.0000 1.9697 1.8630 120.5975 204.0000 147.0000 1.9697 0.9679 + 119.4623 204.0000 148.0000 1.9697 1.9539 190.1313 204.0000 149.0000 1.9697 0.9633 + 172.1767 204.0000 150.0000 1.9697 0.9514 161.2234 204.0000 151.0000 1.9697 0.9749 + 152.3806 204.0000 152.0000 1.9697 0.9811 138.9273 204.0000 153.0000 1.9697 0.9968 + 187.1318 204.0000 155.0000 1.9697 0.9909 397.2194 204.0000 156.0000 1.9697 0.9797 + 297.9018 204.0000 157.0000 1.9697 1.9373 188.2849 204.0000 159.0000 1.9697 2.9425 + 184.3805 204.0000 160.0000 1.9697 2.9455 178.5085 204.0000 161.0000 1.9697 2.9413 + 179.3900 204.0000 162.0000 1.9697 2.9300 172.7866 204.0000 163.0000 1.9697 1.8286 + 180.6115 204.0000 164.0000 1.9697 2.8732 169.5717 204.0000 165.0000 1.9697 2.9086 + 172.5188 204.0000 166.0000 1.9697 2.8965 160.9616 204.0000 167.0000 1.9697 2.9242 + 156.3709 204.0000 168.0000 1.9697 2.9282 155.3867 204.0000 169.0000 1.9697 2.9246 + 163.4855 204.0000 170.0000 1.9697 2.8482 150.2119 204.0000 171.0000 1.9697 2.9219 + 203.4999 204.0000 172.0000 1.9697 1.9254 188.7818 204.0000 173.0000 1.9697 1.9459 + 172.1206 204.0000 174.0000 1.9697 1.9292 174.1266 204.0000 175.0000 1.9697 1.8104 + 152.2648 204.0000 176.0000 1.9697 1.8858 143.0584 204.0000 177.0000 1.9697 1.8648 + 136.5000 204.0000 178.0000 1.9697 1.9188 130.3449 204.0000 179.0000 1.9697 0.9846 + 125.9710 204.0000 180.0000 1.9697 1.9896 203.7192 204.0000 181.0000 1.9697 0.9267 + 185.8638 204.0000 182.0000 1.9697 0.9383 180.3069 204.0000 183.0000 1.9697 0.9820 + 175.3047 204.0000 184.0000 1.9697 0.9815 163.5087 204.0000 185.0000 1.9697 0.9954 + 210.8125 204.0000 187.0000 1.9697 0.9705 395.7560 204.0000 188.0000 1.9697 0.9662 + 222.8978 204.0000 189.0000 1.9697 2.9070 256.9426 204.0000 190.0000 1.9697 2.8844 + 229.3998 204.0000 191.0000 1.9697 2.8738 202.8197 204.0000 192.0000 1.9697 2.8878 + 195.1232 204.0000 193.0000 1.9697 2.9095 234.4102 204.0000 194.0000 1.9697 1.9209 + 55.1364 204.0000 204.0000 1.9697 1.9697 12.4952 205.0000 1.0000 1.9441 0.9118 + 8.2586 205.0000 2.0000 1.9441 0.0000 188.7611 205.0000 3.0000 1.9441 0.0000 + 110.4185 205.0000 4.0000 1.9441 0.0000 74.9865 205.0000 5.0000 1.9441 0.0000 + 50.9090 205.0000 6.0000 1.9441 0.0000 35.6778 205.0000 7.0000 1.9441 0.0000 + 27.0247 205.0000 8.0000 1.9441 0.0000 20.4592 205.0000 9.0000 1.9441 0.0000 + 15.7127 205.0000 10.0000 1.9441 0.0000 225.7843 205.0000 11.0000 1.9441 0.0000 + 175.3914 205.0000 12.0000 1.9441 0.0000 162.4473 205.0000 13.0000 1.9441 0.0000 + 128.7459 205.0000 14.0000 1.9441 0.0000 100.8432 205.0000 15.0000 1.9441 0.0000 + 83.8847 205.0000 16.0000 1.9441 0.0000 68.6331 205.0000 17.0000 1.9441 0.0000 + 56.1926 205.0000 18.0000 1.9441 0.0000 370.1535 205.0000 19.0000 1.9441 0.0000 + 306.9078 205.0000 20.0000 1.9441 0.0000 253.9534 205.0000 21.0000 1.9441 0.0000 + 245.6647 205.0000 22.0000 1.9441 0.0000 225.1783 205.0000 23.0000 1.9441 0.0000 + 177.4000 205.0000 24.0000 1.9441 0.0000 194.1378 205.0000 25.0000 1.9441 0.0000 + 152.3887 205.0000 26.0000 1.9441 0.0000 161.8720 205.0000 27.0000 1.9441 0.0000 + 166.5614 205.0000 28.0000 1.9441 0.0000 127.6686 205.0000 29.0000 1.9441 0.0000 + 131.5252 205.0000 30.0000 1.9441 0.0000 155.8080 205.0000 31.0000 1.9441 0.0000 + 137.9956 205.0000 32.0000 1.9441 0.0000 118.1354 205.0000 33.0000 1.9441 0.0000 + 106.2140 205.0000 34.0000 1.9441 0.0000 93.1003 205.0000 35.0000 1.9441 0.0000 + 81.0518 205.0000 36.0000 1.9441 0.0000 415.2201 205.0000 37.0000 1.9441 0.0000 + 365.6571 205.0000 38.0000 1.9441 0.0000 321.2652 205.0000 39.0000 1.9441 0.0000 + 289.2869 205.0000 40.0000 1.9441 0.0000 264.1285 205.0000 41.0000 1.9441 0.0000 + 204.3092 205.0000 42.0000 1.9441 0.0000 227.7959 205.0000 43.0000 1.9441 0.0000 + 173.8767 205.0000 44.0000 1.9441 0.0000 190.0445 205.0000 45.0000 1.9441 0.0000 + 176.3381 205.0000 46.0000 1.9441 0.0000 146.9017 205.0000 47.0000 1.9441 0.0000 + 155.4778 205.0000 48.0000 1.9441 0.0000 194.7649 205.0000 49.0000 1.9441 0.0000 + 180.6996 205.0000 50.0000 1.9441 0.0000 161.5570 205.0000 51.0000 1.9441 0.0000 + 150.1754 205.0000 52.0000 1.9441 0.0000 136.0239 205.0000 53.0000 1.9441 0.0000 + 122.4634 205.0000 54.0000 1.9441 0.0000 506.5054 205.0000 55.0000 1.9441 0.0000 + 465.9766 205.0000 56.0000 1.9441 0.0000 410.5123 205.0000 57.0000 1.9441 0.0000 + 190.7463 205.0000 58.0000 1.9441 2.7991 413.1209 205.0000 59.0000 1.9441 0.0000 + 396.7581 205.0000 60.0000 1.9441 0.0000 386.8363 205.0000 61.0000 1.9441 0.0000 + 377.7092 205.0000 62.0000 1.9441 0.0000 369.6195 205.0000 63.0000 1.9441 0.0000 + 291.6491 205.0000 64.0000 1.9441 0.0000 327.2333 205.0000 65.0000 1.9441 0.0000 + 315.8875 205.0000 66.0000 1.9441 0.0000 333.5597 205.0000 67.0000 1.9441 0.0000 + 326.4963 205.0000 68.0000 1.9441 0.0000 320.1437 205.0000 69.0000 1.9441 0.0000 + 316.3522 205.0000 70.0000 1.9441 0.0000 267.2409 205.0000 71.0000 1.9441 0.0000 + 263.6848 205.0000 72.0000 1.9441 0.0000 241.0799 205.0000 73.0000 1.9441 0.0000 + 203.8567 205.0000 74.0000 1.9441 0.0000 207.5237 205.0000 75.0000 1.9441 0.0000 + 188.3408 205.0000 76.0000 1.9441 0.0000 172.6661 205.0000 77.0000 1.9441 0.0000 + 143.5317 205.0000 78.0000 1.9441 0.0000 134.1189 205.0000 79.0000 1.9441 0.0000 + 138.0677 205.0000 80.0000 1.9441 0.0000 200.0898 205.0000 81.0000 1.9441 0.0000 + 196.0895 205.0000 82.0000 1.9441 0.0000 180.6882 205.0000 83.0000 1.9441 0.0000 + 172.6136 205.0000 84.0000 1.9441 0.0000 159.5852 205.0000 85.0000 1.9441 0.0000 + 146.4721 205.0000 86.0000 1.9441 0.0000 478.9676 205.0000 87.0000 1.9441 0.0000 + 461.4715 205.0000 88.0000 1.9441 0.0000 408.8321 205.0000 89.0000 1.9441 0.0000 + 368.4688 205.0000 90.0000 1.9441 0.0000 365.2479 205.0000 91.0000 1.9441 0.0000 + 353.6401 205.0000 92.0000 1.9441 0.0000 363.2803 205.0000 93.0000 1.9441 0.0000 + 351.9041 205.0000 94.0000 1.9441 0.0000 20.0597 205.0000 101.0000 1.9441 0.0000 + 64.2553 205.0000 103.0000 1.9441 0.9865 82.1430 205.0000 104.0000 1.9441 0.9808 + 63.1685 205.0000 105.0000 1.9441 0.9706 47.7462 205.0000 106.0000 1.9441 0.9868 + 33.2677 205.0000 107.0000 1.9441 0.9944 24.2416 205.0000 108.0000 1.9441 0.9925 + 16.6531 205.0000 109.0000 1.9441 0.9982 93.7159 205.0000 111.0000 1.9441 0.9684 + 144.9783 205.0000 112.0000 1.9441 0.9628 147.3766 205.0000 113.0000 1.9441 0.9648 + 119.0889 205.0000 114.0000 1.9441 0.9507 97.8947 205.0000 115.0000 1.9441 0.9947 + 82.9497 205.0000 116.0000 1.9441 0.9948 67.9132 205.0000 117.0000 1.9441 0.9972 + 129.5963 205.0000 119.0000 1.9441 0.9767 245.9498 205.0000 120.0000 1.9441 0.9831 + 130.1725 205.0000 121.0000 1.9441 1.8627 125.7017 205.0000 122.0000 1.9441 1.8299 + 123.1529 205.0000 123.0000 1.9441 1.9138 121.9340 205.0000 124.0000 1.9441 1.8269 + 112.4648 205.0000 125.0000 1.9441 1.6406 104.1437 205.0000 126.0000 1.9441 1.6483 + 99.3343 205.0000 127.0000 1.9441 1.7149 97.0816 205.0000 128.0000 1.9441 1.7937 + 95.7007 205.0000 129.0000 1.9441 0.9576 90.1351 205.0000 130.0000 1.9441 1.9419 + 146.4890 205.0000 131.0000 1.9441 0.9601 129.2227 205.0000 132.0000 1.9441 0.9434 + 116.1535 205.0000 133.0000 1.9441 0.9889 106.2491 205.0000 134.0000 1.9441 0.9901 + 93.7374 205.0000 135.0000 1.9441 0.9974 154.7827 205.0000 137.0000 1.9441 0.9738 + 299.2914 205.0000 138.0000 1.9441 0.9801 230.1384 205.0000 139.0000 1.9441 1.9153 + 172.1810 205.0000 140.0000 1.9441 1.9355 173.7946 205.0000 141.0000 1.9441 1.9545 + 162.1983 205.0000 142.0000 1.9441 1.9420 181.3885 205.0000 143.0000 1.9441 1.6682 + 141.6201 205.0000 144.0000 1.9441 1.8584 132.4776 205.0000 145.0000 1.9441 1.9003 + 123.0227 205.0000 146.0000 1.9441 1.8630 118.9236 205.0000 147.0000 1.9441 0.9679 + 117.8843 205.0000 148.0000 1.9441 1.9539 185.8576 205.0000 149.0000 1.9441 0.9633 + 168.7248 205.0000 150.0000 1.9441 0.9514 158.4037 205.0000 151.0000 1.9441 0.9749 + 150.0870 205.0000 152.0000 1.9441 0.9811 137.3020 205.0000 153.0000 1.9441 0.9968 + 183.6568 205.0000 155.0000 1.9441 0.9909 388.0268 205.0000 156.0000 1.9441 0.9797 + 291.2744 205.0000 157.0000 1.9441 1.9373 185.0194 205.0000 159.0000 1.9441 2.9425 + 181.1913 205.0000 160.0000 1.9441 2.9455 175.4697 205.0000 161.0000 1.9441 2.9413 + 176.2659 205.0000 162.0000 1.9441 2.9300 169.5824 205.0000 163.0000 1.9441 1.8286 + 177.3613 205.0000 164.0000 1.9441 2.8732 166.6202 205.0000 165.0000 1.9441 2.9086 + 169.4228 205.0000 166.0000 1.9441 2.8965 158.2170 205.0000 167.0000 1.9441 2.9242 + 153.7302 205.0000 168.0000 1.9441 2.9282 152.7300 205.0000 169.0000 1.9441 2.9246 + 160.4620 205.0000 170.0000 1.9441 2.8482 147.6636 205.0000 171.0000 1.9441 2.9219 + 199.1929 205.0000 172.0000 1.9441 1.9254 185.1452 205.0000 173.0000 1.9441 1.9459 + 169.1811 205.0000 174.0000 1.9441 1.9292 170.8918 205.0000 175.0000 1.9441 1.8104 + 150.1755 205.0000 176.0000 1.9441 1.8858 141.3085 205.0000 177.0000 1.9441 1.8648 + 134.9708 205.0000 178.0000 1.9441 1.9188 128.9734 205.0000 179.0000 1.9441 0.9846 + 124.8168 205.0000 180.0000 1.9441 1.9896 199.6443 205.0000 181.0000 1.9441 0.9267 + 182.5270 205.0000 182.0000 1.9441 0.9383 177.3400 205.0000 183.0000 1.9441 0.9820 + 172.7071 205.0000 184.0000 1.9441 0.9815 161.5337 205.0000 185.0000 1.9441 0.9954 + 206.8979 205.0000 187.0000 1.9441 0.9705 386.4580 205.0000 188.0000 1.9441 0.9662 + 218.9430 205.0000 189.0000 1.9441 2.9070 252.1485 205.0000 190.0000 1.9441 2.8844 + 225.7100 205.0000 191.0000 1.9441 2.8738 199.6277 205.0000 192.0000 1.9441 2.8878 + 192.1504 205.0000 193.0000 1.9441 2.9095 230.0003 205.0000 194.0000 1.9441 1.9209 + 53.9919 205.0000 204.0000 1.9441 1.9697 53.1128 205.0000 205.0000 1.9441 1.9441 + 9.4203 206.0000 1.0000 1.9985 0.9118 6.5027 206.0000 2.0000 1.9985 0.0000 + 123.7707 206.0000 3.0000 1.9985 0.0000 76.7552 206.0000 4.0000 1.9985 0.0000 + 54.0854 206.0000 5.0000 1.9985 0.0000 37.8419 206.0000 6.0000 1.9985 0.0000 + 27.1704 206.0000 7.0000 1.9985 0.0000 20.9597 206.0000 8.0000 1.9985 0.0000 + 16.1312 206.0000 9.0000 1.9985 0.0000 12.5629 206.0000 10.0000 1.9985 0.0000 + 148.7618 206.0000 11.0000 1.9985 0.0000 120.7386 206.0000 12.0000 1.9985 0.0000 + 113.8560 206.0000 13.0000 1.9985 0.0000 92.4931 206.0000 14.0000 1.9985 0.0000 + 74.0784 206.0000 15.0000 1.9985 0.0000 62.5953 206.0000 16.0000 1.9985 0.0000 + 52.0208 206.0000 17.0000 1.9985 0.0000 43.2064 206.0000 18.0000 1.9985 0.0000 + 242.6366 206.0000 19.0000 1.9985 0.0000 208.0223 206.0000 20.0000 1.9985 0.0000 + 173.4630 206.0000 21.0000 1.9985 0.0000 169.2064 206.0000 22.0000 1.9985 0.0000 + 155.8387 206.0000 23.0000 1.9985 0.0000 123.2591 206.0000 24.0000 1.9985 0.0000 + 135.2994 206.0000 25.0000 1.9985 0.0000 106.7326 206.0000 26.0000 1.9985 0.0000 + 114.0913 206.0000 27.0000 1.9985 0.0000 116.8072 206.0000 28.0000 1.9985 0.0000 + 89.9515 206.0000 29.0000 1.9985 0.0000 93.6870 206.0000 30.0000 1.9985 0.0000 + 110.2770 206.0000 31.0000 1.9985 0.0000 99.4698 206.0000 32.0000 1.9985 0.0000 + 86.6895 206.0000 33.0000 1.9985 0.0000 78.8838 206.0000 34.0000 1.9985 0.0000 + 70.0352 206.0000 35.0000 1.9985 0.0000 61.7254 206.0000 36.0000 1.9985 0.0000 + 273.3757 206.0000 37.0000 1.9985 0.0000 247.8285 206.0000 38.0000 1.9985 0.0000 + 220.8830 206.0000 39.0000 1.9985 0.0000 200.7817 206.0000 40.0000 1.9985 0.0000 + 184.5477 206.0000 41.0000 1.9985 0.0000 144.6355 206.0000 42.0000 1.9985 0.0000 + 160.4520 206.0000 43.0000 1.9985 0.0000 124.2389 206.0000 44.0000 1.9985 0.0000 + 135.4760 206.0000 45.0000 1.9985 0.0000 126.2362 206.0000 46.0000 1.9985 0.0000 + 105.3572 206.0000 47.0000 1.9985 0.0000 111.9252 206.0000 48.0000 1.9985 0.0000 + 138.2831 206.0000 49.0000 1.9985 0.0000 130.0766 206.0000 50.0000 1.9985 0.0000 + 118.0337 206.0000 51.0000 1.9985 0.0000 110.7747 206.0000 52.0000 1.9985 0.0000 + 101.4216 206.0000 53.0000 1.9985 0.0000 92.2876 206.0000 54.0000 1.9985 0.0000 + 333.8130 206.0000 55.0000 1.9985 0.0000 314.6837 206.0000 56.0000 1.9985 0.0000 + 281.1504 206.0000 57.0000 1.9985 0.0000 139.1811 206.0000 58.0000 1.9985 2.7991 + 280.4649 206.0000 59.0000 1.9985 0.0000 269.9865 206.0000 60.0000 1.9985 0.0000 + 263.3922 206.0000 61.0000 1.9985 0.0000 257.3029 206.0000 62.0000 1.9985 0.0000 + 251.9099 206.0000 63.0000 1.9985 0.0000 202.2978 206.0000 64.0000 1.9985 0.0000 + 222.0934 206.0000 65.0000 1.9985 0.0000 214.9399 206.0000 66.0000 1.9985 0.0000 + 228.0857 206.0000 67.0000 1.9985 0.0000 223.3166 206.0000 68.0000 1.9985 0.0000 + 219.0722 206.0000 69.0000 1.9985 0.0000 216.3044 206.0000 70.0000 1.9985 0.0000 + 184.8705 206.0000 71.0000 1.9985 0.0000 184.9362 206.0000 72.0000 1.9985 0.0000 + 170.7285 206.0000 73.0000 1.9985 0.0000 145.7774 206.0000 74.0000 1.9985 0.0000 + 148.8321 206.0000 75.0000 1.9985 0.0000 136.2410 206.0000 76.0000 1.9985 0.0000 + 125.8004 206.0000 77.0000 1.9985 0.0000 105.5920 206.0000 78.0000 1.9985 0.0000 + 99.0454 206.0000 79.0000 1.9985 0.0000 102.1266 206.0000 80.0000 1.9985 0.0000 + 143.0720 206.0000 81.0000 1.9985 0.0000 141.5746 206.0000 82.0000 1.9985 0.0000 + 132.1155 206.0000 83.0000 1.9985 0.0000 127.1952 206.0000 84.0000 1.9985 0.0000 + 118.7550 206.0000 85.0000 1.9985 0.0000 110.0314 206.0000 86.0000 1.9985 0.0000 + 319.5738 206.0000 87.0000 1.9985 0.0000 314.0948 206.0000 88.0000 1.9985 0.0000 + 281.8509 206.0000 89.0000 1.9985 0.0000 258.1487 206.0000 90.0000 1.9985 0.0000 + 254.2685 206.0000 91.0000 1.9985 0.0000 246.3297 206.0000 92.0000 1.9985 0.0000 + 250.6938 206.0000 93.0000 1.9985 0.0000 243.2478 206.0000 94.0000 1.9985 0.0000 + 14.7623 206.0000 101.0000 1.9985 0.0000 44.9320 206.0000 103.0000 1.9985 0.9865 + 57.8805 206.0000 104.0000 1.9985 0.9808 45.9632 206.0000 105.0000 1.9985 0.9706 + 35.5219 206.0000 106.0000 1.9985 0.9868 25.3827 206.0000 107.0000 1.9985 0.9944 + 18.9034 206.0000 108.0000 1.9985 0.9925 13.3529 206.0000 109.0000 1.9985 0.9982 + 65.2739 206.0000 111.0000 1.9985 0.9684 100.5817 206.0000 112.0000 1.9985 0.9628 + 103.7907 206.0000 113.0000 1.9985 0.9648 85.9068 206.0000 114.0000 1.9985 0.9507 + 71.9914 206.0000 115.0000 1.9985 0.9947 61.8916 206.0000 116.0000 1.9985 0.9948 + 51.4721 206.0000 117.0000 1.9985 0.9972 92.0240 206.0000 119.0000 1.9985 0.9767 + 167.4145 206.0000 120.0000 1.9985 0.9831 93.8911 206.0000 121.0000 1.9985 1.8627 + 90.7838 206.0000 122.0000 1.9985 1.8299 88.9429 206.0000 123.0000 1.9985 1.9138 + 87.8889 206.0000 124.0000 1.9985 1.8269 81.8731 206.0000 125.0000 1.9985 1.6406 + 76.1132 206.0000 126.0000 1.9985 1.6483 72.6443 206.0000 127.0000 1.9985 1.7149 + 70.9444 206.0000 128.0000 1.9985 1.7937 69.4058 206.0000 129.0000 1.9985 0.9576 + 66.2838 206.0000 130.0000 1.9985 1.9419 104.1881 206.0000 131.0000 1.9985 0.9601 + 93.5893 206.0000 132.0000 1.9985 0.9434 85.3379 206.0000 133.0000 1.9985 0.9889 + 78.9029 206.0000 134.0000 1.9985 0.9901 70.4744 206.0000 135.0000 1.9985 0.9974 + 110.4856 206.0000 137.0000 1.9985 0.9738 203.5706 206.0000 138.0000 1.9985 0.9801 + 161.1115 206.0000 139.0000 1.9985 1.9153 124.1920 206.0000 140.0000 1.9985 1.9355 + 125.3625 206.0000 141.0000 1.9985 1.9545 117.5524 206.0000 142.0000 1.9985 1.9420 + 129.7079 206.0000 143.0000 1.9985 1.6682 103.7956 206.0000 144.0000 1.9985 1.8584 + 97.2961 206.0000 145.0000 1.9985 1.9003 90.6249 206.0000 146.0000 1.9985 1.8630 + 87.4951 206.0000 147.0000 1.9985 0.9679 87.2915 206.0000 148.0000 1.9985 1.9539 + 132.6505 206.0000 149.0000 1.9985 0.9633 122.2030 206.0000 150.0000 1.9985 0.9514 + 115.9742 206.0000 151.0000 1.9985 0.9749 110.7711 206.0000 152.0000 1.9985 0.9811 + 102.3489 206.0000 153.0000 1.9985 0.9968 132.4662 206.0000 155.0000 1.9985 0.9909 + 262.6181 206.0000 156.0000 1.9985 0.9797 203.4829 206.0000 157.0000 1.9985 1.9373 + 135.1380 206.0000 159.0000 1.9985 2.9425 132.3691 206.0000 160.0000 1.9985 2.9455 + 128.3013 206.0000 161.0000 1.9985 2.9413 128.5963 206.0000 162.0000 1.9985 2.9300 + 122.9404 206.0000 163.0000 1.9985 1.8286 129.2461 206.0000 164.0000 1.9985 2.8732 + 121.6899 206.0000 165.0000 1.9985 2.9086 123.2619 206.0000 166.0000 1.9985 2.8965 + 115.7612 206.0000 167.0000 1.9985 2.9242 112.5588 206.0000 168.0000 1.9985 2.9282 + 111.7498 206.0000 169.0000 1.9985 2.9246 116.9313 206.0000 170.0000 1.9985 2.8482 + 108.1430 206.0000 171.0000 1.9985 2.9219 142.1837 206.0000 172.0000 1.9985 1.9254 + 133.4248 206.0000 173.0000 1.9985 1.9459 123.1362 206.0000 174.0000 1.9985 1.9292 + 123.4063 206.0000 175.0000 1.9985 1.8104 110.8275 206.0000 176.0000 1.9985 1.8858 + 104.7264 206.0000 177.0000 1.9985 1.8648 100.3012 206.0000 178.0000 1.9985 1.9188 + 95.9227 206.0000 179.0000 1.9985 0.9846 93.4628 206.0000 180.0000 1.9985 1.9896 + 143.2496 206.0000 181.0000 1.9985 0.9267 132.8283 206.0000 182.0000 1.9985 0.9383 + 130.0404 206.0000 183.0000 1.9985 0.9820 127.3976 206.0000 184.0000 1.9985 0.9815 + 120.1967 206.0000 185.0000 1.9985 0.9954 149.3279 206.0000 187.0000 1.9985 0.9705 + 264.0525 206.0000 188.0000 1.9985 0.9662 159.7830 206.0000 189.0000 1.9985 2.9070 + 181.8224 206.0000 190.0000 1.9985 2.8844 163.6694 206.0000 191.0000 1.9985 2.8738 + 146.2506 206.0000 192.0000 1.9985 2.8878 141.1191 206.0000 193.0000 1.9985 2.9095 + 164.5053 206.0000 194.0000 1.9985 1.9209 39.2814 206.0000 204.0000 1.9985 1.9697 + 38.9834 206.0000 205.0000 1.9985 1.9441 29.3602 206.0000 206.0000 1.9985 1.9985 + 7.6610 207.0000 1.0000 2.0143 0.9118 5.4559 207.0000 2.0000 2.0143 0.0000 + 94.0060 207.0000 3.0000 2.0143 0.0000 59.5983 207.0000 4.0000 2.0143 0.0000 + 42.8348 207.0000 5.0000 2.0143 0.0000 30.5305 207.0000 6.0000 2.0143 0.0000 + 22.2794 207.0000 7.0000 2.0143 0.0000 17.4093 207.0000 8.0000 2.0143 0.0000 + 13.5613 207.0000 9.0000 2.0143 0.0000 10.6740 207.0000 10.0000 2.0143 0.0000 + 113.3031 207.0000 11.0000 2.0143 0.0000 93.4130 207.0000 12.0000 2.0143 0.0000 + 88.8407 207.0000 13.0000 2.0143 0.0000 73.0858 207.0000 14.0000 2.0143 0.0000 + 59.2859 207.0000 15.0000 2.0143 0.0000 50.5946 207.0000 16.0000 2.0143 0.0000 + 42.4816 207.0000 17.0000 2.0143 0.0000 35.6334 207.0000 18.0000 2.0143 0.0000 + 185.2181 207.0000 19.0000 2.0143 0.0000 160.2750 207.0000 20.0000 2.0143 0.0000 + 134.0314 207.0000 21.0000 2.0143 0.0000 131.3015 207.0000 22.0000 2.0143 0.0000 + 121.2119 207.0000 23.0000 2.0143 0.0000 96.2547 207.0000 24.0000 2.0143 0.0000 + 105.6080 207.0000 25.0000 2.0143 0.0000 83.6916 207.0000 26.0000 2.0143 0.0000 + 89.5345 207.0000 27.0000 2.0143 0.0000 91.4295 207.0000 28.0000 2.0143 0.0000 + 70.7639 207.0000 29.0000 2.0143 0.0000 73.9210 207.0000 30.0000 2.0143 0.0000 + 86.6194 207.0000 31.0000 2.0143 0.0000 78.8235 207.0000 32.0000 2.0143 0.0000 + 69.3770 207.0000 33.0000 2.0143 0.0000 63.5919 207.0000 34.0000 2.0143 0.0000 + 56.9187 207.0000 35.0000 2.0143 0.0000 50.5746 207.0000 36.0000 2.0143 0.0000 + 209.2378 207.0000 37.0000 2.0143 0.0000 191.1268 207.0000 38.0000 2.0143 0.0000 + 171.3574 207.0000 39.0000 2.0143 0.0000 156.4540 207.0000 40.0000 2.0143 0.0000 + 144.3122 207.0000 41.0000 2.0143 0.0000 114.0004 207.0000 42.0000 2.0143 0.0000 + 126.0801 207.0000 43.0000 2.0143 0.0000 98.4728 207.0000 44.0000 2.0143 0.0000 + 107.1084 207.0000 45.0000 2.0143 0.0000 100.0370 207.0000 46.0000 2.0143 0.0000 + 83.7875 207.0000 47.0000 2.0143 0.0000 88.9858 207.0000 48.0000 2.0143 0.0000 + 109.0825 207.0000 49.0000 2.0143 0.0000 103.2113 207.0000 50.0000 2.0143 0.0000 + 94.3654 207.0000 51.0000 2.0143 0.0000 89.0359 207.0000 52.0000 2.0143 0.0000 + 82.0374 207.0000 53.0000 2.0143 0.0000 75.1427 207.0000 54.0000 2.0143 0.0000 + 255.7499 207.0000 55.0000 2.0143 0.0000 242.5528 207.0000 56.0000 2.0143 0.0000 + 217.8948 207.0000 57.0000 2.0143 0.0000 111.2827 207.0000 58.0000 2.0143 2.7991 + 216.7820 207.0000 59.0000 2.0143 0.0000 208.8357 207.0000 60.0000 2.0143 0.0000 + 203.7729 207.0000 61.0000 2.0143 0.0000 199.0885 207.0000 62.0000 2.0143 0.0000 + 194.9397 207.0000 63.0000 2.0143 0.0000 157.9221 207.0000 64.0000 2.0143 0.0000 + 172.0857 207.0000 65.0000 2.0143 0.0000 166.7356 207.0000 66.0000 2.0143 0.0000 + 176.7026 207.0000 67.0000 2.0143 0.0000 173.0120 207.0000 68.0000 2.0143 0.0000 + 169.7429 207.0000 69.0000 2.0143 0.0000 167.5247 207.0000 70.0000 2.0143 0.0000 + 144.0208 207.0000 71.0000 2.0143 0.0000 144.7985 207.0000 72.0000 2.0143 0.0000 + 134.3399 207.0000 73.0000 2.0143 0.0000 115.4406 207.0000 74.0000 2.0143 0.0000 + 117.9845 207.0000 75.0000 2.0143 0.0000 108.5136 207.0000 76.0000 2.0143 0.0000 + 100.6104 207.0000 77.0000 2.0143 0.0000 85.0197 207.0000 78.0000 2.0143 0.0000 + 79.9625 207.0000 79.0000 2.0143 0.0000 82.4540 207.0000 80.0000 2.0143 0.0000 + 113.4882 207.0000 81.0000 2.0143 0.0000 112.6829 207.0000 82.0000 2.0143 0.0000 + 105.7911 207.0000 83.0000 2.0143 0.0000 102.2646 207.0000 84.0000 2.0143 0.0000 + 96.0071 207.0000 85.0000 2.0143 0.0000 89.4589 207.0000 86.0000 2.0143 0.0000 + 246.0048 207.0000 87.0000 2.0143 0.0000 242.9272 207.0000 88.0000 2.0143 0.0000 + 219.1064 207.0000 89.0000 2.0143 0.0000 202.2394 207.0000 90.0000 2.0143 0.0000 + 198.8169 207.0000 91.0000 2.0143 0.0000 192.6840 207.0000 92.0000 2.0143 0.0000 + 195.3222 207.0000 93.0000 2.0143 0.0000 189.6469 207.0000 94.0000 2.0143 0.0000 + 11.8214 207.0000 101.0000 2.0143 0.0000 35.0194 207.0000 103.0000 2.0143 0.9865 + 45.3164 207.0000 104.0000 2.0143 0.9808 36.6063 207.0000 105.0000 2.0143 0.9706 + 28.6938 207.0000 106.0000 2.0143 0.9868 20.8501 207.0000 107.0000 2.0143 0.9944 + 15.7631 207.0000 108.0000 2.0143 0.9925 11.3571 207.0000 109.0000 2.0143 0.9982 + 50.8672 207.0000 111.0000 2.0143 0.9684 78.1760 207.0000 112.0000 2.0143 0.9628 + 81.2026 207.0000 113.0000 2.0143 0.9648 68.0504 207.0000 114.0000 2.0143 0.9507 + 57.6632 207.0000 115.0000 2.0143 0.9947 50.0298 207.0000 116.0000 2.0143 0.9948 + 42.0367 207.0000 117.0000 2.0143 0.9972 72.6818 207.0000 119.0000 2.0143 0.9767 + 129.5841 207.0000 120.0000 2.0143 0.9831 74.5587 207.0000 121.0000 2.0143 1.8627 + 72.1828 207.0000 122.0000 2.0143 1.8299 70.7347 207.0000 123.0000 2.0143 1.9138 + 69.8471 207.0000 124.0000 2.0143 1.8269 65.3415 207.0000 125.0000 2.0143 1.6406 + 60.8920 207.0000 126.0000 2.0143 1.6483 58.1611 207.0000 127.0000 2.0143 1.7149 + 56.7868 207.0000 128.0000 2.0143 1.7937 55.3789 207.0000 129.0000 2.0143 0.9576 + 53.2070 207.0000 130.0000 2.0143 1.9419 82.0402 207.0000 131.0000 2.0143 0.9601 + 74.3627 207.0000 132.0000 2.0143 0.9434 68.3477 207.0000 133.0000 2.0143 0.9889 + 63.6074 207.0000 134.0000 2.0143 0.9901 57.2578 207.0000 135.0000 2.0143 0.9974 + 87.5447 207.0000 137.0000 2.0143 0.9738 157.6836 207.0000 138.0000 2.0143 0.9801 + 126.3470 207.0000 139.0000 2.0143 1.9153 98.7165 207.0000 140.0000 2.0143 1.9355 + 99.6625 207.0000 141.0000 2.0143 1.9545 93.7434 207.0000 142.0000 2.0143 1.9420 + 102.8506 207.0000 143.0000 2.0143 1.6682 83.2744 207.0000 144.0000 2.0143 1.8584 + 78.1976 207.0000 145.0000 2.0143 1.9003 72.9965 207.0000 146.0000 2.0143 1.8630 + 70.4509 207.0000 147.0000 2.0143 0.9679 70.4420 207.0000 148.0000 2.0143 1.9539 + 104.8972 207.0000 149.0000 2.0143 0.9633 97.2826 207.0000 150.0000 2.0143 0.9514 + 92.8262 207.0000 151.0000 2.0143 0.9749 89.0582 207.0000 152.0000 2.0143 0.9811 + 82.7713 207.0000 153.0000 2.0143 0.9968 105.3726 207.0000 155.0000 2.0143 0.9909 + 203.2396 207.0000 156.0000 2.0143 0.9797 159.4968 207.0000 157.0000 2.0143 1.9373 + 108.1159 207.0000 159.0000 2.0143 2.9425 105.9150 207.0000 160.0000 2.0143 2.9455 + 102.7150 207.0000 161.0000 2.0143 2.9413 102.8398 207.0000 162.0000 2.0143 2.9300 + 98.0628 207.0000 163.0000 2.0143 1.8286 103.2648 207.0000 164.0000 2.0143 2.8732 + 97.3591 207.0000 165.0000 2.0143 2.9086 98.4445 207.0000 166.0000 2.0143 2.8965 + 92.6939 207.0000 167.0000 2.0143 2.9242 90.1627 207.0000 168.0000 2.0143 2.9282 + 89.4774 207.0000 169.0000 2.0143 2.9246 93.3808 207.0000 170.0000 2.0143 2.8482 + 86.6202 207.0000 171.0000 2.0143 2.9219 112.4717 207.0000 172.0000 2.0143 1.9254 + 106.0746 207.0000 173.0000 2.0143 1.9459 98.4199 207.0000 174.0000 2.0143 1.9292 + 98.2720 207.0000 175.0000 2.0143 1.8104 89.2508 207.0000 176.0000 2.0143 1.8858 + 84.5790 207.0000 177.0000 2.0143 1.8648 81.1635 207.0000 178.0000 2.0143 1.9188 + 77.7115 207.0000 179.0000 2.0143 0.9846 75.9482 207.0000 180.0000 2.0143 1.9896 + 113.7563 207.0000 181.0000 2.0143 0.9267 106.1418 207.0000 182.0000 2.0143 0.9383 + 104.2768 207.0000 183.0000 2.0143 0.9820 102.4740 207.0000 184.0000 2.0143 0.9815 + 97.1579 207.0000 185.0000 2.0143 0.9954 118.8019 207.0000 187.0000 2.0143 0.9705 + 205.0788 207.0000 188.0000 2.0143 0.9662 127.7412 207.0000 189.0000 2.0143 2.9070 + 144.6629 207.0000 190.0000 2.0143 2.8844 130.7332 207.0000 191.0000 2.0143 2.8738 + 117.3247 207.0000 192.0000 2.0143 2.8878 113.3581 207.0000 193.0000 2.0143 2.9095 + 130.5975 207.0000 194.0000 2.0143 1.9209 31.2407 207.0000 204.0000 2.0143 1.9697 + 31.2221 207.0000 205.0000 2.0143 1.9441 23.8965 207.0000 206.0000 2.0143 1.9985 + 19.6768 207.0000 207.0000 2.0143 2.0143 5.3717 208.0000 1.0000 1.9887 0.9118 + 4.0179 208.0000 2.0000 1.9887 0.0000 58.6703 208.0000 3.0000 1.9887 0.0000 + 38.7027 208.0000 4.0000 1.9887 0.0000 28.7713 208.0000 5.0000 1.9887 0.0000 + 21.1428 208.0000 6.0000 1.9887 0.0000 15.8364 208.0000 7.0000 1.9887 0.0000 + 12.6277 208.0000 8.0000 1.9887 0.0000 10.0222 208.0000 9.0000 1.9887 0.0000 + 8.0175 208.0000 10.0000 1.9887 0.0000 71.0999 208.0000 11.0000 1.9887 0.0000 + 60.2983 208.0000 12.0000 1.9887 0.0000 58.1951 208.0000 13.0000 1.9887 0.0000 + 48.9066 208.0000 14.0000 1.9887 0.0000 40.5167 208.0000 15.0000 1.9887 0.0000 + 35.1377 208.0000 16.0000 1.9887 0.0000 29.9918 208.0000 17.0000 1.9887 0.0000 + 25.5514 208.0000 18.0000 1.9887 0.0000 116.7069 208.0000 19.0000 1.9887 0.0000 + 102.7126 208.0000 20.0000 1.9887 0.0000 86.3365 208.0000 21.0000 1.9887 0.0000 + 85.2219 208.0000 22.0000 1.9887 0.0000 79.0003 208.0000 23.0000 1.9887 0.0000 + 63.1867 208.0000 24.0000 1.9887 0.0000 69.2598 208.0000 25.0000 1.9887 0.0000 + 55.3356 208.0000 26.0000 1.9887 0.0000 59.2688 208.0000 27.0000 1.9887 0.0000 + 60.2575 208.0000 28.0000 1.9887 0.0000 47.0585 208.0000 29.0000 1.9887 0.0000 + 49.3897 208.0000 30.0000 1.9887 0.0000 57.4016 208.0000 31.0000 1.9887 0.0000 + 53.0110 208.0000 32.0000 1.9887 0.0000 47.4202 208.0000 33.0000 1.9887 0.0000 + 43.9819 208.0000 34.0000 1.9887 0.0000 39.8821 208.0000 35.0000 1.9887 0.0000 + 35.8961 208.0000 36.0000 1.9887 0.0000 132.4879 208.0000 37.0000 1.9887 0.0000 + 122.6928 208.0000 38.0000 1.9887 0.0000 111.1606 208.0000 39.0000 1.9887 0.0000 + 102.2836 208.0000 40.0000 1.9887 0.0000 94.9281 208.0000 41.0000 1.9887 0.0000 + 76.0239 208.0000 42.0000 1.9887 0.0000 83.6409 208.0000 43.0000 1.9887 0.0000 + 66.3025 208.0000 44.0000 1.9887 0.0000 71.8071 208.0000 45.0000 1.9887 0.0000 + 67.3354 208.0000 46.0000 1.9887 0.0000 56.7511 208.0000 47.0000 1.9887 0.0000 + 60.2334 208.0000 48.0000 1.9887 0.0000 72.8571 208.0000 49.0000 1.9887 0.0000 + 69.6046 208.0000 50.0000 1.9887 0.0000 64.4291 208.0000 51.0000 1.9887 0.0000 + 61.3159 208.0000 52.0000 1.9887 0.0000 57.0738 208.0000 53.0000 1.9887 0.0000 + 52.8269 208.0000 54.0000 1.9887 0.0000 162.2001 208.0000 55.0000 1.9887 0.0000 + 155.5437 208.0000 56.0000 1.9887 0.0000 141.0933 208.0000 57.0000 1.9887 0.0000 + 75.9910 208.0000 58.0000 1.9887 2.7991 139.7472 208.0000 59.0000 1.9887 0.0000 + 134.8019 208.0000 60.0000 1.9887 0.0000 131.5785 208.0000 61.0000 1.9887 0.0000 + 128.5846 208.0000 62.0000 1.9887 0.0000 125.9329 208.0000 63.0000 1.9887 0.0000 + 103.6007 208.0000 64.0000 1.9887 0.0000 111.4277 208.0000 65.0000 1.9887 0.0000 + 108.1820 208.0000 66.0000 1.9887 0.0000 114.3820 208.0000 67.0000 1.9887 0.0000 + 111.9978 208.0000 68.0000 1.9887 0.0000 109.9031 208.0000 69.0000 1.9887 0.0000 + 108.3826 208.0000 70.0000 1.9887 0.0000 94.1431 208.0000 71.0000 1.9887 0.0000 + 95.4506 208.0000 72.0000 1.9887 0.0000 89.3142 208.0000 73.0000 1.9887 0.0000 + 77.5895 208.0000 74.0000 1.9887 0.0000 79.4398 208.0000 75.0000 1.9887 0.0000 + 73.6427 208.0000 76.0000 1.9887 0.0000 68.7481 208.0000 77.0000 1.9887 0.0000 + 58.7497 208.0000 78.0000 1.9887 0.0000 55.5020 208.0000 79.0000 1.9887 0.0000 + 57.2328 208.0000 80.0000 1.9887 0.0000 76.5235 208.0000 81.0000 1.9887 0.0000 + 76.4013 208.0000 82.0000 1.9887 0.0000 72.4352 208.0000 83.0000 1.9887 0.0000 + 70.4769 208.0000 84.0000 1.9887 0.0000 66.7504 208.0000 85.0000 1.9887 0.0000 + 62.7578 208.0000 86.0000 1.9887 0.0000 157.3695 208.0000 87.0000 1.9887 0.0000 + 156.7317 208.0000 88.0000 1.9887 0.0000 142.6636 208.0000 89.0000 1.9887 0.0000 + 133.4762 208.0000 90.0000 1.9887 0.0000 130.7999 208.0000 91.0000 1.9887 0.0000 + 126.8550 208.0000 92.0000 1.9887 0.0000 127.7295 208.0000 93.0000 1.9887 0.0000 + 124.1631 208.0000 94.0000 1.9887 0.0000 8.0848 208.0000 101.0000 1.9887 0.0000 + 22.8930 208.0000 103.0000 1.9887 0.9865 29.8523 208.0000 104.0000 1.9887 0.9808 + 24.8185 208.0000 105.0000 1.9887 0.9706 19.9090 208.0000 106.0000 1.9887 0.9868 + 14.8600 208.0000 107.0000 1.9887 0.9944 11.5009 208.0000 108.0000 1.9887 0.9925 + 8.5397 208.0000 109.0000 1.9887 0.9982 33.2636 208.0000 111.0000 1.9887 0.9684 + 50.8669 208.0000 112.0000 1.9887 0.9628 53.4365 208.0000 113.0000 1.9887 0.9648 + 45.7273 208.0000 114.0000 1.9887 0.9507 39.4617 208.0000 115.0000 1.9887 0.9947 + 34.7510 208.0000 116.0000 1.9887 0.9948 29.6822 208.0000 117.0000 1.9887 0.9972 + 48.6380 208.0000 119.0000 1.9887 0.9767 83.7279 208.0000 120.0000 1.9887 0.9831 + 50.3373 208.0000 121.0000 1.9887 1.8627 48.8396 208.0000 122.0000 1.9887 1.8299 + 47.8815 208.0000 123.0000 1.9887 1.9138 47.2297 208.0000 124.0000 1.9887 1.8269 + 44.4888 208.0000 125.0000 1.9887 1.6406 41.6270 208.0000 126.0000 1.9887 1.6483 + 39.8131 208.0000 127.0000 1.9887 1.7149 38.8597 208.0000 128.0000 1.9887 1.7937 + 37.7083 208.0000 129.0000 1.9887 0.9576 36.5764 208.0000 130.0000 1.9887 1.9419 + 54.5964 208.0000 131.0000 1.9887 0.9601 50.2343 208.0000 132.0000 1.9887 0.9434 + 46.7753 208.0000 133.0000 1.9887 0.9889 43.9931 208.0000 134.0000 1.9887 0.9901 + 40.1002 208.0000 135.0000 1.9887 0.9974 58.9015 208.0000 137.0000 1.9887 0.9738 + 102.0116 208.0000 138.0000 1.9887 0.9801 83.5108 208.0000 139.0000 1.9887 1.9153 + 66.7498 208.0000 140.0000 1.9887 1.9355 67.4128 208.0000 141.0000 1.9887 1.9545 + 63.7402 208.0000 142.0000 1.9887 1.9420 69.2838 208.0000 143.0000 1.9887 1.6682 + 57.1928 208.0000 144.0000 1.9887 1.8584 53.8670 208.0000 145.0000 1.9887 1.9003 + 50.4709 208.0000 146.0000 1.9887 1.8630 48.6912 208.0000 147.0000 1.9887 0.9679 + 48.8497 208.0000 148.0000 1.9887 1.9539 70.3511 208.0000 149.0000 1.9887 0.9633 + 65.9635 208.0000 150.0000 1.9887 0.9514 63.4972 208.0000 151.0000 1.9887 0.9749 + 61.3585 208.0000 152.0000 1.9887 0.9811 57.5655 208.0000 153.0000 1.9887 0.9968 + 71.3269 208.0000 155.0000 1.9887 0.9909 131.2633 208.0000 156.0000 1.9887 0.9797 + 105.3236 208.0000 157.0000 1.9887 1.9373 73.9032 208.0000 159.0000 1.9887 2.9425 + 72.4156 208.0000 160.0000 1.9887 2.9455 70.2898 208.0000 161.0000 1.9887 2.9413 + 70.2511 208.0000 162.0000 1.9887 2.9300 66.7166 208.0000 163.0000 1.9887 1.8286 + 70.4331 208.0000 164.0000 1.9887 2.8732 66.5559 208.0000 165.0000 1.9887 2.9086 + 67.1060 208.0000 166.0000 1.9887 2.8965 63.4527 208.0000 167.0000 1.9887 2.9242 + 61.7568 208.0000 168.0000 1.9887 2.9282 61.2454 208.0000 169.0000 1.9887 2.9246 + 63.6396 208.0000 170.0000 1.9887 2.8482 59.3224 208.0000 171.0000 1.9887 2.9219 + 75.4412 208.0000 172.0000 1.9887 1.9254 71.7524 208.0000 173.0000 1.9887 1.9459 + 67.1687 208.0000 174.0000 1.9887 1.9292 66.6682 208.0000 175.0000 1.9887 1.8104 + 61.6676 208.0000 176.0000 1.9887 1.8858 58.7162 208.0000 177.0000 1.9887 1.8648 + 56.5285 208.0000 178.0000 1.9887 1.9188 54.2352 208.0000 179.0000 1.9887 0.9846 + 53.2556 208.0000 180.0000 1.9887 1.9896 76.8424 208.0000 181.0000 1.9887 0.9267 + 72.4353 208.0000 182.0000 1.9887 0.9383 71.5603 208.0000 183.0000 1.9887 0.9820 + 70.6708 208.0000 184.0000 1.9887 0.9815 67.5319 208.0000 185.0000 1.9887 0.9954 + 80.4326 208.0000 187.0000 1.9887 0.9705 133.2852 208.0000 188.0000 1.9887 0.9662 + 87.2108 208.0000 189.0000 1.9887 2.9070 97.9945 208.0000 190.0000 1.9887 2.8844 + 89.1421 208.0000 191.0000 1.9887 2.8738 80.5724 208.0000 192.0000 1.9887 2.8878 + 78.0190 208.0000 193.0000 1.9887 2.9095 88.1768 208.0000 194.0000 1.9887 1.9209 + 21.1282 208.0000 204.0000 1.9887 1.9697 21.3648 208.0000 205.0000 1.9887 1.9441 + 16.7855 208.0000 206.0000 1.9887 1.9985 14.0807 208.0000 207.0000 1.9887 2.0143 + 10.3708 208.0000 208.0000 1.9887 1.9887 21.8370 212.0000 1.0000 1.9496 0.9118 + 13.8496 212.0000 2.0000 1.9496 0.0000 370.8190 212.0000 3.0000 1.9496 0.0000 + 208.6769 212.0000 4.0000 1.9496 0.0000 136.9932 212.0000 5.0000 1.9496 0.0000 + 90.3305 212.0000 6.0000 1.9496 0.0000 61.8372 212.0000 7.0000 1.9496 0.0000 + 46.0347 212.0000 8.0000 1.9496 0.0000 34.3314 212.0000 9.0000 1.9496 0.0000 + 26.0533 212.0000 10.0000 1.9496 0.0000 442.4019 212.0000 11.0000 1.9496 0.0000 + 334.2493 212.0000 12.0000 1.9496 0.0000 304.7337 212.0000 13.0000 1.9496 0.0000 + 236.1388 212.0000 14.0000 1.9496 0.0000 180.9843 212.0000 15.0000 1.9496 0.0000 + 148.2130 212.0000 16.0000 1.9496 0.0000 119.3911 212.0000 17.0000 1.9496 0.0000 + 96.3813 212.0000 18.0000 1.9496 0.0000 723.6346 212.0000 19.0000 1.9496 0.0000 + 590.8737 212.0000 20.0000 1.9496 0.0000 486.4653 212.0000 21.0000 1.9496 0.0000 + 467.4506 212.0000 22.0000 1.9496 0.0000 426.8815 212.0000 23.0000 1.9496 0.0000 + 335.0118 212.0000 24.0000 1.9496 0.0000 366.0024 212.0000 25.0000 1.9496 0.0000 + 285.9969 212.0000 26.0000 1.9496 0.0000 302.4518 212.0000 27.0000 1.9496 0.0000 + 312.5862 212.0000 28.0000 1.9496 0.0000 238.5370 212.0000 29.0000 1.9496 0.0000 + 243.5663 212.0000 30.0000 1.9496 0.0000 289.7425 212.0000 31.0000 1.9496 0.0000 + 252.3964 212.0000 32.0000 1.9496 0.0000 212.3392 212.0000 33.0000 1.9496 0.0000 + 188.6214 212.0000 34.0000 1.9496 0.0000 163.2221 212.0000 35.0000 1.9496 0.0000 + 140.3605 212.0000 36.0000 1.9496 0.0000 808.8537 212.0000 37.0000 1.9496 0.0000 + 703.3906 212.0000 38.0000 1.9496 0.0000 611.6961 212.0000 39.0000 1.9496 0.0000 + 546.7935 212.0000 40.0000 1.9496 0.0000 496.4807 212.0000 41.0000 1.9496 0.0000 + 379.7626 212.0000 42.0000 1.9496 0.0000 425.2656 212.0000 43.0000 1.9496 0.0000 + 320.6678 212.0000 44.0000 1.9496 0.0000 351.4302 212.0000 45.0000 1.9496 0.0000 + 324.9551 212.0000 46.0000 1.9496 0.0000 270.1633 212.0000 47.0000 1.9496 0.0000 + 285.2161 212.0000 48.0000 1.9496 0.0000 361.3835 212.0000 49.0000 1.9496 0.0000 + 331.2828 212.0000 50.0000 1.9496 0.0000 292.0246 212.0000 51.0000 1.9496 0.0000 + 268.8595 212.0000 52.0000 1.9496 0.0000 240.8943 212.0000 53.0000 1.9496 0.0000 + 214.5479 212.0000 54.0000 1.9496 0.0000 983.9584 212.0000 55.0000 1.9496 0.0000 + 897.4029 212.0000 56.0000 1.9496 0.0000 783.1302 212.0000 57.0000 1.9496 0.0000 + 345.1382 212.0000 58.0000 1.9496 2.7991 792.9063 212.0000 59.0000 1.9496 0.0000 + 760.7352 212.0000 60.0000 1.9496 0.0000 741.4881 212.0000 61.0000 1.9496 0.0000 + 723.8209 212.0000 62.0000 1.9496 0.0000 708.1495 212.0000 63.0000 1.9496 0.0000 + 551.1193 212.0000 64.0000 1.9496 0.0000 626.4637 212.0000 65.0000 1.9496 0.0000 + 603.2928 212.0000 66.0000 1.9496 0.0000 637.8198 212.0000 67.0000 1.9496 0.0000 + 624.2488 212.0000 68.0000 1.9496 0.0000 611.9392 212.0000 69.0000 1.9496 0.0000 + 605.0843 212.0000 70.0000 1.9496 0.0000 506.2365 212.0000 71.0000 1.9496 0.0000 + 494.2290 212.0000 72.0000 1.9496 0.0000 448.1992 212.0000 73.0000 1.9496 0.0000 + 375.5975 212.0000 74.0000 1.9496 0.0000 381.4793 212.0000 75.0000 1.9496 0.0000 + 343.6107 212.0000 76.0000 1.9496 0.0000 312.9994 212.0000 77.0000 1.9496 0.0000 + 257.8921 212.0000 78.0000 1.9496 0.0000 240.1781 212.0000 79.0000 1.9496 0.0000 + 246.9009 212.0000 80.0000 1.9496 0.0000 368.7594 212.0000 81.0000 1.9496 0.0000 + 358.5506 212.0000 82.0000 1.9496 0.0000 326.5044 212.0000 83.0000 1.9496 0.0000 + 309.5177 212.0000 84.0000 1.9496 0.0000 283.3481 212.0000 85.0000 1.9496 0.0000 + 257.5824 212.0000 86.0000 1.9496 0.0000 924.2573 212.0000 87.0000 1.9496 0.0000 + 883.8111 212.0000 88.0000 1.9496 0.0000 776.4074 212.0000 89.0000 1.9496 0.0000 + 691.1271 212.0000 90.0000 1.9496 0.0000 688.3015 212.0000 91.0000 1.9496 0.0000 + 666.2269 212.0000 92.0000 1.9496 0.0000 689.6518 212.0000 93.0000 1.9496 0.0000 + 667.2949 212.0000 94.0000 1.9496 0.0000 35.9190 212.0000 101.0000 1.9496 0.0000 + 120.7808 212.0000 103.0000 1.9496 0.9865 153.1575 212.0000 104.0000 1.9496 0.9808 + 114.4190 212.0000 105.0000 1.9496 0.9706 84.6178 212.0000 106.0000 1.9496 0.9868 + 57.5398 212.0000 107.0000 1.9496 0.9944 41.0605 212.0000 108.0000 1.9496 0.9925 + 27.4841 212.0000 109.0000 1.9496 0.9982 176.8683 212.0000 111.0000 1.9496 0.9684 + 274.1590 212.0000 112.0000 1.9496 0.9628 275.2609 212.0000 113.0000 1.9496 0.9648 + 217.5471 212.0000 114.0000 1.9496 0.9507 175.5006 212.0000 115.0000 1.9496 0.9947 + 146.5849 212.0000 116.0000 1.9496 0.9948 118.1567 212.0000 117.0000 1.9496 0.9972 + 240.1725 212.0000 119.0000 1.9496 0.9767 470.3059 212.0000 120.0000 1.9496 0.9831 + 238.1540 212.0000 121.0000 1.9496 1.8627 229.5754 212.0000 122.0000 1.9496 1.8299 + 224.9822 212.0000 123.0000 1.9496 1.9138 223.1855 212.0000 124.0000 1.9496 1.8269 + 204.0446 212.0000 125.0000 1.9496 1.6406 188.2525 212.0000 126.0000 1.9496 1.6483 + 179.4553 212.0000 127.0000 1.9496 1.7149 175.5343 212.0000 128.0000 1.9496 1.7937 + 174.3619 212.0000 129.0000 1.9496 0.9576 162.0032 212.0000 130.0000 1.9496 1.9419 + 271.2420 212.0000 131.0000 1.9496 0.9601 235.2670 212.0000 132.0000 1.9496 0.9434 + 208.5236 212.0000 133.0000 1.9496 0.9889 188.7025 212.0000 134.0000 1.9496 0.9901 + 164.4383 212.0000 135.0000 1.9496 0.9974 285.4219 212.0000 137.0000 1.9496 0.9738 + 571.9448 212.0000 138.0000 1.9496 0.9801 430.3940 212.0000 139.0000 1.9496 1.9153 + 314.6402 212.0000 140.0000 1.9496 1.9355 317.7923 212.0000 141.0000 1.9496 1.9545 + 295.1816 212.0000 142.0000 1.9496 1.9420 333.8166 212.0000 143.0000 1.9496 1.6682 + 255.2289 212.0000 144.0000 1.9496 1.8584 238.3187 212.0000 145.0000 1.9496 1.9003 + 220.7375 212.0000 146.0000 1.9496 1.8630 213.7477 212.0000 147.0000 1.9496 0.9679 + 210.5498 212.0000 148.0000 1.9496 1.9539 343.3098 212.0000 149.0000 1.9496 0.9633 + 307.5475 212.0000 150.0000 1.9496 0.9514 285.7251 212.0000 151.0000 1.9496 0.9749 + 268.5418 212.0000 152.0000 1.9496 0.9811 243.2097 212.0000 153.0000 1.9496 0.9968 + 335.2430 212.0000 155.0000 1.9496 0.9909 742.3673 212.0000 156.0000 1.9496 0.9797 + 545.0752 212.0000 157.0000 1.9496 1.9373 334.4652 212.0000 159.0000 1.9496 2.9425 + 327.4991 212.0000 160.0000 1.9496 2.9455 316.8969 212.0000 161.0000 1.9496 2.9413 + 318.9485 212.0000 162.0000 1.9496 2.9300 308.8219 212.0000 163.0000 1.9496 1.8286 + 321.3077 212.0000 164.0000 1.9496 2.8732 301.2799 212.0000 165.0000 1.9496 2.9086 + 307.3477 212.0000 166.0000 1.9496 2.8965 285.5962 212.0000 167.0000 1.9496 2.9242 + 277.3103 212.0000 168.0000 1.9496 2.9282 275.6811 212.0000 169.0000 1.9496 2.9246 + 290.7410 212.0000 170.0000 1.9496 2.8482 266.2926 212.0000 171.0000 1.9496 2.9219 + 367.1079 212.0000 172.0000 1.9496 1.9254 338.4615 212.0000 173.0000 1.9496 1.9459 + 306.6214 212.0000 174.0000 1.9496 1.9292 311.9868 212.0000 175.0000 1.9496 1.8104 + 268.7831 212.0000 176.0000 1.9496 1.8858 251.9665 212.0000 177.0000 1.9496 1.8648 + 240.1040 212.0000 178.0000 1.9496 1.9188 229.3401 212.0000 179.0000 1.9496 0.9846 + 220.4740 212.0000 180.0000 1.9496 1.9896 366.9136 212.0000 181.0000 1.9496 0.9267 + 331.3135 212.0000 182.0000 1.9496 0.9383 319.5504 212.0000 183.0000 1.9496 0.9820 + 309.3423 212.0000 184.0000 1.9496 0.9815 286.8021 212.0000 185.0000 1.9496 0.9954 + 377.4216 212.0000 187.0000 1.9496 0.9705 735.1978 212.0000 188.0000 1.9496 0.9662 + 396.0686 212.0000 189.0000 1.9496 2.9070 460.5673 212.0000 190.0000 1.9496 2.8844 + 409.7423 212.0000 191.0000 1.9496 2.8738 359.9011 212.0000 192.0000 1.9496 2.8878 + 345.7120 212.0000 193.0000 1.9496 2.9095 423.2252 212.0000 194.0000 1.9496 1.9209 + 97.8101 212.0000 204.0000 1.9496 1.9697 95.3575 212.0000 205.0000 1.9496 1.9441 + 68.2984 212.0000 206.0000 1.9496 1.9985 53.8803 212.0000 207.0000 1.9496 2.0143 + 35.9665 212.0000 208.0000 1.9496 1.9887 175.5616 212.0000 212.0000 1.9496 1.9496 + 26.3524 213.0000 1.0000 1.9311 0.9118 16.7031 213.0000 2.0000 1.9311 0.0000 + 456.3613 213.0000 3.0000 1.9311 0.0000 253.0649 213.0000 4.0000 1.9311 0.0000 + 165.5938 213.0000 5.0000 1.9311 0.0000 109.0541 213.0000 6.0000 1.9311 0.0000 + 74.6117 213.0000 7.0000 1.9311 0.0000 55.5250 213.0000 8.0000 1.9311 0.0000 + 41.3914 213.0000 9.0000 1.9311 0.0000 31.3944 213.0000 10.0000 1.9311 0.0000 + 543.9378 213.0000 11.0000 1.9311 0.0000 406.0687 213.0000 12.0000 1.9311 0.0000 + 369.3829 213.0000 13.0000 1.9311 0.0000 285.4825 213.0000 14.0000 1.9311 0.0000 + 218.5302 213.0000 15.0000 1.9311 0.0000 178.8926 213.0000 16.0000 1.9311 0.0000 + 144.0669 213.0000 17.0000 1.9311 0.0000 116.2817 213.0000 18.0000 1.9311 0.0000 + 894.6228 213.0000 19.0000 1.9311 0.0000 721.4089 213.0000 20.0000 1.9311 0.0000 + 592.7050 213.0000 21.0000 1.9311 0.0000 568.9077 213.0000 22.0000 1.9311 0.0000 + 519.1328 213.0000 23.0000 1.9311 0.0000 407.7288 213.0000 24.0000 1.9311 0.0000 + 444.6283 213.0000 25.0000 1.9311 0.0000 347.6394 213.0000 26.0000 1.9311 0.0000 + 366.7236 213.0000 27.0000 1.9311 0.0000 379.2280 213.0000 28.0000 1.9311 0.0000 + 289.6824 213.0000 29.0000 1.9311 0.0000 294.9017 213.0000 30.0000 1.9311 0.0000 + 351.1192 213.0000 31.0000 1.9311 0.0000 305.1643 213.0000 32.0000 1.9311 0.0000 + 256.4231 213.0000 33.0000 1.9311 0.0000 227.6936 213.0000 34.0000 1.9311 0.0000 + 196.9743 213.0000 35.0000 1.9311 0.0000 169.3547 213.0000 36.0000 1.9311 0.0000 + 999.7400 213.0000 37.0000 1.9311 0.0000 859.5678 213.0000 38.0000 1.9311 0.0000 + 745.1801 213.0000 39.0000 1.9311 0.0000 665.0386 213.0000 40.0000 1.9311 0.0000 + 603.3575 213.0000 41.0000 1.9311 0.0000 461.0586 213.0000 42.0000 1.9311 0.0000 + 516.4766 213.0000 43.0000 1.9311 0.0000 388.9956 213.0000 44.0000 1.9311 0.0000 + 425.9837 213.0000 45.0000 1.9311 0.0000 393.6776 213.0000 46.0000 1.9311 0.0000 + 327.7472 213.0000 47.0000 1.9311 0.0000 345.2997 213.0000 48.0000 1.9311 0.0000 + 438.2474 213.0000 49.0000 1.9311 0.0000 400.7894 213.0000 50.0000 1.9311 0.0000 + 352.7849 213.0000 51.0000 1.9311 0.0000 324.6278 213.0000 52.0000 1.9311 0.0000 + 290.7378 213.0000 53.0000 1.9311 0.0000 258.8687 213.0000 54.0000 1.9311 0.0000 + 1217.3141 213.0000 55.0000 1.9311 0.0000 1098.7485 213.0000 56.0000 1.9311 0.0000 + 955.5488 213.0000 57.0000 1.9311 0.0000 417.2208 213.0000 58.0000 1.9311 2.7991 + 969.7366 213.0000 59.0000 1.9311 0.0000 929.6042 213.0000 60.0000 1.9311 0.0000 + 905.8860 213.0000 61.0000 1.9311 0.0000 884.1322 213.0000 62.0000 1.9311 0.0000 + 864.8322 213.0000 63.0000 1.9311 0.0000 671.2900 213.0000 64.0000 1.9311 0.0000 + 768.1313 213.0000 65.0000 1.9311 0.0000 739.4538 213.0000 66.0000 1.9311 0.0000 + 778.1323 213.0000 67.0000 1.9311 0.0000 761.4623 213.0000 68.0000 1.9311 0.0000 + 746.3210 213.0000 69.0000 1.9311 0.0000 738.0233 213.0000 70.0000 1.9311 0.0000 + 616.4715 213.0000 71.0000 1.9311 0.0000 600.0308 213.0000 72.0000 1.9311 0.0000 + 543.4462 213.0000 73.0000 1.9311 0.0000 455.3313 213.0000 74.0000 1.9311 0.0000 + 462.1194 213.0000 75.0000 1.9311 0.0000 415.8526 213.0000 76.0000 1.9311 0.0000 + 378.5524 213.0000 77.0000 1.9311 0.0000 311.8450 213.0000 78.0000 1.9311 0.0000 + 290.3777 213.0000 79.0000 1.9311 0.0000 298.3006 213.0000 80.0000 1.9311 0.0000 + 447.3949 213.0000 81.0000 1.9311 0.0000 433.9837 213.0000 82.0000 1.9311 0.0000 + 394.5702 213.0000 83.0000 1.9311 0.0000 373.8151 213.0000 84.0000 1.9311 0.0000 + 342.0211 213.0000 85.0000 1.9311 0.0000 310.8162 213.0000 86.0000 1.9311 0.0000 + 1139.7020 213.0000 87.0000 1.9311 0.0000 1080.3973 213.0000 88.0000 1.9311 0.0000 + 945.9883 213.0000 89.0000 1.9311 0.0000 839.7674 213.0000 90.0000 1.9311 0.0000 + 837.8184 213.0000 91.0000 1.9311 0.0000 810.8538 213.0000 92.0000 1.9311 0.0000 + 840.6989 213.0000 93.0000 1.9311 0.0000 813.1095 213.0000 94.0000 1.9311 0.0000 + 43.3661 213.0000 101.0000 1.9311 0.0000 146.4426 213.0000 103.0000 1.9311 0.9865 + 185.7310 213.0000 104.0000 1.9311 0.9808 138.2838 213.0000 105.0000 1.9311 0.9706 + 102.2095 213.0000 106.0000 1.9311 0.9868 69.4501 213.0000 107.0000 1.9311 0.9944 + 49.5319 213.0000 108.0000 1.9311 0.9925 33.1265 213.0000 109.0000 1.9311 0.9982 + 214.6796 213.0000 111.0000 1.9311 0.9684 333.0505 213.0000 112.0000 1.9311 0.9628 + 333.5341 213.0000 113.0000 1.9311 0.9648 262.9770 213.0000 114.0000 1.9311 0.9507 + 211.9205 213.0000 115.0000 1.9311 0.9947 176.9365 213.0000 116.0000 1.9311 0.9948 + 142.5806 213.0000 117.0000 1.9311 0.9972 291.6028 213.0000 119.0000 1.9311 0.9767 + 575.4721 213.0000 120.0000 1.9311 0.9831 288.0834 213.0000 121.0000 1.9311 1.8627 + 277.8074 213.0000 122.0000 1.9311 1.8299 272.2496 213.0000 123.0000 1.9311 1.9138 + 270.1623 213.0000 124.0000 1.9311 1.8269 246.5588 213.0000 125.0000 1.9311 1.6406 + 227.4327 213.0000 126.0000 1.9311 1.6483 216.8393 213.0000 127.0000 1.9311 1.7149 + 212.1194 213.0000 128.0000 1.9311 1.7937 210.9019 213.0000 129.0000 1.9311 0.9576 + 195.5973 213.0000 130.0000 1.9311 1.9419 328.5100 213.0000 131.0000 1.9311 0.9601 + 284.3739 213.0000 132.0000 1.9311 0.9434 251.8127 213.0000 133.0000 1.9311 0.9889 + 227.7982 213.0000 134.0000 1.9311 0.9901 198.4473 213.0000 135.0000 1.9311 0.9974 + 346.4959 213.0000 137.0000 1.9311 0.9738 700.6746 213.0000 138.0000 1.9311 0.9801 + 524.2267 213.0000 139.0000 1.9311 1.9153 381.0309 213.0000 140.0000 1.9311 1.9355 + 384.7678 213.0000 141.0000 1.9311 1.9545 357.3576 213.0000 142.0000 1.9311 1.9420 + 405.2011 213.0000 143.0000 1.9311 1.6682 308.5459 213.0000 144.0000 1.9311 1.8584 + 288.1291 213.0000 145.0000 1.9311 1.9003 266.8484 213.0000 146.0000 1.9311 1.8630 + 258.4065 213.0000 147.0000 1.9311 0.9679 254.2236 213.0000 148.0000 1.9311 1.9539 + 416.0033 213.0000 149.0000 1.9311 0.9633 371.8779 213.0000 150.0000 1.9311 0.9514 + 345.1303 213.0000 151.0000 1.9311 0.9749 324.2349 213.0000 152.0000 1.9311 0.9811 + 293.5337 213.0000 153.0000 1.9311 0.9968 406.3724 213.0000 155.0000 1.9311 0.9909 + 911.8321 213.0000 156.0000 1.9311 0.9797 664.5904 213.0000 157.0000 1.9311 1.9373 + 404.2910 213.0000 159.0000 1.9311 2.9425 395.8577 213.0000 160.0000 1.9311 2.9455 + 383.0238 213.0000 161.0000 1.9311 2.9413 385.6361 213.0000 162.0000 1.9311 2.9300 + 373.6925 213.0000 163.0000 1.9311 1.8286 388.4558 213.0000 164.0000 1.9311 2.8732 + 364.1571 213.0000 165.0000 1.9311 2.9086 371.7482 213.0000 166.0000 1.9311 2.8965 + 345.1182 213.0000 167.0000 1.9311 2.9242 335.0783 213.0000 168.0000 1.9311 2.9282 + 333.1239 213.0000 169.0000 1.9311 2.9246 351.3735 213.0000 170.0000 1.9311 2.8482 + 321.7317 213.0000 171.0000 1.9311 2.9219 445.3815 213.0000 172.0000 1.9311 1.9254 + 410.1206 213.0000 173.0000 1.9311 1.9459 371.0891 213.0000 174.0000 1.9311 1.9292 + 377.9737 213.0000 175.0000 1.9311 1.8104 324.7873 213.0000 176.0000 1.9311 1.8858 + 304.4031 213.0000 177.0000 1.9311 1.8648 290.0391 213.0000 178.0000 1.9311 1.9188 + 277.0789 213.0000 179.0000 1.9311 0.9846 266.1165 213.0000 180.0000 1.9311 1.9896 + 444.7526 213.0000 181.0000 1.9311 0.9267 400.6554 213.0000 182.0000 1.9311 0.9383 + 386.0564 213.0000 183.0000 1.9311 0.9820 373.5651 213.0000 184.0000 1.9311 0.9815 + 346.1857 213.0000 185.0000 1.9311 0.9954 457.4294 213.0000 187.0000 1.9311 0.9705 + 900.6966 213.0000 188.0000 1.9311 0.9662 478.7430 213.0000 189.0000 1.9311 2.9070 + 558.2191 213.0000 190.0000 1.9311 2.8844 496.7556 213.0000 191.0000 1.9311 2.8738 + 435.1351 213.0000 192.0000 1.9311 2.8878 417.8268 213.0000 193.0000 1.9311 2.9095 + 513.9366 213.0000 194.0000 1.9311 1.9209 118.1233 213.0000 204.0000 1.9311 1.9697 + 115.2480 213.0000 205.0000 1.9311 1.9441 82.4303 213.0000 206.0000 1.9311 1.9985 + 65.0164 213.0000 207.0000 1.9311 2.0143 43.3788 213.0000 208.0000 1.9311 1.9887 + 212.1971 213.0000 212.0000 1.9311 1.9496 256.7497 213.0000 213.0000 1.9311 1.9311 + 25.7021 214.0000 1.0000 1.9435 0.9118 16.5806 214.0000 2.0000 1.9435 0.0000 + 412.4323 214.0000 3.0000 1.9435 0.0000 236.8991 214.0000 4.0000 1.9435 0.0000 + 158.0165 214.0000 5.0000 1.9435 0.0000 105.5713 214.0000 6.0000 1.9435 0.0000 + 73.0073 214.0000 7.0000 1.9435 0.0000 54.7443 214.0000 8.0000 1.9435 0.0000 + 41.0728 214.0000 9.0000 1.9435 0.0000 31.3107 214.0000 10.0000 1.9435 0.0000 + 492.6562 214.0000 11.0000 1.9435 0.0000 377.8360 214.0000 12.0000 1.9435 0.0000 + 347.1154 214.0000 13.0000 1.9435 0.0000 271.8844 214.0000 14.0000 1.9435 0.0000 + 210.4840 214.0000 15.0000 1.9435 0.0000 173.5798 214.0000 16.0000 1.9435 0.0000 + 140.7824 214.0000 17.0000 1.9435 0.0000 114.3348 214.0000 18.0000 1.9435 0.0000 + 805.4924 214.0000 19.0000 1.9435 0.0000 664.0977 214.0000 20.0000 1.9435 0.0000 + 548.2115 214.0000 21.0000 1.9435 0.0000 528.4593 214.0000 22.0000 1.9435 0.0000 + 483.4599 214.0000 23.0000 1.9435 0.0000 379.9385 214.0000 24.0000 1.9435 0.0000 + 415.6112 214.0000 25.0000 1.9435 0.0000 325.3117 214.0000 26.0000 1.9435 0.0000 + 344.9479 214.0000 27.0000 1.9435 0.0000 355.7641 214.0000 28.0000 1.9435 0.0000 + 271.8911 214.0000 29.0000 1.9435 0.0000 278.9696 214.0000 30.0000 1.9435 0.0000 + 331.2849 214.0000 31.0000 1.9435 0.0000 290.9092 214.0000 32.0000 1.9435 0.0000 + 246.7379 214.0000 33.0000 1.9435 0.0000 220.3806 214.0000 34.0000 1.9435 0.0000 + 191.7992 214.0000 35.0000 1.9435 0.0000 165.8230 214.0000 36.0000 1.9435 0.0000 + 901.7739 214.0000 37.0000 1.9435 0.0000 790.6765 214.0000 38.0000 1.9435 0.0000 + 691.2029 214.0000 39.0000 1.9435 0.0000 620.0792 214.0000 40.0000 1.9435 0.0000 + 564.4901 214.0000 41.0000 1.9435 0.0000 433.9678 214.0000 42.0000 1.9435 0.0000 + 485.0098 214.0000 43.0000 1.9435 0.0000 367.7306 214.0000 44.0000 1.9435 0.0000 + 402.6239 214.0000 45.0000 1.9435 0.0000 372.8898 214.0000 46.0000 1.9435 0.0000 + 310.1186 214.0000 47.0000 1.9435 0.0000 327.9622 214.0000 48.0000 1.9435 0.0000 + 413.3754 214.0000 49.0000 1.9435 0.0000 381.2230 214.0000 50.0000 1.9435 0.0000 + 338.3189 214.0000 51.0000 1.9435 0.0000 312.8750 214.0000 52.0000 1.9435 0.0000 + 281.7256 214.0000 53.0000 1.9435 0.0000 252.1337 214.0000 54.0000 1.9435 0.0000 + 1098.1239 214.0000 55.0000 1.9435 0.0000 1007.8503 214.0000 56.0000 1.9435 0.0000 + 883.8815 214.0000 57.0000 1.9435 0.0000 399.5853 214.0000 58.0000 1.9435 2.7991 + 891.9042 214.0000 59.0000 1.9435 0.0000 856.2817 214.0000 60.0000 1.9435 0.0000 + 834.7641 214.0000 61.0000 1.9435 0.0000 814.9918 214.0000 62.0000 1.9435 0.0000 + 797.4609 214.0000 63.0000 1.9435 0.0000 624.7321 214.0000 64.0000 1.9435 0.0000 + 705.0006 214.0000 65.0000 1.9435 0.0000 679.6544 214.0000 66.0000 1.9435 0.0000 + 719.0323 214.0000 67.0000 1.9435 0.0000 703.7881 214.0000 68.0000 1.9435 0.0000 + 690.0184 214.0000 69.0000 1.9435 0.0000 682.0827 214.0000 70.0000 1.9435 0.0000 + 573.2433 214.0000 71.0000 1.9435 0.0000 562.7866 214.0000 72.0000 1.9435 0.0000 + 512.3504 214.0000 73.0000 1.9435 0.0000 431.0518 214.0000 74.0000 1.9435 0.0000 + 438.3213 214.0000 75.0000 1.9435 0.0000 396.1989 214.0000 76.0000 1.9435 0.0000 + 361.9628 214.0000 77.0000 1.9435 0.0000 299.3564 214.0000 78.0000 1.9435 0.0000 + 279.1827 214.0000 79.0000 1.9435 0.0000 287.2476 214.0000 80.0000 1.9435 0.0000 + 422.9687 214.0000 81.0000 1.9435 0.0000 412.9602 214.0000 82.0000 1.9435 0.0000 + 378.2078 214.0000 83.0000 1.9435 0.0000 359.8412 214.0000 84.0000 1.9435 0.0000 + 330.9249 214.0000 85.0000 1.9435 0.0000 302.1462 214.0000 86.0000 1.9435 0.0000 + 1035.3860 214.0000 87.0000 1.9435 0.0000 995.3732 214.0000 88.0000 1.9435 0.0000 + 878.2550 214.0000 89.0000 1.9435 0.0000 786.5317 214.0000 90.0000 1.9435 0.0000 + 781.3133 214.0000 91.0000 1.9435 0.0000 756.3527 214.0000 92.0000 1.9435 0.0000 + 779.9636 214.0000 93.0000 1.9435 0.0000 755.1229 214.0000 94.0000 1.9435 0.0000 + 41.8222 214.0000 101.0000 1.9435 0.0000 137.4458 214.0000 103.0000 1.9435 0.9865 + 174.9315 214.0000 104.0000 1.9435 0.9808 132.4831 214.0000 105.0000 1.9435 0.9706 + 98.9278 214.0000 106.0000 1.9435 0.9868 67.9820 214.0000 107.0000 1.9435 0.9944 + 48.9391 214.0000 108.0000 1.9435 0.9925 33.1075 214.0000 109.0000 1.9435 0.9982 + 200.8038 214.0000 111.0000 1.9435 0.9684 310.9897 214.0000 112.0000 1.9435 0.9628 + 314.1809 214.0000 113.0000 1.9435 0.9648 250.9376 214.0000 114.0000 1.9435 0.9507 + 204.1998 214.0000 115.0000 1.9435 0.9947 171.6537 214.0000 116.0000 1.9435 0.9948 + 139.3125 214.0000 117.0000 1.9435 0.9972 274.8056 214.0000 119.0000 1.9435 0.9767 + 529.8946 214.0000 120.0000 1.9435 0.9831 274.3493 214.0000 121.0000 1.9435 1.8627 + 264.6302 214.0000 122.0000 1.9435 1.8299 259.2925 214.0000 123.0000 1.9435 1.9138 + 256.9682 214.0000 124.0000 1.9435 1.8269 235.9676 214.0000 125.0000 1.9435 1.6406 + 218.0646 214.0000 126.0000 1.9435 1.6483 207.9084 214.0000 127.0000 1.9435 1.7149 + 203.2777 214.0000 128.0000 1.9435 1.7937 201.1573 214.0000 129.0000 1.9435 0.9576 + 188.1613 214.0000 130.0000 1.9435 1.9419 310.7704 214.0000 131.0000 1.9435 0.9601 + 271.7438 214.0000 132.0000 1.9435 0.9434 242.4359 214.0000 133.0000 1.9435 0.9889 + 220.4624 214.0000 134.0000 1.9435 0.9901 193.1738 214.0000 135.0000 1.9435 0.9974 + 327.3080 214.0000 137.0000 1.9435 0.9738 644.4017 214.0000 138.0000 1.9435 0.9801 + 490.2154 214.0000 139.0000 1.9435 1.9153 362.5672 214.0000 140.0000 1.9435 1.9355 + 366.0984 214.0000 141.0000 1.9435 1.9545 340.7358 214.0000 142.0000 1.9435 1.9420 + 383.1734 214.0000 143.0000 1.9435 1.6682 295.9631 214.0000 144.0000 1.9435 1.8584 + 276.5427 214.0000 145.0000 1.9435 1.9003 256.4133 214.0000 146.0000 1.9435 1.8630 + 248.0750 214.0000 147.0000 1.9435 0.9679 245.1614 214.0000 148.0000 1.9435 1.9539 + 393.5617 214.0000 149.0000 1.9435 0.9633 354.8687 214.0000 150.0000 1.9435 0.9514 + 331.3449 214.0000 151.0000 1.9435 0.9749 312.5939 214.0000 152.0000 1.9435 0.9811 + 284.4096 214.0000 153.0000 1.9435 0.9968 386.4327 214.0000 155.0000 1.9435 0.9909 + 835.4801 214.0000 156.0000 1.9435 0.9797 620.5160 214.0000 157.0000 1.9435 1.9373 + 387.3888 214.0000 159.0000 1.9435 2.9425 379.3429 214.0000 160.0000 1.9435 2.9455 + 367.1968 214.0000 161.0000 1.9435 2.9413 369.2253 214.0000 162.0000 1.9435 2.9300 + 356.3677 214.0000 163.0000 1.9435 1.8286 371.7819 214.0000 164.0000 1.9435 2.8732 + 348.9033 214.0000 165.0000 1.9435 2.9086 355.3534 214.0000 166.0000 1.9435 2.8965 + 331.0143 214.0000 167.0000 1.9435 2.9242 321.5131 214.0000 168.0000 1.9435 2.9282 + 319.5322 214.0000 169.0000 1.9435 2.9246 336.4239 214.0000 170.0000 1.9435 2.8482 + 308.7930 214.0000 171.0000 1.9435 2.9219 421.2426 214.0000 172.0000 1.9435 1.9254 + 389.8713 214.0000 173.0000 1.9435 1.9459 354.6271 214.0000 174.0000 1.9435 1.9292 + 359.5564 214.0000 175.0000 1.9435 1.8104 312.6836 214.0000 176.0000 1.9435 1.8858 + 293.5928 214.0000 177.0000 1.9435 1.8648 280.0395 214.0000 178.0000 1.9435 1.9188 + 267.4853 214.0000 179.0000 1.9435 0.9846 257.9876 214.0000 180.0000 1.9435 1.9896 + 421.4777 214.0000 181.0000 1.9435 0.9267 382.9249 214.0000 182.0000 1.9435 0.9383 + 370.6542 214.0000 183.0000 1.9435 0.9820 359.8342 214.0000 184.0000 1.9435 0.9815 + 334.9723 214.0000 185.0000 1.9435 0.9954 435.2078 214.0000 187.0000 1.9435 0.9705 + 830.0097 214.0000 188.0000 1.9435 0.9662 458.6209 214.0000 189.0000 1.9435 2.9070 + 530.6548 214.0000 190.0000 1.9435 2.8844 473.2924 214.0000 191.0000 1.9435 2.8738 + 417.2588 214.0000 192.0000 1.9435 2.8878 401.1937 214.0000 193.0000 1.9435 2.9095 + 485.6800 214.0000 194.0000 1.9435 1.9209 113.2820 214.0000 204.0000 1.9435 1.9697 + 110.8447 214.0000 205.0000 1.9435 1.9441 80.2619 214.0000 206.0000 1.9435 1.9985 + 63.7151 214.0000 207.0000 1.9435 2.0143 42.9679 214.0000 208.0000 1.9435 1.9887 + 201.7758 214.0000 212.0000 1.9435 1.9496 243.8407 214.0000 213.0000 1.9435 1.9311 + 233.1254 214.0000 214.0000 1.9435 1.9435 22.7429 215.0000 1.0000 2.0102 0.9118 + 15.0245 215.0000 2.0000 2.0102 0.0000 337.4662 215.0000 3.0000 2.0102 0.0000 + 199.9576 215.0000 4.0000 2.0102 0.0000 136.2402 215.0000 5.0000 2.0102 0.0000 + 92.6080 215.0000 6.0000 2.0102 0.0000 64.9209 215.0000 7.0000 2.0102 0.0000 + 49.1729 215.0000 8.0000 2.0102 0.0000 37.2205 215.0000 9.0000 2.0102 0.0000 + 28.5805 215.0000 10.0000 2.0102 0.0000 403.9802 215.0000 11.0000 2.0102 0.0000 + 317.0824 215.0000 12.0000 2.0102 0.0000 294.3403 215.0000 13.0000 2.0102 0.0000 + 233.8752 215.0000 14.0000 2.0102 0.0000 183.4322 215.0000 15.0000 2.0102 0.0000 + 152.6470 215.0000 16.0000 2.0102 0.0000 124.9162 215.0000 17.0000 2.0102 0.0000 + 102.2701 215.0000 18.0000 2.0102 0.0000 659.2394 215.0000 19.0000 2.0102 0.0000 + 552.4889 215.0000 20.0000 2.0102 0.0000 457.9608 215.0000 21.0000 2.0102 0.0000 + 443.4723 215.0000 22.0000 2.0102 0.0000 406.7672 215.0000 23.0000 2.0102 0.0000 + 320.2734 215.0000 24.0000 2.0102 0.0000 351.0224 215.0000 25.0000 2.0102 0.0000 + 275.4138 215.0000 26.0000 2.0102 0.0000 293.1661 215.0000 27.0000 2.0102 0.0000 + 301.4974 215.0000 28.0000 2.0102 0.0000 230.9091 215.0000 29.0000 2.0102 0.0000 + 238.5063 215.0000 30.0000 2.0102 0.0000 282.3871 215.0000 31.0000 2.0102 0.0000 + 250.6401 215.0000 32.0000 2.0102 0.0000 214.8363 215.0000 33.0000 2.0102 0.0000 + 193.2410 215.0000 34.0000 2.0102 0.0000 169.4313 215.0000 35.0000 2.0102 0.0000 + 147.5193 215.0000 36.0000 2.0102 0.0000 739.7269 215.0000 37.0000 2.0102 0.0000 + 657.7877 215.0000 38.0000 2.0102 0.0000 579.5105 215.0000 39.0000 2.0102 0.0000 + 522.5721 215.0000 40.0000 2.0102 0.0000 477.4772 215.0000 41.0000 2.0102 0.0000 + 369.6794 215.0000 42.0000 2.0102 0.0000 412.0413 215.0000 43.0000 2.0102 0.0000 + 314.8297 215.0000 44.0000 2.0102 0.0000 344.2987 215.0000 45.0000 2.0102 0.0000 + 319.6077 215.0000 46.0000 2.0102 0.0000 265.9503 215.0000 47.0000 2.0102 0.0000 + 281.9469 215.0000 48.0000 2.0102 0.0000 352.7247 215.0000 49.0000 2.0102 0.0000 + 327.9460 215.0000 50.0000 2.0102 0.0000 293.6168 215.0000 51.0000 2.0102 0.0000 + 273.0920 215.0000 52.0000 2.0102 0.0000 247.4732 215.0000 53.0000 2.0102 0.0000 + 222.8660 215.0000 54.0000 2.0102 0.0000 901.7293 215.0000 55.0000 2.0102 0.0000 + 836.9970 215.0000 56.0000 2.0102 0.0000 739.5674 215.0000 57.0000 2.0102 0.0000 + 346.4675 215.0000 58.0000 2.0102 2.7991 742.6702 215.0000 59.0000 2.0102 0.0000 + 713.7913 215.0000 60.0000 2.0102 0.0000 696.0628 215.0000 61.0000 2.0102 0.0000 + 679.7433 215.0000 62.0000 2.0102 0.0000 665.2819 215.0000 63.0000 2.0102 0.0000 + 526.1827 215.0000 64.0000 2.0102 0.0000 587.0972 215.0000 65.0000 2.0102 0.0000 + 566.8734 215.0000 66.0000 2.0102 0.0000 600.8855 215.0000 67.0000 2.0102 0.0000 + 588.2297 215.0000 68.0000 2.0102 0.0000 576.8643 215.0000 69.0000 2.0102 0.0000 + 569.9851 215.0000 70.0000 2.0102 0.0000 482.1627 215.0000 71.0000 2.0102 0.0000 + 477.0759 215.0000 72.0000 2.0102 0.0000 436.6757 215.0000 73.0000 2.0102 0.0000 + 369.3512 215.0000 74.0000 2.0102 0.0000 376.2190 215.0000 75.0000 2.0102 0.0000 + 341.7156 215.0000 76.0000 2.0102 0.0000 313.4498 215.0000 77.0000 2.0102 0.0000 + 260.5907 215.0000 78.0000 2.0102 0.0000 243.5211 215.0000 79.0000 2.0102 0.0000 + 250.8427 215.0000 80.0000 2.0102 0.0000 362.2556 215.0000 81.0000 2.0102 0.0000 + 355.7163 215.0000 82.0000 2.0102 0.0000 328.2537 215.0000 83.0000 2.0102 0.0000 + 313.7802 215.0000 84.0000 2.0102 0.0000 290.2629 215.0000 85.0000 2.0102 0.0000 + 266.5063 215.0000 86.0000 2.0102 0.0000 855.3214 215.0000 87.0000 2.0102 0.0000 + 830.0834 215.0000 88.0000 2.0102 0.0000 737.4095 215.0000 89.0000 2.0102 0.0000 + 666.2141 215.0000 90.0000 2.0102 0.0000 659.3738 215.0000 91.0000 2.0102 0.0000 + 638.4646 215.0000 92.0000 2.0102 0.0000 654.8973 215.0000 93.0000 2.0102 0.0000 + 634.6074 215.0000 94.0000 2.0102 0.0000 36.4936 215.0000 101.0000 2.0102 0.0000 + 116.3941 215.0000 103.0000 2.0102 0.9865 148.8194 215.0000 104.0000 2.0102 0.9808 + 114.7968 215.0000 105.0000 2.0102 0.9706 86.8128 215.0000 106.0000 2.0102 0.9868 + 60.5085 215.0000 107.0000 2.0102 0.9944 44.0904 215.0000 108.0000 2.0102 0.9925 + 30.2894 215.0000 109.0000 2.0102 0.9982 169.5698 215.0000 111.0000 2.0102 0.9684 + 262.1696 215.0000 112.0000 2.0102 0.9628 267.1404 215.0000 113.0000 2.0102 0.9648 + 216.3693 215.0000 114.0000 2.0102 0.9507 178.0622 215.0000 115.0000 2.0102 0.9947 + 150.9364 215.0000 116.0000 2.0102 0.9948 123.6011 215.0000 117.0000 2.0102 0.9972 + 234.4921 215.0000 119.0000 2.0102 0.9767 442.0702 215.0000 120.0000 2.0102 0.9831 + 236.2965 215.0000 121.0000 2.0102 1.8627 228.1087 215.0000 122.0000 2.0102 1.8299 + 223.4784 215.0000 123.0000 2.0102 1.9138 221.1986 215.0000 124.0000 2.0102 1.8269 + 204.3319 215.0000 125.0000 2.0102 1.6406 189.2497 215.0000 126.0000 2.0102 1.6483 + 180.4846 215.0000 127.0000 2.0102 1.7149 176.3750 215.0000 128.0000 2.0102 1.7937 + 173.7006 215.0000 129.0000 2.0102 0.9576 163.8884 215.0000 130.0000 2.0102 1.9419 + 265.6407 215.0000 131.0000 2.0102 0.9601 234.7785 215.0000 132.0000 2.0102 0.9434 + 211.2380 215.0000 133.0000 2.0102 0.9889 193.2996 215.0000 134.0000 2.0102 0.9901 + 170.5858 215.0000 135.0000 2.0102 0.9974 280.1183 215.0000 137.0000 2.0102 0.9738 + 537.4352 215.0000 138.0000 2.0102 0.9801 415.3578 215.0000 139.0000 2.0102 1.9153 + 312.3050 215.0000 140.0000 2.0102 1.9355 315.2763 215.0000 141.0000 2.0102 1.9545 + 294.2436 215.0000 142.0000 2.0102 1.9420 328.3317 215.0000 143.0000 2.0102 1.6682 + 257.2059 215.0000 144.0000 2.0102 1.8584 240.5751 215.0000 145.0000 2.0102 1.9003 + 223.4125 215.0000 146.0000 2.0102 1.8630 215.9419 215.0000 147.0000 2.0102 0.9679 + 214.2984 215.0000 148.0000 2.0102 1.9539 336.8285 215.0000 149.0000 2.0102 0.9633 + 306.3712 215.0000 150.0000 2.0102 0.9514 287.9266 215.0000 151.0000 2.0102 0.9749 + 272.9417 215.0000 152.0000 2.0102 0.9811 249.7992 215.0000 153.0000 2.0102 0.9968 + 332.8876 215.0000 155.0000 2.0102 0.9909 695.2639 215.0000 156.0000 2.0102 0.9797 + 525.2515 215.0000 157.0000 2.0102 1.9373 336.0824 215.0000 159.0000 2.0102 2.9425 + 329.1343 215.0000 160.0000 2.0102 2.9455 318.7539 215.0000 161.0000 2.0102 2.9413 + 320.1057 215.0000 162.0000 2.0102 2.9300 307.7168 215.0000 163.0000 2.0102 1.8286 + 322.1177 215.0000 164.0000 2.0102 2.8732 302.6610 215.0000 165.0000 2.0102 2.9086 + 307.5736 215.0000 166.0000 2.0102 2.8965 287.4557 215.0000 167.0000 2.0102 2.9242 + 279.3232 215.0000 168.0000 2.0102 2.9282 277.4949 215.0000 169.0000 2.0102 2.9246 + 291.5055 215.0000 170.0000 2.0102 2.8482 268.3264 215.0000 171.0000 2.0102 2.9219 + 360.7292 215.0000 172.0000 2.0102 1.9254 335.6479 215.0000 173.0000 2.0102 1.9459 + 307.0136 215.0000 174.0000 2.0102 1.9292 309.8275 215.0000 175.0000 2.0102 1.8104 + 272.8650 215.0000 176.0000 2.0102 1.8858 256.7878 215.0000 177.0000 2.0102 1.8648 + 245.2806 215.0000 178.0000 2.0102 1.9188 234.3332 215.0000 179.0000 2.0102 0.9846 + 226.9709 215.0000 180.0000 2.0102 1.9896 361.7246 215.0000 181.0000 2.0102 0.9267 + 331.3845 215.0000 182.0000 2.0102 0.9383 322.2607 215.0000 183.0000 2.0102 0.9820 + 313.9859 215.0000 184.0000 2.0102 0.9815 293.8159 215.0000 185.0000 2.0102 0.9954 + 375.0717 215.0000 187.0000 2.0102 0.9705 694.0552 215.0000 188.0000 2.0102 0.9662 + 397.7211 215.0000 189.0000 2.0102 2.9070 457.0273 215.0000 190.0000 2.0102 2.8844 + 408.9930 215.0000 191.0000 2.0102 2.8738 362.5338 215.0000 192.0000 2.0102 2.8878 + 349.0507 215.0000 193.0000 2.0102 2.9095 416.1319 215.0000 194.0000 2.0102 1.9209 + 98.1859 215.0000 204.0000 2.0102 1.9697 96.5324 215.0000 205.0000 2.0102 1.9441 + 70.9269 215.0000 206.0000 2.0102 1.9985 56.7981 215.0000 207.0000 2.0102 2.0143 + 38.8578 215.0000 208.0000 2.0102 1.9887 173.2227 215.0000 212.0000 2.0102 1.9496 + 209.2061 215.0000 213.0000 2.0102 1.9311 201.4465 215.0000 214.0000 2.0102 1.9435 + 175.5534 215.0000 215.0000 2.0102 2.0102 19.4729 216.0000 1.0000 1.9903 0.9118 + 13.2090 216.0000 2.0000 1.9903 0.0000 265.5464 216.0000 3.0000 1.9903 0.0000 + 162.6875 216.0000 4.0000 1.9903 0.0000 113.4324 216.0000 5.0000 1.9903 0.0000 + 78.5729 216.0000 6.0000 1.9903 0.0000 55.9136 216.0000 7.0000 1.9903 0.0000 + 42.8245 216.0000 8.0000 1.9903 0.0000 32.7365 216.0000 9.0000 1.9903 0.0000 + 25.3435 216.0000 10.0000 1.9903 0.0000 318.7120 216.0000 11.0000 1.9903 0.0000 + 256.4315 216.0000 12.0000 1.9903 0.0000 240.7165 216.0000 13.0000 1.9903 0.0000 + 194.2314 216.0000 14.0000 1.9903 0.0000 154.4935 216.0000 15.0000 1.9903 0.0000 + 129.8413 216.0000 16.0000 1.9903 0.0000 107.2964 216.0000 17.0000 1.9903 0.0000 + 88.6268 216.0000 18.0000 1.9903 0.0000 519.3802 216.0000 19.0000 1.9903 0.0000 + 442.8735 216.0000 20.0000 1.9903 0.0000 368.7131 216.0000 21.0000 1.9903 0.0000 + 358.8554 216.0000 22.0000 1.9903 0.0000 330.0938 216.0000 23.0000 1.9903 0.0000 + 260.5647 216.0000 24.0000 1.9903 0.0000 286.0527 216.0000 25.0000 1.9903 0.0000 + 225.1357 216.0000 26.0000 1.9903 0.0000 240.5175 216.0000 27.0000 1.9903 0.0000 + 246.5864 216.0000 28.0000 1.9903 0.0000 189.4122 216.0000 29.0000 1.9903 0.0000 + 196.9331 216.0000 30.0000 1.9903 0.0000 232.3409 216.0000 31.0000 1.9903 0.0000 + 208.5685 216.0000 32.0000 1.9903 0.0000 180.8007 216.0000 33.0000 1.9903 0.0000 + 163.8681 216.0000 34.0000 1.9903 0.0000 144.8387 216.0000 35.0000 1.9903 0.0000 + 127.0791 216.0000 36.0000 1.9903 0.0000 584.3784 216.0000 37.0000 1.9903 0.0000 + 527.3838 216.0000 38.0000 1.9903 0.0000 468.5269 216.0000 39.0000 1.9903 0.0000 + 424.8748 216.0000 40.0000 1.9903 0.0000 389.7889 216.0000 41.0000 1.9903 0.0000 + 304.2109 216.0000 42.0000 1.9903 0.0000 338.0296 216.0000 43.0000 1.9903 0.0000 + 260.5335 216.0000 44.0000 1.9903 0.0000 284.4682 216.0000 45.0000 1.9903 0.0000 + 264.7345 216.0000 46.0000 1.9903 0.0000 220.5585 216.0000 47.0000 1.9903 0.0000 + 234.3154 216.0000 48.0000 1.9903 0.0000 290.7255 216.0000 49.0000 1.9903 0.0000 + 272.5881 216.0000 50.0000 1.9903 0.0000 246.3350 216.0000 51.0000 1.9903 0.0000 + 230.5137 216.0000 52.0000 1.9903 0.0000 210.3176 216.0000 53.0000 1.9903 0.0000 + 190.6822 216.0000 54.0000 1.9903 0.0000 713.2229 216.0000 55.0000 1.9903 0.0000 + 669.9106 216.0000 56.0000 1.9903 0.0000 596.7186 216.0000 57.0000 1.9903 0.0000 + 290.4555 216.0000 58.0000 1.9903 2.7991 596.1986 216.0000 59.0000 1.9903 0.0000 + 573.6840 216.0000 60.0000 1.9903 0.0000 559.6108 216.0000 61.0000 1.9903 0.0000 + 546.6292 216.0000 62.0000 1.9903 0.0000 535.1318 216.0000 63.0000 1.9903 0.0000 + 427.7338 216.0000 64.0000 1.9903 0.0000 471.5858 216.0000 65.0000 1.9903 0.0000 + 456.1062 216.0000 66.0000 1.9903 0.0000 484.2101 216.0000 67.0000 1.9903 0.0000 + 474.0753 216.0000 68.0000 1.9903 0.0000 465.0326 216.0000 69.0000 1.9903 0.0000 + 459.2634 216.0000 70.0000 1.9903 0.0000 391.2939 216.0000 71.0000 1.9903 0.0000 + 390.3288 216.0000 72.0000 1.9903 0.0000 359.3797 216.0000 73.0000 1.9903 0.0000 + 305.8261 216.0000 74.0000 1.9903 0.0000 312.0468 216.0000 75.0000 1.9903 0.0000 + 284.9183 216.0000 76.0000 1.9903 0.0000 262.4983 216.0000 77.0000 1.9903 0.0000 + 219.5335 216.0000 78.0000 1.9903 0.0000 205.6260 216.0000 79.0000 1.9903 0.0000 + 212.0159 216.0000 80.0000 1.9903 0.0000 299.9198 216.0000 81.0000 1.9903 0.0000 + 296.2052 216.0000 82.0000 1.9903 0.0000 275.4969 216.0000 83.0000 1.9903 0.0000 + 264.6481 216.0000 84.0000 1.9903 0.0000 246.3395 216.0000 85.0000 1.9903 0.0000 + 227.5338 216.0000 86.0000 1.9903 0.0000 681.0241 216.0000 87.0000 1.9903 0.0000 + 667.4195 216.0000 88.0000 1.9903 0.0000 597.2320 216.0000 89.0000 1.9903 0.0000 + 544.7449 216.0000 90.0000 1.9903 0.0000 537.1536 216.0000 91.0000 1.9903 0.0000 + 520.2752 216.0000 92.0000 1.9903 0.0000 530.6421 216.0000 93.0000 1.9903 0.0000 + 514.6914 216.0000 94.0000 1.9903 0.0000 30.7747 216.0000 101.0000 1.9903 0.0000 + 95.0531 216.0000 103.0000 1.9903 0.9865 122.1534 216.0000 104.0000 1.9903 0.9808 + 96.1100 216.0000 105.0000 1.9903 0.9706 73.7006 216.0000 106.0000 1.9903 0.9868 + 52.1753 216.0000 107.0000 1.9903 0.9944 38.5276 216.0000 108.0000 1.9903 0.9925 + 26.9163 216.0000 109.0000 1.9903 0.9982 138.1166 216.0000 111.0000 1.9903 0.9684 + 213.1036 216.0000 112.0000 1.9903 0.9628 219.1285 216.0000 113.0000 1.9903 0.9648 + 180.1622 216.0000 114.0000 1.9903 0.9507 150.0748 216.0000 115.0000 1.9903 0.9947 + 128.3764 216.0000 116.0000 1.9903 0.9948 106.1606 216.0000 117.0000 1.9903 0.9972 + 193.3412 216.0000 119.0000 1.9903 0.9767 355.6161 216.0000 120.0000 1.9903 0.9831 + 196.6601 216.0000 121.0000 1.9903 1.8627 190.0290 216.0000 122.0000 1.9903 1.8299 + 186.1576 216.0000 123.0000 1.9903 1.9138 184.0280 216.0000 124.0000 1.9903 1.8269 + 171.0306 216.0000 125.0000 1.9903 1.6406 158.7933 216.0000 126.0000 1.9903 1.6483 + 151.4983 216.0000 127.0000 1.9903 1.7149 147.9753 216.0000 128.0000 1.9903 1.7937 + 145.0250 216.0000 129.0000 1.9903 0.9576 138.0396 216.0000 130.0000 1.9903 1.9419 + 219.2194 216.0000 131.0000 1.9903 0.9601 195.9558 216.0000 132.0000 1.9903 0.9434 + 177.9088 216.0000 133.0000 1.9903 0.9889 163.9083 216.0000 134.0000 1.9903 0.9901 + 145.7724 216.0000 135.0000 1.9903 0.9974 231.7265 216.0000 137.0000 1.9903 0.9738 + 432.2783 216.0000 138.0000 1.9903 0.9801 339.8082 216.0000 139.0000 1.9903 1.9153 + 259.9991 216.0000 140.0000 1.9903 1.9355 262.4295 216.0000 141.0000 1.9903 1.9545 + 245.6719 216.0000 142.0000 1.9903 1.9420 271.9434 216.0000 143.0000 1.9903 1.6682 + 216.2066 216.0000 144.0000 1.9903 1.8584 202.4803 216.0000 145.0000 1.9903 1.9003 + 188.3752 216.0000 146.0000 1.9903 1.8630 181.9100 216.0000 147.0000 1.9903 0.9679 + 181.2582 216.0000 148.0000 1.9903 1.9539 278.5087 216.0000 149.0000 1.9903 0.9633 + 255.6336 216.0000 150.0000 1.9903 0.9514 241.8844 216.0000 151.0000 1.9903 0.9749 + 230.4702 216.0000 152.0000 1.9903 0.9811 212.2628 216.0000 153.0000 1.9903 0.9968 + 277.2121 216.0000 155.0000 1.9903 0.9909 557.9918 216.0000 156.0000 1.9903 0.9797 + 429.3015 216.0000 157.0000 1.9903 1.9373 281.9238 216.0000 159.0000 1.9903 2.9425 + 276.1263 216.0000 160.0000 1.9903 2.9455 267.5627 216.0000 161.0000 1.9903 2.9413 + 268.3382 216.0000 162.0000 1.9903 2.9300 256.9068 216.0000 163.0000 1.9903 1.8286 + 269.8237 216.0000 164.0000 1.9903 2.8732 253.8632 216.0000 165.0000 1.9903 2.9086 + 257.3927 216.0000 166.0000 1.9903 2.8965 241.3800 216.0000 167.0000 1.9903 2.9242 + 234.6551 216.0000 168.0000 1.9903 2.9282 233.0206 216.0000 169.0000 1.9903 2.9246 + 244.1704 216.0000 170.0000 1.9903 2.8482 225.4533 216.0000 171.0000 1.9903 2.9219 + 298.4642 216.0000 172.0000 1.9903 1.9254 279.3141 216.0000 173.0000 1.9903 1.9459 + 257.0235 216.0000 174.0000 1.9903 1.9292 258.1172 216.0000 175.0000 1.9903 1.8104 + 230.3770 216.0000 176.0000 1.9903 1.8858 217.3574 216.0000 177.0000 1.9903 1.8648 + 207.9536 216.0000 178.0000 1.9903 1.9188 198.7551 216.0000 179.0000 1.9903 0.9846 + 193.3290 216.0000 180.0000 1.9903 1.9896 300.0969 216.0000 181.0000 1.9903 0.9267 + 277.3019 216.0000 182.0000 1.9903 0.9383 270.9585 216.0000 183.0000 1.9903 0.9820 + 265.0016 216.0000 184.0000 1.9903 0.9815 249.3496 216.0000 185.0000 1.9903 0.9954 + 312.4727 216.0000 187.0000 1.9903 0.9705 559.9281 216.0000 188.0000 1.9903 0.9662 + 333.4638 216.0000 189.0000 1.9903 2.9070 380.5036 216.0000 190.0000 1.9903 2.8844 + 341.7951 216.0000 191.0000 1.9903 2.8738 304.6744 216.0000 192.0000 1.9903 2.8878 + 293.7697 216.0000 193.0000 1.9903 2.9095 344.7117 216.0000 194.0000 1.9903 1.9209 + 82.1973 216.0000 204.0000 1.9903 1.9697 81.2693 216.0000 205.0000 1.9903 1.9441 + 60.6690 216.0000 206.0000 1.9903 1.9985 49.0629 216.0000 207.0000 1.9903 2.0143 + 34.1042 216.0000 208.0000 1.9903 1.9887 143.5523 216.0000 212.0000 1.9903 1.9496 + 173.2779 216.0000 213.0000 1.9903 1.9311 168.1302 216.0000 214.0000 1.9903 1.9435 + 147.8750 216.0000 215.0000 1.9903 2.0102 125.8109 216.0000 216.0000 1.9903 1.9903 + 30.6783 220.0000 1.0000 1.9349 0.9118 19.7247 220.0000 2.0000 1.9349 0.0000 + 525.3196 220.0000 3.0000 1.9349 0.0000 291.7021 220.0000 4.0000 1.9349 0.0000 + 191.4135 220.0000 5.0000 1.9349 0.0000 126.6836 220.0000 6.0000 1.9349 0.0000 + 87.1906 220.0000 7.0000 1.9349 0.0000 65.2525 220.0000 8.0000 1.9349 0.0000 + 48.9331 220.0000 9.0000 1.9349 0.0000 37.3258 220.0000 10.0000 1.9349 0.0000 + 626.5526 220.0000 11.0000 1.9349 0.0000 468.1527 220.0000 12.0000 1.9349 0.0000 + 426.0568 220.0000 13.0000 1.9349 0.0000 329.8171 220.0000 14.0000 1.9349 0.0000 + 253.1519 220.0000 15.0000 1.9349 0.0000 207.8531 220.0000 16.0000 1.9349 0.0000 + 168.0065 220.0000 17.0000 1.9349 0.0000 136.1638 220.0000 18.0000 1.9349 0.0000 + 1030.5394 220.0000 19.0000 1.9349 0.0000 832.2379 220.0000 20.0000 1.9349 0.0000 + 683.8786 220.0000 21.0000 1.9349 0.0000 656.7474 220.0000 22.0000 1.9349 0.0000 + 599.4521 220.0000 23.0000 1.9349 0.0000 471.3832 220.0000 24.0000 1.9349 0.0000 + 513.6516 220.0000 25.0000 1.9349 0.0000 402.1872 220.0000 26.0000 1.9349 0.0000 + 423.9523 220.0000 27.0000 1.9349 0.0000 438.2482 220.0000 28.0000 1.9349 0.0000 + 335.3592 220.0000 29.0000 1.9349 0.0000 341.1923 220.0000 30.0000 1.9349 0.0000 + 405.6488 220.0000 31.0000 1.9349 0.0000 352.9336 220.0000 32.0000 1.9349 0.0000 + 297.1426 220.0000 33.0000 1.9349 0.0000 264.3790 220.0000 34.0000 1.9349 0.0000 + 229.3147 220.0000 35.0000 1.9349 0.0000 197.7645 220.0000 36.0000 1.9349 0.0000 + 1152.0197 220.0000 37.0000 1.9349 0.0000 991.9143 220.0000 38.0000 1.9349 0.0000 + 860.3229 220.0000 39.0000 1.9349 0.0000 768.2000 220.0000 40.0000 1.9349 0.0000 + 697.3148 220.0000 41.0000 1.9349 0.0000 533.7978 220.0000 42.0000 1.9349 0.0000 + 597.4915 220.0000 43.0000 1.9349 0.0000 450.9597 220.0000 44.0000 1.9349 0.0000 + 493.3926 220.0000 45.0000 1.9349 0.0000 456.2063 220.0000 46.0000 1.9349 0.0000 + 380.4283 220.0000 47.0000 1.9349 0.0000 400.4535 220.0000 48.0000 1.9349 0.0000 + 507.2605 220.0000 49.0000 1.9349 0.0000 464.1193 220.0000 50.0000 1.9349 0.0000 + 409.0173 220.0000 51.0000 1.9349 0.0000 376.8093 220.0000 52.0000 1.9349 0.0000 + 338.0494 220.0000 53.0000 1.9349 0.0000 301.6273 220.0000 54.0000 1.9349 0.0000 + 1402.1290 220.0000 55.0000 1.9349 0.0000 1267.8490 220.0000 56.0000 1.9349 0.0000 + 1103.1556 220.0000 57.0000 1.9349 0.0000 483.9715 220.0000 58.0000 1.9349 2.7991 + 1119.4842 220.0000 59.0000 1.9349 0.0000 1073.3952 220.0000 60.0000 1.9349 0.0000 + 1046.0388 220.0000 61.0000 1.9349 0.0000 1020.9351 220.0000 62.0000 1.9349 0.0000 + 998.6585 220.0000 63.0000 1.9349 0.0000 776.0695 220.0000 64.0000 1.9349 0.0000 + 887.0421 220.0000 65.0000 1.9349 0.0000 853.8199 220.0000 66.0000 1.9349 0.0000 + 898.6515 220.0000 67.0000 1.9349 0.0000 879.3887 220.0000 68.0000 1.9349 0.0000 + 861.8975 220.0000 69.0000 1.9349 0.0000 852.2547 220.0000 70.0000 1.9349 0.0000 + 712.2608 220.0000 71.0000 1.9349 0.0000 693.4471 220.0000 72.0000 1.9349 0.0000 + 628.5566 220.0000 73.0000 1.9349 0.0000 527.4527 220.0000 74.0000 1.9349 0.0000 + 535.3314 220.0000 75.0000 1.9349 0.0000 482.2294 220.0000 76.0000 1.9349 0.0000 + 439.4127 220.0000 77.0000 1.9349 0.0000 362.7872 220.0000 78.0000 1.9349 0.0000 + 338.1275 220.0000 79.0000 1.9349 0.0000 347.2100 220.0000 80.0000 1.9349 0.0000 + 518.7107 220.0000 81.0000 1.9349 0.0000 503.2187 220.0000 82.0000 1.9349 0.0000 + 457.9078 220.0000 83.0000 1.9349 0.0000 434.1487 220.0000 84.0000 1.9349 0.0000 + 397.7546 220.0000 85.0000 1.9349 0.0000 362.0675 220.0000 86.0000 1.9349 0.0000 + 1313.9837 220.0000 87.0000 1.9349 0.0000 1247.1871 220.0000 88.0000 1.9349 0.0000 + 1092.5678 220.0000 89.0000 1.9349 0.0000 970.9362 220.0000 90.0000 1.9349 0.0000 + 968.7708 220.0000 91.0000 1.9349 0.0000 937.7422 220.0000 92.0000 1.9349 0.0000 + 972.0352 220.0000 93.0000 1.9349 0.0000 940.2033 220.0000 94.0000 1.9349 0.0000 + 50.2368 220.0000 101.0000 1.9349 0.0000 168.9009 220.0000 103.0000 1.9349 0.9865 + 214.3171 220.0000 104.0000 1.9349 0.9808 160.0734 220.0000 105.0000 1.9349 0.9706 + 118.8255 220.0000 106.0000 1.9349 0.9868 81.2525 220.0000 107.0000 1.9349 0.9944 + 58.3423 220.0000 108.0000 1.9349 0.9925 39.4048 220.0000 109.0000 1.9349 0.9982 + 247.8223 220.0000 111.0000 1.9349 0.9684 384.1308 220.0000 112.0000 1.9349 0.9628 + 384.8555 220.0000 113.0000 1.9349 0.9648 303.9725 220.0000 114.0000 1.9349 0.9507 + 245.5654 220.0000 115.0000 1.9349 0.9947 205.6006 220.0000 116.0000 1.9349 0.9948 + 166.2878 220.0000 117.0000 1.9349 0.9972 337.7795 220.0000 119.0000 1.9349 0.9767 + 664.0620 220.0000 120.0000 1.9349 0.9831 333.6780 220.0000 121.0000 1.9349 1.8627 + 321.8441 220.0000 122.0000 1.9349 1.8299 315.4686 220.0000 123.0000 1.9349 1.9138 + 313.0538 220.0000 124.0000 1.9349 1.8269 285.8068 220.0000 125.0000 1.9349 1.6406 + 263.7930 220.0000 126.0000 1.9349 1.6483 251.5841 220.0000 127.0000 1.9349 1.7149 + 246.1156 220.0000 128.0000 1.9349 1.7937 244.6716 220.0000 129.0000 1.9349 0.9576 + 227.0118 220.0000 130.0000 1.9349 1.9419 379.6650 220.0000 131.0000 1.9349 0.9601 + 329.0554 220.0000 132.0000 1.9349 0.9434 291.8601 220.0000 133.0000 1.9349 0.9889 + 264.5072 220.0000 134.0000 1.9349 0.9901 231.0107 220.0000 135.0000 1.9349 0.9974 + 401.6572 220.0000 137.0000 1.9349 0.9738 808.6909 220.0000 138.0000 1.9349 0.9801 + 605.8453 220.0000 139.0000 1.9349 1.9153 441.4951 220.0000 140.0000 1.9349 1.9355 + 445.9895 220.0000 141.0000 1.9349 1.9545 414.4811 220.0000 142.0000 1.9349 1.9420 + 469.5752 220.0000 143.0000 1.9349 1.6682 358.3732 220.0000 144.0000 1.9349 1.8584 + 334.8827 220.0000 145.0000 1.9349 1.9003 310.3909 220.0000 146.0000 1.9349 1.8630 + 300.6094 220.0000 147.0000 1.9349 0.9679 295.6941 220.0000 148.0000 1.9349 1.9539 + 481.6729 220.0000 149.0000 1.9349 0.9633 430.8853 220.0000 150.0000 1.9349 0.9514 + 400.2337 220.0000 151.0000 1.9349 0.9749 376.3706 220.0000 152.0000 1.9349 0.9811 + 341.2732 220.0000 153.0000 1.9349 0.9968 471.0509 220.0000 155.0000 1.9349 0.9909 + 1051.9461 220.0000 156.0000 1.9349 0.9797 767.9412 220.0000 157.0000 1.9349 1.9373 + 469.0498 220.0000 159.0000 1.9349 2.9425 459.2919 220.0000 160.0000 1.9349 2.9455 + 444.4629 220.0000 161.0000 1.9349 2.9413 447.3826 220.0000 162.0000 1.9349 2.9300 + 433.5252 220.0000 163.0000 1.9349 1.8286 450.5280 220.0000 164.0000 1.9349 2.8732 + 422.5156 220.0000 165.0000 1.9349 2.9086 431.1749 220.0000 166.0000 1.9349 2.8965 + 400.4754 220.0000 167.0000 1.9349 2.9242 388.8507 220.0000 168.0000 1.9349 2.9282 + 386.5382 220.0000 169.0000 1.9349 2.9246 407.3976 220.0000 170.0000 1.9349 2.8482 + 373.3213 220.0000 171.0000 1.9349 2.9219 515.5477 220.0000 172.0000 1.9349 1.9254 + 475.2624 220.0000 173.0000 1.9349 1.9459 430.5842 220.0000 174.0000 1.9349 1.9292 + 438.3207 220.0000 175.0000 1.9349 1.8104 377.5370 220.0000 176.0000 1.9349 1.8858 + 354.2005 220.0000 177.0000 1.9349 1.8648 337.7333 220.0000 178.0000 1.9349 1.9188 + 322.8524 220.0000 179.0000 1.9349 0.9846 310.2090 220.0000 180.0000 1.9349 1.9896 + 515.6440 220.0000 181.0000 1.9349 0.9267 464.8762 220.0000 182.0000 1.9349 0.9383 + 448.1223 220.0000 183.0000 1.9349 0.9820 433.8711 220.0000 184.0000 1.9349 0.9815 + 402.5559 220.0000 185.0000 1.9349 0.9954 530.1889 220.0000 187.0000 1.9349 0.9705 + 1039.8007 220.0000 188.0000 1.9349 0.9662 555.2692 220.0000 189.0000 1.9349 2.9070 + 646.8911 220.0000 190.0000 1.9349 2.8844 576.0927 220.0000 191.0000 1.9349 2.8738 + 505.3448 220.0000 192.0000 1.9349 2.8878 485.4245 220.0000 193.0000 1.9349 2.9095 + 595.8471 220.0000 194.0000 1.9349 1.9209 136.5998 220.0000 204.0000 1.9349 1.9697 + 133.5995 220.0000 205.0000 1.9349 1.9441 96.0553 220.0000 206.0000 1.9349 1.9985 + 76.1365 220.0000 207.0000 1.9349 2.0143 51.2425 220.0000 208.0000 1.9349 1.9887 + 245.0983 220.0000 212.0000 1.9349 1.9496 296.5572 220.0000 213.0000 1.9349 1.9311 + 281.9814 220.0000 214.0000 1.9349 1.9435 242.4454 220.0000 215.0000 1.9349 2.0102 + 201.3895 220.0000 216.0000 1.9349 1.9903 343.3343 220.0000 220.0000 1.9349 1.9349 + 29.8615 221.0000 1.0000 2.8999 0.9118 19.4304 221.0000 2.0000 2.8999 0.0000 + 481.9586 221.0000 3.0000 2.8999 0.0000 275.0061 221.0000 4.0000 2.8999 0.0000 + 183.2413 221.0000 5.0000 2.8999 0.0000 122.6115 221.0000 6.0000 2.8999 0.0000 + 85.0464 221.0000 7.0000 2.8999 0.0000 63.9839 221.0000 8.0000 2.8999 0.0000 + 48.1892 221.0000 9.0000 2.8999 0.0000 36.8800 221.0000 10.0000 2.8999 0.0000 + 575.7400 221.0000 11.0000 2.8999 0.0000 439.2030 221.0000 12.0000 2.8999 0.0000 + 402.9357 221.0000 13.0000 2.8999 0.0000 315.2655 221.0000 14.0000 2.8999 0.0000 + 244.1234 221.0000 15.0000 2.8999 0.0000 201.5466 221.0000 16.0000 2.8999 0.0000 + 163.7482 221.0000 17.0000 2.8999 0.0000 133.2865 221.0000 18.0000 2.8999 0.0000 + 943.3962 221.0000 19.0000 2.8999 0.0000 774.1368 221.0000 20.0000 2.8999 0.0000 + 638.4869 221.0000 21.0000 2.8999 0.0000 615.2494 221.0000 22.0000 2.8999 0.0000 + 562.7180 221.0000 23.0000 2.8999 0.0000 442.6736 221.0000 24.0000 2.8999 0.0000 + 483.5993 221.0000 25.0000 2.8999 0.0000 378.9366 221.0000 26.0000 2.8999 0.0000 + 401.1295 221.0000 27.0000 2.8999 0.0000 413.7841 221.0000 28.0000 2.8999 0.0000 + 316.7102 221.0000 29.0000 2.8999 0.0000 324.2891 221.0000 30.0000 2.8999 0.0000 + 384.8172 221.0000 31.0000 2.8999 0.0000 337.5761 221.0000 32.0000 2.8999 0.0000 + 286.3045 221.0000 33.0000 2.8999 0.0000 255.8702 221.0000 34.0000 2.8999 0.0000 + 222.9256 221.0000 35.0000 2.8999 0.0000 193.0224 221.0000 36.0000 2.8999 0.0000 + 1056.1444 221.0000 37.0000 2.8999 0.0000 922.1430 221.0000 38.0000 2.8999 0.0000 + 805.0465 221.0000 39.0000 2.8999 0.0000 721.7837 221.0000 40.0000 2.8999 0.0000 + 656.9546 221.0000 41.0000 2.8999 0.0000 505.2346 221.0000 42.0000 2.8999 0.0000 + 564.5560 221.0000 43.0000 2.8999 0.0000 428.2629 221.0000 44.0000 2.8999 0.0000 + 468.5358 221.0000 45.0000 2.8999 0.0000 433.9484 221.0000 46.0000 2.8999 0.0000 + 361.5057 221.0000 47.0000 2.8999 0.0000 381.7298 221.0000 48.0000 2.8999 0.0000 + 481.0066 221.0000 49.0000 2.8999 0.0000 443.0605 221.0000 50.0000 2.8999 0.0000 + 393.0115 221.0000 51.0000 2.8999 0.0000 363.4777 221.0000 52.0000 2.8999 0.0000 + 327.4340 221.0000 53.0000 2.8999 0.0000 293.2741 221.0000 54.0000 2.8999 0.0000 + 1285.9957 221.0000 55.0000 2.8999 0.0000 1176.2602 221.0000 56.0000 2.8999 0.0000 + 1030.0975 221.0000 57.0000 2.8999 0.0000 464.4600 221.0000 58.0000 2.8999 2.7991 + 1040.8154 221.0000 59.0000 2.8999 0.0000 998.9971 221.0000 60.0000 2.8999 0.0000 + 973.8228 221.0000 61.0000 2.8999 0.0000 950.6909 221.0000 62.0000 2.8999 0.0000 + 930.1750 221.0000 63.0000 2.8999 0.0000 728.1122 221.0000 64.0000 2.8999 0.0000 + 823.6822 221.0000 65.0000 2.8999 0.0000 793.8541 221.0000 66.0000 2.8999 0.0000 + 838.3710 221.0000 67.0000 2.8999 0.0000 820.5423 221.0000 68.0000 2.8999 0.0000 + 804.4238 221.0000 69.0000 2.8999 0.0000 795.1856 221.0000 70.0000 2.8999 0.0000 + 667.8924 221.0000 71.0000 2.8999 0.0000 654.6200 221.0000 72.0000 2.8999 0.0000 + 595.7700 221.0000 73.0000 2.8999 0.0000 501.5307 221.0000 74.0000 2.8999 0.0000 + 509.8160 221.0000 75.0000 2.8999 0.0000 460.8387 221.0000 76.0000 2.8999 0.0000 + 421.0942 221.0000 77.0000 2.8999 0.0000 348.6671 221.0000 78.0000 2.8999 0.0000 + 325.3386 221.0000 79.0000 2.8999 0.0000 334.5310 221.0000 80.0000 2.8999 0.0000 + 492.6887 221.0000 81.0000 2.8999 0.0000 480.4497 221.0000 82.0000 2.8999 0.0000 + 439.7476 221.0000 83.0000 2.8999 0.0000 418.3364 221.0000 84.0000 2.8999 0.0000 + 384.7925 221.0000 85.0000 2.8999 0.0000 351.5142 221.0000 86.0000 2.8999 0.0000 + 1211.2384 221.0000 87.0000 2.8999 0.0000 1160.9837 221.0000 88.0000 2.8999 0.0000 + 1023.1422 221.0000 89.0000 2.8999 0.0000 915.5214 221.0000 90.0000 2.8999 0.0000 + 910.3645 221.0000 91.0000 2.8999 0.0000 881.3428 221.0000 92.0000 2.8999 0.0000 + 909.6469 221.0000 93.0000 2.8999 0.0000 880.5433 221.0000 94.0000 2.8999 0.0000 + 48.4929 221.0000 101.0000 2.8999 0.0000 159.5715 221.0000 103.0000 2.8999 0.9865 + 203.0678 221.0000 104.0000 2.8999 0.9808 153.7050 221.0000 105.0000 2.8999 0.9706 + 114.9710 221.0000 106.0000 2.8999 0.9868 79.2586 221.0000 107.0000 2.8999 0.9944 + 57.2805 221.0000 108.0000 2.8999 0.9925 38.9899 221.0000 109.0000 2.8999 0.9982 + 233.4674 221.0000 111.0000 2.8999 0.9684 361.4502 221.0000 112.0000 2.8999 0.9628 + 364.6668 221.0000 113.0000 2.8999 0.9648 291.0037 221.0000 114.0000 2.8999 0.9507 + 236.8740 221.0000 115.0000 2.8999 0.9947 199.3322 221.0000 116.0000 2.8999 0.9948 + 162.0542 221.0000 117.0000 2.8999 0.9972 320.0043 221.0000 119.0000 2.8999 0.9767 + 618.1676 221.0000 120.0000 2.8999 0.9831 318.8004 221.0000 121.0000 2.8999 1.8627 + 307.5913 221.0000 122.0000 2.8999 1.8299 301.4420 221.0000 123.0000 2.8999 1.9138 + 298.8190 221.0000 124.0000 2.8999 1.8269 274.1703 221.0000 125.0000 2.8999 1.6406 + 253.4168 221.0000 126.0000 2.8999 1.6483 241.6833 221.0000 127.0000 2.8999 1.7149 + 236.3296 221.0000 128.0000 2.8999 1.7937 234.0374 221.0000 129.0000 2.8999 0.9576 + 218.6603 221.0000 130.0000 2.8999 1.9419 360.9196 221.0000 131.0000 2.8999 0.9601 + 315.3367 221.0000 132.0000 2.8999 0.9434 281.3331 221.0000 133.0000 2.8999 0.9889 + 255.9746 221.0000 134.0000 2.8999 0.9901 224.5209 221.0000 135.0000 2.8999 0.9974 + 381.2151 221.0000 137.0000 2.8999 0.9738 752.1641 221.0000 138.0000 2.8999 0.9801 + 570.8618 221.0000 139.0000 2.8999 1.9153 421.5388 221.0000 140.0000 2.8999 1.9355 + 425.7299 221.0000 141.0000 2.8999 1.9545 396.3470 221.0000 142.0000 2.8999 1.9420 + 446.1492 221.0000 143.0000 2.8999 1.6682 344.2948 221.0000 144.0000 2.8999 1.8584 + 321.8583 221.0000 145.0000 2.8999 1.9003 298.5692 221.0000 146.0000 2.8999 1.8630 + 288.9408 221.0000 147.0000 2.8999 0.9679 285.2814 221.0000 148.0000 2.8999 1.9539 + 457.8184 221.0000 149.0000 2.8999 0.9633 412.3939 221.0000 150.0000 2.8999 0.9514 + 384.9081 221.0000 151.0000 2.8999 0.9749 363.1446 221.0000 152.0000 2.8999 0.9811 + 330.5365 221.0000 153.0000 2.8999 0.9968 449.4774 221.0000 155.0000 2.8999 0.9909 + 975.9665 221.0000 156.0000 2.8999 0.9797 722.8068 221.0000 157.0000 2.8999 1.9373 + 450.3076 221.0000 159.0000 2.8999 2.9425 440.9674 221.0000 160.0000 2.8999 2.9455 + 426.8683 221.0000 161.0000 2.8999 2.9413 429.2527 221.0000 162.0000 2.8999 2.9300 + 414.5893 221.0000 163.0000 2.8999 1.8286 432.1441 221.0000 164.0000 2.8999 2.8732 + 405.6040 221.0000 165.0000 2.8999 2.9086 413.1795 221.0000 166.0000 2.8999 2.8965 + 384.7744 221.0000 167.0000 2.8999 2.9242 373.7251 221.0000 168.0000 2.8999 2.9282 + 371.4100 221.0000 169.0000 2.8999 2.9246 390.9216 221.0000 170.0000 2.8999 2.8482 + 358.8895 221.0000 171.0000 2.8999 2.9219 489.9850 221.0000 172.0000 2.8999 1.9254 + 453.4554 221.0000 173.0000 2.8999 1.9459 412.4826 221.0000 174.0000 2.8999 1.9292 + 418.3819 221.0000 175.0000 2.8999 1.8104 363.7522 221.0000 176.0000 2.8999 1.8858 + 341.7165 221.0000 177.0000 2.8999 1.8648 326.0813 221.0000 178.0000 2.8999 1.9188 + 311.6484 221.0000 179.0000 2.8999 0.9846 300.4649 221.0000 180.0000 2.8999 1.9896 + 490.7086 221.0000 181.0000 2.8999 0.9267 445.3967 221.0000 182.0000 2.8999 0.9383 + 430.9162 221.0000 183.0000 2.8999 0.9820 418.2904 221.0000 184.0000 2.8999 0.9815 + 389.4608 221.0000 185.0000 2.8999 0.9954 506.1252 221.0000 187.0000 2.8999 0.9705 + 968.7193 221.0000 188.0000 2.8999 0.9662 533.0015 221.0000 189.0000 2.8999 2.9070 + 617.3054 221.0000 190.0000 2.8999 2.8844 550.8253 221.0000 191.0000 2.8999 2.8738 + 485.4071 221.0000 192.0000 2.8999 2.8878 466.7411 221.0000 193.0000 2.8999 2.9095 + 565.8794 221.0000 194.0000 2.8999 1.9209 131.2980 221.0000 204.0000 2.8999 1.9697 + 128.6716 221.0000 205.0000 2.8999 1.9441 93.3603 221.0000 206.0000 2.8999 1.9985 + 74.3297 221.0000 207.0000 2.8999 2.0143 50.3920 221.0000 208.0000 2.8999 1.9887 + 234.0068 221.0000 212.0000 2.8999 1.9496 282.8628 221.0000 213.0000 2.8999 1.9311 + 270.3548 221.0000 214.0000 2.8999 1.9435 233.7282 221.0000 215.0000 2.8999 2.0102 + 195.2671 221.0000 216.0000 2.8999 1.9903 327.6458 221.0000 220.0000 2.8999 1.9349 + 313.9846 221.0000 221.0000 2.8999 2.8999 30.2593 222.0000 1.0000 3.8675 0.9118 + 19.7205 222.0000 2.0000 3.8675 0.0000 486.2098 222.0000 3.0000 3.8675 0.0000 + 277.9371 222.0000 4.0000 3.8675 0.0000 185.4074 222.0000 5.0000 3.8675 0.0000 + 124.1849 222.0000 6.0000 3.8675 0.0000 86.2109 222.0000 7.0000 3.8675 0.0000 + 64.9037 222.0000 8.0000 3.8675 0.0000 48.9131 222.0000 9.0000 3.8675 0.0000 + 37.4554 222.0000 10.0000 3.8675 0.0000 580.9067 222.0000 11.0000 3.8675 0.0000 + 443.7557 222.0000 12.0000 3.8675 0.0000 407.3331 222.0000 13.0000 3.8675 0.0000 + 318.9550 222.0000 14.0000 3.8675 0.0000 247.1603 222.0000 15.0000 3.8675 0.0000 + 204.1620 222.0000 16.0000 3.8675 0.0000 165.9632 222.0000 17.0000 3.8675 0.0000 + 135.1586 222.0000 18.0000 3.8675 0.0000 951.6268 222.0000 19.0000 3.8675 0.0000 + 781.7679 222.0000 20.0000 3.8675 0.0000 644.9388 222.0000 21.0000 3.8675 0.0000 + 621.6228 222.0000 22.0000 3.8675 0.0000 568.6316 222.0000 23.0000 3.8675 0.0000 + 447.3763 222.0000 24.0000 3.8675 0.0000 488.7888 222.0000 25.0000 3.8675 0.0000 + 383.0606 222.0000 26.0000 3.8675 0.0000 405.5809 222.0000 27.0000 3.8675 0.0000 + 418.3113 222.0000 28.0000 3.8675 0.0000 320.2198 222.0000 29.0000 3.8675 0.0000 + 328.0001 222.0000 30.0000 3.8675 0.0000 389.1325 222.0000 31.0000 3.8675 0.0000 + 341.5627 222.0000 32.0000 3.8675 0.0000 289.8560 222.0000 33.0000 3.8675 0.0000 + 259.1489 222.0000 34.0000 3.8675 0.0000 225.8818 222.0000 35.0000 3.8675 0.0000 + 195.6666 222.0000 36.0000 3.8675 0.0000 1065.4841 222.0000 37.0000 3.8675 0.0000 + 931.2172 222.0000 38.0000 3.8675 0.0000 813.3302 222.0000 39.0000 3.8675 0.0000 + 729.4243 222.0000 40.0000 3.8675 0.0000 664.0452 222.0000 41.0000 3.8675 0.0000 + 510.8967 222.0000 42.0000 3.8675 0.0000 570.7922 222.0000 43.0000 3.8675 0.0000 + 433.1914 222.0000 44.0000 3.8675 0.0000 473.8973 222.0000 45.0000 3.8675 0.0000 + 438.9752 222.0000 46.0000 3.8675 0.0000 365.7124 222.0000 47.0000 3.8675 0.0000 + 386.2241 222.0000 48.0000 3.8675 0.0000 486.4497 222.0000 49.0000 3.8675 0.0000 + 448.2770 222.0000 50.0000 3.8675 0.0000 397.8333 222.0000 51.0000 3.8675 0.0000 + 368.0557 222.0000 52.0000 3.8675 0.0000 331.6800 222.0000 53.0000 3.8675 0.0000 + 297.1871 222.0000 54.0000 3.8675 0.0000 1297.3700 222.0000 55.0000 3.8675 0.0000 + 1187.6789 222.0000 56.0000 3.8675 0.0000 1040.5570 222.0000 57.0000 3.8675 0.0000 + 470.1341 222.0000 58.0000 3.8675 2.7991 1051.1001 222.0000 59.0000 3.8675 0.0000 + 1008.9483 222.0000 60.0000 3.8675 0.0000 983.5427 222.0000 61.0000 3.8675 0.0000 + 960.1954 222.0000 62.0000 3.8675 0.0000 939.4890 222.0000 63.0000 3.8675 0.0000 + 735.7972 222.0000 64.0000 3.8675 0.0000 831.7726 222.0000 65.0000 3.8675 0.0000 + 801.7112 222.0000 66.0000 3.8675 0.0000 846.8568 222.0000 67.0000 3.8675 0.0000 + 828.8555 222.0000 68.0000 3.8675 0.0000 812.5860 222.0000 69.0000 3.8675 0.0000 + 803.2347 222.0000 70.0000 3.8675 0.0000 674.8890 222.0000 71.0000 3.8675 0.0000 + 661.7665 222.0000 72.0000 3.8675 0.0000 602.4592 222.0000 73.0000 3.8675 0.0000 + 507.3155 222.0000 74.0000 3.8675 0.0000 515.7464 222.0000 75.0000 3.8675 0.0000 + 466.3311 222.0000 76.0000 3.8675 0.0000 426.2144 222.0000 77.0000 3.8675 0.0000 + 353.0208 222.0000 78.0000 3.8675 0.0000 329.4445 222.0000 79.0000 3.8675 0.0000 + 338.7741 222.0000 80.0000 3.8675 0.0000 498.3709 222.0000 81.0000 3.8675 0.0000 + 486.1511 222.0000 82.0000 3.8675 0.0000 445.1537 222.0000 83.0000 3.8675 0.0000 + 423.5901 222.0000 84.0000 3.8675 0.0000 389.7559 222.0000 85.0000 3.8675 0.0000 + 356.1653 222.0000 86.0000 3.8675 0.0000 1222.4279 222.0000 87.0000 3.8675 0.0000 + 1172.5376 222.0000 88.0000 3.8675 0.0000 1033.7520 222.0000 89.0000 3.8675 0.0000 + 925.4898 222.0000 90.0000 3.8675 0.0000 920.0840 222.0000 91.0000 3.8675 0.0000 + 890.7699 222.0000 92.0000 3.8675 0.0000 919.1109 222.0000 93.0000 3.8675 0.0000 + 889.7519 222.0000 94.0000 3.8675 0.0000 49.0983 222.0000 101.0000 3.8675 0.0000 + 161.3013 222.0000 103.0000 3.8675 0.9865 205.3134 222.0000 104.0000 3.8675 0.9808 + 155.5661 222.0000 105.0000 3.8675 0.9706 116.4471 222.0000 106.0000 3.8675 0.9868 + 80.3464 222.0000 107.0000 3.8675 0.9944 58.1127 222.0000 108.0000 3.8675 0.9925 + 39.6015 222.0000 109.0000 3.8675 0.9982 235.9718 222.0000 111.0000 3.8675 0.9684 + 365.2736 222.0000 112.0000 3.8675 0.9628 368.7014 222.0000 113.0000 3.8675 0.9648 + 294.4479 222.0000 114.0000 3.8675 0.9507 239.8294 222.0000 115.0000 3.8675 0.9947 + 201.9181 222.0000 116.0000 3.8675 0.9948 164.2459 222.0000 117.0000 3.8675 0.9972 + 323.6190 222.0000 119.0000 3.8675 0.9767 624.3036 222.0000 120.0000 3.8675 0.9831 + 322.5705 222.0000 121.0000 3.8675 1.8627 311.2408 222.0000 122.0000 3.8675 1.8299 + 305.0201 222.0000 123.0000 3.8675 1.9138 302.3474 222.0000 124.0000 3.8675 1.8269 + 277.5005 222.0000 125.0000 3.8675 1.6406 256.5291 222.0000 126.0000 3.8675 1.6483 + 244.6571 222.0000 127.0000 3.8675 1.7149 239.2323 222.0000 128.0000 3.8675 1.7937 + 236.8532 222.0000 129.0000 3.8675 0.9576 221.3943 222.0000 130.0000 3.8675 1.9419 + 365.0239 222.0000 131.0000 3.8675 0.9601 319.1099 222.0000 132.0000 3.8675 0.9434 + 284.8345 222.0000 133.0000 3.8675 0.9889 259.2539 222.0000 134.0000 3.8675 0.9901 + 227.4937 222.0000 135.0000 3.8675 0.9974 385.5830 222.0000 137.0000 3.8675 0.9738 + 759.5978 222.0000 138.0000 3.8675 0.9801 577.0286 222.0000 139.0000 3.8675 1.9153 + 426.5157 222.0000 140.0000 3.8675 1.9355 430.7613 222.0000 141.0000 3.8675 1.9545 + 401.0919 222.0000 142.0000 3.8675 1.9420 451.2866 222.0000 143.0000 3.8675 1.6682 + 348.5490 222.0000 144.0000 3.8675 1.8584 325.8582 222.0000 145.0000 3.8675 1.9003 + 302.3112 222.0000 146.0000 3.8675 1.8630 292.5514 222.0000 147.0000 3.8675 0.9679 + 288.9111 222.0000 148.0000 3.8675 1.9539 463.0777 222.0000 149.0000 3.8675 0.9633 + 417.3325 222.0000 150.0000 3.8675 0.9514 389.6578 222.0000 151.0000 3.8675 0.9749 + 367.7252 222.0000 152.0000 3.8675 0.9811 334.8197 222.0000 153.0000 3.8675 0.9968 + 454.7799 222.0000 155.0000 3.8675 0.9909 985.4293 222.0000 156.0000 3.8675 0.9797 + 730.5584 222.0000 157.0000 3.8675 1.9373 455.8234 222.0000 159.0000 3.8675 2.9425 + 446.3717 222.0000 160.0000 3.8675 2.9455 432.1120 222.0000 161.0000 3.8675 2.9413 + 434.4919 222.0000 162.0000 3.8675 2.9300 419.5622 222.0000 163.0000 3.8675 1.8286 + 437.4020 222.0000 164.0000 3.8675 2.8732 410.5703 222.0000 165.0000 3.8675 2.9086 + 418.1829 222.0000 166.0000 3.8675 2.8965 389.5084 222.0000 167.0000 3.8675 2.9242 + 378.3321 222.0000 168.0000 3.8675 2.9282 375.9796 222.0000 169.0000 3.8675 2.9246 + 395.6779 222.0000 170.0000 3.8675 2.8482 363.3160 222.0000 171.0000 3.8675 2.9219 + 495.5985 222.0000 172.0000 3.8675 1.9254 458.7957 222.0000 173.0000 3.8675 1.9459 + 417.4793 222.0000 174.0000 3.8675 1.9292 423.3401 222.0000 175.0000 3.8675 1.8104 + 368.3317 222.0000 176.0000 3.8675 1.8858 346.0691 222.0000 177.0000 3.8675 1.8648 + 330.2661 222.0000 178.0000 3.8675 1.9188 315.6575 222.0000 179.0000 3.8675 0.9846 + 304.4029 222.0000 180.0000 3.8675 1.9896 496.4262 222.0000 181.0000 3.8675 0.9267 + 450.7995 222.0000 182.0000 3.8675 0.9383 436.2556 222.0000 183.0000 3.8675 0.9820 + 423.5585 222.0000 184.0000 3.8675 0.9815 394.4833 222.0000 185.0000 3.8675 0.9954 + 512.1076 222.0000 187.0000 3.8675 0.9705 978.4148 222.0000 188.0000 3.8675 0.9662 + 539.5156 222.0000 189.0000 3.8675 2.9070 624.5913 222.0000 190.0000 3.8675 2.8844 + 557.4227 222.0000 191.0000 3.8675 2.8738 491.4026 222.0000 192.0000 3.8675 2.8878 + 472.5463 222.0000 193.0000 3.8675 2.9095 572.4017 222.0000 194.0000 3.8675 1.9209 + 132.8881 222.0000 204.0000 3.8675 1.9697 130.2662 222.0000 205.0000 3.8675 1.9441 + 94.6013 222.0000 206.0000 3.8675 1.9985 75.3609 222.0000 207.0000 3.8675 2.0143 + 51.1410 222.0000 208.0000 3.8675 1.9887 236.7246 222.0000 212.0000 3.8675 1.9496 + 286.1317 222.0000 213.0000 3.8675 1.9311 273.5887 222.0000 214.0000 3.8675 1.9435 + 236.6374 222.0000 215.0000 3.8675 2.0102 197.8037 222.0000 216.0000 3.8675 1.9903 + 331.4851 222.0000 220.0000 3.8675 1.9349 317.7589 222.0000 221.0000 3.8675 2.8999 + 321.5890 222.0000 222.0000 3.8675 3.8675 27.6880 223.0000 1.0000 2.9110 0.9118 + 18.1127 223.0000 2.0000 2.9110 0.0000 448.2923 223.0000 3.0000 2.9110 0.0000 + 254.3767 223.0000 4.0000 2.9110 0.0000 169.5221 223.0000 5.0000 2.9110 0.0000 + 113.6129 223.0000 6.0000 2.9110 0.0000 78.9761 223.0000 7.0000 2.9110 0.0000 + 59.5445 223.0000 8.0000 2.9110 0.0000 44.9493 223.0000 9.0000 2.9110 0.0000 + 34.4789 223.0000 10.0000 2.9110 0.0000 535.4483 223.0000 11.0000 2.9110 0.0000 + 406.5642 223.0000 12.0000 2.9110 0.0000 372.8019 223.0000 13.0000 2.9110 0.0000 + 291.6318 223.0000 14.0000 2.9110 0.0000 225.9849 223.0000 15.0000 2.9110 0.0000 + 186.7665 223.0000 16.0000 2.9110 0.0000 151.9416 223.0000 17.0000 2.9110 0.0000 + 123.8635 223.0000 18.0000 2.9110 0.0000 879.7445 223.0000 19.0000 2.9110 0.0000 + 718.1630 223.0000 20.0000 2.9110 0.0000 591.8695 223.0000 21.0000 2.9110 0.0000 + 570.2282 223.0000 22.0000 2.9110 0.0000 521.4602 223.0000 23.0000 2.9110 0.0000 + 410.5661 223.0000 24.0000 2.9110 0.0000 448.0698 223.0000 25.0000 2.9110 0.0000 + 351.3939 223.0000 26.0000 2.9110 0.0000 371.5149 223.0000 27.0000 2.9110 0.0000 + 383.2557 223.0000 28.0000 2.9110 0.0000 293.6816 223.0000 29.0000 2.9110 0.0000 + 300.3130 223.0000 30.0000 2.9110 0.0000 356.2469 223.0000 31.0000 2.9110 0.0000 + 312.4130 223.0000 32.0000 2.9110 0.0000 265.0778 223.0000 33.0000 2.9110 0.0000 + 237.0577 223.0000 34.0000 2.9110 0.0000 206.7277 223.0000 35.0000 2.9110 0.0000 + 179.1965 223.0000 36.0000 2.9110 0.0000 984.9504 223.0000 37.0000 2.9110 0.0000 + 855.9005 223.0000 38.0000 2.9110 0.0000 746.4335 223.0000 39.0000 2.9110 0.0000 + 668.9667 223.0000 40.0000 2.9110 0.0000 608.8442 223.0000 41.0000 2.9110 0.0000 + 468.4059 223.0000 42.0000 2.9110 0.0000 523.3223 223.0000 43.0000 2.9110 0.0000 + 397.1558 223.0000 44.0000 2.9110 0.0000 434.2176 223.0000 45.0000 2.9110 0.0000 + 402.1750 223.0000 46.0000 2.9110 0.0000 335.4436 223.0000 47.0000 2.9110 0.0000 + 353.8227 223.0000 48.0000 2.9110 0.0000 445.7766 223.0000 49.0000 2.9110 0.0000 + 410.3518 223.0000 50.0000 2.9110 0.0000 364.0189 223.0000 51.0000 2.9110 0.0000 + 336.7719 223.0000 52.0000 2.9110 0.0000 303.5459 223.0000 53.0000 2.9110 0.0000 + 272.0795 223.0000 54.0000 2.9110 0.0000 1199.7581 223.0000 55.0000 2.9110 0.0000 + 1092.6689 223.0000 56.0000 2.9110 0.0000 955.7169 223.0000 57.0000 2.9110 0.0000 + 430.3341 223.0000 58.0000 2.9110 2.7991 966.6619 223.0000 59.0000 2.9110 0.0000 + 927.5254 223.0000 60.0000 2.9110 0.0000 904.0753 223.0000 61.0000 2.9110 0.0000 + 882.5313 223.0000 62.0000 2.9110 0.0000 863.4210 223.0000 63.0000 2.9110 0.0000 + 675.5150 223.0000 64.0000 2.9110 0.0000 766.0776 223.0000 65.0000 2.9110 0.0000 + 738.2489 223.0000 66.0000 2.9110 0.0000 777.8991 223.0000 67.0000 2.9110 0.0000 + 761.3040 223.0000 68.0000 2.9110 0.0000 746.2943 223.0000 69.0000 2.9110 0.0000 + 737.7269 223.0000 70.0000 2.9110 0.0000 619.4515 223.0000 71.0000 2.9110 0.0000 + 606.4479 223.0000 72.0000 2.9110 0.0000 551.8530 223.0000 73.0000 2.9110 0.0000 + 464.8433 223.0000 74.0000 2.9110 0.0000 472.4071 223.0000 75.0000 2.9110 0.0000 + 427.0631 223.0000 76.0000 2.9110 0.0000 390.3055 223.0000 77.0000 2.9110 0.0000 + 323.4494 223.0000 78.0000 2.9110 0.0000 301.9116 223.0000 79.0000 2.9110 0.0000 + 310.3353 223.0000 80.0000 2.9110 0.0000 457.0023 223.0000 81.0000 2.9110 0.0000 + 445.2862 223.0000 82.0000 2.9110 0.0000 407.5036 223.0000 83.0000 2.9110 0.0000 + 387.7153 223.0000 84.0000 2.9110 0.0000 356.7642 223.0000 85.0000 2.9110 0.0000 + 326.0951 223.0000 86.0000 2.9110 0.0000 1128.6750 223.0000 87.0000 2.9110 0.0000 + 1077.9350 223.0000 88.0000 2.9110 0.0000 948.9231 223.0000 89.0000 2.9110 0.0000 + 848.6235 223.0000 90.0000 2.9110 0.0000 844.4635 223.0000 91.0000 2.9110 0.0000 + 817.5462 223.0000 92.0000 2.9110 0.0000 844.2169 223.0000 93.0000 2.9110 0.0000 + 817.0971 223.0000 94.0000 2.9110 0.0000 44.8842 223.0000 101.0000 2.9110 0.0000 + 147.6410 223.0000 103.0000 2.9110 0.9865 187.9531 223.0000 104.0000 2.9110 0.9808 + 142.2728 223.0000 105.0000 2.9110 0.9706 106.5711 223.0000 106.0000 2.9110 0.9868 + 73.6275 223.0000 107.0000 2.9110 0.9944 53.3400 223.0000 108.0000 2.9110 0.9925 + 36.4513 223.0000 109.0000 2.9110 0.9982 216.1867 223.0000 111.0000 2.9110 0.9684 + 334.6783 223.0000 112.0000 2.9110 0.9628 337.4128 223.0000 113.0000 2.9110 0.9648 + 269.2413 223.0000 114.0000 2.9110 0.9507 219.3033 223.0000 115.0000 2.9110 0.9947 + 184.7241 223.0000 116.0000 2.9110 0.9948 150.3757 223.0000 117.0000 2.9110 0.9972 + 296.7431 223.0000 119.0000 2.9110 0.9767 574.2351 223.0000 120.0000 2.9110 0.9831 + 295.2374 223.0000 121.0000 2.9110 1.8627 284.9497 223.0000 122.0000 2.9110 1.8299 + 279.2755 223.0000 123.0000 2.9110 1.9138 276.8819 223.0000 124.0000 2.9110 1.8269 + 253.9370 223.0000 125.0000 2.9110 1.6406 234.7665 223.0000 126.0000 2.9110 1.6483 + 223.9437 223.0000 127.0000 2.9110 1.7149 218.9943 223.0000 128.0000 2.9110 1.7937 + 216.9203 223.0000 129.0000 2.9110 0.9576 202.5980 223.0000 130.0000 2.9110 1.9419 + 334.1078 223.0000 131.0000 2.9110 0.9601 291.8713 223.0000 132.0000 2.9110 0.9434 + 260.4970 223.0000 133.0000 2.9110 0.9889 237.1592 223.0000 134.0000 2.9110 0.9901 + 208.2022 223.0000 135.0000 2.9110 0.9974 353.5929 223.0000 137.0000 2.9110 0.9738 + 699.1302 223.0000 138.0000 2.9110 0.9801 529.6824 223.0000 139.0000 2.9110 1.9153 + 390.6056 223.0000 140.0000 2.9110 1.9355 394.4854 223.0000 141.0000 2.9110 1.9545 + 367.3750 223.0000 142.0000 2.9110 1.9420 413.8230 223.0000 143.0000 2.9110 1.6682 + 319.1584 223.0000 144.0000 2.9110 1.8584 298.4577 223.0000 145.0000 2.9110 1.9003 + 276.9472 223.0000 146.0000 2.9110 1.8630 268.0353 223.0000 147.0000 2.9110 0.9679 + 264.5314 223.0000 148.0000 2.9110 1.9539 424.2272 223.0000 149.0000 2.9110 0.9633 + 381.9818 223.0000 150.0000 2.9110 0.9514 356.5349 223.0000 151.0000 2.9110 0.9749 + 336.4671 223.0000 152.0000 2.9110 0.9811 306.4123 223.0000 153.0000 2.9110 0.9968 + 416.6755 223.0000 155.0000 2.9110 0.9909 908.1340 223.0000 156.0000 2.9110 0.9797 + 670.9208 223.0000 157.0000 2.9110 1.9373 417.2395 223.0000 159.0000 2.9110 2.9425 + 408.5880 223.0000 160.0000 2.9110 2.9455 395.5412 223.0000 161.0000 2.9110 2.9413 + 397.7647 223.0000 162.0000 2.9110 2.9300 384.2576 223.0000 163.0000 2.9110 1.8286 + 400.3793 223.0000 164.0000 2.9110 2.8732 375.8195 223.0000 165.0000 2.9110 2.9086 + 382.8866 223.0000 166.0000 2.9110 2.8965 356.5084 223.0000 167.0000 2.9110 2.9242 + 346.2718 223.0000 168.0000 2.9110 2.9282 344.1155 223.0000 169.0000 2.9110 2.9246 + 362.0987 223.0000 170.0000 2.9110 2.8482 332.4997 223.0000 171.0000 2.9110 2.9219 + 454.1931 223.0000 172.0000 2.9110 1.9254 420.3192 223.0000 173.0000 2.9110 1.9459 + 382.3628 223.0000 174.0000 2.9110 1.9292 387.8872 223.0000 175.0000 2.9110 1.8104 + 337.2614 223.0000 176.0000 2.9110 1.8858 316.9361 223.0000 177.0000 2.9110 1.8648 + 302.5159 223.0000 178.0000 2.9110 1.9188 289.2216 223.0000 179.0000 2.9110 0.9846 + 278.8184 223.0000 180.0000 2.9110 1.9896 455.0092 223.0000 181.0000 2.9110 0.9267 + 412.7929 223.0000 182.0000 2.9110 0.9383 399.3221 223.0000 183.0000 2.9110 0.9820 + 387.6670 223.0000 184.0000 2.9110 0.9815 361.0762 223.0000 185.0000 2.9110 0.9954 + 469.1513 223.0000 187.0000 2.9110 0.9705 900.5592 223.0000 188.0000 2.9110 0.9662 + 493.7990 223.0000 189.0000 2.9110 2.9070 572.3495 223.0000 190.0000 2.9110 2.8844 + 510.9977 223.0000 191.0000 2.9110 2.8738 450.0079 223.0000 192.0000 2.9110 2.8878 + 432.7084 223.0000 193.0000 2.9110 2.9095 525.1264 223.0000 194.0000 2.9110 1.9209 + 121.4601 223.0000 204.0000 2.9110 1.9697 119.1771 223.0000 205.0000 2.9110 1.9441 + 86.6060 223.0000 206.0000 2.9110 1.9985 69.0809 223.0000 207.0000 2.9110 2.0143 + 46.9875 223.0000 208.0000 2.9110 1.9887 216.4395 223.0000 212.0000 2.9110 1.9496 + 261.7283 223.0000 213.0000 2.9110 1.9311 250.1591 223.0000 214.0000 2.9110 1.9435 + 216.4101 223.0000 215.0000 2.9110 2.0102 180.9710 223.0000 216.0000 2.9110 1.9903 + 303.3970 223.0000 220.0000 2.9110 1.9349 290.7309 223.0000 221.0000 2.9110 2.8999 + 294.2417 223.0000 222.0000 2.9110 3.8675 269.3349 223.0000 223.0000 2.9110 2.9110 + 21.3134 224.0000 1.0000 10.6191 0.9118 14.4051 224.0000 2.0000 10.6191 0.0000 + 314.2807 224.0000 3.0000 10.6191 0.0000 184.9079 224.0000 4.0000 10.6191 0.0000 + 126.3736 224.0000 5.0000 10.6191 0.0000 86.5464 224.0000 6.0000 10.6191 0.0000 + 61.2471 224.0000 7.0000 10.6191 0.0000 46.8138 224.0000 8.0000 10.6191 0.0000 + 35.7811 224.0000 9.0000 10.6191 0.0000 27.7372 224.0000 10.0000 10.6191 0.0000 + 376.4906 224.0000 11.0000 10.6191 0.0000 293.6777 224.0000 12.0000 10.6191 0.0000 + 272.5015 224.0000 13.0000 10.6191 0.0000 216.8001 224.0000 14.0000 10.6191 0.0000 + 170.6767 224.0000 15.0000 10.6191 0.0000 142.6795 224.0000 16.0000 10.6191 0.0000 + 117.4258 224.0000 17.0000 10.6191 0.0000 96.7593 224.0000 18.0000 10.6191 0.0000 + 617.0566 224.0000 19.0000 10.6191 0.0000 513.7768 224.0000 20.0000 10.6191 0.0000 + 425.4745 224.0000 21.0000 10.6191 0.0000 412.1387 224.0000 22.0000 10.6191 0.0000 + 378.0660 224.0000 23.0000 10.6191 0.0000 298.4894 224.0000 24.0000 10.6191 0.0000 + 326.3558 224.0000 25.0000 10.6191 0.0000 256.8278 224.0000 26.0000 10.6191 0.0000 + 272.6301 224.0000 27.0000 10.6191 0.0000 280.2977 224.0000 28.0000 10.6191 0.0000 + 215.5023 224.0000 29.0000 10.6191 0.0000 221.9656 224.0000 30.0000 10.6191 0.0000 + 262.1530 224.0000 31.0000 10.6191 0.0000 232.7992 224.0000 32.0000 10.6191 0.0000 + 200.0486 224.0000 33.0000 10.6191 0.0000 180.4705 224.0000 34.0000 10.6191 0.0000 + 158.8704 224.0000 35.0000 10.6191 0.0000 138.9788 224.0000 36.0000 10.6191 0.0000 + 692.7359 224.0000 37.0000 10.6191 0.0000 612.3549 224.0000 38.0000 10.6191 0.0000 + 538.9029 224.0000 39.0000 10.6191 0.0000 485.9447 224.0000 40.0000 10.6191 0.0000 + 444.2328 224.0000 41.0000 10.6191 0.0000 344.8105 224.0000 42.0000 10.6191 0.0000 + 383.9186 224.0000 43.0000 10.6191 0.0000 294.2258 224.0000 44.0000 10.6191 0.0000 + 321.1384 224.0000 45.0000 10.6191 0.0000 298.3014 224.0000 46.0000 10.6191 0.0000 + 249.1613 224.0000 47.0000 10.6191 0.0000 263.4511 224.0000 48.0000 10.6191 0.0000 + 328.7836 224.0000 49.0000 10.6191 0.0000 305.5108 224.0000 50.0000 10.6191 0.0000 + 273.8552 224.0000 51.0000 10.6191 0.0000 255.1077 224.0000 52.0000 10.6191 0.0000 + 231.7484 224.0000 53.0000 10.6191 0.0000 209.3622 224.0000 54.0000 10.6191 0.0000 + 844.4635 224.0000 55.0000 10.6191 0.0000 780.0838 224.0000 56.0000 10.6191 0.0000 + 688.3433 224.0000 57.0000 10.6191 0.0000 323.4660 224.0000 58.0000 10.6191 2.7991 + 692.4667 224.0000 59.0000 10.6191 0.0000 665.3571 224.0000 60.0000 10.6191 0.0000 + 648.7727 224.0000 61.0000 10.6191 0.0000 633.5005 224.0000 62.0000 10.6191 0.0000 + 619.9599 224.0000 63.0000 10.6191 0.0000 490.5998 224.0000 64.0000 10.6191 0.0000 + 548.8466 224.0000 65.0000 10.6191 0.0000 529.8069 224.0000 66.0000 10.6191 0.0000 + 559.7016 224.0000 67.0000 10.6191 0.0000 547.8503 224.0000 68.0000 10.6191 0.0000 + 537.2011 224.0000 69.0000 10.6191 0.0000 530.7581 224.0000 70.0000 10.6191 0.0000 + 449.0817 224.0000 71.0000 10.6191 0.0000 443.5762 224.0000 72.0000 10.6191 0.0000 + 406.2841 224.0000 73.0000 10.6191 0.0000 344.5387 224.0000 74.0000 10.6191 0.0000 + 350.8340 224.0000 75.0000 10.6191 0.0000 319.0595 224.0000 76.0000 10.6191 0.0000 + 293.0705 224.0000 77.0000 10.6191 0.0000 244.5597 224.0000 78.0000 10.6191 0.0000 + 228.9026 224.0000 79.0000 10.6191 0.0000 235.5559 224.0000 80.0000 10.6191 0.0000 + 338.7402 224.0000 81.0000 10.6191 0.0000 332.2299 224.0000 82.0000 10.6191 0.0000 + 306.7492 224.0000 83.0000 10.6191 0.0000 293.4799 224.0000 84.0000 10.6191 0.0000 + 271.9815 224.0000 85.0000 10.6191 0.0000 250.3325 224.0000 86.0000 10.6191 0.0000 + 800.2739 224.0000 87.0000 10.6191 0.0000 773.3663 224.0000 88.0000 10.6191 0.0000 + 686.3579 224.0000 89.0000 10.6191 0.0000 620.3270 224.0000 90.0000 10.6191 0.0000 + 614.7556 224.0000 91.0000 10.6191 0.0000 595.3863 224.0000 92.0000 10.6191 0.0000 + 611.0839 224.0000 93.0000 10.6191 0.0000 592.0830 224.0000 94.0000 10.6191 0.0000 + 33.9427 224.0000 101.0000 10.6191 0.0000 107.7527 224.0000 103.0000 10.6191 0.9865 + 137.8919 224.0000 104.0000 10.6191 0.9808 106.7244 224.0000 105.0000 10.6191 0.9706 + 81.2335 224.0000 106.0000 10.6191 0.9868 57.1766 224.0000 107.0000 10.6191 0.9944 + 42.1046 224.0000 108.0000 10.6191 0.9925 29.3923 224.0000 109.0000 10.6191 0.9982 + 157.3830 224.0000 111.0000 10.6191 0.9684 243.0049 224.0000 112.0000 10.6191 0.9628 + 247.4372 224.0000 113.0000 10.6191 0.9648 200.7344 224.0000 114.0000 10.6191 0.9507 + 165.7628 224.0000 115.0000 10.6191 0.9947 141.1092 224.0000 116.0000 10.6191 0.9948 + 116.2100 224.0000 117.0000 10.6191 0.9972 218.9044 224.0000 119.0000 10.6191 0.9767 + 412.0610 224.0000 120.0000 10.6191 0.9831 220.1013 224.0000 121.0000 10.6191 1.8627 + 212.6450 224.0000 122.0000 10.6191 1.8299 208.4094 224.0000 123.0000 10.6191 1.9138 + 206.3426 224.0000 124.0000 10.6191 1.8269 190.5528 224.0000 125.0000 10.6191 1.6406 + 176.6607 224.0000 126.0000 10.6191 1.6483 168.5969 224.0000 127.0000 10.6191 1.7149 + 164.7847 224.0000 128.0000 10.6191 1.7937 162.3545 224.0000 129.0000 10.6191 0.9576 + 153.1295 224.0000 130.0000 10.6191 1.9419 246.6796 224.0000 131.0000 10.6191 0.9601 + 218.2207 224.0000 132.0000 10.6191 0.9434 196.7631 224.0000 133.0000 10.6191 0.9889 + 180.5365 224.0000 134.0000 10.6191 0.9901 159.9362 224.0000 135.0000 10.6191 0.9974 + 261.7869 224.0000 137.0000 10.6191 0.9738 501.5114 224.0000 138.0000 10.6191 0.9801 + 387.0982 224.0000 139.0000 10.6191 1.9153 291.2297 224.0000 140.0000 10.6191 1.9355 + 294.1186 224.0000 141.0000 10.6191 1.9545 274.8422 224.0000 142.0000 10.6191 1.9420 + 306.7585 224.0000 143.0000 10.6191 1.6682 240.6605 224.0000 144.0000 10.6191 1.8584 + 225.3888 224.0000 145.0000 10.6191 1.9003 209.5976 224.0000 146.0000 10.6191 1.8630 + 202.6684 224.0000 147.0000 10.6191 0.9679 200.9381 224.0000 148.0000 10.6191 1.9539 + 314.0026 224.0000 149.0000 10.6191 0.9633 285.6107 224.0000 150.0000 10.6191 0.9514 + 268.6291 224.0000 151.0000 10.6191 0.9749 254.9795 224.0000 152.0000 10.6191 0.9811 + 233.8940 224.0000 153.0000 10.6191 0.9968 310.7016 224.0000 155.0000 10.6191 0.9909 + 649.5624 224.0000 156.0000 10.6191 0.9797 489.6953 224.0000 157.0000 10.6191 1.9373 + 313.8469 224.0000 159.0000 10.6191 2.9425 307.3826 224.0000 160.0000 10.6191 2.9455 + 297.7522 224.0000 161.0000 10.6191 2.9413 298.9583 224.0000 162.0000 10.6191 2.9300 + 287.5236 224.0000 163.0000 10.6191 1.8286 300.6688 224.0000 164.0000 10.6191 2.8732 + 282.6706 224.0000 165.0000 10.6191 2.9086 287.2154 224.0000 166.0000 10.6191 2.8965 + 268.4867 224.0000 167.0000 10.6191 2.9242 260.9096 224.0000 168.0000 10.6191 2.9282 + 259.1578 224.0000 169.0000 10.6191 2.9246 271.9114 224.0000 170.0000 10.6191 2.8482 + 250.5730 224.0000 171.0000 10.6191 2.9219 336.2445 224.0000 172.0000 10.6191 1.9254 + 313.2187 224.0000 173.0000 10.6191 1.9459 286.9156 224.0000 174.0000 10.6191 1.9292 + 289.4662 224.0000 175.0000 10.6191 1.8104 255.5753 224.0000 176.0000 10.6191 1.8858 + 240.9060 224.0000 177.0000 10.6191 1.8648 230.3970 224.0000 178.0000 10.6191 1.9188 + 220.4032 224.0000 179.0000 10.6191 0.9846 213.5220 224.0000 180.0000 10.6191 1.9896 + 338.0513 224.0000 181.0000 10.6191 0.9267 309.6941 224.0000 182.0000 10.6191 0.9383 + 301.2053 224.0000 183.0000 10.6191 0.9820 293.6645 224.0000 184.0000 10.6191 0.9815 + 275.2552 224.0000 185.0000 10.6191 0.9954 349.9893 224.0000 187.0000 10.6191 0.9705 + 647.9337 224.0000 188.0000 10.6191 0.9662 371.2120 224.0000 189.0000 10.6191 2.9070 + 426.7284 224.0000 190.0000 10.6191 2.8844 382.5478 224.0000 191.0000 10.6191 2.8738 + 339.2395 224.0000 192.0000 10.6191 2.8878 326.7638 224.0000 193.0000 10.6191 2.9095 + 389.3650 224.0000 194.0000 10.6191 1.9209 91.0985 224.0000 204.0000 10.6191 1.9697 + 89.9610 224.0000 205.0000 10.6191 1.9441 66.6131 224.0000 206.0000 10.6191 1.9985 + 53.7726 224.0000 207.0000 10.6191 2.0143 37.3024 224.0000 208.0000 10.6191 1.9887 + 160.5554 224.0000 212.0000 10.6191 1.9496 193.9815 224.0000 213.0000 10.6191 1.9311 + 187.0036 224.0000 214.0000 10.6191 1.9435 163.4733 224.0000 215.0000 10.6191 2.0102 + 138.2944 224.0000 216.0000 10.6191 1.9903 225.6881 224.0000 220.0000 10.6191 1.9349 + 217.6494 224.0000 221.0000 10.6191 2.8999 220.4170 224.0000 222.0000 10.6191 3.8675 + 201.8641 224.0000 223.0000 10.6191 2.9110 153.3435 224.0000 224.0000 10.6191 10.6191 + 18.4694 225.0000 1.0000 9.8849 0.9118 12.6985 225.0000 2.0000 9.8849 0.0000 + 256.5689 225.0000 3.0000 9.8849 0.0000 154.7687 225.0000 4.0000 9.8849 0.0000 + 107.4866 225.0000 5.0000 9.8849 0.0000 74.5511 225.0000 6.0000 9.8849 0.0000 + 53.2828 225.0000 7.0000 9.8849 0.0000 41.0237 225.0000 8.0000 9.8849 0.0000 + 31.5582 225.0000 9.0000 9.8849 0.0000 24.5957 225.0000 10.0000 9.8849 0.0000 + 307.9557 225.0000 11.0000 9.8849 0.0000 244.7517 225.0000 12.0000 9.8849 0.0000 + 228.9125 225.0000 13.0000 9.8849 0.0000 184.0945 225.0000 14.0000 9.8849 0.0000 + 146.3175 225.0000 15.0000 9.8849 0.0000 123.1170 225.0000 16.0000 9.8849 0.0000 + 101.9746 225.0000 17.0000 9.8849 0.0000 84.5107 225.0000 18.0000 9.8849 0.0000 + 503.8621 225.0000 19.0000 9.8849 0.0000 425.2382 225.0000 20.0000 9.8849 0.0000 + 353.3283 225.0000 21.0000 9.8849 0.0000 343.4916 225.0000 22.0000 9.8849 0.0000 + 315.7492 225.0000 23.0000 9.8849 0.0000 249.6819 225.0000 24.0000 9.8849 0.0000 + 273.3937 225.0000 25.0000 9.8849 0.0000 215.5738 225.0000 26.0000 9.8849 0.0000 + 229.5077 225.0000 27.0000 9.8849 0.0000 235.4499 225.0000 28.0000 9.8849 0.0000 + 181.3482 225.0000 29.0000 9.8849 0.0000 187.7214 225.0000 30.0000 9.8849 0.0000 + 221.1217 225.0000 31.0000 9.8849 0.0000 197.9394 225.0000 32.0000 9.8849 0.0000 + 171.4077 225.0000 33.0000 9.8849 0.0000 155.4154 225.0000 34.0000 9.8849 0.0000 + 137.5406 225.0000 35.0000 9.8849 0.0000 120.9219 225.0000 36.0000 9.8849 0.0000 + 566.7169 225.0000 37.0000 9.8849 0.0000 506.8036 225.0000 38.0000 9.8849 0.0000 + 448.7768 225.0000 39.0000 9.8849 0.0000 406.3267 225.0000 40.0000 9.8849 0.0000 + 372.5215 225.0000 41.0000 9.8849 0.0000 290.7494 225.0000 42.0000 9.8849 0.0000 + 323.0552 225.0000 43.0000 9.8849 0.0000 249.0737 225.0000 44.0000 9.8849 0.0000 + 271.6188 225.0000 45.0000 9.8849 0.0000 252.7595 225.0000 46.0000 9.8849 0.0000 + 211.2390 225.0000 47.0000 9.8849 0.0000 223.7644 225.0000 48.0000 9.8849 0.0000 + 277.6350 225.0000 49.0000 9.8849 0.0000 259.5584 225.0000 50.0000 9.8849 0.0000 + 234.1750 225.0000 51.0000 9.8849 0.0000 219.0427 225.0000 52.0000 9.8849 0.0000 + 199.8924 225.0000 53.0000 9.8849 0.0000 181.3837 225.0000 54.0000 9.8849 0.0000 + 691.3086 225.0000 55.0000 9.8849 0.0000 644.6600 225.0000 56.0000 9.8849 0.0000 + 572.2667 225.0000 57.0000 9.8849 0.0000 276.3955 225.0000 58.0000 9.8849 2.7991 + 573.5714 225.0000 59.0000 9.8849 0.0000 551.6130 225.0000 60.0000 9.8849 0.0000 + 537.9977 225.0000 61.0000 9.8849 0.0000 525.4406 225.0000 62.0000 9.8849 0.0000 + 514.3112 225.0000 63.0000 9.8849 0.0000 410.0863 225.0000 64.0000 9.8849 0.0000 + 454.6351 225.0000 65.0000 9.8849 0.0000 439.4052 225.0000 66.0000 9.8849 0.0000 + 464.9730 225.0000 67.0000 9.8849 0.0000 455.1812 225.0000 68.0000 9.8849 0.0000 + 446.4219 225.0000 69.0000 9.8849 0.0000 440.9182 225.0000 70.0000 9.8849 0.0000 + 374.9975 225.0000 71.0000 9.8849 0.0000 372.5965 225.0000 72.0000 9.8849 0.0000 + 342.6995 225.0000 73.0000 9.8849 0.0000 291.8077 225.0000 74.0000 9.8849 0.0000 + 297.5289 225.0000 75.0000 9.8849 0.0000 271.5797 225.0000 76.0000 9.8849 0.0000 + 250.2211 225.0000 77.0000 9.8849 0.0000 209.6330 225.0000 78.0000 9.8849 0.0000 + 196.5204 225.0000 79.0000 9.8849 0.0000 202.4020 225.0000 80.0000 9.8849 0.0000 + 286.8670 225.0000 81.0000 9.8849 0.0000 282.5665 225.0000 82.0000 9.8849 0.0000 + 262.3487 225.0000 83.0000 9.8849 0.0000 251.8481 225.0000 84.0000 9.8849 0.0000 + 234.3810 225.0000 85.0000 9.8849 0.0000 216.5823 225.0000 86.0000 9.8849 0.0000 + 658.3545 225.0000 87.0000 9.8849 0.0000 641.2312 225.0000 88.0000 9.8849 0.0000 + 572.2457 225.0000 89.0000 9.8849 0.0000 520.7940 225.0000 90.0000 9.8849 0.0000 + 514.6731 225.0000 91.0000 9.8849 0.0000 498.5663 225.0000 92.0000 9.8849 0.0000 + 509.6277 225.0000 93.0000 9.8849 0.0000 494.1358 225.0000 94.0000 9.8849 0.0000 + 29.1208 225.0000 101.0000 9.8849 0.0000 90.4231 225.0000 103.0000 9.8849 0.9865 + 116.1032 225.0000 104.0000 9.8849 0.9808 91.1091 225.0000 105.0000 9.8849 0.9706 + 69.9883 225.0000 106.0000 9.8849 0.9868 49.7698 225.0000 107.0000 9.8849 0.9944 + 36.9692 225.0000 108.0000 9.8849 0.9925 26.0926 225.0000 109.0000 9.8849 0.9982 + 131.8257 225.0000 111.0000 9.8849 0.9684 203.2173 225.0000 112.0000 9.8849 0.9628 + 208.2902 225.0000 113.0000 9.8849 0.9648 170.7515 225.0000 114.0000 9.8849 0.9507 + 142.1674 225.0000 115.0000 9.8849 0.9947 121.7541 225.0000 116.0000 9.8849 0.9948 + 100.9143 225.0000 117.0000 9.8849 0.9972 184.8170 225.0000 119.0000 9.8849 0.9767 + 341.7674 225.0000 120.0000 9.8849 0.9831 187.1364 225.0000 121.0000 9.8849 1.8627 + 180.9105 225.0000 122.0000 9.8849 1.8299 177.2993 225.0000 123.0000 9.8849 1.9138 + 175.3867 225.0000 124.0000 9.8849 1.8269 162.6844 225.0000 125.0000 9.8849 1.6406 + 151.0768 225.0000 126.0000 9.8849 1.6483 144.2159 225.0000 127.0000 9.8849 1.7149 + 140.9080 225.0000 128.0000 9.8849 1.7937 138.3572 225.0000 129.0000 9.8849 0.9576 + 131.3100 225.0000 130.0000 9.8849 1.9419 208.5110 225.0000 131.0000 9.8849 0.9601 + 185.9246 225.0000 132.0000 9.8849 0.9434 168.6780 225.0000 133.0000 9.8849 0.9889 + 155.4652 225.0000 134.0000 9.8849 0.9901 138.4296 225.0000 135.0000 9.8849 0.9974 + 221.5102 225.0000 137.0000 9.8849 0.9738 415.8340 225.0000 138.0000 9.8849 0.9801 + 324.9751 225.0000 139.0000 9.8849 1.9153 247.5981 225.0000 140.0000 9.8849 1.9355 + 250.0266 225.0000 141.0000 9.8849 1.9545 234.1315 225.0000 142.0000 9.8849 1.9420 + 259.8051 225.0000 143.0000 9.8849 1.6682 206.0020 225.0000 144.0000 9.8849 1.8584 + 193.0894 225.0000 145.0000 9.8849 1.9003 179.7824 225.0000 146.0000 9.8849 1.8630 + 173.7381 225.0000 147.0000 9.8849 0.9679 172.7698 225.0000 148.0000 9.8849 1.9539 + 265.7575 225.0000 149.0000 9.8849 0.9633 243.2984 225.0000 150.0000 9.8849 0.9514 + 229.9158 225.0000 151.0000 9.8849 0.9749 218.9858 225.0000 152.0000 9.8849 0.9811 + 201.7229 225.0000 153.0000 9.8849 0.9968 264.1180 225.0000 155.0000 9.8849 0.9909 + 537.5804 225.0000 156.0000 9.8849 0.9797 410.7620 225.0000 157.0000 9.8849 1.9373 + 268.2902 225.0000 159.0000 9.8849 2.9425 262.7854 225.0000 160.0000 9.8849 2.9455 + 254.6469 225.0000 161.0000 9.8849 2.9413 255.4370 225.0000 162.0000 9.8849 2.9300 + 244.9612 225.0000 163.0000 9.8849 1.8286 256.7746 225.0000 164.0000 9.8849 2.8732 + 241.6291 225.0000 165.0000 9.8849 2.9086 245.1092 225.0000 166.0000 9.8849 2.8965 + 229.6866 225.0000 167.0000 9.8849 2.9242 223.2746 225.0000 168.0000 9.8849 2.9282 + 221.7117 225.0000 169.0000 9.8849 2.9246 232.2310 225.0000 170.0000 9.8849 2.8482 + 214.4570 225.0000 171.0000 9.8849 2.9219 284.6108 225.0000 172.0000 9.8849 1.9254 + 266.1950 225.0000 173.0000 9.8849 1.9459 244.8688 225.0000 174.0000 9.8849 1.9292 + 246.2016 225.0000 175.0000 9.8849 1.8104 219.4218 225.0000 176.0000 9.8849 1.8858 + 207.1846 225.0000 177.0000 9.8849 1.8648 198.3651 225.0000 178.0000 9.8849 1.9188 + 189.8099 225.0000 179.0000 9.8849 0.9846 184.4413 225.0000 180.0000 9.8849 1.9896 + 286.7259 225.0000 181.0000 9.8849 0.9267 264.3099 225.0000 182.0000 9.8849 0.9383 + 257.9329 225.0000 183.0000 9.8849 0.9820 252.1251 225.0000 184.0000 9.8849 0.9815 + 237.1991 225.0000 185.0000 9.8849 0.9954 297.6087 225.0000 187.0000 9.8849 0.9705 + 538.3070 225.0000 188.0000 9.8849 0.9662 317.2251 225.0000 189.0000 9.8849 2.9070 + 362.8017 225.0000 190.0000 9.8849 2.8844 326.0607 225.0000 191.0000 9.8849 2.8738 + 290.3501 225.0000 192.0000 9.8849 2.8878 279.9620 225.0000 193.0000 9.8849 2.9095 + 329.8132 225.0000 194.0000 9.8849 1.9209 77.7823 225.0000 204.0000 9.8849 1.9697 + 77.0812 225.0000 205.0000 9.8849 1.9441 57.6893 225.0000 206.0000 9.8849 1.9985 + 46.8681 225.0000 207.0000 9.8849 2.0143 32.8495 225.0000 208.0000 9.8849 1.9887 + 136.1619 225.0000 212.0000 9.8849 1.9496 164.4045 225.0000 213.0000 9.8849 1.9311 + 159.3286 225.0000 214.0000 9.8849 1.9435 140.1443 225.0000 215.0000 9.8849 2.0102 + 119.3486 225.0000 216.0000 9.8849 1.9903 191.6322 225.0000 220.0000 9.8849 1.9349 + 185.5544 225.0000 221.0000 9.8849 2.8999 187.9838 225.0000 222.0000 9.8849 3.8675 + 172.1980 225.0000 223.0000 9.8849 2.9110 131.8288 225.0000 224.0000 9.8849 10.6191 + 113.8463 225.0000 225.0000 9.8849 9.8849 18.0977 226.0000 1.0000 9.1376 0.9118 + 12.4277 226.0000 2.0000 9.1376 0.0000 253.2432 226.0000 3.0000 9.1376 0.0000 + 152.2986 226.0000 4.0000 9.1376 0.0000 105.5581 226.0000 5.0000 9.1376 0.0000 + 73.1079 226.0000 6.0000 9.1376 0.0000 52.2028 226.0000 7.0000 9.1376 0.0000 + 40.1709 226.0000 8.0000 9.1376 0.0000 30.8925 226.0000 9.0000 9.1376 0.0000 + 24.0741 226.0000 10.0000 9.1376 0.0000 303.9124 226.0000 11.0000 9.1376 0.0000 + 240.9962 226.0000 12.0000 9.1376 0.0000 225.1663 226.0000 13.0000 9.1376 0.0000 + 180.8346 226.0000 14.0000 9.1376 0.0000 143.5585 226.0000 15.0000 9.1376 0.0000 + 120.7060 226.0000 16.0000 9.1376 0.0000 99.9119 226.0000 17.0000 9.1376 0.0000 + 82.7591 226.0000 18.0000 9.1376 0.0000 497.3105 226.0000 19.0000 9.1376 0.0000 + 419.0635 226.0000 20.0000 9.1376 0.0000 348.0642 226.0000 21.0000 9.1376 0.0000 + 338.2283 226.0000 22.0000 9.1376 0.0000 310.8375 226.0000 23.0000 9.1376 0.0000 + 245.7629 226.0000 24.0000 9.1376 0.0000 269.0494 226.0000 25.0000 9.1376 0.0000 + 212.1109 226.0000 26.0000 9.1376 0.0000 225.7346 226.0000 27.0000 9.1376 0.0000 + 231.6422 226.0000 28.0000 9.1376 0.0000 178.3924 226.0000 29.0000 9.1376 0.0000 + 184.5403 226.0000 30.0000 9.1376 0.0000 217.4040 226.0000 31.0000 9.1376 0.0000 + 194.4157 226.0000 32.0000 9.1376 0.0000 168.1967 226.0000 33.0000 9.1376 0.0000 + 152.4128 226.0000 34.0000 9.1376 0.0000 134.8051 226.0000 35.0000 9.1376 0.0000 + 118.4578 226.0000 36.0000 9.1376 0.0000 559.2177 226.0000 37.0000 9.1376 0.0000 + 499.4375 226.0000 38.0000 9.1376 0.0000 441.9258 226.0000 39.0000 9.1376 0.0000 + 399.9295 226.0000 40.0000 9.1376 0.0000 366.5329 226.0000 41.0000 9.1376 0.0000 + 285.8977 226.0000 42.0000 9.1376 0.0000 317.7432 226.0000 43.0000 9.1376 0.0000 + 244.8184 226.0000 44.0000 9.1376 0.0000 267.0048 226.0000 45.0000 9.1376 0.0000 + 248.4203 226.0000 46.0000 9.1376 0.0000 207.6181 226.0000 47.0000 9.1376 0.0000 + 219.8750 226.0000 48.0000 9.1376 0.0000 272.9769 226.0000 49.0000 9.1376 0.0000 + 255.0100 226.0000 50.0000 9.1376 0.0000 229.8877 226.0000 51.0000 9.1376 0.0000 + 214.9236 226.0000 52.0000 9.1376 0.0000 196.0288 226.0000 53.0000 9.1376 0.0000 + 177.7905 226.0000 54.0000 9.1376 0.0000 682.0579 226.0000 55.0000 9.1376 0.0000 + 635.3811 226.0000 56.0000 9.1376 0.0000 563.6245 226.0000 57.0000 9.1376 0.0000 + 271.3545 226.0000 58.0000 9.1376 2.7991 565.2043 226.0000 59.0000 9.1376 0.0000 + 543.5117 226.0000 60.0000 9.1376 0.0000 530.0826 226.0000 61.0000 9.1376 0.0000 + 517.6989 226.0000 62.0000 9.1376 0.0000 506.7226 226.0000 63.0000 9.1376 0.0000 + 403.6739 226.0000 64.0000 9.1376 0.0000 447.9970 226.0000 65.0000 9.1376 0.0000 + 432.9245 226.0000 66.0000 9.1376 0.0000 458.0409 226.0000 67.0000 9.1376 0.0000 + 448.3896 226.0000 68.0000 9.1376 0.0000 439.7506 226.0000 69.0000 9.1376 0.0000 + 434.3472 226.0000 70.0000 9.1376 0.0000 369.1840 226.0000 71.0000 9.1376 0.0000 + 366.5303 226.0000 72.0000 9.1376 0.0000 336.9544 226.0000 73.0000 9.1376 0.0000 + 286.7836 226.0000 74.0000 9.1376 0.0000 292.3635 226.0000 75.0000 9.1376 0.0000 + 266.7559 226.0000 76.0000 9.1376 0.0000 245.6967 226.0000 77.0000 9.1376 0.0000 + 205.7658 226.0000 78.0000 9.1376 0.0000 192.8714 226.0000 79.0000 9.1376 0.0000 + 198.6237 226.0000 80.0000 9.1376 0.0000 281.9690 226.0000 81.0000 9.1376 0.0000 + 277.5965 226.0000 82.0000 9.1376 0.0000 257.5598 226.0000 83.0000 9.1376 0.0000 + 247.1479 226.0000 84.0000 9.1376 0.0000 229.8923 226.0000 85.0000 9.1376 0.0000 + 212.3388 226.0000 86.0000 9.1376 0.0000 649.1664 226.0000 87.0000 9.1376 0.0000 + 631.7438 226.0000 88.0000 9.1376 0.0000 563.4400 226.0000 89.0000 9.1376 0.0000 + 512.3750 226.0000 90.0000 9.1376 0.0000 506.5349 226.0000 91.0000 9.1376 0.0000 + 490.6758 226.0000 92.0000 9.1376 0.0000 501.8262 226.0000 93.0000 9.1376 0.0000 + 486.5324 226.0000 94.0000 9.1376 0.0000 28.5665 226.0000 101.0000 9.1376 0.0000 + 88.9538 226.0000 103.0000 9.1376 0.9865 114.1613 226.0000 104.0000 9.1376 0.9808 + 89.4354 226.0000 105.0000 9.1376 0.9706 68.6293 226.0000 106.0000 9.1376 0.9868 + 48.7558 226.0000 107.0000 9.1376 0.9944 36.1919 226.0000 108.0000 9.1376 0.9925 + 25.5314 226.0000 109.0000 9.1376 0.9982 129.7332 226.0000 111.0000 9.1376 0.9684 + 200.0041 226.0000 112.0000 9.1376 0.9628 204.8282 226.0000 113.0000 9.1376 0.9648 + 167.6917 226.0000 114.0000 9.1376 0.9507 139.4802 226.0000 115.0000 9.1376 0.9947 + 119.3719 226.0000 116.0000 9.1376 0.9948 98.8747 226.0000 117.0000 9.1376 0.9972 + 181.7040 226.0000 119.0000 9.1376 0.9767 336.7038 226.0000 120.0000 9.1376 0.9831 + 183.8257 226.0000 121.0000 9.1376 1.8627 177.7007 226.0000 122.0000 9.1376 1.8299 + 174.1594 226.0000 123.0000 9.1376 1.9138 172.3036 226.0000 124.0000 9.1376 1.8269 + 159.7402 226.0000 125.0000 9.1376 1.6406 148.3171 226.0000 126.0000 9.1376 1.6483 + 141.5815 226.0000 127.0000 9.1376 1.7149 138.3424 226.0000 128.0000 9.1376 1.7937 + 135.9019 226.0000 129.0000 9.1376 0.9576 128.8760 226.0000 130.0000 9.1376 1.9419 + 204.9523 226.0000 131.0000 9.1376 0.9601 182.5691 226.0000 132.0000 9.1376 0.9434 + 165.5084 226.0000 133.0000 9.1376 0.9889 152.4629 226.0000 134.0000 9.1376 0.9901 + 135.6806 226.0000 135.0000 9.1376 0.9974 217.7195 226.0000 137.0000 9.1376 0.9738 + 409.6773 226.0000 138.0000 9.1376 0.9801 319.6860 226.0000 139.0000 9.1376 1.9153 + 243.2086 226.0000 140.0000 9.1376 1.9355 245.6037 226.0000 141.0000 9.1376 1.9545 + 229.9399 226.0000 142.0000 9.1376 1.9420 255.3330 226.0000 143.0000 9.1376 1.6682 + 202.2130 226.0000 144.0000 9.1376 1.8584 189.5285 226.0000 145.0000 9.1376 1.9003 + 176.4513 226.0000 146.0000 9.1376 1.8630 170.5403 226.0000 147.0000 9.1376 0.9679 + 169.5246 226.0000 148.0000 9.1376 1.9539 261.2268 226.0000 149.0000 9.1376 0.9633 + 238.9587 226.0000 150.0000 9.1376 0.9514 225.6812 226.0000 151.0000 9.1376 0.9749 + 214.8607 226.0000 152.0000 9.1376 0.9811 197.8251 226.0000 153.0000 9.1376 0.9968 + 259.4193 226.0000 155.0000 9.1376 0.9909 529.7155 226.0000 156.0000 9.1376 0.9797 + 404.1026 226.0000 157.0000 9.1376 1.9373 263.3851 226.0000 159.0000 9.1376 2.9425 + 257.9795 226.0000 160.0000 9.1376 2.9455 249.9799 226.0000 161.0000 9.1376 2.9413 + 250.7830 226.0000 162.0000 9.1376 2.9300 240.5922 226.0000 163.0000 9.1376 1.8286 + 252.1075 226.0000 164.0000 9.1376 2.8732 237.2164 226.0000 165.0000 9.1376 2.9086 + 240.6788 226.0000 166.0000 9.1376 2.8965 225.4697 226.0000 167.0000 9.1376 2.9242 + 219.1675 226.0000 168.0000 9.1376 2.9282 217.6401 226.0000 169.0000 9.1376 2.9246 + 228.0072 226.0000 170.0000 9.1376 2.8482 210.5065 226.0000 171.0000 9.1376 2.9219 + 279.7124 226.0000 172.0000 9.1376 1.9254 261.4925 226.0000 173.0000 9.1376 1.9459 + 240.4309 226.0000 174.0000 9.1376 1.9292 241.8439 226.0000 175.0000 9.1376 1.8104 + 215.3079 226.0000 176.0000 9.1376 1.8858 203.2695 226.0000 177.0000 9.1376 1.8648 + 194.6013 226.0000 178.0000 9.1376 1.9188 186.2152 226.0000 179.0000 9.1376 0.9846 + 180.8840 226.0000 180.0000 9.1376 1.9896 281.7756 226.0000 181.0000 9.1376 0.9267 + 259.5542 226.0000 182.0000 9.1376 0.9383 253.1848 226.0000 183.0000 9.1376 0.9820 + 247.4035 226.0000 184.0000 9.1376 0.9815 232.6541 226.0000 185.0000 9.1376 0.9954 + 292.3001 226.0000 187.0000 9.1376 0.9705 530.1871 226.0000 188.0000 9.1376 0.9662 + 311.4314 226.0000 189.0000 9.1376 2.9070 356.3970 226.0000 190.0000 9.1376 2.8844 + 320.2177 226.0000 191.0000 9.1376 2.8738 285.0230 226.0000 192.0000 9.1376 2.8878 + 274.7973 226.0000 193.0000 9.1376 2.9095 324.1654 226.0000 194.0000 9.1376 1.9209 + 76.3494 226.0000 204.0000 9.1376 1.9697 75.6327 226.0000 205.0000 9.1376 1.9441 + 56.5429 226.0000 206.0000 9.1376 1.9985 45.9140 226.0000 207.0000 9.1376 2.0143 + 32.1584 226.0000 208.0000 9.1376 1.9887 133.7853 226.0000 212.0000 9.1376 1.9496 + 161.5357 226.0000 213.0000 9.1376 1.9311 156.4437 226.0000 214.0000 9.1376 1.9435 + 137.5043 226.0000 215.0000 9.1376 2.0102 117.0121 226.0000 216.0000 9.1376 1.9903 + 188.2696 226.0000 220.0000 9.1376 1.9349 182.2062 226.0000 221.0000 9.1376 2.8999 + 184.5856 226.0000 222.0000 9.1376 3.8675 169.0900 226.0000 223.0000 9.1376 2.9110 + 129.3444 226.0000 224.0000 9.1376 10.6191 111.6491 226.0000 225.0000 9.1376 9.8849 + 109.5041 226.0000 226.0000 9.1376 9.1376 20.7741 227.0000 1.0000 2.9263 0.9118 + 13.8804 227.0000 2.0000 2.9263 0.0000 319.8448 227.0000 3.0000 2.9263 0.0000 + 184.8938 227.0000 4.0000 2.9263 0.0000 124.9087 227.0000 5.0000 2.9263 0.0000 + 84.7552 227.0000 6.0000 2.9263 0.0000 59.5628 227.0000 7.0000 2.9263 0.0000 + 45.3066 227.0000 8.0000 2.9263 0.0000 34.4935 227.0000 9.0000 2.9263 0.0000 + 26.6627 227.0000 10.0000 2.9263 0.0000 382.6821 227.0000 11.0000 2.9263 0.0000 + 294.6091 227.0000 12.0000 2.9263 0.0000 271.8226 227.0000 13.0000 2.9263 0.0000 + 214.5726 227.0000 14.0000 2.9263 0.0000 167.7356 227.0000 15.0000 2.9263 0.0000 + 139.5430 227.0000 16.0000 2.9263 0.0000 114.3091 227.0000 17.0000 2.9263 0.0000 + 93.8084 227.0000 18.0000 2.9263 0.0000 628.1238 227.0000 19.0000 2.9263 0.0000 + 517.8769 227.0000 20.0000 2.9263 0.0000 427.8866 227.0000 21.0000 2.9263 0.0000 + 413.4479 227.0000 22.0000 2.9263 0.0000 378.7327 227.0000 23.0000 2.9263 0.0000 + 298.7169 227.0000 24.0000 2.9263 0.0000 326.2603 227.0000 25.0000 2.9263 0.0000 + 256.4238 227.0000 26.0000 2.9263 0.0000 271.6288 227.0000 27.0000 2.9263 0.0000 + 279.7052 227.0000 28.0000 2.9263 0.0000 214.8093 227.0000 29.0000 2.9263 0.0000 + 220.4525 227.0000 30.0000 2.9263 0.0000 260.7548 227.0000 31.0000 2.9263 0.0000 + 230.2133 227.0000 32.0000 2.9263 0.0000 196.7046 227.0000 33.0000 2.9263 0.0000 + 176.7844 227.0000 34.0000 2.9263 0.0000 155.0169 227.0000 35.0000 2.9263 0.0000 + 135.1147 227.0000 36.0000 2.9263 0.0000 704.2730 227.0000 37.0000 2.9263 0.0000 + 617.2493 227.0000 38.0000 2.9263 0.0000 540.8706 227.0000 39.0000 2.9263 0.0000 + 486.3325 227.0000 40.0000 2.9263 0.0000 443.7007 227.0000 41.0000 2.9263 0.0000 + 343.0710 227.0000 42.0000 2.9263 0.0000 382.5646 227.0000 43.0000 2.9263 0.0000 + 291.9635 227.0000 44.0000 2.9263 0.0000 318.8732 227.0000 45.0000 2.9263 0.0000 + 295.8366 227.0000 46.0000 2.9263 0.0000 247.0487 227.0000 47.0000 2.9263 0.0000 + 260.8701 227.0000 48.0000 2.9263 0.0000 326.8852 227.0000 49.0000 2.9263 0.0000 + 302.4131 227.0000 50.0000 2.9263 0.0000 269.8010 227.0000 51.0000 2.9263 0.0000 + 250.5626 227.0000 52.0000 2.9263 0.0000 226.8510 227.0000 53.0000 2.9263 0.0000 + 204.2663 227.0000 54.0000 2.9263 0.0000 858.1614 227.0000 55.0000 2.9263 0.0000 + 787.1393 227.0000 56.0000 2.9263 0.0000 691.6368 227.0000 57.0000 2.9263 0.0000 + 318.8026 227.0000 58.0000 2.9263 2.7991 697.7563 227.0000 59.0000 2.9263 0.0000 + 669.9835 227.0000 60.0000 2.9263 0.0000 653.1705 227.0000 61.0000 2.9263 0.0000 + 637.7039 227.0000 62.0000 2.9263 0.0000 623.9865 227.0000 63.0000 2.9263 0.0000 + 491.2047 227.0000 64.0000 2.9263 0.0000 553.1437 227.0000 65.0000 2.9263 0.0000 + 533.5343 227.0000 66.0000 2.9263 0.0000 562.7864 227.0000 67.0000 2.9263 0.0000 + 550.8249 227.0000 68.0000 2.9263 0.0000 540.0415 227.0000 69.0000 2.9263 0.0000 + 533.6923 227.0000 70.0000 2.9263 0.0000 449.9922 227.0000 71.0000 2.9263 0.0000 + 442.5145 227.0000 72.0000 2.9263 0.0000 404.1174 227.0000 73.0000 2.9263 0.0000 + 341.7207 227.0000 74.0000 2.9263 0.0000 347.6512 227.0000 75.0000 2.9263 0.0000 + 315.3464 227.0000 76.0000 2.9263 0.0000 289.0431 227.0000 77.0000 2.9263 0.0000 + 240.5449 227.0000 78.0000 2.9263 0.0000 224.9175 227.0000 79.0000 2.9263 0.0000 + 231.3250 227.0000 80.0000 2.9263 0.0000 336.1160 227.0000 81.0000 2.9263 0.0000 + 328.6327 227.0000 82.0000 2.9263 0.0000 302.2080 227.0000 83.0000 2.9263 0.0000 + 288.4150 227.0000 84.0000 2.9263 0.0000 266.4595 227.0000 85.0000 2.9263 0.0000 + 244.5308 227.0000 86.0000 2.9263 0.0000 810.3485 227.0000 87.0000 2.9263 0.0000 + 778.5193 227.0000 88.0000 2.9263 0.0000 688.3516 227.0000 89.0000 2.9263 0.0000 + 619.1558 227.0000 90.0000 2.9263 0.0000 614.8490 227.0000 91.0000 2.9263 0.0000 + 595.3907 227.0000 92.0000 2.9263 0.0000 612.8794 227.0000 93.0000 2.9263 0.0000 + 593.5301 227.0000 94.0000 2.9263 0.0000 33.3307 227.0000 101.0000 2.9263 0.0000 + 107.5582 227.0000 103.0000 2.9263 0.9865 137.2998 227.0000 104.0000 2.9263 0.9808 + 105.2019 227.0000 105.0000 2.9263 0.9706 79.5273 227.0000 106.0000 2.9263 0.9868 + 55.5685 227.0000 107.0000 2.9263 0.9944 40.6799 227.0000 108.0000 2.9263 0.9925 + 28.2122 227.0000 109.0000 2.9263 0.9982 157.3578 227.0000 111.0000 2.9263 0.9684 + 243.1809 227.0000 112.0000 2.9263 0.9628 246.4539 227.0000 113.0000 2.9263 0.9648 + 198.4174 227.0000 114.0000 2.9263 0.9507 162.8541 227.0000 115.0000 2.9263 0.9947 + 138.0159 227.0000 116.0000 2.9263 0.9948 113.1318 227.0000 117.0000 2.9263 0.9972 + 217.5967 227.0000 119.0000 2.9263 0.9767 414.8338 227.0000 120.0000 2.9263 0.9831 + 217.6909 227.0000 121.0000 2.9263 1.8627 210.2464 227.0000 122.0000 2.9263 1.8299 + 206.0757 227.0000 123.0000 2.9263 1.9138 204.1750 227.0000 124.0000 2.9263 1.8269 + 187.9564 227.0000 125.0000 2.9263 1.6406 174.0536 227.0000 126.0000 2.9263 1.6483 + 166.0911 227.0000 127.0000 2.9263 1.7149 162.3831 227.0000 128.0000 2.9263 1.7937 + 160.4015 227.0000 129.0000 2.9263 0.9576 150.5946 227.0000 130.0000 2.9263 1.9419 + 244.9914 227.0000 131.0000 2.9263 0.9601 215.4752 227.0000 132.0000 2.9263 0.9434 + 193.4021 227.0000 133.0000 2.9263 0.9889 176.8558 227.0000 134.0000 2.9263 0.9901 + 156.0859 227.0000 135.0000 2.9263 0.9974 259.8039 227.0000 137.0000 2.9263 0.9738 + 504.9905 227.0000 138.0000 2.9263 0.9801 386.3776 227.0000 139.0000 2.9263 1.9153 + 288.0243 227.0000 140.0000 2.9263 1.9355 290.8988 227.0000 141.0000 2.9263 1.9545 + 271.4559 227.0000 142.0000 2.9263 1.9420 304.2749 227.0000 143.0000 2.9263 1.6682 + 236.9046 227.0000 144.0000 2.9263 1.8584 221.7615 227.0000 145.0000 2.9263 1.9003 + 206.0649 227.0000 146.0000 2.9263 1.8630 199.3629 227.0000 147.0000 2.9263 0.9679 + 197.2313 227.0000 148.0000 2.9263 1.9539 311.6813 227.0000 149.0000 2.9263 0.9633 + 282.1750 227.0000 150.0000 2.9263 0.9514 264.4748 227.0000 151.0000 2.9263 0.9749 + 250.3896 227.0000 152.0000 2.9263 0.9811 228.9654 227.0000 153.0000 2.9263 0.9968 + 307.2297 227.0000 155.0000 2.9263 0.9909 654.9942 227.0000 156.0000 2.9263 0.9797 + 489.0580 227.0000 157.0000 2.9263 1.9373 309.2299 227.0000 159.0000 2.9263 2.9425 + 302.8447 227.0000 160.0000 2.9263 2.9455 293.2805 227.0000 161.0000 2.9263 2.9413 + 294.6745 227.0000 162.0000 2.9263 2.9300 284.0111 227.0000 163.0000 2.9263 1.8286 + 296.4553 227.0000 164.0000 2.9263 2.8732 278.5319 227.0000 165.0000 2.9263 2.9086 + 283.3520 227.0000 166.0000 2.9263 2.8965 264.4013 227.0000 167.0000 2.9263 2.9242 + 256.8824 227.0000 168.0000 2.9263 2.9282 255.2100 227.0000 169.0000 2.9263 2.9246 + 268.0922 227.0000 170.0000 2.9263 2.8482 246.6776 227.0000 171.0000 2.9263 2.9219 + 333.6302 227.0000 172.0000 2.9263 1.9254 309.8782 227.0000 173.0000 2.9263 1.9459 + 283.0005 227.0000 174.0000 2.9263 1.9292 286.2438 227.0000 175.0000 2.9263 1.8104 + 251.0341 227.0000 176.0000 2.9263 1.8858 236.3485 227.0000 177.0000 2.9263 1.8648 + 225.8799 227.0000 178.0000 2.9263 1.9188 216.0720 227.0000 179.0000 2.9263 0.9846 + 208.8699 227.0000 180.0000 2.9263 1.9896 335.0533 227.0000 181.0000 2.9263 0.9267 + 305.5829 227.0000 182.0000 2.9263 0.9383 296.4710 227.0000 183.0000 2.9263 0.9820 + 288.4923 227.0000 184.0000 2.9263 0.9815 269.6630 227.0000 185.0000 2.9263 0.9954 + 345.9951 227.0000 187.0000 2.9263 0.9705 651.4943 227.0000 188.0000 2.9263 0.9662 + 365.8247 227.0000 189.0000 2.9263 2.9070 422.1621 227.0000 190.0000 2.9263 2.8844 + 377.8279 227.0000 191.0000 2.9263 2.8738 334.0164 227.0000 192.0000 2.9263 2.8878 + 321.5004 227.0000 193.0000 2.9263 2.9095 386.3011 227.0000 194.0000 2.9263 1.9209 + 89.7891 227.0000 204.0000 2.9263 1.9697 88.4405 227.0000 205.0000 2.9263 1.9441 + 64.9856 227.0000 206.0000 2.9263 1.9985 52.2322 227.0000 207.0000 2.9263 2.0143 + 35.9892 227.0000 208.0000 2.9263 1.9887 159.0980 227.0000 212.0000 2.9263 1.9496 + 192.2755 227.0000 213.0000 2.9263 1.9311 184.6285 227.0000 214.0000 2.9263 1.9435 + 160.6578 227.0000 215.0000 2.9263 2.0102 135.2456 227.0000 216.0000 2.9263 1.9903 + 223.4273 227.0000 220.0000 2.9263 1.9349 214.8399 227.0000 221.0000 2.9263 2.8999 + 217.5178 227.0000 222.0000 2.9263 3.8675 199.2038 227.0000 223.0000 2.9263 2.9110 + 150.4863 227.0000 224.0000 2.9263 10.6191 128.9628 227.0000 225.0000 2.9263 9.8849 + 126.5885 227.0000 226.0000 2.9263 9.1376 148.0657 227.0000 227.0000 2.9263 2.9263 + 19.4648 228.0000 1.0000 6.5458 0.9118 13.0979 228.0000 2.0000 6.5458 0.0000 + 291.0488 228.0000 3.0000 6.5458 0.0000 170.5936 228.0000 4.0000 6.5458 0.0000 + 116.0923 228.0000 5.0000 6.5458 0.0000 79.2056 228.0000 6.0000 6.5458 0.0000 + 55.8954 228.0000 7.0000 6.5458 0.0000 42.6462 228.0000 8.0000 6.5458 0.0000 + 32.5553 228.0000 9.0000 6.5458 0.0000 25.2210 228.0000 10.0000 6.5458 0.0000 + 348.5798 228.0000 11.0000 6.5458 0.0000 271.2223 228.0000 12.0000 6.5458 0.0000 + 251.1877 228.0000 13.0000 6.5458 0.0000 199.2855 228.0000 14.0000 6.5458 0.0000 + 156.4432 228.0000 15.0000 6.5458 0.0000 130.5102 228.0000 16.0000 6.5458 0.0000 + 107.1976 228.0000 17.0000 6.5458 0.0000 88.1829 228.0000 18.0000 6.5458 0.0000 + 570.8659 228.0000 19.0000 6.5458 0.0000 474.8225 228.0000 20.0000 6.5458 0.0000 + 393.0487 228.0000 21.0000 6.5458 0.0000 380.4377 228.0000 22.0000 6.5458 0.0000 + 348.8510 228.0000 23.0000 6.5458 0.0000 275.2551 228.0000 24.0000 6.5458 0.0000 + 300.9640 228.0000 25.0000 6.5458 0.0000 236.6842 228.0000 26.0000 6.5458 0.0000 + 251.1837 228.0000 27.0000 6.5458 0.0000 258.3888 228.0000 28.0000 6.5458 0.0000 + 198.5202 228.0000 29.0000 6.5458 0.0000 204.3119 228.0000 30.0000 6.5458 0.0000 + 241.3636 228.0000 31.0000 6.5458 0.0000 213.9134 228.0000 32.0000 6.5458 0.0000 + 183.4110 228.0000 33.0000 6.5458 0.0000 165.1961 228.0000 34.0000 6.5458 0.0000 + 145.1828 228.0000 35.0000 6.5458 0.0000 126.8094 228.0000 36.0000 6.5458 0.0000 + 640.5782 228.0000 37.0000 6.5458 0.0000 565.7790 228.0000 38.0000 6.5458 0.0000 + 497.3996 228.0000 39.0000 6.5458 0.0000 448.1600 228.0000 40.0000 6.5458 0.0000 + 409.4287 228.0000 41.0000 6.5458 0.0000 317.3472 228.0000 42.0000 6.5458 0.0000 + 353.5546 228.0000 43.0000 6.5458 0.0000 270.5502 228.0000 44.0000 6.5458 0.0000 + 295.4451 228.0000 45.0000 6.5458 0.0000 274.3366 228.0000 46.0000 6.5458 0.0000 + 229.0537 228.0000 47.0000 6.5458 0.0000 242.1824 228.0000 48.0000 6.5458 0.0000 + 302.6341 228.0000 49.0000 6.5458 0.0000 280.8455 228.0000 50.0000 6.5458 0.0000 + 251.3164 228.0000 51.0000 6.5458 0.0000 233.8236 228.0000 52.0000 6.5458 0.0000 + 212.1168 228.0000 53.0000 6.5458 0.0000 191.3621 228.0000 54.0000 6.5458 0.0000 + 780.5520 228.0000 55.0000 6.5458 0.0000 720.7044 228.0000 56.0000 6.5458 0.0000 + 635.3561 228.0000 57.0000 6.5458 0.0000 296.8236 228.0000 58.0000 6.5458 2.7991 + 639.6214 228.0000 59.0000 6.5458 0.0000 614.5241 228.0000 60.0000 6.5458 0.0000 + 599.1969 228.0000 61.0000 6.5458 0.0000 585.0856 228.0000 62.0000 6.5458 0.0000 + 572.5728 228.0000 63.0000 6.5458 0.0000 452.3968 228.0000 64.0000 6.5458 0.0000 + 506.6985 228.0000 65.0000 6.5458 0.0000 489.0187 228.0000 66.0000 6.5458 0.0000 + 516.8454 228.0000 67.0000 6.5458 0.0000 505.9042 228.0000 68.0000 6.5458 0.0000 + 496.0618 228.0000 69.0000 6.5458 0.0000 490.1530 228.0000 70.0000 6.5458 0.0000 + 414.2968 228.0000 71.0000 6.5458 0.0000 408.7169 228.0000 72.0000 6.5458 0.0000 + 374.0020 228.0000 73.0000 6.5458 0.0000 316.7847 228.0000 74.0000 6.5458 0.0000 + 322.5147 228.0000 75.0000 6.5458 0.0000 293.0506 228.0000 76.0000 6.5458 0.0000 + 268.9834 228.0000 77.0000 6.5458 0.0000 224.2160 228.0000 78.0000 6.5458 0.0000 + 209.7881 228.0000 79.0000 6.5458 0.0000 215.8792 228.0000 80.0000 6.5458 0.0000 + 311.4949 228.0000 81.0000 6.5458 0.0000 305.2826 228.0000 82.0000 6.5458 0.0000 + 281.4890 228.0000 83.0000 6.5458 0.0000 269.0574 228.0000 84.0000 6.5458 0.0000 + 249.0414 228.0000 85.0000 6.5458 0.0000 228.9410 228.0000 86.0000 6.5458 0.0000 + 739.1647 228.0000 87.0000 6.5458 0.0000 714.0530 228.0000 88.0000 6.5458 0.0000 + 633.2886 228.0000 89.0000 6.5458 0.0000 571.6159 228.0000 90.0000 6.5458 0.0000 + 566.7294 228.0000 91.0000 6.5458 0.0000 548.8568 228.0000 92.0000 6.5458 0.0000 + 563.8170 228.0000 93.0000 6.5458 0.0000 546.2316 228.0000 94.0000 6.5458 0.0000 + 31.0981 228.0000 101.0000 6.5458 0.0000 99.3454 228.0000 103.0000 6.5458 0.9865 + 126.9812 228.0000 104.0000 6.5458 0.9808 97.9268 228.0000 105.0000 6.5458 0.9706 + 74.3149 228.0000 106.0000 6.5458 0.9868 52.1532 228.0000 107.0000 6.5458 0.9944 + 38.3194 228.0000 108.0000 6.5458 0.9925 26.7000 228.0000 109.0000 6.5458 0.9982 + 145.1854 228.0000 111.0000 6.5458 0.9684 224.1812 228.0000 112.0000 6.5458 0.9628 + 227.9565 228.0000 113.0000 6.5458 0.9648 184.4175 228.0000 114.0000 6.5458 0.9507 + 151.9152 228.0000 115.0000 6.5458 0.9947 129.0763 228.0000 116.0000 6.5458 0.9948 + 106.0905 228.0000 117.0000 6.5458 0.9972 201.3799 228.0000 119.0000 6.5458 0.9767 + 380.4201 228.0000 120.0000 6.5458 0.9831 202.2392 228.0000 121.0000 6.5458 1.8627 + 195.3516 228.0000 122.0000 6.5458 1.8299 191.4715 228.0000 123.0000 6.5458 1.9138 + 189.6203 228.0000 124.0000 6.5458 1.8269 174.9529 228.0000 125.0000 6.5458 1.6406 + 162.1293 228.0000 126.0000 6.5458 1.6483 154.7198 228.0000 127.0000 6.5458 1.7149 + 151.2409 228.0000 128.0000 6.5458 1.7937 149.1479 228.0000 129.0000 6.5458 0.9576 + 140.4552 228.0000 130.0000 6.5458 1.9419 227.0001 228.0000 131.0000 6.5458 0.9601 + 200.4003 228.0000 132.0000 6.5458 0.9434 180.3695 228.0000 133.0000 6.5458 0.9889 + 165.2584 228.0000 134.0000 6.5458 0.9901 146.1681 228.0000 135.0000 6.5458 0.9974 + 240.6629 228.0000 137.0000 6.5458 0.9738 462.8902 228.0000 138.0000 6.5458 0.9801 + 356.4737 228.0000 139.0000 6.5458 1.9153 267.4973 228.0000 140.0000 6.5458 1.9355 + 270.1688 228.0000 141.0000 6.5458 1.9545 252.3281 228.0000 142.0000 6.5458 1.9420 + 281.9707 228.0000 143.0000 6.5458 1.6682 220.7203 228.0000 144.0000 6.5458 1.8584 + 206.6729 228.0000 145.0000 6.5458 1.9003 192.1416 228.0000 146.0000 6.5458 1.8630 + 185.8430 228.0000 147.0000 6.5458 0.9679 184.1433 228.0000 148.0000 6.5458 1.9539 + 288.8824 228.0000 149.0000 6.5458 0.9633 262.3696 228.0000 150.0000 6.5458 0.9514 + 246.4555 228.0000 151.0000 6.5458 0.9749 233.6876 228.0000 152.0000 6.5458 0.9811 + 214.0853 228.0000 153.0000 6.5458 0.9968 285.2553 228.0000 155.0000 6.5458 0.9909 + 599.5116 228.0000 156.0000 6.5458 0.9797 450.9348 228.0000 157.0000 6.5458 1.9373 + 287.9649 228.0000 159.0000 6.5458 2.9425 282.0297 228.0000 160.0000 6.5458 2.9455 + 273.1670 228.0000 161.0000 6.5458 2.9413 274.3346 228.0000 162.0000 6.5458 2.9300 + 264.0373 228.0000 163.0000 6.5458 1.8286 275.9455 228.0000 164.0000 6.5458 2.8732 + 259.3743 228.0000 165.0000 6.5458 2.9086 263.6377 228.0000 166.0000 6.5458 2.8965 + 246.3103 228.0000 167.0000 6.5458 2.9242 239.3413 228.0000 168.0000 6.5458 2.9282 + 237.7527 228.0000 169.0000 6.5458 2.9246 249.5747 228.0000 170.0000 6.5458 2.8482 + 229.8523 228.0000 171.0000 6.5458 2.9219 309.1510 228.0000 172.0000 6.5458 1.9254 + 287.7037 228.0000 173.0000 6.5458 1.9459 263.2796 228.0000 174.0000 6.5458 1.9292 + 265.8522 228.0000 175.0000 6.5458 1.8104 234.1981 228.0000 176.0000 6.5458 1.8858 + 220.6612 228.0000 177.0000 6.5458 1.8648 210.9851 228.0000 178.0000 6.5458 1.9188 + 201.8322 228.0000 179.0000 6.5458 0.9846 195.3965 228.0000 180.0000 6.5458 1.9896 + 310.7796 228.0000 181.0000 6.5458 0.9267 284.3351 228.0000 182.0000 6.5458 0.9383 + 276.3091 228.0000 183.0000 6.5458 0.9820 269.1896 228.0000 184.0000 6.5458 0.9815 + 252.0363 228.0000 185.0000 6.5458 0.9954 321.3035 228.0000 187.0000 6.5458 0.9705 + 597.6475 228.0000 188.0000 6.5458 0.9662 340.6271 228.0000 189.0000 6.5458 2.9070 + 391.9818 228.0000 190.0000 6.5458 2.8844 351.1435 228.0000 191.0000 6.5458 2.8738 + 311.1729 228.0000 192.0000 6.5458 2.8878 299.6659 228.0000 193.0000 6.5458 2.9095 + 357.9521 228.0000 194.0000 6.5458 1.9209 83.6030 228.0000 204.0000 6.5458 1.9697 + 82.4474 228.0000 205.0000 6.5458 1.9441 60.8678 228.0000 206.0000 6.5458 1.9985 + 49.0511 228.0000 207.0000 6.5458 2.0143 33.9427 228.0000 208.0000 6.5458 1.9887 + 147.6912 228.0000 212.0000 6.5458 1.9496 178.3984 228.0000 213.0000 6.5458 1.9311 + 171.7269 228.0000 214.0000 6.5458 1.9435 149.8328 228.0000 215.0000 6.5458 2.0102 + 126.4947 228.0000 216.0000 6.5458 1.9903 207.4440 228.0000 220.0000 6.5458 1.9349 + 199.8502 228.0000 221.0000 6.5458 2.8999 202.3746 228.0000 222.0000 6.5458 3.8675 + 185.3265 228.0000 223.0000 6.5458 2.9110 140.4748 228.0000 224.0000 6.5458 10.6191 + 120.6249 228.0000 225.0000 6.5458 9.8849 118.3800 228.0000 226.0000 6.5458 9.1376 + 138.0223 228.0000 227.0000 6.5458 2.9263 128.7820 228.0000 228.0000 6.5458 6.5458 + 26.9562 231.0000 1.0000 1.9315 0.9118 17.4392 231.0000 2.0000 1.9315 0.0000 + 441.4888 231.0000 3.0000 1.9315 0.0000 250.1889 231.0000 4.0000 1.9315 0.0000 + 166.1525 231.0000 5.0000 1.9315 0.0000 110.8384 231.0000 6.0000 1.9315 0.0000 + 76.6641 231.0000 7.0000 1.9315 0.0000 57.5425 231.0000 8.0000 1.9315 0.0000 + 43.2385 231.0000 9.0000 1.9315 0.0000 33.0228 231.0000 10.0000 1.9315 0.0000 + 527.0671 231.0000 11.0000 1.9315 0.0000 399.9263 231.0000 12.0000 1.9315 0.0000 + 366.3371 231.0000 13.0000 1.9315 0.0000 285.9761 231.0000 14.0000 1.9315 0.0000 + 220.9763 231.0000 15.0000 1.9315 0.0000 182.1380 231.0000 16.0000 1.9315 0.0000 + 147.7169 231.0000 17.0000 1.9315 0.0000 120.0234 231.0000 18.0000 1.9315 0.0000 + 865.1066 231.0000 19.0000 1.9315 0.0000 706.2041 231.0000 20.0000 1.9315 0.0000 + 581.9150 231.0000 21.0000 1.9315 0.0000 560.2945 231.0000 22.0000 1.9315 0.0000 + 512.2075 231.0000 23.0000 1.9315 0.0000 402.8309 231.0000 24.0000 1.9315 0.0000 + 439.8829 231.0000 25.0000 1.9315 0.0000 344.5352 231.0000 26.0000 1.9315 0.0000 + 364.4340 231.0000 27.0000 1.9315 0.0000 376.1112 231.0000 28.0000 1.9315 0.0000 + 287.7668 231.0000 29.0000 1.9315 0.0000 294.3129 231.0000 30.0000 1.9315 0.0000 + 349.5389 231.0000 31.0000 1.9315 0.0000 306.0934 231.0000 32.0000 1.9315 0.0000 + 259.1650 231.0000 33.0000 1.9315 0.0000 231.3353 231.0000 34.0000 1.9315 0.0000 + 201.2706 231.0000 35.0000 1.9315 0.0000 174.0230 231.0000 36.0000 1.9315 0.0000 + 968.1682 231.0000 37.0000 1.9315 0.0000 841.3610 231.0000 38.0000 1.9315 0.0000 + 733.3555 231.0000 39.0000 1.9315 0.0000 656.8592 231.0000 40.0000 1.9315 0.0000 + 597.4745 231.0000 41.0000 1.9315 0.0000 458.8906 231.0000 42.0000 1.9315 0.0000 + 513.0410 231.0000 43.0000 1.9315 0.0000 388.6043 231.0000 44.0000 1.9315 0.0000 + 425.2069 231.0000 45.0000 1.9315 0.0000 393.6370 231.0000 46.0000 1.9315 0.0000 + 327.8852 231.0000 47.0000 1.9315 0.0000 346.0568 231.0000 48.0000 1.9315 0.0000 + 436.7407 231.0000 49.0000 1.9315 0.0000 401.7251 231.0000 50.0000 1.9315 0.0000 + 355.8474 231.0000 51.0000 1.9315 0.0000 328.8076 231.0000 52.0000 1.9315 0.0000 + 295.8817 231.0000 53.0000 1.9315 0.0000 264.7126 231.0000 54.0000 1.9315 0.0000 + 1179.2492 231.0000 55.0000 1.9315 0.0000 1073.9458 231.0000 56.0000 1.9315 0.0000 + 938.9286 231.0000 57.0000 1.9315 0.0000 420.5733 231.0000 58.0000 1.9315 2.7991 + 949.6978 231.0000 59.0000 1.9315 0.0000 911.1851 231.0000 60.0000 1.9315 0.0000 + 888.1417 231.0000 61.0000 1.9315 0.0000 866.9787 231.0000 62.0000 1.9315 0.0000 + 848.2084 231.0000 63.0000 1.9315 0.0000 662.7701 231.0000 64.0000 1.9315 0.0000 + 752.0406 231.0000 65.0000 1.9315 0.0000 724.6816 231.0000 66.0000 1.9315 0.0000 + 764.1475 231.0000 67.0000 1.9315 0.0000 747.8611 231.0000 68.0000 1.9315 0.0000 + 733.1234 231.0000 69.0000 1.9315 0.0000 724.7596 231.0000 70.0000 1.9315 0.0000 + 608.0882 231.0000 71.0000 1.9315 0.0000 595.0976 231.0000 72.0000 1.9315 0.0000 + 541.0622 231.0000 73.0000 1.9315 0.0000 455.0721 231.0000 74.0000 1.9315 0.0000 + 462.4347 231.0000 75.0000 1.9315 0.0000 417.6290 231.0000 76.0000 1.9315 0.0000 + 381.3209 231.0000 77.0000 1.9315 0.0000 315.4011 231.0000 78.0000 1.9315 0.0000 + 294.1677 231.0000 79.0000 1.9315 0.0000 302.4340 231.0000 80.0000 1.9315 0.0000 + 447.0673 231.0000 81.0000 1.9315 0.0000 435.4792 231.0000 82.0000 1.9315 0.0000 + 398.0929 231.0000 83.0000 1.9315 0.0000 378.4324 231.0000 84.0000 1.9315 0.0000 + 347.7513 231.0000 85.0000 1.9315 0.0000 317.3656 231.0000 86.0000 1.9315 0.0000 + 1108.8359 231.0000 87.0000 1.9315 0.0000 1059.0662 231.0000 88.0000 1.9315 0.0000 + 931.8768 231.0000 89.0000 1.9315 0.0000 832.4224 231.0000 90.0000 1.9315 0.0000 + 828.3485 231.0000 91.0000 1.9315 0.0000 801.8639 231.0000 92.0000 1.9315 0.0000 + 828.3682 231.0000 93.0000 1.9315 0.0000 801.7037 231.0000 94.0000 1.9315 0.0000 + 43.8881 231.0000 101.0000 1.9315 0.0000 145.1043 231.0000 103.0000 1.9315 0.9865 + 184.5744 231.0000 104.0000 1.9315 0.9808 139.2546 231.0000 105.0000 1.9315 0.9706 + 103.9180 231.0000 106.0000 1.9315 0.9868 71.4234 231.0000 107.0000 1.9315 0.9944 + 51.4705 231.0000 108.0000 1.9315 0.9925 34.9008 231.0000 109.0000 1.9315 0.9982 + 212.3618 231.0000 111.0000 1.9315 0.9684 328.9697 231.0000 112.0000 1.9315 0.9628 + 331.4055 231.0000 113.0000 1.9315 0.9648 263.8740 231.0000 114.0000 1.9315 0.9507 + 214.3903 231.0000 115.0000 1.9315 0.9947 180.1361 231.0000 116.0000 1.9315 0.9948 + 146.1873 231.0000 117.0000 1.9315 0.9972 290.5739 231.0000 119.0000 1.9315 0.9767 + 564.1147 231.0000 120.0000 1.9315 0.9831 288.9924 231.0000 121.0000 1.9315 1.8627 + 278.8293 231.0000 122.0000 1.9315 1.8299 273.2440 231.0000 123.0000 1.9315 1.9138 + 270.9168 231.0000 124.0000 1.9315 1.8269 248.3153 231.0000 125.0000 1.9315 1.6406 + 229.4318 231.0000 126.0000 1.9315 1.6483 218.7964 231.0000 127.0000 1.9315 1.7149 + 213.9621 231.0000 128.0000 1.9315 1.7937 212.0275 231.0000 129.0000 1.9315 0.9576 + 197.8459 231.0000 130.0000 1.9315 1.9419 327.6772 231.0000 131.0000 1.9315 0.9601 + 285.8049 231.0000 132.0000 1.9315 0.9434 254.6359 231.0000 133.0000 1.9315 0.9889 + 231.4312 231.0000 134.0000 1.9315 0.9901 202.7225 231.0000 135.0000 1.9315 0.9974 + 345.9921 231.0000 137.0000 1.9315 0.9738 686.5985 231.0000 138.0000 1.9315 0.9801 + 519.4437 231.0000 139.0000 1.9315 1.9153 382.1952 231.0000 140.0000 1.9315 1.9355 + 385.9385 231.0000 141.0000 1.9315 1.9545 359.1580 231.0000 142.0000 1.9315 1.9420 + 404.9175 231.0000 143.0000 1.9315 1.6682 311.5991 231.0000 144.0000 1.9315 1.8584 + 291.2261 231.0000 145.0000 1.9315 1.9003 270.0591 231.0000 146.0000 1.9315 1.8630 + 261.3654 231.0000 147.0000 1.9315 0.9679 257.9007 231.0000 148.0000 1.9315 1.9539 + 415.4641 231.0000 149.0000 1.9315 0.9633 373.7047 231.0000 150.0000 1.9315 0.9514 + 348.4425 231.0000 151.0000 1.9315 0.9749 328.4905 231.0000 152.0000 1.9315 0.9811 + 298.6948 231.0000 153.0000 1.9315 0.9968 407.5724 231.0000 155.0000 1.9315 0.9909 + 891.8106 231.0000 156.0000 1.9315 0.9797 657.9651 231.0000 157.0000 1.9315 1.9373 + 407.7143 231.0000 159.0000 1.9315 2.9425 399.2448 231.0000 160.0000 1.9315 2.9455 + 386.4453 231.0000 161.0000 1.9315 2.9413 388.7055 231.0000 162.0000 1.9315 2.9300 + 375.6249 231.0000 163.0000 1.9315 1.8286 391.3632 231.0000 164.0000 1.9315 2.8732 + 367.2307 231.0000 165.0000 1.9315 2.9086 374.2592 231.0000 166.0000 1.9315 2.8965 + 348.3079 231.0000 167.0000 1.9315 2.9242 338.2814 231.0000 168.0000 1.9315 2.9282 + 336.2103 231.0000 169.0000 1.9315 2.9246 354.0246 231.0000 170.0000 1.9315 2.8482 + 324.8481 231.0000 171.0000 1.9315 2.9219 444.8023 231.0000 172.0000 1.9315 1.9254 + 411.2050 231.0000 173.0000 1.9315 1.9459 373.6329 231.0000 174.0000 1.9315 1.9292 + 379.2820 231.0000 175.0000 1.9315 1.8104 328.9919 231.0000 176.0000 1.9315 1.8858 + 308.9063 231.0000 177.0000 1.9315 1.8648 294.6746 231.0000 178.0000 1.9315 1.9188 + 281.5915 231.0000 179.0000 1.9315 0.9846 271.3018 231.0000 180.0000 1.9315 1.9896 + 445.0912 231.0000 181.0000 1.9315 0.9267 403.3930 231.0000 182.0000 1.9315 0.9383 + 389.9930 231.0000 183.0000 1.9315 0.9820 378.3575 231.0000 184.0000 1.9315 0.9815 + 351.9782 231.0000 185.0000 1.9315 0.9954 458.9149 231.0000 187.0000 1.9315 0.9705 + 884.0411 231.0000 188.0000 1.9315 0.9662 482.6357 231.0000 189.0000 1.9315 2.9070 + 559.8251 231.0000 190.0000 1.9315 2.8844 499.3495 231.0000 191.0000 1.9315 2.8738 + 439.3548 231.0000 192.0000 1.9315 2.8878 422.3312 231.0000 193.0000 1.9315 2.9095 + 513.5961 231.0000 194.0000 1.9315 1.9209 118.9619 231.0000 204.0000 1.9315 1.9697 + 116.4830 231.0000 205.0000 1.9315 1.9441 84.2691 231.0000 206.0000 1.9315 1.9985 + 66.9550 231.0000 207.0000 1.9315 2.0143 45.2336 231.0000 208.0000 1.9315 1.9887 + 212.3044 231.0000 212.0000 1.9315 1.9496 256.7121 231.0000 213.0000 1.9315 1.9311 + 245.0585 231.0000 214.0000 1.9315 1.9435 211.5571 231.0000 215.0000 1.9315 2.0102 + 176.4499 231.0000 216.0000 1.9315 1.9903 297.1084 231.0000 220.0000 1.9315 1.9349 + 284.4870 231.0000 221.0000 1.9315 2.8999 287.8797 231.0000 222.0000 1.9315 3.8675 + 263.3800 231.0000 223.0000 1.9315 2.9110 196.7704 231.0000 224.0000 1.9315 10.6191 + 167.5629 231.0000 225.0000 1.9315 9.8849 164.5553 231.0000 226.0000 1.9315 9.1376 + 194.3868 231.0000 227.0000 1.9315 2.9263 180.7289 231.0000 228.0000 1.9315 6.5458 + 257.8727 231.0000 231.0000 1.9315 1.9315 28.6359 232.0000 1.0000 1.9447 0.9118 + 18.6186 232.0000 2.0000 1.9447 0.0000 454.1125 232.0000 3.0000 1.9447 0.0000 + 261.6034 232.0000 4.0000 1.9447 0.0000 175.0938 232.0000 5.0000 1.9447 0.0000 + 117.4198 232.0000 6.0000 1.9447 0.0000 81.5019 232.0000 7.0000 1.9447 0.0000 + 61.3099 232.0000 8.0000 1.9447 0.0000 46.1468 232.0000 9.0000 1.9447 0.0000 + 35.2842 232.0000 10.0000 1.9447 0.0000 542.6657 232.0000 11.0000 1.9447 0.0000 + 417.0307 232.0000 12.0000 1.9447 0.0000 383.6305 232.0000 13.0000 1.9447 0.0000 + 301.1380 232.0000 14.0000 1.9447 0.0000 233.7044 232.0000 15.0000 1.9447 0.0000 + 193.1315 232.0000 16.0000 1.9447 0.0000 157.0031 232.0000 17.0000 1.9447 0.0000 + 127.8113 232.0000 18.0000 1.9447 0.0000 887.7075 232.0000 19.0000 1.9447 0.0000 + 732.6433 232.0000 20.0000 1.9447 0.0000 605.0343 232.0000 21.0000 1.9447 0.0000 + 583.6237 232.0000 22.0000 1.9447 0.0000 534.1256 232.0000 23.0000 1.9447 0.0000 + 420.0642 232.0000 24.0000 1.9447 0.0000 459.4314 232.0000 25.0000 1.9447 0.0000 + 359.9172 232.0000 26.0000 1.9447 0.0000 381.6588 232.0000 27.0000 1.9447 0.0000 + 393.4530 232.0000 28.0000 1.9447 0.0000 300.9874 232.0000 29.0000 1.9447 0.0000 + 308.9517 232.0000 30.0000 1.9447 0.0000 366.5742 232.0000 31.0000 1.9447 0.0000 + 322.3974 232.0000 32.0000 1.9447 0.0000 273.9655 232.0000 33.0000 1.9447 0.0000 + 245.0690 232.0000 34.0000 1.9447 0.0000 213.6651 232.0000 35.0000 1.9447 0.0000 + 185.0751 232.0000 36.0000 1.9447 0.0000 994.2046 232.0000 37.0000 1.9447 0.0000 + 872.4465 232.0000 38.0000 1.9447 0.0000 763.3410 232.0000 39.0000 1.9447 0.0000 + 685.2716 232.0000 40.0000 1.9447 0.0000 624.2061 232.0000 41.0000 1.9447 0.0000 + 480.5552 232.0000 42.0000 1.9447 0.0000 536.7795 232.0000 43.0000 1.9447 0.0000 + 407.6339 232.0000 44.0000 1.9447 0.0000 446.0876 232.0000 45.0000 1.9447 0.0000 + 413.3244 232.0000 46.0000 1.9447 0.0000 344.0065 232.0000 47.0000 1.9447 0.0000 + 363.7536 232.0000 48.0000 1.9447 0.0000 457.8119 232.0000 49.0000 1.9447 0.0000 + 422.6322 232.0000 50.0000 1.9447 0.0000 375.6047 232.0000 51.0000 1.9447 0.0000 + 347.7286 232.0000 52.0000 1.9447 0.0000 313.5280 232.0000 53.0000 1.9447 0.0000 + 281.0046 232.0000 54.0000 1.9447 0.0000 1210.8497 232.0000 55.0000 1.9447 0.0000 + 1112.0376 232.0000 56.0000 1.9447 0.0000 976.0066 232.0000 57.0000 1.9447 0.0000 + 443.6388 232.0000 58.0000 1.9447 2.7991 984.5356 232.0000 59.0000 1.9447 0.0000 + 945.3065 232.0000 60.0000 1.9447 0.0000 921.5753 232.0000 61.0000 1.9447 0.0000 + 899.7622 232.0000 62.0000 1.9447 0.0000 880.4215 232.0000 63.0000 1.9447 0.0000 + 690.6823 232.0000 64.0000 1.9447 0.0000 778.5964 232.0000 65.0000 1.9447 0.0000 + 750.7323 232.0000 66.0000 1.9447 0.0000 793.9592 232.0000 67.0000 1.9447 0.0000 + 777.1265 232.0000 68.0000 1.9447 0.0000 761.9321 232.0000 69.0000 1.9447 0.0000 + 753.1172 232.0000 70.0000 1.9447 0.0000 633.5308 232.0000 71.0000 1.9447 0.0000 + 622.4382 232.0000 72.0000 1.9447 0.0000 567.1420 232.0000 73.0000 1.9447 0.0000 + 477.7197 232.0000 74.0000 1.9447 0.0000 485.8648 232.0000 75.0000 1.9447 0.0000 + 439.5686 232.0000 76.0000 1.9447 0.0000 401.9118 232.0000 77.0000 1.9447 0.0000 + 332.8663 232.0000 78.0000 1.9447 0.0000 310.6148 232.0000 79.0000 1.9447 0.0000 + 319.5808 232.0000 80.0000 1.9447 0.0000 468.9426 232.0000 81.0000 1.9447 0.0000 + 458.1125 232.0000 82.0000 1.9447 0.0000 420.0429 232.0000 83.0000 1.9447 0.0000 + 399.9679 232.0000 84.0000 1.9447 0.0000 368.2512 232.0000 85.0000 1.9447 0.0000 + 336.6417 232.0000 86.0000 1.9447 0.0000 1142.3947 232.0000 87.0000 1.9447 0.0000 + 1098.8136 232.0000 88.0000 1.9447 0.0000 970.2576 232.0000 89.0000 1.9447 0.0000 + 870.0209 232.0000 90.0000 1.9447 0.0000 864.0175 232.0000 91.0000 1.9447 0.0000 + 836.4744 232.0000 92.0000 1.9447 0.0000 862.0587 232.0000 93.0000 1.9447 0.0000 + 834.6893 232.0000 94.0000 1.9447 0.0000 46.4409 232.0000 101.0000 1.9447 0.0000 + 151.8759 232.0000 103.0000 1.9447 0.9865 193.4457 232.0000 104.0000 1.9447 0.9808 + 146.9606 232.0000 105.0000 1.9447 0.9706 110.0651 232.0000 106.0000 1.9447 0.9868 + 75.9287 232.0000 107.0000 1.9447 0.9944 54.8693 232.0000 108.0000 1.9447 0.9925 + 37.3202 232.0000 109.0000 1.9447 0.9982 221.9031 232.0000 111.0000 1.9447 0.9684 + 343.5106 232.0000 112.0000 1.9447 0.9628 347.3879 232.0000 113.0000 1.9447 0.9648 + 278.0671 232.0000 114.0000 1.9447 0.9507 226.7660 232.0000 115.0000 1.9447 0.9947 + 190.9927 232.0000 116.0000 1.9447 0.9948 155.3672 232.0000 117.0000 1.9447 0.9972 + 304.4222 232.0000 119.0000 1.9447 0.9767 585.0515 232.0000 120.0000 1.9447 0.9831 + 304.1902 232.0000 121.0000 1.9447 1.8627 293.4899 232.0000 122.0000 1.9447 1.8299 + 287.5851 232.0000 123.0000 1.9447 1.9138 284.9729 232.0000 124.0000 1.9447 1.8269 + 261.8866 232.0000 125.0000 1.9447 1.6406 242.1349 232.0000 126.0000 1.9447 1.6483 + 230.8956 232.0000 127.0000 1.9447 1.7149 225.7435 232.0000 128.0000 1.9447 1.7937 + 223.2574 232.0000 129.0000 1.9447 0.9576 209.0707 232.0000 130.0000 1.9447 1.9419 + 344.0232 232.0000 131.0000 1.9447 0.9601 301.3102 232.0000 132.0000 1.9447 0.9434 + 269.2308 232.0000 133.0000 1.9447 0.9889 245.1604 232.0000 134.0000 1.9447 0.9901 + 215.1816 232.0000 135.0000 1.9447 0.9974 362.8020 232.0000 137.0000 1.9447 0.9738 + 711.5862 232.0000 138.0000 1.9447 0.9801 542.3655 232.0000 139.0000 1.9447 1.9153 + 402.0877 232.0000 140.0000 1.9447 1.9355 406.0194 232.0000 141.0000 1.9447 1.9545 + 378.1231 232.0000 142.0000 1.9447 1.9420 424.7791 232.0000 143.0000 1.9447 1.6682 + 328.8341 232.0000 144.0000 1.9447 1.8584 307.3740 232.0000 145.0000 1.9447 1.9003 + 285.1360 232.0000 146.0000 1.9447 1.8630 275.8484 232.0000 147.0000 1.9447 0.9679 + 272.7228 232.0000 148.0000 1.9447 1.9539 436.0573 232.0000 149.0000 1.9447 0.9633 + 393.6595 232.0000 150.0000 1.9447 0.9514 367.9463 232.0000 151.0000 1.9447 0.9749 + 347.4358 232.0000 152.0000 1.9447 0.9811 316.5011 232.0000 153.0000 1.9447 0.9968 + 428.6170 232.0000 155.0000 1.9447 0.9909 922.5046 232.0000 156.0000 1.9447 0.9797 + 686.4772 232.0000 157.0000 1.9447 1.9373 430.1513 232.0000 159.0000 1.9447 2.9425 + 421.2295 232.0000 160.0000 1.9447 2.9455 407.7871 232.0000 161.0000 1.9447 2.9413 + 409.9536 232.0000 162.0000 1.9447 2.9300 395.4915 232.0000 163.0000 1.9447 1.8286 + 412.7144 232.0000 164.0000 1.9447 2.8732 387.4235 232.0000 165.0000 1.9447 2.9086 + 394.4535 232.0000 166.0000 1.9447 2.8965 367.6206 232.0000 167.0000 1.9447 2.9242 + 357.0949 232.0000 168.0000 1.9447 2.9282 354.8650 232.0000 169.0000 1.9447 2.9246 + 373.4254 232.0000 170.0000 1.9447 2.8482 342.9616 232.0000 171.0000 1.9447 2.9219 + 466.7476 232.0000 172.0000 1.9447 1.9254 432.3917 232.0000 173.0000 1.9447 1.9459 + 393.7121 232.0000 174.0000 1.9447 1.9292 398.9067 232.0000 175.0000 1.9447 1.8104 + 347.6776 232.0000 176.0000 1.9447 1.8858 326.6525 232.0000 177.0000 1.9447 1.8648 + 311.7083 232.0000 178.0000 1.9447 1.9188 297.8170 232.0000 179.0000 1.9447 0.9846 + 287.4267 232.0000 180.0000 1.9447 1.9896 467.3755 232.0000 181.0000 1.9447 0.9267 + 425.1158 232.0000 182.0000 1.9447 0.9383 411.7682 232.0000 183.0000 1.9447 0.9820 + 399.9956 232.0000 184.0000 1.9447 0.9815 372.7413 232.0000 185.0000 1.9447 0.9954 + 482.7248 232.0000 187.0000 1.9447 0.9705 916.9315 232.0000 188.0000 1.9447 0.9662 + 509.1698 232.0000 189.0000 1.9447 2.9070 588.6206 232.0000 190.0000 1.9447 2.8844 + 525.4062 232.0000 191.0000 1.9447 2.8738 463.5903 232.0000 192.0000 1.9447 2.8878 + 445.8627 232.0000 193.0000 1.9447 2.9095 538.5580 232.0000 194.0000 1.9447 1.9209 + 125.6209 232.0000 204.0000 1.9447 1.9697 123.0969 232.0000 205.0000 1.9447 1.9441 + 89.4448 232.0000 206.0000 1.9447 1.9985 71.2017 232.0000 207.0000 1.9447 2.0143 + 48.2476 232.0000 208.0000 1.9447 1.9887 223.4249 232.0000 212.0000 1.9447 1.9496 + 269.9943 232.0000 213.0000 1.9447 1.9311 258.4338 232.0000 214.0000 1.9447 1.9435 + 223.7008 232.0000 215.0000 1.9447 2.0102 187.0906 232.0000 216.0000 1.9447 1.9903 + 312.5424 232.0000 220.0000 1.9447 1.9349 299.9014 232.0000 221.0000 1.9447 2.8999 + 303.5228 232.0000 222.0000 1.9447 3.8675 277.6090 232.0000 223.0000 1.9447 2.9110 + 208.0381 232.0000 224.0000 1.9447 10.6191 177.4973 232.0000 225.0000 1.9447 9.8849 + 174.2654 232.0000 226.0000 1.9447 9.1376 205.2122 232.0000 227.0000 1.9447 2.9263 + 190.9759 232.0000 228.0000 1.9447 6.5458 271.7272 232.0000 231.0000 1.9447 1.9315 + 286.6545 232.0000 232.0000 1.9447 1.9447 26.7042 233.0000 1.0000 1.9793 0.9118 + 17.7051 233.0000 2.0000 1.9793 0.0000 392.4365 233.0000 3.0000 1.9793 0.0000 + 233.5151 233.0000 4.0000 1.9793 0.0000 159.4969 233.0000 5.0000 1.9793 0.0000 + 108.6407 233.0000 6.0000 1.9793 0.0000 76.2992 233.0000 7.0000 1.9793 0.0000 + 57.8784 233.0000 8.0000 1.9793 0.0000 43.8762 233.0000 9.0000 1.9793 0.0000 + 33.7391 233.0000 10.0000 1.9793 0.0000 469.9596 233.0000 11.0000 1.9793 0.0000 + 370.0638 233.0000 12.0000 1.9793 0.0000 343.9343 233.0000 13.0000 1.9793 0.0000 + 273.7334 233.0000 14.0000 1.9793 0.0000 215.0103 233.0000 15.0000 1.9793 0.0000 + 179.1160 233.0000 16.0000 1.9793 0.0000 146.7405 233.0000 17.0000 1.9793 0.0000 + 120.2698 233.0000 18.0000 1.9793 0.0000 766.5311 233.0000 19.0000 1.9793 0.0000 + 644.0351 233.0000 20.0000 1.9793 0.0000 534.1575 233.0000 21.0000 1.9793 0.0000 + 517.5611 233.0000 22.0000 1.9793 0.0000 474.8898 233.0000 23.0000 1.9793 0.0000 + 374.0038 233.0000 24.0000 1.9793 0.0000 410.0199 233.0000 25.0000 1.9793 0.0000 + 321.8092 233.0000 26.0000 1.9793 0.0000 342.7215 233.0000 27.0000 1.9793 0.0000 + 352.3403 233.0000 28.0000 1.9793 0.0000 269.9330 233.0000 29.0000 1.9793 0.0000 + 279.0375 233.0000 30.0000 1.9793 0.0000 330.1881 233.0000 31.0000 1.9793 0.0000 + 293.4322 233.0000 32.0000 1.9793 0.0000 251.8155 233.0000 33.0000 1.9793 0.0000 + 226.6845 233.0000 34.0000 1.9793 0.0000 198.9308 233.0000 35.0000 1.9793 0.0000 + 173.3582 233.0000 36.0000 1.9793 0.0000 860.3672 233.0000 37.0000 1.9793 0.0000 + 766.7421 233.0000 38.0000 1.9793 0.0000 676.2036 233.0000 39.0000 1.9793 0.0000 + 610.1761 233.0000 40.0000 1.9793 0.0000 557.7850 233.0000 41.0000 1.9793 0.0000 + 432.2496 233.0000 42.0000 1.9793 0.0000 481.6229 233.0000 43.0000 1.9793 0.0000 + 368.3695 233.0000 44.0000 1.9793 0.0000 402.8017 233.0000 45.0000 1.9793 0.0000 + 374.0353 233.0000 46.0000 1.9793 0.0000 311.2799 233.0000 47.0000 1.9793 0.0000 + 330.1075 233.0000 48.0000 1.9793 0.0000 412.5541 233.0000 49.0000 1.9793 0.0000 + 383.9466 233.0000 50.0000 1.9793 0.0000 344.1036 233.0000 51.0000 1.9793 0.0000 + 320.2529 233.0000 52.0000 1.9793 0.0000 290.4211 233.0000 53.0000 1.9793 0.0000 + 261.7361 233.0000 54.0000 1.9793 0.0000 1048.8144 233.0000 55.0000 1.9793 0.0000 + 975.3242 233.0000 56.0000 1.9793 0.0000 862.6780 233.0000 57.0000 1.9793 0.0000 + 405.9846 233.0000 58.0000 1.9793 2.7991 865.7939 233.0000 59.0000 1.9793 0.0000 + 832.2670 233.0000 60.0000 1.9793 0.0000 811.6356 233.0000 61.0000 1.9793 0.0000 + 792.6385 233.0000 62.0000 1.9793 0.0000 775.8051 233.0000 63.0000 1.9793 0.0000 + 614.3654 233.0000 64.0000 1.9793 0.0000 684.3805 233.0000 65.0000 1.9793 0.0000 + 660.9421 233.0000 66.0000 1.9793 0.0000 700.8927 233.0000 67.0000 1.9793 0.0000 + 686.1478 233.0000 68.0000 1.9793 0.0000 672.9150 233.0000 69.0000 1.9793 0.0000 + 664.8552 233.0000 70.0000 1.9793 0.0000 562.8960 233.0000 71.0000 1.9793 0.0000 + 557.4729 233.0000 72.0000 1.9793 0.0000 510.6138 233.0000 73.0000 1.9793 0.0000 + 432.1746 233.0000 74.0000 1.9793 0.0000 440.3127 233.0000 75.0000 1.9793 0.0000 + 400.1807 233.0000 76.0000 1.9793 0.0000 367.2724 233.0000 77.0000 1.9793 0.0000 + 305.5560 233.0000 78.0000 1.9793 0.0000 285.6294 233.0000 79.0000 1.9793 0.0000 + 294.2547 233.0000 80.0000 1.9793 0.0000 423.9023 233.0000 81.0000 1.9793 0.0000 + 416.5496 233.0000 82.0000 1.9793 0.0000 384.7323 233.0000 83.0000 1.9793 0.0000 + 367.9617 233.0000 84.0000 1.9793 0.0000 340.6117 233.0000 85.0000 1.9793 0.0000 + 312.9382 233.0000 86.0000 1.9793 0.0000 995.6883 233.0000 87.0000 1.9793 0.0000 + 967.7980 233.0000 88.0000 1.9793 0.0000 860.6059 233.0000 89.0000 1.9793 0.0000 + 778.4268 233.0000 90.0000 1.9793 0.0000 770.0795 233.0000 91.0000 1.9793 0.0000 + 745.6954 233.0000 92.0000 1.9793 0.0000 764.3973 233.0000 93.0000 1.9793 0.0000 + 740.8098 233.0000 94.0000 1.9793 0.0000 42.7789 233.0000 101.0000 1.9793 0.0000 + 135.9832 233.0000 103.0000 1.9793 0.9865 173.9415 233.0000 104.0000 1.9793 0.9808 + 134.4704 233.0000 105.0000 1.9793 0.9706 101.8469 233.0000 106.0000 1.9793 0.9868 + 71.1238 233.0000 107.0000 1.9793 0.9944 51.9199 233.0000 108.0000 1.9793 0.9925 + 35.7582 233.0000 109.0000 1.9793 0.9982 198.0692 233.0000 111.0000 1.9793 0.9684 + 306.1275 233.0000 112.0000 1.9793 0.9628 312.2501 233.0000 113.0000 1.9793 0.9648 + 253.3112 233.0000 114.0000 1.9793 0.9507 208.7309 233.0000 115.0000 1.9793 0.9947 + 177.1085 233.0000 116.0000 1.9793 0.9948 145.1961 233.0000 117.0000 1.9793 0.9972 + 274.2325 233.0000 119.0000 1.9793 0.9767 515.4323 233.0000 120.0000 1.9793 0.9831 + 276.6634 233.0000 121.0000 1.9793 1.8627 267.1055 233.0000 122.0000 1.9793 1.8299 + 261.6872 233.0000 123.0000 1.9793 1.9138 258.9856 233.0000 124.0000 1.9793 1.8269 + 239.4120 233.0000 125.0000 1.9793 1.6406 221.8034 233.0000 126.0000 1.9793 1.6483 + 211.5422 233.0000 127.0000 1.9793 1.7149 206.7172 233.0000 128.0000 1.9793 1.7937 + 203.4807 233.0000 129.0000 1.9793 0.9576 192.1686 233.0000 130.0000 1.9793 1.9419 + 310.7110 233.0000 131.0000 1.9793 0.9601 274.9497 233.0000 132.0000 1.9793 0.9434 + 247.6174 233.0000 133.0000 1.9793 0.9889 226.7519 233.0000 134.0000 1.9793 0.9901 + 200.2786 233.0000 135.0000 1.9793 0.9974 327.7032 233.0000 137.0000 1.9793 0.9738 + 626.5605 233.0000 138.0000 1.9793 0.9801 485.2461 233.0000 139.0000 1.9793 1.9153 + 365.6312 233.0000 140.0000 1.9793 1.9355 369.1125 233.0000 141.0000 1.9793 1.9545 + 344.6133 233.0000 142.0000 1.9793 1.9420 384.1644 233.0000 143.0000 1.9793 1.6682 + 301.4924 233.0000 144.0000 1.9793 1.8584 282.0464 233.0000 145.0000 1.9793 1.9003 + 261.9897 233.0000 146.0000 1.9793 1.8630 253.2180 233.0000 147.0000 1.9793 0.9679 + 251.4082 233.0000 148.0000 1.9793 1.9539 394.1073 233.0000 149.0000 1.9793 0.9633 + 358.8398 233.0000 150.0000 1.9793 0.9514 337.4828 233.0000 151.0000 1.9793 0.9749 + 320.0878 233.0000 152.0000 1.9793 0.9811 293.1445 233.0000 153.0000 1.9793 0.9968 + 389.6837 233.0000 155.0000 1.9793 0.9909 810.2357 233.0000 156.0000 1.9793 0.9797 + 613.5158 233.0000 157.0000 1.9793 1.9373 393.8448 233.0000 159.0000 1.9793 2.9425 + 385.7096 233.0000 160.0000 1.9793 2.9455 373.5692 233.0000 161.0000 1.9793 2.9413 + 375.0947 233.0000 162.0000 1.9793 2.9300 360.4255 233.0000 163.0000 1.9793 1.8286 + 377.4212 233.0000 164.0000 1.9793 2.8732 354.6851 233.0000 165.0000 1.9793 2.9086 + 360.3420 233.0000 166.0000 1.9793 2.8965 336.9098 233.0000 167.0000 1.9793 2.9242 + 327.3956 233.0000 168.0000 1.9793 2.9282 325.2371 233.0000 169.0000 1.9793 2.9246 + 341.5611 233.0000 170.0000 1.9793 2.8482 314.5113 233.0000 171.0000 1.9793 2.9219 + 422.0150 233.0000 172.0000 1.9793 1.9254 392.9377 233.0000 173.0000 1.9793 1.9459 + 359.6738 233.0000 174.0000 1.9793 1.9292 362.7743 233.0000 175.0000 1.9793 1.8104 + 319.9987 233.0000 176.0000 1.9793 1.8858 301.2426 233.0000 177.0000 1.9793 1.8648 + 287.8078 233.0000 178.0000 1.9793 1.9188 274.9895 233.0000 179.0000 1.9793 0.9846 + 266.4833 233.0000 180.0000 1.9793 1.9896 423.3891 233.0000 181.0000 1.9793 0.9267 + 388.2741 233.0000 182.0000 1.9793 0.9383 377.7830 233.0000 183.0000 1.9793 0.9820 + 368.2276 233.0000 184.0000 1.9793 0.9815 344.7767 233.0000 185.0000 1.9793 0.9954 + 439.0839 233.0000 187.0000 1.9793 0.9705 809.3684 233.0000 188.0000 1.9793 0.9662 + 466.0470 233.0000 189.0000 1.9793 2.9070 535.0793 233.0000 190.0000 1.9793 2.8844 + 479.0423 233.0000 191.0000 1.9793 2.8738 424.9509 233.0000 192.0000 1.9793 2.8878 + 409.2244 233.0000 193.0000 1.9793 2.9095 486.9403 233.0000 194.0000 1.9793 1.9209 + 115.0137 233.0000 204.0000 1.9793 1.9697 113.1412 233.0000 205.0000 1.9793 1.9441 + 83.2865 233.0000 206.0000 1.9793 1.9985 66.7818 233.0000 207.0000 1.9793 2.0143 + 45.7899 233.0000 208.0000 1.9793 1.9887 202.7244 233.0000 212.0000 1.9793 1.9496 + 244.7896 233.0000 213.0000 1.9793 1.9311 235.9012 233.0000 214.0000 1.9793 1.9435 + 205.7784 233.0000 215.0000 1.9793 2.0102 173.5234 233.0000 216.0000 1.9793 1.9903 + 283.8013 233.0000 220.0000 1.9793 1.9349 273.7684 233.0000 221.0000 1.9793 2.8999 + 277.1939 233.0000 222.0000 1.9793 3.8675 253.5169 233.0000 223.0000 1.9793 2.9110 + 191.7598 233.0000 224.0000 1.9793 10.6191 164.5248 233.0000 225.0000 1.9793 9.8849 + 161.4178 233.0000 226.0000 1.9793 9.1376 188.3702 233.0000 227.0000 1.9793 2.9263 + 175.7399 233.0000 228.0000 1.9793 6.5458 247.7421 233.0000 231.0000 1.9793 1.9315 + 262.0354 233.0000 232.0000 1.9793 1.9447 241.2494 233.0000 233.0000 1.9793 1.9793 + 25.1268 234.0000 1.0000 1.9812 0.9118 16.9157 234.0000 2.0000 1.9812 0.0000 + 351.8104 234.0000 3.0000 1.9812 0.0000 213.3149 234.0000 4.0000 1.9812 0.0000 + 147.6502 234.0000 5.0000 1.9812 0.0000 101.6786 234.0000 6.0000 1.9812 0.0000 + 72.0328 234.0000 7.0000 1.9812 0.0000 54.9943 234.0000 8.0000 1.9812 0.0000 + 41.9260 234.0000 9.0000 1.9812 0.0000 32.3892 234.0000 10.0000 1.9812 0.0000 + 421.9195 234.0000 11.0000 1.9812 0.0000 336.8869 234.0000 12.0000 1.9812 0.0000 + 315.1147 234.0000 13.0000 1.9812 0.0000 253.0289 234.0000 14.0000 1.9812 0.0000 + 200.3747 234.0000 15.0000 1.9812 0.0000 167.8868 234.0000 16.0000 1.9812 0.0000 + 138.3253 234.0000 17.0000 1.9812 0.0000 113.9577 234.0000 18.0000 1.9812 0.0000 + 687.7370 234.0000 19.0000 1.9812 0.0000 583.4009 234.0000 20.0000 1.9812 0.0000 + 485.0594 234.0000 21.0000 1.9812 0.0000 471.3428 234.0000 22.0000 1.9812 0.0000 + 433.1830 234.0000 23.0000 1.9812 0.0000 341.6637 234.0000 24.0000 1.9812 0.0000 + 374.9026 234.0000 25.0000 1.9812 0.0000 294.7778 234.0000 26.0000 1.9812 0.0000 + 314.5706 234.0000 27.0000 1.9812 0.0000 322.8238 234.0000 28.0000 1.9812 0.0000 + 247.7460 234.0000 29.0000 1.9812 0.0000 257.0583 234.0000 30.0000 1.9812 0.0000 + 303.5764 234.0000 31.0000 1.9812 0.0000 271.5474 234.0000 32.0000 1.9812 0.0000 + 234.5631 234.0000 33.0000 1.9812 0.0000 212.0915 234.0000 34.0000 1.9812 0.0000 + 186.9994 234.0000 35.0000 1.9812 0.0000 163.6906 234.0000 36.0000 1.9812 0.0000 + 773.1255 234.0000 37.0000 1.9812 0.0000 694.6556 234.0000 38.0000 1.9812 0.0000 + 615.5317 234.0000 39.0000 1.9812 0.0000 557.2071 234.0000 40.0000 1.9812 0.0000 + 510.5464 234.0000 41.0000 1.9812 0.0000 397.4644 234.0000 42.0000 1.9812 0.0000 + 442.0786 234.0000 43.0000 1.9812 0.0000 339.8157 234.0000 44.0000 1.9812 0.0000 + 371.2277 234.0000 45.0000 1.9812 0.0000 345.2124 234.0000 46.0000 1.9812 0.0000 + 287.5025 234.0000 47.0000 1.9812 0.0000 305.2454 234.0000 48.0000 1.9812 0.0000 + 379.6844 234.0000 49.0000 1.9812 0.0000 355.0652 234.0000 50.0000 1.9812 0.0000 + 319.9354 234.0000 51.0000 1.9812 0.0000 298.8156 234.0000 52.0000 1.9812 0.0000 + 272.0583 234.0000 53.0000 1.9812 0.0000 246.1495 234.0000 54.0000 1.9812 0.0000 + 943.1487 234.0000 55.0000 1.9812 0.0000 882.8069 234.0000 56.0000 1.9812 0.0000 + 784.4000 234.0000 57.0000 1.9812 0.0000 377.3149 234.0000 58.0000 1.9812 2.7991 + 784.9774 234.0000 59.0000 1.9812 0.0000 755.0713 234.0000 60.0000 1.9812 0.0000 + 736.4811 234.0000 61.0000 1.9812 0.0000 719.3436 234.0000 62.0000 1.9812 0.0000 + 704.1627 234.0000 63.0000 1.9812 0.0000 560.9891 234.0000 64.0000 1.9812 0.0000 + 620.7464 234.0000 65.0000 1.9812 0.0000 600.0555 234.0000 66.0000 1.9812 0.0000 + 636.8114 234.0000 67.0000 1.9812 0.0000 623.4596 234.0000 68.0000 1.9812 0.0000 + 611.5213 234.0000 69.0000 1.9812 0.0000 604.0284 234.0000 70.0000 1.9812 0.0000 + 513.4843 234.0000 71.0000 1.9812 0.0000 510.9034 234.0000 72.0000 1.9812 0.0000 + 469.5352 234.0000 73.0000 1.9812 0.0000 398.8063 234.0000 74.0000 1.9812 0.0000 + 406.7094 234.0000 75.0000 1.9812 0.0000 370.7546 234.0000 76.0000 1.9812 0.0000 + 341.1245 234.0000 77.0000 1.9812 0.0000 284.7786 234.0000 78.0000 1.9812 0.0000 + 266.5585 234.0000 79.0000 1.9812 0.0000 274.7593 234.0000 80.0000 1.9812 0.0000 + 391.1438 234.0000 81.0000 1.9812 0.0000 385.6200 234.0000 82.0000 1.9812 0.0000 + 357.7845 234.0000 83.0000 1.9812 0.0000 343.1666 234.0000 84.0000 1.9812 0.0000 + 318.8097 234.0000 85.0000 1.9812 0.0000 293.9292 234.0000 86.0000 1.9812 0.0000 + 898.7234 234.0000 87.0000 1.9812 0.0000 878.2656 234.0000 88.0000 1.9812 0.0000 + 784.1819 234.0000 89.0000 1.9812 0.0000 713.1602 234.0000 90.0000 1.9812 0.0000 + 704.0315 234.0000 91.0000 1.9812 0.0000 681.8524 234.0000 92.0000 1.9812 0.0000 + 696.6895 234.0000 93.0000 1.9812 0.0000 675.5529 234.0000 94.0000 1.9812 0.0000 + 39.8967 234.0000 101.0000 1.9812 0.0000 124.4868 234.0000 103.0000 1.9812 0.9865 + 159.7099 234.0000 104.0000 1.9812 0.9808 124.8845 234.0000 105.0000 1.9812 0.9706 + 95.3553 234.0000 106.0000 1.9812 0.9868 67.1936 234.0000 107.0000 1.9812 0.9944 + 49.4291 234.0000 108.0000 1.9812 0.9925 34.3729 234.0000 109.0000 1.9812 0.9982 + 181.0487 234.0000 111.0000 1.9812 0.9684 279.5035 234.0000 112.0000 1.9812 0.9628 + 286.5809 234.0000 113.0000 1.9812 0.9648 234.5066 234.0000 114.0000 1.9812 0.9507 + 194.6017 234.0000 115.0000 1.9812 0.9947 165.9975 234.0000 116.0000 1.9812 0.9948 + 136.8644 234.0000 117.0000 1.9812 0.9972 252.4498 234.0000 119.0000 1.9812 0.9767 + 467.8832 234.0000 120.0000 1.9812 0.9831 256.0474 234.0000 121.0000 1.9812 1.8627 + 247.3402 234.0000 122.0000 1.9812 1.8299 242.3111 234.0000 123.0000 1.9812 1.9138 + 239.6357 234.0000 124.0000 1.9812 1.8269 222.2961 234.0000 125.0000 1.9812 1.6406 + 206.2367 234.0000 126.0000 1.9812 1.6483 196.7403 234.0000 127.0000 1.9812 1.7149 + 192.1970 234.0000 128.0000 1.9812 1.7937 188.6560 234.0000 129.0000 1.9812 0.9576 + 179.0747 234.0000 130.0000 1.9812 1.9419 286.1624 234.0000 131.0000 1.9812 0.9601 + 254.8857 234.0000 132.0000 1.9812 0.9434 230.7558 234.0000 133.0000 1.9812 0.9889 + 212.1475 234.0000 134.0000 1.9812 0.9901 188.2263 234.0000 135.0000 1.9812 0.9974 + 302.2530 234.0000 137.0000 1.9812 0.9738 568.7416 234.0000 138.0000 1.9812 0.9801 + 444.7322 234.0000 139.0000 1.9812 1.9153 338.4610 234.0000 140.0000 1.9812 1.9355 + 341.6492 234.0000 141.0000 1.9812 1.9545 319.5340 234.0000 142.0000 1.9812 1.9420 + 354.5768 234.0000 143.0000 1.9812 1.6682 280.6374 234.0000 144.0000 1.9812 1.8584 + 262.7255 234.0000 145.0000 1.9812 1.9003 244.2954 234.0000 146.0000 1.9812 1.8630 + 235.9871 234.0000 147.0000 1.9812 0.9679 234.8470 234.0000 148.0000 1.9812 1.9539 + 363.3697 234.0000 149.0000 1.9812 0.9633 332.5825 234.0000 150.0000 1.9812 0.9514 + 314.0234 234.0000 151.0000 1.9812 0.9749 298.7247 234.0000 152.0000 1.9812 0.9811 + 274.5862 234.0000 153.0000 1.9812 0.9968 360.8053 234.0000 155.0000 1.9812 0.9909 + 734.5865 234.0000 156.0000 1.9812 0.9797 562.0006 234.0000 157.0000 1.9812 1.9373 + 366.1629 234.0000 159.0000 1.9812 2.9425 358.6221 234.0000 160.0000 1.9812 2.9455 + 347.4428 234.0000 161.0000 1.9812 2.9413 348.5929 234.0000 162.0000 1.9812 2.9300 + 334.1734 234.0000 163.0000 1.9812 1.8286 350.6032 234.0000 164.0000 1.9812 2.8732 + 329.7337 234.0000 165.0000 1.9812 2.9086 334.5522 234.0000 166.0000 1.9812 2.8965 + 313.4113 234.0000 167.0000 1.9812 2.9242 304.6384 234.0000 168.0000 1.9812 2.9282 + 302.5558 234.0000 169.0000 1.9812 2.9246 317.2786 234.0000 170.0000 1.9812 2.8482 + 292.6768 234.0000 171.0000 1.9812 2.9219 389.2745 234.0000 172.0000 1.9812 1.9254 + 363.6525 234.0000 173.0000 1.9812 1.9459 334.0177 234.0000 174.0000 1.9812 1.9292 + 335.9505 234.0000 175.0000 1.9812 1.8104 298.6221 234.0000 176.0000 1.9812 1.8858 + 281.5326 234.0000 177.0000 1.9812 1.8648 269.2265 234.0000 178.0000 1.9812 1.9188 + 257.2948 234.0000 179.0000 1.9812 0.9846 249.9470 234.0000 180.0000 1.9812 1.9896 + 391.1275 234.0000 181.0000 1.9812 0.9267 360.4617 234.0000 182.0000 1.9812 0.9383 + 351.6912 234.0000 183.0000 1.9812 0.9820 343.5506 234.0000 184.0000 1.9812 0.9815 + 322.7051 234.0000 185.0000 1.9812 0.9954 406.6434 234.0000 187.0000 1.9812 0.9705 + 735.9570 234.0000 188.0000 1.9812 0.9662 433.1665 234.0000 189.0000 1.9812 2.9070 + 495.3332 234.0000 190.0000 1.9812 2.8844 444.4244 234.0000 191.0000 1.9812 2.8738 + 395.5015 234.0000 192.0000 1.9812 2.8878 381.1814 234.0000 193.0000 1.9812 2.9095 + 449.4634 234.0000 194.0000 1.9812 1.9209 106.8086 234.0000 204.0000 1.9812 1.9697 + 105.4167 234.0000 205.0000 1.9812 1.9441 78.3177 234.0000 206.0000 1.9812 1.9985 + 63.1549 234.0000 207.0000 1.9812 2.0143 43.7022 234.0000 208.0000 1.9812 1.9887 + 187.1504 234.0000 212.0000 1.9812 1.9496 225.9245 234.0000 213.0000 1.9812 1.9311 + 218.6853 234.0000 214.0000 1.9812 1.9435 191.7848 234.0000 215.0000 1.9812 2.0102 + 162.6659 234.0000 216.0000 1.9812 1.9903 262.3613 234.0000 220.0000 1.9812 1.9349 + 253.9272 234.0000 221.0000 1.9812 2.8999 257.1841 234.0000 222.0000 1.9812 3.8675 + 235.2729 234.0000 223.0000 1.9812 2.9110 179.1559 234.0000 224.0000 1.9812 10.6191 + 154.3023 234.0000 225.0000 1.9812 9.8849 151.3202 234.0000 226.0000 1.9812 9.1376 + 175.4826 234.0000 227.0000 1.9812 2.9263 163.9864 234.0000 228.0000 1.9812 6.5458 + 229.5690 234.0000 231.0000 1.9812 1.9315 243.2002 234.0000 232.0000 1.9812 1.9447 + 224.9818 234.0000 233.0000 1.9812 1.9793 210.5231 234.0000 234.0000 1.9812 1.9812 + 36.8606 238.0000 1.0000 1.9143 0.9118 23.8401 238.0000 2.0000 1.9143 0.0000 + 628.2399 238.0000 3.0000 1.9143 0.0000 348.1690 238.0000 4.0000 1.9143 0.0000 + 228.9512 238.0000 5.0000 1.9143 0.0000 151.9745 238.0000 6.0000 1.9143 0.0000 + 104.9004 238.0000 7.0000 1.9143 0.0000 78.6933 238.0000 8.0000 1.9143 0.0000 + 59.1415 238.0000 9.0000 1.9143 0.0000 45.1941 238.0000 10.0000 1.9143 0.0000 + 749.3005 238.0000 11.0000 1.9143 0.0000 558.7819 238.0000 12.0000 1.9143 0.0000 + 508.8061 238.0000 13.0000 1.9143 0.0000 394.3455 238.0000 14.0000 1.9143 0.0000 + 303.2521 238.0000 15.0000 1.9143 0.0000 249.4267 238.0000 16.0000 1.9143 0.0000 + 201.9997 238.0000 17.0000 1.9143 0.0000 164.0275 238.0000 18.0000 1.9143 0.0000 + 1234.9320 238.0000 19.0000 1.9143 0.0000 994.4676 238.0000 20.0000 1.9143 0.0000 + 816.9275 238.0000 21.0000 1.9143 0.0000 784.6886 238.0000 22.0000 1.9143 0.0000 + 716.2778 238.0000 23.0000 1.9143 0.0000 563.7114 238.0000 24.0000 1.9143 0.0000 + 613.8418 238.0000 25.0000 1.9143 0.0000 481.0447 238.0000 26.0000 1.9143 0.0000 + 506.7272 238.0000 27.0000 1.9143 0.0000 523.7002 238.0000 28.0000 1.9143 0.0000 + 401.1714 238.0000 29.0000 1.9143 0.0000 407.9499 238.0000 30.0000 1.9143 0.0000 + 484.8813 238.0000 31.0000 1.9143 0.0000 422.1813 238.0000 32.0000 1.9143 0.0000 + 355.9394 238.0000 33.0000 1.9143 0.0000 317.0938 238.0000 34.0000 1.9143 0.0000 + 275.4476 238.0000 35.0000 1.9143 0.0000 237.9219 238.0000 36.0000 1.9143 0.0000 + 1380.8411 238.0000 37.0000 1.9143 0.0000 1185.8018 238.0000 38.0000 1.9143 0.0000 + 1028.2536 238.0000 39.0000 1.9143 0.0000 918.2378 238.0000 40.0000 1.9143 0.0000 + 833.7135 238.0000 41.0000 1.9143 0.0000 638.7768 238.0000 42.0000 1.9143 0.0000 + 714.7188 238.0000 43.0000 1.9143 0.0000 539.9639 238.0000 44.0000 1.9143 0.0000 + 590.3744 238.0000 45.0000 1.9143 0.0000 545.9768 238.0000 46.0000 1.9143 0.0000 + 455.7267 238.0000 47.0000 1.9143 0.0000 479.3797 238.0000 48.0000 1.9143 0.0000 + 606.8145 238.0000 49.0000 1.9143 0.0000 555.3233 238.0000 50.0000 1.9143 0.0000 + 489.8228 238.0000 51.0000 1.9143 0.0000 451.6295 238.0000 52.0000 1.9143 0.0000 + 405.6158 238.0000 53.0000 1.9143 0.0000 362.3556 238.0000 54.0000 1.9143 0.0000 + 1681.3249 238.0000 55.0000 1.9143 0.0000 1516.5369 238.0000 56.0000 1.9143 0.0000 + 1319.0312 238.0000 57.0000 1.9143 0.0000 579.7357 238.0000 58.0000 1.9143 2.7991 + 1338.9789 238.0000 59.0000 1.9143 0.0000 1283.6521 238.0000 60.0000 1.9143 0.0000 + 1250.8766 238.0000 61.0000 1.9143 0.0000 1220.8006 238.0000 62.0000 1.9143 0.0000 + 1194.1104 238.0000 63.0000 1.9143 0.0000 928.2866 238.0000 64.0000 1.9143 0.0000 + 1062.1534 238.0000 65.0000 1.9143 0.0000 1022.3708 238.0000 66.0000 1.9143 0.0000 + 1074.3220 238.0000 67.0000 1.9143 0.0000 1051.2437 238.0000 68.0000 1.9143 0.0000 + 1030.2928 238.0000 69.0000 1.9143 0.0000 1018.7310 238.0000 70.0000 1.9143 0.0000 + 851.6022 238.0000 71.0000 1.9143 0.0000 828.9803 238.0000 72.0000 1.9143 0.0000 + 751.6662 238.0000 73.0000 1.9143 0.0000 631.3639 238.0000 74.0000 1.9143 0.0000 + 640.7445 238.0000 75.0000 1.9143 0.0000 577.4594 238.0000 76.0000 1.9143 0.0000 + 526.4372 238.0000 77.0000 1.9143 0.0000 435.1078 238.0000 78.0000 1.9143 0.0000 + 405.6895 238.0000 79.0000 1.9143 0.0000 416.4974 238.0000 80.0000 1.9143 0.0000 + 621.1496 238.0000 81.0000 1.9143 0.0000 602.4899 238.0000 82.0000 1.9143 0.0000 + 548.5516 238.0000 83.0000 1.9143 0.0000 520.3856 238.0000 84.0000 1.9143 0.0000 + 477.1856 238.0000 85.0000 1.9143 0.0000 434.8109 238.0000 86.0000 1.9143 0.0000 + 1574.9942 238.0000 87.0000 1.9143 0.0000 1491.7535 238.0000 88.0000 1.9143 0.0000 + 1306.2558 238.0000 89.0000 1.9143 0.0000 1161.0723 238.0000 90.0000 1.9143 0.0000 + 1158.7996 238.0000 91.0000 1.9143 0.0000 1121.7009 238.0000 92.0000 1.9143 0.0000 + 1162.6290 238.0000 93.0000 1.9143 0.0000 1124.5057 238.0000 94.0000 1.9143 0.0000 + 60.1892 238.0000 101.0000 1.9143 0.0000 201.6900 238.0000 103.0000 1.9143 0.9865 + 256.1295 238.0000 104.0000 1.9143 0.9808 191.6429 238.0000 105.0000 1.9143 0.9706 + 142.6113 238.0000 106.0000 1.9143 0.9868 97.8085 238.0000 107.0000 1.9143 0.9944 + 70.4285 238.0000 108.0000 1.9143 0.9925 47.7411 238.0000 109.0000 1.9143 0.9982 + 296.0005 238.0000 111.0000 1.9143 0.9684 458.8001 238.0000 112.0000 1.9143 0.9628 + 459.7370 238.0000 113.0000 1.9143 0.9648 363.5872 238.0000 114.0000 1.9143 0.9507 + 294.2134 238.0000 115.0000 1.9143 0.9947 246.7293 238.0000 116.0000 1.9143 0.9948 + 199.9353 238.0000 117.0000 1.9143 0.9972 404.3537 238.0000 119.0000 1.9143 0.9767 + 794.5479 238.0000 120.0000 1.9143 0.9831 399.3277 238.0000 121.0000 1.9143 1.8627 + 385.2756 238.0000 122.0000 1.9143 1.8299 377.6508 238.0000 123.0000 1.9143 1.9138 + 374.7437 238.0000 124.0000 1.9143 1.8269 342.1821 238.0000 125.0000 1.9143 1.6406 + 315.9355 238.0000 126.0000 1.9143 1.6483 301.3614 238.0000 127.0000 1.9143 1.7149 + 294.8004 238.0000 128.0000 1.9143 1.7937 292.9783 238.0000 129.0000 1.9143 0.9576 + 271.9818 238.0000 130.0000 1.9143 1.9419 453.9182 238.0000 131.0000 1.9143 0.9601 + 393.7660 238.0000 132.0000 1.9143 0.9434 349.6598 238.0000 133.0000 1.9143 0.9889 + 317.2498 238.0000 134.0000 1.9143 0.9901 277.4689 238.0000 135.0000 1.9143 0.9974 + 481.0605 238.0000 137.0000 1.9143 0.9738 968.0787 238.0000 138.0000 1.9143 0.9801 + 725.1809 238.0000 139.0000 1.9143 1.9153 528.6574 238.0000 140.0000 1.9143 1.9355 + 534.0203 238.0000 141.0000 1.9143 1.9545 496.5128 238.0000 142.0000 1.9143 1.9420 + 562.4313 238.0000 143.0000 1.9143 1.6682 429.5383 238.0000 144.0000 1.9143 1.8584 + 401.5048 238.0000 145.0000 1.9143 1.9003 372.2612 238.0000 146.0000 1.9143 1.8630 + 360.4891 238.0000 147.0000 1.9143 0.9679 354.6096 238.0000 148.0000 1.9143 1.9539 + 576.2896 238.0000 149.0000 1.9143 0.9633 515.7606 238.0000 150.0000 1.9143 0.9514 + 479.3863 238.0000 151.0000 1.9143 0.9749 451.1258 238.0000 152.0000 1.9143 0.9811 + 409.4712 238.0000 153.0000 1.9143 0.9968 564.3454 238.0000 155.0000 1.9143 0.9909 + 1260.1619 238.0000 156.0000 1.9143 0.9797 919.4490 238.0000 157.0000 1.9143 1.9373 + 561.9076 238.0000 159.0000 1.9143 2.9425 550.2241 238.0000 160.0000 1.9143 2.9455 + 532.4996 238.0000 161.0000 1.9143 2.9413 535.9497 238.0000 162.0000 1.9143 2.9300 + 519.2271 238.0000 163.0000 1.9143 1.8286 539.6227 238.0000 164.0000 1.9143 2.8732 + 506.1454 238.0000 165.0000 1.9143 2.9086 516.4699 238.0000 166.0000 1.9143 2.8965 + 479.7811 238.0000 167.0000 1.9143 2.9242 465.8723 238.0000 168.0000 1.9143 2.9282 + 463.0740 238.0000 169.0000 1.9143 2.9246 487.8628 238.0000 170.0000 1.9143 2.8482 + 447.2511 238.0000 171.0000 1.9143 2.9219 617.1707 238.0000 172.0000 1.9143 1.9254 + 569.1975 238.0000 173.0000 1.9143 1.9459 515.9599 238.0000 174.0000 1.9143 1.9292 + 525.0503 238.0000 175.0000 1.9143 1.8104 452.7634 238.0000 176.0000 1.9143 1.8858 + 424.9597 238.0000 177.0000 1.9143 1.8648 405.3197 238.0000 178.0000 1.9143 1.9188 + 387.5404 238.0000 179.0000 1.9143 0.9846 372.4749 238.0000 180.0000 1.9143 1.9896 + 617.4175 238.0000 181.0000 1.9143 0.9267 556.8068 238.0000 182.0000 1.9143 0.9383 + 536.9214 238.0000 183.0000 1.9143 0.9820 520.0852 238.0000 184.0000 1.9143 0.9815 + 482.9352 238.0000 185.0000 1.9143 0.9954 635.1845 238.0000 187.0000 1.9143 0.9705 + 1245.2372 238.0000 188.0000 1.9143 0.9662 665.1167 238.0000 189.0000 1.9143 2.9070 + 774.8483 238.0000 190.0000 1.9143 2.8844 690.5246 238.0000 191.0000 1.9143 2.8738 + 605.6815 238.0000 192.0000 1.9143 2.8878 581.8705 238.0000 193.0000 1.9143 2.9095 + 713.8157 238.0000 194.0000 1.9143 1.9209 163.4621 238.0000 204.0000 1.9143 1.9697 + 160.1098 238.0000 205.0000 1.9143 1.9441 115.4107 238.0000 206.0000 1.9143 1.9985 + 91.6725 238.0000 207.0000 1.9143 2.0143 61.9159 238.0000 208.0000 1.9143 1.9887 + 292.9174 238.0000 212.0000 1.9143 1.9496 354.5526 238.0000 213.0000 1.9143 1.9311 + 337.3757 238.0000 214.0000 1.9143 1.9435 290.4761 238.0000 215.0000 1.9143 2.0102 + 241.6949 238.0000 216.0000 1.9143 1.9903 410.7857 238.0000 220.0000 1.9143 1.9349 + 392.1967 238.0000 221.0000 1.9143 2.8999 396.8216 238.0000 222.0000 1.9143 3.8675 + 363.3125 238.0000 223.0000 1.9143 2.9110 270.7543 238.0000 224.0000 1.9143 10.6191 + 230.1231 238.0000 225.0000 1.9143 9.8849 226.0537 238.0000 226.0000 1.9143 9.1376 + 267.8234 238.0000 227.0000 1.9143 2.9263 248.7379 238.0000 228.0000 1.9143 6.5458 + 355.5621 238.0000 231.0000 1.9143 1.9315 374.0975 238.0000 232.0000 1.9143 1.9447 + 340.0688 238.0000 233.0000 1.9143 1.9793 314.6933 238.0000 234.0000 1.9143 1.9812 + 491.7448 238.0000 238.0000 1.9143 1.9143 36.0543 239.0000 1.0000 2.8903 0.9118 + 23.6462 239.0000 2.0000 2.8903 0.0000 567.3202 239.0000 3.0000 2.8903 0.0000 + 326.9186 239.0000 4.0000 2.8903 0.0000 219.3347 239.0000 5.0000 2.8903 0.0000 + 147.6049 239.0000 6.0000 2.8903 0.0000 102.8479 239.0000 7.0000 2.8903 0.0000 + 77.6335 239.0000 8.0000 2.8903 0.0000 58.6359 239.0000 9.0000 2.8903 0.0000 + 44.9753 239.0000 10.0000 2.8903 0.0000 678.1726 239.0000 11.0000 2.8903 0.0000 + 521.1430 239.0000 12.0000 2.8903 0.0000 479.6884 239.0000 13.0000 2.8903 0.0000 + 377.0639 239.0000 14.0000 2.8903 0.0000 293.2324 239.0000 15.0000 2.8903 0.0000 + 242.8256 239.0000 16.0000 2.8903 0.0000 197.8796 239.0000 17.0000 2.8903 0.0000 + 161.5056 239.0000 18.0000 2.8903 0.0000 1110.5426 239.0000 19.0000 2.8903 0.0000 + 916.0855 239.0000 20.0000 2.8903 0.0000 756.5443 239.0000 21.0000 2.8903 0.0000 + 730.0584 239.0000 22.0000 2.8903 0.0000 668.2729 239.0000 23.0000 2.8903 0.0000 + 526.0324 239.0000 24.0000 2.8903 0.0000 575.0060 239.0000 25.0000 2.8903 0.0000 + 450.9120 239.0000 26.0000 2.8903 0.0000 477.8977 239.0000 27.0000 2.8903 0.0000 + 492.5198 239.0000 28.0000 2.8903 0.0000 377.2375 239.0000 29.0000 2.8903 0.0000 + 387.0821 239.0000 30.0000 2.8903 0.0000 458.9033 239.0000 31.0000 2.8903 0.0000 + 403.9646 239.0000 32.0000 2.8903 0.0000 343.7975 239.0000 33.0000 2.8903 0.0000 + 307.9733 239.0000 34.0000 2.8903 0.0000 268.9880 239.0000 35.0000 2.8903 0.0000 + 233.4581 239.0000 36.0000 2.8903 0.0000 1244.1578 239.0000 37.0000 2.8903 0.0000 + 1091.2408 239.0000 38.0000 2.8903 0.0000 955.0153 239.0000 39.0000 2.8903 0.0000 + 857.6527 239.0000 40.0000 2.8903 0.0000 781.5377 239.0000 41.0000 2.8903 0.0000 + 602.4253 239.0000 42.0000 2.8903 0.0000 672.5553 239.0000 43.0000 2.8903 0.0000 + 511.4722 239.0000 44.0000 2.8903 0.0000 559.3453 239.0000 45.0000 2.8903 0.0000 + 518.4374 239.0000 46.0000 2.8903 0.0000 431.9705 239.0000 47.0000 2.8903 0.0000 + 456.4875 239.0000 48.0000 2.8903 0.0000 573.8021 239.0000 49.0000 2.8903 0.0000 + 529.9186 239.0000 50.0000 2.8903 0.0000 471.4064 239.0000 51.0000 2.8903 0.0000 + 436.8022 239.0000 52.0000 2.8903 0.0000 394.3185 239.0000 53.0000 2.8903 0.0000 + 353.9178 239.0000 54.0000 2.8903 0.0000 1515.3755 239.0000 55.0000 2.8903 0.0000 + 1391.1764 239.0000 56.0000 2.8903 0.0000 1221.2152 239.0000 57.0000 2.8903 0.0000 + 556.9697 239.0000 58.0000 2.8903 2.7991 1231.9890 239.0000 59.0000 2.8903 0.0000 + 1182.9141 239.0000 60.0000 2.8903 0.0000 1153.2166 239.0000 61.0000 2.8903 0.0000 + 1125.9127 239.0000 62.0000 2.8903 0.0000 1101.7008 239.0000 63.0000 2.8903 0.0000 + 865.0011 239.0000 64.0000 2.8903 0.0000 974.9708 239.0000 65.0000 2.8903 0.0000 + 940.1178 239.0000 66.0000 2.8903 0.0000 993.5143 239.0000 67.0000 2.8903 0.0000 + 972.4302 239.0000 68.0000 2.8903 0.0000 953.4036 239.0000 69.0000 2.8903 0.0000 + 942.3249 239.0000 70.0000 2.8903 0.0000 793.1059 239.0000 71.0000 2.8903 0.0000 + 779.3004 239.0000 72.0000 2.8903 0.0000 710.4790 239.0000 73.0000 2.8903 0.0000 + 599.1342 239.0000 74.0000 2.8903 0.0000 609.3615 239.0000 75.0000 2.8903 0.0000 + 551.6890 239.0000 76.0000 2.8903 0.0000 504.7716 239.0000 77.0000 2.8903 0.0000 + 418.6696 239.0000 78.0000 2.8903 0.0000 390.9131 239.0000 79.0000 2.8903 0.0000 + 402.0942 239.0000 80.0000 2.8903 0.0000 588.4579 239.0000 81.0000 2.8903 0.0000 + 574.8974 239.0000 82.0000 2.8903 0.0000 527.4831 239.0000 83.0000 2.8903 0.0000 + 502.5688 239.0000 84.0000 2.8903 0.0000 463.1644 239.0000 85.0000 2.8903 0.0000 + 423.8939 239.0000 86.0000 2.8903 0.0000 1430.0247 239.0000 87.0000 2.8903 0.0000 + 1374.9340 239.0000 88.0000 2.8903 0.0000 1214.2860 239.0000 89.0000 2.8903 0.0000 + 1089.5911 239.0000 90.0000 2.8903 0.0000 1082.1909 239.0000 91.0000 2.8903 0.0000 + 1047.7793 239.0000 92.0000 2.8903 0.0000 1079.5998 239.0000 93.0000 2.8903 0.0000 + 1045.3553 239.0000 94.0000 2.8903 0.0000 58.2755 239.0000 101.0000 2.8903 0.0000 + 189.8894 239.0000 103.0000 2.8903 0.9865 242.0080 239.0000 104.0000 2.8903 0.9808 + 184.2847 239.0000 105.0000 2.8903 0.9706 138.4353 239.0000 106.0000 2.8903 0.9868 + 95.8897 239.0000 107.0000 2.8903 0.9944 69.5806 239.0000 108.0000 2.8903 0.9925 + 47.5914 239.0000 109.0000 2.8903 0.9982 277.5701 239.0000 111.0000 2.8903 0.9684 + 429.5059 239.0000 112.0000 2.8903 0.9628 434.5102 239.0000 113.0000 2.8903 0.9648 + 348.3162 239.0000 114.0000 2.8903 0.9507 284.5819 239.0000 115.0000 2.8903 0.9947 + 240.1493 239.0000 116.0000 2.8903 0.9948 195.8267 239.0000 117.0000 2.8903 0.9972 + 381.7778 239.0000 119.0000 2.8903 0.9767 732.1243 239.0000 120.0000 2.8903 0.9831 + 381.4719 239.0000 121.0000 2.8903 1.8627 368.1481 239.0000 122.0000 2.8903 1.8299 + 360.7708 239.0000 123.0000 2.8903 1.9138 357.4837 239.0000 124.0000 2.8903 1.8269 + 328.6223 239.0000 125.0000 2.8903 1.6406 303.9644 239.0000 126.0000 2.8903 1.6483 + 289.9137 239.0000 127.0000 2.8903 1.7149 283.4424 239.0000 128.0000 2.8903 1.7937 + 280.2569 239.0000 129.0000 2.8903 0.9576 262.5735 239.0000 130.0000 2.8903 1.9419 + 430.7925 239.0000 131.0000 2.8903 0.9601 377.6930 239.0000 132.0000 2.8903 0.9434 + 337.9057 239.0000 133.0000 2.8903 0.9889 308.0920 239.0000 134.0000 2.8903 0.9901 + 270.8810 239.0000 135.0000 2.8903 0.9974 455.2460 239.0000 137.0000 2.8903 0.9738 + 890.7440 239.0000 138.0000 2.8903 0.9801 679.4591 239.0000 139.0000 2.8903 1.9153 + 504.4325 239.0000 140.0000 2.8903 1.9355 509.4181 239.0000 141.0000 2.8903 1.9545 + 474.6807 239.0000 142.0000 2.8903 1.9420 532.9719 239.0000 143.0000 2.8903 1.6682 + 413.1903 239.0000 144.0000 2.8903 1.8584 386.3915 239.0000 145.0000 2.8903 1.9003 + 358.6133 239.0000 146.0000 2.8903 1.8630 346.9360 239.0000 147.0000 2.8903 0.9679 + 342.9987 239.0000 148.0000 2.8903 1.9539 546.6690 239.0000 149.0000 2.8903 0.9633 + 493.8129 239.0000 150.0000 2.8903 0.9514 461.8766 239.0000 151.0000 2.8903 0.9749 + 436.4520 239.0000 152.0000 2.8903 0.9811 398.0382 239.0000 153.0000 2.8903 0.9968 + 537.9093 239.0000 155.0000 2.8903 0.9909 1154.9423 239.0000 156.0000 2.8903 0.9797 + 860.0465 239.0000 157.0000 2.8903 1.9373 540.0992 239.0000 159.0000 2.8903 2.9425 + 528.9145 239.0000 160.0000 2.8903 2.9455 512.0867 239.0000 161.0000 2.8903 2.9413 + 514.7308 239.0000 162.0000 2.8903 2.9300 496.5039 239.0000 163.0000 2.8903 1.8286 + 518.0912 239.0000 164.0000 2.8903 2.8732 486.4650 239.0000 165.0000 2.8903 2.9086 + 495.1913 239.0000 166.0000 2.8903 2.8965 461.6481 239.0000 167.0000 2.8903 2.9242 + 448.4531 239.0000 168.0000 2.8903 2.9282 445.6186 239.0000 169.0000 2.8903 2.9246 + 468.6784 239.0000 170.0000 2.8903 2.8482 430.6794 239.0000 171.0000 2.8903 2.9219 + 585.2116 239.0000 172.0000 2.8903 1.9254 542.5268 239.0000 173.0000 2.8903 1.9459 + 494.4099 239.0000 174.0000 2.8903 1.9292 500.7127 239.0000 175.0000 2.8903 1.8104 + 437.1359 239.0000 176.0000 2.8903 1.8858 410.9617 239.0000 177.0000 2.8903 1.8648 + 392.3386 239.0000 178.0000 2.8903 1.9188 374.9956 239.0000 179.0000 2.8903 0.9846 + 362.0333 239.0000 180.0000 2.8903 1.9896 586.4827 239.0000 181.0000 2.8903 0.9267 + 533.7582 239.0000 182.0000 2.8903 0.9383 517.1837 239.0000 183.0000 2.8903 0.9820 + 502.6241 239.0000 184.0000 2.8903 0.9815 468.7850 239.0000 185.0000 2.8903 0.9954 + 605.7876 239.0000 187.0000 2.8903 0.9705 1148.1563 239.0000 188.0000 2.8903 0.9662 + 639.1977 239.0000 189.0000 2.8903 2.9070 738.6104 239.0000 190.0000 2.8903 2.8844 + 659.7771 239.0000 191.0000 2.8903 2.8738 582.4722 239.0000 192.0000 2.8903 2.8878 + 560.3237 239.0000 193.0000 2.8903 2.9095 675.9532 239.0000 194.0000 2.8903 1.9209 + 157.4277 239.0000 204.0000 2.8903 1.9697 154.5280 239.0000 205.0000 2.8903 1.9441 + 112.6680 239.0000 206.0000 2.8903 1.9985 89.9626 239.0000 207.0000 2.8903 2.0143 + 61.2796 239.0000 208.0000 2.8903 1.9887 279.6834 239.0000 212.0000 2.8903 1.9496 + 338.0153 239.0000 213.0000 2.8903 1.9311 323.8305 239.0000 214.0000 2.8903 1.9435 + 280.7471 239.0000 215.0000 2.8903 2.0102 235.2717 239.0000 216.0000 2.8903 1.9903 + 391.8360 239.0000 220.0000 2.8903 1.9349 376.1623 239.0000 221.0000 2.8903 2.8999 + 380.7419 239.0000 222.0000 2.8903 3.8675 348.3728 239.0000 223.0000 2.8903 2.9110 + 261.7042 239.0000 224.0000 2.8903 10.6191 223.5637 239.0000 225.0000 2.8903 9.8849 + 219.4714 239.0000 226.0000 2.8903 9.1376 257.9190 239.0000 227.0000 2.8903 2.9263 + 240.1326 239.0000 228.0000 2.8903 6.5458 340.6535 239.0000 231.0000 2.8903 1.9315 + 359.4274 239.0000 232.0000 2.8903 1.9447 328.9431 239.0000 233.0000 2.8903 1.9793 + 305.6508 239.0000 234.0000 2.8903 1.9812 469.2639 239.0000 238.0000 2.8903 1.9143 + 451.0845 239.0000 239.0000 2.8903 2.8903 36.5405 240.0000 1.0000 3.9106 0.9118 + 24.0883 240.0000 2.0000 3.9106 0.0000 562.1583 240.0000 3.0000 3.9106 0.0000 + 327.2192 240.0000 4.0000 3.9106 0.0000 220.8361 240.0000 5.0000 3.9106 0.0000 + 149.2658 240.0000 6.0000 3.9106 0.0000 104.3380 240.0000 7.0000 3.9106 0.0000 + 78.9339 240.0000 8.0000 3.9106 0.0000 59.7299 240.0000 9.0000 3.9106 0.0000 + 45.8824 240.0000 10.0000 3.9106 0.0000 672.4303 240.0000 11.0000 3.9106 0.0000 + 520.6868 240.0000 12.0000 3.9106 0.0000 480.7313 240.0000 13.0000 3.9106 0.0000 + 379.4212 240.0000 14.0000 3.9106 0.0000 296.0806 240.0000 15.0000 3.9106 0.0000 + 245.7286 240.0000 16.0000 3.9106 0.0000 200.6665 240.0000 17.0000 3.9106 0.0000 + 164.0761 240.0000 18.0000 3.9106 0.0000 1099.8393 240.0000 19.0000 3.9106 0.0000 + 912.5205 240.0000 20.0000 3.9106 0.0000 754.6182 240.0000 21.0000 3.9106 0.0000 + 729.1622 240.0000 22.0000 3.9106 0.0000 667.9695 240.0000 23.0000 3.9106 0.0000 + 525.9535 240.0000 24.0000 3.9106 0.0000 575.3920 240.0000 25.0000 3.9106 0.0000 + 451.4130 240.0000 26.0000 3.9106 0.0000 479.1089 240.0000 27.0000 3.9106 0.0000 + 493.3692 240.0000 28.0000 3.9106 0.0000 377.9964 240.0000 29.0000 3.9106 0.0000 + 388.7295 240.0000 30.0000 3.9106 0.0000 460.4959 240.0000 31.0000 3.9106 0.0000 + 406.6196 240.0000 32.0000 3.9106 0.0000 347.0371 240.0000 33.0000 3.9106 0.0000 + 311.4245 240.0000 34.0000 3.9106 0.0000 272.4910 240.0000 35.0000 3.9106 0.0000 + 236.8855 240.0000 36.0000 3.9106 0.0000 1232.9252 240.0000 37.0000 3.9106 0.0000 + 1086.8394 240.0000 38.0000 3.9106 0.0000 953.4821 240.0000 39.0000 3.9106 0.0000 + 857.6011 240.0000 40.0000 3.9106 0.0000 782.3088 240.0000 41.0000 3.9106 0.0000 + 604.1475 240.0000 42.0000 3.9106 0.0000 674.0068 240.0000 43.0000 3.9106 0.0000 + 513.6197 240.0000 44.0000 3.9106 0.0000 561.6169 240.0000 45.0000 3.9106 0.0000 + 520.8781 240.0000 46.0000 3.9106 0.0000 433.9278 240.0000 47.0000 3.9106 0.0000 + 459.0164 240.0000 48.0000 3.9106 0.0000 575.8020 240.0000 49.0000 3.9106 0.0000 + 533.0732 240.0000 50.0000 3.9106 0.0000 475.3821 240.0000 51.0000 3.9106 0.0000 + 441.1513 240.0000 52.0000 3.9106 0.0000 398.8895 240.0000 53.0000 3.9106 0.0000 + 358.5675 240.0000 54.0000 3.9106 0.0000 1502.0119 240.0000 55.0000 3.9106 0.0000 + 1384.6011 240.0000 56.0000 3.9106 0.0000 1218.3604 240.0000 57.0000 3.9106 0.0000 + 561.4468 240.0000 58.0000 3.9106 2.7991 1227.1618 240.0000 59.0000 3.9106 0.0000 + 1178.7222 240.0000 60.0000 3.9106 0.0000 1149.2501 240.0000 61.0000 3.9106 0.0000 + 1122.1393 240.0000 62.0000 3.9106 0.0000 1098.1031 240.0000 63.0000 3.9106 0.0000 + 864.5896 240.0000 64.0000 3.9106 0.0000 970.8551 240.0000 65.0000 3.9106 0.0000 + 936.5992 240.0000 66.0000 3.9106 0.0000 990.8440 240.0000 67.0000 3.9106 0.0000 + 969.8725 240.0000 68.0000 3.9106 0.0000 950.9799 240.0000 69.0000 3.9106 0.0000 + 939.8169 240.0000 70.0000 3.9106 0.0000 792.5089 240.0000 71.0000 3.9106 0.0000 + 780.6270 240.0000 72.0000 3.9106 0.0000 712.7902 240.0000 73.0000 3.9106 0.0000 + 601.8801 240.0000 74.0000 3.9106 0.0000 612.4907 240.0000 75.0000 3.9106 0.0000 + 555.2609 240.0000 76.0000 3.9106 0.0000 508.5899 240.0000 77.0000 3.9106 0.0000 + 422.3535 240.0000 78.0000 3.9106 0.0000 394.5421 240.0000 79.0000 3.9106 0.0000 + 406.0045 240.0000 80.0000 3.9106 0.0000 590.9783 240.0000 81.0000 3.9106 0.0000 + 578.4188 240.0000 82.0000 3.9106 0.0000 531.8665 240.0000 83.0000 3.9106 0.0000 + 507.3933 240.0000 84.0000 3.9106 0.0000 468.3290 240.0000 85.0000 3.9106 0.0000 + 429.2215 240.0000 86.0000 3.9106 0.0000 1420.1434 240.0000 87.0000 3.9106 0.0000 + 1370.1849 240.0000 88.0000 3.9106 0.0000 1212.7510 240.0000 89.0000 3.9106 0.0000 + 1091.0589 240.0000 90.0000 3.9106 0.0000 1082.3309 240.0000 91.0000 3.9106 0.0000 + 1047.9820 240.0000 92.0000 3.9106 0.0000 1078.0658 240.0000 93.0000 3.9106 0.0000 + 1044.1684 240.0000 94.0000 3.9106 0.0000 58.8625 240.0000 101.0000 3.9106 0.0000 + 190.2283 240.0000 103.0000 3.9106 0.9865 242.7264 240.0000 104.0000 3.9106 0.9808 + 185.7762 240.0000 105.0000 3.9106 0.9706 139.9877 240.0000 106.0000 3.9106 0.9868 + 97.2881 240.0000 107.0000 3.9106 0.9944 70.7865 240.0000 108.0000 3.9106 0.9925 + 48.5769 240.0000 109.0000 3.9106 0.9982 277.7936 240.0000 111.0000 3.9106 0.9684 + 429.6462 240.0000 112.0000 3.9106 0.9628 435.7814 240.0000 113.0000 3.9106 0.9648 + 350.7076 240.0000 114.0000 3.9106 0.9507 287.3830 240.0000 115.0000 3.9106 0.9947 + 243.0089 240.0000 116.0000 3.9106 0.9948 198.5775 240.0000 117.0000 3.9106 0.9972 + 383.0224 240.0000 119.0000 3.9106 0.9767 729.6211 240.0000 120.0000 3.9106 0.9831 + 383.8645 240.0000 121.0000 3.9106 1.8627 370.5158 240.0000 122.0000 3.9106 1.8299 + 363.0711 240.0000 123.0000 3.9106 1.9138 359.6267 240.0000 124.0000 3.9106 1.8269 + 331.1873 240.0000 125.0000 3.9106 1.6406 306.5124 240.0000 126.0000 3.9106 1.6483 + 292.3514 240.0000 127.0000 3.9106 1.7149 285.7823 240.0000 128.0000 3.9106 1.7937 + 282.1724 240.0000 129.0000 3.9106 0.9576 265.0402 240.0000 130.0000 3.9106 1.9419 + 432.6309 240.0000 131.0000 3.9106 0.9601 380.4575 240.0000 132.0000 3.9106 0.9434 + 341.1482 240.0000 133.0000 3.9106 0.9889 311.5368 240.0000 134.0000 3.9106 0.9901 + 274.3837 240.0000 135.0000 3.9106 0.9974 457.0717 240.0000 137.0000 3.9106 0.9738 + 887.4810 240.0000 138.0000 3.9106 0.9801 680.2683 240.0000 139.0000 3.9106 1.9153 + 507.5216 240.0000 140.0000 3.9106 1.9355 512.4995 240.0000 141.0000 3.9106 1.9545 + 477.8870 240.0000 142.0000 3.9106 1.9420 535.3153 240.0000 143.0000 3.9106 1.6682 + 416.7152 240.0000 144.0000 3.9106 1.8584 389.7673 240.0000 145.0000 3.9106 1.9003 + 361.8771 240.0000 146.0000 3.9106 1.8630 349.9975 240.0000 147.0000 3.9106 0.9679 + 346.4792 240.0000 148.0000 3.9106 1.9539 549.0572 240.0000 149.0000 3.9106 0.9633 + 497.2424 240.0000 150.0000 3.9106 0.9514 465.9289 240.0000 151.0000 3.9106 0.9749 + 440.8392 240.0000 152.0000 3.9106 0.9811 402.6413 240.0000 153.0000 3.9106 0.9968 + 541.1259 240.0000 155.0000 3.9106 0.9909 1149.7163 240.0000 156.0000 3.9106 0.9797 + 860.7503 240.0000 157.0000 3.9106 1.9373 544.5203 240.0000 159.0000 3.9106 2.9425 + 533.2574 240.0000 160.0000 3.9106 2.9455 516.3573 240.0000 161.0000 3.9106 2.9413 + 518.8345 240.0000 162.0000 3.9106 2.9300 499.8637 240.0000 163.0000 3.9106 1.8286 + 522.1512 240.0000 164.0000 3.9106 2.8732 490.4332 240.0000 165.0000 3.9106 2.9086 + 498.9051 240.0000 166.0000 3.9106 2.8965 465.5596 240.0000 167.0000 3.9106 2.9242 + 452.3068 240.0000 168.0000 3.9106 2.9282 449.4035 240.0000 169.0000 3.9106 2.9246 + 472.3967 240.0000 170.0000 3.9106 2.8482 434.4148 240.0000 171.0000 3.9106 2.9219 + 587.7889 240.0000 172.0000 3.9106 1.9254 545.7275 240.0000 173.0000 3.9106 1.9459 + 498.0917 240.0000 174.0000 3.9106 1.9292 503.7649 240.0000 175.0000 3.9106 1.8104 + 441.3526 240.0000 176.0000 3.9106 1.8858 415.1517 240.0000 177.0000 3.9106 1.8648 + 396.4686 240.0000 178.0000 3.9106 1.9188 378.9334 240.0000 179.0000 3.9106 0.9846 + 366.2855 240.0000 180.0000 3.9106 1.9896 589.3899 240.0000 181.0000 3.9106 0.9267 + 537.7340 240.0000 182.0000 3.9106 0.9383 521.7376 240.0000 183.0000 3.9106 0.9820 + 507.5476 240.0000 184.0000 3.9106 0.9815 474.0194 240.0000 185.0000 3.9106 0.9954 + 609.5011 240.0000 187.0000 3.9106 0.9705 1144.7357 240.0000 188.0000 3.9106 0.9662 + 644.3806 240.0000 189.0000 3.9106 2.9070 743.0278 240.0000 190.0000 3.9106 2.8844 + 664.2618 240.0000 191.0000 3.9106 2.8738 587.4053 240.0000 192.0000 3.9106 2.8878 + 565.2830 240.0000 193.0000 3.9106 2.9095 678.8516 240.0000 194.0000 3.9106 1.9209 + 158.7442 240.0000 204.0000 3.9106 1.9697 155.9706 240.0000 205.0000 3.9106 1.9441 + 114.1335 240.0000 206.0000 3.9106 1.9985 91.3072 240.0000 207.0000 3.9106 2.0143 + 62.3893 240.0000 208.0000 3.9106 1.9887 281.2950 240.0000 212.0000 3.9106 1.9496 + 339.8622 240.0000 213.0000 3.9106 1.9311 326.2431 240.0000 214.0000 3.9106 1.9435 + 283.4537 240.0000 215.0000 3.9106 2.0102 238.0843 240.0000 216.0000 3.9106 1.9903 + 394.1110 240.0000 220.0000 3.9106 1.9349 378.9395 240.0000 221.0000 3.9106 2.8999 + 383.5999 240.0000 222.0000 3.9106 3.8675 350.9659 240.0000 223.0000 3.9106 2.9110 + 264.3347 240.0000 224.0000 3.9106 10.6191 226.1684 240.0000 225.0000 3.9106 9.8849 + 221.9858 240.0000 226.0000 3.9106 9.1376 260.2108 240.0000 227.0000 3.9106 2.9263 + 242.4422 240.0000 228.0000 3.9106 6.5458 343.0520 240.0000 231.0000 3.9106 1.9315 + 362.2407 240.0000 232.0000 3.9106 1.9447 332.1968 240.0000 233.0000 3.9106 1.9793 + 309.0838 240.0000 234.0000 3.9106 1.9812 472.1081 240.0000 238.0000 3.9106 1.9143 + 454.7356 240.0000 239.0000 3.9106 2.8903 458.6896 240.0000 240.0000 3.9106 3.9106 + 35.3152 241.0000 1.0000 2.9225 0.9118 23.3592 241.0000 2.0000 2.9225 0.0000 + 549.6114 241.0000 3.0000 2.9225 0.0000 316.7162 241.0000 4.0000 2.9225 0.0000 + 213.3735 241.0000 5.0000 2.9225 0.0000 144.2558 241.0000 6.0000 2.9225 0.0000 + 100.9460 241.0000 7.0000 2.9225 0.0000 76.4658 241.0000 8.0000 2.9225 0.0000 + 57.9467 241.0000 9.0000 2.9225 0.0000 44.5776 241.0000 10.0000 2.9225 0.0000 + 657.1151 241.0000 11.0000 2.9225 0.0000 504.6753 241.0000 12.0000 2.9225 0.0000 + 465.2259 241.0000 13.0000 2.9225 0.0000 366.6169 241.0000 14.0000 2.9225 0.0000 + 285.9926 241.0000 15.0000 2.9225 0.0000 237.4448 241.0000 16.0000 2.9225 0.0000 + 194.0301 241.0000 17.0000 2.9225 0.0000 158.7915 241.0000 18.0000 2.9225 0.0000 + 1078.8336 241.0000 19.0000 2.9225 0.0000 887.6167 241.0000 20.0000 2.9225 0.0000 + 733.0114 241.0000 21.0000 2.9225 0.0000 707.8111 241.0000 22.0000 2.9225 0.0000 + 648.1120 241.0000 23.0000 2.9225 0.0000 510.7385 241.0000 24.0000 2.9225 0.0000 + 557.9514 241.0000 25.0000 2.9225 0.0000 438.0603 241.0000 26.0000 2.9225 0.0000 + 464.0668 241.0000 27.0000 2.9225 0.0000 478.0372 241.0000 28.0000 2.9225 0.0000 + 366.6648 241.0000 29.0000 2.9225 0.0000 376.2399 241.0000 30.0000 2.9225 0.0000 + 445.7279 241.0000 31.0000 2.9225 0.0000 393.0366 241.0000 32.0000 2.9225 0.0000 + 335.2921 241.0000 33.0000 2.9225 0.0000 300.9258 241.0000 34.0000 2.9225 0.0000 + 263.4034 241.0000 35.0000 2.9225 0.0000 229.1191 241.0000 36.0000 2.9225 0.0000 + 1209.2081 241.0000 37.0000 2.9225 0.0000 1057.8748 241.0000 38.0000 2.9225 0.0000 + 926.1439 241.0000 39.0000 2.9225 0.0000 832.1743 241.0000 40.0000 2.9225 0.0000 + 758.7789 241.0000 41.0000 2.9225 0.0000 585.8126 241.0000 42.0000 2.9225 0.0000 + 653.6028 241.0000 43.0000 2.9225 0.0000 497.9286 241.0000 44.0000 2.9225 0.0000 + 544.0821 241.0000 45.0000 2.9225 0.0000 504.5037 241.0000 46.0000 2.9225 0.0000 + 420.8552 241.0000 47.0000 2.9225 0.0000 444.4932 241.0000 48.0000 2.9225 0.0000 + 557.9340 241.0000 49.0000 2.9225 0.0000 515.7374 241.0000 50.0000 2.9225 0.0000 + 459.5750 241.0000 51.0000 2.9225 0.0000 426.4202 241.0000 52.0000 2.9225 0.0000 + 385.5923 241.0000 53.0000 2.9225 0.0000 346.7063 241.0000 54.0000 2.9225 0.0000 + 1473.7970 241.0000 55.0000 2.9225 0.0000 1349.3970 241.0000 56.0000 2.9225 0.0000 + 1184.6610 241.0000 57.0000 2.9225 0.0000 543.0506 241.0000 58.0000 2.9225 2.7991 + 1195.2654 241.0000 59.0000 2.9225 0.0000 1147.4757 241.0000 60.0000 2.9225 0.0000 + 1118.6278 241.0000 61.0000 2.9225 0.0000 1092.1025 241.0000 62.0000 2.9225 0.0000 + 1068.5805 241.0000 63.0000 2.9225 0.0000 840.0098 241.0000 64.0000 2.9225 0.0000 + 947.3214 241.0000 65.0000 2.9225 0.0000 913.6348 241.0000 66.0000 2.9225 0.0000 + 963.5525 241.0000 67.0000 2.9225 0.0000 943.0626 241.0000 68.0000 2.9225 0.0000 + 924.5841 241.0000 69.0000 2.9225 0.0000 913.7740 241.0000 70.0000 2.9225 0.0000 + 769.7801 241.0000 71.0000 2.9225 0.0000 756.6313 241.0000 72.0000 2.9225 0.0000 + 690.3939 241.0000 73.0000 2.9225 0.0000 583.0888 241.0000 74.0000 2.9225 0.0000 + 593.0872 241.0000 75.0000 2.9225 0.0000 537.4630 241.0000 76.0000 2.9225 0.0000 + 492.1917 241.0000 77.0000 2.9225 0.0000 408.9156 241.0000 78.0000 2.9225 0.0000 + 382.0500 241.0000 79.0000 2.9225 0.0000 392.9405 241.0000 80.0000 2.9225 0.0000 + 573.0274 241.0000 81.0000 2.9225 0.0000 559.9755 241.0000 82.0000 2.9225 0.0000 + 514.4452 241.0000 83.0000 2.9225 0.0000 490.6394 241.0000 84.0000 2.9225 0.0000 + 452.8196 241.0000 85.0000 2.9225 0.0000 415.0605 241.0000 86.0000 2.9225 0.0000 + 1390.4637 241.0000 87.0000 2.9225 0.0000 1333.9556 241.0000 88.0000 2.9225 0.0000 + 1178.2143 241.0000 89.0000 2.9225 0.0000 1058.2704 241.0000 90.0000 2.9225 0.0000 + 1051.1231 241.0000 91.0000 2.9225 0.0000 1017.7328 241.0000 92.0000 2.9225 0.0000 + 1048.1038 241.0000 93.0000 2.9225 0.0000 1014.8828 241.0000 94.0000 2.9225 0.0000 + 56.8466 241.0000 101.0000 2.9225 0.0000 184.1222 241.0000 103.0000 2.9225 0.9865 + 234.9568 241.0000 104.0000 2.9225 0.9808 179.5291 241.0000 105.0000 2.9225 0.9706 + 135.3493 241.0000 106.0000 2.9225 0.9868 94.1631 241.0000 107.0000 2.9225 0.9944 + 68.6087 241.0000 108.0000 2.9225 0.9925 47.1941 241.0000 109.0000 2.9225 0.9982 + 269.1778 241.0000 111.0000 2.9225 0.9684 416.4183 241.0000 112.0000 2.9225 0.9628 + 421.6461 241.0000 113.0000 2.9225 0.9648 338.8785 241.0000 114.0000 2.9225 0.9507 + 277.6188 241.0000 115.0000 2.9225 0.9947 234.8321 241.0000 116.0000 2.9225 0.9948 + 192.0192 241.0000 117.0000 2.9225 0.9972 371.4433 241.0000 119.0000 2.9225 0.9767 + 710.7573 241.0000 120.0000 2.9225 0.9831 371.3244 241.0000 121.0000 2.9225 1.8627 + 358.5232 241.0000 122.0000 2.9225 1.8299 351.3471 241.0000 123.0000 2.9225 1.9138 + 348.1021 241.0000 124.0000 2.9225 1.8269 320.2256 241.0000 125.0000 2.9225 1.6406 + 296.3749 241.0000 126.0000 2.9225 1.6483 282.7396 241.0000 127.0000 2.9225 1.7149 + 276.4113 241.0000 128.0000 2.9225 1.7937 273.1065 241.0000 129.0000 2.9225 0.9576 + 256.2171 241.0000 130.0000 2.9225 1.9419 418.6209 241.0000 131.0000 2.9225 0.9601 + 367.7137 241.0000 132.0000 2.9225 0.9434 329.6139 241.0000 133.0000 2.9225 0.9889 + 301.0426 241.0000 134.0000 2.9225 0.9901 265.2340 241.0000 135.0000 2.9225 0.9974 + 443.2682 241.0000 137.0000 2.9225 0.9738 865.2462 241.0000 138.0000 2.9225 0.9801 + 660.7377 241.0000 139.0000 2.9225 1.9153 491.3081 241.0000 140.0000 2.9225 1.9355 + 496.1127 241.0000 141.0000 2.9225 1.9545 462.6546 241.0000 142.0000 2.9225 1.9420 + 519.0845 241.0000 143.0000 2.9225 1.6682 403.2032 241.0000 144.0000 2.9225 1.8584 + 377.2249 241.0000 145.0000 2.9225 1.9003 350.2910 241.0000 146.0000 2.9225 1.8630 + 338.8335 241.0000 147.0000 2.9225 0.9679 335.1312 241.0000 148.0000 2.9225 1.9539 + 531.7720 241.0000 149.0000 2.9225 0.9633 480.9564 241.0000 150.0000 2.9225 0.9514 + 450.4159 241.0000 151.0000 2.9225 0.9749 426.1118 241.0000 152.0000 2.9225 0.9811 + 389.2112 241.0000 153.0000 2.9225 0.9968 524.1562 241.0000 155.0000 2.9225 0.9909 + 1122.7672 241.0000 156.0000 2.9225 0.9797 836.5504 241.0000 157.0000 2.9225 1.9373 + 526.6759 241.0000 159.0000 2.9225 2.9425 515.7797 241.0000 160.0000 2.9225 2.9455 + 499.4343 241.0000 161.0000 2.9225 2.9413 501.9170 241.0000 162.0000 2.9225 2.9300 + 483.8542 241.0000 163.0000 2.9225 1.8286 505.0620 241.0000 164.0000 2.9225 2.8732 + 474.3613 241.0000 165.0000 2.9225 2.9086 482.7380 241.0000 166.0000 2.9225 2.8965 + 450.2413 241.0000 167.0000 2.9225 2.9242 437.4079 241.0000 168.0000 2.9225 2.9282 + 434.6007 241.0000 169.0000 2.9225 2.9246 456.7992 241.0000 170.0000 2.9225 2.8482 + 420.0614 241.0000 171.0000 2.9225 2.9219 569.5935 241.0000 172.0000 2.9225 1.9254 + 528.5265 241.0000 173.0000 2.9225 1.9459 482.1480 241.0000 174.0000 2.9225 1.9292 + 487.9361 241.0000 175.0000 2.9225 1.8104 426.9773 241.0000 176.0000 2.9225 1.8858 + 401.6831 241.0000 177.0000 2.9225 1.8648 383.6596 241.0000 178.0000 2.9225 1.9188 + 366.8070 241.0000 179.0000 2.9225 0.9846 354.3780 241.0000 180.0000 2.9225 1.9896 + 571.1344 241.0000 181.0000 2.9225 0.9267 520.3442 241.0000 182.0000 2.9225 0.9383 + 504.5697 241.0000 183.0000 2.9225 0.9820 490.7521 241.0000 184.0000 2.9225 0.9815 + 458.3010 241.0000 185.0000 2.9225 0.9954 590.3080 241.0000 187.0000 2.9225 0.9705 + 1116.0377 241.0000 188.0000 2.9225 0.9662 623.2027 241.0000 189.0000 2.9225 2.9070 + 719.7804 241.0000 190.0000 2.9225 2.8844 643.7098 241.0000 191.0000 2.9225 2.8738 + 568.4114 241.0000 192.0000 2.9225 2.8878 546.9287 241.0000 193.0000 2.9225 2.9095 + 658.5955 241.0000 194.0000 2.9225 1.9209 153.2948 241.0000 204.0000 2.9225 1.9697 + 150.7698 241.0000 205.0000 2.9225 1.9441 110.3639 241.0000 206.0000 2.9225 1.9985 + 88.3944 241.0000 207.0000 2.9225 2.0143 60.5217 241.0000 208.0000 2.9225 1.9887 + 271.7876 241.0000 212.0000 2.9225 1.9496 328.5727 241.0000 213.0000 2.9225 1.9311 + 315.2073 241.0000 214.0000 2.9225 1.9435 273.8649 241.0000 215.0000 2.9225 2.0102 + 230.0871 241.0000 216.0000 2.9225 1.9903 381.2592 241.0000 220.0000 2.9225 1.9349 + 366.3716 241.0000 221.0000 2.9225 2.8999 370.8800 241.0000 222.0000 2.9225 3.8675 + 339.4910 241.0000 223.0000 2.9225 2.9110 255.7658 241.0000 224.0000 2.9225 10.6191 + 218.8458 241.0000 225.0000 2.9225 9.8849 214.8053 241.0000 226.0000 2.9225 9.1376 + 251.7856 241.0000 227.0000 2.9225 2.9263 234.5558 241.0000 228.0000 2.9225 6.5458 + 331.6718 241.0000 231.0000 2.9225 1.9315 350.0801 241.0000 232.0000 2.9225 1.9447 + 320.9667 241.0000 233.0000 2.9225 1.9793 298.6808 241.0000 234.0000 2.9225 1.9812 + 456.8822 241.0000 238.0000 2.9225 1.9143 439.6548 241.0000 239.0000 2.9225 2.8903 + 443.4182 241.0000 240.0000 2.9225 3.9106 428.8962 241.0000 241.0000 2.9225 2.9225 + 31.6681 242.0000 1.0000 11.0556 0.9118 21.3516 242.0000 2.0000 11.0556 0.0000 + 461.5751 242.0000 3.0000 11.0556 0.0000 273.5446 242.0000 4.0000 11.0556 0.0000 + 187.4666 242.0000 5.0000 11.0556 0.0000 128.4978 242.0000 6.0000 11.0556 0.0000 + 90.9043 242.0000 7.0000 11.0556 0.0000 69.4181 242.0000 8.0000 11.0556 0.0000 + 52.9845 242.0000 9.0000 11.0556 0.0000 41.0035 242.0000 10.0000 11.0556 0.0000 + 553.0357 242.0000 11.0000 11.0556 0.0000 433.8278 242.0000 12.0000 11.0556 0.0000 + 403.2914 242.0000 13.0000 11.0556 0.0000 321.5163 242.0000 14.0000 11.0556 0.0000 + 253.4123 242.0000 15.0000 11.0556 0.0000 211.9069 242.0000 16.0000 11.0556 0.0000 + 174.3920 242.0000 17.0000 11.0556 0.0000 143.6389 242.0000 18.0000 11.0556 0.0000 + 905.0848 242.0000 19.0000 11.0556 0.0000 757.0858 242.0000 20.0000 11.0556 0.0000 + 627.5560 242.0000 21.0000 11.0556 0.0000 608.3000 242.0000 22.0000 11.0556 0.0000 + 558.2324 242.0000 23.0000 11.0556 0.0000 440.5516 242.0000 24.0000 11.0556 0.0000 + 482.1362 242.0000 25.0000 11.0556 0.0000 379.2688 242.0000 26.0000 11.0556 0.0000 + 403.1484 242.0000 27.0000 11.0556 0.0000 414.3156 242.0000 28.0000 11.0556 0.0000 + 318.3239 242.0000 29.0000 11.0556 0.0000 328.4707 242.0000 30.0000 11.0556 0.0000 + 388.0446 242.0000 31.0000 11.0556 0.0000 345.1578 242.0000 32.0000 11.0556 0.0000 + 296.9165 242.0000 33.0000 11.0556 0.0000 267.9623 242.0000 34.0000 11.0556 0.0000 + 235.9264 242.0000 35.0000 11.0556 0.0000 206.3637 242.0000 36.0000 11.0556 0.0000 + 1016.3718 242.0000 37.0000 11.0556 0.0000 902.1097 242.0000 38.0000 11.0556 0.0000 + 795.1764 242.0000 39.0000 11.0556 0.0000 717.6632 242.0000 40.0000 11.0556 0.0000 + 656.3774 242.0000 41.0000 11.0556 0.0000 509.7424 242.0000 42.0000 11.0556 0.0000 + 567.4441 242.0000 43.0000 11.0556 0.0000 435.0888 242.0000 44.0000 11.0556 0.0000 + 475.0273 242.0000 45.0000 11.0556 0.0000 441.3319 242.0000 46.0000 11.0556 0.0000 + 368.2898 242.0000 47.0000 11.0556 0.0000 389.8300 242.0000 48.0000 11.0556 0.0000 + 486.2116 242.0000 49.0000 11.0556 0.0000 452.4616 242.0000 50.0000 11.0556 0.0000 + 406.0312 242.0000 51.0000 11.0556 0.0000 378.4312 242.0000 52.0000 11.0556 0.0000 + 343.9096 242.0000 53.0000 11.0556 0.0000 310.7442 242.0000 54.0000 11.0556 0.0000 + 1239.1934 242.0000 55.0000 11.0556 0.0000 1148.5106 242.0000 56.0000 11.0556 0.0000 + 1015.1154 242.0000 57.0000 11.0556 0.0000 479.4247 242.0000 58.0000 11.0556 2.7991 + 1019.8084 242.0000 59.0000 11.0556 0.0000 980.1462 242.0000 60.0000 11.0556 0.0000 + 955.7891 242.0000 61.0000 11.0556 0.0000 933.3543 242.0000 62.0000 11.0556 0.0000 + 913.4679 242.0000 63.0000 11.0556 0.0000 723.9342 242.0000 64.0000 11.0556 0.0000 + 807.7328 242.0000 65.0000 11.0556 0.0000 779.9682 242.0000 66.0000 11.0556 0.0000 + 825.0243 242.0000 67.0000 11.0556 0.0000 807.5992 242.0000 68.0000 11.0556 0.0000 + 791.9602 242.0000 69.0000 11.0556 0.0000 782.4179 242.0000 70.0000 11.0556 0.0000 + 662.6977 242.0000 71.0000 11.0556 0.0000 655.7541 242.0000 72.0000 11.0556 0.0000 + 601.0596 242.0000 73.0000 11.0556 0.0000 509.8157 242.0000 74.0000 11.0556 0.0000 + 519.3135 242.0000 75.0000 11.0556 0.0000 472.4957 242.0000 76.0000 11.0556 0.0000 + 434.1316 242.0000 77.0000 11.0556 0.0000 362.2168 242.0000 78.0000 11.0556 0.0000 + 338.9881 242.0000 79.0000 11.0556 0.0000 348.9752 242.0000 80.0000 11.0556 0.0000 + 500.8333 242.0000 81.0000 11.0556 0.0000 491.8144 242.0000 82.0000 11.0556 0.0000 + 454.5781 242.0000 83.0000 11.0556 0.0000 435.1405 242.0000 84.0000 11.0556 0.0000 + 403.4489 242.0000 85.0000 11.0556 0.0000 371.4277 242.0000 86.0000 11.0556 0.0000 + 1175.8873 242.0000 87.0000 11.0556 0.0000 1139.5556 242.0000 88.0000 11.0556 0.0000 + 1012.7341 242.0000 89.0000 11.0556 0.0000 916.5263 242.0000 90.0000 11.0556 0.0000 + 907.4304 242.0000 91.0000 11.0556 0.0000 878.8304 242.0000 92.0000 11.0556 0.0000 + 901.0470 242.0000 93.0000 11.0556 0.0000 873.1869 242.0000 94.0000 11.0556 0.0000 + 50.4173 242.0000 101.0000 11.0556 0.0000 159.4404 242.0000 103.0000 11.0556 0.9865 + 204.1519 242.0000 104.0000 11.0556 0.9808 158.3563 242.0000 105.0000 11.0556 0.9706 + 120.5946 242.0000 106.0000 11.0556 0.9868 84.8582 242.0000 107.0000 11.0556 0.9944 + 62.4324 242.0000 108.0000 11.0556 0.9925 43.4760 242.0000 109.0000 11.0556 0.9982 + 232.5932 242.0000 111.0000 11.0556 0.9684 359.1888 242.0000 112.0000 11.0556 0.9628 + 366.3171 242.0000 113.0000 11.0556 0.9648 297.7436 242.0000 114.0000 11.0556 0.9507 + 246.1086 242.0000 115.0000 11.0556 0.9947 209.5599 242.0000 116.0000 11.0556 0.9948 + 172.5758 242.0000 117.0000 11.0556 0.9972 323.6381 242.0000 119.0000 11.0556 0.9767 + 607.0919 242.0000 120.0000 11.0556 0.9831 326.0787 242.0000 121.0000 11.0556 1.8627 + 314.9983 242.0000 122.0000 11.0556 1.8299 308.6801 242.0000 123.0000 11.0556 1.9138 + 305.5273 242.0000 124.0000 11.0556 1.8269 282.4334 242.0000 125.0000 11.0556 1.6406 + 261.8630 242.0000 126.0000 11.0556 1.6483 249.8695 242.0000 127.0000 11.0556 1.7149 + 244.1847 242.0000 128.0000 11.0556 1.7937 240.3673 242.0000 129.0000 11.0556 0.9576 + 227.0405 242.0000 130.0000 11.0556 1.9419 365.2802 242.0000 131.0000 11.0556 0.9601 + 323.6293 242.0000 132.0000 11.0556 0.9434 292.0475 242.0000 133.0000 11.0556 0.9889 + 268.0526 242.0000 134.0000 11.0556 0.9901 237.5019 242.0000 135.0000 11.0556 0.9974 + 387.1236 242.0000 137.0000 11.0556 0.9738 738.6401 242.0000 138.0000 11.0556 0.9801 + 571.8530 242.0000 139.0000 11.0556 1.9153 431.3512 242.0000 140.0000 11.0556 1.9355 + 435.5692 242.0000 141.0000 11.0556 1.9545 407.0659 242.0000 142.0000 11.0556 1.9420 + 453.7197 242.0000 143.0000 11.0556 1.6682 356.6338 242.0000 144.0000 11.0556 1.8584 + 333.9387 242.0000 145.0000 11.0556 1.9003 310.5005 242.0000 146.0000 11.0556 1.8630 + 300.1493 242.0000 147.0000 11.0556 0.9679 297.8478 242.0000 148.0000 11.0556 1.9539 + 464.5679 242.0000 149.0000 11.0556 0.9633 423.1570 242.0000 150.0000 11.0556 0.9514 + 398.3318 242.0000 151.0000 11.0556 0.9749 378.2579 242.0000 152.0000 11.0556 0.9811 + 347.1000 242.0000 153.0000 11.0556 0.9968 460.1263 242.0000 155.0000 11.0556 0.9909 + 956.0229 242.0000 156.0000 11.0556 0.9797 723.2437 242.0000 157.0000 11.0556 1.9373 + 465.1818 242.0000 159.0000 11.0556 2.9425 455.5995 242.0000 160.0000 11.0556 2.9455 + 441.3364 242.0000 161.0000 11.0556 2.9413 443.0547 242.0000 162.0000 11.0556 2.9300 + 425.7815 242.0000 163.0000 11.0556 1.8286 445.6125 242.0000 164.0000 11.0556 2.8732 + 418.9542 242.0000 165.0000 11.0556 2.9086 425.5550 242.0000 166.0000 11.0556 2.8965 + 397.9983 242.0000 167.0000 11.0556 2.9242 386.7854 242.0000 168.0000 11.0556 2.9282 + 384.1823 242.0000 169.0000 11.0556 2.9246 403.0686 242.0000 170.0000 11.0556 2.8482 + 371.5016 242.0000 171.0000 11.0556 2.9219 497.5872 242.0000 172.0000 11.0556 1.9254 + 463.7843 242.0000 173.0000 11.0556 1.9459 425.0630 242.0000 174.0000 11.0556 1.9292 + 428.5383 242.0000 175.0000 11.0556 1.8104 378.8885 242.0000 176.0000 11.0556 1.8858 + 357.1156 242.0000 177.0000 11.0556 1.8648 341.4967 242.0000 178.0000 11.0556 1.9188 + 326.5738 242.0000 179.0000 11.0556 0.9846 316.5633 242.0000 180.0000 11.0556 1.9896 + 500.0588 242.0000 181.0000 11.0556 0.9267 458.7239 242.0000 182.0000 11.0556 0.9383 + 446.4655 242.0000 183.0000 11.0556 0.9820 435.4646 242.0000 184.0000 11.0556 0.9815 + 408.3283 242.0000 185.0000 11.0556 0.9954 518.3775 242.0000 187.0000 11.0556 0.9705 + 954.6301 242.0000 188.0000 11.0556 0.9662 550.2508 242.0000 189.0000 11.0556 2.9070 + 631.7419 242.0000 190.0000 11.0556 2.8844 566.3773 242.0000 191.0000 11.0556 2.8738 + 502.6517 242.0000 192.0000 11.0556 2.8878 484.2162 242.0000 193.0000 11.0556 2.9095 + 575.6198 242.0000 194.0000 11.0556 1.9209 135.2428 242.0000 204.0000 11.0556 1.9697 + 133.5090 242.0000 205.0000 11.0556 1.9441 98.8903 242.0000 206.0000 11.0556 1.9985 + 79.7672 242.0000 207.0000 11.0556 2.0143 55.2484 242.0000 208.0000 11.0556 1.9887 + 238.0169 242.0000 212.0000 11.0556 1.9496 287.5225 242.0000 213.0000 11.0556 1.9311 + 277.4312 242.0000 214.0000 11.0556 1.9435 242.6676 242.0000 215.0000 11.0556 2.0102 + 205.3695 242.0000 216.0000 11.0556 1.9903 334.3206 242.0000 220.0000 11.0556 1.9349 + 322.6655 242.0000 221.0000 11.0556 2.8999 326.7670 242.0000 222.0000 11.0556 3.8675 + 299.1495 242.0000 223.0000 11.0556 2.9110 227.2947 242.0000 224.0000 11.0556 10.6191 + 195.4456 242.0000 225.0000 11.0556 9.8849 191.7333 242.0000 226.0000 11.0556 9.1376 + 222.9546 242.0000 227.0000 11.0556 2.9263 208.1570 242.0000 228.0000 11.0556 6.5458 + 291.7241 242.0000 231.0000 11.0556 1.9315 308.5781 242.0000 232.0000 11.0556 1.9447 + 284.6411 242.0000 233.0000 11.0556 1.9793 265.9986 242.0000 234.0000 11.0556 1.9812 + 401.0541 242.0000 238.0000 11.0556 1.9143 388.0718 242.0000 239.0000 11.0556 2.8903 + 392.0655 242.0000 240.0000 11.0556 3.9106 379.2075 242.0000 241.0000 11.0556 2.9225 + 337.1075 242.0000 242.0000 11.0556 11.0556 28.2627 243.0000 1.0000 9.5402 0.9118 + 19.3556 243.0000 2.0000 9.5402 0.0000 391.4255 243.0000 3.0000 9.5402 0.0000 + 236.8457 243.0000 4.0000 9.5402 0.0000 164.5777 243.0000 5.0000 9.5402 0.0000 + 114.0774 243.0000 6.0000 9.5402 0.0000 81.4217 243.0000 7.0000 9.5402 0.0000 + 62.5886 243.0000 8.0000 9.5402 0.0000 48.0540 243.0000 9.0000 9.5402 0.0000 + 37.3723 243.0000 10.0000 9.5402 0.0000 469.7696 243.0000 11.0000 9.5402 0.0000 + 374.2691 243.0000 12.0000 9.5402 0.0000 350.2804 243.0000 13.0000 9.5402 0.0000 + 281.8480 243.0000 14.0000 9.5402 0.0000 224.0034 243.0000 15.0000 9.5402 0.0000 + 188.4044 243.0000 16.0000 9.5402 0.0000 155.9405 243.0000 17.0000 9.5402 0.0000 + 129.1105 243.0000 18.0000 9.5402 0.0000 767.9339 243.0000 19.0000 9.5402 0.0000 + 649.5000 243.0000 20.0000 9.5402 0.0000 539.8662 243.0000 21.0000 9.5402 0.0000 + 524.9173 243.0000 22.0000 9.5402 0.0000 482.5622 243.0000 23.0000 9.5402 0.0000 + 381.4006 243.0000 24.0000 9.5402 0.0000 417.8614 243.0000 25.0000 9.5402 0.0000 + 329.3116 243.0000 26.0000 9.5402 0.0000 350.8564 243.0000 27.0000 9.5402 0.0000 + 359.9017 243.0000 28.0000 9.5402 0.0000 276.9970 243.0000 29.0000 9.5402 0.0000 + 286.9927 243.0000 30.0000 9.5402 0.0000 338.2627 243.0000 31.0000 9.5402 0.0000 + 302.9389 243.0000 32.0000 9.5402 0.0000 262.3480 243.0000 33.0000 9.5402 0.0000 + 237.8235 243.0000 34.0000 9.5402 0.0000 210.3812 243.0000 35.0000 9.5402 0.0000 + 184.8477 243.0000 36.0000 9.5402 0.0000 863.7655 243.0000 37.0000 9.5402 0.0000 + 773.9463 243.0000 38.0000 9.5402 0.0000 685.7489 243.0000 39.0000 9.5402 0.0000 + 621.0438 243.0000 40.0000 9.5402 0.0000 569.4159 243.0000 41.0000 9.5402 0.0000 + 444.3471 243.0000 42.0000 9.5402 0.0000 493.7430 243.0000 43.0000 9.5402 0.0000 + 380.5730 243.0000 44.0000 9.5402 0.0000 415.1463 243.0000 45.0000 9.5402 0.0000 + 386.2986 243.0000 46.0000 9.5402 0.0000 322.5821 243.0000 47.0000 9.5402 0.0000 + 341.9237 243.0000 48.0000 9.5402 0.0000 424.3145 243.0000 49.0000 9.5402 0.0000 + 396.8920 243.0000 50.0000 9.5402 0.0000 358.1519 243.0000 51.0000 9.5402 0.0000 + 335.0059 243.0000 52.0000 9.5402 0.0000 305.6667 243.0000 53.0000 9.5402 0.0000 + 277.2771 243.0000 54.0000 9.5402 0.0000 1053.7818 243.0000 55.0000 9.5402 0.0000 + 984.1861 243.0000 56.0000 9.5402 0.0000 874.2449 243.0000 57.0000 9.5402 0.0000 + 422.6628 243.0000 58.0000 9.5402 2.7991 875.5927 243.0000 59.0000 9.5402 0.0000 + 842.1651 243.0000 60.0000 9.5402 0.0000 821.4043 243.0000 61.0000 9.5402 0.0000 + 802.2571 243.0000 62.0000 9.5402 0.0000 785.2898 243.0000 63.0000 9.5402 0.0000 + 626.3824 243.0000 64.0000 9.5402 0.0000 693.6613 243.0000 65.0000 9.5402 0.0000 + 670.5114 243.0000 66.0000 9.5402 0.0000 710.0771 243.0000 67.0000 9.5402 0.0000 + 695.1436 243.0000 68.0000 9.5402 0.0000 681.7920 243.0000 69.0000 9.5402 0.0000 + 673.3797 243.0000 70.0000 9.5402 0.0000 572.8558 243.0000 71.0000 9.5402 0.0000 + 569.6644 243.0000 72.0000 9.5402 0.0000 524.0213 243.0000 73.0000 9.5402 0.0000 + 446.0838 243.0000 74.0000 9.5402 0.0000 454.8860 243.0000 75.0000 9.5402 0.0000 + 415.1950 243.0000 76.0000 9.5402 0.0000 382.4974 243.0000 77.0000 9.5402 0.0000 + 320.2724 243.0000 78.0000 9.5402 0.0000 300.1539 243.0000 79.0000 9.5402 0.0000 + 309.1950 243.0000 80.0000 9.5402 0.0000 438.2248 243.0000 81.0000 9.5402 0.0000 + 431.8700 243.0000 82.0000 9.5402 0.0000 401.0700 243.0000 83.0000 9.5402 0.0000 + 385.0417 243.0000 84.0000 9.5402 0.0000 358.3106 243.0000 85.0000 9.5402 0.0000 + 331.0301 243.0000 86.0000 9.5402 0.0000 1004.0757 243.0000 87.0000 9.5402 0.0000 + 979.2530 243.0000 88.0000 9.5402 0.0000 874.2843 243.0000 89.0000 9.5402 0.0000 + 795.9004 243.0000 90.0000 9.5402 0.0000 786.1896 243.0000 91.0000 9.5402 0.0000 + 761.5579 243.0000 92.0000 9.5402 0.0000 778.1249 243.0000 93.0000 9.5402 0.0000 + 754.5169 243.0000 94.0000 9.5402 0.0000 44.5963 243.0000 101.0000 9.5402 0.0000 + 138.3613 243.0000 103.0000 9.5402 0.9865 177.6837 243.0000 104.0000 9.5402 0.9808 + 139.4763 243.0000 105.0000 9.5402 0.9706 107.0906 243.0000 106.0000 9.5402 0.9868 + 76.0532 243.0000 107.0000 9.5402 0.9944 56.3962 243.0000 108.0000 9.5402 0.9925 + 39.6668 243.0000 109.0000 9.5402 0.9982 201.5403 243.0000 111.0000 9.5402 0.9684 + 310.8083 243.0000 112.0000 9.5402 0.9628 318.7388 243.0000 113.0000 9.5402 0.9648 + 261.4105 243.0000 114.0000 9.5402 0.9507 217.6347 243.0000 115.0000 9.5402 0.9947 + 186.3093 243.0000 116.0000 9.5402 0.9948 154.3118 243.0000 117.0000 9.5402 0.9972 + 282.4384 243.0000 119.0000 9.5402 0.9767 521.8458 243.0000 120.0000 9.5402 0.9831 + 286.2241 243.0000 121.0000 9.5402 1.8627 276.6567 243.0000 122.0000 9.5402 1.8299 + 271.1001 243.0000 123.0000 9.5402 1.9138 268.1325 243.0000 124.0000 9.5402 1.8269 + 248.7895 243.0000 125.0000 9.5402 1.6406 231.0081 243.0000 126.0000 9.5402 1.6483 + 220.4802 243.0000 127.0000 9.5402 1.7149 215.4030 243.0000 128.0000 9.5402 1.7937 + 211.4238 243.0000 129.0000 9.5402 0.9576 200.7562 243.0000 130.0000 9.5402 1.9419 + 318.9968 243.0000 131.0000 9.5402 0.9601 284.5505 243.0000 132.0000 9.5402 0.9434 + 258.1617 243.0000 133.0000 9.5402 0.9889 237.8953 243.0000 134.0000 9.5402 0.9901 + 211.7410 243.0000 135.0000 9.5402 0.9974 338.5014 243.0000 137.0000 9.5402 0.9738 + 634.8168 243.0000 138.0000 9.5402 0.9801 496.6399 243.0000 139.0000 9.5402 1.9153 + 378.6511 243.0000 140.0000 9.5402 1.9355 382.3225 243.0000 141.0000 9.5402 1.9545 + 357.9634 243.0000 142.0000 9.5402 1.9420 397.0367 243.0000 143.0000 9.5402 1.6682 + 314.9171 243.0000 144.0000 9.5402 1.8584 295.1012 243.0000 145.0000 9.5402 1.9003 + 274.6918 243.0000 146.0000 9.5402 1.8630 265.4033 243.0000 147.0000 9.5402 0.9679 + 264.0201 243.0000 148.0000 9.5402 1.9539 406.2117 243.0000 149.0000 9.5402 0.9633 + 372.0410 243.0000 150.0000 9.5402 0.9514 351.6390 243.0000 151.0000 9.5402 0.9749 + 334.9230 243.0000 152.0000 9.5402 0.9811 308.4743 243.0000 153.0000 9.5402 0.9968 + 403.9077 243.0000 155.0000 9.5402 0.9909 820.4174 243.0000 156.0000 9.5402 0.9797 + 627.7003 243.0000 157.0000 9.5402 1.9373 410.2593 243.0000 159.0000 9.5402 2.9425 + 401.8371 243.0000 160.0000 9.5402 2.9455 389.3842 243.0000 161.0000 9.5402 2.9413 + 390.5841 243.0000 162.0000 9.5402 2.9300 374.4473 243.0000 163.0000 9.5402 1.8286 + 392.6667 243.0000 164.0000 9.5402 2.8732 369.4767 243.0000 165.0000 9.5402 2.9086 + 374.7726 243.0000 166.0000 9.5402 2.8965 351.2333 243.0000 167.0000 9.5402 2.9242 + 341.4299 243.0000 168.0000 9.5402 2.9282 339.0464 243.0000 169.0000 9.5402 2.9246 + 355.1823 243.0000 170.0000 9.5402 2.8482 327.9709 243.0000 171.0000 9.5402 2.9219 + 435.1558 243.0000 172.0000 9.5402 1.9254 407.0101 243.0000 173.0000 9.5402 1.9459 + 374.3879 243.0000 174.0000 9.5402 1.9292 376.3463 243.0000 175.0000 9.5402 1.8104 + 335.4372 243.0000 176.0000 9.5402 1.8858 316.6480 243.0000 177.0000 9.5402 1.8648 + 303.0984 243.0000 178.0000 9.5402 1.9188 289.9329 243.0000 179.0000 9.5402 0.9846 + 281.7677 243.0000 180.0000 9.5402 1.9896 438.1048 243.0000 181.0000 9.5402 0.9267 + 404.0065 243.0000 182.0000 9.5402 0.9383 394.3395 243.0000 183.0000 9.5402 0.9820 + 385.4828 243.0000 184.0000 9.5402 0.9815 362.6374 243.0000 185.0000 9.5402 0.9954 + 455.1575 243.0000 187.0000 9.5402 0.9705 821.8739 243.0000 188.0000 9.5402 0.9662 + 485.1384 243.0000 189.0000 9.5402 2.9070 554.5883 243.0000 190.0000 9.5402 2.8844 + 498.3202 243.0000 191.0000 9.5402 2.8738 443.8041 243.0000 192.0000 9.5402 2.8878 + 427.9090 243.0000 193.0000 9.5402 2.9095 503.7865 243.0000 194.0000 9.5402 1.9209 + 119.1206 243.0000 204.0000 9.5402 1.9697 117.9758 243.0000 205.0000 9.5402 1.9441 + 88.2158 243.0000 206.0000 9.5402 1.9985 71.5723 243.0000 207.0000 9.5402 2.0143 + 50.0406 243.0000 208.0000 9.5402 1.9887 208.4131 243.0000 212.0000 9.5402 1.9496 + 251.6421 243.0000 213.0000 9.5402 1.9311 243.9188 243.0000 214.0000 9.5402 1.9435 + 214.5176 243.0000 215.0000 9.5402 2.0102 182.6170 243.0000 216.0000 9.5402 1.9903 + 293.1198 243.0000 220.0000 9.5402 1.9349 283.8784 243.0000 221.0000 9.5402 2.8999 + 287.5807 243.0000 222.0000 9.5402 3.8675 263.3409 243.0000 223.0000 9.5402 2.9110 + 201.4707 243.0000 224.0000 9.5402 10.6191 173.9292 243.0000 225.0000 9.5402 9.8849 + 170.5557 243.0000 226.0000 9.5402 9.1376 197.0680 243.0000 227.0000 9.5402 2.9263 + 184.3086 243.0000 228.0000 9.5402 6.5458 256.3933 243.0000 231.0000 9.5402 1.9315 + 271.6474 243.0000 232.0000 9.5402 1.9447 251.7973 243.0000 233.0000 9.5402 1.9793 + 236.1084 243.0000 234.0000 9.5402 1.9812 351.9564 243.0000 238.0000 9.5402 1.9143 + 342.0346 243.0000 239.0000 9.5402 2.8903 346.0266 243.0000 240.0000 9.5402 3.9106 + 334.7174 243.0000 241.0000 9.5402 2.9225 298.8508 243.0000 242.0000 9.5402 11.0556 + 265.8654 243.0000 243.0000 9.5402 9.5402 26.8142 244.0000 1.0000 8.8895 0.9118 + 18.4864 244.0000 2.0000 8.8895 0.0000 364.4102 244.0000 3.0000 8.8895 0.0000 + 222.1489 244.0000 4.0000 8.8895 0.0000 155.1628 244.0000 5.0000 8.8895 0.0000 + 108.0200 244.0000 6.0000 8.8895 0.0000 77.3772 244.0000 7.0000 8.8895 0.0000 + 59.6460 244.0000 8.0000 8.8895 0.0000 45.9133 244.0000 9.0000 8.8895 0.0000 + 35.7884 244.0000 10.0000 8.8895 0.0000 437.6491 244.0000 11.0000 8.8895 0.0000 + 350.6141 244.0000 12.0000 8.8895 0.0000 328.9434 244.0000 13.0000 8.8895 0.0000 + 265.5808 244.0000 14.0000 8.8895 0.0000 211.7390 244.0000 15.0000 8.8895 0.0000 + 178.4935 244.0000 16.0000 8.8895 0.0000 148.0763 244.0000 17.0000 8.8895 0.0000 + 122.8625 244.0000 18.0000 8.8895 0.0000 715.2376 244.0000 19.0000 8.8895 0.0000 + 607.2921 244.0000 20.0000 8.8895 0.0000 505.2854 244.0000 21.0000 8.8895 0.0000 + 491.8643 244.0000 22.0000 8.8895 0.0000 452.4755 244.0000 23.0000 8.8895 0.0000 + 357.8667 244.0000 24.0000 8.8895 0.0000 392.1922 244.0000 25.0000 8.8895 0.0000 + 309.3380 244.0000 26.0000 8.8895 0.0000 329.8121 244.0000 27.0000 8.8895 0.0000 + 338.0805 244.0000 28.0000 8.8895 0.0000 260.4199 244.0000 29.0000 8.8895 0.0000 + 270.1794 244.0000 30.0000 8.8895 0.0000 318.1224 244.0000 31.0000 8.8895 0.0000 + 285.6102 244.0000 32.0000 8.8895 0.0000 247.9607 244.0000 33.0000 8.8895 0.0000 + 225.1670 244.0000 34.0000 8.8895 0.0000 199.5549 244.0000 35.0000 8.8895 0.0000 + 175.6524 244.0000 36.0000 8.8895 0.0000 805.0065 244.0000 37.0000 8.8895 0.0000 + 723.6911 244.0000 38.0000 8.8895 0.0000 642.4279 244.0000 39.0000 8.8895 0.0000 + 582.5544 244.0000 40.0000 8.8895 0.0000 534.6266 244.0000 41.0000 8.8895 0.0000 + 417.9889 244.0000 42.0000 8.8895 0.0000 464.1239 244.0000 43.0000 8.8895 0.0000 + 358.4840 244.0000 44.0000 8.8895 0.0000 390.8937 244.0000 45.0000 8.8895 0.0000 + 363.9513 244.0000 46.0000 8.8895 0.0000 304.0550 244.0000 47.0000 8.8895 0.0000 + 322.4084 244.0000 48.0000 8.8895 0.0000 399.3109 244.0000 49.0000 8.8895 0.0000 + 374.1870 244.0000 50.0000 8.8895 0.0000 338.3541 244.0000 51.0000 8.8895 0.0000 + 316.9123 244.0000 52.0000 8.8895 0.0000 289.6001 244.0000 53.0000 8.8895 0.0000 + 263.1051 244.0000 54.0000 8.8895 0.0000 982.3016 244.0000 55.0000 8.8895 0.0000 + 919.9110 244.0000 56.0000 8.8895 0.0000 818.6281 244.0000 57.0000 8.8895 0.0000 + 399.2351 244.0000 58.0000 8.8895 2.7991 819.0425 244.0000 59.0000 8.8895 0.0000 + 787.9846 244.0000 60.0000 8.8895 0.0000 768.6159 244.0000 61.0000 8.8895 0.0000 + 750.7432 244.0000 62.0000 8.8895 0.0000 734.9066 244.0000 63.0000 8.8895 0.0000 + 587.6156 244.0000 64.0000 8.8895 0.0000 648.9904 244.0000 65.0000 8.8895 0.0000 + 627.5659 244.0000 66.0000 8.8895 0.0000 664.7955 244.0000 67.0000 8.8895 0.0000 + 650.8338 244.0000 68.0000 8.8895 0.0000 638.3682 244.0000 69.0000 8.8895 0.0000 + 630.4213 244.0000 70.0000 8.8895 0.0000 537.1925 244.0000 71.0000 8.8895 0.0000 + 535.1160 244.0000 72.0000 8.8895 0.0000 492.9016 244.0000 73.0000 8.8895 0.0000 + 420.1970 244.0000 74.0000 8.8895 0.0000 428.6524 244.0000 75.0000 8.8895 0.0000 + 391.7261 244.0000 76.0000 8.8895 0.0000 361.2481 244.0000 77.0000 8.8895 0.0000 + 302.9243 244.0000 78.0000 8.8895 0.0000 284.0633 244.0000 79.0000 8.8895 0.0000 + 292.6744 244.0000 80.0000 8.8895 0.0000 412.8587 244.0000 81.0000 8.8895 0.0000 + 407.3744 244.0000 82.0000 8.8895 0.0000 378.9740 244.0000 83.0000 8.8895 0.0000 + 364.2197 244.0000 84.0000 8.8895 0.0000 339.4027 244.0000 85.0000 8.8895 0.0000 + 313.9849 244.0000 86.0000 8.8895 0.0000 937.3847 244.0000 87.0000 8.8895 0.0000 + 916.2401 244.0000 88.0000 8.8895 0.0000 819.4093 244.0000 89.0000 8.8895 0.0000 + 747.5898 244.0000 90.0000 8.8895 0.0000 737.8924 244.0000 91.0000 8.8895 0.0000 + 714.8344 244.0000 92.0000 8.8895 0.0000 729.4873 244.0000 93.0000 8.8895 0.0000 + 707.5095 244.0000 94.0000 8.8895 0.0000 42.1627 244.0000 101.0000 8.8895 0.0000 + 129.8907 244.0000 103.0000 8.8895 0.9865 166.9872 244.0000 104.0000 8.8895 0.9808 + 131.6650 244.0000 105.0000 8.8895 0.9706 101.4184 244.0000 106.0000 8.8895 0.9868 + 72.2950 244.0000 107.0000 8.8895 0.9944 53.7863 244.0000 108.0000 8.8895 0.9925 + 37.9961 244.0000 109.0000 8.8895 0.9982 189.1300 244.0000 111.0000 8.8895 0.9684 + 291.4916 244.0000 112.0000 8.8895 0.9628 299.5256 244.0000 113.0000 8.8895 0.9648 + 246.4680 244.0000 114.0000 8.8895 0.9507 205.7533 244.0000 115.0000 8.8895 0.9947 + 176.5078 244.0000 116.0000 8.8895 0.9948 146.5298 244.0000 117.0000 8.8895 0.9972 + 265.8033 244.0000 119.0000 8.8895 0.9767 488.3352 244.0000 120.0000 8.8895 0.9831 + 269.9059 244.0000 121.0000 8.8895 1.8627 260.9491 244.0000 122.0000 8.8895 1.8299 + 255.7125 244.0000 123.0000 8.8895 1.9138 252.8515 244.0000 124.0000 8.8895 1.8269 + 234.9229 244.0000 125.0000 8.8895 1.6406 218.2588 244.0000 126.0000 8.8895 1.6483 + 208.3381 244.0000 127.0000 8.8895 1.7149 203.5228 244.0000 128.0000 8.8895 1.7937 + 199.5641 244.0000 129.0000 8.8895 0.9576 189.8458 244.0000 130.0000 8.8895 1.9419 + 300.2053 244.0000 131.0000 8.8895 0.9601 268.4538 244.0000 132.0000 8.8895 0.9434 + 244.0467 244.0000 133.0000 8.8895 0.9889 225.2330 244.0000 134.0000 8.8895 0.9901 + 200.8289 244.0000 135.0000 8.8895 0.9974 318.8041 244.0000 137.0000 8.8895 0.9738 + 594.0387 244.0000 138.0000 8.8895 0.9801 466.5106 244.0000 139.0000 8.8895 1.9153 + 357.0819 244.0000 140.0000 8.8895 1.9355 360.5430 244.0000 141.0000 8.8895 1.9545 + 337.8186 244.0000 142.0000 8.8895 1.9420 374.0345 244.0000 143.0000 8.8895 1.6682 + 297.6676 244.0000 144.0000 8.8895 1.8584 279.0333 244.0000 145.0000 8.8895 1.9003 + 259.8584 244.0000 146.0000 8.8895 1.8630 251.0367 244.0000 147.0000 8.8895 0.9679 + 249.9360 244.0000 148.0000 8.8895 1.9539 382.5457 244.0000 149.0000 8.8895 0.9633 + 351.0591 244.0000 150.0000 8.8895 0.9514 332.2995 244.0000 151.0000 8.8895 0.9749 + 316.8578 244.0000 152.0000 8.8895 0.9811 292.2483 244.0000 153.0000 8.8895 0.9968 + 380.9010 244.0000 155.0000 8.8895 0.9909 767.3168 244.0000 156.0000 8.8895 0.9797 + 589.4768 244.0000 157.0000 8.8895 1.9373 387.5759 244.0000 159.0000 8.8895 2.9425 + 379.6309 244.0000 160.0000 8.8895 2.9455 367.9133 244.0000 161.0000 8.8895 2.9413 + 368.9368 244.0000 162.0000 8.8895 2.9300 353.3996 244.0000 163.0000 8.8895 1.8286 + 370.8350 244.0000 164.0000 8.8895 2.8732 349.0479 244.0000 165.0000 8.8895 2.9086 + 353.8700 244.0000 166.0000 8.8895 2.8965 331.8942 244.0000 167.0000 8.8895 2.9242 + 322.6630 244.0000 168.0000 8.8895 2.9282 320.3788 244.0000 169.0000 8.8895 2.9246 + 335.4266 244.0000 170.0000 8.8895 2.8482 309.9502 244.0000 171.0000 8.8895 2.9219 + 409.8023 244.0000 172.0000 8.8895 1.9254 383.8019 244.0000 173.0000 8.8895 1.9459 + 353.5293 244.0000 174.0000 8.8895 1.9292 355.0036 244.0000 175.0000 8.8895 1.8104 + 317.3701 244.0000 176.0000 8.8895 1.8858 299.7835 244.0000 177.0000 8.8895 1.8648 + 287.0770 244.0000 178.0000 8.8895 1.9188 274.6562 244.0000 179.0000 8.8895 0.9846 + 267.1668 244.0000 180.0000 8.8895 1.9896 412.9246 244.0000 181.0000 8.8895 0.9267 + 381.5077 244.0000 182.0000 8.8895 0.9383 372.7610 244.0000 183.0000 8.8895 0.9820 + 364.6873 244.0000 184.0000 8.8895 0.9815 343.4945 244.0000 185.0000 8.8895 0.9954 + 429.2648 244.0000 187.0000 8.8895 0.9705 769.5781 244.0000 188.0000 8.8895 0.9662 + 458.2519 244.0000 189.0000 8.8895 2.9070 523.0508 244.0000 190.0000 8.8895 2.8844 + 470.4022 244.0000 191.0000 8.8895 2.8738 419.4840 244.0000 192.0000 8.8895 2.8878 + 404.5998 244.0000 193.0000 8.8895 2.9095 474.6763 244.0000 194.0000 8.8895 1.9209 + 112.4391 244.0000 204.0000 8.8895 1.9697 111.5108 244.0000 205.0000 8.8895 1.9441 + 83.6946 244.0000 206.0000 8.8895 1.9985 68.0720 244.0000 207.0000 8.8895 2.0143 + 47.7847 244.0000 208.0000 8.8895 1.9887 196.3102 244.0000 212.0000 8.8895 1.9496 + 236.9854 244.0000 213.0000 8.8895 1.9311 230.0988 244.0000 214.0000 8.8895 1.9435 + 202.7848 244.0000 215.0000 8.8895 2.0102 173.0241 244.0000 216.0000 8.8895 1.9903 + 276.2842 244.0000 220.0000 8.8895 1.9349 267.9088 244.0000 221.0000 8.8895 2.8999 + 271.4387 244.0000 222.0000 8.8895 3.8675 248.6021 244.0000 223.0000 8.8895 2.9110 + 190.7170 244.0000 224.0000 8.8895 10.6191 164.9015 244.0000 225.0000 8.8895 9.8849 + 161.6818 244.0000 226.0000 8.8895 9.1376 186.3559 244.0000 227.0000 8.8895 2.9263 + 174.4070 244.0000 228.0000 8.8895 6.5458 241.8646 244.0000 231.0000 8.8895 1.9315 + 256.3994 244.0000 232.0000 8.8895 1.9447 238.0966 244.0000 233.0000 8.8895 1.9793 + 223.5555 244.0000 234.0000 8.8895 1.9812 331.8687 244.0000 238.0000 8.8895 1.9143 + 323.0124 244.0000 239.0000 8.8895 2.8903 326.9477 244.0000 240.0000 8.8895 3.9106 + 316.2990 244.0000 241.0000 8.8895 2.9225 282.8832 244.0000 242.0000 8.8895 11.0556 + 252.0075 244.0000 243.0000 8.8895 9.5402 239.0071 244.0000 244.0000 8.8895 8.8895 + 26.9803 245.0000 1.0000 2.9696 0.9118 18.4026 245.0000 2.0000 2.9696 0.0000 + 390.2766 245.0000 3.0000 2.9696 0.0000 230.8996 245.0000 4.0000 2.9696 0.0000 + 158.7124 245.0000 5.0000 2.9696 0.0000 109.2841 245.0000 6.0000 2.9696 0.0000 + 77.7074 245.0000 7.0000 2.9696 0.0000 59.6194 245.0000 8.0000 2.9696 0.0000 + 45.7289 245.0000 9.0000 2.9696 0.0000 35.5563 245.0000 10.0000 2.9696 0.0000 + 467.8086 245.0000 11.0000 2.9696 0.0000 366.3245 245.0000 12.0000 2.9696 0.0000 + 340.7455 245.0000 13.0000 2.9696 0.0000 272.0913 245.0000 14.0000 2.9696 0.0000 + 215.0145 245.0000 15.0000 2.9696 0.0000 180.2700 245.0000 16.0000 2.9696 0.0000 + 148.8148 245.0000 17.0000 2.9696 0.0000 122.9822 245.0000 18.0000 2.9696 0.0000 + 767.4205 245.0000 19.0000 2.9696 0.0000 640.1431 245.0000 20.0000 2.9696 0.0000 + 530.5111 245.0000 21.0000 2.9696 0.0000 514.4744 245.0000 22.0000 2.9696 0.0000 + 472.2401 245.0000 23.0000 2.9696 0.0000 373.2232 245.0000 24.0000 2.9696 0.0000 + 408.0411 245.0000 25.0000 2.9696 0.0000 321.4850 245.0000 26.0000 2.9696 0.0000 + 341.3760 245.0000 27.0000 2.9696 0.0000 350.7171 245.0000 28.0000 2.9696 0.0000 + 269.9886 245.0000 29.0000 2.9696 0.0000 278.3620 245.0000 30.0000 2.9696 0.0000 + 328.3978 245.0000 31.0000 2.9696 0.0000 292.3920 245.0000 32.0000 2.9696 0.0000 + 252.0000 245.0000 33.0000 2.9696 0.0000 227.8311 245.0000 34.0000 2.9696 0.0000 + 201.0472 245.0000 35.0000 2.9696 0.0000 176.3002 245.0000 36.0000 2.9696 0.0000 + 862.1222 245.0000 37.0000 2.9696 0.0000 763.1756 245.0000 38.0000 2.9696 0.0000 + 672.6836 245.0000 39.0000 2.9696 0.0000 607.3080 245.0000 40.0000 2.9696 0.0000 + 555.7204 245.0000 41.0000 2.9696 0.0000 432.2782 245.0000 42.0000 2.9696 0.0000 + 480.9081 245.0000 43.0000 2.9696 0.0000 369.4328 245.0000 44.0000 2.9696 0.0000 + 402.9498 245.0000 45.0000 2.9696 0.0000 374.5394 245.0000 46.0000 2.9696 0.0000 + 313.1143 245.0000 47.0000 2.9696 0.0000 331.0815 245.0000 48.0000 2.9696 0.0000 + 412.2889 245.0000 49.0000 2.9696 0.0000 383.7851 245.0000 50.0000 2.9696 0.0000 + 344.8082 245.0000 51.0000 2.9696 0.0000 321.7225 245.0000 52.0000 2.9696 0.0000 + 292.8227 245.0000 53.0000 2.9696 0.0000 265.0611 245.0000 54.0000 2.9696 0.0000 + 1051.3610 245.0000 55.0000 2.9696 0.0000 972.1452 245.0000 56.0000 2.9696 0.0000 + 859.0221 245.0000 57.0000 2.9696 0.0000 407.2558 245.0000 58.0000 2.9696 2.7991 + 863.5344 245.0000 59.0000 2.9696 0.0000 829.8526 245.0000 60.0000 2.9696 0.0000 + 809.2032 245.0000 61.0000 2.9696 0.0000 790.1791 245.0000 62.0000 2.9696 0.0000 + 773.3122 245.0000 63.0000 2.9696 0.0000 613.3959 245.0000 64.0000 2.9696 0.0000 + 684.9715 245.0000 65.0000 2.9696 0.0000 661.4373 245.0000 66.0000 2.9696 0.0000 + 698.3448 245.0000 67.0000 2.9696 0.0000 683.5612 245.0000 68.0000 2.9696 0.0000 + 670.2940 245.0000 69.0000 2.9696 0.0000 662.1785 245.0000 70.0000 2.9696 0.0000 + 561.1890 245.0000 71.0000 2.9696 0.0000 555.1063 245.0000 72.0000 2.9696 0.0000 + 509.1475 245.0000 73.0000 2.9696 0.0000 432.5391 245.0000 74.0000 2.9696 0.0000 + 440.5866 245.0000 75.0000 2.9696 0.0000 401.2280 245.0000 76.0000 2.9696 0.0000 + 368.9849 245.0000 77.0000 2.9696 0.0000 308.4915 245.0000 78.0000 2.9696 0.0000 + 288.9578 245.0000 79.0000 2.9696 0.0000 297.3762 245.0000 80.0000 2.9696 0.0000 + 425.4193 245.0000 81.0000 2.9696 0.0000 417.6830 245.0000 82.0000 2.9696 0.0000 + 386.3661 245.0000 83.0000 2.9696 0.0000 370.1147 245.0000 84.0000 2.9696 0.0000 + 343.5805 245.0000 85.0000 2.9696 0.0000 316.7738 245.0000 86.0000 2.9696 0.0000 + 997.3856 245.0000 87.0000 2.9696 0.0000 964.6140 245.0000 88.0000 2.9696 0.0000 + 857.2133 245.0000 89.0000 2.9696 0.0000 776.3662 245.0000 90.0000 2.9696 0.0000 + 768.9612 245.0000 91.0000 2.9696 0.0000 744.7989 245.0000 92.0000 2.9696 0.0000 + 763.5726 245.0000 93.0000 2.9696 0.0000 739.9621 245.0000 94.0000 2.9696 0.0000 + 42.7714 245.0000 101.0000 2.9696 0.0000 134.6931 245.0000 103.0000 2.9696 0.9865 + 172.6021 245.0000 104.0000 2.9696 0.9808 134.2505 245.0000 105.0000 2.9696 0.9706 + 102.6155 245.0000 106.0000 2.9696 0.9868 72.5863 245.0000 107.0000 2.9696 0.9944 + 53.6934 245.0000 108.0000 2.9696 0.9925 37.6967 245.0000 109.0000 2.9696 0.9982 + 196.6926 245.0000 111.0000 2.9696 0.9684 303.5312 245.0000 112.0000 2.9696 0.9628 + 309.6367 245.0000 113.0000 2.9696 0.9648 252.1101 245.0000 114.0000 2.9696 0.9507 + 208.8723 245.0000 115.0000 2.9696 0.9947 178.2877 245.0000 116.0000 2.9696 0.9948 + 147.2755 245.0000 117.0000 2.9696 0.9972 274.5928 245.0000 119.0000 2.9696 0.9767 + 514.1385 245.0000 120.0000 2.9696 0.9831 276.5669 245.0000 121.0000 2.9696 1.8627 + 267.2985 245.0000 122.0000 2.9696 1.8299 261.9807 245.0000 123.0000 2.9696 1.9138 + 259.3191 245.0000 124.0000 2.9696 1.8269 239.7905 245.0000 125.0000 2.9696 1.6406 + 222.4640 245.0000 126.0000 2.9696 1.6483 212.3500 245.0000 127.0000 2.9696 1.7149 + 207.5282 245.0000 128.0000 2.9696 1.7937 204.2511 245.0000 129.0000 2.9696 0.9576 + 193.0221 245.0000 130.0000 2.9696 1.9419 309.2352 245.0000 131.0000 2.9696 0.9601 + 274.2990 245.0000 132.0000 2.9696 0.9434 247.9167 245.0000 133.0000 2.9696 0.9889 + 227.9132 245.0000 134.0000 2.9696 0.9901 202.3758 245.0000 135.0000 2.9696 0.9974 + 328.6889 245.0000 137.0000 2.9696 0.9738 625.8949 245.0000 138.0000 2.9696 0.9801 + 484.7257 245.0000 139.0000 2.9696 1.9153 366.0539 245.0000 140.0000 2.9696 1.9355 + 369.6744 245.0000 141.0000 2.9696 1.9545 345.7600 245.0000 142.0000 2.9696 1.9420 + 385.2595 245.0000 143.0000 2.9696 1.6682 303.2934 245.0000 144.0000 2.9696 1.8584 + 284.1821 245.0000 145.0000 2.9696 1.9003 264.4321 245.0000 146.0000 2.9696 1.8630 + 255.6479 245.0000 147.0000 2.9696 0.9679 253.6663 245.0000 148.0000 2.9696 1.9539 + 394.0370 245.0000 149.0000 2.9696 0.9633 359.1380 245.0000 150.0000 2.9696 0.9514 + 338.3472 245.0000 151.0000 2.9696 0.9749 321.5899 245.0000 152.0000 2.9696 0.9811 + 295.5179 245.0000 153.0000 2.9696 0.9968 390.6048 245.0000 155.0000 2.9696 0.9909 + 810.5895 245.0000 156.0000 2.9696 0.9797 613.1365 245.0000 157.0000 2.9696 1.9373 + 395.2161 245.0000 159.0000 2.9696 2.9425 387.0905 245.0000 160.0000 2.9696 2.9455 + 375.0228 245.0000 161.0000 2.9696 2.9413 376.4231 245.0000 162.0000 2.9696 2.9300 + 361.7114 245.0000 163.0000 2.9696 1.8286 378.4806 245.0000 164.0000 2.9696 2.8732 + 355.9594 245.0000 165.0000 2.9696 2.9086 361.4953 245.0000 166.0000 2.9696 2.8965 + 338.1899 245.0000 167.0000 2.9696 2.9242 328.6834 245.0000 168.0000 2.9696 2.9282 + 326.4378 245.0000 169.0000 2.9696 2.9246 342.2465 245.0000 170.0000 2.9696 2.8482 + 315.6639 245.0000 171.0000 2.9696 2.9219 422.0471 245.0000 172.0000 2.9696 1.9254 + 393.7048 245.0000 173.0000 2.9696 1.9459 361.1971 245.0000 174.0000 2.9696 1.9292 + 363.9955 245.0000 175.0000 2.9696 1.8104 322.4625 245.0000 176.0000 2.9696 1.8858 + 304.1992 245.0000 177.0000 2.9696 1.8648 291.0874 245.0000 178.0000 2.9696 1.9188 + 278.5389 245.0000 179.0000 2.9696 0.9846 270.1130 245.0000 180.0000 2.9696 1.9896 + 424.7038 245.0000 181.0000 2.9696 0.9267 389.8200 245.0000 182.0000 2.9696 0.9383 + 379.5520 245.0000 183.0000 2.9696 0.9820 370.4046 245.0000 184.0000 2.9696 0.9815 + 347.7047 245.0000 185.0000 2.9696 0.9954 440.0217 245.0000 187.0000 2.9696 0.9705 + 809.2430 245.0000 188.0000 2.9696 0.9662 467.3661 245.0000 189.0000 2.9696 2.9070 + 536.4947 245.0000 190.0000 2.9696 2.8844 481.5173 245.0000 191.0000 2.9696 2.8738 + 427.5054 245.0000 192.0000 2.9696 2.8878 411.9411 245.0000 193.0000 2.9696 2.9095 + 489.1400 245.0000 194.0000 2.9696 1.9209 114.5587 245.0000 204.0000 2.9696 1.9697 + 113.3508 245.0000 205.0000 2.9696 1.9441 84.3298 245.0000 206.0000 2.9696 1.9985 + 68.3029 245.0000 207.0000 2.9696 2.0143 47.6422 245.0000 208.0000 2.9696 1.9887 + 201.3988 245.0000 212.0000 2.9696 1.9496 243.3210 245.0000 213.0000 2.9696 1.9311 + 235.0108 245.0000 214.0000 2.9696 1.9435 205.9678 245.0000 215.0000 2.9696 2.0102 + 174.7517 245.0000 216.0000 2.9696 1.9903 283.4399 245.0000 220.0000 2.9696 1.9349 + 273.7179 245.0000 221.0000 2.9696 2.8999 277.2406 245.0000 222.0000 2.9696 3.8675 + 253.9853 245.0000 223.0000 2.9696 2.9110 193.5970 245.0000 224.0000 2.9696 10.6191 + 166.7533 245.0000 225.0000 2.9696 9.8849 163.5813 245.0000 226.0000 2.9696 9.1376 + 189.7380 245.0000 227.0000 2.9696 2.9263 177.2508 245.0000 228.0000 2.9696 6.5458 + 247.3262 245.0000 231.0000 2.9696 1.9315 261.6413 245.0000 232.0000 2.9696 1.9447 + 241.6956 245.0000 233.0000 2.9696 1.9793 226.1893 245.0000 234.0000 2.9696 1.9812 + 340.2392 245.0000 238.0000 2.9696 1.9143 329.4057 245.0000 239.0000 2.9696 2.8903 + 332.9103 245.0000 240.0000 2.9696 3.9106 322.2101 245.0000 241.0000 2.9696 2.9225 + 286.9340 245.0000 242.0000 2.9696 11.0556 254.7749 245.0000 243.0000 2.9696 9.5402 + 241.3497 245.0000 244.0000 2.9696 8.8895 244.6586 245.0000 245.0000 2.9696 2.9696 + 28.0631 246.0000 1.0000 5.7095 0.9118 19.0208 246.0000 2.0000 5.7095 0.0000 + 412.2171 246.0000 3.0000 5.7095 0.0000 242.8825 246.0000 4.0000 5.7095 0.0000 + 166.1533 246.0000 5.0000 5.7095 0.0000 113.9126 246.0000 6.0000 5.7095 0.0000 + 80.7118 246.0000 7.0000 5.7095 0.0000 61.7619 246.0000 8.0000 5.7095 0.0000 + 47.2645 246.0000 9.0000 5.7095 0.0000 36.6837 246.0000 10.0000 5.7095 0.0000 + 493.9241 246.0000 11.0000 5.7095 0.0000 385.7118 246.0000 12.0000 5.7095 0.0000 + 358.0287 246.0000 13.0000 5.7095 0.0000 285.0138 246.0000 14.0000 5.7095 0.0000 + 224.5211 246.0000 15.0000 5.7095 0.0000 187.8007 246.0000 16.0000 5.7095 0.0000 + 154.6693 246.0000 17.0000 5.7095 0.0000 127.5483 246.0000 18.0000 5.7095 0.0000 + 809.4255 246.0000 19.0000 5.7095 0.0000 674.5740 246.0000 20.0000 5.7095 0.0000 + 558.7593 246.0000 21.0000 5.7095 0.0000 541.3741 246.0000 22.0000 5.7095 0.0000 + 496.6905 246.0000 23.0000 5.7095 0.0000 392.2297 246.0000 24.0000 5.7095 0.0000 + 428.8509 246.0000 25.0000 5.7095 0.0000 337.5770 246.0000 26.0000 5.7095 0.0000 + 358.3743 246.0000 27.0000 5.7095 0.0000 368.4032 246.0000 28.0000 5.7095 0.0000 + 283.3292 246.0000 29.0000 5.7095 0.0000 291.8725 246.0000 30.0000 5.7095 0.0000 + 344.5686 246.0000 31.0000 5.7095 0.0000 306.1192 246.0000 32.0000 5.7095 0.0000 + 263.1821 246.0000 33.0000 5.7095 0.0000 237.5192 246.0000 34.0000 5.7095 0.0000 + 209.1971 246.0000 35.0000 5.7095 0.0000 183.1095 246.0000 36.0000 5.7095 0.0000 + 908.8152 246.0000 37.0000 5.7095 0.0000 804.0036 246.0000 38.0000 5.7095 0.0000 + 707.8343 246.0000 39.0000 5.7095 0.0000 638.4463 246.0000 40.0000 5.7095 0.0000 + 583.7653 246.0000 41.0000 5.7095 0.0000 453.3284 246.0000 42.0000 5.7095 0.0000 + 504.6607 246.0000 43.0000 5.7095 0.0000 386.9728 246.0000 44.0000 5.7095 0.0000 + 422.3203 246.0000 45.0000 5.7095 0.0000 392.3548 246.0000 46.0000 5.7095 0.0000 + 327.8015 246.0000 47.0000 5.7095 0.0000 346.6055 246.0000 48.0000 5.7095 0.0000 + 432.3183 246.0000 49.0000 5.7095 0.0000 401.8433 246.0000 50.0000 5.7095 0.0000 + 360.3420 246.0000 51.0000 5.7095 0.0000 335.7605 246.0000 52.0000 5.7095 0.0000 + 305.1216 246.0000 53.0000 5.7095 0.0000 275.7577 246.0000 54.0000 5.7095 0.0000 + 1107.7988 246.0000 55.0000 5.7095 0.0000 1024.0901 246.0000 56.0000 5.7095 0.0000 + 903.9928 246.0000 57.0000 5.7095 0.0000 425.6143 246.0000 58.0000 5.7095 2.7991 + 909.2919 246.0000 59.0000 5.7095 0.0000 873.7547 246.0000 60.0000 5.7095 0.0000 + 851.9952 246.0000 61.0000 5.7095 0.0000 831.9541 246.0000 62.0000 5.7095 0.0000 + 814.1845 246.0000 63.0000 5.7095 0.0000 644.6362 246.0000 64.0000 5.7095 0.0000 + 720.7315 246.0000 65.0000 5.7095 0.0000 695.7803 246.0000 66.0000 5.7095 0.0000 + 735.1282 246.0000 67.0000 5.7095 0.0000 719.5693 246.0000 68.0000 5.7095 0.0000 + 705.5909 246.0000 69.0000 5.7095 0.0000 697.1131 246.0000 70.0000 5.7095 0.0000 + 590.0466 246.0000 71.0000 5.7095 0.0000 582.9509 246.0000 72.0000 5.7095 0.0000 + 534.0983 246.0000 73.0000 5.7095 0.0000 453.0906 246.0000 74.0000 5.7095 0.0000 + 461.4103 246.0000 75.0000 5.7095 0.0000 419.7500 246.0000 76.0000 5.7095 0.0000 + 385.6667 246.0000 77.0000 5.7095 0.0000 321.9839 246.0000 78.0000 5.7095 0.0000 + 301.4373 246.0000 79.0000 5.7095 0.0000 310.1954 246.0000 80.0000 5.7095 0.0000 + 445.5561 246.0000 81.0000 5.7095 0.0000 437.0899 246.0000 82.0000 5.7095 0.0000 + 403.6983 246.0000 83.0000 5.7095 0.0000 386.3114 246.0000 84.0000 5.7095 0.0000 + 358.1189 246.0000 85.0000 5.7095 0.0000 329.7218 246.0000 86.0000 5.7095 0.0000 + 1050.1750 246.0000 87.0000 5.7095 0.0000 1015.4760 246.0000 88.0000 5.7095 0.0000 + 901.6018 246.0000 89.0000 5.7095 0.0000 815.2635 246.0000 90.0000 5.7095 0.0000 + 807.8493 246.0000 91.0000 5.7095 0.0000 782.4275 246.0000 92.0000 5.7095 0.0000 + 802.9025 246.0000 93.0000 5.7095 0.0000 777.9791 246.0000 94.0000 5.7095 0.0000 + 44.6498 246.0000 101.0000 5.7095 0.0000 141.5639 246.0000 103.0000 5.7095 0.9865 + 181.1811 246.0000 104.0000 5.7095 0.9808 140.3599 246.0000 105.0000 5.7095 0.9706 + 106.9320 246.0000 106.0000 5.7095 0.9868 75.3636 246.0000 107.0000 5.7095 0.9944 + 55.5744 246.0000 108.0000 5.7095 0.9925 38.8697 246.0000 109.0000 5.7095 0.9982 + 206.7940 246.0000 111.0000 5.7095 0.9684 319.2176 246.0000 112.0000 5.7095 0.9628 + 325.1370 246.0000 113.0000 5.7095 0.9648 263.9234 246.0000 114.0000 5.7095 0.9507 + 218.0675 246.0000 115.0000 5.7095 0.9947 185.7368 246.0000 116.0000 5.7095 0.9948 + 153.0708 246.0000 117.0000 5.7095 0.9972 287.8260 246.0000 119.0000 5.7095 0.9767 + 541.0773 246.0000 120.0000 5.7095 0.9831 289.4965 246.0000 121.0000 5.7095 1.8627 + 279.7105 246.0000 122.0000 5.7095 1.8299 274.1490 246.0000 123.0000 5.7095 1.9138 + 271.4250 246.0000 124.0000 5.7095 1.8269 250.7187 246.0000 125.0000 5.7095 1.6406 + 232.4750 246.0000 126.0000 5.7095 1.6483 221.8767 246.0000 127.0000 5.7095 1.7149 + 216.8602 246.0000 128.0000 5.7095 1.7937 213.6379 246.0000 129.0000 5.7095 0.9576 + 201.5508 246.0000 130.0000 5.7095 1.9419 324.2726 246.0000 131.0000 5.7095 0.9601 + 286.9870 246.0000 132.0000 5.7095 0.9434 258.8699 246.0000 133.0000 5.7095 0.9889 + 237.6065 246.0000 134.0000 5.7095 0.9901 210.5970 246.0000 135.0000 5.7095 0.9974 + 344.2670 246.0000 137.0000 5.7095 0.9738 658.5196 246.0000 138.0000 5.7095 0.9801 + 508.6839 246.0000 139.0000 5.7095 1.9153 383.0425 246.0000 140.0000 5.7095 1.9355 + 386.8574 246.0000 141.0000 5.7095 1.9545 361.5781 246.0000 142.0000 5.7095 1.9420 + 403.4188 246.0000 143.0000 5.7095 1.6682 316.7499 246.0000 144.0000 5.7095 1.8584 + 296.6934 246.0000 145.0000 5.7095 1.9003 275.9575 246.0000 146.0000 5.7095 1.8630 + 266.8459 246.0000 147.0000 5.7095 0.9679 264.5941 246.0000 148.0000 5.7095 1.9539 + 412.9408 246.0000 149.0000 5.7095 0.9633 375.7345 246.0000 150.0000 5.7095 0.9514 + 353.4857 246.0000 151.0000 5.7095 0.9749 335.5949 246.0000 152.0000 5.7095 0.9811 + 307.9410 246.0000 153.0000 5.7095 0.9968 408.6188 246.0000 155.0000 5.7095 0.9909 + 852.7680 246.0000 156.0000 5.7095 0.9797 643.4443 246.0000 157.0000 5.7095 1.9373 + 412.9759 246.0000 159.0000 5.7095 2.9425 404.4764 246.0000 160.0000 5.7095 2.9455 + 391.8190 246.0000 161.0000 5.7095 2.9413 393.3803 246.0000 162.0000 5.7095 2.9300 + 378.3019 246.0000 163.0000 5.7095 1.8286 395.6090 246.0000 164.0000 5.7095 2.8732 + 371.9667 246.0000 165.0000 5.7095 2.9086 377.9042 246.0000 166.0000 5.7095 2.8965 + 353.3208 246.0000 167.0000 5.7095 2.9242 343.3582 246.0000 168.0000 5.7095 2.9282 + 341.0443 246.0000 169.0000 5.7095 2.9246 357.7685 246.0000 170.0000 5.7095 2.8482 + 329.7526 246.0000 171.0000 5.7095 2.9219 442.1134 246.0000 172.0000 5.7095 1.9254 + 411.9669 246.0000 173.0000 5.7095 1.9459 377.5050 246.0000 174.0000 5.7095 1.9292 + 380.7868 246.0000 175.0000 5.7095 1.8104 336.4471 246.0000 176.0000 5.7095 1.8858 + 317.2071 246.0000 177.0000 5.7095 1.8648 303.4215 246.0000 178.0000 5.7095 1.9188 + 290.3004 246.0000 179.0000 5.7095 0.9846 281.2884 246.0000 180.0000 5.7095 1.9896 + 444.6818 246.0000 181.0000 5.7095 0.9267 407.5342 246.0000 182.0000 5.7095 0.9383 + 396.4304 246.0000 183.0000 5.7095 0.9820 386.5596 246.0000 184.0000 5.7095 0.9815 + 362.4211 246.0000 185.0000 5.7095 0.9954 460.2859 246.0000 187.0000 5.7095 0.9705 + 850.8433 246.0000 188.0000 5.7095 0.9662 488.4310 246.0000 189.0000 5.7095 2.9070 + 561.2936 246.0000 190.0000 5.7095 2.8844 503.3017 246.0000 191.0000 5.7095 2.8738 + 446.4908 246.0000 192.0000 5.7095 2.8878 430.1169 246.0000 193.0000 5.7095 2.9095 + 512.1336 246.0000 194.0000 5.7095 1.9209 119.7960 246.0000 204.0000 5.7095 1.9697 + 118.3487 246.0000 205.0000 5.7095 1.9441 87.7320 246.0000 206.0000 5.7095 1.9985 + 70.8909 246.0000 207.0000 5.7095 2.0143 49.2629 246.0000 208.0000 5.7095 1.9887 + 211.0831 246.0000 212.0000 5.7095 1.9496 254.9948 246.0000 213.0000 5.7095 1.9311 + 245.8989 246.0000 214.0000 5.7095 1.9435 215.0564 246.0000 215.0000 5.7095 2.0102 + 182.0388 246.0000 216.0000 5.7095 1.9903 296.8146 246.0000 220.0000 5.7095 1.9349 + 286.3025 246.0000 221.0000 5.7095 2.8999 289.9530 246.0000 222.0000 5.7095 3.8675 + 265.5767 246.0000 223.0000 5.7095 2.9110 201.9007 246.0000 224.0000 5.7095 10.6191 + 173.6495 246.0000 225.0000 5.7095 9.8849 170.3774 246.0000 226.0000 5.7095 9.1376 + 198.1008 246.0000 227.0000 5.7095 2.9263 184.9554 246.0000 228.0000 5.7095 6.5458 + 258.7879 246.0000 231.0000 5.7095 1.9315 273.6234 246.0000 232.0000 5.7095 1.9447 + 252.3030 246.0000 233.0000 5.7095 1.9793 235.7943 246.0000 234.0000 5.7095 1.9812 + 356.1148 246.0000 238.0000 5.7095 1.9143 344.3053 246.0000 239.0000 5.7095 2.8903 + 347.7992 246.0000 240.0000 5.7095 3.9106 336.5535 246.0000 241.0000 5.7095 2.9225 + 299.2251 246.0000 242.0000 5.7095 11.0556 265.3352 246.0000 243.0000 5.7095 9.5402 + 251.2231 246.0000 244.0000 5.7095 8.8895 254.9713 246.0000 245.0000 5.7095 2.9696 + 265.8746 246.0000 246.0000 5.7095 5.7095 34.8931 249.0000 1.0000 1.9378 0.9118 + 22.9076 249.0000 2.0000 1.9378 0.0000 565.2654 249.0000 3.0000 1.9378 0.0000 + 320.2807 249.0000 4.0000 1.9378 0.0000 213.4484 249.0000 5.0000 1.9378 0.0000 + 143.1602 249.0000 6.0000 1.9378 0.0000 99.6435 249.0000 7.0000 1.9378 0.0000 + 75.2351 249.0000 8.0000 1.9378 0.0000 56.8922 249.0000 9.0000 1.9378 0.0000 + 43.7215 249.0000 10.0000 1.9378 0.0000 675.2268 249.0000 11.0000 1.9378 0.0000 + 512.0902 249.0000 12.0000 1.9378 0.0000 469.4540 249.0000 13.0000 1.9378 0.0000 + 367.2028 249.0000 14.0000 1.9378 0.0000 284.6146 249.0000 15.0000 1.9378 0.0000 + 235.3301 249.0000 16.0000 1.9378 0.0000 191.5816 249.0000 17.0000 1.9378 0.0000 + 156.3179 249.0000 18.0000 1.9378 0.0000 1110.1907 249.0000 19.0000 1.9378 0.0000 + 905.1186 249.0000 20.0000 1.9378 0.0000 745.8282 249.0000 21.0000 1.9378 0.0000 + 718.5537 249.0000 22.0000 1.9378 0.0000 657.1002 249.0000 23.0000 1.9378 0.0000 + 517.5497 249.0000 24.0000 1.9378 0.0000 564.6362 249.0000 25.0000 1.9378 0.0000 + 442.9855 249.0000 26.0000 1.9378 0.0000 468.1580 249.0000 27.0000 1.9378 0.0000 + 482.9577 249.0000 28.0000 1.9378 0.0000 370.2813 249.0000 29.0000 1.9378 0.0000 + 378.4634 249.0000 30.0000 1.9378 0.0000 448.7448 249.0000 31.0000 1.9378 0.0000 + 393.4823 249.0000 32.0000 1.9378 0.0000 333.9114 249.0000 33.0000 1.9378 0.0000 + 298.6933 249.0000 34.0000 1.9378 0.0000 260.5925 249.0000 35.0000 1.9378 0.0000 + 226.0215 249.0000 36.0000 1.9378 0.0000 1243.0036 249.0000 37.0000 1.9378 0.0000 + 1078.8447 249.0000 38.0000 1.9378 0.0000 940.6363 249.0000 39.0000 1.9378 0.0000 + 842.9594 249.0000 40.0000 1.9378 0.0000 767.2243 249.0000 41.0000 1.9378 0.0000 + 590.4050 249.0000 42.0000 1.9378 0.0000 659.5747 249.0000 43.0000 1.9378 0.0000 + 500.7277 249.0000 44.0000 1.9378 0.0000 547.3300 249.0000 45.0000 1.9378 0.0000 + 506.9866 249.0000 46.0000 1.9378 0.0000 423.1021 249.0000 47.0000 1.9378 0.0000 + 446.1184 249.0000 48.0000 1.9378 0.0000 561.9006 249.0000 49.0000 1.9378 0.0000 + 517.1479 249.0000 50.0000 1.9378 0.0000 458.7676 249.0000 51.0000 1.9378 0.0000 + 424.4718 249.0000 52.0000 1.9378 0.0000 382.6809 249.0000 53.0000 1.9378 0.0000 + 343.1281 249.0000 54.0000 1.9378 0.0000 1514.1166 249.0000 55.0000 1.9378 0.0000 + 1377.5185 249.0000 56.0000 1.9378 0.0000 1204.5072 249.0000 57.0000 1.9378 0.0000 + 542.3835 249.0000 58.0000 1.9378 2.7991 1218.8063 249.0000 59.0000 1.9378 0.0000 + 1169.3656 249.0000 60.0000 1.9378 0.0000 1139.7842 249.0000 61.0000 1.9378 0.0000 + 1112.6065 249.0000 62.0000 1.9378 0.0000 1088.4965 249.0000 63.0000 1.9378 0.0000 + 851.5816 249.0000 64.0000 1.9378 0.0000 966.3182 249.0000 65.0000 1.9378 0.0000 + 931.2135 249.0000 66.0000 1.9378 0.0000 980.6060 249.0000 67.0000 1.9378 0.0000 + 959.6719 249.0000 68.0000 1.9378 0.0000 940.7333 249.0000 69.0000 1.9378 0.0000 + 929.9326 249.0000 70.0000 1.9378 0.0000 780.8531 249.0000 71.0000 1.9378 0.0000 + 764.1181 249.0000 72.0000 1.9378 0.0000 695.3446 249.0000 73.0000 1.9378 0.0000 + 585.8808 249.0000 74.0000 1.9378 0.0000 595.3890 249.0000 75.0000 1.9378 0.0000 + 538.3114 249.0000 76.0000 1.9378 0.0000 492.0619 249.0000 77.0000 1.9378 0.0000 + 407.9840 249.0000 78.0000 1.9378 0.0000 380.9134 249.0000 79.0000 1.9378 0.0000 + 391.4931 249.0000 80.0000 1.9378 0.0000 576.2784 249.0000 81.0000 1.9378 0.0000 + 561.3762 249.0000 82.0000 1.9378 0.0000 513.7324 249.0000 83.0000 1.9378 0.0000 + 488.8057 249.0000 84.0000 1.9378 0.0000 449.8564 249.0000 85.0000 1.9378 0.0000 + 411.2899 249.0000 86.0000 1.9378 0.0000 1423.9693 249.0000 87.0000 1.9378 0.0000 + 1358.7684 249.0000 88.0000 1.9378 0.0000 1195.9642 249.0000 89.0000 1.9378 0.0000 + 1069.5257 249.0000 90.0000 1.9378 0.0000 1064.5406 249.0000 91.0000 1.9378 0.0000 + 1030.6377 249.0000 92.0000 1.9378 0.0000 1064.4434 249.0000 93.0000 1.9378 0.0000 + 1030.2277 249.0000 94.0000 1.9378 0.0000 56.5189 249.0000 101.0000 1.9378 0.0000 + 185.9170 249.0000 103.0000 1.9378 0.9865 236.6771 249.0000 104.0000 1.9378 0.9808 + 179.1755 249.0000 105.0000 1.9378 0.9706 134.3014 249.0000 106.0000 1.9378 0.9868 + 92.9086 249.0000 107.0000 1.9378 0.9944 67.4193 249.0000 108.0000 1.9378 0.9925 + 46.2082 249.0000 109.0000 1.9378 0.9982 272.3735 249.0000 111.0000 1.9378 0.9684 + 421.5573 249.0000 112.0000 1.9378 0.9628 424.8967 249.0000 113.0000 1.9378 0.9648 + 339.0315 249.0000 114.0000 1.9378 0.9507 276.2154 249.0000 115.0000 1.9378 0.9947 + 232.7649 249.0000 116.0000 1.9378 0.9948 189.6139 249.0000 117.0000 1.9378 0.9972 + 374.0585 249.0000 119.0000 1.9378 0.9767 723.9814 249.0000 120.0000 1.9378 0.9831 + 372.0117 249.0000 121.0000 1.9378 1.8627 359.1057 249.0000 122.0000 1.9378 1.8299 + 351.9807 249.0000 123.0000 1.9378 1.9138 348.9930 249.0000 124.0000 1.9378 1.8269 + 320.0431 249.0000 125.0000 1.9378 1.6406 295.9209 249.0000 126.0000 1.9378 1.6483 + 282.3130 249.0000 127.0000 1.9378 1.7149 276.0871 249.0000 128.0000 1.9378 1.7937 + 273.5167 249.0000 129.0000 1.9378 0.9576 255.4101 249.0000 130.0000 1.9378 1.9419 + 420.8557 249.0000 131.0000 1.9378 0.9601 367.6282 249.0000 132.0000 1.9378 0.9434 + 328.1518 249.0000 133.0000 1.9378 0.9889 298.8244 249.0000 134.0000 1.9378 0.9901 + 262.4494 249.0000 135.0000 1.9378 0.9974 445.7605 249.0000 137.0000 1.9378 0.9738 + 881.5739 249.0000 138.0000 1.9378 0.9801 667.6471 249.0000 139.0000 1.9378 1.9153 + 492.2291 249.0000 140.0000 1.9378 1.9355 497.1382 249.0000 141.0000 1.9378 1.9545 + 463.0670 249.0000 142.0000 1.9378 1.9420 521.6978 249.0000 143.0000 1.9378 1.6682 + 402.3825 249.0000 144.0000 1.9378 1.8584 376.3625 249.0000 145.0000 1.9378 1.9003 + 349.3149 249.0000 146.0000 1.9378 1.8630 338.1165 249.0000 147.0000 1.9378 0.9679 + 333.6408 249.0000 148.0000 1.9378 1.9539 534.7248 249.0000 149.0000 1.9378 0.9633 + 481.4185 249.0000 150.0000 1.9378 0.9514 449.3448 249.0000 151.0000 1.9378 0.9749 + 424.0862 249.0000 152.0000 1.9378 0.9811 386.2858 249.0000 153.0000 1.9378 0.9968 + 525.0776 249.0000 155.0000 1.9378 0.9909 1145.3931 249.0000 156.0000 1.9378 0.9797 + 845.7173 249.0000 157.0000 1.9378 1.9373 525.8956 249.0000 159.0000 1.9378 2.9425 + 514.9974 249.0000 160.0000 1.9378 2.9455 498.5669 249.0000 161.0000 1.9378 2.9413 + 501.3687 249.0000 162.0000 1.9378 2.9300 484.4102 249.0000 163.0000 1.9378 1.8286 + 504.6237 249.0000 164.0000 1.9378 2.8732 473.7077 249.0000 165.0000 1.9378 2.9086 + 482.6219 249.0000 166.0000 1.9378 2.8965 449.3638 249.0000 167.0000 1.9378 2.9242 + 436.4645 249.0000 168.0000 1.9378 2.9282 433.7382 249.0000 169.0000 1.9378 2.9246 + 456.3409 249.0000 170.0000 1.9378 2.8482 419.0870 249.0000 171.0000 1.9378 2.9219 + 572.3997 249.0000 172.0000 1.9378 1.9254 529.7480 249.0000 173.0000 1.9378 1.9459 + 481.9745 249.0000 174.0000 1.9378 1.9292 488.9642 249.0000 175.0000 1.9378 1.8104 + 425.2390 249.0000 176.0000 1.9378 1.8858 399.7040 249.0000 177.0000 1.9378 1.8648 + 381.5949 249.0000 178.0000 1.9378 1.9188 364.9131 249.0000 179.0000 1.9378 0.9846 + 351.7891 249.0000 180.0000 1.9378 1.9896 573.7031 249.0000 181.0000 1.9378 0.9267 + 520.4284 249.0000 182.0000 1.9378 0.9383 503.4180 249.0000 183.0000 1.9378 0.9820 + 488.7350 249.0000 184.0000 1.9378 0.9815 455.2761 249.0000 185.0000 1.9378 0.9954 + 591.1792 249.0000 187.0000 1.9378 0.9705 1135.5611 249.0000 188.0000 1.9378 0.9662 + 622.3426 249.0000 189.0000 1.9378 2.9070 721.4876 249.0000 190.0000 1.9378 2.8844 + 644.3323 249.0000 191.0000 1.9378 2.8738 567.3904 249.0000 192.0000 1.9378 2.8878 + 545.6093 249.0000 193.0000 1.9378 2.9095 662.2469 249.0000 194.0000 1.9378 1.9209 + 152.9239 249.0000 204.0000 1.9378 1.9697 150.1267 249.0000 205.0000 1.9378 1.9441 + 109.2000 249.0000 206.0000 1.9378 1.9985 87.2076 249.0000 207.0000 1.9378 2.0143 + 59.4511 249.0000 208.0000 1.9378 1.9887 272.5677 249.0000 212.0000 1.9378 1.9496 + 329.5920 249.0000 213.0000 1.9378 1.9311 315.0177 249.0000 214.0000 1.9378 1.9435 + 272.5864 249.0000 215.0000 1.9378 2.0102 228.0473 249.0000 216.0000 1.9378 1.9903 + 382.2720 249.0000 220.0000 1.9378 1.9349 366.3017 249.0000 221.0000 1.9378 2.8999 + 370.7390 249.0000 222.0000 1.9378 3.8675 339.4399 249.0000 223.0000 1.9378 2.9110 + 254.5781 249.0000 224.0000 1.9378 10.6191 217.2467 249.0000 225.0000 1.9378 9.8849 + 213.3373 249.0000 226.0000 1.9378 9.1376 251.2206 249.0000 227.0000 1.9378 2.9263 + 233.7477 249.0000 228.0000 1.9378 6.5458 331.7913 249.0000 231.0000 1.9378 1.9315 + 349.6800 249.0000 232.0000 1.9378 1.9447 319.3719 249.0000 233.0000 1.9378 1.9793 + 296.4552 249.0000 234.0000 1.9378 1.9812 457.8102 249.0000 238.0000 1.9378 1.9143 + 438.9483 249.0000 239.0000 1.9378 2.8903 442.2260 249.0000 240.0000 1.9378 3.9106 + 427.8632 249.0000 241.0000 1.9378 2.9225 377.1375 249.0000 242.0000 1.9378 11.0556 + 332.1088 249.0000 243.0000 1.9378 9.5402 313.5888 249.0000 244.0000 1.9378 8.8895 + 320.4011 249.0000 245.0000 1.9378 2.9696 334.9874 249.0000 246.0000 1.9378 5.7095 + 427.9140 249.0000 249.0000 1.9378 1.9378 37.9122 250.0000 1.0000 1.9505 0.9118 + 24.7833 250.0000 2.0000 1.9505 0.0000 611.5612 250.0000 3.0000 1.9505 0.0000 + 348.3949 250.0000 4.0000 1.9505 0.0000 232.2513 250.0000 5.0000 1.9505 0.0000 + 155.6083 250.0000 6.0000 1.9505 0.0000 108.1299 250.0000 7.0000 1.9505 0.0000 + 81.5058 250.0000 8.0000 1.9505 0.0000 61.5214 250.0000 9.0000 1.9505 0.0000 + 47.1942 250.0000 10.0000 1.9505 0.0000 730.6587 250.0000 11.0000 1.9505 0.0000 + 556.6241 250.0000 12.0000 1.9505 0.0000 510.6087 250.0000 13.0000 1.9505 0.0000 + 399.5774 250.0000 14.0000 1.9505 0.0000 309.5992 250.0000 15.0000 1.9505 0.0000 + 255.8013 250.0000 16.0000 1.9505 0.0000 208.0402 250.0000 17.0000 1.9505 0.0000 + 169.5457 250.0000 18.0000 1.9505 0.0000 1198.2993 250.0000 19.0000 1.9505 0.0000 + 981.8206 250.0000 20.0000 1.9505 0.0000 809.6247 250.0000 21.0000 1.9505 0.0000 + 780.2017 250.0000 22.0000 1.9505 0.0000 713.6060 250.0000 23.0000 1.9505 0.0000 + 561.6694 250.0000 24.0000 1.9505 0.0000 613.3230 250.0000 25.0000 1.9505 0.0000 + 480.8588 250.0000 26.0000 1.9505 0.0000 508.7598 250.0000 27.0000 1.9505 0.0000 + 524.7928 250.0000 28.0000 1.9505 0.0000 401.9752 250.0000 29.0000 1.9505 0.0000 + 411.3778 250.0000 30.0000 1.9505 0.0000 487.8786 250.0000 31.0000 1.9505 0.0000 + 428.0103 250.0000 32.0000 1.9505 0.0000 363.1576 250.0000 33.0000 1.9505 0.0000 + 324.7135 250.0000 34.0000 1.9505 0.0000 283.1051 250.0000 35.0000 1.9505 0.0000 + 245.3409 250.0000 36.0000 1.9505 0.0000 1341.6152 250.0000 37.0000 1.9505 0.0000 + 1169.7495 250.0000 38.0000 1.9505 0.0000 1020.9627 250.0000 39.0000 1.9505 0.0000 + 915.3455 250.0000 40.0000 1.9505 0.0000 833.2050 250.0000 41.0000 1.9505 0.0000 + 641.0643 250.0000 42.0000 1.9505 0.0000 716.2239 250.0000 43.0000 1.9505 0.0000 + 543.6104 250.0000 44.0000 1.9505 0.0000 594.5277 250.0000 45.0000 1.9505 0.0000 + 550.7159 250.0000 46.0000 1.9505 0.0000 459.1219 250.0000 47.0000 1.9505 0.0000 + 484.5759 250.0000 48.0000 1.9505 0.0000 610.3382 250.0000 49.0000 1.9505 0.0000 + 562.1276 250.0000 50.0000 1.9505 0.0000 498.7395 250.0000 51.0000 1.9505 0.0000 + 461.3868 250.0000 52.0000 1.9505 0.0000 415.8173 250.0000 53.0000 1.9505 0.0000 + 372.6480 250.0000 54.0000 1.9505 0.0000 1633.6348 250.0000 55.0000 1.9505 0.0000 + 1492.4625 250.0000 56.0000 1.9505 0.0000 1306.5898 250.0000 57.0000 1.9505 0.0000 + 589.4528 250.0000 58.0000 1.9505 2.7991 1320.7683 250.0000 59.0000 1.9505 0.0000 + 1267.6087 250.0000 60.0000 1.9505 0.0000 1235.6389 250.0000 61.0000 1.9505 0.0000 + 1206.2616 250.0000 62.0000 1.9505 0.0000 1180.2039 250.0000 63.0000 1.9505 0.0000 + 923.8826 250.0000 64.0000 1.9505 0.0000 1045.8286 250.0000 65.0000 1.9505 0.0000 + 1007.9093 250.0000 66.0000 1.9505 0.0000 1063.6161 250.0000 67.0000 1.9505 0.0000 + 1040.9736 250.0000 68.0000 1.9505 0.0000 1020.4995 250.0000 69.0000 1.9505 0.0000 + 1008.7709 250.0000 70.0000 1.9505 0.0000 847.3202 250.0000 71.0000 1.9505 0.0000 + 830.1410 250.0000 72.0000 1.9505 0.0000 755.5917 250.0000 73.0000 1.9505 0.0000 + 636.3750 250.0000 74.0000 1.9505 0.0000 646.8560 250.0000 75.0000 1.9505 0.0000 + 584.8506 250.0000 76.0000 1.9505 0.0000 534.5550 250.0000 77.0000 1.9505 0.0000 + 442.9323 250.0000 78.0000 1.9505 0.0000 413.4353 250.0000 79.0000 1.9505 0.0000 + 425.0605 250.0000 80.0000 1.9505 0.0000 625.5230 250.0000 81.0000 1.9505 0.0000 + 609.8491 250.0000 82.0000 1.9505 0.0000 558.2505 250.0000 83.0000 1.9505 0.0000 + 531.1573 250.0000 84.0000 1.9505 0.0000 488.7337 250.0000 85.0000 1.9505 0.0000 + 446.6683 250.0000 86.0000 1.9505 0.0000 1538.2573 250.0000 87.0000 1.9505 0.0000 + 1472.9117 250.0000 88.0000 1.9505 0.0000 1297.8097 250.0000 89.0000 1.9505 0.0000 + 1161.3917 250.0000 90.0000 1.9505 0.0000 1155.1516 250.0000 91.0000 1.9505 0.0000 + 1118.3627 250.0000 92.0000 1.9505 0.0000 1154.4374 250.0000 93.0000 1.9505 0.0000 + 1117.4761 250.0000 94.0000 1.9505 0.0000 61.4868 250.0000 101.0000 1.9505 0.0000 + 202.2053 250.0000 103.0000 1.9505 0.9865 257.3551 250.0000 104.0000 1.9505 0.9808 + 194.8895 250.0000 105.0000 1.9505 0.9706 145.9274 250.0000 106.0000 1.9505 0.9868 + 100.7826 250.0000 107.0000 1.9505 0.9944 72.9923 250.0000 108.0000 1.9505 0.9925 + 49.8778 250.0000 109.0000 1.9505 0.9982 296.0155 250.0000 111.0000 1.9505 0.9684 + 458.1425 250.0000 112.0000 1.9505 0.9628 462.1521 250.0000 113.0000 1.9505 0.9648 + 368.8796 250.0000 114.0000 1.9505 0.9507 300.4318 250.0000 115.0000 1.9505 0.9947 + 253.0003 250.0000 116.0000 1.9505 0.9948 205.8954 250.0000 117.0000 1.9505 0.9972 + 406.0845 250.0000 119.0000 1.9505 0.9767 784.4219 250.0000 120.0000 1.9505 0.9831 + 404.4096 250.0000 121.0000 1.9505 1.8627 390.2655 250.0000 122.0000 1.9505 1.8299 + 382.4997 250.0000 123.0000 1.9505 1.9138 379.2021 250.0000 124.0000 1.9505 1.8269 + 347.9151 250.0000 125.0000 1.9505 1.6406 321.6484 250.0000 126.0000 1.9505 1.6483 + 306.8041 250.0000 127.0000 1.9505 1.7149 300.0232 250.0000 128.0000 1.9505 1.7937 + 297.1406 250.0000 129.0000 1.9505 0.9576 277.6083 250.0000 130.0000 1.9505 1.9419 + 457.6031 250.0000 131.0000 1.9505 0.9601 399.8646 250.0000 132.0000 1.9505 0.9434 + 356.8734 250.0000 133.0000 1.9505 0.9889 324.8502 250.0000 134.0000 1.9505 0.9901 + 285.1261 250.0000 135.0000 1.9505 0.9974 483.8461 250.0000 137.0000 1.9505 0.9738 + 954.6446 250.0000 138.0000 1.9505 0.9801 724.2934 250.0000 139.0000 1.9505 1.9153 + 534.8274 250.0000 140.0000 1.9505 1.9355 540.1792 250.0000 141.0000 1.9505 1.9545 + 503.0236 250.0000 142.0000 1.9505 1.9420 566.2902 250.0000 143.0000 1.9505 1.6682 + 437.1184 250.0000 144.0000 1.9505 1.8584 408.7434 250.0000 145.0000 1.9505 1.9003 + 379.2791 250.0000 146.0000 1.9505 1.8630 367.0907 250.0000 147.0000 1.9505 0.9679 + 362.3966 250.0000 148.0000 1.9505 1.9539 580.9260 250.0000 149.0000 1.9505 0.9633 + 523.2910 250.0000 150.0000 1.9505 0.9514 488.4839 250.0000 151.0000 1.9505 0.9749 + 460.9671 250.0000 152.0000 1.9505 0.9811 419.7450 250.0000 153.0000 1.9505 0.9968 + 570.2993 250.0000 155.0000 1.9505 0.9909 1239.0351 250.0000 156.0000 1.9505 0.9797 + 917.1231 250.0000 157.0000 1.9505 1.9373 571.5166 250.0000 159.0000 1.9505 2.9425 + 559.6696 250.0000 160.0000 1.9505 2.9455 541.7976 250.0000 161.0000 1.9505 2.9413 + 544.8078 250.0000 162.0000 1.9505 2.9300 526.2392 250.0000 163.0000 1.9505 1.8286 + 548.4168 250.0000 164.0000 1.9505 2.8732 514.7943 250.0000 165.0000 1.9505 2.9086 + 524.3974 250.0000 166.0000 1.9505 2.8965 488.3600 250.0000 167.0000 1.9505 2.9242 + 474.3436 250.0000 168.0000 1.9505 2.9282 471.3898 250.0000 169.0000 1.9505 2.9246 + 496.0454 250.0000 170.0000 1.9505 2.8482 455.4901 250.0000 171.0000 1.9505 2.9219 + 621.6569 250.0000 172.0000 1.9505 1.9254 575.4163 250.0000 173.0000 1.9505 1.9459 + 523.5547 250.0000 174.0000 1.9505 1.9292 531.0329 250.0000 175.0000 1.9505 1.8104 + 461.9058 250.0000 176.0000 1.9505 1.8858 434.0633 250.0000 177.0000 1.9505 1.8648 + 414.3111 250.0000 178.0000 1.9505 1.9188 396.0864 250.0000 179.0000 1.9505 0.9846 + 381.9067 250.0000 180.0000 1.9505 1.9896 622.9381 250.0000 181.0000 1.9505 0.9267 + 565.4247 250.0000 182.0000 1.9505 0.9383 547.0601 250.0000 183.0000 1.9505 0.9820 + 531.0959 250.0000 184.0000 1.9505 0.9815 494.6422 250.0000 185.0000 1.9505 0.9954 + 642.1473 250.0000 187.0000 1.9505 0.9705 1229.5628 250.0000 188.0000 1.9505 0.9662 + 676.4019 250.0000 189.0000 1.9505 2.9070 783.5129 250.0000 190.0000 1.9505 2.8844 + 699.3799 250.0000 191.0000 1.9505 2.8738 616.3352 250.0000 192.0000 1.9505 2.8878 + 592.6848 250.0000 193.0000 1.9505 2.9095 718.5424 250.0000 194.0000 1.9505 1.9209 + 166.4248 250.0000 204.0000 1.9505 1.9697 163.2184 250.0000 205.0000 1.9505 1.9441 + 118.5942 250.0000 206.0000 1.9505 1.9985 94.5696 250.0000 207.0000 1.9505 2.0143 + 64.3022 250.0000 208.0000 1.9505 1.9887 296.6147 250.0000 212.0000 1.9505 1.9496 + 358.5500 250.0000 213.0000 1.9505 1.9311 342.7407 250.0000 214.0000 1.9505 1.9435 + 296.4572 250.0000 215.0000 1.9505 2.0102 247.8563 250.0000 216.0000 1.9505 1.9903 + 415.5727 250.0000 220.0000 1.9505 1.9349 398.2795 250.0000 221.0000 1.9505 2.8999 + 403.0919 250.0000 222.0000 1.9505 3.8675 368.9209 250.0000 223.0000 1.9505 2.9110 + 276.4674 250.0000 224.0000 1.9505 10.6191 235.8366 250.0000 225.0000 1.9505 9.8849 + 231.5914 250.0000 226.0000 1.9505 9.1376 272.8668 250.0000 227.0000 1.9505 2.9263 + 253.8779 250.0000 228.0000 1.9505 6.5458 360.8017 250.0000 231.0000 1.9505 1.9315 + 380.3291 250.0000 232.0000 1.9505 1.9447 347.3049 250.0000 233.0000 1.9505 1.9793 + 322.2635 250.0000 234.0000 1.9505 1.9812 497.5316 250.0000 238.0000 1.9505 1.9143 + 477.2036 250.0000 239.0000 1.9505 2.8903 480.7668 250.0000 240.0000 1.9505 3.9106 + 464.9556 250.0000 241.0000 1.9505 2.9225 409.6963 250.0000 242.0000 1.9505 11.0556 + 360.6378 250.0000 243.0000 1.9505 9.5402 340.4508 250.0000 244.0000 1.9505 8.8895 + 347.8166 250.0000 245.0000 1.9505 2.9696 363.7391 250.0000 246.0000 1.9505 5.7095 + 464.9677 250.0000 249.0000 1.9505 1.9378 505.4148 250.0000 250.0000 1.9505 1.9505 + 36.2277 251.0000 1.0000 1.9523 0.9118 24.0141 251.0000 2.0000 1.9523 0.0000 + 546.8547 251.0000 3.0000 1.9523 0.0000 321.1170 251.0000 4.0000 1.9523 0.0000 + 217.7905 251.0000 5.0000 1.9523 0.0000 147.7519 251.0000 6.0000 1.9523 0.0000 + 103.5908 251.0000 7.0000 1.9523 0.0000 78.5600 251.0000 8.0000 1.9523 0.0000 + 59.5937 251.0000 9.0000 1.9523 0.0000 45.8894 251.0000 10.0000 1.9523 0.0000 + 654.5716 251.0000 11.0000 1.9523 0.0000 510.2824 251.0000 12.0000 1.9523 0.0000 + 472.3352 251.0000 13.0000 1.9523 0.0000 374.0566 251.0000 14.0000 1.9523 0.0000 + 292.7145 251.0000 15.0000 1.9523 0.0000 243.3785 251.0000 16.0000 1.9523 0.0000 + 199.1082 251.0000 17.0000 1.9523 0.0000 163.0783 251.0000 18.0000 1.9523 0.0000 + 1069.4211 251.0000 19.0000 1.9523 0.0000 891.8232 251.0000 20.0000 1.9523 0.0000 + 738.4121 251.0000 21.0000 1.9523 0.0000 714.3497 251.0000 22.0000 1.9523 0.0000 + 654.8718 251.0000 23.0000 1.9523 0.0000 515.8152 251.0000 24.0000 1.9523 0.0000 + 564.7110 251.0000 25.0000 1.9523 0.0000 443.2412 251.0000 26.0000 1.9523 0.0000 + 471.0186 251.0000 27.0000 1.9523 0.0000 484.7111 251.0000 28.0000 1.9523 0.0000 + 371.5028 251.0000 29.0000 1.9523 0.0000 382.7819 251.0000 30.0000 1.9523 0.0000 + 452.9662 251.0000 31.0000 1.9523 0.0000 401.0098 251.0000 32.0000 1.9523 0.0000 + 343.0487 251.0000 33.0000 1.9523 0.0000 308.2846 251.0000 34.0000 1.9523 0.0000 + 270.1506 251.0000 35.0000 1.9523 0.0000 235.1882 251.0000 36.0000 1.9523 0.0000 + 1199.4646 251.0000 37.0000 1.9523 0.0000 1061.9947 251.0000 38.0000 1.9523 0.0000 + 933.6956 251.0000 39.0000 1.9523 0.0000 840.9533 251.0000 40.0000 1.9523 0.0000 + 767.8415 251.0000 41.0000 1.9523 0.0000 593.9624 251.0000 42.0000 1.9523 0.0000 + 662.2699 251.0000 43.0000 1.9523 0.0000 505.6089 251.0000 44.0000 1.9523 0.0000 + 552.8128 251.0000 45.0000 1.9523 0.0000 513.0345 251.0000 46.0000 1.9523 0.0000 + 427.3871 251.0000 47.0000 1.9523 0.0000 452.4998 251.0000 48.0000 1.9523 0.0000 + 566.5642 251.0000 49.0000 1.9523 0.0000 525.6310 251.0000 50.0000 1.9523 0.0000 + 469.7255 251.0000 51.0000 1.9523 0.0000 436.4430 251.0000 52.0000 1.9523 0.0000 + 395.1626 251.0000 53.0000 1.9523 0.0000 355.6742 251.0000 54.0000 1.9523 0.0000 + 1461.4083 251.0000 55.0000 1.9523 0.0000 1352.0527 251.0000 56.0000 1.9523 0.0000 + 1192.2239 251.0000 57.0000 1.9523 0.0000 554.4976 251.0000 58.0000 1.9523 2.7991 + 1199.3914 251.0000 59.0000 1.9523 0.0000 1152.4260 251.0000 60.0000 1.9523 0.0000 + 1123.7195 251.0000 61.0000 1.9523 0.0000 1097.2997 251.0000 62.0000 1.9523 0.0000 + 1073.8792 251.0000 63.0000 1.9523 0.0000 847.6165 251.0000 64.0000 1.9523 0.0000 + 948.6782 251.0000 65.0000 1.9523 0.0000 915.6032 251.0000 66.0000 1.9523 0.0000 + 969.4956 251.0000 67.0000 1.9523 0.0000 949.0275 251.0000 68.0000 1.9523 0.0000 + 930.6131 251.0000 69.0000 1.9523 0.0000 919.5959 251.0000 70.0000 1.9523 0.0000 + 776.7990 251.0000 71.0000 1.9523 0.0000 766.6701 251.0000 72.0000 1.9523 0.0000 + 700.9976 251.0000 73.0000 1.9523 0.0000 592.6175 251.0000 74.0000 1.9523 0.0000 + 603.3740 251.0000 75.0000 1.9523 0.0000 547.6530 251.0000 76.0000 1.9523 0.0000 + 502.1230 251.0000 77.0000 1.9523 0.0000 417.4805 251.0000 78.0000 1.9523 0.0000 + 390.1975 251.0000 79.0000 1.9523 0.0000 401.7099 251.0000 80.0000 1.9523 0.0000 + 581.9141 251.0000 81.0000 1.9523 0.0000 570.4625 251.0000 82.0000 1.9523 0.0000 + 525.5339 251.0000 83.0000 1.9523 0.0000 501.8893 251.0000 84.0000 1.9523 0.0000 + 463.8486 251.0000 85.0000 1.9523 0.0000 425.6205 251.0000 86.0000 1.9523 0.0000 + 1384.0410 251.0000 87.0000 1.9523 0.0000 1339.4353 251.0000 88.0000 1.9523 0.0000 + 1188.0075 251.0000 89.0000 1.9523 0.0000 1071.3664 251.0000 90.0000 1.9523 0.0000 + 1061.6930 251.0000 91.0000 1.9523 0.0000 1028.0688 251.0000 92.0000 1.9523 0.0000 + 1056.1396 251.0000 93.0000 1.9523 0.0000 1023.2018 251.0000 94.0000 1.9523 0.0000 + 58.1962 251.0000 101.0000 1.9523 0.0000 186.8353 251.0000 103.0000 1.9523 0.9865 + 238.6037 251.0000 104.0000 1.9523 0.9808 183.4000 251.0000 105.0000 1.9523 0.9706 + 138.5349 251.0000 106.0000 1.9523 0.9868 96.5724 251.0000 107.0000 1.9523 0.9944 + 70.4634 251.0000 108.0000 1.9523 0.9925 48.5766 251.0000 109.0000 1.9523 0.9982 + 272.6893 251.0000 111.0000 1.9523 0.9684 421.4626 251.0000 112.0000 1.9523 0.9628 + 428.4437 251.0000 113.0000 1.9523 0.9648 345.9236 251.0000 114.0000 1.9523 0.9507 + 284.1462 251.0000 115.0000 1.9523 0.9947 240.6781 251.0000 116.0000 1.9523 0.9948 + 197.0330 251.0000 117.0000 1.9523 0.9972 376.6755 251.0000 119.0000 1.9523 0.9767 + 713.3777 251.0000 120.0000 1.9523 0.9831 378.5124 251.0000 121.0000 1.9523 1.8627 + 365.4257 251.0000 122.0000 1.9523 1.8299 358.0883 251.0000 123.0000 1.9523 1.9138 + 354.5977 251.0000 124.0000 1.9523 1.8269 327.0807 251.0000 125.0000 1.9523 1.6406 + 302.8803 251.0000 126.0000 1.9523 1.6483 288.9115 251.0000 127.0000 1.9523 1.7149 + 282.3973 251.0000 128.0000 1.9523 1.7937 278.5192 251.0000 129.0000 1.9523 0.9576 + 262.1684 251.0000 130.0000 1.9523 1.9419 425.8475 251.0000 131.0000 1.9523 0.9601 + 375.4438 251.0000 132.0000 1.9523 0.9434 337.2763 251.0000 133.0000 1.9523 0.9889 + 308.3906 251.0000 134.0000 1.9523 0.9901 272.0076 251.0000 135.0000 1.9523 0.9974 + 449.7669 251.0000 137.0000 1.9523 0.9738 867.4828 251.0000 138.0000 1.9523 0.9801 + 667.7703 251.0000 139.0000 1.9523 1.9153 500.3168 251.0000 140.0000 1.9523 1.9355 + 505.2035 251.0000 141.0000 1.9523 1.9545 471.3990 251.0000 142.0000 1.9523 1.9420 + 527.0000 251.0000 143.0000 1.9523 1.6682 411.7430 251.0000 144.0000 1.9523 1.8584 + 385.2196 251.0000 145.0000 1.9523 1.9003 357.8055 251.0000 146.0000 1.9523 1.8630 + 346.0216 251.0000 147.0000 1.9523 0.9679 342.9362 251.0000 148.0000 1.9523 1.9539 + 540.6624 251.0000 149.0000 1.9523 0.9633 490.7203 251.0000 150.0000 1.9523 0.9514 + 460.5150 251.0000 151.0000 1.9523 0.9749 436.1655 251.0000 152.0000 1.9523 0.9811 + 398.8660 251.0000 153.0000 1.9523 0.9968 533.2393 251.0000 155.0000 1.9523 0.9909 + 1122.9068 251.0000 156.0000 1.9523 0.9797 844.5925 251.0000 157.0000 1.9523 1.9373 + 537.8508 251.0000 159.0000 1.9523 2.9425 526.7389 251.0000 160.0000 1.9523 2.9455 + 510.1049 251.0000 161.0000 1.9523 2.9413 512.3917 251.0000 162.0000 1.9523 2.9300 + 493.1741 251.0000 163.0000 1.9523 1.8286 515.5966 251.0000 164.0000 1.9523 2.8732 + 484.4278 251.0000 165.0000 1.9523 2.9086 492.5152 251.0000 166.0000 1.9523 2.8965 + 459.9774 251.0000 167.0000 1.9523 2.9242 446.9312 251.0000 168.0000 1.9523 2.9282 + 444.0225 251.0000 169.0000 1.9523 2.9246 466.5120 251.0000 170.0000 1.9523 2.8482 + 429.2735 251.0000 171.0000 1.9523 2.9219 578.6131 251.0000 172.0000 1.9523 1.9254 + 537.9048 251.0000 173.0000 1.9523 1.9459 491.6191 251.0000 174.0000 1.9523 1.9292 + 496.6738 251.0000 175.0000 1.9523 1.8104 436.4869 251.0000 176.0000 1.9523 1.8858 + 410.8007 251.0000 177.0000 1.9523 1.8648 392.4608 251.0000 178.0000 1.9523 1.9188 + 375.1424 251.0000 179.0000 1.9523 0.9846 363.0226 251.0000 180.0000 1.9523 1.9896 + 580.6826 251.0000 181.0000 1.9523 0.9267 530.9459 251.0000 182.0000 1.9523 0.9383 + 515.7394 251.0000 183.0000 1.9523 0.9820 502.1181 251.0000 184.0000 1.9523 0.9815 + 469.4814 251.0000 185.0000 1.9523 0.9954 600.6902 251.0000 187.0000 1.9523 0.9705 + 1119.5215 251.0000 188.0000 1.9523 0.9662 636.4292 251.0000 189.0000 1.9523 2.9070 + 732.5785 251.0000 190.0000 1.9523 2.8844 655.4188 251.0000 191.0000 1.9523 2.8738 + 580.4423 251.0000 192.0000 1.9523 2.8878 558.7827 251.0000 193.0000 1.9523 2.9095 + 668.4225 251.0000 194.0000 1.9523 1.9209 156.7541 251.0000 204.0000 1.9523 1.9697 + 154.1335 251.0000 205.0000 1.9523 1.9441 113.1548 251.0000 206.0000 1.9523 1.9985 + 90.7043 251.0000 207.0000 1.9523 2.0143 62.1954 251.0000 208.0000 1.9523 1.9887 + 277.2781 251.0000 212.0000 1.9523 1.9496 334.8650 251.0000 213.0000 1.9523 1.9311 + 321.9519 251.0000 214.0000 1.9523 1.9435 280.2178 251.0000 215.0000 1.9523 2.0102 + 235.8128 251.0000 216.0000 1.9523 1.9903 388.4468 251.0000 220.0000 1.9523 1.9349 + 373.9963 251.0000 221.0000 1.9523 2.8999 378.6459 251.0000 222.0000 1.9523 3.8675 + 346.4532 251.0000 223.0000 1.9523 2.9110 261.5413 251.0000 224.0000 1.9523 10.6191 + 224.1126 251.0000 225.0000 1.9523 9.8849 219.9538 251.0000 226.0000 1.9523 9.1376 + 257.2754 251.0000 227.0000 1.9523 2.9263 239.8735 251.0000 228.0000 1.9523 6.5458 + 338.4772 251.0000 231.0000 1.9523 1.9315 357.6221 251.0000 232.0000 1.9523 1.9447 + 328.5083 251.0000 233.0000 1.9523 1.9793 305.9773 251.0000 234.0000 1.9523 1.9812 + 465.3683 251.0000 238.0000 1.9523 1.9143 449.0205 251.0000 239.0000 1.9523 2.8903 + 453.1570 251.0000 240.0000 1.9523 3.9106 438.0410 251.0000 241.0000 1.9523 2.9225 + 387.8818 251.0000 242.0000 1.9523 11.0556 342.7635 251.0000 243.0000 1.9523 9.5402 + 324.0357 251.0000 244.0000 1.9523 8.8895 329.5690 251.0000 245.0000 1.9523 2.9696 + 344.1857 251.0000 246.0000 1.9523 5.7095 436.6520 251.0000 249.0000 1.9523 1.9378 + 474.6720 251.0000 250.0000 1.9523 1.9505 448.0573 251.0000 251.0000 1.9523 1.9523 + 35.2461 252.0000 1.0000 1.9639 0.9118 23.5851 252.0000 2.0000 1.9639 0.0000 + 512.7164 252.0000 3.0000 1.9639 0.0000 305.7629 252.0000 4.0000 1.9639 0.0000 + 209.4559 252.0000 5.0000 1.9639 0.0000 143.1947 252.0000 6.0000 1.9639 0.0000 + 100.9745 252.0000 7.0000 1.9639 0.0000 76.8863 252.0000 8.0000 1.9639 0.0000 + 58.5223 252.0000 9.0000 1.9639 0.0000 45.1836 252.0000 10.0000 1.9639 0.0000 + 614.3523 252.0000 11.0000 1.9639 0.0000 484.5038 252.0000 12.0000 1.9639 0.0000 + 450.7267 252.0000 13.0000 1.9639 0.0000 359.3640 252.0000 14.0000 1.9639 0.0000 + 282.8902 252.0000 15.0000 1.9639 0.0000 236.1456 252.0000 16.0000 1.9639 0.0000 + 193.9269 252.0000 17.0000 1.9639 0.0000 159.3608 252.0000 18.0000 1.9639 0.0000 + 1002.5559 252.0000 19.0000 1.9639 0.0000 843.0540 252.0000 20.0000 1.9639 0.0000 + 699.4586 252.0000 21.0000 1.9639 0.0000 678.1485 252.0000 22.0000 1.9639 0.0000 + 622.4635 252.0000 23.0000 1.9639 0.0000 490.6786 252.0000 24.0000 1.9639 0.0000 + 537.7470 252.0000 25.0000 1.9639 0.0000 422.5068 252.0000 26.0000 1.9639 0.0000 + 449.8664 252.0000 27.0000 1.9639 0.0000 462.3208 252.0000 28.0000 1.9639 0.0000 + 354.6423 252.0000 29.0000 1.9639 0.0000 366.6162 252.0000 30.0000 1.9639 0.0000 + 433.2665 252.0000 31.0000 1.9639 0.0000 385.5109 252.0000 32.0000 1.9639 0.0000 + 331.3844 252.0000 33.0000 1.9639 0.0000 298.7331 252.0000 34.0000 1.9639 0.0000 + 262.6226 252.0000 35.0000 1.9639 0.0000 229.3135 252.0000 36.0000 1.9639 0.0000 + 1125.7134 252.0000 37.0000 1.9639 0.0000 1003.8665 252.0000 38.0000 1.9639 0.0000 + 885.9576 252.0000 39.0000 1.9639 0.0000 799.9471 252.0000 40.0000 1.9639 0.0000 + 731.6741 252.0000 41.0000 1.9639 0.0000 567.8341 252.0000 42.0000 1.9639 0.0000 + 632.3502 252.0000 43.0000 1.9639 0.0000 484.4740 252.0000 44.0000 1.9639 0.0000 + 529.4579 252.0000 45.0000 1.9639 0.0000 491.8812 252.0000 46.0000 1.9639 0.0000 + 409.7995 252.0000 47.0000 1.9639 0.0000 434.4358 252.0000 48.0000 1.9639 0.0000 + 542.0891 252.0000 49.0000 1.9639 0.0000 504.8763 252.0000 50.0000 1.9639 0.0000 + 453.0254 252.0000 51.0000 1.9639 0.0000 422.0187 252.0000 52.0000 1.9639 0.0000 + 383.1837 252.0000 53.0000 1.9639 0.0000 345.8283 252.0000 54.0000 1.9639 0.0000 + 1372.2422 252.0000 55.0000 1.9639 0.0000 1276.8973 252.0000 56.0000 1.9639 0.0000 + 1130.1276 252.0000 57.0000 1.9639 0.0000 534.5244 252.0000 58.0000 1.9639 2.7991 + 1134.1681 252.0000 59.0000 1.9639 0.0000 1090.3536 252.0000 60.0000 1.9639 0.0000 + 1063.3516 252.0000 61.0000 1.9639 0.0000 1038.4792 252.0000 62.0000 1.9639 0.0000 + 1016.4371 252.0000 63.0000 1.9639 0.0000 805.9652 252.0000 64.0000 1.9639 0.0000 + 897.0258 252.0000 65.0000 1.9639 0.0000 866.4126 252.0000 66.0000 1.9639 0.0000 + 918.4190 252.0000 67.0000 1.9639 0.0000 899.0951 252.0000 68.0000 1.9639 0.0000 + 881.7600 252.0000 69.0000 1.9639 0.0000 871.1424 252.0000 70.0000 1.9639 0.0000 + 738.1763 252.0000 71.0000 1.9639 0.0000 731.3413 252.0000 72.0000 1.9639 0.0000 + 670.4007 252.0000 73.0000 1.9639 0.0000 568.1201 252.0000 74.0000 1.9639 0.0000 + 578.9038 252.0000 75.0000 1.9639 0.0000 526.6101 252.0000 76.0000 1.9639 0.0000 + 483.7108 252.0000 77.0000 1.9639 0.0000 403.0774 252.0000 78.0000 1.9639 0.0000 + 377.0592 252.0000 79.0000 1.9639 0.0000 388.4099 252.0000 80.0000 1.9639 0.0000 + 557.6754 252.0000 81.0000 1.9639 0.0000 548.2096 252.0000 82.0000 1.9639 0.0000 + 506.8129 252.0000 83.0000 1.9639 0.0000 485.0492 252.0000 84.0000 1.9639 0.0000 + 449.4650 252.0000 85.0000 1.9639 0.0000 413.4353 252.0000 86.0000 1.9639 0.0000 + 1303.4917 252.0000 87.0000 1.9639 0.0000 1267.5667 252.0000 88.0000 1.9639 0.0000 + 1128.0206 252.0000 89.0000 1.9639 0.0000 1021.5531 252.0000 90.0000 1.9639 0.0000 + 1010.4948 252.0000 91.0000 1.9639 0.0000 978.5969 252.0000 92.0000 1.9639 0.0000 + 1002.7172 252.0000 93.0000 1.9639 0.0000 971.8689 252.0000 94.0000 1.9639 0.0000 + 56.2769 252.0000 101.0000 1.9639 0.0000 178.1745 252.0000 103.0000 1.9639 0.9865 + 228.0340 252.0000 104.0000 1.9639 0.9808 176.7765 252.0000 105.0000 1.9639 0.9706 + 134.2742 252.0000 106.0000 1.9639 0.9868 94.1622 252.0000 107.0000 1.9639 0.9944 + 69.0399 252.0000 108.0000 1.9639 0.9925 47.8771 252.0000 109.0000 1.9639 0.9982 + 259.6698 252.0000 111.0000 1.9639 0.9684 401.0304 252.0000 112.0000 1.9639 0.9628 + 409.3685 252.0000 113.0000 1.9639 0.9648 332.6960 252.0000 114.0000 1.9639 0.9507 + 274.6795 252.0000 115.0000 1.9639 0.9947 233.5109 252.0000 116.0000 1.9639 0.9948 + 191.8960 252.0000 117.0000 1.9639 0.9972 360.3799 252.0000 119.0000 1.9639 0.9767 + 675.2096 252.0000 120.0000 1.9639 0.9831 363.7755 252.0000 121.0000 1.9639 1.8627 + 351.3179 252.0000 122.0000 1.9639 1.8299 344.2372 252.0000 123.0000 1.9639 1.9138 + 340.6774 252.0000 124.0000 1.9639 1.8269 315.1229 252.0000 125.0000 1.9639 1.6406 + 292.0979 252.0000 126.0000 1.9639 1.6483 278.6529 252.0000 127.0000 1.9639 1.7149 + 272.3038 252.0000 128.0000 1.9639 1.7937 267.9569 252.0000 129.0000 1.9639 0.9576 + 253.2520 252.0000 130.0000 1.9639 1.9419 407.8626 252.0000 131.0000 1.9639 0.9601 + 361.3931 252.0000 132.0000 1.9639 0.9434 325.9092 252.0000 133.0000 1.9639 0.9889 + 298.8255 252.0000 134.0000 1.9639 0.9901 264.3868 252.0000 135.0000 1.9639 0.9974 + 430.8890 252.0000 137.0000 1.9639 0.9738 820.9055 252.0000 138.0000 1.9639 0.9801 + 636.7834 252.0000 139.0000 1.9639 1.9153 480.8308 252.0000 140.0000 1.9639 1.9355 + 485.4685 252.0000 141.0000 1.9639 1.9545 453.5417 252.0000 142.0000 1.9639 1.9420 + 505.1830 252.0000 143.0000 1.9639 1.6682 397.2874 252.0000 144.0000 1.9639 1.8584 + 371.8493 252.0000 145.0000 1.9639 1.9003 345.6140 252.0000 146.0000 1.9639 1.8630 + 334.0775 252.0000 147.0000 1.9639 0.9679 331.7567 252.0000 148.0000 1.9639 1.9539 + 518.0408 252.0000 149.0000 1.9639 0.9633 472.1243 252.0000 150.0000 1.9639 0.9514 + 444.3975 252.0000 151.0000 1.9639 0.9749 421.8178 252.0000 152.0000 1.9639 0.9811 + 386.7550 252.0000 153.0000 1.9639 0.9968 512.4692 252.0000 155.0000 1.9639 0.9909 + 1061.4185 252.0000 156.0000 1.9639 0.9797 805.0118 252.0000 157.0000 1.9639 1.9373 + 518.6075 252.0000 159.0000 1.9639 2.9425 507.9139 252.0000 160.0000 1.9639 2.9455 + 491.9827 252.0000 161.0000 1.9639 2.9413 493.8976 252.0000 162.0000 1.9639 2.9300 + 474.4660 252.0000 163.0000 1.9639 1.8286 496.8526 252.0000 164.0000 1.9639 2.8732 + 467.0673 252.0000 165.0000 1.9639 2.9086 474.3763 252.0000 166.0000 1.9639 2.8965 + 443.7162 252.0000 167.0000 1.9639 2.9242 431.2148 252.0000 168.0000 1.9639 2.9282 + 428.3345 252.0000 169.0000 1.9639 2.9246 449.5817 252.0000 170.0000 1.9639 2.8482 + 414.2217 252.0000 171.0000 1.9639 2.9219 554.5564 252.0000 172.0000 1.9639 1.9254 + 516.8114 252.0000 173.0000 1.9639 1.9459 473.5452 252.0000 174.0000 1.9639 1.9292 + 477.3719 252.0000 175.0000 1.9639 1.8104 421.9537 252.0000 176.0000 1.9639 1.8858 + 397.5083 252.0000 177.0000 1.9639 1.8648 379.9862 252.0000 178.0000 1.9639 1.9188 + 363.2286 252.0000 179.0000 1.9639 0.9846 352.1763 252.0000 180.0000 1.9639 1.9896 + 557.0521 252.0000 181.0000 1.9639 0.9267 511.3353 252.0000 182.0000 1.9639 0.9383 + 497.7687 252.0000 183.0000 1.9639 0.9820 485.4233 252.0000 184.0000 1.9639 0.9815 + 454.9303 252.0000 185.0000 1.9639 0.9954 577.4214 252.0000 187.0000 1.9639 0.9705 + 1060.7432 252.0000 188.0000 1.9639 0.9662 613.5605 252.0000 189.0000 1.9639 2.9070 + 703.9665 252.0000 190.0000 1.9639 2.8844 630.7562 252.0000 191.0000 1.9639 2.8738 + 560.0071 252.0000 192.0000 1.9639 2.8878 539.4399 252.0000 193.0000 1.9639 2.9095 + 640.6828 252.0000 194.0000 1.9639 1.9209 151.1275 252.0000 204.0000 1.9639 1.9697 + 148.8998 252.0000 205.0000 1.9639 1.9441 110.0087 252.0000 206.0000 1.9639 1.9985 + 88.4953 252.0000 207.0000 1.9639 2.0143 61.0258 252.0000 208.0000 1.9639 1.9887 + 266.1377 252.0000 212.0000 1.9639 1.9496 321.3129 252.0000 213.0000 1.9639 1.9311 + 309.9478 252.0000 214.0000 1.9639 1.9435 270.8005 252.0000 215.0000 1.9639 2.0102 + 228.8128 252.0000 216.0000 1.9639 1.9903 373.0245 252.0000 220.0000 1.9639 1.9349 + 360.0716 252.0000 221.0000 1.9639 2.8999 364.6262 252.0000 222.0000 1.9639 3.8675 + 333.6308 252.0000 223.0000 1.9639 2.9110 253.0195 252.0000 224.0000 1.9639 10.6191 + 217.3993 252.0000 225.0000 1.9639 9.8849 213.2923 252.0000 226.0000 1.9639 9.1376 + 248.3821 252.0000 227.0000 1.9639 2.9263 231.8603 252.0000 228.0000 1.9639 6.5458 + 325.6786 252.0000 231.0000 1.9639 1.9315 344.5346 252.0000 232.0000 1.9639 1.9447 + 317.5986 252.0000 233.0000 1.9639 1.9793 296.5153 252.0000 234.0000 1.9639 1.9812 + 447.1555 252.0000 238.0000 1.9639 1.9143 432.8478 252.0000 239.0000 1.9639 2.8903 + 437.2712 252.0000 240.0000 1.9639 3.9106 422.6552 252.0000 241.0000 1.9639 2.9225 + 375.3725 252.0000 242.0000 1.9639 11.0556 332.4971 252.0000 243.0000 1.9639 9.5402 + 314.6082 252.0000 244.0000 1.9639 8.8895 319.1735 252.0000 245.0000 1.9639 2.9696 + 333.0245 252.0000 246.0000 1.9639 5.7095 420.5155 252.0000 249.0000 1.9639 1.9378 + 457.0793 252.0000 250.0000 1.9639 1.9505 432.6941 252.0000 251.0000 1.9639 1.9523 + 418.5789 252.0000 252.0000 1.9639 1.9639 44.8321 256.0000 1.0000 1.8467 0.9118 + 29.1864 256.0000 2.0000 1.8467 0.0000 750.3227 256.0000 3.0000 1.8467 0.0000 + 417.8652 256.0000 4.0000 1.8467 0.0000 276.3430 256.0000 5.0000 1.8467 0.0000 + 184.3462 256.0000 6.0000 1.8467 0.0000 127.7419 256.0000 7.0000 1.8467 0.0000 + 96.0950 256.0000 8.0000 1.8467 0.0000 72.3852 256.0000 9.0000 1.8467 0.0000 + 55.4092 256.0000 10.0000 1.8467 0.0000 895.1626 256.0000 11.0000 1.8467 0.0000 + 669.7642 256.0000 12.0000 1.8467 0.0000 611.4261 256.0000 13.0000 1.8467 0.0000 + 475.6506 256.0000 14.0000 1.8467 0.0000 367.1449 256.0000 15.0000 1.8467 0.0000 + 302.7908 256.0000 16.0000 1.8467 0.0000 245.8635 256.0000 17.0000 1.8467 0.0000 + 200.1094 256.0000 18.0000 1.8467 0.0000 1476.8694 256.0000 19.0000 1.8467 0.0000 + 1190.5306 256.0000 20.0000 1.8467 0.0000 978.5884 256.0000 21.0000 1.8467 0.0000 + 940.9324 256.0000 22.0000 1.8467 0.0000 859.3730 256.0000 23.0000 1.8467 0.0000 + 676.8113 256.0000 24.0000 1.8467 0.0000 737.0898 256.0000 25.0000 1.8467 0.0000 + 578.0899 256.0000 26.0000 1.8467 0.0000 609.2865 256.0000 27.0000 1.8467 0.0000 + 629.2493 256.0000 28.0000 1.8467 0.0000 482.4149 256.0000 29.0000 1.8467 0.0000 + 491.2073 256.0000 30.0000 1.8467 0.0000 583.5203 256.0000 31.0000 1.8467 0.0000 + 509.4520 256.0000 32.0000 1.8467 0.0000 430.8021 256.0000 33.0000 1.8467 0.0000 + 384.5873 256.0000 34.0000 1.8467 0.0000 334.8115 256.0000 35.0000 1.8467 0.0000 + 289.7981 256.0000 36.0000 1.8467 0.0000 1652.2832 256.0000 37.0000 1.8467 0.0000 + 1419.9417 256.0000 38.0000 1.8467 0.0000 1233.0006 256.0000 39.0000 1.8467 0.0000 + 1102.2638 256.0000 40.0000 1.8467 0.0000 1001.6660 256.0000 41.0000 1.8467 0.0000 + 768.8382 256.0000 42.0000 1.8467 0.0000 859.6392 256.0000 43.0000 1.8467 0.0000 + 650.7128 256.0000 44.0000 1.8467 0.0000 711.0892 256.0000 45.0000 1.8467 0.0000 + 657.9647 256.0000 46.0000 1.8467 0.0000 549.4299 256.0000 47.0000 1.8467 0.0000 + 578.1096 256.0000 48.0000 1.8467 0.0000 730.5114 256.0000 49.0000 1.8467 0.0000 + 669.7960 256.0000 50.0000 1.8467 0.0000 592.2077 256.0000 51.0000 1.8467 0.0000 + 546.9393 256.0000 52.0000 1.8467 0.0000 492.1377 256.0000 53.0000 1.8467 0.0000 + 440.4668 256.0000 54.0000 1.8467 0.0000 2013.0282 256.0000 55.0000 1.8467 0.0000 + 1816.0675 256.0000 56.0000 1.8467 0.0000 1581.4671 256.0000 57.0000 1.8467 0.0000 + 700.8041 256.0000 58.0000 1.8467 2.7991 1604.0906 256.0000 59.0000 1.8467 0.0000 + 1537.9273 256.0000 60.0000 1.8467 0.0000 1498.6941 256.0000 61.0000 1.8467 0.0000 + 1462.6834 256.0000 62.0000 1.8467 0.0000 1430.7306 256.0000 63.0000 1.8467 0.0000 + 1114.5114 256.0000 64.0000 1.8467 0.0000 1273.3916 256.0000 65.0000 1.8467 0.0000 + 1226.1232 256.0000 66.0000 1.8467 0.0000 1287.4672 256.0000 67.0000 1.8467 0.0000 + 1259.8096 256.0000 68.0000 1.8467 0.0000 1234.7344 256.0000 69.0000 1.8467 0.0000 + 1220.7557 256.0000 70.0000 1.8467 0.0000 1021.9725 256.0000 71.0000 1.8467 0.0000 + 996.3785 256.0000 72.0000 1.8467 0.0000 904.6021 256.0000 73.0000 1.8467 0.0000 + 760.9816 256.0000 74.0000 1.8467 0.0000 772.5420 256.0000 75.0000 1.8467 0.0000 + 697.0822 256.0000 76.0000 1.8467 0.0000 636.1508 256.0000 77.0000 1.8467 0.0000 + 526.5538 256.0000 78.0000 1.8467 0.0000 491.2122 256.0000 79.0000 1.8467 0.0000 + 504.4111 256.0000 80.0000 1.8467 0.0000 748.6479 256.0000 81.0000 1.8467 0.0000 + 727.0069 256.0000 82.0000 1.8467 0.0000 663.2201 256.0000 83.0000 1.8467 0.0000 + 630.0014 256.0000 84.0000 1.8467 0.0000 578.6848 256.0000 85.0000 1.8467 0.0000 + 528.1695 256.0000 86.0000 1.8467 0.0000 1887.1061 256.0000 87.0000 1.8467 0.0000 + 1787.7406 256.0000 88.0000 1.8467 0.0000 1567.0784 256.0000 89.0000 1.8467 0.0000 + 1395.4519 256.0000 90.0000 1.8467 0.0000 1391.8292 256.0000 91.0000 1.8467 0.0000 + 1347.3076 256.0000 92.0000 1.8467 0.0000 1394.8404 256.0000 93.0000 1.8467 0.0000 + 1349.3008 256.0000 94.0000 1.8467 0.0000 72.9013 256.0000 101.0000 1.8467 0.0000 + 242.2872 256.0000 103.0000 1.8467 0.9865 308.1410 256.0000 104.0000 1.8467 0.9808 + 231.6543 256.0000 105.0000 1.8467 0.9706 173.0249 256.0000 106.0000 1.8467 0.9868 + 119.1434 256.0000 107.0000 1.8467 0.9944 86.0773 256.0000 108.0000 1.8467 0.9925 + 58.5836 256.0000 109.0000 1.8467 0.9982 355.3439 256.0000 111.0000 1.8467 0.9684 + 550.6761 256.0000 112.0000 1.8467 0.9628 552.8634 256.0000 113.0000 1.8467 0.9648 + 438.8597 256.0000 114.0000 1.8467 0.9507 356.2697 256.0000 115.0000 1.8467 0.9947 + 299.5059 256.0000 116.0000 1.8467 0.9948 243.3421 256.0000 117.0000 1.8467 0.9972 + 486.9346 256.0000 119.0000 1.8467 0.9767 952.5771 256.0000 120.0000 1.8467 0.9831 + 481.8238 256.0000 121.0000 1.8467 1.8627 465.0211 256.0000 122.0000 1.8467 1.8299 + 455.7896 256.0000 123.0000 1.8467 1.9138 452.1352 256.0000 124.0000 1.8467 1.8269 + 413.4328 256.0000 125.0000 1.8467 1.6406 381.9591 256.0000 126.0000 1.8467 1.6483 + 364.3760 256.0000 127.0000 1.8467 1.7149 356.3892 256.0000 128.0000 1.8467 1.7937 + 353.7227 256.0000 129.0000 1.8467 0.9576 329.1343 256.0000 130.0000 1.8467 1.9419 + 546.6402 256.0000 131.0000 1.8467 0.9601 475.5382 256.0000 132.0000 1.8467 0.9434 + 423.2918 256.0000 133.0000 1.8467 0.9889 384.7697 256.0000 134.0000 1.8467 0.9901 + 337.2327 256.0000 135.0000 1.8467 0.9974 579.7980 256.0000 137.0000 1.8467 0.9738 + 1160.9040 256.0000 138.0000 1.8467 0.9801 872.2882 256.0000 139.0000 1.8467 1.9153 + 638.0792 256.0000 140.0000 1.8467 1.9355 644.4515 256.0000 141.0000 1.8467 1.9545 + 599.6614 256.0000 142.0000 1.8467 1.9420 678.1232 256.0000 143.0000 1.8467 1.6682 + 519.5738 256.0000 144.0000 1.8467 1.8584 485.8072 256.0000 145.0000 1.8467 1.9003 + 450.6082 256.0000 146.0000 1.8467 1.8630 436.2139 256.0000 147.0000 1.8467 0.9679 + 429.5551 256.0000 148.0000 1.8467 1.9539 694.2560 256.0000 149.0000 1.8467 0.9633 + 622.6826 256.0000 150.0000 1.8467 0.9514 579.8000 256.0000 151.0000 1.8467 0.9749 + 546.3872 256.0000 152.0000 1.8467 0.9811 496.7990 256.0000 153.0000 1.8467 0.9968 + 681.3467 256.0000 155.0000 1.8467 0.9909 1511.3430 256.0000 156.0000 1.8467 0.9797 + 1105.9643 256.0000 157.0000 1.8467 1.9373 679.3561 256.0000 159.0000 1.8467 2.9425 + 665.2422 256.0000 160.0000 1.8467 2.9455 643.9008 256.0000 161.0000 1.8467 2.9413 + 647.8742 256.0000 162.0000 1.8467 2.9300 626.9684 256.0000 163.0000 1.8467 1.8286 + 652.1810 256.0000 164.0000 1.8467 2.8732 611.9003 256.0000 165.0000 1.8467 2.9086 + 624.0645 256.0000 166.0000 1.8467 2.8965 580.1915 256.0000 167.0000 1.8467 2.9242 + 563.4346 256.0000 168.0000 1.8467 2.9282 559.9910 256.0000 169.0000 1.8467 2.9246 + 589.5932 256.0000 170.0000 1.8467 2.8482 540.9402 256.0000 171.0000 1.8467 2.9219 + 743.9419 256.0000 172.0000 1.8467 1.9254 686.9912 256.0000 173.0000 1.8467 1.9459 + 623.5870 256.0000 174.0000 1.8467 1.9292 633.8163 256.0000 175.0000 1.8467 1.8104 + 548.3161 256.0000 176.0000 1.8467 1.8858 514.9544 256.0000 177.0000 1.8467 1.8648 + 491.3347 256.0000 178.0000 1.8467 1.9188 469.7999 256.0000 179.0000 1.8467 0.9846 + 452.0452 256.0000 180.0000 1.8467 1.9896 744.4526 256.0000 181.0000 1.8467 0.9267 + 672.6963 256.0000 182.0000 1.8467 0.9383 649.4718 256.0000 183.0000 1.8467 0.9820 + 629.7613 256.0000 184.0000 1.8467 0.9815 585.6643 256.0000 185.0000 1.8467 0.9954 + 766.9569 256.0000 187.0000 1.8467 0.9705 1494.4404 256.0000 188.0000 1.8467 0.9662 + 804.0492 256.0000 189.0000 1.8467 2.9070 935.3603 256.0000 190.0000 1.8467 2.8844 + 834.4609 256.0000 191.0000 1.8467 2.8738 732.6064 256.0000 192.0000 1.8467 2.8878 + 704.0257 256.0000 193.0000 1.8467 2.9095 860.6585 256.0000 194.0000 1.8467 1.9209 + 197.5839 256.0000 204.0000 1.8467 1.9697 193.8381 256.0000 205.0000 1.8467 1.9441 + 140.2904 256.0000 206.0000 1.8467 1.9985 111.7057 256.0000 207.0000 1.8467 2.0143 + 75.7417 256.0000 208.0000 1.8467 1.9887 353.0531 256.0000 212.0000 1.8467 1.9496 + 427.3949 256.0000 213.0000 1.8467 1.9311 407.4620 256.0000 214.0000 1.8467 1.9435 + 351.6844 256.0000 215.0000 1.8467 2.0102 293.4143 256.0000 216.0000 1.8467 1.9903 + 495.4172 256.0000 220.0000 1.8467 1.9349 473.6984 256.0000 221.0000 1.8467 2.8999 + 479.3449 256.0000 222.0000 1.8467 3.8675 438.9190 256.0000 223.0000 1.8467 2.9110 + 328.0436 256.0000 224.0000 1.8467 10.6191 279.2953 256.0000 225.0000 1.8467 9.8849 + 274.2873 256.0000 226.0000 1.8467 9.1376 324.0498 256.0000 227.0000 1.8467 2.9263 + 301.1629 256.0000 228.0000 1.8467 6.5458 429.3221 256.0000 231.0000 1.8467 1.9315 + 452.0196 256.0000 232.0000 1.8467 1.9447 411.8184 256.0000 233.0000 1.8467 1.9793 + 381.6942 256.0000 234.0000 1.8467 1.9812 593.3572 256.0000 238.0000 1.8467 1.9143 + 567.2445 256.0000 239.0000 1.8467 2.8903 571.0295 256.0000 240.0000 1.8467 3.9106 + 552.6718 256.0000 241.0000 1.8467 2.9225 486.0298 256.0000 242.0000 1.8467 11.0556 + 427.1818 256.0000 243.0000 1.8467 9.5402 403.0280 256.0000 244.0000 1.8467 8.8895 + 412.5321 256.0000 245.0000 1.8467 2.9696 431.4907 256.0000 246.0000 1.8467 5.7095 + 553.0827 256.0000 249.0000 1.8467 1.9378 600.9779 256.0000 250.0000 1.8467 1.9505 + 563.1051 256.0000 251.0000 1.8467 1.9523 541.6776 256.0000 252.0000 1.8467 1.9639 + 716.5475 256.0000 256.0000 1.8467 1.8467 46.8202 257.0000 1.0000 2.9175 0.9118 + 30.5886 257.0000 2.0000 2.9175 0.0000 748.9052 257.0000 3.0000 2.9175 0.0000 + 428.0498 257.0000 4.0000 2.9175 0.0000 286.0290 257.0000 5.0000 2.9175 0.0000 + 191.9355 257.0000 6.0000 2.9175 0.0000 133.4410 257.0000 7.0000 2.9175 0.0000 + 100.5575 257.0000 8.0000 2.9175 0.0000 75.8298 257.0000 9.0000 2.9175 0.0000 + 58.0795 257.0000 10.0000 2.9175 0.0000 894.7448 257.0000 11.0000 2.9175 0.0000 + 683.2371 257.0000 12.0000 2.9175 0.0000 627.5348 257.0000 13.0000 2.9175 0.0000 + 491.8929 257.0000 14.0000 2.9175 0.0000 381.6757 257.0000 15.0000 2.9175 0.0000 + 315.6193 257.0000 16.0000 2.9175 0.0000 256.8455 257.0000 17.0000 2.9175 0.0000 + 209.3707 257.0000 18.0000 2.9175 0.0000 1467.2405 257.0000 19.0000 2.9175 0.0000 + 1204.1091 257.0000 20.0000 2.9175 0.0000 993.2805 257.0000 21.0000 2.9175 0.0000 + 957.5700 257.0000 22.0000 2.9175 0.0000 876.0050 257.0000 23.0000 2.9175 0.0000 + 689.4794 257.0000 24.0000 2.9175 0.0000 753.0932 257.0000 25.0000 2.9175 0.0000 + 590.4390 257.0000 26.0000 2.9175 0.0000 625.0103 257.0000 27.0000 2.9175 0.0000 + 644.5028 257.0000 28.0000 2.9175 0.0000 493.6053 257.0000 29.0000 2.9175 0.0000 + 505.5837 257.0000 30.0000 2.9175 0.0000 599.8301 257.0000 31.0000 2.9175 0.0000 + 526.8660 257.0000 32.0000 2.9175 0.0000 447.5546 257.0000 33.0000 2.9175 0.0000 + 400.4704 257.0000 34.0000 2.9175 0.0000 349.3710 257.0000 35.0000 2.9175 0.0000 + 302.8960 257.0000 36.0000 2.9175 0.0000 1643.0879 257.0000 37.0000 2.9175 0.0000 + 1434.6583 257.0000 38.0000 2.9175 0.0000 1253.1317 257.0000 39.0000 2.9175 0.0000 + 1124.0457 257.0000 40.0000 2.9175 0.0000 1023.5000 257.0000 41.0000 2.9175 0.0000 + 787.9045 257.0000 42.0000 2.9175 0.0000 880.0314 257.0000 43.0000 2.9175 0.0000 + 668.2859 257.0000 44.0000 2.9175 0.0000 730.8135 257.0000 45.0000 2.9175 0.0000 + 677.0271 257.0000 46.0000 2.9175 0.0000 564.2490 257.0000 47.0000 2.9175 0.0000 + 595.7322 257.0000 48.0000 2.9175 0.0000 749.9911 257.0000 49.0000 2.9175 0.0000 + 691.3637 257.0000 50.0000 2.9175 0.0000 613.9793 257.0000 51.0000 2.9175 0.0000 + 568.3523 257.0000 52.0000 2.9175 0.0000 512.5389 257.0000 53.0000 2.9175 0.0000 + 459.5735 257.0000 54.0000 2.9175 0.0000 2001.2557 257.0000 55.0000 2.9175 0.0000 + 1830.2684 257.0000 56.0000 2.9175 0.0000 1603.5452 257.0000 57.0000 2.9175 0.0000 + 725.6894 257.0000 58.0000 2.9175 2.7991 1619.6684 257.0000 59.0000 2.9175 0.0000 + 1554.6376 257.0000 60.0000 2.9175 0.0000 1515.4611 257.0000 61.0000 2.9175 0.0000 + 1479.4584 257.0000 62.0000 2.9175 0.0000 1447.5288 257.0000 63.0000 2.9175 0.0000 + 1134.1326 257.0000 64.0000 2.9175 0.0000 1282.3779 257.0000 65.0000 2.9175 0.0000 + 1236.0668 257.0000 66.0000 2.9175 0.0000 1304.7191 257.0000 67.0000 2.9175 0.0000 + 1276.9567 257.0000 68.0000 2.9175 0.0000 1251.8739 257.0000 69.0000 2.9175 0.0000 + 1237.4305 257.0000 70.0000 2.9175 0.0000 1039.9691 257.0000 71.0000 2.9175 0.0000 + 1019.9809 257.0000 72.0000 2.9175 0.0000 928.8454 257.0000 73.0000 2.9175 0.0000 + 782.6068 257.0000 74.0000 2.9175 0.0000 795.6002 257.0000 75.0000 2.9175 0.0000 + 719.5979 257.0000 76.0000 2.9175 0.0000 657.8799 257.0000 77.0000 2.9175 0.0000 + 545.1997 257.0000 78.0000 2.9175 0.0000 508.8669 257.0000 79.0000 2.9175 0.0000 + 523.2255 257.0000 80.0000 2.9175 0.0000 768.7997 257.0000 81.0000 2.9175 0.0000 + 749.9894 257.0000 82.0000 2.9175 0.0000 687.0637 257.0000 83.0000 2.9175 0.0000 + 654.0503 257.0000 84.0000 2.9175 0.0000 602.1577 257.0000 85.0000 2.9175 0.0000 + 550.6010 257.0000 86.0000 2.9175 0.0000 1885.5867 257.0000 87.0000 2.9175 0.0000 + 1807.1153 257.0000 88.0000 2.9175 0.0000 1593.0087 257.0000 89.0000 2.9175 0.0000 + 1426.5400 257.0000 90.0000 2.9175 0.0000 1418.2359 257.0000 91.0000 2.9175 0.0000 + 1373.0549 257.0000 92.0000 2.9175 0.0000 1416.4457 257.0000 93.0000 2.9175 0.0000 + 1371.1890 257.0000 94.0000 2.9175 0.0000 75.8394 257.0000 101.0000 2.9175 0.0000 + 248.4867 257.0000 103.0000 2.9175 0.9865 316.4815 257.0000 104.0000 2.9175 0.9808 + 240.1361 257.0000 105.0000 2.9175 0.9706 180.0326 257.0000 106.0000 2.9175 0.9868 + 124.4124 257.0000 107.0000 2.9175 0.9944 90.0932 257.0000 108.0000 2.9175 0.9925 + 61.4499 257.0000 109.0000 2.9175 0.9982 363.4612 257.0000 111.0000 2.9175 0.9684 + 562.6808 257.0000 112.0000 2.9175 0.9628 568.1457 257.0000 113.0000 2.9175 0.9648 + 454.2176 257.0000 114.0000 2.9175 0.9507 370.3899 257.0000 115.0000 2.9175 0.9947 + 312.1500 257.0000 116.0000 2.9175 0.9948 254.1851 257.0000 117.0000 2.9175 0.9972 + 499.2067 257.0000 119.0000 2.9175 0.9767 962.2662 257.0000 120.0000 2.9175 0.9831 + 497.6257 257.0000 121.0000 2.9175 1.8627 480.2028 257.0000 122.0000 2.9175 1.8299 + 470.5903 257.0000 123.0000 2.9175 1.9138 466.4241 257.0000 124.0000 2.9175 1.8269 + 428.1805 257.0000 125.0000 2.9175 1.6406 395.8945 257.0000 126.0000 2.9175 1.6483 + 377.5895 257.0000 127.0000 2.9175 1.7149 369.1952 257.0000 128.0000 2.9175 1.7937 + 365.3990 257.0000 129.0000 2.9175 0.9576 341.7316 257.0000 130.0000 2.9175 1.9419 + 562.7686 257.0000 131.0000 2.9175 0.9601 492.3604 257.0000 132.0000 2.9175 0.9434 + 439.8384 257.0000 133.0000 2.9175 0.9889 400.6320 257.0000 134.0000 2.9175 0.9901 + 351.8502 257.0000 135.0000 2.9175 0.9974 594.9926 257.0000 137.0000 2.9175 0.9738 + 1171.1205 257.0000 138.0000 2.9175 0.9801 889.9501 257.0000 139.0000 2.9175 1.9153 + 658.2098 257.0000 140.0000 2.9175 1.9355 664.7346 257.0000 141.0000 2.9175 1.9545 + 619.0974 257.0000 142.0000 2.9175 1.9420 696.3752 257.0000 143.0000 2.9175 1.6682 + 538.1720 257.0000 144.0000 2.9175 1.8584 503.1910 257.0000 145.0000 2.9175 1.9003 + 466.8855 257.0000 146.0000 2.9175 1.8630 451.7417 257.0000 147.0000 2.9175 0.9679 + 446.1765 257.0000 148.0000 2.9175 1.9539 714.0617 257.0000 149.0000 2.9175 0.9633 + 643.8177 257.0000 150.0000 2.9175 0.9514 601.4334 257.0000 151.0000 2.9175 0.9749 + 567.8637 257.0000 152.0000 2.9175 0.9811 517.3851 257.0000 153.0000 2.9175 0.9968 + 702.1148 257.0000 155.0000 2.9175 0.9909 1519.7933 257.0000 156.0000 2.9175 0.9797 + 1126.9136 257.0000 157.0000 2.9175 1.9373 703.6339 257.0000 159.0000 2.9175 2.9425 + 689.0464 257.0000 160.0000 2.9175 2.9455 667.0629 257.0000 161.0000 2.9175 2.9413 + 670.6863 257.0000 162.0000 2.9175 2.9300 647.4730 257.0000 163.0000 2.9175 1.8286 + 675.1196 257.0000 164.0000 2.9175 2.8732 633.7528 257.0000 165.0000 2.9175 2.9086 + 645.4413 257.0000 166.0000 2.9175 2.8965 601.2846 257.0000 167.0000 2.9175 2.9242 + 584.0468 257.0000 168.0000 2.9175 2.9282 580.3947 257.0000 169.0000 2.9175 2.9246 + 610.6554 257.0000 170.0000 2.9175 2.8482 560.8653 257.0000 171.0000 2.9175 2.9219 + 764.5954 257.0000 172.0000 2.9175 1.9254 708.0568 257.0000 173.0000 2.9175 1.9459 + 644.5293 257.0000 174.0000 2.9175 1.9292 653.3684 257.0000 175.0000 2.9175 1.8104 + 568.9397 257.0000 176.0000 2.9175 1.8858 534.6598 257.0000 177.0000 2.9175 1.8648 + 510.2993 257.0000 178.0000 2.9175 1.9188 487.7354 257.0000 179.0000 2.9175 0.9846 + 470.4486 257.0000 180.0000 2.9175 1.9896 765.8095 257.0000 181.0000 2.9175 0.9267 + 695.6631 257.0000 182.0000 2.9175 0.9383 673.4193 257.0000 183.0000 2.9175 0.9820 + 654.0389 257.0000 184.0000 2.9175 0.9815 609.4636 257.0000 185.0000 2.9175 0.9954 + 790.6292 257.0000 187.0000 2.9175 0.9705 1508.9609 257.0000 188.0000 2.9175 0.9662 + 832.7859 257.0000 189.0000 2.9175 2.9070 963.8914 257.0000 190.0000 2.9175 2.8844 + 860.5557 257.0000 191.0000 2.9175 2.8738 758.6803 257.0000 192.0000 2.9175 2.8878 + 729.6137 257.0000 193.0000 2.9175 2.9095 883.2078 257.0000 194.0000 2.9175 1.9209 + 205.0850 257.0000 204.0000 2.9175 1.9697 201.2083 257.0000 205.0000 2.9175 1.9441 + 146.3330 257.0000 206.0000 2.9175 1.9985 116.6803 257.0000 207.0000 2.9175 2.0143 + 79.2877 257.0000 208.0000 2.9175 1.9887 364.9162 257.0000 212.0000 2.9175 1.9496 + 441.2004 257.0000 213.0000 2.9175 1.9311 422.1202 257.0000 214.0000 2.9175 1.9435 + 365.4498 257.0000 215.0000 2.9175 2.0102 305.7996 257.0000 216.0000 2.9175 1.9903 + 511.3063 257.0000 220.0000 2.9175 1.9349 490.3181 257.0000 221.0000 2.9175 2.8999 + 496.2446 257.0000 222.0000 2.9175 3.8675 454.0832 257.0000 223.0000 2.9175 2.9110 + 340.5132 257.0000 224.0000 2.9175 10.6191 290.5610 257.0000 225.0000 2.9175 9.8849 + 285.2677 257.0000 226.0000 2.9175 9.1376 335.8153 257.0000 227.0000 2.9175 2.9263 + 312.4878 257.0000 228.0000 2.9175 6.5458 444.1573 257.0000 231.0000 2.9175 1.9315 + 468.3886 257.0000 232.0000 2.9175 1.9447 428.0906 257.0000 233.0000 2.9175 1.9793 + 397.4445 257.0000 234.0000 2.9175 1.9812 612.2994 257.0000 238.0000 2.9175 1.9143 + 587.7222 257.0000 239.0000 2.9175 2.8903 592.2396 257.0000 240.0000 2.9175 3.9106 + 572.6815 257.0000 241.0000 2.9175 2.9225 504.8956 257.0000 242.0000 2.9175 11.0556 + 444.5757 257.0000 243.0000 2.9175 9.5402 419.6916 257.0000 244.0000 2.9175 8.8895 + 428.4259 257.0000 245.0000 2.9175 2.9696 447.9267 257.0000 246.0000 2.9175 5.7095 + 572.0823 257.0000 249.0000 2.9175 1.9378 621.9390 257.0000 250.0000 2.9175 1.9505 + 584.5218 257.0000 251.0000 2.9175 1.9523 563.1134 257.0000 252.0000 2.9175 1.9639 + 739.9160 257.0000 256.0000 2.9175 1.8467 766.0202 257.0000 257.0000 2.9175 2.9175 + 35.2195 272.0000 1.0000 3.8840 0.9118 23.4106 272.0000 2.0000 3.8840 0.0000 + 525.3124 272.0000 3.0000 3.8840 0.0000 309.8467 272.0000 4.0000 3.8840 0.0000 + 210.8417 272.0000 5.0000 3.8840 0.0000 143.4200 272.0000 6.0000 3.8840 0.0000 + 100.7419 272.0000 7.0000 3.8840 0.0000 76.4842 272.0000 8.0000 3.8840 0.0000 + 58.0567 272.0000 9.0000 3.8840 0.0000 44.7120 272.0000 10.0000 3.8840 0.0000 + 628.9308 272.0000 11.0000 3.8840 0.0000 491.8846 272.0000 12.0000 3.8840 0.0000 + 456.0290 272.0000 13.0000 3.8840 0.0000 361.9455 272.0000 14.0000 3.8840 0.0000 + 283.8239 272.0000 15.0000 3.8840 0.0000 236.3271 272.0000 16.0000 3.8840 0.0000 + 193.6020 272.0000 17.0000 3.8840 0.0000 158.7463 272.0000 18.0000 3.8840 0.0000 + 1027.4537 272.0000 19.0000 3.8840 0.0000 858.7351 272.0000 20.0000 3.8840 0.0000 + 711.4013 272.0000 21.0000 3.8840 0.0000 688.6652 272.0000 22.0000 3.8840 0.0000 + 631.5437 272.0000 23.0000 3.8840 0.0000 497.5754 272.0000 24.0000 3.8840 0.0000 + 544.8626 272.0000 25.0000 3.8840 0.0000 427.8056 272.0000 26.0000 3.8840 0.0000 + 454.8427 272.0000 27.0000 3.8840 0.0000 467.8560 272.0000 28.0000 3.8840 0.0000 + 358.6850 272.0000 29.0000 3.8840 0.0000 369.9201 272.0000 30.0000 3.8840 0.0000 + 437.6841 272.0000 31.0000 3.8840 0.0000 388.1085 272.0000 32.0000 3.8840 0.0000 + 332.5587 272.0000 33.0000 3.8840 0.0000 299.1967 272.0000 34.0000 3.8840 0.0000 + 262.4889 272.0000 35.0000 3.8840 0.0000 228.7578 272.0000 36.0000 3.8840 0.0000 + 1152.8150 272.0000 37.0000 3.8840 0.0000 1022.6698 272.0000 38.0000 3.8840 0.0000 + 900.1084 272.0000 39.0000 3.8840 0.0000 811.3033 272.0000 40.0000 3.8840 0.0000 + 741.1601 272.0000 41.0000 3.8840 0.0000 573.9237 272.0000 42.0000 3.8840 0.0000 + 639.6388 272.0000 43.0000 3.8840 0.0000 488.8736 272.0000 44.0000 3.8840 0.0000 + 534.3847 272.0000 45.0000 3.8840 0.0000 496.0739 272.0000 46.0000 3.8840 0.0000 + 413.2739 272.0000 47.0000 3.8840 0.0000 437.6803 272.0000 48.0000 3.8840 0.0000 + 547.4380 272.0000 49.0000 3.8840 0.0000 508.4799 272.0000 50.0000 3.8840 0.0000 + 454.9967 272.0000 51.0000 3.8840 0.0000 423.1347 272.0000 52.0000 3.8840 0.0000 + 383.4911 272.0000 53.0000 3.8840 0.0000 345.4999 272.0000 54.0000 3.8840 0.0000 + 1404.8971 272.0000 55.0000 3.8840 0.0000 1301.7488 272.0000 56.0000 3.8840 0.0000 + 1149.0950 272.0000 57.0000 3.8840 0.0000 537.1200 272.0000 58.0000 3.8840 2.7991 + 1155.0423 272.0000 59.0000 3.8840 0.0000 1109.9829 272.0000 60.0000 3.8840 0.0000 + 1082.3751 272.0000 61.0000 3.8840 0.0000 1056.9604 272.0000 62.0000 3.8840 0.0000 + 1034.4333 272.0000 63.0000 3.8840 0.0000 817.6123 272.0000 64.0000 3.8840 0.0000 + 913.6454 272.0000 65.0000 3.8840 0.0000 881.9839 272.0000 66.0000 3.8840 0.0000 + 934.0964 272.0000 67.0000 3.8840 0.0000 914.3896 272.0000 68.0000 3.8840 0.0000 + 896.6775 272.0000 69.0000 3.8840 0.0000 886.0025 272.0000 70.0000 3.8840 0.0000 + 749.1105 272.0000 71.0000 3.8840 0.0000 740.2521 272.0000 72.0000 3.8840 0.0000 + 677.3750 272.0000 73.0000 3.8840 0.0000 573.1085 272.0000 74.0000 3.8840 0.0000 + 583.6320 272.0000 75.0000 3.8840 0.0000 530.0945 272.0000 76.0000 3.8840 0.0000 + 486.2916 272.0000 77.0000 3.8840 0.0000 404.6020 272.0000 78.0000 3.8840 0.0000 + 378.2426 272.0000 79.0000 3.8840 0.0000 389.4352 272.0000 80.0000 3.8840 0.0000 + 562.5975 272.0000 81.0000 3.8840 0.0000 551.9550 272.0000 82.0000 3.8840 0.0000 + 509.0381 272.0000 83.0000 3.8840 0.0000 486.4793 272.0000 84.0000 3.8840 0.0000 + 450.0048 272.0000 85.0000 3.8840 0.0000 413.2665 272.0000 86.0000 3.8840 0.0000 + 1331.7058 272.0000 87.0000 3.8840 0.0000 1290.4127 272.0000 88.0000 3.8840 0.0000 + 1145.4809 272.0000 89.0000 3.8840 0.0000 1034.2317 272.0000 90.0000 3.8840 0.0000 + 1024.3603 272.0000 91.0000 3.8840 0.0000 991.9479 272.0000 92.0000 3.8840 0.0000 + 1018.2141 272.0000 93.0000 3.8840 0.0000 986.5736 272.0000 94.0000 3.8840 0.0000 + 56.4513 272.0000 101.0000 3.8840 0.0000 180.3567 272.0000 103.0000 3.8840 0.9865 + 230.5206 272.0000 104.0000 3.8840 0.9808 177.6918 272.0000 105.0000 3.8840 0.9706 + 134.5100 272.0000 106.0000 3.8840 0.9868 93.9569 272.0000 107.0000 3.8840 0.9944 + 68.6555 272.0000 108.0000 3.8840 0.9925 47.3702 272.0000 109.0000 3.8840 0.9982 + 263.0701 272.0000 111.0000 3.8840 0.9684 406.5820 272.0000 112.0000 3.8840 0.9628 + 413.8249 272.0000 113.0000 3.8840 0.9648 334.8490 272.0000 114.0000 3.8840 0.9507 + 275.5427 272.0000 115.0000 3.8840 0.9947 233.6999 272.0000 116.0000 3.8840 0.9948 + 191.5796 272.0000 117.0000 3.8840 0.9972 364.0815 272.0000 119.0000 3.8840 0.9767 + 687.2356 272.0000 120.0000 3.8840 0.9831 366.3074 272.0000 121.0000 3.8840 1.8627 + 353.6686 272.0000 122.0000 3.8840 1.8299 346.5441 272.0000 123.0000 3.8840 1.9138 + 343.0870 272.0000 124.0000 3.8840 1.8269 316.7157 272.0000 125.0000 3.8840 1.6406 + 293.3646 272.0000 126.0000 3.8840 1.6483 279.8339 272.0000 127.0000 3.8840 1.7149 + 273.4930 272.0000 128.0000 3.8840 1.7937 269.5315 272.0000 129.0000 3.8840 0.9576 + 254.0293 272.0000 130.0000 3.8840 1.9419 411.6506 272.0000 131.0000 3.8840 0.9601 + 363.5188 272.0000 132.0000 3.8840 0.9434 326.9981 272.0000 133.0000 3.8840 0.9889 + 299.2958 272.0000 134.0000 3.8840 0.9901 264.2782 272.0000 135.0000 3.8840 0.9974 + 434.9443 272.0000 137.0000 3.8840 0.9738 835.7270 272.0000 138.0000 3.8840 0.9801 + 644.7928 272.0000 139.0000 3.8840 1.9153 484.2582 272.0000 140.0000 3.8840 1.9355 + 488.9632 272.0000 141.0000 3.8840 1.9545 456.4149 272.0000 142.0000 3.8840 1.9420 + 509.6654 272.0000 143.0000 3.8840 1.6682 398.9804 272.0000 144.0000 3.8840 1.8584 + 373.3141 272.0000 145.0000 3.8840 1.9003 346.8008 272.0000 146.0000 3.8840 1.8630 + 335.2999 272.0000 147.0000 3.8840 0.9679 332.4942 272.0000 148.0000 3.8840 1.9539 + 522.6366 272.0000 149.0000 3.8840 0.9633 474.9574 272.0000 150.0000 3.8840 0.9514 + 446.1604 272.0000 151.0000 3.8840 0.9749 422.8902 272.0000 152.0000 3.8840 0.9811 + 387.0805 272.0000 153.0000 3.8840 0.9968 516.2527 272.0000 155.0000 3.8840 0.9909 + 1081.5338 272.0000 156.0000 3.8840 0.9797 815.4833 272.0000 157.0000 3.8840 1.9373 + 521.0382 272.0000 159.0000 3.8840 2.9425 510.2804 272.0000 160.0000 3.8840 2.9455 + 494.2011 272.0000 161.0000 3.8840 2.9413 496.3249 272.0000 162.0000 3.8840 2.9300 + 477.4175 272.0000 163.0000 3.8840 1.8286 499.3872 272.0000 164.0000 3.8840 2.8732 + 469.2695 272.0000 165.0000 3.8840 2.9086 476.9556 272.0000 166.0000 3.8840 2.8965 + 445.6595 272.0000 167.0000 3.8840 2.9242 433.0449 272.0000 168.0000 3.8840 2.9282 + 430.2033 272.0000 169.0000 3.8840 2.9246 451.8405 272.0000 170.0000 3.8840 2.8482 + 415.9525 272.0000 171.0000 3.8840 2.9219 559.5455 272.0000 172.0000 3.8840 1.9254 + 520.5842 272.0000 173.0000 3.8840 1.9459 476.1701 272.0000 174.0000 3.8840 1.9292 + 480.7152 272.0000 175.0000 3.8840 1.8104 423.2275 272.0000 176.0000 3.8840 1.8858 + 398.4345 272.0000 177.0000 3.8840 1.8648 380.7018 272.0000 178.0000 3.8840 1.9188 + 363.8829 272.0000 179.0000 3.8840 0.9846 352.3223 272.0000 180.0000 3.8840 1.9896 + 561.5704 272.0000 181.0000 3.8840 0.9267 514.0647 272.0000 182.0000 3.8840 0.9383 + 499.6808 272.0000 183.0000 3.8840 0.9820 486.7535 272.0000 184.0000 3.8840 0.9815 + 455.4758 272.0000 185.0000 3.8840 0.9954 581.5932 272.0000 187.0000 3.8840 0.9705 + 1079.0444 272.0000 188.0000 3.8840 0.9662 616.5066 272.0000 189.0000 3.8840 2.9070 + 708.9084 272.0000 190.0000 3.8840 2.8844 634.5427 272.0000 191.0000 3.8840 2.8738 + 562.3650 272.0000 192.0000 3.8840 2.8878 541.4742 272.0000 193.0000 3.8840 2.9095 + 646.3003 272.0000 194.0000 3.8840 1.9209 151.8710 272.0000 204.0000 3.8840 1.9697 + 149.4557 272.0000 205.0000 3.8840 1.9441 109.9534 272.0000 206.0000 3.8840 1.9985 + 88.2333 272.0000 207.0000 3.8840 2.0143 60.5927 272.0000 208.0000 3.8840 1.9887 + 268.1594 272.0000 212.0000 3.8840 1.9496 323.8740 272.0000 213.0000 3.8840 1.9311 + 311.7468 272.0000 214.0000 3.8840 1.9435 271.7071 272.0000 215.0000 3.8840 2.0102 + 228.9830 272.0000 216.0000 3.8840 1.9903 375.8352 272.0000 220.0000 3.8840 1.9349 + 362.1428 272.0000 221.0000 3.8840 2.8999 366.6628 272.0000 222.0000 3.8840 3.8675 + 335.4749 272.0000 223.0000 3.8840 2.9110 253.6388 272.0000 224.0000 3.8840 10.6191 + 217.5174 272.0000 225.0000 3.8840 9.8849 213.4398 272.0000 226.0000 3.8840 9.1376 + 249.2727 272.0000 227.0000 3.8840 2.9263 232.4905 272.0000 228.0000 3.8840 6.5458 + 327.6728 272.0000 231.0000 3.8840 1.9315 346.3606 272.0000 232.0000 3.8840 1.9447 + 318.5520 272.0000 233.0000 3.8840 1.9793 296.9628 272.0000 234.0000 3.8840 1.9812 + 450.4096 272.0000 238.0000 3.8840 1.9143 435.0222 272.0000 239.0000 3.8840 2.8903 + 439.1688 272.0000 240.0000 3.8840 3.9106 424.5140 272.0000 241.0000 3.8840 2.9225 + 376.2853 272.0000 242.0000 3.8840 11.0556 332.7662 272.0000 243.0000 3.8840 9.5402 + 314.6598 272.0000 244.0000 3.8840 8.8895 319.7331 272.0000 245.0000 3.8840 2.9696 + 333.7879 272.0000 246.0000 3.8840 5.7095 422.7552 272.0000 249.0000 3.8840 1.9378 + 459.5520 272.0000 250.0000 3.8840 1.9505 434.1959 272.0000 251.0000 3.8840 1.9523 + 419.5653 272.0000 252.0000 3.8840 1.9639 545.2609 272.0000 256.0000 3.8840 1.8467 + 566.2392 272.0000 257.0000 3.8840 2.9175 420.9766 272.0000 272.0000 3.8840 3.8840 + 36.5951 273.0000 1.0000 2.8988 0.9118 24.2814 273.0000 2.0000 2.8988 0.0000 + 566.1059 273.0000 3.0000 2.8988 0.0000 326.4469 273.0000 4.0000 2.8988 0.0000 + 220.4197 273.0000 5.0000 2.8988 0.0000 149.3290 273.0000 6.0000 2.8988 0.0000 + 104.6769 273.0000 7.0000 2.8988 0.0000 79.3968 273.0000 8.0000 2.8988 0.0000 + 60.2393 273.0000 9.0000 2.8988 0.0000 46.3878 273.0000 10.0000 2.8988 0.0000 + 676.8713 273.0000 11.0000 2.8988 0.0000 519.9846 273.0000 12.0000 2.8988 0.0000 + 479.7941 273.0000 13.0000 2.8988 0.0000 378.6269 273.0000 14.0000 2.8988 0.0000 + 295.8053 273.0000 15.0000 2.8988 0.0000 245.8675 273.0000 16.0000 2.8988 0.0000 + 201.1396 273.0000 17.0000 2.8988 0.0000 164.7805 273.0000 18.0000 2.8988 0.0000 + 1112.6264 273.0000 19.0000 2.8988 0.0000 914.4703 273.0000 20.0000 2.8988 0.0000 + 755.2519 273.0000 21.0000 2.8988 0.0000 729.5649 273.0000 22.0000 2.8988 0.0000 + 668.1599 273.0000 23.0000 2.8988 0.0000 526.7674 273.0000 24.0000 2.8988 0.0000 + 575.3875 273.0000 25.0000 2.8988 0.0000 451.9544 273.0000 26.0000 2.8988 0.0000 + 478.7837 273.0000 27.0000 2.8988 0.0000 493.0665 273.0000 28.0000 2.8988 0.0000 + 378.3878 273.0000 29.0000 2.8988 0.0000 388.3794 273.0000 30.0000 2.8988 0.0000 + 459.9876 273.0000 31.0000 2.8988 0.0000 406.0097 273.0000 32.0000 2.8988 0.0000 + 346.7690 273.0000 33.0000 2.8988 0.0000 311.4923 273.0000 34.0000 2.8988 0.0000 + 272.9038 273.0000 35.0000 2.8988 0.0000 237.5951 273.0000 36.0000 2.8988 0.0000 + 1247.3944 273.0000 37.0000 2.8988 0.0000 1090.1054 273.0000 38.0000 2.8988 0.0000 + 954.6796 273.0000 39.0000 2.8988 0.0000 858.1082 273.0000 40.0000 2.8988 0.0000 + 782.6849 273.0000 41.0000 2.8988 0.0000 604.7166 273.0000 42.0000 2.8988 0.0000 + 674.5116 273.0000 43.0000 2.8988 0.0000 514.2669 273.0000 44.0000 2.8988 0.0000 + 561.7599 273.0000 45.0000 2.8988 0.0000 521.0045 273.0000 46.0000 2.8988 0.0000 + 434.7817 273.0000 47.0000 2.8988 0.0000 459.1663 273.0000 48.0000 2.8988 0.0000 + 575.9720 273.0000 49.0000 2.8988 0.0000 532.7389 273.0000 50.0000 2.8988 0.0000 + 475.1601 273.0000 51.0000 2.8988 0.0000 441.1736 273.0000 52.0000 2.8988 0.0000 + 399.2387 273.0000 53.0000 2.8988 0.0000 359.2542 273.0000 54.0000 2.8988 0.0000 + 1520.9786 273.0000 55.0000 2.8988 0.0000 1390.8237 273.0000 56.0000 2.8988 0.0000 + 1221.2713 273.0000 57.0000 2.8988 0.0000 561.4420 273.0000 58.0000 2.8988 2.7991 + 1232.1348 273.0000 59.0000 2.8988 0.0000 1182.7756 273.0000 60.0000 2.8988 0.0000 + 1153.0265 273.0000 61.0000 2.8988 0.0000 1125.6719 273.0000 62.0000 2.8988 0.0000 + 1101.4151 273.0000 63.0000 2.8988 0.0000 866.4353 273.0000 64.0000 2.8988 0.0000 + 977.2208 273.0000 65.0000 2.8988 0.0000 942.6309 273.0000 66.0000 2.8988 0.0000 + 993.1490 273.0000 67.0000 2.8988 0.0000 972.0151 273.0000 68.0000 2.8988 0.0000 + 952.9641 273.0000 69.0000 2.8988 0.0000 941.7869 273.0000 70.0000 2.8988 0.0000 + 793.8369 273.0000 71.0000 2.8988 0.0000 780.5354 273.0000 72.0000 2.8988 0.0000 + 712.5324 273.0000 73.0000 2.8988 0.0000 602.2024 273.0000 74.0000 2.8988 0.0000 + 612.5821 273.0000 75.0000 2.8988 0.0000 555.3892 273.0000 76.0000 2.8988 0.0000 + 508.8223 273.0000 77.0000 2.8988 0.0000 423.0185 273.0000 78.0000 2.8988 0.0000 + 395.3275 273.0000 79.0000 2.8988 0.0000 406.6133 273.0000 80.0000 2.8988 0.0000 + 591.9094 273.0000 81.0000 2.8988 0.0000 578.5930 273.0000 82.0000 2.8988 0.0000 + 531.9314 273.0000 83.0000 2.8988 0.0000 507.5787 273.0000 84.0000 2.8988 0.0000 + 468.7736 273.0000 85.0000 2.8988 0.0000 429.9772 273.0000 86.0000 2.8988 0.0000 + 1434.8337 273.0000 87.0000 2.8988 0.0000 1375.1465 273.0000 88.0000 2.8988 0.0000 + 1214.8259 273.0000 89.0000 2.8988 0.0000 1091.7991 273.0000 90.0000 2.8988 0.0000 + 1084.3209 273.0000 91.0000 2.8988 0.0000 1049.8792 273.0000 92.0000 2.8988 0.0000 + 1080.8128 273.0000 93.0000 2.8988 0.0000 1046.5858 273.0000 94.0000 2.8988 0.0000 + 58.8038 273.0000 101.0000 2.8988 0.0000 189.8611 273.0000 103.0000 2.8988 0.9865 + 242.4429 273.0000 104.0000 2.8988 0.9808 185.5749 273.0000 105.0000 2.8988 0.9706 + 140.1249 273.0000 106.0000 2.8988 0.9868 97.6568 273.0000 107.0000 2.8988 0.9944 + 71.2644 273.0000 108.0000 2.8988 0.9925 49.1219 273.0000 109.0000 2.8988 0.9982 + 277.5361 273.0000 111.0000 2.8988 0.9684 429.3240 273.0000 112.0000 2.8988 0.9628 + 434.9778 273.0000 113.0000 2.8988 0.9648 350.0849 273.0000 114.0000 2.8988 0.9507 + 287.1696 273.0000 115.0000 2.8988 0.9947 243.1608 273.0000 116.0000 2.8988 0.9948 + 199.0537 273.0000 117.0000 2.8988 0.9972 383.5190 273.0000 119.0000 2.8988 0.9767 + 732.9927 273.0000 120.0000 2.8988 0.9831 383.5932 273.0000 121.0000 2.8988 1.8627 + 370.4544 273.0000 122.0000 2.8988 1.8299 363.0328 273.0000 123.0000 2.8988 1.9138 + 359.6452 273.0000 124.0000 2.8988 1.8269 331.0001 273.0000 125.0000 2.8988 1.6406 + 306.4315 273.0000 126.0000 2.8988 1.6483 292.3568 273.0000 127.0000 2.8988 1.7149 + 285.7997 273.0000 128.0000 2.8988 1.7937 282.2514 273.0000 129.0000 2.8988 0.9576 + 265.0166 273.0000 130.0000 2.8988 1.9419 432.1249 273.0000 131.0000 2.8988 0.9601 + 379.9737 273.0000 132.0000 2.8988 0.9434 340.9276 273.0000 133.0000 2.8988 0.9889 + 311.6121 273.0000 134.0000 2.8988 0.9901 274.7891 273.0000 135.0000 2.8988 0.9974 + 457.8458 273.0000 137.0000 2.8988 0.9738 892.5336 273.0000 138.0000 2.8988 0.9801 + 682.1282 273.0000 139.0000 2.8988 1.9153 507.6612 273.0000 140.0000 2.8988 1.9355 + 512.5695 273.0000 141.0000 2.8988 1.9545 478.1928 273.0000 142.0000 2.8988 1.9420 + 536.2636 273.0000 143.0000 2.8988 1.6682 416.9904 273.0000 144.0000 2.8988 1.8584 + 390.1903 273.0000 145.0000 2.8988 1.9003 362.4056 273.0000 146.0000 2.8988 1.8630 + 350.5137 273.0000 147.0000 2.8988 0.9679 346.8043 273.0000 148.0000 2.8988 1.9539 + 549.0979 273.0000 149.0000 2.8988 0.9633 497.0041 273.0000 150.0000 2.8988 0.9514 + 465.7586 273.0000 151.0000 2.8988 0.9749 440.8725 273.0000 152.0000 2.8988 0.9811 + 402.9787 273.0000 153.0000 2.8988 0.9968 541.6856 273.0000 155.0000 2.8988 0.9909 + 1158.6256 273.0000 156.0000 2.8988 0.9797 863.7277 273.0000 157.0000 2.8988 1.9373 + 544.5480 273.0000 159.0000 2.8988 2.9425 533.2855 273.0000 160.0000 2.8988 2.9455 + 516.4163 273.0000 161.0000 2.8988 2.9413 518.9341 273.0000 162.0000 2.8988 2.9300 + 500.0591 273.0000 163.0000 2.8988 1.8286 522.1286 273.0000 164.0000 2.8988 2.8732 + 490.4487 273.0000 165.0000 2.8988 2.9086 499.0339 273.0000 166.0000 2.8988 2.8965 + 465.5582 273.0000 167.0000 2.8988 2.9242 452.3080 273.0000 168.0000 2.8988 2.9282 + 449.3857 273.0000 169.0000 2.8988 2.9246 472.2105 273.0000 170.0000 2.8988 2.8482 + 434.3741 273.0000 171.0000 2.8988 2.9219 588.3364 273.0000 172.0000 2.8988 1.9254 + 546.1603 273.0000 173.0000 2.8988 1.9459 498.4810 273.0000 174.0000 2.8988 1.9292 + 504.2571 273.0000 175.0000 2.8988 1.8104 441.7879 273.0000 176.0000 2.8988 1.8858 + 415.7277 273.0000 177.0000 2.8988 1.8648 397.1454 273.0000 178.0000 2.8988 1.9188 + 379.7275 273.0000 179.0000 2.8988 0.9846 367.0120 273.0000 180.0000 2.8988 1.9896 + 590.0054 273.0000 181.0000 2.8988 0.9267 537.8913 273.0000 182.0000 2.8988 0.9383 + 521.8162 273.0000 183.0000 2.8988 0.9820 507.7317 273.0000 184.0000 2.8988 0.9815 + 474.4469 273.0000 185.0000 2.8988 0.9954 610.0680 273.0000 187.0000 2.8988 0.9705 + 1151.6502 273.0000 188.0000 2.8988 0.9662 644.3107 273.0000 189.0000 2.8988 2.9070 + 743.9225 273.0000 190.0000 2.8988 2.8844 665.6885 273.0000 191.0000 2.8988 2.8738 + 587.8612 273.0000 192.0000 2.8988 2.8878 565.7059 273.0000 193.0000 2.8988 2.9095 + 680.4913 273.0000 194.0000 2.8988 1.9209 158.4438 273.0000 204.0000 2.8988 1.9697 + 155.9549 273.0000 205.0000 2.8988 1.9441 114.3514 273.0000 206.0000 2.8988 1.9985 + 91.6935 273.0000 207.0000 2.8988 2.0143 62.8991 273.0000 208.0000 2.8988 1.9887 + 280.6157 273.0000 212.0000 2.8988 1.9496 339.2839 273.0000 213.0000 2.8988 1.9311 + 325.7067 273.0000 214.0000 2.8988 1.9435 283.2719 273.0000 215.0000 2.8988 2.0102 + 238.2558 273.0000 216.0000 2.8988 1.9903 393.7862 273.0000 220.0000 2.8988 1.9349 + 378.6235 273.0000 221.0000 2.8988 2.8999 383.3036 273.0000 222.0000 2.8988 3.8675 + 350.9096 273.0000 223.0000 2.8988 2.9110 264.6919 273.0000 224.0000 2.8988 10.6191 + 226.6492 273.0000 225.0000 2.8988 9.8849 222.4463 273.0000 226.0000 2.8988 9.1376 + 260.4422 273.0000 227.0000 2.8988 2.9263 242.6850 273.0000 228.0000 2.8988 6.5458 + 342.7253 273.0000 231.0000 2.8988 1.9315 361.8268 273.0000 232.0000 2.8988 1.9447 + 332.0294 273.0000 233.0000 2.8988 1.9793 309.1767 273.0000 234.0000 2.8988 1.9812 + 472.0061 273.0000 238.0000 2.8988 1.9143 454.5024 273.0000 239.0000 2.8988 2.8903 + 458.5024 273.0000 240.0000 2.8988 3.9106 443.5425 273.0000 241.0000 2.8988 2.9225 + 392.4448 273.0000 242.0000 2.8988 11.0556 346.6274 273.0000 243.0000 2.8988 9.5402 + 327.6381 273.0000 244.0000 2.8988 8.8895 333.5709 273.0000 245.0000 2.8988 2.9696 + 348.3184 273.0000 246.0000 2.8988 5.7095 442.2857 273.0000 249.0000 2.8988 1.9378 + 480.5632 273.0000 250.0000 2.8988 1.9505 453.0459 273.0000 251.0000 2.8988 1.9523 + 437.3278 273.0000 252.0000 2.8988 1.9639 571.1614 273.0000 256.0000 2.8988 1.8467 + 591.9397 273.0000 257.0000 2.8988 2.9175 439.1141 273.0000 272.0000 2.8988 3.8840 + 458.7677 273.0000 273.0000 2.8988 2.8988 34.4352 274.0000 1.0000 10.9153 0.9118 + 23.2301 274.0000 2.0000 10.9153 0.0000 499.4807 274.0000 3.0000 10.9153 0.0000 + 296.7361 274.0000 4.0000 10.9153 0.0000 203.6120 274.0000 5.0000 10.9153 0.0000 + 139.6713 274.0000 6.0000 10.9153 0.0000 98.8541 274.0000 7.0000 10.9153 0.0000 + 75.5088 274.0000 8.0000 10.9153 0.0000 57.6438 274.0000 9.0000 10.9153 0.0000 + 44.6145 274.0000 10.0000 10.9153 0.0000 598.5348 274.0000 11.0000 10.9153 0.0000 + 470.4046 274.0000 12.0000 10.9153 0.0000 437.5983 274.0000 13.0000 10.9153 0.0000 + 349.1691 274.0000 14.0000 10.9153 0.0000 275.3876 274.0000 15.0000 10.9153 0.0000 + 230.3666 274.0000 16.0000 10.9153 0.0000 189.6418 274.0000 17.0000 10.9153 0.0000 + 156.2347 274.0000 18.0000 10.9153 0.0000 979.1991 274.0000 19.0000 10.9153 0.0000 + 820.2766 274.0000 20.0000 10.9153 0.0000 680.1597 274.0000 21.0000 10.9153 0.0000 + 659.4850 274.0000 22.0000 10.9153 0.0000 605.3105 274.0000 23.0000 10.9153 0.0000 + 477.7116 274.0000 24.0000 10.9153 0.0000 522.9278 274.0000 25.0000 10.9153 0.0000 + 411.3725 274.0000 26.0000 10.9153 0.0000 437.4383 274.0000 27.0000 10.9153 0.0000 + 449.4776 274.0000 28.0000 10.9153 0.0000 345.3340 274.0000 29.0000 10.9153 0.0000 + 356.5405 274.0000 30.0000 10.9153 0.0000 421.1500 274.0000 31.0000 10.9153 0.0000 + 374.8540 274.0000 32.0000 10.9153 0.0000 322.6401 274.0000 33.0000 10.9153 0.0000 + 291.2663 274.0000 34.0000 10.9153 0.0000 256.5170 274.0000 35.0000 10.9153 0.0000 + 224.4260 274.0000 36.0000 10.9153 0.0000 1099.7481 274.0000 37.0000 10.9153 0.0000 + 977.3503 274.0000 38.0000 10.9153 0.0000 861.9972 274.0000 39.0000 10.9153 0.0000 + 778.2433 274.0000 40.0000 10.9153 0.0000 711.9449 274.0000 41.0000 10.9153 0.0000 + 553.0964 274.0000 42.0000 10.9153 0.0000 615.6258 274.0000 43.0000 10.9153 0.0000 + 472.2143 274.0000 44.0000 10.9153 0.0000 515.5680 274.0000 45.0000 10.9153 0.0000 + 479.0590 274.0000 46.0000 10.9153 0.0000 399.7262 274.0000 47.0000 10.9153 0.0000 + 423.2230 274.0000 48.0000 10.9153 0.0000 527.6514 274.0000 49.0000 10.9153 0.0000 + 491.2965 274.0000 50.0000 10.9153 0.0000 441.1051 274.0000 51.0000 10.9153 0.0000 + 411.2390 274.0000 52.0000 10.9153 0.0000 373.8314 274.0000 53.0000 10.9153 0.0000 + 337.8640 274.0000 54.0000 10.9153 0.0000 1340.9193 274.0000 55.0000 10.9153 0.0000 + 1244.0756 274.0000 56.0000 10.9153 0.0000 1100.2138 274.0000 57.0000 10.9153 0.0000 + 520.7789 274.0000 58.0000 10.9153 2.7991 1104.8675 274.0000 59.0000 10.9153 0.0000 + 1061.9928 274.0000 60.0000 10.9153 0.0000 1035.6282 274.0000 61.0000 10.9153 0.0000 + 1011.3417 274.0000 62.0000 10.9153 0.0000 989.8151 274.0000 63.0000 10.9153 0.0000 + 784.9307 274.0000 64.0000 10.9153 0.0000 875.0019 274.0000 65.0000 10.9153 0.0000 + 845.0238 274.0000 66.0000 10.9153 0.0000 894.1053 274.0000 67.0000 10.9153 0.0000 + 875.2348 274.0000 68.0000 10.9153 0.0000 858.3052 274.0000 69.0000 10.9153 0.0000 + 847.9418 274.0000 70.0000 10.9153 0.0000 718.5066 274.0000 71.0000 10.9153 0.0000 + 711.3924 274.0000 72.0000 10.9153 0.0000 652.2724 274.0000 73.0000 10.9153 0.0000 + 553.3851 274.0000 74.0000 10.9153 0.0000 563.7671 274.0000 75.0000 10.9153 0.0000 + 513.0771 274.0000 76.0000 10.9153 0.0000 471.5150 274.0000 77.0000 10.9153 0.0000 + 393.4797 274.0000 78.0000 10.9153 0.0000 368.2721 274.0000 79.0000 10.9153 0.0000 + 379.1672 274.0000 80.0000 10.9153 0.0000 543.5771 274.0000 81.0000 10.9153 0.0000 + 534.0168 274.0000 82.0000 10.9153 0.0000 493.8119 274.0000 83.0000 10.9153 0.0000 + 472.8170 274.0000 84.0000 10.9153 0.0000 438.5063 274.0000 85.0000 10.9153 0.0000 + 403.7991 274.0000 86.0000 10.9153 0.0000 1273.0029 274.0000 87.0000 10.9153 0.0000 + 1234.7444 274.0000 88.0000 10.9153 0.0000 1097.9052 274.0000 89.0000 10.9153 0.0000 + 994.1869 274.0000 90.0000 10.9153 0.0000 984.0251 274.0000 91.0000 10.9153 0.0000 + 953.0203 274.0000 92.0000 10.9153 0.0000 976.7438 274.0000 93.0000 10.9153 0.0000 + 946.6070 274.0000 94.0000 10.9153 0.0000 54.7934 274.0000 101.0000 10.9153 0.0000 + 172.9883 274.0000 103.0000 10.9153 0.9865 221.5526 274.0000 104.0000 10.9153 0.9808 + 172.0316 274.0000 105.0000 10.9153 0.9706 131.0744 274.0000 106.0000 10.9153 0.9868 + 92.2761 274.0000 107.0000 10.9153 0.9944 67.9119 274.0000 108.0000 10.9153 0.9925 + 47.3086 274.0000 109.0000 10.9153 0.9982 252.2899 274.0000 111.0000 10.9153 0.9684 + 389.5721 274.0000 112.0000 10.9153 0.9628 397.5411 274.0000 113.0000 10.9153 0.9648 + 323.3890 274.0000 114.0000 10.9153 0.9507 267.4548 274.0000 115.0000 10.9153 0.9947 + 227.8118 274.0000 116.0000 10.9153 0.9948 187.6647 274.0000 117.0000 10.9153 0.9972 + 351.1876 274.0000 119.0000 10.9153 0.9767 657.8095 274.0000 120.0000 10.9153 0.9831 + 354.0876 274.0000 121.0000 10.9153 1.8627 342.0626 274.0000 122.0000 10.9153 1.8299 + 335.1953 274.0000 123.0000 10.9153 1.9138 331.7429 274.0000 124.0000 10.9153 1.8269 + 306.7902 274.0000 125.0000 10.9153 1.6406 284.4755 274.0000 126.0000 10.9153 1.6483 + 271.4443 274.0000 127.0000 10.9153 1.7149 265.2596 274.0000 128.0000 10.9153 1.7937 + 261.0312 274.0000 129.0000 10.9153 0.9576 246.6960 274.0000 130.0000 10.9153 1.9419 + 396.5106 274.0000 131.0000 10.9153 0.9601 351.5243 274.0000 132.0000 10.9153 0.9434 + 317.3585 274.0000 133.0000 10.9153 0.9889 291.3625 274.0000 134.0000 10.9153 0.9901 + 258.2257 274.0000 135.0000 10.9153 0.9974 420.1356 274.0000 137.0000 10.9153 0.9738 + 800.2836 274.0000 138.0000 10.9153 0.9801 620.2744 274.0000 139.0000 10.9153 1.9153 + 468.3741 274.0000 140.0000 10.9153 1.9355 472.9418 274.0000 141.0000 10.9153 1.9545 + 442.0491 274.0000 142.0000 10.9153 1.9420 492.4594 274.0000 143.0000 10.9153 1.6682 + 387.4171 274.0000 144.0000 10.9153 1.8584 362.7696 274.0000 145.0000 10.9153 1.9003 + 337.3247 274.0000 146.0000 10.9153 1.8630 326.0586 274.0000 147.0000 10.9153 0.9679 + 323.6569 274.0000 148.0000 10.9153 1.9539 504.2597 274.0000 149.0000 10.9153 0.9633 + 459.5686 274.0000 150.0000 10.9153 0.9514 432.7691 274.0000 151.0000 10.9153 0.9749 + 411.0585 274.0000 152.0000 10.9153 0.9811 377.2983 274.0000 153.0000 10.9153 0.9968 + 499.5885 274.0000 155.0000 10.9153 0.9909 1035.5821 274.0000 156.0000 10.9153 0.9797 + 784.4115 274.0000 157.0000 10.9153 1.9373 505.3205 274.0000 159.0000 10.9153 2.9425 + 494.9131 274.0000 160.0000 10.9153 2.9455 479.4301 274.0000 161.0000 10.9153 2.9413 + 481.2612 274.0000 162.0000 10.9153 2.9300 462.3737 274.0000 163.0000 10.9153 1.8286 + 484.0311 274.0000 164.0000 10.9153 2.8732 455.1002 274.0000 165.0000 10.9153 2.9086 + 462.2071 274.0000 166.0000 10.9153 2.8965 432.3645 274.0000 167.0000 10.9153 2.9242 + 420.1936 274.0000 168.0000 10.9153 2.9282 417.3584 274.0000 169.0000 10.9153 2.9246 + 437.8351 274.0000 170.0000 10.9153 2.8482 403.5986 274.0000 171.0000 10.9153 2.9219 + 540.1000 274.0000 172.0000 10.9153 1.9254 503.5600 274.0000 173.0000 10.9153 1.9459 + 461.6567 274.0000 174.0000 10.9153 1.9292 465.2997 274.0000 175.0000 10.9153 1.8104 + 411.6804 274.0000 176.0000 10.9153 1.8858 388.0547 274.0000 177.0000 10.9153 1.8648 + 371.0990 274.0000 178.0000 10.9153 1.9188 354.8716 274.0000 179.0000 10.9153 0.9846 + 344.0826 274.0000 180.0000 10.9153 1.9896 542.8228 274.0000 181.0000 10.9153 0.9267 + 498.2226 274.0000 182.0000 10.9153 0.9383 485.0483 274.0000 183.0000 10.9153 0.9820 + 473.1890 274.0000 184.0000 10.9153 0.9815 443.8129 274.0000 185.0000 10.9153 0.9954 + 562.8570 274.0000 187.0000 10.9153 0.9705 1034.4519 274.0000 188.0000 10.9153 0.9662 + 597.7266 274.0000 189.0000 10.9153 2.9070 685.9333 274.0000 190.0000 10.9153 2.8844 + 615.0485 274.0000 191.0000 10.9153 2.8738 546.0346 274.0000 192.0000 10.9153 2.8878 + 526.0459 274.0000 193.0000 10.9153 2.9095 624.7394 274.0000 194.0000 10.9153 1.9209 + 146.9377 274.0000 204.0000 10.9153 1.9697 145.0689 274.0000 205.0000 10.9153 1.9441 + 107.5164 274.0000 206.0000 10.9153 1.9985 86.7443 274.0000 207.0000 10.9153 2.0143 + 60.1013 274.0000 208.0000 10.9153 1.9887 258.4639 274.0000 212.0000 10.9153 1.9496 + 312.1979 274.0000 213.0000 10.9153 1.9311 301.3608 274.0000 214.0000 10.9153 1.9435 + 263.7024 274.0000 215.0000 10.9153 2.0102 223.2570 274.0000 216.0000 10.9153 1.9903 + 363.0051 274.0000 220.0000 10.9153 1.9349 350.4674 274.0000 221.0000 10.9153 2.8999 + 354.9301 274.0000 222.0000 10.9153 3.8675 324.9190 274.0000 223.0000 10.9153 2.9110 + 246.9804 274.0000 224.0000 10.9153 10.6191 212.4317 274.0000 225.0000 10.9153 9.8849 + 208.3891 274.0000 226.0000 10.9153 9.1376 242.2155 274.0000 227.0000 10.9153 2.9263 + 226.1706 274.0000 228.0000 10.9153 6.5458 316.8461 274.0000 231.0000 10.9153 1.9315 + 335.2083 274.0000 232.0000 10.9153 1.9447 309.3265 274.0000 233.0000 10.9153 1.9793 + 289.1318 274.0000 234.0000 10.9153 1.9812 435.4733 274.0000 238.0000 10.9153 1.9143 + 421.5613 274.0000 239.0000 10.9153 2.8903 425.9507 274.0000 240.0000 10.9153 3.9106 + 411.9567 274.0000 241.0000 10.9153 2.9225 366.3303 274.0000 242.0000 10.9153 11.0556 + 324.8319 274.0000 243.0000 10.9153 9.5402 307.5001 274.0000 244.0000 10.9153 8.8895 + 311.8089 274.0000 245.0000 10.9153 2.9696 325.1416 274.0000 246.0000 10.9153 5.7095 + 409.6194 274.0000 249.0000 10.9153 1.9378 444.9961 274.0000 250.0000 10.9153 1.9505 + 421.4512 274.0000 251.0000 10.9153 1.9523 407.9357 274.0000 252.0000 10.9153 1.9639 + 527.8013 274.0000 256.0000 10.9153 1.8467 548.4216 274.0000 257.0000 10.9153 2.9175 + 408.8706 274.0000 272.0000 10.9153 3.8840 426.3547 274.0000 273.0000 10.9153 2.8988 + 398.0973 274.0000 274.0000 10.9153 10.9153 31.5928 275.0000 1.0000 9.8054 0.9118 + 21.6210 275.0000 2.0000 9.8054 0.0000 437.5796 275.0000 3.0000 9.8054 0.0000 + 264.8378 275.0000 4.0000 9.8054 0.0000 184.0194 275.0000 5.0000 9.8054 0.0000 + 127.5271 275.0000 6.0000 9.8054 0.0000 90.9958 275.0000 7.0000 9.8054 0.0000 + 69.9289 275.0000 8.0000 9.8054 0.0000 53.6738 275.0000 9.0000 9.8054 0.0000 + 41.7310 275.0000 10.0000 9.8054 0.0000 525.1483 275.0000 11.0000 9.8054 0.0000 + 418.4768 275.0000 12.0000 9.8054 0.0000 391.6700 275.0000 13.0000 9.8054 0.0000 + 315.1488 275.0000 14.0000 9.8054 0.0000 250.4475 275.0000 15.0000 9.8054 0.0000 + 210.6191 275.0000 16.0000 9.8054 0.0000 174.2982 275.0000 17.0000 9.8054 0.0000 + 144.2814 275.0000 18.0000 9.8054 0.0000 858.3565 275.0000 19.0000 9.8054 0.0000 + 726.1164 275.0000 20.0000 9.8054 0.0000 603.5688 275.0000 21.0000 9.8054 0.0000 + 586.8549 275.0000 22.0000 9.8054 0.0000 539.5023 275.0000 23.0000 9.8054 0.0000 + 426.3691 275.0000 24.0000 9.8054 0.0000 467.1653 275.0000 25.0000 9.8054 0.0000 + 368.1340 275.0000 26.0000 9.8054 0.0000 392.2549 275.0000 27.0000 9.8054 0.0000 + 402.3692 275.0000 28.0000 9.8054 0.0000 309.6449 275.0000 29.0000 9.8054 0.0000 + 320.8518 275.0000 30.0000 9.8054 0.0000 378.2013 275.0000 31.0000 9.8054 0.0000 + 338.7095 275.0000 32.0000 9.8054 0.0000 293.3096 275.0000 33.0000 9.8054 0.0000 + 265.8700 275.0000 34.0000 9.8054 0.0000 235.1647 275.0000 35.0000 9.8054 0.0000 + 206.5945 275.0000 36.0000 9.8054 0.0000 965.4608 275.0000 37.0000 9.8054 0.0000 + 865.2155 275.0000 38.0000 9.8054 0.0000 766.6493 275.0000 39.0000 9.8054 0.0000 + 694.3157 275.0000 40.0000 9.8054 0.0000 636.5901 275.0000 41.0000 9.8054 0.0000 + 496.7319 275.0000 42.0000 9.8054 0.0000 551.9675 275.0000 43.0000 9.8054 0.0000 + 425.4154 275.0000 44.0000 9.8054 0.0000 464.0894 275.0000 45.0000 9.8054 0.0000 + 431.8330 275.0000 46.0000 9.8054 0.0000 360.5629 275.0000 47.0000 9.8054 0.0000 + 382.2149 275.0000 48.0000 9.8054 0.0000 474.3487 275.0000 49.0000 9.8054 0.0000 + 443.7085 275.0000 50.0000 9.8054 0.0000 400.3926 275.0000 51.0000 9.8054 0.0000 + 374.5042 275.0000 52.0000 9.8054 0.0000 341.6844 275.0000 53.0000 9.8054 0.0000 + 309.9228 275.0000 54.0000 9.8054 0.0000 1177.8622 275.0000 55.0000 9.8054 0.0000 + 1100.2149 275.0000 56.0000 9.8054 0.0000 977.3591 275.0000 57.0000 9.8054 0.0000 + 472.4946 275.0000 58.0000 9.8054 2.7991 978.8049 275.0000 59.0000 9.8054 0.0000 + 941.4439 275.0000 60.0000 9.8054 0.0000 918.2378 275.0000 61.0000 9.8054 0.0000 + 896.8356 275.0000 62.0000 9.8054 0.0000 877.8704 275.0000 63.0000 9.8054 0.0000 + 700.2253 275.0000 64.0000 9.8054 0.0000 775.3711 275.0000 65.0000 9.8054 0.0000 + 749.5017 275.0000 66.0000 9.8054 0.0000 793.8007 275.0000 67.0000 9.8054 0.0000 + 777.1089 275.0000 68.0000 9.8054 0.0000 762.1858 275.0000 69.0000 9.8054 0.0000 + 752.7827 275.0000 70.0000 9.8054 0.0000 640.4061 275.0000 71.0000 9.8054 0.0000 + 636.8825 275.0000 72.0000 9.8054 0.0000 585.8461 275.0000 73.0000 9.8054 0.0000 + 498.6775 275.0000 74.0000 9.8054 0.0000 508.5233 275.0000 75.0000 9.8054 0.0000 + 464.1369 275.0000 76.0000 9.8054 0.0000 427.5689 275.0000 77.0000 9.8054 0.0000 + 357.9714 275.0000 78.0000 9.8054 0.0000 335.4685 275.0000 79.0000 9.8054 0.0000 + 345.5856 275.0000 80.0000 9.8054 0.0000 489.8530 275.0000 81.0000 9.8054 0.0000 + 482.7721 275.0000 82.0000 9.8054 0.0000 448.3422 275.0000 83.0000 9.8054 0.0000 + 430.4186 275.0000 84.0000 9.8054 0.0000 400.5202 275.0000 85.0000 9.8054 0.0000 + 370.0024 275.0000 86.0000 9.8054 0.0000 1122.3371 275.0000 87.0000 9.8054 0.0000 + 1094.7171 275.0000 88.0000 9.8054 0.0000 977.4040 275.0000 89.0000 9.8054 0.0000 + 889.7750 275.0000 90.0000 9.8054 0.0000 878.8776 275.0000 91.0000 9.8054 0.0000 + 851.3350 275.0000 92.0000 9.8054 0.0000 869.8282 275.0000 93.0000 9.8054 0.0000 + 843.4413 275.0000 94.0000 9.8054 0.0000 49.8616 275.0000 101.0000 9.8054 0.0000 + 154.7098 275.0000 103.0000 9.8054 0.9865 198.6764 275.0000 104.0000 9.8054 0.9808 + 155.9432 275.0000 105.0000 9.8054 0.9706 119.7110 275.0000 106.0000 9.8054 0.9868 + 84.9906 275.0000 107.0000 9.8054 0.9944 63.0032 275.0000 108.0000 9.8054 0.9925 + 44.2933 275.0000 109.0000 9.8054 0.9982 225.3330 275.0000 111.0000 9.8054 0.9684 + 347.5163 275.0000 112.0000 9.8054 0.9628 356.3985 275.0000 113.0000 9.8054 0.9648 + 292.2910 275.0000 114.0000 9.8054 0.9507 243.3234 275.0000 115.0000 9.8054 0.9947 + 208.2754 275.0000 116.0000 9.8054 0.9948 172.4766 275.0000 117.0000 9.8054 0.9972 + 315.7277 275.0000 119.0000 9.8054 0.9767 583.3720 275.0000 120.0000 9.8054 0.9831 + 319.9881 275.0000 121.0000 9.8054 1.8627 309.2852 275.0000 122.0000 9.8054 1.8299 + 303.0694 275.0000 123.0000 9.8054 1.9138 299.7482 275.0000 124.0000 9.8054 1.8269 + 278.1306 275.0000 125.0000 9.8054 1.6406 258.2456 275.0000 126.0000 9.8054 1.6483 + 246.4711 275.0000 127.0000 9.8054 1.7149 240.7938 275.0000 128.0000 9.8054 1.7937 + 236.3389 275.0000 129.0000 9.8054 0.9576 224.4227 275.0000 130.0000 9.8054 1.9419 + 356.6594 275.0000 131.0000 9.8054 0.9601 318.1449 275.0000 132.0000 9.8054 0.9434 + 288.6268 275.0000 133.0000 9.8054 0.9889 265.9497 275.0000 134.0000 9.8054 0.9901 + 236.6853 275.0000 135.0000 9.8054 0.9974 378.3875 275.0000 137.0000 9.8054 0.9738 + 709.6397 275.0000 138.0000 9.8054 0.9801 555.2087 275.0000 139.0000 9.8054 1.9153 + 423.3046 275.0000 140.0000 9.8054 1.9355 427.4024 275.0000 141.0000 9.8054 1.9545 + 400.1567 275.0000 142.0000 9.8054 1.9420 443.8279 275.0000 143.0000 9.8054 1.6682 + 352.0200 275.0000 144.0000 9.8054 1.8584 329.8562 275.0000 145.0000 9.8054 1.9003 + 307.0301 275.0000 146.0000 9.8054 1.8630 296.6430 275.0000 147.0000 9.8054 0.9679 + 295.1096 275.0000 148.0000 9.8054 1.9539 454.1122 275.0000 149.0000 9.8054 0.9633 + 415.9204 275.0000 150.0000 9.8054 0.9514 393.1092 275.0000 151.0000 9.8054 0.9749 + 374.4114 275.0000 152.0000 9.8054 0.9811 344.8244 275.0000 153.0000 9.8054 0.9968 + 451.5292 275.0000 155.0000 9.8054 0.9909 917.0891 275.0000 156.0000 9.8054 0.9797 + 701.7188 275.0000 157.0000 9.8054 1.9373 458.6253 275.0000 159.0000 9.8054 2.9425 + 449.2088 275.0000 160.0000 9.8054 2.9455 435.2851 275.0000 161.0000 9.8054 2.9413 + 436.6281 275.0000 162.0000 9.8054 2.9300 418.5770 275.0000 163.0000 9.8054 1.8286 + 438.9633 275.0000 164.0000 9.8054 2.8732 413.0319 275.0000 165.0000 9.8054 2.9086 + 418.9527 275.0000 166.0000 9.8054 2.8965 392.6377 275.0000 167.0000 9.8054 2.9242 + 381.6780 275.0000 168.0000 9.8054 2.9282 379.0154 275.0000 169.0000 9.8054 2.9246 + 397.0674 275.0000 170.0000 9.8054 2.8482 366.6356 275.0000 171.0000 9.8054 2.9219 + 486.4762 275.0000 172.0000 9.8054 1.9254 454.9983 275.0000 173.0000 9.8054 1.9459 + 418.5134 275.0000 174.0000 9.8054 1.9292 420.7023 275.0000 175.0000 9.8054 1.8104 + 374.9493 275.0000 176.0000 9.8054 1.8858 353.9294 275.0000 177.0000 9.8054 1.8648 + 338.7713 275.0000 178.0000 9.8054 1.9188 324.0420 275.0000 179.0000 9.8054 0.9846 + 314.9179 275.0000 180.0000 9.8054 1.9896 489.7291 275.0000 181.0000 9.8054 0.9267 + 451.6202 275.0000 182.0000 9.8054 0.9383 440.8179 275.0000 183.0000 9.8054 0.9820 + 430.9131 275.0000 184.0000 9.8054 0.9815 405.3597 275.0000 185.0000 9.8054 0.9954 + 508.8263 275.0000 187.0000 9.8054 0.9705 918.7410 275.0000 188.0000 9.8054 0.9662 + 542.3414 275.0000 189.0000 9.8054 2.9070 619.9691 275.0000 190.0000 9.8054 2.8844 + 557.0404 275.0000 191.0000 9.8054 2.8738 496.0931 275.0000 192.0000 9.8054 2.8878 + 478.3191 275.0000 193.0000 9.8054 2.9095 563.1310 275.0000 194.0000 9.8054 1.9209 + 133.1934 275.0000 204.0000 9.8054 1.9697 131.8957 275.0000 205.0000 9.8054 1.9441 + 98.6019 275.0000 206.0000 9.8054 1.9985 79.9790 275.0000 207.0000 9.8054 2.0143 + 55.8946 275.0000 208.0000 9.8054 1.9887 233.0361 275.0000 212.0000 9.8054 1.9496 + 281.3708 275.0000 213.0000 9.8054 1.9311 272.7289 275.0000 214.0000 9.8054 1.9435 + 239.8356 275.0000 215.0000 9.8054 2.0102 204.1455 275.0000 216.0000 9.8054 1.9903 + 327.7019 275.0000 220.0000 9.8054 1.9349 317.3717 275.0000 221.0000 9.8054 2.8999 + 321.5086 275.0000 222.0000 9.8054 3.8675 294.3958 275.0000 223.0000 9.8054 2.9110 + 225.1927 275.0000 224.0000 9.8054 10.6191 194.3936 275.0000 225.0000 9.8054 9.8849 + 190.6229 275.0000 226.0000 9.8054 9.1376 220.2800 275.0000 227.0000 9.8054 2.9263 + 206.0127 275.0000 228.0000 9.8054 6.5458 286.6562 275.0000 231.0000 9.8054 1.9315 + 303.7145 275.0000 232.0000 9.8054 1.9447 281.5084 275.0000 233.0000 9.8054 1.9793 + 263.9506 275.0000 234.0000 9.8054 1.9812 393.4644 275.0000 238.0000 9.8054 1.9143 + 382.3780 275.0000 239.0000 9.8054 2.8903 386.8383 275.0000 240.0000 9.8054 3.9106 + 374.1779 275.0000 241.0000 9.8054 2.9225 334.0552 275.0000 242.0000 9.8054 11.0556 + 297.1616 275.0000 243.0000 9.8054 9.5402 281.6608 275.0000 244.0000 9.8054 8.8895 + 284.7548 275.0000 245.0000 9.8054 2.9696 296.5675 275.0000 246.0000 9.8054 5.7095 + 371.2576 275.0000 249.0000 9.8054 1.9378 403.1695 275.0000 250.0000 9.8054 1.9505 + 383.1838 275.0000 251.0000 9.8054 1.9523 371.6983 275.0000 252.0000 9.8054 1.9639 + 477.5553 275.0000 256.0000 9.8054 1.8467 497.0205 275.0000 257.0000 9.8054 2.9175 + 372.0045 275.0000 272.0000 9.8054 3.8840 387.4871 275.0000 273.0000 9.8054 2.8988 + 363.0985 275.0000 274.0000 9.8054 10.9153 332.1448 275.0000 275.0000 9.8054 9.8054 + 29.9597 276.0000 1.0000 9.1527 0.9118 20.7321 276.0000 2.0000 9.1527 0.0000 + 399.4623 276.0000 3.0000 9.1527 0.0000 245.6049 276.0000 4.0000 9.1527 0.0000 + 172.4260 276.0000 5.0000 9.1527 0.0000 120.4752 276.0000 6.0000 9.1527 0.0000 + 86.5150 276.0000 7.0000 9.1527 0.0000 66.7983 276.0000 8.0000 9.1527 0.0000 + 51.4839 276.0000 9.0000 9.1527 0.0000 40.1666 276.0000 10.0000 9.1527 0.0000 + 480.0206 276.0000 11.0000 9.1527 0.0000 387.0327 276.0000 12.0000 9.1527 0.0000 + 364.0853 276.0000 13.0000 9.1527 0.0000 294.9748 276.0000 14.0000 9.1527 0.0000 + 235.8544 276.0000 15.0000 9.1527 0.0000 199.1859 276.0000 16.0000 9.1527 0.0000 + 165.5184 276.0000 17.0000 9.1527 0.0000 137.5233 276.0000 18.0000 9.1527 0.0000 + 783.9818 276.0000 19.0000 9.1527 0.0000 668.7458 276.0000 20.0000 9.1527 0.0000 + 557.0378 276.0000 21.0000 9.1527 0.0000 542.8797 276.0000 22.0000 9.1527 0.0000 + 499.7380 276.0000 23.0000 9.1527 0.0000 395.3965 276.0000 24.0000 9.1527 0.0000 + 433.5746 276.0000 25.0000 9.1527 0.0000 342.1426 276.0000 26.0000 9.1527 0.0000 + 365.1785 276.0000 27.0000 9.1527 0.0000 374.0715 276.0000 28.0000 9.1527 0.0000 + 288.2503 276.0000 29.0000 9.1527 0.0000 299.5788 276.0000 30.0000 9.1527 0.0000 + 352.5240 276.0000 31.0000 9.1527 0.0000 317.3118 276.0000 32.0000 9.1527 0.0000 + 276.1337 276.0000 33.0000 9.1527 0.0000 251.1164 276.0000 34.0000 9.1527 0.0000 + 222.8746 276.0000 35.0000 9.1527 0.0000 196.4301 276.0000 36.0000 9.1527 0.0000 + 882.9290 276.0000 37.0000 9.1527 0.0000 796.8950 276.0000 38.0000 9.1527 0.0000 + 708.8779 276.0000 39.0000 9.1527 0.0000 643.6645 276.0000 40.0000 9.1527 0.0000 + 591.2478 276.0000 41.0000 9.1527 0.0000 463.0215 276.0000 42.0000 9.1527 0.0000 + 513.8061 276.0000 43.0000 9.1527 0.0000 397.5557 276.0000 44.0000 9.1527 0.0000 + 433.4092 276.0000 45.0000 9.1527 0.0000 403.7487 276.0000 46.0000 9.1527 0.0000 + 337.2914 276.0000 47.0000 9.1527 0.0000 357.9013 276.0000 48.0000 9.1527 0.0000 + 442.5221 276.0000 49.0000 9.1527 0.0000 415.5054 276.0000 50.0000 9.1527 0.0000 + 376.4785 276.0000 51.0000 9.1527 0.0000 353.0606 276.0000 52.0000 9.1527 0.0000 + 323.0585 276.0000 53.0000 9.1527 0.0000 293.8616 276.0000 54.0000 9.1527 0.0000 + 1077.7158 276.0000 55.0000 9.1527 0.0000 1012.4643 276.0000 56.0000 9.1527 0.0000 + 902.8119 276.0000 57.0000 9.1527 0.0000 444.1024 276.0000 58.0000 9.1527 2.7991 + 902.0595 276.0000 59.0000 9.1527 0.0000 868.1097 276.0000 60.0000 9.1527 0.0000 + 846.8398 276.0000 61.0000 9.1527 0.0000 827.2036 276.0000 62.0000 9.1527 0.0000 + 809.8075 276.0000 63.0000 9.1527 0.0000 649.0921 276.0000 64.0000 9.1527 0.0000 + 714.7358 276.0000 65.0000 9.1527 0.0000 691.4316 276.0000 66.0000 9.1527 0.0000 + 732.8892 276.0000 67.0000 9.1527 0.0000 717.5264 276.0000 68.0000 9.1527 0.0000 + 703.8317 276.0000 69.0000 9.1527 0.0000 694.9935 276.0000 70.0000 9.1527 0.0000 + 593.2099 276.0000 71.0000 9.1527 0.0000 592.1275 276.0000 72.0000 9.1527 0.0000 + 546.1310 276.0000 73.0000 9.1527 0.0000 466.1296 276.0000 74.0000 9.1527 0.0000 + 475.7088 276.0000 75.0000 9.1527 0.0000 435.2044 276.0000 76.0000 9.1527 0.0000 + 401.6971 276.0000 77.0000 9.1527 0.0000 337.1885 276.0000 78.0000 9.1527 0.0000 + 316.3149 276.0000 79.0000 9.1527 0.0000 326.0031 276.0000 80.0000 9.1527 0.0000 + 457.8877 276.0000 81.0000 9.1527 0.0000 452.4455 276.0000 82.0000 9.1527 0.0000 + 421.6398 276.0000 83.0000 9.1527 0.0000 405.6464 276.0000 84.0000 9.1527 0.0000 + 378.4764 276.0000 85.0000 9.1527 0.0000 350.5256 276.0000 86.0000 9.1527 0.0000 + 1030.1431 276.0000 87.0000 9.1527 0.0000 1009.5485 276.0000 88.0000 9.1527 0.0000 + 904.4779 276.0000 89.0000 9.1527 0.0000 827.0268 276.0000 90.0000 9.1527 0.0000 + 815.5049 276.0000 91.0000 9.1527 0.0000 790.0616 276.0000 92.0000 9.1527 0.0000 + 805.1387 276.0000 93.0000 9.1527 0.0000 781.0634 276.0000 94.0000 9.1527 0.0000 + 46.9793 276.0000 101.0000 9.1527 0.0000 143.7193 276.0000 103.0000 9.1527 0.9865 + 184.9738 276.0000 104.0000 9.1527 0.9808 146.4712 276.0000 105.0000 9.1527 0.9706 + 113.1148 276.0000 106.0000 9.1527 0.9868 80.8414 276.0000 107.0000 9.1527 0.9944 + 60.2626 276.0000 108.0000 9.1527 0.9925 42.6636 276.0000 109.0000 9.1527 0.9982 + 209.0919 276.0000 111.0000 9.1527 0.9684 322.1398 276.0000 112.0000 9.1527 0.9628 + 331.7452 276.0000 113.0000 9.1527 0.9648 273.8926 276.0000 114.0000 9.1527 0.9507 + 229.2131 276.0000 115.0000 9.1527 0.9947 196.9631 276.0000 116.0000 9.1527 0.9948 + 163.7850 276.0000 117.0000 9.1527 0.9972 294.5515 276.0000 119.0000 9.1527 0.9767 + 538.1181 276.0000 120.0000 9.1527 0.9831 299.7987 276.0000 121.0000 9.1527 1.8627 + 289.8959 276.0000 122.0000 9.1527 1.8299 284.0641 276.0000 123.0000 9.1527 1.9138 + 280.7986 276.0000 124.0000 9.1527 1.8269 261.2571 276.0000 125.0000 9.1527 1.6406 + 242.8399 276.0000 126.0000 9.1527 1.6483 231.8089 276.0000 127.0000 9.1527 1.7149 + 226.4226 276.0000 128.0000 9.1527 1.7937 221.7642 276.0000 129.0000 9.1527 0.9576 + 211.3939 276.0000 130.0000 9.1527 1.9419 332.8931 276.0000 131.0000 9.1527 0.9601 + 298.4387 276.0000 132.0000 9.1527 0.9434 271.8145 276.0000 133.0000 9.1527 0.9889 + 251.1853 276.0000 134.0000 9.1527 0.9901 224.2814 276.0000 135.0000 9.1527 0.9974 + 353.5225 276.0000 137.0000 9.1527 0.9738 654.5233 276.0000 138.0000 9.1527 0.9801 + 516.1183 276.0000 139.0000 9.1527 1.9153 396.6219 276.0000 140.0000 9.1527 1.9355 + 400.4358 276.0000 141.0000 9.1527 1.9545 375.4196 276.0000 142.0000 9.1527 1.9420 + 414.8990 276.0000 143.0000 9.1527 1.6682 331.2590 276.0000 144.0000 9.1527 1.8584 + 310.5758 276.0000 145.0000 9.1527 1.9003 289.3170 276.0000 146.0000 9.1527 1.8630 + 279.4279 276.0000 147.0000 9.1527 0.9679 278.4802 276.0000 148.0000 9.1527 1.9539 + 424.2505 276.0000 149.0000 9.1527 0.9633 390.1441 276.0000 150.0000 9.1527 0.9514 + 369.8447 276.0000 151.0000 9.1527 0.9749 353.0274 276.0000 152.0000 9.1527 0.9811 + 326.0059 276.0000 153.0000 9.1527 0.9968 423.0732 276.0000 155.0000 9.1527 0.9909 + 844.9341 276.0000 156.0000 9.1527 0.9797 651.9975 276.0000 157.0000 9.1527 1.9373 + 431.1843 276.0000 159.0000 9.1527 2.9425 422.3531 276.0000 160.0000 9.1527 2.9455 + 409.3596 276.0000 161.0000 9.1527 2.9413 410.3809 276.0000 162.0000 9.1527 2.9300 + 392.7170 276.0000 163.0000 9.1527 1.8286 412.4420 276.0000 164.0000 9.1527 2.8732 + 388.3081 276.0000 165.0000 9.1527 2.9086 393.4734 276.0000 166.0000 9.1527 2.8965 + 369.3169 276.0000 167.0000 9.1527 2.9242 359.0787 276.0000 168.0000 9.1527 2.9282 + 356.5078 276.0000 169.0000 9.1527 2.9246 373.0784 276.0000 170.0000 9.1527 2.8482 + 344.9515 276.0000 171.0000 9.1527 2.9219 454.5547 276.0000 172.0000 9.1527 1.9254 + 426.2356 276.0000 173.0000 9.1527 1.9459 393.1034 276.0000 174.0000 9.1527 1.9292 + 394.3136 276.0000 175.0000 9.1527 1.8104 353.5038 276.0000 176.0000 9.1527 1.8858 + 334.0595 276.0000 177.0000 9.1527 1.8648 319.9818 276.0000 178.0000 9.1527 1.9188 + 306.1309 276.0000 179.0000 9.1527 0.9846 298.0611 276.0000 180.0000 9.1527 1.9896 + 458.1984 276.0000 181.0000 9.1527 0.9267 424.1702 276.0000 182.0000 9.1527 0.9383 + 414.8918 276.0000 183.0000 9.1527 0.9820 406.2307 276.0000 184.0000 9.1527 0.9815 + 383.0443 276.0000 185.0000 9.1527 0.9954 476.8481 276.0000 187.0000 9.1527 0.9705 + 848.5151 276.0000 188.0000 9.1527 0.9662 509.7785 276.0000 189.0000 9.1527 2.9070 + 580.9212 276.0000 190.0000 9.1527 2.8844 522.8212 276.0000 191.0000 9.1527 2.8738 + 466.7974 276.0000 192.0000 9.1527 2.8878 450.3648 276.0000 193.0000 9.1527 2.9095 + 526.4895 276.0000 194.0000 9.1527 1.9209 125.1034 276.0000 204.0000 9.1527 1.9697 + 124.1821 276.0000 205.0000 9.1527 1.9441 93.4738 276.0000 206.0000 9.1527 1.9985 + 76.1365 276.0000 207.0000 9.1527 2.0143 53.5641 276.0000 208.0000 9.1527 1.9887 + 217.9320 276.0000 212.0000 9.1527 1.9496 263.0472 276.0000 213.0000 9.1527 1.9311 + 255.8261 276.0000 214.0000 9.1527 1.9435 225.8709 276.0000 215.0000 9.1527 2.0102 + 193.0829 276.0000 216.0000 9.1527 1.9903 306.7634 276.0000 220.0000 9.1527 1.9349 + 297.8485 276.0000 221.0000 9.1527 2.8999 301.8032 276.0000 222.0000 9.1527 3.8675 + 276.4053 276.0000 223.0000 9.1527 2.9110 212.4988 276.0000 224.0000 9.1527 10.6191 + 183.9638 276.0000 225.0000 9.1527 9.8849 180.3419 276.0000 226.0000 9.1527 9.1376 + 207.4367 276.0000 227.0000 9.1527 2.9263 194.2462 276.0000 228.0000 9.1527 6.5458 + 268.8209 276.0000 231.0000 9.1527 1.9315 285.1573 276.0000 232.0000 9.1527 1.9447 + 265.2513 276.0000 233.0000 9.1527 1.9793 249.3249 276.0000 234.0000 9.1527 1.9812 + 368.5810 276.0000 238.0000 9.1527 1.9143 359.3289 276.0000 239.0000 9.1527 2.8903 + 363.8839 276.0000 240.0000 9.1527 3.9106 352.0085 276.0000 241.0000 9.1527 2.9225 + 315.2578 276.0000 242.0000 9.1527 11.0556 281.1527 276.0000 243.0000 9.1527 9.5402 + 266.7522 276.0000 244.0000 9.1527 8.8895 269.0419 276.0000 245.0000 9.1527 2.9696 + 279.9309 276.0000 246.0000 9.1527 5.7095 348.6585 276.0000 249.0000 9.1527 1.9378 + 378.5160 276.0000 250.0000 9.1527 1.9505 360.7756 276.0000 251.0000 9.1527 1.9523 + 350.5682 276.0000 252.0000 9.1527 1.9639 447.8627 276.0000 256.0000 9.1527 1.8467 + 466.7368 276.0000 257.0000 9.1527 2.9175 350.4432 276.0000 272.0000 9.1527 3.8840 + 364.7046 276.0000 273.0000 9.1527 2.8988 342.7239 276.0000 274.0000 9.1527 10.9153 + 314.2342 276.0000 275.0000 9.1527 9.8054 297.8338 276.0000 276.0000 9.1527 9.1527 + 30.2294 277.0000 1.0000 2.9424 0.9118 20.7608 277.0000 2.0000 2.9424 0.0000 + 426.3638 277.0000 3.0000 2.9424 0.0000 254.7475 277.0000 4.0000 2.9424 0.0000 + 176.3501 277.0000 5.0000 2.9424 0.0000 122.1088 277.0000 6.0000 2.9424 0.0000 + 87.1907 277.0000 7.0000 2.9424 0.0000 67.0913 277.0000 8.0000 2.9424 0.0000 + 51.5850 277.0000 9.0000 2.9424 0.0000 40.1846 277.0000 10.0000 2.9424 0.0000 + 511.4316 277.0000 11.0000 2.9424 0.0000 403.3963 277.0000 12.0000 2.9424 0.0000 + 376.5339 277.0000 13.0000 2.9424 0.0000 302.0956 277.0000 14.0000 2.9424 0.0000 + 239.7434 277.0000 15.0000 2.9424 0.0000 201.5855 277.0000 16.0000 2.9424 0.0000 + 166.8722 277.0000 17.0000 2.9424 0.0000 138.2371 277.0000 18.0000 2.9424 0.0000 + 838.8447 277.0000 19.0000 2.9424 0.0000 703.0610 277.0000 20.0000 2.9424 0.0000 + 583.4032 277.0000 21.0000 2.9424 0.0000 566.6300 277.0000 22.0000 2.9424 0.0000 + 520.5585 277.0000 23.0000 2.9424 0.0000 411.7157 277.0000 24.0000 2.9424 0.0000 + 450.3559 277.0000 25.0000 2.9424 0.0000 355.1396 277.0000 26.0000 2.9424 0.0000 + 377.5377 277.0000 27.0000 2.9424 0.0000 387.5023 277.0000 28.0000 2.9424 0.0000 + 298.5525 277.0000 29.0000 2.9424 0.0000 308.4433 277.0000 30.0000 2.9424 0.0000 + 363.5410 277.0000 31.0000 2.9424 0.0000 324.8101 277.0000 32.0000 2.9424 0.0000 + 280.9006 277.0000 33.0000 2.9424 0.0000 254.5338 277.0000 34.0000 2.9424 0.0000 + 225.1341 277.0000 35.0000 2.9424 0.0000 197.8474 277.0000 36.0000 2.9424 0.0000 + 943.1275 277.0000 37.0000 2.9424 0.0000 838.2576 277.0000 38.0000 2.9424 0.0000 + 740.7015 277.0000 39.0000 2.9424 0.0000 669.8428 277.0000 40.0000 2.9424 0.0000 + 613.6915 277.0000 41.0000 2.9424 0.0000 478.5044 277.0000 42.0000 2.9424 0.0000 + 531.8513 277.0000 43.0000 2.9424 0.0000 409.6105 277.0000 44.0000 2.9424 0.0000 + 446.5677 277.0000 45.0000 2.9424 0.0000 415.3887 277.0000 46.0000 2.9424 0.0000 + 347.3619 277.0000 47.0000 2.9424 0.0000 367.5432 277.0000 48.0000 2.9424 0.0000 + 456.5944 277.0000 49.0000 2.9424 0.0000 426.1263 277.0000 50.0000 2.9424 0.0000 + 383.9393 277.0000 51.0000 2.9424 0.0000 358.8937 277.0000 52.0000 2.9424 0.0000 + 327.3161 277.0000 53.0000 2.9424 0.0000 296.8625 277.0000 54.0000 2.9424 0.0000 + 1150.6653 277.0000 55.0000 2.9424 0.0000 1067.3048 277.0000 56.0000 2.9424 0.0000 + 945.3433 277.0000 57.0000 2.9424 0.0000 453.3541 277.0000 58.0000 2.9424 2.7991 + 948.8660 277.0000 59.0000 2.9424 0.0000 912.1494 277.0000 60.0000 2.9424 0.0000 + 889.5297 277.0000 61.0000 2.9424 0.0000 868.6784 277.0000 62.0000 2.9424 0.0000 + 850.1949 277.0000 63.0000 2.9424 0.0000 676.5056 277.0000 64.0000 2.9424 0.0000 + 752.8605 277.0000 65.0000 2.9424 0.0000 727.3646 277.0000 66.0000 2.9424 0.0000 + 768.1729 277.0000 67.0000 2.9424 0.0000 751.9387 277.0000 68.0000 2.9424 0.0000 + 737.3982 277.0000 69.0000 2.9424 0.0000 728.3640 277.0000 70.0000 2.9424 0.0000 + 618.6138 277.0000 71.0000 2.9424 0.0000 613.4284 277.0000 72.0000 2.9424 0.0000 + 563.6353 277.0000 73.0000 2.9424 0.0000 479.6946 277.0000 74.0000 2.9424 0.0000 + 488.8724 277.0000 75.0000 2.9424 0.0000 445.8927 277.0000 76.0000 2.9424 0.0000 + 410.5890 277.0000 77.0000 2.9424 0.0000 343.8525 277.0000 78.0000 2.9424 0.0000 + 322.2840 277.0000 79.0000 2.9424 0.0000 331.7824 277.0000 80.0000 2.9424 0.0000 + 471.7483 277.0000 81.0000 2.9424 0.0000 463.9821 277.0000 82.0000 2.9424 0.0000 + 430.2256 277.0000 83.0000 2.9424 0.0000 412.7468 277.0000 84.0000 2.9424 0.0000 + 383.8692 277.0000 85.0000 2.9424 0.0000 354.5398 277.0000 86.0000 2.9424 0.0000 + 1093.6353 277.0000 87.0000 2.9424 0.0000 1060.4655 277.0000 88.0000 2.9424 0.0000 + 944.3917 277.0000 89.0000 2.9424 0.0000 857.7570 277.0000 90.0000 2.9424 0.0000 + 848.6188 277.0000 91.0000 2.9424 0.0000 822.0160 277.0000 92.0000 2.9424 0.0000 + 841.2795 277.0000 93.0000 2.9424 0.0000 815.4936 277.0000 94.0000 2.9424 0.0000 + 47.7107 277.0000 101.0000 2.9424 0.0000 148.7741 277.0000 103.0000 2.9424 0.9865 + 190.9548 277.0000 104.0000 2.9424 0.9808 149.4170 277.0000 105.0000 2.9424 0.9706 + 114.6749 277.0000 106.0000 2.9424 0.9868 81.4686 277.0000 107.0000 2.9424 0.9944 + 60.4749 277.0000 108.0000 2.9424 0.9925 42.6330 277.0000 109.0000 2.9424 0.9982 + 217.0607 277.0000 111.0000 2.9424 0.9684 334.7856 277.0000 112.0000 2.9424 0.9628 + 342.4732 277.0000 113.0000 2.9424 0.9648 280.1335 277.0000 114.0000 2.9424 0.9507 + 232.9410 277.0000 115.0000 2.9424 0.9947 199.3618 277.0000 116.0000 2.9424 0.9948 + 165.1413 277.0000 117.0000 2.9424 0.9972 304.1340 277.0000 119.0000 2.9424 0.9767 + 565.3470 277.0000 120.0000 2.9424 0.9831 307.2050 277.0000 121.0000 2.9424 1.8627 + 296.9959 277.0000 122.0000 2.9424 1.8299 291.0741 277.0000 123.0000 2.9424 1.9138 + 288.0024 277.0000 124.0000 2.9424 1.8269 266.8093 277.0000 125.0000 2.9424 1.6406 + 247.7087 277.0000 126.0000 2.9424 1.6483 236.4698 277.0000 127.0000 2.9424 1.7149 + 231.0624 277.0000 128.0000 2.9424 1.7937 227.0659 277.0000 129.0000 2.9424 0.9576 + 215.1707 277.0000 130.0000 2.9424 1.9419 342.6407 277.0000 131.0000 2.9424 0.9601 + 304.9894 277.0000 132.0000 2.9424 0.9434 276.4120 277.0000 133.0000 2.9424 0.9889 + 254.6202 277.0000 134.0000 2.9424 0.9901 226.5970 277.0000 135.0000 2.9424 0.9974 + 364.4122 277.0000 137.0000 2.9424 0.9738 688.2347 277.0000 138.0000 2.9424 0.9801 + 535.7034 277.0000 139.0000 2.9424 1.9153 406.6513 277.0000 140.0000 2.9424 1.9355 + 410.6367 277.0000 141.0000 2.9424 1.9545 384.4194 277.0000 142.0000 2.9424 1.9420 + 427.3045 277.0000 143.0000 2.9424 1.6682 337.8747 277.0000 144.0000 2.9424 1.8584 + 316.6899 277.0000 145.0000 2.9424 1.9003 294.8260 277.0000 146.0000 2.9424 1.8630 + 284.9424 277.0000 147.0000 2.9424 0.9679 283.0965 277.0000 148.0000 2.9424 1.9539 + 436.8021 277.0000 149.0000 2.9424 0.9633 399.2246 277.0000 150.0000 2.9424 0.9514 + 376.8983 277.0000 151.0000 2.9424 0.9749 358.7861 277.0000 152.0000 2.9424 0.9811 + 330.3159 277.0000 153.0000 2.9424 0.9968 433.9682 277.0000 155.0000 2.9424 0.9909 + 890.8274 277.0000 156.0000 2.9424 0.9797 677.4455 277.0000 157.0000 2.9424 1.9373 + 440.0313 277.0000 159.0000 2.9424 2.9425 430.9970 277.0000 160.0000 2.9424 2.9455 + 417.6269 277.0000 161.0000 2.9424 2.9413 419.0196 277.0000 162.0000 2.9424 2.9300 + 402.1259 277.0000 163.0000 2.9424 1.8286 421.2203 277.0000 164.0000 2.9424 2.8732 + 396.3064 277.0000 165.0000 2.9424 2.9086 402.1940 277.0000 166.0000 2.9424 2.8965 + 376.6519 277.0000 167.0000 2.9424 2.9242 366.1132 277.0000 168.0000 2.9424 2.9282 + 363.5669 277.0000 169.0000 2.9424 2.9246 380.8951 277.0000 170.0000 2.9424 2.8482 + 351.6325 277.0000 171.0000 2.9424 2.9219 467.9919 277.0000 172.0000 2.9424 1.9254 + 437.3090 277.0000 173.0000 2.9424 1.9459 401.9104 277.0000 174.0000 2.9424 1.9292 + 404.4232 277.0000 175.0000 2.9424 1.8104 359.7045 277.0000 176.0000 2.9424 1.8858 + 339.5730 277.0000 177.0000 2.9424 1.8648 325.0787 277.0000 178.0000 2.9424 1.9188 + 311.0844 277.0000 179.0000 2.9424 0.9846 302.0645 277.0000 180.0000 2.9424 1.9896 + 471.2511 277.0000 181.0000 2.9424 0.9267 433.6749 277.0000 182.0000 2.9424 0.9383 + 422.8733 277.0000 183.0000 2.9424 0.9820 413.1587 277.0000 184.0000 2.9424 0.9815 + 388.4790 277.0000 185.0000 2.9424 0.9954 488.9395 277.0000 187.0000 2.9424 0.9705 + 890.6763 277.0000 188.0000 2.9424 0.9662 520.2948 277.0000 189.0000 2.9424 2.9070 + 595.9973 277.0000 190.0000 2.9424 2.8844 535.5237 277.0000 191.0000 2.9424 2.8738 + 476.2160 277.0000 192.0000 2.9424 2.8878 459.0702 277.0000 193.0000 2.9424 2.9095 + 542.5167 277.0000 194.0000 2.9424 1.9209 127.5067 277.0000 204.0000 2.9424 1.9697 + 126.3658 277.0000 205.0000 2.9424 1.9441 94.4422 277.0000 206.0000 2.9424 1.9985 + 76.6936 277.0000 207.0000 2.9424 2.0143 53.7135 277.0000 208.0000 2.9424 1.9887 + 223.4506 277.0000 212.0000 2.9424 1.9496 269.9296 277.0000 213.0000 2.9424 1.9311 + 261.3179 277.0000 214.0000 2.9424 1.9435 229.6574 277.0000 215.0000 2.9424 2.0102 + 195.4229 277.0000 216.0000 2.9424 1.9903 314.6586 277.0000 220.0000 2.9424 1.9349 + 304.4056 277.0000 221.0000 2.9424 2.8999 308.3710 277.0000 222.0000 2.9424 3.8675 + 282.5278 277.0000 223.0000 2.9424 2.9110 216.0731 277.0000 224.0000 2.9424 10.6191 + 186.4713 277.0000 225.0000 2.9424 9.8849 182.8801 277.0000 226.0000 2.9424 9.1376 + 211.4541 277.0000 227.0000 2.9424 2.9263 197.7025 277.0000 228.0000 2.9424 6.5458 + 274.9323 277.0000 231.0000 2.9424 1.9315 291.0937 277.0000 232.0000 2.9424 1.9447 + 269.5747 277.0000 233.0000 2.9424 1.9793 252.7124 277.0000 234.0000 2.9424 1.9812 + 377.9017 277.0000 238.0000 2.9424 1.9143 366.6745 277.0000 239.0000 2.9424 2.8903 + 370.8343 277.0000 240.0000 2.9424 3.9106 358.9272 277.0000 241.0000 2.9424 2.9225 + 320.3109 277.0000 242.0000 2.9424 11.0556 284.8943 277.0000 243.0000 2.9424 9.5402 + 270.0538 277.0000 244.0000 2.9424 8.8895 273.2842 277.0000 245.0000 2.9424 2.9696 + 284.6094 277.0000 246.0000 2.9424 5.7095 356.4323 277.0000 249.0000 2.9424 1.9378 + 386.8735 277.0000 250.0000 2.9424 1.9505 367.3108 277.0000 251.0000 2.9424 1.9523 + 356.1612 277.0000 252.0000 2.9424 1.9639 458.5810 277.0000 256.0000 2.9424 1.8467 + 476.6927 277.0000 257.0000 2.9424 2.9175 356.5119 277.0000 272.0000 2.9424 3.8840 + 371.7081 277.0000 273.0000 2.9424 2.8988 348.1224 277.0000 274.0000 2.9424 10.9153 + 318.4111 277.0000 275.0000 2.9424 9.8054 301.2116 277.0000 276.0000 2.9424 9.1527 + 305.5258 277.0000 277.0000 2.9424 2.9424 31.7368 278.0000 1.0000 6.6669 0.9118 + 21.7064 278.0000 2.0000 6.6669 0.0000 448.1737 278.0000 3.0000 6.6669 0.0000 + 268.6491 278.0000 4.0000 6.6669 0.0000 185.7195 278.0000 5.0000 6.6669 0.0000 + 128.3281 278.0000 6.0000 6.6669 0.0000 91.4441 278.0000 7.0000 6.6669 0.0000 + 70.2472 278.0000 8.0000 6.6669 0.0000 53.9293 278.0000 9.0000 6.6669 0.0000 + 41.9574 278.0000 10.0000 6.6669 0.0000 537.6428 278.0000 11.0000 6.6669 0.0000 + 425.3166 278.0000 12.0000 6.6669 0.0000 396.9123 278.0000 13.0000 6.6669 0.0000 + 318.2285 278.0000 14.0000 6.6669 0.0000 252.2194 278.0000 15.0000 6.6669 0.0000 + 211.8121 278.0000 16.0000 6.6669 0.0000 175.1017 278.0000 17.0000 6.6669 0.0000 + 144.8625 278.0000 18.0000 6.6669 0.0000 879.7634 278.0000 19.0000 6.6669 0.0000 + 740.1981 278.0000 20.0000 6.6669 0.0000 614.5128 278.0000 21.0000 6.6669 0.0000 + 596.8009 278.0000 22.0000 6.6669 0.0000 548.2853 278.0000 23.0000 6.6669 0.0000 + 433.3107 278.0000 24.0000 6.6669 0.0000 474.3318 278.0000 25.0000 6.6669 0.0000 + 373.7574 278.0000 26.0000 6.6669 0.0000 397.6543 278.0000 27.0000 6.6669 0.0000 + 408.1971 278.0000 28.0000 6.6669 0.0000 314.1878 278.0000 29.0000 6.6669 0.0000 + 324.8266 278.0000 30.0000 6.6669 0.0000 382.9350 278.0000 31.0000 6.6669 0.0000 + 342.0210 278.0000 32.0000 6.6669 0.0000 295.5118 278.0000 33.0000 6.6669 0.0000 + 267.5378 278.0000 34.0000 6.6669 0.0000 236.3913 278.0000 35.0000 6.6669 0.0000 + 207.5157 278.0000 36.0000 6.6669 0.0000 988.9746 278.0000 37.0000 6.6669 0.0000 + 882.1252 278.0000 38.0000 6.6669 0.0000 779.8715 278.0000 39.0000 6.6669 0.0000 + 705.3252 278.0000 40.0000 6.6669 0.0000 646.1200 278.0000 41.0000 6.6669 0.0000 + 503.4771 278.0000 42.0000 6.6669 0.0000 559.7588 278.0000 43.0000 6.6669 0.0000 + 430.8148 278.0000 44.0000 6.6669 0.0000 469.9681 278.0000 45.0000 6.6669 0.0000 + 437.1117 278.0000 46.0000 6.6669 0.0000 365.1892 278.0000 47.0000 6.6669 0.0000 + 386.6993 278.0000 48.0000 6.6669 0.0000 480.5848 278.0000 49.0000 6.6669 0.0000 + 448.5530 278.0000 50.0000 6.6669 0.0000 403.9370 278.0000 51.0000 6.6669 0.0000 + 377.3761 278.0000 52.0000 6.6669 0.0000 343.9165 278.0000 53.0000 6.6669 0.0000 + 311.6576 278.0000 54.0000 6.6669 0.0000 1206.0907 278.0000 55.0000 6.6669 0.0000 + 1122.4006 278.0000 56.0000 6.6669 0.0000 994.8411 278.0000 57.0000 6.6669 0.0000 + 476.8525 278.0000 58.0000 6.6669 2.7991 997.9976 278.0000 59.0000 6.6669 0.0000 + 959.5883 278.0000 60.0000 6.6669 0.0000 935.8510 278.0000 61.0000 6.6669 0.0000 + 913.9673 278.0000 62.0000 6.6669 0.0000 894.5700 278.0000 63.0000 6.6669 0.0000 + 711.8073 278.0000 64.0000 6.6669 0.0000 790.8786 278.0000 65.0000 6.6669 0.0000 + 764.1379 278.0000 66.0000 6.6669 0.0000 808.4844 278.0000 67.0000 6.6669 0.0000 + 791.4415 278.0000 68.0000 6.6669 0.0000 776.1770 278.0000 69.0000 6.6669 0.0000 + 766.6821 278.0000 70.0000 6.6669 0.0000 651.1339 278.0000 71.0000 6.6669 0.0000 + 645.9768 278.0000 72.0000 6.6669 0.0000 593.4520 278.0000 73.0000 6.6669 0.0000 + 504.6950 278.0000 74.0000 6.6669 0.0000 514.4186 278.0000 75.0000 6.6669 0.0000 + 469.0617 278.0000 76.0000 6.6669 0.0000 431.7911 278.0000 77.0000 6.6669 0.0000 + 361.3108 278.0000 78.0000 6.6669 0.0000 338.5478 278.0000 79.0000 6.6669 0.0000 + 348.6035 278.0000 80.0000 6.6669 0.0000 496.1063 278.0000 81.0000 6.6669 0.0000 + 488.1273 278.0000 82.0000 6.6669 0.0000 452.4945 278.0000 83.0000 6.6669 0.0000 + 433.9575 278.0000 84.0000 6.6669 0.0000 403.3598 278.0000 85.0000 6.6669 0.0000 + 372.2861 278.0000 86.0000 6.6669 0.0000 1147.1809 278.0000 87.0000 6.6669 0.0000 + 1115.4572 278.0000 88.0000 6.6669 0.0000 994.0409 278.0000 89.0000 6.6669 0.0000 + 902.9393 278.0000 90.0000 6.6669 0.0000 892.9504 278.0000 91.0000 6.6669 0.0000 + 864.9549 278.0000 92.0000 6.6669 0.0000 885.1178 278.0000 93.0000 6.6669 0.0000 + 858.0549 278.0000 94.0000 6.6669 0.0000 50.1899 278.0000 101.0000 6.6669 0.0000 + 156.8327 278.0000 103.0000 6.6669 0.9865 201.1687 278.0000 104.0000 6.6669 0.9808 + 157.2466 278.0000 105.0000 6.6669 0.9706 120.4733 278.0000 106.0000 6.6669 0.9868 + 85.4113 278.0000 107.0000 6.6669 0.9944 63.2803 278.0000 108.0000 6.6669 0.9925 + 44.5004 278.0000 109.0000 6.6669 0.9982 228.7358 278.0000 111.0000 6.6669 0.9684 + 352.7890 278.0000 112.0000 6.6669 0.9628 360.9354 278.0000 113.0000 6.6669 0.9648 + 295.0071 278.0000 114.0000 6.6669 0.9507 245.0309 278.0000 115.0000 6.6669 0.9947 + 209.4703 278.0000 116.0000 6.6669 0.9948 173.2829 278.0000 117.0000 6.6669 0.9972 + 319.9170 278.0000 119.0000 6.6669 0.9767 594.4240 278.0000 120.0000 6.6669 0.9831 + 323.3413 278.0000 121.0000 6.6669 1.8627 312.5132 278.0000 122.0000 6.6669 1.8299 + 306.2733 278.0000 123.0000 6.6669 1.9138 303.0374 278.0000 124.0000 6.6669 1.8269 + 280.7518 278.0000 125.0000 6.6669 1.6406 260.5865 278.0000 126.0000 6.6669 1.6483 + 248.7264 278.0000 127.0000 6.6669 1.7149 243.0407 278.0000 128.0000 6.6669 1.7937 + 238.8650 278.0000 129.0000 6.6669 0.9576 226.3043 278.0000 130.0000 6.6669 1.9419 + 360.8797 278.0000 131.0000 6.6669 0.9601 321.0664 278.0000 132.0000 6.6669 0.9434 + 290.7602 278.0000 133.0000 6.6669 0.9889 267.6261 278.0000 134.0000 6.6669 0.9901 + 237.9360 278.0000 135.0000 6.6669 0.9974 383.1834 278.0000 137.0000 6.6669 0.9738 + 723.2477 278.0000 138.0000 6.6669 0.9801 563.3746 278.0000 139.0000 6.6669 1.9153 + 427.7857 278.0000 140.0000 6.6669 1.9355 431.9942 278.0000 141.0000 6.6669 1.9545 + 404.2779 278.0000 142.0000 6.6669 1.9420 449.2979 278.0000 143.0000 6.6669 1.6682 + 355.2228 278.0000 144.0000 6.6669 1.8584 332.8653 278.0000 145.0000 6.6669 1.9003 + 309.8062 278.0000 146.0000 6.6669 1.8630 299.4363 278.0000 147.0000 6.6669 0.9679 + 297.5281 278.0000 148.0000 6.6669 1.9539 459.7362 278.0000 149.0000 6.6669 0.9633 + 420.1303 278.0000 150.0000 6.6669 0.9514 396.4838 278.0000 151.0000 6.6669 0.9749 + 377.2513 278.0000 152.0000 6.6669 0.9811 347.0768 278.0000 153.0000 6.6669 0.9968 + 456.3166 278.0000 155.0000 6.6669 0.9909 935.3464 278.0000 156.0000 6.6669 0.9797 + 712.2258 278.0000 157.0000 6.6669 1.9373 462.8127 278.0000 159.0000 6.6669 2.9425 + 453.3077 278.0000 160.0000 6.6669 2.9455 439.2217 278.0000 161.0000 6.6669 2.9413 + 440.7009 278.0000 162.0000 6.6669 2.9300 422.9652 278.0000 163.0000 6.6669 1.8286 + 443.0797 278.0000 164.0000 6.6669 2.8732 416.8327 278.0000 165.0000 6.6669 2.9086 + 423.0265 278.0000 166.0000 6.6669 2.8965 396.1468 278.0000 167.0000 6.6669 2.9242 + 385.0543 278.0000 168.0000 6.6669 2.9282 382.3922 278.0000 169.0000 6.6669 2.9246 + 400.7381 278.0000 170.0000 6.6669 2.8482 369.8397 278.0000 171.0000 6.6669 2.9219 + 492.3189 278.0000 172.0000 6.6669 1.9254 459.9399 278.0000 173.0000 6.6669 1.9459 + 422.5902 278.0000 174.0000 6.6669 1.9292 425.2910 278.0000 175.0000 6.6669 1.8104 + 378.0364 278.0000 176.0000 6.6669 1.8858 356.7672 278.0000 177.0000 6.6669 1.8648 + 341.4644 278.0000 178.0000 6.6669 1.9188 326.7014 278.0000 179.0000 6.6669 0.9846 + 317.1922 278.0000 180.0000 6.6669 1.9896 495.6695 278.0000 181.0000 6.6669 0.9267 + 456.1450 278.0000 182.0000 6.6669 0.9383 444.7184 278.0000 183.0000 6.6669 0.9820 + 434.3770 278.0000 184.0000 6.6669 0.9815 408.2127 278.0000 185.0000 6.6669 0.9954 + 514.1361 278.0000 187.0000 6.6669 0.9705 935.7036 278.0000 188.0000 6.6669 0.9662 + 547.2861 278.0000 189.0000 6.6669 2.9070 626.7437 278.0000 190.0000 6.6669 2.8844 + 562.8381 278.0000 191.0000 6.6669 2.8738 500.6601 278.0000 192.0000 6.6669 2.8878 + 482.6087 278.0000 193.0000 6.6669 2.9095 570.3002 278.0000 194.0000 6.6669 1.9209 + 134.2472 278.0000 204.0000 6.6669 1.9697 132.8868 278.0000 205.0000 6.6669 1.9441 + 99.1426 278.0000 206.0000 6.6669 1.9985 80.3878 278.0000 207.0000 6.6669 2.0143 + 56.1647 278.0000 208.0000 6.6669 1.9887 235.4609 278.0000 212.0000 6.6669 1.9496 + 284.3328 278.0000 213.0000 6.6669 1.9311 275.1421 278.0000 214.0000 6.6669 1.9435 + 241.5709 278.0000 215.0000 6.6669 2.0102 205.3192 278.0000 216.0000 6.6669 1.9903 + 331.2432 278.0000 220.0000 6.6669 1.9349 320.3679 278.0000 221.0000 6.6669 2.8999 + 324.5233 278.0000 222.0000 6.6669 3.8675 297.2341 278.0000 223.0000 6.6669 2.9110 + 227.0237 278.0000 224.0000 6.6669 10.6191 195.7919 278.0000 225.0000 6.6669 9.8849 + 192.0365 278.0000 226.0000 6.6669 9.1376 222.2868 278.0000 227.0000 6.6669 2.9263 + 207.7935 278.0000 228.0000 6.6669 6.5458 289.3931 278.0000 231.0000 6.6669 1.9315 + 306.3878 278.0000 232.0000 6.6669 1.9447 283.5308 278.0000 233.0000 6.6669 1.9793 + 265.6099 278.0000 234.0000 6.6669 1.9812 397.6511 278.0000 238.0000 6.6669 1.9143 + 385.7720 278.0000 239.0000 6.6669 2.8903 390.0863 278.0000 240.0000 6.6669 3.9106 + 377.4280 278.0000 241.0000 6.6669 2.9225 336.5858 278.0000 242.0000 6.6669 11.0556 + 299.1785 278.0000 243.0000 6.6669 9.5402 283.5165 278.0000 244.0000 6.6669 8.8895 + 287.0077 278.0000 245.0000 6.6669 2.9696 299.0109 278.0000 246.0000 6.6669 5.7095 + 374.9395 278.0000 249.0000 6.6669 1.9378 407.0826 278.0000 250.0000 6.6669 1.9505 + 386.3437 278.0000 251.0000 6.6669 1.9523 374.4693 278.0000 252.0000 6.6669 1.9639 + 482.3648 278.0000 256.0000 6.6669 1.8467 501.5388 278.0000 257.0000 6.6669 2.9175 + 374.9110 278.0000 272.0000 6.6669 3.8840 390.7926 278.0000 273.0000 6.6669 2.8988 + 365.8082 278.0000 274.0000 6.6669 10.9153 334.3868 278.0000 275.0000 6.6669 9.8054 + 316.1756 278.0000 276.0000 6.6669 9.1527 320.7626 278.0000 277.0000 6.6669 2.9424 + 336.8727 278.0000 278.0000 6.6669 6.6669 37.6407 281.0000 1.0000 1.9302 0.9118 + 25.0875 281.0000 2.0000 1.9302 0.0000 584.8796 281.0000 3.0000 1.9302 0.0000 + 336.7292 281.0000 4.0000 1.9302 0.0000 226.9393 281.0000 5.0000 1.9302 0.0000 + 153.7020 281.0000 6.0000 1.9302 0.0000 107.8602 281.0000 7.0000 1.9302 0.0000 + 81.9547 281.0000 8.0000 1.9302 0.0000 62.3317 281.0000 9.0000 1.9302 0.0000 + 48.1368 281.0000 10.0000 1.9302 0.0000 699.5701 281.0000 11.0000 1.9302 0.0000 + 536.9006 281.0000 12.0000 1.9302 0.0000 494.7723 281.0000 13.0000 1.9302 0.0000 + 389.9229 281.0000 14.0000 1.9302 0.0000 304.3783 281.0000 15.0000 1.9302 0.0000 + 252.9803 281.0000 16.0000 1.9302 0.0000 207.0428 281.0000 17.0000 1.9302 0.0000 + 169.7709 281.0000 18.0000 1.9302 0.0000 1148.8307 281.0000 19.0000 1.9302 0.0000 + 944.9475 281.0000 20.0000 1.9302 0.0000 780.3119 281.0000 21.0000 1.9302 0.0000 + 753.5662 281.0000 22.0000 1.9302 0.0000 690.0666 281.0000 23.0000 1.9302 0.0000 + 544.1795 281.0000 24.0000 1.9302 0.0000 594.1725 281.0000 25.0000 1.9302 0.0000 + 466.8762 281.0000 26.0000 1.9302 0.0000 494.2894 281.0000 27.0000 1.9302 0.0000 + 509.1508 281.0000 28.0000 1.9302 0.0000 390.9435 281.0000 29.0000 1.9302 0.0000 + 400.8646 281.0000 30.0000 1.9302 0.0000 474.3655 281.0000 31.0000 1.9302 0.0000 + 418.2800 281.0000 32.0000 1.9302 0.0000 356.9808 281.0000 33.0000 1.9302 0.0000 + 320.5921 281.0000 34.0000 1.9302 0.0000 280.9002 281.0000 35.0000 1.9302 0.0000 + 244.6590 281.0000 36.0000 1.9302 0.0000 1287.7826 281.0000 37.0000 1.9302 0.0000 + 1126.3391 281.0000 38.0000 1.9302 0.0000 985.9871 281.0000 39.0000 1.9302 0.0000 + 886.0018 281.0000 40.0000 1.9302 0.0000 807.9821 281.0000 41.0000 1.9302 0.0000 + 624.2338 281.0000 42.0000 1.9302 0.0000 696.2987 281.0000 43.0000 1.9302 0.0000 + 530.9279 281.0000 44.0000 1.9302 0.0000 579.9029 281.0000 45.0000 1.9302 0.0000 + 537.8554 281.0000 46.0000 1.9302 0.0000 449.1546 281.0000 47.0000 1.9302 0.0000 + 474.1015 281.0000 48.0000 1.9302 0.0000 594.6028 281.0000 49.0000 1.9302 0.0000 + 549.5415 281.0000 50.0000 1.9302 0.0000 489.7839 281.0000 51.0000 1.9302 0.0000 + 454.5743 281.0000 52.0000 1.9302 0.0000 411.2748 281.0000 53.0000 1.9302 0.0000 + 370.0859 281.0000 54.0000 1.9302 0.0000 1569.0757 281.0000 55.0000 1.9302 0.0000 + 1436.7682 281.0000 56.0000 1.9302 0.0000 1261.2174 281.0000 57.0000 1.9302 0.0000 + 578.8337 281.0000 58.0000 1.9302 2.7991 1273.1210 281.0000 59.0000 1.9302 0.0000 + 1222.2593 281.0000 60.0000 1.9302 0.0000 1191.5365 281.0000 61.0000 1.9302 0.0000 + 1163.2807 281.0000 62.0000 1.9302 0.0000 1138.2189 281.0000 63.0000 1.9302 0.0000 + 894.9740 281.0000 64.0000 1.9302 0.0000 1009.3816 281.0000 65.0000 1.9302 0.0000 + 973.4078 281.0000 66.0000 1.9302 0.0000 1026.3420 281.0000 67.0000 1.9302 0.0000 + 1004.5056 281.0000 68.0000 1.9302 0.0000 984.8068 281.0000 69.0000 1.9302 0.0000 + 973.2776 281.0000 70.0000 1.9302 0.0000 819.9878 281.0000 71.0000 1.9302 0.0000 + 805.5930 281.0000 72.0000 1.9302 0.0000 735.2185 281.0000 73.0000 1.9302 0.0000 + 621.3425 281.0000 74.0000 1.9302 0.0000 631.9830 281.0000 75.0000 1.9302 0.0000 + 572.9331 281.0000 76.0000 1.9302 0.0000 524.8990 281.0000 77.0000 1.9302 0.0000 + 436.5795 281.0000 78.0000 1.9302 0.0000 408.1207 281.0000 79.0000 1.9302 0.0000 + 419.6653 281.0000 80.0000 1.9302 0.0000 611.1733 281.0000 81.0000 1.9302 0.0000 + 597.1228 281.0000 82.0000 1.9302 0.0000 548.6218 281.0000 83.0000 1.9302 0.0000 + 523.3066 281.0000 84.0000 1.9302 0.0000 483.1587 281.0000 85.0000 1.9302 0.0000 + 443.1304 281.0000 86.0000 1.9302 0.0000 1480.4889 281.0000 87.0000 1.9302 0.0000 + 1420.2956 281.0000 88.0000 1.9302 0.0000 1254.6279 281.0000 89.0000 1.9302 0.0000 + 1127.2570 281.0000 90.0000 1.9302 0.0000 1119.9568 281.0000 91.0000 1.9302 0.0000 + 1084.4785 281.0000 92.0000 1.9302 0.0000 1117.0554 281.0000 93.0000 1.9302 0.0000 + 1081.6612 281.0000 94.0000 1.9302 0.0000 60.4792 281.0000 101.0000 1.9302 0.0000 + 195.8113 281.0000 103.0000 1.9302 0.9865 249.8440 281.0000 104.0000 1.9302 0.9808 + 191.0352 281.0000 105.0000 1.9302 0.9706 144.2377 281.0000 106.0000 1.9302 0.9868 + 100.6388 281.0000 107.0000 1.9302 0.9944 73.5841 281.0000 108.0000 1.9302 0.9925 + 50.9307 281.0000 109.0000 1.9302 0.9982 286.5556 281.0000 111.0000 1.9302 0.9684 + 442.9848 281.0000 112.0000 1.9302 0.9628 448.4570 281.0000 113.0000 1.9302 0.9648 + 360.4734 281.0000 114.0000 1.9302 0.9507 295.5027 281.0000 115.0000 1.9302 0.9947 + 250.2153 281.0000 116.0000 1.9302 0.9948 204.9123 281.0000 117.0000 1.9302 0.9972 + 395.8624 281.0000 119.0000 1.9302 0.9767 756.7881 281.0000 120.0000 1.9302 0.9831 + 395.5580 281.0000 121.0000 1.9302 1.8627 381.9977 281.0000 122.0000 1.9302 1.8299 + 374.4199 281.0000 123.0000 1.9302 1.9138 371.0160 281.0000 124.0000 1.9302 1.8269 + 341.2928 281.0000 125.0000 1.9302 1.6406 315.9654 281.0000 126.0000 1.9302 1.6483 + 301.4996 281.0000 127.0000 1.9302 1.7149 294.7815 281.0000 128.0000 1.9302 1.7937 + 291.3412 281.0000 129.0000 1.9302 0.9576 273.2506 281.0000 130.0000 1.9302 1.9419 + 445.5426 281.0000 131.0000 1.9302 0.9601 391.3814 281.0000 132.0000 1.9302 0.9434 + 350.9611 281.0000 133.0000 1.9302 0.9889 320.7238 281.0000 134.0000 1.9302 0.9901 + 282.8475 281.0000 135.0000 1.9302 0.9974 472.5061 281.0000 137.0000 1.9302 0.9738 + 921.3623 281.0000 138.0000 1.9302 0.9801 703.5558 281.0000 139.0000 1.9302 1.9153 + 523.4025 281.0000 140.0000 1.9302 1.9355 528.6320 281.0000 141.0000 1.9302 1.9545 + 493.1464 281.0000 142.0000 1.9302 1.9420 553.2924 281.0000 143.0000 1.9302 1.6682 + 430.0496 281.0000 144.0000 1.9302 1.8584 402.5143 281.0000 145.0000 1.9302 1.9003 + 373.9549 281.0000 146.0000 1.9302 1.8630 361.8210 281.0000 147.0000 1.9302 0.9679 + 357.7662 281.0000 148.0000 1.9302 1.9539 566.7425 281.0000 149.0000 1.9302 0.9633 + 512.5560 281.0000 150.0000 1.9302 0.9514 480.0484 281.0000 151.0000 1.9302 0.9749 + 454.2435 281.0000 152.0000 1.9302 0.9811 415.1143 281.0000 153.0000 1.9302 0.9968 + 558.3470 281.0000 155.0000 1.9302 0.9909 1195.4806 281.0000 156.0000 1.9302 0.9797 + 890.6711 281.0000 157.0000 1.9302 1.9373 561.4190 281.0000 159.0000 1.9302 2.9425 + 549.8212 281.0000 160.0000 1.9302 2.9455 532.4295 281.0000 161.0000 1.9302 2.9413 + 535.0427 281.0000 162.0000 1.9302 2.9300 515.9229 281.0000 163.0000 1.9302 1.8286 + 538.3135 281.0000 164.0000 1.9302 2.8732 505.6948 281.0000 165.0000 1.9302 2.9086 + 514.5864 281.0000 166.0000 1.9302 2.8965 479.9826 281.0000 167.0000 1.9302 2.9242 + 466.3111 281.0000 168.0000 1.9302 2.9282 463.2961 281.0000 169.0000 1.9302 2.9246 + 486.8010 281.0000 170.0000 1.9302 2.8482 447.7781 281.0000 171.0000 1.9302 2.9219 + 606.7005 281.0000 172.0000 1.9302 1.9254 563.1548 281.0000 173.0000 1.9302 1.9459 + 513.9729 281.0000 174.0000 1.9302 1.9292 520.1419 281.0000 175.0000 1.9302 1.8104 + 455.4923 281.0000 176.0000 1.9302 1.8858 428.7364 281.0000 177.0000 1.9302 1.8648 + 409.6791 281.0000 178.0000 1.9302 1.9188 391.8793 281.0000 179.0000 1.9302 0.9846 + 378.6256 281.0000 180.0000 1.9302 1.9896 609.0789 281.0000 181.0000 1.9302 0.9267 + 554.9418 281.0000 182.0000 1.9302 0.9383 538.1003 281.0000 183.0000 1.9302 0.9820 + 523.4075 281.0000 184.0000 1.9302 0.9815 488.9676 281.0000 185.0000 1.9302 0.9954 + 628.7622 281.0000 187.0000 1.9302 0.9705 1188.3406 281.0000 188.0000 1.9302 0.9662 + 664.1998 281.0000 189.0000 1.9302 2.9070 767.1368 281.0000 190.0000 1.9302 2.8844 + 686.3305 281.0000 191.0000 1.9302 2.8738 606.3205 281.0000 192.0000 1.9302 2.8878 + 583.5052 281.0000 193.0000 1.9302 2.9095 702.4234 281.0000 194.0000 1.9302 1.9209 + 163.0325 281.0000 204.0000 1.9302 1.9697 160.5147 281.0000 205.0000 1.9302 1.9441 + 117.7589 281.0000 206.0000 1.9302 1.9985 94.5619 281.0000 207.0000 1.9302 2.0143 + 65.0549 281.0000 208.0000 1.9302 1.9887 289.1580 281.0000 212.0000 1.9302 1.9496 + 349.5092 281.0000 213.0000 1.9302 1.9311 335.3401 281.0000 214.0000 1.9302 1.9435 + 291.5389 281.0000 215.0000 1.9302 2.0102 245.1867 281.0000 216.0000 1.9302 1.9903 + 406.0640 281.0000 220.0000 1.9302 1.9349 390.2082 281.0000 221.0000 1.9302 2.8999 + 395.0466 281.0000 222.0000 1.9302 3.8675 361.7806 281.0000 223.0000 1.9302 2.9110 + 272.9894 281.0000 224.0000 1.9302 10.6191 233.7811 281.0000 225.0000 1.9302 9.8849 + 229.4894 281.0000 226.0000 1.9302 9.1376 268.7131 281.0000 227.0000 1.9302 2.9263 + 250.4043 281.0000 228.0000 1.9302 6.5458 353.1112 281.0000 231.0000 1.9302 1.9315 + 372.6603 281.0000 232.0000 1.9302 1.9447 341.7870 281.0000 233.0000 1.9302 1.9793 + 318.2256 281.0000 234.0000 1.9302 1.9812 486.7059 281.0000 238.0000 1.9302 1.9143 + 468.3267 281.0000 239.0000 1.9302 2.8903 472.3712 281.0000 240.0000 1.9302 3.9106 + 457.0893 281.0000 241.0000 1.9302 2.9225 404.4518 281.0000 242.0000 1.9302 11.0556 + 357.2790 281.0000 243.0000 1.9302 9.5402 337.7782 281.0000 244.0000 1.9302 8.8895 + 344.1123 281.0000 245.0000 1.9302 2.9696 359.3493 281.0000 246.0000 1.9302 5.7095 + 456.2201 281.0000 249.0000 1.9302 1.9378 495.5418 281.0000 250.0000 1.9302 1.9505 + 466.8965 281.0000 251.0000 1.9302 1.9523 450.5709 281.0000 252.0000 1.9302 1.9639 + 588.7448 281.0000 256.0000 1.9302 1.8467 609.8823 281.0000 257.0000 1.9302 2.9175 + 452.3549 281.0000 272.0000 1.9302 3.8840 472.7544 281.0000 273.0000 1.9302 2.8988 + 439.3698 281.0000 274.0000 1.9302 10.9153 399.3636 281.0000 275.0000 1.9302 9.8054 + 375.9151 281.0000 276.0000 1.9302 9.1527 383.3885 281.0000 277.0000 1.9302 2.9424 + 403.0564 281.0000 278.0000 1.9302 6.6669 487.7418 281.0000 281.0000 1.9302 1.9302 + 39.7922 282.0000 1.0000 1.9356 0.9118 26.4467 282.0000 2.0000 1.9356 0.0000 + 614.8841 282.0000 3.0000 1.9356 0.0000 355.8205 282.0000 4.0000 1.9356 0.0000 + 240.0262 282.0000 5.0000 1.9356 0.0000 162.5036 282.0000 6.0000 1.9356 0.0000 + 113.9262 282.0000 7.0000 1.9356 0.0000 86.4712 282.0000 8.0000 1.9356 0.0000 + 65.6888 282.0000 9.0000 1.9356 0.0000 50.6707 282.0000 10.0000 1.9356 0.0000 + 735.5782 282.0000 11.0000 1.9356 0.0000 566.8872 282.0000 12.0000 1.9356 0.0000 + 522.8751 282.0000 13.0000 1.9356 0.0000 412.4108 282.0000 14.0000 1.9356 0.0000 + 321.9613 282.0000 15.0000 1.9356 0.0000 267.4961 282.0000 16.0000 1.9356 0.0000 + 218.7940 282.0000 17.0000 1.9356 0.0000 179.2701 282.0000 18.0000 1.9356 0.0000 + 1205.8672 282.0000 19.0000 1.9356 0.0000 995.7893 282.0000 20.0000 1.9356 0.0000 + 822.8762 282.0000 21.0000 1.9356 0.0000 794.9456 282.0000 22.0000 1.9356 0.0000 + 728.1306 282.0000 23.0000 1.9356 0.0000 573.9057 282.0000 24.0000 1.9356 0.0000 + 627.1392 282.0000 25.0000 1.9356 0.0000 492.5359 282.0000 26.0000 1.9356 0.0000 + 522.0102 282.0000 27.0000 1.9356 0.0000 537.6147 282.0000 28.0000 1.9356 0.0000 + 412.5016 282.0000 29.0000 1.9356 0.0000 423.5091 282.0000 30.0000 1.9356 0.0000 + 501.2103 282.0000 31.0000 1.9356 0.0000 442.2805 282.0000 32.0000 1.9356 0.0000 + 377.5368 282.0000 33.0000 1.9356 0.0000 338.9950 282.0000 34.0000 1.9356 0.0000 + 296.9197 282.0000 35.0000 1.9356 0.0000 258.4800 282.0000 36.0000 1.9356 0.0000 + 1351.8089 282.0000 37.0000 1.9356 0.0000 1186.5298 282.0000 38.0000 1.9356 0.0000 + 1039.7874 282.0000 39.0000 1.9356 0.0000 934.8232 282.0000 40.0000 1.9356 0.0000 + 852.6898 282.0000 41.0000 1.9356 0.0000 658.8046 282.0000 42.0000 1.9356 0.0000 + 734.8703 282.0000 43.0000 1.9356 0.0000 560.3504 282.0000 44.0000 1.9356 0.0000 + 612.2971 282.0000 45.0000 1.9356 0.0000 567.9507 282.0000 46.0000 1.9356 0.0000 + 473.8893 282.0000 47.0000 1.9356 0.0000 500.6629 282.0000 48.0000 1.9356 0.0000 + 627.7921 282.0000 49.0000 1.9356 0.0000 580.7053 282.0000 50.0000 1.9356 0.0000 + 517.7663 282.0000 51.0000 1.9356 0.0000 480.5678 282.0000 52.0000 1.9356 0.0000 + 434.7464 282.0000 53.0000 1.9356 0.0000 391.1073 282.0000 54.0000 1.9356 0.0000 + 1646.9053 282.0000 55.0000 1.9356 0.0000 1512.6316 282.0000 56.0000 1.9356 0.0000 + 1329.3437 282.0000 57.0000 1.9356 0.0000 611.6981 282.0000 58.0000 1.9356 2.7991 + 1340.7087 282.0000 59.0000 1.9356 0.0000 1287.4426 282.0000 60.0000 1.9356 0.0000 + 1255.1651 282.0000 61.0000 1.9356 0.0000 1225.4747 282.0000 62.0000 1.9356 0.0000 + 1199.1443 282.0000 63.0000 1.9356 0.0000 943.6238 282.0000 64.0000 1.9356 0.0000 + 1062.0589 282.0000 65.0000 1.9356 0.0000 1024.4069 282.0000 66.0000 1.9356 0.0000 + 1081.6382 282.0000 67.0000 1.9356 0.0000 1058.6802 282.0000 68.0000 1.9356 0.0000 + 1037.9814 282.0000 69.0000 1.9356 0.0000 1025.8078 282.0000 70.0000 1.9356 0.0000 + 864.7168 282.0000 71.0000 1.9356 0.0000 850.4845 282.0000 72.0000 1.9356 0.0000 + 776.4522 282.0000 73.0000 1.9356 0.0000 656.0695 282.0000 74.0000 1.9356 0.0000 + 667.4763 282.0000 75.0000 1.9356 0.0000 605.2026 282.0000 76.0000 1.9356 0.0000 + 554.4918 282.0000 77.0000 1.9356 0.0000 461.0173 282.0000 78.0000 1.9356 0.0000 + 430.9016 282.0000 79.0000 1.9356 0.0000 443.2391 282.0000 80.0000 1.9356 0.0000 + 644.9926 282.0000 81.0000 1.9356 0.0000 630.6968 282.0000 82.0000 1.9356 0.0000 + 579.7499 282.0000 83.0000 1.9356 0.0000 553.0751 282.0000 84.0000 1.9356 0.0000 + 510.6480 282.0000 85.0000 1.9356 0.0000 468.2735 282.0000 86.0000 1.9356 0.0000 + 1555.4213 282.0000 87.0000 1.9356 0.0000 1496.0560 282.0000 88.0000 1.9356 0.0000 + 1322.9452 282.0000 89.0000 1.9356 0.0000 1189.5930 282.0000 90.0000 1.9356 0.0000 + 1181.0895 282.0000 91.0000 1.9356 0.0000 1143.6704 282.0000 92.0000 1.9356 0.0000 + 1177.3166 282.0000 93.0000 1.9356 0.0000 1140.1626 282.0000 94.0000 1.9356 0.0000 + 63.9796 282.0000 101.0000 1.9356 0.0000 206.9127 282.0000 103.0000 1.9356 0.9865 + 264.0083 282.0000 104.0000 1.9356 0.9808 202.0191 282.0000 105.0000 1.9356 0.9706 + 152.4495 282.0000 106.0000 1.9356 0.9868 106.2635 282.0000 107.0000 1.9356 0.9944 + 77.6024 282.0000 108.0000 1.9356 0.9925 53.6109 282.0000 109.0000 1.9356 0.9982 + 302.5882 282.0000 111.0000 1.9356 0.9684 467.7576 282.0000 112.0000 1.9356 0.9628 + 473.9754 282.0000 113.0000 1.9356 0.9648 381.2538 282.0000 114.0000 1.9356 0.9507 + 312.5506 282.0000 115.0000 1.9356 0.9947 264.5600 282.0000 116.0000 1.9356 0.9948 + 216.5348 282.0000 117.0000 1.9356 0.9972 417.7483 282.0000 119.0000 1.9356 0.9767 + 797.0009 282.0000 120.0000 1.9356 0.9831 418.0128 282.0000 121.0000 1.9356 1.8627 + 403.6239 282.0000 122.0000 1.9356 1.8299 395.5906 282.0000 123.0000 1.9356 1.9138 + 391.9364 282.0000 124.0000 1.9356 1.8269 360.7539 282.0000 125.0000 1.9356 1.6406 + 333.9698 282.0000 126.0000 1.9356 1.6483 318.6390 282.0000 127.0000 1.9356 1.7149 + 311.5211 282.0000 128.0000 1.9356 1.7937 307.7570 282.0000 129.0000 1.9356 0.9576 + 288.8534 282.0000 130.0000 1.9356 1.9419 470.8344 282.0000 131.0000 1.9356 0.9601 + 413.8552 282.0000 132.0000 1.9356 0.9434 371.1603 282.0000 133.0000 1.9356 0.9889 + 339.1282 282.0000 134.0000 1.9356 0.9901 298.9783 282.0000 135.0000 1.9356 0.9974 + 498.6058 282.0000 137.0000 1.9356 0.9738 969.9232 282.0000 138.0000 1.9356 0.9801 + 742.0502 282.0000 139.0000 1.9356 1.9153 552.8960 282.0000 140.0000 1.9356 1.9355 + 558.3930 282.0000 141.0000 1.9356 1.9545 520.8778 282.0000 142.0000 1.9356 1.9420 + 583.9347 282.0000 143.0000 1.9356 1.6682 454.3352 282.0000 144.0000 1.9356 1.8584 + 425.1675 282.0000 145.0000 1.9356 1.9003 394.9440 282.0000 146.0000 1.9356 1.8630 + 382.0925 282.0000 147.0000 1.9356 0.9679 378.0150 282.0000 148.0000 1.9356 1.9539 + 598.5207 282.0000 149.0000 1.9356 0.9633 541.6872 282.0000 150.0000 1.9356 0.9514 + 507.4849 282.0000 151.0000 1.9356 0.9749 480.2227 282.0000 152.0000 1.9356 0.9811 + 438.8124 282.0000 153.0000 1.9356 0.9968 589.6080 282.0000 155.0000 1.9356 0.9909 + 1257.5693 282.0000 156.0000 1.9356 0.9797 939.1420 282.0000 157.0000 1.9356 1.9373 + 593.2909 282.0000 159.0000 1.9356 2.9425 581.0325 282.0000 160.0000 1.9356 2.9455 + 562.6492 282.0000 161.0000 1.9356 2.9413 565.3680 282.0000 162.0000 1.9356 2.9300 + 544.9584 282.0000 163.0000 1.9356 1.8286 568.8699 282.0000 164.0000 1.9356 2.8732 + 534.3968 282.0000 165.0000 1.9356 2.9086 543.6952 282.0000 166.0000 1.9356 2.8965 + 507.2620 282.0000 167.0000 1.9356 2.9242 492.8230 282.0000 168.0000 1.9356 2.9282 + 489.6395 282.0000 169.0000 1.9356 2.9246 514.5278 282.0000 170.0000 1.9356 2.8482 + 473.2687 282.0000 171.0000 1.9356 2.9219 640.5891 282.0000 172.0000 1.9356 1.9254 + 594.7524 282.0000 173.0000 1.9356 1.9459 542.9137 282.0000 174.0000 1.9356 1.9292 + 549.2578 282.0000 175.0000 1.9356 1.8104 481.2453 282.0000 176.0000 1.9356 1.8858 + 452.9116 282.0000 177.0000 1.9356 1.8648 432.7246 282.0000 178.0000 1.9356 1.9188 + 413.8291 282.0000 179.0000 1.9356 0.9846 399.9516 282.0000 180.0000 1.9356 1.9896 + 642.9980 282.0000 181.0000 1.9356 0.9267 586.2856 282.0000 182.0000 1.9356 0.9383 + 568.6804 282.0000 183.0000 1.9356 0.9820 553.2080 282.0000 184.0000 1.9356 0.9815 + 516.8055 282.0000 185.0000 1.9356 0.9954 664.0222 282.0000 187.0000 1.9356 0.9705 + 1251.0172 282.0000 188.0000 1.9356 0.9662 701.9593 282.0000 189.0000 1.9356 2.9070 + 810.1068 282.0000 190.0000 1.9356 2.8844 724.6474 282.0000 191.0000 1.9356 2.8738 + 640.5444 282.0000 192.0000 1.9356 2.8878 616.4696 282.0000 193.0000 1.9356 2.9095 + 741.1176 282.0000 194.0000 1.9356 1.9209 172.4904 282.0000 204.0000 1.9356 1.9697 + 169.7077 282.0000 205.0000 1.9356 1.9441 124.4398 282.0000 206.0000 1.9356 1.9985 + 99.8294 282.0000 207.0000 1.9356 2.0143 68.5632 282.0000 208.0000 1.9356 1.9887 + 305.8390 282.0000 212.0000 1.9356 1.9496 369.5628 282.0000 213.0000 1.9356 1.9311 + 354.6840 282.0000 214.0000 1.9356 1.9435 308.3268 282.0000 215.0000 1.9356 2.0102 + 259.2302 282.0000 216.0000 1.9356 1.9903 429.1133 282.0000 220.0000 1.9356 1.9349 + 412.4946 282.0000 221.0000 1.9356 2.8999 417.6039 282.0000 222.0000 1.9356 3.8675 + 382.3241 282.0000 223.0000 1.9356 2.9110 288.3802 282.0000 224.0000 1.9356 10.6191 + 246.9333 282.0000 225.0000 1.9356 9.8849 242.3963 282.0000 226.0000 1.9356 9.1376 + 283.8768 282.0000 227.0000 1.9356 2.9263 264.5468 282.0000 228.0000 1.9356 6.5458 + 373.3126 282.0000 231.0000 1.9356 1.9315 394.0690 282.0000 232.0000 1.9356 1.9447 + 361.4532 282.0000 233.0000 1.9356 1.9793 336.4787 282.0000 234.0000 1.9356 1.9812 + 514.2047 282.0000 238.0000 1.9356 1.9143 495.0513 282.0000 239.0000 1.9356 2.8903 + 499.3611 282.0000 240.0000 1.9356 3.9106 483.0386 282.0000 241.0000 1.9356 2.9225 + 427.3690 282.0000 242.0000 1.9356 11.0556 377.4633 282.0000 243.0000 1.9356 9.5402 + 356.8192 282.0000 244.0000 1.9356 8.8895 363.4268 282.0000 245.0000 1.9356 2.9696 + 379.5741 282.0000 246.0000 1.9356 5.7095 482.0463 282.0000 249.0000 1.9356 1.9378 + 523.7411 282.0000 250.0000 1.9356 1.9505 493.5953 282.0000 251.0000 1.9356 1.9523 + 476.3434 282.0000 252.0000 1.9356 1.9639 621.9727 282.0000 256.0000 1.9356 1.8467 + 644.6421 282.0000 257.0000 1.9356 2.9175 478.2096 282.0000 272.0000 1.9356 3.8840 + 499.5601 282.0000 273.0000 1.9356 2.8988 464.2848 282.0000 274.0000 1.9356 10.9153 + 421.9420 282.0000 275.0000 1.9356 9.8054 397.1198 282.0000 276.0000 1.9356 9.1527 + 404.8897 282.0000 277.0000 1.9356 2.9424 425.7564 282.0000 278.0000 1.9356 6.6669 + 515.2575 282.0000 281.0000 1.9356 1.9302 544.4563 282.0000 282.0000 1.9356 1.9356 + 40.7649 283.0000 1.0000 1.9655 0.9118 27.1746 283.0000 2.0000 1.9655 0.0000 + 613.1828 283.0000 3.0000 1.9655 0.0000 359.8482 283.0000 4.0000 1.9655 0.0000 + 244.3568 283.0000 5.0000 1.9655 0.0000 166.1189 283.0000 6.0000 1.9655 0.0000 + 116.7503 283.0000 7.0000 1.9655 0.0000 88.7397 283.0000 8.0000 1.9655 0.0000 + 67.4750 283.0000 9.0000 1.9655 0.0000 52.0759 283.0000 10.0000 1.9655 0.0000 + 734.1232 283.0000 11.0000 1.9655 0.0000 571.9311 283.0000 12.0000 1.9655 0.0000 + 529.4977 283.0000 13.0000 1.9655 0.0000 419.5989 283.0000 14.0000 1.9655 0.0000 + 328.7291 283.0000 15.0000 1.9655 0.0000 273.6574 283.0000 16.0000 1.9655 0.0000 + 224.2102 283.0000 17.0000 1.9655 0.0000 183.9368 283.0000 18.0000 1.9655 0.0000 + 1200.4050 283.0000 19.0000 1.9655 0.0000 1000.1815 283.0000 20.0000 1.9655 0.0000 + 828.0658 283.0000 21.0000 1.9655 0.0000 801.2338 283.0000 22.0000 1.9655 0.0000 + 734.5909 283.0000 23.0000 1.9655 0.0000 578.9721 283.0000 24.0000 1.9655 0.0000 + 633.5630 283.0000 25.0000 1.9655 0.0000 497.6326 283.0000 26.0000 1.9655 0.0000 + 528.5648 283.0000 27.0000 1.9655 0.0000 543.8541 283.0000 28.0000 1.9655 0.0000 + 417.1999 283.0000 29.0000 1.9655 0.0000 429.6851 283.0000 30.0000 1.9655 0.0000 + 508.1567 283.0000 31.0000 1.9655 0.0000 450.0464 283.0000 32.0000 1.9655 0.0000 + 385.3125 283.0000 33.0000 1.9655 0.0000 346.5496 283.0000 34.0000 1.9655 0.0000 + 304.0064 283.0000 35.0000 1.9655 0.0000 264.9847 283.0000 36.0000 1.9655 0.0000 + 1346.6051 283.0000 37.0000 1.9655 0.0000 1191.2973 283.0000 38.0000 1.9655 0.0000 + 1047.3694 283.0000 39.0000 1.9655 0.0000 943.4690 283.0000 40.0000 1.9655 0.0000 + 861.6243 283.0000 41.0000 1.9655 0.0000 666.9990 283.0000 42.0000 1.9655 0.0000 + 743.4824 283.0000 43.0000 1.9655 0.0000 568.0989 283.0000 44.0000 1.9655 0.0000 + 620.8581 283.0000 45.0000 1.9655 0.0000 576.3005 283.0000 46.0000 1.9655 0.0000 + 480.4874 283.0000 47.0000 1.9655 0.0000 508.4672 283.0000 48.0000 1.9655 0.0000 + 636.1713 283.0000 49.0000 1.9655 0.0000 590.2650 283.0000 50.0000 1.9655 0.0000 + 527.7411 283.0000 51.0000 1.9655 0.0000 490.5842 283.0000 52.0000 1.9655 0.0000 + 444.4937 283.0000 53.0000 1.9655 0.0000 400.4140 283.0000 54.0000 1.9655 0.0000 + 1640.7171 283.0000 55.0000 1.9655 0.0000 1516.9526 283.0000 56.0000 1.9655 0.0000 + 1337.5362 283.0000 57.0000 1.9655 0.0000 623.1024 283.0000 58.0000 1.9655 2.7991 + 1345.8984 283.0000 59.0000 1.9655 0.0000 1293.1656 283.0000 60.0000 1.9655 0.0000 + 1260.9414 283.0000 61.0000 1.9655 0.0000 1231.2801 283.0000 62.0000 1.9655 0.0000 + 1204.9833 283.0000 63.0000 1.9655 0.0000 951.4629 283.0000 64.0000 1.9655 0.0000 + 1065.1460 283.0000 65.0000 1.9655 0.0000 1028.0001 283.0000 66.0000 1.9655 0.0000 + 1087.8112 283.0000 67.0000 1.9655 0.0000 1064.8244 283.0000 68.0000 1.9655 0.0000 + 1044.1447 283.0000 69.0000 1.9655 0.0000 1031.7560 283.0000 70.0000 1.9655 0.0000 + 871.7439 283.0000 71.0000 1.9655 0.0000 860.2452 283.0000 72.0000 1.9655 0.0000 + 786.7867 283.0000 73.0000 1.9655 0.0000 665.6088 283.0000 74.0000 1.9655 0.0000 + 677.6767 283.0000 75.0000 1.9655 0.0000 615.3422 283.0000 76.0000 1.9655 0.0000 + 564.4143 283.0000 77.0000 1.9655 0.0000 469.7168 283.0000 78.0000 1.9655 0.0000 + 439.1950 283.0000 79.0000 1.9655 0.0000 452.0701 283.0000 80.0000 1.9655 0.0000 + 653.9182 283.0000 81.0000 1.9655 0.0000 640.9870 283.0000 82.0000 1.9655 0.0000 + 590.6919 283.0000 83.0000 1.9655 0.0000 564.2899 283.0000 84.0000 1.9655 0.0000 + 521.8050 283.0000 85.0000 1.9655 0.0000 479.1236 283.0000 86.0000 1.9655 0.0000 + 1553.8386 283.0000 87.0000 1.9655 0.0000 1502.8627 283.0000 88.0000 1.9655 0.0000 + 1332.9466 283.0000 89.0000 1.9655 0.0000 1202.4650 283.0000 90.0000 1.9655 0.0000 + 1191.8172 283.0000 91.0000 1.9655 0.0000 1154.1338 283.0000 92.0000 1.9655 0.0000 + 1185.6295 283.0000 93.0000 1.9655 0.0000 1148.6554 283.0000 94.0000 1.9655 0.0000 + 65.3536 283.0000 101.0000 1.9655 0.0000 209.4372 283.0000 103.0000 1.9655 0.9865 + 267.5491 283.0000 104.0000 1.9655 0.9808 205.8985 283.0000 105.0000 1.9655 0.9706 + 155.8032 283.0000 106.0000 1.9655 0.9868 108.8847 283.0000 107.0000 1.9655 0.9944 + 79.6576 283.0000 108.0000 1.9655 0.9925 55.1283 283.0000 109.0000 1.9655 0.9982 + 305.8218 283.0000 111.0000 1.9655 0.9684 472.5158 283.0000 112.0000 1.9655 0.9628 + 480.3772 283.0000 113.0000 1.9655 0.9648 388.1313 283.0000 114.0000 1.9655 0.9507 + 319.1459 283.0000 115.0000 1.9655 0.9947 270.6323 283.0000 116.0000 1.9655 0.9948 + 221.8815 283.0000 117.0000 1.9655 0.9972 423.0909 283.0000 119.0000 1.9655 0.9767 + 800.5025 283.0000 120.0000 1.9655 0.9831 425.0599 283.0000 121.0000 1.9655 1.8627 + 410.4418 283.0000 122.0000 1.9655 1.8299 402.2324 283.0000 123.0000 1.9655 1.9138 + 398.3224 283.0000 124.0000 1.9655 1.8269 367.4475 283.0000 125.0000 1.9655 1.6406 + 340.3515 283.0000 126.0000 1.9655 1.6483 324.7053 283.0000 127.0000 1.9655 1.7149 + 317.3906 283.0000 128.0000 1.9655 1.7937 313.0213 283.0000 129.0000 1.9655 0.9576 + 294.6880 283.0000 130.0000 1.9655 1.9419 477.7997 283.0000 131.0000 1.9655 0.9601 + 421.4482 283.0000 132.0000 1.9655 0.9434 378.8626 283.0000 133.0000 1.9655 0.9889 + 346.6728 283.0000 134.0000 1.9655 0.9901 306.0865 283.0000 135.0000 1.9655 0.9974 + 505.3496 283.0000 137.0000 1.9655 0.9738 973.6474 283.0000 138.0000 1.9655 0.9801 + 749.6258 283.0000 139.0000 1.9655 1.9153 561.9792 283.0000 140.0000 1.9655 1.9355 + 567.5150 283.0000 141.0000 1.9655 1.9545 529.7234 283.0000 142.0000 1.9655 1.9420 + 592.1062 283.0000 143.0000 1.9655 1.6682 462.9393 283.0000 144.0000 1.9655 1.8584 + 433.2501 283.0000 145.0000 1.9655 1.9003 402.5546 283.0000 146.0000 1.9655 1.8630 + 389.3206 283.0000 147.0000 1.9655 0.9679 385.8127 283.0000 148.0000 1.9655 1.9539 + 607.1518 283.0000 149.0000 1.9655 0.9633 551.1960 283.0000 150.0000 1.9655 0.9514 + 517.4436 283.0000 151.0000 1.9655 0.9749 490.2815 283.0000 152.0000 1.9655 0.9811 + 448.6443 283.0000 153.0000 1.9655 0.9968 599.0719 283.0000 155.0000 1.9655 0.9909 + 1260.5537 283.0000 156.0000 1.9655 0.9797 948.1668 283.0000 157.0000 1.9655 1.9373 + 604.4376 283.0000 159.0000 1.9655 2.9425 591.9623 283.0000 160.0000 1.9655 2.9455 + 573.3032 283.0000 161.0000 1.9655 2.9413 575.8301 283.0000 162.0000 1.9655 2.9300 + 554.2328 283.0000 163.0000 1.9655 1.8286 579.3527 283.0000 164.0000 1.9655 2.8732 + 544.4158 283.0000 165.0000 1.9655 2.9086 553.4532 283.0000 166.0000 1.9655 2.8965 + 516.9607 283.0000 167.0000 1.9655 2.9242 502.3120 283.0000 168.0000 1.9655 2.9282 + 499.0196 283.0000 169.0000 1.9655 2.9246 524.1252 283.0000 170.0000 1.9655 2.8482 + 482.4424 283.0000 171.0000 1.9655 2.9219 649.7591 283.0000 172.0000 1.9655 1.9254 + 604.2805 283.0000 173.0000 1.9655 1.9459 552.5418 283.0000 174.0000 1.9655 1.9292 + 558.1192 283.0000 175.0000 1.9655 1.8104 490.9223 283.0000 176.0000 1.9655 1.8858 + 462.2233 283.0000 177.0000 1.9655 1.8648 441.7242 283.0000 178.0000 1.9655 1.9188 + 422.3549 283.0000 179.0000 1.9655 0.9846 408.7731 283.0000 180.0000 1.9655 1.9896 + 652.4923 283.0000 181.0000 1.9655 0.9267 596.7381 283.0000 182.0000 1.9655 0.9383 + 579.7329 283.0000 183.0000 1.9655 0.9820 564.5535 283.0000 184.0000 1.9655 0.9815 + 528.1183 283.0000 185.0000 1.9655 0.9954 674.8221 283.0000 187.0000 1.9655 0.9705 + 1256.7278 283.0000 188.0000 1.9655 0.9662 715.1307 283.0000 189.0000 1.9655 2.9070 + 823.0759 283.0000 190.0000 1.9655 2.8844 736.7269 283.0000 191.0000 1.9655 2.8738 + 652.6152 283.0000 192.0000 1.9655 2.8878 628.3454 283.0000 193.0000 1.9655 2.9095 + 751.2349 283.0000 194.0000 1.9655 1.9209 175.9082 283.0000 204.0000 1.9655 1.9697 + 173.1544 283.0000 205.0000 1.9655 1.9441 127.3832 283.0000 206.0000 1.9655 1.9985 + 102.3126 283.0000 207.0000 1.9655 2.0143 70.3961 283.0000 208.0000 1.9655 1.9887 + 311.0143 283.0000 212.0000 1.9655 1.9496 375.6290 283.0000 213.0000 1.9655 1.9311 + 361.3025 283.0000 214.0000 1.9655 1.9435 314.7479 283.0000 215.0000 1.9655 2.0102 + 265.1832 283.0000 216.0000 1.9655 1.9903 436.1382 283.0000 220.0000 1.9655 1.9349 + 420.0045 283.0000 221.0000 1.9655 2.8999 425.2549 283.0000 222.0000 1.9655 3.8675 + 389.2203 283.0000 223.0000 1.9655 2.9110 294.2659 283.0000 224.0000 1.9655 10.6191 + 252.3482 283.0000 225.0000 1.9655 9.8849 247.6598 283.0000 226.0000 1.9655 9.1376 + 289.3394 283.0000 227.0000 1.9655 2.9263 269.8411 283.0000 228.0000 1.9655 6.5458 + 380.0003 283.0000 231.0000 1.9655 1.9315 401.5098 283.0000 232.0000 1.9655 1.9447 + 369.0585 283.0000 233.0000 1.9655 1.9793 343.9761 283.0000 234.0000 1.9655 1.9812 + 522.6714 283.0000 238.0000 1.9655 1.9143 504.4104 283.0000 239.0000 1.9655 2.8903 + 509.1300 283.0000 240.0000 1.9655 3.9106 492.3013 283.0000 241.0000 1.9655 2.9225 + 436.2842 283.0000 242.0000 1.9655 11.0556 385.8174 283.0000 243.0000 1.9655 9.5402 + 364.8680 283.0000 244.0000 1.9655 8.8895 370.9970 283.0000 245.0000 1.9655 2.9696 + 387.3300 283.0000 246.0000 1.9655 5.7095 490.6881 283.0000 249.0000 1.9655 1.9378 + 533.2373 283.0000 250.0000 1.9655 1.9505 503.5103 283.0000 251.0000 1.9655 1.9523 + 486.4040 283.0000 252.0000 1.9655 1.9639 632.5794 283.0000 256.0000 1.9655 1.8467 + 656.5390 283.0000 257.0000 1.9655 2.9175 487.9741 283.0000 272.0000 1.9655 3.8840 + 509.2354 283.0000 273.0000 1.9655 2.8988 474.0398 283.0000 274.0000 1.9655 10.9153 + 431.2897 283.0000 275.0000 1.9655 9.8054 406.2851 283.0000 276.0000 1.9655 9.1527 + 413.5997 283.0000 277.0000 1.9655 2.9424 434.9130 283.0000 278.0000 1.9655 6.6669 + 525.0395 283.0000 281.0000 1.9655 1.9302 554.9231 283.0000 282.0000 1.9655 1.9356 + 566.0497 283.0000 283.0000 1.9655 1.9655 40.6835 284.0000 1.0000 1.9639 0.9118 + 27.2690 284.0000 2.0000 1.9639 0.0000 597.0483 284.0000 3.0000 1.9639 0.0000 + 354.1279 284.0000 4.0000 1.9639 0.0000 242.0722 284.0000 5.0000 1.9639 0.0000 + 165.3751 284.0000 6.0000 1.9639 0.0000 116.6366 284.0000 7.0000 1.9639 0.0000 + 88.8641 284.0000 8.0000 1.9639 0.0000 67.6992 284.0000 9.0000 1.9639 0.0000 + 52.3237 284.0000 10.0000 1.9639 0.0000 715.2918 284.0000 11.0000 1.9639 0.0000 + 561.7309 284.0000 12.0000 1.9639 0.0000 521.8274 284.0000 13.0000 1.9639 0.0000 + 415.3936 284.0000 14.0000 1.9639 0.0000 326.6948 284.0000 15.0000 1.9639 0.0000 + 272.6447 284.0000 16.0000 1.9639 0.0000 223.9035 284.0000 17.0000 1.9639 0.0000 + 184.0479 284.0000 18.0000 1.9639 0.0000 1168.5636 284.0000 19.0000 1.9639 0.0000 + 979.2896 284.0000 20.0000 1.9639 0.0000 811.9113 284.0000 21.0000 1.9639 0.0000 + 786.7561 284.0000 22.0000 1.9639 0.0000 721.9255 284.0000 23.0000 1.9639 0.0000 + 569.2397 284.0000 24.0000 1.9639 0.0000 623.4035 284.0000 25.0000 1.9639 0.0000 + 489.9354 284.0000 26.0000 1.9639 0.0000 521.1328 284.0000 27.0000 1.9639 0.0000 + 535.7257 284.0000 28.0000 1.9639 0.0000 411.1417 284.0000 29.0000 1.9639 0.0000 + 424.4352 284.0000 30.0000 1.9639 0.0000 501.5441 284.0000 31.0000 1.9639 0.0000 + 445.7000 284.0000 32.0000 1.9639 0.0000 382.8003 284.0000 33.0000 1.9639 0.0000 + 344.9761 284.0000 34.0000 1.9639 0.0000 303.2344 284.0000 35.0000 1.9639 0.0000 + 264.7909 284.0000 36.0000 1.9639 0.0000 1311.8379 284.0000 37.0000 1.9639 0.0000 + 1166.3270 284.0000 38.0000 1.9639 0.0000 1028.0879 284.0000 39.0000 1.9639 0.0000 + 927.6574 284.0000 40.0000 1.9639 0.0000 848.1665 284.0000 41.0000 1.9639 0.0000 + 657.9652 284.0000 42.0000 1.9639 0.0000 732.8299 284.0000 43.0000 1.9639 0.0000 + 561.2313 284.0000 44.0000 1.9639 0.0000 613.2064 284.0000 45.0000 1.9639 0.0000 + 569.5929 284.0000 46.0000 1.9639 0.0000 474.8553 284.0000 47.0000 1.9639 0.0000 + 502.9946 284.0000 48.0000 1.9639 0.0000 627.9310 284.0000 49.0000 1.9639 0.0000 + 584.1601 284.0000 50.0000 1.9639 0.0000 523.7050 284.0000 51.0000 1.9639 0.0000 + 487.6562 284.0000 52.0000 1.9639 0.0000 442.6417 284.0000 53.0000 1.9639 0.0000 + 399.4259 284.0000 54.0000 1.9639 0.0000 1598.9091 284.0000 55.0000 1.9639 0.0000 + 1484.2030 284.0000 56.0000 1.9639 0.0000 1311.9805 284.0000 57.0000 1.9639 0.0000 + 618.1027 284.0000 58.0000 1.9639 2.7991 1317.9599 284.0000 59.0000 1.9639 0.0000 + 1266.7956 284.0000 60.0000 1.9639 0.0000 1235.3557 284.0000 61.0000 1.9639 0.0000 + 1206.4001 284.0000 62.0000 1.9639 0.0000 1180.7346 284.0000 63.0000 1.9639 0.0000 + 935.1830 284.0000 64.0000 1.9639 0.0000 1042.9069 284.0000 65.0000 1.9639 0.0000 + 1007.0657 284.0000 66.0000 1.9639 0.0000 1066.5471 284.0000 67.0000 1.9639 0.0000 + 1044.0654 284.0000 68.0000 1.9639 0.0000 1023.8793 284.0000 69.0000 1.9639 0.0000 + 1011.5941 284.0000 70.0000 1.9639 0.0000 856.5112 284.0000 71.0000 1.9639 0.0000 + 847.4420 284.0000 72.0000 1.9639 0.0000 776.3917 284.0000 73.0000 1.9639 0.0000 + 657.8221 284.0000 74.0000 1.9639 0.0000 670.1273 284.0000 75.0000 1.9639 0.0000 + 609.3717 284.0000 76.0000 1.9639 0.0000 559.5987 284.0000 77.0000 1.9639 0.0000 + 466.3507 284.0000 78.0000 1.9639 0.0000 436.2752 284.0000 79.0000 1.9639 0.0000 + 449.2604 284.0000 80.0000 1.9639 0.0000 646.0745 284.0000 81.0000 1.9639 0.0000 + 634.5074 284.0000 82.0000 1.9639 0.0000 586.1018 284.0000 83.0000 1.9639 0.0000 + 560.6983 284.0000 84.0000 1.9639 0.0000 519.3690 284.0000 85.0000 1.9639 0.0000 + 477.6315 284.0000 86.0000 1.9639 0.0000 1517.3140 284.0000 87.0000 1.9639 0.0000 + 1472.4510 284.0000 88.0000 1.9639 0.0000 1308.9597 284.0000 89.0000 1.9639 0.0000 + 1184.1644 284.0000 90.0000 1.9639 0.0000 1172.1895 284.0000 91.0000 1.9639 0.0000 + 1135.1989 284.0000 92.0000 1.9639 0.0000 1164.1193 284.0000 93.0000 1.9639 0.0000 + 1128.1520 284.0000 94.0000 1.9639 0.0000 64.9760 284.0000 101.0000 1.9639 0.0000 + 206.3143 284.0000 103.0000 1.9639 0.9865 263.9351 284.0000 104.0000 1.9639 0.9808 + 204.2639 284.0000 105.0000 1.9639 0.9706 155.1060 284.0000 106.0000 1.9639 0.9868 + 108.7927 284.0000 107.0000 1.9639 0.9944 79.8188 284.0000 108.0000 1.9639 0.9925 + 55.4264 284.0000 109.0000 1.9639 0.9982 300.9390 284.0000 111.0000 1.9639 0.9684 + 464.7507 284.0000 112.0000 1.9639 0.9628 473.8214 284.0000 113.0000 1.9639 0.9648 + 384.5110 284.0000 114.0000 1.9639 0.9507 317.2192 284.0000 115.0000 1.9639 0.9947 + 269.6172 284.0000 116.0000 1.9639 0.9948 221.5689 284.0000 117.0000 1.9639 0.9972 + 417.5603 284.0000 119.0000 1.9639 0.9767 784.3917 284.0000 120.0000 1.9639 0.9831 + 420.8233 284.0000 121.0000 1.9639 1.8627 406.4345 284.0000 122.0000 1.9639 1.8299 + 398.2791 284.0000 123.0000 1.9639 1.9138 394.2442 284.0000 124.0000 1.9639 1.8269 + 364.3814 284.0000 125.0000 1.9639 1.6406 337.7270 284.0000 126.0000 1.9639 1.6483 + 322.2142 284.0000 127.0000 1.9639 1.7149 314.9022 284.0000 128.0000 1.9639 1.7937 + 310.0870 284.0000 129.0000 1.9639 0.9576 292.7333 284.0000 130.0000 1.9639 1.9419 + 471.9957 284.0000 131.0000 1.9639 0.9601 417.7268 284.0000 132.0000 1.9639 0.9434 + 376.4665 284.0000 133.0000 1.9639 0.9889 345.0898 284.0000 134.0000 1.9639 0.9901 + 305.2783 284.0000 135.0000 1.9639 0.9974 499.1756 284.0000 137.0000 1.9639 0.9738 + 953.8869 284.0000 138.0000 1.9639 0.9801 738.2484 284.0000 139.0000 1.9639 1.9153 + 556.3468 284.0000 140.0000 1.9639 1.9355 561.7704 284.0000 141.0000 1.9639 1.9545 + 524.7742 284.0000 142.0000 1.9639 1.9420 585.1227 284.0000 143.0000 1.9639 1.6682 + 459.4787 284.0000 144.0000 1.9639 1.8584 430.1117 284.0000 145.0000 1.9639 1.9003 + 399.7963 284.0000 146.0000 1.9639 1.8630 386.5280 284.0000 147.0000 1.9639 0.9679 + 383.5763 284.0000 148.0000 1.9639 1.9539 599.8596 284.0000 149.0000 1.9639 0.9633 + 546.0918 284.0000 150.0000 1.9639 0.9514 513.6797 284.0000 151.0000 1.9639 0.9749 + 487.4071 284.0000 152.0000 1.9639 0.9811 446.7618 284.0000 153.0000 1.9639 0.9968 + 593.0376 284.0000 155.0000 1.9639 0.9909 1233.9967 284.0000 156.0000 1.9639 0.9797 + 933.4590 284.0000 157.0000 1.9639 1.9373 599.6840 284.0000 159.0000 1.9639 2.9425 + 587.3212 284.0000 160.0000 1.9639 2.9455 568.8885 284.0000 161.0000 1.9639 2.9413 + 571.1736 284.0000 162.0000 1.9639 2.9300 549.0297 284.0000 163.0000 1.9639 1.8286 + 574.5748 284.0000 164.0000 1.9639 2.8732 540.1101 284.0000 165.0000 1.9639 2.9086 + 548.6977 284.0000 166.0000 1.9639 2.8965 513.0454 284.0000 167.0000 1.9639 2.9242 + 498.5719 284.0000 168.0000 1.9639 2.9282 495.2494 284.0000 169.0000 1.9639 2.9246 + 519.8405 284.0000 170.0000 1.9639 2.8482 478.8893 284.0000 171.0000 1.9639 2.9219 + 642.0721 284.0000 172.0000 1.9639 1.9254 598.0980 284.0000 173.0000 1.9639 1.9459 + 547.7989 284.0000 174.0000 1.9639 1.9292 552.5207 284.0000 175.0000 1.9639 1.8104 + 487.8514 284.0000 176.0000 1.9639 1.8858 459.6048 284.0000 177.0000 1.9639 1.8648 + 439.3767 284.0000 178.0000 1.9639 1.9188 420.0983 284.0000 179.0000 1.9639 0.9846 + 407.1216 284.0000 180.0000 1.9639 1.9896 645.1147 284.0000 181.0000 1.9639 0.9267 + 591.5541 284.0000 182.0000 1.9639 0.9383 575.5381 284.0000 183.0000 1.9639 0.9820 + 561.0805 284.0000 184.0000 1.9639 0.9815 525.6624 284.0000 185.0000 1.9639 0.9954 + 668.1318 284.0000 187.0000 1.9639 0.9705 1232.2448 284.0000 188.0000 1.9639 0.9662 + 709.4440 284.0000 189.0000 1.9639 2.9070 814.7378 284.0000 190.0000 1.9639 2.8844 + 729.9517 284.0000 191.0000 1.9639 2.8738 647.6950 284.0000 192.0000 1.9639 2.8878 + 623.8558 284.0000 193.0000 1.9639 2.9095 742.2892 284.0000 194.0000 1.9639 1.9209 + 174.5535 284.0000 204.0000 1.9639 1.9697 172.0238 284.0000 205.0000 1.9639 1.9441 + 127.0566 284.0000 206.0000 1.9639 1.9985 102.2624 284.0000 207.0000 1.9639 2.0143 + 70.5926 284.0000 208.0000 1.9639 1.9887 307.7075 284.0000 212.0000 1.9639 1.9496 + 371.5511 284.0000 213.0000 1.9639 1.9311 358.1639 284.0000 214.0000 1.9639 1.9435 + 312.7804 284.0000 215.0000 1.9639 2.0102 264.2022 284.0000 216.0000 1.9639 1.9903 + 431.5673 284.0000 220.0000 1.9639 1.9349 416.3214 284.0000 221.0000 1.9639 2.8999 + 421.5830 284.0000 222.0000 1.9639 3.8675 385.8440 284.0000 223.0000 1.9639 2.9110 + 292.5542 284.0000 224.0000 1.9639 10.6191 251.3144 284.0000 225.0000 1.9639 9.8849 + 246.5894 284.0000 226.0000 1.9639 9.1376 287.2780 284.0000 227.0000 1.9639 2.9263 + 268.1274 284.0000 228.0000 1.9639 6.5458 376.5335 284.0000 231.0000 1.9639 1.9315 + 398.1877 284.0000 232.0000 1.9639 1.9447 366.8447 284.0000 233.0000 1.9639 1.9793 + 342.4249 284.0000 234.0000 1.9639 1.9812 517.3698 284.0000 238.0000 1.9639 1.9143 + 500.3900 284.0000 239.0000 1.9639 2.8903 505.4054 284.0000 240.0000 1.9639 3.9106 + 488.6493 284.0000 241.0000 1.9639 2.9225 433.8677 284.0000 242.0000 1.9639 11.0556 + 384.2563 284.0000 243.0000 1.9639 9.5402 363.5898 284.0000 244.0000 1.9639 8.8895 + 369.0777 284.0000 245.0000 1.9639 2.9696 385.1074 284.0000 246.0000 1.9639 5.7095 + 486.4323 284.0000 249.0000 1.9639 1.9378 528.6014 284.0000 250.0000 1.9639 1.9505 + 500.0891 284.0000 251.0000 1.9639 1.9523 483.6417 284.0000 252.0000 1.9639 1.9639 + 626.6204 284.0000 256.0000 1.9639 1.8467 651.0351 284.0000 257.0000 1.9639 2.9175 + 484.8479 284.0000 272.0000 1.9639 3.8840 505.6009 284.0000 273.0000 1.9639 2.8988 + 471.4757 284.0000 274.0000 1.9639 10.9153 429.5423 284.0000 275.0000 1.9639 9.8054 + 405.0819 284.0000 276.0000 1.9639 9.1527 411.7843 284.0000 277.0000 1.9639 2.9424 + 432.9098 284.0000 278.0000 1.9639 6.6669 521.1581 284.0000 281.0000 1.9639 1.9302 + 550.8519 284.0000 282.0000 1.9639 1.9356 562.2909 284.0000 283.0000 1.9639 1.9655 + 558.9712 284.0000 284.0000 1.9639 1.9639 49.4359 288.0000 1.0000 1.8075 0.9118 + 32.2205 288.0000 2.0000 1.8075 0.0000 822.1500 288.0000 3.0000 1.8075 0.0000 + 458.9956 288.0000 4.0000 1.8075 0.0000 304.0917 288.0000 5.0000 1.8075 0.0000 + 203.1255 288.0000 6.0000 1.8075 0.0000 140.8773 288.0000 7.0000 1.8075 0.0000 + 106.0306 288.0000 8.0000 1.8075 0.0000 79.8957 288.0000 9.0000 1.8075 0.0000 + 61.1676 288.0000 10.0000 1.8075 0.0000 980.9636 288.0000 11.0000 1.8075 0.0000 + 735.2872 288.0000 12.0000 1.8075 0.0000 671.8572 288.0000 13.0000 1.8075 0.0000 + 523.3093 288.0000 14.0000 1.8075 0.0000 404.3688 288.0000 15.0000 1.8075 0.0000 + 333.7171 288.0000 16.0000 1.8075 0.0000 271.1408 288.0000 17.0000 1.8075 0.0000 + 220.7874 288.0000 18.0000 1.8075 0.0000 1618.3210 288.0000 19.0000 1.8075 0.0000 + 1306.0236 288.0000 20.0000 1.8075 0.0000 1073.8645 288.0000 21.0000 1.8075 0.0000 + 1032.9143 288.0000 22.0000 1.8075 0.0000 943.5738 288.0000 23.0000 1.8075 0.0000 + 743.1942 288.0000 24.0000 1.8075 0.0000 809.5501 288.0000 25.0000 1.8075 0.0000 + 634.9950 288.0000 26.0000 1.8075 0.0000 669.5156 288.0000 27.0000 1.8075 0.0000 + 691.2883 288.0000 28.0000 1.8075 0.0000 530.0149 288.0000 29.0000 1.8075 0.0000 + 540.0198 288.0000 30.0000 1.8075 0.0000 641.4292 288.0000 31.0000 1.8075 0.0000 + 560.5331 288.0000 32.0000 1.8075 0.0000 474.4189 288.0000 33.0000 1.8075 0.0000 + 423.7602 288.0000 34.0000 1.8075 0.0000 369.1145 288.0000 35.0000 1.8075 0.0000 + 319.6386 288.0000 36.0000 1.8075 0.0000 1810.8441 288.0000 37.0000 1.8075 0.0000 + 1557.6903 288.0000 38.0000 1.8075 0.0000 1353.4487 288.0000 39.0000 1.8075 0.0000 + 1210.4384 288.0000 40.0000 1.8075 0.0000 1100.2859 288.0000 41.0000 1.8075 0.0000 + 844.9714 288.0000 42.0000 1.8075 0.0000 944.5755 288.0000 43.0000 1.8075 0.0000 + 715.4002 288.0000 44.0000 1.8075 0.0000 781.7311 288.0000 45.0000 1.8075 0.0000 + 723.4494 288.0000 46.0000 1.8075 0.0000 604.0720 288.0000 47.0000 1.8075 0.0000 + 635.7758 288.0000 48.0000 1.8075 0.0000 802.9517 288.0000 49.0000 1.8075 0.0000 + 736.7435 288.0000 50.0000 1.8075 0.0000 651.8960 288.0000 51.0000 1.8075 0.0000 + 602.3548 288.0000 52.0000 1.8075 0.0000 542.2757 288.0000 53.0000 1.8075 0.0000 + 485.5675 288.0000 54.0000 1.8075 0.0000 2206.5294 288.0000 55.0000 1.8075 0.0000 + 1992.0198 288.0000 56.0000 1.8075 0.0000 1735.7045 288.0000 57.0000 1.8075 0.0000 + 771.3546 288.0000 58.0000 1.8075 2.7991 1759.7955 288.0000 59.0000 1.8075 0.0000 + 1687.3282 288.0000 60.0000 1.8075 0.0000 1644.3172 288.0000 61.0000 1.8075 0.0000 + 1604.8351 288.0000 62.0000 1.8075 0.0000 1569.8044 288.0000 63.0000 1.8075 0.0000 + 1223.7547 288.0000 64.0000 1.8075 0.0000 1397.0237 288.0000 65.0000 1.8075 0.0000 + 1345.3523 288.0000 66.0000 1.8075 0.0000 1412.7942 288.0000 67.0000 1.8075 0.0000 + 1382.4590 288.0000 68.0000 1.8075 0.0000 1354.9696 288.0000 69.0000 1.8075 0.0000 + 1339.5852 288.0000 70.0000 1.8075 0.0000 1122.0389 288.0000 71.0000 1.8075 0.0000 + 1094.6876 288.0000 72.0000 1.8075 0.0000 994.2848 288.0000 73.0000 1.8075 0.0000 + 836.7523 288.0000 74.0000 1.8075 0.0000 849.5870 288.0000 75.0000 1.8075 0.0000 + 766.8867 288.0000 76.0000 1.8075 0.0000 700.0641 288.0000 77.0000 1.8075 0.0000 + 579.6428 288.0000 78.0000 1.8075 0.0000 540.7978 288.0000 79.0000 1.8075 0.0000 + 555.4019 288.0000 80.0000 1.8075 0.0000 823.0786 288.0000 81.0000 1.8075 0.0000 + 799.6930 288.0000 82.0000 1.8075 0.0000 730.0070 288.0000 83.0000 1.8075 0.0000 + 693.7234 288.0000 84.0000 1.8075 0.0000 637.5230 288.0000 85.0000 1.8075 0.0000 + 582.1236 288.0000 86.0000 1.8075 0.0000 2069.3475 288.0000 87.0000 1.8075 0.0000 + 1961.5822 288.0000 88.0000 1.8075 0.0000 1720.3415 288.0000 89.0000 1.8075 0.0000 + 1532.9737 288.0000 90.0000 1.8075 0.0000 1528.4967 288.0000 91.0000 1.8075 0.0000 + 1479.6138 288.0000 92.0000 1.8075 0.0000 1531.1137 288.0000 93.0000 1.8075 0.0000 + 1481.2261 288.0000 94.0000 1.8075 0.0000 80.3048 288.0000 101.0000 1.8075 0.0000 + 266.2038 288.0000 103.0000 1.8075 0.9865 338.7013 288.0000 104.0000 1.8075 0.9808 + 255.0141 288.0000 105.0000 1.8075 0.9706 190.6507 288.0000 106.0000 1.8075 0.9868 + 131.3980 288.0000 107.0000 1.8075 0.9944 94.9909 288.0000 108.0000 1.8075 0.9925 + 64.6894 288.0000 109.0000 1.8075 0.9982 390.2839 288.0000 111.0000 1.8075 0.9684 + 604.7908 288.0000 112.0000 1.8075 0.9628 607.6450 288.0000 113.0000 1.8075 0.9648 + 482.9264 288.0000 114.0000 1.8075 0.9507 392.4061 288.0000 115.0000 1.8075 0.9947 + 330.0901 288.0000 116.0000 1.8075 0.9948 268.3553 288.0000 117.0000 1.8075 0.9972 + 535.2211 288.0000 119.0000 1.8075 0.9767 1045.2655 288.0000 120.0000 1.8075 0.9831 + 530.0511 288.0000 121.0000 1.8075 1.8627 511.5959 288.0000 122.0000 1.8075 1.8299 + 501.4229 288.0000 123.0000 1.8075 1.9138 497.3405 288.0000 124.0000 1.8075 1.8269 + 455.0068 288.0000 125.0000 1.8075 1.6406 420.4375 288.0000 126.0000 1.8075 1.6483 + 401.0824 288.0000 127.0000 1.8075 1.7149 392.2686 288.0000 128.0000 1.8075 1.7937 + 389.1542 288.0000 129.0000 1.8075 0.9576 362.3948 288.0000 130.0000 1.8075 1.9419 + 601.0295 288.0000 131.0000 1.8075 0.9601 523.3404 288.0000 132.0000 1.8075 0.9434 + 466.1735 288.0000 133.0000 1.8075 0.9889 423.9573 288.0000 134.0000 1.8075 0.9901 + 371.7726 288.0000 135.0000 1.8075 0.9974 637.4404 288.0000 137.0000 1.8075 0.9738 + 1273.8440 288.0000 138.0000 1.8075 0.9801 958.3613 288.0000 139.0000 1.8075 1.9153 + 701.9543 288.0000 140.0000 1.8075 1.9355 708.9273 288.0000 141.0000 1.8075 1.9545 + 659.7925 288.0000 142.0000 1.8075 1.9420 745.6343 288.0000 143.0000 1.8075 1.6682 + 571.9460 288.0000 144.0000 1.8075 1.8584 534.7969 288.0000 145.0000 1.8075 1.9003 + 496.0877 288.0000 146.0000 1.8075 1.8630 480.1835 288.0000 147.0000 1.8075 0.9679 + 473.0482 288.0000 148.0000 1.8075 1.9539 763.2929 288.0000 149.0000 1.8075 0.9633 + 685.1258 288.0000 150.0000 1.8075 0.9514 638.3059 288.0000 151.0000 1.8075 0.9749 + 601.7662 288.0000 152.0000 1.8075 0.9811 547.4091 288.0000 153.0000 1.8075 0.9968 + 749.5704 288.0000 155.0000 1.8075 0.9909 1658.1771 288.0000 156.0000 1.8075 0.9797 + 1215.0291 288.0000 157.0000 1.8075 1.9373 747.7780 288.0000 159.0000 1.8075 2.9425 + 732.2453 288.0000 160.0000 1.8075 2.9455 708.7802 288.0000 161.0000 1.8075 2.9413 + 713.0804 288.0000 162.0000 1.8075 2.9300 689.7999 288.0000 163.0000 1.8075 1.8286 + 717.7923 288.0000 164.0000 1.8075 2.8732 673.5132 288.0000 165.0000 1.8075 2.9086 + 686.7771 288.0000 166.0000 1.8075 2.8965 638.6724 288.0000 167.0000 1.8075 2.9242 + 620.2482 288.0000 168.0000 1.8075 2.9282 616.4399 288.0000 169.0000 1.8075 2.9246 + 648.9226 288.0000 170.0000 1.8075 2.8482 595.5027 288.0000 171.0000 1.8075 2.9219 + 818.0297 288.0000 172.0000 1.8075 1.9254 755.7189 288.0000 173.0000 1.8075 1.9459 + 686.2634 288.0000 174.0000 1.8075 1.9292 697.2376 288.0000 175.0000 1.8075 1.8104 + 603.7955 288.0000 176.0000 1.8075 1.8858 567.1344 288.0000 177.0000 1.8075 1.8648 + 541.1597 288.0000 178.0000 1.8075 1.9188 517.4180 288.0000 179.0000 1.8075 0.9846 + 498.0508 288.0000 180.0000 1.8075 1.9896 818.6189 288.0000 181.0000 1.8075 0.9267 + 740.2420 288.0000 182.0000 1.8075 0.9383 714.9845 288.0000 183.0000 1.8075 0.9820 + 693.5048 288.0000 184.0000 1.8075 0.9815 645.2198 288.0000 185.0000 1.8075 0.9954 + 843.7947 288.0000 187.0000 1.8075 0.9705 1640.2094 288.0000 188.0000 1.8075 0.9662 + 885.0174 288.0000 189.0000 1.8075 2.9070 1028.9540 288.0000 190.0000 1.8075 2.8844 + 918.1973 288.0000 191.0000 1.8075 2.8738 806.4331 288.0000 192.0000 1.8075 2.8878 + 775.0471 288.0000 193.0000 1.8075 2.9095 946.2771 288.0000 194.0000 1.8075 1.9209 + 217.5284 288.0000 204.0000 1.8075 1.9697 213.4683 288.0000 205.0000 1.8075 1.9441 + 154.6561 288.0000 206.0000 1.8075 1.9985 123.1997 288.0000 207.0000 1.8075 2.0143 + 83.5912 288.0000 208.0000 1.8075 1.9887 388.3439 288.0000 212.0000 1.8075 1.9496 + 470.1071 288.0000 213.0000 1.8075 1.9311 448.4545 288.0000 214.0000 1.8075 1.9435 + 387.3287 288.0000 215.0000 1.8075 2.0102 323.3788 288.0000 216.0000 1.8075 1.9903 + 544.9337 288.0000 220.0000 1.8075 1.9349 521.2983 288.0000 221.0000 1.8075 2.8999 + 527.5292 288.0000 222.0000 1.8075 3.8675 483.0222 288.0000 223.0000 1.8075 2.9110 + 361.2684 288.0000 224.0000 1.8075 10.6191 307.7217 288.0000 225.0000 1.8075 9.8849 + 302.1801 288.0000 226.0000 1.8075 9.1376 356.7321 288.0000 227.0000 1.8075 2.9263 + 331.6029 288.0000 228.0000 1.8075 6.5458 472.4317 288.0000 231.0000 1.8075 1.9315 + 497.5333 288.0000 232.0000 1.8075 1.9447 453.5790 288.0000 233.0000 1.8075 1.9793 + 420.5742 288.0000 234.0000 1.8075 1.9812 652.7258 288.0000 238.0000 1.8075 1.9143 + 624.3856 288.0000 239.0000 1.8075 2.8903 628.6689 288.0000 240.0000 1.8075 3.9106 + 608.4297 288.0000 241.0000 1.8075 2.9225 535.3296 288.0000 242.0000 1.8075 11.0556 + 470.6961 288.0000 243.0000 1.8075 9.5402 444.1389 288.0000 244.0000 1.8075 8.8895 + 454.3824 288.0000 245.0000 1.8075 2.9696 475.1882 288.0000 246.0000 1.8075 5.7095 + 608.6290 288.0000 249.0000 1.8075 1.9378 661.3483 288.0000 250.0000 1.8075 1.9505 + 620.0107 288.0000 251.0000 1.8075 1.9523 596.6111 288.0000 252.0000 1.8075 1.9639 + 788.4170 288.0000 256.0000 1.8075 1.8467 814.3740 288.0000 257.0000 1.8075 2.9175 + 600.4482 288.0000 272.0000 1.8075 3.8840 628.8349 288.0000 273.0000 1.8075 2.8988 + 581.3616 288.0000 274.0000 1.8075 10.9153 526.2037 288.0000 275.0000 1.8075 9.8054 + 493.6290 288.0000 276.0000 1.8075 9.1527 505.2181 288.0000 277.0000 1.8075 2.9424 + 531.3891 288.0000 278.0000 1.8075 6.6669 648.0800 288.0000 281.0000 1.8075 1.9302 + 684.6813 288.0000 282.0000 1.8075 1.9356 696.5071 288.0000 283.0000 1.8075 1.9655 + 690.0976 288.0000 284.0000 1.8075 1.9639 867.5584 288.0000 288.0000 1.8075 1.8075 + 9.7472 305.0000 1.0000 2.9128 0.9118 6.6434 305.0000 2.0000 2.9128 0.0000 + 129.9875 305.0000 3.0000 2.9128 0.0000 80.4276 305.0000 4.0000 2.9128 0.0000 + 56.4116 305.0000 5.0000 2.9128 0.0000 39.2449 305.0000 6.0000 2.9128 0.0000 + 28.0129 305.0000 7.0000 2.9128 0.0000 21.4989 305.0000 8.0000 2.9128 0.0000 + 16.4607 305.0000 9.0000 2.9128 0.0000 12.7577 305.0000 10.0000 2.9128 0.0000 + 156.1138 305.0000 11.0000 2.9128 0.0000 126.5425 305.0000 12.0000 2.9128 0.0000 + 119.1545 305.0000 13.0000 2.9128 0.0000 96.5313 305.0000 14.0000 2.9128 0.0000 + 77.0429 305.0000 15.0000 2.9128 0.0000 64.8918 305.0000 16.0000 2.9128 0.0000 + 53.7343 305.0000 17.0000 2.9128 0.0000 44.4613 305.0000 18.0000 2.9128 0.0000 + 254.2237 305.0000 19.0000 2.9128 0.0000 217.9457 305.0000 20.0000 2.9128 0.0000 + 181.6834 305.0000 21.0000 2.9128 0.0000 177.0660 305.0000 22.0000 2.9128 0.0000 + 162.9990 305.0000 23.0000 2.9128 0.0000 128.7233 305.0000 24.0000 2.9128 0.0000 + 141.4071 305.0000 25.0000 2.9128 0.0000 111.3569 305.0000 26.0000 2.9128 0.0000 + 119.1091 305.0000 27.0000 2.9128 0.0000 122.0144 305.0000 28.0000 2.9128 0.0000 + 93.7660 305.0000 29.0000 2.9128 0.0000 97.6845 305.0000 30.0000 2.9128 0.0000 + 115.1706 305.0000 31.0000 2.9128 0.0000 103.6947 305.0000 32.0000 2.9128 0.0000 + 90.1373 305.0000 33.0000 2.9128 0.0000 81.8381 305.0000 34.0000 2.9128 0.0000 + 72.4613 305.0000 35.0000 2.9128 0.0000 63.6768 305.0000 36.0000 2.9128 0.0000 + 286.2486 305.0000 37.0000 2.9128 0.0000 259.5279 305.0000 38.0000 2.9128 0.0000 + 231.1173 305.0000 39.0000 2.9128 0.0000 209.9066 305.0000 40.0000 2.9128 0.0000 + 192.7765 305.0000 41.0000 2.9128 0.0000 150.7447 305.0000 42.0000 2.9128 0.0000 + 167.3783 305.0000 43.0000 2.9128 0.0000 129.2726 305.0000 44.0000 2.9128 0.0000 + 141.1109 305.0000 45.0000 2.9128 0.0000 131.4019 305.0000 46.0000 2.9128 0.0000 + 109.4741 305.0000 47.0000 2.9128 0.0000 116.3922 305.0000 48.0000 2.9128 0.0000 + 144.1259 305.0000 49.0000 2.9128 0.0000 135.4439 305.0000 50.0000 2.9128 0.0000 + 122.6873 305.0000 51.0000 2.9128 0.0000 114.9752 305.0000 52.0000 2.9128 0.0000 + 105.0660 305.0000 53.0000 2.9128 0.0000 95.3973 305.0000 54.0000 2.9128 0.0000 + 349.4860 305.0000 55.0000 2.9128 0.0000 329.4784 305.0000 56.0000 2.9128 0.0000 + 294.1692 305.0000 57.0000 2.9128 0.0000 144.6238 305.0000 58.0000 2.9128 2.7991 + 293.4486 305.0000 59.0000 2.9128 0.0000 282.4641 305.0000 60.0000 2.9128 0.0000 + 275.5610 305.0000 61.0000 2.9128 0.0000 269.1899 305.0000 62.0000 2.9128 0.0000 + 263.5484 305.0000 63.0000 2.9128 0.0000 211.2565 305.0000 64.0000 2.9128 0.0000 + 232.1028 305.0000 65.0000 2.9128 0.0000 224.5940 305.0000 66.0000 2.9128 0.0000 + 238.5984 305.0000 67.0000 2.9128 0.0000 233.6155 305.0000 68.0000 2.9128 0.0000 + 229.1777 305.0000 69.0000 2.9128 0.0000 226.3056 305.0000 70.0000 2.9128 0.0000 + 193.1889 305.0000 71.0000 2.9128 0.0000 193.1702 305.0000 72.0000 2.9128 0.0000 + 178.1249 305.0000 73.0000 2.9128 0.0000 151.7946 305.0000 74.0000 2.9128 0.0000 + 154.9564 305.0000 75.0000 2.9128 0.0000 141.6661 305.0000 76.0000 2.9128 0.0000 + 130.6536 305.0000 77.0000 2.9128 0.0000 109.4040 305.0000 78.0000 2.9128 0.0000 + 102.5201 305.0000 79.0000 2.9128 0.0000 105.7384 305.0000 80.0000 2.9128 0.0000 + 148.8227 305.0000 81.0000 2.9128 0.0000 147.2178 305.0000 82.0000 2.9128 0.0000 + 137.2028 305.0000 83.0000 2.9128 0.0000 131.9596 305.0000 84.0000 2.9128 0.0000 + 123.0101 305.0000 85.0000 2.9128 0.0000 113.7716 305.0000 86.0000 2.9128 0.0000 + 334.3564 305.0000 87.0000 2.9128 0.0000 328.6797 305.0000 88.0000 2.9128 0.0000 + 294.7200 305.0000 89.0000 2.9128 0.0000 269.5021 305.0000 90.0000 2.9128 0.0000 + 265.4503 305.0000 91.0000 2.9128 0.0000 257.1254 305.0000 92.0000 2.9128 0.0000 + 261.8283 305.0000 93.0000 2.9128 0.0000 254.0263 305.0000 94.0000 2.9128 0.0000 + 15.3531 305.0000 101.0000 2.9128 0.0000 47.0338 305.0000 103.0000 2.9128 0.9865 + 60.5234 305.0000 104.0000 2.9128 0.9808 47.8580 305.0000 105.0000 2.9128 0.9706 + 36.8166 305.0000 106.0000 2.9128 0.9868 26.1481 305.0000 107.0000 2.9128 0.9944 + 19.3571 305.0000 108.0000 2.9128 0.9925 13.5581 305.0000 109.0000 2.9128 0.9982 + 68.2755 305.0000 111.0000 2.9128 0.9684 105.3054 305.0000 112.0000 2.9128 0.9628 + 108.5517 305.0000 113.0000 2.9128 0.9648 89.5948 305.0000 114.0000 2.9128 0.9507 + 74.8497 305.0000 115.0000 2.9128 0.9947 64.1573 305.0000 116.0000 2.9128 0.9948 + 53.1638 305.0000 117.0000 2.9128 0.9972 95.8497 305.0000 119.0000 2.9128 0.9767 + 175.1434 305.0000 120.0000 2.9128 0.9831 97.7550 305.0000 121.0000 2.9128 1.8627 + 94.4758 305.0000 122.0000 2.9128 1.8299 92.5451 305.0000 123.0000 2.9128 1.9138 + 91.4528 305.0000 124.0000 2.9128 1.8269 85.1312 305.0000 125.0000 2.9128 1.6406 + 79.0832 305.0000 126.0000 2.9128 1.6483 75.4525 305.0000 127.0000 2.9128 1.7149 + 73.6865 305.0000 128.0000 2.9128 1.7937 72.1216 305.0000 129.0000 2.9128 0.9576 + 68.8077 305.0000 130.0000 2.9128 1.9419 108.7508 305.0000 131.0000 2.9128 0.9601 + 97.4953 305.0000 132.0000 2.9128 0.9434 88.7108 305.0000 133.0000 2.9128 0.9889 + 81.8564 305.0000 134.0000 2.9128 0.9901 72.9221 305.0000 135.0000 2.9128 0.9974 + 114.9721 305.0000 137.0000 2.9128 0.9738 212.8759 305.0000 138.0000 2.9128 0.9801 + 168.1354 305.0000 139.0000 2.9128 1.9153 129.2409 305.0000 140.0000 2.9128 1.9355 + 130.4379 305.0000 141.0000 2.9128 1.9545 122.1941 305.0000 142.0000 2.9128 1.9420 + 134.9705 305.0000 143.0000 2.9128 1.6682 107.7128 305.0000 144.0000 2.9128 1.8584 + 100.8958 305.0000 145.0000 2.9128 1.9003 93.8997 305.0000 146.0000 2.9128 1.8630 + 90.6508 305.0000 147.0000 2.9128 0.9679 90.4277 305.0000 148.0000 2.9128 1.9539 + 138.1855 305.0000 149.0000 2.9128 0.9633 127.1409 305.0000 150.0000 2.9128 0.9514 + 120.5099 305.0000 151.0000 2.9128 0.9749 114.9640 305.0000 152.0000 2.9128 0.9811 + 106.0350 305.0000 153.0000 2.9128 0.9968 137.8005 305.0000 155.0000 2.9128 0.9909 + 274.5914 305.0000 156.0000 2.9128 0.9797 212.3569 305.0000 157.0000 2.9128 1.9373 + 140.3959 305.0000 159.0000 2.9128 2.9425 137.5122 305.0000 160.0000 2.9128 2.9455 + 133.2643 305.0000 161.0000 2.9128 2.9413 133.6061 305.0000 162.0000 2.9128 2.9300 + 127.7725 305.0000 163.0000 2.9128 1.8286 134.3264 305.0000 164.0000 2.9128 2.8732 + 126.4184 305.0000 165.0000 2.9128 2.9086 128.1009 305.0000 166.0000 2.9128 2.8965 + 120.2375 305.0000 167.0000 2.9128 2.9242 116.9007 305.0000 168.0000 2.9128 2.9282 + 116.0754 305.0000 169.0000 2.9128 2.9246 121.5617 305.0000 170.0000 2.9128 2.8482 + 112.3244 305.0000 171.0000 2.9128 2.9219 148.1225 305.0000 172.0000 2.9128 1.9254 + 138.8171 305.0000 173.0000 2.9128 1.9459 127.9252 305.0000 174.0000 2.9128 1.9292 + 128.3062 305.0000 175.0000 2.9128 1.8104 114.8945 305.0000 176.0000 2.9128 1.8858 + 108.4580 305.0000 177.0000 2.9128 1.8648 103.7977 305.0000 178.0000 2.9128 1.9188 + 99.2050 305.0000 179.0000 2.9128 0.9846 96.6002 305.0000 180.0000 2.9128 1.9896 + 148.9993 305.0000 181.0000 2.9128 0.9267 137.9942 305.0000 182.0000 2.9128 0.9383 + 135.0047 305.0000 183.0000 2.9128 0.9820 132.1597 305.0000 184.0000 2.9128 0.9815 + 124.5148 305.0000 185.0000 2.9128 0.9954 155.3487 305.0000 187.0000 2.9128 0.9705 + 275.9578 305.0000 188.0000 2.9128 0.9662 166.0489 305.0000 189.0000 2.9128 2.9070 + 189.1137 305.0000 190.0000 2.9128 2.8844 170.0195 305.0000 191.0000 2.9128 2.8738 + 151.7709 305.0000 192.0000 2.9128 2.8878 146.3889 305.0000 193.0000 2.9128 2.9095 + 171.0645 305.0000 194.0000 2.9128 1.9209 40.9358 305.0000 204.0000 2.9128 1.9697 + 40.5192 305.0000 205.0000 2.9128 1.9441 30.3536 305.0000 206.0000 2.9128 1.9985 + 24.5919 305.0000 207.0000 2.9128 2.0143 17.1424 305.0000 208.0000 2.9128 1.9887 + 71.3023 305.0000 212.0000 2.9128 1.9496 86.0532 305.0000 213.0000 2.9128 1.9311 + 83.6586 305.0000 214.0000 2.9128 1.9435 73.7397 305.0000 215.0000 2.9128 2.0102 + 62.8783 305.0000 216.0000 2.9128 1.9903 100.0610 305.0000 220.0000 2.9128 1.9349 + 97.1632 305.0000 221.0000 2.9128 2.8999 98.4363 305.0000 222.0000 2.9128 3.8675 + 90.0574 305.0000 223.0000 2.9128 2.9110 68.9958 305.0000 224.0000 2.9128 10.6191 + 59.6313 305.0000 225.0000 2.9128 9.8849 58.4515 305.0000 226.0000 2.9128 9.1376 + 67.3932 305.0000 227.0000 2.9128 2.9263 63.0740 305.0000 228.0000 2.9128 6.5458 + 87.7688 305.0000 231.0000 2.9128 1.9315 93.1301 305.0000 232.0000 2.9128 1.9447 + 86.5486 305.0000 233.0000 2.9128 1.9793 81.2400 305.0000 234.0000 2.9128 1.9812 + 120.1300 305.0000 238.0000 2.9128 1.9143 117.1570 305.0000 239.0000 2.9128 2.8903 + 118.6243 305.0000 240.0000 2.9128 3.9106 114.6328 305.0000 241.0000 2.9128 2.9225 + 102.4883 305.0000 242.0000 2.9128 11.0556 91.2518 305.0000 243.0000 2.9128 9.5402 + 86.4986 305.0000 244.0000 2.9128 8.8895 87.2376 305.0000 245.0000 2.9128 2.9696 + 90.8284 305.0000 246.0000 2.9128 5.7095 113.4826 305.0000 249.0000 2.9128 1.9378 + 123.3340 305.0000 250.0000 2.9128 1.9505 117.5338 305.0000 251.0000 2.9128 1.9523 + 114.1553 305.0000 252.0000 2.9128 1.9639 145.9330 305.0000 256.0000 2.9128 1.8467 + 152.2250 305.0000 257.0000 2.9128 2.9175 114.1794 305.0000 272.0000 2.9128 3.8840 + 118.7315 305.0000 273.0000 2.9128 2.8988 111.4262 305.0000 274.0000 2.9128 10.9153 + 102.0081 305.0000 275.0000 2.9128 9.8054 96.5706 305.0000 276.0000 2.9128 9.1527 + 97.6238 305.0000 277.0000 2.9128 2.9424 102.5451 305.0000 278.0000 2.9128 6.6669 + 122.1541 305.0000 281.0000 2.9128 1.9302 129.1524 305.0000 282.0000 2.9128 1.9356 + 132.1947 305.0000 283.0000 2.9128 1.9655 131.7889 305.0000 284.0000 2.9128 1.9639 + 160.8674 305.0000 288.0000 2.9128 1.8075 31.4436 305.0000 305.0000 2.9128 2.9128 + 8.8210 306.0000 1.0000 2.9987 0.9118 6.1196 306.0000 2.0000 2.9987 0.0000 + 115.9498 306.0000 3.0000 2.9987 0.0000 71.6818 306.0000 4.0000 2.9987 0.0000 + 50.5303 306.0000 5.0000 2.9987 0.0000 35.4129 306.0000 6.0000 2.9987 0.0000 + 25.4799 306.0000 7.0000 2.9987 0.0000 19.6943 306.0000 8.0000 2.9987 0.0000 + 15.1883 306.0000 9.0000 2.9987 0.0000 11.8513 306.0000 10.0000 2.9987 0.0000 + 139.3753 306.0000 11.0000 2.9987 0.0000 112.8210 306.0000 12.0000 2.9987 0.0000 + 106.3508 306.0000 13.0000 2.9987 0.0000 86.3999 306.0000 14.0000 2.9987 0.0000 + 69.2515 306.0000 15.0000 2.9987 0.0000 58.5776 306.0000 16.0000 2.9987 0.0000 + 48.7448 306.0000 17.0000 2.9987 0.0000 40.5441 306.0000 18.0000 2.9987 0.0000 + 227.6600 306.0000 19.0000 2.9987 0.0000 194.6719 306.0000 20.0000 2.9987 0.0000 + 162.2609 306.0000 21.0000 2.9987 0.0000 158.2705 306.0000 22.0000 2.9987 0.0000 + 145.7580 306.0000 23.0000 2.9987 0.0000 115.3697 306.0000 24.0000 2.9987 0.0000 + 126.5416 306.0000 25.0000 2.9987 0.0000 99.9017 306.0000 26.0000 2.9987 0.0000 + 106.6917 306.0000 27.0000 2.9987 0.0000 109.2305 306.0000 28.0000 2.9987 0.0000 + 84.2028 306.0000 29.0000 2.9987 0.0000 87.6124 306.0000 30.0000 2.9987 0.0000 + 103.0738 306.0000 31.0000 2.9987 0.0000 92.9621 306.0000 32.0000 2.9987 0.0000 + 81.0563 306.0000 33.0000 2.9987 0.0000 73.8064 306.0000 34.0000 2.9987 0.0000 + 65.5868 306.0000 35.0000 2.9987 0.0000 57.8665 306.0000 36.0000 2.9987 0.0000 + 256.5198 306.0000 37.0000 2.9987 0.0000 232.0032 306.0000 38.0000 2.9987 0.0000 + 206.6589 306.0000 39.0000 2.9987 0.0000 187.8203 306.0000 40.0000 2.9987 0.0000 + 172.6395 306.0000 41.0000 2.9987 0.0000 135.3716 306.0000 42.0000 2.9987 0.0000 + 150.1398 306.0000 43.0000 2.9987 0.0000 116.3247 306.0000 44.0000 2.9987 0.0000 + 126.7778 306.0000 45.0000 2.9987 0.0000 118.1427 306.0000 46.0000 2.9987 0.0000 + 98.7032 306.0000 47.0000 2.9987 0.0000 104.7692 306.0000 48.0000 2.9987 0.0000 + 129.3853 306.0000 49.0000 2.9987 0.0000 121.6598 306.0000 50.0000 2.9987 0.0000 + 110.4089 306.0000 51.0000 2.9987 0.0000 103.6503 306.0000 52.0000 2.9987 0.0000 + 94.9489 306.0000 53.0000 2.9987 0.0000 86.4581 306.0000 54.0000 2.9987 0.0000 + 313.2347 306.0000 55.0000 2.9987 0.0000 294.7168 306.0000 56.0000 2.9987 0.0000 + 263.1381 306.0000 57.0000 2.9987 0.0000 130.2341 306.0000 58.0000 2.9987 2.7991 + 262.6644 306.0000 59.0000 2.9987 0.0000 252.8197 306.0000 60.0000 2.9987 0.0000 + 246.6348 306.0000 61.0000 2.9987 0.0000 240.9233 306.0000 62.0000 2.9987 0.0000 + 235.8641 306.0000 63.0000 2.9987 0.0000 189.3824 306.0000 64.0000 2.9987 0.0000 + 208.1604 306.0000 65.0000 2.9987 0.0000 201.4294 306.0000 66.0000 2.9987 0.0000 + 213.5146 306.0000 67.0000 2.9987 0.0000 209.0416 306.0000 68.0000 2.9987 0.0000 + 205.0594 306.0000 69.0000 2.9987 0.0000 202.4669 306.0000 70.0000 2.9987 0.0000 + 173.0176 306.0000 71.0000 2.9987 0.0000 172.9593 306.0000 72.0000 2.9987 0.0000 + 159.6769 306.0000 73.0000 2.9987 0.0000 136.4210 306.0000 74.0000 2.9987 0.0000 + 139.2585 306.0000 75.0000 2.9987 0.0000 127.5031 306.0000 76.0000 2.9987 0.0000 + 117.7618 306.0000 77.0000 2.9987 0.0000 98.9287 306.0000 78.0000 2.9987 0.0000 + 92.8272 306.0000 79.0000 2.9987 0.0000 95.6853 306.0000 80.0000 2.9987 0.0000 + 133.9718 306.0000 81.0000 2.9987 0.0000 132.5017 306.0000 82.0000 2.9987 0.0000 + 123.6424 306.0000 83.0000 2.9987 0.0000 119.0531 306.0000 84.0000 2.9987 0.0000 + 111.1930 306.0000 85.0000 2.9987 0.0000 103.0788 306.0000 86.0000 2.9987 0.0000 + 299.7237 306.0000 87.0000 2.9987 0.0000 294.0959 306.0000 88.0000 2.9987 0.0000 + 263.7570 306.0000 89.0000 2.9987 0.0000 241.5305 306.0000 90.0000 2.9987 0.0000 + 238.0151 306.0000 91.0000 2.9987 0.0000 230.5946 306.0000 92.0000 2.9987 0.0000 + 234.7566 306.0000 93.0000 2.9987 0.0000 227.7683 306.0000 94.0000 2.9987 0.0000 + 13.7992 306.0000 101.0000 2.9987 0.0000 41.9713 306.0000 103.0000 2.9987 0.9865 + 54.0770 306.0000 104.0000 2.9987 0.9808 42.9646 306.0000 105.0000 2.9987 0.9706 + 33.2540 306.0000 106.0000 2.9987 0.9868 23.8136 306.0000 107.0000 2.9987 0.9944 + 17.7750 306.0000 108.0000 2.9987 0.9925 12.5970 306.0000 109.0000 2.9987 0.9982 + 61.0174 306.0000 111.0000 2.9987 0.9684 93.9978 306.0000 112.0000 2.9987 0.9628 + 96.9560 306.0000 113.0000 2.9987 0.9648 80.2618 306.0000 114.0000 2.9987 0.9507 + 67.3088 306.0000 115.0000 2.9987 0.9947 57.9221 306.0000 116.0000 2.9987 0.9948 + 48.2328 306.0000 117.0000 2.9987 0.9972 86.1481 306.0000 119.0000 2.9987 0.9767 + 156.7702 306.0000 120.0000 2.9987 0.9831 87.8153 306.0000 121.0000 2.9987 1.8627 + 84.9253 306.0000 122.0000 2.9987 1.8299 83.2111 306.0000 123.0000 2.9987 1.9138 + 82.2331 306.0000 124.0000 2.9987 1.8269 76.5846 306.0000 125.0000 2.9987 1.6406 + 71.2110 306.0000 126.0000 2.9987 1.6483 67.9774 306.0000 127.0000 2.9987 1.7149 + 66.3897 306.0000 128.0000 2.9987 1.7937 64.9641 306.0000 129.0000 2.9987 0.9576 + 62.0228 306.0000 130.0000 2.9987 1.9419 97.3838 306.0000 131.0000 2.9987 0.9601 + 87.4781 306.0000 132.0000 2.9987 0.9434 79.7986 306.0000 133.0000 2.9987 0.9889 + 73.8257 306.0000 134.0000 2.9987 0.9901 65.9967 306.0000 135.0000 2.9987 0.9974 + 103.4559 306.0000 137.0000 2.9987 0.9738 190.6976 306.0000 138.0000 2.9987 0.9801 + 150.7894 306.0000 139.0000 2.9987 1.9153 116.1973 306.0000 140.0000 2.9987 1.9355 + 117.3051 306.0000 141.0000 2.9987 1.9545 110.0255 306.0000 142.0000 2.9987 1.9420 + 121.4381 306.0000 143.0000 2.9987 1.6682 97.1744 306.0000 144.0000 2.9987 1.8584 + 91.1171 306.0000 145.0000 2.9987 1.9003 84.8954 306.0000 146.0000 2.9987 1.8630 + 81.9715 306.0000 147.0000 2.9987 0.9679 81.7500 306.0000 148.0000 2.9987 1.9539 + 124.1085 306.0000 149.0000 2.9987 0.9633 114.3072 306.0000 150.0000 2.9987 0.9514 + 108.4883 306.0000 151.0000 2.9987 0.9749 103.6477 306.0000 152.0000 2.9987 0.9811 + 95.8139 306.0000 153.0000 2.9987 0.9968 123.9803 306.0000 155.0000 2.9987 0.9909 + 246.1256 306.0000 156.0000 2.9987 0.9797 190.4785 306.0000 157.0000 2.9987 1.9373 + 126.4572 306.0000 159.0000 2.9987 2.9425 123.8682 306.0000 160.0000 2.9987 2.9455 + 120.0668 306.0000 161.0000 2.9987 2.9413 120.3408 306.0000 162.0000 2.9987 2.9300 + 115.0733 306.0000 163.0000 2.9987 1.8286 120.9324 306.0000 164.0000 2.9987 2.8732 + 113.8754 306.0000 165.0000 2.9987 2.9086 115.3491 306.0000 166.0000 2.9987 2.8965 + 108.3262 306.0000 167.0000 2.9987 2.9242 105.3302 306.0000 168.0000 2.9987 2.9282 + 104.5694 306.0000 169.0000 2.9987 2.9246 109.3879 306.0000 170.0000 2.9987 2.8482 + 101.1905 306.0000 171.0000 2.9987 2.9219 133.0363 306.0000 172.0000 2.9987 1.9254 + 124.8613 306.0000 173.0000 2.9987 1.9459 115.2606 306.0000 174.0000 2.9987 1.9292 + 115.5178 306.0000 175.0000 2.9987 1.8104 103.7767 306.0000 176.0000 2.9987 1.8858 + 98.0987 306.0000 177.0000 2.9987 1.8648 93.9793 306.0000 178.0000 2.9987 1.9188 + 89.9052 306.0000 179.0000 2.9987 0.9846 87.5930 306.0000 180.0000 2.9987 1.9896 + 134.1084 306.0000 181.0000 2.9987 0.9267 124.3208 306.0000 182.0000 2.9987 0.9383 + 121.7014 306.0000 183.0000 2.9987 0.9820 119.2401 306.0000 184.0000 2.9987 0.9815 + 112.5373 306.0000 185.0000 2.9987 0.9954 139.7510 306.0000 187.0000 2.9987 0.9705 + 247.3730 306.0000 188.0000 2.9987 0.9662 149.4998 306.0000 189.0000 2.9987 2.9070 + 170.1710 306.0000 190.0000 2.9987 2.8844 153.2403 306.0000 191.0000 2.9987 2.8738 + 136.9221 306.0000 192.0000 2.9987 2.8878 132.1270 306.0000 193.0000 2.9987 2.9095 + 154.0713 306.0000 194.0000 2.9987 1.9209 36.6977 306.0000 204.0000 2.9987 1.9697 + 36.4604 306.0000 205.0000 2.9987 1.9441 27.5063 306.0000 206.0000 2.9987 1.9985 + 22.4279 306.0000 207.0000 2.9987 2.0143 15.8009 306.0000 208.0000 2.9987 1.9887 + 63.7944 306.0000 212.0000 2.9987 1.9496 77.0087 306.0000 213.0000 2.9987 1.9311 + 74.9967 306.0000 214.0000 2.9987 1.9435 66.3194 306.0000 215.0000 2.9987 2.0102 + 56.7826 306.0000 216.0000 2.9987 1.9903 89.8285 306.0000 220.0000 2.9987 1.9349 + 87.3048 306.0000 221.0000 2.9987 2.8999 88.4703 306.0000 222.0000 2.9987 3.8675 + 81.0229 306.0000 223.0000 2.9987 2.9110 62.3963 306.0000 224.0000 2.9987 10.6191 + 54.0676 306.0000 225.0000 2.9987 9.8849 52.9928 306.0000 226.0000 2.9987 9.1376 + 60.8513 306.0000 227.0000 2.9987 2.9263 57.0046 306.0000 228.0000 2.9987 6.5458 + 78.7812 306.0000 231.0000 2.9987 1.9315 83.6131 306.0000 232.0000 2.9987 1.9447 + 77.8874 306.0000 233.0000 2.9987 1.9793 73.2814 306.0000 234.0000 2.9987 1.9812 + 107.9688 306.0000 238.0000 2.9987 1.9143 105.3858 306.0000 239.0000 2.9987 2.8903 + 106.7629 306.0000 240.0000 2.9987 3.9106 103.2775 306.0000 241.0000 2.9987 2.9225 + 92.5983 306.0000 242.0000 2.9987 11.0556 82.6496 306.0000 243.0000 2.9987 9.5402 + 78.4368 306.0000 244.0000 2.9987 8.8895 79.0279 306.0000 245.0000 2.9987 2.9696 + 82.1930 306.0000 246.0000 2.9987 5.7095 102.1877 306.0000 249.0000 2.9987 1.9378 + 110.9372 306.0000 250.0000 2.9987 1.9505 105.8584 306.0000 251.0000 2.9987 1.9523 + 102.9373 306.0000 252.0000 2.9987 1.9639 131.2676 306.0000 256.0000 2.9987 1.8467 + 136.8686 306.0000 257.0000 2.9987 2.9175 102.8724 306.0000 272.0000 2.9987 3.8840 + 107.0216 306.0000 273.0000 2.9987 2.8988 100.6727 306.0000 274.0000 2.9987 10.9153 + 92.3748 306.0000 275.0000 2.9987 9.8054 87.6064 306.0000 276.0000 2.9987 9.1527 + 88.5227 306.0000 277.0000 2.9987 2.9424 92.9010 306.0000 278.0000 2.9987 6.6669 + 110.2611 306.0000 281.0000 2.9987 1.9302 116.4811 306.0000 282.0000 2.9987 1.9356 + 119.2179 306.0000 283.0000 2.9987 1.9655 118.9208 306.0000 284.0000 2.9987 1.9639 + 144.7067 306.0000 288.0000 2.9987 1.8075 28.4121 306.0000 305.0000 2.9987 2.9128 + 25.7809 306.0000 306.0000 2.9987 2.9987 6.7746 307.0000 1.0000 2.9903 0.9118 + 4.8836 307.0000 2.0000 2.9903 0.0000 81.9770 307.0000 3.0000 2.9903 0.0000 + 52.0237 307.0000 4.0000 2.9903 0.0000 37.5685 307.0000 5.0000 2.9903 0.0000 + 26.9351 307.0000 6.0000 2.9903 0.0000 19.7707 307.0000 7.0000 2.9903 0.0000 + 15.5249 307.0000 8.0000 2.9903 0.0000 12.1511 307.0000 9.0000 2.9903 0.0000 + 9.6050 307.0000 10.0000 2.9903 0.0000 98.8806 307.0000 11.0000 2.9903 0.0000 + 81.5352 307.0000 12.0000 2.9903 0.0000 77.6520 307.0000 13.0000 2.9903 0.0000 + 64.0576 307.0000 14.0000 2.9903 0.0000 52.1509 307.0000 15.0000 2.9903 0.0000 + 44.6529 307.0000 16.0000 2.9903 0.0000 37.6295 307.0000 17.0000 2.9903 0.0000 + 31.6804 307.0000 18.0000 2.9903 0.0000 162.0160 307.0000 19.0000 2.9903 0.0000 + 140.0273 307.0000 20.0000 2.9903 0.0000 117.1112 307.0000 21.0000 2.9903 0.0000 + 114.8256 307.0000 22.0000 2.9903 0.0000 106.0489 307.0000 23.0000 2.9903 0.0000 + 84.3631 307.0000 24.0000 2.9903 0.0000 92.4636 307.0000 25.0000 2.9903 0.0000 + 73.4185 307.0000 26.0000 2.9903 0.0000 78.4696 307.0000 27.0000 2.9903 0.0000 + 80.0853 307.0000 28.0000 2.9903 0.0000 62.1299 307.0000 29.0000 2.9903 0.0000 + 64.8633 307.0000 30.0000 2.9903 0.0000 75.8800 307.0000 31.0000 2.9903 0.0000 + 69.1710 307.0000 32.0000 2.9903 0.0000 61.0425 307.0000 33.0000 2.9903 0.0000 + 56.0812 307.0000 34.0000 2.9903 0.0000 50.3344 307.0000 35.0000 2.9903 0.0000 + 44.8546 307.0000 36.0000 2.9903 0.0000 183.1486 307.0000 37.0000 2.9903 0.0000 + 167.0865 307.0000 38.0000 2.9903 0.0000 149.8906 307.0000 39.0000 2.9903 0.0000 + 136.9578 307.0000 40.0000 2.9903 0.0000 126.4307 307.0000 41.0000 2.9903 0.0000 + 100.1080 307.0000 42.0000 2.9903 0.0000 110.6119 307.0000 43.0000 2.9903 0.0000 + 86.6163 307.0000 44.0000 2.9903 0.0000 94.1007 307.0000 45.0000 2.9903 0.0000 + 87.9430 307.0000 46.0000 2.9903 0.0000 73.8057 307.0000 47.0000 2.9903 0.0000 + 78.3016 307.0000 48.0000 2.9903 0.0000 95.7727 307.0000 49.0000 2.9903 0.0000 + 90.6876 307.0000 50.0000 2.9903 0.0000 83.0577 307.0000 51.0000 2.9903 0.0000 + 78.4819 307.0000 52.0000 2.9903 0.0000 72.4531 307.0000 53.0000 2.9903 0.0000 + 66.5081 307.0000 54.0000 2.9903 0.0000 223.9076 307.0000 55.0000 2.9903 0.0000 + 212.1297 307.0000 56.0000 2.9903 0.0000 190.6370 307.0000 57.0000 2.9903 0.0000 + 97.9882 307.0000 58.0000 2.9903 2.7991 189.7084 307.0000 59.0000 2.9903 0.0000 + 182.7560 307.0000 60.0000 2.9903 0.0000 178.3241 307.0000 61.0000 2.9903 0.0000 + 174.2214 307.0000 62.0000 2.9903 0.0000 170.5870 307.0000 63.0000 2.9903 0.0000 + 138.4298 307.0000 64.0000 2.9903 0.0000 150.8204 307.0000 65.0000 2.9903 0.0000 + 146.1445 307.0000 66.0000 2.9903 0.0000 154.6287 307.0000 67.0000 2.9903 0.0000 + 151.3924 307.0000 68.0000 2.9903 0.0000 148.5273 307.0000 69.0000 2.9903 0.0000 + 146.5709 307.0000 70.0000 2.9903 0.0000 126.1445 307.0000 71.0000 2.9903 0.0000 + 126.8521 307.0000 72.0000 2.9903 0.0000 117.8208 307.0000 73.0000 2.9903 0.0000 + 101.4561 307.0000 74.0000 2.9903 0.0000 103.6967 307.0000 75.0000 2.9903 0.0000 + 95.4919 307.0000 76.0000 2.9903 0.0000 88.6413 307.0000 77.0000 2.9903 0.0000 + 75.0883 307.0000 78.0000 2.9903 0.0000 70.6910 307.0000 79.0000 2.9903 0.0000 + 72.8677 307.0000 80.0000 2.9903 0.0000 99.8545 307.0000 81.0000 2.9903 0.0000 + 99.1557 307.0000 82.0000 2.9903 0.0000 93.2029 307.0000 83.0000 2.9903 0.0000 + 90.1853 307.0000 84.0000 2.9903 0.0000 84.7991 307.0000 85.0000 2.9903 0.0000 + 79.1555 307.0000 86.0000 2.9903 0.0000 215.4634 307.0000 87.0000 2.9903 0.0000 + 212.5524 307.0000 88.0000 2.9903 0.0000 191.7954 307.0000 89.0000 2.9903 0.0000 + 177.2887 307.0000 90.0000 2.9903 0.0000 174.3207 307.0000 91.0000 2.9903 0.0000 + 168.9680 307.0000 92.0000 2.9903 0.0000 171.2063 307.0000 93.0000 2.9903 0.0000 + 166.2420 307.0000 94.0000 2.9903 0.0000 10.3987 307.0000 101.0000 2.9903 0.0000 + 30.6022 307.0000 103.0000 2.9903 0.9865 39.6478 307.0000 104.0000 2.9903 0.9808 + 32.1644 307.0000 105.0000 2.9903 0.9706 25.3318 307.0000 106.0000 2.9903 0.9868 + 18.5180 307.0000 107.0000 2.9903 0.9944 14.0793 307.0000 108.0000 2.9903 0.9925 + 10.2214 307.0000 109.0000 2.9903 0.9982 44.4924 307.0000 111.0000 2.9903 0.9684 + 68.3141 307.0000 112.0000 2.9903 0.9628 71.0231 307.0000 113.0000 2.9903 0.9648 + 59.6887 307.0000 114.0000 2.9903 0.9507 50.7398 307.0000 115.0000 2.9903 0.9947 + 44.1581 307.0000 116.0000 2.9903 0.9948 37.2381 307.0000 117.0000 2.9903 0.9972 + 63.8686 307.0000 119.0000 2.9903 0.9767 113.4161 307.0000 120.0000 2.9903 0.9831 + 65.5203 307.0000 121.0000 2.9903 1.8627 63.4645 307.0000 122.0000 2.9903 1.8299 + 62.2020 307.0000 123.0000 2.9903 1.9138 61.4202 307.0000 124.0000 2.9903 1.8269 + 57.4915 307.0000 125.0000 2.9903 1.6406 53.6171 307.0000 126.0000 2.9903 1.6483 + 51.2318 307.0000 127.0000 2.9903 1.7149 50.0218 307.0000 128.0000 2.9903 1.7937 + 48.7630 307.0000 129.0000 2.9903 0.9576 46.8911 307.0000 130.0000 2.9903 1.9419 + 71.9079 307.0000 131.0000 2.9903 0.9601 65.3041 307.0000 132.0000 2.9903 0.9434 + 60.1519 307.0000 133.0000 2.9903 0.9889 56.0962 307.0000 134.0000 2.9903 0.9901 + 50.6298 307.0000 135.0000 2.9903 0.9974 77.0040 307.0000 137.0000 2.9903 0.9738 + 138.0927 307.0000 138.0000 2.9903 0.9801 110.8238 307.0000 139.0000 2.9903 1.9153 + 86.8035 307.0000 140.0000 2.9903 1.9355 87.6504 307.0000 141.0000 2.9903 1.9545 + 82.5251 307.0000 142.0000 2.9903 1.9420 90.4660 307.0000 143.0000 2.9903 1.6682 + 73.4259 307.0000 144.0000 2.9903 1.8584 69.0005 307.0000 145.0000 2.9903 1.9003 + 64.4651 307.0000 146.0000 2.9903 1.8630 62.2209 307.0000 147.0000 2.9903 0.9679 + 62.2131 307.0000 148.0000 2.9903 1.9539 92.1403 307.0000 149.0000 2.9903 0.9633 + 85.5479 307.0000 150.0000 2.9903 0.9514 81.7279 307.0000 151.0000 2.9903 0.9749 + 78.5067 307.0000 152.0000 2.9903 0.9811 73.0954 307.0000 153.0000 2.9903 0.9968 + 92.7050 307.0000 155.0000 2.9903 0.9909 178.0536 307.0000 156.0000 2.9903 0.9797 + 139.9128 307.0000 157.0000 2.9903 1.9373 95.2178 307.0000 159.0000 2.9903 2.9425 + 93.2841 307.0000 160.0000 2.9903 2.9455 90.4807 307.0000 161.0000 2.9903 2.9413 + 90.5682 307.0000 162.0000 2.9903 2.9300 86.3386 307.0000 163.0000 2.9903 1.8286 + 90.9100 307.0000 164.0000 2.9903 2.8732 85.7475 307.0000 165.0000 2.9903 2.9086 + 86.6740 307.0000 166.0000 2.9903 2.8965 81.6520 307.0000 167.0000 2.9903 2.9242 + 79.4291 307.0000 168.0000 2.9903 2.9282 78.8150 307.0000 169.0000 2.9903 2.9246 + 82.1806 307.0000 170.0000 2.9903 2.8482 76.3004 307.0000 171.0000 2.9903 2.9219 + 98.8025 307.0000 172.0000 2.9903 1.9254 93.3008 307.0000 173.0000 2.9903 1.9459 + 86.6909 307.0000 174.0000 2.9903 1.9292 86.4983 307.0000 175.0000 2.9903 1.8104 + 78.7735 307.0000 176.0000 2.9903 1.8858 74.7269 307.0000 177.0000 2.9903 1.8648 + 71.7624 307.0000 178.0000 2.9903 1.9188 68.7538 307.0000 179.0000 2.9903 0.9846 + 67.2293 307.0000 180.0000 2.9903 1.9896 100.0870 307.0000 181.0000 2.9903 0.9267 + 93.4821 307.0000 182.0000 2.9903 0.9383 91.8965 307.0000 183.0000 2.9903 0.9820 + 90.3760 307.0000 184.0000 2.9903 0.9815 85.8075 307.0000 185.0000 2.9903 0.9954 + 104.5128 307.0000 187.0000 2.9903 0.9705 179.7161 307.0000 188.0000 2.9903 0.9662 + 112.4669 307.0000 189.0000 2.9903 2.9070 127.2819 307.0000 190.0000 2.9903 2.8844 + 115.1751 307.0000 191.0000 2.9903 2.8738 103.4489 307.0000 192.0000 2.9903 2.8878 + 99.9878 307.0000 193.0000 2.9903 2.9095 114.9538 307.0000 194.0000 2.9903 1.9209 + 27.4225 307.0000 204.0000 2.9903 1.9697 27.4842 307.0000 205.0000 2.9903 1.9441 + 21.1488 307.0000 206.0000 2.9903 1.9985 17.4928 307.0000 207.0000 2.9903 2.0143 + 12.6077 307.0000 208.0000 2.9903 1.9887 47.2059 307.0000 212.0000 2.9903 1.9496 + 56.9713 307.0000 213.0000 2.9903 1.9311 55.9197 307.0000 214.0000 2.9903 1.9435 + 49.9818 307.0000 215.0000 2.9903 2.0102 43.3130 307.0000 216.0000 2.9903 1.9903 + 66.8706 307.0000 220.0000 2.9903 1.9349 65.3415 307.0000 221.0000 2.9903 2.8999 + 66.2607 307.0000 222.0000 2.9903 3.8675 60.7834 307.0000 223.0000 2.9903 2.9110 + 47.5033 307.0000 224.0000 2.9903 10.6191 41.4862 307.0000 225.0000 2.9903 9.8849 + 40.6376 307.0000 226.0000 2.9903 9.1376 46.0841 307.0000 227.0000 2.9903 2.9263 + 43.3096 307.0000 228.0000 2.9903 6.5458 58.8126 307.0000 231.0000 2.9903 1.9315 + 62.5609 307.0000 232.0000 2.9903 1.9447 58.7945 307.0000 233.0000 2.9903 1.9793 + 55.7037 307.0000 234.0000 2.9903 1.9812 80.5868 307.0000 238.0000 2.9903 1.9143 + 79.1550 307.0000 239.0000 2.9903 2.8903 80.3758 307.0000 240.0000 2.9903 3.9106 + 77.8681 307.0000 241.0000 2.9903 2.9225 70.4244 307.0000 242.0000 2.9903 11.0556 + 63.3081 307.0000 243.0000 2.9903 9.5402 60.2641 307.0000 244.0000 2.9903 8.8895 + 60.4149 307.0000 245.0000 2.9903 2.9696 62.6532 307.0000 246.0000 2.9903 5.7095 + 76.7798 307.0000 249.0000 2.9903 1.9378 83.1968 307.0000 250.0000 2.9903 1.9505 + 79.8912 307.0000 251.0000 2.9903 1.9523 78.0224 307.0000 252.0000 2.9903 1.9639 + 98.2670 307.0000 256.0000 2.9903 1.8467 102.6251 307.0000 257.0000 2.9903 2.9175 + 77.7379 307.0000 272.0000 2.9903 3.8840 80.8052 307.0000 273.0000 2.9903 2.8988 + 76.5852 307.0000 274.0000 2.9903 10.9153 70.7353 307.0000 275.0000 2.9903 9.8054 + 67.4272 307.0000 276.0000 2.9903 9.1527 67.8885 307.0000 277.0000 2.9903 2.9424 + 71.1120 307.0000 278.0000 2.9903 6.6669 83.4095 307.0000 281.0000 2.9903 1.9302 + 88.0052 307.0000 282.0000 2.9903 1.9356 90.1990 307.0000 283.0000 2.9903 1.9655 + 90.2005 307.0000 284.0000 2.9903 1.9639 108.3849 307.0000 288.0000 2.9903 1.8075 + 21.7205 307.0000 305.0000 2.9903 2.9128 19.8669 307.0000 306.0000 2.9903 2.9987 + 15.5817 307.0000 307.0000 2.9903 2.9903 21.0584 313.0000 1.0000 2.9146 0.9118 + 13.6982 313.0000 2.0000 2.9146 0.0000 322.7925 313.0000 3.0000 2.9146 0.0000 + 189.6605 313.0000 4.0000 2.9146 0.0000 127.9645 313.0000 5.0000 2.9146 0.0000 + 86.1605 313.0000 6.0000 2.9146 0.0000 59.9074 313.0000 7.0000 2.9146 0.0000 + 45.0876 313.0000 8.0000 2.9146 0.0000 33.9334 313.0000 9.0000 2.9146 0.0000 + 25.9335 313.0000 10.0000 2.9146 0.0000 386.0980 313.0000 11.0000 2.9146 0.0000 + 301.3307 313.0000 12.0000 2.9146 0.0000 278.5639 313.0000 13.0000 2.9146 0.0000 + 219.9479 313.0000 14.0000 2.9146 0.0000 171.3557 313.0000 15.0000 2.9146 0.0000 + 141.8517 313.0000 16.0000 2.9146 0.0000 115.4552 313.0000 17.0000 2.9146 0.0000 + 94.0428 313.0000 18.0000 2.9146 0.0000 628.9537 313.0000 19.0000 2.9146 0.0000 + 525.8367 313.0000 20.0000 2.9146 0.0000 435.4205 313.0000 21.0000 2.9146 0.0000 + 420.8711 313.0000 22.0000 2.9146 0.0000 385.6611 313.0000 23.0000 2.9146 0.0000 + 303.1266 313.0000 24.0000 2.9146 0.0000 332.3156 313.0000 25.0000 2.9146 0.0000 + 260.2229 313.0000 26.0000 2.9146 0.0000 276.8948 313.0000 27.0000 2.9146 0.0000 + 285.1174 313.0000 28.0000 2.9146 0.0000 217.8958 313.0000 29.0000 2.9146 0.0000 + 224.7197 313.0000 30.0000 2.9146 0.0000 266.4534 313.0000 31.0000 2.9146 0.0000 + 235.4382 313.0000 32.0000 2.9146 0.0000 200.7514 313.0000 33.0000 2.9146 0.0000 + 179.8635 313.0000 34.0000 2.9146 0.0000 157.0191 313.0000 35.0000 2.9146 0.0000 + 136.1238 313.0000 36.0000 2.9146 0.0000 704.9609 313.0000 37.0000 2.9146 0.0000 + 625.6996 313.0000 38.0000 2.9146 0.0000 549.9242 313.0000 39.0000 2.9146 0.0000 + 494.9507 313.0000 40.0000 2.9146 0.0000 451.5308 313.0000 41.0000 2.9146 0.0000 + 348.3397 313.0000 42.0000 2.9146 0.0000 388.8226 313.0000 43.0000 2.9146 0.0000 + 295.9256 313.0000 44.0000 2.9146 0.0000 324.0408 313.0000 45.0000 2.9146 0.0000 + 300.4977 313.0000 46.0000 2.9146 0.0000 249.6759 313.0000 47.0000 2.9146 0.0000 + 264.7291 313.0000 48.0000 2.9146 0.0000 332.3410 313.0000 49.0000 2.9146 0.0000 + 308.0840 313.0000 50.0000 2.9146 0.0000 274.7333 313.0000 51.0000 2.9146 0.0000 + 254.7805 313.0000 52.0000 2.9146 0.0000 230.0798 313.0000 53.0000 2.9146 0.0000 + 206.4581 313.0000 54.0000 2.9146 0.0000 858.6799 313.0000 55.0000 2.9146 0.0000 + 796.1066 313.0000 56.0000 2.9146 0.0000 701.9398 313.0000 57.0000 2.9146 0.0000 + 324.1533 313.0000 58.0000 2.9146 2.7991 705.7873 313.0000 59.0000 2.9146 0.0000 + 678.1931 313.0000 60.0000 2.9146 0.0000 661.3178 313.0000 61.0000 2.9146 0.0000 + 645.7939 313.0000 62.0000 2.9146 0.0000 632.0359 313.0000 63.0000 2.9146 0.0000 + 498.0207 313.0000 64.0000 2.9146 0.0000 557.1841 313.0000 65.0000 2.9146 0.0000 + 537.7266 313.0000 66.0000 2.9146 0.0000 570.6508 313.0000 67.0000 2.9146 0.0000 + 558.6379 313.0000 68.0000 2.9146 0.0000 547.8252 313.0000 69.0000 2.9146 0.0000 + 541.3978 313.0000 70.0000 2.9146 0.0000 456.8325 313.0000 71.0000 2.9146 0.0000 + 450.8979 313.0000 72.0000 2.9146 0.0000 411.7737 313.0000 73.0000 2.9146 0.0000 + 347.2309 313.0000 74.0000 2.9146 0.0000 353.5264 313.0000 75.0000 2.9146 0.0000 + 320.3875 313.0000 76.0000 2.9146 0.0000 293.3116 313.0000 77.0000 2.9146 0.0000 + 243.0764 313.0000 78.0000 2.9146 0.0000 226.8850 313.0000 79.0000 2.9146 0.0000 + 233.6927 313.0000 80.0000 2.9146 0.0000 340.4316 313.0000 81.0000 2.9146 0.0000 + 333.7314 313.0000 82.0000 2.9146 0.0000 306.9884 313.0000 83.0000 2.9146 0.0000 + 292.7959 313.0000 84.0000 2.9146 0.0000 270.0313 313.0000 85.0000 2.9146 0.0000 + 247.1615 313.0000 86.0000 2.9146 0.0000 813.1166 313.0000 87.0000 2.9146 0.0000 + 788.4198 313.0000 88.0000 2.9146 0.0000 699.1260 313.0000 89.0000 2.9146 0.0000 + 629.5576 313.0000 90.0000 2.9146 0.0000 623.6462 313.0000 91.0000 2.9146 0.0000 + 603.7975 313.0000 92.0000 2.9146 0.0000 620.5111 313.0000 93.0000 2.9146 0.0000 + 601.1350 313.0000 94.0000 2.9146 0.0000 34.0700 313.0000 101.0000 2.9146 0.0000 + 110.2136 313.0000 103.0000 2.9146 0.9865 140.5632 313.0000 104.0000 2.9146 0.9808 + 107.5158 313.0000 105.0000 2.9146 0.9706 80.7111 313.0000 106.0000 2.9146 0.9868 + 55.7793 313.0000 107.0000 2.9146 0.9944 40.3374 313.0000 108.0000 2.9146 0.9925 + 27.4436 313.0000 109.0000 2.9146 0.9982 160.6594 313.0000 111.0000 2.9146 0.9684 + 248.5692 313.0000 112.0000 2.9146 0.9628 252.4953 313.0000 113.0000 2.9146 0.9648 + 203.2226 313.0000 114.0000 2.9146 0.9507 166.2698 313.0000 115.0000 2.9146 0.9947 + 140.2618 313.0000 116.0000 2.9146 0.9948 114.2405 313.0000 117.0000 2.9146 0.9972 + 220.7264 313.0000 119.0000 2.9146 0.9767 419.7129 313.0000 120.0000 2.9146 0.9831 + 221.8339 313.0000 121.0000 2.9146 1.8627 214.0193 313.0000 122.0000 2.9146 1.8299 + 209.6742 313.0000 123.0000 2.9146 1.9138 207.6299 313.0000 124.0000 2.9146 1.8269 + 191.3897 313.0000 125.0000 2.9146 1.6406 177.0542 313.0000 126.0000 2.9146 1.6483 + 168.8027 313.0000 127.0000 2.9146 1.7149 164.9924 313.0000 128.0000 2.9146 1.7937 + 162.8021 313.0000 129.0000 2.9146 0.9576 153.0776 313.0000 130.0000 2.9146 1.9419 + 250.3494 313.0000 131.0000 2.9146 0.9601 220.2317 313.0000 132.0000 2.9146 0.9434 + 197.3088 313.0000 133.0000 2.9146 0.9889 179.9198 313.0000 134.0000 2.9146 0.9901 + 158.1182 313.0000 135.0000 2.9146 0.9974 263.2439 313.0000 137.0000 2.9146 0.9738 + 509.9927 313.0000 138.0000 2.9146 0.9801 392.0660 313.0000 139.0000 2.9146 1.9153 + 292.9765 313.0000 140.0000 2.9146 1.9355 295.7786 313.0000 141.0000 2.9146 1.9545 + 275.6435 313.0000 142.0000 2.9146 1.9420 308.4359 313.0000 143.0000 2.9146 1.6682 + 240.2687 313.0000 144.0000 2.9146 1.8584 224.5657 313.0000 145.0000 2.9146 1.9003 + 208.3470 313.0000 146.0000 2.9146 1.8630 201.4661 313.0000 147.0000 2.9146 0.9679 + 199.6670 313.0000 148.0000 2.9146 1.9539 316.9852 313.0000 149.0000 2.9146 0.9633 + 287.3337 313.0000 150.0000 2.9146 0.9514 269.2400 313.0000 151.0000 2.9146 0.9749 + 254.5963 313.0000 152.0000 2.9146 0.9811 232.2617 313.0000 153.0000 2.9146 0.9968 + 312.0540 313.0000 155.0000 2.9146 0.9909 659.7476 313.0000 156.0000 2.9146 0.9797 + 495.8077 313.0000 157.0000 2.9146 1.9373 314.3449 313.0000 159.0000 2.9146 2.9425 + 307.8310 313.0000 160.0000 2.9146 2.9455 298.0452 313.0000 161.0000 2.9146 2.9413 + 299.4728 313.0000 162.0000 2.9146 2.9300 288.3313 313.0000 163.0000 2.9146 1.8286 + 301.4874 313.0000 164.0000 2.9146 2.8732 283.1061 313.0000 165.0000 2.9146 2.9086 + 287.9502 313.0000 166.0000 2.9146 2.8965 268.7620 313.0000 167.0000 2.9146 2.9242 + 261.1100 313.0000 168.0000 2.9146 2.9282 259.4546 313.0000 169.0000 2.9146 2.9246 + 272.9068 313.0000 170.0000 2.9146 2.8482 250.8283 313.0000 171.0000 2.9146 2.9219 + 339.1942 313.0000 172.0000 2.9146 1.9254 314.8567 313.0000 173.0000 2.9146 1.9459 + 287.2588 313.0000 174.0000 2.9146 1.9292 290.4649 313.0000 175.0000 2.9146 1.8104 + 254.3721 313.0000 176.0000 2.9146 1.8858 239.0673 313.0000 177.0000 2.9146 1.8648 + 228.1594 313.0000 178.0000 2.9146 1.9188 217.8961 313.0000 179.0000 2.9146 0.9846 + 210.6925 313.0000 180.0000 2.9146 1.9896 339.7431 313.0000 181.0000 2.9146 0.9267 + 310.2718 313.0000 182.0000 2.9146 0.9383 301.1489 313.0000 183.0000 2.9146 0.9820 + 292.9032 313.0000 184.0000 2.9146 0.9815 273.3456 313.0000 185.0000 2.9146 0.9954 + 351.5586 313.0000 187.0000 2.9146 0.9705 657.7011 313.0000 188.0000 2.9146 0.9662 + 372.1080 313.0000 189.0000 2.9146 2.9070 428.6120 313.0000 190.0000 2.9146 2.8844 + 382.8186 313.0000 191.0000 2.9146 2.8738 338.7023 313.0000 192.0000 2.9146 2.8878 + 325.9088 313.0000 193.0000 2.9146 2.9095 390.8283 313.0000 194.0000 2.9146 1.9209 + 92.0126 313.0000 204.0000 2.9146 1.9697 90.1440 313.0000 205.0000 2.9146 1.9441 + 65.6968 313.0000 206.0000 2.9146 1.9985 52.3136 313.0000 207.0000 2.9146 2.0143 + 35.4602 313.0000 208.0000 2.9146 1.9887 163.1100 313.0000 212.0000 2.9146 1.9496 + 196.9411 313.0000 213.0000 2.9146 1.9311 189.0034 313.0000 214.0000 2.9146 1.9435 + 163.9565 313.0000 215.0000 2.9146 2.0102 137.3907 313.0000 216.0000 2.9146 1.9903 + 227.8108 313.0000 220.0000 2.9146 1.9349 219.1014 313.0000 221.0000 2.9146 2.8999 + 221.7708 313.0000 222.0000 2.9146 3.8675 202.7168 313.0000 223.0000 2.9146 2.9110 + 152.2308 313.0000 224.0000 2.9146 10.6191 130.0809 313.0000 225.0000 2.9146 9.8849 + 127.6833 313.0000 226.0000 2.9146 9.1376 149.9951 313.0000 227.0000 2.9146 2.9263 + 139.7108 313.0000 228.0000 2.9146 6.5458 198.4813 313.0000 231.0000 2.9146 1.9315 + 209.6430 313.0000 232.0000 2.9146 1.9447 192.0916 313.0000 233.0000 2.9146 1.9793 + 178.4835 313.0000 234.0000 2.9146 1.9812 272.6252 313.0000 238.0000 2.9146 1.9143 + 262.7634 313.0000 239.0000 2.9146 2.8903 265.0243 313.0000 240.0000 2.9146 3.9106 + 255.9320 313.0000 241.0000 2.9146 2.9225 225.9636 313.0000 242.0000 2.9146 11.0556 + 199.1588 313.0000 243.0000 2.9146 9.5402 188.0446 313.0000 244.0000 2.9146 8.8895 + 191.4938 313.0000 245.0000 2.9146 2.9696 200.2114 313.0000 246.0000 2.9146 5.7095 + 255.2803 313.0000 249.0000 2.9146 1.9378 277.7927 313.0000 250.0000 2.9146 1.9505 + 261.8224 313.0000 251.0000 2.9146 1.9523 252.5189 313.0000 252.0000 2.9146 1.9639 + 329.5915 313.0000 256.0000 2.9146 1.8467 342.2242 313.0000 257.0000 2.9146 2.9175 + 253.6433 313.0000 272.0000 2.9146 3.8840 264.5600 313.0000 273.0000 2.9146 2.8988 + 245.5149 313.0000 274.0000 2.9146 10.9153 222.6831 313.0000 275.0000 2.9146 9.8054 + 209.2591 313.0000 276.0000 2.9146 9.1527 213.1931 313.0000 277.0000 2.9146 2.9424 + 224.4480 313.0000 278.0000 2.9146 6.6669 272.3038 313.0000 281.0000 2.9146 1.9302 + 288.0954 313.0000 282.0000 2.9146 1.9356 293.8651 313.0000 283.0000 2.9146 1.9655 + 291.6714 313.0000 284.0000 2.9146 1.9639 362.8733 313.0000 288.0000 2.9146 1.8075 + 68.4330 313.0000 305.0000 2.9146 2.9128 61.3829 313.0000 306.0000 2.9146 2.9987 + 45.9399 313.0000 307.0000 2.9146 2.9903 153.5945 313.0000 313.0000 2.9146 2.9146 + 24.9833 314.0000 1.0000 2.9407 0.9118 16.1104 314.0000 2.0000 2.9407 0.0000 + 408.0802 314.0000 3.0000 2.9407 0.0000 231.8251 314.0000 4.0000 2.9407 0.0000 + 154.0388 314.0000 5.0000 2.9407 0.0000 102.7202 314.0000 6.0000 2.9407 0.0000 + 70.9761 314.0000 7.0000 2.9407 0.0000 53.2061 314.0000 8.0000 2.9407 0.0000 + 39.9172 314.0000 9.0000 2.9407 0.0000 30.4338 314.0000 10.0000 2.9407 0.0000 + 487.1761 314.0000 11.0000 2.9407 0.0000 370.3778 314.0000 12.0000 2.9407 0.0000 + 339.4502 314.0000 13.0000 2.9407 0.0000 265.1189 314.0000 14.0000 2.9407 0.0000 + 204.8770 314.0000 15.0000 2.9407 0.0000 168.8225 314.0000 16.0000 2.9407 0.0000 + 136.8460 314.0000 17.0000 2.9407 0.0000 111.1044 314.0000 18.0000 2.9407 0.0000 + 798.8390 314.0000 19.0000 2.9407 0.0000 653.4174 314.0000 20.0000 2.9407 0.0000 + 538.5754 314.0000 21.0000 2.9407 0.0000 518.6333 314.0000 22.0000 2.9407 0.0000 + 474.1585 314.0000 23.0000 2.9407 0.0000 372.7838 314.0000 24.0000 2.9407 0.0000 + 407.2425 314.0000 25.0000 2.9407 0.0000 318.8589 314.0000 26.0000 2.9407 0.0000 + 337.4624 314.0000 27.0000 2.9407 0.0000 348.2477 314.0000 28.0000 2.9407 0.0000 + 266.3120 314.0000 29.0000 2.9407 0.0000 272.5606 314.0000 30.0000 2.9407 0.0000 + 323.8179 314.0000 31.0000 2.9407 0.0000 283.6909 314.0000 32.0000 2.9407 0.0000 + 240.2303 314.0000 33.0000 2.9407 0.0000 214.4121 314.0000 34.0000 2.9407 0.0000 + 186.4927 314.0000 35.0000 2.9407 0.0000 161.1703 314.0000 36.0000 2.9407 0.0000 + 894.0072 314.0000 37.0000 2.9407 0.0000 778.3539 314.0000 38.0000 2.9407 0.0000 + 678.7577 314.0000 39.0000 2.9407 0.0000 608.0848 314.0000 40.0000 2.9407 0.0000 + 553.1447 314.0000 41.0000 2.9407 0.0000 424.8072 314.0000 42.0000 2.9407 0.0000 + 474.9418 314.0000 43.0000 2.9407 0.0000 359.6929 314.0000 44.0000 2.9407 0.0000 + 393.6613 314.0000 45.0000 2.9407 0.0000 364.4241 314.0000 46.0000 2.9407 0.0000 + 303.3752 314.0000 47.0000 2.9407 0.0000 320.3429 314.0000 48.0000 2.9407 0.0000 + 404.3294 314.0000 49.0000 2.9407 0.0000 372.0785 314.0000 50.0000 2.9407 0.0000 + 329.6625 314.0000 51.0000 2.9407 0.0000 304.6285 314.0000 52.0000 2.9407 0.0000 + 274.1045 314.0000 53.0000 2.9407 0.0000 245.1798 314.0000 54.0000 2.9407 0.0000 + 1088.8566 314.0000 55.0000 2.9407 0.0000 993.2763 314.0000 56.0000 2.9407 0.0000 + 868.8607 314.0000 57.0000 2.9407 0.0000 389.5669 314.0000 58.0000 2.9407 2.7991 + 878.3222 314.0000 59.0000 2.9407 0.0000 842.8268 314.0000 60.0000 2.9407 0.0000 + 821.5324 314.0000 61.0000 2.9407 0.0000 801.9751 314.0000 62.0000 2.9407 0.0000 + 784.6310 314.0000 63.0000 2.9407 0.0000 613.2627 314.0000 64.0000 2.9407 0.0000 + 695.1617 314.0000 65.0000 2.9407 0.0000 669.8712 314.0000 66.0000 2.9407 0.0000 + 706.9630 314.0000 67.0000 2.9407 0.0000 691.9095 314.0000 68.0000 2.9407 0.0000 + 678.2927 314.0000 69.0000 2.9407 0.0000 670.5479 314.0000 70.0000 2.9407 0.0000 + 562.6706 314.0000 71.0000 2.9407 0.0000 551.0457 314.0000 72.0000 2.9407 0.0000 + 501.0728 314.0000 73.0000 2.9407 0.0000 421.3667 314.0000 74.0000 2.9407 0.0000 + 428.2245 314.0000 75.0000 2.9407 0.0000 386.7313 314.0000 76.0000 2.9407 0.0000 + 353.0858 314.0000 77.0000 2.9407 0.0000 291.9288 314.0000 78.0000 2.9407 0.0000 + 272.2192 314.0000 79.0000 2.9407 0.0000 279.9239 314.0000 80.0000 2.9407 0.0000 + 413.7495 314.0000 81.0000 2.9407 0.0000 403.1954 314.0000 82.0000 2.9407 0.0000 + 368.6712 314.0000 83.0000 2.9407 0.0000 350.4967 314.0000 84.0000 2.9407 0.0000 + 322.0794 314.0000 85.0000 2.9407 0.0000 293.9018 314.0000 86.0000 2.9407 0.0000 + 1024.4219 314.0000 87.0000 2.9407 0.0000 979.7618 314.0000 88.0000 2.9407 0.0000 + 862.4189 314.0000 89.0000 2.9407 0.0000 770.6095 314.0000 90.0000 2.9407 0.0000 + 766.5520 314.0000 91.0000 2.9407 0.0000 742.0253 314.0000 92.0000 2.9407 0.0000 + 766.3010 314.0000 93.0000 2.9407 0.0000 741.6702 314.0000 94.0000 2.9407 0.0000 + 40.6972 314.0000 101.0000 2.9407 0.0000 134.4490 314.0000 103.0000 2.9407 0.9865 + 171.0398 314.0000 104.0000 2.9407 0.9808 129.0898 314.0000 105.0000 2.9407 0.9706 + 96.2872 314.0000 106.0000 2.9407 0.9868 66.1052 314.0000 107.0000 2.9407 0.9944 + 47.5664 314.0000 108.0000 2.9407 0.9925 32.1730 314.0000 109.0000 2.9407 0.9982 + 196.6526 314.0000 111.0000 2.9407 0.9684 304.6797 314.0000 112.0000 2.9407 0.9628 + 307.1015 314.0000 113.0000 2.9407 0.9648 244.6288 314.0000 114.0000 2.9407 0.9507 + 198.7616 314.0000 115.0000 2.9407 0.9947 166.9597 314.0000 116.0000 2.9407 0.9948 + 135.4234 314.0000 117.0000 2.9407 0.9972 268.9778 314.0000 119.0000 2.9407 0.9767 + 521.7535 314.0000 120.0000 2.9407 0.9831 267.7120 314.0000 121.0000 2.9407 1.8627 + 258.2554 314.0000 122.0000 2.9407 1.8299 253.0661 314.0000 123.0000 2.9407 1.9138 + 250.8827 314.0000 124.0000 2.9407 1.8269 230.0182 314.0000 125.0000 2.9407 1.6406 + 212.5126 314.0000 126.0000 2.9407 1.6483 202.6388 314.0000 127.0000 2.9407 1.7149 + 198.1506 314.0000 128.0000 2.9407 1.7937 196.2996 314.0000 129.0000 2.9407 0.9576 + 183.2556 314.0000 130.0000 2.9407 1.9419 303.5907 314.0000 131.0000 2.9407 0.9601 + 264.8945 314.0000 132.0000 2.9407 0.9434 236.0287 314.0000 133.0000 2.9407 0.9889 + 214.4981 314.0000 134.0000 2.9407 0.9901 187.8378 314.0000 135.0000 2.9407 0.9974 + 320.2665 314.0000 137.0000 2.9407 0.9738 634.9125 314.0000 138.0000 2.9407 0.9801 + 480.7496 314.0000 139.0000 2.9407 1.9153 354.0018 314.0000 140.0000 2.9407 1.9355 + 357.4612 314.0000 141.0000 2.9407 1.9545 332.5980 314.0000 142.0000 2.9407 1.9420 + 374.8284 314.0000 143.0000 2.9407 1.6682 288.5406 314.0000 144.0000 2.9407 1.8584 + 269.6241 314.0000 145.0000 2.9407 1.9003 249.9808 314.0000 146.0000 2.9407 1.8630 + 241.8989 314.0000 147.0000 2.9407 0.9679 238.7691 314.0000 148.0000 2.9407 1.9539 + 384.6752 314.0000 149.0000 2.9407 0.9633 346.1431 314.0000 150.0000 2.9407 0.9514 + 322.8072 314.0000 151.0000 2.9407 0.9749 304.3388 314.0000 152.0000 2.9407 0.9811 + 276.7161 314.0000 153.0000 2.9407 0.9968 377.4920 314.0000 155.0000 2.9407 0.9909 + 824.3552 314.0000 156.0000 2.9407 0.9797 608.8756 314.0000 157.0000 2.9407 1.9373 + 377.6480 314.0000 159.0000 2.9407 2.9425 369.7985 314.0000 160.0000 2.9407 2.9455 + 357.9364 314.0000 161.0000 2.9407 2.9413 360.0151 314.0000 162.0000 2.9407 2.9300 + 347.8087 314.0000 163.0000 2.9407 1.8286 362.5021 314.0000 164.0000 2.9407 2.8732 + 340.1321 314.0000 165.0000 2.9407 2.9086 346.6120 314.0000 166.0000 2.9407 2.8965 + 322.6156 314.0000 167.0000 2.9407 2.9242 313.3296 314.0000 168.0000 2.9407 2.9282 + 311.4138 314.0000 169.0000 2.9407 2.9246 327.9441 314.0000 170.0000 2.9407 2.8482 + 300.9015 314.0000 171.0000 2.9407 2.9219 411.8870 314.0000 172.0000 2.9407 1.9254 + 380.8064 314.0000 173.0000 2.9407 1.9459 346.0161 314.0000 174.0000 2.9407 1.9292 + 351.1848 314.0000 175.0000 2.9407 1.8104 304.6532 314.0000 176.0000 2.9407 1.8858 + 286.0024 314.0000 177.0000 2.9407 1.8648 272.7791 314.0000 178.0000 2.9407 1.9188 + 260.6047 314.0000 179.0000 2.9407 0.9846 251.1154 314.0000 180.0000 2.9407 1.9896 + 411.9935 314.0000 181.0000 2.9407 0.9267 373.5243 314.0000 182.0000 2.9407 0.9383 + 361.1883 314.0000 183.0000 2.9407 0.9820 350.4417 314.0000 184.0000 2.9407 0.9815 + 326.0077 314.0000 185.0000 2.9407 0.9954 425.0723 314.0000 187.0000 2.9407 0.9705 + 817.5351 314.0000 188.0000 2.9407 0.9662 447.0785 314.0000 189.0000 2.9407 2.9070 + 518.3645 314.0000 190.0000 2.9407 2.8844 462.2417 314.0000 191.0000 2.9407 2.8738 + 406.8282 314.0000 192.0000 2.9407 2.8878 391.0575 314.0000 193.0000 2.9407 2.9095 + 475.2597 314.0000 194.0000 2.9407 1.9209 110.3134 314.0000 204.0000 2.9407 1.9697 + 107.9647 314.0000 205.0000 2.9407 1.9441 78.0574 314.0000 206.0000 2.9407 1.9985 + 61.9530 314.0000 207.0000 2.9407 2.0143 41.7687 314.0000 208.0000 2.9407 1.9887 + 196.7841 314.0000 212.0000 2.9407 1.9496 237.9434 314.0000 213.0000 2.9407 1.9311 + 227.1882 314.0000 214.0000 2.9407 1.9435 196.1196 314.0000 215.0000 2.9407 2.0102 + 163.5352 314.0000 216.0000 2.9407 1.9903 275.2242 314.0000 220.0000 2.9407 1.9349 + 263.5853 314.0000 221.0000 2.9407 2.8999 266.7243 314.0000 222.0000 2.9407 3.8675 + 243.9654 314.0000 223.0000 2.9407 2.9110 182.1854 314.0000 224.0000 2.9407 10.6191 + 155.1095 314.0000 225.0000 2.9407 9.8849 152.3164 314.0000 226.0000 2.9407 9.1376 + 179.9690 314.0000 227.0000 2.9407 2.9263 167.3173 314.0000 228.0000 2.9407 6.5458 + 238.9624 314.0000 231.0000 2.9407 1.9315 251.8482 314.0000 232.0000 2.9407 1.9447 + 229.6362 314.0000 233.0000 2.9407 1.9793 212.7679 314.0000 234.0000 2.9407 1.9812 + 329.3386 314.0000 238.0000 2.9407 1.9143 315.6210 314.0000 239.0000 2.9407 2.8903 + 317.8567 314.0000 240.0000 2.9407 3.9106 307.2381 314.0000 241.0000 2.9407 2.9225 + 270.1899 314.0000 242.0000 2.9407 11.0556 237.4146 314.0000 243.0000 2.9407 9.5402 + 223.9239 314.0000 244.0000 2.9407 8.8895 228.9329 314.0000 245.0000 2.9407 2.9696 + 239.5605 314.0000 246.0000 2.9407 5.7095 307.2515 314.0000 249.0000 2.9407 1.9378 + 334.2022 314.0000 250.0000 2.9407 1.9505 313.5794 314.0000 251.0000 2.9407 1.9523 + 301.7357 314.0000 252.0000 2.9407 1.9639 397.6803 314.0000 256.0000 2.9407 1.8467 + 411.5436 314.0000 257.0000 2.9407 2.9175 303.5984 314.0000 272.0000 2.9407 3.8840 + 317.4639 314.0000 273.0000 2.9407 2.8988 293.4671 314.0000 274.0000 2.9407 10.9153 + 265.4501 314.0000 275.0000 2.9407 9.8054 248.8943 314.0000 276.0000 2.9407 9.1527 + 254.4841 314.0000 277.0000 2.9407 2.9424 267.9011 314.0000 278.0000 2.9407 6.6669 + 326.9218 314.0000 281.0000 2.9407 1.9302 345.6909 314.0000 282.0000 2.9407 1.9356 + 351.9496 314.0000 283.0000 2.9407 1.9655 348.7639 314.0000 284.0000 2.9407 1.9639 + 437.6413 314.0000 288.0000 2.9407 1.8075 81.3478 314.0000 305.0000 2.9407 2.9128 + 72.9530 314.0000 306.0000 2.9407 2.9987 54.3857 314.0000 307.0000 2.9407 2.9903 + 184.0291 314.0000 313.0000 2.9407 2.9146 221.5046 314.0000 314.0000 2.9407 2.9407 + 21.2507 315.0000 1.0000 2.9859 0.9118 14.1577 315.0000 2.0000 2.9859 0.0000 + 304.7707 315.0000 3.0000 2.9859 0.0000 183.3056 315.0000 4.0000 2.9859 0.0000 + 126.0194 315.0000 5.0000 2.9859 0.0000 86.2427 315.0000 6.0000 2.9859 0.0000 + 60.7663 315.0000 7.0000 2.9859 0.0000 46.1927 315.0000 8.0000 2.9859 0.0000 + 35.0733 315.0000 9.0000 2.9859 0.0000 26.9990 315.0000 10.0000 2.9859 0.0000 + 365.2110 315.0000 11.0000 2.9859 0.0000 289.9090 315.0000 12.0000 2.9859 0.0000 + 270.3535 315.0000 13.0000 2.9859 0.0000 216.1303 315.0000 14.0000 2.9859 0.0000 + 170.4045 315.0000 15.0000 2.9859 0.0000 142.2982 315.0000 16.0000 2.9859 0.0000 + 116.8355 315.0000 17.0000 2.9859 0.0000 95.9336 315.0000 18.0000 2.9859 0.0000 + 595.1033 315.0000 19.0000 2.9859 0.0000 502.9654 315.0000 20.0000 2.9859 0.0000 + 417.7400 315.0000 21.0000 2.9859 0.0000 405.3462 315.0000 22.0000 2.9859 0.0000 + 372.2326 315.0000 23.0000 2.9859 0.0000 293.2680 315.0000 24.0000 2.9859 0.0000 + 321.7679 315.0000 25.0000 2.9859 0.0000 252.6740 315.0000 26.0000 2.9859 0.0000 + 269.4807 315.0000 27.0000 2.9859 0.0000 276.7985 315.0000 28.0000 2.9859 0.0000 + 212.1340 315.0000 29.0000 2.9859 0.0000 219.8016 315.0000 30.0000 2.9859 0.0000 + 259.9184 315.0000 31.0000 2.9859 0.0000 231.7564 315.0000 32.0000 2.9859 0.0000 + 199.5009 315.0000 33.0000 2.9859 0.0000 179.9374 315.0000 34.0000 2.9859 0.0000 + 158.2104 315.0000 35.0000 2.9859 0.0000 138.1076 315.0000 36.0000 2.9859 0.0000 + 668.4401 315.0000 37.0000 2.9859 0.0000 598.7498 315.0000 38.0000 2.9859 0.0000 + 529.4213 315.0000 39.0000 2.9859 0.0000 478.5196 315.0000 40.0000 2.9859 0.0000 + 437.9280 315.0000 41.0000 2.9859 0.0000 340.0592 315.0000 42.0000 2.9859 0.0000 + 378.6058 315.0000 43.0000 2.9859 0.0000 290.2077 315.0000 44.0000 2.9859 0.0000 + 317.2629 315.0000 45.0000 2.9859 0.0000 294.7986 315.0000 46.0000 2.9859 0.0000 + 245.2996 315.0000 47.0000 2.9859 0.0000 260.3892 315.0000 48.0000 2.9859 0.0000 + 324.7346 315.0000 49.0000 2.9859 0.0000 303.0033 315.0000 50.0000 2.9859 0.0000 + 272.2813 315.0000 51.0000 2.9859 0.0000 253.8269 315.0000 52.0000 2.9859 0.0000 + 230.5860 315.0000 53.0000 2.9859 0.0000 208.1507 315.0000 54.0000 2.9859 0.0000 + 815.1518 315.0000 55.0000 2.9859 0.0000 761.1433 315.0000 56.0000 2.9859 0.0000 + 674.9489 315.0000 57.0000 2.9859 0.0000 321.1378 315.0000 58.0000 2.9859 2.7991 + 676.2031 315.0000 59.0000 2.9859 0.0000 650.2639 315.0000 60.0000 2.9859 0.0000 + 634.2089 315.0000 61.0000 2.9859 0.0000 619.4176 315.0000 62.0000 2.9859 0.0000 + 606.3141 315.0000 63.0000 2.9859 0.0000 481.6031 315.0000 64.0000 2.9859 0.0000 + 534.4195 315.0000 65.0000 2.9859 0.0000 516.3864 315.0000 66.0000 2.9859 0.0000 + 548.0877 315.0000 67.0000 2.9859 0.0000 536.5858 315.0000 68.0000 2.9859 0.0000 + 526.2842 315.0000 69.0000 2.9859 0.0000 519.9103 315.0000 70.0000 2.9859 0.0000 + 441.0913 315.0000 71.0000 2.9859 0.0000 438.0080 315.0000 72.0000 2.9859 0.0000 + 401.8555 315.0000 73.0000 2.9859 0.0000 340.6238 315.0000 74.0000 2.9859 0.0000 + 347.2272 315.0000 75.0000 2.9859 0.0000 316.0198 315.0000 76.0000 2.9859 0.0000 + 290.3581 315.0000 77.0000 2.9859 0.0000 241.8740 315.0000 78.0000 2.9859 0.0000 + 226.2053 315.0000 79.0000 2.9859 0.0000 233.1364 315.0000 80.0000 2.9859 0.0000 + 333.9709 315.0000 81.0000 2.9859 0.0000 328.7945 315.0000 82.0000 2.9859 0.0000 + 304.3790 315.0000 83.0000 2.9859 0.0000 291.5130 315.0000 84.0000 2.9859 0.0000 + 270.2909 315.0000 85.0000 2.9859 0.0000 248.7032 315.0000 86.0000 2.9859 0.0000 + 775.4670 315.0000 87.0000 2.9859 0.0000 756.3233 315.0000 88.0000 2.9859 0.0000 + 674.0628 315.0000 89.0000 2.9859 0.0000 611.3824 315.0000 90.0000 2.9859 0.0000 + 604.0542 315.0000 91.0000 2.9859 0.0000 584.9601 315.0000 92.0000 2.9859 0.0000 + 598.5678 315.0000 93.0000 2.9859 0.0000 580.2672 315.0000 94.0000 2.9859 0.0000 + 33.9193 315.0000 101.0000 2.9859 0.0000 106.8466 315.0000 103.0000 2.9859 0.9865 + 136.8674 315.0000 104.0000 2.9859 0.9808 106.3923 315.0000 105.0000 2.9859 0.9706 + 80.8496 315.0000 106.0000 2.9859 0.9868 56.6508 315.0000 107.0000 2.9859 0.9944 + 41.4600 315.0000 108.0000 2.9859 0.9925 28.6362 315.0000 109.0000 2.9859 0.9982 + 155.4495 315.0000 111.0000 2.9859 0.9684 240.1582 315.0000 112.0000 2.9859 0.9628 + 245.6529 315.0000 113.0000 2.9859 0.9648 200.1422 315.0000 114.0000 2.9859 0.9507 + 165.4518 315.0000 115.0000 2.9859 0.9947 140.6958 315.0000 116.0000 2.9859 0.9948 + 115.6006 315.0000 117.0000 2.9859 0.9972 215.8467 315.0000 119.0000 2.9859 0.9767 + 402.8286 315.0000 120.0000 2.9859 0.9831 218.4319 315.0000 121.0000 2.9859 1.8627 + 210.9228 315.0000 122.0000 2.9859 1.8299 206.6274 315.0000 123.0000 2.9859 1.9138 + 204.4081 315.0000 124.0000 2.9859 1.8269 189.3102 315.0000 125.0000 2.9859 1.6406 + 175.4919 315.0000 126.0000 2.9859 1.6483 167.3765 315.0000 127.0000 2.9859 1.7149 + 163.5301 315.0000 128.0000 2.9859 1.7937 160.7225 315.0000 129.0000 2.9859 0.9576 + 152.2000 315.0000 130.0000 2.9859 1.9419 244.7964 315.0000 131.0000 2.9859 0.9601 + 217.3350 315.0000 132.0000 2.9859 0.9434 196.2122 315.0000 133.0000 2.9859 0.9889 + 179.9862 315.0000 134.0000 2.9859 0.9901 159.2666 315.0000 135.0000 2.9859 0.9974 + 258.1520 315.0000 137.0000 2.9859 0.9738 489.5943 315.0000 138.0000 2.9859 0.9801 + 381.1414 315.0000 139.0000 2.9859 1.9153 288.6637 315.0000 140.0000 2.9859 1.9355 + 291.3813 315.0000 141.0000 2.9859 1.9545 272.2421 315.0000 142.0000 2.9859 1.9420 + 302.7493 315.0000 143.0000 2.9859 1.6682 238.6014 315.0000 144.0000 2.9859 1.8584 + 223.2549 315.0000 145.0000 2.9859 1.9003 207.4505 315.0000 146.0000 2.9859 1.8630 + 200.4348 315.0000 147.0000 2.9859 0.9679 199.2714 315.0000 148.0000 2.9859 1.9539 + 310.5048 315.0000 149.0000 2.9859 0.9633 283.4898 315.0000 150.0000 2.9859 0.9514 + 267.1401 315.0000 151.0000 2.9859 0.9749 253.7228 315.0000 152.0000 2.9859 0.9811 + 232.7426 315.0000 153.0000 2.9859 0.9968 307.6574 315.0000 155.0000 2.9859 0.9909 + 632.6159 315.0000 156.0000 2.9859 0.9797 481.7395 315.0000 157.0000 2.9859 1.9373 + 311.5824 315.0000 159.0000 2.9859 2.9425 305.1528 315.0000 160.0000 2.9859 2.9455 + 295.5871 315.0000 161.0000 2.9859 2.9413 296.6816 315.0000 162.0000 2.9859 2.9300 + 284.7085 315.0000 163.0000 2.9859 1.8286 298.4773 315.0000 164.0000 2.9859 2.8732 + 280.5856 315.0000 165.0000 2.9859 2.9086 284.8700 315.0000 166.0000 2.9859 2.8965 + 266.6113 315.0000 167.0000 2.9859 2.9242 259.1140 315.0000 168.0000 2.9859 2.9282 + 257.3786 315.0000 169.0000 2.9859 2.9246 270.1359 315.0000 170.0000 2.9859 2.8482 + 248.9375 315.0000 171.0000 2.9859 2.9219 332.5812 315.0000 172.0000 2.9859 1.9254 + 310.1525 315.0000 173.0000 2.9859 1.9459 284.3515 315.0000 174.0000 2.9859 1.9292 + 286.3906 315.0000 175.0000 2.9859 1.8104 253.5499 315.0000 176.0000 2.9859 1.8858 + 238.8181 315.0000 177.0000 2.9859 1.8648 228.2377 315.0000 178.0000 2.9859 1.9188 + 218.0572 315.0000 179.0000 2.9859 0.9846 211.5777 315.0000 180.0000 2.9859 1.9896 + 333.7972 315.0000 181.0000 2.9859 0.9267 306.9029 315.0000 182.0000 2.9859 0.9383 + 299.0380 315.0000 183.0000 2.9859 0.9820 291.7857 315.0000 184.0000 2.9859 0.9815 + 273.6027 315.0000 185.0000 2.9859 0.9954 346.7152 315.0000 187.0000 2.9859 0.9705 + 632.9758 315.0000 188.0000 2.9859 0.9662 368.6754 315.0000 189.0000 2.9859 2.9070 + 422.3705 315.0000 190.0000 2.9859 2.8844 378.4719 315.0000 191.0000 2.9859 2.8738 + 336.2789 315.0000 192.0000 2.9859 2.8878 323.9548 315.0000 193.0000 2.9859 2.9095 + 383.6707 315.0000 194.0000 2.9859 1.9209 91.0206 315.0000 204.0000 2.9859 1.9697 + 89.6391 315.0000 205.0000 2.9859 1.9441 66.2343 315.0000 206.0000 2.9859 1.9985 + 53.2076 315.0000 207.0000 2.9859 2.0143 36.5875 315.0000 208.0000 2.9859 1.9887 + 159.9562 315.0000 212.0000 2.9859 1.9496 193.1132 315.0000 213.0000 2.9859 1.9311 + 186.5031 315.0000 214.0000 2.9859 1.9435 163.0764 315.0000 215.0000 2.9859 2.0102 + 137.8540 315.0000 216.0000 2.9859 1.9903 223.9566 315.0000 220.0000 2.9859 1.9349 + 216.4038 315.0000 221.0000 2.9859 2.8999 219.1391 315.0000 222.0000 2.9859 3.8675 + 200.4053 315.0000 223.0000 2.9859 2.9110 152.0010 315.0000 224.0000 2.9859 10.6191 + 130.6248 315.0000 225.0000 2.9859 9.8849 128.1271 315.0000 226.0000 2.9859 9.1376 + 149.1158 315.0000 227.0000 2.9859 2.9263 139.2201 315.0000 228.0000 2.9859 6.5458 + 195.7667 315.0000 231.0000 2.9859 1.9315 207.2390 315.0000 232.0000 2.9859 1.9447 + 191.2265 315.0000 233.0000 2.9859 1.9793 178.5907 315.0000 234.0000 2.9859 1.9812 + 268.4526 315.0000 238.0000 2.9859 1.9143 260.2254 315.0000 239.0000 2.9859 2.8903 + 262.9675 315.0000 240.0000 2.9859 3.9106 254.0460 315.0000 241.0000 2.9859 2.9225 + 225.7030 315.0000 242.0000 2.9859 11.0556 199.9418 315.0000 243.0000 2.9859 9.5402 + 189.1560 315.0000 244.0000 2.9859 8.8895 191.6962 315.0000 245.0000 2.9859 2.9696 + 199.9979 315.0000 246.0000 2.9859 5.7095 252.4456 315.0000 249.0000 2.9859 1.9378 + 274.5293 315.0000 250.0000 2.9859 1.9505 260.1578 315.0000 251.0000 2.9859 1.9523 + 251.7949 315.0000 252.0000 2.9859 1.9639 325.3328 315.0000 256.0000 2.9859 1.8467 + 338.5362 315.0000 257.0000 2.9859 2.9175 252.3861 315.0000 272.0000 2.9859 3.8840 + 262.8722 315.0000 273.0000 2.9859 2.8988 245.3082 315.0000 274.0000 2.9859 10.9153 + 223.5344 315.0000 275.0000 2.9859 9.8054 210.8422 315.0000 276.0000 2.9859 9.1527 + 213.9730 315.0000 277.0000 2.9859 2.9424 225.0027 315.0000 278.0000 2.9859 6.6669 + 270.4942 315.0000 281.0000 2.9859 1.9302 286.0787 315.0000 282.0000 2.9859 1.9356 + 292.3022 315.0000 283.0000 2.9859 1.9655 290.7612 315.0000 284.0000 2.9859 1.9639 + 358.4059 315.0000 288.0000 2.9859 1.8075 68.8007 315.0000 305.0000 2.9859 2.9128 + 61.9433 315.0000 306.0000 2.9859 2.9987 46.8635 315.0000 307.0000 2.9859 2.9903 + 152.0452 315.0000 313.0000 2.9859 2.9146 181.4840 315.0000 314.0000 2.9859 2.9407 + 151.6886 315.0000 315.0000 2.9859 2.9859 18.7500 327.0000 1.0000 7.7785 0.9118 + 12.7523 327.0000 2.0000 7.7785 0.0000 270.7598 327.0000 3.0000 7.7785 0.0000 + 160.8870 327.0000 4.0000 7.7785 0.0000 110.5365 327.0000 5.0000 7.7785 0.0000 + 76.0072 327.0000 6.0000 7.7785 0.0000 53.9695 327.0000 7.0000 7.7785 0.0000 + 41.3623 327.0000 8.0000 7.7785 0.0000 31.6985 327.0000 9.0000 7.7785 0.0000 + 24.6343 327.0000 10.0000 7.7785 0.0000 324.6241 327.0000 11.0000 7.7785 0.0000 + 255.1561 327.0000 12.0000 7.7785 0.0000 237.3961 327.0000 13.0000 7.7785 0.0000 + 189.5488 327.0000 14.0000 7.7785 0.0000 149.6709 327.0000 15.0000 7.7785 0.0000 + 125.3725 327.0000 16.0000 7.7785 0.0000 103.3931 327.0000 17.0000 7.7785 0.0000 + 85.3616 327.0000 18.0000 7.7785 0.0000 531.3044 327.0000 19.0000 7.7785 0.0000 + 445.0681 327.0000 20.0000 7.7785 0.0000 369.0835 327.0000 21.0000 7.7785 0.0000 + 357.9783 327.0000 22.0000 7.7785 0.0000 328.6407 327.0000 23.0000 7.7785 0.0000 + 259.5722 327.0000 24.0000 7.7785 0.0000 284.0167 327.0000 25.0000 7.7785 0.0000 + 223.6354 327.0000 26.0000 7.7785 0.0000 237.6994 327.0000 27.0000 7.7785 0.0000 + 244.2053 327.0000 28.0000 7.7785 0.0000 187.8440 327.0000 29.0000 7.7785 0.0000 + 193.8570 327.0000 30.0000 7.7785 0.0000 228.6785 327.0000 31.0000 7.7785 0.0000 + 203.6278 327.0000 32.0000 7.7785 0.0000 175.4121 327.0000 33.0000 7.7785 0.0000 + 158.4907 327.0000 34.0000 7.7785 0.0000 139.7541 327.0000 35.0000 7.7785 0.0000 + 122.4536 327.0000 36.0000 7.7785 0.0000 596.8306 327.0000 37.0000 7.7785 0.0000 + 530.3589 327.0000 38.0000 7.7785 0.0000 467.8612 327.0000 39.0000 7.7785 0.0000 + 422.5208 327.0000 40.0000 7.7785 0.0000 386.6491 327.0000 41.0000 7.7785 0.0000 + 300.6753 327.0000 42.0000 7.7785 0.0000 334.5583 327.0000 43.0000 7.7785 0.0000 + 256.9295 327.0000 44.0000 7.7785 0.0000 280.3953 327.0000 45.0000 7.7785 0.0000 + 260.6337 327.0000 46.0000 7.7785 0.0000 217.7112 327.0000 47.0000 7.7785 0.0000 + 230.4010 327.0000 48.0000 7.7785 0.0000 286.9299 327.0000 49.0000 7.7785 0.0000 + 267.2082 327.0000 50.0000 7.7785 0.0000 240.0396 327.0000 51.0000 7.7785 0.0000 + 223.8964 327.0000 52.0000 7.7785 0.0000 203.6855 327.0000 53.0000 7.7785 0.0000 + 184.2665 327.0000 54.0000 7.7785 0.0000 727.5711 327.0000 55.0000 7.7785 0.0000 + 675.0933 327.0000 56.0000 7.7785 0.0000 597.1154 327.0000 57.0000 7.7785 0.0000 + 283.4108 327.0000 58.0000 7.7785 2.7991 599.8783 327.0000 59.0000 7.7785 0.0000 + 576.6205 327.0000 60.0000 7.7785 0.0000 562.3122 327.0000 61.0000 7.7785 0.0000 + 549.1278 327.0000 62.0000 7.7785 0.0000 537.4395 327.0000 63.0000 7.7785 0.0000 + 426.4723 327.0000 64.0000 7.7785 0.0000 475.3065 327.0000 65.0000 7.7785 0.0000 + 459.0336 327.0000 66.0000 7.7785 0.0000 485.4961 327.0000 67.0000 7.7785 0.0000 + 475.2458 327.0000 68.0000 7.7785 0.0000 466.0487 327.0000 69.0000 7.7785 0.0000 + 460.4063 327.0000 70.0000 7.7785 0.0000 390.2937 327.0000 71.0000 7.7785 0.0000 + 386.3350 327.0000 72.0000 7.7785 0.0000 354.3804 327.0000 73.0000 7.7785 0.0000 + 300.9128 327.0000 74.0000 7.7785 0.0000 306.5770 327.0000 75.0000 7.7785 0.0000 + 279.1748 327.0000 76.0000 7.7785 0.0000 256.7126 327.0000 77.0000 7.7785 0.0000 + 214.5085 327.0000 78.0000 7.7785 0.0000 200.8940 327.0000 79.0000 7.7785 0.0000 + 206.8147 327.0000 80.0000 7.7785 0.0000 295.8667 327.0000 81.0000 7.7785 0.0000 + 290.6684 327.0000 82.0000 7.7785 0.0000 268.8943 327.0000 83.0000 7.7785 0.0000 + 257.5450 327.0000 84.0000 7.7785 0.0000 239.0010 327.0000 85.0000 7.7785 0.0000 + 220.2545 327.0000 86.0000 7.7785 0.0000 690.8529 327.0000 87.0000 7.7785 0.0000 + 670.1098 327.0000 88.0000 7.7785 0.0000 596.1001 327.0000 89.0000 7.7785 0.0000 + 540.1665 327.0000 90.0000 7.7785 0.0000 534.7226 327.0000 91.0000 7.7785 0.0000 + 517.9239 327.0000 92.0000 7.7785 0.0000 530.8043 327.0000 93.0000 7.7785 0.0000 + 514.4508 327.0000 94.0000 7.7785 0.0000 29.7680 327.0000 101.0000 7.7785 0.0000 + 93.8356 327.0000 103.0000 7.7785 0.9865 120.1880 327.0000 104.0000 7.7785 0.9808 + 93.4541 327.0000 105.0000 7.7785 0.9706 71.3318 327.0000 106.0000 7.7785 0.9868 + 50.3814 327.0000 107.0000 7.7785 0.9944 37.2178 327.0000 108.0000 7.7785 0.9925 + 26.1031 327.0000 109.0000 7.7785 0.9982 136.9841 327.0000 111.0000 7.7785 0.9684 + 211.3388 327.0000 112.0000 7.7785 0.9628 215.7066 327.0000 113.0000 7.7785 0.9648 + 175.5963 327.0000 114.0000 7.7785 0.9507 145.3801 327.0000 115.0000 7.7785 0.9947 + 123.9905 327.0000 116.0000 7.7785 0.9948 102.3223 327.0000 117.0000 7.7785 0.9972 + 190.9521 327.0000 119.0000 7.7785 0.9767 357.0721 327.0000 120.0000 7.7785 0.9831 + 192.5221 327.0000 121.0000 7.7785 1.8627 186.0369 327.0000 122.0000 7.7785 1.8299 + 182.3353 327.0000 123.0000 7.7785 1.9138 180.4774 327.0000 124.0000 7.7785 1.8269 + 166.9417 327.0000 125.0000 7.7785 1.6406 154.8608 327.0000 126.0000 7.7785 1.6483 + 147.8057 327.0000 127.0000 7.7785 1.7149 144.4518 327.0000 128.0000 7.7785 1.7937 + 142.1634 327.0000 129.0000 7.7785 0.9576 134.3706 327.0000 130.0000 7.7785 1.9419 + 215.3374 327.0000 131.0000 7.7785 0.9601 191.0014 327.0000 132.0000 7.7785 0.9434 + 172.5578 327.0000 133.0000 7.7785 0.9889 158.5463 327.0000 134.0000 7.7785 0.9901 + 140.6812 327.0000 135.0000 7.7785 0.9974 228.5106 327.0000 137.0000 7.7785 0.9738 + 434.4503 327.0000 138.0000 7.7785 0.9801 336.9173 327.0000 139.0000 7.7785 1.9153 + 254.6698 327.0000 140.0000 7.7785 1.9355 257.1961 327.0000 141.0000 7.7785 1.9545 + 240.5139 327.0000 142.0000 7.7785 1.9420 267.8666 327.0000 143.0000 7.7785 1.6682 + 210.9797 327.0000 144.0000 7.7785 1.8584 197.6518 327.0000 145.0000 7.7785 1.9003 + 183.8900 327.0000 146.0000 7.7785 1.8630 177.7934 327.0000 147.0000 7.7785 0.9679 + 176.4697 327.0000 148.0000 7.7785 1.9539 274.2537 327.0000 149.0000 7.7785 0.9633 + 250.0264 327.0000 150.0000 7.7785 0.9514 235.5276 327.0000 151.0000 7.7785 0.9749 + 223.7999 327.0000 152.0000 7.7785 0.9811 205.5633 327.0000 153.0000 7.7785 0.9968 + 271.6004 327.0000 155.0000 7.7785 0.9909 562.1481 327.0000 156.0000 7.7785 0.9797 + 426.0198 327.0000 157.0000 7.7785 1.9373 275.0230 327.0000 159.0000 7.7785 2.9425 + 269.3672 327.0000 160.0000 7.7785 2.9455 260.9610 327.0000 161.0000 7.7785 2.9413 + 261.9299 327.0000 162.0000 7.7785 2.9300 251.6701 327.0000 163.0000 7.7785 1.8286 + 263.3886 327.0000 164.0000 7.7785 2.8732 247.7080 327.0000 165.0000 7.7785 2.9086 + 251.5373 327.0000 166.0000 7.7785 2.8965 235.3426 327.0000 167.0000 7.7785 2.9242 + 228.7263 327.0000 168.0000 7.7785 2.9282 227.1685 327.0000 169.0000 7.7785 2.9246 + 238.2171 327.0000 170.0000 7.7785 2.8482 219.6742 327.0000 171.0000 7.7785 2.9219 + 293.5672 327.0000 172.0000 7.7785 1.9254 273.8542 327.0000 173.0000 7.7785 1.9459 + 251.2320 327.0000 174.0000 7.7785 1.9292 253.1710 327.0000 175.0000 7.7785 1.8104 + 224.2702 327.0000 176.0000 7.7785 1.8858 211.5286 327.0000 177.0000 7.7785 1.8648 + 202.3866 327.0000 178.0000 7.7785 1.9188 193.6361 327.0000 179.0000 7.7785 0.9846 + 187.7962 327.0000 180.0000 7.7785 1.9896 295.4429 327.0000 181.0000 7.7785 0.9267 + 271.2766 327.0000 182.0000 7.7785 0.9383 264.1460 327.0000 183.0000 7.7785 0.9820 + 257.7450 327.0000 184.0000 7.7785 0.9815 241.8737 327.0000 185.0000 7.7785 0.9954 + 305.9775 327.0000 187.0000 7.7785 0.9705 561.6015 327.0000 188.0000 7.7785 0.9662 + 325.2532 327.0000 189.0000 7.7785 2.9070 373.1793 327.0000 190.0000 7.7785 2.8844 + 334.8134 327.0000 191.0000 7.7785 2.8738 297.4082 327.0000 192.0000 7.7785 2.8878 + 286.5840 327.0000 193.0000 7.7785 2.9095 340.0600 327.0000 194.0000 7.7785 1.9209 + 79.7845 327.0000 204.0000 7.7785 1.9697 78.8624 327.0000 205.0000 7.7785 1.9441 + 58.6057 327.0000 206.0000 7.7785 1.9985 47.4168 327.0000 207.0000 7.7785 2.0143 + 33.0215 327.0000 208.0000 7.7785 1.9887 140.3518 327.0000 212.0000 7.7785 1.9496 + 169.4903 327.0000 213.0000 7.7785 1.9311 163.6721 327.0000 214.0000 7.7785 1.9435 + 143.3518 327.0000 215.0000 7.7785 2.0102 121.5256 327.0000 216.0000 7.7785 1.9903 + 197.3201 327.0000 220.0000 7.7785 1.9349 190.5518 327.0000 221.0000 7.7785 2.8999 + 193.0012 327.0000 222.0000 7.7785 3.8675 176.7692 327.0000 223.0000 7.7785 2.9110 + 134.6287 327.0000 224.0000 7.7785 10.6191 115.9223 327.0000 225.0000 7.7785 9.8849 + 113.7287 327.0000 226.0000 7.7785 9.1376 132.0085 327.0000 227.0000 7.7785 2.9263 + 123.3171 327.0000 228.0000 7.7785 6.5458 172.2004 327.0000 231.0000 7.7785 1.9315 + 182.1731 327.0000 232.0000 7.7785 1.9447 168.2143 327.0000 233.0000 7.7785 1.9793 + 157.3426 327.0000 234.0000 7.7785 1.9812 236.7608 327.0000 238.0000 7.7785 1.9143 + 229.2527 327.0000 239.0000 7.7785 2.8903 231.6783 327.0000 240.0000 7.7785 3.9106 + 224.1590 327.0000 241.0000 7.7785 2.9225 199.5325 327.0000 242.0000 7.7785 11.0556 + 177.1019 327.0000 243.0000 7.7785 9.5402 167.7448 327.0000 244.0000 7.7785 8.8895 + 170.0773 327.0000 245.0000 7.7785 2.9696 177.3010 327.0000 246.0000 7.7785 5.7095 + 222.9925 327.0000 249.0000 7.7785 1.9378 242.1351 327.0000 250.0000 7.7785 1.9505 + 229.4010 327.0000 251.0000 7.7785 1.9523 222.1108 327.0000 252.0000 7.7785 1.9639 + 286.9784 327.0000 256.0000 7.7785 1.8467 298.1443 327.0000 257.0000 7.7785 2.9175 + 222.4774 327.0000 272.0000 7.7785 3.8840 232.0332 327.0000 273.0000 7.7785 2.8988 + 216.8346 327.0000 274.0000 7.7785 10.9153 197.9479 327.0000 275.0000 7.7785 9.8054 + 186.9721 327.0000 276.0000 7.7785 9.1527 189.9313 327.0000 277.0000 7.7785 2.9424 + 199.5323 327.0000 278.0000 7.7785 6.6669 239.3999 327.0000 281.0000 7.7785 1.9302 + 252.8942 327.0000 282.0000 7.7785 1.9356 258.1828 327.0000 283.0000 7.7785 1.9655 + 256.8166 327.0000 284.0000 7.7785 1.9639 316.0762 327.0000 288.0000 7.7785 1.8075 + 60.6537 327.0000 305.0000 7.7785 2.9128 54.9066 327.0000 306.0000 7.7785 2.9987 + 41.9193 327.0000 307.0000 7.7785 2.9903 133.3820 327.0000 313.0000 7.7785 2.9146 + 159.4063 327.0000 314.0000 7.7785 2.9407 133.3956 327.0000 315.0000 7.7785 2.9859 + 118.2863 327.0000 327.0000 7.7785 7.7785 20.1853 328.0000 1.0000 6.2918 0.9118 + 13.4305 328.0000 2.0000 6.2918 0.0000 320.6585 328.0000 3.0000 6.2918 0.0000 + 182.6955 328.0000 4.0000 6.2918 0.0000 122.3915 328.0000 5.0000 6.2918 0.0000 + 82.5930 328.0000 6.0000 6.2918 0.0000 57.8469 328.0000 7.0000 6.2918 0.0000 + 43.9161 328.0000 8.0000 6.2918 0.0000 33.3924 328.0000 9.0000 6.2918 0.0000 + 25.7940 328.0000 10.0000 6.2918 0.0000 383.3773 328.0000 11.0000 6.2918 0.0000 + 291.9263 328.0000 12.0000 6.2918 0.0000 268.1207 328.0000 13.0000 6.2918 0.0000 + 210.4188 328.0000 14.0000 6.2918 0.0000 163.7299 328.0000 15.0000 6.2918 0.0000 + 135.8470 328.0000 16.0000 6.2918 0.0000 111.0248 328.0000 17.0000 6.2918 0.0000 + 90.9553 328.0000 18.0000 6.2918 0.0000 630.1412 328.0000 19.0000 6.2918 0.0000 + 515.5415 328.0000 20.0000 6.2918 0.0000 425.1277 328.0000 21.0000 6.2918 0.0000 + 410.0129 328.0000 22.0000 6.2918 0.0000 375.1745 328.0000 23.0000 6.2918 0.0000 + 295.8599 328.0000 24.0000 6.2918 0.0000 322.6845 328.0000 25.0000 6.2918 0.0000 + 253.5365 328.0000 26.0000 6.2918 0.0000 267.9482 328.0000 27.0000 6.2918 0.0000 + 276.2327 328.0000 28.0000 6.2918 0.0000 212.1434 328.0000 29.0000 6.2918 0.0000 + 216.9447 328.0000 30.0000 6.2918 0.0000 256.7960 328.0000 31.0000 6.2918 0.0000 + 225.7080 328.0000 32.0000 6.2918 0.0000 192.1103 328.0000 33.0000 6.2918 0.0000 + 172.2718 328.0000 34.0000 6.2918 0.0000 150.7426 328.0000 35.0000 6.2918 0.0000 + 131.1600 328.0000 36.0000 6.2918 0.0000 705.9328 328.0000 37.0000 6.2918 0.0000 + 614.6139 328.0000 38.0000 6.2918 0.0000 536.6745 328.0000 39.0000 6.2918 0.0000 + 481.5000 328.0000 40.0000 6.2918 0.0000 438.6502 328.0000 41.0000 6.2918 0.0000 + 338.3535 328.0000 42.0000 6.2918 0.0000 377.6302 328.0000 43.0000 6.2918 0.0000 + 287.4614 328.0000 44.0000 6.2918 0.0000 313.9577 328.0000 45.0000 6.2918 0.0000 + 291.0309 328.0000 46.0000 6.2918 0.0000 243.2009 328.0000 47.0000 6.2918 0.0000 + 256.3643 328.0000 48.0000 6.2918 0.0000 322.0771 328.0000 49.0000 6.2918 0.0000 + 296.8872 328.0000 50.0000 6.2918 0.0000 263.9496 328.0000 51.0000 6.2918 0.0000 + 244.6310 328.0000 52.0000 6.2918 0.0000 221.0250 328.0000 53.0000 6.2918 0.0000 + 198.6584 328.0000 54.0000 6.2918 0.0000 859.7252 328.0000 55.0000 6.2918 0.0000 + 784.5252 328.0000 56.0000 6.2918 0.0000 686.9902 328.0000 57.0000 6.2918 0.0000 + 312.1102 328.0000 58.0000 6.2918 2.7991 694.6969 328.0000 59.0000 6.2918 0.0000 + 666.7343 328.0000 60.0000 6.2918 0.0000 649.9094 328.0000 61.0000 6.2918 0.0000 + 634.4415 328.0000 62.0000 6.2918 0.0000 620.7184 328.0000 63.0000 6.2918 0.0000 + 486.7180 328.0000 64.0000 6.2918 0.0000 550.9242 328.0000 65.0000 6.2918 0.0000 + 530.9799 328.0000 66.0000 6.2918 0.0000 559.3819 328.0000 67.0000 6.2918 0.0000 + 547.4456 328.0000 68.0000 6.2918 0.0000 536.6581 328.0000 69.0000 6.2918 0.0000 + 530.4351 328.0000 70.0000 6.2918 0.0000 445.9999 328.0000 71.0000 6.2918 0.0000 + 437.0033 328.0000 72.0000 6.2918 0.0000 398.2274 328.0000 73.0000 6.2918 0.0000 + 336.1845 328.0000 74.0000 6.2918 0.0000 341.7364 328.0000 75.0000 6.2918 0.0000 + 309.4326 328.0000 76.0000 6.2918 0.0000 283.2257 328.0000 77.0000 6.2918 0.0000 + 235.3968 328.0000 78.0000 6.2918 0.0000 219.9967 328.0000 79.0000 6.2918 0.0000 + 226.0929 328.0000 80.0000 6.2918 0.0000 330.9013 328.0000 81.0000 6.2918 0.0000 + 322.6499 328.0000 82.0000 6.2918 0.0000 295.7851 328.0000 83.0000 6.2918 0.0000 + 281.7843 328.0000 84.0000 6.2918 0.0000 259.8070 328.0000 85.0000 6.2918 0.0000 + 238.0129 328.0000 86.0000 6.2918 0.0000 809.8160 328.0000 87.0000 6.2918 0.0000 + 774.5473 328.0000 88.0000 6.2918 0.0000 682.7156 328.0000 89.0000 6.2918 0.0000 + 611.8574 328.0000 90.0000 6.2918 0.0000 608.7194 328.0000 91.0000 6.2918 0.0000 + 589.4258 328.0000 92.0000 6.2918 0.0000 608.1886 328.0000 93.0000 6.2918 0.0000 + 588.7482 328.0000 94.0000 6.2918 0.0000 32.5149 328.0000 101.0000 6.2918 0.0000 + 106.1545 328.0000 103.0000 6.2918 0.9865 135.2702 328.0000 104.0000 6.2918 0.9808 + 102.9220 328.0000 105.0000 6.2918 0.9706 77.5124 328.0000 106.0000 6.2918 0.9868 + 53.9690 328.0000 107.0000 6.2918 0.9944 39.4125 328.0000 108.0000 6.2918 0.9925 + 27.2705 328.0000 109.0000 6.2918 0.9982 155.5786 328.0000 111.0000 6.2918 0.9684 + 240.5302 328.0000 112.0000 6.2918 0.9628 242.8419 328.0000 113.0000 6.2918 0.9648 + 194.4184 328.0000 114.0000 6.2918 0.9507 158.9453 328.0000 115.0000 6.2918 0.9947 + 134.3737 328.0000 116.0000 6.2918 0.9948 109.8900 328.0000 117.0000 6.2918 0.9972 + 214.4961 328.0000 119.0000 6.2918 0.9767 412.6142 328.0000 120.0000 6.2918 0.9831 + 213.6129 328.0000 121.0000 6.2918 1.8627 206.2651 328.0000 122.0000 6.2918 1.8299 + 202.2050 328.0000 123.0000 6.2918 1.9138 200.4598 328.0000 124.0000 6.2918 1.8269 + 184.0478 328.0000 125.0000 6.2918 1.6406 170.3117 328.0000 126.0000 6.2918 1.6483 + 162.5286 328.0000 127.0000 6.2918 1.7149 158.9405 328.0000 128.0000 6.2918 1.7937 + 157.3396 328.0000 129.0000 6.2918 0.9576 147.1597 328.0000 130.0000 6.2918 1.9419 + 241.0016 328.0000 131.0000 6.2918 0.9601 211.0440 328.0000 132.0000 6.2918 0.9434 + 188.8450 328.0000 133.0000 6.2918 0.9889 172.3493 328.0000 134.0000 6.2918 0.9901 + 151.8006 328.0000 135.0000 6.2918 0.9974 255.8512 328.0000 137.0000 6.2918 0.9738 + 502.4634 328.0000 138.0000 6.2918 0.9801 381.7903 328.0000 139.0000 6.2918 1.9153 + 282.7021 328.0000 140.0000 6.2918 1.9355 285.5945 328.0000 141.0000 6.2918 1.9545 + 266.2568 328.0000 142.0000 6.2918 1.9420 299.4461 328.0000 143.0000 6.2918 1.6682 + 231.8285 328.0000 144.0000 6.2918 1.8584 216.9806 328.0000 145.0000 6.2918 1.9003 + 201.5536 328.0000 146.0000 6.2918 1.8630 195.0917 328.0000 147.0000 6.2918 0.9679 + 192.6099 328.0000 148.0000 6.2918 1.9539 306.7120 328.0000 149.0000 6.2918 0.9633 + 276.6393 328.0000 150.0000 6.2918 0.9514 258.6194 328.0000 151.0000 6.2918 0.9749 + 244.4292 328.0000 152.0000 6.2918 0.9811 223.0896 328.0000 153.0000 6.2918 0.9968 + 301.6400 328.0000 155.0000 6.2918 0.9909 652.3996 328.0000 156.0000 6.2918 0.9797 + 483.4812 328.0000 157.0000 6.2918 1.9373 302.6820 328.0000 159.0000 6.2918 2.9425 + 296.4247 328.0000 160.0000 6.2918 2.9455 287.0163 328.0000 161.0000 6.2918 2.9413 + 288.5206 328.0000 162.0000 6.2918 2.9300 278.5957 328.0000 163.0000 6.2918 1.8286 + 290.3039 328.0000 164.0000 6.2918 2.8732 272.6492 328.0000 165.0000 6.2918 2.9086 + 277.6170 328.0000 166.0000 6.2918 2.8965 258.6987 328.0000 167.0000 6.2918 2.9242 + 251.2997 328.0000 168.0000 6.2918 2.9282 249.6938 328.0000 169.0000 6.2918 2.9246 + 262.4692 328.0000 170.0000 6.2918 2.8482 241.2788 328.0000 171.0000 6.2918 2.9219 + 328.2318 328.0000 172.0000 6.2918 1.9254 304.2647 328.0000 173.0000 6.2918 1.9459 + 277.3159 328.0000 174.0000 6.2918 1.9292 281.0326 328.0000 175.0000 6.2918 1.8104 + 245.2844 328.0000 176.0000 6.2918 1.8858 230.8046 328.0000 177.0000 6.2918 1.8648 + 220.5141 328.0000 178.0000 6.2918 1.9188 210.9862 328.0000 179.0000 6.2918 0.9846 + 203.5907 328.0000 180.0000 6.2918 1.9896 329.5207 328.0000 181.0000 6.2918 0.9267 + 299.4642 328.0000 182.0000 6.2918 0.9383 289.9658 328.0000 183.0000 6.2918 0.9820 + 281.7769 328.0000 184.0000 6.2918 0.9815 262.9168 328.0000 185.0000 6.2918 0.9954 + 339.6152 328.0000 187.0000 6.2918 0.9705 647.5774 328.0000 188.0000 6.2918 0.9662 + 358.0940 328.0000 189.0000 6.2918 2.9070 414.4715 328.0000 190.0000 6.2918 2.8844 + 370.5351 328.0000 191.0000 6.2918 2.8738 326.8903 328.0000 192.0000 6.2918 2.8878 + 314.4913 328.0000 193.0000 6.2918 2.9095 380.2811 328.0000 194.0000 6.2918 1.9209 + 87.7852 328.0000 204.0000 6.2918 1.9697 86.3895 328.0000 205.0000 6.2918 1.9441 + 63.2092 328.0000 206.0000 6.2918 1.9985 50.7198 328.0000 207.0000 6.2918 2.0143 + 34.8596 328.0000 208.0000 6.2918 1.9887 156.1327 328.0000 212.0000 6.2918 1.9496 + 188.7699 328.0000 213.0000 6.2918 1.9311 180.7673 328.0000 214.0000 6.2918 1.9435 + 156.8549 328.0000 215.0000 6.2918 2.0102 131.6741 328.0000 216.0000 6.2918 1.9903 + 219.3679 328.0000 220.0000 6.2918 1.9349 210.4559 328.0000 221.0000 6.2918 2.8999 + 213.0501 328.0000 222.0000 6.2918 3.8675 195.1629 328.0000 223.0000 6.2918 2.9110 + 146.9885 328.0000 224.0000 6.2918 10.6191 125.7205 328.0000 225.0000 6.2918 9.8849 + 123.4417 328.0000 226.0000 6.2918 9.1376 144.8424 328.0000 227.0000 6.2918 2.9263 + 134.8933 328.0000 228.0000 6.2918 6.5458 190.4799 328.0000 231.0000 6.2918 1.9315 + 200.8574 328.0000 232.0000 6.2918 1.9447 183.8623 328.0000 233.0000 6.2918 1.9793 + 171.0031 328.0000 234.0000 6.2918 1.9812 262.8982 328.0000 238.0000 6.2918 1.9143 + 252.4245 328.0000 239.0000 6.2918 2.8903 254.4567 328.0000 240.0000 6.2918 3.9106 + 246.3077 328.0000 241.0000 6.2918 2.9225 217.6457 328.0000 242.0000 6.2918 11.0556 + 192.0591 328.0000 243.0000 6.2918 9.5402 181.5196 328.0000 244.0000 6.2918 8.8895 + 185.2154 328.0000 245.0000 6.2918 2.9696 193.4900 328.0000 246.0000 6.2918 5.7095 + 246.1570 328.0000 249.0000 6.2918 1.9378 267.3225 328.0000 250.0000 6.2918 1.9505 + 251.4301 328.0000 251.0000 6.2918 1.9523 242.4149 328.0000 252.0000 6.2918 1.9639 + 317.8255 328.0000 256.0000 6.2918 1.8467 328.8388 328.0000 257.0000 6.2918 2.9175 + 243.4937 328.0000 272.0000 6.2918 3.8840 254.6976 328.0000 273.0000 6.2918 2.8988 + 236.4040 328.0000 274.0000 6.2918 10.9153 214.6759 328.0000 275.0000 6.2918 9.8054 + 201.9163 328.0000 276.0000 6.2918 9.1527 206.2272 328.0000 277.0000 6.2918 2.9424 + 216.8140 328.0000 278.0000 6.2918 6.6669 262.9421 328.0000 281.0000 6.2918 1.9302 + 277.7110 328.0000 282.0000 6.2918 1.9356 282.7718 328.0000 283.0000 6.2918 1.9655 + 280.4988 328.0000 284.0000 6.2918 1.9639 349.7788 328.0000 288.0000 6.2918 1.8075 + 65.5618 328.0000 305.0000 6.2918 2.9128 59.1980 328.0000 306.0000 6.2918 2.9987 + 44.7442 328.0000 307.0000 6.2918 2.9903 146.6121 328.0000 313.0000 6.2918 2.9146 + 176.3143 328.0000 314.0000 6.2918 2.9407 145.4133 328.0000 315.0000 6.2918 2.9859 + 128.8641 328.0000 327.0000 6.2918 7.7785 141.8763 328.0000 328.0000 6.2918 6.2918 + 22.5390 331.0000 1.0000 2.9233 0.9118 14.9296 331.0000 2.0000 2.9233 0.0000 + 332.3464 331.0000 3.0000 2.9233 0.0000 197.7454 331.0000 4.0000 2.9233 0.0000 + 134.8856 331.0000 5.0000 2.9233 0.0000 91.7661 331.0000 6.0000 2.9233 0.0000 + 64.3977 331.0000 7.0000 2.9233 0.0000 48.8310 331.0000 8.0000 2.9233 0.0000 + 37.0129 331.0000 9.0000 2.9233 0.0000 28.4654 331.0000 10.0000 2.9233 0.0000 + 398.0180 331.0000 11.0000 2.9233 0.0000 313.4658 331.0000 12.0000 2.9233 0.0000 + 291.1704 331.0000 13.0000 2.9233 0.0000 231.5432 331.0000 14.0000 2.9233 0.0000 + 181.6981 331.0000 15.0000 2.9233 0.0000 151.2611 331.0000 16.0000 2.9233 0.0000 + 123.8442 331.0000 17.0000 2.9233 0.0000 101.4572 331.0000 18.0000 2.9233 0.0000 + 648.6879 331.0000 19.0000 2.9233 0.0000 545.4548 331.0000 20.0000 2.9233 0.0000 + 452.4148 331.0000 21.0000 2.9233 0.0000 438.2812 331.0000 22.0000 2.9233 0.0000 + 402.1202 331.0000 23.0000 2.9233 0.0000 316.6134 331.0000 24.0000 2.9233 0.0000 + 347.1545 331.0000 25.0000 2.9233 0.0000 272.3998 331.0000 26.0000 2.9233 0.0000 + 290.1268 331.0000 27.0000 2.9233 0.0000 298.3141 331.0000 28.0000 2.9233 0.0000 + 228.4811 331.0000 29.0000 2.9233 0.0000 236.1661 331.0000 30.0000 2.9233 0.0000 + 279.4346 331.0000 31.0000 2.9233 0.0000 248.1866 331.0000 32.0000 2.9233 0.0000 + 212.8299 331.0000 33.0000 2.9233 0.0000 191.4849 331.0000 34.0000 2.9233 0.0000 + 167.9500 331.0000 35.0000 2.9233 0.0000 146.2910 331.0000 36.0000 2.9233 0.0000 + 727.9978 331.0000 37.0000 2.9233 0.0000 649.2640 331.0000 38.0000 2.9233 0.0000 + 572.5452 331.0000 39.0000 2.9233 0.0000 516.5656 331.0000 40.0000 2.9233 0.0000 + 472.1406 331.0000 41.0000 2.9233 0.0000 365.7390 331.0000 42.0000 2.9233 0.0000 + 407.5902 331.0000 43.0000 2.9233 0.0000 311.6254 331.0000 44.0000 2.9233 0.0000 + 340.8328 331.0000 45.0000 2.9233 0.0000 316.4721 331.0000 46.0000 2.9233 0.0000 + 263.3258 331.0000 47.0000 2.9233 0.0000 279.2886 331.0000 48.0000 2.9233 0.0000 + 349.1330 331.0000 49.0000 2.9233 0.0000 324.8229 331.0000 50.0000 2.9233 0.0000 + 290.9600 331.0000 51.0000 2.9233 0.0000 270.6774 331.0000 52.0000 2.9233 0.0000 + 245.3469 331.0000 53.0000 2.9233 0.0000 221.0120 331.0000 54.0000 2.9233 0.0000 + 887.2092 331.0000 55.0000 2.9233 0.0000 825.7096 331.0000 56.0000 2.9233 0.0000 + 730.3259 331.0000 57.0000 2.9233 0.0000 343.2601 331.0000 58.0000 2.9233 2.7991 + 733.0346 331.0000 59.0000 2.9233 0.0000 704.6787 331.0000 60.0000 2.9233 0.0000 + 687.2223 331.0000 61.0000 2.9233 0.0000 671.1482 331.0000 62.0000 2.9233 0.0000 + 656.9043 331.0000 63.0000 2.9233 0.0000 520.0484 331.0000 64.0000 2.9233 0.0000 + 579.2127 331.0000 65.0000 2.9233 0.0000 559.3590 331.0000 66.0000 2.9233 0.0000 + 593.5044 331.0000 67.0000 2.9233 0.0000 581.0286 331.0000 68.0000 2.9233 0.0000 + 569.8286 331.0000 69.0000 2.9233 0.0000 563.0164 331.0000 70.0000 2.9233 0.0000 + 476.5767 331.0000 71.0000 2.9233 0.0000 471.8684 331.0000 72.0000 2.9233 0.0000 + 432.1085 331.0000 73.0000 2.9233 0.0000 365.5874 331.0000 74.0000 2.9233 0.0000 + 372.4726 331.0000 75.0000 2.9233 0.0000 338.4524 331.0000 76.0000 2.9233 0.0000 + 310.5641 331.0000 77.0000 2.9233 0.0000 258.2995 331.0000 78.0000 2.9233 0.0000 + 241.4385 331.0000 79.0000 2.9233 0.0000 248.7334 331.0000 80.0000 2.9233 0.0000 + 358.6139 331.0000 81.0000 2.9233 0.0000 352.3614 331.0000 82.0000 2.9233 0.0000 + 325.3228 331.0000 83.0000 2.9233 0.0000 311.0434 331.0000 84.0000 2.9233 0.0000 + 287.8055 331.0000 85.0000 2.9233 0.0000 264.3147 331.0000 86.0000 2.9233 0.0000 + 842.2997 331.0000 87.0000 2.9233 0.0000 819.2669 331.0000 88.0000 2.9233 0.0000 + 728.5862 331.0000 89.0000 2.9233 0.0000 658.8710 331.0000 90.0000 2.9233 0.0000 + 651.8259 331.0000 91.0000 2.9233 0.0000 631.1928 331.0000 92.0000 2.9233 0.0000 + 647.1553 331.0000 93.0000 2.9233 0.0000 627.1891 331.0000 94.0000 2.9233 0.0000 + 36.1447 331.0000 101.0000 2.9233 0.0000 115.1284 331.0000 103.0000 2.9233 0.9865 + 147.1923 331.0000 104.0000 2.9233 0.9808 113.6748 331.0000 105.0000 2.9233 0.9706 + 86.0172 331.0000 106.0000 2.9233 0.9868 60.0229 331.0000 107.0000 2.9233 0.9944 + 43.7962 331.0000 108.0000 2.9233 0.9925 30.1557 331.0000 109.0000 2.9233 0.9982 + 167.7278 331.0000 111.0000 2.9233 0.9684 259.2061 331.0000 112.0000 2.9233 0.9628 + 264.2993 331.0000 113.0000 2.9233 0.9648 214.2270 331.0000 114.0000 2.9233 0.9507 + 176.3816 331.0000 115.0000 2.9233 0.9947 149.5674 331.0000 116.0000 2.9233 0.9948 + 122.5429 331.0000 117.0000 2.9233 0.9972 231.9989 331.0000 119.0000 2.9233 0.9767 + 436.2844 331.0000 120.0000 2.9233 0.9831 234.0165 331.0000 121.0000 2.9233 1.8627 + 225.9136 331.0000 122.0000 2.9233 1.8299 221.3382 331.0000 123.0000 2.9233 1.9138 + 219.0704 331.0000 124.0000 2.9233 1.8269 202.4740 331.0000 125.0000 2.9233 1.6406 + 187.5580 331.0000 126.0000 2.9233 1.6483 178.8774 331.0000 127.0000 2.9233 1.7149 + 174.8058 331.0000 128.0000 2.9233 1.7937 172.1215 331.0000 129.0000 2.9233 0.9576 + 162.4735 331.0000 130.0000 2.9233 1.9419 262.9134 331.0000 131.0000 2.9233 0.9601 + 232.5085 331.0000 132.0000 2.9233 0.9434 209.2695 331.0000 133.0000 2.9233 0.9889 + 191.5424 331.0000 134.0000 2.9233 0.9901 169.0925 331.0000 135.0000 2.9233 0.9974 + 277.1701 331.0000 137.0000 2.9233 0.9738 530.2448 331.0000 138.0000 2.9233 0.9801 + 410.5273 331.0000 139.0000 2.9233 1.9153 309.1964 331.0000 140.0000 2.9233 1.9355 + 312.1568 331.0000 141.0000 2.9233 1.9545 291.3944 331.0000 142.0000 2.9233 1.9420 + 324.9095 331.0000 143.0000 2.9233 1.6682 254.8812 331.0000 144.0000 2.9233 1.8584 + 238.4311 331.0000 145.0000 2.9233 1.9003 221.4649 331.0000 146.0000 2.9233 1.8630 + 214.0794 331.0000 147.0000 2.9233 0.9679 212.5148 331.0000 148.0000 2.9233 1.9539 + 333.4815 331.0000 149.0000 2.9233 0.9633 303.5179 331.0000 150.0000 2.9233 0.9514 + 285.3363 331.0000 151.0000 2.9233 0.9749 270.5297 331.0000 152.0000 2.9233 0.9811 + 247.6485 331.0000 153.0000 2.9233 0.9968 329.4410 331.0000 155.0000 2.9233 0.9909 + 685.5002 331.0000 156.0000 2.9233 0.9797 518.9832 331.0000 157.0000 2.9233 1.9373 + 332.9869 331.0000 159.0000 2.9233 2.9425 326.1098 331.0000 160.0000 2.9233 2.9455 + 315.8374 331.0000 161.0000 2.9233 2.9413 317.1445 331.0000 162.0000 2.9233 2.9300 + 304.8174 331.0000 163.0000 2.9233 1.8286 319.1288 331.0000 164.0000 2.9233 2.8732 + 299.8930 331.0000 165.0000 2.9233 2.9086 304.6980 331.0000 166.0000 2.9233 2.8965 + 284.8492 331.0000 167.0000 2.9233 2.9242 276.8003 331.0000 168.0000 2.9233 2.9282 + 274.9818 331.0000 169.0000 2.9233 2.9246 288.8264 331.0000 170.0000 2.9233 2.8482 + 265.9055 331.0000 171.0000 2.9233 2.9219 356.9509 331.0000 172.0000 2.9233 1.9254 + 332.2796 331.0000 173.0000 2.9233 1.9459 304.0791 331.0000 174.0000 2.9233 1.9292 + 306.7759 331.0000 175.0000 2.9233 1.8104 270.4501 331.0000 176.0000 2.9233 1.8858 + 254.5731 331.0000 177.0000 2.9233 1.8648 243.2102 331.0000 178.0000 2.9233 1.9188 + 232.3862 331.0000 179.0000 2.9233 0.9846 225.1561 331.0000 180.0000 2.9233 1.9896 + 358.1693 331.0000 181.0000 2.9233 0.9267 328.3665 331.0000 182.0000 2.9233 0.9383 + 319.4128 331.0000 183.0000 2.9233 0.9820 311.2526 331.0000 184.0000 2.9233 0.9815 + 291.3213 331.0000 185.0000 2.9233 0.9954 371.1959 331.0000 187.0000 2.9233 0.9705 + 684.7717 331.0000 188.0000 2.9233 0.9662 394.0391 331.0000 189.0000 2.9233 2.9070 + 452.4786 331.0000 190.0000 2.9233 2.8844 404.9924 331.0000 191.0000 2.9233 2.8738 + 359.2625 331.0000 192.0000 2.9233 2.8878 345.9563 331.0000 193.0000 2.9233 2.9095 + 411.8656 331.0000 194.0000 2.9233 1.9209 97.2346 331.0000 204.0000 2.9233 1.9697 + 95.6039 331.0000 205.0000 2.9233 1.9441 70.3184 331.0000 206.0000 2.9233 1.9985 + 56.3612 331.0000 207.0000 2.9233 2.0143 38.6263 331.0000 208.0000 2.9233 1.9887 + 171.5385 331.0000 212.0000 2.9233 1.9496 207.0871 331.0000 213.0000 2.9233 1.9311 + 199.4760 331.0000 214.0000 2.9233 1.9435 173.8931 331.0000 215.0000 2.9233 2.0102 + 146.5382 331.0000 216.0000 2.9233 1.9903 240.0800 331.0000 220.0000 2.9233 1.9349 + 231.5184 331.0000 221.0000 2.9233 2.8999 234.4093 331.0000 222.0000 2.9233 3.8675 + 214.3808 331.0000 223.0000 2.9233 2.9110 162.0547 331.0000 224.0000 2.9233 10.6191 + 138.9928 331.0000 225.0000 2.9233 9.8849 136.3818 331.0000 226.0000 2.9233 9.1376 + 159.2584 331.0000 227.0000 2.9233 2.9263 148.5642 331.0000 228.0000 2.9233 6.5458 + 209.5130 331.0000 231.0000 2.9233 1.9315 221.5612 331.0000 232.0000 2.9233 1.9447 + 203.8708 331.0000 233.0000 2.9233 1.9793 190.0442 331.0000 234.0000 2.9233 1.9812 + 287.6167 331.0000 238.0000 2.9233 1.9143 278.1125 331.0000 239.0000 2.9233 2.8903 + 280.8241 331.0000 240.0000 2.9233 3.9106 271.3137 331.0000 241.0000 2.9233 2.9225 + 240.5109 331.0000 242.0000 2.9233 11.0556 212.6937 331.0000 243.0000 2.9233 9.5402 + 201.1040 331.0000 244.0000 2.9233 8.8895 204.2277 331.0000 245.0000 2.9233 2.9696 + 213.2345 331.0000 246.0000 2.9233 5.7095 270.0988 331.0000 249.0000 2.9233 1.9378 + 293.7290 331.0000 250.0000 2.9233 1.9505 277.7186 331.0000 251.0000 2.9233 1.9523 + 268.4136 331.0000 252.0000 2.9233 1.9639 348.1978 331.0000 256.0000 2.9233 1.8467 + 361.9337 331.0000 257.0000 2.9233 2.9175 269.2401 331.0000 272.0000 2.9233 3.8840 + 280.6384 331.0000 273.0000 2.9233 2.8988 261.3625 331.0000 274.0000 2.9233 10.9153 + 237.7889 331.0000 275.0000 2.9233 9.8054 224.0048 331.0000 276.0000 2.9233 9.1527 + 227.7320 331.0000 277.0000 2.9233 2.9424 239.5577 331.0000 278.0000 2.9233 6.6669 + 288.9768 331.0000 281.0000 2.9233 1.9302 305.6116 331.0000 282.0000 2.9233 1.9356 + 311.9993 331.0000 283.0000 2.9233 1.9655 310.0655 331.0000 284.0000 2.9233 1.9639 + 383.4740 331.0000 288.0000 2.9233 1.8075 73.0754 331.0000 305.0000 2.9233 2.9128 + 65.7584 331.0000 306.0000 2.9233 2.9987 49.6159 331.0000 307.0000 2.9233 2.9903 + 162.4065 331.0000 313.0000 2.9233 2.9146 194.1778 331.0000 314.0000 2.9233 2.9407 + 161.5591 331.0000 315.0000 2.9233 2.9859 142.1634 331.0000 327.0000 2.9233 7.7785 + 155.4813 331.0000 328.0000 2.9233 6.2918 172.3153 331.0000 331.0000 2.9233 2.9233 + 25.9255 332.0000 1.0000 2.9186 0.9118 17.0614 332.0000 2.0000 2.9186 0.0000 + 392.4109 332.0000 3.0000 2.9186 0.0000 230.6287 332.0000 4.0000 2.9186 0.0000 + 156.2783 332.0000 5.0000 2.9186 0.0000 105.8004 332.0000 6.0000 2.9186 0.0000 + 73.9675 332.0000 7.0000 2.9186 0.0000 55.9314 332.0000 8.0000 2.9186 0.0000 + 42.2879 332.0000 9.0000 2.9186 0.0000 32.4515 332.0000 10.0000 2.9186 0.0000 + 469.5496 332.0000 11.0000 2.9186 0.0000 366.3319 332.0000 12.0000 2.9186 0.0000 + 339.1034 332.0000 13.0000 2.9186 0.0000 268.4370 332.0000 14.0000 2.9186 0.0000 + 209.8561 332.0000 15.0000 2.9186 0.0000 174.2716 332.0000 16.0000 2.9186 0.0000 + 142.3413 332.0000 17.0000 2.9186 0.0000 116.3589 332.0000 18.0000 2.9186 0.0000 + 766.5714 332.0000 19.0000 2.9186 0.0000 639.8000 332.0000 20.0000 2.9186 0.0000 + 529.7799 332.0000 21.0000 2.9186 0.0000 512.4274 332.0000 22.0000 2.9186 0.0000 + 469.7122 332.0000 23.0000 2.9186 0.0000 369.7049 332.0000 24.0000 2.9186 0.0000 + 404.9622 332.0000 25.0000 2.9186 0.0000 317.5943 332.0000 26.0000 2.9186 0.0000 + 337.6931 332.0000 27.0000 2.9186 0.0000 347.5445 332.0000 28.0000 2.9186 0.0000 + 266.0920 332.0000 29.0000 2.9186 0.0000 274.3339 332.0000 30.0000 2.9186 0.0000 + 324.9456 332.0000 31.0000 2.9186 0.0000 287.6103 332.0000 32.0000 2.9186 0.0000 + 245.8719 332.0000 33.0000 2.9186 0.0000 220.7846 332.0000 34.0000 2.9186 0.0000 + 193.2591 332.0000 35.0000 2.9186 0.0000 168.0194 332.0000 36.0000 2.9186 0.0000 + 859.6583 332.0000 37.0000 2.9186 0.0000 761.7364 332.0000 38.0000 2.9186 0.0000 + 669.7473 332.0000 39.0000 2.9186 0.0000 603.1519 332.0000 40.0000 2.9186 0.0000 + 550.6011 332.0000 41.0000 2.9186 0.0000 425.5849 332.0000 42.0000 2.9186 0.0000 + 474.6638 332.0000 43.0000 2.9186 0.0000 362.0366 332.0000 44.0000 2.9186 0.0000 + 396.0183 332.0000 45.0000 2.9186 0.0000 367.4287 332.0000 46.0000 2.9186 0.0000 + 305.7755 332.0000 47.0000 2.9186 0.0000 323.9292 332.0000 48.0000 2.9186 0.0000 + 405.9303 332.0000 49.0000 2.9186 0.0000 376.6108 332.0000 50.0000 2.9186 0.0000 + 336.4289 332.0000 51.0000 2.9186 0.0000 312.4631 332.0000 52.0000 2.9186 0.0000 + 282.7195 332.0000 53.0000 2.9186 0.0000 254.2458 332.0000 54.0000 2.9186 0.0000 + 1047.5077 332.0000 55.0000 2.9186 0.0000 969.6559 332.0000 56.0000 2.9186 0.0000 + 855.1298 332.0000 57.0000 2.9186 0.0000 397.0824 332.0000 58.0000 2.9186 2.7991 + 859.9043 332.0000 59.0000 2.9186 0.0000 826.2471 332.0000 60.0000 2.9186 0.0000 + 805.6691 332.0000 61.0000 2.9186 0.0000 786.7340 332.0000 62.0000 2.9186 0.0000 + 769.9512 332.0000 63.0000 2.9186 0.0000 607.5073 332.0000 64.0000 2.9186 0.0000 + 679.7752 332.0000 65.0000 2.9186 0.0000 656.0889 332.0000 66.0000 2.9186 0.0000 + 695.1305 332.0000 67.0000 2.9186 0.0000 680.4664 332.0000 68.0000 2.9186 0.0000 + 667.2758 332.0000 69.0000 2.9186 0.0000 659.3910 332.0000 70.0000 2.9186 0.0000 + 556.8769 332.0000 71.0000 2.9186 0.0000 549.8188 332.0000 72.0000 2.9186 0.0000 + 502.5834 332.0000 73.0000 2.9186 0.0000 424.5693 332.0000 74.0000 2.9186 0.0000 + 432.2812 332.0000 75.0000 2.9186 0.0000 392.1894 332.0000 76.0000 2.9186 0.0000 + 359.4184 332.0000 77.0000 2.9186 0.0000 298.4947 332.0000 78.0000 2.9186 0.0000 + 278.8419 332.0000 79.0000 2.9186 0.0000 287.1270 332.0000 80.0000 2.9186 0.0000 + 416.5710 332.0000 81.0000 2.9186 0.0000 408.4395 332.0000 82.0000 2.9186 0.0000 + 376.1815 332.0000 83.0000 2.9186 0.0000 359.1675 332.0000 84.0000 2.9186 0.0000 + 331.7744 332.0000 85.0000 2.9186 0.0000 304.2237 332.0000 86.0000 2.9186 0.0000 + 992.0874 332.0000 87.0000 2.9186 0.0000 960.6062 332.0000 88.0000 2.9186 0.0000 + 851.9462 332.0000 89.0000 2.9186 0.0000 768.0267 332.0000 90.0000 2.9186 0.0000 + 760.9024 332.0000 91.0000 2.9186 0.0000 736.7486 332.0000 92.0000 2.9186 0.0000 + 756.7971 332.0000 93.0000 2.9186 0.0000 733.1891 332.0000 94.0000 2.9186 0.0000 + 41.7323 332.0000 101.0000 2.9186 0.0000 134.1408 332.0000 103.0000 2.9186 0.9865 + 171.2891 332.0000 104.0000 2.9186 0.9808 131.5234 332.0000 105.0000 2.9186 0.9706 + 99.1763 332.0000 106.0000 2.9186 0.9868 68.9323 332.0000 107.0000 2.9186 0.9944 + 50.1269 332.0000 108.0000 2.9186 0.9925 34.3642 332.0000 109.0000 2.9186 0.9982 + 195.6231 332.0000 111.0000 2.9186 0.9684 302.5213 332.0000 112.0000 2.9186 0.9628 + 307.5504 332.0000 113.0000 2.9186 0.9648 248.1965 332.0000 114.0000 2.9186 0.9507 + 203.6865 332.0000 115.0000 2.9186 0.9947 172.3272 332.0000 116.0000 2.9186 0.9948 + 140.8492 332.0000 117.0000 2.9186 0.9972 269.8403 332.0000 119.0000 2.9186 0.9767 + 511.5374 332.0000 120.0000 2.9186 0.9831 271.2475 332.0000 121.0000 2.9186 1.8627 + 261.8074 332.0000 122.0000 2.9186 1.8299 256.5149 332.0000 123.0000 2.9186 1.9138 + 253.9905 332.0000 124.0000 2.9186 1.8269 234.2680 332.0000 125.0000 2.9186 1.6406 + 216.8675 332.0000 126.0000 2.9186 1.6483 206.8210 332.0000 127.0000 2.9186 1.7149 + 202.1442 332.0000 128.0000 2.9186 1.7937 199.3430 332.0000 129.0000 2.9186 0.9576 + 187.6481 332.0000 130.0000 2.9186 1.9419 305.4579 332.0000 131.0000 2.9186 0.9601 + 269.2215 332.0000 132.0000 2.9186 0.9434 241.7135 332.0000 133.0000 2.9186 0.9889 + 220.8565 332.0000 134.0000 2.9186 0.9901 194.5928 332.0000 135.0000 2.9186 0.9974 + 322.1096 332.0000 137.0000 2.9186 0.9738 621.9263 332.0000 138.0000 2.9186 0.9801 + 478.7132 332.0000 139.0000 2.9186 1.9153 358.4772 332.0000 140.0000 2.9186 1.9355 + 361.9295 332.0000 141.0000 2.9186 1.9545 337.5775 332.0000 142.0000 2.9186 1.9420 + 377.4276 332.0000 143.0000 2.9186 1.6682 294.6634 332.0000 144.0000 2.9186 1.8584 + 275.5707 332.0000 145.0000 2.9186 1.9003 255.8441 332.0000 146.0000 2.9186 1.8630 + 247.3728 332.0000 147.0000 2.9186 0.9679 245.2119 332.0000 148.0000 2.9186 1.9539 + 387.3404 332.0000 149.0000 2.9186 0.9633 351.5201 332.0000 150.0000 2.9186 0.9514 + 329.8047 332.0000 151.0000 2.9186 0.9749 312.2619 332.0000 152.0000 2.9186 0.9811 + 285.3820 332.0000 153.0000 2.9186 0.9968 382.0562 332.0000 155.0000 2.9186 0.9909 + 804.9599 332.0000 156.0000 2.9186 0.9797 605.4842 332.0000 157.0000 2.9186 1.9373 + 385.1320 332.0000 159.0000 2.9186 2.9425 377.1647 332.0000 160.0000 2.9186 2.9455 + 365.2295 332.0000 161.0000 2.9186 2.9413 366.8929 332.0000 162.0000 2.9186 2.9300 + 353.0881 332.0000 163.0000 2.9186 1.8286 369.2466 332.0000 164.0000 2.9186 2.8732 + 346.8564 332.0000 165.0000 2.9186 2.9086 352.6781 332.0000 166.0000 2.9186 2.8965 + 329.3403 332.0000 167.0000 2.9186 2.9242 319.9904 332.0000 168.0000 2.9186 2.9282 + 317.9241 332.0000 169.0000 2.9186 2.9246 334.1439 332.0000 170.0000 2.9186 2.8482 + 307.3705 332.0000 171.0000 2.9186 2.9219 414.6636 332.0000 172.0000 2.9186 1.9254 + 385.3383 332.0000 173.0000 2.9186 1.9459 352.0045 332.0000 174.0000 2.9186 1.9292 + 355.6606 332.0000 175.0000 2.9186 1.8104 312.2814 332.0000 176.0000 2.9186 1.8858 + 293.7540 332.0000 177.0000 2.9186 1.8648 280.5244 332.0000 178.0000 2.9186 1.9188 + 268.0292 332.0000 179.0000 2.9186 0.9846 259.3347 332.0000 180.0000 2.9186 1.9896 + 415.7313 332.0000 181.0000 2.9186 0.9267 380.0597 332.0000 182.0000 2.9186 0.9383 + 369.1481 332.0000 183.0000 2.9186 0.9820 359.3358 332.0000 184.0000 2.9186 0.9815 + 335.8263 332.0000 185.0000 2.9186 0.9954 430.4116 332.0000 187.0000 2.9186 0.9705 + 802.5738 332.0000 188.0000 2.9186 0.9662 455.7931 332.0000 189.0000 2.9186 2.9070 + 524.6709 332.0000 190.0000 2.9186 2.8844 469.1695 332.0000 191.0000 2.9186 2.8738 + 415.3637 332.0000 192.0000 2.9186 2.8878 399.7983 332.0000 193.0000 2.9186 2.9095 + 478.4556 332.0000 194.0000 2.9186 1.9209 112.4708 332.0000 204.0000 2.9186 1.9697 + 110.4653 332.0000 205.0000 2.9186 1.9441 80.9084 332.0000 206.0000 2.9186 1.9985 + 64.6946 332.0000 207.0000 2.9186 2.0143 44.1611 332.0000 208.0000 2.9186 1.9887 + 198.9542 332.0000 212.0000 2.9186 1.9496 240.2935 332.0000 213.0000 2.9186 1.9311 + 230.9563 332.0000 214.0000 2.9186 1.9435 200.8543 332.0000 215.0000 2.9186 2.0102 + 168.8263 332.0000 216.0000 2.9186 1.9903 278.4205 332.0000 220.0000 2.9186 1.9349 + 268.0269 332.0000 221.0000 2.9186 2.8999 271.3354 332.0000 222.0000 2.9186 3.8675 + 248.1606 332.0000 223.0000 2.9186 2.9110 187.0285 332.0000 224.0000 2.9186 10.6191 + 160.1207 332.0000 225.0000 2.9186 9.8849 157.1410 332.0000 226.0000 2.9186 9.1376 + 184.0272 332.0000 227.0000 2.9186 2.9263 171.5246 332.0000 228.0000 2.9186 6.5458 + 242.6615 332.0000 231.0000 2.9186 1.9315 256.4009 332.0000 232.0000 2.9186 1.9447 + 235.4019 332.0000 233.0000 2.9186 1.9793 219.1161 332.0000 234.0000 2.9186 1.9812 + 333.4648 332.0000 238.0000 2.9186 1.9143 321.7190 332.0000 239.0000 2.9186 2.8903 + 324.6431 332.0000 240.0000 2.9186 3.9106 313.6909 332.0000 241.0000 2.9186 2.9225 + 277.5321 332.0000 242.0000 2.9186 11.0556 245.0471 332.0000 243.0000 2.9186 9.5402 + 231.5527 332.0000 244.0000 2.9186 8.8895 235.5323 332.0000 245.0000 2.9186 2.9696 + 246.0490 332.0000 246.0000 2.9186 5.7095 312.6183 332.0000 249.0000 2.9186 1.9378 + 339.9859 332.0000 250.0000 2.9186 1.9505 320.8460 332.0000 251.0000 2.9186 1.9523 + 309.7636 332.0000 252.0000 2.9186 1.9639 403.4560 332.0000 256.0000 2.9186 1.8467 + 418.8957 332.0000 257.0000 2.9186 2.9175 310.9606 332.0000 272.0000 2.9186 3.8840 + 324.3889 332.0000 273.0000 2.9186 2.8988 301.5558 332.0000 274.0000 2.9186 10.9153 + 273.9661 332.0000 275.0000 2.9186 9.8054 257.7898 332.0000 276.0000 2.9186 9.1527 + 262.4425 332.0000 277.0000 2.9186 2.9424 276.1151 332.0000 278.0000 2.9186 6.6669 + 334.0141 332.0000 281.0000 2.9186 1.9302 353.2253 332.0000 282.0000 2.9186 1.9356 + 360.3629 332.0000 283.0000 2.9186 1.9655 357.8794 332.0000 284.0000 2.9186 1.9639 + 444.2516 332.0000 288.0000 2.9186 1.8075 84.1398 332.0000 305.0000 2.9186 2.9128 + 75.6514 332.0000 306.0000 2.9186 2.9987 56.9134 332.0000 307.0000 2.9186 2.9903 + 187.7933 332.0000 313.0000 2.9186 2.9146 224.9146 332.0000 314.0000 2.9186 2.9407 + 186.4258 332.0000 315.0000 2.9186 2.9859 163.9594 332.0000 327.0000 2.9186 7.7785 + 179.8178 332.0000 328.0000 2.9186 6.2918 198.9801 332.0000 331.0000 2.9186 2.9233 + 229.9498 332.0000 332.0000 2.9186 2.9186 25.8144 333.0000 1.0000 2.9709 0.9118 + 17.1900 333.0000 2.0000 2.9709 0.0000 373.0901 333.0000 3.0000 2.9709 0.0000 + 223.6099 333.0000 4.0000 2.9709 0.0000 153.4055 333.0000 5.0000 2.9709 0.0000 + 104.8462 333.0000 6.0000 2.9709 0.0000 73.8246 333.0000 7.0000 2.9709 0.0000 + 56.1057 333.0000 8.0000 2.9709 0.0000 42.6013 333.0000 9.0000 2.9709 0.0000 + 32.8021 333.0000 10.0000 2.9709 0.0000 447.0179 333.0000 11.0000 2.9709 0.0000 + 353.9178 333.0000 12.0000 2.9709 0.0000 329.6624 333.0000 13.0000 2.9709 0.0000 + 263.1595 333.0000 14.0000 2.9709 0.0000 207.2419 333.0000 15.0000 2.9709 0.0000 + 172.9456 333.0000 16.0000 2.9709 0.0000 141.9245 333.0000 17.0000 2.9709 0.0000 + 116.4964 333.0000 18.0000 2.9709 0.0000 728.6195 333.0000 19.0000 2.9709 0.0000 + 614.6705 333.0000 20.0000 2.9709 0.0000 510.2912 333.0000 21.0000 2.9709 0.0000 + 494.9276 333.0000 22.0000 2.9709 0.0000 454.3822 333.0000 23.0000 2.9709 0.0000 + 357.9757 333.0000 24.0000 2.9709 0.0000 392.6408 333.0000 25.0000 2.9709 0.0000 + 308.3075 333.0000 26.0000 2.9709 0.0000 328.6403 333.0000 27.0000 2.9709 0.0000 + 337.6607 333.0000 28.0000 2.9709 0.0000 258.7830 333.0000 29.0000 2.9709 0.0000 + 267.9108 333.0000 30.0000 2.9709 0.0000 316.8201 333.0000 31.0000 2.9709 0.0000 + 282.1828 333.0000 32.0000 2.9709 0.0000 242.6736 333.0000 33.0000 2.9709 0.0000 + 218.7531 333.0000 34.0000 2.9709 0.0000 192.2421 333.0000 35.0000 2.9709 0.0000 + 167.7505 333.0000 36.0000 2.9709 0.0000 818.2247 333.0000 37.0000 2.9709 0.0000 + 731.7462 333.0000 38.0000 2.9709 0.0000 646.4774 333.0000 39.0000 2.9709 0.0000 + 584.0160 333.0000 40.0000 2.9709 0.0000 534.2915 333.0000 41.0000 2.9709 0.0000 + 414.6509 333.0000 42.0000 2.9709 0.0000 461.7577 333.0000 43.0000 2.9709 0.0000 + 353.7383 333.0000 44.0000 2.9709 0.0000 386.7290 333.0000 45.0000 2.9709 0.0000 + 359.2842 333.0000 46.0000 2.9709 0.0000 299.0137 333.0000 47.0000 2.9709 0.0000 + 317.2880 333.0000 48.0000 2.9709 0.0000 395.9157 333.0000 49.0000 2.9709 0.0000 + 369.1013 333.0000 50.0000 2.9709 0.0000 331.3946 333.0000 51.0000 2.9709 0.0000 + 308.7739 333.0000 52.0000 2.9709 0.0000 280.3577 333.0000 53.0000 2.9709 0.0000 + 252.9678 333.0000 54.0000 2.9709 0.0000 997.6271 333.0000 55.0000 2.9709 0.0000 + 930.3838 333.0000 56.0000 2.9709 0.0000 824.3488 333.0000 57.0000 2.9709 0.0000 + 390.9033 333.0000 58.0000 2.9709 2.7991 826.4044 333.0000 59.0000 2.9709 0.0000 + 794.6136 333.0000 60.0000 2.9709 0.0000 774.9718 333.0000 61.0000 2.9709 0.0000 + 756.8785 333.0000 62.0000 2.9709 0.0000 740.8479 333.0000 63.0000 2.9709 0.0000 + 587.9119 333.0000 64.0000 2.9709 0.0000 653.1815 333.0000 65.0000 2.9709 0.0000 + 631.0316 333.0000 66.0000 2.9709 0.0000 669.5829 333.0000 67.0000 2.9709 0.0000 + 655.5207 333.0000 68.0000 2.9709 0.0000 642.9169 333.0000 69.0000 2.9709 0.0000 + 635.1575 333.0000 70.0000 2.9709 0.0000 538.5189 333.0000 71.0000 2.9709 0.0000 + 534.2546 333.0000 72.0000 2.9709 0.0000 489.9092 333.0000 73.0000 2.9709 0.0000 + 415.0939 333.0000 74.0000 2.9709 0.0000 423.0685 333.0000 75.0000 2.9709 0.0000 + 384.8920 333.0000 76.0000 2.9709 0.0000 353.5305 333.0000 77.0000 2.9709 0.0000 + 294.4216 333.0000 78.0000 2.9709 0.0000 275.3299 333.0000 79.0000 2.9709 0.0000 + 283.7181 333.0000 80.0000 2.9709 0.0000 407.0958 333.0000 81.0000 2.9709 0.0000 + 400.5349 333.0000 82.0000 2.9709 0.0000 370.5178 333.0000 83.0000 2.9709 0.0000 + 354.6994 333.0000 84.0000 2.9709 0.0000 328.7135 333.0000 85.0000 2.9709 0.0000 + 302.3320 333.0000 86.0000 2.9709 0.0000 948.4444 333.0000 87.0000 2.9709 0.0000 + 924.0753 333.0000 88.0000 2.9709 0.0000 823.0147 333.0000 89.0000 2.9709 0.0000 + 745.8571 333.0000 90.0000 2.9709 0.0000 737.2457 333.0000 91.0000 2.9709 0.0000 + 713.9394 333.0000 92.0000 2.9709 0.0000 730.9897 333.0000 93.0000 2.9709 0.0000 + 708.5774 333.0000 94.0000 2.9709 0.0000 41.2434 333.0000 101.0000 2.9709 0.0000 + 130.3034 333.0000 103.0000 2.9709 0.9865 166.8295 333.0000 104.0000 2.9709 0.9808 + 129.4615 333.0000 105.0000 2.9709 0.9706 98.2930 333.0000 106.0000 2.9709 0.9868 + 68.8264 333.0000 107.0000 2.9709 0.9944 50.3555 333.0000 108.0000 2.9709 0.9925 + 34.7785 333.0000 109.0000 2.9709 0.9982 189.6770 333.0000 111.0000 2.9709 0.9684 + 293.0440 333.0000 112.0000 2.9709 0.9628 299.4628 333.0000 113.0000 2.9709 0.9648 + 243.6410 333.0000 114.0000 2.9709 0.9507 201.2119 333.0000 115.0000 2.9709 0.9947 + 171.0030 333.0000 116.0000 2.9709 0.9948 140.4282 333.0000 117.0000 2.9709 0.9972 + 263.1547 333.0000 119.0000 2.9709 0.9767 492.1704 333.0000 120.0000 2.9709 0.9831 + 266.0294 333.0000 121.0000 2.9709 1.8627 256.8763 333.0000 122.0000 2.9709 1.8299 + 251.6587 333.0000 123.0000 2.9709 1.9138 248.9955 333.0000 124.0000 2.9709 1.8269 + 230.4659 333.0000 125.0000 2.9709 1.6406 213.6098 333.0000 126.0000 2.9709 1.6483 + 203.7369 333.0000 127.0000 2.9709 1.7149 199.0695 333.0000 128.0000 2.9709 1.7937 + 195.7595 333.0000 129.0000 2.9709 0.9576 185.2060 333.0000 130.0000 2.9709 1.9419 + 298.3060 333.0000 131.0000 2.9709 0.9601 264.5566 333.0000 132.0000 2.9709 0.9434 + 238.6601 333.0000 133.0000 2.9709 0.9889 218.8149 333.0000 134.0000 2.9709 0.9901 + 193.5315 333.0000 135.0000 2.9709 0.9974 314.6518 333.0000 137.0000 2.9709 0.9738 + 598.2102 333.0000 138.0000 2.9709 0.9801 464.9254 333.0000 139.0000 2.9709 1.9153 + 351.5641 333.0000 140.0000 2.9709 1.9355 354.8970 333.0000 141.0000 2.9709 1.9545 + 331.5230 333.0000 142.0000 2.9709 1.9420 368.9607 333.0000 143.0000 2.9709 1.6682 + 290.4181 333.0000 144.0000 2.9709 1.8584 271.7387 333.0000 145.0000 2.9709 1.9003 + 252.4918 333.0000 146.0000 2.9709 1.8630 243.9926 333.0000 147.0000 2.9709 0.9679 + 242.4605 333.0000 148.0000 2.9709 1.9539 378.4539 333.0000 149.0000 2.9709 0.9633 + 345.2176 333.0000 150.0000 2.9709 0.9514 325.0999 333.0000 151.0000 2.9709 0.9749 + 308.6359 333.0000 152.0000 2.9709 0.9811 282.9800 333.0000 153.0000 2.9709 0.9968 + 374.6769 333.0000 155.0000 2.9709 0.9909 773.1293 333.0000 156.0000 2.9709 0.9797 + 587.6805 333.0000 157.0000 2.9709 1.9373 379.2572 333.0000 159.0000 2.9709 2.9425 + 371.4307 333.0000 160.0000 2.9709 2.9455 359.7752 333.0000 161.0000 2.9709 2.9413 + 361.1491 333.0000 162.0000 2.9709 2.9300 346.7365 333.0000 163.0000 2.9709 1.8286 + 363.3458 333.0000 164.0000 2.9709 2.8732 341.5412 333.0000 165.0000 2.9709 2.9086 + 346.8276 333.0000 166.0000 2.9709 2.8965 324.4969 333.0000 167.0000 2.9709 2.9242 + 315.3605 333.0000 168.0000 2.9709 2.9282 313.2573 333.0000 169.0000 2.9709 2.9246 + 328.8344 333.0000 170.0000 2.9709 2.8482 302.9635 333.0000 171.0000 2.9709 2.9219 + 405.2771 333.0000 172.0000 2.9709 1.9254 377.7713 333.0000 173.0000 2.9709 1.9459 + 346.1880 333.0000 174.0000 2.9709 1.9292 348.8350 333.0000 175.0000 2.9709 1.8104 + 308.4982 333.0000 176.0000 2.9709 1.8858 290.5447 333.0000 177.0000 2.9709 1.8648 + 277.6631 333.0000 178.0000 2.9709 1.9188 265.3045 333.0000 179.0000 2.9709 0.9846 + 257.3184 333.0000 180.0000 2.9709 1.9896 406.7876 333.0000 181.0000 2.9709 0.9267 + 373.7042 333.0000 182.0000 2.9709 0.9383 363.9541 333.0000 183.0000 2.9709 0.9820 + 355.0040 333.0000 184.0000 2.9709 0.9815 332.7342 333.0000 185.0000 2.9709 0.9954 + 422.2156 333.0000 187.0000 2.9709 0.9705 773.1681 333.0000 188.0000 2.9709 0.9662 + 448.7513 333.0000 189.0000 2.9709 2.9070 514.4650 333.0000 190.0000 2.9709 2.8844 + 460.8870 333.0000 191.0000 2.9709 2.8738 409.3239 333.0000 192.0000 2.9709 2.8878 + 394.2859 333.0000 193.0000 2.9709 2.9095 467.6548 333.0000 194.0000 2.9709 1.9209 + 110.7405 333.0000 204.0000 2.9709 1.9697 109.0331 333.0000 205.0000 2.9709 1.9441 + 80.4902 333.0000 206.0000 2.9709 1.9985 64.6446 333.0000 207.0000 2.9709 2.0143 + 44.4417 333.0000 208.0000 2.9709 1.9887 194.8198 333.0000 212.0000 2.9709 1.9496 + 235.2041 333.0000 213.0000 2.9709 1.9311 226.9949 333.0000 214.0000 2.9709 1.9435 + 198.3402 333.0000 215.0000 2.9709 2.0102 167.5491 333.0000 216.0000 2.9709 1.9903 + 272.7959 333.0000 220.0000 2.9709 1.9349 263.4496 333.0000 221.0000 2.9709 2.8999 + 266.7717 333.0000 222.0000 2.9709 3.8675 243.9879 333.0000 223.0000 2.9709 2.9110 + 184.9307 333.0000 224.0000 2.9709 10.6191 158.8578 333.0000 225.0000 2.9709 9.8849 + 155.8359 333.0000 226.0000 2.9709 9.1376 181.5005 333.0000 227.0000 2.9709 2.9263 + 169.4227 333.0000 228.0000 2.9709 6.5458 238.3364 333.0000 231.0000 2.9709 1.9315 + 252.2261 333.0000 232.0000 2.9709 1.9447 232.5744 333.0000 233.0000 2.9709 1.9793 + 217.1161 333.0000 234.0000 2.9709 1.9812 326.9624 333.0000 238.0000 2.9709 1.9143 + 316.7189 333.0000 239.0000 2.9709 2.8903 319.9916 333.0000 240.0000 2.9709 3.9106 + 309.1643 333.0000 241.0000 2.9709 2.9225 274.5376 333.0000 242.0000 2.9709 11.0556 + 243.1165 333.0000 243.0000 2.9709 9.5402 229.9806 333.0000 244.0000 2.9709 8.8895 + 233.2016 333.0000 245.0000 2.9709 2.9696 243.3399 333.0000 246.0000 2.9709 5.7095 + 307.3832 333.0000 249.0000 2.9709 1.9378 334.2483 333.0000 250.0000 2.9709 1.9505 + 316.5569 333.0000 251.0000 2.9709 1.9523 306.2735 333.0000 252.0000 2.9709 1.9639 + 396.1357 333.0000 256.0000 2.9709 1.8467 412.0610 333.0000 257.0000 2.9709 2.9175 + 307.0393 333.0000 272.0000 2.9709 3.8840 319.8816 333.0000 273.0000 2.9709 2.8988 + 298.3709 333.0000 274.0000 2.9709 10.9153 271.7996 333.0000 275.0000 2.9709 9.8054 + 256.3005 333.0000 276.0000 2.9709 9.1527 260.2393 333.0000 277.0000 2.9709 2.9424 + 273.6669 333.0000 278.0000 2.9709 6.6669 329.2613 333.0000 281.0000 2.9709 1.9302 + 348.2071 333.0000 282.0000 2.9709 1.9356 355.6897 333.0000 283.0000 2.9709 1.9655 + 353.7278 333.0000 284.0000 2.9709 1.9639 436.3649 333.0000 288.0000 2.9709 1.8075 + 83.6036 333.0000 305.0000 2.9709 2.9128 75.2808 333.0000 306.0000 2.9709 2.9987 + 56.9398 333.0000 307.0000 2.9709 2.9903 184.9886 333.0000 313.0000 2.9709 2.9146 + 220.9165 333.0000 314.0000 2.9709 2.9407 184.4364 333.0000 315.0000 2.9709 2.9859 + 162.2878 333.0000 327.0000 2.9709 7.7785 177.0557 333.0000 328.0000 2.9709 6.2918 + 196.5179 333.0000 331.0000 2.9709 2.9233 226.8019 333.0000 332.0000 2.9709 2.9186 + 224.2851 333.0000 333.0000 2.9709 2.9709 30.3193 349.0000 1.0000 2.9353 0.9118 + 20.3402 349.0000 2.0000 2.9353 0.0000 444.6978 349.0000 3.0000 2.9353 0.0000 + 264.0439 349.0000 4.0000 2.9353 0.0000 180.4568 349.0000 5.0000 2.9353 0.0000 + 123.2705 349.0000 6.0000 2.9353 0.0000 86.9569 349.0000 7.0000 2.9353 0.0000 + 66.2741 349.0000 8.0000 2.9353 0.0000 50.5156 349.0000 9.0000 2.9353 0.0000 + 39.0674 349.0000 10.0000 2.9353 0.0000 532.8538 349.0000 11.0000 2.9353 0.0000 + 418.8567 349.0000 12.0000 2.9353 0.0000 389.0698 349.0000 13.0000 2.9353 0.0000 + 309.6779 349.0000 14.0000 2.9353 0.0000 243.5106 349.0000 15.0000 2.9353 0.0000 + 203.2097 349.0000 16.0000 2.9353 0.0000 166.8867 349.0000 17.0000 2.9353 0.0000 + 137.2010 349.0000 18.0000 2.9353 0.0000 869.9598 349.0000 19.0000 2.9353 0.0000 + 729.9594 349.0000 20.0000 2.9353 0.0000 605.3047 349.0000 21.0000 2.9353 0.0000 + 586.5752 349.0000 22.0000 2.9353 0.0000 538.2672 349.0000 23.0000 2.9353 0.0000 + 424.4016 349.0000 24.0000 2.9353 0.0000 464.8411 349.0000 25.0000 2.9353 0.0000 + 365.3129 349.0000 26.0000 2.9353 0.0000 388.6270 349.0000 27.0000 2.9353 0.0000 + 399.5106 349.0000 28.0000 2.9353 0.0000 306.5977 349.0000 29.0000 2.9353 0.0000 + 316.5382 349.0000 30.0000 2.9353 0.0000 373.9479 349.0000 31.0000 2.9353 0.0000 + 332.2932 349.0000 32.0000 2.9353 0.0000 285.3599 349.0000 33.0000 2.9353 0.0000 + 257.1422 349.0000 34.0000 2.9353 0.0000 226.0224 349.0000 35.0000 2.9353 0.0000 + 197.3762 349.0000 36.0000 2.9353 0.0000 976.6194 349.0000 37.0000 2.9353 0.0000 + 869.2745 349.0000 38.0000 2.9353 0.0000 766.4059 349.0000 39.0000 2.9353 0.0000 + 691.5997 349.0000 40.0000 2.9353 0.0000 632.3580 349.0000 41.0000 2.9353 0.0000 + 490.5720 349.0000 42.0000 2.9353 0.0000 546.3930 349.0000 43.0000 2.9353 0.0000 + 418.4851 349.0000 44.0000 2.9353 0.0000 457.2780 349.0000 45.0000 2.9353 0.0000 + 424.7783 349.0000 46.0000 2.9353 0.0000 354.1221 349.0000 47.0000 2.9353 0.0000 + 375.1486 349.0000 48.0000 2.9353 0.0000 468.2521 349.0000 49.0000 2.9353 0.0000 + 435.6252 349.0000 50.0000 2.9353 0.0000 390.5107 349.0000 51.0000 2.9353 0.0000 + 363.5974 349.0000 52.0000 2.9353 0.0000 330.0106 349.0000 53.0000 2.9353 0.0000 + 297.7796 349.0000 54.0000 2.9353 0.0000 1190.0927 349.0000 55.0000 2.9353 0.0000 + 1105.9339 349.0000 56.0000 2.9353 0.0000 977.8582 349.0000 57.0000 2.9353 0.0000 + 460.8857 349.0000 58.0000 2.9353 2.7991 982.2388 349.0000 59.0000 2.9353 0.0000 + 944.1820 349.0000 60.0000 2.9353 0.0000 920.7728 349.0000 61.0000 2.9353 0.0000 + 899.2107 349.0000 62.0000 2.9353 0.0000 880.0979 349.0000 63.0000 2.9353 0.0000 + 697.1742 349.0000 64.0000 2.9353 0.0000 777.0365 349.0000 65.0000 2.9353 0.0000 + 750.3549 349.0000 66.0000 2.9353 0.0000 795.0694 349.0000 67.0000 2.9353 0.0000 + 778.3235 349.0000 68.0000 2.9353 0.0000 763.2869 349.0000 69.0000 2.9353 0.0000 + 754.1276 349.0000 70.0000 2.9353 0.0000 638.5760 349.0000 71.0000 2.9353 0.0000 + 631.8504 349.0000 72.0000 2.9353 0.0000 578.9036 349.0000 73.0000 2.9353 0.0000 + 490.4774 349.0000 74.0000 2.9353 0.0000 499.6804 349.0000 75.0000 2.9353 0.0000 + 454.4014 349.0000 76.0000 2.9353 0.0000 417.3058 349.0000 77.0000 2.9353 0.0000 + 347.7941 349.0000 78.0000 2.9353 0.0000 325.3871 349.0000 79.0000 2.9353 0.0000 + 335.0765 349.0000 80.0000 2.9353 0.0000 481.7644 349.0000 81.0000 2.9353 0.0000 + 473.1885 349.0000 82.0000 2.9353 0.0000 437.0798 349.0000 83.0000 2.9353 0.0000 + 418.1090 349.0000 84.0000 2.9353 0.0000 387.2647 349.0000 85.0000 2.9353 0.0000 + 356.1266 349.0000 86.0000 2.9353 0.0000 1129.6762 349.0000 87.0000 2.9353 0.0000 + 1097.2829 349.0000 88.0000 2.9353 0.0000 975.7591 349.0000 89.0000 2.9353 0.0000 + 882.8878 349.0000 90.0000 2.9353 0.0000 873.8896 349.0000 91.0000 2.9353 0.0000 + 846.3364 349.0000 92.0000 2.9353 0.0000 867.8793 349.0000 93.0000 2.9353 0.0000 + 841.0964 349.0000 94.0000 2.9353 0.0000 48.4270 349.0000 101.0000 2.9353 0.0000 + 153.8264 349.0000 103.0000 2.9353 0.9865 196.7454 349.0000 104.0000 2.9353 0.9808 + 152.2615 349.0000 105.0000 2.9353 0.9706 115.6130 349.0000 106.0000 2.9353 0.9868 + 81.1110 349.0000 107.0000 2.9353 0.9944 59.5344 349.0000 108.0000 2.9353 0.9925 + 41.3746 349.0000 109.0000 2.9353 0.9982 224.4097 349.0000 111.0000 2.9353 0.9684 + 346.4940 349.0000 112.0000 2.9353 0.9628 353.2654 349.0000 113.0000 2.9353 0.9648 + 286.6412 349.0000 114.0000 2.9353 0.9507 236.4461 349.0000 115.0000 2.9353 0.9947 + 200.9558 349.0000 116.0000 2.9353 0.9948 165.1495 349.0000 117.0000 2.9353 0.9972 + 311.3187 349.0000 119.0000 2.9353 0.9767 584.4834 349.0000 120.0000 2.9353 0.9831 + 313.7920 349.0000 121.0000 2.9353 1.8627 303.0566 349.0000 122.0000 2.9353 1.8299 + 296.9854 349.0000 123.0000 2.9353 1.9138 293.9840 349.0000 124.0000 2.9353 1.8269 + 271.7273 349.0000 125.0000 2.9353 1.6406 251.8512 349.0000 126.0000 2.9353 1.6483 + 240.2860 349.0000 127.0000 2.9353 1.7149 234.8390 349.0000 128.0000 2.9353 1.7937 + 231.2700 349.0000 129.0000 2.9353 0.9576 218.3027 349.0000 130.0000 2.9353 1.9419 + 351.9154 349.0000 131.0000 2.9353 0.9601 311.4260 349.0000 132.0000 2.9353 0.9434 + 280.6350 349.0000 133.0000 2.9353 0.9889 257.2275 349.0000 134.0000 2.9353 0.9901 + 227.5472 349.0000 135.0000 2.9353 0.9974 372.1527 349.0000 137.0000 2.9353 0.9738 + 710.6790 349.0000 138.0000 2.9353 0.9801 550.2164 349.0000 139.0000 2.9353 1.9153 + 414.7814 349.0000 140.0000 2.9353 1.9355 418.8482 349.0000 141.0000 2.9353 1.9545 + 391.2722 349.0000 142.0000 2.9353 1.9420 436.2161 349.0000 143.0000 2.9353 1.6682 + 342.6308 349.0000 144.0000 2.9353 1.8584 320.7454 349.0000 145.0000 2.9353 1.9003 + 298.1562 349.0000 146.0000 2.9353 1.8630 288.2865 349.0000 147.0000 2.9353 0.9679 + 286.0771 349.0000 148.0000 2.9353 1.9539 447.3269 349.0000 149.0000 2.9353 0.9633 + 407.2275 349.0000 150.0000 2.9353 0.9514 383.0280 349.0000 151.0000 2.9353 0.9749 + 363.4077 349.0000 152.0000 2.9353 0.9811 333.0801 349.0000 153.0000 2.9353 0.9968 + 442.0537 349.0000 155.0000 2.9353 0.9909 919.0928 349.0000 156.0000 2.9353 0.9797 + 695.6184 349.0000 157.0000 2.9353 1.9373 447.1551 349.0000 159.0000 2.9353 2.9425 + 437.9410 349.0000 160.0000 2.9353 2.9455 424.1984 349.0000 161.0000 2.9353 2.9413 + 425.8977 349.0000 162.0000 2.9353 2.9300 409.4190 349.0000 163.0000 2.9353 1.8286 + 428.4350 349.0000 164.0000 2.9353 2.8732 402.7499 349.0000 165.0000 2.9353 2.9086 + 409.1408 349.0000 166.0000 2.9353 2.8965 382.5686 349.0000 167.0000 2.9353 2.9242 + 371.7768 349.0000 168.0000 2.9353 2.9282 369.2991 349.0000 169.0000 2.9353 2.9246 + 387.6342 349.0000 170.0000 2.9353 2.8482 357.0972 349.0000 171.0000 2.9353 2.9219 + 478.6548 349.0000 172.0000 2.9353 1.9254 445.8975 349.0000 173.0000 2.9353 1.9459 + 408.4278 349.0000 174.0000 2.9353 1.9292 411.9543 349.0000 175.0000 2.9353 1.8104 + 363.7717 349.0000 176.0000 2.9353 1.8858 342.7290 349.0000 177.0000 2.9353 1.8648 + 327.6646 349.0000 178.0000 2.9353 1.9188 313.3121 349.0000 179.0000 2.9353 0.9846 + 303.6328 349.0000 180.0000 2.9353 1.9896 481.0669 349.0000 181.0000 2.9353 0.9267 + 441.1549 349.0000 182.0000 2.9353 0.9383 429.1940 349.0000 183.0000 2.9353 0.9820 + 418.3861 349.0000 184.0000 2.9353 0.9815 391.9507 349.0000 185.0000 2.9353 0.9954 + 498.0234 349.0000 187.0000 2.9353 0.9705 917.9716 349.0000 188.0000 2.9353 0.9662 + 528.9870 349.0000 189.0000 2.9353 2.9070 607.4145 349.0000 190.0000 2.9353 2.8844 + 544.1898 349.0000 191.0000 2.9353 2.8738 482.9836 349.0000 192.0000 2.9353 2.8878 + 465.2257 349.0000 193.0000 2.9353 2.9095 553.4386 349.0000 194.0000 2.9353 1.9209 + 130.1139 349.0000 204.0000 2.9353 1.9697 128.2191 349.0000 205.0000 2.9353 1.9441 + 94.7153 349.0000 206.0000 2.9353 1.9985 76.2530 349.0000 207.0000 2.9353 2.0143 + 52.6690 349.0000 208.0000 2.9353 1.9887 229.4425 349.0000 212.0000 2.9353 1.9496 + 276.9940 349.0000 213.0000 2.9353 1.9311 266.9974 349.0000 214.0000 2.9353 1.9435 + 233.1422 349.0000 215.0000 2.9353 2.0102 196.9225 349.0000 216.0000 2.9353 1.9903 + 321.8065 349.0000 220.0000 2.9353 1.9349 310.4193 349.0000 221.0000 2.9353 2.8999 + 314.3438 349.0000 222.0000 2.9353 3.8675 287.7026 349.0000 223.0000 2.9353 2.9110 + 218.1566 349.0000 224.0000 2.9353 10.6191 187.4120 349.0000 225.0000 2.9353 9.8849 + 183.8976 349.0000 226.0000 2.9353 9.1376 214.2453 349.0000 227.0000 2.9353 2.9263 + 199.9712 349.0000 228.0000 2.9353 6.5458 280.7261 349.0000 231.0000 2.9353 1.9315 + 296.8562 349.0000 232.0000 2.9353 1.9447 273.4592 349.0000 233.0000 2.9353 1.9793 + 255.2418 349.0000 234.0000 2.9353 1.9812 385.7594 349.0000 238.0000 2.9353 1.9143 + 373.0875 349.0000 239.0000 2.9353 2.8903 376.8173 349.0000 240.0000 2.9353 3.9106 + 364.3226 349.0000 241.0000 2.9353 2.9225 323.4882 349.0000 242.0000 2.9353 11.0556 + 286.5085 349.0000 243.0000 2.9353 9.5402 271.1133 349.0000 244.0000 2.9353 8.8895 + 275.2351 349.0000 245.0000 2.9353 2.9696 287.2026 349.0000 246.0000 2.9353 5.7095 + 362.7514 349.0000 249.0000 2.9353 1.9378 394.1807 349.0000 250.0000 2.9353 1.9505 + 372.8876 349.0000 251.0000 2.9353 1.9523 360.5967 349.0000 252.0000 2.9353 1.9639 + 467.1608 349.0000 256.0000 2.9353 1.8467 485.3739 349.0000 257.0000 2.9353 2.9175 + 361.4878 349.0000 272.0000 2.9353 3.8840 376.9496 349.0000 273.0000 2.9353 2.8988 + 351.5242 349.0000 274.0000 2.9353 10.9153 320.2685 349.0000 275.0000 2.9353 9.8054 + 302.0368 349.0000 276.0000 2.9353 9.1527 307.0662 349.0000 277.0000 2.9353 2.9424 + 322.8342 349.0000 278.0000 2.9353 6.6669 388.6659 349.0000 281.0000 2.9353 1.9302 + 410.7989 349.0000 282.0000 2.9353 1.9356 419.3073 349.0000 283.0000 2.9353 1.9655 + 416.8056 349.0000 284.0000 2.9353 1.9639 514.4602 349.0000 288.0000 2.9353 1.8075 + 98.2235 349.0000 305.0000 2.9353 2.9128 88.6572 349.0000 306.0000 2.9353 2.9987 + 67.2704 349.0000 307.0000 2.9353 2.9903 217.4318 349.0000 313.0000 2.9353 2.9146 + 259.9858 349.0000 314.0000 2.9353 2.9407 216.7223 349.0000 315.0000 2.9353 2.9859 + 191.5317 349.0000 327.0000 2.9353 7.7785 209.2104 349.0000 328.0000 2.9353 6.2918 + 231.1618 349.0000 331.0000 2.9353 2.9233 266.7944 349.0000 332.0000 2.9353 2.9186 + 263.6781 349.0000 333.0000 2.9353 2.9709 310.8315 349.0000 349.0000 2.9353 2.9353 + 34.5503 350.0000 1.0000 2.9259 0.9118 22.8875 350.0000 2.0000 2.9259 0.0000 + 527.1851 350.0000 3.0000 2.9259 0.0000 307.8814 350.0000 4.0000 2.9259 0.0000 + 208.2379 350.0000 5.0000 2.9259 0.0000 141.0407 350.0000 6.0000 2.9259 0.0000 + 98.8025 350.0000 7.0000 2.9259 0.0000 74.9029 350.0000 8.0000 2.9259 0.0000 + 56.8151 350.0000 9.0000 2.9259 0.0000 43.7556 350.0000 10.0000 2.9259 0.0000 + 630.8687 350.0000 11.0000 2.9259 0.0000 489.7532 350.0000 12.0000 2.9259 0.0000 + 452.6192 350.0000 13.0000 2.9259 0.0000 357.7428 350.0000 14.0000 2.9259 0.0000 + 279.5392 350.0000 15.0000 2.9259 0.0000 232.2434 350.0000 16.0000 2.9259 0.0000 + 189.8824 350.0000 17.0000 2.9259 0.0000 155.4627 350.0000 18.0000 2.9259 0.0000 + 1031.5350 350.0000 19.0000 2.9259 0.0000 857.4537 350.0000 20.0000 2.9259 0.0000 + 709.4418 350.0000 21.0000 2.9259 0.0000 685.8851 350.0000 22.0000 2.9259 0.0000 + 628.5419 350.0000 23.0000 2.9259 0.0000 495.0936 350.0000 24.0000 2.9259 0.0000 + 541.7184 350.0000 25.0000 2.9259 0.0000 425.1904 350.0000 26.0000 2.9259 0.0000 + 451.4360 350.0000 27.0000 2.9259 0.0000 464.7381 350.0000 28.0000 2.9259 0.0000 + 356.2413 350.0000 29.0000 2.9259 0.0000 366.5785 350.0000 30.0000 2.9259 0.0000 + 433.8635 350.0000 31.0000 2.9259 0.0000 383.5189 350.0000 32.0000 2.9259 0.0000 + 327.6790 350.0000 33.0000 2.9259 0.0000 294.2742 350.0000 34.0000 2.9259 0.0000 + 257.7196 350.0000 35.0000 2.9259 0.0000 224.2655 350.0000 36.0000 2.9259 0.0000 + 1156.6447 350.0000 37.0000 2.9259 0.0000 1021.1992 350.0000 38.0000 2.9259 0.0000 + 896.6822 350.0000 39.0000 2.9259 0.0000 806.9968 350.0000 40.0000 2.9259 0.0000 + 736.4802 350.0000 41.0000 2.9259 0.0000 569.2766 350.0000 42.0000 2.9259 0.0000 + 634.9209 350.0000 43.0000 2.9259 0.0000 484.3486 350.0000 44.0000 2.9259 0.0000 + 529.5371 350.0000 45.0000 2.9259 0.0000 491.3041 350.0000 46.0000 2.9259 0.0000 + 409.4318 350.0000 47.0000 2.9259 0.0000 433.1992 350.0000 48.0000 2.9259 0.0000 + 542.8413 350.0000 49.0000 2.9259 0.0000 502.9891 350.0000 50.0000 2.9259 0.0000 + 448.9769 350.0000 51.0000 2.9259 0.0000 416.8945 350.0000 52.0000 2.9259 0.0000 + 377.2255 350.0000 53.0000 2.9259 0.0000 339.3505 350.0000 54.0000 2.9259 0.0000 + 1409.0375 350.0000 55.0000 2.9259 0.0000 1300.6349 350.0000 56.0000 2.9259 0.0000 + 1145.4236 350.0000 57.0000 2.9259 0.0000 530.1369 350.0000 58.0000 2.9259 2.7991 + 1153.3721 350.0000 59.0000 2.9259 0.0000 1107.9903 350.0000 60.0000 2.9259 0.0000 + 1080.3308 350.0000 61.0000 2.9259 0.0000 1054.8803 350.0000 62.0000 2.9259 0.0000 + 1032.3159 350.0000 63.0000 2.9259 0.0000 813.7102 350.0000 64.0000 2.9259 0.0000 + 912.5542 350.0000 65.0000 2.9259 0.0000 880.5098 350.0000 66.0000 2.9259 0.0000 + 931.6850 350.0000 67.0000 2.9259 0.0000 911.9836 350.0000 68.0000 2.9259 0.0000 + 894.2426 350.0000 69.0000 2.9259 0.0000 883.7052 350.0000 70.0000 2.9259 0.0000 + 745.7830 350.0000 71.0000 2.9259 0.0000 735.0657 350.0000 72.0000 2.9259 0.0000 + 671.6175 350.0000 73.0000 2.9259 0.0000 567.5078 350.0000 74.0000 2.9259 0.0000 + 577.6432 350.0000 75.0000 2.9259 0.0000 524.0042 350.0000 76.0000 2.9259 0.0000 + 480.2351 350.0000 77.0000 2.9259 0.0000 399.1543 350.0000 78.0000 2.9259 0.0000 + 373.0290 350.0000 79.0000 2.9259 0.0000 383.9269 350.0000 80.0000 2.9259 0.0000 + 557.4516 350.0000 81.0000 2.9259 0.0000 545.9469 350.0000 82.0000 2.9259 0.0000 + 502.4286 350.0000 83.0000 2.9259 0.0000 479.5467 350.0000 84.0000 2.9259 0.0000 + 442.9192 350.0000 85.0000 2.9259 0.0000 406.2058 350.0000 86.0000 2.9259 0.0000 + 1333.1000 350.0000 87.0000 2.9259 0.0000 1287.6457 350.0000 88.0000 2.9259 0.0000 + 1140.7848 350.0000 89.0000 2.9259 0.0000 1027.4883 350.0000 90.0000 2.9259 0.0000 + 1018.9158 350.0000 91.0000 2.9259 0.0000 986.6337 350.0000 92.0000 2.9259 0.0000 + 1014.4405 350.0000 93.0000 2.9259 0.0000 982.6596 350.0000 94.0000 2.9259 0.0000 + 55.5643 350.0000 101.0000 2.9259 0.0000 179.0706 350.0000 103.0000 2.9259 0.9865 + 228.5584 350.0000 104.0000 2.9259 0.9808 175.2745 350.0000 105.0000 2.9259 0.9706 + 132.2562 350.0000 106.0000 2.9259 0.9868 92.1154 350.0000 107.0000 2.9259 0.9944 + 67.1811 350.0000 108.0000 2.9259 0.9925 46.3030 350.0000 109.0000 2.9259 0.9982 + 261.5400 350.0000 111.0000 2.9259 0.9684 404.2763 350.0000 112.0000 2.9259 0.9628 + 410.4176 350.0000 113.0000 2.9259 0.9648 330.7531 350.0000 114.0000 2.9259 0.9507 + 271.3488 350.0000 115.0000 2.9259 0.9947 229.6756 350.0000 116.0000 2.9259 0.9948 + 187.9096 350.0000 117.0000 2.9259 0.9972 360.9675 350.0000 119.0000 2.9259 0.9767 + 685.8003 350.0000 120.0000 2.9259 0.9831 362.1394 350.0000 121.0000 2.9259 1.8627 + 349.6106 350.0000 122.0000 2.9259 1.8299 342.6120 350.0000 123.0000 2.9259 1.9138 + 339.3449 350.0000 124.0000 2.9259 1.8269 312.7295 350.0000 125.0000 2.9259 1.6406 + 289.5301 350.0000 126.0000 2.9259 1.6483 276.1884 350.0000 127.0000 2.9259 1.7149 + 269.9857 350.0000 128.0000 2.9259 1.7937 266.4758 350.0000 129.0000 2.9259 0.9576 + 250.5077 350.0000 130.0000 2.9259 1.9419 407.7353 350.0000 131.0000 2.9259 0.9601 + 358.9520 350.0000 132.0000 2.9259 0.9434 322.1450 350.0000 133.0000 2.9259 0.9889 + 294.3804 350.0000 134.0000 2.9259 0.9901 259.5011 350.0000 135.0000 2.9259 0.9974 + 430.8811 350.0000 137.0000 2.9259 0.9738 834.0979 350.0000 138.0000 2.9259 0.9801 + 640.4740 350.0000 139.0000 2.9259 1.9153 478.7355 350.0000 140.0000 2.9259 1.9355 + 483.4478 350.0000 141.0000 2.9259 1.9545 450.9840 350.0000 142.0000 2.9259 1.9420 + 504.7650 350.0000 143.0000 2.9259 1.6682 393.6270 350.0000 144.0000 2.9259 1.8584 + 368.2710 350.0000 145.0000 2.9259 1.9003 342.0404 350.0000 146.0000 2.9259 1.8630 + 330.8354 350.0000 147.0000 2.9259 0.9679 327.6519 350.0000 148.0000 2.9259 1.9539 + 517.8029 350.0000 149.0000 2.9259 0.9633 469.3751 350.0000 150.0000 2.9259 0.9514 + 440.1085 350.0000 151.0000 2.9259 0.9749 416.6107 350.0000 152.0000 2.9259 0.9811 + 380.7615 350.0000 153.0000 2.9259 0.9968 510.2857 350.0000 155.0000 2.9259 0.9909 + 1080.2049 350.0000 156.0000 2.9259 0.9797 810.2212 350.0000 157.0000 2.9259 1.9373 + 514.1941 350.0000 159.0000 2.9259 2.9425 503.5686 350.0000 160.0000 2.9259 2.9455 + 487.6436 350.0000 161.0000 2.9259 2.9413 489.9104 350.0000 162.0000 2.9259 2.9300 + 471.8373 350.0000 163.0000 2.9259 1.8286 492.9882 350.0000 164.0000 2.9259 2.8732 + 463.1355 350.0000 165.0000 2.9259 2.9086 471.0117 350.0000 166.0000 2.9259 2.8965 + 439.6941 350.0000 167.0000 2.9259 2.9242 427.2006 350.0000 168.0000 2.9259 2.9282 + 424.4358 350.0000 169.0000 2.9259 2.9246 446.0163 350.0000 170.0000 2.9259 2.8482 + 410.2985 350.0000 171.0000 2.9259 2.9219 554.1022 350.0000 172.0000 2.9259 1.9254 + 514.7835 350.0000 173.0000 2.9259 1.9459 470.1838 350.0000 174.0000 2.9259 1.9292 + 475.3264 350.0000 175.0000 2.9259 1.8104 417.0826 350.0000 176.0000 2.9259 1.8858 + 392.4836 350.0000 177.0000 2.9259 1.8648 374.9396 350.0000 178.0000 2.9259 1.9188 + 358.4386 350.0000 179.0000 2.9259 0.9846 346.6558 350.0000 180.0000 2.9259 1.9896 + 556.0668 350.0000 181.0000 2.9259 0.9267 507.8208 350.0000 182.0000 2.9259 0.9383 + 492.9508 350.0000 183.0000 2.9259 0.9820 479.7172 350.0000 184.0000 2.9259 0.9815 + 448.2866 350.0000 185.0000 2.9259 0.9954 574.7794 350.0000 187.0000 2.9259 0.9705 + 1076.0744 350.0000 188.0000 2.9259 0.9662 608.4348 350.0000 189.0000 2.9259 2.9070 + 701.0935 350.0000 190.0000 2.9259 2.8844 627.0734 350.0000 191.0000 2.9259 2.8738 + 554.9249 350.0000 192.0000 2.9259 2.8878 534.1387 350.0000 193.0000 2.9259 2.9095 + 640.3360 350.0000 194.0000 2.9259 1.9209 149.7680 350.0000 204.0000 2.9259 1.9697 + 147.2385 350.0000 205.0000 2.9259 1.9441 107.9636 350.0000 206.0000 2.9259 1.9985 + 86.5174 350.0000 207.0000 2.9259 2.0143 59.3029 350.0000 208.0000 2.9259 1.9887 + 265.2575 350.0000 212.0000 2.9259 1.9496 320.3924 350.0000 213.0000 2.9259 1.9311 + 307.7570 350.0000 214.0000 2.9259 1.9435 267.6299 350.0000 215.0000 2.9259 2.0102 + 225.0338 350.0000 216.0000 2.9259 1.9903 371.7123 350.0000 220.0000 2.9259 1.9349 + 357.6129 350.0000 221.0000 2.9259 2.8999 362.0440 350.0000 222.0000 2.9259 3.8675 + 331.3093 350.0000 223.0000 2.9259 2.9110 249.8939 350.0000 224.0000 2.9259 10.6191 + 214.0118 350.0000 225.0000 2.9259 9.8849 210.0623 350.0000 226.0000 2.9259 9.1376 + 245.9388 350.0000 227.0000 2.9259 2.9263 229.2387 350.0000 228.0000 2.9259 6.5458 + 323.6722 350.0000 231.0000 2.9259 1.9315 341.8407 350.0000 232.0000 2.9259 1.9447 + 313.7342 350.0000 233.0000 2.9259 1.9793 292.0737 350.0000 234.0000 2.9259 1.9812 + 445.2988 350.0000 238.0000 2.9259 1.9143 429.2279 350.0000 239.0000 2.9259 2.8903 + 433.0658 350.0000 240.0000 2.9259 3.9106 418.6918 350.0000 241.0000 2.9259 2.9225 + 370.5143 350.0000 242.0000 2.9259 11.0556 327.2637 350.0000 243.0000 2.9259 9.5402 + 309.3410 350.0000 244.0000 2.9259 8.8895 314.8522 350.0000 245.0000 2.9259 2.9696 + 328.8698 350.0000 246.0000 2.9259 5.7095 417.6093 350.0000 249.0000 2.9259 1.9378 + 453.9195 350.0000 250.0000 2.9259 1.9505 428.1222 350.0000 251.0000 2.9259 1.9523 + 413.2653 350.0000 252.0000 2.9259 1.9639 538.6735 350.0000 256.0000 2.9259 1.8467 + 558.8413 350.0000 257.0000 2.9259 2.9175 414.8066 350.0000 272.0000 2.9259 3.8840 + 432.9981 350.0000 273.0000 2.9259 2.8988 402.5544 350.0000 274.0000 2.9259 10.9153 + 365.8494 350.0000 275.0000 2.9259 9.8054 344.3376 350.0000 276.0000 2.9259 9.1527 + 350.8096 350.0000 277.0000 2.9259 2.9424 368.9891 350.0000 278.0000 2.9259 6.6669 + 446.3665 350.0000 281.0000 2.9259 1.9302 471.8345 350.0000 282.0000 2.9259 1.9356 + 481.1410 350.0000 283.0000 2.9259 1.9655 477.7264 350.0000 284.0000 2.9259 1.9639 + 593.0472 350.0000 288.0000 2.9259 1.8075 112.1331 350.0000 305.0000 2.9259 2.9128 + 101.0131 350.0000 306.0000 2.9259 2.9987 76.2100 350.0000 307.0000 2.9259 2.9903 + 250.1421 350.0000 313.0000 2.9259 2.9146 299.8218 350.0000 314.0000 2.9259 2.9407 + 248.3782 350.0000 315.0000 2.9259 2.9859 219.1541 350.0000 327.0000 2.9259 7.7785 + 240.4605 350.0000 328.0000 2.9259 6.2918 265.2550 350.0000 331.0000 2.9259 2.9233 + 306.5241 350.0000 332.0000 2.9259 2.9186 302.2666 350.0000 333.0000 2.9259 2.9709 + 356.2359 350.0000 349.0000 2.9259 2.9353 409.1453 350.0000 350.0000 2.9259 2.9259 + 35.0939 351.0000 1.0000 2.9315 0.9118 23.3792 351.0000 2.0000 2.9315 0.0000 + 518.6427 351.0000 3.0000 2.9315 0.0000 307.4421 351.0000 4.0000 2.9315 0.0000 + 209.6745 351.0000 5.0000 2.9315 0.0000 142.8348 351.0000 6.0000 2.9315 0.0000 + 100.4500 351.0000 7.0000 2.9315 0.0000 76.3424 351.0000 8.0000 2.9315 0.0000 + 58.0176 351.0000 9.0000 2.9315 0.0000 44.7408 351.0000 10.0000 2.9315 0.0000 + 621.1943 351.0000 11.0000 2.9315 0.0000 487.7418 351.0000 12.0000 2.9315 0.0000 + 452.7605 351.0000 13.0000 2.9315 0.0000 359.9159 351.0000 14.0000 2.9315 0.0000 + 282.5564 351.0000 15.0000 2.9315 0.0000 235.4268 351.0000 16.0000 2.9315 0.0000 + 192.9893 351.0000 17.0000 2.9315 0.0000 158.3420 351.0000 18.0000 2.9315 0.0000 + 1013.8323 351.0000 19.0000 2.9315 0.0000 850.0618 351.0000 20.0000 2.9315 0.0000 + 704.7245 351.0000 21.0000 2.9315 0.0000 682.6170 351.0000 22.0000 2.9315 0.0000 + 626.2392 351.0000 23.0000 2.9315 0.0000 493.4310 351.0000 24.0000 2.9315 0.0000 + 540.5946 351.0000 25.0000 2.9315 0.0000 424.5124 351.0000 26.0000 2.9315 0.0000 + 451.6893 351.0000 27.0000 2.9315 0.0000 464.4665 351.0000 28.0000 2.9315 0.0000 + 356.1095 351.0000 29.0000 2.9315 0.0000 367.6637 351.0000 30.0000 2.9315 0.0000 + 434.7417 351.0000 31.0000 2.9315 0.0000 385.9785 351.0000 32.0000 2.9315 0.0000 + 331.0618 351.0000 33.0000 2.9315 0.0000 298.0072 351.0000 34.0000 2.9315 0.0000 + 261.5889 351.0000 35.0000 2.9315 0.0000 228.0904 351.0000 36.0000 2.9315 0.0000 + 1137.8099 351.0000 37.0000 2.9315 0.0000 1012.1518 351.0000 38.0000 2.9315 0.0000 + 891.9140 351.0000 39.0000 2.9315 0.0000 804.4937 351.0000 40.0000 2.9315 0.0000 + 735.2812 351.0000 41.0000 2.9315 0.0000 569.7978 351.0000 42.0000 2.9315 0.0000 + 634.8991 351.0000 43.0000 2.9315 0.0000 485.6592 351.0000 44.0000 2.9315 0.0000 + 530.9113 351.0000 45.0000 2.9315 0.0000 493.0084 351.0000 46.0000 2.9315 0.0000 + 410.6685 351.0000 47.0000 2.9315 0.0000 435.1777 351.0000 48.0000 2.9315 0.0000 + 543.8198 351.0000 49.0000 2.9315 0.0000 505.6697 351.0000 50.0000 2.9315 0.0000 + 452.9187 351.0000 51.0000 2.9315 0.0000 421.4187 351.0000 52.0000 2.9315 0.0000 + 382.1376 351.0000 53.0000 2.9315 0.0000 344.4458 351.0000 54.0000 2.9315 0.0000 + 1386.5806 351.0000 55.0000 2.9315 0.0000 1287.7738 351.0000 56.0000 2.9315 0.0000 + 1138.1053 351.0000 57.0000 2.9315 0.0000 534.4801 351.0000 58.0000 2.9315 2.7991 + 1143.2636 351.0000 59.0000 2.9315 0.0000 1098.8818 351.0000 60.0000 2.9315 0.0000 + 1071.6137 351.0000 61.0000 2.9315 0.0000 1046.5046 351.0000 62.0000 2.9315 0.0000 + 1024.2500 351.0000 63.0000 2.9315 0.0000 810.5952 351.0000 64.0000 2.9315 0.0000 + 904.0756 351.0000 65.0000 2.9315 0.0000 872.9520 351.0000 66.0000 2.9315 0.0000 + 925.1907 351.0000 67.0000 2.9315 0.0000 905.7052 351.0000 68.0000 2.9315 0.0000 + 888.2036 351.0000 69.0000 2.9315 0.0000 877.5875 351.0000 70.0000 2.9315 0.0000 + 742.6605 351.0000 71.0000 2.9315 0.0000 734.6407 351.0000 72.0000 2.9315 0.0000 + 672.6897 351.0000 73.0000 2.9315 0.0000 569.4157 351.0000 74.0000 2.9315 0.0000 + 580.0413 351.0000 75.0000 2.9315 0.0000 527.1341 351.0000 76.0000 2.9315 0.0000 + 483.8028 351.0000 77.0000 2.9315 0.0000 402.7283 351.0000 78.0000 2.9315 0.0000 + 376.5850 351.0000 79.0000 2.9315 0.0000 387.8415 351.0000 80.0000 2.9315 0.0000 + 559.0018 351.0000 81.0000 2.9315 0.0000 548.9137 351.0000 82.0000 2.9315 0.0000 + 506.6931 351.0000 83.0000 2.9315 0.0000 484.4680 351.0000 84.0000 2.9315 0.0000 + 448.3873 351.0000 85.0000 2.9315 0.0000 411.9735 351.0000 86.0000 2.9315 0.0000 + 1315.5898 351.0000 87.0000 2.9315 0.0000 1277.3025 351.0000 88.0000 2.9315 0.0000 + 1135.2332 351.0000 89.0000 2.9315 0.0000 1026.2943 351.0000 90.0000 2.9315 0.0000 + 1015.8964 351.0000 91.0000 2.9315 0.0000 983.7858 351.0000 92.0000 2.9315 0.0000 + 1009.1230 351.0000 93.0000 2.9315 0.0000 977.9127 351.0000 94.0000 2.9315 0.0000 + 56.1946 351.0000 101.0000 2.9315 0.0000 179.0274 351.0000 103.0000 2.9315 0.9865 + 228.8894 351.0000 104.0000 2.9315 0.9808 176.7743 351.0000 105.0000 2.9315 0.9706 + 133.9240 351.0000 106.0000 2.9315 0.9868 93.6562 351.0000 107.0000 2.9315 0.9944 + 68.5141 351.0000 108.0000 2.9315 0.9925 47.3835 351.0000 109.0000 2.9315 0.9982 + 261.0668 351.0000 111.0000 2.9315 0.9684 403.3092 351.0000 112.0000 2.9315 0.9628 + 410.9788 351.0000 113.0000 2.9315 0.9648 333.0384 351.0000 114.0000 2.9315 0.9507 + 274.3202 351.0000 115.0000 2.9315 0.9947 232.8057 351.0000 116.0000 2.9315 0.9948 + 190.9724 351.0000 117.0000 2.9315 0.9972 361.4928 351.0000 119.0000 2.9315 0.9767 + 680.3184 351.0000 120.0000 2.9315 0.9831 364.2456 351.0000 121.0000 2.9315 1.8627 + 351.7089 351.0000 122.0000 2.9315 1.8299 344.6316 351.0000 123.0000 2.9315 1.9138 + 341.1548 351.0000 124.0000 2.9315 1.8269 315.1977 351.0000 125.0000 2.9315 1.6406 + 292.0345 351.0000 126.0000 2.9315 1.6483 278.5760 351.0000 127.0000 2.9315 1.7149 + 272.2578 351.0000 128.0000 2.9315 1.7937 268.1748 351.0000 129.0000 2.9315 0.9576 + 253.0149 351.0000 130.0000 2.9315 1.9419 409.0175 351.0000 131.0000 2.9315 0.9601 + 361.6218 351.0000 132.0000 2.9315 0.9434 325.5439 351.0000 133.0000 2.9315 0.9889 + 298.1033 351.0000 134.0000 2.9315 0.9901 263.3649 351.0000 135.0000 2.9315 0.9974 + 431.9480 351.0000 137.0000 2.9315 0.9738 827.1106 351.0000 138.0000 2.9315 0.9801 + 639.6032 351.0000 139.0000 2.9315 1.9153 481.4071 351.0000 140.0000 2.9315 1.9355 + 486.0786 351.0000 141.0000 2.9315 1.9545 453.8578 351.0000 142.0000 2.9315 1.9420 + 506.2976 351.0000 143.0000 2.9315 1.6682 397.0742 351.0000 144.0000 2.9315 1.8584 + 371.5740 351.0000 145.0000 2.9315 1.9003 345.2533 351.0000 146.0000 2.9315 1.8630 + 333.8012 351.0000 147.0000 2.9315 0.9679 331.2119 351.0000 148.0000 2.9315 1.9539 + 519.3820 351.0000 149.0000 2.9315 0.9633 472.5189 351.0000 150.0000 2.9315 0.9514 + 444.1770 351.0000 151.0000 2.9315 0.9749 421.1871 351.0000 152.0000 2.9315 0.9811 + 385.7084 351.0000 153.0000 2.9315 0.9968 513.0291 351.0000 155.0000 2.9315 0.9909 + 1069.7955 351.0000 156.0000 2.9315 0.9797 808.6931 351.0000 157.0000 2.9315 1.9373 + 518.5062 351.0000 159.0000 2.9315 2.9425 507.8063 351.0000 160.0000 2.9315 2.9455 + 491.8297 351.0000 161.0000 2.9315 2.9413 493.8687 351.0000 162.0000 2.9315 2.9300 + 474.8294 351.0000 163.0000 2.9315 1.8286 496.8907 351.0000 164.0000 2.9315 2.8732 + 466.9936 351.0000 165.0000 2.9315 2.9086 474.5058 351.0000 166.0000 2.9315 2.8965 + 443.5507 351.0000 167.0000 2.9315 2.9242 431.0179 351.0000 168.0000 2.9315 2.9282 + 428.1726 351.0000 169.0000 2.9315 2.9246 449.6202 351.0000 170.0000 2.9315 2.8482 + 414.0167 351.0000 171.0000 2.9315 2.9219 555.8612 351.0000 172.0000 2.9315 1.9254 + 517.4749 351.0000 173.0000 2.9315 1.9459 473.6285 351.0000 174.0000 2.9315 1.9292 + 477.9062 351.0000 175.0000 2.9315 1.8104 421.3693 351.0000 176.0000 2.9315 1.8858 + 396.7809 351.0000 177.0000 2.9315 1.8648 379.1885 351.0000 178.0000 2.9315 1.9188 + 362.4562 351.0000 179.0000 2.9315 0.9846 351.1370 351.0000 180.0000 2.9315 1.9896 + 558.1581 351.0000 181.0000 2.9315 0.9267 511.5125 351.0000 182.0000 2.9315 0.9383 + 497.4742 351.0000 183.0000 2.9315 0.9820 484.7740 351.0000 184.0000 2.9315 0.9815 + 453.8368 351.0000 185.0000 2.9315 0.9954 578.0001 351.0000 187.0000 2.9315 0.9705 + 1068.1281 351.0000 188.0000 2.9315 0.9662 613.4893 351.0000 189.0000 2.9315 2.9070 + 704.8129 351.0000 190.0000 2.9315 2.8844 631.0713 351.0000 191.0000 2.9315 2.8738 + 559.7310 351.0000 192.0000 2.9315 2.8878 539.0344 351.0000 193.0000 2.9315 2.9095 + 642.1174 351.0000 194.0000 2.9315 1.9209 151.1215 351.0000 204.0000 2.9315 1.9697 + 148.7395 351.0000 205.0000 2.9315 1.9441 109.5710 351.0000 206.0000 2.9315 1.9985 + 87.9958 351.0000 207.0000 2.9315 2.0143 60.5209 351.0000 208.0000 2.9315 1.9887 + 266.6745 351.0000 212.0000 2.9315 1.9496 321.9748 351.0000 213.0000 2.9315 1.9311 + 310.1284 351.0000 214.0000 2.9315 1.9435 270.4800 351.0000 215.0000 2.9315 2.0102 + 228.1108 351.0000 216.0000 2.9315 1.9903 373.6423 351.0000 220.0000 2.9315 1.9349 + 360.2627 351.0000 221.0000 2.9315 2.8999 364.7838 351.0000 222.0000 2.9315 3.8675 + 333.7597 351.0000 223.0000 2.9315 2.9110 252.5817 351.0000 224.0000 2.9315 10.6191 + 216.7567 351.0000 225.0000 2.9315 9.8849 212.6969 351.0000 226.0000 2.9315 9.1376 + 248.1924 351.0000 227.0000 2.9315 2.9263 231.5614 351.0000 228.0000 2.9315 6.5458 + 325.9378 351.0000 231.0000 2.9315 1.9315 344.6189 351.0000 232.0000 2.9315 1.9447 + 317.1679 351.0000 233.0000 2.9315 1.9793 295.7851 351.0000 234.0000 2.9315 1.9812 + 447.7500 351.0000 238.0000 2.9315 1.9143 432.8219 351.0000 239.0000 2.9315 2.8903 + 437.0500 351.0000 240.0000 2.9315 3.9106 422.4320 351.0000 241.0000 2.9315 2.9225 + 374.6663 351.0000 242.0000 2.9315 11.0556 331.5119 351.0000 243.0000 2.9315 9.5402 + 313.5500 351.0000 244.0000 2.9315 8.8895 318.4602 351.0000 245.0000 2.9315 2.9696 + 332.4291 351.0000 246.0000 2.9315 5.7095 420.6714 351.0000 249.0000 2.9315 1.9378 + 457.2860 351.0000 250.0000 2.9315 1.9505 432.3357 351.0000 251.0000 2.9315 1.9523 + 417.8991 351.0000 252.0000 2.9315 1.9639 542.0984 351.0000 256.0000 2.9315 1.8467 + 563.2228 351.0000 257.0000 2.9315 2.9175 419.0873 351.0000 272.0000 2.9315 3.8840 + 437.0018 351.0000 273.0000 2.9315 2.8988 407.1354 351.0000 274.0000 2.9315 10.9153 + 370.6012 351.0000 275.0000 2.9315 9.8054 349.2565 351.0000 276.0000 2.9315 9.1527 + 355.1613 351.0000 277.0000 2.9315 2.9424 373.5016 351.0000 278.0000 2.9315 6.6669 + 450.3097 351.0000 281.0000 2.9315 1.9302 476.0785 351.0000 282.0000 2.9315 1.9356 + 485.9225 351.0000 283.0000 2.9315 1.9655 482.9144 351.0000 284.0000 2.9315 1.9639 + 596.9827 351.0000 288.0000 2.9315 1.8075 113.7542 351.0000 305.0000 2.9315 2.9128 + 102.5148 351.0000 306.0000 2.9315 2.9987 77.5440 351.0000 307.0000 2.9315 2.9903 + 252.4713 351.0000 313.0000 2.9315 2.9146 301.9669 351.0000 314.0000 2.9315 2.9407 + 251.3243 351.0000 315.0000 2.9315 2.9859 221.6512 351.0000 327.0000 2.9315 7.7785 + 242.3721 351.0000 328.0000 2.9315 6.2918 268.0968 351.0000 331.0000 2.9315 2.9233 + 309.5410 351.0000 332.0000 2.9315 2.9186 305.7538 351.0000 333.0000 2.9315 2.9709 + 360.0757 351.0000 349.0000 2.9315 2.9353 413.0024 351.0000 350.0000 2.9315 2.9259 + 417.3790 351.0000 351.0000 2.9315 2.9315 34.0440 381.0000 1.0000 2.9420 0.9118 + 23.0696 381.0000 2.0000 2.9420 0.0000 489.8797 381.0000 3.0000 2.9420 0.0000 + 292.4030 381.0000 4.0000 2.9420 0.0000 200.9621 381.0000 5.0000 2.9420 0.0000 + 138.0532 381.0000 6.0000 2.9420 0.0000 97.8835 381.0000 7.0000 2.9420 0.0000 + 74.9096 381.0000 8.0000 2.9420 0.0000 57.3189 381.0000 9.0000 2.9420 0.0000 + 44.4781 381.0000 10.0000 2.9420 0.0000 587.3739 381.0000 11.0000 2.9420 0.0000 + 463.3959 381.0000 12.0000 2.9420 0.0000 431.4299 381.0000 13.0000 2.9420 0.0000 + 344.6238 381.0000 14.0000 2.9420 0.0000 272.0320 381.0000 15.0000 2.9420 0.0000 + 227.7137 381.0000 16.0000 2.9420 0.0000 187.6239 381.0000 17.0000 2.9420 0.0000 + 154.7419 381.0000 18.0000 2.9420 0.0000 959.7442 381.0000 19.0000 2.9420 0.0000 + 806.8500 381.0000 20.0000 2.9420 0.0000 669.5176 381.0000 21.0000 2.9420 0.0000 + 649.5230 381.0000 22.0000 2.9420 0.0000 596.3924 381.0000 23.0000 2.9420 0.0000 + 470.7581 381.0000 24.0000 2.9420 0.0000 515.5142 381.0000 25.0000 2.9420 0.0000 + 405.6573 381.0000 26.0000 2.9420 0.0000 431.6118 381.0000 27.0000 2.9420 0.0000 + 443.3798 381.0000 28.0000 2.9420 0.0000 340.7523 381.0000 29.0000 2.9420 0.0000 + 352.0729 381.0000 30.0000 2.9420 0.0000 415.4361 381.0000 31.0000 2.9420 0.0000 + 370.0955 381.0000 32.0000 2.9420 0.0000 318.7696 381.0000 33.0000 2.9420 0.0000 + 287.9015 381.0000 34.0000 2.9420 0.0000 253.7108 381.0000 35.0000 2.9420 0.0000 + 222.1354 381.0000 36.0000 2.9420 0.0000 1078.1354 381.0000 37.0000 2.9420 0.0000 + 961.1299 381.0000 38.0000 2.9420 0.0000 848.6422 381.0000 39.0000 2.9420 0.0000 + 766.6967 381.0000 40.0000 2.9420 0.0000 701.6905 381.0000 41.0000 2.9420 0.0000 + 545.5653 381.0000 42.0000 2.9420 0.0000 607.1105 381.0000 43.0000 2.9420 0.0000 + 466.1298 381.0000 44.0000 2.9420 0.0000 508.9476 381.0000 45.0000 2.9420 0.0000 + 473.0843 381.0000 46.0000 2.9420 0.0000 394.8051 381.0000 47.0000 2.9420 0.0000 + 418.1898 381.0000 48.0000 2.9420 0.0000 520.8160 381.0000 49.0000 2.9420 0.0000 + 485.3299 381.0000 50.0000 2.9420 0.0000 436.0471 381.0000 51.0000 2.9420 0.0000 + 406.6647 381.0000 52.0000 2.9420 0.0000 369.8357 381.0000 53.0000 2.9420 0.0000 + 334.4178 381.0000 54.0000 2.9420 0.0000 1314.1925 381.0000 55.0000 2.9420 0.0000 + 1222.7209 381.0000 56.0000 2.9420 0.0000 1082.5707 381.0000 57.0000 2.9420 0.0000 + 514.6641 381.0000 58.0000 2.9420 2.7991 1086.6848 381.0000 59.0000 2.9420 0.0000 + 1044.7574 381.0000 60.0000 2.9420 0.0000 1018.8963 381.0000 61.0000 2.9420 0.0000 + 995.0641 381.0000 62.0000 2.9420 0.0000 973.9392 381.0000 63.0000 2.9420 0.0000 + 773.2824 381.0000 64.0000 2.9420 0.0000 860.2991 381.0000 65.0000 2.9420 0.0000 + 830.9998 381.0000 66.0000 2.9420 0.0000 880.0751 381.0000 67.0000 2.9420 0.0000 + 861.5388 381.0000 68.0000 2.9420 0.0000 844.9151 381.0000 69.0000 2.9420 0.0000 + 834.6788 381.0000 70.0000 2.9420 0.0000 707.8662 381.0000 71.0000 2.9420 0.0000 + 701.3537 381.0000 72.0000 2.9420 0.0000 643.4657 381.0000 73.0000 2.9420 0.0000 + 546.1830 381.0000 74.0000 2.9420 0.0000 556.5884 381.0000 75.0000 2.9420 0.0000 + 506.8433 381.0000 76.0000 2.9420 0.0000 466.0279 381.0000 77.0000 2.9420 0.0000 + 389.1856 381.0000 78.0000 2.9420 0.0000 364.4011 381.0000 79.0000 2.9420 0.0000 + 375.2501 381.0000 80.0000 2.9420 0.0000 536.7156 381.0000 81.0000 2.9420 0.0000 + 527.6596 381.0000 82.0000 2.9420 0.0000 488.2687 381.0000 83.0000 2.9420 0.0000 + 467.6583 381.0000 84.0000 2.9420 0.0000 433.9063 381.0000 85.0000 2.9420 0.0000 + 399.7356 381.0000 86.0000 2.9420 0.0000 1248.8786 381.0000 87.0000 2.9420 0.0000 + 1214.2011 381.0000 88.0000 2.9420 0.0000 1081.0636 381.0000 89.0000 2.9420 0.0000 + 980.1662 381.0000 90.0000 2.9420 0.0000 969.7018 381.0000 91.0000 2.9420 0.0000 + 939.2230 381.0000 92.0000 2.9420 0.0000 962.1098 381.0000 93.0000 2.9420 0.0000 + 932.5740 381.0000 94.0000 2.9420 0.0000 54.1121 381.0000 101.0000 2.9420 0.0000 + 170.5218 381.0000 103.0000 2.9420 0.9865 218.3876 381.0000 104.0000 2.9420 0.9808 + 169.8480 381.0000 105.0000 2.9420 0.9706 129.5334 381.0000 106.0000 2.9420 0.9868 + 91.3606 381.0000 107.0000 2.9420 0.9944 67.3849 381.0000 108.0000 2.9420 0.9925 + 47.1316 381.0000 109.0000 2.9420 0.9982 248.7497 381.0000 111.0000 2.9420 0.9684 + 383.8279 381.0000 112.0000 2.9420 0.9628 392.0185 381.0000 113.0000 2.9420 0.9648 + 319.2229 381.0000 114.0000 2.9420 0.9507 264.2073 381.0000 115.0000 2.9420 0.9947 + 225.1930 381.0000 116.0000 2.9420 0.9948 185.6743 381.0000 117.0000 2.9420 0.9972 + 346.4279 381.0000 119.0000 2.9420 0.9767 646.8975 381.0000 120.0000 2.9420 0.9831 + 349.6976 381.0000 121.0000 2.9420 1.8627 337.8590 381.0000 122.0000 2.9420 1.8299 + 331.1074 381.0000 123.0000 2.9420 1.9138 327.6896 381.0000 124.0000 2.9420 1.8269 + 303.2493 381.0000 125.0000 2.9420 1.6406 281.2690 381.0000 126.0000 2.9420 1.6483 + 268.4120 381.0000 127.0000 2.9420 1.7149 262.3055 381.0000 128.0000 2.9420 1.7937 + 258.0675 381.0000 129.0000 2.9420 0.9576 244.0416 381.0000 130.0000 2.9420 1.9419 + 391.2329 381.0000 131.0000 2.9420 0.9601 347.1306 381.0000 132.0000 2.9420 0.9434 + 313.5655 381.0000 133.0000 2.9420 0.9889 287.9969 381.0000 134.0000 2.9420 0.9901 + 255.3964 381.0000 135.0000 2.9420 0.9974 414.5157 381.0000 137.0000 2.9420 0.9738 + 786.7662 381.0000 138.0000 2.9420 0.9801 611.0884 381.0000 139.0000 2.9420 1.9153 + 462.4046 381.0000 140.0000 2.9420 1.9355 466.9543 381.0000 141.0000 2.9420 1.9545 + 436.6063 381.0000 142.0000 2.9420 1.9420 485.9637 381.0000 143.0000 2.9420 1.6682 + 383.0038 381.0000 144.0000 2.9420 1.8584 358.7251 381.0000 145.0000 2.9420 1.9003 + 333.6771 381.0000 146.0000 2.9420 1.8630 322.5850 381.0000 147.0000 2.9420 0.9679 + 320.3273 381.0000 148.0000 2.9420 1.9539 497.8873 381.0000 149.0000 2.9420 0.9633 + 454.1303 381.0000 150.0000 2.9420 0.9514 427.8429 381.0000 151.0000 2.9420 0.9749 + 406.4893 381.0000 152.0000 2.9420 0.9811 373.2539 381.0000 153.0000 2.9420 0.9968 + 492.9613 381.0000 155.0000 2.9420 0.9909 1017.3501 381.0000 156.0000 2.9420 0.9797 + 772.5069 381.0000 157.0000 2.9420 1.9373 499.4222 381.0000 159.0000 2.9420 2.9425 + 489.1500 381.0000 160.0000 2.9420 2.9455 473.8761 381.0000 161.0000 2.9420 2.9413 + 475.6212 381.0000 162.0000 2.9420 2.9300 456.8593 381.0000 163.0000 2.9420 1.8286 + 478.3235 381.0000 164.0000 2.9420 2.8732 449.8247 381.0000 165.0000 2.9420 2.9086 + 456.7283 381.0000 166.0000 2.9420 2.8965 427.3935 381.0000 167.0000 2.9420 2.9242 + 415.3826 381.0000 168.0000 2.9420 2.9282 412.5627 381.0000 169.0000 2.9420 2.9246 + 432.7038 381.0000 170.0000 2.9420 2.8482 398.9750 381.0000 171.0000 2.9420 2.9219 + 532.8705 381.0000 172.0000 2.9420 1.9254 497.1217 381.0000 173.0000 2.9420 1.9459 + 456.0611 381.0000 174.0000 2.9420 1.9292 459.4909 381.0000 175.0000 2.9420 1.8104 + 407.1088 381.0000 176.0000 2.9420 1.8858 383.8899 381.0000 177.0000 2.9420 1.8648 + 367.2303 381.0000 178.0000 2.9420 1.9188 351.2614 381.0000 179.0000 2.9420 0.9846 + 340.7306 381.0000 180.0000 2.9420 1.9896 536.1040 381.0000 181.0000 2.9420 0.9267 + 492.5150 381.0000 182.0000 2.9420 0.9383 479.6659 381.0000 183.0000 2.9420 0.9820 + 468.0360 381.0000 184.0000 2.9420 0.9815 439.1386 381.0000 185.0000 2.9420 0.9954 + 555.3995 381.0000 187.0000 2.9420 0.9705 1017.0070 381.0000 188.0000 2.9420 0.9662 + 590.6951 381.0000 189.0000 2.9420 2.9070 677.3233 381.0000 190.0000 2.9420 2.8844 + 607.5322 381.0000 191.0000 2.9420 2.8738 539.8660 381.0000 192.0000 2.9420 2.8878 + 520.2188 381.0000 193.0000 2.9420 2.9095 616.7356 381.0000 194.0000 2.9420 1.9209 + 145.0784 381.0000 204.0000 2.9420 1.9697 143.2743 381.0000 205.0000 2.9420 1.9441 + 106.3656 381.0000 206.0000 2.9420 1.9985 85.9468 381.0000 207.0000 2.9420 2.0143 + 59.7227 381.0000 208.0000 2.9420 1.9887 255.1940 381.0000 212.0000 2.9420 1.9496 + 308.0881 381.0000 213.0000 2.9420 1.9311 297.5340 381.0000 214.0000 2.9420 1.9435 + 260.4972 381.0000 215.0000 2.9420 2.0102 220.7025 381.0000 216.0000 2.9420 1.9903 + 358.4368 381.0000 220.0000 2.9420 1.9349 346.2056 381.0000 221.0000 2.9420 2.8999 + 350.6404 381.0000 222.0000 2.9420 3.8675 321.0422 381.0000 223.0000 2.9420 2.9110 + 244.3195 381.0000 224.0000 2.9420 10.6191 210.3030 381.0000 225.0000 2.9420 9.8849 + 206.3212 381.0000 226.0000 2.9420 9.1376 239.6026 381.0000 227.0000 2.9420 2.9263 + 223.8146 381.0000 228.0000 2.9420 6.5458 312.9041 381.0000 231.0000 2.9420 1.9315 + 331.0729 381.0000 232.0000 2.9420 1.9447 305.6561 381.0000 233.0000 2.9420 1.9793 + 285.8005 381.0000 234.0000 2.9420 1.9812 429.9551 381.0000 238.0000 2.9420 1.9143 + 416.4727 381.0000 239.0000 2.9420 2.8903 420.8795 381.0000 240.0000 2.9420 3.9106 + 407.0677 381.0000 241.0000 2.9420 2.9225 362.2260 381.0000 242.0000 2.9420 11.0556 + 321.3971 381.0000 243.0000 2.9420 9.5402 304.3576 381.0000 244.0000 2.9420 8.8895 + 308.5623 381.0000 245.0000 2.9420 2.9696 321.7342 381.0000 246.0000 2.9420 5.7095 + 404.9097 381.0000 249.0000 2.9420 1.9378 439.8018 381.0000 250.0000 2.9420 1.9505 + 416.7050 381.0000 251.0000 2.9420 1.9523 403.4163 381.0000 252.0000 2.9420 1.9639 + 521.0788 381.0000 256.0000 2.9420 1.8467 541.6090 381.0000 257.0000 2.9420 2.9175 + 404.1315 381.0000 272.0000 2.9420 3.8840 421.3244 381.0000 273.0000 2.9420 2.8988 + 393.6464 381.0000 274.0000 2.9420 10.9153 359.2418 381.0000 275.0000 2.9420 9.8054 + 339.2369 381.0000 276.0000 2.9420 9.1527 344.5385 381.0000 277.0000 2.9420 2.9424 + 362.0493 381.0000 278.0000 2.9420 6.6669 434.5543 381.0000 281.0000 2.9420 1.9302 + 459.1651 381.0000 282.0000 2.9420 1.9356 468.8505 381.0000 283.0000 2.9420 1.9655 + 466.3582 381.0000 284.0000 2.9420 1.9639 573.9232 381.0000 288.0000 2.9420 1.8075 + 110.1523 381.0000 305.0000 2.9420 2.9128 99.6175 381.0000 306.0000 2.9420 2.9987 + 75.9304 381.0000 307.0000 2.9420 2.9903 242.5139 381.0000 313.0000 2.9420 2.9146 + 289.7071 381.0000 314.0000 2.9420 2.9407 242.3861 381.0000 315.0000 2.9420 2.9859 + 214.6371 381.0000 327.0000 2.9420 7.7785 233.8462 381.0000 328.0000 2.9420 6.2918 + 258.3342 381.0000 331.0000 2.9420 2.9233 297.9467 381.0000 332.0000 2.9420 2.9186 + 294.8707 381.0000 333.0000 2.9420 2.9709 347.8009 381.0000 349.0000 2.9420 2.9353 + 398.0530 381.0000 350.0000 2.9420 2.9259 402.6179 381.0000 351.0000 2.9420 2.9315 + 389.6069 381.0000 381.0000 2.9420 2.9420 39.2018 382.0000 1.0000 2.9081 0.9118 + 26.1542 382.0000 2.0000 2.9081 0.0000 592.3075 382.0000 3.0000 2.9081 0.0000 + 346.5936 382.0000 4.0000 2.9081 0.0000 235.1145 382.0000 5.0000 2.9081 0.0000 + 159.7857 382.0000 6.0000 2.9081 0.0000 112.3115 382.0000 7.0000 2.9081 0.0000 + 85.3902 382.0000 8.0000 2.9081 0.0000 64.9548 382.0000 9.0000 2.9081 0.0000 + 50.1543 382.0000 10.0000 2.9081 0.0000 709.0607 382.0000 11.0000 2.9081 0.0000 + 551.1519 382.0000 12.0000 2.9081 0.0000 509.9025 382.0000 13.0000 2.9081 0.0000 + 403.7564 382.0000 14.0000 2.9081 0.0000 316.1825 382.0000 15.0000 2.9081 0.0000 + 263.1882 382.0000 16.0000 2.9081 0.0000 215.6394 382.0000 17.0000 2.9081 0.0000 + 176.9336 382.0000 18.0000 2.9081 0.0000 1160.2124 382.0000 19.0000 2.9081 0.0000 + 964.8298 382.0000 20.0000 2.9081 0.0000 798.4890 382.0000 21.0000 2.9081 0.0000 + 772.4068 382.0000 22.0000 2.9081 0.0000 708.0447 382.0000 23.0000 2.9081 0.0000 + 558.1380 382.0000 24.0000 2.9081 0.0000 610.5295 382.0000 25.0000 2.9081 0.0000 + 479.6119 382.0000 26.0000 2.9081 0.0000 509.1470 382.0000 27.0000 2.9081 0.0000 + 523.9545 382.0000 28.0000 2.9081 0.0000 402.0369 382.0000 29.0000 2.9081 0.0000 + 413.7686 382.0000 30.0000 2.9081 0.0000 489.3247 382.0000 31.0000 2.9081 0.0000 + 433.0951 382.0000 32.0000 2.9081 0.0000 370.6520 382.0000 33.0000 2.9081 0.0000 + 333.3205 382.0000 34.0000 2.9081 0.0000 292.3878 382.0000 35.0000 2.9081 0.0000 + 254.8700 382.0000 36.0000 2.9081 0.0000 1301.3911 382.0000 37.0000 2.9081 0.0000 + 1149.3369 382.0000 38.0000 2.9081 0.0000 1009.8313 382.0000 39.0000 2.9081 0.0000 + 909.3382 382.0000 40.0000 2.9081 0.0000 830.2965 382.0000 41.0000 2.9081 0.0000 + 642.6165 382.0000 42.0000 2.9081 0.0000 716.3526 382.0000 43.0000 2.9081 0.0000 + 547.2593 382.0000 44.0000 2.9081 0.0000 598.0023 382.0000 45.0000 2.9081 0.0000 + 555.0356 382.0000 46.0000 2.9081 0.0000 462.9202 382.0000 47.0000 2.9081 0.0000 + 489.6613 382.0000 48.0000 2.9081 0.0000 612.7955 382.0000 49.0000 2.9081 0.0000 + 568.2437 382.0000 50.0000 2.9081 0.0000 507.8330 382.0000 51.0000 2.9081 0.0000 + 471.9862 382.0000 52.0000 2.9081 0.0000 427.5836 382.0000 53.0000 2.9081 0.0000 + 385.1572 382.0000 54.0000 2.9081 0.0000 1585.5821 382.0000 55.0000 2.9081 0.0000 + 1463.9079 382.0000 56.0000 2.9081 0.0000 1289.9128 382.0000 57.0000 2.9081 0.0000 + 599.6974 382.0000 58.0000 2.9081 2.7991 1298.6324 382.0000 59.0000 2.9081 0.0000 + 1247.6103 382.0000 60.0000 2.9081 0.0000 1216.4825 382.0000 61.0000 2.9081 0.0000 + 1187.8330 382.0000 62.0000 2.9081 0.0000 1162.4311 382.0000 63.0000 2.9081 0.0000 + 917.3306 382.0000 64.0000 2.9081 0.0000 1028.0579 382.0000 65.0000 2.9081 0.0000 + 992.0813 382.0000 66.0000 2.9081 0.0000 1049.2180 382.0000 67.0000 2.9081 0.0000 + 1027.0231 382.0000 68.0000 2.9081 0.0000 1007.0473 382.0000 69.0000 2.9081 0.0000 + 995.1198 382.0000 70.0000 2.9081 0.0000 840.4504 382.0000 71.0000 2.9081 0.0000 + 828.7920 382.0000 72.0000 2.9081 0.0000 757.8023 382.0000 73.0000 2.9081 0.0000 + 641.0420 382.0000 74.0000 2.9081 0.0000 652.5688 382.0000 75.0000 2.9081 0.0000 + 592.4333 382.0000 76.0000 2.9081 0.0000 543.3358 382.0000 77.0000 2.9081 0.0000 + 452.1951 382.0000 78.0000 2.9081 0.0000 422.8231 382.0000 79.0000 2.9081 0.0000 + 435.1415 382.0000 80.0000 2.9081 0.0000 629.9484 382.0000 81.0000 2.9081 0.0000 + 617.1810 382.0000 82.0000 2.9081 0.0000 568.5138 382.0000 83.0000 2.9081 0.0000 + 542.9939 382.0000 84.0000 2.9081 0.0000 502.0246 382.0000 85.0000 2.9081 0.0000 + 460.9178 382.0000 86.0000 2.9081 0.0000 1500.8218 382.0000 87.0000 2.9081 0.0000 + 1449.8449 382.0000 88.0000 2.9081 0.0000 1285.1719 382.0000 89.0000 2.9081 0.0000 + 1158.7220 382.0000 90.0000 2.9081 0.0000 1148.8988 382.0000 91.0000 2.9081 0.0000 + 1112.5743 382.0000 92.0000 2.9081 0.0000 1143.4030 382.0000 93.0000 2.9081 0.0000 + 1107.6634 382.0000 94.0000 2.9081 0.0000 62.8530 382.0000 101.0000 2.9081 0.0000 + 201.7030 382.0000 103.0000 2.9081 0.9865 257.6239 382.0000 104.0000 2.9081 0.9808 + 198.0952 382.0000 105.0000 2.9081 0.9706 149.8821 382.0000 106.0000 2.9081 0.9868 + 104.7587 382.0000 107.0000 2.9081 0.9944 76.6634 382.0000 108.0000 2.9081 0.9925 + 53.0888 382.0000 109.0000 2.9081 0.9982 294.6514 382.0000 111.0000 2.9081 0.9684 + 455.2629 382.0000 112.0000 2.9081 0.9628 462.5420 382.0000 113.0000 2.9081 0.9648 + 373.4529 382.0000 114.0000 2.9081 0.9507 306.9694 382.0000 115.0000 2.9081 0.9947 + 260.2857 382.0000 116.0000 2.9081 0.9948 213.4044 382.0000 117.0000 2.9081 0.9972 + 407.6191 382.0000 119.0000 2.9081 0.9767 772.3000 382.0000 120.0000 2.9081 0.9831 + 409.1716 382.0000 121.0000 2.9081 1.8627 395.1139 382.0000 122.0000 2.9081 1.8299 + 387.2267 382.0000 123.0000 2.9081 1.9138 383.5023 382.0000 124.0000 2.9081 1.8269 + 353.6294 382.0000 125.0000 2.9081 1.6406 327.5382 382.0000 126.0000 2.9081 1.6483 + 312.4971 382.0000 127.0000 2.9081 1.7149 305.4707 382.0000 128.0000 2.9081 1.7937 + 301.3661 382.0000 129.0000 2.9081 0.9576 283.5532 382.0000 130.0000 2.9081 1.9419 + 460.0238 382.0000 131.0000 2.9081 0.9601 405.5330 382.0000 132.0000 2.9081 0.9434 + 364.4441 382.0000 133.0000 2.9081 0.9889 333.4424 382.0000 134.0000 2.9081 0.9901 + 294.3914 382.0000 135.0000 2.9081 0.9974 486.8363 382.0000 137.0000 2.9081 0.9738 + 939.4922 382.0000 138.0000 2.9081 0.9801 722.4614 382.0000 139.0000 2.9081 1.9153 + 541.0462 382.0000 140.0000 2.9081 1.9355 546.3988 382.0000 141.0000 2.9081 1.9545 + 509.9907 382.0000 142.0000 2.9081 1.9420 570.3551 382.0000 143.0000 2.9081 1.6682 + 445.5869 382.0000 144.0000 2.9081 1.8584 417.0362 382.0000 145.0000 2.9081 1.9003 + 387.5029 382.0000 146.0000 2.9081 1.8630 374.7963 382.0000 147.0000 2.9081 0.9679 + 371.2868 382.0000 148.0000 2.9081 1.9539 584.7350 382.0000 149.0000 2.9081 0.9633 + 530.5501 382.0000 150.0000 2.9081 0.9514 497.9006 382.0000 151.0000 2.9081 0.9749 + 471.6875 382.0000 152.0000 2.9081 0.9811 431.5739 382.0000 153.0000 2.9081 0.9968 + 576.8200 382.0000 155.0000 2.9081 0.9909 1216.7162 382.0000 156.0000 2.9081 0.9797 + 913.9175 382.0000 157.0000 2.9081 1.9373 581.7276 382.0000 159.0000 2.9081 2.9425 + 569.7217 382.0000 160.0000 2.9081 2.9455 551.7587 382.0000 161.0000 2.9081 2.9413 + 554.2264 382.0000 162.0000 2.9081 2.9300 533.5962 382.0000 163.0000 2.9081 1.8286 + 557.6072 382.0000 164.0000 2.9081 2.8732 523.9700 382.0000 165.0000 2.9081 2.9086 + 532.7377 382.0000 166.0000 2.9081 2.8965 497.5158 382.0000 167.0000 2.9081 2.9242 + 483.4088 382.0000 168.0000 2.9081 2.9282 480.2439 382.0000 169.0000 2.9081 2.9246 + 504.4145 382.0000 170.0000 2.9081 2.8482 464.2697 382.0000 171.0000 2.9081 2.9219 + 625.7708 382.0000 172.0000 2.9081 1.9254 581.8345 382.0000 173.0000 2.9081 1.9459 + 531.9028 382.0000 174.0000 2.9081 1.9292 537.4151 382.0000 175.0000 2.9081 1.8104 + 472.4506 382.0000 176.0000 2.9081 1.8858 444.8385 382.0000 177.0000 2.9081 1.8648 + 425.1239 382.0000 178.0000 2.9081 1.9188 406.5281 382.0000 179.0000 2.9081 0.9846 + 393.3591 382.0000 180.0000 2.9081 1.9896 628.4522 382.0000 181.0000 2.9081 0.9267 + 574.4420 382.0000 182.0000 2.9081 0.9383 557.9166 382.0000 183.0000 2.9081 0.9820 + 543.2242 382.0000 184.0000 2.9081 0.9815 508.0886 382.0000 185.0000 2.9081 0.9954 + 649.7225 382.0000 187.0000 2.9081 0.9705 1212.5054 382.0000 188.0000 2.9081 0.9662 + 688.2431 382.0000 189.0000 2.9081 2.9070 792.5242 382.0000 190.0000 2.9081 2.8844 + 709.3647 382.0000 191.0000 2.9081 2.8738 628.1627 382.0000 192.0000 2.9081 2.8878 + 604.7739 382.0000 193.0000 2.9081 2.9095 723.7419 382.0000 194.0000 2.9081 1.9209 + 169.2036 382.0000 204.0000 2.9081 1.9697 166.5821 382.0000 205.0000 2.9081 1.9441 + 122.5321 382.0000 206.0000 2.9081 1.9985 98.4421 382.0000 207.0000 2.9081 2.0143 + 67.7670 382.0000 208.0000 2.9081 1.9887 299.2984 382.0000 212.0000 2.9081 1.9496 + 361.5162 382.0000 213.0000 2.9081 1.9311 347.6124 382.0000 214.0000 2.9081 1.9435 + 302.7590 382.0000 215.0000 2.9081 2.0102 255.0496 382.0000 216.0000 2.9081 1.9903 + 419.8573 382.0000 220.0000 2.9081 1.9349 404.2011 382.0000 221.0000 2.9081 2.8999 + 409.2513 382.0000 222.0000 2.9081 3.8675 374.6218 382.0000 223.0000 2.9081 2.9110 + 283.2023 382.0000 224.0000 2.9081 10.6191 242.8350 382.0000 225.0000 2.9081 9.8849 + 238.3322 382.0000 226.0000 2.9081 9.1376 278.4951 382.0000 227.0000 2.9081 2.9263 + 259.7061 382.0000 228.0000 2.9081 6.5458 365.6931 382.0000 231.0000 2.9081 1.9315 + 386.3229 382.0000 232.0000 2.9081 1.9447 355.0035 382.0000 233.0000 2.9081 1.9793 + 330.8502 382.0000 234.0000 2.9081 1.9812 503.1891 382.0000 238.0000 2.9081 1.9143 + 485.4008 382.0000 239.0000 2.9081 2.8903 489.8962 382.0000 240.0000 2.9081 3.9106 + 473.7746 382.0000 241.0000 2.9081 2.9225 419.8126 382.0000 242.0000 2.9081 11.0556 + 371.2264 382.0000 243.0000 2.9081 9.5402 351.0719 382.0000 244.0000 2.9081 8.8895 + 357.0662 382.0000 245.0000 2.9081 2.9696 372.7868 382.0000 246.0000 2.9081 5.7095 + 472.3277 382.0000 249.0000 2.9081 1.9378 513.2219 382.0000 250.0000 2.9081 1.9505 + 484.4645 382.0000 251.0000 2.9081 1.9523 467.9467 382.0000 252.0000 2.9081 1.9639 + 608.9586 382.0000 256.0000 2.9081 1.8467 631.8289 382.0000 257.0000 2.9081 2.9175 + 469.4958 382.0000 272.0000 2.9081 3.8840 490.0685 382.0000 273.0000 2.9081 2.8988 + 456.1284 382.0000 274.0000 2.9081 10.9153 414.9709 382.0000 275.0000 2.9081 9.8054 + 390.8937 382.0000 276.0000 2.9081 9.1527 398.0429 382.0000 277.0000 2.9081 2.9424 + 418.5282 382.0000 278.0000 2.9081 6.6669 505.3770 382.0000 281.0000 2.9081 1.9302 + 534.0827 382.0000 282.0000 2.9081 1.9356 544.6976 382.0000 283.0000 2.9081 1.9655 + 541.0239 382.0000 284.0000 2.9081 1.9639 670.4694 382.0000 288.0000 2.9081 1.8075 + 127.1338 382.0000 305.0000 2.9081 2.9128 114.6932 382.0000 306.0000 2.9081 2.9987 + 86.8061 382.0000 307.0000 2.9081 2.9903 282.6647 382.0000 313.0000 2.9081 2.9146 + 338.6601 382.0000 314.0000 2.9081 2.9407 281.1375 382.0000 315.0000 2.9081 2.9859 + 248.4710 382.0000 327.0000 2.9081 7.7785 272.2302 382.0000 328.0000 2.9081 6.2918 + 300.1272 382.0000 331.0000 2.9081 2.9233 346.6758 382.0000 332.0000 2.9081 2.9186 + 342.1276 382.0000 333.0000 2.9081 2.9709 403.4644 382.0000 349.0000 2.9081 2.9353 + 462.9834 382.0000 350.0000 2.9081 2.9259 467.5067 382.0000 351.0000 2.9081 2.9315 + 451.1674 382.0000 381.0000 2.9081 2.9420 524.1840 382.0000 382.0000 2.9081 2.9081 + 39.7438 383.0000 1.0000 2.9500 0.9118 26.6278 383.0000 2.0000 2.9500 0.0000 + 583.2198 383.0000 3.0000 2.9500 0.0000 346.2383 383.0000 4.0000 2.9500 0.0000 + 236.6200 383.0000 5.0000 2.9500 0.0000 161.5922 383.0000 6.0000 2.9500 0.0000 + 113.9364 383.0000 7.0000 2.9500 0.0000 86.7914 383.0000 8.0000 2.9500 0.0000 + 66.1131 383.0000 9.0000 2.9500 0.0000 51.0961 383.0000 10.0000 2.9500 0.0000 + 698.7686 383.0000 11.0000 2.9500 0.0000 549.1966 383.0000 12.0000 2.9500 0.0000 + 510.1646 383.0000 13.0000 2.9500 0.0000 406.0593 383.0000 14.0000 2.9500 0.0000 + 319.2724 383.0000 15.0000 2.9500 0.0000 266.3909 383.0000 16.0000 2.9500 0.0000 + 218.7208 383.0000 17.0000 2.9500 0.0000 179.7560 383.0000 18.0000 2.9500 0.0000 + 1140.9307 383.0000 19.0000 2.9500 0.0000 957.0936 383.0000 20.0000 2.9500 0.0000 + 793.6209 383.0000 21.0000 2.9500 0.0000 769.0396 383.0000 22.0000 2.9500 0.0000 + 705.6853 383.0000 23.0000 2.9500 0.0000 556.3538 383.0000 24.0000 2.9500 0.0000 + 609.3943 383.0000 25.0000 2.9500 0.0000 478.8606 383.0000 26.0000 2.9500 0.0000 + 509.4485 383.0000 27.0000 2.9500 0.0000 523.7216 383.0000 28.0000 2.9500 0.0000 + 401.8607 383.0000 29.0000 2.9500 0.0000 414.9210 383.0000 30.0000 2.9500 0.0000 + 490.2801 383.0000 31.0000 2.9500 0.0000 435.6660 383.0000 32.0000 2.9500 0.0000 + 374.1139 383.0000 33.0000 2.9500 0.0000 337.0911 383.0000 34.0000 2.9500 0.0000 + 296.2504 383.0000 35.0000 2.9500 0.0000 258.6489 383.0000 36.0000 2.9500 0.0000 + 1280.7871 383.0000 37.0000 2.9500 0.0000 1139.7642 383.0000 38.0000 2.9500 0.0000 + 1004.8393 383.0000 39.0000 2.9500 0.0000 906.7257 383.0000 40.0000 2.9500 0.0000 + 829.0262 383.0000 41.0000 2.9500 0.0000 643.0649 383.0000 42.0000 2.9500 0.0000 + 716.2664 383.0000 43.0000 2.9500 0.0000 548.5041 383.0000 44.0000 2.9500 0.0000 + 599.3763 383.0000 45.0000 2.9500 0.0000 556.7487 383.0000 46.0000 2.9500 0.0000 + 464.0717 383.0000 47.0000 2.9500 0.0000 491.6555 383.0000 48.0000 2.9500 0.0000 + 613.7787 383.0000 49.0000 2.9500 0.0000 571.0158 383.0000 50.0000 2.9500 0.0000 + 511.8706 383.0000 51.0000 2.9500 0.0000 476.5808 383.0000 52.0000 2.9500 0.0000 + 432.5265 383.0000 53.0000 2.9500 0.0000 390.2393 383.0000 54.0000 2.9500 0.0000 + 1560.8728 383.0000 55.0000 2.9500 0.0000 1450.1356 383.0000 56.0000 2.9500 0.0000 + 1282.1300 383.0000 57.0000 2.9500 0.0000 604.1023 383.0000 58.0000 2.9500 2.7991 + 1287.8172 383.0000 59.0000 2.9500 0.0000 1237.8955 383.0000 60.0000 2.9500 0.0000 + 1207.1956 383.0000 61.0000 2.9500 0.0000 1178.9199 383.0000 62.0000 2.9500 0.0000 + 1153.8573 383.0000 63.0000 2.9500 0.0000 913.9523 383.0000 64.0000 2.9500 0.0000 + 1018.7768 383.0000 65.0000 2.9500 0.0000 983.7902 383.0000 66.0000 2.9500 0.0000 + 1042.3525 383.0000 67.0000 2.9500 0.0000 1020.3958 383.0000 68.0000 2.9500 0.0000 + 1000.6811 383.0000 69.0000 2.9500 0.0000 988.6765 383.0000 70.0000 2.9500 0.0000 + 837.1409 383.0000 71.0000 2.9500 0.0000 828.3636 383.0000 72.0000 2.9500 0.0000 + 758.9121 383.0000 73.0000 2.9500 0.0000 642.9298 383.0000 74.0000 2.9500 0.0000 + 654.9853 383.0000 75.0000 2.9500 0.0000 595.5885 383.0000 76.0000 2.9500 0.0000 + 546.9244 383.0000 77.0000 2.9500 0.0000 455.7373 383.0000 78.0000 2.9500 0.0000 + 426.3352 383.0000 79.0000 2.9500 0.0000 439.0441 383.0000 80.0000 2.9500 0.0000 + 631.4178 383.0000 81.0000 2.9500 0.0000 620.1792 383.0000 82.0000 2.9500 0.0000 + 572.8443 383.0000 83.0000 2.9500 0.0000 547.9751 383.0000 84.0000 2.9500 0.0000 + 507.5258 383.0000 85.0000 2.9500 0.0000 466.6804 383.0000 86.0000 2.9500 0.0000 + 1481.5226 383.0000 87.0000 2.9500 0.0000 1438.7553 383.0000 88.0000 2.9500 0.0000 + 1279.2885 383.0000 89.0000 2.9500 0.0000 1157.4185 383.0000 90.0000 2.9500 0.0000 + 1145.6007 383.0000 91.0000 2.9500 0.0000 1109.4582 383.0000 92.0000 2.9500 0.0000 + 1137.6821 383.0000 93.0000 2.9500 0.0000 1102.5605 383.0000 94.0000 2.9500 0.0000 + 63.4976 383.0000 101.0000 2.9500 0.0000 201.7042 383.0000 103.0000 2.9500 0.9865 + 257.9955 383.0000 104.0000 2.9500 0.9808 199.6369 383.0000 105.0000 2.9500 0.9706 + 151.5488 383.0000 106.0000 2.9500 0.9868 106.2696 383.0000 107.0000 2.9500 0.9944 + 77.9528 383.0000 108.0000 2.9500 0.9925 54.1197 383.0000 109.0000 2.9500 0.9982 + 294.2073 383.0000 111.0000 2.9500 0.9684 454.3280 383.0000 112.0000 2.9500 0.9628 + 463.2133 383.0000 113.0000 2.9500 0.9648 375.8478 383.0000 114.0000 2.9500 0.9507 + 310.0046 383.0000 115.0000 2.9500 0.9947 263.4327 383.0000 116.0000 2.9500 0.9948 + 216.4408 383.0000 117.0000 2.9500 0.9972 408.0824 383.0000 119.0000 2.9500 0.9767 + 766.3809 383.0000 120.0000 2.9500 0.9831 411.3369 383.0000 121.0000 2.9500 1.8627 + 397.2538 383.0000 122.0000 2.9500 1.8299 389.2837 383.0000 123.0000 2.9500 1.9138 + 385.3409 383.0000 124.0000 2.9500 1.8269 356.1642 383.0000 125.0000 2.9500 1.6406 + 330.0977 383.0000 126.0000 2.9500 1.6483 314.9283 383.0000 127.0000 2.9500 1.7149 + 307.7839 383.0000 128.0000 2.9500 1.7937 303.0894 383.0000 129.0000 2.9500 0.9576 + 286.1115 383.0000 130.0000 2.9500 1.9419 461.3882 383.0000 131.0000 2.9500 0.9601 + 408.3015 383.0000 132.0000 2.9500 0.9434 367.9163 383.0000 133.0000 2.9500 0.9889 + 337.2018 383.0000 134.0000 2.9500 0.9901 298.2495 383.0000 135.0000 2.9500 0.9974 + 487.8113 383.0000 137.0000 2.9500 0.9738 931.8633 383.0000 138.0000 2.9500 0.9801 + 721.3882 383.0000 139.0000 2.9500 1.9153 543.7314 383.0000 140.0000 2.9500 1.9355 + 549.0417 383.0000 141.0000 2.9500 1.9545 512.8620 383.0000 142.0000 2.9500 1.9420 + 571.7958 383.0000 143.0000 2.9500 1.6682 449.0481 383.0000 144.0000 2.9500 1.8584 + 420.3354 383.0000 145.0000 2.9500 1.9003 390.6999 383.0000 146.0000 2.9500 1.8630 + 377.7464 383.0000 147.0000 2.9500 0.9679 374.8687 383.0000 148.0000 2.9500 1.9539 + 586.3425 383.0000 149.0000 2.9500 0.9633 533.7812 383.0000 150.0000 2.9500 0.9514 + 502.0601 383.0000 151.0000 2.9500 0.9749 476.3335 383.0000 152.0000 2.9500 0.9811 + 436.5534 383.0000 153.0000 2.9500 0.9968 579.5093 383.0000 155.0000 2.9500 0.9909 + 1205.2309 383.0000 156.0000 2.9500 0.9797 912.0597 383.0000 157.0000 2.9500 1.9373 + 586.0972 383.0000 159.0000 2.9500 2.9425 574.0159 383.0000 160.0000 2.9500 2.9455 + 555.9973 383.0000 161.0000 2.9500 2.9413 558.2314 383.0000 162.0000 2.9500 2.9300 + 536.6052 383.0000 163.0000 2.9500 1.8286 561.5696 383.0000 164.0000 2.9500 2.8732 + 527.8827 383.0000 165.0000 2.9500 2.9086 536.2698 383.0000 166.0000 2.9500 2.8965 + 501.4295 383.0000 167.0000 2.9500 2.9242 487.2828 383.0000 168.0000 2.9500 2.9282 + 484.0388 383.0000 169.0000 2.9500 2.9246 508.0972 383.0000 170.0000 2.9500 2.8482 + 468.0488 383.0000 171.0000 2.9500 2.9219 627.4941 383.0000 172.0000 2.9500 1.9254 + 584.5100 383.0000 173.0000 2.9500 1.9459 535.3435 383.0000 174.0000 2.9500 1.9292 + 539.9690 383.0000 175.0000 2.9500 1.8104 476.7436 383.0000 176.0000 2.9500 1.8858 + 449.1250 383.0000 177.0000 2.9500 1.8648 429.3508 383.0000 178.0000 2.9500 1.9188 + 410.5084 383.0000 179.0000 2.9500 0.9846 397.8225 383.0000 180.0000 2.9500 1.9896 + 630.5078 383.0000 181.0000 2.9500 0.9267 578.1795 383.0000 182.0000 2.9500 0.9383 + 562.5087 383.0000 183.0000 2.9500 0.9820 548.3431 383.0000 184.0000 2.9500 0.9815 + 513.6750 383.0000 185.0000 2.9500 0.9954 652.8924 383.0000 187.0000 2.9500 0.9705 + 1203.7016 383.0000 188.0000 2.9500 0.9662 693.3775 383.0000 189.0000 2.9500 2.9070 + 796.2100 383.0000 190.0000 2.9500 2.8844 713.2877 383.0000 191.0000 2.9500 2.8738 + 632.9884 383.0000 192.0000 2.9500 2.8878 609.6938 383.0000 193.0000 2.9500 2.9095 + 725.3752 383.0000 194.0000 2.9500 1.9209 170.6122 383.0000 204.0000 2.9500 1.9697 + 168.1026 383.0000 205.0000 2.9500 1.9441 124.1305 383.0000 206.0000 2.9500 1.9985 + 99.8902 383.0000 207.0000 2.9500 2.0143 68.9389 383.0000 208.0000 2.9500 1.9887 + 300.8277 383.0000 212.0000 2.9500 1.9496 363.1985 383.0000 213.0000 2.9500 1.9311 + 350.0833 383.0000 214.0000 2.9500 1.9435 305.6669 383.0000 215.0000 2.9500 2.0102 + 258.1402 383.0000 216.0000 2.9500 1.9903 421.8520 383.0000 220.0000 2.9500 1.9349 + 406.9281 383.0000 221.0000 2.9500 2.8999 412.0673 383.0000 222.0000 2.9500 3.8675 + 377.1177 383.0000 223.0000 2.9500 2.9110 285.8831 383.0000 224.0000 2.9500 10.6191 + 245.5607 383.0000 225.0000 2.9500 9.8849 240.9506 383.0000 226.0000 2.9500 9.1376 + 280.7602 383.0000 227.0000 2.9500 2.9263 262.0399 383.0000 228.0000 2.9500 6.5458 + 368.0353 383.0000 231.0000 2.9500 1.9315 389.1922 383.0000 232.0000 2.9500 1.9447 + 358.5042 383.0000 233.0000 2.9500 1.9793 334.5957 383.0000 234.0000 2.9500 1.9812 + 505.6763 383.0000 238.0000 2.9500 1.9143 489.0684 383.0000 239.0000 2.9500 2.8903 + 493.9544 383.0000 240.0000 2.9500 3.9106 477.5480 383.0000 241.0000 2.9500 2.9225 + 423.9671 383.0000 242.0000 2.9500 11.0556 375.4533 383.0000 243.0000 2.9500 9.5402 + 355.2503 383.0000 244.0000 2.9500 8.8895 360.6434 383.0000 245.0000 2.9500 2.9696 + 376.3349 383.0000 246.0000 2.9500 5.7095 475.4403 383.0000 249.0000 2.9500 1.9378 + 516.6741 383.0000 250.0000 2.9500 1.9505 488.7637 383.0000 251.0000 2.9500 1.9523 + 472.6478 383.0000 252.0000 2.9500 1.9639 612.3963 383.0000 256.0000 2.9500 1.8467 + 636.2925 383.0000 257.0000 2.9500 2.9175 473.8404 383.0000 272.0000 2.9500 3.8840 + 494.0945 383.0000 273.0000 2.9500 2.8988 460.7147 383.0000 274.0000 2.9500 10.9153 + 419.7015 383.0000 275.0000 2.9500 9.8054 395.7738 383.0000 276.0000 2.9500 9.1527 + 402.3454 383.0000 277.0000 2.9500 2.9424 423.0171 383.0000 278.0000 2.9500 6.6669 + 509.3407 383.0000 281.0000 2.9500 1.9302 538.3769 383.0000 282.0000 2.9500 1.9356 + 549.5487 383.0000 283.0000 2.9500 1.9655 546.2745 383.0000 284.0000 2.9500 1.9639 + 674.4162 383.0000 288.0000 2.9500 1.8075 128.7589 383.0000 305.0000 2.9500 2.9128 + 116.1790 383.0000 306.0000 2.9500 2.9987 88.1027 383.0000 307.0000 2.9500 2.9903 + 285.0890 383.0000 313.0000 2.9500 2.9146 340.8827 383.0000 314.0000 2.9500 2.9407 + 284.1318 383.0000 315.0000 2.9500 2.9859 250.9655 383.0000 327.0000 2.9500 7.7785 + 274.1459 383.0000 328.0000 2.9500 6.2918 303.0357 383.0000 331.0000 2.9500 2.9233 + 349.7673 383.0000 332.0000 2.9500 2.9186 345.6750 383.0000 333.0000 2.9500 2.9709 + 407.3563 383.0000 349.0000 2.9500 2.9353 466.9170 383.0000 350.0000 2.9500 2.9259 + 471.9635 383.0000 351.0000 2.9500 2.9315 455.7544 383.0000 381.0000 2.9500 2.9420 + 528.7649 383.0000 382.0000 2.9500 2.9081 533.8810 383.0000 383.0000 2.9500 2.9500 + 9.2092 405.0000 1.0000 4.5856 0.9118 6.3181 405.0000 2.0000 4.5856 0.0000 + 120.6628 405.0000 3.0000 4.5856 0.0000 75.1311 405.0000 4.0000 4.5856 0.0000 + 52.9606 405.0000 5.0000 4.5856 0.0000 37.0042 405.0000 6.0000 4.5856 0.0000 + 26.5083 405.0000 7.0000 4.5856 0.0000 20.3998 405.0000 8.0000 4.5856 0.0000 + 15.6578 405.0000 9.0000 4.5856 0.0000 12.1608 405.0000 10.0000 4.5856 0.0000 + 145.0020 405.0000 11.0000 4.5856 0.0000 118.0748 405.0000 12.0000 4.5856 0.0000 + 111.4377 405.0000 13.0000 4.5856 0.0000 90.5740 405.0000 14.0000 4.5856 0.0000 + 72.5145 405.0000 15.0000 4.5856 0.0000 61.2184 405.0000 16.0000 4.5856 0.0000 + 50.8102 405.0000 17.0000 4.5856 0.0000 42.1324 405.0000 18.0000 4.5856 0.0000 + 236.1802 405.0000 19.0000 4.5856 0.0000 203.0679 405.0000 20.0000 4.5856 0.0000 + 169.4186 405.0000 21.0000 4.5856 0.0000 165.2912 405.0000 22.0000 4.5856 0.0000 + 152.2500 405.0000 23.0000 4.5856 0.0000 120.3278 405.0000 24.0000 4.5856 0.0000 + 132.1984 405.0000 25.0000 4.5856 0.0000 104.1990 405.0000 26.0000 4.5856 0.0000 + 111.5063 405.0000 27.0000 4.5856 0.0000 114.1506 405.0000 28.0000 4.5856 0.0000 + 87.8052 405.0000 29.0000 4.5856 0.0000 91.5728 405.0000 30.0000 4.5856 0.0000 + 107.8705 405.0000 31.0000 4.5856 0.0000 97.3490 405.0000 32.0000 4.5856 0.0000 + 84.8298 405.0000 33.0000 4.5856 0.0000 77.1533 405.0000 34.0000 4.5856 0.0000 + 68.4416 405.0000 35.0000 4.5856 0.0000 60.2544 405.0000 36.0000 4.5856 0.0000 + 266.1018 405.0000 37.0000 4.5856 0.0000 241.8504 405.0000 38.0000 4.5856 0.0000 + 215.7263 405.0000 39.0000 4.5856 0.0000 196.1543 405.0000 40.0000 4.5856 0.0000 + 180.3042 405.0000 41.0000 4.5856 0.0000 141.2522 405.0000 42.0000 4.5856 0.0000 + 156.7256 405.0000 43.0000 4.5856 0.0000 121.2876 405.0000 44.0000 4.5856 0.0000 + 132.3281 405.0000 45.0000 4.5856 0.0000 123.2913 405.0000 46.0000 4.5856 0.0000 + 102.7753 405.0000 47.0000 4.5856 0.0000 109.2887 405.0000 48.0000 4.5856 0.0000 + 135.0814 405.0000 49.0000 4.5856 0.0000 127.1521 405.0000 50.0000 4.5856 0.0000 + 115.4018 405.0000 51.0000 4.5856 0.0000 108.2922 405.0000 52.0000 4.5856 0.0000 + 99.1109 405.0000 53.0000 4.5856 0.0000 90.1296 405.0000 54.0000 4.5856 0.0000 + 324.9872 405.0000 55.0000 4.5856 0.0000 306.9686 405.0000 56.0000 4.5856 0.0000 + 274.4932 405.0000 57.0000 4.5856 0.0000 136.0287 405.0000 58.0000 4.5856 2.7991 + 273.5743 405.0000 59.0000 4.5856 0.0000 263.3886 405.0000 60.0000 4.5856 0.0000 + 256.9654 405.0000 61.0000 4.5856 0.0000 251.0346 405.0000 62.0000 4.5856 0.0000 + 245.7832 405.0000 63.0000 4.5856 0.0000 197.4553 405.0000 64.0000 4.5856 0.0000 + 216.4708 405.0000 65.0000 4.5856 0.0000 209.5360 405.0000 66.0000 4.5856 0.0000 + 222.5870 405.0000 67.0000 4.5856 0.0000 217.9416 405.0000 68.0000 4.5856 0.0000 + 213.8101 405.0000 69.0000 4.5856 0.0000 211.1076 405.0000 70.0000 4.5856 0.0000 + 180.4856 405.0000 71.0000 4.5856 0.0000 180.7434 405.0000 72.0000 4.5856 0.0000 + 166.8741 405.0000 73.0000 4.5856 0.0000 142.4140 405.0000 74.0000 4.5856 0.0000 + 145.4248 405.0000 75.0000 4.5856 0.0000 133.1038 405.0000 76.0000 4.5856 0.0000 + 122.8762 405.0000 77.0000 4.5856 0.0000 103.0421 405.0000 78.0000 4.5856 0.0000 + 96.6130 405.0000 79.0000 4.5856 0.0000 99.6561 405.0000 80.0000 4.5856 0.0000 + 139.6481 405.0000 81.0000 4.5856 0.0000 138.2841 405.0000 82.0000 4.5856 0.0000 + 129.0834 405.0000 83.0000 4.5856 0.0000 124.2802 405.0000 84.0000 4.5856 0.0000 + 116.0097 405.0000 85.0000 4.5856 0.0000 107.4421 405.0000 86.0000 4.5856 0.0000 + 311.3222 405.0000 87.0000 4.5856 0.0000 306.5067 405.0000 88.0000 4.5856 0.0000 + 275.2171 405.0000 89.0000 4.5856 0.0000 252.1649 405.0000 90.0000 4.5856 0.0000 + 248.2156 405.0000 91.0000 4.5856 0.0000 240.4492 405.0000 92.0000 4.5856 0.0000 + 244.5726 405.0000 93.0000 4.5856 0.0000 237.3277 405.0000 94.0000 4.5856 0.0000 + 14.4541 405.0000 101.0000 4.5856 0.0000 43.9746 405.0000 103.0000 4.5856 0.9865 + 56.6527 405.0000 104.0000 4.5856 0.9808 44.9888 405.0000 105.0000 4.5856 0.9706 + 34.7226 405.0000 106.0000 4.5856 0.9868 24.7525 405.0000 107.0000 4.5856 0.9944 + 18.3831 405.0000 108.0000 4.5856 0.9925 12.9291 405.0000 109.0000 4.5856 0.9982 + 63.8123 405.0000 111.0000 4.5856 0.9684 98.3724 405.0000 112.0000 4.5856 0.9628 + 101.5889 405.0000 113.0000 4.5856 0.9648 84.1158 405.0000 114.0000 4.5856 0.9507 + 70.4629 405.0000 115.0000 4.5856 0.9947 60.5255 405.0000 116.0000 4.5856 0.9948 + 50.2708 405.0000 117.0000 4.5856 0.9972 89.8569 405.0000 119.0000 4.5856 0.9767 + 163.3534 405.0000 120.0000 4.5856 0.9831 91.7951 405.0000 121.0000 4.5856 1.8627 + 88.7389 405.0000 122.0000 4.5856 1.8299 86.9264 405.0000 123.0000 4.5856 1.9138 + 85.8806 405.0000 124.0000 4.5856 1.8269 80.0375 405.0000 125.0000 4.5856 1.6406 + 74.3930 405.0000 126.0000 4.5856 1.6483 70.9871 405.0000 127.0000 4.5856 1.7149 + 69.3194 405.0000 128.0000 4.5856 1.7937 67.7835 405.0000 129.0000 4.5856 0.9576 + 64.7798 405.0000 130.0000 4.5856 1.9419 101.9223 405.0000 131.0000 4.5856 0.9601 + 91.5895 405.0000 132.0000 4.5856 0.9434 83.5023 405.0000 133.0000 4.5856 0.9889 + 77.1700 405.0000 134.0000 4.5856 0.9901 68.8714 405.0000 135.0000 4.5856 0.9974 + 107.8668 405.0000 137.0000 4.5856 0.9738 198.5660 405.0000 138.0000 4.5856 0.9801 + 157.3598 405.0000 139.0000 4.5856 1.9153 121.3842 405.0000 140.0000 4.5856 1.9355 + 122.5075 405.0000 141.0000 4.5856 1.9545 114.8462 405.0000 142.0000 4.5856 1.9420 + 126.6571 405.0000 143.0000 4.5856 1.6682 101.3825 405.0000 144.0000 4.5856 1.8584 + 94.9987 405.0000 145.0000 4.5856 1.9003 88.4515 405.0000 146.0000 4.5856 1.8630 + 85.3773 405.0000 147.0000 4.5856 0.9679 85.2274 405.0000 148.0000 4.5856 1.9539 + 129.5979 405.0000 149.0000 4.5856 0.9633 119.4559 405.0000 150.0000 4.5856 0.9514 + 113.3867 405.0000 151.0000 4.5856 0.9749 108.2898 405.0000 152.0000 4.5856 0.9811 + 100.0210 405.0000 153.0000 4.5856 0.9968 129.4461 405.0000 155.0000 4.5856 0.9909 + 256.0547 405.0000 156.0000 4.5856 0.9797 198.7197 405.0000 157.0000 4.5856 1.9373 + 132.0706 405.0000 159.0000 4.5856 2.9425 129.3614 405.0000 160.0000 4.5856 2.9455 + 125.3807 405.0000 161.0000 4.5856 2.9413 125.6675 405.0000 162.0000 4.5856 2.9300 + 120.0875 405.0000 163.0000 4.5856 1.8286 126.3205 405.0000 164.0000 4.5856 2.8732 + 118.9198 405.0000 165.0000 4.5856 2.9086 120.4474 405.0000 166.0000 4.5856 2.8965 + 113.1311 405.0000 167.0000 4.5856 2.9242 110.0016 405.0000 168.0000 4.5856 2.9282 + 109.2144 405.0000 169.0000 4.5856 2.9246 114.3083 405.0000 170.0000 4.5856 2.8482 + 105.6965 405.0000 171.0000 4.5856 2.9219 138.9431 405.0000 172.0000 4.5856 1.9254 + 130.3755 405.0000 173.0000 4.5856 1.9459 120.3020 405.0000 174.0000 4.5856 1.9292 + 120.5408 405.0000 175.0000 4.5856 1.8104 108.2446 405.0000 176.0000 4.5856 1.8858 + 102.2436 405.0000 177.0000 4.5856 1.8648 97.8898 405.0000 178.0000 4.5856 1.9188 + 93.5748 405.0000 179.0000 4.5856 0.9846 91.1930 405.0000 180.0000 4.5856 1.9896 + 139.8637 405.0000 181.0000 4.5856 0.9267 129.7527 405.0000 182.0000 4.5856 0.9383 + 127.0629 405.0000 183.0000 4.5856 0.9820 124.4851 405.0000 184.0000 4.5856 0.9815 + 117.4266 405.0000 185.0000 4.5856 0.9954 145.9399 405.0000 187.0000 4.5856 0.9705 + 257.5846 405.0000 188.0000 4.5856 0.9662 156.1808 405.0000 189.0000 4.5856 2.9070 + 177.6375 405.0000 190.0000 4.5856 2.8844 159.8452 405.0000 191.0000 4.5856 2.8738 + 142.8451 405.0000 192.0000 4.5856 2.8878 137.8226 405.0000 193.0000 4.5856 2.9095 + 160.5488 405.0000 194.0000 4.5856 1.9209 38.4745 405.0000 204.0000 4.5856 1.9697 + 38.1398 405.0000 205.0000 4.5856 1.9441 28.6763 405.0000 206.0000 4.5856 1.9985 + 23.2900 405.0000 207.0000 4.5856 2.0143 16.2987 405.0000 208.0000 4.5856 1.9887 + 66.8696 405.0000 212.0000 4.5856 1.9496 80.7005 405.0000 213.0000 4.5856 1.9311 + 78.5835 405.0000 214.0000 4.5856 1.9435 69.4115 405.0000 215.0000 4.5856 2.0102 + 59.3239 405.0000 216.0000 4.5856 1.9903 93.9194 405.0000 220.0000 4.5856 1.9349 + 91.3072 405.0000 221.0000 4.5856 2.8999 92.5154 405.0000 222.0000 4.5856 3.8675 + 84.6570 405.0000 223.0000 4.5856 2.9110 65.0349 405.0000 224.0000 4.5856 10.6191 + 56.2921 405.0000 225.0000 4.5856 9.8849 55.1698 405.0000 226.0000 4.5856 9.1376 + 63.4543 405.0000 227.0000 4.5856 2.9263 59.4247 405.0000 228.0000 4.5856 6.5458 + 82.4447 405.0000 231.0000 4.5856 1.9315 87.5282 405.0000 232.0000 4.5856 1.9447 + 81.4896 405.0000 233.0000 4.5856 1.9793 76.5939 405.0000 234.0000 4.5856 1.9812 + 112.8093 405.0000 238.0000 4.5856 1.9143 110.1737 405.0000 239.0000 4.5856 2.8903 + 111.6080 405.0000 240.0000 4.5856 3.9106 107.8711 405.0000 241.0000 4.5856 2.9225 + 96.6030 405.0000 242.0000 4.5856 11.0556 86.1276 405.0000 243.0000 4.5856 9.5402 + 81.6853 405.0000 244.0000 4.5856 8.8895 82.2887 405.0000 245.0000 4.5856 2.9696 + 85.6281 405.0000 246.0000 4.5856 5.7095 106.6946 405.0000 249.0000 4.5856 1.9378 + 115.9286 405.0000 250.0000 4.5856 1.9505 110.6276 405.0000 251.0000 4.5856 1.9523 + 107.5434 405.0000 252.0000 4.5856 1.9639 137.1250 405.0000 256.0000 4.5856 1.8467 + 143.1068 405.0000 257.0000 4.5856 2.9175 107.5053 405.0000 272.0000 4.5856 3.8840 + 111.7577 405.0000 273.0000 4.5856 2.8988 105.0350 405.0000 274.0000 4.5856 10.9153 + 96.2759 405.0000 275.0000 4.5856 9.8054 91.2325 405.0000 276.0000 4.5856 9.1527 + 92.1458 405.0000 277.0000 4.5856 2.9424 96.7591 405.0000 278.0000 4.5856 6.6669 + 114.9901 405.0000 281.0000 4.5856 1.9302 121.5600 405.0000 282.0000 4.5856 1.9356 + 124.4711 405.0000 283.0000 4.5856 1.9655 124.1567 405.0000 284.0000 4.5856 1.9639 + 151.1796 405.0000 288.0000 4.5856 1.8075 29.6804 405.0000 305.0000 4.5856 2.9128 + 26.8506 405.0000 306.0000 4.5856 2.9987 20.5886 405.0000 307.0000 4.5856 2.9903 + 64.3332 405.0000 313.0000 4.5856 2.9146 76.4038 405.0000 314.0000 4.5856 2.9407 + 64.8127 405.0000 315.0000 4.5856 2.9859 57.1987 405.0000 327.0000 4.5856 7.7785 + 61.6974 405.0000 328.0000 4.5856 6.2918 68.7935 405.0000 331.0000 4.5856 2.9233 + 79.1656 405.0000 332.0000 4.5856 2.9186 78.7478 405.0000 333.0000 4.5856 2.9709 + 92.5355 405.0000 349.0000 4.5856 2.9353 105.5295 405.0000 350.0000 4.5856 2.9259 + 107.1200 405.0000 351.0000 4.5856 2.9315 103.8543 405.0000 381.0000 4.5856 2.9420 + 119.7071 405.0000 382.0000 4.5856 2.9081 121.2957 405.0000 383.0000 4.5856 2.9500 + 28.0315 405.0000 405.0000 4.5856 4.5856 7.3662 406.0000 1.0000 3.9844 0.9118 + 5.2567 406.0000 2.0000 3.9844 0.0000 87.8183 406.0000 3.0000 3.9844 0.0000 + 56.4662 406.0000 4.0000 3.9844 0.0000 40.8962 406.0000 5.0000 3.9844 0.0000 + 29.2830 406.0000 6.0000 3.9844 0.0000 21.4199 406.0000 7.0000 3.9844 0.0000 + 16.7544 406.0000 8.0000 3.9844 0.0000 13.0546 406.0000 9.0000 3.9844 0.0000 + 10.2716 406.0000 10.0000 3.9844 0.0000 105.9248 406.0000 11.0000 3.9844 0.0000 + 88.2620 406.0000 12.0000 3.9844 0.0000 84.3073 406.0000 13.0000 3.9844 0.0000 + 69.7224 406.0000 14.0000 3.9844 0.0000 56.7852 406.0000 15.0000 3.9844 0.0000 + 48.5681 406.0000 16.0000 3.9844 0.0000 40.8516 406.0000 17.0000 3.9844 0.0000 + 34.3050 406.0000 18.0000 3.9844 0.0000 172.9685 406.0000 19.0000 3.9844 0.0000 + 150.8203 406.0000 20.0000 3.9844 0.0000 126.3491 406.0000 21.0000 3.9844 0.0000 + 124.0013 406.0000 22.0000 3.9844 0.0000 114.5870 406.0000 23.0000 3.9844 0.0000 + 91.0233 406.0000 24.0000 3.9844 0.0000 99.9768 406.0000 25.0000 3.9844 0.0000 + 79.2630 406.0000 26.0000 3.9844 0.0000 84.9547 406.0000 27.0000 3.9844 0.0000 + 86.6601 406.0000 28.0000 3.9844 0.0000 67.0823 406.0000 29.0000 3.9844 0.0000 + 70.2820 406.0000 30.0000 3.9844 0.0000 82.3248 406.0000 31.0000 3.9844 0.0000 + 75.2076 406.0000 32.0000 3.9844 0.0000 66.4147 406.0000 33.0000 3.9844 0.0000 + 60.9913 406.0000 34.0000 3.9844 0.0000 54.6824 406.0000 35.0000 3.9844 0.0000 + 48.6500 406.0000 36.0000 3.9844 0.0000 195.5996 406.0000 37.0000 3.9844 0.0000 + 179.8395 406.0000 38.0000 3.9844 0.0000 161.7738 406.0000 39.0000 3.9844 0.0000 + 148.0069 406.0000 40.0000 3.9844 0.0000 136.7050 406.0000 41.0000 3.9844 0.0000 + 108.2356 406.0000 42.0000 3.9844 0.0000 119.5995 406.0000 43.0000 3.9844 0.0000 + 93.6269 406.0000 44.0000 3.9844 0.0000 101.8194 406.0000 45.0000 3.9844 0.0000 + 95.1612 406.0000 46.0000 3.9844 0.0000 79.6657 406.0000 47.0000 3.9844 0.0000 + 84.7139 406.0000 48.0000 3.9844 0.0000 103.6198 406.0000 49.0000 3.9844 0.0000 + 98.3431 406.0000 50.0000 3.9844 0.0000 90.1797 406.0000 51.0000 3.9844 0.0000 + 85.2343 406.0000 52.0000 3.9844 0.0000 78.6686 406.0000 53.0000 3.9844 0.0000 + 72.1617 406.0000 54.0000 3.9844 0.0000 239.2442 406.0000 55.0000 3.9844 0.0000 + 228.0556 406.0000 56.0000 3.9844 0.0000 205.5407 406.0000 57.0000 3.9844 0.0000 + 106.3035 406.0000 58.0000 3.9844 2.7991 204.0039 406.0000 59.0000 3.9844 0.0000 + 196.6165 406.0000 60.0000 3.9844 0.0000 191.8733 406.0000 61.0000 3.9844 0.0000 + 187.4818 406.0000 62.0000 3.9844 0.0000 183.5940 406.0000 63.0000 3.9844 0.0000 + 149.2918 406.0000 64.0000 3.9844 0.0000 161.9091 406.0000 65.0000 3.9844 0.0000 + 156.9831 406.0000 66.0000 3.9844 0.0000 166.5380 406.0000 67.0000 3.9844 0.0000 + 163.0702 406.0000 68.0000 3.9844 0.0000 160.0071 406.0000 69.0000 3.9844 0.0000 + 157.8890 406.0000 70.0000 3.9844 0.0000 136.0882 406.0000 71.0000 3.9844 0.0000 + 137.2924 406.0000 72.0000 3.9844 0.0000 127.6207 406.0000 73.0000 3.9844 0.0000 + 109.8377 406.0000 74.0000 3.9844 0.0000 112.3274 406.0000 75.0000 3.9844 0.0000 + 103.4616 406.0000 76.0000 3.9844 0.0000 96.0333 406.0000 77.0000 3.9844 0.0000 + 81.2363 406.0000 78.0000 3.9844 0.0000 76.4282 406.0000 79.0000 3.9844 0.0000 + 78.8500 406.0000 80.0000 3.9844 0.0000 107.8976 406.0000 81.0000 3.9844 0.0000 + 107.3665 406.0000 82.0000 3.9844 0.0000 101.0571 406.0000 83.0000 3.9844 0.0000 + 97.8332 406.0000 84.0000 3.9844 0.0000 91.9990 406.0000 85.0000 3.9844 0.0000 + 85.8432 406.0000 86.0000 3.9844 0.0000 230.7554 406.0000 87.0000 3.9844 0.0000 + 228.8220 406.0000 88.0000 3.9844 0.0000 206.9466 406.0000 89.0000 3.9844 0.0000 + 191.6443 406.0000 90.0000 3.9844 0.0000 188.0965 406.0000 91.0000 3.9844 0.0000 + 182.3009 406.0000 92.0000 3.9844 0.0000 184.3778 406.0000 93.0000 3.9844 0.0000 + 179.0837 406.0000 94.0000 3.9844 0.0000 11.3299 406.0000 101.0000 3.9844 0.0000 + 33.2158 406.0000 103.0000 3.9844 0.9865 43.0620 406.0000 104.0000 3.9844 0.9808 + 34.9990 406.0000 105.0000 3.9844 0.9706 27.5206 406.0000 106.0000 3.9844 0.9868 + 20.0468 406.0000 107.0000 3.9844 0.9944 15.1751 406.0000 108.0000 3.9844 0.9925 + 10.9391 406.0000 109.0000 3.9844 0.9982 48.1622 406.0000 111.0000 3.9844 0.9684 + 74.0028 406.0000 112.0000 3.9844 0.9628 77.1362 406.0000 113.0000 3.9844 0.9648 + 64.9672 406.0000 114.0000 3.9844 0.9507 55.2375 406.0000 115.0000 3.9844 0.9947 + 48.0221 406.0000 116.0000 3.9844 0.9948 40.4209 406.0000 117.0000 3.9844 0.9972 + 69.0434 406.0000 119.0000 3.9844 0.9767 122.0707 406.0000 120.0000 3.9844 0.9831 + 71.0854 406.0000 121.0000 3.9844 1.8627 68.8297 406.0000 122.0000 3.9844 1.8299 + 67.4383 406.0000 123.0000 3.9844 1.9138 66.5568 406.0000 124.0000 3.9844 1.8269 + 62.3931 406.0000 125.0000 3.9844 1.6406 58.1776 406.0000 126.0000 3.9844 1.6483 + 55.5654 406.0000 127.0000 3.9844 1.7149 54.2397 406.0000 128.0000 3.9844 1.7937 + 52.7984 406.0000 129.0000 3.9844 0.9576 50.8856 406.0000 130.0000 3.9844 1.9419 + 78.0505 406.0000 131.0000 3.9844 0.9601 71.0143 406.0000 132.0000 3.9844 0.9434 + 65.4414 406.0000 133.0000 3.9844 0.9889 61.0041 406.0000 134.0000 3.9844 0.9901 + 55.0029 406.0000 135.0000 3.9844 0.9974 83.2418 406.0000 137.0000 3.9844 0.9738 + 148.5141 406.0000 138.0000 3.9844 0.9801 119.7654 406.0000 139.0000 3.9844 1.9153 + 94.1173 406.0000 140.0000 3.9844 1.9355 95.0009 406.0000 141.0000 3.9844 1.9545 + 89.4229 406.0000 142.0000 3.9844 1.9420 97.8417 406.0000 143.0000 3.9844 1.6682 + 79.5750 406.0000 144.0000 3.9844 1.8584 74.7287 406.0000 145.0000 3.9844 1.9003 + 69.7730 406.0000 146.0000 3.9844 1.8630 67.3070 406.0000 147.0000 3.9844 0.9679 + 67.4028 406.0000 148.0000 3.9844 1.9539 99.7522 406.0000 149.0000 3.9844 0.9633 + 92.8021 406.0000 150.0000 3.9844 0.9514 88.7434 406.0000 151.0000 3.9844 0.9749 + 85.2657 406.0000 152.0000 3.9844 0.9811 79.3716 406.0000 153.0000 3.9844 0.9968 + 100.4742 406.0000 155.0000 3.9844 0.9909 191.2494 406.0000 156.0000 3.9844 0.9797 + 151.1411 406.0000 157.0000 3.9844 1.9373 103.2933 406.0000 159.0000 3.9844 2.9425 + 101.1917 406.0000 160.0000 3.9844 2.9455 98.1467 406.0000 161.0000 3.9844 2.9413 + 98.2270 406.0000 162.0000 3.9844 2.9300 93.5193 406.0000 163.0000 3.9844 1.8286 + 98.6213 406.0000 164.0000 3.9844 2.8732 93.0070 406.0000 165.0000 3.9844 2.9086 + 93.9771 406.0000 166.0000 3.9844 2.8965 88.5822 406.0000 167.0000 3.9844 2.9242 + 86.1743 406.0000 168.0000 3.9844 2.9282 85.5107 406.0000 169.0000 3.9844 2.9246 + 89.1915 406.0000 170.0000 3.9844 2.8482 82.7986 406.0000 171.0000 3.9844 2.9219 + 107.0183 406.0000 172.0000 3.9844 1.9254 101.1019 406.0000 173.0000 3.9844 1.9459 + 93.9601 406.0000 174.0000 3.9844 1.9292 93.6672 406.0000 175.0000 3.9844 1.8104 + 85.3925 406.0000 176.0000 3.9844 1.8858 80.9552 406.0000 177.0000 3.9844 1.8648 + 77.6997 406.0000 178.0000 3.9844 1.9188 74.3763 406.0000 179.0000 3.9844 0.9846 + 72.7832 406.0000 180.0000 3.9844 1.9896 108.2417 406.0000 181.0000 3.9844 0.9267 + 101.2882 406.0000 182.0000 3.9844 0.9383 99.6679 406.0000 183.0000 3.9844 0.9820 + 98.0575 406.0000 184.0000 3.9844 0.9815 93.1069 406.0000 185.0000 3.9844 0.9954 + 113.3031 406.0000 187.0000 3.9844 0.9705 193.3777 406.0000 188.0000 3.9844 0.9662 + 122.0402 406.0000 189.0000 3.9844 2.9070 137.8768 406.0000 190.0000 3.9844 2.8844 + 124.7098 406.0000 191.0000 3.9844 2.8738 112.0980 406.0000 192.0000 3.9844 2.8878 + 108.3454 406.0000 193.0000 3.9844 2.9095 124.1824 406.0000 194.0000 3.9844 1.9209 + 29.8819 406.0000 204.0000 3.9844 1.9697 29.8916 406.0000 205.0000 3.9844 1.9441 + 22.9517 406.0000 206.0000 3.9844 1.9985 18.9172 406.0000 207.0000 3.9844 2.0143 + 13.5525 406.0000 208.0000 3.9844 1.9887 51.3525 406.0000 212.0000 3.9844 1.9496 + 61.9610 406.0000 213.0000 3.9844 1.9311 60.8687 406.0000 214.0000 3.9844 1.9435 + 54.3941 406.0000 215.0000 3.9844 2.0102 47.0943 406.0000 216.0000 3.9844 1.9903 + 72.5524 406.0000 220.0000 3.9844 1.9349 70.9670 406.0000 221.0000 3.9844 2.8999 + 71.9595 406.0000 222.0000 3.9844 3.8675 65.9473 406.0000 223.0000 3.9844 2.9110 + 51.4610 406.0000 224.0000 3.9844 10.6191 44.9179 406.0000 225.0000 3.9844 9.8849 + 43.9902 406.0000 226.0000 3.9844 9.1376 49.9148 406.0000 227.0000 3.9844 2.9263 + 46.9071 406.0000 228.0000 3.9844 6.5458 63.9117 406.0000 231.0000 3.9844 1.9315 + 68.0343 406.0000 232.0000 3.9844 1.9447 63.9621 406.0000 233.0000 3.9844 1.9793 + 60.5723 406.0000 234.0000 3.9844 1.9812 87.3891 406.0000 238.0000 3.9844 1.9143 + 85.9668 406.0000 239.0000 3.9844 2.8903 87.3116 406.0000 240.0000 3.9844 3.9106 + 84.5041 406.0000 241.0000 3.9844 2.9225 76.3869 406.0000 242.0000 3.9844 11.0556 + 68.6237 406.0000 243.0000 3.9844 9.5402 65.2905 406.0000 244.0000 3.9844 8.8895 + 65.3949 406.0000 245.0000 3.9844 2.9696 67.8363 406.0000 246.0000 3.9844 5.7095 + 83.2270 406.0000 249.0000 3.9844 1.9378 90.2683 406.0000 250.0000 3.9844 1.9505 + 86.7574 406.0000 251.0000 3.9844 1.9523 84.7425 406.0000 252.0000 3.9844 1.9639 + 106.5800 406.0000 256.0000 3.9844 1.8467 111.4633 406.0000 257.0000 3.9844 2.9175 + 84.4451 406.0000 272.0000 3.9844 3.8840 87.6809 406.0000 273.0000 3.9844 2.8988 + 83.0805 406.0000 274.0000 3.9844 10.9153 76.6867 406.0000 275.0000 3.9844 9.8054 + 73.0666 406.0000 276.0000 3.9844 9.1527 73.4853 406.0000 277.0000 3.9844 2.9424 + 77.0124 406.0000 278.0000 3.9844 6.6669 90.3467 406.0000 281.0000 3.9844 1.9302 + 95.3973 406.0000 282.0000 3.9844 1.9356 97.8517 406.0000 283.0000 3.9844 1.9655 + 97.8817 406.0000 284.0000 3.9844 1.9639 117.5821 406.0000 288.0000 3.9844 1.8075 + 23.6210 406.0000 305.0000 3.9844 2.9128 21.5377 406.0000 306.0000 3.9844 2.9987 + 16.8169 406.0000 307.0000 3.9844 2.9903 50.0397 406.0000 313.0000 3.9844 2.9146 + 59.1583 406.0000 314.0000 3.9844 2.9407 51.0048 406.0000 315.0000 3.9844 2.9859 + 45.3891 406.0000 327.0000 3.9844 7.7785 48.4149 406.0000 328.0000 3.9844 6.2918 + 53.9617 406.0000 331.0000 3.9844 2.9233 61.9038 406.0000 332.0000 3.9844 2.9186 + 61.9438 406.0000 333.0000 3.9844 2.9709 72.9703 406.0000 349.0000 3.9844 2.9353 + 82.7170 406.0000 350.0000 3.9844 2.9259 84.2177 406.0000 351.0000 3.9844 2.9315 + 82.2825 406.0000 381.0000 3.9844 2.9420 94.1315 406.0000 382.0000 3.9844 2.9081 + 95.6018 406.0000 383.0000 3.9844 2.9500 22.3797 406.0000 405.0000 3.9844 4.5856 + 18.2067 406.0000 406.0000 3.9844 3.9844 21.0064 414.0000 1.0000 3.8677 0.9118 + 13.8547 414.0000 2.0000 3.8677 0.0000 308.7953 414.0000 3.0000 3.8677 0.0000 + 184.2566 414.0000 4.0000 3.8677 0.0000 125.7764 414.0000 5.0000 3.8677 0.0000 + 85.5223 414.0000 6.0000 3.8677 0.0000 59.9319 414.0000 7.0000 3.8677 0.0000 + 45.3688 414.0000 8.0000 3.8677 0.0000 34.3187 414.0000 9.0000 3.8677 0.0000 + 26.3358 414.0000 10.0000 3.8677 0.0000 369.7717 414.0000 11.0000 3.8677 0.0000 + 291.8716 414.0000 12.0000 3.8677 0.0000 271.3202 414.0000 13.0000 3.8677 0.0000 + 215.8998 414.0000 14.0000 3.8677 0.0000 169.4356 414.0000 15.0000 3.8677 0.0000 + 140.9955 414.0000 16.0000 3.8677 0.0000 115.3542 414.0000 17.0000 3.8677 0.0000 + 94.4027 414.0000 18.0000 3.8677 0.0000 602.2116 414.0000 19.0000 3.8677 0.0000 + 507.2703 414.0000 20.0000 3.8677 0.0000 420.8895 414.0000 21.0000 3.8677 0.0000 + 407.8160 414.0000 22.0000 3.8677 0.0000 374.2069 414.0000 23.0000 3.8677 0.0000 + 294.5037 414.0000 24.0000 3.8677 0.0000 323.0948 414.0000 25.0000 3.8677 0.0000 + 253.3965 414.0000 26.0000 3.8677 0.0000 270.0881 414.0000 27.0000 3.8677 0.0000 + 277.6794 414.0000 28.0000 3.8677 0.0000 212.5281 414.0000 29.0000 3.8677 0.0000 + 219.8870 414.0000 30.0000 3.8677 0.0000 260.3091 414.0000 31.0000 3.8677 0.0000 + 231.3302 414.0000 32.0000 3.8677 0.0000 198.4079 414.0000 33.0000 3.8677 0.0000 + 178.4799 414.0000 34.0000 3.8677 0.0000 156.4781 414.0000 35.0000 3.8677 0.0000 + 136.2102 414.0000 36.0000 3.8677 0.0000 675.8635 414.0000 37.0000 3.8677 0.0000 + 603.7134 414.0000 38.0000 3.8677 0.0000 532.6876 414.0000 39.0000 3.8677 0.0000 + 480.7318 414.0000 40.0000 3.8677 0.0000 439.4281 414.0000 41.0000 3.8677 0.0000 + 340.3478 414.0000 42.0000 3.8677 0.0000 379.3148 414.0000 43.0000 3.8677 0.0000 + 289.9361 414.0000 44.0000 3.8677 0.0000 317.2064 414.0000 45.0000 3.8677 0.0000 + 294.5220 414.0000 46.0000 3.8677 0.0000 244.8685 414.0000 47.0000 3.8677 0.0000 + 259.8815 414.0000 48.0000 3.8677 0.0000 324.9345 414.0000 49.0000 3.8677 0.0000 + 302.4879 414.0000 50.0000 3.8677 0.0000 271.0387 414.0000 51.0000 3.8677 0.0000 + 252.1604 414.0000 52.0000 3.8677 0.0000 228.5370 414.0000 53.0000 3.8677 0.0000 + 205.8095 414.0000 54.0000 3.8677 0.0000 823.8201 414.0000 55.0000 3.8677 0.0000 + 767.6095 414.0000 56.0000 3.8677 0.0000 679.3502 414.0000 57.0000 3.8677 0.0000 + 319.6854 414.0000 58.0000 3.8677 2.7991 681.4251 414.0000 59.0000 3.8677 0.0000 + 655.1209 414.0000 60.0000 3.8677 0.0000 638.9063 414.0000 61.0000 3.8677 0.0000 + 623.9763 414.0000 62.0000 3.8677 0.0000 610.7486 414.0000 63.0000 3.8677 0.0000 + 483.6888 414.0000 64.0000 3.8677 0.0000 538.2012 414.0000 65.0000 3.8677 0.0000 + 519.8201 414.0000 66.0000 3.8677 0.0000 551.8787 414.0000 67.0000 3.8677 0.0000 + 540.2901 414.0000 68.0000 3.8677 0.0000 529.8922 414.0000 69.0000 3.8677 0.0000 + 523.5513 414.0000 70.0000 3.8677 0.0000 443.2950 414.0000 71.0000 3.8677 0.0000 + 439.2791 414.0000 72.0000 3.8677 0.0000 402.3253 414.0000 73.0000 3.8677 0.0000 + 340.3120 414.0000 74.0000 3.8677 0.0000 346.7667 414.0000 75.0000 3.8677 0.0000 + 315.0876 414.0000 76.0000 3.8677 0.0000 289.0970 414.0000 77.0000 3.8677 0.0000 + 240.3103 414.0000 78.0000 3.8677 0.0000 224.5609 414.0000 79.0000 3.8677 0.0000 + 231.4100 414.0000 80.0000 3.8677 0.0000 333.6081 414.0000 81.0000 3.8677 0.0000 + 327.9673 414.0000 82.0000 3.8677 0.0000 302.9030 414.0000 83.0000 3.8677 0.0000 + 289.6447 414.0000 84.0000 3.8677 0.0000 268.0024 414.0000 85.0000 3.8677 0.0000 + 246.0855 414.0000 86.0000 3.8677 0.0000 782.4574 414.0000 87.0000 3.8677 0.0000 + 761.8362 414.0000 88.0000 3.8677 0.0000 677.8043 414.0000 89.0000 3.8677 0.0000 + 613.1574 414.0000 90.0000 3.8677 0.0000 606.3220 414.0000 91.0000 3.8677 0.0000 + 587.1009 414.0000 92.0000 3.8677 0.0000 601.6779 414.0000 93.0000 3.8677 0.0000 + 583.1471 414.0000 94.0000 3.8677 0.0000 33.7126 414.0000 101.0000 3.8677 0.0000 + 107.2721 414.0000 103.0000 3.8677 0.9865 137.1783 414.0000 104.0000 3.8677 0.9808 + 105.9826 414.0000 105.0000 3.8677 0.9706 80.1427 414.0000 106.0000 3.8677 0.9868 + 55.8394 414.0000 107.0000 3.8677 0.9944 40.6635 414.0000 108.0000 3.8677 0.9925 + 27.9086 414.0000 109.0000 3.8677 0.9982 156.1545 414.0000 111.0000 3.8677 0.9684 + 241.3903 414.0000 112.0000 3.8677 0.9628 246.3013 414.0000 113.0000 3.8677 0.9648 + 199.7530 414.0000 114.0000 3.8677 0.9507 164.4669 414.0000 115.0000 3.8677 0.9947 + 139.4086 414.0000 116.0000 3.8677 0.9948 114.1358 414.0000 117.0000 3.8677 0.9972 + 215.8797 414.0000 119.0000 3.8677 0.9767 405.6765 414.0000 120.0000 3.8677 0.9831 + 217.9628 414.0000 121.0000 3.8677 1.8627 210.3904 414.0000 122.0000 3.8677 1.8299 + 206.1062 414.0000 123.0000 3.8677 1.9138 203.9633 414.0000 124.0000 3.8677 1.8269 + 188.5834 414.0000 125.0000 3.8677 1.6406 174.6758 414.0000 126.0000 3.8677 1.6483 + 166.5674 414.0000 127.0000 3.8677 1.7149 162.7632 414.0000 128.0000 3.8677 1.7937 + 160.1946 414.0000 129.0000 3.8677 0.9576 151.3141 414.0000 130.0000 3.8677 1.9419 + 244.9446 414.0000 131.0000 3.8677 0.9601 216.7246 414.0000 132.0000 3.8677 0.9434 + 195.0844 414.0000 133.0000 3.8677 0.9889 178.5302 414.0000 134.0000 3.8677 0.9901 + 157.5423 414.0000 135.0000 3.8677 0.9974 257.9020 414.0000 137.0000 3.8677 0.9738 + 492.9574 414.0000 138.0000 3.8677 0.9801 382.0537 414.0000 139.0000 3.8677 1.9153 + 287.9444 414.0000 140.0000 3.8677 1.9355 290.6641 414.0000 141.0000 3.8677 1.9545 + 271.2960 414.0000 142.0000 3.8677 1.9420 302.3644 414.0000 143.0000 3.8677 1.6682 + 237.2798 414.0000 144.0000 3.8677 1.8584 221.9100 414.0000 145.0000 3.8677 1.9003 + 206.0675 414.0000 146.0000 3.8677 1.8630 199.1553 414.0000 147.0000 3.8677 0.9679 + 197.7904 414.0000 148.0000 3.8677 1.9539 310.4122 414.0000 149.0000 3.8677 0.9633 + 282.6684 414.0000 150.0000 3.8677 0.9514 265.8053 414.0000 151.0000 3.8677 0.9749 + 252.0272 414.0000 152.0000 3.8677 0.9811 230.6872 414.0000 153.0000 3.8677 0.9968 + 306.7839 414.0000 155.0000 3.8677 0.9909 637.1516 414.0000 156.0000 3.8677 0.9797 + 482.9601 414.0000 157.0000 3.8677 1.9373 310.1096 414.0000 159.0000 3.8677 2.9425 + 303.6993 414.0000 160.0000 3.8677 2.9455 294.1261 414.0000 161.0000 3.8677 2.9413 + 295.3345 414.0000 162.0000 3.8677 2.9300 283.7443 414.0000 163.0000 3.8677 1.8286 + 297.2065 414.0000 164.0000 3.8677 2.8732 279.2705 414.0000 165.0000 3.8677 2.9086 + 283.7221 414.0000 166.0000 3.8677 2.8965 265.2733 414.0000 167.0000 3.8677 2.9242 + 257.7790 414.0000 168.0000 3.8677 2.9282 256.0890 414.0000 169.0000 3.8677 2.9246 + 269.0182 414.0000 170.0000 3.8677 2.8482 247.6499 414.0000 171.0000 3.8677 2.9219 + 332.3458 414.0000 172.0000 3.8677 1.9254 309.3879 414.0000 173.0000 3.8677 1.9459 + 283.1217 414.0000 174.0000 3.8677 1.9292 285.5672 414.0000 175.0000 3.8677 1.8104 + 251.7856 414.0000 176.0000 3.8677 1.8858 236.9427 414.0000 177.0000 3.8677 1.8648 + 226.3141 414.0000 178.0000 3.8677 1.9188 216.1705 414.0000 179.0000 3.8677 0.9846 + 209.4860 414.0000 180.0000 3.8677 1.9896 333.2692 414.0000 181.0000 3.8677 0.9267 + 305.6761 414.0000 182.0000 3.8677 0.9383 297.4219 414.0000 183.0000 3.8677 0.9820 + 289.8561 414.0000 184.0000 3.8677 0.9815 271.2916 414.0000 185.0000 3.8677 0.9954 + 345.6972 414.0000 187.0000 3.8677 0.9705 636.7053 414.0000 188.0000 3.8677 0.9662 + 367.0047 414.0000 189.0000 3.8677 2.9070 421.2601 414.0000 190.0000 3.8677 2.8844 + 376.9828 414.0000 191.0000 3.8677 2.8738 334.4442 414.0000 192.0000 3.8677 2.8878 + 322.0437 414.0000 193.0000 3.8677 2.9095 383.1338 414.0000 194.0000 3.8677 1.9209 + 90.6956 414.0000 204.0000 3.8677 1.9697 89.1190 414.0000 205.0000 3.8677 1.9441 + 65.4879 414.0000 206.0000 3.8677 1.9985 52.4136 414.0000 207.0000 3.8677 2.0143 + 35.8247 414.0000 208.0000 3.8677 1.9887 159.9115 414.0000 212.0000 3.8677 1.9496 + 193.0534 414.0000 213.0000 3.8677 1.9311 185.9996 414.0000 214.0000 3.8677 1.9435 + 162.1289 414.0000 215.0000 3.8677 2.0102 136.5758 414.0000 216.0000 3.8677 1.9903 + 223.6162 414.0000 220.0000 3.8677 1.9349 215.7027 414.0000 221.0000 3.8677 2.8999 + 218.3896 414.0000 222.0000 3.8677 3.8675 199.6661 414.0000 223.0000 3.8677 2.9110 + 150.8344 414.0000 224.0000 3.8677 10.6191 129.3324 414.0000 225.0000 3.8677 9.8849 + 126.8932 414.0000 226.0000 3.8677 9.1376 148.2259 414.0000 227.0000 3.8677 2.9263 + 138.2635 414.0000 228.0000 3.8677 6.5458 195.2461 414.0000 231.0000 3.8677 1.9315 + 206.5206 414.0000 232.0000 3.8677 1.9447 190.0483 414.0000 233.0000 3.8677 1.9793 + 177.1287 414.0000 234.0000 3.8677 1.9812 267.8525 414.0000 238.0000 3.8677 1.9143 + 259.1062 414.0000 239.0000 3.8677 2.8903 261.6469 414.0000 240.0000 3.8677 3.9106 + 252.7061 414.0000 241.0000 3.8677 2.9225 223.9586 414.0000 242.0000 3.8677 11.0556 + 197.9963 414.0000 243.0000 3.8677 9.5402 187.1659 414.0000 244.0000 3.8677 8.8895 + 190.0213 414.0000 245.0000 3.8677 2.9696 198.4222 414.0000 246.0000 3.8677 5.7095 + 251.4716 414.0000 249.0000 3.8677 1.9378 273.5628 414.0000 250.0000 3.8677 1.9505 + 258.7140 414.0000 251.0000 3.8677 1.9523 250.0579 414.0000 252.0000 3.8677 1.9639 + 324.2955 414.0000 256.0000 3.8677 1.8467 337.2225 414.0000 257.0000 3.8677 2.9175 + 250.8445 414.0000 272.0000 3.8677 3.8840 261.3808 414.0000 273.0000 3.8677 2.8988 + 243.3863 414.0000 274.0000 3.8677 10.9153 221.3716 414.0000 275.0000 3.8677 9.8054 + 208.4942 414.0000 276.0000 3.8677 9.1527 211.8881 414.0000 277.0000 3.8677 2.9424 + 222.9268 414.0000 278.0000 3.8677 6.6669 268.9609 414.0000 281.0000 3.8677 1.9302 + 284.5181 414.0000 282.0000 3.8677 1.9356 290.5376 414.0000 283.0000 3.8677 1.9655 + 288.7638 414.0000 284.0000 3.8677 1.9639 357.1817 414.0000 288.0000 3.8677 1.8075 + 68.1106 414.0000 305.0000 3.8677 2.9128 61.2169 414.0000 306.0000 3.8677 2.9987 + 46.1031 414.0000 307.0000 3.8677 2.9903 151.4603 414.0000 313.0000 3.8677 2.9146 + 181.0237 414.0000 314.0000 3.8677 2.9407 150.6308 414.0000 315.0000 3.8677 2.9859 + 132.2884 414.0000 327.0000 3.8677 7.7785 144.6644 414.0000 328.0000 3.8677 6.2918 + 160.6091 414.0000 331.0000 3.8677 2.9233 185.4774 414.0000 332.0000 3.8677 2.9186 + 183.1915 414.0000 333.0000 3.8677 2.9709 215.2424 414.0000 349.0000 3.8677 2.9353 + 247.0572 414.0000 350.0000 3.8677 2.9259 249.7552 414.0000 351.0000 3.8677 2.9315 + 240.4518 414.0000 381.0000 3.8677 2.9420 279.4395 414.0000 382.0000 3.8677 2.9081 + 282.2078 414.0000 383.0000 3.8677 2.9500 64.1083 414.0000 405.0000 3.8677 4.5856 + 50.2053 414.0000 406.0000 3.8677 3.9844 149.7734 414.0000 414.0000 3.8677 3.8677 + 23.1784 432.0000 1.0000 3.8972 0.9118 15.4801 432.0000 2.0000 3.8972 0.0000 + 330.5666 432.0000 3.0000 3.8972 0.0000 199.4034 432.0000 4.0000 3.8972 0.0000 + 137.2617 432.0000 5.0000 3.8972 0.0000 94.0357 432.0000 6.0000 3.8972 0.0000 + 66.3293 432.0000 7.0000 3.8972 0.0000 50.4741 432.0000 8.0000 3.8972 0.0000 + 38.3697 432.0000 9.0000 3.8972 0.0000 29.5740 432.0000 10.0000 3.8972 0.0000 + 396.2431 432.0000 11.0000 3.8972 0.0000 315.2720 432.0000 12.0000 3.8972 0.0000 + 294.1970 432.0000 13.0000 3.8972 0.0000 235.3944 432.0000 14.0000 3.8972 0.0000 + 185.7226 432.0000 15.0000 3.8972 0.0000 155.1691 432.0000 16.0000 3.8972 0.0000 + 127.4785 432.0000 17.0000 3.8972 0.0000 104.7412 432.0000 18.0000 3.8972 0.0000 + 645.2973 432.0000 19.0000 3.8972 0.0000 546.4784 432.0000 20.0000 3.8972 0.0000 + 454.0771 432.0000 21.0000 3.8972 0.0000 440.7662 432.0000 22.0000 3.8972 0.0000 + 404.8543 432.0000 23.0000 3.8972 0.0000 319.0075 432.0000 24.0000 3.8972 0.0000 + 350.0882 432.0000 25.0000 3.8972 0.0000 274.9614 432.0000 26.0000 3.8972 0.0000 + 293.3577 432.0000 27.0000 3.8972 0.0000 301.2669 432.0000 28.0000 3.8972 0.0000 + 230.9258 432.0000 29.0000 3.8972 0.0000 239.3959 432.0000 30.0000 3.8972 0.0000 + 282.9469 432.0000 31.0000 3.8972 0.0000 252.4591 432.0000 32.0000 3.8972 0.0000 + 217.4476 432.0000 33.0000 3.8972 0.0000 196.1962 432.0000 34.0000 3.8972 0.0000 + 172.5823 432.0000 35.0000 3.8972 0.0000 150.7260 432.0000 36.0000 3.8972 0.0000 + 724.9394 432.0000 37.0000 3.8972 0.0000 650.4849 432.0000 38.0000 3.8972 0.0000 + 575.5731 432.0000 39.0000 3.8972 0.0000 520.4592 432.0000 40.0000 3.8972 0.0000 + 476.4489 432.0000 41.0000 3.8972 0.0000 370.1677 432.0000 42.0000 3.8972 0.0000 + 412.0594 432.0000 43.0000 3.8972 0.0000 316.0442 432.0000 44.0000 3.8972 0.0000 + 345.5051 432.0000 45.0000 3.8972 0.0000 321.1117 432.0000 46.0000 3.8972 0.0000 + 267.2135 432.0000 47.0000 3.8972 0.0000 283.7237 432.0000 48.0000 3.8972 0.0000 + 353.6035 432.0000 49.0000 3.8972 0.0000 330.1301 432.0000 50.0000 3.8972 0.0000 + 296.8145 432.0000 51.0000 3.8972 0.0000 276.7786 432.0000 52.0000 3.8972 0.0000 + 251.5229 432.0000 53.0000 3.8972 0.0000 227.1324 432.0000 54.0000 3.8972 0.0000 + 883.9799 432.0000 55.0000 3.8972 0.0000 826.6644 432.0000 56.0000 3.8972 0.0000 + 733.5714 432.0000 57.0000 3.8972 0.0000 350.0197 432.0000 58.0000 3.8972 2.7991 + 734.6883 432.0000 59.0000 3.8972 0.0000 706.5967 432.0000 60.0000 3.8972 0.0000 + 689.1790 432.0000 61.0000 3.8972 0.0000 673.1287 432.0000 62.0000 3.8972 0.0000 + 658.9099 432.0000 63.0000 3.8972 0.0000 523.7968 432.0000 64.0000 3.8972 0.0000 + 580.5610 432.0000 65.0000 3.8972 0.0000 561.0491 432.0000 66.0000 3.8972 0.0000 + 595.7532 432.0000 67.0000 3.8972 0.0000 583.2649 432.0000 68.0000 3.8972 0.0000 + 572.0834 432.0000 69.0000 3.8972 0.0000 565.1383 432.0000 70.0000 3.8972 0.0000 + 479.7277 432.0000 71.0000 3.8972 0.0000 476.6268 432.0000 72.0000 3.8972 0.0000 + 437.4673 432.0000 73.0000 3.8972 0.0000 370.9397 432.0000 74.0000 3.8972 0.0000 + 378.1949 432.0000 75.0000 3.8972 0.0000 344.3352 432.0000 76.0000 3.8972 0.0000 + 316.4776 432.0000 77.0000 3.8972 0.0000 263.7482 432.0000 78.0000 3.8972 0.0000 + 246.7174 432.0000 79.0000 3.8972 0.0000 254.3020 432.0000 80.0000 3.8972 0.0000 + 363.7480 432.0000 81.0000 3.8972 0.0000 358.2779 432.0000 82.0000 3.8972 0.0000 + 331.8378 432.0000 83.0000 3.8972 0.0000 317.8930 432.0000 84.0000 3.8972 0.0000 + 294.8476 432.0000 85.0000 3.8972 0.0000 271.3855 432.0000 86.0000 3.8972 0.0000 + 841.4502 432.0000 87.0000 3.8972 0.0000 821.7173 432.0000 88.0000 3.8972 0.0000 + 732.8985 432.0000 89.0000 3.8972 0.0000 665.2638 432.0000 90.0000 3.8972 0.0000 + 657.0913 432.0000 91.0000 3.8972 0.0000 636.3459 432.0000 92.0000 3.8972 0.0000 + 650.9057 432.0000 93.0000 3.8972 0.0000 631.0647 432.0000 94.0000 3.8972 0.0000 + 36.9664 432.0000 101.0000 3.8972 0.0000 116.2577 432.0000 103.0000 3.8972 0.9865 + 148.9411 432.0000 104.0000 3.8972 0.9808 115.9145 432.0000 105.0000 3.8972 0.9706 + 88.1532 432.0000 106.0000 3.8972 0.9868 61.8399 432.0000 107.0000 3.8972 0.9944 + 45.3141 432.0000 108.0000 3.8972 0.9925 31.3603 432.0000 109.0000 3.8972 0.9982 + 169.1405 432.0000 111.0000 3.8972 0.9684 261.2272 432.0000 112.0000 3.8972 0.9628 + 267.3616 432.0000 113.0000 3.8972 0.9648 218.0074 432.0000 114.0000 3.8972 0.9507 + 180.3305 432.0000 115.0000 3.8972 0.9947 153.4225 432.0000 116.0000 3.8972 0.9948 + 126.1326 432.0000 117.0000 3.8972 0.9972 234.9742 432.0000 119.0000 3.8972 0.9767 + 437.6779 432.0000 120.0000 3.8972 0.9831 237.9706 432.0000 121.0000 3.8972 1.8627 + 229.8053 432.0000 122.0000 3.8972 1.8299 225.1326 432.0000 123.0000 3.8972 1.9138 + 222.7038 432.0000 124.0000 3.8972 1.8269 206.3483 432.0000 125.0000 3.8972 1.6406 + 191.3189 432.0000 126.0000 3.8972 1.6483 182.4798 432.0000 127.0000 3.8972 1.7149 + 178.2858 432.0000 128.0000 3.8972 1.7937 175.1844 432.0000 129.0000 3.8972 0.9576 + 165.9764 432.0000 130.0000 3.8972 1.9419 266.5350 432.0000 131.0000 3.8972 0.9601 + 236.7867 432.0000 132.0000 3.8972 0.9434 213.8707 432.0000 133.0000 3.8972 0.9889 + 196.2489 432.0000 134.0000 3.8972 0.9901 173.7316 432.0000 135.0000 3.8972 0.9974 + 281.0734 432.0000 137.0000 3.8972 0.9738 531.8762 432.0000 138.0000 3.8972 0.9801 + 414.6203 432.0000 139.0000 3.8972 1.9153 314.4398 432.0000 140.0000 3.8972 1.9355 + 317.4077 432.0000 141.0000 3.8972 1.9545 296.6250 432.0000 142.0000 3.8972 1.9420 + 329.6696 432.0000 143.0000 3.8972 1.6682 260.1176 432.0000 144.0000 3.8972 1.8584 + 243.4182 432.0000 145.0000 3.8972 1.9003 226.2274 432.0000 146.0000 3.8972 1.8630 + 218.5854 432.0000 147.0000 3.8972 0.9679 217.3760 432.0000 148.0000 3.8972 1.9539 + 338.1831 432.0000 149.0000 3.8972 0.9633 308.9411 432.0000 150.0000 3.8972 0.9514 + 291.2302 432.0000 151.0000 3.8972 0.9749 276.6685 432.0000 152.0000 3.8972 0.9811 + 253.8712 432.0000 153.0000 3.8972 0.9968 335.0524 432.0000 155.0000 3.8972 0.9909 + 686.9957 432.0000 156.0000 3.8972 0.9797 523.9575 432.0000 157.0000 3.8972 1.9373 + 339.6203 432.0000 159.0000 3.8972 2.9425 332.6173 432.0000 160.0000 3.8972 2.9455 + 322.2035 432.0000 161.0000 3.8972 2.9413 323.3676 432.0000 162.0000 3.8972 2.9300 + 310.2550 432.0000 163.0000 3.8972 1.8286 325.3103 432.0000 164.0000 3.8972 2.8732 + 305.8457 432.0000 165.0000 3.8972 2.9086 310.4631 432.0000 166.0000 3.8972 2.8965 + 290.6346 432.0000 167.0000 3.8972 2.9242 282.4712 432.0000 168.0000 3.8972 2.9282 + 280.5719 432.0000 169.0000 3.8972 2.9246 294.4333 432.0000 170.0000 3.8972 2.8482 + 271.3793 432.0000 171.0000 3.8972 2.9219 362.1217 432.0000 172.0000 3.8972 1.9254 + 337.8356 432.0000 173.0000 3.8972 1.9459 309.8655 432.0000 174.0000 3.8972 1.9292 + 311.9987 432.0000 175.0000 3.8972 1.8104 276.4784 432.0000 176.0000 3.8972 1.8858 + 260.4704 432.0000 177.0000 3.8972 1.8648 248.9720 432.0000 178.0000 3.8972 1.9188 + 237.8926 432.0000 179.0000 3.8972 0.9846 230.8926 432.0000 180.0000 3.8972 1.9896 + 363.6185 432.0000 181.0000 3.8972 0.9267 334.5302 432.0000 182.0000 3.8972 0.9383 + 326.0484 432.0000 183.0000 3.8972 0.9820 318.1991 432.0000 184.0000 3.8972 0.9815 + 298.4552 432.0000 185.0000 3.8972 0.9954 377.5956 432.0000 187.0000 3.8972 0.9705 + 687.7017 432.0000 188.0000 3.8972 0.9662 401.8327 432.0000 189.0000 3.8972 2.9070 + 460.1149 432.0000 190.0000 3.8972 2.8844 412.3899 432.0000 191.0000 3.8972 2.8738 + 366.6111 432.0000 192.0000 3.8972 2.8878 353.2213 432.0000 193.0000 3.8972 2.9095 + 417.8488 432.0000 194.0000 3.8972 1.9209 99.1700 432.0000 204.0000 3.8972 1.9697 + 97.6880 432.0000 205.0000 3.8972 1.9441 72.2595 432.0000 206.0000 3.8972 1.9985 + 58.0974 432.0000 207.0000 3.8972 2.0143 40.0132 432.0000 208.0000 3.8972 1.9887 + 174.2312 432.0000 212.0000 3.8972 1.9496 210.2972 432.0000 213.0000 3.8972 1.9311 + 203.1783 432.0000 214.0000 3.8972 1.9435 177.7373 432.0000 215.0000 3.8972 2.0102 + 150.3278 432.0000 216.0000 3.8972 1.9903 243.9590 432.0000 220.0000 3.8972 1.9349 + 235.8103 432.0000 221.0000 3.8972 2.8999 238.8007 432.0000 222.0000 3.8972 3.8675 + 218.4003 432.0000 223.0000 3.8972 2.9110 165.7746 432.0000 224.0000 3.8972 10.6191 + 142.5295 432.0000 225.0000 3.8972 9.8849 139.8068 432.0000 226.0000 3.8972 9.1376 + 162.6068 432.0000 227.0000 3.8972 2.9263 151.8497 432.0000 228.0000 3.8972 6.5458 + 213.2887 432.0000 231.0000 3.8972 1.9315 225.8139 432.0000 232.0000 3.8972 1.9447 + 208.4500 432.0000 233.0000 3.8972 1.9793 194.7306 432.0000 234.0000 3.8972 1.9812 + 292.4289 432.0000 238.0000 3.8972 1.9143 283.5949 432.0000 239.0000 3.8972 2.8903 + 286.6200 432.0000 240.0000 3.8972 3.9106 276.8993 432.0000 241.0000 3.8972 2.9225 + 246.1182 432.0000 242.0000 3.8972 11.0556 218.1156 432.0000 243.0000 3.8972 9.5402 + 206.3914 432.0000 244.0000 3.8972 8.8895 209.1152 432.0000 245.0000 3.8972 2.9696 + 218.1530 432.0000 246.0000 3.8972 5.7095 275.1658 432.0000 249.0000 3.8972 1.9378 + 299.2117 432.0000 250.0000 3.8972 1.9505 283.6451 432.0000 251.0000 3.8972 1.9523 + 274.5751 432.0000 252.0000 3.8972 1.9639 354.4023 432.0000 256.0000 3.8972 1.8467 + 368.8682 432.0000 257.0000 3.8972 2.9175 275.1466 432.0000 272.0000 3.8972 3.8840 + 286.5355 432.0000 273.0000 3.8972 2.8988 267.5021 432.0000 274.0000 3.8972 10.9153 + 243.8471 432.0000 275.0000 3.8972 9.8054 230.0687 432.0000 276.0000 3.8972 9.1527 + 233.4445 432.0000 277.0000 3.8972 2.9424 245.4740 432.0000 278.0000 3.8972 6.6669 + 294.9427 432.0000 281.0000 3.8972 1.9302 311.9266 432.0000 282.0000 3.8972 1.9356 + 318.7416 432.0000 283.0000 3.8972 1.9655 317.0936 432.0000 284.0000 3.8972 1.9639 + 390.4281 432.0000 288.0000 3.8972 1.8075 75.0316 432.0000 305.0000 3.8972 2.9128 + 67.5854 432.0000 306.0000 3.8972 2.9987 51.1874 432.0000 307.0000 3.8972 2.9903 + 165.6908 432.0000 313.0000 3.8972 2.9146 197.6946 432.0000 314.0000 3.8972 2.9407 + 165.3571 432.0000 315.0000 3.8972 2.9859 145.5291 432.0000 327.0000 3.8972 7.7785 + 158.5536 432.0000 328.0000 3.8972 6.2918 176.1294 432.0000 331.0000 3.8972 2.9233 + 203.1922 432.0000 332.0000 3.8972 2.9186 201.0683 432.0000 333.0000 3.8972 2.9709 + 236.3761 432.0000 349.0000 3.8972 2.9353 270.8052 432.0000 350.0000 3.8972 2.9259 + 274.0484 432.0000 351.0000 3.8972 2.9315 264.4224 432.0000 381.0000 3.8972 2.9420 + 306.5747 432.0000 382.0000 3.8972 2.9081 309.8748 432.0000 383.0000 3.8972 2.9500 + 70.6917 432.0000 405.0000 3.8972 4.5856 55.6857 432.0000 406.0000 3.8972 3.9844 + 164.1811 432.0000 414.0000 3.8972 3.8677 180.2912 432.0000 432.0000 3.8972 3.8972 + 31.6020 450.0000 1.0000 3.9123 0.9118 21.2154 450.0000 2.0000 3.9123 0.0000 + 455.9199 450.0000 3.0000 3.9123 0.0000 273.0046 450.0000 4.0000 3.9123 0.0000 + 187.3808 450.0000 5.0000 3.9123 0.0000 128.3113 450.0000 6.0000 3.9123 0.0000 + 90.6184 450.0000 7.0000 3.9123 0.0000 69.0939 450.0000 8.0000 3.9123 0.0000 + 52.6661 450.0000 9.0000 3.9123 0.0000 40.7195 450.0000 10.0000 3.9123 0.0000 + 546.5096 450.0000 11.0000 3.9123 0.0000 432.3765 450.0000 12.0000 3.9123 0.0000 + 402.6252 450.0000 13.0000 3.9123 0.0000 321.4363 450.0000 14.0000 3.9123 0.0000 + 253.3166 450.0000 15.0000 3.9123 0.0000 211.6318 450.0000 16.0000 3.9123 0.0000 + 173.9517 450.0000 17.0000 3.9123 0.0000 143.0794 450.0000 18.0000 3.9123 0.0000 + 891.2091 450.0000 19.0000 3.9123 0.0000 751.4576 450.0000 20.0000 3.9123 0.0000 + 623.8277 450.0000 21.0000 3.9123 0.0000 605.1321 450.0000 22.0000 3.9123 0.0000 + 555.6200 450.0000 23.0000 3.9123 0.0000 438.0628 450.0000 24.0000 3.9123 0.0000 + 480.2245 450.0000 25.0000 3.9123 0.0000 377.4064 450.0000 26.0000 3.9123 0.0000 + 402.0434 450.0000 27.0000 3.9123 0.0000 413.0565 450.0000 28.0000 3.9123 0.0000 + 316.9274 450.0000 29.0000 3.9123 0.0000 327.8656 450.0000 30.0000 3.9123 0.0000 + 387.2413 450.0000 31.0000 3.9123 0.0000 344.9065 450.0000 32.0000 3.9123 0.0000 + 296.7505 450.0000 33.0000 3.9123 0.0000 267.6724 450.0000 34.0000 3.9123 0.0000 + 235.4797 450.0000 35.0000 3.9123 0.0000 205.7618 450.0000 36.0000 3.9123 0.0000 + 1000.9319 450.0000 37.0000 3.9123 0.0000 894.7056 450.0000 38.0000 3.9123 0.0000 + 790.3938 450.0000 39.0000 3.9123 0.0000 714.0953 450.0000 40.0000 3.9123 0.0000 + 653.4187 450.0000 41.0000 3.9123 0.0000 507.4919 450.0000 42.0000 3.9123 0.0000 + 565.0031 450.0000 43.0000 3.9123 0.0000 433.2544 450.0000 44.0000 3.9123 0.0000 + 473.4591 450.0000 45.0000 3.9123 0.0000 439.9855 450.0000 46.0000 3.9123 0.0000 + 366.5943 450.0000 47.0000 3.9123 0.0000 388.7621 450.0000 48.0000 3.9123 0.0000 + 484.6532 450.0000 49.0000 3.9123 0.0000 451.7578 450.0000 50.0000 3.9123 0.0000 + 405.6849 450.0000 51.0000 3.9123 0.0000 378.0963 450.0000 52.0000 3.9123 0.0000 + 343.4912 450.0000 53.0000 3.9123 0.0000 310.1806 450.0000 54.0000 3.9123 0.0000 + 1220.0459 450.0000 55.0000 3.9123 0.0000 1137.6146 450.0000 56.0000 3.9123 0.0000 + 1007.8507 450.0000 57.0000 3.9123 0.0000 478.5981 450.0000 58.0000 3.9123 2.7991 + 1010.9240 450.0000 59.0000 3.9123 0.0000 972.0426 450.0000 60.0000 3.9123 0.0000 + 948.0215 450.0000 61.0000 3.9123 0.0000 925.8883 450.0000 62.0000 3.9123 0.0000 + 906.2740 450.0000 63.0000 3.9123 0.0000 719.4208 450.0000 64.0000 3.9123 0.0000 + 799.4055 450.0000 65.0000 3.9123 0.0000 772.2715 450.0000 66.0000 3.9123 0.0000 + 819.1008 450.0000 67.0000 3.9123 0.0000 801.8905 450.0000 68.0000 3.9123 0.0000 + 786.4597 450.0000 69.0000 3.9123 0.0000 776.9549 450.0000 70.0000 3.9123 0.0000 + 658.8708 450.0000 71.0000 3.9123 0.0000 653.2934 450.0000 72.0000 3.9123 0.0000 + 599.2111 450.0000 73.0000 3.9123 0.0000 508.0568 450.0000 74.0000 3.9123 0.0000 + 517.8162 450.0000 75.0000 3.9123 0.0000 471.2941 450.0000 76.0000 3.9123 0.0000 + 433.0981 450.0000 77.0000 3.9123 0.0000 361.1221 450.0000 78.0000 3.9123 0.0000 + 337.9078 450.0000 79.0000 3.9123 0.0000 348.1233 450.0000 80.0000 3.9123 0.0000 + 498.7690 450.0000 81.0000 3.9123 0.0000 490.6231 450.0000 82.0000 3.9123 0.0000 + 453.9039 450.0000 83.0000 3.9123 0.0000 434.5851 450.0000 84.0000 3.9123 0.0000 + 402.9083 450.0000 85.0000 3.9123 0.0000 370.7947 450.0000 86.0000 3.9123 0.0000 + 1159.9029 450.0000 87.0000 3.9123 0.0000 1129.8719 450.0000 88.0000 3.9123 0.0000 + 1006.4862 450.0000 89.0000 3.9123 0.0000 912.4622 450.0000 90.0000 3.9123 0.0000 + 902.1993 450.0000 91.0000 3.9123 0.0000 873.7655 450.0000 92.0000 3.9123 0.0000 + 894.8104 450.0000 93.0000 3.9123 0.0000 867.3914 450.0000 94.0000 3.9123 0.0000 + 50.3940 450.0000 101.0000 3.9123 0.0000 159.1376 450.0000 103.0000 3.9123 0.9865 + 203.7227 450.0000 104.0000 3.9123 0.9808 158.2137 450.0000 105.0000 3.9123 0.9706 + 120.3190 450.0000 106.0000 3.9123 0.9868 84.5138 450.0000 107.0000 3.9123 0.9944 + 62.0665 450.0000 108.0000 3.9123 0.9925 43.1432 450.0000 109.0000 3.9123 0.9982 + 231.9019 450.0000 111.0000 3.9123 0.9684 358.0089 450.0000 112.0000 3.9123 0.9628 + 365.7711 450.0000 113.0000 3.9123 0.9648 297.6403 450.0000 114.0000 3.9123 0.9507 + 245.9773 450.0000 115.0000 3.9123 0.9947 209.2713 450.0000 116.0000 3.9123 0.9948 + 172.1318 450.0000 117.0000 3.9123 0.9972 322.1273 450.0000 119.0000 3.9123 0.9767 + 601.8691 450.0000 120.0000 3.9123 0.9831 325.5023 450.0000 121.0000 3.9123 1.8627 + 314.3804 450.0000 122.0000 3.9123 1.8299 308.0520 450.0000 123.0000 3.9123 1.9138 + 304.8385 450.0000 124.0000 3.9123 1.8269 282.1503 450.0000 125.0000 3.9123 1.6406 + 261.5954 450.0000 126.0000 3.9123 1.6483 249.5667 450.0000 127.0000 3.9123 1.7149 + 243.8751 450.0000 128.0000 3.9123 1.7937 239.8928 450.0000 129.0000 3.9123 0.9576 + 226.8951 450.0000 130.0000 3.9123 1.9419 364.6366 450.0000 131.0000 3.9123 0.9601 + 323.4073 450.0000 132.0000 3.9123 0.9434 291.8644 450.0000 133.0000 3.9123 0.9889 + 267.7542 450.0000 134.0000 3.9123 0.9901 237.0549 450.0000 135.0000 3.9123 0.9974 + 385.2516 450.0000 137.0000 3.9123 0.9738 731.6257 450.0000 138.0000 3.9123 0.9801 + 568.6159 450.0000 139.0000 3.9123 1.9153 430.1818 450.0000 140.0000 3.9123 1.9355 + 434.3422 450.0000 141.0000 3.9123 1.9545 405.9028 450.0000 142.0000 3.9123 1.9420 + 451.7317 450.0000 143.0000 3.9123 1.6682 355.8286 450.0000 144.0000 3.9123 1.8584 + 333.0973 450.0000 145.0000 3.9123 1.9003 309.6665 450.0000 146.0000 3.9123 1.8630 + 299.3318 450.0000 147.0000 3.9123 0.9679 297.3658 450.0000 148.0000 3.9123 1.9539 + 463.2993 450.0000 149.0000 3.9123 0.9633 422.5950 450.0000 150.0000 3.9123 0.9514 + 398.0011 450.0000 151.0000 3.9123 0.9749 377.9250 450.0000 152.0000 3.9123 0.9811 + 346.6856 450.0000 153.0000 3.9123 0.9968 458.3940 450.0000 155.0000 3.9123 0.9909 + 945.5274 450.0000 156.0000 3.9123 0.9797 718.6770 450.0000 157.0000 3.9123 1.9373 + 464.3765 450.0000 159.0000 3.9123 2.9425 454.8102 450.0000 160.0000 3.9123 2.9455 + 440.5691 450.0000 161.0000 3.9123 2.9413 442.2254 450.0000 162.0000 3.9123 2.9300 + 424.6928 450.0000 163.0000 3.9123 1.8286 444.8426 450.0000 164.0000 3.9123 2.8732 + 418.2405 450.0000 165.0000 3.9123 2.9086 424.6821 450.0000 166.0000 3.9123 2.8965 + 397.3735 450.0000 167.0000 3.9123 2.9242 386.1954 450.0000 168.0000 3.9123 2.9282 + 383.6007 450.0000 169.0000 3.9123 2.9246 402.5361 450.0000 170.0000 3.9123 2.8482 + 370.9807 450.0000 171.0000 3.9123 2.9219 495.8235 450.0000 172.0000 3.9123 1.9254 + 462.3439 450.0000 173.0000 3.9123 1.9459 423.9005 450.0000 174.0000 3.9123 1.9292 + 427.1388 450.0000 175.0000 3.9123 1.8104 378.0575 450.0000 176.0000 3.9123 1.8858 + 356.2581 450.0000 177.0000 3.9123 1.8648 340.6257 450.0000 178.0000 3.9123 1.9188 + 325.6411 450.0000 179.0000 3.9123 0.9846 315.8629 450.0000 180.0000 3.9123 1.9896 + 498.3275 450.0000 181.0000 3.9123 0.9267 457.8340 450.0000 182.0000 3.9123 0.9383 + 445.8726 450.0000 183.0000 3.9123 0.9820 434.9405 450.0000 184.0000 3.9123 0.9815 + 407.8002 450.0000 185.0000 3.9123 0.9954 516.5085 450.0000 187.0000 3.9123 0.9705 + 945.5414 450.0000 188.0000 3.9123 0.9662 549.3659 450.0000 189.0000 3.9123 2.9070 + 629.8247 450.0000 190.0000 3.9123 2.8844 564.5129 450.0000 191.0000 3.9123 2.8738 + 501.5645 450.0000 192.0000 3.9123 2.8878 483.2284 450.0000 193.0000 3.9123 2.9095 + 572.9675 450.0000 194.0000 3.9123 1.9209 135.2605 450.0000 204.0000 3.9123 1.9697 + 133.3214 450.0000 205.0000 3.9123 1.9441 98.6540 450.0000 206.0000 3.9123 1.9985 + 79.4522 450.0000 207.0000 3.9123 2.0143 54.9005 450.0000 208.0000 3.9123 1.9887 + 238.0549 450.0000 212.0000 3.9123 1.9496 287.3337 450.0000 213.0000 3.9123 1.9311 + 277.3459 450.0000 214.0000 3.9123 1.9435 242.4940 450.0000 215.0000 3.9123 2.0102 + 205.0687 450.0000 216.0000 3.9123 1.9903 333.7206 450.0000 220.0000 3.9123 1.9349 + 322.2908 450.0000 221.0000 3.9123 2.8999 326.3851 450.0000 222.0000 3.9123 3.8675 + 298.6591 450.0000 223.0000 3.9123 2.9110 226.7483 450.0000 224.0000 3.9123 10.6191 + 194.9556 450.0000 225.0000 3.9123 9.8849 191.2703 450.0000 226.0000 3.9123 9.1376 + 222.5235 450.0000 227.0000 3.9123 2.9263 207.7855 450.0000 228.0000 3.9123 6.5458 + 291.4396 450.0000 231.0000 3.9123 1.9315 308.3757 450.0000 232.0000 3.9123 1.9447 + 284.4506 450.0000 233.0000 3.9123 1.9793 265.6909 450.0000 234.0000 3.9123 1.9812 + 400.0650 450.0000 238.0000 3.9123 1.9143 387.5181 450.0000 239.0000 3.9123 2.8903 + 391.5532 450.0000 240.0000 3.9123 3.9106 378.4693 450.0000 241.0000 3.9123 2.9225 + 336.3592 450.0000 242.0000 3.9123 11.0556 298.1122 450.0000 243.0000 3.9123 9.5402 + 282.1480 450.0000 244.0000 3.9123 8.8895 286.1251 450.0000 245.0000 3.9123 2.9696 + 298.4950 450.0000 246.0000 3.9123 5.7095 376.5051 450.0000 249.0000 3.9123 1.9378 + 409.2008 450.0000 250.0000 3.9123 1.9505 387.5752 450.0000 251.0000 3.9123 1.9523 + 375.0423 450.0000 252.0000 3.9123 1.9639 484.6892 450.0000 256.0000 3.9123 1.8467 + 504.0290 450.0000 257.0000 3.9123 2.9175 375.8148 450.0000 272.0000 3.9123 3.8840 + 391.6387 450.0000 273.0000 3.9123 2.8988 365.5482 450.0000 274.0000 3.9123 10.9153 + 333.2500 450.0000 275.0000 3.9123 9.8054 314.4361 450.0000 276.0000 3.9123 9.1527 + 319.3501 450.0000 277.0000 3.9123 2.9424 335.7488 450.0000 278.0000 3.9123 6.6669 + 403.6231 450.0000 281.0000 3.9123 1.9302 426.6919 450.0000 282.0000 3.9123 1.9356 + 435.7692 450.0000 283.0000 3.9123 1.9655 433.3703 450.0000 284.0000 3.9123 1.9639 + 533.8514 450.0000 288.0000 3.9123 1.8075 102.3247 450.0000 305.0000 3.9123 2.9128 + 92.3260 450.0000 306.0000 3.9123 2.9987 70.0800 450.0000 307.0000 3.9123 2.9903 + 226.0504 450.0000 313.0000 3.9123 2.9146 269.9679 450.0000 314.0000 3.9123 2.9407 + 225.5418 450.0000 315.0000 3.9123 2.9859 199.1182 450.0000 327.0000 3.9123 7.7785 + 217.1392 450.0000 328.0000 3.9123 6.2918 240.4178 450.0000 331.0000 3.9123 2.9233 + 277.3717 450.0000 332.0000 3.9123 2.9186 274.3493 450.0000 333.0000 3.9123 2.9709 + 323.1509 450.0000 349.0000 3.9123 2.9353 370.1674 450.0000 350.0000 3.9123 2.9259 + 374.3929 450.0000 351.0000 3.9123 2.9315 361.6355 450.0000 381.0000 3.9123 2.9420 + 419.2433 450.0000 382.0000 3.9123 2.9081 423.5320 450.0000 383.0000 3.9123 2.9500 + 96.4179 450.0000 405.0000 3.9123 4.5856 76.0810 450.0000 406.0000 3.9123 3.9844 + 223.9283 450.0000 414.0000 3.9123 3.8677 245.9922 450.0000 432.0000 3.9123 3.8972 + 336.1020 450.0000 450.0000 3.9123 3.9123 36.7836 482.0000 1.0000 3.9098 0.9118 + 24.7926 482.0000 2.0000 3.9098 0.0000 531.2245 482.0000 3.0000 3.9098 0.0000 + 317.3206 482.0000 4.0000 3.9098 0.0000 217.7973 482.0000 5.0000 3.9098 0.0000 + 149.2968 482.0000 6.0000 3.9098 0.0000 105.6030 482.0000 7.0000 3.9098 0.0000 + 80.6444 482.0000 8.0000 3.9098 0.0000 61.5737 482.0000 9.0000 3.9098 0.0000 + 47.6844 482.0000 10.0000 3.9098 0.0000 636.8215 482.0000 11.0000 3.9098 0.0000 + 502.8081 482.0000 12.0000 3.9098 0.0000 468.0184 482.0000 13.0000 3.9098 0.0000 + 373.5814 482.0000 14.0000 3.9098 0.0000 294.5285 482.0000 15.0000 3.9098 0.0000 + 246.2323 482.0000 16.0000 3.9098 0.0000 202.5803 482.0000 17.0000 3.9098 0.0000 + 166.8114 482.0000 18.0000 3.9098 0.0000 1039.5015 482.0000 19.0000 3.9098 0.0000 + 874.8589 482.0000 20.0000 3.9098 0.0000 726.0318 482.0000 21.0000 3.9098 0.0000 + 704.2137 482.0000 22.0000 3.9098 0.0000 646.5526 482.0000 23.0000 3.9098 0.0000 + 510.0132 482.0000 24.0000 3.9098 0.0000 558.7815 482.0000 25.0000 3.9098 0.0000 + 439.3830 482.0000 26.0000 3.9098 0.0000 467.7393 482.0000 27.0000 3.9098 0.0000 + 480.5640 482.0000 28.0000 3.9098 0.0000 368.9934 482.0000 29.0000 3.9098 0.0000 + 381.4239 482.0000 30.0000 3.9098 0.0000 450.3239 482.0000 31.0000 3.9098 0.0000 + 401.0046 482.0000 32.0000 3.9098 0.0000 345.0898 482.0000 33.0000 3.9098 0.0000 + 311.4041 482.0000 34.0000 3.9098 0.0000 274.1230 482.0000 35.0000 3.9098 0.0000 + 239.7155 482.0000 36.0000 3.9098 0.0000 1167.5181 482.0000 37.0000 3.9098 0.0000 + 1041.8714 482.0000 38.0000 3.9098 0.0000 919.9685 482.0000 39.0000 3.9098 0.0000 + 831.0235 482.0000 40.0000 3.9098 0.0000 760.4022 482.0000 41.0000 3.9098 0.0000 + 590.7654 482.0000 42.0000 3.9098 0.0000 657.6194 482.0000 43.0000 3.9098 0.0000 + 504.4697 482.0000 44.0000 3.9098 0.0000 551.0749 482.0000 45.0000 3.9098 0.0000 + 512.1436 482.0000 46.0000 3.9098 0.0000 427.0415 482.0000 47.0000 3.9098 0.0000 + 452.5780 482.0000 48.0000 3.9098 0.0000 564.0526 482.0000 49.0000 3.9098 0.0000 + 525.5713 482.0000 50.0000 3.9098 0.0000 471.9591 482.0000 51.0000 3.9098 0.0000 + 439.9310 482.0000 52.0000 3.9098 0.0000 399.7976 482.0000 53.0000 3.9098 0.0000 + 361.1978 482.0000 54.0000 3.9098 0.0000 1423.0570 482.0000 55.0000 3.9098 0.0000 + 1325.1273 482.0000 56.0000 3.9098 0.0000 1173.3669 482.0000 57.0000 3.9098 0.0000 + 556.9277 482.0000 58.0000 3.9098 2.7991 1177.5400 482.0000 59.0000 3.9098 0.0000 + 1132.1484 482.0000 60.0000 3.9098 0.0000 1104.1399 482.0000 61.0000 3.9098 0.0000 + 1078.3321 482.0000 62.0000 3.9098 0.0000 1055.4583 482.0000 63.0000 3.9098 0.0000 + 837.6884 482.0000 64.0000 3.9098 0.0000 931.6581 482.0000 65.0000 3.9098 0.0000 + 899.9422 482.0000 66.0000 3.9098 0.0000 953.7960 482.0000 67.0000 3.9098 0.0000 + 933.7291 482.0000 68.0000 3.9098 0.0000 915.7315 482.0000 69.0000 3.9098 0.0000 + 904.6632 482.0000 70.0000 3.9098 0.0000 767.0455 482.0000 71.0000 3.9098 0.0000 + 760.1030 482.0000 72.0000 3.9098 0.0000 697.1590 482.0000 73.0000 3.9098 0.0000 + 591.3270 482.0000 74.0000 3.9098 0.0000 602.6127 482.0000 75.0000 3.9098 0.0000 + 548.5334 482.0000 76.0000 3.9098 0.0000 504.1577 482.0000 77.0000 3.9098 0.0000 + 420.6302 482.0000 78.0000 3.9098 0.0000 393.6925 482.0000 79.0000 3.9098 0.0000 + 405.4931 482.0000 80.0000 3.9098 0.0000 580.7999 482.0000 81.0000 3.9098 0.0000 + 571.0696 482.0000 82.0000 3.9098 0.0000 528.2653 482.0000 83.0000 3.9098 0.0000 + 505.8011 482.0000 84.0000 3.9098 0.0000 469.0293 482.0000 85.0000 3.9098 0.0000 + 431.7936 482.0000 86.0000 3.9098 0.0000 1352.3973 482.0000 87.0000 3.9098 0.0000 + 1315.8434 482.0000 88.0000 3.9098 0.0000 1171.6435 482.0000 89.0000 3.9098 0.0000 + 1061.9693 482.0000 90.0000 3.9098 0.0000 1050.4296 482.0000 91.0000 3.9098 0.0000 + 1017.3620 482.0000 92.0000 3.9098 0.0000 1042.1717 482.0000 93.0000 3.9098 0.0000 + 1010.1837 482.0000 94.0000 3.9098 0.0000 58.5875 482.0000 101.0000 3.9098 0.0000 + 184.9914 482.0000 103.0000 3.9098 0.9865 236.8318 482.0000 104.0000 3.9098 0.9808 + 183.9560 482.0000 105.0000 3.9098 0.9706 140.0380 482.0000 106.0000 3.9098 0.9868 + 98.5247 482.0000 107.0000 3.9098 0.9944 72.4872 482.0000 108.0000 3.9098 0.9925 + 50.5222 482.0000 109.0000 3.9098 0.9982 269.7377 482.0000 111.0000 3.9098 0.9684 + 416.3367 482.0000 112.0000 3.9098 0.9628 425.1844 482.0000 113.0000 3.9098 0.9648 + 345.9586 482.0000 114.0000 3.9098 0.9507 286.0200 482.0000 115.0000 3.9098 0.9947 + 243.4969 482.0000 116.0000 3.9098 0.9948 200.4687 482.0000 117.0000 3.9098 0.9972 + 375.0355 482.0000 119.0000 3.9098 0.9767 700.9780 482.0000 120.0000 3.9098 0.9831 + 378.6746 482.0000 121.0000 3.9098 1.8627 365.7846 482.0000 122.0000 3.9098 1.8299 + 358.4493 482.0000 123.0000 3.9098 1.9138 354.7425 482.0000 124.0000 3.9098 1.8269 + 328.2571 482.0000 125.0000 3.9098 1.6406 304.3824 482.0000 126.0000 3.9098 1.6483 + 290.4242 482.0000 127.0000 3.9098 1.7149 283.8131 482.0000 128.0000 3.9098 1.7937 + 279.2429 482.0000 129.0000 3.9098 0.9576 264.0222 482.0000 130.0000 3.9098 1.9419 + 424.0264 482.0000 131.0000 3.9098 0.9601 376.0319 482.0000 132.0000 3.9098 0.9434 + 339.4241 482.0000 133.0000 3.9098 0.9889 311.5038 482.0000 134.0000 3.9098 0.9901 + 275.9534 482.0000 135.0000 3.9098 0.9974 448.5935 482.0000 137.0000 3.9098 0.9738 + 852.3143 482.0000 138.0000 3.9098 0.9801 661.9108 482.0000 139.0000 3.9098 1.9153 + 500.5775 482.0000 140.0000 3.9098 1.9355 505.4645 482.0000 141.0000 3.9098 1.9545 + 472.4503 482.0000 142.0000 3.9098 1.9420 525.9403 482.0000 143.0000 3.9098 1.6682 + 414.2303 482.0000 144.0000 3.9098 1.8584 387.8570 482.0000 145.0000 3.9098 1.9003 + 360.6571 482.0000 146.0000 3.9098 1.8630 348.6552 482.0000 147.0000 3.9098 0.9679 + 346.2500 482.0000 148.0000 3.9098 1.9539 539.1627 482.0000 149.0000 3.9098 0.9633 + 491.6599 482.0000 150.0000 3.9098 0.9514 463.0314 482.0000 151.0000 3.9098 0.9749 + 439.7315 482.0000 152.0000 3.9098 0.9811 403.5058 482.0000 153.0000 3.9098 0.9968 + 533.5202 482.0000 155.0000 3.9098 0.9909 1101.8490 482.0000 156.0000 3.9098 0.9797 + 836.6887 482.0000 157.0000 3.9098 1.9373 540.3972 482.0000 159.0000 3.9098 2.9425 + 529.2722 482.0000 160.0000 3.9098 2.9455 512.7147 482.0000 161.0000 3.9098 2.9413 + 514.6418 482.0000 162.0000 3.9098 2.9300 494.3485 482.0000 163.0000 3.9098 1.8286 + 517.6380 482.0000 164.0000 3.9098 2.8732 486.7223 482.0000 165.0000 3.9098 2.9086 + 494.2365 482.0000 166.0000 3.9098 2.8965 462.4304 482.0000 167.0000 3.9098 2.9242 + 449.4230 482.0000 168.0000 3.9098 2.9282 446.3932 482.0000 169.0000 3.9098 2.9246 + 468.3408 482.0000 170.0000 3.9098 2.8482 431.6921 482.0000 171.0000 3.9098 2.9219 + 577.0080 482.0000 172.0000 3.9098 1.9254 538.0864 482.0000 173.0000 3.9098 1.9459 + 493.4118 482.0000 174.0000 3.9098 1.9292 497.2206 482.0000 175.0000 3.9098 1.8104 + 440.1479 482.0000 176.0000 3.9098 1.8858 414.8776 482.0000 177.0000 3.9098 1.8648 + 396.7561 482.0000 178.0000 3.9098 1.9188 379.3998 482.0000 179.0000 3.9098 0.9846 + 367.9720 482.0000 180.0000 3.9098 1.9896 580.1803 482.0000 181.0000 3.9098 0.9267 + 532.8947 482.0000 182.0000 3.9098 0.9383 518.9107 482.0000 183.0000 3.9098 0.9820 + 506.2018 482.0000 184.0000 3.9098 0.9815 474.7044 482.0000 185.0000 3.9098 0.9954 + 601.1198 482.0000 187.0000 3.9098 0.9705 1101.5277 482.0000 188.0000 3.9098 0.9662 + 639.2377 482.0000 189.0000 3.9098 2.9070 733.0596 482.0000 190.0000 3.9098 2.8844 + 657.2121 482.0000 191.0000 3.9098 2.8738 583.8865 482.0000 192.0000 3.9098 2.8878 + 562.5674 482.0000 193.0000 3.9098 2.9095 667.2807 482.0000 194.0000 3.9098 1.9209 + 157.1991 482.0000 204.0000 3.9098 1.9697 155.0685 482.0000 205.0000 3.9098 1.9441 + 114.8824 482.0000 206.0000 3.9098 1.9985 92.6508 482.0000 207.0000 3.9098 2.0143 + 64.1744 482.0000 208.0000 3.9098 1.9887 276.6755 482.0000 212.0000 3.9098 1.9496 + 333.9862 482.0000 213.0000 3.9098 1.9311 322.3895 482.0000 214.0000 3.9098 1.9435 + 281.9915 482.0000 215.0000 3.9098 2.0102 238.6223 482.0000 216.0000 3.9098 1.9903 + 388.2085 482.0000 220.0000 3.9098 1.9349 374.8744 482.0000 221.0000 3.9098 2.8999 + 379.6507 482.0000 222.0000 3.9098 3.8675 347.4974 482.0000 223.0000 3.9098 2.9110 + 264.0532 482.0000 224.0000 3.9098 10.6191 227.1169 482.0000 225.0000 3.9098 9.8849 + 222.8255 482.0000 226.0000 3.9098 9.1376 259.0820 482.0000 227.0000 3.9098 2.9263 + 241.9473 482.0000 228.0000 3.9098 6.5458 338.9165 482.0000 231.0000 3.9098 1.9315 + 358.5747 482.0000 232.0000 3.9098 1.9447 330.8203 482.0000 233.0000 3.9098 1.9793 + 309.1134 482.0000 234.0000 3.9098 1.9812 465.5013 482.0000 238.0000 3.9098 1.9143 + 450.8116 482.0000 239.0000 3.9098 2.8903 455.5132 482.0000 240.0000 3.9098 3.9106 + 440.4244 482.0000 241.0000 3.9098 2.9225 391.5834 482.0000 242.0000 3.9098 11.0556 + 347.1934 482.0000 243.0000 3.9098 9.5402 328.6731 482.0000 244.0000 3.9098 8.8895 + 333.3155 482.0000 245.0000 3.9098 2.9696 347.6589 482.0000 246.0000 3.9098 5.7095 + 438.1720 482.0000 249.0000 3.9098 1.9378 476.0845 482.0000 250.0000 3.9098 1.9505 + 450.9171 482.0000 251.0000 3.9098 1.9523 436.3838 482.0000 252.0000 3.9098 1.9639 + 564.0148 482.0000 256.0000 3.9098 1.8467 586.3311 482.0000 257.0000 3.9098 2.9175 + 437.2533 482.0000 272.0000 3.9098 3.8840 455.7838 482.0000 273.0000 3.9098 2.8988 + 425.5525 482.0000 274.0000 3.9098 10.9153 388.0968 482.0000 275.0000 3.9098 9.8054 + 366.2914 482.0000 276.0000 3.9098 9.1527 372.0666 482.0000 277.0000 3.9098 2.9424 + 391.0887 482.0000 278.0000 3.9098 6.6669 469.9225 482.0000 281.0000 3.9098 1.9302 + 496.6620 482.0000 282.0000 3.9098 1.9356 507.1513 482.0000 283.0000 3.9098 1.9655 + 504.3684 482.0000 284.0000 3.9098 1.9639 621.2041 482.0000 288.0000 3.9098 1.8075 + 119.0738 482.0000 305.0000 3.9098 2.9128 107.5512 482.0000 306.0000 3.9098 2.9987 + 81.7810 482.0000 307.0000 3.9098 2.9903 262.7383 482.0000 313.0000 3.9098 2.9146 + 313.8684 482.0000 314.0000 3.9098 2.9407 262.3048 482.0000 315.0000 3.9098 2.9859 + 231.9130 482.0000 327.0000 3.9098 7.7785 252.8569 482.0000 328.0000 3.9098 6.2918 + 279.6136 482.0000 331.0000 3.9098 2.9233 322.5630 482.0000 332.0000 3.9098 2.9186 + 319.0930 482.0000 333.0000 3.9098 2.9709 376.1234 482.0000 349.0000 3.9098 2.9353 + 430.7108 482.0000 350.0000 3.9098 2.9259 435.5995 482.0000 351.0000 3.9098 2.9315 + 421.0894 482.0000 381.0000 3.9098 2.9420 487.9740 482.0000 382.0000 3.9098 2.9081 + 492.9138 482.0000 383.0000 3.9098 2.9500 112.2254 482.0000 405.0000 3.9098 4.5856 + 88.7030 482.0000 406.0000 3.9098 3.9844 260.3468 482.0000 414.0000 3.9098 3.8677 + 286.1179 482.0000 432.0000 3.9098 3.8972 391.1250 482.0000 450.0000 3.9098 3.9123 + 455.2854 482.0000 482.0000 3.9098 3.9098 diff --git a/tests/test_CP2K_xTB/distribute_jobs.py b/tests/test_CP2K_xTB/distribute_jobs.py new file mode 100755 index 000000000..fae2287bd --- /dev/null +++ b/tests/test_CP2K_xTB/distribute_jobs.py @@ -0,0 +1,15 @@ +import os +import sys +from libra_py import CP2K_methods + +run_slurm = False +submit_template = 'submit_template.slm' +run_python_file = 'run_template.py' +istep = 0 +fstep = 5 +njobs = 1 +os.system('rm -rf res job* all_logfiles all_pdosfiles') + +print('Distributing jobs...') +CP2K_methods.distribute_cp2k_xtb_jobs(submit_template, run_python_file, istep, fstep, njobs, run_slurm) + diff --git a/tests/test_CP2K_xTB/es_diag_temp.inp b/tests/test_CP2K_xTB/es_diag_temp.inp new file mode 100755 index 000000000..c869385bf --- /dev/null +++ b/tests/test_CP2K_xTB/es_diag_temp.inp @@ -0,0 +1,71 @@ +&FORCE_EVAL + &DFT + WFN_RESTART_FILE_NAME .wfn + &QS + METHOD xTB + &xTB + DO_EWALD T + CHECK_ATOMIC_CHARGES T + COULOMB_INTERACTION T + &PARAMETER + DISPERSION_PARAMETER_FILE /home/97425008/project_Si_QD/step2/dftd3.dat + PARAM_FILE_NAME xTB_parameters + &END PARAMETER + &END + &DISTRIBUTION + BASIC_OPTIMIZATION .FALSE. + BASIC_SPATIAL_OPTIMIZATION .TRUE. + &END + &END QS + &POISSON + POISSON_SOLVER PERIODIC !MT + PERIODIC XYZ !NONE + &END + &SCF + SCF_GUESS RESTART !MOPAC + EPS_SCF 1.e-6 + ADDED_MOS 400 +! &OUTER_SCF +! MAX_SCF 30 +! EPS_SCF 1.e-6 +! &END + MAX_SCF 30 + &END SCF + &PRINT + &MO ON + FILENAME si_qd_xTB + EIGENVECTORS F + EIGENVALUES F + NDIGITS 16 + &END + &PDOS + APPEND T + COMPONENTS T + FILENAME si_qd + &END + &MO_MOLDEN ON + FILENAME si_qd_xTB + NDIGITS 16 + GTO_KIND SPHERICAL + &END + &END + &END DFT + &SUBSYS + &CELL + ABC 50.0 50.0 50.0 + PERIODIC XYZ + &END CELL + &TOPOLOGY + COORD_FILE_NAME coord.xyz + COORD_FILE_FORMAT XYZ + &CENTER_COORDINATES T + &END + &END + &END SUBSYS +&END FORCE_EVAL +&GLOBAL + PROJECT_NAME Si_QD_xtb + RUN_TYPE ENERGY + PRINT_LEVEL LOW +&END GLOBAL + diff --git a/tests/test_CP2K_xTB/es_ot_temp.inp b/tests/test_CP2K_xTB/es_ot_temp.inp new file mode 100755 index 000000000..442b28930 --- /dev/null +++ b/tests/test_CP2K_xTB/es_ot_temp.inp @@ -0,0 +1,55 @@ +&FORCE_EVAL + &DFT + WFN_RESTART_FILE_NAME Si_QD_xtb-RESTART.wfn + &QS + METHOD xTB + &xTB + DO_EWALD T + CHECK_ATOMIC_CHARGES T + COULOMB_INTERACTION T + &PARAMETER + DISPERSION_PARAMETER_FILE /home/97425008/project_Si_QD/step2_0.5fs/dftd3.dat + PARAM_FILE_NAME /home/97425008/project_Si_QD/step2_0.5fs/xTB_parameters + &END PARAMETER + &END + &DISTRIBUTION + BASIC_OPTIMIZATION .FALSE. + BASIC_SPATIAL_OPTIMIZATION .TRUE. + &END + &END QS + &POISSON + POISSON_SOLVER PERIODIC !MT + PERIODIC XYZ !NONE + &END + &SCF + SCF_GUESS ATOMIC !MOPAC + EPS_SCF 1.e-8 + &OT + PRECONDITIONER FULL_SINGLE_INVERSE + MINIMIZER DIIS + &END +! &OUTER_SCF +! MAX_SCF 30 +! EPS_SCF 1.e-8 +! &END + MAX_SCF 50 + &END SCF + &END DFT + &SUBSYS + &CELL + ABC 50.0 50.0 50.0 + PERIODIC XYZ + &END CELL + &TOPOLOGY + COORD_FILE_NAME Si329H172.xyz + COORD_FILE_FORMAT XYZ + &CENTER_COORDINATES T + &END + &END + &END SUBSYS +&END FORCE_EVAL +&GLOBAL + PROJECT_NAME Si_QD_xtb + RUN_TYPE ENERGY + PRINT_LEVEL LOW +&END GLOBAL diff --git a/tests/test_CP2K_xTB/run_template.py b/tests/test_CP2K_xTB/run_template.py new file mode 100755 index 000000000..4774b0bd4 --- /dev/null +++ b/tests/test_CP2K_xTB/run_template.py @@ -0,0 +1,23 @@ +import os +import sys +from libra_py.workflows.nbra import step2 + + +params = {} +params['nprocs'] = 36 +params['istep'] = +params['fstep'] = +params['init_state'] = 2200 +params['final_state'] = 2600 +params['is_spherical'] = True +params['remove_molden'] = True +params['res_dir'] = '/home/97425008/Libra/tests/test_CP2K_xTB/res' +params['all_pdosfiles'] = '/home/97425008/Libra/tests/test_CP2K_xTB/all_pdosfiles' +params['all_logfiles'] = '/home/97425008/Libra/tests/test_CP2K_xTB/all_logfiles' +params['cp2k_exe'] = '/home/97425008/cp2k-v7/cp2k/exe/local/cp2k.popt' +params['cp2k_ot_input_template'] = '/home/97425008/Libra/tests/test_CP2K_xTB/es_ot_temp.inp' +params['cp2k_diag_input_template'] = '/home/97425008/Libra/tests/test_CP2K_xTB/es_diag_temp.inp' +params['trajectory_xyz_filename'] = '/home/97425008/Libra/tests/test_CP2K_xTB/Si_QD_xtb_3.5nm_0.5fs-pos-1.xyz' + +step2.run_cp2k_xtb_step2(params) + diff --git a/tests/test_CP2K_xTB/submit_template.slm b/tests/test_CP2K_xTB/submit_template.slm new file mode 100755 index 000000000..ca0b30b05 --- /dev/null +++ b/tests/test_CP2K_xTB/submit_template.slm @@ -0,0 +1,19 @@ +#!/bin/sh +###SBATCH --partition=scavenger --qos=scavenger +###SBATCH --clusters=faculty +#SBATCH --partition=debug --qos=debug +#SBATCH --clusters=ub-hpc +#SBATCH --constraint=CPU-Gold-6130 +#SBATCH --time=1:00:00 +#SBATCH --nodes=1 +#SBATCH --requeue +#SBATCH --ntasks-per-node=32 +#SBATCH --cpus-per-task=1 +#SBATCH --mem=128000 +#SBATCH --mail-user=bsmith24@buffalo.edu + +# Here load whatever which is needed for running CP2K +#module load cp2k + +python run.py + diff --git a/tests/test_CP2K_xTB/xTB_parameters b/tests/test_CP2K_xTB/xTB_parameters new file mode 100755 index 000000000..cae9bdf4b --- /dev/null +++ b/tests/test_CP2K_xTB/xTB_parameters @@ -0,0 +1,246 @@ +# Element-specific parameters in tight-binding Hamiltonians +# Table S31: Element-specific parameters employed in GFN-xTB: +# Atomic Hubbard parameter (eta), its charge derivative (gamma), the exponential scaling parameter alpha +# and Zeff (both entering the repulsion potential), the polynomial scaling parameters kpoly, +# the shell-specific scaling parameters of the Hubbard parameter kappa, the atomic level energies (H) and the +# corresponding Slater exponents zeta. +# +# element eta gamma alpha Zeff level kpoly kappa Hl / eV zeta +# + H 0.470099 0.0 2.209700 1.116244 1s 0.0 0.0 -10.923452 1.207940 + 2s 0.0 0.0 -2.171902 1.993207 + He 1.441379 1.500000 1.382907 0.440231 1s 8.084149 0.0 -22.121015 2.133698 + Li 0.205342 1.027370 0.671797 2.747587 2s -4.102845 0.0 -7.270105 0.743881 + 2p 9.259276 -0.772012 -4.609277 0.541917 + Be 0.274022 0.900554 0.865377 4.076830 2s -12.991482 0.0 -9.541494 0.876888 + 2p -1.308797 1.113005 -5.812621 1.104598 + B 0.340530 1.300000 1.093544 4.458376 2s -7.088823 0.0 -12.497913 1.667617 + 2p 0.655877 0.165643 -7.604923 1.495078 + C 0.479988 1.053856 1.281954 4.428763 2s -7.082170 0.0 -13.587210 1.960324 + 2p 0.812216 -0.471181 -10.052785 1.832096 + N 0.476106 0.042507 1.727773 5.498808 2s -12.745585 0.0 -20.058000 2.050067 + 2p -1.428367 0.315090 -12.889326 2.113682 + O 0.583349 -0.005102 2.004253 5.171786 2s -13.729047 0.0 -23.398376 2.345365 + 2p -4.453341 0.374608 -17.886554 2.153060 + F 0.788194 1.615037 2.507078 6.931741 2s -3.921613 0.0 -24.776175 2.968015 + 2p -11.422491 -0.827352 -17.274415 2.256959 + Ne 0.612878 1.600000 3.038727 9.102523 2s -2.115896 0.0 -31.167487 3.200000 + 2p -15.124326 -3.892542 -18.268975 2.294365 + 3d 0.0 0.0 1.487984 2.684436 + Na 0.146475 1.200000 0.678744 9.192606 2s 7.549004 0.0 -5.425941 0.566702 + 2p 13.576090 -4.545627 -2.970587 0.391147 + Mg 0.332890 1.100000 0.796201 12.176772 2s -18.095421 0.0 -10.585393 0.947394 + 2p 21.451533 1.823758 -2.983087 0.538324 + Al 0.221658 1.200000 0.929219 16.283595 3s -21.085827 0.0 -12.916245 1.497753 + 3p 24.805127 0.503564 -3.441043 1.232966 + 3d 26.405814 0.0 -1.751415 0.606937 + Si 0.438331 1.500000 0.948165 16.898359 3s -14.201582 0.0 -14.506128 1.521960 + 3p -3.893343 -5.925834 -7.557337 1.609138 + 3d 25.499221 0.0 -2.508113 1.168971 + P 0.798319 1.500000 1.067197 15.249559 3s -16.118985 0.0 -18.865587 1.993165 + 3p -2.241189 -2.530875 -9.386464 1.826973 + 3d 30.984577 0.0 -0.673989 1.293345 + S 0.643959 1.500000 1.200803 15.100323 3s -16.989922 0.0 -23.819013 2.506934 + 3p -6.067779 -1.678147 -12.120136 1.992775 + 3d 16.248395 0.0 -1.711261 1.964867 + Cl 0.519712 1.000000 1.404155 17.000000 3s -9.341919 0.0 -24.452163 2.847946 + 3p -8.499805 -4.481841 -12.883714 2.077534 + 3d 13.088867 0.0 -1.190095 1.932463 + Ar 0.529906 0.829312 1.323756 17.153132 3s -0.082808 0.0 -31.395427 3.502323 + 3p -9.217948 -1.450000 -17.412901 2.287983 + 3d 12.204172 0.0 -1.119399 1.761181 + K 0.114358 0.732923 0.581529 20.831436 4s 12.482844 0.0 -5.815562 0.841791 + 4p 22.323655 -5.332978 -3.747255 0.771618 + Ca 0.134187 1.116963 0.665588 19.840212 4s -11.421376 0.0 -7.979180 1.321845 + 4p 14.628284 11.522018 -2.517008 0.734954 + 3d 10.129602 0.0 -2.752355 0.947032 + Sc 0.778545 1.000000 0.841357 18.676202 3d -36.027863 -5.934820 -7.172021 2.200000 + 4s 9.522966 0.0 -9.632943 1.532191 + 4p 44.183320 -2.000000 -0.696628 1.017366 + Ti 1.044998 0.739203 0.828638 17.084130 3d -24.908650 -7.388986 -7.617343 1.941479 + 4s 24.879987 0.0 -7.948161 1.477526 + 4p 18.910954 -1.500000 -0.902143 1.063921 + V 0.985157 0.800000 1.061627 22.352532 3d -29.197847 -5.229338 -6.677563 1.812440 + 4s -5.301066 0.0 -9.000000 1.345487 + 4p 22.945047 -2.000000 -0.108008 1.100000 + Cr 0.468100 0.800000 0.997051 22.873486 3d -22.608167 0.786859 -7.357172 1.915482 + 4s -2.432193 0.0 -7.024438 1.241910 + 4p 11.274054 -2.500000 -3.933133 1.130000 + Mn 0.609868 0.300000 1.019783 24.160655 3d -25.016650 10.544199 -8.558648 2.016302 + 4s 1.025345 0.0 -6.149482 1.882798 + 4p 1.834626 -2.500000 -4.360801 1.270000 + Fe 0.900000 0.500000 1.137174 25.983149 3d -22.920815 1.018896 -9.705009 2.264485 + 4s -2.182723 0.0 -6.617863 1.382959 + 4p 11.769535 -2.000000 -4.595985 1.300000 + Co 0.426680 0.300000 1.188538 27.169215 3d -21.678930 0.222849 -10.285239 2.279966 + 4s 0.815250 0.0 -4.593686 1.925082 + 4p 15.765732 -2.000000 -3.855768 1.350000 + Ni 0.367019 1.000000 1.399197 23.396999 3d -26.348820 1.282426 -10.841022 2.356745 + 4s 15.160508 0.0 -8.687611 1.532263 + 4p 15.782685 -2.000000 -3.332933 1.350000 + Cu 0.260192 0.237602 1.199230 29.000000 3d -21.142399 -1.290373 -11.114050 2.598287 + 4s -3.590501 0.0 -8.373193 1.583677 + 4p 7.413473 0.0 -4.419045 1.350000 + Zn 0.209459 1.400000 1.145056 31.185765 4s -15.535695 0.0 -11.263459 1.722526 + 4p 4.061664 0.200991 -4.666731 1.061945 + Ga 0.193302 1.400000 1.047536 33.128619 4s -14.584657 0.0 -13.273222 1.992354 + 4p 9.375082 -2.021175 -4.859478 1.482052 + 4d 19.671655 1.000000 -2.245112 0.712761 + Ge 0.800000 1.400000 1.129480 35.493164 4s -12.195371 0.0 -12.558286 2.172951 + 4p -11.374296 -7.631942 -8.035796 1.794495 + 4d 9.364108 -1.300000 -2.752271 0.769997 + As 0.732367 1.300000 1.233641 36.125762 4s -17.489686 0.0 -17.515251 2.265106 + 4p -6.747956 -0.335509 -8.272706 1.986411 + 4d 17.858510 -1.000000 -1.245776 1.113511 + Se 0.714534 1.300000 1.270088 32.148852 4s -14.852299 0.0 -23.000000 3.044672 + 4p -9.863477 -3.213580 -10.398968 2.098532 + 4d 9.556181 -2.500000 -0.821804 1.863317 + Br 0.732530 -0.500000 1.153580 35.000000 4s -17.815502 0.0 -19.875752 2.886237 + 4p -14.058044 -1.440020 -12.818655 2.190987 + 4d 5.468245 -1.000000 -3.348113 1.789395 + Kr 0.820312 1.000000 1.335287 36.000000 4s -25.437273 0.0 -20.280017 2.828105 + 4p -12.813227 -3.743296 -15.200155 1.965472 + 4d 10.440712 0.0 -4.253986 1.512609 + Rb 0.075735 1.500000 0.554032 39.653032 5s -7.450752 0.0 -7.616948 0.809529 + 5p 16.670533 -5.181667 -4.369842 0.950253 + Sr 0.122861 1.300000 0.657904 38.924904 5s -6.087125 0.0 -6.840171 1.458742 + 5p 2.115262 -8.003590 -3.338573 0.730658 + 4d 17.076466 0.0 -1.715680 1.028147 + Y 0.351290 1.400000 0.760144 39.000000 4d -28.061976 -4.159186 -5.731066 2.300000 + 5s 10.950764 0.0 -8.748292 1.593058 + 5p 45.679760 -0.800000 -0.838555 1.170000 + Zr 0.168219 0.581478 0.739520 36.521516 4d -22.240873 0.337914 -6.771010 2.175661 + 5s 44.110231 0.0 -3.979156 1.665905 + 5p 25.863572 -2.500000 -3.954049 1.230000 + Nb 0.175875 0.280147 0.895357 40.803132 4d -25.998052 0.638436 -9.245726 2.092288 + 5s 15.379439 0.0 -9.268975 1.459971 + 5p 30.159730 -2.000000 -1.348707 1.200000 + Mo 0.384677 0.041052 0.944064 41.939347 4d -22.556077 -3.426221 -8.176239 1.891236 + 5s 5.815301 0.0 -7.645737 1.827996 + 5p 14.527159 -2.500000 -3.802884 1.220000 + Tc 0.405474 0.500000 1.028240 43.000000 4d -23.231470 2.642680 -8.690050 2.120497 + 5s 24.977603 0.0 -5.089073 1.789115 + 5p 1.953838 -2.000000 -4.878724 1.250000 + Ru 0.305394 0.001205 1.066144 44.492732 4d -23.099524 1.772831 -10.960165 2.352683 + 5s 15.281981 0.0 -6.304229 1.883645 + 5p 1.340798 -1.500000 -5.569969 1.370000 + Rh 0.293973 0.622690 1.131380 45.241537 4d -23.540560 3.782936 -11.935915 2.436353 + 5s 10.450086 0.0 -4.883179 2.000000 + 5p 15.559547 -2.500000 -4.427854 1.470000 + Pd 0.280766 0.500000 1.206869 42.105527 4d -23.290322 3.210802 -12.059626 2.528954 + 5s 17.475085 0.0 -5.724219 2.073217 + 5p 21.621321 -2.500000 -2.575000 1.550000 + Ag 0.472978 -0.445675 1.058886 43.201446 4d -6.963262 -1.477715 -9.675945 2.720329 + 5s -12.856324 0.0 -5.723081 1.994885 + 5p 0.187155 -1.500000 -3.273430 1.620000 + Cd 0.130828 1.362587 1.026434 49.016827 5s -10.281188 0.0 -12.099216 1.980518 + 5p 6.247124 -0.775216 -3.859493 1.191810 + In 0.132120 1.063557 0.898148 51.718417 5s -10.488459 0.0 -16.894094 2.226101 + 5p 19.136222 0.762515 -3.502771 1.625926 + 5d 5.584366 0.0 -3.650350 0.663076 + Sn 0.480655 -0.321283 1.008192 54.503455 5s -19.310676 0.0 -24.164818 2.474055 + 5p -5.460959 -3.444851 -7.640096 1.893755 + 5d 10.683419 -1.500000 -1.908531 1.547485 + Sb 0.564406 -0.341503 0.982673 50.757213 5s -17.310388 0.0 -20.650528 2.761687 + 5p -7.203718 -1.459812 -7.536020 2.076379 + 5d 10.096015 -2.000000 -2.185884 1.071094 + Te 0.400301 0.894388 0.973410 49.215262 5s -17.836704 0.0 -29.899753 2.880945 + 5p -9.887978 0.137154 -10.026096 2.254863 + 5d 20.942979 -2.000000 -0.372055 1.724516 + I 0.520472 -0.500000 0.949181 53.000000 5s -21.954071 0.0 -23.832631 3.117622 + 5p -10.823970 -0.387987 -11.604442 2.248195 + 5d 12.522287 -1.500000 -2.025327 1.831809 + Xe 0.935394 -0.800000 1.074785 52.500985 5s -22.530281 0.0 -21.969064 3.128524 + 5p -16.667114 -3.435282 -11.870978 2.316580 + 5d 8.021956 -1.500000 -2.697796 1.888452 + Cs 0.085110 1.500000 0.579919 65.029838 5s -1.460631 0.0 -6.341379 0.779877 + 5p 15.879494 -7.035550 -3.944275 0.810404 + Ba 0.137819 1.500000 0.606485 46.532974 5s -5.468018 0.0 -6.452630 1.387083 + 5p 4.368854 -8.801363 -3.975353 0.532658 + 4d 14.328052 0.0 -2.305768 0.853415 + La 0.495969 1.500000 1.311200 48.337542 5d -44.208463 -6.396752 -5.872226 3.000000 + 6s -3.988102 0.0 -6.500000 1.492677 + 6p 40.847293 -1.500000 -0.727921 1.350000 + Ce 0.350000 1.200000 0.839861 30.638143 5d -36.440945 -5.245538 -5.032003 3.000000 + 6s 6.148475 0.0 -6.275363 1.553483 + 6p 42.873822 -1.500000 0.291196 1.380859 + Pr 0.342306 1.200000 0.847281 34.130718 5d -36.021673 -5.064761 -4.944984 2.992307 + 6s 7.806576 0.0 -6.271128 1.578839 + 6p 42.846148 -1.500000 0.241817 1.385620 + Nd 0.334612 1.200000 0.854701 37.623294 5d -35.602402 -4.883984 -4.857964 2.984614 + 6s 9.464678 0.0 -6.266893 1.604196 + 6p 42.818474 -1.500000 0.192438 1.390381 + Pm 0.326917 1.200000 0.862121 41.115870 5d -35.183130 -4.703207 -4.770945 2.976922 + 6s 11.122779 0.0 -6.262657 1.629552 + 6p 42.790801 -1.500000 0.143059 1.395142 + Sm 0.319223 1.200000 0.869541 44.608445 5d -34.763859 -4.522429 -4.683925 2.969229 + 6s 12.780881 0.0 -6.258422 1.654909 + 6p 42.763127 -1.500000 0.093680 1.399903 + Eu 0.311529 1.200000 0.876961 48.101021 5d -34.344587 -4.341652 -4.596906 2.961536 + 6s 14.438982 0.0 -6.254187 1.680265 + 6p 42.735454 -1.500000 0.044301 1.404664 + Gd 0.303835 1.200000 0.884381 51.593596 5d -33.925315 -4.160875 -4.509886 2.953843 + 6s 16.097083 0.0 -6.249952 1.705622 + 6p 42.707780 -1.500000 -0.005078 1.409425 + Tb 0.296140 1.200000 0.891801 55.086172 5d -33.506044 -3.980098 -4.422867 2.946150 + 6s 17.755185 0.0 -6.245716 1.730979 + 6p 42.680106 -1.500000 -0.054457 1.414186 + Dy 0.288446 1.200000 0.899221 58.578748 5d -33.086772 -3.799321 -4.335848 2.938457 + 6s 19.413286 0.0 -6.241481 1.756335 + 6p 42.652433 -1.500000 -0.103836 1.418947 + Ho 0.280752 1.200000 0.906641 62.071323 5d -32.667501 -3.618544 -4.248828 2.930765 + 6s 21.071387 0.0 -6.237246 1.781692 + 6p 42.624759 -1.500000 -0.153215 1.423708 + Er 0.273058 1.200000 0.914061 65.563899 5d -32.248229 -3.437767 -4.161809 2.923072 + 6s 22.729489 0.0 -6.233011 1.807048 + 6p 42.597085 -1.500000 -0.202593 1.428469 + Tm 0.265364 1.200000 0.921481 69.056474 5d -31.828957 -3.256989 -4.074789 2.915379 + 6s 24.387590 0.0 -6.228775 1.832405 + 6p 42.569412 -1.500000 -0.251972 1.433230 + Yb 0.257669 1.200000 0.928901 72.549050 5d -31.409686 -3.076212 -3.987770 2.907686 + 6s 26.045692 0.0 -6.224540 1.857761 + 6p 42.541738 -1.500000 -0.301351 1.437991 + Lu 0.249975 1.200000 0.936321 76.041625 5d -30.990414 -2.895435 -3.900750 2.899993 + 6s 27.703793 0.0 -6.220305 1.883118 + 6p 42.514065 -1.500000 -0.350730 1.442752 + Hf 0.269977 0.847011 0.853744 55.222897 5d -21.116286 -1.485678 -4.360558 2.466693 + 6s 15.014122 0.0 -5.910623 2.039390 + 6p 22.898249 -1.500000 -2.814338 1.450000 + Ta 0.239696 0.064592 0.971873 63.743065 5d -23.077812 -1.870583 -9.232014 2.177327 + 6s 29.782424 0.0 -8.600553 1.692963 + 6p 36.420564 -1.500000 -0.252865 1.400000 + W 0.243663 -0.014599 0.992643 74.000000 5d -17.030630 0.130920 -8.997799 2.300752 + 6s 35.195571 0.0 -2.878936 2.096013 + 6p 18.760746 -1.500000 -3.369287 1.400000 + Re 0.362512 0.300000 1.132106 75.000000 5d -23.115824 2.507095 -7.858164 2.470782 + 6s 23.560994 0.0 -6.430285 2.220548 + 6p -0.067497 -2.000000 -5.165147 1.450000 + Os 0.354318 -0.170295 1.118216 76.000000 5d -19.564083 -0.262294 -10.716969 2.734340 + 6s 24.928002 0.0 -3.655133 2.365840 + 6p -4.330556 -1.000000 -7.060522 1.650000 + Ir 0.290898 0.965726 1.245003 77.000000 5d -21.172493 3.805255 -12.054598 2.797508 + 6s 25.774929 0.0 -5.686006 2.274300 + 6p -0.704597 -1.500000 -6.208990 1.650000 + Pt 0.370447 1.092759 1.304590 78.000000 5d -22.169385 0.996400 -11.571582 2.807068 + 6s 38.415536 0.0 -7.184794 2.341428 + 6p -0.665483 -2.000000 -5.080419 1.650000 + Au 0.496380 0.123512 1.293034 79.000000 5d -11.067532 -4.380921 -10.047575 3.117733 + 6s -11.443658 0.0 -6.530840 2.325119 + 6p -5.119735 -1.500000 -3.296026 1.750000 + Hg 0.334997 -0.267745 1.181865 80.000000 6s -6.581368 0.0 -12.452637 2.062597 + 6p 3.995243 -4.204099 -4.169731 1.721925 + Tl 0.671316 0.936157 0.976397 81.000000 6s -2.193199 0.0 -12.563376 2.647541 + 6p 0.060451 -8.101017 -5.131043 1.717991 + Pb 1.000000 1.500000 0.988859 79.578302 6s -10.874138 0.0 -14.496335 2.847707 + 6p -6.034796 -7.925216 -5.848584 2.068091 + Bi 0.944879 0.877488 1.047194 83.000000 6s -20.410234 0.0 -18.199529 2.895660 + 6p -9.424568 -7.150589 -6.735929 2.256279 + Po 1.091248 -0.035874 1.013118 84.000000 6s -18.477865 0.0 -23.908422 3.150662 + 6p -14.037423 -3.955914 -8.889548 2.382063 + 5d 13.809093 0.0 -0.921251 1.241625 + At 1.264162 -0.860502 0.964652 85.000000 6s -21.965390 0.0 -21.752193 3.516922 + 6p -12.804436 -3.402676 -10.031093 2.392024 + 5d 16.836546 0.0 -0.852571 1.380239 + Rn 0.798170 -0.838429 0.998641 86.000000 6s -22.139701 0.0 -18.381647 3.520683 + 6p -20.539955 -2.380762 -10.236606 2.535389 + 5d 17.249637 0.0 -0.973687 1.418875 diff --git a/tests/test_ann/test_ann_setup.py b/tests/test_ann/test_ann_setup.py deleted file mode 100755 index 2f86b75c3..000000000 --- a/tests/test_ann/test_ann_setup.py +++ /dev/null @@ -1,141 +0,0 @@ -#********************************************************************************* -#* Copyright (C) 2015-2016 Alexey V. Akimov -#* -#* This file is distributed under the terms of the GNU General Public License -#* as published by the Free Software Foundation, either version 2 of -#* the License, or (at your option) any later version. -#* See the file LICENSE in the root directory of this distribution -#* or . -#* -#*********************************************************************************/ - -import os -import sys -import math - -# Fisrt, we add the location of the library to test to the PYTHON path -if sys.platform=="cygwin": - from cyglibra_core import * -elif sys.platform=="linux" or sys.platform=="linux2": - from liblibra_core import * -from libra_py import * - - - -print "\nTest 2: Default constructor" -print "ANN = NeuralNetwork()" -ANN = NeuralNetwork() - - -print "\nTest 2a: ShowANN" -print "ANN.ShowANN()" -ANN.ShowANN() - - -print "\nTest 3: Setting up the ANN architecture and initializing weights" -ANN.CreateANN([2,5,1]) - -print "\nTest 3a: ShowANN" -print "ANN.ShowANN()" -ANN.ShowANN() - - -print "\nTest4: Export ANN" -print "ANN.ExportANN(\"initial.ann\")" -ANN.ExportANN("initial.ann") - - - -print "\nTest 5: Setting up data: \"set_training_data\" function" -print "Warning!!!: It doesn't work without Derivs... so you have to supply them even if you don't actually use them - (may be just set to zeros)" -print "The data consists of a collection of what is called patterns. Each pattern is a pair of n-vector containing input, and m-vector containing output" -print "Binary logic: AND pattern" - -print "p1 = tmp()" -print "p1.Input = [0,0]" -print "p1.Output = [0]" -print "p2 = tmp()" -print "p2.Input = [1,0]" -print "p2.Output = [0]" -print "p3 = tmp()" -print "p3.Input = [0,1]" -print "p3.Output = [0]" -print "p4 = tmp()" -print "p4.Input = [0,0]" -print "p4.Output = [1]" - -print "training_set = [p1,p2,p3,p4]" -print "ANN.SetTrainingData(training_set,0)" - - -class patt(): - pass -p1 = patt() -p1.Input = [0.0, 0.0] -p1.Output = [0.0] -p1.Derivs = [ 0.0,0.0 ] -print p1 - -p2 = patt() -p2.Input = [1,0] -p2.Output = [0] -p2.Derivs = [ 0.0,0.0 ] -print p2 - -p3 = patt() -p3.Input = [0,1] -p3.Output = [0] -p3.Derivs = [ 0.0,0.0 ] -print p3 - -p4 = patt() -p4.Input = [1,1] -p4.Output = [1] -p4.Derivs = [ 0.0,0.0 ] -print p4 - -training_set = [ p1,p2,p3,p4] -ANN.SetTrainingData(training_set,1) - - -print "\nTest5a: Export ANN" -print "ANN.ExportANN(\"initial_withdata.ann\")" -ANN.ExportANN("initial_withdata.ann") - - -print "\nTest6: Import ANN" -print "ANN1 = NeuralNetwork()" -print "ANN1.ImportANN(\"initial_withdata.ann\")" -ANN1 = NeuralNetwork() -ANN1.ImportANN("initial_withdata.ann") - - -print "\nTest7: ScaleTrainingData" -print "Use ANN1.ScaleTrainingData(1,0) to scale input to [-0.95,0.95] range\n" -print "Use ANN1.ScaleTrainingData(0,1) to scale output to [-0.95,0.95] range\n" -print "Use ANN1.ScaleTrainingData(1,1) to scale both input and output to [-0.95,0.95] range\n" -print "--------------------------------------" -print "ANN1.ImportANN(\"initial_withdata.ann\")" -ANN1.ImportANN("initial_withdata.ann") - -print "ANN1.SetTrainingData(training_set,1)" -ANN1.SetTrainingData(training_set,1) - -print "ANN1.ScaleTrainingData(1,1)" -ANN1.ScaleTrainingData(1,1) - -print "ANN1.ExportANN(\"initial_withdata_scaled_1_1.ann\")" -ANN1.ExportANN("initial_withdata_scaled_1_1.ann") - -print "Check the data in \"initial_withdata_scaled_1_1.ann\" file" - - - -print "\nTest8: ANN Training" -print "Here we will try to train our ANN, but it will fail - bacause we also need to configure how the training is done" -print "See this in the next test: test_training.py" -print "For now we do just..." -print "ANN1.ANNTrain()" -ANN1.ANNTrain() - - diff --git a/tests/test_ann/test_ann_training.py b/tests/test_ann/test_ann_training.py deleted file mode 100755 index 0386de373..000000000 --- a/tests/test_ann/test_ann_training.py +++ /dev/null @@ -1,128 +0,0 @@ -#********************************************************************************* -#* Copyright (C) 2015-2016 Alexey V. Akimov -#* -#* This file is distributed under the terms of the GNU General Public License -#* as published by the Free Software Foundation, either version 2 of -#* the License, or (at your option) any later version. -#* See the file LICENSE in the root directory of this distribution -#* or . -#* -#*********************************************************************************/ - -import os -import sys -import math - -# Fisrt, we add the location of the library to test to the PYTHON path -if sys.platform=="cygwin": - from cyglibra_core import * -elif sys.platform=="linux" or sys.platform=="linux2": - from liblibra_core import * -from libra_py import * - - - - -class patt(): - pass -p1 = patt() -p1.Input = [0.0, 0.0] -p1.Output = [0.0] -p1.Derivs = [ 0.0,0.0 ] -print p1 - -p2 = patt() -p2.Input = [0.5,0.0] -p2.Output = [0.0] -p2.Derivs = [ 0.0,0.0 ] -print p2 - -p3 = patt() -p3.Input = [0.0,0.5] -p3.Output = [0.0] -p3.Derivs = [ 0.0,0.0 ] -print p3 - -p4 = patt() -p4.Input = [0.5,0.5] -p4.Output = [0.5] -p4.Derivs = [ 0.0,0.0 ] -print p4 - -training_set = [ p1,p4] # p2,p3,p4 ] - - -num_of_patterns = 4 -epoch_size = 4 -rperm = intList() -for i in xrange(10): - randperm(epoch_size,num_of_patterns,rperm) - print Cpp2Py(rperm) - -#sys.exit(0) - -print "\nTest 1: Running setup from other test..." -ANN = NeuralNetwork() -ANN.CreateANN([2, 2, 2, 1]) - - -#print ANN.B -#print ANN.Inputs -#print ANN.Outputs - -#sys.exit() - -ANN.SetTrainingData(training_set,1) # 0 - means we don't really use info about derivatives, 1 - we use it, but we have to use 1 -#ANN.NormalizeAndScaleTrainingData(1,1,[-0.5, -0.5, -0.5], [0.5, 0.5, 0.5]) -#ANN.NormalizeAndTransformTrainingData(1,1) -ANN.ScaleTrainingData(1,1) - -#sys.exit() - -print "\nTest2: Now set configuration" -print "class ann_config_class():" -print " pass" -print "ann_config = ann_config_class()" -print "ann_config.learning_method = \"RProp\" # other options: BackProp, QuickProp, ConjGradProp" -print "ANN.set(ann_config)" - - -class ann_config_class(): - pass -ann_config = ann_config_class() -ann_config.learning_method = "BackProp" # all options: RProp, BackProp, QuickProp, ConjGradProp -ann_config.learning_rate = 0.01 -ann_config.epoch_size = 2 -ann_config.momentum_term = 0.0 -ann_config.grad_weight = 0.0 -ann_config.norm_exp = 0.5 -ann_config.iterations_in_cycle = 1000 -ANN.set(ann_config) - -#sys.exit() - -print "\nTest3: Start training process" -print" ANN.ANNTrain()" -ANN.ANNTrain() - -print "\nTest4: Learning history" -print "The output is organized like this: there n_inp lists - one for each expected output, then we have" -print "n_inp x n_out lists - one for each derivatiave of output w.r.t. inputs" -print "Each list contains 5 elements: the instantaneous error for given channel, the average error [percentage of training output], max error [percentage of training output], minimal error [percentage], percentage of the patterns that are approximated with less than 50% error" -ANN.LearningHistory("hist.txt","original") - -print "\nTest5: Continue training in loop" -for i in range(0,50): - ANN.ANNTrain() - ANN.LearningHistory("hist1.txt","original") - ANN.ExportANN("ann"+str(i)) - - -print "\nTest6: Predictive capabilities of the trained ANN" -for p in training_set: - res = [] - ANN.Propagate(p.Input, res) - print p.Input, " --> ", "Actual= ", res, " Expected= ", p.Output - - - diff --git a/tests/test_libint2/BASIS_MOLOPT b/tests/test_libint2/BASIS_MOLOPT new file mode 100755 index 000000000..5040fde3e --- /dev/null +++ b/tests/test_libint2/BASIS_MOLOPT @@ -0,0 +1,1741 @@ +# ================================================================================================================================================================= +# +# This is a library of molecularly optimised basis functions as described in the paper: +# +# Gaussian basis sets for accurate calculations on molecular systems +# in gas and condensed phases +# +# Joost VandeVondele and Juerg Hutter +# J. Chem. Phys. 127, 114105 (2007) +# +# URL: http://link.aip.org/link/?JCP/127/114105 +# DOI: 10.1063/1.2770708 +# +# In this work, we have shown that accurate basis sets (e.g. small BSSE, close to the basis set limit) +# but well conditioned (and thus suitable for a wide variety of chemical environments, i.e. gas and condensed phases) +# can be derived by optimising highly contracted family basis sets, including diffuse exponents, on molecular systems. +# Typically, these basis sets outperform split valence basis sets of similar size. For small gas-phase systems (including QMMM) +# or large systems (thousands of atoms) their cost is moderate, whereas the diffuse nature of the basis set increases the computational +# for medium size condensed phase systems. +# +# This file contains the molecularly optimised basis sets for the elements H , C , N , O , F , Si , P , S , Cl +# as discussed in the paper (SZV-MOLOPT-GTH, DZVP-MOLOPT-GTH, TZVP-MOLOPT-GTH, TZV2P-MOLOPT-GTH, TZV2PX-MOLOPT-GTH). +# +# Usage hint : 'NGRIDS 5' (section &MGRID) will deal more efficiently (2x speedup) with the diffuse nature of the basis. +# +# In addition to the basis sets discussed in the paper above, we have generated with the same procedure +# variants of these basis sets using less and thus less diffuse primitives (based on the atomic code being with 1mHt of the basis set limit) +# These are the SZV-MOLOPT-SR-GTH and DZVP-MOLOPT-SR-GTH (Shorter Range) basis sets for most of the periodic table +# These basis sets reduce the cost for medium size condensed phase systems, while most properties are only slightly affected. +# Most affected is BSSE, which increases to 0.32, 0.16, 0.31, 0.24 from 0.23, 0.11, 0.41, 0.20 kcal/mol (DZVP-MOLOPT-SR-GTH vs. DZVP-MOLOPT-GTH), +# while for a box with 64 molecules timings are 25 and 111 s respectively. +# +# +# the -qXX documents the valence of the pseudo corresponding to the basis set. Of course, a matching valence in basis and pseudo is required. +# +# +# ================================================================================================================================================================= +# +# Basis set format: +# +# Element symbol Name of the basis set Alias names +# nset (repeat the following block of lines nset times) +# n lmin lmax nexp nshell(lmin) nshell(lmin+1) ... nshell(lmax-1) nshell(lmax) +# a(1) c(1,l,1) c(1,l,2) ... c(1,l,nshell(l)-1) c(1,l,nshell(l)), l=lmin,lmax +# a(2) c(2,l,1) c(2,l,2) ... c(2,l,nshell(l)-1) c(2,l,nshell(l)), l=lmin,lmax +# . . . . . +# . . . . . +# . . . . . +# a(nexp-1) c(nexp-1,l,1) c(nexp-1,l,2) ... c(nexp-1,l,nshell(l)-1) c(nexp-1,l,nshell(l)), l=lmin,lmax +# a(nexp) c(nexp,l,1) c(nexp,l,2) ... c(nexp,l,nshell(l)-1) c(nexp,l,nshell(l)), l=lmin,lmax +# +# +# nset : Number of exponent sets +# n : Principle quantum number (only for orbital label printing) +# lmax : Maximum angular momentum quantum number l +# lmin : Minimum angular momentum quantum number l +# nshell(l): Number of shells for angular momentum quantum number l +# a : Exponent +# c : Contraction coefficient +# + H SZV-MOLOPT-GTH SZV-MOLOPT-GTH-q1 + 1 + 2 0 0 7 1 + 11.478000339908 0.024916243200 + 3.700758562763 0.079825490000 + 1.446884268432 0.128862675300 + 0.716814589696 0.379448894600 + 0.247918564176 0.324552432600 + 0.066918004004 0.037148121400 + 0.021708243634 -0.001125195500 + H DZVP-MOLOPT-GTH DZVP-MOLOPT-GTH-q1 + 1 + 2 0 1 7 2 1 + 11.478000339908 0.024916243200 -0.012512421400 0.024510918200 + 3.700758562763 0.079825490000 -0.056449071100 0.058140794100 + 1.446884268432 0.128862675300 0.011242684700 0.444709498500 + 0.716814589696 0.379448894600 -0.418587548300 0.646207973100 + 0.247918564176 0.324552432600 0.590363216700 0.803385018200 + 0.066918004004 0.037148121400 0.438703133000 0.892971208700 + 0.021708243634 -0.001125195500 -0.059693171300 0.120101316500 + H TZVP-MOLOPT-GTH TZVP-MOLOPT-GTH-q1 + 1 + 2 0 1 7 3 1 + 11.478000339908 0.024916243200 -0.012512421400 -0.013929731000 0.024510918200 + 3.700758562763 0.079825490000 -0.056449071100 0.003035027400 0.058140794100 + 1.446884268432 0.128862675300 0.011242684700 -0.295875900100 0.444709498500 + 0.716814589696 0.379448894600 -0.418587548300 0.688608603400 0.646207973100 + 0.247918564176 0.324552432600 0.590363216700 -0.228296404800 0.803385018200 + 0.066918004004 0.037148121400 0.438703133000 -0.099863944100 0.892971208700 + 0.021708243634 -0.001125195500 -0.059693171300 0.035435150600 0.120101316500 + H TZV2P-MOLOPT-GTH TZV2P-MOLOPT-GTH-q1 + 1 + 2 0 1 7 3 2 + 11.478000339908 0.024916243200 -0.012512421400 -0.013929731000 0.024510918200 -0.016497254600 + 3.700758562763 0.079825490000 -0.056449071100 0.003035027400 0.058140794100 -0.023524900100 + 1.446884268432 0.128862675300 0.011242684700 -0.295875900100 0.444709498500 -0.484890807700 + 0.716814589696 0.379448894600 -0.418587548300 0.688608603400 0.646207973100 0.581651597400 + 0.247918564176 0.324552432600 0.590363216700 -0.228296404800 0.803385018200 -0.302708265200 + 0.066918004004 0.037148121400 0.438703133000 -0.099863944100 0.892971208700 0.037586403600 + 0.021708243634 -0.001125195500 -0.059693171300 0.035435150600 0.120101316500 0.177876988600 + H TZV2PX-MOLOPT-GTH TZV2PX-MOLOPT-GTH-q1 + 1 + 2 0 2 7 3 2 1 + 11.478000339908 0.024916243200 -0.012512421400 -0.013929731000 0.024510918200 -0.016497254600 0.013783151600 + 3.700758562763 0.079825490000 -0.056449071100 0.003035027400 0.058140794100 -0.023524900100 0.095244888900 + 1.446884268432 0.128862675300 0.011242684700 -0.295875900100 0.444709498500 -0.484890807700 1.000410191300 + 0.716814589696 0.379448894600 -0.418587548300 0.688608603400 0.646207973100 0.581651597400 0.169848598800 + 0.247918564176 0.324552432600 0.590363216700 -0.228296404800 0.803385018200 -0.302708265200 0.073559299500 + 0.066918004004 0.037148121400 0.438703133000 -0.099863944100 0.892971208700 0.037586403600 0.782848013900 + 0.021708243634 -0.001125195500 -0.059693171300 0.035435150600 0.120101316500 0.177876988600 -0.348307160100 + C SZV-MOLOPT-GTH SZV-MOLOPT-GTH-q4 + 1 + 2 0 1 7 1 1 + 6.132624767898 -0.105576563700 0.035098108400 + 2.625196064782 -0.174866621100 0.114197930900 + 1.045456957247 0.064464981400 0.215908137300 + 0.478316330874 0.830447035300 0.355929151000 + 0.178617414302 0.371911373800 0.271541842000 + 0.075144725465 0.006174464000 0.056256557700 + 0.030286753006 0.008966477300 0.004998059700 + C DZVP-MOLOPT-GTH DZVP-MOLOPT-GTH-q4 + 1 + 2 0 2 7 2 2 1 + 6.132624767898 -0.105576563700 0.024850587600 0.035098108400 -0.056712999000 0.037469425800 + 2.625196064782 -0.174866621100 0.147440856000 0.114197930900 -0.076743951500 0.071047574800 + 1.045456957247 0.064464981400 -0.421418379200 0.215908137300 -0.528056757000 0.619330561200 + 0.478316330874 0.830447035300 0.823051336800 0.355929151000 0.394594045700 0.710730857000 + 0.178617414302 0.371911373800 0.184880712100 0.271541842000 0.721247475800 0.389148235000 + 0.075144725465 0.006174464000 -0.742086051600 0.056256557700 0.733902531700 0.346374124100 + 0.030286753006 0.008966477300 0.083382192000 0.004998059700 0.248172175500 -0.005142430900 + C TZVP-MOLOPT-GTH TZVP-MOLOPT-GTH-q4 + 1 + 2 0 2 7 3 3 1 + 6.132624767898 -0.105576563700 0.024850587600 -0.047388414100 0.035098108400 -0.056712999000 -0.006742034000 0.037469425800 + 2.625196064782 -0.174866621100 0.147440856000 -0.054003851700 0.114197930900 -0.076743951500 -0.031163909400 0.071047574800 + 1.045456957247 0.064464981400 -0.421418379200 -0.056737220700 0.215908137300 -0.528056757000 -0.126324702500 0.619330561200 + 0.478316330874 0.830447035300 0.823051336800 0.450960854100 0.355929151000 0.394594045700 0.629779932600 0.710730857000 + 0.178617414302 0.371911373800 0.184880712100 -0.611198185900 0.271541842000 0.721247475800 -0.487599713200 0.389148235000 + 0.075144725465 0.006174464000 -0.742086051600 0.365424292900 0.056256557700 0.733902531700 0.218697596000 0.346374124100 + 0.030286753006 0.008966477300 0.083382192000 -0.079339373900 0.004998059700 0.248172175500 -0.137064380000 -0.005142430900 + C TZV2P-MOLOPT-GTH TZV2P-MOLOPT-GTH-q4 + 1 + 2 0 2 7 3 3 2 + 6.132624767898 -0.105576563700 0.024850587600 -0.047388414100 0.035098108400 -0.056712999000 -0.006742034000 0.037469425800 0.029169209100 + 2.625196064782 -0.174866621100 0.147440856000 -0.054003851700 0.114197930900 -0.076743951500 -0.031163909400 0.071047574800 0.026982879200 + 1.045456957247 0.064464981400 -0.421418379200 -0.056737220700 0.215908137300 -0.528056757000 -0.126324702500 0.619330561200 0.547209491100 + 0.478316330874 0.830447035300 0.823051336800 0.450960854100 0.355929151000 0.394594045700 0.629779932600 0.710730857000 -0.776406436300 + 0.178617414302 0.371911373800 0.184880712100 -0.611198185900 0.271541842000 0.721247475800 -0.487599713200 0.389148235000 0.657213953300 + 0.075144725465 0.006174464000 -0.742086051600 0.365424292900 0.056256557700 0.733902531700 0.218697596000 0.346374124100 -0.480025949600 + 0.030286753006 0.008966477300 0.083382192000 -0.079339373900 0.004998059700 0.248172175500 -0.137064380000 -0.005142430900 0.036022564900 + C TZV2PX-MOLOPT-GTH TZV2PX-MOLOPT-GTH-q4 + 1 + 2 0 3 7 3 3 2 1 + 6.132624767898 -0.105576563700 0.024850587600 -0.047388414100 0.035098108400 -0.056712999000 -0.006742034000 0.037469425800 0.029169209100 0.022304679500 + 2.625196064782 -0.174866621100 0.147440856000 -0.054003851700 0.114197930900 -0.076743951500 -0.031163909400 0.071047574800 0.026982879200 0.026025873000 + 1.045456957247 0.064464981400 -0.421418379200 -0.056737220700 0.215908137300 -0.528056757000 -0.126324702500 0.619330561200 0.547209491100 0.716854675300 + 0.478316330874 0.830447035300 0.823051336800 0.450960854100 0.355929151000 0.394594045700 0.629779932600 0.710730857000 -0.776406436300 -0.024992326800 + 0.178617414302 0.371911373800 0.184880712100 -0.611198185900 0.271541842000 0.721247475800 -0.487599713200 0.389148235000 0.657213953300 0.633014106300 + 0.075144725465 0.006174464000 -0.742086051600 0.365424292900 0.056256557700 0.733902531700 0.218697596000 0.346374124100 -0.480025949600 -0.092802773900 + 0.030286753006 0.008966477300 0.083382192000 -0.079339373900 0.004998059700 0.248172175500 -0.137064380000 -0.005142430900 0.036022564900 -0.094955683900 + N SZV-MOLOPT-GTH SZV-MOLOPT-GTH-q5 + 1 + 2 0 1 7 1 1 + 9.042730397298 -0.057711157700 0.031469526900 + 3.882224940673 -0.121876730300 0.109126355100 + 1.512880320070 0.094844857800 0.238123330300 + 0.586630738140 0.558583487700 0.376105481500 + 0.222851091943 0.346456981000 0.249727365300 + 0.084582888713 0.031196738600 0.054673928900 + 0.039193834928 0.010393976200 -0.000181794900 + N DZVP-MOLOPT-GTH DZVP-MOLOPT-GTH-q5 + 1 + 2 0 2 7 2 2 1 + 9.042730397298 -0.057711157700 0.055618665600 0.031469526900 -0.012643172000 0.017852718900 + 3.882224940673 -0.121876730300 0.101741751800 0.109126355100 -0.031177059000 0.037932409700 + 1.512880320070 0.094844857800 -0.036013432800 0.238123330300 -0.094228032000 0.324051472500 + 0.586630738140 0.558583487700 -0.547764884700 0.376105481500 -0.192405367500 0.888374055100 + 0.222851091943 0.346456981000 0.606791574500 0.249727365300 0.701455729100 0.188935754200 + 0.084582888713 0.031196738600 0.493556790200 0.054673928900 0.593951368600 -0.049452863800 + 0.039193834928 0.010393976200 0.053452379800 -0.000181794900 0.039720774300 -0.019150455700 + N TZVP-MOLOPT-GTH TZVP-MOLOPT-GTH-q5 + 1 + 2 0 2 7 3 3 1 + 9.042730397298 -0.057711157700 0.055618665600 0.032762883500 0.031469526900 -0.012643172000 -0.028389787500 0.017852718900 + 3.882224940673 -0.121876730300 0.101741751800 0.137929475200 0.109126355100 -0.031177059000 0.039238304500 0.037932409700 + 1.512880320070 0.094844857800 -0.036013432800 -0.215975165900 0.238123330300 -0.094228032000 -0.305920303000 0.324051472500 + 0.586630738140 0.558583487700 -0.547764884700 0.366111863100 0.376105481500 -0.192405367500 0.543553700700 0.888374055100 + 0.222851091943 0.346456981000 0.606791574500 0.307294682700 0.249727365300 0.701455729100 0.145372660300 0.188935754200 + 0.084582888713 0.031196738600 0.493556790200 -0.707766106200 0.054673928900 0.593951368600 -0.742817489000 -0.049452863800 + 0.039193834928 0.010393976200 0.053452379800 0.185238519800 -0.000181794900 0.039720774300 0.455455763000 -0.019150455700 + N TZV2P-MOLOPT-GTH TZV2P-MOLOPT-GTH-q5 + 1 + 2 0 2 7 3 3 2 + 9.042730397298 -0.057711157700 0.055618665600 0.032762883500 0.031469526900 -0.012643172000 -0.028389787500 0.017852718900 -0.026814870200 + 3.882224940673 -0.121876730300 0.101741751800 0.137929475200 0.109126355100 -0.031177059000 0.039238304500 0.037932409700 0.018900829300 + 1.512880320070 0.094844857800 -0.036013432800 -0.215975165900 0.238123330300 -0.094228032000 -0.305920303000 0.324051472500 -0.406110228200 + 0.586630738140 0.558583487700 -0.547764884700 0.366111863100 0.376105481500 -0.192405367500 0.543553700700 0.888374055100 0.202616067000 + 0.222851091943 0.346456981000 0.606791574500 0.307294682700 0.249727365300 0.701455729100 0.145372660300 0.188935754200 0.641914827500 + 0.084582888713 0.031196738600 0.493556790200 -0.707766106200 0.054673928900 0.593951368600 -0.742817489000 -0.049452863800 -0.754236178400 + 0.039193834928 0.010393976200 0.053452379800 0.185238519800 -0.000181794900 0.039720774300 0.455455763000 -0.019150455700 0.192322748800 + N TZV2PX-MOLOPT-GTH TZV2PX-MOLOPT-GTH-q5 + 1 + 2 0 3 7 3 3 2 1 + 9.042730397298 -0.057711157700 0.055618665600 0.032762883500 0.031469526900 -0.012643172000 -0.028389787500 0.017852718900 -0.026814870200 0.020975689500 + 3.882224940673 -0.121876730300 0.101741751800 0.137929475200 0.109126355100 -0.031177059000 0.039238304500 0.037932409700 0.018900829300 -0.027501696100 + 1.512880320070 0.094844857800 -0.036013432800 -0.215975165900 0.238123330300 -0.094228032000 -0.305920303000 0.324051472500 -0.406110228200 0.569952079600 + 0.586630738140 0.558583487700 -0.547764884700 0.366111863100 0.376105481500 -0.192405367500 0.543553700700 0.888374055100 0.202616067000 0.862205093600 + 0.222851091943 0.346456981000 0.606791574500 0.307294682700 0.249727365300 0.701455729100 0.145372660300 0.188935754200 0.641914827500 -0.067750230800 + 0.084582888713 0.031196738600 0.493556790200 -0.707766106200 0.054673928900 0.593951368600 -0.742817489000 -0.049452863800 -0.754236178400 -0.185330469600 + 0.039193834928 0.010393976200 0.053452379800 0.185238519800 -0.000181794900 0.039720774300 0.455455763000 -0.019150455700 0.192322748800 0.013120721900 + O SZV-MOLOPT-GTH SZV-MOLOPT-GTH-q6 + 1 + 2 0 1 7 1 1 + 12.015954705512 -0.060190841200 0.036543638800 + 5.108150287385 -0.129597923300 0.120927648700 + 2.048398039874 0.118175889400 0.251093670300 + 0.832381575582 0.462964485000 0.352639910300 + 0.352316246455 0.450353782600 0.294708645200 + 0.142977330880 0.092715833600 0.173039869300 + 0.046760918300 -0.000255945800 0.009726110600 + O DZVP-MOLOPT-GTH DZVP-MOLOPT-GTH-q6 + 1 + 2 0 2 7 2 2 1 + 12.015954705512 -0.060190841200 0.065738617900 0.036543638800 -0.034210557400 0.014807054400 + 5.108150287385 -0.129597923300 0.110885902200 0.120927648700 -0.120619770900 0.068186159300 + 2.048398039874 0.118175889400 -0.053732406400 0.251093670300 -0.213719464600 0.290576499200 + 0.832381575582 0.462964485000 -0.572670666200 0.352639910300 -0.473674858400 1.063344189500 + 0.352316246455 0.450353782600 0.186760006700 0.294708645200 0.484848376400 0.307656114200 + 0.142977330880 0.092715833600 0.387201458600 0.173039869300 0.717465919700 0.318346834400 + 0.046760918300 -0.000255945800 0.003825849600 0.009726110600 0.032498979400 -0.005771736600 + O TZVP-MOLOPT-GTH TZVP-MOLOPT-GTH-q6 + 1 + 2 0 2 7 3 3 1 + 12.015954705512 -0.060190841200 0.065738617900 0.041006765400 0.036543638800 -0.034210557400 -0.000592640200 0.014807054400 + 5.108150287385 -0.129597923300 0.110885902200 0.080644802300 0.120927648700 -0.120619770900 0.009852349400 0.068186159300 + 2.048398039874 0.118175889400 -0.053732406400 -0.067639801700 0.251093670300 -0.213719464600 0.001286509800 0.290576499200 + 0.832381575582 0.462964485000 -0.572670666200 -0.435078312800 0.352639910300 -0.473674858400 -0.021872639500 1.063344189500 + 0.352316246455 0.450353782600 0.186760006700 0.722792798300 0.294708645200 0.484848376400 0.530504764700 0.307656114200 + 0.142977330880 0.092715833600 0.387201458600 -0.521378340700 0.173039869300 0.717465919700 -0.436184043700 0.318346834400 + 0.046760918300 -0.000255945800 0.003825849600 0.175643142900 0.009726110600 0.032498979400 0.073329259500 -0.005771736600 + O TZV2P-MOLOPT-GTH TZV2P-MOLOPT-GTH-q6 + 1 + 2 0 2 7 3 3 2 + 12.015954705512 -0.060190841200 0.065738617900 0.041006765400 0.036543638800 -0.034210557400 -0.000592640200 0.014807054400 -0.013843410500 + 5.108150287385 -0.129597923300 0.110885902200 0.080644802300 0.120927648700 -0.120619770900 0.009852349400 0.068186159300 0.016850210400 + 2.048398039874 0.118175889400 -0.053732406400 -0.067639801700 0.251093670300 -0.213719464600 0.001286509800 0.290576499200 -0.186696332600 + 0.832381575582 0.462964485000 -0.572670666200 -0.435078312800 0.352639910300 -0.473674858400 -0.021872639500 1.063344189500 0.068001578700 + 0.352316246455 0.450353782600 0.186760006700 0.722792798300 0.294708645200 0.484848376400 0.530504764700 0.307656114200 0.911407510000 + 0.142977330880 0.092715833600 0.387201458600 -0.521378340700 0.173039869300 0.717465919700 -0.436184043700 0.318346834400 -0.333128530600 + 0.046760918300 -0.000255945800 0.003825849600 0.175643142900 0.009726110600 0.032498979400 0.073329259500 -0.005771736600 -0.405788515900 + O TZV2PX-MOLOPT-GTH TZV2PX-MOLOPT-GTH-q6 + 1 + 2 0 3 7 3 3 2 1 + 12.015954705512 -0.060190841200 0.065738617900 0.041006765400 0.036543638800 -0.034210557400 -0.000592640200 0.014807054400 -0.013843410500 0.002657486200 + 5.108150287385 -0.129597923300 0.110885902200 0.080644802300 0.120927648700 -0.120619770900 0.009852349400 0.068186159300 0.016850210400 -0.007708463700 + 2.048398039874 0.118175889400 -0.053732406400 -0.067639801700 0.251093670300 -0.213719464600 0.001286509800 0.290576499200 -0.186696332600 0.378459897700 + 0.832381575582 0.462964485000 -0.572670666200 -0.435078312800 0.352639910300 -0.473674858400 -0.021872639500 1.063344189500 0.068001578700 0.819571172100 + 0.352316246455 0.450353782600 0.186760006700 0.722792798300 0.294708645200 0.484848376400 0.530504764700 0.307656114200 0.911407510000 -0.075845376400 + 0.142977330880 0.092715833600 0.387201458600 -0.521378340700 0.173039869300 0.717465919700 -0.436184043700 0.318346834400 -0.333128530600 0.386329438600 + 0.046760918300 -0.000255945800 0.003825849600 0.175643142900 0.009726110600 0.032498979400 0.073329259500 -0.005771736600 -0.405788515900 0.035062554400 + F SZV-MOLOPT-GTH SZV-MOLOPT-GTH-q7 + 1 + 2 0 1 7 1 1 + 15.025672765127 -0.076135699000 0.043030876500 + 6.156800581515 -0.145492650600 0.138591822100 + 2.411456205564 0.195144281500 0.283251574300 + 0.963986369687 0.553654166300 0.357678749700 + 0.396229721431 0.454888028100 0.300622862100 + 0.157658905678 0.078338198300 0.138839114100 + 0.048130255107 0.002175323600 0.008740274300 + F DZVP-MOLOPT-GTH DZVP-MOLOPT-GTH-q7 + 1 + 2 0 2 7 2 2 1 + 15.025672765127 -0.076135699000 0.060516471000 0.043030876500 -0.027382614400 0.006095862800 + 6.156800581515 -0.145492650600 0.078091919900 0.138591822100 -0.119463647500 0.057880784500 + 2.411456205564 0.195144281500 -0.051537351700 0.283251574300 -0.152089668600 0.143657436500 + 0.963986369687 0.553654166300 -0.448874166200 0.357678749700 -0.460859710900 0.782158193600 + 0.396229721431 0.454888028100 0.143111336600 0.300622862100 0.260540362300 0.349204565600 + 0.157658905678 0.078338198300 0.433345205900 0.138839114100 0.410677921300 0.106634189000 + 0.048130255107 0.002175323600 -0.111759214900 0.008740274300 0.051656760200 -0.008599668300 + F TZVP-MOLOPT-GTH TZVP-MOLOPT-GTH-q7 + 1 + 2 0 2 7 3 3 1 + 15.025672765127 -0.076135699000 0.060516471000 0.236249589200 0.043030876500 -0.027382614400 -0.013131365300 0.006095862800 + 6.156800581515 -0.145492650600 0.078091919900 0.256975207700 0.138591822100 -0.119463647500 -0.061020955700 0.057880784500 + 2.411456205564 0.195144281500 -0.051537351700 -0.299606314200 0.283251574300 -0.152089668600 -0.074530076600 0.143657436500 + 0.963986369687 0.553654166300 -0.448874166200 0.244175306400 0.357678749700 -0.460859710900 -0.333331696200 0.782158193600 + 0.396229721431 0.454888028100 0.143111336600 0.070307660500 0.300622862100 0.260540362300 0.815277681200 0.349204565600 + 0.157658905678 0.078338198300 0.433345205900 -0.391141875700 0.138839114100 0.410677921300 -0.637458747900 0.106634189000 + 0.048130255107 0.002175323600 -0.111759214900 0.275973644000 0.008740274300 0.051656760200 0.225784972300 -0.008599668300 + F TZV2P-MOLOPT-GTH TZV2P-MOLOPT-GTH-q7 + 1 + 2 0 2 7 3 3 2 + 15.025672765127 -0.076135699000 0.060516471000 0.236249589200 0.043030876500 -0.027382614400 -0.013131365300 0.006095862800 -0.001964191900 + 6.156800581515 -0.145492650600 0.078091919900 0.256975207700 0.138591822100 -0.119463647500 -0.061020955700 0.057880784500 -0.017608747700 + 2.411456205564 0.195144281500 -0.051537351700 -0.299606314200 0.283251574300 -0.152089668600 -0.074530076600 0.143657436500 -0.092704702300 + 0.963986369687 0.553654166300 -0.448874166200 0.244175306400 0.357678749700 -0.460859710900 -0.333331696200 0.782158193600 -0.415809616200 + 0.396229721431 0.454888028100 0.143111336600 0.070307660500 0.300622862100 0.260540362300 0.815277681200 0.349204565600 0.628910907400 + 0.157658905678 0.078338198300 0.433345205900 -0.391141875700 0.138839114100 0.410677921300 -0.637458747900 0.106634189000 -0.412356840700 + 0.048130255107 0.002175323600 -0.111759214900 0.275973644000 0.008740274300 0.051656760200 0.225784972300 -0.008599668300 0.389252314700 + F TZV2PX-MOLOPT-GTH TZV2PX-MOLOPT-GTH-q7 + 1 + 2 0 3 7 3 3 2 1 + 15.025672765127 -0.076135699000 0.060516471000 0.236249589200 0.043030876500 -0.027382614400 -0.013131365300 0.006095862800 -0.001964191900 -0.008318565400 + 6.156800581515 -0.145492650600 0.078091919900 0.256975207700 0.138591822100 -0.119463647500 -0.061020955700 0.057880784500 -0.017608747700 0.039096268100 + 2.411456205564 0.195144281500 -0.051537351700 -0.299606314200 0.283251574300 -0.152089668600 -0.074530076600 0.143657436500 -0.092704702300 0.354742552600 + 0.963986369687 0.553654166300 -0.448874166200 0.244175306400 0.357678749700 -0.460859710900 -0.333331696200 0.782158193600 -0.415809616200 1.307321527200 + 0.396229721431 0.454888028100 0.143111336600 0.070307660500 0.300622862100 0.260540362300 0.815277681200 0.349204565600 0.628910907400 -0.018428865800 + 0.157658905678 0.078338198300 0.433345205900 -0.391141875700 0.138839114100 0.410677921300 -0.637458747900 0.106634189000 -0.412356840700 0.046645417600 + 0.048130255107 0.002175323600 -0.111759214900 0.275973644000 0.008740274300 0.051656760200 0.225784972300 -0.008599668300 0.389252314700 0.001877717700 + Si SZV-MOLOPT-GTH SZV-MOLOPT-GTH-q4 + 1 + 2 0 1 6 1 1 + 2.693604434572 0.015333179500 -0.005800105400 + 1.359613855428 -0.283798205000 -0.059172026000 + 0.513245176029 -0.228939692700 0.121487149900 + 0.326563011394 0.728834000900 0.423382421100 + 0.139986977410 0.446205299300 0.474592116300 + 0.068212286977 0.122025292800 0.250129397700 + Si DZVP-MOLOPT-GTH DZVP-MOLOPT-GTH-q4 + 1 + 2 0 2 6 2 2 1 + 2.693604434572 0.015333179500 -0.073325401200 -0.005800105400 0.023996406700 0.043919650100 + 1.359613855428 -0.283798205000 0.484815594600 -0.059172026000 0.055459199900 0.134639409600 + 0.513245176029 -0.228939692700 -0.276015880000 0.121487149900 -0.269559268100 0.517732111300 + 0.326563011394 0.728834000900 -0.228394679700 0.423382421100 -0.259506329000 0.282311245100 + 0.139986977410 0.446205299300 -0.018311553000 0.474592116300 0.310318217600 0.281350794600 + 0.068212286977 0.122025292800 0.365245476200 0.250129397700 0.647414251100 0.139066843800 + Si TZVP-MOLOPT-GTH TZVP-MOLOPT-GTH-q4 + 1 + 2 0 2 6 3 3 1 + 2.693604434572 0.015333179500 -0.073325401200 -0.010190491000 -0.005800105400 0.023996406700 0.014220556800 0.043919650100 + 1.359613855428 -0.283798205000 0.484815594600 0.009707564700 -0.059172026000 0.055459199900 -0.158407152000 0.134639409600 + 0.513245176029 -0.228939692700 -0.276015880000 -0.707360006800 0.121487149900 -0.269559268100 0.854126223400 0.517732111300 + 0.326563011394 0.728834000900 -0.228394679700 0.968240963100 0.423382421100 -0.259506329000 -0.964190479700 0.282311245100 + 0.139986977410 0.446205299300 -0.018311553000 -0.449692717700 0.474592116300 0.310318217600 0.336885865500 0.281350794600 + 0.068212286977 0.122025292800 0.365245476200 0.147937633300 0.250129397700 0.647414251100 -0.063010752700 0.139066843800 + Si TZV2P-MOLOPT-GTH TZV2P-MOLOPT-GTH-q4 + 1 + 2 0 2 6 3 3 2 + 2.693604434572 0.015333179500 -0.073325401200 -0.010190491000 -0.005800105400 0.023996406700 0.014220556800 0.043919650100 -0.021796206700 + 1.359613855428 -0.283798205000 0.484815594600 0.009707564700 -0.059172026000 0.055459199900 -0.158407152000 0.134639409600 -0.065666574500 + 0.513245176029 -0.228939692700 -0.276015880000 -0.707360006800 0.121487149900 -0.269559268100 0.854126223400 0.517732111300 -0.587881439600 + 0.326563011394 0.728834000900 -0.228394679700 0.968240963100 0.423382421100 -0.259506329000 -0.964190479700 0.282311245100 0.799278215300 + 0.139986977410 0.446205299300 -0.018311553000 -0.449692717700 0.474592116300 0.310318217600 0.336885865500 0.281350794600 -0.377563218200 + 0.068212286977 0.122025292800 0.365245476200 0.147937633300 0.250129397700 0.647414251100 -0.063010752700 0.139066843800 0.406207118300 + Si TZV2PX-MOLOPT-GTH TZV2PX-MOLOPT-GTH-q4 + 1 + 2 0 3 6 3 3 2 1 + 2.693604434572 0.015333179500 -0.073325401200 -0.010190491000 -0.005800105400 0.023996406700 0.014220556800 0.043919650100 -0.021796206700 -0.021648469800 + 1.359613855428 -0.283798205000 0.484815594600 0.009707564700 -0.059172026000 0.055459199900 -0.158407152000 0.134639409600 -0.065666574500 0.421421477600 + 0.513245176029 -0.228939692700 -0.276015880000 -0.707360006800 0.121487149900 -0.269559268100 0.854126223400 0.517732111300 -0.587881439600 0.744190736800 + 0.326563011394 0.728834000900 -0.228394679700 0.968240963100 0.423382421100 -0.259506329000 -0.964190479700 0.282311245100 0.799278215300 0.434937300000 + 0.139986977410 0.446205299300 -0.018311553000 -0.449692717700 0.474592116300 0.310318217600 0.336885865500 0.281350794600 -0.377563218200 -0.722129731000 + 0.068212286977 0.122025292800 0.365245476200 0.147937633300 0.250129397700 0.647414251100 -0.063010752700 0.139066843800 0.406207118300 0.655673293700 + P SZV-MOLOPT-GTH SZV-MOLOPT-GTH-q5 + 1 + 2 0 1 6 1 1 + 3.338153406523 0.039454247900 -0.012783546700 + 1.833919672496 -0.306814659300 -0.038865450000 + 0.688531765653 -0.113978610700 0.127534067400 + 0.372376701254 0.668025394000 0.401195491100 + 0.166131443191 0.491467475700 0.369849381300 + 0.075778343330 0.087478573600 0.184268604800 + P DZVP-MOLOPT-GTH DZVP-MOLOPT-GTH-q5 + 1 + 2 0 2 6 2 2 1 + 3.338153406523 0.039454247900 -0.055902122900 -0.012783546700 0.005165760600 0.023530272900 + 1.833919672496 -0.306814659300 0.305933443100 -0.038865450000 0.103133751300 0.140233454000 + 0.688531765653 -0.113978610700 0.118785269000 0.127534067400 -0.305520428500 0.507069588900 + 0.372376701254 0.668025394000 -0.716389791200 0.401195491100 -0.245673644600 0.492728339400 + 0.166131443191 0.491467475700 0.271518859600 0.369849381300 0.153640758600 0.310650223400 + 0.075778343330 0.087478573600 0.523136739400 0.184268604800 0.721924297300 0.030421200100 + P TZVP-MOLOPT-GTH TZVP-MOLOPT-GTH-q5 + 1 + 2 0 2 6 3 3 1 + 3.338153406523 0.039454247900 -0.055902122900 -0.036333320500 -0.012783546700 0.005165760600 -0.021032703500 0.023530272900 + 1.833919672496 -0.306814659300 0.305933443100 0.126954601200 -0.038865450000 0.103133751300 0.038242927200 0.140233454000 + 0.688531765653 -0.113978610700 0.118785269000 0.100890359400 0.127534067400 -0.305520428500 -0.256363421800 0.507069588900 + 0.372376701254 0.668025394000 -0.716389791200 0.407065582600 0.401195491100 -0.245673644600 0.548550924800 0.492728339400 + 0.166131443191 0.491467475700 0.271518859600 -0.989778437000 0.369849381300 0.153640758600 0.178359136800 0.310650223400 + 0.075778343330 0.087478573600 0.523136739400 0.538151443400 0.184268604800 0.721924297300 -0.226343952000 0.030421200100 + P TZV2P-MOLOPT-GTH TZV2P-MOLOPT-GTH-q5 + 1 + 2 0 2 6 3 3 2 + 3.338153406523 0.039454247900 -0.055902122900 -0.036333320500 -0.012783546700 0.005165760600 -0.021032703500 0.023530272900 -0.026902801200 + 1.833919672496 -0.306814659300 0.305933443100 0.126954601200 -0.038865450000 0.103133751300 0.038242927200 0.140233454000 -0.024419850900 + 0.688531765653 -0.113978610700 0.118785269000 0.100890359400 0.127534067400 -0.305520428500 -0.256363421800 0.507069588900 -0.592608257200 + 0.372376701254 0.668025394000 -0.716389791200 0.407065582600 0.401195491100 -0.245673644600 0.548550924800 0.492728339400 0.982063898700 + 0.166131443191 0.491467475700 0.271518859600 -0.989778437000 0.369849381300 0.153640758600 0.178359136800 0.310650223400 0.131647772600 + 0.075778343330 0.087478573600 0.523136739400 0.538151443400 0.184268604800 0.721924297300 -0.226343952000 0.030421200100 0.264354685800 + P TZV2PX-MOLOPT-GTH TZV2PX-MOLOPT-GTH-q5 + 1 + 2 0 3 6 3 3 2 1 + 3.338153406523 0.039454247900 -0.055902122900 -0.036333320500 -0.012783546700 0.005165760600 -0.021032703500 0.023530272900 -0.026902801200 0.005311181800 + 1.833919672496 -0.306814659300 0.305933443100 0.126954601200 -0.038865450000 0.103133751300 0.038242927200 0.140233454000 -0.024419850900 0.138144780500 + 0.688531765653 -0.113978610700 0.118785269000 0.100890359400 0.127534067400 -0.305520428500 -0.256363421800 0.507069588900 -0.592608257200 0.874057452500 + 0.372376701254 0.668025394000 -0.716389791200 0.407065582600 0.401195491100 -0.245673644600 0.548550924800 0.492728339400 0.982063898700 0.436475627300 + 0.166131443191 0.491467475700 0.271518859600 -0.989778437000 0.369849381300 0.153640758600 0.178359136800 0.310650223400 0.131647772600 -0.092923616900 + 0.075778343330 0.087478573600 0.523136739400 0.538151443400 0.184268604800 0.721924297300 -0.226343952000 0.030421200100 0.264354685800 0.017694303700 + S SZV-MOLOPT-GTH SZV-MOLOPT-GTH-q6 + 1 + 2 0 1 6 1 1 + 3.817590656735 0.075558928000 -0.019219238100 + 2.362751931093 -0.351216488200 -0.035664835200 + 0.861004180298 -0.099160602500 0.160834397000 + 0.417524512433 0.862753116400 0.507608206800 + 0.181513540673 0.307053614900 0.249563613200 + 0.070570776865 0.001592872500 0.025974500500 + S DZVP-MOLOPT-GTH DZVP-MOLOPT-GTH-q6 + 1 + 2 0 2 6 2 2 1 + 3.817590656735 0.075558928000 -0.045713227100 -0.019219238100 0.001714015800 0.007498037400 + 2.362751931093 -0.351216488200 0.179094296600 -0.035664835200 0.064608303200 0.104757185100 + 0.861004180298 -0.099160602500 0.206133423700 0.160834397000 -0.170453754100 0.344818199900 + 0.417524512433 0.862753116400 -0.737640763800 0.507608206800 -0.536548069500 0.472319101700 + 0.181513540673 0.307053614900 0.419230078700 0.249563613200 0.786543640200 0.204745694800 + 0.070570776865 0.001592872500 0.359607313200 0.025974500500 0.740434318200 -0.019952573900 + S TZVP-MOLOPT-GTH TZVP-MOLOPT-GTH-q6 + 1 + 2 0 2 6 3 3 1 + 3.817590656735 0.075558928000 -0.045713227100 -0.334102726000 -0.019219238100 0.001714015800 -0.065081716400 0.007498037400 + 2.362751931093 -0.351216488200 0.179094296600 0.901078536300 -0.035664835200 0.064608303200 0.216735258500 0.104757185100 + 0.861004180298 -0.099160602500 0.206133423700 0.139445328400 0.160834397000 -0.170453754100 -0.656181270900 0.344818199900 + 0.417524512433 0.862753116400 -0.737640763800 -0.236533973000 0.507608206800 -0.536548069500 0.847619826200 0.472319101700 + 0.181513540673 0.307053614900 0.419230078700 0.259546805900 0.249563613200 0.786543640200 0.204233835000 0.204745694800 + 0.070570776865 0.001592872500 0.359607313200 -0.378802711500 0.025974500500 0.740434318200 -0.341040490700 -0.019952573900 + S TZV2P-MOLOPT-GTH TZV2P-MOLOPT-GTH-q6 + 1 + 2 0 2 6 3 3 2 + 3.817590656735 0.075558928000 -0.045713227100 -0.334102726000 -0.019219238100 0.001714015800 -0.065081716400 0.007498037400 -0.024661974800 + 2.362751931093 -0.351216488200 0.179094296600 0.901078536300 -0.035664835200 0.064608303200 0.216735258500 0.104757185100 0.042689758500 + 0.861004180298 -0.099160602500 0.206133423700 0.139445328400 0.160834397000 -0.170453754100 -0.656181270900 0.344818199900 -0.325440208500 + 0.417524512433 0.862753116400 -0.737640763800 -0.236533973000 0.507608206800 -0.536548069500 0.847619826200 0.472319101700 0.746641212400 + 0.181513540673 0.307053614900 0.419230078700 0.259546805900 0.249563613200 0.786543640200 0.204233835000 0.204745694800 -0.120502819400 + 0.070570776865 0.001592872500 0.359607313200 -0.378802711500 0.025974500500 0.740434318200 -0.341040490700 -0.019952573900 -0.158216979000 + S TZV2PX-MOLOPT-GTH TZV2PX-MOLOPT-GTH-q6 + 1 + 2 0 3 6 3 3 2 1 + 3.817590656735 0.075558928000 -0.045713227100 -0.334102726000 -0.019219238100 0.001714015800 -0.065081716400 0.007498037400 -0.024661974800 0.013118322300 + 2.362751931093 -0.351216488200 0.179094296600 0.901078536300 -0.035664835200 0.064608303200 0.216735258500 0.104757185100 0.042689758500 0.057787584100 + 0.861004180298 -0.099160602500 0.206133423700 0.139445328400 0.160834397000 -0.170453754100 -0.656181270900 0.344818199900 -0.325440208500 0.679953632100 + 0.417524512433 0.862753116400 -0.737640763800 -0.236533973000 0.507608206800 -0.536548069500 0.847619826200 0.472319101700 0.746641212400 0.768725285200 + 0.181513540673 0.307053614900 0.419230078700 0.259546805900 0.249563613200 0.786543640200 0.204233835000 0.204745694800 -0.120502819400 0.173138012700 + 0.070570776865 0.001592872500 0.359607313200 -0.378802711500 0.025974500500 0.740434318200 -0.341040490700 -0.019952573900 -0.158216979000 0.060850854200 + Cl SZV-MOLOPT-GTH SZV-MOLOPT-GTH-q7 + 1 + 2 0 1 6 1 1 + 4.577034194110 0.065051807700 -0.018555371400 + 2.685006367322 -0.363216561500 -0.038757218600 + 1.107869270111 -0.013978112200 0.165913669300 + 0.515012065056 0.656897397000 0.409671142600 + 0.225105420962 0.492961793600 0.367216031300 + 0.089684813445 0.053468914400 0.129741292500 + Cl DZVP-MOLOPT-GTH DZVP-MOLOPT-GTH-q7 + 1 + 2 0 2 6 2 2 1 + 4.577034194110 0.065051807700 -0.056917463100 -0.018555371400 0.004980719100 0.008255008600 + 2.685006367322 -0.363216561500 0.289383593800 -0.038757218600 0.062414668400 0.112659622200 + 1.107869270111 -0.013978112200 0.170470730200 0.165913669300 -0.069602677800 0.303640572700 + 0.515012065056 0.656897397000 -0.631234162900 0.409671142600 -0.435899779400 0.542588312000 + 0.225105420962 0.492961793600 0.132599834000 0.367216031300 0.798386816000 0.275653471800 + 0.089684813445 0.053468914400 0.558743621800 0.129741292500 1.105427347200 -0.001399665300 + Cl TZVP-MOLOPT-GTH TZVP-MOLOPT-GTH-q7 + 1 + 2 0 2 6 3 3 1 + 4.577034194110 0.065051807700 -0.056917463100 -0.222676105800 -0.018555371400 0.004980719100 0.014188226800 0.008255008600 + 2.685006367322 -0.363216561500 0.289383593800 0.906226330700 -0.038757218600 0.062414668400 0.099373116400 0.112659622200 + 1.107869270111 -0.013978112200 0.170470730200 0.240057556900 0.165913669300 -0.069602677800 -0.139583547500 0.303640572700 + 0.515012065056 0.656897397000 -0.631234162900 -0.584789043400 0.409671142600 -0.435899779400 -0.452556047700 0.542588312000 + 0.225105420962 0.492961793600 0.132599834000 0.113336595400 0.367216031300 0.798386816000 0.872967525000 0.275653471800 + 0.089684813445 0.053468914400 0.558743621800 -0.074517779100 0.129741292500 1.105427347200 -0.464881530900 -0.001399665300 + Cl TZV2P-MOLOPT-GTH TZV2P-MOLOPT-GTH-q7 + 1 + 2 0 2 6 3 3 2 + 4.577034194110 0.065051807700 -0.056917463100 -0.222676105800 -0.018555371400 0.004980719100 0.014188226800 0.008255008600 -0.023981761800 + 2.685006367322 -0.363216561500 0.289383593800 0.906226330700 -0.038757218600 0.062414668400 0.099373116400 0.112659622200 0.022760737200 + 1.107869270111 -0.013978112200 0.170470730200 0.240057556900 0.165913669300 -0.069602677800 -0.139583547500 0.303640572700 -0.255872922500 + 0.515012065056 0.656897397000 -0.631234162900 -0.584789043400 0.409671142600 -0.435899779400 -0.452556047700 0.542588312000 0.152366447500 + 0.225105420962 0.492961793600 0.132599834000 0.113336595400 0.367216031300 0.798386816000 0.872967525000 0.275653471800 0.683411212900 + 0.089684813445 0.053468914400 0.558743621800 -0.074517779100 0.129741292500 1.105427347200 -0.464881530900 -0.001399665300 -0.558926647700 + Cl TZV2PX-MOLOPT-GTH TZV2PX-MOLOPT-GTH-q7 + 1 + 2 0 3 6 3 3 2 1 + 4.577034194110 0.065051807700 -0.056917463100 -0.222676105800 -0.018555371400 0.004980719100 0.014188226800 0.008255008600 -0.023981761800 0.012967367100 + 2.685006367322 -0.363216561500 0.289383593800 0.906226330700 -0.038757218600 0.062414668400 0.099373116400 0.112659622200 0.022760737200 0.024412096700 + 1.107869270111 -0.013978112200 0.170470730200 0.240057556900 0.165913669300 -0.069602677800 -0.139583547500 0.303640572700 -0.255872922500 0.393536985500 + 0.515012065056 0.656897397000 -0.631234162900 -0.584789043400 0.409671142600 -0.435899779400 -0.452556047700 0.542588312000 0.152366447500 0.715552544800 + 0.225105420962 0.492961793600 0.132599834000 0.113336595400 0.367216031300 0.798386816000 0.872967525000 0.275653471800 0.683411212900 0.342440527400 + 0.089684813445 0.053468914400 0.558743621800 -0.074517779100 0.129741292500 1.105427347200 -0.464881530900 -0.001399665300 -0.558926647700 -0.147002819200 +# +# +# Shorter Range molecularly optimized basis sets (See intro) +# +# + H SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q1 + 1 + 2 0 0 5 1 + 10.068468228533 -0.033917444900 + 2.680222868089 -0.122202212100 + 0.791501539122 -0.443818861200 + 0.239116150487 -0.453182186600 + 0.082193184441 -0.131612861500 + H DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q1 + 1 + 2 0 1 5 2 1 + 10.068468228533 -0.033917444900 0.059193775500 0.009905134400 + 2.680222868089 -0.122202212100 0.843318328900 0.122449566500 + 0.791501539122 -0.443818861200 -1.155707115500 0.477183240900 + 0.239116150487 -0.453182186600 0.049479621200 0.547919678200 + 0.082193184441 -0.131612861500 0.522708738000 0.869031854000 + He SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q2 + 1 + 2 0 0 4 1 + 11.042785405048 -0.057709039524 + 2.784477928537 -0.186997538114 + 0.777508803064 -0.356165765185 + 0.222222544418 -0.270871722171 + He DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q2 + 1 + 2 0 1 4 2 1 + 11.042785405048 -0.057709039524 -0.105186433287 0.003655817482 + 2.784477928537 -0.186997538114 -0.390936479220 -0.189395754815 + 0.777508803064 -0.356165765185 -0.838063667638 -1.512867520694 + 0.222222544418 -0.270871722171 1.442874338563 0.670534435463 + Li SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q3 + 1 + 2 0 0 5 2 + 7.133127574876 0.277443782336 0.081564852833 + 1.999997046722 0.418209986449 0.163120764751 + 0.612030939985 0.305912589369 0.178229873051 + 0.084366737836 0.210640845338 -0.467205177084 + 0.032613166298 0.112523830865 -0.297593804585 + Li DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q3 + 1 + 2 0 1 5 3 1 + 7.133127574876 0.277443782336 0.081564852833 -0.186441017519 -0.057587889331 + 1.999997046722 0.418209986449 0.163120764751 -0.109333052536 -0.009895878526 + 0.612030939985 0.305912589369 0.178229873051 -0.035923579149 -0.849366496083 + 0.084366737836 0.210640845338 -0.467205177084 -1.930661653919 -2.366974219334 + 0.032613166298 0.112523830865 -0.297593804585 1.884814754037 0.117218879286 + Be SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q4 + 1 + 2 0 0 6 2 + 14.927410410930 -0.101692281035 0.108892279587 + 6.934611958494 -0.211895541408 0.237670602277 + 2.222208384565 -0.279935231472 0.429698556888 + 0.732913986617 -0.091068265926 0.213557818158 + 0.225007132266 -0.115295308010 -0.652182396204 + 0.074144067364 -0.173251908170 -0.905622978118 + Be DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q4 + 1 + 2 0 1 6 3 1 + 14.927410410930 -0.101692281035 0.108892279587 -0.013828511039 -0.043322867269 + 6.934611958494 -0.211895541408 0.237670602277 -0.065062052894 -0.047764533740 + 2.222208384565 -0.279935231472 0.429698556888 -0.515821054187 -0.217923574729 + 0.732913986617 -0.091068265926 0.213557818158 -0.100183446834 -1.091509212634 + 0.225007132266 -0.115295308010 -0.652182396204 2.012025412480 -2.124632001073 + 0.074144067364 -0.173251908170 -0.905622978118 -1.507944883871 -1.344316057412 + B SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q3 + 1 + 2 0 1 4 1 1 + 3.053444073497 0.142389531583 -0.124774394633 + 0.915483968316 0.070304308347 -0.383517801425 + 0.329920053516 -0.657626233726 -0.645201457411 + 0.101655384143 -0.417625483973 -0.369557407831 + B DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q3 + 1 + 2 0 2 4 2 2 1 + 3.053444073497 0.142389531583 -0.541363625050 -0.124774394633 -0.166005683397 -0.081377656373 + 0.915483968316 0.070304308347 -0.187885904555 -0.383517801425 -0.631934352115 -0.772292138236 + 0.329920053516 -0.657626233726 1.734743314732 -0.645201457411 -0.579629526633 -1.322433881793 + 0.101655384143 -0.417625483973 -1.647357915542 -0.369557407831 1.762122465548 -0.981970482328 + C SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q4 + 1 + 2 0 1 5 1 1 + 5.605330751705 0.111532881900 -0.064868978500 + 2.113016390533 0.153142194100 -0.200470255700 + 0.769911454810 -0.321396879400 -0.413141730100 + 0.348157086385 -0.610926421600 -0.415337139200 + 0.128212254710 -0.133990862800 -0.288527673600 + C DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q4 + 1 + 2 0 2 5 2 2 1 + 5.605330751705 0.111532881900 0.466507483200 -0.064868978500 -0.055475693400 0.029952774600 + 2.113016390533 0.153142194100 0.144113212800 -0.200470255700 -0.216165175200 0.070784458800 + 0.769911454810 -0.321396879400 0.029364880900 -0.413141730100 -0.436624272300 0.674601058600 + 0.348157086385 -0.610926421600 0.929470388400 -0.415337139200 0.784000698400 0.173652061800 + 0.128212254710 -0.133990862800 1.066914331200 -0.288527673600 0.987908135000 1.036317024700 + N SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q5 + 1 + 2 0 1 5 1 1 + 7.341988051825 0.113789156500 -0.053744330400 + 2.542637110957 0.097294516500 -0.165752516200 + 0.888574967229 -0.445077422600 -0.317365165600 + 0.333802200435 -0.584142233900 -0.312039675200 + 0.112012109029 -0.139562383500 -0.117936008100 + N DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q5 + 1 + 2 0 2 5 2 2 1 + 7.341988051825 0.113789156500 0.077765588400 -0.053744330400 -0.007627243700 0.033688455200 + 2.542637110957 0.097294516500 0.108655219900 -0.165752516200 0.015163333100 0.109813343200 + 0.888574967229 -0.445077422600 -0.374125427100 -0.317365165600 -0.129388247500 0.856542971300 + 0.333802200435 -0.584142233900 0.024021712400 -0.312039675200 0.554905847400 0.509681657500 + 0.112012109029 -0.139562383500 0.979415132500 -0.117936008100 1.001020469600 0.047030652200 + O SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q6 + 1 + 2 0 1 5 1 1 + 10.389228018317 0.126240722900 -0.061302037200 + 3.849621072005 0.139933704300 -0.190087511700 + 1.388401188741 -0.434348231700 -0.377726982800 + 0.496955043655 -0.852791790900 -0.454266086000 + 0.162491615040 -0.242351537800 -0.257388983000 + O DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q6 + 1 + 2 0 2 5 2 2 1 + 10.389228018317 0.126240722900 0.069215797900 -0.061302037200 -0.026862701100 0.029845227500 + 3.849621072005 0.139933704300 0.115634538900 -0.190087511700 -0.006283021000 0.060939733900 + 1.388401188741 -0.434348231700 -0.322839719400 -0.377726982800 -0.224839187800 0.732321580100 + 0.496955043655 -0.852791790900 -0.095944016600 -0.454266086000 0.380324658600 0.893564918400 + 0.162491615040 -0.242351537800 1.102830348700 -0.257388983000 1.054102919900 0.152954188700 + F SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q7 + 1 + 2 0 1 5 1 1 + 13.701520668842 0.112227293400 -0.076186490700 + 5.098268930397 0.138913509400 -0.239982004100 + 1.837941323644 -0.418624975600 -0.481912435400 + 0.631758758967 -0.781149500600 -0.576092640600 + 0.202026732748 -0.233361053400 -0.325681090200 + F DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q7 + 1 + 2 0 2 5 2 2 1 + 13.701520668842 0.112227293400 0.097208978300 -0.076186490700 -0.065073103800 0.014975910100 + 5.098268930397 0.138913509400 0.102876192000 -0.239982004100 -0.178954386700 0.056540852300 + 1.837941323644 -0.418624975600 -0.261194711300 -0.481912435400 -0.432978808900 0.421555957700 + 0.631758758967 -0.781149500600 -0.613877500700 -0.576092640600 -0.420393726200 1.040368501100 + 0.202026732748 -0.233361053400 0.913930794200 -0.325681090200 1.087532785600 -0.115372011600 + Ne SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q8 + 1 + 2 0 1 6 1 1 + 19.144669251814 0.069475808579 0.044323480089 + 7.817581633327 0.136833604284 0.141748545980 + 3.076395099204 -0.176240522396 0.286599690536 + 1.225783227767 -0.534790596391 0.369762267197 + 0.469438475964 -0.420816475643 0.313976275678 + 0.165401378033 -0.056199770547 0.129616681048 + Ne DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q8 + 1 + 2 0 2 6 2 2 1 + 19.144669251814 0.069475808579 0.008074422113 0.044323480089 -0.019633668505 -0.016337449779 + 7.817581633327 0.136833604284 0.088172430797 0.141748545980 -0.051196308389 -0.013519520944 + 3.076395099204 -0.176240522396 -0.218906635760 0.286599690536 -0.171521562166 -0.158627528552 + 1.225783227767 -0.534790596391 0.130013326453 0.369762267197 0.007505219111 -0.028650976608 + 0.469438475964 -0.420816475643 -1.271285832759 0.313976275678 -0.568357530124 -0.982412169970 + 0.165401378033 -0.056199770547 1.727911777889 0.129616681048 1.298147838544 1.273253904774 + Na SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q9 + 1 + 2 0 1 7 2 1 + 23.518800761960 0.037798268053 0.005040470618 -0.041235150854 + 11.135656103275 0.180415272016 0.031210048356 -0.102704065658 + 4.647813820246 -0.084235489885 -0.021214584887 -0.276507156374 + 1.866708259982 -0.502007239468 -0.088006426680 -0.405087985600 + 0.734683697196 -0.487454712994 -0.241562643580 -0.345669762598 + 0.275672995860 -0.088909855778 0.046069503612 -0.128294724774 + 0.049895108245 -0.000245624853 1.008694292400 -0.002074313963 + Na DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q9 + 1 + 2 0 1 7 3 2 + 23.518800761960 0.037798268053 0.005040470618 0.037779070657 -0.041235150854 -0.005410838671 + 11.135656103275 0.180415272016 0.031210048356 -0.119614429319 -0.102704065658 -0.017609338317 + 4.647813820246 -0.084235489885 -0.021214584887 0.224302495702 -0.276507156374 -0.043803008653 + 1.866708259982 -0.502007239468 -0.088006426680 -0.183779813212 -0.405087985600 -0.067844235623 + 0.734683697196 -0.487454712994 -0.241562643580 1.641649867502 -0.345669762598 -0.085057974012 + 0.275672995860 -0.088909855778 0.046069503612 -2.281564821968 -0.128294724774 0.159527770719 + 0.049895108245 -0.000245624853 1.008694292400 0.801660990981 -0.002074313963 0.982149424568 + Mg SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q10 + 1 + 2 0 1 7 2 1 + 30.653047963189 0.054377184080 -0.008503364657 0.041949376018 + 12.924389070531 0.180093043263 -0.033268853396 0.154513485142 + 4.968377097667 -0.183378978769 0.039287763681 0.347080006586 + 1.851827556019 -0.641604001295 0.169148911336 0.456042413582 + 0.673565331978 -0.382610049904 0.233823708921 0.275294822235 + 0.168626419621 -0.012877428759 -0.474103906013 0.029266033687 + 0.059428253135 -0.011565253116 -0.681875195374 -0.006397458869 + Mg DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q10 + 1 + 2 0 1 7 3 2 + 30.653047963189 0.054377184080 -0.008503364657 -0.017403499711 0.041949376018 0.005685482959 + 12.924389070531 0.180093043263 -0.033268853396 0.019979586563 0.154513485142 0.031145413254 + 4.968377097667 -0.183378978769 0.039287763681 -0.035277033496 0.347080006586 0.054939424515 + 1.851827556019 -0.641604001295 0.169148911336 -0.203352520214 0.456042413582 0.123275320202 + 0.673565331978 -0.382610049904 0.233823708921 -0.348027990301 0.275294822235 -0.070548883335 + 0.168626419621 -0.012877428759 -0.474103906013 2.122888539507 0.029266033687 -0.608144728127 + 0.059428253135 -0.011565253116 -0.681875195374 -1.871583263111 -0.006397458869 -0.561501656268 + Al SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q3 + 1 + 2 0 1 4 1 1 + 1.212902319099 0.095248915182 0.017523273525 + 0.454181446881 0.238368062117 0.031530615904 + 0.242418503788 -0.551005849330 -0.395233201731 + 0.078268495175 -0.241350820340 -0.270737591969 + Al DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q3 + 1 + 2 0 2 4 2 2 1 + 1.212902319099 0.095248915182 -0.230241641025 0.017523273525 -0.081919506975 0.359233701644 + 0.454181446881 0.238368062117 -0.662191771394 0.031530615904 0.059600622511 0.610925184385 + 0.242418503788 -0.551005849330 1.692156327298 -0.395233201731 1.076271205166 1.758688383246 + 0.078268495175 -0.241350820340 -1.648320060523 -0.270737591969 -1.208390139070 0.735529744423 + Si SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q4 + 1 + 2 0 1 4 1 1 + 1.256767641387 0.227718466600 0.067776267500 + 0.506394122478 -0.024323599300 -0.213716770200 + 0.238883845662 -0.558639778900 -0.409893726600 + 0.087336883836 -0.207272502200 -0.353922302700 + Si DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q4 + 1 + 2 0 2 4 2 2 1 + 1.256767641387 0.227718466600 -1.025748084300 0.067776267500 0.099785628800 0.159026680300 + 0.506394122478 -0.024323599300 0.694283033300 -0.213716770200 -0.411985229800 0.392330436800 + 0.238883845662 -0.558639778900 0.058162561600 -0.409893726600 -0.057183126300 0.393085151800 + 0.087336883836 -0.207272502200 -0.258181009000 -0.353922302700 0.700307869400 0.550337119000 + P SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q5 + 1 + 2 0 1 4 1 1 + 1.631862170786 0.335074115300 0.123299547600 + 0.708432685319 -0.023088252600 -0.351511376700 + 0.284968483654 -0.973819129700 -0.806870557100 + 0.098011823689 -0.292906884000 -0.517933891800 + P DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q5 + 1 + 2 0 2 4 2 2 1 + 1.631862170786 0.335074115300 0.341512748800 0.123299547600 0.134459618400 0.174671506000 + 0.708432685319 -0.023088252600 0.008045537600 -0.351511376700 -0.389557392400 0.503029215100 + 0.284968483654 -0.973819129700 -0.851246931200 -0.806870557100 -0.138884374300 0.699184423900 + 0.098011823689 -0.292906884000 1.328906840600 -0.517933891800 1.062071606300 0.407460906200 + S SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q6 + 1 + 2 0 1 4 1 1 + 2.215854692813 0.170962878400 0.092191824200 + 1.131470525271 0.127069405600 -0.162197093800 + 0.410168143974 -0.733925381700 -0.605594737600 + 0.140587330023 -0.176971633900 -0.213309789800 + S DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q6 + 1 + 2 0 2 4 2 2 1 + 2.215854692813 0.170962878400 -0.080726543800 0.092191824200 0.057845138800 0.113762894700 + 1.131470525271 0.127069405600 -0.209877313900 -0.162197093800 -0.094737441500 0.350414093700 + 0.410168143974 -0.733925381700 0.683497090800 -0.605594737600 -0.369172638100 0.866785684700 + 0.140587330023 -0.176971633900 -0.625512739500 -0.213309789800 1.155699504700 0.217880463100 + Cl SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q7 + 1 + 2 0 1 4 1 1 + 2.379078117601 0.349064979100 0.116462270400 + 1.470718465013 0.023265903500 -0.193945393700 + 0.461213474057 -1.015492630400 -0.463529682400 + 0.150014717415 -0.402599991500 -0.299834714700 + Cl DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q7 + 1 + 2 0 2 4 2 2 1 + 2.379078117601 0.349064979100 0.153138206200 0.116462270400 0.160067891900 0.074898027900 + 1.470718465013 0.023265903500 0.170051509900 -0.193945393700 -0.212781225800 0.303856570000 + 0.461213474057 -1.015492630400 -0.702516267300 -0.463529682400 -0.439023237200 0.766878436800 + 0.150014717415 -0.402599991500 0.681437336600 -0.299834714700 1.036634179400 0.154947398700 + Ar SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q8 + 1 + 2 0 1 5 1 1 + 3.936450214256 -0.126876868653 0.081197313256 + 2.888050686108 0.488558851459 -0.050560847288 + 0.925305548464 -0.356808308806 -0.382285987629 + 0.366456608488 -0.745538702598 -0.507927770980 + 0.128035915977 -0.148475482748 -0.248562045384 + Ar DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q8 + 1 + 2 0 2 5 2 2 1 + 3.936450214256 -0.126876868653 -0.120853949683 0.081197313256 0.115242855583 0.118434272495 + 2.888050686108 0.488558851459 0.030456012450 -0.050560847288 -0.153264749918 -0.157989713634 + 0.925305548464 -0.356808308806 -0.229699408013 -0.382285987629 -0.074149829187 -0.072608763447 + 0.366456608488 -0.745538702598 1.833670881562 -0.507927770980 -0.965020325642 -0.967474418604 + 0.128035915977 -0.148475482748 -1.869800022555 -0.248562045384 1.384189599695 1.358175503076 + K SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q9 + 1 + 2 0 1 6 2 1 + 2.891270375454 -0.125588343071 0.141760377816 0.586273841257 + 2.714957993897 -0.332679523247 0.045797253838 -0.600247660122 + 0.954062644964 0.579235654863 -0.270917640330 -0.331386642719 + 0.407596260029 0.640286613853 -0.523435976542 -0.345162964052 + 0.163339876080 0.132146903359 -0.040955544362 -0.129654083334 + 0.036854064168 0.136961207358 1.420210199250 -0.002662514210 + K DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q9 + 1 + 2 0 2 6 3 2 1 + 2.891270375454 -0.125588343071 0.141760377816 0.092583173658 0.586273841257 0.174577931878 -0.022072489962 + 2.714957993897 -0.332679523247 0.045797253838 -0.045825704377 -0.600247660122 -0.189434477232 0.113984804892 + 0.954062644964 0.579235654863 -0.270917640330 0.363168058178 -0.331386642719 -0.078101098846 0.234486045475 + 0.407596260029 0.640286613853 -0.523435976542 -2.539586038548 -0.345162964052 -0.144666151565 0.234673259721 + 0.163339876080 0.132146903359 -0.040955544362 2.654427110393 -0.129654083334 0.092758894460 0.452553356262 + 0.036854064168 0.136961207358 1.420210199250 -0.693763482649 -0.002662514210 0.780744603300 0.480095027043 + Ca SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q10 + 1 + 2 0 1 6 2 1 + 5.284985596557 -0.416182629697 -0.083912217567 0.064960038145 + 4.091752229122 0.887610504052 0.216895453968 0.014546526081 + 1.429520321762 -0.323549926958 -0.096935550443 -0.466720491908 + 0.614375507986 -0.908395199325 -0.502206578258 -0.634030899528 + 0.242970577562 -0.208971576432 -0.096821746914 -0.251681593814 + 0.055000158016 0.039132482825 1.342563762693 -0.000003936848 + Ca DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q10 + 1 + 2 0 2 6 3 2 1 + 5.284985596557 -0.416182629697 -0.083912217567 -0.208574685974 0.064960038145 0.026515439739 -0.066630752510 + 4.091752229122 0.887610504052 0.216895453968 0.314510703283 0.014546526081 -0.028997969950 0.197842850864 + 1.429520321762 -0.323549926958 -0.096935550443 -0.601923136001 -0.466720491908 -0.073243851190 0.458365171560 + 0.614375507986 -0.908395199325 -0.502206578258 2.853614975011 -0.634030899528 -0.218228118923 0.372585742208 + 0.242970577562 -0.208971576432 -0.096821746914 -3.043287352030 -0.251681593814 0.144907690867 0.820156666086 + 0.055000158016 0.039132482825 1.342563762693 0.887844469398 -0.000003936848 0.854082269914 0.653032075293 + Sc SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q11 + 1 + 2 0 2 6 2 1 1 + 7.596358558474 -0.005607824648 -0.000597439424 -0.092377568763 0.045120250343 + 3.531908044322 0.513266691301 0.153537412458 0.071267862889 0.192728189010 + 1.358432991102 -0.619613224500 -0.224168885145 0.468025381136 0.336183526558 + 0.543348479632 -0.729328581203 -0.458469756794 0.444181247677 0.405780027669 + 0.197283658533 -0.063678221084 0.072089942129 0.091871138246 0.446780401537 + 0.054428805670 -0.076152416285 1.048240218482 -0.004061267711 0.155178106722 + Sc DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q11 + 1 + 2 0 3 6 3 2 2 1 + 7.596358558474 -0.005607824648 -0.000597439424 -0.002143930265 -0.092377568763 0.020935300558 0.045120250343 -0.026241824143 0.005774084495 + 3.531908044322 0.513266691301 0.153537412458 0.228058090414 0.071267862889 -0.024159604541 0.192728189010 -0.096234745142 -0.021058205466 + 1.358432991102 -0.619613224500 -0.224168885145 0.050489185834 0.468025381136 -0.177053431087 0.336183526558 -0.167689255408 -0.090318610966 + 0.543348479632 -0.729328581203 -0.458469756794 1.714744833607 0.444181247677 -0.236101867977 0.405780027669 -0.337050099684 -0.717025179002 + 0.197283658533 -0.063678221084 0.072089942129 -2.748813311572 0.091871138246 0.624399910851 0.446780401537 0.338357123973 -0.806018996967 + 0.054428805670 -0.076152416285 1.048240218482 1.327173437956 -0.004061267711 0.798174697757 0.155178106722 0.993267553023 -0.034431734574 + Ti SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q12 + 1 + 2 0 2 6 2 1 1 + 7.884569925997 0.004750577412 -0.002690702837 -0.108736525246 0.052842407451 + 3.894698463070 0.499503858222 0.103956524568 0.100912855636 0.195986532018 + 1.513588828959 -0.664995883766 -0.256641947580 0.527328996047 0.330343722079 + 0.596768079836 -0.726044574739 -0.451591547817 0.468197803110 0.396808432313 + 0.222222125842 -0.029011079755 0.165167622946 0.077640626075 0.347092399871 + 0.077078461321 0.075171747143 0.993127316430 -0.007523238420 0.132320900948 + Ti DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q12 + 1 + 2 0 3 6 3 2 2 1 + 7.884569925997 0.004750577412 -0.002690702837 0.075105591562 -0.108736525246 0.023185061556 0.052842407451 -0.038307431199 -0.002442658125 + 3.894698463070 0.499503858222 0.103956524568 0.048602853477 0.100912855636 -0.027189036213 0.195986532018 -0.076880250937 0.013119020987 + 1.513588828959 -0.664995883766 -0.256641947580 0.079732563787 0.527328996047 -0.230044390357 0.330343722079 -0.242486488988 -0.206817889885 + 0.596768079836 -0.726044574739 -0.451591547817 1.660896378972 0.468197803110 -0.126795185046 0.396808432313 -0.118369379707 -0.546596492823 + 0.222222125842 -0.029011079755 0.165167622946 -2.748651632733 0.077640626075 0.343517279356 0.347092399871 0.038099375809 -0.279145975103 + 0.077078461321 0.075171747143 0.993127316430 1.368227638651 -0.007523238420 0.946960702315 0.132320900948 1.046553050597 0.934394052863 + V SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q13 + 1 + 2 0 2 6 2 1 1 + 7.984623749528 0.020761670278 0.003472483927 -0.127318262252 0.054932269310 + 4.192169946044 0.491008828907 0.116393516673 0.142383719999 0.194803913356 + 1.674403287155 -0.682491382781 -0.215217539970 0.556224679524 0.318207922138 + 0.666664577236 -0.670820374730 -0.436714762412 0.483736882428 0.350513304180 + 0.242419878750 -0.048891386418 0.104274844115 0.086227000831 0.324484835051 + 0.067390273084 -0.000084103227 1.134107947863 -0.004719320688 0.134088585517 + V DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q13 + 1 + 2 0 3 6 3 2 2 1 + 7.984623749528 0.020761670278 0.003472483927 0.004588768658 -0.127318262252 0.022347856999 0.054932269310 -0.022459138650 -0.026581274918 + 4.192169946044 0.491008828907 0.116393516673 0.265023422395 0.142383719999 -0.034743188380 0.194803913356 -0.101116586232 0.051515222079 + 1.674403287155 -0.682491382781 -0.215217539970 0.055753124298 0.556224679524 -0.168852773516 0.318207922138 -0.120777522887 -0.165483508295 + 0.666664577236 -0.670820374730 -0.436714762412 1.571857662805 0.483736882428 -0.212388638969 0.350513304180 -0.254635388920 -0.672649310115 + 0.242419878750 -0.048891386418 0.104274844115 -2.575720417590 0.086227000831 0.567082913076 0.324484835051 0.328826511242 -0.518402997758 + 0.067390273084 -0.000084103227 1.134107947863 1.490359925888 -0.004719320688 0.737649031611 0.134088585517 0.919495386218 0.651022121928 + Cr SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q14 + 1 + 2 0 2 6 2 1 1 + 8.512514788173 0.044157704927 0.005521331885 -0.106538347032 0.081830853262 + 4.473610317347 0.611382080738 0.102717317434 0.123956998990 0.165469927086 + 1.935100804674 -0.806653824181 -0.230184308969 0.572145261792 0.291295712802 + 0.787755660544 -0.813737787488 -0.583672998554 0.518904350249 0.315064211859 + 0.293768118617 -0.097787236037 0.171514456916 0.104097287875 0.298491580418 + 0.096285158065 -0.018725934011 1.121145454028 -0.012851161685 0.091086538491 + Cr DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q14 + 1 + 2 0 3 6 3 2 2 1 + 8.512514788173 0.044157704927 0.005521331885 0.051983958707 -0.106538347032 0.019159720527 0.081830853262 -0.086435342501 0.010065113847 + 4.473610317347 0.611382080738 0.102717317434 -0.056754820192 0.123956998990 -0.039826791539 0.165469927086 -0.200410712475 -0.041960450278 + 1.935100804674 -0.806653824181 -0.230184308969 0.286788879281 0.572145261792 -0.183705969647 0.291295712802 -0.303533420852 -0.023503174374 + 0.787755660544 -0.813737787488 -0.583672998554 1.450866672422 0.518904350249 -0.237503427061 0.315064211859 -0.406252982054 -0.642426781332 + 0.293768118617 -0.097787236037 0.171514456916 -2.505465496286 0.104097287875 0.544755601203 0.298491580418 0.671193994691 -1.002149340367 + 0.096285158065 -0.018725934011 1.121145454028 1.333321045479 -0.012851161685 0.728237138423 0.091086538491 1.044472107589 -0.051749578559 + Mn SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q15 + 1 + 2 0 2 6 2 1 1 + 8.544553301652 0.073093470228 0.007737617141 -0.112356559070 0.128427483264 + 4.848054813373 0.524172731625 0.080999035925 0.147232813006 0.251552231081 + 2.164526529348 -0.728865076153 -0.168390545215 0.595364746984 0.432303419394 + 0.889600577579 -0.719279115513 -0.484910732725 0.547990570294 0.462243734648 + 0.342420014284 -0.107062868546 0.161978409160 0.112195052476 0.410033587493 + 0.101924225526 -0.091391408123 0.922002216513 -0.006599984929 0.104488744702 + Mn DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q15 + 1 + 2 0 3 6 3 2 2 1 + 8.544553301652 0.073093470228 0.007737617141 0.072614715676 -0.112356559070 -0.000918247791 0.128427483264 -0.098510232939 0.011600099044 + 4.848054813373 0.524172731625 0.080999035925 0.243235089119 0.147232813006 -0.022563980399 0.251552231081 -0.201137346341 -0.038269110382 + 2.164526529348 -0.728865076153 -0.168390545215 -0.083273051926 0.595364746984 -0.222689774520 0.432303419394 -0.372206024320 -0.006930134936 + 0.889600577579 -0.719279115513 -0.484910732725 1.528518694896 0.547990570294 -0.223281730802 0.462243734648 -0.283875478140 -0.593864975230 + 0.342420014284 -0.107062868546 0.161978409160 -2.382396811600 0.112195052476 0.787892008324 0.410033587493 0.535487181225 -0.731351385550 + 0.101924225526 -0.091391408123 0.922002216513 1.312464873250 -0.006599984929 0.923252070662 0.104488744702 0.884777948907 -0.410551623712 + Fe SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q16 + 1 + 2 0 2 6 2 1 1 + 8.424366035773 -0.162658565315 -0.035363017559 -0.072847050506 0.110173914394 + 4.825219529323 -0.376899337900 -0.052967122649 0.142729813399 0.188638090829 + 2.198939257455 0.782922261822 0.047770046081 0.463643359935 0.309261422382 + 0.891660670520 0.668791717694 -0.303745487596 0.381142099471 0.329416033612 + 0.316230539846 0.044155272467 0.241839701006 0.065337400672 0.286237082129 + 0.103474049912 -0.109124318184 1.110613962319 -0.008571808472 0.085017978924 + Fe DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q16 + 1 + 2 0 3 6 3 2 2 1 + 8.424366035773 -0.162658565315 -0.035363017559 -0.094078593184 -0.072847050506 -0.005733704721 0.110173914394 -0.070157127293 -0.006314368438 + 4.825219529323 -0.376899337900 -0.052967122649 -0.123947729175 0.142729813399 -0.013789178386 0.188638090829 -0.086799612151 0.010113549442 + 2.198939257455 0.782922261822 0.047770046081 -0.097232244128 0.463643359935 -0.102097633738 0.309261422382 -0.268972922540 -0.073675908597 + 0.891660670520 0.668791717694 -0.303745487596 -1.526375946562 0.381142099471 -0.120441338124 0.329416033612 -0.034996470754 -0.417006031951 + 0.316230539846 0.044155272467 0.241839701006 2.582854093079 0.065337400672 0.562339049496 0.286237082129 0.429744227008 -0.588459890648 + 0.103474049912 -0.109124318184 1.110613962319 -1.436336658778 -0.008571808472 0.724515320284 0.085017978924 0.805064206226 0.838504572352 + Co SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q17 + 1 + 2 0 2 6 2 1 1 + 8.365267848849 0.325640340818 0.100399284242 0.065178086481 0.161970551713 + 4.376457504499 0.052133097592 0.035256534659 -0.270123287267 0.258523958001 + 1.999997730424 -0.771768661844 -0.356022277776 -0.523181103805 0.345535423988 + 0.834299833692 -0.451524705474 -0.484191598528 -0.351988387737 0.343948305407 + 0.307481719486 -0.065898239599 0.316152225672 -0.046316455477 0.268593856293 + 0.095840175724 -0.089785302253 1.048143547929 0.002689603563 0.072458934329 + Co DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q17 + 1 + 2 0 3 6 3 2 2 1 + 8.365267848849 0.325640340818 0.100399284242 -0.037272221184 0.065178086481 -0.007853810191 0.161970551713 -0.150374171995 -0.004972248652 + 4.376457504499 0.052133097592 0.035256534659 0.130340578991 -0.270123287267 -0.005278972597 0.258523958001 -0.233094541861 -0.027876689140 + 1.999997730424 -0.771768661844 -0.356022277776 0.090277112993 -0.523181103805 -0.068346693868 0.345535423988 -0.433567358235 -0.105956196731 + 0.834299833692 -0.451524705474 -0.484191598528 1.325070368105 -0.351988387737 -0.063077394461 0.343948305407 0.030145546706 -0.735605287383 + 0.307481719486 -0.065898239599 0.316152225672 -2.625301782430 -0.046316455477 0.759497959451 0.268593856293 0.599205222587 -0.912105772173 + 0.095840175724 -0.089785302253 1.048143547929 1.561113649398 0.002689603563 0.543915652075 0.072458934329 0.957030486546 0.577467491892 + Ni SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q18 + 1 + 2 0 2 6 2 1 1 + 10.077427756816 -0.169086929207 0.022677528942 -0.126427871284 0.093966508982 + 5.847735848326 -0.313749841130 0.057292097754 0.241165311699 0.269388431386 + 2.494032826008 0.766489587737 -0.198532965699 0.543849904725 0.374569463127 + 0.988354848429 0.557414017577 -0.427662657827 0.407338672608 0.368089865298 + 0.344978242158 0.031729942841 0.260121348436 0.053320914508 0.281719022542 + 0.099465768726 -0.025637387109 0.887675876654 -0.003779723220 0.071642894272 + Ni DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q18 + 1 + 2 0 3 6 3 2 2 1 + 10.077427756816 -0.169086929207 0.022677528942 0.008641083176 -0.126427871284 -0.005476801255 0.093966508982 -0.033098284050 -0.001956691144 + 5.847735848326 -0.313749841130 0.057292097754 -0.136071800928 0.241165311699 -0.010936526817 0.269388431386 -0.127029492510 0.008799010286 + 2.494032826008 0.766489587737 -0.198532965699 0.002540653375 0.543849904725 -0.096663192733 0.374569463127 -0.196169938991 0.006398276758 + 0.988354848429 0.557414017577 -0.427662657827 -1.418467855641 0.407338672608 -0.097657540866 0.368089865298 -0.053996889860 0.204329631644 + 0.344978242158 0.031729942841 0.260121348436 2.550221093172 0.053320914508 0.508429500180 0.281719022542 0.149590629720 0.039178572608 + 0.099465768726 -0.025637387109 0.887675876654 -1.335540301345 -0.003779723220 0.911795065206 0.071642894272 1.026626831833 1.055662599287 + Cu SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q11 + 1 + 2 0 2 6 1 1 1 + 5.804051150731 0.020918100390 -0.004381592772 0.275442696345 + 2.947777593081 -0.106208582202 0.017185613995 0.351705110927 + 1.271621207972 0.307397740339 -0.089805629814 0.331635969640 + 0.517173767860 0.240805274553 0.054415126660 0.259386540456 + 0.198006620331 -0.798718095004 0.446326740476 0.151105835782 + 0.061684232135 -0.738671023869 0.468516012555 0.030634833418 + Cu DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q11 + 1 + 2 0 3 6 2 2 2 1 + 5.804051150731 0.020918100390 0.045720931893 -0.004381592772 -0.021109803873 0.275442696345 -0.101811263028 -0.016523760157 + 2.947777593081 -0.106208582202 -0.094026024883 0.017185613995 0.020960301873 0.351705110927 -0.207670618594 0.055142365254 + 1.271621207972 0.307397740339 -0.110623536813 -0.089805629814 0.233442747472 0.331635969640 -0.224161904198 -0.286656089760 + 0.517173767860 0.240805274553 -0.742218346329 0.054415126660 0.369266430953 0.259386540456 0.176105738988 -0.502349311598 + 0.198006620331 -0.798718095004 2.208107372713 0.446326740476 -1.405067129701 0.151105835782 0.210534119173 -0.508940020577 + 0.061684232135 -0.738671023869 -1.720016262377 0.468516012555 1.042169799071 0.030634833418 0.902456275117 0.682110135764 + Zn SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q12 + 1 + 2 0 2 6 1 1 1 + 6.400812724595 0.021801105639 0.002944311709 0.285687212506 + 3.167793332690 -0.095613408620 -0.010450068121 0.358913949434 + 1.341703542578 0.274599856591 0.109519543853 0.326076466590 + 0.545418416941 0.137056274402 -0.060402922899 0.224403593782 + 0.222221794449 -0.625184197271 -0.531920972347 0.097325359555 + 0.079830045424 -0.482184818124 -0.498668813865 0.009048926598 + Zn DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q12 + 1 + 2 0 3 6 2 2 2 1 + 6.400812724595 0.021801105639 0.042720631346 0.002944311709 0.015629658082 0.285687212506 -0.088263924683 -0.000548299003 + 3.167793332690 -0.095613408620 -0.109242428655 -0.010450068121 -0.063967389104 0.358913949434 -0.137258994504 0.001063691080 + 1.341703542578 0.274599856591 -0.024734012319 0.109519543853 -0.067544866326 0.326076466590 -0.221544327713 0.030739369071 + 0.545418416941 0.137056274402 -1.003647707301 -0.060402922899 -0.144585524038 0.224403593782 0.258114817153 0.504509433027 + 0.222221794449 -0.625184197271 2.351480103434 -0.531920972347 1.553520638132 0.097325359555 0.333724215761 0.222475088124 + 0.079830045424 -0.482184818124 -1.671373693342 -0.498668813865 -1.253104288811 0.009048926598 0.857995942810 0.894090639367 + Ga SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q13 + 1 + 2 0 2 6 1 1 1 + 7.066653970373 0.004038828810 0.000167446202 -0.311164169605 + 3.428369180000 -0.049926015210 0.003362568505 -0.386388805667 + 1.430064114378 0.270487560795 0.130532105798 -0.341437057173 + 0.571610928613 0.114461485481 -0.096032824634 -0.204608212390 + 0.232196966975 -0.765662388169 -0.807329497232 -0.056129936831 + 0.076561670688 -0.411890094700 -0.419386452377 -0.001205250841 + Ga DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q13 + 1 + 2 0 3 6 2 2 2 1 + 7.066653970373 0.004038828810 -0.031816598052 0.000167446202 0.029367472355 -0.311164169605 -0.152377671375 0.008402101637 + 3.428369180000 -0.049926015210 0.005769897361 0.003362568505 -0.090542574365 -0.386388805667 -0.200456714008 -0.016601774058 + 1.430064114378 0.270487560795 0.375790997895 0.130532105798 -0.084206693559 -0.341437057173 -0.304563164958 0.049257564549 + 0.571610928613 0.114461485481 0.388650732034 -0.096032824634 0.052258004145 -0.204608212390 0.349719373167 0.451920686398 + 0.232196966975 -0.765662388169 -1.779139618248 -0.807329497232 1.288732412987 -0.056129936831 0.455579311293 0.322063208269 + 0.076561670688 -0.411890094700 1.829743730735 -0.419386452377 -1.217068254825 -0.001205250841 0.817649971475 1.018553207480 + Ge SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q4 + 1 + 2 0 1 4 1 1 + 3.751626352194 -0.081330564365 0.009035073443 + 1.419172362656 0.601635148115 0.102040890998 + 0.322428319082 -0.974594550901 -0.762506665117 + 0.110739925211 -0.656437584837 -0.400605035566 + Ge DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q4 + 1 + 2 0 2 4 2 2 1 + 3.751626352194 -0.081330564365 0.131718200550 0.009035073443 -0.028177828258 -0.016817594331 + 1.419172362656 0.601635148115 -0.833571668129 0.102040890998 -0.184453915085 0.112319200324 + 0.322428319082 -0.974594550901 1.770142218328 -0.762506665117 1.459738649058 1.386642934635 + 0.110739925211 -0.656437584837 -1.762909730970 -0.400605035566 -1.461907495600 0.473933627779 + As SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q5 + 1 + 2 0 1 4 1 1 + 1.098624139209 0.855667038605 0.312802805211 + 0.889293303816 -0.687764546866 -0.362619654191 + 0.234710973732 -0.705420359459 -0.425177185346 + 0.097981856094 -0.209729326520 -0.182957845017 + As DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q5 + 1 + 2 0 2 4 2 2 1 + 1.098624139209 0.855667038605 -0.557301753073 0.312802805211 -0.238167652686 -0.102371891125 + 0.889293303816 -0.687764546866 -0.627315887673 -0.362619654191 0.216505388598 0.223787145639 + 0.234710973732 -0.705420359459 -2.016588485577 -0.425177185346 0.935056716086 0.988597507108 + 0.097981856094 -0.209729326520 1.439205779281 -0.182957845017 -1.485977479107 0.039413462750 + Se SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q6 + 1 + 2 0 1 4 1 1 + 1.465689267622 0.522315327760 0.302629346132 + 1.029752381010 -0.177617010578 -0.349360567622 + 0.303575471349 -1.057800048233 -0.653355185785 + 0.107173147417 -0.299101385035 -0.381186874482 + Se DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q6 + 1 + 2 0 2 4 2 2 1 + 1.465689267622 0.522315327760 0.109434486047 0.302629346132 0.397353185807 0.120897258750 + 1.029752381010 -0.177617010578 0.919860707697 -0.349360567622 -0.410169822544 -0.291516752716 + 0.303575471349 -1.057800048233 -1.719933785859 -0.653355185785 -0.626545135443 -1.069566209605 + 0.107173147417 -0.299101385035 2.073037006457 -0.381186874482 2.208055478040 -0.296658894209 + Br SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q7 + 1 + 2 0 1 4 1 1 + 1.737392738120 0.698849040883 0.408222406946 + 0.995743043074 -0.178219675950 -0.559269850657 + 0.337588776628 -1.701043348622 -1.220407791913 + 0.115887043391 -0.358131187327 -0.708522727592 + Br DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q7 + 1 + 2 0 2 4 2 2 1 + 1.737392738120 0.698849040883 -0.027829541950 0.408222406946 0.104199804352 0.735355883214 + 0.995743043074 -0.178219675950 0.121124053665 -0.559269850657 -0.028681992792 -2.354878683630 + 0.337588776628 -1.701043348622 -2.197717138458 -1.220407791913 -0.996384166266 -2.891234672063 + 0.115887043391 -0.358131187327 1.946344639416 -0.708522727592 3.770311426725 -0.592507107440 + Kr SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q8 + 1 + 2 0 1 4 1 1 + 1.784435668906 0.810837662050 0.348552421052 + 1.005532891273 -0.533585820331 -0.573408630951 + 0.327795673641 -1.439836500217 -0.909538466141 + 0.108549688447 -0.206171398876 -0.408970770978 + Kr DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q8 + 1 + 2 0 2 4 2 2 1 + 1.784435668906 0.810837662050 -0.329499714794 0.348552421052 -0.018676893124 -0.577769793404 + 1.005532891273 -0.533585820331 0.849588151788 -0.573408630951 -0.063596257231 -0.379378556605 + 0.327795673641 -1.439836500217 -2.926928041746 -0.909538466141 -0.786542637237 -1.203208979343 + 0.108549688447 -0.206171398876 1.961821687963 -0.408970770978 1.457080125376 1.674577778254 + Rb SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q9 + 1 + 2 0 1 7 2 1 + 7.107230694150 -0.062218041672 -0.013507092266 0.035700265054 + 2.414406259100 0.488731908603 0.125115402960 -0.161483665734 + 1.134628425827 -0.101894960518 -0.042229797524 0.211536304024 + 0.483816136667 -0.827806256641 -0.296364033354 0.499666987934 + 0.198690371820 -0.304219423335 -0.278176269515 0.306717399916 + 0.078496630593 0.002468186208 0.316847793087 0.039955632038 + 0.029773227781 0.025109167182 0.829792452385 -0.000551065720 + Rb DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q9 + 1 + 2 0 2 7 3 2 1 + 7.107230694150 -0.062218041672 -0.013507092266 0.027821303246 0.035700265054 -0.009299202459 -0.001936508600 + 2.414406259100 0.488731908603 0.125115402960 -0.230232762986 -0.161483665734 0.041686622213 -0.002780629610 + 1.134628425827 -0.101894960518 -0.042229797524 0.239146438168 0.211536304024 -0.062301116336 0.092739553255 + 0.483816136667 -0.827806256641 -0.296364033354 -0.001364253092 0.499666987934 -0.186160284116 0.347438745009 + 0.198690371820 -0.304219423335 -0.278176269515 1.281826773475 0.306717399916 -0.090677499009 0.636698242337 + 0.078496630593 0.002468186208 0.316847793087 -2.888698734643 0.039955632038 0.258184855427 0.573025473782 + 0.029773227781 0.025109167182 0.829792452385 1.751588992331 -0.000551065720 0.909374383359 0.565570253663 + Sr SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q10 + 1 + 2 0 1 6 2 1 + 7.290111894735 0.069364270475 -0.016182746349 0.035659445929 + 2.536776771327 -0.571246927373 0.158928639982 -0.195822349727 + 1.283099546928 0.167836311459 -0.041157757852 0.260320252229 + 0.532449841650 0.904733330629 -0.431882417196 0.555386362294 + 0.211628059408 0.250907816117 -0.073959284415 0.267635587013 + 0.050841303698 0.007135721199 0.825600560103 0.001214128781 + Sr DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q10 + 1 + 2 0 2 6 3 2 1 + 7.290111894735 0.069364270475 -0.016182746349 -0.139466774650 0.035659445929 0.013920724630 -0.000090724547 + 2.536776771327 -0.571246927373 0.158928639982 -0.692403611332 -0.195822349727 -0.076802870831 -0.010109417559 + 1.283099546928 0.167836311459 -0.041157757852 -0.230309165261 0.260320252229 0.101479121539 0.066689821534 + 0.532449841650 0.904733330629 -0.431882417196 -0.069075854659 0.555386362294 0.267329775450 0.181824639879 + 0.211628059408 0.250907816117 -0.073959284415 1.145292027845 0.267635587013 0.052802012061 0.278155352971 + 0.050841303698 0.007135721199 0.825600560103 -2.640301525895 0.001214128781 -0.501686484262 0.157444712589 + Y SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q11 + 1 + 2 0 2 7 2 1 1 + 7.169829557085 0.064756738089 -0.022627762846 -0.024276685117 -0.000498514326 + 2.700922470615 -0.597719860262 0.235885458901 0.187917721906 -0.031403568872 + 1.376251109084 0.082122642041 -0.087291364288 -0.245232860710 0.127573561162 + 0.656916983532 0.966304799106 -0.405979470239 -0.598857920831 0.336722884287 + 0.281951576337 0.370251411162 -0.369782037034 -0.347360898522 0.474465039649 + 0.114567346626 0.047095993893 0.381463146281 -0.027444250529 0.383269025496 + 0.041587097849 0.121766951290 0.813527659184 -0.000772518245 0.124574151507 + Y DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q11 + 1 + 2 0 3 7 3 2 2 1 + 7.169829557085 0.064756738089 -0.022627762846 0.003819575374 -0.024276685117 -0.007895618075 -0.000498514326 -0.004435490551 -0.001782791348 + 2.700922470615 -0.597719860262 0.235885458901 -0.198330198799 0.187917721906 0.069387220484 -0.031403568872 0.054881707361 0.012853512634 + 1.376251109084 0.082122642041 -0.087291364288 0.531158632032 -0.245232860710 -0.134631203363 0.127573561162 -0.129541942957 -0.087471625840 + 0.656916983532 0.966304799106 -0.405979470239 0.108726218382 -0.598857920831 -0.231880747338 0.336722884287 -0.597681869599 -0.650935776283 + 0.281951576337 0.370251411162 -0.369782037034 1.371830612307 -0.347360898522 -0.080179872806 0.474465039649 -0.136727173378 -0.584017959493 + 0.114567346626 0.047095993893 0.381463146281 -3.345342150310 -0.027444250529 0.520590734955 0.383269025496 0.038190788742 -0.696187518367 + 0.041587097849 0.121766951290 0.813527659184 2.147987485965 -0.000772518245 0.741032334112 0.124574151507 1.078804758995 0.524836449052 + Zr SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q12 + 1 + 2 0 2 7 2 1 1 + 7.568385790028 -0.094978310907 -0.033616559232 -0.020865512366 -0.001689422502 + 2.940870125103 0.694261607918 0.288000788551 0.222352813741 -0.011935551626 + 1.478549725921 -0.214258448962 -0.141902662715 -0.319406707712 0.152103521468 + 0.699652747292 -0.923670545104 -0.452166355085 -0.588541345286 0.296191130217 + 0.314575404780 -0.327047026378 -0.381211768681 -0.309198403218 0.399124869129 + 0.129868596693 0.003239038466 0.526743157382 -0.019801636662 0.242072326904 + 0.046850569449 -0.007129719335 0.810803550660 -0.000524643311 0.048657150043 + Zr DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q12 + 1 + 2 0 3 7 3 2 2 1 + 7.568385790028 -0.094978310907 -0.033616559232 -0.013349699986 -0.020865512366 -0.002290591691 -0.001689422502 -0.002354868577 0.003856737689 + 2.940870125103 0.694261607918 0.288000788551 -0.164712644101 0.222352813741 0.053781865205 -0.011935551626 0.026432470933 -0.013583377285 + 1.478549725921 -0.214258448962 -0.141902662715 0.533207302704 -0.319406707712 -0.122494830242 0.152103521468 -0.076453834071 -0.086468568432 + 0.699652747292 -0.923670545104 -0.452166355085 0.109420966738 -0.588541345286 -0.277888241330 0.296191130217 -0.273025800110 -0.563950845131 + 0.314575404780 -0.327047026378 -0.381211768681 1.392697829361 -0.309198403218 0.025966843597 0.399124869129 0.045119618315 -0.622062115242 + 0.129868596693 0.003239038466 0.526743157382 -3.337321484704 -0.019801636662 0.475807819736 0.242072326904 0.180401992175 -0.552753691412 + 0.046850569449 -0.007129719335 0.810803550660 2.074605849369 -0.000524643311 0.625967738574 0.048657150043 1.105393639621 0.165196094208 + Nb SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q13 + 1 + 2 0 2 7 2 1 1 + 3.445688332127 6.967608357644 -3.377478792599 -0.840846380047 0.388363778921 + 3.361754070289 -7.592191163341 3.690016909917 0.956420493475 -0.389233499416 + 1.402769349742 0.489341601567 -0.310828636726 -0.276255708969 -0.232772054682 + 0.638107530614 0.749244219846 -0.462987145063 -0.340280885378 -0.367470032847 + 0.297916452528 0.168228854756 -0.275959272761 -0.120882245268 -0.373135144785 + 0.134531184887 -0.010188517089 0.576706104059 -0.004779969154 -0.185455779821 + 0.051687918628 0.006294814846 0.631490283017 -0.000211964161 -0.039160568093 + Nb DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q13 + 1 + 2 0 3 7 3 2 2 1 + 3.445688332127 6.967608357644 -3.377478792599 8.753281549590 -0.840846380047 0.156868559129 0.388363778921 0.459373932984 0.464314945457 + 3.361754070289 -7.592191163341 3.690016909917 -8.926202800310 0.956420493475 -0.211987417412 -0.389233499416 -0.467868954158 -0.427447517961 + 1.402769349742 0.489341601567 -0.310828636726 0.633972204920 -0.276255708969 0.225373426671 -0.232772054682 -0.169379157593 -0.197717184453 + 0.638107530614 0.749244219846 -0.462987145063 -0.111601241388 -0.340280885378 0.183794395021 -0.367470032847 -0.323135603674 -0.588178917976 + 0.297916452528 0.168228854756 -0.275959272761 1.410604379810 -0.120882245268 -0.165885709655 -0.373135144785 0.023106426168 -0.476010923425 + 0.134531184887 -0.010188517089 0.576706104059 -3.231399119388 -0.004779969154 -0.336057891318 -0.185455779821 -0.086482885111 -0.466998469570 + 0.051687918628 0.006294814846 0.631490283017 2.118393728700 -0.000211964161 -0.786575100596 -0.039160568093 1.131690269915 0.648887813696 + Mo SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q14 + 1 + 2 0 2 7 2 1 1 + 2.540273246178 -0.578530819221 0.207479779241 0.307100812758 -0.149151531382 + 1.999996221023 0.255133124027 -0.231957971109 -0.375633370985 0.289650418561 + 0.894040376874 0.676100594670 0.285544120446 -0.244205356948 0.207391250228 + 0.439256605865 0.131763425580 0.062954195096 -0.177325998176 0.312615422763 + 0.189497802537 0.085911973535 -0.210930323620 -0.016882413378 0.200727667932 + 0.083802212693 -0.062285567387 -0.868201464922 -0.000916114554 0.047819428716 + 0.052948764137 0.016176877393 -0.574266536022 0.000883614589 0.013662121505 + Mo DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q14 + 1 + 2 0 3 7 3 2 2 1 + 2.540273246178 -0.578530819221 0.207479779241 -0.299914438061 0.307100812758 -0.056135943926 -0.149151531382 0.078318936957 0.090482429273 + 1.999996221023 0.255133124027 -0.231957971109 -0.417466028636 -0.375633370985 0.137590516968 0.289650418561 -0.193587305622 -0.158221499177 + 0.894040376874 0.676100594670 0.285544120446 0.515341081590 -0.244205356948 0.160869646404 0.207391250228 -0.376645017726 -0.294586192143 + 0.439256605865 0.131763425580 0.062954195096 -0.748853953260 -0.177325998176 -0.132932627695 0.312615422763 -0.186682023670 -0.705339054554 + 0.189497802537 0.085911973535 -0.210930323620 1.300969236640 -0.016882413378 -0.383867077982 0.200727667932 0.236167100944 -0.270988043507 + 0.083802212693 -0.062285567387 -0.868201464922 -3.373816977234 -0.000916114554 -0.526274675338 0.047819428716 0.096109040144 -0.475221485624 + 0.052948764137 0.016176877393 -0.574266536022 1.973814085745 0.000883614589 -0.535005148259 0.013662121505 1.079607069896 0.639098431599 + Tc SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q15 + 1 + 2 0 2 7 2 1 1 + 3.164224765901 -4.936025404648 2.690105911399 1.875473204955 -0.315743748171 + 3.111533459421 5.402033503677 -2.906113798449 -1.589412009269 0.248590535878 + 1.923601224823 -0.382432085374 0.205154484199 -0.484599011050 0.277986264842 + 0.887428259225 -0.325518324167 0.411180892172 -0.878565217193 0.337694430891 + 0.387592572799 -0.122553923184 0.110130628461 -0.345096002980 0.419921218350 + 0.151375638104 0.091448243559 -0.679068092339 -0.016891045364 0.202434518908 + 0.052897942898 0.094934643036 -0.799513230137 0.002744375423 0.022350450321 + Tc DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q15 + 1 + 2 0 3 7 3 2 2 1 + 3.164224765901 -4.936025404648 2.690105911399 8.299735456543 1.875473204955 -0.389124278660 -0.315743748171 0.453605787389 0.417278606867 + 3.111533459421 5.402033503677 -2.906113798449 -8.422380593905 -1.589412009269 0.310379586569 0.248590535878 -0.430318362917 -0.352874423698 + 1.923601224823 -0.382432085374 0.205154484199 0.605501825023 -0.484599011050 0.219977647323 0.277986264842 -0.192462070398 -0.135620561050 + 0.887428259225 -0.325518324167 0.411180892172 -0.244963673523 -0.878565217193 0.144726968569 0.337694430891 -0.252253826854 -0.492425087615 + 0.387592572799 -0.122553923184 0.110130628461 1.309565408916 -0.345096002980 -0.226102503229 0.419921218350 -0.096741785658 -0.446932223217 + 0.151375638104 0.091448243559 -0.679068092339 -3.154717953969 -0.016891045364 -0.394462618190 0.202434518908 -0.085506487189 -0.445111357421 + 0.052897942898 0.094934643036 -0.799513230137 2.197244299784 0.002744375423 -0.648372090195 0.022350450321 1.149052887456 0.721221763063 + Ru SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q16 + 1 + 2 0 2 7 2 1 1 + 2.787485846721 0.419245156353 0.847305490262 -2.358144554736 0.788526811934 + 2.671513807197 0.402523023175 -1.207617992281 2.345239865410 -0.863711338604 + 1.595751289168 -0.808149719838 0.513111660606 0.317793572742 -0.053253108229 + 0.821527061530 -0.477224887406 0.129164670091 0.512263090829 -0.202587225418 + 0.376346360068 -0.163265585552 0.268674181220 0.188482905753 -0.146122499622 + 0.192696937194 -0.088262869679 -0.408874960105 0.000829620006 -0.095330219372 + 0.068097557464 -0.260996120571 -0.797339816834 0.001387096163 -0.024995451964 + Ru DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q16 + 1 + 2 0 3 7 3 2 2 1 + 2.787485846721 0.419245156353 0.847305490262 6.921824287372 -2.358144554736 -0.707900609304 0.788526811934 0.431581913720 0.626906168798 + 2.671513807197 0.402523023175 -1.207617992281 -7.215911406936 2.345239865410 0.713232939519 -0.863711338604 -0.493940272079 -0.640462793210 + 1.595751289168 -0.808149719838 0.513111660606 0.791734614725 0.317793572742 0.156002828255 -0.053253108229 -0.106350839479 -0.104374234384 + 0.821527061530 -0.477224887406 0.129164670091 -0.269179658833 0.512263090829 0.255718656921 -0.202587225418 -0.431181078906 -0.721109469116 + 0.376346360068 -0.163265585552 0.268674181220 1.108319334214 0.188482905753 -0.505228683203 -0.146122499622 0.055386787557 -0.474329276924 + 0.192696937194 -0.088262869679 -0.408874960105 -3.154973580527 0.000829620006 -0.444948207050 -0.095330219372 0.157949246530 -0.620019133396 + 0.068097557464 -0.260996120571 -0.797339816834 1.934939194182 0.001387096163 -0.452796474664 -0.024995451964 1.037559058652 0.466016266685 + Rh SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q17 + 1 + 2 0 2 6 2 1 1 + 3.157817444361 0.760084070950 0.239207051701 -0.336193318541 -0.176446839307 + 2.683291075925 -0.255650224037 -0.091067207483 0.373953992584 0.261743358411 + 1.140786095845 -1.025626679377 -0.520689753906 0.300684698668 0.174717739794 + 0.492081007160 -0.234415477939 -0.274976137245 0.141457244144 0.188746290944 + 0.192543904978 0.046321838032 0.534686741279 0.007751787318 0.112894420897 + 0.066486620394 0.135748106274 0.896548625743 0.000117823467 0.021703317232 + Rh DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q17 + 1 + 2 0 3 6 3 2 2 1 + 3.157817444361 0.760084070950 0.239207051701 -0.176908781955 -0.336193318541 -0.088125446787 -0.176446839307 -0.026270559744 0.115615533976 + 2.683291075925 -0.255650224037 -0.091067207483 0.468944646941 0.373953992584 0.061257175816 0.261743358411 -0.026406732314 -0.111111060683 + 1.140786095845 -1.025626679377 -0.520689753906 -0.120831837016 0.300684698668 -0.192303757667 0.174717739794 -0.254749961865 -0.622696187547 + 0.492081007160 -0.234415477939 -0.274976137245 1.313841940318 0.141457244144 0.290786768179 0.188746290944 0.046758963178 -0.157786278903 + 0.192543904978 0.046321838032 0.534686741279 -3.287648327719 0.007751787318 0.580565362723 0.112894420897 0.048917987662 -0.581950444165 + 0.066486620394 0.135748106274 0.896548625743 1.948301386804 0.000117823467 0.790444403671 0.021703317232 0.972191217603 0.993182295696 + Rh SZV-MOLOPT-SR-GTH-q9 + 1 + 2 0 2 6 1 1 1 + 3.902721449032 0.016652865171 -0.008699428728 -0.112417659954 + 1.999830271997 -0.133395648426 0.046572987907 0.348017742874 + 0.879887627395 0.373099930807 -0.153463590375 0.381775351795 + 0.363794442257 0.298777744612 -0.052550610965 0.335875585916 + 0.140096726529 -0.924610879301 0.949493319446 0.146687236468 + 0.042562039477 -0.455102584336 0.423881871378 0.013082339937 + Rh SZVP-MOLOPT-SR-GTH-q9 + 1 + 2 0 2 6 2 1 2 + 3.902721449032 0.016652865171 -0.068138878878 -0.008699428728 -0.112417659954 -0.059777116284 + 1.999830271997 -0.133395648426 -0.004871048934 0.046572987907 0.348017742874 0.202056639971 + 0.879887627395 0.373099930807 0.649713932179 -0.153463590375 0.381775351795 0.110186767731 + 0.363794442257 0.298777744612 -0.021734587290 -0.052550610965 0.335875585916 0.064547743479 + 0.140096726529 -0.924610879301 -1.860437433134 0.949493319446 0.146687236468 -0.989654088355 + 0.042562039477 -0.455102584336 1.740659313641 0.423881871378 0.013082339937 -0.289820583737 + Rh DZVP-MOLOPT-SR-GTH-q9 + 1 + 2 0 3 6 2 2 2 1 + 3.902721449032 0.016652865171 -0.068138878878 -0.008699428728 -0.059391469214 -0.112417659954 -0.059777116284 -0.003558664914 + 1.999830271997 -0.133395648426 -0.004871048934 0.046572987907 0.041960437254 0.348017742874 0.202056639971 -0.044875919808 + 0.879887627395 0.373099930807 0.649713932179 -0.153463590375 0.518188755943 0.381775351795 0.110186767731 0.283349273890 + 0.363794442257 0.298777744612 -0.021734587290 -0.052550610965 -0.216591015187 0.335875585916 0.064547743479 1.043919000870 + 0.140096726529 -0.924610879301 -1.860437433134 0.949493319446 -0.898213733147 0.146687236468 -0.989654088355 -0.791074751670 + 0.042562039477 -0.455102584336 1.740659313641 0.423881871378 1.173029461392 0.013082339937 -0.289820583737 -0.082082714309 + Pd SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q18 + 1 + 2 0 2 6 1 1 1 + 3.408675573589 -0.132466784026 -0.567545309589 -0.237012042169 + 3.102531722049 -0.437179496952 0.553597861423 0.281832849168 + 1.644492988513 0.691818466230 0.309106812808 0.110086701020 + 0.791839035568 0.350166504373 0.314239136372 0.167791703969 + 0.316235520337 0.074477347669 0.070008169012 0.139346360820 + 0.109243742847 -0.009869037755 -0.003111197582 0.062460911300 + Pd DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q18 + 1 + 2 0 3 6 2 2 2 1 + 3.408675573589 -0.132466784026 0.029290454237 -0.567545309589 0.092784274333 -0.237012042169 0.095368996052 -0.073961706459 + 3.102531722049 -0.437179496952 0.192782667373 0.553597861423 -0.071388535306 0.281832849168 -0.080649769787 0.103257171864 + 1.644492988513 0.691818466230 -0.427625425484 0.309106812808 -0.179050519933 0.110086701020 -0.295200859905 -0.351204999462 + 0.791839035568 0.350166504373 -0.357653431542 0.314239136372 -0.049934153069 0.167791703969 0.018285464999 -0.414552037766 + 0.316235520337 0.074477347669 0.052946309434 0.070008169012 0.231812779555 0.139346360820 -0.027457577038 -0.637088708585 + 0.109243742847 -0.009869037755 1.328390548434 -0.003111197582 0.958384247940 0.062460911300 1.416457521209 1.171833433651 + Ag SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q11 + 1 + 2 0 2 5 1 1 1 + 2.586709178255 0.043754600978 0.022644943791 -0.228119986020 + 1.295159890890 -0.065091062805 -0.041727270135 -0.411112871153 + 0.553039826122 -0.405167335465 -0.158228872130 -0.391768462286 + 0.211183058137 0.497578418798 0.484453657192 -0.227577654035 + 0.062847168062 0.619659047740 0.747373652696 -0.034845530428 + Ag DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q11 + 1 + 2 0 3 5 2 2 2 1 + 2.586709178255 0.043754600978 0.016002004018 0.022644943791 0.005366630333 -0.228119986020 -0.065708005966 0.049544247949 + 1.295159890890 -0.065091062805 -0.036550568555 -0.041727270135 0.118122315157 -0.411112871153 -0.164499674965 -0.230239586867 + 0.553039826122 -0.405167335465 1.349533052863 -0.158228872130 0.689957680364 -0.391768462286 -0.083405899269 -0.501645626428 + 0.211183058137 0.497578418798 -2.535842013811 0.484453657192 -1.573396135858 -0.227577654035 -0.038684987758 -0.563865046243 + 0.062847168062 0.619659047740 1.655664881614 0.747373652696 1.108931560435 -0.034845530428 1.073281933345 0.515376673117 + Cd SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q12 + 1 + 2 0 2 5 1 1 1 + 2.617301292227 0.056942862843 0.032277317911 -0.270406154064 + 1.315617684053 -0.111910427538 -0.096634842893 -0.407839310946 + 0.573375899853 -0.420173785813 -0.083107933622 -0.363233448773 + 0.222222213763 0.564376116618 0.419549254990 -0.168907403589 + 0.076307136525 0.789967059806 0.795089873672 -0.013172843723 + Cd DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q12 + 1 + 2 0 3 5 2 2 2 1 + 2.617301292227 0.056942862843 0.085229465042 0.032277317911 0.051510843904 -0.270406154064 -0.064920306950 -0.038770557595 + 1.315617684053 -0.111910427538 -0.202708060768 -0.096634842893 -0.059783928261 -0.407839310946 -0.152553100915 -0.110107626346 + 0.573375899853 -0.420173785813 1.542506765787 -0.083107933622 0.615455610766 -0.363233448773 0.032121836723 -0.034014284171 + 0.222222213763 0.564376116618 -2.827046600082 0.419549254990 -1.767302700397 -0.168907403589 -0.117391708980 -0.107254575233 + 0.076307136525 0.789967059806 1.744522478935 0.795089873672 1.158998093237 -0.013172843723 1.045519107194 1.059683456620 + In SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q13 + 1 + 2 0 2 6 1 1 1 + 3.101675464995 -0.014756989563 -0.002337235001 0.245121261683 + 1.829866249849 -0.064345448008 0.031433449222 0.432609058860 + 0.898324196118 0.435246205245 -0.178879364380 0.486649088749 + 0.389454004688 -0.080147974732 0.140416923228 0.288251501897 + 0.162701041351 -0.728191656411 0.548122424076 0.057468890352 + 0.059412871673 -0.313235936982 0.384462238049 -0.000258770565 + In DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q13 + 1 + 2 0 3 6 2 2 2 1 + 3.101675464995 -0.014756989563 -0.110029580336 -0.002337235001 0.052839464904 0.245121261683 -0.012257945606 0.018888332958 + 1.829866249849 -0.064345448008 0.153222489077 0.031433449222 -0.110752586447 0.432609058860 -0.110028720800 -0.034470276859 + 0.898324196118 0.435246205245 0.391315648506 -0.178879364380 -0.100516978998 0.486649088749 -0.199975755292 0.113987435924 + 0.389454004688 -0.080147974732 0.337603965479 0.140416923228 0.023776328126 0.288251501897 0.335339132093 0.644348565644 + 0.162701041351 -0.728191656411 -1.893798269373 0.548122424076 1.285364410462 0.057468890352 0.399314422381 0.277069768884 + 0.059412871673 -0.313235936982 1.933683990690 0.384462238049 -1.445573560596 -0.000258770565 0.813978718300 0.799646050773 + Sn SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q4 + 1 + 2 0 1 5 1 1 + 0.666669575074 0.689214482698 0.249601611539 + 0.486831392324 -0.512955759145 -0.282734426066 + 0.172775679838 -0.598032924010 -0.235164953470 + 0.065536149861 -0.215612744096 -0.261775353331 + 0.063643963946 0.056968014830 0.117722874377 + Sn DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q4 + 1 + 2 0 2 5 2 2 1 + 0.666669575074 0.689214482698 0.597390157534 0.249601611539 0.315252873428 0.457406998777 + 0.486831392324 -0.512955759145 -0.578949723335 -0.282734426066 -0.456284996504 -0.671314814330 + 0.172775679838 -0.598032924010 -0.232486513252 -0.235164953470 0.160480606525 -0.579588972796 + 0.065536149861 -0.215612744096 -1.308667699314 -0.261775353331 -1.088783079841 -1.650667611807 + 0.063643963946 0.056968014830 2.152315008945 0.117722874377 1.400518346191 0.726312420432 + Sb SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q5 + 1 + 2 0 1 5 1 1 + 0.757214368696 0.691593689520 0.756051462053 + 0.576116222147 -0.351217469046 -0.792348307348 + 0.244349272369 -0.615740163850 -0.378296806004 + 0.160329448814 -0.264402217378 -0.611128127466 + 0.073465983327 -0.171357973436 -0.255229944153 + Sb DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q5 + 1 + 2 0 2 5 2 2 1 + 0.757214368696 0.691593689520 1.088920140322 0.756051462053 0.641112817519 0.801626688859 + 0.576116222147 -0.351217469046 -0.822676611872 -0.792348307348 -0.692298068143 -0.889703632274 + 0.244349272369 -0.615740163850 0.211516912099 -0.378296806004 -0.178293615513 -1.240429938237 + 0.160329448814 -0.264402217378 -1.715750005616 -0.611128127466 -0.751513283235 -2.058418758569 + 0.073465983327 -0.171357973436 2.700437428872 -0.255229944153 1.854777651762 0.223525953909 + Te SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q6 + 1 + 2 0 1 5 1 1 + 0.871170553457 -0.768209530501 -0.201075823729 + 0.666552751461 0.368144626623 0.204460083751 + 0.260565380434 0.833378133558 0.154271149685 + 0.171876990300 0.191335229653 0.113448742480 + 0.082233548720 0.215694921905 0.106354644586 + Te DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q6 + 1 + 2 0 2 5 2 2 1 + 0.871170553457 -0.768209530501 0.791359979104 -0.201075823729 0.531876807227 0.753248997934 + 0.666552751461 0.368144626623 -0.650859183208 0.204460083751 -0.682761765123 -0.946881734404 + 0.260565380434 0.833378133558 0.702283405156 0.154271149685 0.282705036438 -0.783009060844 + 0.171876990300 0.191335229653 -1.929360042093 0.113448742480 -0.665024191612 -1.602503279568 + 0.082233548720 0.215694921905 2.377910783672 0.106354644586 1.691098378374 0.055752014401 + I SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q7 + 1 + 2 0 1 5 1 1 + 0.966172693776 -0.472463189351 -0.431253473002 + 0.828885570527 -0.046174838614 0.405448133098 + 0.367159310806 0.674866028669 0.154408288042 + 0.201369106832 0.441846190432 0.307131088797 + 0.083015071126 0.147700751496 0.151452356751 + I DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q7 + 1 + 2 0 2 5 2 2 1 + 0.966172693776 -0.472463189351 1.555822203873 -0.431253473002 0.437499136144 0.790909981479 + 0.828885570527 -0.046174838614 -0.405245398304 0.405448133098 -0.360836974979 -0.706739130323 + 0.367159310806 0.674866028669 0.837346281042 0.154408288042 -0.426955819328 -1.146102256372 + 0.201369106832 0.441846190432 -2.170714561688 0.307131088797 -0.142879089720 -1.473453298743 + 0.083015071126 0.147700751496 2.099200395478 0.151452356751 1.946428231727 -0.517749701272 + Xe SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q8 + 1 + 2 0 1 5 1 1 + 1.060135338393 0.595086879307 -0.455562867881 + 0.666666004946 -0.333303102706 0.584858919323 + 0.277808854324 -0.853453515069 0.556607088551 + 0.171463992710 0.008584975685 0.284690856924 + 0.096899106515 -0.148160183031 0.213921134179 + Xe DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q8 + 1 + 2 0 2 5 2 2 1 + 1.060135338393 0.595086879307 1.159498326834 -0.455562867881 0.341641892911 0.461999932788 + 0.666666004946 -0.333303102706 -0.700514321869 0.584858919323 -0.637621905684 -0.861718349639 + 0.277808854324 -0.853453515069 0.843332917012 0.556607088551 0.421389646121 -0.690146245180 + 0.171463992710 0.008584975685 -2.438781702578 0.284690856924 -1.036777647654 -2.060830843444 + 0.096899106515 -0.148160183031 2.027210394018 0.213921134179 2.018039151988 0.570372103567 + Cs SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q9 + 1 + 2 0 1 6 2 1 + 1.000865707027 0.280322352634 0.098179355219 -0.360207388692 + 0.913482115012 0.358344637273 -0.098255007626 -0.016242892143 + 0.666653730505 -0.489376812003 0.118067108510 0.500190150119 + 0.332485858625 -0.512310150761 -0.480608369395 0.336498234976 + 0.149836705312 -0.141743262814 0.078136295233 0.344475837226 + 0.026691284164 0.280660075501 1.173263741421 0.011885241412 + Cs DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q9 + 1 + 2 0 2 6 3 2 1 + 1.000865707027 0.280322352634 0.098179355219 0.031141586311 -0.360207388692 0.002335867187 0.147697150754 + 0.913482115012 0.358344637273 -0.098255007626 0.330103917383 -0.016242892143 0.084765416923 0.071945154769 + 0.666653730505 -0.489376812003 0.118067108510 -0.659442112080 0.500190150119 -0.132236014043 -0.240447290500 + 0.332485858625 -0.512310150761 -0.480608369395 3.043138449037 0.336498234976 -0.036101912675 -0.535530906149 + 0.149836705312 -0.141743262814 0.078136295233 -3.444995658743 0.344475837226 -0.076534707873 -0.669534557468 + 0.026691284164 0.280660075501 1.173263741421 1.178266960491 0.011885241412 1.106818006414 0.388389576072 + Ba SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q10 + 1 + 2 0 1 6 2 1 + 1.099107387393 -0.265977603953 0.133167313532 -0.076120521522 + 1.042415611430 -0.548867124949 0.303553076384 0.581707053986 + 0.923815583300 0.534778251294 -0.187596947384 -0.513377720928 + 0.409515187180 0.587584269233 -0.829784858376 -0.199996660495 + 0.166000524554 0.112796348364 0.080177822791 -0.129413972483 + 0.038868137908 -0.097599163432 1.388751874990 0.001685949311 + Ba DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q10 + 1 + 2 0 2 6 3 2 1 + 1.099107387393 -0.265977603953 0.133167313532 0.290876128104 -0.076120521522 0.156054210447 0.457091203328 + 1.042415611430 -0.548867124949 0.303553076384 -0.457720153751 0.581707053986 0.034898462239 -0.051884397940 + 0.923815583300 0.534778251294 -0.187596947384 0.955681723101 -0.513377720928 -0.112603657198 -0.325084641003 + 0.409515187180 0.587584269233 -0.829784858376 -3.839746465310 -0.199996660495 -0.398760799348 -1.103831466587 + 0.166000524554 0.112796348364 0.080177822791 3.559104747841 -0.129413972483 0.013035859628 -1.307997155338 + 0.038868137908 -0.097599163432 1.388751874990 -1.406284723707 0.001685949311 0.806788017038 -0.503750948349 + Hf SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q12 + 1 + 2 0 2 6 2 1 1 + 2.671196497548 0.788939427855 0.166407997203 -0.301974408389 -0.047796823905 + 2.597200237263 -0.135944993309 0.121000538909 0.293385766135 0.040716807355 + 1.091215248046 -0.911502384031 -0.450097538431 0.044171452367 0.281226003531 + 0.482780902120 -0.403765732131 -0.527116158052 0.050912843752 0.563159769901 + 0.184203719686 -0.116982787286 0.367518491637 0.006790589259 0.537885417612 + 0.060257634881 -0.118019349325 0.917540530320 -0.000081217891 0.138650274135 + Hf DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q12 + 1 + 2 0 3 6 3 2 2 1 + 2.671196497548 0.788939427855 0.166407997203 -0.808044747643 -0.301974408389 0.200618001886 -0.047796823905 -0.576358120326 0.136965103461 + 2.597200237263 -0.135944993309 0.121000538909 0.502710504170 0.293385766135 -0.131814094303 0.040716807355 0.121047786291 -0.101127257056 + 1.091215248046 -0.911502384031 -0.450097538431 -0.571536407023 0.044171452367 -0.119671510085 0.281226003531 -0.260083157654 -0.239844496668 + 0.482780902120 -0.403765732131 -0.527116158052 1.567869205746 0.050912843752 -0.209054741982 0.563159769901 -0.061407406614 -0.448266650992 + 0.184203719686 -0.116982787286 0.367518491637 -3.196670125867 0.006790589259 -0.050569947887 0.537885417612 -0.642967474054 -0.402343230211 + 0.060257634881 -0.118019349325 0.917540530320 1.895484387467 -0.000081217891 -0.947169815010 0.138650274135 0.976981432228 1.144416860469 + Ta SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q13 + 1 + 2 0 2 6 2 1 1 + 2.946055777701 0.481243902001 -0.039175358113 0.388448534264 -0.093115240785 + 2.777081321651 -0.000792758352 0.308251777475 -0.366342974440 0.111690390706 + 1.000199049661 -0.863712437729 -0.568363162228 -0.156083711841 0.225370492392 + 0.459026245077 -0.356339626223 -0.406417265286 -0.108217872947 0.293416264804 + 0.201289293145 -0.023090355735 0.248901497428 -0.015667426694 0.298377389246 + 0.065633603795 -0.015350833125 0.839900958846 0.000163546036 0.101787930127 + Ta DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q13 + 1 + 2 0 3 6 3 2 2 1 + 2.946055777701 0.481243902001 -0.039175358113 -0.219388739489 0.388448534264 -0.107938517042 -0.093115240785 -0.050799537716 0.071927166904 + 2.777081321651 -0.000792758352 0.308251777475 0.403285867163 -0.366342974440 0.047342767090 0.111690390706 0.051196996245 -0.015240206083 + 1.000199049661 -0.863712437729 -0.568363162228 -0.077743160108 -0.156083711841 -0.041740097950 0.225370492392 -0.295019586907 -0.470524112950 + 0.459026245077 -0.356339626223 -0.406417265286 1.717095624131 -0.108217872947 0.095987055932 0.293416264804 -0.181398283746 -0.645020041639 + 0.201289293145 -0.023090355735 0.248901497428 -3.203010923833 -0.015667426694 0.541275844761 0.298377389246 -0.083413162524 -0.819326850350 + 0.065633603795 -0.015350833125 0.839900958846 2.207786277506 0.000163546036 1.013357766701 0.101787930127 1.239644127245 0.794184603929 + W SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q14 + 1 + 2 0 2 6 2 1 1 + 3.103253876757 0.441154908462 -0.046848871737 0.516608286752 -0.104347730230 + 2.893835485057 0.301691972314 0.288483139662 -0.467840628709 0.135920880880 + 1.106150599362 -1.218290751007 -0.497581763775 -0.270577331119 0.396440765199 + 0.501100356736 -0.518231686854 -0.399441949193 -0.201524408230 0.551980290722 + 0.214446586103 -0.084224251837 0.243845988221 -0.022741809925 0.520355492616 + 0.074662878487 -0.194908755488 0.767604001481 0.002782169859 0.166409595366 + W DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q14 + 1 + 2 0 3 6 3 2 2 1 + 3.103253876757 0.441154908462 -0.046848871737 0.061298236069 0.516608286752 -0.857438192378 -0.104347730230 0.147146022027 0.063493654940 + 2.893835485057 0.301691972314 0.288483139662 0.240334881954 -0.467840628709 0.847145939975 0.135920880880 -0.154506508676 -0.017539591740 + 1.106150599362 -1.218290751007 -0.497581763775 -0.484396153573 -0.270577331119 -0.102821415305 0.396440765199 -0.271607294299 -0.299829989865 + 0.501100356736 -0.518231686854 -0.399441949193 1.821350211035 -0.201524408230 0.202413605224 0.551980290722 -0.086061740572 -0.841712144112 + 0.214446586103 -0.084224251837 0.243845988221 -3.376374627548 -0.022741809925 0.726346128053 0.520355492616 -0.074473115136 -0.801669560536 + 0.074662878487 -0.194908755488 0.767604001481 1.871608065172 0.002782169859 1.071006452855 0.166409595366 1.370657399699 0.359000011573 + Re SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q15 + 1 + 2 0 2 6 2 1 1 + 3.240620484285 0.518163100285 -0.250238063014 0.468480577212 -0.072782318249 + 2.835126642764 0.195266488444 0.421668475444 -0.390221082301 0.122612230842 + 1.164528911859 -1.218515127381 -0.468452769005 -0.460013931050 0.480667297031 + 0.530722413547 -0.526678086213 -0.480290161831 -0.325605406180 0.649752314300 + 0.234483312957 0.013465891784 0.546638137882 -0.033295571228 0.547928673428 + 0.080543361521 0.073473765653 1.175883886226 0.000112993288 0.124811170239 + Re DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q15 + 1 + 2 0 3 6 3 2 2 1 + 3.240620484285 0.518163100285 -0.250238063014 -0.143105506392 0.468480577212 -0.321600051025 -0.072782318249 0.025724531725 -0.094952415125 + 2.835126642764 0.195266488444 0.421668475444 0.282261176246 -0.390221082301 0.399779900733 0.122612230842 -0.054892892051 0.167119769419 + 1.164528911859 -1.218515127381 -0.468452769005 -0.091681345615 -0.460013931050 -0.473028481025 0.480667297031 -0.324411259630 -0.392227058286 + 0.530722413547 -0.526678086213 -0.480290161831 1.803552484337 -0.325605406180 0.144355698544 0.649752314300 -0.308280195070 -0.743838252325 + 0.234483312957 0.013465891784 0.546638137882 -3.327790605170 -0.033295571228 0.634911741065 0.547928673428 -0.127571404930 -1.130445599596 + 0.080543361521 0.073473765653 1.175883886226 2.036392104934 0.000112993288 0.654149241066 0.124811170239 1.436351247342 0.187517650202 + Os SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q16 + 1 + 2 0 2 6 2 1 1 + 3.254044521240 0.750520917538 -0.143104881416 0.300026803534 0.074118403382 + 2.913080457815 -0.151830818511 0.445036489078 -0.259358262119 -0.115497320573 + 1.267677044450 -0.946576386912 -0.597290651826 -0.221193553941 -0.384061295904 + 0.604328817602 -0.387028536076 -0.626533321263 -0.169922484236 -0.478648993701 + 0.281958732679 -0.114632827845 0.617675737134 -0.022924623249 -0.460410219053 + 0.105080883429 -0.043141212439 0.420830468078 0.003128164174 -0.078890551925 + Os DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q16 + 1 + 2 0 3 6 3 2 2 1 + 3.254044521240 0.750520917538 -0.143104881416 -0.535872399061 0.300026803534 -0.211083191310 0.074118403382 0.126612739775 0.055180357207 + 2.913080457815 -0.151830818511 0.445036489078 0.515111350010 -0.259358262119 0.229325744297 -0.115497320573 -0.133462796701 -0.050797865115 + 1.267677044450 -0.946576386912 -0.597290651826 -0.260044026215 -0.221193553941 -0.306853849304 -0.384061295904 -0.172895146469 -0.094606319061 + 0.604328817602 -0.387028536076 -0.626533321263 2.036801058213 -0.169922484236 -0.097257714947 -0.478648993701 -0.020295601352 -0.619031243983 + 0.281958732679 -0.114632827845 0.617675737134 -3.120177167686 -0.022924623249 0.777630448466 -0.460410219053 0.083516044344 -0.782263365247 + 0.105080883429 -0.043141212439 0.420830468078 2.188492676789 0.003128164174 0.996792107810 -0.078890551925 1.136520641989 -0.218817489272 + Ir SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q17 + 1 + 2 0 2 6 2 1 1 + 3.382588893137 0.763880845384 0.045942912052 0.377410965587 -0.045848645796 + 2.784159868873 -0.292040459450 0.216107018572 -0.332679361082 0.111589415592 + 1.210222778222 -0.909572071077 -0.662794901842 -0.436015494968 0.421660006206 + 0.538964109721 -0.253085528911 -0.351696141574 -0.249715223969 0.494349511683 + 0.221744781815 -0.072390522439 0.495615757119 -0.017455807910 0.370178722395 + 0.076331555777 -0.086622720340 0.741983451061 -0.000390256599 0.086694983507 + Ir DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q17 + 1 + 2 0 3 6 3 2 2 1 + 3.382588893137 0.763880845384 0.045942912052 -0.263001102796 0.377410965587 -0.244073478822 -0.045848645796 0.080634315236 0.043335746927 + 2.784159868873 -0.292040459450 0.216107018572 0.479096801070 -0.332679361082 0.284264073291 0.111589415592 -0.130581842872 -0.027515178683 + 1.210222778222 -0.909572071077 -0.662794901842 -0.247236645375 -0.436015494968 -0.355790158310 0.421660006206 -0.303249401129 -0.249112788977 + 0.538964109721 -0.253085528911 -0.351696141574 1.693017503277 -0.249715223969 0.296278894300 0.494349511683 -0.146179963439 -0.712777874450 + 0.221744781815 -0.072390522439 0.495615757119 -3.248000084180 -0.017455807910 0.597905270423 0.370178722395 -0.212963343957 -0.608411042049 + 0.076331555777 -0.086622720340 0.741983451061 1.914284024079 -0.000390256599 0.721347075950 0.086694983507 1.131902611500 0.702894953816 + Pt SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q18 + 1 + 2 0 2 6 2 1 1 + 3.630667770866 -0.159789658749 -0.051717884453 0.538256464339 -0.235370873672 + 3.114659085953 0.706153230701 0.409305333723 -0.272066595039 0.216340904150 + 1.999980602577 -0.571771619750 -0.410633416904 -0.529494089441 0.129334517594 + 0.885339761910 -0.081706194543 -0.389005427246 -0.778436218941 0.364806321954 + 0.330796251617 -0.114509254013 0.079357268588 -0.160188783181 0.322200075207 + 0.105770091411 -0.422769859471 0.768211167014 0.009487463222 0.101113260398 + Pt DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q18 + 1 + 2 0 3 6 3 2 2 1 + 3.630667770866 -0.159789658749 -0.051717884453 0.306450339788 0.538256464339 -0.065391881766 -0.235370873672 0.116835554957 0.047374313928 + 3.114659085953 0.706153230701 0.409305333723 -0.004265278861 -0.272066595039 0.095535920231 0.216340904150 -0.069230936472 -0.086321928611 + 1.999980602577 -0.571771619750 -0.410633416904 -0.325808096224 -0.529494089441 -0.142896827794 0.129334517594 -0.143174497742 -0.045559578405 + 0.885339761910 -0.081706194543 -0.389005427246 2.249070845144 -0.778436218941 -0.282985948216 0.364806321954 -0.296713078924 -0.269438595683 + 0.330796251617 -0.114509254013 0.079357268588 -3.545365684090 -0.160188783181 0.355152674354 0.322200075207 -0.091262909891 -0.826716259834 + 0.105770091411 -0.422769859471 0.768211167014 1.739828578507 0.009487463222 1.072406293162 0.101113260398 0.921513114926 0.798799196421 + Au SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q11 + 1 + 2 0 2 5 1 1 1 + 2.950008433436 0.043352289298 0.027243676590 -0.013694544955 + 1.563056721867 -0.007387713167 0.010297865642 0.393434199831 + 0.666663784909 -0.527617143816 -0.144512389068 0.499419616649 + 0.251083343925 0.504357857018 0.133984006194 0.342848487787 + 0.081714167287 0.754614789542 0.955899672482 0.072643323717 + Au DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q11 + 1 + 2 0 3 5 2 2 2 1 + 2.950008433436 0.043352289298 0.131563039441 0.027243676590 0.028420586704 -0.013694544955 -0.004579045037 -0.004506137994 + 1.563056721867 -0.007387713167 -0.273187489232 0.010297865642 -0.293415713813 0.393434199831 -0.180469448036 -0.160912550000 + 0.666663784909 -0.527617143816 1.676640340285 -0.144512389068 0.816838276799 0.499419616649 -0.108498062902 -0.120663084497 + 0.251083343925 0.504357857018 -2.954078498545 0.133984006194 -1.870657920681 0.342848487787 -0.166963798876 -0.308972159083 + 0.081714167287 0.754614789542 1.757201273778 0.955899672482 1.065823745725 0.072643323717 1.125505465534 1.113838074084 + Hg SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q12 + 1 + 2 0 2 6 1 1 1 + 3.031517109734 -0.000773276442 -0.035104188311 -0.051519431610 + 1.999949750084 -0.127545432316 0.112459425109 0.245745995267 + 0.968505371291 0.467348942725 -0.270433349168 0.344642941759 + 0.443215909283 0.041435964338 0.012885629971 0.274191104401 + 0.197907885691 -0.613050351354 0.562923305773 0.133463525187 + 0.078429867482 -0.478543703910 0.626349238816 0.016313913539 + Hg DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q12 + 1 + 2 0 3 6 2 2 2 1 + 3.031517109734 -0.000773276442 0.142001377433 -0.035104188311 -0.090931506623 -0.051519431610 0.008323885654 0.001599032324 + 1.999949750084 -0.127545432316 -0.280482979589 0.112459425109 0.162444892253 0.245745995267 -0.053441689967 0.043884187965 + 0.968505371291 0.467348942725 0.098625459472 -0.270433349168 0.029548333852 0.344642941759 -0.165877240510 -0.177253996973 + 0.443215909283 0.041435964338 -1.223462696050 0.012885629971 0.581078127814 0.274191104401 0.080323576326 -0.478266521156 + 0.197907885691 -0.613050351354 3.053372335969 0.562923305773 -2.004214126133 0.133463525187 -0.144762593434 -0.613795411840 + 0.078429867482 -0.478543703910 -2.173525587081 0.626349238816 1.450865733492 0.016313913539 1.183407428870 0.788269658688 + Tl SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q13 + 1 + 2 0 2 6 1 1 1 + 3.381004006201 -0.012728024519 -0.016321000960 -0.053146025142 + 1.995904628767 -0.125438487741 0.089582033082 0.335647454889 + 0.933877613856 0.654386378507 -0.217643347249 0.449765059425 + 0.399454518437 -0.261927153680 0.120847730197 0.311198161018 + 0.159704350468 -0.832380709805 0.521905432003 0.079298892465 + 0.061648317122 -0.296535560045 0.504618443314 0.000172821470 + Tl DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q13 + 1 + 2 0 3 6 2 2 2 1 + 3.381004006201 -0.012728024519 -0.061982942976 -0.016321000960 0.062772243005 -0.053146025142 0.033620187298 -0.003552704832 + 1.995904628767 -0.125438487741 0.232903517659 0.089582033082 -0.085940512856 0.335647454889 -0.143867909630 -0.007253615821 + 0.933877613856 0.654386378507 0.293870645694 -0.217643347249 -0.043458296138 0.449765059425 -0.230549240854 0.070845906277 + 0.399454518437 -0.261927153680 0.253865535097 0.120847730197 -0.072921411535 0.311198161018 0.089679875757 0.337468890558 + 0.159704350468 -0.832380709805 -1.750489239268 0.521905432003 1.361409731000 0.079298892465 0.093223456445 0.055414449864 + 0.061648317122 -0.296535560045 1.812842163522 0.504618443314 -1.338528342478 0.000172821470 0.951780949164 1.007671535938 + Pb SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q4 + 1 + 2 0 1 5 1 1 + 1.933597551820 -0.128503343993 0.015280202292 + 0.981424884833 0.574812594694 -0.134233849467 + 0.222223023415 -0.960047108285 0.502933226160 + 0.077758928722 -0.206626081460 0.243024445565 + 0.073967768161 -0.082212261416 0.131891977459 + Pb DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q4 + 1 + 2 0 2 5 2 2 1 + 1.933597551820 -0.128503343993 -0.101796893236 0.015280202292 0.005350345202 0.014172606616 + 0.981424884833 0.574812594694 0.383708445593 -0.134233849467 0.075210282932 -0.095091389111 + 0.222223023415 -0.960047108285 -0.673075164196 0.502933226160 -0.366898195819 0.404788663351 + 0.077758928722 -0.206626081460 -0.887877388873 0.243024445565 -1.159690406979 -0.640460683863 + 0.073967768161 -0.082212261416 1.917996276605 0.131891977459 1.651684865211 1.791004946570 + Bi SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q5 + 1 + 2 0 1 5 1 1 + 1.666928293168 -0.433606016760 -0.092396269342 + 1.317941720436 0.723433454454 0.184381669404 + 0.222221383065 -0.715303457579 -0.507231634301 + 0.074524438950 -0.308379410009 -0.421377693158 + 0.066725427306 0.159245921554 0.106621540317 + Bi DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q5 + 1 + 2 0 2 5 2 2 1 + 1.666928293168 -0.433606016760 -0.100663867810 -0.092396269342 -0.108190299502 -0.195956091275 + 1.317941720436 0.723433454454 0.259612627134 0.184381669404 0.210739707604 0.351618767590 + 0.222221383065 -0.715303457579 -0.216478402471 -0.507231634301 -0.568218339722 -1.047717462114 + 0.074524438950 -0.308379410009 -1.423645113253 -0.421377693158 -0.757828317889 -1.887710553530 + 0.066725427306 0.159245921554 2.308274018558 0.106621540317 1.788226073856 0.443921215549 + Po SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q6 + 1 + 2 0 1 5 1 1 + 1.757750856683 -0.224044332601 -0.053062093035 + 1.245376491921 0.572355818018 0.195354776138 + 0.251860493510 -0.863597717984 -0.839838825812 + 0.087993894799 -0.286569207007 -0.307002699297 + 0.087955184861 0.098257897619 -0.203109314513 + Po DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q6 + 1 + 2 0 2 5 2 2 1 + 1.757750856683 -0.224044332601 -0.135012487173 -0.053062093035 -0.021231103721 -0.096055785490 + 1.245376491921 0.572355818018 0.332752073309 0.195354776138 0.081960076684 0.254315976726 + 0.251860493510 -0.863597717984 -0.473417673148 -0.839838825812 -0.313733392241 -0.969368508973 + 0.087993894799 -0.286569207007 -1.276188389904 -0.307002699297 -0.822258321101 -1.683509583898 + 0.087955184861 0.098257897619 1.876429081086 -0.203109314513 1.692783549882 0.775369779849 + At SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q7 + 1 + 2 0 1 5 1 1 + 1.796641038213 -0.363075778132 -0.119884096868 + 1.378396886358 0.702535890722 0.281487205121 + 0.332155278101 -0.571059806679 -0.483364756316 + 0.150379247357 -0.338513795954 -0.533191703362 + 0.059913588731 -0.008356077866 -0.164154832840 + At DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q7 + 1 + 2 0 2 5 2 2 1 + 1.796641038213 -0.363075778132 -1.100370829977 -0.119884096868 -0.250626278132 -0.464474892145 + 1.378396886358 0.702535890722 -1.057174398279 0.281487205121 0.561700422906 0.955620810236 + 0.332155278101 -0.571059806679 0.447996190508 -0.483364756316 -1.242559252539 -1.899306426919 + 0.150379247357 -0.338513795954 -1.273313528437 -0.533191703362 0.441233871549 -1.551331120159 + 0.059913588731 -0.008356077866 0.740426167051 -0.164154832840 0.937688301921 -0.982495907237 + Rn SZV-MOLOPT-SR-GTH SZV-MOLOPT-SR-GTH-q8 + 1 + 2 0 1 5 1 1 + 2.000005663002 -0.442608171766 -0.136991011529 + 1.522474413760 0.852282073224 0.312749617939 + 0.319589540831 -0.907143180970 -0.775828387512 + 0.124013091191 -0.222277238353 -0.204098521582 + 0.113270499507 -0.001928995329 -0.288853228632 + Rn DZVP-MOLOPT-SR-GTH DZVP-MOLOPT-SR-GTH-q8 + 1 + 2 0 2 5 2 2 1 + 2.000005663002 -0.442608171766 -0.511614938408 -0.136991011529 -0.063901785194 -0.186151960320 + 1.522474413760 0.852282073224 -0.536614916033 0.312749617939 0.154086890384 0.369270825531 + 0.319589540831 -0.907143180970 -0.390801321298 -0.775828387512 -0.485164655715 -1.000515166114 + 0.124013091191 -0.222277238353 -1.541429072147 -0.204098521582 -1.116124046015 -1.713700191874 + 0.113270499507 -0.001928995329 1.908801729636 -0.288853228632 1.721625954410 0.927072017361 +# +U DZVP-MOLOPT-GTH-q14 + 1 + 6 0 4 7 3 3 2 2 1 6s 7s 8s 6p 7p 8p 6d 7d 5f 6f 5g + 2.970404051267 -8.613286991729 -4.847218644580 -0.094448304725 2.089613520508 -1.388690863894 -0.339032038879 -0.517917661294 -0.108712988266 0.630053678940 -0.328083139683 0.193812038517 + 2.837409896206 9.359917338956 5.295013384216 0.080503840695 -2.330831226482 1.591366466533 -0.297639904371 0.575541916820 0.134339314945 0.077256524471 -0.136357555344 -0.096937116722 + 1.029287870466 -0.223393808655 -0.207730929575 0.170499084947 0.118073808224 -0.298526476737 -0.144235936067 -0.007051323571 -0.072924564853 0.798224117501 -0.044975575325 0.942045397086 + 0.447156512122 -1.138927348908 -1.085942892963 -0.128005768148 0.875430068610 -0.558080313712 0.020421937017 -0.328938941888 -0.022899936943 0.416776715909 0.084347995405 1.112468197028 + 0.224386023364 -0.475585548696 -0.147870903958 0.028006926300 0.257221846022 -0.186869197027 -0.068935950988 -0.436497768592 0.047774203203 0.269342903301 0.107901532632 0.049712666496 + 0.082082026090 -0.038412518166 1.206363318489 0.959404540206 -0.004940369038 1.337846156620 1.078056470699 -0.170128075474 1.023142281896 0.095618485831 0.591613653295 0.071150976147 + 0.048989649967 -0.161438730593 0.204614845616 0.064250249847 -0.040926507048 0.070410902066 0.151425801177 0.019870929957 0.031382006308 -0.029027116072 0.159595534158 -0.000586301554 diff --git a/tests/test_libint2/CdSe13-CdSe13-1_0.MOLog b/tests/test_libint2/CdSe13-CdSe13-1_0.MOLog new file mode 100755 index 000000000..ac6ef332b --- /dev/null +++ b/tests/test_libint2/CdSe13-CdSe13-1_0.MOLog @@ -0,0 +1,44109 @@ + + + MO EIGENVALUES, MO OCCUPATION NUMBERS, AND SPHERICAL MO EIGENVECTORS + + 1 2 + -0.6336711721536047 -0.6221042708661322 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0010293892207735 0.0066656361353032 + 2 1 Cd 3s -0.0031335068612786 -0.0013942046026444 + 3 1 Cd 3py -0.0046129227258203 0.0035319113371746 + 4 1 Cd 3pz 0.0020083425275489 -0.0079363919069472 + 5 1 Cd 3px 0.0063130187082471 -0.0001678099410764 + 6 1 Cd 4py -0.0019835570992612 0.0010924619088364 + 7 1 Cd 4pz -0.0002252989634307 -0.0033547836291652 + 8 1 Cd 4px 0.0025824096220139 0.0006225068365879 + 9 1 Cd 4d-2 0.0007132747652996 0.0004096188801719 + 10 1 Cd 4d-1 -0.0022457212675397 -0.0015072487516635 + 11 1 Cd 4d0 0.0003401302848081 0.0021322862089436 + 12 1 Cd 4d+1 0.0000050195683213 0.0001850511773730 + 13 1 Cd 4d+2 0.0027272216350046 0.0030270779371838 + 14 1 Cd 5d-2 0.0031071185909548 -0.0037449757955481 + 15 1 Cd 5d-1 0.0028017963500517 0.0047842816624980 + 16 1 Cd 5d0 0.0021115933896603 -0.0041738749754301 + 17 1 Cd 5d+1 0.0014781558165729 0.0058840229356041 + 18 1 Cd 5d+2 -0.0025911636664932 -0.0007209548807557 + 19 1 Cd 5f-3 -0.0004177586875595 0.0006821896272290 + 20 1 Cd 5f-2 -0.0005184612714302 -0.0024120125764567 + 21 1 Cd 5f-1 0.0010482730633982 0.0007396013505987 + 22 1 Cd 5f0 0.0001409818625735 0.0014241643617263 + 23 1 Cd 5f+1 -0.0001659542684778 0.0014305662849326 + 24 1 Cd 5f+2 -0.0011713000282091 -0.0002876130662807 + 25 1 Cd 5f+3 -0.0000919629302541 -0.0015783817673304 + + 26 2 Cd 2s 0.0159455411093923 0.0102537645261184 + 27 2 Cd 3s -0.0004289130059578 -0.0031703812055863 + 28 2 Cd 3py 0.0052387887453590 -0.0069324473421575 + 29 2 Cd 3pz -0.0037760294578101 -0.0018307701209100 + 30 2 Cd 3px 0.0011561220418809 0.0062424349653372 + 31 2 Cd 4py 0.0011891487339142 0.0005750275862986 + 32 2 Cd 4pz -0.0010688859094674 -0.0004411000780982 + 33 2 Cd 4px 0.0031629810551925 0.0021614481634849 + 34 2 Cd 4d-2 0.0012632844179710 -0.0006234839789311 + 35 2 Cd 4d-1 -0.0024402335754840 -0.0005917778663408 + 36 2 Cd 4d0 -0.0022873479774167 0.0030779657205130 + 37 2 Cd 4d+1 0.0039920408405211 -0.0063506255160508 + 38 2 Cd 4d+2 -0.0020063368875120 0.0033759003457270 + 39 2 Cd 5d-2 -0.0036274341700105 -0.0019914628204340 + 40 2 Cd 5d-1 0.0028243573610828 -0.0006402709162931 + 41 2 Cd 5d0 0.0058500142118362 -0.0004478360584974 + 42 2 Cd 5d+1 0.0008104369822513 0.0030379270633344 + 43 2 Cd 5d+2 -0.0046190286719475 -0.0060382146329544 + 44 2 Cd 5f-3 0.0006837285437478 -0.0005492557967019 + 45 2 Cd 5f-2 -0.0018492841826810 0.0003860782255406 + 46 2 Cd 5f-1 0.0000529892363983 -0.0009390830327547 + 47 2 Cd 5f0 0.0005876084815809 0.0003157151792838 + 48 2 Cd 5f+1 -0.0036719189181758 -0.0007850174260130 + 49 2 Cd 5f+2 -0.0008404168381417 -0.0006120432952770 + 50 2 Cd 5f+3 0.0012840189007109 0.0021375279492217 + + 51 3 Cd 2s 0.0111820018002994 0.0522115181266665 + 52 3 Cd 3s -0.0028695876704066 -0.0030494594209061 + 53 3 Cd 3py 0.0030351232137958 0.0100341884796964 + 54 3 Cd 3pz -0.0021787072348318 -0.0091266546822090 + 55 3 Cd 3px -0.0048714140183472 -0.0159216314946011 + 56 3 Cd 4py -0.0007449189387190 0.0027428490635455 + 57 3 Cd 4pz -0.0001752378907358 -0.0025858709055369 + 58 3 Cd 4px 0.0009723539008695 0.0034344142709355 + 59 3 Cd 4d-2 0.0098800957317762 -0.0028387403456520 + 60 3 Cd 4d-1 0.0030383709270000 0.0087580126116941 + 61 3 Cd 4d0 0.0089107506618636 0.0310006933645125 + 62 3 Cd 4d+1 -0.0043884627846353 -0.0086816761753555 + 63 3 Cd 4d+2 -0.0007264329953979 -0.0033016142902452 + 64 3 Cd 5d-2 -0.0020973410758605 0.0038409560735873 + 65 3 Cd 5d-1 0.0000371814137654 -0.0087407216429522 + 66 3 Cd 5d0 -0.0010925349599379 -0.0087776642018954 + 67 3 Cd 5d+1 0.0014776695560877 0.0018805647549330 + 68 3 Cd 5d+2 -0.0005947416986847 -0.0013088518974651 + 69 3 Cd 5f-3 0.0006562446775628 0.0002157186864982 + 70 3 Cd 5f-2 -0.0003713975671848 0.0012967818957531 + 71 3 Cd 5f-1 -0.0004283752894332 -0.0003176159375230 + 72 3 Cd 5f0 0.0000155163559956 0.0010715625054112 + 73 3 Cd 5f+1 -0.0001770232966730 -0.0010507665786825 + 74 3 Cd 5f+2 -0.0004444462917811 -0.0006419136708371 + 75 3 Cd 5f+3 0.0012317716778136 0.0003558961904325 + + 76 4 Se 2s -0.0351470022850213 -0.0301192403327042 + 77 4 Se 3s -0.0007688691097026 -0.0011632416986618 + 78 4 Se 3py 0.0012592061398861 0.0028577068393688 + 79 4 Se 3pz 0.0013024722554580 -0.0004958147348389 + 80 4 Se 3px 0.0038935960905290 0.0020877760419923 + 81 4 Se 4py 0.0031727795111491 0.0008712940524300 + 82 4 Se 4pz -0.0006924233688873 0.0005202920003840 + 83 4 Se 4px 0.0008552638803616 0.0014226077876723 + 84 4 Se 4d-2 0.0000865301546220 -0.0001317128846933 + 85 4 Se 4d-1 -0.0002475620467658 -0.0001108567955303 + 86 4 Se 4d0 -0.0006287519346313 -0.0004307851684309 + 87 4 Se 4d+1 -0.0002647241997735 0.0001149741744879 + 88 4 Se 4d+2 0.0002759812432074 0.0002099765498180 + + 89 5 Se 2s -0.0068341464683858 -0.0252938659366266 + 90 5 Se 3s -0.0006367304415157 -0.0004735187639504 + 91 5 Se 3py -0.0007266500912689 -0.0015494626424902 + 92 5 Se 3pz -0.0009211166480437 -0.0027452799789113 + 93 5 Se 3px 0.0011031799836488 0.0041317313105436 + 94 5 Se 4py -0.0010748498860159 -0.0035766508939276 + 95 5 Se 4pz 0.0002567842376563 -0.0008521122637796 + 96 5 Se 4px -0.0002035391977593 -0.0022332620144049 + 97 5 Se 4d-2 0.0000785065469098 -0.0002652626473302 + 98 5 Se 4d-1 -0.0001893231896576 -0.0002180917430667 + 99 5 Se 4d0 0.0001669565552900 0.0005516511564599 + 100 5 Se 4d+1 0.0003120837425517 0.0003470752384487 + 101 5 Se 4d+2 0.0001226621773414 -0.0001115341109841 + + 102 6 Se 2s -0.0256444059479798 -0.0947861117609329 + 103 6 Se 3s -0.0011524447494436 -0.0021862256620668 + 104 6 Se 3py -0.0007006378983673 -0.0004885427239412 + 105 6 Se 3pz 0.0004989071244260 0.0013287707648149 + 106 6 Se 3px 0.0031049543370803 0.0086479137087463 + 107 6 Se 4py -0.0000322395766353 -0.0029426221244133 + 108 6 Se 4pz -0.0000666000184717 0.0011415173089311 + 109 6 Se 4px 0.0003100353781470 0.0016327006891267 + 110 6 Se 4d-2 0.0003686556822639 -0.0002402338699461 + 111 6 Se 4d-1 -0.0002338362366258 -0.0004800449114698 + 112 6 Se 4d0 0.0002454301290986 0.0003683571745299 + 113 6 Se 4d+1 0.0001516692327949 0.0001569587421257 + 114 6 Se 4d+2 -0.0004580935168294 -0.0006925386240424 + + 115 7 Se 2s -0.0812546541131632 -0.0024584849244038 + 116 7 Se 3s -0.0016311863313618 0.0001948781709666 + 117 7 Se 3py 0.0018490507550249 0.0034829061868269 + 118 7 Se 3pz 0.0076844940437818 0.0000451299959847 + 119 7 Se 3px 0.0032181959731108 -0.0011569505722258 + 120 7 Se 4py -0.0015687892889491 -0.0014448964501386 + 121 7 Se 4pz 0.0011120163207427 0.0000114374873247 + 122 7 Se 4px -0.0030132159253750 0.0025939560471445 + 123 7 Se 4d-2 -0.0001069452028781 0.0000378575262528 + 124 7 Se 4d-1 -0.0003989151645089 -0.0014009594040514 + 125 7 Se 4d0 -0.0014104787303122 0.0001366656930102 + 126 7 Se 4d+1 -0.0008581849851090 0.0003129287149671 + 127 7 Se 4d+2 0.0003742100164871 0.0005467602199327 + + 128 8 Cd 2s 0.0863417953398715 0.0175856305607859 + 129 8 Cd 3s -0.0015488877264851 -0.0006681208182671 + 130 8 Cd 3py -0.0005904268323122 -0.0126075656917216 + 131 8 Cd 3pz -0.0233010235097896 -0.0103630031557786 + 132 8 Cd 3px -0.0068003161200547 0.0228682660625970 + 133 8 Cd 4py -0.0066806030856008 0.0049944770075158 + 134 8 Cd 4pz 0.0037762673835926 -0.0008052385269307 + 135 8 Cd 4px 0.0056583407558246 0.0014369473719298 + 136 8 Cd 4d-2 0.0628975882386101 -0.0124738349020045 + 137 8 Cd 4d-1 0.0338170044445216 -0.0403964187744867 + 138 8 Cd 4d0 -0.0013630444649201 -0.0344707504888341 + 139 8 Cd 4d+1 -0.0494534084158932 0.0422441212187842 + 140 8 Cd 4d+2 -0.0072616762668605 0.0106440005121038 + 141 8 Cd 5d-2 -0.0192584022804870 -0.0014745508219047 + 142 8 Cd 5d-1 -0.0061434423439173 0.0055707637138981 + 143 8 Cd 5d0 -0.0001357964804015 0.0078380187034241 + 144 8 Cd 5d+1 0.0131300012466183 -0.0127089749585817 + 145 8 Cd 5d+2 0.0066071543291237 0.0046131377945729 + 146 8 Cd 5f-3 -0.0032020944908299 -0.0027735621936418 + 147 8 Cd 5f-2 -0.0021460066397304 0.0035770791040137 + 148 8 Cd 5f-1 -0.0006414027934664 -0.0013526740071539 + 149 8 Cd 5f0 -0.0015437029981184 -0.0011628213004584 + 150 8 Cd 5f+1 -0.0010542425272705 0.0016223073449047 + 151 8 Cd 5f+2 0.0006866991372069 -0.0031390203022502 + 152 8 Cd 5f+3 -0.0005745289160027 -0.0043686745361913 + + 153 9 Cd 2s -0.0005246089318631 0.0190469506681500 + 154 9 Cd 3s -0.0047122786302320 0.0002994416010470 + 155 9 Cd 3py -0.0089209891636336 0.0014019127614011 + 156 9 Cd 3pz 0.0062654757890720 -0.0047146285410051 + 157 9 Cd 3px 0.0015231877889057 -0.0070235238327135 + 158 9 Cd 4py -0.0033749410540224 -0.0000531425006800 + 159 9 Cd 4pz 0.0029037057128016 0.0013215729384182 + 160 9 Cd 4px 0.0020332767074332 -0.0012178234206530 + 161 9 Cd 4d-2 0.0008973668926951 0.0000089861292478 + 162 9 Cd 4d-1 0.0006745490953579 0.0009913070670651 + 163 9 Cd 4d0 0.0055633181892019 0.0041975891950083 + 164 9 Cd 4d+1 0.0022725073464621 0.0097037168747601 + 165 9 Cd 4d+2 -0.0115551512032671 -0.0198431391290698 + 166 9 Cd 5d-2 0.0044009368249353 -0.0022916939735460 + 167 9 Cd 5d-1 0.0047584073855941 0.0005257053034306 + 168 9 Cd 5d0 -0.0014706917494356 -0.0019527726775769 + 169 9 Cd 5d+1 -0.0053945502477218 -0.0009574169604493 + 170 9 Cd 5d+2 0.0043775284912332 0.0037966067870357 + 171 9 Cd 5f-3 -0.0006283072818580 0.0006501579798660 + 172 9 Cd 5f-2 -0.0014463737052844 0.0003597832720077 + 173 9 Cd 5f-1 -0.0006838711276780 -0.0005595477343832 + 174 9 Cd 5f0 -0.0007327582056249 0.0006561499895658 + 175 9 Cd 5f+1 0.0011740759537460 0.0007495650968519 + 176 9 Cd 5f+2 -0.0004360488156207 -0.0002858118301746 + 177 9 Cd 5f+3 -0.0012468676320472 -0.0005537974368350 + + 178 10 Se 2s -0.0717847981005291 -0.0858561239851331 + 179 10 Se 3s -0.0019156983345767 -0.0016888925135127 + 180 10 Se 3py -0.0038422056595152 -0.0001730714975401 + 181 10 Se 3pz 0.0069930688842394 0.0076649896716578 + 182 10 Se 3px -0.0034492776324019 -0.0038330463487458 + 183 10 Se 4py 0.0017572817132913 -0.0028530703679141 + 184 10 Se 4pz -0.0009787932376871 -0.0017794445783895 + 185 10 Se 4px -0.0060491239818005 -0.0044827066042355 + 186 10 Se 4d-2 0.0002823006730010 -0.0001900897728073 + 187 10 Se 4d-1 0.0012009973296834 0.0000418028226308 + 188 10 Se 4d0 -0.0004341616013009 -0.0008608123350918 + 189 10 Se 4d+1 -0.0004997015638242 -0.0004766460562837 + 190 10 Se 4d+2 -0.0003888939623447 -0.0010606795689090 + + 191 11 Se 2s -0.0485610591879609 -0.3706761795180471 + 192 11 Se 3s -0.0014261233209836 -0.0104306035282757 + 193 11 Se 3py -0.0046909270628436 -0.0240546051671671 + 194 11 Se 3pz 0.0028794076651618 0.0209169373659510 + 195 11 Se 3px -0.0001891712067515 0.0010207657051835 + 196 11 Se 4py -0.0014370575723486 -0.0075724210911229 + 197 11 Se 4pz 0.0001424991826642 0.0081607609704831 + 198 11 Se 4px 0.0006528406365402 -0.0007286812655857 + 199 11 Se 4d-2 0.0001228131754175 0.0004653677874743 + 200 11 Se 4d-1 0.0002351457391365 -0.0000661172173395 + 201 11 Se 4d0 -0.0003117662720136 -0.0034651405301909 + 202 11 Se 4d+1 0.0002224383786069 0.0019213061904815 + 203 11 Se 4d+2 0.0002186899800170 0.0011697491448420 + + 204 12 Cd 2s 0.0279016240631545 0.0689935316848919 + 205 12 Cd 3s -0.0011746525761535 -0.0025541612421109 + 206 12 Cd 3py 0.0049049726408056 0.0086829530544756 + 207 12 Cd 3pz -0.0072969472791282 -0.0210880528813546 + 208 12 Cd 3px 0.0006944089138031 0.0084697871749767 + 209 12 Cd 4py -0.0028138019667824 0.0017412777612471 + 210 12 Cd 4pz -0.0006447785869038 -0.0009152202260175 + 211 12 Cd 4px -0.0010589519977341 -0.0034606842041468 + 212 12 Cd 4d-2 -0.0059342568990914 0.0126383762137141 + 213 12 Cd 4d-1 0.0094770217566661 0.0115599346741210 + 214 12 Cd 4d0 0.0043147615205871 0.0237684256929725 + 215 12 Cd 4d+1 0.0018457518399401 0.0121293896039072 + 216 12 Cd 4d+2 -0.0014431166425208 -0.0016859937943915 + 217 12 Cd 5d-2 -0.0029367190301894 -0.0049466065969910 + 218 12 Cd 5d-1 -0.0054908620585610 -0.0020764907812667 + 219 12 Cd 5d0 0.0006001327521451 -0.0044271674021722 + 220 12 Cd 5d+1 -0.0018505408050603 -0.0029961493452603 + 221 12 Cd 5d+2 0.0058472236949436 -0.0008815116262944 + 222 12 Cd 5f-3 0.0030776130560457 -0.0001715047133613 + 223 12 Cd 5f-2 -0.0021475654117391 -0.0002484157694358 + 224 12 Cd 5f-1 0.0022095073941280 -0.0024897620786310 + 225 12 Cd 5f0 0.0012256595867902 0.0004156407685156 + 226 12 Cd 5f+1 0.0009325929984408 0.0019990669239923 + 227 12 Cd 5f+2 0.0017744932694747 0.0004725086550615 + 228 12 Cd 5f+3 0.0002546858299100 0.0008532279285976 + + 229 13 Cd 2s 0.0238087537263186 -0.0143951281549218 + 230 13 Cd 3s -0.0036325701369938 -0.0008620311492685 + 231 13 Cd 3py -0.0002443757396428 -0.0092163216437658 + 232 13 Cd 3pz 0.0057167481221358 0.0001497822120694 + 233 13 Cd 3px 0.0070211383816594 0.0061068610274296 + 234 13 Cd 4py -0.0023748261214635 0.0016666803020688 + 235 13 Cd 4pz -0.0005143311852189 0.0023943176980400 + 236 13 Cd 4px 0.0075804115235338 -0.0029868573497562 + 237 13 Cd 4d-2 0.0232494351602479 -0.0339306573074761 + 238 13 Cd 4d-1 -0.0130049595433088 0.0206030702094452 + 239 13 Cd 4d0 0.0090622763977416 -0.0126410087681452 + 240 13 Cd 4d+1 0.0138883935975356 -0.0136251447325895 + 241 13 Cd 4d+2 0.0016488482193361 0.0004420268033456 + 242 13 Cd 5d-2 -0.0086805039229489 0.0068796631304417 + 243 13 Cd 5d-1 0.0035809337688938 -0.0075073772432926 + 244 13 Cd 5d0 0.0018992170597615 0.0017418727126790 + 245 13 Cd 5d+1 -0.0081803421198238 0.0051254787695360 + 246 13 Cd 5d+2 -0.0125052881260588 -0.0009924165927756 + 247 13 Cd 5f-3 0.0020893993984676 0.0003039275444644 + 248 13 Cd 5f-2 0.0011677859127305 0.0001215152624278 + 249 13 Cd 5f-1 0.0001672235671273 0.0001826292676917 + 250 13 Cd 5f0 0.0001793539832897 -0.0012732888056416 + 251 13 Cd 5f+1 -0.0023405733064884 0.0003126773637995 + 252 13 Cd 5f+2 -0.0014756857375218 -0.0010686409359512 + 253 13 Cd 5f+3 0.0026376976168958 0.0009638835337433 + + 254 14 Cd 2s 0.0303616788193586 -0.0185590621617651 + 255 14 Cd 3s -0.0020543728943832 0.0036903148897316 + 256 14 Cd 3py -0.0050225128081278 -0.0004032251650547 + 257 14 Cd 3pz -0.0106245620240819 0.0107161897297588 + 258 14 Cd 3px -0.0072903133472618 0.0014156984703810 + 259 14 Cd 4py 0.0012042140074319 -0.0000889706362593 + 260 14 Cd 4pz 0.0020212531761781 -0.0027764123538237 + 261 14 Cd 4px -0.0001755427841568 -0.0010205169698406 + 262 14 Cd 4d-2 -0.0079835737595837 0.0028289219095710 + 263 14 Cd 4d-1 0.0052395189422312 -0.0009447163384763 + 264 14 Cd 4d0 -0.0375087166687296 0.0460649021758197 + 265 14 Cd 4d+1 -0.0183010050471932 0.0171712217752183 + 266 14 Cd 4d+2 -0.0005607135510832 0.0036594937731462 + 267 14 Cd 5d-2 0.0029285178890014 0.0005199836556374 + 268 14 Cd 5d-1 -0.0018627773662367 -0.0016005884039398 + 269 14 Cd 5d0 0.0062669860347500 -0.0014109190037759 + 270 14 Cd 5d+1 0.0035457697948087 -0.0015959477551098 + 271 14 Cd 5d+2 -0.0007662136728835 -0.0013414070701153 + 272 14 Cd 5f-3 -0.0002123462505289 0.0004165557142695 + 273 14 Cd 5f-2 -0.0013868708485475 0.0008642098245256 + 274 14 Cd 5f-1 -0.0014923267948668 0.0001900080317578 + 275 14 Cd 5f0 -0.0005293098336069 -0.0004618654534674 + 276 14 Cd 5f+1 -0.0005060596351803 0.0001888395201029 + 277 14 Cd 5f+2 -0.0004489164544920 -0.0004616333646153 + 278 14 Cd 5f+3 0.0005136804265765 0.0003387866532094 + + 279 15 Se 2s -0.2518023530954380 0.2796756449368891 + 280 15 Se 3s -0.0077403338816012 0.0075939729853632 + 281 15 Se 3py 0.0210661363649494 -0.0159521350530036 + 282 15 Se 3pz -0.0092162895043890 0.0103381408555815 + 283 15 Se 3px 0.0001731897026951 0.0042440510709646 + 284 15 Se 4py 0.0046875085295994 -0.0077603826104028 + 285 15 Se 4pz -0.0072589655898645 0.0025631042460958 + 286 15 Se 4px -0.0032474850986288 0.0006966330834984 + 287 15 Se 4d-2 0.0002190263923015 -0.0011497453235150 + 288 15 Se 4d-1 -0.0024775893552461 0.0025848219198099 + 289 15 Se 4d0 -0.0021389539349173 0.0030907935013847 + 290 15 Se 4d+1 -0.0006244678482516 0.0010976343894074 + 291 15 Se 4d+2 0.0025886940318122 -0.0017099345340387 + + 292 16 Se 2s -0.0262593825138046 -0.0376686548813373 + 293 16 Se 3s -0.0015254829094170 -0.0012323786699070 + 294 16 Se 3py 0.0011529033599314 0.0030813422030334 + 295 16 Se 3pz -0.0024619502107106 -0.0027831335515163 + 296 16 Se 3px 0.0024361330995191 0.0032810277715887 + 297 16 Se 4py -0.0000916527735649 0.0006401529186991 + 298 16 Se 4pz -0.0017697636846553 0.0024965021469415 + 299 16 Se 4px 0.0003111234655248 0.0049398237699255 + 300 16 Se 4d-2 -0.0000414789686247 -0.0012531225163322 + 301 16 Se 4d-1 -0.0002182236800812 0.0000009094662664 + 302 16 Se 4d0 0.0000469680323744 0.0004154505299539 + 303 16 Se 4d+1 0.0001629177763613 0.0000100731846741 + 304 16 Se 4d+2 0.0000150811634008 0.0000908876864948 + + 305 17 Cd 2s 0.0007674155336301 0.0166696285971693 + 306 17 Cd 3s -0.0043084559794404 -0.0077660564285036 + 307 17 Cd 3py 0.0014419990600890 -0.0072107067736540 + 308 17 Cd 3pz -0.0037552532790045 -0.0092904422902141 + 309 17 Cd 3px 0.0000985039925655 0.0037076138651377 + 310 17 Cd 4py 0.0003883991137878 0.0014688877332328 + 311 17 Cd 4pz -0.0014066258048466 -0.0046241027969510 + 312 17 Cd 4px 0.0008834382463629 0.0051741308560686 + 313 17 Cd 4d-2 -0.0029410740236983 -0.0315227808195167 + 314 17 Cd 4d-1 -0.0007536268353594 0.0024141069883336 + 315 17 Cd 4d0 0.0050940806087394 0.0217128099897465 + 316 17 Cd 4d+1 0.0014614663596473 0.0039793860345396 + 317 17 Cd 4d+2 -0.0005080215977146 0.0145640258063449 + 318 17 Cd 5d-2 -0.0023236804050357 0.0059503036937347 + 319 17 Cd 5d-1 0.0006178072339704 -0.0021081048905948 + 320 17 Cd 5d0 0.0001539454124871 -0.0052755929100814 + 321 17 Cd 5d+1 0.0019294825671356 0.0040255908957309 + 322 17 Cd 5d+2 -0.0008812492222636 -0.0083088098985474 + 323 17 Cd 5f-3 0.0006961148210142 0.0016642886913027 + 324 17 Cd 5f-2 -0.0004934443502449 -0.0001332623867804 + 325 17 Cd 5f-1 0.0002969814924323 -0.0010888298958078 + 326 17 Cd 5f0 0.0011219848825950 0.0014749066480670 + 327 17 Cd 5f+1 0.0003982058846484 0.0011940742246491 + 328 17 Cd 5f+2 -0.0002501739238354 -0.0022338521085890 + 329 17 Cd 5f+3 0.0002978080632822 0.0001133579057168 + + 330 18 Cd 2s 0.0083035498830590 0.0458865994729685 + 331 18 Cd 3s -0.0004113510347987 -0.0071360622076336 + 332 18 Cd 3py 0.0024698559075334 0.0031078729044123 + 333 18 Cd 3pz 0.0012051555536427 0.0093743644756978 + 334 18 Cd 3px -0.0034788877472192 -0.0044568747293968 + 335 18 Cd 4py -0.0004002883434545 -0.0040254953341578 + 336 18 Cd 4pz -0.0005015782812363 -0.0022184004511699 + 337 18 Cd 4px -0.0008066442830163 0.0004851962439010 + 338 18 Cd 4d-2 0.0021902953284156 0.0128817541385386 + 339 18 Cd 4d-1 0.0027181349192497 0.0274146212516343 + 340 18 Cd 4d0 -0.0096078370320222 -0.0837519494334847 + 341 18 Cd 4d+1 -0.0017609167418538 -0.0167873526433407 + 342 18 Cd 4d+2 0.0016954310517516 0.0081166129004101 + 343 18 Cd 5d-2 -0.0017500309943323 -0.0018486665784671 + 344 18 Cd 5d-1 -0.0010488894040910 -0.0051306488038822 + 345 18 Cd 5d0 0.0007565624669855 0.0094763711753093 + 346 18 Cd 5d+1 -0.0013771920745113 -0.0001423761024979 + 347 18 Cd 5d+2 0.0002589727720805 0.0010775974922032 + 348 18 Cd 5f-3 0.0001733460737307 -0.0005727851305243 + 349 18 Cd 5f-2 -0.0005955944947816 -0.0008713382224166 + 350 18 Cd 5f-1 0.0001593062956678 0.0007651327558585 + 351 18 Cd 5f0 0.0006531106904237 0.0017794831562728 + 352 18 Cd 5f+1 -0.0003360035664792 -0.0006156915330072 + 353 18 Cd 5f+2 0.0007338126303939 0.0011507030862266 + 354 18 Cd 5f+3 0.0001099313773659 0.0004958408619312 + + 355 19 Se 2s -0.0392084199457000 -0.2848854966466314 + 356 19 Se 3s -0.0015401909558207 -0.0079220303179012 + 357 19 Se 3py -0.0023912295979833 -0.0083466857394104 + 358 19 Se 3pz -0.0028980729851543 -0.0189191663173614 + 359 19 Se 3px -0.0012802167167045 -0.0062329606878345 + 360 19 Se 4py -0.0009042950073622 -0.0031791250062120 + 361 19 Se 4pz -0.0004795958308822 -0.0036721072998512 + 362 19 Se 4px -0.0002790341862666 -0.0058397254958095 + 363 19 Se 4d-2 -0.0000167003709885 0.0001789176489321 + 364 19 Se 4d-1 0.0000093607298471 0.0018994918572749 + 365 19 Se 4d0 -0.0001166442106470 -0.0004221411863721 + 366 19 Se 4d+1 -0.0000251007099539 -0.0000699410308391 + 367 19 Se 4d+2 0.0005439026710122 0.0031036401551325 + + 368 20 Se 2s -0.2466442310531182 -0.4690764597291927 + 369 20 Se 3s -0.0078841507740997 -0.0158683079683189 + 370 20 Se 3py -0.0034205222670235 0.0114815552381355 + 371 20 Se 3pz -0.0066971764175627 -0.0108214181980893 + 372 20 Se 3px 0.0086189342163104 0.0099902369487486 + 373 20 Se 4py -0.0014018142314755 -0.0000982894472467 + 374 20 Se 4pz -0.0051298974846107 -0.0040514491451842 + 375 20 Se 4px 0.0053127635119710 -0.0035346099871633 + 376 20 Se 4d-2 0.0003725604400165 0.0002610121997396 + 377 20 Se 4d-1 0.0011832488133838 0.0010902513097652 + 378 20 Se 4d0 -0.0002666494847318 -0.0015086351212310 + 379 20 Se 4d+1 -0.0003563040120770 -0.0007383721032851 + 380 20 Se 4d+2 0.0002972096005170 -0.0002717105856254 + + 381 21 Se 2s -0.7433919640607043 0.2429612692322470 + 382 21 Se 3s -0.0224893818810116 0.0064937935124848 + 383 21 Se 3py 0.0478758022283720 -0.0097348047671878 + 384 21 Se 3pz 0.0127666713863304 -0.0037179373236419 + 385 21 Se 3px -0.0030656452161231 0.0018148055146861 + 386 21 Se 4py 0.0205205426109273 -0.0030713387915479 + 387 21 Se 4pz 0.0058796786687168 -0.0007863961313947 + 388 21 Se 4px -0.0049109706409612 0.0048289090312718 + 389 21 Se 4d-2 -0.0065886685267232 0.0012113441949116 + 390 21 Se 4d-1 -0.0001515076512198 -0.0003900483894347 + 391 21 Se 4d0 0.0017365305968435 -0.0002250616953084 + 392 21 Se 4d+1 -0.0040895540326361 0.0010884413624162 + 393 21 Se 4d+2 -0.0022659891394176 0.0010614121392463 + + 394 22 Cd 2s 0.0829445116204837 -0.0081551992485423 + 395 22 Cd 3s -0.0011241305848524 0.0005118156354107 + 396 22 Cd 3py -0.0036886438199448 -0.0178841339896264 + 397 22 Cd 3pz 0.0241971393612761 -0.0100819810532946 + 398 22 Cd 3px 0.0019607075491692 0.0086937337520015 + 399 22 Cd 4py -0.0025201473729011 0.0028562272715237 + 400 22 Cd 4pz -0.0058900150115953 0.0008548577836478 + 401 22 Cd 4px 0.0013259871557551 0.0022820764440224 + 402 22 Cd 4d-2 -0.0040303000880209 0.0392021573048111 + 403 22 Cd 4d-1 -0.0177360847341860 0.0293638287354691 + 404 22 Cd 4d0 -0.0480551609606211 0.0116066843676182 + 405 22 Cd 4d+1 0.0411841636262022 -0.0242099753101034 + 406 22 Cd 4d+2 -0.0007162893810452 0.0065351805169983 + 407 22 Cd 5d-2 -0.0006829085425469 -0.0129499700710285 + 408 22 Cd 5d-1 0.0026524040254763 -0.0080125736419792 + 409 22 Cd 5d0 0.0108595929595136 -0.0008863321251837 + 410 22 Cd 5d+1 -0.0102997629639657 0.0011100842035648 + 411 22 Cd 5d+2 0.0015439623606835 0.0062273698841987 + 412 22 Cd 5f-3 -0.0007528256853741 -0.0033884248341552 + 413 22 Cd 5f-2 0.0022123527084328 -0.0016014324999493 + 414 22 Cd 5f-1 0.0003525790927830 -0.0026450383317739 + 415 22 Cd 5f0 0.0008283606158417 -0.0021482214274857 + 416 22 Cd 5f+1 0.0023827407967108 -0.0020068421198341 + 417 22 Cd 5f+2 -0.0028022150929759 -0.0003053050047135 + 418 22 Cd 5f+3 -0.0004842108675938 -0.0034549382161979 + + 419 23 Se 2s -0.0543885331523438 -0.0532628389727861 + 420 23 Se 3s -0.0021927071799384 -0.0001443892966555 + 421 23 Se 3py 0.0016034450756945 0.0063831206553942 + 422 23 Se 3pz -0.0072156539332549 -0.0040856472448353 + 423 23 Se 3px -0.0017174272332417 -0.0035469109613731 + 424 23 Se 4py -0.0010590080794812 -0.0012363681541734 + 425 23 Se 4pz -0.0006716582873657 -0.0006880294760300 + 426 23 Se 4px -0.0046943311469324 -0.0017525033390157 + 427 23 Se 4d-2 0.0007514133940668 0.0006191702388480 + 428 23 Se 4d-1 0.0000327082781549 0.0009462973862236 + 429 23 Se 4d0 -0.0014907527136915 0.0000511872229226 + 430 23 Se 4d+1 0.0002961719871282 0.0000706798191029 + 431 23 Se 4d+2 0.0004485257617123 0.0001916451138814 + + 432 24 Se 2s -0.2044353915550563 -0.4056996921340870 + 433 24 Se 3s -0.0053374119978356 -0.0089066580640043 + 434 24 Se 3py -0.0201028373722710 -0.0257861387876857 + 435 24 Se 3pz -0.0049623072710402 -0.0047267272005987 + 436 24 Se 3px -0.0076502101798896 -0.0179276031333345 + 437 24 Se 4py -0.0078510075779823 -0.0098880368811538 + 438 24 Se 4pz -0.0018876911798747 -0.0005903406568704 + 439 24 Se 4px 0.0029630178261302 -0.0021328039499485 + 440 24 Se 4d-2 -0.0004286265073993 -0.0006905551445254 + 441 24 Se 4d-1 -0.0024469062347228 -0.0028537051484932 + 442 24 Se 4d0 0.0017392215117762 0.0023591423807729 + 443 24 Se 4d+1 0.0007472413893502 0.0013668091476336 + 444 24 Se 4d+2 0.0032639310074959 0.0030421283398561 + + 445 25 Cd 2s 0.0252641458803672 0.0654730035035747 + 446 25 Cd 3s -0.0019095849809695 -0.0003980276153159 + 447 25 Cd 3py 0.0008575898475858 0.0087262725221656 + 448 25 Cd 3pz 0.0029417010798794 0.0039177779585469 + 449 25 Cd 3px 0.0006685513449906 0.0089830325484707 + 450 25 Cd 4py -0.0019367913851266 0.0043857438791229 + 451 25 Cd 4pz -0.0023331241414142 -0.0026850723099555 + 452 25 Cd 4px 0.0000227176462639 -0.0003331194728513 + 453 25 Cd 4d-2 -0.0087506891292430 -0.0082439586242684 + 454 25 Cd 4d-1 -0.0007095960146608 -0.0123875745039440 + 455 25 Cd 4d0 -0.0048173522875272 -0.0107721221509782 + 456 25 Cd 4d+1 0.0077049129779583 0.0273919247147873 + 457 25 Cd 4d+2 -0.0089263547369465 -0.0234729291488649 + 458 25 Cd 5d-2 0.0002023861903252 0.0039372817899501 + 459 25 Cd 5d-1 0.0011687664413400 0.0069325751717560 + 460 25 Cd 5d0 0.0022633663305175 -0.0048818431444790 + 461 25 Cd 5d+1 -0.0048945274554392 -0.0108254496848394 + 462 25 Cd 5d+2 0.0087872741831928 0.0055763425946744 + 463 25 Cd 5f-3 0.0028682507161884 0.0000472203287923 + 464 25 Cd 5f-2 0.0011307866034377 0.0016059882622093 + 465 25 Cd 5f-1 0.0000259576199558 0.0015047613110980 + 466 25 Cd 5f0 0.0010751623228033 -0.0021082464908619 + 467 25 Cd 5f+1 0.0014622191066377 -0.0021946011496737 + 468 25 Cd 5f+2 0.0024690252241250 0.0000395792105002 + 469 25 Cd 5f+3 0.0010649434676837 0.0014279435609846 + + 470 26 Cd 2s 0.0650283617970009 0.0117493829069584 + 471 26 Cd 3s -0.0133190680676199 -0.0052113162755949 + 472 26 Cd 3py 0.0186886879763640 -0.0249783292858781 + 473 26 Cd 3pz 0.0043761956239398 -0.0082819638261929 + 474 26 Cd 3px 0.0185396859249491 -0.0130723253650534 + 475 26 Cd 4py -0.0014241115745225 0.0067581995745682 + 476 26 Cd 4pz 0.0005710003436653 0.0020222534790501 + 477 26 Cd 4px -0.0082397846616424 -0.0015525908327054 + 478 26 Cd 4d-2 -0.1113302209811886 0.0448208482794048 + 479 26 Cd 4d-1 -0.0516081821962476 -0.0403940693248771 + 480 26 Cd 4d0 0.0769494670884349 0.0115074698506568 + 481 26 Cd 4d+1 -0.0257381271366785 0.0116294011042270 + 482 26 Cd 4d+2 0.0392934359961895 0.0676910778998991 + 483 26 Cd 5d-2 0.0136956600001140 0.0000503461352941 + 484 26 Cd 5d-1 0.0027247194162590 0.0044495828397656 + 485 26 Cd 5d0 -0.0052315269320230 -0.0001790774440722 + 486 26 Cd 5d+1 0.0039509216265838 0.0001890099404234 + 487 26 Cd 5d+2 -0.0019640674314593 -0.0076150290306893 + 488 26 Cd 5f-3 0.0023819987220612 0.0006433524236068 + 489 26 Cd 5f-2 -0.0004853956144909 0.0004632358514163 + 490 26 Cd 5f-1 0.0000509467115213 0.0001269749257051 + 491 26 Cd 5f0 0.0004689855888489 0.0001351650447760 + 492 26 Cd 5f+1 -0.0008048303470728 0.0002341480184992 + 493 26 Cd 5f+2 0.0009553793025829 0.0004853231989592 + 494 26 Cd 5f+3 0.0013939102430723 -0.0010313496387755 + + 3 4 + -0.6216776797012515 -0.6195424987076225 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0078301198498293 0.0030455033054422 + 2 1 Cd 3s -0.0047230845734034 -0.0010799405139006 + 3 1 Cd 3py -0.0026122317289243 -0.0074936114647730 + 4 1 Cd 3pz 0.0036833731136645 0.0068518300011770 + 5 1 Cd 3px 0.0037947053930798 0.0001372955816677 + 6 1 Cd 4py -0.0026892136063939 -0.0037765318782160 + 7 1 Cd 4pz -0.0001889550552018 0.0023585357754411 + 8 1 Cd 4px 0.0025264197958831 0.0004189098620576 + 9 1 Cd 4d-2 0.0039140138467009 0.0035038246441631 + 10 1 Cd 4d-1 -0.0083718727430335 -0.0027070147425896 + 11 1 Cd 4d0 0.0013581299425422 -0.0011046351210484 + 12 1 Cd 4d+1 -0.0010838756369253 -0.0033773283084680 + 13 1 Cd 4d+2 0.0104742781125179 0.0049096502829246 + 14 1 Cd 5d-2 0.0024264577433139 0.0042922304228362 + 15 1 Cd 5d-1 0.0063433583463458 0.0023227444836732 + 16 1 Cd 5d0 0.0018169328043754 0.0020820408907661 + 17 1 Cd 5d+1 0.0006586603530981 -0.0036295451029625 + 18 1 Cd 5d+2 -0.0005544474274788 0.0007045217909831 + 19 1 Cd 5f-3 -0.0003131124884578 -0.0004243520553846 + 20 1 Cd 5f-2 -0.0018938748172296 -0.0000398479759193 + 21 1 Cd 5f-1 0.0018116174981326 0.0004914286456309 + 22 1 Cd 5f0 -0.0001081519508438 -0.0012879620289417 + 23 1 Cd 5f+1 -0.0001915677356875 -0.0011457441741031 + 24 1 Cd 5f+2 -0.0002550987308263 0.0000832320815644 + 25 1 Cd 5f+3 -0.0019830013936447 -0.0005102599218867 + + 26 2 Cd 2s 0.0331510074290851 0.0047519366886555 + 27 2 Cd 3s -0.0017698408463245 0.0013941070545009 + 28 2 Cd 3py 0.0006635526405134 0.0044578284571746 + 29 2 Cd 3pz -0.0022076455891120 -0.0024268889935854 + 30 2 Cd 3px 0.0016781722545798 0.0007498974377498 + 31 2 Cd 4py -0.0001696277397852 -0.0014162795382586 + 32 2 Cd 4pz 0.0001253375883161 0.0000098843961107 + 33 2 Cd 4px 0.0022812468241344 -0.0003701698603306 + 34 2 Cd 4d-2 0.0049403558068058 0.0013328912511856 + 35 2 Cd 4d-1 0.0009485129945638 0.0037503914322535 + 36 2 Cd 4d0 -0.0069444830879744 -0.0076837199076210 + 37 2 Cd 4d+1 0.0170284783277013 0.0144797913583541 + 38 2 Cd 4d+2 -0.0002257580995516 -0.0021881495037368 + 39 2 Cd 5d-2 0.0016496312977436 0.0047575418071021 + 40 2 Cd 5d-1 -0.0024206619421474 -0.0029727107850773 + 41 2 Cd 5d0 0.0053154084433914 0.0035579164284185 + 42 2 Cd 5d+1 -0.0053315238482942 -0.0056155351771201 + 43 2 Cd 5d+2 -0.0009523817635917 0.0054067668341739 + 44 2 Cd 5f-3 -0.0012565030140917 -0.0006653148592925 + 45 2 Cd 5f-2 -0.0008350520002043 -0.0001773587790411 + 46 2 Cd 5f-1 -0.0003690760815423 0.0002015761306229 + 47 2 Cd 5f0 -0.0004646050126399 -0.0009121154289378 + 48 2 Cd 5f+1 -0.0013802725968136 0.0014924470941119 + 49 2 Cd 5f+2 0.0002518330258124 -0.0000494560420485 + 50 2 Cd 5f+3 -0.0006177559334882 -0.0027049068049161 + + 51 3 Cd 2s 0.0374311005358115 -0.0178605165976122 + 52 3 Cd 3s -0.0011835766632791 0.0012009852784924 + 53 3 Cd 3py 0.0108263707277621 -0.0066123167772436 + 54 3 Cd 3pz -0.0031085254557012 0.0066490355378449 + 55 3 Cd 3px -0.0125885783227706 0.0048796819839349 + 56 3 Cd 4py 0.0011876339152718 -0.0005382893007183 + 57 3 Cd 4pz -0.0005957502191027 0.0019845535211693 + 58 3 Cd 4px 0.0005047309387699 -0.0017389971074046 + 59 3 Cd 4d-2 0.0048761436895449 -0.0105608973264379 + 60 3 Cd 4d-1 0.0030956211618068 -0.0042174207356080 + 61 3 Cd 4d0 0.0171618898459155 -0.0105827541961530 + 62 3 Cd 4d+1 -0.0093370834960181 0.0056298237423471 + 63 3 Cd 4d+2 -0.0025465593834073 0.0008800245664231 + 64 3 Cd 5d-2 -0.0023550840587377 -0.0007669002253444 + 65 3 Cd 5d-1 -0.0006494227644163 0.0043181363206252 + 66 3 Cd 5d0 -0.0031020972030243 0.0008739597043086 + 67 3 Cd 5d+1 0.0052445031420925 0.0016829524654964 + 68 3 Cd 5d+2 0.0005227295662687 0.0006115177166782 + 69 3 Cd 5f-3 0.0006396204681153 0.0006915117983727 + 70 3 Cd 5f-2 0.0011062109228796 0.0016019990636510 + 71 3 Cd 5f-1 -0.0008517943130026 0.0003420445123034 + 72 3 Cd 5f0 -0.0007765651452997 -0.0004501327118299 + 73 3 Cd 5f+1 -0.0011859328578678 0.0010485068544164 + 74 3 Cd 5f+2 0.0000456587640000 -0.0011245718462014 + 75 3 Cd 5f+3 0.0014517094799121 0.0009412122886681 + + 76 4 Se 2s -0.1202338973370782 -0.0515123563007587 + 77 4 Se 3s -0.0036257387279423 -0.0014182287228749 + 78 4 Se 3py 0.0049841919521855 0.0002757439914428 + 79 4 Se 3pz 0.0032912327152734 0.0032622194747229 + 80 4 Se 3px 0.0106372302051539 0.0051236016161408 + 81 4 Se 4py 0.0054304741065218 0.0030957445108729 + 82 4 Se 4pz -0.0013874320335434 -0.0016286653289459 + 83 4 Se 4px 0.0026636402847858 0.0003628092691214 + 84 4 Se 4d-2 -0.0003958993497888 -0.0001100405529125 + 85 4 Se 4d-1 -0.0006206585427722 -0.0002617173182402 + 86 4 Se 4d0 -0.0010323863508879 -0.0002064307069837 + 87 4 Se 4d+1 -0.0001637362797322 -0.0002521123469144 + 88 4 Se 4d+2 -0.0003194050980146 -0.0005476845642348 + + 89 5 Se 2s -0.0239345793989370 0.0039425701963432 + 90 5 Se 3s -0.0004699543852198 -0.0001942184086288 + 91 5 Se 3py -0.0029948669776301 -0.0000387398841608 + 92 5 Se 3pz -0.0022585119582512 0.0006404688273456 + 93 5 Se 3px 0.0025124715852482 -0.0004682908038329 + 94 5 Se 4py -0.0022071631208064 -0.0010454555522132 + 95 5 Se 4pz 0.0003830715012792 0.0009014162508327 + 96 5 Se 4px -0.0006020801074441 -0.0012480880600576 + 97 5 Se 4d-2 0.0000526200085912 0.0000012218068348 + 98 5 Se 4d-1 -0.0003594430027727 -0.0002489139652739 + 99 5 Se 4d0 0.0003145614222554 0.0001410666394643 + 100 5 Se 4d+1 0.0003797939313406 -0.0000352194909277 + 101 5 Se 4d+2 0.0005759293725232 -0.0002343698320987 + + 102 6 Se 2s -0.0968086397272577 0.0364547722303094 + 103 6 Se 3s -0.0023303172130971 0.0005557647442239 + 104 6 Se 3py -0.0026591763547203 -0.0003872884131979 + 105 6 Se 3pz 0.0007252178065961 -0.0002174741274177 + 106 6 Se 3px 0.0085235018138362 -0.0036591203027330 + 107 6 Se 4py -0.0000052224207192 0.0015698626448171 + 108 6 Se 4pz 0.0016557957489115 0.0000723776811419 + 109 6 Se 4px 0.0014734466761095 -0.0003087047589397 + 110 6 Se 4d-2 0.0005440740481951 0.0001971995521618 + 111 6 Se 4d-1 -0.0002592412333037 0.0002059220427770 + 112 6 Se 4d0 0.0003382418651321 -0.0000594774042822 + 113 6 Se 4d+1 0.0004238719026346 -0.0002499781582115 + 114 6 Se 4d+2 -0.0005800644266920 0.0004462611518926 + + 115 7 Se 2s -0.1737800196090062 -0.0588462180140060 + 116 7 Se 3s -0.0042823595489812 -0.0025064236768391 + 117 7 Se 3py 0.0014490884188769 -0.0028240818906513 + 118 7 Se 3pz 0.0123940026848400 0.0036746436719875 + 119 7 Se 3px -0.0006933291775260 -0.0014549540984573 + 120 7 Se 4py -0.0018212299050345 -0.0007824201605225 + 121 7 Se 4pz 0.0006241585970872 0.0001137734228345 + 122 7 Se 4px 0.0025422062139266 0.0003724566742181 + 123 7 Se 4d-2 0.0005170779716332 0.0002627314662013 + 124 7 Se 4d-1 0.0000140754884839 0.0012225542909354 + 125 7 Se 4d0 -0.0024014992286760 -0.0010251825248188 + 126 7 Se 4d+1 0.0000949129272162 0.0001680105689789 + 127 7 Se 4d+2 0.0017713634815131 0.0003381349910218 + + 128 8 Cd 2s 0.0201522547610223 -0.0369332497213134 + 129 8 Cd 3s -0.0016416634774321 0.0019850727450738 + 130 8 Cd 3py -0.0098274522088284 0.0019884605120899 + 131 8 Cd 3pz -0.0059113852034710 0.0112860558299446 + 132 8 Cd 3px 0.0186174799350366 -0.0026053426428740 + 133 8 Cd 4py 0.0002928961031807 0.0001860329323665 + 134 8 Cd 4pz -0.0010877389286523 -0.0020007756182060 + 135 8 Cd 4px -0.0010153622020767 -0.0039660243488680 + 136 8 Cd 4d-2 -0.0211652588571506 -0.0358349345227737 + 137 8 Cd 4d-1 -0.0367260095801657 -0.0112898306174685 + 138 8 Cd 4d0 -0.0261052238483410 0.0107442458645476 + 139 8 Cd 4d+1 0.0246483560753587 0.0071135703843142 + 140 8 Cd 4d+2 0.0105162362217886 -0.0009892222650991 + 141 8 Cd 5d-2 0.0038312480179842 0.0103277260217026 + 142 8 Cd 5d-1 0.0109288281064461 0.0071833818126182 + 143 8 Cd 5d0 0.0053791502983500 0.0014699528731408 + 144 8 Cd 5d+1 -0.0075847213717886 -0.0019930673772256 + 145 8 Cd 5d+2 -0.0046990343535450 0.0020359251827990 + 146 8 Cd 5f-3 -0.0004234845593167 0.0015556881152191 + 147 8 Cd 5f-2 0.0014339779222160 0.0022452861246887 + 148 8 Cd 5f-1 -0.0002670473916313 -0.0011227749675678 + 149 8 Cd 5f0 0.0003147372728629 -0.0019962798738001 + 150 8 Cd 5f+1 0.0016060098898773 0.0007722030061025 + 151 8 Cd 5f+2 -0.0016188905512619 -0.0018408785296415 + 152 8 Cd 5f+3 -0.0007853939525075 0.0004226148334460 + + 153 9 Cd 2s 0.0165521010437612 -0.0038448111493609 + 154 9 Cd 3s -0.0006802120606379 0.0023600690334088 + 155 9 Cd 3py -0.0014822257583347 0.0022016900944163 + 156 9 Cd 3pz -0.0047948012974582 -0.0014353584869562 + 157 9 Cd 3px -0.0063050851053256 -0.0007801728488337 + 158 9 Cd 4py -0.0018369404536047 0.0008378748691185 + 159 9 Cd 4pz 0.0009610554289188 -0.0012839229246725 + 160 9 Cd 4px -0.0015341585753619 -0.0012315467832740 + 161 9 Cd 4d-2 0.0008531154088056 -0.0001578402821589 + 162 9 Cd 4d-1 0.0018865824034407 -0.0005057753902828 + 163 9 Cd 4d0 0.0047537985679308 -0.0044893085229314 + 164 9 Cd 4d+1 0.0102768935058081 -0.0034991881468587 + 165 9 Cd 4d+2 -0.0159220785220460 0.0139997390485062 + 166 9 Cd 5d-2 -0.0014266484298790 -0.0025958235804825 + 167 9 Cd 5d-1 0.0021645720799750 -0.0014935644257151 + 168 9 Cd 5d0 -0.0007716789897918 0.0015883673548064 + 169 9 Cd 5d+1 0.0008616564591141 0.0015839964366742 + 170 9 Cd 5d+2 0.0041574004707784 -0.0003935308422574 + 171 9 Cd 5f-3 0.0002178538669626 0.0008727088305596 + 172 9 Cd 5f-2 0.0002289657434277 0.0009121342394432 + 173 9 Cd 5f-1 -0.0005901099118220 0.0005471856430854 + 174 9 Cd 5f0 0.0003538793213653 -0.0006209447147407 + 175 9 Cd 5f+1 0.0001892264746877 -0.0002243348534128 + 176 9 Cd 5f+2 -0.0012102380985627 -0.0001491349118986 + 177 9 Cd 5f+3 -0.0000374874872537 0.0001419789470973 + + 178 10 Se 2s -0.0716135188589858 0.0685353006004408 + 179 10 Se 3s -0.0017508105809572 0.0014457818862097 + 180 10 Se 3py -0.0019740346524980 0.0021018435904786 + 181 10 Se 3pz 0.0045712102600102 -0.0042531991516647 + 182 10 Se 3px -0.0044029309848634 0.0040757230085100 + 183 10 Se 4py -0.0002777147365471 -0.0006241244086593 + 184 10 Se 4pz -0.0001643146050836 -0.0012013345880016 + 185 10 Se 4px -0.0021042041780595 0.0017515197932213 + 186 10 Se 4d-2 -0.0000950790694851 -0.0002902886169165 + 187 10 Se 4d-1 0.0005205583038053 -0.0007751302611555 + 188 10 Se 4d0 -0.0000836887286770 -0.0001538801348870 + 189 10 Se 4d+1 -0.0000135845249973 0.0001512205687451 + 190 10 Se 4d+2 -0.0007254391704674 0.0006656701171848 + + 191 11 Se 2s -0.1778902585889534 0.0593957128866247 + 192 11 Se 3s -0.0046024411489558 0.0010973986654887 + 193 11 Se 3py -0.0120144917024824 0.0047471198822030 + 194 11 Se 3pz 0.0101558648022746 -0.0029129468017942 + 195 11 Se 3px -0.0012798889266271 0.0012721490302899 + 196 11 Se 4py -0.0024699526551431 0.0011272677551997 + 197 11 Se 4pz 0.0051427361684488 -0.0007067295726260 + 198 11 Se 4px 0.0025797050866241 -0.0022929597022083 + 199 11 Se 4d-2 -0.0003870579532023 0.0001297613020197 + 200 11 Se 4d-1 -0.0000748020518585 -0.0000704688122909 + 201 11 Se 4d0 -0.0021515096446087 0.0006458146055980 + 202 11 Se 4d+1 0.0010467433029599 -0.0003179120141806 + 203 11 Se 4d+2 0.0007353982530136 -0.0005170730042589 + + 204 12 Cd 2s 0.0123356121863662 -0.0027846654132372 + 205 12 Cd 3s -0.0026686531709940 0.0008205779210045 + 206 12 Cd 3py -0.0036598745125779 -0.0004663103545749 + 207 12 Cd 3pz -0.0075061254917134 0.0004152322198694 + 208 12 Cd 3px 0.0241739284358767 -0.0139693331989077 + 209 12 Cd 4py -0.0012437647385269 0.0017654452631162 + 210 12 Cd 4pz -0.0028174015477787 0.0022734612820087 + 211 12 Cd 4px -0.0009218212961635 0.0022229133167809 + 212 12 Cd 4d-2 -0.0095022275916932 0.0153706909339876 + 213 12 Cd 4d-1 0.0051602107021118 -0.0049256404487967 + 214 12 Cd 4d0 0.0068465781123869 0.0002433061451747 + 215 12 Cd 4d+1 0.0408730344890879 -0.0352011445691662 + 216 12 Cd 4d+2 0.0244120737233006 -0.0241078214625439 + 217 12 Cd 5d-2 0.0011511138335940 0.0015693882007475 + 218 12 Cd 5d-1 -0.0006388314492338 0.0012331773654457 + 219 12 Cd 5d0 0.0026793029021775 -0.0065530715425951 + 220 12 Cd 5d+1 -0.0137676939692591 0.0087383791547987 + 221 12 Cd 5d+2 -0.0064411699596352 0.0062032639409324 + 222 12 Cd 5f-3 0.0004247496901055 -0.0008401879298663 + 223 12 Cd 5f-2 -0.0015322588893172 0.0011647116529587 + 224 12 Cd 5f-1 -0.0008616086445983 -0.0023107237493352 + 225 12 Cd 5f0 0.0008988775311589 0.0008565687541927 + 226 12 Cd 5f+1 0.0024788208032387 -0.0013648431941508 + 227 12 Cd 5f+2 0.0021913821122397 -0.0024971176418152 + 228 12 Cd 5f+3 0.0010712751226073 -0.0014226592409704 + + 229 13 Cd 2s 0.0578016420262466 0.0505923098056837 + 230 13 Cd 3s -0.0040002576858772 -0.0029686771213271 + 231 13 Cd 3py 0.0048254496742489 0.0170714722931959 + 232 13 Cd 3pz 0.0025770034410957 0.0025080797158133 + 233 13 Cd 3px -0.0082683505756955 -0.0140720866673819 + 234 13 Cd 4py -0.0023517975769739 -0.0007535088499082 + 235 13 Cd 4pz -0.0034737891734654 -0.0029256700798399 + 236 13 Cd 4px 0.0033686844363133 0.0027293015021884 + 237 13 Cd 4d-2 0.0539176844739155 0.0692862891753997 + 238 13 Cd 4d-1 -0.0310357921951251 -0.0448369791776656 + 239 13 Cd 4d0 0.0169790988557052 0.0190861381401436 + 240 13 Cd 4d+1 0.0215048992462902 0.0284911153563625 + 241 13 Cd 4d+2 -0.0010475825907598 -0.0004724601982774 + 242 13 Cd 5d-2 -0.0109104768911933 -0.0149509769218521 + 243 13 Cd 5d-1 0.0071330694620767 0.0116250477985279 + 244 13 Cd 5d0 -0.0019897232448424 -0.0039731278593405 + 245 13 Cd 5d+1 -0.0063100481822544 -0.0108187669710358 + 246 13 Cd 5d+2 -0.0037596646977327 0.0015751337635789 + 247 13 Cd 5f-3 0.0010325284752314 -0.0001618589289653 + 248 13 Cd 5f-2 0.0006065397761772 0.0000360539643257 + 249 13 Cd 5f-1 0.0010229571945339 0.0009085341530090 + 250 13 Cd 5f0 0.0011211969805913 0.0011231255264237 + 251 13 Cd 5f+1 -0.0020560608056839 -0.0015437436183278 + 252 13 Cd 5f+2 -0.0015272063747879 0.0006741986542161 + 253 13 Cd 5f+3 -0.0001964488408711 -0.0024145326907722 + + 254 14 Cd 2s 0.0404181783507528 0.0386265928153156 + 255 14 Cd 3s -0.0063936236389036 -0.0065341625792231 + 256 14 Cd 3py -0.0022713627527737 -0.0014551139666407 + 257 14 Cd 3pz -0.0140590944387634 -0.0183909903588711 + 258 14 Cd 3px -0.0036510833827249 -0.0005394268316771 + 259 14 Cd 4py 0.0018324971306351 0.0000547438344749 + 260 14 Cd 4pz 0.0054893068931023 0.0069164719363906 + 261 14 Cd 4px -0.0001515593886447 0.0017271547752636 + 262 14 Cd 4d-2 0.0057777759237041 0.0057641695664766 + 263 14 Cd 4d-1 0.0188094316161668 0.0099942117747285 + 264 14 Cd 4d0 -0.0916489042159185 -0.1028079068863119 + 265 14 Cd 4d+1 -0.0284946362182511 -0.0310711938977694 + 266 14 Cd 4d+2 0.0069640925067246 0.0013886289185133 + 267 14 Cd 5d-2 0.0008610820934967 -0.0015701061106133 + 268 14 Cd 5d-1 -0.0031407971913680 -0.0006898883872070 + 269 14 Cd 5d0 0.0084585058343696 0.0055470619656050 + 270 14 Cd 5d+1 0.0034042168754720 0.0020167669428033 + 271 14 Cd 5d+2 -0.0003413956353846 -0.0012543955428501 + 272 14 Cd 5f-3 0.0002479410742945 0.0010532581735346 + 273 14 Cd 5f-2 -0.0011342095633177 -0.0006895632410368 + 274 14 Cd 5f-1 -0.0019571802855208 -0.0008125386460370 + 275 14 Cd 5f0 -0.0003274718117052 -0.0003203171843716 + 276 14 Cd 5f+1 -0.0001978619497557 -0.0001816649838586 + 277 14 Cd 5f+2 -0.0008243876104598 0.0005073516766359 + 278 14 Cd 5f+3 0.0005445618886994 -0.0000547205574696 + + 279 15 Se 2s -0.4910287578995753 -0.5664405381810860 + 280 15 Se 3s -0.0136441177665870 -0.0154084340873476 + 281 15 Se 3py 0.0314200357845411 0.0334744908102175 + 282 15 Se 3pz -0.0148652136880130 -0.0181838679271699 + 283 15 Se 3px -0.0127252577124151 -0.0141451545823508 + 284 15 Se 4py 0.0102598733808267 0.0120811219965927 + 285 15 Se 4pz -0.0063458432730696 -0.0036708809420457 + 286 15 Se 4px -0.0021814422887038 -0.0033174902195165 + 287 15 Se 4d-2 0.0022630955338542 0.0023556467513616 + 288 15 Se 4d-1 -0.0053606836193587 -0.0057396272143079 + 289 15 Se 4d0 -0.0049052764576549 -0.0056248423943690 + 290 15 Se 4d+1 -0.0022827476212621 -0.0023666550439803 + 291 15 Se 4d+2 0.0046638616791247 0.0050459086194527 + + 292 16 Se 2s -0.0816789514277303 -0.0687018952218369 + 293 16 Se 3s -0.0033233089003910 -0.0035485979495310 + 294 16 Se 3py 0.0021704480634917 0.0013380111739478 + 295 16 Se 3pz -0.0074070301257137 -0.0057149911178583 + 296 16 Se 3px 0.0041839264960899 0.0033190161828823 + 297 16 Se 4py 0.0005425188417113 0.0014902205176589 + 298 16 Se 4pz -0.0032014830662083 -0.0025663282000446 + 299 16 Se 4px 0.0024063168005010 0.0022450084818795 + 300 16 Se 4d-2 -0.0007963775686082 -0.0003962020451257 + 301 16 Se 4d-1 -0.0006593024992376 -0.0007725240660893 + 302 16 Se 4d0 -0.0002444302587184 -0.0004511683694268 + 303 16 Se 4d+1 0.0000780513801933 0.0002896358194004 + 304 16 Se 4d+2 0.0003561553873756 0.0005306361911597 + + 305 17 Cd 2s 0.0212501125741601 0.0107058563993780 + 306 17 Cd 3s -0.0004771425082584 -0.0018873095588181 + 307 17 Cd 3py 0.0026965945170977 0.0063918199892147 + 308 17 Cd 3pz 0.0048431794599079 -0.0015765544138754 + 309 17 Cd 3px -0.0048722628833506 0.0058614132949858 + 310 17 Cd 4py 0.0017387786342028 0.0032615950851829 + 311 17 Cd 4pz 0.0004873885661315 -0.0005191360058228 + 312 17 Cd 4px -0.0006750406093434 0.0019719682976846 + 313 17 Cd 4d-2 -0.0205008243111919 -0.0188657713240922 + 314 17 Cd 4d-1 -0.0012419679786628 -0.0007384041037107 + 315 17 Cd 4d0 0.0125635709588017 0.0174410020824044 + 316 17 Cd 4d+1 0.0011144063180565 -0.0000328297368840 + 317 17 Cd 4d+2 0.0045366552787966 0.0041205302953282 + 318 17 Cd 5d-2 0.0029816082247101 0.0011736897410832 + 319 17 Cd 5d-1 0.0025513280116054 0.0065511283726308 + 320 17 Cd 5d0 -0.0012319645976627 -0.0026854792798778 + 321 17 Cd 5d+1 -0.0018597879257066 0.0026248039783681 + 322 17 Cd 5d+2 -0.0021217439782835 -0.0075390273203776 + 323 17 Cd 5f-3 -0.0009267939053222 -0.0003628879232459 + 324 17 Cd 5f-2 -0.0002160014898893 -0.0009831287203249 + 325 17 Cd 5f-1 0.0000419714873626 0.0011940285472567 + 326 17 Cd 5f0 -0.0000668971392204 -0.0004554357373931 + 327 17 Cd 5f+1 0.0003039999877594 0.0001355537616429 + 328 17 Cd 5f+2 -0.0008418232397014 -0.0019371553568529 + 329 17 Cd 5f+3 0.0001137526852724 0.0010705697015037 + + 330 18 Cd 2s 0.0128941244348773 0.0053809980228938 + 331 18 Cd 3s -0.0063600959417700 0.0019610440212159 + 332 18 Cd 3py -0.0061757693688005 0.0069030338266162 + 333 18 Cd 3pz 0.0010229330412009 -0.0025116082447534 + 334 18 Cd 3px 0.0010446227011667 -0.0028287872094256 + 335 18 Cd 4py -0.0040521282688224 0.0017731749262629 + 336 18 Cd 4pz -0.0028596961406826 0.0022807385189449 + 337 18 Cd 4px 0.0008624933485166 -0.0000862083943951 + 338 18 Cd 4d-2 0.0038869528066299 0.0049571451727439 + 339 18 Cd 4d-1 0.0107213267309367 0.0109745544837774 + 340 18 Cd 4d0 -0.0389641699144494 0.0046191228977498 + 341 18 Cd 4d+1 -0.0067279170226676 -0.0060542755830130 + 342 18 Cd 4d+2 0.0037063970545307 0.0013575526291018 + 343 18 Cd 5d-2 0.0010198952374502 -0.0010311768831879 + 344 18 Cd 5d-1 -0.0062534150317325 0.0009903097452350 + 345 18 Cd 5d0 0.0059640319530795 -0.0013115952756437 + 346 18 Cd 5d+1 -0.0001009950158729 0.0001282419813343 + 347 18 Cd 5d+2 0.0021030198510393 -0.0030751549774928 + 348 18 Cd 5f-3 0.0003873762024035 -0.0012394668864948 + 349 18 Cd 5f-2 -0.0005632402099022 0.0002688089857869 + 350 18 Cd 5f-1 -0.0000100891784051 0.0002949502789052 + 351 18 Cd 5f0 0.0013089471470077 0.0000830138246282 + 352 18 Cd 5f+1 -0.0008982064274508 0.0008845975081461 + 353 18 Cd 5f+2 0.0016395893661132 -0.0006607926028647 + 354 18 Cd 5f+3 0.0000087552849429 -0.0004724728258596 + + 355 19 Se 2s -0.1098188916979825 -0.0964227247411736 + 356 19 Se 3s -0.0026481529187412 -0.0027247268995647 + 357 19 Se 3py -0.0035683738896054 -0.0040097205826853 + 358 19 Se 3pz -0.0070969377236524 -0.0055173148993944 + 359 19 Se 3px -0.0035990820094619 -0.0012504621981808 + 360 19 Se 4py 0.0005472468795237 -0.0041603113881120 + 361 19 Se 4pz -0.0017704419362815 0.0002770231322417 + 362 19 Se 4px -0.0002338498952636 -0.0026548734590133 + 363 19 Se 4d-2 -0.0001812555121444 -0.0000854898818606 + 364 19 Se 4d-1 0.0007801937707365 0.0000673230810082 + 365 19 Se 4d0 -0.0000965484789396 0.0001193095818849 + 366 19 Se 4d+1 -0.0007139615009804 0.0004679922482143 + 367 19 Se 4d+2 0.0015305885126200 0.0009213656907589 + + 368 20 Se 2s -0.3387230176560808 0.2536771951215309 + 369 20 Se 3s -0.0118520952993948 0.0078622792078270 + 370 20 Se 3py -0.0011991991758377 -0.0028350784378211 + 371 20 Se 3pz -0.0069902049010862 0.0111617659477012 + 372 20 Se 3px 0.0025659008015232 -0.0046394081378500 + 373 20 Se 4py 0.0098831149878574 0.0023544808921047 + 374 20 Se 4pz -0.0047153217694662 -0.0049889257080374 + 375 20 Se 4px 0.0001025903732826 0.0011951752602815 + 376 20 Se 4d-2 0.0004218714396295 -0.0013269764782849 + 377 20 Se 4d-1 0.0018590653525974 -0.0003567825044583 + 378 20 Se 4d0 -0.0009584885739082 0.0009869684443088 + 379 20 Se 4d+1 -0.0001613142488717 0.0000792512669803 + 380 20 Se 4d+2 0.0008836796177668 0.0002080486628134 + + 381 21 Se 2s 0.2039799922235185 0.2729540448042561 + 382 21 Se 3s 0.0064012869609380 0.0067667689550325 + 383 21 Se 3py -0.0167893703874469 -0.0193818989463550 + 384 21 Se 3pz -0.0020420278109518 -0.0024123575657077 + 385 21 Se 3px -0.0106758603652663 0.0014243843523124 + 386 21 Se 4py -0.0051140386520702 -0.0074811126425099 + 387 21 Se 4pz 0.0027184108807168 0.0010755203984900 + 388 21 Se 4px -0.0066450846786206 0.0064819542437062 + 389 21 Se 4d-2 0.0024838565817455 0.0002215281807046 + 390 21 Se 4d-1 0.0001491291578862 -0.0001381530256581 + 391 21 Se 4d0 -0.0007636037404590 0.0006156477245602 + 392 21 Se 4d+1 0.0011259379713480 0.0009347336909079 + 393 21 Se 4d+2 0.0003900726778353 0.0004937637124073 + + 394 22 Cd 2s 0.0291147205318844 0.0106652625848141 + 395 22 Cd 3s -0.0029562041507685 0.0005806646162660 + 396 22 Cd 3py 0.0061365400698837 0.0142845237897549 + 397 22 Cd 3pz -0.0003279129467449 -0.0073654638230342 + 398 22 Cd 3px 0.0120112291322288 -0.0033191498772600 + 399 22 Cd 4py -0.0012259193567025 -0.0024108190133922 + 400 22 Cd 4pz 0.0008806159912213 0.0022601591418146 + 401 22 Cd 4px -0.0060870032905734 -0.0082309910313469 + 402 22 Cd 4d-2 -0.0261267010129853 -0.0606239502442642 + 403 22 Cd 4d-1 -0.0058713881988500 -0.0289709954956762 + 404 22 Cd 4d0 0.0385196097186024 0.0411586066306667 + 405 22 Cd 4d+1 -0.0376308439502325 -0.0296773730419291 + 406 22 Cd 4d+2 0.0241091547936168 0.0163348734628511 + 407 22 Cd 5d-2 0.0059173152094973 0.0138108856635654 + 408 22 Cd 5d-1 0.0111350892476724 0.0108236390929841 + 409 22 Cd 5d0 -0.0035282153434798 -0.0041711656407888 + 410 22 Cd 5d+1 0.0103118776527069 0.0074888744429103 + 411 22 Cd 5d+2 -0.0116628141333022 -0.0097656373464305 + 412 22 Cd 5f-3 -0.0003360631394603 -0.0004745678946800 + 413 22 Cd 5f-2 0.0018829497880964 0.0001630328280774 + 414 22 Cd 5f-1 0.0030096998094874 0.0005584154118834 + 415 22 Cd 5f0 -0.0010257355239273 0.0000366607277784 + 416 22 Cd 5f+1 0.0024052478950911 0.0020467247111524 + 417 22 Cd 5f+2 0.0001350820480774 -0.0000604886001926 + 418 22 Cd 5f+3 -0.0013053740082842 -0.0020355597123106 + + 419 23 Se 2s -0.0328422946473663 -0.0291274244581089 + 420 23 Se 3s -0.0005902556331442 -0.0011674873934309 + 421 23 Se 3py 0.0013969488050206 0.0023979470674748 + 422 23 Se 3pz -0.0030207178645634 -0.0013497544252487 + 423 23 Se 3px -0.0021704501840792 -0.0006459482397593 + 424 23 Se 4py 0.0010147574347503 0.0013984131767055 + 425 23 Se 4pz -0.0018991074414599 -0.0021091041031752 + 426 23 Se 4px 0.0012178407460671 -0.0008837547243472 + 427 23 Se 4d-2 0.0003742837893960 -0.0003026206980257 + 428 23 Se 4d-1 -0.0001116492357305 0.0003781568748144 + 429 23 Se 4d0 0.0000099800655043 0.0001158127558426 + 430 23 Se 4d+1 -0.0002807184638481 -0.0001291278645483 + 431 23 Se 4d+2 0.0004872483770386 0.0005400251502692 + + 432 24 Se 2s 0.5036303422222655 -0.5389524209865028 + 433 24 Se 3s 0.0115612613354720 -0.0122924214151258 + 434 24 Se 3py 0.0376739338656877 -0.0358169862330563 + 435 24 Se 3pz 0.0074382736335340 -0.0063633319737120 + 436 24 Se 3px 0.0136847637183655 -0.0172288919864248 + 437 24 Se 4py 0.0086625518362079 -0.0081101580158532 + 438 24 Se 4pz 0.0023794726876589 -0.0011098557754798 + 439 24 Se 4px 0.0050823947779754 -0.0069613374585577 + 440 24 Se 4d-2 0.0008576011267309 -0.0011187995691700 + 441 24 Se 4d-1 0.0044438390079252 -0.0040211677436049 + 442 24 Se 4d0 -0.0026321421052405 0.0026299200968397 + 443 24 Se 4d+1 -0.0020044354347160 0.0021541401668464 + 444 24 Se 4d+2 -0.0066951987495845 0.0058347724443088 + + 445 25 Cd 2s -0.0115299850322233 0.0241355544862068 + 446 25 Cd 3s -0.0022477357801923 -0.0018825051210335 + 447 25 Cd 3py -0.0054365326429590 -0.0129182212484672 + 448 25 Cd 3pz -0.0045261805536008 0.0032349776287699 + 449 25 Cd 3px 0.0200097855039591 -0.0142534847337708 + 450 25 Cd 4py -0.0031478348651031 -0.0007412576521901 + 451 25 Cd 4pz 0.0036712177645464 -0.0010574179889311 + 452 25 Cd 4px -0.0022467670897884 0.0010217878180534 + 453 25 Cd 4d-2 0.0093074726751535 -0.0039977011864027 + 454 25 Cd 4d-1 -0.0210893011074183 0.0150279528057002 + 455 25 Cd 4d0 0.0032272976838870 -0.0072207885159691 + 456 25 Cd 4d+1 -0.0485800353957001 0.0619990640065353 + 457 25 Cd 4d+2 0.0145808801928979 -0.0149971283035407 + 458 25 Cd 5d-2 -0.0044327036305273 0.0035684204389931 + 459 25 Cd 5d-1 0.0054456431314130 -0.0049131331878678 + 460 25 Cd 5d0 -0.0012707123708368 0.0077310212905928 + 461 25 Cd 5d+1 0.0141321183362202 -0.0162311397810675 + 462 25 Cd 5d+2 -0.0004720579226566 0.0080360345467438 + 463 25 Cd 5f-3 0.0015387491161521 -0.0004080561682595 + 464 25 Cd 5f-2 0.0008400350026609 -0.0002198894982472 + 465 25 Cd 5f-1 0.0037858293687406 -0.0002345350920641 + 466 25 Cd 5f0 -0.0019647143159649 0.0006218007723749 + 467 25 Cd 5f+1 -0.0001036104245890 -0.0008192640312644 + 468 25 Cd 5f+2 0.0020905933493913 -0.0012474060046131 + 469 25 Cd 5f+3 0.0009123406570574 -0.0013160397076433 + + 470 26 Cd 2s -0.0498888530289589 0.0184326420845529 + 471 26 Cd 3s 0.0119121277312415 -0.0059324153724085 + 472 26 Cd 3py 0.0130281576550196 -0.0289006033004446 + 473 26 Cd 3pz 0.0038442979012856 -0.0091092284342771 + 474 26 Cd 3px -0.0016375418124949 -0.0112864747296881 + 475 26 Cd 4py -0.0044040925717204 0.0092971857150993 + 476 26 Cd 4pz -0.0022795418284031 0.0030363754376617 + 477 26 Cd 4px 0.0041169966843450 0.0006543030362969 + 478 26 Cd 4d-2 0.0317833305160456 0.0518939320979264 + 479 26 Cd 4d-1 0.0721512766463494 -0.0557031254645197 + 480 26 Cd 4d0 -0.0587812035087962 0.0175436779692162 + 481 26 Cd 4d+1 0.0073977803067968 0.0136724322625928 + 482 26 Cd 4d+2 -0.0947837205437637 0.0963832323516679 + 483 26 Cd 5d-2 -0.0010242585230580 -0.0033828295893792 + 484 26 Cd 5d-1 -0.0045307768645811 0.0016527883648459 + 485 26 Cd 5d0 0.0015528683037223 -0.0019159696093399 + 486 26 Cd 5d+1 -0.0008008077634614 -0.0012429035782502 + 487 26 Cd 5d+2 0.0063180905536728 -0.0075912617288179 + 488 26 Cd 5f-3 0.0009992853462774 -0.0016373911682566 + 489 26 Cd 5f-2 -0.0012785801555559 0.0001218188131061 + 490 26 Cd 5f-1 0.0000303353591316 -0.0004639031094499 + 491 26 Cd 5f0 0.0008532114556719 0.0008087903638940 + 492 26 Cd 5f+1 0.0001861294702649 -0.0010651393354839 + 493 26 Cd 5f+2 0.0013345161879169 -0.0003633966819529 + 494 26 Cd 5f+3 0.0010558040192538 -0.0022552354702538 + + 5 6 + -0.6169535262243907 -0.6152812003558018 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0043471942608031 0.0078114534848669 + 2 1 Cd 3s 0.0008889990496302 0.0009059462139455 + 3 1 Cd 3py -0.0010831729704430 0.0035831172672609 + 4 1 Cd 3pz -0.0080804982711238 -0.0043711062440997 + 5 1 Cd 3px -0.0022068760635788 -0.0020153382155599 + 6 1 Cd 4py 0.0003190940351909 0.0003124244854452 + 7 1 Cd 4pz -0.0006298566065642 -0.0034740649408499 + 8 1 Cd 4px -0.0011742452879396 -0.0005169405769811 + 9 1 Cd 4d-2 0.0015928454815844 -0.0001812159106569 + 10 1 Cd 4d-1 0.0110792688871470 -0.0073545532544418 + 11 1 Cd 4d0 -0.0022190702370611 0.0001750618124405 + 12 1 Cd 4d+1 -0.0065859314890871 -0.0006292522631337 + 13 1 Cd 4d+2 -0.0054219483277378 0.0090327699155871 + 14 1 Cd 5d-2 -0.0005203975532406 -0.0011762834031152 + 15 1 Cd 5d-1 0.0016523136485530 0.0030191996424396 + 16 1 Cd 5d0 -0.0018995026235268 -0.0074688970587604 + 17 1 Cd 5d+1 0.0031237759574310 0.0029012806239231 + 18 1 Cd 5d+2 0.0021465950144842 -0.0028837675403287 + 19 1 Cd 5f-3 -0.0003514940408171 0.0001703810170078 + 20 1 Cd 5f-2 -0.0006633282460045 -0.0004095371842129 + 21 1 Cd 5f-1 -0.0006754079817254 0.0004307945562480 + 22 1 Cd 5f0 0.0000067287056525 -0.0005208691969010 + 23 1 Cd 5f+1 -0.0000314433197158 0.0019347961064892 + 24 1 Cd 5f+2 -0.0005793995675618 -0.0004939134169617 + 25 1 Cd 5f+3 0.0000963491168329 0.0005447434143422 + + 26 2 Cd 2s -0.0306753906196668 0.0525399323145742 + 27 2 Cd 3s 0.0043690071599598 -0.0026998861426804 + 28 2 Cd 3py -0.0019707285813149 0.0053571568074108 + 29 2 Cd 3pz -0.0057466708203626 0.0187203207192401 + 30 2 Cd 3px 0.0011706990082962 -0.0067756339141545 + 31 2 Cd 4py -0.0018783775080699 0.0026346142243686 + 32 2 Cd 4pz -0.0007484496176611 -0.0012292162588829 + 33 2 Cd 4px -0.0023468512411931 0.0025139237163091 + 34 2 Cd 4d-2 -0.0109968878439062 0.0485269926881132 + 35 2 Cd 4d-1 0.0059046267348197 -0.0120327355472134 + 36 2 Cd 4d0 0.0048250256647696 -0.0029785799421112 + 37 2 Cd 4d+1 -0.0196530764568923 0.0562139258113019 + 38 2 Cd 4d+2 0.0001943045425203 0.0084972169988246 + 39 2 Cd 5d-2 0.0028517200373177 -0.0126165354114555 + 40 2 Cd 5d-1 0.0000450174871409 0.0079511021927786 + 41 2 Cd 5d0 -0.0033673077795621 0.0012117899394239 + 42 2 Cd 5d+1 0.0053001184583112 -0.0120835910580257 + 43 2 Cd 5d+2 0.0021281349170343 -0.0007252505595280 + 44 2 Cd 5f-3 -0.0002063891861897 0.0017899284598591 + 45 2 Cd 5f-2 -0.0006106573784969 0.0002730275031994 + 46 2 Cd 5f-1 0.0007797916619588 0.0010664925469715 + 47 2 Cd 5f0 -0.0005842494779288 0.0019469721034058 + 48 2 Cd 5f+1 0.0017687983716080 -0.0013161949304817 + 49 2 Cd 5f+2 -0.0009108598306917 0.0030002912922010 + 50 2 Cd 5f+3 -0.0005927105101176 -0.0001024782919149 + + 51 3 Cd 2s -0.0030018725734968 0.0141938087703763 + 52 3 Cd 3s 0.0010150632840326 0.0017912923376386 + 53 3 Cd 3py -0.0172641710468936 -0.0074297113644495 + 54 3 Cd 3pz -0.0013109346338465 0.0122799511395269 + 55 3 Cd 3px 0.0016968333641091 0.0093763699044242 + 56 3 Cd 4py 0.0033362877999307 0.0020348523620466 + 57 3 Cd 4pz 0.0001111471706285 -0.0002699380344340 + 58 3 Cd 4px 0.0033539534813522 -0.0001454179767490 + 59 3 Cd 4d-2 -0.0499231181972766 -0.0539617353825477 + 60 3 Cd 4d-1 0.0033434713485483 -0.0192978283120656 + 61 3 Cd 4d0 0.0061861588705722 -0.0113032771328453 + 62 3 Cd 4d+1 0.0186591390023320 -0.0062564508243375 + 63 3 Cd 4d+2 0.0006323909678606 -0.0042287531062889 + 64 3 Cd 5d-2 0.0114352158888570 0.0110271338555122 + 65 3 Cd 5d-1 -0.0064247769474483 0.0052459713729640 + 66 3 Cd 5d0 -0.0020830466642869 0.0004974691594433 + 67 3 Cd 5d+1 -0.0097231325192271 0.0030331948634856 + 68 3 Cd 5d+2 0.0034751464239086 0.0008624497299267 + 69 3 Cd 5f-3 -0.0000193671781309 0.0011612301856554 + 70 3 Cd 5f-2 0.0027510519604628 -0.0008815423293279 + 71 3 Cd 5f-1 0.0013334159873228 0.0002917784742428 + 72 3 Cd 5f0 -0.0024453991348661 -0.0018352070953233 + 73 3 Cd 5f+1 0.0016064938683570 0.0005951380575353 + 74 3 Cd 5f+2 0.0007261784940592 -0.0011874087366708 + 75 3 Cd 5f+3 -0.0028672000194258 0.0000582147060270 + + 76 4 Se 2s 0.0840674491108180 -0.0654186073208639 + 77 4 Se 3s 0.0027136381339526 -0.0029535546785319 + 78 4 Se 3py -0.0044664036339920 0.0044697014976705 + 79 4 Se 3pz 0.0004875154599788 -0.0029583068947554 + 80 4 Se 3px -0.0060654683215070 0.0036311964244844 + 81 4 Se 4py -0.0031368844575953 0.0027828295556527 + 82 4 Se 4pz 0.0006801567418216 0.0012371485718911 + 83 4 Se 4px -0.0023899874861767 0.0004094659347114 + 84 4 Se 4d-2 0.0002018063188470 -0.0007617203747683 + 85 4 Se 4d-1 0.0003614319061009 -0.0001502906468677 + 86 4 Se 4d0 0.0009494963197685 -0.0007457015666606 + 87 4 Se 4d+1 -0.0003288154060024 0.0008002170512327 + 88 4 Se 4d+2 0.0000407476030609 -0.0000801148124343 + + 89 5 Se 2s 0.0061708839100662 -0.0085193989623606 + 90 5 Se 3s -0.0006100996269024 -0.0008778015052964 + 91 5 Se 3py 0.0017168360396411 0.0001147692626317 + 92 5 Se 3pz 0.0009827308519980 -0.0015524340455894 + 93 5 Se 3px -0.0005002274837082 0.0003331499005679 + 94 5 Se 4py -0.0021711313121444 -0.0028387693840221 + 95 5 Se 4pz -0.0010501921201669 0.0012804297199436 + 96 5 Se 4px -0.0012089597431733 -0.0007573281617866 + 97 5 Se 4d-2 -0.0005831731551788 -0.0000701019239608 + 98 5 Se 4d-1 0.0000434679665463 -0.0000944063384230 + 99 5 Se 4d0 0.0002309869891260 0.0003173821427385 + 100 5 Se 4d+1 -0.0003818735357170 0.0001325385255948 + 101 5 Se 4d+2 -0.0007379319795231 0.0002142045938580 + + 102 6 Se 2s 0.1190815944952502 -0.2494452689607801 + 103 6 Se 3s 0.0022462752377258 -0.0071194541878525 + 104 6 Se 3py 0.0043119848790704 -0.0059482752373390 + 105 6 Se 3pz 0.0002181543200073 -0.0046342750909168 + 106 6 Se 3px -0.0093502167527881 0.0187436815389204 + 107 6 Se 4py -0.0016938922423056 -0.0010681791859576 + 108 6 Se 4pz 0.0000779596307852 0.0035902100987277 + 109 6 Se 4px -0.0028810491609949 0.0035234316384775 + 110 6 Se 4d-2 -0.0012235231078519 0.0015451440764130 + 111 6 Se 4d-1 0.0000990798064359 -0.0009374224975514 + 112 6 Se 4d0 0.0000988469199648 0.0008960773678600 + 113 6 Se 4d+1 -0.0011454932486956 0.0023138949436910 + 114 6 Se 4d+2 0.0006204297061611 -0.0015268044043524 + + 115 7 Se 2s 0.2518784462195944 -0.5872397994798355 + 116 7 Se 3s 0.0059075312985309 -0.0124648044379310 + 117 7 Se 3py -0.0033072793977125 0.0066584691784852 + 118 7 Se 3pz -0.0151043377674487 0.0324355768014659 + 119 7 Se 3px 0.0006216580497651 -0.0000115529238788 + 120 7 Se 4py -0.0017286709685604 0.0040224547525648 + 121 7 Se 4pz -0.0023709174258706 0.0080670515633499 + 122 7 Se 4px -0.0025720766875730 0.0012393667395082 + 123 7 Se 4d-2 -0.0005500190343844 0.0015359048994615 + 124 7 Se 4d-1 0.0005182291102724 -0.0001268339248196 + 125 7 Se 4d0 0.0021710581109525 -0.0037926776896959 + 126 7 Se 4d+1 -0.0001519656227621 0.0001837378043657 + 127 7 Se 4d+2 -0.0020214686834565 0.0042658314174069 + + 128 8 Cd 2s -0.0372106076001747 0.0453588939563762 + 129 8 Cd 3s 0.0010770698265802 0.0004440469053301 + 130 8 Cd 3py 0.0101002796946511 -0.0042911266162475 + 131 8 Cd 3pz 0.0032776214415204 0.0337251902623958 + 132 8 Cd 3px -0.0109223740017858 0.0016514331396091 + 133 8 Cd 4py -0.0019514803331170 -0.0022730627124044 + 134 8 Cd 4pz 0.0011523224212089 -0.0026079893609403 + 135 8 Cd 4px 0.0036192376890926 -0.0034929857398601 + 136 8 Cd 4d-2 0.0233210754899074 -0.0426159094157702 + 137 8 Cd 4d-1 0.0340367526565503 0.0372925428800932 + 138 8 Cd 4d0 0.0280712037598487 0.0222461728685311 + 139 8 Cd 4d+1 -0.0165530952078479 -0.0560334091566963 + 140 8 Cd 4d+2 -0.0117512711430990 0.0175900387763699 + 141 8 Cd 5d-2 -0.0094658484709343 0.0092492877643973 + 142 8 Cd 5d-1 -0.0081555019277700 -0.0045555271156545 + 143 8 Cd 5d0 -0.0046108012313071 0.0003284963421854 + 144 8 Cd 5d+1 0.0009403614105631 0.0137291693223093 + 145 8 Cd 5d+2 0.0005366904080215 -0.0102418044048996 + 146 8 Cd 5f-3 0.0008255856294873 0.0006705372111236 + 147 8 Cd 5f-2 -0.0008917929638958 -0.0012904811916719 + 148 8 Cd 5f-1 -0.0011441926623476 0.0021282705937292 + 149 8 Cd 5f0 0.0004222880384559 -0.0007735384212355 + 150 8 Cd 5f+1 -0.0023156582903742 0.0007884028204749 + 151 8 Cd 5f+2 0.0003139438118171 0.0020809721071862 + 152 8 Cd 5f+3 0.0012923544851053 -0.0021107002724294 + + 153 9 Cd 2s -0.0196769832210276 0.0465627825495964 + 154 9 Cd 3s 0.0036182091120356 -0.0085340721546933 + 155 9 Cd 3py -0.0011757660529046 0.0030100535019924 + 156 9 Cd 3pz 0.0006571854784153 -0.0047663335354420 + 157 9 Cd 3px 0.0056658017991984 -0.0099585352234106 + 158 9 Cd 4py 0.0014698222388168 -0.0015446580823686 + 159 9 Cd 4pz -0.0025637528703856 0.0030426042947021 + 160 9 Cd 4px -0.0006231057782108 0.0031437742569001 + 161 9 Cd 4d-2 -0.0027525012097347 0.0054355293188915 + 162 9 Cd 4d-1 -0.0039443640053121 0.0052779074061163 + 163 9 Cd 4d0 -0.0137257918702315 0.0396568514748506 + 164 9 Cd 4d+1 -0.0138056780014985 0.0302807534474747 + 165 9 Cd 4d+2 0.0305835494997401 -0.0775356441254669 + 166 9 Cd 5d-2 0.0022334491013359 -0.0009609217479693 + 167 9 Cd 5d-1 -0.0015045427764976 0.0003782740088197 + 168 9 Cd 5d0 0.0027784058461604 -0.0019080334275751 + 169 9 Cd 5d+1 0.0021438332041208 -0.0028228143551279 + 170 9 Cd 5d+2 -0.0040893861595608 0.0061580910932349 + 171 9 Cd 5f-3 -0.0006495609302060 0.0007139544462810 + 172 9 Cd 5f-2 -0.0003872542707341 0.0004526930720985 + 173 9 Cd 5f-1 0.0011624382758160 0.0002717848188629 + 174 9 Cd 5f0 0.0000080742690044 -0.0009768620896018 + 175 9 Cd 5f+1 -0.0007387762636262 -0.0002643494511760 + 176 9 Cd 5f+2 0.0006368548370809 -0.0018850044728901 + 177 9 Cd 5f+3 -0.0008066327095504 0.0002342696456108 + + 178 10 Se 2s 0.1545987842719843 -0.4078982574094853 + 179 10 Se 3s 0.0033946641826292 -0.0099946318606813 + 180 10 Se 3py 0.0042361859700176 -0.0072755415896483 + 181 10 Se 3pz -0.0076928083357150 0.0164602002296088 + 182 10 Se 3px 0.0094878504002430 -0.0250729886584419 + 183 10 Se 4py 0.0007150313336053 -0.0042363711625084 + 184 10 Se 4pz -0.0007991646916717 0.0050024210789657 + 185 10 Se 4px 0.0046791629370331 -0.0096320472392686 + 186 10 Se 4d-2 0.0003329727352414 -0.0001656727668519 + 187 10 Se 4d-1 -0.0012921328976174 0.0021102678432113 + 188 10 Se 4d0 -0.0004027102888231 0.0018653592677948 + 189 10 Se 4d+1 0.0003965069762253 -0.0010652929495636 + 190 10 Se 4d+2 0.0021638597587173 -0.0052344327355231 + + 191 11 Se 2s -0.3511215151157942 -0.2076945632902435 + 192 11 Se 3s -0.0110684696848268 -0.0052745215195522 + 193 11 Se 3py -0.0156611387781970 -0.0109282135885070 + 194 11 Se 3pz 0.0232008509550622 0.0098794863757663 + 195 11 Se 3px 0.0004893420359410 0.0008227416502076 + 196 11 Se 4py -0.0036184593511845 -0.0030225564761703 + 197 11 Se 4pz 0.0062646384418258 0.0047918946886092 + 198 11 Se 4px -0.0016404852025557 -0.0003903124903988 + 199 11 Se 4d-2 0.0006426821160128 0.0002463492331245 + 200 11 Se 4d-1 0.0001960814096408 -0.0002937689991917 + 201 11 Se 4d0 -0.0044230869421705 -0.0016636667572547 + 202 11 Se 4d+1 0.0019102456311781 0.0009023876879842 + 203 11 Se 4d+2 0.0012441413141754 0.0007811724079637 + + 204 12 Cd 2s -0.0020429696020705 0.0068604919759012 + 205 12 Cd 3s 0.0027359978392304 -0.0015361716151892 + 206 12 Cd 3py -0.0130872071958106 -0.0178027107797825 + 207 12 Cd 3pz 0.0004212185530882 0.0079349971670303 + 208 12 Cd 3px 0.0018537366275388 -0.0018129739596583 + 209 12 Cd 4py 0.0051131249262870 -0.0013362010266009 + 210 12 Cd 4pz -0.0000575880480816 -0.0029775193142025 + 211 12 Cd 4px -0.0017935971581392 -0.0011558734915158 + 212 12 Cd 4d-2 0.0587990619948873 0.0417789743392866 + 213 12 Cd 4d-1 -0.0264332569691112 -0.0436351748832055 + 214 12 Cd 4d0 0.0212551383289390 -0.0156995531355821 + 215 12 Cd 4d+1 0.0062739676273586 -0.0211688236451168 + 216 12 Cd 4d+2 0.0106114717910509 0.0031012219512026 + 217 12 Cd 5d-2 -0.0083834150203604 -0.0066666879170241 + 218 12 Cd 5d-1 0.0086285128295055 0.0046974184365289 + 219 12 Cd 5d0 -0.0065577656527210 0.0097484315392505 + 220 12 Cd 5d+1 -0.0066188693564457 0.0054048897969464 + 221 12 Cd 5d+2 -0.0087327414653525 0.0048372311429651 + 222 12 Cd 5f-3 -0.0015016694682551 0.0016835733691882 + 223 12 Cd 5f-2 0.0012365783540632 0.0016523508982450 + 224 12 Cd 5f-1 -0.0027425440689509 0.0015586920231657 + 225 12 Cd 5f0 0.0004359326768235 -0.0014603308376551 + 226 12 Cd 5f+1 -0.0005933026025362 0.0015394998227551 + 227 12 Cd 5f+2 -0.0003556557910684 0.0012769260633121 + 228 12 Cd 5f+3 -0.0000191079138814 0.0020054890245420 + + 229 13 Cd 2s -0.0066246531066328 -0.0107829794470908 + 230 13 Cd 3s -0.0010554883155528 0.0019920265657338 + 231 13 Cd 3py 0.0057956944433116 0.0011521468962647 + 232 13 Cd 3pz -0.0052356551275044 0.0059962413569861 + 233 13 Cd 3px -0.0011801522290563 0.0014759645803098 + 234 13 Cd 4py 0.0016013634350103 0.0016750141730861 + 235 13 Cd 4pz 0.0010567368699840 0.0031480363987417 + 236 13 Cd 4px 0.0003883870685478 -0.0033330403937598 + 237 13 Cd 4d-2 0.0064322500184717 -0.0085640020578288 + 238 13 Cd 4d-1 -0.0169829809196856 0.0072982440857566 + 239 13 Cd 4d0 -0.0072073223148419 -0.0090011012805830 + 240 13 Cd 4d+1 0.0114889378156630 -0.0200204993865072 + 241 13 Cd 4d+2 0.0051259003181669 -0.0088815461411025 + 242 13 Cd 5d-2 -0.0014053449768220 0.0040747585784432 + 243 13 Cd 5d-1 0.0043449670371244 -0.0019807055415149 + 244 13 Cd 5d0 -0.0006155847291592 0.0051022128459831 + 245 13 Cd 5d+1 -0.0026403471180059 0.0031905617663834 + 246 13 Cd 5d+2 -0.0002886882179240 0.0064137242414566 + 247 13 Cd 5f-3 0.0005603015020323 -0.0014509890083287 + 248 13 Cd 5f-2 -0.0002266752469231 -0.0009659999037428 + 249 13 Cd 5f-1 0.0009109116140065 0.0002132990390326 + 250 13 Cd 5f0 0.0001808142981566 0.0005963492734637 + 251 13 Cd 5f+1 0.0002213860843907 0.0008060672705378 + 252 13 Cd 5f+2 0.0015661958635347 0.0011558898900255 + 253 13 Cd 5f+3 0.0003571282699276 -0.0017942782398071 + + 254 14 Cd 2s -0.0100148494514486 0.0137003180152370 + 255 14 Cd 3s 0.0018656842513548 -0.0042582919139655 + 256 14 Cd 3py 0.0028054937283038 -0.0030543087032174 + 257 14 Cd 3pz -0.0058635726421894 0.0202600489344701 + 258 14 Cd 3px -0.0006050619082113 0.0017788193714834 + 259 14 Cd 4py -0.0023258578812777 0.0051772285401759 + 260 14 Cd 4pz 0.0009427507307295 -0.0029518678260944 + 261 14 Cd 4px 0.0005358421147660 -0.0009421790821384 + 262 14 Cd 4d-2 -0.0058178475929483 0.0078997180566591 + 263 14 Cd 4d-1 -0.0245374498474548 0.0582520468631815 + 264 14 Cd 4d0 0.0095984377871667 0.0005559067712284 + 265 14 Cd 4d+1 0.0020277419678819 -0.0012546881942655 + 266 14 Cd 4d+2 -0.0124059494924175 0.0251619007659697 + 267 14 Cd 5d-2 -0.0003438349386961 -0.0000474108420475 + 268 14 Cd 5d-1 0.0035652402560341 -0.0099685996871181 + 269 14 Cd 5d0 -0.0035938306981284 0.0052909845723842 + 270 14 Cd 5d+1 0.0003320746386588 0.0003891337966561 + 271 14 Cd 5d+2 0.0002011126310145 -0.0005735321403501 + 272 14 Cd 5f-3 -0.0001851137668462 0.0013522846860132 + 273 14 Cd 5f-2 -0.0004380036072425 0.0005282189439682 + 274 14 Cd 5f-1 0.0012141016060684 -0.0010631396986366 + 275 14 Cd 5f0 0.0008886962693298 -0.0016623946130406 + 276 14 Cd 5f+1 -0.0000126581682223 -0.0005257925392619 + 277 14 Cd 5f+2 0.0008837606700820 -0.0007508906646405 + 278 14 Cd 5f+3 -0.0004317121443549 0.0006031953266056 + + 279 15 Se 2s -0.0079076441551025 0.1384290039160978 + 280 15 Se 3s -0.0002141511943625 0.0027673252126695 + 281 15 Se 3py 0.0005797864334645 -0.0100971582342317 + 282 15 Se 3pz 0.0004383439094344 0.0019908634542577 + 283 15 Se 3px 0.0010753934285825 0.0024888063504055 + 284 15 Se 4py 0.0007724547833043 -0.0053594019494834 + 285 15 Se 4pz -0.0001835726774981 -0.0035110563061971 + 286 15 Se 4px 0.0003640174266651 0.0001672736604410 + 287 15 Se 4d-2 0.0000594541272969 -0.0005788616301682 + 288 15 Se 4d-1 -0.0003179189638124 0.0015432658028261 + 289 15 Se 4d0 0.0002088648725105 0.0002628051143585 + 290 15 Se 4d+1 0.0000757412676506 0.0004519914430929 + 291 15 Se 4d+2 0.0001262280483907 -0.0015161475498112 + + 292 16 Se 2s -0.0895565287228563 0.0192116860964360 + 293 16 Se 3s -0.0049929870042631 0.0008576037023471 + 294 16 Se 3py 0.0052696016802451 -0.0002761970118937 + 295 16 Se 3pz -0.0042517910772690 0.0016691972579566 + 296 16 Se 3px 0.0077200406290930 -0.0014436159142324 + 297 16 Se 4py 0.0016079993761560 -0.0009472108441309 + 298 16 Se 4pz 0.0018269377938357 0.0010911424143690 + 299 16 Se 4px 0.0055375290716121 0.0006727331806080 + 300 16 Se 4d-2 -0.0023379579680990 -0.0000986545496649 + 301 16 Se 4d-1 -0.0005210914448264 0.0002966903711046 + 302 16 Se 4d0 0.0006918263573017 0.0002745574041815 + 303 16 Se 4d+1 0.0006705668033342 -0.0000895305893720 + 304 16 Se 4d+2 0.0001536234352982 -0.0000489589985762 + + 305 17 Cd 2s 0.0485969944994205 -0.0014097313258025 + 306 17 Cd 3s -0.0055438590020603 0.0007966184789271 + 307 17 Cd 3py -0.0207438249337489 -0.0029400924186016 + 308 17 Cd 3pz -0.0011803159847234 0.0006318666970427 + 309 17 Cd 3px -0.0122575862906777 0.0000186880426709 + 310 17 Cd 4py 0.0019107910244139 0.0003748160760676 + 311 17 Cd 4pz -0.0022231337639615 0.0008518684658954 + 312 17 Cd 4px 0.0025603639787510 0.0000152459274606 + 313 17 Cd 4d-2 -0.0716031990764033 -0.0050465610147801 + 314 17 Cd 4d-1 0.0059095326478984 0.0016330097477384 + 315 17 Cd 4d0 0.0578922765506483 0.0039357817798557 + 316 17 Cd 4d+1 0.0044294375803552 -0.0009714683508999 + 317 17 Cd 4d+2 0.0320602457178806 0.0052682451520242 + 318 17 Cd 5d-2 0.0159034599810800 0.0023223262922507 + 319 17 Cd 5d-1 -0.0047015926359865 -0.0010961597142212 + 320 17 Cd 5d0 -0.0080779672789906 0.0004518431526789 + 321 17 Cd 5d+1 -0.0063701991319859 -0.0018064937075828 + 322 17 Cd 5d+2 -0.0062010064837611 -0.0007010702574219 + 323 17 Cd 5f-3 -0.0000706036330928 0.0004298542937223 + 324 17 Cd 5f-2 0.0015622352429644 0.0008210195351042 + 325 17 Cd 5f-1 -0.0007959299923031 -0.0002241256031707 + 326 17 Cd 5f0 -0.0012433440708212 -0.0006548082730457 + 327 17 Cd 5f+1 -0.0018016520119240 -0.0007152391871993 + 328 17 Cd 5f+2 -0.0008454313018452 -0.0000551746631515 + 329 17 Cd 5f+3 -0.0017681166938926 -0.0008668024599784 + + 330 18 Cd 2s 0.0576924126977024 0.0149916843170033 + 331 18 Cd 3s -0.0101777114962795 -0.0033924935460506 + 332 18 Cd 3py 0.0081920510532794 -0.0019613047148465 + 333 18 Cd 3pz 0.0007503038789002 0.0068182106754794 + 334 18 Cd 3px -0.0006016271647754 -0.0016872931944998 + 335 18 Cd 4py -0.0044156620074576 -0.0009377220090992 + 336 18 Cd 4pz 0.0009528955140231 -0.0018328415623854 + 337 18 Cd 4px 0.0035867072165465 -0.0000573151266479 + 338 18 Cd 4d-2 0.0253460694420270 0.0018847542667174 + 339 18 Cd 4d-1 0.0647564344672125 0.0069767554211165 + 340 18 Cd 4d0 -0.1052756980252060 -0.0435280275656860 + 341 18 Cd 4d+1 -0.0380980783068396 -0.0030039228262568 + 342 18 Cd 4d+2 0.0123720867973400 -0.0004004904732040 + 343 18 Cd 5d-2 0.0012262169442930 -0.0009477839068659 + 344 18 Cd 5d-1 -0.0060718725219599 -0.0013552956081621 + 345 18 Cd 5d0 0.0094728936302532 0.0051209745355547 + 346 18 Cd 5d+1 0.0046651208261086 0.0000418781324744 + 347 18 Cd 5d+2 -0.0029135866192573 -0.0009149301267223 + 348 18 Cd 5f-3 -0.0015673798901251 -0.0009199310827701 + 349 18 Cd 5f-2 0.0011121815537629 -0.0002128345131061 + 350 18 Cd 5f-1 0.0004031932394547 0.0003074375553353 + 351 18 Cd 5f0 0.0012288960920209 0.0005983296158596 + 352 18 Cd 5f+1 0.0011036673040369 -0.0002733396671248 + 353 18 Cd 5f+2 0.0005996746296646 -0.0003214913415401 + 354 18 Cd 5f+3 -0.0004178830328773 0.0005761931867032 + + 355 19 Se 2s -0.5791230231508574 -0.0492319163372067 + 356 19 Se 3s -0.0153588654893879 -0.0017980440157458 + 357 19 Se 3py -0.0141689433278819 0.0006067773451344 + 358 19 Se 3pz -0.0321556669487445 -0.0026225148368993 + 359 19 Se 3px -0.0147093768859381 -0.0017446201421587 + 360 19 Se 4py -0.0065434711139547 0.0017114853838398 + 361 19 Se 4pz -0.0085625696414969 -0.0014454662912897 + 362 19 Se 4px -0.0044171716239338 -0.0008401720015263 + 363 19 Se 4d-2 -0.0001834076492077 0.0000842864826982 + 364 19 Se 4d-1 0.0039453836820497 0.0007756891769964 + 365 19 Se 4d0 -0.0003615327117153 -0.0002797518472416 + 366 19 Se 4d+1 -0.0008027032183248 -0.0002029828896045 + 367 19 Se 4d+2 0.0064370564472367 0.0006298439489975 + + 368 20 Se 2s 0.3572281611082243 0.3752134373122303 + 369 20 Se 3s 0.0117800020021877 0.0127825988369072 + 370 20 Se 3py -0.0002089815958668 -0.0019694400835667 + 371 20 Se 3pz 0.0134184186565148 0.0033269518196814 + 372 20 Se 3px -0.0054503926199343 -0.0087754079024424 + 373 20 Se 4py -0.0007591599871154 0.0025734433713624 + 374 20 Se 4pz -0.0046322995910597 0.0033270389076578 + 375 20 Se 4px 0.0001195165424655 0.0046541169984636 + 376 20 Se 4d-2 -0.0002625892353416 -0.0012567320868858 + 377 20 Se 4d-1 -0.0014348183494790 -0.0020425741939693 + 378 20 Se 4d0 0.0004779419603299 0.0000141692111298 + 379 20 Se 4d+1 0.0003164524080574 -0.0001389870600632 + 380 20 Se 4d+2 0.0002015490527842 -0.0005211283090980 + + 381 21 Se 2s -0.1566824484341146 -0.0406971931581187 + 382 21 Se 3s -0.0050714664292143 -0.0015906785655715 + 383 21 Se 3py 0.0076177026561206 0.0021998895523831 + 384 21 Se 3pz 0.0030938286199683 -0.0043112312907854 + 385 21 Se 3px 0.0015751067407195 0.0001660358844570 + 386 21 Se 4py 0.0006052924738996 0.0026682510675311 + 387 21 Se 4pz -0.0007247094239981 0.0021688840545868 + 388 21 Se 4px -0.0011362997954065 0.0008268852527158 + 389 21 Se 4d-2 -0.0007348289747405 -0.0002463054735868 + 390 21 Se 4d-1 -0.0001235415675049 0.0003433136133008 + 391 21 Se 4d0 0.0000798386436069 -0.0001719050871284 + 392 21 Se 4d+1 -0.0004248417571452 -0.0009541782064599 + 393 21 Se 4d+2 -0.0002425165205760 -0.0001830904733433 + + 394 22 Cd 2s 0.0039884213331192 -0.0273829563828857 + 395 22 Cd 3s 0.0011475304858483 0.0003147041167038 + 396 22 Cd 3py 0.0049797144543034 0.0062377484085563 + 397 22 Cd 3pz -0.0114569449387852 -0.0029758819471790 + 398 22 Cd 3px -0.0024480018628632 -0.0132258244418644 + 399 22 Cd 4py -0.0006555409706712 0.0003581671925890 + 400 22 Cd 4pz -0.0036009308064624 0.0005933658467176 + 401 22 Cd 4px 0.0021788040442019 0.0000983139775167 + 402 22 Cd 4d-2 -0.0154100321574089 -0.0044282265030537 + 403 22 Cd 4d-1 -0.0259980140449736 -0.0081293713858213 + 404 22 Cd 4d0 -0.0251768100081350 -0.0140356949115192 + 405 22 Cd 4d+1 0.0202764637071817 0.0177080593677791 + 406 22 Cd 4d+2 -0.0079675717142601 -0.0133621710071516 + 407 22 Cd 5d-2 -0.0009712616797174 -0.0002707749844055 + 408 22 Cd 5d-1 0.0094903971581958 0.0024347293860845 + 409 22 Cd 5d0 0.0073468034484875 0.0065895652313964 + 410 22 Cd 5d+1 -0.0047354150171445 -0.0033652106529602 + 411 22 Cd 5d+2 -0.0001388708798530 0.0021694407760351 + 412 22 Cd 5f-3 0.0002034834568990 0.0010953066618715 + 413 22 Cd 5f-2 0.0012915140073142 0.0006510320115767 + 414 22 Cd 5f-1 -0.0014716029226860 -0.0001482541635643 + 415 22 Cd 5f0 0.0012530790318498 0.0003231603911123 + 416 22 Cd 5f+1 -0.0002991900422159 -0.0003005173327392 + 417 22 Cd 5f+2 0.0003897483556897 0.0005983294961394 + 418 22 Cd 5f+3 0.0003808665262482 0.0007453934564093 + + 419 23 Se 2s -0.0696471057336994 0.0329503271230248 + 420 23 Se 3s -0.0015158304696037 0.0006025690995147 + 421 23 Se 3py 0.0062899539154295 -0.0002222635938560 + 422 23 Se 3pz -0.0017449260167343 0.0036685507724360 + 423 23 Se 3px -0.0044916317933911 0.0014360743933519 + 424 23 Se 4py 0.0000726484968425 -0.0020755268762272 + 425 23 Se 4pz -0.0036042738397255 0.0005975411312603 + 426 23 Se 4px 0.0000923388462630 0.0006080488542665 + 427 23 Se 4d-2 0.0009505266038088 -0.0000073686862215 + 428 23 Se 4d-1 0.0001004295823827 0.0002017515472808 + 429 23 Se 4d0 -0.0003842088190524 0.0001601279059234 + 430 23 Se 4d+1 -0.0003302976324866 0.0001516788109396 + 431 23 Se 4d+2 0.0004358840219997 -0.0001025616954341 + + 432 24 Se 2s 0.1879206173573870 0.0040606861651507 + 433 24 Se 3s 0.0036778673219007 -0.0001749134661987 + 434 24 Se 3py 0.0119430900242978 0.0003958476491489 + 435 24 Se 3pz 0.0026282010404839 -0.0006108649573727 + 436 24 Se 3px 0.0064149880586390 0.0009245895898414 + 437 24 Se 4py 0.0010732921596491 -0.0004438094422916 + 438 24 Se 4pz -0.0013315974549378 0.0007912848684324 + 439 24 Se 4px 0.0030203312440545 0.0001208548756189 + 440 24 Se 4d-2 0.0005512463272805 0.0002434611481820 + 441 24 Se 4d-1 0.0013704130461524 -0.0001180693758347 + 442 24 Se 4d0 -0.0011644276883894 -0.0001735626278044 + 443 24 Se 4d+1 -0.0003228043126085 -0.0002709366443621 + 444 24 Se 4d+2 -0.0017980549833159 0.0001810490520211 + + 445 25 Cd 2s 0.0156295749548529 -0.0135560712759582 + 446 25 Cd 3s -0.0004792661360752 0.0007299584895289 + 447 25 Cd 3py -0.0136829909017970 -0.0006459142240865 + 448 25 Cd 3pz -0.0125650097618057 -0.0063260511361868 + 449 25 Cd 3px -0.0027441322807788 -0.0088348292759886 + 450 25 Cd 4py 0.0001155836012419 0.0022469287586909 + 451 25 Cd 4pz 0.0065367764411562 0.0002635996172009 + 452 25 Cd 4px -0.0074722528116152 -0.0007820952085033 + 453 25 Cd 4d-2 0.0443476149734974 0.0136006485031096 + 454 25 Cd 4d-1 -0.0264973823615574 0.0018667816650201 + 455 25 Cd 4d0 -0.0031438397146301 0.0021931347802874 + 456 25 Cd 4d+1 0.0396721977910376 0.0206418656234451 + 457 25 Cd 4d+2 0.0217431867653379 0.0072016751526981 + 458 25 Cd 5d-2 -0.0150945637638392 -0.0017691850802571 + 459 25 Cd 5d-1 0.0090398411347955 0.0048907362128887 + 460 25 Cd 5d0 0.0029412590124901 -0.0025350684837204 + 461 25 Cd 5d+1 -0.0056926713406426 -0.0033239524373565 + 462 25 Cd 5d+2 -0.0103175879167911 -0.0029739016597881 + 463 25 Cd 5f-3 -0.0011114938999558 -0.0004313728816494 + 464 25 Cd 5f-2 0.0006630998120579 0.0009885731007942 + 465 25 Cd 5f-1 -0.0005434116491093 0.0006326011296968 + 466 25 Cd 5f0 0.0011662831154110 0.0001932827566103 + 467 25 Cd 5f+1 -0.0007682769037110 -0.0000880413034828 + 468 25 Cd 5f+2 0.0009127570706844 0.0001018248790114 + 469 25 Cd 5f+3 -0.0009462314504283 -0.0004554481012872 + + 470 26 Cd 2s -0.0087153775704641 0.0015495403871926 + 471 26 Cd 3s -0.0010073971844573 -0.0005855702510410 + 472 26 Cd 3py 0.0170589764580299 0.0043658253227581 + 473 26 Cd 3pz 0.0069897885550898 0.0008422928072693 + 474 26 Cd 3px 0.0001171737737265 0.0009455910847887 + 475 26 Cd 4py -0.0020276347764421 0.0004012206182563 + 476 26 Cd 4pz -0.0000254738209817 -0.0003624233155264 + 477 26 Cd 4px -0.0016699973551691 0.0000479609510658 + 478 26 Cd 4d-2 -0.0305426729383019 -0.0080280249840127 + 479 26 Cd 4d-1 0.0169907230640050 -0.0014462851420423 + 480 26 Cd 4d0 -0.0011731812977206 0.0030470368985959 + 481 26 Cd 4d+1 -0.0074982518696439 -0.0034324971136708 + 482 26 Cd 4d+2 -0.0307567481127933 0.0011141114329569 + 483 26 Cd 5d-2 0.0055257989539401 0.0023104323709706 + 484 26 Cd 5d-1 -0.0021840366715662 0.0014542514830731 + 485 26 Cd 5d0 -0.0019323467595950 -0.0007382687351770 + 486 26 Cd 5d+1 0.0021704422955806 -0.0003460423389595 + 487 26 Cd 5d+2 0.0013098583345341 0.0005662794400363 + 488 26 Cd 5f-3 0.0009745634759164 0.0006662518636695 + 489 26 Cd 5f-2 -0.0006888250163228 0.0011840398797591 + 490 26 Cd 5f-1 0.0003893762222126 0.0006170055641950 + 491 26 Cd 5f0 0.0002590348963519 0.0007470034671495 + 492 26 Cd 5f+1 -0.0014620643307478 -0.0004303337657722 + 493 26 Cd 5f+2 0.0002922410696904 -0.0005308502138900 + 494 26 Cd 5f+3 0.0011182327229631 0.0002498046762818 + + 7 8 + -0.6139584128312767 -0.6111541113426159 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0127118461140945 -0.0115565477806611 + 2 1 Cd 3s -0.0007340269837136 -0.0011087702053037 + 3 1 Cd 3py 0.0042251222811165 0.0018935776842396 + 4 1 Cd 3pz -0.0030982074209774 -0.0073647372628993 + 5 1 Cd 3px 0.0049836941703396 0.0044682830388996 + 6 1 Cd 4py 0.0038911617778999 0.0005028434328151 + 7 1 Cd 4pz -0.0009549614683108 -0.0017259311086965 + 8 1 Cd 4px 0.0003545228133420 0.0007599468554114 + 9 1 Cd 4d-2 -0.0030683591303394 -0.0014524036923546 + 10 1 Cd 4d-1 0.0015260861049492 0.0011890539590378 + 11 1 Cd 4d0 0.0032331060012800 0.0015066641412311 + 12 1 Cd 4d+1 0.0048244953232189 0.0009730392129026 + 13 1 Cd 4d+2 -0.0024903259427432 -0.0061219332073415 + 14 1 Cd 5d-2 -0.0032453654232835 -0.0004617202086194 + 15 1 Cd 5d-1 0.0049200476205257 -0.0019302747873102 + 16 1 Cd 5d0 -0.0028850912525309 -0.0024497495317845 + 17 1 Cd 5d+1 -0.0007403058037266 0.0025277610585750 + 18 1 Cd 5d+2 -0.0006752945510883 -0.0011267458839403 + 19 1 Cd 5f-3 0.0003256130573119 -0.0001182198079464 + 20 1 Cd 5f-2 -0.0012355534668068 0.0010330571368844 + 21 1 Cd 5f-1 0.0026393046846199 -0.0004113968904615 + 22 1 Cd 5f0 -0.0004322410151570 -0.0005059148464225 + 23 1 Cd 5f+1 0.0011978230632047 0.0002291297894311 + 24 1 Cd 5f+2 0.0009817959800857 -0.0000948049107278 + 25 1 Cd 5f+3 -0.0002392274720821 0.0000535810575017 + + 26 2 Cd 2s -0.0194274834822053 -0.0039394342761151 + 27 2 Cd 3s 0.0008612921951657 -0.0006743275668984 + 28 2 Cd 3py -0.0036718342710124 0.0094682156244013 + 29 2 Cd 3pz -0.0019053917848768 0.0188348739651003 + 30 2 Cd 3px 0.0057874094573739 -0.0137026326757309 + 31 2 Cd 4py 0.0004312156439967 -0.0087184321479891 + 32 2 Cd 4pz 0.0005202116822661 0.0021240973441403 + 33 2 Cd 4px -0.0006986423267195 0.0042463341333141 + 34 2 Cd 4d-2 -0.0031157084221138 -0.0114931108654856 + 35 2 Cd 4d-1 0.0092394016707665 -0.0484906565538554 + 36 2 Cd 4d0 0.0115761579671479 -0.0373043639248887 + 37 2 Cd 4d+1 -0.0230938303489656 0.0431260606799668 + 38 2 Cd 4d+2 0.0076957935185045 -0.0378426561519201 + 39 2 Cd 5d-2 -0.0010812142032035 0.0091807562646570 + 40 2 Cd 5d-1 -0.0021953488717457 0.0039614888830499 + 41 2 Cd 5d0 -0.0059599037471247 0.0150349426363856 + 42 2 Cd 5d+1 0.0068019067286264 -0.0150541251128733 + 43 2 Cd 5d+2 -0.0020084790189676 0.0087902480657089 + 44 2 Cd 5f-3 -0.0006954915151465 0.0004757381882428 + 45 2 Cd 5f-2 -0.0013261032226191 0.0020317066428733 + 46 2 Cd 5f-1 0.0011653904983336 -0.0019136841505344 + 47 2 Cd 5f0 -0.0005711838479735 -0.0027864775013987 + 48 2 Cd 5f+1 0.0007499029788672 -0.0013217487584456 + 49 2 Cd 5f+2 -0.0012708461484346 -0.0017630071297946 + 50 2 Cd 5f+3 -0.0003081821471038 0.0001690547622673 + + 51 3 Cd 2s 0.0320020798748998 -0.0188722936648755 + 52 3 Cd 3s -0.0023150927385739 -0.0000635431375162 + 53 3 Cd 3py -0.0146644882924905 0.0013215726550792 + 54 3 Cd 3pz 0.0011284727167629 -0.0050071202901202 + 55 3 Cd 3px -0.0108842142071195 -0.0054984450493652 + 56 3 Cd 4py 0.0032381384217421 0.0058285875044046 + 57 3 Cd 4pz -0.0010303434089643 0.0042300635665485 + 58 3 Cd 4px 0.0038246621169140 0.0046267847630432 + 59 3 Cd 4d-2 -0.0630196840991950 0.0081805449208180 + 60 3 Cd 4d-1 0.0047968698317520 0.0262974629410284 + 61 3 Cd 4d0 0.0268839760589374 0.0231160953337114 + 62 3 Cd 4d+1 0.0097654404396063 0.0295027932784364 + 63 3 Cd 4d+2 -0.0022679697545450 0.0079389459909790 + 64 3 Cd 5d-2 0.0188348276513753 -0.0031367132708073 + 65 3 Cd 5d-1 -0.0086946753928870 -0.0063857842631106 + 66 3 Cd 5d0 -0.0112338045161888 -0.0052788258289905 + 67 3 Cd 5d+1 -0.0069990466223835 -0.0095900384435294 + 68 3 Cd 5d+2 0.0005408893829426 -0.0038570157148619 + 69 3 Cd 5f-3 -0.0008827229100675 0.0002209294795820 + 70 3 Cd 5f-2 -0.0002241053711935 -0.0004300782168509 + 71 3 Cd 5f-1 0.0000493843608831 0.0019993505621145 + 72 3 Cd 5f0 -0.0004871996535882 0.0001675314502760 + 73 3 Cd 5f+1 -0.0020459489108519 0.0001157517105614 + 74 3 Cd 5f+2 0.0002178542111259 0.0010219443615323 + 75 3 Cd 5f+3 -0.0023520917387753 0.0003101963473057 + + 76 4 Se 2s 0.0617904369391191 0.0409387371997398 + 77 4 Se 3s 0.0017601036362800 0.0004530484040109 + 78 4 Se 3py -0.0036256971617361 -0.0027343072792762 + 79 4 Se 3pz -0.0008099538354106 -0.0010919587433839 + 80 4 Se 3px -0.0037809596900513 -0.0016450444028263 + 81 4 Se 4py -0.0012222851437175 0.0015349372594041 + 82 4 Se 4pz 0.0006882181287013 -0.0001733984648652 + 83 4 Se 4px -0.0020469366600873 -0.0023415110208257 + 84 4 Se 4d-2 0.0002082102976625 0.0003276773620385 + 85 4 Se 4d-1 0.0003369094962610 -0.0002244956605631 + 86 4 Se 4d0 0.0008624127816293 0.0001038688018706 + 87 4 Se 4d+1 -0.0001402315424303 0.0006107277214332 + 88 4 Se 4d+2 0.0000776339985453 0.0000559027959233 + + 89 5 Se 2s -0.0074993016171971 0.0182386427045963 + 90 5 Se 3s 0.0004276936809361 0.0004473440661316 + 91 5 Se 3py 0.0006762240660552 0.0022727628395773 + 92 5 Se 3pz -0.0018926310290832 0.0019173202294980 + 93 5 Se 3px 0.0019647696478348 -0.0001533524025663 + 94 5 Se 4py -0.0020003843812984 0.0006040090582738 + 95 5 Se 4pz 0.0002974527016607 -0.0000998788802199 + 96 5 Se 4px -0.0010652860128723 -0.0010424468640314 + 97 5 Se 4d-2 -0.0001093979441967 -0.0001563343654915 + 98 5 Se 4d-1 0.0002398202073870 0.0001659668034436 + 99 5 Se 4d0 0.0002228699260130 0.0000692330091321 + 100 5 Se 4d+1 0.0003413133069810 -0.0001655326868180 + 101 5 Se 4d+2 -0.0002944158897767 -0.0003768683007387 + + 102 6 Se 2s -0.0219445535826262 0.4311003674329780 + 103 6 Se 3s -0.0009232787088556 0.0115979182103196 + 104 6 Se 3py 0.0030153778690011 0.0052921258746574 + 105 6 Se 3pz 0.0012029269630735 0.0037130056738985 + 106 6 Se 3px 0.0021082712954632 -0.0300363412173723 + 107 6 Se 4py -0.0043694305072550 0.0036697596439758 + 108 6 Se 4pz 0.0001107465218791 0.0009979865513702 + 109 6 Se 4px -0.0005869269406169 -0.0060724036995785 + 110 6 Se 4d-2 -0.0008605652795171 -0.0015542305060459 + 111 6 Se 4d-1 -0.0001373749782737 0.0002806227372561 + 112 6 Se 4d0 0.0005576211496700 -0.0001364791740769 + 113 6 Se 4d+1 -0.0004596878396176 -0.0032204183267889 + 114 6 Se 4d+2 -0.0002771757329701 0.0030187778936561 + + 115 7 Se 2s 0.2315937202903223 -0.5487118630144300 + 116 7 Se 3s 0.0050847707236841 -0.0109153439485102 + 117 7 Se 3py -0.0016206689794747 -0.0002374151171439 + 118 7 Se 3pz -0.0129228381166706 0.0298768529848328 + 119 7 Se 3px 0.0001160679990594 -0.0005126789292250 + 120 7 Se 4py -0.0035544296344734 0.0069487112596413 + 121 7 Se 4pz -0.0024554814632384 0.0052728887838764 + 122 7 Se 4px -0.0007651252130110 -0.0003951404782742 + 123 7 Se 4d-2 -0.0002507736756403 0.0004453844863195 + 124 7 Se 4d-1 0.0001165029672019 0.0001196850118722 + 125 7 Se 4d0 0.0016796709966389 -0.0042611973143403 + 126 7 Se 4d+1 -0.0001030235835409 -0.0001249602019272 + 127 7 Se 4d+2 -0.0014052047470870 0.0027833879213172 + + 128 8 Cd 2s -0.0177955333721217 -0.0031859868029310 + 129 8 Cd 3s 0.0017339998478452 -0.0016575811378518 + 130 8 Cd 3py 0.0001517694223980 0.0164367813638635 + 131 8 Cd 3pz 0.0004508475395722 -0.0046691688072918 + 132 8 Cd 3px -0.0001210950597534 0.0062366011022874 + 133 8 Cd 4py 0.0008984775157079 -0.0068061007181682 + 134 8 Cd 4pz 0.0005847557732619 0.0011012888305670 + 135 8 Cd 4px 0.0033049941858847 -0.0026180669164294 + 136 8 Cd 4d-2 0.0131463874708636 -0.0259730298723777 + 137 8 Cd 4d-1 0.0194295780135892 -0.0884838245379814 + 138 8 Cd 4d0 0.0078148632585653 0.0034670575772959 + 139 8 Cd 4d+1 0.0079425422316069 -0.0364033120758714 + 140 8 Cd 4d+2 0.0005489394207173 -0.0354750794000496 + 141 8 Cd 5d-2 -0.0113871050079833 0.0100759773661294 + 142 8 Cd 5d-1 -0.0078997680906513 0.0248154358279523 + 143 8 Cd 5d0 -0.0004096328767063 -0.0002847923601541 + 144 8 Cd 5d+1 -0.0036685961965015 0.0101731438302001 + 145 8 Cd 5d+2 0.0008601717771620 0.0097846573116267 + 146 8 Cd 5f-3 -0.0000950368116278 -0.0012275693796223 + 147 8 Cd 5f-2 0.0016641128996180 -0.0023578770747627 + 148 8 Cd 5f-1 -0.0011149205531018 -0.0005105972220988 + 149 8 Cd 5f0 -0.0002288862564907 -0.0006123299928602 + 150 8 Cd 5f+1 -0.0013705630394146 0.0005045764474307 + 151 8 Cd 5f+2 -0.0021659352592719 0.0002800185056200 + 152 8 Cd 5f+3 -0.0005786534287817 -0.0012513263241172 + + 153 9 Cd 2s 0.0020212570533805 -0.0620027533093712 + 154 9 Cd 3s 0.0013890144069970 0.0087762780440537 + 155 9 Cd 3py 0.0008504963371808 -0.0059244880495879 + 156 9 Cd 3pz -0.0028224696558400 0.0116271573148188 + 157 9 Cd 3px 0.0030502190396859 0.0028406626640546 + 158 9 Cd 4py 0.0014358223086566 -0.0007300742943307 + 159 9 Cd 4pz -0.0005391560796405 -0.0032972774516701 + 160 9 Cd 4px 0.0003193083879653 -0.0052070016854064 + 161 9 Cd 4d-2 -0.0026766509578703 0.0027371383057702 + 162 9 Cd 4d-1 -0.0020950371955189 -0.0058210769297744 + 163 9 Cd 4d0 -0.0045329138259197 -0.0376995620893320 + 164 9 Cd 4d+1 0.0029969882617012 -0.0564250028809487 + 165 9 Cd 4d+2 -0.0017568053370641 0.1286553021418854 + 166 9 Cd 5d-2 0.0005740241733287 -0.0027118205825183 + 167 9 Cd 5d-1 -0.0020463134415553 0.0054294268721775 + 168 9 Cd 5d0 0.0008367940515599 0.0031319060770699 + 169 9 Cd 5d+1 -0.0019389685591032 0.0079384338273207 + 170 9 Cd 5d+2 0.0000256479475753 -0.0063922071142667 + 171 9 Cd 5f-3 0.0000485715691018 -0.0002867989539593 + 172 9 Cd 5f-2 -0.0000539764672072 0.0006112578772342 + 173 9 Cd 5f-1 0.0013883278798521 -0.0021247414747979 + 174 9 Cd 5f0 0.0003352516251551 -0.0016164694692174 + 175 9 Cd 5f+1 0.0005118926064788 -0.0009616161210788 + 176 9 Cd 5f+2 0.0001785474756827 -0.0005571789663794 + 177 9 Cd 5f+3 -0.0011158776573901 0.0007927586526382 + + 178 10 Se 2s 0.0169292447472976 0.5156602940522816 + 179 10 Se 3s 0.0004002011686150 0.0128094539336602 + 180 10 Se 3py 0.0035948413720744 0.0049755912183434 + 181 10 Se 3pz 0.0005036115312807 -0.0204688667204772 + 182 10 Se 3px 0.0018304814763422 0.0316531098965416 + 183 10 Se 4py -0.0025424435249297 0.0016914447230971 + 184 10 Se 4pz -0.0007021814430189 -0.0055042621575847 + 185 10 Se 4px -0.0005460992196471 0.0070801490382090 + 186 10 Se 4d-2 -0.0000422630335390 0.0006870876169830 + 187 10 Se 4d-1 -0.0008684370254086 -0.0035034829597213 + 188 10 Se 4d0 -0.0002244241145952 -0.0028480749839744 + 189 10 Se 4d+1 -0.0000843217972443 0.0009380520166397 + 190 10 Se 4d+2 0.0004457301464249 0.0072408197399963 + + 191 11 Se 2s -0.6327910339184009 -0.1578221858163089 + 192 11 Se 3s -0.0163203893261484 -0.0041615229177026 + 193 11 Se 3py -0.0335700194464190 -0.0074570945986047 + 194 11 Se 3pz 0.0309334531880480 0.0089439955103137 + 195 11 Se 3px 0.0019377355823945 0.0000812077606944 + 196 11 Se 4py -0.0162920111363885 -0.0031026738870682 + 197 11 Se 4pz 0.0045958005459039 0.0005186524752396 + 198 11 Se 4px 0.0021174734324201 0.0014016228200841 + 199 11 Se 4d-2 0.0013847210171977 0.0004033213323142 + 200 11 Se 4d-1 -0.0006476162092295 -0.0000250087863507 + 201 11 Se 4d0 -0.0040472480270603 -0.0012145660256147 + 202 11 Se 4d+1 0.0029796262402517 0.0007630703920456 + 203 11 Se 4d+2 0.0021276984501211 0.0005972132934281 + + 204 12 Cd 2s 0.0368566039331641 -0.0129339560335870 + 205 12 Cd 3s -0.0024275643577681 -0.0024117003164793 + 206 12 Cd 3py -0.0137550996588240 -0.0134104933543169 + 207 12 Cd 3pz 0.0004507414804351 -0.0150278277127778 + 208 12 Cd 3px 0.0098712669910744 -0.0001530239408059 + 209 12 Cd 4py 0.0055840984649243 0.0001540077019169 + 210 12 Cd 4pz 0.0018975490040711 0.0008814518585123 + 211 12 Cd 4px -0.0038243628675481 -0.0012756356154287 + 212 12 Cd 4d-2 0.0765349051461217 0.0190332736442639 + 213 12 Cd 4d-1 -0.0263180888478419 0.0187806118308775 + 214 12 Cd 4d0 0.0384370198478552 0.0402729105352602 + 215 12 Cd 4d+1 0.0125355652058432 0.0201058206277012 + 216 12 Cd 4d+2 0.0115997806205363 0.0020402735683290 + 217 12 Cd 5d-2 -0.0175208480746161 -0.0065158858766483 + 218 12 Cd 5d-1 0.0044809538722421 -0.0032309128647566 + 219 12 Cd 5d0 -0.0117516138470489 -0.0101766544035526 + 220 12 Cd 5d+1 -0.0051239620561949 -0.0065310795804586 + 221 12 Cd 5d+2 -0.0086865076922823 0.0014820340189235 + 222 12 Cd 5f-3 -0.0022043725205020 0.0012465810020315 + 223 12 Cd 5f-2 0.0012352711612038 -0.0001353772829716 + 224 12 Cd 5f-1 -0.0009205471881360 0.0002798813123165 + 225 12 Cd 5f0 -0.0035523500558059 0.0001294125852668 + 226 12 Cd 5f+1 0.0004864055563881 -0.0012221316703047 + 227 12 Cd 5f+2 0.0005845750483895 -0.0008964283513930 + 228 12 Cd 5f+3 0.0009035924746961 -0.0000340763371591 + + 229 13 Cd 2s -0.0019467556811963 -0.0108300188695996 + 230 13 Cd 3s 0.0019112272351777 0.0016997571339892 + 231 13 Cd 3py 0.0044359507427158 -0.0011641319140483 + 232 13 Cd 3pz -0.0032971952303234 0.0019188593941593 + 233 13 Cd 3px -0.0095881894969356 -0.0005231267679464 + 234 13 Cd 4py -0.0022212064211870 0.0002260649839826 + 235 13 Cd 4pz -0.0039656104422394 0.0016717647506883 + 236 13 Cd 4px 0.0007368893528846 -0.0008678210393674 + 237 13 Cd 4d-2 0.0100121869294828 -0.0138246292256914 + 238 13 Cd 4d-1 0.0009820256051366 0.0095060579659150 + 239 13 Cd 4d0 0.0158447604032402 -0.0014491391125987 + 240 13 Cd 4d+1 0.0076654133632806 -0.0020460992471731 + 241 13 Cd 4d+2 0.0015411406646818 0.0022212231204924 + 242 13 Cd 5d-2 0.0000735807896876 0.0029316221518326 + 243 13 Cd 5d-1 0.0032142228109633 -0.0006214771286891 + 244 13 Cd 5d0 -0.0034398565558724 0.0041457344853792 + 245 13 Cd 5d+1 -0.0024741520467784 -0.0006614593677467 + 246 13 Cd 5d+2 0.0018558289997373 -0.0008310701919611 + 247 13 Cd 5f-3 -0.0007362584162215 -0.0003163669317166 + 248 13 Cd 5f-2 -0.0003332779820760 0.0003714841670775 + 249 13 Cd 5f-1 -0.0010890398429537 -0.0000152217450228 + 250 13 Cd 5f0 -0.0000656994249214 0.0006827552577831 + 251 13 Cd 5f+1 0.0007673609722298 -0.0002869105363215 + 252 13 Cd 5f+2 0.0004704955679747 -0.0000216873103717 + 253 13 Cd 5f+3 -0.0004748724175688 -0.0001252385929327 + + 254 14 Cd 2s -0.0027117293587760 0.0315535705424999 + 255 14 Cd 3s 0.0000161066124642 0.0019486083824202 + 256 14 Cd 3py 0.0023316792759372 -0.0210493273254953 + 257 14 Cd 3pz -0.0098519189063482 0.0130451501865153 + 258 14 Cd 3px -0.0012409456370960 0.0071029649975343 + 259 14 Cd 4py -0.0021872182570755 -0.0003840315936584 + 260 14 Cd 4pz 0.0023988082451179 -0.0038595308049799 + 261 14 Cd 4px 0.0006454594154943 0.0013007028463603 + 262 14 Cd 4d-2 -0.0034315014138544 0.0076854028929996 + 263 14 Cd 4d-1 -0.0223500849456866 0.0557644196539684 + 264 14 Cd 4d0 -0.0145693937481731 -0.0077260334036338 + 265 14 Cd 4d+1 -0.0044165001673449 -0.0042084502586847 + 266 14 Cd 4d+2 -0.0107049545105210 0.0248618975474451 + 267 14 Cd 5d-2 0.0001830484908337 -0.0039210381026846 + 268 14 Cd 5d-1 0.0043867175724809 -0.0042330132937593 + 269 14 Cd 5d0 -0.0004311627110747 -0.0029928121165577 + 270 14 Cd 5d+1 -0.0007063360602720 0.0005356585575384 + 271 14 Cd 5d+2 -0.0002470827290670 -0.0052683782782135 + 272 14 Cd 5f-3 0.0002387416516450 0.0010307026557081 + 273 14 Cd 5f-2 0.0000041778766756 -0.0003835167461193 + 274 14 Cd 5f-1 -0.0004626061155876 0.0012390271359847 + 275 14 Cd 5f0 0.0009514597357009 -0.0002401737778601 + 276 14 Cd 5f+1 0.0002918648167085 -0.0002454499681428 + 277 14 Cd 5f+2 0.0003969272863158 -0.0006728922188169 + 278 14 Cd 5f+3 -0.0002709527658668 -0.0001975435355187 + + 279 15 Se 2s -0.1335967207453717 0.0846201963851465 + 280 15 Se 3s -0.0031978546727769 0.0020796268469696 + 281 15 Se 3py 0.0064354366433566 -0.0067110816594818 + 282 15 Se 3pz -0.0045320051173029 0.0006478847833199 + 283 15 Se 3px -0.0022553116760014 0.0020776326081711 + 284 15 Se 4py 0.0051504401893751 -0.0025980300155920 + 285 15 Se 4pz 0.0019911676572048 -0.0023358323543921 + 286 15 Se 4px 0.0002054127776304 -0.0006098146331581 + 287 15 Se 4d-2 0.0004643364125728 -0.0004370844475810 + 288 15 Se 4d-1 -0.0008489626586205 0.0004459072193251 + 289 15 Se 4d0 -0.0011401570078266 -0.0001133788982260 + 290 15 Se 4d+1 -0.0004489629019286 0.0001777555625956 + 291 15 Se 4d+2 0.0006735746194731 -0.0011646335067652 + + 292 16 Se 2s 0.1257693665729841 0.0411157672519088 + 293 16 Se 3s 0.0053765596985629 0.0012668019720001 + 294 16 Se 3py -0.0056906552498572 -0.0009833804515343 + 295 16 Se 3pz 0.0074183960842658 0.0032348623857432 + 296 16 Se 3px -0.0090282252422428 -0.0019246426088326 + 297 16 Se 4py -0.0031638173352588 -0.0013102489830272 + 298 16 Se 4pz -0.0017288098038685 0.0000668007040341 + 299 16 Se 4px -0.0072644364280076 -0.0015136052854692 + 300 16 Se 4d-2 0.0026968943084598 0.0003451659539216 + 301 16 Se 4d-1 0.0006182572721101 0.0003865297780435 + 302 16 Se 4d0 -0.0005206201279336 0.0000608683685617 + 303 16 Se 4d+1 -0.0004151628538167 -0.0001564613942777 + 304 16 Se 4d+2 -0.0000079913534840 -0.0000468634590011 + + 305 17 Cd 2s -0.0539220664969925 -0.0082012675630693 + 306 17 Cd 3s 0.0061240914777459 0.0009930059496848 + 307 17 Cd 3py 0.0122730877781760 -0.0012174169272475 + 308 17 Cd 3pz 0.0027829421101395 0.0012646677070805 + 309 17 Cd 3px 0.0074252445613429 -0.0006990757883134 + 310 17 Cd 4py -0.0034136350383357 -0.0007978668280694 + 311 17 Cd 4pz 0.0039183067597193 0.0009916463302017 + 312 17 Cd 4px -0.0038775092628157 -0.0003971274566551 + 313 17 Cd 4d-2 0.0710212652512528 0.0121806472649501 + 314 17 Cd 4d-1 -0.0033985247317280 -0.0000427629638543 + 315 17 Cd 4d0 -0.0558559920341084 -0.0100664122143217 + 316 17 Cd 4d+1 -0.0051284174054530 -0.0001073948784990 + 317 17 Cd 4d+2 -0.0262777289168907 -0.0023684599927171 + 318 17 Cd 5d-2 -0.0166870778241542 -0.0025752670758999 + 319 17 Cd 5d-1 -0.0006705909726602 -0.0006653572672029 + 320 17 Cd 5d0 0.0094039844499047 0.0023393794959959 + 321 17 Cd 5d+1 0.0013926060772634 0.0001888153328460 + 322 17 Cd 5d+2 0.0047282968068801 0.0005035296130889 + 323 17 Cd 5f-3 0.0002070908395660 -0.0000299177816953 + 324 17 Cd 5f-2 -0.0011875482187972 0.0000401146859199 + 325 17 Cd 5f-1 -0.0012413931169878 -0.0000937097043273 + 326 17 Cd 5f0 -0.0001464678988423 0.0002451663955478 + 327 17 Cd 5f+1 0.0002820241634853 0.0000836203995642 + 328 17 Cd 5f+2 0.0006296654043218 0.0002624156351562 + 329 17 Cd 5f+3 0.0010424583018322 0.0000326776603808 + + 330 18 Cd 2s 0.0153173927604940 0.0151550245437944 + 331 18 Cd 3s -0.0017702938922159 0.0014497600529005 + 332 18 Cd 3py -0.0082217549648655 0.0045108064954585 + 333 18 Cd 3pz 0.0385864124714745 0.0129720337214252 + 334 18 Cd 3px 0.0045989719166480 0.0042738968778175 + 335 18 Cd 4py 0.0028104704491945 0.0015535491501468 + 336 18 Cd 4pz -0.0118383185118932 -0.0008952369614806 + 337 18 Cd 4px -0.0022821103734605 0.0007324988022395 + 338 18 Cd 4d-2 -0.0249497038186218 -0.0030785218206394 + 339 18 Cd 4d-1 -0.0586129330550346 -0.0071705218809263 + 340 18 Cd 4d0 -0.0854456604705526 -0.0266818781625084 + 341 18 Cd 4d+1 0.0377830237733267 0.0048371630635075 + 342 18 Cd 4d+2 -0.0127913679122085 -0.0009328617247719 + 343 18 Cd 5d-2 0.0017109859616784 0.0032256198486702 + 344 18 Cd 5d-1 0.0074554639938529 0.0046924858776406 + 345 18 Cd 5d0 0.0052899944746591 0.0010940817049562 + 346 18 Cd 5d+1 -0.0032533102773556 0.0004845102040379 + 347 18 Cd 5d+2 0.0023131181137768 -0.0001517376238765 + 348 18 Cd 5f-3 0.0003824335457093 0.0003464702839819 + 349 18 Cd 5f-2 -0.0010831303687141 0.0006403635221652 + 350 18 Cd 5f-1 0.0015396975938233 0.0005977134572945 + 351 18 Cd 5f0 -0.0019057647604164 -0.0010201409708997 + 352 18 Cd 5f+1 -0.0027045308240522 -0.0005514891321603 + 353 18 Cd 5f+2 -0.0014879932151672 -0.0007724042545692 + 354 18 Cd 5f+3 0.0001833685218943 -0.0008361992944750 + + 355 19 Se 2s 0.5230161300134971 0.0580690109408592 + 356 19 Se 3s 0.0127700538851930 0.0018565435000317 + 357 19 Se 3py 0.0190070362487341 0.0028455465613097 + 358 19 Se 3pz 0.0255490824927121 0.0021222415317764 + 359 19 Se 3px 0.0108632526286128 0.0010879294802374 + 360 19 Se 4py 0.0125122249696615 0.0016097270751994 + 361 19 Se 4pz 0.0067688443990375 0.0008272987091910 + 362 19 Se 4px 0.0012259588749411 -0.0001705442715556 + 363 19 Se 4d-2 0.0006710735207012 0.0002589197977534 + 364 19 Se 4d-1 -0.0016152786494274 0.0001071980518564 + 365 19 Se 4d0 -0.0010583609206708 -0.0002007470781780 + 366 19 Se 4d+1 0.0000365632082141 0.0000039924368035 + 367 19 Se 4d+2 -0.0055216742358651 -0.0006367835584180 + + 368 20 Se 2s 0.1035988305829861 -0.0549571864552865 + 369 20 Se 3s 0.0046020020777521 -0.0025957818115151 + 370 20 Se 3py 0.0026164427850814 0.0006250619409219 + 371 20 Se 3pz -0.0005784245741410 -0.0012629112366206 + 372 20 Se 3px -0.0023491371303463 0.0018465751192925 + 373 20 Se 4py 0.0048416790081619 -0.0002408109115140 + 374 20 Se 4pz 0.0012799735458850 0.0046328292053275 + 375 20 Se 4px -0.0021762305267397 0.0027510662962252 + 376 20 Se 4d-2 0.0002736871466652 -0.0001898926187319 + 377 20 Se 4d-1 0.0009945090500146 -0.0007089323832573 + 378 20 Se 4d0 0.0015206611547236 -0.0005104621743748 + 379 20 Se 4d+1 0.0004604555686096 -0.0002066930183296 + 380 20 Se 4d+2 0.0006040355806002 0.0006152255260688 + + 381 21 Se 2s -0.0102585489924848 -0.0205586604328515 + 382 21 Se 3s -0.0006701379617140 0.0008882410886904 + 383 21 Se 3py -0.0003073865318067 0.0011550849319770 + 384 21 Se 3pz 0.0014885600123774 -0.0014277520698630 + 385 21 Se 3px 0.0009447793550146 -0.0009249591644728 + 386 21 Se 4py -0.0007592510496672 0.0036178261829196 + 387 21 Se 4pz -0.0016828393612912 0.0013897847798745 + 388 21 Se 4px 0.0008453886280685 0.0040614922623807 + 389 21 Se 4d-2 -0.0001787034271366 -0.0009139116666773 + 390 21 Se 4d-1 0.0002060593803093 -0.0007264537956370 + 391 21 Se 4d0 0.0003958355846828 0.0000772735906472 + 392 21 Se 4d+1 0.0002532698949297 -0.0003039053417148 + 393 21 Se 4d+2 0.0000186393774782 -0.0003627691316038 + + 394 22 Cd 2s -0.0106857665144720 0.0010906289252848 + 395 22 Cd 3s -0.0023675782657914 0.0019892653511656 + 396 22 Cd 3py 0.0129065016285277 -0.0029578345101890 + 397 22 Cd 3pz 0.0036776911588601 0.0075958468809981 + 398 22 Cd 3px -0.0091638077770942 0.0026569208040744 + 399 22 Cd 4py 0.0002921253056620 0.0006599458946223 + 400 22 Cd 4pz -0.0014482470173197 0.0023697157570094 + 401 22 Cd 4px -0.0039231946454302 0.0020754731245116 + 402 22 Cd 4d-2 -0.0163731208640108 0.0108341386717687 + 403 22 Cd 4d-1 -0.0003953160835889 0.0073159815506034 + 404 22 Cd 4d0 0.0131261500557608 -0.0038882026914976 + 405 22 Cd 4d+1 0.0030161423697013 0.0023158617331365 + 406 22 Cd 4d+2 -0.0005732274378901 -0.0020161752027593 + 407 22 Cd 5d-2 0.0131057381258569 -0.0023994345900927 + 408 22 Cd 5d-1 0.0006808009907892 -0.0019460946448246 + 409 22 Cd 5d0 -0.0069317628743261 0.0045927163985445 + 410 22 Cd 5d+1 0.0006392082855732 0.0012722907553666 + 411 22 Cd 5d+2 -0.0028048670488785 0.0030509850992406 + 412 22 Cd 5f-3 0.0025189820759648 0.0001388976578314 + 413 22 Cd 5f-2 0.0001786899961201 0.0000231319210216 + 414 22 Cd 5f-1 0.0017609709735769 0.0009185573051235 + 415 22 Cd 5f0 0.0005713075707625 0.0009466273430806 + 416 22 Cd 5f+1 0.0003526460272906 0.0008621882678331 + 417 22 Cd 5f+2 -0.0000163462002525 0.0008779414000642 + 418 22 Cd 5f+3 0.0022745925204736 0.0009537879649567 + + 419 23 Se 2s 0.1046524495762458 0.0154955796959271 + 420 23 Se 3s 0.0015912458719926 0.0006127710278238 + 421 23 Se 3py -0.0075712590466910 -0.0007380866054029 + 422 23 Se 3pz 0.0052706760065150 0.0008216814983837 + 423 23 Se 3px 0.0056035644210993 0.0009089485329790 + 424 23 Se 4py -0.0008315567217573 -0.0007827599420345 + 425 23 Se 4pz 0.0034593248441669 0.0003462257526875 + 426 23 Se 4px 0.0021596583392136 -0.0001973248601013 + 427 23 Se 4d-2 -0.0009209654943743 -0.0000209931682214 + 428 23 Se 4d-1 -0.0003373355451146 -0.0000105918680387 + 429 23 Se 4d0 0.0004007789753172 0.0002474647180756 + 430 23 Se 4d+1 -0.0000590992481161 0.0002398636216979 + 431 23 Se 4d+2 -0.0002924072014515 -0.0001709388663051 + + 432 24 Se 2s -0.0403176237322268 -0.0023442468380653 + 433 24 Se 3s -0.0004746177934091 -0.0002184238747479 + 434 24 Se 3py -0.0017460949556100 -0.0004851686110254 + 435 24 Se 3pz -0.0035324889553126 -0.0003953547811142 + 436 24 Se 3px -0.0013831022394569 -0.0000860719916840 + 437 24 Se 4py -0.0021046080972127 -0.0004965527623465 + 438 24 Se 4pz 0.0044205777366665 -0.0000183648649878 + 439 24 Se 4px 0.0010956710065427 0.0010794240470201 + 440 24 Se 4d-2 0.0004092633672248 -0.0001225336109832 + 441 24 Se 4d-1 -0.0001581788012889 -0.0002571022113425 + 442 24 Se 4d0 0.0006229566634727 0.0003256705225108 + 443 24 Se 4d+1 -0.0011224471274799 -0.0002493355876522 + 444 24 Se 4d+2 0.0003605703857462 0.0001592359825600 + + 445 25 Cd 2s -0.0351676540043370 0.0040170028758808 + 446 25 Cd 3s 0.0028409052858448 0.0022839255865457 + 447 25 Cd 3py -0.0020017424097260 0.0009447584391941 + 448 25 Cd 3pz 0.0123131000679554 0.0070190686603568 + 449 25 Cd 3px -0.0075662507219686 0.0031978568794099 + 450 25 Cd 4py -0.0016291493358561 -0.0002063599996610 + 451 25 Cd 4pz -0.0036641297719583 0.0005016953491288 + 452 25 Cd 4px 0.0048014958730943 0.0010060180719944 + 453 25 Cd 4d-2 -0.0237576805250418 -0.0043940638813263 + 454 25 Cd 4d-1 0.0292107649181418 0.0011350654765872 + 455 25 Cd 4d0 0.0073658414064137 0.0006284285470355 + 456 25 Cd 4d+1 -0.0282716481909540 -0.0077098893016904 + 457 25 Cd 4d+2 -0.0061263871563214 -0.0023848303433135 + 458 25 Cd 5d-2 0.0111957409440232 0.0017360845290273 + 459 25 Cd 5d-1 -0.0097900624795405 -0.0014199781643200 + 460 25 Cd 5d0 -0.0004535586730976 -0.0004008620226517 + 461 25 Cd 5d+1 0.0037229979098565 0.0023045109247124 + 462 25 Cd 5d+2 0.0066203028286314 -0.0001205885998244 + 463 25 Cd 5f-3 0.0016090588373957 0.0005091915815615 + 464 25 Cd 5f-2 0.0010311951921859 0.0000354594841972 + 465 25 Cd 5f-1 0.0009757112880194 -0.0007024737333470 + 466 25 Cd 5f0 -0.0000425319210641 -0.0004028585946141 + 467 25 Cd 5f+1 0.0003780898308888 -0.0002760804498607 + 468 25 Cd 5f+2 -0.0002568500652248 -0.0004241986551451 + 469 25 Cd 5f+3 0.0011972801110154 0.0006976138666672 + + 470 26 Cd 2s 0.0030605905490736 -0.0024447611681977 + 471 26 Cd 3s -0.0008733518314232 -0.0022437600663618 + 472 26 Cd 3py -0.0001549038356801 0.0059980312392316 + 473 26 Cd 3pz -0.0071241889246024 -0.0040520276660215 + 474 26 Cd 3px -0.0015608865314909 -0.0057813203252311 + 475 26 Cd 4py 0.0008962118495097 0.0015171595915274 + 476 26 Cd 4pz -0.0025902270237552 -0.0013489668253700 + 477 26 Cd 4px -0.0005526887247399 -0.0025741606905299 + 478 26 Cd 4d-2 -0.0017133077071074 -0.0045852587845097 + 479 26 Cd 4d-1 -0.0059740940269838 -0.0019910097781599 + 480 26 Cd 4d0 0.0042415241651708 0.0024203576614101 + 481 26 Cd 4d+1 -0.0004910365084929 -0.0000592508011537 + 482 26 Cd 4d+2 0.0085694625257100 0.0013008193738178 + 483 26 Cd 5d-2 0.0012120869536236 0.0048113108090657 + 484 26 Cd 5d-1 0.0054178446376649 0.0022770342184400 + 485 26 Cd 5d0 0.0017374430563587 0.0015892231065645 + 486 26 Cd 5d+1 -0.0035963266743905 -0.0021407456357094 + 487 26 Cd 5d+2 -0.0001719049507785 -0.0039328467066392 + 488 26 Cd 5f-3 -0.0002755527268108 0.0010682825606823 + 489 26 Cd 5f-2 0.0018185511214660 0.0005642190711245 + 490 26 Cd 5f-1 -0.0009372255052664 -0.0004612436825984 + 491 26 Cd 5f0 0.0013051738150212 0.0004253141331990 + 492 26 Cd 5f+1 0.0003734080958923 0.0010825665836260 + 493 26 Cd 5f+2 0.0002092261792934 0.0000792188642800 + 494 26 Cd 5f+3 0.0005066816728272 -0.0010506256839813 + + 9 10 + -0.6092046604265293 -0.6059901097297201 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0425461772126705 0.0526557263110114 + 2 1 Cd 3s -0.0029002667604870 -0.0065155781347834 + 3 1 Cd 3py 0.0146739233112986 0.0190779565953359 + 4 1 Cd 3pz 0.0136536189868652 0.0178601413748423 + 5 1 Cd 3px -0.0064358196290872 -0.0006702761370281 + 6 1 Cd 4py -0.0022830827788224 -0.0081354529121616 + 7 1 Cd 4pz -0.0007664795640650 -0.0007582763495570 + 8 1 Cd 4px 0.0004175038289980 0.0035575020724905 + 9 1 Cd 4d-2 0.0057905671882762 0.0110490988050502 + 10 1 Cd 4d-1 -0.0436023145892649 -0.0719028068017597 + 11 1 Cd 4d0 0.0030560144409699 0.0059162227662681 + 12 1 Cd 4d+1 0.0009917053907120 -0.0017394229668967 + 13 1 Cd 4d+2 0.0449251124491727 0.0633430408948028 + 14 1 Cd 5d-2 -0.0018682624022644 -0.0003712082184809 + 15 1 Cd 5d-1 0.0103117486116198 0.0085906343536035 + 16 1 Cd 5d0 -0.0020399951277103 0.0005132894492580 + 17 1 Cd 5d+1 -0.0032984152482801 -0.0037999754794462 + 18 1 Cd 5d+2 -0.0040009990320337 -0.0091852122408747 + 19 1 Cd 5f-3 0.0002431267703737 0.0003622584434725 + 20 1 Cd 5f-2 -0.0022993381519630 0.0004424666073506 + 21 1 Cd 5f-1 0.0019436495159232 0.0022788758020724 + 22 1 Cd 5f0 0.0009717834337332 0.0003247929554851 + 23 1 Cd 5f+1 0.0003194511554434 -0.0013919841030091 + 24 1 Cd 5f+2 0.0011601337222808 0.0011884825595908 + 25 1 Cd 5f+3 -0.0000410098336161 0.0004610412031625 + + 26 2 Cd 2s 0.0765406811822993 0.0206639686070027 + 27 2 Cd 3s -0.0027462536521601 -0.0014341046731693 + 28 2 Cd 3py -0.0079074491405560 0.0186203069460384 + 29 2 Cd 3pz -0.0020200312302019 -0.0185866635065406 + 30 2 Cd 3px 0.0026887398964651 0.0091830073396837 + 31 2 Cd 4py 0.0037242541582996 -0.0062889794115549 + 32 2 Cd 4pz 0.0067561197829694 0.0094863024516709 + 33 2 Cd 4px -0.0089838046651633 -0.0025906770842765 + 34 2 Cd 4d-2 0.0266905709620494 -0.0825558930191427 + 35 2 Cd 4d-1 0.0561426628489086 0.0489510832662700 + 36 2 Cd 4d0 0.0036177202001881 -0.0765918073759576 + 37 2 Cd 4d+1 0.0445562316873634 0.0846344636107552 + 38 2 Cd 4d+2 0.0296038680309501 -0.0441060621608874 + 39 2 Cd 5d-2 -0.0038518093222481 0.0197712729916105 + 40 2 Cd 5d-1 -0.0113768255644947 -0.0138820407319545 + 41 2 Cd 5d0 -0.0109161421581695 0.0196551854187744 + 42 2 Cd 5d+1 -0.0090349310586950 -0.0175998904438282 + 43 2 Cd 5d+2 -0.0002556795387617 0.0074011661125686 + 44 2 Cd 5f-3 -0.0023388225627028 -0.0007662450734956 + 45 2 Cd 5f-2 0.0055749514539327 0.0014806492833698 + 46 2 Cd 5f-1 -0.0009598291194235 -0.0009660799021733 + 47 2 Cd 5f0 0.0001407675694350 -0.0003136956312487 + 48 2 Cd 5f+1 0.0025883742491842 -0.0010143239445586 + 49 2 Cd 5f+2 0.0028196998424289 0.0019568483974951 + 50 2 Cd 5f+3 -0.0005086610193821 0.0011781753993421 + + 51 3 Cd 2s 0.0320672788235094 -0.0180880040875820 + 52 3 Cd 3s -0.0030251824937672 0.0029106933424995 + 53 3 Cd 3py 0.0013671044959652 -0.0024074371161707 + 54 3 Cd 3pz 0.0049881887699736 -0.0001468278665248 + 55 3 Cd 3px 0.0229832318125865 -0.0153034656027557 + 56 3 Cd 4py -0.0043313181492050 0.0024404691141143 + 57 3 Cd 4pz -0.0037056103045098 0.0059961209190636 + 58 3 Cd 4px -0.0008939390504955 -0.0015305360942008 + 59 3 Cd 4d-2 -0.0311312432137479 0.0116855026094353 + 60 3 Cd 4d-1 -0.0329115062608700 0.0236488215458051 + 61 3 Cd 4d0 -0.0198249714621530 0.0121256350045097 + 62 3 Cd 4d+1 -0.0353055616470609 0.0399493755393133 + 63 3 Cd 4d+2 -0.0101468918343094 0.0060407687423770 + 64 3 Cd 5d-2 0.0122439930238614 -0.0073500583840622 + 65 3 Cd 5d-1 0.0133456723470593 -0.0047409886513008 + 66 3 Cd 5d0 0.0057391624825909 -0.0031910411732568 + 67 3 Cd 5d+1 0.0162235279151666 -0.0078105522129140 + 68 3 Cd 5d+2 0.0042367190749049 -0.0014231619405297 + 69 3 Cd 5f-3 0.0020747045883137 0.0002273819675235 + 70 3 Cd 5f-2 -0.0008820389485135 0.0027481962931598 + 71 3 Cd 5f-1 0.0001198690262913 0.0005322989684767 + 72 3 Cd 5f0 -0.0021984125473112 -0.0020182444484545 + 73 3 Cd 5f+1 -0.0027591863174362 0.0016587161675201 + 74 3 Cd 5f+2 0.0006922620502516 -0.0004264766397959 + 75 3 Cd 5f+3 -0.0012738582619846 0.0032226717647731 + + 76 4 Se 2s -0.4452405869720538 -0.6950594964570639 + 77 4 Se 3s -0.0133947122146252 -0.0215116565405045 + 78 4 Se 3py 0.0213719267759493 0.0299152390902693 + 79 4 Se 3pz 0.0032863310888766 0.0119939014690742 + 80 4 Se 3px 0.0264086248346982 0.0420960919245290 + 81 4 Se 4py 0.0079895892924479 0.0079023503949285 + 82 4 Se 4pz 0.0005843563011424 -0.0006399909396931 + 83 4 Se 4px 0.0109015950347144 0.0141548339958749 + 84 4 Se 4d-2 -0.0020876424214446 -0.0035707314661008 + 85 4 Se 4d-1 -0.0021575358608298 -0.0031299539197016 + 86 4 Se 4d0 -0.0037334116904276 -0.0058228703098038 + 87 4 Se 4d+1 -0.0002878497446229 -0.0001411693582002 + 88 4 Se 4d+2 -0.0005977912383990 -0.0006536013819004 + + 89 5 Se 2s -0.0580790194495385 -0.0317336264567158 + 90 5 Se 3s -0.0014471209368812 -0.0026104963139216 + 91 5 Se 3py -0.0073827822941527 -0.0065895922493889 + 92 5 Se 3pz -0.0040130455212666 0.0005149770812704 + 93 5 Se 3px 0.0019607780975049 0.0013390395551354 + 94 5 Se 4py -0.0035309578543629 -0.0026047856306716 + 95 5 Se 4pz 0.0016903539024326 0.0049844017312785 + 96 5 Se 4px 0.0013929136097725 -0.0015115855372506 + 97 5 Se 4d-2 0.0001773911194186 0.0002445280222235 + 98 5 Se 4d-1 -0.0002553636800294 -0.0004951621064411 + 99 5 Se 4d0 0.0010708416092928 0.0009765903247005 + 100 5 Se 4d+1 0.0002903851637103 0.0007254728705901 + 101 5 Se 4d+2 0.0018794121458972 0.0017850225927995 + + 102 6 Se 2s -0.5537443289938596 0.4392254917841042 + 103 6 Se 3s -0.0132818949095088 0.0107472795794214 + 104 6 Se 3py -0.0127013971878264 0.0040555451057601 + 105 6 Se 3pz 0.0007455513235996 0.0029326538059045 + 106 6 Se 3px 0.0346317981843110 -0.0287260714719073 + 107 6 Se 4py -0.0011000701332659 0.0038623709067319 + 108 6 Se 4pz 0.0098989870520611 -0.0058898220558703 + 109 6 Se 4px 0.0097568965519172 -0.0061806862819479 + 110 6 Se 4d-2 0.0028280206079823 -0.0021138332605507 + 111 6 Se 4d-1 -0.0006327602253135 0.0008796037478576 + 112 6 Se 4d0 0.0004335934460740 -0.0007583362847160 + 113 6 Se 4d+1 0.0020663393277213 -0.0018028624785686 + 114 6 Se 4d+2 -0.0019873929966347 0.0018604685289171 + + 115 7 Se 2s 0.0133408761039531 0.1153215763730665 + 116 7 Se 3s -0.0000876339747852 0.0018779410957152 + 117 7 Se 3py -0.0011398496171487 0.0005158238656649 + 118 7 Se 3pz 0.0011978714199240 -0.0057260142772172 + 119 7 Se 3px -0.0043992776493532 0.0004952758679794 + 120 7 Se 4py -0.0005350750797143 0.0039168053085115 + 121 7 Se 4pz 0.0003353993968450 -0.0021628176317154 + 122 7 Se 4px 0.0038796258740126 -0.0015478629799834 + 123 7 Se 4d-2 0.0005778888612280 -0.0009303197105293 + 124 7 Se 4d-1 -0.0002901604956440 0.0000637722834556 + 125 7 Se 4d0 -0.0001724852052879 0.0002440791735885 + 126 7 Se 4d+1 0.0008898434247856 0.0006584088483822 + 127 7 Se 4d+2 -0.0003377918635339 -0.0011935477791939 + + 128 8 Cd 2s -0.0341994089709238 0.0073261304862127 + 129 8 Cd 3s 0.0012520582936351 0.0001427170897426 + 130 8 Cd 3py 0.0105042684438689 -0.0037490558014985 + 131 8 Cd 3pz -0.0155205018597226 0.0018159329314209 + 132 8 Cd 3px -0.0137662413588075 -0.0018301813661894 + 133 8 Cd 4py -0.0054052694312212 0.0024708336621897 + 134 8 Cd 4pz 0.0000464416247506 -0.0008323044039482 + 135 8 Cd 4px -0.0046062887289199 0.0016134353552514 + 136 8 Cd 4d-2 0.0109746654559435 0.0032780945740513 + 137 8 Cd 4d-1 -0.0448354704026453 0.0355960798084802 + 138 8 Cd 4d0 0.0134681148835415 0.0014045921435045 + 139 8 Cd 4d+1 -0.0121686375134225 0.0057467867942945 + 140 8 Cd 4d+2 -0.0349890265998782 0.0138423574424401 + 141 8 Cd 5d-2 -0.0013195677894368 0.0004717333974645 + 142 8 Cd 5d-1 0.0170027731049786 -0.0101898953741600 + 143 8 Cd 5d0 0.0039756682133696 -0.0005562116932346 + 144 8 Cd 5d+1 0.0038010141586770 -0.0060616276390119 + 145 8 Cd 5d+2 -0.0025690867277084 -0.0070176052975590 + 146 8 Cd 5f-3 0.0007447637148466 -0.0007535589745154 + 147 8 Cd 5f-2 0.0012161851023451 -0.0010928755549976 + 148 8 Cd 5f-1 -0.0004178477039559 0.0000865036398842 + 149 8 Cd 5f0 0.0000794888041827 0.0005347661452443 + 150 8 Cd 5f+1 0.0041075857314747 -0.0007748935503436 + 151 8 Cd 5f+2 0.0016941747214781 0.0001254968930208 + 152 8 Cd 5f+3 -0.0043106693079191 -0.0007481856148952 + + 153 9 Cd 2s -0.0054774579728839 -0.0233244682121227 + 154 9 Cd 3s -0.0004043890860856 -0.0027038571444357 + 155 9 Cd 3py -0.0068427019013474 -0.0121666604624190 + 156 9 Cd 3pz -0.0121619102885816 0.0155568258902875 + 157 9 Cd 3px 0.0358323738755149 -0.0196328282727376 + 158 9 Cd 4py -0.0028914165286658 -0.0023625745029854 + 159 9 Cd 4pz 0.0027964241473000 -0.0014568908040215 + 160 9 Cd 4px -0.0094655027775495 0.0057837824693014 + 161 9 Cd 4d-2 -0.0143646020481987 0.0074913877879559 + 162 9 Cd 4d-1 0.0065311520874506 -0.0043298326694665 + 163 9 Cd 4d0 -0.0613243544775658 0.0300480639400263 + 164 9 Cd 4d+1 0.0789585009613565 -0.0627015660201373 + 165 9 Cd 4d+2 0.0436483507611092 -0.0036159560138716 + 166 9 Cd 5d-2 0.0006472965105797 -0.0012971622861186 + 167 9 Cd 5d-1 0.0037561970615166 0.0041710457543521 + 168 9 Cd 5d0 0.0064222406833549 -0.0011300498789742 + 169 9 Cd 5d+1 -0.0072397590473075 0.0039763520763691 + 170 9 Cd 5d+2 0.0006823978674811 0.0056553380394641 + 171 9 Cd 5f-3 0.0011187492342911 0.0014008467235204 + 172 9 Cd 5f-2 0.0009188034385724 -0.0003398256085836 + 173 9 Cd 5f-1 -0.0003692187057991 0.0002304148637099 + 174 9 Cd 5f0 -0.0022421953104695 0.0000931464399477 + 175 9 Cd 5f+1 0.0017823398710772 -0.0010900101817729 + 176 9 Cd 5f+2 -0.0005098361101863 -0.0018849513844501 + 177 9 Cd 5f+3 -0.0006850689066431 0.0007262191882533 + + 178 10 Se 2s 0.5097561697890189 -0.2207354567231272 + 179 10 Se 3s 0.0110292594838272 -0.0047939042452675 + 180 10 Se 3py 0.0077770727080493 -0.0025657396369205 + 181 10 Se 3pz -0.0226246135460814 0.0102764758631039 + 182 10 Se 3px 0.0254433236783835 -0.0097623649749089 + 183 10 Se 4py 0.0026174605358459 -0.0020614908211538 + 184 10 Se 4pz -0.0093508828855025 0.0043277650974662 + 185 10 Se 4px 0.0042119221010165 -0.0011087816348435 + 186 10 Se 4d-2 0.0005488972770347 -0.0003825668335532 + 187 10 Se 4d-1 -0.0034694458798054 0.0013810743152514 + 188 10 Se 4d0 -0.0011903387759348 0.0002935805649982 + 189 10 Se 4d+1 0.0008778976696091 -0.0002361558994239 + 190 10 Se 4d+2 0.0052676566165943 -0.0019781667173686 + + 191 11 Se 2s -0.0007035191799768 -0.0458503036235939 + 192 11 Se 3s -0.0008446025733204 -0.0011567284417436 + 193 11 Se 3py 0.0000092598976929 -0.0018330014948589 + 194 11 Se 3pz 0.0015495870810523 0.0018361772878818 + 195 11 Se 3px -0.0034326477438872 0.0024074165031030 + 196 11 Se 4py 0.0015696435475882 -0.0014058486580352 + 197 11 Se 4pz 0.0011658369906674 -0.0020860113361421 + 198 11 Se 4px 0.0041201516300417 -0.0021105989212229 + 199 11 Se 4d-2 -0.0009691733117388 0.0005547918357380 + 200 11 Se 4d-1 0.0001548336029926 0.0000549457713827 + 201 11 Se 4d0 0.0003379725261336 -0.0003818018808982 + 202 11 Se 4d+1 -0.0003116796125254 0.0005486953153183 + 203 11 Se 4d+2 0.0000093990338224 0.0003830828838245 + + 204 12 Cd 2s -0.0238454130590997 0.0051985892121611 + 205 12 Cd 3s 0.0017569331329007 -0.0021930325731244 + 206 12 Cd 3py -0.0109456309008949 0.0000621159756242 + 207 12 Cd 3pz -0.0108517676763361 0.0049078558855933 + 208 12 Cd 3px 0.0023871646030862 -0.0065993702656969 + 209 12 Cd 4py 0.0001073824332421 -0.0001091452897508 + 210 12 Cd 4pz 0.0011535459358984 -0.0010933380673424 + 211 12 Cd 4px 0.0030746740731727 -0.0032400432976249 + 212 12 Cd 4d-2 0.0107402428435437 0.0072941026213650 + 213 12 Cd 4d-1 0.0178299367532922 -0.0142869490297874 + 214 12 Cd 4d0 0.0300156108992178 -0.0118028139546367 + 215 12 Cd 4d+1 0.0092627797537143 -0.0066941990506323 + 216 12 Cd 4d+2 -0.0054316832950816 0.0027831217745237 + 217 12 Cd 5d-2 -0.0035204793829164 -0.0031294409423542 + 218 12 Cd 5d-1 -0.0042819297642610 0.0014935159971929 + 219 12 Cd 5d0 -0.0132010482836878 0.0054758667275661 + 220 12 Cd 5d+1 -0.0045116608843990 0.0009644229016162 + 221 12 Cd 5d+2 0.0022125815841002 -0.0030696473857534 + 222 12 Cd 5f-3 -0.0003312444549788 -0.0006325044130371 + 223 12 Cd 5f-2 -0.0007095974932812 0.0003025973612472 + 224 12 Cd 5f-1 -0.0005765463849733 0.0005525171427188 + 225 12 Cd 5f0 -0.0005983294124225 0.0001588364414614 + 226 12 Cd 5f+1 -0.0007587329777474 0.0003363371329394 + 227 12 Cd 5f+2 -0.0002242722652733 -0.0000622022000613 + 228 12 Cd 5f+3 -0.0020887295504667 0.0011203612839207 + + 229 13 Cd 2s 0.0303965045998414 0.0538900040735505 + 230 13 Cd 3s -0.0028867045516774 -0.0061353294947803 + 231 13 Cd 3py -0.0033787759480285 -0.0033332929536954 + 232 13 Cd 3pz 0.0124025622808112 0.0081392674854561 + 233 13 Cd 3px 0.0100443177178611 0.0124279041307589 + 234 13 Cd 4py 0.0030973598424598 0.0063030390545276 + 235 13 Cd 4pz 0.0003877272325091 -0.0039040927530450 + 236 13 Cd 4px -0.0058011168084047 -0.0100036451339438 + 237 13 Cd 4d-2 0.0083612862707773 0.0198988392631752 + 238 13 Cd 4d-1 0.0098072381363902 0.0077407337248017 + 239 13 Cd 4d0 -0.0123753866752162 -0.0180438739598775 + 240 13 Cd 4d+1 -0.0568460885030288 -0.0851150652525983 + 241 13 Cd 4d+2 -0.0339966346394122 -0.0530553238003079 + 242 13 Cd 5d-2 0.0044731599327230 0.0047018764640149 + 243 13 Cd 5d-1 -0.0049811006010532 0.0003555705227083 + 244 13 Cd 5d0 0.0058046547413511 0.0033400264495634 + 245 13 Cd 5d+1 0.0134235406903006 0.0179196193825762 + 246 13 Cd 5d+2 0.0100754334346801 0.0136190629329435 + 247 13 Cd 5f-3 -0.0005248012066460 0.0002479847970937 + 248 13 Cd 5f-2 -0.0012699041106018 -0.0010071492715448 + 249 13 Cd 5f-1 -0.0010309319991410 -0.0006257136498113 + 250 13 Cd 5f0 0.0008884365228110 0.0020349778363477 + 251 13 Cd 5f+1 0.0022724498480111 0.0028433981275142 + 252 13 Cd 5f+2 -0.0003377916802221 0.0001707751267524 + 253 13 Cd 5f+3 -0.0003525205985161 -0.0000399864224414 + + 254 14 Cd 2s -0.0079960626346485 -0.0050995929192805 + 255 14 Cd 3s -0.0009026461582667 0.0027899793326257 + 256 14 Cd 3py 0.0042564439485737 -0.0027669987515993 + 257 14 Cd 3pz 0.0014480692146571 0.0003074624185924 + 258 14 Cd 3px -0.0071889939963045 0.0062676616658815 + 259 14 Cd 4py 0.0014639806866664 -0.0014703309380368 + 260 14 Cd 4pz -0.0011882954115242 -0.0000228913598052 + 261 14 Cd 4px -0.0033119611534581 0.0007881014705195 + 262 14 Cd 4d-2 0.0017319996444660 0.0013136203872611 + 263 14 Cd 4d-1 -0.0031339118517361 -0.0157600082427457 + 264 14 Cd 4d0 0.0169018321508864 0.0219811532347504 + 265 14 Cd 4d+1 0.0062612534203619 0.0100990162923938 + 266 14 Cd 4d+2 -0.0010711997107393 -0.0064109698162155 + 267 14 Cd 5d-2 0.0064581956316729 -0.0034059230776011 + 268 14 Cd 5d-1 0.0005736305833185 0.0015805805275869 + 269 14 Cd 5d0 0.0017732453023966 -0.0043908987532383 + 270 14 Cd 5d+1 0.0020500236229832 0.0008927312198373 + 271 14 Cd 5d+2 0.0007882033504478 0.0002280919281791 + 272 14 Cd 5f-3 0.0003861190976358 -0.0004767870397827 + 273 14 Cd 5f-2 -0.0011300893427945 -0.0005850908402984 + 274 14 Cd 5f-1 -0.0005971573138834 0.0008164873291014 + 275 14 Cd 5f0 0.0002908491409154 -0.0003238256675999 + 276 14 Cd 5f+1 0.0007495471057419 -0.0000333884540680 + 277 14 Cd 5f+2 0.0004112107669757 0.0005955998800993 + 278 14 Cd 5f+3 0.0023975234129684 -0.0007248646464398 + + 279 15 Se 2s 0.0810870090180785 0.0780399593627346 + 280 15 Se 3s 0.0020221874430651 0.0019825555197862 + 281 15 Se 3py -0.0035386405389285 -0.0022848267916394 + 282 15 Se 3pz 0.0039538578086949 0.0040834012619815 + 283 15 Se 3px -0.0004774087469281 -0.0019176699611332 + 284 15 Se 4py -0.0007973617470614 0.0002243608261275 + 285 15 Se 4pz -0.0017887265991615 0.0012487567775892 + 286 15 Se 4px 0.0023344464570007 0.0026988686278643 + 287 15 Se 4d-2 0.0002164096826548 0.0003478625595965 + 288 15 Se 4d-1 0.0001235993491606 0.0001504583386902 + 289 15 Se 4d0 0.0010303554135710 0.0012347258970345 + 290 15 Se 4d+1 0.0004104328777349 0.0006909595473421 + 291 15 Se 4d+2 -0.0007068280566681 -0.0002890650209033 + + 292 16 Se 2s -0.0569380544955344 -0.1235194970888933 + 293 16 Se 3s -0.0005566361547620 -0.0026972076427452 + 294 16 Se 3py 0.0006824292381654 0.0016358602995272 + 295 16 Se 3pz -0.0066477089975566 -0.0112015445273884 + 296 16 Se 3px 0.0000444072146834 0.0023665556325056 + 297 16 Se 4py 0.0003009779359318 0.0014634922141120 + 298 16 Se 4pz 0.0006040352932961 -0.0012413342908069 + 299 16 Se 4px 0.0042758335188862 0.0057313762160777 + 300 16 Se 4d-2 -0.0003851323721508 -0.0009870037183781 + 301 16 Se 4d-1 0.0000993940266002 -0.0001405688236397 + 302 16 Se 4d0 -0.0005296026401824 -0.0008787988415969 + 303 16 Se 4d+1 -0.0003786806453333 -0.0006107957993467 + 304 16 Se 4d+2 -0.0000145342432063 0.0001101492116615 + + 305 17 Cd 2s 0.0052438931562706 0.0104113182730106 + 306 17 Cd 3s 0.0009864334607226 0.0014618304613636 + 307 17 Cd 3py 0.0045515655372500 0.0067074667756223 + 308 17 Cd 3pz 0.0014728168136406 0.0038979419606121 + 309 17 Cd 3px 0.0081334467982989 0.0147413605158871 + 310 17 Cd 4py -0.0000309549237288 -0.0009102289655015 + 311 17 Cd 4pz 0.0005243096903150 0.0013642455981423 + 312 17 Cd 4px 0.0012170918344730 0.0020538913445612 + 313 17 Cd 4d-2 -0.0075371232462007 -0.0157884125190735 + 314 17 Cd 4d-1 -0.0009759438323945 -0.0020865801302248 + 315 17 Cd 4d0 0.0035765545104306 0.0070201164552542 + 316 17 Cd 4d+1 -0.0015505862488935 -0.0029967405699359 + 317 17 Cd 4d+2 -0.0023383154622674 -0.0054802502232205 + 318 17 Cd 5d-2 0.0065074821018813 0.0080451794047201 + 319 17 Cd 5d-1 0.0011523934036520 0.0016837362504040 + 320 17 Cd 5d0 0.0003054280984344 0.0012374879097350 + 321 17 Cd 5d+1 0.0010578378665209 0.0042300661082177 + 322 17 Cd 5d+2 0.0010711601319122 0.0022382809421118 + 323 17 Cd 5f-3 0.0005661011051010 0.0004338658934912 + 324 17 Cd 5f-2 0.0009204407455835 0.0011540836115675 + 325 17 Cd 5f-1 0.0003989233932191 0.0008899337877843 + 326 17 Cd 5f0 0.0003018377795294 0.0005200922795042 + 327 17 Cd 5f+1 -0.0001742016893140 0.0006551131516046 + 328 17 Cd 5f+2 0.0008569152914025 0.0014527583337801 + 329 17 Cd 5f+3 -0.0007664391178917 -0.0008474219254238 + + 330 18 Cd 2s -0.0107500267873760 0.0035021914884742 + 331 18 Cd 3s -0.0035267621635010 0.0014831975266717 + 332 18 Cd 3py -0.0081796913924641 0.0025740811453670 + 333 18 Cd 3pz -0.0053209503552279 0.0068080052885063 + 334 18 Cd 3px -0.0079059401485152 0.0065856140027302 + 335 18 Cd 4py -0.0020847779661813 0.0013679020279927 + 336 18 Cd 4pz -0.0020928447692035 0.0000100547776890 + 337 18 Cd 4px -0.0026721378197190 0.0016599902007547 + 338 18 Cd 4d-2 -0.0014400463309215 -0.0033008691699247 + 339 18 Cd 4d-1 -0.0022553106363130 -0.0064013626833074 + 340 18 Cd 4d0 0.0009125045224723 -0.0047536841859548 + 341 18 Cd 4d+1 0.0018239309775506 0.0044606969617864 + 342 18 Cd 4d+2 -0.0013555894553740 -0.0017261685680155 + 343 18 Cd 5d-2 -0.0036803659307564 0.0036030620611821 + 344 18 Cd 5d-1 -0.0047759790595246 0.0036741045661724 + 345 18 Cd 5d0 0.0001701906948873 -0.0004964429471153 + 346 18 Cd 5d+1 -0.0052401727787789 0.0014996837477246 + 347 18 Cd 5d+2 0.0015415009369646 -0.0003465139473359 + 348 18 Cd 5f-3 0.0000886145505219 0.0002981315972872 + 349 18 Cd 5f-2 -0.0016858093363877 0.0004434283071587 + 350 18 Cd 5f-1 -0.0008870566066747 0.0007033133782496 + 351 18 Cd 5f0 0.0005781983339705 -0.0002708595049917 + 352 18 Cd 5f+1 -0.0010454424110239 0.0005437975619815 + 353 18 Cd 5f+2 0.0009191576835275 -0.0008530019010762 + 354 18 Cd 5f+3 0.0007372224893062 -0.0008836559031004 + + 355 19 Se 2s 0.0248790041629819 0.0552099433319271 + 356 19 Se 3s 0.0002759823670392 0.0009335740743950 + 357 19 Se 3py 0.0004976649660381 0.0009861478516953 + 358 19 Se 3pz 0.0011707679740168 0.0027718263651540 + 359 19 Se 3px 0.0003124977616778 0.0004397034079391 + 360 19 Se 4py 0.0002103053140857 -0.0003454376517240 + 361 19 Se 4pz 0.0009416353076157 0.0017167865100855 + 362 19 Se 4px 0.0001034787147562 0.0008885895322973 + 363 19 Se 4d-2 -0.0002007017300880 -0.0002361459988605 + 364 19 Se 4d-1 -0.0001992436927653 -0.0003257230230939 + 365 19 Se 4d0 0.0000283430314424 0.0001156446362451 + 366 19 Se 4d+1 -0.0001103541980075 -0.0001662481164468 + 367 19 Se 4d+2 -0.0002115619268408 -0.0004019463604270 + + 368 20 Se 2s 0.0719566701401955 0.0528894729113269 + 369 20 Se 3s 0.0015881556568924 0.0008723520866193 + 370 20 Se 3py -0.0015540941084529 -0.0029547851877739 + 371 20 Se 3pz 0.0033041181768989 0.0013496476648448 + 372 20 Se 3px -0.0103219129836902 -0.0019610476557070 + 373 20 Se 4py 0.0008612371678487 0.0014651559365186 + 374 20 Se 4pz 0.0001166401048961 -0.0005968220625661 + 375 20 Se 4px 0.0098678029821586 0.0013872745903937 + 376 20 Se 4d-2 -0.0006715690754042 -0.0015049833825276 + 377 20 Se 4d-1 -0.0004011374473106 0.0001095146923166 + 378 20 Se 4d0 0.0009457617693384 0.0004685320664246 + 379 20 Se 4d+1 -0.0011997857973644 0.0008926070457723 + 380 20 Se 4d+2 -0.0007413207647906 -0.0001571165894704 + + 381 21 Se 2s -0.0614648893181398 -0.0098820408085036 + 382 21 Se 3s -0.0008071555462993 -0.0000975201266318 + 383 21 Se 3py 0.0035824396278311 0.0017945643222965 + 384 21 Se 3pz 0.0015170830048067 -0.0008859244948718 + 385 21 Se 3px 0.0035437887076812 0.0017426746505726 + 386 21 Se 4py 0.0008024472765700 -0.0014662522495682 + 387 21 Se 4pz -0.0005225461980056 0.0007217473692558 + 388 21 Se 4px -0.0008563026378252 -0.0046388914431507 + 389 21 Se 4d-2 -0.0008214655491917 0.0001232198673448 + 390 21 Se 4d-1 -0.0005513347712934 0.0003329962593998 + 391 21 Se 4d0 -0.0000661161684274 -0.0003922645928450 + 392 21 Se 4d+1 -0.0003594052280157 -0.0002479145132427 + 393 21 Se 4d+2 -0.0000295371292642 0.0006268544758873 + + 394 22 Cd 2s -0.0035548117243565 -0.0086741370763342 + 395 22 Cd 3s 0.0000355771849777 -0.0011500529609021 + 396 22 Cd 3py -0.0059633939436874 -0.0064407112214197 + 397 22 Cd 3pz 0.0051718758809355 0.0054502228527754 + 398 22 Cd 3px -0.0096945020724967 -0.0124021472712000 + 399 22 Cd 4py -0.0015047298651347 -0.0018411896455125 + 400 22 Cd 4pz 0.0012993493877883 0.0022053976916173 + 401 22 Cd 4px -0.0020396176380097 -0.0039154585303615 + 402 22 Cd 4d-2 0.0038538007256506 0.0039893704074199 + 403 22 Cd 4d-1 -0.0010347978227343 0.0012266534406542 + 404 22 Cd 4d0 -0.0091840417763653 -0.0036007542439305 + 405 22 Cd 4d+1 0.0095093067233034 0.0045812537030062 + 406 22 Cd 4d+2 -0.0057565819657732 -0.0049657206974849 + 407 22 Cd 5d-2 -0.0014353314889009 -0.0024059685715320 + 408 22 Cd 5d-1 0.0027047578547096 0.0029951992653910 + 409 22 Cd 5d0 0.0042078573055945 0.0021239587662057 + 410 22 Cd 5d+1 0.0031003038664311 0.0065982939988027 + 411 22 Cd 5d+2 -0.0049054882945513 -0.0081803456585478 + 412 22 Cd 5f-3 -0.0001476913834563 -0.0003066219226624 + 413 22 Cd 5f-2 0.0010126051789604 0.0006513518886861 + 414 22 Cd 5f-1 0.0000499064814781 -0.0007534224363124 + 415 22 Cd 5f0 0.0000670603501418 -0.0015432272999724 + 416 22 Cd 5f+1 0.0008151383747833 0.0000105893876684 + 417 22 Cd 5f+2 0.0011595317009038 0.0010330936630042 + 418 22 Cd 5f+3 -0.0009127129163706 -0.0025223908403506 + + 419 23 Se 2s 0.0052280268614340 0.0093048925874167 + 420 23 Se 3s 0.0002326974605311 0.0003342652367906 + 421 23 Se 3py -0.0001196397384446 -0.0004055141275029 + 422 23 Se 3pz 0.0010841922074021 0.0011294766644061 + 423 23 Se 3px -0.0005851703702573 -0.0014210268280722 + 424 23 Se 4py -0.0008590548955103 -0.0005652451508412 + 425 23 Se 4pz -0.0012551985085964 -0.0009917591150155 + 426 23 Se 4px 0.0007823180578784 0.0020305232440330 + 427 23 Se 4d-2 0.0000284225278206 -0.0001290960895729 + 428 23 Se 4d-1 -0.0000236406318401 0.0001034703632363 + 429 23 Se 4d0 0.0003331971122479 0.0002828039334714 + 430 23 Se 4d+1 0.0000955125566689 -0.0001265990874193 + 431 23 Se 4d+2 -0.0000886864826079 -0.0002321523852192 + + 432 24 Se 2s -0.0050485823337472 0.0015771931384255 + 433 24 Se 3s -0.0002586462023219 -0.0000320802723766 + 434 24 Se 3py -0.0011349069755677 0.0002165942871460 + 435 24 Se 3pz -0.0000617431692947 -0.0005477221702544 + 436 24 Se 3px 0.0008307820642138 0.0003369698747520 + 437 24 Se 4py -0.0001468020842152 -0.0002366512083431 + 438 24 Se 4pz -0.0013862684597643 0.0010920141337930 + 439 24 Se 4px 0.0004657801462592 -0.0002915609946536 + 440 24 Se 4d-2 0.0000551118424299 0.0001634644979685 + 441 24 Se 4d-1 -0.0002549154094426 0.0000573988288195 + 442 24 Se 4d0 0.0003830864592346 -0.0001987324657534 + 443 24 Se 4d+1 0.0001881683429292 -0.0001059367287312 + 444 24 Se 4d+2 0.0004484669272010 0.0000745354454577 + + 445 25 Cd 2s -0.0018098457334234 -0.0077541828907027 + 446 25 Cd 3s 0.0011957667051170 -0.0005114107121569 + 447 25 Cd 3py -0.0036938458558839 -0.0037059060482949 + 448 25 Cd 3pz 0.0062099743634297 -0.0014569164707424 + 449 25 Cd 3px -0.0016806838575053 -0.0032763711786667 + 450 25 Cd 4py -0.0014193892120324 -0.0014846933706672 + 451 25 Cd 4pz 0.0019017670452500 -0.0005775292152885 + 452 25 Cd 4px 0.0000400574994953 -0.0003564418943926 + 453 25 Cd 4d-2 0.0008344197688433 -0.0008181862695430 + 454 25 Cd 4d-1 0.0028276982264142 0.0044635625543695 + 455 25 Cd 4d0 0.0003069366848931 0.0008669138761527 + 456 25 Cd 4d+1 0.0023196484723255 -0.0007644592184342 + 457 25 Cd 4d+2 0.0006778545492930 0.0000048529405712 + 458 25 Cd 5d-2 -0.0009735644507817 -0.0021417506163228 + 459 25 Cd 5d-1 -0.0029305376115506 -0.0016409516495952 + 460 25 Cd 5d0 0.0034798398124793 0.0000893281872763 + 461 25 Cd 5d+1 0.0015841894475419 0.0002415018980099 + 462 25 Cd 5d+2 -0.0001625510552667 0.0008981513710813 + 463 25 Cd 5f-3 0.0000179195189449 -0.0005510453479135 + 464 25 Cd 5f-2 -0.0003724670877474 0.0000767475148702 + 465 25 Cd 5f-1 -0.0013119911311024 0.0006997242625067 + 466 25 Cd 5f0 0.0007671371274541 0.0002677386601124 + 467 25 Cd 5f+1 0.0004813807383089 0.0004120097343699 + 468 25 Cd 5f+2 -0.0000568940042960 0.0009806998133871 + 469 25 Cd 5f+3 0.0005424310599826 -0.0002257897155080 + + 470 26 Cd 2s 0.0005688492384789 0.0000997247099075 + 471 26 Cd 3s -0.0025413163630389 -0.0001543856968374 + 472 26 Cd 3py 0.0012566885074245 -0.0010392909957767 + 473 26 Cd 3pz -0.0020692011075382 -0.0007127007460268 + 474 26 Cd 3px -0.0020210229882153 0.0013923855068847 + 475 26 Cd 4py -0.0007185532365861 -0.0003409546259413 + 476 26 Cd 4pz -0.0006769520172529 -0.0005006160906155 + 477 26 Cd 4px -0.0014914807288350 0.0005576598783502 + 478 26 Cd 4d-2 -0.0121593587906099 -0.0017387142824460 + 479 26 Cd 4d-1 -0.0040680397954396 -0.0000562486685473 + 480 26 Cd 4d0 0.0067220582259054 0.0006214753212721 + 481 26 Cd 4d+1 -0.0020159853367144 -0.0008365651654295 + 482 26 Cd 4d+2 0.0029625366770861 -0.0003830837799347 + 483 26 Cd 5d-2 0.0000970588403126 -0.0004368015633517 + 484 26 Cd 5d-1 -0.0001062939081587 -0.0000661237761527 + 485 26 Cd 5d0 0.0002723900306951 0.0002248122661232 + 486 26 Cd 5d+1 -0.0009102696278804 -0.0008318344360464 + 487 26 Cd 5d+2 -0.0008027954732235 0.0022703800446035 + 488 26 Cd 5f-3 -0.0002737694829600 0.0002911124582365 + 489 26 Cd 5f-2 -0.0004767700746324 0.0002737292779997 + 490 26 Cd 5f-1 -0.0002609696159517 0.0001015280455895 + 491 26 Cd 5f0 -0.0000896819683460 0.0003124696779558 + 492 26 Cd 5f+1 0.0003648465915016 -0.0002367077209257 + 493 26 Cd 5f+2 0.0003096286938181 -0.0001230845748723 + 494 26 Cd 5f+3 -0.0001725537018208 0.0007904920952756 + + 11 12 + -0.5982310607964160 -0.5967061494959151 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0211573589135872 -0.0161785575167025 + 2 1 Cd 3s 0.0014849715584648 0.0002847806488110 + 3 1 Cd 3py -0.0071292859008856 -0.0050915896951053 + 4 1 Cd 3pz 0.0207108178883988 0.0109299605763666 + 5 1 Cd 3px 0.0113467276093179 0.0080517715680193 + 6 1 Cd 4py 0.0000376821657512 0.0003407381668240 + 7 1 Cd 4pz -0.0007124882502171 -0.0008420441491206 + 8 1 Cd 4px -0.0011082479367792 -0.0010267968896005 + 9 1 Cd 4d-2 -0.0200928419313301 -0.0128167637865679 + 10 1 Cd 4d-1 -0.0481465226066476 -0.0289147482685101 + 11 1 Cd 4d0 0.0171710433205335 0.0102377601573210 + 12 1 Cd 4d+1 0.0351411913924979 0.0210289681896303 + 13 1 Cd 4d+2 0.0102480447351520 0.0055787531951184 + 14 1 Cd 5d-2 0.0037253286721859 0.0016293883072719 + 15 1 Cd 5d-1 0.0108265186009527 0.0037190083866025 + 16 1 Cd 5d0 -0.0041420907595324 -0.0042953581688046 + 17 1 Cd 5d+1 -0.0087500511347085 -0.0039026361983429 + 18 1 Cd 5d+2 -0.0036344717352425 -0.0019074833377085 + 19 1 Cd 5f-3 -0.0000286394245985 0.0005405938986574 + 20 1 Cd 5f-2 -0.0025469705455439 0.0002408679459406 + 21 1 Cd 5f-1 0.0000945810014007 0.0006727003543950 + 22 1 Cd 5f0 -0.0003697931479850 0.0003758030384631 + 23 1 Cd 5f+1 0.0018812495127425 0.0020613244269503 + 24 1 Cd 5f+2 0.0020545346216998 0.0003320396619745 + 25 1 Cd 5f+3 0.0007369760204877 0.0004889713768578 + + 26 2 Cd 2s 0.0063429218300872 0.0014275484059486 + 27 2 Cd 3s -0.0021331294239621 -0.0019861662059338 + 28 2 Cd 3py 0.0013576668283091 -0.0011426597312539 + 29 2 Cd 3pz 0.0056365155486871 0.0076874195582216 + 30 2 Cd 3px -0.0010024310391499 0.0022134424409835 + 31 2 Cd 4py -0.0006341983385451 -0.0010676589826250 + 32 2 Cd 4pz 0.0053058513307104 0.0044351797038284 + 33 2 Cd 4px -0.0020181069958178 -0.0004885664371199 + 34 2 Cd 4d-2 -0.0115053655293155 -0.0046360444746928 + 35 2 Cd 4d-1 0.0127393071285960 0.0074943152575468 + 36 2 Cd 4d0 -0.0094077222345475 -0.0051766812361173 + 37 2 Cd 4d+1 0.0145279427565408 0.0112115362498034 + 38 2 Cd 4d+2 -0.0040151028818587 -0.0015095786291410 + 39 2 Cd 5d-2 0.0020277173111834 0.0009711523241632 + 40 2 Cd 5d-1 -0.0036574886332316 -0.0018034331519362 + 41 2 Cd 5d0 -0.0030854780484010 -0.0042338903023761 + 42 2 Cd 5d+1 -0.0015922392404081 -0.0034275744623710 + 43 2 Cd 5d+2 -0.0001170746063090 -0.0009179424227988 + 44 2 Cd 5f-3 -0.0005917960452768 -0.0000712927068827 + 45 2 Cd 5f-2 0.0008932837065496 0.0005996859286469 + 46 2 Cd 5f-1 0.0007303821236443 -0.0000428620041891 + 47 2 Cd 5f0 0.0008718316549803 0.0010019372406358 + 48 2 Cd 5f+1 -0.0010394050419539 0.0002675686961260 + 49 2 Cd 5f+2 0.0003591431856393 0.0005321390290087 + 50 2 Cd 5f+3 -0.0004472608730001 -0.0002619293285164 + + 51 3 Cd 2s -0.0005923808072776 -0.0049449615267122 + 52 3 Cd 3s 0.0008197354789034 -0.0006804358716782 + 53 3 Cd 3py 0.0024974002267995 0.0017099496562138 + 54 3 Cd 3pz 0.0009681280424225 0.0052792116634384 + 55 3 Cd 3px -0.0029358979818239 0.0011198483678601 + 56 3 Cd 4py -0.0001228017260088 0.0011755438310253 + 57 3 Cd 4pz 0.0007818880566285 0.0015712091499185 + 58 3 Cd 4px -0.0004462569468972 0.0004584053226311 + 59 3 Cd 4d-2 0.0074798667812269 -0.0036205299430734 + 60 3 Cd 4d-1 0.0008678096895669 -0.0003177259974387 + 61 3 Cd 4d0 0.0009583525804974 0.0000704444739206 + 62 3 Cd 4d+1 -0.0026528430932274 -0.0001900198683915 + 63 3 Cd 4d+2 0.0012166350308941 0.0013185991497154 + 64 3 Cd 5d-2 0.0008971015224406 0.0006113343957983 + 65 3 Cd 5d-1 -0.0000028666865323 -0.0004931220157729 + 66 3 Cd 5d0 -0.0018719304844826 -0.0023297743355560 + 67 3 Cd 5d+1 0.0008838975709276 -0.0001963355607200 + 68 3 Cd 5d+2 0.0007822629837675 -0.0021092040200960 + 69 3 Cd 5f-3 0.0003432833507057 0.0007647062803234 + 70 3 Cd 5f-2 -0.0010195234076370 0.0001185221406813 + 71 3 Cd 5f-1 0.0000909052500074 0.0001255911573911 + 72 3 Cd 5f0 0.0003415002809265 0.0008507168766627 + 73 3 Cd 5f+1 0.0011579830411985 -0.0001504435962896 + 74 3 Cd 5f+2 0.0001850558843878 0.0002269648854839 + 75 3 Cd 5f+3 -0.0000897877194720 0.0003335556464522 + + 76 4 Se 2s -0.1313792833731313 -0.0750169561467823 + 77 4 Se 3s -0.0052768620380397 -0.0027889018500744 + 78 4 Se 3py 0.0051577230489610 0.0034120031796833 + 79 4 Se 3pz -0.0035854698896509 -0.0021489502223992 + 80 4 Se 3px 0.0066718182130887 0.0036827136659021 + 81 4 Se 4py 0.0002832005769119 -0.0007082064256733 + 82 4 Se 4pz 0.0010897145300315 -0.0002643205852621 + 83 4 Se 4px 0.0018756156776940 0.0007650857393881 + 84 4 Se 4d-2 -0.0003982533061807 -0.0003478373248680 + 85 4 Se 4d-1 -0.0005876936033979 -0.0004594375012473 + 86 4 Se 4d0 -0.0009273114086379 -0.0005838485336162 + 87 4 Se 4d+1 0.0001957480344390 -0.0000184396794835 + 88 4 Se 4d+2 0.0000394773760816 0.0001314875915611 + + 89 5 Se 2s 0.0145873545636840 0.0112470222651370 + 90 5 Se 3s -0.0000762095655060 0.0001934000206584 + 91 5 Se 3py 0.0026235743482704 0.0018840247633205 + 92 5 Se 3pz -0.0005022864246900 -0.0000836864292769 + 93 5 Se 3px -0.0004805177850512 0.0000751253660886 + 94 5 Se 4py -0.0000014049779489 -0.0002404887378679 + 95 5 Se 4pz 0.0029677347006839 0.0020413282062037 + 96 5 Se 4px -0.0005983045260728 -0.0005191895299195 + 97 5 Se 4d-2 -0.0001470815797054 -0.0001405579827634 + 98 5 Se 4d-1 -0.0002039577567878 -0.0000341711657267 + 99 5 Se 4d0 0.0000560996652316 -0.0000068158322735 + 100 5 Se 4d+1 -0.0003750008043115 -0.0000501014326527 + 101 5 Se 4d+2 -0.0004725975391087 -0.0003694265081676 + + 102 6 Se 2s 0.0156457613513800 0.0058197773875493 + 103 6 Se 3s -0.0000474239766602 -0.0002072420074497 + 104 6 Se 3py -0.0005297269324911 0.0000225750005150 + 105 6 Se 3pz 0.0004415446818336 -0.0003138123951997 + 106 6 Se 3px -0.0010625267148577 -0.0005342951653675 + 107 6 Se 4py 0.0007638434094750 -0.0004719821576461 + 108 6 Se 4pz -0.0018901779984278 -0.0003875545366795 + 109 6 Se 4px 0.0001905961661289 0.0001223551751560 + 110 6 Se 4d-2 0.0000677516394929 -0.0000789886698567 + 111 6 Se 4d-1 0.0002502515462909 0.0000283224598382 + 112 6 Se 4d0 -0.0003090156356971 -0.0001069993983532 + 113 6 Se 4d+1 -0.0001536277157453 0.0000272765933221 + 114 6 Se 4d+2 0.0000816482721122 0.0000876868139714 + + 115 7 Se 2s 0.0283044198749809 0.0047204018924467 + 116 7 Se 3s 0.0007327282907774 -0.0000533771411794 + 117 7 Se 3py -0.0008429403516926 0.0000601812118478 + 118 7 Se 3pz -0.0002453330523294 -0.0004424278809993 + 119 7 Se 3px 0.0000231385936702 -0.0002685101793534 + 120 7 Se 4py 0.0006724799262107 -0.0000153371779256 + 121 7 Se 4pz -0.0012343467643398 0.0003262860146606 + 122 7 Se 4px -0.0000809448278124 0.0001669626754811 + 123 7 Se 4d-2 -0.0000940837193838 -0.0001159505677491 + 124 7 Se 4d-1 0.0003069372011140 0.0000424716780198 + 125 7 Se 4d0 -0.0001350683300870 0.0001077656355612 + 126 7 Se 4d+1 0.0000206830391652 0.0002251529538568 + 127 7 Se 4d+2 -0.0001920063782321 -0.0000106211627976 + + 128 8 Cd 2s 0.0048578588658172 -0.0062156255216980 + 129 8 Cd 3s 0.0008376030100251 -0.0000826165928179 + 130 8 Cd 3py 0.0027275021626329 -0.0002349690943289 + 131 8 Cd 3pz -0.0054119686753379 0.0007256193236841 + 132 8 Cd 3px -0.0015846745309563 0.0021751461459927 + 133 8 Cd 4py 0.0014662458749146 -0.0000369817484808 + 134 8 Cd 4pz -0.0006177193174756 -0.0011359845182809 + 135 8 Cd 4px -0.0000767572627981 0.0005255547682308 + 136 8 Cd 4d-2 0.0039321463292358 -0.0050653355863564 + 137 8 Cd 4d-1 0.0000294769079458 0.0015622395653824 + 138 8 Cd 4d0 -0.0025708034985028 0.0009193339191502 + 139 8 Cd 4d+1 0.0033973990447317 0.0023026854706368 + 140 8 Cd 4d+2 0.0004092599282500 0.0010530538004342 + 141 8 Cd 5d-2 -0.0002043713671892 0.0008256699063319 + 142 8 Cd 5d-1 -0.0019271566617063 0.0013951467460589 + 143 8 Cd 5d0 0.0006193703541682 0.0016392518781046 + 144 8 Cd 5d+1 -0.0006762743252089 -0.0033729960664054 + 145 8 Cd 5d+2 -0.0007553231239633 0.0002696576721190 + 146 8 Cd 5f-3 0.0000776388985880 -0.0000601853252544 + 147 8 Cd 5f-2 0.0000072974244081 0.0004709653897995 + 148 8 Cd 5f-1 0.0014039262789512 -0.0017290507082143 + 149 8 Cd 5f0 0.0003451274705491 -0.0007071905698289 + 150 8 Cd 5f+1 0.0005566427801416 0.0000060839105827 + 151 8 Cd 5f+2 -0.0003951422957624 -0.0007727760462619 + 152 8 Cd 5f+3 0.0005264035495592 -0.0002947733596433 + + 153 9 Cd 2s -0.0028114566555843 -0.0015647036803948 + 154 9 Cd 3s -0.0006725360225413 -0.0006911543968188 + 155 9 Cd 3py -0.0033730532727607 -0.0013784434218852 + 156 9 Cd 3pz 0.0014214657256979 0.0019529346095145 + 157 9 Cd 3px 0.0002884347638360 -0.0017250461281143 + 158 9 Cd 4py -0.0010508277007368 -0.0003628782898058 + 159 9 Cd 4pz 0.0001709816478761 0.0004666793229192 + 160 9 Cd 4px 0.0003735639464427 -0.0003446657525285 + 161 9 Cd 4d-2 -0.0000413922322761 0.0000558935279557 + 162 9 Cd 4d-1 0.0000879081333645 -0.0000792837364966 + 163 9 Cd 4d0 0.0003350396788484 0.0012322996621242 + 164 9 Cd 4d+1 -0.0022154018406281 -0.0007157317763300 + 165 9 Cd 4d+2 0.0001705228040916 -0.0011208000611587 + 166 9 Cd 5d-2 0.0003518969977000 -0.0004262312480044 + 167 9 Cd 5d-1 0.0019177990848501 0.0007891418741608 + 168 9 Cd 5d0 -0.0000067712827987 -0.0005898289813350 + 169 9 Cd 5d+1 0.0001731886924134 0.0004908196299559 + 170 9 Cd 5d+2 0.0015199604458155 0.0011277845851141 + 171 9 Cd 5f-3 0.0001732043877696 0.0003615872372279 + 172 9 Cd 5f-2 -0.0001449567562170 0.0000080424448847 + 173 9 Cd 5f-1 -0.0003159790253884 -0.0001742661961591 + 174 9 Cd 5f0 -0.0001436322136586 -0.0000781260018367 + 175 9 Cd 5f+1 -0.0002672627079196 -0.0002194035114955 + 176 9 Cd 5f+2 -0.0005853496051014 -0.0001050002198494 + 177 9 Cd 5f+3 0.0002098638249949 -0.0000072320763793 + + 178 10 Se 2s -0.0035070144555995 -0.0073209607192436 + 179 10 Se 3s -0.0001985756150989 -0.0004049071829625 + 180 10 Se 3py -0.0005052471170279 0.0000625829891016 + 181 10 Se 3pz 0.0000762603167141 0.0004527457791421 + 182 10 Se 3px -0.0002960897907493 -0.0003871115221003 + 183 10 Se 4py 0.0009026601112169 -0.0002314228940439 + 184 10 Se 4pz 0.0005137388760990 -0.0008538329732401 + 185 10 Se 4px 0.0004711416299435 -0.0001470889694811 + 186 10 Se 4d-2 -0.0000552189773732 -0.0001277340459368 + 187 10 Se 4d-1 0.0002093874426140 0.0001489281449633 + 188 10 Se 4d0 0.0000443420111750 -0.0002132792046911 + 189 10 Se 4d+1 0.0001645399317006 0.0000352669455794 + 190 10 Se 4d+2 -0.0000431664292767 -0.0001221405755710 + + 191 11 Se 2s 0.0449688952127836 -0.0079926970844726 + 192 11 Se 3s 0.0006688193971191 -0.0002406751342177 + 193 11 Se 3py 0.0026621141899654 -0.0002810003629797 + 194 11 Se 3pz -0.0009538095576024 0.0003880759201236 + 195 11 Se 3px 0.0002058649893359 0.0002544792916579 + 196 11 Se 4py 0.0021385005697945 -0.0004210631947744 + 197 11 Se 4pz 0.0017355863441974 -0.0003455612423030 + 198 11 Se 4px -0.0018886922947773 -0.0003208213392748 + 199 11 Se 4d-2 0.0000201158168827 0.0001631217032785 + 200 11 Se 4d-1 -0.0001029632701586 -0.0000461101206744 + 201 11 Se 4d0 -0.0003085354323234 0.0000222074808986 + 202 11 Se 4d+1 -0.0002052923013121 -0.0001457599983452 + 203 11 Se 4d+2 -0.0001036368558057 0.0000324631859808 + + 204 12 Cd 2s 0.0002195926943079 -0.0060707818034255 + 205 12 Cd 3s 0.0003796874853979 -0.0015511000648935 + 206 12 Cd 3py 0.0006799817434696 -0.0013816746886331 + 207 12 Cd 3pz -0.0064849702317003 0.0082035396905508 + 208 12 Cd 3px -0.0053038318496940 0.0022444768135610 + 209 12 Cd 4py -0.0012336863476134 0.0005133222991682 + 210 12 Cd 4pz -0.0020547845282491 0.0020424117954964 + 211 12 Cd 4px -0.0013940077271560 0.0008643404811058 + 212 12 Cd 4d-2 -0.0085785725777673 0.0033671334442394 + 213 12 Cd 4d-1 0.0037710550062779 -0.0030353354015618 + 214 12 Cd 4d0 -0.0036667698017688 -0.0011515182797653 + 215 12 Cd 4d+1 0.0002074762686475 -0.0009902037397090 + 216 12 Cd 4d+2 -0.0008718206197625 0.0005840497647577 + 217 12 Cd 5d-2 0.0010775126056652 -0.0000187060719574 + 218 12 Cd 5d-1 0.0009902193313258 0.0004869065981305 + 219 12 Cd 5d0 0.0078969715969763 -0.0054487994699684 + 220 12 Cd 5d+1 0.0019091716035219 -0.0021773717306631 + 221 12 Cd 5d+2 0.0005241328854300 -0.0001514651937561 + 222 12 Cd 5f-3 0.0002101488664015 -0.0003047272889264 + 223 12 Cd 5f-2 0.0000830360802372 -0.0003401379130865 + 224 12 Cd 5f-1 -0.0000907257157388 -0.0000274929325047 + 225 12 Cd 5f0 -0.0011034622265142 0.0020956955497253 + 226 12 Cd 5f+1 0.0000345258935964 0.0010995492286183 + 227 12 Cd 5f+2 -0.0002436205831348 0.0004167184152099 + 228 12 Cd 5f+3 0.0007654194492389 -0.0004684342079783 + + 229 13 Cd 2s -0.0416749357132934 -0.0305429097786709 + 230 13 Cd 3s 0.0023853361694481 0.0000566052889947 + 231 13 Cd 3py 0.0146379440746033 0.0069870433384008 + 232 13 Cd 3pz 0.0326238213382152 0.0220636657823238 + 233 13 Cd 3px 0.0018107424339379 0.0171208718330097 + 234 13 Cd 4py -0.0059613594831463 -0.0028184412158462 + 235 13 Cd 4pz -0.0053986758074766 -0.0006421951529686 + 236 13 Cd 4px 0.0026690423662800 0.0089912693951448 + 237 13 Cd 4d-2 -0.0118784023268074 -0.0145746186403578 + 238 13 Cd 4d-1 0.0803035564352935 0.0505561320738898 + 239 13 Cd 4d0 0.0644768204440598 0.0357800890503383 + 240 13 Cd 4d+1 -0.0564759900267495 -0.0408779448468276 + 241 13 Cd 4d+2 -0.0252522121202135 -0.0161558868307293 + 242 13 Cd 5d-2 -0.0008488189818354 -0.0052859783640171 + 243 13 Cd 5d-1 -0.0190890143092231 -0.0114786575260276 + 244 13 Cd 5d0 -0.0155129050141448 0.0002582925664898 + 245 13 Cd 5d+1 0.0125526619824205 0.0056313920351740 + 246 13 Cd 5d+2 0.0077452596064710 -0.0062230946263180 + 247 13 Cd 5f-3 -0.0011336648180255 0.0022427354031247 + 248 13 Cd 5f-2 0.0001812021089435 0.0011039567480653 + 249 13 Cd 5f-1 -0.0000266439011996 -0.0012323380079137 + 250 13 Cd 5f0 -0.0006318689503346 -0.0009091963168505 + 251 13 Cd 5f+1 0.0036056750350549 -0.0004879463922574 + 252 13 Cd 5f+2 -0.0010886847301458 -0.0011287128131540 + 253 13 Cd 5f+3 -0.0009616936687536 0.0021998311053585 + + 254 14 Cd 2s 0.0081253116358022 0.0015280788104638 + 255 14 Cd 3s 0.0004974129422124 0.0004372755284596 + 256 14 Cd 3py -0.0033039068961853 0.0005490256400416 + 257 14 Cd 3pz -0.0105325252493342 -0.0024108307638676 + 258 14 Cd 3px 0.0020100295206832 0.0020384449641705 + 259 14 Cd 4py -0.0012009720132862 0.0002040857417451 + 260 14 Cd 4pz -0.0019594102758595 -0.0002951414815157 + 261 14 Cd 4px 0.0011619755579004 0.0009157653899538 + 262 14 Cd 4d-2 0.0003773062318168 0.0008705421734765 + 263 14 Cd 4d-1 -0.0035614906972943 -0.0004570025864349 + 264 14 Cd 4d0 -0.0179231056846045 -0.0013471048836479 + 265 14 Cd 4d+1 -0.0053172813974921 -0.0002143648142077 + 266 14 Cd 4d+2 -0.0021889581889508 -0.0002655220269696 + 267 14 Cd 5d-2 -0.0007423712607215 -0.0013296944579168 + 268 14 Cd 5d-1 0.0073596602548745 -0.0003635172708582 + 269 14 Cd 5d0 0.0028904762079497 0.0013906974187152 + 270 14 Cd 5d+1 -0.0023498951205523 -0.0022998272938369 + 271 14 Cd 5d+2 -0.0000932732917705 -0.0003699302737441 + 272 14 Cd 5f-3 -0.0000515828860076 0.0002018019475251 + 273 14 Cd 5f-2 0.0004272324848705 0.0012531291977413 + 274 14 Cd 5f-1 -0.0022866143591591 0.0001292786108387 + 275 14 Cd 5f0 0.0006432194342475 -0.0006236949188835 + 276 14 Cd 5f+1 0.0009091097566664 0.0008968065553954 + 277 14 Cd 5f+2 0.0009369469186663 0.0002333161308531 + 278 14 Cd 5f+3 -0.0001126628485526 -0.0002790404736315 + + 279 15 Se 2s -0.0943193383695753 -0.0077942718762721 + 280 15 Se 3s -0.0010807608776650 0.0004087670384495 + 281 15 Se 3py 0.0008246921504256 0.0010440483472753 + 282 15 Se 3pz -0.0060343646604334 0.0004730406065478 + 283 15 Se 3px -0.0005779598378439 0.0032706423540383 + 284 15 Se 4py 0.0035284045262143 -0.0011095882822549 + 285 15 Se 4pz 0.0060078672264349 -0.0021415840375063 + 286 15 Se 4px 0.0011518157672278 -0.0011529216304411 + 287 15 Se 4d-2 -0.0003340217380584 -0.0010050918242564 + 288 15 Se 4d-1 0.0005622247737922 -0.0004422557932800 + 289 15 Se 4d0 -0.0010399719833752 -0.0001051781462422 + 290 15 Se 4d+1 -0.0004963574920494 -0.0009268338069590 + 291 15 Se 4d+2 -0.0001585379793355 0.0004232168717121 + + 292 16 Se 2s 0.7165358585436666 0.4365219926221410 + 293 16 Se 3s 0.0183596271477979 0.0124198774691580 + 294 16 Se 3py -0.0197798720794242 -0.0104527855360434 + 295 16 Se 3pz 0.0361367111402639 0.0236712172487071 + 296 16 Se 3px -0.0345505317443692 -0.0179612923953532 + 297 16 Se 4py -0.0056469941357422 -0.0043257021479300 + 298 16 Se 4pz 0.0119513640722315 0.0050538803787566 + 299 16 Se 4px -0.0123058865347670 -0.0067655769007625 + 300 16 Se 4d-2 0.0071671503098323 0.0048933026119145 + 301 16 Se 4d-1 0.0040718622085101 0.0026852147050360 + 302 16 Se 4d0 0.0011354543363829 0.0006441065470508 + 303 16 Se 4d+1 -0.0016311890092219 -0.0011897810044952 + 304 16 Se 4d+2 -0.0000324458664000 0.0002392415933116 + + 305 17 Cd 2s -0.0639605364637862 0.0088365130612664 + 306 17 Cd 3s 0.0097941364513411 0.0006300507092234 + 307 17 Cd 3py -0.0211611617073759 0.0090759008958528 + 308 17 Cd 3pz 0.0036184859316237 0.0056971444299380 + 309 17 Cd 3px -0.0000709576505414 -0.0416967552149072 + 310 17 Cd 4py 0.0142783837091677 0.0043742761429831 + 311 17 Cd 4pz 0.0035840779146456 0.0012373292809589 + 312 17 Cd 4px 0.0091898979804034 0.0077940284395062 + 313 17 Cd 4d-2 0.0585107576135133 0.1525133352623292 + 314 17 Cd 4d-1 0.0113902283455744 -0.0015481537624737 + 315 17 Cd 4d0 -0.0801447529034967 0.0008999370898619 + 316 17 Cd 4d+1 0.0014742094160848 0.0149666480995988 + 317 17 Cd 4d+2 0.0558460157699017 -0.0383251426045059 + 318 17 Cd 5d-2 -0.0083860873602152 -0.0248069108586861 + 319 17 Cd 5d-1 0.0011760182220789 0.0021598234864096 + 320 17 Cd 5d0 0.0096968089065015 0.0017246849137635 + 321 17 Cd 5d+1 0.0034671126784668 -0.0000697947053217 + 322 17 Cd 5d+2 -0.0056355920016512 0.0058802036555318 + 323 17 Cd 5f-3 0.0037733984105637 0.0026861778597798 + 324 17 Cd 5f-2 0.0002968234216265 -0.0020901290213242 + 325 17 Cd 5f-1 -0.0015907057559650 -0.0011896663377953 + 326 17 Cd 5f0 0.0010969911470479 0.0002511592293087 + 327 17 Cd 5f+1 -0.0015284765580585 0.0012352287695311 + 328 17 Cd 5f+2 -0.0017564403251349 -0.0001871201866905 + 329 17 Cd 5f+3 -0.0022264230539302 0.0011057165845641 + + 330 18 Cd 2s 0.0163551731524991 0.0049999022078447 + 331 18 Cd 3s -0.0012000735381958 0.0026551212219955 + 332 18 Cd 3py 0.0033610089214857 0.0070638462446733 + 333 18 Cd 3pz -0.0130090018770208 -0.0020856327766919 + 334 18 Cd 3px -0.0064913389904770 -0.0002689218798191 + 335 18 Cd 4py -0.0029372459425806 0.0028309034397074 + 336 18 Cd 4pz 0.0015977156656567 -0.0014573693392770 + 337 18 Cd 4px -0.0005997082501481 -0.0002125238831352 + 338 18 Cd 4d-2 0.0143636979278409 -0.0004099428122866 + 339 18 Cd 4d-1 0.0333029386355978 -0.0024682045515853 + 340 18 Cd 4d0 -0.0120054889066991 0.0004611712079530 + 341 18 Cd 4d+1 -0.0216360038142742 0.0012898869873754 + 342 18 Cd 4d+2 0.0064275823241685 -0.0000384566049701 + 343 18 Cd 5d-2 -0.0036317279373444 -0.0009114364614932 + 344 18 Cd 5d-1 -0.0038587938225838 -0.0011862607863096 + 345 18 Cd 5d0 0.0041277217100798 -0.0010091728249243 + 346 18 Cd 5d+1 0.0047991558403274 0.0026528060555435 + 347 18 Cd 5d+2 0.0021658269883494 -0.0043995320427666 + 348 18 Cd 5f-3 0.0009443618947953 -0.0017776420969523 + 349 18 Cd 5f-2 0.0015267852264811 0.0017756842921785 + 350 18 Cd 5f-1 0.0005928576681429 0.0003179507854249 + 351 18 Cd 5f0 -0.0002563576642437 0.0002346998981870 + 352 18 Cd 5f+1 -0.0001123795310946 -0.0006097410406768 + 353 18 Cd 5f+2 -0.0001697485703645 -0.0000135142183826 + 354 18 Cd 5f+3 0.0012283436148776 0.0009287646643735 + + 355 19 Se 2s -0.2537281623602155 0.0157427826344933 + 356 19 Se 3s -0.0035544941485934 0.0027116006125252 + 357 19 Se 3py 0.0020532993059167 -0.0026133131358876 + 358 19 Se 3pz -0.0130203409932147 0.0011775525104763 + 359 19 Se 3px -0.0050441863069194 0.0044703719278430 + 360 19 Se 4py 0.0065573039919487 0.0003395055045206 + 361 19 Se 4pz -0.0075121727241361 -0.0020367386958203 + 362 19 Se 4px -0.0014416159872775 -0.0003025327983517 + 363 19 Se 4d-2 0.0009104370096542 0.0014698935775878 + 364 19 Se 4d-1 0.0017173853756993 -0.0000961229295693 + 365 19 Se 4d0 -0.0010431424649359 -0.0006708317235324 + 366 19 Se 4d+1 -0.0004161698551615 0.0001245036529428 + 367 19 Se 4d+2 0.0015392391736268 -0.0009721182331615 + + 368 20 Se 2s -0.0393470358136984 0.0330649878838479 + 369 20 Se 3s -0.0009584923717907 0.0016229597054795 + 370 20 Se 3py 0.0027015852598362 -0.0013776219073780 + 371 20 Se 3pz -0.0055706253291872 0.0060098196830613 + 372 20 Se 3px 0.0013621808742900 0.0033170262889346 + 373 20 Se 4py -0.0036705598396177 -0.0005901769195346 + 374 20 Se 4pz 0.0046140041414573 -0.0015885225940636 + 375 20 Se 4px -0.0032382725999694 -0.0036402849827921 + 376 20 Se 4d-2 -0.0000717101013360 0.0003992317892371 + 377 20 Se 4d-1 -0.0008356788980793 -0.0001496555690351 + 378 20 Se 4d0 0.0006117801229800 -0.0001924014736152 + 379 20 Se 4d+1 -0.0006404168994189 -0.0014248598305740 + 380 20 Se 4d+2 -0.0000669489548056 -0.0002516943334878 + + 381 21 Se 2s -0.0113103821683396 0.0383974958961950 + 382 21 Se 3s 0.0004201046114824 0.0000640847013314 + 383 21 Se 3py 0.0000048640431175 -0.0030728262459703 + 384 21 Se 3pz -0.0001248973112696 0.0022242809632002 + 385 21 Se 3px -0.0002781475632602 -0.0022817310764324 + 386 21 Se 4py 0.0021669504425434 -0.0023296660198669 + 387 21 Se 4pz -0.0014741098935112 0.0014535158967336 + 388 21 Se 4px 0.0027202690207099 -0.0034161822182501 + 389 21 Se 4d-2 -0.0004617086693578 0.0006714901650537 + 390 21 Se 4d-1 0.0002495358484485 -0.0003874685088415 + 391 21 Se 4d0 0.0006763953599705 -0.0011569456536912 + 392 21 Se 4d+1 -0.0002100402285971 0.0005560352983383 + 393 21 Se 4d+2 0.0000470860263480 -0.0000096458166310 + + 394 22 Cd 2s -0.0233893172810427 0.0556442501176466 + 395 22 Cd 3s 0.0030246056328518 -0.0032586966211672 + 396 22 Cd 3py 0.0045646946562356 -0.0032734302253597 + 397 22 Cd 3pz 0.0197450767940260 -0.0284262088412027 + 398 22 Cd 3px 0.0063150846857142 0.0110513970639106 + 399 22 Cd 4py -0.0037795941634255 0.0073575636502723 + 400 22 Cd 4pz -0.0031524922396058 0.0054514299097698 + 401 22 Cd 4px 0.0017625390003579 0.0057903967534214 + 402 22 Cd 4d-2 0.0001410054788322 -0.0180926796936469 + 403 22 Cd 4d-1 0.0434168110881511 -0.0825069709357597 + 404 22 Cd 4d0 0.0523008682072039 -0.0796485445751959 + 405 22 Cd 4d+1 0.0114272841073499 -0.0327884110147015 + 406 22 Cd 4d+2 -0.0049230407355799 0.0177202149268655 + 407 22 Cd 5d-2 0.0033555874003136 0.0004694869487217 + 408 22 Cd 5d-1 -0.0070417656243058 0.0123176852370152 + 409 22 Cd 5d0 -0.0183395422764590 0.0124049838483270 + 410 22 Cd 5d+1 0.0001188161946696 0.0024285574901749 + 411 22 Cd 5d+2 0.0007577551470465 0.0087296341817063 + 412 22 Cd 5f-3 0.0001980888974858 -0.0010512725343960 + 413 22 Cd 5f-2 0.0004434016251733 0.0013507325176518 + 414 22 Cd 5f-1 0.0007012264946025 0.0001123282359282 + 415 22 Cd 5f0 -0.0003834323699958 0.0011961599983779 + 416 22 Cd 5f+1 -0.0019257602266017 0.0002661197258433 + 417 22 Cd 5f+2 -0.0004688910412244 -0.0015712279910300 + 418 22 Cd 5f+3 0.0014894582459061 0.0038389783204715 + + 419 23 Se 2s 0.4211820278741341 -0.7549420446036528 + 420 23 Se 3s 0.0112737188260102 -0.0202728605526203 + 421 23 Se 3py -0.0091870976559030 0.0158190929007373 + 422 23 Se 3pz 0.0220475990053800 -0.0436930232479312 + 423 23 Se 3px 0.0165779996750462 -0.0213769193329709 + 424 23 Se 4py 0.0000259579422733 0.0049865556243779 + 425 23 Se 4pz 0.0087193307030551 -0.0095032381283692 + 426 23 Se 4px 0.0042281668882718 -0.0100530723614754 + 427 23 Se 4d-2 -0.0031982281058708 0.0049656136649223 + 428 23 Se 4d-1 -0.0005336026182891 0.0004899127978483 + 429 23 Se 4d0 0.0025841234753728 -0.0052783400006860 + 430 23 Se 4d+1 0.0009120662717659 -0.0015831951417137 + 431 23 Se 4d+2 -0.0007933562719554 0.0027294085921836 + + 432 24 Se 2s -0.0079151032207601 0.0232967112792999 + 433 24 Se 3s 0.0001520191847919 0.0002693791284520 + 434 24 Se 3py -0.0008682497119781 0.0019170497554171 + 435 24 Se 3pz -0.0001534570105603 0.0018231468176956 + 436 24 Se 3px 0.0000912411338270 -0.0005924300150589 + 437 24 Se 4py -0.0016622554659510 0.0022894158154483 + 438 24 Se 4pz -0.0008342452354716 -0.0006847839709725 + 439 24 Se 4px 0.0010211947041112 -0.0020512505031819 + 440 24 Se 4d-2 0.0001517827029747 -0.0001866297744567 + 441 24 Se 4d-1 -0.0005224207624791 0.0009209951819410 + 442 24 Se 4d0 0.0001056926606277 -0.0005880130090454 + 443 24 Se 4d+1 0.0000315532644608 0.0002474364511897 + 444 24 Se 4d+2 0.0002988916652578 -0.0006199970560414 + + 445 25 Cd 2s -0.0103988322494594 0.0456660124305383 + 446 25 Cd 3s 0.0009474151165066 -0.0024672947086485 + 447 25 Cd 3py -0.0177788934405759 0.0192825697553778 + 448 25 Cd 3pz -0.0072474756177534 -0.0148919179828585 + 449 25 Cd 3px 0.0042196640203509 -0.0001610967858343 + 450 25 Cd 4py 0.0025269461731683 -0.0052225655193868 + 451 25 Cd 4pz -0.0045490161250362 0.0032513313440744 + 452 25 Cd 4px 0.0004887239987271 -0.0037901087598378 + 453 25 Cd 4d-2 0.0251189960506404 -0.0183776117666083 + 454 25 Cd 4d-1 -0.0627803214450657 0.0803314960433451 + 455 25 Cd 4d0 0.0012664842869592 -0.0081245331503810 + 456 25 Cd 4d+1 0.0062413255622631 0.0138683779028686 + 457 25 Cd 4d+2 -0.0255203059380914 0.0503954358763562 + 458 25 Cd 5d-2 -0.0069293132634222 0.0021003614550387 + 459 25 Cd 5d-1 0.0155495602461370 -0.0170881036850187 + 460 25 Cd 5d0 0.0014936479256751 0.0086877462506789 + 461 25 Cd 5d+1 -0.0111228223793572 -0.0017182425200862 + 462 25 Cd 5d+2 0.0091036784765227 -0.0104452821347024 + 463 25 Cd 5f-3 0.0016523166920775 -0.0008477201248197 + 464 25 Cd 5f-2 -0.0005656900519543 -0.0010439699563652 + 465 25 Cd 5f-1 0.0011425826214191 0.0004623911347622 + 466 25 Cd 5f0 -0.0000231044664606 0.0010214869246084 + 467 25 Cd 5f+1 0.0010990182293903 0.0013613283073614 + 468 25 Cd 5f+2 -0.0032676983247936 0.0002243526398478 + 469 25 Cd 5f+3 0.0010669312587314 0.0006603062169483 + + 470 26 Cd 2s -0.0027351292884872 -0.0006839318154904 + 471 26 Cd 3s -0.0019947969382464 0.0026971276658573 + 472 26 Cd 3py 0.0020524293675733 0.0005071547214833 + 473 26 Cd 3pz 0.0074374802805042 -0.0046446794791566 + 474 26 Cd 3px -0.0036849595697817 0.0037370235588009 + 475 26 Cd 4py 0.0006753154581946 0.0004013777937036 + 476 26 Cd 4pz 0.0023134938477628 -0.0010615594406057 + 477 26 Cd 4px -0.0013480874908507 0.0020417981625420 + 478 26 Cd 4d-2 -0.0022971209732522 0.0083160072360699 + 479 26 Cd 4d-1 -0.0019859681392374 0.0066600647020745 + 480 26 Cd 4d0 0.0028504061411905 -0.0081763359329192 + 481 26 Cd 4d+1 -0.0018282088984455 0.0039664241088732 + 482 26 Cd 4d+2 0.0024246221623674 -0.0069939902388052 + 483 26 Cd 5d-2 0.0020706998527050 -0.0008985733388417 + 484 26 Cd 5d-1 -0.0009492577276164 -0.0016961712328218 + 485 26 Cd 5d0 -0.0018220462475685 0.0000472743133497 + 486 26 Cd 5d+1 0.0042942890575175 -0.0023425689957738 + 487 26 Cd 5d+2 -0.0024969044283123 0.0026694769325656 + 488 26 Cd 5f-3 0.0004777018739125 -0.0003569574338699 + 489 26 Cd 5f-2 -0.0003339685753667 -0.0004021129289512 + 490 26 Cd 5f-1 0.0005443153383449 -0.0001445919586392 + 491 26 Cd 5f0 -0.0005840296125679 0.0006417777301941 + 492 26 Cd 5f+1 -0.0000510628613883 -0.0009907939155660 + 493 26 Cd 5f+2 0.0002844573851226 0.0003749982558845 + 494 26 Cd 5f+3 -0.0005122726964506 0.0004871115520373 + + 13 14 + -0.5744921940592569 -0.4947312751790493 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0747854023663074 0.0010703010366066 + 2 1 Cd 3s 0.0086707615813368 0.0001734176517342 + 3 1 Cd 3py 0.0343683200934979 0.0017452286713023 + 4 1 Cd 3pz -0.0010377920146690 0.0008474969555924 + 5 1 Cd 3px 0.0015175500768985 -0.0004413610822776 + 6 1 Cd 4py -0.0137233925350418 0.0004733569007208 + 7 1 Cd 4pz 0.0017888952161800 0.0004440097027931 + 8 1 Cd 4px -0.0020324262856089 -0.0001526388896349 + 9 1 Cd 4d-2 0.0099156175744881 0.0001188966595770 + 10 1 Cd 4d-1 -0.0363878133940581 -0.0014078869881812 + 11 1 Cd 4d0 -0.1021424925628003 0.0006567636370302 + 12 1 Cd 4d+1 -0.0038926438540143 -0.0006684650176208 + 13 1 Cd 4d+2 -0.1693468692448130 0.0020357611225799 + 14 1 Cd 5d-2 0.0024269909101135 -0.0005799454809124 + 15 1 Cd 5d-1 -0.0011755792038689 0.0001670943155274 + 16 1 Cd 5d0 0.0175137998551373 0.0000585772217937 + 17 1 Cd 5d+1 0.0003379185937441 -0.0006870477414619 + 18 1 Cd 5d+2 0.0182530643976791 0.0003471679213192 + 19 1 Cd 5f-3 0.0020622711748299 0.0000126710102273 + 20 1 Cd 5f-2 0.0036741302746477 0.0000720335297298 + 21 1 Cd 5f-1 0.0030539118363339 0.0000317606811989 + 22 1 Cd 5f0 0.0003302772999038 -0.0001836771492344 + 23 1 Cd 5f+1 -0.0029744874889634 -0.0000226379212706 + 24 1 Cd 5f+2 -0.0002053494179228 0.0001828069937075 + 25 1 Cd 5f+3 -0.0026051049839609 -0.0002919795752169 + + 26 2 Cd 2s 0.0049156152385796 -0.0033312120506325 + 27 2 Cd 3s -0.0033139275105979 0.0001288284296116 + 28 2 Cd 3py 0.0141265327625055 -0.0018449954470552 + 29 2 Cd 3pz 0.0037078662309725 -0.0000980673828357 + 30 2 Cd 3px 0.0018647446544256 -0.0019937381278993 + 31 2 Cd 4py 0.0048420976159940 -0.0009412823211737 + 32 2 Cd 4pz 0.0028794850059800 0.0006135904054662 + 33 2 Cd 4px -0.0010305031987747 -0.0014532414571976 + 34 2 Cd 4d-2 -0.0023115317852148 0.0107675812918005 + 35 2 Cd 4d-1 0.0152830434038031 -0.0031765135429990 + 36 2 Cd 4d0 -0.0043402847489668 0.0049309164940728 + 37 2 Cd 4d+1 0.0115764733367556 -0.0191848316449633 + 38 2 Cd 4d+2 0.0005415298545605 0.0003996990625402 + 39 2 Cd 5d-2 0.0011892842232525 0.0013807983750499 + 40 2 Cd 5d-1 -0.0106686860834803 -0.0008281055506054 + 41 2 Cd 5d0 0.0002891266118412 -0.0017135610551415 + 42 2 Cd 5d+1 -0.0021576032070352 0.0000184766737167 + 43 2 Cd 5d+2 0.0016354286964543 0.0030868698037172 + 44 2 Cd 5f-3 0.0009028317909761 0.0001046122506255 + 45 2 Cd 5f-2 -0.0000547305508190 0.0004139961075872 + 46 2 Cd 5f-1 0.0005424665209919 -0.0001042476224206 + 47 2 Cd 5f0 0.0005729170456590 -0.0000747615888374 + 48 2 Cd 5f+1 0.0001685220157424 0.0011814541419288 + 49 2 Cd 5f+2 0.0008955962728080 -0.0000640100950864 + 50 2 Cd 5f+3 0.0000237776726224 -0.0008331002023724 + + 51 3 Cd 2s -0.0672495293304695 0.0006203993501971 + 52 3 Cd 3s 0.0063277762945297 0.0009170801283431 + 53 3 Cd 3py 0.0104249363771835 0.0005198229759680 + 54 3 Cd 3pz 0.0318174848233618 -0.0005308906290801 + 55 3 Cd 3px -0.0326287886370678 -0.0013478470465296 + 56 3 Cd 4py 0.0026843451181224 0.0002174526612319 + 57 3 Cd 4pz -0.0069773608988351 0.0000623069312596 + 58 3 Cd 4px 0.0036786374153328 -0.0002700456780078 + 59 3 Cd 4d-2 -0.0184898337351036 0.0017022200743089 + 60 3 Cd 4d-1 0.0164645447155728 0.0016625946730326 + 61 3 Cd 4d0 0.0533342182314578 0.0008980440283270 + 62 3 Cd 4d+1 -0.1470393964225991 0.0002097577286267 + 63 3 Cd 4d+2 0.0620208582959337 0.0015501066781371 + 64 3 Cd 5d-2 0.0040872374650937 0.0001313028879654 + 65 3 Cd 5d-1 -0.0050379560982224 -0.0004193380169913 + 66 3 Cd 5d0 -0.0140237662378392 -0.0000876705461581 + 67 3 Cd 5d+1 0.0278316420895538 -0.0001177222097466 + 68 3 Cd 5d+2 -0.0134527330863237 0.0002322105051174 + 69 3 Cd 5f-3 -0.0011274517593155 -0.0003453534524626 + 70 3 Cd 5f-2 0.0011651362601855 0.0002656443725332 + 71 3 Cd 5f-1 0.0026249793016097 0.0002599823651024 + 72 3 Cd 5f0 0.0039698730225173 -0.0002547067333129 + 73 3 Cd 5f+1 0.0041355130363540 -0.0000873504025280 + 74 3 Cd 5f+2 -0.0011126911074412 0.0001243663764404 + 75 3 Cd 5f+3 0.0003986804137104 -0.0001631992406512 + + 76 4 Se 2s -0.0823536039673016 -0.0041093677359879 + 77 4 Se 3s -0.0008187551557798 0.0001075890357802 + 78 4 Se 3py -0.0014341600636909 -0.0008824333039463 + 79 4 Se 3pz -0.0049125096273308 0.0019391050926454 + 80 4 Se 3px 0.0059156848999488 0.0000252499467380 + 81 4 Se 4py 0.0014167119890618 0.0001255062074284 + 82 4 Se 4pz -0.0064906272540320 0.0005374135796405 + 83 4 Se 4px 0.0007123436853227 -0.0005030223900442 + 84 4 Se 4d-2 -0.0006923137083509 0.0001826118374390 + 85 4 Se 4d-1 0.0017201321973408 -0.0002245797051068 + 86 4 Se 4d0 -0.0003250481771934 0.0002246424363998 + 87 4 Se 4d+1 0.0004145334791659 -0.0002288089810118 + 88 4 Se 4d+2 -0.0011349700319417 -0.0001270768851425 + + 89 5 Se 2s 0.8587505266646567 -0.0007420872676984 + 90 5 Se 3s 0.0244560251319592 0.0001717356151090 + 91 5 Se 3py 0.0589715737988936 -0.0003466089305072 + 92 5 Se 3pz 0.0256402481715730 0.0003136778571267 + 93 5 Se 3px -0.0324068323001721 -0.0001684392841517 + 94 5 Se 4py 0.0200224380402261 0.0001487382198796 + 95 5 Se 4pz 0.0117928487696744 0.0000036423294080 + 96 5 Se 4px -0.0138549410654755 0.0000179244580118 + 97 5 Se 4d-2 -0.0020334605921037 -0.0000163542468699 + 98 5 Se 4d-1 0.0019264862676273 0.0000527048313151 + 99 5 Se 4d0 -0.0051760437593595 -0.0000215631717286 + 100 5 Se 4d+1 -0.0125001781049050 -0.0000605987022700 + 101 5 Se 4d+2 -0.0110831123914224 0.0001125361274407 + + 102 6 Se 2s -0.0400138642179491 0.0077289457505545 + 103 6 Se 3s -0.0011302142463490 -0.0000928000417887 + 104 6 Se 3py -0.0040956149576006 -0.0007093598732272 + 105 6 Se 3pz -0.0045833314842912 -0.0024878999390407 + 106 6 Se 3px 0.0025464051992562 0.0009457797536760 + 107 6 Se 4py 0.0003855980718906 0.0001034852948109 + 108 6 Se 4pz -0.0021510023660874 -0.0005122866914940 + 109 6 Se 4px 0.0015028980245470 -0.0000731817902710 + 110 6 Se 4d-2 0.0004841859728372 0.0000711959910994 + 111 6 Se 4d-1 -0.0001864121009829 0.0000017096863641 + 112 6 Se 4d0 0.0001542728526158 -0.0000994371861940 + 113 6 Se 4d+1 -0.0000115467511027 0.0005625180766059 + 114 6 Se 4d+2 0.0000519118171586 -0.0000649765850468 + + 115 7 Se 2s 0.0059283117071731 0.0161417725735084 + 116 7 Se 3s -0.0000618442126993 -0.0004138747469014 + 117 7 Se 3py 0.0001125404037154 -0.0078820971374520 + 118 7 Se 3pz 0.0000892381915021 0.0043169738960497 + 119 7 Se 3px -0.0004854875743725 0.0016525180384935 + 120 7 Se 4py 0.0003444747411705 -0.0007126457661454 + 121 7 Se 4pz -0.0003423565612264 0.0001258890022677 + 122 7 Se 4px 0.0008765283513055 0.0011772511977606 + 123 7 Se 4d-2 0.0000176706264404 0.0000570666248037 + 124 7 Se 4d-1 0.0000633743437997 0.0014338468866281 + 125 7 Se 4d0 -0.0000245445305125 -0.0005619516522476 + 126 7 Se 4d+1 0.0002802138922114 -0.0003751586289241 + 127 7 Se 4d+2 -0.0001326348286202 0.0000090726326561 + + 128 8 Cd 2s 0.0030655276483417 -0.0294504611978533 + 129 8 Cd 3s 0.0008728358027125 0.0013449251973926 + 130 8 Cd 3py -0.0014628950998137 -0.0014214480900407 + 131 8 Cd 3pz -0.0012327361246059 0.0034828152658009 + 132 8 Cd 3px 0.0024082759229239 0.0004289968936904 + 133 8 Cd 4py -0.0002593156746022 0.0027754582097240 + 134 8 Cd 4pz -0.0002293054906854 -0.0015360667393595 + 135 8 Cd 4px 0.0007966761105810 -0.0020322819145706 + 136 8 Cd 4d-2 0.0006128899653060 -0.1180289015624199 + 137 8 Cd 4d-1 -0.0020549568113734 -0.1022372674860031 + 138 8 Cd 4d0 -0.0016982416811815 -0.0219694848293862 + 139 8 Cd 4d+1 0.0016828874607933 0.1091471604235807 + 140 8 Cd 4d+2 -0.0007872073803373 -0.0073210922487475 + 141 8 Cd 5d-2 -0.0003680573687141 0.0033627628086638 + 142 8 Cd 5d-1 0.0008019722267762 0.0020935288139269 + 143 8 Cd 5d0 -0.0004212193883680 0.0019518815069717 + 144 8 Cd 5d+1 -0.0007943199772635 -0.0035786978173757 + 145 8 Cd 5d+2 0.0004049327547875 -0.0023847553905911 + 146 8 Cd 5f-3 0.0001463514494820 0.0011530555320490 + 147 8 Cd 5f-2 -0.0000822315123884 0.0005964072486231 + 148 8 Cd 5f-1 0.0004233399968880 -0.0000642213450248 + 149 8 Cd 5f0 0.0004429498258032 0.0004004503558790 + 150 8 Cd 5f+1 0.0003448325840902 0.0004837918141080 + 151 8 Cd 5f+2 -0.0000606637261950 -0.0000148832333685 + 152 8 Cd 5f+3 -0.0001222426533847 0.0010755614933086 + + 153 9 Cd 2s 0.0046430409625605 -0.0005553021108904 + 154 9 Cd 3s 0.0004765283197527 0.0007822274496497 + 155 9 Cd 3py -0.0042224477032640 -0.0003310372509594 + 156 9 Cd 3pz -0.0061130121343086 -0.0005476071570444 + 157 9 Cd 3px 0.0002966000369935 -0.0001562591995639 + 158 9 Cd 4py -0.0018113501667481 0.0004028032860771 + 159 9 Cd 4pz -0.0016254488882275 -0.0007085684109450 + 160 9 Cd 4px -0.0009383755697947 0.0001602568455427 + 161 9 Cd 4d-2 -0.0014963141762866 -0.0347727996322478 + 162 9 Cd 4d-1 0.0018772996162776 -0.0224771328664915 + 163 9 Cd 4d0 -0.0006847938026328 0.0099614364592008 + 164 9 Cd 4d+1 0.0086211011311733 0.0290913424693754 + 165 9 Cd 4d+2 -0.0044098709995078 -0.0346810327184155 + 166 9 Cd 5d-2 0.0014662781933097 -0.0003868307354328 + 167 9 Cd 5d-1 0.0025794250352785 0.0001137639785987 + 168 9 Cd 5d0 0.0047516714155440 0.0001705422014311 + 169 9 Cd 5d+1 0.0019507775579718 0.0007889637915590 + 170 9 Cd 5d+2 0.0004847994169596 -0.0002889513749050 + 171 9 Cd 5f-3 0.0002689809827365 0.0001745037522132 + 172 9 Cd 5f-2 -0.0013164150617250 -0.0000692123409711 + 173 9 Cd 5f-1 -0.0007194408341194 -0.0001453244433308 + 174 9 Cd 5f0 -0.0019252002637029 0.0002997373123189 + 175 9 Cd 5f+1 -0.0011928118225097 -0.0000903017210623 + 176 9 Cd 5f+2 -0.0001537486569505 -0.0004007617249634 + 177 9 Cd 5f+3 0.0010273452516354 0.0002469042834764 + + 178 10 Se 2s 0.0025332156900783 -0.0160758310070568 + 179 10 Se 3s 0.0004058406294707 0.0003363154477503 + 180 10 Se 3py -0.0003070962514630 0.0054629737962863 + 181 10 Se 3pz -0.0008533250077971 -0.0058767414162052 + 182 10 Se 3px -0.0000333628910686 0.0009927631867839 + 183 10 Se 4py 0.0006195876999684 0.0000019146948513 + 184 10 Se 4pz 0.0007026668520144 0.0004685157234181 + 185 10 Se 4px -0.0004327134001392 0.0016067054101678 + 186 10 Se 4d-2 -0.0002154812547159 0.0012031103103441 + 187 10 Se 4d-1 0.0002799335413435 -0.0007493360763756 + 188 10 Se 4d0 0.0003209723007029 0.0008703835123596 + 189 10 Se 4d+1 -0.0004823154165623 -0.0013162453231648 + 190 10 Se 4d+2 0.0000609990493041 -0.0009189272898296 + + 191 11 Se 2s -0.0242427321087941 0.0010912887550938 + 192 11 Se 3s -0.0010848209917554 0.0000677103923112 + 193 11 Se 3py 0.0013012369760844 0.0017308352827425 + 194 11 Se 3pz 0.0003196062979563 0.0036689572138099 + 195 11 Se 3px 0.0046537316936283 -0.0002758407357291 + 196 11 Se 4py 0.0005708254197855 0.0008041247216362 + 197 11 Se 4pz 0.0023807203476610 0.0007116570170661 + 198 11 Se 4px -0.0041859210410400 -0.0003764564939612 + 199 11 Se 4d-2 0.0008374276811536 0.0000006904428061 + 200 11 Se 4d-1 -0.0007531465043619 0.0003502772094754 + 201 11 Se 4d0 -0.0007441977618769 -0.0004883669750635 + 202 11 Se 4d+1 -0.0008663432921862 -0.0000772376611199 + 203 11 Se 4d+2 0.0001291086961324 -0.0002018360694058 + + 204 12 Cd 2s -0.0005886717812135 -0.0112721342050967 + 205 12 Cd 3s -0.0012457653054425 0.0011430705819392 + 206 12 Cd 3py -0.0002678172983950 -0.0000625499674703 + 207 12 Cd 3pz 0.0070260757097196 0.0035136364430021 + 208 12 Cd 3px 0.0001180739312629 0.0037743225125425 + 209 12 Cd 4py 0.0001558492816626 0.0010348310727842 + 210 12 Cd 4pz 0.0028888918021849 -0.0006686931704726 + 211 12 Cd 4px -0.0005300328176783 -0.0005536779769890 + 212 12 Cd 4d-2 0.0021681435304577 -0.0279188045322929 + 213 12 Cd 4d-1 0.0001756405034778 -0.0182408277970661 + 214 12 Cd 4d0 0.0020003615581735 -0.0074761312457874 + 215 12 Cd 4d+1 0.0007147404980659 0.0638653342079839 + 216 12 Cd 4d+2 0.0025163973685002 0.0348549762768491 + 217 12 Cd 5d-2 -0.0005180492704451 0.0026209023510426 + 218 12 Cd 5d-1 0.0009870104343253 0.0020678680031362 + 219 12 Cd 5d0 -0.0028043141495012 0.0019408310390356 + 220 12 Cd 5d+1 0.0066436365715126 -0.0004288686600518 + 221 12 Cd 5d+2 0.0052745330105819 -0.0028485201810125 + 222 12 Cd 5f-3 -0.0001489179344513 -0.0008699964256045 + 223 12 Cd 5f-2 0.0001183196830869 0.0006157601355588 + 224 12 Cd 5f-1 -0.0006799184495889 0.0000839267204305 + 225 12 Cd 5f0 -0.0007326223937084 -0.0008972403281940 + 226 12 Cd 5f+1 -0.0022253422500008 -0.0000935802577507 + 227 12 Cd 5f+2 0.0008426503784294 -0.0006762527072090 + 228 12 Cd 5f+3 0.0025682600048746 -0.0008771663239945 + + 229 13 Cd 2s 0.0080602646440175 0.0032503512056269 + 230 13 Cd 3s -0.0001669858109498 0.0010643612397358 + 231 13 Cd 3py -0.0008931765461767 0.0001894101966813 + 232 13 Cd 3pz 0.0037173230901584 0.0004975830270438 + 233 13 Cd 3px 0.0154129930518920 -0.0046244383597344 + 234 13 Cd 4py 0.0001016435890525 0.0002745635399381 + 235 13 Cd 4pz 0.0005016783497294 0.0000267969343005 + 236 13 Cd 4px 0.0040094091659802 -0.0019691405674649 + 237 13 Cd 4d-2 -0.0002400676029330 -0.0054371699473384 + 238 13 Cd 4d-1 -0.0009553682024163 -0.0011922229591590 + 239 13 Cd 4d0 -0.0071337634470086 -0.0014881542785415 + 240 13 Cd 4d+1 -0.0100356717570049 -0.0022069183472343 + 241 13 Cd 4d+2 -0.0058628844057098 -0.0031637440576219 + 242 13 Cd 5d-2 -0.0089270270854676 0.0006791120670646 + 243 13 Cd 5d-1 -0.0020115132150560 -0.0000728655319622 + 244 13 Cd 5d0 -0.0047136086254200 -0.0014744673034219 + 245 13 Cd 5d+1 -0.0002839339633616 -0.0006895117733542 + 246 13 Cd 5d+2 0.0053273739258732 0.0024635536123124 + 247 13 Cd 5f-3 -0.0024711366740084 -0.0002153080145480 + 248 13 Cd 5f-2 -0.0002367077177866 -0.0003038451262801 + 249 13 Cd 5f-1 0.0020620666783422 -0.0000062000684485 + 250 13 Cd 5f0 0.0016243153088349 -0.0001525936026256 + 251 13 Cd 5f+1 -0.0030776804570591 0.0002816326861230 + 252 13 Cd 5f+2 -0.0013816238571605 0.0005775441990743 + 253 13 Cd 5f+3 -0.0015376133273553 -0.0002995420735674 + + 254 14 Cd 2s -0.0027260014419213 -0.0054080659773231 + 255 14 Cd 3s -0.0010736353799630 -0.0006872046739473 + 256 14 Cd 3py 0.0031179929470608 0.0016507445908401 + 257 14 Cd 3pz 0.0010376850991672 0.0030767672787159 + 258 14 Cd 3px -0.0017833203622647 0.0064168742006616 + 259 14 Cd 4py 0.0010013695600337 0.0000911790299792 + 260 14 Cd 4pz 0.0003109927562418 0.0012667841974421 + 261 14 Cd 4px -0.0006890058895526 0.0018397462837018 + 262 14 Cd 4d-2 0.0004188418493658 0.1137788565489250 + 263 14 Cd 4d-1 -0.0012461865244227 0.0753258057782298 + 264 14 Cd 4d0 0.0011418858737898 -0.1193536870041630 + 265 14 Cd 4d+1 0.0008529268059085 0.0661130891863044 + 266 14 Cd 4d+2 -0.0006695946035685 0.0498388095202017 + 267 14 Cd 5d-2 0.0017767659882400 -0.0035324113273010 + 268 14 Cd 5d-1 -0.0008742792409851 -0.0016228267497785 + 269 14 Cd 5d0 0.0012712089322592 -0.0005142312932969 + 270 14 Cd 5d+1 0.0008027215428376 -0.0019281275104683 + 271 14 Cd 5d+2 0.0013045253321906 -0.0008524275313395 + 272 14 Cd 5f-3 -0.0001738453094976 0.0009077082465764 + 273 14 Cd 5f-2 -0.0004726109046342 0.0009819956473725 + 274 14 Cd 5f-1 -0.0004893020891651 0.0001770936082268 + 275 14 Cd 5f0 -0.0003606454194255 -0.0005760218140816 + 276 14 Cd 5f+1 0.0002915256340594 -0.0000628011541607 + 277 14 Cd 5f+2 -0.0000520194360317 -0.0001879140176650 + 278 14 Cd 5f+3 0.0005607820935228 -0.0005650330087109 + + 279 15 Se 2s 0.0021410446879484 0.0060916802271661 + 280 15 Se 3s 0.0002311039745121 0.0002840542300197 + 281 15 Se 3py 0.0000597222709609 -0.0061917743842820 + 282 15 Se 3pz 0.0003051698187253 -0.0060169424549649 + 283 15 Se 3px 0.0000485178191428 -0.0076931442759566 + 284 15 Se 4py 0.0004495717750057 -0.0004568538940268 + 285 15 Se 4pz -0.0003823654804262 0.0004789939844546 + 286 15 Se 4px -0.0004142130260140 -0.0007260884348546 + 287 15 Se 4d-2 -0.0001783341282345 0.0005396584820791 + 288 15 Se 4d-1 0.0001525403374556 -0.0009201187423620 + 289 15 Se 4d0 -0.0000668219796470 -0.0015480821704826 + 290 15 Se 4d+1 -0.0000892726672460 -0.0020014526877102 + 291 15 Se 4d+2 -0.0002598678817398 -0.0003536729026296 + + 292 16 Se 2s -0.0321195375271916 -0.0028152292024188 + 293 16 Se 3s -0.0009623130361842 0.0000529733095882 + 294 16 Se 3py -0.0017727608564468 -0.0009391273954047 + 295 16 Se 3pz 0.0010906460663954 -0.0006541651556125 + 296 16 Se 3px 0.0050719196573920 -0.0007119803634079 + 297 16 Se 4py 0.0043392263297845 -0.0000181199188769 + 298 16 Se 4pz -0.0009852540849661 -0.0001291551256870 + 299 16 Se 4px -0.0037353055204848 -0.0000022991662610 + 300 16 Se 4d-2 -0.0007760297289068 0.0001822359293048 + 301 16 Se 4d-1 -0.0011478422454270 0.0000187988437079 + 302 16 Se 4d0 0.0004766630016789 -0.0001003741597843 + 303 16 Se 4d+1 0.0010189092707134 0.0000880019157338 + 304 16 Se 4d+2 -0.0003536325220751 0.0000007549289553 + + 305 17 Cd 2s 0.0030717088069023 0.0019691956631151 + 306 17 Cd 3s 0.0005835216661253 0.0010355189685857 + 307 17 Cd 3py -0.0012161822569111 0.0003078075561496 + 308 17 Cd 3pz 0.0020867787160353 0.0004966430010268 + 309 17 Cd 3px 0.0002948455998574 -0.0002632730435823 + 310 17 Cd 4py -0.0015721216184493 -0.0002679852574863 + 311 17 Cd 4pz 0.0010045001293960 0.0004884063671086 + 312 17 Cd 4px 0.0000895032454976 -0.0001422374219284 + 313 17 Cd 4d-2 -0.0089320722848390 0.0133854576979241 + 314 17 Cd 4d-1 -0.0016457658679110 -0.0039786103135822 + 315 17 Cd 4d0 0.0036031749686024 0.0038850668016582 + 316 17 Cd 4d+1 0.0019011198436695 -0.0142467795826807 + 317 17 Cd 4d+2 0.0002605313469383 0.0050639776621289 + 318 17 Cd 5d-2 0.0004528741914607 0.0009932866579647 + 319 17 Cd 5d-1 -0.0002796746051768 -0.0005165089509145 + 320 17 Cd 5d0 0.0003757403349203 -0.0006257947198278 + 321 17 Cd 5d+1 0.0002513213185330 0.0000079571836848 + 322 17 Cd 5d+2 -0.0003273311133458 0.0009547228198881 + 323 17 Cd 5f-3 0.0004574939424772 -0.0006060817668364 + 324 17 Cd 5f-2 0.0005936876540682 0.0003548470865865 + 325 17 Cd 5f-1 0.0003575059295143 -0.0003411181903038 + 326 17 Cd 5f0 -0.0006444203506429 -0.0005240195655362 + 327 17 Cd 5f+1 0.0003338935289477 0.0000858048931723 + 328 17 Cd 5f+2 -0.0002921736385951 0.0003663466893037 + 329 17 Cd 5f+3 0.0005266719416064 -0.0004096412777380 + + 330 18 Cd 2s -0.0021884047267336 -0.0000572676671038 + 331 18 Cd 3s 0.0004800451957170 -0.0010226625374795 + 332 18 Cd 3py -0.0005923990886436 -0.0018013163733063 + 333 18 Cd 3pz 0.0001794852023941 -0.0011003973117621 + 334 18 Cd 3px -0.0018508043986994 0.0012156625389457 + 335 18 Cd 4py 0.0006424286992476 -0.0007358663894979 + 336 18 Cd 4pz 0.0000851236041350 -0.0002127965839998 + 337 18 Cd 4px 0.0004897551899986 0.0004265293829614 + 338 18 Cd 4d-2 0.0082852301593699 0.0041430785729811 + 339 18 Cd 4d-1 0.0011139837012874 0.0123927403400352 + 340 18 Cd 4d0 -0.0135378371359545 -0.0192308187464026 + 341 18 Cd 4d+1 0.0030627838672362 -0.0085527212775052 + 342 18 Cd 4d+2 0.0067914733714279 0.0010453350008835 + 343 18 Cd 5d-2 0.0000683156888807 0.0006808445737947 + 344 18 Cd 5d-1 0.0008486060031208 -0.0011072285231757 + 345 18 Cd 5d0 0.0022864108547818 0.0004217236376101 + 346 18 Cd 5d+1 0.0023859484308418 0.0008124516147980 + 347 18 Cd 5d+2 -0.0014740638778318 0.0005989696490360 + 348 18 Cd 5f-3 -0.0010011241577783 0.0001515896167184 + 349 18 Cd 5f-2 0.0021184048364203 0.0003407256725432 + 350 18 Cd 5f-1 0.0017130705377355 -0.0002251668366296 + 351 18 Cd 5f0 -0.0010412506889435 0.0001741969294646 + 352 18 Cd 5f+1 0.0012163388545723 0.0000589817538863 + 353 18 Cd 5f+2 -0.0000785316121317 0.0001647228353157 + 354 18 Cd 5f+3 -0.0007257681614237 -0.0000465186862131 + + 355 19 Se 2s 0.0025543652386517 -0.0079330362457826 + 356 19 Se 3s -0.0006527834751505 0.0002180829463685 + 357 19 Se 3py -0.0005405255886304 0.0059629121084838 + 358 19 Se 3pz 0.0003721694163499 0.0005935946732475 + 359 19 Se 3px 0.0010113611820603 -0.0023090895036641 + 360 19 Se 4py 0.0009253895045718 0.0009281756788353 + 361 19 Se 4pz 0.0002730420588608 -0.0003063222068718 + 362 19 Se 4px -0.0007480621258545 0.0004940106442186 + 363 19 Se 4d-2 -0.0000440612637954 -0.0001838514674386 + 364 19 Se 4d-1 0.0000080822563893 0.0012368476007023 + 365 19 Se 4d0 -0.0000851830382965 -0.0002463634812597 + 366 19 Se 4d+1 0.0000068188926326 -0.0004120239597337 + 367 19 Se 4d+2 0.0001885291889088 -0.0005340207408015 + + 368 20 Se 2s -0.0164859072434588 0.0037475511191083 + 369 20 Se 3s -0.0010595253752974 -0.0002912798983052 + 370 20 Se 3py -0.0031597662496987 0.0010389345115349 + 371 20 Se 3pz -0.0015078251587490 -0.0022832665223847 + 372 20 Se 3px 0.0049226459940487 -0.0016534165551905 + 373 20 Se 4py 0.0012916260364145 0.0006216408647225 + 374 20 Se 4pz 0.0032119338700170 0.0010743128154231 + 375 20 Se 4px -0.0037741779935812 -0.0007370195842334 + 376 20 Se 4d-2 -0.0012313669985493 -0.0004970261272157 + 377 20 Se 4d-1 0.0001031404735089 -0.0000774644896031 + 378 20 Se 4d0 -0.0004651423260563 -0.0008606475165504 + 379 20 Se 4d+1 -0.0004040508280707 0.0002866185014542 + 380 20 Se 4d+2 0.0003205170036131 0.0003541333228816 + + 381 21 Se 2s 0.0007724523508672 0.1046505387624301 + 382 21 Se 3s 0.0001264052104123 -0.0005561964943740 + 383 21 Se 3py 0.0001489936941236 0.0320224186931490 + 384 21 Se 3pz 0.0003981115590124 0.0206464508389077 + 385 21 Se 3px -0.0005431186805327 0.0984690223507310 + 386 21 Se 4py 0.0001236950534256 0.0026896096272402 + 387 21 Se 4pz -0.0003880556527086 0.0016788174241038 + 388 21 Se 4px 0.0006257747982367 0.0077741364769875 + 389 21 Se 4d-2 0.0001163849078900 -0.0156619608849708 + 390 21 Se 4d-1 -0.0000908242966015 -0.0050451538945830 + 391 21 Se 4d0 -0.0000169135835152 0.0064081719631220 + 392 21 Se 4d+1 0.0001079460811344 -0.0033990742573352 + 393 21 Se 4d+2 -0.0000060797515244 -0.0018529117213186 + + 394 22 Cd 2s 0.0017927707555250 -0.0170805471245378 + 395 22 Cd 3s 0.0003730103615542 0.0008706658730926 + 396 22 Cd 3py -0.0022641522175333 -0.0024983941257522 + 397 22 Cd 3pz -0.0017426387077722 -0.0076634054651391 + 398 22 Cd 3px 0.0055745054980622 -0.0016022393620230 + 399 22 Cd 4py -0.0008263835060635 -0.0006467245025018 + 400 22 Cd 4pz -0.0009075640630195 0.0012476839790603 + 401 22 Cd 4px 0.0019601798659140 -0.0009098168106573 + 402 22 Cd 4d-2 0.0021881316962333 0.0043224941351814 + 403 22 Cd 4d-1 0.0015272960399446 0.0222760424841917 + 404 22 Cd 4d0 0.0013031604498025 0.0801906067167030 + 405 22 Cd 4d+1 -0.0004909174696656 -0.0361512101677762 + 406 22 Cd 4d+2 -0.0003119166623036 -0.0133801054882239 + 407 22 Cd 5d-2 -0.0030275856860080 -0.0003488390471043 + 408 22 Cd 5d-1 0.0009425147202948 0.0013623327984474 + 409 22 Cd 5d0 -0.0026756592635654 -0.0005161422651177 + 410 22 Cd 5d+1 0.0001784545565226 0.0011794101537233 + 411 22 Cd 5d+2 0.0023473693343487 -0.0033445427128730 + 412 22 Cd 5f-3 -0.0006924646218554 0.0008408133795404 + 413 22 Cd 5f-2 0.0002552799003156 -0.0006119642871664 + 414 22 Cd 5f-1 0.0004379696994209 0.0008024912194679 + 415 22 Cd 5f0 0.0002240040273572 0.0005511444934891 + 416 22 Cd 5f+1 -0.0005127194891695 -0.0003552396154462 + 417 22 Cd 5f+2 0.0001018673960774 0.0004687943701523 + 418 22 Cd 5f+3 0.0006216573546266 0.0008782946913993 + + 419 23 Se 2s 0.0018532348999524 -0.0253465389232325 + 420 23 Se 3s 0.0001270044322461 0.0002710338870730 + 421 23 Se 3py -0.0000563537675138 0.0012063791140422 + 422 23 Se 3pz 0.0001404059638916 0.0050625045767847 + 423 23 Se 3px 0.0000507886697471 0.0019509804134066 + 424 23 Se 4py 0.0000944784234135 0.0004330959134484 + 425 23 Se 4pz -0.0003629090143927 -0.0002828778287554 + 426 23 Se 4px 0.0000208010993650 0.0010750429150670 + 427 23 Se 4d-2 -0.0000055090220737 0.0000695659208695 + 428 23 Se 4d-1 -0.0000350562555444 0.0002459335162488 + 429 23 Se 4d0 0.0000646520413175 0.0006931171125780 + 430 23 Se 4d+1 0.0001948448219806 0.0008976720442686 + 431 23 Se 4d+2 0.0001406648242591 -0.0004131139756562 + + 432 24 Se 2s 0.0002326536955164 0.1182681107867309 + 433 24 Se 3s 0.0000693100609943 -0.0009164835441289 + 434 24 Se 3py -0.0004636655633736 -0.0514011972683202 + 435 24 Se 3pz -0.0001204360950094 -0.0394203871665889 + 436 24 Se 3px 0.0007422533816222 0.0447591065435608 + 437 24 Se 4py 0.0013075088394830 -0.0040897820973951 + 438 24 Se 4pz 0.0000255935464707 -0.0031644453714264 + 439 24 Se 4px -0.0018225738696401 0.0019603387365744 + 440 24 Se 4d-2 -0.0000572613224577 0.0081119959646060 + 441 24 Se 4d-1 -0.0000117753792891 -0.0101792415863203 + 442 24 Se 4d0 -0.0002606947713093 0.0013908345971730 + 443 24 Se 4d+1 0.0000162589696715 0.0009317221509111 + 444 24 Se 4d+2 0.0003418662981508 0.0093543396185993 + + 445 25 Cd 2s 0.0021400221437110 -0.0226822284075975 + 446 25 Cd 3s 0.0004146824379317 0.0010013277330229 + 447 25 Cd 3py -0.0003617098337668 -0.0019505847333947 + 448 25 Cd 3pz 0.0047298158023632 -0.0069561104424124 + 449 25 Cd 3px -0.0007065195783057 0.0065030247059480 + 450 25 Cd 4py -0.0001509936812133 -0.0007419887674130 + 451 25 Cd 4pz 0.0013390832610818 0.0012006823859708 + 452 25 Cd 4px -0.0007155800251847 -0.0001739885356255 + 453 25 Cd 4d-2 -0.0007994224527060 0.0240212452090160 + 454 25 Cd 4d-1 -0.0004484735671616 -0.0058425379546027 + 455 25 Cd 4d0 -0.0007013228622907 0.0235435507303768 + 456 25 Cd 4d+1 -0.0018382835067275 -0.1068428340829632 + 457 25 Cd 4d+2 -0.0003872748840219 0.0482226729056605 + 458 25 Cd 5d-2 0.0000283532356847 -0.0007600812128794 + 459 25 Cd 5d-1 -0.0015102569597333 -0.0009056203501529 + 460 25 Cd 5d0 0.0016502363544949 -0.0017157212628378 + 461 25 Cd 5d+1 0.0016235951383929 0.0058962597716778 + 462 25 Cd 5d+2 -0.0013247405845047 -0.0019423411061145 + 463 25 Cd 5f-3 0.0001280292460853 -0.0006827137093528 + 464 25 Cd 5f-2 -0.0002793567750666 0.0000106493040479 + 465 25 Cd 5f-1 -0.0001305222783411 -0.0004595292993619 + 466 25 Cd 5f0 0.0001294806738531 -0.0001966356948713 + 467 25 Cd 5f+1 0.0000842782863842 0.0003990978068156 + 468 25 Cd 5f+2 -0.0003224702616503 0.0004706727782077 + 469 25 Cd 5f+3 -0.0002397878778752 -0.0010152516808940 + + 470 26 Cd 2s -0.0010472846001380 -0.0021651236200978 + 471 26 Cd 3s -0.0003409418669528 -0.0058051691696856 + 472 26 Cd 3py 0.0030484637352030 0.0064159538910277 + 473 26 Cd 3pz 0.0001531251087077 0.0014469106560958 + 474 26 Cd 3px 0.0007744345048340 -0.0019465306978923 + 475 26 Cd 4py 0.0010263382363358 -0.0007382340942832 + 476 26 Cd 4pz 0.0000558794817026 -0.0003717841462409 + 477 26 Cd 4px 0.0003524843549635 -0.0008971360899201 + 478 26 Cd 4d-2 0.0001835642122888 -0.5718435150662066 + 479 26 Cd 4d-1 0.0003092515733654 -0.0924798154913315 + 480 26 Cd 4d0 -0.0001446055458726 0.4705335946022657 + 481 26 Cd 4d+1 0.0002212112350535 -0.1402911574617401 + 482 26 Cd 4d+2 -0.0005767188313218 0.4829707348853752 + 483 26 Cd 5d-2 0.0007970022658347 -0.0051559889559541 + 484 26 Cd 5d-1 -0.0005475639543460 -0.0046873392679512 + 485 26 Cd 5d0 0.0002444973983852 0.0051666653345657 + 486 26 Cd 5d+1 -0.0004719559834290 -0.0014328404780275 + 487 26 Cd 5d+2 0.0010232291314762 0.0048693439137723 + 488 26 Cd 5f-3 0.0000647505427067 -0.0002312927738456 + 489 26 Cd 5f-2 0.0001852155912114 -0.0006320871859005 + 490 26 Cd 5f-1 -0.0001396118252741 -0.0000159544785858 + 491 26 Cd 5f0 -0.0002435421278682 -0.0004615151682933 + 492 26 Cd 5f+1 -0.0000462965074420 0.0004271127578839 + 493 26 Cd 5f+2 -0.0003465440543613 -0.0000049657274128 + 494 26 Cd 5f+3 -0.0000260813701806 -0.0003849357493240 + + 15 16 + -0.4932859467559946 -0.4929843014586059 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0011200560235063 -0.0004885344468546 + 2 1 Cd 3s -0.0014175254614142 -0.0002271703719783 + 3 1 Cd 3py -0.0010118646644317 -0.0012650612371734 + 4 1 Cd 3pz 0.0032569298541644 0.0001882744303638 + 5 1 Cd 3px 0.0010592047246438 0.0006718940749686 + 6 1 Cd 4py -0.0012329660174494 -0.0004740345458216 + 7 1 Cd 4pz 0.0012210302700412 0.0000606318345805 + 8 1 Cd 4px 0.0010831043607237 0.0002362504249426 + 9 1 Cd 4d-2 0.0200996421339307 0.0005585614630437 + 10 1 Cd 4d-1 0.0038111046673670 -0.0001227302931264 + 11 1 Cd 4d0 0.0112120916640942 0.0004213871097958 + 12 1 Cd 4d+1 -0.0021039761307324 0.0002486277055220 + 13 1 Cd 4d+2 0.0068902600360876 0.0003209545399789 + 14 1 Cd 5d-2 0.0009066224597468 0.0008045278235468 + 15 1 Cd 5d-1 0.0016452593864903 0.0001577124866884 + 16 1 Cd 5d0 0.0017450824039587 0.0001650182942595 + 17 1 Cd 5d+1 -0.0011616194366420 0.0000381456918723 + 18 1 Cd 5d+2 0.0002399418738700 -0.0003446902483911 + 19 1 Cd 5f-3 0.0000858054284999 -0.0001836641993673 + 20 1 Cd 5f-2 -0.0000788441263204 -0.0000238589878775 + 21 1 Cd 5f-1 0.0008040845591561 0.0001184747558454 + 22 1 Cd 5f0 -0.0006361440242344 0.0000324298944554 + 23 1 Cd 5f+1 -0.0006320218835225 -0.0000955160083106 + 24 1 Cd 5f+2 -0.0004550815439696 -0.0000823536623311 + 25 1 Cd 5f+3 -0.0006724374046552 0.0000617875275024 + + 26 2 Cd 2s 0.0162012075598175 -0.0010368589805249 + 27 2 Cd 3s -0.0001120206479693 -0.0001140600263393 + 28 2 Cd 3py 0.0082755303450769 0.0013117835017431 + 29 2 Cd 3pz 0.0035553641179602 0.0009814804181480 + 30 2 Cd 3px -0.0072348627340295 0.0011258848529715 + 31 2 Cd 4py 0.0007940336595814 0.0003486773732486 + 32 2 Cd 4pz 0.0006732712642352 0.0003118138583507 + 33 2 Cd 4px 0.0008056543738017 0.0002219954685292 + 34 2 Cd 4d-2 0.0760021354087708 0.0075543254063964 + 35 2 Cd 4d-1 -0.0063870229946684 -0.0028335374922630 + 36 2 Cd 4d0 0.0310284743260351 -0.0039149538658417 + 37 2 Cd 4d+1 0.0158505738851580 -0.0024753627124255 + 38 2 Cd 4d+2 -0.0096521791730482 0.0068959013125877 + 39 2 Cd 5d-2 -0.0054433999020868 -0.0009784271106587 + 40 2 Cd 5d-1 -0.0000676787503369 0.0002388554589265 + 41 2 Cd 5d0 -0.0027709787983965 -0.0000279981128325 + 42 2 Cd 5d+1 0.0000147162013046 -0.0007491213399102 + 43 2 Cd 5d+2 -0.0018579359280949 -0.0002277972595640 + 44 2 Cd 5f-3 0.0003920206698366 -0.0000606514756034 + 45 2 Cd 5f-2 0.0000750779627016 -0.0001024559427075 + 46 2 Cd 5f-1 -0.0002441829276855 -0.0000392333744598 + 47 2 Cd 5f0 -0.0002700907405644 -0.0001234409111192 + 48 2 Cd 5f+1 -0.0002142935724182 0.0000469849830906 + 49 2 Cd 5f+2 -0.0003032420771884 0.0001559268253312 + 50 2 Cd 5f+3 0.0002925558444698 -0.0003388961834714 + + 51 3 Cd 2s -0.0012351993913768 0.0008635357405339 + 52 3 Cd 3s 0.0001176927517196 0.0002816665489818 + 53 3 Cd 3py 0.0009811885812674 0.0004730524967856 + 54 3 Cd 3pz 0.0006227923846798 0.0004690000537952 + 55 3 Cd 3px -0.0010251441394516 -0.0016599486977226 + 56 3 Cd 4py 0.0002981436504086 0.0000781049959599 + 57 3 Cd 4pz 0.0004010840457516 0.0000674500605225 + 58 3 Cd 4px -0.0002464060665459 -0.0005068093470220 + 59 3 Cd 4d-2 0.0014197089349802 0.0003328063284884 + 60 3 Cd 4d-1 0.0013670899081800 0.0002335436594619 + 61 3 Cd 4d0 0.0029039157222490 -0.0000318512294736 + 62 3 Cd 4d+1 -0.0020230429075484 0.0013441118941868 + 63 3 Cd 4d+2 0.0017448312544281 -0.0018442941190120 + 64 3 Cd 5d-2 -0.0017358346748746 -0.0004075860177835 + 65 3 Cd 5d-1 0.0011259363377345 0.0003392253244069 + 66 3 Cd 5d0 -0.0002224108168274 -0.0004859042664661 + 67 3 Cd 5d+1 0.0006697127329122 0.0003329625926926 + 68 3 Cd 5d+2 -0.0005569179411865 0.0001777620122610 + 69 3 Cd 5f-3 0.0002340256374752 -0.0000046560684799 + 70 3 Cd 5f-2 0.0002507416383369 -0.0001354507073580 + 71 3 Cd 5f-1 -0.0002534729476392 -0.0000013461297089 + 72 3 Cd 5f0 -0.0001295242108566 0.0000607866040807 + 73 3 Cd 5f+1 -0.0001869089455396 -0.0000293129747466 + 74 3 Cd 5f+2 -0.0004696896629182 -0.0002247305300186 + 75 3 Cd 5f+3 0.0008201315088802 0.0001077991961435 + + 76 4 Se 2s 0.0087979982889227 0.0009271075614240 + 77 4 Se 3s -0.0000101774390117 -0.0000577884331635 + 78 4 Se 3py 0.0017021512544487 -0.0001287801044391 + 79 4 Se 3pz 0.0036260871526762 0.0012663883130203 + 80 4 Se 3px -0.0000311963698535 0.0002554608592281 + 81 4 Se 4py 0.0020565554989228 0.0000311793890714 + 82 4 Se 4pz 0.0017898753997494 0.0002202188572427 + 83 4 Se 4px -0.0007785364468466 -0.0000106863358106 + 84 4 Se 4d-2 -0.0002291959275180 -0.0000104834880520 + 85 4 Se 4d-1 -0.0006859627890509 -0.0000745543249993 + 86 4 Se 4d0 -0.0005044328062165 0.0000141145276741 + 87 4 Se 4d+1 -0.0006472885230611 -0.0002437291473681 + 88 4 Se 4d+2 0.0002351709320746 -0.0000432243107955 + + 89 5 Se 2s 0.0044369207132462 0.0010171608044826 + 90 5 Se 3s -0.0000274666108100 -0.0000309330647980 + 91 5 Se 3py -0.0013496190318905 0.0000734411540121 + 92 5 Se 3pz 0.0004420745208717 -0.0001673485601022 + 93 5 Se 3px -0.0008025256438253 0.0000898272438690 + 94 5 Se 4py -0.0002856360005337 -0.0001418653915945 + 95 5 Se 4pz -0.0000109404572754 0.0001243822119653 + 96 5 Se 4px -0.0007334679124891 -0.0001007031135672 + 97 5 Se 4d-2 -0.0000701480572878 -0.0000220956590150 + 98 5 Se 4d-1 -0.0000156654836720 -0.0000349674597346 + 99 5 Se 4d0 0.0001465318843347 0.0000056278267597 + 100 5 Se 4d+1 -0.0001126332830831 0.0000409492930704 + 101 5 Se 4d+2 0.0002580765249373 -0.0000294936821216 + + 102 6 Se 2s 0.0059969867146909 -0.0007011497921812 + 103 6 Se 3s -0.0004009693291396 -0.0000136127309020 + 104 6 Se 3py -0.0048261781828313 -0.0001773775175844 + 105 6 Se 3pz 0.0032883982553540 0.0005877806017903 + 106 6 Se 3px -0.0011050109429535 -0.0000952231124027 + 107 6 Se 4py -0.0009423539579743 -0.0001742898591306 + 108 6 Se 4pz 0.0004993720503117 0.0001097537382574 + 109 6 Se 4px -0.0003129054915726 -0.0001207327706649 + 110 6 Se 4d-2 0.0006435706678033 0.0000907321576897 + 111 6 Se 4d-1 0.0003668241702232 0.0000162030999790 + 112 6 Se 4d0 0.0004721019141178 0.0001029735691893 + 113 6 Se 4d+1 -0.0006236352351332 -0.0001132580502566 + 114 6 Se 4d+2 0.0009221026206041 0.0000379916762190 + + 115 7 Se 2s -0.0330464763016713 -0.0055159252271983 + 116 7 Se 3s 0.0000152734851704 0.0001856279724041 + 117 7 Se 3py 0.0340547550503109 0.0017617287720388 + 118 7 Se 3pz 0.0002336393160034 -0.0010662761020920 + 119 7 Se 3px 0.0008420475351311 -0.0000501539133766 + 120 7 Se 4py 0.0022879176120505 0.0000992932548736 + 121 7 Se 4pz 0.0002224053305896 -0.0001324512766477 + 122 7 Se 4px -0.0001578200138252 -0.0002048304435714 + 123 7 Se 4d-2 -0.0003809553595133 -0.0001194410659883 + 124 7 Se 4d-1 -0.0064425063309202 -0.0002818889210124 + 125 7 Se 4d0 -0.0034436796927311 -0.0000351464089126 + 126 7 Se 4d+1 -0.0005119432822998 -0.0000083094827033 + 127 7 Se 4d+2 -0.0035972174488558 -0.0003188880729542 + + 128 8 Cd 2s 0.0166512260302244 -0.0006431253839324 + 129 8 Cd 3s -0.0001876980770125 -0.0002972469585464 + 130 8 Cd 3py 0.0050845582982350 0.0031906729756059 + 131 8 Cd 3pz 0.0003857459084729 0.0008355555667323 + 132 8 Cd 3px 0.0026352980289667 0.0027073530223114 + 133 8 Cd 4py 0.0001957827180437 0.0007438074782747 + 134 8 Cd 4pz 0.0000164284975017 0.0008895452138829 + 135 8 Cd 4px -0.0012812720433706 0.0007967781596420 + 136 8 Cd 4d-2 -0.0859940272725500 -0.0094448146001288 + 137 8 Cd 4d-1 -0.0114862421733082 0.0134624992031655 + 138 8 Cd 4d0 0.0351932110566541 -0.0222150149444737 + 139 8 Cd 4d+1 -0.0087731606703437 -0.0002721060460138 + 140 8 Cd 4d+2 0.0200128500408533 0.0369352758212022 + 141 8 Cd 5d-2 0.0053825779327185 -0.0023553737327252 + 142 8 Cd 5d-1 0.0014329529786216 -0.0017403375479895 + 143 8 Cd 5d0 -0.0033678428365376 0.0005344250045671 + 144 8 Cd 5d+1 0.0004992299436556 -0.0018164592271619 + 145 8 Cd 5d+2 -0.0039251744635845 -0.0005915750912085 + 146 8 Cd 5f-3 0.0000825219045134 0.0002005103138762 + 147 8 Cd 5f-2 -0.0003707312277211 0.0001021383857084 + 148 8 Cd 5f-1 -0.0004394468515117 -0.0005131454745606 + 149 8 Cd 5f0 -0.0003316806113700 -0.0005310849254207 + 150 8 Cd 5f+1 -0.0002284093766835 0.0003630636126435 + 151 8 Cd 5f+2 -0.0000096518887902 -0.0003037799303357 + 152 8 Cd 5f+3 -0.0004742667470715 -0.0001955462845278 + + 153 9 Cd 2s 0.0004616224124621 -0.0003748035796563 + 154 9 Cd 3s 0.0007895638174127 0.0001561590502075 + 155 9 Cd 3py 0.0016043457807229 0.0000337979755092 + 156 9 Cd 3pz 0.0005498220517680 0.0001180740238002 + 157 9 Cd 3px -0.0023902055777348 0.0000926281137062 + 158 9 Cd 4py 0.0001044677165033 0.0000698021204903 + 159 9 Cd 4pz 0.0001096051456577 0.0000380149095127 + 160 9 Cd 4px -0.0007404626326570 -0.0001690546687192 + 161 9 Cd 4d-2 0.0038718167397970 0.0000176225165629 + 162 9 Cd 4d-1 0.0004611432570928 -0.0036388860755881 + 163 9 Cd 4d0 0.0025626344909427 -0.0038583867187266 + 164 9 Cd 4d+1 -0.0165980422526583 -0.0032991918534491 + 165 9 Cd 4d+2 0.0403936022851169 0.0086240915874656 + 166 9 Cd 5d-2 -0.0008671585457565 0.0001305515576474 + 167 9 Cd 5d-1 0.0005221726165802 -0.0000574951976618 + 168 9 Cd 5d0 -0.0007413707475791 -0.0000850310177743 + 169 9 Cd 5d+1 0.0010211548249025 -0.0001012243358079 + 170 9 Cd 5d+2 -0.0001697733740614 0.0000337973105082 + 171 9 Cd 5f-3 0.0000463674319962 -0.0000230477320347 + 172 9 Cd 5f-2 0.0001338708735833 -0.0000607905560935 + 173 9 Cd 5f-1 -0.0005188741415236 0.0000745053652231 + 174 9 Cd 5f0 -0.0003069571424680 0.0000261115394814 + 175 9 Cd 5f+1 -0.0001048609703491 0.0000027006455151 + 176 9 Cd 5f+2 -0.0002260121960054 0.0000494317150563 + 177 9 Cd 5f+3 0.0001650796222071 -0.0001038281637488 + + 178 10 Se 2s -0.0010128301098260 0.0037265359951186 + 179 10 Se 3s -0.0001891379819057 -0.0001476252339816 + 180 10 Se 3py -0.0017398703276083 -0.0012773110176254 + 181 10 Se 3pz 0.0029860589372378 0.0015974629561689 + 182 10 Se 3px 0.0047696397060813 0.0007433390149012 + 183 10 Se 4py 0.0002604722271166 -0.0005842567942133 + 184 10 Se 4pz 0.0005418442239786 -0.0002772044398684 + 185 10 Se 4px 0.0002657867616502 -0.0002250826545057 + 186 10 Se 4d-2 0.0000677338413537 -0.0000169163646672 + 187 10 Se 4d-1 0.0003507498947295 0.0002692358499123 + 188 10 Se 4d0 -0.0007551037927094 -0.0003094703455664 + 189 10 Se 4d+1 -0.0001990770713171 0.0002036403898614 + 190 10 Se 4d+2 0.0007773799106793 0.0004210474565970 + + 191 11 Se 2s 0.0012290883689519 0.0033675789904822 + 192 11 Se 3s 0.0000665475554687 -0.0001097688683254 + 193 11 Se 3py 0.0001891395672452 -0.0021993794374473 + 194 11 Se 3pz 0.0004741766959625 -0.0026452318705366 + 195 11 Se 3px 0.0005121614410676 0.0008627757464318 + 196 11 Se 4py 0.0003109422677792 -0.0002159520085891 + 197 11 Se 4pz 0.0004025082502153 -0.0005691708046230 + 198 11 Se 4px 0.0002707438170901 0.0000428026918923 + 199 11 Se 4d-2 0.0000726422437281 0.0003014715711466 + 200 11 Se 4d-1 0.0000025216246943 -0.0002847041582617 + 201 11 Se 4d0 -0.0000136587802608 0.0004372837992010 + 202 11 Se 4d+1 0.0000517754398857 0.0000187708030439 + 203 11 Se 4d+2 -0.0001297556277765 0.0003688347446088 + + 204 12 Cd 2s -0.0001406848664842 0.0107625818656574 + 205 12 Cd 3s -0.0008172217542387 -0.0002255791151315 + 206 12 Cd 3py -0.0011050421997217 0.0054206345290158 + 207 12 Cd 3pz -0.0013654584743630 -0.0011209431728823 + 208 12 Cd 3px 0.0016297423353296 -0.0059178833288733 + 209 12 Cd 4py -0.0009718444538011 0.0010547043581863 + 210 12 Cd 4pz -0.0007776853905814 0.0002281566641427 + 211 12 Cd 4px 0.0002431546372448 -0.0004337917147008 + 212 12 Cd 4d-2 -0.0091941913498759 0.0295996406114515 + 213 12 Cd 4d-1 -0.0134378993720072 0.0042997116798523 + 214 12 Cd 4d0 0.0025615362919574 0.0240454701695099 + 215 12 Cd 4d+1 0.0079220281493339 -0.0344477603848695 + 216 12 Cd 4d+2 0.0222704598165645 -0.0371236758991214 + 217 12 Cd 5d-2 0.0007749768521132 -0.0024768417884348 + 218 12 Cd 5d-1 -0.0010751191081580 -0.0010073304954003 + 219 12 Cd 5d0 0.0004806150266265 -0.0021140013436439 + 220 12 Cd 5d+1 -0.0011621862807942 0.0018076696820868 + 221 12 Cd 5d+2 0.0008820493328890 -0.0010087773897477 + 222 12 Cd 5f-3 0.0006009251841151 0.0000450790153695 + 223 12 Cd 5f-2 -0.0003126753964483 0.0000245943933334 + 224 12 Cd 5f-1 -0.0001150476997170 -0.0001897915112471 + 225 12 Cd 5f0 0.0005754748675684 -0.0001187409896783 + 226 12 Cd 5f+1 0.0002696114113304 -0.0007248689288875 + 227 12 Cd 5f+2 0.0005073568862251 0.0000176255840164 + 228 12 Cd 5f+3 -0.0000071002811964 0.0005810476517757 + + 229 13 Cd 2s 0.0268217814266427 0.0020227608445246 + 230 13 Cd 3s -0.0029106784734139 -0.0002809253292525 + 231 13 Cd 3py 0.0035471660412859 -0.0015475625852394 + 232 13 Cd 3pz 0.0011700652787445 0.0003379083062337 + 233 13 Cd 3px -0.0042212988731827 0.0021525474243061 + 234 13 Cd 4py -0.0013777295456772 -0.0005594791114379 + 235 13 Cd 4pz -0.0008425773068647 0.0001421215858508 + 236 13 Cd 4px 0.0038149374945227 0.0014601481751814 + 237 13 Cd 4d-2 0.1469766597513362 0.0029622344761627 + 238 13 Cd 4d-1 -0.0409045092699592 -0.0007803794387728 + 239 13 Cd 4d0 0.0844876717715846 0.0073601022001727 + 240 13 Cd 4d+1 0.0611957141759491 -0.0031772372717201 + 241 13 Cd 4d+2 -0.0269180296243448 -0.0077428023659154 + 242 13 Cd 5d-2 -0.0067456058698692 -0.0002518457917914 + 243 13 Cd 5d-1 0.0008639748602671 0.0002005369198301 + 244 13 Cd 5d0 -0.0045073552938504 0.0005938062474033 + 245 13 Cd 5d+1 -0.0029355530990899 -0.0000684885027277 + 246 13 Cd 5d+2 0.0010482750412591 -0.0022723364029096 + 247 13 Cd 5f-3 0.0001449186195760 0.0000649249037906 + 248 13 Cd 5f-2 0.0001941477342491 -0.0001023990207220 + 249 13 Cd 5f-1 0.0005886862749241 -0.0000881199312271 + 250 13 Cd 5f0 -0.0000044135550270 0.0000608392918550 + 251 13 Cd 5f+1 -0.0006914475729792 -0.0004821248624658 + 252 13 Cd 5f+2 -0.0003585528544248 -0.0002242526052705 + 253 13 Cd 5f+3 -0.0000724751427808 0.0007391189086827 + + 254 14 Cd 2s -0.0021721420888682 0.0014330504957968 + 255 14 Cd 3s 0.0015526607442955 0.0000996393345498 + 256 14 Cd 3py 0.0043238304836495 -0.0001445212212753 + 257 14 Cd 3pz -0.0073481347504484 -0.0013493203785359 + 258 14 Cd 3px -0.0016728644719715 -0.0010962245878942 + 259 14 Cd 4py 0.0011458019582584 0.0000476680938712 + 260 14 Cd 4pz -0.0052353936399226 -0.0006644361834274 + 261 14 Cd 4px -0.0013731845020441 -0.0003493271599314 + 262 14 Cd 4d-2 0.0069744632570910 -0.0310296599269478 + 263 14 Cd 4d-1 -0.1740549478751213 -0.0213661090073462 + 264 14 Cd 4d0 0.8350967725260764 0.0552439549278047 + 265 14 Cd 4d+1 0.2683624881303520 -0.0255655735456657 + 266 14 Cd 4d+2 0.2038212872118893 -0.0016825908980499 + 267 14 Cd 5d-2 0.0010837100829486 0.0004849618634899 + 268 14 Cd 5d-1 0.0012409477727628 0.0005894409450967 + 269 14 Cd 5d0 0.0066843672919161 0.0005560463528421 + 270 14 Cd 5d+1 0.0017648424857803 0.0008321931379944 + 271 14 Cd 5d+2 0.0000147176188530 0.0000911652492994 + 272 14 Cd 5f-3 0.0010559299120835 -0.0000016565127578 + 273 14 Cd 5f-2 -0.0001109408341819 -0.0005283472932402 + 274 14 Cd 5f-1 0.0006010323270773 -0.0000062989499881 + 275 14 Cd 5f0 -0.0002172674213376 0.0002015397066469 + 276 14 Cd 5f+1 -0.0002739376444477 -0.0001203891385326 + 277 14 Cd 5f+2 0.0005443589519783 -0.0000956914371708 + 278 14 Cd 5f+3 0.0004520501509332 -0.0000078745517395 + + 279 15 Se 2s -0.1145852937225234 -0.0052803974058868 + 280 15 Se 3s -0.0002113701471147 -0.0001061478711972 + 281 15 Se 3py 0.0415401496464026 0.0022199090110799 + 282 15 Se 3pz 0.1027441839037816 0.0038916286083198 + 283 15 Se 3px 0.0098683733292383 0.0026230546668774 + 284 15 Se 4py 0.0026674927014519 0.0000959191761452 + 285 15 Se 4pz 0.0091066330215472 0.0003243430534868 + 286 15 Se 4px 0.0004086999957677 -0.0006327866660679 + 287 15 Se 4d-2 0.0011632515210415 -0.0001183321665561 + 288 15 Se 4d-1 -0.0062278524084778 0.0000386401709662 + 289 15 Se 4d0 0.0172348888469740 0.0006487715489960 + 290 15 Se 4d+1 0.0053897725058806 0.0008521604241350 + 291 15 Se 4d+2 0.0051909297817889 0.0002609891449511 + + 292 16 Se 2s 0.0121294162251412 0.0009419591302816 + 293 16 Se 3s -0.0001829613149038 -0.0000660139443639 + 294 16 Se 3py -0.0026905275017664 0.0003250770914319 + 295 16 Se 3pz -0.0067610849841818 0.0001284503250023 + 296 16 Se 3px -0.0047540265741303 0.0001777898113402 + 297 16 Se 4py -0.0000479593121990 -0.0001289747324224 + 298 16 Se 4pz -0.0014621815821180 -0.0001877121814285 + 299 16 Se 4px -0.0011525213046847 0.0002586710446373 + 300 16 Se 4d-2 0.0003453527863450 -0.0000514847578123 + 301 16 Se 4d-1 -0.0001457144355677 0.0000691600696996 + 302 16 Se 4d0 -0.0018521675356981 0.0000370665047769 + 303 16 Se 4d+1 -0.0004890340394940 -0.0000948135309113 + 304 16 Se 4d+2 0.0002634833603347 -0.0000347263540446 + + 305 17 Cd 2s -0.0025597258224602 -0.0006886211518054 + 306 17 Cd 3s 0.0009913151152345 -0.0002923531360336 + 307 17 Cd 3py 0.0029696169826697 -0.0004445176620742 + 308 17 Cd 3pz 0.0007734150961299 -0.0005440408355675 + 309 17 Cd 3px 0.0012788250032028 -0.0002423319365823 + 310 17 Cd 4py 0.0015361857826732 0.0000484352684446 + 311 17 Cd 4pz 0.0003636549928873 -0.0000824979880684 + 312 17 Cd 4px 0.0006163603956371 -0.0003038612455636 + 313 17 Cd 4d-2 0.0155859642547228 -0.0032251677071464 + 314 17 Cd 4d-1 -0.0005988492985639 -0.0024377215881160 + 315 17 Cd 4d0 -0.0115163195073956 0.0003124188964769 + 316 17 Cd 4d+1 -0.0043744259423223 0.0008103929840440 + 317 17 Cd 4d+2 0.0005569434170710 0.0033068256486186 + 318 17 Cd 5d-2 -0.0017979467499594 -0.0002229411994786 + 319 17 Cd 5d-1 0.0017565666768890 0.0000647879961821 + 320 17 Cd 5d0 0.0001592382315791 -0.0001576548881972 + 321 17 Cd 5d+1 0.0012535040843055 -0.0001582299938958 + 322 17 Cd 5d+2 -0.0012964300464799 -0.0001232996975072 + 323 17 Cd 5f-3 -0.0000457776024049 0.0000899655027890 + 324 17 Cd 5f-2 -0.0004737347676718 0.0000037365061783 + 325 17 Cd 5f-1 -0.0002134137767405 0.0000691142443985 + 326 17 Cd 5f0 0.0000769127186176 -0.0001260249426272 + 327 17 Cd 5f+1 0.0001341422992892 -0.0000749876552015 + 328 17 Cd 5f+2 -0.0004274698429200 0.0001065967095052 + 329 17 Cd 5f+3 0.0001977951079467 -0.0000136455107371 + + 330 18 Cd 2s 0.0006990636617889 -0.0004946086649076 + 331 18 Cd 3s -0.0000622276266579 0.0002363635511639 + 332 18 Cd 3py 0.0001095636362712 0.0002010755482788 + 333 18 Cd 3pz -0.0004612857425071 -0.0003756517298237 + 334 18 Cd 3px -0.0003666881078435 -0.0001983221138198 + 335 18 Cd 4py -0.0000233333669482 0.0000652379370939 + 336 18 Cd 4pz -0.0000676905481444 0.0002031933237687 + 337 18 Cd 4px -0.0000397484820393 -0.0000201051907214 + 338 18 Cd 4d-2 0.0049172712045375 -0.0002699419815266 + 339 18 Cd 4d-1 0.0057805369538001 -0.0003307054472952 + 340 18 Cd 4d0 -0.0029141111917871 0.0102649454027354 + 341 18 Cd 4d+1 -0.0038282158391907 0.0001158765267196 + 342 18 Cd 4d+2 0.0001240146703275 -0.0010294460440116 + 343 18 Cd 5d-2 -0.0001655825312928 -0.0000785399207280 + 344 18 Cd 5d-1 -0.0003771370966792 -0.0000471557981810 + 345 18 Cd 5d0 0.0005361086105229 0.0001418551990564 + 346 18 Cd 5d+1 0.0001569785372692 -0.0003596665336164 + 347 18 Cd 5d+2 -0.0003512259853274 -0.0000946978902721 + 348 18 Cd 5f-3 -0.0000786974228865 -0.0000790830153956 + 349 18 Cd 5f-2 0.0000584214803923 -0.0001072605654660 + 350 18 Cd 5f-1 0.0000893246168031 0.0000972738136681 + 351 18 Cd 5f0 0.0000882323945406 0.0000061426308878 + 352 18 Cd 5f+1 -0.0000676748054252 -0.0001252745585907 + 353 18 Cd 5f+2 0.0000174884236043 0.0001436619249676 + 354 18 Cd 5f+3 0.0000068619169638 0.0000600959903094 + + 355 19 Se 2s -0.0028383115665631 -0.0041778974940274 + 356 19 Se 3s 0.0002398317349470 0.0002125731187439 + 357 19 Se 3py 0.0024979944735564 -0.0002553363205817 + 358 19 Se 3pz -0.0012566463437027 0.0011885923773824 + 359 19 Se 3px 0.0007228862822491 -0.0003078995808114 + 360 19 Se 4py 0.0007185213176636 -0.0001296046851243 + 361 19 Se 4pz -0.0001813631492224 0.0001265891072055 + 362 19 Se 4px 0.0000618661362509 -0.0004299205533868 + 363 19 Se 4d-2 0.0002135400981186 -0.0001803378369699 + 364 19 Se 4d-1 0.0001720911458799 0.0001443810092834 + 365 19 Se 4d0 -0.0003598740880338 0.0001826186106539 + 366 19 Se 4d+1 0.0000372563616641 0.0000009185143819 + 367 19 Se 4d+2 -0.0003206649907815 -0.0000373477804867 + + 368 20 Se 2s -0.0035998995496747 -0.0009333881304057 + 369 20 Se 3s 0.0000175847366917 0.0000459659184890 + 370 20 Se 3py 0.0006006656464077 -0.0009105974349769 + 371 20 Se 3pz -0.0001235041597651 -0.0005153784433408 + 372 20 Se 3px 0.0004223404090724 0.0005517211657230 + 373 20 Se 4py 0.0025287478617476 0.0004165224771001 + 374 20 Se 4pz -0.0002025689293775 0.0001130774564002 + 375 20 Se 4px 0.0017307046686128 0.0000736664247722 + 376 20 Se 4d-2 -0.0004692143438560 0.0001922286321196 + 377 20 Se 4d-1 0.0001531160064336 -0.0001503310407757 + 378 20 Se 4d0 0.0001902856183705 0.0000938435271508 + 379 20 Se 4d+1 -0.0000160341238699 0.0001997570096560 + 380 20 Se 4d+2 -0.0001087478695233 -0.0000432082520711 + + 381 21 Se 2s 0.0070903814299782 -0.0226386005366118 + 382 21 Se 3s 0.0002457672096037 -0.0000524921193166 + 383 21 Se 3py 0.0005527525658010 -0.0199394897266793 + 384 21 Se 3pz -0.0043712349979709 0.0388121694766473 + 385 21 Se 3px 0.0076481769647204 -0.0201590996211733 + 386 21 Se 4py 0.0012847256256763 -0.0008447702421233 + 387 21 Se 4pz 0.0001757557856343 0.0002239075797334 + 388 21 Se 4px -0.0002722550766155 -0.0015677709456244 + 389 21 Se 4d-2 -0.0023956455588492 0.0047741088325754 + 390 21 Se 4d-1 -0.0004386747802513 -0.0066931088972449 + 391 21 Se 4d0 0.0016875529611001 -0.0054853081388633 + 392 21 Se 4d+1 -0.0010553608817522 -0.0054879307090877 + 393 21 Se 4d+2 -0.0003033322286918 -0.0019570092324222 + + 394 22 Cd 2s 0.0196384391451120 0.0142872067890563 + 395 22 Cd 3s -0.0024081498772660 -0.0003208341978568 + 396 22 Cd 3py 0.0018614169237528 -0.0016325789880358 + 397 22 Cd 3pz 0.0004405483512324 0.0041678390890540 + 398 22 Cd 3px 0.0006041359594386 -0.0037254237885005 + 399 22 Cd 4py -0.0027950939841999 -0.0007797986300217 + 400 22 Cd 4pz 0.0002211440713221 -0.0002775396338125 + 401 22 Cd 4px -0.0041586817179371 -0.0006359994299734 + 402 22 Cd 4d-2 -0.1499962171203807 -0.0043274509657498 + 403 22 Cd 4d-1 -0.0252474776039960 -0.0089565679639998 + 404 22 Cd 4d0 0.1051027205912307 -0.0293148268165072 + 405 22 Cd 4d+1 -0.0401248031062444 0.0653185234783480 + 406 22 Cd 4d+2 0.0289688049404645 -0.0295280268756763 + 407 22 Cd 5d-2 0.0053166363120544 0.0038420614937954 + 408 22 Cd 5d-1 0.0003775161311534 -0.0021218934854645 + 409 22 Cd 5d0 -0.0035199623433037 -0.0016726254299461 + 410 22 Cd 5d+1 0.0009038712639738 -0.0030044322284804 + 411 22 Cd 5d+2 -0.0038665778466493 0.0020249409993499 + 412 22 Cd 5f-3 0.0002437895910972 -0.0002323999902533 + 413 22 Cd 5f-2 0.0001829686836113 0.0011246750857366 + 414 22 Cd 5f-1 0.0007190205829240 0.0001497357259759 + 415 22 Cd 5f0 0.0000802128943701 0.0003502129955829 + 416 22 Cd 5f+1 0.0010919322580861 0.0003719208293338 + 417 22 Cd 5f+2 -0.0000608233796186 -0.0000299768592421 + 418 22 Cd 5f+3 -0.0004538894918929 -0.0000133242578901 + + 419 23 Se 2s 0.0012371156549577 0.0087302987954671 + 420 23 Se 3s -0.0000058458335555 -0.0000072511023233 + 421 23 Se 3py 0.0015793172712113 -0.0006655914028811 + 422 23 Se 3pz -0.0022268554865294 -0.0015516535664673 + 423 23 Se 3px 0.0032178773843471 -0.0012495012630787 + 424 23 Se 4py 0.0009665284698708 0.0006769476843951 + 425 23 Se 4pz -0.0001941737298195 0.0001810688213466 + 426 23 Se 4px 0.0000230111929379 -0.0004352507500433 + 427 23 Se 4d-2 0.0001588063245963 -0.0002825687808683 + 428 23 Se 4d-1 0.0005751371391808 0.0000614180052914 + 429 23 Se 4d0 -0.0008556279250938 -0.0000504595667685 + 430 23 Se 4d+1 0.0007467107052240 -0.0003803226108721 + 431 23 Se 4d+2 -0.0000060907334828 0.0000355202543001 + + 432 24 Se 2s 0.0108085052563889 -0.0559143093243515 + 433 24 Se 3s -0.0001547785428214 0.0006052842700537 + 434 24 Se 3py -0.0060376851213091 0.0375463615653100 + 435 24 Se 3pz -0.0022102229112515 -0.0306282529487288 + 436 24 Se 3px 0.0047094264209112 -0.0146432126219672 + 437 24 Se 4py -0.0008077620210292 0.0022017421813872 + 438 24 Se 4pz -0.0001231512512251 -0.0006236401803368 + 439 24 Se 4px 0.0004242749325966 -0.0001341516667041 + 440 24 Se 4d-2 0.0008066537025060 -0.0021325635573704 + 441 24 Se 4d-1 -0.0005415530828379 -0.0076193224225118 + 442 24 Se 4d0 0.0005309510791178 -0.0080841365141626 + 443 24 Se 4d+1 0.0000867808020751 -0.0010538766298467 + 444 24 Se 4d+2 0.0012351421898237 -0.0080343986807915 + + 445 25 Cd 2s 0.0003255023938284 -0.0013775580574357 + 446 25 Cd 3s -0.0008591402781605 -0.0005445485368698 + 447 25 Cd 3py -0.0020155152422244 -0.0035510633196382 + 448 25 Cd 3pz -0.0020031485335235 -0.0016930674207686 + 449 25 Cd 3px 0.0018676884692520 0.0022857308550465 + 450 25 Cd 4py -0.0014611357492908 -0.0003979131207268 + 451 25 Cd 4pz -0.0005649391890980 -0.0011625025372188 + 452 25 Cd 4px 0.0003625014715822 0.0008417473488998 + 453 25 Cd 4d-2 0.0027990467328751 -0.0237550131249845 + 454 25 Cd 4d-1 -0.0121430373991829 0.0173003829787979 + 455 25 Cd 4d0 0.0155076190120556 -0.0139443999962754 + 456 25 Cd 4d+1 -0.0136713439314879 -0.0014179218428121 + 457 25 Cd 4d+2 0.0284560015966248 0.0082682080149623 + 458 25 Cd 5d-2 0.0000776016021593 0.0016820202592215 + 459 25 Cd 5d-1 -0.0005822239976542 -0.0026502770035172 + 460 25 Cd 5d0 0.0007963704251507 -0.0001562180855921 + 461 25 Cd 5d+1 -0.0003772970653823 0.0010735693551968 + 462 25 Cd 5d+2 0.0020076077911304 0.0016732115504871 + 463 25 Cd 5f-3 0.0008123529044588 0.0005661403445836 + 464 25 Cd 5f-2 -0.0002342703159049 -0.0001474243793119 + 465 25 Cd 5f-1 0.0008187201820920 0.0004302109107746 + 466 25 Cd 5f0 -0.0000204645155087 -0.0000440954203420 + 467 25 Cd 5f+1 0.0001732419031300 0.0002945144492999 + 468 25 Cd 5f+2 0.0002777566973357 0.0005681744959765 + 469 25 Cd 5f+3 -0.0000396624307039 -0.0004099466257242 + + 470 26 Cd 2s 0.0004000372303042 0.0035866630969094 + 471 26 Cd 3s -0.0008947878132461 0.0015489754214570 + 472 26 Cd 3py 0.0007481037494124 -0.0034568837921091 + 473 26 Cd 3pz 0.0011991078477783 -0.0016539845009500 + 474 26 Cd 3px 0.0002742293171499 0.0000561628646732 + 475 26 Cd 4py 0.0001612609271654 -0.0006780980180287 + 476 26 Cd 4pz 0.0005200261145372 0.0001680249002700 + 477 26 Cd 4px -0.0000566029036367 -0.0000215972290417 + 478 26 Cd 4d-2 -0.0541105739441651 0.1185317418112389 + 479 26 Cd 4d-1 -0.0475499452536015 0.8742635519144468 + 480 26 Cd 4d0 0.0243431667457339 0.3207864822700753 + 481 26 Cd 4d+1 -0.0114708722341511 0.2309569119444930 + 482 26 Cd 4d+2 0.0318240468617520 0.1450386619465782 + 483 26 Cd 5d-2 0.0001692954644057 0.0011660334161363 + 484 26 Cd 5d-1 -0.0000289927494151 0.0044225260979980 + 485 26 Cd 5d0 -0.0004523142648854 -0.0004819851145048 + 486 26 Cd 5d+1 0.0007036079179408 0.0019454498475082 + 487 26 Cd 5d+2 0.0008104879026288 -0.0015222855025185 + 488 26 Cd 5f-3 0.0002757179154836 0.0001280772305630 + 489 26 Cd 5f-2 0.0002016583483351 -0.0007740109723134 + 490 26 Cd 5f-1 -0.0001081833140910 -0.0005932859242927 + 491 26 Cd 5f0 0.0002124823168183 0.0000568581974430 + 492 26 Cd 5f+1 -0.0004024288338087 -0.0007816531002971 + 493 26 Cd 5f+2 0.0003148923128371 0.0004920191318479 + 494 26 Cd 5f+3 0.0001061341660673 -0.0003810298144531 + + 17 18 + -0.4906361744473784 -0.4902949167602002 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0002247471636125 -0.0023763041039397 + 2 1 Cd 3s 0.0002086670471317 0.0000826425380501 + 3 1 Cd 3py -0.0006582910250834 -0.0019809690106309 + 4 1 Cd 3pz 0.0006149373332803 -0.0009615175327599 + 5 1 Cd 3px -0.0001365223971912 0.0003117899587612 + 6 1 Cd 4py -0.0003300651908868 -0.0003597378555762 + 7 1 Cd 4pz 0.0002274773417836 -0.0003174626226264 + 8 1 Cd 4px 0.0000141793000178 0.0000750348236929 + 9 1 Cd 4d-2 0.0008009805953382 -0.0017081104974283 + 10 1 Cd 4d-1 0.0006852691458274 0.0081800056878557 + 11 1 Cd 4d0 0.0018368262876881 -0.0016200710487239 + 12 1 Cd 4d+1 -0.0002001300335925 0.0003213860052390 + 13 1 Cd 4d+2 0.0003332806638926 -0.0067334938559798 + 14 1 Cd 5d-2 0.0007458106546454 0.0009383116739153 + 15 1 Cd 5d-1 0.0004740567813875 -0.0006842751236424 + 16 1 Cd 5d0 0.0003813097574721 -0.0000850060441749 + 17 1 Cd 5d+1 -0.0001125103150966 0.0004902466919241 + 18 1 Cd 5d+2 0.0002171351277164 0.0004087131923624 + 19 1 Cd 5f-3 -0.0001705979070578 -0.0002264390553963 + 20 1 Cd 5f-2 0.0000276603937458 0.0002947370824581 + 21 1 Cd 5f-1 0.0002101816192058 0.0000372075662822 + 22 1 Cd 5f0 -0.0000058953164575 0.0000424655665848 + 23 1 Cd 5f+1 -0.0001813584715822 0.0000158314466285 + 24 1 Cd 5f+2 -0.0000499910263305 -0.0000239634708735 + 25 1 Cd 5f+3 -0.0002208057667060 -0.0003213986951551 + + 26 2 Cd 2s -0.0013284861486255 0.0011270415130024 + 27 2 Cd 3s -0.0003238549941435 -0.0002871742772843 + 28 2 Cd 3py -0.0009671114101937 -0.0022099793185707 + 29 2 Cd 3pz -0.0010740205804747 0.0007527212047566 + 30 2 Cd 3px 0.0001127731321032 0.0017317348146219 + 31 2 Cd 4py -0.0005553539761662 0.0004714185828594 + 32 2 Cd 4pz 0.0001551668461101 -0.0006955607501179 + 33 2 Cd 4px 0.0002183629167902 0.0010909021001989 + 34 2 Cd 4d-2 0.0083120414456987 -0.0353749176348407 + 35 2 Cd 4d-1 0.0127060988269953 0.0356511136079383 + 36 2 Cd 4d0 0.0167527481315696 -0.0541681583764913 + 37 2 Cd 4d+1 -0.0148844031603707 0.0224943000694953 + 38 2 Cd 4d+2 -0.0044157260358762 -0.0368858249761350 + 39 2 Cd 5d-2 0.0003809178314146 0.0014895524144951 + 40 2 Cd 5d-1 -0.0008981878982606 -0.0018556044537334 + 41 2 Cd 5d0 -0.0000641315877318 0.0040194126224474 + 42 2 Cd 5d+1 0.0010645260927292 -0.0009132619037531 + 43 2 Cd 5d+2 0.0001991120484685 0.0006336785597947 + 44 2 Cd 5f-3 0.0003195708689659 -0.0003475747238116 + 45 2 Cd 5f-2 0.0000631099020398 0.0003798369984015 + 46 2 Cd 5f-1 0.0003015020583970 -0.0001597298668995 + 47 2 Cd 5f0 0.0002993179429731 -0.0000694981726197 + 48 2 Cd 5f+1 0.0002028685000346 0.0000460779703191 + 49 2 Cd 5f+2 -0.0003964883922371 -0.0001887729010015 + 50 2 Cd 5f+3 0.0000043571433611 0.0005027738256297 + + 51 3 Cd 2s -0.0019491754437784 0.0007195816495943 + 52 3 Cd 3s -0.0004249558728561 0.0003139969791655 + 53 3 Cd 3py -0.0010455755408120 0.0006976228026629 + 54 3 Cd 3pz 0.0001599150100160 0.0014476590684667 + 55 3 Cd 3px 0.0004276712673283 0.0009547275894535 + 56 3 Cd 4py -0.0001453048944349 0.0003464055031114 + 57 3 Cd 4pz 0.0000838560715123 0.0004022897174069 + 58 3 Cd 4px 0.0002143420366455 0.0000153596084360 + 59 3 Cd 4d-2 -0.0002133989168042 -0.0018630750544948 + 60 3 Cd 4d-1 0.0009063882173058 -0.0005126776266608 + 61 3 Cd 4d0 0.0003483342999434 -0.0030750751499815 + 62 3 Cd 4d+1 0.0027549318625967 -0.0009611913091088 + 63 3 Cd 4d+2 0.0009086866307857 -0.0028780742293743 + 64 3 Cd 5d-2 0.0003006123650826 0.0002223137608969 + 65 3 Cd 5d-1 -0.0001493044079949 0.0006775037948990 + 66 3 Cd 5d0 -0.0001900039323526 -0.0000237586568183 + 67 3 Cd 5d+1 -0.0002128649999858 -0.0000516496248758 + 68 3 Cd 5d+2 -0.0001960868775253 -0.0002359176124028 + 69 3 Cd 5f-3 -0.0000534609271697 0.0000505921878941 + 70 3 Cd 5f-2 -0.0000087784427291 -0.0000697679047802 + 71 3 Cd 5f-1 0.0000725163835757 -0.0001358018351747 + 72 3 Cd 5f0 0.0001285213425261 -0.0000168198873764 + 73 3 Cd 5f+1 -0.0000445863608335 0.0001068830666598 + 74 3 Cd 5f+2 -0.0001317383262880 0.0001283831594427 + 75 3 Cd 5f+3 0.0001563503996834 -0.0002628042247709 + + 76 4 Se 2s 0.0009092238832605 0.0126408883551139 + 77 4 Se 3s -0.0000310249889429 -0.0003064747392937 + 78 4 Se 3py -0.0017602901476213 -0.0000959806404439 + 79 4 Se 3pz 0.0009695121010432 -0.0076127039549948 + 80 4 Se 3px 0.0006813350043853 0.0027145343567833 + 81 4 Se 4py 0.0003891316460708 0.0006506405206042 + 82 4 Se 4pz 0.0002964494467714 -0.0012046806569413 + 83 4 Se 4px -0.0004610523462141 -0.0000311727471169 + 84 4 Se 4d-2 0.0003959450517705 -0.0001098446019791 + 85 4 Se 4d-1 -0.0002056285086909 0.0007941195405051 + 86 4 Se 4d0 0.0000494620437816 0.0001336144640782 + 87 4 Se 4d+1 -0.0001189134424732 0.0016103420552782 + 88 4 Se 4d+2 -0.0001922334811737 -0.0003266653365331 + + 89 5 Se 2s 0.0003217503343598 -0.0026426366214818 + 90 5 Se 3s -0.0000131686031829 0.0000366826338503 + 91 5 Se 3py 0.0000040784352589 0.0005574390147427 + 92 5 Se 3pz -0.0000068168527699 -0.0005065918654188 + 93 5 Se 3px 0.0000690558685630 0.0001908404007105 + 94 5 Se 4py -0.0001510188651727 0.0001156067453564 + 95 5 Se 4pz 0.0000184491096607 -0.0001112030575885 + 96 5 Se 4px -0.0001259152081794 0.0001065757964082 + 97 5 Se 4d-2 -0.0000413116880949 0.0000118483572619 + 98 5 Se 4d-1 -0.0000220973285402 -0.0000724224357605 + 99 5 Se 4d0 0.0000211386088136 -0.0000536405048299 + 100 5 Se 4d+1 0.0000327171350893 0.0000225048812878 + 101 5 Se 4d+2 -0.0000166595256772 -0.0000633730910092 + + 102 6 Se 2s 0.0051898206354193 -0.0108157181214608 + 103 6 Se 3s -0.0001521955662167 0.0004328937224356 + 104 6 Se 3py -0.0013563411407935 0.0031274274209977 + 105 6 Se 3pz -0.0012507668533641 -0.0017165874432148 + 106 6 Se 3px 0.0005456441448663 -0.0010826467044581 + 107 6 Se 4py -0.0001532092199114 0.0005393183209801 + 108 6 Se 4pz -0.0003241133720296 -0.0002438163212781 + 109 6 Se 4px 0.0001094954349240 0.0001988071301453 + 110 6 Se 4d-2 0.0002044952750808 -0.0005539232486183 + 111 6 Se 4d-1 -0.0000624283290773 -0.0003906310917145 + 112 6 Se 4d0 0.0000449551604185 -0.0002859937200153 + 113 6 Se 4d+1 0.0002425188507982 0.0003164612521420 + 114 6 Se 4d+2 0.0000832661882968 -0.0002220290501859 + + 115 7 Se 2s 0.0227632444115499 -0.0835883633672833 + 116 7 Se 3s -0.0005750357960761 0.0016355770636997 + 117 7 Se 3py -0.0051130653487278 0.0243387724509327 + 118 7 Se 3pz 0.0060460348989437 -0.0301158036025662 + 119 7 Se 3px 0.0067124499450881 0.0073244274042946 + 120 7 Se 4py -0.0001338933455414 0.0018194938866353 + 121 7 Se 4pz 0.0005334104931159 -0.0019763637557467 + 122 7 Se 4px -0.0000213145665594 0.0000161132980994 + 123 7 Se 4d-2 0.0008757169421704 0.0017988471508892 + 124 7 Se 4d-1 0.0009136572398247 -0.0061859332622386 + 125 7 Se 4d0 -0.0007184157076942 0.0057881964922058 + 126 7 Se 4d+1 -0.0015236012218899 -0.0017908219520608 + 127 7 Se 4d+2 0.0001674186545958 0.0002145070002955 + + 128 8 Cd 2s -0.0031769202303862 0.0112164322165806 + 129 8 Cd 3s 0.0008611352706045 0.0008347343347688 + 130 8 Cd 3py -0.0013321265050416 0.0035300044347786 + 131 8 Cd 3pz -0.0011464745211646 0.0007809877216210 + 132 8 Cd 3px -0.0036320949552788 0.0045247346105857 + 133 8 Cd 4py 0.0013935496054069 0.0005534950484016 + 134 8 Cd 4pz -0.0004130156566221 -0.0006656678353451 + 135 8 Cd 4px -0.0012716453906477 0.0004434371913029 + 136 8 Cd 4d-2 -0.0449046844465629 0.0019493037515342 + 137 8 Cd 4d-1 -0.0457584425128243 -0.0075802636352527 + 138 8 Cd 4d0 -0.0029142989009630 -0.0264544348717657 + 139 8 Cd 4d+1 0.0047285032574047 -0.0426123439443870 + 140 8 Cd 4d+2 -0.0466066393238919 -0.0166418161523365 + 141 8 Cd 5d-2 0.0026140578850913 0.0019547270219580 + 142 8 Cd 5d-1 0.0022371737995429 0.0001596857902323 + 143 8 Cd 5d0 -0.0005770351253432 -0.0003621098437863 + 144 8 Cd 5d+1 0.0016588221079537 0.0010868814240569 + 145 8 Cd 5d+2 0.0043803869200676 0.0001708525668117 + 146 8 Cd 5f-3 0.0000338484440014 -0.0003515653562418 + 147 8 Cd 5f-2 0.0003724564462863 -0.0006033490607458 + 148 8 Cd 5f-1 -0.0003076248970218 -0.0004767679014953 + 149 8 Cd 5f0 -0.0000616115358098 -0.0001900120544290 + 150 8 Cd 5f+1 0.0002011418822391 -0.0001132216481123 + 151 8 Cd 5f+2 -0.0000271576461002 0.0003577207647454 + 152 8 Cd 5f+3 -0.0001429026650872 0.0000692336842880 + + 153 9 Cd 2s -0.0005994024844803 0.0034242682507174 + 154 9 Cd 3s 0.0000468697427900 -0.0009252924988045 + 155 9 Cd 3py -0.0006480748291933 0.0009740248410627 + 156 9 Cd 3pz 0.0001441038010525 -0.0001345125227947 + 157 9 Cd 3px -0.0006448439174925 -0.0004410561054407 + 158 9 Cd 4py -0.0000286693625138 -0.0004006869321547 + 159 9 Cd 4pz -0.0000448844082498 0.0002235347269530 + 160 9 Cd 4px -0.0000096855793698 -0.0003323215613080 + 161 9 Cd 4d-2 -0.0223721773078928 0.0244188101482836 + 162 9 Cd 4d-1 -0.0060296340370005 0.0190364915939220 + 163 9 Cd 4d0 0.0012947658368508 0.0233146244808195 + 164 9 Cd 4d+1 0.0072345008283463 0.0146815721048797 + 165 9 Cd 4d+2 -0.0186232087399621 0.0353277383907555 + 166 9 Cd 5d-2 -0.0003763720179677 -0.0007765144586514 + 167 9 Cd 5d-1 0.0001299236717406 -0.0002897035772927 + 168 9 Cd 5d0 0.0000896702988949 -0.0000889933234784 + 169 9 Cd 5d+1 0.0001305925034997 -0.0000553815145262 + 170 9 Cd 5d+2 0.0004779235945602 0.0000270995843532 + 171 9 Cd 5f-3 0.0001817269462509 -0.0002401306805779 + 172 9 Cd 5f-2 0.0000748940725438 0.0001826915751114 + 173 9 Cd 5f-1 -0.0000160740192495 0.0001719261618896 + 174 9 Cd 5f0 -0.0001147313916999 0.0001683281870379 + 175 9 Cd 5f+1 0.0000794916066582 0.0001879446674325 + 176 9 Cd 5f+2 -0.0002216086855954 0.0002350474950517 + 177 9 Cd 5f+3 -0.0000363117900529 0.0004001633312042 + + 178 10 Se 2s -0.0041872072858975 -0.0013134736089782 + 179 10 Se 3s 0.0002644519061501 0.0000777396436191 + 180 10 Se 3py 0.0038558796063504 -0.0024476306190140 + 181 10 Se 3pz -0.0014621631383983 -0.0015656701581004 + 182 10 Se 3px -0.0002582908522496 -0.0003020325300261 + 183 10 Se 4py 0.0007026397149838 -0.0003320427394680 + 184 10 Se 4pz 0.0000359119526533 -0.0001422733326604 + 185 10 Se 4px 0.0000915242562221 -0.0004872277021460 + 186 10 Se 4d-2 0.0005560365964820 -0.0005319690169560 + 187 10 Se 4d-1 -0.0007222097281571 -0.0000888938736381 + 188 10 Se 4d0 0.0001200141533042 0.0002974039481608 + 189 10 Se 4d+1 -0.0003133342615171 -0.0001001086885607 + 190 10 Se 4d+2 -0.0004892989563067 0.0002907754606412 + + 191 11 Se 2s -0.0024133564811164 0.0010708423970856 + 192 11 Se 3s 0.0001049737990494 0.0000252918509823 + 193 11 Se 3py 0.0014083228094213 -0.0002497602171933 + 194 11 Se 3pz 0.0013306062443362 -0.0004296311009830 + 195 11 Se 3px -0.0010663087798235 0.0003885062376795 + 196 11 Se 4py 0.0000900091296437 -0.0001723595910248 + 197 11 Se 4pz 0.0007710720179243 -0.0002733787308036 + 198 11 Se 4px -0.0005202665921437 0.0001342405334042 + 199 11 Se 4d-2 -0.0004029275552900 0.0001580270559887 + 200 11 Se 4d-1 -0.0000210781922843 -0.0000493566340205 + 201 11 Se 4d0 -0.0004090870772877 0.0000783845584971 + 202 11 Se 4d+1 -0.0001134615698289 0.0000628210998492 + 203 11 Se 4d+2 -0.0001187573429036 -0.0000237658664305 + + 204 12 Cd 2s 0.0045204998676808 -0.0007263196829358 + 205 12 Cd 3s -0.0004559290856249 0.0001691041854493 + 206 12 Cd 3py -0.0005414872926070 -0.0002213833850438 + 207 12 Cd 3pz 0.0002391196126761 -0.0002458996184365 + 208 12 Cd 3px 0.0001053290002074 0.0002394248981336 + 209 12 Cd 4py 0.0004267096960693 -0.0002214077477296 + 210 12 Cd 4pz 0.0010974218483294 -0.0002839752479229 + 211 12 Cd 4px 0.0010974612775755 0.0000727751052237 + 212 12 Cd 4d-2 -0.0264254123512302 0.0109360997872317 + 213 12 Cd 4d-1 -0.0115941542801083 0.0059589541398519 + 214 12 Cd 4d0 -0.0120089539887276 0.0060491397129874 + 215 12 Cd 4d+1 -0.0419381224375906 0.0058540492387504 + 216 12 Cd 4d+2 -0.0248548968301669 0.0066484357601237 + 217 12 Cd 5d-2 0.0025336494023761 -0.0004262572371681 + 218 12 Cd 5d-1 0.0010536487327633 -0.0005988603547084 + 219 12 Cd 5d0 0.0007502658629001 0.0000150844082132 + 220 12 Cd 5d+1 0.0011249582467522 0.0001415258007983 + 221 12 Cd 5d+2 0.0013650391895047 0.0004196317298484 + 222 12 Cd 5f-3 0.0003789847427907 0.0001120461172010 + 223 12 Cd 5f-2 0.0001672054233421 -0.0000779986955070 + 224 12 Cd 5f-1 -0.0002771979512308 0.0002672386945734 + 225 12 Cd 5f0 -0.0000736941237953 -0.0000054556982789 + 226 12 Cd 5f+1 0.0001821258737776 -0.0000191490454803 + 227 12 Cd 5f+2 0.0000006070202260 0.0001528983262855 + 228 12 Cd 5f+3 -0.0001215735539101 0.0002065876617312 + + 229 13 Cd 2s 0.0051574062527182 0.0054196695851386 + 230 13 Cd 3s 0.0002258047695118 0.0009353891874677 + 231 13 Cd 3py 0.0010102855594944 0.0017266644537704 + 232 13 Cd 3pz 0.0022531396940257 0.0035523725127992 + 233 13 Cd 3px -0.0024445334931734 -0.0036749287397056 + 234 13 Cd 4py 0.0000392958957811 0.0005592401513639 + 235 13 Cd 4pz 0.0003184858516063 0.0005646975187784 + 236 13 Cd 4px -0.0002632016377398 -0.0006826337342615 + 237 13 Cd 4d-2 0.0073149206567946 0.0010560744257348 + 238 13 Cd 4d-1 -0.0101997908769456 -0.0270398707372941 + 239 13 Cd 4d0 0.0069324682335040 -0.0301618167018112 + 240 13 Cd 4d+1 -0.0000542250236925 0.0334154411436055 + 241 13 Cd 4d+2 -0.0036396209064000 0.0123574526010219 + 242 13 Cd 5d-2 -0.0009128653398701 -0.0013569567900722 + 243 13 Cd 5d-1 0.0006074377114731 0.0013528705160435 + 244 13 Cd 5d0 -0.0009698994715693 0.0018299101739626 + 245 13 Cd 5d+1 -0.0019040997227889 -0.0027117636197172 + 246 13 Cd 5d+2 0.0008265167510524 0.0005874551722231 + 247 13 Cd 5f-3 -0.0001305541359314 0.0002498597815881 + 248 13 Cd 5f-2 -0.0000998551925647 0.0001024536021570 + 249 13 Cd 5f-1 0.0001331669976714 0.0002307735189130 + 250 13 Cd 5f0 -0.0002845466062501 0.0009123821669354 + 251 13 Cd 5f+1 -0.0001100024960141 -0.0004792346919533 + 252 13 Cd 5f+2 0.0005237728690231 0.0002948498762016 + 253 13 Cd 5f+3 -0.0000836530526252 -0.0003342255958512 + + 254 14 Cd 2s -0.0020983486808802 -0.0037076099793666 + 255 14 Cd 3s 0.0004343092120370 -0.0007914744490365 + 256 14 Cd 3py -0.0004002523859537 0.0024378453357784 + 257 14 Cd 3pz 0.0000823680097955 0.0038409933277108 + 258 14 Cd 3px 0.0018904680187252 -0.0006733257168144 + 259 14 Cd 4py -0.0004996386148834 0.0006457094462022 + 260 14 Cd 4pz -0.0000376084709275 0.0009793953504726 + 261 14 Cd 4px 0.0002376526930076 -0.0002836621868002 + 262 14 Cd 4d-2 0.1614735581992384 -0.2212711104459681 + 263 14 Cd 4d-1 0.0910540393009970 -0.7487965631405686 + 264 14 Cd 4d0 -0.1303359850270145 -0.3152726242530322 + 265 14 Cd 4d+1 0.3667204597532063 0.4822714392614001 + 266 14 Cd 4d+2 0.1282832295812659 0.0427819348197524 + 267 14 Cd 5d-2 -0.0005327992431743 0.0004229348095304 + 268 14 Cd 5d-1 0.0003266075146214 -0.0005935829544121 + 269 14 Cd 5d0 -0.0008782803605875 -0.0002052505975637 + 270 14 Cd 5d+1 0.0002809717527814 0.0015118257399431 + 271 14 Cd 5d+2 -0.0005532726704189 0.0020891794496628 + 272 14 Cd 5f-3 0.0005113792212688 -0.0007078186141818 + 273 14 Cd 5f-2 0.0004294507592962 -0.0001746717690966 + 274 14 Cd 5f-1 0.0001516457109230 -0.0012123070222757 + 275 14 Cd 5f0 -0.0002273961920014 0.0011165265376836 + 276 14 Cd 5f+1 -0.0002450889492206 0.0002311268326255 + 277 14 Cd 5f+2 0.0002322757672908 0.0006775994870225 + 278 14 Cd 5f+3 -0.0000355706122686 0.0002376489746905 + + 279 15 Se 2s -0.0013266708999069 0.0335792595163533 + 280 15 Se 3s 0.0000723293693033 -0.0006189136427340 + 281 15 Se 3py -0.0039340353642660 0.0274296819821796 + 282 15 Se 3pz 0.0045417634319751 -0.0060890117536139 + 283 15 Se 3px -0.0168936814810713 -0.0229371176088888 + 284 15 Se 4py -0.0002019821730264 0.0020773381157855 + 285 15 Se 4pz 0.0009659059921045 0.0001350314073260 + 286 15 Se 4px -0.0016758006014721 -0.0008553130782030 + 287 15 Se 4d-2 0.0009872916032596 0.0028138838391983 + 288 15 Se 4d-1 -0.0020085080949894 0.0092477640242906 + 289 15 Se 4d0 0.0010686788275712 0.0018161101618503 + 290 15 Se 4d+1 -0.0042648423448685 -0.0059488675131633 + 291 15 Se 4d+2 -0.0006258999593800 -0.0006727427719735 + + 292 16 Se 2s 0.0035164723015782 0.0080752447830680 + 293 16 Se 3s -0.0000390746705567 -0.0001625656525639 + 294 16 Se 3py 0.0003649948038113 -0.0032158111215239 + 295 16 Se 3pz -0.0002543956724245 -0.0028564430150378 + 296 16 Se 3px 0.0001524237469993 -0.0002398907851708 + 297 16 Se 4py 0.0004173554292281 -0.0007076886674599 + 298 16 Se 4pz 0.0000908119171699 -0.0007884895031370 + 299 16 Se 4px 0.0000643020903701 -0.0005056277464371 + 300 16 Se 4d-2 -0.0000180497223798 0.0004339953324658 + 301 16 Se 4d-1 -0.0000640178822271 -0.0004202311455985 + 302 16 Se 4d0 -0.0000911581238749 -0.0005650933404065 + 303 16 Se 4d+1 -0.0000509647295315 0.0003072089901440 + 304 16 Se 4d+2 0.0000915972639822 0.0000903685086835 + + 305 17 Cd 2s 0.0008940320837882 -0.0020928909981630 + 306 17 Cd 3s -0.0007287465232370 0.0002850075706883 + 307 17 Cd 3py 0.0000716447177691 -0.0001679488811106 + 308 17 Cd 3pz -0.0007495468752841 0.0005314147227006 + 309 17 Cd 3px -0.0002846150655610 -0.0010529912261785 + 310 17 Cd 4py 0.0001577585064262 0.0001976859401486 + 311 17 Cd 4pz -0.0005239494346206 0.0003162858466982 + 312 17 Cd 4px 0.0004039291161322 -0.0002414453263682 + 313 17 Cd 4d-2 -0.0005753237718377 0.0091627234817785 + 314 17 Cd 4d-1 0.0029876335641457 -0.0012941634949664 + 315 17 Cd 4d0 0.0020874780107087 -0.0060161914181749 + 316 17 Cd 4d+1 0.0111669560517105 -0.0036474775773838 + 317 17 Cd 4d+2 -0.0111335360728742 0.0047254632943450 + 318 17 Cd 5d-2 -0.0001984650420062 -0.0005438376255863 + 319 17 Cd 5d-1 0.0004364480543973 0.0004494044413312 + 320 17 Cd 5d0 -0.0004140241998895 0.0005615162232230 + 321 17 Cd 5d+1 0.0002501583292130 -0.0003801335319319 + 322 17 Cd 5d+2 -0.0008304442769886 -0.0002820086340496 + 323 17 Cd 5f-3 0.0002669837683933 -0.0001409702289535 + 324 17 Cd 5f-2 -0.0002109648190738 0.0000888934199913 + 325 17 Cd 5f-1 0.0001121652678409 0.0001982823522560 + 326 17 Cd 5f0 0.0001655360296897 -0.0000235957433058 + 327 17 Cd 5f+1 0.0000327646053612 -0.0001088005836796 + 328 17 Cd 5f+2 -0.0002866236188407 -0.0000052170227756 + 329 17 Cd 5f+3 0.0002877072596319 0.0000005911488344 + + 330 18 Cd 2s 0.0014747572780044 0.0000434509836626 + 331 18 Cd 3s 0.0003683304817990 -0.0000069802610578 + 332 18 Cd 3py 0.0005125521881156 0.0002675790267986 + 333 18 Cd 3pz 0.0008492463559928 -0.0002978875782629 + 334 18 Cd 3px 0.0002768142501537 0.0000225550558473 + 335 18 Cd 4py 0.0001609988381266 0.0000690857132802 + 336 18 Cd 4pz 0.0000455780536731 0.0000302618213108 + 337 18 Cd 4px 0.0002496921793790 0.0000177701981760 + 338 18 Cd 4d-2 -0.0024033002124381 0.0010149656675097 + 339 18 Cd 4d-1 0.0004751621174470 0.0035309604521725 + 340 18 Cd 4d0 -0.0100922117631479 0.0013004521518341 + 341 18 Cd 4d+1 0.0032075645060941 -0.0032827202725059 + 342 18 Cd 4d+2 -0.0024592405987375 0.0000780093596842 + 343 18 Cd 5d-2 0.0003800832651376 0.0001084321866233 + 344 18 Cd 5d-1 0.0000271108166565 0.0000996698572272 + 345 18 Cd 5d0 0.0005651340219430 -0.0001783536866836 + 346 18 Cd 5d+1 0.0002320590456322 0.0000125770012768 + 347 18 Cd 5d+2 -0.0003613392066873 -0.0000529411746505 + 348 18 Cd 5f-3 -0.0002408571269472 0.0000386031713969 + 349 18 Cd 5f-2 0.0001194208027121 0.0000199288285477 + 350 18 Cd 5f-1 0.0002660449634984 -0.0000475630647881 + 351 18 Cd 5f0 0.0001784276348247 -0.0000253072999269 + 352 18 Cd 5f+1 -0.0000096847651766 -0.0000274356639912 + 353 18 Cd 5f+2 -0.0001240023595464 0.0000249931648156 + 354 18 Cd 5f+3 -0.0001597602574148 -0.0000285792293676 + + 355 19 Se 2s 0.0006776874665701 -0.0016261783709643 + 356 19 Se 3s 0.0000544086886549 0.0000012937647430 + 357 19 Se 3py -0.0010686388813799 0.0013275035900433 + 358 19 Se 3pz 0.0001686074514055 -0.0003388208740694 + 359 19 Se 3px -0.0004982338412451 0.0001042433305475 + 360 19 Se 4py -0.0004414289180387 0.0002604827165922 + 361 19 Se 4pz 0.0004001987813308 -0.0001359083534481 + 362 19 Se 4px -0.0009898823296410 0.0001788984566150 + 363 19 Se 4d-2 0.0001058684914309 0.0000721306629757 + 364 19 Se 4d-1 -0.0001735445921967 0.0001177947213402 + 365 19 Se 4d0 0.0001749909932251 -0.0001516651033036 + 366 19 Se 4d+1 -0.0001813827393875 -0.0000111099494868 + 367 19 Se 4d+2 0.0003304517632973 -0.0001394949327289 + + 368 20 Se 2s 0.0014491246255489 0.0032558320684865 + 369 20 Se 3s -0.0000555390702174 0.0000012251683596 + 370 20 Se 3py -0.0010151232784791 -0.0020526458508160 + 371 20 Se 3pz -0.0006924072876210 -0.0003890039923566 + 372 20 Se 3px 0.0001841517236046 0.0008816529086988 + 373 20 Se 4py -0.0004134380432938 -0.0003332761110638 + 374 20 Se 4pz -0.0000370041573564 -0.0007214724081116 + 375 20 Se 4px 0.0006547454575179 0.0003706616624720 + 376 20 Se 4d-2 0.0001182874933445 0.0000362176721326 + 377 20 Se 4d-1 -0.0000512918192655 -0.0001115668915213 + 378 20 Se 4d0 -0.0002273751512942 0.0001360181796775 + 379 20 Se 4d+1 0.0001374525043928 0.0002564908649779 + 380 20 Se 4d+2 -0.0001698611020359 0.0000947357658054 + + 381 21 Se 2s 0.0490105485681448 -0.0035065796937892 + 382 21 Se 3s -0.0000467602804667 0.0001238981561225 + 383 21 Se 3py 0.0420726570250813 -0.0008320962464214 + 384 21 Se 3pz 0.0139390389680244 -0.0024164301583716 + 385 21 Se 3px 0.0179471956194283 -0.0027193027692566 + 386 21 Se 4py 0.0027303099747687 -0.0012321766290393 + 387 21 Se 4pz 0.0014482856054652 -0.0002438081955763 + 388 21 Se 4px 0.0021419370338200 -0.0018928539206041 + 389 21 Se 4d-2 -0.0035809522068303 0.0013143428018098 + 390 21 Se 4d-1 -0.0040861511402507 0.0005917521535783 + 391 21 Se 4d0 0.0006413288708935 0.0002078455450996 + 392 21 Se 4d+1 -0.0010459598756175 0.0002951451315714 + 393 21 Se 4d+2 0.0101618169046754 -0.0013184878052248 + + 394 22 Cd 2s -0.0006194042537650 -0.0027937864674325 + 395 22 Cd 3s 0.0003855057625141 -0.0003337253424249 + 396 22 Cd 3py -0.0038800697231397 -0.0010708409288065 + 397 22 Cd 3pz 0.0017934516254204 -0.0003058097749874 + 398 22 Cd 3px -0.0066831129122515 -0.0012112855171955 + 399 22 Cd 4py 0.0000030074883335 0.0000925570305816 + 400 22 Cd 4pz 0.0011495291471298 -0.0003119198591218 + 401 22 Cd 4px -0.0017740811339756 -0.0003800638614723 + 402 22 Cd 4d-2 -0.0215374117633736 0.0091979453620039 + 403 22 Cd 4d-1 0.0520612649235789 -0.0022236198866494 + 404 22 Cd 4d0 0.0395536605088286 -0.0217261563338571 + 405 22 Cd 4d+1 0.0291572201207707 -0.0217378815280810 + 406 22 Cd 4d+2 -0.0291003620283990 -0.0116563602042460 + 407 22 Cd 5d-2 0.0009247000062082 -0.0012976009408322 + 408 22 Cd 5d-1 -0.0041848359181499 0.0006182878272868 + 409 22 Cd 5d0 -0.0008695052213666 0.0017831909274459 + 410 22 Cd 5d+1 -0.0040006754532537 0.0003725836571913 + 411 22 Cd 5d+2 0.0015835043957052 -0.0016818140472209 + 412 22 Cd 5f-3 -0.0005173586200771 -0.0000534539841817 + 413 22 Cd 5f-2 -0.0004916750554759 -0.0002152116336576 + 414 22 Cd 5f-1 -0.0003254570264523 -0.0000181266564441 + 415 22 Cd 5f0 -0.0000573736913039 0.0000151057093303 + 416 22 Cd 5f+1 -0.0002718764189355 0.0006014806251365 + 417 22 Cd 5f+2 -0.0006395185633439 -0.0000840014893903 + 418 22 Cd 5f+3 -0.0001653818677062 -0.0003480427042803 + + 419 23 Se 2s -0.0012308611669267 0.0005308492578235 + 420 23 Se 3s -0.0000452910801722 -0.0000850301741453 + 421 23 Se 3py 0.0050020502352518 -0.0015107397661976 + 422 23 Se 3pz 0.0023047144842400 -0.0003488493596634 + 423 23 Se 3px -0.0007476221873836 0.0006206544814397 + 424 23 Se 4py 0.0012150846146483 -0.0006779866449259 + 425 23 Se 4pz 0.0003668196185070 -0.0000726774938690 + 426 23 Se 4px -0.0002690107841057 -0.0001756640999540 + 427 23 Se 4d-2 0.0005058800958607 -0.0000610636670096 + 428 23 Se 4d-1 0.0010775880097203 -0.0003504096730088 + 429 23 Se 4d0 0.0008578523624462 -0.0001517667797738 + 430 23 Se 4d+1 0.0000145203141671 0.0001533950932917 + 431 23 Se 4d+2 0.0003105492523584 0.0000229955249053 + + 432 24 Se 2s -0.1634894717589511 0.0236909202037677 + 433 24 Se 3s 0.0017926655503987 -0.0003101640904480 + 434 24 Se 3py 0.0678456351389431 -0.0097868614674915 + 435 24 Se 3pz 0.0322079217771700 -0.0057464891081982 + 436 24 Se 3px 0.0057398699816692 -0.0008860693228333 + 437 24 Se 4py 0.0051318851227683 -0.0008243213276755 + 438 24 Se 4pz 0.0023594881444146 -0.0004334790926357 + 439 24 Se 4px 0.0018074904043585 -0.0003539079346071 + 440 24 Se 4d-2 0.0069916125028356 -0.0010634753593648 + 441 24 Se 4d-1 0.0074461377050302 -0.0013598035479092 + 442 24 Se 4d0 -0.0039929322123800 0.0004836734415358 + 443 24 Se 4d+1 0.0042958410428323 -0.0007246389732225 + 444 24 Se 4d+2 -0.0107120796084442 0.0014691940941633 + + 445 25 Cd 2s 0.0122249123915552 -0.0039008339070845 + 446 25 Cd 3s -0.0012218501316528 -0.0001088610194542 + 447 25 Cd 3py -0.0008087926124847 -0.0011280729676890 + 448 25 Cd 3pz -0.0009810258411950 -0.0003257317745276 + 449 25 Cd 3px -0.0003514841898027 -0.0007404211707604 + 450 25 Cd 4py 0.0011007351176097 -0.0003989568438614 + 451 25 Cd 4pz -0.0016483217857444 0.0001434816927514 + 452 25 Cd 4px 0.0018247690909449 -0.0004218280394778 + 453 25 Cd 4d-2 -0.0532912938386127 0.0105578921875380 + 454 25 Cd 4d-1 0.0506106783024331 -0.0072765164723939 + 455 25 Cd 4d0 0.0051919074169386 -0.0030837608916079 + 456 25 Cd 4d+1 0.0650102457137759 -0.0104273657416132 + 457 25 Cd 4d+2 -0.0321453547332129 0.0040476287860936 + 458 25 Cd 5d-2 0.0031129783043605 -0.0009953467880140 + 459 25 Cd 5d-1 -0.0039479380494539 0.0007104376833016 + 460 25 Cd 5d0 -0.0004692077793640 0.0001511956673900 + 461 25 Cd 5d+1 -0.0014931766766074 -0.0000355323253257 + 462 25 Cd 5d+2 0.0008674445520477 -0.0001924813849682 + 463 25 Cd 5f-3 0.0002772315374408 -0.0001099741312138 + 464 25 Cd 5f-2 -0.0003270210233836 0.0000174891686641 + 465 25 Cd 5f-1 -0.0002293059245271 -0.0000609539536073 + 466 25 Cd 5f0 0.0002020928966293 -0.0000405950442707 + 467 25 Cd 5f+1 -0.0000625941876081 0.0000885812949981 + 468 25 Cd 5f+2 -0.0001086956019780 -0.0001072056015801 + 469 25 Cd 5f+3 0.0000662802078969 0.0000221769154613 + + 470 26 Cd 2s 0.0049196555764250 -0.0019829877652636 + 471 26 Cd 3s 0.0006613811533897 -0.0007103970296204 + 472 26 Cd 3py -0.0148573688636471 0.0008928091767261 + 473 26 Cd 3pz -0.0055443687432717 0.0003156600685469 + 474 26 Cd 3px -0.0035107700007289 -0.0004273865009764 + 475 26 Cd 4py -0.0066245497460123 0.0006539582234800 + 476 26 Cd 4pz -0.0019205894453918 0.0000129757614818 + 477 26 Cd 4px -0.0032129971680105 0.0000694808093093 + 478 26 Cd 4d-2 -0.5360356434487622 0.0873228903237742 + 479 26 Cd 4d-1 0.2694955098432569 -0.0313198520689651 + 480 26 Cd 4d0 -0.1791110869268706 0.0533873669353188 + 481 26 Cd 4d+1 -0.0815721779172813 -0.0048638799419751 + 482 26 Cd 4d+2 -0.5645093109647342 0.0752493658354062 + 483 26 Cd 5d-2 -0.0057723849763516 0.0001502537644118 + 484 26 Cd 5d-1 0.0042467973502764 -0.0007653919479835 + 485 26 Cd 5d0 -0.0011904361772433 0.0007242807073592 + 486 26 Cd 5d+1 -0.0018311948608155 -0.0002496361103805 + 487 26 Cd 5d+2 -0.0070420132752262 0.0009890969192251 + 488 26 Cd 5f-3 0.0004554438937797 -0.0001778657650896 + 489 26 Cd 5f-2 -0.0000922018896966 -0.0000609373818897 + 490 26 Cd 5f-1 0.0005863103902493 0.0000310559115658 + 491 26 Cd 5f0 0.0009585510094973 -0.0000088903170626 + 492 26 Cd 5f+1 0.0005152862578262 0.0000879634116786 + 493 26 Cd 5f+2 0.0005578658687716 -0.0001271149309224 + 494 26 Cd 5f+3 0.0007701233643465 -0.0000993479653416 + + 19 20 + -0.4897071067880271 -0.4885374061056758 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0005281038782913 0.0010014220494879 + 2 1 Cd 3s -0.0000411943820919 0.0000118088574431 + 3 1 Cd 3py -0.0006012285794972 0.0002230041833016 + 4 1 Cd 3pz -0.0003734019988871 0.0004660051788402 + 5 1 Cd 3px 0.0000958768516064 -0.0001515599987158 + 6 1 Cd 4py -0.0000243202640531 -0.0001663752097558 + 7 1 Cd 4pz -0.0000891338935980 -0.0000227579216530 + 8 1 Cd 4px -0.0000687173685617 -0.0002144490456983 + 9 1 Cd 4d-2 -0.0027915621668896 -0.0052722428990500 + 10 1 Cd 4d-1 0.0003517008588140 -0.0089242037048949 + 11 1 Cd 4d0 -0.0031172292903681 -0.0017352399141837 + 12 1 Cd 4d+1 0.0009051289405894 0.0006085748653094 + 13 1 Cd 4d+2 -0.0003832357255385 0.0045485994788538 + 14 1 Cd 5d-2 0.0001425919614723 -0.0001308150482069 + 15 1 Cd 5d-1 0.0000674967449906 -0.0001885635989024 + 16 1 Cd 5d0 -0.0001783605574443 0.0000703293129813 + 17 1 Cd 5d+1 0.0000303956479531 -0.0003784165910543 + 18 1 Cd 5d+2 -0.0001299671341902 -0.0002619315349221 + 19 1 Cd 5f-3 -0.0000921145052685 -0.0000944026011522 + 20 1 Cd 5f-2 -0.0000859542938777 -0.0002174633662125 + 21 1 Cd 5f-1 0.0000037952622284 -0.0001648350199498 + 22 1 Cd 5f0 -0.0000802071914338 0.0002141848790783 + 23 1 Cd 5f+1 -0.0000358137630721 -0.0000906445920096 + 24 1 Cd 5f+2 -0.0000687552095279 0.0000573911016713 + 25 1 Cd 5f+3 0.0001300209487419 0.0003173007898101 + + 26 2 Cd 2s 0.0088415033831995 -0.0003705022802849 + 27 2 Cd 3s 0.0001737088021608 -0.0012301344080100 + 28 2 Cd 3py 0.0030181063086560 -0.0023607558626189 + 29 2 Cd 3pz 0.0028972948846730 -0.0004272228304241 + 30 2 Cd 3px -0.0043602159345980 -0.0018424005180802 + 31 2 Cd 4py 0.0005914058413479 -0.0009725892497301 + 32 2 Cd 4pz -0.0000459261950811 0.0013090550199126 + 33 2 Cd 4px -0.0005121769161330 0.0002692190730092 + 34 2 Cd 4d-2 0.0114679486952043 0.0657622161733536 + 35 2 Cd 4d-1 -0.0184026470197586 0.0022603944277888 + 36 2 Cd 4d0 -0.0188277204799114 0.0470426054014704 + 37 2 Cd 4d+1 0.0290985028508844 -0.0348390912401999 + 38 2 Cd 4d+2 -0.0130533287402736 -0.0401945127934846 + 39 2 Cd 5d-2 -0.0013023492553028 -0.0006501521622649 + 40 2 Cd 5d-1 0.0007160954285656 -0.0003150789270632 + 41 2 Cd 5d0 -0.0013447916162229 0.0007179911541926 + 42 2 Cd 5d+1 -0.0013173107136891 0.0003588440704459 + 43 2 Cd 5d+2 0.0006130018068890 0.0026197818857998 + 44 2 Cd 5f-3 -0.0000919140979601 0.0008693454373165 + 45 2 Cd 5f-2 0.0002612516860836 -0.0000904179623013 + 46 2 Cd 5f-1 -0.0008596634939435 0.0004064157742489 + 47 2 Cd 5f0 -0.0003873645152500 -0.0000334631086255 + 48 2 Cd 5f+1 0.0003477191190483 -0.0007216042929911 + 49 2 Cd 5f+2 -0.0001160313593824 -0.0002368779921446 + 50 2 Cd 5f+3 0.0003253779523987 -0.0001971732143277 + + 51 3 Cd 2s 0.0003295085723506 -0.0013307076880955 + 52 3 Cd 3s 0.0001044284725418 -0.0002531025208824 + 53 3 Cd 3py 0.0004175233653688 0.0004328351674198 + 54 3 Cd 3pz 0.0008995126816968 0.0000750808751503 + 55 3 Cd 3px 0.0009416085715665 0.0003211368193013 + 56 3 Cd 4py 0.0001653901237298 0.0002316628972324 + 57 3 Cd 4pz 0.0003199703066585 0.0001309017888234 + 58 3 Cd 4px 0.0001428515468387 0.0001830999981515 + 59 3 Cd 4d-2 -0.0026100226911664 0.0003920033912376 + 60 3 Cd 4d-1 -0.0003026663604162 0.0017054253862336 + 61 3 Cd 4d0 0.0000170186347440 -0.0000581397055508 + 62 3 Cd 4d+1 -0.0012364798059776 0.0005535771928969 + 63 3 Cd 4d+2 0.0005707955361821 0.0004123926821576 + 64 3 Cd 5d-2 0.0003893320753959 -0.0002216907333028 + 65 3 Cd 5d-1 0.0005062553365536 0.0004020134272993 + 66 3 Cd 5d0 0.0001427294363186 -0.0001047452437676 + 67 3 Cd 5d+1 -0.0000024910226176 -0.0007972155081393 + 68 3 Cd 5d+2 -0.0002756535372542 -0.0006582268179218 + 69 3 Cd 5f-3 0.0000334438918896 0.0000388943748948 + 70 3 Cd 5f-2 -0.0000589536868054 -0.0004738785733887 + 71 3 Cd 5f-1 0.0000833930793094 0.0002381855539799 + 72 3 Cd 5f0 -0.0000268702675063 -0.0000701421327463 + 73 3 Cd 5f+1 -0.0000008273098453 -0.0001080630759448 + 74 3 Cd 5f+2 0.0001006825232662 -0.0001246396013538 + 75 3 Cd 5f+3 -0.0000512927067119 0.0001897507547359 + + 76 4 Se 2s 0.0023494553062581 -0.0144105294699610 + 77 4 Se 3s 0.0002604230616551 0.0003919342978965 + 78 4 Se 3py 0.0021265554327271 0.0011083794755794 + 79 4 Se 3pz -0.0016275979449375 0.0051937244458753 + 80 4 Se 3px 0.0001597124421602 -0.0023141369652515 + 81 4 Se 4py 0.0002421495663385 -0.0008871721711580 + 82 4 Se 4pz -0.0004922928432772 -0.0002281412184862 + 83 4 Se 4px 0.0000887397137540 0.0006425712876186 + 84 4 Se 4d-2 -0.0004618163522793 0.0000818906971327 + 85 4 Se 4d-1 0.0005018390784128 -0.0001530106367915 + 86 4 Se 4d0 -0.0000488303288358 0.0002014362383950 + 87 4 Se 4d+1 0.0001237999251816 -0.0011218140225445 + 88 4 Se 4d+2 0.0001272094725267 0.0002822069917432 + + 89 5 Se 2s -0.0010134889536740 0.0012176634276356 + 90 5 Se 3s 0.0000068894894879 -0.0000708169280015 + 91 5 Se 3py 0.0001309797883626 -0.0001091268097178 + 92 5 Se 3pz -0.0000538664142975 0.0003657900568782 + 93 5 Se 3px 0.0000314353756189 0.0000722562303006 + 94 5 Se 4py -0.0000997932828428 -0.0001481176356306 + 95 5 Se 4pz 0.0000095650612960 0.0000496135087967 + 96 5 Se 4px 0.0000743053503031 0.0000432812256485 + 97 5 Se 4d-2 0.0000122420116541 0.0000294395624831 + 98 5 Se 4d-1 -0.0000208415388471 0.0001094919968063 + 99 5 Se 4d0 -0.0000141102803618 0.0000428831986941 + 100 5 Se 4d+1 -0.0000081019411479 -0.0000082468207068 + 101 5 Se 4d+2 -0.0000176273232181 0.0000025661395110 + + 102 6 Se 2s -0.0029516812029456 0.0022103391645563 + 103 6 Se 3s 0.0001175387196359 -0.0001562487532564 + 104 6 Se 3py 0.0001899094431854 -0.0044179434783543 + 105 6 Se 3pz 0.0010261002945061 0.0033108321731909 + 106 6 Se 3px -0.0009091670506293 -0.0018656363899634 + 107 6 Se 4py 0.0001259016019838 -0.0008520644187035 + 108 6 Se 4pz 0.0002960499341451 0.0001251009916322 + 109 6 Se 4px -0.0000242505435264 -0.0004856894234812 + 110 6 Se 4d-2 -0.0001552893953329 0.0004066829340194 + 111 6 Se 4d-1 0.0001011185156491 0.0002037041418917 + 112 6 Se 4d0 -0.0000898728043856 0.0005615445702463 + 113 6 Se 4d+1 -0.0001474930557441 -0.0005536090655380 + 114 6 Se 4d+2 0.0001464896426431 0.0009205957859362 + + 115 7 Se 2s -0.0534922157187446 0.0639581593545518 + 116 7 Se 3s 0.0007524876189530 -0.0012331668813542 + 117 7 Se 3py 0.0207429412307752 -0.0158270497391442 + 118 7 Se 3pz -0.0162642677820225 0.0244201816672910 + 119 7 Se 3px -0.0164600066795540 0.0041589637991415 + 120 7 Se 4py 0.0013783501739209 -0.0002064662681670 + 121 7 Se 4pz -0.0013352465945430 0.0019099058172262 + 122 7 Se 4px 0.0000232170091698 0.0001215848936661 + 123 7 Se 4d-2 -0.0029324975133455 0.0002732841896775 + 124 7 Se 4d-1 -0.0046260710425637 0.0033029226390987 + 125 7 Se 4d0 0.0021729992287705 -0.0052759052306946 + 126 7 Se 4d+1 0.0038631008759246 -0.0013237790682644 + 127 7 Se 4d+2 0.0000063271940760 0.0006354208612304 + + 128 8 Cd 2s -0.0024753778453424 0.0084988863685831 + 129 8 Cd 3s 0.0006241626030207 -0.0006974040657479 + 130 8 Cd 3py -0.0019536408668659 0.0010145333156326 + 131 8 Cd 3pz -0.0004522904675123 -0.0027744988398404 + 132 8 Cd 3px -0.0020685369445581 0.0030930620236504 + 133 8 Cd 4py 0.0004943480907357 -0.0010600555993742 + 134 8 Cd 4pz -0.0012683497452211 0.0009861110798764 + 135 8 Cd 4px -0.0023732110496265 0.0005853074199621 + 136 8 Cd 4d-2 -0.0524569519099648 -0.0703722620982052 + 137 8 Cd 4d-1 -0.0154308636202101 0.0554232260337059 + 138 8 Cd 4d0 -0.0300062723713975 0.0522715731079181 + 139 8 Cd 4d+1 0.0069851665808299 0.0464822300411943 + 140 8 Cd 4d+2 -0.0457872847207219 0.0341645457563652 + 141 8 Cd 5d-2 0.0015388666797622 0.0031894006357639 + 142 8 Cd 5d-1 0.0002165914800724 -0.0011567262326915 + 143 8 Cd 5d0 0.0024345160802316 -0.0015746650927578 + 144 8 Cd 5d+1 0.0010451938899106 -0.0025412840922043 + 145 8 Cd 5d+2 0.0021804934193510 -0.0002448787302307 + 146 8 Cd 5f-3 0.0001732226362484 0.0009889557866360 + 147 8 Cd 5f-2 -0.0002019458574609 0.0002479788329166 + 148 8 Cd 5f-1 0.0004170341905210 0.0007503070812180 + 149 8 Cd 5f0 0.0001603382516231 -0.0001367583294790 + 150 8 Cd 5f+1 0.0003922164109264 0.0001429848146694 + 151 8 Cd 5f+2 0.0000185967548059 -0.0001965409239120 + 152 8 Cd 5f+3 0.0000114659707578 -0.0003256313609137 + + 153 9 Cd 2s 0.0013421684582921 -0.0057978884797545 + 154 9 Cd 3s -0.0000978597373823 0.0005565975508917 + 155 9 Cd 3py 0.0011767014594694 -0.0028115405917478 + 156 9 Cd 3pz 0.0002326097882227 0.0010952264609046 + 157 9 Cd 3px -0.0001811581273293 0.0005789160178341 + 158 9 Cd 4py 0.0000574542564098 -0.0005931966924885 + 159 9 Cd 4pz 0.0000247403711587 0.0000904672983965 + 160 9 Cd 4px 0.0000066468989606 -0.0001325685241689 + 161 9 Cd 4d-2 0.0066437294014609 -0.0193132992461427 + 162 9 Cd 4d-1 -0.0026186210296513 -0.0212105754638568 + 163 9 Cd 4d0 0.0170400778195728 -0.0333683132678546 + 164 9 Cd 4d+1 0.0070978975870234 -0.0258089457654330 + 165 9 Cd 4d+2 0.0298934553600610 0.0135357911914912 + 166 9 Cd 5d-2 -0.0003449310731221 0.0003430935829491 + 167 9 Cd 5d-1 -0.0000161173402077 0.0015090551451957 + 168 9 Cd 5d0 -0.0002998330833582 0.0002935855172312 + 169 9 Cd 5d+1 0.0003240671374243 -0.0004833499423409 + 170 9 Cd 5d+2 -0.0003059790125311 0.0012936567920558 + 171 9 Cd 5f-3 0.0000439453236052 0.0003707044205747 + 172 9 Cd 5f-2 0.0002282804289762 -0.0004421376507071 + 173 9 Cd 5f-1 -0.0002117792917838 -0.0002475134629603 + 174 9 Cd 5f0 0.0000962278842636 -0.0005988270351356 + 175 9 Cd 5f+1 -0.0000923064996289 0.0001141899521664 + 176 9 Cd 5f+2 -0.0000560827117582 -0.0005767008460195 + 177 9 Cd 5f+3 0.0000847690849445 -0.0002345133302423 + + 178 10 Se 2s -0.0056963250164509 0.0043261203630553 + 179 10 Se 3s 0.0001528840941697 -0.0003329756926609 + 180 10 Se 3py -0.0002390863718981 -0.0018186161551080 + 181 10 Se 3pz -0.0014415202353754 0.0063540963467597 + 182 10 Se 3px 0.0022275381052128 0.0064120226825227 + 183 10 Se 4py -0.0005595542572035 0.0000400695335718 + 184 10 Se 4pz 0.0000527679603433 0.0004802985842558 + 185 10 Se 4px 0.0003445818243054 0.0012974868077048 + 186 10 Se 4d-2 0.0000354462144579 0.0003748740699896 + 187 10 Se 4d-1 -0.0003380053100330 0.0009621285509943 + 188 10 Se 4d0 0.0001623875389358 -0.0012663065536092 + 189 10 Se 4d+1 -0.0004728326879662 0.0000717374161748 + 190 10 Se 4d+2 0.0002076216036139 0.0009271717192773 + + 191 11 Se 2s -0.0002340968111591 0.0003268497476916 + 192 11 Se 3s 0.0000611633775754 -0.0000057316012569 + 193 11 Se 3py 0.0010148146779073 -0.0011538559882884 + 194 11 Se 3pz 0.0018448880738411 -0.0013599233039683 + 195 11 Se 3px -0.0009902539786619 0.0013165861744435 + 196 11 Se 4py 0.0001636718201056 0.0003219024050409 + 197 11 Se 4pz 0.0005573074257385 0.0004046999416765 + 198 11 Se 4px -0.0001723001884029 0.0001676301399942 + 199 11 Se 4d-2 -0.0002611170704617 0.0002415115794450 + 200 11 Se 4d-1 0.0001395773643549 -0.0000051370494996 + 201 11 Se 4d0 -0.0003325110322929 0.0003523871159242 + 202 11 Se 4d+1 -0.0000623599643875 -0.0001242365108886 + 203 11 Se 4d+2 -0.0000816915105565 0.0000867961072307 + + 204 12 Cd 2s -0.0016583391951331 0.0011512912377615 + 205 12 Cd 3s 0.0001043686586877 -0.0005860383286129 + 206 12 Cd 3py -0.0017693125203059 0.0007084585763563 + 207 12 Cd 3pz 0.0006139068693622 -0.0010093681655542 + 208 12 Cd 3px 0.0005211060986267 -0.0013165198744542 + 209 12 Cd 4py 0.0000929854519486 -0.0001644582274833 + 210 12 Cd 4pz 0.0003117240343823 -0.0005868456143080 + 211 12 Cd 4px 0.0004083080744644 -0.0004155715695492 + 212 12 Cd 4d-2 -0.0144652074562509 0.0091542282480968 + 213 12 Cd 4d-1 -0.0100656622809860 -0.0209750216067991 + 214 12 Cd 4d0 -0.0125055572230725 -0.0019372777208164 + 215 12 Cd 4d+1 -0.0024523291271173 -0.0047013936296168 + 216 12 Cd 4d+2 -0.0085383294430776 0.0119337865637853 + 217 12 Cd 5d-2 0.0012153126284131 -0.0003947768320474 + 218 12 Cd 5d-1 0.0011233806877371 -0.0008536777185272 + 219 12 Cd 5d0 0.0006562877439796 0.0003501773131035 + 220 12 Cd 5d+1 0.0003279696197199 0.0000750604676859 + 221 12 Cd 5d+2 0.0007715791748219 -0.0002718530835953 + 222 12 Cd 5f-3 0.0001516765966049 0.0003078918230491 + 223 12 Cd 5f-2 0.0001043581929777 0.0002821260573857 + 224 12 Cd 5f-1 -0.0000961988912867 0.0000680577616583 + 225 12 Cd 5f0 -0.0002210407792487 0.0002429456702490 + 226 12 Cd 5f+1 0.0001651644055821 -0.0000630300760436 + 227 12 Cd 5f+2 -0.0001386424725383 0.0004324386568576 + 228 12 Cd 5f+3 -0.0000840608602038 0.0001595646888954 + + 229 13 Cd 2s -0.0045254837951245 -0.0034919286062345 + 230 13 Cd 3s -0.0003600840747806 0.0001235307666203 + 231 13 Cd 3py -0.0013467763883054 -0.0013997749320900 + 232 13 Cd 3pz -0.0005979730041473 -0.0006919472958906 + 233 13 Cd 3px 0.0010095673485315 0.0015141197048056 + 234 13 Cd 4py 0.0002969704711935 0.0002779486172864 + 235 13 Cd 4pz -0.0000629994320953 -0.0006691746635260 + 236 13 Cd 4px 0.0001887789740898 -0.0006907632775451 + 237 13 Cd 4d-2 -0.0161070096218951 -0.0347444108031360 + 238 13 Cd 4d-1 0.0160814905403423 0.0160908866441993 + 239 13 Cd 4d0 -0.0080426127759779 -0.0223717196688836 + 240 13 Cd 4d+1 0.0109850602068810 -0.0138497934594650 + 241 13 Cd 4d+2 -0.0200498072798803 -0.0054101299812577 + 242 13 Cd 5d-2 0.0005490485321679 0.0013089853728547 + 243 13 Cd 5d-1 -0.0006774248824971 -0.0006231929732039 + 244 13 Cd 5d0 0.0002849749616466 0.0004799383596035 + 245 13 Cd 5d+1 -0.0006243563092110 0.0011909055503016 + 246 13 Cd 5d+2 -0.0012098732470310 -0.0002017018040778 + 247 13 Cd 5f-3 -0.0004267123767146 0.0000998365119663 + 248 13 Cd 5f-2 -0.0002718662587546 -0.0000570667320837 + 249 13 Cd 5f-1 -0.0005426342993594 -0.0004121990758297 + 250 13 Cd 5f0 -0.0004173678103303 -0.0005066863671396 + 251 13 Cd 5f+1 -0.0005312858792666 0.0002709202663504 + 252 13 Cd 5f+2 -0.0002606589388422 0.0000197000409969 + 253 13 Cd 5f+3 0.0002547036777290 0.0002467108155714 + + 254 14 Cd 2s -0.0023521145347494 0.0100257254203263 + 255 14 Cd 3s -0.0005055566169663 -0.0007558713636968 + 256 14 Cd 3py 0.0015986786360025 -0.0034226597639113 + 257 14 Cd 3pz 0.0019237017024141 -0.0011569048766229 + 258 14 Cd 3px 0.0012336119849804 0.0007479219415075 + 259 14 Cd 4py 0.0001334381626741 -0.0021363027575323 + 260 14 Cd 4pz 0.0007070821572587 0.0002215261760719 + 261 14 Cd 4px 0.0003758470020324 0.0004826537372859 + 262 14 Cd 4d-2 -0.0227763783631179 -0.0978005440355246 + 263 14 Cd 4d-1 -0.5468391722210443 0.0055486142781986 + 264 14 Cd 4d0 0.1077437673912731 -0.1422253565408694 + 265 14 Cd 4d+1 -0.6970628556616960 -0.1948050032570504 + 266 14 Cd 4d+2 -0.0869611779966042 0.9372519377846655 + 267 14 Cd 5d-2 0.0003855387074106 -0.0005192644868777 + 268 14 Cd 5d-1 -0.0004718701409254 0.0017596009056762 + 269 14 Cd 5d0 0.0014524939599536 -0.0059169265186867 + 270 14 Cd 5d+1 -0.0029033330573134 -0.0015603454180471 + 271 14 Cd 5d+2 0.0000763626695653 0.0007998668465375 + 272 14 Cd 5f-3 0.0000572677422840 0.0003825407014928 + 273 14 Cd 5f-2 -0.0000328160808992 0.0002070276043885 + 274 14 Cd 5f-1 -0.0009817175766090 0.0017443678928907 + 275 14 Cd 5f0 0.0006322076874128 0.0006834717775948 + 276 14 Cd 5f+1 0.0003521858115002 0.0000786654163576 + 277 14 Cd 5f+2 0.0005305665249585 0.0007312337105592 + 278 14 Cd 5f+3 0.0004727335130505 0.0001811633113784 + + 279 15 Se 2s 0.0205991456080727 0.0228704362058457 + 280 15 Se 3s -0.0002797571009252 0.0002560727571809 + 281 15 Se 3py 0.0185903642106654 -0.0081454383863261 + 282 15 Se 3pz -0.0117861046571120 -0.0232847752487251 + 283 15 Se 3px 0.0248838905943480 -0.0033734575060632 + 284 15 Se 4py 0.0010463696495469 -0.0002729585785350 + 285 15 Se 4pz 0.0000631472449209 -0.0025237289646326 + 286 15 Se 4px 0.0001477360021930 0.0000231905922031 + 287 15 Se 4d-2 -0.0001570311488550 -0.0002814811551148 + 288 15 Se 4d-1 0.0062784973822360 0.0015651318462548 + 289 15 Se 4d0 -0.0029517535331346 -0.0032277866097457 + 290 15 Se 4d+1 0.0063109141569402 -0.0017991850863900 + 291 15 Se 4d+2 0.0024384409958677 0.0007852170336670 + + 292 16 Se 2s -0.0026799825317985 -0.0020913533874317 + 293 16 Se 3s 0.0000042865050543 -0.0000155176578700 + 294 16 Se 3py 0.0001459387607350 0.0004384281262200 + 295 16 Se 3pz 0.0011068838808360 0.0016698639276937 + 296 16 Se 3px -0.0003876295828631 0.0010391701420727 + 297 16 Se 4py -0.0000547288312183 -0.0002086904849311 + 298 16 Se 4pz 0.0002731139530450 0.0004718526227975 + 299 16 Se 4px 0.0002795511560242 0.0004926149836759 + 300 16 Se 4d-2 -0.0001097991138823 -0.0001058008113414 + 301 16 Se 4d-1 -0.0000986867226771 -0.0000226319674146 + 302 16 Se 4d0 0.0002320119676469 0.0004292457468009 + 303 16 Se 4d+1 -0.0002115853549816 0.0000523358869538 + 304 16 Se 4d+2 0.0001432932792853 -0.0000658023489594 + + 305 17 Cd 2s -0.0001079230762135 0.0008252456213832 + 306 17 Cd 3s -0.0001917817647112 -0.0001209853733371 + 307 17 Cd 3py 0.0001044562815141 -0.0002675503693320 + 308 17 Cd 3pz -0.0003178518022288 0.0002477193297160 + 309 17 Cd 3px 0.0007135621285525 -0.0001120158041882 + 310 17 Cd 4py 0.0001104410208959 -0.0001267059170602 + 311 17 Cd 4pz -0.0000973550768578 0.0000042070282323 + 312 17 Cd 4px 0.0001555258197539 -0.0001062588520678 + 313 17 Cd 4d-2 -0.0030443925391479 -0.0062018236263537 + 314 17 Cd 4d-1 0.0018029161874052 0.0002677076689765 + 315 17 Cd 4d0 0.0005226988873506 0.0022331828165488 + 316 17 Cd 4d+1 0.0035376922157101 0.0017443852142177 + 317 17 Cd 4d+2 -0.0024779724729512 0.0020532687081693 + 318 17 Cd 5d-2 0.0002356861750841 0.0004210872284673 + 319 17 Cd 5d-1 0.0003010737390990 -0.0002440617966585 + 320 17 Cd 5d0 -0.0001162957824651 0.0000439682728884 + 321 17 Cd 5d+1 0.0003135103816283 -0.0003317705321161 + 322 17 Cd 5d+2 -0.0005218701006520 0.0003219540799815 + 323 17 Cd 5f-3 0.0000033827658453 0.0000421957020696 + 324 17 Cd 5f-2 -0.0000783822865175 0.0001085816035330 + 325 17 Cd 5f-1 0.0000506279427561 0.0000237762295726 + 326 17 Cd 5f0 0.0000140081815285 -0.0001423058356834 + 327 17 Cd 5f+1 0.0001155800308241 -0.0000559518778963 + 328 17 Cd 5f+2 -0.0001076131122634 0.0001391319196610 + 329 17 Cd 5f+3 0.0000480122178611 -0.0001252469330312 + + 330 18 Cd 2s 0.0010225494181871 0.0000078364736129 + 331 18 Cd 3s 0.0000189605082275 0.0003029932299835 + 332 18 Cd 3py 0.0002508691369285 0.0001104195498388 + 333 18 Cd 3pz -0.0000580044562920 0.0009635405785721 + 334 18 Cd 3px 0.0001444260372203 0.0001525703937348 + 335 18 Cd 4py -0.0000058666620621 0.0000478001402740 + 336 18 Cd 4pz -0.0001394736062268 0.0003210749037553 + 337 18 Cd 4px 0.0001371516499331 0.0000284042948752 + 338 18 Cd 4d-2 -0.0001809401619030 -0.0005967820313560 + 339 18 Cd 4d-1 0.0027820642697138 -0.0049736567604181 + 340 18 Cd 4d0 -0.0106906840837448 0.0091931853999351 + 341 18 Cd 4d+1 -0.0016237309759441 0.0063843284184509 + 342 18 Cd 4d+2 -0.0008953990902671 0.0008748660102771 + 343 18 Cd 5d-2 0.0001659443534097 0.0000805388834276 + 344 18 Cd 5d-1 -0.0002998560636115 0.0003196940765829 + 345 18 Cd 5d0 0.0003447697691765 0.0002608458770286 + 346 18 Cd 5d+1 0.0002620839885911 -0.0001445176589326 + 347 18 Cd 5d+2 -0.0002347290263870 -0.0001576967502121 + 348 18 Cd 5f-3 -0.0000867334397309 0.0000185808543663 + 349 18 Cd 5f-2 0.0001376657954122 -0.0000510159442903 + 350 18 Cd 5f-1 0.0000995959060097 -0.0000300077847196 + 351 18 Cd 5f0 0.0001058149432821 0.0000853087645048 + 352 18 Cd 5f+1 -0.0000149705226121 -0.0000271965338275 + 353 18 Cd 5f+2 -0.0000030531089892 -0.0001206902996121 + 354 18 Cd 5f+3 -0.0000150132852652 0.0000252786376333 + + 355 19 Se 2s -0.0007381558455624 0.0003866354384370 + 356 19 Se 3s 0.0001020188583486 -0.0000922245232106 + 357 19 Se 3py 0.0007563110936619 -0.0016817610187476 + 358 19 Se 3pz -0.0000047501836216 0.0006196778024549 + 359 19 Se 3px -0.0008789991590247 -0.0000278672501520 + 360 19 Se 4py 0.0001559941273992 -0.0002884584834921 + 361 19 Se 4pz 0.0001367199996874 -0.0000722472172653 + 362 19 Se 4px -0.0005227454953400 0.0001809637790340 + 363 19 Se 4d-2 -0.0000430645409262 -0.0001382775113318 + 364 19 Se 4d-1 0.0001601146996646 -0.0002325347517731 + 365 19 Se 4d0 0.0000090990264486 0.0001288282797436 + 366 19 Se 4d+1 -0.0001767983578614 0.0000434726614045 + 367 19 Se 4d+2 0.0000790655180541 0.0000846772456167 + + 368 20 Se 2s 0.0010310287443508 -0.0030253740649768 + 369 20 Se 3s 0.0000650456543230 0.0000163439344638 + 370 20 Se 3py -0.0019110268783462 -0.0017229158994505 + 371 20 Se 3pz 0.0003340448186543 0.0025038970986341 + 372 20 Se 3px -0.0007408319266541 -0.0019820627320970 + 373 20 Se 4py -0.0009958770811276 -0.0024336725080404 + 374 20 Se 4pz 0.0002092049892024 -0.0012759162490417 + 375 20 Se 4px 0.0003014381316181 -0.0004881762114281 + 376 20 Se 4d-2 -0.0000201382196763 -0.0000635623398026 + 377 20 Se 4d-1 -0.0001470976340574 0.0000457446308628 + 378 20 Se 4d0 -0.0000318072942389 0.0004481070006624 + 379 20 Se 4d+1 -0.0000766577204087 -0.0004815932764574 + 380 20 Se 4d+2 0.0001297401282842 0.0002244017961906 + + 381 21 Se 2s 0.0539431534836803 -0.0189876299852959 + 382 21 Se 3s -0.0007478386168589 0.0006112183169554 + 383 21 Se 3py 0.0165465010029469 -0.0025953214451820 + 384 21 Se 3pz 0.0071057143542624 0.0039376166347197 + 385 21 Se 3px 0.0141434665836389 -0.0043588399303220 + 386 21 Se 4py 0.0023007040232888 -0.0017115631073897 + 387 21 Se 4pz 0.0004512099781277 0.0000748679865293 + 388 21 Se 4px 0.0026401632908121 -0.0023068986999824 + 389 21 Se 4d-2 -0.0054902694572224 0.0015416723330635 + 390 21 Se 4d-1 -0.0015822200584614 0.0004172990244686 + 391 21 Se 4d0 0.0030308562212047 -0.0011331093157277 + 392 21 Se 4d+1 -0.0001505182436642 0.0013017465054077 + 393 21 Se 4d+2 0.0031584713622019 -0.0014519347997936 + + 394 22 Cd 2s 0.0009737904552946 0.0004625782510750 + 395 22 Cd 3s 0.0005576312587202 0.0007305158863650 + 396 22 Cd 3py 0.0008815483008087 -0.0000437801757845 + 397 22 Cd 3pz -0.0001559045514549 0.0029478145235911 + 398 22 Cd 3px 0.0023071869539919 0.0011975660344422 + 399 22 Cd 4py 0.0006341935006189 0.0007401089867864 + 400 22 Cd 4pz 0.0008051243291984 0.0002083998199419 + 401 22 Cd 4px 0.0001788945943983 0.0011292600630055 + 402 22 Cd 4d-2 -0.0207716390361228 0.0422437824874074 + 403 22 Cd 4d-1 -0.0023731809266361 -0.0002498893763302 + 404 22 Cd 4d0 0.0325188253189468 -0.0445641585794639 + 405 22 Cd 4d+1 -0.0326566822429973 0.0099991468671034 + 406 22 Cd 4d+2 -0.0037478483304248 -0.0181191926264394 + 407 22 Cd 5d-2 0.0023107430205637 -0.0015348898002741 + 408 22 Cd 5d-1 -0.0008785319522304 0.0002268615229665 + 409 22 Cd 5d0 -0.0015211818200242 0.0014287266357094 + 410 22 Cd 5d+1 0.0006384270552251 0.0007337737092994 + 411 22 Cd 5d+2 0.0018826466413266 0.0006369023225612 + 412 22 Cd 5f-3 0.0003500183755865 0.0000379477013112 + 413 22 Cd 5f-2 -0.0001126214393950 -0.0000034831054527 + 414 22 Cd 5f-1 0.0002186358154737 -0.0002603806987927 + 415 22 Cd 5f0 0.0005146591901989 -0.0003773925907997 + 416 22 Cd 5f+1 0.0000376207881863 -0.0003394220192708 + 417 22 Cd 5f+2 0.0006289848291131 -0.0000593230336883 + 418 22 Cd 5f+3 0.0001146207437603 0.0001335786236129 + + 419 23 Se 2s 0.0017550262752214 0.0025862788430553 + 420 23 Se 3s 0.0000497041892584 -0.0001001899383488 + 421 23 Se 3py 0.0013488324700388 -0.0017124723475653 + 422 23 Se 3pz -0.0006205477043439 -0.0002840028595311 + 423 23 Se 3px 0.0009933148325282 -0.0009933587143310 + 424 23 Se 4py 0.0005856785939784 -0.0003548075639860 + 425 23 Se 4pz -0.0003266997664750 0.0000525376336526 + 426 23 Se 4px 0.0002909074137175 0.0000730864615484 + 427 23 Se 4d-2 0.0001970400006442 -0.0001625904614561 + 428 23 Se 4d-1 0.0003829221224480 -0.0004240535196066 + 429 23 Se 4d0 -0.0000509582552218 0.0000329909087222 + 430 23 Se 4d+1 0.0002549420385729 -0.0003220075247624 + 431 23 Se 4d+2 0.0000837337371026 -0.0000065675490097 + + 432 24 Se 2s -0.0555308824056589 0.0064586170815157 + 433 24 Se 3s 0.0007537498708025 -0.0001337299743059 + 434 24 Se 3py 0.0211720042776356 -0.0021493861457375 + 435 24 Se 3pz 0.0097766505794598 0.0002932737144536 + 436 24 Se 3px 0.0116794166648466 -0.0034291037510210 + 437 24 Se 4py 0.0017974678269143 -0.0004395445901676 + 438 24 Se 4pz 0.0006362413453442 -0.0000413989811657 + 439 24 Se 4px 0.0008383281416582 -0.0002837985740925 + 440 24 Se 4d-2 0.0048921378909185 -0.0010121760041599 + 441 24 Se 4d-1 0.0021120368855518 0.0001126206837598 + 442 24 Se 4d0 -0.0013826553829928 0.0002387450316024 + 443 24 Se 4d+1 0.0021646640768699 -0.0002970580776613 + 444 24 Se 4d+2 -0.0028596489478286 0.0002095982282838 + + 445 25 Cd 2s 0.0022074708396319 -0.0013618107005956 + 446 25 Cd 3s -0.0001062028012024 -0.0002077937176177 + 447 25 Cd 3py 0.0002769420813571 -0.0003480225380024 + 448 25 Cd 3pz -0.0008543360976672 -0.0009332227750212 + 449 25 Cd 3px 0.0010993200163709 -0.0013886772081991 + 450 25 Cd 4py 0.0006409005037343 0.0000431976819302 + 451 25 Cd 4pz -0.0002971331042267 -0.0004193948522566 + 452 25 Cd 4px 0.0008450010172860 -0.0004975485818240 + 453 25 Cd 4d-2 -0.0210229170254023 0.0044131159117681 + 454 25 Cd 4d-1 0.0218034004526333 -0.0017199415643379 + 455 25 Cd 4d0 0.0148038099114309 -0.0056522980646546 + 456 25 Cd 4d+1 0.0082081159091346 0.0053784317623804 + 457 25 Cd 4d+2 -0.0037273688897945 -0.0112961626318884 + 458 25 Cd 5d-2 0.0019196390721738 -0.0008526946132697 + 459 25 Cd 5d-1 -0.0017042127960295 0.0004167295054367 + 460 25 Cd 5d0 -0.0003812240983242 -0.0004618713450285 + 461 25 Cd 5d+1 0.0002889300880618 -0.0008122529760054 + 462 25 Cd 5d+2 0.0000965450897954 -0.0005390855489805 + 463 25 Cd 5f-3 0.0002948137000674 -0.0001202019319777 + 464 25 Cd 5f-2 -0.0002876863918602 0.0001119534311477 + 465 25 Cd 5f-1 0.0000174423735069 0.0000589363612391 + 466 25 Cd 5f0 0.0001162583819647 -0.0000283174919376 + 467 25 Cd 5f+1 -0.0000418070436145 -0.0000721242144896 + 468 25 Cd 5f+2 -0.0000225641289334 -0.0000996808884818 + 469 25 Cd 5f+3 -0.0000879602066187 0.0000118702001887 + + 470 26 Cd 2s -0.0005380074444104 0.0000078261490367 + 471 26 Cd 3s 0.0001009397012887 -0.0002056113509763 + 472 26 Cd 3py -0.0051006316778003 -0.0001291763429159 + 473 26 Cd 3pz -0.0022217206129397 -0.0004127019467273 + 474 26 Cd 3px -0.0023438009650231 0.0003669907692192 + 475 26 Cd 4py -0.0021175004662749 -0.0000090184163345 + 476 26 Cd 4pz -0.0008179583683082 -0.0002240578420033 + 477 26 Cd 4px -0.0009967145870596 0.0001075719544475 + 478 26 Cd 4d-2 -0.3410951373821108 0.0753488759175672 + 479 26 Cd 4d-1 0.0799723189193839 -0.0180971957857854 + 480 26 Cd 4d0 -0.0598336870722781 -0.0043211167260174 + 481 26 Cd 4d+1 -0.0933217486728440 0.0189244002772539 + 482 26 Cd 4d+2 -0.1595187104930680 0.0072312121333670 + 483 26 Cd 5d-2 -0.0029064349025960 0.0000672291739343 + 484 26 Cd 5d-1 0.0011568266064901 -0.0003122145205386 + 485 26 Cd 5d0 0.0000256175817117 0.0000793519223347 + 486 26 Cd 5d+1 -0.0013497797461861 -0.0003016733875607 + 487 26 Cd 5d+2 -0.0025253315358026 0.0007494586964555 + 488 26 Cd 5f-3 0.0002037989766768 -0.0001031227580221 + 489 26 Cd 5f-2 0.0000258242582555 0.0001014725656053 + 490 26 Cd 5f-1 0.0001894299604601 0.0002209723230231 + 491 26 Cd 5f0 0.0003384104840092 -0.0000600219503908 + 492 26 Cd 5f+1 0.0003364462767230 -0.0000302242520328 + 493 26 Cd 5f+2 0.0001749339738786 -0.0001655468527896 + 494 26 Cd 5f+3 -0.0001360865682581 0.0002470742801605 + + 21 22 + -0.4882415914554986 -0.4872006909921503 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0007999715926172 -0.0004308425777110 + 2 1 Cd 3s 0.0003075684740458 -0.0003873986095198 + 3 1 Cd 3py -0.0004883932230393 -0.0003621526779801 + 4 1 Cd 3pz 0.0007185069822512 -0.0006700080895555 + 5 1 Cd 3px -0.0000748488525152 0.0006975175958277 + 6 1 Cd 4py 0.0000959149153034 -0.0002721922434727 + 7 1 Cd 4pz 0.0002986605001868 -0.0001273646745473 + 8 1 Cd 4px -0.0001043835145178 0.0002846836155084 + 9 1 Cd 4d-2 -0.0027430421666802 0.0005780698845722 + 10 1 Cd 4d-1 0.0029593507694016 -0.0001041912659216 + 11 1 Cd 4d0 -0.0008216266015103 0.0007495824885044 + 12 1 Cd 4d+1 0.0008890710195453 -0.0000500572506268 + 13 1 Cd 4d+2 -0.0030003223058159 0.0027695893064950 + 14 1 Cd 5d-2 0.0003556939294008 0.0004284761086311 + 15 1 Cd 5d-1 0.0000986201436569 -0.0000655590584841 + 16 1 Cd 5d0 0.0004738048201822 0.0003147075431237 + 17 1 Cd 5d+1 -0.0004900068529791 0.0003445347003162 + 18 1 Cd 5d+2 0.0002489740225780 -0.0000826639072566 + 19 1 Cd 5f-3 -0.0001675308574682 -0.0001423564846114 + 20 1 Cd 5f-2 -0.0000764332976037 0.0000722520341517 + 21 1 Cd 5f-1 0.0000167798076302 0.0002315502312029 + 22 1 Cd 5f0 0.0000294252963632 -0.0000865804598282 + 23 1 Cd 5f+1 -0.0001035500433002 -0.0001614585604096 + 24 1 Cd 5f+2 0.0001007192288668 0.0000136033417048 + 25 1 Cd 5f+3 -0.0000533224449977 -0.0001253081609635 + + 26 2 Cd 2s 0.0193647658315596 -0.0017958931924793 + 27 2 Cd 3s 0.0008037838660511 0.0002824051980501 + 28 2 Cd 3py 0.0075562946156770 0.0004001985743630 + 29 2 Cd 3pz 0.0020088092211570 0.0007258890177512 + 30 2 Cd 3px -0.0101422806832273 0.0001989091672836 + 31 2 Cd 4py -0.0006338561177491 -0.0003254980373580 + 32 2 Cd 4pz 0.0007018185296596 0.0002717959806984 + 33 2 Cd 4px -0.0011642348454830 -0.0003962031898742 + 34 2 Cd 4d-2 0.0661126217166654 0.0174963413988986 + 35 2 Cd 4d-1 0.0138188080825093 -0.0057077055440910 + 36 2 Cd 4d0 0.0429623554035935 -0.0111796440555755 + 37 2 Cd 4d+1 -0.0005033728075641 -0.0213258997056248 + 38 2 Cd 4d+2 0.0571144290110936 0.0339679902129369 + 39 2 Cd 5d-2 -0.0043987413446099 0.0000714470072415 + 40 2 Cd 5d-1 -0.0003850838145085 0.0001042259563015 + 41 2 Cd 5d0 -0.0047561605499346 -0.0002930389796868 + 42 2 Cd 5d+1 -0.0001111939446621 -0.0007738729964708 + 43 2 Cd 5d+2 0.0008499676859515 0.0007141866941804 + 44 2 Cd 5f-3 0.0008711551050251 -0.0001571196705967 + 45 2 Cd 5f-2 -0.0001912617519090 -0.0000413181801703 + 46 2 Cd 5f-1 0.0005853521269167 0.0000252640230576 + 47 2 Cd 5f0 -0.0002687296269494 -0.0002640986809381 + 48 2 Cd 5f+1 0.0003341973038080 0.0003167383876081 + 49 2 Cd 5f+2 0.0001007875609452 0.0002759652812831 + 50 2 Cd 5f+3 -0.0007071427611150 -0.0006868975603621 + + 51 3 Cd 2s -0.0013103812157291 0.0000370767671220 + 52 3 Cd 3s 0.0000749545058036 -0.0002208376751927 + 53 3 Cd 3py 0.0002705956212022 -0.0001332152014862 + 54 3 Cd 3pz -0.0007055364416149 0.0002939018581560 + 55 3 Cd 3px -0.0013689627681292 0.0007415750097956 + 56 3 Cd 4py 0.0002602431262061 0.0000764680657001 + 57 3 Cd 4pz 0.0000768317438668 0.0000962634610213 + 58 3 Cd 4px -0.0003955122440023 0.0004419505770731 + 59 3 Cd 4d-2 -0.0005777503952092 -0.0021240021547562 + 60 3 Cd 4d-1 0.0018874422108775 -0.0022171933048256 + 61 3 Cd 4d0 0.0028799005088609 0.0024164556360166 + 62 3 Cd 4d+1 0.0069647256846946 -0.0013117672778592 + 63 3 Cd 4d+2 0.0020483895248189 0.0033457743558224 + 64 3 Cd 5d-2 -0.0008916602495432 0.0009086497384351 + 65 3 Cd 5d-1 -0.0005926676869097 -0.0002940956324908 + 66 3 Cd 5d0 -0.0010510208016931 0.0001081560326555 + 67 3 Cd 5d+1 -0.0011630192632032 0.0001427896091287 + 68 3 Cd 5d+2 0.0001215356861998 -0.0005564137643760 + 69 3 Cd 5f-3 0.0001098048713674 -0.0004500459100603 + 70 3 Cd 5f-2 -0.0002314378575470 0.0003875192193308 + 71 3 Cd 5f-1 -0.0001870427144182 0.0001192807142703 + 72 3 Cd 5f0 0.0000844050883677 0.0000445283724159 + 73 3 Cd 5f+1 0.0001101112843865 -0.0000343020650690 + 74 3 Cd 5f+2 0.0002066327634331 0.0000349705131207 + 75 3 Cd 5f+3 -0.0000547990650317 -0.0001761589970719 + + 76 4 Se 2s 0.0022129690337621 0.0003022021111419 + 77 4 Se 3s -0.0000113566256876 -0.0000791449340751 + 78 4 Se 3py -0.0035039010068732 -0.0013245965767283 + 79 4 Se 3pz -0.0013788918858191 0.0038609554280266 + 80 4 Se 3px 0.0020554289725850 0.0010500940978900 + 81 4 Se 4py -0.0003608096492338 -0.0001991755468595 + 82 4 Se 4pz 0.0001456974544655 0.0006632656883031 + 83 4 Se 4px 0.0003981687994164 -0.0000270282416240 + 84 4 Se 4d-2 0.0008678928038997 0.0001923712558775 + 85 4 Se 4d-1 -0.0004675151409595 -0.0003510037905023 + 86 4 Se 4d0 0.0006512318152426 0.0002761183899281 + 87 4 Se 4d+1 0.0003728099214118 -0.0004986084749824 + 88 4 Se 4d+2 -0.0004521756194053 -0.0002595889014090 + + 89 5 Se 2s -0.0010643996836778 0.0000330938599880 + 90 5 Se 3s 0.0000505727195421 0.0000041884249791 + 91 5 Se 3py 0.0002528972238549 -0.0002743215642380 + 92 5 Se 3pz -0.0001986666311347 0.0001293373681775 + 93 5 Se 3px 0.0002570960847113 -0.0002047163247024 + 94 5 Se 4py 0.0001127198468457 0.0000571959076960 + 95 5 Se 4pz -0.0001600729504465 0.0001147490857086 + 96 5 Se 4px 0.0001217040534324 -0.0000054138408029 + 97 5 Se 4d-2 0.0000137918419796 -0.0000230223141970 + 98 5 Se 4d-1 -0.0000203405442930 0.0000070730576237 + 99 5 Se 4d0 -0.0000202381084739 0.0000032956255207 + 100 5 Se 4d+1 0.0000284002594400 -0.0000052512307071 + 101 5 Se 4d+2 -0.0000884259119567 0.0001110515899490 + + 102 6 Se 2s 0.0153708763455782 0.0036783412898066 + 103 6 Se 3s -0.0004861556184942 -0.0002522652789063 + 104 6 Se 3py -0.0072667211506970 -0.0014785249251449 + 105 6 Se 3pz 0.0021043588855048 0.0009487186747689 + 106 6 Se 3px 0.0013345927948244 0.0007352943452649 + 107 6 Se 4py -0.0011676956369963 -0.0000906816703002 + 108 6 Se 4pz 0.0000928132042524 0.0001390666066005 + 109 6 Se 4px -0.0003489811814738 -0.0000443074105727 + 110 6 Se 4d-2 0.0014741014521236 0.0004127872566314 + 111 6 Se 4d-1 0.0002926109525733 -0.0000708148911899 + 112 6 Se 4d0 0.0006718176601298 0.0003027646333467 + 113 6 Se 4d+1 -0.0005079842481753 -0.0002305326238921 + 114 6 Se 4d+2 0.0007223709960121 -0.0000298799578254 + + 115 7 Se 2s -0.0021176448849902 -0.0151115233686321 + 116 7 Se 3s -0.0000989693081618 0.0005709060988745 + 117 7 Se 3py 0.0020649998870713 -0.0034329716129044 + 118 7 Se 3pz 0.0003710985940564 -0.0038438228743923 + 119 7 Se 3px -0.0149114559432319 -0.0016610897314994 + 120 7 Se 4py 0.0004352856445441 -0.0003902698251021 + 121 7 Se 4pz -0.0000502838773720 -0.0003740946809073 + 122 7 Se 4px -0.0005913030844835 0.0002058299242546 + 123 7 Se 4d-2 -0.0019236872872526 0.0000904408700797 + 124 7 Se 4d-1 -0.0002225113277689 0.0006984822679969 + 125 7 Se 4d0 -0.0006757457285733 0.0004933777913167 + 126 7 Se 4d+1 0.0041801945955661 0.0005087235906269 + 127 7 Se 4d+2 0.0007482220290040 -0.0003940942797347 + + 128 8 Cd 2s -0.0098428732525382 -0.0148848520411895 + 129 8 Cd 3s -0.0018778369000613 -0.0008705147262918 + 130 8 Cd 3py -0.0074248939661733 0.0014630527610544 + 131 8 Cd 3pz 0.0002412663951500 0.0024765916280184 + 132 8 Cd 3px -0.0067393846220298 0.0033752195338322 + 133 8 Cd 4py -0.0010618784060857 -0.0000117014800372 + 134 8 Cd 4pz 0.0003461166272841 0.0001875210368213 + 135 8 Cd 4px -0.0011957445166092 0.0002029147847265 + 136 8 Cd 4d-2 0.0457095723756263 0.0085085134278741 + 137 8 Cd 4d-1 0.0265924179486108 0.0011940490031575 + 138 8 Cd 4d0 -0.0403836669513847 -0.0442535062520203 + 139 8 Cd 4d+1 -0.0305648180914172 0.0627937945918669 + 140 8 Cd 4d+2 -0.0910414119666606 0.0816287777483213 + 141 8 Cd 5d-2 -0.0045726320518233 -0.0013681516568620 + 142 8 Cd 5d-1 -0.0002932518365860 -0.0007364182834531 + 143 8 Cd 5d0 0.0050758837570339 0.0015235501342096 + 144 8 Cd 5d+1 0.0020598057938466 -0.0045615962356418 + 145 8 Cd 5d+2 0.0012861184840165 -0.0056133533067859 + 146 8 Cd 5f-3 -0.0009628457396490 0.0003631351045965 + 147 8 Cd 5f-2 -0.0004367876744845 -0.0002074438122100 + 148 8 Cd 5f-1 -0.0000618155218411 -0.0003494542015254 + 149 8 Cd 5f0 -0.0003295836280039 0.0002830749368083 + 150 8 Cd 5f+1 0.0004967895236226 0.0008056325627332 + 151 8 Cd 5f+2 0.0004342446019227 0.0001220156789908 + 152 8 Cd 5f+3 -0.0003016967893398 0.0001242238592194 + + 153 9 Cd 2s 0.0003521946932696 -0.0011171736613042 + 154 9 Cd 3s -0.0002558278423968 0.0005634143644764 + 155 9 Cd 3py 0.0003767383027927 0.0007563039692125 + 156 9 Cd 3pz 0.0005792414413254 -0.0000275274366399 + 157 9 Cd 3px -0.0010881966484571 0.0010067676351537 + 158 9 Cd 4py -0.0001924872926031 0.0005328631491361 + 159 9 Cd 4pz -0.0000189048804783 -0.0001665513373534 + 160 9 Cd 4px 0.0002478764657196 0.0001557979018551 + 161 9 Cd 4d-2 -0.0019635209393681 -0.0251717239568073 + 162 9 Cd 4d-1 0.0229806309384035 -0.0129629350050263 + 163 9 Cd 4d0 0.0148677601497400 -0.0126556784007547 + 164 9 Cd 4d+1 -0.0240660349237616 0.0026909916235504 + 165 9 Cd 4d+2 0.0087413663280172 0.0156071754177632 + 166 9 Cd 5d-2 0.0003061553401451 0.0000153369670666 + 167 9 Cd 5d-1 0.0003984893451790 -0.0006063218819909 + 168 9 Cd 5d0 -0.0001011697397774 -0.0000102953280075 + 169 9 Cd 5d+1 0.0008768072097644 -0.0005927551597823 + 170 9 Cd 5d+2 0.0000654227283734 -0.0008726625303505 + 171 9 Cd 5f-3 0.0001031086100406 -0.0001632512759216 + 172 9 Cd 5f-2 0.0003803516731107 -0.0000430190157086 + 173 9 Cd 5f-1 -0.0002026765735439 0.0000355190110113 + 174 9 Cd 5f0 -0.0000258750827941 0.0001041938012116 + 175 9 Cd 5f+1 -0.0004993682152010 0.0001894728518646 + 176 9 Cd 5f+2 -0.0002844548390382 0.0004120908340138 + 177 9 Cd 5f+3 -0.0003118138387170 0.0001285786620707 + + 178 10 Se 2s -0.0073630369246246 0.0010894008187859 + 179 10 Se 3s 0.0001672141664974 -0.0002496148073043 + 180 10 Se 3py 0.0007406155686430 -0.0003388295607284 + 181 10 Se 3pz -0.0026083042831498 0.0018599630492818 + 182 10 Se 3px -0.0015861027051647 0.0026053563435648 + 183 10 Se 4py -0.0008131285907660 -0.0000576762787876 + 184 10 Se 4pz -0.0006062533999768 -0.0002037487763642 + 185 10 Se 4px -0.0004987507485375 0.0003677457811013 + 186 10 Se 4d-2 -0.0001008808790409 0.0002402294271242 + 187 10 Se 4d-1 -0.0003579799793158 0.0003790541288429 + 188 10 Se 4d0 0.0007170975390274 -0.0005121464742427 + 189 10 Se 4d+1 0.0002787216036444 -0.0000569132795841 + 190 10 Se 4d+2 -0.0001453804332518 0.0007106503377401 + + 191 11 Se 2s -0.0000958396649708 -0.0053631824232550 + 192 11 Se 3s -0.0001044242277991 0.0001668807430374 + 193 11 Se 3py -0.0015603573036399 0.0049432222706913 + 194 11 Se 3pz -0.0029022027428068 0.0072938003675578 + 195 11 Se 3px 0.0002876305384481 -0.0045772382030906 + 196 11 Se 4py -0.0004190942006581 0.0005927494406783 + 197 11 Se 4pz -0.0008752173501986 0.0012290999834116 + 198 11 Se 4px 0.0002245045717854 -0.0004735529457524 + 199 11 Se 4d-2 0.0001824780994648 -0.0010973928891392 + 200 11 Se 4d-1 -0.0002610688221451 0.0005724760996654 + 201 11 Se 4d0 0.0004200856714599 -0.0014153956947237 + 202 11 Se 4d+1 0.0001025356933031 -0.0000832251156316 + 203 11 Se 4d+2 0.0002577820040453 -0.0003564841530722 + + 204 12 Cd 2s -0.0006446012031838 -0.0104832362580703 + 205 12 Cd 3s -0.0001391571047324 0.0000087617905111 + 206 12 Cd 3py -0.0013093501106404 -0.0039269911434901 + 207 12 Cd 3pz -0.0003465491407737 0.0034962521734367 + 208 12 Cd 3px -0.0024220029736897 0.0048091707097416 + 209 12 Cd 4py -0.0003423160320577 -0.0000928512110967 + 210 12 Cd 4pz 0.0000690991413089 0.0008820240534987 + 211 12 Cd 4px -0.0004177990295243 0.0003032698640869 + 212 12 Cd 4d-2 0.0420940278308244 -0.0793335300386696 + 213 12 Cd 4d-1 0.0318890424680985 -0.0043622327529985 + 214 12 Cd 4d0 -0.0020008575818623 -0.0418655671555668 + 215 12 Cd 4d+1 -0.0034242378466604 0.0163426223048624 + 216 12 Cd 4d+2 -0.0163600198561982 -0.0026050258938609 + 217 12 Cd 5d-2 -0.0023674965666511 0.0034055406058779 + 218 12 Cd 5d-1 -0.0002825042013249 0.0029790546305675 + 219 12 Cd 5d0 -0.0001983296857287 0.0001146687154177 + 220 12 Cd 5d+1 0.0000238418930424 -0.0011922890675927 + 221 12 Cd 5d+2 -0.0000065653056382 0.0002319853301155 + 222 12 Cd 5f-3 -0.0002622501808837 0.0001791507251311 + 223 12 Cd 5f-2 -0.0000818352224170 -0.0003260941203920 + 224 12 Cd 5f-1 0.0003687885837510 -0.0008034515079818 + 225 12 Cd 5f0 -0.0000297387527487 -0.0002351021384331 + 226 12 Cd 5f+1 -0.0001227056897915 0.0005053713253054 + 227 12 Cd 5f+2 -0.0001851160483476 -0.0003630710812517 + 228 12 Cd 5f+3 0.0001390472632891 -0.0006943174031740 + + 229 13 Cd 2s 0.0021787801094819 0.0031117014636908 + 230 13 Cd 3s 0.0006494369064978 -0.0001250456465873 + 231 13 Cd 3py -0.0000569704159983 -0.0006634615322783 + 232 13 Cd 3pz 0.0020002995512680 0.0016071289041190 + 233 13 Cd 3px 0.0005204609011921 0.0010719007472321 + 234 13 Cd 4py -0.0000655466226775 0.0000224435738311 + 235 13 Cd 4pz -0.0000605475780895 0.0006038871368886 + 236 13 Cd 4px 0.0000908977711139 0.0008568892975711 + 237 13 Cd 4d-2 -0.0092392216819006 -0.0023028967073514 + 238 13 Cd 4d-1 -0.0077255590045824 -0.0008125902815417 + 239 13 Cd 4d0 -0.0233840494110543 0.0043432884360643 + 240 13 Cd 4d+1 -0.0007732585974326 -0.0077896230724420 + 241 13 Cd 4d+2 0.0070063124691270 -0.0214644644458349 + 242 13 Cd 5d-2 -0.0004235927233972 -0.0004054972352151 + 243 13 Cd 5d-1 -0.0001549383857174 -0.0000246520355551 + 244 13 Cd 5d0 0.0005453124415561 0.0004571147789328 + 245 13 Cd 5d+1 0.0000252102842188 -0.0007617223672832 + 246 13 Cd 5d+2 0.0000792574235229 -0.0009150364055632 + 247 13 Cd 5f-3 -0.0000049122392716 -0.0000341240388034 + 248 13 Cd 5f-2 -0.0001938320000405 -0.0001689029346295 + 249 13 Cd 5f-1 -0.0004154726180012 -0.0001184223362009 + 250 13 Cd 5f0 -0.0002060624336934 -0.0001274119462505 + 251 13 Cd 5f+1 0.0001017073083018 -0.0003006467255706 + 252 13 Cd 5f+2 0.0003775091974804 -0.0000027925897522 + 253 13 Cd 5f+3 0.0001520223666452 0.0006945776247004 + + 254 14 Cd 2s 0.0030795386287847 0.0009792516358497 + 255 14 Cd 3s -0.0003535585761137 -0.0001898209920479 + 256 14 Cd 3py -0.0007520353266980 -0.0007436386651350 + 257 14 Cd 3pz -0.0002178021068548 0.0012933858358024 + 258 14 Cd 3px 0.0018398321033164 0.0009857459219269 + 259 14 Cd 4py -0.0000280156796789 -0.0000343695505078 + 260 14 Cd 4pz 0.0002072421881025 0.0000928404364861 + 261 14 Cd 4px 0.0002342442804754 0.0002646514774470 + 262 14 Cd 4d-2 0.9156849495610978 0.0725579206761728 + 263 14 Cd 4d-1 -0.2146896303020470 -0.0484473463778331 + 264 14 Cd 4d0 -0.0441153374558573 -0.0251886036532421 + 265 14 Cd 4d+1 -0.0005309988308766 0.0111950849298260 + 266 14 Cd 4d+2 0.0731776754819376 0.0013155787210936 + 267 14 Cd 5d-2 0.0006316584304454 -0.0006651591248187 + 268 14 Cd 5d-1 -0.0001566512288768 -0.0005265348167462 + 269 14 Cd 5d0 -0.0003120043151012 -0.0005367277473721 + 270 14 Cd 5d+1 -0.0008161443673546 0.0003794909949569 + 271 14 Cd 5d+2 0.0000573548031536 -0.0002867500071502 + 272 14 Cd 5f-3 0.0002622184630047 0.0001796961805736 + 273 14 Cd 5f-2 0.0009967561274164 -0.0001908448031142 + 274 14 Cd 5f-1 -0.0004507001871459 0.0002496173001302 + 275 14 Cd 5f0 0.0002290851907911 0.0002586249919546 + 276 14 Cd 5f+1 -0.0002626885428693 -0.0000639717895873 + 277 14 Cd 5f+2 0.0001154072166274 -0.0004278368311054 + 278 14 Cd 5f+3 -0.0006337487812374 -0.0003332839725006 + + 279 15 Se 2s 0.0048566876910655 0.0082017869484590 + 280 15 Se 3s -0.0000473891874158 -0.0000898074155830 + 281 15 Se 3py -0.0011102504557454 0.0024227633528266 + 282 15 Se 3pz -0.0063920487928252 -0.0012240960745418 + 283 15 Se 3px -0.0015271032853343 -0.0000980392956390 + 284 15 Se 4py -0.0000092128640408 -0.0000184770373977 + 285 15 Se 4pz -0.0004376535617611 0.0002335639031522 + 286 15 Se 4px -0.0003542848713660 -0.0006076386147739 + 287 15 Se 4d-2 0.0019792945118495 0.0000843308492943 + 288 15 Se 4d-1 0.0007607274162274 0.0002868341198842 + 289 15 Se 4d0 -0.0008178421172400 -0.0001831428636440 + 290 15 Se 4d+1 -0.0001952902650170 -0.0002165033262558 + 291 15 Se 4d+2 -0.0002511369848810 0.0003435913075376 + + 292 16 Se 2s 0.0032776278730412 -0.0029711272213661 + 293 16 Se 3s -0.0000626091940369 0.0001706533875340 + 294 16 Se 3py -0.0010598534115012 -0.0003303582822567 + 295 16 Se 3pz -0.0006928972992567 0.0001140962579024 + 296 16 Se 3px 0.0005986692083683 -0.0004023263426214 + 297 16 Se 4py -0.0001447877943601 -0.0000876863092440 + 298 16 Se 4pz 0.0000945365711142 -0.0002500049671239 + 299 16 Se 4px 0.0000785550371805 -0.0002860945204192 + 300 16 Se 4d-2 0.0001876634101364 0.0001152074515990 + 301 16 Se 4d-1 -0.0001780589038075 0.0000142252746820 + 302 16 Se 4d0 -0.0000960128665765 0.0000199914247748 + 303 16 Se 4d+1 0.0002213497218844 -0.0001362045242629 + 304 16 Se 4d+2 -0.0000173220030992 0.0000358032039813 + + 305 17 Cd 2s 0.0000548121580279 -0.0005670811871482 + 306 17 Cd 3s 0.0001295675141631 0.0003806329148012 + 307 17 Cd 3py -0.0000937258139629 0.0013887392561054 + 308 17 Cd 3pz 0.0005175612929724 0.0014249317258138 + 309 17 Cd 3px -0.0004324977794790 -0.0008433115366691 + 310 17 Cd 4py 0.0000543875370114 0.0000335811479042 + 311 17 Cd 4pz 0.0001897572840077 0.0005943888080272 + 312 17 Cd 4px 0.0000097706312881 -0.0004528745487635 + 313 17 Cd 4d-2 0.0012667856397457 0.0067605383891248 + 314 17 Cd 4d-1 -0.0006967445480483 0.0008411884588623 + 315 17 Cd 4d0 -0.0006081210238205 -0.0027722990528021 + 316 17 Cd 4d+1 -0.0005311768003360 -0.0001713572346606 + 317 17 Cd 4d+2 0.0019257533515535 -0.0029423252806263 + 318 17 Cd 5d-2 -0.0001298876753758 -0.0011035923660092 + 319 17 Cd 5d-1 0.0000573336197838 0.0006401576999923 + 320 17 Cd 5d0 0.0004391055506530 0.0011796963354942 + 321 17 Cd 5d+1 -0.0001930545457648 -0.0007662159935112 + 322 17 Cd 5d+2 0.0002134158917394 0.0005054288154421 + 323 17 Cd 5f-3 0.0000522675931369 0.0000473061252945 + 324 17 Cd 5f-2 -0.0000070756314996 -0.0003197893581757 + 325 17 Cd 5f-1 0.0001143988518455 0.0001574906424447 + 326 17 Cd 5f0 0.0000847644700997 0.0002875305103039 + 327 17 Cd 5f+1 -0.0000504741471652 -0.0001909944411934 + 328 17 Cd 5f+2 0.0000390755022283 0.0000928635743314 + 329 17 Cd 5f+3 -0.0000042819618288 0.0000136717965809 + + 330 18 Cd 2s -0.0005031225014770 0.0012907286767284 + 331 18 Cd 3s 0.0003391072062189 -0.0004585297158609 + 332 18 Cd 3py 0.0006183484922006 -0.0005848994559984 + 333 18 Cd 3pz -0.0002997753833539 0.0013191879739419 + 334 18 Cd 3px 0.0000200236520968 0.0006715519149214 + 335 18 Cd 4py 0.0002580164328194 -0.0001857017755509 + 336 18 Cd 4pz 0.0000004765091057 -0.0002613575737736 + 337 18 Cd 4px -0.0000458990381847 0.0001545799605157 + 338 18 Cd 4d-2 -0.0002973344878014 -0.0005644572445385 + 339 18 Cd 4d-1 -0.0034909104520021 0.0001317378979253 + 340 18 Cd 4d0 0.0158397606142765 -0.0394665810795848 + 341 18 Cd 4d+1 0.0017153624850805 -0.0046119873702616 + 342 18 Cd 4d+2 0.0002739728130650 -0.0012612903492659 + 343 18 Cd 5d-2 0.0001652601623311 0.0003522573100850 + 344 18 Cd 5d-1 0.0002488771268892 0.0001765704038350 + 345 18 Cd 5d0 -0.0006308224568531 0.0000604351034217 + 346 18 Cd 5d+1 -0.0000770405035930 0.0002693551304427 + 347 18 Cd 5d+2 0.0000229068421640 0.0003231563624762 + 348 18 Cd 5f-3 0.0000685842415461 0.0001317110833313 + 349 18 Cd 5f-2 0.0000515690070787 -0.0000302047602491 + 350 18 Cd 5f-1 -0.0000806285748575 -0.0000099332170489 + 351 18 Cd 5f0 -0.0001379237104839 0.0000219603608188 + 352 18 Cd 5f+1 -0.0000348504249340 0.0000755255626737 + 353 18 Cd 5f+2 0.0000304053383730 -0.0001597814550507 + 354 18 Cd 5f+3 -0.0001267740520222 -0.0001280474807565 + + 355 19 Se 2s 0.0000438135073726 0.0110729455289338 + 356 19 Se 3s -0.0000596152546584 -0.0002710072554531 + 357 19 Se 3py -0.0014924020039665 0.0011429137037103 + 358 19 Se 3pz 0.0002534028289589 -0.0029614820753963 + 359 19 Se 3px 0.0009652213966442 0.0010247033386266 + 360 19 Se 4py -0.0001751367257743 0.0002593631661156 + 361 19 Se 4pz 0.0000208250344747 -0.0002604176657567 + 362 19 Se 4px 0.0003269634935458 0.0005355493801441 + 363 19 Se 4d-2 0.0000219553715422 0.0005642524584785 + 364 19 Se 4d-1 -0.0002811402575691 -0.0001520399370752 + 365 19 Se 4d0 0.0000293001963975 -0.0002964493033411 + 366 19 Se 4d+1 0.0002005041869565 0.0001352514788390 + 367 19 Se 4d+2 0.0000087257048784 0.0000107757646533 + + 368 20 Se 2s 0.0000897092331301 0.0026565377507845 + 369 20 Se 3s -0.0001765508940821 0.0000547523961768 + 370 20 Se 3py -0.0020402401801319 0.0017844310290861 + 371 20 Se 3pz 0.0017391595192334 -0.0049850792375092 + 372 20 Se 3px 0.0010387637404290 -0.0002961321196965 + 373 20 Se 4py -0.0000743392938265 -0.0002730329382961 + 374 20 Se 4pz 0.0002393527553160 0.0010433481990832 + 375 20 Se 4px 0.0002499235593201 -0.0004026243957558 + 376 20 Se 4d-2 0.0001966378740711 -0.0003720281356827 + 377 20 Se 4d-1 -0.0004053797718243 -0.0002636821847284 + 378 20 Se 4d0 0.0004622571250382 -0.0004511072964802 + 379 20 Se 4d+1 -0.0002656764320830 0.0008747052528257 + 380 20 Se 4d+2 0.0000404442349395 0.0001911712547959 + + 381 21 Se 2s -0.0274870411160746 -0.0171752553610812 + 382 21 Se 3s 0.0005160792351298 0.0001195064028805 + 383 21 Se 3py 0.0024623647468437 -0.0196947499266369 + 384 21 Se 3pz 0.0014787911247903 0.0275445402464693 + 385 21 Se 3px -0.0050723365913342 0.0031235498681392 + 386 21 Se 4py 0.0002532537364895 -0.0010781098390357 + 387 21 Se 4pz 0.0003364371842275 0.0004378003013492 + 388 21 Se 4px -0.0005991981821121 -0.0000724813676070 + 389 21 Se 4d-2 0.0041686811444922 0.0004401887731941 + 390 21 Se 4d-1 0.0014075767775293 -0.0054107858130991 + 391 21 Se 4d0 -0.0011646491519943 -0.0046653358658917 + 392 21 Se 4d+1 0.0015948200938700 -0.0018188049787167 + 393 21 Se 4d+2 0.0012342416808806 -0.0049998122078461 + + 394 22 Cd 2s -0.0001850423072279 0.0134036933601722 + 395 22 Cd 3s -0.0006379666340370 -0.0001312460739789 + 396 22 Cd 3py -0.0001826172280255 -0.0025990194831813 + 397 22 Cd 3pz -0.0004083478060736 0.0022526277902058 + 398 22 Cd 3px -0.0003077584547951 -0.0044137793713311 + 399 22 Cd 4py 0.0001165026052758 -0.0001922909731678 + 400 22 Cd 4pz -0.0007903247049552 -0.0002023222247610 + 401 22 Cd 4px 0.0004697812208490 0.0000306188187495 + 402 22 Cd 4d-2 0.0187219608406097 -0.0346433980296092 + 403 22 Cd 4d-1 0.0075096072083192 -0.0013781515852074 + 404 22 Cd 4d0 -0.0317127225884767 -0.0062347271162435 + 405 22 Cd 4d+1 0.0180314687640960 0.0725499545010791 + 406 22 Cd 4d+2 0.0016395335931895 -0.0515350634625723 + 407 22 Cd 5d-2 -0.0010538085961237 0.0023060501312652 + 408 22 Cd 5d-1 0.0002459138913085 -0.0018934799957245 + 409 22 Cd 5d0 0.0011116825482342 -0.0002949050633340 + 410 22 Cd 5d+1 -0.0003307705724182 -0.0032006574412536 + 411 22 Cd 5d+2 -0.0004810596229260 0.0019549626134418 + 412 22 Cd 5f-3 -0.0001353332699188 -0.0003519451043514 + 413 22 Cd 5f-2 0.0000259415904588 0.0004393511518205 + 414 22 Cd 5f-1 -0.0000259032046406 -0.0002193681856244 + 415 22 Cd 5f0 0.0000068796616241 0.0004017874161975 + 416 22 Cd 5f+1 0.0003158870337640 0.0001172151382175 + 417 22 Cd 5f+2 -0.0002012461151059 -0.0002338831449091 + 418 22 Cd 5f+3 -0.0001453103003823 0.0002603606074822 + + 419 23 Se 2s 0.0005003888938325 -0.0026412324659671 + 420 23 Se 3s -0.0000006073030775 0.0002392678121830 + 421 23 Se 3py -0.0009799953814613 -0.0014296541025197 + 422 23 Se 3pz 0.0002271324354464 0.0004804844843299 + 423 23 Se 3px -0.0008189581311564 -0.0005525504257055 + 424 23 Se 4py -0.0004641927971740 -0.0001833136731058 + 425 23 Se 4pz 0.0000651405510537 -0.0004401735735468 + 426 23 Se 4px -0.0003378151884333 -0.0002068802134801 + 427 23 Se 4d-2 -0.0001015821741873 -0.0001244874744120 + 428 23 Se 4d-1 -0.0002832115957439 -0.0002415248422978 + 429 23 Se 4d0 0.0001004134544152 0.0002459757787239 + 430 23 Se 4d+1 -0.0001862908334784 -0.0000573353293606 + 431 23 Se 4d+2 0.0000380010488121 -0.0002796283606659 + + 432 24 Se 2s 0.0207217397064450 0.0241124987049302 + 433 24 Se 3s -0.0004133055103893 -0.0003011575297083 + 434 24 Se 3py -0.0064951648872321 -0.0147037122199701 + 435 24 Se 3pz -0.0036089334480436 0.0073929505175134 + 436 24 Se 3px -0.0100111664917926 0.0025014285772563 + 437 24 Se 4py -0.0007153786183348 -0.0005754152316961 + 438 24 Se 4pz -0.0004857772159494 0.0001922083834118 + 439 24 Se 4px -0.0005961487171316 -0.0003310115265719 + 440 24 Se 4d-2 -0.0032234048653221 -0.0010364153098874 + 441 24 Se 4d-1 -0.0008335708185572 0.0020633137157451 + 442 24 Se 4d0 0.0006487928170938 0.0017612611594427 + 443 24 Se 4d+1 -0.0012907249571501 0.0020636751938921 + 444 24 Se 4d+2 0.0002797271713008 0.0033659927642539 + + 445 25 Cd 2s 0.0006322048173459 0.0058230751719616 + 446 25 Cd 3s -0.0000316658126721 0.0007387940394885 + 447 25 Cd 3py 0.0001307213278211 0.0007895295015467 + 448 25 Cd 3pz 0.0017670632259598 0.0048799427439470 + 449 25 Cd 3px -0.0003935117747025 -0.0030772803165261 + 450 25 Cd 4py -0.0001816207793947 -0.0012756131436437 + 451 25 Cd 4pz 0.0003119301626935 0.0008466122616540 + 452 25 Cd 4px -0.0002987017666784 -0.0000916588421175 + 453 25 Cd 4d-2 0.0071089956754575 0.0442511280439622 + 454 25 Cd 4d-1 -0.0126048636276527 -0.0335985421323474 + 455 25 Cd 4d0 -0.0184416186517141 0.0072532171931063 + 456 25 Cd 4d+1 0.0034608866662453 0.0239080690625530 + 457 25 Cd 4d+2 -0.0019283845451934 0.0011223409086962 + 458 25 Cd 5d-2 -0.0006662627944479 -0.0026279880067470 + 459 25 Cd 5d-1 0.0011334221241899 0.0014981991897000 + 460 25 Cd 5d0 0.0012006678531308 0.0025668121187036 + 461 25 Cd 5d+1 0.0000315132557716 -0.0013280079616423 + 462 25 Cd 5d+2 -0.0000490578105510 0.0006141816011547 + 463 25 Cd 5f-3 -0.0001166167765867 -0.0002667905948309 + 464 25 Cd 5f-2 0.0001780783362890 0.0000975226499032 + 465 25 Cd 5f-1 -0.0000562328860941 -0.0000845245578779 + 466 25 Cd 5f0 0.0002857771180112 0.0008106474110451 + 467 25 Cd 5f+1 0.0002238942501870 0.0000264949997492 + 468 25 Cd 5f+2 0.0000144268099367 0.0001868905919095 + 469 25 Cd 5f+3 0.0000599493945643 0.0005095539965094 + + 470 26 Cd 2s 0.0011261271769833 0.0040589475326393 + 471 26 Cd 3s -0.0002469497549267 -0.0003719875431312 + 472 26 Cd 3py 0.0022123521756426 0.0041899347314370 + 473 26 Cd 3pz 0.0002908608179133 -0.0005665379540309 + 474 26 Cd 3px 0.0015588063821972 0.0015296430223539 + 475 26 Cd 4py 0.0006401491468374 0.0004676830167836 + 476 26 Cd 4pz -0.0000667401442025 0.0025760794232046 + 477 26 Cd 4px -0.0002043104314057 0.0012821899982248 + 478 26 Cd 4d-2 0.2152839682405233 -0.2618386353942518 + 479 26 Cd 4d-1 -0.0521433883541445 -0.0999435546874229 + 480 26 Cd 4d0 0.1271380836007751 -0.3399205250461644 + 481 26 Cd 4d+1 0.0364117361263511 0.8383659444023698 + 482 26 Cd 4d+2 -0.0312353358629994 0.2030219397481036 + 483 26 Cd 5d-2 0.0016179469125054 0.0001358185465090 + 484 26 Cd 5d-1 -0.0005548580083590 0.0002258663803427 + 485 26 Cd 5d0 -0.0000745820677820 -0.0006954422608220 + 486 26 Cd 5d+1 0.0001192056531538 0.0039962975714633 + 487 26 Cd 5d+2 0.0004328733939479 0.0021910544676120 + 488 26 Cd 5f-3 -0.0003325828781812 0.0009473559313993 + 489 26 Cd 5f-2 -0.0001997604834766 0.0015785374496956 + 490 26 Cd 5f-1 -0.0000158091320407 0.0001478832286340 + 491 26 Cd 5f0 -0.0001144347439493 -0.0001516245733219 + 492 26 Cd 5f+1 -0.0003681371465241 0.0009880851670117 + 493 26 Cd 5f+2 -0.0000602364242847 -0.0010541683591242 + 494 26 Cd 5f+3 0.0001317964168324 0.0003111892367761 + + 23 24 + -0.4869259162939372 -0.4843762842429660 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0001703571054802 0.0013557151770728 + 2 1 Cd 3s 0.0001687370278848 -0.0007933810335229 + 3 1 Cd 3py 0.0003717949051824 0.0015464870352432 + 4 1 Cd 3pz 0.0001073555182881 -0.0008341250050556 + 5 1 Cd 3px -0.0006965698763714 0.0009686080278155 + 6 1 Cd 4py 0.0002587410263448 -0.0005265742961540 + 7 1 Cd 4pz -0.0000217396996669 -0.0004077914923652 + 8 1 Cd 4px -0.0002876918968253 0.0003409584481104 + 9 1 Cd 4d-2 -0.0010628707722914 0.0036705147361753 + 10 1 Cd 4d-1 0.0019643911150157 -0.0155437936301175 + 11 1 Cd 4d0 -0.0012801850226956 0.0085148255619464 + 12 1 Cd 4d+1 0.0005118083093542 -0.0001992222644523 + 13 1 Cd 4d+2 -0.0031567519166648 0.0146331264540015 + 14 1 Cd 5d-2 -0.0002648476627259 0.0003105846554160 + 15 1 Cd 5d-1 0.0000495475639440 0.0004491346072144 + 16 1 Cd 5d0 -0.0000944837100986 -0.0013493898327722 + 17 1 Cd 5d+1 -0.0000518293017304 -0.0001538272190823 + 18 1 Cd 5d+2 0.0006175094085410 -0.0011859889456155 + 19 1 Cd 5f-3 0.0000284297201313 -0.0001467585779398 + 20 1 Cd 5f-2 -0.0001876995431337 0.0003898494101017 + 21 1 Cd 5f-1 -0.0001056400915750 0.0001442486792164 + 22 1 Cd 5f0 0.0000899493916939 -0.0006896882908832 + 23 1 Cd 5f+1 0.0001859280593198 -0.0003417898745094 + 24 1 Cd 5f+2 0.0000978366613515 -0.0000391757683188 + 25 1 Cd 5f+3 -0.0001616606766813 -0.0000343813111958 + + 26 2 Cd 2s 0.0076660616529383 -0.0274925362899301 + 27 2 Cd 3s 0.0000061060148505 0.0000893916245229 + 28 2 Cd 3py 0.0004757065562123 0.0113199102401788 + 29 2 Cd 3pz 0.0010014005176923 -0.0090243258370074 + 30 2 Cd 3px -0.0027723580365421 0.0035816029947669 + 31 2 Cd 4py 0.0000738526801412 -0.0010448372914636 + 32 2 Cd 4pz 0.0002367807462995 -0.0006729713882716 + 33 2 Cd 4px -0.0000946743416344 0.0003325721590277 + 34 2 Cd 4d-2 0.0025258455544824 0.0195635702909061 + 35 2 Cd 4d-1 0.0076846421783138 -0.1228929829637810 + 36 2 Cd 4d0 0.0151515346604702 -0.0217117751922316 + 37 2 Cd 4d+1 0.0036138535213182 -0.0582400938329886 + 38 2 Cd 4d+2 0.0136444156821117 -0.1108473305009992 + 39 2 Cd 5d-2 -0.0002875116299461 -0.0034107205280589 + 40 2 Cd 5d-1 -0.0000937671441866 0.0055856939043794 + 41 2 Cd 5d0 -0.0005404585315152 0.0009787910036656 + 42 2 Cd 5d+1 -0.0005169354673580 0.0020303659206658 + 43 2 Cd 5d+2 0.0001625842691143 0.0042358659129089 + 44 2 Cd 5f-3 -0.0000308094658687 -0.0001753843483870 + 45 2 Cd 5f-2 -0.0002292508848474 0.0003356694434645 + 46 2 Cd 5f-1 0.0003338118371625 -0.0010757684861953 + 47 2 Cd 5f0 -0.0000642842353073 -0.0001919724764059 + 48 2 Cd 5f+1 -0.0001167142018738 0.0003172073854130 + 49 2 Cd 5f+2 0.0001341163667398 -0.0007891026577171 + 50 2 Cd 5f+3 -0.0001669242352010 -0.0009479286905638 + + 51 3 Cd 2s 0.0034315326277549 -0.0104297520840250 + 52 3 Cd 3s -0.0002621156642076 0.0011931352362248 + 53 3 Cd 3py 0.0019828657572922 -0.0009457641918391 + 54 3 Cd 3pz -0.0008358032142137 -0.0009101170206418 + 55 3 Cd 3px -0.0008758422098187 -0.0015632489227276 + 56 3 Cd 4py 0.0002060777105233 0.0010742776726570 + 57 3 Cd 4pz -0.0002742620925174 0.0010203519322531 + 58 3 Cd 4px -0.0000821883453007 0.0002802909668062 + 59 3 Cd 4d-2 0.0054961387664259 0.0148991372468706 + 60 3 Cd 4d-1 -0.0036471904821603 0.0380185421369549 + 61 3 Cd 4d0 0.0042345953837526 0.0117127236102480 + 62 3 Cd 4d+1 -0.0047008754316881 0.0278866485915632 + 63 3 Cd 4d+2 -0.0001073029603766 -0.0021102489500413 + 64 3 Cd 5d-2 -0.0008497482894818 -0.0001186677236719 + 65 3 Cd 5d-1 -0.0003575581325443 -0.0008623297884399 + 66 3 Cd 5d0 -0.0005590636106352 -0.0017097759551584 + 67 3 Cd 5d+1 0.0001843135970137 -0.0004599166916096 + 68 3 Cd 5d+2 0.0000556614672990 -0.0000201099300278 + 69 3 Cd 5f-3 0.0001426242797231 -0.0002432802852101 + 70 3 Cd 5f-2 0.0000552387633735 0.0002199218781690 + 71 3 Cd 5f-1 -0.0002432751280936 0.0006911940532117 + 72 3 Cd 5f0 0.0000074825815108 -0.0004375007695462 + 73 3 Cd 5f+1 0.0002130724160367 -0.0000651103625872 + 74 3 Cd 5f+2 0.0001277917565471 0.0003124454847798 + 75 3 Cd 5f+3 -0.0000168512245958 0.0001085659895335 + + 76 4 Se 2s 0.0004669361558981 -0.0151554140674866 + 77 4 Se 3s -0.0000390111222311 0.0003591287320279 + 78 4 Se 3py -0.0006063685699534 0.0015095352685553 + 79 4 Se 3pz -0.0020711559764373 0.0130579903156771 + 80 4 Se 3px 0.0001253616761353 -0.0036933808531397 + 81 4 Se 4py -0.0002406315210807 0.0009335251112683 + 82 4 Se 4pz -0.0003544064502262 0.0025320849202930 + 83 4 Se 4px 0.0002622692319431 -0.0011804281475235 + 84 4 Se 4d-2 0.0001809876518076 0.0000605103259762 + 85 4 Se 4d-1 0.0000185578355551 -0.0009378613335873 + 86 4 Se 4d0 0.0000605223544061 0.0002767292736111 + 87 4 Se 4d+1 0.0004020006302696 -0.0024136365130523 + 88 4 Se 4d+2 -0.0000528330679565 0.0006751064273562 + + 89 5 Se 2s -0.0009765391768781 0.0042659460421711 + 90 5 Se 3s 0.0001014294024926 -0.0000394622995553 + 91 5 Se 3py 0.0002193105790110 -0.0014430282292441 + 92 5 Se 3pz -0.0003158133180010 0.0009794135259134 + 93 5 Se 3px -0.0000152506024939 -0.0002061514911249 + 94 5 Se 4py 0.0002339019945100 -0.0003397572776744 + 95 5 Se 4pz -0.0001047218131825 0.0004649790656771 + 96 5 Se 4px 0.0002396021229453 -0.0007340278751085 + 97 5 Se 4d-2 -0.0000074120622560 0.0000732048211098 + 98 5 Se 4d-1 0.0000228800648932 0.0000570225840269 + 99 5 Se 4d0 -0.0000838014897739 0.0001394445486280 + 100 5 Se 4d+1 -0.0000122199562111 0.0000426504499004 + 101 5 Se 4d+2 -0.0000035222978023 0.0002464629582132 + + 102 6 Se 2s -0.0054527408312714 0.0531077557230184 + 103 6 Se 3s 0.0000065947203999 -0.0004192251908100 + 104 6 Se 3py -0.0018731818211426 0.0155373655525177 + 105 6 Se 3pz 0.0054784955458526 -0.0428074113249652 + 106 6 Se 3px -0.0008529408850669 0.0046500203945149 + 107 6 Se 4py -0.0001718570897368 0.0017698435597287 + 108 6 Se 4pz 0.0004003314611970 -0.0027269281160396 + 109 6 Se 4px -0.0001822285283683 -0.0003045014837395 + 110 6 Se 4d-2 0.0004322518976252 -0.0037010043316114 + 111 6 Se 4d-1 0.0000001773361776 0.0020141658463680 + 112 6 Se 4d0 0.0006539690564536 -0.0058764549565235 + 113 6 Se 4d+1 -0.0011128027989868 0.0081730275035155 + 114 6 Se 4d+2 0.0002263893383813 -0.0006897613005150 + + 115 7 Se 2s -0.0050323132416892 -0.0083232749278710 + 116 7 Se 3s 0.0002304792447416 0.0004082711532499 + 117 7 Se 3py -0.0021658309219238 -0.0019145026688546 + 118 7 Se 3pz -0.0003489041676648 0.0016108860637387 + 119 7 Se 3px -0.0034862437357874 0.0032654200020134 + 120 7 Se 4py -0.0002467772438849 0.0010404491577528 + 121 7 Se 4pz 0.0000843457814232 -0.0008588947415172 + 122 7 Se 4px -0.0008095655746453 -0.0000918859663849 + 123 7 Se 4d-2 0.0003716040200985 -0.0012259752599551 + 124 7 Se 4d-1 0.0005562725937908 -0.0007222993756681 + 125 7 Se 4d0 -0.0002345546541801 -0.0006923739706008 + 126 7 Se 4d+1 0.0007686500842695 -0.0001007445706270 + 127 7 Se 4d+2 0.0002264480093523 -0.0013927323390328 + + 128 8 Cd 2s 0.0049117029940320 -0.0184967227881062 + 129 8 Cd 3s -0.0003450627733760 0.0019907783872030 + 130 8 Cd 3py -0.0031833175652124 0.0055608415892670 + 131 8 Cd 3pz 0.0010196751417468 -0.0030433824082851 + 132 8 Cd 3px -0.0005349283240656 0.0025353225966567 + 133 8 Cd 4py -0.0017048682738056 -0.0027057769486051 + 134 8 Cd 4pz 0.0001423304484115 0.0012734794961239 + 135 8 Cd 4px 0.0000248888835599 0.0004696179685769 + 136 8 Cd 4d-2 0.0638360000584616 0.0306534208258891 + 137 8 Cd 4d-1 0.0577725770858276 -0.1646629268737697 + 138 8 Cd 4d0 0.0404734145433015 -0.0252437697352273 + 139 8 Cd 4d+1 0.0199667455708293 -0.0295695516135178 + 140 8 Cd 4d+2 0.0024556563068500 -0.1158880502472468 + 141 8 Cd 5d-2 -0.0017293323455467 -0.0001763315907406 + 142 8 Cd 5d-1 -0.0014797961941551 0.0037505515086014 + 143 8 Cd 5d0 -0.0013209878891010 0.0003286813487888 + 144 8 Cd 5d+1 -0.0014206404963491 0.0007325411470086 + 145 8 Cd 5d+2 -0.0011335544803610 0.0064201007065831 + 146 8 Cd 5f-3 -0.0005392660913302 0.0004551548121708 + 147 8 Cd 5f-2 -0.0001760840789667 0.0001308518157063 + 148 8 Cd 5f-1 0.0006193768661666 -0.0006536123107093 + 149 8 Cd 5f0 0.0001022295395235 0.0004230625200407 + 150 8 Cd 5f+1 0.0005907473238083 -0.0005937570677024 + 151 8 Cd 5f+2 0.0002475097926864 -0.0001029223911701 + 152 8 Cd 5f+3 -0.0006168505866868 0.0013031885918087 + + 153 9 Cd 2s -0.0000536710211701 -0.0077025665002550 + 154 9 Cd 3s 0.0000266397122805 -0.0032858825797934 + 155 9 Cd 3py 0.0002343204973674 -0.0025124348788858 + 156 9 Cd 3pz -0.0002338394580394 0.0019564047790739 + 157 9 Cd 3px 0.0006888620473313 0.0071074571943277 + 158 9 Cd 4py -0.0002246225066307 0.0010947883555313 + 159 9 Cd 4pz 0.0003009675693213 -0.0013375177639119 + 160 9 Cd 4px 0.0000060908157004 0.0044984492907847 + 161 9 Cd 4d-2 0.0219467741768928 0.0837181380152697 + 162 9 Cd 4d-1 0.0312435589003929 -0.2771009106586034 + 163 9 Cd 4d0 -0.0355837240964625 0.3198081100633946 + 164 9 Cd 4d+1 -0.0403624608893198 0.1708813369450340 + 165 9 Cd 4d+2 0.0664719954472637 -0.7576757181453202 + 166 9 Cd 5d-2 0.0000246578163647 0.0013364593145791 + 167 9 Cd 5d-1 0.0003254157779305 0.0006483350683662 + 168 9 Cd 5d0 -0.0001993784177314 0.0025587309396227 + 169 9 Cd 5d+1 -0.0005325620546735 0.0018517956210918 + 170 9 Cd 5d+2 0.0000561064896646 -0.0074148639286166 + 171 9 Cd 5f-3 0.0000013177659049 -0.0002498107222684 + 172 9 Cd 5f-2 0.0000969250058519 -0.0004267992581340 + 173 9 Cd 5f-1 -0.0000844064282695 -0.0010465020617376 + 174 9 Cd 5f0 -0.0000282927953356 0.0007656784013457 + 175 9 Cd 5f+1 0.0000975122313801 -0.0008224310274917 + 176 9 Cd 5f+2 0.0001419567013412 -0.0013446444031982 + 177 9 Cd 5f+3 0.0001266289558047 0.0007202286800473 + + 178 10 Se 2s -0.0039581861648067 0.1219865296090092 + 179 10 Se 3s -0.0001744508526727 -0.0004091573350927 + 180 10 Se 3py -0.0031733587125500 0.0123429287885219 + 181 10 Se 3pz 0.0057499597854841 -0.0397899933373108 + 182 10 Se 3px 0.0069705774618475 -0.0839409956589812 + 183 10 Se 4py -0.0004162473939781 0.0013599782785682 + 184 10 Se 4pz 0.0006502910243569 -0.0008076841761175 + 185 10 Se 4px 0.0009049479882041 -0.0046241994389513 + 186 10 Se 4d-2 -0.0005768208888366 0.0003328477254237 + 187 10 Se 4d-1 0.0005504346040574 -0.0033025059368545 + 188 10 Se 4d0 -0.0011671032784679 0.0111166331002165 + 189 10 Se 4d+1 0.0006089596508677 -0.0003048840814476 + 190 10 Se 4d+2 0.0012346631614933 -0.0139262415571712 + + 191 11 Se 2s 0.0044911729330480 -0.0110418136996763 + 192 11 Se 3s 0.0000497116220028 0.0000110688487028 + 193 11 Se 3py 0.0017792250675373 -0.0037027327588760 + 194 11 Se 3pz 0.0066878040200633 -0.0136987187680325 + 195 11 Se 3px -0.0032296472250449 0.0041489713817918 + 196 11 Se 4py 0.0002811137244416 -0.0006880838575830 + 197 11 Se 4pz 0.0007850640970694 -0.0024354002964175 + 198 11 Se 4px -0.0001810910101171 0.0003175775998346 + 199 11 Se 4d-2 -0.0005702198239712 0.0008508639178080 + 200 11 Se 4d-1 0.0005215288684739 -0.0015777708329316 + 201 11 Se 4d0 -0.0009929979494260 0.0020765959538786 + 202 11 Se 4d+1 -0.0001644091928731 0.0003255821968536 + 203 11 Se 4d+2 0.0000823049287415 0.0005530413172433 + + 204 12 Cd 2s -0.0028626844661749 -0.0117888799784124 + 205 12 Cd 3s 0.0008295914342542 0.0013712322852109 + 206 12 Cd 3py -0.0029364957090548 -0.0022070243731261 + 207 12 Cd 3pz 0.0000083127178676 -0.0021047898945277 + 208 12 Cd 3px -0.0011838932178121 -0.0009598518451371 + 209 12 Cd 4py -0.0005369149310000 0.0018098512884812 + 210 12 Cd 4pz -0.0007256714268861 0.0022983202030410 + 211 12 Cd 4px -0.0007125611717329 -0.0002836668174873 + 212 12 Cd 4d-2 -0.0345902985988263 0.0568177926078189 + 213 12 Cd 4d-1 -0.0416093310115557 0.1277255250028040 + 214 12 Cd 4d0 -0.0219148401679512 0.1585605495674128 + 215 12 Cd 4d+1 0.0282612730142304 0.0305083067746789 + 216 12 Cd 4d+2 -0.0441241450942121 -0.0172859056415287 + 217 12 Cd 5d-2 -0.0011404702229322 -0.0008898917378375 + 218 12 Cd 5d-1 0.0012076679009021 -0.0009282057522835 + 219 12 Cd 5d0 0.0014586479682252 -0.0044252102790151 + 220 12 Cd 5d+1 -0.0008108440586650 0.0003739551244986 + 221 12 Cd 5d+2 0.0021659733231701 -0.0001737468446775 + 222 12 Cd 5f-3 0.0008420118132890 -0.0004379055185390 + 223 12 Cd 5f-2 -0.0002328859039163 0.0003701891093670 + 224 12 Cd 5f-1 0.0001165081458237 -0.0004569219235164 + 225 12 Cd 5f0 -0.0004234121657585 0.0006978602350712 + 226 12 Cd 5f+1 0.0003636634452217 -0.0007581114462282 + 227 12 Cd 5f+2 -0.0003861699821304 -0.0008846628714270 + 228 12 Cd 5f+3 0.0003587828958186 -0.0006041296405743 + + 229 13 Cd 2s 0.0003599716676211 0.0040978612486648 + 230 13 Cd 3s 0.0001163225130234 -0.0002794005150288 + 231 13 Cd 3py 0.0000480952859956 0.0002361264506277 + 232 13 Cd 3pz -0.0000439554747478 -0.0002719987182499 + 233 13 Cd 3px -0.0004744390249112 0.0001699434312723 + 234 13 Cd 4py 0.0000178227901911 0.0002382087134774 + 235 13 Cd 4pz -0.0001901068076461 -0.0004127009220203 + 236 13 Cd 4px -0.0002888080819476 -0.0001425343523023 + 237 13 Cd 4d-2 -0.0086762958870304 0.0191626491173532 + 238 13 Cd 4d-1 -0.0031284528629098 0.0028440627720972 + 239 13 Cd 4d0 -0.0098572611681595 0.0193724387365022 + 240 13 Cd 4d+1 0.0068645586712306 -0.0167547397619544 + 241 13 Cd 4d+2 0.0101190364202764 -0.0246535856503652 + 242 13 Cd 5d-2 0.0004416483271891 -0.0004793277420156 + 243 13 Cd 5d-1 -0.0001669330404547 0.0006351411359944 + 244 13 Cd 5d0 0.0003948383760059 -0.0007490549951092 + 245 13 Cd 5d+1 0.0005736357144132 0.0007795144420432 + 246 13 Cd 5d+2 0.0004026194815348 0.0006096985432488 + 247 13 Cd 5f-3 0.0001193563104445 0.0000430328057172 + 248 13 Cd 5f-2 0.0002681716960136 -0.0002115549159954 + 249 13 Cd 5f-1 0.0000502404115716 0.0001403246252898 + 250 13 Cd 5f0 0.0001718517915094 0.0001144470488304 + 251 13 Cd 5f+1 0.0002371464810057 0.0002706294400076 + 252 13 Cd 5f+2 -0.0000952112813580 0.0002332184103455 + 253 13 Cd 5f+3 -0.0001581391473787 0.0002757288146898 + + 254 14 Cd 2s 0.0036012895054016 -0.0017481851555466 + 255 14 Cd 3s -0.0002019766470932 0.0008642137372834 + 256 14 Cd 3py -0.0008239628899589 0.0001452786686437 + 257 14 Cd 3pz -0.0001257637893549 -0.0001062850540166 + 258 14 Cd 3px -0.0010287955996816 -0.0010232952473025 + 259 14 Cd 4py 0.0001581429319809 -0.0006740877645687 + 260 14 Cd 4pz 0.0000297830967295 -0.0005106997697036 + 261 14 Cd 4px -0.0003519001834189 -0.0002525819530575 + 262 14 Cd 4d-2 0.1455288336353827 0.0053485567971372 + 263 14 Cd 4d-1 -0.0154867962823251 -0.0370021561417704 + 264 14 Cd 4d0 -0.0107114409020852 0.0265117016350241 + 265 14 Cd 4d+1 0.0506106795520756 -0.0048091280326635 + 266 14 Cd 4d+2 0.0277975949554147 0.0416105126735301 + 267 14 Cd 5d-2 0.0005691160919034 0.0007232631839091 + 268 14 Cd 5d-1 -0.0000855519966583 0.0004108775299925 + 269 14 Cd 5d0 -0.0003535275462311 -0.0011926014163236 + 270 14 Cd 5d+1 0.0004473781531398 -0.0006162669425613 + 271 14 Cd 5d+2 0.0007126150890386 0.0005837235558218 + 272 14 Cd 5f-3 -0.0003751852316164 -0.0003936410265156 + 273 14 Cd 5f-2 0.0000534804865685 0.0001752442988446 + 274 14 Cd 5f-1 -0.0000891098608778 0.0006641577703994 + 275 14 Cd 5f0 0.0001390540217011 0.0002176496588319 + 276 14 Cd 5f+1 0.0001874476120482 -0.0000266557149720 + 277 14 Cd 5f+2 -0.0001300119621603 -0.0002456715734726 + 278 14 Cd 5f+3 -0.0002916589078937 0.0001160242148375 + + 279 15 Se 2s -0.0005772590421053 -0.0014597084454544 + 280 15 Se 3s 0.0000544090448061 -0.0000477378438671 + 281 15 Se 3py -0.0012491553028285 0.0033078895959213 + 282 15 Se 3pz -0.0027396570893890 0.0053720600338459 + 283 15 Se 3px -0.0015878016808615 0.0011084168546272 + 284 15 Se 4py 0.0002479106122310 0.0002618052431955 + 285 15 Se 4pz -0.0007263534707289 0.0010902179979325 + 286 15 Se 4px 0.0003331298050286 0.0003073272703029 + 287 15 Se 4d-2 0.0003711292251803 0.0001259979730283 + 288 15 Se 4d-1 0.0004661067563007 -0.0002580555497510 + 289 15 Se 4d0 0.0002832301317235 0.0005758679669289 + 290 15 Se 4d+1 -0.0002916915430953 0.0003348533600749 + 291 15 Se 4d+2 -0.0004600390689085 0.0005520327330741 + + 292 16 Se 2s -0.0002291323866833 0.0001845064569724 + 293 16 Se 3s -0.0000572287891069 -0.0000264906562485 + 294 16 Se 3py -0.0012388214397348 0.0011512746328115 + 295 16 Se 3pz -0.0008692734803046 0.0009252020191481 + 296 16 Se 3px -0.0002649042443090 0.0004177249123857 + 297 16 Se 4py -0.0002100548816945 0.0001720593684196 + 298 16 Se 4pz 0.0001239855658865 -0.0000621405270348 + 299 16 Se 4px -0.0000031041635454 0.0000773504036718 + 300 16 Se 4d-2 0.0002042236913578 -0.0002615009666747 + 301 16 Se 4d-1 -0.0001120548354110 0.0001332640316549 + 302 16 Se 4d0 -0.0001867826320288 0.0001941710207617 + 303 16 Se 4d+1 0.0002140348560687 -0.0002263220471867 + 304 16 Se 4d+2 -0.0000912048288646 -0.0000875725438997 + + 305 17 Cd 2s -0.0022720911758472 0.0013491827500239 + 306 17 Cd 3s -0.0002725786952445 0.0000360205709148 + 307 17 Cd 3py -0.0009811795320684 -0.0007004356123485 + 308 17 Cd 3pz -0.0008504207244173 0.0004500034493419 + 309 17 Cd 3px 0.0013536246326762 -0.0005653075726513 + 310 17 Cd 4py -0.0002698367793733 -0.0001457157017093 + 311 17 Cd 4pz -0.0002906854693563 0.0002664724026733 + 312 17 Cd 4px 0.0000057287897038 -0.0000447474158468 + 313 17 Cd 4d-2 0.0037713595419139 -0.0081004473759982 + 314 17 Cd 4d-1 -0.0028156723944872 0.0026230230604354 + 315 17 Cd 4d0 -0.0090679179313520 0.0072053563608760 + 316 17 Cd 4d+1 -0.0009492590516278 0.0017756733967573 + 317 17 Cd 4d+2 0.0080791992801917 0.0009063194524432 + 318 17 Cd 5d-2 0.0011025777003406 0.0004461365944490 + 319 17 Cd 5d-1 -0.0004136651508425 -0.0001519868082512 + 320 17 Cd 5d0 -0.0002421349061377 0.0002489620603508 + 321 17 Cd 5d+1 -0.0000446851731464 -0.0001634182937657 + 322 17 Cd 5d+2 0.0000279447954003 0.0005400170409548 + 323 17 Cd 5f-3 -0.0002606275030546 -0.0001576387533185 + 324 17 Cd 5f-2 0.0001735561615452 0.0000964084948650 + 325 17 Cd 5f-1 -0.0000131476891863 -0.0000342975759836 + 326 17 Cd 5f0 -0.0001035040669700 0.0001105799549048 + 327 17 Cd 5f+1 -0.0001274645393352 -0.0000865842443681 + 328 17 Cd 5f+2 0.0002038753561629 0.0002447312611652 + 329 17 Cd 5f+3 -0.0002555053954149 -0.0001326209076484 + + 330 18 Cd 2s 0.0012946311150010 -0.0030456455171805 + 331 18 Cd 3s -0.0009311741337779 0.0009641468336031 + 332 18 Cd 3py -0.0006085968143056 0.0001360843644334 + 333 18 Cd 3pz -0.0011803073948296 -0.0003848974161486 + 334 18 Cd 3px 0.0008298435476273 0.0003480977679164 + 335 18 Cd 4py -0.0005664474536375 0.0004605389745484 + 336 18 Cd 4pz -0.0004630199894089 0.0003944300690067 + 337 18 Cd 4px 0.0003979961587368 0.0000585874930171 + 338 18 Cd 4d-2 0.0037073265979443 0.0066545150121207 + 339 18 Cd 4d-1 0.0136071186504154 0.0124810759201560 + 340 18 Cd 4d0 -0.0372423296256726 0.0766122768458867 + 341 18 Cd 4d+1 -0.0141565764907209 0.0168327180494325 + 342 18 Cd 4d+2 0.0038600350560468 0.0044837029630578 + 343 18 Cd 5d-2 0.0004994430409776 0.0003946714445236 + 344 18 Cd 5d-1 -0.0009592938221867 0.0005085270697416 + 345 18 Cd 5d0 0.0001591725955407 -0.0005549077829556 + 346 18 Cd 5d+1 0.0004927096954238 -0.0002643717867538 + 347 18 Cd 5d+2 0.0002474425232407 0.0001989761258969 + 348 18 Cd 5f-3 0.0000478562236375 0.0001397490907465 + 349 18 Cd 5f-2 0.0001137318985818 0.0000890967602788 + 350 18 Cd 5f-1 -0.0001155846053143 0.0000761712335483 + 351 18 Cd 5f0 0.0001264752840675 -0.0003976899433098 + 352 18 Cd 5f+1 -0.0000285725668131 0.0000068212518433 + 353 18 Cd 5f+2 0.0002415522988620 0.0001451951572129 + 354 18 Cd 5f+3 0.0000571841879019 -0.0001840486779037 + + 355 19 Se 2s -0.0030648435870560 -0.0002349038065680 + 356 19 Se 3s 0.0001832134026414 -0.0000370649836667 + 357 19 Se 3py 0.0057209001336848 -0.0056150027827537 + 358 19 Se 3pz -0.0007492198186773 0.0000799631759953 + 359 19 Se 3px -0.0037286914384418 0.0017705203076035 + 360 19 Se 4py 0.0008287452842187 -0.0008284043067473 + 361 19 Se 4pz -0.0002266515794964 0.0003263943940922 + 362 19 Se 4px -0.0005811753145907 0.0003502434426621 + 363 19 Se 4d-2 -0.0001669780574658 -0.0004361160570031 + 364 19 Se 4d-1 0.0010160759808176 -0.0009002064838963 + 365 19 Se 4d0 -0.0002765307409654 -0.0002442546404541 + 366 19 Se 4d+1 -0.0006903531564536 0.0003950776408970 + 367 19 Se 4d+2 -0.0001079362741548 -0.0000922461765248 + + 368 20 Se 2s -0.0109227775508545 0.0107150010850855 + 369 20 Se 3s 0.0004775683307260 -0.0002918570969852 + 370 20 Se 3py 0.0025008461461919 0.0004107489904374 + 371 20 Se 3pz 0.0016731283203461 -0.0065754198783124 + 372 20 Se 3px -0.0073946856478254 0.0025321753359833 + 373 20 Se 4py 0.0007312516876022 -0.0011032841571751 + 374 20 Se 4pz 0.0000586988396020 0.0007418058442908 + 375 20 Se 4px -0.0026204146307973 -0.0005687137122598 + 376 20 Se 4d-2 -0.0002881617551195 -0.0002813554842910 + 377 20 Se 4d-1 0.0004163978307085 -0.0003545094109851 + 378 20 Se 4d0 -0.0003016721484666 -0.0005185979612937 + 379 20 Se 4d+1 -0.0008893420509819 0.0012813498989316 + 380 20 Se 4d+2 0.0009963687931823 -0.0003645139917980 + + 381 21 Se 2s -0.0406249426826165 -0.0207879402402212 + 382 21 Se 3s 0.0002656464535388 0.0003769713879661 + 383 21 Se 3py -0.0245517214994706 -0.0039532067353491 + 384 21 Se 3pz -0.0184158900340091 0.0016706562182470 + 385 21 Se 3px -0.0078742032385322 0.0030650888475342 + 386 21 Se 4py -0.0028987306755563 -0.0005833420202622 + 387 21 Se 4pz -0.0011111424546415 0.0003737434794453 + 388 21 Se 4px -0.0015588638577842 0.0011491581257472 + 389 21 Se 4d-2 0.0021331970138306 0.0003566132354781 + 390 21 Se 4d-1 0.0060586269626280 0.0006212257213241 + 391 21 Se 4d0 -0.0022968039660613 -0.0014816949130252 + 392 21 Se 4d+1 0.0004855593368674 0.0009404393758990 + 393 21 Se 4d+2 -0.0057712814255208 0.0005624807447252 + + 394 22 Cd 2s -0.0026471791260200 0.0038929089335861 + 395 22 Cd 3s 0.0004079154885480 0.0001305445354885 + 396 22 Cd 3py 0.0015583587425038 0.0002383991534556 + 397 22 Cd 3pz -0.0017430471096926 0.0003665462046528 + 398 22 Cd 3px 0.0011958816129481 0.0002183969121359 + 399 22 Cd 4py -0.0005910844261283 -0.0003015699910045 + 400 22 Cd 4pz -0.0007825937454030 -0.0001504862484903 + 401 22 Cd 4px 0.0000927614196721 0.0001051213569938 + 402 22 Cd 4d-2 0.0434923461560475 -0.0213596364321945 + 403 22 Cd 4d-1 -0.0509522576760051 -0.0112521777724989 + 404 22 Cd 4d0 -0.0135126247281841 -0.0001544694812792 + 405 22 Cd 4d+1 -0.0254075068747503 0.0250197904941797 + 406 22 Cd 4d+2 -0.0071886561930423 -0.0145082934649428 + 407 22 Cd 5d-2 -0.0015736453052163 0.0004547921190268 + 408 22 Cd 5d-1 0.0029740840269682 0.0009631772446445 + 409 22 Cd 5d0 -0.0001694170598412 -0.0004336584974039 + 410 22 Cd 5d+1 0.0019708087132731 0.0003094339136144 + 411 22 Cd 5d+2 0.0000351660755943 -0.0001817382240331 + 412 22 Cd 5f-3 -0.0002454496778805 0.0000159530000709 + 413 22 Cd 5f-2 0.0000964509383455 0.0002147769407680 + 414 22 Cd 5f-1 0.0004439610403348 0.0002707782853834 + 415 22 Cd 5f0 -0.0001379840244609 0.0001596687970811 + 416 22 Cd 5f+1 0.0005719794906591 0.0003676705368143 + 417 22 Cd 5f+2 0.0007069903608343 0.0002447701573365 + 418 22 Cd 5f+3 -0.0005442838829335 -0.0001051234025090 + + 419 23 Se 2s 0.0080680601063942 -0.0020651306015736 + 420 23 Se 3s -0.0002622878259700 0.0001316907725656 + 421 23 Se 3py -0.0017803592649057 -0.0008290871369133 + 422 23 Se 3pz -0.0025992558384958 0.0002883294635132 + 423 23 Se 3px 0.0002522336122635 -0.0005409249221708 + 424 23 Se 4py -0.0004527188642969 0.0001674444008745 + 425 23 Se 4pz -0.0006312411144704 -0.0003580519274456 + 426 23 Se 4px 0.0006897950330473 0.0000502376772038 + 427 23 Se 4d-2 -0.0001817432072123 -0.0000487432012406 + 428 23 Se 4d-1 -0.0002322126371131 -0.0002384461638866 + 429 23 Se 4d0 -0.0006170556769823 0.0000505627060495 + 430 23 Se 4d+1 -0.0002087616593876 -0.0000984741417194 + 431 23 Se 4d+2 -0.0001923291959277 -0.0001296906578116 + + 432 24 Se 2s -0.0062897256044767 0.0016661734323779 + 433 24 Se 3s 0.0002326898337057 -0.0001706811342860 + 434 24 Se 3py 0.0010845740410450 -0.0021100667788576 + 435 24 Se 3pz -0.0024113814727068 -0.0003605519669762 + 436 24 Se 3px 0.0124172980371554 -0.0004400829892657 + 437 24 Se 4py 0.0012204746935803 0.0000469543662360 + 438 24 Se 4pz 0.0001131811483270 -0.0006377927369704 + 439 24 Se 4px 0.0004023871073317 -0.0001199723700600 + 440 24 Se 4d-2 0.0034941236468750 -0.0009130343675536 + 441 24 Se 4d-1 -0.0000573843563007 0.0002702556458131 + 442 24 Se 4d0 -0.0022142168609598 -0.0004577242314138 + 443 24 Se 4d+1 0.0000231464328311 -0.0003389493722238 + 444 24 Se 4d+2 0.0019788663585283 0.0004550301949412 + + 445 25 Cd 2s -0.0073181807597342 -0.0001930110489720 + 446 25 Cd 3s 0.0006617397104336 0.0003990587456734 + 447 25 Cd 3py -0.0014455834748762 -0.0012734231565560 + 448 25 Cd 3pz -0.0028543803591855 0.0003191261647834 + 449 25 Cd 3px -0.0004979848980950 -0.0005495921179843 + 450 25 Cd 4py 0.0004214914944234 -0.0007055129048970 + 451 25 Cd 4pz 0.0001396228945866 0.0005705034110992 + 452 25 Cd 4px -0.0004904658005586 -0.0000217488661800 + 453 25 Cd 4d-2 -0.0069640583315901 0.0127941308528983 + 454 25 Cd 4d-1 0.0337973695584247 -0.0203776859148714 + 455 25 Cd 4d0 0.0451561690610110 0.0078216970241033 + 456 25 Cd 4d+1 -0.0346050755804601 0.0195822417824479 + 457 25 Cd 4d+2 -0.0117471876361507 -0.0013840463176736 + 458 25 Cd 5d-2 -0.0007898655741352 -0.0015926201070240 + 459 25 Cd 5d-1 -0.0016247589161756 -0.0003065459019029 + 460 25 Cd 5d0 -0.0028970680320811 0.0004867221461688 + 461 25 Cd 5d+1 0.0005135670437066 0.0000960679780538 + 462 25 Cd 5d+2 0.0006387374158294 -0.0003398653759365 + 463 25 Cd 5f-3 0.0005559775584400 0.0000282995342121 + 464 25 Cd 5f-2 -0.0006720414306207 -0.0002010134490662 + 465 25 Cd 5f-1 -0.0004207080006798 -0.0005132367174972 + 466 25 Cd 5f0 -0.0006128358300405 0.0001624817120878 + 467 25 Cd 5f+1 -0.0003187804459326 0.0001148190860862 + 468 25 Cd 5f+2 0.0004761119577403 -0.0001487142262297 + 469 25 Cd 5f+3 0.0003892029043458 0.0000854448757227 + + 470 26 Cd 2s 0.0046640732885461 0.0039388724591347 + 471 26 Cd 3s 0.0000890760972899 -0.0007672912173627 + 472 26 Cd 3py 0.0044304891755112 0.0019545870304020 + 473 26 Cd 3pz 0.0027307824465591 0.0004064254672528 + 474 26 Cd 3px -0.0005651584117812 0.0006471632475336 + 475 26 Cd 4py 0.0016717892936205 0.0004870192684608 + 476 26 Cd 4pz 0.0001222115631687 0.0002950181551881 + 477 26 Cd 4px 0.0022123097159983 -0.0001376133941683 + 478 26 Cd 4d-2 -0.0560968869943793 0.0271506800558149 + 479 26 Cd 4d-1 0.2804371321414302 0.0305962592429654 + 480 26 Cd 4d0 -0.6609425385201586 -0.1055872099749497 + 481 26 Cd 4d+1 -0.3911733325536421 -0.0063213095206967 + 482 26 Cd 4d+2 0.5047094336623981 0.0550073540405758 + 483 26 Cd 5d-2 0.0028774984432279 0.0011291468842747 + 484 26 Cd 5d-1 0.0007780372948174 -0.0000255609503749 + 485 26 Cd 5d0 -0.0031906255091173 -0.0010228627459674 + 486 26 Cd 5d+1 -0.0007417086022532 0.0001331702705727 + 487 26 Cd 5d+2 0.0009287172947907 -0.0004360250826694 + 488 26 Cd 5f-3 0.0016812564344653 0.0000866063277408 + 489 26 Cd 5f-2 -0.0003508244363683 -0.0001023277123065 + 490 26 Cd 5f-1 -0.0006335825818640 -0.0003556805170639 + 491 26 Cd 5f0 -0.0002834291288674 -0.0000529476931348 + 492 26 Cd 5f+1 0.0001595715077032 -0.0000761036042947 + 493 26 Cd 5f+2 0.0005925729361707 0.0000134384103750 + 494 26 Cd 5f+3 -0.0013233508909198 -0.0003599684607952 + + 25 26 + -0.4835850043087683 -0.4824186076217679 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0034690024056947 -0.0030678525546389 + 2 1 Cd 3s -0.0001463486232481 0.0004589883020205 + 3 1 Cd 3py 0.0019095913469693 -0.0027124054051515 + 4 1 Cd 3pz -0.0005964674080401 0.0004666865078426 + 5 1 Cd 3px -0.0011732935285616 0.0007369965877802 + 6 1 Cd 4py 0.0003089278333487 -0.0005009718917911 + 7 1 Cd 4pz -0.0008206791511066 -0.0005910380574920 + 8 1 Cd 4px -0.0002888948314254 -0.0001473188746971 + 9 1 Cd 4d-2 0.0012316779618851 -0.0116236516605224 + 10 1 Cd 4d-1 -0.0056754039599729 -0.0103849991478768 + 11 1 Cd 4d0 -0.0042092928403638 -0.0003622371135202 + 12 1 Cd 4d+1 -0.0017310933325658 0.0122537623833314 + 13 1 Cd 4d+2 0.0059839549090306 -0.0091345483023203 + 14 1 Cd 5d-2 -0.0006388667613195 0.0008376097549801 + 15 1 Cd 5d-1 0.0011303074914838 0.0019217761512061 + 16 1 Cd 5d0 -0.0014695978277334 -0.0009866153648612 + 17 1 Cd 5d+1 0.0007250440445356 0.0003214806660796 + 18 1 Cd 5d+2 0.0001744646179049 -0.0001479585685359 + 19 1 Cd 5f-3 0.0001924074940953 -0.0000859665968383 + 20 1 Cd 5f-2 -0.0005179112610756 -0.0006170040576350 + 21 1 Cd 5f-1 0.0000607775046993 0.0001871579839733 + 22 1 Cd 5f0 -0.0001196210683335 0.0001904154401296 + 23 1 Cd 5f+1 0.0003655627593566 0.0002650511095416 + 24 1 Cd 5f+2 -0.0001950759378436 -0.0000825211248601 + 25 1 Cd 5f+3 -0.0002483410771500 -0.0001269795438885 + + 26 2 Cd 2s -0.0095882445604093 0.0020594126088391 + 27 2 Cd 3s -0.0015062709057012 0.0002647159807630 + 28 2 Cd 3py 0.0080967017509545 -0.0011057668928139 + 29 2 Cd 3pz -0.0095874160363468 -0.0009297264096179 + 30 2 Cd 3px 0.0041472630783018 0.0008563016219411 + 31 2 Cd 4py 0.0022273484899512 -0.0000801015923377 + 32 2 Cd 4pz -0.0011167118370047 -0.0001703039944367 + 33 2 Cd 4px 0.0010636587999844 0.0004660897173839 + 34 2 Cd 4d-2 -0.0063371747509038 0.0166052029555132 + 35 2 Cd 4d-1 -0.1318027759778321 -0.0108327405045050 + 36 2 Cd 4d0 0.0704055059500986 0.0104616437706475 + 37 2 Cd 4d+1 0.0369839928523743 -0.0048969517880757 + 38 2 Cd 4d+2 -0.0920284695977046 -0.0146109647804560 + 39 2 Cd 5d-2 -0.0042276415928833 -0.0002788129696101 + 40 2 Cd 5d-1 0.0061887372865631 0.0002702524224371 + 41 2 Cd 5d0 -0.0000712896576144 0.0000204431710548 + 42 2 Cd 5d+1 0.0010875940264317 0.0002573143640962 + 43 2 Cd 5d+2 0.0023928687091034 -0.0011780175309257 + 44 2 Cd 5f-3 -0.0000009093568587 0.0000280326817126 + 45 2 Cd 5f-2 -0.0003813782500022 -0.0000227896167225 + 46 2 Cd 5f-1 -0.0013587233869590 -0.0001045168979589 + 47 2 Cd 5f0 -0.0000295768482645 0.0000469928260682 + 48 2 Cd 5f+1 0.0003038476188792 -0.0001450545184840 + 49 2 Cd 5f+2 -0.0005690368276249 -0.0002353302439915 + 50 2 Cd 5f+3 0.0007712910305506 0.0003353252411377 + + 51 3 Cd 2s 0.0138763007039518 0.0119017442750794 + 52 3 Cd 3s 0.0002673388853354 -0.0003604192486521 + 53 3 Cd 3py 0.0041337009610688 -0.0016093705259379 + 54 3 Cd 3pz 0.0047594647938886 0.0003626942831933 + 55 3 Cd 3px 0.0025080250080535 -0.0035082115211132 + 56 3 Cd 4py 0.0004957157075219 -0.0005354045345171 + 57 3 Cd 4pz 0.0003625531825128 -0.0007912556058677 + 58 3 Cd 4px -0.0001935041608262 0.0010222247527795 + 59 3 Cd 4d-2 -0.0191558962229667 -0.0268115603859725 + 60 3 Cd 4d-1 -0.0213255992788666 0.0277250302518295 + 61 3 Cd 4d0 -0.0087780841888957 0.0043096151591437 + 62 3 Cd 4d+1 -0.0429010178000614 0.0070280919482529 + 63 3 Cd 4d+2 -0.0113462903971451 -0.0297221771235970 + 64 3 Cd 5d-2 0.0014875261241027 0.0019353864103813 + 65 3 Cd 5d-1 0.0040198381234337 0.0000878427110574 + 66 3 Cd 5d0 0.0015794048686296 0.0003524153415390 + 67 3 Cd 5d+1 0.0025116743039753 0.0003102002883251 + 68 3 Cd 5d+2 -0.0000744050896281 0.0002449453784299 + 69 3 Cd 5f-3 0.0003448855464069 0.0005402526491079 + 70 3 Cd 5f-2 0.0002181033013173 -0.0011058354691609 + 71 3 Cd 5f-1 0.0002776110025649 0.0000748045094859 + 72 3 Cd 5f0 0.0000455486853643 0.0010541351077535 + 73 3 Cd 5f+1 -0.0005404553473941 -0.0006330736318180 + 74 3 Cd 5f+2 -0.0004881311505650 -0.0000898868298684 + 75 3 Cd 5f+3 -0.0004117346597243 0.0004083705093834 + + 76 4 Se 2s -0.0094132173564486 0.0014885993354954 + 77 4 Se 3s 0.0003596841005126 -0.0001563707896084 + 78 4 Se 3py 0.0029987500765154 -0.0002500955609241 + 79 4 Se 3pz 0.0035664456256696 0.0018566967575184 + 80 4 Se 3px -0.0064683489487765 0.0001596438999994 + 81 4 Se 4py 0.0018853454342953 0.0001875688196635 + 82 4 Se 4pz -0.0002201534659714 -0.0000769380368694 + 83 4 Se 4px -0.0013427518164616 -0.0001897729724416 + 84 4 Se 4d-2 0.0002953380696393 0.0001266182418869 + 85 4 Se 4d-1 0.0000148646058428 0.0000542835364404 + 86 4 Se 4d0 -0.0004836950207803 0.0000989299511708 + 87 4 Se 4d+1 -0.0014330875795026 -0.0006598575638753 + 88 4 Se 4d+2 0.0014104047523044 0.0000199448089786 + + 89 5 Se 2s 0.0015182432044723 0.0086739166103167 + 90 5 Se 3s 0.0001448116531087 -0.0002270918277688 + 91 5 Se 3py -0.0007016460358846 0.0012521603757594 + 92 5 Se 3pz 0.0001490671058029 -0.0009028791448119 + 93 5 Se 3px -0.0007817258525217 0.0024152108218346 + 94 5 Se 4py 0.0000308604571446 -0.0014263847311880 + 95 5 Se 4pz 0.0002595706644090 0.0000121195018765 + 96 5 Se 4px 0.0001762939922845 -0.0008707240989169 + 97 5 Se 4d-2 -0.0000331945432082 0.0000108699296933 + 98 5 Se 4d-1 -0.0000135764965475 -0.0004682689359548 + 99 5 Se 4d0 0.0000597240161928 0.0000572587145635 + 100 5 Se 4d+1 -0.0003918943298812 -0.0000879488250001 + 101 5 Se 4d+2 0.0002414866327921 -0.0007642557389693 + + 102 6 Se 2s -0.0755350031562375 -0.0133642870354758 + 103 6 Se 3s 0.0015071547772128 0.0003163319212753 + 104 6 Se 3py 0.0261607970228045 0.0014581852974679 + 105 6 Se 3pz 0.0268910318308675 0.0077552303119353 + 106 6 Se 3px -0.0201029198587987 -0.0032468617963848 + 107 6 Se 4py 0.0013793733813197 -0.0002683279928768 + 108 6 Se 4pz 0.0036784963252249 0.0007221358869635 + 109 6 Se 4px -0.0017835384343800 -0.0002757802379998 + 110 6 Se 4d-2 -0.0065512113673026 -0.0005767279555824 + 111 6 Se 4d-1 0.0050159337134246 0.0003029458511111 + 112 6 Se 4d0 -0.0005443114449105 0.0006509089938627 + 113 6 Se 4d+1 -0.0057712628880906 -0.0013106187919798 + 114 6 Se 4d+2 0.0025847356949772 0.0006495874898415 + + 115 7 Se 2s 0.0178660823355366 0.0087290064441185 + 116 7 Se 3s -0.0006087539258283 -0.0002807918587837 + 117 7 Se 3py 0.0050074510775677 0.0026157013612500 + 118 7 Se 3pz 0.0019545957077279 0.0015114720754589 + 119 7 Se 3px -0.0028513549469220 0.0005330034007765 + 120 7 Se 4py -0.0001266653328657 -0.0005388129208341 + 121 7 Se 4pz 0.0008656089649288 0.0004552562891554 + 122 7 Se 4px -0.0004690225241286 0.0001124717055740 + 123 7 Se 4d-2 0.0001417775173955 -0.0000395964982750 + 124 7 Se 4d-1 -0.0000948003134769 -0.0003981961592441 + 125 7 Se 4d0 0.0000089168851221 -0.0001388644119128 + 126 7 Se 4d+1 0.0012792055163850 -0.0001364566310336 + 127 7 Se 4d+2 0.0014306894958823 0.0002468628618875 + + 128 8 Cd 2s 0.0180944664355214 0.0069208848576187 + 129 8 Cd 3s 0.0018084322363989 0.0002189070633672 + 130 8 Cd 3py -0.0112239418962817 0.0000812705981599 + 131 8 Cd 3pz 0.0085681789134601 -0.0001216120931222 + 132 8 Cd 3px 0.0154572662454211 0.0023135573386704 + 133 8 Cd 4py -0.0025674066285675 0.0014762773611463 + 134 8 Cd 4pz 0.0019177191529754 -0.0002542889868951 + 135 8 Cd 4px 0.0031513334103114 0.0010547518980016 + 136 8 Cd 4d-2 0.0797297722945102 -0.0895032306295360 + 137 8 Cd 4d-1 0.1122542698293573 0.0171985704163847 + 138 8 Cd 4d0 0.0111265293263059 -0.0029306750918391 + 139 8 Cd 4d+1 -0.0520140029345193 0.0153808690985120 + 140 8 Cd 4d+2 -0.0399094786439360 -0.0018013828058980 + 141 8 Cd 5d-2 -0.0062960191559798 0.0008941877563772 + 142 8 Cd 5d-1 -0.0020507638010022 -0.0006442824636559 + 143 8 Cd 5d0 -0.0049557498225091 -0.0001348149982351 + 144 8 Cd 5d+1 0.0037777878875368 -0.0008532477727738 + 145 8 Cd 5d+2 0.0035032978001863 0.0014874983219529 + 146 8 Cd 5f-3 -0.0003446242208379 -0.0005145264964046 + 147 8 Cd 5f-2 -0.0006610657296008 0.0001754950059086 + 148 8 Cd 5f-1 0.0007425139226890 -0.0004120440915497 + 149 8 Cd 5f0 -0.0008082279740810 -0.0005351398464326 + 150 8 Cd 5f+1 -0.0002491297356103 0.0000004052774966 + 151 8 Cd 5f+2 0.0009546057079533 -0.0006616681606931 + 152 8 Cd 5f+3 0.0004225139075337 -0.0006600025499580 + + 153 9 Cd 2s -0.0021396871507836 -0.0002031577680537 + 154 9 Cd 3s 0.0005408459255167 0.0006407760406222 + 155 9 Cd 3py -0.0011746459116661 -0.0010012181441198 + 156 9 Cd 3pz 0.0007852671610306 0.0012345536633755 + 157 9 Cd 3px -0.0001206576720146 -0.0023458877329595 + 158 9 Cd 4py -0.0005940914843442 -0.0001410092104624 + 159 9 Cd 4pz 0.0003964414426690 0.0003689694309947 + 160 9 Cd 4px 0.0006393961551621 -0.0009490476820615 + 161 9 Cd 4d-2 0.8776595295915698 0.0462872014378030 + 162 9 Cd 4d-1 -0.1462061417325360 -0.0482724313746071 + 163 9 Cd 4d0 -0.0412442631098956 -0.0338861703059379 + 164 9 Cd 4d+1 -0.3143455389182164 -0.0187169964544666 + 165 9 Cd 4d+2 0.0447481578147955 0.1208020375157582 + 166 9 Cd 5d-2 0.0023277758737132 0.0002823693499604 + 167 9 Cd 5d-1 0.0000159861058009 0.0003017376305472 + 168 9 Cd 5d0 -0.0009002458221705 -0.0012044208366390 + 169 9 Cd 5d+1 -0.0012237886432609 0.0000527843384119 + 170 9 Cd 5d+2 0.0009151985197888 0.0019074493572715 + 171 9 Cd 5f-3 -0.0005243751021583 0.0000968888676798 + 172 9 Cd 5f-2 0.0014552582356914 -0.0001924298591351 + 173 9 Cd 5f-1 0.0001041163266347 -0.0000003506765572 + 174 9 Cd 5f0 0.0000559159289092 0.0000725562362971 + 175 9 Cd 5f+1 -0.0003804915091768 0.0000889551909552 + 176 9 Cd 5f+2 0.0002926161353626 0.0000118701641466 + 177 9 Cd 5f+3 -0.0004162469898891 -0.0003347531619477 + + 178 10 Se 2s 0.0195285330924592 -0.0268272081697190 + 179 10 Se 3s -0.0007756812392861 0.0002964571510861 + 180 10 Se 3py -0.0373612181074608 -0.0067516099684286 + 181 10 Se 3pz 0.0152357558959773 0.0029743277315233 + 182 10 Se 3px -0.0012661629709344 0.0151694585312474 + 183 10 Se 4py -0.0010724803005131 -0.0004989566491481 + 184 10 Se 4pz 0.0002735309515171 -0.0003115126899316 + 185 10 Se 4px -0.0012558427826533 0.0004880504620673 + 186 10 Se 4d-2 -0.0108275975824155 -0.0002188969181837 + 187 10 Se 4d-1 0.0009598912488207 0.0011967922404020 + 188 10 Se 4d0 -0.0006484027289719 -0.0011035116226835 + 189 10 Se 4d+1 0.0043062020198272 -0.0009270640268344 + 190 10 Se 4d+2 0.0005972104019413 0.0019203329110994 + + 191 11 Se 2s 0.0078254469184772 -0.0834176675027395 + 192 11 Se 3s -0.0000591948194627 0.0005919474846151 + 193 11 Se 3py 0.0009403476080928 -0.0463650070067903 + 194 11 Se 3pz 0.0079336047605625 -0.0830816102273897 + 195 11 Se 3px -0.0056657044303645 0.0355445443086500 + 196 11 Se 4py 0.0000653688694971 -0.0035966603724268 + 197 11 Se 4pz 0.0004895658852292 -0.0061092151332686 + 198 11 Se 4px 0.0004629403133226 0.0025843093166794 + 199 11 Se 4d-2 -0.0009541619962103 0.0053334890970484 + 200 11 Se 4d-1 0.0008880037663111 0.0003341442296422 + 201 11 Se 4d0 -0.0011758442908280 0.0172971438932876 + 202 11 Se 4d+1 0.0004044513127515 -0.0036906333615102 + 203 11 Se 4d+2 0.0001250673409683 0.0027437730003160 + + 204 12 Cd 2s -0.0053970791046526 0.0251953632090009 + 205 12 Cd 3s 0.0002662423408088 -0.0022175675620666 + 206 12 Cd 3py -0.0044817536345718 -0.0016169740039002 + 207 12 Cd 3pz -0.0046313455861753 -0.0002701465980936 + 208 12 Cd 3px -0.0010816661555100 0.0048645506202264 + 209 12 Cd 4py -0.0014563573383963 0.0024032197101531 + 210 12 Cd 4pz -0.0014781758297239 -0.0001714614602423 + 211 12 Cd 4px -0.0005999796007786 -0.0016894482274744 + 212 12 Cd 4d-2 -0.0247047854009902 0.3009152084718513 + 213 12 Cd 4d-1 -0.0008852027872140 -0.1038845918882039 + 214 12 Cd 4d0 -0.0171292372785139 0.1353210502530502 + 215 12 Cd 4d+1 0.0069870802798390 0.0595057587520753 + 216 12 Cd 4d+2 -0.0412471909240798 0.0866289087918734 + 217 12 Cd 5d-2 -0.0024315095397028 -0.0041130784610531 + 218 12 Cd 5d-1 -0.0024993540394747 0.0009328792414172 + 219 12 Cd 5d0 0.0008357554738254 -0.0022443970524397 + 220 12 Cd 5d+1 -0.0017099095307361 -0.0024900621542072 + 221 12 Cd 5d+2 0.0013921166050064 -0.0017516284741559 + 222 12 Cd 5f-3 0.0000603004866629 -0.0008277794638362 + 223 12 Cd 5f-2 -0.0007347749489112 -0.0000082247514376 + 224 12 Cd 5f-1 0.0002329198419801 -0.0013847210847678 + 225 12 Cd 5f0 0.0006415317423648 0.0000619590761698 + 226 12 Cd 5f+1 0.0005323919987161 0.0009287667773572 + 227 12 Cd 5f+2 0.0001240481768077 0.0001962547391766 + 228 12 Cd 5f+3 0.0004189939381802 0.0005203230680494 + + 229 13 Cd 2s -0.0011679088459196 -0.0051258515054520 + 230 13 Cd 3s -0.0005521780528891 -0.0002778182949624 + 231 13 Cd 3py 0.0010239325748503 0.0004379197597942 + 232 13 Cd 3pz -0.0020136378843262 0.0017623467462739 + 233 13 Cd 3px -0.0018069513727014 -0.0003074053956694 + 234 13 Cd 4py 0.0003923185556829 -0.0005037996610905 + 235 13 Cd 4pz -0.0004497509587598 -0.0006104807175727 + 236 13 Cd 4px -0.0007443988786016 0.0007521275319238 + 237 13 Cd 4d-2 0.0025923189097574 -0.0257653943309571 + 238 13 Cd 4d-1 0.0002447813531451 0.0331414894253236 + 239 13 Cd 4d0 0.0133990839672475 0.0300057177138733 + 240 13 Cd 4d+1 0.0047381166125538 -0.0293490802255298 + 241 13 Cd 4d+2 -0.0074701148122368 -0.0094436105342841 + 242 13 Cd 5d-2 0.0001912840251972 0.0001411838175737 + 243 13 Cd 5d-1 0.0007907096507877 -0.0008111327887507 + 244 13 Cd 5d0 0.0000649472526719 -0.0013960886734533 + 245 13 Cd 5d+1 -0.0007061860098417 0.0011063551738416 + 246 13 Cd 5d+2 0.0003451993247003 -0.0010154292148966 + 247 13 Cd 5f-3 -0.0001422009913309 -0.0000125565884538 + 248 13 Cd 5f-2 -0.0000105060000795 -0.0001517845210042 + 249 13 Cd 5f-1 0.0000458821129130 0.0003574376947320 + 250 13 Cd 5f0 0.0000915140284696 -0.0002661137415580 + 251 13 Cd 5f+1 -0.0000341371820597 -0.0001577695887785 + 252 13 Cd 5f+2 -0.0000770668469254 -0.0001318658984135 + 253 13 Cd 5f+3 -0.0001195756283877 0.0002154173479731 + + 254 14 Cd 2s -0.0041130767471543 0.0000240156819183 + 255 14 Cd 3s 0.0000468610444182 -0.0002090432592250 + 256 14 Cd 3py 0.0015367706033394 0.0003583149518640 + 257 14 Cd 3pz -0.0003180221224975 -0.0011362154023745 + 258 14 Cd 3px -0.0011997451717162 0.0001505204314275 + 259 14 Cd 4py 0.0001526353424514 0.0001999464784278 + 260 14 Cd 4pz -0.0000079921117351 -0.0000765031760566 + 261 14 Cd 4px -0.0001316405008020 0.0001935577996929 + 262 14 Cd 4d-2 0.0055760632328333 0.0032554688560153 + 263 14 Cd 4d-1 0.0246120928284936 -0.0003861907844658 + 264 14 Cd 4d0 -0.0208665386572558 -0.0039301667578098 + 265 14 Cd 4d+1 0.0073163258147321 0.0131275560229051 + 266 14 Cd 4d+2 0.0078840373463763 -0.0318943545749657 + 267 14 Cd 5d-2 0.0008362934441615 -0.0001830403490497 + 268 14 Cd 5d-1 0.0005093656088797 0.0004334303840667 + 269 14 Cd 5d0 0.0002737071600548 0.0008638056902087 + 270 14 Cd 5d+1 -0.0009006227185792 -0.0000711493581398 + 271 14 Cd 5d+2 0.0006839147989185 -0.0001934331006116 + 272 14 Cd 5f-3 -0.0002990450385450 0.0001195852394667 + 273 14 Cd 5f-2 0.0004606834756001 0.0000774783094715 + 274 14 Cd 5f-1 -0.0003943519461056 -0.0003170585107456 + 275 14 Cd 5f0 0.0002337712825484 -0.0000000656629696 + 276 14 Cd 5f+1 -0.0001304161189611 -0.0000285598625421 + 277 14 Cd 5f+2 0.0000143241233951 0.0001381322088811 + 278 14 Cd 5f+3 0.0001216463919299 0.0000023006367239 + + 279 15 Se 2s 0.0040084831595278 -0.0070527979967392 + 280 15 Se 3s -0.0001153232063599 0.0001061215793001 + 281 15 Se 3py -0.0002937167526973 -0.0018292062481662 + 282 15 Se 3pz 0.0004195591059536 -0.0000397367269926 + 283 15 Se 3px -0.0009664992580014 0.0016144169403823 + 284 15 Se 4py 0.0002418549451183 -0.0002548913201741 + 285 15 Se 4pz 0.0000351418249417 0.0000082885487448 + 286 15 Se 4px -0.0001191793699310 -0.0001596423243732 + 287 15 Se 4d-2 0.0000036598965648 -0.0005554129618911 + 288 15 Se 4d-1 -0.0006347352925080 -0.0000886469733754 + 289 15 Se 4d0 -0.0001516785332899 -0.0004538634977362 + 290 15 Se 4d+1 -0.0003428850917247 -0.0001372314333868 + 291 15 Se 4d+2 0.0001694674550515 0.0000602702078566 + + 292 16 Se 2s -0.0029095362828735 0.0351152510230660 + 293 16 Se 3s 0.0000897059631547 -0.0004991873336940 + 294 16 Se 3py 0.0001744454948130 0.0131628087699461 + 295 16 Se 3pz -0.0001549608222434 0.0088396082622376 + 296 16 Se 3px -0.0013130816025134 0.0142000864494097 + 297 16 Se 4py -0.0002087783034626 0.0019658168786338 + 298 16 Se 4pz -0.0002197001954296 0.0019822493675041 + 299 16 Se 4px 0.0000344490992657 0.0024232212018414 + 300 16 Se 4d-2 0.0000135559241240 -0.0029690369947900 + 301 16 Se 4d-1 0.0000378620277226 0.0007361177222699 + 302 16 Se 4d0 -0.0000727771342240 0.0028521554467787 + 303 16 Se 4d+1 -0.0001747870613172 -0.0002422701624065 + 304 16 Se 4d+2 0.0000868828273461 -0.0011221255035299 + + 305 17 Cd 2s -0.0010226850362450 0.0185052690686620 + 306 17 Cd 3s -0.0000924675829603 -0.0032533957270886 + 307 17 Cd 3py 0.0008100269716721 -0.0067996809580206 + 308 17 Cd 3pz -0.0000161722847696 -0.0006649203764224 + 309 17 Cd 3px -0.0003021255530308 -0.0079139518433743 + 310 17 Cd 4py 0.0000575366748486 0.0012361609059822 + 311 17 Cd 4pz 0.0000735077191230 -0.0007945361198412 + 312 17 Cd 4px -0.0002824006538240 0.0005793781659080 + 313 17 Cd 4d-2 0.0074916390155656 -0.1493700436724544 + 314 17 Cd 4d-1 -0.0003836022622319 0.0150866943076393 + 315 17 Cd 4d0 -0.0029045309001119 0.0869720786331664 + 316 17 Cd 4d+1 -0.0025603557705990 0.0155058010063137 + 317 17 Cd 4d+2 -0.0043553549376118 0.0398613541867207 + 318 17 Cd 5d-2 -0.0004236157043516 0.0020610911706125 + 319 17 Cd 5d-1 0.0001371583139397 -0.0012494629376375 + 320 17 Cd 5d0 0.0003565037320311 -0.0015972524533017 + 321 17 Cd 5d+1 -0.0003914835819979 -0.0009362510636626 + 322 17 Cd 5d+2 -0.0002398013788323 0.0005638287931746 + 323 17 Cd 5f-3 -0.0000585264091128 0.0001210185194731 + 324 17 Cd 5f-2 -0.0000254650046197 0.0000449742492748 + 325 17 Cd 5f-1 -0.0001244524262391 -0.0003240929290190 + 326 17 Cd 5f0 0.0001329424749736 0.0000300255218214 + 327 17 Cd 5f+1 -0.0000286567959760 0.0002302272222983 + 328 17 Cd 5f+2 -0.0000651560479873 -0.0006306772269720 + 329 17 Cd 5f+3 0.0000274067561942 -0.0007797767875573 + + 330 18 Cd 2s 0.0001322624598670 -0.0091640258887668 + 331 18 Cd 3s -0.0011609152184679 0.0048873474111829 + 332 18 Cd 3py -0.0006149572489384 -0.0018811624115082 + 333 18 Cd 3pz -0.0018259354960074 0.0029978127263947 + 334 18 Cd 3px -0.0007889827357447 -0.0023004933138215 + 335 18 Cd 4py -0.0004874916236186 0.0005404335058843 + 336 18 Cd 4pz -0.0009069407753560 0.0013776675319040 + 337 18 Cd 4px -0.0003991690444754 -0.0010001620329002 + 338 18 Cd 4d-2 -0.0118230780764165 0.0180274728603411 + 339 18 Cd 4d-1 -0.0112705405634820 -0.3408326881477436 + 340 18 Cd 4d0 -0.0480257210010109 0.6965594572242392 + 341 18 Cd 4d+1 -0.0349296960330102 0.3089138536217705 + 342 18 Cd 4d+2 -0.0000297243349107 0.0642154985598714 + 343 18 Cd 5d-2 -0.0005909550525821 -0.0009928351204875 + 344 18 Cd 5d-1 -0.0012124042883803 -0.0014549114168924 + 345 18 Cd 5d0 -0.0005532178863403 0.0058243192535119 + 346 18 Cd 5d+1 -0.0003801143223861 -0.0015586045691137 + 347 18 Cd 5d+2 0.0002563765349954 -0.0015389743436071 + 348 18 Cd 5f-3 0.0000076886150010 -0.0009372282761464 + 349 18 Cd 5f-2 -0.0001633525433866 -0.0010211365363266 + 350 18 Cd 5f-1 -0.0002820376473558 0.0003655919415825 + 351 18 Cd 5f0 0.0001999578587735 0.0002391788860456 + 352 18 Cd 5f+1 -0.0001830113037467 -0.0002925268534782 + 353 18 Cd 5f+2 0.0002818963939186 -0.0002586190939013 + 354 18 Cd 5f+3 0.0002736261539079 0.0001601453823930 + + 355 19 Se 2s 0.0014275640044518 -0.0630399902930420 + 356 19 Se 3s -0.0000691222106018 0.0003279000519150 + 357 19 Se 3py 0.0044028686136279 -0.0782636516153061 + 358 19 Se 3pz -0.0005756317081419 0.0309425968425797 + 359 19 Se 3px -0.0005986311285913 0.0200795832648877 + 360 19 Se 4py 0.0005280896665947 -0.0067915576321445 + 361 19 Se 4pz -0.0002566198678033 0.0029512571618688 + 362 19 Se 4px -0.0000171455824002 0.0011757511229588 + 363 19 Se 4d-2 0.0003022337884756 -0.0066562210493409 + 364 19 Se 4d-1 0.0006887037411063 -0.0117547685716593 + 365 19 Se 4d0 0.0000126143103158 0.0034370912691336 + 366 19 Se 4d+1 -0.0001703188029958 0.0063174681691070 + 367 19 Se 4d+2 0.0001039812418457 0.0010397194795284 + + 368 20 Se 2s -0.0037021358765610 -0.0164629833154285 + 369 20 Se 3s 0.0003894251045042 0.0003464577543678 + 370 20 Se 3py 0.0013770181099752 -0.0043191351414780 + 371 20 Se 3pz 0.0037191511076205 0.0060650763545182 + 372 20 Se 3px -0.0029489323154658 -0.0062131409126809 + 373 20 Se 4py 0.0003643100167973 -0.0001153335783741 + 374 20 Se 4pz -0.0010650585720813 -0.0016510582525434 + 375 20 Se 4px -0.0015063746174176 -0.0002511896346304 + 376 20 Se 4d-2 -0.0000650774518822 0.0013857845717197 + 377 20 Se 4d-1 0.0004107878092708 -0.0012996301622501 + 378 20 Se 4d0 0.0006621361335237 0.0005881251241848 + 379 20 Se 4d+1 -0.0008991386488053 -0.0005577632332727 + 380 20 Se 4d+2 0.0003512413279050 0.0005346381709398 + + 381 21 Se 2s 0.0310191233895448 0.0013031263293147 + 382 21 Se 3s -0.0004097199623918 -0.0000294987801056 + 383 21 Se 3py 0.0110987940130649 0.0005115565619042 + 384 21 Se 3pz -0.0079242714995958 0.0048765319666536 + 385 21 Se 3px -0.0023038874283223 0.0071965533030037 + 386 21 Se 4py 0.0005235757928551 0.0014293704079196 + 387 21 Se 4pz -0.0012667795436976 0.0007254045055772 + 388 21 Se 4px -0.0003312360191026 0.0008789921098547 + 389 21 Se 4d-2 0.0010178861345983 -0.0013042280630697 + 390 21 Se 4d-1 0.0005722700055378 -0.0007783214729020 + 391 21 Se 4d0 0.0016182182828471 0.0001637996717724 + 392 21 Se 4d+1 -0.0020603449269788 0.0004205067655998 + 393 21 Se 4d+2 0.0001133659562728 -0.0002122210380975 + + 394 22 Cd 2s -0.0020394124707275 0.0035883730526187 + 395 22 Cd 3s 0.0006252516887456 -0.0003856337392975 + 396 22 Cd 3py -0.0014921356329724 0.0010239335727167 + 397 22 Cd 3pz 0.0009117686921064 -0.0001902151301212 + 398 22 Cd 3px 0.0006187712045399 0.0031951954246575 + 399 22 Cd 4py -0.0001503244292697 0.0005397766508127 + 400 22 Cd 4pz 0.0013551119477555 -0.0000796884378657 + 401 22 Cd 4px -0.0002600163418060 0.0009649272308790 + 402 22 Cd 4d-2 -0.0096020358776785 -0.0040650884522116 + 403 22 Cd 4d-1 0.0187011444419462 0.0153157556996032 + 404 22 Cd 4d0 0.0299279063978524 0.0095366091739848 + 405 22 Cd 4d+1 -0.0295097871413760 0.0015191042698930 + 406 22 Cd 4d+2 0.0004987739734556 -0.0232135754407140 + 407 22 Cd 5d-2 0.0003135888386213 -0.0009030935947629 + 408 22 Cd 5d-1 -0.0013799322166969 -0.0005285888206042 + 409 22 Cd 5d0 0.0002980361700006 -0.0006649913076124 + 410 22 Cd 5d+1 0.0014566284376745 -0.0010426759025793 + 411 22 Cd 5d+2 -0.0001852141199096 0.0024725664001223 + 412 22 Cd 5f-3 0.0000749181975259 -0.0005797288523048 + 413 22 Cd 5f-2 -0.0002412977620465 0.0002910972806192 + 414 22 Cd 5f-1 -0.0000986399323262 -0.0004729518708644 + 415 22 Cd 5f0 -0.0000509686984812 -0.0000886845637053 + 416 22 Cd 5f+1 0.0001070343349890 -0.0000978992782044 + 417 22 Cd 5f+2 0.0000919894289774 -0.0003972298529819 + 418 22 Cd 5f+3 0.0003250952186477 -0.0002931716538994 + + 419 23 Se 2s -0.0045385413780413 -0.0125690957610164 + 420 23 Se 3s 0.0000389843815764 0.0002728164178600 + 421 23 Se 3py 0.0011163642851387 0.0001829916248701 + 422 23 Se 3pz 0.0011854631132515 0.0019179777662120 + 423 23 Se 3px 0.0009834799892961 0.0027530202849056 + 424 23 Se 4py 0.0001050988291905 0.0012161345533483 + 425 23 Se 4pz 0.0000603116150956 0.0004454472042557 + 426 23 Se 4px 0.0002766336566972 0.0001530991386009 + 427 23 Se 4d-2 0.0001916784907991 -0.0002502933256069 + 428 23 Se 4d-1 0.0002655850091608 -0.0002885774781869 + 429 23 Se 4d0 0.0001512144070722 0.0001981634128419 + 430 23 Se 4d+1 0.0003313073339254 0.0000992126923410 + 431 23 Se 4d+2 -0.0000032366551745 0.0007942385362405 + + 432 24 Se 2s 0.0017774964615084 0.0149371854724391 + 433 24 Se 3s 0.0001093291916580 -0.0004895189998871 + 434 24 Se 3py -0.0009579618243628 -0.0076491143944394 + 435 24 Se 3pz -0.0019262244970433 0.0006703576382154 + 436 24 Se 3px 0.0030650577527616 0.0004793160347847 + 437 24 Se 4py 0.0001735854317389 -0.0021256037171188 + 438 24 Se 4pz -0.0003275524223328 -0.0004219427029451 + 439 24 Se 4px -0.0003703428526639 0.0014381082489583 + 440 24 Se 4d-2 0.0008583958077872 -0.0008182087867149 + 441 24 Se 4d-1 -0.0003938530109413 0.0002156140832821 + 442 24 Se 4d0 0.0000334186760539 0.0001254048573063 + 443 24 Se 4d+1 0.0003550251136419 0.0003597732492125 + 444 24 Se 4d+2 0.0003217374131957 0.0003264742796657 + + 445 25 Cd 2s -0.0029173592083166 0.0161709625002001 + 446 25 Cd 3s -0.0007567766021046 -0.0011414154944464 + 447 25 Cd 3py 0.0002579082510272 -0.0031895988004154 + 448 25 Cd 3pz -0.0022166502382585 -0.0041089459808757 + 449 25 Cd 3px -0.0009477378603295 0.0035087749632079 + 450 25 Cd 4py -0.0000921225762743 -0.0001165604788643 + 451 25 Cd 4pz -0.0005321151152550 0.0008208454335489 + 452 25 Cd 4px -0.0002660023842379 -0.0015213886754857 + 453 25 Cd 4d-2 -0.0043214255946416 0.0883728874239199 + 454 25 Cd 4d-1 0.0039806162480806 -0.0646759398272242 + 455 25 Cd 4d0 0.0036110167514802 -0.0149918307504045 + 456 25 Cd 4d+1 -0.0136610578397327 0.0907121387916051 + 457 25 Cd 4d+2 0.0068776599027075 -0.0220692571765747 + 458 25 Cd 5d-2 0.0004569163646098 -0.0046356311829673 + 459 25 Cd 5d-1 -0.0007359103336669 0.0024861606107509 + 460 25 Cd 5d0 0.0000449794572394 -0.0024055529260240 + 461 25 Cd 5d+1 -0.0005150800155558 -0.0010323400527572 + 462 25 Cd 5d+2 -0.0005489822390051 -0.0017264608124672 + 463 25 Cd 5f-3 -0.0000575064708702 -0.0005047943994627 + 464 25 Cd 5f-2 -0.0000246411384467 0.0003837320868194 + 465 25 Cd 5f-1 -0.0001385944970173 0.0011415981640232 + 466 25 Cd 5f0 0.0003071989865986 -0.0005767618253100 + 467 25 Cd 5f+1 0.0001193440775133 -0.0006618600942916 + 468 25 Cd 5f+2 -0.0000509874412319 0.0005121216462510 + 469 25 Cd 5f+3 0.0000479274894421 -0.0005899046933192 + + 470 26 Cd 2s -0.0040670216250109 0.0048868049142461 + 471 26 Cd 3s -0.0000489801492713 -0.0012548198293618 + 472 26 Cd 3py -0.0009664114528185 -0.0004710254567748 + 473 26 Cd 3pz -0.0002331271072953 -0.0006714150947645 + 474 26 Cd 3px -0.0008028995032465 0.0004963089942550 + 475 26 Cd 4py -0.0000346654569960 -0.0000845830522452 + 476 26 Cd 4pz 0.0000099833671168 -0.0003211346809475 + 477 26 Cd 4px 0.0002910607578485 -0.0007575040102853 + 478 26 Cd 4d-2 -0.0587620675909013 -0.0582018776242626 + 479 26 Cd 4d-1 -0.0123819054041976 0.0019700625856528 + 480 26 Cd 4d0 0.0506754955236440 -0.0538860841961224 + 481 26 Cd 4d+1 0.0368912232139725 0.0112937555010091 + 482 26 Cd 4d+2 -0.0024934619693762 0.0382540282765896 + 483 26 Cd 5d-2 -0.0015195255618262 0.0006708506053378 + 484 26 Cd 5d-1 -0.0005041830434593 0.0008909474025013 + 485 26 Cd 5d0 0.0007630954858475 -0.0010881778334208 + 486 26 Cd 5d+1 0.0000889425127185 -0.0004707293290717 + 487 26 Cd 5d+2 0.0010152607083906 -0.0000950965960768 + 488 26 Cd 5f-3 -0.0005023090689522 0.0004418908365088 + 489 26 Cd 5f-2 -0.0000921747387762 0.0002410467517633 + 490 26 Cd 5f-1 0.0000688173125273 0.0002572943639522 + 491 26 Cd 5f0 -0.0001205007925416 0.0005779040446102 + 492 26 Cd 5f+1 0.0001089106249243 -0.0002751201394970 + 493 26 Cd 5f+2 0.0000389650665907 0.0000250533448646 + 494 26 Cd 5f+3 0.0001901258047575 0.0004744242113063 + + 27 28 + -0.4807624978150710 -0.4802759319450138 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0074013581699087 0.0020242542713043 + 2 1 Cd 3s 0.0009680805394249 -0.0002390197326271 + 3 1 Cd 3py -0.0030310673325330 -0.0005696268244250 + 4 1 Cd 3pz -0.0009672545261914 0.0007205619220583 + 5 1 Cd 3px 0.0004626645605150 0.0005258785753876 + 6 1 Cd 4py 0.0007850402868324 -0.0010150216629104 + 7 1 Cd 4pz 0.0008079399946316 0.0001351665619014 + 8 1 Cd 4px -0.0002552137127480 0.0004448010196372 + 9 1 Cd 4d-2 -0.0067891310481890 0.0038042170816204 + 10 1 Cd 4d-1 0.0314442964550770 -0.0153162018913353 + 11 1 Cd 4d0 -0.0023293317483656 0.0093726246095536 + 12 1 Cd 4d+1 -0.0019397324078927 0.0005484350415655 + 13 1 Cd 4d+2 -0.0294561754718731 0.0118549000556396 + 14 1 Cd 5d-2 0.0003216991336427 0.0007593584451245 + 15 1 Cd 5d-1 -0.0009350877027295 -0.0006422786221597 + 16 1 Cd 5d0 0.0010331395711136 0.0000403711825214 + 17 1 Cd 5d+1 -0.0003717040629375 -0.0001873716328019 + 18 1 Cd 5d+2 0.0007154887721934 -0.0008645228799566 + 19 1 Cd 5f-3 -0.0000279250156756 -0.0000829192061557 + 20 1 Cd 5f-2 0.0003439294947218 0.0002064444628049 + 21 1 Cd 5f-1 -0.0001077868438987 -0.0001769686970374 + 22 1 Cd 5f0 -0.0000829544547297 -0.0001720768099771 + 23 1 Cd 5f+1 -0.0001468918898168 -0.0001231752029886 + 24 1 Cd 5f+2 0.0001001129815649 -0.0000694901967443 + 25 1 Cd 5f+3 0.0002468348759101 -0.0000524959897853 + + 26 2 Cd 2s 0.0164998338870678 -0.0233807372445483 + 27 2 Cd 3s -0.0005386737353297 0.0005249867314245 + 28 2 Cd 3py -0.0089818682713039 0.0064006402875918 + 29 2 Cd 3pz 0.0090890875541158 -0.0064113602404300 + 30 2 Cd 3px -0.0122458916600078 0.0071442546414264 + 31 2 Cd 4py -0.0012715057696542 -0.0011951253671961 + 32 2 Cd 4pz 0.0007233361289095 -0.0005722500732892 + 33 2 Cd 4px -0.0008986131678531 0.0015592079343113 + 34 2 Cd 4d-2 -0.2133452209850571 0.0241596981156432 + 35 2 Cd 4d-1 0.1948474703834809 -0.0747022510366506 + 36 2 Cd 4d0 -0.0263632339259955 -0.0613140403300799 + 37 2 Cd 4d+1 0.1455480021713366 -0.0844378578378726 + 38 2 Cd 4d+2 -0.0312941268801062 0.0299366112364862 + 39 2 Cd 5d-2 0.0053921357147403 -0.0011816022891282 + 40 2 Cd 5d-1 -0.0025393089441928 0.0016506046333260 + 41 2 Cd 5d0 -0.0038366742461127 0.0022103074147782 + 42 2 Cd 5d+1 -0.0014414878825269 0.0022122323097424 + 43 2 Cd 5d+2 0.0006532040257231 -0.0009108199888820 + 44 2 Cd 5f-3 -0.0004433117858658 -0.0002308451779310 + 45 2 Cd 5f-2 -0.0004473698592471 -0.0005351279690468 + 46 2 Cd 5f-1 0.0016900788533749 0.0001849230003774 + 47 2 Cd 5f0 -0.0000674172827852 -0.0005745180200277 + 48 2 Cd 5f+1 0.0000683814344194 -0.0006640722406110 + 49 2 Cd 5f+2 0.0012487204850485 -0.0001451988895998 + 50 2 Cd 5f+3 0.0000008161397695 -0.0003620258025950 + + 51 3 Cd 2s -0.0098674703799527 -0.0062170342205384 + 52 3 Cd 3s -0.0003418465715956 0.0010920218622578 + 53 3 Cd 3py -0.0037684273347301 0.0011019854158289 + 54 3 Cd 3pz -0.0062471468252155 0.0084214222873808 + 55 3 Cd 3px -0.0018061533444760 0.0000930502202142 + 56 3 Cd 4py -0.0002959513168069 0.0009985981748160 + 57 3 Cd 4pz -0.0004358110787007 0.0024884865908868 + 58 3 Cd 4px 0.0001493453436640 0.0004285671995099 + 59 3 Cd 4d-2 0.0246863084997985 0.0212187246225904 + 60 3 Cd 4d-1 0.0210241717071956 0.0086430053222950 + 61 3 Cd 4d0 0.0084249515850703 -0.0431392346092799 + 62 3 Cd 4d+1 0.0299602411130462 0.0123361437493198 + 63 3 Cd 4d+2 0.0012864318212113 0.0189210274954925 + 64 3 Cd 5d-2 -0.0010503984622062 -0.0020580801596594 + 65 3 Cd 5d-1 -0.0043590460862325 0.0019135282623220 + 66 3 Cd 5d0 -0.0022287033204013 0.0054294733853316 + 67 3 Cd 5d+1 -0.0018506003972151 -0.0019992023728250 + 68 3 Cd 5d+2 0.0019234766597935 -0.0022471841149780 + 69 3 Cd 5f-3 0.0004726839575438 -0.0003312589326947 + 70 3 Cd 5f-2 0.0003760485565148 0.0005906643683526 + 71 3 Cd 5f-1 -0.0007431781144508 0.0009072930306694 + 72 3 Cd 5f0 0.0003712504485526 -0.0004683654588987 + 73 3 Cd 5f+1 0.0008898760018298 -0.0001320034187462 + 74 3 Cd 5f+2 0.0010819967220742 -0.0006179728070838 + 75 3 Cd 5f+3 -0.0006099432466177 0.0004048404843729 + + 76 4 Se 2s 0.0306800852367706 -0.0113820557089097 + 77 4 Se 3s -0.0001149232384111 0.0000261395208877 + 78 4 Se 3py -0.0000204621945761 -0.0012944763990052 + 79 4 Se 3pz -0.0337596914894453 0.0140331505662613 + 80 4 Se 3px 0.0062135158209996 0.0003884775994129 + 81 4 Se 4py -0.0012036096313703 -0.0004666128762636 + 82 4 Se 4pz -0.0035263387190385 0.0022421045045769 + 83 4 Se 4px 0.0005831564427419 0.0001103310014342 + 84 4 Se 4d-2 -0.0010827063587167 0.0000834212179845 + 85 4 Se 4d-1 0.0029437190459875 -0.0014112299590978 + 86 4 Se 4d0 -0.0021031288236346 0.0010667828163600 + 87 4 Se 4d+1 0.0055686905465505 -0.0017832470503275 + 88 4 Se 4d+2 -0.0010867036692088 -0.0001613979094045 + + 89 5 Se 2s -0.0107629623460137 0.0034665165758744 + 90 5 Se 3s 0.0000644492015853 -0.0002952848583797 + 91 5 Se 3py 0.0025260692200191 -0.0008523887100643 + 92 5 Se 3pz -0.0014822925479376 0.0015321410849582 + 93 5 Se 3px 0.0011511858550276 0.0006113249298944 + 94 5 Se 4py 0.0005956032653668 -0.0000949451909372 + 95 5 Se 4pz -0.0008480854474498 0.0010471607783361 + 96 5 Se 4px 0.0004301608612387 0.0001720907971831 + 97 5 Se 4d-2 0.0001044390322157 0.0001078304167937 + 98 5 Se 4d-1 -0.0001879166419174 0.0002219733750082 + 99 5 Se 4d0 -0.0002408658033435 0.0001395167508625 + 100 5 Se 4d+1 0.0003939406934817 0.0002426242105552 + 101 5 Se 4d+2 -0.0005577511843367 0.0000707908826997 + + 102 6 Se 2s 0.0652810622948104 0.0751401290329424 + 103 6 Se 3s -0.0005643779589644 -0.0012154068782563 + 104 6 Se 3py 0.0060191936900029 0.0198021151502181 + 105 6 Se 3pz -0.0343491256610542 -0.0172980969201406 + 106 6 Se 3px 0.0255675858586935 0.0295889231884822 + 107 6 Se 4py 0.0003908343834202 0.0002521854849195 + 108 6 Se 4pz -0.0037019524191563 -0.0022534367832982 + 109 6 Se 4px 0.0022839297769457 0.0017820571076234 + 110 6 Se 4d-2 0.0006135606652059 -0.0046311988877707 + 111 6 Se 4d-1 -0.0010114953439538 0.0025740001511648 + 112 6 Se 4d0 -0.0000510980004396 0.0033601713801251 + 113 6 Se 4d+1 0.0074645991873591 0.0049696902622746 + 114 6 Se 4d+2 -0.0051880443121535 -0.0052208124009229 + + 115 7 Se 2s 0.0132145157026298 -0.0020988590482670 + 116 7 Se 3s -0.0007293331424323 0.0001373244639862 + 117 7 Se 3py 0.0114743353139734 -0.0029450363277446 + 118 7 Se 3pz -0.0008156145817017 -0.0029346670102934 + 119 7 Se 3px 0.0008855639994722 0.0023575222425558 + 120 7 Se 4py 0.0030832485006585 -0.0023595160838260 + 121 7 Se 4pz -0.0004143642002252 0.0005030477421427 + 122 7 Se 4px -0.0003028050152985 0.0004155930325513 + 123 7 Se 4d-2 -0.0000084725319903 -0.0005313437293027 + 124 7 Se 4d-1 -0.0010365806861828 0.0012902662988502 + 125 7 Se 4d0 0.0009798953588839 0.0003667366476923 + 126 7 Se 4d+1 -0.0003943834258172 -0.0002589641344185 + 127 7 Se 4d+2 0.0026564815180973 -0.0009908629326813 + + 128 8 Cd 2s -0.0014942508897052 -0.0032447248491159 + 129 8 Cd 3s -0.0015619181197142 0.0000696078727782 + 130 8 Cd 3py 0.0017850692524481 0.0072001762770828 + 131 8 Cd 3pz 0.0035268460119562 -0.0061222504325897 + 132 8 Cd 3px 0.0001025297245540 -0.0080191602512288 + 133 8 Cd 4py -0.0005214356300515 0.0033823418778690 + 134 8 Cd 4pz -0.0001059771359633 -0.0018605325570789 + 135 8 Cd 4px -0.0019533502912450 0.0003670002556585 + 136 8 Cd 4d-2 0.1023070242249065 -0.1848671890118687 + 137 8 Cd 4d-1 0.0384779977111250 -0.0040604843332505 + 138 8 Cd 4d0 -0.0095744709910637 -0.1025407012432294 + 139 8 Cd 4d+1 -0.1020172478551369 0.1011940428726500 + 140 8 Cd 4d+2 -0.2287343242946862 0.1498377378828081 + 141 8 Cd 5d-2 0.0019208376526701 0.0075949122478701 + 142 8 Cd 5d-1 0.0010456464836896 0.0006819309889338 + 143 8 Cd 5d0 0.0012654374354423 0.0012022053205157 + 144 8 Cd 5d+1 0.0036171211251722 -0.0025836000938636 + 145 8 Cd 5d+2 0.0023861860064841 -0.0008230070091027 + 146 8 Cd 5f-3 0.0006336300531384 0.0003343923780963 + 147 8 Cd 5f-2 -0.0001730142310732 -0.0004654519047889 + 148 8 Cd 5f-1 0.0003388197789809 -0.0003804057725288 + 149 8 Cd 5f0 -0.0000507979815434 0.0000966093976979 + 150 8 Cd 5f+1 0.0006526205978050 0.0001095927905149 + 151 8 Cd 5f+2 0.0012318655628322 -0.0001979212731765 + 152 8 Cd 5f+3 0.0003591251053390 0.0012457247076287 + + 153 9 Cd 2s 0.0189414232594099 -0.0089634084498277 + 154 9 Cd 3s -0.0019753069608987 0.0024897402921348 + 155 9 Cd 3py 0.0072108827342684 0.0003603262495389 + 156 9 Cd 3pz -0.0052683887089081 0.0054617609451158 + 157 9 Cd 3px -0.0046970508575977 -0.0061599306497489 + 158 9 Cd 4py -0.0005900113668174 0.0015488865478988 + 159 9 Cd 4pz -0.0001250589765661 0.0006910420361187 + 160 9 Cd 4px -0.0016107241679973 -0.0042902411608977 + 161 9 Cd 4d-2 0.2868502244831194 0.1981704544549584 + 162 9 Cd 4d-1 0.5693958811520430 -0.4720438358163871 + 163 9 Cd 4d0 0.1332427087661082 -0.2371917429887579 + 164 9 Cd 4d+1 0.5416566150373706 0.6756677744900077 + 165 9 Cd 4d+2 0.0353360828420085 0.2103339899842005 + 166 9 Cd 5d-2 -0.0002521908904258 0.0007384492487280 + 167 9 Cd 5d-1 -0.0012068943100708 -0.0027276202004384 + 168 9 Cd 5d0 0.0010606646611482 -0.0035640666540025 + 169 9 Cd 5d+1 0.0051396870784213 0.0040399528692184 + 170 9 Cd 5d+2 -0.0012412877280153 0.0017089638856090 + 171 9 Cd 5f-3 -0.0005759712855995 0.0000083654442517 + 172 9 Cd 5f-2 0.0017134584342069 -0.0004065161069978 + 173 9 Cd 5f-1 0.0008119795627892 0.0000315261469647 + 174 9 Cd 5f0 0.0005828617169307 0.0002217917679975 + 175 9 Cd 5f+1 -0.0003429454011020 0.0008737608043713 + 176 9 Cd 5f+2 0.0004670001619625 0.0007635243542051 + 177 9 Cd 5f+3 0.0000385190273606 -0.0011824025521871 + + 178 10 Se 2s -0.0139021690331153 -0.0564332365739179 + 179 10 Se 3s 0.0006536233966703 0.0004794182297706 + 180 10 Se 3py -0.0087256094949413 -0.0154182728860618 + 181 10 Se 3pz -0.0320543464687850 -0.0130314992072489 + 182 10 Se 3px -0.0125137629547009 0.0387911930627633 + 183 10 Se 4py -0.0001231298910040 0.0002787963861047 + 184 10 Se 4pz -0.0015851989300387 -0.0007585619623853 + 185 10 Se 4px -0.0022954811705215 0.0038355656530464 + 186 10 Se 4d-2 -0.0039062471075253 -0.0019620850097120 + 187 10 Se 4d-1 0.0002994238525604 0.0011977238825650 + 188 10 Se 4d0 0.0037383112072343 -0.0035598253761769 + 189 10 Se 4d+1 -0.0058904447672541 -0.0096300201559027 + 190 10 Se 4d+2 -0.0016906792728064 0.0054754738285276 + + 191 11 Se 2s -0.0090365960424525 0.0111385334639328 + 192 11 Se 3s 0.0001603248138005 0.0000863451309783 + 193 11 Se 3py -0.0015164807452043 0.0071670855834909 + 194 11 Se 3pz -0.0053135017322765 0.0090543777704468 + 195 11 Se 3px 0.0020861498237998 0.0053365813486402 + 196 11 Se 4py -0.0013081906671893 0.0009886701063153 + 197 11 Se 4pz -0.0022379076599099 0.0009511886896827 + 198 11 Se 4px 0.0001805024681147 0.0000782345370530 + 199 11 Se 4d-2 0.0006713121025583 0.0009827299240853 + 200 11 Se 4d-1 -0.0007029890992245 -0.0003866158352868 + 201 11 Se 4d0 0.0009272857446234 -0.0017522429652067 + 202 11 Se 4d+1 0.0000417349321486 -0.0006925169281267 + 203 11 Se 4d+2 0.0006933855188391 -0.0010505561996367 + + 204 12 Cd 2s -0.0121381723277021 0.0038623352487449 + 205 12 Cd 3s -0.0001553832890868 0.0000169679082798 + 206 12 Cd 3py -0.0089174605074746 0.0048714497244634 + 207 12 Cd 3pz -0.0058295398627576 0.0024735050036667 + 208 12 Cd 3px -0.0047582159829250 -0.0009451283025516 + 209 12 Cd 4py -0.0008113305184251 0.0000658220464557 + 210 12 Cd 4pz -0.0010720219216579 -0.0002596780702932 + 211 12 Cd 4px -0.0011660148251959 0.0004470676670786 + 212 12 Cd 4d-2 0.0879125147076909 -0.0178186701921550 + 213 12 Cd 4d-1 0.0928899578577431 -0.0677646309514049 + 214 12 Cd 4d0 0.0117915083956247 -0.0339092474280013 + 215 12 Cd 4d+1 0.0723650270466704 0.0057691214470061 + 216 12 Cd 4d+2 -0.0577879310998808 0.1032739647777056 + 217 12 Cd 5d-2 -0.0039991296667136 0.0017329646255162 + 218 12 Cd 5d-1 -0.0022657185251752 0.0016010693199948 + 219 12 Cd 5d0 0.0007545647054904 0.0011294783916794 + 220 12 Cd 5d+1 -0.0020754166908535 -0.0005965116182434 + 221 12 Cd 5d+2 0.0013883531695024 -0.0027618746765596 + 222 12 Cd 5f-3 -0.0003738093530804 -0.0001317306897211 + 223 12 Cd 5f-2 -0.0005617857757041 0.0003415275336807 + 224 12 Cd 5f-1 -0.0000509182849571 -0.0002526718200789 + 225 12 Cd 5f0 0.0008561337542355 -0.0000065388142996 + 226 12 Cd 5f+1 0.0003299929340952 0.0002478261427565 + 227 12 Cd 5f+2 -0.0007634427027835 -0.0000938754662866 + 228 12 Cd 5f+3 0.0004229181494305 -0.0005563176206202 + + 229 13 Cd 2s -0.0077351991638022 0.0046938122914717 + 230 13 Cd 3s 0.0007281515949909 -0.0002701453362871 + 231 13 Cd 3py -0.0012273784813164 -0.0003462200960616 + 232 13 Cd 3pz 0.0002398261502889 -0.0004736977619442 + 233 13 Cd 3px -0.0001780947572181 0.0026769640974074 + 234 13 Cd 4py -0.0011854430841416 0.0002730851633432 + 235 13 Cd 4pz 0.0007931744305994 -0.0004727272632507 + 236 13 Cd 4px 0.0008210855111218 0.0004255845766040 + 237 13 Cd 4d-2 -0.0121696505517998 0.0075210415498244 + 238 13 Cd 4d-1 -0.0109961122218096 0.0018449323432835 + 239 13 Cd 4d0 -0.0186447083295590 -0.0011234546703609 + 240 13 Cd 4d+1 0.0504837678932019 -0.0275779440474551 + 241 13 Cd 4d+2 0.0507263571339005 -0.0111207522422749 + 242 13 Cd 5d-2 0.0005205397314154 -0.0009916835074413 + 243 13 Cd 5d-1 -0.0014550175180531 0.0007754175043319 + 244 13 Cd 5d0 0.0001931689781834 -0.0002288575902016 + 245 13 Cd 5d+1 -0.0009263410104320 0.0013091645987928 + 246 13 Cd 5d+2 -0.0016274417462845 -0.0000519683844468 + 247 13 Cd 5f-3 0.0001105659104576 0.0002382940755356 + 248 13 Cd 5f-2 0.0002769116049767 -0.0001387509241930 + 249 13 Cd 5f-1 -0.0000870236770334 -0.0000146499779221 + 250 13 Cd 5f0 -0.0001165471174937 0.0001677095429336 + 251 13 Cd 5f+1 -0.0004857099038009 0.0002354756347783 + 252 13 Cd 5f+2 -0.0000078485351034 0.0000205915972257 + 253 13 Cd 5f+3 -0.0002885891802434 0.0002198653275583 + + 254 14 Cd 2s -0.0052945699897630 0.0032597622322266 + 255 14 Cd 3s 0.0013665539702344 -0.0002826304306639 + 256 14 Cd 3py 0.0036553462593714 -0.0011974178453553 + 257 14 Cd 3pz -0.0047076741044203 0.0012686659234797 + 258 14 Cd 3px -0.0003442152859462 0.0004931044469606 + 259 14 Cd 4py 0.0000978918758975 -0.0001140183956694 + 260 14 Cd 4pz -0.0014872313077829 0.0007202487635450 + 261 14 Cd 4px -0.0004346591794188 0.0005150719610806 + 262 14 Cd 4d-2 -0.0099283773929054 0.0497481396039839 + 263 14 Cd 4d-1 0.0637276498148285 -0.0100409792252652 + 264 14 Cd 4d0 0.0336127900112139 0.0050524916641219 + 265 14 Cd 4d+1 -0.0273244750417648 0.0131722495305327 + 266 14 Cd 4d+2 0.0910500912730189 -0.0235516071894007 + 267 14 Cd 5d-2 0.0003313469424953 -0.0008853845583626 + 268 14 Cd 5d-1 0.0022764074685871 -0.0011407968958643 + 269 14 Cd 5d0 0.0012821947921995 0.0000436421425717 + 270 14 Cd 5d+1 0.0000584904438590 0.0002340059369881 + 271 14 Cd 5d+2 0.0022286432143643 -0.0006885296587239 + 272 14 Cd 5f-3 -0.0008982961383469 0.0002329781498095 + 273 14 Cd 5f-2 0.0001298326270716 -0.0001151983927737 + 274 14 Cd 5f-1 -0.0004258923938623 0.0002393005675629 + 275 14 Cd 5f0 -0.0004535587652571 0.0001439230112136 + 276 14 Cd 5f+1 -0.0000868287363638 -0.0000834047933518 + 277 14 Cd 5f+2 0.0009297608627305 -0.0004064355767316 + 278 14 Cd 5f+3 0.0001854601442627 -0.0005351036899090 + + 279 15 Se 2s -0.0056070374362015 -0.0050621010766037 + 280 15 Se 3s -0.0000082348593518 0.0001884990762279 + 281 15 Se 3py -0.0016686337333145 -0.0018251867102078 + 282 15 Se 3pz 0.0040727395554921 -0.0021027592035413 + 283 15 Se 3px 0.0005475834017640 -0.0005842608179685 + 284 15 Se 4py -0.0002925989976186 -0.0002606752625339 + 285 15 Se 4pz -0.0002734623089600 0.0001055074037683 + 286 15 Se 4px -0.0002533114351157 0.0000700384387207 + 287 15 Se 4d-2 -0.0002264960516172 0.0003513233668375 + 288 15 Se 4d-1 -0.0009870734743147 0.0005042675493009 + 289 15 Se 4d0 0.0007264772660121 -0.0003085881588026 + 290 15 Se 4d+1 0.0000578728712498 0.0003006604026160 + 291 15 Se 4d+2 -0.0000278474100514 -0.0003130278673652 + + 292 16 Se 2s 0.0033408969706556 -0.0043062091170413 + 293 16 Se 3s -0.0000706149233429 0.0000412664131325 + 294 16 Se 3py -0.0018142425434073 -0.0006836720591030 + 295 16 Se 3pz -0.0021638324411491 0.0003178491688080 + 296 16 Se 3px -0.0004540397648895 -0.0002312081571640 + 297 16 Se 4py 0.0002154946247723 -0.0001421337449759 + 298 16 Se 4pz 0.0003757225324920 -0.0003004462252365 + 299 16 Se 4px -0.0000291534947323 -0.0001338993826110 + 300 16 Se 4d-2 0.0003010752068854 0.0001676512451767 + 301 16 Se 4d-1 -0.0002562023461191 0.0000299636148605 + 302 16 Se 4d0 -0.0005697662911276 0.0000154214592715 + 303 16 Se 4d+1 0.0002880433123306 0.0000412237635485 + 304 16 Se 4d+2 0.0001885785328079 -0.0000498972364084 + + 305 17 Cd 2s -0.0003124047363902 -0.0011960393910814 + 306 17 Cd 3s 0.0002087038233399 0.0001399906164213 + 307 17 Cd 3py 0.0003930200043280 0.0003690854557216 + 308 17 Cd 3pz -0.0000448161131734 0.0001365729330815 + 309 17 Cd 3px 0.0007517377566860 0.0001649954443868 + 310 17 Cd 4py 0.0001884215492283 -0.0001443629549810 + 311 17 Cd 4pz -0.0000349489124087 0.0000059544624134 + 312 17 Cd 4px 0.0003610512643647 -0.0003653829045851 + 313 17 Cd 4d-2 0.0076722770802097 0.0085013604620163 + 314 17 Cd 4d-1 0.0010438262430211 -0.0018105191059030 + 315 17 Cd 4d0 -0.0053887497079544 -0.0072714108357838 + 316 17 Cd 4d+1 -0.0038462334851000 0.0037917403519211 + 317 17 Cd 4d+2 -0.0000047097375401 0.0007794133133458 + 318 17 Cd 5d-2 0.0000301536436758 -0.0001263735097361 + 319 17 Cd 5d-1 0.0000755762630329 0.0001546322045919 + 320 17 Cd 5d0 0.0000643235804565 0.0000435244303754 + 321 17 Cd 5d+1 0.0003479836817014 -0.0003100030983847 + 322 17 Cd 5d+2 -0.0002776537148333 0.0003089614739633 + 323 17 Cd 5f-3 -0.0001285476735113 0.0000448385527327 + 324 17 Cd 5f-2 -0.0001688513916261 0.0001031413321432 + 325 17 Cd 5f-1 -0.0000631261954315 0.0002025859500897 + 326 17 Cd 5f0 0.0001294759522133 -0.0000866781592318 + 327 17 Cd 5f+1 0.0000528678762251 -0.0001975841185717 + 328 17 Cd 5f+2 -0.0002285797467998 0.0002110610973388 + 329 17 Cd 5f+3 -0.0000192459165418 0.0000263296514400 + + 330 18 Cd 2s -0.0005468785816012 0.0014280317538841 + 331 18 Cd 3s 0.0000711425775941 0.0002028516642272 + 332 18 Cd 3py 0.0007203251368279 0.0006922176443172 + 333 18 Cd 3pz -0.0019524576173018 0.0016420438737883 + 334 18 Cd 3px 0.0006059365990975 0.0009394538164083 + 335 18 Cd 4py 0.0002452560751280 0.0001819334418456 + 336 18 Cd 4pz -0.0005431924507772 0.0005093479289316 + 337 18 Cd 4px 0.0003082623879881 0.0004252527252312 + 338 18 Cd 4d-2 0.0187877762198847 0.0017794143250269 + 339 18 Cd 4d-1 0.0220955874657141 0.0677743915234305 + 340 18 Cd 4d0 0.0418932232113068 -0.0792088577582691 + 341 18 Cd 4d+1 0.0137756449911936 0.0311289866837766 + 342 18 Cd 4d+2 0.0081141762777726 -0.0083056086772966 + 343 18 Cd 5d-2 0.0006000944310588 0.0002657461152150 + 344 18 Cd 5d-1 -0.0003327871218645 0.0011452828769912 + 345 18 Cd 5d0 -0.0009890231934065 -0.0000099841965240 + 346 18 Cd 5d+1 0.0007352793801726 0.0008313442359878 + 347 18 Cd 5d+2 0.0002263400488687 -0.0002179577806634 + 348 18 Cd 5f-3 0.0002235839303931 -0.0000883621607313 + 349 18 Cd 5f-2 0.0004684962151268 0.0001312306024686 + 350 18 Cd 5f-1 0.0000427848202050 0.0001937507141573 + 351 18 Cd 5f0 -0.0001849248624491 -0.0000001260050492 + 352 18 Cd 5f+1 0.0001249374854167 0.0003501359293809 + 353 18 Cd 5f+2 0.0003062269005844 -0.0002965059048633 + 354 18 Cd 5f+3 -0.0001961533965120 0.0000000263609033 + + 355 19 Se 2s -0.0006040593188142 0.0081393177115093 + 356 19 Se 3s -0.0001158427631359 -0.0000295401378693 + 357 19 Se 3py -0.0006696285626346 0.0060425334713854 + 358 19 Se 3pz -0.0011509796152637 -0.0028731851024471 + 359 19 Se 3px 0.0010014593010384 -0.0044112919635259 + 360 19 Se 4py 0.0000681993190060 0.0003842353890724 + 361 19 Se 4pz -0.0000495711268185 -0.0001953236420015 + 362 19 Se 4px 0.0001244928271827 -0.0001288116326964 + 363 19 Se 4d-2 -0.0000302830436576 0.0007178898174939 + 364 19 Se 4d-1 -0.0002341169189995 0.0008677905380697 + 365 19 Se 4d0 -0.0005624635628572 -0.0001532923472244 + 366 19 Se 4d+1 0.0001006295645904 -0.0010886062058298 + 367 19 Se 4d+2 -0.0003862065980519 -0.0002599890414415 + + 368 20 Se 2s -0.0041324532937543 0.0032691341444716 + 369 20 Se 3s 0.0000860036176285 -0.0000406572923280 + 370 20 Se 3py 0.0011242273039131 -0.0068270694285437 + 371 20 Se 3pz 0.0066400728087064 -0.0026150432046047 + 372 20 Se 3px 0.0005642924383136 0.0034368974981313 + 373 20 Se 4py -0.0004900647356749 -0.0011880904514616 + 374 20 Se 4pz 0.0019716207942455 0.0004840644374603 + 375 20 Se 4px -0.0007231572440179 0.0016222048739905 + 376 20 Se 4d-2 0.0002538924709769 0.0002399811498114 + 377 20 Se 4d-1 0.0002887880109041 -0.0013670427418591 + 378 20 Se 4d0 0.0008514295435625 -0.0002043665231507 + 379 20 Se 4d+1 -0.0013020416648566 0.0013870820923548 + 380 20 Se 4d+2 0.0002488613584198 -0.0003055009465536 + + 381 21 Se 2s 0.0239945587550230 -0.0318652972735807 + 382 21 Se 3s -0.0004125396484383 0.0006576030374185 + 383 21 Se 3py 0.0141657244283735 -0.0139158005672411 + 384 21 Se 3pz -0.0110162010856152 0.0193932895805159 + 385 21 Se 3px -0.0006756653880757 0.0005309111101736 + 386 21 Se 4py 0.0000731123703364 -0.0005787340223131 + 387 21 Se 4pz -0.0006172211070274 0.0017480893060730 + 388 21 Se 4px -0.0003877874773986 0.0004061913629986 + 389 21 Se 4d-2 0.0020681869293897 -0.0014426974202253 + 390 21 Se 4d-1 0.0018915237230388 -0.0024086219164702 + 391 21 Se 4d0 0.0013355094501904 -0.0012962106890717 + 392 21 Se 4d+1 -0.0018156239407104 0.0035292707783493 + 393 21 Se 4d+2 0.0014461460373319 -0.0009701625803406 + + 394 22 Cd 2s -0.0022610926980179 0.0058700602216914 + 395 22 Cd 3s 0.0005626836287563 -0.0004233074990338 + 396 22 Cd 3py -0.0012078259113142 -0.0001651142714549 + 397 22 Cd 3pz -0.0013093633001763 0.0025620856757892 + 398 22 Cd 3px 0.0005334129133577 0.0001283554961240 + 399 22 Cd 4py 0.0001010722602910 -0.0003865721350912 + 400 22 Cd 4pz 0.0002225041649022 -0.0006055275427484 + 401 22 Cd 4px 0.0003752323937759 0.0002930507037133 + 402 22 Cd 4d-2 -0.0090407964124112 0.0295189083018593 + 403 22 Cd 4d-1 0.0209056731725677 -0.0159166830952515 + 404 22 Cd 4d0 0.0319499523765264 -0.0665262560676643 + 405 22 Cd 4d+1 -0.0472480885439021 0.0561211822205903 + 406 22 Cd 4d+2 0.0401663927230277 -0.0159874763772528 + 407 22 Cd 5d-2 -0.0002585212160825 -0.0007899579484821 + 408 22 Cd 5d-1 -0.0009286503668678 0.0002039948776075 + 409 22 Cd 5d0 -0.0005752415208030 0.0002957024342767 + 410 22 Cd 5d+1 0.0001336568715128 -0.0007845218486111 + 411 22 Cd 5d+2 0.0003542539143686 -0.0003884637698476 + 412 22 Cd 5f-3 0.0000909790512965 0.0000047037820530 + 413 22 Cd 5f-2 -0.0007351556959112 0.0004113512443293 + 414 22 Cd 5f-1 0.0000417172961992 -0.0000122696904203 + 415 22 Cd 5f0 0.0000827208963601 -0.0000290442603587 + 416 22 Cd 5f+1 -0.0003380931702414 0.0001216766000052 + 417 22 Cd 5f+2 -0.0000164154492857 -0.0000333647242875 + 418 22 Cd 5f+3 0.0003926588208653 -0.0003625064031936 + + 419 23 Se 2s -0.0056262868763205 0.0086184344081814 + 420 23 Se 3s 0.0001650720887900 -0.0001341252504227 + 421 23 Se 3py 0.0007218984493338 -0.0026869611505357 + 422 23 Se 3pz 0.0009675905438620 -0.0018520121478456 + 423 23 Se 3px 0.0014357314564406 -0.0026397488292311 + 424 23 Se 4py 0.0000785580736492 -0.0002183941646494 + 425 23 Se 4pz -0.0002165512405923 0.0000579926291552 + 426 23 Se 4px 0.0004126470972087 -0.0006171156345341 + 427 23 Se 4d-2 0.0002040395108755 -0.0003327785300068 + 428 23 Se 4d-1 0.0001033060650265 -0.0005146600619809 + 429 23 Se 4d0 0.0000018495559077 -0.0000874369088709 + 430 23 Se 4d+1 0.0004126451940421 -0.0006921482169204 + 431 23 Se 4d+2 -0.0000221740414759 -0.0000812709390055 + + 432 24 Se 2s 0.0005022006852663 -0.0094900417324589 + 433 24 Se 3s -0.0000201804783381 0.0000706882332820 + 434 24 Se 3py -0.0031349853952457 0.0022777423245307 + 435 24 Se 3pz -0.0023317862728332 0.0048854080369739 + 436 24 Se 3px 0.0033043403835454 -0.0013844177591403 + 437 24 Se 4py 0.0000481220345112 -0.0000957127149282 + 438 24 Se 4pz -0.0008533424533997 0.0007979201345647 + 439 24 Se 4px -0.0003036615994265 0.0005211309134194 + 440 24 Se 4d-2 -0.0000532134961675 -0.0005309700163746 + 441 24 Se 4d-1 -0.0005498291714831 0.0005328808391851 + 442 24 Se 4d0 -0.0003300647417196 0.0000506904952822 + 443 24 Se 4d+1 0.0002111113389349 0.0002575813979417 + 444 24 Se 4d+2 0.0006148479510932 -0.0002030745453144 + + 445 25 Cd 2s 0.0023377543210291 -0.0025466636907251 + 446 25 Cd 3s -0.0002339332429894 0.0001150638298358 + 447 25 Cd 3py 0.0020264117912169 -0.0012239287471687 + 448 25 Cd 3pz -0.0007989112812072 0.0010793655781705 + 449 25 Cd 3px 0.0019732204576377 -0.0016225282437336 + 450 25 Cd 4py 0.0003146924479289 -0.0001740559314225 + 451 25 Cd 4pz -0.0002586522523328 -0.0001443419012388 + 452 25 Cd 4px 0.0003750541778384 0.0000015703458021 + 453 25 Cd 4d-2 0.0028055342821314 -0.0133866965248928 + 454 25 Cd 4d-1 -0.0169562004700974 0.0119925324039523 + 455 25 Cd 4d0 0.0069249466923051 -0.0012053545466542 + 456 25 Cd 4d+1 -0.0164709433552810 0.0074020851142396 + 457 25 Cd 4d+2 0.0113616895148270 -0.0207892731792022 + 458 25 Cd 5d-2 0.0004551492914418 0.0000495774293230 + 459 25 Cd 5d-1 0.0002941008850512 -0.0002909633213817 + 460 25 Cd 5d0 -0.0004425030991180 0.0003889911310099 + 461 25 Cd 5d+1 0.0004704884052606 -0.0002151649433817 + 462 25 Cd 5d+2 -0.0007537860603608 0.0011405688757623 + 463 25 Cd 5f-3 -0.0001046289966593 0.0002149780003331 + 464 25 Cd 5f-2 0.0000974317408522 -0.0000236489967129 + 465 25 Cd 5f-1 -0.0002805762004749 -0.0000569314335579 + 466 25 Cd 5f0 0.0003001832799452 -0.0000526910907115 + 467 25 Cd 5f+1 0.0000561244204838 0.0000378423903280 + 468 25 Cd 5f+2 -0.0003284621714891 0.0003354224479881 + 469 25 Cd 5f+3 -0.0000698213201449 0.0002494807761279 + + 470 26 Cd 2s -0.0009698910583310 0.0032847378718455 + 471 26 Cd 3s -0.0009215375808242 0.0002206472645685 + 472 26 Cd 3py -0.0012999669784183 0.0012447917498762 + 473 26 Cd 3pz -0.0009598424202789 -0.0003301250617184 + 474 26 Cd 3px -0.0011231826041025 0.0002392624380111 + 475 26 Cd 4py 0.0000744750298568 0.0001047152804698 + 476 26 Cd 4pz -0.0003532624835350 -0.0001003249608081 + 477 26 Cd 4px -0.0003335872409276 -0.0004329308063024 + 478 26 Cd 4d-2 -0.0486591405306654 0.0602085842059049 + 479 26 Cd 4d-1 0.0122148050814373 -0.0002131669486399 + 480 26 Cd 4d0 -0.0067552210972241 -0.0246863025283534 + 481 26 Cd 4d+1 0.0621560948846091 -0.0485143035214232 + 482 26 Cd 4d+2 0.0283389673970654 -0.0253449908258006 + 483 26 Cd 5d-2 -0.0011110329263370 0.0017586395235505 + 484 26 Cd 5d-1 -0.0003535668244912 0.0007944062211132 + 485 26 Cd 5d0 0.0003110389871733 -0.0002227538611927 + 486 26 Cd 5d+1 -0.0004256445141297 -0.0005224191279624 + 487 26 Cd 5d+2 0.0000418977883501 -0.0013945903260808 + 488 26 Cd 5f-3 -0.0002375575935410 0.0004692382680225 + 489 26 Cd 5f-2 -0.0000740757460439 0.0002741059493857 + 490 26 Cd 5f-1 0.0000808210900860 -0.0000054837452033 + 491 26 Cd 5f0 -0.0001016952999507 0.0002749883843382 + 492 26 Cd 5f+1 -0.0000272303746764 0.0001171180846256 + 493 26 Cd 5f+2 -0.0000787566706718 -0.0001666365792717 + 494 26 Cd 5f+3 -0.0001121247278310 -0.0003127541803558 + + 29 30 + -0.4789518937637101 -0.4788580794279431 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0018090456812244 -0.0001461969711058 + 2 1 Cd 3s -0.0006832423398740 0.0010089063876503 + 3 1 Cd 3py -0.0000451700203739 -0.0034210864919916 + 4 1 Cd 3pz -0.0001301417505344 0.0016408842705607 + 5 1 Cd 3px 0.0004459967030468 -0.0011673398462092 + 6 1 Cd 4py 0.0001587578888043 -0.0003816929612821 + 7 1 Cd 4pz 0.0000223734076876 0.0001119944096234 + 8 1 Cd 4px 0.0002600748303208 -0.0008355970390334 + 9 1 Cd 4d-2 0.0025931533554479 -0.0017587320429539 + 10 1 Cd 4d-1 0.0036866466690449 -0.0132558397503315 + 11 1 Cd 4d0 -0.0046391312777870 0.0094765139685469 + 12 1 Cd 4d+1 0.0003258258710610 0.0058091970610140 + 13 1 Cd 4d+2 0.0030359477682498 0.0056580670328870 + 14 1 Cd 5d-2 -0.0003398941352046 0.0014021475403026 + 15 1 Cd 5d-1 -0.0001902106517886 0.0005366818819717 + 16 1 Cd 5d0 0.0000345944839794 -0.0007548973577255 + 17 1 Cd 5d+1 -0.0005679471862271 -0.0007672374384710 + 18 1 Cd 5d+2 -0.0006616269876697 0.0002572570496391 + 19 1 Cd 5f-3 -0.0000176902303323 -0.0000932213263015 + 20 1 Cd 5f-2 0.0001300387513759 -0.0001465824160878 + 21 1 Cd 5f-1 -0.0001226483448531 -0.0001096142777319 + 22 1 Cd 5f0 0.0001167151013254 -0.0000254871751540 + 23 1 Cd 5f+1 -0.0004148245711027 0.0000860864739203 + 24 1 Cd 5f+2 0.0003760041548068 0.0000995452729503 + 25 1 Cd 5f+3 0.0001860511163686 0.0001351663922787 + + 26 2 Cd 2s 0.0057190001955345 0.0001681084587031 + 27 2 Cd 3s 0.0011524112972542 0.0005537811306787 + 28 2 Cd 3py 0.0032299614051897 0.0010751675150105 + 29 2 Cd 3pz 0.0026620241207887 0.0009770596726936 + 30 2 Cd 3px -0.0021923015226385 -0.0035717621911841 + 31 2 Cd 4py 0.0013476188581274 0.0000190733087398 + 32 2 Cd 4pz 0.0004595057109039 -0.0000613496297007 + 33 2 Cd 4px -0.0019860292563268 -0.0008288987244584 + 34 2 Cd 4d-2 0.1105436702320235 -0.0003711027238978 + 35 2 Cd 4d-1 0.0056379109099607 -0.0122264148566190 + 36 2 Cd 4d0 -0.0766796728859653 -0.0064524491521912 + 37 2 Cd 4d+1 0.0132371975501587 0.0050260514992477 + 38 2 Cd 4d+2 -0.1011130950270021 -0.0427908210677317 + 39 2 Cd 5d-2 -0.0023127803651360 0.0006190930808047 + 40 2 Cd 5d-1 -0.0020346041701024 0.0002281148866917 + 41 2 Cd 5d0 0.0031983475725410 0.0001986996176170 + 42 2 Cd 5d+1 -0.0019532986481170 -0.0004587977694542 + 43 2 Cd 5d+2 0.0040187018842723 0.0021571181339082 + 44 2 Cd 5f-3 0.0004068837289322 -0.0000928238850017 + 45 2 Cd 5f-2 0.0008833296189048 0.0001665960046658 + 46 2 Cd 5f-1 -0.0012899875813540 -0.0001986993733088 + 47 2 Cd 5f0 -0.0006780136092266 0.0000589428169210 + 48 2 Cd 5f+1 0.0000930894987759 0.0002441521969990 + 49 2 Cd 5f+2 -0.0007120042610137 -0.0001707895770077 + 50 2 Cd 5f+3 0.0000159242872762 -0.0001090844814635 + + 51 3 Cd 2s 0.0039924805530102 -0.0026034626507060 + 52 3 Cd 3s 0.0018201785316469 -0.0006028664417373 + 53 3 Cd 3py 0.0000483578585922 -0.0005209030513009 + 54 3 Cd 3pz -0.0007974325420709 -0.0002221922245441 + 55 3 Cd 3px -0.0008410289203921 -0.0018701054570394 + 56 3 Cd 4py 0.0006955404518784 -0.0006748634073932 + 57 3 Cd 4pz 0.0006687096349483 0.0017942890447872 + 58 3 Cd 4px -0.0018992867632186 -0.0007387568903132 + 59 3 Cd 4d-2 -0.0346277009639186 0.0033706858731075 + 60 3 Cd 4d-1 0.0273111056233527 -0.0209257206979979 + 61 3 Cd 4d0 0.0242689356019449 -0.0000094042286628 + 62 3 Cd 4d+1 -0.0321005586110310 -0.0459721314093808 + 63 3 Cd 4d+2 -0.0161481742020624 -0.0266233074411793 + 64 3 Cd 5d-2 0.0018270310196379 0.0004504837674971 + 65 3 Cd 5d-1 -0.0016635932006508 0.0008576147536730 + 66 3 Cd 5d0 -0.0014360942426850 -0.0013196599912295 + 67 3 Cd 5d+1 0.0012104325950555 0.0038654038920873 + 68 3 Cd 5d+2 0.0013672876644877 0.0015101749529148 + 69 3 Cd 5f-3 0.0000059592180895 0.0003661048427530 + 70 3 Cd 5f-2 -0.0000499348320306 0.0003400136985802 + 71 3 Cd 5f-1 -0.0004413532379677 0.0003218671551461 + 72 3 Cd 5f0 0.0010131033098506 -0.0001029223642213 + 73 3 Cd 5f+1 -0.0005146512784374 -0.0000727377828687 + 74 3 Cd 5f+2 0.0002773198405063 -0.0002644662489912 + 75 3 Cd 5f+3 -0.0007365973761122 -0.0001103893003015 + + 76 4 Se 2s 0.0042153643095404 0.0069021539618068 + 77 4 Se 3s -0.0000624566245104 -0.0001311104520626 + 78 4 Se 3py 0.0054583409746984 0.0010116903329735 + 79 4 Se 3pz -0.0010482650055389 0.0022048235697093 + 80 4 Se 3px 0.0002384320250547 0.0002078812332947 + 81 4 Se 4py 0.0012554892687359 0.0001297016637238 + 82 4 Se 4pz -0.0004679864788483 0.0001213750122449 + 83 4 Se 4px 0.0001145266813051 -0.0003702697140422 + 84 4 Se 4d-2 -0.0006824050104757 -0.0000889678232136 + 85 4 Se 4d-1 0.0007223034494289 0.0000962175980050 + 86 4 Se 4d0 0.0009193957076747 -0.0002277290026829 + 87 4 Se 4d+1 0.0000783304058545 -0.0006349423736692 + 88 4 Se 4d+2 0.0004130540645585 0.0000760670521769 + + 89 5 Se 2s -0.0054928460601084 -0.0090439197705940 + 90 5 Se 3s 0.0003826580239980 0.0004874329633701 + 91 5 Se 3py -0.0016465207707715 -0.0004932750485342 + 92 5 Se 3pz 0.0007300084333220 0.0013686289869467 + 93 5 Se 3px -0.0020801857581855 -0.0012897347207317 + 94 5 Se 4py -0.0008136355789764 -0.0001554130058655 + 95 5 Se 4pz 0.0001810079230039 0.0005774885416383 + 96 5 Se 4px -0.0005021482558837 0.0002017522795867 + 97 5 Se 4d-2 -0.0000114646231827 -0.0000474689282353 + 98 5 Se 4d-1 -0.0000456220436910 0.0002232322926164 + 99 5 Se 4d0 0.0001420968340620 -0.0000183184834943 + 100 5 Se 4d+1 -0.0006366430970760 -0.0002773944935916 + 101 5 Se 4d+2 0.0004682573744177 0.0002295445174723 + + 102 6 Se 2s -0.0666378144344427 0.0032713807154790 + 103 6 Se 3s 0.0013389217863751 -0.0001065049001352 + 104 6 Se 3py -0.0007248896555711 0.0028241103277721 + 105 6 Se 3pz 0.0092506310860760 -0.0017371080811951 + 106 6 Se 3px -0.0306105675691966 -0.0017210432152809 + 107 6 Se 4py -0.0000076486848262 0.0012567580614037 + 108 6 Se 4pz 0.0006102895146852 0.0004653642520404 + 109 6 Se 4px -0.0022811093210974 -0.0003068822569773 + 110 6 Se 4d-2 -0.0012176706792385 -0.0006918908400011 + 111 6 Se 4d-1 -0.0000768054474184 -0.0003592507312450 + 112 6 Se 4d0 -0.0032121489095356 -0.0010825607683668 + 113 6 Se 4d+1 -0.0022583524665522 0.0002756071926359 + 114 6 Se 4d+2 0.0068764320652163 0.0005129120945069 + + 115 7 Se 2s 0.0398649998499253 -0.0019218760521292 + 116 7 Se 3s -0.0014692563754478 -0.0000011817481971 + 117 7 Se 3py 0.0127842012063381 0.0022714720651026 + 118 7 Se 3pz 0.0024443314221404 -0.0009909474015052 + 119 7 Se 3px -0.0060454368553951 -0.0026124965821024 + 120 7 Se 4py -0.0002920905593924 0.0002324363542781 + 121 7 Se 4pz 0.0012401810220461 -0.0000556409333832 + 122 7 Se 4px -0.0000086203821210 -0.0002739699105212 + 123 7 Se 4d-2 0.0014606261877438 0.0004079866389179 + 124 7 Se 4d-1 -0.0003665108001207 -0.0002365719214009 + 125 7 Se 4d0 0.0007800021037420 0.0000864340926642 + 126 7 Se 4d+1 0.0006146693128351 0.0003837382051411 + 127 7 Se 4d+2 0.0022293368198398 0.0003998764361590 + + 128 8 Cd 2s -0.0108884096734347 -0.0086149452140688 + 129 8 Cd 3s 0.0000027219140698 -0.0001110113315549 + 130 8 Cd 3py 0.0077491437726999 0.0037897002779249 + 131 8 Cd 3pz 0.0020630831762094 0.0016904325169289 + 132 8 Cd 3px -0.0016004380860964 0.0011884459754720 + 133 8 Cd 4py 0.0006958472258589 -0.0002817030256852 + 134 8 Cd 4pz 0.0006040193482452 0.0003430086383924 + 135 8 Cd 4px -0.0000776642347343 0.0000647732444199 + 136 8 Cd 4d-2 -0.0579846090388978 0.0287344793393334 + 137 8 Cd 4d-1 0.0794069488839643 0.0156154264128318 + 138 8 Cd 4d0 -0.0865611969163028 0.0069146503136461 + 139 8 Cd 4d+1 -0.0168230610342412 0.0061248974613604 + 140 8 Cd 4d+2 -0.1268662517894917 -0.0804811195802533 + 141 8 Cd 5d-2 0.0027822180235241 -0.0006717550279191 + 142 8 Cd 5d-1 -0.0021589353150186 -0.0005921848657861 + 143 8 Cd 5d0 0.0021055027544834 0.0005594895095202 + 144 8 Cd 5d+1 0.0021257707989878 0.0002031635971925 + 145 8 Cd 5d+2 0.0029146547483984 0.0018460406517154 + 146 8 Cd 5f-3 0.0002444634256682 -0.0002459033510369 + 147 8 Cd 5f-2 -0.0009198569357054 -0.0000821224465877 + 148 8 Cd 5f-1 0.0001531283370559 0.0000552696263021 + 149 8 Cd 5f0 -0.0006831110739419 -0.0001580583353514 + 150 8 Cd 5f+1 0.0007594061274292 0.0000958958018711 + 151 8 Cd 5f+2 0.0005406955263594 -0.0002343419775271 + 152 8 Cd 5f+3 0.0002660535061904 0.0000442333651514 + + 153 9 Cd 2s 0.0024567830130553 -0.0019288318870697 + 154 9 Cd 3s -0.0004378663190903 -0.0002860205915172 + 155 9 Cd 3py -0.0017996870920971 -0.0012032699512252 + 156 9 Cd 3pz 0.0023057350785177 0.0006329681097338 + 157 9 Cd 3px 0.0017125533565518 0.0005703458229104 + 158 9 Cd 4py -0.0004860911711681 -0.0004331449933239 + 159 9 Cd 4pz -0.0010972518534577 -0.0004245505073359 + 160 9 Cd 4px 0.0005816277121956 0.0000606446443439 + 161 9 Cd 4d-2 -0.0569805041667652 -0.0274024547900484 + 162 9 Cd 4d-1 -0.2570520045445641 -0.0345858622674321 + 163 9 Cd 4d0 0.7601196674249143 0.1396053058523414 + 164 9 Cd 4d+1 0.0030802247090445 0.0523539342147627 + 165 9 Cd 4d+2 0.4399245516600970 0.0173876055322342 + 166 9 Cd 5d-2 -0.0000368089989433 0.0002912204504831 + 167 9 Cd 5d-1 -0.0008695549116102 0.0007318295474154 + 168 9 Cd 5d0 -0.0006265386147727 0.0005444313189919 + 169 9 Cd 5d+1 -0.0017497144365079 0.0006671733653905 + 170 9 Cd 5d+2 0.0046480515889126 -0.0001046679200042 + 171 9 Cd 5f-3 0.0004733882951299 -0.0000564519044875 + 172 9 Cd 5f-2 0.0000153120713737 -0.0000867129953396 + 173 9 Cd 5f-1 -0.0000706718841993 -0.0003169215274593 + 174 9 Cd 5f0 0.0018500312923578 0.0002144776730170 + 175 9 Cd 5f+1 0.0009439038274571 -0.0001668451825607 + 176 9 Cd 5f+2 -0.0004174072209760 -0.0001164745687263 + 177 9 Cd 5f+3 -0.0003448387498977 -0.0000705238774081 + + 178 10 Se 2s -0.0077771475466357 0.0121969101473741 + 179 10 Se 3s 0.0000170964595424 -0.0001698024103009 + 180 10 Se 3py -0.0003354314491002 0.0054606058893657 + 181 10 Se 3pz -0.0060726345265831 -0.0027467764382089 + 182 10 Se 3px 0.0019059577325481 -0.0029195363870300 + 183 10 Se 4py -0.0000765305984942 0.0006811187487193 + 184 10 Se 4pz -0.0013070743332507 -0.0002761511807041 + 185 10 Se 4px 0.0000694351279072 0.0000290963042481 + 186 10 Se 4d-2 0.0003325667742250 0.0000426388272743 + 187 10 Se 4d-1 -0.0006174565006275 -0.0012412402471233 + 188 10 Se 4d0 0.0031509572494871 0.0006921901508019 + 189 10 Se 4d+1 -0.0007057310222516 -0.0010694218812193 + 190 10 Se 4d+2 0.0015089607747020 -0.0007180692224178 + + 191 11 Se 2s 0.0006199877210174 0.0745760445161693 + 192 11 Se 3s -0.0002437735712979 -0.0010121648270827 + 193 11 Se 3py -0.0018811908637319 -0.0107229629218915 + 194 11 Se 3pz -0.0059606486540336 0.0539866495613517 + 195 11 Se 3px -0.0094538918910792 0.0033888673649540 + 196 11 Se 4py -0.0001745965775769 -0.0009662878736508 + 197 11 Se 4pz -0.0005622453166584 0.0031984233348611 + 198 11 Se 4px -0.0005829341563983 -0.0003431574661709 + 199 11 Se 4d-2 -0.0004397436164423 -0.0026209118712150 + 200 11 Se 4d-1 -0.0009456279759224 0.0108373630962036 + 201 11 Se 4d0 0.0009584239030706 -0.0093143878901063 + 202 11 Se 4d+1 0.0023624764431784 -0.0053650354947986 + 203 11 Se 4d+2 0.0007029157661068 0.0006773585701595 + + 204 12 Cd 2s -0.0072726666849368 -0.0058819553552018 + 205 12 Cd 3s 0.0006903363693554 0.0014995090838883 + 206 12 Cd 3py -0.0021665033270686 -0.0027164483510748 + 207 12 Cd 3pz 0.0001162341337034 -0.0045544787297191 + 208 12 Cd 3px -0.0028478125938796 0.0015624469280648 + 209 12 Cd 4py 0.0005255756973761 -0.0020228362194864 + 210 12 Cd 4pz 0.0005226743762792 -0.0002509923740212 + 211 12 Cd 4px 0.0000409557900758 0.0020506555584118 + 212 12 Cd 4d-2 0.1002763611330988 -0.1020446860040846 + 213 12 Cd 4d-1 0.0883655389265448 0.0222555417909009 + 214 12 Cd 4d0 -0.0526646842728005 -0.1783692664714793 + 215 12 Cd 4d+1 0.0325797426674593 0.0710385578133224 + 216 12 Cd 4d+2 -0.0604771154559923 -0.0972839095382640 + 217 12 Cd 5d-2 -0.0012168990154265 0.0003895279148882 + 218 12 Cd 5d-1 -0.0007516255170823 0.0017723150628162 + 219 12 Cd 5d0 -0.0003223091674823 0.0035067506749094 + 220 12 Cd 5d+1 0.0003466422008927 -0.0025518377467724 + 221 12 Cd 5d+2 0.0004514293260086 0.0005012406596640 + 222 12 Cd 5f-3 -0.0004146406726506 -0.0004956335704127 + 223 12 Cd 5f-2 -0.0004172505682309 0.0001261016201901 + 224 12 Cd 5f-1 0.0000278896858001 0.0002591332970977 + 225 12 Cd 5f0 0.0000207777546142 -0.0004352914926005 + 226 12 Cd 5f+1 0.0002379916275815 0.0006457902944224 + 227 12 Cd 5f+2 -0.0000013883284862 -0.0007401385523289 + 228 12 Cd 5f+3 0.0002552715036741 -0.0004933763312564 + + 229 13 Cd 2s -0.0010922005478717 -0.0031227225629653 + 230 13 Cd 3s -0.0005453035470964 0.0001024024436583 + 231 13 Cd 3py -0.0001630161185797 0.0003417712869876 + 232 13 Cd 3pz -0.0024719662514955 0.0005600380008858 + 233 13 Cd 3px 0.0002760978686826 -0.0021297584980010 + 234 13 Cd 4py 0.0003222274466310 -0.0007242156062533 + 235 13 Cd 4pz -0.0007554172144778 -0.0007217398116026 + 236 13 Cd 4px -0.0002698276435656 0.0003164611777963 + 237 13 Cd 4d-2 -0.0015445557974815 -0.0086710304796082 + 238 13 Cd 4d-1 0.0008454667504503 0.0232733136880749 + 239 13 Cd 4d0 -0.0143290670291170 0.0415780956861282 + 240 13 Cd 4d+1 0.0111721471595112 -0.0279648690940395 + 241 13 Cd 4d+2 0.0249010319897310 -0.0147432215702668 + 242 13 Cd 5d-2 0.0000642452609910 0.0002231662249519 + 243 13 Cd 5d-1 0.0010379221893977 -0.0003576960953448 + 244 13 Cd 5d0 0.0002280504343071 -0.0023535030004568 + 245 13 Cd 5d+1 -0.0004698155500570 0.0008401201185651 + 246 13 Cd 5d+2 -0.0013977875781880 0.0002102556726083 + 247 13 Cd 5f-3 0.0002737570015131 -0.0002094665552492 + 248 13 Cd 5f-2 0.0000649530930048 -0.0000885150622486 + 249 13 Cd 5f-1 -0.0000212119755808 0.0005156253099865 + 250 13 Cd 5f0 -0.0000919738035105 -0.0001643411016298 + 251 13 Cd 5f+1 0.0002000680028641 0.0001907328852503 + 252 13 Cd 5f+2 -0.0001494176412833 0.0000861421351321 + 253 13 Cd 5f+3 0.0004063447187544 -0.0001231361276042 + + 254 14 Cd 2s -0.0051565349503656 -0.0005528167674800 + 255 14 Cd 3s -0.0000503201115750 0.0004144852109652 + 256 14 Cd 3py 0.0037046509052241 0.0005960492102153 + 257 14 Cd 3pz -0.0019274718565474 -0.0009588781693507 + 258 14 Cd 3px -0.0003694564624140 0.0002002904754560 + 259 14 Cd 4py 0.0006563064682698 -0.0001172005376856 + 260 14 Cd 4pz 0.0003174727784506 -0.0002844011887436 + 261 14 Cd 4px -0.0000904699339263 0.0000939125421980 + 262 14 Cd 4d-2 -0.0183246546986792 -0.0072496293136927 + 263 14 Cd 4d-1 0.0650602778136929 -0.0019735374977743 + 264 14 Cd 4d0 -0.0084099112825240 0.0166224032835726 + 265 14 Cd 4d+1 0.0044331832275898 0.0090551588153189 + 266 14 Cd 4d+2 0.0043767888338886 0.0077600512191425 + 267 14 Cd 5d-2 0.0002762026067227 -0.0001603302577846 + 268 14 Cd 5d-1 0.0004724713381602 0.0004729748953064 + 269 14 Cd 5d0 0.0009576234049018 0.0003877902251340 + 270 14 Cd 5d+1 -0.0000987774146502 -0.0001550728099274 + 271 14 Cd 5d+2 0.0020894866867087 0.0005470092821553 + 272 14 Cd 5f-3 -0.0007082245531042 -0.0002285503215320 + 273 14 Cd 5f-2 0.0002042546865664 0.0001541889521350 + 274 14 Cd 5f-1 -0.0002643365842593 -0.0001127040605341 + 275 14 Cd 5f0 -0.0000576208390847 -0.0000292053251976 + 276 14 Cd 5f+1 -0.0001860221710887 0.0000556719097947 + 277 14 Cd 5f+2 0.0002429810422975 0.0000603853032572 + 278 14 Cd 5f+3 0.0002692660406724 -0.0000179922930040 + + 279 15 Se 2s -0.0034571108234990 -0.0109877128286815 + 280 15 Se 3s 0.0000185109700072 0.0002225086848673 + 281 15 Se 3py -0.0042781991991253 -0.0013161260691012 + 282 15 Se 3pz -0.0020240012094015 0.0031798339425429 + 283 15 Se 3px -0.0013522485799353 0.0000703057001421 + 284 15 Se 4py -0.0006717291034575 0.0000425414762597 + 285 15 Se 4pz -0.0000714440042852 0.0006880110913914 + 286 15 Se 4px -0.0002697822412014 0.0000795947077768 + 287 15 Se 4d-2 0.0000783225157125 -0.0000633094553190 + 288 15 Se 4d-1 -0.0002669461765823 -0.0003910504368704 + 289 15 Se 4d0 -0.0002849366061068 -0.0001570377335766 + 290 15 Se 4d+1 -0.0001997884817563 0.0001671173227111 + 291 15 Se 4d+2 -0.0004467752395037 0.0002020967736655 + + 292 16 Se 2s -0.0070213692680857 0.0305131679366018 + 293 16 Se 3s 0.0000604662017809 -0.0003784257281697 + 294 16 Se 3py -0.0028336470283696 0.0123718582775912 + 295 16 Se 3pz -0.0020174705481258 0.0069109427067753 + 296 16 Se 3px -0.0032284333997470 0.0128348570001728 + 297 16 Se 4py -0.0007949402750908 0.0018390918071677 + 298 16 Se 4pz -0.0004847203466649 0.0011691254321378 + 299 16 Se 4px -0.0003894012201548 0.0016851374791871 + 300 16 Se 4d-2 0.0007935388074571 -0.0027905788686643 + 301 16 Se 4d-1 -0.0001252760833032 0.0008710780745176 + 302 16 Se 4d0 -0.0006578231230320 0.0024824185226195 + 303 16 Se 4d+1 0.0000443946008925 -0.0000337778266884 + 304 16 Se 4d+2 0.0002807898575753 -0.0010703296261417 + + 305 17 Cd 2s -0.0032413771457608 0.0152560373144532 + 306 17 Cd 3s 0.0005464185233022 -0.0019840598869082 + 307 17 Cd 3py 0.0008729884876631 -0.0051829624521059 + 308 17 Cd 3pz 0.0006159395451626 0.0008247636748660 + 309 17 Cd 3px 0.0017716767791885 -0.0077913716392846 + 310 17 Cd 4py -0.0004485690979071 0.0012551215846025 + 311 17 Cd 4pz 0.0002392745018380 0.0005146168510639 + 312 17 Cd 4px 0.0001359825158735 -0.0003021879777595 + 313 17 Cd 4d-2 0.0334271399182046 -0.1284650863711582 + 314 17 Cd 4d-1 -0.0012990631963516 -0.0149503749634028 + 315 17 Cd 4d0 -0.0250025557223627 0.0913064505868338 + 316 17 Cd 4d+1 -0.0024845125166243 -0.0004491551864448 + 317 17 Cd 4d+2 -0.0095733719459603 0.0335231194689963 + 318 17 Cd 5d-2 -0.0006633849862486 0.0014832492079305 + 319 17 Cd 5d-1 0.0001531615859144 -0.0011228962782397 + 320 17 Cd 5d0 0.0008919937775202 -0.0005609667373609 + 321 17 Cd 5d+1 0.0008652661521688 -0.0027363050805360 + 322 17 Cd 5d+2 -0.0002229517865821 0.0014883609160757 + 323 17 Cd 5f-3 -0.0000164959486045 -0.0002986127686634 + 324 17 Cd 5f-2 -0.0002070706575535 0.0004755473139919 + 325 17 Cd 5f-1 0.0001227776192195 -0.0003215632926754 + 326 17 Cd 5f0 0.0003470365997016 -0.0004818014327634 + 327 17 Cd 5f+1 0.0002420890185471 -0.0005538826153394 + 328 17 Cd 5f+2 0.0000956964855207 0.0001515848570140 + 329 17 Cd 5f+3 0.0001525244197290 -0.0003791843610485 + + 330 18 Cd 2s -0.0002029572860203 -0.0017172844313024 + 331 18 Cd 3s -0.0005931442945498 -0.0005730892362113 + 332 18 Cd 3py -0.0010262427223740 0.0022986751492721 + 333 18 Cd 3pz -0.0009701245777536 -0.0068222934853354 + 334 18 Cd 3px 0.0003447429148989 0.0016908630737046 + 335 18 Cd 4py -0.0007054828078376 0.0007300490623873 + 336 18 Cd 4pz 0.0004772682556924 -0.0051079513775031 + 337 18 Cd 4px 0.0003423629579558 -0.0003526461477351 + 338 18 Cd 4d-2 0.0322111284249380 -0.2517975821451540 + 339 18 Cd 4d-1 0.0624792730455550 -0.6290648366324533 + 340 18 Cd 4d0 0.0390940461899168 -0.4349935011830346 + 341 18 Cd 4d+1 -0.1733707557326855 0.4020111484648073 + 342 18 Cd 4d+2 0.0027461323904164 0.0014880570000762 + 343 18 Cd 5d-2 0.0005174254992616 0.0006239869667440 + 344 18 Cd 5d-1 -0.0005965676730550 -0.0012564393186724 + 345 18 Cd 5d0 -0.0000663781111570 -0.0031298296664352 + 346 18 Cd 5d+1 -0.0001072081218223 0.0025039488666881 + 347 18 Cd 5d+2 0.0010106898483403 0.0003837328806093 + 348 18 Cd 5f-3 0.0003698988460226 0.0002406270555288 + 349 18 Cd 5f-2 0.0002132873878879 0.0005182596405594 + 350 18 Cd 5f-1 -0.0001914538291107 0.0008750776713048 + 351 18 Cd 5f0 0.0001316652583168 -0.0015677579064610 + 352 18 Cd 5f+1 0.0000403676460044 -0.0006369770679376 + 353 18 Cd 5f+2 0.0002922143299073 -0.0000157241275167 + 354 18 Cd 5f+3 -0.0001768635936864 -0.0003396119867477 + + 355 19 Se 2s 0.0109067880906455 -0.0667357795399438 + 356 19 Se 3s -0.0000789520145464 0.0010575772887180 + 357 19 Se 3py 0.0119497703853272 -0.0368993747437316 + 358 19 Se 3pz -0.0097220760081245 0.0524500570368026 + 359 19 Se 3px 0.0021232349331644 -0.0040557673306133 + 360 19 Se 4py 0.0011238582710288 -0.0025631275910877 + 361 19 Se 4pz -0.0005433357371103 0.0033733534483396 + 362 19 Se 4px -0.0000725747015689 0.0003609440159672 + 363 19 Se 4d-2 0.0003386861014642 -0.0006712154047773 + 364 19 Se 4d-1 0.0017585355734544 -0.0047877314764465 + 365 19 Se 4d0 -0.0022511293055223 0.0125720936695798 + 366 19 Se 4d+1 -0.0002162168731619 0.0022489513619003 + 367 19 Se 4d+2 -0.0001711927460562 0.0033218111068383 + + 368 20 Se 2s -0.0095214542086176 0.0055656218183373 + 369 20 Se 3s 0.0004667684860139 -0.0000453984585205 + 370 20 Se 3py -0.0054714359562336 0.0087914262481646 + 371 20 Se 3pz 0.0131660523348269 0.0005108147998431 + 372 20 Se 3px 0.0033450133600624 -0.0000793284597430 + 373 20 Se 4py 0.0006881347903642 0.0002302041557208 + 374 20 Se 4pz 0.0038839655406877 0.0006145124568676 + 375 20 Se 4px 0.0005570503994901 -0.0005146349230853 + 376 20 Se 4d-2 0.0001053635624262 -0.0011746925032803 + 377 20 Se 4d-1 -0.0010115326480306 0.0000714718651077 + 378 20 Se 4d0 0.0019456911664903 0.0011443173962901 + 379 20 Se 4d+1 -0.0008269668004428 -0.0003458008535575 + 380 20 Se 4d+2 0.0004721807111783 0.0011280798836806 + + 381 21 Se 2s 0.0002223789075264 0.0017846743965236 + 382 21 Se 3s 0.0000180877867021 -0.0001164544529202 + 383 21 Se 3py 0.0033857227591625 0.0011950605616924 + 384 21 Se 3pz 0.0040777662387498 -0.0017458966534942 + 385 21 Se 3px -0.0000324887946928 0.0010458197318026 + 386 21 Se 4py -0.0000541374782401 -0.0001788025294752 + 387 21 Se 4pz 0.0005836813803612 -0.0000665240812122 + 388 21 Se 4px -0.0000109123763028 0.0001461202879676 + 389 21 Se 4d-2 0.0007690336826601 0.0003516135226244 + 390 21 Se 4d-1 -0.0000477082678079 0.0004725810333816 + 391 21 Se 4d0 0.0006825536878072 -0.0002514373729778 + 392 21 Se 4d+1 0.0010518896992274 -0.0002647416246477 + 393 21 Se 4d+2 0.0005892969408774 0.0002377206604652 + + 394 22 Cd 2s 0.0024002229882445 -0.0047852887341415 + 395 22 Cd 3s -0.0000431970830080 -0.0005388060926145 + 396 22 Cd 3py -0.0020958662657297 0.0048186115864317 + 397 22 Cd 3pz 0.0000877507589677 0.0007650562329921 + 398 22 Cd 3px -0.0000187603799414 0.0016078069077087 + 399 22 Cd 4py -0.0000051450730610 0.0005661810680708 + 400 22 Cd 4pz -0.0003723157700698 0.0003846466145484 + 401 22 Cd 4px 0.0001722387261917 0.0000977209336294 + 402 22 Cd 4d-2 0.0342722657677874 -0.0024527423668038 + 403 22 Cd 4d-1 0.0207382216108416 0.0119100626663928 + 404 22 Cd 4d0 -0.0163173480841532 0.0089100785362651 + 405 22 Cd 4d+1 -0.0052726863794328 0.0163342934329483 + 406 22 Cd 4d+2 0.0253973601666921 -0.0452729586094787 + 407 22 Cd 5d-2 -0.0011245493522862 -0.0000422487261022 + 408 22 Cd 5d-1 -0.0003846668991669 -0.0004697522857253 + 409 22 Cd 5d0 0.0001476977168288 -0.0001937826461812 + 410 22 Cd 5d+1 -0.0002638710189692 -0.0003489463001063 + 411 22 Cd 5d+2 -0.0003891798774288 0.0024993403573455 + 412 22 Cd 5f-3 -0.0000385884777385 -0.0007425559076195 + 413 22 Cd 5f-2 -0.0003292635786238 -0.0001715850224132 + 414 22 Cd 5f-1 -0.0000654838791588 -0.0002632507351020 + 415 22 Cd 5f0 0.0000001524588554 0.0002770449566196 + 416 22 Cd 5f+1 -0.0002492266208922 0.0000180840734938 + 417 22 Cd 5f+2 -0.0000441210656773 -0.0002147579973231 + 418 22 Cd 5f+3 -0.0002253687072834 0.0000558453490210 + + 419 23 Se 2s -0.0000670921539437 -0.0052892125997302 + 420 23 Se 3s 0.0000711922721061 0.0000577227906765 + 421 23 Se 3py -0.0010183057147200 0.0043263566169460 + 422 23 Se 3pz 0.0003654665929362 0.0032570828007928 + 423 23 Se 3px -0.0010171150367230 0.0020389996459289 + 424 23 Se 4py -0.0004495526857005 0.0017749983304492 + 425 23 Se 4pz -0.0001219014125123 0.0005508359693149 + 426 23 Se 4px 0.0000252208390978 0.0000644111191325 + 427 23 Se 4d-2 0.0000225223166754 -0.0003129221436266 + 428 23 Se 4d-1 -0.0002119906644072 0.0001653198703567 + 429 23 Se 4d0 0.0001630363980017 0.0009911154956785 + 430 23 Se 4d+1 -0.0000919105705825 -0.0000301994652348 + 431 23 Se 4d+2 -0.0001713088007370 0.0012975118665406 + + 432 24 Se 2s -0.0010102514928010 0.0126751499623877 + 433 24 Se 3s 0.0000919463240644 -0.0002924580147800 + 434 24 Se 3py -0.0014331159905809 -0.0013539213387032 + 435 24 Se 3pz -0.0008934411607386 0.0016705307328227 + 436 24 Se 3px 0.0003890856466002 -0.0043596527182574 + 437 24 Se 4py 0.0001663352700050 0.0001599278890373 + 438 24 Se 4pz -0.0006279874601678 0.0007015961640073 + 439 24 Se 4px -0.0002697886455896 -0.0007165063019767 + 440 24 Se 4d-2 -0.0003445672004064 -0.0003905337488646 + 441 24 Se 4d-1 -0.0002404353600978 0.0000383484220832 + 442 24 Se 4d0 -0.0001104404388413 0.0004770699117713 + 443 24 Se 4d+1 -0.0001926572500754 0.0006204843114288 + 444 24 Se 4d+2 0.0001379407106697 -0.0005899771529429 + + 445 25 Cd 2s 0.0035193461786456 0.0009852119223046 + 446 25 Cd 3s 0.0005025473609574 -0.0005454643619742 + 447 25 Cd 3py 0.0000161955419800 0.0036296086194718 + 448 25 Cd 3pz 0.0029080190383130 0.0032541629649567 + 449 25 Cd 3px 0.0031438655212687 -0.0053115828627290 + 450 25 Cd 4py -0.0001186571202417 0.0010351246308210 + 451 25 Cd 4pz 0.0001600618456311 0.0021877882408769 + 452 25 Cd 4px 0.0007927576987942 -0.0020881486416694 + 453 25 Cd 4d-2 -0.0076908938307271 -0.0273951347159795 + 454 25 Cd 4d-1 -0.0089057986463529 0.0295855719939714 + 455 25 Cd 4d0 0.0022038026430277 -0.1307151763428525 + 456 25 Cd 4d+1 -0.0359014505112596 0.0362002743158596 + 457 25 Cd 4d+2 -0.0014097970688335 -0.0545791076482979 + 458 25 Cd 5d-2 -0.0000102892358214 0.0020948599504222 + 459 25 Cd 5d-1 -0.0001765903613576 0.0004119100444269 + 460 25 Cd 5d0 0.0007376625636652 0.0039798211974321 + 461 25 Cd 5d+1 0.0018551029321020 -0.0000460890982838 + 462 25 Cd 5d+2 0.0007241913099905 -0.0012352004440494 + 463 25 Cd 5f-3 0.0001629570161324 0.0001367529444964 + 464 25 Cd 5f-2 0.0001032187183659 -0.0000904717122549 + 465 25 Cd 5f-1 -0.0002855931912100 0.0002917308883048 + 466 25 Cd 5f0 0.0003434954158976 0.0001812235598391 + 467 25 Cd 5f+1 0.0005138605935341 -0.0000122144627097 + 468 25 Cd 5f+2 0.0000617536458072 0.0008608196686042 + 469 25 Cd 5f+3 0.0002855089377152 -0.0005026440224869 + + 470 26 Cd 2s 0.0013961414898045 -0.0031639721017225 + 471 26 Cd 3s -0.0003587976053401 0.0002047874199668 + 472 26 Cd 3py -0.0003287673875637 0.0017301373995777 + 473 26 Cd 3pz -0.0006967939563690 0.0015775814969044 + 474 26 Cd 3px 0.0002263612285137 -0.0000097422010632 + 475 26 Cd 4py 0.0000347278614811 0.0000573655167148 + 476 26 Cd 4pz -0.0002679119771216 0.0005231057558349 + 477 26 Cd 4px -0.0001465458631621 0.0004219052762722 + 478 26 Cd 4d-2 -0.0041328142751753 0.0194949118014130 + 479 26 Cd 4d-1 0.0016619273447612 0.0014379327804714 + 480 26 Cd 4d0 -0.0232815698981610 0.0224018339669007 + 481 26 Cd 4d+1 0.0143291480967515 -0.0181012240536279 + 482 26 Cd 4d+2 0.0090921207459946 0.0159431555449207 + 483 26 Cd 5d-2 -0.0002677973106098 0.0001650407399828 + 484 26 Cd 5d-1 -0.0000729992137994 -0.0010711978836599 + 485 26 Cd 5d0 -0.0001761433166900 -0.0000310709569797 + 486 26 Cd 5d+1 -0.0003629630477237 0.0009123542996700 + 487 26 Cd 5d+2 -0.0001364692080217 0.0007163948567317 + 488 26 Cd 5f-3 -0.0000967755473802 -0.0000264376995585 + 489 26 Cd 5f-2 -0.0000258485977664 -0.0005159349046776 + 490 26 Cd 5f-1 0.0000623325074672 -0.0001919866050307 + 491 26 Cd 5f0 -0.0001479865479610 -0.0005417187290709 + 492 26 Cd 5f+1 -0.0000375888482551 -0.0002079131654189 + 493 26 Cd 5f+2 0.0000728749619023 -0.0000348646118459 + 494 26 Cd 5f+3 -0.0001170840357915 -0.0000191099257898 + + 31 32 + -0.4780476228095313 -0.4774552884877455 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0044086979230699 0.0023379744073688 + 2 1 Cd 3s -0.0016033284504417 0.0005304048654083 + 3 1 Cd 3py -0.0021388055727184 0.0024054700071486 + 4 1 Cd 3pz -0.0032693720661245 0.0027511298665779 + 5 1 Cd 3px 0.0038783404974707 -0.0005747073805859 + 6 1 Cd 4py -0.0006862949608911 0.0007087094537697 + 7 1 Cd 4pz -0.0009430790419304 0.0012173701971883 + 8 1 Cd 4px 0.0010637751923647 -0.0001766411401251 + 9 1 Cd 4d-2 0.0021101043628118 -0.0043868518946682 + 10 1 Cd 4d-1 -0.0039959624906454 0.0063333830658864 + 11 1 Cd 4d0 0.0058710066284506 -0.0019763688012595 + 12 1 Cd 4d+1 0.0019069276450252 -0.0051010423797247 + 13 1 Cd 4d+2 0.0076846644760047 -0.0015490203906423 + 14 1 Cd 5d-2 0.0003969874300427 -0.0005471162805124 + 15 1 Cd 5d-1 -0.0020654675111300 0.0008650500924862 + 16 1 Cd 5d0 -0.0002591948067334 0.0008823438147437 + 17 1 Cd 5d+1 0.0015519650148885 -0.0014613627843398 + 18 1 Cd 5d+2 -0.0016146090492821 -0.0002007518656673 + 19 1 Cd 5f-3 -0.0002597739900682 -0.0001074870554451 + 20 1 Cd 5f-2 0.0008578051579284 -0.0000281983480931 + 21 1 Cd 5f-1 -0.0002764497978949 -0.0000866501051939 + 22 1 Cd 5f0 0.0000182528839658 -0.0002046544521500 + 23 1 Cd 5f+1 -0.0000660162134995 -0.0005768521135617 + 24 1 Cd 5f+2 -0.0001539268477470 -0.0002278515343339 + 25 1 Cd 5f+3 0.0005252209358955 0.0001081062018580 + + 26 2 Cd 2s -0.0146323092148560 0.0232266330636118 + 27 2 Cd 3s -0.0007946471699771 0.0006171554307277 + 28 2 Cd 3py 0.0046217266286441 -0.0033925594585943 + 29 2 Cd 3pz -0.0034166076807363 0.0057706948218438 + 30 2 Cd 3px 0.0149877073261050 -0.0170214655244832 + 31 2 Cd 4py 0.0017844621184554 -0.0003660445599242 + 32 2 Cd 4pz -0.0013367660794986 0.0018947960345799 + 33 2 Cd 4px 0.0017681545300749 -0.0017503116743620 + 34 2 Cd 4d-2 0.0875068664809386 -0.0492286061837116 + 35 2 Cd 4d-1 0.0625997762897128 -0.0402418567613629 + 36 2 Cd 4d0 -0.0952128263975356 0.1444624185669380 + 37 2 Cd 4d+1 -0.0413809884218036 0.0609753023086595 + 38 2 Cd 4d+2 0.1710620958843204 -0.2639484405589044 + 39 2 Cd 5d-2 -0.0033519752351309 0.0008208093157261 + 40 2 Cd 5d-1 -0.0009158502501948 0.0000608085874010 + 41 2 Cd 5d0 0.0043627527688089 -0.0049183276024872 + 42 2 Cd 5d+1 -0.0001929161968108 -0.0016486258694432 + 43 2 Cd 5d+2 -0.0042361415481438 0.0047121245252432 + 44 2 Cd 5f-3 0.0009431820881274 -0.0000997628795915 + 45 2 Cd 5f-2 0.0000312013566137 0.0005612284670673 + 46 2 Cd 5f-1 0.0001073504616132 -0.0002330978694161 + 47 2 Cd 5f0 -0.0005127118685417 0.0007288491498667 + 48 2 Cd 5f+1 -0.0007713874664187 0.0007727030649714 + 49 2 Cd 5f+2 0.0005436628550025 -0.0003800471282908 + 50 2 Cd 5f+3 -0.0003079386049864 0.0004726153870981 + + 51 3 Cd 2s -0.0242582775773246 -0.0065239380188043 + 52 3 Cd 3s 0.0005714999850868 0.0005942382285762 + 53 3 Cd 3py 0.0055590989743898 0.0070694351436917 + 54 3 Cd 3pz 0.0018437524960753 0.0076463010740771 + 55 3 Cd 3px 0.0109779336863165 0.0022179101402786 + 56 3 Cd 4py 0.0004058872915248 -0.0002892128333709 + 57 3 Cd 4pz -0.0003542049375917 0.0000840039856186 + 58 3 Cd 4px 0.0010834479729403 -0.0008692557781196 + 59 3 Cd 4d-2 0.0548165662412957 0.0597566907660229 + 60 3 Cd 4d-1 0.0385164440547453 0.0438805553545071 + 61 3 Cd 4d0 -0.0040981747341828 -0.0147790291804463 + 62 3 Cd 4d+1 0.0246612873049628 0.0234776352553116 + 63 3 Cd 4d+2 -0.0001108097779906 -0.0172133954737968 + 64 3 Cd 5d-2 -0.0020141039061385 -0.0043991050430440 + 65 3 Cd 5d-1 -0.0049286346913971 -0.0026517896840221 + 66 3 Cd 5d0 0.0004421290546472 0.0011295285197253 + 67 3 Cd 5d+1 -0.0020304986888703 -0.0044148481731051 + 68 3 Cd 5d+2 -0.0040916167583835 0.0018482434574151 + 69 3 Cd 5f-3 -0.0002857310302651 0.0013289030938829 + 70 3 Cd 5f-2 0.0004194281126027 -0.0001923708854888 + 71 3 Cd 5f-1 0.0001088444003200 0.0003181725203309 + 72 3 Cd 5f0 0.0006157761257000 -0.0003223092529602 + 73 3 Cd 5f+1 -0.0005966894381023 0.0000633969558365 + 74 3 Cd 5f+2 -0.0002989021694725 0.0007976139169453 + 75 3 Cd 5f+3 0.0011742472339139 -0.0001879183124689 + + 76 4 Se 2s 0.0029156454913622 -0.0024244476841574 + 77 4 Se 3s -0.0003826334443477 0.0004110027733091 + 78 4 Se 3py -0.0019926104924868 0.0035270822098772 + 79 4 Se 3pz 0.0064596925555304 -0.0091412843754809 + 80 4 Se 3px 0.0060254500129803 -0.0087797627559229 + 81 4 Se 4py -0.0013270914037169 0.0012026312148276 + 82 4 Se 4pz 0.0000331958167956 -0.0004754346317695 + 83 4 Se 4px 0.0013946500943074 -0.0017251576009933 + 84 4 Se 4d-2 -0.0000935884367339 0.0001812866812151 + 85 4 Se 4d-1 -0.0011151561920676 0.0015964705265990 + 86 4 Se 4d0 0.0017257862463981 -0.0021412940993643 + 87 4 Se 4d+1 0.0000345639258073 0.0000001238931505 + 88 4 Se 4d+2 -0.0010138131528000 0.0016964302395292 + + 89 5 Se 2s -0.0040547240356907 0.0003566386025861 + 90 5 Se 3s -0.0002194635440132 -0.0000136715595292 + 91 5 Se 3py -0.0016260222003465 -0.0016998431872991 + 92 5 Se 3pz 0.0010572365400780 -0.0010838494430790 + 93 5 Se 3px -0.0017973943365826 -0.0008144214981245 + 94 5 Se 4py -0.0006453332655787 0.0000024994907371 + 95 5 Se 4pz -0.0001575289028820 -0.0006187963982331 + 96 5 Se 4px -0.0012736518504352 -0.0001406618538597 + 97 5 Se 4d-2 0.0002785574871732 0.0006110293624844 + 98 5 Se 4d-1 0.0000380648688604 -0.0001705422262612 + 99 5 Se 4d0 -0.0002349662141403 -0.0005315763456073 + 100 5 Se 4d+1 0.0000719119459549 0.0001022212788587 + 101 5 Se 4d+2 0.0002555706245891 0.0000417596430193 + + 102 6 Se 2s -0.0165924506601114 -0.0326514530181815 + 103 6 Se 3s -0.0000175702649971 0.0012733890241188 + 104 6 Se 3py -0.0089387216261158 0.0031654803074012 + 105 6 Se 3pz -0.0053486384558558 0.0024475005034277 + 106 6 Se 3px -0.0092038275243247 -0.0074001297072150 + 107 6 Se 4py -0.0009439214928349 0.0006940334321668 + 108 6 Se 4pz -0.0004581356448984 -0.0005805900891152 + 109 6 Se 4px -0.0002530420271206 -0.0007141001018904 + 110 6 Se 4d-2 0.0025144785531412 -0.0020221223520838 + 111 6 Se 4d-1 0.0001976087150391 0.0003141644336390 + 112 6 Se 4d0 -0.0008615565753058 0.0006630202079569 + 113 6 Se 4d+1 0.0002879253220063 0.0001718922019725 + 114 6 Se 4d+2 0.0028318224829717 0.0004119064397954 + + 115 7 Se 2s 0.0196805157134891 -0.0016929594584260 + 116 7 Se 3s -0.0003864643079162 -0.0004383504845153 + 117 7 Se 3py 0.0006802312156074 0.0034796885507594 + 118 7 Se 3pz 0.0016432399776198 0.0035769116894422 + 119 7 Se 3px 0.0083351978462230 -0.0074886317080497 + 120 7 Se 4py -0.0007048944858579 0.0013617380102870 + 121 7 Se 4pz -0.0001718151511364 0.0007875625073257 + 122 7 Se 4px 0.0004079486368187 -0.0005498534946530 + 123 7 Se 4d-2 -0.0010088294265808 0.0011356793405763 + 124 7 Se 4d-1 0.0003307357235409 -0.0012150443928275 + 125 7 Se 4d0 0.0009258656739515 -0.0017355179153984 + 126 7 Se 4d+1 -0.0015678781937307 0.0011788260974642 + 127 7 Se 4d+2 -0.0011090663903079 0.0020072559595907 + + 128 8 Cd 2s 0.0080076029375022 0.0036401832852390 + 129 8 Cd 3s 0.0016177331382550 -0.0005336556529343 + 130 8 Cd 3py -0.0091523891575926 0.0056857238726127 + 131 8 Cd 3pz -0.0039701561502175 0.0032802304293985 + 132 8 Cd 3px -0.0079189055982445 0.0125489827305472 + 133 8 Cd 4py 0.0006906457057527 -0.0010023337904495 + 134 8 Cd 4pz -0.0005266786036363 0.0008585369308658 + 135 8 Cd 4px -0.0007370366823144 0.0010129863758513 + 136 8 Cd 4d-2 -0.0473616189068429 -0.0044778928531037 + 137 8 Cd 4d-1 -0.1315737342755361 0.1188519417092900 + 138 8 Cd 4d0 -0.0401314507651462 0.1219966825906042 + 139 8 Cd 4d+1 -0.0909742527463847 0.0822660693543303 + 140 8 Cd 4d+2 0.3542365310590560 -0.4165110313575583 + 141 8 Cd 5d-2 -0.0000015919611899 0.0010621774151476 + 142 8 Cd 5d-1 0.0012003291259072 -0.0004657894812530 + 143 8 Cd 5d0 0.0000071184892806 -0.0017229686726545 + 144 8 Cd 5d+1 0.0022852743295757 -0.0010937318736854 + 145 8 Cd 5d+2 -0.0058713124904276 0.0069185055488010 + 146 8 Cd 5f-3 0.0004991650490961 -0.0004661668273575 + 147 8 Cd 5f-2 0.0001624657098109 -0.0008994112269565 + 148 8 Cd 5f-1 -0.0007174621389753 0.0005160558210386 + 149 8 Cd 5f0 -0.0004353274895569 0.0001189247988390 + 150 8 Cd 5f+1 -0.0011239677952058 0.0007888671573795 + 151 8 Cd 5f+2 -0.0006889598320580 0.0006624828895484 + 152 8 Cd 5f+3 0.0003328131064516 -0.0006530335419932 + + 153 9 Cd 2s 0.0019431185021034 -0.0020634611182471 + 154 9 Cd 3s 0.0004957469949340 -0.0014597958255374 + 155 9 Cd 3py 0.0055217732363203 -0.0061166481716401 + 156 9 Cd 3pz -0.0040715073189829 0.0054576565777961 + 157 9 Cd 3px 0.0065029592929105 -0.0024159560026433 + 158 9 Cd 4py 0.0013503616192932 -0.0017094445020539 + 159 9 Cd 4pz -0.0017195124892665 0.0023961537790487 + 160 9 Cd 4px 0.0017017949756689 -0.0008568522100260 + 161 9 Cd 4d-2 0.1339392782611087 -0.1183325615698447 + 162 9 Cd 4d-1 0.1721795967047372 -0.1587266381253477 + 163 9 Cd 4d0 0.3007540247340795 -0.1392357039702398 + 164 9 Cd 4d+1 -0.0695054129022819 -0.0360362699023640 + 165 9 Cd 4d+2 0.0306338844379650 0.0253892374889588 + 166 9 Cd 5d-2 0.0003700375148262 0.0003318255611710 + 167 9 Cd 5d-1 -0.0031078814375966 0.0033347559479255 + 168 9 Cd 5d0 0.0022948008312255 -0.0025721510451098 + 169 9 Cd 5d+1 -0.0015982565072101 -0.0013173570743950 + 170 9 Cd 5d+2 -0.0034885413750954 0.0057756142363663 + 171 9 Cd 5f-3 -0.0008559056692474 0.0008117713934251 + 172 9 Cd 5f-2 -0.0000222250884704 -0.0002886390821819 + 173 9 Cd 5f-1 0.0009028998577396 -0.0008831776364310 + 174 9 Cd 5f0 0.0002703691281690 -0.0006150360157785 + 175 9 Cd 5f+1 0.0005921887543888 0.0000819089551091 + 176 9 Cd 5f+2 0.0005897889148378 -0.0014155734342992 + 177 9 Cd 5f+3 0.0011062458126770 -0.0009811597285058 + + 178 10 Se 2s 0.0461883387221759 -0.0328243417700483 + 179 10 Se 3s -0.0008187860489602 0.0006159142833711 + 180 10 Se 3py -0.0090500474307158 0.0114155332462852 + 181 10 Se 3pz 0.0080911853581815 -0.0007517366000588 + 182 10 Se 3px -0.0156915685518694 0.0153252595423672 + 183 10 Se 4py -0.0010125200291677 0.0010905613820935 + 184 10 Se 4pz 0.0022339478889586 -0.0025275980403528 + 185 10 Se 4px 0.0007630456722353 -0.0007383408055883 + 186 10 Se 4d-2 -0.0018373731733932 0.0020106460351304 + 187 10 Se 4d-1 0.0016649013018859 -0.0022855088320654 + 188 10 Se 4d0 -0.0003164344551399 -0.0003730739415600 + 189 10 Se 4d+1 0.0021246596275347 -0.0011761685024902 + 190 10 Se 4d+2 -0.0018243393670682 0.0011741264176404 + + 191 11 Se 2s 0.0026166585310934 0.0012934316782730 + 192 11 Se 3s 0.0006019612061972 0.0003998653089284 + 193 11 Se 3py 0.0239740769859848 0.0183129671647083 + 194 11 Se 3pz 0.0114692383024100 0.0084918700059769 + 195 11 Se 3px 0.0344854421981336 0.0180089937826150 + 196 11 Se 4py 0.0016788040517560 -0.0003997025720834 + 197 11 Se 4pz 0.0008658606578512 -0.0002780705935106 + 198 11 Se 4px 0.0008747148681928 0.0012358974583384 + 199 11 Se 4d-2 0.0026262937292127 0.0011126716931442 + 200 11 Se 4d-1 -0.0039944146816623 -0.0053631084831836 + 201 11 Se 4d0 -0.0026497241636633 -0.0029310323138499 + 202 11 Se 4d+1 -0.0072755513024299 -0.0070132533878866 + 203 11 Se 4d+2 -0.0027235529103776 0.0014343689548679 + + 204 12 Cd 2s 0.0088757626370338 -0.0060347611329704 + 205 12 Cd 3s -0.0002744718798053 0.0012553676425891 + 206 12 Cd 3py 0.0064368879183513 -0.0102378253731934 + 207 12 Cd 3pz 0.0001237002620860 -0.0040717869401075 + 208 12 Cd 3px 0.0038813399269352 -0.0024324698675742 + 209 12 Cd 4py -0.0004878270471634 -0.0011702552279655 + 210 12 Cd 4pz -0.0001246242427197 -0.0013250383632570 + 211 12 Cd 4px 0.0008236931813725 0.0004989059418457 + 212 12 Cd 4d-2 -0.1777097572654913 0.1444175533706031 + 213 12 Cd 4d-1 -0.1091736009275254 0.0382986889832047 + 214 12 Cd 4d0 0.1528222330191677 -0.1995478253425056 + 215 12 Cd 4d+1 -0.0429390863177192 0.0164359688113447 + 216 12 Cd 4d+2 0.2847588710914274 -0.1666994901881212 + 217 12 Cd 5d-2 0.0019105260525925 -0.0045808286116547 + 218 12 Cd 5d-1 0.0010736046567030 0.0009587082279953 + 219 12 Cd 5d0 -0.0023930644950007 0.0025909105063722 + 220 12 Cd 5d+1 -0.0006524688320265 -0.0019253647410493 + 221 12 Cd 5d+2 -0.0014166390408906 0.0022945155593168 + 222 12 Cd 5f-3 0.0000852472724206 -0.0006431698180728 + 223 12 Cd 5f-2 0.0001469023521368 0.0003245824219761 + 224 12 Cd 5f-1 -0.0008173801632073 0.0002017975857762 + 225 12 Cd 5f0 0.0002014007102035 -0.0000183059480565 + 226 12 Cd 5f+1 -0.0010073206438059 0.0005655651410667 + 227 12 Cd 5f+2 0.0002037754635977 -0.0009568362955111 + 228 12 Cd 5f+3 0.0000524963824604 0.0005281538515401 + + 229 13 Cd 2s -0.0009561501350119 0.0026543729539577 + 230 13 Cd 3s 0.0006237058066939 -0.0001559535886409 + 231 13 Cd 3py -0.0015870016716646 -0.0008382667518270 + 232 13 Cd 3pz 0.0009529211371549 -0.0007309238395947 + 233 13 Cd 3px 0.0022537736761122 -0.0035820760858271 + 234 13 Cd 4py -0.0007371069048850 0.0001249117611400 + 235 13 Cd 4pz 0.0003515960018091 -0.0001705339872172 + 236 13 Cd 4px -0.0002766744256345 -0.0000309816825484 + 237 13 Cd 4d-2 0.0041579999689012 -0.0156566433997469 + 238 13 Cd 4d-1 0.0001507710999398 -0.0049896206923582 + 239 13 Cd 4d0 -0.0248899032565984 0.0252056934827416 + 240 13 Cd 4d+1 -0.0349704930032085 0.0489396244571367 + 241 13 Cd 4d+2 0.0152181400119536 -0.0142217788991497 + 242 13 Cd 5d-2 0.0001633026354633 0.0007728048462406 + 243 13 Cd 5d-1 -0.0010676838723745 0.0007046283701940 + 244 13 Cd 5d0 0.0004929917198010 -0.0006855667851695 + 245 13 Cd 5d+1 0.0012341690135542 -0.0013481059316109 + 246 13 Cd 5d+2 -0.0011093675817846 0.0000236470473600 + 247 13 Cd 5f-3 0.0002999822974346 -0.0000758872501429 + 248 13 Cd 5f-2 0.0001938598469507 -0.0000067861036571 + 249 13 Cd 5f-1 -0.0005103286606471 0.0004610045205520 + 250 13 Cd 5f0 0.0001653711529783 -0.0002579914656002 + 251 13 Cd 5f+1 0.0000745632082595 0.0001087718036128 + 252 13 Cd 5f+2 -0.0001197911338456 0.0002925730793297 + 253 13 Cd 5f+3 -0.0002458086450524 0.0003403231790262 + + 254 14 Cd 2s 0.0045912948403199 -0.0066455880849655 + 255 14 Cd 3s -0.0000134682966779 -0.0010970335391915 + 256 14 Cd 3py -0.0034243146514104 0.0061841076512423 + 257 14 Cd 3pz -0.0005792203911116 -0.0011845438876586 + 258 14 Cd 3px -0.0003409578241589 -0.0007615949746158 + 259 14 Cd 4py -0.0010560055294562 0.0021198887642858 + 260 14 Cd 4pz 0.0004350741293567 -0.0006134645691715 + 261 14 Cd 4px 0.0002403657652496 -0.0004977749023884 + 262 14 Cd 4d-2 0.0297526488795591 -0.0271605309681150 + 263 14 Cd 4d-1 -0.0031336099466358 0.0106110954742509 + 264 14 Cd 4d0 -0.0081645890218312 -0.0008731658048742 + 265 14 Cd 4d+1 -0.0118261240739766 0.0107171884640972 + 266 14 Cd 4d+2 0.0053082440729133 -0.0303953431611223 + 267 14 Cd 5d-2 0.0001939959910006 0.0007140803278275 + 268 14 Cd 5d-1 0.0003785354267236 0.0003555041602585 + 269 14 Cd 5d0 -0.0014215337999310 0.0021086946345505 + 270 14 Cd 5d+1 0.0003690451840083 -0.0001467188704883 + 271 14 Cd 5d+2 -0.0023010812401511 0.0037998064671648 + 272 14 Cd 5f-3 0.0008758611723505 -0.0012780492498388 + 273 14 Cd 5f-2 -0.0003729946457509 0.0002620508491902 + 274 14 Cd 5f-1 0.0004902100199872 -0.0006656211831744 + 275 14 Cd 5f0 0.0003701350430801 -0.0003869923747772 + 276 14 Cd 5f+1 0.0001929319389344 -0.0001455064262316 + 277 14 Cd 5f+2 0.0000621480647878 0.0001045521555747 + 278 14 Cd 5f+3 0.0000445598040825 0.0002919441440037 + + 279 15 Se 2s -0.0055140838686765 0.0038972254172142 + 280 15 Se 3s 0.0004835366153125 -0.0004627337340071 + 281 15 Se 3py -0.0042807565825786 0.0027236088891633 + 282 15 Se 3pz -0.0050176760062848 0.0023971162063014 + 283 15 Se 3px -0.0000681219532322 -0.0013294553880344 + 284 15 Se 4py 0.0000897022050976 -0.0001740448350797 + 285 15 Se 4pz -0.0005460279471401 0.0000644868102955 + 286 15 Se 4px 0.0003359820855792 -0.0004070330525501 + 287 15 Se 4d-2 0.0000343911094416 0.0003031745837735 + 288 15 Se 4d-1 0.0004652825974727 -0.0002356370908055 + 289 15 Se 4d0 -0.0007263287404587 0.0004364096358727 + 290 15 Se 4d+1 0.0001042306661712 -0.0001343349398622 + 291 15 Se 4d+2 -0.0008691568332414 0.0006722075358922 + + 292 16 Se 2s 0.0035075006233680 -0.0061559381645236 + 293 16 Se 3s -0.0003066890610652 0.0001504217126929 + 294 16 Se 3py -0.0000677504979948 -0.0024118314824706 + 295 16 Se 3pz 0.0015425332835140 -0.0016414977692940 + 296 16 Se 3px 0.0029271861069552 -0.0035763245537095 + 297 16 Se 4py 0.0001287717236257 -0.0002291893198947 + 298 16 Se 4pz 0.0000325569879952 0.0001321005626882 + 299 16 Se 4px 0.0001520351544830 -0.0000069434672894 + 300 16 Se 4d-2 -0.0000687481428336 0.0003939627011354 + 301 16 Se 4d-1 -0.0000380781055788 -0.0001436717288985 + 302 16 Se 4d0 0.0003061454921004 -0.0006492355433579 + 303 16 Se 4d+1 0.0002105766594666 -0.0003877723863423 + 304 16 Se 4d+2 -0.0003886177618468 0.0001473587906299 + + 305 17 Cd 2s 0.0019547206754253 0.0009357822458006 + 306 17 Cd 3s -0.0003185719152919 0.0003191729502811 + 307 17 Cd 3py -0.0013161870408370 0.0002534095383916 + 308 17 Cd 3pz 0.0004511518094496 0.0007857113218878 + 309 17 Cd 3px -0.0005534420122074 0.0004070560700405 + 310 17 Cd 4py 0.0001436813659940 -0.0000002257254523 + 311 17 Cd 4pz 0.0000939607296179 -0.0003076747664511 + 312 17 Cd 4px -0.0001075676401183 -0.0000091630149461 + 313 17 Cd 4d-2 -0.0110683940318206 0.0283487636736036 + 314 17 Cd 4d-1 0.0095536940579165 0.0129848475793640 + 315 17 Cd 4d0 0.0104640372062597 -0.0151098312041301 + 316 17 Cd 4d+1 0.0102646019462677 0.0007862440602025 + 317 17 Cd 4d+2 0.0253074440923863 0.0071892195537688 + 318 17 Cd 5d-2 0.0003758287465052 0.0000032282684292 + 319 17 Cd 5d-1 -0.0006161487932760 -0.0007055739306770 + 320 17 Cd 5d0 -0.0003208493903957 -0.0002010659320498 + 321 17 Cd 5d+1 -0.0002070414612909 0.0000634675503287 + 322 17 Cd 5d+2 0.0003960771209960 0.0003469682096444 + 323 17 Cd 5f-3 -0.0002522526970863 -0.0000778299188514 + 324 17 Cd 5f-2 0.0001931296626755 -0.0001631935863930 + 325 17 Cd 5f-1 -0.0001051649585337 -0.0002655902802029 + 326 17 Cd 5f0 -0.0005819175507407 -0.0000085258908727 + 327 17 Cd 5f+1 -0.0001895649713533 0.0000397248350788 + 328 17 Cd 5f+2 -0.0000718564712604 0.0000083411665710 + 329 17 Cd 5f+3 -0.0001234080680460 0.0000937283173907 + + 330 18 Cd 2s -0.0023927507811595 -0.0006852113092661 + 331 18 Cd 3s 0.0008407202900419 -0.0006229663809948 + 332 18 Cd 3py 0.0003178649712404 0.0005203710531600 + 333 18 Cd 3pz 0.0017860028789621 -0.0016185486300260 + 334 18 Cd 3px 0.0012060160923471 0.0004129483888923 + 335 18 Cd 4py 0.0012319508156738 0.0004066701924356 + 336 18 Cd 4pz 0.0001753469856801 -0.0008901197406563 + 337 18 Cd 4px 0.0009614703513632 0.0008635246349251 + 338 18 Cd 4d-2 0.0232787422423944 0.1144036502977966 + 339 18 Cd 4d-1 0.3266495674086953 0.4256681345331474 + 340 18 Cd 4d0 -0.0834450243557692 -0.0463364346110338 + 341 18 Cd 4d+1 0.5722078171451646 0.5082645920954534 + 342 18 Cd 4d+2 0.0766413200714922 0.1646830382923476 + 343 18 Cd 5d-2 0.0005288880881546 0.0003021772486992 + 344 18 Cd 5d-1 0.0020422608306766 -0.0000671293858174 + 345 18 Cd 5d0 -0.0011718507238953 -0.0029330610229404 + 346 18 Cd 5d+1 0.0020881272167144 0.0020168590115730 + 347 18 Cd 5d+2 -0.0003691593304384 0.0003537524756464 + 348 18 Cd 5f-3 0.0001813731369408 0.0000366895161190 + 349 18 Cd 5f-2 0.0004098304608932 0.0005728197500724 + 350 18 Cd 5f-1 0.0002559787007303 -0.0004717591373530 + 351 18 Cd 5f0 -0.0006907757424365 -0.0004665126504134 + 352 18 Cd 5f+1 0.0005218742590465 0.0004967526339380 + 353 18 Cd 5f+2 -0.0002444661493879 0.0006214283542278 + 354 18 Cd 5f+3 -0.0002062547770117 0.0000122086636070 + + 355 19 Se 2s 0.0097130155074881 0.0212865419352543 + 356 19 Se 3s -0.0000889903405580 -0.0004734963314625 + 357 19 Se 3py -0.0092794339283803 0.0012526903417079 + 358 19 Se 3pz 0.0001619936597748 -0.0105251501976611 + 359 19 Se 3px -0.0200201818910839 -0.0213756306157362 + 360 19 Se 4py -0.0008663834506395 0.0002743574348753 + 361 19 Se 4pz -0.0002902649355553 -0.0009232947475189 + 362 19 Se 4px -0.0003014103483284 -0.0004256318746366 + 363 19 Se 4d-2 0.0012518869288001 0.0019584007301569 + 364 19 Se 4d-1 -0.0019748671331653 -0.0006935906530274 + 365 19 Se 4d0 0.0006325623170874 -0.0021235301364328 + 366 19 Se 4d+1 -0.0042352459100150 -0.0054773030164017 + 367 19 Se 4d+2 -0.0030839807702630 -0.0038856385955042 + + 368 20 Se 2s 0.0139751584464923 -0.0205713866317857 + 369 20 Se 3s -0.0005422758011030 0.0004264145765131 + 370 20 Se 3py 0.0030337706642739 -0.0040792758054208 + 371 20 Se 3pz -0.0129400750921974 0.0165956887948531 + 372 20 Se 3px 0.0127925641476830 -0.0162930019513962 + 373 20 Se 4py -0.0008267918986914 -0.0005138212357938 + 374 20 Se 4pz 0.0013190823379292 -0.0011375000251178 + 375 20 Se 4px 0.0021191006780566 -0.0014475046155057 + 376 20 Se 4d-2 0.0005302098694009 -0.0001799156098312 + 377 20 Se 4d-1 0.0013710775539134 -0.0011787280509286 + 378 20 Se 4d0 -0.0019198868262354 0.0019488356680650 + 379 20 Se 4d+1 0.0039224435705314 -0.0046242878081858 + 380 20 Se 4d+2 -0.0021362779828261 0.0016097842486336 + + 381 21 Se 2s -0.0024757746117796 -0.0016347506246531 + 382 21 Se 3s 0.0000422680378022 0.0001128260500075 + 383 21 Se 3py -0.0084798638819640 0.0073634750475712 + 384 21 Se 3pz 0.0114234251841882 -0.0113681952465504 + 385 21 Se 3px -0.0044283040589185 0.0057427765632654 + 386 21 Se 4py -0.0002379929977079 0.0003618788261478 + 387 21 Se 4pz -0.0002485098377675 0.0003290952049360 + 388 21 Se 4px -0.0008045588704872 0.0008405966838176 + 389 21 Se 4d-2 -0.0009173344627419 0.0007782976539590 + 390 21 Se 4d-1 -0.0021829665398677 0.0025709283489327 + 391 21 Se 4d0 -0.0004865098124562 -0.0002056189370308 + 392 21 Se 4d+1 0.0012636596808273 -0.0012391861768060 + 393 21 Se 4d+2 -0.0016518800640944 0.0020684037865037 + + 394 22 Cd 2s -0.0013022558320781 0.0010098960684696 + 395 22 Cd 3s 0.0001048799073589 0.0000876365207166 + 396 22 Cd 3py 0.0001855622730925 -0.0006170914554650 + 397 22 Cd 3pz -0.0001303722765666 -0.0000818860156335 + 398 22 Cd 3px 0.0002548003192256 0.0010927128802887 + 399 22 Cd 4py -0.0003452242657239 0.0000225565672816 + 400 22 Cd 4pz -0.0004675881508143 0.0001968607901105 + 401 22 Cd 4px 0.0009320233558356 -0.0006000642069762 + 402 22 Cd 4d-2 0.0180829474341743 0.0110251714409348 + 403 22 Cd 4d-1 -0.0213310492750328 0.0178226017553687 + 404 22 Cd 4d0 -0.0692361864069518 0.0705101591188787 + 405 22 Cd 4d+1 0.0373833499982691 -0.0332898809277781 + 406 22 Cd 4d+2 0.0232643759159367 -0.0468450999555677 + 407 22 Cd 5d-2 -0.0003064110446064 -0.0007070895633484 + 408 22 Cd 5d-1 0.0006140827649889 -0.0004992983451261 + 409 22 Cd 5d0 -0.0003564904688206 0.0003650148729462 + 410 22 Cd 5d+1 0.0003102350080244 -0.0000299143507686 + 411 22 Cd 5d+2 -0.0012978863749318 0.0009726870512359 + 412 22 Cd 5f-3 0.0003981547834269 -0.0002573417029352 + 413 22 Cd 5f-2 0.0003110775886862 -0.0003771913045812 + 414 22 Cd 5f-1 0.0001467493223881 -0.0000470981024672 + 415 22 Cd 5f0 -0.0001545216130191 0.0001137787807256 + 416 22 Cd 5f+1 0.0002559235230765 -0.0001715769295467 + 417 22 Cd 5f+2 -0.0000505014224803 0.0000859072480061 + 418 22 Cd 5f+3 -0.0000951984136306 -0.0000464857017432 + + 419 23 Se 2s 0.0057369672479019 -0.0049117034414883 + 420 23 Se 3s -0.0000581665180737 0.0000770700909742 + 421 23 Se 3py -0.0040231152417637 0.0040789919755801 + 422 23 Se 3pz -0.0025073507189456 0.0023091937147524 + 423 23 Se 3px -0.0024517121318482 0.0020915698250491 + 424 23 Se 4py -0.0001599922835539 0.0001764425129747 + 425 23 Se 4pz -0.0001935431135391 0.0003200895622926 + 426 23 Se 4px -0.0005498926147397 0.0003810936738565 + 427 23 Se 4d-2 -0.0004033603235156 0.0001669049688147 + 428 23 Se 4d-1 -0.0006584830613837 0.0010191559995606 + 429 23 Se 4d0 -0.0003847948223107 0.0005050575947643 + 430 23 Se 4d+1 -0.0007378669941492 0.0007028957762517 + 431 23 Se 4d+2 -0.0002208727782839 -0.0000152522315322 + + 432 24 Se 2s -0.0132864439080650 0.0111122948426448 + 433 24 Se 3s 0.0002195581624947 -0.0001421055848228 + 434 24 Se 3py 0.0022591269956054 -0.0017030356590373 + 435 24 Se 3pz 0.0058626016211735 -0.0025161374894653 + 436 24 Se 3px 0.0041642861490767 -0.0043452408177984 + 437 24 Se 4py -0.0001060054389420 0.0000494587090834 + 438 24 Se 4pz 0.0010624211920046 -0.0005381949756450 + 439 24 Se 4px 0.0007807215778947 -0.0009228666627917 + 440 24 Se 4d-2 0.0005845788993698 -0.0005885679810663 + 441 24 Se 4d-1 0.0005188248284069 -0.0004649786184157 + 442 24 Se 4d0 -0.0001679057477978 0.0001572675379361 + 443 24 Se 4d+1 0.0011056539960008 -0.0003270391277929 + 444 24 Se 4d+2 0.0006055875620390 -0.0004511882193775 + + 445 25 Cd 2s -0.0056056916881785 0.0021789046779411 + 446 25 Cd 3s 0.0001922641061323 -0.0004074754525576 + 447 25 Cd 3py -0.0010128349434281 0.0010348156669738 + 448 25 Cd 3pz -0.0015008487168982 0.0040293142148588 + 449 25 Cd 3px -0.0007522604947790 -0.0002723036371691 + 450 25 Cd 4py -0.0003925158379612 0.0001631291872073 + 451 25 Cd 4pz -0.0003664426522566 0.0002570780353817 + 452 25 Cd 4px 0.0002451944696523 -0.0005833667443907 + 453 25 Cd 4d-2 -0.0204938636900613 0.0118032493802023 + 454 25 Cd 4d-1 0.0055969166338687 0.0598788719446157 + 455 25 Cd 4d0 0.0316366428779410 -0.0102286991465996 + 456 25 Cd 4d+1 0.0237850877988655 -0.0440246084287734 + 457 25 Cd 4d+2 -0.0323293674022376 -0.0138419150797822 + 458 25 Cd 5d-2 0.0005971515562721 -0.0004376985027389 + 459 25 Cd 5d-1 -0.0003683463204554 -0.0000872545677414 + 460 25 Cd 5d0 -0.0017832399494702 0.0019926528219640 + 461 25 Cd 5d+1 -0.0002664854495313 0.0013265250342525 + 462 25 Cd 5d+2 0.0007978076041670 -0.0000920250015432 + 463 25 Cd 5f-3 -0.0000469425954570 -0.0004781546073099 + 464 25 Cd 5f-2 -0.0000040736847813 -0.0000755128350833 + 465 25 Cd 5f-1 -0.0003154476165626 -0.0002930189982455 + 466 25 Cd 5f0 -0.0007455433096523 0.0006234849894489 + 467 25 Cd 5f+1 -0.0007879237075169 0.0004731537185833 + 468 25 Cd 5f+2 0.0000857423317577 0.0004582302569431 + 469 25 Cd 5f+3 -0.0001905804470696 0.0002427554034759 + + 470 26 Cd 2s -0.0016897047107311 0.0019959119006002 + 471 26 Cd 3s 0.0001328152312694 -0.0000050403330810 + 472 26 Cd 3py -0.0009512743924524 0.0023442557851520 + 473 26 Cd 3pz -0.0015767638589882 0.0010213337282177 + 474 26 Cd 3px -0.0021971362163364 0.0025789394776904 + 475 26 Cd 4py -0.0000575682619106 0.0004535268230030 + 476 26 Cd 4pz -0.0002645221969106 -0.0001145690322613 + 477 26 Cd 4px -0.0006648210252270 0.0008660277180738 + 478 26 Cd 4d-2 0.0040329654672862 0.0134207284110812 + 479 26 Cd 4d-1 0.0041997495965035 -0.0012296036719877 + 480 26 Cd 4d0 -0.0002026686299026 0.0035109603656312 + 481 26 Cd 4d+1 -0.0386667372414441 0.0633214027805068 + 482 26 Cd 4d+2 -0.0108902339678547 0.0156604775150844 + 483 26 Cd 5d-2 0.0002835892619549 0.0006086891816703 + 484 26 Cd 5d-1 0.0007184639097889 -0.0008048009764868 + 485 26 Cd 5d0 0.0014388799199364 -0.0013831892970661 + 486 26 Cd 5d+1 -0.0012705731692697 0.0007650399772077 + 487 26 Cd 5d+2 -0.0013016758600822 0.0016798485425190 + 488 26 Cd 5f-3 0.0003039292979524 -0.0001341020537687 + 489 26 Cd 5f-2 0.0003241543613910 -0.0002630421242645 + 490 26 Cd 5f-1 0.0001203235426833 -0.0002564164583496 + 491 26 Cd 5f0 0.0006034722586029 -0.0006435921241431 + 492 26 Cd 5f+1 0.0007884947475635 -0.0008999509504482 + 493 26 Cd 5f+2 -0.0004001139011788 0.0001040260086552 + 494 26 Cd 5f+3 -0.0001803605646900 0.0002824371903784 + + 33 34 + -0.4756330898412447 -0.4753647196886969 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0037017794057117 0.0039938800061219 + 2 1 Cd 3s 0.0010155821183781 0.0000761115247263 + 3 1 Cd 3py -0.0023600452108141 0.0030712501987648 + 4 1 Cd 3pz 0.0022534310962075 0.0001382511981038 + 5 1 Cd 3px 0.0016468244266608 -0.0007965199674603 + 6 1 Cd 4py 0.0009019077833410 -0.0003529122127391 + 7 1 Cd 4pz 0.0007115695259296 0.0008526827273131 + 8 1 Cd 4px -0.0000848493576548 0.0000404258389156 + 9 1 Cd 4d-2 -0.0168869704368019 0.0036187896805922 + 10 1 Cd 4d-1 0.0067218875019278 0.0046891512810572 + 11 1 Cd 4d0 -0.0166404788376049 0.0152413576131875 + 12 1 Cd 4d+1 -0.0054034285316589 -0.0109396674283852 + 13 1 Cd 4d+2 -0.0341798372895533 0.0406940314804918 + 14 1 Cd 5d-2 0.0007496073064991 -0.0001802592185602 + 15 1 Cd 5d-1 -0.0001907867083775 0.0011911958679912 + 16 1 Cd 5d0 0.0006755292355284 0.0016446479230897 + 17 1 Cd 5d+1 -0.0013985510186671 0.0011336465058652 + 18 1 Cd 5d+2 -0.0011339642334838 0.0004324565031949 + 19 1 Cd 5f-3 -0.0002838596606785 0.0000416846747877 + 20 1 Cd 5f-2 -0.0003724521057553 0.0006589242305840 + 21 1 Cd 5f-1 -0.0009193170408334 0.0012933047546844 + 22 1 Cd 5f0 0.0003757493617242 -0.0002582242063159 + 23 1 Cd 5f+1 -0.0003340048864045 -0.0007205297519883 + 24 1 Cd 5f+2 0.0002356169566532 -0.0012054992104211 + 25 1 Cd 5f+3 0.0005896372433866 -0.0002320818378985 + + 26 2 Cd 2s 0.0228272663102983 0.0038897611739813 + 27 2 Cd 3s -0.0006898815853640 0.0002799890857575 + 28 2 Cd 3py 0.0000909668060807 -0.0022681835203959 + 29 2 Cd 3pz 0.0054201944515736 0.0020208591368130 + 30 2 Cd 3px -0.0130958596683167 -0.0069763585870520 + 31 2 Cd 4py -0.0000192582307116 0.0011615948992068 + 32 2 Cd 4pz 0.0026276011144664 -0.0004124733545893 + 33 2 Cd 4px -0.0004658218130629 0.0008088529565123 + 34 2 Cd 4d-2 -0.0320056495229553 0.0086927017391881 + 35 2 Cd 4d-1 0.0551931927094563 -0.0485422115681115 + 36 2 Cd 4d0 0.1710282835181056 0.1641569148610041 + 37 2 Cd 4d+1 0.1738423342710056 -0.0864640513697563 + 38 2 Cd 4d+2 -0.3388667370664116 -0.1216642486106911 + 39 2 Cd 5d-2 0.0006236299830764 0.0000321635923825 + 40 2 Cd 5d-1 -0.0027458173305865 -0.0000273312035566 + 41 2 Cd 5d0 -0.0022412948009199 -0.0011349303641167 + 42 2 Cd 5d+1 -0.0028024099685005 0.0007814698829179 + 43 2 Cd 5d+2 0.0021510245007700 -0.0004911853900365 + 44 2 Cd 5f-3 0.0010353445973717 0.0008309789657564 + 45 2 Cd 5f-2 0.0009566228103423 -0.0002974125260061 + 46 2 Cd 5f-1 -0.0001071751460046 0.0000650889194952 + 47 2 Cd 5f0 -0.0002831150613270 0.0005425081369344 + 48 2 Cd 5f+1 -0.0010608903124796 0.0000440454200796 + 49 2 Cd 5f+2 -0.0006576653161146 -0.0004770313276256 + 50 2 Cd 5f+3 0.0014570295507106 0.0011678739907800 + + 51 3 Cd 2s -0.0040346520692637 -0.0055071911134416 + 52 3 Cd 3s 0.0003532050621964 -0.0009552141216410 + 53 3 Cd 3py -0.0004914621079486 -0.0012133961257329 + 54 3 Cd 3pz -0.0031410490437749 -0.0011862706395164 + 55 3 Cd 3px 0.0049940002293394 0.0036821942936563 + 56 3 Cd 4py -0.0001944764352603 -0.0006880951966293 + 57 3 Cd 4pz -0.0001369795641719 -0.0000047053197807 + 58 3 Cd 4px 0.0001724095788356 0.0014015022693947 + 59 3 Cd 4d-2 0.0141405056995176 0.0155664061779167 + 60 3 Cd 4d-1 -0.0157509389451306 -0.0041935344733076 + 61 3 Cd 4d0 -0.0285498358093995 0.0144210505553257 + 62 3 Cd 4d+1 -0.0190897625190710 -0.0177245640905087 + 63 3 Cd 4d+2 0.0043427894535882 0.0228390254410061 + 64 3 Cd 5d-2 0.0000241047911243 0.0012224889733081 + 65 3 Cd 5d-1 0.0017590656223563 0.0002444054007669 + 66 3 Cd 5d0 0.0019688450784136 0.0006589821726448 + 67 3 Cd 5d+1 0.0010869226722707 0.0003590147501874 + 68 3 Cd 5d+2 -0.0008629284212254 -0.0012931344941218 + 69 3 Cd 5f-3 -0.0000887552703234 -0.0005173115296903 + 70 3 Cd 5f-2 -0.0001942284524915 0.0000627445594701 + 71 3 Cd 5f-1 0.0002222171301513 0.0003156999890714 + 72 3 Cd 5f0 0.0001293857176435 0.0003309860435030 + 73 3 Cd 5f+1 -0.0001416000282508 -0.0005803019115528 + 74 3 Cd 5f+2 -0.0000648378783577 -0.0000495261513423 + 75 3 Cd 5f+3 -0.0001683649396765 0.0003255587305815 + + 76 4 Se 2s -0.0031623744681319 0.0081845445658413 + 77 4 Se 3s 0.0003896097093123 -0.0000083943250739 + 78 4 Se 3py 0.0065308785850607 -0.0079098988909738 + 79 4 Se 3pz -0.0345519220803645 0.0292378665952665 + 80 4 Se 3px -0.0083512742954662 -0.0059369438827263 + 81 4 Se 4py 0.0006725056374332 0.0003785261653441 + 82 4 Se 4pz -0.0043063265824161 0.0034029874796683 + 83 4 Se 4px -0.0001739299206385 -0.0030543921006799 + 84 4 Se 4d-2 0.0000439529036168 0.0019790582058290 + 85 4 Se 4d-1 0.0033540885194383 -0.0005682997244299 + 86 4 Se 4d0 -0.0013009882827753 -0.0034718488379497 + 87 4 Se 4d+1 0.0037296800241573 -0.0059043856733721 + 88 4 Se 4d+2 0.0019803671525120 0.0006848849537555 + + 89 5 Se 2s -0.0134431448695815 0.0086437123503460 + 90 5 Se 3s 0.0000899795154136 -0.0001554827968763 + 91 5 Se 3py 0.0045303858323999 -0.0031924890524311 + 92 5 Se 3pz -0.0002311845922179 0.0024214185039653 + 93 5 Se 3px 0.0015976103212228 -0.0017907591997070 + 94 5 Se 4py 0.0005008996654685 -0.0001090356504522 + 95 5 Se 4pz -0.0002104212681999 -0.0000200539777456 + 96 5 Se 4px 0.0008200601399906 -0.0003764690506108 + 97 5 Se 4d-2 -0.0001865821504689 -0.0002622466440534 + 98 5 Se 4d-1 0.0000287309725699 0.0003314936052672 + 99 5 Se 4d0 -0.0000480748455934 0.0005117514746289 + 100 5 Se 4d+1 0.0000628471413719 -0.0004187594721763 + 101 5 Se 4d+2 -0.0008728889603611 0.0008896977462801 + + 102 6 Se 2s -0.0212604040824154 -0.0020016505836114 + 103 6 Se 3s 0.0002725198732380 -0.0000595816358304 + 104 6 Se 3py 0.0030951379251693 -0.0058573367756774 + 105 6 Se 3pz 0.0022072343612250 0.0017491582847640 + 106 6 Se 3px -0.0100727456408160 -0.0041395618915683 + 107 6 Se 4py 0.0007922656233532 0.0000567470491325 + 108 6 Se 4pz 0.0001676150064283 -0.0000974906982014 + 109 6 Se 4px -0.0002070896318573 0.0001836260801610 + 110 6 Se 4d-2 -0.0022013871342827 0.0004753506160891 + 111 6 Se 4d-1 0.0002566340231160 0.0001457026113458 + 112 6 Se 4d0 -0.0006687636762535 0.0001622878989346 + 113 6 Se 4d+1 0.0000922220225397 -0.0002758161311412 + 114 6 Se 4d+2 0.0013677261539123 0.0014044760199113 + + 115 7 Se 2s 0.0710183707887039 0.0198291318084299 + 116 7 Se 3s -0.0028618448301932 -0.0009111990269245 + 117 7 Se 3py 0.0168549793409899 -0.0006221222689541 + 118 7 Se 3pz 0.0261252222751594 0.0078296947996349 + 119 7 Se 3px 0.0107663761204172 0.0081006447436882 + 120 7 Se 4py 0.0018955625254550 0.0004736613848226 + 121 7 Se 4pz 0.0017060601633504 0.0011021595291873 + 122 7 Se 4px 0.0003551212163286 -0.0001431508747006 + 123 7 Se 4d-2 -0.0009637749308040 -0.0010427632377138 + 124 7 Se 4d-1 -0.0051408608961553 -0.0006626168122795 + 125 7 Se 4d0 -0.0045422317950226 -0.0012194925537959 + 126 7 Se 4d+1 -0.0027931234850306 -0.0017340934936897 + 127 7 Se 4d+2 0.0016510635283686 0.0003803445912122 + + 128 8 Cd 2s 0.0379116177385987 0.0226786956020839 + 129 8 Cd 3s 0.0015860480701332 0.0005756822403006 + 130 8 Cd 3py -0.0078914934926875 -0.0059098005379162 + 131 8 Cd 3pz -0.0035357499280982 -0.0023781724803540 + 132 8 Cd 3px 0.0110969197519599 0.0059405891489024 + 133 8 Cd 4py 0.0010241399362072 0.0007998645186319 + 134 8 Cd 4pz -0.0001244782882209 0.0002438554416462 + 135 8 Cd 4px -0.0004366431826936 0.0000227507832220 + 136 8 Cd 4d-2 -0.3927975808641231 -0.1495218625286347 + 137 8 Cd 4d-1 -0.1830837094604244 -0.1744331178414904 + 138 8 Cd 4d0 0.3073843945928451 0.1571715101841858 + 139 8 Cd 4d+1 0.0020246430173576 0.0966671540933966 + 140 8 Cd 4d+2 -0.1824345661076444 -0.0774348223866532 + 141 8 Cd 5d-2 0.0086713308847594 0.0018566709052588 + 142 8 Cd 5d-1 0.0062506528569161 0.0025050607649268 + 143 8 Cd 5d0 -0.0080434751941846 -0.0042120191737886 + 144 8 Cd 5d+1 0.0006365153727920 -0.0007844554500614 + 145 8 Cd 5d+2 0.0033776373847700 0.0033554667613948 + 146 8 Cd 5f-3 -0.0003875601341801 -0.0001718956846989 + 147 8 Cd 5f-2 -0.0006993041023303 0.0000208092157491 + 148 8 Cd 5f-1 -0.0001773458702737 -0.0006226115296666 + 149 8 Cd 5f0 0.0001575248224438 0.0003565669380958 + 150 8 Cd 5f+1 -0.0002101189820789 -0.0002377575868654 + 151 8 Cd 5f+2 0.0002252958382287 -0.0001043774893510 + 152 8 Cd 5f+3 -0.0014367918223424 -0.0004329454674591 + + 153 9 Cd 2s -0.0086281523206127 -0.0041758009565903 + 154 9 Cd 3s -0.0026932167025238 -0.0004499997469001 + 155 9 Cd 3py -0.0080819760254781 -0.0033232277832549 + 156 9 Cd 3pz 0.0056608452093796 0.0026491164957131 + 157 9 Cd 3px 0.0023464525678879 0.0007105873330910 + 158 9 Cd 4py -0.0027261224389508 -0.0007993707025873 + 159 9 Cd 4pz 0.0017053181901392 0.0003864277266703 + 160 9 Cd 4px 0.0012086974418923 0.0006750260670080 + 161 9 Cd 4d-2 0.0116838046816836 0.0515153159244764 + 162 9 Cd 4d-1 0.0248569254766579 0.1623729470742285 + 163 9 Cd 4d0 0.0112920637993586 0.0928448191330736 + 164 9 Cd 4d+1 -0.0385218800898381 0.0291643794344006 + 165 9 Cd 4d+2 -0.0140877388504624 0.0748664569519149 + 166 9 Cd 5d-2 0.0015066046574857 0.0007875001466708 + 167 9 Cd 5d-1 0.0058862311083308 0.0030555336713971 + 168 9 Cd 5d0 -0.0002277123369732 -0.0002760107597950 + 169 9 Cd 5d+1 -0.0018523500456756 -0.0007934195998107 + 170 9 Cd 5d+2 0.0025605196174755 0.0011155359102753 + 171 9 Cd 5f-3 0.0004904604856448 -0.0001933342818942 + 172 9 Cd 5f-2 -0.0009628079534659 -0.0005437299267963 + 173 9 Cd 5f-1 -0.0013052367493522 -0.0006754096800209 + 174 9 Cd 5f0 -0.0012325378820351 -0.0002472168480294 + 175 9 Cd 5f+1 0.0003171598295260 0.0003531340956607 + 176 9 Cd 5f+2 -0.0012216528051368 -0.0005749614963969 + 177 9 Cd 5f+3 0.0000672659017664 -0.0000113081547962 + + 178 10 Se 2s -0.0190797887534279 -0.0228363386427510 + 179 10 Se 3s 0.0007489786331266 0.0005212226669662 + 180 10 Se 3py 0.0089611893371089 0.0064781373706280 + 181 10 Se 3pz 0.0032231116376058 -0.0010643805666698 + 182 10 Se 3px 0.0097157037572051 0.0083365376230498 + 183 10 Se 4py 0.0019273514775952 0.0008332409043614 + 184 10 Se 4pz 0.0013898528011766 0.0008853468867486 + 185 10 Se 4px 0.0011157000816227 0.0013971422249276 + 186 10 Se 4d-2 0.0022822620921106 0.0009316326675480 + 187 10 Se 4d-1 -0.0008065909977006 -0.0008307683142409 + 188 10 Se 4d0 -0.0019761975843608 -0.0010290381719585 + 189 10 Se 4d+1 -0.0023317756558671 -0.0018209236182234 + 190 10 Se 4d+2 -0.0023338886155746 -0.0009408889982688 + + 191 11 Se 2s 0.0353406348278707 0.0013071443353997 + 192 11 Se 3s -0.0002952465578710 -0.0000760113704615 + 193 11 Se 3py -0.0021116235695145 0.0051084754124758 + 194 11 Se 3pz 0.0069236448968749 0.0017010263556129 + 195 11 Se 3px 0.0147987181983616 0.0014425957579932 + 196 11 Se 4py 0.0005519469346351 0.0010711949420140 + 197 11 Se 4pz 0.0016084061100258 0.0004575249145332 + 198 11 Se 4px 0.0011946291762007 0.0002096661031673 + 199 11 Se 4d-2 0.0030251597420280 0.0008166159545149 + 200 11 Se 4d-1 0.0013975450009194 -0.0000804362405074 + 201 11 Se 4d0 -0.0002297174685265 -0.0000239579474795 + 202 11 Se 4d+1 0.0008261611849809 0.0016211379086988 + 203 11 Se 4d+2 -0.0028958537007823 -0.0018874526678132 + + 204 12 Cd 2s 0.0097409254758606 0.0097683485218198 + 205 12 Cd 3s -0.0007935728873361 -0.0009916229186768 + 206 12 Cd 3py 0.0097235362998808 0.0088948107694645 + 207 12 Cd 3pz 0.0027878349679989 0.0028507712181432 + 208 12 Cd 3px -0.0031929388633917 -0.0023136052765383 + 209 12 Cd 4py -0.0002850738988794 0.0004177625230433 + 210 12 Cd 4pz -0.0010890551025054 0.0000396764544308 + 211 12 Cd 4px -0.0010198702514473 -0.0010522524074107 + 212 12 Cd 4d-2 -0.0175023398810823 -0.0647887891100363 + 213 12 Cd 4d-1 -0.2103187032754542 -0.0609210240628280 + 214 12 Cd 4d0 0.0953791135356391 0.0257274840606248 + 215 12 Cd 4d+1 -0.0131500930125994 -0.0277159737598651 + 216 12 Cd 4d+2 0.3519618550236218 0.2041828889556008 + 217 12 Cd 5d-2 0.0007376492997327 0.0000003033970795 + 218 12 Cd 5d-1 -0.0000747024226072 -0.0008869170868040 + 219 12 Cd 5d0 0.0009600184749517 0.0002574806457443 + 220 12 Cd 5d+1 0.0007102735156953 0.0001838312237530 + 221 12 Cd 5d+2 -0.0024972732637870 -0.0031949883602935 + 222 12 Cd 5f-3 0.0008670911051568 0.0004043452066040 + 223 12 Cd 5f-2 0.0004723498002312 -0.0002204055987572 + 224 12 Cd 5f-1 -0.0000448735897216 0.0008368578236272 + 225 12 Cd 5f0 0.0009905391240990 0.0001189292317346 + 226 12 Cd 5f+1 0.0003447602248711 0.0001606896459754 + 227 12 Cd 5f+2 0.0012354991763018 0.0010749033001359 + 228 12 Cd 5f+3 0.0006329555295330 0.0000548237887605 + + 229 13 Cd 2s -0.0211854667287610 0.0307307222030107 + 230 13 Cd 3s 0.0011510048651225 -0.0020378259764873 + 231 13 Cd 3py -0.0004451605832404 -0.0010309064880405 + 232 13 Cd 3pz -0.0021673308942776 -0.0026540531861551 + 233 13 Cd 3px 0.0091573378657337 -0.0198793294527732 + 234 13 Cd 4py -0.0010334175100495 0.0008776218000710 + 235 13 Cd 4pz 0.0003313307129984 -0.0014441563834573 + 236 13 Cd 4px 0.0000950041336089 0.0008927656381651 + 237 13 Cd 4d-2 -0.0382734025024544 -0.0405521291706968 + 238 13 Cd 4d-1 -0.0359896058710149 0.0174883455947384 + 239 13 Cd 4d0 -0.1000673632372012 0.2143571647444149 + 240 13 Cd 4d+1 -0.0009105262792693 0.0286334777145335 + 241 13 Cd 4d+2 0.2112802884816481 -0.3578757285255494 + 242 13 Cd 5d-2 0.0005135785469947 0.0004317962797478 + 243 13 Cd 5d-1 0.0008619411967721 0.0019428860765341 + 244 13 Cd 5d0 0.0036402919565451 -0.0075655679523704 + 245 13 Cd 5d+1 0.0016697224575754 -0.0052865286345103 + 246 13 Cd 5d+2 -0.0063435366297397 0.0072121953928547 + 247 13 Cd 5f-3 0.0012223855851769 -0.0019830627795509 + 248 13 Cd 5f-2 0.0003694820313316 -0.0000580037981074 + 249 13 Cd 5f-1 0.0003719904195460 0.0004149117041918 + 250 13 Cd 5f0 0.0000737607112441 -0.0011189322916000 + 251 13 Cd 5f+1 0.0005614177889617 -0.0008760429162508 + 252 13 Cd 5f+2 -0.0001127657406650 0.0009153415724436 + 253 13 Cd 5f+3 -0.0006859077661143 0.0012491282644116 + + 254 14 Cd 2s -0.0013052005385615 -0.0069504184220991 + 255 14 Cd 3s -0.0026962304756065 -0.0014122479220559 + 256 14 Cd 3py 0.0066531108676314 0.0000328076141400 + 257 14 Cd 3pz -0.0088911646550906 0.0048918647059855 + 258 14 Cd 3px -0.0034283085336697 0.0004559617944017 + 259 14 Cd 4py 0.0023971401255559 0.0004681021944329 + 260 14 Cd 4pz -0.0009804107869046 0.0010353867632290 + 261 14 Cd 4px -0.0004113349239354 0.0002258318814796 + 262 14 Cd 4d-2 0.0392800949028676 0.0102001811602126 + 263 14 Cd 4d-1 -0.0061865073153458 -0.0075035254686350 + 264 14 Cd 4d0 0.0038542318303014 -0.0605994149423858 + 265 14 Cd 4d+1 0.0043623208269656 -0.0199983197724840 + 266 14 Cd 4d+2 -0.0719762813673203 -0.0491574287982059 + 267 14 Cd 5d-2 0.0017948796501216 0.0008823781248169 + 268 14 Cd 5d-1 0.0035714772373224 0.0001600482951760 + 269 14 Cd 5d0 0.0030640388687389 -0.0036302219220373 + 270 14 Cd 5d+1 0.0013245148782482 -0.0015073413289059 + 271 14 Cd 5d+2 0.0030035372232070 0.0016276328557294 + 272 14 Cd 5f-3 -0.0008704242590440 -0.0006197009859624 + 273 14 Cd 5f-2 -0.0002778271941194 -0.0002389452729890 + 274 14 Cd 5f-1 -0.0010912678697804 0.0005570036463998 + 275 14 Cd 5f0 -0.0000418779302509 0.0008243360732618 + 276 14 Cd 5f+1 -0.0002792121161685 0.0010600028701101 + 277 14 Cd 5f+2 0.0013459496881286 -0.0009219079408021 + 278 14 Cd 5f+3 0.0007212459727176 -0.0000127103315103 + + 279 15 Se 2s -0.0267182904951991 0.0252140584972522 + 280 15 Se 3s 0.0005806579525981 -0.0009244878068361 + 281 15 Se 3py -0.0167495224491960 0.0138014549913352 + 282 15 Se 3pz -0.0110441291056421 0.0027027743262648 + 283 15 Se 3px 0.0008102056704317 -0.0057372764590073 + 284 15 Se 4py -0.0011817051772485 0.0031323977907958 + 285 15 Se 4pz -0.0029776321600876 0.0032471650460966 + 286 15 Se 4px -0.0001579921583816 -0.0010326637759920 + 287 15 Se 4d-2 -0.0002255126437805 0.0017695841319420 + 288 15 Se 4d-1 0.0023945142026210 -0.0026862409668702 + 289 15 Se 4d0 -0.0008538361654039 -0.0014090440442296 + 290 15 Se 4d+1 0.0001485401614110 -0.0000656594968431 + 291 15 Se 4d+2 -0.0048523507901846 0.0058276467633475 + + 292 16 Se 2s 0.0095905869663899 -0.0191153212327655 + 293 16 Se 3s -0.0005663065935441 0.0005934300235695 + 294 16 Se 3py -0.0036473745996533 0.0081725492407340 + 295 16 Se 3pz -0.0045423496572045 0.0083104312414428 + 296 16 Se 3px 0.0032151288094656 -0.0064452101348038 + 297 16 Se 4py -0.0008528865960422 0.0018086547378960 + 298 16 Se 4pz 0.0005695708141706 -0.0001735058571163 + 299 16 Se 4px 0.0011072956867227 -0.0014715933200598 + 300 16 Se 4d-2 0.0011617394324417 -0.0018570152949911 + 301 16 Se 4d-1 -0.0001096360925874 0.0005090215383048 + 302 16 Se 4d0 -0.0008830769584000 0.0013766397316298 + 303 16 Se 4d+1 0.0018390928974742 -0.0028039462108500 + 304 16 Se 4d+2 -0.0002939908583379 0.0006182643074623 + + 305 17 Cd 2s -0.0017988089375945 0.0081541818088276 + 306 17 Cd 3s -0.0007813378182029 0.0001292119465099 + 307 17 Cd 3py -0.0000857937232432 -0.0004630583854294 + 308 17 Cd 3pz -0.0013186831797591 0.0013385057433392 + 309 17 Cd 3px 0.0021251687605639 -0.0080092618240430 + 310 17 Cd 4py 0.0002401297440290 -0.0021160784586208 + 311 17 Cd 4pz -0.0011336624549068 0.0002223292900691 + 312 17 Cd 4px 0.0007192711764102 -0.0019040458216884 + 313 17 Cd 4d-2 0.0142951633891957 0.0100617492304401 + 314 17 Cd 4d-1 -0.0274660382198514 0.0240257170941859 + 315 17 Cd 4d0 -0.0273312605070715 0.0416887056664622 + 316 17 Cd 4d+1 0.0115112482887837 0.0150944678659804 + 317 17 Cd 4d+2 0.0172480538284906 -0.0745356885035450 + 318 17 Cd 5d-2 0.0010148610915564 -0.0015884846851362 + 319 17 Cd 5d-1 0.0003276258012665 -0.0026211769843688 + 320 17 Cd 5d0 -0.0010834812522777 -0.0006604005891088 + 321 17 Cd 5d+1 0.0006281499883717 -0.0032512879265810 + 322 17 Cd 5d+2 -0.0013137741218525 0.0041276389916598 + 323 17 Cd 5f-3 0.0000473725667716 0.0004462448296201 + 324 17 Cd 5f-2 -0.0001370560549522 0.0001269159229085 + 325 17 Cd 5f-1 0.0003734850865229 -0.0009300565555089 + 326 17 Cd 5f0 -0.0006621180863298 -0.0000408245664929 + 327 17 Cd 5f+1 0.0000117346781225 -0.0004028290223435 + 328 17 Cd 5f+2 -0.0004031352855148 0.0016587763879091 + 329 17 Cd 5f+3 -0.0001881259213738 0.0002268363933113 + + 330 18 Cd 2s -0.0012978543767395 -0.0026935128569831 + 331 18 Cd 3s 0.0004558985228360 -0.0005375764630879 + 332 18 Cd 3py 0.0012470421134062 -0.0019709679273501 + 333 18 Cd 3pz -0.0007675612723748 0.0041233455499510 + 334 18 Cd 3px -0.0008240537237562 0.0014068435397916 + 335 18 Cd 4py 0.0002484536549724 -0.0006258100031297 + 336 18 Cd 4pz 0.0005693134437839 0.0012946093392493 + 337 18 Cd 4px -0.0001327136446692 0.0004946078542943 + 338 18 Cd 4d-2 -0.0944063233234364 -0.0074855624307276 + 339 18 Cd 4d-1 -0.0663734852815629 0.0359132916264144 + 340 18 Cd 4d0 -0.0873164392752931 -0.0151192814151326 + 341 18 Cd 4d+1 -0.0766405332784105 -0.1210408954038570 + 342 18 Cd 4d+2 -0.1568206172198665 -0.0516666492747194 + 343 18 Cd 5d-2 -0.0007032326762126 0.0012327821668124 + 344 18 Cd 5d-1 0.0008304632680004 0.0018073356213912 + 345 18 Cd 5d0 0.0003143719922251 0.0007176276777707 + 346 18 Cd 5d+1 0.0000928608109283 -0.0010736855762424 + 347 18 Cd 5d+2 -0.0007853498432965 0.0005728518502045 + 348 18 Cd 5f-3 0.0001690345238201 0.0003025113771728 + 349 18 Cd 5f-2 0.0001024199518014 -0.0002657869618133 + 350 18 Cd 5f-1 0.0004016287664988 0.0002403393076190 + 351 18 Cd 5f0 0.0001523915070464 0.0004988009226527 + 352 18 Cd 5f+1 0.0000939388714641 0.0001905512341894 + 353 18 Cd 5f+2 -0.0003361311334235 -0.0004798472687433 + 354 18 Cd 5f+3 0.0001497840773019 -0.0005032922417162 + + 355 19 Se 2s -0.0137449707372292 0.0234593085104177 + 356 19 Se 3s 0.0001698352045119 -0.0005936620151112 + 357 19 Se 3py 0.0077742244606398 0.0010518989444345 + 358 19 Se 3pz 0.0058930683372970 -0.0068864059978348 + 359 19 Se 3px 0.0020753490747585 0.0028823018588887 + 360 19 Se 4py 0.0003221796382776 -0.0015361506200262 + 361 19 Se 4pz 0.0003130198790078 -0.0004651467873107 + 362 19 Se 4px -0.0001086085037368 0.0010758300510496 + 363 19 Se 4d-2 0.0000388653237269 0.0010419566438980 + 364 19 Se 4d-1 0.0012424125459276 0.0002933594482912 + 365 19 Se 4d0 0.0015415376906727 -0.0005694365506229 + 366 19 Se 4d+1 0.0010083899052485 -0.0004283494727015 + 367 19 Se 4d+2 0.0004688536973999 0.0016580060617480 + + 368 20 Se 2s -0.0118609625351059 -0.0111581457651638 + 369 20 Se 3s 0.0003080632385647 0.0003164283413318 + 370 20 Se 3py -0.0032364415178598 0.0033985848167560 + 371 20 Se 3pz 0.0106091607479031 -0.0205353882741477 + 372 20 Se 3px 0.0046932780209278 -0.0139231620596810 + 373 20 Se 4py -0.0008801725719383 -0.0042339496169843 + 374 20 Se 4pz -0.0045951555411082 -0.0012147129017606 + 375 20 Se 4px 0.0007368350091446 0.0020335845624368 + 376 20 Se 4d-2 0.0004820922185159 -0.0023208936023564 + 377 20 Se 4d-1 0.0010437746982771 -0.0001372381775855 + 378 20 Se 4d0 -0.0009229709867691 -0.0017639428251768 + 379 20 Se 4d+1 -0.0013940672717769 0.0025571094521919 + 380 20 Se 4d+2 -0.0026067071761412 0.0005254807623336 + + 381 21 Se 2s -0.0291828633063500 -0.0395432080290774 + 382 21 Se 3s 0.0006958442911826 0.0008292635418635 + 383 21 Se 3py -0.0136864176563601 -0.0061998578014226 + 384 21 Se 3pz 0.0198512000860835 0.0112198222023269 + 385 21 Se 3px 0.0109350268268168 0.0235015650284628 + 386 21 Se 4py 0.0000246767230933 0.0011998640371244 + 387 21 Se 4pz 0.0027315594946835 -0.0007172318242975 + 388 21 Se 4px 0.0019565859019205 0.0018051768985314 + 389 21 Se 4d-2 -0.0030730294268495 -0.0022310801030080 + 390 21 Se 4d-1 -0.0000944107900893 -0.0014979499590111 + 391 21 Se 4d0 -0.0031793420848036 -0.0051843185253675 + 392 21 Se 4d+1 0.0045869895380956 -0.0003570049323352 + 393 21 Se 4d+2 0.0019716271502106 0.0020639810087780 + + 394 22 Cd 2s -0.0002913757072262 0.0119935491628263 + 395 22 Cd 3s 0.0013967163370366 -0.0030118946434408 + 396 22 Cd 3py -0.0016158671546432 0.0038670153689993 + 397 22 Cd 3pz 0.0019591753319762 -0.0030942974494855 + 398 22 Cd 3px -0.0011960695238734 0.0090368756019526 + 399 22 Cd 4py 0.0005450059714633 -0.0013315684634279 + 400 22 Cd 4pz -0.0009826567908229 -0.0011536413644881 + 401 22 Cd 4px 0.0039549382265500 -0.0026403015569371 + 402 22 Cd 4d-2 0.1643605625318399 -0.1143227468164749 + 403 22 Cd 4d-1 -0.0881684879644623 0.0691367327951860 + 404 22 Cd 4d0 -0.1320955629379804 0.2075181928706931 + 405 22 Cd 4d+1 0.0866607354709959 0.1736178631459729 + 406 22 Cd 4d+2 0.2584680821828869 -0.5864298662510959 + 407 22 Cd 5d-2 -0.0024675538504893 0.0007188069246097 + 408 22 Cd 5d-1 0.0009790577963150 -0.0024903395406311 + 409 22 Cd 5d0 0.0011016545655319 -0.0042064555358422 + 410 22 Cd 5d+1 -0.0014883912236763 -0.0006426582868308 + 411 22 Cd 5d+2 -0.0017659136319294 0.0060989341686133 + 412 22 Cd 5f-3 0.0014491916274265 -0.0020814318466298 + 413 22 Cd 5f-2 0.0002353601947351 0.0005319588800823 + 414 22 Cd 5f-1 0.0002679124037130 0.0001234310050383 + 415 22 Cd 5f0 0.0005502231504944 -0.0009292078912636 + 416 22 Cd 5f+1 -0.0011039678779874 0.0019774197023720 + 417 22 Cd 5f+2 -0.0003166521419110 -0.0002188076585784 + 418 22 Cd 5f+3 0.0001108351010787 -0.0006135434727309 + + 419 23 Se 2s 0.0228599703729479 -0.0404665708538041 + 420 23 Se 3s -0.0006302574605601 0.0008808383759005 + 421 23 Se 3py -0.0066945477497558 0.0144221836946343 + 422 23 Se 3pz -0.0086632930320769 0.0209254343327303 + 423 23 Se 3px -0.0099105893223491 0.0008712496629616 + 424 23 Se 4py -0.0006463722996633 0.0023347140134622 + 425 23 Se 4pz -0.0011709518453601 0.0026902837338976 + 426 23 Se 4px -0.0005443142933481 -0.0013431871284471 + 427 23 Se 4d-2 -0.0002411743420311 0.0012392848966207 + 428 23 Se 4d-1 -0.0009526663092368 0.0018253101896605 + 429 23 Se 4d0 -0.0017137074347111 0.0049210553011923 + 430 23 Se 4d+1 -0.0031964538551008 0.0022058437951382 + 431 23 Se 4d+2 -0.0009381861560931 0.0001967760174224 + + 432 24 Se 2s -0.0164264454945592 0.0158345423971795 + 433 24 Se 3s 0.0005031693463510 -0.0003460583054990 + 434 24 Se 3py 0.0004690824603374 -0.0063871019650000 + 435 24 Se 3pz 0.0080322646654606 0.0055606978234848 + 436 24 Se 3px 0.0031686758900832 -0.0080918942407742 + 437 24 Se 4py -0.0004658497754170 -0.0013169115215675 + 438 24 Se 4pz 0.0003717053649940 0.0010433396513412 + 439 24 Se 4px 0.0008512986732909 -0.0002557914146753 + 440 24 Se 4d-2 -0.0005906707630057 -0.0021857274411116 + 441 24 Se 4d-1 0.0002226945753315 0.0009493425728754 + 442 24 Se 4d0 -0.0005413694332991 0.0009454109864362 + 443 24 Se 4d+1 0.0017658235702525 0.0005947710929809 + 444 24 Se 4d+2 0.0010200479658487 -0.0000952984916806 + + 445 25 Cd 2s -0.0000935731196293 -0.0060669185024783 + 446 25 Cd 3s -0.0004779523207452 -0.0001467453453971 + 447 25 Cd 3py 0.0051250755643172 -0.0078081184970678 + 448 25 Cd 3pz -0.0043552415683574 -0.0016219427334213 + 449 25 Cd 3px -0.0006425071611384 -0.0064979770120336 + 450 25 Cd 4py 0.0009882620211868 -0.0018428008841841 + 451 25 Cd 4pz -0.0018417005048005 0.0003786361402582 + 452 25 Cd 4px -0.0000810512220943 -0.0008636867696822 + 453 25 Cd 4d-2 -0.1195533738252752 0.1099844421762885 + 454 25 Cd 4d-1 -0.0694148893118633 0.0934343798100136 + 455 25 Cd 4d0 0.0697124380026490 -0.1126869098306907 + 456 25 Cd 4d+1 0.0092036797210478 0.1032143393812564 + 457 25 Cd 4d+2 -0.0073076834801867 -0.0916689821917469 + 458 25 Cd 5d-2 0.0026003276376307 -0.0047377354139667 + 459 25 Cd 5d-1 0.0005460919780974 -0.0013214000803794 + 460 25 Cd 5d0 -0.0036477552839148 0.0027077753211420 + 461 25 Cd 5d+1 -0.0019846806428553 -0.0024558536151458 + 462 25 Cd 5d+2 -0.0013504703969286 0.0010007652228686 + 463 25 Cd 5f-3 0.0004686238744816 -0.0005007400495046 + 464 25 Cd 5f-2 0.0004765772440570 -0.0001324862440000 + 465 25 Cd 5f-1 -0.0004592225477649 0.0003757529906771 + 466 25 Cd 5f0 -0.0005627543556131 0.0000277622030950 + 467 25 Cd 5f+1 -0.0005159847906084 0.0005113726989737 + 468 25 Cd 5f+2 -0.0005596571494165 0.0003787056038970 + 469 25 Cd 5f+3 -0.0005956450430560 0.0001216564660526 + + 470 26 Cd 2s 0.0076104376146048 0.0101461065524493 + 471 26 Cd 3s -0.0008002396448314 -0.0018862650202382 + 472 26 Cd 3py 0.0034537840595002 0.0076171289436802 + 473 26 Cd 3pz -0.0016987885565449 0.0002394541786457 + 474 26 Cd 3px 0.0012086921768839 0.0047199964663803 + 475 26 Cd 4py 0.0013982050366179 0.0011926253423844 + 476 26 Cd 4pz -0.0013357040656461 0.0004047351299567 + 477 26 Cd 4px -0.0007623865174038 0.0001321239392411 + 478 26 Cd 4d-2 0.0317006145590325 0.1121815593623667 + 479 26 Cd 4d-1 0.0227078487464764 -0.0050546815303069 + 480 26 Cd 4d0 -0.0451272462226702 -0.0236064990987121 + 481 26 Cd 4d+1 0.0787816549965166 -0.0427272234307826 + 482 26 Cd 4d+2 0.0102976870759037 0.0133026289336849 + 483 26 Cd 5d-2 0.0032073590447919 0.0051933938196590 + 484 26 Cd 5d-1 0.0003244393525016 0.0012279348167526 + 485 26 Cd 5d0 -0.0009524214406191 -0.0021075962629758 + 486 26 Cd 5d+1 -0.0010649896169520 -0.0012609679343272 + 487 26 Cd 5d+2 -0.0008754736906084 0.0019652172303659 + 488 26 Cd 5f-3 0.0006484208438521 0.0012865036536429 + 489 26 Cd 5f-2 0.0003409250208296 0.0005409279891061 + 490 26 Cd 5f-1 0.0000495825802896 -0.0009939973121931 + 491 26 Cd 5f0 -0.0001179445125621 0.0005790463147415 + 492 26 Cd 5f+1 -0.0004803174647720 -0.0007255422508747 + 493 26 Cd 5f+2 -0.0002930304897870 -0.0011380144304913 + 494 26 Cd 5f+3 0.0000066368602435 0.0004623916849381 + + 35 36 + -0.4742242895015092 -0.4740907761871544 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0027816334268032 -0.0019887814766230 + 2 1 Cd 3s -0.0003564449112986 0.0001375386936659 + 3 1 Cd 3py 0.0015813487684370 -0.0003824493746243 + 4 1 Cd 3pz 0.0002332885851872 0.0001109321924069 + 5 1 Cd 3px -0.0002904653254316 0.0013600565713088 + 6 1 Cd 4py 0.0005394559281376 -0.0002403479440255 + 7 1 Cd 4pz 0.0003076386267470 0.0002574999125100 + 8 1 Cd 4px 0.0001156495774899 0.0004082261467358 + 9 1 Cd 4d-2 0.0041344294648349 -0.0037295327738019 + 10 1 Cd 4d-1 0.0115692588551777 0.0004509438486761 + 11 1 Cd 4d0 0.0036156833047595 -0.0083958337596280 + 12 1 Cd 4d+1 -0.0052698882378440 0.0009993508615282 + 13 1 Cd 4d+2 0.0155546224595549 -0.0100075499669061 + 14 1 Cd 5d-2 -0.0006638775780152 -0.0005890182991621 + 15 1 Cd 5d-1 -0.0001461351028264 -0.0005662708657740 + 16 1 Cd 5d0 0.0001846039339272 0.0002525289861631 + 17 1 Cd 5d+1 -0.0004350717537107 0.0000605396406260 + 18 1 Cd 5d+2 -0.0002578538911283 -0.0003101958652679 + 19 1 Cd 5f-3 0.0001362644975055 0.0001539699583759 + 20 1 Cd 5f-2 0.0002186383116362 0.0002456201787794 + 21 1 Cd 5f-1 0.0000077454060501 0.0000303351260253 + 22 1 Cd 5f0 -0.0000675880972588 -0.0002783583011230 + 23 1 Cd 5f+1 -0.0001967064174570 -0.0000315317399535 + 24 1 Cd 5f+2 -0.0000117086411192 -0.0002826391275682 + 25 1 Cd 5f+3 0.0000844971022697 -0.0003419583161096 + + 26 2 Cd 2s -0.0001317132540143 -0.0003933732690862 + 27 2 Cd 3s -0.0003565839833025 -0.0005394533637938 + 28 2 Cd 3py 0.0000168382763465 -0.0009954530127998 + 29 2 Cd 3pz 0.0010345375127421 0.0006328501124656 + 30 2 Cd 3px -0.0001247463227628 0.0019686604877971 + 31 2 Cd 4py -0.0001477992582832 0.0002608130687553 + 32 2 Cd 4pz 0.0003606785588811 0.0001349895169538 + 33 2 Cd 4px 0.0003638901142303 0.0005017309269079 + 34 2 Cd 4d-2 -0.0128813296231045 -0.0472959003824065 + 35 2 Cd 4d-1 -0.0070609716119333 -0.0076353455363378 + 36 2 Cd 4d0 0.0149268013117082 -0.0094529728515086 + 37 2 Cd 4d+1 0.0053366215512070 -0.0084771080334265 + 38 2 Cd 4d+2 -0.0390380745632106 0.0135394070417181 + 39 2 Cd 5d-2 -0.0003187092038986 -0.0006430369010655 + 40 2 Cd 5d-1 -0.0001573271054828 0.0000681131020513 + 41 2 Cd 5d0 0.0003739343868452 0.0002584578205742 + 42 2 Cd 5d+1 -0.0004981206641830 0.0000292233813405 + 43 2 Cd 5d+2 0.0000566858492847 -0.0006949914583628 + 44 2 Cd 5f-3 0.0002243239322619 0.0000724989156921 + 45 2 Cd 5f-2 0.0002015746574622 -0.0002495078392320 + 46 2 Cd 5f-1 0.0000725605384411 -0.0000111398487309 + 47 2 Cd 5f0 -0.0001846486115469 0.0001719243768255 + 48 2 Cd 5f+1 -0.0001910920871908 -0.0000220475771795 + 49 2 Cd 5f+2 -0.0002924117769374 0.0001921245153089 + 50 2 Cd 5f+3 0.0002034201050400 0.0001032896397676 + + 51 3 Cd 2s -0.0030472514560912 -0.0038691415612900 + 52 3 Cd 3s -0.0017684978221735 0.0004478301257490 + 53 3 Cd 3py -0.0006279640307430 -0.0006511759586055 + 54 3 Cd 3pz 0.0005844059930884 0.0017832274049113 + 55 3 Cd 3px 0.0008961610518987 0.0041115226814096 + 56 3 Cd 4py -0.0013552539671975 -0.0006627744755697 + 57 3 Cd 4pz -0.0000670794422465 -0.0010722589652233 + 58 3 Cd 4px 0.0008677037143133 0.0002332260359431 + 59 3 Cd 4d-2 0.0249886802336742 0.0213148251727618 + 60 3 Cd 4d-1 0.0247945952645131 -0.0016904888776158 + 61 3 Cd 4d0 0.0421881945944709 -0.0021004049939122 + 62 3 Cd 4d+1 0.0001654768045735 0.0341037310179329 + 63 3 Cd 4d+2 -0.0320390364272409 0.0273595977274990 + 64 3 Cd 5d-2 0.0008120794470400 0.0003892089757461 + 65 3 Cd 5d-1 -0.0008784737885513 0.0007464644216926 + 66 3 Cd 5d0 -0.0014224795635321 0.0022951769763226 + 67 3 Cd 5d+1 -0.0003675329494441 -0.0019888270141480 + 68 3 Cd 5d+2 0.0003480632640605 -0.0022236058108068 + 69 3 Cd 5f-3 -0.0001471220389223 -0.0001853409617734 + 70 3 Cd 5f-2 0.0002899204756937 -0.0004453569999700 + 71 3 Cd 5f-1 -0.0002388714090554 -0.0002123938857266 + 72 3 Cd 5f0 0.0000699363967847 0.0000856004236715 + 73 3 Cd 5f+1 0.0001614799402763 -0.0007415336915329 + 74 3 Cd 5f+2 0.0002390144210046 -0.0000588720659097 + 75 3 Cd 5f+3 -0.0000005718709093 0.0003524887085617 + + 76 4 Se 2s -0.0008234855934317 0.0012343723202127 + 77 4 Se 3s -0.0000377452591506 0.0000291061178515 + 78 4 Se 3py 0.0003745499429280 -0.0006906804613870 + 79 4 Se 3pz -0.0009776967431036 -0.0001569360962080 + 80 4 Se 3px -0.0015682002821816 0.0003197827962374 + 81 4 Se 4py 0.0003814017243742 -0.0001728540815173 + 82 4 Se 4pz 0.0001680507804683 0.0001141345721605 + 83 4 Se 4px -0.0003501509625197 -0.0002080553845308 + 84 4 Se 4d-2 0.0000810454873460 -0.0000759473083502 + 85 4 Se 4d-1 0.0000992194152459 0.0001601318073108 + 86 4 Se 4d0 -0.0004610499198621 -0.0003423379099319 + 87 4 Se 4d+1 0.0001034380089614 -0.0000696218560830 + 88 4 Se 4d+2 0.0001788388830460 -0.0000845271980019 + + 89 5 Se 2s -0.0079120835876469 0.0060963190711541 + 90 5 Se 3s 0.0001912643401784 -0.0003431212225026 + 91 5 Se 3py -0.0044940493554717 0.0043843676389592 + 92 5 Se 3pz -0.0018868417958310 -0.0003941049379135 + 93 5 Se 3px -0.0049267322006102 0.0023951097757060 + 94 5 Se 4py 0.0002563353186781 -0.0008347423209225 + 95 5 Se 4pz -0.0000556152452985 -0.0007814216783831 + 96 5 Se 4px -0.0001489841337646 -0.0008012616326894 + 97 5 Se 4d-2 0.0007267757860217 -0.0008111317067791 + 98 5 Se 4d-1 -0.0000730014680442 -0.0000809124911478 + 99 5 Se 4d0 -0.0006777886487025 0.0000050990923732 + 100 5 Se 4d+1 0.0004396494999616 0.0000350984638834 + 101 5 Se 4d+2 0.0015390474797594 -0.0005536885549551 + + 102 6 Se 2s -0.0009975787672417 -0.0114447339887341 + 103 6 Se 3s -0.0000288311540755 0.0003646024873911 + 104 6 Se 3py 0.0016879864347983 0.0019094143350075 + 105 6 Se 3pz -0.0040854764907973 -0.0022208677700994 + 106 6 Se 3px -0.0021382759961619 -0.0004141255904133 + 107 6 Se 4py 0.0001890985588060 -0.0006866442319771 + 108 6 Se 4pz -0.0000272827167704 -0.0005100733210206 + 109 6 Se 4px -0.0001319268093912 0.0002811126588229 + 110 6 Se 4d-2 -0.0003637572457771 -0.0002587002777501 + 111 6 Se 4d-1 0.0000642683698264 0.0001990369286907 + 112 6 Se 4d0 -0.0007672234977391 0.0001778776368460 + 113 6 Se 4d+1 0.0010018314632787 0.0003704713231462 + 114 6 Se 4d+2 0.0003526214422103 -0.0003781696342463 + + 115 7 Se 2s 0.0031396777503738 -0.0086494705374876 + 116 7 Se 3s -0.0001320578558501 0.0003029930959959 + 117 7 Se 3py -0.0036840782275022 -0.0025206424249986 + 118 7 Se 3pz 0.0027741576250489 -0.0044676627734934 + 119 7 Se 3px -0.0004223897722203 -0.0022287351185827 + 120 7 Se 4py -0.0005259183731172 -0.0004031403227125 + 121 7 Se 4pz 0.0004797879728076 0.0000099058556617 + 122 7 Se 4px -0.0003071241488463 -0.0000968169571989 + 123 7 Se 4d-2 0.0004862686668760 0.0004477729670455 + 124 7 Se 4d-1 0.0002319820843784 0.0008973351540244 + 125 7 Se 4d0 -0.0005975873761291 0.0009849266193130 + 126 7 Se 4d+1 -0.0002432991295652 0.0004486387236845 + 127 7 Se 4d+2 0.0000921287530015 0.0003610706503996 + + 128 8 Cd 2s 0.0059731825600532 0.0049996241707765 + 129 8 Cd 3s 0.0003208199272836 -0.0005101011524860 + 130 8 Cd 3py -0.0034308223694905 -0.0030786274678764 + 131 8 Cd 3pz 0.0000031918769106 -0.0007369802009592 + 132 8 Cd 3px 0.0018935006718795 0.0022302684135474 + 133 8 Cd 4py -0.0004896274379515 -0.0012043256092212 + 134 8 Cd 4pz 0.0003128535899723 0.0005309606928954 + 135 8 Cd 4px 0.0007635338873432 0.0016772365210056 + 136 8 Cd 4d-2 0.0222784588827237 0.1566821558374455 + 137 8 Cd 4d-1 -0.0358006946701215 0.0033915338577993 + 138 8 Cd 4d0 0.1794247532899850 0.0220544225250690 + 139 8 Cd 4d+1 0.0159061329734470 -0.0251219431999409 + 140 8 Cd 4d+2 0.0603466223778496 -0.0157405137111289 + 141 8 Cd 5d-2 -0.0005858584664285 -0.0024388412358288 + 142 8 Cd 5d-1 0.0004479170246781 0.0005493020486612 + 143 8 Cd 5d0 -0.0023283634032337 0.0003469290038271 + 144 8 Cd 5d+1 -0.0004095468109797 -0.0005600326338392 + 145 8 Cd 5d+2 -0.0006296722353479 -0.0000484732530525 + 146 8 Cd 5f-3 -0.0006721805919373 -0.0003934977760462 + 147 8 Cd 5f-2 -0.0002979731055166 -0.0002266164524814 + 148 8 Cd 5f-1 -0.0001757545194763 -0.0001869748502909 + 149 8 Cd 5f0 -0.0000298044818099 -0.0000327394391040 + 150 8 Cd 5f+1 -0.0005026245243685 -0.0000513114539716 + 151 8 Cd 5f+2 -0.0006295927962174 0.0002758653450208 + 152 8 Cd 5f+3 -0.0007939846327956 -0.0004772613867973 + + 153 9 Cd 2s -0.0035999540890644 0.0030612037588191 + 154 9 Cd 3s -0.0005389085026746 -0.0009780064989682 + 155 9 Cd 3py -0.0014975981385958 0.0009554431769213 + 156 9 Cd 3pz 0.0002440309720450 0.0002213777602710 + 157 9 Cd 3px 0.0031019780472450 0.0000387401461118 + 158 9 Cd 4py -0.0003651653095689 0.0001870989611250 + 159 9 Cd 4pz 0.0001269413577809 0.0006461317422452 + 160 9 Cd 4px 0.0006127603776155 -0.0000026488925727 + 161 9 Cd 4d-2 0.0055242605112978 -0.0257719722445463 + 162 9 Cd 4d-1 -0.0127072198341601 -0.0808050416034338 + 163 9 Cd 4d0 0.0701558581879182 0.0166366619194737 + 164 9 Cd 4d+1 0.0482278119247053 0.0158896087298326 + 165 9 Cd 4d+2 -0.0150759907808605 0.0431255482614944 + 166 9 Cd 5d-2 0.0006798730489062 -0.0001658827460190 + 167 9 Cd 5d-1 0.0008935839595804 -0.0011243310661804 + 168 9 Cd 5d0 0.0009079889360883 -0.0005900337132853 + 169 9 Cd 5d+1 -0.0007960112798172 -0.0005535760380710 + 170 9 Cd 5d+2 -0.0009165547104163 0.0004616004989142 + 171 9 Cd 5f-3 -0.0001078641399120 0.0000277217099699 + 172 9 Cd 5f-2 -0.0003498890841026 0.0000306906810369 + 173 9 Cd 5f-1 -0.0000726073081929 0.0001595556631795 + 174 9 Cd 5f0 -0.0002604881442346 0.0001626940817934 + 175 9 Cd 5f+1 0.0003355978916464 0.0001990827745203 + 176 9 Cd 5f+2 0.0000415127393714 0.0001990313832325 + 177 9 Cd 5f+3 0.0002355320951773 -0.0000519317942395 + + 178 10 Se 2s 0.0225307368527929 -0.0036515247751166 + 179 10 Se 3s -0.0005063875227744 0.0000413035968653 + 180 10 Se 3py 0.0035217559118454 0.0026562948473914 + 181 10 Se 3pz 0.0064476155692327 0.0005232348239988 + 182 10 Se 3px -0.0009236160377869 -0.0017240983118458 + 183 10 Se 4py 0.0002467643942333 0.0001242150006733 + 184 10 Se 4pz 0.0008577488155820 -0.0002622789747054 + 185 10 Se 4px 0.0004441874685168 -0.0006365404600005 + 186 10 Se 4d-2 0.0000648328720277 -0.0000833372352704 + 187 10 Se 4d-1 -0.0000921208124258 -0.0005846635130110 + 188 10 Se 4d0 -0.0020497384982402 -0.0003931892967454 + 189 10 Se 4d+1 -0.0009586398132435 0.0006864408499989 + 190 10 Se 4d+2 -0.0017442809468034 0.0000806009424874 + + 191 11 Se 2s 0.0204809406536681 -0.0047608483891955 + 192 11 Se 3s -0.0003770487517300 0.0001689422550541 + 193 11 Se 3py -0.0103737704506384 0.0014316399359397 + 194 11 Se 3pz 0.0204045304575666 -0.0025791112076083 + 195 11 Se 3px -0.0030320472653874 0.0097880744335862 + 196 11 Se 4py -0.0007555178220561 -0.0006555636528706 + 197 11 Se 4pz 0.0011753944959275 -0.0008963958348580 + 198 11 Se 4px 0.0004684470547192 -0.0001359578532180 + 199 11 Se 4d-2 0.0008244755708977 0.0010248218978729 + 200 11 Se 4d-1 0.0063223244482705 -0.0005384167426452 + 201 11 Se 4d0 -0.0010276508663069 -0.0002287681639616 + 202 11 Se 4d+1 -0.0012584593805292 -0.0025834523874465 + 203 11 Se 4d+2 0.0009938322619151 -0.0023079404631082 + + 204 12 Cd 2s 0.0098543344336574 0.0030013163630702 + 205 12 Cd 3s 0.0003560492135737 0.0006006211274296 + 206 12 Cd 3py 0.0008493533770417 -0.0029742936078380 + 207 12 Cd 3pz -0.0021664565805829 -0.0013424655980643 + 208 12 Cd 3px 0.0058507189385208 0.0010617964392089 + 209 12 Cd 4py -0.0012182398842921 -0.0004596977217650 + 210 12 Cd 4pz -0.0002532435939426 -0.0002638846371170 + 211 12 Cd 4px 0.0017327495254722 0.0003462287265765 + 212 12 Cd 4d-2 -0.1546052406495186 0.0128765752324204 + 213 12 Cd 4d-1 -0.2414315330331588 -0.0236157145706954 + 214 12 Cd 4d0 -0.0283782104164449 0.0066233983195969 + 215 12 Cd 4d+1 0.1364820537581363 -0.0891394430294216 + 216 12 Cd 4d+2 -0.0538343623353531 0.0089980936323356 + 217 12 Cd 5d-2 0.0014422993695011 -0.0010029254542081 + 218 12 Cd 5d-1 0.0029259102292253 0.0008447774837380 + 219 12 Cd 5d0 0.0004748611627688 0.0000690523222385 + 220 12 Cd 5d+1 -0.0037977597273850 0.0005871332647538 + 221 12 Cd 5d+2 0.0001783941032013 0.0010900575368881 + 222 12 Cd 5f-3 0.0000643708803815 -0.0001512860257395 + 223 12 Cd 5f-2 0.0001975220851091 -0.0001304292685333 + 224 12 Cd 5f-1 0.0000376404169260 -0.0005397428976839 + 225 12 Cd 5f0 0.0000060799648065 -0.0002470803931174 + 226 12 Cd 5f+1 0.0004340679905860 -0.0003734847412490 + 227 12 Cd 5f+2 -0.0010405761528391 0.0004367463241879 + 228 12 Cd 5f+3 -0.0003906629802711 0.0001964264381782 + + 229 13 Cd 2s -0.0012619314500000 -0.0013817142342205 + 230 13 Cd 3s -0.0003747582257047 -0.0003566573965949 + 231 13 Cd 3py 0.0016946620904629 0.0009914132221068 + 232 13 Cd 3pz -0.0000110661860773 0.0015777430121550 + 233 13 Cd 3px 0.0002713243473598 0.0000004366090110 + 234 13 Cd 4py 0.0013821620707304 0.0009331941296089 + 235 13 Cd 4pz 0.0008084758169286 0.0004577421570295 + 236 13 Cd 4px -0.0005540583296262 0.0006019648383403 + 237 13 Cd 4d-2 0.0057623741391314 -0.0192329081435144 + 238 13 Cd 4d-1 -0.0140447462089797 0.0281060255200619 + 239 13 Cd 4d0 -0.0254256405709997 0.0146763278137729 + 240 13 Cd 4d+1 0.0259042280315822 0.0172741712698135 + 241 13 Cd 4d+2 -0.0186241276808310 -0.0500587961651431 + 242 13 Cd 5d-2 -0.0002001111114987 -0.0009487303525373 + 243 13 Cd 5d-1 0.0001321598960884 -0.0007299185455034 + 244 13 Cd 5d0 0.0010877555426758 0.0002530893228976 + 245 13 Cd 5d+1 -0.0011853741778931 -0.0008167433498232 + 246 13 Cd 5d+2 0.0009140482697886 0.0004260914641643 + 247 13 Cd 5f-3 -0.0000619071787790 -0.0000207884834522 + 248 13 Cd 5f-2 0.0000540515807839 -0.0001717097177514 + 249 13 Cd 5f-1 -0.0001150277644276 -0.0000777406724461 + 250 13 Cd 5f0 -0.0000509977179228 -0.0001623337181397 + 251 13 Cd 5f+1 -0.0000855950663628 -0.0006919330332521 + 252 13 Cd 5f+2 0.0001003172436336 -0.0002200724929287 + 253 13 Cd 5f+3 0.0002943677162859 0.0002379960430566 + + 254 14 Cd 2s -0.0017818723214644 -0.0049736429961431 + 255 14 Cd 3s -0.0004717200222783 0.0005856816518158 + 256 14 Cd 3py -0.0008184367986880 0.0002725603690316 + 257 14 Cd 3pz 0.0028142252885718 0.0032386448166717 + 258 14 Cd 3px -0.0002001161344317 -0.0000334373357474 + 259 14 Cd 4py 0.0001876156680466 -0.0001411088753815 + 260 14 Cd 4pz 0.0002761657310121 0.0000129560459032 + 261 14 Cd 4px 0.0002143269678110 -0.0000448200634304 + 262 14 Cd 4d-2 0.0277270465777754 0.0050794259888393 + 263 14 Cd 4d-1 -0.0022211620337289 0.0081378403503244 + 264 14 Cd 4d0 -0.0413016359299679 -0.0351918332419856 + 265 14 Cd 4d+1 -0.0088200207689626 -0.0093176603330960 + 266 14 Cd 4d+2 -0.0096355768577327 0.0248925539408874 + 267 14 Cd 5d-2 0.0003804439749052 0.0002787772581795 + 268 14 Cd 5d-1 -0.0003613181409808 -0.0005499249779297 + 269 14 Cd 5d0 -0.0014397940946897 -0.0008692485221202 + 270 14 Cd 5d+1 0.0001658139578744 -0.0000391521459212 + 271 14 Cd 5d+2 -0.0001043328633808 0.0004485785300255 + 272 14 Cd 5f-3 -0.0000124307711572 -0.0002352075764417 + 273 14 Cd 5f-2 -0.0002772291838499 -0.0000776053446704 + 274 14 Cd 5f-1 0.0002694323168581 0.0000762046254772 + 275 14 Cd 5f0 0.0003118009159782 0.0001871359887638 + 276 14 Cd 5f+1 0.0000857258860245 -0.0000204569341992 + 277 14 Cd 5f+2 -0.0002059907434210 -0.0002282358331832 + 278 14 Cd 5f+3 0.0002464279291707 0.0001356172965000 + + 279 15 Se 2s 0.0288421202244927 0.0275065282135862 + 280 15 Se 3s -0.0006767137465783 -0.0006646863464478 + 281 15 Se 3py 0.0071323467206633 0.0085840189996524 + 282 15 Se 3pz -0.0033134187566760 0.0034886416173576 + 283 15 Se 3px 0.0045289977701424 0.0084391518187045 + 284 15 Se 4py 0.0003162586729472 0.0002541178276943 + 285 15 Se 4pz 0.0000736455027093 0.0007452202173080 + 286 15 Se 4px 0.0003618280622687 0.0003714817570330 + 287 15 Se 4d-2 -0.0010321351323635 -0.0019901982453741 + 288 15 Se 4d-1 0.0001674192616131 -0.0011056358398047 + 289 15 Se 4d0 0.0005904354669000 0.0005965499834161 + 290 15 Se 4d+1 -0.0003690601228188 -0.0010830273788136 + 291 15 Se 4d+2 0.0008257365018984 0.0015896736929831 + + 292 16 Se 2s -0.0148480411789179 -0.0011123969259856 + 293 16 Se 3s -0.0000301368149300 -0.0001216064105874 + 294 16 Se 3py -0.0086564749171264 0.0026946001166505 + 295 16 Se 3pz -0.0048767964716580 0.0010766335913608 + 296 16 Se 3px -0.0073719981213333 -0.0004343482899571 + 297 16 Se 4py -0.0011251671361457 0.0003018045346984 + 298 16 Se 4pz -0.0005245062334384 0.0001593415800743 + 299 16 Se 4px -0.0006751850070246 -0.0000969619215044 + 300 16 Se 4d-2 0.0015004820606330 -0.0007296995329153 + 301 16 Se 4d-1 -0.0005882011710404 0.0003791621277265 + 302 16 Se 4d0 -0.0014761928707236 0.0007516802436863 + 303 16 Se 4d+1 -0.0000185642612666 -0.0001043336533832 + 304 16 Se 4d+2 0.0002933033761512 0.0003309816184188 + + 305 17 Cd 2s -0.0135228651030078 -0.0035131583190450 + 306 17 Cd 3s 0.0000669837893260 -0.0003701109873345 + 307 17 Cd 3py 0.0049946628804542 0.0020372859703488 + 308 17 Cd 3pz -0.0037253083583070 -0.0028664733764116 + 309 17 Cd 3px 0.0097470186932875 0.0039391614744252 + 310 17 Cd 4py 0.0009561821744970 0.0007190449167665 + 311 17 Cd 4pz -0.0010210740122875 -0.0000534333726325 + 312 17 Cd 4px 0.0017248920718875 0.0014878282348044 + 313 17 Cd 4d-2 0.0533114991296034 -0.0159675263901142 + 314 17 Cd 4d-1 -0.0048472557793148 -0.0354142026573595 + 315 17 Cd 4d0 -0.0630054118010550 0.0220759724778255 + 316 17 Cd 4d+1 -0.0128613132402945 -0.0299850406667541 + 317 17 Cd 4d+2 0.0109177386601912 -0.0212168221135827 + 318 17 Cd 5d-2 -0.0003625860063822 -0.0001938627603289 + 319 17 Cd 5d-1 0.0024238693526966 0.0012848169547453 + 320 17 Cd 5d0 -0.0001243057245309 -0.0003791830414838 + 321 17 Cd 5d+1 0.0043415018637609 0.0027485441965817 + 322 17 Cd 5d+2 -0.0018791718855045 -0.0003161659468075 + 323 17 Cd 5f-3 0.0001639407078648 0.0002309885540592 + 324 17 Cd 5f-2 -0.0002363773518681 -0.0002251641257554 + 325 17 Cd 5f-1 0.0004246234056451 0.0000806376670687 + 326 17 Cd 5f0 0.0004992628662352 0.0002767412626995 + 327 17 Cd 5f+1 0.0006963963756150 0.0006710801835453 + 328 17 Cd 5f+2 -0.0005627557079664 -0.0001591153117212 + 329 17 Cd 5f+3 0.0001163410388547 -0.0004505997098377 + + 330 18 Cd 2s 0.0113635506675306 -0.0038375331650195 + 331 18 Cd 3s -0.0021583985990065 0.0007350869666170 + 332 18 Cd 3py 0.0043128391639642 0.0028177361219298 + 333 18 Cd 3pz -0.0021518314948543 -0.0044000721638811 + 334 18 Cd 3px -0.0030066525663870 -0.0031773642893831 + 335 18 Cd 4py 0.0003021994770005 -0.0003121550756863 + 336 18 Cd 4pz -0.0005233827610155 -0.0015868319362772 + 337 18 Cd 4px -0.0000694284994452 0.0000731126023987 + 338 18 Cd 4d-2 0.7643568442617430 0.2175007732205423 + 339 18 Cd 4d-1 -0.2738546098348545 0.0102383781499865 + 340 18 Cd 4d0 -0.0832420022002347 0.0038391970263994 + 341 18 Cd 4d+1 -0.0033842869260811 0.1768934213116081 + 342 18 Cd 4d+2 0.2219414541582092 -0.8670192848594552 + 343 18 Cd 5d-2 -0.0009520855156769 -0.0010691794827811 + 344 18 Cd 5d-1 0.0001283107314191 -0.0023045012147285 + 345 18 Cd 5d0 -0.0034573716737103 0.0018883332526657 + 346 18 Cd 5d+1 -0.0011486502484890 0.0015912177369130 + 347 18 Cd 5d+2 -0.0005188847795607 -0.0025233380134014 + 348 18 Cd 5f-3 0.0004664259985324 -0.0000994120498052 + 349 18 Cd 5f-2 -0.0013244585138918 0.0002594889213883 + 350 18 Cd 5f-1 -0.0009751913515471 0.0013369456963489 + 351 18 Cd 5f0 -0.0009196644271021 0.0000811891504897 + 352 18 Cd 5f+1 0.0000921770200491 0.0007454118652398 + 353 18 Cd 5f+2 -0.0002454880504812 0.0012294863173962 + 354 18 Cd 5f+3 0.0009906198953125 -0.0001942330153667 + + 355 19 Se 2s 0.0081797739376270 -0.0236577755273284 + 356 19 Se 3s 0.0000582664059207 0.0003231710834819 + 357 19 Se 3py 0.0181751823200337 0.0014272753903620 + 358 19 Se 3pz -0.0198103202122664 0.0124293755662429 + 359 19 Se 3px 0.0074900744792296 0.0200689013081530 + 360 19 Se 4py 0.0019305102928154 0.0008892920124125 + 361 19 Se 4pz -0.0016144976504269 0.0009090858066303 + 362 19 Se 4px 0.0001366090421930 -0.0005088206437648 + 363 19 Se 4d-2 -0.0000623713154072 -0.0003017469490468 + 364 19 Se 4d-1 0.0013508581456752 0.0019152077728347 + 365 19 Se 4d0 -0.0061230975176256 0.0023321870767348 + 366 19 Se 4d+1 0.0016774724860850 0.0060565727420215 + 367 19 Se 4d+2 -0.0004451919844059 0.0010129323865277 + + 368 20 Se 2s -0.0051333873043716 -0.0105331211803674 + 369 20 Se 3s -0.0000805614052848 0.0004672514755578 + 370 20 Se 3py 0.0197589023017927 -0.0108355635714978 + 371 20 Se 3pz -0.0039494361991811 -0.0039277995983289 + 372 20 Se 3px -0.0124102032419638 -0.0020802357137652 + 373 20 Se 4py -0.0003285571108282 -0.0010144978752549 + 374 20 Se 4pz 0.0003156460907936 0.0002800454660081 + 375 20 Se 4px 0.0023475269974934 0.0018459803377202 + 376 20 Se 4d-2 -0.0006830357520344 0.0010136862579453 + 377 20 Se 4d-1 0.0015018439716497 0.0011166111491599 + 378 20 Se 4d0 -0.0007617517196242 -0.0007084504274986 + 379 20 Se 4d+1 -0.0004682478861390 -0.0009053992819109 + 380 20 Se 4d+2 0.0015417922510054 -0.0013500095487498 + + 381 21 Se 2s -0.0144047382879912 -0.0089244576243047 + 382 21 Se 3s 0.0004979623204071 0.0003460862910534 + 383 21 Se 3py -0.0058715426258353 0.0061630114272916 + 384 21 Se 3pz -0.0086586064738309 -0.0241503341747375 + 385 21 Se 3px -0.0036223083720609 -0.0000211452671182 + 386 21 Se 4py -0.0000369665517084 0.0005569377185063 + 387 21 Se 4pz -0.0001455759544870 -0.0010514556760841 + 388 21 Se 4px 0.0001204287736631 -0.0000855401029144 + 389 21 Se 4d-2 -0.0004057749719346 0.0010940372003705 + 390 21 Se 4d-1 0.0013091835756341 0.0022007328199240 + 391 21 Se 4d0 -0.0010326055385616 0.0017859615738662 + 392 21 Se 4d+1 -0.0012443009513679 -0.0037831774771814 + 393 21 Se 4d+2 0.0000204273021862 0.0003648940837523 + + 394 22 Cd 2s 0.0025904087164730 0.0073461156886952 + 395 22 Cd 3s 0.0010933778928435 0.0004377992036301 + 396 22 Cd 3py -0.0037851840689394 -0.0048188340417924 + 397 22 Cd 3pz -0.0011213652203856 -0.0002642784210006 + 398 22 Cd 3px -0.0021810501360456 0.0018030129715228 + 399 22 Cd 4py -0.0011143876788415 -0.0005173923030860 + 400 22 Cd 4pz 0.0001182678185067 0.0004612245155917 + 401 22 Cd 4px -0.0001590785839652 -0.0007085517678250 + 402 22 Cd 4d-2 -0.0854694553166211 -0.1008139238107120 + 403 22 Cd 4d-1 -0.1024198977923708 0.0239357482531443 + 404 22 Cd 4d0 0.0371037259888629 0.1771944572274441 + 405 22 Cd 4d+1 -0.0232088623330055 -0.0917936397371087 + 406 22 Cd 4d+2 0.0238784408243398 0.0494600514709084 + 407 22 Cd 5d-2 0.0009865690204744 0.0004503164865853 + 408 22 Cd 5d-1 0.0004918507214629 -0.0008941460635953 + 409 22 Cd 5d0 -0.0005750106740756 -0.0026175134126046 + 410 22 Cd 5d+1 0.0001332233483467 0.0002845207699207 + 411 22 Cd 5d+2 -0.0019649496800007 -0.0002809932974153 + 412 22 Cd 5f-3 0.0004669492742272 0.0001805439186881 + 413 22 Cd 5f-2 0.0004608771143990 -0.0001374879348699 + 414 22 Cd 5f-1 0.0001271657479598 0.0005007078874819 + 415 22 Cd 5f0 -0.0004166345208186 -0.0002798061112183 + 416 22 Cd 5f+1 -0.0000597672358578 -0.0003074059404349 + 417 22 Cd 5f+2 0.0003037026991357 0.0000148304927472 + 418 22 Cd 5f+3 0.0001123181028466 -0.0000425111093148 + + 419 23 Se 2s 0.0142332061117354 -0.0009371773205869 + 420 23 Se 3s -0.0001527488403432 -0.0001762431775991 + 421 23 Se 3py -0.0026641944651111 0.0095066487905936 + 422 23 Se 3pz -0.0099994370087626 -0.0004652409035353 + 423 23 Se 3px 0.0048691320524946 0.0060861608865557 + 424 23 Se 4py -0.0012757942118998 0.0011679885272652 + 425 23 Se 4pz -0.0010698598901883 -0.0002934193604930 + 426 23 Se 4px 0.0005068406025306 0.0010012883422067 + 427 23 Se 4d-2 -0.0006951542377188 0.0009165720794188 + 428 23 Se 4d-1 0.0006166989225407 0.0021681091250412 + 429 23 Se 4d0 -0.0026789075297237 -0.0005397718170275 + 430 23 Se 4d+1 0.0008423670072518 0.0016482954553498 + 431 23 Se 4d+2 -0.0010816643297497 0.0003359639768884 + + 432 24 Se 2s -0.0384579087214388 -0.0018015163263744 + 433 24 Se 3s 0.0009967578527400 0.0001435769730393 + 434 24 Se 3py 0.0093964294602246 0.0027414670001983 + 435 24 Se 3pz -0.0012534095142202 -0.0059173905312147 + 436 24 Se 3px 0.0081412379162636 -0.0011807028893387 + 437 24 Se 4py -0.0002641274435610 0.0007372336902741 + 438 24 Se 4pz -0.0000170193204522 0.0001041498439293 + 439 24 Se 4px 0.0016249923952354 -0.0009399986590012 + 440 24 Se 4d-2 0.0014056306510278 0.0004493415904084 + 441 24 Se 4d-1 0.0002720798955952 -0.0008730465770743 + 442 24 Se 4d0 -0.0009529622146791 0.0005301331005935 + 443 24 Se 4d+1 -0.0006903654186410 -0.0010944407586641 + 444 24 Se 4d+2 0.0010198974381823 -0.0002079021924974 + + 445 25 Cd 2s 0.0094048186567053 0.0094768476687377 + 446 25 Cd 3s 0.0001561549211348 0.0003763700810149 + 447 25 Cd 3py -0.0021600819299623 0.0039295923441670 + 448 25 Cd 3pz -0.0036833873730249 0.0010988057938898 + 449 25 Cd 3px 0.0063770352415798 -0.0016907988585922 + 450 25 Cd 4py 0.0012292025809938 0.0005066132759242 + 451 25 Cd 4pz -0.0020228877730858 0.0009245080522196 + 452 25 Cd 4px 0.0011212771881804 -0.0003579577396860 + 453 25 Cd 4d-2 0.1219531538782957 -0.0284950468734660 + 454 25 Cd 4d-1 0.0293068104256028 -0.0412246447070504 + 455 25 Cd 4d0 0.1950544925288641 -0.0065322668923240 + 456 25 Cd 4d+1 -0.0661358669606548 0.0041340486009772 + 457 25 Cd 4d+2 0.1039303490018735 0.2030464547748251 + 458 25 Cd 5d-2 -0.0008070200696932 0.0018175238002752 + 459 25 Cd 5d-1 0.0000075966112577 -0.0012336761247196 + 460 25 Cd 5d0 -0.0045980144091419 0.0002129435040503 + 461 25 Cd 5d+1 -0.0012890679172311 -0.0008550440310405 + 462 25 Cd 5d+2 0.0012975419461606 -0.0036128755159172 + 463 25 Cd 5f-3 -0.0000285441968307 0.0004612171148872 + 464 25 Cd 5f-2 -0.0000580647919164 -0.0004749689084041 + 465 25 Cd 5f-1 -0.0006742006540574 0.0006922196121688 + 466 25 Cd 5f0 -0.0003504196256297 0.0003271601137671 + 467 25 Cd 5f+1 -0.0001954755314524 0.0001511913597203 + 468 25 Cd 5f+2 -0.0008234077038558 -0.0007441426259116 + 469 25 Cd 5f+3 0.0005244051009170 -0.0004173821679515 + + 470 26 Cd 2s 0.0035079207049468 0.0013977440213986 + 471 26 Cd 3s 0.0011436979662524 -0.0006750116787680 + 472 26 Cd 3py -0.0029697246014003 0.0013379375651098 + 473 26 Cd 3pz -0.0007184613310242 0.0014575318784758 + 474 26 Cd 3px -0.0002667271921888 0.0008650705365745 + 475 26 Cd 4py -0.0004880849771002 0.0003404290224640 + 476 26 Cd 4pz 0.0000827667850649 0.0004450681674363 + 477 26 Cd 4px 0.0003076920732459 -0.0001487511089773 + 478 26 Cd 4d-2 0.0434663907140954 0.0031116413427223 + 479 26 Cd 4d-1 0.0151813903806239 0.0116209119524801 + 480 26 Cd 4d0 0.0270704719126892 -0.0064831507129706 + 481 26 Cd 4d+1 0.0118297336534409 0.0087162769424951 + 482 26 Cd 4d+2 -0.0559085036273619 0.0096396497176086 + 483 26 Cd 5d-2 0.0002930260103693 0.0002976154184417 + 484 26 Cd 5d-1 0.0010140078246283 -0.0001310505900720 + 485 26 Cd 5d0 -0.0010132418387248 -0.0002280224095247 + 486 26 Cd 5d+1 0.0002780224318814 0.0011546061963840 + 487 26 Cd 5d+2 -0.0017569338771493 0.0006063926079444 + 488 26 Cd 5f-3 0.0002045797869942 0.0000232648635498 + 489 26 Cd 5f-2 0.0000549422224629 -0.0001157661422969 + 490 26 Cd 5f-1 0.0000133544233652 -0.0002206189508134 + 491 26 Cd 5f0 0.0002776318430022 -0.0002350741117870 + 492 26 Cd 5f+1 -0.0002135549405046 -0.0004043298848230 + 493 26 Cd 5f+2 0.0001829221720477 0.0003041274056763 + 494 26 Cd 5f+3 -0.0001339805014362 -0.0000242249966173 + + 37 38 + -0.4733269580008714 -0.4724574307820483 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0056664304181103 0.0035234402825016 + 2 1 Cd 3s -0.0009094880394235 -0.0000629386048883 + 3 1 Cd 3py -0.0003937604034994 0.0018813595610258 + 4 1 Cd 3pz 0.0014231985061966 0.0022928561477067 + 5 1 Cd 3px -0.0005109334808338 -0.0009519977227442 + 6 1 Cd 4py -0.0011692861475733 -0.0006286612492769 + 7 1 Cd 4pz 0.0001448858851761 0.0000251242493233 + 8 1 Cd 4px 0.0003443249653458 -0.0001666891335832 + 9 1 Cd 4d-2 0.0224951720970216 -0.0023435910033229 + 10 1 Cd 4d-1 -0.0243582038483745 -0.0361921826440444 + 11 1 Cd 4d0 0.0189527557738291 0.0070227592346892 + 12 1 Cd 4d+1 0.0001670031176171 0.0113257425981167 + 13 1 Cd 4d+2 0.0267195832882024 0.0132819409601381 + 14 1 Cd 5d-2 0.0009674037557193 0.0006611580179354 + 15 1 Cd 5d-1 -0.0008218601819817 0.0013777559801046 + 16 1 Cd 5d0 -0.0003215285498825 0.0000213860862744 + 17 1 Cd 5d+1 -0.0012615120474774 -0.0008366276329248 + 18 1 Cd 5d+2 -0.0008968109641304 0.0002041025350947 + 19 1 Cd 5f-3 -0.0004637568286130 -0.0003231715807278 + 20 1 Cd 5f-2 0.0002562023102678 -0.0004924124557320 + 21 1 Cd 5f-1 -0.0000512000325045 0.0002213068020863 + 22 1 Cd 5f0 -0.0001450757040983 0.0002431352498094 + 23 1 Cd 5f+1 -0.0002845702077358 -0.0001043249654372 + 24 1 Cd 5f+2 0.0003363727735843 0.0001617260063106 + 25 1 Cd 5f+3 0.0000789547719218 -0.0001714056050733 + + 26 2 Cd 2s -0.0009520097124579 0.0124665296369376 + 27 2 Cd 3s 0.0009971367482235 0.0006119368313948 + 28 2 Cd 3py 0.0041350202449686 0.0001325351664164 + 29 2 Cd 3pz -0.0025156797465901 -0.0041235507864907 + 30 2 Cd 3px -0.0017579215737728 -0.0055640952148606 + 31 2 Cd 4py 0.0010499117532215 0.0002214334365677 + 32 2 Cd 4pz -0.0005998861165511 -0.0013376189329759 + 33 2 Cd 4px -0.0009055521897696 0.0007267761583900 + 34 2 Cd 4d-2 0.2063521153631695 0.0584575331108481 + 35 2 Cd 4d-1 -0.0215662456020943 -0.0972958911289739 + 36 2 Cd 4d0 0.0045870042528779 0.0502177685875962 + 37 2 Cd 4d+1 -0.1376585015647094 -0.2530880671662875 + 38 2 Cd 4d+2 0.0452957533470174 -0.0313581213209272 + 39 2 Cd 5d-2 -0.0007648398736013 0.0005873777528935 + 40 2 Cd 5d-1 -0.0008415372387258 0.0000911268669174 + 41 2 Cd 5d0 -0.0017200292248307 -0.0000738466261348 + 42 2 Cd 5d+1 0.0010144846586101 0.0013590515174765 + 43 2 Cd 5d+2 0.0007637382547811 0.0007741383173508 + 44 2 Cd 5f-3 -0.0002319803678570 -0.0000827966524827 + 45 2 Cd 5f-2 0.0004970444163711 0.0001117835859101 + 46 2 Cd 5f-1 0.0001093884125110 0.0002772842588998 + 47 2 Cd 5f0 0.0000490169104793 -0.0000894550977456 + 48 2 Cd 5f+1 0.0003665421425545 -0.0000506041779479 + 49 2 Cd 5f+2 -0.0002544195264215 -0.0007592875369248 + 50 2 Cd 5f+3 -0.0004637718294034 -0.0005332042308032 + + 51 3 Cd 2s -0.0121480925572003 0.0050830537877726 + 52 3 Cd 3s 0.0019041636701283 -0.0008563844097367 + 53 3 Cd 3py 0.0031675922683013 -0.0005155922208229 + 54 3 Cd 3pz 0.0017261403262814 -0.0025116288903827 + 55 3 Cd 3px -0.0017044987370459 -0.0080926988549121 + 56 3 Cd 4py 0.0009478359821335 -0.0013033723383032 + 57 3 Cd 4pz 0.0010195298925489 0.0001088395927001 + 58 3 Cd 4px -0.0021240164593762 -0.0008736170756198 + 59 3 Cd 4d-2 -0.0041397480108027 0.0369277210659916 + 60 3 Cd 4d-1 0.0168720934401725 0.0079096004496516 + 61 3 Cd 4d0 0.0168512326651343 0.0505555654514325 + 62 3 Cd 4d+1 0.0064724296537664 0.0120946779860022 + 63 3 Cd 4d+2 0.0123619881618598 -0.0056233067579402 + 64 3 Cd 5d-2 -0.0029034727662688 -0.0010588664566995 + 65 3 Cd 5d-1 0.0008160228081216 0.0004408789946650 + 66 3 Cd 5d0 -0.0034214196267186 -0.0028707155553534 + 67 3 Cd 5d+1 -0.0000917985207214 -0.0005884750530718 + 68 3 Cd 5d+2 -0.0003471543908901 0.0045749380372024 + 69 3 Cd 5f-3 0.0002917548463933 0.0007661496070177 + 70 3 Cd 5f-2 -0.0003280757290306 -0.0008609078547369 + 71 3 Cd 5f-1 -0.0000904243233147 0.0006414019147068 + 72 3 Cd 5f0 -0.0004279113408880 0.0001642694000061 + 73 3 Cd 5f+1 -0.0003399109142789 0.0006384530984292 + 74 3 Cd 5f+2 0.0001785243151418 -0.0002693655301814 + 75 3 Cd 5f+3 0.0006704489525709 -0.0005110329753937 + + 76 4 Se 2s -0.0149164021648936 -0.0243687995103565 + 77 4 Se 3s -0.0000527446157867 0.0001169529319143 + 78 4 Se 3py -0.0006948527853562 -0.0053505433793599 + 79 4 Se 3pz 0.0228471067656452 0.0277649675448985 + 80 4 Se 3px 0.0004278340346285 -0.0030260721551767 + 81 4 Se 4py -0.0009250150299552 -0.0001589155274461 + 82 4 Se 4pz 0.0023483071671842 0.0024878858221592 + 83 4 Se 4px 0.0007419947716128 0.0000230129796237 + 84 4 Se 4d-2 0.0003902185545039 0.0014565303161899 + 85 4 Se 4d-1 -0.0026409818760937 -0.0029496545484445 + 86 4 Se 4d0 0.0024777665395216 0.0015642944139579 + 87 4 Se 4d+1 -0.0032185610661437 -0.0046298857490883 + 88 4 Se 4d+2 -0.0001578679860763 -0.0001574910013511 + + 89 5 Se 2s 0.0000397575176814 0.0103134962964860 + 90 5 Se 3s 0.0002069190408536 -0.0002020298021546 + 91 5 Se 3py -0.0035621970483326 0.0005370950379761 + 92 5 Se 3pz 0.0025124483748601 0.0005044992492218 + 93 5 Se 3px -0.0034865509277134 0.0006032876190707 + 94 5 Se 4py -0.0008916240125367 -0.0000365061472499 + 95 5 Se 4pz 0.0006102297015046 -0.0001276618187407 + 96 5 Se 4px -0.0009577147559415 -0.0004842919297618 + 97 5 Se 4d-2 -0.0001959700731122 -0.0003546373947869 + 98 5 Se 4d-1 0.0003262604427974 0.0004380407576144 + 99 5 Se 4d0 0.0002799007898529 0.0000630237571792 + 100 5 Se 4d+1 -0.0001932197452176 -0.0001416881098915 + 101 5 Se 4d+2 0.0010774011802860 -0.0001473285066801 + + 102 6 Se 2s 0.0134743949798529 0.0121067169915315 + 103 6 Se 3s 0.0000015612536423 -0.0001884706072631 + 104 6 Se 3py -0.0177788810785034 -0.0095715488852020 + 105 6 Se 3pz 0.0010664252574604 -0.0044543102325497 + 106 6 Se 3px -0.0025151384023192 -0.0018307126423084 + 107 6 Se 4py -0.0006103758535105 -0.0001435808954522 + 108 6 Se 4pz 0.0002726131635106 -0.0006077162263643 + 109 6 Se 4px -0.0007626239283247 -0.0002244158061942 + 110 6 Se 4d-2 0.0030231242747851 0.0015611244741835 + 111 6 Se 4d-1 0.0004088496789136 -0.0000562767084848 + 112 6 Se 4d0 0.0006729048341211 -0.0002924238124790 + 113 6 Se 4d+1 -0.0002981326386804 0.0005890101274299 + 114 6 Se 4d+2 0.0024079464903060 0.0015757692896574 + + 115 7 Se 2s -0.0036632289838603 -0.0662051257960654 + 116 7 Se 3s 0.0002357028045322 0.0019944810647930 + 117 7 Se 3py -0.0000660369759444 -0.0221160201287575 + 118 7 Se 3pz 0.0014625809238917 -0.0134234680665366 + 119 7 Se 3px 0.0031701823516701 -0.0098727092785250 + 120 7 Se 4py 0.0010982641403272 -0.0011597318299308 + 121 7 Se 4pz -0.0008127714887098 -0.0006645395355926 + 122 7 Se 4px 0.0001997841890672 -0.0008658403058329 + 123 7 Se 4d-2 -0.0014822261221624 0.0017807602046093 + 124 7 Se 4d-1 -0.0002582843137667 0.0040791236037375 + 125 7 Se 4d0 -0.0007964916301463 -0.0001189792781743 + 126 7 Se 4d+1 -0.0000221031137036 0.0017735242798198 + 127 7 Se 4d+2 -0.0012188603500709 -0.0014362576014063 + + 128 8 Cd 2s -0.0170617185810861 -0.0007260897767475 + 129 8 Cd 3s 0.0010977624853364 0.0006428143891890 + 130 8 Cd 3py 0.0136955686829199 0.0036038958707176 + 131 8 Cd 3pz -0.0028874594589518 -0.0019442946234554 + 132 8 Cd 3px -0.0076161789057400 0.0038036577960482 + 133 8 Cd 4py 0.0032977848563072 0.0001781488504397 + 134 8 Cd 4pz -0.0013305612376135 -0.0008420962357480 + 135 8 Cd 4px -0.0041768508382553 -0.0015774520732939 + 136 8 Cd 4d-2 -0.3391885518348945 0.0106690124640194 + 137 8 Cd 4d-1 0.0904216987470458 0.1236846886668870 + 138 8 Cd 4d0 -0.3404300297844466 0.0667767757027548 + 139 8 Cd 4d+1 0.1215420411901522 0.4580627134297966 + 140 8 Cd 4d+2 -0.0582214161189541 0.0357488173749012 + 141 8 Cd 5d-2 0.0041584075045650 -0.0004260132602703 + 142 8 Cd 5d-1 -0.0038192104652574 -0.0015563871001470 + 143 8 Cd 5d0 0.0044067106064298 -0.0024471962473871 + 144 8 Cd 5d+1 0.0014075344374718 -0.0047172784388021 + 145 8 Cd 5d+2 0.0019338864114352 -0.0051503221323803 + 146 8 Cd 5f-3 0.0014854766500432 0.0005941721616098 + 147 8 Cd 5f-2 0.0002987176267060 0.0000634890014000 + 148 8 Cd 5f-1 0.0002277232884792 0.0010187128805999 + 149 8 Cd 5f0 -0.0000169574287978 0.0012452028055976 + 150 8 Cd 5f+1 0.0007314924725883 0.0005324297357388 + 151 8 Cd 5f+2 -0.0002965688631898 0.0002914652751804 + 152 8 Cd 5f+3 0.0017000721912034 0.0001840215664810 + + 153 9 Cd 2s -0.0096402806906427 -0.0075543184872040 + 154 9 Cd 3s 0.0033368274903225 0.0012820345447501 + 155 9 Cd 3py -0.0007023054035869 -0.0014192238017138 + 156 9 Cd 3pz 0.0008235810674317 0.0016872851939674 + 157 9 Cd 3px 0.0009885969180892 0.0038835353981334 + 158 9 Cd 4py 0.0001551037657866 0.0002678286002139 + 159 9 Cd 4pz -0.0014927128681075 0.0000368365741023 + 160 9 Cd 4px -0.0006375667760772 0.0006137938257141 + 161 9 Cd 4d-2 0.0789061724356310 0.0485096791320830 + 162 9 Cd 4d-1 0.2384374099584159 0.1740236541829338 + 163 9 Cd 4d0 -0.0427557614061725 0.1212470244476499 + 164 9 Cd 4d+1 -0.0968565078457046 0.0494452396367199 + 165 9 Cd 4d+2 -0.1156073397048802 -0.0175062214441916 + 166 9 Cd 5d-2 0.0001700173961710 0.0004611721375504 + 167 9 Cd 5d-1 0.0019019625722513 0.0025458730752490 + 168 9 Cd 5d0 -0.0000094136031330 -0.0004317787906008 + 169 9 Cd 5d+1 0.0005674782229918 -0.0011816298953388 + 170 9 Cd 5d+2 -0.0004297827048091 -0.0013159031738547 + 171 9 Cd 5f-3 -0.0002456605660662 -0.0001597985348553 + 172 9 Cd 5f-2 0.0003065644348055 -0.0000700865316501 + 173 9 Cd 5f-1 -0.0005415834156250 -0.0007131578390027 + 174 9 Cd 5f0 -0.0000122002632973 0.0001227478891560 + 175 9 Cd 5f+1 -0.0003627148363254 0.0004448216304061 + 176 9 Cd 5f+2 -0.0005882836806097 -0.0003092349201571 + 177 9 Cd 5f+3 -0.0002250903525106 0.0001376573301766 + + 178 10 Se 2s 0.0264869315280049 0.0360850786477017 + 179 10 Se 3s -0.0002570430365134 -0.0007916571154858 + 180 10 Se 3py -0.0114467877005466 -0.0136199323340642 + 181 10 Se 3pz 0.0011091543395218 0.0052123144442117 + 182 10 Se 3px 0.0062433701978182 0.0008927695219036 + 183 10 Se 4py -0.0007623148302195 0.0000423990648680 + 184 10 Se 4pz -0.0010215075857103 0.0005558730990499 + 185 10 Se 4px 0.0013237071570766 0.0009813258230848 + 186 10 Se 4d-2 -0.0003115529414477 0.0011452883583898 + 187 10 Se 4d-1 0.0010928838650518 0.0033938074807815 + 188 10 Se 4d0 0.0021897621500147 -0.0004304250707328 + 189 10 Se 4d+1 -0.0012140906791677 -0.0009726057714465 + 190 10 Se 4d+2 0.0018889878492916 -0.0000807431090397 + + 191 11 Se 2s 0.0285750042272706 0.0156492549374241 + 192 11 Se 3s -0.0003663357536953 -0.0005333590608487 + 193 11 Se 3py -0.0051628645437061 -0.0097697991314180 + 194 11 Se 3pz 0.0071284810653958 0.0049575101004002 + 195 11 Se 3px 0.0027865818945539 -0.0031037662175858 + 196 11 Se 4py -0.0000118512446810 -0.0009287687712967 + 197 11 Se 4pz -0.0000623899254202 0.0002348656699731 + 198 11 Se 4px 0.0004228233872960 -0.0000696654901322 + 199 11 Se 4d-2 0.0015944896163201 -0.0000062772076895 + 200 11 Se 4d-1 0.0006594836601424 0.0001538364079869 + 201 11 Se 4d0 -0.0014886386952184 0.0018423168155648 + 202 11 Se 4d+1 -0.0000173557964443 -0.0019925960233039 + 203 11 Se 4d+2 0.0003628239360160 0.0031043554323866 + + 204 12 Cd 2s -0.0079041346818789 -0.0200549716563737 + 205 12 Cd 3s 0.0006293527901664 -0.0003870379923063 + 206 12 Cd 3py -0.0020757795693366 -0.0095069733220671 + 207 12 Cd 3pz -0.0050423172042183 0.0052443950365270 + 208 12 Cd 3px -0.0046915779738234 -0.0007435307279990 + 209 12 Cd 4py 0.0003872283341856 -0.0005262974404371 + 210 12 Cd 4pz -0.0002293305734814 0.0000438382703964 + 211 12 Cd 4px 0.0000829558768080 -0.0001497641497086 + 212 12 Cd 4d-2 0.2368126045893994 0.0185839565059983 + 213 12 Cd 4d-1 0.1394953203355586 -0.3603369481402516 + 214 12 Cd 4d0 -0.1961821642985273 0.1570914856065832 + 215 12 Cd 4d+1 0.0880617950612387 0.0884792560180072 + 216 12 Cd 4d+2 -0.0083340202891421 -0.4161035432723332 + 217 12 Cd 5d-2 -0.0017438277312067 -0.0002370844764118 + 218 12 Cd 5d-1 -0.0006953204440130 0.0039658129982871 + 219 12 Cd 5d0 0.0013309107254173 0.0005900052882350 + 220 12 Cd 5d+1 -0.0016716501033522 -0.0008724716705653 + 221 12 Cd 5d+2 -0.0008068941891368 0.0021345928054826 + 222 12 Cd 5f-3 -0.0006203763596301 0.0001395904354719 + 223 12 Cd 5f-2 0.0002179699381078 0.0005765665917991 + 224 12 Cd 5f-1 0.0004852254934973 -0.0004304870971671 + 225 12 Cd 5f0 0.0000951208355866 -0.0002777747270924 + 226 12 Cd 5f+1 0.0001585895040486 0.0001732942453635 + 227 12 Cd 5f+2 -0.0008037281259559 -0.0011119598627856 + 228 12 Cd 5f+3 -0.0000695581323028 0.0000595784018156 + + 229 13 Cd 2s 0.0102224464387899 0.0061014539115804 + 230 13 Cd 3s -0.0004780667797671 -0.0005070323075417 + 231 13 Cd 3py -0.0018770618183981 -0.0011832656748155 + 232 13 Cd 3pz -0.0011576205824047 -0.0002429965250789 + 233 13 Cd 3px 0.0044912275810777 0.0020920426145305 + 234 13 Cd 4py -0.0009894669840425 0.0007026355449308 + 235 13 Cd 4pz -0.0010424781276355 -0.0013007287602251 + 236 13 Cd 4px 0.0001137421510936 -0.0004008610826831 + 237 13 Cd 4d-2 0.0554409705895488 -0.0344076892092526 + 238 13 Cd 4d-1 -0.0298049780144257 0.0384099140815281 + 239 13 Cd 4d0 -0.0092969370213680 -0.0101531326748415 + 240 13 Cd 4d+1 -0.0792180004839751 -0.0718327908836547 + 241 13 Cd 4d+2 0.0667240191145620 -0.0193649036762170 + 242 13 Cd 5d-2 -0.0006642663711707 0.0001579203077752 + 243 13 Cd 5d-1 0.0008038491052728 0.0008976402436687 + 244 13 Cd 5d0 -0.0005723298234411 0.0003808541734545 + 245 13 Cd 5d+1 0.0033649827140707 0.0016962762186168 + 246 13 Cd 5d+2 -0.0008522720086912 -0.0006496232098980 + 247 13 Cd 5f-3 0.0005689580368270 0.0004258163038495 + 248 13 Cd 5f-2 -0.0001522033249939 -0.0000028890587583 + 249 13 Cd 5f-1 0.0000863801573268 0.0001810957339762 + 250 13 Cd 5f0 0.0003613589481027 0.0000453200656153 + 251 13 Cd 5f+1 0.0011175283417035 -0.0000409551084608 + 252 13 Cd 5f+2 0.0002139235762937 -0.0001564079047625 + 253 13 Cd 5f+3 -0.0000163068096914 0.0004618863111771 + + 254 14 Cd 2s 0.0094652671810097 0.0110822581181540 + 255 14 Cd 3s -0.0013703054442791 -0.0017397692242743 + 256 14 Cd 3py -0.0004197676169488 -0.0030586163305342 + 257 14 Cd 3pz -0.0051070669532922 0.0022755960794264 + 258 14 Cd 3px 0.0003818469472479 0.0007036991160953 + 259 14 Cd 4py 0.0004807422875362 0.0007757155866241 + 260 14 Cd 4pz 0.0000597409398659 -0.0000153700505303 + 261 14 Cd 4px -0.0004153963176465 0.0003088447522394 + 262 14 Cd 4d-2 -0.0554605664910091 -0.0018061827121710 + 263 14 Cd 4d-1 -0.0069571042625790 -0.0350725403328654 + 264 14 Cd 4d0 0.0677134621970024 0.0241123327562249 + 265 14 Cd 4d+1 0.0259224651376211 0.0379146477041677 + 266 14 Cd 4d+2 -0.0501716219394869 -0.0449191259980970 + 267 14 Cd 5d-2 -0.0006229980916711 -0.0007174817287044 + 268 14 Cd 5d-1 0.0003656736972261 -0.0013856849880835 + 269 14 Cd 5d0 0.0017992060231367 0.0005153632070685 + 270 14 Cd 5d+1 -0.0001407977961704 0.0005580911797311 + 271 14 Cd 5d+2 -0.0010058347716692 -0.0012215221183330 + 272 14 Cd 5f-3 0.0006387544951425 0.0003905907485890 + 273 14 Cd 5f-2 0.0002094270960863 -0.0002250334192844 + 274 14 Cd 5f-1 -0.0000605403453181 -0.0000292989760225 + 275 14 Cd 5f0 -0.0006014507769045 -0.0002992383492893 + 276 14 Cd 5f+1 -0.0000878748254812 -0.0001945801765906 + 277 14 Cd 5f+2 0.0002766529868089 -0.0002715949187575 + 278 14 Cd 5f+3 -0.0004696772035496 -0.0000239753068155 + + 279 15 Se 2s -0.0525041192840901 -0.0080244687674851 + 280 15 Se 3s 0.0010631397862427 -0.0000263705858043 + 281 15 Se 3py -0.0166934860156438 -0.0007507883826721 + 282 15 Se 3pz -0.0032394738467018 -0.0055839077222141 + 283 15 Se 3px -0.0165124799319978 0.0075068695144240 + 284 15 Se 4py -0.0007572433027378 -0.0000705311442613 + 285 15 Se 4pz -0.0004444387291946 -0.0001711402097168 + 286 15 Se 4px -0.0009652095369349 0.0009177587281767 + 287 15 Se 4d-2 0.0037693499771560 -0.0016067136258855 + 288 15 Se 4d-1 0.0014853014736269 0.0020981448398601 + 289 15 Se 4d0 -0.0016002702017563 0.0003696130507285 + 290 15 Se 4d+1 0.0018308063050713 0.0004403923892006 + 291 15 Se 4d+2 -0.0028503349235452 -0.0005460253604217 + + 292 16 Se 2s 0.0020552130333872 -0.0030181195359220 + 293 16 Se 3s -0.0000044179033395 0.0001138374522188 + 294 16 Se 3py -0.0016682300235828 0.0032261004464295 + 295 16 Se 3pz -0.0036493101223133 0.0069259264462231 + 296 16 Se 3px 0.0010351454810177 0.0053577470941809 + 297 16 Se 4py -0.0004133959642814 0.0000150079296095 + 298 16 Se 4pz -0.0011666753793199 0.0005742582723965 + 299 16 Se 4px -0.0002277967722078 0.0011087067547247 + 300 16 Se 4d-2 0.0007455815565012 -0.0007104676563622 + 301 16 Se 4d-1 0.0003814563861030 -0.0000326393775808 + 302 16 Se 4d0 -0.0007443393179003 0.0015286690287251 + 303 16 Se 4d+1 0.0007627695790336 -0.0001718699280411 + 304 16 Se 4d+2 -0.0003879154958390 -0.0007241618926312 + + 305 17 Cd 2s -0.0007746924784939 0.0018496168573363 + 306 17 Cd 3s 0.0013337029493132 -0.0014754011441959 + 307 17 Cd 3py 0.0032395514144485 -0.0015931596142766 + 308 17 Cd 3pz 0.0025222464441745 0.0016691185310334 + 309 17 Cd 3px -0.0025442683576891 0.0004685996521186 + 310 17 Cd 4py 0.0007047229706458 -0.0001154817702524 + 311 17 Cd 4pz 0.0010527398606696 -0.0002182458152251 + 312 17 Cd 4px -0.0012219117589072 -0.0003567978586640 + 313 17 Cd 4d-2 0.0209088997142977 -0.0505293407298453 + 314 17 Cd 4d-1 -0.0179033198981622 -0.0008716211531344 + 315 17 Cd 4d0 -0.0144831528911033 -0.0142607557061965 + 316 17 Cd 4d+1 -0.0117802714364850 0.0608562802748790 + 317 17 Cd 4d+2 0.0039771794877200 0.0318793843277566 + 318 17 Cd 5d-2 -0.0020422196215955 0.0008171764327311 + 319 17 Cd 5d-1 0.0018038674241878 -0.0008580414941850 + 320 17 Cd 5d0 0.0010281530370333 0.0013783931848230 + 321 17 Cd 5d+1 -0.0019989422051409 -0.0010633379742930 + 322 17 Cd 5d+2 0.0019446805820922 -0.0000212751146669 + 323 17 Cd 5f-3 0.0002680617603297 -0.0004032218020481 + 324 17 Cd 5f-2 -0.0001039599635199 0.0001091019606510 + 325 17 Cd 5f-1 0.0007218333845294 -0.0002125174090715 + 326 17 Cd 5f0 -0.0002640960254667 0.0002756743483462 + 327 17 Cd 5f+1 -0.0005505941447872 -0.0006352396751831 + 328 17 Cd 5f+2 0.0006648496628317 -0.0000100634466089 + 329 17 Cd 5f+3 -0.0000357423049705 -0.0004427123267310 + + 330 18 Cd 2s -0.0026777357535981 -0.0036528886438607 + 331 18 Cd 3s -0.0007449286534383 -0.0004865553278982 + 332 18 Cd 3py 0.0005748245006538 -0.0009489142586874 + 333 18 Cd 3pz -0.0031902222273468 -0.0028058869456575 + 334 18 Cd 3px 0.0006400661860333 -0.0000637147462286 + 335 18 Cd 4py -0.0006873350063289 -0.0005430904233405 + 336 18 Cd 4pz -0.0004416777007317 -0.0007027102822225 + 337 18 Cd 4px 0.0007886694893020 -0.0000408064590480 + 338 18 Cd 4d-2 0.3315996459063826 -0.1941334563656945 + 339 18 Cd 4d-1 -0.0295346538646215 0.0829242451218242 + 340 18 Cd 4d0 -0.0892196867409312 0.0118578615068014 + 341 18 Cd 4d+1 0.0204934356054037 0.0003202104774920 + 342 18 Cd 4d+2 -0.2104032110940755 -0.1178491278595740 + 343 18 Cd 5d-2 0.0019999183142397 -0.0006711073803276 + 344 18 Cd 5d-1 -0.0006940486535699 -0.0015895114471103 + 345 18 Cd 5d0 -0.0013565219933398 -0.0005495546778895 + 346 18 Cd 5d+1 0.0006278748284007 0.0000783900776939 + 347 18 Cd 5d+2 0.0002591668277017 0.0005794203140437 + 348 18 Cd 5f-3 0.0004788500532835 0.0001786117153902 + 349 18 Cd 5f-2 0.0003739229767039 0.0000109567275119 + 350 18 Cd 5f-1 0.0000085479957018 -0.0001172496414972 + 351 18 Cd 5f0 -0.0001420865787100 0.0002311921151551 + 352 18 Cd 5f+1 0.0002560542308445 -0.0000149175057944 + 353 18 Cd 5f+2 0.0004109480055054 0.0006616012910191 + 354 18 Cd 5f+3 -0.0008676061242681 0.0003750080234470 + + 355 19 Se 2s 0.0065743454956960 -0.0011660672576849 + 356 19 Se 3s -0.0000054690223485 -0.0000704848871200 + 357 19 Se 3py 0.0086217574858266 -0.0015227340611903 + 358 19 Se 3pz -0.0032998764541831 0.0019964840377359 + 359 19 Se 3px 0.0031698098057077 -0.0087990025888860 + 360 19 Se 4py 0.0009158882473155 -0.0004281082672655 + 361 19 Se 4pz -0.0006651218756857 -0.0002413496334045 + 362 19 Se 4px 0.0003379933244044 -0.0003409493629053 + 363 19 Se 4d-2 0.0006931161485357 -0.0018095579882563 + 364 19 Se 4d-1 0.0018684759606738 -0.0001622174165887 + 365 19 Se 4d0 -0.0007807791340948 0.0006566765098676 + 366 19 Se 4d+1 0.0007826609327214 -0.0007432277839905 + 367 19 Se 4d+2 0.0010645028970757 0.0005233445239972 + + 368 20 Se 2s 0.0034027357889189 -0.0190505993829939 + 369 20 Se 3s 0.0000456132852591 0.0003777425350220 + 370 20 Se 3py -0.0157033380406185 -0.0099403772047811 + 371 20 Se 3pz 0.0058535979867797 -0.0116378664419462 + 372 20 Se 3px 0.0095962836668892 -0.0469025252696995 + 373 20 Se 4py 0.0018296320689022 0.0002880362513187 + 374 20 Se 4pz 0.0005270913355249 0.0033247647402228 + 375 20 Se 4px -0.0011812163722959 0.0007007294713788 + 376 20 Se 4d-2 0.0002795579831010 0.0018365372481802 + 377 20 Se 4d-1 -0.0048135425534441 -0.0014258268123674 + 378 20 Se 4d0 0.0034434287163257 -0.0043902673789881 + 379 20 Se 4d+1 0.0006183434799606 -0.0037614815422131 + 380 20 Se 4d+2 0.0006258151975261 0.0047544823648113 + + 381 21 Se 2s 0.0122192523045427 -0.0197254619426047 + 382 21 Se 3s -0.0009141857242189 0.0008373192731226 + 383 21 Se 3py -0.0078646955622487 -0.0260773414671773 + 384 21 Se 3pz 0.0563801592863224 0.0131420876632407 + 385 21 Se 3px 0.0018160751240862 0.0017997954470405 + 386 21 Se 4py -0.0000113940723525 -0.0015558184428988 + 387 21 Se 4pz 0.0019493096126810 0.0006544029601365 + 388 21 Se 4px -0.0001733832012116 -0.0002416614009268 + 389 21 Se 4d-2 -0.0014739415092460 -0.0042859488478395 + 390 21 Se 4d-1 -0.0060927759421756 0.0001109714081163 + 391 21 Se 4d0 -0.0018718401902643 -0.0036231126101979 + 392 21 Se 4d+1 0.0092209778088234 0.0022559629756770 + 393 21 Se 4d+2 -0.0005498007349863 -0.0027213803933140 + + 394 22 Cd 2s -0.0032410029052691 0.0084831762359307 + 395 22 Cd 3s -0.0018410494703076 0.0005449027089070 + 396 22 Cd 3py 0.0046305718981487 -0.0031102305028829 + 397 22 Cd 3pz 0.0039809125050056 0.0014338374312395 + 398 22 Cd 3px -0.0012190212561583 0.0017432509290761 + 399 22 Cd 4py 0.0007119776502527 -0.0020163540943612 + 400 22 Cd 4pz -0.0009911324983928 -0.0000637276774770 + 401 22 Cd 4px 0.0013088677231311 0.0005270930310038 + 402 22 Cd 4d-2 0.1902044061492897 0.0720522778371412 + 403 22 Cd 4d-1 0.0774183524114422 -0.2518762379013484 + 404 22 Cd 4d0 -0.3328449502174307 -0.0565458625796341 + 405 22 Cd 4d+1 0.1853288838545848 0.0342124283441668 + 406 22 Cd 4d+2 -0.0743362967287350 0.0143164305954230 + 407 22 Cd 5d-2 -0.0015034263105894 -0.0007378796503596 + 408 22 Cd 5d-1 -0.0010676578390591 0.0022083396517700 + 409 22 Cd 5d0 0.0027227248013567 -0.0018681096617823 + 410 22 Cd 5d+1 -0.0003880492989868 0.0001613781154107 + 411 22 Cd 5d+2 -0.0001217269341429 -0.0034164095194587 + 412 22 Cd 5f-3 -0.0001778977577519 0.0005017567600501 + 413 22 Cd 5f-2 0.0003514595488504 0.0009231679392463 + 414 22 Cd 5f-1 -0.0009421806844595 0.0008195499265690 + 415 22 Cd 5f0 0.0000065304498416 0.0002288414301347 + 416 22 Cd 5f+1 0.0007397012897468 0.0002583804986860 + 417 22 Cd 5f+2 -0.0002892206432473 0.0004919368554633 + 418 22 Cd 5f+3 -0.0008614661777105 -0.0004126547397247 + + 419 23 Se 2s 0.0084764284567539 0.0372429239802341 + 420 23 Se 3s -0.0000486738767118 -0.0008694123117382 + 421 23 Se 3py -0.0120085336460504 -0.0083358286307249 + 422 23 Se 3pz 0.0032237206363673 -0.0193709469196882 + 423 23 Se 3px -0.0081001201822993 -0.0055286664197144 + 424 23 Se 4py -0.0012698456900843 0.0000633361687538 + 425 23 Se 4pz 0.0010683025295099 -0.0020712519170222 + 426 23 Se 4px -0.0013115748881876 -0.0003491616457660 + 427 23 Se 4d-2 -0.0019085872137781 -0.0002949224158088 + 428 23 Se 4d-1 -0.0032575336150877 -0.0003868032321183 + 429 23 Se 4d0 0.0021553376310101 -0.0040102819952618 + 430 23 Se 4d+1 -0.0022068777257924 -0.0026763588846709 + 431 23 Se 4d+2 0.0006619324323030 -0.0010658741412738 + + 432 24 Se 2s 0.0022366554120979 0.0151899522158458 + 433 24 Se 3s -0.0002091326904404 -0.0004268321830489 + 434 24 Se 3py -0.0065648727722318 0.0082648632174642 + 435 24 Se 3pz 0.0033903821338670 0.0030222161688592 + 436 24 Se 3px 0.0001453318526255 -0.0043046374711640 + 437 24 Se 4py 0.0002601305232049 0.0008209131079244 + 438 24 Se 4pz 0.0000533578517935 0.0005035760992394 + 439 24 Se 4px -0.0013524394513252 0.0007929067916901 + 440 24 Se 4d-2 -0.0011791578086025 0.0010957366602522 + 441 24 Se 4d-1 0.0002233706545321 0.0011495592547721 + 442 24 Se 4d0 0.0007260414978609 -0.0020995204542942 + 443 24 Se 4d+1 0.0003903514380455 -0.0001438619101863 + 444 24 Se 4d+2 0.0001453680214933 -0.0007164481939719 + + 445 25 Cd 2s -0.0061565331545628 -0.0133997263550349 + 446 25 Cd 3s 0.0001953244397091 0.0011781565609083 + 447 25 Cd 3py -0.0116169301077067 0.0003271855396922 + 448 25 Cd 3pz 0.0061682598528180 -0.0076735518854382 + 449 25 Cd 3px -0.0015648810419682 0.0015968709122820 + 450 25 Cd 4py -0.0008362012512088 -0.0000027734755589 + 451 25 Cd 4pz 0.0004474464602832 0.0003373808278961 + 452 25 Cd 4px -0.0004404152722441 0.0011788146579958 + 453 25 Cd 4d-2 0.0665130596593439 -0.0891441504434214 + 454 25 Cd 4d-1 0.0372546478269350 0.0372185914982200 + 455 25 Cd 4d0 -0.1401004287149025 0.2605715759280593 + 456 25 Cd 4d+1 -0.0404658379402390 0.1237972173358724 + 457 25 Cd 4d+2 -0.1398754291851678 -0.0205146076085628 + 458 25 Cd 5d-2 -0.0039794242391023 0.0020158091912080 + 459 25 Cd 5d-1 -0.0010998518328843 -0.0008431486367498 + 460 25 Cd 5d0 0.0036676140429626 -0.0028743102350735 + 461 25 Cd 5d+1 0.0015890799092458 0.0004387074847008 + 462 25 Cd 5d+2 0.0021846721753527 0.0011456990610515 + 463 25 Cd 5f-3 -0.0003000913783345 0.0004819064798592 + 464 25 Cd 5f-2 0.0001386672387056 0.0000723626649527 + 465 25 Cd 5f-1 -0.0002450155919403 -0.0004526130115402 + 466 25 Cd 5f0 0.0004049545266286 -0.0000824916080644 + 467 25 Cd 5f+1 0.0008283129897739 -0.0002712699168123 + 468 25 Cd 5f+2 0.0003528925666260 0.0007177607273576 + 469 25 Cd 5f+3 0.0006568687379296 -0.0001808939412355 + + 470 26 Cd 2s -0.0004722659522552 -0.0068351640502851 + 471 26 Cd 3s -0.0006484392230922 0.0030116311875567 + 472 26 Cd 3py -0.0009489617765935 -0.0004425352399304 + 473 26 Cd 3pz -0.0009685280614790 0.0010488903904307 + 474 26 Cd 3px -0.0000504052129549 -0.0008356262607851 + 475 26 Cd 4py -0.0001016418466782 -0.0015698828422865 + 476 26 Cd 4pz 0.0000170363450977 0.0000337738474149 + 477 26 Cd 4px 0.0000331399772375 0.0012280568034766 + 478 26 Cd 4d-2 -0.0106312210065327 0.0181237878649713 + 479 26 Cd 4d-1 -0.0227034560556034 -0.0465892141983906 + 480 26 Cd 4d0 -0.0370966862649094 0.0633907259592455 + 481 26 Cd 4d+1 -0.0459796955891434 0.0012127862569141 + 482 26 Cd 4d+2 -0.0032303743921445 -0.0583511937209023 + 483 26 Cd 5d-2 -0.0015488161576190 -0.0010706276616100 + 484 26 Cd 5d-1 -0.0005768928141037 -0.0000143916879720 + 485 26 Cd 5d0 0.0006885108619996 0.0002068662726878 + 486 26 Cd 5d+1 -0.0012074724369297 0.0012532741786400 + 487 26 Cd 5d+2 0.0003135563412824 -0.0008135723411246 + 488 26 Cd 5f-3 -0.0003911761970167 -0.0003397696741434 + 489 26 Cd 5f-2 0.0000995656367870 -0.0001388942861744 + 490 26 Cd 5f-1 0.0002366012423456 0.0004245787945798 + 491 26 Cd 5f0 -0.0001389852355108 -0.0002711550886136 + 492 26 Cd 5f+1 0.0005256866429628 0.0003411505787365 + 493 26 Cd 5f+2 -0.0003625668725102 0.0008323799449755 + 494 26 Cd 5f+3 -0.0000962436132700 -0.0003121339058855 + + 39 40 + -0.4717146779113160 -0.4711215713599612 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0045287124860723 0.0040582775058373 + 2 1 Cd 3s 0.0012119311970045 -0.0014427688562204 + 3 1 Cd 3py 0.0017985115162164 0.0033919044813417 + 4 1 Cd 3pz -0.0005460917717936 0.0018270765185480 + 5 1 Cd 3px -0.0009473702607624 0.0010909070661727 + 6 1 Cd 4py 0.0012527753057021 -0.0007572424707472 + 7 1 Cd 4pz -0.0002785762061124 0.0012334745815408 + 8 1 Cd 4px -0.0007521689293124 0.0006694750288774 + 9 1 Cd 4d-2 0.0071920356352631 0.0279476168146134 + 10 1 Cd 4d-1 0.0194159539555347 -0.0224211651429301 + 11 1 Cd 4d0 -0.0062784592120831 0.0258123119229013 + 12 1 Cd 4d+1 -0.0014674385545313 -0.0083520557811836 + 13 1 Cd 4d+2 -0.0276191169402416 0.0567485833216920 + 14 1 Cd 5d-2 -0.0016494031680306 -0.0010840123336653 + 15 1 Cd 5d-1 0.0012880860227751 0.0001386292756446 + 16 1 Cd 5d0 -0.0007547537759525 0.0003424479453459 + 17 1 Cd 5d+1 0.0003169288783054 -0.0014753478927336 + 18 1 Cd 5d+2 0.0013714072884545 -0.0008447210849160 + 19 1 Cd 5f-3 0.0004431188227638 0.0004925687729892 + 20 1 Cd 5f-2 -0.0008293637986578 0.0002649677326402 + 21 1 Cd 5f-1 -0.0000806481077374 0.0001859163802154 + 22 1 Cd 5f0 0.0002199487616233 -0.0003414245744246 + 23 1 Cd 5f+1 0.0005934550919957 -0.0000525718352284 + 24 1 Cd 5f+2 0.0000751076902691 0.0000360699069639 + 25 1 Cd 5f+3 -0.0004221714762854 -0.0000946552887876 + + 26 2 Cd 2s 0.0098035462404770 -0.0081435294768459 + 27 2 Cd 3s -0.0012120266121795 0.0006572819461273 + 28 2 Cd 3py -0.0034043686643331 0.0001041097477927 + 29 2 Cd 3pz 0.0014823458327310 -0.0014077968778627 + 30 2 Cd 3px -0.0018732930082135 -0.0020419322013052 + 31 2 Cd 4py 0.0000049800237687 0.0021132377145729 + 32 2 Cd 4pz 0.0008122217908781 -0.0019157690399885 + 33 2 Cd 4px 0.0005918210942132 0.0001087073506611 + 34 2 Cd 4d-2 -0.2184796201409074 0.1142648867065587 + 35 2 Cd 4d-1 0.0528630155179434 -0.0794429849660749 + 36 2 Cd 4d0 0.0985338436017255 0.1354281937199509 + 37 2 Cd 4d+1 0.0687223825132754 -0.2111766537717171 + 38 2 Cd 4d+2 -0.0922656016371208 0.0026902637384926 + 39 2 Cd 5d-2 0.0000259319315787 -0.0011190848700660 + 40 2 Cd 5d-1 -0.0007928370244129 0.0001716012052937 + 41 2 Cd 5d0 -0.0005327335996546 -0.0003914551835790 + 42 2 Cd 5d+1 0.0009403500375348 0.0029437247088767 + 43 2 Cd 5d+2 -0.0015058382766893 -0.0001945934880298 + 44 2 Cd 5f-3 -0.0000719165106793 0.0005127244268187 + 45 2 Cd 5f-2 -0.0001837992009767 0.0000793847496202 + 46 2 Cd 5f-1 0.0006122856979837 0.0003361306127380 + 47 2 Cd 5f0 -0.0001229965695993 0.0007165345406823 + 48 2 Cd 5f+1 -0.0006837494109290 -0.0001235798095197 + 49 2 Cd 5f+2 -0.0000329104437542 -0.0004466168917807 + 50 2 Cd 5f+3 0.0005518792044890 0.0007680968378962 + + 51 3 Cd 2s 0.0136645280385894 -0.0072918259131011 + 52 3 Cd 3s -0.0015824985124255 0.0004104775457924 + 53 3 Cd 3py -0.0028511956969005 -0.0020474766638480 + 54 3 Cd 3pz 0.0009243342530533 0.0011768439908685 + 55 3 Cd 3px 0.0000152472781586 -0.0003222804006524 + 56 3 Cd 4py 0.0000500597916375 -0.0009342477392881 + 57 3 Cd 4pz -0.0017620128449851 0.0003273256230502 + 58 3 Cd 4px 0.0015238909270481 -0.0000231723053648 + 59 3 Cd 4d-2 -0.0243814376591353 0.0004078487529135 + 60 3 Cd 4d-1 -0.0252312481960398 -0.0112571466538406 + 61 3 Cd 4d0 0.0204514882896546 0.0038740094847091 + 62 3 Cd 4d+1 0.0269722388159030 -0.0142862978797537 + 63 3 Cd 4d+2 -0.0195578820518986 -0.0035934962641952 + 64 3 Cd 5d-2 0.0024566458143525 0.0006151397260952 + 65 3 Cd 5d-1 -0.0005122457504938 0.0011989428485523 + 66 3 Cd 5d0 0.0011516454465384 0.0005382785352686 + 67 3 Cd 5d+1 -0.0014849064961138 0.0018636571842118 + 68 3 Cd 5d+2 0.0002386160576962 0.0008947532378616 + 69 3 Cd 5f-3 0.0002499826214361 0.0001091227583482 + 70 3 Cd 5f-2 -0.0003445090103944 0.0001998404864432 + 71 3 Cd 5f-1 -0.0002125790064313 0.0005148412388898 + 72 3 Cd 5f0 0.0003137970310833 -0.0001340071680814 + 73 3 Cd 5f+1 -0.0004387146424529 0.0001303712928615 + 74 3 Cd 5f+2 -0.0001764898095518 -0.0002296936765200 + 75 3 Cd 5f+3 -0.0001972279106931 0.0002984334012695 + + 76 4 Se 2s 0.0072770425174319 -0.0021765261939987 + 77 4 Se 3s -0.0001002552538807 -0.0003044386479181 + 78 4 Se 3py 0.0000051933491939 -0.0070275216154263 + 79 4 Se 3pz -0.0246120127956196 0.0447407166817786 + 80 4 Se 3px -0.0005799909332887 0.0004502916767304 + 81 4 Se 4py -0.0000984757555463 -0.0005652064327226 + 82 4 Se 4pz -0.0017198072745400 0.0049390220668954 + 83 4 Se 4px 0.0002583323528220 -0.0004184432323770 + 84 4 Se 4d-2 -0.0001295598600188 0.0018385516971265 + 85 4 Se 4d-1 0.0012343501027083 -0.0037387379277007 + 86 4 Se 4d0 -0.0018445377517911 0.0002014724334895 + 87 4 Se 4d+1 0.0026259016382908 -0.0081778528770670 + 88 4 Se 4d+2 -0.0002848763855479 -0.0009022696170829 + + 89 5 Se 2s 0.0030274606762398 0.0129686502498003 + 90 5 Se 3s -0.0000769103825867 -0.0001372185841480 + 91 5 Se 3py 0.0036292406312532 -0.0057020432222114 + 92 5 Se 3pz -0.0041629660796879 0.0032476816168412 + 93 5 Se 3px 0.0016973801825418 -0.0030267630224943 + 94 5 Se 4py 0.0002299510069748 -0.0004401369452309 + 95 5 Se 4pz -0.0008913409866446 0.0005593937489174 + 96 5 Se 4px 0.0000332589425638 -0.0010421044899992 + 97 5 Se 4d-2 -0.0003020099049499 -0.0001038562990348 + 98 5 Se 4d-1 -0.0005138304986602 0.0005347421198696 + 99 5 Se 4d0 -0.0005477083370185 0.0005212432304517 + 100 5 Se 4d+1 0.0004265720577840 -0.0004615612949160 + 101 5 Se 4d+2 -0.0007151875762333 0.0010844520400937 + + 102 6 Se 2s -0.0324851118981050 0.0100203768383528 + 103 6 Se 3s 0.0004209343074315 -0.0002851761566873 + 104 6 Se 3py 0.0112525770246744 -0.0135557373567698 + 105 6 Se 3pz 0.0073488657459545 0.0084605261913226 + 106 6 Se 3px -0.0044103420996857 -0.0006076071601712 + 107 6 Se 4py -0.0000733599161070 0.0000419228647621 + 108 6 Se 4pz -0.0001621683360056 0.0003466776517636 + 109 6 Se 4px -0.0002215093933476 -0.0006461255124684 + 110 6 Se 4d-2 -0.0018552692101829 0.0019502145690694 + 111 6 Se 4d-1 -0.0003230837761392 0.0002318458795470 + 112 6 Se 4d0 0.0000111795851031 0.0018198571825232 + 113 6 Se 4d+1 -0.0014215196736086 -0.0018033401082993 + 114 6 Se 4d+2 -0.0010919563226133 0.0015918218134370 + + 115 7 Se 2s -0.0114577034944475 0.0058961997044360 + 116 7 Se 3s 0.0002184390867473 0.0000047759228552 + 117 7 Se 3py 0.0035692949867642 -0.0063921375573777 + 118 7 Se 3pz -0.0070837754428069 0.0009750160003959 + 119 7 Se 3px 0.0068440636595672 0.0083549040738483 + 120 7 Se 4py -0.0006791745034732 0.0004634785561014 + 121 7 Se 4pz -0.0002110521091552 0.0001782672831277 + 122 7 Se 4px 0.0005627884219565 0.0005004560751614 + 123 7 Se 4d-2 -0.0004218098967949 -0.0018032498424063 + 124 7 Se 4d-1 0.0001536131236463 0.0011663296724777 + 125 7 Se 4d0 0.0012319962234328 0.0002562542211638 + 126 7 Se 4d+1 -0.0012055619383633 -0.0010644717586029 + 127 7 Se 4d+2 0.0000770775136551 0.0002088756440608 + + 128 8 Cd 2s 0.0130592907025996 0.0040431776641488 + 129 8 Cd 3s 0.0002002824817514 0.0004192859395882 + 130 8 Cd 3py -0.0076704963085026 0.0022723585926754 + 131 8 Cd 3pz 0.0001745218465651 -0.0035347781109909 + 132 8 Cd 3px 0.0107898942929506 -0.0017013585949535 + 133 8 Cd 4py 0.0008626086690488 0.0019487198432699 + 134 8 Cd 4pz 0.0000818271843232 -0.0016737809448335 + 135 8 Cd 4px -0.0011634711959846 -0.0004868716700237 + 136 8 Cd 4d-2 0.1552820699120878 -0.1377073654442861 + 137 8 Cd 4d-1 -0.3099497846918666 -0.0686646767939404 + 138 8 Cd 4d0 -0.0523700543190102 -0.1463870673489599 + 139 8 Cd 4d+1 0.2336275684415566 0.0436148605218646 + 140 8 Cd 4d+2 -0.0917201281951780 -0.1347901902259454 + 141 8 Cd 5d-2 -0.0042199656758968 0.0022363351444141 + 142 8 Cd 5d-1 0.0010798680504367 -0.0004595460515019 + 143 8 Cd 5d0 -0.0005385808207759 0.0032308739927166 + 144 8 Cd 5d+1 -0.0019225131180196 0.0007010950119806 + 145 8 Cd 5d+2 0.0027673905279332 0.0049536067691780 + 146 8 Cd 5f-3 -0.0007962824288153 0.0002055782635916 + 147 8 Cd 5f-2 0.0015475133954655 -0.0005028186334913 + 148 8 Cd 5f-1 0.0008321208022944 -0.0000132159015198 + 149 8 Cd 5f0 -0.0004129652239915 0.0001405349559744 + 150 8 Cd 5f+1 0.0001429473545932 0.0003034417929623 + 151 8 Cd 5f+2 -0.0002374689222262 0.0006996213105525 + 152 8 Cd 5f+3 -0.0004750683799709 0.0006735833049780 + + 153 9 Cd 2s 0.0128398196444218 -0.0007964102315577 + 154 9 Cd 3s -0.0016469117416686 0.0020165874791624 + 155 9 Cd 3py -0.0000049599150694 -0.0012962118542245 + 156 9 Cd 3pz -0.0004645684085188 0.0015283710371684 + 157 9 Cd 3px -0.0035918358560595 -0.0050200941593994 + 158 9 Cd 4py 0.0000041643228115 0.0002677871709098 + 159 9 Cd 4pz 0.0010336758405956 -0.0007607975452522 + 160 9 Cd 4px 0.0005701206801306 -0.0003653195556528 + 161 9 Cd 4d-2 0.0091592825682191 0.0164715154041348 + 162 9 Cd 4d-1 -0.0763676826462098 0.1135843288909359 + 163 9 Cd 4d0 -0.0130641202565901 -0.0522659875282526 + 164 9 Cd 4d+1 -0.0407199572208349 -0.0252058605358168 + 165 9 Cd 4d+2 0.1421426038868424 0.0901937244909398 + 166 9 Cd 5d-2 -0.0004084680011375 -0.0001039222623956 + 167 9 Cd 5d-1 -0.0005074758052631 0.0008155458303039 + 168 9 Cd 5d0 -0.0010349423432814 -0.0010313399959328 + 169 9 Cd 5d+1 -0.0010207809274987 0.0006372423762316 + 170 9 Cd 5d+2 0.0026726504057826 0.0024034182341794 + 171 9 Cd 5f-3 0.0003397796825407 -0.0000151201696554 + 172 9 Cd 5f-2 0.0001138020587322 0.0001165786483678 + 173 9 Cd 5f-1 0.0002985247830983 -0.0000660494119976 + 174 9 Cd 5f0 0.0000951970715258 0.0000193678235909 + 175 9 Cd 5f+1 0.0000919032182212 -0.0000317308440772 + 176 9 Cd 5f+2 -0.0001739193163607 -0.0003900217958644 + 177 9 Cd 5f+3 -0.0001953182798258 -0.0004321625449186 + + 178 10 Se 2s -0.0823812867245789 -0.0652809350818334 + 179 10 Se 3s 0.0016790790324473 0.0015259218095345 + 180 10 Se 3py 0.0118973496781808 -0.0026600238278204 + 181 10 Se 3pz -0.0164990503499864 -0.0144187137560050 + 182 10 Se 3px 0.0052223543047483 0.0133861083165741 + 183 10 Se 4py 0.0005065611175355 -0.0001236057980721 + 184 10 Se 4pz -0.0005812332708648 -0.0011603862439665 + 185 10 Se 4px -0.0007473873665597 0.0007887069414459 + 186 10 Se 4d-2 0.0009466671301512 0.0004715082990702 + 187 10 Se 4d-1 -0.0032184299195868 0.0002359394664454 + 188 10 Se 4d0 0.0019629193743930 0.0025877827072754 + 189 10 Se 4d+1 0.0007469010905650 -0.0011075452303765 + 190 10 Se 4d+2 0.0002068147980155 0.0016969335157813 + + 191 11 Se 2s -0.0761666998388676 0.0238019324139992 + 192 11 Se 3s 0.0013331608369657 -0.0003426324912085 + 193 11 Se 3py 0.0142178641454966 -0.0024273319394324 + 194 11 Se 3pz -0.0096999923854226 0.0014727999946798 + 195 11 Se 3px -0.0202520173759076 0.0056362057580883 + 196 11 Se 4py 0.0000263038528943 -0.0003628677471795 + 197 11 Se 4pz -0.0009832004421020 -0.0002791082174075 + 198 11 Se 4px -0.0015180396813745 0.0005254422919352 + 199 11 Se 4d-2 -0.0053269262879687 0.0006585954357962 + 200 11 Se 4d-1 -0.0005763467242196 -0.0005716767290242 + 201 11 Se 4d0 -0.0000173987945385 -0.0009521931638602 + 202 11 Se 4d+1 -0.0000516722880433 0.0007118884125475 + 203 11 Se 4d+2 -0.0005150240851851 0.0005040205682784 + + 204 12 Cd 2s 0.0147271177390566 0.0026089138991491 + 205 12 Cd 3s -0.0001515108794986 -0.0008060510830356 + 206 12 Cd 3py -0.0029390728874582 -0.0000930423577685 + 207 12 Cd 3pz -0.0024964101785381 0.0030269618711155 + 208 12 Cd 3px 0.0070705058842802 -0.0035084174105800 + 209 12 Cd 4py -0.0020985313352296 -0.0010444050160429 + 210 12 Cd 4pz -0.0008169530104961 0.0010233723429319 + 211 12 Cd 4px 0.0002403139715870 -0.0004681896418032 + 212 12 Cd 4d-2 -0.3968885733944326 0.0556892387684577 + 213 12 Cd 4d-1 0.2516829797258061 0.2243060228445394 + 214 12 Cd 4d0 0.1096576946135333 0.1067046720096104 + 215 12 Cd 4d+1 0.0016387455964776 0.1076411484029632 + 216 12 Cd 4d+2 -0.1334795758464448 0.0537961589882824 + 217 12 Cd 5d-2 -0.0006686284579722 -0.0019044833793566 + 218 12 Cd 5d-1 -0.0020284649389815 0.0013831110939907 + 219 12 Cd 5d0 0.0025746687068112 -0.0004472472201613 + 220 12 Cd 5d+1 0.0009999053587897 0.0005237778987845 + 221 12 Cd 5d+2 0.0021890324420289 0.0008228713906807 + 222 12 Cd 5f-3 0.0003391471651802 -0.0001816332931624 + 223 12 Cd 5f-2 -0.0006982824810779 -0.0001036171651402 + 224 12 Cd 5f-1 0.0013446317861375 -0.0001237094074658 + 225 12 Cd 5f0 -0.0010719178606582 0.0003083778748592 + 226 12 Cd 5f+1 -0.0003576369688164 -0.0003984408778893 + 227 12 Cd 5f+2 0.0008576025492662 -0.0003999842752187 + 228 12 Cd 5f+3 0.0005694799114632 0.0001674748405849 + + 229 13 Cd 2s -0.0136522307796914 -0.0023410443455002 + 230 13 Cd 3s 0.0017429454917244 -0.0008968582978175 + 231 13 Cd 3py 0.0016959358565045 0.0020796430168273 + 232 13 Cd 3pz -0.0035693168909386 -0.0053257781599422 + 233 13 Cd 3px -0.0000393542219854 0.0087613093067949 + 234 13 Cd 4py -0.0022432562450653 0.0022726049324104 + 235 13 Cd 4pz -0.0002830584698119 0.0000519323771358 + 236 13 Cd 4px -0.0018824973890701 0.0003675285600290 + 237 13 Cd 4d-2 0.1106006852626498 0.1074436258331044 + 238 13 Cd 4d-1 -0.0679395839590809 0.0261587088493232 + 239 13 Cd 4d0 -0.0544189484776017 0.0106367602799819 + 240 13 Cd 4d+1 -0.0265181539619235 -0.1715872412781738 + 241 13 Cd 4d+2 0.1268873691612728 -0.1551582125491906 + 242 13 Cd 5d-2 0.0022011653806952 -0.0046496197099210 + 243 13 Cd 5d-1 0.0006250035131789 0.0010525635098774 + 244 13 Cd 5d0 -0.0014631664227059 -0.0000456825273077 + 245 13 Cd 5d+1 0.0013609560302068 0.0015090031559715 + 246 13 Cd 5d+2 0.0015295301260077 0.0002998157293044 + 247 13 Cd 5f-3 -0.0005226262753445 0.0002642354561277 + 248 13 Cd 5f-2 -0.0000374505230010 -0.0015149617598367 + 249 13 Cd 5f-1 0.0007488079067636 -0.0008446194633912 + 250 13 Cd 5f0 0.0002726991015684 -0.0006277474872238 + 251 13 Cd 5f+1 0.0009846453948578 -0.0005347427097263 + 252 13 Cd 5f+2 0.0007386940039025 -0.0005612887167820 + 253 13 Cd 5f+3 -0.0011234662810619 0.0010296781153980 + + 254 14 Cd 2s -0.0013440517796592 -0.0130407718359084 + 255 14 Cd 3s 0.0012539106975208 0.0006818239133460 + 256 14 Cd 3py 0.0021655264529820 -0.0003605284148887 + 257 14 Cd 3pz -0.0019280221305105 0.0081681170219185 + 258 14 Cd 3px -0.0005698101666270 0.0008420839563121 + 259 14 Cd 4py -0.0004988337465707 0.0003117411111260 + 260 14 Cd 4pz -0.0004492663971014 -0.0000440435623699 + 261 14 Cd 4px -0.0003599618052651 -0.0003886506255451 + 262 14 Cd 4d-2 -0.0002356066475920 -0.0286740269287319 + 263 14 Cd 4d-1 0.0012155753210739 0.0108689725239015 + 264 14 Cd 4d0 0.0517417868164832 -0.1317072599978938 + 265 14 Cd 4d+1 -0.0125494393697641 -0.0192670847206564 + 266 14 Cd 4d+2 0.0365680987636308 -0.0116217963886137 + 267 14 Cd 5d-2 0.0004953464328166 0.0001869953227464 + 268 14 Cd 5d-1 0.0001905661084863 -0.0013270383313678 + 269 14 Cd 5d0 0.0021634746403692 -0.0033195737693118 + 270 14 Cd 5d+1 -0.0001233110853220 -0.0008256550897432 + 271 14 Cd 5d+2 0.0007112792347698 0.0005779095754895 + 272 14 Cd 5f-3 -0.0003819994080185 -0.0002685603999416 + 273 14 Cd 5f-2 0.0003851380569867 -0.0000061386201450 + 274 14 Cd 5f-1 -0.0007025126066125 0.0008304486713611 + 275 14 Cd 5f0 -0.0003443817164597 0.0001805603340495 + 276 14 Cd 5f+1 0.0001062014511845 -0.0000741167503477 + 277 14 Cd 5f+2 0.0003862977800474 -0.0004275353288317 + 278 14 Cd 5f+3 0.0002536048598352 -0.0000422321223641 + + 279 15 Se 2s -0.0148549868843773 0.0848435863492565 + 280 15 Se 3s 0.0001934893464008 -0.0019760816172541 + 281 15 Se 3py -0.0033836887732279 0.0214883005077872 + 282 15 Se 3pz 0.0022125182693932 0.0105804433061748 + 283 15 Se 3px -0.0119231270997091 0.0240178655192838 + 284 15 Se 4py -0.0001149825774111 -0.0006726280597283 + 285 15 Se 4pz -0.0004501869435450 0.0018432355558698 + 286 15 Se 4px 0.0003048420135967 0.0007457538630258 + 287 15 Se 4d-2 0.0024894588048281 -0.0057096564063546 + 288 15 Se 4d-1 0.0006153814486180 -0.0036599286708464 + 289 15 Se 4d0 0.0004992945806378 0.0000321142482200 + 290 15 Se 4d+1 0.0022695546044422 -0.0021662582475254 + 291 15 Se 4d+2 -0.0010684152482089 0.0025034600087208 + + 292 16 Se 2s 0.0263760826771480 -0.0272110589697742 + 293 16 Se 3s -0.0001804494564371 0.0001730890834250 + 294 16 Se 3py -0.0011715746604091 -0.0019323625681657 + 295 16 Se 3pz -0.0054686960805533 0.0015147964603289 + 296 16 Se 3px 0.0066307953811461 -0.0032530118312598 + 297 16 Se 4py -0.0002823665950544 -0.0011657952860521 + 298 16 Se 4pz -0.0005371353895864 -0.0008878009164154 + 299 16 Se 4px 0.0001975044126642 0.0003920972946803 + 300 16 Se 4d-2 0.0001658122417907 0.0005763217258219 + 301 16 Se 4d-1 -0.0001346376464151 0.0010636859275157 + 302 16 Se 4d0 -0.0008001394874728 0.0005866988866840 + 303 16 Se 4d+1 0.0010758239056601 -0.0003719543570127 + 304 16 Se 4d+2 -0.0010480044172805 -0.0008760611058185 + + 305 17 Cd 2s -0.0086945753346230 -0.0110844594816874 + 306 17 Cd 3s 0.0015933028458452 -0.0002656015941743 + 307 17 Cd 3py -0.0002517730455910 0.0026380595701197 + 308 17 Cd 3pz 0.0003196246550630 -0.0040083447102137 + 309 17 Cd 3px -0.0015284166905359 0.0128868557401589 + 310 17 Cd 4py 0.0009666867325721 -0.0000913535833678 + 311 17 Cd 4pz 0.0014994665743351 0.0004299621598122 + 312 17 Cd 4px -0.0015191147771579 0.0022780366120890 + 313 17 Cd 4d-2 -0.0532978817420878 0.0385426606300935 + 314 17 Cd 4d-1 0.0161994487536802 -0.0399838455862197 + 315 17 Cd 4d0 0.0162486132361758 0.0040001681515915 + 316 17 Cd 4d+1 -0.0317213412998900 -0.0718754310641594 + 317 17 Cd 4d+2 0.0581758287817451 0.0618680674532661 + 318 17 Cd 5d-2 -0.0018495180727018 0.0005468495613468 + 319 17 Cd 5d-1 -0.0001491918734887 0.0015933852084794 + 320 17 Cd 5d0 0.0012666801614215 0.0007891674079557 + 321 17 Cd 5d+1 -0.0019693426974127 0.0064163505227096 + 322 17 Cd 5d+2 0.0005115960899426 -0.0024681537729986 + 323 17 Cd 5f-3 0.0000587608395521 -0.0004863052187090 + 324 17 Cd 5f-2 0.0002730007119687 -0.0002506511769428 + 325 17 Cd 5f-1 -0.0001730382762747 0.0002874809704215 + 326 17 Cd 5f0 -0.0001678484032004 0.0004802209282693 + 327 17 Cd 5f+1 -0.0005232611136438 0.0012510568372457 + 328 17 Cd 5f+2 -0.0000208163886480 -0.0009925118998827 + 329 17 Cd 5f+3 -0.0003086567128686 0.0000844966771741 + + 330 18 Cd 2s 0.0020311734604065 -0.0003150150725305 + 331 18 Cd 3s -0.0001850114920212 0.0007162279797880 + 332 18 Cd 3py -0.0021708871776885 0.0024107652979077 + 333 18 Cd 3pz 0.0037475048522570 -0.0052614753612097 + 334 18 Cd 3px -0.0001578292082718 -0.0028606705138958 + 335 18 Cd 4py -0.0003064131384138 0.0011561231013813 + 336 18 Cd 4pz -0.0010604021827907 -0.0012783458834703 + 337 18 Cd 4px -0.0006619357468625 -0.0007884292210698 + 338 18 Cd 4d-2 0.0323553752543332 -0.0827171202936968 + 339 18 Cd 4d-1 0.0178669537915356 -0.0152799349945920 + 340 18 Cd 4d0 0.1397556717583472 -0.0694270032437521 + 341 18 Cd 4d+1 0.0466109096942665 0.0439468437564226 + 342 18 Cd 4d+2 -0.0815624104117560 0.1090746709431322 + 343 18 Cd 5d-2 -0.0004838811860935 -0.0022692649903408 + 344 18 Cd 5d-1 -0.0009921015366960 -0.0011206196051829 + 345 18 Cd 5d0 0.0023051549818022 -0.0016360170049247 + 346 18 Cd 5d+1 -0.0002007233029032 0.0005621620098687 + 347 18 Cd 5d+2 -0.0001355572374490 -0.0008456289126673 + 348 18 Cd 5f-3 -0.0003839564727961 -0.0000576991058238 + 349 18 Cd 5f-2 -0.0003488823468578 0.0005251301994774 + 350 18 Cd 5f-1 -0.0000472766492514 -0.0000782252097662 + 351 18 Cd 5f0 0.0002894650397827 -0.0006210773929658 + 352 18 Cd 5f+1 -0.0001772283715791 -0.0002705295689116 + 353 18 Cd 5f+2 0.0003328470264734 0.0002712047427609 + 354 18 Cd 5f+3 0.0001786352051177 0.0008367974993621 + + 355 19 Se 2s 0.0189888263818745 -0.0027803716394554 + 356 19 Se 3s -0.0006961910370558 0.0002322102242803 + 357 19 Se 3py -0.0182994979477821 0.0083710379409519 + 358 19 Se 3pz -0.0019266219162562 0.0008729705055999 + 359 19 Se 3px 0.0043740732981953 0.0034187333431138 + 360 19 Se 4py 0.0001261047389956 0.0024599143986076 + 361 19 Se 4pz -0.0005998395019732 0.0003081112534529 + 362 19 Se 4px 0.0004400192512469 0.0001093507894971 + 363 19 Se 4d-2 -0.0012361289210093 0.0006440592138139 + 364 19 Se 4d-1 -0.0027652758079428 0.0009436461555606 + 365 19 Se 4d0 -0.0004646817987863 0.0000333783655325 + 366 19 Se 4d+1 0.0016816082831324 0.0015540619058888 + 367 19 Se 4d+2 0.0007226489858242 -0.0031817337550961 + + 368 20 Se 2s 0.0509820515452262 0.0183912092587243 + 369 20 Se 3s -0.0003411378899449 -0.0003392460540764 + 370 20 Se 3py 0.0293569299043301 0.0149215914394392 + 371 20 Se 3pz -0.0760513824333262 -0.0190852188012633 + 372 20 Se 3px 0.0028240386976992 0.0191558472985398 + 373 20 Se 4py -0.0001212479424290 -0.0026879846856643 + 374 20 Se 4pz -0.0004634686311774 0.0023063999260175 + 375 20 Se 4px -0.0015930430846646 0.0025440743910936 + 376 20 Se 4d-2 -0.0039855882319202 -0.0016941995204085 + 377 20 Se 4d-1 -0.0017928827825217 -0.0022539275339905 + 378 20 Se 4d0 -0.0051360702721208 -0.0000939825136780 + 379 20 Se 4d+1 0.0073884246479805 0.0012548313354820 + 380 20 Se 4d+2 0.0003102453424403 -0.0041040808241095 + + 381 21 Se 2s 0.0259135799885733 -0.0291537773001954 + 382 21 Se 3s -0.0004122605954347 0.0004757583687276 + 383 21 Se 3py -0.0039547374733788 0.0003347571345012 + 384 21 Se 3pz 0.0265956979055403 0.0146461067991513 + 385 21 Se 3px 0.0006332834838925 0.0092782981084024 + 386 21 Se 4py -0.0013687352186954 0.0009230824035129 + 387 21 Se 4pz 0.0021598542986997 0.0008444447259739 + 388 21 Se 4px 0.0007435821117984 0.0016641254008705 + 389 21 Se 4d-2 -0.0017441722058094 -0.0006872560028576 + 390 21 Se 4d-1 -0.0023297830712353 -0.0015875837392732 + 391 21 Se 4d0 -0.0049788648721981 -0.0008694855463399 + 392 21 Se 4d+1 0.0058398193111160 0.0032256179567029 + 393 21 Se 4d+2 0.0001077030734353 0.0026394432000112 + + 394 22 Cd 2s -0.0291933065733614 0.0228615001654053 + 395 22 Cd 3s -0.0001577230379399 -0.0003429104944632 + 396 22 Cd 3py 0.0123085945927422 -0.0132458782488390 + 397 22 Cd 3pz 0.0015458671319935 -0.0075314133660020 + 398 22 Cd 3px -0.0108955376892815 -0.0062275212902844 + 399 22 Cd 4py 0.0006754187916122 -0.0029834616610642 + 400 22 Cd 4pz 0.0003904861807500 -0.0019266935307314 + 401 22 Cd 4px 0.0015999656715211 -0.0009921466501375 + 402 22 Cd 4d-2 -0.1476678892173624 -0.4335625247321693 + 403 22 Cd 4d-1 -0.0999652990628490 -0.0812998118265272 + 404 22 Cd 4d0 -0.4262714566943540 0.1151052455155229 + 405 22 Cd 4d+1 0.1289022647470357 0.2321087356681762 + 406 22 Cd 4d+2 -0.0500117457133319 0.2805187189669003 + 407 22 Cd 5d-2 0.0039119079706530 0.0043289093435899 + 408 22 Cd 5d-1 -0.0001702453932133 0.0002022570399081 + 409 22 Cd 5d0 0.0022198051969415 -0.0043144102644428 + 410 22 Cd 5d+1 0.0002212577443723 -0.0028889717784327 + 411 22 Cd 5d+2 -0.0006981706261315 -0.0027729434474293 + 412 22 Cd 5f-3 0.0007299274216411 0.0010004670127460 + 413 22 Cd 5f-2 0.0000556251727775 0.0010173783173185 + 414 22 Cd 5f-1 -0.0003234866581333 -0.0000436865056197 + 415 22 Cd 5f0 -0.0004254413250575 -0.0009081620030892 + 416 22 Cd 5f+1 0.0002179667198166 0.0000739245397570 + 417 22 Cd 5f+2 -0.0004040295095424 0.0000207063498328 + 418 22 Cd 5f+3 0.0008896328236899 0.0005140396813482 + + 419 23 Se 2s 0.0276258332066744 0.0033503858665674 + 420 23 Se 3s -0.0000449116153282 -0.0000501178458290 + 421 23 Se 3py -0.0221633470531127 -0.0008044676965795 + 422 23 Se 3pz -0.0121858783712587 -0.0089275892691288 + 423 23 Se 3px 0.0011503969841153 -0.0006712275752137 + 424 23 Se 4py -0.0023817244338833 -0.0015641607338805 + 425 23 Se 4pz 0.0003698979447027 -0.0023666494636110 + 426 23 Se 4px 0.0001660181456137 0.0006234842097509 + 427 23 Se 4d-2 -0.0034799190549706 -0.0009191553996280 + 428 23 Se 4d-1 -0.0050079647456824 0.0017255891438269 + 429 23 Se 4d0 -0.0021071119148541 -0.0035454949962807 + 430 23 Se 4d+1 -0.0012742984045622 0.0000717192307817 + 431 23 Se 4d+2 0.0008483304418171 -0.0024971922639460 + + 432 24 Se 2s 0.0052443973203880 -0.0502634313237908 + 433 24 Se 3s -0.0001733564722626 0.0011402637290820 + 434 24 Se 3py -0.0003858711079566 0.0026470145656672 + 435 24 Se 3pz -0.0055475084018527 -0.0116322825328964 + 436 24 Se 3px -0.0008305831730372 0.0137850166205449 + 437 24 Se 4py -0.0003265815529551 -0.0009789345824413 + 438 24 Se 4pz 0.0007467482561168 -0.0015364396815568 + 439 24 Se 4px 0.0000650918316832 0.0011666692512157 + 440 24 Se 4d-2 0.0001649895877413 0.0002514224380433 + 441 24 Se 4d-1 0.0014082270371476 -0.0015124677999800 + 442 24 Se 4d0 0.0006833406018908 -0.0004535496358254 + 443 24 Se 4d+1 -0.0012548960290127 -0.0028177617304144 + 444 24 Se 4d+2 0.0000020972353810 0.0021900497158691 + + 445 25 Cd 2s -0.0225631989367654 0.0101600302982547 + 446 25 Cd 3s 0.0002194925540488 -0.0006211590165683 + 447 25 Cd 3py -0.0084563791723239 0.0126748892676526 + 448 25 Cd 3pz -0.0037803195388005 0.0045287263628841 + 449 25 Cd 3px -0.0066298327188082 -0.0012554790268904 + 450 25 Cd 4py 0.0007765288345244 0.0004045017487609 + 451 25 Cd 4pz -0.0006513842954811 0.0001917614629710 + 452 25 Cd 4px -0.0000416662601051 0.0001646008135397 + 453 25 Cd 4d-2 0.2533112083465957 -0.0406510628482334 + 454 25 Cd 4d-1 0.0057327354365524 -0.2327630334058361 + 455 25 Cd 4d0 -0.0880604611515844 0.1183019941723311 + 456 25 Cd 4d+1 0.0899034715738480 -0.1466287940947908 + 457 25 Cd 4d+2 -0.0489073554376383 0.3639026247627111 + 458 25 Cd 5d-2 -0.0033887620725714 0.0031195652605818 + 459 25 Cd 5d-1 0.0028080863051069 0.0036035388514230 + 460 25 Cd 5d0 -0.0016033588658308 -0.0005397703503995 + 461 25 Cd 5d+1 -0.0018037897013816 0.0014356261155454 + 462 25 Cd 5d+2 0.0004995689437765 -0.0019209400700342 + 463 25 Cd 5f-3 -0.0005179013230255 0.0014866929889888 + 464 25 Cd 5f-2 0.0007454435554969 0.0000384909058281 + 465 25 Cd 5f-1 0.0005725344411039 0.0004941288216759 + 466 25 Cd 5f0 -0.0007724194450144 0.0004389710819856 + 467 25 Cd 5f+1 -0.0003589726162250 0.0003261019513795 + 468 25 Cd 5f+2 -0.0004118735717745 -0.0002600171987650 + 469 25 Cd 5f+3 -0.0000059411287339 -0.0000279972805618 + + 470 26 Cd 2s -0.0049305463384643 0.0171004873070632 + 471 26 Cd 3s 0.0006278654987475 -0.0029252141502221 + 472 26 Cd 3py -0.0012920699867115 -0.0015436993924330 + 473 26 Cd 3pz -0.0018622345959948 0.0010303255942346 + 474 26 Cd 3px -0.0015702287659157 0.0024841191334369 + 475 26 Cd 4py -0.0004567953175207 0.0005130291600132 + 476 26 Cd 4pz -0.0000487407286730 0.0015577193860360 + 477 26 Cd 4px 0.0004136393375267 -0.0013426721823518 + 478 26 Cd 4d-2 -0.0079834368719453 0.0602952063573472 + 479 26 Cd 4d-1 -0.0039664225588549 0.0248555778137789 + 480 26 Cd 4d0 0.0241871286384596 -0.0725016699797276 + 481 26 Cd 4d+1 -0.0572825042910054 -0.0338068916177984 + 482 26 Cd 4d+2 -0.0081816342624054 -0.0222944476144395 + 483 26 Cd 5d-2 -0.0011305413779092 0.0010860069691253 + 484 26 Cd 5d-1 0.0000843748173826 0.0012257233640181 + 485 26 Cd 5d0 -0.0000814465826691 -0.0027784106705295 + 486 26 Cd 5d+1 -0.0011952744205661 0.0019015396810075 + 487 26 Cd 5d+2 -0.0004249158744323 -0.0012913796849693 + 488 26 Cd 5f-3 -0.0003414715870730 -0.0000560727262087 + 489 26 Cd 5f-2 0.0001231295907482 0.0003043737750125 + 490 26 Cd 5f-1 -0.0001685803450089 -0.0001456072299494 + 491 26 Cd 5f0 0.0003203970557724 -0.0002110025308623 + 492 26 Cd 5f+1 0.0001355548749558 -0.0013767538410480 + 493 26 Cd 5f+2 -0.0001349547551600 0.0005048861123849 + 494 26 Cd 5f+3 -0.0001050297208578 -0.0001310017536544 + + 41 42 + -0.4706192740735877 -0.4699469498243031 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0004116166788710 0.0039528204207228 + 2 1 Cd 3s -0.0007610690392280 -0.0008898960739487 + 3 1 Cd 3py -0.0007599821495183 0.0022328511141366 + 4 1 Cd 3pz -0.0018245619019368 0.0015553065985982 + 5 1 Cd 3px 0.0003461022045380 0.0001585596657674 + 6 1 Cd 4py 0.0001190520221778 -0.0004721454559193 + 7 1 Cd 4pz -0.0012529561116090 0.0001857776899804 + 8 1 Cd 4px 0.0002515449328856 0.0004031902138346 + 9 1 Cd 4d-2 0.0043172781195628 0.0063380792977226 + 10 1 Cd 4d-1 -0.0311917369412943 -0.0178061140254601 + 11 1 Cd 4d0 0.0142544621168316 0.0130277165415618 + 12 1 Cd 4d+1 0.0167566214558978 -0.0064936633270423 + 13 1 Cd 4d+2 0.0060653550294838 0.0275913860112153 + 14 1 Cd 5d-2 0.0002713088631389 0.0004290825238972 + 15 1 Cd 5d-1 0.0001953014891417 -0.0008179597723249 + 16 1 Cd 5d0 -0.0012869404276692 0.0008192246212524 + 17 1 Cd 5d+1 0.0007271522331442 -0.0002475461045549 + 18 1 Cd 5d+2 -0.0006283214025930 -0.0005103486938901 + 19 1 Cd 5f-3 -0.0000980450527042 -0.0002517934193932 + 20 1 Cd 5f-2 -0.0002072974942895 0.0006236907585234 + 21 1 Cd 5f-1 -0.0002249445776318 -0.0002727929594965 + 22 1 Cd 5f0 0.0003313325759275 -0.0000145935667102 + 23 1 Cd 5f+1 0.0004214692900004 -0.0000752344142757 + 24 1 Cd 5f+2 0.0003925253804607 -0.0002450191938290 + 25 1 Cd 5f+3 0.0001792365415623 0.0002980820715334 + + 26 2 Cd 2s 0.0002987260548097 0.0101528279387037 + 27 2 Cd 3s 0.0006637178143081 -0.0011217991627893 + 28 2 Cd 3py -0.0001543832243190 -0.0009630109285100 + 29 2 Cd 3pz -0.0015429144736382 -0.0031908821074250 + 30 2 Cd 3px -0.0015932661111369 -0.0002260691376422 + 31 2 Cd 4py 0.0006379559134432 0.0001911511811071 + 32 2 Cd 4pz -0.0013209072595127 0.0003055651481281 + 33 2 Cd 4px 0.0002789147557264 0.0016353009036064 + 34 2 Cd 4d-2 -0.0231221581336836 -0.1084470864798447 + 35 2 Cd 4d-1 -0.0857859754049239 0.0010349494087025 + 36 2 Cd 4d0 0.0293213992557089 0.0405438117224651 + 37 2 Cd 4d+1 -0.1382791104938773 -0.1968464564517430 + 38 2 Cd 4d+2 0.0496152999682812 -0.0827803987607944 + 39 2 Cd 5d-2 0.0007477687708022 0.0001078125112097 + 40 2 Cd 5d-1 -0.0001107070629457 0.0002449160857937 + 41 2 Cd 5d0 -0.0005889264520799 0.0007854357620954 + 42 2 Cd 5d+1 0.0009631270075481 0.0007812943755667 + 43 2 Cd 5d+2 0.0002280743549231 -0.0026084173676100 + 44 2 Cd 5f-3 -0.0000316762022002 0.0006165538175929 + 45 2 Cd 5f-2 -0.0002738950030778 -0.0004230108126247 + 46 2 Cd 5f-1 0.0006633816795513 0.0004526731271398 + 47 2 Cd 5f0 0.0001537633101954 0.0005736131149020 + 48 2 Cd 5f+1 0.0002103900302948 -0.0007821737933227 + 49 2 Cd 5f+2 -0.0001095085710109 0.0001310786771903 + 50 2 Cd 5f+3 -0.0004922780845452 0.0009394461544689 + + 51 3 Cd 2s -0.0001516780290535 -0.0127918712105021 + 52 3 Cd 3s -0.0004098025886302 0.0009629562406048 + 53 3 Cd 3py -0.0001406679357120 -0.0014477507746404 + 54 3 Cd 3pz -0.0004234333694008 0.0012695465945160 + 55 3 Cd 3px 0.0034678674772894 0.0043250922051728 + 56 3 Cd 4py 0.0009397802813362 -0.0015063608686816 + 57 3 Cd 4pz -0.0003195327595694 -0.0000069184390454 + 58 3 Cd 4px 0.0010504906248715 -0.0013715167130908 + 59 3 Cd 4d-2 -0.0404200223943010 0.0124930812086650 + 60 3 Cd 4d-1 0.0096354439197129 -0.0163654446655077 + 61 3 Cd 4d0 0.0099079865110076 -0.0439307801844560 + 62 3 Cd 4d+1 0.0090732356501198 -0.0008931536209414 + 63 3 Cd 4d+2 0.0501214200958707 0.0471582178804087 + 64 3 Cd 5d-2 0.0020076124855851 -0.0006759859714312 + 65 3 Cd 5d-1 -0.0010969164395606 0.0013624328017543 + 66 3 Cd 5d0 0.0007064359663506 0.0026362856506962 + 67 3 Cd 5d+1 0.0011231951122356 0.0004213808357650 + 68 3 Cd 5d+2 -0.0020422752392965 -0.0000796057517742 + 69 3 Cd 5f-3 0.0001160466892680 0.0002434047765785 + 70 3 Cd 5f-2 0.0001536815442900 -0.0002159943486853 + 71 3 Cd 5f-1 0.0002356183396194 0.0003779663547628 + 72 3 Cd 5f0 0.0001531941160901 -0.0003970497706430 + 73 3 Cd 5f+1 -0.0009046042115095 -0.0001855354880953 + 74 3 Cd 5f+2 0.0003505363834705 0.0002475049600136 + 75 3 Cd 5f+3 -0.0001425819841086 0.0002755602546376 + + 76 4 Se 2s 0.0009936820103425 -0.0286531737979458 + 77 4 Se 3s -0.0004032984095845 0.0005125694697805 + 78 4 Se 3py -0.0037243641938227 0.0008552277230250 + 79 4 Se 3pz 0.0205652034218723 0.0028244177563136 + 80 4 Se 3px 0.0035294462550733 -0.0082508343763003 + 81 4 Se 4py -0.0016659735464534 -0.0000686933468776 + 82 4 Se 4pz 0.0016829143890962 0.0005880318166093 + 83 4 Se 4px 0.0005125167797922 -0.0002166683300340 + 84 4 Se 4d-2 0.0004864139254931 0.0000715139000639 + 85 4 Se 4d-1 -0.0022067850960345 -0.0023850319679083 + 86 4 Se 4d0 0.0014806998488770 -0.0002836471141669 + 87 4 Se 4d+1 -0.0039677204477789 0.0002101384173541 + 88 4 Se 4d+2 -0.0008415214643753 0.0006990752823856 + + 89 5 Se 2s -0.0034960548244203 0.0002029110124553 + 90 5 Se 3s 0.0001586750804341 0.0000276208169322 + 91 5 Se 3py -0.0016560278332918 -0.0035982137025206 + 92 5 Se 3pz 0.0024348637523932 0.0029820467129650 + 93 5 Se 3px -0.0013511808852668 -0.0020037806340861 + 94 5 Se 4py -0.0010081963691045 0.0006425914585443 + 95 5 Se 4pz 0.0010369871416670 0.0006046430303973 + 96 5 Se 4px 0.0001208440302087 0.0008888878176208 + 97 5 Se 4d-2 -0.0000517649801362 0.0002573973126048 + 98 5 Se 4d-1 0.0002707296478545 0.0005970163665960 + 99 5 Se 4d0 0.0002536085798083 0.0003923299517468 + 100 5 Se 4d+1 -0.0001232052947962 -0.0000737903273800 + 101 5 Se 4d+2 0.0004836045022831 0.0008606484937966 + + 102 6 Se 2s 0.0069907799907359 -0.0135708067162961 + 103 6 Se 3s -0.0002921026928832 0.0000650106652185 + 104 6 Se 3py -0.0015349452629991 0.0016263750826155 + 105 6 Se 3pz -0.0017710761051695 -0.0040079092409087 + 106 6 Se 3px 0.0021137236182877 -0.0029447631363215 + 107 6 Se 4py 0.0001033028268332 0.0006145180552198 + 108 6 Se 4pz 0.0001790616805650 -0.0001044536110664 + 109 6 Se 4px 0.0000923588298583 0.0002826580499951 + 110 6 Se 4d-2 0.0005725445030090 -0.0005424258698853 + 111 6 Se 4d-1 0.0004987007838153 -0.0007430808181885 + 112 6 Se 4d0 -0.0001006533956132 0.0000666984241836 + 113 6 Se 4d+1 -0.0000096717194432 0.0002714770411162 + 114 6 Se 4d+2 -0.0001701602856301 0.0000890847919915 + + 115 7 Se 2s -0.0361512595381060 -0.0411681286632422 + 116 7 Se 3s 0.0011902918220491 0.0011396033578415 + 117 7 Se 3py -0.0092232364555820 -0.0109921779890843 + 118 7 Se 3pz -0.0092746219245423 -0.0141336670326150 + 119 7 Se 3px -0.0023448187613983 0.0033154365039121 + 120 7 Se 4py -0.0008682567372446 -0.0006802422608404 + 121 7 Se 4pz -0.0006567322761846 -0.0006926886764755 + 122 7 Se 4px -0.0000067170352546 -0.0003530865019578 + 123 7 Se 4d-2 0.0005562433060831 -0.0004027186848230 + 124 7 Se 4d-1 0.0017105730162937 0.0028846281336214 + 125 7 Se 4d0 0.0006909113164878 0.0017822964933414 + 126 7 Se 4d+1 0.0003486277944453 -0.0003802030360442 + 127 7 Se 4d+2 -0.0014791029799439 -0.0003043257562484 + + 128 8 Cd 2s -0.0137731991647566 0.0303411780158524 + 129 8 Cd 3s -0.0006659251716204 0.0006062195115643 + 130 8 Cd 3py 0.0011114700305814 -0.0059544878765824 + 131 8 Cd 3pz 0.0075349820510576 -0.0107538629118291 + 132 8 Cd 3px 0.0049187031809210 0.0052819817909913 + 133 8 Cd 4py -0.0004098854201970 -0.0009833043753466 + 134 8 Cd 4pz 0.0020352037282119 0.0001049922457492 + 135 8 Cd 4px 0.0009114888673935 -0.0001948612584488 + 136 8 Cd 4d-2 0.1621364888390197 0.0872605498400204 + 137 8 Cd 4d-1 -0.1608714343122224 -0.0484572250092834 + 138 8 Cd 4d0 0.1354718842169197 -0.1663267846737523 + 139 8 Cd 4d+1 0.1816558596912019 0.2817295509359861 + 140 8 Cd 4d+2 0.0136729429259757 -0.0683807570333996 + 141 8 Cd 5d-2 -0.0046038476788253 -0.0008775990252501 + 142 8 Cd 5d-1 -0.0016241072302902 0.0018459507681174 + 143 8 Cd 5d0 -0.0017719898805016 -0.0006755643956044 + 144 8 Cd 5d+1 -0.0024640676785455 -0.0020128585541479 + 145 8 Cd 5d+2 -0.0015214316095111 -0.0015365694134967 + 146 8 Cd 5f-3 -0.0004557689306357 0.0004477801974216 + 147 8 Cd 5f-2 0.0010155948916578 -0.0000622775865323 + 148 8 Cd 5f-1 0.0001493753697955 0.0003629192637442 + 149 8 Cd 5f0 0.0000256469607441 0.0005420778930452 + 150 8 Cd 5f+1 -0.0004773312615577 -0.0001273137539687 + 151 8 Cd 5f+2 -0.0007067147980298 0.0006596151167452 + 152 8 Cd 5f+3 -0.0005057402165232 -0.0003846922938874 + + 153 9 Cd 2s -0.0020914331584147 -0.0002536846561852 + 154 9 Cd 3s 0.0001578375033269 -0.0005302046203811 + 155 9 Cd 3py -0.0013403821726244 -0.0004626237737997 + 156 9 Cd 3pz 0.0009747839390851 0.0009633725206014 + 157 9 Cd 3px 0.0005629466358245 0.0014676564940274 + 158 9 Cd 4py 0.0003091089251416 0.0000681082153895 + 159 9 Cd 4pz 0.0002001266007195 0.0004419590909581 + 160 9 Cd 4px -0.0000648710198522 0.0000675653876243 + 161 9 Cd 4d-2 0.0612576215328998 0.0150659348690681 + 162 9 Cd 4d-1 0.0650228094559724 0.0416332490016556 + 163 9 Cd 4d0 0.0671361260941446 0.0372081803060217 + 164 9 Cd 4d+1 0.0438907232665671 -0.0117884982616247 + 165 9 Cd 4d+2 0.0141154163944787 0.0239005804449776 + 166 9 Cd 5d-2 0.0009108458968220 0.0004123555983995 + 167 9 Cd 5d-1 0.0013249332736608 0.0010520304560512 + 168 9 Cd 5d0 0.0000705806683804 -0.0002974583873116 + 169 9 Cd 5d+1 0.0001372510278931 -0.0007302499429525 + 170 9 Cd 5d+2 -0.0002398118463564 0.0000622231195375 + 171 9 Cd 5f-3 -0.0002771635154806 -0.0002654406838563 + 172 9 Cd 5f-2 -0.0003054599779387 -0.0004213954040178 + 173 9 Cd 5f-1 -0.0004104696390110 -0.0006512829522135 + 174 9 Cd 5f0 -0.0002554235894721 -0.0003830049916095 + 175 9 Cd 5f+1 -0.0002583288930582 0.0001723751951155 + 176 9 Cd 5f+2 -0.0001820745685366 -0.0001621960100843 + 177 9 Cd 5f+3 -0.0003112709315074 -0.0001322289834400 + + 178 10 Se 2s 0.0129615999736335 0.0070700418444499 + 179 10 Se 3s -0.0003282923387527 -0.0000715316307157 + 180 10 Se 3py 0.0193201144964726 -0.0047120399319866 + 181 10 Se 3pz 0.0066294323591143 0.0014575626351403 + 182 10 Se 3px -0.0000586502961477 -0.0025681690433060 + 183 10 Se 4py 0.0010421192626823 0.0004198247982619 + 184 10 Se 4pz -0.0001471804314512 0.0002815308011660 + 185 10 Se 4px -0.0004418493576136 0.0005348710027951 + 186 10 Se 4d-2 0.0000980287064469 0.0015401597442024 + 187 10 Se 4d-1 -0.0043766552770893 -0.0000234740041666 + 188 10 Se 4d0 -0.0024080861752543 0.0000343628332533 + 189 10 Se 4d+1 -0.0003204750285564 0.0013539143085720 + 190 10 Se 4d+2 -0.0007851830413738 0.0014544450532745 + + 191 11 Se 2s -0.0705450761435219 0.0512587742298078 + 192 11 Se 3s 0.0011170823850834 -0.0001636125009280 + 193 11 Se 3py 0.0160191967827712 -0.0033691104560132 + 194 11 Se 3pz -0.0125414230049303 0.0010060158826323 + 195 11 Se 3px -0.0167433645681071 0.0153591179767676 + 196 11 Se 4py 0.0007225702171829 0.0002798949165316 + 197 11 Se 4pz -0.0000706833840714 -0.0007527275837934 + 198 11 Se 4px -0.0004158009710225 0.0011584288208886 + 199 11 Se 4d-2 -0.0035967605339392 0.0033095534186308 + 200 11 Se 4d-1 -0.0012234309923872 -0.0018789403604422 + 201 11 Se 4d0 -0.0002206285008343 -0.0026052559892509 + 202 11 Se 4d+1 0.0011026049320470 0.0018562407537446 + 203 11 Se 4d+2 -0.0019473126379958 -0.0016062331919254 + + 204 12 Cd 2s 0.0076865378307257 -0.0167456761910147 + 205 12 Cd 3s 0.0012537441087190 -0.0002017406370349 + 206 12 Cd 3py 0.0013790714129761 -0.0025015630789909 + 207 12 Cd 3pz -0.0035616951670534 0.0010452473319970 + 208 12 Cd 3px 0.0024192247099547 -0.0086659974207507 + 209 12 Cd 4py 0.0010041118864606 0.0004872247431576 + 210 12 Cd 4pz -0.0002471727156196 -0.0007064392483407 + 211 12 Cd 4px 0.0004433639796678 -0.0011423440092411 + 212 12 Cd 4d-2 -0.0489109720894361 0.2490937971709452 + 213 12 Cd 4d-1 0.1127936689047296 -0.0809024210928406 + 214 12 Cd 4d0 -0.3492171960587305 0.1362172614992153 + 215 12 Cd 4d+1 -0.3410060638701283 -0.5692128032564610 + 216 12 Cd 4d+2 0.0643259964134564 0.1896257450506651 + 217 12 Cd 5d-2 -0.0004640465500164 -0.0023045222947571 + 218 12 Cd 5d-1 -0.0005668492952154 -0.0034739198408291 + 219 12 Cd 5d0 -0.0013830212532094 0.0015935737704874 + 220 12 Cd 5d+1 0.0001867275285656 0.0032010174902125 + 221 12 Cd 5d+2 -0.0027477144113928 0.0008575292237775 + 222 12 Cd 5f-3 -0.0003638465750086 0.0004212811422817 + 223 12 Cd 5f-2 0.0003827222130342 -0.0001757240654311 + 224 12 Cd 5f-1 -0.0010969016482243 0.0011608601672537 + 225 12 Cd 5f0 -0.0002696548418686 0.0001858287530237 + 226 12 Cd 5f+1 0.0001431984390947 -0.0005947716313696 + 227 12 Cd 5f+2 0.0002044696653763 0.0012355457834525 + 228 12 Cd 5f+3 -0.0003814102282401 0.0009488636503168 + + 229 13 Cd 2s -0.0088997844423086 0.0039772052646553 + 230 13 Cd 3s 0.0003107969509512 -0.0003665337201300 + 231 13 Cd 3py 0.0009204606530996 -0.0011843856793362 + 232 13 Cd 3pz -0.0010943346227879 0.0037880862612228 + 233 13 Cd 3px 0.0052321996589259 0.0027103810488056 + 234 13 Cd 4py -0.0001623923775924 0.0005288834119624 + 235 13 Cd 4pz -0.0008033423655152 0.0000269053840788 + 236 13 Cd 4px -0.0004038052799281 -0.0008506704869043 + 237 13 Cd 4d-2 -0.0097078199413424 0.0392183715865147 + 238 13 Cd 4d-1 0.0640001092226442 0.0220556359196815 + 239 13 Cd 4d0 0.0445870514752510 -0.0753501441803525 + 240 13 Cd 4d+1 -0.2161695328370135 0.1346861684993910 + 241 13 Cd 4d+2 0.0879132414335799 0.0123626078397920 + 242 13 Cd 5d-2 -0.0006153015266140 0.0002125448851067 + 243 13 Cd 5d-1 -0.0003677543654963 -0.0006969642548263 + 244 13 Cd 5d0 -0.0001832134202191 0.0010906994788523 + 245 13 Cd 5d+1 0.0048366120162950 -0.0006885743602955 + 246 13 Cd 5d+2 -0.0015457817060937 0.0009067626074571 + 247 13 Cd 5f-3 0.0008816854536947 -0.0000887079097028 + 248 13 Cd 5f-2 -0.0002660207336177 0.0003240518428017 + 249 13 Cd 5f-1 0.0000360996992849 0.0000834757717935 + 250 13 Cd 5f0 -0.0002882540950161 0.0004591985072196 + 251 13 Cd 5f+1 0.0009957617912403 -0.0004171505572474 + 252 13 Cd 5f+2 0.0000417046165390 0.0001315621970783 + 253 13 Cd 5f+3 -0.0006400994271059 -0.0001163123927073 + + 254 14 Cd 2s 0.0057691977697878 0.0008353991862490 + 255 14 Cd 3s 0.0010907838259254 -0.0004984015862753 + 256 14 Cd 3py -0.0013999309056644 0.0009708429458904 + 257 14 Cd 3pz -0.0007097341636608 0.0012995057295481 + 258 14 Cd 3px -0.0002563954758027 -0.0004096002164723 + 259 14 Cd 4py -0.0009997780305510 0.0009466562851875 + 260 14 Cd 4pz -0.0007930786759726 -0.0003019936339898 + 261 14 Cd 4px -0.0001593512252523 -0.0000866825960817 + 262 14 Cd 4d-2 -0.0141403117622295 0.0086613176268094 + 263 14 Cd 4d-1 -0.0584778287826294 0.0208821987994340 + 264 14 Cd 4d0 0.0279246050084438 0.0127049666895061 + 265 14 Cd 4d+1 0.0129355427974407 -0.0022559412144620 + 266 14 Cd 4d+2 0.0171342294326725 0.0001788336339599 + 267 14 Cd 5d-2 -0.0000158936510372 0.0000788948715054 + 268 14 Cd 5d-1 -0.0002565883486581 -0.0006732863455026 + 269 14 Cd 5d0 0.0011940201378968 0.0010084469163778 + 270 14 Cd 5d+1 0.0008723981377064 0.0003674999771734 + 271 14 Cd 5d+2 -0.0010720141609436 0.0009049460969530 + 272 14 Cd 5f-3 0.0001469099302822 -0.0002660637505136 + 273 14 Cd 5f-2 -0.0001139113987743 -0.0000826689468874 + 274 14 Cd 5f-1 -0.0001295104816051 -0.0002309267447009 + 275 14 Cd 5f0 -0.0002741296740509 -0.0002847380767227 + 276 14 Cd 5f+1 -0.0001880046552113 -0.0001655736111139 + 277 14 Cd 5f+2 0.0001468126550530 0.0000677531829622 + 278 14 Cd 5f+3 0.0002209718896002 -0.0000071526722869 + + 279 15 Se 2s -0.0339097744468261 0.0207163034473809 + 280 15 Se 3s 0.0009244363138000 -0.0007904538643935 + 281 15 Se 3py -0.0149263852884924 0.0096717036467793 + 282 15 Se 3pz 0.0094411226951945 -0.0031638344472650 + 283 15 Se 3px 0.0114891640472676 -0.0028304418873823 + 284 15 Se 4py -0.0015409719391223 0.0003767927497324 + 285 15 Se 4pz 0.0002064722359938 -0.0008170644260782 + 286 15 Se 4px 0.0011605972118560 0.0001435731771860 + 287 15 Se 4d-2 -0.0025802794938729 0.0008935688281127 + 288 15 Se 4d-1 -0.0008996322843029 0.0012313002361249 + 289 15 Se 4d0 -0.0015282815167139 0.0016576259296110 + 290 15 Se 4d+1 -0.0003350507570679 0.0003299968370153 + 291 15 Se 4d+2 -0.0043378140172453 0.0019377182362978 + + 292 16 Se 2s 0.0070923475013148 -0.0007858087427217 + 293 16 Se 3s 0.0000789306102106 -0.0000959155351457 + 294 16 Se 3py 0.0243802851442164 -0.0124766974864774 + 295 16 Se 3pz 0.0172678591969719 -0.0086337471922053 + 296 16 Se 3px 0.0142178028267780 -0.0081107657029875 + 297 16 Se 4py 0.0031959894008018 -0.0013080230369243 + 298 16 Se 4pz 0.0018784145993222 -0.0009039951459996 + 299 16 Se 4px 0.0013105108560247 -0.0012222060741125 + 300 16 Se 4d-2 -0.0032918444806806 0.0013324746959198 + 301 16 Se 4d-1 0.0019070002432527 -0.0014242691936821 + 302 16 Se 4d0 0.0041082715679585 -0.0019845731294319 + 303 16 Se 4d+1 -0.0000534941415566 -0.0000057364709864 + 304 16 Se 4d+2 -0.0002648268025076 0.0010255928343592 + + 305 17 Cd 2s 0.0139025418449634 -0.0124038540171048 + 306 17 Cd 3s -0.0032889817882810 0.0027792020708136 + 307 17 Cd 3py -0.0036005833883848 0.0006146279801839 + 308 17 Cd 3pz 0.0005960076355532 -0.0010623475566745 + 309 17 Cd 3px -0.0057152970751880 0.0044190416062603 + 310 17 Cd 4py -0.0011866059001785 0.0004314599309846 + 311 17 Cd 4pz -0.0010681565214298 0.0005980605379942 + 312 17 Cd 4px -0.0000834323055953 0.0002441696947680 + 313 17 Cd 4d-2 -0.1066479638886502 0.0325379414409127 + 314 17 Cd 4d-1 -0.0045514501970579 0.0132544964385788 + 315 17 Cd 4d0 0.0876604388789135 -0.0483546302997485 + 316 17 Cd 4d+1 0.0882430998197057 -0.0445982898737411 + 317 17 Cd 4d+2 -0.1158881414562029 0.0073559095594257 + 318 17 Cd 5d-2 0.0009050530662202 0.0004165912519765 + 319 17 Cd 5d-1 -0.0006507158236691 0.0001654351520504 + 320 17 Cd 5d0 -0.0005750727124946 -0.0000049165628187 + 321 17 Cd 5d+1 -0.0013202900979662 0.0010271374289881 + 322 17 Cd 5d+2 0.0015350971133299 -0.0010410560589000 + 323 17 Cd 5f-3 0.0009268202712100 -0.0001119725247358 + 324 17 Cd 5f-2 -0.0000330506971627 0.0003257250245204 + 325 17 Cd 5f-1 0.0007809018683522 -0.0004112596802994 + 326 17 Cd 5f0 0.0002760880900926 0.0000060913987468 + 327 17 Cd 5f+1 0.0002097413868866 -0.0000998900166767 + 328 17 Cd 5f+2 -0.0000069031887294 0.0001093195873647 + 329 17 Cd 5f+3 0.0004649552876998 0.0004346187194999 + + 330 18 Cd 2s 0.0031667893470089 -0.0068164680053037 + 331 18 Cd 3s 0.0006416134725919 0.0003734077041995 + 332 18 Cd 3py -0.0020794661410556 -0.0000226130617310 + 333 18 Cd 3pz 0.0069277870169753 -0.0046705531985647 + 334 18 Cd 3px 0.0014235300269952 -0.0013248969812346 + 335 18 Cd 4py 0.0005056196048281 0.0007711382274197 + 336 18 Cd 4pz 0.0007163624264442 -0.0001386445830852 + 337 18 Cd 4px 0.0001370652131425 -0.0003796269824595 + 338 18 Cd 4d-2 0.1323820584987146 0.0552875243892822 + 339 18 Cd 4d-1 -0.0019637563364137 -0.1022972542925195 + 340 18 Cd 4d0 0.1351510736246920 -0.1806136802849991 + 341 18 Cd 4d+1 -0.0397178263796710 -0.0027585451855773 + 342 18 Cd 4d+2 0.1023729516566366 0.1517423431033793 + 343 18 Cd 5d-2 0.0015087492739661 -0.0004524385552191 + 344 18 Cd 5d-1 0.0010933265486204 0.0007314336228310 + 345 18 Cd 5d0 0.0021220397023807 -0.0027716027157532 + 346 18 Cd 5d+1 -0.0010130333133392 -0.0000705646870803 + 347 18 Cd 5d+2 0.0001684024118339 0.0008864305748691 + 348 18 Cd 5f-3 -0.0000573139568785 0.0005617888997371 + 349 18 Cd 5f-2 -0.0002258461093345 0.0003788389047415 + 350 18 Cd 5f-1 0.0003425889998526 -0.0001985249801676 + 351 18 Cd 5f0 0.0002680024231697 -0.0005964543189926 + 352 18 Cd 5f+1 0.0000178335468596 -0.0001626518529830 + 353 18 Cd 5f+2 -0.0005696331490590 -0.0003048087157702 + 354 18 Cd 5f+3 -0.0008351512356316 0.0001348781046628 + + 355 19 Se 2s 0.0091174476016959 0.0111475651855432 + 356 19 Se 3s -0.0001069403115518 -0.0001706185246263 + 357 19 Se 3py -0.0171692650094140 0.0079672636325699 + 358 19 Se 3pz 0.0033506925334369 -0.0064258631478617 + 359 19 Se 3px 0.0020429066680950 0.0055142204537669 + 360 19 Se 4py -0.0019605797545023 0.0008937598235950 + 361 19 Se 4pz 0.0012857107213575 -0.0001855507193726 + 362 19 Se 4px -0.0010886787417424 0.0010399944840673 + 363 19 Se 4d-2 -0.0005951953693190 0.0025946621771034 + 364 19 Se 4d-1 -0.0005147756538336 -0.0002641902536204 + 365 19 Se 4d0 0.0007628030292483 -0.0005315056303505 + 366 19 Se 4d+1 -0.0005463713757883 0.0006332268515779 + 367 19 Se 4d+2 0.0026688790802007 -0.0006007915183589 + + 368 20 Se 2s 0.0096515695691895 -0.0052318150396203 + 369 20 Se 3s -0.0001903589895585 -0.0002244614981245 + 370 20 Se 3py -0.0075084925789589 -0.0640581201038843 + 371 20 Se 3pz 0.0005410868932052 -0.0225782094452959 + 372 20 Se 3px -0.0011460520744620 -0.0163085634841563 + 373 20 Se 4py 0.0037688512258527 -0.0016840187349703 + 374 20 Se 4pz 0.0020291439062095 -0.0015313862418100 + 375 20 Se 4px 0.0014807854752194 0.0037625318865567 + 376 20 Se 4d-2 -0.0003215532731084 0.0057190034929057 + 377 20 Se 4d-1 -0.0006867451360147 -0.0070108015366960 + 378 20 Se 4d0 -0.0033256714246942 -0.0031147255558527 + 379 20 Se 4d+1 -0.0021528727670784 -0.0002083505345590 + 380 20 Se 4d+2 -0.0028359662924840 -0.0005032244722640 + + 381 21 Se 2s -0.0141938092242066 -0.0363977345286658 + 382 21 Se 3s 0.0000624960311300 0.0007951047144822 + 383 21 Se 3py -0.0153570993581058 -0.0015632876358222 + 384 21 Se 3pz -0.0025232193526912 -0.0139404105494590 + 385 21 Se 3px 0.0160266933430648 0.0049939944710075 + 386 21 Se 4py -0.0009278666101637 0.0001181990516720 + 387 21 Se 4pz 0.0002911861880745 0.0008884914946937 + 388 21 Se 4px 0.0014080184323624 -0.0014555974016793 + 389 21 Se 4d-2 -0.0032698005617781 -0.0011185233599638 + 390 21 Se 4d-1 0.0021524850953592 -0.0005769494961840 + 391 21 Se 4d0 -0.0039789454963941 0.0030278590988430 + 392 21 Se 4d+1 -0.0015659823845546 0.0003845660450403 + 393 21 Se 4d+2 0.0000622326636753 -0.0012664902027014 + + 394 22 Cd 2s -0.0112773966623759 0.0067906543175764 + 395 22 Cd 3s 0.0002656097587641 0.0006703927562089 + 396 22 Cd 3py 0.0046842273656310 -0.0030115362767650 + 397 22 Cd 3pz -0.0043932457591895 0.0096248977940613 + 398 22 Cd 3px 0.0000229894093639 -0.0019093730398256 + 399 22 Cd 4py 0.0005814611169975 0.0006275527478388 + 400 22 Cd 4pz -0.0022455469344076 0.0017279912179043 + 401 22 Cd 4px 0.0010791461566848 -0.0005426876429189 + 402 22 Cd 4d-2 0.1702023557847510 -0.0555646313368779 + 403 22 Cd 4d-1 -0.0603288370895268 0.0992498032679829 + 404 22 Cd 4d0 0.2234156912966103 -0.1289529570063020 + 405 22 Cd 4d+1 0.2917199426651259 -0.3803153871813966 + 406 22 Cd 4d+2 0.2872038569007402 -0.0089665503211462 + 407 22 Cd 5d-2 -0.0028746054703810 0.0011758387328646 + 408 22 Cd 5d-1 0.0023498066097823 -0.0006453411324277 + 409 22 Cd 5d0 -0.0001579901000908 0.0013243826716745 + 410 22 Cd 5d+1 -0.0044809163863882 0.0040009309335457 + 411 22 Cd 5d+2 0.0010393790087254 -0.0017777243851501 + 412 22 Cd 5f-3 -0.0010486629611660 0.0006729912202326 + 413 22 Cd 5f-2 0.0010950462029336 -0.0007804238460113 + 414 22 Cd 5f-1 -0.0006861002142817 0.0007283935937283 + 415 22 Cd 5f0 0.0000887491452245 -0.0002729731735464 + 416 22 Cd 5f+1 -0.0012323223325972 -0.0000009420843015 + 417 22 Cd 5f+2 -0.0005946065281253 0.0004367655613101 + 418 22 Cd 5f+3 -0.0009231670786637 0.0003843248910040 + + 419 23 Se 2s 0.0309675785173590 0.0124937292415461 + 420 23 Se 3s -0.0015438222604560 0.0002288548066687 + 421 23 Se 3py 0.0397590689815530 -0.0138834108505544 + 422 23 Se 3pz 0.0019037785409470 -0.0082017757907222 + 423 23 Se 3px -0.0107034324392131 0.0120980678103464 + 424 23 Se 4py 0.0031762786132140 -0.0011711860273112 + 425 23 Se 4pz 0.0007453526998153 -0.0003437997019951 + 426 23 Se 4px -0.0008600354849741 0.0014693413398998 + 427 23 Se 4d-2 0.0017935009233980 -0.0001389567245320 + 428 23 Se 4d-1 0.0080114999661880 -0.0032461721653745 + 429 23 Se 4d0 0.0023791283777725 -0.0021136580062874 + 430 23 Se 4d+1 -0.0032129598022310 0.0026888355891337 + 431 23 Se 4d+2 0.0018185817150057 0.0012879912250374 + + 432 24 Se 2s 0.0563758942515336 0.0258338114859164 + 433 24 Se 3s -0.0011812631977873 -0.0009046132383981 + 434 24 Se 3py 0.0015830801287685 -0.0014276043802133 + 435 24 Se 3pz 0.0076225650486321 -0.0089684272897001 + 436 24 Se 3px -0.0248797484983872 -0.0119906659787165 + 437 24 Se 4py 0.0009085140725635 -0.0001558560178765 + 438 24 Se 4pz 0.0012647914396858 -0.0007705757323912 + 439 24 Se 4px -0.0013905103480456 -0.0008139367679022 + 440 24 Se 4d-2 -0.0003322588843245 -0.0007164927767389 + 441 24 Se 4d-1 -0.0004882015784163 -0.0004133576558999 + 442 24 Se 4d0 0.0028540408778840 0.0019537677905539 + 443 24 Se 4d+1 0.0018132364360899 -0.0021740319113584 + 444 24 Se 4d+2 -0.0043749813045831 -0.0018967222971721 + + 445 25 Cd 2s 0.0280074534403539 -0.0124309973295420 + 446 25 Cd 3s 0.0005038022587408 0.0006881214776422 + 447 25 Cd 3py 0.0059795844853368 -0.0007061652308071 + 448 25 Cd 3pz 0.0109907329633247 -0.0004710871162863 + 449 25 Cd 3px 0.0066006051927243 -0.0052294462214729 + 450 25 Cd 4py 0.0013160877349711 -0.0000347522704805 + 451 25 Cd 4pz 0.0026238846552937 0.0006113623348130 + 452 25 Cd 4px -0.0005626120794161 0.0001189260276401 + 453 25 Cd 4d-2 -0.2042766769467639 0.1106615270239849 + 454 25 Cd 4d-1 0.2083658946642663 -0.0742042889090926 + 455 25 Cd 4d0 -0.1884519545717252 -0.0418425064953301 + 456 25 Cd 4d+1 0.1207361806362633 0.0981612430703490 + 457 25 Cd 4d+2 0.0586950801813304 0.1354215266304137 + 458 25 Cd 5d-2 0.0047131581606057 -0.0019245190674084 + 459 25 Cd 5d-1 -0.0008018219212041 0.0002239392400225 + 460 25 Cd 5d0 0.0033967797300089 0.0030212062022804 + 461 25 Cd 5d+1 0.0011851549877436 -0.0011640344924373 + 462 25 Cd 5d+2 -0.0014804527201476 0.0008677021012122 + 463 25 Cd 5f-3 -0.0001704931514857 -0.0000530584778056 + 464 25 Cd 5f-2 0.0005551445271168 -0.0008454192499132 + 465 25 Cd 5f-1 0.0000354087235359 0.0000879068538071 + 466 25 Cd 5f0 0.0003336577207054 0.0007103866715564 + 467 25 Cd 5f+1 -0.0002555065902849 0.0007322665803535 + 468 25 Cd 5f+2 0.0006243520500783 -0.0004774637200723 + 469 25 Cd 5f+3 -0.0014923133921773 0.0006889965639584 + + 470 26 Cd 2s -0.0103356406885709 0.0027111066128132 + 471 26 Cd 3s 0.0007197622031224 -0.0014198805971170 + 472 26 Cd 3py 0.0089483374713680 0.0010294209694449 + 473 26 Cd 3pz 0.0025295678877608 0.0009162719260076 + 474 26 Cd 3px -0.0008587589200834 0.0009361455545678 + 475 26 Cd 4py 0.0006168946631885 -0.0005578145830405 + 476 26 Cd 4pz 0.0002176128645348 -0.0003724425300679 + 477 26 Cd 4px 0.0000121617533676 -0.0009766634595990 + 478 26 Cd 4d-2 0.0009559611260290 -0.0193480542743502 + 479 26 Cd 4d-1 -0.0225248737756573 0.0141602812393640 + 480 26 Cd 4d0 0.0130720314414317 -0.0280879080294335 + 481 26 Cd 4d+1 -0.0140756251883519 0.0128654676508267 + 482 26 Cd 4d+2 0.0467760481630993 0.0179518402863701 + 483 26 Cd 5d-2 0.0033938290057558 -0.0005076504243480 + 484 26 Cd 5d-1 -0.0009488575762018 -0.0003339129817496 + 485 26 Cd 5d0 0.0012602285145868 -0.0000737032872428 + 486 26 Cd 5d+1 0.0016005674129495 0.0002641200429721 + 487 26 Cd 5d+2 0.0019141973485064 0.0004666720325431 + 488 26 Cd 5f-3 0.0008738472975148 -0.0002804274104276 + 489 26 Cd 5f-2 -0.0004797487713768 -0.0000037538464492 + 490 26 Cd 5f-1 -0.0004044367141596 0.0003109276295736 + 491 26 Cd 5f0 -0.0008805888059460 0.0004842987407727 + 492 26 Cd 5f+1 -0.0001752127400550 0.0000403516700581 + 493 26 Cd 5f+2 0.0003487550992301 0.0006290617069349 + 494 26 Cd 5f+3 0.0007724460458342 0.0003353448032180 + + 43 44 + -0.4694856964166030 -0.4685574116900081 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0039966139299517 0.0147718795458100 + 2 1 Cd 3s 0.0018031373409362 -0.0007475765350762 + 3 1 Cd 3py -0.0047196244020002 0.0079421171194099 + 4 1 Cd 3pz -0.0017159846595129 -0.0003814819251497 + 5 1 Cd 3px -0.0023529527720406 -0.0065033802184031 + 6 1 Cd 4py -0.0002117581260472 0.0001005025276684 + 7 1 Cd 4pz 0.0001817220082668 -0.0011124593279221 + 8 1 Cd 4px -0.0012744082940485 -0.0008711730229189 + 9 1 Cd 4d-2 -0.0075665790142441 0.0787853149353480 + 10 1 Cd 4d-1 0.0409461852732330 -0.0758154033342734 + 11 1 Cd 4d0 -0.0153712379122689 0.0453197094543527 + 12 1 Cd 4d+1 -0.0062508319765508 0.0106249643994207 + 13 1 Cd 4d+2 -0.0340710555160057 0.0646713116698087 + 14 1 Cd 5d-2 0.0021919542206265 -0.0039020934389976 + 15 1 Cd 5d-1 -0.0013963403568674 0.0001667921606053 + 16 1 Cd 5d0 0.0006580692164451 -0.0028020079896384 + 17 1 Cd 5d+1 0.0009734055649220 0.0002334189615450 + 18 1 Cd 5d+2 0.0019550261810878 0.0010983087010274 + 19 1 Cd 5f-3 -0.0002679443023669 0.0010203231818241 + 20 1 Cd 5f-2 0.0002495484420084 -0.0001872177170343 + 21 1 Cd 5f-1 -0.0001876643996099 -0.0001661295121758 + 22 1 Cd 5f0 0.0004659198020100 0.0001509226815100 + 23 1 Cd 5f+1 0.0001508116126688 0.0005934777622940 + 24 1 Cd 5f+2 -0.0001049438724580 0.0001243195282227 + 25 1 Cd 5f+3 0.0002711315693522 -0.0001933992258968 + + 26 2 Cd 2s -0.0007165511077405 -0.0005679480534936 + 27 2 Cd 3s -0.0002498436113455 0.0007995378661519 + 28 2 Cd 3py -0.0027962071433893 -0.0016875023612316 + 29 2 Cd 3pz 0.0014726135131060 -0.0016795391489716 + 30 2 Cd 3px 0.0011430156669068 -0.0026356821967886 + 31 2 Cd 4py 0.0000761945189262 0.0007352619533468 + 32 2 Cd 4pz 0.0006691385193212 -0.0020236055809384 + 33 2 Cd 4px -0.0006453758455424 0.0008444845606524 + 34 2 Cd 4d-2 -0.1723881517432728 0.0789157507709360 + 35 2 Cd 4d-1 0.1188683500220517 -0.2109317306071165 + 36 2 Cd 4d0 -0.0187933244759067 0.0574166230243515 + 37 2 Cd 4d+1 0.1013963942254875 -0.1457579829405117 + 38 2 Cd 4d+2 0.0720531933899036 -0.0662984888768612 + 39 2 Cd 5d-2 -0.0001017301738588 -0.0003903727862304 + 40 2 Cd 5d-1 0.0001319244482815 0.0013415337615220 + 41 2 Cd 5d0 -0.0008690248762383 0.0001689726222145 + 42 2 Cd 5d+1 0.0007797567949032 0.0011892483346570 + 43 2 Cd 5d+2 -0.0010090511381975 -0.0000269600209976 + 44 2 Cd 5f-3 -0.0002728066447145 0.0004312969102497 + 45 2 Cd 5f-2 -0.0002697161180691 0.0002641274740838 + 46 2 Cd 5f-1 0.0001076709538513 -0.0001205888957494 + 47 2 Cd 5f0 0.0002395446691275 0.0004912448593621 + 48 2 Cd 5f+1 0.0001754166452834 -0.0002721886262257 + 49 2 Cd 5f+2 0.0007612604176112 -0.0003367164820680 + 50 2 Cd 5f+3 -0.0002015057337946 0.0010171979648252 + + 51 3 Cd 2s -0.0007298857350604 -0.0063227633558828 + 52 3 Cd 3s 0.0004087610013786 0.0002386519053123 + 53 3 Cd 3py -0.0006315241571976 0.0023245512960451 + 54 3 Cd 3pz 0.0039822212280260 0.0019718614341321 + 55 3 Cd 3px -0.0030965882998559 0.0016788534310231 + 56 3 Cd 4py -0.0019052266687022 0.0001324442176154 + 57 3 Cd 4pz -0.0005438791775860 0.0005367021831112 + 58 3 Cd 4px -0.0027951127715888 0.0001758462378241 + 59 3 Cd 4d-2 0.0232128209984552 0.0111757642599330 + 60 3 Cd 4d-1 -0.0259973228809479 -0.0080789152712813 + 61 3 Cd 4d0 -0.0371643321298967 0.0227650386730779 + 62 3 Cd 4d+1 0.0236453524268509 -0.0371729022426195 + 63 3 Cd 4d+2 -0.0397251715083410 0.0300596508486164 + 64 3 Cd 5d-2 -0.0014886551334552 -0.0010525031151439 + 65 3 Cd 5d-1 0.0009539009683959 0.0013272474840595 + 66 3 Cd 5d0 0.0003271942126562 0.0000056427786822 + 67 3 Cd 5d+1 0.0002471438328867 0.0025531755313127 + 68 3 Cd 5d+2 0.0024965113595426 -0.0003151313742222 + 69 3 Cd 5f-3 0.0002001542470578 0.0006419770426544 + 70 3 Cd 5f-2 -0.0000350730942656 0.0007978952056781 + 71 3 Cd 5f-1 -0.0006935449266673 -0.0001449116499124 + 72 3 Cd 5f0 -0.0001081262424460 -0.0004790434822179 + 73 3 Cd 5f+1 0.0001774906729503 -0.0002529911165441 + 74 3 Cd 5f+2 -0.0001467193342390 -0.0004589867679310 + 75 3 Cd 5f+3 -0.0004719637716103 0.0004209869079490 + + 76 4 Se 2s 0.0223269138118532 -0.0025293394018699 + 77 4 Se 3s 0.0000661500222637 -0.0003476390198220 + 78 4 Se 3py -0.0054375172414059 0.0139441710453424 + 79 4 Se 3pz -0.0204266078009988 0.0380942737982445 + 80 4 Se 3px 0.0065137184392746 -0.0050997521231662 + 81 4 Se 4py -0.0007411002333810 0.0008437093270957 + 82 4 Se 4pz -0.0017225310729959 0.0036615321771594 + 83 4 Se 4px 0.0007548731338976 -0.0000669939829132 + 84 4 Se 4d-2 0.0001189285295235 -0.0019514002128207 + 85 4 Se 4d-1 0.0022728254599020 -0.0050466302092622 + 86 4 Se 4d0 -0.0018862334228577 0.0008265825212242 + 87 4 Se 4d+1 0.0029549561914197 -0.0066725795253853 + 88 4 Se 4d+2 -0.0012931313492704 0.0013806904692892 + + 89 5 Se 2s -0.0048241253879089 0.0085746602873552 + 90 5 Se 3s 0.0001342586888965 0.0001734922216605 + 91 5 Se 3py 0.0026624014589433 -0.0068607228919703 + 92 5 Se 3pz -0.0055941545784062 0.0071429034600354 + 93 5 Se 3px 0.0011959072196162 -0.0066804394337408 + 94 5 Se 4py 0.0013217234808571 -0.0008638767607931 + 95 5 Se 4pz -0.0001709045389450 0.0014528890539817 + 96 5 Se 4px 0.0017927273102648 -0.0013709063547358 + 97 5 Se 4d-2 0.0003933510108071 -0.0009612822059281 + 98 5 Se 4d-1 -0.0006425886799087 0.0013660478376188 + 99 5 Se 4d0 -0.0010511221426840 0.0008021371900855 + 100 5 Se 4d+1 0.0010687404236340 -0.0007713615349737 + 101 5 Se 4d+2 -0.0005684593465855 0.0016703183123568 + + 102 6 Se 2s -0.0289871948548392 0.0066879451747651 + 103 6 Se 3s 0.0004767846182593 -0.0001403003599994 + 104 6 Se 3py 0.0093258731264729 -0.0053853978806515 + 105 6 Se 3pz 0.0057307179551975 0.0032647048555157 + 106 6 Se 3px -0.0006050643525495 -0.0007315365731744 + 107 6 Se 4py 0.0001884461036772 0.0004964546416088 + 108 6 Se 4pz -0.0002231840152916 0.0005348698112948 + 109 6 Se 4px -0.0001122821093254 -0.0001658445770893 + 110 6 Se 4d-2 -0.0007024667785864 0.0001845548425301 + 111 6 Se 4d-1 -0.0008275420075845 0.0004488708405204 + 112 6 Se 4d0 0.0008013187678978 0.0000283553526434 + 113 6 Se 4d+1 -0.0013128919489836 -0.0005128845346111 + 114 6 Se 4d+2 -0.0016237799580151 0.0006408336272766 + + 115 7 Se 2s 0.0034642299946012 -0.0039070115750692 + 116 7 Se 3s -0.0000438650373044 0.0000690837967693 + 117 7 Se 3py 0.0129483274947954 -0.0045711756191496 + 118 7 Se 3pz -0.0073510349805425 0.0001748198446317 + 119 7 Se 3px 0.0082286226987039 -0.0076142203241521 + 120 7 Se 4py 0.0006504958100774 0.0002985835930758 + 121 7 Se 4pz -0.0003181331778148 -0.0000326498810847 + 122 7 Se 4px 0.0009168144549097 -0.0001801198763343 + 123 7 Se 4d-2 -0.0013923294843106 0.0003288823963100 + 124 7 Se 4d-1 -0.0009180130432688 0.0005425400994044 + 125 7 Se 4d0 0.0024985991410674 -0.0002589559666681 + 126 7 Se 4d+1 -0.0011671096181523 0.0017271300227478 + 127 7 Se 4d+2 0.0007126353780029 0.0001943785122691 + + 128 8 Cd 2s 0.0004681445172768 0.0119403239361246 + 129 8 Cd 3s 0.0003100155208568 -0.0009066443483201 + 130 8 Cd 3py -0.0048031917198813 -0.0062642651461537 + 131 8 Cd 3pz 0.0020837694731495 -0.0025602306936972 + 132 8 Cd 3px -0.0041044949563677 0.0028548523624477 + 133 8 Cd 4py 0.0003042885939676 -0.0023027156374901 + 134 8 Cd 4pz -0.0007442453961088 0.0000453304494192 + 135 8 Cd 4px -0.0019436673008931 0.0021127135890565 + 136 8 Cd 4d-2 0.0349871819016000 0.1167681084813168 + 137 8 Cd 4d-1 -0.1226020083949522 0.1189928935173572 + 138 8 Cd 4d0 -0.2737680371766703 0.0533509781343280 + 139 8 Cd 4d+1 -0.0650936191420441 -0.0777953763207632 + 140 8 Cd 4d+2 -0.1196765490664043 -0.0901659493436615 + 141 8 Cd 5d-2 0.0011147540647304 0.0023041271179751 + 142 8 Cd 5d-1 0.0021317760202541 0.0026693868649142 + 143 8 Cd 5d0 0.0013787369485956 0.0004216947017181 + 144 8 Cd 5d+1 0.0035050930166707 -0.0000783596326199 + 145 8 Cd 5d+2 0.0006144943332262 -0.0005125132422313 + 146 8 Cd 5f-3 0.0006537078890877 -0.0002490267051068 + 147 8 Cd 5f-2 -0.0001512106896967 -0.0013551419849160 + 148 8 Cd 5f-1 -0.0002146002355719 0.0004354572693247 + 149 8 Cd 5f0 0.0004549286986214 -0.0005134932347025 + 150 8 Cd 5f+1 -0.0000412314401386 -0.0000873380354368 + 151 8 Cd 5f+2 0.0014197423347634 0.0008965939717014 + 152 8 Cd 5f+3 0.0013938869774951 -0.0003280227583574 + + 153 9 Cd 2s 0.0190706466058856 -0.0064795344404793 + 154 9 Cd 3s -0.0006184515489919 0.0003501379708316 + 155 9 Cd 3py 0.0043980877073141 -0.0016986346661548 + 156 9 Cd 3pz -0.0047143574199432 0.0034635517547100 + 157 9 Cd 3px -0.0044398496937483 -0.0015556566570812 + 158 9 Cd 4py 0.0004682149690519 -0.0000202128288089 + 159 9 Cd 4pz -0.0003923956084595 0.0003651756205399 + 160 9 Cd 4px 0.0002781520370649 -0.0001816342572808 + 161 9 Cd 4d-2 -0.0283909369924291 -0.0600082686638440 + 162 9 Cd 4d-1 -0.1141822918702025 0.0582631775630383 + 163 9 Cd 4d0 -0.0872528165902033 -0.0094931142010024 + 164 9 Cd 4d+1 -0.0983722040528228 0.0496267354199141 + 165 9 Cd 4d+2 0.1008247108285896 0.0275131297228715 + 166 9 Cd 5d-2 -0.0011546076857138 -0.0003900172176141 + 167 9 Cd 5d-1 -0.0034873578007444 0.0013588807730904 + 168 9 Cd 5d0 -0.0001318602784376 -0.0012523300704258 + 169 9 Cd 5d+1 0.0000001909434054 0.0005573105336351 + 170 9 Cd 5d+2 0.0013470515589856 0.0003794859176516 + 171 9 Cd 5f-3 0.0001345298945085 0.0001114224480091 + 172 9 Cd 5f-2 0.0005741089558648 0.0000638343731828 + 173 9 Cd 5f-1 0.0008479345636258 -0.0004807422814808 + 174 9 Cd 5f0 0.0005035102353270 0.0000137897576163 + 175 9 Cd 5f+1 0.0000029288727404 0.0000022386652367 + 176 9 Cd 5f+2 0.0003493974778753 0.0000807361185466 + 177 9 Cd 5f+3 0.0002401005101581 -0.0000620657968433 + + 178 10 Se 2s -0.0854950464784769 -0.0062461238797285 + 179 10 Se 3s 0.0018385924206929 0.0000158513944898 + 180 10 Se 3py -0.0067692215258019 -0.0031874250498908 + 181 10 Se 3pz -0.0232437604482263 -0.0016285747379614 + 182 10 Se 3px -0.0005987797033246 0.0047769113888496 + 183 10 Se 4py -0.0004609599829821 0.0001797961680233 + 184 10 Se 4pz -0.0007060737679527 0.0000095203943511 + 185 10 Se 4px -0.0001427885389205 0.0005545000944913 + 186 10 Se 4d-2 0.0004826500356919 -0.0004064794636472 + 187 10 Se 4d-1 0.0004766406120642 0.0014636073440290 + 188 10 Se 4d0 0.0045717437185814 0.0000891107251949 + 189 10 Se 4d+1 0.0020202321932350 -0.0010522185698828 + 190 10 Se 4d+2 0.0009470964759233 0.0002291786748140 + + 191 11 Se 2s 0.0759140207461337 0.0027749179542202 + 192 11 Se 3s -0.0010098620799012 -0.0001880110689000 + 193 11 Se 3py -0.0150498148620126 0.0068901449173826 + 194 11 Se 3pz 0.0059508488421736 0.0103347206554519 + 195 11 Se 3px 0.0127685331282378 0.0020561519646559 + 196 11 Se 4py -0.0018319721755627 0.0001724395452612 + 197 11 Se 4pz -0.0017030948017626 0.0007048510667161 + 198 11 Se 4px 0.0011167914159013 0.0004916733496920 + 199 11 Se 4d-2 0.0033804085076331 0.0007818958738054 + 200 11 Se 4d-1 -0.0012401605870754 0.0010655241383339 + 201 11 Se 4d0 -0.0016948136868420 -0.0002717896519410 + 202 11 Se 4d+1 0.0008938512466427 0.0002947497320268 + 203 11 Se 4d+2 0.0021296525804335 -0.0017180367539551 + + 204 12 Cd 2s -0.0188345514549208 -0.0118603896295934 + 205 12 Cd 3s -0.0003693165274830 -0.0009508621382175 + 206 12 Cd 3py -0.0052057847000058 -0.0062435411525866 + 207 12 Cd 3pz 0.0088427945276176 0.0029276989388314 + 208 12 Cd 3px -0.0006620716323722 0.0004350441702140 + 209 12 Cd 4py -0.0005890328438038 -0.0020317856522178 + 210 12 Cd 4pz 0.0010471246211335 0.0001731020858097 + 211 12 Cd 4px -0.0001618674103673 -0.0004595016067087 + 212 12 Cd 4d-2 0.1443167221955573 -0.0967808968954482 + 213 12 Cd 4d-1 0.0453610044179294 -0.0638146176987730 + 214 12 Cd 4d0 0.4428098784826460 -0.0097264895107638 + 215 12 Cd 4d+1 -0.0030057709892622 0.2709840428301768 + 216 12 Cd 4d+2 -0.1065028294636146 0.1764511929767363 + 217 12 Cd 5d-2 -0.0014584923939552 -0.0010603667191898 + 218 12 Cd 5d-1 0.0000166452119920 0.0015957086743979 + 219 12 Cd 5d0 -0.0006641321104282 0.0008415054106455 + 220 12 Cd 5d+1 0.0010420131676666 -0.0021087324426734 + 221 12 Cd 5d+2 0.0027741714576445 0.0017057088541624 + 222 12 Cd 5f-3 -0.0001905674245436 0.0002591300928009 + 223 12 Cd 5f-2 -0.0003082308898193 -0.0001611538940951 + 224 12 Cd 5f-1 0.0004996259792305 0.0002461837449456 + 225 12 Cd 5f0 0.0006036563728388 0.0007499062740089 + 226 12 Cd 5f+1 -0.0006068069888032 0.0003514887184258 + 227 12 Cd 5f+2 -0.0001157909977746 -0.0005263742595206 + 228 12 Cd 5f+3 0.0002127788625213 0.0001787146560742 + + 229 13 Cd 2s -0.0000790832530635 -0.0122527770934676 + 230 13 Cd 3s -0.0001113298432170 -0.0000668741303763 + 231 13 Cd 3py -0.0006015002001637 0.0021766206500138 + 232 13 Cd 3pz -0.0007435494225708 -0.0018720665396883 + 233 13 Cd 3px -0.0008168343351531 0.0065848634953227 + 234 13 Cd 4py -0.0010960992693688 0.0000520926938306 + 235 13 Cd 4pz 0.0004597255219052 -0.0020071442815854 + 236 13 Cd 4px 0.0024531588175790 -0.0024334926733220 + 237 13 Cd 4d-2 -0.0567536465552555 0.2659119415625877 + 238 13 Cd 4d-1 -0.0091941227404067 0.1463926705675287 + 239 13 Cd 4d0 0.0677058231449441 0.0784537629146276 + 240 13 Cd 4d+1 -0.0197558292309120 -0.1012512941398563 + 241 13 Cd 4d+2 -0.0033173115271687 0.0577834895650809 + 242 13 Cd 5d-2 -0.0011602060544822 -0.0013741647390068 + 243 13 Cd 5d-1 -0.0003017838539249 -0.0012796432268327 + 244 13 Cd 5d0 -0.0002573024538713 -0.0008779282600350 + 245 13 Cd 5d+1 0.0001843333287303 0.0040934269049187 + 246 13 Cd 5d+2 -0.0019414903113895 0.0026261210300660 + 247 13 Cd 5f-3 0.0003413321327799 0.0000524398675578 + 248 13 Cd 5f-2 -0.0000180483846348 -0.0004762605627693 + 249 13 Cd 5f-1 -0.0003234693261436 -0.0007415235220310 + 250 13 Cd 5f0 -0.0001552752182766 -0.0008037607865704 + 251 13 Cd 5f+1 -0.0009103298913067 0.0010713873989683 + 252 13 Cd 5f+2 -0.0000309223980383 -0.0004584915121728 + 253 13 Cd 5f+3 0.0000481404215506 -0.0014464301331815 + + 254 14 Cd 2s -0.0058525101855183 -0.0065580154085981 + 255 14 Cd 3s 0.0016103408845904 0.0010613781055573 + 256 14 Cd 3py 0.0041858934003817 0.0006243766972601 + 257 14 Cd 3pz -0.0032263237952773 0.0022525367647780 + 258 14 Cd 3px -0.0001199173887518 0.0005298793239893 + 259 14 Cd 4py -0.0008337411624593 0.0004635251998611 + 260 14 Cd 4pz -0.0005301016411432 -0.0008306918693218 + 261 14 Cd 4px -0.0005167888677690 0.0001128948478339 + 262 14 Cd 4d-2 -0.0229465718157046 -0.0031688403280501 + 263 14 Cd 4d-1 0.0060511295738799 -0.0077944906375792 + 264 14 Cd 4d0 0.0440102453998585 -0.0593953981617165 + 265 14 Cd 4d+1 -0.0075970435325100 -0.0067258904600497 + 266 14 Cd 4d+2 0.0522355297409946 -0.0089591745575436 + 267 14 Cd 5d-2 0.0002561072139527 -0.0004020136913424 + 268 14 Cd 5d-1 0.0010388517185361 -0.0005545176239842 + 269 14 Cd 5d0 0.0019166970460492 -0.0001472715546115 + 270 14 Cd 5d+1 -0.0001239195825362 -0.0001353414315245 + 271 14 Cd 5d+2 0.0014439373782486 0.0005965744232980 + 272 14 Cd 5f-3 -0.0006571724209224 -0.0001681116371825 + 273 14 Cd 5f-2 0.0001860974158893 0.0001131735833912 + 274 14 Cd 5f-1 -0.0005326393661409 0.0001868472976492 + 275 14 Cd 5f0 -0.0001431887135842 -0.0001530273817987 + 276 14 Cd 5f+1 -0.0000815587305829 -0.0003393656155723 + 277 14 Cd 5f+2 0.0004151925233512 -0.0001638121267295 + 278 14 Cd 5f+3 0.0000126960671189 -0.0001691376434493 + + 279 15 Se 2s -0.0341999483209047 0.0344306912285236 + 280 15 Se 3s 0.0007346758878317 -0.0004724750097241 + 281 15 Se 3py -0.0103872020501613 0.0074219166766124 + 282 15 Se 3pz 0.0086896173886729 0.0163497719317164 + 283 15 Se 3px -0.0000175831821235 -0.0039495751975839 + 284 15 Se 4py -0.0002543639263874 -0.0009645846649148 + 285 15 Se 4pz 0.0009205466969557 -0.0002035378327632 + 286 15 Se 4px -0.0006548506139128 0.0003498717974463 + 287 15 Se 4d-2 0.0002475473708201 0.0006293568501268 + 288 15 Se 4d-1 -0.0015124738445788 -0.0032197409425193 + 289 15 Se 4d0 -0.0007113796158423 -0.0011952904720142 + 290 15 Se 4d+1 -0.0001250377432625 0.0007416329659484 + 291 15 Se 4d+2 -0.0016521826254818 0.0003991028244251 + + 292 16 Se 2s -0.0111653110265580 0.0009844750457473 + 293 16 Se 3s 0.0003530518237905 0.0005614320306304 + 294 16 Se 3py 0.0091622495181381 0.0249774009527796 + 295 16 Se 3pz 0.0082656969744260 0.0201608396492675 + 296 16 Se 3px -0.0047684102019303 0.0004992879089578 + 297 16 Se 4py 0.0022337318851392 0.0023604422201316 + 298 16 Se 4pz 0.0013606059389133 0.0010747626195956 + 299 16 Se 4px -0.0002793443814757 -0.0006165241672038 + 300 16 Se 4d-2 -0.0003356842767584 -0.0038479735188579 + 301 16 Se 4d-1 -0.0002747691383479 -0.0000894820051086 + 302 16 Se 4d0 0.0005706978671761 0.0023176441496482 + 303 16 Se 4d+1 -0.0013620214257882 -0.0038236923483677 + 304 16 Se 4d+2 0.0017275147047902 0.0023254072298678 + + 305 17 Cd 2s 0.0138289896992785 0.0069066814720212 + 306 17 Cd 3s -0.0022589934533597 -0.0005695428958521 + 307 17 Cd 3py -0.0001732245724205 -0.0043088448553284 + 308 17 Cd 3pz 0.0022845722508841 0.0033425163071082 + 309 17 Cd 3px -0.0103782162644646 -0.0097165897150486 + 310 17 Cd 4py -0.0018974423722856 -0.0019703292233152 + 311 17 Cd 4pz -0.0013896158135152 0.0001804676105128 + 312 17 Cd 4px -0.0007789041966851 -0.0018711497800848 + 313 17 Cd 4d-2 0.0577435761952938 -0.1106350040594486 + 314 17 Cd 4d-1 0.0385007560152140 0.1739841433454646 + 315 17 Cd 4d0 0.0136721344364958 0.0477198110294599 + 316 17 Cd 4d+1 0.1556809434627471 0.1677005206271927 + 317 17 Cd 4d+2 -0.1837627705754155 -0.2432368416398396 + 318 17 Cd 5d-2 0.0010917595599727 -0.0016715171065622 + 319 17 Cd 5d-1 -0.0003615780672142 -0.0021144302523568 + 320 17 Cd 5d0 -0.0002567697626176 0.0003196152813332 + 321 17 Cd 5d+1 -0.0050217160610592 -0.0041242371818445 + 322 17 Cd 5d+2 0.0030210916811884 0.0030070791802436 + 323 17 Cd 5f-3 0.0001088805353768 0.0001732434225962 + 324 17 Cd 5f-2 -0.0004814164539548 -0.0002750998077168 + 325 17 Cd 5f-1 0.0004340978817312 -0.0001722902279148 + 326 17 Cd 5f0 0.0003635857336166 -0.0000012251050475 + 327 17 Cd 5f+1 -0.0012614149942702 -0.0005988468032792 + 328 17 Cd 5f+2 0.0010043150540163 0.0010140665865007 + 329 17 Cd 5f+3 0.0002724419182703 0.0009420944587891 + + 330 18 Cd 2s -0.0137836338669867 -0.0058475919289995 + 331 18 Cd 3s -0.0004726083576853 -0.0007416382915057 + 332 18 Cd 3py -0.0000758613671595 -0.0027857225450770 + 333 18 Cd 3pz -0.0067225748224182 0.0058450758204123 + 334 18 Cd 3px 0.0003175025976302 0.0018920678492902 + 335 18 Cd 4py 0.0006893983309035 -0.0005557484927374 + 336 18 Cd 4pz -0.0002748543266175 0.0007545297666028 + 337 18 Cd 4px -0.0004447681965816 0.0002816421181034 + 338 18 Cd 4d-2 0.1761074546818040 0.0457586100277066 + 339 18 Cd 4d-1 -0.0482962456724952 0.0637326350273437 + 340 18 Cd 4d0 -0.2039310348581343 -0.0283852401202265 + 341 18 Cd 4d+1 0.0330192888876884 -0.0533523894909252 + 342 18 Cd 4d+2 0.0450050823328181 -0.0225369448704413 + 343 18 Cd 5d-2 -0.0000477004905112 0.0012061223000776 + 344 18 Cd 5d-1 0.0003416100530909 0.0029390680631306 + 345 18 Cd 5d0 -0.0062945043994216 -0.0002986649313995 + 346 18 Cd 5d+1 -0.0016029724743091 -0.0010099829232367 + 347 18 Cd 5d+2 0.0011673255613457 0.0012849767216548 + 348 18 Cd 5f-3 0.0008242647751839 0.0006895053285796 + 349 18 Cd 5f-2 -0.0008685243736449 -0.0004139103879820 + 350 18 Cd 5f-1 -0.0006672831923791 0.0004050133250084 + 351 18 Cd 5f0 -0.0006344821717989 -0.0001649354944048 + 352 18 Cd 5f+1 0.0002553937230084 0.0005353052759440 + 353 18 Cd 5f+2 0.0004883122516246 -0.0007118105138271 + 354 18 Cd 5f+3 -0.0000835591242452 -0.0006798633074805 + + 355 19 Se 2s 0.0175068031910319 0.0572760831312520 + 356 19 Se 3s -0.0005902646747416 -0.0015556438040833 + 357 19 Se 3py 0.0061513392404087 -0.0152107912273980 + 358 19 Se 3pz -0.0129180394043510 -0.0226052368411583 + 359 19 Se 3px 0.0055103181957017 0.0103908159915977 + 360 19 Se 4py -0.0027058580156330 -0.0028272529656074 + 361 19 Se 4pz -0.0001112462887041 -0.0006007544474566 + 362 19 Se 4px 0.0014033488307825 0.0012006352430431 + 363 19 Se 4d-2 0.0037537499425123 0.0029867654312085 + 364 19 Se 4d-1 -0.0014112143096894 -0.0046259413944691 + 365 19 Se 4d0 -0.0009023772276601 -0.0012977074563052 + 366 19 Se 4d+1 -0.0009108443299568 -0.0011546275183838 + 367 19 Se 4d+2 0.0018526320585535 0.0043683014364288 + + 368 20 Se 2s 0.0155352020337262 0.0044139529176546 + 369 20 Se 3s -0.0002392970929234 -0.0000319280464826 + 370 20 Se 3py -0.0196164635340216 0.0020686588878881 + 371 20 Se 3pz -0.0090077183034774 -0.0089404030411060 + 372 20 Se 3px 0.0004819429523413 -0.0011159257513330 + 373 20 Se 4py 0.0005718063459092 0.0004870777173250 + 374 20 Se 4pz 0.0027630980811950 -0.0004137385219226 + 375 20 Se 4px -0.0008495457758174 -0.0004808122226241 + 376 20 Se 4d-2 0.0038936102924490 0.0008870602964669 + 377 20 Se 4d-1 0.0006076061391776 0.0006954976015587 + 378 20 Se 4d0 -0.0045696117486910 0.0022132299492456 + 379 20 Se 4d+1 0.0022435917904487 0.0001492309598653 + 380 20 Se 4d+2 0.0002901046817214 -0.0001185770680321 + + 381 21 Se 2s 0.0125460758697934 0.0117271389163006 + 382 21 Se 3s -0.0001230531483070 0.0000623251288053 + 383 21 Se 3py 0.0044860401361365 0.0222246460152368 + 384 21 Se 3pz 0.0185893384007823 -0.0332683795116469 + 385 21 Se 3px 0.0166688670107154 -0.0102538755301673 + 386 21 Se 4py 0.0008805865682274 0.0003942005820232 + 387 21 Se 4pz -0.0001275183307512 0.0014639386535588 + 388 21 Se 4px 0.0005104680960770 -0.0008643655718351 + 389 21 Se 4d-2 -0.0002648846293850 0.0037472651830391 + 390 21 Se 4d-1 -0.0004560231686315 0.0008943451986046 + 391 21 Se 4d0 -0.0018765137062748 0.0054137394627782 + 392 21 Se 4d+1 0.0011456797864473 -0.0032515401691843 + 393 21 Se 4d+2 0.0015980146182054 -0.0003071186713258 + + 394 22 Cd 2s 0.0049278289934075 -0.0233121560733504 + 395 22 Cd 3s -0.0012013425320898 0.0002529262650191 + 396 22 Cd 3py -0.0000594251084759 0.0075777084786622 + 397 22 Cd 3pz -0.0041219595740772 0.0110263547029524 + 398 22 Cd 3px 0.0063218898742560 -0.0073470166398427 + 399 22 Cd 4py -0.0003705453620916 0.0024405022609856 + 400 22 Cd 4pz -0.0017333149509828 0.0048639281315552 + 401 22 Cd 4px 0.0007935931436864 -0.0011515961781182 + 402 22 Cd 4d-2 0.1604588535217585 -0.1898943328009729 + 403 22 Cd 4d-1 0.0295278201851874 0.3026152300447206 + 404 22 Cd 4d0 0.1833343469812823 -0.1274731841639557 + 405 22 Cd 4d+1 0.2900442687732559 -0.2149714783977862 + 406 22 Cd 4d+2 0.0029401265819650 0.2104410417491467 + 407 22 Cd 5d-2 -0.0023413809864135 0.0019839091419734 + 408 22 Cd 5d-1 -0.0015517547362151 -0.0053133135237829 + 409 22 Cd 5d0 -0.0030001446029150 0.0039921526414292 + 410 22 Cd 5d+1 -0.0037551201203196 0.0006828590829559 + 411 22 Cd 5d+2 0.0018953500274535 0.0023943472607473 + 412 22 Cd 5f-3 -0.0002957521638200 0.0001180482954997 + 413 22 Cd 5f-2 0.0003471237105760 -0.0008833035937795 + 414 22 Cd 5f-1 0.0000095992843237 -0.0001151393154911 + 415 22 Cd 5f0 0.0002730425564511 -0.0009541906320616 + 416 22 Cd 5f+1 0.0000260800095637 -0.0006324773688353 + 417 22 Cd 5f+2 -0.0008008465644787 -0.0012023068186822 + 418 22 Cd 5f+3 -0.0004462257648009 0.0012739032262825 + + 419 23 Se 2s -0.0162638419814431 -0.0071221500664691 + 420 23 Se 3s -0.0003127190410998 -0.0000302407407326 + 421 23 Se 3py 0.0185614996373461 0.0021708371971862 + 422 23 Se 3pz 0.0156933522540359 0.0064705850636672 + 423 23 Se 3px -0.0248179179866712 0.0007136749052494 + 424 23 Se 4py 0.0031344385082197 0.0014654256437357 + 425 23 Se 4pz 0.0003687154425682 0.0012257155912668 + 426 23 Se 4px -0.0024794543537351 -0.0001886561910460 + 427 23 Se 4d-2 0.0045520407996204 0.0030648108537832 + 428 23 Se 4d-1 0.0031403242319635 -0.0016060286497287 + 429 23 Se 4d0 0.0038183624225266 0.0017466020624453 + 430 23 Se 4d+1 -0.0037098865933570 0.0004914424568485 + 431 23 Se 4d+2 -0.0015777411005282 0.0030727986781032 + + 432 24 Se 2s 0.0722778446654480 0.0314777826090481 + 433 24 Se 3s -0.0019744120626843 -0.0007978217472620 + 434 24 Se 3py -0.0124842446311148 -0.0132126015824208 + 435 24 Se 3pz 0.0098517596624670 0.0213172186542036 + 436 24 Se 3px -0.0134744199029794 -0.0029988436294184 + 437 24 Se 4py -0.0006484450986836 -0.0007536896375454 + 438 24 Se 4pz 0.0003230797262021 0.0010992749796266 + 439 24 Se 4px -0.0003739092104905 -0.0003706331550966 + 440 24 Se 4d-2 -0.0020767803469615 -0.0023773387698425 + 441 24 Se 4d-1 0.0010314212068457 0.0013758777892380 + 442 24 Se 4d0 -0.0016030809189332 -0.0010058987430917 + 443 24 Se 4d+1 0.0020974966457513 0.0058011926162689 + 444 24 Se 4d+2 -0.0006059328999885 0.0007577532603267 + + 445 25 Cd 2s -0.0030448455213803 0.0106460935769319 + 446 25 Cd 3s -0.0005255177328785 0.0002666103164137 + 447 25 Cd 3py 0.0093033529384854 0.0063045896828478 + 448 25 Cd 3pz -0.0131822842334879 -0.0066750900324987 + 449 25 Cd 3px 0.0039384132579664 0.0058587338139306 + 450 25 Cd 4py 0.0014019394481292 0.0015218375125417 + 451 25 Cd 4pz -0.0002162563083604 -0.0006078804066209 + 452 25 Cd 4px 0.0004653160011454 0.0013523919827138 + 453 25 Cd 4d-2 -0.2031538346150235 -0.0008891259604645 + 454 25 Cd 4d-1 -0.0637638087602298 -0.0243164909138597 + 455 25 Cd 4d0 0.1624825881477352 0.0144113343159848 + 456 25 Cd 4d+1 0.3384596452511388 0.3674125580087302 + 457 25 Cd 4d+2 -0.1261217141826030 -0.2307270524318899 + 458 25 Cd 5d-2 0.0037261727472922 0.0017304095199122 + 459 25 Cd 5d-1 -0.0006008783224385 -0.0003842165647183 + 460 25 Cd 5d0 -0.0024854619222570 -0.0011051577100219 + 461 25 Cd 5d+1 -0.0017797478788649 -0.0033698203342531 + 462 25 Cd 5d+2 0.0007912379497989 0.0004724698126302 + 463 25 Cd 5f-3 0.0000786021099379 -0.0000860944412406 + 464 25 Cd 5f-2 0.0003445739832311 -0.0002024311521766 + 465 25 Cd 5f-1 -0.0012797994864491 -0.0004331141182776 + 466 25 Cd 5f0 0.0003620462786553 0.0007051829609876 + 467 25 Cd 5f+1 -0.0000699548704295 0.0000516250503852 + 468 25 Cd 5f+2 0.0007434820698132 -0.0005851977038002 + 469 25 Cd 5f+3 -0.0006695410368240 -0.0005432649023053 + + 470 26 Cd 2s 0.0013630464935398 -0.0030541940497173 + 471 26 Cd 3s 0.0005937469805965 -0.0001786245037038 + 472 26 Cd 3py 0.0012116046803231 -0.0006370382210684 + 473 26 Cd 3pz -0.0002333882905288 -0.0007238962695740 + 474 26 Cd 3px 0.0047763204619770 0.0000259987999505 + 475 26 Cd 4py -0.0013304899164833 -0.0006004989884962 + 476 26 Cd 4pz -0.0002752828262687 -0.0002849057369084 + 477 26 Cd 4px 0.0005905683315323 -0.0001391169790409 + 478 26 Cd 4d-2 -0.0071148988281865 -0.0155194345514109 + 479 26 Cd 4d-1 -0.0407313443984961 0.0431600829661287 + 480 26 Cd 4d0 0.0011801935303736 0.0383481929580715 + 481 26 Cd 4d+1 -0.0147504741597480 0.0072617426416027 + 482 26 Cd 4d+2 0.0655763953228599 0.0626782400729008 + 483 26 Cd 5d-2 -0.0018301330036499 -0.0017503777300532 + 484 26 Cd 5d-1 -0.0003628536190838 0.0000573488666655 + 485 26 Cd 5d0 -0.0006459990587825 0.0006568233245876 + 486 26 Cd 5d+1 -0.0012202963665947 -0.0006283763243121 + 487 26 Cd 5d+2 0.0022751335354184 0.0009270200921257 + 488 26 Cd 5f-3 -0.0003962449739208 -0.0005413412166523 + 489 26 Cd 5f-2 0.0000657799930293 0.0001174970341461 + 490 26 Cd 5f-1 0.0005509440953010 0.0000686157223156 + 491 26 Cd 5f0 0.0003108567939264 0.0001560072849437 + 492 26 Cd 5f+1 -0.0002691168998585 0.0001287358313568 + 493 26 Cd 5f+2 -0.0004151377879176 0.0000436232357085 + 494 26 Cd 5f+3 0.0001863035399759 0.0002083171839054 + + 45 46 + -0.4685023538130084 -0.4681400604523779 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0089695836373485 0.0055515206952983 + 2 1 Cd 3s 0.0010418753845933 -0.0003982137649467 + 3 1 Cd 3py -0.0042826399864508 0.0028356392866280 + 4 1 Cd 3pz 0.0000130077715631 0.0012771013232520 + 5 1 Cd 3px 0.0042358760863134 -0.0020747710664317 + 6 1 Cd 4py 0.0001514671290296 -0.0002862770161378 + 7 1 Cd 4pz -0.0007872085286031 0.0000672206713315 + 8 1 Cd 4px -0.0008578510402632 -0.0003215031305691 + 9 1 Cd 4d-2 -0.0901750846497673 0.0086095187071796 + 10 1 Cd 4d-1 -0.0203370004183247 -0.0223939251231124 + 11 1 Cd 4d0 -0.0339638163841588 -0.0017380938040590 + 12 1 Cd 4d+1 0.0172643454640164 -0.0039211707360713 + 13 1 Cd 4d+2 0.0036072640753283 0.0120426590538196 + 14 1 Cd 5d-2 0.0024445528219086 -0.0007150848011828 + 15 1 Cd 5d-1 0.0004931353393798 0.0003277221939156 + 16 1 Cd 5d0 0.0007872801093540 -0.0010828022297525 + 17 1 Cd 5d+1 0.0001735280926980 -0.0013730619848838 + 18 1 Cd 5d+2 -0.0010280571589066 -0.0000315444847172 + 19 1 Cd 5f-3 -0.0007266600907265 0.0000399536784078 + 20 1 Cd 5f-2 -0.0001493427581445 0.0000103097719412 + 21 1 Cd 5f-1 -0.0002144251655809 0.0000230841135676 + 22 1 Cd 5f0 0.0001271100846511 -0.0000744490378159 + 23 1 Cd 5f+1 -0.0002686724686043 -0.0001886267108103 + 24 1 Cd 5f+2 0.0002226462893191 0.0003468765788775 + 25 1 Cd 5f+3 0.0008262917384949 -0.0000050402166968 + + 26 2 Cd 2s 0.0050504384989889 0.0038238114799086 + 27 2 Cd 3s 0.0001546072296541 0.0000650663050293 + 28 2 Cd 3py 0.0037112828789715 0.0055870120108017 + 29 2 Cd 3pz -0.0008249557609693 0.0006372285834825 + 30 2 Cd 3px -0.0003634871733418 -0.0015311118053346 + 31 2 Cd 4py 0.0005490551673425 0.0016392645450876 + 32 2 Cd 4pz 0.0003192228327635 -0.0012070014406150 + 33 2 Cd 4px 0.0001036571156534 0.0008935663808621 + 34 2 Cd 4d-2 0.1749418963952641 0.3143878043630409 + 35 2 Cd 4d-1 0.0535020018735214 -0.0768721638679608 + 36 2 Cd 4d0 0.0397334744279871 0.0988412504604118 + 37 2 Cd 4d+1 0.0020324022920886 0.0543421285455906 + 38 2 Cd 4d+2 -0.0669166179621067 -0.1459255751334523 + 39 2 Cd 5d-2 0.0004012282782418 -0.0029466567679251 + 40 2 Cd 5d-1 -0.0018863630493520 -0.0001423627016186 + 41 2 Cd 5d0 -0.0000536635674119 0.0007472412069912 + 42 2 Cd 5d+1 -0.0020215547011604 -0.0017293981297906 + 43 2 Cd 5d+2 0.0009827518550976 0.0013674593360558 + 44 2 Cd 5f-3 0.0003819049090287 0.0005021189789362 + 45 2 Cd 5f-2 -0.0000517719379515 0.0003470216615501 + 46 2 Cd 5f-1 -0.0000453599044992 -0.0002740300941813 + 47 2 Cd 5f0 -0.0000393327391733 -0.0000809833338491 + 48 2 Cd 5f+1 0.0004224319675931 -0.0000841487242242 + 49 2 Cd 5f+2 0.0001348980010331 -0.0001772326194456 + 50 2 Cd 5f+3 -0.0002542150901122 -0.0003841651343839 + + 51 3 Cd 2s -0.0050372449644925 0.0013539514400503 + 52 3 Cd 3s -0.0004492540742587 0.0006697026877272 + 53 3 Cd 3py -0.0021817737225170 0.0000549726583397 + 54 3 Cd 3pz -0.0000834986115567 0.0016942826612754 + 55 3 Cd 3px 0.0041689299282439 -0.0066454380462588 + 56 3 Cd 4py 0.0006743843129078 0.0010714031022480 + 57 3 Cd 4pz 0.0003216246612140 0.0003433180065333 + 58 3 Cd 4px 0.0012466350913548 -0.0000725438260905 + 59 3 Cd 4d-2 -0.0219265438806309 -0.0126771903391919 + 60 3 Cd 4d-1 0.0174295396513454 0.0383774820268291 + 61 3 Cd 4d0 -0.0017817681047573 0.0372793049536149 + 62 3 Cd 4d+1 0.0277310089740547 0.0585935962903825 + 63 3 Cd 4d+2 0.0096605939834521 -0.0171207313573102 + 64 3 Cd 5d-2 0.0024380274182959 -0.0004262800092543 + 65 3 Cd 5d-1 -0.0012483935027928 -0.0006005642541129 + 66 3 Cd 5d0 0.0006995099041763 -0.0025167070529021 + 67 3 Cd 5d+1 -0.0015873956844385 -0.0004597693233717 + 68 3 Cd 5d+2 -0.0016862930839457 0.0007769094306935 + 69 3 Cd 5f-3 -0.0004824815845091 0.0002330631882628 + 70 3 Cd 5f-2 -0.0007447048421967 -0.0004554971169462 + 71 3 Cd 5f-1 0.0002372111098861 0.0000601470189141 + 72 3 Cd 5f0 0.0004140520066542 0.0001659603777199 + 73 3 Cd 5f+1 -0.0001436086627303 -0.0002562360756656 + 74 3 Cd 5f+2 0.0009280294784192 -0.0000778940363067 + 75 3 Cd 5f+3 -0.0004778526209364 0.0005555749909486 + + 76 4 Se 2s -0.0192209057440678 -0.0110795247045877 + 77 4 Se 3s 0.0004758370179265 0.0000026283877837 + 78 4 Se 3py -0.0023637742343608 0.0065445494518453 + 79 4 Se 3pz -0.0016986522669920 0.0150090632874218 + 80 4 Se 3px -0.0060378692734745 -0.0074526273979551 + 81 4 Se 4py -0.0006850505075777 0.0007910167338353 + 82 4 Se 4pz -0.0022391685361104 0.0007064898218031 + 83 4 Se 4px -0.0003071903699488 -0.0002854777147083 + 84 4 Se 4d-2 0.0015662251020431 0.0002356715087332 + 85 4 Se 4d-1 0.0012255067089493 -0.0000011168136010 + 86 4 Se 4d0 0.0009854829752522 0.0009778150167520 + 87 4 Se 4d+1 0.0007546467238798 -0.0030823165487915 + 88 4 Se 4d+2 0.0009002000370312 0.0020330187636833 + + 89 5 Se 2s -0.0066596972882986 0.0117013693394868 + 90 5 Se 3s 0.0000042556562992 0.0000016617621681 + 91 5 Se 3py 0.0017273171940454 -0.0023531990146862 + 92 5 Se 3pz -0.0008887730296658 -0.0016183990202263 + 93 5 Se 3px 0.0032105300479541 0.0000970354044825 + 94 5 Se 4py 0.0001410998601713 -0.0005627460826671 + 95 5 Se 4pz 0.0004179878161475 0.0001826573108533 + 96 5 Se 4px 0.0015149039056674 -0.0006020726110781 + 97 5 Se 4d-2 0.0009570740417015 0.0003410336588873 + 98 5 Se 4d-1 -0.0001497353900308 -0.0001174920398685 + 99 5 Se 4d0 -0.0002946518162615 -0.0004149468906557 + 100 5 Se 4d+1 0.0003967134391929 0.0003805713204849 + 101 5 Se 4d+2 -0.0002345908730988 0.0002410743155520 + + 102 6 Se 2s 0.0140960384467666 0.0316091639255775 + 103 6 Se 3s -0.0001090421224714 -0.0002374731797869 + 104 6 Se 3py -0.0129241536225667 -0.0196546416390641 + 105 6 Se 3pz 0.0014287942334879 0.0001037017880292 + 106 6 Se 3px -0.0010414422179236 0.0005886151934338 + 107 6 Se 4py -0.0006473557334105 -0.0012962492559429 + 108 6 Se 4pz 0.0000382122785992 -0.0001033083029110 + 109 6 Se 4px -0.0002846317024836 -0.0005002632031065 + 110 6 Se 4d-2 0.0012590929133096 0.0016896608436292 + 111 6 Se 4d-1 0.0005501645127402 0.0018155310139547 + 112 6 Se 4d0 0.0013097094262701 0.0013580899499849 + 113 6 Se 4d+1 0.0000688594102940 0.0010890886061563 + 114 6 Se 4d+2 0.0017649411881407 0.0024843013769994 + + 115 7 Se 2s 0.0099527725577497 0.0223168008072631 + 116 7 Se 3s -0.0006438542082039 -0.0011869653737362 + 117 7 Se 3py -0.0014230038464249 -0.0017749206366989 + 118 7 Se 3pz 0.0055372418017902 0.0153985717143300 + 119 7 Se 3px -0.0000810841710178 -0.0108217128500193 + 120 7 Se 4py 0.0006571461077144 -0.0001608178200168 + 121 7 Se 4pz 0.0005509147500392 0.0011611007545306 + 122 7 Se 4px 0.0003235884198565 -0.0009839868219362 + 123 7 Se 4d-2 0.0002450762502731 0.0016427875620102 + 124 7 Se 4d-1 0.0000538645323062 -0.0012470154658242 + 125 7 Se 4d0 -0.0015284214688003 -0.0040806424440543 + 126 7 Se 4d+1 0.0002665837402554 0.0019322556782731 + 127 7 Se 4d+2 0.0004397001370235 0.0006131304703308 + + 128 8 Cd 2s 0.0001099739718146 0.0041786696711513 + 129 8 Cd 3s -0.0005957051269864 -0.0004695495213806 + 130 8 Cd 3py 0.0060753594047580 0.0028047229943976 + 131 8 Cd 3pz -0.0013398493739669 -0.0005505486087740 + 132 8 Cd 3px -0.0011895640423699 0.0091048328129903 + 133 8 Cd 4py 0.0005543959214217 0.0003788597591738 + 134 8 Cd 4pz -0.0006983231906470 -0.0011663932385882 + 135 8 Cd 4px -0.0007457456315694 0.0025293685459604 + 136 8 Cd 4d-2 -0.1242241243459373 -0.1303904628137016 + 137 8 Cd 4d-1 0.1322337800287200 0.2787321081644297 + 138 8 Cd 4d0 -0.0603533832353763 0.2536275136289577 + 139 8 Cd 4d+1 0.0389652406740132 -0.0207216992483285 + 140 8 Cd 4d+2 -0.0056567116728190 0.1210500121801042 + 141 8 Cd 5d-2 0.0029058257590068 0.0002880952217052 + 142 8 Cd 5d-1 0.0011093057767653 0.0000678302063265 + 143 8 Cd 5d0 0.0003918378953212 -0.0017523667100957 + 144 8 Cd 5d+1 0.0011312199788668 -0.0046072987218423 + 145 8 Cd 5d+2 0.0006719985989181 -0.0005895608204957 + 146 8 Cd 5f-3 0.0005296604842042 -0.0002220694500832 + 147 8 Cd 5f-2 -0.0003512747869831 0.0003701915574125 + 148 8 Cd 5f-1 -0.0000679746749101 0.0002146718331317 + 149 8 Cd 5f0 0.0003897419101329 -0.0005932008799854 + 150 8 Cd 5f+1 0.0000750016166245 0.0002039691055579 + 151 8 Cd 5f+2 0.0005308192067656 0.0002228655106973 + 152 8 Cd 5f+3 0.0003803741779102 -0.0011497510363528 + + 153 9 Cd 2s -0.0022407985285205 -0.0056462529819592 + 154 9 Cd 3s 0.0009818649649375 0.0003239440726382 + 155 9 Cd 3py -0.0009406683571380 -0.0027742030135303 + 156 9 Cd 3pz 0.0015481785760055 0.0032754473499710 + 157 9 Cd 3px -0.0033230223702496 -0.0039520867936216 + 158 9 Cd 4py -0.0003423777512858 -0.0005690205750330 + 159 9 Cd 4pz -0.0003367468431244 0.0006446950520971 + 160 9 Cd 4px -0.0006664881478800 -0.0006321070685491 + 161 9 Cd 4d-2 0.0060988649017060 -0.0144310710385095 + 162 9 Cd 4d-1 0.0273460772116868 0.0766818086091315 + 163 9 Cd 4d0 -0.0505160619139679 -0.0236207427992427 + 164 9 Cd 4d+1 -0.0032642319555864 0.1215481400901763 + 165 9 Cd 4d+2 0.0040903556354742 0.0324736415951457 + 166 9 Cd 5d-2 -0.0001395034017693 -0.0001221090246504 + 167 9 Cd 5d-1 0.0006832262880100 0.0022256409900666 + 168 9 Cd 5d0 -0.0004954322626753 -0.0012100880145107 + 169 9 Cd 5d+1 0.0005921793132152 0.0013254598535535 + 170 9 Cd 5d+2 0.0021133437743506 0.0019707512531873 + 171 9 Cd 5f-3 0.0002660797598707 0.0004150750154135 + 172 9 Cd 5f-2 0.0000118342760385 -0.0000926267271193 + 173 9 Cd 5f-1 -0.0001433344813548 -0.0003030347968554 + 174 9 Cd 5f0 -0.0001786808898659 -0.0001209035947896 + 175 9 Cd 5f+1 0.0000288302462953 0.0000177055135233 + 176 9 Cd 5f+2 -0.0006406590664065 -0.0007704015900363 + 177 9 Cd 5f+3 -0.0004308399930638 -0.0005004308327562 + + 178 10 Se 2s -0.0167641969281771 0.0018997017515652 + 179 10 Se 3s 0.0004748750832864 -0.0003101532487306 + 180 10 Se 3py -0.0096048770255009 -0.0148278317160666 + 181 10 Se 3pz -0.0071998239132261 0.0008144772581381 + 182 10 Se 3px 0.0020206921866577 -0.0068793789027851 + 183 10 Se 4py -0.0001452620366227 -0.0007236851127284 + 184 10 Se 4pz -0.0009281312519022 0.0002052082404542 + 185 10 Se 4px -0.0004187109285456 -0.0000520126434774 + 186 10 Se 4d-2 -0.0001697160874222 0.0006707120385592 + 187 10 Se 4d-1 0.0019740985360928 0.0047815704870331 + 188 10 Se 4d0 0.0023934216194454 -0.0008263849370931 + 189 10 Se 4d+1 0.0003645838110810 0.0022322021173843 + 190 10 Se 4d+2 0.0021419464527930 0.0016300016663893 + + 191 11 Se 2s -0.0319280042227913 -0.0333875499127007 + 192 11 Se 3s 0.0006157824624628 0.0008755720891940 + 193 11 Se 3py 0.0123738807018755 0.0042782910214723 + 194 11 Se 3pz -0.0068520247098849 -0.0116579272087017 + 195 11 Se 3px -0.0089132757079564 -0.0168817853890955 + 196 11 Se 4py 0.0002279397475647 0.0000064682591366 + 197 11 Se 4pz -0.0003170778985968 -0.0014344153910781 + 198 11 Se 4px -0.0003786954439504 -0.0009014421895090 + 199 11 Se 4d-2 -0.0024698536683080 -0.0041143877674351 + 200 11 Se 4d-1 -0.0012569714643789 -0.0023973115933316 + 201 11 Se 4d0 -0.0017557419675043 -0.0011596444881016 + 202 11 Se 4d+1 0.0020863588829093 0.0009178930613846 + 203 11 Se 4d+2 -0.0018468953389112 0.0011172521669429 + + 204 12 Cd 2s -0.0041716680736275 0.0050369340055490 + 205 12 Cd 3s 0.0003878832253377 0.0002062667097430 + 206 12 Cd 3py -0.0036427043862640 0.0020621010765986 + 207 12 Cd 3pz -0.0020060196667637 0.0005989857186006 + 208 12 Cd 3px -0.0005576197203752 0.0040647601920775 + 209 12 Cd 4py -0.0008710602348717 -0.0002178360314722 + 210 12 Cd 4pz 0.0001031771285730 0.0006344830444849 + 211 12 Cd 4px -0.0007472196394830 0.0009493864455038 + 212 12 Cd 4d-2 -0.1366312192293500 -0.2501116486639398 + 213 12 Cd 4d-1 0.4663888788795852 0.2405264511374798 + 214 12 Cd 4d0 0.0363266215020834 0.3871946019232166 + 215 12 Cd 4d+1 0.0316675375408164 -0.3124029520381990 + 216 12 Cd 4d+2 0.1679709458190867 -0.2792894082169558 + 217 12 Cd 5d-2 -0.0018582688942755 0.0004638057291310 + 218 12 Cd 5d-1 -0.0012853034753955 -0.0014205203387270 + 219 12 Cd 5d0 -0.0000561305464988 -0.0028415575566298 + 220 12 Cd 5d+1 0.0008408520503373 0.0007196049523185 + 221 12 Cd 5d+2 -0.0000545560903210 -0.0002104590093115 + 222 12 Cd 5f-3 -0.0002669981415488 0.0007487575156938 + 223 12 Cd 5f-2 0.0001640279936939 0.0002823781302116 + 224 12 Cd 5f-1 -0.0001747234049908 0.0001506845535154 + 225 12 Cd 5f0 0.0005413733397033 0.0002073953207776 + 226 12 Cd 5f+1 -0.0003135828662104 -0.0012617130921221 + 227 12 Cd 5f+2 0.0002005116199225 0.0007257133212724 + 228 12 Cd 5f+3 0.0000289614138101 0.0001900048253085 + + 229 13 Cd 2s -0.0157114816216232 0.0031485369178357 + 230 13 Cd 3s 0.0001167644668500 -0.0002645150159487 + 231 13 Cd 3py 0.0037503599668346 0.0013026400108898 + 232 13 Cd 3pz 0.0052154816495532 -0.0014621563390735 + 233 13 Cd 3px 0.0001355188834688 -0.0018183604367887 + 234 13 Cd 4py 0.0014032459561469 0.0005530401491322 + 235 13 Cd 4pz -0.0001225922333145 -0.0007619139037927 + 236 13 Cd 4px 0.0001502341338501 -0.0012027338580972 + 237 13 Cd 4d-2 -0.2436082207646059 0.0208761198826343 + 238 13 Cd 4d-1 0.0956870960558955 -0.0095306262880346 + 239 13 Cd 4d0 -0.0882458055584220 0.0355637121351041 + 240 13 Cd 4d+1 0.0778645488669225 -0.0465002253066085 + 241 13 Cd 4d+2 -0.1133159289012198 0.0313562993912154 + 242 13 Cd 5d-2 0.0022332369753534 0.0004401647561662 + 243 13 Cd 5d-1 -0.0011544687808091 0.0016414225738056 + 244 13 Cd 5d0 0.0027853296761673 -0.0000924758573630 + 245 13 Cd 5d+1 -0.0004639102432362 -0.0000263814317335 + 246 13 Cd 5d+2 -0.0022980187126259 0.0006350582012156 + 247 13 Cd 5f-3 -0.0001933408076990 0.0001204525277531 + 248 13 Cd 5f-2 0.0007167246961591 -0.0000351941326834 + 249 13 Cd 5f-1 0.0000805109927165 -0.0000476427055330 + 250 13 Cd 5f0 -0.0002628051291227 -0.0002585782858540 + 251 13 Cd 5f+1 -0.0008285057220257 0.0007833932863060 + 252 13 Cd 5f+2 -0.0006725809375384 -0.0000767930297058 + 253 13 Cd 5f+3 0.0009941593636354 -0.0001948075987472 + + 254 14 Cd 2s 0.0061432067513379 0.0079983701517890 + 255 14 Cd 3s -0.0023642069996422 -0.0021682896218396 + 256 14 Cd 3py -0.0020703177666895 -0.0029466195303941 + 257 14 Cd 3pz 0.0000413084373806 -0.0005191475807378 + 258 14 Cd 3px -0.0013771316402377 -0.0003076865102065 + 259 14 Cd 4py 0.0006945192453048 0.0009130297112705 + 260 14 Cd 4pz 0.0009320083682481 0.0007328260574356 + 261 14 Cd 4px 0.0001028393805816 0.0001151533292431 + 262 14 Cd 4d-2 0.0014215411414616 -0.0019099903938426 + 263 14 Cd 4d-1 0.0236679575267306 -0.0280603004180721 + 264 14 Cd 4d0 -0.0019323279626671 -0.0229175063024995 + 265 14 Cd 4d+1 0.0431268648959441 0.0083684123085382 + 266 14 Cd 4d+2 -0.0300949544427578 -0.0725474614066825 + 267 14 Cd 5d-2 0.0003015411621400 0.0002488730636599 + 268 14 Cd 5d-1 0.0004197226855590 -0.0002536761125323 + 269 14 Cd 5d0 -0.0012885342720978 -0.0006155659772794 + 270 14 Cd 5d+1 0.0004847249117430 0.0001823641517448 + 271 14 Cd 5d+2 -0.0008972478135479 -0.0017443495783052 + 272 14 Cd 5f-3 0.0004719521895980 0.0010125000949401 + 273 14 Cd 5f-2 -0.0001404588611994 -0.0002037953284825 + 274 14 Cd 5f-1 0.0001306529448300 0.0002967074668059 + 275 14 Cd 5f0 0.0001374593011056 0.0001368981224894 + 276 14 Cd 5f+1 -0.0002466747279020 0.0000853239416096 + 277 14 Cd 5f+2 0.0001600988731818 -0.0001802705729454 + 278 14 Cd 5f+3 0.0001844880060822 0.0000757419278210 + + 279 15 Se 2s 0.0014343705229921 -0.0152392894096269 + 280 15 Se 3s -0.0001578151804508 0.0005654326072353 + 281 15 Se 3py 0.0054469432982338 -0.0101939660943092 + 282 15 Se 3pz -0.0236693959578726 -0.0019255040528574 + 283 15 Se 3px 0.0276286890242402 -0.0097345707959950 + 284 15 Se 4py 0.0009102735090510 -0.0003414671063943 + 285 15 Se 4pz -0.0002055974970966 -0.0009544324103819 + 286 15 Se 4px 0.0022158004884189 -0.0010603340204447 + 287 15 Se 4d-2 -0.0064775782079972 0.0022111481269362 + 288 15 Se 4d-1 0.0046402848290831 -0.0001687701218687 + 289 15 Se 4d0 0.0021038788476690 -0.0023173686240730 + 290 15 Se 4d+1 -0.0014669355465260 -0.0003657725063155 + 291 15 Se 4d+2 0.0023773674873657 -0.0020102480161947 + + 292 16 Se 2s 0.0079391491398677 -0.0015167029837351 + 293 16 Se 3s 0.0002254173429683 -0.0001520339403881 + 294 16 Se 3py 0.0076501168359907 0.0042678800683779 + 295 16 Se 3pz 0.0200980667071027 -0.0014047563812656 + 296 16 Se 3px 0.0116876941522771 -0.0010726467493367 + 297 16 Se 4py 0.0014920773828843 -0.0001779680095324 + 298 16 Se 4pz 0.0030996540909535 -0.0003290606635715 + 299 16 Se 4px 0.0012796777628784 0.0001528516822277 + 300 16 Se 4d-2 -0.0027953300005541 -0.0000165947474813 + 301 16 Se 4d-1 -0.0021342632120844 0.0011611765338405 + 302 16 Se 4d0 0.0045036687201700 -0.0001122244065155 + 303 16 Se 4d+1 -0.0014610704711309 0.0004181816525853 + 304 16 Se 4d+2 0.0001107428012399 0.0003846403198051 + + 305 17 Cd 2s -0.0011324238948741 0.0059585220782312 + 306 17 Cd 3s -0.0015734857123979 -0.0000117481698180 + 307 17 Cd 3py -0.0024073048419593 0.0018506486689711 + 308 17 Cd 3pz 0.0008036356386094 -0.0000809008688305 + 309 17 Cd 3px 0.0013575318971345 -0.0032281008003568 + 310 17 Cd 4py 0.0007732005676179 -0.0006107487394066 + 311 17 Cd 4pz -0.0008399356076633 0.0004649063281529 + 312 17 Cd 4px -0.0003221282355174 0.0001046329777606 + 313 17 Cd 4d-2 -0.1853946136380955 0.0467869859464122 + 314 17 Cd 4d-1 0.0543514214130267 -0.0119977754214654 + 315 17 Cd 4d0 -0.0082317773612760 0.0483602641085714 + 316 17 Cd 4d+1 0.1529278173180413 -0.0553995817959412 + 317 17 Cd 4d+2 -0.0093539047572899 -0.0518926593716453 + 318 17 Cd 5d-2 0.0010611506144179 -0.0000353994680383 + 319 17 Cd 5d-1 -0.0004554619526823 0.0001073645733473 + 320 17 Cd 5d0 0.0011493467392152 -0.0006439881241341 + 321 17 Cd 5d+1 -0.0003268882399927 -0.0004402487302904 + 322 17 Cd 5d+2 -0.0004210419742301 0.0016223223084496 + 323 17 Cd 5f-3 0.0005352467088335 -0.0002610823338823 + 324 17 Cd 5f-2 0.0003653801598579 0.0001265119204860 + 325 17 Cd 5f-1 -0.0000460835733032 -0.0002041194280274 + 326 17 Cd 5f0 0.0008664731678481 -0.0003997086623025 + 327 17 Cd 5f+1 -0.0000318198793314 0.0001072589535152 + 328 17 Cd 5f+2 0.0000657671248955 0.0005697317619029 + 329 17 Cd 5f+3 -0.0000084919095599 -0.0000424886649156 + + 330 18 Cd 2s -0.0015192421881376 -0.0044107561544897 + 331 18 Cd 3s 0.0004772086718365 0.0007175239649994 + 332 18 Cd 3py -0.0007066511349658 -0.0015362810355780 + 333 18 Cd 3pz 0.0021836123167631 -0.0021124906248749 + 334 18 Cd 3px 0.0018389249778073 0.0011357373606838 + 335 18 Cd 4py 0.0003116038311113 0.0007139045782774 + 336 18 Cd 4pz -0.0003014392061250 -0.0012691651669279 + 337 18 Cd 4px 0.0000862560948073 -0.0003904486151302 + 338 18 Cd 4d-2 0.0912065429529233 0.0930348627783651 + 339 18 Cd 4d-1 -0.0318961086257395 -0.0535333980860593 + 340 18 Cd 4d0 0.0053668246351829 0.0137243196815032 + 341 18 Cd 4d+1 -0.0019175956004027 0.0529109126525932 + 342 18 Cd 4d+2 -0.0044962302385210 0.0191533921883484 + 343 18 Cd 5d-2 0.0011110143409713 0.0005220958313100 + 344 18 Cd 5d-1 0.0006884841728135 -0.0018881142551876 + 345 18 Cd 5d0 0.0000010534362253 -0.0009390916476669 + 346 18 Cd 5d+1 -0.0002518158447816 0.0002234887352607 + 347 18 Cd 5d+2 0.0003540081585969 0.0002384491053115 + 348 18 Cd 5f-3 0.0003780271241536 0.0001262041298981 + 349 18 Cd 5f-2 0.0000351697571591 0.0000390390943265 + 350 18 Cd 5f-1 0.0003284988288159 -0.0003722669181049 + 351 18 Cd 5f0 -0.0002808769329420 -0.0000232074559219 + 352 18 Cd 5f+1 0.0000127087911486 -0.0001109900264396 + 353 18 Cd 5f+2 -0.0001756569516004 0.0006488741700768 + 354 18 Cd 5f+3 -0.0002609294718599 -0.0002010996757893 + + 355 19 Se 2s 0.0214079671277498 0.0007736378463432 + 356 19 Se 3s -0.0004850881610391 -0.0002957039576841 + 357 19 Se 3py -0.0153085775837630 -0.0066970553949421 + 358 19 Se 3pz -0.0020826354912455 0.0028331520144890 + 359 19 Se 3px -0.0053986762661385 0.0117448416243476 + 360 19 Se 4py -0.0013196536536902 -0.0005450133522184 + 361 19 Se 4pz 0.0005656729455474 0.0003475526036900 + 362 19 Se 4px -0.0009648865720297 0.0008794733799547 + 363 19 Se 4d-2 -0.0020135396025739 0.0017244764027110 + 364 19 Se 4d-1 -0.0018832583405315 -0.0009634194228268 + 365 19 Se 4d0 0.0005625539084842 0.0005472949273420 + 366 19 Se 4d+1 -0.0007659640548396 0.0017518041835144 + 367 19 Se 4d+2 0.0031366958931778 -0.0005320872745466 + + 368 20 Se 2s 0.0164623779884977 0.0009240058188416 + 369 20 Se 3s -0.0000665626225218 -0.0002610796846891 + 370 20 Se 3py 0.0087975405474877 0.0083708909735714 + 371 20 Se 3pz -0.0042805214472727 0.0202798766519622 + 372 20 Se 3px 0.0075586722023169 0.0095760984940992 + 373 20 Se 4py -0.0036372754117350 0.0005462748820103 + 374 20 Se 4pz 0.0037467152570864 -0.0043713179536519 + 375 20 Se 4px 0.0011664184712649 -0.0026767048592757 + 376 20 Se 4d-2 -0.0046356094491484 -0.0002098158268249 + 377 20 Se 4d-1 0.0017216962833657 0.0066707057790727 + 378 20 Se 4d0 0.0007722855655660 0.0026322107252869 + 379 20 Se 4d+1 0.0037455299005086 -0.0023157018436527 + 380 20 Se 4d+2 0.0012180094729806 -0.0000095357892555 + + 381 21 Se 2s -0.0300107959260992 0.0141826657970140 + 382 21 Se 3s 0.0007212727320644 -0.0001552316077343 + 383 21 Se 3py -0.0186967342623500 0.0052600069008557 + 384 21 Se 3pz -0.0053875670639938 -0.0116029476155348 + 385 21 Se 3px -0.0018139447359016 -0.0035256980163475 + 386 21 Se 4py -0.0005566712057315 0.0005358764399552 + 387 21 Se 4pz 0.0006858710632776 0.0002684270733049 + 388 21 Se 4px -0.0005962268624134 0.0003770549265076 + 389 21 Se 4d-2 -0.0025441069756675 0.0004879519975638 + 390 21 Se 4d-1 0.0031008970220975 -0.0002256493389707 + 391 21 Se 4d0 0.0027509590898331 0.0017179524183377 + 392 21 Se 4d+1 0.0003074534018125 -0.0028276445585279 + 393 21 Se 4d+2 -0.0023548500995451 -0.0012285704983091 + + 394 22 Cd 2s 0.0089726739408292 -0.0042163784840666 + 395 22 Cd 3s -0.0006154293281025 0.0005172482924239 + 396 22 Cd 3py 0.0085032085993097 -0.0016989277127261 + 397 22 Cd 3pz 0.0079300198831670 -0.0019241618735533 + 398 22 Cd 3px 0.0131188147350635 -0.0029301838233929 + 399 22 Cd 4py 0.0017867290212730 0.0004009549625882 + 400 22 Cd 4pz 0.0017049071207719 0.0003597244709339 + 401 22 Cd 4px 0.0028210053783557 -0.0011506997953062 + 402 22 Cd 4d-2 -0.0002536148243970 0.1397924650324455 + 403 22 Cd 4d-1 -0.4844456991344249 0.2546026737652222 + 404 22 Cd 4d0 0.0644724425870204 0.0423753716422271 + 405 22 Cd 4d+1 -0.3466537788253786 0.0234568529105510 + 406 22 Cd 4d+2 -0.0400394146465533 0.0266481716519137 + 407 22 Cd 5d-2 -0.0022538096831951 -0.0006619716472550 + 408 22 Cd 5d-1 0.0025879882835057 -0.0006820917969514 + 409 22 Cd 5d0 -0.0023326787540292 0.0020332129874782 + 410 22 Cd 5d+1 0.0041144924951954 -0.0016057955295206 + 411 22 Cd 5d+2 0.0052385554823035 -0.0009020593177638 + 412 22 Cd 5f-3 -0.0009579648333349 0.0004711899980565 + 413 22 Cd 5f-2 -0.0005699658970527 -0.0000076220864814 + 414 22 Cd 5f-1 0.0003093157936853 0.0001298302774137 + 415 22 Cd 5f0 0.0007139233593795 -0.0001115705519099 + 416 22 Cd 5f+1 -0.0006614288265151 -0.0005424509972830 + 417 22 Cd 5f+2 0.0013359746287560 -0.0005764278720860 + 418 22 Cd 5f+3 -0.0004035499652049 0.0001255599130663 + + 419 23 Se 2s 0.0747723816406272 -0.0563903293024754 + 420 23 Se 3s -0.0017010357888189 0.0011084733242787 + 421 23 Se 3py -0.0033505727461341 0.0021174074087802 + 422 23 Se 3pz -0.0400908397131136 0.0274074900643496 + 423 23 Se 3px 0.0106542514857414 -0.0060639759118758 + 424 23 Se 4py 0.0013701727090043 -0.0000464854538216 + 425 23 Se 4pz -0.0021718475650413 0.0015858188273622 + 426 23 Se 4px 0.0012949752245545 -0.0007123987163806 + 427 23 Se 4d-2 0.0002157744421469 0.0014346908858442 + 428 23 Se 4d-1 0.0005214560685856 -0.0012216358371802 + 429 23 Se 4d0 -0.0083714248357088 0.0053089884645886 + 430 23 Se 4d+1 -0.0013072989660080 0.0008396040357254 + 431 23 Se 4d+2 0.0014477435713002 -0.0003791205642496 + + 432 24 Se 2s 0.0180622141773349 0.0317417686901870 + 433 24 Se 3s -0.0004459141614997 -0.0009528484141840 + 434 24 Se 3py -0.0007850925143496 0.0010062236931998 + 435 24 Se 3pz 0.0161772801875727 -0.0196203212328864 + 436 24 Se 3px -0.0069038771856884 -0.0081798905636221 + 437 24 Se 4py 0.0003578225829834 -0.0006036302902844 + 438 24 Se 4pz 0.0009746658812995 -0.0001911951017973 + 439 24 Se 4px -0.0006026352913620 -0.0001696004784831 + 440 24 Se 4d-2 -0.0010888476157258 0.0006550949141665 + 441 24 Se 4d-1 0.0005089535249706 0.0005108671142654 + 442 24 Se 4d0 -0.0006982836614830 0.0005357486212104 + 443 24 Se 4d+1 0.0036607267016329 -0.0046282627536293 + 444 24 Se 4d+2 -0.0011480245396817 -0.0011438170206456 + + 445 25 Cd 2s 0.0144147963602317 -0.0076059951639202 + 446 25 Cd 3s 0.0010219407181020 -0.0009333976748101 + 447 25 Cd 3py 0.0085954908624980 0.0002178964448761 + 448 25 Cd 3pz -0.0018784674908326 -0.0020970711147348 + 449 25 Cd 3px 0.0075128538425536 -0.0048347802179269 + 450 25 Cd 4py 0.0018055986394249 -0.0003069772414648 + 451 25 Cd 4pz -0.0013275524046668 0.0005656419047471 + 452 25 Cd 4px 0.0016895773368513 -0.0026742798532311 + 453 25 Cd 4d-2 -0.1217268091642208 0.0085474739952290 + 454 25 Cd 4d-1 0.1161399244054982 -0.1934828956345856 + 455 25 Cd 4d0 0.1137487695133632 -0.1537859387791666 + 456 25 Cd 4d+1 0.1797121858026364 -0.0588508473760880 + 457 25 Cd 4d+2 -0.0607286636312039 -0.0117407832451328 + 458 25 Cd 5d-2 0.0039202839019829 -0.0018680053587023 + 459 25 Cd 5d-1 -0.0002255204181762 0.0009116537119507 + 460 25 Cd 5d0 -0.0018880868196129 0.0009210210203451 + 461 25 Cd 5d+1 -0.0019111642906158 -0.0012188867081350 + 462 25 Cd 5d+2 0.0002182863860743 -0.0012048809311961 + 463 25 Cd 5f-3 0.0004163395862816 -0.0007517180358100 + 464 25 Cd 5f-2 -0.0006629434199074 0.0003698628387861 + 465 25 Cd 5f-1 0.0004430427827126 0.0000643221949088 + 466 25 Cd 5f0 0.0003479819738141 -0.0000201435625135 + 467 25 Cd 5f+1 -0.0004443840744903 -0.0000936789975938 + 468 25 Cd 5f+2 -0.0001046325611536 -0.0001850233821087 + 469 25 Cd 5f+3 -0.0002999984600245 -0.0002548929338307 + + 470 26 Cd 2s -0.0056621747119628 -0.0019206162429119 + 471 26 Cd 3s 0.0010248485016624 0.0007057313799890 + 472 26 Cd 3py 0.0024675215446798 0.0000601627042945 + 473 26 Cd 3pz -0.0005605375331768 0.0009019608277934 + 474 26 Cd 3px -0.0009451929465832 0.0013281548484993 + 475 26 Cd 4py -0.0004352184076222 -0.0002360367819062 + 476 26 Cd 4pz -0.0007138005089167 -0.0001413346048053 + 477 26 Cd 4px 0.0002541321783439 0.0002543943228959 + 478 26 Cd 4d-2 -0.0130720465770116 -0.0369560041748386 + 479 26 Cd 4d-1 0.0135186756572752 -0.0212602874093621 + 480 26 Cd 4d0 0.0255162490409169 -0.0036192077152563 + 481 26 Cd 4d+1 0.0251108191492677 -0.0119323899747769 + 482 26 Cd 4d+2 -0.0009078926511929 0.0225944757009885 + 483 26 Cd 5d-2 0.0004415392653269 -0.0005615708568570 + 484 26 Cd 5d-1 -0.0002571564433879 -0.0001011801005308 + 485 26 Cd 5d0 0.0006459569286368 -0.0006536381093079 + 486 26 Cd 5d+1 -0.0006206133284901 0.0003735058207934 + 487 26 Cd 5d+2 0.0003036813022937 0.0007389341143019 + 488 26 Cd 5f-3 0.0000427376726428 -0.0000342234293168 + 489 26 Cd 5f-2 -0.0002178691528360 -0.0000146551557930 + 490 26 Cd 5f-1 0.0000091288711599 0.0002754302401685 + 491 26 Cd 5f0 0.0001020097330099 0.0001256216530284 + 492 26 Cd 5f+1 0.0001459491687924 -0.0003333611490527 + 493 26 Cd 5f+2 0.0000483120765279 0.0001396050810301 + 494 26 Cd 5f+3 0.0001370254789538 0.0000235524572278 + + 47 48 + -0.4667288679879547 -0.4660988750434256 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0079994240698111 0.0056866750954882 + 2 1 Cd 3s -0.0011496446578811 -0.0013143898691632 + 3 1 Cd 3py 0.0035779893369585 0.0041812849410323 + 4 1 Cd 3pz 0.0003595069780956 0.0016742308660426 + 5 1 Cd 3px -0.0007978799718914 -0.0005374748419139 + 6 1 Cd 4py -0.0016012396306021 -0.0000657028879029 + 7 1 Cd 4pz 0.0001499450037463 -0.0003059872894794 + 8 1 Cd 4px 0.0005461496263352 0.0005881271948368 + 9 1 Cd 4d-2 0.0464219095427020 0.0408122963073490 + 10 1 Cd 4d-1 -0.0257326653323041 -0.0610948571132749 + 11 1 Cd 4d0 0.0549316141332647 0.0428034008037751 + 12 1 Cd 4d+1 -0.0285011125093959 0.0164532466022132 + 13 1 Cd 4d+2 0.0645708902492453 0.0430187608428825 + 14 1 Cd 5d-2 -0.0004410617732963 -0.0017453630400287 + 15 1 Cd 5d-1 0.0002530992079102 0.0018979698901183 + 16 1 Cd 5d0 -0.0004878787112862 -0.0009383160540776 + 17 1 Cd 5d+1 0.0003262905342741 -0.0007795339382442 + 18 1 Cd 5d+2 -0.0006125774684726 -0.0009963134509983 + 19 1 Cd 5f-3 0.0001654494322303 0.0004488525507663 + 20 1 Cd 5f-2 0.0002024557171264 -0.0005200985197422 + 21 1 Cd 5f-1 0.0002587205255479 0.0002280974039091 + 22 1 Cd 5f0 -0.0000876092495129 -0.0003485506823254 + 23 1 Cd 5f+1 0.0001683640898284 0.0000179017439751 + 24 1 Cd 5f+2 -0.0002571478005172 0.0002180929326150 + 25 1 Cd 5f+3 -0.0002469732396384 0.0002191825688426 + + 26 2 Cd 2s 0.0021027468458848 -0.0105654769197493 + 27 2 Cd 3s 0.0010784041670064 0.0003051989464393 + 28 2 Cd 3py -0.0027456457079409 0.0009020312683790 + 29 2 Cd 3pz -0.0016505937395007 0.0016251497765304 + 30 2 Cd 3px -0.0025726865923619 0.0016529569582397 + 31 2 Cd 4py -0.0002740243805190 0.0025763811135450 + 32 2 Cd 4pz -0.0018489687915160 -0.0009988788335711 + 33 2 Cd 4px -0.0000941229212619 0.0010636528323058 + 34 2 Cd 4d-2 -0.1601622407290612 0.0653957986843834 + 35 2 Cd 4d-1 -0.1240739713858549 -0.2221916325129538 + 36 2 Cd 4d0 0.3112900136050381 0.1862651017882515 + 37 2 Cd 4d+1 -0.2118775633738139 -0.0091500386210966 + 38 2 Cd 4d+2 0.2076041731538141 0.0379388971639533 + 39 2 Cd 5d-2 0.0041297724579165 -0.0018074128541131 + 40 2 Cd 5d-1 0.0008575746418753 0.0013229520229901 + 41 2 Cd 5d0 -0.0015859222526983 -0.0008420251578283 + 42 2 Cd 5d+1 0.0011968475979318 -0.0014203907773064 + 43 2 Cd 5d+2 -0.0004583627087713 0.0000221288755389 + 44 2 Cd 5f-3 -0.0006199272672728 0.0004886619011411 + 45 2 Cd 5f-2 -0.0008935170297170 -0.0005205780658543 + 46 2 Cd 5f-1 0.0009663499544242 -0.0000566712283817 + 47 2 Cd 5f0 0.0011262091357471 0.0002944155477478 + 48 2 Cd 5f+1 0.0006215443397178 0.0003848956537520 + 49 2 Cd 5f+2 0.0003552293131597 0.0003420562421014 + 50 2 Cd 5f+3 0.0000537874432355 0.0003991818028381 + + 51 3 Cd 2s -0.0082455923445918 0.0040921628867184 + 52 3 Cd 3s 0.0007618251725560 0.0006309670500438 + 53 3 Cd 3py 0.0012505827276839 0.0044138627899277 + 54 3 Cd 3pz 0.0022884856442817 0.0033230307346696 + 55 3 Cd 3px 0.0000832805617107 -0.0012406069854094 + 56 3 Cd 4py -0.0011407392662795 0.0010217493577896 + 57 3 Cd 4pz 0.0001679539348964 0.0008936404353845 + 58 3 Cd 4px -0.0002927331849559 0.0008414294111542 + 59 3 Cd 4d-2 0.0279296602084710 -0.0097101933667007 + 60 3 Cd 4d-1 -0.0318002532438799 -0.0041505313121979 + 61 3 Cd 4d0 -0.0175077914881120 0.0202202421699386 + 62 3 Cd 4d+1 -0.0273070476205527 -0.0081825635793993 + 63 3 Cd 4d+2 0.0315628060320849 0.0370273637432363 + 64 3 Cd 5d-2 -0.0006506972655980 -0.0002448685743290 + 65 3 Cd 5d-1 0.0012992030248583 0.0018564666354650 + 66 3 Cd 5d0 0.0006870910096735 -0.0004174064069076 + 67 3 Cd 5d+1 0.0025679797681680 0.0004984560355896 + 68 3 Cd 5d+2 -0.0021046581581250 -0.0021970257598375 + 69 3 Cd 5f-3 -0.0000947725508738 -0.0003070085993550 + 70 3 Cd 5f-2 0.0002247091088992 0.0000939390133335 + 71 3 Cd 5f-1 0.0000381954965108 -0.0003287328750184 + 72 3 Cd 5f0 -0.0004508663532793 -0.0004554058371213 + 73 3 Cd 5f+1 0.0002798790029167 0.0000333335732742 + 74 3 Cd 5f+2 -0.0002302989666712 -0.0001230382889533 + 75 3 Cd 5f+3 0.0011007616640056 0.0003613512014997 + + 76 4 Se 2s -0.0379697063195493 0.0000622888666104 + 77 4 Se 3s 0.0004790768755661 -0.0003154115296916 + 78 4 Se 3py -0.0157431224837482 0.0020622951544545 + 79 4 Se 3pz 0.0333798415951195 0.0374806365428498 + 80 4 Se 3px -0.0123273776541486 -0.0074577971853511 + 81 4 Se 4py -0.0014808217290021 0.0004774325125044 + 82 4 Se 4pz 0.0033526948505211 0.0026581116815970 + 83 4 Se 4px -0.0007999995244360 -0.0010507731625735 + 84 4 Se 4d-2 0.0036979958708473 0.0006244629456021 + 85 4 Se 4d-1 -0.0057866428327029 -0.0029590233044133 + 86 4 Se 4d0 -0.0021992246299584 -0.0010378533648164 + 87 4 Se 4d+1 -0.0052314653103603 -0.0072234687747481 + 88 4 Se 4d+2 0.0005593071018414 0.0019613883428795 + + 89 5 Se 2s 0.0154731082159418 0.0104439084048970 + 90 5 Se 3s -0.0001362865068045 -0.0000670941446799 + 91 5 Se 3py -0.0063157712318502 -0.0048953439774494 + 92 5 Se 3pz 0.0051250391540640 0.0045902392746676 + 93 5 Se 3px -0.0038312402339390 -0.0032802069578035 + 94 5 Se 4py -0.0010427188181488 -0.0006721097124671 + 95 5 Se 4pz 0.0014508190999070 0.0013910577919522 + 96 5 Se 4px -0.0010620378903457 -0.0008503827258272 + 97 5 Se 4d-2 -0.0007009020721066 -0.0004814214670030 + 98 5 Se 4d-1 0.0009391189095758 0.0008247233662806 + 99 5 Se 4d0 0.0009536898186298 0.0006952321224442 + 100 5 Se 4d+1 -0.0005790462657227 -0.0004466469960802 + 101 5 Se 4d+2 0.0014034814305565 0.0010176741906954 + + 102 6 Se 2s 0.0240029649662564 0.0182468159954232 + 103 6 Se 3s -0.0006946347305673 -0.0003007902008203 + 104 6 Se 3py -0.0060292757561529 -0.0082272301916933 + 105 6 Se 3pz 0.0048301368409525 0.0088726366908709 + 106 6 Se 3px 0.0105993477734389 0.0050051172077263 + 107 6 Se 4py 0.0003426408913979 -0.0003324873558746 + 108 6 Se 4pz -0.0000742033686479 0.0006727626230737 + 109 6 Se 4px 0.0007435023130029 0.0001361980519650 + 110 6 Se 4d-2 0.0019595799191859 0.0012422646531469 + 111 6 Se 4d-1 0.0006412776550711 0.0016737254472550 + 112 6 Se 4d0 0.0016413913134194 0.0009233147729264 + 113 6 Se 4d+1 -0.0016215950498699 -0.0013237676149863 + 114 6 Se 4d+2 -0.0011354376933258 -0.0001651933612715 + + 115 7 Se 2s -0.0696434635830008 0.0619463412722792 + 116 7 Se 3s 0.0017141883309827 -0.0016535449333791 + 117 7 Se 3py -0.0228933907058677 0.0208853846087469 + 118 7 Se 3pz -0.0178715970685621 0.0157406483809189 + 119 7 Se 3px -0.0040427921656271 0.0114222949453745 + 120 7 Se 4py -0.0005336635806539 0.0008951193117365 + 121 7 Se 4pz -0.0008690084598651 0.0004997340356130 + 122 7 Se 4px 0.0008002017316114 0.0005728326044291 + 123 7 Se 4d-2 0.0002323534778835 -0.0035533116595532 + 124 7 Se 4d-1 0.0047336018963591 -0.0039168006700957 + 125 7 Se 4d0 0.0003421408507349 -0.0005599750721032 + 126 7 Se 4d+1 0.0006450709285711 -0.0011555809632329 + 127 7 Se 4d+2 -0.0006273366073179 0.0005642500575453 + + 128 8 Cd 2s -0.0038187757042137 0.0049955517723862 + 129 8 Cd 3s -0.0004732453424373 0.0009878778017131 + 130 8 Cd 3py -0.0042395247992269 -0.0082248186827568 + 131 8 Cd 3pz 0.0051472977641886 -0.0017586735173765 + 132 8 Cd 3px 0.0024452387720346 0.0011606334675922 + 133 8 Cd 4py -0.0023665250797533 -0.0017805618143210 + 134 8 Cd 4pz -0.0001170056825979 -0.0001130151022251 + 135 8 Cd 4px 0.0016887804488616 -0.0001093164121769 + 136 8 Cd 4d-2 0.2999573729838299 -0.0268323631005155 + 137 8 Cd 4d-1 0.0768668614348316 -0.1453320353711921 + 138 8 Cd 4d0 0.2877777433915873 -0.2012092063845664 + 139 8 Cd 4d+1 0.0445787625219152 -0.4501822009358293 + 140 8 Cd 4d+2 0.0204521387160916 -0.1941367021539222 + 141 8 Cd 5d-2 -0.0015305881546254 0.0000173643649455 + 142 8 Cd 5d-1 0.0022360025435209 0.0016936376444323 + 143 8 Cd 5d0 0.0011505068204752 0.0017051081223776 + 144 8 Cd 5d+1 -0.0016828469133661 0.0029454677882817 + 145 8 Cd 5d+2 -0.0015600454475430 0.0027590345992214 + 146 8 Cd 5f-3 -0.0002211108423452 -0.0001911293498683 + 147 8 Cd 5f-2 0.0003332571458291 -0.0011676189794401 + 148 8 Cd 5f-1 0.0004635798629013 -0.0006842307633636 + 149 8 Cd 5f0 -0.0002951948998442 0.0000683855304213 + 150 8 Cd 5f+1 0.0006144346723284 -0.0004734531072388 + 151 8 Cd 5f+2 0.0000466818079624 0.0000131725969157 + 152 8 Cd 5f+3 -0.0003954334016966 0.0006794775373937 + + 153 9 Cd 2s 0.0052646399824628 0.0011558845729551 + 154 9 Cd 3s -0.0002903603677694 -0.0001577077881864 + 155 9 Cd 3py 0.0008917034252209 -0.0014599476121513 + 156 9 Cd 3pz -0.0007642161961831 0.0013933385071978 + 157 9 Cd 3px -0.0036405887732284 -0.0065659982926901 + 158 9 Cd 4py 0.0004626537125882 0.0000528115628659 + 159 9 Cd 4pz 0.0000319624420370 0.0000600784304697 + 160 9 Cd 4px 0.0006590233140398 -0.0002392550771989 + 161 9 Cd 4d-2 -0.0360276932267791 -0.0456571181623022 + 162 9 Cd 4d-1 -0.0476317530542319 0.0374979406727678 + 163 9 Cd 4d0 0.0455781201247267 -0.0271513914923098 + 164 9 Cd 4d+1 0.0317594116681660 0.0582685827493552 + 165 9 Cd 4d+2 0.0849787724651666 0.0702589247756331 + 166 9 Cd 5d-2 -0.0007284957746798 -0.0006467065334752 + 167 9 Cd 5d-1 -0.0003339990220973 -0.0000549542210951 + 168 9 Cd 5d0 0.0001142635839726 -0.0009529884320544 + 169 9 Cd 5d+1 0.0010100644805410 0.0022846722279539 + 170 9 Cd 5d+2 0.0003309980336355 0.0017643511423615 + 171 9 Cd 5f-3 0.0000828388162508 0.0002491936627649 + 172 9 Cd 5f-2 -0.0000018753611891 0.0004801077410215 + 173 9 Cd 5f-1 0.0000878478041291 0.0002092113115611 + 174 9 Cd 5f0 -0.0000967986605527 0.0004111760792599 + 175 9 Cd 5f+1 -0.0003367554910148 -0.0003655585671015 + 176 9 Cd 5f+2 -0.0001802260328050 -0.0000708854831352 + 177 9 Cd 5f+3 0.0003318856947845 -0.0003431646855212 + + 178 10 Se 2s -0.0385625530239690 -0.0383683263041725 + 179 10 Se 3s 0.0006618497410255 0.0006150931309160 + 180 10 Se 3py 0.0014439852229686 0.0114686253763613 + 181 10 Se 3pz -0.0112811016748583 -0.0102439083311851 + 182 10 Se 3px -0.0033803012992851 -0.0034944309818931 + 183 10 Se 4py -0.0004678771701804 0.0005226261700338 + 184 10 Se 4pz 0.0000907249382926 -0.0004358023187085 + 185 10 Se 4px -0.0001606123742812 -0.0004626204526040 + 186 10 Se 4d-2 -0.0002140227993628 -0.0003140356027112 + 187 10 Se 4d-1 0.0010610826699450 -0.0030013163631673 + 188 10 Se 4d0 0.0016280054717524 0.0002781220348272 + 189 10 Se 4d+1 0.0006773217234271 0.0006263940000067 + 190 10 Se 4d+2 -0.0007744512285182 -0.0002189444968901 + + 191 11 Se 2s 0.0415092889775090 -0.0151420930999118 + 192 11 Se 3s -0.0004428877165104 0.0001670292021219 + 193 11 Se 3py -0.0107848508399290 0.0039358153967072 + 194 11 Se 3pz -0.0076334726616516 -0.0013975241875161 + 195 11 Se 3px 0.0203070596113576 -0.0086360838501004 + 196 11 Se 4py 0.0008911770632913 0.0003500733911619 + 197 11 Se 4pz 0.0000515805705647 -0.0003853349385899 + 198 11 Se 4px -0.0001050474632414 0.0001898157477783 + 199 11 Se 4d-2 0.0041107977890978 -0.0016996019311511 + 200 11 Se 4d-1 -0.0008169026922332 -0.0004018386987011 + 201 11 Se 4d0 0.0004151529697393 -0.0001840148516528 + 202 11 Se 4d+1 0.0016005407873337 0.0001679250261824 + 203 11 Se 4d+2 -0.0005515059169529 -0.0003569392674430 + + 204 12 Cd 2s -0.0053250949168577 -0.0015412062020803 + 205 12 Cd 3s -0.0008168822345415 0.0009740304978208 + 206 12 Cd 3py 0.0009736509691377 -0.0035818343848744 + 207 12 Cd 3pz 0.0021589983195590 -0.0019803991664908 + 208 12 Cd 3px -0.0043909323325628 0.0004304141644914 + 209 12 Cd 4py 0.0016029203908483 -0.0004766846134187 + 210 12 Cd 4pz 0.0003177109138766 -0.0012145899906405 + 211 12 Cd 4px -0.0022835290205515 0.0002735619891508 + 212 12 Cd 4d-2 0.2045625949642211 -0.0919106240917273 + 213 12 Cd 4d-1 0.2523695975609784 -0.1642423847237496 + 214 12 Cd 4d0 0.1562861860485644 0.0713476450983525 + 215 12 Cd 4d+1 0.1278720157163797 -0.3044347068339408 + 216 12 Cd 4d+2 0.2508368203941455 -0.1213031425321227 + 217 12 Cd 5d-2 0.0003705446495681 -0.0011720829231502 + 218 12 Cd 5d-1 -0.0006036494221364 -0.0014578519915152 + 219 12 Cd 5d0 0.0010971038726145 0.0009530216177268 + 220 12 Cd 5d+1 0.0016928933582453 0.0005646603606305 + 221 12 Cd 5d+2 0.0000671034262001 0.0006378624598991 + 222 12 Cd 5f-3 -0.0007572094187024 0.0003079680207234 + 223 12 Cd 5f-2 -0.0002846463697814 -0.0000302573560505 + 224 12 Cd 5f-1 0.0000741177072950 0.0003113573583819 + 225 12 Cd 5f0 0.0001764053620416 -0.0004020004576738 + 226 12 Cd 5f+1 0.0000217339841652 -0.0003936473847390 + 227 12 Cd 5f+2 -0.0004145207007468 0.0008626852973857 + 228 12 Cd 5f+3 0.0002420237431448 0.0001710897198481 + + 229 13 Cd 2s 0.0156541052139126 0.0012267135645442 + 230 13 Cd 3s -0.0010788024852179 -0.0004683351124055 + 231 13 Cd 3py -0.0022821071638165 -0.0029349933518062 + 232 13 Cd 3pz -0.0027626538383390 -0.0054962287527894 + 233 13 Cd 3px 0.0031745534155041 0.0006202015449305 + 234 13 Cd 4py -0.0000699653862633 -0.0009434435589882 + 235 13 Cd 4pz -0.0006359995675319 -0.0027078966073313 + 236 13 Cd 4px -0.0012667363375990 -0.0000135831712852 + 237 13 Cd 4d-2 0.1063757563161549 0.0490561222624878 + 238 13 Cd 4d-1 -0.1436079714322703 0.0752042152929701 + 239 13 Cd 4d0 0.0559140331118462 0.2078577244197906 + 240 13 Cd 4d+1 -0.0581662396024524 -0.1666970618038997 + 241 13 Cd 4d+2 -0.0112061325420962 -0.0206790124552342 + 242 13 Cd 5d-2 -0.0012443663555050 -0.0010935543711261 + 243 13 Cd 5d-1 0.0012484070754902 -0.0005009097028448 + 244 13 Cd 5d0 -0.0021193275939354 -0.0019911256493796 + 245 13 Cd 5d+1 0.0000319564635995 0.0018256097209975 + 246 13 Cd 5d+2 0.0022833001078781 -0.0011591615411958 + 247 13 Cd 5f-3 -0.0001291149528945 0.0006219183227327 + 248 13 Cd 5f-2 0.0005688685687699 0.0000115398276379 + 249 13 Cd 5f-1 0.0004436215425434 -0.0006922573499781 + 250 13 Cd 5f0 0.0005404361155697 -0.0001262303507077 + 251 13 Cd 5f+1 0.0006587216708401 0.0003217319874741 + 252 13 Cd 5f+2 0.0006747024433474 -0.0005604946664189 + 253 13 Cd 5f+3 -0.0007904409976429 -0.0000687032517749 + + 254 14 Cd 2s 0.0114774839011429 -0.0101156181342076 + 255 14 Cd 3s 0.0000264624345168 0.0007592285498861 + 256 14 Cd 3py -0.0055299426331537 0.0033820252786329 + 257 14 Cd 3pz 0.0038434546145923 -0.0012328656906226 + 258 14 Cd 3px 0.0031426863327115 0.0011340681611914 + 259 14 Cd 4py -0.0008304917788278 -0.0005946674700222 + 260 14 Cd 4pz 0.0000898300873592 0.0004502129396066 + 261 14 Cd 4px 0.0002656638363305 0.0000179397909977 + 262 14 Cd 4d-2 -0.0259621102281154 -0.0319395722750109 + 263 14 Cd 4d-1 -0.0432155265982574 0.0082175038804411 + 264 14 Cd 4d0 0.0305122702134255 -0.0122812906904691 + 265 14 Cd 4d+1 0.0005485678180169 0.0091905667239918 + 266 14 Cd 4d+2 0.0023849914610839 0.0193471747983399 + 267 14 Cd 5d-2 -0.0013045488573932 -0.0007239428913769 + 268 14 Cd 5d-1 -0.0017209020044726 0.0008466868358188 + 269 14 Cd 5d0 -0.0010610140016033 -0.0003575346628233 + 270 14 Cd 5d+1 -0.0006030342868971 -0.0006878588865889 + 271 14 Cd 5d+2 -0.0018897952403786 0.0012501636856583 + 272 14 Cd 5f-3 0.0000690876337496 -0.0003401610140643 + 273 14 Cd 5f-2 0.0001154576352444 0.0000933600437101 + 274 14 Cd 5f-1 0.0003959253773568 -0.0002262157904854 + 275 14 Cd 5f0 -0.0004641782829145 0.0003567745501481 + 276 14 Cd 5f+1 -0.0000448652632016 0.0000352006808836 + 277 14 Cd 5f+2 -0.0000732215805610 -0.0000520315371170 + 278 14 Cd 5f+3 -0.0002009940860018 -0.0005780945553117 + + 279 15 Se 2s -0.0064203758962204 -0.0125139711124932 + 280 15 Se 3s 0.0002032560294557 0.0003109863857605 + 281 15 Se 3py -0.0007340647106837 -0.0047520335312192 + 282 15 Se 3pz 0.0007734872581844 0.0049042420832226 + 283 15 Se 3px -0.0167952007968335 -0.0027507980127356 + 284 15 Se 4py 0.0004479117135303 0.0003759759898716 + 285 15 Se 4pz 0.0006544761388262 0.0017134058068214 + 286 15 Se 4px -0.0005193331434660 0.0009620487977575 + 287 15 Se 4d-2 0.0039932551136824 -0.0000924505572754 + 288 15 Se 4d-1 0.0008728015358980 -0.0010398940951940 + 289 15 Se 4d0 0.0006161606228461 -0.0012635937678963 + 290 15 Se 4d+1 0.0017707357370560 0.0017477663696591 + 291 15 Se 4d+2 -0.0013362868521013 -0.0000955626555845 + + 292 16 Se 2s -0.0034561234285388 0.0106226090907719 + 293 16 Se 3s -0.0003063044345707 -0.0002188969131055 + 294 16 Se 3py -0.0136758983188824 0.0252093621269775 + 295 16 Se 3pz -0.0155073393383500 0.0176980774099792 + 296 16 Se 3px -0.0043277002785447 0.0211441317411238 + 297 16 Se 4py -0.0018289873477796 0.0014163379415315 + 298 16 Se 4pz -0.0023329927856778 0.0002973354587963 + 299 16 Se 4px -0.0006852832583549 0.0018789765584042 + 300 16 Se 4d-2 0.0023774528321357 -0.0053374421071425 + 301 16 Se 4d-1 0.0003444647134276 0.0032600275353567 + 302 16 Se 4d0 -0.0036016268546135 0.0041865033022867 + 303 16 Se 4d+1 0.0015145077518260 -0.0008101602253530 + 304 16 Se 4d+2 -0.0018042134337526 -0.0037331086611510 + + 305 17 Cd 2s 0.0023821665643853 0.0012176456401796 + 306 17 Cd 3s 0.0004266238632850 -0.0028441424914036 + 307 17 Cd 3py 0.0020847716797248 0.0007080840106039 + 308 17 Cd 3pz 0.0011886064728615 0.0009259765722129 + 309 17 Cd 3px -0.0006518754215682 0.0021123178410862 + 310 17 Cd 4py 0.0011132073434675 0.0017649156174920 + 311 17 Cd 4pz -0.0000391108123660 0.0005952158857825 + 312 17 Cd 4px 0.0000406320034085 -0.0017383404059616 + 313 17 Cd 4d-2 0.0994633450741498 -0.2441232573106371 + 314 17 Cd 4d-1 -0.0668722225545607 -0.0307069150538304 + 315 17 Cd 4d0 -0.0515945340407319 0.0532313271421770 + 316 17 Cd 4d+1 -0.0466160869279229 0.0010688341018839 + 317 17 Cd 4d+2 0.1380626457015892 0.1663013010092412 + 318 17 Cd 5d-2 -0.0001658856552370 -0.0036079749212064 + 319 17 Cd 5d-1 0.0013057357792141 -0.0004613228132437 + 320 17 Cd 5d0 -0.0001846009693421 0.0022655091035686 + 321 17 Cd 5d+1 -0.0007483872076493 0.0003484198856936 + 322 17 Cd 5d+2 -0.0007291924114249 0.0007526164574303 + 323 17 Cd 5f-3 -0.0007915738123414 -0.0005016377571349 + 324 17 Cd 5f-2 0.0000249893396562 0.0003986453767449 + 325 17 Cd 5f-1 0.0000339609888863 -0.0007608393708407 + 326 17 Cd 5f0 -0.0004128749907821 -0.0000216635321727 + 327 17 Cd 5f+1 -0.0006041110842555 -0.0001350456621822 + 328 17 Cd 5f+2 -0.0001989957344855 -0.0005849161787466 + 329 17 Cd 5f+3 -0.0001875723576357 -0.0007137191832842 + + 330 18 Cd 2s -0.0024119001985686 0.0002317611298765 + 331 18 Cd 3s 0.0006690928246904 -0.0005345625219050 + 332 18 Cd 3py 0.0013310962673864 -0.0010708533595897 + 333 18 Cd 3pz -0.0052162179384490 0.0009509477777209 + 334 18 Cd 3px -0.0006488849010904 0.0007065066509978 + 335 18 Cd 4py -0.0000348401475098 -0.0004347390743494 + 336 18 Cd 4pz 0.0006241486493809 -0.0000135168957377 + 337 18 Cd 4px -0.0002352922701248 -0.0000921089423453 + 338 18 Cd 4d-2 0.0428527396463086 0.0209244049923730 + 339 18 Cd 4d-1 -0.0566749586165432 -0.0021454223377983 + 340 18 Cd 4d0 -0.0612293864997882 0.0236393963608999 + 341 18 Cd 4d+1 0.0219611574377907 -0.0250079684159825 + 342 18 Cd 4d+2 -0.0330257375140762 -0.0165961093708156 + 343 18 Cd 5d-2 0.0000119593199407 0.0003298479851766 + 344 18 Cd 5d-1 -0.0013592369048915 -0.0001087339532311 + 345 18 Cd 5d0 -0.0000454709421768 0.0009856651661335 + 346 18 Cd 5d+1 0.0007111760273307 -0.0001941938454944 + 347 18 Cd 5d+2 -0.0010748798529856 -0.0000918487205826 + 348 18 Cd 5f-3 -0.0003252586726884 -0.0000996283645885 + 349 18 Cd 5f-2 0.0004409677067239 0.0000908577844044 + 350 18 Cd 5f-1 -0.0002500446501063 0.0000297128493994 + 351 18 Cd 5f0 0.0003536680866662 0.0000204190517905 + 352 18 Cd 5f+1 0.0000917002317145 -0.0001142043286070 + 353 18 Cd 5f+2 0.0000968560083986 0.0001070812529560 + 354 18 Cd 5f+3 -0.0001312440556137 0.0000481999881748 + + 355 19 Se 2s -0.0385649946745419 0.0009569205323434 + 356 19 Se 3s 0.0009903706914771 0.0003018043403795 + 357 19 Se 3py 0.0145134330916823 -0.0086313204536106 + 358 19 Se 3pz 0.0119450167512861 0.0165857368691019 + 359 19 Se 3px -0.0121880227584982 -0.0306988753389008 + 360 19 Se 4py 0.0010535530560961 -0.0000209767064192 + 361 19 Se 4pz 0.0002333338102250 -0.0005334161806169 + 362 19 Se 4px -0.0003257017673644 -0.0012942292160322 + 363 19 Se 4d-2 -0.0017108634788403 -0.0074054821467417 + 364 19 Se 4d-1 0.0025587146536788 0.0034495542570724 + 365 19 Se 4d0 0.0007207669069165 0.0020716229823779 + 366 19 Se 4d+1 -0.0009543658678058 -0.0024282543019993 + 367 19 Se 4d+2 -0.0017152758876189 0.0021702237819170 + + 368 20 Se 2s 0.0272605242786748 -0.0191520621138393 + 369 20 Se 3s -0.0008282999032885 0.0003235836740461 + 370 20 Se 3py 0.0170554598732572 -0.0061182516877242 + 371 20 Se 3pz 0.0152999048067335 0.0079489640217225 + 372 20 Se 3px 0.0046034348111881 -0.0047215768141492 + 373 20 Se 4py -0.0009322244289823 -0.0000977064147260 + 374 20 Se 4pz -0.0017399652499626 -0.0005251079691023 + 375 20 Se 4px -0.0026629653411841 -0.0015355886142603 + 376 20 Se 4d-2 -0.0036329657803189 0.0028032848425093 + 377 20 Se 4d-1 0.0008165133853426 -0.0009519784378387 + 378 20 Se 4d0 -0.0012557176627747 -0.0007438175964171 + 379 20 Se 4d+1 -0.0042682299765853 0.0003806760283389 + 380 20 Se 4d+2 -0.0019130724057966 -0.0006934365542293 + + 381 21 Se 2s 0.0595615206914342 0.0388395213485469 + 382 21 Se 3s -0.0007373931828457 -0.0006559392281103 + 383 21 Se 3py 0.0046282400539371 0.0178710397130005 + 384 21 Se 3pz -0.0169188127940011 0.0068130013053607 + 385 21 Se 3px -0.0181298440609759 -0.0111708324771631 + 386 21 Se 4py -0.0002090412021304 0.0002489514143772 + 387 21 Se 4pz -0.0010026467526658 -0.0001884623024173 + 388 21 Se 4px 0.0008416208046781 -0.0003833560630114 + 389 21 Se 4d-2 0.0011796143376678 0.0040375893526206 + 390 21 Se 4d-1 0.0034307196203617 0.0010856608637420 + 391 21 Se 4d0 -0.0026213927092282 0.0023848983364767 + 392 21 Se 4d+1 -0.0036055060778584 0.0026379087614076 + 393 21 Se 4d+2 -0.0007924678622759 0.0018348643508354 + + 394 22 Cd 2s -0.0125766776494380 0.0079197165657187 + 395 22 Cd 3s 0.0002175317679742 0.0003999441087448 + 396 22 Cd 3py 0.0016306368805161 -0.0032546974098862 + 397 22 Cd 3pz -0.0085021902169918 0.0009545252033219 + 398 22 Cd 3px 0.0006436918136472 0.0044345503429702 + 399 22 Cd 4py 0.0004950119428660 -0.0005495838069722 + 400 22 Cd 4pz 0.0000603184059142 0.0015182240478438 + 401 22 Cd 4px -0.0000050627496154 0.0002844516518477 + 402 22 Cd 4d-2 0.2300757737972556 0.0370815875821582 + 403 22 Cd 4d-1 -0.1042149204009978 -0.0776369277433498 + 404 22 Cd 4d0 -0.0705452824045087 -0.1646523945303540 + 405 22 Cd 4d+1 0.0028995299776878 -0.0817010772509545 + 406 22 Cd 4d+2 -0.0546105945130796 -0.0550933995545224 + 407 22 Cd 5d-2 -0.0027352275650234 0.0009966028788814 + 408 22 Cd 5d-1 0.0050521644002040 0.0009754023111590 + 409 22 Cd 5d0 0.0010218816747723 -0.0022261852675633 + 410 22 Cd 5d+1 0.0014521582486239 0.0027536797840621 + 411 22 Cd 5d+2 -0.0020254789712929 -0.0024415367395729 + 412 22 Cd 5f-3 -0.0000861869362180 0.0003310945116632 + 413 22 Cd 5f-2 0.0003227244351523 0.0005519019891050 + 414 22 Cd 5f-1 0.0005185182933225 0.0000715042619566 + 415 22 Cd 5f0 0.0003392381679801 0.0000280529066270 + 416 22 Cd 5f+1 0.0001850531642059 0.0003840666345074 + 417 22 Cd 5f+2 0.0009720321666294 0.0005192679020821 + 418 22 Cd 5f+3 -0.0012023660175549 0.0001053157931917 + + 419 23 Se 2s -0.0252102797800133 0.0221227076434390 + 420 23 Se 3s 0.0005315338757800 -0.0005430487859364 + 421 23 Se 3py -0.0185905825166897 -0.0157809180470788 + 422 23 Se 3pz 0.0051592969734862 -0.0244937884375553 + 423 23 Se 3px -0.0078748433151958 0.0154196297396773 + 424 23 Se 4py -0.0021867113087164 -0.0004906779260315 + 425 23 Se 4pz -0.0003586083994650 -0.0010482853701378 + 426 23 Se 4px -0.0010613101677861 0.0007115986859715 + 427 23 Se 4d-2 -0.0010998166175510 -0.0039932585419636 + 428 23 Se 4d-1 -0.0033671027801226 -0.0004692610253367 + 429 23 Se 4d0 0.0003128028958816 -0.0046597283682799 + 430 23 Se 4d+1 -0.0015930840940526 -0.0004184057374085 + 431 23 Se 4d+2 -0.0026306049184954 0.0014548433101948 + + 432 24 Se 2s -0.0414642582537011 0.0189163280019818 + 433 24 Se 3s 0.0012056401508355 -0.0001635667179999 + 434 24 Se 3py -0.0016224948859268 0.0077502077296079 + 435 24 Se 3pz 0.0047749077127385 -0.0060671008751122 + 436 24 Se 3px 0.0199510758931138 -0.0032719692802197 + 437 24 Se 4py 0.0011050893065340 0.0002723911107117 + 438 24 Se 4pz -0.0007150166391940 -0.0001559615064131 + 439 24 Se 4px -0.0000937143276709 0.0001554563142548 + 440 24 Se 4d-2 0.0002833989868764 0.0030272623195445 + 441 24 Se 4d-1 -0.0006585543598738 -0.0006835664991009 + 442 24 Se 4d0 -0.0023665578221236 -0.0007485132824307 + 443 24 Se 4d+1 0.0011835630011436 -0.0015375538340756 + 444 24 Se 4d+2 0.0023693343083568 -0.0004890025680550 + + 445 25 Cd 2s -0.0128333269980675 -0.0149411392288571 + 446 25 Cd 3s -0.0006638021710675 -0.0006536980131445 + 447 25 Cd 3py -0.0039351875002479 -0.0096276073062543 + 448 25 Cd 3pz 0.0003640222880372 -0.0068316197209713 + 449 25 Cd 3px -0.0017314635900153 0.0013524991797603 + 450 25 Cd 4py -0.0003202965035174 -0.0034259593245044 + 451 25 Cd 4pz -0.0003305614546314 -0.0024690582733945 + 452 25 Cd 4px -0.0000984948781727 0.0006122539931882 + 453 25 Cd 4d-2 -0.0971856331262933 -0.0819080823326277 + 454 25 Cd 4d-1 -0.0692763407091638 0.2692506981598517 + 455 25 Cd 4d0 0.0816744702022507 0.2479586368031277 + 456 25 Cd 4d+1 -0.2495216695413452 -0.2025262776544608 + 457 25 Cd 4d+2 -0.2553749143446709 -0.0470867033696838 + 458 25 Cd 5d-2 -0.0007570079241019 -0.0021677554489650 + 459 25 Cd 5d-1 0.0015038675844657 -0.0027753012500488 + 460 25 Cd 5d0 0.0000813093307037 -0.0033206876211304 + 461 25 Cd 5d+1 0.0028723116762214 -0.0003686044570909 + 462 25 Cd 5d+2 0.0000307400035496 0.0018555178504947 + 463 25 Cd 5f-3 -0.0002318046175032 0.0000618165074734 + 464 25 Cd 5f-2 0.0004997110740314 0.0000676909339646 + 465 25 Cd 5f-1 -0.0002989426782666 -0.0006858652551137 + 466 25 Cd 5f0 -0.0003835733687200 -0.0000293652862784 + 467 25 Cd 5f+1 0.0001613975061243 -0.0006472412987349 + 468 25 Cd 5f+2 -0.0001842403198330 0.0008833215654108 + 469 25 Cd 5f+3 0.0003235338123576 -0.0000682054832440 + + 470 26 Cd 2s -0.0040000388553280 -0.0101041700014382 + 471 26 Cd 3s 0.0021363402437566 0.0009729697976950 + 472 26 Cd 3py -0.0053406765020914 0.0014708058229358 + 473 26 Cd 3pz -0.0000676722716375 0.0010993821964092 + 474 26 Cd 3px -0.0005646043305121 -0.0025092403804615 + 475 26 Cd 4py 0.0010658180785856 0.0007281270735302 + 476 26 Cd 4pz -0.0002537725651007 -0.0007927051813672 + 477 26 Cd 4px 0.0015699680677628 0.0001675379655292 + 478 26 Cd 4d-2 -0.0774028355769924 -0.0118265351746544 + 479 26 Cd 4d-1 0.0061309005101953 -0.0440220154446291 + 480 26 Cd 4d0 0.0248053824539024 0.0055017498414213 + 481 26 Cd 4d+1 0.0356708342245652 0.0508758907003836 + 482 26 Cd 4d+2 -0.0427982497045191 0.0470910210685258 + 483 26 Cd 5d-2 -0.0019567360623170 0.0003934763813623 + 484 26 Cd 5d-1 0.0000972710928875 -0.0004716023633380 + 485 26 Cd 5d0 0.0001349837365988 0.0006759261718645 + 486 26 Cd 5d+1 0.0000490598658769 0.0002707079796832 + 487 26 Cd 5d+2 0.0000121178852976 -0.0000609825884846 + 488 26 Cd 5f-3 -0.0004572838780963 -0.0000472012900628 + 489 26 Cd 5f-2 0.0003485223666760 0.0000382632368820 + 490 26 Cd 5f-1 0.0000112429119333 -0.0001909549449716 + 491 26 Cd 5f0 -0.0003468201641852 -0.0001785864483049 + 492 26 Cd 5f+1 0.0003184337585870 0.0000982790961494 + 493 26 Cd 5f+2 -0.0000297094343058 0.0001560638729104 + 494 26 Cd 5f+3 -0.0003991501723426 -0.0002114959127675 + + 49 50 + -0.4659619766607979 -0.4648640270426215 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0167810561199915 0.0110015552188756 + 2 1 Cd 3s -0.0013341105646446 -0.0026591549314208 + 3 1 Cd 3py 0.0070852214327359 0.0071443662750241 + 4 1 Cd 3pz 0.0009592472617675 -0.0014442061392561 + 5 1 Cd 3px -0.0059643440812935 0.0005810432933915 + 6 1 Cd 4py 0.0011709895716840 -0.0011284577469090 + 7 1 Cd 4pz -0.0006315502058346 -0.0010044676040464 + 8 1 Cd 4px 0.0004497670707581 0.0002729001982285 + 9 1 Cd 4d-2 0.0977080797824064 0.0159983145141818 + 10 1 Cd 4d-1 -0.0093398707703253 -0.0093883619959746 + 11 1 Cd 4d0 -0.0047651750718481 0.0127502701381447 + 12 1 Cd 4d+1 0.0125822919105586 -0.0494610999043836 + 13 1 Cd 4d+2 0.0124468498444607 0.1011754068396158 + 14 1 Cd 5d-2 -0.0039957148950708 -0.0021620746821436 + 15 1 Cd 5d-1 0.0011820019629328 0.0004643988712107 + 16 1 Cd 5d0 -0.0023306595680452 -0.0013869416220240 + 17 1 Cd 5d+1 -0.0006402296877813 0.0007342946120601 + 18 1 Cd 5d+2 -0.0003475195905797 -0.0018067566436349 + 19 1 Cd 5f-3 0.0007364006919625 0.0002214970412067 + 20 1 Cd 5f-2 -0.0004002082036260 0.0001168993664737 + 21 1 Cd 5f-1 -0.0002533802933749 0.0001418690878513 + 22 1 Cd 5f0 -0.0007219224322132 -0.0002609672469474 + 23 1 Cd 5f+1 -0.0002950441204389 -0.0002103883184588 + 24 1 Cd 5f+2 -0.0001688431167506 -0.0003034283895553 + 25 1 Cd 5f+3 -0.0001001115297772 0.0003803343159604 + + 26 2 Cd 2s -0.0007867582489303 -0.0042934654224278 + 27 2 Cd 3s 0.0000439109314853 0.0006766135266953 + 28 2 Cd 3py -0.0113492209335508 0.0010363106284700 + 29 2 Cd 3pz 0.0056107764520039 -0.0020518506414432 + 30 2 Cd 3px -0.0003971489053192 0.0033296581045900 + 31 2 Cd 4py -0.0037824659581547 0.0000363718926670 + 32 2 Cd 4pz 0.0001307705532005 -0.0006335322935283 + 33 2 Cd 4px -0.0000366724646336 0.0001331116052612 + 34 2 Cd 4d-2 -0.0158849233448110 0.1360469003104721 + 35 2 Cd 4d-1 -0.5348469291964711 -0.1962771402420064 + 36 2 Cd 4d0 -0.4256960245520713 0.2622542134453880 + 37 2 Cd 4d+1 0.3955619362897830 0.0454202263744495 + 38 2 Cd 4d+2 -0.1369933258673199 0.0487747565201657 + 39 2 Cd 5d-2 -0.0022356333138322 0.0001591233962522 + 40 2 Cd 5d-1 0.0044925284516767 0.0009950166396155 + 41 2 Cd 5d0 -0.0015394188445292 -0.0009634821078618 + 42 2 Cd 5d+1 -0.0006425903965047 -0.0016624079533952 + 43 2 Cd 5d+2 0.0023822052213747 -0.0008109353281697 + 44 2 Cd 5f-3 -0.0004183377737032 0.0001908704420419 + 45 2 Cd 5f-2 0.0009006655935573 0.0003475694445982 + 46 2 Cd 5f-1 -0.0025359421016470 -0.0002281779188689 + 47 2 Cd 5f0 -0.0005323371439911 0.0006590658043382 + 48 2 Cd 5f+1 0.0006610644595753 0.0007449727165682 + 49 2 Cd 5f+2 -0.0004205936239424 0.0002871037446273 + 50 2 Cd 5f+3 -0.0006483271476727 0.0004597327328443 + + 51 3 Cd 2s 0.0100289177346391 -0.0061613709347512 + 52 3 Cd 3s 0.0002467030196564 0.0017701646813894 + 53 3 Cd 3py 0.0036548582556150 -0.0000474228579036 + 54 3 Cd 3pz -0.0004222016365554 -0.0021651880401988 + 55 3 Cd 3px 0.0041087573311231 0.0030713465687759 + 56 3 Cd 4py -0.0009565549794601 0.0030579125756608 + 57 3 Cd 4pz -0.0006823650325954 -0.0009231419522760 + 58 3 Cd 4px -0.0003863587431753 0.0013423027035041 + 59 3 Cd 4d-2 -0.0129648803121016 -0.1346836909866331 + 60 3 Cd 4d-1 -0.0152676180285019 -0.0155570622560697 + 61 3 Cd 4d0 0.0101236511768328 0.0151384204384509 + 62 3 Cd 4d+1 -0.0870301533916244 -0.0064945865530056 + 63 3 Cd 4d+2 0.0187875324853335 0.0516481157987636 + 64 3 Cd 5d-2 0.0021429681746625 0.0014838376501295 + 65 3 Cd 5d-1 0.0032871020807124 -0.0009157696215404 + 66 3 Cd 5d0 0.0008348868548748 -0.0004219413162379 + 67 3 Cd 5d+1 0.0038667714347826 0.0023270311472225 + 68 3 Cd 5d+2 -0.0009972144070241 -0.0023385711562594 + 69 3 Cd 5f-3 -0.0001508795996985 0.0002905257025372 + 70 3 Cd 5f-2 0.0002680350586073 0.0009894913533785 + 71 3 Cd 5f-1 -0.0000944433876538 0.0002427961168297 + 72 3 Cd 5f0 -0.0004614945119242 -0.0002616255787975 + 73 3 Cd 5f+1 -0.0006804749468011 0.0003586971213163 + 74 3 Cd 5f+2 -0.0004902683376503 0.0001703215574406 + 75 3 Cd 5f+3 -0.0002396785711364 0.0000443394211554 + + 76 4 Se 2s 0.0409376709605349 -0.0613041722815703 + 77 4 Se 3s -0.0007625318063824 0.0011313173977433 + 78 4 Se 3py 0.0415421815106786 0.0025288080817001 + 79 4 Se 3pz -0.0096127577211526 0.0172511678877499 + 80 4 Se 3px -0.0021004108605736 -0.0295735793197016 + 81 4 Se 4py 0.0038968414450326 -0.0000327312437970 + 82 4 Se 4pz 0.0015781027210784 0.0016656494411148 + 83 4 Se 4px -0.0012722170090060 -0.0012128791060464 + 84 4 Se 4d-2 -0.0077432695096942 0.0022919724404620 + 85 4 Se 4d-1 0.0039849428240939 -0.0027210832868978 + 86 4 Se 4d0 0.0008741527966134 -0.0020181942050898 + 87 4 Se 4d+1 0.0010845796293224 -0.0015621802544214 + 88 4 Se 4d+2 0.0048482818016964 0.0051081525951488 + + 89 5 Se 2s -0.0084598399836174 0.0228137189198587 + 90 5 Se 3s 0.0004199114591128 -0.0004593003728543 + 91 5 Se 3py -0.0028608237617758 -0.0108564107012887 + 92 5 Se 3pz 0.0042511118260544 0.0066892047139351 + 93 5 Se 3px -0.0070825609304419 -0.0036020404806609 + 94 5 Se 4py -0.0008883612580426 -0.0020160609215560 + 95 5 Se 4pz 0.0002414121072632 0.0009717687594397 + 96 5 Se 4px -0.0010720874699766 -0.0015189725316470 + 97 5 Se 4d-2 -0.0012359055501977 -0.0001591806759783 + 98 5 Se 4d-1 0.0003702316478565 0.0000210669994800 + 99 5 Se 4d0 0.0004168173502343 0.0016522925778884 + 100 5 Se 4d+1 -0.0011984567046418 -0.0014537291207343 + 101 5 Se 4d+2 0.0009404231118504 0.0019142064303030 + + 102 6 Se 2s -0.0608911337285896 0.0400519706031799 + 103 6 Se 3s 0.0011304192184876 -0.0010994892484091 + 104 6 Se 3py 0.0326387276596827 -0.0156965804597633 + 105 6 Se 3pz 0.0145619452681947 0.0121815962203718 + 106 6 Se 3px -0.0127728601135573 0.0056505551183376 + 107 6 Se 4py 0.0012840572621944 -0.0005020047513482 + 108 6 Se 4pz 0.0021324419575266 0.0014516126629153 + 109 6 Se 4px -0.0009770198220101 -0.0001183240001664 + 110 6 Se 4d-2 -0.0055604438313024 0.0020396350105246 + 111 6 Se 4d-1 0.0010430663595620 0.0025135138135217 + 112 6 Se 4d0 -0.0051452444301732 0.0004065238507538 + 113 6 Se 4d+1 -0.0016513963668181 -0.0019695149215688 + 114 6 Se 4d+2 -0.0029851597862339 0.0006057296468061 + + 115 7 Se 2s 0.0600273114625424 0.0192995728418606 + 116 7 Se 3s -0.0011824857671273 -0.0003421436876065 + 117 7 Se 3py 0.0131719302371427 0.0009435198775449 + 118 7 Se 3pz 0.0174297952208444 0.0067535399432678 + 119 7 Se 3px -0.0414668318567291 0.0024505075790930 + 120 7 Se 4py 0.0001918685136845 0.0003466922978172 + 121 7 Se 4pz 0.0006849563052299 0.0001259887246733 + 122 7 Se 4px -0.0014614739667304 -0.0000939857553863 + 123 7 Se 4d-2 0.0056746633511576 -0.0020012306454414 + 124 7 Se 4d-1 -0.0032417898811120 -0.0002315944065926 + 125 7 Se 4d0 -0.0002457980702285 -0.0007658394108887 + 126 7 Se 4d+1 0.0083439660426708 0.0012674913229409 + 127 7 Se 4d+2 -0.0016236645856421 -0.0006823450981127 + + 128 8 Cd 2s -0.0175370959293760 0.0004406277307442 + 129 8 Cd 3s -0.0004593120117511 0.0002713710496116 + 130 8 Cd 3py -0.0001999071375053 -0.0029960456074106 + 131 8 Cd 3pz 0.0008882044267506 -0.0002426181069867 + 132 8 Cd 3px -0.0028465964752865 -0.0018966074602286 + 133 8 Cd 4py 0.0023105459279551 -0.0015539408254218 + 134 8 Cd 4pz 0.0004506743714856 0.0014491839624225 + 135 8 Cd 4px 0.0005533963274998 -0.0004616119077919 + 136 8 Cd 4d-2 0.0797192544377623 0.0651056994024265 + 137 8 Cd 4d-1 0.1223263741987820 -0.0968906012571741 + 138 8 Cd 4d0 -0.0190943022075970 -0.2941335534066841 + 139 8 Cd 4d+1 0.1670952175237244 -0.0034859172651575 + 140 8 Cd 4d+2 0.0465633396299323 -0.1043740710080795 + 141 8 Cd 5d-2 -0.0007187561163516 -0.0000269803593175 + 142 8 Cd 5d-1 -0.0004242784667269 0.0011497499522800 + 143 8 Cd 5d0 -0.0003724297003927 -0.0008612488011497 + 144 8 Cd 5d+1 -0.0005130975494185 0.0019233145607576 + 145 8 Cd 5d+2 -0.0007072532015076 0.0004602615508832 + 146 8 Cd 5f-3 0.0003602937131558 0.0004836862122747 + 147 8 Cd 5f-2 0.0000393918412518 -0.0008752076640515 + 148 8 Cd 5f-1 0.0007801239029161 -0.0002782276644612 + 149 8 Cd 5f0 0.0004552303004812 0.0007115522903222 + 150 8 Cd 5f+1 -0.0000415134895730 -0.0002431576488779 + 151 8 Cd 5f+2 0.0006784372510366 0.0002847463159750 + 152 8 Cd 5f+3 -0.0002839360732204 0.0007329274092922 + + 153 9 Cd 2s -0.0058626380186296 -0.0114881719156856 + 154 9 Cd 3s 0.0000951512835238 0.0011258358565719 + 155 9 Cd 3py -0.0041330139389804 -0.0042488005420654 + 156 9 Cd 3pz 0.0036101191403646 0.0036621769217023 + 157 9 Cd 3px -0.0030931701333783 -0.0038239102234646 + 158 9 Cd 4py -0.0000939549762723 -0.0001789573890953 + 159 9 Cd 4pz 0.0006097065953958 -0.0004438738323277 + 160 9 Cd 4px -0.0021641856300345 -0.0002014120781149 + 161 9 Cd 4d-2 -0.0674587936787132 -0.0189802113730046 + 162 9 Cd 4d-1 0.1338279841942961 0.0605946932065047 + 163 9 Cd 4d0 -0.0285231372986359 0.0164416352058733 + 164 9 Cd 4d+1 0.0178366702319529 0.0485005344824186 + 165 9 Cd 4d+2 0.0093930453183281 -0.0009287300731169 + 166 9 Cd 5d-2 -0.0010074333742355 -0.0003581265999976 + 167 9 Cd 5d-1 0.0023608099418464 0.0021157507525457 + 168 9 Cd 5d0 -0.0015932212146771 0.0000740976793098 + 169 9 Cd 5d+1 0.0022613116599648 0.0016480672396420 + 170 9 Cd 5d+2 0.0010965211152674 0.0009889446850823 + 171 9 Cd 5f-3 0.0003050297633270 0.0002901587337067 + 172 9 Cd 5f-2 0.0002099140891825 0.0002420772304078 + 173 9 Cd 5f-1 -0.0006994783585716 -0.0004322311383225 + 174 9 Cd 5f0 0.0003645818747829 -0.0003350470802408 + 175 9 Cd 5f+1 -0.0004179709048498 -0.0002080642946691 + 176 9 Cd 5f+2 0.0004062457362572 -0.0003519017577029 + 177 9 Cd 5f+3 -0.0002867792318334 -0.0002418160935512 + + 178 10 Se 2s 0.0044379316944688 -0.0029954700331464 + 179 10 Se 3s -0.0002758997627163 0.0001834008725552 + 180 10 Se 3py -0.0046621423234021 0.0048455561962213 + 181 10 Se 3pz 0.0031286965191437 -0.0049822622064097 + 182 10 Se 3px 0.0038712245645172 0.0033940279453533 + 183 10 Se 4py -0.0005095374796706 0.0003283448365728 + 184 10 Se 4pz -0.0003533533463611 -0.0005209860426482 + 185 10 Se 4px 0.0000238777467470 -0.0000404573974289 + 186 10 Se 4d-2 0.0011060021808578 -0.0003208492750186 + 187 10 Se 4d-1 0.0019419413292314 -0.0020177851021433 + 188 10 Se 4d0 -0.0002453079749836 0.0009485835017903 + 189 10 Se 4d+1 0.0003390353522694 -0.0014861239230763 + 190 10 Se 4d+2 0.0016333288095085 0.0006895324199482 + + 191 11 Se 2s 0.0113082445471580 -0.0681959161174520 + 192 11 Se 3s -0.0000659234385001 0.0007037745859821 + 193 11 Se 3py -0.0010275731931237 0.0133612272857361 + 194 11 Se 3pz -0.0026987606171412 0.0000903704132533 + 195 11 Se 3px 0.0068099911899329 -0.0168041062589054 + 196 11 Se 4py 0.0006308107509727 0.0008357527237394 + 197 11 Se 4pz 0.0002807360179808 -0.0003363984448499 + 198 11 Se 4px 0.0004247530986987 -0.0007576675306538 + 199 11 Se 4d-2 0.0009477297239393 -0.0049954698496460 + 200 11 Se 4d-1 -0.0002902635685998 0.0031149238108526 + 201 11 Se 4d0 -0.0002010274727977 0.0012912828091134 + 202 11 Se 4d+1 0.0008479313045664 -0.0019808880609676 + 203 11 Se 4d+2 -0.0011952750516731 -0.0020938955797756 + + 204 12 Cd 2s -0.0055643435634789 -0.0134058909939204 + 205 12 Cd 3s 0.0005391253047365 0.0002044597387978 + 206 12 Cd 3py 0.0001680241103703 -0.0130724780764215 + 207 12 Cd 3pz 0.0007258268148434 0.0020673044300245 + 208 12 Cd 3px -0.0012721236797044 0.0004483278092443 + 209 12 Cd 4py 0.0010603231752019 -0.0027560781845348 + 210 12 Cd 4pz 0.0000736270140760 -0.0002137053268296 + 211 12 Cd 4px -0.0006080968878818 0.0007863575446105 + 212 12 Cd 4d-2 0.0734710313802285 -0.3039286609631868 + 213 12 Cd 4d-1 0.0872947926371153 -0.0715907996880762 + 214 12 Cd 4d0 0.0274495811538016 -0.1911273294665365 + 215 12 Cd 4d+1 -0.1004856122989731 0.0643699742012551 + 216 12 Cd 4d+2 0.1562491275263564 0.0398457336912273 + 217 12 Cd 5d-2 0.0005030026504829 -0.0032371295576044 + 218 12 Cd 5d-1 0.0006570926410474 0.0020291928842844 + 219 12 Cd 5d0 -0.0007580559181415 -0.0017874258054712 + 220 12 Cd 5d+1 0.0001213446045026 -0.0011837230185321 + 221 12 Cd 5d+2 -0.0012518991884880 0.0015992336809844 + 222 12 Cd 5f-3 -0.0003048724625361 -0.0002251376490949 + 223 12 Cd 5f-2 0.0000719157563205 -0.0002041779752600 + 224 12 Cd 5f-1 -0.0003611453099607 -0.0002774921171623 + 225 12 Cd 5f0 -0.0000617611540154 0.0001083951069769 + 226 12 Cd 5f+1 -0.0001039700599756 -0.0005124017112382 + 227 12 Cd 5f+2 -0.0002154143072651 -0.0000260137124025 + 228 12 Cd 5f+3 -0.0004443144408270 -0.0002477077930155 + + 229 13 Cd 2s 0.0022798676093312 0.0111530690833048 + 230 13 Cd 3s -0.0007972181016785 -0.0027547207707161 + 231 13 Cd 3py -0.0037999229784169 0.0012262104158101 + 232 13 Cd 3pz -0.0035097396354764 -0.0015256027601979 + 233 13 Cd 3px -0.0013109514667187 0.0052261563442263 + 234 13 Cd 4py 0.0000202716160815 0.0017630260267396 + 235 13 Cd 4pz 0.0009214111919053 0.0005206905209624 + 236 13 Cd 4px 0.0012474105036252 -0.0000258161846979 + 237 13 Cd 4d-2 0.1815442206619397 0.0707894093690694 + 238 13 Cd 4d-1 -0.0005091484945655 -0.2232115143932283 + 239 13 Cd 4d0 0.1664957721719241 -0.0183314140047305 + 240 13 Cd 4d+1 0.1124400331960894 0.2302349931805210 + 241 13 Cd 4d+2 0.0595115328712512 -0.0636695668594317 + 242 13 Cd 5d-2 0.0004122021151283 -0.0006069954266138 + 243 13 Cd 5d-1 -0.0007670643358646 0.0026764271816084 + 244 13 Cd 5d0 0.0002013264971953 0.0019129092603718 + 245 13 Cd 5d+1 -0.0009367783339821 -0.0014720167856081 + 246 13 Cd 5d+2 0.0000403256506908 0.0007348597865045 + 247 13 Cd 5f-3 0.0003274634131142 0.0003069615608260 + 248 13 Cd 5f-2 0.0005073726601844 0.0010396227028580 + 249 13 Cd 5f-1 -0.0006631920675962 0.0000608562979180 + 250 13 Cd 5f0 -0.0003925024714346 0.0010624831821255 + 251 13 Cd 5f+1 0.0005774700388022 -0.0000822507319621 + 252 13 Cd 5f+2 0.0005115817155636 0.0005187087967618 + 253 13 Cd 5f+3 0.0007046930967074 0.0006801976012669 + + 254 14 Cd 2s -0.0232230818339095 -0.0018900128673906 + 255 14 Cd 3s 0.0018736134240866 -0.0005159537016655 + 256 14 Cd 3py 0.0061620073464157 -0.0004046691396403 + 257 14 Cd 3pz 0.0030945942580853 0.0019120944128597 + 258 14 Cd 3px -0.0008113073156734 0.0021463499602734 + 259 14 Cd 4py -0.0002741750426028 -0.0002894413927880 + 260 14 Cd 4pz -0.0000464021089524 0.0008016885836301 + 261 14 Cd 4px 0.0002712573081297 -0.0004275339311232 + 262 14 Cd 4d-2 0.0464592822521761 -0.0464482623153498 + 263 14 Cd 4d-1 0.0218514659085467 0.0129349108061025 + 264 14 Cd 4d0 -0.0537750163526721 -0.0063145766884494 + 265 14 Cd 4d+1 0.0025333178975037 -0.0059790451775136 + 266 14 Cd 4d+2 0.0328442239346785 0.0038263980630772 + 267 14 Cd 5d-2 0.0009720858118972 -0.0010776351811237 + 268 14 Cd 5d-1 -0.0000942419185824 -0.0004422807054721 + 269 14 Cd 5d0 -0.0007582606567546 -0.0015558878402417 + 270 14 Cd 5d+1 -0.0006540676148356 -0.0000331418457443 + 271 14 Cd 5d+2 0.0024831988009259 -0.0003717185179832 + 272 14 Cd 5f-3 -0.0009182063143878 0.0001231196556014 + 273 14 Cd 5f-2 -0.0000601361342076 -0.0002340137221254 + 274 14 Cd 5f-1 -0.0000043180016568 0.0003365264234518 + 275 14 Cd 5f0 0.0004471282682765 0.0001728516324677 + 276 14 Cd 5f+1 -0.0000165484123746 -0.0001929237582233 + 277 14 Cd 5f+2 -0.0004358059842428 -0.0000295050928729 + 278 14 Cd 5f+3 0.0004629283939948 -0.0006515837157253 + + 279 15 Se 2s 0.0477216843666313 0.0198803749345047 + 280 15 Se 3s -0.0009328333693546 -0.0004938472956240 + 281 15 Se 3py 0.0151926970856186 0.0062196467721360 + 282 15 Se 3pz 0.0133842555813310 -0.0058802395964134 + 283 15 Se 3px -0.0123909604187922 -0.0190321403773295 + 284 15 Se 4py 0.0003873524354014 0.0007323559354421 + 285 15 Se 4pz 0.0021628142598511 0.0004500039283926 + 286 15 Se 4px 0.0001804601610054 -0.0011883225406079 + 287 15 Se 4d-2 0.0026734504067583 0.0053267481600698 + 288 15 Se 4d-1 -0.0026280252463985 0.0013082979861360 + 289 15 Se 4d0 0.0016337957724366 0.0022603130872354 + 290 15 Se 4d+1 0.0024397206474244 0.0001956664213390 + 291 15 Se 4d+2 0.0011731487220529 -0.0004339940795652 + + 292 16 Se 2s -0.0069944977572644 -0.0119136354823783 + 293 16 Se 3s -0.0000830885655903 -0.0004834065408385 + 294 16 Se 3py -0.0018595869554186 -0.0359699090101013 + 295 16 Se 3pz -0.0092710722792108 -0.0322420129805665 + 296 16 Se 3px -0.0118094900448052 -0.0293698005832725 + 297 16 Se 4py -0.0010978988794859 -0.0040726852175506 + 298 16 Se 4pz -0.0011322409711921 -0.0027254020368066 + 299 16 Se 4px -0.0008432722612001 -0.0026547848912973 + 300 16 Se 4d-2 0.0004020101256703 0.0061930849157835 + 301 16 Se 4d-1 0.0008549737788484 -0.0030158226601807 + 302 16 Se 4d0 -0.0032885329377222 -0.0082781908002957 + 303 16 Se 4d+1 -0.0012624816657980 0.0005656627085277 + 304 16 Se 4d+2 -0.0000791395616198 0.0017773840242442 + + 305 17 Cd 2s -0.0015366177415883 -0.0036143155871943 + 306 17 Cd 3s -0.0001017949375172 0.0019676482827284 + 307 17 Cd 3py -0.0008626430679089 -0.0020307505057877 + 308 17 Cd 3pz 0.0006816537587931 0.0003006517381758 + 309 17 Cd 3px 0.0009112443986942 0.0006942113500419 + 310 17 Cd 4py 0.0001301457465708 -0.0006002507432015 + 311 17 Cd 4pz -0.0002408076812947 -0.0005547782140291 + 312 17 Cd 4px 0.0000922436453690 0.0027095586621761 + 313 17 Cd 4d-2 0.0483329577652756 0.2933030304067584 + 314 17 Cd 4d-1 -0.0221575583529600 -0.0387474329273457 + 315 17 Cd 4d0 -0.0555836612257918 -0.1211192832037916 + 316 17 Cd 4d+1 0.0068721670654644 -0.0035706449450257 + 317 17 Cd 4d+2 0.0349734598869802 0.0014154615342846 + 318 17 Cd 5d-2 -0.0007720037454201 0.0023496861075462 + 319 17 Cd 5d-1 -0.0004959392572640 -0.0001054915917207 + 320 17 Cd 5d0 0.0007973886993363 -0.0002970024041401 + 321 17 Cd 5d+1 0.0000323253416694 0.0006451712689135 + 322 17 Cd 5d+2 -0.0006360238090170 -0.0025638512481487 + 323 17 Cd 5f-3 -0.0004180623684932 -0.0001507384210022 + 324 17 Cd 5f-2 -0.0005313948848445 -0.0006627401150057 + 325 17 Cd 5f-1 -0.0003365051041474 -0.0000137225436028 + 326 17 Cd 5f0 0.0003941601026764 0.0004540768065737 + 327 17 Cd 5f+1 -0.0004429072953438 -0.0006276854051395 + 328 17 Cd 5f+2 -0.0001171512157042 -0.0001218225762329 + 329 17 Cd 5f+3 -0.0000584479803937 0.0001704041507420 + + 330 18 Cd 2s 0.0000435644550659 0.0141898042675633 + 331 18 Cd 3s -0.0007814829605689 -0.0003773137583662 + 332 18 Cd 3py -0.0004504131067003 0.0012083878991819 + 333 18 Cd 3pz -0.0037143857776604 0.0018560057529037 + 334 18 Cd 3px -0.0023583216619589 -0.0025220900475769 + 335 18 Cd 4py -0.0005726231914525 0.0004743932004389 + 336 18 Cd 4pz -0.0004698733010197 -0.0005377864822615 + 337 18 Cd 4px -0.0007097022963218 -0.0004830490487976 + 338 18 Cd 4d-2 0.0042254091402101 -0.0736037376349014 + 339 18 Cd 4d-1 -0.0267376953446147 -0.0641154804196285 + 340 18 Cd 4d0 -0.0132727919584078 0.1661412236667235 + 341 18 Cd 4d+1 0.0364415854231269 0.0813122981429876 + 342 18 Cd 4d+2 -0.0120303173885405 0.0127666496666807 + 343 18 Cd 5d-2 -0.0012328064653060 -0.0012401151706139 + 344 18 Cd 5d-1 -0.0018192526164825 -0.0009910713942724 + 345 18 Cd 5d0 0.0004308253390431 0.0030006427706185 + 346 18 Cd 5d+1 -0.0000342319496141 0.0013700041361161 + 347 18 Cd 5d+2 -0.0001530802202309 -0.0009067834388395 + 348 18 Cd 5f-3 -0.0000274667151687 -0.0002292229091421 + 349 18 Cd 5f-2 0.0000312652287157 0.0004600252798364 + 350 18 Cd 5f-1 -0.0001098742732280 0.0005092553524856 + 351 18 Cd 5f0 0.0002696194479765 0.0002100982975699 + 352 18 Cd 5f+1 -0.0000848714573127 0.0000544554449497 + 353 18 Cd 5f+2 0.0001822180977012 -0.0002551218005966 + 354 18 Cd 5f+3 0.0001478801219341 0.0000974629349846 + + 355 19 Se 2s -0.0200885045913453 -0.0484313390053766 + 356 19 Se 3s 0.0005651176702462 0.0008275431585449 + 357 19 Se 3py 0.0068647429281195 0.0081382136397238 + 358 19 Se 3pz 0.0018019294783393 -0.0052599694377782 + 359 19 Se 3px -0.0021302749485472 0.0226451792915907 + 360 19 Se 4py 0.0009068012765683 0.0010109644124403 + 361 19 Se 4pz -0.0001292588034763 0.0005121831914422 + 362 19 Se 4px -0.0001255102801586 0.0008769252681463 + 363 19 Se 4d-2 -0.0003260478070748 0.0027396088686130 + 364 19 Se 4d-1 0.0002933828296563 -0.0034586111460866 + 365 19 Se 4d0 -0.0004992378521016 -0.0030301821087462 + 366 19 Se 4d+1 0.0000614919428379 0.0035416806679739 + 367 19 Se 4d+2 -0.0010541547718393 -0.0046310136828487 + + 368 20 Se 2s -0.0186225781766285 0.0544650964668222 + 369 20 Se 3s 0.0005749651083958 -0.0009231991936560 + 370 20 Se 3py 0.0053841101486906 -0.0311744980223677 + 371 20 Se 3pz 0.0006918764762179 -0.0074876259627696 + 372 20 Se 3px -0.0142311829284224 0.0253155610602651 + 373 20 Se 4py -0.0002235859369876 0.0005393742583298 + 374 20 Se 4pz 0.0022716503724423 0.0009852683009327 + 375 20 Se 4px -0.0002570526938232 -0.0007667762382774 + 376 20 Se 4d-2 -0.0010602777128286 0.0017158850254322 + 377 20 Se 4d-1 -0.0020914637412449 0.0006521085101834 + 378 20 Se 4d0 -0.0011199950233011 -0.0024337493420165 + 379 20 Se 4d+1 -0.0000247703678858 0.0028235952039273 + 380 20 Se 4d+2 -0.0018610804894122 0.0017170910623638 + + 381 21 Se 2s 0.0169728003717313 -0.0300067478621366 + 382 21 Se 3s 0.0000352802385822 0.0005604589778336 + 383 21 Se 3py -0.0041469534862246 -0.0041596675153036 + 384 21 Se 3pz 0.0155482263620568 -0.0004845682722333 + 385 21 Se 3px -0.0018814787042329 0.0049412801547757 + 386 21 Se 4py -0.0009420868849592 -0.0002061813835043 + 387 21 Se 4pz -0.0004667216207569 0.0002512451465993 + 388 21 Se 4px -0.0000870018559964 0.0003079314825906 + 389 21 Se 4d-2 -0.0003013406064013 0.0007600475454643 + 390 21 Se 4d-1 -0.0004192983997471 0.0012301767016999 + 391 21 Se 4d0 -0.0031997725334488 0.0007688350526645 + 392 21 Se 4d+1 0.0012319700707543 -0.0001761049953569 + 393 21 Se 4d+2 -0.0011862246812900 0.0010910493851606 + + 394 22 Cd 2s -0.0005372273409647 0.0122667087869213 + 395 22 Cd 3s -0.0008189883114918 0.0012886129207923 + 396 22 Cd 3py -0.0012783521883013 -0.0070768960366373 + 397 22 Cd 3pz -0.0036109114884003 0.0009329649532369 + 398 22 Cd 3px 0.0005069584499794 0.0042415587597446 + 399 22 Cd 4py -0.0001767327746717 0.0004699296922830 + 400 22 Cd 4pz -0.0008728420408551 -0.0006020157227853 + 401 22 Cd 4px 0.0005813773112268 0.0011905116371079 + 402 22 Cd 4d-2 -0.0512210208902533 0.3700180399020436 + 403 22 Cd 4d-1 -0.1831796910174370 0.0233401004077801 + 404 22 Cd 4d0 -0.0275422528169040 0.1304649583317696 + 405 22 Cd 4d+1 0.1599728452495808 -0.0912321972642925 + 406 22 Cd 4d+2 -0.0757907017007893 0.0093795177908299 + 407 22 Cd 5d-2 0.0000164635268987 -0.0044012340980809 + 408 22 Cd 5d-1 0.0001570657675122 0.0026959976036398 + 409 22 Cd 5d0 -0.0011172166267729 0.0011248863550668 + 410 22 Cd 5d+1 -0.0001454287548708 0.0012669786850013 + 411 22 Cd 5d+2 -0.0004265780395616 -0.0024174222686096 + 412 22 Cd 5f-3 -0.0003275638320191 0.0001141668860835 + 413 22 Cd 5f-2 0.0003888376498699 0.0006007894212109 + 414 22 Cd 5f-1 -0.0004844442895961 0.0000418670572544 + 415 22 Cd 5f0 -0.0001196278039876 0.0001956022088463 + 416 22 Cd 5f+1 0.0010344932758860 -0.0002568898474872 + 417 22 Cd 5f+2 0.0001124051418549 0.0006612227158794 + 418 22 Cd 5f+3 -0.0005819245828728 -0.0015198643400181 + + 419 23 Se 2s 0.0131942959728911 -0.0076001290498931 + 420 23 Se 3s -0.0003221457427803 0.0000826644720224 + 421 23 Se 3py -0.0050346567572278 0.0019133751007773 + 422 23 Se 3pz -0.0083643119210966 0.0102204743723971 + 423 23 Se 3px -0.0056296687977880 -0.0159712791169005 + 424 23 Se 4py -0.0005457989031927 -0.0000386740517772 + 425 23 Se 4pz -0.0007684957702532 -0.0002198933868013 + 426 23 Se 4px -0.0007388140779862 -0.0004803075912432 + 427 23 Se 4d-2 -0.0005410495638912 0.0033871684230788 + 428 23 Se 4d-1 -0.0002467465635486 0.0003147460861620 + 429 23 Se 4d0 -0.0020828865097121 0.0015342913539103 + 430 23 Se 4d+1 -0.0017012283664819 -0.0006826647996666 + 431 23 Se 4d+2 -0.0015678808013968 -0.0029835009796680 + + 432 24 Se 2s -0.0047675309696938 -0.0162099164746790 + 433 24 Se 3s 0.0001530076685548 0.0004001224755218 + 434 24 Se 3py -0.0003111776492844 0.0042612126724287 + 435 24 Se 3pz 0.0042388776329286 0.0076690017577588 + 436 24 Se 3px 0.0030846336808624 0.0023729127069049 + 437 24 Se 4py 0.0001098525509715 0.0001908275671937 + 438 24 Se 4pz -0.0003490984066258 0.0003219978417017 + 439 24 Se 4px 0.0001350471837900 0.0003408022703821 + 440 24 Se 4d-2 0.0002518299406862 0.0000401161004931 + 441 24 Se 4d-1 -0.0001886606175742 0.0008701484184898 + 442 24 Se 4d0 -0.0002928648687515 -0.0000454626391886 + 443 24 Se 4d+1 0.0006159237023073 0.0016146895133712 + 444 24 Se 4d+2 0.0003102715011459 0.0006857971620352 + + 445 25 Cd 2s 0.0010716355898256 0.0062948562680033 + 446 25 Cd 3s 0.0003556415656601 0.0001754000110503 + 447 25 Cd 3py 0.0008594838097740 -0.0012751579097019 + 448 25 Cd 3pz 0.0008631725765329 0.0005748221770098 + 449 25 Cd 3px 0.0025750885688287 -0.0030497171161604 + 450 25 Cd 4py 0.0005015568467341 0.0012732161869301 + 451 25 Cd 4pz 0.0001845807714476 0.0013994325975322 + 452 25 Cd 4px 0.0008552827175695 -0.0011771911965639 + 453 25 Cd 4d-2 -0.0426656397688444 -0.0114503134762050 + 454 25 Cd 4d-1 -0.0169926329603329 -0.2101791674014969 + 455 25 Cd 4d0 0.1214897038956220 0.1108742936201027 + 456 25 Cd 4d+1 -0.0200162978849365 0.1873932543103351 + 457 25 Cd 4d+2 -0.0154338530119269 0.1453818416724920 + 458 25 Cd 5d-2 0.0015104267739236 -0.0011482198006750 + 459 25 Cd 5d-1 0.0001085320874031 -0.0012465520861630 + 460 25 Cd 5d0 -0.0002052545932464 0.0016028625673802 + 461 25 Cd 5d+1 0.0016162543622223 -0.0004176651798677 + 462 25 Cd 5d+2 0.0003274997979739 -0.0009088739974839 + 463 25 Cd 5f-3 0.0004439420580261 0.0002956229028346 + 464 25 Cd 5f-2 -0.0000371917386557 -0.0005467974368848 + 465 25 Cd 5f-1 -0.0002673733803285 -0.0000181156450433 + 466 25 Cd 5f0 0.0001540678635607 0.0002245955318310 + 467 25 Cd 5f+1 0.0000013465098928 0.0002378540558116 + 468 25 Cd 5f+2 0.0002186629655579 0.0002802987223442 + 469 25 Cd 5f+3 -0.0000423660285725 0.0007528089271857 + + 470 26 Cd 2s -0.0023342216899220 0.0014974164764131 + 471 26 Cd 3s 0.0005334525865755 0.0002336201946858 + 472 26 Cd 3py -0.0015036945583386 0.0029528579984809 + 473 26 Cd 3pz -0.0011532095807575 -0.0017471562434597 + 474 26 Cd 3px -0.0007735614406251 -0.0001788406666457 + 475 26 Cd 4py -0.0001851274214417 0.0002111602254704 + 476 26 Cd 4pz 0.0001849537137008 -0.0001485232056349 + 477 26 Cd 4px 0.0001994821868385 0.0002165935147943 + 478 26 Cd 4d-2 -0.0113954935793224 0.0442950469329200 + 479 26 Cd 4d-1 -0.0124598051402142 0.0327502448848265 + 480 26 Cd 4d0 0.0116198746338571 0.0051335326671612 + 481 26 Cd 4d+1 -0.0236493875277526 -0.0078987525934205 + 482 26 Cd 4d+2 -0.0132787944551511 -0.0112576586607222 + 483 26 Cd 5d-2 -0.0005400056511836 0.0019452645985584 + 484 26 Cd 5d-1 0.0004421811452438 0.0002689451836957 + 485 26 Cd 5d0 0.0002428206606598 -0.0002960955224517 + 486 26 Cd 5d+1 -0.0004746909664831 -0.0011375385583849 + 487 26 Cd 5d+2 -0.0002485942199636 -0.0005697720781123 + 488 26 Cd 5f-3 -0.0000633918804597 0.0002303268063569 + 489 26 Cd 5f-2 0.0002062129669458 -0.0000432171294418 + 490 26 Cd 5f-1 -0.0000204941208798 0.0001294049505530 + 491 26 Cd 5f0 -0.0000515846004409 0.0004734720296339 + 492 26 Cd 5f+1 0.0001849929870912 -0.0000460165661045 + 493 26 Cd 5f+2 -0.0000352928745022 -0.0000291548323806 + 494 26 Cd 5f+3 -0.0001789715633805 -0.0001960442041979 + + 51 52 + -0.4645316530593772 -0.4643565716494589 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0063210447297380 0.0033476703798911 + 2 1 Cd 3s -0.0000019474918053 0.0001711440734872 + 3 1 Cd 3py -0.0024584359242622 0.0007078879790244 + 4 1 Cd 3pz -0.0002664608107184 0.0033235584951131 + 5 1 Cd 3px 0.0021923194348532 -0.0006847622380728 + 6 1 Cd 4py 0.0000704307953410 0.0000654787888713 + 7 1 Cd 4pz 0.0006100183684939 -0.0003019068875825 + 8 1 Cd 4px 0.0005693342452057 -0.0001503222733768 + 9 1 Cd 4d-2 0.0066494274617872 -0.0048692574023965 + 10 1 Cd 4d-1 0.0226507561719984 -0.0661365024463547 + 11 1 Cd 4d0 0.0169544650785964 -0.0168926461412238 + 12 1 Cd 4d+1 -0.0001936875790185 -0.0032545878188793 + 13 1 Cd 4d+2 -0.0203929749379456 -0.0142894453124655 + 14 1 Cd 5d-2 0.0014130922570689 0.0001488065710557 + 15 1 Cd 5d-1 0.0000196343316572 -0.0001901987350562 + 16 1 Cd 5d0 0.0002800939936891 -0.0008318688736017 + 17 1 Cd 5d+1 0.0000927947325621 -0.0017979455010185 + 18 1 Cd 5d+2 -0.0003068436951544 -0.0009155396169668 + 19 1 Cd 5f-3 -0.0003669229958948 -0.0002615488672052 + 20 1 Cd 5f-2 0.0004763322197418 -0.0000966597300000 + 21 1 Cd 5f-1 -0.0001216458557685 -0.0003155233587146 + 22 1 Cd 5f0 -0.0002511672393220 0.0000613242514313 + 23 1 Cd 5f+1 0.0001053719615129 0.0002849532602822 + 24 1 Cd 5f+2 -0.0001805206527203 0.0004739440747452 + 25 1 Cd 5f+3 0.0000015965634050 0.0004793662046958 + + 26 2 Cd 2s 0.0010836834121361 0.0037745146348643 + 27 2 Cd 3s -0.0007584674686058 0.0003657502481601 + 28 2 Cd 3py 0.0006677225427591 -0.0013591088470377 + 29 2 Cd 3pz 0.0016288429590925 -0.0034701098538723 + 30 2 Cd 3px -0.0021891541741805 0.0043210018257376 + 31 2 Cd 4py -0.0006000964992113 -0.0003693695045179 + 32 2 Cd 4pz 0.0004436911664597 -0.0011663080488662 + 33 2 Cd 4px 0.0000347190309701 0.0013621171237955 + 34 2 Cd 4d-2 -0.1809716747385054 0.0900220392594718 + 35 2 Cd 4d-1 0.1784881282018325 -0.2287930053762993 + 36 2 Cd 4d0 -0.1386103517520083 0.0954525093880980 + 37 2 Cd 4d+1 -0.2052681492183305 0.1299183562809743 + 38 2 Cd 4d+2 -0.2887098674938360 0.0394398281951553 + 39 2 Cd 5d-2 -0.0016084310993864 0.0008250964503233 + 40 2 Cd 5d-1 0.0009455870827333 -0.0001231776029120 + 41 2 Cd 5d0 0.0010926773965561 0.0004337213547054 + 42 2 Cd 5d+1 0.0021805959301126 -0.0014076522694359 + 43 2 Cd 5d+2 -0.0003524963662977 -0.0016932985705533 + 44 2 Cd 5f-3 0.0003550464787792 0.0000977010196737 + 45 2 Cd 5f-2 -0.0001079186092409 0.0001014686875004 + 46 2 Cd 5f-1 0.0002493981845483 -0.0002919850964152 + 47 2 Cd 5f0 -0.0001020146252111 -0.0000153958949556 + 48 2 Cd 5f+1 -0.0012121132946380 0.0003718556694718 + 49 2 Cd 5f+2 -0.0002053851311293 0.0002191499074757 + 50 2 Cd 5f+3 0.0001942907070246 0.0002106623730458 + + 51 3 Cd 2s -0.0062148433385959 -0.0040581204691659 + 52 3 Cd 3s 0.0005062598263437 0.0003008048315684 + 53 3 Cd 3py -0.0051011209414696 0.0012759003272278 + 54 3 Cd 3pz 0.0000565591986704 0.0035966278570690 + 55 3 Cd 3px 0.0058108824048270 -0.0020722367314345 + 56 3 Cd 4py 0.0008771695527798 -0.0008653128696883 + 57 3 Cd 4pz -0.0006569859337907 0.0009449817200037 + 58 3 Cd 4px 0.0001349043041481 -0.0016014235007163 + 59 3 Cd 4d-2 -0.0614911855385525 0.0246658307529664 + 60 3 Cd 4d-1 -0.0061600133737167 -0.0454459436653677 + 61 3 Cd 4d0 -0.0495819699332204 0.0021257014442356 + 62 3 Cd 4d+1 -0.0087324584178547 0.0139053888580369 + 63 3 Cd 4d+2 -0.0014729544801104 -0.0252169430840806 + 64 3 Cd 5d-2 0.0009749392562187 -0.0019840632031507 + 65 3 Cd 5d-1 -0.0007883782636613 0.0023208139743722 + 66 3 Cd 5d0 0.0024199654475578 -0.0006453116795594 + 67 3 Cd 5d+1 -0.0005766599908314 0.0004129719551921 + 68 3 Cd 5d+2 0.0006781028072113 0.0005667074483645 + 69 3 Cd 5f-3 0.0005464453062108 0.0003287856522429 + 70 3 Cd 5f-2 0.0005625044503811 -0.0003255198242877 + 71 3 Cd 5f-1 -0.0003340309000134 0.0003661040522548 + 72 3 Cd 5f0 -0.0001742326125936 0.0000780473996535 + 73 3 Cd 5f+1 0.0001191316964249 -0.0001375930148851 + 74 3 Cd 5f+2 0.0005902964515585 -0.0006370938913419 + 75 3 Cd 5f+3 -0.0004752392894465 0.0008318162655398 + + 76 4 Se 2s 0.0187071812061402 -0.0246613364179760 + 77 4 Se 3s -0.0001133911460506 0.0004535611731684 + 78 4 Se 3py -0.0046775434595078 0.0088986933258240 + 79 4 Se 3pz -0.0087431139979329 0.0019490563795242 + 80 4 Se 3px 0.0083813820588050 -0.0128728321480804 + 81 4 Se 4py -0.0003165771170425 0.0002136558228779 + 82 4 Se 4pz 0.0010208827003037 -0.0013962815607424 + 83 4 Se 4px 0.0000449629562734 -0.0004384800683200 + 84 4 Se 4d-2 -0.0002932209159224 -0.0000377835029709 + 85 4 Se 4d-1 0.0012488614793293 -0.0002300938676617 + 86 4 Se 4d0 -0.0007762087056240 0.0013445178571781 + 87 4 Se 4d+1 0.0006396090459003 -0.0007521325012678 + 88 4 Se 4d+2 -0.0020553310199950 0.0034192928965073 + + 89 5 Se 2s -0.0037628405262065 -0.0059624033673523 + 90 5 Se 3s -0.0001975721510895 0.0002682905377396 + 91 5 Se 3py 0.0003636169240666 0.0031705688803156 + 92 5 Se 3pz 0.0005280613071334 -0.0005206987287125 + 93 5 Se 3px 0.0002594771415370 0.0006457124831953 + 94 5 Se 4py -0.0000006337158884 0.0007756917718852 + 95 5 Se 4pz -0.0000441087010636 0.0003508557773421 + 96 5 Se 4px 0.0004705653278228 0.0002616176882719 + 97 5 Se 4d-2 -0.0000103020116766 -0.0000346489515834 + 98 5 Se 4d-1 -0.0004740941499479 0.0007834274532779 + 99 5 Se 4d0 0.0003726312762889 -0.0007591136602451 + 100 5 Se 4d+1 -0.0001201071523039 0.0005998424934654 + 101 5 Se 4d+2 -0.0002735853680760 -0.0005482517096801 + + 102 6 Se 2s -0.0383021867340028 0.0045516489954295 + 103 6 Se 3s 0.0007097096206490 -0.0001305259231403 + 104 6 Se 3py 0.0158005003169943 -0.0053594107513555 + 105 6 Se 3pz -0.0135602151302338 0.0136569124361483 + 106 6 Se 3px -0.0094544518343782 -0.0003588582359833 + 107 6 Se 4py 0.0015269958066494 -0.0004418709207922 + 108 6 Se 4pz -0.0001789368748680 0.0004913371192253 + 109 6 Se 4px -0.0002328480231085 -0.0003296640244928 + 110 6 Se 4d-2 -0.0034737898376761 0.0006867381739149 + 111 6 Se 4d-1 -0.0035443043678984 0.0020510822553336 + 112 6 Se 4d0 -0.0013772035786388 0.0001839626840542 + 113 6 Se 4d+1 0.0019870926532752 -0.0020290113193124 + 114 6 Se 4d+2 -0.0003053391407353 0.0001538940737829 + + 115 7 Se 2s -0.0796539036075750 0.0315937869802430 + 116 7 Se 3s 0.0022315602226028 -0.0009978407156725 + 117 7 Se 3py -0.0070415394780391 0.0039201569800245 + 118 7 Se 3pz -0.0290090287668357 0.0110855466846795 + 119 7 Se 3px -0.0040134726790978 -0.0051933196206512 + 120 7 Se 4py 0.0006051433222758 -0.0003060976557468 + 121 7 Se 4pz -0.0016966184357036 0.0004648132362766 + 122 7 Se 4px -0.0004227172891706 0.0002639488766697 + 123 7 Se 4d-2 0.0010562359156721 0.0002056353470314 + 124 7 Se 4d-1 0.0027322069053744 -0.0010950786898804 + 125 7 Se 4d0 0.0032693264149488 -0.0014263961549295 + 126 7 Se 4d+1 0.0003680146044260 0.0019747828087452 + 127 7 Se 4d+2 0.0019847140903406 -0.0017038037654302 + + 128 8 Cd 2s 0.0233766065860433 0.0116387170109676 + 129 8 Cd 3s 0.0019656902836135 -0.0004576513921678 + 130 8 Cd 3py -0.0031055161173209 -0.0006051646883639 + 131 8 Cd 3pz -0.0104249987777409 -0.0013227686968675 + 132 8 Cd 3px 0.0093700151868526 -0.0027430653825369 + 133 8 Cd 4py -0.0003299423679328 0.0008912410643892 + 134 8 Cd 4pz -0.0025566139417058 0.0006737576097314 + 135 8 Cd 4px 0.0018645624177584 0.0001841452144080 + 136 8 Cd 4d-2 0.0689721653512496 0.0571368240474335 + 137 8 Cd 4d-1 0.3853682054713987 -0.1438266237765319 + 138 8 Cd 4d0 -0.2345701348481515 -0.0362667083773423 + 139 8 Cd 4d+1 0.1377744411005376 0.0953361469523674 + 140 8 Cd 4d+2 -0.0840275912595781 0.0444756649964301 + 141 8 Cd 5d-2 0.0014115570472349 0.0007555667246825 + 142 8 Cd 5d-1 0.0040381471688567 -0.0003913723308255 + 143 8 Cd 5d0 0.0015697920235962 -0.0010321623221470 + 144 8 Cd 5d+1 -0.0021672012795184 0.0015688985786602 + 145 8 Cd 5d+2 -0.0016164896928402 0.0013876679736470 + 146 8 Cd 5f-3 0.0003665115712661 -0.0002911744197948 + 147 8 Cd 5f-2 -0.0009582041169497 0.0000410577663803 + 148 8 Cd 5f-1 -0.0001395876105279 0.0010502367546601 + 149 8 Cd 5f0 0.0000472123216587 -0.0004521575372027 + 150 8 Cd 5f+1 0.0006489687661066 -0.0003099788189267 + 151 8 Cd 5f+2 0.0010277333426827 -0.0002846059094731 + 152 8 Cd 5f+3 -0.0002456376730587 0.0000044829790522 + + 153 9 Cd 2s 0.0036868661607300 -0.0045715645919373 + 154 9 Cd 3s 0.0001706322256068 -0.0005692544555450 + 155 9 Cd 3py 0.0053610796463079 -0.0039321291000493 + 156 9 Cd 3pz -0.0017088087276908 0.0046816286715492 + 157 9 Cd 3px 0.0044689218115022 -0.0036718232570139 + 158 9 Cd 4py 0.0008390248476725 -0.0005170183907805 + 159 9 Cd 4pz 0.0002649002552591 0.0004386982299994 + 160 9 Cd 4px -0.0005673992647676 0.0005101652320727 + 161 9 Cd 4d-2 -0.0529883865236182 -0.0218057384677735 + 162 9 Cd 4d-1 -0.0191498280528464 0.0443570567961708 + 163 9 Cd 4d0 -0.0161210611897787 -0.0146616722952728 + 164 9 Cd 4d+1 -0.0371368829159258 0.0053628818273166 + 165 9 Cd 4d+2 -0.0544046329099362 0.0654868771138878 + 166 9 Cd 5d-2 -0.0005252226184690 -0.0001301411272853 + 167 9 Cd 5d-1 -0.0022149379846486 0.0020847676837643 + 168 9 Cd 5d0 -0.0005202962197155 -0.0012703027228639 + 169 9 Cd 5d+1 -0.0014001779266309 0.0001609317341658 + 170 9 Cd 5d+2 -0.0021413170822818 0.0019883011775646 + 171 9 Cd 5f-3 -0.0003009035291662 0.0002758139441363 + 172 9 Cd 5f-2 0.0000856103557435 -0.0000529197444988 + 173 9 Cd 5f-1 -0.0000701157673092 -0.0002818877268655 + 174 9 Cd 5f0 0.0001107813971488 -0.0000830372519690 + 175 9 Cd 5f+1 0.0004676992852579 0.0000168838932323 + 176 9 Cd 5f+2 0.0007345348425055 -0.0004400249181299 + 177 9 Cd 5f+3 -0.0000388750831104 0.0001367649143540 + + 178 10 Se 2s 0.0540341224351904 -0.0611722410485600 + 179 10 Se 3s -0.0008989802036766 0.0010764728144137 + 180 10 Se 3py -0.0293895454450715 -0.0029044890963300 + 181 10 Se 3pz 0.0079034532844984 -0.0180102789827064 + 182 10 Se 3px -0.0056850386527815 0.0072946489650721 + 183 10 Se 4py -0.0009275723721995 0.0005864707448673 + 184 10 Se 4pz 0.0000759508116004 -0.0002293192725821 + 185 10 Se 4px -0.0005043745139814 0.0006352499887793 + 186 10 Se 4d-2 -0.0003788295749885 0.0006038193736037 + 187 10 Se 4d-1 0.0052633629209329 0.0014317774878487 + 188 10 Se 4d0 0.0015021088703944 0.0027376872266011 + 189 10 Se 4d+1 0.0016462507198376 -0.0012379390372882 + 190 10 Se 4d+2 0.0030590309838571 -0.0003933103695949 + + 191 11 Se 2s -0.0438274573953712 0.0653898715282880 + 192 11 Se 3s 0.0005951044563290 -0.0007013731062181 + 193 11 Se 3py 0.0139951862793597 -0.0151123457142063 + 194 11 Se 3pz -0.0025681455493645 0.0053358127796816 + 195 11 Se 3px -0.0007281790439436 0.0162694185980768 + 196 11 Se 4py 0.0001381741438853 -0.0000608239809993 + 197 11 Se 4pz -0.0009204003078891 0.0011575000256749 + 198 11 Se 4px -0.0004124740244652 0.0002342267624856 + 199 11 Se 4d-2 -0.0013205093031512 0.0040850338819881 + 200 11 Se 4d-1 0.0015257127249270 -0.0006883433664593 + 201 11 Se 4d0 0.0007444960939507 0.0008914335723241 + 202 11 Se 4d+1 0.0000776674301956 0.0009152797558090 + 203 11 Se 4d+2 -0.0037771039208835 0.0018509146809243 + + 204 12 Cd 2s -0.0196598231925528 0.0117589934447974 + 205 12 Cd 3s -0.0004778781368627 -0.0010496751975231 + 206 12 Cd 3py -0.0158013974351585 0.0080096120361759 + 207 12 Cd 3pz 0.0005458929383235 -0.0052797652291661 + 208 12 Cd 3px -0.0037490227795517 -0.0051086235529964 + 209 12 Cd 4py -0.0021583958174903 0.0014172158885265 + 210 12 Cd 4pz 0.0012259846135130 -0.0009825772846837 + 211 12 Cd 4px -0.0006208267309332 -0.0014370937507029 + 212 12 Cd 4d-2 -0.3211407768630812 0.1219431438582134 + 213 12 Cd 4d-1 -0.0031479502630967 0.0240702091898862 + 214 12 Cd 4d0 0.1143101478481258 0.2716014894630083 + 215 12 Cd 4d+1 0.0780109074180265 0.3452759192763287 + 216 12 Cd 4d+2 0.2877442870678540 0.0167024414544387 + 217 12 Cd 5d-2 -0.0043459898933975 0.0016018901741158 + 218 12 Cd 5d-1 0.0016948872221319 -0.0031875952629398 + 219 12 Cd 5d0 0.0005028746907111 0.0058339006802062 + 220 12 Cd 5d+1 0.0011607472222599 0.0008857853525409 + 221 12 Cd 5d+2 0.0041054488414041 0.0006624037862396 + 222 12 Cd 5f-3 0.0001535300520926 0.0005197661842298 + 223 12 Cd 5f-2 -0.0000027146814245 0.0002202108428340 + 224 12 Cd 5f-1 0.0004323588440062 0.0013998358331324 + 225 12 Cd 5f0 0.0002430573141265 0.0000079433463418 + 226 12 Cd 5f+1 -0.0000037137723162 0.0000941027229832 + 227 12 Cd 5f+2 -0.0004498356434972 -0.0003840126111470 + 228 12 Cd 5f+3 0.0007342196236987 0.0006774035506429 + + 229 13 Cd 2s 0.0081250114361860 -0.0071246263523726 + 230 13 Cd 3s 0.0000197498430865 0.0011051553980834 + 231 13 Cd 3py -0.0020747825829446 -0.0011715163041318 + 232 13 Cd 3pz -0.0002926930496366 -0.0002625721586956 + 233 13 Cd 3px -0.0020623198107969 -0.0033174176421223 + 234 13 Cd 4py -0.0009200111020059 -0.0011057459575518 + 235 13 Cd 4pz -0.0004611450696288 -0.0014165650688779 + 236 13 Cd 4px 0.0018054990455218 -0.0021853477811524 + 237 13 Cd 4d-2 -0.0171122091619036 -0.0825243730104845 + 238 13 Cd 4d-1 -0.0118795588233640 0.0212852489804080 + 239 13 Cd 4d0 0.0547341128150127 0.0534635977925254 + 240 13 Cd 4d+1 -0.0646015652937864 -0.0492884853838157 + 241 13 Cd 4d+2 0.0294739633497003 0.1854112080450325 + 242 13 Cd 5d-2 -0.0014569215342842 0.0042823462787214 + 243 13 Cd 5d-1 -0.0001178024316060 0.0007420646788530 + 244 13 Cd 5d0 -0.0012046722818409 -0.0008163062388168 + 245 13 Cd 5d+1 0.0004755214089110 0.0009157200637160 + 246 13 Cd 5d+2 0.0001882062549640 -0.0015000372143440 + 247 13 Cd 5f-3 0.0004021366708643 0.0004522572452499 + 248 13 Cd 5f-2 -0.0000739474501426 0.0005595870453857 + 249 13 Cd 5f-1 0.0001053167077639 0.0007818988017830 + 250 13 Cd 5f0 0.0001311593746491 0.0001096466493600 + 251 13 Cd 5f+1 -0.0003774722252589 0.0010683340575241 + 252 13 Cd 5f+2 0.0003719823024092 0.0002660624621631 + 253 13 Cd 5f+3 -0.0005045144242284 -0.0002501027376836 + + 254 14 Cd 2s -0.0005452533381302 0.0061524752169804 + 255 14 Cd 3s -0.0000511118579066 -0.0001493200278200 + 256 14 Cd 3py 0.0055100067197895 -0.0011896239328601 + 257 14 Cd 3pz -0.0048829311195472 -0.0019472546730768 + 258 14 Cd 3px -0.0016272464051096 -0.0007680607100130 + 259 14 Cd 4py 0.0011242334647489 -0.0007736169833700 + 260 14 Cd 4pz -0.0020990070354505 0.0007328392226922 + 261 14 Cd 4px -0.0000564837065042 -0.0001588980817475 + 262 14 Cd 4d-2 0.0274298539815537 -0.0108424852537766 + 263 14 Cd 4d-1 -0.0011745544985859 -0.0191273721953862 + 264 14 Cd 4d0 0.0583104379676468 0.0197099919321264 + 265 14 Cd 4d+1 -0.0001324616566627 0.0183827296190762 + 266 14 Cd 4d+2 0.0047160053397266 0.0053613519278040 + 267 14 Cd 5d-2 0.0005770931938732 -0.0000397643702795 + 268 14 Cd 5d-1 0.0018327632968677 -0.0000926843558514 + 269 14 Cd 5d0 0.0035828946329678 0.0003479236600804 + 270 14 Cd 5d+1 0.0005952071582843 0.0004400973373213 + 271 14 Cd 5d+2 0.0024779132499596 -0.0008167416688423 + 272 14 Cd 5f-3 -0.0006539208720307 0.0001858600804321 + 273 14 Cd 5f-2 -0.0000555330734077 -0.0000056418553005 + 274 14 Cd 5f-1 -0.0004406768601365 -0.0004272376694075 + 275 14 Cd 5f0 -0.0002325245049660 -0.0000421397039767 + 276 14 Cd 5f+1 -0.0002089269723152 -0.0001520690360793 + 277 14 Cd 5f+2 0.0006468261298473 -0.0000043057600479 + 278 14 Cd 5f+3 0.0000676413836030 -0.0000554486868693 + + 279 15 Se 2s -0.0316507094771535 -0.0355605993736290 + 280 15 Se 3s 0.0002641694149129 0.0010451026745133 + 281 15 Se 3py -0.0105056517014558 -0.0168303864552467 + 282 15 Se 3pz 0.0105142517209209 -0.0050000677630901 + 283 15 Se 3px -0.0069819223917259 -0.0055867622135448 + 284 15 Se 4py -0.0006925936899130 0.0000600122584171 + 285 15 Se 4pz -0.0007635783145091 -0.0005308796255468 + 286 15 Se 4px -0.0005805321054114 0.0005754875995063 + 287 15 Se 4d-2 0.0018844614279524 0.0006418525657124 + 288 15 Se 4d-1 -0.0016239248849145 0.0016198637698270 + 289 15 Se 4d0 -0.0013045671420350 -0.0011322763435857 + 290 15 Se 4d+1 0.0001885091397763 0.0005666726073375 + 291 15 Se 4d+2 -0.0013432940214577 -0.0034778380705371 + + 292 16 Se 2s 0.0153854149679914 0.0252435934689998 + 293 16 Se 3s -0.0004287370016608 -0.0004990665690655 + 294 16 Se 3py 0.0058798647657116 0.0203953001492431 + 295 16 Se 3pz -0.0011302806952415 0.0010305897758723 + 296 16 Se 3px 0.0115707238703277 0.0154685941959877 + 297 16 Se 4py 0.0004355378558426 0.0017220121478985 + 298 16 Se 4pz -0.0003240311213483 0.0000164249984771 + 299 16 Se 4px 0.0012084899769501 0.0011144492758690 + 300 16 Se 4d-2 -0.0013158665109397 -0.0032327547106090 + 301 16 Se 4d-1 0.0020484262441092 0.0035425689520518 + 302 16 Se 4d0 0.0011484067399505 0.0026257794143337 + 303 16 Se 4d+1 0.0015261397798810 0.0026602532632263 + 304 16 Se 4d+2 -0.0022500481490062 -0.0006036340678946 + + 305 17 Cd 2s 0.0047181006109253 -0.0088875824662951 + 306 17 Cd 3s -0.0016410675815770 -0.0000355557067754 + 307 17 Cd 3py 0.0012166139482205 0.0015607897004193 + 308 17 Cd 3pz -0.0003392248320950 -0.0037460952880062 + 309 17 Cd 3px -0.0003389454225149 0.0043358736866148 + 310 17 Cd 4py 0.0013571077691828 0.0006404015177113 + 311 17 Cd 4pz 0.0006063906813064 0.0009120496835171 + 312 17 Cd 4px 0.0001154159442752 -0.0007208639594562 + 313 17 Cd 4d-2 -0.0469314281426949 -0.1377167284903117 + 314 17 Cd 4d-1 -0.0908910116565763 -0.1142979044920941 + 315 17 Cd 4d0 0.0844600081816687 0.0994479766648107 + 316 17 Cd 4d+1 -0.0812805913792354 -0.1728563404439422 + 317 17 Cd 4d+2 0.1243323214844535 -0.0338422544322061 + 318 17 Cd 5d-2 -0.0011135475294232 -0.0009799348292204 + 319 17 Cd 5d-1 0.0002021928806635 0.0001501787977691 + 320 17 Cd 5d0 0.0006729533411629 -0.0004527603632718 + 321 17 Cd 5d+1 0.0002474994771556 0.0021784560556156 + 322 17 Cd 5d+2 0.0004242057476048 0.0018225032717956 + 323 17 Cd 5f-3 -0.0003754716500212 0.0000402957050267 + 324 17 Cd 5f-2 0.0003657029606309 0.0008235502100097 + 325 17 Cd 5f-1 -0.0002438476779769 -0.0000315076355176 + 326 17 Cd 5f0 -0.0003320527275899 -0.0004455600827814 + 327 17 Cd 5f+1 -0.0001887599527511 0.0009887292256221 + 328 17 Cd 5f+2 -0.0005146056229885 0.0004667910197773 + 329 17 Cd 5f+3 -0.0007076157709790 -0.0002826311221918 + + 330 18 Cd 2s 0.0074225138138801 -0.0081019502590963 + 331 18 Cd 3s -0.0001507804370862 0.0009597010263971 + 332 18 Cd 3py 0.0003459157946460 0.0000875556052329 + 333 18 Cd 3pz 0.0017257252306540 -0.0009128028999148 + 334 18 Cd 3px -0.0003175904304227 -0.0001668545602772 + 335 18 Cd 4py 0.0002971183633031 0.0003296596866176 + 336 18 Cd 4pz 0.0000979135203722 0.0008551713268289 + 337 18 Cd 4px -0.0000345447888191 0.0002973003735562 + 338 18 Cd 4d-2 0.0045743619088569 0.0005470425958453 + 339 18 Cd 4d-1 -0.0382764761756249 0.0715856722911031 + 340 18 Cd 4d0 0.0939657952086092 -0.1099889254676990 + 341 18 Cd 4d+1 -0.0071560240021506 -0.0435862043757251 + 342 18 Cd 4d+2 0.0169656015615292 0.0591314759846422 + 343 18 Cd 5d-2 -0.0003010275778521 -0.0000907820098564 + 344 18 Cd 5d-1 -0.0001418473931974 0.0010800478706851 + 345 18 Cd 5d0 0.0018782980441381 -0.0022353719980712 + 346 18 Cd 5d+1 0.0007617019256923 -0.0010346231073547 + 347 18 Cd 5d+2 -0.0005205564935692 0.0003320596893824 + 348 18 Cd 5f-3 -0.0001208722568932 0.0001815418528815 + 349 18 Cd 5f-2 0.0002550287901414 -0.0002206695471414 + 350 18 Cd 5f-1 0.0004112509784466 -0.0005857060852662 + 351 18 Cd 5f0 0.0001486036863374 -0.0000931358029998 + 352 18 Cd 5f+1 0.0002629695697768 -0.0001603505173708 + 353 18 Cd 5f+2 0.0000006846705243 -0.0001918720457480 + 354 18 Cd 5f+3 0.0001116999820056 0.0002505788869846 + + 355 19 Se 2s -0.0308066411445867 0.0225342648380362 + 356 19 Se 3s 0.0007868627929195 -0.0002488071975950 + 357 19 Se 3py -0.0007702684502369 0.0017175146423004 + 358 19 Se 3pz 0.0205558897867128 0.0091662616682148 + 359 19 Se 3px -0.0197794825884201 -0.0078942062283208 + 360 19 Se 4py 0.0003165160340511 0.0002077223724955 + 361 19 Se 4pz 0.0003880845763524 -0.0001586402644527 + 362 19 Se 4px -0.0006100295055640 0.0005404552779098 + 363 19 Se 4d-2 -0.0055576817883885 0.0002104391311560 + 364 19 Se 4d-1 0.0037277625140862 0.0050634865714561 + 365 19 Se 4d0 0.0012582251259960 0.0017224168136986 + 366 19 Se 4d+1 -0.0008543158100169 -0.0005685748492122 + 367 19 Se 4d+2 -0.0001501363251353 0.0017486270530700 + + 368 20 Se 2s 0.0490793080154741 0.0335549489934173 + 369 20 Se 3s -0.0009536404921639 -0.0003574772170583 + 370 20 Se 3py -0.0217335089081110 -0.0115491508647331 + 371 20 Se 3pz -0.0033882802396116 -0.0334309768182070 + 372 20 Se 3px 0.0132126736128574 0.0011405252260405 + 373 20 Se 4py -0.0019726645886680 0.0009473991346065 + 374 20 Se 4pz -0.0012832511759142 -0.0010343005158247 + 375 20 Se 4px -0.0003885713263614 -0.0003678865948353 + 376 20 Se 4d-2 -0.0013864816233077 0.0008371246514116 + 377 20 Se 4d-1 -0.0006105995109956 0.0034532236108473 + 378 20 Se 4d0 0.0006049499285534 -0.0001190855119261 + 379 20 Se 4d+1 0.0005731550401855 0.0047259205499875 + 380 20 Se 4d+2 0.0017706895825877 0.0025156381361010 + + 381 21 Se 2s 0.0168025421099021 -0.0463912906633076 + 382 21 Se 3s -0.0002064142298325 0.0007418537034927 + 383 21 Se 3py 0.0087843020107398 -0.0094444774764013 + 384 21 Se 3pz -0.0008971810896529 -0.0149364418142561 + 385 21 Se 3px -0.0159698589786054 0.0081603835211223 + 386 21 Se 4py -0.0002144034054496 0.0001799724712777 + 387 21 Se 4pz -0.0008271735615902 0.0004328373234378 + 388 21 Se 4px -0.0006635353243848 0.0007827625479868 + 389 21 Se 4d-2 0.0041580237536282 -0.0013722225168205 + 390 21 Se 4d-1 -0.0010765424507634 0.0009937074798637 + 391 21 Se 4d0 0.0011861086545349 0.0004402158521360 + 392 21 Se 4d+1 -0.0010695118046449 -0.0017935429484712 + 393 21 Se 4d+2 -0.0005959510669754 0.0003694714817886 + + 394 22 Cd 2s 0.0079499211322421 -0.0128730953232391 + 395 22 Cd 3s 0.0009463320285714 0.0022740283127457 + 396 22 Cd 3py -0.0085902349887633 0.0034254485095174 + 397 22 Cd 3pz -0.0061954068891769 0.0037172334735184 + 398 22 Cd 3px -0.0008749961998909 -0.0058300776850490 + 399 22 Cd 4py -0.0021634264689538 0.0005504028125763 + 400 22 Cd 4pz -0.0023848753252461 -0.0006520383818762 + 401 22 Cd 4px -0.0017200180037372 0.0002321590076899 + 402 22 Cd 4d-2 0.1037947966099681 0.2156367898049378 + 403 22 Cd 4d-1 0.2570962651317625 0.0655610635220144 + 404 22 Cd 4d0 0.0748774449776086 0.1002216738082190 + 405 22 Cd 4d+1 0.1113052910348860 -0.1683319405212576 + 406 22 Cd 4d+2 -0.0357880610010508 0.0012059798628318 + 407 22 Cd 5d-2 -0.0002696362819843 0.0011538729819144 + 408 22 Cd 5d-1 0.0014106940629280 0.0019558921930864 + 409 22 Cd 5d0 -0.0003938522005405 0.0004813111290316 + 410 22 Cd 5d+1 -0.0014690390699685 0.0004271069297336 + 411 22 Cd 5d+2 -0.0035877034595713 -0.0020991255068546 + 412 22 Cd 5f-3 0.0005403579718320 0.0008561934670761 + 413 22 Cd 5f-2 0.0005378509541424 -0.0001681822387130 + 414 22 Cd 5f-1 0.0002760358590724 0.0004750397615211 + 415 22 Cd 5f0 -0.0004232766666634 0.0000049924150397 + 416 22 Cd 5f+1 0.0000669953190841 -0.0010987974590165 + 417 22 Cd 5f+2 0.0001954249979042 0.0003468836656945 + 418 22 Cd 5f+3 0.0003142732089618 0.0000790588872415 + + 419 23 Se 2s -0.0201403024988030 0.0375631106008371 + 420 23 Se 3s 0.0002528332991938 -0.0006386913737325 + 421 23 Se 3py 0.0116717323093910 0.0288633057363299 + 422 23 Se 3pz 0.0089022223007976 -0.0057971029898480 + 423 23 Se 3px 0.0042093091238604 0.0199215103718153 + 424 23 Se 4py -0.0001348871477537 0.0014206915891561 + 425 23 Se 4pz 0.0006828292626149 0.0008202266580739 + 426 23 Se 4px -0.0002748076043513 0.0020734609373149 + 427 23 Se 4d-2 -0.0010331985097723 -0.0011058277777716 + 428 23 Se 4d-1 0.0041884042198534 0.0054622568524885 + 429 23 Se 4d0 0.0024960054125788 0.0007685818391009 + 430 23 Se 4d+1 0.0011470147568405 0.0032901284648616 + 431 23 Se 4d+2 0.0003929512799277 0.0045238311406556 + + 432 24 Se 2s -0.0452520065618108 -0.0367866919218626 + 433 24 Se 3s 0.0015250939221719 0.0006689291312577 + 434 24 Se 3py 0.0110039348847933 0.0063840520945030 + 435 24 Se 3pz 0.0068854568993399 -0.0104348476998355 + 436 24 Se 3px 0.0149501179989160 0.0036052055161615 + 437 24 Se 4py 0.0013381832830206 0.0007805200899243 + 438 24 Se 4pz 0.0000890867737685 0.0008128256275753 + 439 24 Se 4px -0.0000788476959522 -0.0000487409682942 + 440 24 Se 4d-2 0.0028575847800892 -0.0002368848723333 + 441 24 Se 4d-1 -0.0008355197963610 -0.0014432767436299 + 442 24 Se 4d0 -0.0011537440111092 0.0012192737463176 + 443 24 Se 4d+1 0.0018607717865634 -0.0009818113264645 + 444 24 Se 4d+2 0.0020524802778290 -0.0003450053303316 + + 445 25 Cd 2s -0.0112234324332365 -0.0219519296433468 + 446 25 Cd 3s -0.0007442198869414 -0.0007147449261544 + 447 25 Cd 3py -0.0106366737327060 -0.0037192404936978 + 448 25 Cd 3pz -0.0005235650160035 -0.0049914579534208 + 449 25 Cd 3px -0.0051779287790136 -0.0112587129912102 + 450 25 Cd 4py -0.0031812995948840 -0.0010644023267670 + 451 25 Cd 4pz 0.0008003773506134 -0.0005668954744804 + 452 25 Cd 4px 0.0000256468721167 -0.0001978421662049 + 453 25 Cd 4d-2 -0.1112304803229850 0.1431306339507745 + 454 25 Cd 4d-1 0.2576033012964155 0.3592390142872275 + 455 25 Cd 4d0 0.1803785315802388 -0.2689837294962026 + 456 25 Cd 4d+1 -0.1474809741512842 0.0377094096912836 + 457 25 Cd 4d+2 0.1054241516688799 0.3958008330682252 + 458 25 Cd 5d-2 -0.0021564680896837 -0.0014007529782112 + 459 25 Cd 5d-1 -0.0012820086250396 0.0011531472118011 + 460 25 Cd 5d0 0.0014187187444795 -0.0006574759069193 + 461 25 Cd 5d+1 0.0006542912845795 -0.0026496112471868 + 462 25 Cd 5d+2 -0.0001469431073788 -0.0015732008048769 + 463 25 Cd 5f-3 0.0001696479306883 -0.0006356554659218 + 464 25 Cd 5f-2 0.0004179172315294 0.0004525696212326 + 465 25 Cd 5f-1 -0.0008363629287997 -0.0002536340537336 + 466 25 Cd 5f0 0.0006168532541572 -0.0004529159099144 + 467 25 Cd 5f+1 0.0002883515693032 0.0006574021042680 + 468 25 Cd 5f+2 0.0003319209779135 -0.0004211652077281 + 469 25 Cd 5f+3 0.0000349946698738 -0.0002608981846953 + + 470 26 Cd 2s -0.0064805819885314 0.0078365315227125 + 471 26 Cd 3s 0.0006842456640249 -0.0009908547817960 + 472 26 Cd 3py 0.0028323215300143 0.0002688294721445 + 473 26 Cd 3pz 0.0003204322175138 0.0021367418760834 + 474 26 Cd 3px -0.0026620553798796 0.0007203486659134 + 475 26 Cd 4py 0.0018618056508817 0.0003834516097670 + 476 26 Cd 4pz 0.0006063130173344 -0.0003331704774021 + 477 26 Cd 4px 0.0009356561802086 -0.0004379458133426 + 478 26 Cd 4d-2 0.0331314752980763 0.0159531899914806 + 479 26 Cd 4d-1 -0.0051280294306608 0.0135309908955189 + 480 26 Cd 4d0 0.0109088005195893 -0.0400421376442703 + 481 26 Cd 4d+1 0.0023637060468502 0.0437755054856956 + 482 26 Cd 4d+2 -0.0140681351778395 -0.0478165367436058 + 483 26 Cd 5d-2 0.0021934103581984 0.0004683028931536 + 484 26 Cd 5d-1 -0.0001787120883092 -0.0010236328432102 + 485 26 Cd 5d0 0.0008764151584076 -0.0005253974552473 + 486 26 Cd 5d+1 0.0006237127295052 0.0009598652303350 + 487 26 Cd 5d+2 0.0003286807201556 -0.0011009117622654 + 488 26 Cd 5f-3 0.0002105907393175 -0.0000377049196275 + 489 26 Cd 5f-2 0.0001608154610797 -0.0006500621892277 + 490 26 Cd 5f-1 -0.0001288211678574 0.0000367450639294 + 491 26 Cd 5f0 -0.0004561023346923 -0.0000089614465415 + 492 26 Cd 5f+1 0.0002428271822744 -0.0000678785004741 + 493 26 Cd 5f+2 -0.0000409697387660 -0.0001135323250096 + 494 26 Cd 5f+3 -0.0003108531310690 -0.0002959192413254 + + 53 54 + -0.4640584980841755 -0.4635650787329195 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0066326732626649 -0.0133848592411734 + 2 1 Cd 3s 0.0013107765837165 0.0013776259461184 + 3 1 Cd 3py -0.0020436461600112 -0.0115750431537437 + 4 1 Cd 3pz -0.0015489082335896 0.0016196771731605 + 5 1 Cd 3px 0.0017197564527533 0.0069158301817383 + 6 1 Cd 4py 0.0013717628253898 0.0004981063116092 + 7 1 Cd 4pz -0.0005501327301651 -0.0001761558358430 + 8 1 Cd 4px -0.0008633601795787 0.0000461546888346 + 9 1 Cd 4d-2 -0.0725247675604808 -0.1722457812512270 + 10 1 Cd 4d-1 0.0317044836074489 -0.0293140247623197 + 11 1 Cd 4d0 -0.0217585678357613 -0.0927682766868614 + 12 1 Cd 4d+1 -0.0097201000112290 0.0431243186579414 + 13 1 Cd 4d+2 -0.0275530985132402 -0.0720971558620519 + 14 1 Cd 5d-2 0.0002858686191960 0.0055744189563318 + 15 1 Cd 5d-1 0.0010940118549679 -0.0001498902551133 + 16 1 Cd 5d0 -0.0008537026033090 0.0015393239105857 + 17 1 Cd 5d+1 0.0014056673645434 -0.0007019917365611 + 18 1 Cd 5d+2 -0.0000197903182825 -0.0015978897302676 + 19 1 Cd 5f-3 0.0001099327331739 -0.0014265873011968 + 20 1 Cd 5f-2 -0.0003932283545965 -0.0004294258372340 + 21 1 Cd 5f-1 -0.0001276580022466 -0.0002461312185651 + 22 1 Cd 5f0 0.0001536421480884 0.0002921685177493 + 23 1 Cd 5f+1 0.0008151857855996 -0.0001104581297826 + 24 1 Cd 5f+2 -0.0002457134329064 0.0006932919784755 + 25 1 Cd 5f+3 0.0004127884939620 0.0003921659127199 + + 26 2 Cd 2s -0.0006459466202819 0.0116597458208536 + 27 2 Cd 3s -0.0000596827130020 0.0014756149186264 + 28 2 Cd 3py -0.0058485410937877 -0.0007198247554179 + 29 2 Cd 3pz 0.0017834958473947 -0.0050978885477929 + 30 2 Cd 3px 0.0032867482230485 -0.0010695246173113 + 31 2 Cd 4py -0.0035893749907395 -0.0003622642031890 + 32 2 Cd 4pz 0.0013862209084165 -0.0024471521177456 + 33 2 Cd 4px -0.0001492835591687 0.0013195068549307 + 34 2 Cd 4d-2 -0.4144217617948733 -0.0299047696045393 + 35 2 Cd 4d-1 -0.1595270746652139 -0.2758586849745427 + 36 2 Cd 4d0 0.4624174071987552 -0.1090529992604290 + 37 2 Cd 4d+1 0.3232461661005466 -0.0505205325631618 + 38 2 Cd 4d+2 0.2193284973138787 0.0536949671625112 + 39 2 Cd 5d-2 0.0030189399342754 0.0030089311403530 + 40 2 Cd 5d-1 0.0005180121551945 -0.0007028677062141 + 41 2 Cd 5d0 -0.0014576348954130 0.0013201445964341 + 42 2 Cd 5d+1 -0.0009981464865916 -0.0012877907937752 + 43 2 Cd 5d+2 -0.0024276315277920 0.0013187519019760 + 44 2 Cd 5f-3 -0.0007811004768839 0.0001681221507711 + 45 2 Cd 5f-2 0.0003587940270783 -0.0009499529003221 + 46 2 Cd 5f-1 0.0000269415350214 -0.0005194258991496 + 47 2 Cd 5f0 -0.0005268917709644 -0.0009543489516560 + 48 2 Cd 5f+1 0.0002741448392642 0.0008714099674276 + 49 2 Cd 5f+2 0.0001617896741284 -0.0001698211740871 + 50 2 Cd 5f+3 0.0001247281555163 -0.0008479229031588 + + 51 3 Cd 2s 0.0052998686246138 0.0042896759619661 + 52 3 Cd 3s -0.0014437746010441 -0.0011281660455797 + 53 3 Cd 3py 0.0037669706183618 0.0030740254484739 + 54 3 Cd 3pz -0.0008207567207903 0.0008421519532541 + 55 3 Cd 3px 0.0036688113784386 0.0058018040742990 + 56 3 Cd 4py 0.0003753390098932 0.0006077163362360 + 57 3 Cd 4pz 0.0001740890071294 0.0009335035347046 + 58 3 Cd 4px 0.0007540988196755 -0.0002608940786976 + 59 3 Cd 4d-2 -0.0021073540890786 -0.0156735777154002 + 60 3 Cd 4d-1 -0.0262634299117019 -0.0287626246779716 + 61 3 Cd 4d0 0.0108151484886832 -0.0286908274473084 + 62 3 Cd 4d+1 -0.0020664991194157 0.0208349412631793 + 63 3 Cd 4d+2 0.0314433076320683 0.0443165138038100 + 64 3 Cd 5d-2 0.0003693762701077 -0.0006027213774300 + 65 3 Cd 5d-1 0.0011993612126767 0.0011763388242718 + 66 3 Cd 5d0 -0.0005655825377869 0.0011254519858177 + 67 3 Cd 5d+1 -0.0008013884206079 -0.0012404389228541 + 68 3 Cd 5d+2 -0.0020120205998533 -0.0028823158733812 + 69 3 Cd 5f-3 -0.0004040491190205 -0.0001392448660424 + 70 3 Cd 5f-2 -0.0009015935013544 -0.0005838691588533 + 71 3 Cd 5f-1 0.0000784931168623 0.0001960000062674 + 72 3 Cd 5f0 0.0000083986832781 0.0004509452780766 + 73 3 Cd 5f+1 -0.0000750153065253 0.0004271798440765 + 74 3 Cd 5f+2 0.0003737650027401 0.0010013830931266 + 75 3 Cd 5f+3 -0.0005586693968781 -0.0004338739796001 + + 76 4 Se 2s -0.0149224544813897 -0.0043228807840146 + 77 4 Se 3s 0.0008536603996783 0.0002519208655937 + 78 4 Se 3py -0.0145256820161611 -0.0134498903009495 + 79 4 Se 3pz -0.0268114004404789 0.0090293532585051 + 80 4 Se 3px -0.0176173467292399 0.0068731034665001 + 81 4 Se 4py -0.0002029793241829 -0.0013259646907754 + 82 4 Se 4pz -0.0019347144222985 -0.0025232769087750 + 83 4 Se 4px -0.0011011881348760 0.0001558205458474 + 84 4 Se 4d-2 0.0040398350728478 0.0031350997570445 + 85 4 Se 4d-1 0.0015944458896234 0.0029243950355812 + 86 4 Se 4d0 -0.0066108516773157 0.0050767256272852 + 87 4 Se 4d+1 0.0020180702565237 -0.0026331321327264 + 88 4 Se 4d+2 0.0024408908323575 -0.0007952533723252 + + 89 5 Se 2s -0.0127512802627011 -0.0295030112559368 + 90 5 Se 3s 0.0002329479226795 0.0003184525824077 + 91 5 Se 3py 0.0038370838704741 0.0114606524051250 + 92 5 Se 3pz -0.0022036572238811 -0.0027472816198079 + 93 5 Se 3px 0.0028507074494475 0.0096471515850256 + 94 5 Se 4py 0.0008365421766725 0.0014369082521742 + 95 5 Se 4pz -0.0001691962331505 0.0001410341528126 + 96 5 Se 4px 0.0013469152311669 0.0028900788387099 + 97 5 Se 4d-2 0.0006068679889203 0.0017412066173426 + 98 5 Se 4d-1 -0.0004287798862350 -0.0001523554861054 + 99 5 Se 4d0 -0.0002308942563439 -0.0010301322336464 + 100 5 Se 4d+1 0.0001757946244868 0.0007730047396683 + 101 5 Se 4d+2 -0.0004663532906224 -0.0022643420259126 + + 102 6 Se 2s 0.0048302616694065 -0.0110589248026182 + 103 6 Se 3s -0.0002939354348052 0.0003999326474871 + 104 6 Se 3py 0.0115093206127977 0.0059918121767770 + 105 6 Se 3pz 0.0045974450080799 0.0056451945132026 + 106 6 Se 3px 0.0086912958188602 0.0001008435603610 + 107 6 Se 4py 0.0002613042711170 0.0006202761394609 + 108 6 Se 4pz 0.0010135682921082 0.0003881449729864 + 109 6 Se 4px 0.0008810124701504 0.0004265762859575 + 110 6 Se 4d-2 0.0004737370236536 -0.0007154262514331 + 111 6 Se 4d-1 0.0023444656431683 0.0006936427805149 + 112 6 Se 4d0 -0.0022750411780368 -0.0010172456467591 + 113 6 Se 4d+1 -0.0011647060542227 -0.0010877996814633 + 114 6 Se 4d+2 -0.0038483146373712 -0.0014397266477992 + + 115 7 Se 2s -0.0224025419261987 0.0009390487946775 + 116 7 Se 3s 0.0007202854629044 -0.0000993557366903 + 117 7 Se 3py -0.0113682255645387 0.0095783062455066 + 118 7 Se 3pz -0.0013853020856060 -0.0008145059256265 + 119 7 Se 3px -0.0030319748166895 -0.0152681551507451 + 120 7 Se 4py -0.0005758215186674 -0.0002834994573214 + 121 7 Se 4pz -0.0000434122809060 -0.0004628214941723 + 122 7 Se 4px 0.0000260611948998 0.0005562315528306 + 123 7 Se 4d-2 -0.0004182788585761 0.0012321775143305 + 124 7 Se 4d-1 0.0015995996033514 -0.0014174818086388 + 125 7 Se 4d0 -0.0012933103525609 0.0002246879330893 + 126 7 Se 4d+1 0.0012798006730466 0.0030874258231393 + 127 7 Se 4d+2 0.0001610657243546 -0.0013244049501367 + + 128 8 Cd 2s 0.0019503091484260 -0.0019954697290885 + 129 8 Cd 3s 0.0004495384319805 0.0003261005452758 + 130 8 Cd 3py 0.0060391737365206 -0.0063342803006398 + 131 8 Cd 3pz -0.0061968194111216 0.0011974664254877 + 132 8 Cd 3px 0.0025154729102588 -0.0005914807698743 + 133 8 Cd 4py 0.0019809002007268 -0.0018959167539739 + 134 8 Cd 4pz -0.0013725594065926 0.0007800585606857 + 135 8 Cd 4px -0.0006428468244866 0.0002203161485271 + 136 8 Cd 4d-2 -0.2122343668777401 0.1179044447812699 + 137 8 Cd 4d-1 0.3381942410336339 0.0520759427095176 + 138 8 Cd 4d0 -0.1306403812251873 -0.0207956674168283 + 139 8 Cd 4d+1 0.1076363313737300 -0.0514499142808818 + 140 8 Cd 4d+2 0.1750531545387044 -0.1676115843556736 + 141 8 Cd 5d-2 0.0002861549058496 0.0013507799657989 + 142 8 Cd 5d-1 0.0001613149620023 0.0035229212254834 + 143 8 Cd 5d0 -0.0002317397215771 0.0002241659011595 + 144 8 Cd 5d+1 -0.0008755164539488 -0.0004793626089494 + 145 8 Cd 5d+2 -0.0007797364531675 -0.0019793585833755 + 146 8 Cd 5f-3 0.0006313345219653 0.0001493386441817 + 147 8 Cd 5f-2 -0.0000797424485771 0.0001903073035544 + 148 8 Cd 5f-1 -0.0000613225440530 0.0000189963624536 + 149 8 Cd 5f0 0.0006024457336824 -0.0002390818641544 + 150 8 Cd 5f+1 0.0003688585664367 0.0006084462054899 + 151 8 Cd 5f+2 0.0000038855108201 0.0004465069134388 + 152 8 Cd 5f+3 0.0000937049010225 -0.0000808754183124 + + 153 9 Cd 2s -0.0102894545056602 -0.0003274433592924 + 154 9 Cd 3s -0.0001909352042843 -0.0001876603281112 + 155 9 Cd 3py -0.0018090795151381 -0.0003635126662155 + 156 9 Cd 3pz -0.0011009574742035 0.0012908507220652 + 157 9 Cd 3px 0.0027863783400026 -0.0020155982383313 + 158 9 Cd 4py -0.0001995938735356 0.0001740755547819 + 159 9 Cd 4pz 0.0003694200001628 0.0002632110949539 + 160 9 Cd 4px -0.0007372882663872 -0.0003534170515205 + 161 9 Cd 4d-2 -0.0588789737920683 -0.0343564949633989 + 162 9 Cd 4d-1 -0.0353995393650654 0.0349212636737504 + 163 9 Cd 4d0 0.1627476073714045 -0.0028443732712902 + 164 9 Cd 4d+1 0.0149188771648758 0.0130286124937797 + 165 9 Cd 4d+2 -0.0982768107852185 0.0185229179115609 + 166 9 Cd 5d-2 -0.0016321035149263 -0.0009113022168496 + 167 9 Cd 5d-1 0.0006668139281238 0.0004150313923230 + 168 9 Cd 5d0 0.0022537729169197 -0.0007424519961821 + 169 9 Cd 5d+1 0.0012920040523779 0.0007802182777886 + 170 9 Cd 5d+2 -0.0015809849513334 0.0007406633913228 + 171 9 Cd 5f-3 0.0002573616761787 0.0004648619500665 + 172 9 Cd 5f-2 0.0003640378005211 0.0003419838113369 + 173 9 Cd 5f-1 0.0002235972055025 -0.0001830691391136 + 174 9 Cd 5f0 -0.0005881073225499 0.0000790991701568 + 175 9 Cd 5f+1 -0.0001365708065426 -0.0000463699106543 + 176 9 Cd 5f+2 0.0001035642705100 -0.0001862562785608 + 177 9 Cd 5f+3 0.0005127325840399 -0.0000760038019823 + + 178 10 Se 2s 0.1075088748920200 -0.0061846565728236 + 179 10 Se 3s -0.0020321479902642 0.0000487358597537 + 180 10 Se 3py -0.0222779278832597 0.0027377916687053 + 181 10 Se 3pz 0.0208592162817612 -0.0021815836518499 + 182 10 Se 3px -0.0102905525639589 0.0002270472657808 + 183 10 Se 4py -0.0012593527402693 -0.0003129174127668 + 184 10 Se 4pz 0.0005864562031339 -0.0001618983366728 + 185 10 Se 4px -0.0009245619359570 0.0001373095382671 + 186 10 Se 4d-2 0.0006892180753934 -0.0001578083701133 + 187 10 Se 4d-1 0.0046146749364023 -0.0006390224015381 + 188 10 Se 4d0 -0.0007458841570878 0.0002723188633948 + 189 10 Se 4d+1 0.0002832914222086 0.0000130718990459 + 190 10 Se 4d+2 0.0018786319476515 0.0000916316658576 + + 191 11 Se 2s -0.0105802819828965 0.0018859320073085 + 192 11 Se 3s 0.0000552867370944 0.0002936911367018 + 193 11 Se 3py 0.0056015277489146 0.0111060854077408 + 194 11 Se 3pz 0.0029538938697345 0.0121726882173789 + 195 11 Se 3px -0.0050403388363727 -0.0032242642274077 + 196 11 Se 4py 0.0005879059691697 0.0001265351449958 + 197 11 Se 4pz 0.0006827722465397 0.0003613809764118 + 198 11 Se 4px 0.0009645989294863 0.0008836128307149 + 199 11 Se 4d-2 -0.0008388893769999 -0.0005637658827495 + 200 11 Se 4d-1 0.0000344097845910 0.0001593043203985 + 201 11 Se 4d0 -0.0002342491710131 -0.0017820995052892 + 202 11 Se 4d+1 0.0000564978324367 0.0002943404279022 + 203 11 Se 4d+2 -0.0005671941027907 -0.0020360572133213 + + 204 12 Cd 2s -0.0062638908028761 -0.0175820381659142 + 205 12 Cd 3s 0.0000548454059818 -0.0001565613106944 + 206 12 Cd 3py -0.0027975264281126 -0.0078792960831739 + 207 12 Cd 3pz -0.0028475717331494 0.0039691411323726 + 208 12 Cd 3px -0.0008111736513759 -0.0023169018723867 + 209 12 Cd 4py -0.0008996811612235 -0.0012645139545385 + 210 12 Cd 4pz 0.0003075580935125 0.0000991469791712 + 211 12 Cd 4px -0.0000293881978219 0.0003879277928817 + 212 12 Cd 4d-2 -0.0363916659185380 -0.0742968274559591 + 213 12 Cd 4d-1 -0.0509096157037516 -0.0667175727134508 + 214 12 Cd 4d0 -0.0583000618624428 -0.0412291416176423 + 215 12 Cd 4d+1 -0.0397397322791106 -0.0178706817255721 + 216 12 Cd 4d+2 0.0076513606481264 0.1313315801257809 + 217 12 Cd 5d-2 -0.0020501965163767 -0.0012579871732865 + 218 12 Cd 5d-1 0.0002128659720748 0.0003961797059437 + 219 12 Cd 5d0 -0.0013937524650240 -0.0019329533758589 + 220 12 Cd 5d+1 -0.0011751704745409 -0.0008699730687590 + 221 12 Cd 5d+2 -0.0004838240853079 0.0007842448615395 + 222 12 Cd 5f-3 -0.0002378531187553 -0.0004833975328471 + 223 12 Cd 5f-2 -0.0000051749075506 -0.0007741902010134 + 224 12 Cd 5f-1 -0.0000884220849806 0.0003275370770856 + 225 12 Cd 5f0 0.0003263770533878 0.0003434990559618 + 226 12 Cd 5f+1 0.0005471493321552 -0.0000835529112029 + 227 12 Cd 5f+2 -0.0002116694094607 0.0000195615977995 + 228 12 Cd 5f+3 -0.0001658934378701 -0.0006768847615861 + + 229 13 Cd 2s -0.0187263452331383 -0.0041188153580732 + 230 13 Cd 3s 0.0005704071871648 0.0015236967691592 + 231 13 Cd 3py 0.0054030191110173 0.0036814040497394 + 232 13 Cd 3pz -0.0055442000348340 0.0014992724032018 + 233 13 Cd 3px 0.0005007153689934 -0.0100191664535378 + 234 13 Cd 4py -0.0000515505346640 -0.0004035508030884 + 235 13 Cd 4pz -0.0012203920646246 -0.0002840149160637 + 236 13 Cd 4px 0.0014302185483576 -0.0017620088666905 + 237 13 Cd 4d-2 -0.1468423270495179 -0.4915526150351866 + 238 13 Cd 4d-1 -0.0142517947380697 0.1114910140265754 + 239 13 Cd 4d0 0.0900018619743976 -0.1358648508559119 + 240 13 Cd 4d+1 0.0126685938258043 -0.2766058882138285 + 241 13 Cd 4d+2 -0.0477091798510609 0.0015895623818648 + 242 13 Cd 5d-2 -0.0000955919400234 0.0045985772721361 + 243 13 Cd 5d-1 0.0031352396884954 0.0008771293194559 + 244 13 Cd 5d0 0.0004084280614038 0.0014810809313444 + 245 13 Cd 5d+1 0.0015835646571620 0.0008852672683732 + 246 13 Cd 5d+2 -0.0020909878632284 -0.0040834018910328 + 247 13 Cd 5f-3 0.0001306815658876 0.0003098546203090 + 248 13 Cd 5f-2 -0.0005773254896704 -0.0007774144208630 + 249 13 Cd 5f-1 0.0002140156956324 0.0003460837913632 + 250 13 Cd 5f0 0.0000137890465062 0.0001534725614020 + 251 13 Cd 5f+1 -0.0004297980730262 -0.0005306201649657 + 252 13 Cd 5f+2 -0.0004042186019231 -0.0008611596421785 + 253 13 Cd 5f+3 0.0006084835847207 0.0007217915436059 + + 254 14 Cd 2s 0.0072262783996335 0.0143834345061180 + 255 14 Cd 3s -0.0003250578613383 -0.0005607487526108 + 256 14 Cd 3py -0.0037717631358497 0.0031932390115746 + 257 14 Cd 3pz 0.0027226251192750 -0.0097888054255457 + 258 14 Cd 3px 0.0019408787772908 -0.0009538137943477 + 259 14 Cd 4py -0.0001204344359184 -0.0007563685679399 + 260 14 Cd 4pz 0.0001021044731000 0.0006821657316985 + 261 14 Cd 4px 0.0007971449165049 0.0001230652462018 + 262 14 Cd 4d-2 0.0114821711437851 -0.0245226930947663 + 263 14 Cd 4d-1 -0.0260237694325646 -0.0282045670011991 + 264 14 Cd 4d0 -0.0116242102581419 0.1318199298279968 + 265 14 Cd 4d+1 0.0264661284073302 0.0664692455633687 + 266 14 Cd 4d+2 -0.0014312511767139 0.0252881431052817 + 267 14 Cd 5d-2 -0.0020791701356173 -0.0008402327555859 + 268 14 Cd 5d-1 -0.0009080179496776 0.0003719810753534 + 269 14 Cd 5d0 -0.0012829668959439 0.0045018063453506 + 270 14 Cd 5d+1 0.0007339709230272 0.0017240597813057 + 271 14 Cd 5d+2 -0.0008022426760109 0.0002069402087754 + 272 14 Cd 5f-3 0.0000127973969930 0.0001360457277244 + 273 14 Cd 5f-2 -0.0001214308209548 -0.0000266311146841 + 274 14 Cd 5f-1 0.0002470750031372 -0.0012267051657751 + 275 14 Cd 5f0 0.0001224080545932 -0.0003744311749244 + 276 14 Cd 5f+1 -0.0004055681945849 -0.0006984506347604 + 277 14 Cd 5f+2 -0.0002435497387249 0.0001762530883058 + 278 14 Cd 5f+3 -0.0006717940916858 -0.0000006668052688 + + 279 15 Se 2s 0.0016749211815310 -0.1405919706709460 + 280 15 Se 3s 0.0000262165850322 0.0029077483078939 + 281 15 Se 3py 0.0024374561176039 -0.0432537387634368 + 282 15 Se 3pz -0.0012577717721072 -0.0140402299828034 + 283 15 Se 3px 0.0099718301339885 0.0290038338785772 + 284 15 Se 4py -0.0000431149448317 -0.0008385960740808 + 285 15 Se 4pz -0.0000280105024561 -0.0019060273382956 + 286 15 Se 4px 0.0002228650968150 0.0015824639332534 + 287 15 Se 4d-2 -0.0025319938163531 -0.0071759022960920 + 288 15 Se 4d-1 0.0002310234189584 0.0034833017900764 + 289 15 Se 4d0 -0.0000769338385799 -0.0034518815787099 + 290 15 Se 4d+1 -0.0011899461107257 -0.0035588800218073 + 291 15 Se 4d+2 0.0007804187450237 -0.0036788567683975 + + 292 16 Se 2s 0.0101657609894416 -0.0300596863382160 + 293 16 Se 3s -0.0000524814876925 0.0009513360140774 + 294 16 Se 3py 0.0174280441461077 0.0161907680055731 + 295 16 Se 3pz 0.0121004930349695 0.0305666030571623 + 296 16 Se 3px 0.0079688969033068 0.0227550790389104 + 297 16 Se 4py 0.0015139005232659 0.0029973298295329 + 298 16 Se 4pz 0.0010183772380397 0.0038012415287103 + 299 16 Se 4px 0.0011053046491499 0.0039629778436588 + 300 16 Se 4d-2 -0.0030635940138526 -0.0012920529502340 + 301 16 Se 4d-1 0.0009663085913702 0.0017858531636693 + 302 16 Se 4d0 0.0029680747844687 0.0085024747189611 + 303 16 Se 4d+1 -0.0008385175546014 0.0018566728800015 + 304 16 Se 4d+2 0.0000114167459337 -0.0010556340234111 + + 305 17 Cd 2s 0.0002257633675821 0.0077192998242109 + 306 17 Cd 3s -0.0011317467584801 -0.0006588777884360 + 307 17 Cd 3py -0.0010519089852887 0.0081064208977502 + 308 17 Cd 3pz -0.0004318726534119 -0.0006544492810496 + 309 17 Cd 3px -0.0022372535919371 0.0044363768947567 + 310 17 Cd 4py -0.0005219545083802 -0.0017133843188883 + 311 17 Cd 4pz -0.0000600679230306 0.0001704045030064 + 312 17 Cd 4px -0.0014089299435379 -0.0004457343032258 + 313 17 Cd 4d-2 -0.1182681165277501 -0.0665806577442334 + 314 17 Cd 4d-1 0.0137562497638371 0.0358444302626145 + 315 17 Cd 4d0 0.0459557048408173 0.1000353067164995 + 316 17 Cd 4d+1 0.0237812887762665 -0.0534167950479138 + 317 17 Cd 4d+2 -0.0624609805898494 -0.0107512822217796 + 318 17 Cd 5d-2 -0.0011099549457836 0.0024141385137566 + 319 17 Cd 5d-1 -0.0004633408824176 0.0017831483603647 + 320 17 Cd 5d0 0.0003694059758847 -0.0005195469262684 + 321 17 Cd 5d+1 -0.0006315426685685 0.0008737228178148 + 322 17 Cd 5d+2 0.0008799010738456 0.0007041982960228 + 323 17 Cd 5f-3 0.0004334575677974 0.0001918729426214 + 324 17 Cd 5f-2 0.0002250349489970 0.0004587415430162 + 325 17 Cd 5f-1 0.0001459080559090 0.0008980823458766 + 326 17 Cd 5f0 0.0002132528066947 -0.0002587682011754 + 327 17 Cd 5f+1 0.0004894071884587 0.0006756918251791 + 328 17 Cd 5f+2 0.0001727143124824 0.0000046318132659 + 329 17 Cd 5f+3 0.0000575239895921 -0.0001980103687704 + + 330 18 Cd 2s -0.0013002342972956 -0.0020843558967034 + 331 18 Cd 3s 0.0001925922071903 0.0002575883591041 + 332 18 Cd 3py -0.0012471895118048 0.0020900123729702 + 333 18 Cd 3pz 0.0026737537307313 0.0037653676471422 + 334 18 Cd 3px 0.0013364071881342 0.0008299868314676 + 335 18 Cd 4py 0.0001115985540699 0.0011315345382345 + 336 18 Cd 4pz -0.0001717553447150 -0.0012353689115433 + 337 18 Cd 4px -0.0000014179673289 -0.0001722584038188 + 338 18 Cd 4d-2 0.0409696837125369 -0.0049977942312080 + 339 18 Cd 4d-1 0.0334629442467976 0.0488788863641641 + 340 18 Cd 4d0 0.0095297908840794 -0.0681633326562736 + 341 18 Cd 4d+1 -0.0147841433192250 -0.0293199653053718 + 342 18 Cd 4d+2 0.0274330107633881 0.0066566489160067 + 343 18 Cd 5d-2 0.0008751397811521 0.0000999289381760 + 344 18 Cd 5d-1 0.0003133680649415 0.0019136999498468 + 345 18 Cd 5d0 0.0000220817089002 -0.0029125882957934 + 346 18 Cd 5d+1 -0.0007862913007565 -0.0012131894063654 + 347 18 Cd 5d+2 0.0004051122140607 -0.0006887424145516 + 348 18 Cd 5f-3 0.0002656820190435 -0.0000149563203589 + 349 18 Cd 5f-2 -0.0001561682935822 -0.0001518711353090 + 350 18 Cd 5f-1 -0.0001461843492935 -0.0003353313476265 + 351 18 Cd 5f0 0.0000635067852701 -0.0005563394033736 + 352 18 Cd 5f+1 -0.0003131480942538 -0.0002102519579741 + 353 18 Cd 5f+2 -0.0001208170768094 -0.0002733553022485 + 354 18 Cd 5f+3 -0.0001343776470936 0.0002856255825160 + + 355 19 Se 2s 0.0227062830155740 0.0867624608204420 + 356 19 Se 3s -0.0003363052996237 -0.0021147949132346 + 357 19 Se 3py -0.0093551681206663 -0.0151808015267321 + 358 19 Se 3pz -0.0009386443449751 -0.0234723866346981 + 359 19 Se 3px 0.0026361002631085 0.0095305986224139 + 360 19 Se 4py -0.0006345759160292 -0.0012488364512277 + 361 19 Se 4pz 0.0000984176698935 -0.0003449243310112 + 362 19 Se 4px -0.0003283861694865 0.0007794680489470 + 363 19 Se 4d-2 0.0002323189692067 0.0012957451674801 + 364 19 Se 4d-1 0.0000048671682606 -0.0034443533474190 + 365 19 Se 4d0 0.0008458158518007 -0.0020616217846855 + 366 19 Se 4d+1 0.0000279289549691 0.0020717195877405 + 367 19 Se 4d+2 0.0013476815544523 0.0006615396896313 + + 368 20 Se 2s -0.0233219414954801 0.0095328180751187 + 369 20 Se 3s 0.0004880240690205 -0.0002130297579846 + 370 20 Se 3py 0.0003682869220833 -0.0145345919159429 + 371 20 Se 3pz 0.0067652569831544 0.0047912054222449 + 372 20 Se 3px 0.0005811562987004 -0.0067866197030337 + 373 20 Se 4py -0.0018442143370967 -0.0005593001839130 + 374 20 Se 4pz -0.0009330830982442 -0.0010190581153950 + 375 20 Se 4px 0.0003227198732729 -0.0015720696585814 + 376 20 Se 4d-2 0.0016300952175013 -0.0005830807187235 + 377 20 Se 4d-1 -0.0005669412327165 -0.0000328654472614 + 378 20 Se 4d0 0.0020653538188219 0.0006237997870002 + 379 20 Se 4d+1 -0.0014398641200837 -0.0011140516859063 + 380 20 Se 4d+2 -0.0005240874519614 -0.0005156640941671 + + 381 21 Se 2s 0.0024832791040869 0.0466355941006543 + 382 21 Se 3s -0.0002201624643687 -0.0009249858652464 + 383 21 Se 3py -0.0044059680720115 0.0110439430296448 + 384 21 Se 3pz 0.0180341208215284 -0.0005590972054395 + 385 21 Se 3px -0.0100137431640319 -0.0089602838426924 + 386 21 Se 4py 0.0004867941976213 0.0008521105398580 + 387 21 Se 4pz -0.0004900941849554 0.0013391440665012 + 388 21 Se 4px 0.0003000966664415 0.0013779821578456 + 389 21 Se 4d-2 0.0001314161773699 0.0016605780636539 + 390 21 Se 4d-1 -0.0039499609296520 0.0017079675617746 + 391 21 Se 4d0 0.0022882574994163 -0.0003210699629535 + 392 21 Se 4d+1 0.0026425173697647 -0.0008579676742371 + 393 21 Se 4d+2 -0.0032479644542269 0.0018735620024255 + + 394 22 Cd 2s 0.0148097510180279 0.0181338640808827 + 395 22 Cd 3s -0.0002617348213852 0.0008145846820972 + 396 22 Cd 3py -0.0017277112180422 -0.0002339618794853 + 397 22 Cd 3pz 0.0075865976351206 -0.0043617512187363 + 398 22 Cd 3px 0.0076010020283048 0.0022306331645442 + 399 22 Cd 4py -0.0000379853979949 -0.0008208325580523 + 400 22 Cd 4pz 0.0015578931553340 0.0002373478720236 + 401 22 Cd 4px 0.0013994435616546 -0.0002123619571300 + 402 22 Cd 4d-2 -0.1875174298006607 0.0992614657654051 + 403 22 Cd 4d-1 0.0591008083538895 0.0126663536525191 + 404 22 Cd 4d0 -0.0910398660611934 0.0339648277550398 + 405 22 Cd 4d+1 0.0354037155736104 0.0818260058182706 + 406 22 Cd 4d+2 0.0502963924295695 0.0024519375072239 + 407 22 Cd 5d-2 0.0013073691606084 0.0014735462980622 + 408 22 Cd 5d-1 -0.0045445712189631 0.0020331560677769 + 409 22 Cd 5d0 -0.0027161720794443 -0.0001727879690217 + 410 22 Cd 5d+1 0.0016575745363730 -0.0005715260364557 + 411 22 Cd 5d+2 0.0036702774273182 -0.0007371013897677 + 412 22 Cd 5f-3 -0.0001629403901045 0.0007135691399682 + 413 22 Cd 5f-2 -0.0000687423084704 -0.0002126395419277 + 414 22 Cd 5f-1 -0.0001684734554614 0.0003289594083454 + 415 22 Cd 5f0 -0.0003550231962867 0.0010076840698561 + 416 22 Cd 5f+1 -0.0000997643593010 -0.0003020551439602 + 417 22 Cd 5f+2 0.0000308325430371 0.0004901053999615 + 418 22 Cd 5f+3 0.0012896287963391 0.0007213439037266 + + 419 23 Se 2s 0.0142509362547719 -0.0719484120252657 + 420 23 Se 3s -0.0002222883116576 0.0016968141416142 + 421 23 Se 3py -0.0007674364866264 -0.0202209404596658 + 422 23 Se 3pz -0.0068766031720976 0.0200498893992663 + 423 23 Se 3px 0.0019224923790998 -0.0031948168146035 + 424 23 Se 4py 0.0011150078366960 -0.0010865759007157 + 425 23 Se 4pz 0.0002673322325046 -0.0000126153601203 + 426 23 Se 4px 0.0002639942974530 -0.0000872625422494 + 427 23 Se 4d-2 -0.0002202054129670 -0.0006503544831147 + 428 23 Se 4d-1 -0.0003145136012455 -0.0045602603817568 + 429 23 Se 4d0 -0.0008950679395761 0.0017783934769219 + 430 23 Se 4d+1 -0.0006926869283174 0.0008936732909374 + 431 23 Se 4d+2 0.0016642828556965 -0.0029770875765227 + + 432 24 Se 2s 0.0071268543198513 -0.0416248442185084 + 433 24 Se 3s -0.0001690139981558 0.0009872219497174 + 434 24 Se 3py 0.0005691104679279 -0.0072232971023731 + 435 24 Se 3pz 0.0010134045280310 -0.0067161202518026 + 436 24 Se 3px -0.0027266310478776 0.0204472701991674 + 437 24 Se 4py 0.0000180951810345 -0.0002779326906153 + 438 24 Se 4pz 0.0000475817766381 -0.0011056173248916 + 439 24 Se 4px -0.0003505432287306 0.0005039597978450 + 440 24 Se 4d-2 0.0005558911374121 -0.0002695390797234 + 441 24 Se 4d-1 -0.0003394164966644 0.0011238102232697 + 442 24 Se 4d0 0.0008081229597853 -0.0000573517363182 + 443 24 Se 4d+1 0.0003339099600102 -0.0014530126716298 + 444 24 Se 4d+2 -0.0005160819271397 0.0036285896009904 + + 445 25 Cd 2s 0.0070043297199161 -0.0077446799895283 + 446 25 Cd 3s 0.0001720958846191 -0.0008494047667466 + 447 25 Cd 3py 0.0022080692027265 -0.0012730970848049 + 448 25 Cd 3pz 0.0024749576608657 0.0015043123370829 + 449 25 Cd 3px 0.0008575396802380 -0.0042722708700401 + 450 25 Cd 4py -0.0002647499298908 -0.0006144175750041 + 451 25 Cd 4pz 0.0001397645375813 0.0012595581206967 + 452 25 Cd 4px -0.0003304443230570 -0.0010371473275843 + 453 25 Cd 4d-2 -0.1150358610458103 0.3991668015609030 + 454 25 Cd 4d-1 -0.0399016618211330 -0.3528804927152947 + 455 25 Cd 4d0 -0.0824315710958755 0.0960506948847802 + 456 25 Cd 4d+1 0.0261057411858390 -0.0190466994665434 + 457 25 Cd 4d+2 0.0699239026422871 -0.0649350943020081 + 458 25 Cd 5d-2 0.0010394141096312 -0.0034474223177456 + 459 25 Cd 5d-1 -0.0015209075880850 -0.0005355300626394 + 460 25 Cd 5d0 0.0017042750633193 0.0012527558476760 + 461 25 Cd 5d+1 -0.0008265891296217 0.0017972937164808 + 462 25 Cd 5d+2 -0.0003919434304928 0.0009302084973385 + 463 25 Cd 5f-3 0.0003040864112439 -0.0007076238922117 + 464 25 Cd 5f-2 -0.0006230874004301 0.0002390312507497 + 465 25 Cd 5f-1 0.0005174510007292 -0.0000105237947464 + 466 25 Cd 5f0 0.0007220090887790 0.0001865917974781 + 467 25 Cd 5f+1 -0.0000056548143246 0.0004769491405925 + 468 25 Cd 5f+2 0.0001336913155210 0.0002256067492772 + 469 25 Cd 5f+3 -0.0000532645331050 0.0013425194482124 + + 470 26 Cd 2s -0.0051385932066683 0.0082475478338930 + 471 26 Cd 3s -0.0005112199380261 0.0004627214251435 + 472 26 Cd 3py 0.0014094865336165 -0.0051433214024193 + 473 26 Cd 3pz 0.0000713847965849 -0.0042700786782001 + 474 26 Cd 3px -0.0023420342586765 0.0026315663371900 + 475 26 Cd 4py 0.0002063134278157 0.0007807397622054 + 476 26 Cd 4pz 0.0006567773865643 0.0001533059333758 + 477 26 Cd 4px -0.0005979094651324 0.0010949797401332 + 478 26 Cd 4d-2 -0.0034656310980885 -0.0233337329037837 + 479 26 Cd 4d-1 -0.0144352576915363 0.0365472247216262 + 480 26 Cd 4d0 0.0007266976416237 0.0177202571425140 + 481 26 Cd 4d+1 -0.0379250768192117 -0.0291940413656100 + 482 26 Cd 4d+2 0.0103831505350416 -0.0273440597163664 + 483 26 Cd 5d-2 0.0001822468457337 -0.0017026434652522 + 484 26 Cd 5d-1 0.0001592106242267 0.0010182828627168 + 485 26 Cd 5d0 0.0007413628416187 -0.0006208048456058 + 486 26 Cd 5d+1 0.0001833196553807 -0.0020674013213982 + 487 26 Cd 5d+2 -0.0003422902356101 0.0003313565332127 + 488 26 Cd 5f-3 -0.0001895069958995 -0.0007337758064737 + 489 26 Cd 5f-2 0.0001261457563040 0.0006373074311667 + 490 26 Cd 5f-1 0.0000748771394412 0.0000419685196525 + 491 26 Cd 5f0 -0.0000843944423520 0.0004927074292378 + 492 26 Cd 5f+1 0.0001555655154655 0.0000198587612934 + 493 26 Cd 5f+2 -0.0000962234938239 -0.0002069897773931 + 494 26 Cd 5f+3 -0.0001043009585075 -0.0001588119284951 + + 55 56 + -0.4631739344003868 -0.4625077654783659 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0130747697733834 0.0026883084176254 + 2 1 Cd 3s -0.0020390123697556 -0.0006406566823173 + 3 1 Cd 3py 0.0075413345552491 0.0017480501754138 + 4 1 Cd 3pz -0.0013739959378598 -0.0010233272390494 + 5 1 Cd 3px -0.0033540649229373 -0.0008421256386007 + 6 1 Cd 4py 0.0000750932379217 0.0001069706840681 + 7 1 Cd 4pz -0.0001436564094651 -0.0001456895737201 + 8 1 Cd 4px 0.0016686795712759 0.0008720815850399 + 9 1 Cd 4d-2 0.1245394481080736 0.0369926553586275 + 10 1 Cd 4d-1 -0.0245556109592575 0.0128447101794178 + 11 1 Cd 4d0 0.0710811235242778 0.0167119156878334 + 12 1 Cd 4d+1 -0.0119142383297922 -0.0026156661171857 + 13 1 Cd 4d+2 0.0340583615555792 -0.0213148051328903 + 14 1 Cd 5d-2 -0.0026434213658416 -0.0014655152798375 + 15 1 Cd 5d-1 0.0009167828465668 -0.0001491379455374 + 16 1 Cd 5d0 -0.0010741017857677 0.0004598265642917 + 17 1 Cd 5d+1 0.0013154357289205 0.0008441641749447 + 18 1 Cd 5d+2 -0.0004257268850943 0.0002690890015002 + 19 1 Cd 5f-3 0.0004359534798486 0.0004138897013194 + 20 1 Cd 5f-2 -0.0000989529687701 -0.0004258745102754 + 21 1 Cd 5f-1 0.0005494283131370 0.0000735115533224 + 22 1 Cd 5f0 0.0002101585948499 0.0001137179166140 + 23 1 Cd 5f+1 0.0003652922272707 -0.0001633780702526 + 24 1 Cd 5f+2 -0.0002478759082319 -0.0002212490105321 + 25 1 Cd 5f+3 -0.0004042441449491 -0.0004600945430971 + + 26 2 Cd 2s -0.0038595230430873 0.0069119766730096 + 27 2 Cd 3s -0.0001904470736502 -0.0000519618051092 + 28 2 Cd 3py -0.0042540256581377 0.0009979527484498 + 29 2 Cd 3pz 0.0015033622953946 -0.0003335544131695 + 30 2 Cd 3px -0.0000900069029400 -0.0047589663326919 + 31 2 Cd 4py -0.0006734611994726 0.0001326746733071 + 32 2 Cd 4pz 0.0008245071965834 0.0004716233523232 + 33 2 Cd 4px 0.0000497115014927 -0.0012438468011199 + 34 2 Cd 4d-2 -0.4250102360128781 0.0597483843795806 + 35 2 Cd 4d-1 -0.0543023241472971 0.0777942605152841 + 36 2 Cd 4d0 -0.1516972596032215 0.1169566784101315 + 37 2 Cd 4d+1 -0.3557582523288035 0.0747662466924578 + 38 2 Cd 4d+2 0.0027113649194261 0.1848871041930611 + 39 2 Cd 5d-2 -0.0005454547362216 0.0012643257283724 + 40 2 Cd 5d-1 0.0019289684434538 -0.0009224220191239 + 41 2 Cd 5d0 -0.0004105247553189 -0.0009269398087726 + 42 2 Cd 5d+1 0.0007731591480751 -0.0000527405632904 + 43 2 Cd 5d+2 0.0005709244239042 0.0008120546343364 + 44 2 Cd 5f-3 0.0000124066883915 -0.0003376431153912 + 45 2 Cd 5f-2 -0.0006576321302201 0.0005047539483265 + 46 2 Cd 5f-1 0.0005285658620126 0.0000314718936120 + 47 2 Cd 5f0 -0.0002068935405633 0.0000112818766315 + 48 2 Cd 5f+1 -0.0002872737008789 0.0003322686989749 + 49 2 Cd 5f+2 0.0000097367163955 0.0002534998515635 + 50 2 Cd 5f+3 -0.0003377920773117 0.0002413230382027 + + 51 3 Cd 2s 0.0125207254997190 0.0063360889444739 + 52 3 Cd 3s 0.0001970746197853 -0.0006512325991874 + 53 3 Cd 3py 0.0027114417243645 0.0029561906352199 + 54 3 Cd 3pz 0.0013052875093411 -0.0038609596079281 + 55 3 Cd 3px -0.0032583413343108 -0.0008325757983261 + 56 3 Cd 4py -0.0008946701504625 -0.0004171022897742 + 57 3 Cd 4pz -0.0009318127487435 0.0007044661157311 + 58 3 Cd 4px -0.0002655238824355 0.0016437537024818 + 59 3 Cd 4d-2 0.0343262263824664 0.0887613188253425 + 60 3 Cd 4d-1 -0.0065378670405961 0.0147317696609387 + 61 3 Cd 4d0 0.0270884238732260 0.0245125625938422 + 62 3 Cd 4d+1 -0.0859682391717221 -0.0217630863319104 + 63 3 Cd 4d+2 0.0059242516979849 0.0357797465708041 + 64 3 Cd 5d-2 0.0006153909243778 -0.0010626224624561 + 65 3 Cd 5d-1 0.0018135641613025 0.0002806512952222 + 66 3 Cd 5d0 -0.0005373741680971 0.0001794843705091 + 67 3 Cd 5d+1 0.0022415141219381 -0.0004057563241679 + 68 3 Cd 5d+2 0.0013945626516229 -0.0008089294456094 + 69 3 Cd 5f-3 -0.0000564876276609 -0.0001710472134838 + 70 3 Cd 5f-2 0.0002149127191040 0.0005048709474993 + 71 3 Cd 5f-1 -0.0003950808719258 0.0001390601741837 + 72 3 Cd 5f0 -0.0007273656134956 -0.0004164439297542 + 73 3 Cd 5f+1 -0.0005584848462172 0.0006318219602167 + 74 3 Cd 5f+2 -0.0006734421267619 0.0000459375163376 + 75 3 Cd 5f+3 -0.0001575107169767 -0.0000799775189127 + + 76 4 Se 2s 0.0002427924074594 -0.0065188760165930 + 77 4 Se 3s -0.0004611977153261 -0.0000449187465314 + 78 4 Se 3py 0.0016409159353198 -0.0033047440653610 + 79 4 Se 3pz 0.0158328467119792 -0.0080009789646156 + 80 4 Se 3px 0.0021898158578261 0.0025583663870845 + 81 4 Se 4py 0.0007976581679384 -0.0002818363906142 + 82 4 Se 4pz 0.0036451279360185 -0.0001866418387775 + 83 4 Se 4px -0.0005708330882237 0.0006468117644747 + 84 4 Se 4d-2 -0.0022384927705728 0.0002508306802187 + 85 4 Se 4d-1 -0.0050265117434436 -0.0009696228631234 + 86 4 Se 4d0 -0.0012366821045629 0.0003964707187656 + 87 4 Se 4d+1 -0.0016973646162041 0.0015133781692531 + 88 4 Se 4d+2 -0.0011537884350171 -0.0008241378274018 + + 89 5 Se 2s 0.0056530380021213 -0.0044516663769893 + 90 5 Se 3s 0.0000949980459741 -0.0000328914535537 + 91 5 Se 3py -0.0061704242691079 0.0024632712836620 + 92 5 Se 3pz 0.0060978252136198 0.0012521072347501 + 93 5 Se 3px -0.0089584269263838 -0.0009223113490644 + 94 5 Se 4py -0.0008097022306271 0.0003880626444490 + 95 5 Se 4pz 0.0006656720448484 -0.0006888353939360 + 96 5 Se 4px -0.0017069083870948 -0.0006732551109928 + 97 5 Se 4d-2 -0.0016330405154473 -0.0007622170578177 + 98 5 Se 4d-1 0.0010531697951994 0.0004548895241924 + 99 5 Se 4d0 0.0008687114374294 0.0002290909022002 + 100 5 Se 4d+1 -0.0012024545017872 -0.0003904435233793 + 101 5 Se 4d+2 0.0017039932843304 -0.0002842831514991 + + 102 6 Se 2s -0.0509492855234620 0.0351495074744898 + 103 6 Se 3s 0.0007962156349768 -0.0008183250668152 + 104 6 Se 3py 0.0289746745025961 -0.0123527058013864 + 105 6 Se 3pz -0.0068153968746261 -0.0015181846318249 + 106 6 Se 3px -0.0048921328312025 0.0095091663241107 + 107 6 Se 4py 0.0019103174731649 -0.0007462874727058 + 108 6 Se 4pz 0.0005482429007584 -0.0002176334266925 + 109 6 Se 4px -0.0001140336285128 0.0006732506399633 + 110 6 Se 4d-2 -0.0032749102111046 0.0027351318027652 + 111 6 Se 4d-1 -0.0036311809648690 0.0011149236172309 + 112 6 Se 4d0 -0.0020552273806874 0.0014147390723650 + 113 6 Se 4d+1 0.0002857811144727 0.0001066395990100 + 114 6 Se 4d+2 -0.0029838844157363 0.0003405553127737 + + 115 7 Se 2s -0.0184173177845027 -0.0012619751959962 + 116 7 Se 3s 0.0007074539392923 -0.0001805623032329 + 117 7 Se 3py 0.0010820129126184 -0.0064162748694860 + 118 7 Se 3pz -0.0104096741596145 0.0038500870831922 + 119 7 Se 3px 0.0104983633659922 -0.0028973459582499 + 120 7 Se 4py 0.0003695542876924 0.0000521200173157 + 121 7 Se 4pz -0.0004369823393323 0.0002380599660172 + 122 7 Se 4px 0.0010997533536219 0.0000789865913192 + 123 7 Se 4d-2 -0.0016390549478978 0.0001138781953166 + 124 7 Se 4d-1 0.0004827507461371 0.0005963279117760 + 125 7 Se 4d0 0.0025048525520843 -0.0016188960400139 + 126 7 Se 4d+1 -0.0036396548414388 0.0003674066905564 + 127 7 Se 4d+2 0.0006902766390616 0.0006254120931748 + + 128 8 Cd 2s -0.0013334048229433 -0.0063220191837258 + 129 8 Cd 3s 0.0010830301118157 -0.0005889583693805 + 130 8 Cd 3py -0.0016452505580137 0.0023407131428487 + 131 8 Cd 3pz -0.0001763549245466 -0.0030403072323741 + 132 8 Cd 3px 0.0015518868994021 -0.0057841988296859 + 133 8 Cd 4py -0.0003950180660438 -0.0000266597885661 + 134 8 Cd 4pz -0.0018501406731977 -0.0014447752672114 + 135 8 Cd 4px 0.0003202120796428 -0.0014567365199191 + 136 8 Cd 4d-2 -0.2930883170188668 -0.1079141665483777 + 137 8 Cd 4d-1 0.1632707998324597 0.1523071116186246 + 138 8 Cd 4d0 0.0689636554715661 0.1123439223720662 + 139 8 Cd 4d+1 -0.2920679564972033 -0.0211299421517905 + 140 8 Cd 4d+2 -0.0161613794734032 0.0132533025641702 + 141 8 Cd 5d-2 0.0000226636405752 0.0009195731765706 + 142 8 Cd 5d-1 0.0009668255171912 0.0011819492996110 + 143 8 Cd 5d0 0.0007307323056211 0.0030607990846009 + 144 8 Cd 5d+1 -0.0014286249386389 0.0014719111471705 + 145 8 Cd 5d+2 0.0003430749869051 -0.0009341298552279 + 146 8 Cd 5f-3 -0.0007682313035619 0.0000463697619170 + 147 8 Cd 5f-2 -0.0002032368540090 0.0001718789374094 + 148 8 Cd 5f-1 -0.0010413249664929 0.0001814447192999 + 149 8 Cd 5f0 0.0004146311071867 -0.0004809909296348 + 150 8 Cd 5f+1 0.0009835924926832 0.0002525315491413 + 151 8 Cd 5f+2 0.0001034549420797 0.0005157476766635 + 152 8 Cd 5f+3 -0.0001150110651204 -0.0002553741437324 + + 153 9 Cd 2s 0.0072712008795185 -0.0015849046374147 + 154 9 Cd 3s 0.0001556941443974 0.0001969962244000 + 155 9 Cd 3py 0.0025810538241254 0.0002212150395081 + 156 9 Cd 3pz -0.0033276361018560 -0.0016555195997596 + 157 9 Cd 3px 0.0032422690832180 -0.0001894559547395 + 158 9 Cd 4py 0.0007066115376913 -0.0005211076631323 + 159 9 Cd 4pz 0.0000558451793798 -0.0003317051435586 + 160 9 Cd 4px -0.0004038998764720 -0.0001031676531421 + 161 9 Cd 4d-2 -0.0260909553517207 0.0163803222011226 + 162 9 Cd 4d-1 -0.0017752606401665 -0.0431000168219924 + 163 9 Cd 4d0 0.0133927094171683 0.0318747989103963 + 164 9 Cd 4d+1 -0.0458402808020417 0.0143712202732749 + 165 9 Cd 4d+2 0.0039738314135365 -0.0351702588642193 + 166 9 Cd 5d-2 -0.0000187816547587 -0.0001606905187828 + 167 9 Cd 5d-1 -0.0013565961139830 0.0001260918773255 + 168 9 Cd 5d0 -0.0002004753157609 0.0009685087443025 + 169 9 Cd 5d+1 -0.0007325256755668 0.0013324578735672 + 170 9 Cd 5d+2 -0.0012246559684676 -0.0004047216896336 + 171 9 Cd 5f-3 -0.0001587786106988 0.0000659067792137 + 172 9 Cd 5f-2 -0.0000022858443440 0.0000928809567789 + 173 9 Cd 5f-1 0.0001369261428218 0.0000051770110099 + 174 9 Cd 5f0 0.0005398864634342 0.0000270328810579 + 175 9 Cd 5f+1 0.0000512506973685 -0.0002818258168220 + 176 9 Cd 5f+2 0.0006329193933719 -0.0003495023836565 + 177 9 Cd 5f+3 -0.0002921091355035 0.0002065382040146 + + 178 10 Se 2s 0.0219968256672304 0.0262729783990357 + 179 10 Se 3s -0.0004762277807812 -0.0004187036215686 + 180 10 Se 3py -0.0052808414296155 -0.0038826581302356 + 181 10 Se 3pz 0.0088966443017233 0.0051222857251027 + 182 10 Se 3px -0.0013889333640432 -0.0053169566434728 + 183 10 Se 4py -0.0010062671774268 -0.0001548891224754 + 184 10 Se 4pz 0.0001960277008025 0.0008093696312409 + 185 10 Se 4px -0.0000656195880091 0.0001944947499509 + 186 10 Se 4d-2 -0.0002272424190190 -0.0000177282926295 + 187 10 Se 4d-1 0.0014065147291632 0.0009486463859322 + 188 10 Se 4d0 -0.0009193313294173 -0.0002045104440991 + 189 10 Se 4d+1 0.0009075472519716 0.0005371172558459 + 190 10 Se 4d+2 0.0004669032699207 0.0003183604450326 + + 191 11 Se 2s -0.0140652586796520 0.0049018990479941 + 192 11 Se 3s 0.0001561623219794 0.0000107110590438 + 193 11 Se 3py 0.0063552578740322 0.0021474513705066 + 194 11 Se 3pz 0.0038366372288002 0.0003334170301844 + 195 11 Se 3px -0.0050124315353934 0.0029423165653470 + 196 11 Se 4py 0.0000206011830477 -0.0002843931656848 + 197 11 Se 4pz 0.0001873279926840 0.0007532146890429 + 198 11 Se 4px 0.0003235052630323 0.0008417964053737 + 199 11 Se 4d-2 -0.0011414565714095 -0.0000856818208306 + 200 11 Se 4d-1 -0.0000272239366450 -0.0006715021872157 + 201 11 Se 4d0 -0.0009256886192628 -0.0018851477600989 + 202 11 Se 4d+1 -0.0000454385638095 0.0005721533767667 + 203 11 Se 4d+2 0.0001247932187782 -0.0007262929100622 + + 204 12 Cd 2s 0.0070776511838021 -0.0003216210429846 + 205 12 Cd 3s 0.0003004130563089 0.0005209381367210 + 206 12 Cd 3py 0.0028172806452548 -0.0016523609752463 + 207 12 Cd 3pz -0.0022194743885168 -0.0004806275912056 + 208 12 Cd 3px -0.0004754989983642 0.0018721101042842 + 209 12 Cd 4py -0.0002026879422109 -0.0004075400702688 + 210 12 Cd 4pz -0.0001044806632815 0.0004238193071424 + 211 12 Cd 4px 0.0000384470965118 -0.0000155081409946 + 212 12 Cd 4d-2 -0.0883655166666738 0.0818364416755255 + 213 12 Cd 4d-1 0.0320353561200867 0.1714181186933863 + 214 12 Cd 4d0 0.0188599662672856 -0.0390901077276546 + 215 12 Cd 4d+1 -0.0077971721850369 -0.1445163246348561 + 216 12 Cd 4d+2 -0.0807875130687028 0.0406048466578819 + 217 12 Cd 5d-2 -0.0013340774127978 0.0000334760906679 + 218 12 Cd 5d-1 -0.0006129029163481 0.0021706503087031 + 219 12 Cd 5d0 0.0001215057641071 0.0000413581472085 + 220 12 Cd 5d+1 0.0003397729161932 -0.0012223773933352 + 221 12 Cd 5d+2 -0.0024882102358103 -0.0003738603484501 + 222 12 Cd 5f-3 -0.0006987478700156 -0.0000249270069490 + 223 12 Cd 5f-2 0.0003001251099934 -0.0001194728941695 + 224 12 Cd 5f-1 0.0001491162474847 -0.0006311212878259 + 225 12 Cd 5f0 -0.0004069595799311 0.0002011394689701 + 226 12 Cd 5f+1 0.0001640148738870 0.0003894887313164 + 227 12 Cd 5f+2 0.0005157066815735 -0.0002207760543183 + 228 12 Cd 5f+3 -0.0000857263521448 -0.0003800865152759 + + 229 13 Cd 2s 0.0130169979003729 0.0058825015420758 + 230 13 Cd 3s -0.0007141210865842 -0.0001972038726280 + 231 13 Cd 3py -0.0098705278075652 -0.0027118743012810 + 232 13 Cd 3pz -0.0001975896763429 -0.0005565221446915 + 233 13 Cd 3px 0.0047651610237540 0.0013059837567930 + 234 13 Cd 4py -0.0010480242864680 -0.0001300736101027 + 235 13 Cd 4pz -0.0009168734013561 0.0007885833137052 + 236 13 Cd 4px 0.0001613154856239 -0.0007132842657248 + 237 13 Cd 4d-2 0.1795157173229104 0.0888478021555416 + 238 13 Cd 4d-1 0.0507505210787594 -0.0761278587072508 + 239 13 Cd 4d0 0.1590138122143816 -0.0561166301108300 + 240 13 Cd 4d+1 0.0045004439643380 -0.0105787920964351 + 241 13 Cd 4d+2 0.1051586553004231 0.1291290583454011 + 242 13 Cd 5d-2 0.0000437914685297 0.0002600540614500 + 243 13 Cd 5d-1 -0.0022908400027241 -0.0002303367522833 + 244 13 Cd 5d0 -0.0011076123964602 -0.0012209513564973 + 245 13 Cd 5d+1 0.0012989523747230 0.0007534531992301 + 246 13 Cd 5d+2 -0.0001987565929137 0.0005988153681499 + 247 13 Cd 5f-3 0.0003524596491051 0.0000472671925098 + 248 13 Cd 5f-2 0.0003882399253481 0.0000059457180782 + 249 13 Cd 5f-1 -0.0004818704976780 0.0005853891286912 + 250 13 Cd 5f0 0.0000017086523681 -0.0002583422171294 + 251 13 Cd 5f+1 0.0003363411674815 0.0006310098742493 + 252 13 Cd 5f+2 0.0006239888310470 0.0001971621755461 + 253 13 Cd 5f+3 -0.0002341887227791 -0.0005061921132074 + + 254 14 Cd 2s -0.0084512085893953 0.0051105722264251 + 255 14 Cd 3s 0.0012150005364171 0.0001362655423521 + 256 14 Cd 3py 0.0017381719813229 -0.0047469198607070 + 257 14 Cd 3pz 0.0011880050896173 0.0016879400494790 + 258 14 Cd 3px 0.0002148663458199 0.0020430151267751 + 259 14 Cd 4py -0.0002028236476206 -0.0000303163570320 + 260 14 Cd 4pz -0.0008522214381769 -0.0000714977663386 + 261 14 Cd 4px 0.0009675053182748 -0.0001984195260773 + 262 14 Cd 4d-2 0.0530679009597595 -0.0243467083716918 + 263 14 Cd 4d-1 0.0081667766777911 -0.0080323495047793 + 264 14 Cd 4d0 -0.0102949547496718 -0.0365822957984872 + 265 14 Cd 4d+1 -0.0166666222730729 -0.0153166579000150 + 266 14 Cd 4d+2 0.0140571088891875 -0.0202916668747768 + 267 14 Cd 5d-2 0.0001864555749957 -0.0007797261488448 + 268 14 Cd 5d-1 0.0008386599927928 -0.0002960326493307 + 269 14 Cd 5d0 -0.0001032827591049 -0.0012909809769204 + 270 14 Cd 5d+1 -0.0006653948235100 -0.0003752771088684 + 271 14 Cd 5d+2 0.0010838797916457 -0.0016327722618895 + 272 14 Cd 5f-3 -0.0006273050370878 0.0004411359561972 + 273 14 Cd 5f-2 -0.0001124964899674 0.0001989472547127 + 274 14 Cd 5f-1 -0.0000270320897610 0.0003401953778485 + 275 14 Cd 5f0 -0.0000417929573515 -0.0000799283736931 + 276 14 Cd 5f+1 0.0000210302491192 0.0000352530363993 + 277 14 Cd 5f+2 0.0002961464117441 -0.0000390473180019 + 278 14 Cd 5f+3 0.0003419889574017 -0.0001660840423554 + + 279 15 Se 2s 0.0282966429593547 0.0250629886947631 + 280 15 Se 3s -0.0005978019425148 -0.0002766618928565 + 281 15 Se 3py 0.0066807250987054 0.0022090587446988 + 282 15 Se 3pz 0.0064959492234220 0.0038650435949247 + 283 15 Se 3px -0.0100598509098255 -0.0093404389077336 + 284 15 Se 4py 0.0004929370829651 -0.0002232505963491 + 285 15 Se 4pz 0.0015894257209210 -0.0008335771850515 + 286 15 Se 4px 0.0005529751446248 -0.0005757778072415 + 287 15 Se 4d-2 0.0021439585261846 0.0017899464234998 + 288 15 Se 4d-1 -0.0005864901134220 -0.0010267414952942 + 289 15 Se 4d0 0.0013498494188555 -0.0002136253407339 + 290 15 Se 4d+1 0.0036663063025619 -0.0002348577492834 + 291 15 Se 4d+2 -0.0008174785309039 -0.0018684681871364 + + 292 16 Se 2s -0.0074574203760659 -0.0099343372959168 + 293 16 Se 3s -0.0000566808208379 0.0001098138963953 + 294 16 Se 3py 0.0087543753402624 -0.0163060299411911 + 295 16 Se 3pz -0.0061224139825872 -0.0104971776480769 + 296 16 Se 3px -0.0099860755881346 -0.0083341459033317 + 297 16 Se 4py 0.0004359314209788 -0.0011676694747642 + 298 16 Se 4pz -0.0015244566327531 -0.0005713618437155 + 299 16 Se 4px -0.0013887683793804 -0.0009840690497543 + 300 16 Se 4d-2 -0.0008961174529157 0.0032894558962655 + 301 16 Se 4d-1 0.0021249853494840 -0.0014521927301802 + 302 16 Se 4d0 -0.0021156918637470 -0.0038202128836240 + 303 16 Se 4d+1 -0.0006090336101022 0.0004003527849089 + 304 16 Se 4d+2 0.0013451437617457 -0.0001676645512274 + + 305 17 Cd 2s -0.0063011555799621 -0.0018686357054433 + 306 17 Cd 3s 0.0006450594057026 -0.0000026401264583 + 307 17 Cd 3py -0.0008883209956946 0.0003809180422988 + 308 17 Cd 3pz -0.0007422704540510 0.0011496718801026 + 309 17 Cd 3px 0.0018269774183487 0.0030201531642510 + 310 17 Cd 4py -0.0014471084408391 0.0006681122732868 + 311 17 Cd 4pz -0.0001535850546410 -0.0009376960155083 + 312 17 Cd 4px -0.0005726628766923 0.0016535678512287 + 313 17 Cd 4d-2 0.0123541472581631 0.1035346103971933 + 314 17 Cd 4d-1 -0.0336850027507668 0.0709293832178861 + 315 17 Cd 4d0 -0.0484961227969678 -0.1211011833225377 + 316 17 Cd 4d+1 -0.0479241078132157 0.0635975617074792 + 317 17 Cd 4d+2 -0.1172857654343693 0.0437962991011364 + 318 17 Cd 5d-2 -0.0004069068046987 0.0002354686483884 + 319 17 Cd 5d-1 -0.0001829898810839 0.0004940590740079 + 320 17 Cd 5d0 -0.0002319671187799 0.0012504490103421 + 321 17 Cd 5d+1 0.0003038540837275 0.0009314512598326 + 322 17 Cd 5d+2 -0.0001052420180672 -0.0015097515352959 + 323 17 Cd 5f-3 -0.0000014700619032 0.0001836543638163 + 324 17 Cd 5f-2 -0.0003338887395251 -0.0006645474935929 + 325 17 Cd 5f-1 0.0002113934977978 0.0001394006787442 + 326 17 Cd 5f0 0.0001589782462866 0.0010949735006973 + 327 17 Cd 5f+1 -0.0000011943153483 -0.0006256863318826 + 328 17 Cd 5f+2 0.0003536396855020 -0.0007803839081608 + 329 17 Cd 5f+3 0.0005254363081729 0.0002133477885958 + + 330 18 Cd 2s -0.0005927031975294 0.0106922559393436 + 331 18 Cd 3s -0.0007264778052075 -0.0014106606115673 + 332 18 Cd 3py -0.0014964527706238 0.0051116022054614 + 333 18 Cd 3pz 0.0001292010079310 -0.0029195359240449 + 334 18 Cd 3px -0.0016143143263583 -0.0037021124553178 + 335 18 Cd 4py -0.0003056686921896 -0.0005393730558659 + 336 18 Cd 4pz -0.0012410943503412 -0.0010056294185391 + 337 18 Cd 4px -0.0004603081325273 0.0000800438374102 + 338 18 Cd 4d-2 -0.0165122881340789 -0.1428351109893176 + 339 18 Cd 4d-1 0.0308128143573066 -0.0600382462483114 + 340 18 Cd 4d0 0.0050953987705984 -0.0392765366449197 + 341 18 Cd 4d+1 0.0164744817660515 0.0320910115001556 + 342 18 Cd 4d+2 0.0091304254375175 -0.0655012601597163 + 343 18 Cd 5d-2 -0.0011298394923372 -0.0018493130251853 + 344 18 Cd 5d-1 -0.0009140936036155 -0.0005368408359283 + 345 18 Cd 5d0 0.0002350227329816 -0.0011904191176120 + 346 18 Cd 5d+1 -0.0001224269579783 0.0008297496402120 + 347 18 Cd 5d+2 0.0004388940239918 -0.0011282311511987 + 348 18 Cd 5f-3 0.0000492880098245 -0.0004699898365834 + 349 18 Cd 5f-2 -0.0001343479979667 0.0003615766814528 + 350 18 Cd 5f-1 0.0000681736155984 -0.0000226216966186 + 351 18 Cd 5f0 -0.0001220224980591 -0.0002980339519392 + 352 18 Cd 5f+1 -0.0000206389971009 -0.0000740833440747 + 353 18 Cd 5f+2 0.0001911501527648 -0.0000117705159886 + 354 18 Cd 5f+3 0.0002016945695472 0.0005432757429066 + + 355 19 Se 2s 0.0230712780663034 -0.0099761790821389 + 356 19 Se 3s -0.0006245699540825 -0.0003454443825978 + 357 19 Se 3py -0.0037915807926129 0.0093833430220059 + 358 19 Se 3pz -0.0118024333933411 -0.0155006210727142 + 359 19 Se 3px 0.0218559686737888 -0.0060939603776451 + 360 19 Se 4py 0.0006562292520130 0.0007644524381945 + 361 19 Se 4pz -0.0000951183959854 -0.0009294033742183 + 362 19 Se 4px 0.0006164057268361 0.0007617984523000 + 363 19 Se 4d-2 0.0042750733958718 -0.0009480273323113 + 364 19 Se 4d-1 -0.0019928423071633 -0.0033330923659978 + 365 19 Se 4d0 -0.0015560204128620 -0.0041449376571495 + 366 19 Se 4d+1 0.0026684194994727 -0.0004579463827589 + 367 19 Se 4d+2 -0.0003366465707571 -0.0000238186009582 + + 368 20 Se 2s -0.0255335083336655 -0.0677701494443729 + 369 20 Se 3s -0.0001883948092303 0.0013225021700675 + 370 20 Se 3py 0.0121095385792271 0.0115165255592976 + 371 20 Se 3pz 0.0099816416606047 0.0049661582097816 + 372 20 Se 3px -0.0255945522247613 -0.0308759907977461 + 373 20 Se 4py 0.0009216543375847 0.0017473294339575 + 374 20 Se 4pz -0.0007592104526339 0.0015396650640221 + 375 20 Se 4px 0.0013307752025127 0.0019464246657600 + 376 20 Se 4d-2 -0.0013966397761337 0.0026841427586651 + 377 20 Se 4d-1 0.0044448820064524 0.0020057259558055 + 378 20 Se 4d0 0.0046029579796901 0.0017907024600382 + 379 20 Se 4d+1 -0.0010335554836679 0.0015965420603646 + 380 20 Se 4d+2 -0.0003135210508199 0.0018473857777926 + + 381 21 Se 2s 0.0138904488761744 0.0003664065870178 + 382 21 Se 3s -0.0000793151934465 -0.0000237005606897 + 383 21 Se 3py -0.0003754313579100 0.0030926572707790 + 384 21 Se 3pz 0.0111284077572621 -0.0016968025289757 + 385 21 Se 3px -0.0014530307851374 0.0053414775185308 + 386 21 Se 4py -0.0000424469085968 0.0009774758850733 + 387 21 Se 4pz -0.0003968741878965 0.0001467507059554 + 388 21 Se 4px -0.0007295890948516 0.0001947296228165 + 389 21 Se 4d-2 0.0000027051005714 -0.0002264175127279 + 390 21 Se 4d-1 0.0024089660236674 -0.0002523890802600 + 391 21 Se 4d0 0.0012249964270700 0.0002154471432586 + 392 21 Se 4d+1 0.0011221503547083 -0.0016853198971469 + 393 21 Se 4d+2 0.0004225827322322 0.0001998779223318 + + 394 22 Cd 2s -0.0071805488359377 -0.0100056567383304 + 395 22 Cd 3s -0.0008213243133180 0.0009737998437828 + 396 22 Cd 3py 0.0034736613915525 -0.0022509171274553 + 397 22 Cd 3pz 0.0016771151049580 -0.0056514280187095 + 398 22 Cd 3px -0.0012561288887517 -0.0087788373488195 + 399 22 Cd 4py 0.0015908871993595 -0.0003063597048746 + 400 22 Cd 4pz 0.0003897798683108 -0.0020816312512122 + 401 22 Cd 4px 0.0006087217492817 -0.0008802608638264 + 402 22 Cd 4d-2 0.2100152838932300 -0.0186997893184193 + 403 22 Cd 4d-1 -0.3222935473643089 0.0918972346859312 + 404 22 Cd 4d0 0.0519629394621545 0.1295771086941223 + 405 22 Cd 4d+1 -0.0373110588530036 0.1521909116275753 + 406 22 Cd 4d+2 -0.0432021253776162 0.0777942202437932 + 407 22 Cd 5d-2 -0.0009786121951836 0.0010977978245989 + 408 22 Cd 5d-1 0.0014066727599853 0.0020796000036926 + 409 22 Cd 5d0 0.0012882113778979 0.0022568252776515 + 410 22 Cd 5d+1 0.0006750991545710 -0.0009023995790208 + 411 22 Cd 5d+2 -0.0007864675031807 -0.0011171573869535 + 412 22 Cd 5f-3 -0.0002111378437765 -0.0003718893093248 + 413 22 Cd 5f-2 0.0005678475033549 -0.0000177295669505 + 414 22 Cd 5f-1 -0.0007941131361423 -0.0004764963471028 + 415 22 Cd 5f0 0.0003089487962826 -0.0004711408114387 + 416 22 Cd 5f+1 0.0005695460226374 0.0000820520282032 + 417 22 Cd 5f+2 0.0002902625913915 0.0003026516317609 + 418 22 Cd 5f+3 -0.0016365229262954 0.0002693218840642 + + 419 23 Se 2s 0.0318171289053926 0.0022742044791421 + 420 23 Se 3s -0.0008451297549567 -0.0000494519280139 + 421 23 Se 3py 0.0045287641283054 0.0167338466987430 + 422 23 Se 3pz -0.0095769000260003 -0.0014109029203668 + 423 23 Se 3px -0.0008815898551319 0.0072078581312354 + 424 23 Se 4py 0.0000314779431268 -0.0001928149062202 + 425 23 Se 4pz -0.0006827731322589 -0.0000881121870173 + 426 23 Se 4px 0.0000739221910475 0.0004221403274968 + 427 23 Se 4d-2 0.0005903454974492 -0.0012694027028625 + 428 23 Se 4d-1 -0.0003230172247223 0.0057833729324812 + 429 23 Se 4d0 -0.0020770342728887 -0.0000814772127815 + 430 23 Se 4d+1 -0.0006223477205365 0.0022135752275600 + 431 23 Se 4d+2 0.0001846843876635 -0.0010933732210576 + + 432 24 Se 2s 0.0014823728879863 0.0210097365730714 + 433 24 Se 3s -0.0001417370604227 -0.0007033109363123 + 434 24 Se 3py -0.0026782031108240 -0.0062824596411089 + 435 24 Se 3pz -0.0104503985430614 0.0027996427463959 + 436 24 Se 3px -0.0019075388844453 -0.0052609609141004 + 437 24 Se 4py -0.0005179797136909 -0.0003467226271906 + 438 24 Se 4pz 0.0002387966191477 -0.0002436592756570 + 439 24 Se 4px -0.0000713610296756 0.0001426084651230 + 440 24 Se 4d-2 -0.0004314877406856 -0.0008648093766714 + 441 24 Se 4d-1 0.0002638967730391 0.0010076977108138 + 442 24 Se 4d0 0.0019607285492128 0.0004455296598642 + 443 24 Se 4d+1 -0.0015410252883330 0.0003203458988333 + 444 24 Se 4d+2 -0.0002889376899719 -0.0002681606858105 + + 445 25 Cd 2s 0.0008660783136671 0.0111227401218720 + 446 25 Cd 3s 0.0001574794433662 -0.0004478967595425 + 447 25 Cd 3py 0.0038078604061854 -0.0031481601199395 + 448 25 Cd 3pz 0.0013775953528529 -0.0000137044331927 + 449 25 Cd 3px -0.0019521418068754 0.0077651540900727 + 450 25 Cd 4py 0.0019397226074397 -0.0009048870129782 + 451 25 Cd 4pz 0.0007881303217096 0.0006841971386040 + 452 25 Cd 4px -0.0009344790900897 0.0016109601405488 + 453 25 Cd 4d-2 0.1947289855415060 0.5401419222757707 + 454 25 Cd 4d-1 -0.1305770211275840 0.3733995023615906 + 455 25 Cd 4d0 -0.1865708318772014 0.4068804761316133 + 456 25 Cd 4d+1 0.1447676618333660 0.2013715013640734 + 457 25 Cd 4d+2 0.1911049504196054 0.0447910871635016 + 458 25 Cd 5d-2 0.0005240770399093 -0.0011580178404080 + 459 25 Cd 5d-1 0.0006456106308723 0.0008938538038489 + 460 25 Cd 5d0 -0.0004108689715556 -0.0014191881643111 + 461 25 Cd 5d+1 -0.0004475039380516 0.0016373092799276 + 462 25 Cd 5d+2 -0.0010312090514354 0.0026816851919423 + 463 25 Cd 5f-3 -0.0002832966691068 -0.0000661633625773 + 464 25 Cd 5f-2 -0.0002591387770594 0.0006234237817946 + 465 25 Cd 5f-1 0.0002179598210864 -0.0008375568661543 + 466 25 Cd 5f0 -0.0005565940321522 -0.0001015162607613 + 467 25 Cd 5f+1 0.0001860769429592 0.0001008214952027 + 468 25 Cd 5f+2 -0.0001822275972243 0.0002385194330731 + 469 25 Cd 5f+3 -0.0000385026897800 0.0005453292437522 + + 470 26 Cd 2s 0.0002345010854974 0.0044181437760045 + 471 26 Cd 3s -0.0007277193337482 0.0002025897064440 + 472 26 Cd 3py -0.0023262989140010 -0.0007286220120536 + 473 26 Cd 3pz -0.0005552605306526 -0.0031638706553880 + 474 26 Cd 3px -0.0003280719246281 0.0020235518241934 + 475 26 Cd 4py -0.0000888579162737 -0.0008184286736209 + 476 26 Cd 4pz -0.0001206189900636 -0.0005902873024772 + 477 26 Cd 4px -0.0003421685126620 -0.0000820513936833 + 478 26 Cd 4d-2 -0.0311634051571648 0.0053391711042037 + 479 26 Cd 4d-1 0.0055934763562811 0.0033254424826059 + 480 26 Cd 4d0 -0.0008126529853475 0.0165989626668652 + 481 26 Cd 4d+1 -0.0013483614808209 -0.0129825561161123 + 482 26 Cd 4d+2 -0.0031370690122175 0.0101766076779128 + 483 26 Cd 5d-2 -0.0009494036376688 -0.0005526759054386 + 484 26 Cd 5d-1 0.0001234178413379 0.0008936157074427 + 485 26 Cd 5d0 0.0001154597182222 0.0007673697777768 + 486 26 Cd 5d+1 -0.0003849422133970 -0.0017986949597098 + 487 26 Cd 5d+2 0.0001849145804527 0.0001711880714932 + 488 26 Cd 5f-3 -0.0000759165565800 0.0001077196593897 + 489 26 Cd 5f-2 -0.0000542648083853 0.0001564610651591 + 490 26 Cd 5f-1 0.0001597961933677 0.0000711452093215 + 491 26 Cd 5f0 0.0001176774159786 0.0003038014545227 + 492 26 Cd 5f+1 -0.0000020167245004 0.0005116282034108 + 493 26 Cd 5f+2 -0.0000982266304719 -0.0001425420239537 + 494 26 Cd 5f+3 0.0001053854824810 0.0001544105117153 + + 57 58 + -0.4618122062190959 -0.4612549469130714 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0084225677872100 0.0034903878790242 + 2 1 Cd 3s 0.0003555818832476 0.0004887102320534 + 3 1 Cd 3py -0.0055615422252093 0.0025900227912244 + 4 1 Cd 3pz 0.0001052181486947 0.0012392524489508 + 5 1 Cd 3px 0.0055155405886540 -0.0020962745799942 + 6 1 Cd 4py -0.0009176459092538 0.0008960227476683 + 7 1 Cd 4pz -0.0013599974719110 0.0001898192865516 + 8 1 Cd 4px -0.0009904477267849 -0.0001676021820878 + 9 1 Cd 4d-2 -0.1448401332039003 0.0392740386414576 + 10 1 Cd 4d-1 -0.0073994456005288 -0.0070845045808204 + 11 1 Cd 4d0 -0.0685528487078938 0.0031061733208760 + 12 1 Cd 4d+1 0.0186421072701257 0.0226260757283996 + 13 1 Cd 4d+2 0.0362760528981991 0.0119628526894726 + 14 1 Cd 5d-2 0.0031684143405193 -0.0016731493196506 + 15 1 Cd 5d-1 0.0003024437588596 0.0003475721817146 + 16 1 Cd 5d0 0.0011136971407074 -0.0006083887465385 + 17 1 Cd 5d+1 0.0006907896140716 -0.0005077300415662 + 18 1 Cd 5d+2 -0.0000501121893328 0.0001088632722703 + 19 1 Cd 5f-3 -0.0004360051448451 0.0003631775087256 + 20 1 Cd 5f-2 -0.0007299863572341 0.0003836862712995 + 21 1 Cd 5f-1 0.0001115588325620 0.0000711527741325 + 22 1 Cd 5f0 0.0001753876336067 -0.0003287808001639 + 23 1 Cd 5f+1 -0.0003408348462251 0.0003127005019761 + 24 1 Cd 5f+2 0.0001279808959339 0.0000545587446801 + 25 1 Cd 5f+3 -0.0001956895079572 0.0001428672255965 + + 26 2 Cd 2s 0.0074048811978785 0.0034879187777909 + 27 2 Cd 3s 0.0008652960890219 0.0010052081863081 + 28 2 Cd 3py -0.0015264098988126 -0.0039580309082648 + 29 2 Cd 3pz -0.0062316826490273 0.0027378584882678 + 30 2 Cd 3px 0.0055810092332360 -0.0062616681668322 + 31 2 Cd 4py -0.0006511869178498 -0.0019006368721150 + 32 2 Cd 4pz -0.0016952906370402 0.0015867587057516 + 33 2 Cd 4px 0.0027265513701468 -0.0014596990735974 + 34 2 Cd 4d-2 -0.2120342491657295 -0.2102386789374995 + 35 2 Cd 4d-1 -0.3762877093536684 -0.0596872731695372 + 36 2 Cd 4d0 -0.1247029384592675 -0.1858758863039736 + 37 2 Cd 4d+1 -0.2101828483759233 0.0142368521256388 + 38 2 Cd 4d+2 -0.0148346380129893 0.3090013467540854 + 39 2 Cd 5d-2 0.0003767891653630 0.0009270916130673 + 40 2 Cd 5d-1 -0.0005861905121337 0.0011332013359476 + 41 2 Cd 5d0 0.0025491815998028 -0.0033687959484474 + 42 2 Cd 5d+1 -0.0021062269222978 0.0012188573852890 + 43 2 Cd 5d+2 -0.0003490404895366 0.0011753178378317 + 44 2 Cd 5f-3 0.0004129657298627 -0.0000834751417426 + 45 2 Cd 5f-2 -0.0006503275360343 -0.0005019469098022 + 46 2 Cd 5f-1 -0.0001973622078300 -0.0001269644613558 + 47 2 Cd 5f0 -0.0012465531042037 0.0001115287367075 + 48 2 Cd 5f+1 0.0003319067159635 0.0000807296819271 + 49 2 Cd 5f+2 -0.0000588030078329 -0.0001558943126882 + 50 2 Cd 5f+3 -0.0007870279087279 -0.0002290274016112 + + 51 3 Cd 2s 0.0144128922814089 -0.0012411785010926 + 52 3 Cd 3s -0.0007972921375229 0.0001777577179103 + 53 3 Cd 3py 0.0043251590956638 -0.0009966190768481 + 54 3 Cd 3pz 0.0012168472428053 0.0004600622185591 + 55 3 Cd 3px -0.0011045148662371 0.0028242956393547 + 56 3 Cd 4py 0.0000576033792429 0.0014504782805454 + 57 3 Cd 4pz -0.0006068585460968 -0.0014872351220770 + 58 3 Cd 4px -0.0004224344339893 -0.0008445536564483 + 59 3 Cd 4d-2 -0.0234805101978806 -0.1508882099577824 + 60 3 Cd 4d-1 -0.0243540947764201 -0.0594577531988797 + 61 3 Cd 4d0 0.0193929110230201 -0.0291925930172373 + 62 3 Cd 4d+1 -0.0206973391896455 -0.0052618347970488 + 63 3 Cd 4d+2 -0.0143358098915834 0.0108033801467352 + 64 3 Cd 5d-2 0.0003725095822036 0.0003112491570487 + 65 3 Cd 5d-1 0.0015480278280420 0.0010045861940455 + 66 3 Cd 5d0 -0.0006589962900727 -0.0011620353131223 + 67 3 Cd 5d+1 0.0000973044008585 0.0007801920245487 + 68 3 Cd 5d+2 -0.0007682701891630 -0.0007213431507993 + 69 3 Cd 5f-3 -0.0002748516580401 0.0004980671524031 + 70 3 Cd 5f-2 -0.0012759028446381 -0.0001430751545472 + 71 3 Cd 5f-1 0.0004319150468582 -0.0005045106437999 + 72 3 Cd 5f0 0.0006921807834624 0.0001790110314225 + 73 3 Cd 5f+1 0.0000323742788423 0.0000859767530845 + 74 3 Cd 5f+2 0.0001483779318331 -0.0003427440796346 + 75 3 Cd 5f+3 -0.0003122717345130 0.0001693259952979 + + 76 4 Se 2s -0.0399163963715000 0.0171070002049606 + 77 4 Se 3s 0.0004274401407807 -0.0002379494400321 + 78 4 Se 3py -0.0079778081698974 0.0064330427928254 + 79 4 Se 3pz 0.0111066802920673 -0.0038071739174437 + 80 4 Se 3px -0.0082500528724442 0.0094141192691330 + 81 4 Se 4py -0.0005265310592899 0.0006170973519437 + 82 4 Se 4pz -0.0007145635664176 0.0006076632326041 + 83 4 Se 4px 0.0001315450060117 -0.0000642096223737 + 84 4 Se 4d-2 0.0029871410668425 -0.0031553800768779 + 85 4 Se 4d-1 -0.0005128353277687 -0.0018694721956216 + 86 4 Se 4d0 0.0035107547296893 0.0002249852807460 + 87 4 Se 4d+1 -0.0011495252654288 0.0021684639866332 + 88 4 Se 4d+2 0.0003195239513700 -0.0010745177106546 + + 89 5 Se 2s 0.0010170331486556 0.0020073259542840 + 90 5 Se 3s -0.0000755047687210 0.0000400379057201 + 91 5 Se 3py 0.0014174837373698 -0.0028388173512044 + 92 5 Se 3pz -0.0015032993124483 0.0022967040654371 + 93 5 Se 3px 0.0051658644175599 -0.0014022159715743 + 94 5 Se 4py 0.0000752560753828 -0.0005810053252824 + 95 5 Se 4pz -0.0001141086487262 0.0000389387189581 + 96 5 Se 4px 0.0009634918750602 -0.0003774237294043 + 97 5 Se 4d-2 0.0014014013997685 -0.0002696217034685 + 98 5 Se 4d-1 -0.0002656198735619 -0.0003176141054764 + 99 5 Se 4d0 -0.0002581052048074 0.0006171818814474 + 100 5 Se 4d+1 -0.0001455695526235 -0.0003488794770243 + 101 5 Se 4d+2 -0.0000671324931443 0.0001708925604224 + + 102 6 Se 2s -0.0403297567859218 -0.0114509791089544 + 103 6 Se 3s 0.0009235141368001 -0.0004026001608697 + 104 6 Se 3py 0.0208016906330916 0.0159156441209192 + 105 6 Se 3pz 0.0089676760026775 0.0095274582941196 + 106 6 Se 3px -0.0067407136711013 0.0054675943182181 + 107 6 Se 4py 0.0011234400317365 0.0005240104327618 + 108 6 Se 4pz 0.0008648666284377 0.0001593367848883 + 109 6 Se 4px -0.0001853943497903 0.0000753962211370 + 110 6 Se 4d-2 -0.0028197919891963 -0.0001919145837744 + 111 6 Se 4d-1 -0.0006909319380283 -0.0003571031625197 + 112 6 Se 4d0 -0.0024396317171980 -0.0015817067936854 + 113 6 Se 4d+1 -0.0016489707797623 -0.0026855218076021 + 114 6 Se 4d+2 -0.0022347688994147 -0.0034545939175930 + + 115 7 Se 2s 0.0274073721251933 0.0159981607964748 + 116 7 Se 3s -0.0005654979882875 -0.0000913249697392 + 117 7 Se 3py 0.0073957682698540 -0.0009155950250462 + 118 7 Se 3pz 0.0075765636118210 0.0044774345392558 + 119 7 Se 3px -0.0020808217259279 0.0001057135556479 + 120 7 Se 4py -0.0005501028568031 -0.0007040595807048 + 121 7 Se 4pz 0.0003901510538239 0.0004805008391655 + 122 7 Se 4px 0.0014025237774314 -0.0002251850103523 + 123 7 Se 4d-2 -0.0004042620576146 0.0003274916798325 + 124 7 Se 4d-1 -0.0013450319226887 -0.0001072768113666 + 125 7 Se 4d0 0.0000995560062469 0.0004103175894134 + 126 7 Se 4d+1 -0.0001410044930984 -0.0009061170726697 + 127 7 Se 4d+2 -0.0017449210650160 -0.0021040407691828 + + 128 8 Cd 2s 0.0051828019419052 -0.0101534267956067 + 129 8 Cd 3s 0.0011330043658199 0.0001825294932026 + 130 8 Cd 3py -0.0011856937041015 0.0060826938840463 + 131 8 Cd 3pz -0.0033426370125012 -0.0005050706061190 + 132 8 Cd 3px 0.0016102081405413 -0.0187629463658349 + 133 8 Cd 4py -0.0000376061805241 0.0010702522076394 + 134 8 Cd 4pz -0.0013668942846416 -0.0014785924779192 + 135 8 Cd 4px 0.0004861726367932 -0.0035985317076863 + 136 8 Cd 4d-2 -0.1426582088840165 -0.3367883686149477 + 137 8 Cd 4d-1 -0.0441332060029716 -0.2459696609749659 + 138 8 Cd 4d0 0.0774546937596437 0.1090211985771781 + 139 8 Cd 4d+1 -0.1611720138333556 0.2651517716651223 + 140 8 Cd 4d+2 -0.0026191544156540 -0.1052400685528468 + 141 8 Cd 5d-2 -0.0014281773628859 -0.0025790374496393 + 142 8 Cd 5d-1 0.0007941849696445 -0.0032432609984217 + 143 8 Cd 5d0 0.0014197669766016 0.0015078238746496 + 144 8 Cd 5d+1 -0.0008720376810376 0.0026179462325246 + 145 8 Cd 5d+2 0.0002096766908729 -0.0019899885088171 + 146 8 Cd 5f-3 -0.0008327479353408 0.0000832699399360 + 147 8 Cd 5f-2 0.0005082480859353 0.0009511057428368 + 148 8 Cd 5f-1 -0.0000691773965539 -0.0002383203941228 + 149 8 Cd 5f0 -0.0004847448062074 0.0006283282692730 + 150 8 Cd 5f+1 0.0000237578116392 -0.0000108300110425 + 151 8 Cd 5f+2 -0.0003385405422091 0.0004089258525983 + 152 8 Cd 5f+3 -0.0003391206005855 0.0008766199950041 + + 153 9 Cd 2s -0.0005668662511376 0.0027127894900472 + 154 9 Cd 3s 0.0000137344410466 0.0000559859618121 + 155 9 Cd 3py -0.0036021138783291 -0.0015631870477406 + 156 9 Cd 3pz 0.0017647323766679 -0.0013695474615621 + 157 9 Cd 3px -0.0020387935261492 0.0031299442238557 + 158 9 Cd 4py 0.0001044571875763 0.0001449955231596 + 159 9 Cd 4pz 0.0001885611072999 -0.0006663039364589 + 160 9 Cd 4px -0.0003639968889708 0.0012243140243056 + 161 9 Cd 4d-2 -0.0297245493150506 0.0674499756609565 + 162 9 Cd 4d-1 0.0779104223645885 0.0104587756991747 + 163 9 Cd 4d0 -0.0029147913169277 0.0182389287815217 + 164 9 Cd 4d+1 0.0001660689997886 -0.0783469954168931 + 165 9 Cd 4d+2 0.0601056065760697 0.0101691481601228 + 166 9 Cd 5d-2 0.0000168822708813 0.0013162163718137 + 167 9 Cd 5d-1 0.0016641586612092 0.0005289913487133 + 168 9 Cd 5d0 -0.0008137660214738 0.0012203861673867 + 169 9 Cd 5d+1 0.0003830140510779 -0.0017932553254780 + 170 9 Cd 5d+2 0.0015377373920932 -0.0002903362316198 + 171 9 Cd 5f-3 0.0003046970136674 -0.0002157528671642 + 172 9 Cd 5f-2 -0.0000487841058895 -0.0004725018628466 + 173 9 Cd 5f-1 -0.0001302984515022 0.0000843342663631 + 174 9 Cd 5f0 0.0000877552201562 -0.0002854310372352 + 175 9 Cd 5f+1 -0.0001449890417760 -0.0000351288619693 + 176 9 Cd 5f+2 -0.0001308637903604 -0.0000638030582194 + 177 9 Cd 5f+3 -0.0003690295808601 0.0001248265366425 + + 178 10 Se 2s -0.0281372952754624 -0.0458074811463142 + 179 10 Se 3s 0.0003439365220230 0.0014511563968416 + 180 10 Se 3py 0.0041305137895969 0.0129855602521304 + 181 10 Se 3pz -0.0037789408707075 -0.0096390497806495 + 182 10 Se 3px 0.0042514713460518 0.0117867276416869 + 183 10 Se 4py 0.0003500507236206 0.0004307698390238 + 184 10 Se 4pz -0.0001399021975342 -0.0000667404167688 + 185 10 Se 4px 0.0002475307545274 0.0010067960788578 + 186 10 Se 4d-2 0.0005505052091470 0.0024912595025351 + 187 10 Se 4d-1 0.0001194983254781 -0.0025576701873208 + 188 10 Se 4d0 -0.0001313101162153 0.0012181082998326 + 189 10 Se 4d+1 -0.0000457268951312 -0.0020674324160419 + 190 10 Se 4d+2 -0.0000708736655079 -0.0011836868479005 + + 191 11 Se 2s 0.0039082013163244 -0.0160726903635556 + 192 11 Se 3s -0.0002723873321889 0.0000968618408744 + 193 11 Se 3py -0.0086921958358017 0.0039888467370673 + 194 11 Se 3pz -0.0063804546985129 0.0012298356112806 + 195 11 Se 3px -0.0015073434037253 -0.0170848936789850 + 196 11 Se 4py 0.0004179010801040 0.0005592755254296 + 197 11 Se 4pz 0.0009722412692500 0.0000999301234174 + 198 11 Se 4px 0.0003023606563982 -0.0002081023233135 + 199 11 Se 4d-2 -0.0006167156626070 -0.0039915027901235 + 200 11 Se 4d-1 0.0002606835329638 0.0003071277434940 + 201 11 Se 4d0 0.0012688698264376 -0.0005531667229373 + 202 11 Se 4d+1 -0.0001552779409815 0.0003668836307833 + 203 11 Se 4d+2 0.0013516740874604 0.0005090015074394 + + 204 12 Cd 2s 0.0127631452916041 0.0013820950120454 + 205 12 Cd 3s -0.0002520214470300 0.0011442316261041 + 206 12 Cd 3py 0.0036313691304417 0.0002860223262907 + 207 12 Cd 3pz -0.0037652882633571 0.0080887389075656 + 208 12 Cd 3px 0.0002969429787685 0.0001618200544683 + 209 12 Cd 4py -0.0002036193232424 -0.0009741289099704 + 210 12 Cd 4pz -0.0007484046872542 0.0011547319271894 + 211 12 Cd 4px -0.0006530973128771 0.0016717387648998 + 212 12 Cd 4d-2 -0.0125712004165450 -0.1056347204944388 + 213 12 Cd 4d-1 0.0508581073179450 0.1752343854795332 + 214 12 Cd 4d0 0.1002654633607958 -0.0234996180891672 + 215 12 Cd 4d+1 0.0165184613683191 0.0359002728253646 + 216 12 Cd 4d+2 -0.1020639674049636 -0.1193097216666072 + 217 12 Cd 5d-2 -0.0005032286656296 -0.0011745731772508 + 218 12 Cd 5d-1 -0.0000744967259141 0.0032161700884178 + 219 12 Cd 5d0 0.0029771906469880 -0.0024104885068595 + 220 12 Cd 5d+1 -0.0005393887913741 0.0000140953708033 + 221 12 Cd 5d+2 -0.0013801932774333 -0.0003426576411355 + 222 12 Cd 5f-3 0.0001521001549916 0.0000889380384423 + 223 12 Cd 5f-2 0.0003987756093020 -0.0000450277133700 + 224 12 Cd 5f-1 0.0001840648360501 0.0000735643459136 + 225 12 Cd 5f0 -0.0002685261017707 -0.0002012714279516 + 226 12 Cd 5f+1 0.0003892769027589 0.0000384176974167 + 227 12 Cd 5f+2 0.0002314705746695 -0.0001988456592292 + 228 12 Cd 5f+3 0.0000018643972428 -0.0004076201220044 + + 229 13 Cd 2s 0.0001690446363904 -0.0050247421469943 + 230 13 Cd 3s -0.0005320495845908 0.0001653818454996 + 231 13 Cd 3py 0.0107617640615700 0.0018222859497799 + 232 13 Cd 3pz 0.0073232605846397 0.0053191214404968 + 233 13 Cd 3px -0.0024293124956463 0.0028998454764356 + 234 13 Cd 4py 0.0029171196544813 0.0004458460474142 + 235 13 Cd 4pz 0.0038420033342576 0.0005524303742935 + 236 13 Cd 4px -0.0023336958296594 0.0014026131447946 + 237 13 Cd 4d-2 -0.1359589070896278 0.0621606110520494 + 238 13 Cd 4d-1 -0.1513847733093447 0.1952989436517917 + 239 13 Cd 4d0 -0.4775960430295808 0.0777371683025278 + 240 13 Cd 4d+1 0.1113389071488461 0.0618051445120986 + 241 13 Cd 4d+2 -0.1928809042752563 0.0155609659856817 + 242 13 Cd 5d-2 0.0001601168482692 -0.0016816978171255 + 243 13 Cd 5d-1 0.0000383053179079 -0.0019923254824565 + 244 13 Cd 5d0 0.0024134553285906 0.0022633845123334 + 245 13 Cd 5d+1 -0.0020817863519069 -0.0012675263123151 + 246 13 Cd 5d+2 0.0037610837708477 -0.0001481783532383 + 247 13 Cd 5f-3 -0.0010854592095964 0.0003350452335038 + 248 13 Cd 5f-2 -0.0002668514480367 0.0001754965151398 + 249 13 Cd 5f-1 0.0004298377550473 -0.0006857760299837 + 250 13 Cd 5f0 0.0010421713944538 -0.0002656705964320 + 251 13 Cd 5f+1 -0.0005301971424064 -0.0002055008297595 + 252 13 Cd 5f+2 -0.0005111349486371 -0.0000810686015507 + 253 13 Cd 5f+3 -0.0000465709343731 0.0000428583171700 + + 254 14 Cd 2s 0.0044147249219466 0.0008752743393392 + 255 14 Cd 3s -0.0001128019530227 0.0010487444756412 + 256 14 Cd 3py 0.0008779882032388 -0.0012286125257184 + 257 14 Cd 3pz -0.0031188957114976 0.0017745768334171 + 258 14 Cd 3px -0.0017433887348252 -0.0010697315945790 + 259 14 Cd 4py -0.0003130889851080 -0.0008020924988636 + 260 14 Cd 4pz 0.0009661692367497 0.0004890822688748 + 261 14 Cd 4px -0.0000569763573333 -0.0001216987205651 + 262 14 Cd 4d-2 0.0189199374052592 0.0130421044918274 + 263 14 Cd 4d-1 0.0130894812623577 -0.0072791339735214 + 264 14 Cd 4d0 0.0503940109781372 -0.0154988143962191 + 265 14 Cd 4d+1 0.0100540181214495 0.0021558814056570 + 266 14 Cd 4d+2 0.0102705057566389 0.0153497255082386 + 267 14 Cd 5d-2 0.0002799161857152 0.0005016977779201 + 268 14 Cd 5d-1 -0.0005026889585873 -0.0011819906352284 + 269 14 Cd 5d0 0.0008585246633732 -0.0013545642779784 + 270 14 Cd 5d+1 0.0013594995167578 0.0004437290485309 + 271 14 Cd 5d+2 0.0002416307262148 0.0001985321474318 + 272 14 Cd 5f-3 -0.0000157604803566 -0.0002132357788539 + 273 14 Cd 5f-2 -0.0002931795810503 -0.0003283609881418 + 274 14 Cd 5f-1 -0.0002671821938720 0.0003933425804309 + 275 14 Cd 5f0 -0.0000177511724166 0.0001849862718032 + 276 14 Cd 5f+1 -0.0004312058184593 0.0001510683400635 + 277 14 Cd 5f+2 -0.0000270432380287 -0.0004087506586814 + 278 14 Cd 5f+3 -0.0000179443518211 0.0001453942772846 + + 279 15 Se 2s -0.0324112931408994 0.0009589935136452 + 280 15 Se 3s 0.0004420182409899 0.0000650883030284 + 281 15 Se 3py -0.0034120998063009 -0.0019647946740811 + 282 15 Se 3pz -0.0157440518211094 0.0058840546450580 + 283 15 Se 3px 0.0121453570034410 0.0016436104399258 + 284 15 Se 4py -0.0000527127117033 -0.0000057346932648 + 285 15 Se 4pz -0.0014560825973442 -0.0003708556399202 + 286 15 Se 4px 0.0001438244381613 -0.0001970733642593 + 287 15 Se 4d-2 -0.0012793444507496 0.0000304181549759 + 288 15 Se 4d-1 0.0026652321709075 -0.0012821559902553 + 289 15 Se 4d0 0.0010595616515564 -0.0012447387063197 + 290 15 Se 4d+1 -0.0047358123424284 0.0002523406273283 + 291 15 Se 4d+2 0.0016062657523842 0.0001324249030832 + + 292 16 Se 2s -0.0022851670899627 -0.0034024714791507 + 293 16 Se 3s 0.0003564456797176 0.0002613829430202 + 294 16 Se 3py -0.0542741816801393 0.0145398507136358 + 295 16 Se 3pz -0.0178383451596364 0.0156414061911251 + 296 16 Se 3px -0.0078697432836407 0.0029725221055001 + 297 16 Se 4py -0.0034168058684653 0.0008982883586883 + 298 16 Se 4pz -0.0000032661654901 0.0010887592387677 + 299 16 Se 4px -0.0006810900141177 0.0000809662354726 + 300 16 Se 4d-2 0.0079256717157878 -0.0031402146571588 + 301 16 Se 4d-1 -0.0077181136945590 0.0005813606880183 + 302 16 Se 4d0 -0.0031707332565309 0.0028744783250607 + 303 16 Se 4d+1 0.0022472336036178 -0.0028098570581622 + 304 16 Se 4d+2 0.0001676191502008 0.0002630312179318 + + 305 17 Cd 2s -0.0004074139678354 0.0026173964912458 + 306 17 Cd 3s 0.0028532277751432 -0.0018149611286332 + 307 17 Cd 3py 0.0008882864226336 -0.0010027276966157 + 308 17 Cd 3pz 0.0023064690930627 -0.0021369534117242 + 309 17 Cd 3px -0.0000320315151679 -0.0001639138321561 + 310 17 Cd 4py 0.0030855053860043 -0.0004200683206241 + 311 17 Cd 4pz 0.0004910840934744 -0.0000276982041414 + 312 17 Cd 4px 0.0025092757830644 0.0000996912587249 + 313 17 Cd 4d-2 0.2058583397162506 -0.0745332325923033 + 314 17 Cd 4d-1 0.0163703134693947 0.1052870605806702 + 315 17 Cd 4d0 -0.0912110525839292 0.1098088778295673 + 316 17 Cd 4d+1 0.0956807714656346 0.0012366699955006 + 317 17 Cd 4d+2 0.1601813746525355 -0.0028708682651140 + 318 17 Cd 5d-2 0.0031878658050172 -0.0012196941328966 + 319 17 Cd 5d-1 0.0016232008795237 -0.0014060849034304 + 320 17 Cd 5d0 -0.0001023387531410 -0.0000271566088496 + 321 17 Cd 5d+1 -0.0008195394312652 0.0011374057065970 + 322 17 Cd 5d+2 -0.0018092291588626 0.0006498027960550 + 323 17 Cd 5f-3 0.0006190859602079 -0.0006202455332976 + 324 17 Cd 5f-2 0.0000637797909797 0.0000306406517151 + 325 17 Cd 5f-1 -0.0000169446316268 -0.0007031440073163 + 326 17 Cd 5f0 -0.0000496746806322 -0.0000234385862559 + 327 17 Cd 5f+1 -0.0006028919150721 0.0002631331077108 + 328 17 Cd 5f+2 -0.0004749378438995 -0.0000907134476620 + 329 17 Cd 5f+3 -0.0002682643777569 -0.0003145708638790 + + 330 18 Cd 2s 0.0039371664563072 0.0030382206746520 + 331 18 Cd 3s -0.0007380338304091 -0.0005151592803666 + 332 18 Cd 3py -0.0002653700372315 0.0008065924619099 + 333 18 Cd 3pz -0.0029828786414047 0.0014253332881153 + 334 18 Cd 3px 0.0002568269663090 0.0000153215029605 + 335 18 Cd 4py -0.0007571996913212 0.0001317960001680 + 336 18 Cd 4pz 0.0007368424525209 -0.0001246653612688 + 337 18 Cd 4px 0.0001526336955825 -0.0005859459419291 + 338 18 Cd 4d-2 0.0135721196061322 0.0147748930680659 + 339 18 Cd 4d-1 -0.0408879459425481 0.0002165577688741 + 340 18 Cd 4d0 0.0433967588960112 0.0273181897563617 + 341 18 Cd 4d+1 0.0404786190841550 0.0361665035510275 + 342 18 Cd 4d+2 -0.0190521168436900 -0.0163456845588572 + 343 18 Cd 5d-2 0.0007922515671748 -0.0002772550028235 + 344 18 Cd 5d-1 -0.0017631692630357 0.0005436905455521 + 345 18 Cd 5d0 0.0009711759467619 0.0000620273790302 + 346 18 Cd 5d+1 0.0000971107483606 0.0000128200382907 + 347 18 Cd 5d+2 -0.0001480611153882 -0.0008478802173279 + 348 18 Cd 5f-3 -0.0003133415361979 -0.0002648807026326 + 349 18 Cd 5f-2 -0.0002014184570451 0.0002415625941677 + 350 18 Cd 5f-1 -0.0004684892390737 -0.0000197116707770 + 351 18 Cd 5f0 0.0007957828558128 -0.0002087253353470 + 352 18 Cd 5f+1 -0.0004229607214268 0.0000979853580813 + 353 18 Cd 5f+2 0.0000727411722695 -0.0004092600003121 + 354 18 Cd 5f+3 -0.0000984756636333 0.0000386581163875 + + 355 19 Se 2s -0.0612708370571333 -0.0001915752049663 + 356 19 Se 3s 0.0012453839851761 -0.0001208605497484 + 357 19 Se 3py 0.0149063672764162 -0.0044855436731017 + 358 19 Se 3pz 0.0114757576113682 0.0025201372891439 + 359 19 Se 3px -0.0125829080335588 -0.0108596927591276 + 360 19 Se 4py 0.0006817208093128 -0.0006181825515233 + 361 19 Se 4pz -0.0000750839198175 0.0001619275444751 + 362 19 Se 4px 0.0000077829767235 -0.0001345603064945 + 363 19 Se 4d-2 -0.0013363798537985 -0.0030622347802570 + 364 19 Se 4d-1 0.0009076816293998 -0.0000296132075204 + 365 19 Se 4d0 0.0007861095640517 0.0003233594466423 + 366 19 Se 4d+1 -0.0021179201115553 -0.0013422995514003 + 367 19 Se 4d+2 -0.0020129571439252 0.0003498577461750 + + 368 20 Se 2s 0.0066498484945882 0.0795507815299298 + 369 20 Se 3s -0.0006110621757211 -0.0012425572405976 + 370 20 Se 3py 0.0097156049829193 -0.0204944534458692 + 371 20 Se 3pz -0.0082798681555128 0.0100520581684376 + 372 20 Se 3px -0.0049419090338115 0.0298913712849220 + 373 20 Se 4py 0.0013438733644088 0.0018672159395936 + 374 20 Se 4pz -0.0008838518426669 -0.0012081688275769 + 375 20 Se 4px 0.0008631407127705 -0.0020811702293696 + 376 20 Se 4d-2 -0.0004946611534695 -0.0025577280210087 + 377 20 Se 4d-1 0.0007572419785639 0.0004873545814234 + 378 20 Se 4d0 0.0015446252685278 -0.0006449130575508 + 379 20 Se 4d+1 -0.0011607941699447 -0.0016660374783606 + 380 20 Se 4d+2 -0.0004133977825764 0.0008197221195938 + + 381 21 Se 2s -0.0021595859480602 -0.1441019459981893 + 382 21 Se 3s -0.0001809940986661 0.0021770438674570 + 383 21 Se 3py 0.0063516324777444 -0.0250245863844395 + 384 21 Se 3pz -0.0014977295069619 -0.0060631842858850 + 385 21 Se 3px 0.0037422769091674 0.0422310813888924 + 386 21 Se 4py -0.0001636676632590 -0.0015108961400503 + 387 21 Se 4pz 0.0002321939821712 -0.0006628445282023 + 388 21 Se 4px -0.0006799650115091 -0.0006742441534274 + 389 21 Se 4d-2 0.0003837575009138 -0.0052424207920658 + 390 21 Se 4d-1 -0.0012973538644080 -0.0015375577073329 + 391 21 Se 4d0 0.0017355230761616 0.0000199766610976 + 392 21 Se 4d+1 0.0004313552228909 0.0009478892692109 + 393 21 Se 4d+2 0.0006167299819745 0.0024739985157921 + + 394 22 Cd 2s -0.0109772374285190 0.0156769852275545 + 395 22 Cd 3s -0.0001693591317846 0.0004266915626328 + 396 22 Cd 3py 0.0031360723523907 -0.0009816417390057 + 397 22 Cd 3pz -0.0006449944842438 -0.0015692057929826 + 398 22 Cd 3px -0.0029647198111573 -0.0022875651189913 + 399 22 Cd 4py -0.0009716337391031 0.0004140434365941 + 400 22 Cd 4pz -0.0017260056170309 -0.0013350068792697 + 401 22 Cd 4px -0.0014950290673416 0.0003390865018864 + 402 22 Cd 4d-2 -0.1203504209778418 0.1253179763072765 + 403 22 Cd 4d-1 0.1738282716162101 0.2716951431223732 + 404 22 Cd 4d0 -0.0350803161968042 0.1443749149741412 + 405 22 Cd 4d+1 0.0293084765627161 -0.2610214520695644 + 406 22 Cd 4d+2 0.0811422165298029 0.0421052844480333 + 407 22 Cd 5d-2 0.0000687931408604 0.0012974025143913 + 408 22 Cd 5d-1 0.0006905422935761 0.0030917443211664 + 409 22 Cd 5d0 0.0010097078579990 0.0006364637154809 + 410 22 Cd 5d+1 -0.0003832931632161 -0.0014489481767216 + 411 22 Cd 5d+2 -0.0004423827577855 0.0001330312760104 + 412 22 Cd 5f-3 -0.0000041010178363 0.0005760157196917 + 413 22 Cd 5f-2 -0.0004640849997833 0.0002121894731880 + 414 22 Cd 5f-1 0.0002125988297447 0.0006916779826965 + 415 22 Cd 5f0 0.0001028709760313 0.0004080118353656 + 416 22 Cd 5f+1 -0.0003943440686447 -0.0001986199592851 + 417 22 Cd 5f+2 0.0001832784548634 -0.0003993002991734 + 418 22 Cd 5f+3 0.0004506161307455 0.0007216816576763 + + 419 23 Se 2s 0.0337377620220174 -0.0639893147528888 + 420 23 Se 3s -0.0004787619890857 0.0012535226916648 + 421 23 Se 3py 0.0144521409254852 -0.0047933788721368 + 422 23 Se 3pz -0.0015231316432481 0.0188564994390491 + 423 23 Se 3px -0.0049320630665636 0.0105730731822476 + 424 23 Se 4py 0.0001397597886224 0.0000104521596009 + 425 23 Se 4pz -0.0001030763937005 0.0007608668867579 + 426 23 Se 4px 0.0002103875220256 0.0001172068614398 + 427 23 Se 4d-2 -0.0002258401579686 0.0013016672440768 + 428 23 Se 4d-1 0.0037542669124641 -0.0007823658180703 + 429 23 Se 4d0 0.0020793422299395 0.0019623970489665 + 430 23 Se 4d+1 -0.0004405256908010 0.0036393992909205 + 431 23 Se 4d+2 0.0006990974194075 -0.0003279142039099 + + 432 24 Se 2s 0.0443346574640168 -0.0263555810246822 + 433 24 Se 3s -0.0009843609723750 0.0005180004588125 + 434 24 Se 3py -0.0007180595509002 0.0090337266774121 + 435 24 Se 3pz 0.0037616463310045 0.0003374312876673 + 436 24 Se 3px -0.0164255216252026 0.0021939768581115 + 437 24 Se 4py -0.0003702066302676 -0.0003561275418064 + 438 24 Se 4pz 0.0009840538120436 -0.0007580614621237 + 439 24 Se 4px -0.0005987422570228 0.0014020081801063 + 440 24 Se 4d-2 -0.0002572317051757 -0.0008085839864666 + 441 24 Se 4d-1 -0.0001459287517884 0.0007336654983397 + 442 24 Se 4d0 0.0002834825378956 -0.0025183632116721 + 443 24 Se 4d+1 0.0012212023438890 -0.0019292672588915 + 444 24 Se 4d+2 -0.0024190558462573 0.0007843836130523 + + 445 25 Cd 2s -0.0025508572837854 0.0054858381202221 + 446 25 Cd 3s -0.0001376558795127 -0.0002396317214078 + 447 25 Cd 3py -0.0041046288880880 -0.0001665590118452 + 448 25 Cd 3pz -0.0023351320774697 -0.0006502332501526 + 449 25 Cd 3px 0.0011244616815464 -0.0004215592028876 + 450 25 Cd 4py -0.0006870427926543 -0.0012459438672500 + 451 25 Cd 4pz -0.0008768471996209 -0.0005323406108477 + 452 25 Cd 4px 0.0004389575814173 -0.0001336182956591 + 453 25 Cd 4d-2 -0.1427879275346668 -0.0416815757415507 + 454 25 Cd 4d-1 0.3099133616923893 -0.0494058756481442 + 455 25 Cd 4d0 -0.1207252669138495 0.2521660362962161 + 456 25 Cd 4d+1 0.0706032416829675 -0.2257537622412025 + 457 25 Cd 4d+2 -0.0545544124912041 -0.1106265863972148 + 458 25 Cd 5d-2 -0.0000112230706419 -0.0014033266656925 + 459 25 Cd 5d-1 0.0017261931953200 -0.0002552560155089 + 460 25 Cd 5d0 -0.0004034984932424 0.0001633910810104 + 461 25 Cd 5d+1 -0.0012156880254314 -0.0005611537195234 + 462 25 Cd 5d+2 0.0010809246474988 -0.0000271996820376 + 463 25 Cd 5f-3 0.0001739152006916 0.0002140662973163 + 464 25 Cd 5f-2 0.0004915406354536 0.0002749959255351 + 465 25 Cd 5f-1 0.0001270993449414 -0.0007705456062703 + 466 25 Cd 5f0 -0.0005735085855638 0.0007664208224442 + 467 25 Cd 5f+1 -0.0002545356417202 0.0002402098283343 + 468 25 Cd 5f+2 0.0001264717375732 -0.0000179462498708 + 469 25 Cd 5f+3 -0.0003115202410644 0.0004194363064920 + + 470 26 Cd 2s -0.0041497251764331 0.0214633087443278 + 471 26 Cd 3s 0.0000900781994766 -0.0017545965317670 + 472 26 Cd 3py 0.0034384058851795 0.0042581919731655 + 473 26 Cd 3pz 0.0024552177485563 0.0013897514539876 + 474 26 Cd 3px 0.0011797964666489 0.0041695144963655 + 475 26 Cd 4py -0.0001163468948353 -0.0014870993862889 + 476 26 Cd 4pz -0.0002679278361111 -0.0005704860485435 + 477 26 Cd 4px -0.0000210693926182 -0.0008840939870236 + 478 26 Cd 4d-2 0.0004134337101789 0.1290707744501448 + 479 26 Cd 4d-1 -0.0251222798754997 0.0366915350853080 + 480 26 Cd 4d0 -0.0066158139363549 -0.0572640536136974 + 481 26 Cd 4d+1 0.0188868083533127 0.0470769630928132 + 482 26 Cd 4d+2 0.0471972933854191 -0.0437045401537940 + 483 26 Cd 5d-2 0.0005599955504156 0.0028912041383659 + 484 26 Cd 5d-1 -0.0009971870453615 0.0009666357851847 + 485 26 Cd 5d0 -0.0001519129921073 -0.0014941365727718 + 486 26 Cd 5d+1 0.0008125001150626 0.0010364427420593 + 487 26 Cd 5d+2 0.0016679705945447 -0.0012368990617273 + 488 26 Cd 5f-3 0.0001800737048336 0.0005694434218490 + 489 26 Cd 5f-2 -0.0003527494088252 -0.0001844472992382 + 490 26 Cd 5f-1 -0.0000729586859904 0.0001641351109450 + 491 26 Cd 5f0 -0.0001152080054288 0.0003309163432392 + 492 26 Cd 5f+1 -0.0003517191178592 -0.0001572190999746 + 493 26 Cd 5f+2 -0.0000231150237960 0.0006426681666553 + 494 26 Cd 5f+3 0.0005218911712659 0.0003605058788231 + + 59 60 + -0.4606929901197337 -0.4600011002948455 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0002301828286265 0.0021284068717885 + 2 1 Cd 3s -0.0003032749524238 0.0002247089787061 + 3 1 Cd 3py -0.0020294122248087 0.0025410574709877 + 4 1 Cd 3pz 0.0017571619935133 -0.0008103298739690 + 5 1 Cd 3px -0.0008671397972111 -0.0016863930751437 + 6 1 Cd 4py 0.0000018152790167 0.0001620680271120 + 7 1 Cd 4pz 0.0004906912149033 -0.0002088151678517 + 8 1 Cd 4px 0.0008356518505436 -0.0005676100211376 + 9 1 Cd 4d-2 0.0272426702664105 0.0244235146134591 + 10 1 Cd 4d-1 0.0196393385102133 -0.0098657823352000 + 11 1 Cd 4d0 0.0067666666880494 0.0027589011602209 + 12 1 Cd 4d+1 0.0325201531691524 0.0002320341966205 + 13 1 Cd 4d+2 -0.0455494577399399 0.0317832473642950 + 14 1 Cd 5d-2 0.0009910411299925 -0.0016929789110309 + 15 1 Cd 5d-1 0.0008617321174452 -0.0004205656004708 + 16 1 Cd 5d0 0.0011770726485629 -0.0004591215607822 + 17 1 Cd 5d+1 -0.0006514979437332 0.0003424842856449 + 18 1 Cd 5d+2 0.0009654059686407 0.0004895653338612 + 19 1 Cd 5f-3 -0.0003004122375914 0.0004243726625104 + 20 1 Cd 5f-2 -0.0004280329939564 0.0000630269892796 + 21 1 Cd 5f-1 0.0003785071214238 -0.0001198160404526 + 22 1 Cd 5f0 -0.0000879876875796 -0.0000567785320387 + 23 1 Cd 5f+1 -0.0001442561479650 0.0000987975051570 + 24 1 Cd 5f+2 0.0000745553311232 -0.0001558467569828 + 25 1 Cd 5f+3 -0.0007226152396952 0.0000420123085020 + + 26 2 Cd 2s 0.0266024333087838 0.0041297204787722 + 27 2 Cd 3s 0.0012027765326132 0.0002831841800597 + 28 2 Cd 3py 0.0008766222907569 0.0021348409462048 + 29 2 Cd 3pz 0.0016762022889524 -0.0008616394145239 + 30 2 Cd 3px -0.0204200979881986 -0.0054520704785694 + 31 2 Cd 4py 0.0009764624829140 0.0009658527066909 + 32 2 Cd 4pz 0.0000172391643756 -0.0003441494575492 + 33 2 Cd 4px -0.0032169228246989 -0.0012401078944332 + 34 2 Cd 4d-2 0.1689785137216144 0.0549142336256017 + 35 2 Cd 4d-1 0.0575231664136756 0.0148062419431032 + 36 2 Cd 4d0 -0.1790969602715615 0.0414294868958668 + 37 2 Cd 4d+1 0.0569286021171086 0.0718218829236170 + 38 2 Cd 4d+2 0.5226163253135460 0.1391761922784603 + 39 2 Cd 5d-2 0.0022687118407927 -0.0007358235665434 + 40 2 Cd 5d-1 -0.0012960632771293 -0.0005822209081821 + 41 2 Cd 5d0 -0.0038968620148137 -0.0009130823841471 + 42 2 Cd 5d+1 0.0007212977589221 0.0014198065355138 + 43 2 Cd 5d+2 0.0053755623339317 0.0019753355783674 + 44 2 Cd 5f-3 -0.0003071301011646 -0.0000228107671122 + 45 2 Cd 5f-2 0.0002826273721926 0.0004133078538556 + 46 2 Cd 5f-1 -0.0005041314889424 -0.0002903994532422 + 47 2 Cd 5f0 0.0002643030241257 0.0003975751051254 + 48 2 Cd 5f+1 0.0010141162267134 0.0002975681629234 + 49 2 Cd 5f+2 0.0000391325317708 -0.0000626398499623 + 50 2 Cd 5f+3 -0.0003430983700607 0.0001858123880547 + + 51 3 Cd 2s 0.0076000594065320 -0.0031610167106014 + 52 3 Cd 3s -0.0005737910757604 0.0006007088464109 + 53 3 Cd 3py 0.0043764581248481 0.0019039664321811 + 54 3 Cd 3pz -0.0005572586752993 0.0015676687122694 + 55 3 Cd 3px -0.0021110605881115 0.0005607003446463 + 56 3 Cd 4py -0.0003749012364619 0.0005285106520876 + 57 3 Cd 4pz 0.0010940547753020 0.0005802054285153 + 58 3 Cd 4px 0.0008055231330757 0.0005287186043286 + 59 3 Cd 4d-2 0.0797178406781220 0.0016573994391305 + 60 3 Cd 4d-1 0.0149161163046192 -0.0169183909641782 + 61 3 Cd 4d0 0.0432284474159747 -0.0012537887326970 + 62 3 Cd 4d+1 0.0326468052110364 -0.0010883047239259 + 63 3 Cd 4d+2 0.0797139919267631 0.0104119147964943 + 64 3 Cd 5d-2 -0.0007541223075454 -0.0010736331271522 + 65 3 Cd 5d-1 -0.0001672468303946 0.0002465036455851 + 66 3 Cd 5d0 -0.0007496593077650 -0.0001070515424226 + 67 3 Cd 5d+1 -0.0012411699449444 -0.0009146308631999 + 68 3 Cd 5d+2 -0.0015550193452935 -0.0011803404798685 + 69 3 Cd 5f-3 -0.0001348061373887 0.0001895070249827 + 70 3 Cd 5f-2 -0.0000550292222769 0.0003331461981307 + 71 3 Cd 5f-1 -0.0003776472726387 0.0000528503942214 + 72 3 Cd 5f0 -0.0004291783568686 -0.0000821345398697 + 73 3 Cd 5f+1 0.0000549053136595 0.0000107076312857 + 74 3 Cd 5f+2 0.0005938420724927 -0.0000111145279730 + 75 3 Cd 5f+3 -0.0000467863503408 0.0003469873118283 + + 76 4 Se 2s 0.0165946650200850 0.0059437053181898 + 77 4 Se 3s -0.0004718389067076 -0.0001533477551957 + 78 4 Se 3py -0.0067028608621211 0.0068736999990480 + 79 4 Se 3pz 0.0018201865737494 -0.0002166355238918 + 80 4 Se 3px 0.0238564235054188 0.0024485107893668 + 81 4 Se 4py -0.0004573764212741 0.0000468103912476 + 82 4 Se 4pz 0.0001522260978004 0.0000787008267525 + 83 4 Se 4px 0.0009617069851335 0.0003384142392156 + 84 4 Se 4d-2 -0.0011116012418993 -0.0014214220469006 + 85 4 Se 4d-1 -0.0008777085278974 -0.0017959708476069 + 86 4 Se 4d0 0.0044711962424197 0.0002294387334352 + 87 4 Se 4d+1 0.0018287041732711 0.0005432704804608 + 88 4 Se 4d+2 -0.0037738410141218 -0.0004980643278415 + + 89 5 Se 2s -0.0117229175586043 0.0068242830617452 + 90 5 Se 3s 0.0003794956634745 -0.0000777287973248 + 91 5 Se 3py 0.0043354225025514 -0.0019633007941984 + 92 5 Se 3pz -0.0016653765770590 0.0019675087732871 + 93 5 Se 3px -0.0001712752350350 -0.0010827515312583 + 94 5 Se 4py 0.0004407473606573 -0.0002250038792852 + 95 5 Se 4pz -0.0002380317778099 -0.0000865661559376 + 96 5 Se 4px 0.0004434406699059 -0.0005830448891776 + 97 5 Se 4d-2 -0.0005399544583806 -0.0003869658766893 + 98 5 Se 4d-1 0.0002572841075077 0.0003696219764053 + 99 5 Se 4d0 -0.0003641125719952 0.0003721166092081 + 100 5 Se 4d+1 0.0004228467195817 -0.0001956528046800 + 101 5 Se 4d+2 -0.0004335761111666 0.0003317625953267 + + 102 6 Se 2s 0.0489072202626763 0.0220614183829391 + 103 6 Se 3s -0.0010529386404816 -0.0004279694749872 + 104 6 Se 3py -0.0199089932798332 -0.0079886361727627 + 105 6 Se 3pz -0.0014852458299392 0.0021842479978812 + 106 6 Se 3px 0.0185253794332757 0.0068366961609868 + 107 6 Se 4py -0.0011144654231940 -0.0003401836904794 + 108 6 Se 4pz -0.0009274174847035 -0.0003472907878734 + 109 6 Se 4px 0.0011556551916434 0.0002221164886027 + 110 6 Se 4d-2 0.0055641833452456 0.0019168122207940 + 111 6 Se 4d-1 0.0018148329625156 0.0008710716652022 + 112 6 Se 4d0 0.0021933771401075 0.0006495804461515 + 113 6 Se 4d+1 -0.0003707371769540 -0.0005580563503440 + 114 6 Se 4d+2 -0.0006644089937802 -0.0001467125988405 + + 115 7 Se 2s 0.0000363026371006 -0.0055613903477953 + 116 7 Se 3s 0.0000051358151911 0.0002123243831505 + 117 7 Se 3py -0.0011217730927701 -0.0024908934620516 + 118 7 Se 3pz 0.0026069389733097 -0.0033215120363886 + 119 7 Se 3px -0.0257095981285765 -0.0073659703325981 + 120 7 Se 4py -0.0001207079633751 0.0000337685102886 + 121 7 Se 4pz -0.0001269151901077 0.0000072291369977 + 122 7 Se 4px -0.0006095947084133 -0.0003374655031433 + 123 7 Se 4d-2 0.0023670423342780 0.0000884763544890 + 124 7 Se 4d-1 0.0001178167427848 0.0008436487439840 + 125 7 Se 4d0 -0.0010059986584236 0.0006384875596654 + 126 7 Se 4d+1 0.0042239771399093 0.0021869643125858 + 127 7 Se 4d+2 0.0007773840502675 0.0009694926603751 + + 128 8 Cd 2s -0.0166979802853032 0.0018871537700865 + 129 8 Cd 3s -0.0025596022680152 -0.0011123862916552 + 130 8 Cd 3py -0.0093368617378272 -0.0070460770013840 + 131 8 Cd 3pz 0.0010915685420421 0.0018757527356801 + 132 8 Cd 3px -0.0168249837047107 -0.0054567968777284 + 133 8 Cd 4py -0.0014562106699935 -0.0002184385462399 + 134 8 Cd 4pz 0.0002448464863043 0.0010554465625174 + 135 8 Cd 4px -0.0026224338748305 -0.0001609538433147 + 136 8 Cd 4d-2 -0.0363423355740192 -0.0078849529167798 + 137 8 Cd 4d-1 0.1699598300434182 0.1168538753170528 + 138 8 Cd 4d0 0.1987302664566843 -0.2101893091892370 + 139 8 Cd 4d+1 0.0633972882773876 0.1068954360757849 + 140 8 Cd 4d+2 -0.4757314721950005 -0.2214011925946219 + 141 8 Cd 5d-2 -0.0000200035382227 0.0002055340309225 + 142 8 Cd 5d-1 0.0018315954240545 0.0020999474206981 + 143 8 Cd 5d0 0.0052852154789892 -0.0008631511716424 + 144 8 Cd 5d+1 0.0007831366410938 0.0016922941980834 + 145 8 Cd 5d+2 -0.0074788980080065 -0.0012756246677579 + 146 8 Cd 5f-3 -0.0003526719104847 -0.0004767578284324 + 147 8 Cd 5f-2 0.0006961971613874 -0.0000219824844775 + 148 8 Cd 5f-1 0.0005187273462944 0.0000908743432332 + 149 8 Cd 5f0 -0.0008305688059857 -0.0001989685361944 + 150 8 Cd 5f+1 0.0014530253492274 0.0002483365981477 + 151 8 Cd 5f+2 0.0006175502822622 0.0001776755169550 + 152 8 Cd 5f+3 -0.0006699474543293 -0.0004722595027494 + + 153 9 Cd 2s 0.0058868377903396 -0.0017502562662637 + 154 9 Cd 3s -0.0009053613282008 -0.0002665605792646 + 155 9 Cd 3py 0.0041592161888251 0.0009853810478366 + 156 9 Cd 3pz -0.0025305269657160 0.0002271119122330 + 157 9 Cd 3px 0.0012723402119480 0.0008701512612648 + 158 9 Cd 4py -0.0004429379801412 -0.0002534600231319 + 159 9 Cd 4pz -0.0001235726807199 -0.0000823195229106 + 160 9 Cd 4px 0.0011406405808464 0.0004069774710851 + 161 9 Cd 4d-2 0.0446949858782431 -0.0063106765245267 + 162 9 Cd 4d-1 -0.0899146267422772 -0.0208113033216454 + 163 9 Cd 4d0 0.0042758362416142 0.0078165174594782 + 164 9 Cd 4d+1 -0.0172370989938369 -0.0035589783329933 + 165 9 Cd 4d+2 -0.0333519016551044 -0.0218323872908587 + 166 9 Cd 5d-2 -0.0004894477152294 -0.0002421237315124 + 167 9 Cd 5d-1 -0.0016604419547638 -0.0003298767757829 + 168 9 Cd 5d0 0.0005966711663198 0.0001514313524971 + 169 9 Cd 5d+1 -0.0000347884868498 -0.0000103872672154 + 170 9 Cd 5d+2 -0.0012940145793624 -0.0005909294997855 + 171 9 Cd 5f-3 0.0002232815024063 -0.0000586276785124 + 172 9 Cd 5f-2 0.0005387726209619 0.0001809619956087 + 173 9 Cd 5f-1 0.0002048226738749 -0.0000792237705136 + 174 9 Cd 5f0 0.0002811883423635 0.0000652074414870 + 175 9 Cd 5f+1 -0.0003042735330170 -0.0000566606503050 + 176 9 Cd 5f+2 -0.0002603005415426 -0.0001093995528082 + 177 9 Cd 5f+3 0.0006985305212418 0.0003668178258597 + + 178 10 Se 2s -0.0076408426715258 0.0076400027475907 + 179 10 Se 3s 0.0002230936407570 -0.0000900545405440 + 180 10 Se 3py 0.0009962783876737 -0.0144586683868379 + 181 10 Se 3pz -0.0054191980374774 -0.0040219866789293 + 182 10 Se 3px -0.0022059720235064 -0.0023081394132034 + 183 10 Se 4py -0.0005055645263819 0.0000912315975014 + 184 10 Se 4pz 0.0003780058268098 0.0002270449888085 + 185 10 Se 4px 0.0001285624416900 0.0003206764539931 + 186 10 Se 4d-2 0.0007565493842198 0.0007094143968334 + 187 10 Se 4d-1 -0.0003841122839306 0.0020744298895758 + 188 10 Se 4d0 0.0008427200672073 0.0015629971756991 + 189 10 Se 4d+1 -0.0006832221759826 -0.0000609115136233 + 190 10 Se 4d+2 -0.0016268264030928 0.0008024332048293 + + 191 11 Se 2s -0.0215441001856267 0.0052045723437592 + 192 11 Se 3s 0.0003807885488051 -0.0001383887771916 + 193 11 Se 3py 0.0085819864332060 -0.0013786064968874 + 194 11 Se 3pz -0.0018981285130585 0.0009504047023431 + 195 11 Se 3px 0.0011300563865213 0.0075358718198963 + 196 11 Se 4py 0.0002594260365881 -0.0001658495913750 + 197 11 Se 4pz -0.0009611837561392 0.0000932136068626 + 198 11 Se 4px 0.0002674088533413 -0.0002586011187922 + 199 11 Se 4d-2 0.0001659364312108 0.0011127421735789 + 200 11 Se 4d-1 0.0002800345953581 0.0007809806996048 + 201 11 Se 4d0 0.0003670065666927 0.0012289606544371 + 202 11 Se 4d+1 -0.0001633932993016 -0.0004621957304969 + 203 11 Se 4d+2 -0.0023085387622778 -0.0013255581212815 + + 204 12 Cd 2s -0.0089151235427737 0.0030370867228256 + 205 12 Cd 3s -0.0007051855706375 0.0003353292476975 + 206 12 Cd 3py -0.0078350637503239 -0.0018354378137988 + 207 12 Cd 3pz -0.0006590324510897 -0.0094504196252528 + 208 12 Cd 3px -0.0031734253826002 -0.0024457882473846 + 209 12 Cd 4py -0.0007768282759474 0.0003261885746036 + 210 12 Cd 4pz 0.0002925835100602 -0.0002630932413981 + 211 12 Cd 4px -0.0009225151006750 0.0000836790348679 + 212 12 Cd 4d-2 -0.1542000706738063 -0.1376559654238049 + 213 12 Cd 4d-1 -0.1035457024730060 -0.2274569751149937 + 214 12 Cd 4d0 0.0822094612506040 0.2158812864768198 + 215 12 Cd 4d+1 -0.0408346789951508 -0.0426221259575746 + 216 12 Cd 4d+2 0.1314842801638344 0.0769034809959550 + 217 12 Cd 5d-2 -0.0030589032591356 -0.0006618671490946 + 218 12 Cd 5d-1 0.0000522331973547 -0.0026219869034737 + 219 12 Cd 5d0 0.0016932171246216 0.0037243096948976 + 220 12 Cd 5d+1 0.0013735263792684 -0.0005873475154915 + 221 12 Cd 5d+2 0.0005253583935681 0.0010745523261635 + 222 12 Cd 5f-3 -0.0001847406103859 -0.0001278421716278 + 223 12 Cd 5f-2 0.0004009246052140 -0.0003116239405466 + 224 12 Cd 5f-1 0.0005493555193967 0.0004787516123414 + 225 12 Cd 5f0 -0.0007148683118108 0.0002851629358163 + 226 12 Cd 5f+1 0.0000939927523508 0.0003480350288921 + 227 12 Cd 5f+2 0.0000940805547395 0.0002133983660145 + 228 12 Cd 5f+3 -0.0000519513228361 0.0005439911146048 + + 229 13 Cd 2s 0.0156601920824119 -0.0131808489874849 + 230 13 Cd 3s -0.0004928454639076 -0.0003137547036603 + 231 13 Cd 3py -0.0047990836688798 0.0023036072027063 + 232 13 Cd 3pz 0.0014103800400479 0.0008958020068706 + 233 13 Cd 3px -0.0025840944862525 0.0047366952278771 + 234 13 Cd 4py -0.0007059938391231 0.0009247758243270 + 235 13 Cd 4pz -0.0001819558770680 0.0009490658187115 + 236 13 Cd 4px 0.0001130182651668 -0.0010876884340738 + 237 13 Cd 4d-2 0.0319845148223045 0.1621988384462202 + 238 13 Cd 4d-1 -0.0596013907673588 0.0863896637708532 + 239 13 Cd 4d0 -0.0749851435971109 -0.1412551486930015 + 240 13 Cd 4d+1 -0.0609527785577379 0.0933403811263997 + 241 13 Cd 4d+2 0.0508427238345952 -0.0584529803711230 + 242 13 Cd 5d-2 0.0003832269607436 0.0002177497917948 + 243 13 Cd 5d-1 -0.0010139959002534 -0.0010393917957067 + 244 13 Cd 5d0 -0.0014515567675215 -0.0003773044158241 + 245 13 Cd 5d+1 0.0002745189594465 0.0002002448321626 + 246 13 Cd 5d+2 0.0008478655945483 0.0013143894525145 + 247 13 Cd 5f-3 -0.0000498683535767 -0.0008425360617700 + 248 13 Cd 5f-2 0.0000243282445063 -0.0001467966438963 + 249 13 Cd 5f-1 0.0001357966809808 -0.0000030445082453 + 250 13 Cd 5f0 -0.0000286610008489 -0.0003497724750597 + 251 13 Cd 5f+1 -0.0000200186706539 0.0004019509257942 + 252 13 Cd 5f+2 0.0001665848901353 -0.0000186529962048 + 253 13 Cd 5f+3 -0.0001606227461546 -0.0000474634136993 + + 254 14 Cd 2s 0.0047087262645032 -0.0079816794491243 + 255 14 Cd 3s -0.0004674473050637 0.0007420897158711 + 256 14 Cd 3py -0.0014915022767667 0.0014988339667810 + 257 14 Cd 3pz -0.0018080309378440 0.0017226505066547 + 258 14 Cd 3px 0.0052402145041926 0.0019376551927319 + 259 14 Cd 4py 0.0001682308027142 0.0007243095664666 + 260 14 Cd 4pz -0.0000387872027407 -0.0009997721687601 + 261 14 Cd 4px -0.0006921856473818 -0.0003098954861439 + 262 14 Cd 4d-2 -0.0770377022089909 -0.0301912797551053 + 263 14 Cd 4d-1 0.0119910829581180 0.0218556271978163 + 264 14 Cd 4d0 0.0054360825715328 -0.0494246783257323 + 265 14 Cd 4d+1 0.0065716598175555 0.0012825614293183 + 266 14 Cd 4d+2 -0.0024092261791605 0.0091876076228562 + 267 14 Cd 5d-2 -0.0020714195952608 -0.0009964258272151 + 268 14 Cd 5d-1 0.0010092355175674 0.0000595024578052 + 269 14 Cd 5d0 0.0004252812832836 0.0000947064403335 + 270 14 Cd 5d+1 0.0001046540104871 0.0003754019977407 + 271 14 Cd 5d+2 -0.0002016238402791 0.0008973407889635 + 272 14 Cd 5f-3 0.0002477606757448 -0.0002199519865362 + 273 14 Cd 5f-2 -0.0000801605615927 -0.0001462717175138 + 274 14 Cd 5f-1 -0.0005014980992194 0.0002573886202945 + 275 14 Cd 5f0 0.0002665671511729 -0.0001829846598030 + 276 14 Cd 5f+1 -0.0000703470511148 -0.0002158527682715 + 277 14 Cd 5f+2 0.0001288271191852 0.0001275807527999 + 278 14 Cd 5f+3 -0.0003534554724033 -0.0002638396864691 + + 279 15 Se 2s -0.0041261372652455 0.0530709484725418 + 280 15 Se 3s -0.0000751283780395 -0.0008976642324667 + 281 15 Se 3py -0.0008086968389844 0.0194436405988987 + 282 15 Se 3pz -0.0033328476569198 0.0053556413003478 + 283 15 Se 3px -0.0140203997141652 0.0173070440538486 + 284 15 Se 4py 0.0004160034374605 -0.0004841465937549 + 285 15 Se 4pz -0.0001227204608941 -0.0007492005776712 + 286 15 Se 4px 0.0003492978522502 -0.0002572796582055 + 287 15 Se 4d-2 0.0021565509516450 -0.0030636285217663 + 288 15 Se 4d-1 0.0006379346063331 -0.0009691467450975 + 289 15 Se 4d0 -0.0000511299588243 0.0024194455544570 + 290 15 Se 4d+1 0.0004376813469535 -0.0010989685214570 + 291 15 Se 4d+2 0.0002986484945617 0.0012943210947589 + + 292 16 Se 2s 0.0136357414357983 -0.0018594285961193 + 293 16 Se 3s -0.0002979613521574 0.0002821208611519 + 294 16 Se 3py -0.0084597617600479 -0.0102373992769470 + 295 16 Se 3pz -0.0129653342989448 -0.0019021938642489 + 296 16 Se 3px 0.0039424268224680 -0.0107149725876050 + 297 16 Se 4py -0.0006010173994538 -0.0004535030381995 + 298 16 Se 4pz -0.0008672387822229 0.0000413116695012 + 299 16 Se 4px 0.0001233614542307 -0.0010389164587417 + 300 16 Se 4d-2 0.0014355747490419 0.0014104914317349 + 301 16 Se 4d-1 0.0004678440852665 -0.0027181634743005 + 302 16 Se 4d0 -0.0015409003544540 -0.0009383965053482 + 303 16 Se 4d+1 0.0027760093089806 -0.0017828984726588 + 304 16 Se 4d+2 -0.0011223992489169 0.0024872916361357 + + 305 17 Cd 2s -0.0016316022291565 -0.0006435567096979 + 306 17 Cd 3s 0.0010078969407526 0.0005761171436032 + 307 17 Cd 3py 0.0008643978798281 -0.0034745368282594 + 308 17 Cd 3pz 0.0018249677795457 -0.0020750951631608 + 309 17 Cd 3px 0.0003922722892178 -0.0022203915316599 + 310 17 Cd 4py 0.0009344657812906 -0.0002750117845351 + 311 17 Cd 4pz 0.0005998210423882 -0.0000798160085269 + 312 17 Cd 4px 0.0001348687383514 0.0003949134628491 + 313 17 Cd 4d-2 0.0006758734316779 0.0792968018288757 + 314 17 Cd 4d-1 -0.1291881639836435 0.1107102350044987 + 315 17 Cd 4d0 -0.0530454280360066 0.0331964611570237 + 316 17 Cd 4d+1 -0.0513306153443824 0.0103235262045635 + 317 17 Cd 4d+2 0.0641725744725792 -0.0821913160515390 + 318 17 Cd 5d-2 0.0001318076535544 0.0011809954994520 + 319 17 Cd 5d-1 0.0004841457920054 -0.0006620393906190 + 320 17 Cd 5d0 0.0006894610990206 -0.0015806662587398 + 321 17 Cd 5d+1 -0.0007560352188784 -0.0000730282546569 + 322 17 Cd 5d+2 -0.0001458967814205 0.0001015652845471 + 323 17 Cd 5f-3 0.0001684979180746 -0.0002147311221330 + 324 17 Cd 5f-2 0.0000890128787057 -0.0001046100988061 + 325 17 Cd 5f-1 -0.0000796001467238 -0.0000387238682461 + 326 17 Cd 5f0 -0.0000611899418401 -0.0001717221457357 + 327 17 Cd 5f+1 -0.0003274665452755 0.0002934207984988 + 328 17 Cd 5f+2 -0.0000418513201689 0.0003497587122263 + 329 17 Cd 5f+3 -0.0001642100928645 0.0002085881673985 + + 330 18 Cd 2s -0.0013910667056611 0.0037286555165288 + 331 18 Cd 3s 0.0004638563738614 0.0001355302556177 + 332 18 Cd 3py -0.0022499283653245 0.0018760890600916 + 333 18 Cd 3pz 0.0002299233289199 0.0008386026966737 + 334 18 Cd 3px 0.0005768826015199 0.0010766358636315 + 335 18 Cd 4py 0.0003598292607442 -0.0001110104121056 + 336 18 Cd 4pz -0.0002851986707916 0.0009685758085239 + 337 18 Cd 4px -0.0001570329327800 0.0005189973549543 + 338 18 Cd 4d-2 0.0276251830635669 -0.0021244172532009 + 339 18 Cd 4d-1 -0.0129727756684679 -0.0138604762100645 + 340 18 Cd 4d0 0.0331662772331729 0.0162240649818267 + 341 18 Cd 4d+1 -0.0142305704105531 -0.0053836894065325 + 342 18 Cd 4d+2 0.0441282656182227 -0.0295500522003208 + 343 18 Cd 5d-2 0.0006325365957815 0.0011530648971615 + 344 18 Cd 5d-1 -0.0007507380150460 0.0009547814829103 + 345 18 Cd 5d0 0.0004329027212835 0.0009068990077849 + 346 18 Cd 5d+1 -0.0001781090733461 0.0001229933494326 + 347 18 Cd 5d+2 0.0009835083524506 -0.0011398749926459 + 348 18 Cd 5f-3 0.0004647099572849 -0.0005455332140903 + 349 18 Cd 5f-2 -0.0001221337340728 -0.0000356768190183 + 350 18 Cd 5f-1 -0.0001442065363792 0.0001500195006573 + 351 18 Cd 5f0 0.0002534631113333 0.0000015854305401 + 352 18 Cd 5f+1 -0.0002539002994382 -0.0000340136243217 + 353 18 Cd 5f+2 0.0002440303564474 -0.0001535928979747 + 354 18 Cd 5f+3 -0.0003239740450704 -0.0004656500708481 + + 355 19 Se 2s -0.0056051217597519 -0.0279895940724645 + 356 19 Se 3s 0.0003811517559631 0.0004281289797335 + 357 19 Se 3py -0.0015875518603951 0.0037380936748214 + 358 19 Se 3pz 0.0085002203031289 0.0038722871074903 + 359 19 Se 3px 0.0036537156069015 -0.0012941088991670 + 360 19 Se 4py 0.0002783536228800 0.0002109321353617 + 361 19 Se 4pz 0.0001517176435455 0.0002726881467258 + 362 19 Se 4px 0.0001651901865160 -0.0002886771765432 + 363 19 Se 4d-2 0.0001796063038167 0.0012845598906462 + 364 19 Se 4d-1 0.0016086685841466 -0.0004819701630864 + 365 19 Se 4d0 0.0009630933214834 0.0008521224892519 + 366 19 Se 4d+1 0.0015685465313977 -0.0024404382668952 + 367 19 Se 4d+2 -0.0006708816255926 0.0008202441855313 + + 368 20 Se 2s -0.0529448632723292 0.0137286594430373 + 369 20 Se 3s 0.0010336225841741 0.0000184361356822 + 370 20 Se 3py 0.0089945325406197 0.0088941874881996 + 371 20 Se 3pz 0.0010665010627300 -0.0024143299752958 + 372 20 Se 3px -0.0290785430862764 0.0087670168500722 + 373 20 Se 4py -0.0018727595256986 0.0009719933815464 + 374 20 Se 4pz 0.0015369672858659 -0.0017503019934272 + 375 20 Se 4px -0.0000847386579780 -0.0008116249231366 + 376 20 Se 4d-2 0.0006132029039324 -0.0015283769342766 + 377 20 Se 4d-1 0.0022867690884986 -0.0036529010622598 + 378 20 Se 4d0 0.0019964654250230 -0.0015170032907561 + 379 20 Se 4d+1 -0.0011293018856326 -0.0013854914668177 + 380 20 Se 4d+2 -0.0004450103873712 -0.0003493188267734 + + 381 21 Se 2s 0.0409011734496621 -0.0371134645172788 + 382 21 Se 3s -0.0010055840174884 0.0005603865851852 + 383 21 Se 3py 0.0169334601525405 -0.0067595815626349 + 384 21 Se 3pz 0.0010765472253803 -0.0074624226324161 + 385 21 Se 3px -0.0002359333799359 0.0094564097613575 + 386 21 Se 4py 0.0004371043335602 -0.0010429214541304 + 387 21 Se 4pz 0.0007094299833316 0.0008429581467044 + 388 21 Se 4px 0.0003159329994589 -0.0000627517603302 + 389 21 Se 4d-2 0.0012770292727600 -0.0008224546828945 + 390 21 Se 4d-1 0.0018065034250400 0.0030880584727846 + 391 21 Se 4d0 -0.0014369270261601 0.0012275350804679 + 392 21 Se 4d+1 0.0012710580698023 -0.0005725467814371 + 393 21 Se 4d+2 0.0022728243734979 0.0014802594297552 + + 394 22 Cd 2s -0.0045934122170997 -0.0219193042021085 + 395 22 Cd 3s -0.0004550945335537 0.0001616081696662 + 396 22 Cd 3py -0.0030268026881869 0.0143683560502590 + 397 22 Cd 3pz -0.0012617422633913 0.0048320000318953 + 398 22 Cd 3px -0.0003071967195120 -0.0034085089725232 + 399 22 Cd 4py 0.0001833248605907 0.0003988928795103 + 400 22 Cd 4pz 0.0002787569477842 0.0003413755761432 + 401 22 Cd 4px 0.0000074239594707 -0.0003019329577437 + 402 22 Cd 4d-2 -0.0826278684444473 -0.0337167083139275 + 403 22 Cd 4d-1 -0.0075001119007262 -0.2651487746800079 + 404 22 Cd 4d0 -0.1621888347176720 0.2761660387860919 + 405 22 Cd 4d+1 0.0201706632608023 0.0315460879438787 + 406 22 Cd 4d+2 -0.1844040381315669 0.2317888099253232 + 407 22 Cd 5d-2 -0.0008189125558704 -0.0007063000801597 + 408 22 Cd 5d-1 -0.0001558869476897 0.0005125106521980 + 409 22 Cd 5d0 -0.0012853059313967 0.0068395778963352 + 410 22 Cd 5d+1 0.0015402547809155 -0.0007293480565597 + 411 22 Cd 5d+2 -0.0030024460136559 0.0060398816130936 + 412 22 Cd 5f-3 -0.0001613703938313 -0.0003585304492602 + 413 22 Cd 5f-2 -0.0000975431675243 -0.0008130408965347 + 414 22 Cd 5f-1 0.0003156117514099 -0.0003483946331979 + 415 22 Cd 5f0 -0.0002849328271539 0.0008658861101753 + 416 22 Cd 5f+1 0.0010166584819747 -0.0002524177951501 + 417 22 Cd 5f+2 -0.0000945494925693 0.0003330697854737 + 418 22 Cd 5f+3 -0.0011962407569874 0.0011097538597138 + + 419 23 Se 2s 0.0334777274030840 -0.0040732665657030 + 420 23 Se 3s -0.0006219216545852 0.0001886128497515 + 421 23 Se 3py -0.0049461041288717 0.0250401637153718 + 422 23 Se 3pz -0.0130859741775085 0.0136477152120485 + 423 23 Se 3px -0.0021007304061518 0.0010565657922511 + 424 23 Se 4py -0.0004756677948019 0.0001468099766551 + 425 23 Se 4pz -0.0009022397173344 0.0006487140769407 + 426 23 Se 4px 0.0001530602231800 -0.0002079655499360 + 427 23 Se 4d-2 -0.0003986847561870 0.0002643618885998 + 428 23 Se 4d-1 -0.0004835011365996 0.0021319236587582 + 429 23 Se 4d0 -0.0013669025462413 0.0024031820101422 + 430 23 Se 4d+1 -0.0015302386278306 0.0014395954198903 + 431 23 Se 4d+2 0.0013863127950362 -0.0006342784954675 + + 432 24 Se 2s 0.0154804515990779 -0.0168596695897441 + 433 24 Se 3s -0.0000531752757910 0.0003424054772547 + 434 24 Se 3py 0.0005753946121613 0.0021475842608886 + 435 24 Se 3pz 0.0031834610113468 -0.0067537941093136 + 436 24 Se 3px -0.0057173361523845 0.0022401353725343 + 437 24 Se 4py -0.0003932960917144 0.0001122785443722 + 438 24 Se 4pz 0.0007994130751212 -0.0004177077483538 + 439 24 Se 4px -0.0004085331172203 0.0002660427346182 + 440 24 Se 4d-2 0.0006948687627725 -0.0004683919306503 + 441 24 Se 4d-1 -0.0007790313850702 0.0013220370199322 + 442 24 Se 4d0 0.0010401391942823 0.0002624242205811 + 443 24 Se 4d+1 0.0018412225664626 -0.0019031415709207 + 444 24 Se 4d+2 -0.0007456636187436 0.0003972759067728 + + 445 25 Cd 2s -0.0092246997442734 0.0093099952096621 + 446 25 Cd 3s 0.0007131901732985 0.0006493103139230 + 447 25 Cd 3py -0.0023683804925333 0.0081542065108464 + 448 25 Cd 3pz 0.0009522051947259 -0.0009394995528370 + 449 25 Cd 3px -0.0042625719350610 0.0047396724347092 + 450 25 Cd 4py 0.0001980460775304 0.0012619698557924 + 451 25 Cd 4pz 0.0007250811963587 -0.0002357202216060 + 452 25 Cd 4px 0.0000410173555865 0.0001565876432738 + 453 25 Cd 4d-2 -0.2219581043856561 0.2291950120002928 + 454 25 Cd 4d-1 -0.0109499142462956 0.1422905721776538 + 455 25 Cd 4d0 -0.1063308325528857 -0.3505227990969429 + 456 25 Cd 4d+1 0.1788539679739024 -0.2941927392632571 + 457 25 Cd 4d+2 0.1975007344726552 -0.3635643343619764 + 458 25 Cd 5d-2 -0.0004940385013162 0.0021488766863292 + 459 25 Cd 5d-1 0.0006182867088638 0.0031071273345004 + 460 25 Cd 5d0 0.0012327415373924 -0.0032525657052837 + 461 25 Cd 5d+1 -0.0002428186568113 -0.0005750536760297 + 462 25 Cd 5d+2 0.0001919604066804 -0.0018243359655378 + 463 25 Cd 5f-3 0.0000195961199214 -0.0000894366447706 + 464 25 Cd 5f-2 -0.0003494080558732 0.0005990939894758 + 465 25 Cd 5f-1 0.0002248632428647 -0.0003094928833942 + 466 25 Cd 5f0 -0.0003310912947968 -0.0006284966329355 + 467 25 Cd 5f+1 0.0002458949078374 -0.0005944265471825 + 468 25 Cd 5f+2 0.0002989333730845 -0.0009149746049936 + 469 25 Cd 5f+3 -0.0001378065492996 -0.0006248307072598 + + 470 26 Cd 2s -0.0033625769390650 0.0042145159445456 + 471 26 Cd 3s 0.0003043934073691 -0.0008062562441519 + 472 26 Cd 3py 0.0037773232896023 -0.0004287068110842 + 473 26 Cd 3pz 0.0028091460105924 0.0006372307984693 + 474 26 Cd 3px 0.0017690898535464 -0.0010780971153150 + 475 26 Cd 4py 0.0014512509846875 -0.0005124100357050 + 476 26 Cd 4pz 0.0007374247822541 -0.0004185433458052 + 477 26 Cd 4px 0.0006564492916500 -0.0006389678021498 + 478 26 Cd 4d-2 -0.0086075043586489 0.0235396167265288 + 479 26 Cd 4d-1 -0.0118175050451077 0.0192797113021429 + 480 26 Cd 4d0 0.0141945057835561 -0.0153228334187003 + 481 26 Cd 4d+1 0.0108257708540783 0.0272873129150158 + 482 26 Cd 4d+2 0.0368463789297232 -0.0251223480261429 + 483 26 Cd 5d-2 0.0015916560163579 0.0004936140853288 + 484 26 Cd 5d-1 -0.0010162368721404 0.0003883549328172 + 485 26 Cd 5d0 -0.0001237578427267 0.0003035339874157 + 486 26 Cd 5d+1 0.0016778123859949 0.0006404894057846 + 487 26 Cd 5d+2 0.0022904420627204 -0.0013973112559317 + 488 26 Cd 5f-3 0.0000293890884110 0.0003076996981599 + 489 26 Cd 5f-2 -0.0002220020467502 -0.0001480044331736 + 490 26 Cd 5f-1 -0.0002535964270025 -0.0001354244997996 + 491 26 Cd 5f0 -0.0002477165438652 -0.0002837251406579 + 492 26 Cd 5f+1 -0.0000072494416548 0.0002596656145082 + 493 26 Cd 5f+2 0.0003600875828385 0.0002897072899145 + 494 26 Cd 5f+3 0.0001927532497539 -0.0000715544907360 + + 61 62 + -0.4579211067039030 -0.4566894178541459 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0042666034679131 0.0106775623104055 + 2 1 Cd 3s 0.0006437269288932 -0.0002154265565807 + 3 1 Cd 3py 0.0034215677389474 0.0016299522305228 + 4 1 Cd 3pz 0.0002216562283604 -0.0024600787882309 + 5 1 Cd 3px 0.0024574401723389 -0.0037136904290120 + 6 1 Cd 4py 0.0011675545107208 -0.0002236140391566 + 7 1 Cd 4pz 0.0005482215820142 -0.0016200386332347 + 8 1 Cd 4px -0.0004525955815799 -0.0012796949884539 + 9 1 Cd 4d-2 0.0025566293291257 -0.0870787500305890 + 10 1 Cd 4d-1 0.0069725010855896 -0.1075585434063823 + 11 1 Cd 4d0 0.0010706166145268 -0.0592061034558817 + 12 1 Cd 4d+1 0.0565551994638392 -0.0509303641873215 + 13 1 Cd 4d+2 0.0888248016444139 0.0119045217517699 + 14 1 Cd 5d-2 -0.0021324268618261 -0.0011698285516695 + 15 1 Cd 5d-1 -0.0002221098729161 -0.0011481232183343 + 16 1 Cd 5d0 0.0014224177754777 -0.0017919020955463 + 17 1 Cd 5d+1 -0.0001948069390996 0.0012442325933341 + 18 1 Cd 5d+2 -0.0011868084966605 0.0008797388040633 + 19 1 Cd 5f-3 0.0003675143344426 0.0001233600436295 + 20 1 Cd 5f-2 0.0003293812440177 -0.0003504399907049 + 21 1 Cd 5f-1 0.0000048782907514 -0.0005030781578507 + 22 1 Cd 5f0 -0.0002307466334971 0.0008865339201018 + 23 1 Cd 5f+1 -0.0003394306052655 0.0005520848912963 + 24 1 Cd 5f+2 -0.0002292494635979 0.0006841668578227 + 25 1 Cd 5f+3 0.0007597283455235 0.0003453200555794 + + 26 2 Cd 2s -0.0000509658332797 0.0115642845556575 + 27 2 Cd 3s -0.0004502723589373 0.0005595652559123 + 28 2 Cd 3py -0.0010135019372000 0.0019541090293353 + 29 2 Cd 3pz 0.0041726012782776 -0.0056418721157555 + 30 2 Cd 3px -0.0048562814886158 -0.0001316580740719 + 31 2 Cd 4py 0.0000063864494106 0.0005450189163792 + 32 2 Cd 4pz 0.0008351527329540 -0.0008729580160679 + 33 2 Cd 4px -0.0002748916494270 -0.0002641002075310 + 34 2 Cd 4d-2 0.0036336849944261 0.0367219788439357 + 35 2 Cd 4d-1 0.0642028001534254 -0.0375767351914345 + 36 2 Cd 4d0 0.0257905364315306 0.0376698094529906 + 37 2 Cd 4d+1 0.0805859573998091 -0.1078219447726767 + 38 2 Cd 4d+2 0.0186803938085815 0.0416830678792232 + 39 2 Cd 5d-2 -0.0000661521331958 0.0017941832263962 + 40 2 Cd 5d-1 0.0003223913809500 -0.0004666042405094 + 41 2 Cd 5d0 -0.0016772865086572 0.0014722107906273 + 42 2 Cd 5d+1 0.0011756372358701 -0.0018267631718656 + 43 2 Cd 5d+2 0.0004962685901436 0.0011797414727783 + 44 2 Cd 5f-3 -0.0001267317408285 0.0000248665175420 + 45 2 Cd 5f-2 -0.0003449007519703 -0.0001915403383408 + 46 2 Cd 5f-1 -0.0001147509872336 0.0000280638898673 + 47 2 Cd 5f0 0.0001810710256983 -0.0001432524410434 + 48 2 Cd 5f+1 -0.0001097407370368 0.0004599443039517 + 49 2 Cd 5f+2 -0.0001324124996071 0.0004599130441457 + 50 2 Cd 5f+3 -0.0001361608760384 -0.0003507379937962 + + 51 3 Cd 2s -0.0029459487545649 0.0020426268175501 + 52 3 Cd 3s 0.0006485301775984 0.0001336393334756 + 53 3 Cd 3py 0.0008229169050123 0.0004250692132589 + 54 3 Cd 3pz -0.0019690028419014 0.0002524854648281 + 55 3 Cd 3px -0.0012515652734006 0.0008153139300860 + 56 3 Cd 4py 0.0000257746718336 0.0000650145233503 + 57 3 Cd 4pz -0.0010844237376455 0.0006407466480207 + 58 3 Cd 4px -0.0001317987550879 0.0008716364971144 + 59 3 Cd 4d-2 0.0058125743841162 0.0066420061735851 + 60 3 Cd 4d-1 -0.0004792534658035 -0.0050183727599798 + 61 3 Cd 4d0 -0.0018962523976959 -0.0064309488856808 + 62 3 Cd 4d+1 -0.0200854484546850 0.0036479650408654 + 63 3 Cd 4d+2 0.0077644500808351 0.0208183274780207 + 64 3 Cd 5d-2 -0.0001641133033823 -0.0001188943431754 + 65 3 Cd 5d-1 -0.0020417411590788 0.0009079912744929 + 66 3 Cd 5d0 0.0003126811815224 0.0009805572090952 + 67 3 Cd 5d+1 0.0007433149274658 0.0000081812427244 + 68 3 Cd 5d+2 -0.0004998347055631 -0.0005584554388364 + 69 3 Cd 5f-3 -0.0001793036165808 0.0002626192282602 + 70 3 Cd 5f-2 0.0001904816153145 0.0003562142671274 + 71 3 Cd 5f-1 0.0001344054696557 0.0001366580760930 + 72 3 Cd 5f0 -0.0000782132408127 -0.0003210867874683 + 73 3 Cd 5f+1 0.0003184745504954 0.0003037883460666 + 74 3 Cd 5f+2 0.0002330736932829 0.0001382844098229 + 75 3 Cd 5f+3 0.0001414176053344 0.0003067965413488 + + 76 4 Se 2s 0.0435940931186260 -0.0531152813410602 + 77 4 Se 3s -0.0011211671349011 0.0006916595369042 + 78 4 Se 3py 0.0106526229738898 0.0143721822762552 + 79 4 Se 3pz 0.0055573355893312 -0.0027496908267543 + 80 4 Se 3px 0.0078672209615703 -0.0257497202083460 + 81 4 Se 4py 0.0006321821118825 -0.0003843686591156 + 82 4 Se 4pz 0.0005150700651365 -0.0012163675017406 + 83 4 Se 4px -0.0000785183068464 -0.0000954289739363 + 84 4 Se 4d-2 -0.0029135178496113 -0.0001514899260633 + 85 4 Se 4d-1 -0.0013479692442704 -0.0035091117188402 + 86 4 Se 4d0 -0.0022574676861052 0.0014357665898651 + 87 4 Se 4d+1 -0.0008529779864925 0.0034185099322144 + 88 4 Se 4d+2 -0.0011790519171352 0.0038837852597957 + + 89 5 Se 2s 0.0139719025608971 -0.0017743471630651 + 90 5 Se 3s -0.0001599550814069 -0.0000274261866046 + 91 5 Se 3py -0.0064879649772722 0.0025652349584544 + 92 5 Se 3pz 0.0026132796037325 0.0045314639270091 + 93 5 Se 3px -0.0023760764198500 0.0046016300116803 + 94 5 Se 4py -0.0004890131155266 -0.0001938440079048 + 95 5 Se 4pz 0.0005237946917902 0.0004866637974229 + 96 5 Se 4px -0.0002404619611152 0.0004267301442217 + 97 5 Se 4d-2 -0.0000461598779127 0.0008460750406531 + 98 5 Se 4d-1 0.0002562962894102 0.0012502926790782 + 99 5 Se 4d0 0.0006866436317941 -0.0001876209065699 + 100 5 Se 4d+1 -0.0003654441861638 -0.0003024838682104 + 101 5 Se 4d+2 0.0013542403910109 -0.0008052783556437 + + 102 6 Se 2s 0.0086330059021767 0.0155349959446261 + 103 6 Se 3s -0.0001733965626280 -0.0003823603179962 + 104 6 Se 3py -0.0008060810428579 -0.0078853618447580 + 105 6 Se 3pz -0.0007113379988560 0.0012040158503961 + 106 6 Se 3px 0.0037213252381593 0.0031431604335138 + 107 6 Se 4py -0.0002101205374647 0.0001622778764862 + 108 6 Se 4pz -0.0005649348962805 0.0001835764178072 + 109 6 Se 4px 0.0002237520760709 0.0002260844088070 + 110 6 Se 4d-2 0.0002774338975435 0.0010046107284381 + 111 6 Se 4d-1 0.0001043737032177 0.0004232173514193 + 112 6 Se 4d0 0.0002782999827733 0.0008664206807217 + 113 6 Se 4d+1 0.0000178273404617 -0.0002979043924178 + 114 6 Se 4d+2 -0.0002665904759963 0.0004305766788256 + + 115 7 Se 2s -0.0095794154735192 -0.0068831160225534 + 116 7 Se 3s -0.0000356002782643 0.0000976000849235 + 117 7 Se 3py 0.0017593234821622 -0.0017987213534636 + 118 7 Se 3pz -0.0025355039461897 -0.0017373756284900 + 119 7 Se 3px -0.0036305959013411 -0.0001615096952160 + 120 7 Se 4py -0.0000758208614528 -0.0000297887801128 + 121 7 Se 4pz -0.0000360270137056 -0.0002267636234356 + 122 7 Se 4px -0.0003763023047875 0.0004120522276472 + 123 7 Se 4d-2 0.0008111904332789 -0.0003653655144357 + 124 7 Se 4d-1 -0.0003137712811601 0.0004647617693899 + 125 7 Se 4d0 -0.0002523087833874 -0.0001923927702985 + 126 7 Se 4d+1 0.0005020533427864 0.0000325879463094 + 127 7 Se 4d+2 0.0005276887235776 -0.0003222241942899 + + 128 8 Cd 2s -0.0028028393631728 -0.0048546293058917 + 129 8 Cd 3s -0.0006612551998972 0.0002101893740815 + 130 8 Cd 3py -0.0024446618768140 -0.0022947278558839 + 131 8 Cd 3pz 0.0024536030037858 0.0004399604814291 + 132 8 Cd 3px 0.0010719096370126 0.0003892983837013 + 133 8 Cd 4py -0.0002107429816949 -0.0008263216175086 + 134 8 Cd 4pz 0.0007992521425061 -0.0000499087561944 + 135 8 Cd 4px -0.0006246891459648 -0.0004915648190245 + 136 8 Cd 4d-2 0.1082426814197859 0.0594815824102583 + 137 8 Cd 4d-1 0.0491415471326491 -0.0063569047668468 + 138 8 Cd 4d0 0.0827343991325930 0.0411050060153419 + 139 8 Cd 4d+1 -0.0225604109864080 -0.0552366363918042 + 140 8 Cd 4d+2 -0.0145246633810598 -0.0366871062146484 + 141 8 Cd 5d-2 -0.0001704626650812 -0.0007631990847627 + 142 8 Cd 5d-1 0.0004464157855625 0.0006546410319782 + 143 8 Cd 5d0 -0.0002939342279794 0.0015234059345703 + 144 8 Cd 5d+1 0.0005195623576925 -0.0010292587268502 + 145 8 Cd 5d+2 -0.0006063299561848 -0.0018529325062140 + 146 8 Cd 5f-3 0.0003435954583019 -0.0000325802298258 + 147 8 Cd 5f-2 0.0000818794143452 0.0002525324602424 + 148 8 Cd 5f-1 -0.0001175498222095 -0.0001067070737489 + 149 8 Cd 5f0 -0.0001993748106525 -0.0001419609539127 + 150 8 Cd 5f+1 0.0000581312749773 0.0003906396321150 + 151 8 Cd 5f+2 -0.0002511102662845 -0.0001358997824405 + 152 8 Cd 5f+3 -0.0002015036274091 -0.0004723235246418 + + 153 9 Cd 2s 0.0045636009359526 0.0004402948836225 + 154 9 Cd 3s -0.0002461879557157 0.0000186468717995 + 155 9 Cd 3py 0.0019808338642235 -0.0001948511660851 + 156 9 Cd 3pz -0.0022888180182253 0.0002499476648690 + 157 9 Cd 3px -0.0007472715477001 -0.0016864695195338 + 158 9 Cd 4py -0.0000770355415140 -0.0000283001692079 + 159 9 Cd 4pz -0.0002508137570331 -0.0000830995645365 + 160 9 Cd 4px 0.0001008635896636 0.0001476993335175 + 161 9 Cd 4d-2 -0.0079068098636032 0.0004832280704983 + 162 9 Cd 4d-1 -0.0325616050813468 0.0021800713579491 + 163 9 Cd 4d0 -0.0019760553297533 -0.0026366653363381 + 164 9 Cd 4d+1 0.0069599368440541 0.0122435016866012 + 165 9 Cd 4d+2 -0.0048675097517288 0.0136672033540559 + 166 9 Cd 5d-2 -0.0005527956078418 -0.0000355277854725 + 167 9 Cd 5d-1 -0.0011142932191724 0.0002284843406201 + 168 9 Cd 5d0 0.0009182730670928 -0.0001492161699950 + 169 9 Cd 5d+1 0.0006273082398433 0.0007469799013020 + 170 9 Cd 5d+2 -0.0006185135511182 0.0004771051451749 + 171 9 Cd 5f-3 -0.0000374305331915 0.0001838697196597 + 172 9 Cd 5f-2 0.0002763891908110 0.0000880895079510 + 173 9 Cd 5f-1 0.0003027810152949 -0.0000911703763371 + 174 9 Cd 5f0 -0.0001238012734022 0.0000592405628779 + 175 9 Cd 5f+1 -0.0002235848618963 -0.0003011855318558 + 176 9 Cd 5f+2 0.0001617472122733 -0.0003768339341553 + 177 9 Cd 5f+3 0.0003423474455637 -0.0000534025712189 + + 178 10 Se 2s 0.0013230471978145 -0.0109021908338158 + 179 10 Se 3s -0.0001355630400255 0.0001004336966823 + 180 10 Se 3py -0.0003645759123077 0.0038104135916305 + 181 10 Se 3pz -0.0009036597023850 -0.0036248722908506 + 182 10 Se 3px -0.0043137546434717 -0.0018273966936362 + 183 10 Se 4py -0.0001119610459174 -0.0000880432621961 + 184 10 Se 4pz 0.0001469927411701 -0.0000187170666885 + 185 10 Se 4px -0.0004686527952164 -0.0000290734962735 + 186 10 Se 4d-2 -0.0003761820309996 -0.0003017692958814 + 187 10 Se 4d-1 0.0003705690601570 -0.0006522912427316 + 188 10 Se 4d0 0.0000474339737852 0.0002497562437438 + 189 10 Se 4d+1 0.0004204854973610 0.0002496213985167 + 190 10 Se 4d+2 -0.0006182954026479 -0.0004187940881629 + + 191 11 Se 2s 0.0135124159213830 -0.0106552452053245 + 192 11 Se 3s -0.0001718386484908 0.0001274667984596 + 193 11 Se 3py -0.0020268854412465 -0.0017430487981594 + 194 11 Se 3pz 0.0024719779770674 -0.0067554858257208 + 195 11 Se 3px 0.0046639411571314 0.0041843064681594 + 196 11 Se 4py -0.0000817643735693 0.0001992904138046 + 197 11 Se 4pz 0.0004672474932599 0.0005855565767803 + 198 11 Se 4px -0.0003425118662410 -0.0003831305834650 + 199 11 Se 4d-2 0.0009691709258925 -0.0002431221199038 + 200 11 Se 4d-1 0.0001707416553380 0.0003087552021197 + 201 11 Se 4d0 -0.0001737785843028 0.0008489912693607 + 202 11 Se 4d+1 0.0002303934622384 -0.0008954481878426 + 203 11 Se 4d+2 -0.0002195544559502 -0.0002704976348830 + + 204 12 Cd 2s 0.0013937099575880 0.0014799217321987 + 205 12 Cd 3s 0.0000133643364724 0.0005570698265026 + 206 12 Cd 3py 0.0005008529343829 -0.0022644270370375 + 207 12 Cd 3pz -0.0030104138075680 -0.0031482565454388 + 208 12 Cd 3px -0.0011271073081864 -0.0002295152492005 + 209 12 Cd 4py 0.0005258348966990 0.0003621241038504 + 210 12 Cd 4pz -0.0004520802336177 -0.0010064198528460 + 211 12 Cd 4px -0.0001771914176856 -0.0002859692299870 + 212 12 Cd 4d-2 0.0241357498257580 -0.0116089677691253 + 213 12 Cd 4d-1 -0.0062131511117656 0.0379790789178740 + 214 12 Cd 4d0 0.0371867738027665 0.0056367064792935 + 215 12 Cd 4d+1 0.0335801331819260 -0.0225366574476961 + 216 12 Cd 4d+2 0.0423990748818012 0.0219170636999168 + 217 12 Cd 5d-2 0.0009512768473565 -0.0001307075671184 + 218 12 Cd 5d-1 -0.0010419809993917 0.0004096929106176 + 219 12 Cd 5d0 0.0016606146949421 0.0015058631830750 + 220 12 Cd 5d+1 0.0009080308225475 -0.0006446086461291 + 221 12 Cd 5d+2 0.0007804588292028 0.0002248772637230 + 222 12 Cd 5f-3 0.0000103708460547 -0.0001388583807623 + 223 12 Cd 5f-2 0.0000480013799880 -0.0000529805801611 + 224 12 Cd 5f-1 0.0000727052411697 -0.0005296992140851 + 225 12 Cd 5f0 -0.0000764403008446 -0.0001720843270565 + 226 12 Cd 5f+1 -0.0002444577117692 0.0003101174279417 + 227 12 Cd 5f+2 -0.0000031189636063 -0.0001982000266731 + 228 12 Cd 5f+3 0.0003455366632730 0.0001033216728610 + + 229 13 Cd 2s -0.0064810594710597 -0.0067829915079086 + 230 13 Cd 3s -0.0004523539525568 0.0001280434229340 + 231 13 Cd 3py 0.0057274250580190 0.0062113839771973 + 232 13 Cd 3pz -0.0004725523989101 0.0060459901409426 + 233 13 Cd 3px 0.0037494472879184 -0.0017546484610443 + 234 13 Cd 4py 0.0003550304350496 0.0008418446144970 + 235 13 Cd 4pz 0.0002560087338670 0.0011747089086714 + 236 13 Cd 4px 0.0016473967224558 -0.0009541521296668 + 237 13 Cd 4d-2 0.1181298143844214 -0.0997005915424088 + 238 13 Cd 4d-1 0.3996626873885194 0.2287955217767458 + 239 13 Cd 4d0 -0.0747774259138219 -0.0806951901935757 + 240 13 Cd 4d+1 0.1770069617119125 0.3215193218010240 + 241 13 Cd 4d+2 -0.3237509910169654 0.0337796328002489 + 242 13 Cd 5d-2 -0.0037506359306188 0.0036240995980465 + 243 13 Cd 5d-1 -0.0014491505167905 -0.0017147057132235 + 244 13 Cd 5d0 0.0023998809565979 0.0023556289565921 + 245 13 Cd 5d+1 -0.0005129584940014 0.0019904816823053 + 246 13 Cd 5d+2 0.0008515755743010 0.0024642403345062 + 247 13 Cd 5f-3 -0.0004257148621756 0.0002988251727414 + 248 13 Cd 5f-2 -0.0000074406621052 0.0004901946500555 + 249 13 Cd 5f-1 -0.0011238987518273 -0.0000855084321285 + 250 13 Cd 5f0 0.0001638393714510 -0.0003814581441799 + 251 13 Cd 5f+1 -0.0009851599956798 0.0003024870189688 + 252 13 Cd 5f+2 -0.0002738121838382 0.0004904014280596 + 253 13 Cd 5f+3 -0.0001633255115707 0.0007769860256436 + + 254 14 Cd 2s 0.0049246031138413 0.0070763175729411 + 255 14 Cd 3s -0.0015231521723490 -0.0008911172980634 + 256 14 Cd 3py 0.0007319276002019 -0.0011204160025126 + 257 14 Cd 3pz -0.0010577460329556 -0.0009579454513248 + 258 14 Cd 3px -0.0004203855411299 0.0002560308081144 + 259 14 Cd 4py -0.0000857020654207 -0.0001731636786037 + 260 14 Cd 4pz 0.0012034544408902 0.0009261807256923 + 261 14 Cd 4px 0.0002367456834501 -0.0002445645250507 + 262 14 Cd 4d-2 -0.0073601405830655 -0.0146381518603034 + 263 14 Cd 4d-1 -0.0120512090056272 -0.0038967814626393 + 264 14 Cd 4d0 0.0458648400107933 0.0339381747572035 + 265 14 Cd 4d+1 0.0292519974592788 0.0146231129106580 + 266 14 Cd 4d+2 -0.0043184216285443 -0.0049717105842035 + 267 14 Cd 5d-2 0.0003224292836961 -0.0002093770064065 + 268 14 Cd 5d-1 -0.0002640066864480 -0.0004320268772083 + 269 14 Cd 5d0 -0.0001835807988195 -0.0001515800143882 + 270 14 Cd 5d+1 0.0001236497298270 0.0009580086822911 + 271 14 Cd 5d+2 -0.0002020851587874 -0.0006065290050423 + 272 14 Cd 5f-3 0.0001239957914148 0.0002797191861661 + 273 14 Cd 5f-2 -0.0002953789095063 -0.0002601388206911 + 274 14 Cd 5f-1 0.0000345291359338 -0.0000653740276978 + 275 14 Cd 5f0 0.0003272391174192 0.0000053835435049 + 276 14 Cd 5f+1 0.0000990690559523 -0.0002438423042820 + 277 14 Cd 5f+2 -0.0000902900350237 -0.0000102962683986 + 278 14 Cd 5f+3 0.0001849747670218 0.0000361134515152 + + 279 15 Se 2s -0.0631541448401196 -0.0349928423111483 + 280 15 Se 3s 0.0008575756627105 0.0007593074464057 + 281 15 Se 3py -0.0158027596638834 -0.0089720727352501 + 282 15 Se 3pz -0.0046969493526403 -0.0097181719958205 + 283 15 Se 3px 0.0087210936447989 -0.0002512844184548 + 284 15 Se 4py 0.0006919558443199 0.0001903025358489 + 285 15 Se 4pz 0.0012209157911180 0.0000475535260150 + 286 15 Se 4px 0.0009521756899318 0.0017995612285884 + 287 15 Se 4d-2 0.0001389410450779 0.0003046128066237 + 288 15 Se 4d-1 0.0004544538271974 0.0021378551378991 + 289 15 Se 4d0 -0.0033353106430793 -0.0007085239691702 + 290 15 Se 4d+1 0.0000468375870777 -0.0001562694687346 + 291 15 Se 4d+2 0.0018029951838278 0.0005797244512248 + + 292 16 Se 2s -0.0527186294212425 -0.0007792263821518 + 293 16 Se 3s 0.0016198988939263 0.0001128896415505 + 294 16 Se 3py -0.0114217651920196 0.0183880793763306 + 295 16 Se 3pz 0.0420096105489123 -0.0048346743893063 + 296 16 Se 3px -0.0100615658926117 -0.0264736301737824 + 297 16 Se 4py -0.0004823193782117 0.0014543791174172 + 298 16 Se 4pz 0.0015879464663330 0.0003624259499336 + 299 16 Se 4px -0.0011154613710588 -0.0010995724311639 + 300 16 Se 4d-2 -0.0010067866271517 -0.0017966495846413 + 301 16 Se 4d-1 -0.0069835267509726 0.0006933401074630 + 302 16 Se 4d0 0.0046152845028347 0.0011788276534465 + 303 16 Se 4d+1 -0.0101090427519719 -0.0000915061914811 + 304 16 Se 4d+2 0.0003075511689562 0.0114788854791429 + + 305 17 Cd 2s -0.0114085009459566 -0.0013282910627441 + 306 17 Cd 3s 0.0004957877935492 0.0012691464335392 + 307 17 Cd 3py 0.0003587257469755 -0.0067953251910182 + 308 17 Cd 3pz -0.0025354680224504 -0.0044242887474441 + 309 17 Cd 3px 0.0024797628137917 0.0017905416624328 + 310 17 Cd 4py -0.0000387752666212 -0.0019356375774008 + 311 17 Cd 4pz 0.0005615628522499 -0.0008196211024699 + 312 17 Cd 4px -0.0016363912107941 0.0000114557674930 + 313 17 Cd 4d-2 -0.0108766722703736 0.0198658328192858 + 314 17 Cd 4d-1 0.4035462979790957 -0.1057852133361011 + 315 17 Cd 4d0 0.0731128163663523 -0.0722279685426481 + 316 17 Cd 4d+1 0.3389671156587886 -0.1910973016469064 + 317 17 Cd 4d+2 0.1519036477159249 -0.7038590953331664 + 318 17 Cd 5d-2 -0.0039625766895710 0.0046336985965874 + 319 17 Cd 5d-1 -0.0006860378069006 0.0000790570299876 + 320 17 Cd 5d0 0.0000269802598360 -0.0026770289839054 + 321 17 Cd 5d+1 0.0006826781454881 0.0019446949472973 + 322 17 Cd 5d+2 0.0003897042208139 -0.0011169182067230 + 323 17 Cd 5f-3 -0.0001646970133250 0.0007672507993300 + 324 17 Cd 5f-2 -0.0007576269478005 0.0001178490387727 + 325 17 Cd 5f-1 -0.0007897894432258 0.0007989651284844 + 326 17 Cd 5f0 -0.0003009984284285 0.0001837358423915 + 327 17 Cd 5f+1 0.0000966377619754 0.0007367744803111 + 328 17 Cd 5f+2 -0.0000115956057672 0.0010597220381748 + 329 17 Cd 5f+3 0.0004075207605253 -0.0000945178170870 + + 330 18 Cd 2s 0.0007861852439249 0.0144162363650321 + 331 18 Cd 3s 0.0000113523837787 -0.0009178808012662 + 332 18 Cd 3py 0.0004834123142747 0.0028980342510025 + 333 18 Cd 3pz -0.0001214437872509 -0.0027088899081705 + 334 18 Cd 3px -0.0017052719499882 -0.0031470375506526 + 335 18 Cd 4py -0.0004244005216556 -0.0003036294671069 + 336 18 Cd 4pz -0.0000284295574679 0.0012908632293201 + 337 18 Cd 4px -0.0002001299998263 0.0005683520798303 + 338 18 Cd 4d-2 -0.0165056880013346 -0.0707317325236198 + 339 18 Cd 4d-1 -0.0026594534550860 -0.0636854977087993 + 340 18 Cd 4d0 -0.0294284410054260 0.0612629759716343 + 341 18 Cd 4d+1 -0.0106884605867138 0.0764784925180405 + 342 18 Cd 4d+2 -0.0034835359716477 0.0079504408073289 + 343 18 Cd 5d-2 -0.0011069712613071 -0.0010278669647711 + 344 18 Cd 5d-1 0.0000803386199555 -0.0005080947702180 + 345 18 Cd 5d0 0.0000437311856140 0.0011695496871375 + 346 18 Cd 5d+1 0.0006122549102051 0.0006208326138753 + 347 18 Cd 5d+2 0.0009571361788850 -0.0006413119351152 + 348 18 Cd 5f-3 0.0004829485448110 -0.0001107930153327 + 349 18 Cd 5f-2 0.0003775677480716 -0.0000192137964427 + 350 18 Cd 5f-1 0.0002586089859780 -0.0000125264007830 + 351 18 Cd 5f0 -0.0000884913562813 0.0002177726942444 + 352 18 Cd 5f+1 0.0001493646814555 0.0004899494275437 + 353 18 Cd 5f+2 0.0000483322872775 -0.0002725112164854 + 354 18 Cd 5f+3 0.0002285008198392 0.0001700439764342 + + 355 19 Se 2s 0.0271741360607224 -0.1198654639093048 + 356 19 Se 3s -0.0005105096511942 0.0020533829305269 + 357 19 Se 3py -0.0021693928267060 0.0358139897993304 + 358 19 Se 3pz -0.0189809591209547 0.0134122558147695 + 359 19 Se 3px -0.0044634871335801 0.0309686399382314 + 360 19 Se 4py 0.0002543137050359 0.0006927913814208 + 361 19 Se 4pz -0.0009849444220486 0.0014720058465186 + 362 19 Se 4px -0.0001001704657905 0.0001465776552005 + 363 19 Se 4d-2 -0.0019992689802138 0.0070704623405406 + 364 19 Se 4d-1 -0.0040581958309417 0.0039823446370706 + 365 19 Se 4d0 0.0008444846334833 -0.0031643571368726 + 366 19 Se 4d+1 -0.0013224054271119 0.0005031181373170 + 367 19 Se 4d+2 -0.0017119626091175 0.0005896343424184 + + 368 20 Se 2s -0.0070372715503715 0.0085242793257741 + 369 20 Se 3s 0.0000816620558267 -0.0006811282443401 + 370 20 Se 3py -0.0063940169160488 0.0060231647761279 + 371 20 Se 3pz -0.0009033429807019 0.0025295425326674 + 372 20 Se 3px 0.0022085488582291 -0.0076088921630681 + 373 20 Se 4py 0.0013618584248847 -0.0016274499960880 + 374 20 Se 4pz 0.0007528752206702 -0.0017369251326734 + 375 20 Se 4px -0.0002006553377597 -0.0002916919557156 + 376 20 Se 4d-2 0.0007073996135067 -0.0024264128856104 + 377 20 Se 4d-1 0.0018624997638272 -0.0009498913839115 + 378 20 Se 4d0 0.0018968485907979 0.0001066709428688 + 379 20 Se 4d+1 -0.0006555084523469 -0.0003363940717048 + 380 20 Se 4d+2 0.0006360424755234 -0.0003352063408305 + + 381 21 Se 2s 0.0728440993677578 0.0474285988144543 + 382 21 Se 3s -0.0011037541671765 -0.0007384602349198 + 383 21 Se 3py 0.0056500392795518 0.0060958246649501 + 384 21 Se 3pz 0.0184311370861441 0.0148089709312827 + 385 21 Se 3px -0.0222596760308487 -0.0157655965109494 + 386 21 Se 4py 0.0012927781942829 -0.0000010612171706 + 387 21 Se 4pz -0.0008721510520895 0.0000906892846137 + 388 21 Se 4px 0.0004593218969068 0.0000719010527354 + 389 21 Se 4d-2 0.0019527656136295 0.0016670608213582 + 390 21 Se 4d-1 0.0002656250161729 -0.0008924537791833 + 391 21 Se 4d0 -0.0031969296721775 -0.0023058745191341 + 392 21 Se 4d+1 0.0021652052579598 0.0021599093109700 + 393 21 Se 4d+2 -0.0004122342422610 0.0000480979315218 + + 394 22 Cd 2s 0.0155488783510956 -0.0115023477549199 + 395 22 Cd 3s 0.0001468646225884 0.0002373227362630 + 396 22 Cd 3py -0.0004000488665706 0.0031449726759104 + 397 22 Cd 3pz 0.0000927411992109 0.0066277997570434 + 398 22 Cd 3px 0.0107489459392743 0.0028574877903658 + 399 22 Cd 4py 0.0007237283037774 0.0006486915407846 + 400 22 Cd 4pz -0.0007615849963865 -0.0005356994695707 + 401 22 Cd 4px 0.0025183798261563 0.0017508349081557 + 402 22 Cd 4d-2 0.2785352528894761 -0.0359488095095404 + 403 22 Cd 4d-1 0.0276650383963535 -0.0012675033036790 + 404 22 Cd 4d0 -0.2199917401527528 -0.2001238669890657 + 405 22 Cd 4d+1 0.1721174524802313 0.1560077833709586 + 406 22 Cd 4d+2 0.0181735025179686 -0.0539719669289128 + 407 22 Cd 5d-2 0.0036166562142289 0.0009010589653615 + 408 22 Cd 5d-1 -0.0010873491168316 -0.0026283834795352 + 409 22 Cd 5d0 -0.0067350776863026 -0.0039872359074423 + 410 22 Cd 5d+1 0.0026872508399749 0.0034461794595166 + 411 22 Cd 5d+2 0.0004870484694292 -0.0007735957795442 + 412 22 Cd 5f-3 0.0001913363898978 -0.0004783841817715 + 413 22 Cd 5f-2 0.0015137480002251 -0.0003042194919187 + 414 22 Cd 5f-1 -0.0006721230616309 -0.0000030674960674 + 415 22 Cd 5f0 -0.0010198922798750 -0.0013986305373298 + 416 22 Cd 5f+1 0.0004893604669755 0.0003572914413185 + 417 22 Cd 5f+2 -0.0002096681792432 -0.0002775694101719 + 418 22 Cd 5f+3 0.0001674783675277 -0.0003530282134972 + + 419 23 Se 2s 0.0250735104278254 0.0720525311575905 + 420 23 Se 3s -0.0002220114294720 -0.0011789802168575 + 421 23 Se 3py -0.0086494649408995 0.0216945169254946 + 422 23 Se 3pz -0.0133197526791185 -0.0032125247682965 + 423 23 Se 3px -0.0026178795334217 -0.0101676465836054 + 424 23 Se 4py 0.0002327826849660 0.0017543534089081 + 425 23 Se 4pz -0.0000116160034923 0.0004727384813245 + 426 23 Se 4px -0.0006435368964952 0.0003487552619528 + 427 23 Se 4d-2 -0.0033483086713579 0.0035110475968364 + 428 23 Se 4d-1 0.0007423194121592 -0.0006434320594971 + 429 23 Se 4d0 -0.0007394950352839 0.0008417656675768 + 430 23 Se 4d+1 -0.0021162401695038 -0.0005480825176128 + 431 23 Se 4d+2 -0.0000143415035154 0.0026162187518821 + + 432 24 Se 2s -0.0373934023104602 -0.0235949044357969 + 433 24 Se 3s 0.0010345481419890 0.0009999378755153 + 434 24 Se 3py 0.0048528231869367 0.0066267829190702 + 435 24 Se 3pz -0.0149735059608463 -0.0042582459012475 + 436 24 Se 3px 0.0145653285129246 0.0112642757965752 + 437 24 Se 4py 0.0009836742019231 0.0008170267773680 + 438 24 Se 4pz 0.0004936602278149 0.0001191797009884 + 439 24 Se 4px -0.0004773870157940 -0.0001373996687833 + 440 24 Se 4d-2 0.0023937798125305 0.0025759798546914 + 441 24 Se 4d-1 -0.0020515948759544 -0.0013019363763455 + 442 24 Se 4d0 0.0012669508197563 -0.0008897346660580 + 443 24 Se 4d+1 -0.0020495572641435 -0.0008893095059937 + 444 24 Se 4d+2 0.0012543544056258 0.0012072240358290 + + 445 25 Cd 2s -0.0044882208735916 0.0041255702611584 + 446 25 Cd 3s -0.0001061308307511 -0.0000357132356800 + 447 25 Cd 3py -0.0053060369160541 -0.0038920515397189 + 448 25 Cd 3pz -0.0010855402575357 -0.0083391684022861 + 449 25 Cd 3px 0.0017712662434919 0.0040068460244373 + 450 25 Cd 4py -0.0010357350391874 0.0016363922823866 + 451 25 Cd 4pz 0.0002041723236726 -0.0012118031516331 + 452 25 Cd 4px -0.0007287919267409 0.0000454824968267 + 453 25 Cd 4d-2 0.0480255122465057 -0.0494197710778697 + 454 25 Cd 4d-1 -0.0122151488451751 0.1128171620963758 + 455 25 Cd 4d0 -0.0530890703856453 0.1788114393002882 + 456 25 Cd 4d+1 -0.0899829732743383 -0.2107066441174414 + 457 25 Cd 4d+2 0.3515795384161094 0.0620599567568818 + 458 25 Cd 5d-2 0.0010092953451631 0.0021868716718025 + 459 25 Cd 5d-1 -0.0007631260195824 -0.0016658596494631 + 460 25 Cd 5d0 -0.0003608974242119 -0.0016557478703344 + 461 25 Cd 5d+1 -0.0016332691299194 -0.0038688496205420 + 462 25 Cd 5d+2 0.0043009850840307 0.0004136335794934 + 463 25 Cd 5f-3 0.0004096257552719 0.0000181889792589 + 464 25 Cd 5f-2 0.0001925961785657 -0.0000925897991730 + 465 25 Cd 5f-1 0.0001275281449017 0.0001153312034456 + 466 25 Cd 5f0 0.0000841749191297 0.0008869216552615 + 467 25 Cd 5f+1 -0.0005390977365495 0.0000055756337909 + 468 25 Cd 5f+2 -0.0000807226958249 -0.0004445047086827 + 469 25 Cd 5f+3 0.0007992503786986 -0.0002744473465361 + + 470 26 Cd 2s -0.0081011058362253 -0.0068845073300950 + 471 26 Cd 3s 0.0005462486622393 0.0011670816490036 + 472 26 Cd 3py -0.0030004522885446 -0.0003697012767237 + 473 26 Cd 3pz 0.0013286709897766 0.0003095007616648 + 474 26 Cd 3px -0.0023171106083171 -0.0013698186124046 + 475 26 Cd 4py 0.0020896257267081 0.0015492350125927 + 476 26 Cd 4pz 0.0008723719823156 0.0001765141638136 + 477 26 Cd 4px 0.0010032766185388 0.0010840972433797 + 478 26 Cd 4d-2 -0.0507376382509121 -0.0146524828755574 + 479 26 Cd 4d-1 -0.0165124744579932 -0.0217446759229826 + 480 26 Cd 4d0 0.0053649417214071 0.0070444320729338 + 481 26 Cd 4d+1 -0.0091185092267001 0.0020673250426383 + 482 26 Cd 4d+2 -0.0150745030065538 -0.0024222276001981 + 483 26 Cd 5d-2 -0.0008689996400121 0.0005023866374268 + 484 26 Cd 5d-1 -0.0005876385950475 -0.0004169292881585 + 485 26 Cd 5d0 0.0000283654316290 0.0004127966198419 + 486 26 Cd 5d+1 0.0008985125397568 0.0003276770609286 + 487 26 Cd 5d+2 0.0005913751460268 0.0007006664493014 + 488 26 Cd 5f-3 -0.0004267913556049 0.0000652695192826 + 489 26 Cd 5f-2 0.0000859505104548 -0.0000416787823128 + 490 26 Cd 5f-1 -0.0003207228396375 -0.0004267776810674 + 491 26 Cd 5f0 -0.0003430588140423 -0.0005270413689022 + 492 26 Cd 5f+1 -0.0002365683128477 0.0000358332841780 + 493 26 Cd 5f+2 -0.0002477564585529 -0.0001424215398125 + 494 26 Cd 5f+3 -0.0004009915170004 -0.0001720881986743 + + 63 64 + -0.4555546195342370 -0.4550584704631336 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0112868632899879 0.0077284802494216 + 2 1 Cd 3s -0.0002887681374422 -0.0024459524073226 + 3 1 Cd 3py -0.0008266662613989 0.0059644523038438 + 4 1 Cd 3pz 0.0033707289918211 0.0011348250273063 + 5 1 Cd 3px -0.0047408193860434 0.0001285328464970 + 6 1 Cd 4py -0.0015854325294666 -0.0004744928103050 + 7 1 Cd 4pz -0.0010211929724018 -0.0022732211648105 + 8 1 Cd 4px -0.0002295853712797 -0.0015635890153467 + 9 1 Cd 4d-2 0.0717458293716534 -0.0671586960656199 + 10 1 Cd 4d-1 -0.1985902409811137 -0.2208754742474389 + 11 1 Cd 4d0 -0.0303054506914964 0.0628507872178404 + 12 1 Cd 4d+1 0.0431641594066101 -0.0534566765412454 + 13 1 Cd 4d+2 -0.0626982301768696 0.1833100137681117 + 14 1 Cd 5d-2 0.0001082788430972 -0.0020463141844472 + 15 1 Cd 5d-1 -0.0002375922991944 -0.0005496745405430 + 16 1 Cd 5d0 -0.0002438812105330 -0.0013471813371743 + 17 1 Cd 5d+1 -0.0017080627406043 -0.0005540822806569 + 18 1 Cd 5d+2 0.0020023917375975 0.0000534786693826 + 19 1 Cd 5f-3 0.0001837439504258 0.0001891491470408 + 20 1 Cd 5f-2 -0.0008496773832826 0.0000001817415379 + 21 1 Cd 5f-1 -0.0003934386484538 -0.0007368998301016 + 22 1 Cd 5f0 0.0000274317179686 0.0001745153088918 + 23 1 Cd 5f+1 -0.0002832430533606 0.0003886010975368 + 24 1 Cd 5f+2 0.0008893696209262 0.0007590416127540 + 25 1 Cd 5f+3 -0.0006391718572446 0.0013425258032449 + + 26 2 Cd 2s 0.0125145665538142 0.0042367933240976 + 27 2 Cd 3s -0.0007667482050623 -0.0000642438911293 + 28 2 Cd 3py 0.0023402964473675 0.0002302460977721 + 29 2 Cd 3pz -0.0076132875454206 0.0004308528710019 + 30 2 Cd 3px 0.0024494044492338 -0.0000078467507710 + 31 2 Cd 4py 0.0006886995958792 0.0003367854285356 + 32 2 Cd 4pz -0.0000758412982501 0.0009850875413046 + 33 2 Cd 4px -0.0000122551939942 -0.0016903816680319 + 34 2 Cd 4d-2 0.0125497022699008 0.0583543657465584 + 35 2 Cd 4d-1 -0.0544317633181999 0.0371790611561304 + 36 2 Cd 4d0 0.1796971410857260 -0.0515311704069474 + 37 2 Cd 4d+1 -0.0762932339896326 -0.1357932358333365 + 38 2 Cd 4d+2 -0.0173437855888515 0.0739648988251917 + 39 2 Cd 5d-2 0.0019784818512749 0.0006048651829237 + 40 2 Cd 5d-1 -0.0008694569184802 0.0010686260977655 + 41 2 Cd 5d0 0.0021696184675793 -0.0018561843128104 + 42 2 Cd 5d+1 -0.0012795279763305 -0.0017942493079489 + 43 2 Cd 5d+2 0.0001153756265414 0.0011225601234639 + 44 2 Cd 5f-3 0.0000884701768555 0.0001625057727075 + 45 2 Cd 5f-2 -0.0002714637021974 0.0001902269521601 + 46 2 Cd 5f-1 0.0000718863252156 -0.0000803539970253 + 47 2 Cd 5f0 -0.0004366710171634 0.0005306689427177 + 48 2 Cd 5f+1 0.0000753714600857 0.0002400035995850 + 49 2 Cd 5f+2 0.0001077694061065 0.0006210255795203 + 50 2 Cd 5f+3 0.0003123787583007 0.0000451303419748 + + 51 3 Cd 2s 0.0015036219780696 -0.0105051699046507 + 52 3 Cd 3s -0.0000370350920346 0.0004939460307539 + 53 3 Cd 3py -0.0016655661598599 -0.0009206717107516 + 54 3 Cd 3pz 0.0024782614009972 0.0020470498764428 + 55 3 Cd 3px -0.0019610273998806 -0.0011746840105393 + 56 3 Cd 4py -0.0007467405802847 -0.0003247979102724 + 57 3 Cd 4pz 0.0016823969188370 -0.0002765941668184 + 58 3 Cd 4px -0.0004009093767331 0.0005561952116665 + 59 3 Cd 4d-2 0.0372372250467318 0.0180979399925535 + 60 3 Cd 4d-1 -0.0348778208268560 0.0140873425664828 + 61 3 Cd 4d0 0.0181677964463079 0.0253691440425144 + 62 3 Cd 4d+1 0.0180156749893855 -0.0796979641595662 + 63 3 Cd 4d+2 0.0467691861382483 0.0697498847656664 + 64 3 Cd 5d-2 -0.0018961608084948 0.0005632250129261 + 65 3 Cd 5d-1 0.0036001275212489 -0.0003366617713348 + 66 3 Cd 5d0 0.0005900629244735 -0.0003567393702733 + 67 3 Cd 5d+1 0.0001086321715398 0.0010230869911106 + 68 3 Cd 5d+2 0.0013278988903634 -0.0005328951285771 + 69 3 Cd 5f-3 0.0005445968345861 -0.0001328560668854 + 70 3 Cd 5f-2 0.0001490573954727 -0.0001246719102549 + 71 3 Cd 5f-1 0.0001968985310482 -0.0000880736090265 + 72 3 Cd 5f0 -0.0004740869273357 -0.0000887070999964 + 73 3 Cd 5f+1 0.0002387737045316 -0.0001934614400273 + 74 3 Cd 5f+2 -0.0002560672932714 0.0001801067161012 + 75 3 Cd 5f+3 0.0004448810668803 0.0002417445746063 + + 76 4 Se 2s -0.0468338439919802 -0.0787535683393719 + 77 4 Se 3s 0.0002793775275734 0.0010991056079041 + 78 4 Se 3py 0.0258219514300498 0.0259528931110117 + 79 4 Se 3pz -0.0184200948117112 0.0008758126355245 + 80 4 Se 3px -0.0157857640405529 -0.0555411927132215 + 81 4 Se 4py 0.0007426461372375 0.0003396981359656 + 82 4 Se 4pz -0.0019258818907010 -0.0000527688302170 + 83 4 Se 4px 0.0001987506167545 -0.0014409471592303 + 84 4 Se 4d-2 -0.0030894769230872 0.0000578804467065 + 85 4 Se 4d-1 -0.0053995165699642 -0.0059917629547830 + 86 4 Se 4d0 0.0049879117504320 -0.0023710338304388 + 87 4 Se 4d+1 0.0027734726810687 0.0080920763571400 + 88 4 Se 4d+2 0.0029978911516283 0.0102862884047479 + + 89 5 Se 2s -0.0259078800505804 0.0171683734720402 + 90 5 Se 3s 0.0005998439800471 0.0000775831607377 + 91 5 Se 3py 0.0103099104854874 -0.0160270176046578 + 92 5 Se 3pz 0.0063790438579694 0.0193366565131100 + 93 5 Se 3px -0.0010742585454902 -0.0066762732487973 + 94 5 Se 4py 0.0010131925536523 -0.0015036387232823 + 95 5 Se 4pz 0.0004630082702362 0.0028655122517825 + 96 5 Se 4px 0.0000640576892211 -0.0003700697741943 + 97 5 Se 4d-2 -0.0013641172661456 0.0003358287171562 + 98 5 Se 4d-1 0.0026279804071317 0.0038276555738640 + 99 5 Se 4d0 -0.0008473332783629 0.0021238268657597 + 100 5 Se 4d+1 0.0004192075748888 -0.0020138168761641 + 101 5 Se 4d+2 -0.0014572337936488 0.0036321316173727 + + 102 6 Se 2s 0.0146653392045445 0.0149834043466561 + 103 6 Se 3s -0.0002665802469567 -0.0003666943927466 + 104 6 Se 3py -0.0116911788982955 -0.0072570782170347 + 105 6 Se 3pz 0.0021555141308873 -0.0011258044330333 + 106 6 Se 3px 0.0019226271159704 0.0037059695641245 + 107 6 Se 4py 0.0002048811010783 -0.0002481253366407 + 108 6 Se 4pz -0.0001100736675203 -0.0001454073680493 + 109 6 Se 4px 0.0001635746931720 0.0000699976994014 + 110 6 Se 4d-2 0.0013793982068002 0.0010073244543719 + 111 6 Se 4d-1 0.0012953050993368 -0.0004174234160952 + 112 6 Se 4d0 0.0009351391145722 0.0011072903527444 + 113 6 Se 4d+1 -0.0004590505275486 -0.0002568541048160 + 114 6 Se 4d+2 0.0006904151804969 0.0006057583796561 + + 115 7 Se 2s -0.0028734984758308 -0.0112412088099307 + 116 7 Se 3s -0.0000671300751922 0.0002091564868768 + 117 7 Se 3py -0.0031400190107413 -0.0053872070016325 + 118 7 Se 3pz -0.0001262988770264 -0.0047834847785220 + 119 7 Se 3px 0.0065165211614203 -0.0001603851712963 + 120 7 Se 4py -0.0001098575425642 0.0001736013925399 + 121 7 Se 4pz -0.0000485972408620 -0.0000406534769814 + 122 7 Se 4px 0.0006892533129136 -0.0000115188580504 + 123 7 Se 4d-2 -0.0015448754818970 -0.0001311920642813 + 124 7 Se 4d-1 0.0005555248513781 0.0011947275547281 + 125 7 Se 4d0 -0.0004456047262505 0.0006046165754658 + 126 7 Se 4d+1 -0.0006078853142791 -0.0002492969202328 + 127 7 Se 4d+2 -0.0002959151401549 -0.0000483650286117 + + 128 8 Cd 2s 0.0004787255548194 -0.0082625776458632 + 129 8 Cd 3s -0.0001664823506111 -0.0001496178180592 + 130 8 Cd 3py -0.0008929088800242 -0.0025506715455740 + 131 8 Cd 3pz 0.0020780574915868 0.0016155106880880 + 132 8 Cd 3px 0.0023603542862725 -0.0042315846782106 + 133 8 Cd 4py -0.0009290926362562 -0.0008751193954292 + 134 8 Cd 4pz 0.0004485623660995 0.0000200191549795 + 135 8 Cd 4px 0.0000642557525555 -0.0004416621683220 + 136 8 Cd 4d-2 0.0094838763163679 0.0175421068928994 + 137 8 Cd 4d-1 -0.0003039926048962 -0.0005922067607731 + 138 8 Cd 4d0 -0.0843414745793456 0.0591738168987904 + 139 8 Cd 4d+1 -0.0537597601133994 -0.0231037630978870 + 140 8 Cd 4d+2 0.0558712365815202 -0.0468129478142006 + 141 8 Cd 5d-2 0.0006170062489673 0.0002912661078557 + 142 8 Cd 5d-1 0.0002398233177535 0.0006404820326694 + 143 8 Cd 5d0 -0.0007938669762610 0.0007050795632452 + 144 8 Cd 5d+1 -0.0013361719651895 -0.0005768299001689 + 145 8 Cd 5d+2 -0.0018198955082977 -0.0020464534581110 + 146 8 Cd 5f-3 -0.0000820013693991 0.0002870532215453 + 147 8 Cd 5f-2 -0.0004379860372425 0.0000128965908528 + 148 8 Cd 5f-1 0.0001999025402593 -0.0005772340059917 + 149 8 Cd 5f0 -0.0001922941650389 0.0002372881706879 + 150 8 Cd 5f+1 0.0007760537040992 0.0000526897988493 + 151 8 Cd 5f+2 0.0005069428105958 0.0000977286681488 + 152 8 Cd 5f+3 -0.0006751721448350 0.0001382950158253 + + 153 9 Cd 2s -0.0054084793454124 0.0006236298615415 + 154 9 Cd 3s -0.0000219010520146 0.0002938616253580 + 155 9 Cd 3py -0.0020174775582446 0.0012746480716110 + 156 9 Cd 3pz 0.0021938434925804 0.0000941932759094 + 157 9 Cd 3px -0.0010397017983016 0.0007679616805946 + 158 9 Cd 4py -0.0002881570739367 0.0002375426155052 + 159 9 Cd 4pz 0.0003127799973389 -0.0002920231131144 + 160 9 Cd 4px -0.0000237355415977 0.0006390784150696 + 161 9 Cd 4d-2 -0.0083379641370650 0.0122056692329450 + 162 9 Cd 4d-1 0.0097997244077453 -0.0074298448999417 + 163 9 Cd 4d0 0.0137223949700660 -0.0126013434724039 + 164 9 Cd 4d+1 0.0163505775070086 -0.0025146192525772 + 165 9 Cd 4d+2 0.0044177946184620 0.0066500986075341 + 166 9 Cd 5d-2 -0.0004470757815615 0.0006694834027724 + 167 9 Cd 5d-1 0.0011738679896673 -0.0004160453351733 + 168 9 Cd 5d0 -0.0006455693324057 -0.0002343591347700 + 169 9 Cd 5d+1 0.0004875970767949 -0.0005064350817983 + 170 9 Cd 5d+2 0.0011188302198118 -0.0002504312786000 + 171 9 Cd 5f-3 0.0003828274045018 0.0000975171130866 + 172 9 Cd 5f-2 0.0001796027524259 -0.0002122567696142 + 173 9 Cd 5f-1 -0.0002195237715636 -0.0001200960914410 + 174 9 Cd 5f0 0.0000241885877531 0.0000761243340196 + 175 9 Cd 5f+1 -0.0000435872096126 -0.0000522679055420 + 176 9 Cd 5f+2 -0.0006256440848063 -0.0000392535602141 + 177 9 Cd 5f+3 -0.0000036744053490 -0.0000806938107531 + + 178 10 Se 2s 0.0057389751729099 -0.0125007277376217 + 179 10 Se 3s -0.0002449971676987 0.0002407382932666 + 180 10 Se 3py -0.0014360642163929 0.0022387551267718 + 181 10 Se 3pz 0.0003540244517816 -0.0031209599537799 + 182 10 Se 3px -0.0007824344464137 0.0003762110361554 + 183 10 Se 4py -0.0005089492002636 -0.0001270919011851 + 184 10 Se 4pz 0.0001633089345432 -0.0000551021392384 + 185 10 Se 4px 0.0000153316766154 0.0006276193917280 + 186 10 Se 4d-2 -0.0004537802522325 -0.0002189137629663 + 187 10 Se 4d-1 -0.0000395934516220 -0.0002746065506992 + 188 10 Se 4d0 0.0001641848080706 0.0001851956228017 + 189 10 Se 4d+1 0.0000873382549467 0.0000456363924091 + 190 10 Se 4d+2 0.0005186341057627 -0.0005241170354942 + + 191 11 Se 2s -0.0131014588268713 -0.0008786739409762 + 192 11 Se 3s 0.0002956493095991 0.0001039025148234 + 193 11 Se 3py 0.0026346059333622 0.0063356896602390 + 194 11 Se 3pz -0.0010197674182259 0.0049230858472380 + 195 11 Se 3px -0.0014995975829385 -0.0037288519605230 + 196 11 Se 4py 0.0006093820900415 -0.0000947053342698 + 197 11 Se 4pz -0.0000840947892244 -0.0004324336450969 + 198 11 Se 4px 0.0004252773397429 0.0001987693952938 + 199 11 Se 4d-2 -0.0000408533994456 0.0002517113315685 + 200 11 Se 4d-1 0.0003526433123916 -0.0005274831797489 + 201 11 Se 4d0 0.0000650088032213 -0.0008686774370410 + 202 11 Se 4d+1 -0.0000373251856343 0.0010243447055701 + 203 11 Se 4d+2 -0.0003756323986313 -0.0006523699282568 + + 204 12 Cd 2s -0.0036897112538914 -0.0086509621740011 + 205 12 Cd 3s -0.0001794266217931 -0.0006626118741950 + 206 12 Cd 3py -0.0017309013121192 -0.0018714399846839 + 207 12 Cd 3pz -0.0010860325560751 0.0048236865682250 + 208 12 Cd 3px -0.0035182724292618 -0.0013356241689226 + 209 12 Cd 4py -0.0001222597197981 -0.0001638185820312 + 210 12 Cd 4pz -0.0007859341184838 0.0010183235800540 + 211 12 Cd 4px -0.0011675258727355 0.0000584533348648 + 212 12 Cd 4d-2 -0.0119007660017171 -0.0057881035186109 + 213 12 Cd 4d-1 0.0099855679329864 -0.0055426276223013 + 214 12 Cd 4d0 -0.0317122237432781 0.0201587572758889 + 215 12 Cd 4d+1 0.0107538932829645 0.0142980241860334 + 216 12 Cd 4d+2 -0.0033747774584605 -0.0136267480595732 + 217 12 Cd 5d-2 -0.0021494952646117 -0.0001682135121718 + 218 12 Cd 5d-1 -0.0010333148906963 0.0005310124950325 + 219 12 Cd 5d0 -0.0003265550478002 -0.0009392431978830 + 220 12 Cd 5d+1 0.0000595315007572 0.0005120028692644 + 221 12 Cd 5d+2 -0.0011394368475522 -0.0000429438403577 + 222 12 Cd 5f-3 -0.0002608521663090 -0.0001951209029858 + 223 12 Cd 5f-2 -0.0001200669380236 -0.0001833678669565 + 224 12 Cd 5f-1 0.0000559974600789 0.0003169133609491 + 225 12 Cd 5f0 -0.0000419199708274 -0.0001236200304967 + 226 12 Cd 5f+1 -0.0000162999427703 -0.0002414341828512 + 227 12 Cd 5f+2 0.0000955808110269 -0.0000230896582234 + 228 12 Cd 5f+3 -0.0003484317295200 -0.0002121553558774 + + 229 13 Cd 2s 0.0186021909859478 -0.0057654286963641 + 230 13 Cd 3s 0.0008365217782334 0.0006626367263085 + 231 13 Cd 3py -0.0037595285103019 0.0002698794265794 + 232 13 Cd 3pz 0.0084245132690498 0.0041821602829724 + 233 13 Cd 3px -0.0072831688936234 0.0073475967706477 + 234 13 Cd 4py -0.0000644141967447 0.0000144192761755 + 235 13 Cd 4pz 0.0037480686341534 0.0019964354203725 + 236 13 Cd 4px -0.0010300291923339 0.0034769188088086 + 237 13 Cd 4d-2 0.0122617316697050 -0.2564469399652251 + 238 13 Cd 4d-1 0.3596320913393720 -0.0271009194502366 + 239 13 Cd 4d0 -0.2098750927910794 0.2942689057719846 + 240 13 Cd 4d+1 0.0764760049734718 0.6014630205005725 + 241 13 Cd 4d+2 0.5974939570109260 0.0782467496918572 + 242 13 Cd 5d-2 0.0030716610560764 0.0023929101796559 + 243 13 Cd 5d-1 -0.0034708513739358 -0.0001688237771244 + 244 13 Cd 5d0 0.0000341032181818 0.0030083007370981 + 245 13 Cd 5d+1 0.0007990077189101 0.0044768463300778 + 246 13 Cd 5d+2 0.0012812304966047 0.0020082604304104 + 247 13 Cd 5f-3 0.0014440117579668 -0.0001186843623257 + 248 13 Cd 5f-2 -0.0003167216707124 0.0001229875289475 + 249 13 Cd 5f-1 0.0005808050646125 -0.0001804330952265 + 250 13 Cd 5f0 -0.0010703184748057 0.0003647374756944 + 251 13 Cd 5f+1 0.0007551960855328 0.0010308454551401 + 252 13 Cd 5f+2 0.0009832532119941 0.0013229481530190 + 253 13 Cd 5f+3 -0.0005892389683000 0.0009958814472385 + + 254 14 Cd 2s 0.0064099010172592 -0.0046786729725770 + 255 14 Cd 3s 0.0000572008106063 0.0005232808701897 + 256 14 Cd 3py -0.0013162799685669 -0.0000872606774452 + 257 14 Cd 3pz -0.0012380819877816 0.0026498848051599 + 258 14 Cd 3px 0.0003148766645879 0.0006626280190519 + 259 14 Cd 4py 0.0000560022100816 0.0002869260918704 + 260 14 Cd 4pz 0.0001094668064685 -0.0003734818342480 + 261 14 Cd 4px -0.0005357389383715 -0.0002781317455095 + 262 14 Cd 4d-2 -0.0125002955134542 -0.0070855695822535 + 263 14 Cd 4d-1 -0.0087746207842353 0.0048178798041684 + 264 14 Cd 4d0 0.0064387696160415 -0.0230546857457448 + 265 14 Cd 4d+1 -0.0037960239035656 -0.0099409299279903 + 266 14 Cd 4d+2 -0.0076576199269179 -0.0032087552404368 + 267 14 Cd 5d-2 -0.0001955805840494 -0.0001886788515572 + 268 14 Cd 5d-1 -0.0007800933236370 -0.0008556495240999 + 269 14 Cd 5d0 0.0004270570142774 -0.0004763999621355 + 270 14 Cd 5d+1 0.0009177548020763 0.0003692763112327 + 271 14 Cd 5d+2 -0.0004600860453254 -0.0000247890197307 + 272 14 Cd 5f-3 0.0003209897881202 0.0000817565690386 + 273 14 Cd 5f-2 -0.0001736810120994 -0.0000029090446371 + 274 14 Cd 5f-1 0.0000411776285536 0.0003706243649621 + 275 14 Cd 5f0 -0.0002303819412334 -0.0002958041663456 + 276 14 Cd 5f+1 -0.0003147359659516 -0.0001600046242627 + 277 14 Cd 5f+2 -0.0001491823327988 -0.0002250466737687 + 278 14 Cd 5f+3 0.0001811517116718 -0.0001046380212484 + + 279 15 Se 2s -0.0132287164701020 0.0351272687867286 + 280 15 Se 3s 0.0006884939762925 -0.0002097562273352 + 281 15 Se 3py -0.0112227667062829 0.0140861687972843 + 282 15 Se 3pz 0.0020279871140974 0.0037253990157190 + 283 15 Se 3px -0.0126133465133419 -0.0024924092287159 + 284 15 Se 4py -0.0007367396844984 0.0003984087342006 + 285 15 Se 4pz -0.0021449972866417 -0.0007165862568936 + 286 15 Se 4px 0.0011401136304510 0.0002814909600578 + 287 15 Se 4d-2 0.0005287973978530 0.0007562032238700 + 288 15 Se 4d-1 0.0005723385263416 -0.0001099468219117 + 289 15 Se 4d0 -0.0015775509325871 0.0029611030448877 + 290 15 Se 4d+1 0.0018788038199393 -0.0005976323850888 + 291 15 Se 4d+2 -0.0023547083459032 -0.0000082044464386 + + 292 16 Se 2s -0.0452388817907001 0.0438028002121079 + 293 16 Se 3s 0.0011867828306507 -0.0007242759960727 + 294 16 Se 3py -0.0196585990159307 0.0012517500196281 + 295 16 Se 3pz 0.0097726936483417 -0.0057301916047985 + 296 16 Se 3px 0.0018518688987591 0.0163365055203065 + 297 16 Se 4py 0.0002547057818049 0.0000536912167817 + 298 16 Se 4pz 0.0020995424922631 -0.0007446239312112 + 299 16 Se 4px 0.0016531368482822 0.0011003263617926 + 300 16 Se 4d-2 0.0036487312811738 -0.0054232346165454 + 301 16 Se 4d-1 -0.0018039074220172 -0.0001861145610297 + 302 16 Se 4d0 0.0006531383113075 0.0001727455788117 + 303 16 Se 4d+1 0.0004656673565426 -0.0000924763784589 + 304 16 Se 4d+2 -0.0004413771640417 -0.0029804917024937 + + 305 17 Cd 2s 0.0074402254349531 0.0013621755131627 + 306 17 Cd 3s 0.0001883423532083 -0.0013698802508950 + 307 17 Cd 3py 0.0026837039314197 0.0028544804971709 + 308 17 Cd 3pz 0.0003133242378071 0.0032908225341471 + 309 17 Cd 3px 0.0044533720004851 -0.0039127360573385 + 310 17 Cd 4py 0.0004516567767051 0.0015914364655616 + 311 17 Cd 4pz 0.0001798039101208 0.0011903442857780 + 312 17 Cd 4px 0.0017022098506219 -0.0004564023650566 + 313 17 Cd 4d-2 0.1991704062693604 -0.1592425882227194 + 314 17 Cd 4d-1 0.1632036030848493 -0.0845936768414896 + 315 17 Cd 4d0 0.1013126227591990 0.1636791902725080 + 316 17 Cd 4d+1 0.0644178413824621 -0.0923942907317819 + 317 17 Cd 4d+2 0.2049366326736594 0.3012858753653042 + 318 17 Cd 5d-2 0.0047483729361694 -0.0045498035817600 + 319 17 Cd 5d-1 0.0001540480354703 -0.0004237964325482 + 320 17 Cd 5d0 -0.0004783686917428 0.0027585181868869 + 321 17 Cd 5d+1 -0.0011311728698626 -0.0003310400566256 + 322 17 Cd 5d+2 -0.0009899513347674 0.0026497936602484 + 323 17 Cd 5f-3 -0.0007287303067586 -0.0003004891245681 + 324 17 Cd 5f-2 -0.0001173592507684 0.0004798385066258 + 325 17 Cd 5f-1 -0.0003691394475296 -0.0005449849472353 + 326 17 Cd 5f0 -0.0002338399654729 0.0001171769617987 + 327 17 Cd 5f+1 -0.0008972296072434 0.0001530452997801 + 328 17 Cd 5f+2 -0.0003246510155282 -0.0000073034270801 + 329 17 Cd 5f+3 -0.0002364416566035 -0.0002672590846481 + + 330 18 Cd 2s 0.0012700602360649 -0.0111907943451783 + 331 18 Cd 3s -0.0004680601775295 0.0012704793323724 + 332 18 Cd 3py -0.0009877286144416 -0.0016472641297598 + 333 18 Cd 3pz -0.0002618567392903 0.0039355188905200 + 334 18 Cd 3px 0.0013493317243148 0.0025820259972757 + 335 18 Cd 4py 0.0000448336549690 0.0007540851752136 + 336 18 Cd 4pz -0.0000845851197788 -0.0008368016616569 + 337 18 Cd 4px 0.0000660819936814 -0.0003682360335609 + 338 18 Cd 4d-2 0.0195616399986659 0.0492687356927458 + 339 18 Cd 4d-1 -0.0223517541749065 0.0571502062576913 + 340 18 Cd 4d0 0.0240119147493889 -0.0382018763986118 + 341 18 Cd 4d+1 0.0017891525511738 -0.0553161234344120 + 342 18 Cd 4d+2 0.0031107834207519 0.0001374843921262 + 343 18 Cd 5d-2 0.0012083757150363 0.0007821682902054 + 344 18 Cd 5d-1 -0.0008973904354039 0.0015837767317376 + 345 18 Cd 5d0 0.0001924503292330 -0.0006053863712774 + 346 18 Cd 5d+1 -0.0001373193374222 -0.0004856024622579 + 347 18 Cd 5d+2 0.0000090776481006 -0.0000145426462259 + 348 18 Cd 5f-3 -0.0000375427976312 0.0001133063604080 + 349 18 Cd 5f-2 0.0000619899047767 0.0002512850335658 + 350 18 Cd 5f-1 -0.0002786699982596 0.0003512979354011 + 351 18 Cd 5f0 0.0003951624553458 -0.0005223294136783 + 352 18 Cd 5f+1 -0.0002025926511918 -0.0002156407479482 + 353 18 Cd 5f+2 0.0000931466405061 -0.0001764370142900 + 354 18 Cd 5f+3 -0.0004574384595354 0.0000184406699382 + + 355 19 Se 2s -0.0052642098093061 0.0872764153482307 + 356 19 Se 3s 0.0000731323384817 -0.0014063480641723 + 357 19 Se 3py 0.0037837560001785 -0.0340905802447610 + 358 19 Se 3pz -0.0016232773388701 0.0017114325696177 + 359 19 Se 3px -0.0095487359850153 -0.0210658045876592 + 360 19 Se 4py -0.0003428307456200 -0.0008376424623245 + 361 19 Se 4pz 0.0001025134610627 -0.0004423788920196 + 362 19 Se 4px 0.0001609533262884 -0.0000751111616104 + 363 19 Se 4d-2 -0.0021499444826582 -0.0049887854806406 + 364 19 Se 4d-1 -0.0012025757938962 -0.0001812898824090 + 365 19 Se 4d0 0.0010507788456810 0.0026331046782932 + 366 19 Se 4d+1 -0.0009330925215616 0.0001688729261588 + 367 19 Se 4d+2 -0.0029724475191749 0.0024018397388710 + + 368 20 Se 2s 0.0132682280117923 -0.0004035641950931 + 369 20 Se 3s -0.0004447699549558 -0.0002784568492230 + 370 20 Se 3py 0.0009354871092184 -0.0033115670720083 + 371 20 Se 3pz -0.0050537532217833 0.0038253739226117 + 372 20 Se 3px -0.0164047669829899 -0.0092748711243583 + 373 20 Se 4py 0.0001786304609808 -0.0008081948368869 + 374 20 Se 4pz 0.0000008146175484 0.0017927262801724 + 375 20 Se 4px -0.0002706873989269 0.0016964533844372 + 376 20 Se 4d-2 -0.0031203362026698 -0.0002498475119872 + 377 20 Se 4d-1 -0.0003981147813935 0.0014617162265392 + 378 20 Se 4d0 0.0002335453958653 0.0011859340922499 + 379 20 Se 4d+1 0.0010718602128272 -0.0001634400516959 + 380 20 Se 4d+2 -0.0008473602248879 -0.0003518102807226 + + 381 21 Se 2s -0.0093097127176716 0.0208762090806471 + 382 21 Se 3s 0.0000280009445335 -0.0000297589905421 + 383 21 Se 3py 0.0022412458036011 0.0068841255871224 + 384 21 Se 3pz -0.0020383748538862 0.0057814628344028 + 385 21 Se 3px 0.0086447518225257 -0.0014165707976176 + 386 21 Se 4py -0.0005814733113368 -0.0000441013853869 + 387 21 Se 4pz 0.0006336122741772 -0.0000950700245677 + 388 21 Se 4px -0.0006554386428221 -0.0005922077185222 + 389 21 Se 4d-2 -0.0000336088822640 0.0005192524413710 + 390 21 Se 4d-1 -0.0010068885840713 -0.0003271175479805 + 391 21 Se 4d0 -0.0004571466513850 -0.0010535478200355 + 392 21 Se 4d+1 -0.0026822547533998 0.0006645716441560 + 393 21 Se 4d+2 0.0006163972018661 0.0009301107542713 + + 394 22 Cd 2s -0.0205962870738246 0.0081729077636298 + 395 22 Cd 3s 0.0009649656035877 0.0001571667323563 + 396 22 Cd 3py -0.0016985752578350 -0.0034981195186821 + 397 22 Cd 3pz -0.0027918569270899 0.0004262760832955 + 398 22 Cd 3px -0.0143873920944477 0.0074800597609447 + 399 22 Cd 4py -0.0001811863435055 -0.0007209712182491 + 400 22 Cd 4pz -0.0014524958377600 -0.0000741985171327 + 401 22 Cd 4px -0.0003131508113236 0.0013639473225225 + 402 22 Cd 4d-2 -0.1689779460626094 -0.0800028210734791 + 403 22 Cd 4d-1 -0.0304997405251927 0.0464856140766668 + 404 22 Cd 4d0 0.1920366999927411 -0.0201890380743482 + 405 22 Cd 4d+1 0.0695099667229552 0.1925412714812852 + 406 22 Cd 4d+2 -0.3348648453810631 0.2357174738575211 + 407 22 Cd 5d-2 -0.0012470422871192 -0.0016857721912880 + 408 22 Cd 5d-1 0.0019314547276900 -0.0002712990994133 + 409 22 Cd 5d0 0.0060730135366310 -0.0024378202974292 + 410 22 Cd 5d+1 0.0002984187593939 0.0040493674817627 + 411 22 Cd 5d+2 -0.0048706176883829 0.0010934427933074 + 412 22 Cd 5f-3 0.0001513997415534 0.0000084913609858 + 413 22 Cd 5f-2 -0.0010688919989182 -0.0005323036219357 + 414 22 Cd 5f-1 -0.0002117750012400 0.0008102775059551 + 415 22 Cd 5f0 0.0007754567077159 -0.0003760922646065 + 416 22 Cd 5f+1 0.0004336719074378 0.0007611423560221 + 417 22 Cd 5f+2 -0.0009173091851943 0.0004326097100126 + 418 22 Cd 5f+3 -0.0002237317852864 0.0006256574399054 + + 419 23 Se 2s -0.0262119847272463 -0.0467603440907336 + 420 23 Se 3s 0.0006698705229234 0.0009815539197142 + 421 23 Se 3py 0.0053848921085686 -0.0102587585810681 + 422 23 Se 3pz 0.0179909236499289 0.0049294006376403 + 423 23 Se 3px -0.0097774746313485 0.0015657539716851 + 424 23 Se 4py -0.0011014391308366 0.0001381456545317 + 425 23 Se 4pz -0.0004762211569491 0.0008262448004627 + 426 23 Se 4px 0.0006626152858620 -0.0001438992160085 + 427 23 Se 4d-2 0.0018709894729126 -0.0028122975298754 + 428 23 Se 4d-1 0.0012946898205722 -0.0003119464391382 + 429 23 Se 4d0 0.0026196805491986 -0.0001361601368834 + 430 23 Se 4d+1 0.0017906972257028 -0.0014321335586424 + 431 23 Se 4d+2 -0.0035645728036254 -0.0005546896195643 + + 432 24 Se 2s 0.0010904455819830 0.0177389562817015 + 433 24 Se 3s 0.0001666829095770 -0.0003298469501166 + 434 24 Se 3py 0.0004653432257357 -0.0070963234213206 + 435 24 Se 3pz 0.0028222244853954 0.0037593727830591 + 436 24 Se 3px -0.0007733915761849 -0.0039157308177739 + 437 24 Se 4py -0.0000300666917783 -0.0005196486987158 + 438 24 Se 4pz -0.0003878559285834 -0.0001470564360824 + 439 24 Se 4px -0.0001234998001352 -0.0003730780389673 + 440 24 Se 4d-2 -0.0000211067232913 -0.0010502192109095 + 441 24 Se 4d-1 -0.0001641322503645 0.0009394217822801 + 442 24 Se 4d0 -0.0003411620462290 0.0000208343845997 + 443 24 Se 4d+1 0.0003842122646673 0.0008933047748965 + 444 24 Se 4d+2 0.0000297041958252 -0.0000646197716590 + + 445 25 Cd 2s -0.0054071724171491 -0.0074870850951392 + 446 25 Cd 3s 0.0004145450521358 -0.0000376168576748 + 447 25 Cd 3py -0.0013319684334078 0.0020072848619378 + 448 25 Cd 3pz -0.0001189237872855 0.0045242856791599 + 449 25 Cd 3px -0.0029847553445833 -0.0039113270502066 + 450 25 Cd 4py 0.0001762441361949 -0.0015561635005723 + 451 25 Cd 4pz 0.0000495311793307 0.0005345855665917 + 452 25 Cd 4px 0.0002657451211930 0.0002064504071922 + 453 25 Cd 4d-2 -0.1567517923235479 0.0644768354384133 + 454 25 Cd 4d-1 -0.0725011747610849 -0.0294623605948421 + 455 25 Cd 4d0 -0.0003453935066590 -0.0414689389392489 + 456 25 Cd 4d+1 -0.0135479583796832 0.1236732873946769 + 457 25 Cd 4d+2 0.0036437791170752 -0.1047033705278711 + 458 25 Cd 5d-2 -0.0009839399393814 -0.0013208687651600 + 459 25 Cd 5d-1 -0.0002318877236485 0.0002745319379116 + 460 25 Cd 5d0 -0.0008649737125322 0.0026557403682579 + 461 25 Cd 5d+1 0.0013599485727695 0.0025504302786874 + 462 25 Cd 5d+2 -0.0016526904659196 -0.0012131737850410 + 463 25 Cd 5f-3 -0.0004989936217336 0.0001086811262188 + 464 25 Cd 5f-2 0.0001081375786504 -0.0000598631174363 + 465 25 Cd 5f-1 -0.0007705300330100 0.0002372379530626 + 466 25 Cd 5f0 -0.0004150392285944 0.0001972354105086 + 467 25 Cd 5f+1 -0.0003196773218887 0.0006190832262810 + 468 25 Cd 5f+2 0.0003222046707708 0.0000499553881173 + 469 25 Cd 5f+3 -0.0003223390328565 -0.0002701697661601 + + 470 26 Cd 2s 0.0053901736804482 0.0012494536429054 + 471 26 Cd 3s 0.0002752830617515 0.0007215114416403 + 472 26 Cd 3py 0.0039933136556828 -0.0007776937161220 + 473 26 Cd 3pz -0.0031976394509467 -0.0011060084055632 + 474 26 Cd 3px 0.0031764617850105 0.0028859882121751 + 475 26 Cd 4py 0.0006792822680453 -0.0000518215215037 + 476 26 Cd 4pz -0.0006060264056218 0.0001692865155532 + 477 26 Cd 4px 0.0005267745473294 0.0006861771473322 + 478 26 Cd 4d-2 0.0247872273502304 -0.0131905208467665 + 479 26 Cd 4d-1 -0.0072559010997173 0.0014398846942339 + 480 26 Cd 4d0 -0.0041756121156343 0.0083618638708221 + 481 26 Cd 4d+1 -0.0115785013786340 -0.0139300499006125 + 482 26 Cd 4d+2 -0.0004560645131735 0.0176924275381825 + 483 26 Cd 5d-2 0.0021649042646062 -0.0004158700607837 + 484 26 Cd 5d-1 -0.0014070250336304 0.0002307477510158 + 485 26 Cd 5d0 -0.0002472512542438 -0.0005822205443566 + 486 26 Cd 5d+1 -0.0023138505334945 -0.0008197540449444 + 487 26 Cd 5d+2 0.0011043247952452 0.0015750878146840 + 488 26 Cd 5f-3 0.0004580879112655 0.0001076558734297 + 489 26 Cd 5f-2 -0.0004859709542979 0.0002421698883896 + 490 26 Cd 5f-1 0.0002043392056393 -0.0001149815042592 + 491 26 Cd 5f0 0.0004097202202688 0.0002958811720589 + 492 26 Cd 5f+1 0.0000131545210657 -0.0002664724034180 + 493 26 Cd 5f+2 -0.0004233877081777 -0.0002694493504040 + 494 26 Cd 5f+3 0.0000766557524451 0.0003235132978710 + + 65 66 + -0.4548892622006451 -0.4527782547097506 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0020296835103813 -0.0164440752343818 + 2 1 Cd 3s -0.0001574770704786 0.0004500824797109 + 3 1 Cd 3py 0.0021129346762939 -0.0042790296118348 + 4 1 Cd 3pz -0.0003195140396789 0.0003503881670844 + 5 1 Cd 3px 0.0003255162609543 0.0039244668348435 + 6 1 Cd 4py -0.0002701495305085 0.0004278361308395 + 7 1 Cd 4pz -0.0008835088028865 -0.0018437970927069 + 8 1 Cd 4px -0.0007013318554045 -0.0010460578163834 + 9 1 Cd 4d-2 -0.0584298142028102 -0.0953605970453525 + 10 1 Cd 4d-1 -0.0363440843148496 -0.1758677742993904 + 11 1 Cd 4d0 -0.0124235183142716 0.0788034491995546 + 12 1 Cd 4d+1 -0.0472370314283919 0.0185632366920012 + 13 1 Cd 4d+2 0.0086428116441255 0.0251432731574309 + 14 1 Cd 5d-2 -0.0010767765723502 -0.0001119653331538 + 15 1 Cd 5d-1 -0.0005590349973334 0.0003980904132890 + 16 1 Cd 5d0 -0.0008342870058680 -0.0010578905414967 + 17 1 Cd 5d+1 0.0000484950052380 0.0005741708150871 + 18 1 Cd 5d+2 -0.0001987930125759 0.0006110307693759 + 19 1 Cd 5f-3 0.0003866585109177 0.0004778725371248 + 20 1 Cd 5f-2 -0.0002411345367475 -0.0006525407997905 + 21 1 Cd 5f-1 -0.0006719240302711 0.0000979328488202 + 22 1 Cd 5f0 0.0002563807789256 -0.0000699391724167 + 23 1 Cd 5f+1 0.0001475230226906 0.0007479238846129 + 24 1 Cd 5f+2 0.0003353962418343 0.0000799016740126 + 25 1 Cd 5f+3 0.0004707897773118 0.0002555072234941 + + 26 2 Cd 2s -0.0006383498923211 -0.0018311161826040 + 27 2 Cd 3s -0.0001183331419139 -0.0006535849506697 + 28 2 Cd 3py 0.0008814322840758 -0.0016045004325816 + 29 2 Cd 3pz 0.0011791780344648 0.0031443271151145 + 30 2 Cd 3px 0.0038541101788442 0.0006242182949729 + 31 2 Cd 4py -0.0001417960163883 -0.0004123106819497 + 32 2 Cd 4pz 0.0003951851478623 0.0007647580039269 + 33 2 Cd 4px -0.0000932102983511 0.0003791712488709 + 34 2 Cd 4d-2 0.0421716121543140 -0.0015300766584778 + 35 2 Cd 4d-1 -0.0216750411656999 -0.0072846415558390 + 36 2 Cd 4d0 -0.0767579746003181 -0.0238978123459467 + 37 2 Cd 4d+1 -0.1214960770305459 0.0210743880202187 + 38 2 Cd 4d+2 0.0282120558404196 -0.0082142268974754 + 39 2 Cd 5d-2 0.0001518553927639 -0.0000248308372168 + 40 2 Cd 5d-1 0.0004201701185224 -0.0003733280080860 + 41 2 Cd 5d0 -0.0008889704175912 -0.0014701517628211 + 42 2 Cd 5d+1 -0.0027711058308963 -0.0003914926467079 + 43 2 Cd 5d+2 -0.0001482837460501 -0.0004185071706903 + 44 2 Cd 5f-3 0.0000465228880565 0.0000112434365575 + 45 2 Cd 5f-2 0.0001759495613194 0.0001381294980658 + 46 2 Cd 5f-1 0.0002199713376400 0.0001735283520945 + 47 2 Cd 5f0 0.0000990537243304 0.0000806797314470 + 48 2 Cd 5f+1 0.0004366477207107 -0.0001115744047453 + 49 2 Cd 5f+2 0.0005666672761217 0.0000898581452393 + 50 2 Cd 5f+3 -0.0001999392299973 -0.0002632092412069 + + 51 3 Cd 2s -0.0014185135713350 0.0009055266861653 + 52 3 Cd 3s 0.0004830841805167 -0.0004946570159578 + 53 3 Cd 3py -0.0005336131700850 0.0028160689853840 + 54 3 Cd 3pz -0.0009528504073943 0.0002687653158946 + 55 3 Cd 3px 0.0003486672570547 -0.0009859250784135 + 56 3 Cd 4py 0.0004374352436669 0.0000264780554933 + 57 3 Cd 4pz -0.0001956119772169 0.0001377319304261 + 58 3 Cd 4px 0.0000851072296454 0.0007766336377410 + 59 3 Cd 4d-2 -0.0256451740256151 0.1476237296067497 + 60 3 Cd 4d-1 -0.0141305638451756 -0.0061466426280678 + 61 3 Cd 4d0 -0.0291667737664311 0.0175154221238160 + 62 3 Cd 4d+1 -0.0050686874920575 -0.0642485259148261 + 63 3 Cd 4d+2 -0.0199724611589767 0.0219444090042559 + 64 3 Cd 5d-2 -0.0001364548636636 -0.0005734776772722 + 65 3 Cd 5d-1 -0.0002956399048555 -0.0008488958382084 + 66 3 Cd 5d0 0.0007186673307327 -0.0001825924395395 + 67 3 Cd 5d+1 -0.0003194758934675 -0.0005341485109735 + 68 3 Cd 5d+2 -0.0000085474826807 -0.0016954085923237 + 69 3 Cd 5f-3 0.0001012573336953 -0.0004413692942206 + 70 3 Cd 5f-2 0.0001619073819318 -0.0004555094736029 + 71 3 Cd 5f-1 0.0001550729358905 0.0002765524229784 + 72 3 Cd 5f0 -0.0000683827620821 0.0002289244148059 + 73 3 Cd 5f+1 0.0001237806805171 -0.0004000448387274 + 74 3 Cd 5f+2 -0.0000930084323786 0.0003580093672081 + 75 3 Cd 5f+3 -0.0000487290850558 -0.0000548713000967 + + 76 4 Se 2s -0.0626289400573746 0.0155282548219780 + 77 4 Se 3s 0.0011820387751353 -0.0004481425474475 + 78 4 Se 3py -0.0078074084527865 0.0077797607591549 + 79 4 Se 3pz -0.0012085645305363 -0.0034078120551537 + 80 4 Se 3px -0.0248203218576676 -0.0030906076616486 + 81 4 Se 4py -0.0008511428716479 -0.0011870010397754 + 82 4 Se 4pz -0.0001287432168330 -0.0008413421676344 + 83 4 Se 4px -0.0001441014608150 0.0002665783556376 + 84 4 Se 4d-2 0.0036341451572035 0.0016001800318337 + 85 4 Se 4d-1 0.0003732558022621 -0.0020667175699711 + 86 4 Se 4d0 0.0006719506398820 0.0015010260949527 + 87 4 Se 4d+1 0.0032289713352571 0.0021497907927813 + 88 4 Se 4d+2 0.0043591422484527 0.0009574192654113 + + 89 5 Se 2s 0.0031691284241289 -0.0074414810962329 + 90 5 Se 3s -0.0001857838399876 0.0002404668594454 + 91 5 Se 3py 0.0001444029788655 0.0019399187490302 + 92 5 Se 3pz 0.0013493777401267 0.0100414556134693 + 93 5 Se 3px 0.0032577144806136 0.0004746319172630 + 94 5 Se 4py -0.0000442416630091 0.0005983354616272 + 95 5 Se 4pz 0.0000290484604076 0.0011525749520516 + 96 5 Se 4px 0.0003459608870431 0.0003221554651262 + 97 5 Se 4d-2 0.0006585868413176 0.0002986305249084 + 98 5 Se 4d-1 0.0002594960961799 0.0035818208575855 + 99 5 Se 4d0 0.0001903026262735 0.0002012466743746 + 100 5 Se 4d+1 -0.0001401079550418 -0.0005722188807886 + 101 5 Se 4d+2 -0.0002931917255671 0.0004902825706658 + + 102 6 Se 2s 0.0061682145385312 -0.0078759581868606 + 103 6 Se 3s -0.0002451563543793 0.0002098309807238 + 104 6 Se 3py -0.0012324267118569 0.0032975488651105 + 105 6 Se 3pz 0.0007706455273365 -0.0037751108438783 + 106 6 Se 3px 0.0006843786653590 -0.0008007482359127 + 107 6 Se 4py -0.0001869009246086 -0.0003637208471514 + 108 6 Se 4pz 0.0003393818915063 -0.0006998327968406 + 109 6 Se 4px -0.0000918220280096 -0.0000061071970392 + 110 6 Se 4d-2 -0.0000044226894528 -0.0004514499352434 + 111 6 Se 4d-1 -0.0006230757106981 -0.0003293516826864 + 112 6 Se 4d0 0.0002462982781536 0.0004510254601803 + 113 6 Se 4d+1 -0.0002799199663481 0.0003777824944227 + 114 6 Se 4d+2 0.0002880941018500 0.0001108620347683 + + 115 7 Se 2s -0.0079401989505352 0.0068169739847244 + 116 7 Se 3s 0.0002316751140195 -0.0001317663436517 + 117 7 Se 3py -0.0033573884410089 0.0008820379111042 + 118 7 Se 3pz -0.0039414426174530 0.0027327216492674 + 119 7 Se 3px -0.0023063191339950 -0.0018269726905420 + 120 7 Se 4py -0.0000306952102243 0.0001959122878496 + 121 7 Se 4pz -0.0000732811607143 0.0000796199277667 + 122 7 Se 4px -0.0001045759256987 0.0002984330041003 + 123 7 Se 4d-2 -0.0000118170489492 0.0001469138227670 + 124 7 Se 4d-1 0.0009175593111772 -0.0001530704114453 + 125 7 Se 4d0 0.0006612419120226 -0.0002149557333014 + 126 7 Se 4d+1 0.0003719642567292 0.0003015685640946 + 127 7 Se 4d+2 -0.0003725992518412 0.0002058657571979 + + 128 8 Cd 2s -0.0030628320453667 0.0006094856712978 + 129 8 Cd 3s -0.0001033013211604 0.0000199581714482 + 130 8 Cd 3py 0.0002077524628030 0.0000663377164786 + 131 8 Cd 3pz 0.0013908906774419 -0.0000594327915425 + 132 8 Cd 3px -0.0011420677865675 0.0022916538941377 + 133 8 Cd 4py 0.0004023027820315 0.0001483736535813 + 134 8 Cd 4pz 0.0002635508531982 0.0003143071985830 + 135 8 Cd 4px 0.0009782540253334 0.0005383151828786 + 136 8 Cd 4d-2 0.0042021903259906 -0.0170048337464366 + 137 8 Cd 4d-1 -0.0111950428030198 0.0313400530680123 + 138 8 Cd 4d0 -0.0007658879303974 -0.0028581063032928 + 139 8 Cd 4d+1 0.0318412073926890 -0.0264373983054539 + 140 8 Cd 4d+2 -0.0634936054130781 0.0055931234478457 + 141 8 Cd 5d-2 0.0002208085118928 -0.0004902656235059 + 142 8 Cd 5d-1 -0.0009807421943985 0.0000085003421125 + 143 8 Cd 5d0 -0.0000593686970387 -0.0000956388820045 + 144 8 Cd 5d+1 -0.0013132636499147 -0.0005278654048505 + 145 8 Cd 5d+2 -0.0000882791893880 0.0006489375383727 + 146 8 Cd 5f-3 -0.0000967924054758 -0.0000922527082889 + 147 8 Cd 5f-2 0.0002648357824421 0.0002111217693656 + 148 8 Cd 5f-1 -0.0000918186984904 0.0001393594042144 + 149 8 Cd 5f0 -0.0000705207540758 -0.0000508838868288 + 150 8 Cd 5f+1 -0.0001908637495813 0.0002289784828862 + 151 8 Cd 5f+2 -0.0001773376562488 -0.0002580146818632 + 152 8 Cd 5f+3 0.0000676325599870 0.0001148692359860 + + 153 9 Cd 2s -0.0010985753861944 -0.0003207024059078 + 154 9 Cd 3s 0.0000915152306701 -0.0003288593587040 + 155 9 Cd 3py -0.0004323916025556 -0.0003003935911618 + 156 9 Cd 3pz 0.0010351903441568 0.0006645566453982 + 157 9 Cd 3px 0.0002932406572244 0.0008873666856667 + 158 9 Cd 4py 0.0001034924070014 -0.0002318971834937 + 159 9 Cd 4pz -0.0001312417972572 0.0004556749471203 + 160 9 Cd 4px 0.0003056468166094 -0.0001563354726266 + 161 9 Cd 4d-2 0.0069272830828868 -0.0024920035190085 + 162 9 Cd 4d-1 0.0136273295150432 -0.0022950469492869 + 163 9 Cd 4d0 -0.0082453564862996 0.0031225866345098 + 164 9 Cd 4d+1 -0.0026334443623254 -0.0023428375649080 + 165 9 Cd 4d+2 0.0081666064761535 -0.0034527615930128 + 166 9 Cd 5d-2 0.0009359915659024 0.0001271950565841 + 167 9 Cd 5d-1 0.0005038194894048 0.0004394153258113 + 168 9 Cd 5d0 -0.0002662082813870 -0.0005798142879688 + 169 9 Cd 5d+1 -0.0001838941850500 -0.0003975689030572 + 170 9 Cd 5d+2 0.0000393891220570 0.0003846436398170 + 171 9 Cd 5f-3 0.0000118308058213 0.0001139257984954 + 172 9 Cd 5f-2 -0.0003528571710125 -0.0001261312790224 + 173 9 Cd 5f-1 -0.0002095732855631 -0.0001914973257521 + 174 9 Cd 5f0 -0.0000169773593736 0.0000699381045190 + 175 9 Cd 5f+1 -0.0001299293815349 0.0001285552782905 + 176 9 Cd 5f+2 -0.0001210522146416 0.0000282446520127 + 177 9 Cd 5f+3 -0.0002706652281926 -0.0000444101370905 + + 178 10 Se 2s -0.0119010491292515 0.0102113417128224 + 179 10 Se 3s 0.0002187438590876 -0.0002204045091811 + 180 10 Se 3py -0.0000519138923086 -0.0002901544755008 + 181 10 Se 3pz -0.0035699930116121 0.0041802951036321 + 182 10 Se 3px 0.0015506830784418 -0.0001023835829232 + 183 10 Se 4py 0.0003164847294498 -0.0003391597908425 + 184 10 Se 4pz -0.0001822010835671 -0.0001295811924544 + 185 10 Se 4px 0.0007412591273984 -0.0002601342956934 + 186 10 Se 4d-2 0.0002068080924593 -0.0001619077393012 + 187 10 Se 4d-1 0.0000882097333429 -0.0000461963949879 + 188 10 Se 4d0 0.0003340812156589 -0.0005163208571814 + 189 10 Se 4d+1 -0.0001378998687674 0.0002087383318655 + 190 10 Se 4d+2 -0.0001803000018355 0.0002914625259648 + + 191 11 Se 2s 0.0048663100526562 -0.0116437453907388 + 192 11 Se 3s -0.0001498944932923 0.0005757535640215 + 193 11 Se 3py -0.0036401822243136 0.0086259324794804 + 194 11 Se 3pz -0.0002142947989405 0.0033321156046781 + 195 11 Se 3px 0.0042494089913505 0.0040116000238046 + 196 11 Se 4py -0.0000500775717594 -0.0005440787626051 + 197 11 Se 4pz 0.0006690757651006 -0.0001188043909607 + 198 11 Se 4px -0.0004233984555422 0.0008082316710938 + 199 11 Se 4d-2 0.0002209355400413 0.0016827364141807 + 200 11 Se 4d-1 0.0006868503790253 -0.0008788215483634 + 201 11 Se 4d0 0.0004038888145442 -0.0015412584719866 + 202 11 Se 4d+1 -0.0004996236904343 0.0006426481932179 + 203 11 Se 4d+2 0.0000466521944352 -0.0004018958941392 + + 204 12 Cd 2s 0.0091320826976533 0.0006887637539046 + 205 12 Cd 3s 0.0009686252664379 -0.0000508978777743 + 206 12 Cd 3py 0.0022816636489406 0.0001559918715197 + 207 12 Cd 3pz -0.0056781968990238 0.0001882667544203 + 208 12 Cd 3px -0.0015193745357941 0.0010838018474899 + 209 12 Cd 4py 0.0006603306766231 0.0001238530590062 + 210 12 Cd 4pz -0.0005680515759199 -0.0003723117951426 + 211 12 Cd 4px 0.0000690207769368 -0.0001802455259956 + 212 12 Cd 4d-2 -0.0311173864967839 0.0392844922893063 + 213 12 Cd 4d-1 -0.0269900236870134 0.0000002882438834 + 214 12 Cd 4d0 0.0617624382161038 -0.0453644244738046 + 215 12 Cd 4d+1 0.0018675721522939 -0.0398563780311559 + 216 12 Cd 4d+2 0.0116953238051918 -0.0023680200638814 + 217 12 Cd 5d-2 -0.0000405931729700 -0.0006356765255051 + 218 12 Cd 5d-1 -0.0005607566715730 -0.0003593653243050 + 219 12 Cd 5d0 0.0021505536699836 -0.0007808753074956 + 220 12 Cd 5d+1 -0.0001215721287726 -0.0005642721844104 + 221 12 Cd 5d+2 -0.0004128514272179 -0.0002939785732881 + 222 12 Cd 5f-3 -0.0000518985179702 -0.0001250002402739 + 223 12 Cd 5f-2 0.0002263852350327 -0.0000892800172332 + 224 12 Cd 5f-1 -0.0002708953284812 0.0001215005839350 + 225 12 Cd 5f0 0.0002133872236531 -0.0004791706602070 + 226 12 Cd 5f+1 0.0000018108513130 0.0003129236646357 + 227 12 Cd 5f+2 0.0000964048898916 -0.0000576308124320 + 228 12 Cd 5f+3 0.0002535603328114 0.0000696953294238 + + 229 13 Cd 2s -0.0054303271832258 -0.0246347218801352 + 230 13 Cd 3s 0.0001490039466433 0.0006162135131750 + 231 13 Cd 3py 0.0025701842581126 0.0064402659457103 + 232 13 Cd 3pz 0.0034780001395158 0.0141571800141461 + 233 13 Cd 3px 0.0019253383519466 -0.0032722824899616 + 234 13 Cd 4py -0.0008351198155837 -0.0013629295325520 + 235 13 Cd 4pz 0.0005185038385168 0.0024503283331479 + 236 13 Cd 4px 0.0002220514735951 0.0003619581751465 + 237 13 Cd 4d-2 -0.2308262618772541 0.2199963411061217 + 238 13 Cd 4d-1 -0.4423584821073659 -0.4188690383417065 + 239 13 Cd 4d0 0.2766313938365270 -0.2982434609291790 + 240 13 Cd 4d+1 -0.0091862175812098 0.0443621893879431 + 241 13 Cd 4d+2 0.2659082249490194 -0.0353119847219685 + 242 13 Cd 5d-2 0.0024766658870384 0.0025842394700541 + 243 13 Cd 5d-1 -0.0002141021164560 -0.0052632399152179 + 244 13 Cd 5d0 0.0018519578730843 -0.0014386139230611 + 245 13 Cd 5d+1 0.0029453534636993 0.0022105863993644 + 246 13 Cd 5d+2 0.0014616146841551 0.0034794520803636 + 247 13 Cd 5f-3 0.0003236398194649 -0.0012194603290564 + 248 13 Cd 5f-2 -0.0000412493202839 0.0005058927238504 + 249 13 Cd 5f-1 0.0004622821377921 0.0007891158610230 + 250 13 Cd 5f0 0.0001705286254340 0.0003944052608328 + 251 13 Cd 5f+1 0.0004875995381029 -0.0002662379403793 + 252 13 Cd 5f+2 0.0007216719240469 0.0003962593579344 + 253 13 Cd 5f+3 -0.0004179595530662 -0.0010755684833793 + + 254 14 Cd 2s -0.0019389464086883 -0.0007397572086965 + 255 14 Cd 3s 0.0003611766053530 0.0000811891387793 + 256 14 Cd 3py 0.0003259556538796 -0.0015185766820915 + 257 14 Cd 3pz 0.0002100289021407 -0.0005546830807716 + 258 14 Cd 3px 0.0012627017311531 0.0016155819136398 + 259 14 Cd 4py -0.0000514799244548 0.0000582765822494 + 260 14 Cd 4pz -0.0005326223351975 -0.0003275763518089 + 261 14 Cd 4px -0.0002096800816951 -0.0000236966978527 + 262 14 Cd 4d-2 -0.0052451022807166 -0.0015866551250132 + 263 14 Cd 4d-1 0.0016585978589408 0.0190005946405657 + 264 14 Cd 4d0 -0.0040262802527897 -0.0029476395426077 + 265 14 Cd 4d+1 -0.0180487756862761 -0.0207955457705331 + 266 14 Cd 4d+2 0.0042457016162106 -0.0029560816064955 + 267 14 Cd 5d-2 -0.0005970964040501 -0.0006032164231891 + 268 14 Cd 5d-1 0.0003109787502560 0.0012879346062423 + 269 14 Cd 5d0 0.0004130107271684 -0.0000634604015547 + 270 14 Cd 5d+1 -0.0000111180335179 -0.0008729825925987 + 271 14 Cd 5d+2 0.0000957249676708 -0.0003171011722819 + 272 14 Cd 5f-3 -0.0000245717505739 -0.0000621359974902 + 273 14 Cd 5f-2 0.0002155606945676 0.0004037377258868 + 274 14 Cd 5f-1 -0.0001249839415456 -0.0002860295137162 + 275 14 Cd 5f0 -0.0001656713708673 0.0000207374799495 + 276 14 Cd 5f+1 -0.0001199368480312 0.0000236620579988 + 277 14 Cd 5f+2 0.0000040739630494 0.0003425017938562 + 278 14 Cd 5f+3 -0.0002001817730350 -0.0002541776477555 + + 279 15 Se 2s 0.0244981481321346 0.0354664446572752 + 280 15 Se 3s -0.0002483411833374 -0.0006063466902599 + 281 15 Se 3py 0.0030124206173074 0.0155465859504728 + 282 15 Se 3pz -0.0000176073236212 -0.0077028903715597 + 283 15 Se 3px -0.0222600213153578 -0.0241674883297353 + 284 15 Se 4py 0.0000849549658109 0.0007157340750022 + 285 15 Se 4pz -0.0002105541333863 0.0006894069949469 + 286 15 Se 4px 0.0000654713053997 -0.0007913295169308 + 287 15 Se 4d-2 0.0029389186611263 0.0061941767796458 + 288 15 Se 4d-1 0.0007443870563984 0.0015333713994412 + 289 15 Se 4d0 0.0026124717100567 0.0036076273528196 + 290 15 Se 4d+1 0.0011384819470707 -0.0002692462929729 + 291 15 Se 4d+2 -0.0031720035641371 0.0004813540899324 + + 292 16 Se 2s -0.0021193584362953 0.1699800407232452 + 293 16 Se 3s 0.0001105684035575 -0.0021871070983395 + 294 16 Se 3py 0.0101735349730755 0.0118483515697685 + 295 16 Se 3pz 0.0120869695294159 -0.0161758367535688 + 296 16 Se 3px -0.0035290789972393 0.0519234517835630 + 297 16 Se 4py 0.0005536458865269 0.0020476851721265 + 298 16 Se 4pz 0.0014439778498451 -0.0003876612228809 + 299 16 Se 4px 0.0003916152573748 0.0019147128314553 + 300 16 Se 4d-2 0.0001209667537497 -0.0049008115408766 + 301 16 Se 4d-1 -0.0029424165096030 -0.0045882226889970 + 302 16 Se 4d0 -0.0044549702298648 0.0015256159696687 + 303 16 Se 4d+1 -0.0030543472435876 0.0046777736159730 + 304 16 Se 4d+2 0.0000488718475745 0.0003747663480085 + + 305 17 Cd 2s -0.0010942213355519 -0.0125160298324399 + 306 17 Cd 3s 0.0007070825631500 -0.0017433484836288 + 307 17 Cd 3py -0.0009200549495209 -0.0033166116607924 + 308 17 Cd 3pz 0.0001398360713995 0.0011023677525744 + 309 17 Cd 3px 0.0029623240859241 -0.0068418382125290 + 310 17 Cd 4py -0.0003011037688683 0.0008031899250220 + 311 17 Cd 4pz -0.0016702659075653 0.0017646876892983 + 312 17 Cd 4px 0.0001846710252834 0.0002388206231586 + 313 17 Cd 4d-2 -0.0270037259767322 -0.1951804069601263 + 314 17 Cd 4d-1 0.4381629671468620 0.3209831118757398 + 315 17 Cd 4d0 -0.2097993025910782 0.5423708469875645 + 316 17 Cd 4d+1 0.4219886916528455 -0.2000503407982893 + 317 17 Cd 4d+2 -0.1522528339012591 -0.1351913566891548 + 318 17 Cd 5d-2 0.0013845504193301 -0.0041953331799255 + 319 17 Cd 5d-1 0.0017660341924318 0.0005428885664443 + 320 17 Cd 5d0 -0.0009876081104870 0.0034756767614063 + 321 17 Cd 5d+1 0.0019550508343375 -0.0006379313466562 + 322 17 Cd 5d+2 -0.0015576221853107 0.0020793910034030 + 323 17 Cd 5f-3 0.0008658421307057 -0.0003643703928101 + 324 17 Cd 5f-2 -0.0003666603729145 0.0003187866854589 + 325 17 Cd 5f-1 0.0008672225337857 -0.0004546594078692 + 326 17 Cd 5f0 0.0008302352875511 -0.0000442823056429 + 327 17 Cd 5f+1 0.0005574171528904 -0.0001942320641586 + 328 17 Cd 5f+2 0.0000658667458505 0.0009524182803405 + 329 17 Cd 5f+3 0.0004449729144255 -0.0003165865253018 + + 330 18 Cd 2s 0.0085837341740525 -0.0052691980540127 + 331 18 Cd 3s -0.0011550864007292 0.0011654054363523 + 332 18 Cd 3py 0.0018166226015630 0.0002972643574256 + 333 18 Cd 3pz -0.0012602199145034 0.0039235894693665 + 334 18 Cd 3px -0.0009385940689548 0.0015466826671625 + 335 18 Cd 4py -0.0007309198733792 0.0008546899048028 + 336 18 Cd 4pz 0.0007635436142944 -0.0010394516338703 + 337 18 Cd 4px 0.0006147919512567 -0.0001988543024406 + 338 18 Cd 4d-2 -0.0338593315718574 0.0248898154009232 + 339 18 Cd 4d-1 -0.0380528587258151 0.0362991998997759 + 340 18 Cd 4d0 0.0137514372787514 -0.0308152067748829 + 341 18 Cd 4d+1 0.0327216911685640 -0.0480472157967697 + 342 18 Cd 4d+2 -0.0170669416292097 0.0036853136980820 + 343 18 Cd 5d-2 0.0003448700109331 0.0001857778877882 + 344 18 Cd 5d-1 -0.0000912096512697 0.0013891474965613 + 345 18 Cd 5d0 0.0005138585946604 -0.0014649640254730 + 346 18 Cd 5d+1 0.0006445667979858 -0.0008814576359266 + 347 18 Cd 5d+2 -0.0000010663185563 0.0003516232318893 + 348 18 Cd 5f-3 -0.0001778906874325 0.0004319793852774 + 349 18 Cd 5f-2 0.0000934100781538 -0.0000451609446710 + 350 18 Cd 5f-1 0.0000894419271138 0.0001649088258634 + 351 18 Cd 5f0 0.0001357843011239 -0.0006856533254740 + 352 18 Cd 5f+1 0.0002519914662011 0.0000809240973235 + 353 18 Cd 5f+2 -0.0000585164817574 0.0000309479451110 + 354 18 Cd 5f+3 -0.0004596222620621 0.0001964612790597 + + 355 19 Se 2s -0.0396917582964770 0.0722122504944968 + 356 19 Se 3s 0.0003357005183868 -0.0014759728984874 + 357 19 Se 3py 0.0164156384224551 -0.0321157851208827 + 358 19 Se 3pz -0.0179509478281836 -0.0061160264961516 + 359 19 Se 3px 0.0124185629050023 -0.0096062473735890 + 360 19 Se 4py 0.0001487846497642 -0.0016030157314237 + 361 19 Se 4pz 0.0002000806919253 0.0004340108570166 + 362 19 Se 4px -0.0003453246288095 -0.0009217033274249 + 363 19 Se 4d-2 0.0024888107578032 -0.0032448228756525 + 364 19 Se 4d-1 -0.0045858282451209 -0.0014609529896674 + 365 19 Se 4d0 -0.0010137901410671 0.0031050800735355 + 366 19 Se 4d+1 -0.0027488877269313 -0.0014567978448852 + 367 19 Se 4d+2 -0.0009882157990183 0.0042977733176303 + + 368 20 Se 2s 0.0204621373808223 -0.0339085835916341 + 369 20 Se 3s -0.0007371283252047 0.0016812618327555 + 370 20 Se 3py 0.0063433126693351 0.0186959599669085 + 371 20 Se 3pz 0.0063303282273744 -0.0128083907996248 + 372 20 Se 3px 0.0105286654449878 -0.0064755328022939 + 373 20 Se 4py 0.0007091623443751 -0.0021277042160949 + 374 20 Se 4pz 0.0011507434152150 0.0009049633596743 + 375 20 Se 4px 0.0006760135000037 -0.0017917422629747 + 376 20 Se 4d-2 -0.0017106752616822 0.0030523084805237 + 377 20 Se 4d-1 -0.0013183029101928 -0.0007569527270804 + 378 20 Se 4d0 -0.0010154574492072 0.0017159086513324 + 379 20 Se 4d+1 -0.0004219812511098 -0.0025099841921024 + 380 20 Se 4d+2 -0.0009316156099516 -0.0004883692707880 + + 381 21 Se 2s -0.0087405763515091 0.0001806927346084 + 382 21 Se 3s -0.0000646098995131 0.0000802459986215 + 383 21 Se 3py 0.0028436534251526 -0.0008968550390538 + 384 21 Se 3pz -0.0029522786651954 0.0019971169385390 + 385 21 Se 3px 0.0019958262534667 0.0012032828765050 + 386 21 Se 4py 0.0001614313597680 0.0005976196778113 + 387 21 Se 4pz 0.0004227936765086 -0.0005176470559246 + 388 21 Se 4px 0.0011652949746158 0.0006192063950327 + 389 21 Se 4d-2 0.0003123094905855 -0.0000374097841548 + 390 21 Se 4d-1 -0.0001937633557918 0.0005153619607512 + 391 21 Se 4d0 -0.0000549807823206 -0.0006322911450989 + 392 21 Se 4d+1 0.0001879836906524 -0.0006539865059745 + 393 21 Se 4d+2 0.0007352617272323 -0.0000094332639224 + + 394 22 Cd 2s -0.0062970802731330 -0.0194596577776751 + 395 22 Cd 3s -0.0003825127714646 0.0003456451647099 + 396 22 Cd 3py -0.0022442918697051 0.0024783438212378 + 397 22 Cd 3pz 0.0012894380576127 0.0034416782483113 + 398 22 Cd 3px -0.0044888585505518 -0.0081476324748407 + 399 22 Cd 4py 0.0013025859974555 0.0016733714713913 + 400 22 Cd 4pz 0.0006884146499554 0.0000796046416201 + 401 22 Cd 4px -0.0000053016142108 0.0011856372931418 + 402 22 Cd 4d-2 -0.0933094749052934 0.0648677849561240 + 403 22 Cd 4d-1 0.0158900041682103 -0.0677569658298710 + 404 22 Cd 4d0 -0.0182106670206563 0.0527949787526510 + 405 22 Cd 4d+1 -0.0239772394486258 0.0325036071742138 + 406 22 Cd 4d+2 -0.0533278020868767 -0.1112642274184000 + 407 22 Cd 5d-2 -0.0008134064326943 0.0031020809650727 + 408 22 Cd 5d-1 -0.0014039611536434 -0.0031727883636473 + 409 22 Cd 5d0 0.0000824823949938 -0.0001291761677711 + 410 22 Cd 5d+1 -0.0000675520497694 -0.0005613529826774 + 411 22 Cd 5d+2 0.0004556647373950 0.0001337656473039 + 412 22 Cd 5f-3 -0.0011088623485238 -0.0001570998161281 + 413 22 Cd 5f-2 -0.0003265827649701 0.0000773295839061 + 414 22 Cd 5f-1 -0.0004188308599382 -0.0006173205586484 + 415 22 Cd 5f0 -0.0004329513218883 -0.0004450977146323 + 416 22 Cd 5f+1 -0.0004606517775008 -0.0001811420207538 + 417 22 Cd 5f+2 -0.0002397292351003 -0.0010312526767196 + 418 22 Cd 5f+3 -0.0002086185675666 0.0010940486679771 + + 419 23 Se 2s 0.0108411879434115 0.0036900839862822 + 420 23 Se 3s -0.0001149717166736 -0.0000386750704446 + 421 23 Se 3py 0.0059505616886857 0.0098107643206147 + 422 23 Se 3pz -0.0107405014715590 0.0150253379991833 + 423 23 Se 3px 0.0133490470835367 -0.0073515057910209 + 424 23 Se 4py 0.0002843676172891 0.0010032054880926 + 425 23 Se 4pz -0.0008129408104587 0.0014951981886594 + 426 23 Se 4px 0.0005979531958845 0.0000195716115344 + 427 23 Se 4d-2 -0.0012055112820135 0.0026691721308577 + 428 23 Se 4d-1 0.0019368176222865 -0.0011903941558326 + 429 23 Se 4d0 -0.0012566634719549 0.0015395624251376 + 430 23 Se 4d+1 0.0007422705250365 0.0026876411107329 + 431 23 Se 4d+2 0.0020063914999523 -0.0003261914113238 + + 432 24 Se 2s -0.0297190612217732 -0.0075361389638304 + 433 24 Se 3s 0.0007337164445914 0.0003318340740877 + 434 24 Se 3py 0.0068117786054308 0.0020772344585589 + 435 24 Se 3pz -0.0133398684543569 -0.0005941737722677 + 436 24 Se 3px 0.0091596016946661 0.0030269248279857 + 437 24 Se 4py 0.0003224480976186 0.0000489509972275 + 438 24 Se 4pz 0.0004144360561323 -0.0004327574658496 + 439 24 Se 4px 0.0000086137181177 0.0005252173450989 + 440 24 Se 4d-2 0.0015526019128787 0.0005599594970455 + 441 24 Se 4d-1 -0.0014574801022837 -0.0003607851939723 + 442 24 Se 4d0 0.0003525463281006 -0.0004084797334912 + 443 24 Se 4d+1 -0.0026285401646656 -0.0004081922989753 + 444 24 Se 4d+2 0.0008255853226269 0.0004663539306407 + + 445 25 Cd 2s 0.0230530140915258 -0.0072322998249756 + 446 25 Cd 3s 0.0001599830216720 0.0000270845218242 + 447 25 Cd 3py 0.0023659864922920 0.0014169199689150 + 448 25 Cd 3pz -0.0047730034979999 -0.0020197046087966 + 449 25 Cd 3px 0.0096524557105468 -0.0035999640813514 + 450 25 Cd 4py -0.0000840511303771 0.0005581369302911 + 451 25 Cd 4pz 0.0000355536451054 -0.0011774724232157 + 452 25 Cd 4px -0.0009462803575647 -0.0001908557051642 + 453 25 Cd 4d-2 -0.0110286148555695 -0.0515996724306170 + 454 25 Cd 4d-1 0.0210594204503689 -0.0662620456344564 + 455 25 Cd 4d0 -0.0864823110609194 0.1407246369241913 + 456 25 Cd 4d+1 -0.2542903902481050 -0.0161964656828500 + 457 25 Cd 4d+2 0.1372782229886824 0.0695139972652740 + 458 25 Cd 5d-2 0.0016491391786043 0.0003294002648275 + 459 25 Cd 5d-1 0.0005679402338829 -0.0004765015795544 + 460 25 Cd 5d0 -0.0036004393066653 0.0006714074117500 + 461 25 Cd 5d+1 -0.0038509398256581 -0.0017550353889908 + 462 25 Cd 5d+2 0.0027356180321979 -0.0017176505182066 + 463 25 Cd 5f-3 -0.0004216480905072 -0.0003407574588888 + 464 25 Cd 5f-2 0.0005829741063733 0.0001087383517718 + 465 25 Cd 5f-1 -0.0003759223310505 -0.0001760361067714 + 466 25 Cd 5f0 -0.0002676408123025 0.0004993538342761 + 467 25 Cd 5f+1 -0.0009935042924937 0.0005520354547937 + 468 25 Cd 5f+2 -0.0001321138006640 -0.0006903696075598 + 469 25 Cd 5f+3 0.0000751541814553 -0.0002200413900316 + + 470 26 Cd 2s 0.0049655176239367 0.0000849985914926 + 471 26 Cd 3s -0.0007042603649493 -0.0002597615352817 + 472 26 Cd 3py 0.0017844468186198 0.0005058043451611 + 473 26 Cd 3pz 0.0018087058730136 0.0005425653730731 + 474 26 Cd 3px 0.0013055417557493 -0.0013817046947767 + 475 26 Cd 4py 0.0012048822692697 0.0003031296218549 + 476 26 Cd 4pz 0.0003973458490251 0.0002482938327098 + 477 26 Cd 4px 0.0002911206412786 -0.0004638393803204 + 478 26 Cd 4d-2 0.0169471291153326 0.0045938698371997 + 479 26 Cd 4d-1 -0.0000310313035090 -0.0031024383055938 + 480 26 Cd 4d0 -0.0187747603850145 -0.0008611222339010 + 481 26 Cd 4d+1 0.0097963884217648 0.0016154135647800 + 482 26 Cd 4d+2 -0.0158314219917529 -0.0058147713204750 + 483 26 Cd 5d-2 0.0012242780348920 0.0007630054411215 + 484 26 Cd 5d-1 -0.0005064160681193 -0.0000699089222625 + 485 26 Cd 5d0 -0.0003397981371056 0.0001040033814124 + 486 26 Cd 5d+1 0.0010397073235333 0.0008737776848331 + 487 26 Cd 5d+2 0.0008415129184446 -0.0011533209132902 + 488 26 Cd 5f-3 -0.0000707770129229 0.0001440382001974 + 489 26 Cd 5f-2 -0.0002138144769388 -0.0001393381715672 + 490 26 Cd 5f-1 -0.0003317845499996 0.0002284160482824 + 491 26 Cd 5f0 -0.0003739342866532 -0.0001817956127510 + 492 26 Cd 5f+1 -0.0002585142341666 0.0001465019479795 + 493 26 Cd 5f+2 -0.0001874675885060 0.0003497684438808 + 494 26 Cd 5f+3 0.0001670764863885 -0.0002458699254604 + + 67 68 + -0.4514403361020193 -0.4511511027877572 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0098051321302608 0.0123158900293903 + 2 1 Cd 3s -0.0011763308438233 0.0018428941439167 + 3 1 Cd 3py 0.0000373329828968 0.0035492344215289 + 4 1 Cd 3pz 0.0004880972460859 -0.0015135405825046 + 5 1 Cd 3px 0.0054617176895635 -0.0047742275815560 + 6 1 Cd 4py 0.0003665063603914 -0.0002804211017268 + 7 1 Cd 4pz -0.0005548689747879 0.0014391302054421 + 8 1 Cd 4px 0.0002369749707699 0.0000445525392053 + 9 1 Cd 4d-2 0.0439256545911037 -0.0019819595055568 + 10 1 Cd 4d-1 -0.0759678873510241 0.1803843028531592 + 11 1 Cd 4d0 0.0247186538507654 -0.1322996381448865 + 12 1 Cd 4d+1 0.0326283100955698 -0.0613853135383514 + 13 1 Cd 4d+2 0.0889636487609777 -0.1035584567104053 + 14 1 Cd 5d-2 -0.0001092018351101 -0.0011930581725991 + 15 1 Cd 5d-1 0.0003108474363355 0.0009676103252935 + 16 1 Cd 5d0 0.0016257085956838 -0.0014603417266022 + 17 1 Cd 5d+1 -0.0005200087444584 0.0010721830649314 + 18 1 Cd 5d+2 -0.0008943995831286 -0.0011415382892148 + 19 1 Cd 5f-3 -0.0001452116815144 0.0001906939576167 + 20 1 Cd 5f-2 -0.0002359251386886 -0.0003250527507877 + 21 1 Cd 5f-1 -0.0001287989293766 -0.0004142097812868 + 22 1 Cd 5f0 -0.0000101220086753 0.0003989232829485 + 23 1 Cd 5f+1 -0.0006269089349768 0.0000620355672490 + 24 1 Cd 5f+2 0.0003410755879472 -0.0005268971977339 + 25 1 Cd 5f+3 0.0003560778962388 0.0001353393670400 + + 26 2 Cd 2s -0.0037598204723608 0.0051929697420688 + 27 2 Cd 3s -0.0008255187142915 0.0000560257160798 + 28 2 Cd 3py -0.0002902423093213 0.0001073099681135 + 29 2 Cd 3pz 0.0036140160750581 -0.0017229338895249 + 30 2 Cd 3px -0.0006551417358747 0.0008011646394731 + 31 2 Cd 4py -0.0000847231557329 0.0003131671995986 + 32 2 Cd 4pz 0.0010177938871178 -0.0007220385863083 + 33 2 Cd 4px 0.0001787360971080 -0.0000287242209436 + 34 2 Cd 4d-2 -0.0050407065672652 0.0194357402626764 + 35 2 Cd 4d-1 0.0172567718271447 -0.0063673979581627 + 36 2 Cd 4d0 -0.0077389181306882 -0.0349225375305364 + 37 2 Cd 4d+1 0.0172293820745549 -0.0351665162777805 + 38 2 Cd 4d+2 0.0037196650533647 0.0223523722043974 + 39 2 Cd 5d-2 -0.0003192056453063 -0.0004347411542005 + 40 2 Cd 5d-1 0.0004039745031338 0.0002351530628422 + 41 2 Cd 5d0 -0.0010059779524124 0.0011713253631922 + 42 2 Cd 5d+1 0.0001252730268450 -0.0008071595722345 + 43 2 Cd 5d+2 -0.0005204797613517 -0.0001430207300522 + 44 2 Cd 5f-3 0.0000966726284639 -0.0001680724326584 + 45 2 Cd 5f-2 -0.0001707247776522 0.0002180107265945 + 46 2 Cd 5f-1 -0.0000142587479185 -0.0002882105030223 + 47 2 Cd 5f0 0.0000087066179193 -0.0004422041816302 + 48 2 Cd 5f+1 -0.0002850064219647 0.0000164665133498 + 49 2 Cd 5f+2 -0.0000027661736683 0.0001702723353291 + 50 2 Cd 5f+3 0.0001425371600122 0.0001239233457982 + + 51 3 Cd 2s -0.0049900123474073 0.0098787032574353 + 52 3 Cd 3s 0.0000892683030271 -0.0006313054228555 + 53 3 Cd 3py -0.0003911261016517 0.0008872906861618 + 54 3 Cd 3pz 0.0006628898339744 0.0000586499258264 + 55 3 Cd 3px 0.0009868731866402 -0.0010153024554953 + 56 3 Cd 4py -0.0000977416817049 -0.0003467211623393 + 57 3 Cd 4pz -0.0002165559349978 0.0011366694962754 + 58 3 Cd 4px 0.0006298411067478 -0.0000112831871276 + 59 3 Cd 4d-2 0.0163531684353065 0.0507918341903755 + 60 3 Cd 4d-1 -0.0296066598932451 0.0167937753878169 + 61 3 Cd 4d0 0.0332096662783668 0.0371646106137603 + 62 3 Cd 4d+1 -0.0572136890356231 0.1195489964545503 + 63 3 Cd 4d+2 0.0022867667071626 -0.0442316948523199 + 64 3 Cd 5d-2 0.0008510569531515 0.0004656866510461 + 65 3 Cd 5d-1 -0.0000044880450068 0.0002539422631140 + 66 3 Cd 5d0 -0.0003746681879218 -0.0005824845569736 + 67 3 Cd 5d+1 0.0000277581048444 -0.0010795648455296 + 68 3 Cd 5d+2 -0.0005381140329413 0.0005562316844259 + 69 3 Cd 5f-3 -0.0004563287882382 -0.0000520620608183 + 70 3 Cd 5f-2 -0.0005801866702685 0.0003563869221714 + 71 3 Cd 5f-1 -0.0002731409683535 0.0002082574633122 + 72 3 Cd 5f0 0.0004456977650258 -0.0001125755155983 + 73 3 Cd 5f+1 0.0000168965438854 0.0002335105576400 + 74 3 Cd 5f+2 -0.0000118721254143 -0.0000347352097593 + 75 3 Cd 5f+3 -0.0000531338720564 -0.0001858117177659 + + 76 4 Se 2s 0.0171361861091355 -0.0321107120655075 + 77 4 Se 3s -0.0005144020203357 0.0006558737857188 + 78 4 Se 3py 0.0068982657461083 -0.0172047276298349 + 79 4 Se 3pz 0.0007854946576925 -0.0007693328719075 + 80 4 Se 3px 0.0005118029424916 -0.0021070429702983 + 81 4 Se 4py 0.0000078952805637 0.0002812007166106 + 82 4 Se 4pz 0.0005242243529202 0.0005090887859578 + 83 4 Se 4px 0.0000055943497032 0.0002339872300725 + 84 4 Se 4d-2 -0.0003842862430627 0.0011379647319376 + 85 4 Se 4d-1 -0.0014590160363564 0.0041223960118050 + 86 4 Se 4d0 0.0002110305575159 -0.0011817980392776 + 87 4 Se 4d+1 0.0006285023477980 -0.0010489862383559 + 88 4 Se 4d+2 0.0009135445137553 -0.0003473226783533 + + 89 5 Se 2s -0.0011197342553111 0.0018897610316759 + 90 5 Se 3s 0.0002891841979885 -0.0003512550124518 + 91 5 Se 3py -0.0054460682388527 0.0127051015570363 + 92 5 Se 3pz 0.0074631038569564 -0.0187984151429794 + 93 5 Se 3px -0.0077032681129009 0.0085335033216051 + 94 5 Se 4py -0.0002773820354916 0.0010075554983131 + 95 5 Se 4pz 0.0009401532628693 -0.0021852633469755 + 96 5 Se 4px -0.0005465190791059 0.0001027062109869 + 97 5 Se 4d-2 -0.0012326124682772 0.0004734002757717 + 98 5 Se 4d-1 0.0016610095739089 -0.0031500677363084 + 99 5 Se 4d0 0.0006687423043116 -0.0024271712995772 + 100 5 Se 4d+1 -0.0007096506551501 0.0016137371554055 + 101 5 Se 4d+2 0.0019200286141193 -0.0029674440359611 + + 102 6 Se 2s 0.0032536603942915 -0.0084438929374854 + 103 6 Se 3s -0.0000585989061289 0.0001597269717031 + 104 6 Se 3py 0.0021286410899367 -0.0055535755170035 + 105 6 Se 3pz 0.0013682852365900 -0.0045950642941779 + 106 6 Se 3px 0.0013729585530254 -0.0043591778770968 + 107 6 Se 4py 0.0000512144081696 -0.0004651209041439 + 108 6 Se 4pz 0.0000741394400528 0.0001461640048815 + 109 6 Se 4px 0.0000578214573033 -0.0000234868769819 + 110 6 Se 4d-2 -0.0001657322490667 0.0010154722993506 + 111 6 Se 4d-1 -0.0003504335318459 0.0005212233657939 + 112 6 Se 4d0 -0.0001537243656895 0.0000018557685273 + 113 6 Se 4d+1 -0.0003532533804852 0.0014018297197267 + 114 6 Se 4d+2 -0.0001533737948612 0.0005942940726827 + + 115 7 Se 2s 0.0009913662672097 0.0030356458112524 + 116 7 Se 3s -0.0000520857066415 -0.0001119402312280 + 117 7 Se 3py 0.0000136139296992 0.0008610802745291 + 118 7 Se 3pz 0.0005210496960084 0.0009175432819194 + 119 7 Se 3px 0.0001602750436360 -0.0008572581238299 + 120 7 Se 4py 0.0001492096977679 -0.0001585632930523 + 121 7 Se 4pz 0.0000216883933425 0.0000418915654471 + 122 7 Se 4px -0.0002805768982240 0.0000281884143936 + 123 7 Se 4d-2 0.0000699202413338 0.0000978465071646 + 124 7 Se 4d-1 -0.0000064691577391 -0.0002046636270531 + 125 7 Se 4d0 -0.0000772967072672 -0.0000640647862156 + 126 7 Se 4d+1 -0.0001184153240681 -0.0000209723341106 + 127 7 Se 4d+2 0.0000738275934068 0.0000109426881900 + + 128 8 Cd 2s 0.0025547186807218 0.0037926682833628 + 129 8 Cd 3s -0.0002244497336684 -0.0000042025813568 + 130 8 Cd 3py 0.0015597432782863 -0.0005338476474076 + 131 8 Cd 3pz -0.0002240926493742 -0.0027944410024100 + 132 8 Cd 3px -0.0003564471792138 -0.0001819442886399 + 133 8 Cd 4py 0.0006712120333880 0.0001814644663675 + 134 8 Cd 4pz 0.0002716616026207 -0.0001699516175734 + 135 8 Cd 4px -0.0000635490684940 -0.0002120840868352 + 136 8 Cd 4d-2 -0.0073187897565669 -0.0220855053677011 + 137 8 Cd 4d-1 0.0014995421316631 0.0062042507562291 + 138 8 Cd 4d0 0.0069145137565118 0.0246388691566060 + 139 8 Cd 4d+1 0.0076513648549183 -0.0180557023578760 + 140 8 Cd 4d+2 -0.0015713445367980 -0.0258193513061670 + 141 8 Cd 5d-2 0.0004985064608502 -0.0002936231579310 + 142 8 Cd 5d-1 -0.0015761086820995 -0.0004277240332748 + 143 8 Cd 5d0 -0.0000332920527659 0.0008743419105583 + 144 8 Cd 5d+1 0.0005053627331972 0.0001687082457020 + 145 8 Cd 5d+2 0.0004676787286717 -0.0000681453901593 + 146 8 Cd 5f-3 0.0000123200702046 -0.0004385153848407 + 147 8 Cd 5f-2 -0.0001796325762386 -0.0000505998717348 + 148 8 Cd 5f-1 0.0003552832300836 0.0002237585850068 + 149 8 Cd 5f0 -0.0001647352496146 0.0000441857392890 + 150 8 Cd 5f+1 -0.0001273656082561 -0.0001990723928991 + 151 8 Cd 5f+2 -0.0001508874826901 -0.0003776122950239 + 152 8 Cd 5f+3 0.0001122538183941 -0.0004377263160607 + + 153 9 Cd 2s -0.0009340964788877 0.0011409963155876 + 154 9 Cd 3s -0.0000306076846268 -0.0002110832084240 + 155 9 Cd 3py 0.0002804363487972 0.0001765794130646 + 156 9 Cd 3pz -0.0000084092422095 -0.0000166835629985 + 157 9 Cd 3px -0.0000141594853635 0.0004320002740578 + 158 9 Cd 4py -0.0000343834069690 -0.0000482829964602 + 159 9 Cd 4pz -0.0001534656493582 0.0002849380308873 + 160 9 Cd 4px -0.0000715839914970 -0.0001053338022496 + 161 9 Cd 4d-2 0.0005401008362063 0.0062786764334104 + 162 9 Cd 4d-1 -0.0049420854737032 -0.0017315745050090 + 163 9 Cd 4d0 -0.0003059833135284 -0.0004133527340747 + 164 9 Cd 4d+1 0.0011012340579772 -0.0011092976365525 + 165 9 Cd 4d+2 -0.0045138601917441 0.0023530981977102 + 166 9 Cd 5d-2 0.0001256349190631 0.0002818590059031 + 167 9 Cd 5d-1 -0.0001712675290733 -0.0000541598575749 + 168 9 Cd 5d0 0.0003797080933295 -0.0003496778601908 + 169 9 Cd 5d+1 0.0003390753315870 -0.0002135298720949 + 170 9 Cd 5d+2 -0.0001661347088965 0.0000480407315280 + 171 9 Cd 5f-3 -0.0000637207029144 -0.0000128373899958 + 172 9 Cd 5f-2 -0.0000978424321606 -0.0000237816439822 + 173 9 Cd 5f-1 0.0000623826482211 0.0000466337307673 + 174 9 Cd 5f0 -0.0001688996207360 0.0001531025189971 + 175 9 Cd 5f+1 -0.0001291387583562 0.0000275176412126 + 176 9 Cd 5f+2 -0.0000068246930917 -0.0000003557176913 + 177 9 Cd 5f+3 0.0000099792639269 -0.0002237638417899 + + 178 10 Se 2s 0.0023599820127219 0.0018765402752479 + 179 10 Se 3s -0.0000922243502003 -0.0001339462757867 + 180 10 Se 3py -0.0001186919153345 0.0010762322045380 + 181 10 Se 3pz 0.0008064707089221 0.0013624916481532 + 182 10 Se 3px 0.0001010312679921 0.0006006660233479 + 183 10 Se 4py -0.0000409234405279 -0.0000155817748065 + 184 10 Se 4pz 0.0001219434863649 -0.0000225966378668 + 185 10 Se 4px 0.0001230278405569 -0.0002580812114029 + 186 10 Se 4d-2 0.0000632761248893 -0.0000161253026436 + 187 10 Se 4d-1 0.0000153664493790 -0.0002339442162503 + 188 10 Se 4d0 -0.0002160278475161 -0.0002782967775140 + 189 10 Se 4d+1 -0.0000342715233423 -0.0001070489054223 + 190 10 Se 4d+2 -0.0000280589020423 -0.0000508208277684 + + 191 11 Se 2s 0.0004037363569841 -0.0023308689753278 + 192 11 Se 3s -0.0001690527730376 0.0000578252629645 + 193 11 Se 3py 0.0018557289379656 -0.0051144098248043 + 194 11 Se 3pz 0.0013917916464722 -0.0066508043556598 + 195 11 Se 3px 0.0014552476343673 0.0025432314621261 + 196 11 Se 4py -0.0004669363715484 -0.0000403344196871 + 197 11 Se 4pz 0.0006660644173502 -0.0001530529394169 + 198 11 Se 4px 0.0000068266759491 -0.0003665948646815 + 199 11 Se 4d-2 0.0003306664530246 0.0000346067559293 + 200 11 Se 4d-1 -0.0002915678797266 0.0000886350573099 + 201 11 Se 4d0 -0.0001963759874846 0.0008965650629845 + 202 11 Se 4d+1 0.0003655805757802 -0.0005539974051431 + 203 11 Se 4d+2 -0.0000591478331117 0.0004139697235073 + + 204 12 Cd 2s 0.0027393468163527 0.0058027001067815 + 205 12 Cd 3s -0.0000396331505655 -0.0001548958344253 + 206 12 Cd 3py 0.0016214039598339 -0.0000859642715495 + 207 12 Cd 3pz -0.0013766353300568 -0.0033419748889588 + 208 12 Cd 3px -0.0000962664237744 0.0021867605376332 + 209 12 Cd 4py 0.0003085934786356 -0.0001794705451660 + 210 12 Cd 4pz -0.0003878116477479 -0.0011059446366478 + 211 12 Cd 4px 0.0002378787325854 -0.0001535869866383 + 212 12 Cd 4d-2 0.0095667381279792 0.0057169649259269 + 213 12 Cd 4d-1 -0.0061759483291550 0.0099777866397690 + 214 12 Cd 4d0 -0.0013889640623409 -0.0159372947059660 + 215 12 Cd 4d+1 -0.0136968109630281 -0.0105682547737718 + 216 12 Cd 4d+2 -0.0032125937331648 0.0171790742260674 + 217 12 Cd 5d-2 0.0003113656637480 0.0005604523406865 + 218 12 Cd 5d-1 -0.0008192583787649 0.0000381100450224 + 219 12 Cd 5d0 0.0009964955840479 0.0020916931080514 + 220 12 Cd 5d+1 -0.0007253027140780 -0.0005045772268028 + 221 12 Cd 5d+2 0.0001593979056459 0.0004313230124803 + 222 12 Cd 5f-3 0.0000048063446743 0.0002347135627325 + 223 12 Cd 5f-2 -0.0002473129161465 0.0001688844657540 + 224 12 Cd 5f-1 0.0002888355309488 0.0000379388271272 + 225 12 Cd 5f0 -0.0002054015254657 -0.0005961409234696 + 226 12 Cd 5f+1 0.0005257558666072 0.0003215563502319 + 227 12 Cd 5f+2 -0.0000266487821795 0.0000730879711636 + 228 12 Cd 5f+3 0.0004796967694761 0.0002581259236221 + + 229 13 Cd 2s -0.0039918786671115 -0.0014248204200815 + 230 13 Cd 3s 0.0003233839974276 -0.0001810384123118 + 231 13 Cd 3py 0.0002794570029976 0.0024836082927539 + 232 13 Cd 3pz 0.0042158364068833 -0.0081608932171547 + 233 13 Cd 3px 0.0025776442286365 0.0004654642048335 + 234 13 Cd 4py -0.0001161316742840 0.0005930596249381 + 235 13 Cd 4pz 0.0014457823455229 -0.0028994987913484 + 236 13 Cd 4px 0.0015396385134686 -0.0029667337287772 + 237 13 Cd 4d-2 0.0152317241549636 -0.1498517480965531 + 238 13 Cd 4d-1 -0.0747549380156779 0.0335228316587380 + 239 13 Cd 4d0 -0.0567575970462002 0.3350754316048065 + 240 13 Cd 4d+1 0.0079436990057222 -0.0716509792111062 + 241 13 Cd 4d+2 0.0331892509852063 -0.0366041908376527 + 242 13 Cd 5d-2 -0.0017318176602679 0.0012040902177166 + 243 13 Cd 5d-1 -0.0021366101796891 0.0024517900633984 + 244 13 Cd 5d0 0.0000981238146203 0.0012703263284216 + 245 13 Cd 5d+1 0.0010597560409063 0.0000235003070953 + 246 13 Cd 5d+2 -0.0000953234106287 0.0025295745596434 + 247 13 Cd 5f-3 -0.0002831130914560 -0.0003994049288407 + 248 13 Cd 5f-2 0.0000750769097572 -0.0002104699379316 + 249 13 Cd 5f-1 0.0000952424251581 -0.0008101227398502 + 250 13 Cd 5f0 -0.0002016518736406 -0.0000132385864394 + 251 13 Cd 5f+1 -0.0002342120056129 0.0005739730701731 + 252 13 Cd 5f+2 -0.0001940791098564 -0.0003260845398584 + 253 13 Cd 5f+3 -0.0005639976153821 -0.0002526132060830 + + 254 14 Cd 2s 0.0005227934759658 -0.0011695459605011 + 255 14 Cd 3s -0.0000287784124131 -0.0000964549829548 + 256 14 Cd 3py -0.0002949094263675 0.0002503720487200 + 257 14 Cd 3pz -0.0013155642860570 0.0010783909522490 + 258 14 Cd 3px -0.0000597214851719 -0.0007693145068238 + 259 14 Cd 4py 0.0000000842913605 0.0000277868038050 + 260 14 Cd 4pz -0.0005026346883568 0.0002193854049145 + 261 14 Cd 4px -0.0000489622747660 0.0000475001345109 + 262 14 Cd 4d-2 0.0016627226835542 0.0038017879360357 + 263 14 Cd 4d-1 0.0040086970054231 -0.0043328871411451 + 264 14 Cd 4d0 0.0010476400808813 -0.0086936020511479 + 265 14 Cd 4d+1 -0.0030271053929652 0.0091959118759536 + 266 14 Cd 4d+2 -0.0012829549682025 0.0019527250745371 + 267 14 Cd 5d-2 -0.0000498641202720 0.0004862560530208 + 268 14 Cd 5d-1 0.0010627452655830 -0.0002886933976796 + 269 14 Cd 5d0 0.0004070769595248 -0.0003523208922728 + 270 14 Cd 5d+1 0.0000388267420147 0.0002507747249330 + 271 14 Cd 5d+2 -0.0001253919392223 0.0003866645375832 + 272 14 Cd 5f-3 0.0000542752859262 -0.0001511711747590 + 273 14 Cd 5f-2 -0.0000125641794330 -0.0002966844131547 + 274 14 Cd 5f-1 -0.0002428399248092 -0.0000666286834706 + 275 14 Cd 5f0 0.0000541252116526 0.0001106609040975 + 276 14 Cd 5f+1 -0.0001508049995971 0.0000932439945995 + 277 14 Cd 5f+2 0.0002953491175663 -0.0003741576164276 + 278 14 Cd 5f+3 -0.0000648261237035 0.0001675387313258 + + 279 15 Se 2s 0.0057924765729825 -0.0014856982461751 + 280 15 Se 3s -0.0000191721019400 -0.0000204273578528 + 281 15 Se 3py 0.0030939805092944 -0.0025455854997819 + 282 15 Se 3pz -0.0027328211651184 0.0008539381860703 + 283 15 Se 3px -0.0049716345060852 0.0096409587569945 + 284 15 Se 4py 0.0000817575138734 0.0006069736993045 + 285 15 Se 4pz 0.0000970889822924 0.0004498531747932 + 286 15 Se 4px -0.0003976896577356 0.0011390717458573 + 287 15 Se 4d-2 0.0009569013348161 -0.0029625331565543 + 288 15 Se 4d-1 0.0006948780342250 -0.0000277237401554 + 289 15 Se 4d0 0.0007724216617888 -0.0004885077803683 + 290 15 Se 4d+1 0.0000775985268432 0.0011839438773348 + 291 15 Se 4d+2 0.0002489398168813 -0.0006077977469002 + + 292 16 Se 2s 0.0302972363013462 -0.0903587890868811 + 293 16 Se 3s -0.0002370071815496 0.0009807394512015 + 294 16 Se 3py 0.0060591934324832 0.0080981857867738 + 295 16 Se 3pz 0.0034843878846919 0.0066609945027882 + 296 16 Se 3px 0.0107900105205896 -0.0391301756509992 + 297 16 Se 4py 0.0002557540653068 -0.0005052746313301 + 298 16 Se 4pz -0.0003881770497041 0.0020426779626926 + 299 16 Se 4px 0.0004913170954895 -0.0003716334252366 + 300 16 Se 4d-2 -0.0012174401323858 0.0034741891537115 + 301 16 Se 4d-1 -0.0036030120412445 0.0050558628293141 + 302 16 Se 4d0 0.0016514975896042 -0.0004904266658533 + 303 16 Se 4d+1 0.0015121554121858 -0.0043009405914559 + 304 16 Se 4d+2 0.0011984266845147 0.0009824586441999 + + 305 17 Cd 2s -0.0053680485563475 0.0022360382125352 + 306 17 Cd 3s -0.0006702081890131 0.0001995262265004 + 307 17 Cd 3py 0.0001138709763172 -0.0035177776867630 + 308 17 Cd 3pz 0.0014172681631048 0.0005938881795469 + 309 17 Cd 3px 0.0014014840166900 0.0100016683580251 + 310 17 Cd 4py -0.0007542285609900 -0.0013339927689786 + 311 17 Cd 4pz 0.0019744355489807 0.0009819562143171 + 312 17 Cd 4px 0.0013440330705362 0.0013902840503158 + 313 17 Cd 4d-2 0.1308780715392591 0.5752366271359115 + 314 17 Cd 4d-1 -0.5588619389501276 0.2002795408706451 + 315 17 Cd 4d0 0.4257218782270018 0.4792751049484991 + 316 17 Cd 4d+1 0.6235839065503894 -0.1646915715690521 + 317 17 Cd 4d+2 -0.1075796332506767 0.0001095920376278 + 318 17 Cd 5d-2 -0.0008541524427786 0.0102581584251822 + 319 17 Cd 5d-1 -0.0010508975494044 -0.0002493279849499 + 320 17 Cd 5d0 0.0025275129143830 0.0014812330861144 + 321 17 Cd 5d+1 0.0017574697144403 -0.0029617545415455 + 322 17 Cd 5d+2 -0.0022993777569667 -0.0018150797118929 + 323 17 Cd 5f-3 -0.0004539662035988 -0.0019660597471886 + 324 17 Cd 5f-2 0.0002685592959974 -0.0001272996063149 + 325 17 Cd 5f-1 -0.0003360544849511 -0.0000022565989157 + 326 17 Cd 5f0 -0.0005254555015152 0.0002552137020048 + 327 17 Cd 5f+1 0.0001039982399094 -0.0015778231720058 + 328 17 Cd 5f+2 -0.0012451935749548 0.0008908159196406 + 329 17 Cd 5f+3 0.0001030488990336 -0.0002683442912370 + + 330 18 Cd 2s -0.0016608523238213 0.0066129703625073 + 331 18 Cd 3s 0.0000532608526475 -0.0005489210947103 + 332 18 Cd 3py -0.0013678111173987 0.0018009131485180 + 333 18 Cd 3pz 0.0043024757032173 -0.0053921627744876 + 334 18 Cd 3px -0.0014120085554015 -0.0007711085158226 + 335 18 Cd 4py -0.0004935794952343 0.0000923890479956 + 336 18 Cd 4pz 0.0011552624872767 0.0000288871655198 + 337 18 Cd 4px -0.0001506762199467 0.0003928068982981 + 338 18 Cd 4d-2 -0.0106133406793538 -0.0185117124215802 + 339 18 Cd 4d-1 0.0236757586903972 -0.0534836194812573 + 340 18 Cd 4d0 -0.0025047164491928 0.0301820390109581 + 341 18 Cd 4d+1 -0.0040812247589337 0.0138338182735972 + 342 18 Cd 4d+2 0.0111497390309481 -0.0048839001122343 + 343 18 Cd 5d-2 -0.0011477547340452 -0.0000949034968944 + 344 18 Cd 5d-1 0.0027832794148083 -0.0029310619468917 + 345 18 Cd 5d0 0.0005133694155761 -0.0002584760714647 + 346 18 Cd 5d+1 -0.0004168857901703 -0.0002177428130855 + 347 18 Cd 5d+2 0.0016485383121214 -0.0009503097400332 + 348 18 Cd 5f-3 0.0009278739490875 -0.0003163381229148 + 349 18 Cd 5f-2 -0.0000742631543023 -0.0006654973922596 + 350 18 Cd 5f-1 0.0006619410618074 -0.0005047589662069 + 351 18 Cd 5f0 -0.0003708760555961 0.0006862276126286 + 352 18 Cd 5f+1 0.0003360061691268 0.0000862643017186 + 353 18 Cd 5f+2 -0.0006538740908746 0.0006767946560336 + 354 18 Cd 5f+3 0.0004109275929759 0.0000648949349183 + + 355 19 Se 2s 0.0108669811920882 -0.0560865123720119 + 356 19 Se 3s 0.0000817807129177 0.0010825520111046 + 357 19 Se 3py -0.0027355018160781 0.0261602559949237 + 358 19 Se 3pz 0.0056993528781711 0.0015782707161322 + 359 19 Se 3px -0.0006479663822537 -0.0090624914691804 + 360 19 Se 4py -0.0008503888210030 0.0005569984197317 + 361 19 Se 4pz -0.0004430900646854 0.0008130048387876 + 362 19 Se 4px 0.0006912723696606 0.0004038937077588 + 363 19 Se 4d-2 -0.0001354729803057 -0.0004117362234926 + 364 19 Se 4d-1 0.0018477020913644 0.0001013319399392 + 365 19 Se 4d0 0.0005008239218287 0.0001550603626909 + 366 19 Se 4d+1 0.0029912429840739 -0.0014947230712344 + 367 19 Se 4d+2 -0.0003435472700152 -0.0046409909419374 + + 368 20 Se 2s -0.0040047075939938 -0.0157765142997332 + 369 20 Se 3s 0.0003533347327265 0.0003543083327967 + 370 20 Se 3py 0.0024693790440055 0.0039006347290402 + 371 20 Se 3pz -0.0059174282770731 -0.0139877392179844 + 372 20 Se 3px 0.0045247071744946 -0.0110060254070573 + 373 20 Se 4py -0.0012216852695595 0.0002761038009638 + 374 20 Se 4pz 0.0034584656423351 0.0001564007149824 + 375 20 Se 4px -0.0001195719992258 0.0014529890514870 + 376 20 Se 4d-2 -0.0000757707109260 -0.0000154899260484 + 377 20 Se 4d-1 -0.0002357369711146 0.0008582518416637 + 378 20 Se 4d0 0.0012234817919349 0.0014495622633548 + 379 20 Se 4d+1 -0.0010648755728327 0.0007689577778794 + 380 20 Se 4d+2 0.0001927449408364 0.0006291094334416 + + 381 21 Se 2s -0.0028526585857251 0.0028769519204804 + 382 21 Se 3s 0.0000013804059385 0.0000325991774710 + 383 21 Se 3py 0.0012627010595775 -0.0018109837532055 + 384 21 Se 3pz -0.0026070554482484 -0.0024599307618305 + 385 21 Se 3px -0.0018001068483330 -0.0091284559169760 + 386 21 Se 4py 0.0001860626063367 -0.0006342353542092 + 387 21 Se 4pz 0.0003897260069277 0.0001362847503392 + 388 21 Se 4px 0.0004141927091886 -0.0001957505280728 + 389 21 Se 4d-2 0.0002164901581322 0.0001753030850840 + 390 21 Se 4d-1 -0.0001697704774405 0.0007543606030627 + 391 21 Se 4d0 0.0006227899052089 0.0014200355646375 + 392 21 Se 4d+1 0.0001097323812089 0.0018859588783550 + 393 21 Se 4d+2 0.0000069728383976 -0.0009824952478575 + + 394 22 Cd 2s -0.0015836541342942 -0.0134999797922357 + 395 22 Cd 3s 0.0007798533766194 0.0011491058568496 + 396 22 Cd 3py -0.0033922345630801 0.0043460916515546 + 397 22 Cd 3pz 0.0017503235267641 0.0079872658953928 + 398 22 Cd 3px 0.0026326492718123 0.0042547036773302 + 399 22 Cd 4py -0.0005885301115168 -0.0012712174785546 + 400 22 Cd 4pz -0.0006645833290584 -0.0001650061441227 + 401 22 Cd 4px 0.0006092020479390 -0.0014802129507042 + 402 22 Cd 4d-2 -0.0341359443218337 -0.0490781067902995 + 403 22 Cd 4d-1 0.0101690525280379 -0.0945313953679571 + 404 22 Cd 4d0 -0.0343342203931786 -0.1632903232043868 + 405 22 Cd 4d+1 -0.0619440096074767 -0.1167943763677592 + 406 22 Cd 4d+2 -0.0431470307186334 0.1174651169887241 + 407 22 Cd 5d-2 -0.0022497299520257 -0.0004530404198179 + 408 22 Cd 5d-1 -0.0004730133786856 0.0001493416410146 + 409 22 Cd 5d0 -0.0022660219734529 -0.0014550107018269 + 410 22 Cd 5d+1 -0.0016020029207550 0.0019410754180931 + 411 22 Cd 5d+2 0.0004929279045754 -0.0006593966813223 + 412 22 Cd 5f-3 -0.0003060271207436 0.0007174847572870 + 413 22 Cd 5f-2 0.0000042194861734 -0.0002862527727042 + 414 22 Cd 5f-1 0.0000997076893367 0.0000490035036095 + 415 22 Cd 5f0 0.0001619854391584 -0.0007219943993757 + 416 22 Cd 5f+1 -0.0004209945247092 -0.0009658067199383 + 417 22 Cd 5f+2 0.0001039698254161 0.0012080606644126 + 418 22 Cd 5f+3 -0.0001509301844267 -0.0002201243218932 + + 419 23 Se 2s 0.0726504097584783 0.1502091461408787 + 420 23 Se 3s -0.0017717563442504 -0.0017539106938230 + 421 23 Se 3py 0.0119295713500232 0.0174106362574676 + 422 23 Se 3pz -0.0205699047120648 -0.0013345917073545 + 423 23 Se 3px -0.0216966747921069 -0.0522276504317798 + 424 23 Se 4py 0.0009226578188023 -0.0001186940306672 + 425 23 Se 4pz 0.0002642232117223 -0.0015179806485739 + 426 23 Se 4px -0.0017036500951554 0.0001816403685487 + 427 23 Se 4d-2 0.0035968742761241 0.0059764517874377 + 428 23 Se 4d-1 0.0027258917484364 -0.0015044259016353 + 429 23 Se 4d0 0.0028990272896174 0.0035165763591609 + 430 23 Se 4d+1 -0.0052840049446776 0.0006508933828484 + 431 23 Se 4d+2 -0.0023679464579796 -0.0054649823609693 + + 432 24 Se 2s -0.0207081826964691 0.0085024614478676 + 433 24 Se 3s 0.0004060553544295 -0.0001203184780501 + 434 24 Se 3py 0.0014096645203249 0.0023903802331230 + 435 24 Se 3pz -0.0093936960699669 0.0044369591443910 + 436 24 Se 3px 0.0088019631927605 -0.0051192434956219 + 437 24 Se 4py 0.0000798882544315 0.0001378061654456 + 438 24 Se 4pz 0.0004164687082601 0.0001350883654257 + 439 24 Se 4px -0.0001770365503025 0.0000290391922951 + 440 24 Se 4d-2 0.0006825757671722 0.0002727568934390 + 441 24 Se 4d-1 -0.0005029500410146 -0.0000856718000099 + 442 24 Se 4d0 0.0001037256035624 0.0000231782337225 + 443 24 Se 4d+1 -0.0020459664972506 0.0011690141268592 + 444 24 Se 4d+2 0.0011838215389661 -0.0010267975118979 + + 445 25 Cd 2s 0.0033680435658833 -0.0233337556982481 + 446 25 Cd 3s -0.0000119083719860 -0.0001613281431841 + 447 25 Cd 3py 0.0015762595262786 -0.0056818642145217 + 448 25 Cd 3pz -0.0036479886840456 0.0048928489553122 + 449 25 Cd 3px 0.0018694956357205 -0.0088568963291592 + 450 25 Cd 4py 0.0005216089359987 0.0020691222029764 + 451 25 Cd 4pz -0.0007626217215184 -0.0005758659227317 + 452 25 Cd 4px -0.0015579402470488 -0.0009352796998471 + 453 25 Cd 4d-2 0.1236696800217800 -0.0348200262939469 + 454 25 Cd 4d-1 -0.0364859080172465 0.1390761107963636 + 455 25 Cd 4d0 0.0239026063647307 0.0121937458358719 + 456 25 Cd 4d+1 -0.1242617329145520 0.0611998318713370 + 457 25 Cd 4d+2 0.0436743631021817 -0.0134577827203669 + 458 25 Cd 5d-2 0.0026433673976726 -0.0010400851334303 + 459 25 Cd 5d-1 -0.0009093765577935 0.0021149147704291 + 460 25 Cd 5d0 0.0002453214603486 0.0010823623616877 + 461 25 Cd 5d+1 -0.0036057466629504 0.0023676001950128 + 462 25 Cd 5d+2 0.0006408335022077 -0.0031683680995429 + 463 25 Cd 5f-3 0.0001932540072494 -0.0002549261477713 + 464 25 Cd 5f-2 0.0001161760002195 0.0002182497603793 + 465 25 Cd 5f-1 -0.0001078412375056 0.0005218560516505 + 466 25 Cd 5f0 0.0004630526802013 -0.0006281877241303 + 467 25 Cd 5f+1 -0.0001508244114663 -0.0001199540874371 + 468 25 Cd 5f+2 0.0003603566734132 0.0007009238720169 + 469 25 Cd 5f+3 -0.0007486995302604 -0.0002441239131884 + + 470 26 Cd 2s 0.0038368494387235 -0.0087642166182590 + 471 26 Cd 3s -0.0004276216138836 0.0002740576291961 + 472 26 Cd 3py -0.0005203158117233 -0.0012160389105813 + 473 26 Cd 3pz -0.0011410331558125 0.0024623320204592 + 474 26 Cd 3px 0.0007259196021119 -0.0035196439738925 + 475 26 Cd 4py 0.0005348193403518 -0.0004647060305757 + 476 26 Cd 4pz -0.0004395420689263 -0.0000050198610813 + 477 26 Cd 4px 0.0002323497959559 -0.0004567605546462 + 478 26 Cd 4d-2 0.0038991969030185 -0.0150341088920185 + 479 26 Cd 4d-1 0.0060347129103103 -0.0024386058160781 + 480 26 Cd 4d0 -0.0073704151023355 0.0061738407504112 + 481 26 Cd 4d+1 0.0028748210416733 0.0149488260956504 + 482 26 Cd 4d+2 -0.0137044345806138 0.0090628437624869 + 483 26 Cd 5d-2 -0.0002707285696453 -0.0008084114363606 + 484 26 Cd 5d-1 0.0000650231639485 0.0001991933310999 + 485 26 Cd 5d0 0.0007636495768034 0.0004432068038415 + 486 26 Cd 5d+1 -0.0008824110863348 0.0015442927186381 + 487 26 Cd 5d+2 0.0004254678978209 -0.0009735967445060 + 488 26 Cd 5f-3 -0.0002715140543497 -0.0000742464243018 + 489 26 Cd 5f-2 0.0000714032521069 0.0000208976755290 + 490 26 Cd 5f-1 -0.0002095974723309 0.0000098244198105 + 491 26 Cd 5f0 -0.0002235277082982 -0.0003983035298040 + 492 26 Cd 5f+1 0.0003587354358235 0.0001524354362137 + 493 26 Cd 5f+2 -0.0003245418229580 0.0003484543481513 + 494 26 Cd 5f+3 -0.0000497188527055 -0.0000484082876346 + + 69 70 + -0.4497730341825571 -0.4490833726027222 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0053232252812623 0.0179432392301058 + 2 1 Cd 3s -0.0056314485717013 -0.0017478353470034 + 3 1 Cd 3py 0.0063209863136562 0.0047448139493708 + 4 1 Cd 3pz -0.0070503465642740 0.0079257487530753 + 5 1 Cd 3px 0.0021629352513112 -0.0044149495253084 + 6 1 Cd 4py 0.0060499818717823 0.0015671993753142 + 7 1 Cd 4pz -0.0011069150630084 -0.0002563750445637 + 8 1 Cd 4px 0.0003221692946248 0.0006624878694123 + 9 1 Cd 4d-2 -0.0131730953830789 -0.3697171340935068 + 10 1 Cd 4d-1 0.1014054559652409 0.4076453227720357 + 11 1 Cd 4d0 0.3058803564714236 -0.0048400592823265 + 12 1 Cd 4d+1 -0.0393846304187540 0.2074958390283104 + 13 1 Cd 4d+2 0.5003727352586477 -0.0276673481848191 + 14 1 Cd 5d-2 -0.0021821066679823 -0.0001828382175361 + 15 1 Cd 5d-1 -0.0004299070470340 0.0014971244811537 + 16 1 Cd 5d0 0.0012779324357232 -0.0014348938205322 + 17 1 Cd 5d+1 0.0012753515783923 -0.0032066235660244 + 18 1 Cd 5d+2 0.0010375470247029 -0.0004610593657714 + 19 1 Cd 5f-3 -0.0006632526561133 -0.0001435086070588 + 20 1 Cd 5f-2 0.0014510818970130 0.0010725614166630 + 21 1 Cd 5f-1 0.0004260297883300 -0.0000442663039583 + 22 1 Cd 5f0 0.0001517721723259 -0.0004473840266452 + 23 1 Cd 5f+1 -0.0001752282487984 0.0001222968689995 + 24 1 Cd 5f+2 0.0004306775413533 0.0008255290436836 + 25 1 Cd 5f+3 0.0006139933358178 0.0001505670357967 + + 26 2 Cd 2s -0.0191372287867869 0.0207381267762255 + 27 2 Cd 3s 0.0008238353329853 -0.0007762475616315 + 28 2 Cd 3py -0.0000847685290246 0.0007044768058962 + 29 2 Cd 3pz 0.0055680851718635 -0.0048047735988072 + 30 2 Cd 3px -0.0041447795473248 0.0022777379279649 + 31 2 Cd 4py -0.0007737504500382 0.0007196953705263 + 32 2 Cd 4pz 0.0008066687050170 0.0003354084734388 + 33 2 Cd 4px 0.0001526100573591 -0.0015128881739749 + 34 2 Cd 4d-2 -0.0188435579951120 -0.0068878664772685 + 35 2 Cd 4d-1 0.0907175930504916 -0.0827657400613775 + 36 2 Cd 4d0 -0.0070848350154669 0.0250827950104695 + 37 2 Cd 4d+1 0.1081903792238577 -0.0906405216622670 + 38 2 Cd 4d+2 0.0012737376564199 0.0169863318867170 + 39 2 Cd 5d-2 -0.0003694547784326 0.0002007187885671 + 40 2 Cd 5d-1 0.0009207473570844 -0.0023357801304474 + 41 2 Cd 5d0 -0.0009287804093543 0.0007824934361984 + 42 2 Cd 5d+1 0.0028091258537594 -0.0008726098809122 + 43 2 Cd 5d+2 0.0007079047708210 0.0006201956834872 + 44 2 Cd 5f-3 -0.0000140871596533 -0.0003787189140638 + 45 2 Cd 5f-2 -0.0004381510601140 0.0007510819952824 + 46 2 Cd 5f-1 0.0003002330861294 -0.0003048413352603 + 47 2 Cd 5f0 0.0002933973847695 -0.0001058775859823 + 48 2 Cd 5f+1 -0.0008384980857980 -0.0001670285550675 + 49 2 Cd 5f+2 -0.0009558403582703 -0.0000293173737529 + 50 2 Cd 5f+3 0.0000846838568298 0.0001292940836312 + + 51 3 Cd 2s -0.0100676286874280 0.0135435832898896 + 52 3 Cd 3s 0.0029188302125784 -0.0002280250880454 + 53 3 Cd 3py 0.0009167986223029 0.0122627475928420 + 54 3 Cd 3pz -0.0132160666951150 -0.0032756744899581 + 55 3 Cd 3px 0.0048063127942243 0.0067355057474912 + 56 3 Cd 4py -0.0003599472931015 0.0021701217954010 + 57 3 Cd 4pz -0.0068822773392999 0.0000724788391533 + 58 3 Cd 4px 0.0037058386781326 0.0015095793278870 + 59 3 Cd 4d-2 -0.2597514314105694 -0.3448027148881568 + 60 3 Cd 4d-1 0.2711126175502127 0.4663309883165703 + 61 3 Cd 4d0 0.1495392101953519 0.0763948280985711 + 62 3 Cd 4d+1 -0.5213994229063333 0.3297886971625482 + 63 3 Cd 4d+2 0.1018043927175637 0.1151626887927208 + 64 3 Cd 5d-2 0.0054797309994841 0.0045446798532106 + 65 3 Cd 5d-1 -0.0060478871132819 -0.0073665991015095 + 66 3 Cd 5d0 -0.0021579731303467 -0.0033677111738064 + 67 3 Cd 5d+1 0.0037054299681277 -0.0013376663919676 + 68 3 Cd 5d+2 0.0005801406511000 -0.0024617777107940 + 69 3 Cd 5f-3 -0.0005287904112012 -0.0002819135677777 + 70 3 Cd 5f-2 0.0003047383523484 -0.0006409316521413 + 71 3 Cd 5f-1 -0.0003944996890322 0.0000545190589245 + 72 3 Cd 5f0 -0.0000639364100018 0.0016555348157796 + 73 3 Cd 5f+1 -0.0002651084581635 0.0002045770507788 + 74 3 Cd 5f+2 -0.0004727841843917 0.0009820932552347 + 75 3 Cd 5f+3 -0.0004830838131953 -0.0007096321641652 + + 76 4 Se 2s 0.0774207840763175 -0.0955523910326185 + 77 4 Se 3s -0.0013233468355804 0.0013982675985070 + 78 4 Se 3py 0.0012717288937299 -0.0177727628337652 + 79 4 Se 3pz 0.0209480803477267 -0.0198088784345798 + 80 4 Se 3px 0.0114981279884927 -0.0156389028600996 + 81 4 Se 4py 0.0006511473842782 -0.0002314277404273 + 82 4 Se 4pz 0.0015227598235578 -0.0009090525887150 + 83 4 Se 4px -0.0011100704575101 -0.0001183681960348 + 84 4 Se 4d-2 0.0008336245449750 0.0002763087330608 + 85 4 Se 4d-1 -0.0031216723648781 0.0022239517410082 + 86 4 Se 4d0 -0.0035756585750070 -0.0012276843363339 + 87 4 Se 4d+1 -0.0000845507403963 0.0029184090015549 + 88 4 Se 4d+2 -0.0019272544860414 -0.0022734319929194 + + 89 5 Se 2s 0.0313287004224417 0.0606721798154598 + 90 5 Se 3s -0.0002651554383558 -0.0013785904830809 + 91 5 Se 3py -0.0751750314187409 -0.0282546593996626 + 92 5 Se 3pz 0.0502837385075839 -0.0255998814455212 + 93 5 Se 3px -0.0444484601423013 0.0200828357202237 + 94 5 Se 4py -0.0076718675666607 -0.0025354301318639 + 95 5 Se 4pz 0.0043391105230294 -0.0011627945536092 + 96 5 Se 4px -0.0042010113363472 0.0010932038128680 + 97 5 Se 4d-2 0.0006056994061434 0.0100138088416573 + 98 5 Se 4d-1 0.0008413378990454 -0.0103657893248806 + 99 5 Se 4d0 0.0096461412790683 0.0010239119235120 + 100 5 Se 4d+1 -0.0107993059323916 0.0012808014545342 + 101 5 Se 4d+2 0.0162240657087313 0.0016534554570315 + + 102 6 Se 2s 0.0276990342588442 -0.0418626761861093 + 103 6 Se 3s -0.0005385265105096 0.0013149146616555 + 104 6 Se 3py 0.0183395013562473 -0.0201097806593431 + 105 6 Se 3pz 0.0187804005011225 -0.0104840286125765 + 106 6 Se 3px 0.0056860298418815 -0.0178661004807402 + 107 6 Se 4py 0.0011508003286727 -0.0008131475216235 + 108 6 Se 4pz 0.0014252853344497 0.0009994550462104 + 109 6 Se 4px -0.0008998325994210 -0.0004541838330610 + 110 6 Se 4d-2 -0.0022963104071405 0.0031630555542311 + 111 6 Se 4d-1 -0.0027388431019953 0.0032357954531806 + 112 6 Se 4d0 -0.0019670243451681 -0.0007587604592847 + 113 6 Se 4d+1 -0.0031571633262833 0.0035741989102519 + 114 6 Se 4d+2 0.0001459161786713 0.0020917305264085 + + 115 7 Se 2s -0.0054624502450388 0.0024039138526719 + 116 7 Se 3s 0.0000814826430422 -0.0000775629253769 + 117 7 Se 3py 0.0018516135969651 -0.0034408310712390 + 118 7 Se 3pz -0.0016250346847723 0.0009472223638215 + 119 7 Se 3px 0.0017834986458914 -0.0015692327705208 + 120 7 Se 4py 0.0003241777608643 0.0001465791469155 + 121 7 Se 4pz -0.0003596060891804 0.0000068761575153 + 122 7 Se 4px -0.0009013993170284 0.0007225071416756 + 123 7 Se 4d-2 0.0002095424049416 -0.0003111076929182 + 124 7 Se 4d-1 -0.0003985935484896 0.0006082667880181 + 125 7 Se 4d0 -0.0000915239762928 -0.0000545125126729 + 126 7 Se 4d+1 -0.0003910164372662 0.0003689842152940 + 127 7 Se 4d+2 0.0002204134297908 -0.0003276139501579 + + 128 8 Cd 2s -0.0016845233563641 0.0028931294010845 + 129 8 Cd 3s -0.0001540071706052 -0.0001620240013243 + 130 8 Cd 3py -0.0003077857862683 -0.0037353758393527 + 131 8 Cd 3pz 0.0028077968118167 -0.0016348194642860 + 132 8 Cd 3px 0.0006824618518412 -0.0003399997812690 + 133 8 Cd 4py -0.0005477186713021 -0.0008266153501722 + 134 8 Cd 4pz 0.0005406075701484 0.0000110662875563 + 135 8 Cd 4px 0.0007033096947961 -0.0000177856106782 + 136 8 Cd 4d-2 0.0189044166115953 0.0116118876200060 + 137 8 Cd 4d-1 -0.0121832612310379 0.0102976265638426 + 138 8 Cd 4d0 0.0108650549416382 0.0210484714486569 + 139 8 Cd 4d+1 0.0253645895762680 -0.0372070605355410 + 140 8 Cd 4d+2 0.0024069407841476 0.0027197252534602 + 141 8 Cd 5d-2 0.0006662808985600 0.0002931984800568 + 142 8 Cd 5d-1 0.0003743929894033 0.0018929611457535 + 143 8 Cd 5d0 -0.0021475560925829 0.0001451385490440 + 144 8 Cd 5d+1 0.0005713613107682 -0.0009479844044947 + 145 8 Cd 5d+2 0.0010533522335557 -0.0014912010821529 + 146 8 Cd 5f-3 0.0002871366603021 -0.0003145723244209 + 147 8 Cd 5f-2 -0.0002269795696105 0.0000869004293591 + 148 8 Cd 5f-1 0.0001906934682647 0.0002786792239230 + 149 8 Cd 5f0 0.0002350021019878 0.0002838064552777 + 150 8 Cd 5f+1 -0.0006701162178085 0.0006738535542003 + 151 8 Cd 5f+2 0.0001863161533390 0.0005328407614610 + 152 8 Cd 5f+3 0.0012276432760788 -0.0007418059825045 + + 153 9 Cd 2s -0.0042222002299621 0.0001429624848957 + 154 9 Cd 3s 0.0018490102765569 -0.0000953890704583 + 155 9 Cd 3py -0.0000380280850496 -0.0021372490896852 + 156 9 Cd 3pz -0.0004624132141826 0.0006161145443115 + 157 9 Cd 3px -0.0017157471482018 -0.0003514301474006 + 158 9 Cd 4py -0.0004431821928988 -0.0004888322090751 + 159 9 Cd 4pz -0.0018244533684212 0.0001929759327976 + 160 9 Cd 4px 0.0003162228735917 -0.0008617969734675 + 161 9 Cd 4d-2 -0.0079634885477099 0.0042435556338478 + 162 9 Cd 4d-1 -0.0153111792528659 0.0036728525954770 + 163 9 Cd 4d0 -0.0372076297934593 -0.0200863446313143 + 164 9 Cd 4d+1 0.0110900633763434 -0.0064966033590357 + 165 9 Cd 4d+2 -0.0172338114821483 0.0181144337343502 + 166 9 Cd 5d-2 -0.0002914791300597 -0.0002607621701896 + 167 9 Cd 5d-1 0.0006123923172038 0.0014690318506041 + 168 9 Cd 5d0 0.0013419769767081 -0.0000711110751733 + 169 9 Cd 5d+1 0.0007721407526704 -0.0000700727357170 + 170 9 Cd 5d+2 -0.0015864889759038 0.0013286475519035 + 171 9 Cd 5f-3 -0.0004875322044955 0.0001248943160924 + 172 9 Cd 5f-2 -0.0000266045839516 0.0002285644315889 + 173 9 Cd 5f-1 -0.0003869530638163 -0.0005465992355412 + 174 9 Cd 5f0 -0.0001076350764340 -0.0002109385147834 + 175 9 Cd 5f+1 -0.0000689028078900 0.0001598612671203 + 176 9 Cd 5f+2 0.0005356351103915 -0.0004171993108372 + 177 9 Cd 5f+3 0.0002138816312184 -0.0004051257798554 + + 178 10 Se 2s -0.0136076765736984 -0.0058528808940056 + 179 10 Se 3s 0.0005186065142371 -0.0000566518405156 + 180 10 Se 3py -0.0011170528562570 -0.0010653571681472 + 181 10 Se 3pz -0.0053416637439558 0.0006318453482980 + 182 10 Se 3px 0.0004418049182278 0.0031893946730984 + 183 10 Se 4py 0.0005207269418677 0.0000157435917371 + 184 10 Se 4pz 0.0005538504707974 0.0000411813867052 + 185 10 Se 4px 0.0009411304977814 -0.0001641735601577 + 186 10 Se 4d-2 0.0002445879747324 -0.0003246342359659 + 187 10 Se 4d-1 0.0003637342575378 0.0003569987850095 + 188 10 Se 4d0 0.0005754147982975 -0.0001910178818320 + 189 10 Se 4d+1 -0.0002381983205681 -0.0001080546214478 + 190 10 Se 4d+2 -0.0001290201394425 0.0001953787800706 + + 191 11 Se 2s 0.0359463036299734 0.0733580414649409 + 192 11 Se 3s -0.0010780966995104 -0.0014600325785718 + 193 11 Se 3py -0.0107051925643264 -0.0254276156459133 + 194 11 Se 3pz 0.0057605252023352 -0.0082820749001774 + 195 11 Se 3px -0.0138516879585723 -0.0292071173889855 + 196 11 Se 4py 0.0006858183962773 0.0000762056726706 + 197 11 Se 4pz 0.0006405343820098 -0.0016233283604758 + 198 11 Se 4px -0.0011416120527812 -0.0008457292608841 + 199 11 Se 4d-2 -0.0029013283149946 -0.0063451502371499 + 200 11 Se 4d-1 0.0021673058475636 -0.0013463332417404 + 201 11 Se 4d0 0.0016723245948920 0.0038968614690085 + 202 11 Se 4d+1 0.0009649723445065 -0.0010431718683431 + 203 11 Se 4d+2 -0.0007270488857947 -0.0000872998568704 + + 204 12 Cd 2s -0.0076266707666061 -0.0065267756902456 + 205 12 Cd 3s 0.0008267676444230 0.0004856710103360 + 206 12 Cd 3py 0.0028760283455160 0.0026245071920263 + 207 12 Cd 3pz 0.0004923103063438 0.0011737006277351 + 208 12 Cd 3px -0.0025617645760390 -0.0005976548880236 + 209 12 Cd 4py 0.0005351417010116 -0.0010363872984653 + 210 12 Cd 4pz 0.0003767357584665 -0.0003792374901684 + 211 12 Cd 4px 0.0005276086593136 0.0004343164642547 + 212 12 Cd 4d-2 0.0196965603982013 0.0380865149513311 + 213 12 Cd 4d-1 -0.0059776380120415 -0.0222047071890199 + 214 12 Cd 4d0 0.0606144784735070 0.0148947445525502 + 215 12 Cd 4d+1 -0.0119309660928724 0.0292035777598141 + 216 12 Cd 4d+2 -0.0189552337356846 0.0335402729594473 + 217 12 Cd 5d-2 0.0022224778291227 0.0008357956481644 + 218 12 Cd 5d-1 -0.0004761234791892 -0.0010209208926508 + 219 12 Cd 5d0 0.0016057998796247 -0.0002653637302074 + 220 12 Cd 5d+1 0.0005685332283552 0.0001687320746946 + 221 12 Cd 5d+2 -0.0006423986718323 0.0011581969117815 + 222 12 Cd 5f-3 0.0000528512271444 0.0003654555888514 + 223 12 Cd 5f-2 -0.0001712848281167 0.0000499097444278 + 224 12 Cd 5f-1 0.0001559113073532 0.0004451662864351 + 225 12 Cd 5f0 0.0002333762399857 -0.0001336589363005 + 226 12 Cd 5f+1 -0.0001843279946483 -0.0001219035946508 + 227 12 Cd 5f+2 -0.0000537186637970 -0.0000172117217702 + 228 12 Cd 5f+3 -0.0000092440296873 -0.0003584849567335 + + 229 13 Cd 2s 0.0044782986147950 -0.0027097115187033 + 230 13 Cd 3s 0.0006025398791197 -0.0013646325566453 + 231 13 Cd 3py 0.0016420190449618 0.0036150872406414 + 232 13 Cd 3pz -0.0030158957917041 0.0032410358365937 + 233 13 Cd 3px -0.0042010635543118 -0.0012325742277476 + 234 13 Cd 4py 0.0015803668932442 -0.0004778721449089 + 235 13 Cd 4pz 0.0008849682634787 -0.0010165599211198 + 236 13 Cd 4px -0.0026455959489902 -0.0001548697607187 + 237 13 Cd 4d-2 -0.1689042387497459 0.1894243145532822 + 238 13 Cd 4d-1 0.0511718461220043 -0.0046459356259809 + 239 13 Cd 4d0 -0.0708845646324737 0.0122039355616856 + 240 13 Cd 4d+1 -0.1813156335048055 0.1237674471456088 + 241 13 Cd 4d+2 0.0854646422237115 0.1438603958087691 + 242 13 Cd 5d-2 -0.0021035092281385 0.0047804583475585 + 243 13 Cd 5d-1 0.0011151230197039 0.0000628358611937 + 244 13 Cd 5d0 -0.0007209759633805 0.0020831960716396 + 245 13 Cd 5d+1 -0.0019005086293827 0.0012123539853901 + 246 13 Cd 5d+2 0.0004756466244783 0.0037879831963664 + 247 13 Cd 5f-3 0.0003838353697026 -0.0007960516916100 + 248 13 Cd 5f-2 -0.0002761838866606 0.0008312629342259 + 249 13 Cd 5f-1 -0.0004552966011325 -0.0002377593802227 + 250 13 Cd 5f0 -0.0001091434236661 0.0002491635176919 + 251 13 Cd 5f+1 0.0004904781325016 0.0003915110780205 + 252 13 Cd 5f+2 0.0003424660153631 0.0006949803549452 + 253 13 Cd 5f+3 -0.0001410637866537 0.0010284064531704 + + 254 14 Cd 2s 0.0055023806052273 -0.0046904656906744 + 255 14 Cd 3s -0.0005849642099163 0.0003474359580467 + 256 14 Cd 3py 0.0005259123928390 -0.0001020153265627 + 257 14 Cd 3pz -0.0029951787212445 0.0028710071255786 + 258 14 Cd 3px -0.0007318017311650 0.0007962955126886 + 259 14 Cd 4py -0.0003982330899263 0.0005961299810320 + 260 14 Cd 4pz 0.0001473729247452 -0.0001503990664843 + 261 14 Cd 4px 0.0004624552535541 -0.0006717208128717 + 262 14 Cd 4d-2 0.0035099564605976 -0.0058004906775724 + 263 14 Cd 4d-1 -0.0102023666829843 0.0074209116761085 + 264 14 Cd 4d0 0.0303492682676638 -0.0268382462464036 + 265 14 Cd 4d+1 0.0139375670933982 -0.0176687877859872 + 266 14 Cd 4d+2 0.0033304466808391 -0.0022707224379505 + 267 14 Cd 5d-2 -0.0001727660066657 0.0004609088494495 + 268 14 Cd 5d-1 0.0007283055670194 -0.0010252798711079 + 269 14 Cd 5d0 0.0003235580761742 -0.0002860854223619 + 270 14 Cd 5d+1 -0.0001383680651018 0.0002828608308857 + 271 14 Cd 5d+2 0.0001017626131282 0.0003055315629713 + 272 14 Cd 5f-3 -0.0001218502027684 -0.0001267790590153 + 273 14 Cd 5f-2 0.0000861213690299 -0.0001913572631986 + 274 14 Cd 5f-1 -0.0000443236468279 0.0001346640710345 + 275 14 Cd 5f0 0.0001169042750182 -0.0003088660245966 + 276 14 Cd 5f+1 0.0000877013769719 -0.0001822921033899 + 277 14 Cd 5f+2 0.0000364803043832 -0.0001703624109033 + 278 14 Cd 5f+3 -0.0000991521463626 0.0002706177211618 + + 279 15 Se 2s -0.0425958251057902 0.0409356751364364 + 280 15 Se 3s 0.0008502669051716 -0.0007550590871375 + 281 15 Se 3py -0.0184575385682697 0.0142723350953660 + 282 15 Se 3pz -0.0085916019497141 0.0092225819385787 + 283 15 Se 3px 0.0115967028697135 -0.0188546542548933 + 284 15 Se 4py -0.0001857030490282 -0.0000099565765964 + 285 15 Se 4pz 0.0002418959881370 -0.0002270561893170 + 286 15 Se 4px 0.0006552418097521 0.0000171506804707 + 287 15 Se 4d-2 -0.0033007426263884 0.0037667279291380 + 288 15 Se 4d-1 0.0016419571432625 -0.0013133213561406 + 289 15 Se 4d0 -0.0017983621118297 0.0015100463023008 + 290 15 Se 4d+1 -0.0008469408751455 0.0018752255709203 + 291 15 Se 4d+2 -0.0017033653964286 0.0000918644306984 + + 292 16 Se 2s -0.0379444158927481 0.0502835471207549 + 293 16 Se 3s 0.0001422492270920 -0.0008625609382516 + 294 16 Se 3py -0.0081980670954976 0.0043698259629985 + 295 16 Se 3pz 0.0060085770120580 -0.0072676799917439 + 296 16 Se 3px -0.0028175599744849 0.0026953560198612 + 297 16 Se 4py 0.0000391220820028 -0.0005649842625295 + 298 16 Se 4pz -0.0003846652441373 0.0004290377754490 + 299 16 Se 4px -0.0016318074413994 0.0009233212886881 + 300 16 Se 4d-2 0.0010022792104864 -0.0019377668296546 + 301 16 Se 4d-1 -0.0003285137896980 -0.0008249560392603 + 302 16 Se 4d0 0.0007511613875746 -0.0006348256413731 + 303 16 Se 4d+1 0.0006304244489776 -0.0013563700382650 + 304 16 Se 4d+2 -0.0002470163930966 -0.0013300808148960 + + 305 17 Cd 2s 0.0028382504305779 -0.0053802657783024 + 306 17 Cd 3s 0.0004611650408383 -0.0001970878838191 + 307 17 Cd 3py -0.0015635901226759 -0.0001927133538347 + 308 17 Cd 3pz 0.0006333257019362 0.0003637185204654 + 309 17 Cd 3px 0.0020516624581979 -0.0018213241293219 + 310 17 Cd 4py -0.0012777913805520 0.0009315729463735 + 311 17 Cd 4pz 0.0001766370558217 0.0004400592882073 + 312 17 Cd 4px 0.0002896733101633 0.0004451453115198 + 313 17 Cd 4d-2 0.1272930933219863 -0.1088906730531889 + 314 17 Cd 4d-1 0.0770723348179428 -0.0371271829548929 + 315 17 Cd 4d0 0.0294239207516821 0.0848744116082339 + 316 17 Cd 4d+1 -0.1027214565718884 0.0480675377604859 + 317 17 Cd 4d+2 -0.0586230591669316 0.0027872247976921 + 318 17 Cd 5d-2 0.0018660945559794 -0.0022685783094375 + 319 17 Cd 5d-1 0.0005472615339069 -0.0003899330360603 + 320 17 Cd 5d0 -0.0006417455518895 0.0014439511946592 + 321 17 Cd 5d+1 -0.0006329536272288 0.0002494352235202 + 322 17 Cd 5d+2 -0.0007939355503995 0.0013201998962319 + 323 17 Cd 5f-3 -0.0006942621449000 0.0001286813797348 + 324 17 Cd 5f-2 -0.0003429922666472 0.0001188190494807 + 325 17 Cd 5f-1 0.0005334086895146 -0.0002182611453383 + 326 17 Cd 5f0 -0.0005027896180659 0.0003644375173947 + 327 17 Cd 5f+1 -0.0004164466620453 -0.0001570883658779 + 328 17 Cd 5f+2 -0.0000053123556029 0.0000312995624923 + 329 17 Cd 5f+3 0.0007156298805940 -0.0004577986013981 + + 330 18 Cd 2s -0.0005468321860858 -0.0206042439673910 + 331 18 Cd 3s -0.0011503804572505 0.0028830283031991 + 332 18 Cd 3py -0.0005033980985657 -0.0007929873447275 + 333 18 Cd 3pz -0.0006847533314592 -0.0081687953378254 + 334 18 Cd 3px -0.0008601889401385 -0.0022446627387292 + 335 18 Cd 4py -0.0011935438738455 0.0005818371787412 + 336 18 Cd 4pz 0.0011161496319793 -0.0002246271708012 + 337 18 Cd 4px 0.0001343861806196 -0.0005496167574923 + 338 18 Cd 4d-2 -0.0005343277613965 -0.0220437082459197 + 339 18 Cd 4d-1 0.0191545131878434 0.0065968806523732 + 340 18 Cd 4d0 0.0076961870869212 -0.0850192616664187 + 341 18 Cd 4d+1 0.0381494107580309 -0.0196366530394497 + 342 18 Cd 4d+2 -0.0289324864321777 0.0026370572692993 + 343 18 Cd 5d-2 0.0001769032053731 -0.0018925791333922 + 344 18 Cd 5d-1 0.0003291457138381 -0.0022475274318214 + 345 18 Cd 5d0 0.0016110875363823 -0.0029322475318323 + 346 18 Cd 5d+1 0.0000703340356715 -0.0011211074348986 + 347 18 Cd 5d+2 -0.0002518618592314 0.0002832562667307 + 348 18 Cd 5f-3 -0.0001372657865576 0.0000007263500574 + 349 18 Cd 5f-2 0.0001328064175945 -0.0005572352868531 + 350 18 Cd 5f-1 0.0004299965874201 -0.0007041969767482 + 351 18 Cd 5f0 0.0003177908677579 0.0000466061473604 + 352 18 Cd 5f+1 0.0003629509991992 -0.0003701181058482 + 353 18 Cd 5f+2 -0.0004068600628951 0.0005308719309823 + 354 18 Cd 5f+3 -0.0004079920005480 0.0007760011455581 + + 355 19 Se 2s -0.0231107352523819 0.0244992466140116 + 356 19 Se 3s 0.0002654718344135 -0.0003830277256700 + 357 19 Se 3py 0.0120642821711706 -0.0107738259265587 + 358 19 Se 3pz -0.0009184228295994 0.0028640950252638 + 359 19 Se 3px 0.0016465029774285 -0.0039046590191756 + 360 19 Se 4py 0.0003385414946082 -0.0003787363662969 + 361 19 Se 4pz 0.0005295051568576 -0.0004488037320395 + 362 19 Se 4px 0.0003958275503532 -0.0003110485957802 + 363 19 Se 4d-2 0.0012242608205565 -0.0006358762872218 + 364 19 Se 4d-1 0.0002981658308608 0.0001566559775802 + 365 19 Se 4d0 -0.0007463720830421 0.0018372732214509 + 366 19 Se 4d+1 -0.0008118661516872 0.0002638521921827 + 367 19 Se 4d+2 -0.0012569628917255 0.0018233052992562 + + 368 20 Se 2s -0.0188929569883012 -0.0294235145035455 + 369 20 Se 3s 0.0008691075770136 0.0005281697604674 + 370 20 Se 3py 0.0038785575696266 -0.0141944876270318 + 371 20 Se 3pz 0.0098722064419058 0.0055532289382918 + 372 20 Se 3px -0.0069099888768055 -0.0039424527839833 + 373 20 Se 4py 0.0002150799610664 0.0022481462037884 + 374 20 Se 4pz 0.0006579473302925 -0.0017139330639703 + 375 20 Se 4px 0.0003357699457952 -0.0017947730043601 + 376 20 Se 4d-2 0.0011555680282096 -0.0025189455197707 + 377 20 Se 4d-1 -0.0021031297710567 -0.0017734141407549 + 378 20 Se 4d0 0.0014052653631401 -0.0000688508636635 + 379 20 Se 4d+1 0.0025044938879823 0.0008259646650112 + 380 20 Se 4d+2 0.0005663689749078 -0.0032088035026442 + + 381 21 Se 2s -0.0005640037483200 0.0084658385515778 + 382 21 Se 3s -0.0000471023802036 -0.0000437052638655 + 383 21 Se 3py -0.0014862613674148 0.0043328805575001 + 384 21 Se 3pz -0.0024051852567948 0.0003945096510745 + 385 21 Se 3px -0.0005165932817928 -0.0004022073451726 + 386 21 Se 4py -0.0004801417061857 0.0001460101969424 + 387 21 Se 4pz 0.0004805699756656 0.0001142167184391 + 388 21 Se 4px 0.0008498727488089 -0.0002494477931459 + 389 21 Se 4d-2 -0.0003583007695020 0.0006059960657623 + 390 21 Se 4d-1 0.0000360357304602 0.0001547094795692 + 391 21 Se 4d0 0.0002608557781048 -0.0006773383642007 + 392 21 Se 4d+1 -0.0000879243363544 -0.0006709595967082 + 393 21 Se 4d+2 -0.0003606814917550 0.0003973942638917 + + 394 22 Cd 2s -0.0036606832434011 -0.0085307525669656 + 395 22 Cd 3s 0.0010550373866293 -0.0009964908573139 + 396 22 Cd 3py -0.0027397356995166 0.0004571003141171 + 397 22 Cd 3pz 0.0010128226669131 0.0005356809238189 + 398 22 Cd 3px -0.0021413749021149 -0.0064919462420732 + 399 22 Cd 4py -0.0017258090933388 0.0015829417139671 + 400 22 Cd 4pz -0.0002718298269864 0.0000680290628962 + 401 22 Cd 4px -0.0006059725852245 -0.0002620902829697 + 402 22 Cd 4d-2 -0.0565812860129558 -0.0147052523120179 + 403 22 Cd 4d-1 -0.0164107258284640 -0.0352448095790996 + 404 22 Cd 4d0 -0.0208294916372990 0.0368738905451562 + 405 22 Cd 4d+1 -0.0364659259144264 0.0573904939929102 + 406 22 Cd 4d+2 -0.0476877678366948 -0.0483496840934104 + 407 22 Cd 5d-2 -0.0025641772943570 0.0021031436025543 + 408 22 Cd 5d-1 0.0001442559455206 -0.0004543719059621 + 409 22 Cd 5d0 0.0014739887617928 0.0004088646362771 + 410 22 Cd 5d+1 -0.0005209660922900 0.0002003879181618 + 411 22 Cd 5d+2 -0.0026398764146105 -0.0006494856366150 + 412 22 Cd 5f-3 -0.0001888374908727 -0.0001170115582899 + 413 22 Cd 5f-2 -0.0004150943012656 0.0000226723103810 + 414 22 Cd 5f-1 0.0002855582642855 -0.0001344675984167 + 415 22 Cd 5f0 0.0001681750378359 0.0000119849851935 + 416 22 Cd 5f+1 0.0003226258801025 -0.0001150362664044 + 417 22 Cd 5f+2 0.0001847807698516 -0.0004539999133955 + 418 22 Cd 5f+3 -0.0005967473464824 0.0003098492282615 + + 419 23 Se 2s 0.0324772934794230 -0.0151404690238978 + 420 23 Se 3s -0.0004440406054726 0.0001341283261319 + 421 23 Se 3py 0.0063300367523315 0.0011706374982187 + 422 23 Se 3pz 0.0021593236761203 -0.0004890487710924 + 423 23 Se 3px -0.0085292219982135 0.0047739799473666 + 424 23 Se 4py -0.0005350899843844 0.0004878018132881 + 425 23 Se 4pz -0.0008452607446648 0.0005579900565256 + 426 23 Se 4px -0.0003223060058356 0.0003987510514600 + 427 23 Se 4d-2 0.0015076939662116 -0.0004547715874031 + 428 23 Se 4d-1 -0.0003831191795956 0.0006590129893065 + 429 23 Se 4d0 0.0008407984761903 -0.0002752780052775 + 430 23 Se 4d+1 0.0013439621817231 -0.0003522247546926 + 431 23 Se 4d+2 -0.0004992836527098 0.0002787012707156 + + 432 24 Se 2s 0.0048969212180438 -0.0076593784714078 + 433 24 Se 3s -0.0000745421851402 0.0002128129348984 + 434 24 Se 3py 0.0007671042639542 -0.0020752319978319 + 435 24 Se 3pz 0.0000932790072849 -0.0009642389923015 + 436 24 Se 3px -0.0025238242189954 0.0045168408083995 + 437 24 Se 4py 0.0001453864226224 -0.0001818826035556 + 438 24 Se 4pz 0.0001015878805982 -0.0003123185993623 + 439 24 Se 4px -0.0000903085177663 0.0001208223920641 + 440 24 Se 4d-2 -0.0000045393707883 -0.0000786995560096 + 441 24 Se 4d-1 -0.0001029227959165 -0.0001603609201222 + 442 24 Se 4d0 -0.0001260697022627 -0.0000571273215164 + 443 24 Se 4d+1 0.0000354731700968 -0.0000147198550383 + 444 24 Se 4d+2 -0.0004409108362077 0.0007501550932710 + + 445 25 Cd 2s -0.0056832870550839 -0.0020541345162876 + 446 25 Cd 3s -0.0003057948535984 -0.0006743041236771 + 447 25 Cd 3py -0.0044265863766722 0.0039216058448733 + 448 25 Cd 3pz 0.0004164236615835 -0.0020437524743807 + 449 25 Cd 3px -0.0016889603448939 -0.0008399310347110 + 450 25 Cd 4py -0.0004938975491199 -0.0001152854791138 + 451 25 Cd 4pz 0.0001443225927813 -0.0002193549855823 + 452 25 Cd 4px -0.0001420008375408 -0.0000326937608006 + 453 25 Cd 4d-2 -0.0259967392213418 0.0353040147652974 + 454 25 Cd 4d-1 0.0442745492222273 -0.0150465942357743 + 455 25 Cd 4d0 -0.0090688514597787 0.0136547215364883 + 456 25 Cd 4d+1 0.0197448901470195 -0.0118619925742882 + 457 25 Cd 4d+2 0.0093139347300497 0.0146619444541409 + 458 25 Cd 5d-2 -0.0021907343481113 0.0012239656528167 + 459 25 Cd 5d-1 0.0006527382237361 -0.0011016860024695 + 460 25 Cd 5d0 0.0000979667885777 0.0005880999446064 + 461 25 Cd 5d+1 0.0007256824262536 -0.0005788555088064 + 462 25 Cd 5d+2 -0.0003930329243377 0.0003115120834083 + 463 25 Cd 5f-3 -0.0003064004846770 -0.0001100853845512 + 464 25 Cd 5f-2 0.0000022824512008 -0.0005914587893365 + 465 25 Cd 5f-1 -0.0002352152648967 0.0000082620390786 + 466 25 Cd 5f0 -0.0001433296775373 0.0002535411462115 + 467 25 Cd 5f+1 0.0004218075578501 0.0001656518488189 + 468 25 Cd 5f+2 0.0000659985625814 -0.0000874283467457 + 469 25 Cd 5f+3 0.0001163794873963 -0.0001283752402218 + + 470 26 Cd 2s -0.0003157261863468 0.0029352697913996 + 471 26 Cd 3s 0.0005304805470736 -0.0001353362914984 + 472 26 Cd 3py 0.0000759890470658 -0.0007102426642375 + 473 26 Cd 3pz 0.0006882196577286 -0.0006554342035192 + 474 26 Cd 3px 0.0001814409874592 0.0011161335053516 + 475 26 Cd 4py -0.0001320747772432 0.0003436325850413 + 476 26 Cd 4pz 0.0000379298530812 0.0000368443126413 + 477 26 Cd 4px -0.0000438403004350 0.0001808924396765 + 478 26 Cd 4d-2 -0.0026418123603141 -0.0003387118074888 + 479 26 Cd 4d-1 -0.0038279290034348 0.0011990634407136 + 480 26 Cd 4d0 0.0014038385256444 -0.0009407395873195 + 481 26 Cd 4d+1 0.0018722566816845 -0.0018512491035963 + 482 26 Cd 4d+2 0.0013163434210804 -0.0029348361601888 + 483 26 Cd 5d-2 -0.0001527171629415 -0.0001536939527659 + 484 26 Cd 5d-1 -0.0003759472759208 -0.0002612686785197 + 485 26 Cd 5d0 -0.0000140223195453 -0.0000423340730647 + 486 26 Cd 5d+1 0.0001591068893842 -0.0001069364178422 + 487 26 Cd 5d+2 -0.0006892421383469 0.0004725531796846 + 488 26 Cd 5f-3 -0.0000224225228474 -0.0001402216851910 + 489 26 Cd 5f-2 -0.0001685580934285 -0.0000844494918147 + 490 26 Cd 5f-1 0.0000481791605520 -0.0000281772751525 + 491 26 Cd 5f0 0.0000109940509186 -0.0001465761049494 + 492 26 Cd 5f+1 0.0001818349382221 0.0000230682076477 + 493 26 Cd 5f+2 -0.0000536175754371 0.0000494389862010 + 494 26 Cd 5f+3 -0.0003074874979737 0.0000063706697732 + + 71 72 + -0.4457064364308772 -0.4447906453580517 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0021719299739117 0.0033516028706373 + 2 1 Cd 3s 0.0008247184606660 -0.0012567977305188 + 3 1 Cd 3py -0.0007957796989475 0.0004118936258318 + 4 1 Cd 3pz 0.0025812531955938 -0.0005258632752171 + 5 1 Cd 3px 0.0018473700863811 -0.0006844332153539 + 6 1 Cd 4py 0.0005933125324379 0.0025843206387163 + 7 1 Cd 4pz -0.0004815059037312 -0.0005188869129130 + 8 1 Cd 4px -0.0003048821612354 0.0010153130848037 + 9 1 Cd 4d-2 0.4118445110138464 0.2935514494402549 + 10 1 Cd 4d-1 0.1574116480304965 0.0683979252370633 + 11 1 Cd 4d0 -0.2038306079791913 -0.0072949838987552 + 12 1 Cd 4d+1 0.0474724353716107 0.2167735372423259 + 13 1 Cd 4d+2 0.0515310291871853 -0.0333220468775333 + 14 1 Cd 5d-2 0.0004004562058272 0.0000084251425509 + 15 1 Cd 5d-1 0.0001270059837988 0.0015038920647565 + 16 1 Cd 5d0 -0.0001563589243691 -0.0001659397833451 + 17 1 Cd 5d+1 -0.0005428623073636 0.0015131722152577 + 18 1 Cd 5d+2 -0.0018540648839283 0.0004614185937903 + 19 1 Cd 5f-3 0.0000592354679072 -0.0007046885829274 + 20 1 Cd 5f-2 0.0010166724676280 -0.0001406653297356 + 21 1 Cd 5f-1 0.0001453768474994 -0.0000373752709766 + 22 1 Cd 5f0 0.0002346772748113 -0.0005234087914494 + 23 1 Cd 5f+1 -0.0009142146152335 0.0003720538332621 + 24 1 Cd 5f+2 -0.0004044526396219 -0.0003480896377024 + 25 1 Cd 5f+3 0.0002288573968507 -0.0006655318772254 + + 26 2 Cd 2s 0.0106034435813263 0.0226605625765421 + 27 2 Cd 3s 0.0001086076254914 -0.0010037111082218 + 28 2 Cd 3py -0.0023354976396587 -0.0141562241514973 + 29 2 Cd 3pz -0.0012913501701546 -0.0001612048563466 + 30 2 Cd 3px 0.0001083313260021 -0.0065714561664006 + 31 2 Cd 4py -0.0014813412752527 -0.0022561992440652 + 32 2 Cd 4pz 0.0013677783206162 0.0015662773447104 + 33 2 Cd 4px -0.0006537946501497 -0.0010654737329871 + 34 2 Cd 4d-2 -0.0066660494944669 0.0037254076144408 + 35 2 Cd 4d-1 -0.0078522018544562 0.0513814342705861 + 36 2 Cd 4d0 0.0254505341003478 -0.0171992638187751 + 37 2 Cd 4d+1 -0.0526832947150989 0.0073268323508509 + 38 2 Cd 4d+2 0.0153912894177694 -0.0905488502903030 + 39 2 Cd 5d-2 0.0009352529840810 0.0027843634235595 + 40 2 Cd 5d-1 -0.0011348306564873 0.0035436563420476 + 41 2 Cd 5d0 -0.0002687813496163 -0.0034676127386416 + 42 2 Cd 5d+1 -0.0010708051147893 0.0018089319976415 + 43 2 Cd 5d+2 -0.0017176275034993 -0.0040999939244785 + 44 2 Cd 5f-3 0.0001040830321142 0.0002721835210051 + 45 2 Cd 5f-2 0.0010391936009504 -0.0005411213843972 + 46 2 Cd 5f-1 -0.0003834851353365 -0.0002122441793000 + 47 2 Cd 5f0 -0.0004005725253338 0.0001435358330970 + 48 2 Cd 5f+1 -0.0000057314844014 -0.0001499231727428 + 49 2 Cd 5f+2 -0.0001849060384163 0.0006678416367534 + 50 2 Cd 5f+3 0.0003176655538312 0.0011841004464929 + + 51 3 Cd 2s -0.0005865325590934 0.0045326399582182 + 52 3 Cd 3s 0.0002293738964027 0.0004355282321385 + 53 3 Cd 3py 0.0008843881521035 0.0082725566281351 + 54 3 Cd 3pz 0.0027172846258707 -0.0003521010055763 + 55 3 Cd 3px -0.0014989401845572 0.0143202806305976 + 56 3 Cd 4py 0.0004928832091660 0.0026105463886963 + 57 3 Cd 4pz 0.0011922543285809 0.0001453726418467 + 58 3 Cd 4px -0.0000169587193562 0.0033877602344095 + 59 3 Cd 4d-2 -0.1784816175779986 -0.1248589863934465 + 60 3 Cd 4d-1 -0.1094501374312122 -0.2648771104723138 + 61 3 Cd 4d0 0.6828322245830256 0.1319905782738828 + 62 3 Cd 4d+1 0.0728441943326364 0.1177139369323406 + 63 3 Cd 4d+2 -0.3726742318776156 0.8165448150890660 + 64 3 Cd 5d-2 0.0031483877632811 -0.0013183889056604 + 65 3 Cd 5d-1 0.0029707836846066 0.0034587851847203 + 66 3 Cd 5d0 -0.0093938395175920 0.0010108820212814 + 67 3 Cd 5d+1 0.0020920145755517 -0.0045677516375675 + 68 3 Cd 5d+2 0.0057920268601938 -0.0059577135131309 + 69 3 Cd 5f-3 0.0011533742866120 0.0002787583254190 + 70 3 Cd 5f-2 -0.0011588010564064 -0.0001194706996496 + 71 3 Cd 5f-1 -0.0007823719854173 -0.0014520614528085 + 72 3 Cd 5f0 0.0015880723036112 -0.0001506040476761 + 73 3 Cd 5f+1 -0.0003322617232025 0.0006596015422992 + 74 3 Cd 5f+2 -0.0012324721409596 0.0020309487856439 + 75 3 Cd 5f+3 -0.0008688198612737 -0.0009505411735620 + + 76 4 Se 2s -0.0340689951184412 0.0142901398322488 + 77 4 Se 3s 0.0002911903716855 -0.0003854314449690 + 78 4 Se 3py -0.0098377834377707 -0.0049274308627099 + 79 4 Se 3pz -0.0161837633625735 -0.0129714125750691 + 80 4 Se 3px 0.0082896568169211 0.0194626152207884 + 81 4 Se 4py 0.0000035019819632 0.0000271486004433 + 82 4 Se 4pz 0.0003641659714014 0.0012408157195271 + 83 4 Se 4px 0.0003346153157332 0.0003007379029918 + 84 4 Se 4d-2 -0.0017590716069117 -0.0029764072801821 + 85 4 Se 4d-1 0.0022649813859656 0.0032285488094965 + 86 4 Se 4d0 0.0013792098879814 0.0000786217068962 + 87 4 Se 4d+1 -0.0008295957368714 -0.0013104057012647 + 88 4 Se 4d+2 0.0000150484310141 -0.0010010947271404 + + 89 5 Se 2s -0.0229358700864658 -0.0598599105441129 + 90 5 Se 3s 0.0007414289964772 0.0010644431429960 + 91 5 Se 3py 0.0026121665533493 0.0098727390413098 + 92 5 Se 3pz -0.0242806697875963 0.0188281568958639 + 93 5 Se 3px -0.0366710538411900 -0.0166634833822561 + 94 5 Se 4py -0.0001703349262639 0.0013682250236595 + 95 5 Se 4pz -0.0026254508676894 0.0003594243196845 + 96 5 Se 4px -0.0038295849158811 0.0006780394112471 + 97 5 Se 4d-2 -0.0066041282160024 -0.0061500518677356 + 98 5 Se 4d-1 -0.0037559926471557 0.0022489187359054 + 99 5 Se 4d0 -0.0068569526873192 0.0038609832031302 + 100 5 Se 4d+1 0.0000216166654983 -0.0011231435615243 + 101 5 Se 4d+2 0.0040396201679306 0.0007684998930647 + + 102 6 Se 2s 0.0017608757725800 -0.0015780939791020 + 103 6 Se 3s 0.0003109085767905 -0.0006969473467743 + 104 6 Se 3py -0.0098040814114159 -0.0252050559234276 + 105 6 Se 3pz 0.0180703620219219 -0.0063750246315761 + 106 6 Se 3px -0.0155632992383228 0.0078580069966870 + 107 6 Se 4py 0.0004134247331229 -0.0013007928131840 + 108 6 Se 4pz 0.0029806870528208 0.0007986056764033 + 109 6 Se 4px -0.0012378426439225 0.0013907682490110 + 110 6 Se 4d-2 0.0032678736418630 0.0028930462664148 + 111 6 Se 4d-1 -0.0002784145038306 0.0044182231926399 + 112 6 Se 4d0 -0.0053488349253283 0.0007852338543664 + 113 6 Se 4d+1 0.0002662186918903 -0.0010088057574134 + 114 6 Se 4d+2 0.0022090895564688 -0.0030214576554684 + + 115 7 Se 2s -0.0069932461868237 0.0106365059589873 + 116 7 Se 3s 0.0003201097967220 -0.0005100769469492 + 117 7 Se 3py -0.0030661252265711 0.0046745687989761 + 118 7 Se 3pz -0.0019387747396034 0.0035216754528987 + 119 7 Se 3px 0.0004312884856198 0.0028080775922835 + 120 7 Se 4py 0.0004494263530129 -0.0001191656049971 + 121 7 Se 4pz -0.0000644693075801 0.0000817177511687 + 122 7 Se 4px 0.0002149243516672 0.0004643553549603 + 123 7 Se 4d-2 -0.0004464131951693 0.0001076757427240 + 124 7 Se 4d-1 0.0006807635213107 -0.0009572707203664 + 125 7 Se 4d0 -0.0000952639803324 -0.0002614497074266 + 126 7 Se 4d+1 -0.0000184019746150 -0.0007278963852676 + 127 7 Se 4d+2 -0.0002319472944054 0.0005384072251012 + + 128 8 Cd 2s 0.0006408868545503 0.0075480948854917 + 129 8 Cd 3s -0.0008424490471775 -0.0004878334137159 + 130 8 Cd 3py 0.0014773641403623 -0.0017089499007167 + 131 8 Cd 3pz -0.0001083361519857 -0.0025063198205521 + 132 8 Cd 3px -0.0021189054341593 -0.0004524084774081 + 133 8 Cd 4py 0.0008040953679334 -0.0012374828336694 + 134 8 Cd 4pz 0.0004088685578857 -0.0003651626419491 + 135 8 Cd 4px -0.0003023576904507 -0.0021583482163002 + 136 8 Cd 4d-2 0.0207654086235082 -0.0056378702594425 + 137 8 Cd 4d-1 0.0163047184175617 -0.0103276623118663 + 138 8 Cd 4d0 -0.0058978429356679 0.0120085844094070 + 139 8 Cd 4d+1 -0.0121834070043657 -0.0295949594052033 + 140 8 Cd 4d+2 -0.0185223303892055 0.0529595594287158 + 141 8 Cd 5d-2 0.0012634200426482 0.0020561702572794 + 142 8 Cd 5d-1 -0.0004783902226702 0.0023665189108083 + 143 8 Cd 5d0 0.0001580287063728 0.0000946493598774 + 144 8 Cd 5d+1 0.0000061547614479 0.0006673588619613 + 145 8 Cd 5d+2 0.0001514913643919 -0.0043608644495600 + 146 8 Cd 5f-3 -0.0008562442840427 0.0009622058369843 + 147 8 Cd 5f-2 -0.0003371358129323 -0.0001154314607120 + 148 8 Cd 5f-1 0.0001439167438209 0.0006140874445027 + 149 8 Cd 5f0 -0.0005121869934840 0.0000250247450399 + 150 8 Cd 5f+1 0.0000477015947657 0.0010328253037424 + 151 8 Cd 5f+2 -0.0006744879260305 0.0014867654166545 + 152 8 Cd 5f+3 -0.0006956284505795 -0.0010014261396446 + + 153 9 Cd 2s -0.0154357818359046 0.0019607498640523 + 154 9 Cd 3s 0.0000954943418465 -0.0019006534642204 + 155 9 Cd 3py -0.0011510086388563 0.0012450596860199 + 156 9 Cd 3pz 0.0093876757676780 0.0014559861767982 + 157 9 Cd 3px -0.0060217615253841 -0.0007075382057114 + 158 9 Cd 4py -0.0008421472273664 -0.0006885217145320 + 159 9 Cd 4pz 0.0012134619875169 0.0009228728840299 + 160 9 Cd 4px -0.0016946868684727 -0.0003940292387991 + 161 9 Cd 4d-2 0.0051623263620407 0.0053702676859241 + 162 9 Cd 4d-1 -0.0243394387274190 -0.0264369035010101 + 163 9 Cd 4d0 -0.0322749887208235 0.0075450542638024 + 164 9 Cd 4d+1 0.0344317778722130 -0.0126893466225132 + 165 9 Cd 4d+2 -0.0079990408491095 0.0050069170570767 + 166 9 Cd 5d-2 -0.0011201274009221 -0.0004793020084793 + 167 9 Cd 5d-1 0.0012036086601584 0.0005452809995833 + 168 9 Cd 5d0 -0.0041623842746837 -0.0008567494626507 + 169 9 Cd 5d+1 0.0023289079054664 0.0014930341127158 + 170 9 Cd 5d+2 0.0008165030433883 -0.0004118781809061 + 171 9 Cd 5f-3 -0.0000733014538995 0.0001316180259562 + 172 9 Cd 5f-2 0.0006076288980134 0.0005073496076323 + 173 9 Cd 5f-1 -0.0001624661902569 -0.0006934716233692 + 174 9 Cd 5f0 0.0009867985490370 -0.0000045973582005 + 175 9 Cd 5f+1 -0.0000831317953798 -0.0005965456631363 + 176 9 Cd 5f+2 0.0000171558025022 -0.0002411945977387 + 177 9 Cd 5f+3 -0.0006842133742851 -0.0001157590250614 + + 178 10 Se 2s -0.0011134305395213 -0.0027034233072909 + 179 10 Se 3s -0.0003885683151511 -0.0001477044149733 + 180 10 Se 3py -0.0009236580863475 -0.0032767108900889 + 181 10 Se 3pz 0.0006755935844549 -0.0026180766153443 + 182 10 Se 3px 0.0036599540710562 -0.0023646201966877 + 183 10 Se 4py -0.0001235198827996 0.0005804871758935 + 184 10 Se 4pz -0.0006771931650238 0.0008757560754684 + 185 10 Se 4px -0.0000721358689315 0.0000893618739271 + 186 10 Se 4d-2 -0.0001977896749760 -0.0003795515173861 + 187 10 Se 4d-1 -0.0000748768617005 0.0007320820215606 + 188 10 Se 4d0 -0.0007294897376112 0.0007688360748775 + 189 10 Se 4d+1 -0.0004885138332536 0.0003011898008199 + 190 10 Se 4d+2 0.0004041891451958 -0.0003548738122223 + + 191 11 Se 2s 0.0742729062419680 0.0217481617914321 + 192 11 Se 3s -0.0021001999398918 -0.0000637798500520 + 193 11 Se 3py -0.0314860768036520 0.0036716441807614 + 194 11 Se 3pz 0.0078680015561236 0.0060975270607010 + 195 11 Se 3px -0.0152806781409248 -0.0273460725224901 + 196 11 Se 4py -0.0010931423581956 0.0020271046339763 + 197 11 Se 4pz 0.0001529722516616 0.0013193372696134 + 198 11 Se 4px -0.0006091336623958 0.0012396273119255 + 199 11 Se 4d-2 -0.0045612585280856 -0.0030921925382429 + 200 11 Se 4d-1 0.0024987199104524 0.0007585011441571 + 201 11 Se 4d0 0.0033196610071204 0.0014266154636662 + 202 11 Se 4d+1 0.0021169439385309 0.0019964354187842 + 203 11 Se 4d+2 0.0031561918685160 -0.0053545002307350 + + 204 12 Cd 2s 0.0009136369099657 -0.0190841032373268 + 205 12 Cd 3s -0.0004441574573228 -0.0003757747319913 + 206 12 Cd 3py 0.0030855912789502 -0.0019869701851145 + 207 12 Cd 3pz -0.0015442146625510 0.0026137704016329 + 208 12 Cd 3px 0.0041564503572890 -0.0127908296539170 + 209 12 Cd 4py -0.0006072151819911 -0.0012491569014026 + 210 12 Cd 4pz -0.0006587617228010 0.0001511255874734 + 211 12 Cd 4px 0.0006815170631797 -0.0022082284228456 + 212 12 Cd 4d-2 0.0300825451070865 0.0445688717941682 + 213 12 Cd 4d-1 -0.0079752064466481 0.0040666339574964 + 214 12 Cd 4d0 -0.0138616635717607 0.0389758687718232 + 215 12 Cd 4d+1 -0.0463259422273573 0.0620676267183097 + 216 12 Cd 4d+2 0.0874836180257033 -0.0563081593785524 + 217 12 Cd 5d-2 0.0018760070026087 -0.0015713589502860 + 218 12 Cd 5d-1 -0.0010120648478843 -0.0004932057272101 + 219 12 Cd 5d0 -0.0015163781115667 0.0037736294025146 + 220 12 Cd 5d+1 -0.0018972331981747 0.0040013999046107 + 221 12 Cd 5d+2 0.0023723018377373 -0.0024249050115767 + 222 12 Cd 5f-3 0.0006603395933822 0.0000413962902922 + 223 12 Cd 5f-2 -0.0002332527688335 0.0000470664688738 + 224 12 Cd 5f-1 -0.0000141926828039 0.0007281801321767 + 225 12 Cd 5f0 0.0003122261649265 -0.0001863485111763 + 226 12 Cd 5f+1 -0.0003626865360934 0.0002384959009987 + 227 12 Cd 5f+2 -0.0005847835312746 0.0009373337203755 + 228 12 Cd 5f+3 0.0000996738019054 -0.0007319940851123 + + 229 13 Cd 2s 0.0061695104942509 0.0107033240216349 + 230 13 Cd 3s 0.0010017703294688 0.0003500169214880 + 231 13 Cd 3py -0.0031260869511459 -0.0046508619863915 + 232 13 Cd 3pz 0.0058482283971582 0.0035107330214243 + 233 13 Cd 3px 0.0021725759959466 0.0013017193220391 + 234 13 Cd 4py -0.0001032739887328 0.0007525706487763 + 235 13 Cd 4pz -0.0000237078376170 0.0004155382809116 + 236 13 Cd 4px -0.0006460058408084 -0.0003163998655006 + 237 13 Cd 4d-2 -0.1030754754718965 -0.0918675502502410 + 238 13 Cd 4d-1 -0.0506018065776183 -0.0783460477031044 + 239 13 Cd 4d0 -0.0839496050102343 -0.0201342180952469 + 240 13 Cd 4d+1 0.0855108532722034 0.0082902247228949 + 241 13 Cd 4d+2 0.0138311290024130 -0.0532255557270684 + 242 13 Cd 5d-2 -0.0009093077767116 -0.0014072225535189 + 243 13 Cd 5d-1 -0.0010561435670877 -0.0012217074831620 + 244 13 Cd 5d0 -0.0015409034910135 -0.0010003060705822 + 245 13 Cd 5d+1 0.0012689351956888 0.0007092383686683 + 246 13 Cd 5d+2 -0.0007090753707980 -0.0005661314128102 + 247 13 Cd 5f-3 0.0004907477952738 0.0000844096000636 + 248 13 Cd 5f-2 -0.0002996764424767 -0.0003645940042411 + 249 13 Cd 5f-1 -0.0001467538810294 -0.0002386717317795 + 250 13 Cd 5f0 -0.0002370948520690 -0.0002363807928416 + 251 13 Cd 5f+1 0.0002625833165437 0.0002158587479468 + 252 13 Cd 5f+2 0.0004684851141170 0.0000823190180833 + 253 13 Cd 5f+3 0.0001024748273365 0.0002254493569476 + + 254 14 Cd 2s 0.0042319076105434 0.0016081665840518 + 255 14 Cd 3s -0.0008389023467142 -0.0002460696452240 + 256 14 Cd 3py -0.0003990280001016 -0.0009149795026299 + 257 14 Cd 3pz -0.0018026246929000 -0.0020729404567397 + 258 14 Cd 3px 0.0016122542905906 -0.0004721867511378 + 259 14 Cd 4py 0.0000042529829780 -0.0000410838199197 + 260 14 Cd 4pz -0.0001138825412211 -0.0001876727646297 + 261 14 Cd 4px 0.0002818382201804 0.0001773473480898 + 262 14 Cd 4d-2 -0.0068471486411210 0.0056205231956783 + 263 14 Cd 4d-1 0.0006417703558948 0.0054161508235539 + 264 14 Cd 4d0 0.0135441426238864 0.0011907512944183 + 265 14 Cd 4d+1 0.0011417654191603 -0.0011589437510656 + 266 14 Cd 4d+2 -0.0004918230550194 -0.0038921085349953 + 267 14 Cd 5d-2 -0.0008467061839098 0.0003095190940369 + 268 14 Cd 5d-1 0.0008204681371405 0.0016117466141521 + 269 14 Cd 5d0 0.0001862233557705 0.0001883498586193 + 270 14 Cd 5d+1 -0.0005383985498519 -0.0011105200008915 + 271 14 Cd 5d+2 -0.0003095466931835 -0.0003679457415044 + 272 14 Cd 5f-3 0.0001597985966491 0.0002117987330682 + 273 14 Cd 5f-2 0.0002008534197128 0.0004349637084372 + 274 14 Cd 5f-1 -0.0001817846306331 -0.0004144042437521 + 275 14 Cd 5f0 -0.0000137207883098 0.0004322659970940 + 276 14 Cd 5f+1 0.0001602101108554 0.0004000859930146 + 277 14 Cd 5f+2 0.0001507120670913 0.0003177767449104 + 278 14 Cd 5f+3 -0.0001129321233609 0.0001328305919695 + + 279 15 Se 2s -0.0087886225050339 0.0000436448623324 + 280 15 Se 3s 0.0000300802800669 -0.0001329925246664 + 281 15 Se 3py -0.0035888175618396 0.0001782438459972 + 282 15 Se 3pz -0.0085935807401532 -0.0063784168548743 + 283 15 Se 3px 0.0000473993360621 0.0041341435718424 + 284 15 Se 4py 0.0001304869816721 0.0004706431634692 + 285 15 Se 4pz 0.0002505572735405 0.0000465459503016 + 286 15 Se 4px -0.0000260569367304 -0.0003083655934980 + 287 15 Se 4d-2 0.0000747083647580 -0.0007300248516352 + 288 15 Se 4d-1 0.0015940880315189 0.0007322175678572 + 289 15 Se 4d0 0.0005087217211120 0.0005114201178159 + 290 15 Se 4d+1 -0.0012720933778127 -0.0009859783227095 + 291 15 Se 4d+2 -0.0003704007161490 0.0001673444982963 + + 292 16 Se 2s 0.0722547764291192 0.0146922749992337 + 293 16 Se 3s -0.0011747684024178 -0.0000981682661803 + 294 16 Se 3py 0.0048434146097061 -0.0032523516308946 + 295 16 Se 3pz -0.0152216640925404 -0.0052378418517291 + 296 16 Se 3px 0.0021137650390929 0.0009159859782808 + 297 16 Se 4py 0.0001408261598380 -0.0000395226853507 + 298 16 Se 4pz -0.0010820154857144 -0.0003608322189038 + 299 16 Se 4px -0.0002085026756490 -0.0001029132707771 + 300 16 Se 4d-2 -0.0002403115036416 -0.0000369153335240 + 301 16 Se 4d-1 0.0000219252313970 -0.0010160090669352 + 302 16 Se 4d0 -0.0010006484926685 -0.0007788741262086 + 303 16 Se 4d+1 -0.0012536097165329 0.0002811517689824 + 304 16 Se 4d+2 -0.0005136708457636 -0.0001838148541035 + + 305 17 Cd 2s -0.0108953145868191 -0.0028158881167118 + 306 17 Cd 3s 0.0000867753867043 0.0000066811359119 + 307 17 Cd 3py -0.0012939149356391 -0.0014181424427791 + 308 17 Cd 3pz -0.0006340835045170 -0.0008613288083691 + 309 17 Cd 3px -0.0054415888702564 -0.0028488300632394 + 310 17 Cd 4py 0.0005357379442301 -0.0003165444232112 + 311 17 Cd 4pz 0.0006337839610315 -0.0001656253441070 + 312 17 Cd 4px 0.0001134918300678 -0.0003767411828243 + 313 17 Cd 4d-2 -0.1276201305046092 -0.0043923626874261 + 314 17 Cd 4d-1 0.0400200970144367 0.0395086720114299 + 315 17 Cd 4d0 0.0320784218106506 0.0149003964560060 + 316 17 Cd 4d+1 -0.0210974482466142 -0.0199652133107535 + 317 17 Cd 4d+2 -0.0219207770286037 -0.0450338491694403 + 318 17 Cd 5d-2 -0.0045774928905089 -0.0007086555873760 + 319 17 Cd 5d-1 -0.0006114803637768 -0.0002273482686879 + 320 17 Cd 5d0 0.0012780128448224 -0.0003141254855026 + 321 17 Cd 5d+1 -0.0001477009928928 -0.0011737148143751 + 322 17 Cd 5d+2 0.0006285854377296 -0.0006133749129582 + 323 17 Cd 5f-3 0.0000387037720298 -0.0002195149475739 + 324 17 Cd 5f-2 -0.0005895340704902 -0.0004329869734133 + 325 17 Cd 5f-1 -0.0004642687353962 -0.0001050927773947 + 326 17 Cd 5f0 -0.0000102948589893 0.0000091499503249 + 327 17 Cd 5f+1 0.0001203633422324 -0.0002833559145656 + 328 17 Cd 5f+2 0.0001265688400381 -0.0000904752831064 + 329 17 Cd 5f+3 -0.0001595263910393 0.0000022842783328 + + 330 18 Cd 2s -0.0153292868969178 0.0046297744206414 + 331 18 Cd 3s 0.0004189136153775 0.0011436182774784 + 332 18 Cd 3py -0.0019305375654974 -0.0000618294976139 + 333 18 Cd 3pz -0.0044124695152266 0.0059362811399326 + 334 18 Cd 3px -0.0005988346635169 0.0046256687393659 + 335 18 Cd 4py -0.0004063938196695 0.0003956231159188 + 336 18 Cd 4pz 0.0000395217845863 0.0020388749451568 + 337 18 Cd 4px 0.0002556354645928 -0.0000680355451831 + 338 18 Cd 4d-2 -0.0169110295377403 0.0112428226752479 + 339 18 Cd 4d-1 0.0455311555818532 -0.0129973860641823 + 340 18 Cd 4d0 -0.0342126569443786 -0.0021125052332591 + 341 18 Cd 4d+1 0.0036923369281529 0.0507488194140188 + 342 18 Cd 4d+2 -0.0060610920619310 0.0358963859480101 + 343 18 Cd 5d-2 0.0002446419360156 0.0028944168812710 + 344 18 Cd 5d-1 -0.0005791662533163 0.0024735148626375 + 345 18 Cd 5d0 -0.0019323334730413 0.0028459896307327 + 346 18 Cd 5d+1 -0.0009493038038921 0.0013719012784984 + 347 18 Cd 5d+2 0.0009808762495525 0.0003580316470440 + 348 18 Cd 5f-3 0.0004601427757083 0.0005790516789380 + 349 18 Cd 5f-2 -0.0000438214853586 0.0010611483625915 + 350 18 Cd 5f-1 -0.0005519887315556 0.0002585354251058 + 351 18 Cd 5f0 -0.0001328528433645 0.0005906815465958 + 352 18 Cd 5f+1 -0.0004870576261149 -0.0002498727031798 + 353 18 Cd 5f+2 0.0000384905188415 -0.0007268056723266 + 354 18 Cd 5f+3 -0.0002799387087009 -0.0007957222054024 + + 355 19 Se 2s 0.0180590168023144 -0.0106685977021887 + 356 19 Se 3s -0.0001359545266724 0.0003499243126505 + 357 19 Se 3py -0.0090608081262477 -0.0006991210100117 + 358 19 Se 3pz -0.0002724182949493 0.0024849449338878 + 359 19 Se 3px -0.0024784297349492 -0.0004948481873700 + 360 19 Se 4py -0.0002059643873650 -0.0000607829304086 + 361 19 Se 4pz -0.0004365933017837 0.0003846294407779 + 362 19 Se 4px 0.0000726719767638 0.0007586535844356 + 363 19 Se 4d-2 -0.0003875773440772 0.0004718814266341 + 364 19 Se 4d-1 -0.0000370072639700 -0.0003560516070298 + 365 19 Se 4d0 0.0008948546202710 0.0002874959508734 + 366 19 Se 4d+1 -0.0004667153755932 -0.0007246167862839 + 367 19 Se 4d+2 0.0016538798922446 0.0000050371127857 + + 368 20 Se 2s 0.0105455714327162 -0.0132258612132949 + 369 20 Se 3s -0.0004425974281173 0.0004396181090571 + 370 20 Se 3py 0.0042221924582989 -0.0250299011558201 + 371 20 Se 3pz -0.0108077632806112 -0.0057054332020817 + 372 20 Se 3px 0.0041736270343339 -0.0110423801761736 + 373 20 Se 4py 0.0013902587347360 -0.0028164354533133 + 374 20 Se 4pz 0.0003094026693203 0.0000392012244286 + 375 20 Se 4px -0.0009503405039990 -0.0003535101756750 + 376 20 Se 4d-2 -0.0004586121632977 -0.0016718359664245 + 377 20 Se 4d-1 0.0019963897135481 -0.0004867715495487 + 378 20 Se 4d0 0.0001401641839060 -0.0013015658163040 + 379 20 Se 4d+1 -0.0021459297497524 -0.0020486860181538 + 380 20 Se 4d+2 0.0018846012640820 -0.0052201077104465 + + 381 21 Se 2s 0.0092469690835595 0.0065119418958961 + 382 21 Se 3s -0.0001626036012138 0.0000297570114979 + 383 21 Se 3py 0.0026976462211266 -0.0001529339455132 + 384 21 Se 3pz -0.0000912133836086 0.0011614644574771 + 385 21 Se 3px -0.0019525778659613 -0.0046855129974811 + 386 21 Se 4py 0.0009480902037177 -0.0000215448517961 + 387 21 Se 4pz 0.0000350946636510 0.0003972688343096 + 388 21 Se 4px -0.0000929810744742 -0.0008298635667663 + 389 21 Se 4d-2 0.0003356728085889 0.0000911433675640 + 390 21 Se 4d-1 0.0000715410763149 -0.0001717629361329 + 391 21 Se 4d0 -0.0002395744028662 0.0001221667521855 + 392 21 Se 4d+1 -0.0003532441036148 0.0000956860229942 + 393 21 Se 4d+2 0.0001796506784188 -0.0002387781534153 + + 394 22 Cd 2s -0.0019298106039564 0.0053405244912074 + 395 22 Cd 3s -0.0004894541218426 0.0004308428915488 + 396 22 Cd 3py 0.0000346159291123 -0.0032657178540133 + 397 22 Cd 3pz -0.0007170935234769 0.0020187892859308 + 398 22 Cd 3px -0.0020354751817936 0.0016332069701067 + 399 22 Cd 4py 0.0002160621616441 -0.0008903139604447 + 400 22 Cd 4pz -0.0001246172387717 0.0001037500133844 + 401 22 Cd 4px 0.0000081663263569 -0.0006373982774606 + 402 22 Cd 4d-2 0.0009291178454414 -0.0210872430742306 + 403 22 Cd 4d-1 0.0137024092576856 -0.0105138953383565 + 404 22 Cd 4d0 0.0163762935786159 -0.0161484639580948 + 405 22 Cd 4d+1 0.0386275726500071 0.0136172082862296 + 406 22 Cd 4d+2 -0.0030569654626604 0.0287295112866399 + 407 22 Cd 5d-2 0.0004736696850441 -0.0011346490837692 + 408 22 Cd 5d-1 0.0002079533736477 -0.0007242394324326 + 409 22 Cd 5d0 -0.0000540437906495 0.0003913140300744 + 410 22 Cd 5d+1 0.0006592524789871 0.0003348701184674 + 411 22 Cd 5d+2 -0.0005437900614294 -0.0005977792460352 + 412 22 Cd 5f-3 -0.0000574997406362 -0.0003121658477818 + 413 22 Cd 5f-2 0.0000230108891312 -0.0000588294195669 + 414 22 Cd 5f-1 0.0001747306095150 0.0000002915081919 + 415 22 Cd 5f0 0.0000154314269435 -0.0003105676582414 + 416 22 Cd 5f+1 0.0005141303026093 0.0004425688144614 + 417 22 Cd 5f+2 -0.0000980680520195 0.0003141358432666 + 418 22 Cd 5f+3 -0.0000794621621420 -0.0001302584210045 + + 419 23 Se 2s -0.0234909642890680 0.0096971890505774 + 420 23 Se 3s 0.0002583686414414 -0.0001964801848062 + 421 23 Se 3py -0.0016914724784162 0.0027726411641693 + 422 23 Se 3pz 0.0032586630036310 -0.0007546314350022 + 423 23 Se 3px 0.0076708677991519 -0.0007305855354720 + 424 23 Se 4py 0.0002709806246371 -0.0003356515510123 + 425 23 Se 4pz 0.0005818871916416 -0.0002005281871778 + 426 23 Se 4px -0.0001591813050196 -0.0004597166944164 + 427 23 Se 4d-2 -0.0007314446659816 0.0000333015640252 + 428 23 Se 4d-1 -0.0001851909350481 -0.0000356841353079 + 429 23 Se 4d0 -0.0003849035552728 -0.0000214464417645 + 430 23 Se 4d+1 0.0004280261767170 0.0001848784887796 + 431 23 Se 4d+2 0.0009560055398224 0.0003635149249637 + + 432 24 Se 2s -0.0030177135441896 -0.0043889224868983 + 433 24 Se 3s 0.0000848144711129 0.0001873462493709 + 434 24 Se 3py -0.0013865567028084 -0.0005756217397546 + 435 24 Se 3pz 0.0009037805100259 -0.0014058821918328 + 436 24 Se 3px 0.0022259129708324 0.0030724027400135 + 437 24 Se 4py -0.0000569914216937 0.0004421220753290 + 438 24 Se 4pz -0.0001872049441321 -0.0006086106650728 + 439 24 Se 4px 0.0000336357560543 -0.0006544307677235 + 440 24 Se 4d-2 0.0000512986291435 -0.0000022533956977 + 441 24 Se 4d-1 -0.0001881436424583 -0.0002099688616357 + 442 24 Se 4d0 0.0001085831976497 -0.0004923250925937 + 443 24 Se 4d+1 0.0001152650063017 -0.0000354749190748 + 444 24 Se 4d+2 0.0002594954415455 0.0005807506131505 + + 445 25 Cd 2s 0.0008234955363294 -0.0037946756888532 + 446 25 Cd 3s 0.0000320175003975 -0.0001894701636479 + 447 25 Cd 3py -0.0000616353316025 -0.0037320518358913 + 448 25 Cd 3pz -0.0020792291218684 -0.0027888277705743 + 449 25 Cd 3px -0.0010658874435659 0.0027511838456359 + 450 25 Cd 4py -0.0005593006554965 -0.0016478806071670 + 451 25 Cd 4pz -0.0007752155153363 -0.0000236493368944 + 452 25 Cd 4px -0.0001033035671928 0.0014018925844045 + 453 25 Cd 4d-2 -0.0018194156760772 0.0062373203971138 + 454 25 Cd 4d-1 -0.0222196716795180 0.0236363219597115 + 455 25 Cd 4d0 0.0277824821761523 -0.0128491147677016 + 456 25 Cd 4d+1 -0.0143227283218478 -0.0253781359056577 + 457 25 Cd 4d+2 -0.0018532564646208 -0.0085606152253240 + 458 25 Cd 5d-2 -0.0004062946803350 -0.0023899469823224 + 459 25 Cd 5d-1 0.0001222349043496 -0.0001132172325216 + 460 25 Cd 5d0 0.0003808575286508 -0.0008143345401827 + 461 25 Cd 5d+1 -0.0028046287458985 0.0014885556779802 + 462 25 Cd 5d+2 0.0001949232614414 0.0012435784578848 + 463 25 Cd 5f-3 0.0001266513896673 -0.0001345297667253 + 464 25 Cd 5f-2 0.0001007447325825 -0.0004867901434815 + 465 25 Cd 5f-1 0.0000219079325678 -0.0004261067319315 + 466 25 Cd 5f0 0.0002164060686401 0.0001277332877524 + 467 25 Cd 5f+1 -0.0002786023377188 0.0006396539213030 + 468 25 Cd 5f+2 -0.0008456920168267 0.0001484686707261 + 469 25 Cd 5f+3 -0.0001292457063207 0.0003912948416768 + + 470 26 Cd 2s 0.0007484400896378 -0.0011227978653147 + 471 26 Cd 3s 0.0000552123226850 -0.0000389066317097 + 472 26 Cd 3py 0.0000205709742330 -0.0017028481601914 + 473 26 Cd 3pz -0.0001582318119182 -0.0001844572502007 + 474 26 Cd 3px 0.0011795550489298 -0.0002364380350712 + 475 26 Cd 4py 0.0003726130534599 -0.0000905379268987 + 476 26 Cd 4pz 0.0001291697293345 -0.0000981848886610 + 477 26 Cd 4px 0.0004891551774497 0.0000871339642043 + 478 26 Cd 4d-2 -0.0034206623752815 -0.0053118559251283 + 479 26 Cd 4d-1 0.0006015692032342 -0.0025184411347702 + 480 26 Cd 4d0 0.0008852940405585 0.0001095096676962 + 481 26 Cd 4d+1 -0.0013583609958286 0.0001711045684103 + 482 26 Cd 4d+2 0.0016920269666299 -0.0025435030855282 + 483 26 Cd 5d-2 0.0000141612965378 -0.0009326366485930 + 484 26 Cd 5d-1 -0.0001870396736476 -0.0001065245268266 + 485 26 Cd 5d0 -0.0006615083916475 -0.0000203241623726 + 486 26 Cd 5d+1 -0.0001245386955632 -0.0004883037848701 + 487 26 Cd 5d+2 0.0011167620625348 -0.0000665405744431 + 488 26 Cd 5f-3 -0.0001426749755696 0.0000362009826813 + 489 26 Cd 5f-2 -0.0000050874601409 0.0001166939405421 + 490 26 Cd 5f-1 0.0000874375164755 -0.0000133290371114 + 491 26 Cd 5f0 -0.0000014417152287 -0.0000079314186147 + 492 26 Cd 5f+1 -0.0003437418679326 0.0001180382281100 + 493 26 Cd 5f+2 -0.0001025044827136 -0.0001875836255215 + 494 26 Cd 5f+3 0.0003219753423865 -0.0002733582717878 + + 73 74 + -0.4434610862365864 -0.4427300141341289 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0003922109341380 -0.0109626176130945 + 2 1 Cd 3s 0.0006790205762795 -0.0006060946276851 + 3 1 Cd 3py -0.0030736280856492 0.0126195121220574 + 4 1 Cd 3pz 0.0027823084056502 -0.0061092606475881 + 5 1 Cd 3px -0.0014302345334936 0.0063412902459119 + 6 1 Cd 4py -0.0014276273403644 0.0032117533287173 + 7 1 Cd 4pz 0.0005246291461770 -0.0006658831040713 + 8 1 Cd 4px -0.0007001335248073 -0.0004692992911717 + 9 1 Cd 4d-2 -0.0457002355630430 -0.5178167411890346 + 10 1 Cd 4d-1 0.0395040959518663 0.2365165073982072 + 11 1 Cd 4d0 -0.0397949916304801 -0.0385534935163039 + 12 1 Cd 4d+1 -0.0365282874283752 -0.4322859743509095 + 13 1 Cd 4d+2 -0.0464786153173379 0.1913314366195654 + 14 1 Cd 5d-2 0.0021761238994960 -0.0034432075515681 + 15 1 Cd 5d-1 0.0002946107580851 0.0027899247154703 + 16 1 Cd 5d0 0.0001909932621016 -0.0004382860882317 + 17 1 Cd 5d+1 -0.0015093091011139 0.0037960208296383 + 18 1 Cd 5d+2 0.0007879191174892 -0.0017634704839738 + 19 1 Cd 5f-3 -0.0000025088979322 0.0000407478710928 + 20 1 Cd 5f-2 -0.0001283243055827 -0.0013201685464077 + 21 1 Cd 5f-1 0.0000899697970279 -0.0005133938219613 + 22 1 Cd 5f0 -0.0001845541316553 0.0003699813126202 + 23 1 Cd 5f+1 0.0000050872029483 0.0009798823234173 + 24 1 Cd 5f+2 0.0004311574039912 -0.0013334482599561 + 25 1 Cd 5f+3 -0.0003045915882014 0.0016212241403554 + + 26 2 Cd 2s -0.0011172813463387 0.0048799426416022 + 27 2 Cd 3s 0.0000206462110316 0.0003092774226522 + 28 2 Cd 3py 0.0019638442352001 -0.0043848820619878 + 29 2 Cd 3pz -0.0034377240869794 0.0005181011909385 + 30 2 Cd 3px -0.0037439456092271 -0.0005766435649843 + 31 2 Cd 4py -0.0015120684921273 -0.0008284149212738 + 32 2 Cd 4pz 0.0001655893991705 0.0003689652308563 + 33 2 Cd 4px 0.0008942848233192 -0.0002212423130768 + 34 2 Cd 4d-2 0.0747201418398374 0.0219867359410622 + 35 2 Cd 4d-1 0.0396923763888700 0.0235723630850493 + 36 2 Cd 4d0 0.0153439345659131 -0.0536823095261009 + 37 2 Cd 4d+1 -0.0339578597761631 -0.0018786549131165 + 38 2 Cd 4d+2 0.0245000419847263 -0.0326648142288543 + 39 2 Cd 5d-2 0.0026898525041688 0.0004309836547730 + 40 2 Cd 5d-1 -0.0000549299303508 -0.0015211081852718 + 41 2 Cd 5d0 0.0019277343669367 -0.0021059257835166 + 42 2 Cd 5d+1 0.0008588195441973 0.0013785186939562 + 43 2 Cd 5d+2 -0.0001954831117068 -0.0023647560220887 + 44 2 Cd 5f-3 -0.0000437564388071 0.0000965472368897 + 45 2 Cd 5f-2 -0.0002643382675212 0.0004830879162277 + 46 2 Cd 5f-1 0.0000936659981410 0.0005414365131998 + 47 2 Cd 5f0 -0.0001397569957275 -0.0000625158451949 + 48 2 Cd 5f+1 -0.0006326047335924 0.0000147408290571 + 49 2 Cd 5f+2 -0.0001158414611668 -0.0001999875723694 + 50 2 Cd 5f+3 0.0003499393964573 0.0004678012350013 + + 51 3 Cd 2s 0.0014624904579945 0.0061875653476287 + 52 3 Cd 3s -0.0002642567526872 0.0013388103426971 + 53 3 Cd 3py -0.0001994478114760 0.0093747667235420 + 54 3 Cd 3pz -0.0063898210698933 -0.0029076998744907 + 55 3 Cd 3px -0.0066847223843689 0.0034663725557549 + 56 3 Cd 4py 0.0010804244050884 0.0014983634225192 + 57 3 Cd 4pz -0.0025845739654073 -0.0005351559696940 + 58 3 Cd 4px -0.0039069820374246 0.0020576472951360 + 59 3 Cd 4d-2 -0.6667982314661142 0.1740540713684948 + 60 3 Cd 4d-1 -0.4860991064762622 -0.4585445338199188 + 61 3 Cd 4d0 -0.3492498671775158 0.3486296001305378 + 62 3 Cd 4d+1 -0.0913683997169163 0.0061946146067417 + 63 3 Cd 4d+2 -0.1760679890603328 0.1474757869656969 + 64 3 Cd 5d-2 -0.0040451668503611 0.0001216014332883 + 65 3 Cd 5d-1 0.0038807526296318 0.0009936652573149 + 66 3 Cd 5d0 -0.0013313560384877 -0.0026756791209348 + 67 3 Cd 5d+1 0.0032009121574505 -0.0019209826974669 + 68 3 Cd 5d+2 0.0002825552314881 -0.0039270925510843 + 69 3 Cd 5f-3 0.0016708558283981 -0.0001815802336162 + 70 3 Cd 5f-2 -0.0004042702081686 -0.0000492933244380 + 71 3 Cd 5f-1 -0.0021038347402944 -0.0008894040842438 + 72 3 Cd 5f0 0.0002124790246463 0.0005838571692299 + 73 3 Cd 5f+1 -0.0002382054189364 0.0003041503584916 + 74 3 Cd 5f+2 -0.0002999245148472 0.0004679634018693 + 75 3 Cd 5f+3 0.0007402235823526 -0.0007451539653427 + + 76 4 Se 2s -0.0197525165764768 -0.0174205877751955 + 77 4 Se 3s 0.0003728056489401 0.0006742950716680 + 78 4 Se 3py -0.0043698673794190 -0.0021819369841974 + 79 4 Se 3pz -0.0020513084006383 -0.0039955714202709 + 80 4 Se 3px -0.0008069640112190 -0.0208574184649249 + 81 4 Se 4py -0.0002453092799225 -0.0002087811822641 + 82 4 Se 4pz -0.0000386832445323 0.0000644582099059 + 83 4 Se 4px 0.0004771243989600 -0.0004325766259443 + 84 4 Se 4d-2 0.0007465487711244 0.0045065505010582 + 85 4 Se 4d-1 0.0000136316138520 0.0004197718189161 + 86 4 Se 4d0 0.0010098361394596 -0.0013709472322756 + 87 4 Se 4d+1 0.0005008135388981 0.0043919517206746 + 88 4 Se 4d+2 -0.0008346608194266 -0.0012338992247107 + + 89 5 Se 2s 0.0060251976574694 0.0304015725515519 + 90 5 Se 3s -0.0001690287924632 -0.0002817747179670 + 91 5 Se 3py 0.0002886165386352 0.0007868328245373 + 92 5 Se 3pz -0.0006243054946067 -0.0104469272769149 + 93 5 Se 3px 0.0150953489750919 0.0121629436240025 + 94 5 Se 4py 0.0008582073919883 0.0013791568257503 + 95 5 Se 4pz -0.0001030807764479 -0.0010327587890092 + 96 5 Se 4px 0.0021937324689175 0.0015063748075250 + 97 5 Se 4d-2 0.0014921665139357 0.0021539267265476 + 98 5 Se 4d-1 -0.0030284582350985 0.0005246289812118 + 99 5 Se 4d0 0.0019996436461134 -0.0004142045251653 + 100 5 Se 4d+1 0.0006877813532862 -0.0016292607757405 + 101 5 Se 4d+2 -0.0030941280111689 0.0030648230562460 + + 102 6 Se 2s 0.1214863240781742 0.0073871025817420 + 103 6 Se 3s -0.0032047385357951 -0.0004108154891837 + 104 6 Se 3py 0.0094452902814125 -0.0089328239181551 + 105 6 Se 3pz 0.0428031517423244 0.0056868141647261 + 106 6 Se 3px 0.0414760632468704 0.0019687114261884 + 107 6 Se 4py 0.0015189874414540 -0.0012653944609992 + 108 6 Se 4pz 0.0013278525851682 0.0003633211531585 + 109 6 Se 4px 0.0018023318572822 0.0003758393619898 + 110 6 Se 4d-2 -0.0027808087713285 0.0016650835728427 + 111 6 Se 4d-1 -0.0021926729692407 0.0008336645065623 + 112 6 Se 4d0 -0.0019268541992657 -0.0013437203646057 + 113 6 Se 4d+1 -0.0090060309650217 -0.0011967279624043 + 114 6 Se 4d+2 -0.0045293646057274 -0.0012732908697912 + + 115 7 Se 2s -0.0019586383693642 0.0018768110637775 + 116 7 Se 3s -0.0000549530825996 0.0001443579363678 + 117 7 Se 3py -0.0039341467962896 0.0025966962703546 + 118 7 Se 3pz 0.0024303699295896 0.0000584358271225 + 119 7 Se 3px -0.0015056543520948 -0.0007191660809156 + 120 7 Se 4py 0.0001802552919093 -0.0007474997576983 + 121 7 Se 4pz -0.0004271166479263 0.0000298811253828 + 122 7 Se 4px 0.0002212833957810 0.0004214300924050 + 123 7 Se 4d-2 0.0000620537721431 0.0002270413398164 + 124 7 Se 4d-1 0.0001639701520699 -0.0004661822490665 + 125 7 Se 4d0 -0.0010214254480573 0.0002333303709082 + 126 7 Se 4d+1 0.0001332647170050 0.0000802758215393 + 127 7 Se 4d+2 0.0005834237160063 0.0001661154378719 + + 128 8 Cd 2s 0.0101173291710047 -0.0014530845135036 + 129 8 Cd 3s -0.0020129628914483 -0.0006207875952260 + 130 8 Cd 3py -0.0021805434851908 0.0011050617055068 + 131 8 Cd 3pz -0.0044172934922470 0.0003941054580043 + 132 8 Cd 3px 0.0037883714960964 -0.0016680392339815 + 133 8 Cd 4py 0.0002242628996733 0.0002845510806323 + 134 8 Cd 4pz 0.0014568554509396 -0.0002434751284496 + 135 8 Cd 4px 0.0005667756618654 -0.0004311714304391 + 136 8 Cd 4d-2 0.0158666213691264 -0.0128541557940604 + 137 8 Cd 4d-1 0.0718218399106352 0.0060899626578308 + 138 8 Cd 4d0 0.0967146462920975 -0.0152467299250606 + 139 8 Cd 4d+1 -0.0500760300265388 -0.0013665430326877 + 140 8 Cd 4d+2 -0.0137173322436525 0.0060908375300833 + 141 8 Cd 5d-2 0.0023625615646792 0.0004047888033247 + 142 8 Cd 5d-1 0.0019589008160431 0.0000445563395813 + 143 8 Cd 5d0 0.0001308261397820 0.0000048259193410 + 144 8 Cd 5d+1 -0.0018811226613140 0.0004120833224869 + 145 8 Cd 5d+2 0.0001095658081780 -0.0002294364000864 + 146 8 Cd 5f-3 -0.0003822155076595 -0.0001435412309861 + 147 8 Cd 5f-2 -0.0001029537219805 0.0000463449812811 + 148 8 Cd 5f-1 0.0001637800404327 0.0002805063941558 + 149 8 Cd 5f0 0.0002266282608282 -0.0000146869800983 + 150 8 Cd 5f+1 0.0003445791265604 -0.0000245789420927 + 151 8 Cd 5f+2 -0.0002425610862031 0.0000947156979367 + 152 8 Cd 5f+3 -0.0005592153794496 -0.0004710589308622 + + 153 9 Cd 2s -0.0076550716597073 -0.0040794138591429 + 154 9 Cd 3s 0.0009239856159379 -0.0003763278420469 + 155 9 Cd 3py -0.0015152186844418 0.0014951864393763 + 156 9 Cd 3pz -0.0020134868232096 0.0027939784251486 + 157 9 Cd 3px -0.0036846268819383 -0.0017253542444254 + 158 9 Cd 4py -0.0002720707421406 -0.0001031218202926 + 159 9 Cd 4pz -0.0009717699139782 0.0004391815941199 + 160 9 Cd 4px 0.0016506363742466 -0.0004590641689336 + 161 9 Cd 4d-2 -0.0094883683229216 0.0053955698717049 + 162 9 Cd 4d-1 0.0096723638070093 -0.0190235202911642 + 163 9 Cd 4d0 0.0386316660542869 0.0007909206924398 + 164 9 Cd 4d+1 0.0498826698210333 0.0072731403508336 + 165 9 Cd 4d+2 -0.0408761077105288 -0.0042182148587948 + 166 9 Cd 5d-2 -0.0002191431241959 -0.0001064700036861 + 167 9 Cd 5d-1 0.0013310482822724 -0.0007380495637796 + 168 9 Cd 5d0 0.0023872922493848 -0.0012977071836627 + 169 9 Cd 5d+1 0.0021235920372828 0.0012508768659585 + 170 9 Cd 5d+2 -0.0013875644981198 -0.0000995131964504 + 171 9 Cd 5f-3 -0.0002200161312224 0.0000149502471833 + 172 9 Cd 5f-2 -0.0000492421473320 0.0002122260712619 + 173 9 Cd 5f-1 -0.0003642392657936 0.0003544599130632 + 174 9 Cd 5f0 -0.0003710041822113 0.0002796449627907 + 175 9 Cd 5f+1 -0.0005334363887181 -0.0003433417393608 + 176 9 Cd 5f+2 -0.0006352902476775 0.0001337837928866 + 177 9 Cd 5f+3 0.0007485011120219 -0.0001872076926233 + + 178 10 Se 2s 0.0174940812403041 0.0027227287436438 + 179 10 Se 3s -0.0001960176957222 -0.0000793617333436 + 180 10 Se 3py -0.0015340874668584 -0.0015744782970215 + 181 10 Se 3pz 0.0018861007510135 0.0004924731245062 + 182 10 Se 3px -0.0081079255570895 0.0001635098134771 + 183 10 Se 4py 0.0002321417691822 0.0001836384270681 + 184 10 Se 4pz 0.0013556747807605 0.0000614037333770 + 185 10 Se 4px 0.0003768887745117 -0.0000864258119173 + 186 10 Se 4d-2 -0.0001294276593008 -0.0001560829849461 + 187 10 Se 4d-1 0.0009177644860289 0.0001146505084828 + 188 10 Se 4d0 -0.0004154156408624 0.0000092174914747 + 189 10 Se 4d+1 -0.0002204549587110 -0.0001423292320121 + 190 10 Se 4d+2 -0.0009472601879064 0.0001652468270888 + + 191 11 Se 2s 0.0679398908731191 -0.0049482933958075 + 192 11 Se 3s -0.0018185996618462 0.0000519142704022 + 193 11 Se 3py -0.0234891291327774 0.0055426987951908 + 194 11 Se 3pz 0.0192154462023354 0.0098846908314940 + 195 11 Se 3px -0.0094842155518815 0.0018208280784137 + 196 11 Se 4py 0.0001317090956576 0.0000151548453546 + 197 11 Se 4pz 0.0026035529125725 0.0007164135871850 + 198 11 Se 4px -0.0007589991428453 0.0002920511231316 + 199 11 Se 4d-2 -0.0032269604414382 0.0011842534579406 + 200 11 Se 4d-1 0.0027004271038884 0.0017366156557656 + 201 11 Se 4d0 0.0005175146898060 -0.0006138059459741 + 202 11 Se 4d+1 0.0025123880333180 0.0023708753958721 + 203 11 Se 4d+2 0.0030269930484485 -0.0010413350890253 + + 204 12 Cd 2s 0.0015429388386406 0.0014122658840912 + 205 12 Cd 3s -0.0011677882915334 0.0003066568353141 + 206 12 Cd 3py 0.0061050283415863 0.0012380954655239 + 207 12 Cd 3pz -0.0026016364484463 -0.0004316400748304 + 208 12 Cd 3px -0.0006904766659374 0.0009216517105051 + 209 12 Cd 4py -0.0011263787946003 0.0004883746555285 + 210 12 Cd 4pz 0.0004730702512048 -0.0000196114874297 + 211 12 Cd 4px -0.0003087533308472 0.0000215135607569 + 212 12 Cd 4d-2 0.0565055931577562 0.0162094703050885 + 213 12 Cd 4d-1 -0.0413654598582352 0.0062591141079724 + 214 12 Cd 4d0 0.0232183695227849 -0.0083410965748380 + 215 12 Cd 4d+1 -0.0271578162396539 -0.0103330554279402 + 216 12 Cd 4d+2 -0.0150663774741518 0.0032422647192633 + 217 12 Cd 5d-2 0.0022506704687423 0.0009840233352322 + 218 12 Cd 5d-1 -0.0006600243955362 -0.0006562722005947 + 219 12 Cd 5d0 0.0018939094409234 -0.0000489848514194 + 220 12 Cd 5d+1 -0.0004271998696618 -0.0001028566403566 + 221 12 Cd 5d+2 -0.0000822314187559 0.0004062640094032 + 222 12 Cd 5f-3 0.0002055651035048 0.0004018725154466 + 223 12 Cd 5f-2 -0.0001202979122318 -0.0004266366495374 + 224 12 Cd 5f-1 0.0003066997409124 -0.0000122836384964 + 225 12 Cd 5f0 0.0006561088336331 -0.0000302412350857 + 226 12 Cd 5f+1 0.0001641100876410 0.0000832669114870 + 227 12 Cd 5f+2 -0.0001783770279550 0.0001157564209536 + 228 12 Cd 5f+3 0.0000784231455474 -0.0000403024640572 + + 229 13 Cd 2s 0.0037269889700006 -0.0197669556036313 + 230 13 Cd 3s -0.0012020467775515 0.0005034957521551 + 231 13 Cd 3py -0.0015880084748909 0.0090979179963582 + 232 13 Cd 3pz 0.0011829001913447 -0.0023886831282131 + 233 13 Cd 3px 0.0018881892052214 -0.0059702251388052 + 234 13 Cd 4py -0.0001871666434006 -0.0017584331928431 + 235 13 Cd 4pz -0.0008979385364364 -0.0007064133791094 + 236 13 Cd 4px 0.0018685934193223 -0.0001203730663346 + 237 13 Cd 4d-2 0.0705761650320297 0.1527006357434196 + 238 13 Cd 4d-1 -0.0278515628883336 0.0916223746171748 + 239 13 Cd 4d0 -0.0235243722799823 0.0349767155707155 + 240 13 Cd 4d+1 0.0098426515080465 -0.0558493147599769 + 241 13 Cd 4d+2 0.0347382444501048 0.0855174111241019 + 242 13 Cd 5d-2 -0.0005385039926159 0.0030001154790400 + 243 13 Cd 5d-1 -0.0000952991189894 0.0019831435082649 + 244 13 Cd 5d0 -0.0000803310886217 0.0019333116052968 + 245 13 Cd 5d+1 0.0010911039832259 -0.0019757801461075 + 246 13 Cd 5d+2 -0.0005081836755234 0.0024747668917289 + 247 13 Cd 5f-3 0.0001582271607245 -0.0006463941630204 + 248 13 Cd 5f-2 0.0000484430843571 0.0006699768748273 + 249 13 Cd 5f-1 0.0001306571188967 0.0008321623722369 + 250 13 Cd 5f0 0.0000696971189377 0.0002492309293940 + 251 13 Cd 5f+1 -0.0004571387169451 -0.0006890748100117 + 252 13 Cd 5f+2 -0.0000452672109137 0.0004059316170657 + 253 13 Cd 5f+3 0.0001745705758144 -0.0009266269244264 + + 254 14 Cd 2s 0.0020529189740736 -0.0039963285715929 + 255 14 Cd 3s 0.0001489839840267 0.0005174420168181 + 256 14 Cd 3py -0.0035566641336899 0.0011563383071094 + 257 14 Cd 3pz 0.0007825595122974 0.0011039688727803 + 258 14 Cd 3px 0.0019980134118801 -0.0013506238379231 + 259 14 Cd 4py 0.0000793455327727 0.0000557183462232 + 260 14 Cd 4pz -0.0003844746578603 0.0000659360127838 + 261 14 Cd 4px 0.0000283383650248 -0.0004524862505839 + 262 14 Cd 4d-2 -0.0052232134782453 0.0027434916324824 + 263 14 Cd 4d-1 0.0047046986383654 -0.0005294909917072 + 264 14 Cd 4d0 -0.0141025768921233 -0.0096066416061018 + 265 14 Cd 4d+1 -0.0065598769613759 -0.0044520088517915 + 266 14 Cd 4d+2 -0.0106136447079303 0.0004654454992526 + 267 14 Cd 5d-2 -0.0006024630508205 0.0008094047279608 + 268 14 Cd 5d-1 0.0008278574374233 -0.0007653771153870 + 269 14 Cd 5d0 -0.0009417654752744 0.0006622048225192 + 270 14 Cd 5d+1 -0.0003870240333140 0.0005472892223654 + 271 14 Cd 5d+2 -0.0009929581140286 -0.0001079005567322 + 272 14 Cd 5f-3 0.0002260990100999 0.0002061595596968 + 273 14 Cd 5f-2 0.0000787910275902 -0.0001429004311143 + 274 14 Cd 5f-1 0.0000389124008666 -0.0001257418222745 + 275 14 Cd 5f0 0.0002000839715563 -0.0000122589969739 + 276 14 Cd 5f+1 -0.0000608420558766 -0.0000886720829484 + 277 14 Cd 5f+2 0.0001272229994844 -0.0000389284327818 + 278 14 Cd 5f+3 -0.0000315923721140 0.0000898468002275 + + 279 15 Se 2s 0.0236660276752961 0.0044198556455540 + 280 15 Se 3s -0.0006561492281346 0.0002758293754159 + 281 15 Se 3py 0.0101293173032058 -0.0002112253704065 + 282 15 Se 3pz 0.0013802828369274 0.0098327913201647 + 283 15 Se 3px -0.0061420599603394 -0.0059556616771653 + 284 15 Se 4py 0.0005284806495275 0.0001398874737400 + 285 15 Se 4pz 0.0003427511273022 -0.0013978325547079 + 286 15 Se 4px -0.0001117964205984 -0.0003554662908739 + 287 15 Se 4d-2 0.0009249873927662 0.0006602803642386 + 288 15 Se 4d-1 -0.0002097622427407 -0.0016719544040791 + 289 15 Se 4d0 0.0009592097773062 -0.0009801386052152 + 290 15 Se 4d+1 0.0006724416089111 0.0016914830861837 + 291 15 Se 4d+2 0.0008308705104315 -0.0006657929704074 + + 292 16 Se 2s 0.0301116970443292 0.0067883132685285 + 293 16 Se 3s -0.0006054722565718 -0.0002091720417741 + 294 16 Se 3py 0.0036823002208178 0.0114037732323727 + 295 16 Se 3pz -0.0075773580930150 -0.0000634736111437 + 296 16 Se 3px 0.0044520024198939 -0.0101848776622769 + 297 16 Se 4py 0.0000869965351455 0.0005696756655114 + 298 16 Se 4pz -0.0000182087133261 0.0004053201565640 + 299 16 Se 4px 0.0005728730742770 -0.0005939107963813 + 300 16 Se 4d-2 -0.0002317902057488 0.0004411841057019 + 301 16 Se 4d-1 0.0005897350082969 0.0026458594610923 + 302 16 Se 4d0 -0.0003614501861238 0.0000560396295846 + 303 16 Se 4d+1 0.0003999836728376 -0.0026981603652574 + 304 16 Se 4d+2 -0.0001594088410081 -0.0004577668174464 + + 305 17 Cd 2s -0.0027775362053623 0.0002106821872443 + 306 17 Cd 3s -0.0005298907028301 0.0003019011706884 + 307 17 Cd 3py -0.0004325138870886 -0.0006433608516223 + 308 17 Cd 3pz 0.0016730675262774 0.0011655738644209 + 309 17 Cd 3px 0.0005874894585381 0.0011019328468322 + 310 17 Cd 4py 0.0002898507790310 0.0003251573688263 + 311 17 Cd 4pz -0.0003187096144441 0.0008773439997167 + 312 17 Cd 4px 0.0003593165016913 0.0003104647144667 + 313 17 Cd 4d-2 -0.0091798284865624 -0.0316619602830990 + 314 17 Cd 4d-1 0.0109503719110696 -0.0304720719539910 + 315 17 Cd 4d0 0.0939526293967651 -0.0335817618146514 + 316 17 Cd 4d+1 -0.0371997437059380 0.0329800003118794 + 317 17 Cd 4d+2 0.0078301193868136 0.0414434422014909 + 318 17 Cd 5d-2 -0.0004304025493831 -0.0005199033276134 + 319 17 Cd 5d-1 0.0002769596785300 -0.0006906101240583 + 320 17 Cd 5d0 0.0011121849774354 0.0014201077399134 + 321 17 Cd 5d+1 0.0001304806850303 0.0015110845376923 + 322 17 Cd 5d+2 -0.0005180458193353 0.0007398612832669 + 323 17 Cd 5f-3 0.0002908552330809 0.0002525597036721 + 324 17 Cd 5f-2 0.0000242033677303 0.0002265900617115 + 325 17 Cd 5f-1 0.0002450647825721 -0.0000132557205901 + 326 17 Cd 5f0 0.0004275078056584 0.0003005486586292 + 327 17 Cd 5f+1 0.0000277600117759 0.0006581669880838 + 328 17 Cd 5f+2 -0.0001770900063795 -0.0000104010591179 + 329 17 Cd 5f+3 0.0000210512488734 -0.0005290025082642 + + 330 18 Cd 2s 0.0056374789338988 0.0055049649007827 + 331 18 Cd 3s -0.0019927283395031 -0.0000478220566597 + 332 18 Cd 3py 0.0034054068445543 -0.0002295109801040 + 333 18 Cd 3pz 0.0054623816508862 0.0053606187443462 + 334 18 Cd 3px 0.0034648395025658 0.0020789513483196 + 335 18 Cd 4py -0.0014156659628864 -0.0000712904401933 + 336 18 Cd 4pz 0.0007280598319046 0.0006641187525009 + 337 18 Cd 4px -0.0011563460246694 -0.0001170547990379 + 338 18 Cd 4d-2 0.0515542500848189 0.0064289000356699 + 339 18 Cd 4d-1 0.0776764993327769 0.0081587747143686 + 340 18 Cd 4d0 -0.0291235696986267 0.0209851003237398 + 341 18 Cd 4d+1 0.0515631257829452 0.0173223935339899 + 342 18 Cd 4d+2 -0.0052542780972545 0.0127021645460885 + 343 18 Cd 5d-2 0.0013049564779227 0.0009410216324666 + 344 18 Cd 5d-1 0.0032567331003665 0.0017101912202874 + 345 18 Cd 5d0 0.0002099425148717 0.0020304483551586 + 346 18 Cd 5d+1 -0.0004143074858531 0.0011113376106007 + 347 18 Cd 5d+2 -0.0007914264006184 0.0007180470996789 + 348 18 Cd 5f-3 -0.0001948894215317 0.0003785307507141 + 349 18 Cd 5f-2 0.0000408451375601 0.0006114871627802 + 350 18 Cd 5f-1 0.0000910622885404 0.0005316328237414 + 351 18 Cd 5f0 0.0000052444826278 0.0001846731732054 + 352 18 Cd 5f+1 -0.0001318159469793 0.0000920564319735 + 353 18 Cd 5f+2 -0.0011964199305665 -0.0001138449686473 + 354 18 Cd 5f+3 -0.0004696373778533 -0.0000542089634338 + + 355 19 Se 2s 0.0302543818852541 0.0029777202908591 + 356 19 Se 3s -0.0004888531551775 0.0001198610944719 + 357 19 Se 3py -0.0054935996789862 -0.0038936811119112 + 358 19 Se 3pz -0.0091683659291890 0.0012206866631050 + 359 19 Se 3px -0.0066465707531374 -0.0019515192092101 + 360 19 Se 4py -0.0004384713410860 0.0000114052248806 + 361 19 Se 4pz -0.0003547355474101 -0.0002881047575679 + 362 19 Se 4px 0.0003021159473019 0.0004101757698548 + 363 19 Se 4d-2 0.0000200646234679 -0.0006018406182499 + 364 19 Se 4d-1 -0.0002871801898079 -0.0000711164841895 + 365 19 Se 4d0 -0.0005443999445069 0.0000070570102359 + 366 19 Se 4d+1 -0.0009072394828087 0.0000211128974804 + 367 19 Se 4d+2 0.0002875548412440 -0.0002349528963677 + + 368 20 Se 2s -0.1240892348772967 0.0142993786454650 + 369 20 Se 3s 0.0021010110789752 -0.0002932022212155 + 370 20 Se 3py -0.0404531351074449 0.0096259834300432 + 371 20 Se 3pz 0.0176432307095589 -0.0165411327038231 + 372 20 Se 3px 0.0459351454849751 -0.0055994956652045 + 373 20 Se 4py 0.0039952634506165 0.0016388886391894 + 374 20 Se 4pz -0.0032812367654543 0.0001442124122287 + 375 20 Se 4px -0.0049629690525576 -0.0000600528663824 + 376 20 Se 4d-2 -0.0092883396088503 0.0014114596347855 + 377 20 Se 4d-1 -0.0031770696424982 0.0022927205277001 + 378 20 Se 4d0 -0.0041718198996916 -0.0007239796421699 + 379 20 Se 4d+1 0.0030786015969878 -0.0035136060355299 + 380 20 Se 4d+2 0.0012451253794845 0.0001647793393349 + + 381 21 Se 2s 0.0409941991127835 -0.0090625063874957 + 382 21 Se 3s -0.0007458756810545 0.0001476018416713 + 383 21 Se 3py 0.0098494456094103 -0.0006340708872967 + 384 21 Se 3pz 0.0029511683254898 -0.0020735317981656 + 385 21 Se 3px -0.0124269887205582 0.0042580997311167 + 386 21 Se 4py 0.0012624554113219 -0.0000631778705170 + 387 21 Se 4pz 0.0010035468344802 -0.0001013889572563 + 388 21 Se 4px -0.0003520718738457 0.0001543068243696 + 389 21 Se 4d-2 0.0012914451411459 -0.0001217859599858 + 390 21 Se 4d-1 0.0005367846977114 0.0000377221224596 + 391 21 Se 4d0 -0.0005137153937836 0.0000824355570751 + 392 21 Se 4d+1 -0.0000465030768550 -0.0005074442735825 + 393 21 Se 4d+2 -0.0003416425032928 0.0001250257412299 + + 394 22 Cd 2s 0.0085743237028638 -0.0087679639687506 + 395 22 Cd 3s -0.0011061727693246 -0.0002967839143393 + 396 22 Cd 3py -0.0037995598087666 0.0015609160511260 + 397 22 Cd 3pz 0.0028328605541156 -0.0029001741417706 + 398 22 Cd 3px 0.0027146451068579 -0.0057266614729878 + 399 22 Cd 4py 0.0014435786549895 0.0002198897908851 + 400 22 Cd 4pz -0.0004388401907902 -0.0000941958836449 + 401 22 Cd 4px -0.0006392738220619 0.0003068186593929 + 402 22 Cd 4d-2 -0.0666950898461637 0.0250922351227688 + 403 22 Cd 4d-1 -0.0875903707506517 0.0066406476702638 + 404 22 Cd 4d0 -0.0367189516584630 0.0390608851944544 + 405 22 Cd 4d+1 0.0630778007496698 -0.0113799362289348 + 406 22 Cd 4d+2 -0.0468713076434653 -0.0354513534135699 + 407 22 Cd 5d-2 0.0011634732752321 0.0006482293568581 + 408 22 Cd 5d-1 -0.0011985551872781 0.0003511488387194 + 409 22 Cd 5d0 -0.0010234063733039 0.0009751371444173 + 410 22 Cd 5d+1 -0.0001675439857581 -0.0014141367784316 + 411 22 Cd 5d+2 0.0008824337351488 -0.0001915522205643 + 412 22 Cd 5f-3 -0.0003861714971140 0.0001898609871290 + 413 22 Cd 5f-2 0.0005706921357323 -0.0002343490113752 + 414 22 Cd 5f-1 -0.0004193502253152 0.0000308095398501 + 415 22 Cd 5f0 -0.0003417416112820 0.0003439392686039 + 416 22 Cd 5f+1 0.0001601857883010 -0.0005544706011612 + 417 22 Cd 5f+2 0.0000246015940578 -0.0003936790129616 + 418 22 Cd 5f+3 0.0002134434880822 0.0004141248473215 + + 419 23 Se 2s 0.0303655223741208 -0.0219909518561327 + 420 23 Se 3s -0.0006422832770569 0.0005061762325482 + 421 23 Se 3py 0.0030280373408390 -0.0026675232606383 + 422 23 Se 3pz -0.0094440446416340 0.0024939741771593 + 423 23 Se 3px -0.0049155498381821 0.0050621704582907 + 424 23 Se 4py 0.0000280107594995 -0.0000452141700096 + 425 23 Se 4pz -0.0003217655341181 0.0003303966256884 + 426 23 Se 4px -0.0001289114388087 0.0006220200291615 + 427 23 Se 4d-2 0.0000741216807423 -0.0003677861794169 + 428 23 Se 4d-1 0.0003736170485163 0.0002299032714879 + 429 23 Se 4d0 -0.0010741930532393 -0.0000446194899184 + 430 23 Se 4d+1 -0.0005867500164448 0.0000053383149951 + 431 23 Se 4d+2 -0.0001807120972743 -0.0000171123955195 + + 432 24 Se 2s 0.0184391374614437 -0.0010509599181142 + 433 24 Se 3s -0.0006394824321826 0.0000181427105015 + 434 24 Se 3py -0.0045316625578625 0.0001702274684891 + 435 24 Se 3pz 0.0000004553769127 0.0000013910903132 + 436 24 Se 3px -0.0054414624096714 0.0000419416256330 + 437 24 Se 4py -0.0000030600427844 0.0000102363729705 + 438 24 Se 4pz 0.0002037691808843 -0.0003369459182969 + 439 24 Se 4px -0.0007843971107952 0.0001231517493160 + 440 24 Se 4d-2 -0.0002969080462350 -0.0001456514690208 + 441 24 Se 4d-1 -0.0000014234882147 -0.0000056107651944 + 442 24 Se 4d0 0.0005505277099426 -0.0000629910574413 + 443 24 Se 4d+1 0.0003103222926162 -0.0001166382470793 + 444 24 Se 4d+2 -0.0006529694292914 0.0000125133214578 + + 445 25 Cd 2s 0.0073242107256337 0.0011604529907880 + 446 25 Cd 3s -0.0014042929599461 0.0008372006417945 + 447 25 Cd 3py -0.0005825204822545 -0.0002989725816871 + 448 25 Cd 3pz 0.0011470919542251 -0.0014351412855080 + 449 25 Cd 3px 0.0028686944977540 0.0013130266948886 + 450 25 Cd 4py -0.0011394903784230 -0.0000925063261177 + 451 25 Cd 4pz -0.0016402376581936 -0.0001935680128323 + 452 25 Cd 4px -0.0006562407249098 0.0006102051049127 + 453 25 Cd 4d-2 0.0382004818864787 -0.0139867468102102 + 454 25 Cd 4d-1 0.0373392152547402 -0.0227486537307915 + 455 25 Cd 4d0 0.0010973774037421 0.0051708300604149 + 456 25 Cd 4d+1 0.0838662767298889 -0.0120451865124445 + 457 25 Cd 4d+2 0.0253084350405767 -0.0048782790343448 + 458 25 Cd 5d-2 -0.0005152457169369 -0.0003624025463006 + 459 25 Cd 5d-1 -0.0001692860952459 -0.0002063654283812 + 460 25 Cd 5d0 -0.0002296394081267 -0.0007848322907382 + 461 25 Cd 5d+1 -0.0009750062811792 0.0001483845679257 + 462 25 Cd 5d+2 0.0004917623171883 -0.0002361299755556 + 463 25 Cd 5f-3 0.0003434736443501 -0.0000296119973009 + 464 25 Cd 5f-2 -0.0000652531102482 0.0002155514316807 + 465 25 Cd 5f-1 0.0000660022088587 -0.0001613493564943 + 466 25 Cd 5f0 0.0000557010887511 0.0000239916296462 + 467 25 Cd 5f+1 0.0000822313481406 -0.0000917743662297 + 468 25 Cd 5f+2 -0.0000646651506002 0.0001381478702998 + 469 25 Cd 5f+3 0.0003075821000531 -0.0001285186377915 + + 470 26 Cd 2s -0.0033412477870115 0.0022738864920181 + 471 26 Cd 3s 0.0004528445132517 -0.0000388185931667 + 472 26 Cd 3py -0.0018854301415294 0.0002905488398372 + 473 26 Cd 3pz 0.0001504757791067 -0.0004980753115869 + 474 26 Cd 3px 0.0010407022206394 0.0005447765352239 + 475 26 Cd 4py 0.0001960182852041 -0.0001649704428860 + 476 26 Cd 4pz 0.0004233051500909 -0.0002272556004377 + 477 26 Cd 4px 0.0001543739921286 -0.0000156125429716 + 478 26 Cd 4d-2 -0.0260433702464383 0.0055691122166993 + 479 26 Cd 4d-1 -0.0098838935234806 0.0016166754189618 + 480 26 Cd 4d0 0.0103762058091741 -0.0028910196331886 + 481 26 Cd 4d+1 -0.0090102206427033 0.0021209125506494 + 482 26 Cd 4d+2 0.0183829342689306 -0.0029111015592003 + 483 26 Cd 5d-2 -0.0011495487863876 0.0000185628582173 + 484 26 Cd 5d-1 -0.0004363485667022 -0.0000192634411836 + 485 26 Cd 5d0 -0.0000687788138583 -0.0001953003444492 + 486 26 Cd 5d+1 0.0002069542526731 -0.0002997366242632 + 487 26 Cd 5d+2 0.0007865054605198 -0.0001875953950732 + 488 26 Cd 5f-3 -0.0000572670101115 -0.0000533886863018 + 489 26 Cd 5f-2 -0.0000036185316593 0.0000070702341816 + 490 26 Cd 5f-1 -0.0000694952223671 0.0002179947121585 + 491 26 Cd 5f0 -0.0001315715163519 0.0000718698565817 + 492 26 Cd 5f+1 -0.0000136828416552 -0.0000356884873174 + 493 26 Cd 5f+2 0.0000682536368897 0.0000363416770747 + 494 26 Cd 5f+3 -0.0000820094330965 -0.0000193109822550 + + 75 76 + -0.4422243232805382 -0.4400442088255532 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0055191453771200 0.0046455727361617 + 2 1 Cd 3s 0.0018983893816026 0.0000029084679253 + 3 1 Cd 3py 0.0124434152629811 -0.0018295531699640 + 4 1 Cd 3pz 0.0021380286027319 -0.0000024018117176 + 5 1 Cd 3px 0.0041848046481959 0.0004686491029070 + 6 1 Cd 4py 0.0034879664324208 -0.0001075591436918 + 7 1 Cd 4pz 0.0023906178157240 0.0000791607395145 + 8 1 Cd 4px 0.0018031492544126 0.0009425756116684 + 9 1 Cd 4d-2 0.2706323820281022 -0.1712748298867267 + 10 1 Cd 4d-1 0.6447174510165151 -0.2303754454713818 + 11 1 Cd 4d0 0.3765066007681818 0.7086286172554380 + 12 1 Cd 4d+1 -0.1353643509734418 0.0445657589534570 + 13 1 Cd 4d+2 -0.1545370093305899 -0.4809342029043638 + 14 1 Cd 5d-2 0.0009044877950320 0.0025783023154622 + 15 1 Cd 5d-1 0.0060628688850275 0.0015442984015129 + 16 1 Cd 5d0 0.0010278430368823 0.0013734588686111 + 17 1 Cd 5d+1 0.0019504538342441 0.0000739202810109 + 18 1 Cd 5d+2 -0.0024589524890162 -0.0004740096855733 + 19 1 Cd 5f-3 -0.0015495480869564 -0.0012398414927506 + 20 1 Cd 5f-2 0.0002693694668666 -0.0000383296630472 + 21 1 Cd 5f-1 0.0011789851550204 0.0025891347704765 + 22 1 Cd 5f0 -0.0007632726686610 -0.0007222540846797 + 23 1 Cd 5f+1 0.0001247536078026 -0.0003220924924954 + 24 1 Cd 5f+2 -0.0019461181861349 0.0000479129280577 + 25 1 Cd 5f+3 -0.0008085672861838 -0.0002571317358844 + + 26 2 Cd 2s 0.0122958373935981 -0.0019885770697046 + 27 2 Cd 3s -0.0016443634136940 -0.0001118516464490 + 28 2 Cd 3py 0.0104189492710907 -0.0029209816806572 + 29 2 Cd 3pz -0.0034854477957657 0.0035617072772701 + 30 2 Cd 3px -0.0000047738052490 -0.0009836898364410 + 31 2 Cd 4py -0.0000443205646868 -0.0009319757774794 + 32 2 Cd 4pz 0.0015086694368054 0.0011177204030035 + 33 2 Cd 4px -0.0015187824173406 -0.0004194703906297 + 34 2 Cd 4d-2 0.0871327255278915 -0.0048249509375085 + 35 2 Cd 4d-1 -0.1363471210088146 -0.0019166613661246 + 36 2 Cd 4d0 0.0338152522261487 -0.0152142933194556 + 37 2 Cd 4d+1 -0.0832286240790747 0.0263658494733536 + 38 2 Cd 4d+2 0.0062007844151235 -0.0134175878043205 + 39 2 Cd 5d-2 -0.0000670691824763 0.0010212206560579 + 40 2 Cd 5d-1 -0.0041556195834394 -0.0006597361894747 + 41 2 Cd 5d0 -0.0005875291299956 -0.0027675268781162 + 42 2 Cd 5d+1 0.0005368342713593 0.0013436483420044 + 43 2 Cd 5d+2 0.0019467410170349 -0.0015255883484035 + 44 2 Cd 5f-3 -0.0011476251321164 0.0000127238232444 + 45 2 Cd 5f-2 0.0014109778696650 -0.0001491081485926 + 46 2 Cd 5f-1 -0.0001269338237133 -0.0000682724608781 + 47 2 Cd 5f0 0.0007511108441963 0.0000598230293386 + 48 2 Cd 5f+1 -0.0001320649982429 -0.0001273010044320 + 49 2 Cd 5f+2 0.0000644538936118 -0.0001506399128111 + 50 2 Cd 5f+3 -0.0002522323015954 0.0004620420289281 + + 51 3 Cd 2s 0.0001765628449301 0.0027433328517768 + 52 3 Cd 3s 0.0008859921917222 0.0002699002657919 + 53 3 Cd 3py 0.0012673540655008 0.0003921679885206 + 54 3 Cd 3pz 0.0005065215987171 -0.0047153499033026 + 55 3 Cd 3px 0.0013040806729039 -0.0000026551442791 + 56 3 Cd 4py -0.0010263638208020 0.0010898363855169 + 57 3 Cd 4pz 0.0001253169143480 -0.0005027891706962 + 58 3 Cd 4px -0.0002674601434986 0.0006721895706188 + 59 3 Cd 4d-2 0.2436852545784803 -0.1433987778294189 + 60 3 Cd 4d-1 -0.0906423176509153 -0.0819080233007127 + 61 3 Cd 4d0 -0.2395834855189979 0.3348166276624937 + 62 3 Cd 4d+1 -0.1437092182098163 0.0515493804380392 + 63 3 Cd 4d+2 -0.0466285040125680 -0.0665102896118276 + 64 3 Cd 5d-2 0.0003817876549390 -0.0021359012488369 + 65 3 Cd 5d-1 0.0008204696699648 0.0007964766687213 + 66 3 Cd 5d0 0.0007137322675816 -0.0010967757542731 + 67 3 Cd 5d+1 -0.0011884553136610 0.0005866343070857 + 68 3 Cd 5d+2 -0.0020620148486691 0.0021716112062416 + 69 3 Cd 5f-3 -0.0004957788838260 0.0009045502004771 + 70 3 Cd 5f-2 0.0007344375143738 -0.0004232907226807 + 71 3 Cd 5f-1 0.0003660329088859 -0.0009199042775541 + 72 3 Cd 5f0 -0.0009782883275317 0.0010466621026259 + 73 3 Cd 5f+1 -0.0000734633842143 -0.0007550779723623 + 74 3 Cd 5f+2 -0.0006926381643874 -0.0003832224708033 + 75 3 Cd 5f+3 0.0004046104754014 0.0001536974326151 + + 76 4 Se 2s -0.1569900530993532 -0.0016060188174409 + 77 4 Se 3s 0.0020249967917679 0.0001346615445995 + 78 4 Se 3py -0.0634034736865791 -0.0130667511351401 + 79 4 Se 3pz -0.0263082549433391 0.0066546288446394 + 80 4 Se 3px -0.0020335729113452 -0.0003657023688827 + 81 4 Se 4py -0.0006242602543311 0.0005028988746558 + 82 4 Se 4pz 0.0012739419719717 -0.0004026072945805 + 83 4 Se 4px -0.0007635209247012 0.0000604157473796 + 84 4 Se 4d-2 0.0007816492491793 0.0010664711505351 + 85 4 Se 4d-1 0.0072849437637545 0.0001576138340505 + 86 4 Se 4d0 -0.0028674650678634 -0.0025899790858869 + 87 4 Se 4d+1 0.0004649150138566 0.0003971016737487 + 88 4 Se 4d+2 -0.0076503985012341 -0.0034954273737591 + + 89 5 Se 2s 0.0312226754710732 -0.0310416285821442 + 90 5 Se 3s -0.0001692028569220 0.0003722753792626 + 91 5 Se 3py -0.0056727589217849 0.0090972450105408 + 92 5 Se 3pz -0.0220905042090851 0.0067985398213826 + 93 5 Se 3px -0.0062114410600541 -0.0016418082987316 + 94 5 Se 4py 0.0002540427571992 0.0010188793383192 + 95 5 Se 4pz -0.0015888617934464 -0.0004683672574939 + 96 5 Se 4px -0.0004755661031979 0.0002108855418656 + 97 5 Se 4d-2 -0.0043367350816001 0.0013623689959979 + 98 5 Se 4d-1 -0.0061027460278681 0.0030801970827834 + 99 5 Se 4d0 0.0033077777510536 -0.0015099804956614 + 100 5 Se 4d+1 0.0001910719738799 -0.0005636014017782 + 101 5 Se 4d+2 0.0000480114197362 -0.0006177577977834 + + 102 6 Se 2s 0.0262056981506710 -0.0177141562308014 + 103 6 Se 3s -0.0007635592695255 0.0009192932883842 + 104 6 Se 3py 0.0044380570363181 -0.0029999905985904 + 105 6 Se 3pz 0.0054781671976827 0.0032895527366775 + 106 6 Se 3px 0.0084123951212023 -0.0067658043665529 + 107 6 Se 4py -0.0001881686903185 -0.0003520928103391 + 108 6 Se 4pz -0.0005791576642537 0.0008978705167580 + 109 6 Se 4px 0.0003699622664681 -0.0006715529726085 + 110 6 Se 4d-2 -0.0016405791660116 0.0015029169535042 + 111 6 Se 4d-1 -0.0007408025597212 -0.0001450856684029 + 112 6 Se 4d0 0.0023445674000959 -0.0019017712157173 + 113 6 Se 4d+1 -0.0016122987109854 -0.0003646013476547 + 114 6 Se 4d+2 0.0004130223338455 0.0001556641935167 + + 115 7 Se 2s 0.0099093066625520 0.0019548291627252 + 116 7 Se 3s -0.0001131415161512 0.0000004836119432 + 117 7 Se 3py -0.0023059680178865 0.0013135962685097 + 118 7 Se 3pz 0.0061115088403494 0.0004478101099457 + 119 7 Se 3px -0.0033822088332758 -0.0008181009336514 + 120 7 Se 4py -0.0002137873346535 -0.0000904451396030 + 121 7 Se 4pz 0.0000242038694590 0.0002015125950872 + 122 7 Se 4px 0.0008564702086821 0.0002633627144585 + 123 7 Se 4d-2 -0.0002889402154242 0.0002075182699384 + 124 7 Se 4d-1 0.0002563312885366 -0.0002226105918514 + 125 7 Se 4d0 -0.0009301799955098 0.0001129165785131 + 126 7 Se 4d+1 0.0010729824786570 0.0001954375288691 + 127 7 Se 4d+2 -0.0010206292843450 -0.0000256470407246 + + 128 8 Cd 2s -0.0071362171647502 -0.0009450559564035 + 129 8 Cd 3s -0.0001484405562905 -0.0002226524053868 + 130 8 Cd 3py -0.0006081946576282 0.0019781813461612 + 131 8 Cd 3pz 0.0030985432345653 0.0008532071659916 + 132 8 Cd 3px -0.0007348182282994 -0.0017307745965447 + 133 8 Cd 4py -0.0010949496112396 0.0007845137096510 + 134 8 Cd 4pz 0.0006871398198354 0.0001482303226304 + 135 8 Cd 4px 0.0001551958960708 -0.0003092717192577 + 136 8 Cd 4d-2 0.0132913542093833 0.0063831688045994 + 137 8 Cd 4d-1 -0.0232972116462798 -0.0081014556067382 + 138 8 Cd 4d0 -0.0179218209626053 -0.0049376735365682 + 139 8 Cd 4d+1 -0.0135116584020179 0.0066362470104589 + 140 8 Cd 4d+2 -0.0039485298049521 -0.0001625459171641 + 141 8 Cd 5d-2 -0.0004069468674730 0.0016044288855922 + 142 8 Cd 5d-1 0.0004694936713928 -0.0004958190515609 + 143 8 Cd 5d0 0.0002328588576128 -0.0004437579932198 + 144 8 Cd 5d+1 -0.0010658774552218 0.0012256141909737 + 145 8 Cd 5d+2 -0.0016669781639448 0.0004976351409896 + 146 8 Cd 5f-3 0.0000611349712609 0.0001238497195708 + 147 8 Cd 5f-2 0.0004459543576831 -0.0002529376237031 + 148 8 Cd 5f-1 0.0000611994902796 0.0002470849383384 + 149 8 Cd 5f0 -0.0000190425904260 -0.0000086636280059 + 150 8 Cd 5f+1 0.0006622067528453 -0.0004786216661905 + 151 8 Cd 5f+2 -0.0001687017444730 -0.0000886105709737 + 152 8 Cd 5f+3 -0.0000682877862140 0.0002803294492269 + + 153 9 Cd 2s -0.0043183967783631 -0.0048360537831028 + 154 9 Cd 3s 0.0002973464122487 -0.0004259685003726 + 155 9 Cd 3py -0.0047992524235806 0.0007760846704156 + 156 9 Cd 3pz -0.0002097291108954 0.0043204091428678 + 157 9 Cd 3px 0.0001203946992531 -0.0016811451987240 + 158 9 Cd 4py -0.0003480194875825 0.0000199563360535 + 159 9 Cd 4pz -0.0006912616275720 0.0006518329093677 + 160 9 Cd 4px 0.0009739136484413 -0.0007279637841311 + 161 9 Cd 4d-2 -0.0060888917429567 0.0025804782670142 + 162 9 Cd 4d-1 0.0294279877213056 -0.0116761010036249 + 163 9 Cd 4d0 0.0122994435490634 -0.0148651670569875 + 164 9 Cd 4d+1 0.0079067948735910 0.0022714367244877 + 165 9 Cd 4d+2 0.0074594024382028 0.0030420214769981 + 166 9 Cd 5d-2 0.0001409964682125 -0.0002378609655345 + 167 9 Cd 5d-1 0.0021034992032823 -0.0005906905118745 + 168 9 Cd 5d0 0.0016859363442959 -0.0019874630906851 + 169 9 Cd 5d+1 -0.0005024059512245 0.0003667102048732 + 170 9 Cd 5d+2 0.0014564838194458 0.0003306453532244 + 171 9 Cd 5f-3 0.0004301370179066 -0.0002141293051446 + 172 9 Cd 5f-2 -0.0001477686015473 0.0000860029964914 + 173 9 Cd 5f-1 -0.0003140811313802 0.0003450251780411 + 174 9 Cd 5f0 -0.0006432803567397 0.0003728749253119 + 175 9 Cd 5f+1 -0.0000112353891630 0.0002154451007429 + 176 9 Cd 5f+2 -0.0007178349150642 0.0002083669562511 + 177 9 Cd 5f+3 0.0002093571001600 -0.0003459511102618 + + 178 10 Se 2s -0.0070398762366594 -0.0049273405719807 + 179 10 Se 3s 0.0002394056241339 -0.0000420342364223 + 180 10 Se 3py 0.0033248231373752 -0.0005914752943533 + 181 10 Se 3pz -0.0028990037425867 -0.0009404347097275 + 182 10 Se 3px -0.0001523540384275 0.0020057828799574 + 183 10 Se 4py -0.0001046740232849 0.0002189974656973 + 184 10 Se 4pz 0.0000216278067882 -0.0004374432336045 + 185 10 Se 4px 0.0003392155545388 0.0001066518681758 + 186 10 Se 4d-2 0.0000120246184657 -0.0000660681982796 + 187 10 Se 4d-1 -0.0004701451950089 0.0000433276591327 + 188 10 Se 4d0 0.0003411339271578 -0.0000280555212708 + 189 10 Se 4d+1 -0.0000343172662407 -0.0000341515719857 + 190 10 Se 4d+2 -0.0000995432966528 0.0001031125443382 + + 191 11 Se 2s -0.0557148505769684 0.0407618193818050 + 192 11 Se 3s 0.0012958176803448 -0.0010316912553904 + 193 11 Se 3py 0.0228894159541923 -0.0179843002023205 + 194 11 Se 3pz 0.0005611952887200 0.0047119607821601 + 195 11 Se 3px 0.0209624114888305 -0.0142397906345494 + 196 11 Se 4py 0.0000539744769791 0.0002844476550985 + 197 11 Se 4pz -0.0000282721534114 0.0003338994044766 + 198 11 Se 4px -0.0000347088918236 0.0004553961688608 + 199 11 Se 4d-2 0.0045969980529042 -0.0034570540787299 + 200 11 Se 4d-1 -0.0009112898743185 0.0019096677757697 + 201 11 Se 4d0 -0.0031977960409694 0.0022397509862486 + 202 11 Se 4d+1 -0.0003241582075662 0.0012976045839596 + 203 11 Se 4d+2 -0.0002969920556157 0.0009339535959560 + + 204 12 Cd 2s 0.0003094668224291 -0.0017357856904207 + 205 12 Cd 3s -0.0001957234387961 0.0004376973329528 + 206 12 Cd 3py -0.0025497232114410 -0.0000581709621012 + 207 12 Cd 3pz -0.0004468035845852 0.0001468405073048 + 208 12 Cd 3px -0.0008889884264049 0.0019504656484290 + 209 12 Cd 4py 0.0011254453104503 -0.0008754636706817 + 210 12 Cd 4pz -0.0003390952351877 0.0000260635923551 + 211 12 Cd 4px -0.0003269728018135 0.0006928366803434 + 212 12 Cd 4d-2 -0.0313583980728259 0.0083170697927764 + 213 12 Cd 4d-1 0.0153745562949218 0.0027953728686762 + 214 12 Cd 4d0 -0.0083861975987909 0.0076885075935257 + 215 12 Cd 4d+1 0.0030926432223335 -0.0039704097020197 + 216 12 Cd 4d+2 -0.0219592688382228 0.0306604018384626 + 217 12 Cd 5d-2 -0.0007595270346419 0.0004650875036573 + 218 12 Cd 5d-1 -0.0006088185384257 0.0004314975783547 + 219 12 Cd 5d0 0.0003058824921497 -0.0005386822718026 + 220 12 Cd 5d+1 -0.0006483765551619 -0.0001825489470239 + 221 12 Cd 5d+2 -0.0007612029852045 0.0011283200882229 + 222 12 Cd 5f-3 -0.0002871122685572 0.0002298775414495 + 223 12 Cd 5f-2 -0.0002457971771075 0.0002498775696132 + 224 12 Cd 5f-1 -0.0000806170775741 0.0001391437937309 + 225 12 Cd 5f0 -0.0000761252482885 0.0001409977351702 + 226 12 Cd 5f+1 0.0003858186387877 -0.0002722941492729 + 227 12 Cd 5f+2 0.0000017815079400 -0.0001035176996882 + 228 12 Cd 5f+3 0.0000824127667316 -0.0001492918393917 + + 229 13 Cd 2s 0.0301623618435207 0.0202006190898703 + 230 13 Cd 3s 0.0012248785311475 0.0006563958967426 + 231 13 Cd 3py -0.0089258779449812 -0.0114587028616892 + 232 13 Cd 3pz 0.0066891992227777 -0.0018262769670087 + 233 13 Cd 3px 0.0081153460857923 0.0019011692832922 + 234 13 Cd 4py -0.0004399496852648 -0.0008067235774096 + 235 13 Cd 4pz -0.0016759764244146 0.0006738874157734 + 236 13 Cd 4px -0.0021994369919782 -0.0001380294251593 + 237 13 Cd 4d-2 -0.1238979559687562 -0.0310590645395632 + 238 13 Cd 4d-1 0.0443098388885092 0.0259553780438987 + 239 13 Cd 4d0 -0.1077778708375551 0.0341906002895961 + 240 13 Cd 4d+1 0.1662771704915131 0.0129897509675118 + 241 13 Cd 4d+2 0.0726538414937685 -0.0765181223174892 + 242 13 Cd 5d-2 -0.0047478031529405 -0.0007352702302502 + 243 13 Cd 5d-1 0.0004947863391686 -0.0007492139508054 + 244 13 Cd 5d0 -0.0050380895143304 -0.0014260992498070 + 245 13 Cd 5d+1 0.0007917055058474 0.0000961627458994 + 246 13 Cd 5d+2 -0.0006282865868951 -0.0042945984773251 + 247 13 Cd 5f-3 0.0002271673625211 0.0004805727935952 + 248 13 Cd 5f-2 -0.0002605876897371 -0.0004436855690504 + 249 13 Cd 5f-1 0.0003281861952942 0.0001919352178654 + 250 13 Cd 5f0 0.0000341405459079 0.0004577870936022 + 251 13 Cd 5f+1 0.0000134100959585 0.0001401570626238 + 252 13 Cd 5f+2 0.0002804149353395 -0.0009291522513215 + 253 13 Cd 5f+3 -0.0005252766130237 0.0003164285271386 + + 254 14 Cd 2s 0.0069093674995751 -0.0019609710668225 + 255 14 Cd 3s -0.0012320101621012 -0.0001928147897064 + 256 14 Cd 3py -0.0018390132740014 0.0008662078389111 + 257 14 Cd 3pz -0.0000262388788183 0.0003748058795296 + 258 14 Cd 3px 0.0016225701686407 -0.0004935934410615 + 259 14 Cd 4py -0.0000277426200738 0.0000719100531616 + 260 14 Cd 4pz 0.0008008697040126 0.0000865077955764 + 261 14 Cd 4px -0.0001434367165797 0.0000033449285093 + 262 14 Cd 4d-2 -0.0147718051693926 0.0019055101046967 + 263 14 Cd 4d-1 0.0019695157213074 0.0011736830285620 + 264 14 Cd 4d0 0.0072180516081636 -0.0010869641072793 + 265 14 Cd 4d+1 0.0006731687424337 0.0018708782284358 + 266 14 Cd 4d+2 -0.0025185387445716 0.0013352179149742 + 267 14 Cd 5d-2 -0.0002001189570552 0.0001122995865860 + 268 14 Cd 5d-1 -0.0000522643432874 -0.0001736846198604 + 269 14 Cd 5d0 -0.0002742321560260 -0.0000445035880989 + 270 14 Cd 5d+1 -0.0006049904356813 -0.0001792972268309 + 271 14 Cd 5d+2 -0.0007189899671011 0.0000360137063240 + 272 14 Cd 5f-3 0.0003725863919045 0.0000750754886396 + 273 14 Cd 5f-2 0.0001244417892393 0.0000363940850283 + 274 14 Cd 5f-1 -0.0003770079909378 0.0001200871827608 + 275 14 Cd 5f0 0.0001769133375474 0.0000896615074787 + 276 14 Cd 5f+1 0.0003813292700979 0.0000457607618909 + 277 14 Cd 5f+2 -0.0000452663359167 -0.0000450139733529 + 278 14 Cd 5f+3 -0.0000151479558642 -0.0000968245473669 + + 279 15 Se 2s -0.0050886500848384 0.0003680355821492 + 280 15 Se 3s -0.0001325033241639 -0.0001935107498245 + 281 15 Se 3py -0.0044331829128710 0.0015313013856687 + 282 15 Se 3pz -0.0114369970627307 0.0001182520849236 + 283 15 Se 3px -0.0010083335413515 0.0048414530765599 + 284 15 Se 4py 0.0004506931408980 -0.0003006130615366 + 285 15 Se 4pz 0.0006419540694759 0.0003428067987336 + 286 15 Se 4px -0.0002301174816972 0.0000511124614478 + 287 15 Se 4d-2 -0.0000226995610573 -0.0006397316545935 + 288 15 Se 4d-1 0.0021052725268955 -0.0001651200302610 + 289 15 Se 4d0 0.0002839073267949 0.0000315944849858 + 290 15 Se 4d+1 -0.0014910164289468 -0.0002676292899835 + 291 15 Se 4d+2 -0.0005824563053473 0.0008940542462557 + + 292 16 Se 2s 0.0966495777054294 -0.0695825244472268 + 293 16 Se 3s -0.0018786978112877 0.0012389541355599 + 294 16 Se 3py -0.0001534435943673 -0.0159215797794453 + 295 16 Se 3pz -0.0269391329533275 0.0161052011863117 + 296 16 Se 3px 0.0032574608301169 0.0171384891096326 + 297 16 Se 4py 0.0006656433997307 0.0000043528871275 + 298 16 Se 4pz -0.0020456849595069 -0.0003978052859268 + 299 16 Se 4px -0.0016194371060430 -0.0005684838505950 + 300 16 Se 4d-2 -0.0021034360525125 -0.0023269611798702 + 301 16 Se 4d-1 -0.0003211392971110 -0.0026307764728722 + 302 16 Se 4d0 -0.0037617165589939 -0.0000003218271750 + 303 16 Se 4d+1 -0.0019226892492284 0.0043158370471863 + 304 16 Se 4d+2 -0.0002817571924007 0.0018262581478364 + + 305 17 Cd 2s -0.0127145684894789 0.0109182749316884 + 306 17 Cd 3s -0.0006073915329305 -0.0005319423702223 + 307 17 Cd 3py -0.0033568379732115 0.0005891068254409 + 308 17 Cd 3pz 0.0002632584328257 0.0023359582010145 + 309 17 Cd 3px -0.0082244365146219 0.0043197234738903 + 310 17 Cd 4py 0.0006050305696082 -0.0015477395593267 + 311 17 Cd 4pz 0.0001289419778526 0.0000257393195688 + 312 17 Cd 4px -0.0003297240354713 -0.0004385056586744 + 313 17 Cd 4d-2 -0.1215154408236358 0.1010227143703587 + 314 17 Cd 4d-1 0.0158740371956131 0.0026879878247044 + 315 17 Cd 4d0 0.0896136677500027 -0.0308566379214151 + 316 17 Cd 4d+1 0.0412166043235170 0.0201007437405667 + 317 17 Cd 4d+2 -0.0191987654963925 -0.0095173143645688 + 318 17 Cd 5d-2 -0.0051841636063452 0.0027679941111595 + 319 17 Cd 5d-1 -0.0008613833928086 0.0003032584903169 + 320 17 Cd 5d0 0.0021434118897869 0.0002333989330490 + 321 17 Cd 5d+1 -0.0009842040998040 0.0006236819717064 + 322 17 Cd 5d+2 0.0003826129347174 0.0001136130277743 + 323 17 Cd 5f-3 0.0003312014525842 -0.0004348411510131 + 324 17 Cd 5f-2 -0.0002391846772447 0.0003981069302289 + 325 17 Cd 5f-1 -0.0004924686098370 0.0004315348080985 + 326 17 Cd 5f0 0.0004733047316600 0.0000121008725621 + 327 17 Cd 5f+1 0.0000526053118959 0.0000748567614218 + 328 17 Cd 5f+2 -0.0001555023948437 0.0001583466054540 + 329 17 Cd 5f+3 -0.0001198732568100 0.0004723419687583 + + 330 18 Cd 2s 0.0059217461039210 -0.0026962785749030 + 331 18 Cd 3s -0.0000469935384269 -0.0007896419947156 + 332 18 Cd 3py 0.0005072418838018 -0.0014715651112010 + 333 18 Cd 3pz 0.0056178318617344 -0.0025590734336906 + 334 18 Cd 3px 0.0001474205779633 -0.0002245648777776 + 335 18 Cd 4py 0.0004295374381967 -0.0010406291477140 + 336 18 Cd 4pz -0.0005939925915375 0.0005758124336028 + 337 18 Cd 4px -0.0003278909327297 -0.0000422826380929 + 338 18 Cd 4d-2 0.0137331431011872 -0.0065663503966356 + 339 18 Cd 4d-1 0.0028405264465921 0.0058329139377846 + 340 18 Cd 4d0 0.0217303472578958 -0.0052641747757647 + 341 18 Cd 4d+1 -0.0220900527231713 0.0220763519825423 + 342 18 Cd 4d+2 -0.0024743371896561 0.0005470031934762 + 343 18 Cd 5d-2 -0.0001517590494595 -0.0001056975050307 + 344 18 Cd 5d-1 0.0016586710990370 -0.0011156162115707 + 345 18 Cd 5d0 0.0011782117628951 0.0003935857964456 + 346 18 Cd 5d+1 0.0002802071066420 -0.0005741024388614 + 347 18 Cd 5d+2 -0.0006736204535866 0.0008869279265627 + 348 18 Cd 5f-3 -0.0001874109348775 0.0001862798209753 + 349 18 Cd 5f-2 -0.0000258383139834 -0.0001306213545353 + 350 18 Cd 5f-1 0.0006107431083945 -0.0001707606333847 + 351 18 Cd 5f0 -0.0004660801627154 0.0006513980325139 + 352 18 Cd 5f+1 0.0004103712899272 -0.0002366428113807 + 353 18 Cd 5f+2 -0.0003781636739932 0.0001004026489049 + 354 18 Cd 5f+3 -0.0001234253452941 0.0001552582635606 + + 355 19 Se 2s 0.0219012682769037 -0.0163241360110110 + 356 19 Se 3s -0.0003764217873759 0.0002545775104553 + 357 19 Se 3py -0.0146263246951954 0.0108928271236353 + 358 19 Se 3pz -0.0003270733389030 -0.0012146843229844 + 359 19 Se 3px -0.0009630071211475 0.0006872528645260 + 360 19 Se 4py 0.0000678507595752 -0.0000960202623068 + 361 19 Se 4pz -0.0001235219793173 0.0001766020109370 + 362 19 Se 4px -0.0007295715760456 0.0006666698869659 + 363 19 Se 4d-2 -0.0012994091482867 0.0009792999767638 + 364 19 Se 4d-1 -0.0005214272637111 0.0000731943178380 + 365 19 Se 4d0 0.0009010015475553 -0.0007396320931805 + 366 19 Se 4d+1 0.0001972030506335 -0.0004238994563458 + 367 19 Se 4d+2 0.0019339397849921 -0.0014795344432589 + + 368 20 Se 2s 0.0300655796627312 0.0166318598433679 + 369 20 Se 3s -0.0008378366710827 -0.0009792396042361 + 370 20 Se 3py 0.0050781724987149 -0.0044011021668002 + 371 20 Se 3pz 0.0005033211239395 0.0006498432921900 + 372 20 Se 3px -0.0085662219190943 -0.0021489343466316 + 373 20 Se 4py -0.0011281076467459 0.0010508500673503 + 374 20 Se 4pz 0.0005564454042050 0.0002812322831776 + 375 20 Se 4px 0.0012850005022721 -0.0000663533191903 + 376 20 Se 4d-2 0.0000590014808443 -0.0004767338018016 + 377 20 Se 4d-1 0.0002319650573448 0.0009262962130018 + 378 20 Se 4d0 0.0012320115359804 -0.0002675366476546 + 379 20 Se 4d+1 -0.0000721568638404 0.0005169876227845 + 380 20 Se 4d+2 0.0006456261600355 -0.0004326935558401 + + 381 21 Se 2s -0.0007145567201281 0.0001447090046103 + 382 21 Se 3s 0.0000920947265418 -0.0000758546542549 + 383 21 Se 3py 0.0002090839586347 -0.0007200498417767 + 384 21 Se 3pz 0.0005338560480923 -0.0000659686762872 + 385 21 Se 3px 0.0009541518724930 -0.0013160343818592 + 386 21 Se 4py -0.0001456307285870 -0.0001864104405626 + 387 21 Se 4pz 0.0005697655141813 0.0001642240584820 + 388 21 Se 4px -0.0001593457960628 -0.0003819262301430 + 389 21 Se 4d-2 -0.0000549457616476 0.0000153003409314 + 390 21 Se 4d-1 -0.0001755916724941 -0.0000125892762409 + 391 21 Se 4d0 -0.0001743688189980 0.0000984997498754 + 392 21 Se 4d+1 -0.0003445750285621 0.0003573043658237 + 393 21 Se 4d+2 0.0003963895363997 -0.0001484278393495 + + 394 22 Cd 2s -0.0034987008090677 0.0034284395661670 + 395 22 Cd 3s 0.0001705957065029 -0.0003715107688383 + 396 22 Cd 3py -0.0025470554230089 0.0025424016072996 + 397 22 Cd 3pz 0.0032254612126161 0.0008007680481813 + 398 22 Cd 3px -0.0040538924532648 0.0015337356465355 + 399 22 Cd 4py -0.0005030683533499 0.0003323555327399 + 400 22 Cd 4pz 0.0008322298126167 0.0001095406111143 + 401 22 Cd 4px -0.0003772874503107 -0.0014706196786998 + 402 22 Cd 4d-2 -0.0128698536056938 0.0035520324347993 + 403 22 Cd 4d-1 0.0246724959626853 0.0029603335200335 + 404 22 Cd 4d0 0.0180751037409470 -0.0259445716781252 + 405 22 Cd 4d+1 0.0371135243598217 -0.0151829775777060 + 406 22 Cd 4d+2 0.0006699139297545 0.0347955444702324 + 407 22 Cd 5d-2 -0.0012696046919962 0.0015911845258713 + 408 22 Cd 5d-1 -0.0005362764557535 0.0007538320776501 + 409 22 Cd 5d0 0.0017195831574316 0.0009116666253391 + 410 22 Cd 5d+1 0.0023391187805320 0.0002796657529788 + 411 22 Cd 5d+2 -0.0026824245458657 -0.0002827844211929 + 412 22 Cd 5f-3 -0.0001319015002357 0.0006981693298135 + 413 22 Cd 5f-2 -0.0004251426393811 0.0000484181690932 + 414 22 Cd 5f-1 0.0002158454072973 -0.0002262734609264 + 415 22 Cd 5f0 -0.0002652897985960 -0.0000829191222309 + 416 22 Cd 5f+1 0.0011060153517910 0.0002186033093150 + 417 22 Cd 5f+2 -0.0000024382647443 0.0003491129626629 + 418 22 Cd 5f+3 -0.0007033531186298 -0.0003271654470569 + + 419 23 Se 2s -0.0196217789986964 0.0197539921095470 + 420 23 Se 3s 0.0000539331962817 -0.0003377287304413 + 421 23 Se 3py 0.0007393992708668 0.0012718893903092 + 422 23 Se 3pz 0.0029188869472839 -0.0016241965453414 + 423 23 Se 3px 0.0058845987110708 -0.0080459912045791 + 424 23 Se 4py 0.0001953098691913 -0.0000831047352320 + 425 23 Se 4pz 0.0009365186293977 -0.0005141022600592 + 426 23 Se 4px -0.0001626749999709 0.0003135634887115 + 427 23 Se 4d-2 -0.0003063064961112 0.0005787959387719 + 428 23 Se 4d-1 0.0002889809296605 -0.0000588314315340 + 429 23 Se 4d0 0.0002356386573097 0.0004912631521776 + 430 23 Se 4d+1 -0.0000673943131692 -0.0005176488300804 + 431 23 Se 4d+2 0.0008259928817596 -0.0009341899856028 + + 432 24 Se 2s -0.0035938068376672 -0.0024004402170522 + 433 24 Se 3s 0.0001936740377244 -0.0000455742247673 + 434 24 Se 3py 0.0010615326253169 0.0000915582364191 + 435 24 Se 3pz -0.0013741722690614 0.0001217520358169 + 436 24 Se 3px 0.0017886721660421 0.0009878943663784 + 437 24 Se 4py -0.0000218687968333 0.0000844138304685 + 438 24 Se 4pz 0.0002545492097324 -0.0000613684132041 + 439 24 Se 4px -0.0000791532868954 0.0001233465856014 + 440 24 Se 4d-2 0.0003454371452111 -0.0000360888067691 + 441 24 Se 4d-1 -0.0000164389155241 -0.0000932527691110 + 442 24 Se 4d0 -0.0001904144809077 0.0000946936791202 + 443 24 Se 4d+1 -0.0004102498005359 0.0001162567531791 + 444 24 Se 4d+2 0.0003020563834472 0.0000297034980808 + + 445 25 Cd 2s -0.0003559996385175 -0.0013293217496476 + 446 25 Cd 3s -0.0006136197135342 0.0003347150550552 + 447 25 Cd 3py -0.0008651408913259 -0.0008122141918757 + 448 25 Cd 3pz -0.0025461467683779 0.0012551947221046 + 449 25 Cd 3px -0.0020864217055822 -0.0001599517962122 + 450 25 Cd 4py -0.0005635754079794 0.0001342782389179 + 451 25 Cd 4pz -0.0002581161921624 0.0004117781469627 + 452 25 Cd 4px -0.0007459242853335 -0.0002958985160865 + 453 25 Cd 4d-2 -0.0106253231925684 0.0051148528835648 + 454 25 Cd 4d-1 -0.0280397348293333 0.0130180753732801 + 455 25 Cd 4d0 0.0095021003680202 -0.0114144271073412 + 456 25 Cd 4d+1 -0.0307155609546101 -0.0072089819538811 + 457 25 Cd 4d+2 -0.0008103605764123 -0.0008294163882281 + 458 25 Cd 5d-2 -0.0005283163255564 -0.0000236196682324 + 459 25 Cd 5d-1 -0.0003561750577353 0.0001690843679165 + 460 25 Cd 5d0 0.0008534070097713 -0.0001814041893720 + 461 25 Cd 5d+1 -0.0024222471510111 0.0013096329290235 + 462 25 Cd 5d+2 0.0001220618595034 -0.0009616367328213 + 463 25 Cd 5f-3 0.0000840015047031 -0.0003021315869954 + 464 25 Cd 5f-2 -0.0000546979834652 0.0004310202705151 + 465 25 Cd 5f-1 0.0000102404548979 -0.0000924182792347 + 466 25 Cd 5f0 0.0004561643332970 -0.0003061606875829 + 467 25 Cd 5f+1 0.0003548376584923 -0.0002683429091145 + 468 25 Cd 5f+2 -0.0005205515397409 0.0005357832206876 + 469 25 Cd 5f+3 0.0000897218632146 -0.0005265823191020 + + 470 26 Cd 2s 0.0007157263249107 -0.0006088825546683 + 471 26 Cd 3s 0.0001326781102011 0.0000141897954424 + 472 26 Cd 3py 0.0012636485286995 -0.0012520660117487 + 473 26 Cd 3pz -0.0002877597437583 0.0001142416005186 + 474 26 Cd 3px 0.0008679614202606 -0.0003868440016230 + 475 26 Cd 4py 0.0004218313714052 -0.0002954458082733 + 476 26 Cd 4pz 0.0000520630278512 -0.0000218251538609 + 477 26 Cd 4px 0.0004153197171570 0.0000145976775076 + 478 26 Cd 4d-2 0.0042496832736940 -0.0014913898829101 + 479 26 Cd 4d-1 -0.0003019036332717 0.0010948818093116 + 480 26 Cd 4d0 -0.0006073251225182 -0.0005024128829314 + 481 26 Cd 4d+1 -0.0018132264391035 0.0015410069257472 + 482 26 Cd 4d+2 -0.0018543371583738 -0.0009681763807435 + 483 26 Cd 5d-2 0.0008232228414759 -0.0007469882259727 + 484 26 Cd 5d-1 -0.0002150816729526 0.0002186244000100 + 485 26 Cd 5d0 -0.0003481587797285 0.0000648118306857 + 486 26 Cd 5d+1 -0.0003024302075089 0.0001276282785339 + 487 26 Cd 5d+2 0.0006946778159812 0.0000205159844485 + 488 26 Cd 5f-3 0.0001808829768817 -0.0001868983148375 + 489 26 Cd 5f-2 -0.0000771515634285 0.0000685321096263 + 490 26 Cd 5f-1 -0.0001099894481439 0.0000113946263478 + 491 26 Cd 5f0 0.0001429926725210 -0.0000336933606060 + 492 26 Cd 5f+1 -0.0001257682457241 -0.0000612768560080 + 493 26 Cd 5f+2 -0.0001217565789477 0.0000406478539818 + 494 26 Cd 5f+3 0.0001093436206672 0.0000330531800172 + + 77 78 + -0.4392192837441551 -0.4375421040351810 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0152307749243119 -0.0274356424164911 + 2 1 Cd 3s -0.0000677762501451 -0.0017916325568589 + 3 1 Cd 3py -0.0015577169801813 0.0152044769950748 + 4 1 Cd 3pz -0.0005459789456572 -0.0038847371368903 + 5 1 Cd 3px 0.0020906156302871 0.0035281764962465 + 6 1 Cd 4py 0.0020635856521078 -0.0006775914784862 + 7 1 Cd 4pz -0.0003669882822823 -0.0011991669593177 + 8 1 Cd 4px 0.0004513965268455 0.0000923854015266 + 9 1 Cd 4d-2 -0.2666074061710080 -0.0264248976121836 + 10 1 Cd 4d-1 0.1489592584176321 0.0226704935546017 + 11 1 Cd 4d0 -0.1746150703799366 0.3004009255670163 + 12 1 Cd 4d+1 0.6712497400631003 0.4560246554405206 + 13 1 Cd 4d+2 -0.1580631063918329 0.4932234664383848 + 14 1 Cd 5d-2 -0.0006880294763979 0.0000912672926438 + 15 1 Cd 5d-1 0.0005001624693367 -0.0039613709014094 + 16 1 Cd 5d0 -0.0007856011679463 0.0088282303354989 + 17 1 Cd 5d+1 0.0020867535038622 0.0025291779212480 + 18 1 Cd 5d+2 -0.0026401718923302 0.0057068556176858 + 19 1 Cd 5f-3 -0.0000299923968175 0.0002961687206198 + 20 1 Cd 5f-2 0.0005395176351062 0.0020694237316084 + 21 1 Cd 5f-1 -0.0002099795625019 0.0017170821800557 + 22 1 Cd 5f0 -0.0000509558454052 0.0004115399319064 + 23 1 Cd 5f+1 -0.0002003406038035 -0.0012564771026738 + 24 1 Cd 5f+2 -0.0005412210679081 -0.0000155848638178 + 25 1 Cd 5f+3 -0.0003909697526886 -0.0004744066133332 + + 26 2 Cd 2s 0.0024529001212094 -0.0081883302982932 + 27 2 Cd 3s 0.0011857060106443 -0.0017474460294647 + 28 2 Cd 3py 0.0004547973648959 0.0007466228653483 + 29 2 Cd 3pz -0.0072585642662237 0.0084342231584989 + 30 2 Cd 3px 0.0019802219579006 -0.0019176365400061 + 31 2 Cd 4py -0.0012469731869457 0.0017549683461712 + 32 2 Cd 4pz -0.0000306304030941 0.0007294596568955 + 33 2 Cd 4px -0.0001987627332461 0.0006116456394197 + 34 2 Cd 4d-2 0.0545611650857217 -0.0263325596722082 + 35 2 Cd 4d-1 0.0272524401607401 -0.0017486922439862 + 36 2 Cd 4d0 0.0500286785288902 -0.0325017473825419 + 37 2 Cd 4d+1 -0.0615494084313452 0.0590807260402299 + 38 2 Cd 4d+2 -0.0019052864386713 -0.0163532380405607 + 39 2 Cd 5d-2 0.0028810209196237 -0.0021920702168544 + 40 2 Cd 5d-1 0.0016923470464845 -0.0010550223586907 + 41 2 Cd 5d0 0.0032561183044361 -0.0029982250813303 + 42 2 Cd 5d+1 -0.0023834562375928 0.0022439495921033 + 43 2 Cd 5d+2 0.0011140601077937 -0.0001278843761538 + 44 2 Cd 5f-3 -0.0005114513167951 0.0008484855900188 + 45 2 Cd 5f-2 -0.0002281876126951 -0.0007883533384928 + 46 2 Cd 5f-1 -0.0005283604356462 0.0004356710982185 + 47 2 Cd 5f0 -0.0013294821007983 0.0005871364779223 + 48 2 Cd 5f+1 0.0002327188682777 -0.0004185762235368 + 49 2 Cd 5f+2 -0.0001406200651869 -0.0000221512460740 + 50 2 Cd 5f+3 -0.0000360451492545 0.0002981579431402 + + 51 3 Cd 2s 0.0244188386663797 -0.0211163208375570 + 52 3 Cd 3s -0.0013717240370769 0.0011257479003992 + 53 3 Cd 3py -0.0001593361758568 0.0077309038456488 + 54 3 Cd 3pz -0.0192574560253532 0.0180742711058314 + 55 3 Cd 3px 0.0077113336599096 -0.0162317536750725 + 56 3 Cd 4py -0.0034050826157678 0.0009149720281816 + 57 3 Cd 4pz -0.0019590392738206 0.0018123161726613 + 58 3 Cd 4px -0.0003545584940298 -0.0019058381922160 + 59 3 Cd 4d-2 0.1706576685414234 0.1563809515708420 + 60 3 Cd 4d-1 -0.1725654797981794 -0.2909505266594510 + 61 3 Cd 4d0 0.0915198055679782 -0.0973679686179300 + 62 3 Cd 4d+1 -0.5016199559809211 0.4330658428788412 + 63 3 Cd 4d+2 -0.0693849241857819 -0.1938151963241722 + 64 3 Cd 5d-2 0.0012445366458805 -0.0020903827888743 + 65 3 Cd 5d-1 0.0003373728959573 -0.0031662287372088 + 66 3 Cd 5d0 0.0007861360330972 -0.0035488610137800 + 67 3 Cd 5d+1 -0.0028157395986741 0.0035683064347922 + 68 3 Cd 5d+2 -0.0004631839150235 -0.0034614180073801 + 69 3 Cd 5f-3 -0.0011924022835505 -0.0006863573618583 + 70 3 Cd 5f-2 0.0006157231212696 0.0010338176233531 + 71 3 Cd 5f-1 -0.0004561331625126 0.0009703990802658 + 72 3 Cd 5f0 -0.0011464359576691 0.0006101705512804 + 73 3 Cd 5f+1 -0.0003346848536092 0.0005382293523623 + 74 3 Cd 5f+2 -0.0002780602261775 -0.0002898320044442 + 75 3 Cd 5f+3 -0.0001906613403235 0.0016111353496025 + + 76 4 Se 2s -0.0541540522610398 0.0538943299858752 + 77 4 Se 3s 0.0006298706419167 -0.0012805643186233 + 78 4 Se 3py -0.0126519220349780 0.0099125718114784 + 79 4 Se 3pz -0.0132900285312318 0.0280789199349116 + 80 4 Se 3px -0.0004630066796160 0.0084775964564297 + 81 4 Se 4py 0.0002559793184643 0.0013132085491002 + 82 4 Se 4pz -0.0008726110390317 -0.0002655371512568 + 83 4 Se 4px -0.0008314774594876 -0.0013683312960395 + 84 4 Se 4d-2 -0.0022443802262755 -0.0032284294702714 + 85 4 Se 4d-1 0.0023302815373405 -0.0046643665882120 + 86 4 Se 4d0 0.0005541717164633 -0.0045440092396362 + 87 4 Se 4d+1 -0.0000396835333005 -0.0011631420224034 + 88 4 Se 4d+2 -0.0003927537530669 0.0001901960570095 + + 89 5 Se 2s -0.1227946412459114 0.2566990187945600 + 90 5 Se 3s 0.0014968333848621 -0.0029825565589836 + 91 5 Se 3py 0.0304611978136664 -0.0519977764836232 + 92 5 Se 3pz 0.0103032439528984 -0.0273137415493897 + 93 5 Se 3px -0.0052404696872267 0.0275443307326689 + 94 5 Se 4py 0.0024933935965373 -0.0015095778922725 + 95 5 Se 4pz -0.0014332519486198 -0.0007672535876583 + 96 5 Se 4px 0.0013541934401778 -0.0007975547148712 + 97 5 Se 4d-2 0.0005648243022695 0.0018473390039612 + 98 5 Se 4d-1 0.0007118256700547 0.0009369649988558 + 99 5 Se 4d0 -0.0009146930458492 0.0016726410654543 + 100 5 Se 4d+1 -0.0025446023182047 0.0059038725329517 + 101 5 Se 4d+2 -0.0005922307153167 0.0036591850465985 + + 102 6 Se 2s 0.0708134080970865 -0.0402691808616972 + 103 6 Se 3s -0.0014803761363383 0.0009438781702332 + 104 6 Se 3py 0.0132504724305695 -0.0059538334781533 + 105 6 Se 3pz 0.0317747984680091 -0.0232104709689820 + 106 6 Se 3px 0.0168597944052928 -0.0031832840102670 + 107 6 Se 4py 0.0000727001069935 -0.0012561404542240 + 108 6 Se 4pz 0.0019337565834429 -0.0016638145651979 + 109 6 Se 4px 0.0003530004988879 -0.0000636688630357 + 110 6 Se 4d-2 -0.0022842764615446 0.0011988650332144 + 111 6 Se 4d-1 -0.0034511551578102 0.0014052101443664 + 112 6 Se 4d0 -0.0005374915162933 0.0012098893429538 + 113 6 Se 4d+1 -0.0051498077059459 0.0026978157483452 + 114 6 Se 4d+2 0.0005465567386822 -0.0015828005543716 + + 115 7 Se 2s -0.0086391895746448 0.0071084213166786 + 116 7 Se 3s 0.0003330765361071 -0.0004067017850776 + 117 7 Se 3py -0.0056384530775376 0.0054001363022587 + 118 7 Se 3pz -0.0026978044766285 0.0017892886342780 + 119 7 Se 3px 0.0044331499133225 -0.0025196376394115 + 120 7 Se 4py 0.0000218259550541 -0.0004136932670492 + 121 7 Se 4pz 0.0000366912269682 0.0001754405406077 + 122 7 Se 4px -0.0001037879100558 0.0000993986561720 + 123 7 Se 4d-2 -0.0007980882557991 0.0005851479047988 + 124 7 Se 4d-1 0.0009071231416716 -0.0008882844865375 + 125 7 Se 4d0 -0.0000252689312187 0.0001062993224281 + 126 7 Se 4d+1 -0.0005072329927867 0.0003125231774184 + 127 7 Se 4d+2 -0.0002141469483371 0.0004200034527597 + + 128 8 Cd 2s -0.0093948454756220 0.0061265011473742 + 129 8 Cd 3s 0.0005375120338956 -0.0008150942149677 + 130 8 Cd 3py 0.0027677431196486 0.0001441663477389 + 131 8 Cd 3pz 0.0021866945720404 0.0001901331723829 + 132 8 Cd 3px -0.0032753510837042 0.0028068728718201 + 133 8 Cd 4py -0.0004741794621833 0.0012225205900130 + 134 8 Cd 4pz -0.0004890132866053 0.0007630162427688 + 135 8 Cd 4px -0.0004685836847339 0.0002719059555990 + 136 8 Cd 4d-2 0.0091870160676225 -0.0173610841709783 + 137 8 Cd 4d-1 -0.0265578659840909 0.0231769511941867 + 138 8 Cd 4d0 -0.0315744799659783 0.0009314464451048 + 139 8 Cd 4d+1 0.0107598934855140 -0.0001904340938664 + 140 8 Cd 4d+2 0.0014446915006530 -0.0010566235161491 + 141 8 Cd 5d-2 0.0000086441540644 -0.0006362234515085 + 142 8 Cd 5d-1 -0.0015583257969795 -0.0004477310449162 + 143 8 Cd 5d0 0.0004702989087213 -0.0009682369328183 + 144 8 Cd 5d+1 -0.0002302824124731 0.0006902476329021 + 145 8 Cd 5d+2 -0.0017272532441327 0.0022209071525128 + 146 8 Cd 5f-3 0.0001114083986036 -0.0003780333868896 + 147 8 Cd 5f-2 -0.0001975703667154 0.0002261493694800 + 148 8 Cd 5f-1 0.0000211424945623 0.0000546293606318 + 149 8 Cd 5f0 -0.0001831200682766 0.0000916574126875 + 150 8 Cd 5f+1 -0.0001344817653333 -0.0002048752474116 + 151 8 Cd 5f+2 0.0003866961504451 -0.0006756620343888 + 152 8 Cd 5f+3 -0.0003367106361658 -0.0001094550729298 + + 153 9 Cd 2s -0.0125451482027339 0.0128540181526693 + 154 9 Cd 3s 0.0016025063004136 -0.0010709182826543 + 155 9 Cd 3py -0.0018124981042481 0.0024412027679447 + 156 9 Cd 3pz 0.0024180791755240 -0.0050383136281379 + 157 9 Cd 3px -0.0022427335637920 0.0017017722848583 + 158 9 Cd 4py -0.0001875730379075 0.0005614410026483 + 159 9 Cd 4pz -0.0013248507960770 0.0007652921004153 + 160 9 Cd 4px 0.0013011735844266 -0.0008356630317852 + 161 9 Cd 4d-2 -0.0045771956481333 0.0038467868338198 + 162 9 Cd 4d-1 0.0048650039769840 -0.0036429306436160 + 163 9 Cd 4d0 -0.0037049978506808 0.0217872945070090 + 164 9 Cd 4d+1 0.0256339627455942 -0.0155729070950262 + 165 9 Cd 4d+2 -0.0148172274015154 0.0072038467848556 + 166 9 Cd 5d-2 -0.0000996674747526 0.0004834491602419 + 167 9 Cd 5d-1 0.0011923399572193 -0.0021268197002601 + 168 9 Cd 5d0 0.0005165793138578 0.0012207540660477 + 169 9 Cd 5d+1 0.0006255405508993 -0.0001028349248474 + 170 9 Cd 5d+2 -0.0004016234864134 0.0001216514071843 + 171 9 Cd 5f-3 0.0002738817156280 -0.0001110541046421 + 172 9 Cd 5f-2 0.0002374939319643 -0.0003734122012330 + 173 9 Cd 5f-1 -0.0002190201935654 0.0008834314675624 + 174 9 Cd 5f0 0.0003129416454669 -0.0006793532232584 + 175 9 Cd 5f+1 -0.0000894130251275 -0.0000688209032028 + 176 9 Cd 5f+2 -0.0005156328300138 0.0002169295998455 + 177 9 Cd 5f+3 0.0000427697509474 0.0001157803436482 + + 178 10 Se 2s -0.0111505655501746 0.0184078272457076 + 179 10 Se 3s 0.0003260444804470 -0.0004148105256198 + 180 10 Se 3py 0.0015474395326568 -0.0007094049451267 + 181 10 Se 3pz -0.0067515390910832 0.0077350783062473 + 182 10 Se 3px -0.0001501495851666 -0.0016926829568816 + 183 10 Se 4py -0.0000987777139398 -0.0001254620049898 + 184 10 Se 4pz 0.0006223035104980 -0.0001630444974310 + 185 10 Se 4px 0.0010434694994256 -0.0013620684943799 + 186 10 Se 4d-2 0.0001853721841242 -0.0001632626552095 + 187 10 Se 4d-1 -0.0003342773788566 -0.0000265389219985 + 188 10 Se 4d0 0.0007621027786416 -0.0006748617659730 + 189 10 Se 4d+1 -0.0005182798259967 0.0002985631757531 + 190 10 Se 4d+2 -0.0001237963197539 0.0002537796588943 + + 191 11 Se 2s -0.0231704642143425 -0.0281851763896708 + 192 11 Se 3s 0.0002077658445171 0.0004544934312323 + 193 11 Se 3py 0.0138797385696081 0.0035307355991411 + 194 11 Se 3pz 0.0149752854275545 -0.0094298835875061 + 195 11 Se 3px 0.0122559439700079 0.0202114177685412 + 196 11 Se 4py 0.0001883988851155 -0.0009228353020239 + 197 11 Se 4pz 0.0009253470933100 -0.0015855560296837 + 198 11 Se 4px 0.0000542927053848 -0.0015451230648932 + 199 11 Se 4d-2 0.0028214495968782 0.0029636144088389 + 200 11 Se 4d-1 0.0025454171280785 -0.0015834922976595 + 201 11 Se 4d0 -0.0024426015815122 -0.0008589114661969 + 202 11 Se 4d+1 0.0019771242452177 -0.0011899321050096 + 203 11 Se 4d+2 -0.0002265996083629 0.0020185593283623 + + 204 12 Cd 2s -0.0037095322184469 0.0159874083849764 + 205 12 Cd 3s 0.0007964421534174 -0.0004544711847963 + 206 12 Cd 3py -0.0011539484136707 0.0015195331331427 + 207 12 Cd 3pz -0.0014479275870920 -0.0004582986980221 + 208 12 Cd 3px -0.0012931603347061 0.0083557022498104 + 209 12 Cd 4py 0.0012871769411063 0.0003932395448926 + 210 12 Cd 4pz -0.0003052510203112 0.0001348733396216 + 211 12 Cd 4px 0.0002846238246288 0.0006111356423851 + 212 12 Cd 4d-2 -0.0181546457003256 -0.0058344826792832 + 213 12 Cd 4d-1 0.0199352054174508 -0.0009369770307909 + 214 12 Cd 4d0 0.0139199583153734 -0.0410167616527371 + 215 12 Cd 4d+1 -0.0153961907197645 -0.0054706429614477 + 216 12 Cd 4d+2 -0.0045942142357757 0.0100514447746615 + 217 12 Cd 5d-2 0.0010223701623652 0.0008435058486596 + 218 12 Cd 5d-1 0.0001861301765021 -0.0003320002242082 + 219 12 Cd 5d0 0.0019554508437315 -0.0029053918845759 + 220 12 Cd 5d+1 -0.0021181446918578 0.0004607399042019 + 221 12 Cd 5d+2 -0.0017257292529822 0.0034218429966119 + 222 12 Cd 5f-3 -0.0002323517887213 0.0005046658684290 + 223 12 Cd 5f-2 -0.0003965711873081 -0.0000503504422066 + 224 12 Cd 5f-1 0.0000896819307839 -0.0006531038679189 + 225 12 Cd 5f0 0.0000187283918740 -0.0002865780710207 + 226 12 Cd 5f+1 0.0007464710794672 -0.0005456173264151 + 227 12 Cd 5f+2 -0.0004857739949209 0.0001539757033491 + 228 12 Cd 5f+3 -0.0008091972843491 0.0011840964430156 + + 229 13 Cd 2s -0.0034011284729128 0.0125907117778657 + 230 13 Cd 3s -0.0005176990551145 0.0008419896112785 + 231 13 Cd 3py 0.0013477775148060 -0.0043526562504426 + 232 13 Cd 3pz 0.0003682414530914 0.0003364189840022 + 233 13 Cd 3px -0.0020255938427373 0.0102096362172387 + 234 13 Cd 4py -0.0019729126480144 -0.0002718295066908 + 235 13 Cd 4pz -0.0000839140905912 0.0027188307198082 + 236 13 Cd 4px 0.0000195496605469 0.0024983427929093 + 237 13 Cd 4d-2 0.0708214113447938 -0.0807037427899966 + 238 13 Cd 4d-1 -0.0113346371087930 -0.0052261573015234 + 239 13 Cd 4d0 0.1187641828027122 0.0110907105605503 + 240 13 Cd 4d+1 0.0575893200338373 -0.0310368756917581 + 241 13 Cd 4d+2 0.0205817561875502 0.0642136909678964 + 242 13 Cd 5d-2 0.0039417925500650 -0.0083258625688937 + 243 13 Cd 5d-1 -0.0015116914099030 -0.0024164470696730 + 244 13 Cd 5d0 0.0009376366053095 -0.0030576915904618 + 245 13 Cd 5d+1 0.0013518042772186 0.0000621040971629 + 246 13 Cd 5d+2 0.0014040983806679 0.0021866673797354 + 247 13 Cd 5f-3 -0.0008336303944597 -0.0011266177827469 + 248 13 Cd 5f-2 0.0000727065359062 -0.0005837961720380 + 249 13 Cd 5f-1 0.0006281066100033 0.0006982593517404 + 250 13 Cd 5f0 0.0001715349193082 0.0004021029712558 + 251 13 Cd 5f+1 -0.0001153364485475 -0.0007944445566740 + 252 13 Cd 5f+2 -0.0006511640394033 -0.0001172211396023 + 253 13 Cd 5f+3 -0.0003085833464836 -0.0016789139767705 + + 254 14 Cd 2s 0.0012488767415227 -0.0027084722594689 + 255 14 Cd 3s 0.0012503309030951 -0.0005513618877684 + 256 14 Cd 3py -0.0028187083246553 0.0027231179255651 + 257 14 Cd 3pz 0.0009399292165964 -0.0008774036909136 + 258 14 Cd 3px 0.0019028188380574 -0.0012930931904670 + 259 14 Cd 4py -0.0004222955793206 0.0003879979480316 + 260 14 Cd 4pz -0.0005093747039642 0.0000675745422613 + 261 14 Cd 4px -0.0000091212918979 0.0000819466968544 + 262 14 Cd 4d-2 -0.0047383408347490 0.0049310443288777 + 263 14 Cd 4d-1 -0.0004598458891987 -0.0006073058825411 + 264 14 Cd 4d0 -0.0124799150129147 0.0046428420598500 + 265 14 Cd 4d+1 -0.0077085169498483 0.0032320303125887 + 266 14 Cd 4d+2 -0.0012321929970380 0.0006356024604181 + 267 14 Cd 5d-2 -0.0011956701968583 0.0008147755917282 + 268 14 Cd 5d-1 -0.0003807055712939 0.0002646364559990 + 269 14 Cd 5d0 -0.0007745265409430 0.0010721713799425 + 270 14 Cd 5d+1 -0.0001649130705159 0.0000018436303080 + 271 14 Cd 5d+2 -0.0009825290404100 0.0010731362559408 + 272 14 Cd 5f-3 0.0003026915239716 -0.0001876657453122 + 273 14 Cd 5f-2 0.0001408343682619 -0.0001380080134552 + 274 14 Cd 5f-1 0.0005244635809054 -0.0004633234688055 + 275 14 Cd 5f0 -0.0001747917882759 0.0000817429497626 + 276 14 Cd 5f+1 -0.0002138202058739 0.0001844796261698 + 277 14 Cd 5f+2 -0.0002017243605353 -0.0000659134949426 + 278 14 Cd 5f+3 -0.0003139907505314 0.0003052074642634 + + 279 15 Se 2s 0.0186347590057318 -0.0095074770859421 + 280 15 Se 3s -0.0000336139599650 0.0002632316495794 + 281 15 Se 3py 0.0075872175274130 -0.0058430653819583 + 282 15 Se 3pz 0.0080870668853802 -0.0021311951222059 + 283 15 Se 3px -0.0089670952004638 0.0018897611354400 + 284 15 Se 4py -0.0002413204060829 0.0003718192140889 + 285 15 Se 4pz -0.0010362043161944 0.0001434645224296 + 286 15 Se 4px 0.0001606414251972 0.0003972152915869 + 287 15 Se 4d-2 0.0017972104498861 -0.0008413385601071 + 288 15 Se 4d-1 -0.0012429524643507 0.0005782909742241 + 289 15 Se 4d0 0.0005932160749519 -0.0002857600332576 + 290 15 Se 4d+1 0.0012651326517010 -0.0001144151909483 + 291 15 Se 4d+2 0.0000119994615312 -0.0010573156570268 + + 292 16 Se 2s -0.0492700128083219 -0.0607256222026554 + 293 16 Se 3s 0.0013726075295698 0.0012704792922717 + 294 16 Se 3py -0.0065964553374956 -0.0234422751415966 + 295 16 Se 3pz 0.0152856648373495 0.0156267532389154 + 296 16 Se 3px -0.0059869420204998 0.0051892292952821 + 297 16 Se 4py 0.0000279641475326 0.0008138251447105 + 298 16 Se 4pz 0.0006996341059422 -0.0019461589296818 + 299 16 Se 4px 0.0012190823345980 -0.0036490142421969 + 300 16 Se 4d-2 -0.0004003586823103 -0.0012845865611330 + 301 16 Se 4d-1 -0.0022111002044022 -0.0051194274911692 + 302 16 Se 4d0 0.0022413308178868 0.0016230823444503 + 303 16 Se 4d+1 -0.0000652263794942 0.0020571655091785 + 304 16 Se 4d+2 -0.0014471526086773 -0.0016624235940965 + + 305 17 Cd 2s 0.0028082548140758 0.0012149200668927 + 306 17 Cd 3s 0.0002633266041994 0.0005179681877569 + 307 17 Cd 3py 0.0004181569579215 0.0007581297908908 + 308 17 Cd 3pz -0.0015751947566155 0.0006776314839754 + 309 17 Cd 3px 0.0016449339262229 -0.0029978255668120 + 310 17 Cd 4py -0.0010383718092978 -0.0014267745722971 + 311 17 Cd 4pz 0.0001730726823027 0.0012944832301294 + 312 17 Cd 4px -0.0002207905782170 -0.0007694460299255 + 313 17 Cd 4d-2 0.0239346223611046 0.0570936747257307 + 314 17 Cd 4d-1 -0.0287517633083770 0.0101763307416113 + 315 17 Cd 4d0 -0.0337819329341784 -0.0329080798499142 + 316 17 Cd 4d+1 -0.0250111960600433 -0.0662692935564328 + 317 17 Cd 4d+2 -0.0048537291139058 -0.0441684135756846 + 318 17 Cd 5d-2 0.0019524559215716 -0.0011689077095263 + 319 17 Cd 5d-1 -0.0001348639883097 0.0014204356012039 + 320 17 Cd 5d0 -0.0009866077406104 0.0007179793850147 + 321 17 Cd 5d+1 -0.0005134890994855 -0.0015273106634326 + 322 17 Cd 5d+2 -0.0009399304817751 -0.0009883085464016 + 323 17 Cd 5f-3 -0.0002892524345330 -0.0008437385858079 + 324 17 Cd 5f-2 0.0000785764059213 -0.0004008072070085 + 325 17 Cd 5f-1 0.0004977947248294 0.0003849485942724 + 326 17 Cd 5f0 -0.0003381800496705 -0.0003708153975111 + 327 17 Cd 5f+1 -0.0001930175598695 -0.0001993837818373 + 328 17 Cd 5f+2 0.0000149260023108 -0.0003499832569628 + 329 17 Cd 5f+3 0.0000459259305332 0.0014245297149938 + + 330 18 Cd 2s 0.0154497497729689 -0.0016444049478467 + 331 18 Cd 3s -0.0020825690440164 0.0005865745703112 + 332 18 Cd 3py 0.0021461106688094 -0.0003679497036520 + 333 18 Cd 3pz 0.0054060635459451 -0.0016326823648603 + 334 18 Cd 3px 0.0015686334293478 -0.0009654502257917 + 335 18 Cd 4py -0.0006193305278049 0.0006760521426044 + 336 18 Cd 4pz -0.0002824040860270 -0.0000228084139518 + 337 18 Cd 4px -0.0005368121179255 0.0011084304362413 + 338 18 Cd 4d-2 0.0249717978929153 -0.0233447252255873 + 339 18 Cd 4d-1 0.0187948117250674 -0.0235043809192168 + 340 18 Cd 4d0 0.0347066679280354 0.0164768998892556 + 341 18 Cd 4d+1 0.0191689635384044 -0.0155024013825438 + 342 18 Cd 4d+2 -0.0041030875076656 -0.0006570319478349 + 343 18 Cd 5d-2 -0.0002369125855228 0.0004656520512061 + 344 18 Cd 5d-1 0.0014410794668984 -0.0004794498191937 + 345 18 Cd 5d0 0.0007058653687400 -0.0001132506149385 + 346 18 Cd 5d+1 -0.0003578715550760 0.0016653531204227 + 347 18 Cd 5d+2 -0.0003739684019468 -0.0000224806204818 + 348 18 Cd 5f-3 -0.0002541907379729 -0.0000081511416795 + 349 18 Cd 5f-2 -0.0004214864931523 0.0002235362236892 + 350 18 Cd 5f-1 0.0001550786877607 0.0000676604704784 + 351 18 Cd 5f0 0.0002209896437206 -0.0003895411193714 + 352 18 Cd 5f+1 -0.0001051051203039 0.0007649071032436 + 353 18 Cd 5f+2 -0.0005264368375937 0.0007287206449995 + 354 18 Cd 5f+3 0.0005698875927813 -0.0004031896308810 + + 355 19 Se 2s -0.0032080827881832 -0.0201184488938060 + 356 19 Se 3s -0.0000946783621693 0.0002429219112670 + 357 19 Se 3py 0.0047621398435864 0.0079922107099092 + 358 19 Se 3pz -0.0012941609598193 0.0023216932764435 + 359 19 Se 3px 0.0009521539731196 0.0062867468524624 + 360 19 Se 4py 0.0000467114164315 0.0003999803978308 + 361 19 Se 4pz 0.0000968183999619 0.0001679576871480 + 362 19 Se 4px 0.0001124559797968 0.0000670335250985 + 363 19 Se 4d-2 0.0003433676419842 0.0008875232182606 + 364 19 Se 4d-1 0.0005885870274804 0.0003720764369520 + 365 19 Se 4d0 -0.0009326488822672 -0.0005218640157357 + 366 19 Se 4d+1 -0.0000403582316939 0.0004564783437208 + 367 19 Se 4d+2 -0.0008283627979658 -0.0003106327833418 + + 368 20 Se 2s 0.0488235676780431 -0.0090334725717821 + 369 20 Se 3s -0.0012114146794655 -0.0004517206207319 + 370 20 Se 3py 0.0221895172505755 -0.0060386303459022 + 371 20 Se 3pz 0.0010684913068631 -0.0127473757420043 + 372 20 Se 3px -0.0209377385672287 0.0161615514655277 + 373 20 Se 4py -0.0001054453788957 0.0029008099721684 + 374 20 Se 4pz 0.0001519778104922 -0.0015347806340455 + 375 20 Se 4px 0.0004553811321219 -0.0018252929553041 + 376 20 Se 4d-2 0.0037815302814338 -0.0030292372784135 + 377 20 Se 4d-1 0.0001801535617137 0.0023428002545495 + 378 20 Se 4d0 0.0024763084765073 -0.0026260125067300 + 379 20 Se 4d+1 -0.0000753880447689 -0.0009036757700036 + 380 20 Se 4d+2 0.0007166175188492 0.0013623040068606 + + 381 21 Se 2s -0.0150227828505191 0.0031042479270018 + 382 21 Se 3s 0.0004050793187063 -0.0002303898010005 + 383 21 Se 3py -0.0028321119072904 0.0007990737984611 + 384 21 Se 3pz -0.0028967818466310 0.0007629101815189 + 385 21 Se 3px 0.0049065144698404 -0.0012248204072572 + 386 21 Se 4py -0.0006662776118403 0.0003251916963641 + 387 21 Se 4pz 0.0001274011940210 -0.0002289748437867 + 388 21 Se 4px -0.0002491510845020 -0.0000523620248103 + 389 21 Se 4d-2 -0.0003160178215255 0.0001321016110908 + 390 21 Se 4d-1 0.0000111325698689 -0.0001151725644840 + 391 21 Se 4d0 0.0000830800016330 0.0002856745493133 + 392 21 Se 4d+1 -0.0001387430051574 0.0000730280579982 + 393 21 Se 4d+2 0.0001793759045193 -0.0001998098550972 + + 394 22 Cd 2s -0.0088284108243152 -0.0005440206385447 + 395 22 Cd 3s -0.0000512554434787 0.0001487048014972 + 396 22 Cd 3py 0.0040997453493814 -0.0017042892375155 + 397 22 Cd 3pz -0.0006376831082040 -0.0003153864735354 + 398 22 Cd 3px -0.0040354077708239 0.0008721581858427 + 399 22 Cd 4py 0.0004386577147751 -0.0005608855456148 + 400 22 Cd 4pz 0.0004248069678007 -0.0004611936268651 + 401 22 Cd 4px -0.0005671065765626 0.0002667962695630 + 402 22 Cd 4d-2 0.0269311492721494 -0.0199605716972077 + 403 22 Cd 4d-1 0.0212044685839481 -0.0115207284122843 + 404 22 Cd 4d0 0.0081889807717558 -0.0012277255149041 + 405 22 Cd 4d+1 -0.0196872559737972 -0.0027908499679805 + 406 22 Cd 4d+2 0.0258523918228487 -0.0093101016927438 + 407 22 Cd 5d-2 0.0011451542464873 -0.0017120760542212 + 408 22 Cd 5d-1 0.0012710354766609 0.0006273895116274 + 409 22 Cd 5d0 0.0009799264535960 0.0002321482551125 + 410 22 Cd 5d+1 0.0000829923260156 -0.0001609658185614 + 411 22 Cd 5d+2 -0.0005330197503667 -0.0000290122590654 + 412 22 Cd 5f-3 0.0001464967301030 -0.0005217597456414 + 413 22 Cd 5f-2 0.0001678783156091 0.0003346220173971 + 414 22 Cd 5f-1 0.0000226334309587 0.0001385219787495 + 415 22 Cd 5f0 0.0000407142036618 0.0002036995338803 + 416 22 Cd 5f+1 -0.0005701645147769 0.0004434228819569 + 417 22 Cd 5f+2 -0.0000896294565572 0.0000758788875425 + 418 22 Cd 5f+3 -0.0000902131541152 -0.0000107121024508 + + 419 23 Se 2s -0.0088332608892956 0.0103634517699285 + 420 23 Se 3s 0.0003867627937372 -0.0002776082544965 + 421 23 Se 3py -0.0004186938520009 0.0026209508214163 + 422 23 Se 3pz 0.0044750668100810 0.0016588324346403 + 423 23 Se 3px -0.0006418024947360 -0.0031832673816821 + 424 23 Se 4py -0.0004443805018609 -0.0004989564246470 + 425 23 Se 4pz -0.0004207160553394 -0.0003364035878561 + 426 23 Se 4px 0.0003941940032543 -0.0008215058882027 + 427 23 Se 4d-2 0.0002335403345000 0.0006565013700351 + 428 23 Se 4d-1 -0.0003114722553543 -0.0001936109912016 + 429 23 Se 4d0 0.0004659540086658 0.0000090225283783 + 430 23 Se 4d+1 0.0001343284372225 0.0007406691556258 + 431 23 Se 4d+2 -0.0000870241595492 -0.0000503800483890 + + 432 24 Se 2s -0.0020013543077079 0.0040173657115993 + 433 24 Se 3s 0.0000501198771543 -0.0000866430784521 + 434 24 Se 3py 0.0018421105983826 -0.0002564086737956 + 435 24 Se 3pz -0.0000269775800732 0.0015889905831266 + 436 24 Se 3px -0.0005056358562626 -0.0017036909773903 + 437 24 Se 4py 0.0000098626176511 -0.0000183431167096 + 438 24 Se 4pz 0.0000781965635789 -0.0000576563419053 + 439 24 Se 4px 0.0005568388016098 -0.0003885261389310 + 440 24 Se 4d-2 -0.0000391318293775 0.0000764508668371 + 441 24 Se 4d-1 0.0000977216998928 0.0000640580879655 + 442 24 Se 4d0 -0.0000686848407574 0.0000773758327645 + 443 24 Se 4d+1 -0.0002349046709796 0.0002819770690397 + 444 24 Se 4d+2 -0.0002013156906323 -0.0001952891401400 + + 445 25 Cd 2s -0.0037652422654578 0.0007163166694375 + 446 25 Cd 3s 0.0003224107117320 -0.0005050167850538 + 447 25 Cd 3py 0.0005587821133399 -0.0025729504683726 + 448 25 Cd 3pz -0.0021128556568151 0.0027399466308706 + 449 25 Cd 3px -0.0015767529658176 -0.0025630210899386 + 450 25 Cd 4py 0.0009631106587342 -0.0003626004667594 + 451 25 Cd 4pz -0.0003765123290865 0.0002144672160139 + 452 25 Cd 4px 0.0001494295549497 -0.0008063764647059 + 453 25 Cd 4d-2 -0.0219974612225166 -0.0027153829762292 + 454 25 Cd 4d-1 -0.0168480580820894 0.0118426597891807 + 455 25 Cd 4d0 -0.0088175095912446 0.0143009305013023 + 456 25 Cd 4d+1 -0.0116592086252548 0.0104149883917171 + 457 25 Cd 4d+2 -0.0091638665174061 -0.0100440331387672 + 458 25 Cd 5d-2 0.0010871018758575 -0.0018939999026662 + 459 25 Cd 5d-1 0.0003293555932526 0.0003252708653008 + 460 25 Cd 5d0 -0.0009706464400565 0.0011063880904678 + 461 25 Cd 5d+1 -0.0005199585710445 -0.0004095996505448 + 462 25 Cd 5d+2 -0.0009567859656788 -0.0006487584826934 + 463 25 Cd 5f-3 0.0002578447401616 -0.0002438157155771 + 464 25 Cd 5f-2 0.0003907588405811 -0.0003222603737556 + 465 25 Cd 5f-1 -0.0002764144461060 0.0003318984496159 + 466 25 Cd 5f0 0.0001400219290325 -0.0002599430813528 + 467 25 Cd 5f+1 0.0000445964707848 -0.0002028774838687 + 468 25 Cd 5f+2 -0.0000745351606018 -0.0004147572425401 + 469 25 Cd 5f+3 0.0001639701251544 0.0000012654784430 + + 470 26 Cd 2s 0.0015125837932746 -0.0022483461291961 + 471 26 Cd 3s 0.0003638574493600 -0.0004747116978024 + 472 26 Cd 3py -0.0006293409741820 0.0010738372809801 + 473 26 Cd 3pz 0.0001379529456238 0.0002461856340988 + 474 26 Cd 3px 0.0003413092434624 -0.0007047581262746 + 475 26 Cd 4py -0.0006482307197277 0.0002692652852682 + 476 26 Cd 4pz -0.0001896786249554 0.0001000086418035 + 477 26 Cd 4px 0.0001206997834474 -0.0001241382478703 + 478 26 Cd 4d-2 0.0073162130105127 -0.0018479212489798 + 479 26 Cd 4d-1 0.0027373069147036 -0.0010390514345752 + 480 26 Cd 4d0 -0.0027739029519044 0.0015372074168481 + 481 26 Cd 4d+1 0.0033705408026461 -0.0008436571036793 + 482 26 Cd 4d+2 -0.0045336554575281 0.0038216156169104 + 483 26 Cd 5d-2 -0.0002962616150127 0.0003109511597328 + 484 26 Cd 5d-1 0.0003191733166381 -0.0003099941849013 + 485 26 Cd 5d0 -0.0006677928631374 0.0000890131429159 + 486 26 Cd 5d+1 0.0001097384096160 0.0000086043972438 + 487 26 Cd 5d+2 -0.0004027065779452 0.0003439279465184 + 488 26 Cd 5f-3 -0.0000095880051866 -0.0000141424151609 + 489 26 Cd 5f-2 -0.0000167013666398 -0.0000629150674683 + 490 26 Cd 5f-1 0.0000856476435586 0.0000210285427273 + 491 26 Cd 5f0 0.0002280358189721 -0.0000376343850486 + 492 26 Cd 5f+1 -0.0002651423338640 -0.0000109762828014 + 493 26 Cd 5f+2 0.0001737380494436 -0.0000878537692986 + 494 26 Cd 5f+3 -0.0000186371574275 0.0001781938403575 + + 79 80 + -0.3338939546454449 -0.3228329138806159 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0102716591326142 0.0108940712839755 + 2 1 Cd 3s -0.0050196792063064 -0.0051898560355316 + 3 1 Cd 3py -0.0120211977656979 -0.0167401692042394 + 4 1 Cd 3pz -0.0015239946901147 0.0083665312726753 + 5 1 Cd 3px 0.0060503018954733 -0.0044098173521764 + 6 1 Cd 4py -0.0089761815061293 -0.0067851133406018 + 7 1 Cd 4pz 0.0001729712087993 0.0040459006680511 + 8 1 Cd 4px 0.0030076239295993 0.0045029986978048 + 9 1 Cd 4d-2 -0.0109923004609507 -0.0502560650981295 + 10 1 Cd 4d-1 0.0142008806882317 -0.0030427759712056 + 11 1 Cd 4d0 -0.0264376504733904 -0.0219971271447466 + 12 1 Cd 4d+1 0.0141371126390397 -0.0110323024624186 + 13 1 Cd 4d+2 -0.0066284017533649 0.0124222874510218 + 14 1 Cd 5d-2 0.0109938198781308 0.0099038334541701 + 15 1 Cd 5d-1 -0.0011396951603753 -0.0006184063111399 + 16 1 Cd 5d0 0.0000953627528248 0.0053654020291447 + 17 1 Cd 5d+1 0.0002078479520184 -0.0049758998054554 + 18 1 Cd 5d+2 -0.0021405093288542 0.0015233700648636 + 19 1 Cd 5f-3 -0.0018917699853905 -0.0028244765426341 + 20 1 Cd 5f-2 0.0015845961770730 0.0018956879971911 + 21 1 Cd 5f-1 0.0009965730270635 0.0013214266262037 + 22 1 Cd 5f0 -0.0015079269353025 -0.0018176059924135 + 23 1 Cd 5f+1 -0.0021698298927545 -0.0026795203960878 + 24 1 Cd 5f+2 0.0000963225116371 -0.0008310352396265 + 25 1 Cd 5f+3 -0.0008834587020756 -0.0017106088949259 + + 26 2 Cd 2s -0.2344447785427328 0.1695743842763901 + 27 2 Cd 3s 0.0091802752019530 -0.0043675009847284 + 28 2 Cd 3py 0.0088455341043500 -0.0050903299162693 + 29 2 Cd 3pz -0.0023157165014012 0.0062703586435258 + 30 2 Cd 3px 0.0469663341065712 -0.0550130904523422 + 31 2 Cd 4py -0.0014120297328629 -0.0034256128598013 + 32 2 Cd 4pz 0.0006049181215587 0.0040128983237630 + 33 2 Cd 4px -0.0061090522032525 -0.0017794961876138 + 34 2 Cd 4d-2 -0.0145991429561457 -0.0263821280829747 + 35 2 Cd 4d-1 0.0147661149497766 -0.0166480404722374 + 36 2 Cd 4d0 0.0423168664474549 0.0057135487941413 + 37 2 Cd 4d+1 0.0313373812747400 0.0082730449609201 + 38 2 Cd 4d+2 -0.0294333457562995 0.0188794497796437 + 39 2 Cd 5d-2 0.0001674259664503 0.0023450216243345 + 40 2 Cd 5d-1 0.0074880840876909 -0.0008940605763715 + 41 2 Cd 5d0 0.0020967664081840 -0.0056444755637963 + 42 2 Cd 5d+1 -0.0003391079464196 0.0005045605905352 + 43 2 Cd 5d+2 0.0111039515017966 0.0020200278672091 + 44 2 Cd 5f-3 -0.0024857000488819 0.0017458598575604 + 45 2 Cd 5f-2 -0.0001261449135987 -0.0002402261805491 + 46 2 Cd 5f-1 -0.0011059756418653 -0.0004336733638762 + 47 2 Cd 5f0 0.0011885519560268 0.0015313868652269 + 48 2 Cd 5f+1 0.0049985695458854 -0.0007532641448263 + 49 2 Cd 5f+2 -0.0012933319386907 0.0014101881025305 + 50 2 Cd 5f+3 -0.0042770516280572 0.0021416693423200 + + 51 3 Cd 2s -0.0640621615896985 -0.1070144990917876 + 52 3 Cd 3s 0.0050344065721441 0.0036904426620460 + 53 3 Cd 3py -0.0144056785377181 -0.0111245309360482 + 54 3 Cd 3pz -0.0014712799220904 0.0072576692074154 + 55 3 Cd 3px 0.0143159043660382 0.0258830578828508 + 56 3 Cd 4py 0.0026059971974673 -0.0014849817104584 + 57 3 Cd 4pz 0.0061387866670460 0.0005846415850901 + 58 3 Cd 4px -0.0030469610600165 -0.0044014180558176 + 59 3 Cd 4d-2 0.0314257730808696 0.0382626139555915 + 60 3 Cd 4d-1 -0.0315055254445858 0.0040573905077482 + 61 3 Cd 4d0 0.0240262158863724 0.0274146452623663 + 62 3 Cd 4d+1 0.0404049550928392 -0.0224720534331333 + 63 3 Cd 4d+2 0.0168807729945694 -0.0750516106528275 + 64 3 Cd 5d-2 0.0022714196437770 -0.0026152401402647 + 65 3 Cd 5d-1 0.0004984588854069 -0.0013861021353954 + 66 3 Cd 5d0 0.0013650570190350 0.0016103161154547 + 67 3 Cd 5d+1 0.0071933159591373 -0.0006042383838025 + 68 3 Cd 5d+2 0.0025385771560825 -0.0017154991726291 + 69 3 Cd 5f-3 -0.0011244370596284 0.0018605667587186 + 70 3 Cd 5f-2 0.0029149511284854 0.0021011132597829 + 71 3 Cd 5f-1 0.0011117682706395 -0.0015263976983230 + 72 3 Cd 5f0 -0.0007829398587872 -0.0015751228887255 + 73 3 Cd 5f+1 0.0001442013537957 0.0009616714562691 + 74 3 Cd 5f+2 -0.0010329558373601 0.0019740008772562 + 75 3 Cd 5f+3 -0.0012476889156827 0.0008768925712516 + + 76 4 Se 2s -0.0326163511364582 0.1067006372294445 + 77 4 Se 3s 0.0023752362156511 -0.0071798967479589 + 78 4 Se 3py -0.0133419087000401 0.0204945809071966 + 79 4 Se 3pz 0.0705524871860297 -0.0059851922647462 + 80 4 Se 3px -0.0252049577331630 0.1095855353574265 + 81 4 Se 4py -0.0003863042879049 0.0006633558239460 + 82 4 Se 4pz 0.0057291729793306 0.0021955326961691 + 83 4 Se 4px -0.0030006857915788 -0.0003944535612197 + 84 4 Se 4d-2 0.0025452993755946 -0.0030446448818918 + 85 4 Se 4d-1 -0.0031929037109483 0.0011733094844530 + 86 4 Se 4d0 0.0002258455041985 0.0028229705310469 + 87 4 Se 4d+1 -0.0074230886725995 -0.0011844501070715 + 88 4 Se 4d+2 0.0002987982141287 -0.0066923098816788 + + 89 5 Se 2s 0.0009528066773151 -0.0191367861890339 + 90 5 Se 3s -0.0004846310718981 0.0009635505919523 + 91 5 Se 3py 0.0064185046362160 -0.0048143955815706 + 92 5 Se 3pz -0.0010943012136377 0.0144406979364945 + 93 5 Se 3px 0.0000937532112680 -0.0185874666462845 + 94 5 Se 4py -0.0015921992821977 -0.0010926859755024 + 95 5 Se 4pz 0.0016827834789294 0.0009019929683873 + 96 5 Se 4px -0.0010525865948138 -0.0001767141630518 + 97 5 Se 4d-2 -0.0008475447978616 0.0004086689206816 + 98 5 Se 4d-1 0.0001812170563039 0.0010533331751872 + 99 5 Se 4d0 -0.0004635372518378 -0.0008953449492979 + 100 5 Se 4d+1 -0.0004777646749782 -0.0020313013245670 + 101 5 Se 4d+2 -0.0001233175332060 0.0028655410768187 + + 102 6 Se 2s -0.1148809975912572 0.0265742999963458 + 103 6 Se 3s 0.0083867292689369 -0.0025096695812275 + 104 6 Se 3py 0.0516994568029837 -0.0476086385960179 + 105 6 Se 3pz -0.0039753745983278 -0.0178722997123164 + 106 6 Se 3px -0.1060291749511576 0.0202745120964196 + 107 6 Se 4py 0.0034662637587871 0.0010234200355423 + 108 6 Se 4pz 0.0003097555076020 -0.0016656991807390 + 109 6 Se 4px -0.0046111319405724 0.0013014313396656 + 110 6 Se 4d-2 -0.0049203437886431 0.0052057121911093 + 111 6 Se 4d-1 0.0003474440275754 0.0006482012278772 + 112 6 Se 4d0 -0.0040945612847888 0.0019425371880840 + 113 6 Se 4d+1 0.0006603938248433 0.0025657630665702 + 114 6 Se 4d+2 0.0032827597377807 0.0012118662537660 + + 115 7 Se 2s -0.1759364206537411 0.1106255599211507 + 116 7 Se 3s 0.0159250732304639 -0.0090852468830394 + 117 7 Se 3py -0.0910664460306336 0.0411420582552916 + 118 7 Se 3pz -0.1705256047718951 0.1343688005755337 + 119 7 Se 3px -0.0188753620245080 0.0052253251575113 + 120 7 Se 4py 0.0021321387895156 0.0051503096187474 + 121 7 Se 4pz -0.0056753148575140 0.0029380756739133 + 122 7 Se 4px -0.0003381806219816 -0.0001491977012364 + 123 7 Se 4d-2 0.0016319916782377 0.0001777072267645 + 124 7 Se 4d-1 0.0089963576780674 -0.0033687652586987 + 125 7 Se 4d0 0.0084885665732682 -0.0071270375143197 + 126 7 Se 4d+1 0.0017512692035723 -0.0007958919331027 + 127 7 Se 4d+2 -0.0012734284254379 0.0005309601519212 + + 128 8 Cd 2s -0.3350636849773199 0.1035472549702471 + 129 8 Cd 3s 0.0096880620301866 -0.0008826892045472 + 130 8 Cd 3py 0.0295801338058215 0.0132362829688896 + 131 8 Cd 3pz 0.0264065837956446 -0.0243524280144561 + 132 8 Cd 3px -0.0400084324920869 0.0200442966906570 + 133 8 Cd 4py 0.0060411546245676 -0.0149062740547285 + 134 8 Cd 4pz -0.0005363682717692 -0.0008491124471392 + 135 8 Cd 4px 0.0028933722077015 -0.0122803591611102 + 136 8 Cd 4d-2 0.0381435263762361 -0.0033980544157059 + 137 8 Cd 4d-1 -0.0057561939880763 -0.0633260012560043 + 138 8 Cd 4d0 0.0513942017104995 0.0370796255971202 + 139 8 Cd 4d+1 0.0046261239946821 -0.0137410729778788 + 140 8 Cd 4d+2 -0.0033127971695415 0.0347520112987837 + 141 8 Cd 5d-2 0.0000460857249498 0.0079563698513918 + 142 8 Cd 5d-1 -0.0050363934804552 0.0039193542362701 + 143 8 Cd 5d0 0.0163967060700000 0.0000671425093955 + 144 8 Cd 5d+1 -0.0031734677221560 0.0030797948261262 + 145 8 Cd 5d+2 0.0104607107003671 -0.0170087806462824 + 146 8 Cd 5f-3 0.0031666948195133 0.0039259902322997 + 147 8 Cd 5f-2 0.0018431723267170 -0.0036371749901981 + 148 8 Cd 5f-1 -0.0039166615483456 0.0009172350234457 + 149 8 Cd 5f0 0.0025440642412750 0.0032340680354629 + 150 8 Cd 5f+1 0.0003368242539970 0.0025295275605242 + 151 8 Cd 5f+2 0.0001171374516552 0.0048425413664278 + 152 8 Cd 5f+3 0.0080695146497149 -0.0011743257788979 + + 153 9 Cd 2s -0.0775591127533866 0.0510825348701262 + 154 9 Cd 3s 0.0109646015182565 -0.0066142221354209 + 155 9 Cd 3py -0.0112539174751498 0.0108111433106725 + 156 9 Cd 3pz 0.0191193010168930 0.0019297185847739 + 157 9 Cd 3px 0.0021379175913715 -0.0025961254215994 + 158 9 Cd 4py 0.0065218341348745 -0.0023878236951120 + 159 9 Cd 4pz -0.0064209603877855 0.0005942076624540 + 160 9 Cd 4px -0.0003411311708036 0.0024303207503465 + 161 9 Cd 4d-2 0.0110159610023871 -0.0001114852534430 + 162 9 Cd 4d-1 0.0365552853638136 -0.0233671480999823 + 163 9 Cd 4d0 -0.0217362463518295 -0.0161052017745120 + 164 9 Cd 4d+1 -0.0225322526427779 -0.0149298196902043 + 165 9 Cd 4d+2 0.0204482265420510 0.0105905588648630 + 166 9 Cd 5d-2 0.0003149097040524 -0.0026856976202716 + 167 9 Cd 5d-1 -0.0030906880691085 -0.0020773568842710 + 168 9 Cd 5d0 -0.0010822464742350 0.0004155115179967 + 169 9 Cd 5d+1 -0.0008813439199225 -0.0005448426020838 + 170 9 Cd 5d+2 -0.0001463866015525 0.0006790637653838 + 171 9 Cd 5f-3 -0.0010335674304135 0.0005713616728537 + 172 9 Cd 5f-2 -0.0002959948725343 0.0017437505673148 + 173 9 Cd 5f-1 0.0019462143517142 -0.0008800192670683 + 174 9 Cd 5f0 0.0019047961470054 -0.0005419080371616 + 175 9 Cd 5f+1 -0.0005696849714929 -0.0005977130647962 + 176 9 Cd 5f+2 0.0007536932044447 -0.0013785359431246 + 177 9 Cd 5f+3 -0.0000449760046966 0.0014760573013258 + + 178 10 Se 2s -0.1358953191882123 -0.0250085670803290 + 179 10 Se 3s 0.0101217681522253 0.0018165182390836 + 180 10 Se 3py 0.0709988421978263 -0.0184173837176767 + 181 10 Se 3pz -0.1090946575012870 -0.0656039324362516 + 182 10 Se 3px 0.0531216701780365 -0.0518167901445558 + 183 10 Se 4py -0.0002002504999143 0.0008078124028145 + 184 10 Se 4pz -0.0034811333108863 0.0002398323133152 + 185 10 Se 4px 0.0079078771272481 -0.0002380184865219 + 186 10 Se 4d-2 0.0030624686114217 -0.0012183450217850 + 187 10 Se 4d-1 -0.0057113302942182 0.0025693118409583 + 188 10 Se 4d0 0.0047027883442236 0.0075357782425174 + 189 10 Se 4d+1 -0.0037170479945200 0.0017041667250141 + 190 10 Se 4d+2 -0.0025513971428650 -0.0029014989480707 + + 191 11 Se 2s -0.0251936437758521 -0.1159980770160440 + 192 11 Se 3s 0.0012311859388524 0.0082972238230554 + 193 11 Se 3py 0.0518149345058472 0.1346144549314154 + 194 11 Se 3pz 0.0341165749229333 -0.0138875555603368 + 195 11 Se 3px 0.0035749799120856 -0.0272987973442247 + 196 11 Se 4py -0.0012109411008668 0.0009074498819072 + 197 11 Se 4pz -0.0002026844568462 -0.0046405671649578 + 198 11 Se 4px 0.0000848069554860 0.0008822717236136 + 199 11 Se 4d-2 0.0004721554471775 -0.0029753355519181 + 200 11 Se 4d-1 0.0010710348274789 -0.0026650017536877 + 201 11 Se 4d0 -0.0040848244063333 -0.0055649152390484 + 202 11 Se 4d+1 -0.0003975821388721 -0.0004453568529786 + 203 11 Se 4d+2 -0.0034061680243598 -0.0043946138653214 + + 204 12 Cd 2s -0.0808012287552820 -0.2645297010265686 + 205 12 Cd 3s 0.0085117258241932 0.0014086507337402 + 206 12 Cd 3py -0.0063536451355928 -0.0648972628261568 + 207 12 Cd 3pz 0.0181672388800111 0.0272795061538263 + 208 12 Cd 3px -0.0078671812744949 -0.0294746401612023 + 209 12 Cd 4py 0.0084828645288526 -0.0107763043406011 + 210 12 Cd 4pz 0.0133917040301410 -0.0014425559993999 + 211 12 Cd 4px 0.0075203837216342 -0.0004002227066343 + 212 12 Cd 4d-2 -0.0407233359079163 -0.0062523540730408 + 213 12 Cd 4d-1 -0.0334777880921435 0.0255889128421358 + 214 12 Cd 4d0 0.0638056802812140 -0.0081943185697906 + 215 12 Cd 4d+1 -0.0026483875770113 0.0394214801233103 + 216 12 Cd 4d+2 0.0081779278226006 -0.0195914919920105 + 217 12 Cd 5d-2 0.0066804196094527 -0.0113939632107860 + 218 12 Cd 5d-1 0.0173253911441865 -0.0002772579401178 + 219 12 Cd 5d0 -0.0091309355202161 0.0010544758587169 + 220 12 Cd 5d+1 -0.0008411364684389 0.0063003327476814 + 221 12 Cd 5d+2 -0.0119567106113561 0.0109705552836427 + 222 12 Cd 5f-3 -0.0044697023594880 0.0006418514841465 + 223 12 Cd 5f-2 0.0012071608521218 -0.0021629156440834 + 224 12 Cd 5f-1 -0.0050346274790997 0.0021844666678271 + 225 12 Cd 5f0 -0.0003705334476837 0.0029106754190031 + 226 12 Cd 5f+1 -0.0022422093849623 -0.0010400043879520 + 227 12 Cd 5f+2 -0.0042086207135964 0.0006182245129509 + 228 12 Cd 5f+3 -0.0048153052884620 0.0009377702503722 + + 229 13 Cd 2s 0.1102428769006538 0.2222587578385462 + 230 13 Cd 3s -0.0076038968804113 -0.0080289578409165 + 231 13 Cd 3py -0.0149517813972386 -0.0400700564793980 + 232 13 Cd 3pz 0.0014792402843681 0.0228636404465990 + 233 13 Cd 3px 0.0029118719057825 -0.0299355562176175 + 234 13 Cd 4py -0.0009487837155583 -0.0020175740845305 + 235 13 Cd 4pz 0.0039758629996343 -0.0002727493052791 + 236 13 Cd 4px 0.0109258508912099 0.0108620013159458 + 237 13 Cd 4d-2 -0.0077880174959057 0.0030921482284569 + 238 13 Cd 4d-1 0.0114342629906548 -0.0066481103916652 + 239 13 Cd 4d0 -0.0641667490026360 -0.0068227322229117 + 240 13 Cd 4d+1 -0.0000248588895325 -0.0334833988182589 + 241 13 Cd 4d+2 0.0392216076542487 0.0426996163374753 + 242 13 Cd 5d-2 -0.0109078710750637 -0.0054862045614761 + 243 13 Cd 5d-1 -0.0035161842047954 -0.0052041869140708 + 244 13 Cd 5d0 -0.0037197430516603 -0.0023642394363884 + 245 13 Cd 5d+1 0.0026229286638842 -0.0024200498311713 + 246 13 Cd 5d+2 -0.0098166938762511 -0.0058323485106424 + 247 13 Cd 5f-3 0.0029376652525085 0.0013247994886608 + 248 13 Cd 5f-2 -0.0009141603063269 -0.0006193120988193 + 249 13 Cd 5f-1 -0.0006589123151350 -0.0001072641167686 + 250 13 Cd 5f0 0.0022690208340315 -0.0001751697376910 + 251 13 Cd 5f+1 -0.0036898305971054 -0.0044515488652303 + 252 13 Cd 5f+2 -0.0014417745543432 -0.0017682927950059 + 253 13 Cd 5f+3 0.0037036852860665 0.0031148595849376 + + 254 14 Cd 2s -0.1512489095757410 0.0501471214455996 + 255 14 Cd 3s 0.0126461475758394 -0.0030843679190410 + 256 14 Cd 3py 0.0177466128864465 -0.0392140470305245 + 257 14 Cd 3pz 0.0182642165484898 0.0063984710098650 + 258 14 Cd 3px 0.0090295992417126 -0.0009244838055521 + 259 14 Cd 4py -0.0021923504904179 0.0046545802410974 + 260 14 Cd 4pz -0.0054751551201145 -0.0032595814233247 + 261 14 Cd 4px 0.0002894409463072 -0.0009249915332699 + 262 14 Cd 4d-2 0.0002677887874439 0.0074370312089926 + 263 14 Cd 4d-1 0.0161789144457937 0.0320187763970756 + 264 14 Cd 4d0 -0.0039014049654616 -0.0484377649931861 + 265 14 Cd 4d+1 -0.0106991408819997 -0.0065300445443886 + 266 14 Cd 4d+2 0.0239494106530291 -0.0204743641907007 + 267 14 Cd 5d-2 -0.0033475569176891 0.0039696954264249 + 268 14 Cd 5d-1 -0.0026805508486421 0.0064404481658687 + 269 14 Cd 5d0 0.0009043894615169 -0.0089341668716020 + 270 14 Cd 5d+1 -0.0018967481724574 -0.0020735596672382 + 271 14 Cd 5d+2 0.0028779135251198 -0.0007705099981252 + 272 14 Cd 5f-3 -0.0008935342970982 -0.0007024421170918 + 273 14 Cd 5f-2 0.0012389257024619 -0.0004314220179622 + 274 14 Cd 5f-1 0.0043049704196481 0.0013982978754384 + 275 14 Cd 5f0 -0.0012991207700425 0.0005579633650865 + 276 14 Cd 5f+1 -0.0009700061225712 0.0007493711668436 + 277 14 Cd 5f+2 -0.0008515021324054 0.0007295649626509 + 278 14 Cd 5f+3 -0.0010894082738785 0.0016704835475941 + + 279 15 Se 2s 0.0109728172700366 0.1674178945733367 + 280 15 Se 3s -0.0015267525226123 -0.0129033549248833 + 281 15 Se 3py 0.0776669295518310 0.2092780365542836 + 282 15 Se 3pz 0.1311510457296744 0.0321422158549173 + 283 15 Se 3px 0.0248628732038821 0.0075642009672735 + 284 15 Se 4py -0.0037589349056643 0.0026300470466665 + 285 15 Se 4pz 0.0065632969840621 -0.0015513467630023 + 286 15 Se 4px -0.0013491119340816 -0.0031957876637613 + 287 15 Se 4d-2 -0.0019884370809904 -0.0009697875262505 + 288 15 Se 4d-1 -0.0064759495908780 -0.0012880779177938 + 289 15 Se 4d0 0.0108138266006232 0.0082075656325259 + 290 15 Se 4d+1 0.0028534282765587 0.0010520719518333 + 291 15 Se 4d+2 0.0051994307704528 0.0088186899398836 + + 292 16 Se 2s 0.0612746296139000 0.0711017754786068 + 293 16 Se 3s -0.0040762000921627 -0.0055284114584056 + 294 16 Se 3py -0.0123985829239155 -0.0164878402982165 + 295 16 Se 3pz -0.0531077060077258 -0.0676805637122942 + 296 16 Se 3px 0.0277899157979964 0.0354681050515817 + 297 16 Se 4py 0.0030164059956410 -0.0001147364275842 + 298 16 Se 4pz -0.0007042931182971 -0.0011805924395261 + 299 16 Se 4px 0.0015565863810482 0.0026686431088855 + 300 16 Se 4d-2 0.0012569405210452 0.0017910135570322 + 301 16 Se 4d-1 -0.0001619656586839 -0.0007910512551849 + 302 16 Se 4d0 -0.0019644566413756 -0.0048255430278911 + 303 16 Se 4d+1 0.0038047857940694 0.0044727190554054 + 304 16 Se 4d+2 -0.0004497752399902 -0.0006855695609859 + + 305 17 Cd 2s 0.0364866646350602 0.0154618949373593 + 306 17 Cd 3s -0.0057801487335702 -0.0011823145899531 + 307 17 Cd 3py 0.0011648838487227 0.0066632148357400 + 308 17 Cd 3pz 0.0183890700956948 0.0094714171920280 + 309 17 Cd 3px -0.0008968315370379 -0.0007172436800148 + 310 17 Cd 4py 0.0018301215272309 0.0008112795936121 + 311 17 Cd 4pz -0.0053960212210582 -0.0006846190117240 + 312 17 Cd 4px 0.0039454695384282 0.0004469339667687 + 313 17 Cd 4d-2 0.0118225047464771 -0.0022101816022619 + 314 17 Cd 4d-1 0.0173556152479224 0.0415171600529793 + 315 17 Cd 4d0 0.0328362772022308 0.0069256432526622 + 316 17 Cd 4d+1 -0.0336848300288608 0.0111286712598751 + 317 17 Cd 4d+2 -0.0034972690040559 -0.0276658435670472 + 318 17 Cd 5d-2 0.0003784631284066 0.0012017206167964 + 319 17 Cd 5d-1 0.0042226295911361 0.0033921840147333 + 320 17 Cd 5d0 0.0019240980590370 0.0008225934088293 + 321 17 Cd 5d+1 0.0014167403898690 -0.0021447951579147 + 322 17 Cd 5d+2 -0.0030283637275737 0.0003827766027279 + 323 17 Cd 5f-3 0.0023595810537184 -0.0002906136898405 + 324 17 Cd 5f-2 -0.0016021786503745 0.0000102265241934 + 325 17 Cd 5f-1 0.0012765204870840 -0.0006995072058020 + 326 17 Cd 5f0 0.0028122971234541 -0.0003926251262643 + 327 17 Cd 5f+1 0.0003021883525433 -0.0017961349183336 + 328 17 Cd 5f+2 -0.0011370011668784 0.0017422726962343 + 329 17 Cd 5f+3 0.0009416997068339 -0.0010465035636674 + + 330 18 Cd 2s 0.0260375851394276 -0.0395875736352289 + 331 18 Cd 3s -0.0016630214725003 0.0029272767280455 + 332 18 Cd 3py 0.0022742201614280 -0.0187408855134242 + 333 18 Cd 3pz 0.0083174767820034 -0.0030552646909404 + 334 18 Cd 3px 0.0011015457779249 0.0073396758409619 + 335 18 Cd 4py 0.0001217194650173 0.0037069870257910 + 336 18 Cd 4pz -0.0019665328097669 -0.0018776216153516 + 337 18 Cd 4px 0.0018295834973511 0.0008241609775527 + 338 18 Cd 4d-2 -0.0082545701298971 0.0089123921195592 + 339 18 Cd 4d-1 -0.0090158623233701 -0.0306106789255535 + 340 18 Cd 4d0 0.0002880616231640 0.0184118536278081 + 341 18 Cd 4d+1 -0.0065552379346477 -0.0017471506644137 + 342 18 Cd 4d+2 -0.0069757251256465 0.0081229597315812 + 343 18 Cd 5d-2 0.0022620662353113 0.0040107667664369 + 344 18 Cd 5d-1 0.0013192671005662 -0.0033995658358529 + 345 18 Cd 5d0 0.0001578153993478 0.0043236188508329 + 346 18 Cd 5d+1 0.0011104988537662 0.0021823265987719 + 347 18 Cd 5d+2 0.0010774442286145 -0.0014091172607301 + 348 18 Cd 5f-3 0.0003089846093419 0.0000146717707926 + 349 18 Cd 5f-2 0.0006480445120988 0.0014068922381087 + 350 18 Cd 5f-1 0.0026928159416000 0.0017969393513564 + 351 18 Cd 5f0 -0.0019962434940877 -0.0004052621756637 + 352 18 Cd 5f+1 0.0001310981767039 -0.0002294057218176 + 353 18 Cd 5f+2 0.0003758008239032 0.0000042589549846 + 354 18 Cd 5f+3 -0.0015516677905643 -0.0011656142837531 + + 355 19 Se 2s 0.0522895376147309 -0.0409907357755719 + 356 19 Se 3s -0.0037930050697495 0.0032382786108225 + 357 19 Se 3py -0.0498683350229199 -0.0063427477449338 + 358 19 Se 3pz -0.0447156897504529 0.0506047143298089 + 359 19 Se 3px 0.0095452604370075 -0.0046663177138927 + 360 19 Se 4py -0.0005195798819398 0.0020210989918481 + 361 19 Se 4pz 0.0024416072377488 0.0015416189404981 + 362 19 Se 4px -0.0027885266999350 -0.0006904858816533 + 363 19 Se 4d-2 0.0002169973160260 -0.0014252628695167 + 364 19 Se 4d-1 -0.0056221708978854 -0.0001364890622287 + 365 19 Se 4d0 -0.0017304159351453 0.0038030557870175 + 366 19 Se 4d+1 0.0007435925116708 -0.0003844347907765 + 367 19 Se 4d+2 0.0020706553838882 0.0010678870313968 + + 368 20 Se 2s -0.0529753795629804 0.0239838809567532 + 369 20 Se 3s 0.0031901544678874 -0.0015744841887372 + 370 20 Se 3py -0.0265285635023616 -0.3085197286627363 + 371 20 Se 3pz 0.2818700957343829 0.0529257862099601 + 372 20 Se 3px 0.0709085047774521 -0.0648753952783740 + 373 20 Se 4py -0.0003821554243535 0.0027071901588368 + 374 20 Se 4pz 0.0014505448722994 0.0022096376801861 + 375 20 Se 4px -0.0012051623609327 0.0029347220700146 + 376 20 Se 4d-2 0.0013275957122206 0.0057875564327201 + 377 20 Se 4d-1 0.0080458895204462 -0.0038014001180322 + 378 20 Se 4d0 0.0087177142896649 -0.0018469884000957 + 379 20 Se 4d+1 -0.0074278284283171 -0.0040524391079343 + 380 20 Se 4d+2 -0.0003980316898542 0.0048106915830758 + + 381 21 Se 2s -0.0102165107258875 0.0383590254635334 + 382 21 Se 3s 0.0009637408419207 -0.0022467064691338 + 383 21 Se 3py -0.0057559865572325 -0.0603119546869459 + 384 21 Se 3pz 0.1591784669613799 0.0632735866527935 + 385 21 Se 3px 0.1048401038451003 -0.2026863007813930 + 386 21 Se 4py -0.0015400652523962 -0.0005285681650325 + 387 21 Se 4pz -0.0010236796230877 -0.0023284594974118 + 388 21 Se 4px 0.0008745367874630 -0.0019428276072334 + 389 21 Se 4d-2 -0.0066344887276528 0.0104437223386885 + 390 21 Se 4d-1 -0.0082553677432324 -0.0012665073970671 + 391 21 Se 4d0 -0.0070958854871781 -0.0068439255937694 + 392 21 Se 4d+1 0.0083087795119066 0.0056555540696833 + 393 21 Se 4d+2 0.0017130657832767 -0.0069716061233874 + + 394 22 Cd 2s 0.2246881174925674 0.2698816666717031 + 395 22 Cd 3s -0.0095083558281855 -0.0074522009744737 + 396 22 Cd 3py -0.0319973157851776 -0.0338170270487031 + 397 22 Cd 3pz 0.0039796381784664 0.0212188379660291 + 398 22 Cd 3px 0.0243780255796478 0.0482405387728896 + 399 22 Cd 4py -0.0016502269406517 -0.0130978946318418 + 400 22 Cd 4pz 0.0000117695857103 -0.0036210824361462 + 401 22 Cd 4px 0.0015441898298661 -0.0093540788962727 + 402 22 Cd 4d-2 -0.0020545194249260 -0.0164940678209387 + 403 22 Cd 4d-1 0.0144361041925987 0.0134083087360207 + 404 22 Cd 4d0 -0.0553950288544055 0.0217562672638990 + 405 22 Cd 4d+1 -0.0368592127692557 0.0277977612094046 + 406 22 Cd 4d+2 -0.0199590840729275 0.0370905906051582 + 407 22 Cd 5d-2 -0.0032610272099638 -0.0013184097093415 + 408 22 Cd 5d-1 -0.0036164041970496 0.0005627842251897 + 409 22 Cd 5d0 -0.0123828650912405 -0.0035169124172474 + 410 22 Cd 5d+1 -0.0056506277137690 0.0053277668984619 + 411 22 Cd 5d+2 0.0026198657089215 -0.0082353144071942 + 412 22 Cd 5f-3 -0.0036195866152771 0.0008907617565286 + 413 22 Cd 5f-2 0.0025059987470697 0.0035502342370811 + 414 22 Cd 5f-1 -0.0015271770421005 0.0022354176753464 + 415 22 Cd 5f0 0.0016829378788109 -0.0013315632016678 + 416 22 Cd 5f+1 0.0041258745951459 0.0057508327410401 + 417 22 Cd 5f+2 -0.0002915288483417 0.0021724342088974 + 418 22 Cd 5f+3 -0.0026466843977948 -0.0013434658353805 + + 419 23 Se 2s 0.1320253692876151 0.0570053016326996 + 420 23 Se 3s -0.0084653985848122 -0.0047405117796065 + 421 23 Se 3py 0.0169877073016622 -0.0313768748613601 + 422 23 Se 3pz -0.1179041723077042 -0.0553488975977241 + 423 23 Se 3px -0.0286401749160416 -0.0331857118242066 + 424 23 Se 4py 0.0034281481887922 -0.0005590280789090 + 425 23 Se 4pz -0.0044605048490650 -0.0028545615245652 + 426 23 Se 4px -0.0052559384197863 -0.0026694276353490 + 427 23 Se 4d-2 0.0002251912962416 -0.0010881693544686 + 428 23 Se 4d-1 0.0014362071371285 -0.0038317937800982 + 429 23 Se 4d0 -0.0062431380157693 -0.0034427437691342 + 430 23 Se 4d+1 -0.0027261580894148 -0.0034934070598825 + 431 23 Se 4d+2 0.0022080675682086 -0.0009671710566186 + + 432 24 Se 2s 0.0407925466858247 -0.0984186955513282 + 433 24 Se 3s -0.0036644552158279 0.0084097123857913 + 434 24 Se 3py -0.0370413582157867 0.0463463891314627 + 435 24 Se 3pz 0.0308654078380412 0.0241349404406477 + 436 24 Se 3px -0.0307501787120283 0.1047440307725465 + 437 24 Se 4py -0.0020881663964603 0.0064085703735364 + 438 24 Se 4pz -0.0000880689734872 0.0006692463511534 + 439 24 Se 4px 0.0001204987956963 -0.0053119732929418 + 440 24 Se 4d-2 -0.0034160959346483 0.0049746637400902 + 441 24 Se 4d-1 0.0019431060684914 0.0010304894302207 + 442 24 Se 4d0 0.0019379250748383 -0.0030095806218707 + 443 24 Se 4d+1 0.0026257692869506 0.0032975166793228 + 444 24 Se 4d+2 0.0003361825795454 0.0051496304214987 + + 445 25 Cd 2s 0.1757992563275828 -0.1016902220756588 + 446 25 Cd 3s -0.0012096467434994 -0.0015384243247877 + 447 25 Cd 3py 0.0175876809170308 -0.0130450732349192 + 448 25 Cd 3pz 0.0348489504893828 -0.0186930728019437 + 449 25 Cd 3px 0.0360653655753190 -0.0125535750495221 + 450 25 Cd 4py -0.0055889018676504 -0.0120295006868283 + 451 25 Cd 4pz 0.0064857036845904 0.0048154869372609 + 452 25 Cd 4px 0.0002299499440020 -0.0011110459042614 + 453 25 Cd 4d-2 0.0339198467176661 0.0353358149772704 + 454 25 Cd 4d-1 0.0320408836959276 0.0227966369009194 + 455 25 Cd 4d0 -0.0327926546098028 -0.0517000663684894 + 456 25 Cd 4d+1 0.0055366703846575 -0.0206612937267578 + 457 25 Cd 4d+2 0.0060614028118483 -0.0237935650133935 + 458 25 Cd 5d-2 0.0010440217738317 -0.0032793201128241 + 459 25 Cd 5d-1 -0.0020092221403845 -0.0072924760513976 + 460 25 Cd 5d0 0.0097874615275116 0.0061645902588032 + 461 25 Cd 5d+1 0.0022708147948383 0.0010242098436427 + 462 25 Cd 5d+2 0.0090165666365572 0.0081873852286972 + 463 25 Cd 5f-3 0.0018628999858265 0.0024329572753203 + 464 25 Cd 5f-2 -0.0026851099611826 -0.0017327387971037 + 465 25 Cd 5f-1 0.0000022647974409 0.0014942852588710 + 466 25 Cd 5f0 0.0040802800152698 0.0023544960035900 + 467 25 Cd 5f+1 0.0008501277176638 0.0017177170165631 + 468 25 Cd 5f+2 0.0013943184765466 0.0030276915754507 + 469 25 Cd 5f+3 0.0009423615821174 0.0023364580994197 + + 470 26 Cd 2s 0.0674568242317322 -0.1474695890615364 + 471 26 Cd 3s -0.0053959922297066 0.0079173131627300 + 472 26 Cd 3py 0.0109932610159744 -0.0096825048399595 + 473 26 Cd 3pz -0.0133178911823398 -0.0106282177812344 + 474 26 Cd 3px 0.0094960776531716 -0.0229726026018237 + 475 26 Cd 4py -0.0040465626035414 0.0062907378194208 + 476 26 Cd 4pz 0.0031584538053754 0.0030723159559783 + 477 26 Cd 4px -0.0024672789929437 0.0050998343893630 + 478 26 Cd 4d-2 0.0282596978690862 -0.0177268206544183 + 479 26 Cd 4d-1 0.0020242226732407 -0.0223457941914305 + 480 26 Cd 4d0 -0.0118927059454756 0.0260460147958441 + 481 26 Cd 4d+1 -0.0308886132846283 -0.0184773954704916 + 482 26 Cd 4d+2 -0.0116006583196866 0.0166920741376547 + 483 26 Cd 5d-2 0.0005922609225541 -0.0014946751058824 + 484 26 Cd 5d-1 -0.0007847595210473 -0.0009044665677376 + 485 26 Cd 5d0 -0.0006136134860153 0.0010396021078362 + 486 26 Cd 5d+1 -0.0012152238670165 -0.0016226027906129 + 487 26 Cd 5d+2 -0.0015375311654172 0.0024743113908008 + 488 26 Cd 5f-3 0.0005662769799117 -0.0023017717858731 + 489 26 Cd 5f-2 -0.0008600766910580 0.0022852021017317 + 490 26 Cd 5f-1 -0.0003228507894485 -0.0009026869674366 + 491 26 Cd 5f0 -0.0001553226129014 -0.0011841169942857 + 492 26 Cd 5f+1 -0.0000826858365215 -0.0003173685973639 + 493 26 Cd 5f+2 0.0005377324484036 -0.0011879100959852 + 494 26 Cd 5f+3 0.0002037521305075 -0.0028797291104074 + + 81 82 + -0.3182347695569439 -0.3089350701809303 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0687037796853955 -0.0476508721625658 + 2 1 Cd 3s 0.0010705575516364 0.0057480659553005 + 3 1 Cd 3py -0.0201642486504605 -0.0066100567700054 + 4 1 Cd 3pz -0.0060517178850658 -0.0109990537598204 + 5 1 Cd 3px 0.0276060007841764 0.0093999811948839 + 6 1 Cd 4py -0.0042574075129131 0.0019224518163084 + 7 1 Cd 4pz 0.0042083388695973 -0.0000472440732117 + 8 1 Cd 4px 0.0012212026883680 -0.0030442881026960 + 9 1 Cd 4d-2 -0.0207668433504175 0.0074263964832655 + 10 1 Cd 4d-1 0.0110725762926265 0.0049414557700127 + 11 1 Cd 4d0 -0.0041522064242049 0.0078920594431727 + 12 1 Cd 4d+1 0.0210017571861786 0.0166277565337091 + 13 1 Cd 4d+2 -0.0120107859538935 0.0081298905629835 + 14 1 Cd 5d-2 0.0100841371197324 0.0011757850302649 + 15 1 Cd 5d-1 -0.0014511806216609 -0.0033816686008254 + 16 1 Cd 5d0 0.0047693679520191 -0.0022988517220917 + 17 1 Cd 5d+1 -0.0007687076298139 0.0035248071299390 + 18 1 Cd 5d+2 -0.0061578621916605 -0.0013381955493788 + 19 1 Cd 5f-3 -0.0025271181856148 -0.0008064999359348 + 20 1 Cd 5f-2 0.0028893326308038 0.0019704496607680 + 21 1 Cd 5f-1 -0.0000231798128760 -0.0022639873556086 + 22 1 Cd 5f0 -0.0016229189097634 0.0000854692344759 + 23 1 Cd 5f+1 -0.0017992472010379 0.0009990538402625 + 24 1 Cd 5f+2 -0.0013737240859652 0.0001988715742572 + 25 1 Cd 5f+3 0.0018758012978920 0.0018312719593983 + + 26 2 Cd 2s 0.0315390768889831 -0.0855185259304727 + 27 2 Cd 3s -0.0070158681175187 0.0023654514452179 + 28 2 Cd 3py 0.0142503188207204 0.0374970920132288 + 29 2 Cd 3pz 0.0181187970110167 -0.0124428879046877 + 30 2 Cd 3px 0.0113620293238297 0.0311427187064137 + 31 2 Cd 4py 0.0010555153502746 -0.0079268524311373 + 32 2 Cd 4pz -0.0013066678163779 0.0038697672186290 + 33 2 Cd 4px 0.0097353506556341 0.0032092020676545 + 34 2 Cd 4d-2 -0.0041355222296519 -0.0387612024188987 + 35 2 Cd 4d-1 -0.0372990931220104 0.0010602131343635 + 36 2 Cd 4d0 -0.0220481038115820 -0.0341475964305722 + 37 2 Cd 4d+1 -0.0182121060334179 0.0065782181528656 + 38 2 Cd 4d+2 0.0363050821206764 0.0174536359567009 + 39 2 Cd 5d-2 -0.0086905477988857 -0.0053377007222233 + 40 2 Cd 5d-1 -0.0060289629032988 -0.0017978279245889 + 41 2 Cd 5d0 0.0037335403700976 -0.0047436459937362 + 42 2 Cd 5d+1 -0.0044513643145602 -0.0012822578223124 + 43 2 Cd 5d+2 -0.0129127560269310 -0.0062472532525330 + 44 2 Cd 5f-3 0.0047902399271125 0.0002787667218497 + 45 2 Cd 5f-2 0.0009323498715013 0.0002249761781544 + 46 2 Cd 5f-1 -0.0008612978887696 0.0012047598258391 + 47 2 Cd 5f0 0.0011211513773264 -0.0006506868895234 + 48 2 Cd 5f+1 -0.0027153972400071 -0.0013653411134226 + 49 2 Cd 5f+2 0.0013948207966915 0.0002302649733348 + 50 2 Cd 5f+3 0.0039216015121386 -0.0015327074969368 + + 51 3 Cd 2s -0.1903997478531401 -0.1319457918917713 + 52 3 Cd 3s 0.0059191519858436 0.0052991348143741 + 53 3 Cd 3py -0.0367670482573652 -0.0163848867819907 + 54 3 Cd 3pz 0.0187834299988490 -0.0104163721410084 + 55 3 Cd 3px 0.0331375745762702 0.0250756031213952 + 56 3 Cd 4py 0.0000687438755299 0.0033158245344385 + 57 3 Cd 4pz -0.0015458634126044 0.0014074837457881 + 58 3 Cd 4px 0.0053147538350274 0.0009617959107314 + 59 3 Cd 4d-2 0.0356758968656644 0.0099630682143383 + 60 3 Cd 4d-1 0.0339012714612138 -0.0100597841528601 + 61 3 Cd 4d0 0.0306389322666635 0.0019784047286441 + 62 3 Cd 4d+1 -0.0407812986757485 0.0245855883768408 + 63 3 Cd 4d+2 0.0313486989780210 0.0264852875299593 + 64 3 Cd 5d-2 -0.0029528616765253 -0.0012479917398956 + 65 3 Cd 5d-1 0.0020063938211747 -0.0058936836774005 + 66 3 Cd 5d0 0.0067012167822171 -0.0016597881224864 + 67 3 Cd 5d+1 -0.0060454601149548 -0.0011176256771704 + 68 3 Cd 5d+2 -0.0002344920075669 0.0002575784111375 + 69 3 Cd 5f-3 0.0017800108431392 -0.0004080007823526 + 70 3 Cd 5f-2 0.0016747161587053 0.0005807466809460 + 71 3 Cd 5f-1 0.0007919102017516 0.0019983267492278 + 72 3 Cd 5f0 0.0010398164777084 0.0019756533556842 + 73 3 Cd 5f+1 0.0004749918036712 0.0005292062304512 + 74 3 Cd 5f+2 -0.0004422381822418 -0.0004077123595649 + 75 3 Cd 5f+3 0.0054554602501509 0.0012666444747704 + + 76 4 Se 2s -0.0261543667396967 -0.0469266432941586 + 77 4 Se 3s 0.0012590495512473 0.0035913128500473 + 78 4 Se 3py -0.0418929320055521 -0.0360330399930372 + 79 4 Se 3pz -0.0289925590226593 -0.0586524024378795 + 80 4 Se 3px -0.0025009255027864 -0.0361423961223767 + 81 4 Se 4py -0.0011243734288893 -0.0030363944730762 + 82 4 Se 4pz -0.0010862615111743 -0.0009194869408736 + 83 4 Se 4px -0.0013081634906972 0.0007137127266611 + 84 4 Se 4d-2 0.0016891881461666 0.0020566952770413 + 85 4 Se 4d-1 0.0021573206077054 -0.0005177544522936 + 86 4 Se 4d0 -0.0001223700202375 -0.0010473147734008 + 87 4 Se 4d+1 0.0013725517156029 0.0052504245358389 + 88 4 Se 4d+2 -0.0025138602060482 0.0008737826535931 + + 89 5 Se 2s -0.0878551486419931 -0.0352178366407379 + 90 5 Se 3s 0.0037558330097572 0.0023006624605092 + 91 5 Se 3py 0.0366764098294597 0.0198437874355961 + 92 5 Se 3pz 0.0522086046931502 0.0231578168091341 + 93 5 Se 3px -0.0588042305811083 -0.0255563855370768 + 94 5 Se 4py 0.0011904360580887 0.0009691597923870 + 95 5 Se 4pz -0.0000184058937973 -0.0005911361889858 + 96 5 Se 4px -0.0018104066372789 -0.0001626900273567 + 97 5 Se 4d-2 -0.0033355968851627 -0.0024418261512784 + 98 5 Se 4d-1 0.0031778424215254 0.0017467841662675 + 99 5 Se 4d0 0.0001584929886808 0.0000696748849760 + 100 5 Se 4d+1 -0.0040824705666246 -0.0023080262076391 + 101 5 Se 4d+2 0.0020092543612981 0.0000643110378296 + + 102 6 Se 2s -0.0301198888323017 -0.1318344365968300 + 103 6 Se 3s 0.0024337590432472 0.0101656022302670 + 104 6 Se 3py -0.0277107287095407 0.0371743106750272 + 105 6 Se 3pz -0.0740777617616548 0.0037185659248218 + 106 6 Se 3px -0.0248407234470027 -0.1626926581435897 + 107 6 Se 4py -0.0002953915545639 0.0002768376636078 + 108 6 Se 4pz 0.0016975111197637 0.0007385537422385 + 109 6 Se 4px 0.0009574954862867 -0.0037794858053985 + 110 6 Se 4d-2 0.0031208023826830 -0.0031045294130112 + 111 6 Se 4d-1 0.0006882284719707 0.0009014403332905 + 112 6 Se 4d0 0.0010534415977509 -0.0037483586420149 + 113 6 Se 4d+1 0.0068478835611948 -0.0009287471812927 + 114 6 Se 4d+2 0.0021973145707640 0.0068464943574464 + + 115 7 Se 2s 0.0546632822472982 0.0428404896718119 + 116 7 Se 3s -0.0057651919156017 -0.0043368065344887 + 117 7 Se 3py 0.0483445981884006 -0.1597999011759225 + 118 7 Se 3pz 0.0600706819464832 0.0985545223413964 + 119 7 Se 3px 0.0071498161867877 0.0569227796825579 + 120 7 Se 4py 0.0017946411954632 0.0003660825037106 + 121 7 Se 4pz 0.0012595942505713 -0.0000367503548499 + 122 7 Se 4px -0.0003690366954559 -0.0004143010612875 + 123 7 Se 4d-2 -0.0013989731940689 -0.0012019563611617 + 124 7 Se 4d-1 -0.0047262907501514 0.0117447702056354 + 125 7 Se 4d0 -0.0022974534305950 -0.0077649140894874 + 126 7 Se 4d+1 -0.0005280173027194 -0.0046063175372681 + 127 7 Se 4d+2 -0.0003786398339953 -0.0021240692174771 + + 128 8 Cd 2s 0.2760744140009651 0.0149820231651820 + 129 8 Cd 3s -0.0041597673028345 -0.0009300644679962 + 130 8 Cd 3py -0.0346283137380455 0.0468203761539650 + 131 8 Cd 3pz -0.0309351658575065 -0.0125080040351957 + 132 8 Cd 3px 0.0145601570793788 -0.0123568256870471 + 133 8 Cd 4py 0.0054798265044471 -0.0060286382740469 + 134 8 Cd 4pz 0.0041999432466997 0.0033347269180930 + 135 8 Cd 4px 0.0088228902562706 0.0082865861747419 + 136 8 Cd 4d-2 0.0405211335746966 0.0126908158169453 + 137 8 Cd 4d-1 0.0122039306265621 -0.0259317460296649 + 138 8 Cd 4d0 0.0286120179610938 -0.0075988704731993 + 139 8 Cd 4d+1 0.0432605531434924 -0.0091038279760125 + 140 8 Cd 4d+2 -0.0133374771574176 -0.0622406811764057 + 141 8 Cd 5d-2 0.0072493360487097 0.0064929551275814 + 142 8 Cd 5d-1 0.0012662241292889 -0.0046930654822633 + 143 8 Cd 5d0 -0.0048825844397570 -0.0030199964485513 + 144 8 Cd 5d+1 0.0058547428753748 -0.0075019770017456 + 145 8 Cd 5d+2 0.0086473626210560 -0.0033476332883003 + 146 8 Cd 5f-3 -0.0019901040054337 -0.0003873202293734 + 147 8 Cd 5f-2 -0.0026743237067535 -0.0017121995744457 + 148 8 Cd 5f-1 -0.0005878941171574 0.0011018051610377 + 149 8 Cd 5f0 -0.0021396104235415 -0.0000855937168636 + 150 8 Cd 5f+1 -0.0007449740794271 -0.0021680265192814 + 151 8 Cd 5f+2 -0.0013746492958496 -0.0025248592382278 + 152 8 Cd 5f+3 -0.0042791405716066 0.0006858493461427 + + 153 9 Cd 2s -0.0108646801116134 -0.2078171343449158 + 154 9 Cd 3s -0.0017755558248396 0.0109196553970327 + 155 9 Cd 3py 0.0066285735370338 -0.0270260202798275 + 156 9 Cd 3pz -0.0046850836460758 0.0335720903752420 + 157 9 Cd 3px 0.0063492920054027 0.0098898995408758 + 158 9 Cd 4py -0.0034449720905693 -0.0004328158767559 + 159 9 Cd 4pz 0.0027930350718564 -0.0003760339401454 + 160 9 Cd 4px -0.0061118121809128 -0.0026433420183638 + 161 9 Cd 4d-2 -0.0085428862024602 0.0044974622321145 + 162 9 Cd 4d-1 -0.0147032365978059 0.0153004742465022 + 163 9 Cd 4d0 0.0021747619058171 0.0001096926178773 + 164 9 Cd 4d+1 0.0203476995217119 0.0056486756628999 + 165 9 Cd 4d+2 -0.0175007970841698 -0.0113286293934774 + 166 9 Cd 5d-2 0.0009112598622392 0.0043429245105368 + 167 9 Cd 5d-1 -0.0004272547282517 0.0077790757034136 + 168 9 Cd 5d0 0.0007749562187658 -0.0058839237500822 + 169 9 Cd 5d+1 0.0026031654891859 -0.0055856409117804 + 170 9 Cd 5d+2 0.0029394589610510 0.0077016018802980 + 171 9 Cd 5f-3 -0.0004612391341493 -0.0004959200268410 + 172 9 Cd 5f-2 -0.0008273928064936 -0.0021058020524431 + 173 9 Cd 5f-1 0.0004303794795763 -0.0018113541736845 + 174 9 Cd 5f0 -0.0038295133749349 -0.0021362039675319 + 175 9 Cd 5f+1 0.0003169385577462 0.0013825062877575 + 176 9 Cd 5f+2 0.0009550080384112 -0.0001776313934740 + 177 9 Cd 5f+3 -0.0020054301637770 -0.0019842311748168 + + 178 10 Se 2s 0.1038214758019275 -0.0965090557286273 + 179 10 Se 3s -0.0087459124804382 0.0069171078486340 + 180 10 Se 3py -0.0593968845146968 0.0284431543341617 + 181 10 Se 3pz 0.1475938906196957 -0.0411934323432876 + 182 10 Se 3px 0.0366507301866762 0.1451039856833297 + 183 10 Se 4py -0.0010841930340272 0.0036911717544366 + 184 10 Se 4pz -0.0026283892261629 -0.0042672211139528 + 185 10 Se 4px -0.0053614030692242 0.0019455117158044 + 186 10 Se 4d-2 -0.0016040105091263 0.0024752278958099 + 187 10 Se 4d-1 0.0048367773963411 -0.0009876106874439 + 188 10 Se 4d0 -0.0118189139383987 -0.0020558965291404 + 189 10 Se 4d+1 0.0003901835482348 -0.0054081241962095 + 190 10 Se 4d+2 0.0048951094141093 0.0064434668200673 + + 191 11 Se 2s -0.0060930516354241 -0.0231610623695620 + 192 11 Se 3s 0.0003052058872649 0.0026828431187804 + 193 11 Se 3py -0.0085479534812143 0.0442942694221424 + 194 11 Se 3pz -0.0405042037787024 0.0223749893377497 + 195 11 Se 3px 0.0890556153510752 0.0483837774663409 + 196 11 Se 4py -0.0013677081504406 -0.0011853850464505 + 197 11 Se 4pz 0.0000017247260607 0.0013816436735833 + 198 11 Se 4px 0.0002283240760643 -0.0009309152326946 + 199 11 Se 4d-2 0.0102036374594837 0.0051077217847763 + 200 11 Se 4d-1 -0.0032741246535312 -0.0005010674812969 + 201 11 Se 4d0 0.0021470362309704 -0.0027836218914678 + 202 11 Se 4d+1 -0.0018478749855187 -0.0007221130382735 + 203 11 Se 4d+2 0.0011634721143257 -0.0020704017572703 + + 204 12 Cd 2s 0.2406443882643634 0.0081379712698425 + 205 12 Cd 3s -0.0115206562363302 -0.0007118341489927 + 206 12 Cd 3py 0.0404761964255785 -0.0079730377802263 + 207 12 Cd 3pz -0.0155086488659564 -0.0113941655530708 + 208 12 Cd 3px -0.0052912949776264 -0.0147183772357765 + 209 12 Cd 4py -0.0054713299510197 0.0011153749220304 + 210 12 Cd 4pz -0.0032714092159826 0.0023691352925303 + 211 12 Cd 4px 0.0012578730755754 0.0019138134842575 + 212 12 Cd 4d-2 -0.0159729665398566 0.0034807435509858 + 213 12 Cd 4d-1 -0.0018874553053190 -0.0101347940564844 + 214 12 Cd 4d0 -0.0061372226681971 0.0397073837625062 + 215 12 Cd 4d+1 0.0240532433725154 -0.0071990578211528 + 216 12 Cd 4d+2 -0.0713396743646168 -0.0216569499179758 + 217 12 Cd 5d-2 -0.0100231640270184 0.0009570062557459 + 218 12 Cd 5d-1 -0.0047251392782157 0.0021261458476191 + 219 12 Cd 5d0 -0.0050649955689091 0.0033530230160311 + 220 12 Cd 5d+1 -0.0025545453148690 -0.0025417258952060 + 221 12 Cd 5d+2 0.0003244123831620 -0.0025114678017235 + 222 12 Cd 5f-3 0.0016382813026402 -0.0004380722665253 + 223 12 Cd 5f-2 0.0012829980390997 0.0011635864462171 + 224 12 Cd 5f-1 -0.0011138671544885 -0.0022558531057768 + 225 12 Cd 5f0 0.0026816079755121 0.0020648174326782 + 226 12 Cd 5f+1 -0.0003918235931043 -0.0008949983366964 + 227 12 Cd 5f+2 0.0010781598749671 -0.0005007275647578 + 228 12 Cd 5f+3 0.0057884244372158 0.0020510813597139 + + 229 13 Cd 2s 0.0177947155143907 -0.1420280210341169 + 230 13 Cd 3s -0.0060588221873044 0.0088551091862871 + 231 13 Cd 3py 0.0112817440426277 -0.0021213633235116 + 232 13 Cd 3pz -0.0019929040596184 0.0071803619185378 + 233 13 Cd 3px 0.0120728311246520 0.0204132180791113 + 234 13 Cd 4py -0.0020104090099220 0.0014115967554093 + 235 13 Cd 4pz 0.0002490889357312 -0.0018472718321912 + 236 13 Cd 4px 0.0139860889092934 0.0016757087184012 + 237 13 Cd 4d-2 0.0065292332525978 0.0699753430095173 + 238 13 Cd 4d-1 0.0187629127134910 0.0025189509641549 + 239 13 Cd 4d0 0.0000403351924844 0.0360175923922724 + 240 13 Cd 4d+1 -0.0087527307714173 0.0032860165936584 + 241 13 Cd 4d+2 0.0415188840273863 -0.0064075122251844 + 242 13 Cd 5d-2 -0.0132202852148641 0.0053887332915831 + 243 13 Cd 5d-1 0.0029392871556780 0.0019263790373316 + 244 13 Cd 5d0 0.0045430981917785 0.0102266207823734 + 245 13 Cd 5d+1 0.0005483559410990 0.0104612190024445 + 246 13 Cd 5d+2 -0.0070017983197948 -0.0062547522563398 + 247 13 Cd 5f-3 0.0013140265789104 0.0006821865037283 + 248 13 Cd 5f-2 -0.0014784556865798 0.0013023574479393 + 249 13 Cd 5f-1 0.0000350081863413 -0.0008365409181201 + 250 13 Cd 5f0 -0.0000599330245712 0.0002451976948403 + 251 13 Cd 5f+1 -0.0046586225208045 0.0020686617092619 + 252 13 Cd 5f+2 -0.0003135083770473 -0.0009328239433047 + 253 13 Cd 5f+3 -0.0004101836093362 0.0002998799029225 + + 254 14 Cd 2s -0.0352540060000153 0.3396266995611201 + 255 14 Cd 3s -0.0028692120753386 -0.0161199654847508 + 256 14 Cd 3py -0.0054909929882352 -0.0210550797418911 + 257 14 Cd 3pz 0.0034353642802814 -0.0024211393772366 + 258 14 Cd 3px 0.0091205531266760 -0.0205384165798285 + 259 14 Cd 4py 0.0036139800582359 -0.0032909497832707 + 260 14 Cd 4pz -0.0014025252746863 0.0059197388080730 + 261 14 Cd 4px 0.0000735276857716 0.0018259615255911 + 262 14 Cd 4d-2 -0.0003572363920906 0.0101516802700926 + 263 14 Cd 4d-1 0.0100872484488709 -0.0349406316435124 + 264 14 Cd 4d0 -0.0234682856395472 0.0624239962173274 + 265 14 Cd 4d+1 -0.0105583942406712 0.0303301833114322 + 266 14 Cd 4d+2 -0.0165831326691182 -0.0029795338793620 + 267 14 Cd 5d-2 0.0004003940833909 0.0016559052529646 + 268 14 Cd 5d-1 0.0023463628076510 -0.0029201902381264 + 269 14 Cd 5d0 -0.0002575704983723 -0.0045674434408296 + 270 14 Cd 5d+1 -0.0004493443062772 0.0036514775265347 + 271 14 Cd 5d+2 -0.0010212917285996 -0.0070430894457197 + 272 14 Cd 5f-3 0.0007490691370692 0.0015044639751203 + 273 14 Cd 5f-2 -0.0003195929017711 -0.0010441271696585 + 274 14 Cd 5f-1 -0.0005484175940621 0.0008419912249636 + 275 14 Cd 5f0 0.0001303224669199 -0.0003316825311506 + 276 14 Cd 5f+1 -0.0006433279615303 -0.0009436560236941 + 277 14 Cd 5f+2 0.0013696975335176 -0.0007049867546686 + 278 14 Cd 5f+3 0.0005067209182229 -0.0000871664323106 + + 279 15 Se 2s 0.0345003127260241 0.0506793775282695 + 280 15 Se 3s -0.0034777292955096 -0.0029139859802194 + 281 15 Se 3py 0.0681413780153857 -0.0621310495140809 + 282 15 Se 3pz 0.0462289582573727 -0.2573291392360241 + 283 15 Se 3px -0.0051440756372753 -0.0033910103462247 + 284 15 Se 4py 0.0000482318971371 -0.0009229266071592 + 285 15 Se 4pz -0.0004046706039978 0.0003528223795926 + 286 15 Se 4px -0.0015506416033110 0.0018930359755970 + 287 15 Se 4d-2 -0.0009029527408262 -0.0013385870726500 + 288 15 Se 4d-1 -0.0020193000893830 0.0117250175852603 + 289 15 Se 4d0 0.0041299181221610 -0.0152571083725451 + 290 15 Se 4d+1 -0.0000737124681578 -0.0032069844144061 + 291 15 Se 4d+2 0.0040600552202251 -0.0020746587703481 + + 292 16 Se 2s -0.0164040801034290 -0.0314984790727382 + 293 16 Se 3s 0.0002875529593002 0.0015558025264061 + 294 16 Se 3py -0.0185458984137994 0.0476034797523954 + 295 16 Se 3pz 0.0137674679093595 0.0624194113115596 + 296 16 Se 3px 0.0047034202363761 0.0104905704320235 + 297 16 Se 4py 0.0006138585804544 0.0009871738818539 + 298 16 Se 4pz 0.0012071916944955 0.0030825845093155 + 299 16 Se 4px 0.0009846380229342 0.0013123307128673 + 300 16 Se 4d-2 0.0007444841818064 -0.0044380922190413 + 301 16 Se 4d-1 -0.0011805416830614 0.0028031536387541 + 302 16 Se 4d0 0.0014065281386213 0.0047355792438701 + 303 16 Se 4d+1 0.0014927649603826 -0.0013393127640082 + 304 16 Se 4d+2 -0.0004691412115038 -0.0013685003882198 + + 305 17 Cd 2s -0.0115514002412649 0.0856381123160904 + 306 17 Cd 3s -0.0005184790845606 -0.0101702343663406 + 307 17 Cd 3py 0.0080958652896311 -0.0116851213915285 + 308 17 Cd 3pz 0.0003202136003344 -0.0018884412591475 + 309 17 Cd 3px 0.0044341595006636 -0.0103638627885987 + 310 17 Cd 4py 0.0030032443980709 -0.0029909865466496 + 311 17 Cd 4pz -0.0026735355899099 -0.0029457284009710 + 312 17 Cd 4px 0.0040654311590080 0.0025730750998459 + 313 17 Cd 4d-2 0.0139444758575405 0.0287916447909213 + 314 17 Cd 4d-1 0.0056694469809740 -0.0185635315665573 + 315 17 Cd 4d0 0.0003763963506415 -0.0208296052512294 + 316 17 Cd 4d+1 -0.0378130612669064 -0.0295141061865907 + 317 17 Cd 4d+2 0.0036752270462902 0.0307358622691304 + 318 17 Cd 5d-2 -0.0021911629023386 0.0071337344267423 + 319 17 Cd 5d-1 0.0064056600496793 -0.0038293382967348 + 320 17 Cd 5d0 -0.0022436319196942 -0.0022668046098122 + 321 17 Cd 5d+1 0.0035010512442104 -0.0011816779134672 + 322 17 Cd 5d+2 -0.0049950644390241 0.0014054744475387 + 323 17 Cd 5f-3 0.0029809054014211 -0.0007467555226036 + 324 17 Cd 5f-2 -0.0017301045876257 0.0006439872677859 + 325 17 Cd 5f-1 0.0015697493336191 0.0011629325621511 + 326 17 Cd 5f0 0.0002671061688496 -0.0001901733775937 + 327 17 Cd 5f+1 0.0016098820925663 0.0010513298626732 + 328 17 Cd 5f+2 -0.0018353575153175 -0.0003323628545965 + 329 17 Cd 5f+3 0.0016786969844590 0.0008143369264969 + + 330 18 Cd 2s -0.0316038948644379 0.0036917585653982 + 331 18 Cd 3s 0.0043517532107834 0.0018034236291857 + 332 18 Cd 3py 0.0039316751855686 0.0040770942839874 + 333 18 Cd 3pz 0.0022775735106153 0.0145270082249329 + 334 18 Cd 3px -0.0105358008397722 0.0002898369301891 + 335 18 Cd 4py 0.0024097195252953 0.0013827281020995 + 336 18 Cd 4pz 0.0037158158739504 -0.0019146241846945 + 337 18 Cd 4px 0.0032721513811580 0.0038698856482993 + 338 18 Cd 4d-2 -0.0180632020487980 -0.0106197014648538 + 339 18 Cd 4d-1 -0.0044622095577857 -0.0036969178116385 + 340 18 Cd 4d0 -0.0198247638087815 -0.0125972011983786 + 341 18 Cd 4d+1 -0.0214353281464276 -0.0200396440917114 + 342 18 Cd 4d+2 0.0043391191225943 -0.0039349283314442 + 343 18 Cd 5d-2 0.0012538616026218 0.0042771605119055 + 344 18 Cd 5d-1 0.0069883433462192 0.0024128444544957 + 345 18 Cd 5d0 -0.0005899482822052 -0.0017988462452889 + 346 18 Cd 5d+1 -0.0016062305229066 0.0011084437643808 + 347 18 Cd 5d+2 -0.0016338497761624 0.0004853806305432 + 348 18 Cd 5f-3 0.0001208614234618 0.0005833437860754 + 349 18 Cd 5f-2 0.0012698386436155 0.0016639936794838 + 350 18 Cd 5f-1 0.0018467241192928 0.0021548968936014 + 351 18 Cd 5f0 -0.0013435176323159 -0.0016563257422119 + 352 18 Cd 5f+1 0.0004386438409201 0.0004776897336199 + 353 18 Cd 5f+2 -0.0017622018210517 -0.0003706251204925 + 354 18 Cd 5f+3 -0.0014956957498760 -0.0016577069916500 + + 355 19 Se 2s 0.0154482204633963 0.0668688785702990 + 356 19 Se 3s -0.0013907511462163 -0.0057916906469417 + 357 19 Se 3py -0.0198719086660324 -0.0974152309770056 + 358 19 Se 3pz -0.0241047474550879 -0.0427722034756268 + 359 19 Se 3px 0.0289933657061454 0.0221752261792775 + 360 19 Se 4py -0.0014300393889369 -0.0021458588261708 + 361 19 Se 4pz 0.0017297585600543 0.0012763884158951 + 362 19 Se 4px -0.0010070201071787 -0.0028869842319922 + 363 19 Se 4d-2 0.0015180003225538 -0.0003929783681244 + 364 19 Se 4d-1 -0.0035515127301936 -0.0060618928292100 + 365 19 Se 4d0 -0.0014062701949842 -0.0007654603568692 + 366 19 Se 4d+1 0.0024359248944872 0.0035659536923831 + 367 19 Se 4d+2 0.0011867513368349 0.0023220905876376 + + 368 20 Se 2s 0.1710405313619626 -0.0368645097170122 + 369 20 Se 3s -0.0143933303167195 0.0032146964026277 + 370 20 Se 3py -0.0927918835576882 -0.0117503367851269 + 371 20 Se 3pz -0.0766447571662767 0.0916994093232410 + 372 20 Se 3px 0.2974967806661969 0.1332348474750115 + 373 20 Se 4py -0.0030393713991370 -0.0080129082841472 + 374 20 Se 4pz -0.0004699330251028 0.0023250318316924 + 375 20 Se 4px 0.0071571776688784 -0.0056754305935552 + 376 20 Se 4d-2 -0.0066431834057294 -0.0036741830046934 + 377 20 Se 4d-1 -0.0013688873168034 -0.0064403842470751 + 378 20 Se 4d0 -0.0050153953570710 -0.0007363676574235 + 379 20 Se 4d+1 0.0048662642222104 0.0002613227311016 + 380 20 Se 4d+2 -0.0026233785941948 -0.0019461725996667 + + 381 21 Se 2s 0.1877007297737950 -0.0173667926054552 + 382 21 Se 3s -0.0137949134637549 0.0015513780025641 + 383 21 Se 3py 0.2196131686000061 -0.1098463866676008 + 384 21 Se 3pz 0.0570707225499767 -0.1017656517736236 + 385 21 Se 3px -0.0620455837630123 -0.2080587977547507 + 386 21 Se 4py 0.0061328875240806 0.0046587251039255 + 387 21 Se 4pz 0.0007101292887037 0.0056982893182577 + 388 21 Se 4px -0.0017723653146881 0.0083950997909950 + 389 21 Se 4d-2 0.0049342802436063 0.0081194366693652 + 390 21 Se 4d-1 -0.0022593430791431 0.0038094188373165 + 391 21 Se 4d0 0.0020980507478861 0.0004684109697713 + 392 21 Se 4d+1 0.0002372671076304 -0.0020137727255056 + 393 21 Se 4d+2 0.0064533485614970 -0.0050993491572529 + + 394 22 Cd 2s 0.2007316459599175 -0.0610826900638798 + 395 22 Cd 3s -0.0054449673576581 0.0066657580921792 + 396 22 Cd 3py -0.0408729205697991 -0.0146987624397379 + 397 22 Cd 3pz 0.0165911366007257 0.0247981291609674 + 398 22 Cd 3px 0.0201616428620883 0.0215492429442577 + 399 22 Cd 4py 0.0026729314230520 0.0083094050736363 + 400 22 Cd 4pz 0.0006440011614627 -0.0012181906193758 + 401 22 Cd 4px 0.0043889566228448 0.0082442738175918 + 402 22 Cd 4d-2 0.0421907385380153 -0.0506628856774732 + 403 22 Cd 4d-1 -0.0306562472893076 0.0111554321006586 + 404 22 Cd 4d0 0.0021713836888243 0.0196492074906829 + 405 22 Cd 4d+1 0.0064438464088089 0.0273219798305398 + 406 22 Cd 4d+2 -0.0293900414870821 -0.0472288167505121 + 407 22 Cd 5d-2 0.0038284105647715 -0.0114157518792818 + 408 22 Cd 5d-1 -0.0116983462977182 0.0005372622001976 + 409 22 Cd 5d0 -0.0106876055575255 0.0061684540129554 + 410 22 Cd 5d+1 0.0005900025146669 0.0055597131520892 + 411 22 Cd 5d+2 0.0070006018526662 0.0063748643051880 + 412 22 Cd 5f-3 -0.0008377670869709 -0.0028857696575101 + 413 22 Cd 5f-2 0.0014096173291600 -0.0003757165157715 + 414 22 Cd 5f-1 -0.0012196182369354 -0.0037803445347129 + 415 22 Cd 5f0 -0.0015021106865200 -0.0025833091936414 + 416 22 Cd 5f+1 0.0006535194787676 -0.0041726928846416 + 417 22 Cd 5f+2 -0.0011188236535124 -0.0001947291697048 + 418 22 Cd 5f+3 -0.0010814485880028 -0.0014080860769274 + + 419 23 Se 2s 0.0975957256210310 0.0373992593177092 + 420 23 Se 3s -0.0072011162985053 -0.0036691445887406 + 421 23 Se 3py 0.0151819224218995 0.0949178429490008 + 422 23 Se 3pz -0.1177807075815982 0.0047857495824647 + 423 23 Se 3px -0.0023065585276908 -0.0296914388341079 + 424 23 Se 4py 0.0009657890012950 -0.0010682382185399 + 425 23 Se 4pz -0.0006430713812665 -0.0006437867439898 + 426 23 Se 4px -0.0026932643303387 0.0002077873284463 + 427 23 Se 4d-2 -0.0011212567817389 0.0037227298977423 + 428 23 Se 4d-1 0.0031741435204872 0.0074072321292820 + 429 23 Se 4d0 -0.0087329045509409 0.0030639985783974 + 430 23 Se 4d+1 -0.0018064453298896 0.0009109712655546 + 431 23 Se 4d+2 0.0016754273439444 -0.0001759127679253 + + 432 24 Se 2s 0.1653058580772135 -0.0280624719713690 + 433 24 Se 3s -0.0139287181944232 0.0028561576499025 + 434 24 Se 3py -0.1418459597717235 0.1144799492843240 + 435 24 Se 3pz -0.0350566814833853 0.0602146841685478 + 436 24 Se 3px -0.1386009603858420 -0.0465930467240261 + 437 24 Se 4py -0.0074934888900254 0.0008322401967797 + 438 24 Se 4pz 0.0005233931568182 0.0024172327179372 + 439 24 Se 4px -0.0039321072605404 -0.0008559744328386 + 440 24 Se 4d-2 -0.0077431593715506 0.0023111190012788 + 441 24 Se 4d-1 -0.0013603703973204 0.0049101462785580 + 442 24 Se 4d0 0.0046408788347136 -0.0029311056052622 + 443 24 Se 4d+1 -0.0025441986484287 0.0030036105591368 + 444 24 Se 4d+2 -0.0022136593052928 -0.0098715085940117 + + 445 25 Cd 2s 0.1939772571762901 0.1648179102432532 + 446 25 Cd 3s -0.0065363646936992 -0.0005212734881620 + 447 25 Cd 3py 0.0247734462590594 0.0124188055751548 + 448 25 Cd 3pz 0.0283384660413910 0.0138382002957947 + 449 25 Cd 3px 0.0100588295813936 0.0273203527277635 + 450 25 Cd 4py -0.0031859966865794 0.0059521768611268 + 451 25 Cd 4pz -0.0046660807078459 0.0052386056645266 + 452 25 Cd 4px 0.0001995387630188 -0.0008117174463332 + 453 25 Cd 4d-2 0.0012143064206741 0.0284972335256304 + 454 25 Cd 4d-1 0.0262216238747599 -0.0116539556704640 + 455 25 Cd 4d0 0.0339719211181216 0.0108970815899112 + 456 25 Cd 4d+1 -0.0092898489370622 -0.0027068449406678 + 457 25 Cd 4d+2 -0.0354019959374841 0.0182698296956904 + 458 25 Cd 5d-2 -0.0010059053725903 0.0101290497899098 + 459 25 Cd 5d-1 0.0045089409856086 -0.0022920846125305 + 460 25 Cd 5d0 0.0046114866749843 -0.0052842944291030 + 461 25 Cd 5d+1 -0.0094738180234749 0.0015172671490226 + 462 25 Cd 5d+2 0.0003616936422010 -0.0034178962513370 + 463 25 Cd 5f-3 0.0011168107417973 -0.0007856094738097 + 464 25 Cd 5f-2 -0.0005624437103096 -0.0009446569960432 + 465 25 Cd 5f-1 0.0031378193020333 -0.0004431784316222 + 466 25 Cd 5f0 0.0005317099812098 -0.0000527518980556 + 467 25 Cd 5f+1 -0.0006901666684230 -0.0027923295139587 + 468 25 Cd 5f+2 -0.0010225996318294 -0.0006708744007784 + 469 25 Cd 5f+3 -0.0016746552074923 -0.0016893553844766 + + 470 26 Cd 2s 0.1600741393357679 -0.2217933486504755 + 471 26 Cd 3s -0.0157900120880087 0.0204211682888450 + 472 26 Cd 3py -0.0180480969653878 -0.0062604212969092 + 473 26 Cd 3pz -0.0083760435675929 -0.0010616490226324 + 474 26 Cd 3px 0.0375245948249632 -0.0091856188920532 + 475 26 Cd 4py 0.0024051969209453 0.0047287564434400 + 476 26 Cd 4pz 0.0009556761786615 -0.0003803284099627 + 477 26 Cd 4px -0.0060483073042923 0.0033490051268923 + 478 26 Cd 4d-2 -0.0278095035213647 -0.0629475970778364 + 479 26 Cd 4d-1 0.0032891355319394 -0.0239627049286211 + 480 26 Cd 4d0 -0.0152365201785502 0.0423055710923979 + 481 26 Cd 4d+1 -0.0121292848839069 -0.0098868215652950 + 482 26 Cd 4d+2 0.0305761719835486 0.0479399583877321 + 483 26 Cd 5d-2 -0.0061983431662033 0.0039224750570188 + 484 26 Cd 5d-1 -0.0029466379541756 0.0011162906917313 + 485 26 Cd 5d0 0.0026401071071669 0.0022171793259407 + 486 26 Cd 5d+1 -0.0035399737209951 0.0010327486291214 + 487 26 Cd 5d+2 0.0089222300987916 -0.0005951755752187 + 488 26 Cd 5f-3 -0.0004160372108014 0.0006778796002247 + 489 26 Cd 5f-2 0.0002083814829296 -0.0001007371411644 + 490 26 Cd 5f-1 0.0000141406421308 -0.0006678756152981 + 491 26 Cd 5f0 0.0006495417913820 -0.0010856197232386 + 492 26 Cd 5f+1 -0.0005123823764568 -0.0000930377807764 + 493 26 Cd 5f+2 -0.0011525511105183 -0.0000180452961814 + 494 26 Cd 5f+3 0.0015423015874138 -0.0003591196676731 + + 83 84 + -0.3021728613375970 -0.2987366094066515 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0411114735793740 -0.0280114681113741 + 2 1 Cd 3s 0.0051460236982223 0.0041214790218451 + 3 1 Cd 3py -0.0140578916691961 -0.0144539072001733 + 4 1 Cd 3pz 0.0008301396380150 -0.0044381416071942 + 5 1 Cd 3px -0.0105910078153997 -0.0005082832934933 + 6 1 Cd 4py 0.0037536128936584 0.0043077215186613 + 7 1 Cd 4pz -0.0002619254722463 -0.0010254308738684 + 8 1 Cd 4px -0.0029885869815108 -0.0029152890559793 + 9 1 Cd 4d-2 0.0201754822663960 0.0049255351827708 + 10 1 Cd 4d-1 -0.0029478653013135 0.0043338853330029 + 11 1 Cd 4d0 0.0184499446600062 0.0121652369516653 + 12 1 Cd 4d+1 -0.0029419085091675 0.0000087306671114 + 13 1 Cd 4d+2 0.0326283804272411 0.0174320170912975 + 14 1 Cd 5d-2 0.0018693395786649 0.0034524103757128 + 15 1 Cd 5d-1 0.0045049466996160 0.0001874367462240 + 16 1 Cd 5d0 0.0011954170521895 -0.0010660944969368 + 17 1 Cd 5d+1 0.0002372999761163 0.0022419879500177 + 18 1 Cd 5d+2 0.0063019804257080 0.0004537403850770 + 19 1 Cd 5f-3 0.0000149524378201 -0.0019351745431356 + 20 1 Cd 5f-2 -0.0021565881023456 0.0009177113209757 + 21 1 Cd 5f-1 -0.0004679034533198 -0.0020905778569635 + 22 1 Cd 5f0 0.0007791562548192 0.0003362792353755 + 23 1 Cd 5f+1 0.0008643429079626 0.0010194469973500 + 24 1 Cd 5f+2 0.0001352072922040 -0.0000098122464616 + 25 1 Cd 5f+3 -0.0000639391782657 0.0021528706900788 + + 26 2 Cd 2s 0.2631102164657553 0.1010174404259600 + 27 2 Cd 3s -0.0049344540383862 -0.0012157860109462 + 28 2 Cd 3py -0.0049313659711854 0.0072656158229702 + 29 2 Cd 3pz 0.0393174474225636 -0.0036395423731277 + 30 2 Cd 3px -0.0356108259078950 0.0001730077510133 + 31 2 Cd 4py 0.0027356735992277 -0.0033317052322445 + 32 2 Cd 4pz 0.0004846764880037 0.0026135062426624 + 33 2 Cd 4px -0.0103130615574579 -0.0066803314935216 + 34 2 Cd 4d-2 0.0019034535724969 -0.0072807328681852 + 35 2 Cd 4d-1 -0.0447234723666653 -0.0048672680572066 + 36 2 Cd 4d0 0.0081389831609041 0.0014351016219557 + 37 2 Cd 4d+1 -0.0592930071451477 -0.0118941563558414 + 38 2 Cd 4d+2 -0.0309851260272558 -0.0039159307746173 + 39 2 Cd 5d-2 0.0059191928415081 0.0008090835150866 + 40 2 Cd 5d-1 -0.0100529098059588 -0.0026289467362557 + 41 2 Cd 5d0 -0.0094217301992368 -0.0071573306237335 + 42 2 Cd 5d+1 -0.0103380078269963 0.0002082223517899 + 43 2 Cd 5d+2 0.0040627503111984 -0.0010699163470964 + 44 2 Cd 5f-3 -0.0008486004955997 0.0004586594187263 + 45 2 Cd 5f-2 0.0020890736478764 0.0021180914676388 + 46 2 Cd 5f-1 0.0006646796422480 -0.0007169447484883 + 47 2 Cd 5f0 -0.0006778028076786 -0.0003450636389514 + 48 2 Cd 5f+1 0.0021348324935254 0.0016444927918180 + 49 2 Cd 5f+2 0.0046017442777800 0.0010058818904221 + 50 2 Cd 5f+3 -0.0012283089931336 -0.0008382024801395 + + 51 3 Cd 2s 0.0606348716596024 -0.0936955096283446 + 52 3 Cd 3s -0.0044196076364245 0.0025444104191363 + 53 3 Cd 3py 0.0018367699293099 0.0049397941945054 + 54 3 Cd 3pz -0.0018216079451705 0.0104659268903137 + 55 3 Cd 3px -0.0151072116520650 0.0195627725342458 + 56 3 Cd 4py 0.0004260703287662 -0.0005734908986498 + 57 3 Cd 4pz 0.0022523408758604 0.0000710585086075 + 58 3 Cd 4px 0.0053553100521787 -0.0015636212379565 + 59 3 Cd 4d-2 0.0064343624805907 -0.0084762457746772 + 60 3 Cd 4d-1 0.0256746056259898 -0.0286396078472837 + 61 3 Cd 4d0 0.0223453564858871 -0.0060256342328169 + 62 3 Cd 4d+1 -0.0018791189660434 -0.0110876166137369 + 63 3 Cd 4d+2 -0.0156094887770292 -0.0425293676580950 + 64 3 Cd 5d-2 -0.0000294309034049 -0.0015128370163614 + 65 3 Cd 5d-1 0.0022193365470728 -0.0048306121459499 + 66 3 Cd 5d0 0.0024890554959348 -0.0011175224290408 + 67 3 Cd 5d+1 -0.0047338414187768 -0.0056912906195425 + 68 3 Cd 5d+2 -0.0032868693766006 -0.0051838822796351 + 69 3 Cd 5f-3 0.0014527937797195 0.0004489337333784 + 70 3 Cd 5f-2 0.0007777600405490 -0.0018140397078517 + 71 3 Cd 5f-1 -0.0012478682804925 -0.0002856800889719 + 72 3 Cd 5f0 -0.0021594418559606 0.0007653274814423 + 73 3 Cd 5f+1 0.0024419436652867 -0.0013350882150885 + 74 3 Cd 5f+2 0.0034787858427293 0.0016942686189793 + 75 3 Cd 5f+3 -0.0006892667327881 -0.0006315115666826 + + 76 4 Se 2s 0.0052160473084205 -0.0041575114292222 + 77 4 Se 3s -0.0006627369034558 0.0010920846195143 + 78 4 Se 3py 0.0126181934014235 0.0036841891839700 + 79 4 Se 3pz -0.1304568440721115 -0.1110234312108405 + 80 4 Se 3px 0.0063628469393833 0.0012092893702867 + 81 4 Se 4py -0.0020012528797877 -0.0014497152731955 + 82 4 Se 4pz -0.0024226379632136 -0.0001916809402658 + 83 4 Se 4px 0.0020969653470965 0.0015847529785410 + 84 4 Se 4d-2 -0.0030402227392305 -0.0014528017831658 + 85 4 Se 4d-1 0.0047376011797609 0.0033421102990537 + 86 4 Se 4d0 -0.0018428898250417 -0.0005438889676144 + 87 4 Se 4d+1 0.0083770384323791 0.0074898776046945 + 88 4 Se 4d+2 0.0003729026322687 0.0008081224003436 + + 89 5 Se 2s 0.0151826333147975 -0.0294735357741254 + 90 5 Se 3s -0.0007025781266869 0.0029023474359493 + 91 5 Se 3py 0.0014583954551311 -0.0115293452723169 + 92 5 Se 3pz -0.0017812131925123 0.0193733408780539 + 93 5 Se 3px 0.0235617655125432 -0.0354265759552651 + 94 5 Se 4py 0.0003546794346527 0.0009345165380541 + 95 5 Se 4pz -0.0003894021236602 0.0018959493283438 + 96 5 Se 4px 0.0026476913973527 0.0029758178741475 + 97 5 Se 4d-2 0.0002590500158663 -0.0002815494805110 + 98 5 Se 4d-1 0.0003047669898441 0.0008089705310123 + 99 5 Se 4d0 0.0005553444340717 -0.0008128890894930 + 100 5 Se 4d+1 0.0008703137841133 -0.0016229061627465 + 101 5 Se 4d+2 -0.0017506592443255 0.0027351792826833 + + 102 6 Se 2s 0.1473597953644174 -0.0041675839133536 + 103 6 Se 3s -0.0136495651726071 0.0008291495207102 + 104 6 Se 3py -0.1076740302547148 -0.0483316554159277 + 105 6 Se 3pz -0.0663600265590247 0.0096669530214975 + 106 6 Se 3px 0.1738722216826874 -0.0223798729624318 + 107 6 Se 4py -0.0000864066735444 0.0001383558929819 + 108 6 Se 4pz -0.0013030750557397 -0.0014578450919373 + 109 6 Se 4px 0.0023019834140698 0.0004944449935526 + 110 6 Se 4d-2 0.0074898221350034 0.0028444412330765 + 111 6 Se 4d-1 0.0000403836525902 0.0010301306986390 + 112 6 Se 4d0 0.0068360009477188 0.0009279192199899 + 113 6 Se 4d+1 0.0063224708687827 -0.0005309069530476 + 114 6 Se 4d+2 -0.0045040172256476 0.0037344879468552 + + 115 7 Se 2s 0.0873279268922716 0.0172283571651355 + 116 7 Se 3s -0.0093005837756189 -0.0022929588316129 + 117 7 Se 3py 0.1067614751109589 -0.0342541015976422 + 118 7 Se 3pz 0.0822177583164114 0.0323037418270807 + 119 7 Se 3px -0.0951990954976219 -0.0457251653790411 + 120 7 Se 4py -0.0003913625916461 -0.0004945915744513 + 121 7 Se 4pz 0.0028637032730305 -0.0005459849785879 + 122 7 Se 4px 0.0029575681741613 0.0016102865313624 + 123 7 Se 4d-2 0.0048590098387976 0.0017257074314465 + 124 7 Se 4d-1 -0.0042404909202997 0.0027869776231142 + 125 7 Se 4d0 -0.0019025837036339 -0.0026682947667405 + 126 7 Se 4d+1 0.0077180717916056 0.0038601749053865 + 127 7 Se 4d+2 0.0022097926443202 -0.0010369017911025 + + 128 8 Cd 2s -0.1157422081887317 -0.0677702615444887 + 129 8 Cd 3s -0.0009759270167220 0.0036818958125280 + 130 8 Cd 3py 0.0126528707196665 -0.0084915419362943 + 131 8 Cd 3pz 0.0263149146294311 -0.0141058498061632 + 132 8 Cd 3px 0.0142248723411581 -0.0098969493027267 + 133 8 Cd 4py 0.0025166285543843 -0.0027510655304770 + 134 8 Cd 4pz -0.0023738153200864 -0.0041082025913531 + 135 8 Cd 4px -0.0164354230256530 -0.0040317666850858 + 136 8 Cd 4d-2 0.0035119230075821 0.0209590359996807 + 137 8 Cd 4d-1 -0.0158545412550008 0.0111228126844484 + 138 8 Cd 4d0 -0.0331441601429010 0.0038942585373815 + 139 8 Cd 4d+1 0.0315850147590116 -0.0181629722956416 + 140 8 Cd 4d+2 0.0382220576553945 0.0523581260447387 + 141 8 Cd 5d-2 -0.0049013208578637 0.0063586787156870 + 142 8 Cd 5d-1 -0.0057165584237309 0.0078339073771209 + 143 8 Cd 5d0 0.0047221828572700 0.0059684126057909 + 144 8 Cd 5d+1 0.0066229560125119 -0.0054452716791797 + 145 8 Cd 5d+2 -0.0097875201555413 -0.0000979610747072 + 146 8 Cd 5f-3 0.0026125139546623 0.0021308904794723 + 147 8 Cd 5f-2 0.0048680521024237 0.0011995913425251 + 148 8 Cd 5f-1 0.0008643030984531 0.0020542432487426 + 149 8 Cd 5f0 -0.0004040339837250 0.0005823441973184 + 150 8 Cd 5f+1 0.0043668123061193 0.0023368886359755 + 151 8 Cd 5f+2 0.0011307872226427 0.0032878444372924 + 152 8 Cd 5f+3 -0.0021445687535030 0.0025976115635897 + + 153 9 Cd 2s 0.2903587811068691 -0.0309636739594570 + 154 9 Cd 3s -0.0179163821201442 0.0020426682224824 + 155 9 Cd 3py 0.0272752521744481 0.0009704612674357 + 156 9 Cd 3pz -0.0257075615219860 0.0104465976443066 + 157 9 Cd 3px -0.0097772774314651 -0.0042736989571796 + 158 9 Cd 4py -0.0013130208858265 -0.0007624898358373 + 159 9 Cd 4pz -0.0009532231527443 -0.0002697920093658 + 160 9 Cd 4px 0.0053851548728405 -0.0009782268860289 + 161 9 Cd 4d-2 0.0118615430759456 0.0091702977185390 + 162 9 Cd 4d-1 -0.0280154288364275 -0.0057143723053610 + 163 9 Cd 4d0 -0.0236196825701233 -0.0046981349954416 + 164 9 Cd 4d+1 -0.0339245657221815 -0.0070242940062991 + 165 9 Cd 4d+2 0.0412037241403189 -0.0030067759340543 + 166 9 Cd 5d-2 -0.0008433249711925 -0.0004620985562718 + 167 9 Cd 5d-1 -0.0075889307836148 0.0008348953789166 + 168 9 Cd 5d0 0.0068772977257031 -0.0033180174333939 + 169 9 Cd 5d+1 0.0050542536061874 0.0012315259796701 + 170 9 Cd 5d+2 -0.0047178871838992 0.0044530343126011 + 171 9 Cd 5f-3 0.0017136383973598 0.0013003684800093 + 172 9 Cd 5f-2 0.0026497583401526 0.0008598274334178 + 173 9 Cd 5f-1 0.0006886329192430 -0.0009193820243348 + 174 9 Cd 5f0 0.0016507371192196 0.0001064890114461 + 175 9 Cd 5f+1 -0.0029675144625082 -0.0003679943968295 + 176 9 Cd 5f+2 -0.0013691400590036 -0.0022761462965387 + 177 9 Cd 5f+3 0.0017364472441341 -0.0003802905101037 + + 178 10 Se 2s 0.0478900788790221 -0.0478405325362010 + 179 10 Se 3s -0.0038044608025921 0.0051684422354312 + 180 10 Se 3py 0.0064343205203717 0.0100005932366539 + 181 10 Se 3pz -0.0696843378281386 -0.0558722534693424 + 182 10 Se 3px -0.2195438868863351 0.0174704820635982 + 183 10 Se 4py -0.0005412618017590 0.0001723207218999 + 184 10 Se 4pz 0.0036964765711506 0.0003270405035204 + 185 10 Se 4px 0.0011868768793344 0.0020699574737145 + 186 10 Se 4d-2 -0.0020576443440745 -0.0000775939376392 + 187 10 Se 4d-1 -0.0013475814053705 0.0001465695735384 + 188 10 Se 4d0 0.0108683460337024 0.0032997894296192 + 189 10 Se 4d+1 0.0062434185652360 -0.0006962046409497 + 190 10 Se 4d+2 -0.0124636580395189 -0.0006024964304220 + + 191 11 Se 2s 0.0691678386579390 -0.1476451066780605 + 192 11 Se 3s -0.0056189100463240 0.0123403577908537 + 193 11 Se 3py -0.0477166722107374 0.1420806110020686 + 194 11 Se 3pz 0.0983198587452787 -0.1231015033919362 + 195 11 Se 3px -0.0256096663197142 -0.0424349926157416 + 196 11 Se 4py -0.0033700677634704 -0.0032135810356671 + 197 11 Se 4pz -0.0007861689179220 -0.0058516886619648 + 198 11 Se 4px 0.0022956804472057 0.0048433247076858 + 199 11 Se 4d-2 -0.0029915220078332 -0.0035302864987084 + 200 11 Se 4d-1 0.0051311917495663 -0.0062762904563414 + 201 11 Se 4d0 -0.0037590598920622 0.0021531320270271 + 202 11 Se 4d+1 -0.0002817016450920 0.0015069902230833 + 203 11 Se 4d+2 0.0012224835876475 -0.0034629762390562 + + 204 12 Cd 2s -0.0449282078311526 -0.1818568368280737 + 205 12 Cd 3s 0.0017998609667883 0.0041697075368007 + 206 12 Cd 3py -0.0172933104489914 -0.0174928543340894 + 207 12 Cd 3pz -0.0387256953123572 0.0360361903986483 + 208 12 Cd 3px 0.0123418023636767 -0.0188699219749675 + 209 12 Cd 4py -0.0002552863767436 -0.0053727756339561 + 210 12 Cd 4pz 0.0055040981430778 -0.0000729361038720 + 211 12 Cd 4px 0.0009975915236336 -0.0001216348684925 + 212 12 Cd 4d-2 0.0004871161564380 -0.0215859618729104 + 213 12 Cd 4d-1 -0.0180867698813893 -0.0197907116486535 + 214 12 Cd 4d0 0.0285022894509815 -0.0210439659832460 + 215 12 Cd 4d+1 0.0052054891576513 0.0066278175071318 + 216 12 Cd 4d+2 0.0307811747138265 -0.0143393868047000 + 217 12 Cd 5d-2 0.0001300982776634 -0.0161701648556553 + 218 12 Cd 5d-1 -0.0027975847986895 -0.0022755834263703 + 219 12 Cd 5d0 -0.0008862686670289 -0.0107222492962150 + 220 12 Cd 5d+1 -0.0002616145772654 0.0005305795638710 + 221 12 Cd 5d+2 0.0045694437472688 -0.0026740292743582 + 222 12 Cd 5f-3 -0.0003255107619065 -0.0020980140681266 + 223 12 Cd 5f-2 -0.0010267209009447 -0.0007670522295307 + 224 12 Cd 5f-1 -0.0014772248538544 0.0001341857406556 + 225 12 Cd 5f0 0.0041505619976852 0.0006210720805175 + 226 12 Cd 5f+1 0.0020308624664530 -0.0025948107499801 + 227 12 Cd 5f+2 -0.0010829381424146 -0.0002277489847643 + 228 12 Cd 5f+3 -0.0020596468349130 -0.0015532557775228 + + 229 13 Cd 2s -0.1140368888856910 -0.1241110877873576 + 230 13 Cd 3s 0.0022811540207421 0.0078844504052858 + 231 13 Cd 3py 0.0018689506442432 -0.0039854229679819 + 232 13 Cd 3pz 0.0050876259148483 0.0217067714634262 + 233 13 Cd 3px 0.0041988851885528 0.0008192374194139 + 234 13 Cd 4py 0.0014126512536329 -0.0010828285789566 + 235 13 Cd 4pz 0.0004258049193497 0.0006764557252048 + 236 13 Cd 4px 0.0066327363515393 -0.0008313253859324 + 237 13 Cd 4d-2 0.0352911615719696 0.0457367314363202 + 238 13 Cd 4d-1 -0.0013325156821748 -0.0134190029491827 + 239 13 Cd 4d0 0.0161196143385961 0.0190450476129491 + 240 13 Cd 4d+1 0.0064514302111656 0.0071306873331226 + 241 13 Cd 4d+2 -0.0214964640728247 -0.0470395922355235 + 242 13 Cd 5d-2 0.0009104735123959 0.0070384427797738 + 243 13 Cd 5d-1 -0.0002707704111891 -0.0038610723399512 + 244 13 Cd 5d0 0.0065386882221788 0.0046253890303400 + 245 13 Cd 5d+1 0.0025327819262580 0.0001036118603876 + 246 13 Cd 5d+2 -0.0073241418918762 -0.0073043790234665 + 247 13 Cd 5f-3 0.0004051406116611 0.0002660256059220 + 248 13 Cd 5f-2 0.0011562614220414 0.0014604842962065 + 249 13 Cd 5f-1 -0.0004926787092795 -0.0000455611783144 + 250 13 Cd 5f0 -0.0021136713963915 -0.0015655738719326 + 251 13 Cd 5f+1 -0.0014705533272585 0.0011996012072793 + 252 13 Cd 5f+2 -0.0001893885131878 0.0006407679435268 + 253 13 Cd 5f+3 0.0009128868537263 -0.0003742670593385 + + 254 14 Cd 2s 0.0528537546711099 0.1118744165977095 + 255 14 Cd 3s -0.0042951587099445 -0.0055967889059055 + 256 14 Cd 3py -0.0015192425337250 0.0063656647413808 + 257 14 Cd 3pz -0.0173936618307272 -0.0078581873988840 + 258 14 Cd 3px 0.0032785373246116 0.0159991008463030 + 259 14 Cd 4py -0.0005140368574717 -0.0019290136748503 + 260 14 Cd 4pz 0.0029629413958430 0.0049455467666823 + 261 14 Cd 4px -0.0021720031933664 -0.0006700204847707 + 262 14 Cd 4d-2 -0.0188114058605833 -0.0218919053079022 + 263 14 Cd 4d-1 0.0000146048498174 -0.0223445280144169 + 264 14 Cd 4d0 -0.0021792602320274 0.0380793945871028 + 265 14 Cd 4d+1 0.0150133438033728 0.0077119012820287 + 266 14 Cd 4d+2 -0.0014429988194011 -0.0069744601919999 + 267 14 Cd 5d-2 0.0010328069735158 -0.0028215167148140 + 268 14 Cd 5d-1 0.0041604655290386 -0.0045460494644678 + 269 14 Cd 5d0 -0.0022032623480441 0.0035536349674786 + 270 14 Cd 5d+1 0.0046841809987018 0.0001865911591743 + 271 14 Cd 5d+2 -0.0011149781765587 -0.0031553487887988 + 272 14 Cd 5f-3 0.0009529823788922 0.0008066581500157 + 273 14 Cd 5f-2 -0.0013908249394985 0.0004687873044808 + 274 14 Cd 5f-1 -0.0024267449108038 -0.0020899455824172 + 275 14 Cd 5f0 0.0012413254116614 -0.0011705481835595 + 276 14 Cd 5f+1 0.0001329944189931 -0.0002252765790666 + 277 14 Cd 5f+2 0.0022995277786142 -0.0001335644222196 + 278 14 Cd 5f+3 0.0015037173451791 -0.0003090259500359 + + 279 15 Se 2s 0.0014050766012813 -0.0457938374835716 + 280 15 Se 3s -0.0001338564982565 0.0053593036678638 + 281 15 Se 3py -0.0353119447414199 -0.1108755604379396 + 282 15 Se 3pz -0.0774555842002838 -0.1137350913386704 + 283 15 Se 3px 0.0198356345304360 -0.0476953740446030 + 284 15 Se 4py 0.0007436836124930 0.0004054505188956 + 285 15 Se 4pz 0.0007886226502659 0.0017735348653348 + 286 15 Se 4px 0.0007009384257110 0.0002044565482215 + 287 15 Se 4d-2 -0.0027091905267513 0.0025379576314208 + 288 15 Se 4d-1 0.0025376462872122 0.0042901413052417 + 289 15 Se 4d0 -0.0044330418171486 -0.0081358831195364 + 290 15 Se 4d+1 -0.0020647149799204 -0.0045604988373266 + 291 15 Se 4d+2 -0.0004940147565584 -0.0026327289738823 + + 292 16 Se 2s -0.0050982765423370 -0.0086861676929688 + 293 16 Se 3s 0.0000031753996584 0.0000109794456678 + 294 16 Se 3py 0.0599609116782493 0.0760965734220029 + 295 16 Se 3pz 0.0448623146050515 0.0738609272862907 + 296 16 Se 3px 0.0469005953420177 0.0355423276143587 + 297 16 Se 4py 0.0033357147011805 0.0016812946987577 + 298 16 Se 4pz 0.0057978772392966 0.0014041532990596 + 299 16 Se 4px 0.0028592665456532 0.0020879487519405 + 300 16 Se 4d-2 -0.0052310853719493 -0.0056704815529512 + 301 16 Se 4d-1 0.0036944184352104 0.0024213531237096 + 302 16 Se 4d0 0.0050494652854909 0.0058355316038109 + 303 16 Se 4d+1 0.0019196440056999 -0.0017596254908201 + 304 16 Se 4d+2 -0.0018726455511552 -0.0004403099116711 + + 305 17 Cd 2s 0.1409306873594242 0.1911896427934518 + 306 17 Cd 3s -0.0150015267278204 -0.0105527195908444 + 307 17 Cd 3py -0.0087327999140286 -0.0099222211651381 + 308 17 Cd 3pz 0.0134353243970136 -0.0032601876219243 + 309 17 Cd 3px -0.0108969358094493 -0.0295571982043616 + 310 17 Cd 4py -0.0014822670832730 0.0038787016146096 + 311 17 Cd 4pz -0.0063615185051317 0.0038697452405295 + 312 17 Cd 4px 0.0034420182384236 -0.0011264246864984 + 313 17 Cd 4d-2 0.0430678870807978 0.0570606651369050 + 314 17 Cd 4d-1 -0.0243412476544066 0.0127104677703963 + 315 17 Cd 4d0 -0.0164448843556189 -0.0571039226754227 + 316 17 Cd 4d+1 -0.0492382583214219 0.0030873605338945 + 317 17 Cd 4d+2 0.0339755726404534 0.0023569084420892 + 318 17 Cd 5d-2 0.0078294487763842 0.0097336895600350 + 319 17 Cd 5d-1 -0.0016776821762427 0.0010886402996080 + 320 17 Cd 5d0 -0.0020230043044498 -0.0012907279321824 + 321 17 Cd 5d+1 -0.0042274370504841 -0.0104894204729561 + 322 17 Cd 5d+2 -0.0003918232236956 0.0100610357711247 + 323 17 Cd 5f-3 0.0015184189073878 -0.0030070133218658 + 324 17 Cd 5f-2 -0.0009877153358335 0.0023905634789781 + 325 17 Cd 5f-1 0.0022679504915589 -0.0007997240276230 + 326 17 Cd 5f0 0.0009885192165579 -0.0037686219597253 + 327 17 Cd 5f+1 0.0005049540393525 -0.0013120763314074 + 328 17 Cd 5f+2 -0.0015351880509293 0.0011602439886744 + 329 17 Cd 5f+3 0.0010792990391975 -0.0032235974703591 + + 330 18 Cd 2s 0.0914747180041846 -0.2417142828251267 + 331 18 Cd 3s -0.0048674525598833 0.0155735453387364 + 332 18 Cd 3py 0.0310607393240954 -0.0218002847864925 + 333 18 Cd 3pz 0.0255832976221100 0.0062105501265150 + 334 18 Cd 3px -0.0036179730900437 0.0251517853286303 + 335 18 Cd 4py 0.0014766979035236 0.0056653737631952 + 336 18 Cd 4pz -0.0037993735396347 -0.0035788852655415 + 337 18 Cd 4px -0.0003195261060287 -0.0017209336456218 + 338 18 Cd 4d-2 -0.0132122398246737 0.0277257202766293 + 339 18 Cd 4d-1 0.0127102941323721 0.0020347650006208 + 340 18 Cd 4d0 -0.0123628793470471 -0.0342913769058140 + 341 18 Cd 4d+1 -0.0031866483305812 -0.0266438700245690 + 342 18 Cd 4d+2 -0.0140767723960816 0.0016501281060804 + 343 18 Cd 5d-2 -0.0006197033195351 0.0070526244593065 + 344 18 Cd 5d-1 0.0088797637336491 -0.0027973396589048 + 345 18 Cd 5d0 -0.0089074080784209 -0.0015532354220001 + 346 18 Cd 5d+1 -0.0051909195542787 -0.0033178299465598 + 347 18 Cd 5d+2 -0.0066222499554476 0.0009874789044990 + 348 18 Cd 5f-3 -0.0016298043463587 0.0017143857693158 + 349 18 Cd 5f-2 -0.0016907992442155 -0.0000127880009638 + 350 18 Cd 5f-1 0.0014109198620119 0.0009607816682143 + 351 18 Cd 5f0 -0.0025195465925699 -0.0011627442227705 + 352 18 Cd 5f+1 -0.0003756559885957 -0.0016365375824039 + 353 18 Cd 5f+2 -0.0016178932319786 0.0002487786540141 + 354 18 Cd 5f+3 -0.0009840769760913 -0.0031086086546679 + + 355 19 Se 2s 0.1393274444980111 -0.0434577872064838 + 356 19 Se 3s -0.0124497607286122 0.0030482555900220 + 357 19 Se 3py -0.1444998807055508 -0.1789703030482113 + 358 19 Se 3pz -0.1332008463854950 0.1838184350623338 + 359 19 Se 3px 0.0203612204171242 -0.0301855299850169 + 360 19 Se 4py -0.0041752100355238 -0.0013721957118317 + 361 19 Se 4pz 0.0015389472150713 -0.0031107971201355 + 362 19 Se 4px -0.0036851309886040 0.0042825774946748 + 363 19 Se 4d-2 0.0005887031530362 -0.0087027716671005 + 364 19 Se 4d-1 -0.0093122035330173 -0.0050482375012620 + 365 19 Se 4d0 -0.0039525030497848 0.0141886402099169 + 366 19 Se 4d+1 0.0028709901325741 0.0027667987130286 + 367 19 Se 4d+2 0.0029919080436931 0.0039162430350654 + + 368 20 Se 2s 0.0883029953078766 -0.1023510119518988 + 369 20 Se 3s -0.0075475114827834 0.0081901785874043 + 370 20 Se 3py 0.1009210053342336 -0.0949545301316201 + 371 20 Se 3pz 0.1233779574473561 0.0490113405807992 + 372 20 Se 3px 0.0093175093848322 -0.0601765527502199 + 373 20 Se 4py -0.0000639020998918 -0.0087426787942102 + 374 20 Se 4pz -0.0020852359270925 0.0001838375019291 + 375 20 Se 4px -0.0000550835671808 0.0053569838664626 + 376 20 Se 4d-2 -0.0018811581359795 0.0021769068255023 + 377 20 Se 4d-1 -0.0037274559958661 -0.0046538418121479 + 378 20 Se 4d0 0.0009512552572484 -0.0042281750201666 + 379 20 Se 4d+1 -0.0144331392811157 -0.0028774248346374 + 380 20 Se 4d+2 -0.0019359504587633 -0.0037734314948702 + + 381 21 Se 2s -0.0321491760732166 0.0566620782873361 + 382 21 Se 3s 0.0015870243970467 -0.0052371006896990 + 383 21 Se 3py -0.0826145770471463 0.1429867209685900 + 384 21 Se 3pz 0.0956971766298640 0.0027492782740154 + 385 21 Se 3px 0.0598162788476478 0.1931824469245622 + 386 21 Se 4py 0.0026387873716286 -0.0022110441809526 + 387 21 Se 4pz -0.0028307613535912 0.0032222170604427 + 388 21 Se 4px -0.0026690251042394 0.0010821659134399 + 389 21 Se 4d-2 -0.0056610978408378 -0.0136740376806925 + 390 21 Se 4d-1 -0.0066145545362085 -0.0047905784836218 + 391 21 Se 4d0 -0.0033209696218327 0.0087801529251253 + 392 21 Se 4d+1 0.0024880276937457 -0.0044818816077657 + 393 21 Se 4d+2 -0.0036878045356348 0.0055971669667984 + + 394 22 Cd 2s 0.0337965057634463 -0.1124719237307488 + 395 22 Cd 3s -0.0032108504313231 0.0062368217935831 + 396 22 Cd 3py -0.0001666616804964 -0.0271149015046136 + 397 22 Cd 3pz -0.0030987640489590 0.0041724146052695 + 398 22 Cd 3px 0.0000072214871308 -0.0028681802896191 + 399 22 Cd 4py 0.0087168071891540 0.0057516555247476 + 400 22 Cd 4pz -0.0032446460695149 0.0006550729946583 + 401 22 Cd 4px 0.0091980026487511 0.0050735982920626 + 402 22 Cd 4d-2 -0.0048801109424943 -0.0309512735306503 + 403 22 Cd 4d-1 0.0437002191287722 -0.0370534350756505 + 404 22 Cd 4d0 -0.0223154429202229 -0.0310867553086345 + 405 22 Cd 4d+1 -0.0323962276818412 -0.0103840126309123 + 406 22 Cd 4d+2 -0.0324093505925521 0.0051736762293972 + 407 22 Cd 5d-2 -0.0029052971511084 -0.0075009134093906 + 408 22 Cd 5d-1 0.0032344897205132 -0.0086067946267101 + 409 22 Cd 5d0 -0.0047552775893727 -0.0064025175757317 + 410 22 Cd 5d+1 -0.0102152663309564 -0.0065566780067597 + 411 22 Cd 5d+2 0.0108259711209412 0.0050348834855988 + 412 22 Cd 5f-3 -0.0038971216403227 -0.0004668108344767 + 413 22 Cd 5f-2 0.0021369517635310 -0.0039414863605550 + 414 22 Cd 5f-1 -0.0038608850397990 0.0004459314200039 + 415 22 Cd 5f0 -0.0011132138796475 0.0010418832847137 + 416 22 Cd 5f+1 -0.0020490717266232 -0.0034075122790950 + 417 22 Cd 5f+2 -0.0013814009595977 -0.0018753485982916 + 418 22 Cd 5f+3 -0.0014802576271201 0.0003679627498891 + + 419 23 Se 2s 0.1262511119170496 0.0377636588169339 + 420 23 Se 3s -0.0108461331737539 -0.0017369890147251 + 421 23 Se 3py 0.1235953271256639 0.0893221344570436 + 422 23 Se 3pz -0.0908529553829856 0.0296837278441154 + 423 23 Se 3px -0.0505906387828695 -0.0694208895180520 + 424 23 Se 4py 0.0009968953260265 0.0030234860209389 + 425 23 Se 4pz -0.0024669094038877 -0.0029539219091754 + 426 23 Se 4px -0.0026753457933358 0.0031176273802042 + 427 23 Se 4d-2 0.0046714333634248 0.0066866676728100 + 428 23 Se 4d-1 0.0091095853476441 0.0025296410927683 + 429 23 Se 4d0 -0.0004136598934398 0.0051253668835714 + 430 23 Se 4d+1 -0.0001255323052512 0.0004566296376725 + 431 23 Se 4d+2 0.0020056451778110 -0.0027933814244464 + + 432 24 Se 2s 0.0377994234456530 0.0384927577920459 + 433 24 Se 3s -0.0046220357665463 -0.0035542686860531 + 434 24 Se 3py 0.0101868304938103 -0.2285913474404854 + 435 24 Se 3pz 0.1118472858055464 -0.0971537722866241 + 436 24 Se 3px -0.0824199825962804 0.1188069779631567 + 437 24 Se 4py 0.0005721073604741 0.0016321894763643 + 438 24 Se 4pz -0.0048896209109522 -0.0003738735952658 + 439 24 Se 4px 0.0000483440035787 -0.0027798904923382 + 440 24 Se 4d-2 -0.0032590621602836 -0.0027841206189256 + 441 24 Se 4d-1 0.0055018472030636 -0.0082225366691135 + 442 24 Se 4d0 0.0015141986531148 0.0032205863883378 + 443 24 Se 4d+1 0.0082561979305556 -0.0024044639437468 + 444 24 Se 4d+2 -0.0054315647824345 0.0192491828149590 + + 445 25 Cd 2s 0.3140932924341762 -0.0811858702128181 + 446 25 Cd 3s -0.0053020020606089 0.0029997710154608 + 447 25 Cd 3py 0.0192798187479118 0.0448988401334004 + 448 25 Cd 3pz 0.0145222420337328 -0.0172211510451095 + 449 25 Cd 3px 0.0373832922158614 0.0002221362732912 + 450 25 Cd 4py 0.0055607478515846 -0.0032547312995325 + 451 25 Cd 4pz 0.0057698039380775 0.0078527105747966 + 452 25 Cd 4px 0.0006446158326769 -0.0030292132037161 + 453 25 Cd 4d-2 0.0063142110756738 0.0072851797627725 + 454 25 Cd 4d-1 -0.0146313759873610 0.0294649833833357 + 455 25 Cd 4d0 -0.0075295707371288 0.0161072534720197 + 456 25 Cd 4d+1 -0.0398410371483884 -0.0264227586120128 + 457 25 Cd 4d+2 0.0193333898551890 0.0266296249425192 + 458 25 Cd 5d-2 0.0076083683074458 -0.0009217565802377 + 459 25 Cd 5d-1 -0.0008177275157769 0.0082089370558829 + 460 25 Cd 5d0 -0.0057004180770929 0.0010805006363985 + 461 25 Cd 5d+1 -0.0037326708441374 0.0063845702121726 + 462 25 Cd 5d+2 -0.0016751899219735 -0.0036225264922813 + 463 25 Cd 5f-3 -0.0000819576009002 -0.0032285746610559 + 464 25 Cd 5f-2 -0.0015922327117699 0.0040546383849689 + 465 25 Cd 5f-1 -0.0008360988847702 -0.0022363830161568 + 466 25 Cd 5f0 0.0012623783069937 0.0002699958048815 + 467 25 Cd 5f+1 -0.0032400366893033 -0.0004075473936282 + 468 25 Cd 5f+2 -0.0003265621832284 0.0035544405656071 + 469 25 Cd 5f+3 -0.0013000622980531 -0.0028828967405019 + + 470 26 Cd 2s -0.0326080068865021 0.3408046774136100 + 471 26 Cd 3s 0.0019234608050357 -0.0236455899182014 + 472 26 Cd 3py 0.0162367149214302 0.0030732828957310 + 473 26 Cd 3pz -0.0231908787538474 -0.0033442762302374 + 474 26 Cd 3px 0.0029179241243960 0.0109595826346176 + 475 26 Cd 4py -0.0046334211733539 0.0037694947665833 + 476 26 Cd 4pz 0.0009712178877346 -0.0004442674816550 + 477 26 Cd 4px -0.0002987733212015 -0.0005991076573330 + 478 26 Cd 4d-2 -0.0038936747488326 0.0642989426971599 + 479 26 Cd 4d-1 0.0002338741167858 0.0510261992356139 + 480 26 Cd 4d0 0.0121816340111214 -0.0449569398260605 + 481 26 Cd 4d+1 -0.0287305885718457 0.0186326462134609 + 482 26 Cd 4d+2 0.0062738369165758 -0.0695046039410863 + 483 26 Cd 5d-2 -0.0003568850070388 0.0001195931276426 + 484 26 Cd 5d-1 -0.0008398417276319 -0.0016531958296753 + 485 26 Cd 5d0 -0.0004054581297893 0.0028947477601237 + 486 26 Cd 5d+1 -0.0046722450262884 -0.0047502071634520 + 487 26 Cd 5d+2 0.0015963994074667 0.0025835292566758 + 488 26 Cd 5f-3 0.0007561923489242 -0.0014727890118979 + 489 26 Cd 5f-2 -0.0014197690096614 0.0000994645628608 + 490 26 Cd 5f-1 0.0013760857871463 -0.0003341637241698 + 491 26 Cd 5f0 -0.0005161549745104 -0.0004359718591319 + 492 26 Cd 5f+1 -0.0003227237657272 0.0017257770308238 + 493 26 Cd 5f+2 -0.0003372115661272 -0.0017863265522181 + 494 26 Cd 5f+3 0.0023887319881112 -0.0015961968251608 + + 85 86 + -0.2958023190519942 -0.2940246126250018 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0615079029174879 -0.1892596638609902 + 2 1 Cd 3s -0.0047469393309635 0.0109412699447044 + 3 1 Cd 3py -0.0053080618216511 -0.0237989839068075 + 4 1 Cd 3pz -0.0031918264901484 -0.0162314418736668 + 5 1 Cd 3px -0.0067329479157053 0.0511296098601387 + 6 1 Cd 4py -0.0053335002336448 0.0066041375157650 + 7 1 Cd 4pz -0.0019567200791148 0.0004545780403284 + 8 1 Cd 4px -0.0021481329672298 -0.0035171254730258 + 9 1 Cd 4d-2 -0.0087470405490193 0.0323910222877088 + 10 1 Cd 4d-1 0.0198031809444520 0.0140269621273466 + 11 1 Cd 4d0 -0.0237966146739996 0.0322303458401964 + 12 1 Cd 4d+1 0.0091848392270685 0.0153412793786285 + 13 1 Cd 4d+2 -0.0272469261453174 0.0174905129300103 + 14 1 Cd 5d-2 0.0064180617113639 0.0036132474965494 + 15 1 Cd 5d-1 0.0028521328915309 -0.0026131226846423 + 16 1 Cd 5d0 -0.0076870203467021 0.0051245623354023 + 17 1 Cd 5d+1 0.0010301564770665 0.0058817525723709 + 18 1 Cd 5d+2 0.0011178184316641 -0.0077522817262679 + 19 1 Cd 5f-3 -0.0011998068728716 -0.0006993064730481 + 20 1 Cd 5f-2 0.0002210999930987 0.0022071520470633 + 21 1 Cd 5f-1 -0.0001882140458130 -0.0030022168634270 + 22 1 Cd 5f0 0.0006717492798109 -0.0009113540934968 + 23 1 Cd 5f+1 0.0012515423281386 0.0009204936248412 + 24 1 Cd 5f+2 0.0002715892862508 -0.0013997175744800 + 25 1 Cd 5f+3 0.0008031855025394 0.0041079814813627 + + 26 2 Cd 2s -0.1070670694069207 0.0226260956510119 + 27 2 Cd 3s 0.0038802048540360 0.0006460044581337 + 28 2 Cd 3py -0.0185020656808839 0.0039994442031437 + 29 2 Cd 3pz -0.0004996961563121 0.0247118795765186 + 30 2 Cd 3px 0.0064105523701746 0.0285023926269811 + 31 2 Cd 4py 0.0042052246165315 0.0006789312342906 + 32 2 Cd 4pz -0.0049190869731699 -0.0014647382615234 + 33 2 Cd 4px 0.0060204908522172 -0.0066961253360401 + 34 2 Cd 4d-2 0.0205199464447910 0.0360139832166406 + 35 2 Cd 4d-1 0.0021260632291455 -0.0388664043530266 + 36 2 Cd 4d0 0.0075414360485911 -0.0039157086075489 + 37 2 Cd 4d+1 0.0108283140978543 -0.0285134419090368 + 38 2 Cd 4d+2 0.0023103848432981 0.0161374747770219 + 39 2 Cd 5d-2 0.0005100285592616 0.0072128932348269 + 40 2 Cd 5d-1 0.0033313766403954 -0.0077447365154998 + 41 2 Cd 5d0 0.0086174429869610 -0.0006804935536056 + 42 2 Cd 5d+1 -0.0004443031967730 -0.0103759857151916 + 43 2 Cd 5d+2 0.0005993628165967 0.0019258685842502 + 44 2 Cd 5f-3 -0.0004549300784307 -0.0007575567015078 + 45 2 Cd 5f-2 -0.0015568173666785 0.0027512400395956 + 46 2 Cd 5f-1 0.0013084057047950 -0.0003246236901982 + 47 2 Cd 5f0 0.0014019645682410 -0.0018514953226617 + 48 2 Cd 5f+1 -0.0014944321047055 0.0011677622960745 + 49 2 Cd 5f+2 -0.0005745832989806 0.0049351428919748 + 50 2 Cd 5f+3 -0.0002362247526150 -0.0003262886702767 + + 51 3 Cd 2s -0.0092883587000244 -0.1854968667876389 + 52 3 Cd 3s -0.0027961910522742 0.0122802617514662 + 53 3 Cd 3py 0.0053250384186159 -0.0086006867965604 + 54 3 Cd 3pz 0.0345616719024609 0.0102356600960307 + 55 3 Cd 3px -0.0023172559700488 0.0028859301272960 + 56 3 Cd 4py -0.0039803670802764 0.0030946056258083 + 57 3 Cd 4pz -0.0024322209282141 -0.0038504601489556 + 58 3 Cd 4px 0.0008418925945621 0.0026006373787748 + 59 3 Cd 4d-2 -0.0078868092986683 -0.0368815740055284 + 60 3 Cd 4d-1 -0.0362564057855867 0.0041926105845439 + 61 3 Cd 4d0 0.0048573640296659 0.0018820953524013 + 62 3 Cd 4d+1 -0.0342075423546657 -0.0188660809427697 + 63 3 Cd 4d+2 0.0249733359569049 -0.0052097128371251 + 64 3 Cd 5d-2 0.0022341175094893 -0.0113001908132711 + 65 3 Cd 5d-1 -0.0006564973963564 -0.0074272285418371 + 66 3 Cd 5d0 -0.0007901885341856 0.0023241819979850 + 67 3 Cd 5d+1 -0.0022474925213797 -0.0097503805893173 + 68 3 Cd 5d+2 -0.0021918185763146 -0.0009733398766623 + 69 3 Cd 5f-3 0.0002997605567256 0.0004498758717523 + 70 3 Cd 5f-2 -0.0008347678380139 -0.0004797423424608 + 71 3 Cd 5f-1 -0.0002866670195219 0.0000431243499475 + 72 3 Cd 5f0 0.0014689251123486 0.0013858699998486 + 73 3 Cd 5f+1 -0.0032627892334297 0.0014606750595489 + 74 3 Cd 5f+2 -0.0005232178686682 0.0018872765870188 + 75 3 Cd 5f+3 0.0021218203574532 0.0015574687747794 + + 76 4 Se 2s -0.0171482421628855 -0.1622893389786381 + 77 4 Se 3s 0.0009450033164901 0.0128512382555392 + 78 4 Se 3py 0.0078591537540433 -0.0776240543532596 + 79 4 Se 3pz 0.1040004454304667 -0.1886546838158976 + 80 4 Se 3px -0.0287337038158649 -0.1607273635897025 + 81 4 Se 4py -0.0016403128430713 -0.0038949507042248 + 82 4 Se 4pz -0.0010143546733282 -0.0004277457263970 + 83 4 Se 4px -0.0004245601352941 0.0019257225824905 + 84 4 Se 4d-2 0.0007159442137510 0.0031264875333618 + 85 4 Se 4d-1 -0.0035676856943401 0.0074749235681040 + 86 4 Se 4d0 0.0010477114648723 -0.0030854525621813 + 87 4 Se 4d+1 -0.0068689440894124 0.0123971320540184 + 88 4 Se 4d+2 0.0015992738830367 0.0046150614919776 + + 89 5 Se 2s -0.0172765557826696 -0.1213640480089017 + 90 5 Se 3s 0.0007134994854472 0.0088543863042968 + 91 5 Se 3py -0.0295506592693183 0.0709145759051178 + 92 5 Se 3pz 0.0139596717851963 0.0678869621476955 + 93 5 Se 3px -0.0351769696149964 -0.0859157621328436 + 94 5 Se 4py -0.0003959772589906 0.0032793319792514 + 95 5 Se 4pz 0.0041107312050147 -0.0002281400628237 + 96 5 Se 4px 0.0007303985575769 0.0021924293010702 + 97 5 Se 4d-2 0.0014030690523899 -0.0059712729359695 + 98 5 Se 4d-1 -0.0000579872626134 0.0032397566383360 + 99 5 Se 4d0 -0.0002858606004139 -0.0008275013549960 + 100 5 Se 4d+1 -0.0003766599049367 -0.0042890285056900 + 101 5 Se 4d+2 0.0035579608070521 0.0004205924413800 + + 102 6 Se 2s 0.0207723290368685 -0.0116679031227242 + 103 6 Se 3s -0.0012285108892208 0.0023728430940739 + 104 6 Se 3py 0.0445138224712340 -0.0655426980161050 + 105 6 Se 3pz -0.0190824466461264 -0.1094366532830243 + 106 6 Se 3px 0.0516583971022474 -0.0110532026819941 + 107 6 Se 4py -0.0008073989330331 0.0010365015004625 + 108 6 Se 4pz -0.0003365593907483 -0.0021106277393916 + 109 6 Se 4px 0.0001779140381720 0.0002347735492153 + 110 6 Se 4d-2 -0.0028647218282709 0.0037449971852214 + 111 6 Se 4d-1 -0.0006416992955403 0.0014380202782683 + 112 6 Se 4d0 -0.0006604035187542 0.0030643191360556 + 113 6 Se 4d+1 0.0015506867030283 0.0086397296384142 + 114 6 Se 4d+2 -0.0053792830644094 0.0020841951468195 + + 115 7 Se 2s -0.0489202090115219 -0.0533377554127126 + 116 7 Se 3s 0.0058164123517015 0.0058833902079738 + 117 7 Se 3py 0.0671050151556528 0.0495645759551895 + 118 7 Se 3pz -0.0921131984721215 -0.1032221208807383 + 119 7 Se 3px 0.0358509016377908 -0.0748915622794600 + 120 7 Se 4py -0.0007600772197612 -0.0011819536865433 + 121 7 Se 4pz -0.0004430405240074 0.0002432497326730 + 122 7 Se 4px -0.0015455247063605 0.0040311403630079 + 123 7 Se 4d-2 -0.0016430909035479 0.0034792781485063 + 124 7 Se 4d-1 -0.0049857079074463 -0.0027743732560969 + 125 7 Se 4d0 0.0058004178381435 0.0053545490107130 + 126 7 Se 4d+1 -0.0032392710712145 0.0052533281812461 + 127 7 Se 4d+2 0.0006823975460296 -0.0003148380636247 + + 128 8 Cd 2s 0.0540548562518387 -0.1026529000562306 + 129 8 Cd 3s -0.0000186096803822 0.0060729082188623 + 130 8 Cd 3py -0.0059217948424645 -0.0140994629920209 + 131 8 Cd 3pz 0.0100942675498557 -0.0316016384347327 + 132 8 Cd 3px 0.0078995359748352 0.0153558971812181 + 133 8 Cd 4py 0.0030420548161066 0.0022446555730594 + 134 8 Cd 4pz -0.0003277199445402 -0.0023557701063005 + 135 8 Cd 4px 0.0053795648146228 -0.0023437742311260 + 136 8 Cd 4d-2 -0.0341970758491052 -0.0178823815338418 + 137 8 Cd 4d-1 -0.0025461103509307 0.0208429441998358 + 138 8 Cd 4d0 -0.0091638638344841 0.0548146662095227 + 139 8 Cd 4d+1 0.0183338829522466 -0.0141014401618053 + 140 8 Cd 4d+2 -0.0301517129353540 -0.0054559488840195 + 141 8 Cd 5d-2 -0.0059034971204661 -0.0063675673266290 + 142 8 Cd 5d-1 -0.0055289919190579 0.0037049860919766 + 143 8 Cd 5d0 -0.0013402912524876 0.0155461909790444 + 144 8 Cd 5d+1 0.0016375732286343 -0.0070341226450828 + 145 8 Cd 5d+2 -0.0014689219004534 -0.0010014567450948 + 146 8 Cd 5f-3 -0.0019167604838752 0.0017161747142302 + 147 8 Cd 5f-2 -0.0014202026566565 0.0018703522619046 + 148 8 Cd 5f-1 -0.0015374612441316 -0.0018419764346038 + 149 8 Cd 5f0 -0.0006249832684779 0.0009348559152022 + 150 8 Cd 5f+1 -0.0020377862388979 0.0012664546453690 + 151 8 Cd 5f+2 -0.0018402675722532 -0.0021545652153883 + 152 8 Cd 5f+3 -0.0006805744825892 0.0015068620546722 + + 153 9 Cd 2s 0.0783069641653780 0.1028574574617773 + 154 9 Cd 3s -0.0028648957046992 -0.0055432145959799 + 155 9 Cd 3py 0.0023992717773336 0.0096749339770436 + 156 9 Cd 3pz -0.0140745438778827 0.0100023426747242 + 157 9 Cd 3px 0.0024531656886331 0.0061363092430372 + 158 9 Cd 4py 0.0024691633075298 0.0008741466360176 + 159 9 Cd 4pz 0.0021693491184280 0.0009324382869174 + 160 9 Cd 4px 0.0007437959315001 0.0024114474176211 + 161 9 Cd 4d-2 -0.0052317846254063 0.0132649625071786 + 162 9 Cd 4d-1 0.0085472367626127 -0.0049801562907108 + 163 9 Cd 4d0 0.0040840536420371 -0.0263941318662666 + 164 9 Cd 4d+1 0.0082238334205268 -0.0179687956267283 + 165 9 Cd 4d+2 0.0037204353778531 0.0258412206876161 + 166 9 Cd 5d-2 -0.0006588109410499 0.0030710755802514 + 167 9 Cd 5d-1 -0.0034236730530859 -0.0022752820930118 + 168 9 Cd 5d0 0.0002325999913109 -0.0042051952567108 + 169 9 Cd 5d+1 -0.0024910366550793 -0.0054178773721235 + 170 9 Cd 5d+2 -0.0044471495383883 0.0008382389237352 + 171 9 Cd 5f-3 -0.0006221878610316 0.0004085790931481 + 172 9 Cd 5f-2 -0.0003350856683037 -0.0006583961346509 + 173 9 Cd 5f-1 0.0016293440754905 -0.0000986225055843 + 174 9 Cd 5f0 0.0000193804059534 0.0008184402477163 + 175 9 Cd 5f+1 0.0013160562265435 0.0011436587896135 + 176 9 Cd 5f+2 0.0021751073507286 0.0005697530465402 + 177 9 Cd 5f+3 0.0005671197471092 0.0000509685934464 + + 178 10 Se 2s 0.0768615304777907 -0.0073993308898219 + 179 10 Se 3s -0.0067201564194506 0.0010924168765288 + 180 10 Se 3py 0.0044564333892142 0.0438497737128715 + 181 10 Se 3pz 0.0881595069853607 -0.0480205486659696 + 182 10 Se 3px -0.0403275122750860 -0.0723397091052918 + 183 10 Se 4py -0.0024272771805255 -0.0016454845443506 + 184 10 Se 4pz -0.0019256277195995 -0.0027546765968976 + 185 10 Se 4px -0.0043507440621849 0.0007701729652333 + 186 10 Se 4d-2 0.0001566015363756 -0.0004217981096315 + 187 10 Se 4d-1 -0.0021212392215287 -0.0034387128200786 + 188 10 Se 4d0 -0.0041365443741803 0.0031720652559712 + 189 10 Se 4d+1 0.0015553993333782 0.0017046854437667 + 190 10 Se 4d+2 -0.0001189435932243 -0.0059329098116778 + + 191 11 Se 2s -0.0487154522502782 -0.0760266909278340 + 192 11 Se 3s 0.0053070777119840 0.0070965608282573 + 193 11 Se 3py -0.0867607360230500 0.0652859584472491 + 194 11 Se 3pz -0.2513775706942635 -0.0952295329880731 + 195 11 Se 3px 0.0615850132909278 0.0565321507523083 + 196 11 Se 4py -0.0002346333738077 -0.0009277894881482 + 197 11 Se 4pz 0.0010230396570066 0.0000341984855735 + 198 11 Se 4px 0.0012504698369156 -0.0024097066669947 + 199 11 Se 4d-2 0.0059099750889074 0.0052364864768514 + 200 11 Se 4d-1 -0.0079010887237434 -0.0048248291564573 + 201 11 Se 4d0 0.0173865579027100 0.0019154247874378 + 202 11 Se 4d+1 0.0018284777124653 -0.0024001904904597 + 203 11 Se 4d+2 0.0029781933510436 -0.0014865100442329 + + 204 12 Cd 2s 0.1678109739348933 -0.0384377762763777 + 205 12 Cd 3s -0.0032103805864391 0.0009686819267049 + 206 12 Cd 3py -0.0067663324069353 -0.0127060960899921 + 207 12 Cd 3pz 0.0152275707279422 0.0033818778916128 + 208 12 Cd 3px 0.0291944636327847 0.0044960399090955 + 209 12 Cd 4py 0.0060003112511055 0.0014181092299477 + 210 12 Cd 4pz -0.0004911232556330 0.0013496526017865 + 211 12 Cd 4px -0.0009873975764880 -0.0013818202103079 + 212 12 Cd 4d-2 -0.0133411804551625 0.0187566108404978 + 213 12 Cd 4d-1 -0.0010024073554980 -0.0250599930047151 + 214 12 Cd 4d0 -0.0264238178974619 -0.0141317397109578 + 215 12 Cd 4d+1 0.0167565500395118 0.0018056144607353 + 216 12 Cd 4d+2 -0.0024752207601408 -0.0178948886854622 + 217 12 Cd 5d-2 -0.0010855727449382 -0.0003363705621553 + 218 12 Cd 5d-1 -0.0002560851010452 -0.0011817982254437 + 219 12 Cd 5d0 -0.0118187378519692 -0.0041854290273538 + 220 12 Cd 5d+1 0.0040875310495905 0.0049281802456010 + 221 12 Cd 5d+2 0.0036619369814060 0.0013280613612808 + 222 12 Cd 5f-3 0.0008300060144642 -0.0014998773657565 + 223 12 Cd 5f-2 0.0022939585000135 0.0000446941733210 + 224 12 Cd 5f-1 -0.0035271934333397 -0.0007072055533650 + 225 12 Cd 5f0 -0.0002681483556397 -0.0008945923537954 + 226 12 Cd 5f+1 0.0008919918021157 -0.0014081504989533 + 227 12 Cd 5f+2 0.0005988867837143 -0.0011753528951350 + 228 12 Cd 5f+3 0.0035605172631509 0.0027750240193735 + + 229 13 Cd 2s 0.0647088207598744 -0.2997922648534176 + 230 13 Cd 3s -0.0061088893414914 0.0118048134010849 + 231 13 Cd 3py -0.0035392572765881 0.0292437900881340 + 232 13 Cd 3pz -0.0120772958736453 -0.0104263187431247 + 233 13 Cd 3px -0.0093023707027083 0.0049512442022828 + 234 13 Cd 4py -0.0010878173154115 -0.0042367820371867 + 235 13 Cd 4pz -0.0008955764491194 0.0019347672457270 + 236 13 Cd 4px -0.0027726769686082 0.0133515459895443 + 237 13 Cd 4d-2 -0.0277287378411490 0.0586867674147936 + 238 13 Cd 4d-1 0.0101006078710725 -0.0339829136555720 + 239 13 Cd 4d0 -0.0365302364935117 0.0026192135795032 + 240 13 Cd 4d+1 0.0162181584338201 -0.0124237375368071 + 241 13 Cd 4d+2 0.0075069570784074 0.0173833429247845 + 242 13 Cd 5d-2 0.0022265356392440 0.0025007085253702 + 243 13 Cd 5d-1 -0.0018138138585926 -0.0050269299689494 + 244 13 Cd 5d0 -0.0099069552904487 0.0055945918822631 + 245 13 Cd 5d+1 0.0065177941633463 0.0078244118994462 + 246 13 Cd 5d+2 0.0038311126717124 -0.0057810590735867 + 247 13 Cd 5f-3 0.0001843447336122 -0.0015574188638745 + 248 13 Cd 5f-2 0.0004153588743271 0.0000738492368201 + 249 13 Cd 5f-1 0.0006426139636890 0.0015717878858163 + 250 13 Cd 5f0 0.0012319557045414 -0.0015705588236793 + 251 13 Cd 5f+1 0.0006935776886959 -0.0018381584389006 + 252 13 Cd 5f+2 -0.0008015273455267 -0.0023006980852584 + 253 13 Cd 5f+3 -0.0001468917914586 -0.0003324967201477 + + 254 14 Cd 2s -0.1776593204815760 -0.1536530887890311 + 255 14 Cd 3s 0.0085071679968809 0.0088493647884219 + 256 14 Cd 3py 0.0109315992650397 0.0208766294091002 + 257 14 Cd 3pz -0.0034684321776891 -0.0045588178209128 + 258 14 Cd 3px -0.0126109728674954 -0.0127696249107128 + 259 14 Cd 4py 0.0009915964106369 0.0010336307331099 + 260 14 Cd 4pz -0.0044029867718762 -0.0015937904635440 + 261 14 Cd 4px 0.0002557246427798 -0.0010235228263874 + 262 14 Cd 4d-2 0.0174024219159876 -0.0021641785341462 + 263 14 Cd 4d-1 0.0175371903471155 0.0095486444417249 + 264 14 Cd 4d0 -0.0291329144794716 -0.0258215262959070 + 265 14 Cd 4d+1 -0.0123793510318530 0.0177304992416079 + 266 14 Cd 4d+2 0.0107661125537249 0.0184424816836947 + 267 14 Cd 5d-2 0.0015377618707338 0.0019984155402036 + 268 14 Cd 5d-1 0.0049610417546462 -0.0028270996050981 + 269 14 Cd 5d0 0.0022738979380337 0.0045236894747173 + 270 14 Cd 5d+1 0.0001452920608525 0.0075216659138798 + 271 14 Cd 5d+2 0.0050111946631886 0.0071363749948673 + 272 14 Cd 5f-3 -0.0011905805574726 -0.0018180445170043 + 273 14 Cd 5f-2 -0.0001804408936845 -0.0009587583142672 + 274 14 Cd 5f-1 -0.0003830341609301 -0.0004821675658012 + 275 14 Cd 5f0 0.0009549941016284 -0.0009601886433011 + 276 14 Cd 5f+1 -0.0003950610942767 -0.0006458291498191 + 277 14 Cd 5f+2 0.0009649765580237 -0.0005146523559410 + 278 14 Cd 5f+3 -0.0001292568204199 0.0008483484541445 + + 279 15 Se 2s -0.0277935863781337 -0.0682303748036517 + 280 15 Se 3s 0.0018729963261252 0.0070764106879467 + 281 15 Se 3py 0.0267513379896671 -0.0467070292815919 + 282 15 Se 3pz 0.1196682649126020 0.0651258667177640 + 283 15 Se 3px 0.0126723379255063 0.1603778532227929 + 284 15 Se 4py -0.0007862971163771 -0.0014837004072923 + 285 15 Se 4pz 0.0000239276829467 -0.0046193246275033 + 286 15 Se 4px 0.0031679420232847 -0.0044626682918704 + 287 15 Se 4d-2 0.0012518455328235 -0.0137372072587974 + 288 15 Se 4d-1 -0.0041344352046870 -0.0017501947826478 + 289 15 Se 4d0 0.0071321059903115 0.0027609727400983 + 290 15 Se 4d+1 0.0045633690610609 0.0014000980826776 + 291 15 Se 4d+2 0.0016835336217532 -0.0007516276014935 + + 292 16 Se 2s 0.0843768126571012 -0.1536021432477113 + 293 16 Se 3s -0.0081020847421647 0.0135413366436241 + 294 16 Se 3py 0.0303658920291224 0.0074933817119115 + 295 16 Se 3pz -0.0485613854252094 0.1964484150927857 + 296 16 Se 3px 0.0540945207849031 -0.0343051419144242 + 297 16 Se 4py 0.0036939199867739 0.0003965496494999 + 298 16 Se 4pz 0.0012028564390036 0.0010826023890999 + 299 16 Se 4px 0.0047721253543369 -0.0016073448825403 + 300 16 Se 4d-2 -0.0017137606765378 -0.0013280273538866 + 301 16 Se 4d-1 0.0005690172695229 -0.0018933410296216 + 302 16 Se 4d0 -0.0005072906992535 0.0109053714027203 + 303 16 Se 4d+1 0.0011860398602529 -0.0034068805751562 + 304 16 Se 4d+2 -0.0007544422074458 0.0001181869532886 + + 305 17 Cd 2s 0.2365696030253560 -0.1127747153256236 + 306 17 Cd 3s -0.0147499475467156 0.0090106076686275 + 307 17 Cd 3py -0.0148305085895443 0.0038343180341688 + 308 17 Cd 3pz 0.0043529786564603 -0.0387807670508723 + 309 17 Cd 3px -0.0441457833064080 0.0259430665728466 + 310 17 Cd 4py 0.0061313305583238 -0.0045176364433665 + 311 17 Cd 4pz 0.0000196145398443 0.0028276445306959 + 312 17 Cd 4px 0.0059769725216019 -0.0042253138633163 + 313 17 Cd 4d-2 0.0538428613067608 0.0043292877708803 + 314 17 Cd 4d-1 0.0220047715277868 -0.0130999438845109 + 315 17 Cd 4d0 -0.0603622091466625 -0.0006442721719280 + 316 17 Cd 4d+1 0.0075720302572081 -0.0109283969552469 + 317 17 Cd 4d+2 0.0014305050568507 -0.0065735567813160 + 318 17 Cd 5d-2 0.0156910773977118 0.0054178895017000 + 319 17 Cd 5d-1 0.0031525531196550 -0.0035452837643272 + 320 17 Cd 5d0 -0.0039250217045623 -0.0055234007306198 + 321 17 Cd 5d+1 -0.0095050913626713 0.0064562726741119 + 322 17 Cd 5d+2 0.0079654658135627 -0.0018299750348938 + 323 17 Cd 5f-3 -0.0008182989714943 -0.0006486303540979 + 324 17 Cd 5f-2 0.0023653892615890 0.0032106629068619 + 325 17 Cd 5f-1 0.0003122694495742 -0.0002056241821467 + 326 17 Cd 5f0 -0.0026037031160089 -0.0012959868418543 + 327 17 Cd 5f+1 -0.0026350259834360 0.0031779640016621 + 328 17 Cd 5f+2 0.0012031315855956 -0.0002091324600452 + 329 17 Cd 5f+3 -0.0025760629860323 -0.0004290095048409 + + 330 18 Cd 2s -0.3673892405868560 -0.0782321838844307 + 331 18 Cd 3s 0.0227058983136845 0.0083699954397613 + 332 18 Cd 3py 0.0038597130351171 -0.0178038278741837 + 333 18 Cd 3pz -0.0000172301165651 -0.0152271621843356 + 334 18 Cd 3px 0.0114120182662243 -0.0027939983501439 + 335 18 Cd 4py 0.0013818478385167 0.0017247526625613 + 336 18 Cd 4pz -0.0016007618913826 0.0057556269755658 + 337 18 Cd 4px -0.0017380506202744 0.0032950335757326 + 338 18 Cd 4d-2 0.0175710638345286 -0.0004907459019827 + 339 18 Cd 4d-1 0.0519388031009129 -0.0152403573798261 + 340 18 Cd 4d0 -0.1078601778674062 0.0022589796721913 + 341 18 Cd 4d+1 -0.0482678991329511 -0.0056486139791328 + 342 18 Cd 4d+2 -0.0014279114618867 0.0129426069496405 + 343 18 Cd 5d-2 0.0037392263602494 0.0030904020043121 + 344 18 Cd 5d-1 -0.0032453817051356 0.0002285528805987 + 345 18 Cd 5d0 -0.0057505647736024 0.0062059783210396 + 346 18 Cd 5d+1 -0.0088572683665337 0.0035578281306402 + 347 18 Cd 5d+2 0.0001774207914344 0.0039113045431382 + 348 18 Cd 5f-3 0.0000652766039626 0.0012676753388098 + 349 18 Cd 5f-2 -0.0019024801202806 0.0025587729236998 + 350 18 Cd 5f-1 -0.0006764193399304 0.0007641948680733 + 351 18 Cd 5f0 -0.0000659248388262 0.0005168755689344 + 352 18 Cd 5f+1 -0.0015312616398468 0.0004652182008307 + 353 18 Cd 5f+2 0.0005346535172219 -0.0003049405493254 + 354 18 Cd 5f+3 -0.0024735931762677 -0.0004532943271069 + + 355 19 Se 2s -0.0001030423827772 -0.0985389450476589 + 356 19 Se 3s 0.0007166806832853 0.0091942370078883 + 357 19 Se 3py -0.2977877107691835 0.1225917534362523 + 358 19 Se 3pz 0.1447286007996382 0.0918608780489814 + 359 19 Se 3px 0.0160391062476516 0.0173982494311737 + 360 19 Se 4py -0.0026887531932879 0.0009126002360330 + 361 19 Se 4pz -0.0012106444208130 -0.0003810251392995 + 362 19 Se 4px -0.0002271406256201 -0.0001289433455020 + 363 19 Se 4d-2 -0.0081807116032535 0.0016251641249058 + 364 19 Se 4d-1 -0.0138937407702474 0.0063861847791337 + 365 19 Se 4d0 0.0143042194235486 0.0011616558829304 + 366 19 Se 4d+1 0.0074743057125994 0.0012398662996515 + 367 19 Se 4d+2 0.0063526115859316 -0.0036859185751024 + + 368 20 Se 2s 0.0385197585005890 -0.1476665325877079 + 369 20 Se 3s -0.0031343532300486 0.0121772561855532 + 370 20 Se 3py 0.0498040004782226 -0.0549901128879175 + 371 20 Se 3pz -0.0180901056355665 -0.0435428070593694 + 372 20 Se 3px 0.0197512389192749 0.1129716929474203 + 373 20 Se 4py -0.0054366796809808 -0.0004128687016873 + 374 20 Se 4pz -0.0045575937785151 -0.0003095511594600 + 375 20 Se 4px -0.0014038909216592 -0.0078950820377520 + 376 20 Se 4d-2 -0.0038272763773527 0.0012493116281476 + 377 20 Se 4d-1 0.0042533907080304 0.0002330867277644 + 378 20 Se 4d0 -0.0047438858832975 -0.0005816325764730 + 379 20 Se 4d+1 0.0039460002160408 -0.0006312373884471 + 380 20 Se 4d+2 0.0007736149582900 0.0012679841660258 + + 381 21 Se 2s -0.0758825235152695 -0.0442863747792946 + 382 21 Se 3s 0.0066864263627219 0.0039554352699905 + 383 21 Se 3py -0.0882530177114955 -0.1162061092455263 + 384 21 Se 3pz -0.0726699348418846 0.1407872955183009 + 385 21 Se 3px -0.0748746746764382 -0.0426893132528268 + 386 21 Se 4py -0.0023934400675023 0.0008941283864548 + 387 21 Se 4pz 0.0024815487998693 -0.0078526635508896 + 388 21 Se 4px -0.0010763849691631 0.0001428341905920 + 389 21 Se 4d-2 0.0082969918080232 0.0036900819194131 + 390 21 Se 4d-1 0.0057831813460664 -0.0027759726434301 + 391 21 Se 4d0 -0.0022635427389124 -0.0085338134570718 + 392 21 Se 4d+1 0.0019012113748075 0.0068970673936128 + 393 21 Se 4d+2 -0.0022007526216803 -0.0022941834349939 + + 394 22 Cd 2s -0.0471448672463606 0.1016875728518749 + 395 22 Cd 3s -0.0010022259948573 0.0008894225189853 + 396 22 Cd 3py 0.0187981050099894 0.0241498715954498 + 397 22 Cd 3pz 0.0096498389763174 0.0153831986257530 + 398 22 Cd 3px 0.0207528295031315 -0.0043389821796422 + 399 22 Cd 4py -0.0009947994025332 -0.0044532081525038 + 400 22 Cd 4pz 0.0008987290194511 -0.0052345755462197 + 401 22 Cd 4px -0.0048294367192825 0.0102882578557794 + 402 22 Cd 4d-2 -0.0002893634199327 -0.0132855325750782 + 403 22 Cd 4d-1 0.0136772848751876 0.0014963616893719 + 404 22 Cd 4d0 -0.0272593739191569 0.0417949903398152 + 405 22 Cd 4d+1 -0.0179386385295398 -0.0002561268686138 + 406 22 Cd 4d+2 -0.0148502989514547 -0.0399167845545167 + 407 22 Cd 5d-2 -0.0014781224597766 0.0070692300185203 + 408 22 Cd 5d-1 0.0020474950990215 0.0002865277421167 + 409 22 Cd 5d0 -0.0013836567392607 -0.0070648206396609 + 410 22 Cd 5d+1 0.0000538749718429 0.0017711703249198 + 411 22 Cd 5d+2 -0.0033068008916840 0.0056466131308158 + 412 22 Cd 5f-3 -0.0024994327364365 0.0034383375213570 + 413 22 Cd 5f-2 -0.0001260875669479 0.0016422937923724 + 414 22 Cd 5f-1 -0.0003719421899845 0.0011141455041770 + 415 22 Cd 5f0 -0.0025309696946691 0.0030690519487985 + 416 22 Cd 5f+1 0.0003246308028900 -0.0019298740348772 + 417 22 Cd 5f+2 -0.0006480345485783 0.0003888591168169 + 418 22 Cd 5f+3 -0.0018235496159381 0.0075925503440191 + + 419 23 Se 2s 0.0783598272820851 -0.0648288159322475 + 420 23 Se 3s -0.0073451015124009 0.0065438963144480 + 421 23 Se 3py 0.1182054343197506 -0.0989940945877476 + 422 23 Se 3pz 0.0295758671812398 0.0278054588105934 + 423 23 Se 3px -0.1177096836000436 0.0647931185971985 + 424 23 Se 4py 0.0041241648555579 0.0029705927264185 + 425 23 Se 4pz -0.0013699599423564 0.0013233353902673 + 426 23 Se 4px 0.0011371794677592 0.0005257611306235 + 427 23 Se 4d-2 0.0081082916345243 -0.0040057776520465 + 428 23 Se 4d-1 0.0030562236979731 -0.0072154684128874 + 429 23 Se 4d0 0.0081012988739085 -0.0030117269189727 + 430 23 Se 4d+1 -0.0015872525614607 0.0032916846567268 + 431 23 Se 4d+2 -0.0017797136826092 -0.0002711119909707 + + 432 24 Se 2s -0.0578682981624856 -0.0726833470044503 + 433 24 Se 3s 0.0039626065492111 0.0078019799352362 + 434 24 Se 3py 0.1708598973916176 0.1061186441559919 + 435 24 Se 3pz 0.0128710276301911 0.0331402283459500 + 436 24 Se 3px -0.0106619870483433 0.0411755476081027 + 437 24 Se 4py -0.0009765452355701 0.0013599534171095 + 438 24 Se 4pz 0.0043304160385370 -0.0018602265238146 + 439 24 Se 4px 0.0029373135865626 0.0005465535530993 + 440 24 Se 4d-2 0.0047154040373871 0.0033284900499532 + 441 24 Se 4d-1 0.0033024520002293 0.0036706528712601 + 442 24 Se 4d0 -0.0037906321383138 -0.0021390759946887 + 443 24 Se 4d+1 -0.0023454257061451 0.0004485772590742 + 444 24 Se 4d+2 -0.0092329039497810 -0.0024708515993402 + + 445 25 Cd 2s 0.0377231891190884 -0.1248697186741815 + 446 25 Cd 3s -0.0032878036815163 0.0053372283695969 + 447 25 Cd 3py -0.0001764780601743 0.0021578880882225 + 448 25 Cd 3pz -0.0139877297597044 0.0122296175826398 + 449 25 Cd 3px 0.0058613325180389 -0.0120903058423322 + 450 25 Cd 4py 0.0017792061148923 0.0016047951697778 + 451 25 Cd 4pz 0.0084855426258312 -0.0028641293023953 + 452 25 Cd 4px -0.0089794167711585 0.0059092120881014 + 453 25 Cd 4d-2 0.0413604240112315 0.0163930860849339 + 454 25 Cd 4d-1 -0.0207404883502197 0.0136966982206396 + 455 25 Cd 4d0 0.0413086341636898 -0.0048986225616025 + 456 25 Cd 4d+1 -0.0375849138947147 0.0455593051565527 + 457 25 Cd 4d+2 0.0352054135417694 -0.0148563679293957 + 458 25 Cd 5d-2 0.0098107431916156 0.0061322620970812 + 459 25 Cd 5d-1 -0.0065852388559036 -0.0029724969381134 + 460 25 Cd 5d0 0.0058022146496492 0.0007889578362576 + 461 25 Cd 5d+1 -0.0045666547705587 0.0110021601746842 + 462 25 Cd 5d+2 0.0017860313419514 -0.0019853868283068 + 463 25 Cd 5f-3 -0.0022648229736256 0.0026614845025768 + 464 25 Cd 5f-2 0.0005837313023953 -0.0018611861758194 + 465 25 Cd 5f-1 0.0018410431100957 0.0009558606276059 + 466 25 Cd 5f0 -0.0010249210534284 0.0006404619947966 + 467 25 Cd 5f+1 -0.0040701779083865 0.0007023563096939 + 468 25 Cd 5f+2 0.0053390776844202 -0.0012786280291112 + 469 25 Cd 5f+3 -0.0040202791683722 0.0009185367420773 + + 470 26 Cd 2s -0.2224770281987510 -0.1461960852669652 + 471 26 Cd 3s 0.0097672577698710 0.0094451332017694 + 472 26 Cd 3py 0.0114554762708680 0.0103948086883275 + 473 26 Cd 3pz 0.0157564928893787 -0.0138592151328643 + 474 26 Cd 3px -0.0227300573654598 -0.0178500894787877 + 475 26 Cd 4py 0.0009266800322848 -0.0004070053123434 + 476 26 Cd 4pz -0.0018755159027808 0.0008754700184043 + 477 26 Cd 4px -0.0021180513579140 -0.0004431485930814 + 478 26 Cd 4d-2 -0.0260532019091087 -0.0014037844765197 + 479 26 Cd 4d-1 -0.0258756853946904 -0.0295863995931959 + 480 26 Cd 4d0 0.0194159328463813 0.0080944166400648 + 481 26 Cd 4d+1 0.0059812126285118 -0.0193046277168842 + 482 26 Cd 4d+2 0.0312969631463838 0.0133072449343839 + 483 26 Cd 5d-2 0.0085205902515467 0.0055398078196689 + 484 26 Cd 5d-1 0.0009142753640985 -0.0014514985639753 + 485 26 Cd 5d0 0.0042587135005707 0.0015775015641154 + 486 26 Cd 5d+1 0.0053015334715806 -0.0002836677690119 + 487 26 Cd 5d+2 -0.0029256396136510 -0.0071433700340525 + 488 26 Cd 5f-3 0.0020590802899146 0.0013785164083446 + 489 26 Cd 5f-2 -0.0011482383072594 0.0001499381548233 + 490 26 Cd 5f-1 -0.0013326482689890 0.0001573356297583 + 491 26 Cd 5f0 -0.0011741855192554 -0.0008821866728230 + 492 26 Cd 5f+1 0.0009269879431697 0.0014345705735804 + 493 26 Cd 5f+2 0.0010729348091072 0.0008361776723032 + 494 26 Cd 5f+3 0.0013115344826932 -0.0012627233179376 + + 87 88 + -0.2861154727673312 -0.2838763308010894 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0355994979664376 0.1471727747349732 + 2 1 Cd 3s 0.0013065704685146 -0.0086502795662752 + 3 1 Cd 3py -0.0011314089928045 0.0451319314081789 + 4 1 Cd 3pz -0.0128402934694213 -0.0149908300418369 + 5 1 Cd 3px 0.0159610306397238 0.0059563421195395 + 6 1 Cd 4py -0.0048824903067778 -0.0049240316972132 + 7 1 Cd 4pz 0.0000591168663123 0.0045196698918345 + 8 1 Cd 4px -0.0000840208976843 0.0026956495979147 + 9 1 Cd 4d-2 0.0041127078577250 -0.0406628155103073 + 10 1 Cd 4d-1 0.0256143005448310 0.0099805019910883 + 11 1 Cd 4d0 -0.0173609595367010 -0.0413478577173171 + 12 1 Cd 4d+1 0.0175723344137261 0.0151104194944968 + 13 1 Cd 4d+2 -0.0072949629608905 -0.0675666338325616 + 14 1 Cd 5d-2 0.0032860795819712 -0.0106371950469825 + 15 1 Cd 5d-1 -0.0041419867227796 -0.0062248570247256 + 16 1 Cd 5d0 -0.0025377717139304 -0.0067290773431932 + 17 1 Cd 5d+1 0.0040157503173927 -0.0046323480430773 + 18 1 Cd 5d+2 -0.0055276064176926 -0.0129633758086544 + 19 1 Cd 5f-3 -0.0001373348370810 0.0009181035883521 + 20 1 Cd 5f-2 0.0014598689938050 0.0018818952495826 + 21 1 Cd 5f-1 -0.0010060465080770 -0.0016757782016542 + 22 1 Cd 5f0 0.0000448364084433 0.0004798011445312 + 23 1 Cd 5f+1 0.0006074278338225 -0.0001751389158347 + 24 1 Cd 5f+2 -0.0006099701551283 0.0004695626572634 + 25 1 Cd 5f+3 0.0011914785480897 0.0020531218640237 + + 26 2 Cd 2s -0.1456863723226705 -0.1899936542368212 + 27 2 Cd 3s 0.0012911705003081 0.0045636304801357 + 28 2 Cd 3py -0.0022238000468376 -0.0032054875700842 + 29 2 Cd 3pz 0.0103062973358168 0.0247046402245795 + 30 2 Cd 3px 0.0096086809796719 -0.0191863331243428 + 31 2 Cd 4py 0.0076173184902227 0.0024771416001142 + 32 2 Cd 4pz -0.0088433464927471 -0.0053929869923729 + 33 2 Cd 4px 0.0084669745917931 0.0110746490188531 + 34 2 Cd 4d-2 0.0186017215634034 -0.0047620231475857 + 35 2 Cd 4d-1 -0.0231993106034580 -0.0046375004283149 + 36 2 Cd 4d0 0.0001587739291416 0.0058758802084352 + 37 2 Cd 4d+1 0.0111920438400583 0.0449004518302606 + 38 2 Cd 4d+2 0.0431440007721138 -0.0183448699260778 + 39 2 Cd 5d-2 0.0029948760135722 -0.0055254731022445 + 40 2 Cd 5d-1 -0.0088720911459246 0.0008247557730335 + 41 2 Cd 5d0 0.0126134540491386 -0.0007658146548319 + 42 2 Cd 5d+1 0.0014207819747849 0.0058741075866949 + 43 2 Cd 5d+2 0.0053359527039143 0.0001668889813589 + 44 2 Cd 5f-3 0.0010316315863176 -0.0003519897517444 + 45 2 Cd 5f-2 -0.0012293742709465 -0.0041522599593958 + 46 2 Cd 5f-1 0.0011787037490741 0.0029151357014804 + 47 2 Cd 5f0 0.0021396108019233 0.0032654552926278 + 48 2 Cd 5f+1 -0.0015675268876232 -0.0009406817251264 + 49 2 Cd 5f+2 -0.0010585697973593 0.0002015831416975 + 50 2 Cd 5f+3 0.0009021382115244 -0.0035476914915016 + + 51 3 Cd 2s -0.1582798079648468 -0.1192043698854734 + 52 3 Cd 3s 0.0082909389850929 0.0060484164686356 + 53 3 Cd 3py -0.0179094139633059 -0.0044385032388864 + 54 3 Cd 3pz -0.0152664208133466 0.0188877792225419 + 55 3 Cd 3px 0.0202281426211081 0.0000858988564598 + 56 3 Cd 4py 0.0059527094887614 0.0001466441560144 + 57 3 Cd 4pz 0.0051619338201396 -0.0048007346433268 + 58 3 Cd 4px 0.0038653898236070 -0.0003625018683875 + 59 3 Cd 4d-2 -0.0104322847934964 -0.0145795903176127 + 60 3 Cd 4d-1 0.0168634395194160 -0.0281010102929148 + 61 3 Cd 4d0 0.0191120440608246 0.0327960914620170 + 62 3 Cd 4d+1 0.0243750098342191 -0.0131290033044348 + 63 3 Cd 4d+2 -0.0317942782067549 -0.0021976615114173 + 64 3 Cd 5d-2 -0.0059730451885714 -0.0082322350295192 + 65 3 Cd 5d-1 0.0000140290381881 -0.0110931802482210 + 66 3 Cd 5d0 0.0044975136386338 0.0063262877135554 + 67 3 Cd 5d+1 0.0034986381641595 -0.0038493529312833 + 68 3 Cd 5d+2 -0.0036279110302408 -0.0021859744888626 + 69 3 Cd 5f-3 0.0008379275735056 -0.0004055806217389 + 70 3 Cd 5f-2 0.0059999900433019 0.0035172922462888 + 71 3 Cd 5f-1 -0.0005239014932955 -0.0024071822113669 + 72 3 Cd 5f0 -0.0031602033205159 -0.0009941757194312 + 73 3 Cd 5f+1 0.0021985037594319 -0.0009697812091515 + 74 3 Cd 5f+2 0.0018919805661075 -0.0002736959122389 + 75 3 Cd 5f+3 0.0000664383249022 0.0023179379229231 + + 76 4 Se 2s -0.0765403423082979 0.0217617956364298 + 77 4 Se 3s 0.0058157827718318 -0.0025513393308912 + 78 4 Se 3py -0.0565731028023415 -0.0060007187850534 + 79 4 Se 3pz 0.0980998773036245 0.2658435670185209 + 80 4 Se 3px -0.0833557548005069 -0.0103110997383407 + 81 4 Se 4py -0.0024803380275812 -0.0019025046493928 + 82 4 Se 4pz -0.0054782820033152 0.0011584658441268 + 83 4 Se 4px 0.0011147345312923 0.0016805671422020 + 84 4 Se 4d-2 0.0035855934922367 0.0034381879396360 + 85 4 Se 4d-1 -0.0022932068605505 -0.0109104642268380 + 86 4 Se 4d0 -0.0008134383874148 -0.0005184096334306 + 87 4 Se 4d+1 -0.0061646821623159 -0.0133162615947963 + 88 4 Se 4d+2 0.0019174893465644 0.0016715951336516 + + 89 5 Se 2s -0.0388838894536637 -0.0404465007353805 + 90 5 Se 3s 0.0019873346349566 0.0016197859168803 + 91 5 Se 3py 0.0484981675801373 -0.0158931224164689 + 92 5 Se 3pz 0.0402412308668248 0.0525206788449689 + 93 5 Se 3px -0.0203016538703614 -0.0634855610530640 + 94 5 Se 4py -0.0003216700099828 -0.0001847301984762 + 95 5 Se 4pz 0.0003177521159497 0.0024660736349565 + 96 5 Se 4px 0.0000913984464614 -0.0023126702629050 + 97 5 Se 4d-2 -0.0033343363792446 -0.0001710444582886 + 98 5 Se 4d-1 0.0016467771713995 0.0023672875696621 + 99 5 Se 4d0 0.0005752926245976 0.0010296305203698 + 100 5 Se 4d+1 -0.0032335213205310 -0.0031532904831104 + 101 5 Se 4d+2 -0.0010751660864883 0.0056239152203814 + + 102 6 Se 2s -0.0552801126275187 0.0028290604072250 + 103 6 Se 3s 0.0047386512335491 -0.0011325974400957 + 104 6 Se 3py 0.0051227272275183 0.1067629456142217 + 105 6 Se 3pz -0.1383693776549891 -0.1672261349696627 + 106 6 Se 3px -0.0585567262894529 0.0601572654641125 + 107 6 Se 4py 0.0031181204089672 -0.0041041404542018 + 108 6 Se 4pz 0.0007517250799551 -0.0013102674554733 + 109 6 Se 4px -0.0001306252774336 -0.0019605982713839 + 110 6 Se 4d-2 0.0018768366853406 -0.0053775637705508 + 111 6 Se 4d-1 -0.0005530395995964 -0.0013065114114369 + 112 6 Se 4d0 -0.0015083163327459 -0.0020528504399465 + 113 6 Se 4d+1 0.0110429057359503 0.0135562408079292 + 114 6 Se 4d+2 -0.0003328888026176 -0.0104710744361832 + + 115 7 Se 2s -0.0094824692459589 0.0185838142324041 + 116 7 Se 3s 0.0011256093634179 -0.0029383395977781 + 117 7 Se 3py 0.1957996395590043 -0.0190481858103224 + 118 7 Se 3pz -0.0801892956992353 -0.0021013066409330 + 119 7 Se 3px 0.1070245458334362 0.0277733475570511 + 120 7 Se 4py -0.0026713868913969 -0.0014164297095154 + 121 7 Se 4pz 0.0013680607341852 0.0009697889123700 + 122 7 Se 4px -0.0014101813874357 -0.0010539127540243 + 123 7 Se 4d-2 -0.0052109958054421 0.0013233269167105 + 124 7 Se 4d-1 -0.0115759509004566 0.0052939288404705 + 125 7 Se 4d0 0.0069358736920987 0.0001275942292764 + 126 7 Se 4d+1 -0.0077907066099353 -0.0034466415254024 + 127 7 Se 4d+2 -0.0012511193606480 0.0046917583910258 + + 128 8 Cd 2s 0.2410249590671924 -0.0533615464644983 + 129 8 Cd 3s 0.0002619420222437 0.0026604009077265 + 130 8 Cd 3py 0.0091035980244401 0.0088743124625832 + 131 8 Cd 3pz 0.0216847980262524 0.0058543277451952 + 132 8 Cd 3px -0.0003699177194120 0.0136234640265821 + 133 8 Cd 4py -0.0038770786843005 -0.0009309725422426 + 134 8 Cd 4pz -0.0053064148403390 0.0028600169103112 + 135 8 Cd 4px 0.0091241168616145 -0.0027199640044762 + 136 8 Cd 4d-2 -0.0521482579290554 -0.0167063449913811 + 137 8 Cd 4d-1 -0.0198667512487482 0.0119739624945955 + 138 8 Cd 4d0 0.0362813106003304 0.0118302604544084 + 139 8 Cd 4d+1 0.0437232492992415 0.0178865306597340 + 140 8 Cd 4d+2 0.0259517501461202 -0.0056334280826649 + 141 8 Cd 5d-2 0.0032345297774188 -0.0077906565505070 + 142 8 Cd 5d-1 0.0016190211390630 -0.0006181574379982 + 143 8 Cd 5d0 -0.0073587731763965 -0.0036037331571939 + 144 8 Cd 5d+1 0.0153220061047607 0.0071121954795226 + 145 8 Cd 5d+2 0.0093327806494568 0.0007931878133876 + 146 8 Cd 5f-3 -0.0011180145920914 0.0016778885348951 + 147 8 Cd 5f-2 -0.0063643252447390 0.0029984740129976 + 148 8 Cd 5f-1 0.0030109908196344 -0.0006711586187052 + 149 8 Cd 5f0 -0.0010102746039842 0.0004512447832886 + 150 8 Cd 5f+1 -0.0047545204277592 -0.0018277989773895 + 151 8 Cd 5f+2 0.0038581751583190 0.0005143827561130 + 152 8 Cd 5f+3 0.0012163544792930 0.0030412853910196 + + 153 9 Cd 2s 0.0870983732710192 0.3026160449767743 + 154 9 Cd 3s -0.0049085420708420 -0.0095925210441044 + 155 9 Cd 3py 0.0289739265448540 0.0033751514468907 + 156 9 Cd 3pz 0.0145238904612970 -0.0156585927620775 + 157 9 Cd 3px 0.0086755273006773 -0.0033185737502112 + 158 9 Cd 4py -0.0016447748991366 0.0056763896272810 + 159 9 Cd 4pz -0.0000536364709588 -0.0025072907912756 + 160 9 Cd 4px 0.0000614927020992 0.0029680106037808 + 161 9 Cd 4d-2 -0.0342378542086070 -0.0056889841138475 + 162 9 Cd 4d-1 -0.0072475347301639 0.0099566437393658 + 163 9 Cd 4d0 -0.0332261397403671 -0.0352895458128787 + 164 9 Cd 4d+1 -0.0153814826156546 -0.0348111274926688 + 165 9 Cd 4d+2 0.0191387535825794 0.0697405507886659 + 166 9 Cd 5d-2 -0.0038900115430114 -0.0032949106411184 + 167 9 Cd 5d-1 -0.0033658644860824 -0.0099703888610071 + 168 9 Cd 5d0 -0.0038326661069998 0.0030994913686387 + 169 9 Cd 5d+1 -0.0048009153555151 -0.0002720520383902 + 170 9 Cd 5d+2 -0.0001821824217729 -0.0022897178106923 + 171 9 Cd 5f-3 -0.0015298523713771 0.0001360897494737 + 172 9 Cd 5f-2 -0.0007359642182363 0.0004856059183717 + 173 9 Cd 5f-1 -0.0000826106408631 0.0020393772866968 + 174 9 Cd 5f0 0.0009828869819546 0.0013962959005362 + 175 9 Cd 5f+1 0.0015081884226807 -0.0003087630260087 + 176 9 Cd 5f+2 0.0020871044455493 0.0006501356659843 + 177 9 Cd 5f+3 0.0003473543260194 0.0012058533250208 + + 178 10 Se 2s 0.0295500503357265 0.0495619291364124 + 179 10 Se 3s -0.0022649133398932 -0.0041149888409434 + 180 10 Se 3py -0.1784101032125820 0.0346929107777252 + 181 10 Se 3pz -0.0330794711050632 -0.0597611732641255 + 182 10 Se 3px -0.0654076096113946 -0.2174886735230191 + 183 10 Se 4py 0.0069624855384537 -0.0021250936656983 + 184 10 Se 4pz 0.0010390990281983 0.0016594510282484 + 185 10 Se 4px -0.0000630767514847 0.0029478152056095 + 186 10 Se 4d-2 -0.0032761096420340 0.0010297100950482 + 187 10 Se 4d-1 0.0128848247749539 -0.0024599985517577 + 188 10 Se 4d0 0.0075051643837544 0.0093005746038584 + 189 10 Se 4d+1 0.0011724136836986 0.0047935433229299 + 190 10 Se 4d+2 0.0017683929788030 -0.0113779845642143 + + 191 11 Se 2s -0.0343644188796055 -0.0675574759687373 + 192 11 Se 3s 0.0033198596922114 0.0059318315469938 + 193 11 Se 3py 0.1977042359713648 0.0485369872415739 + 194 11 Se 3pz 0.2258858152170314 -0.1257330976109207 + 195 11 Se 3px -0.0638509439915954 0.0370982674278622 + 196 11 Se 4py -0.0053904414095883 -0.0021802690580479 + 197 11 Se 4pz -0.0068095789520979 -0.0020475279525066 + 198 11 Se 4px 0.0027361728234620 -0.0017430122077724 + 199 11 Se 4d-2 -0.0047306555746925 0.0027060403847595 + 200 11 Se 4d-1 0.0041877856519186 -0.0044160242953190 + 201 11 Se 4d0 -0.0189825026494466 0.0039458877728512 + 202 11 Se 4d+1 -0.0008413229223600 -0.0026791642168012 + 203 11 Se 4d+2 -0.0049581722619894 -0.0010686665834197 + + 204 12 Cd 2s -0.2339559140215929 -0.0510652171116165 + 205 12 Cd 3s 0.0053443927616967 0.0016144933673851 + 206 12 Cd 3py 0.0123859761574029 -0.0127139668183863 + 207 12 Cd 3pz -0.0113830403315532 -0.0091145256512124 + 208 12 Cd 3px -0.0219482166318975 0.0141832395386031 + 209 12 Cd 4py -0.0113015630099693 0.0018491269272800 + 210 12 Cd 4pz 0.0020716336840078 0.0021596265716454 + 211 12 Cd 4px 0.0046442560623639 0.0015361252180037 + 212 12 Cd 4d-2 0.0493282705917439 -0.0087773319894391 + 213 12 Cd 4d-1 0.0123959027049168 -0.0330338008702867 + 214 12 Cd 4d0 0.0100110965463540 -0.0119772625158905 + 215 12 Cd 4d+1 -0.0048819354237582 0.0184326972029272 + 216 12 Cd 4d+2 -0.0282626369096430 -0.0102163515688625 + 217 12 Cd 5d-2 0.0008097236898590 -0.0023655286219285 + 218 12 Cd 5d-1 0.0001860955020690 -0.0090055931405664 + 219 12 Cd 5d0 -0.0013167988998835 -0.0085973609142776 + 220 12 Cd 5d+1 -0.0014243955094206 0.0044577014639548 + 221 12 Cd 5d+2 -0.0005270428292350 0.0015268176334057 + 222 12 Cd 5f-3 0.0008740765875898 -0.0012568543963356 + 223 12 Cd 5f-2 -0.0031367792411812 -0.0008801707449170 + 224 12 Cd 5f-1 0.0031137690651210 -0.0007494582138448 + 225 12 Cd 5f0 0.0035916032373063 0.0010255269698082 + 226 12 Cd 5f+1 -0.0013962223124169 -0.0007178522101090 + 227 12 Cd 5f+2 0.0008878763051288 -0.0003715860410583 + 228 12 Cd 5f+3 -0.0009206835983496 0.0003980470759029 + + 229 13 Cd 2s -0.0165512251487383 0.0788362046661144 + 230 13 Cd 3s 0.0004803089983656 -0.0009392130085680 + 231 13 Cd 3py 0.0044109285122447 -0.0161786997923935 + 232 13 Cd 3pz -0.0191348187199297 -0.0026834933318860 + 233 13 Cd 3px 0.0084163850955437 0.0538873632703468 + 234 13 Cd 4py -0.0052363785435755 0.0054465233867383 + 235 13 Cd 4pz -0.0025932709445211 0.0007311777071881 + 236 13 Cd 4px -0.0043403230010768 -0.0161419799703347 + 237 13 Cd 4d-2 0.0010850298198448 -0.0081157599627071 + 238 13 Cd 4d-1 0.0054363276804238 0.0121528469850060 + 239 13 Cd 4d0 -0.0241588332652463 0.0110689738993153 + 240 13 Cd 4d+1 0.0183891974086145 -0.0072094350488550 + 241 13 Cd 4d+2 -0.0143882013934143 0.0172209423289904 + 242 13 Cd 5d-2 0.0004593730330512 -0.0013924759321021 + 243 13 Cd 5d-1 -0.0001013158632682 0.0005103966482561 + 244 13 Cd 5d0 -0.0113796622138267 0.0005455449974381 + 245 13 Cd 5d+1 0.0063791374404165 -0.0024172618299530 + 246 13 Cd 5d+2 0.0002703020582742 0.0007632822927512 + 247 13 Cd 5f-3 0.0002924597480248 0.0030157740561931 + 248 13 Cd 5f-2 0.0002551643378229 0.0000650068019113 + 249 13 Cd 5f-1 0.0017356007936678 -0.0038874445751434 + 250 13 Cd 5f0 0.0011102358332475 0.0012422053528389 + 251 13 Cd 5f+1 0.0011901616180857 0.0024801889411813 + 252 13 Cd 5f+2 -0.0005474569985033 0.0008686994552900 + 253 13 Cd 5f+3 -0.0042391039018198 0.0009696421756115 + + 254 14 Cd 2s -0.2144291299403057 0.2051619068843230 + 255 14 Cd 3s 0.0078536687586468 -0.0077315124234164 + 256 14 Cd 3py 0.0220106154157655 0.0093907601261014 + 257 14 Cd 3pz -0.0190493045068114 -0.0193172501939379 + 258 14 Cd 3px -0.0162252756010222 -0.0108491133331087 + 259 14 Cd 4py 0.0006341954202519 -0.0062116082554492 + 260 14 Cd 4pz 0.0009509832953754 0.0088295194937475 + 261 14 Cd 4px 0.0007214108473340 0.0021002819380762 + 262 14 Cd 4d-2 0.0212088590938329 0.0050987221378703 + 263 14 Cd 4d-1 0.0052908711890990 -0.0175269172577042 + 264 14 Cd 4d0 -0.0248848086366395 0.0587650133798744 + 265 14 Cd 4d+1 -0.0252419675642732 0.0129323836108816 + 266 14 Cd 4d+2 0.0022721515909113 0.0016106475620911 + 267 14 Cd 5d-2 0.0040741106431766 0.0010485523415217 + 268 14 Cd 5d-1 -0.0003653596471962 -0.0011444415572886 + 269 14 Cd 5d0 0.0036589727327980 -0.0027215710031637 + 270 14 Cd 5d+1 -0.0037868172785517 -0.0014767251326843 + 271 14 Cd 5d+2 0.0065855827077619 -0.0050021548468130 + 272 14 Cd 5f-3 -0.0026580420736741 0.0010792748089198 + 273 14 Cd 5f-2 0.0007032413477705 -0.0003956939273993 + 274 14 Cd 5f-1 -0.0027507960072608 -0.0006897931403101 + 275 14 Cd 5f0 0.0001165817291440 0.0013439768466415 + 276 14 Cd 5f+1 -0.0005627045236536 0.0011392162074843 + 277 14 Cd 5f+2 0.0007523342655009 -0.0007361044433174 + 278 14 Cd 5f+3 0.0004790556041040 -0.0000518628889856 + + 279 15 Se 2s -0.1086720113606572 0.0250165132935740 + 280 15 Se 3s 0.0106867019622477 -0.0024894493869589 + 281 15 Se 3py -0.1144200151331408 -0.1117072495961208 + 282 15 Se 3pz 0.0955160879395433 -0.2283252888729866 + 283 15 Se 3px -0.0552053238905409 -0.0716359215186231 + 284 15 Se 4py 0.0023643959176965 0.0051424247372895 + 285 15 Se 4pz -0.0013532218999846 0.0090601041405921 + 286 15 Se 4px 0.0045858024304587 0.0041761831245662 + 287 15 Se 4d-2 0.0059315078320983 0.0039944688332483 + 288 15 Se 4d-1 -0.0036629730507999 0.0070652626781282 + 289 15 Se 4d0 0.0016010476036986 -0.0118206779436858 + 290 15 Se 4d+1 0.0031604598565077 -0.0027878853728701 + 291 15 Se 4d+2 -0.0024159694185208 -0.0065100028349709 + + 292 16 Se 2s 0.0214423725105213 0.0010151032235142 + 293 16 Se 3s -0.0013291902602144 -0.0014574863580044 + 294 16 Se 3py 0.0161022135058337 -0.1011927439851764 + 295 16 Se 3pz 0.0040172099909010 -0.1304631571111693 + 296 16 Se 3px 0.0334503757590900 -0.1703960842890689 + 297 16 Se 4py 0.0031313905633239 -0.0030357149797635 + 298 16 Se 4pz -0.0006425036482635 -0.0002329818981923 + 299 16 Se 4px -0.0001850340527997 0.0008556328330602 + 300 16 Se 4d-2 -0.0025219675256278 0.0096291211887361 + 301 16 Se 4d-1 -0.0007082154592767 -0.0000264954693335 + 302 16 Se 4d0 0.0025974769303641 -0.0130084775745462 + 303 16 Se 4d+1 0.0003628326302380 -0.0060952073846549 + 304 16 Se 4d+2 -0.0010029892171593 0.0027613464286732 + + 305 17 Cd 2s 0.0961761124400892 -0.2337890753680577 + 306 17 Cd 3s -0.0053984900778449 0.0147473363776568 + 307 17 Cd 3py 0.0010052894808673 -0.0107109089679479 + 308 17 Cd 3pz 0.0069755554583567 -0.0036662606682477 + 309 17 Cd 3px -0.0179340122205406 0.0109780007574731 + 310 17 Cd 4py -0.0010919809915716 0.0054731024537602 + 311 17 Cd 4pz -0.0002855008035892 -0.0034367273899816 + 312 17 Cd 4px 0.0006609944424178 0.0066545477974530 + 313 17 Cd 4d-2 -0.0009558792399928 -0.0404622651303236 + 314 17 Cd 4d-1 -0.0156003285383293 0.0154883567806852 + 315 17 Cd 4d0 -0.0165355451399606 0.0567386604634526 + 316 17 Cd 4d+1 -0.0065993260998649 0.0132060366449339 + 317 17 Cd 4d+2 0.0129968296337758 0.0153653831574254 + 318 17 Cd 5d-2 -0.0001303137218505 -0.0062517350457718 + 319 17 Cd 5d-1 -0.0004298821208257 -0.0016459108665402 + 320 17 Cd 5d0 -0.0014120556876958 -0.0021952197952139 + 321 17 Cd 5d+1 -0.0040543921608520 0.0112011018918713 + 322 17 Cd 5d+2 0.0032031790009280 0.0015091467483601 + 323 17 Cd 5f-3 -0.0008470397064736 0.0020467569748096 + 324 17 Cd 5f-2 -0.0004092897791881 -0.0017751622638271 + 325 17 Cd 5f-1 0.0004689734528401 -0.0024650507090748 + 326 17 Cd 5f0 -0.0012648530840956 0.0028871474844318 + 327 17 Cd 5f+1 -0.0002785796729796 0.0003171658246734 + 328 17 Cd 5f+2 0.0003874347525920 0.0005496403770233 + 329 17 Cd 5f+3 0.0004082531942319 0.0004267035296984 + + 330 18 Cd 2s 0.2045276827132960 -0.1236716947925809 + 331 18 Cd 3s -0.0100348210584745 0.0084241828361773 + 332 18 Cd 3py -0.0093745551658783 -0.0122376707650825 + 333 18 Cd 3pz 0.0338101411241424 -0.0157249472544743 + 334 18 Cd 3px 0.0070826376933351 -0.0152156153982451 + 335 18 Cd 4py 0.0042457011957211 -0.0003006350002384 + 336 18 Cd 4pz -0.0063545819755147 0.0042845664873021 + 337 18 Cd 4px 0.0019299590722631 0.0005336954996640 + 338 18 Cd 4d-2 -0.0059269461924310 -0.0084681095846245 + 339 18 Cd 4d-1 -0.0401960546907746 -0.0056395922213282 + 340 18 Cd 4d0 0.0572448270539026 -0.0229367335610673 + 341 18 Cd 4d+1 0.0025120676681459 -0.0005459214447210 + 342 18 Cd 4d+2 -0.0057320870156937 0.0091190852141360 + 343 18 Cd 5d-2 0.0030243459002740 -0.0033916058508780 + 344 18 Cd 5d-1 0.0044916340946380 -0.0005894392659279 + 345 18 Cd 5d0 0.0008453198760551 0.0054693501811484 + 346 18 Cd 5d+1 0.0042098648098602 0.0031074219439462 + 347 18 Cd 5d+2 -0.0019703599083685 0.0042681553180879 + 348 18 Cd 5f-3 0.0002359391976659 0.0007056397911303 + 349 18 Cd 5f-2 0.0021058797984451 0.0009005503487443 + 350 18 Cd 5f-1 0.0043047194529976 0.0015703717061908 + 351 18 Cd 5f0 -0.0025350478794970 -0.0001678317904264 + 352 18 Cd 5f+1 0.0011254370791958 0.0007645478424538 + 353 18 Cd 5f+2 -0.0013657853027944 0.0003591620567533 + 354 18 Cd 5f+3 -0.0011414910689993 0.0006944805261535 + + 355 19 Se 2s 0.0793823847816215 -0.0678879201459333 + 356 19 Se 3s -0.0081910008873308 0.0070633137082762 + 357 19 Se 3py -0.0508219861232368 0.0621319998322092 + 358 19 Se 3pz -0.0800955413129840 0.0340348515198413 + 359 19 Se 3px -0.0252127674803190 0.0984437425434269 + 360 19 Se 4py 0.0000819238875213 0.0020759374638063 + 361 19 Se 4pz 0.0018011279967028 0.0010551281575796 + 362 19 Se 4px -0.0004320730873435 -0.0026883588618914 + 363 19 Se 4d-2 -0.0012973177351602 0.0054598582570587 + 364 19 Se 4d-1 -0.0001597927714746 -0.0017177862872273 + 365 19 Se 4d0 -0.0030408482238082 0.0000155774547922 + 366 19 Se 4d+1 -0.0017144722473405 0.0045763313066878 + 367 19 Se 4d+2 0.0023003725917800 -0.0016713300010565 + + 368 20 Se 2s -0.0830292261679921 -0.0655316111121274 + 369 20 Se 3s 0.0070339162092011 0.0054525973104828 + 370 20 Se 3py -0.0838770646105668 -0.0365008445330089 + 371 20 Se 3pz 0.0332970519820582 0.0424113803018984 + 372 20 Se 3px 0.0554681156287476 0.0697566590952772 + 373 20 Se 4py 0.0014379319456080 0.0019593082457349 + 374 20 Se 4pz 0.0028849396687488 -0.0045376504020738 + 375 20 Se 4px 0.0011913305465309 -0.0037893345983696 + 376 20 Se 4d-2 -0.0009647797777998 -0.0041999649018999 + 377 20 Se 4d-1 -0.0125357821054118 0.0001641648822935 + 378 20 Se 4d0 -0.0095724811436741 0.0007615008215564 + 379 20 Se 4d+1 0.0043817137394518 -0.0006463659107411 + 380 20 Se 4d+2 -0.0014823000174335 -0.0028435448041327 + + 381 21 Se 2s -0.0226301607251815 0.0022378696525195 + 382 21 Se 3s 0.0028013066722909 -0.0008713673385182 + 383 21 Se 3py 0.0878149100434759 -0.0216386162462382 + 384 21 Se 3pz -0.2516825609729760 0.0095055894088586 + 385 21 Se 3px -0.0167970029750035 0.0388758060348362 + 386 21 Se 4py -0.0047734095194097 0.0025688468520065 + 387 21 Se 4pz 0.0091409651640959 -0.0029672536711959 + 388 21 Se 4px -0.0027352083221747 -0.0011995537462100 + 389 21 Se 4d-2 0.0064996542371373 -0.0054982768014555 + 390 21 Se 4d-1 0.0101743983156745 -0.0044647711998253 + 391 21 Se 4d0 0.0055784635057345 0.0021071761349554 + 392 21 Se 4d+1 -0.0074621962820049 -0.0023606459573201 + 393 21 Se 4d+2 0.0025708620048670 -0.0002349555000458 + + 394 22 Cd 2s -0.1978082819888890 -0.0713004077725757 + 395 22 Cd 3s 0.0067636540794390 0.0028593726905668 + 396 22 Cd 3py -0.0189377795974903 -0.0379084780979255 + 397 22 Cd 3pz -0.0047227723658301 0.0069750275638940 + 398 22 Cd 3px 0.0247610620624211 -0.0304975119791959 + 399 22 Cd 4py 0.0039905800938639 0.0054651220668384 + 400 22 Cd 4pz 0.0035577292212723 0.0012370726941581 + 401 22 Cd 4px -0.0014181577865550 0.0035990486285840 + 402 22 Cd 4d-2 -0.0204233234091462 -0.0292737620330054 + 403 22 Cd 4d-1 -0.0488914243454961 -0.0113478498682434 + 404 22 Cd 4d0 -0.0361135128493331 0.0119415853426413 + 405 22 Cd 4d+1 0.0232374117470717 0.0226066426307349 + 406 22 Cd 4d+2 -0.0227804920195391 0.0036693418664203 + 407 22 Cd 5d-2 -0.0083680253457554 -0.0059806205773457 + 408 22 Cd 5d-1 -0.0074524279338771 0.0000098586130353 + 409 22 Cd 5d0 -0.0038944910090171 0.0043983414313099 + 410 22 Cd 5d+1 0.0047858272959224 0.0089126555631409 + 411 22 Cd 5d+2 -0.0051828298850780 -0.0069667983702150 + 412 22 Cd 5f-3 -0.0007635764990409 -0.0012704873729535 + 413 22 Cd 5f-2 -0.0035673620089992 -0.0007458144869141 + 414 22 Cd 5f-1 0.0005572996163839 -0.0017986446830625 + 415 22 Cd 5f0 -0.0038514471628662 -0.0004363075020137 + 416 22 Cd 5f+1 -0.0032836065614775 0.0020737716310476 + 417 22 Cd 5f+2 -0.0015563957165227 0.0011766623165391 + 418 22 Cd 5f+3 -0.0008528126828822 -0.0032205221327952 + + 419 23 Se 2s -0.0058656126200446 -0.0515895961753241 + 420 23 Se 3s 0.0011335373622905 0.0038971770067816 + 421 23 Se 3py 0.0852882616080853 -0.0060821026448074 + 422 23 Se 3pz 0.0630937641227181 -0.0234495028109841 + 423 23 Se 3px -0.0553781281889940 0.1440992863268503 + 424 23 Se 4py -0.0021537029551691 -0.0012022475032624 + 425 23 Se 4pz -0.0010950860912616 0.0031812819110637 + 426 23 Se 4px 0.0024237656407995 -0.0037244841802157 + 427 23 Se 4d-2 0.0037567093373745 -0.0064856742869773 + 428 23 Se 4d-1 0.0049906140615376 0.0041146784832824 + 429 23 Se 4d0 0.0069652008968371 -0.0058686063958669 + 430 23 Se 4d+1 -0.0013672249970788 0.0036297665074957 + 431 23 Se 4d+2 -0.0015592080429315 0.0059095515561518 + + 432 24 Se 2s -0.0425798659794463 0.0250835103063870 + 433 24 Se 3s 0.0041397672510876 -0.0019492016302562 + 434 24 Se 3py 0.0252302026701150 -0.0524774516508174 + 435 24 Se 3pz 0.0184030400896856 0.0647172553750062 + 436 24 Se 3px 0.0636223523307691 -0.0266795941590518 + 437 24 Se 4py 0.0033222262350634 -0.0000139229397933 + 438 24 Se 4pz -0.0000862094955650 -0.0048593901359888 + 439 24 Se 4px -0.0024959275779933 -0.0001623810018420 + 440 24 Se 4d-2 0.0005162156924413 -0.0026118185621926 + 441 24 Se 4d-1 -0.0019694364682337 0.0024646875049913 + 442 24 Se 4d0 -0.0024016180053421 0.0009660866735113 + 443 24 Se 4d+1 0.0031798951430415 0.0051058889822303 + 444 24 Se 4d+2 0.0022842618708102 0.0012552738704509 + + 445 25 Cd 2s 0.0226534131190064 0.0912744525576067 + 446 25 Cd 3s 0.0014317504545261 0.0017521850904343 + 447 25 Cd 3py -0.0132113199325769 0.0132950189442099 + 448 25 Cd 3pz -0.0111894365399933 0.0058210989895850 + 449 25 Cd 3px 0.0253645802439073 -0.0139671259033124 + 450 25 Cd 4py -0.0005548716529944 -0.0002532850967062 + 451 25 Cd 4pz 0.0042204526940467 -0.0005897612084772 + 452 25 Cd 4px -0.0002038220997212 0.0047100559585570 + 453 25 Cd 4d-2 0.0045808451850705 -0.0003671542502198 + 454 25 Cd 4d-1 0.0001460569847360 0.0118813521306484 + 455 25 Cd 4d0 -0.0067977810011255 0.0064347941909788 + 456 25 Cd 4d+1 -0.0061398563989395 0.0150390755699110 + 457 25 Cd 4d+2 0.0224970822401721 -0.0148129678724015 + 458 25 Cd 5d-2 -0.0003493965803909 -0.0045779378561852 + 459 25 Cd 5d-1 -0.0049866357966644 0.0036714880415840 + 460 25 Cd 5d0 -0.0062660257164910 0.0065624567730036 + 461 25 Cd 5d+1 0.0046590443129108 -0.0040254092571863 + 462 25 Cd 5d+2 0.0005828668302480 -0.0023416704106024 + 463 25 Cd 5f-3 -0.0020477376229952 0.0006833571850214 + 464 25 Cd 5f-2 0.0007682757204776 -0.0042641063334920 + 465 25 Cd 5f-1 -0.0028035197642582 0.0000970449877866 + 466 25 Cd 5f0 -0.0003005276600504 0.0019214816971562 + 467 25 Cd 5f+1 0.0000170276883281 0.0017411910781394 + 468 25 Cd 5f+2 -0.0001507626091947 -0.0057541585833594 + 469 25 Cd 5f+3 0.0001976897894772 0.0014579999254026 + + 470 26 Cd 2s -0.0249104563218760 0.0364282309969818 + 471 26 Cd 3s 0.0011125816239602 -0.0028787067763460 + 472 26 Cd 3py -0.0050366667520421 0.0051470490895410 + 473 26 Cd 3pz 0.0242556351867132 -0.0135637369240980 + 474 26 Cd 3px -0.0036653722035250 -0.0008238461035354 + 475 26 Cd 4py -0.0006656285904801 -0.0006237043692416 + 476 26 Cd 4pz -0.0026058644245904 0.0021013299125133 + 477 26 Cd 4px 0.0003672018571145 -0.0013909323178053 + 478 26 Cd 4d-2 0.0076689710008505 0.0007449051132802 + 479 26 Cd 4d-1 0.0241759810828957 0.0143079414153750 + 480 26 Cd 4d0 0.0076318761634959 0.0039809525688192 + 481 26 Cd 4d+1 0.0346686215202312 -0.0107049464157429 + 482 26 Cd 4d+2 0.0115937966583378 -0.0043948324522973 + 483 26 Cd 5d-2 -0.0022625603480104 0.0004721279142829 + 484 26 Cd 5d-1 0.0023878746473774 0.0002758297275129 + 485 26 Cd 5d0 0.0031329431780572 0.0022576910641085 + 486 26 Cd 5d+1 0.0037514021415447 -0.0004774437314910 + 487 26 Cd 5d+2 0.0011912942652474 -0.0015659542498008 + 488 26 Cd 5f-3 -0.0005922527352292 0.0006559167176014 + 489 26 Cd 5f-2 -0.0005061495767994 -0.0004406455253634 + 490 26 Cd 5f-1 0.0004654767011254 0.0005058155825999 + 491 26 Cd 5f0 -0.0002807252841836 -0.0007881687012739 + 492 26 Cd 5f+1 0.0010211985818205 0.0015755200756614 + 493 26 Cd 5f+2 0.0003431456234603 0.0000728111296343 + 494 26 Cd 5f+3 -0.0007745293744840 0.0000271166134430 + + 89 90 + -0.2781942059728624 -0.2754192888256169 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0544454921517116 0.3319762876010621 + 2 1 Cd 3s -0.0048749579903710 -0.0168487392605590 + 3 1 Cd 3py -0.0086537952957457 0.0358628464680721 + 4 1 Cd 3pz 0.0030792319766944 0.0182451220683697 + 5 1 Cd 3px -0.0002151369354200 -0.0192186046789049 + 6 1 Cd 4py 0.0025367975472476 0.0057670758143485 + 7 1 Cd 4pz 0.0061104768675412 -0.0047211707406541 + 8 1 Cd 4px 0.0033339866674635 -0.0033727790354634 + 9 1 Cd 4d-2 -0.0507985737027472 0.0130484926303694 + 10 1 Cd 4d-1 0.0009351593576672 0.0228172390600166 + 11 1 Cd 4d0 -0.0119644883612724 0.0241056222098662 + 12 1 Cd 4d+1 -0.0072342286615531 0.0078496220397398 + 13 1 Cd 4d+2 -0.0108722898928903 -0.0652257360192975 + 14 1 Cd 5d-2 -0.0022244423432618 -0.0126308007583135 + 15 1 Cd 5d-1 -0.0053449944791691 -0.0050068251479362 + 16 1 Cd 5d0 0.0029235038086266 -0.0045538837076669 + 17 1 Cd 5d+1 -0.0078431101942852 -0.0039604710502868 + 18 1 Cd 5d+2 -0.0043115419991123 0.0024315660822417 + 19 1 Cd 5f-3 -0.0025400660118720 0.0006122255759924 + 20 1 Cd 5f-2 0.0032629377910467 -0.0002761484341815 + 21 1 Cd 5f-1 -0.0020124563032625 -0.0052039945588583 + 22 1 Cd 5f0 -0.0030030526235214 0.0016980354694894 + 23 1 Cd 5f+1 -0.0021861408678182 0.0002384662308447 + 24 1 Cd 5f+2 -0.0009491145044862 0.0020674579668028 + 25 1 Cd 5f+3 0.0002672381451943 0.0050123046425659 + + 26 2 Cd 2s 0.2734076306858018 0.0800623057103827 + 27 2 Cd 3s -0.0030263611578975 -0.0027630717223786 + 28 2 Cd 3py -0.0032077163061610 -0.0561718848971017 + 29 2 Cd 3pz 0.0155008795677687 -0.0082092399462054 + 30 2 Cd 3px -0.0108715308035828 0.0082668828583042 + 31 2 Cd 4py -0.0012308761239163 0.0045825663573990 + 32 2 Cd 4pz 0.0016435376581161 0.0027446973667705 + 33 2 Cd 4px -0.0147951661179117 -0.0047524121289057 + 34 2 Cd 4d-2 -0.0442130243416747 -0.0218963825307737 + 35 2 Cd 4d-1 -0.0148825755501541 0.0460501714828966 + 36 2 Cd 4d0 0.0285904466568610 -0.0021564424014845 + 37 2 Cd 4d+1 -0.0106390362270394 -0.0243563364892772 + 38 2 Cd 4d+2 -0.0113806652285728 0.0334791723384298 + 39 2 Cd 5d-2 -0.0091150216663132 -0.0023985905585355 + 40 2 Cd 5d-1 0.0004968179305515 0.0112582051023937 + 41 2 Cd 5d0 -0.0025639553871207 0.0019824165634504 + 42 2 Cd 5d+1 0.0005498192051737 -0.0061047905827748 + 43 2 Cd 5d+2 0.0011972580006558 0.0026377501959074 + 44 2 Cd 5f-3 0.0038064545316501 0.0015840397923050 + 45 2 Cd 5f-2 0.0051169177406535 0.0000630453950828 + 46 2 Cd 5f-1 -0.0044108484516413 -0.0003450736913541 + 47 2 Cd 5f0 -0.0006057448369106 -0.0003791922772497 + 48 2 Cd 5f+1 0.0020281231125365 -0.0004347341834465 + 49 2 Cd 5f+2 0.0013190515203472 0.0007130543315162 + 50 2 Cd 5f+3 0.0011137765250327 0.0018267102271989 + + 51 3 Cd 2s -0.2764312869130620 0.0089318485450495 + 52 3 Cd 3s 0.0128312811920070 0.0013577367976422 + 53 3 Cd 3py 0.0289250184045909 0.0459687731716268 + 54 3 Cd 3pz -0.0174754437386658 -0.0077565529233801 + 55 3 Cd 3px 0.0002518982636412 0.0267711676995791 + 56 3 Cd 4py -0.0074320632357042 -0.0040656191522586 + 57 3 Cd 4pz 0.0020650568513638 0.0017841112593261 + 58 3 Cd 4px 0.0014729039976685 -0.0038948410403711 + 59 3 Cd 4d-2 -0.0364469086877583 0.0378062039846086 + 60 3 Cd 4d-1 -0.0208076543227772 -0.0179605447516705 + 61 3 Cd 4d0 -0.0155662213364698 -0.0202179569519591 + 62 3 Cd 4d+1 -0.0041668753392776 -0.0002321058548481 + 63 3 Cd 4d+2 -0.0228988352825582 -0.0264931778002070 + 64 3 Cd 5d-2 -0.0123117307914858 0.0086355564267128 + 65 3 Cd 5d-1 -0.0081901204509674 -0.0045209745941452 + 66 3 Cd 5d0 -0.0053785624114102 -0.0062051052165266 + 67 3 Cd 5d+1 -0.0016805211140983 0.0015621959352024 + 68 3 Cd 5d+2 0.0009902885648929 -0.0076583471244471 + 69 3 Cd 5f-3 0.0018502009517430 -0.0011324002431442 + 70 3 Cd 5f-2 0.0055712593245698 0.0031912154583214 + 71 3 Cd 5f-1 -0.0002046046752709 -0.0005377167875370 + 72 3 Cd 5f0 -0.0010904662335672 -0.0013187973400800 + 73 3 Cd 5f+1 0.0028867979135538 -0.0003819914314319 + 74 3 Cd 5f+2 0.0006224023928744 -0.0004004071494937 + 75 3 Cd 5f+3 0.0069248454463989 0.0006720204157572 + + 76 4 Se 2s 0.1320065830038814 0.0584218453180781 + 77 4 Se 3s -0.0107769028105130 -0.0050895070332135 + 78 4 Se 3py 0.0551303302215260 0.2862110152163417 + 79 4 Se 3pz -0.0755757912123900 0.0262337848264424 + 80 4 Se 3px 0.1574520335139064 -0.0961732918904279 + 81 4 Se 4py 0.0006415442964855 -0.0086375486081744 + 82 4 Se 4pz 0.0062603352201997 0.0016131975544504 + 83 4 Se 4px -0.0005363367536554 0.0051209520989887 + 84 4 Se 4d-2 -0.0032708171203850 -0.0091928369590973 + 85 4 Se 4d-1 0.0063087968687165 -0.0084250345473488 + 86 4 Se 4d0 -0.0013152361658063 0.0009456636689365 + 87 4 Se 4d+1 0.0017171622152788 0.0055743160874543 + 88 4 Se 4d+2 -0.0044739633906415 0.0164619758301069 + + 89 5 Se 2s -0.0632283488055019 0.1048564327843497 + 90 5 Se 3s 0.0049227511874180 -0.0071492518812758 + 91 5 Se 3py -0.0435120679390517 -0.1883543767407048 + 92 5 Se 3pz 0.1058981515207434 -0.0242200713512388 + 93 5 Se 3px -0.0841088832637524 -0.0024463442647808 + 94 5 Se 4py -0.0004464994574627 -0.0002513605314295 + 95 5 Se 4pz -0.0026197770286188 0.0006872092584424 + 96 5 Se 4px -0.0039454991720234 0.0013421045058208 + 97 5 Se 4d-2 0.0008965363285553 0.0038430108045433 + 98 5 Se 4d-1 0.0025098932207962 -0.0040565205365568 + 99 5 Se 4d0 0.0050286546038871 0.0049325929681900 + 100 5 Se 4d+1 -0.0075255189958392 -0.0003229944756891 + 101 5 Se 4d+2 0.0066976948564736 0.0102339532018144 + + 102 6 Se 2s -0.0215891956493583 0.0262460100252557 + 103 6 Se 3s 0.0025031563217007 -0.0023026092826422 + 104 6 Se 3py -0.2469477405586027 -0.1303328413562616 + 105 6 Se 3pz -0.0505873145082086 0.1787714386101019 + 106 6 Se 3px -0.0739470536463237 -0.0246495154255759 + 107 6 Se 4py 0.0079991735961088 0.0029267568330589 + 108 6 Se 4pz -0.0001255481151493 -0.0009109604230957 + 109 6 Se 4px 0.0016633349675709 0.0020222104266128 + 110 6 Se 4d-2 0.0155163177662549 0.0072578375701555 + 111 6 Se 4d-1 0.0056311290939409 0.0026765695189488 + 112 6 Se 4d0 0.0035410688373916 -0.0003480053961695 + 113 6 Se 4d+1 0.0032700839282050 -0.0094658819411259 + 114 6 Se 4d+2 0.0100609178566292 0.0057456340435773 + + 115 7 Se 2s 0.0119941308807253 -0.0179741524116899 + 116 7 Se 3s -0.0015023513812505 0.0009368117583162 + 117 7 Se 3py 0.0445006846811374 0.1241952095357918 + 118 7 Se 3pz 0.0274864629620941 -0.0615322539939997 + 119 7 Se 3px -0.1465433020020227 0.0551578725205624 + 120 7 Se 4py -0.0001199809620689 -0.0019315725190091 + 121 7 Se 4pz -0.0002299229871875 0.0006212288060607 + 122 7 Se 4px 0.0046552295739367 -0.0050000596622814 + 123 7 Se 4d-2 0.0035314265635128 -0.0020341208554408 + 124 7 Se 4d-1 -0.0039703413003197 -0.0091683675138089 + 125 7 Se 4d0 -0.0009068121775735 0.0040271576808807 + 126 7 Se 4d+1 0.0109562453867106 -0.0042402690796184 + 127 7 Se 4d+2 -0.0020946760672692 -0.0016680742616254 + + 128 8 Cd 2s -0.1213904637885002 0.1058264106016069 + 129 8 Cd 3s -0.0000276986355300 -0.0009103161104486 + 130 8 Cd 3py -0.0105793894429608 -0.0083356466360521 + 131 8 Cd 3pz 0.0091830539050541 0.0057421882698341 + 132 8 Cd 3px -0.0075325628761314 0.0110207983833997 + 133 8 Cd 4py 0.0010806572810314 -0.0013310398496637 + 134 8 Cd 4pz -0.0008264040948943 -0.0037878075810576 + 135 8 Cd 4px -0.0047946000831524 0.0008373512840576 + 136 8 Cd 4d-2 0.0139839283518311 0.0045009443112347 + 137 8 Cd 4d-1 0.0143644959282861 -0.0137942541662140 + 138 8 Cd 4d0 -0.0337010215359548 0.0313039352671752 + 139 8 Cd 4d+1 -0.0287075509967602 0.0044684079163568 + 140 8 Cd 4d+2 0.0455879058993493 0.0079198819011426 + 141 8 Cd 5d-2 -0.0073644928835313 0.0040747860368029 + 142 8 Cd 5d-1 0.0011861973149069 -0.0021576617602392 + 143 8 Cd 5d0 0.0019215479066048 0.0002429663945827 + 144 8 Cd 5d+1 -0.0022714101432842 -0.0020274854262251 + 145 8 Cd 5d+2 -0.0016204715312182 -0.0014908108184272 + 146 8 Cd 5f-3 -0.0009851490367488 0.0002119856143744 + 147 8 Cd 5f-2 0.0021564651391815 -0.0039428786723340 + 148 8 Cd 5f-1 0.0022206681585869 0.0000158860202907 + 149 8 Cd 5f0 -0.0003416932090682 -0.0005585531011373 + 150 8 Cd 5f+1 0.0023801921071857 0.0011014059156900 + 151 8 Cd 5f+2 0.0002158265656603 0.0017340474664423 + 152 8 Cd 5f+3 -0.0020800828406050 -0.0016022558839059 + + 153 9 Cd 2s -0.1082989705037025 -0.1608104638589543 + 154 9 Cd 3s 0.0031268671144398 0.0057043022757262 + 155 9 Cd 3py 0.0218551912593876 0.0277457076986428 + 156 9 Cd 3pz 0.0192965520067259 0.0062393352407051 + 157 9 Cd 3px 0.0132326940894659 -0.0151158223145579 + 158 9 Cd 4py -0.0049472400255518 -0.0029927855601687 + 159 9 Cd 4pz 0.0017947498171995 -0.0005907244708119 + 160 9 Cd 4px -0.0045047512521553 0.0009390717128460 + 161 9 Cd 4d-2 0.0312019343339268 -0.0072373357668092 + 162 9 Cd 4d-1 -0.0312988578313151 -0.0175208659903884 + 163 9 Cd 4d0 -0.0060577551710202 0.0143534084505449 + 164 9 Cd 4d+1 0.0009085346668595 0.0250796203546298 + 165 9 Cd 4d+2 -0.0283328626177956 -0.0462273320948133 + 166 9 Cd 5d-2 0.0048226052079636 -0.0007360572946373 + 167 9 Cd 5d-1 0.0007018346193880 -0.0007663180986773 + 168 9 Cd 5d0 -0.0057007686872500 0.0009523837265037 + 169 9 Cd 5d+1 -0.0020295619015457 0.0043351270648641 + 170 9 Cd 5d+2 0.0057446490970193 -0.0038719961968795 + 171 9 Cd 5f-3 0.0000787785502948 -0.0006105374193283 + 172 9 Cd 5f-2 -0.0001793227916415 0.0010221757841402 + 173 9 Cd 5f-1 -0.0016134715540893 -0.0002679447917033 + 174 9 Cd 5f0 -0.0010237281830273 -0.0002619943877599 + 175 9 Cd 5f+1 0.0010025759412542 -0.0017568350915023 + 176 9 Cd 5f+2 -0.0010770790988064 -0.0005310448795222 + 177 9 Cd 5f+3 0.0001319805870059 0.0007767699239964 + + 178 10 Se 2s -0.0437240867923913 -0.0177037302938147 + 179 10 Se 3s 0.0039072685238452 0.0016826955096901 + 180 10 Se 3py 0.0324421058748441 -0.0976066853941905 + 181 10 Se 3pz -0.0090898399745212 0.0055643629434939 + 182 10 Se 3px 0.1128142183188263 0.0763679302445595 + 183 10 Se 4py 0.0000565460198346 0.0038469938063046 + 184 10 Se 4pz -0.0025788651542195 0.0028429859330543 + 185 10 Se 4px -0.0032889030047256 -0.0011613493344147 + 186 10 Se 4d-2 -0.0017496696079365 -0.0033005620548294 + 187 10 Se 4d-1 -0.0034723547781790 0.0057571840983702 + 188 10 Se 4d0 -0.0031596767858091 -0.0010036399996294 + 189 10 Se 4d+1 -0.0035902955017855 -0.0021091586704830 + 190 10 Se 4d+2 0.0037173235426402 0.0064786536732703 + + 191 11 Se 2s -0.0509087920473079 -0.0593346022479735 + 192 11 Se 3s 0.0052678982684241 0.0051967706283521 + 193 11 Se 3py 0.0756908347888539 0.1098849089822648 + 194 11 Se 3pz -0.0391581780371721 -0.0001912430564606 + 195 11 Se 3px 0.2418903387380638 0.0164532360272819 + 196 11 Se 4py -0.0028897201445943 -0.0033576635044151 + 197 11 Se 4pz -0.0015165600252910 -0.0039785757869565 + 198 11 Se 4px -0.0114571274919640 -0.0013680870287463 + 199 11 Se 4d-2 0.0176375987830832 0.0005940214516360 + 200 11 Se 4d-1 -0.0032078264252967 -0.0015501903713576 + 201 11 Se 4d0 -0.0021344391342327 -0.0030532389428121 + 202 11 Se 4d+1 -0.0050002134171341 -0.0008819377235994 + 203 11 Se 4d+2 -0.0010060590113376 -0.0017106590307692 + + 204 12 Cd 2s 0.1080132038210583 -0.0828651995686216 + 205 12 Cd 3s -0.0027669679793311 0.0002080516207890 + 206 12 Cd 3py -0.0299137037220448 -0.0001728933115626 + 207 12 Cd 3pz -0.0098497158716969 0.0051584688721162 + 208 12 Cd 3px -0.0295383906308377 -0.0128904054981456 + 209 12 Cd 4py 0.0065763985493985 -0.0039148307278962 + 210 12 Cd 4pz 0.0009288350042121 0.0005546429980865 + 211 12 Cd 4px -0.0006667389565727 0.0007463422831141 + 212 12 Cd 4d-2 -0.0157625450347560 0.0066892361200622 + 213 12 Cd 4d-1 0.0108527480858022 0.0079944005789984 + 214 12 Cd 4d0 0.0147476845684335 0.0069983122958580 + 215 12 Cd 4d+1 0.0084593335945887 0.0090554998165415 + 216 12 Cd 4d+2 -0.0241947024367870 -0.0224867273126962 + 217 12 Cd 5d-2 -0.0057815335959656 -0.0024814874654264 + 218 12 Cd 5d-1 0.0027558712129439 0.0024264328977609 + 219 12 Cd 5d0 0.0038711195803290 0.0019975886722790 + 220 12 Cd 5d+1 0.0001908023137930 -0.0017559091145089 + 221 12 Cd 5d+2 -0.0049263710262629 -0.0026310366712511 + 222 12 Cd 5f-3 -0.0022984588831873 0.0005738299096383 + 223 12 Cd 5f-2 0.0020423170267226 -0.0010458894778808 + 224 12 Cd 5f-1 -0.0017802715792476 0.0005717167137448 + 225 12 Cd 5f0 -0.0012568023301501 0.0015426680143095 + 226 12 Cd 5f+1 -0.0003103032987241 0.0005506766101712 + 227 12 Cd 5f+2 -0.0007593701666910 -0.0003136202925380 + 228 12 Cd 5f+3 0.0047632779997281 -0.0002270067141041 + + 229 13 Cd 2s 0.1672503003787127 -0.2309724360042958 + 230 13 Cd 3s -0.0009194033129633 0.0046368066015757 + 231 13 Cd 3py -0.0087396652120768 -0.0337542452107201 + 232 13 Cd 3pz 0.0150384908499507 -0.0207463832474295 + 233 13 Cd 3px -0.0120810497654411 0.0109947764708808 + 234 13 Cd 4py -0.0060221982941882 0.0164998734364246 + 235 13 Cd 4pz 0.0029092217173752 0.0031931393311050 + 236 13 Cd 4px -0.0059446012018615 -0.0087941464070860 + 237 13 Cd 4d-2 -0.0408190713936912 -0.0127708366008405 + 238 13 Cd 4d-1 0.0125943737909083 -0.0564347773517152 + 239 13 Cd 4d0 0.0194429343231116 -0.0316592395386218 + 240 13 Cd 4d+1 -0.0105428376396625 -0.0212532619192593 + 241 13 Cd 4d+2 -0.0467564943475275 -0.0139847959327863 + 242 13 Cd 5d-2 -0.0011729648177800 0.0068340603520146 + 243 13 Cd 5d-1 -0.0043742221202934 -0.0045622664142548 + 244 13 Cd 5d0 -0.0028565133168682 0.0019612961315998 + 245 13 Cd 5d+1 -0.0060481174511066 0.0009973502061700 + 246 13 Cd 5d+2 -0.0010893557861884 -0.0064243392708169 + 247 13 Cd 5f-3 0.0013822054016948 0.0037908306439757 + 248 13 Cd 5f-2 -0.0004102448566390 0.0008795231762417 + 249 13 Cd 5f-1 0.0010945645463000 -0.0058338242555298 + 250 13 Cd 5f0 0.0001114334777294 -0.0048067436686711 + 251 13 Cd 5f+1 -0.0002896964305375 0.0049868902020676 + 252 13 Cd 5f+2 0.0014099991909191 0.0012107646320359 + 253 13 Cd 5f+3 -0.0032500795182876 0.0084218578732423 + + 254 14 Cd 2s -0.0757652882436435 -0.1324641331535727 + 255 14 Cd 3s -0.0006410070903354 -0.0001575245339851 + 256 14 Cd 3py 0.0116570817083421 0.0285972457108135 + 257 14 Cd 3pz -0.0016590894974409 -0.0181651015809653 + 258 14 Cd 3px 0.0369219571140584 -0.0357654981979367 + 259 14 Cd 4py 0.0037128761094791 0.0004620624849344 + 260 14 Cd 4pz -0.0000476698354833 0.0025692554807518 + 261 14 Cd 4px -0.0030440031471947 0.0030897520525947 + 262 14 Cd 4d-2 -0.0266291965984581 0.0109409372411082 + 263 14 Cd 4d-1 0.0007325159357593 -0.0073587786943137 + 264 14 Cd 4d0 -0.0110651849907078 -0.0109840391052102 + 265 14 Cd 4d+1 -0.0187690212221632 0.0265367173494570 + 266 14 Cd 4d+2 -0.0037229323993594 0.0040111361310947 + 267 14 Cd 5d-2 -0.0042595382103276 0.0017180139387343 + 268 14 Cd 5d-1 -0.0021273776809920 -0.0004078647173013 + 269 14 Cd 5d0 0.0017123168573621 0.0012390379360112 + 270 14 Cd 5d+1 -0.0013570866112240 0.0031976214637747 + 271 14 Cd 5d+2 0.0069742741674061 0.0052311748133797 + 272 14 Cd 5f-3 -0.0016032350744207 -0.0024624328165879 + 273 14 Cd 5f-2 0.0002938236060631 -0.0001913688884074 + 274 14 Cd 5f-1 -0.0005215018487945 -0.0020129519588257 + 275 14 Cd 5f0 -0.0005255928679445 0.0007065301124769 + 276 14 Cd 5f+1 0.0004639514048729 0.0006751534940627 + 277 14 Cd 5f+2 -0.0004481129618120 0.0004385708958483 + 278 14 Cd 5f+3 -0.0001460116000135 0.0010836839967812 + + 279 15 Se 2s -0.0322666680545794 -0.0948842565125705 + 280 15 Se 3s 0.0029793605539002 0.0074622836725302 + 281 15 Se 3py -0.0337375952956221 -0.1673758836538749 + 282 15 Se 3pz 0.0875082035781022 -0.0453058136387076 + 283 15 Se 3px -0.1596868184160163 0.2253653749291115 + 284 15 Se 4py 0.0011806567403139 0.0033698757022137 + 285 15 Se 4pz -0.0023392016977498 0.0045643724129565 + 286 15 Se 4px 0.0065414492662363 -0.0062271991313889 + 287 15 Se 4d-2 0.0127623006563757 -0.0157370270595452 + 288 15 Se 4d-1 -0.0041100302226910 0.0024078369097940 + 289 15 Se 4d0 0.0021777290058118 -0.0035306213003758 + 290 15 Se 4d+1 0.0001404362073339 -0.0004654677464114 + 291 15 Se 4d+2 -0.0026518774022555 -0.0014132274775530 + + 292 16 Se 2s 0.0229075710942030 0.0020575035574891 + 293 16 Se 3s -0.0021489636271674 -0.0014384255566845 + 294 16 Se 3py -0.0615163410233095 0.0652249261438579 + 295 16 Se 3pz -0.0837294609123455 -0.0612929310318880 + 296 16 Se 3px -0.0314768752415057 -0.1364547791360893 + 297 16 Se 4py 0.0023955919389337 -0.0050477340720492 + 298 16 Se 4pz 0.0023666343162229 0.0050251862138894 + 299 16 Se 4px 0.0006953047691317 0.0056674086925448 + 300 16 Se 4d-2 0.0049458508146423 0.0038166883014277 + 301 16 Se 4d-1 -0.0012741028472004 0.0110196141453056 + 302 16 Se 4d0 -0.0058928881526963 -0.0069692523549676 + 303 16 Se 4d+1 0.0010188204600715 -0.0081187768450201 + 304 16 Se 4d+2 0.0004610899055039 0.0016200716314352 + + 305 17 Cd 2s -0.0866918360004789 -0.0767806213493277 + 306 17 Cd 3s 0.0087149577025083 0.0023804387332163 + 307 17 Cd 3py 0.0059999371619308 -0.0124650933120925 + 308 17 Cd 3pz 0.0068767288554613 0.0027827753988429 + 309 17 Cd 3px 0.0051349548890069 0.0185264744509003 + 310 17 Cd 4py -0.0006915151331842 0.0060514724745407 + 311 17 Cd 4pz -0.0015458395075399 -0.0034822080832057 + 312 17 Cd 4px 0.0039269701108524 0.0042202826167345 + 313 17 Cd 4d-2 -0.0282153431125441 0.0043476910657349 + 314 17 Cd 4d-1 0.0018340883797440 0.0031256759931325 + 315 17 Cd 4d0 0.0276060107760836 0.0194559148954423 + 316 17 Cd 4d+1 0.0116156937562964 0.0011894974085920 + 317 17 Cd 4d+2 0.0108120013965359 0.0346902933928483 + 318 17 Cd 5d-2 -0.0023788048920618 0.0008883166782627 + 319 17 Cd 5d-1 -0.0011320995407009 -0.0025082158587310 + 320 17 Cd 5d0 -0.0013768266624310 -0.0002765800996980 + 321 17 Cd 5d+1 0.0060068004241889 0.0072159229078963 + 322 17 Cd 5d+2 0.0011141856109998 0.0028641296745075 + 323 17 Cd 5f-3 0.0012257189877451 0.0014166048560271 + 324 17 Cd 5f-2 -0.0021663374101263 -0.0005858749463665 + 325 17 Cd 5f-1 -0.0008315247249207 -0.0025712056271869 + 326 17 Cd 5f0 0.0014144022252187 0.0029137266563455 + 327 17 Cd 5f+1 -0.0002398132926828 0.0011517301758213 + 328 17 Cd 5f+2 0.0012284130076878 -0.0001760622915023 + 329 17 Cd 5f+3 0.0011327467934252 -0.0013646609150051 + + 330 18 Cd 2s -0.0110278900834225 -0.0427357289533728 + 331 18 Cd 3s 0.0023902118598105 0.0011682643070330 + 332 18 Cd 3py -0.0026337624551994 -0.0081266985106229 + 333 18 Cd 3pz -0.0084238452286130 -0.0001822108497963 + 334 18 Cd 3px -0.0346259463686602 -0.0117974686143230 + 335 18 Cd 4py 0.0014466086440319 0.0022951372823491 + 336 18 Cd 4pz 0.0030846331635648 -0.0045086558478736 + 337 18 Cd 4px 0.0053622429869061 -0.0001098567754505 + 338 18 Cd 4d-2 -0.0210917281053892 -0.0046006818241330 + 339 18 Cd 4d-1 -0.0196393875145327 -0.0110019669383206 + 340 18 Cd 4d0 -0.0074683326224255 -0.0018302957901544 + 341 18 Cd 4d+1 -0.0305348627596419 -0.0041312859599229 + 342 18 Cd 4d+2 0.0031492037969344 -0.0000138113103434 + 343 18 Cd 5d-2 0.0009466671095745 -0.0009527469019434 + 344 18 Cd 5d-1 0.0018478116960445 -0.0048866756507547 + 345 18 Cd 5d0 -0.0012885986035962 -0.0000357316016785 + 346 18 Cd 5d+1 -0.0002558274733639 0.0018177692886415 + 347 18 Cd 5d+2 0.0001643839910349 -0.0027751889332801 + 348 18 Cd 5f-3 -0.0000147943147728 -0.0005487312147759 + 349 18 Cd 5f-2 0.0018540584422883 0.0000044128763494 + 350 18 Cd 5f-1 0.0012240933923109 0.0011065691805403 + 351 18 Cd 5f0 -0.0009360853639890 -0.0005114962156150 + 352 18 Cd 5f+1 0.0025513042838368 0.0001392750175641 + 353 18 Cd 5f+2 -0.0007070410860999 0.0003563038296519 + 354 18 Cd 5f+3 -0.0013041247275922 -0.0002008397874771 + + 355 19 Se 2s 0.0001350357581067 -0.0027605065568282 + 356 19 Se 3s 0.0006860122478589 0.0001307718388698 + 357 19 Se 3py 0.0466101461460844 -0.0337516482546995 + 358 19 Se 3pz -0.0561360705212558 -0.0063234390577582 + 359 19 Se 3px 0.0769966996408583 0.0686370462742392 + 360 19 Se 4py -0.0021881398308459 0.0024343138547256 + 361 19 Se 4pz 0.0032755748472565 0.0000517707276563 + 362 19 Se 4px -0.0047566253871833 -0.0034593613808656 + 363 19 Se 4d-2 0.0038118219971936 0.0018640129597290 + 364 19 Se 4d-1 -0.0004547270037818 -0.0043873013682107 + 365 19 Se 4d0 -0.0040772483254402 0.0002920515826666 + 366 19 Se 4d+1 0.0039002908293645 0.0047403212674478 + 367 19 Se 4d+2 -0.0001224935655557 -0.0003101791071170 + + 368 20 Se 2s -0.0620899146946056 0.0364798213925984 + 369 20 Se 3s 0.0053444393493193 -0.0030486074020231 + 370 20 Se 3py -0.0133255651490547 -0.0462986527873695 + 371 20 Se 3pz 0.0487746371340714 -0.0228798692283956 + 372 20 Se 3px -0.0295088800885076 -0.0292793541914367 + 373 20 Se 4py 0.0014449501355207 0.0003256183590842 + 374 20 Se 4pz 0.0015681058510868 0.0001144546120411 + 375 20 Se 4px -0.0025434181131283 -0.0034940216892830 + 376 20 Se 4d-2 -0.0176363554666130 0.0043731815929593 + 377 20 Se 4d-1 -0.0021009591305965 -0.0052006714068701 + 378 20 Se 4d0 -0.0010659716206312 -0.0015588636880091 + 379 20 Se 4d+1 -0.0000713347957358 -0.0038795212488869 + 380 20 Se 4d+2 -0.0024784571854649 -0.0075970069430223 + + 381 21 Se 2s -0.1017889739770044 0.0419150876530637 + 382 21 Se 3s 0.0103878222598868 -0.0034226244352464 + 383 21 Se 3py -0.0271323798187425 0.0087695814545456 + 384 21 Se 3pz -0.1254208858376547 0.0861187170994195 + 385 21 Se 3px 0.2268118107266157 -0.0972378304461240 + 386 21 Se 4py -0.0013838578971657 0.0005768033364796 + 387 21 Se 4pz 0.0057524603525463 -0.0041271294026323 + 388 21 Se 4px -0.0089145786750814 0.0030595616876104 + 389 21 Se 4d-2 -0.0063095333502783 0.0045819457446107 + 390 21 Se 4d-1 0.0027936179386900 -0.0008116325334789 + 391 21 Se 4d0 0.0048362366735939 -0.0046715349218352 + 392 21 Se 4d+1 -0.0034730738092506 0.0009534420803321 + 393 21 Se 4d+2 -0.0011659536385452 0.0012765080657281 + + 394 22 Cd 2s -0.1932274195159284 0.0750695184555447 + 395 22 Cd 3s 0.0033823689567157 -0.0008074245236963 + 396 22 Cd 3py -0.0073912350960452 0.0014267676480046 + 397 22 Cd 3pz -0.0350597708300711 0.0120989023106647 + 398 22 Cd 3px 0.0028286009161503 -0.0371152258505296 + 399 22 Cd 4py 0.0025478128930352 0.0014568029901445 + 400 22 Cd 4pz 0.0027292169210288 -0.0037603806259965 + 401 22 Cd 4px -0.0070381964294810 0.0066213591886210 + 402 22 Cd 4d-2 -0.0095647468460362 -0.0020468235932740 + 403 22 Cd 4d-1 -0.0285710995646582 0.0203352572847885 + 404 22 Cd 4d0 -0.0499542863713828 0.0235874355748816 + 405 22 Cd 4d+1 0.0112475231824958 0.0018097621102209 + 406 22 Cd 4d+2 0.0291696377910437 -0.0443254177591862 + 407 22 Cd 5d-2 -0.0059231862883432 0.0040826594187075 + 408 22 Cd 5d-1 -0.0012717082208108 0.0036454064975784 + 409 22 Cd 5d0 -0.0001356980214564 0.0003112755718871 + 410 22 Cd 5d+1 -0.0055567252572713 -0.0003023171379197 + 411 22 Cd 5d+2 -0.0048138902001965 -0.0061753838788222 + 412 22 Cd 5f-3 -0.0019639915395205 0.0026675996390456 + 413 22 Cd 5f-2 -0.0022075278639967 0.0013905816479402 + 414 22 Cd 5f-1 0.0007825136037467 -0.0010262520024737 + 415 22 Cd 5f0 -0.0001667716798466 -0.0001771475180610 + 416 22 Cd 5f+1 0.0003296671005408 -0.0000622873628954 + 417 22 Cd 5f+2 -0.0017370698049122 0.0001293378196205 + 418 22 Cd 5f+3 -0.0033098042837012 0.0010714033102101 + + 419 23 Se 2s -0.0488894729589182 0.0199278711137161 + 420 23 Se 3s 0.0043951052301270 -0.0027853401082340 + 421 23 Se 3py 0.0015145787956752 0.0288985359829523 + 422 23 Se 3pz 0.0530637791904006 -0.0760495031873124 + 423 23 Se 3px 0.0367093976879978 0.0917595084138296 + 424 23 Se 4py -0.0006990494549934 -0.0000358147286470 + 425 23 Se 4pz 0.0008300121576649 0.0026577175334640 + 426 23 Se 4px -0.0014235070227736 -0.0035006518097141 + 427 23 Se 4d-2 -0.0030453635218813 -0.0026170883233085 + 428 23 Se 4d-1 0.0018762016990125 0.0037563169171335 + 429 23 Se 4d0 0.0024604473918861 -0.0052457306983370 + 430 23 Se 4d+1 0.0002867221330584 0.0029981201979584 + 431 23 Se 4d+2 0.0013819348926048 0.0049696713679018 + + 432 24 Se 2s -0.0005375091282993 0.0197186595297204 + 433 24 Se 3s -0.0014837178589070 -0.0014452229528935 + 434 24 Se 3py 0.1724038575525075 -0.0366773499563326 + 435 24 Se 3pz 0.0410702205910932 0.0906036446689643 + 436 24 Se 3px -0.1152426128398106 -0.0354569843550418 + 437 24 Se 4py -0.0064825153300796 0.0007337757900993 + 438 24 Se 4pz 0.0001749365171891 -0.0040123853147112 + 439 24 Se 4px 0.0088344522521842 -0.0014673689227144 + 440 24 Se 4d-2 0.0002575304463445 -0.0027066919814227 + 441 24 Se 4d-1 0.0038938389940526 0.0037060874935186 + 442 24 Se 4d0 -0.0026635767696882 0.0000244930689284 + 443 24 Se 4d+1 -0.0010773033845639 0.0056428421797873 + 444 24 Se 4d+2 -0.0117262731782507 -0.0003049865148560 + + 445 25 Cd 2s 0.0630031301261388 0.1323298105752206 + 446 25 Cd 3s 0.0015472960634317 -0.0026546416700981 + 447 25 Cd 3py -0.0309916966325077 0.0101556382643202 + 448 25 Cd 3pz 0.0074152712074355 -0.0121854212493625 + 449 25 Cd 3px -0.0001030058500200 -0.0176055571715733 + 450 25 Cd 4py 0.0049251213493991 0.0000149586291623 + 451 25 Cd 4pz 0.0007341594576505 0.0005609397189042 + 452 25 Cd 4px 0.0012083776741881 0.0028762430686518 + 453 25 Cd 4d-2 0.0057561159136941 -0.0053609490890037 + 454 25 Cd 4d-1 -0.0173430753440098 0.0017233017383710 + 455 25 Cd 4d0 0.0110842736031197 -0.0037431552997961 + 456 25 Cd 4d+1 0.0018862511272862 -0.0222143470156973 + 457 25 Cd 4d+2 0.0012783376114584 -0.0154472135311073 + 458 25 Cd 5d-2 -0.0004084168026616 -0.0001541329410082 + 459 25 Cd 5d-1 -0.0036962120614901 -0.0016369204355593 + 460 25 Cd 5d0 0.0041896976632941 0.0001469975494910 + 461 25 Cd 5d+1 -0.0010747167577970 -0.0088660720021429 + 462 25 Cd 5d+2 -0.0003543327209769 -0.0021340639438142 + 463 25 Cd 5f-3 -0.0005239009969375 0.0005362216721824 + 464 25 Cd 5f-2 -0.0025844718147430 -0.0024240790926004 + 465 25 Cd 5f-1 0.0005186352035795 -0.0006556611988025 + 466 25 Cd 5f0 0.0006763072541030 0.0020506930152307 + 467 25 Cd 5f+1 0.0007212412161963 -0.0005872882707142 + 468 25 Cd 5f+2 -0.0021767740691404 -0.0024906230560105 + 469 25 Cd 5f+3 0.0000777849918480 -0.0001063454764904 + + 470 26 Cd 2s -0.0639417325527156 -0.0288750349358565 + 471 26 Cd 3s 0.0020028973369725 0.0021077711564589 + 472 26 Cd 3py 0.0404665099657002 -0.0040566746618510 + 473 26 Cd 3pz 0.0274529425256738 -0.0255085005770338 + 474 26 Cd 3px -0.0056295902646621 0.0082659084220177 + 475 26 Cd 4py -0.0134724533419490 0.0024049890712077 + 476 26 Cd 4pz -0.0054471029938004 0.0017224279028853 + 477 26 Cd 4px -0.0080557933344189 0.0003507226691116 + 478 26 Cd 4d-2 0.0120735982537316 -0.0148008337366253 + 479 26 Cd 4d-1 -0.0021860666789355 -0.0030970143704689 + 480 26 Cd 4d0 0.0006516786550854 0.0147787835731922 + 481 26 Cd 4d+1 0.0169325938545150 -0.0177012272059984 + 482 26 Cd 4d+2 0.0095582276879563 0.0190935162777227 + 483 26 Cd 5d-2 0.0065377479302636 -0.0007312494640803 + 484 26 Cd 5d-1 0.0051837537900431 -0.0022405692322754 + 485 26 Cd 5d0 -0.0011200602720340 0.0024916858121211 + 486 26 Cd 5d+1 0.0036941846038745 -0.0040009564636562 + 487 26 Cd 5d+2 -0.0114532102471810 0.0030644390495646 + 488 26 Cd 5f-3 0.0048180185326937 -0.0002943468288208 + 489 26 Cd 5f-2 -0.0021873046593116 0.0004918172557050 + 490 26 Cd 5f-1 0.0002503003798225 0.0008150681784995 + 491 26 Cd 5f0 0.0013422069230322 -0.0004888181134308 + 492 26 Cd 5f+1 -0.0005495227623280 0.0002084960747373 + 493 26 Cd 5f+2 0.0019684272764565 -0.0009294116677866 + 494 26 Cd 5f+3 0.0029303133737827 -0.0003210135041113 + + 91 92 + -0.2680332475777912 -0.2499010585161150 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.2217048363183937 0.0101555198988713 + 2 1 Cd 3s -0.0075093676679504 -0.0007934095869031 + 3 1 Cd 3py 0.0114162068650791 -0.0267852748677932 + 4 1 Cd 3pz -0.0035777907020790 0.0213335738626116 + 5 1 Cd 3px -0.0229156308314085 -0.0043049545851945 + 6 1 Cd 4py 0.0007548492717672 0.0070489134991817 + 7 1 Cd 4pz 0.0020205460339694 -0.0021812985762469 + 8 1 Cd 4px -0.0028535894365443 -0.0018527484475968 + 9 1 Cd 4d-2 -0.0059398230571518 0.0215457143129155 + 10 1 Cd 4d-1 0.0514585585834780 0.0056561805788553 + 11 1 Cd 4d0 -0.0239240201441841 0.0072496067114939 + 12 1 Cd 4d+1 0.0265152578767967 0.0016567434812791 + 13 1 Cd 4d+2 -0.0374716808046126 0.0128704416982888 + 14 1 Cd 5d-2 -0.0044419747570671 0.0024889729373412 + 15 1 Cd 5d-1 0.0004594321363108 0.0042742732723445 + 16 1 Cd 5d0 -0.0056557798526055 0.0045823147253001 + 17 1 Cd 5d+1 -0.0022710858263481 -0.0009137426360569 + 18 1 Cd 5d+2 0.0037174381493850 0.0064382991759498 + 19 1 Cd 5f-3 -0.0004477525147169 -0.0011285686882624 + 20 1 Cd 5f-2 0.0014759144048894 -0.0005317241880987 + 21 1 Cd 5f-1 -0.0034128878646578 -0.0008849994074688 + 22 1 Cd 5f0 0.0005327662909469 0.0000992696251273 + 23 1 Cd 5f+1 -0.0003924138918323 -0.0015625649220470 + 24 1 Cd 5f+2 0.0002985948891014 0.0018355109425890 + 25 1 Cd 5f+3 0.0019311927463972 0.0010800421732982 + + 26 2 Cd 2s -0.0357633771046312 -0.0464520598577707 + 27 2 Cd 3s 0.0023358756169950 -0.0019756984995005 + 28 2 Cd 3py -0.0135684231728962 -0.0018898084141176 + 29 2 Cd 3pz 0.0201283230200638 -0.0394945923144486 + 30 2 Cd 3px 0.0091979890426717 0.0267647348186579 + 31 2 Cd 4py 0.0031481676181399 -0.0002846450208361 + 32 2 Cd 4pz -0.0026277523394245 0.0020375478290683 + 33 2 Cd 4px 0.0007891644941734 -0.0006995629629998 + 34 2 Cd 4d-2 -0.0179585372267097 0.0101850803961975 + 35 2 Cd 4d-1 -0.0070947794786457 -0.0067832007831371 + 36 2 Cd 4d0 0.0090606862799344 -0.0163637055544579 + 37 2 Cd 4d+1 0.0134278743153441 -0.0294363561713706 + 38 2 Cd 4d+2 -0.0031805853615543 0.0071149724766905 + 39 2 Cd 5d-2 -0.0050743776762732 0.0028985527695489 + 40 2 Cd 5d-1 -0.0004813114376644 -0.0010243974155620 + 41 2 Cd 5d0 0.0036455145789847 -0.0037603122587410 + 42 2 Cd 5d+1 -0.0008201369912357 0.0003324175923198 + 43 2 Cd 5d+2 -0.0002660215899063 -0.0012320805464938 + 44 2 Cd 5f-3 0.0016809959557120 -0.0009186115556275 + 45 2 Cd 5f-2 0.0001625606198330 -0.0006198334006864 + 46 2 Cd 5f-1 0.0009593596650296 0.0017560076438969 + 47 2 Cd 5f0 0.0020579127355909 0.0000172793753966 + 48 2 Cd 5f+1 -0.0013149994165404 -0.0003574960011446 + 49 2 Cd 5f+2 0.0015714549128209 0.0001289863226453 + 50 2 Cd 5f+3 -0.0014573476461955 -0.0015684356178981 + + 51 3 Cd 2s -0.1761462184667168 0.0482035617777922 + 52 3 Cd 3s 0.0073594247753064 0.0018696066365797 + 53 3 Cd 3py 0.0097847029017381 0.0186612275963555 + 54 3 Cd 3pz -0.0224623523730874 0.0164232578178582 + 55 3 Cd 3px -0.0107875628470729 0.0250586887053430 + 56 3 Cd 4py -0.0059734165850144 -0.0039457156570422 + 57 3 Cd 4pz 0.0009868433721397 -0.0040982720021697 + 58 3 Cd 4px 0.0059999499395620 -0.0054779414937268 + 59 3 Cd 4d-2 -0.0077512900241572 0.0165855621336023 + 60 3 Cd 4d-1 -0.0179234563511936 -0.0291208047763560 + 61 3 Cd 4d0 0.0205170974312236 0.0229324316266909 + 62 3 Cd 4d+1 0.0035808571422159 -0.0005091892569126 + 63 3 Cd 4d+2 -0.0002430839070263 0.0133201019783744 + 64 3 Cd 5d-2 -0.0036820573496994 0.0067308793769157 + 65 3 Cd 5d-1 -0.0041909400841533 -0.0061567862976105 + 66 3 Cd 5d0 0.0025697023959005 0.0057451940266565 + 67 3 Cd 5d+1 0.0031423397828204 0.0002459754311851 + 68 3 Cd 5d+2 0.0027547971611641 0.0003146993575491 + 69 3 Cd 5f-3 0.0014269565937756 -0.0001178741414030 + 70 3 Cd 5f-2 0.0068537751044281 -0.0023256121647992 + 71 3 Cd 5f-1 -0.0009326956406978 -0.0001978008062159 + 72 3 Cd 5f0 -0.0021920095606849 0.0016520314395628 + 73 3 Cd 5f+1 0.0025657379307966 -0.0008773819778684 + 74 3 Cd 5f+2 -0.0014470583621290 -0.0012003113247423 + 75 3 Cd 5f+3 0.0048160941609390 -0.0010074312343519 + + 76 4 Se 2s 0.0155016757586053 -0.0382645496668364 + 77 4 Se 3s -0.0018908700451213 0.0036405789525920 + 78 4 Se 3py 0.1161539762291087 0.0474857633418503 + 79 4 Se 3pz 0.0919018227941326 -0.1309504835192789 + 80 4 Se 3px -0.0579135167528471 -0.0772786860591330 + 81 4 Se 4py -0.0061854034147860 -0.0030954903936418 + 82 4 Se 4pz -0.0007253758882122 0.0005501801871262 + 83 4 Se 4px 0.0031295485897771 0.0030142581024938 + 84 4 Se 4d-2 -0.0030058479934009 -0.0018913918177779 + 85 4 Se 4d-1 -0.0083900162638585 0.0011662325049243 + 86 4 Se 4d0 0.0003569856941082 0.0032412092751922 + 87 4 Se 4d+1 -0.0023720992381242 0.0063443841023374 + 88 4 Se 4d+2 0.0070981919700397 0.0047200573965972 + + 89 5 Se 2s 0.0201171863909950 0.0305970580302449 + 90 5 Se 3s -0.0023011001176545 -0.0018474243387325 + 91 5 Se 3py -0.1045184273572488 -0.0781250662177106 + 92 5 Se 3pz 0.1015879786776482 -0.0373692112535391 + 93 5 Se 3px -0.0375659419044536 -0.0067746630131250 + 94 5 Se 4py -0.0011101965487450 -0.0000367548825538 + 95 5 Se 4pz -0.0015989515951346 0.0024916373320679 + 96 5 Se 4px -0.0017669410312302 0.0020566030728104 + 97 5 Se 4d-2 0.0006947858755987 0.0012764008244505 + 98 5 Se 4d-1 0.0014123784783319 -0.0027186807744331 + 99 5 Se 4d0 0.0079281485387630 -0.0014156496270158 + 100 5 Se 4d+1 -0.0072664966703111 0.0002372318105477 + 101 5 Se 4d+2 0.0074707502220630 0.0032814634438776 + + 102 6 Se 2s -0.0021990292620629 0.0263538037705964 + 103 6 Se 3s -0.0008428140699586 -0.0028425387576589 + 104 6 Se 3py -0.0713869738985903 0.0616785310586379 + 105 6 Se 3pz -0.1685122389717774 0.1257481749735005 + 106 6 Se 3px -0.0008027930912522 0.0393795163360964 + 107 6 Se 4py 0.0020133294157829 -0.0016760737844447 + 108 6 Se 4pz 0.0040686060523747 -0.0057336619122465 + 109 6 Se 4px 0.0004328691765969 -0.0023348690183847 + 110 6 Se 4d-2 0.0039466243022629 -0.0040010636237856 + 111 6 Se 4d-1 0.0034450688953773 0.0010000441532737 + 112 6 Se 4d0 -0.0007903888728882 -0.0011575161201880 + 113 6 Se 4d+1 0.0128740974619490 -0.0049936508269127 + 114 6 Se 4d+2 -0.0017655174450521 -0.0029931862713192 + + 115 7 Se 2s -0.0065713176904734 0.0318529278557044 + 116 7 Se 3s 0.0006040575181761 -0.0041414797878516 + 117 7 Se 3py -0.0271974374216553 -0.0324985777825745 + 118 7 Se 3pz -0.0341522278150796 0.0531181859439599 + 119 7 Se 3px -0.0290699000955853 0.2022327698401860 + 120 7 Se 4py 0.0006568511219358 0.0006119082106282 + 121 7 Se 4pz 0.0010241096977332 -0.0001089757596714 + 122 7 Se 4px -0.0011296925035465 -0.0066031453050088 + 123 7 Se 4d-2 0.0027416311960498 -0.0045078122439890 + 124 7 Se 4d-1 0.0035114596752221 0.0032981326926255 + 125 7 Se 4d0 0.0019136613806587 0.0002966235546618 + 126 7 Se 4d+1 0.0004017745437885 -0.0094007727804237 + 127 7 Se 4d+2 0.0019806755369605 -0.0007931073368986 + + 128 8 Cd 2s -0.0649410578985592 0.0760670423837475 + 129 8 Cd 3s -0.0006319422210065 0.0012362651371198 + 130 8 Cd 3py -0.0148292377238485 0.0605251961731336 + 131 8 Cd 3pz 0.0013031973620681 0.0496525087918998 + 132 8 Cd 3px 0.0011254112276347 -0.0326319396295409 + 133 8 Cd 4py 0.0010504901180249 -0.0031986694597429 + 134 8 Cd 4pz 0.0043474619085000 -0.0047490002424504 + 135 8 Cd 4px 0.0001025407506382 0.0034962504160065 + 136 8 Cd 4d-2 0.0078727756191790 -0.0246695862708259 + 137 8 Cd 4d-1 -0.0004229159759073 -0.0129272254293507 + 138 8 Cd 4d0 -0.0064790300314248 -0.0295548217220429 + 139 8 Cd 4d+1 0.0064086876602024 0.0410559578743065 + 140 8 Cd 4d+2 -0.0207972385158973 0.0107363878865405 + 141 8 Cd 5d-2 -0.0039716236365738 0.0009715680408128 + 142 8 Cd 5d-1 -0.0022304594756455 -0.0021294176570871 + 143 8 Cd 5d0 -0.0026356360227238 -0.0075313973212440 + 144 8 Cd 5d+1 -0.0012184009399053 0.0094703596620123 + 145 8 Cd 5d+2 -0.0059846865758341 -0.0008354744051800 + 146 8 Cd 5f-3 0.0018177203379705 -0.0008246838619032 + 147 8 Cd 5f-2 0.0009076779116930 -0.0013294892931162 + 148 8 Cd 5f-1 -0.0016736131235777 0.0002686351598866 + 149 8 Cd 5f0 0.0003317321294981 -0.0010024467345112 + 150 8 Cd 5f+1 -0.0002741146402318 -0.0030559064711081 + 151 8 Cd 5f+2 -0.0014130960351933 0.0026653076035803 + 152 8 Cd 5f+3 -0.0012875099125755 0.0005202935618444 + + 153 9 Cd 2s 0.1403337454519852 0.0719290010511351 + 154 9 Cd 3s -0.0022259029501220 -0.0035576648875506 + 155 9 Cd 3py 0.0095049101722656 -0.0171899481204008 + 156 9 Cd 3pz -0.0092818593128533 0.0056670555090901 + 157 9 Cd 3px 0.0120486746012080 -0.0370003749211745 + 158 9 Cd 4py 0.0020367053640164 0.0010910515963999 + 159 9 Cd 4pz -0.0010671675850538 -0.0012657764343316 + 160 9 Cd 4px -0.0034723452252170 0.0061053545369275 + 161 9 Cd 4d-2 0.0169280684150973 -0.0138345962640868 + 162 9 Cd 4d-1 -0.0079729173725270 0.0116102016972164 + 163 9 Cd 4d0 -0.0184582818139093 -0.0054595932517823 + 164 9 Cd 4d+1 -0.0102259315761309 0.0026054263586368 + 165 9 Cd 4d+2 0.0262553597224171 0.0188055904684797 + 166 9 Cd 5d-2 0.0022425589921427 -0.0025055607964439 + 167 9 Cd 5d-1 -0.0060523294067579 0.0012420187575521 + 168 9 Cd 5d0 0.0018687553346907 0.0004600637488446 + 169 9 Cd 5d+1 0.0022358499953473 0.0020354165182673 + 170 9 Cd 5d+2 0.0009968156779192 -0.0002120204188443 + 171 9 Cd 5f-3 -0.0003962204702263 0.0007736127087822 + 172 9 Cd 5f-2 -0.0006499009778755 0.0004966518788526 + 173 9 Cd 5f-1 0.0009117381027679 -0.0000022267721711 + 174 9 Cd 5f0 -0.0008337067472830 0.0009516637127729 + 175 9 Cd 5f+1 -0.0000948994049838 -0.0013181899351478 + 176 9 Cd 5f+2 0.0008535916723934 -0.0022181727139969 + 177 9 Cd 5f+3 -0.0004258691487592 0.0015795868904363 + + 178 10 Se 2s 0.0470714719023727 0.0410066491232995 + 179 10 Se 3s -0.0053438682210743 -0.0035909391383291 + 180 10 Se 3py 0.0693322453632647 -0.0460859842877047 + 181 10 Se 3pz 0.0586530621973329 -0.0406547889550924 + 182 10 Se 3px -0.0511723912377499 -0.1506634567989386 + 183 10 Se 4py -0.0049766349509827 0.0036762614603313 + 184 10 Se 4pz -0.0027966879734811 0.0034321135905970 + 185 10 Se 4px -0.0004740083329458 0.0038173548849186 + 186 10 Se 4d-2 0.0002069007582558 0.0009583648781982 + 187 10 Se 4d-1 -0.0060563144281588 0.0017677158298431 + 188 10 Se 4d0 -0.0028130285237683 0.0079041561022089 + 189 10 Se 4d+1 0.0004393224868361 0.0010343666558017 + 190 10 Se 4d+2 -0.0044608534885743 -0.0019776001342017 + + 191 11 Se 2s 0.0502488172623900 -0.0484543630478476 + 192 11 Se 3s -0.0057174152214778 0.0037820024204157 + 193 11 Se 3py -0.0292707987650779 -0.0194465167849560 + 194 11 Se 3pz 0.0846952836497976 -0.2889240223070452 + 195 11 Se 3px 0.1964944837177154 0.0758251174063994 + 196 11 Se 4py 0.0012965467928962 0.0025677015857948 + 197 11 Se 4pz -0.0039415687759173 0.0109372447923456 + 198 11 Se 4px -0.0110837872864640 -0.0044329957577169 + 199 11 Se 4d-2 0.0141205397494798 0.0027637693809065 + 200 11 Se 4d-1 0.0020749514648769 -0.0051853913987452 + 201 11 Se 4d0 -0.0064662576422093 0.0111521491018385 + 202 11 Se 4d+1 -0.0022597318331332 -0.0042105719263112 + 203 11 Se 4d+2 0.0015621013613300 -0.0012133524554774 + + 204 12 Cd 2s 0.1893771845345184 -0.0200704398008076 + 205 12 Cd 3s -0.0027689128156674 -0.0006705745679827 + 206 12 Cd 3py -0.0094721925417565 -0.0523466915681832 + 207 12 Cd 3pz -0.0025414366899091 -0.0019134899599383 + 208 12 Cd 3px -0.0176147145713365 -0.0072055491306222 + 209 12 Cd 4py 0.0048089298560519 0.0017314707677653 + 210 12 Cd 4pz -0.0022162519518794 0.0022915038664830 + 211 12 Cd 4px -0.0011118248850253 -0.0008837281249614 + 212 12 Cd 4d-2 -0.0197731901209090 -0.0447262546811236 + 213 12 Cd 4d-1 0.0183793621787150 -0.0105880553751174 + 214 12 Cd 4d0 -0.0124305435317078 -0.0154476422167204 + 215 12 Cd 4d+1 -0.0047701901024759 0.0279282751220528 + 216 12 Cd 4d+2 -0.0059744935058373 -0.0033905895686263 + 217 12 Cd 5d-2 -0.0030801008336931 -0.0107739323834656 + 218 12 Cd 5d-1 0.0022081288434796 -0.0022567724173092 + 219 12 Cd 5d0 -0.0029780662186263 -0.0048076677930671 + 220 12 Cd 5d+1 0.0031935782961226 0.0080909040534510 + 221 12 Cd 5d+2 0.0027371695331596 0.0038348641423343 + 222 12 Cd 5f-3 -0.0018160167911263 0.0001632588018481 + 223 12 Cd 5f-2 0.0015584556508578 0.0017369299722060 + 224 12 Cd 5f-1 -0.0025729980938505 -0.0021498341197489 + 225 12 Cd 5f0 -0.0030057309092792 0.0031366797957936 + 226 12 Cd 5f+1 -0.0027004000889542 0.0010726127565136 + 227 12 Cd 5f+2 -0.0010489787794259 0.0004034404031944 + 228 12 Cd 5f+3 0.0041596405389902 0.0012110269383576 + + 229 13 Cd 2s -0.0550417101955233 -0.0779419305632968 + 230 13 Cd 3s 0.0014095632430820 0.0030695205554079 + 231 13 Cd 3py -0.0407846570171777 -0.0056908332697875 + 232 13 Cd 3pz -0.0027558422328937 -0.0065039395943137 + 233 13 Cd 3px -0.0063794413670421 -0.0569303392776805 + 234 13 Cd 4py 0.0097345353082663 0.0010806610498503 + 235 13 Cd 4pz -0.0018211144675657 0.0009368649474441 + 236 13 Cd 4px -0.0030784003819833 0.0065976202688786 + 237 13 Cd 4d-2 0.0109731701021684 0.0281151793417736 + 238 13 Cd 4d-1 -0.0065974593870849 -0.0032587008698763 + 239 13 Cd 4d0 -0.0342056268270531 -0.0233728870219195 + 240 13 Cd 4d+1 0.0164679305444379 0.0151394168595829 + 241 13 Cd 4d+2 0.0021051712250977 -0.0317024302909690 + 242 13 Cd 5d-2 0.0037137159966936 0.0048625788374900 + 243 13 Cd 5d-1 0.0022773498395590 0.0010786394164237 + 244 13 Cd 5d0 -0.0037428755675841 0.0002510560192590 + 245 13 Cd 5d+1 0.0039371152064185 0.0049713184468230 + 246 13 Cd 5d+2 -0.0047553762731636 -0.0059940237103601 + 247 13 Cd 5f-3 0.0016198954579256 0.0018726588120086 + 248 13 Cd 5f-2 0.0014479346870185 0.0008666494007422 + 249 13 Cd 5f-1 -0.0033100118555825 -0.0001758773273302 + 250 13 Cd 5f0 -0.0026176980729454 -0.0014345346460161 + 251 13 Cd 5f+1 0.0044653977244439 0.0006312829516555 + 252 13 Cd 5f+2 -0.0001244398372061 0.0011347661324394 + 253 13 Cd 5f+3 0.0046803772592131 0.0011217777084496 + + 254 14 Cd 2s 0.0845927633216616 0.0448606610434817 + 255 14 Cd 3s -0.0025123248560287 0.0005514195444628 + 256 14 Cd 3py 0.0097565708588972 -0.0058114788502825 + 257 14 Cd 3pz -0.0116823359215065 0.0311708440380683 + 258 14 Cd 3px -0.0206799248873953 -0.0076109201302295 + 259 14 Cd 4py -0.0029619030446769 -0.0007860377109869 + 260 14 Cd 4pz 0.0021491889677285 -0.0002935318917726 + 261 14 Cd 4px 0.0014240175890467 0.0002280841369431 + 262 14 Cd 4d-2 0.0033009121134030 0.0106158829925068 + 263 14 Cd 4d-1 -0.0002606694745547 -0.0215317070898322 + 264 14 Cd 4d0 0.0211144596677512 -0.0025054900599013 + 265 14 Cd 4d+1 0.0270621191575315 -0.0199946418822037 + 266 14 Cd 4d+2 0.0078989373306765 -0.0082382941119249 + 267 14 Cd 5d-2 0.0008153430045368 0.0007274377247829 + 268 14 Cd 5d-1 0.0035086469922751 -0.0073078742925004 + 269 14 Cd 5d0 0.0005128401900299 -0.0011705601902587 + 270 14 Cd 5d+1 0.0065899288456654 -0.0076092050152080 + 271 14 Cd 5d+2 -0.0005051221869828 -0.0049852594131386 + 272 14 Cd 5f-3 0.0001518248494631 0.0016246240241079 + 273 14 Cd 5f-2 -0.0017900607215866 0.0016804347661426 + 274 14 Cd 5f-1 -0.0007713308623035 0.0007803554005135 + 275 14 Cd 5f0 0.0004277529082310 -0.0012406200639538 + 276 14 Cd 5f+1 0.0001398213076516 -0.0003754158499747 + 277 14 Cd 5f+2 0.0013892039975942 -0.0000810123652130 + 278 14 Cd 5f+3 0.0004616696411294 -0.0008014092323877 + + 279 15 Se 2s 0.0232016767371514 -0.0323754448770478 + 280 15 Se 3s -0.0023770196145164 0.0039223573577843 + 281 15 Se 3py -0.0032554712178095 -0.0623572181625217 + 282 15 Se 3pz -0.1336260311755202 0.0590931316031039 + 283 15 Se 3px 0.1214772027929074 -0.0381066833931625 + 284 15 Se 4py -0.0007729253018184 0.0018179114251462 + 285 15 Se 4pz 0.0064012572429952 -0.0007692095253129 + 286 15 Se 4px -0.0063040043312549 -0.0003952767203074 + 287 15 Se 4d-2 -0.0084503334971411 0.0026233045556998 + 288 15 Se 4d-1 0.0042030669018792 -0.0054652862572291 + 289 15 Se 4d0 -0.0039762868738554 -0.0043652642400881 + 290 15 Se 4d+1 -0.0026103349135085 -0.0029369680407964 + 291 15 Se 4d+2 0.0024700838145208 0.0027346628679743 + + 292 16 Se 2s 0.1253597497692749 0.0170627277768282 + 293 16 Se 3s -0.0108815892526290 0.0001654412942201 + 294 16 Se 3py 0.2047251086241275 0.1354717494809582 + 295 16 Se 3pz -0.0820905295818634 0.0630123322543766 + 296 16 Se 3px 0.0968189821943403 0.1676835202648247 + 297 16 Se 4py -0.0082288135496781 -0.0040404073463737 + 298 16 Se 4pz -0.0014824670017286 -0.0015921564661651 + 299 16 Se 4px 0.0027108836264572 -0.0026798973591085 + 300 16 Se 4d-2 -0.0076553395351976 -0.0066014581671112 + 301 16 Se 4d-1 0.0107119991061548 0.0051433300357790 + 302 16 Se 4d0 0.0005994179319954 0.0082059359835903 + 303 16 Se 4d+1 -0.0013344834294755 0.0052122961633028 + 304 16 Se 4d+2 -0.0005379045141645 -0.0025916147131048 + + 305 17 Cd 2s 0.2164012699634958 -0.0038205541109126 + 306 17 Cd 3s -0.0096578907170572 -0.0020003715277984 + 307 17 Cd 3py 0.0036658558269425 0.0550618578824292 + 308 17 Cd 3pz 0.0245835441354641 0.0279300150342235 + 309 17 Cd 3px 0.0170499890005759 0.0593278291448276 + 310 17 Cd 4py -0.0039820523162686 -0.0120830176062854 + 311 17 Cd 4pz 0.0032797254186740 -0.0013636571041317 + 312 17 Cd 4px -0.0082477802302505 -0.0119394282828659 + 313 17 Cd 4d-2 -0.0031058066858430 -0.0067258404993542 + 314 17 Cd 4d-1 0.0046379596780793 0.0063084169969767 + 315 17 Cd 4d0 -0.0290501652457400 0.0210728763998750 + 316 17 Cd 4d+1 0.0298090354555565 -0.0244894068922219 + 317 17 Cd 4d+2 -0.0194853927071204 -0.0046157330256880 + 318 17 Cd 5d-2 -0.0021637226564832 -0.0046185348088578 + 319 17 Cd 5d-1 0.0036767213441318 0.0089174989230874 + 320 17 Cd 5d0 0.0069037930195370 0.0052867151214167 + 321 17 Cd 5d+1 -0.0021721128237279 0.0004833936901085 + 322 17 Cd 5d+2 -0.0019015514930989 -0.0150511997096460 + 323 17 Cd 5f-3 -0.0052912169209737 -0.0012294486047280 + 324 17 Cd 5f-2 0.0008168941207626 -0.0005310709391188 + 325 17 Cd 5f-1 0.0017377161184780 0.0039156793612260 + 326 17 Cd 5f0 -0.0019048063987695 0.0006937760924353 + 327 17 Cd 5f+1 -0.0003344222570863 0.0025110169785568 + 328 17 Cd 5f+2 0.0005099468255848 -0.0013102269684828 + 329 17 Cd 5f+3 -0.0009152987039034 0.0037953479705864 + + 330 18 Cd 2s 0.1838227658577151 -0.0668584098479786 + 331 18 Cd 3s -0.0079620470818413 0.0023331185183885 + 332 18 Cd 3py 0.0087278715677647 0.0105915266446064 + 333 18 Cd 3pz -0.0076044758160697 -0.0889609119428681 + 334 18 Cd 3px -0.0097318737371605 -0.0324174734314824 + 335 18 Cd 4py 0.0000924547580210 -0.0053187860692007 + 336 18 Cd 4pz 0.0060008061678134 0.0150030290517644 + 337 18 Cd 4px 0.0025123664077219 0.0024084264978427 + 338 18 Cd 4d-2 0.0006290736839520 -0.0147358323715818 + 339 18 Cd 4d-1 -0.0254667674648965 -0.0244703516461923 + 340 18 Cd 4d0 0.0413477289469098 -0.0283313283110473 + 341 18 Cd 4d+1 -0.0296876608058140 0.0217451272189436 + 342 18 Cd 4d+2 -0.0148201476820277 0.0009637051471601 + 343 18 Cd 5d-2 0.0016807452781055 -0.0034527253008919 + 344 18 Cd 5d-1 0.0047843034312457 -0.0086100990073247 + 345 18 Cd 5d0 0.0005795745035689 0.0013799762773048 + 346 18 Cd 5d+1 -0.0062088205490840 0.0010611043714609 + 347 18 Cd 5d+2 -0.0052085993096768 0.0004129326864648 + 348 18 Cd 5f-3 -0.0007970871351863 -0.0010011438147991 + 349 18 Cd 5f-2 -0.0004612901818467 -0.0006103150821404 + 350 18 Cd 5f-1 -0.0005571537029619 -0.0044883103997062 + 351 18 Cd 5f0 0.0007730942243419 0.0042987953335891 + 352 18 Cd 5f+1 0.0023038980359420 0.0017387155681807 + 353 18 Cd 5f+2 -0.0003389772958883 0.0021436708132525 + 354 18 Cd 5f+3 -0.0000548411452106 0.0011367002691097 + + 355 19 Se 2s 0.0436371850102657 -0.0264012080510491 + 356 19 Se 3s -0.0036162288543115 0.0031582759920304 + 357 19 Se 3py 0.0816795445643866 0.2963784438220658 + 358 19 Se 3pz -0.0465281471479444 -0.1021255835383488 + 359 19 Se 3px -0.2355373714789459 -0.0167108661959682 + 360 19 Se 4py -0.0055873217079496 -0.0115059590347731 + 361 19 Se 4pz 0.0014657313857926 0.0047244917021358 + 362 19 Se 4px 0.0100848696273297 -0.0020252721353535 + 363 19 Se 4d-2 -0.0092836122405669 0.0045902162308942 + 364 19 Se 4d-1 0.0095821899583339 0.0056780238715845 + 365 19 Se 4d0 -0.0012774107443368 -0.0060272591625921 + 366 19 Se 4d+1 -0.0128937175647574 -0.0025558304184674 + 367 19 Se 4d+2 0.0007724491166525 -0.0053234764243138 + + 368 20 Se 2s 0.0136166018683332 0.0009281268418865 + 369 20 Se 3s -0.0022138286322844 0.0012189626221370 + 370 20 Se 3py -0.0036923775817559 -0.0277245828798261 + 371 20 Se 3pz 0.0415417230011141 0.2099324146189556 + 372 20 Se 3px 0.0304338390958871 -0.0300054715595775 + 373 20 Se 4py 0.0019129225457947 0.0032252619120875 + 374 20 Se 4pz 0.0026741427122962 -0.0015032317907912 + 375 20 Se 4px -0.0032290746135793 0.0006722133426150 + 376 20 Se 4d-2 -0.0043534460571476 0.0013704331337002 + 377 20 Se 4d-1 0.0040957269364917 0.0017036788851366 + 378 20 Se 4d0 -0.0009064603325911 0.0012126378934237 + 379 20 Se 4d+1 0.0092176426399333 -0.0057315272735220 + 380 20 Se 4d+2 0.0020087716950499 -0.0018267207824912 + + 381 21 Se 2s 0.0180893289601288 0.0104944586959171 + 382 21 Se 3s -0.0029904307153313 -0.0010114030432156 + 383 21 Se 3py -0.0552277039206242 0.1035612466037503 + 384 21 Se 3pz 0.0735603629742287 -0.3035120011657147 + 385 21 Se 3px -0.0383444654558508 0.0797332503269694 + 386 21 Se 4py 0.0007385411363678 -0.0047231496094907 + 387 21 Se 4pz -0.0004157904709236 0.0161141182957763 + 388 21 Se 4px 0.0009336920232605 -0.0084245237950212 + 389 21 Se 4d-2 -0.0031721437526681 -0.0023045860977787 + 390 21 Se 4d-1 -0.0009493054738948 0.0064932638322657 + 391 21 Se 4d0 0.0001405876974493 0.0032325892096449 + 392 21 Se 4d+1 0.0043406154595759 -0.0072243028748968 + 393 21 Se 4d+2 0.0005504252803317 0.0022799848388142 + + 394 22 Cd 2s 0.0573902419290851 0.0477123149704696 + 395 22 Cd 3s 0.0006610090969057 -0.0001028550147865 + 396 22 Cd 3py 0.0129105791156188 -0.0492908461429360 + 397 22 Cd 3pz 0.0159028779475755 -0.0951301036314181 + 398 22 Cd 3px 0.0066624756405936 0.0372986955007484 + 399 22 Cd 4py -0.0046171761431423 0.0040124579186814 + 400 22 Cd 4pz -0.0003750018063226 0.0087591006826969 + 401 22 Cd 4px -0.0020122309197680 -0.0009704484032974 + 402 22 Cd 4d-2 -0.0312426282482205 -0.0033741894434714 + 403 22 Cd 4d-1 0.0117781867597201 -0.0054631812724422 + 404 22 Cd 4d0 0.0270618514115093 -0.0104341676759177 + 405 22 Cd 4d+1 -0.0194648334034282 0.0427465084115157 + 406 22 Cd 4d+2 0.0005759193301460 -0.0135792466829964 + 407 22 Cd 5d-2 -0.0057689007492584 -0.0039052535584561 + 408 22 Cd 5d-1 0.0044675527593058 0.0040645448356630 + 409 22 Cd 5d0 0.0118693284546163 -0.0076193056666035 + 410 22 Cd 5d+1 -0.0011609422496216 0.0018215055976679 + 411 22 Cd 5d+2 -0.0013413012645408 -0.0036977766637850 + 412 22 Cd 5f-3 0.0014562810089198 0.0014521654273681 + 413 22 Cd 5f-2 0.0004700733565568 -0.0025192592700676 + 414 22 Cd 5f-1 -0.0003299217378435 0.0025791695480333 + 415 22 Cd 5f0 0.0028402272783266 0.0028131870810319 + 416 22 Cd 5f+1 0.0005722854066996 -0.0016116442478850 + 417 22 Cd 5f+2 0.0023732576886018 0.0015958940398080 + 418 22 Cd 5f+3 0.0011753774157102 0.0002224235946857 + + 419 23 Se 2s -0.0199378693848755 0.0351801845022500 + 420 23 Se 3s 0.0021423162923167 -0.0030207310018015 + 421 23 Se 3py -0.0879970213232404 -0.1720902584883147 + 422 23 Se 3pz 0.0788815613476434 -0.1827517959006104 + 423 23 Se 3px -0.1362869880418875 -0.0653259792621623 + 424 23 Se 4py 0.0013397605974626 0.0020227737722285 + 425 23 Se 4pz -0.0036827106609128 0.0020027725013520 + 426 23 Se 4px 0.0063158288361384 0.0027553685876948 + 427 23 Se 4d-2 0.0072966153739068 -0.0055356221411775 + 428 23 Se 4d-1 -0.0081873942127491 -0.0042207095782002 + 429 23 Se 4d0 0.0048227690795701 -0.0091656684830111 + 430 23 Se 4d+1 -0.0039234624444511 -0.0076448742480413 + 431 23 Se 4d+2 -0.0096001197810987 -0.0062988588732198 + + 432 24 Se 2s 0.0031701400430448 0.0020020526857727 + 433 24 Se 3s -0.0001490916408680 -0.0004732121527273 + 434 24 Se 3py -0.0232979593329336 0.0575085161360088 + 435 24 Se 3pz -0.2541833608363866 0.0430556697380615 + 436 24 Se 3px 0.0463700863935898 -0.0682504757261635 + 437 24 Se 4py 0.0000696183396054 -0.0017959746867386 + 438 24 Se 4pz 0.0112065677788286 0.0002136533593362 + 439 24 Se 4px -0.0031770335863642 0.0042208566135806 + 440 24 Se 4d-2 0.0048496997785862 -0.0022687385997011 + 441 24 Se 4d-1 -0.0084976541502602 0.0017889995506022 + 442 24 Se 4d0 0.0023036471595313 0.0003653843871897 + 443 24 Se 4d+1 -0.0142122418652184 0.0027213904184235 + 444 24 Se 4d+2 0.0025505758273125 -0.0041477002684409 + + 445 25 Cd 2s -0.2603025527313405 0.0247818063260581 + 446 25 Cd 3s 0.0016881932955222 0.0016736561413700 + 447 25 Cd 3py -0.0039498603404425 0.0095639315176333 + 448 25 Cd 3pz 0.0277905615249160 0.0572439098343148 + 449 25 Cd 3px 0.0373737539562528 0.0103428593045557 + 450 25 Cd 4py -0.0036123816725929 0.0007433258099874 + 451 25 Cd 4pz -0.0044048310393428 0.0000018906164220 + 452 25 Cd 4px -0.0060548371086500 0.0044717484558917 + 453 25 Cd 4d-2 -0.0041060922432141 0.0292223487228175 + 454 25 Cd 4d-1 -0.0022076560769695 0.0014411810623559 + 455 25 Cd 4d0 -0.0090094983335792 -0.0495681472574308 + 456 25 Cd 4d+1 0.0349282592425624 0.0208240821828638 + 457 25 Cd 4d+2 0.0090632980728712 -0.0137701638894113 + 458 25 Cd 5d-2 -0.0032239855698674 0.0081152010111375 + 459 25 Cd 5d-1 0.0001274777955091 -0.0001880755108776 + 460 25 Cd 5d0 -0.0053619936706028 -0.0065271350490576 + 461 25 Cd 5d+1 0.0136639553712456 0.0105167240269641 + 462 25 Cd 5d+2 0.0017797791038819 0.0013912546950950 + 463 25 Cd 5f-3 -0.0020587824861344 0.0010317994462034 + 464 25 Cd 5f-2 0.0056299744699733 -0.0019965082594225 + 465 25 Cd 5f-1 -0.0010766643335494 -0.0006401671065177 + 466 25 Cd 5f0 -0.0028793072280162 -0.0015324162620936 + 467 25 Cd 5f+1 0.0012902066120829 0.0000216856247852 + 468 25 Cd 5f+2 0.0056006809312927 -0.0006943598918701 + 469 25 Cd 5f+3 -0.0009915203197778 0.0019018063227558 + + 470 26 Cd 2s 0.0580464647806602 0.0057140722977537 + 471 26 Cd 3s -0.0005774640501842 0.0000448722385126 + 472 26 Cd 3py -0.0305863567842071 0.0214119902974431 + 473 26 Cd 3pz 0.0097871942840504 0.0250674543481714 + 474 26 Cd 3px -0.0014750743638225 0.0094128210443929 + 475 26 Cd 4py 0.0054625065902267 -0.0038740130947814 + 476 26 Cd 4pz -0.0017452948009615 -0.0039670950040203 + 477 26 Cd 4px 0.0046962372980356 -0.0024571513921486 + 478 26 Cd 4d-2 -0.0069215043794772 0.0005371452736442 + 479 26 Cd 4d-1 -0.0233150128423281 0.0221315258929312 + 480 26 Cd 4d0 -0.0269738134197060 0.0122693642491018 + 481 26 Cd 4d+1 0.0007175647172083 0.0214861783153775 + 482 26 Cd 4d+2 -0.0324570751483756 0.0146076936466893 + 483 26 Cd 5d-2 -0.0055803953228822 0.0026926842454754 + 484 26 Cd 5d-1 -0.0058737862363147 0.0058429747227167 + 485 26 Cd 5d0 -0.0029259213021608 0.0051675406913272 + 486 26 Cd 5d+1 -0.0043349703314806 0.0021908443212909 + 487 26 Cd 5d+2 0.0018394802181668 0.0019662115450803 + 488 26 Cd 5f-3 -0.0025235434700933 0.0016798940781004 + 489 26 Cd 5f-2 0.0001200136976305 -0.0010371484977538 + 490 26 Cd 5f-1 -0.0007890253026336 0.0004157109882155 + 491 26 Cd 5f0 0.0005333538939634 0.0010426376367695 + 492 26 Cd 5f+1 -0.0001400770760818 0.0007455065957651 + 493 26 Cd 5f+2 -0.0013362069548731 0.0019112116513318 + 494 26 Cd 5f+3 -0.0016135355143695 0.0021512605553968 + + 93 94 + -0.2467130321430630 -0.2448033928762020 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0434677776982643 -0.0753898767981474 + 2 1 Cd 3s 0.0008383477868707 0.0042976842797874 + 3 1 Cd 3py 0.0039612510749629 0.0102955892655547 + 4 1 Cd 3pz -0.0105240016016922 -0.0289815551946557 + 5 1 Cd 3px 0.0085986034461485 -0.0080853416392961 + 6 1 Cd 4py -0.0006345184836613 -0.0056036611088155 + 7 1 Cd 4pz 0.0016664039030734 -0.0006616245265761 + 8 1 Cd 4px 0.0004181213120664 0.0018409000699785 + 9 1 Cd 4d-2 -0.0016033901448470 -0.0031932161308315 + 10 1 Cd 4d-1 -0.0053688189373257 -0.0081788747075895 + 11 1 Cd 4d0 -0.0033600461349333 -0.0130282156783798 + 12 1 Cd 4d+1 0.0024598215321524 0.0073536575207880 + 13 1 Cd 4d+2 0.0049103685502257 0.0198588482405284 + 14 1 Cd 5d-2 0.0006864150251021 -0.0000891844440590 + 15 1 Cd 5d-1 0.0001859049974094 0.0006276740862878 + 16 1 Cd 5d0 -0.0008937570924050 -0.0073372468935973 + 17 1 Cd 5d+1 0.0005906460899667 0.0071217592115682 + 18 1 Cd 5d+2 -0.0011099999892090 -0.0038321303919204 + 19 1 Cd 5f-3 0.0001939871691737 0.0013810234828799 + 20 1 Cd 5f-2 -0.0004717187817329 -0.0002174230211333 + 21 1 Cd 5f-1 -0.0006446405942503 0.0011726675341248 + 22 1 Cd 5f0 -0.0010885508185888 0.0002553839348087 + 23 1 Cd 5f+1 -0.0001160621991461 0.0008228536478437 + 24 1 Cd 5f+2 -0.0010679090391928 -0.0007520370536484 + 25 1 Cd 5f+3 -0.0004194955584757 -0.0009914610540837 + + 26 2 Cd 2s 0.0633312043425788 -0.0034032112894411 + 27 2 Cd 3s -0.0004328466195097 0.0003874296613946 + 28 2 Cd 3py -0.0076856122743687 0.0192809764309950 + 29 2 Cd 3pz 0.0326789123671449 0.0491926666962011 + 30 2 Cd 3px 0.0130728162216786 -0.0331337307342135 + 31 2 Cd 4py -0.0008924134452585 0.0034775882469816 + 32 2 Cd 4pz -0.0022303988638777 -0.0046342054920146 + 33 2 Cd 4px -0.0038706289755664 0.0049841137157540 + 34 2 Cd 4d-2 -0.0247395309343379 -0.0048502603057578 + 35 2 Cd 4d-1 -0.0161092905169352 -0.0039663851116657 + 36 2 Cd 4d0 -0.0114274453296731 0.0069035413319869 + 37 2 Cd 4d+1 -0.0176946293731162 -0.0140606590448654 + 38 2 Cd 4d+2 0.0032745929274029 0.0147652507481635 + 39 2 Cd 5d-2 -0.0012996423876546 -0.0048373025740555 + 40 2 Cd 5d-1 -0.0037800421764061 -0.0058354102461182 + 41 2 Cd 5d0 -0.0025294695378959 -0.0030665032073665 + 42 2 Cd 5d+1 -0.0044452366587532 -0.0076108871339104 + 43 2 Cd 5d+2 0.0019145518979370 0.0081885759936370 + 44 2 Cd 5f-3 -0.0003830298317786 0.0005435558502913 + 45 2 Cd 5f-2 0.0017195764073573 -0.0008602219186619 + 46 2 Cd 5f-1 0.0004847687683003 -0.0017850709963150 + 47 2 Cd 5f0 -0.0002030149066510 0.0003959851766846 + 48 2 Cd 5f+1 0.0000317909127501 0.0032754514129517 + 49 2 Cd 5f+2 0.0013815294959780 -0.0003635762994713 + 50 2 Cd 5f+3 -0.0002407134664504 -0.0008067732956229 + + 51 3 Cd 2s -0.0381489383680972 0.0294431883277549 + 52 3 Cd 3s 0.0017413047348171 0.0040647883364115 + 53 3 Cd 3py 0.0034638971102051 -0.0143856398878446 + 54 3 Cd 3pz -0.0267407196773523 -0.0143179510721969 + 55 3 Cd 3px -0.0503006276933438 -0.0268448658742927 + 56 3 Cd 4py 0.0005325696391773 0.0066267937277805 + 57 3 Cd 4pz -0.0004401578239078 -0.0000388116723831 + 58 3 Cd 4px 0.0039651606199541 0.0000868772740290 + 59 3 Cd 4d-2 -0.0253406741707265 -0.0115471334025031 + 60 3 Cd 4d-1 -0.0271072813107013 -0.0144665320056370 + 61 3 Cd 4d0 -0.0152327730341140 -0.0046122781502246 + 62 3 Cd 4d+1 -0.0019812528709971 -0.0063384691693003 + 63 3 Cd 4d+2 0.0042016769108764 0.0013994075820476 + 64 3 Cd 5d-2 -0.0081161804705115 -0.0020216473590529 + 65 3 Cd 5d-1 -0.0073022354104488 -0.0016227043632608 + 66 3 Cd 5d0 -0.0038477139313778 -0.0061892827224094 + 67 3 Cd 5d+1 -0.0009128303322407 0.0038683837966807 + 68 3 Cd 5d+2 0.0039591662177760 0.0015868872924799 + 69 3 Cd 5f-3 0.0008220814954292 0.0003524392495512 + 70 3 Cd 5f-2 -0.0006300517567310 -0.0023145467766924 + 71 3 Cd 5f-1 -0.0010302775861264 -0.0009039236656789 + 72 3 Cd 5f0 -0.0000389544669305 0.0013400324827228 + 73 3 Cd 5f+1 0.0013511756608341 -0.0004339471371556 + 74 3 Cd 5f+2 0.0022983297049897 0.0019078180293628 + 75 3 Cd 5f+3 0.0014792591345552 -0.0010664388761904 + + 76 4 Se 2s -0.0144011216302319 -0.0253397747249006 + 77 4 Se 3s 0.0011485534460076 0.0017477785926847 + 78 4 Se 3py -0.0154446553930920 -0.1251552019157721 + 79 4 Se 3pz -0.0484335045035994 0.0912629978487209 + 80 4 Se 3px -0.0525924526690054 -0.0027833983917194 + 81 4 Se 4py 0.0006713483994052 0.0047706387854262 + 82 4 Se 4pz 0.0048856546408414 -0.0037088172433574 + 83 4 Se 4px 0.0013566132559476 -0.0012919375172159 + 84 4 Se 4d-2 0.0005938363433048 0.0033327761420839 + 85 4 Se 4d-1 0.0030017688836281 -0.0030901905395779 + 86 4 Se 4d0 -0.0041950697647585 -0.0026163195757378 + 87 4 Se 4d+1 0.0018465751185640 -0.0047141625701180 + 88 4 Se 4d+2 0.0007930527142396 -0.0043441582951899 + + 89 5 Se 2s -0.0403536402116329 -0.0232088053615137 + 90 5 Se 3s 0.0036750547038237 0.0017949407958317 + 91 5 Se 3py 0.0385487994766831 0.0929959660805759 + 92 5 Se 3pz 0.0541941296547450 0.0099369491248780 + 93 5 Se 3px -0.0175084066389914 0.0321769424387745 + 94 5 Se 4py 0.0001595463043158 -0.0033759147377236 + 95 5 Se 4pz -0.0020187356944033 -0.0001981787442759 + 96 5 Se 4px 0.0004643083224845 -0.0026690461183721 + 97 5 Se 4d-2 -0.0005764647239792 -0.0005117915198012 + 98 5 Se 4d-1 0.0027263776616044 0.0026926738169323 + 99 5 Se 4d0 0.0022714917696136 -0.0011823145589591 + 100 5 Se 4d+1 -0.0009647126686560 0.0005715936672598 + 101 5 Se 4d+2 -0.0016965147140409 -0.0057746621204911 + + 102 6 Se 2s -0.0024460991516269 -0.0405861552628831 + 103 6 Se 3s 0.0003933083587034 0.0061273768223413 + 104 6 Se 3py -0.1329146127750041 0.0111216709238118 + 105 6 Se 3pz -0.1230417753303803 -0.0806623564305795 + 106 6 Se 3px -0.0071399093526018 -0.0493331452938410 + 107 6 Se 4py 0.0055508521241526 0.0005098387162694 + 108 6 Se 4pz 0.0031630975972015 0.0052488815535652 + 109 6 Se 4px -0.0001510445007659 0.0025223582137374 + 110 6 Se 4d-2 0.0061685131072067 0.0017221755914906 + 111 6 Se 4d-1 0.0004200305067110 -0.0046183617698882 + 112 6 Se 4d0 0.0020087023946373 -0.0003162258520588 + 113 6 Se 4d+1 0.0048392133806503 0.0013585390892150 + 114 6 Se 4d+2 0.0022069527718280 0.0014816350069141 + + 115 7 Se 2s 0.0472284096799591 0.0388903546073149 + 116 7 Se 3s -0.0053184355595041 -0.0055374910892065 + 117 7 Se 3py 0.0608091560701094 0.3293630412446099 + 118 7 Se 3pz 0.1301579155991591 0.0714882682123955 + 119 7 Se 3px 0.0687039333217835 0.0241822017987375 + 120 7 Se 4py -0.0014303234616228 -0.0103108069057974 + 121 7 Se 4pz -0.0022490001056044 -0.0038462383943349 + 122 7 Se 4px -0.0029303802363672 -0.0016742940542237 + 123 7 Se 4d-2 0.0004149601276754 -0.0031838578670165 + 124 7 Se 4d-1 -0.0027511655365891 -0.0138735348250583 + 125 7 Se 4d0 -0.0013242400748707 0.0000757392595527 + 126 7 Se 4d+1 -0.0028247917248093 0.0005527954357784 + 127 7 Se 4d+2 -0.0021899339276972 0.0003711126809172 + + 128 8 Cd 2s -0.0119952596518445 0.0540399590042750 + 129 8 Cd 3s -0.0018013843369156 0.0006149118303459 + 130 8 Cd 3py 0.0702535658569681 -0.0500794102825325 + 131 8 Cd 3pz 0.0690676737698440 0.1319366628702545 + 132 8 Cd 3px -0.0163143666411811 0.0382085143584103 + 133 8 Cd 4py -0.0022727403734559 0.0060827008214983 + 134 8 Cd 4pz -0.0008788993871164 -0.0053488415595713 + 135 8 Cd 4px -0.0015831935805347 -0.0048519872535976 + 136 8 Cd 4d-2 -0.0026223490195027 0.0852953887416774 + 137 8 Cd 4d-1 -0.0192579547162616 -0.0152000434520056 + 138 8 Cd 4d0 -0.0531872841264927 0.0075178936985481 + 139 8 Cd 4d+1 0.0217383510578821 -0.0109087794502037 + 140 8 Cd 4d+2 -0.0232826965947413 -0.0090820668076519 + 141 8 Cd 5d-2 0.0012360338534449 0.0153278865496604 + 142 8 Cd 5d-1 -0.0090964958560957 -0.0038179734015642 + 143 8 Cd 5d0 -0.0125521313380580 -0.0154034355976402 + 144 8 Cd 5d+1 0.0047869655335649 0.0072928028391345 + 145 8 Cd 5d+2 -0.0034187217425585 0.0006753722063273 + 146 8 Cd 5f-3 0.0001095010358740 0.0006521793143134 + 147 8 Cd 5f-2 -0.0013019237444383 -0.0034298020578873 + 148 8 Cd 5f-1 -0.0002634278108700 -0.0009392463012945 + 149 8 Cd 5f0 -0.0004496011998457 -0.0014654447575035 + 150 8 Cd 5f+1 -0.0007539870467797 0.0021148496817116 + 151 8 Cd 5f+2 -0.0015902440790682 0.0025298175394401 + 152 8 Cd 5f+3 -0.0037504041735512 0.0013373887795783 + + 153 9 Cd 2s -0.0182664076486311 -0.1522179247612310 + 154 9 Cd 3s 0.0024333022031130 0.0072255526909438 + 155 9 Cd 3py 0.0105038782704986 0.0543126240606430 + 156 9 Cd 3pz -0.0000366681054366 -0.0240621226612026 + 157 9 Cd 3px 0.0305510973384609 0.0353317679557363 + 158 9 Cd 4py -0.0029689634876831 -0.0032241992969272 + 159 9 Cd 4pz 0.0005695519527239 0.0024256790657427 + 160 9 Cd 4px -0.0052894768745461 -0.0109211406303563 + 161 9 Cd 4d-2 0.0114935147957634 -0.0362102017587666 + 162 9 Cd 4d-1 -0.0114258804870044 -0.0078222996050295 + 163 9 Cd 4d0 -0.0003854324263982 0.0112580257537750 + 164 9 Cd 4d+1 -0.0141888029996521 0.0229655134682945 + 165 9 Cd 4d+2 -0.0113655306959524 -0.0541497426752440 + 166 9 Cd 5d-2 0.0060722796617204 -0.0082532798967321 + 167 9 Cd 5d-1 -0.0000351662827262 -0.0022026949842762 + 168 9 Cd 5d0 -0.0024937704342850 -0.0037503430963539 + 169 9 Cd 5d+1 -0.0055668454671736 0.0026614254238170 + 170 9 Cd 5d+2 0.0046403558661924 -0.0040014117231128 + 171 9 Cd 5f-3 -0.0002745070277959 -0.0004814740889755 + 172 9 Cd 5f-2 -0.0016157932187172 0.0009383833647040 + 173 9 Cd 5f-1 -0.0003139323557350 0.0002854748710753 + 174 9 Cd 5f0 -0.0004588260428678 -0.0013152089086064 + 175 9 Cd 5f+1 0.0018705975534072 0.0021966962848613 + 176 9 Cd 5f+2 0.0008349484677093 0.0041251959682589 + 177 9 Cd 5f+3 -0.0009871643376371 -0.0014492902078127 + + 178 10 Se 2s -0.0182414974781715 0.0203444755441008 + 179 10 Se 3s 0.0015314660376556 -0.0037766825873982 + 180 10 Se 3py -0.0186564392397061 -0.2672266078196943 + 181 10 Se 3pz -0.0276691443786632 0.1986758813168782 + 182 10 Se 3px 0.1001269064255409 0.2202319458168724 + 183 10 Se 4py 0.0029860558057620 0.0079253210520315 + 184 10 Se 4pz -0.0013698084575683 -0.0098742061619012 + 185 10 Se 4px -0.0058224678830161 -0.0108124079666908 + 186 10 Se 4d-2 -0.0003243785513394 -0.0094545674032165 + 187 10 Se 4d-1 -0.0019975666623426 0.0094279100361916 + 188 10 Se 4d0 0.0010292159009732 -0.0093692949453029 + 189 10 Se 4d+1 -0.0021779032731158 0.0020016266364758 + 190 10 Se 4d+2 0.0053010753550933 0.0154598551577102 + + 191 11 Se 2s -0.0034637725348994 -0.0106828282442412 + 192 11 Se 3s 0.0002088082483828 0.0012498184933640 + 193 11 Se 3py -0.1015251511370508 -0.0606869586836838 + 194 11 Se 3pz -0.0795297639745618 -0.0885903755153359 + 195 11 Se 3px 0.0358914748528641 -0.0768405751795306 + 196 11 Se 4py 0.0022992816807013 0.0047343047694693 + 197 11 Se 4pz 0.0015580148450304 0.0058069911023101 + 198 11 Se 4px -0.0024093162453536 0.0033804364114320 + 199 11 Se 4d-2 0.0014733644059718 -0.0035621853731348 + 200 11 Se 4d-1 0.0018977744772057 -0.0001669070482744 + 201 11 Se 4d0 0.0050443854535443 0.0060443256951924 + 202 11 Se 4d+1 0.0005720270322026 0.0041120329157714 + 203 11 Se 4d+2 0.0032877509377541 0.0012666099228113 + + 204 12 Cd 2s 0.0139062487287248 -0.0050683720629226 + 205 12 Cd 3s 0.0015972272740684 -0.0019789771255082 + 206 12 Cd 3py -0.0116680081960316 0.0015527600504518 + 207 12 Cd 3pz -0.0025573995501622 0.0227711394017149 + 208 12 Cd 3px 0.0328077808711787 0.0033851233083298 + 209 12 Cd 4py 0.0049233972809498 0.0003638300158571 + 210 12 Cd 4pz -0.0016163546431459 -0.0049380985218909 + 211 12 Cd 4px 0.0012224173754851 -0.0034476232029235 + 212 12 Cd 4d-2 -0.0414060618106340 0.0022212300737794 + 213 12 Cd 4d-1 -0.0120217323869132 0.0292058608008880 + 214 12 Cd 4d0 -0.0033950170819291 0.0114724413368182 + 215 12 Cd 4d+1 -0.0399593785822682 -0.0102678899198180 + 216 12 Cd 4d+2 0.0127825001386507 0.0052238379453258 + 217 12 Cd 5d-2 -0.0065339200357865 0.0010452487967216 + 218 12 Cd 5d-1 -0.0046303920520674 0.0059222776723203 + 219 12 Cd 5d0 -0.0026151456490792 -0.0034400894342861 + 220 12 Cd 5d+1 -0.0172844191499702 -0.0038808287390068 + 221 12 Cd 5d+2 0.0005171095754680 0.0015324335456578 + 222 12 Cd 5f-3 -0.0019882122846833 0.0006371635766204 + 223 12 Cd 5f-2 -0.0012498494902603 -0.0003568070887978 + 224 12 Cd 5f-1 -0.0021089464359566 -0.0024021768952322 + 225 12 Cd 5f0 0.0008196234609661 -0.0005181155305486 + 226 12 Cd 5f+1 0.0007196107666185 0.0018791419867885 + 227 12 Cd 5f+2 -0.0006281733880202 0.0014004299329715 + 228 12 Cd 5f+3 0.0004095916192342 0.0006427711543457 + + 229 13 Cd 2s 0.0167300923973263 0.0180594044891077 + 230 13 Cd 3s -0.0007134783487682 0.0025106237628769 + 231 13 Cd 3py 0.0019195066055926 -0.0188325595576623 + 232 13 Cd 3pz -0.0432439623854850 0.0038986445744366 + 233 13 Cd 3px 0.0013768044331871 0.0310084670424021 + 234 13 Cd 4py 0.0000538712428500 0.0027880137519665 + 235 13 Cd 4pz 0.0049932456186751 0.0013385936364315 + 236 13 Cd 4px 0.0027065235748505 -0.0037518742336914 + 237 13 Cd 4d-2 -0.0109352211698761 0.0443253829515194 + 238 13 Cd 4d-1 0.0025474821608336 0.0170876114376780 + 239 13 Cd 4d0 0.0025641432676563 0.0151612496602415 + 240 13 Cd 4d+1 -0.0216146968475995 0.0214937804168805 + 241 13 Cd 4d+2 0.0139890284384988 0.0144417195687830 + 242 13 Cd 5d-2 -0.0026063009029643 -0.0004052837375436 + 243 13 Cd 5d-1 -0.0018961061767815 0.0013254577544149 + 244 13 Cd 5d0 -0.0052111289231601 -0.0004398993740174 + 245 13 Cd 5d+1 0.0041220670405401 0.0005660638390966 + 246 13 Cd 5d+2 0.0035434719723325 -0.0021509512875975 + 247 13 Cd 5f-3 -0.0009285063186426 0.0008171150144678 + 248 13 Cd 5f-2 -0.0013091233665965 -0.0001498076227957 + 249 13 Cd 5f-1 0.0017041858934966 -0.0010543090470788 + 250 13 Cd 5f0 -0.0003391068139074 0.0005176459247324 + 251 13 Cd 5f+1 -0.0016451072327292 -0.0001730659974729 + 252 13 Cd 5f+2 -0.0012812935510040 -0.0000232954000954 + 253 13 Cd 5f+3 0.0004390622922356 0.0013696791705573 + + 254 14 Cd 2s -0.0503226691835564 0.0399682773861272 + 255 14 Cd 3s 0.0020596371769034 -0.0109718241300738 + 256 14 Cd 3py -0.0226607853593651 0.0412917502264647 + 257 14 Cd 3pz 0.0342944691940245 -0.0762148037108903 + 258 14 Cd 3px -0.0408058286476742 -0.0006259233790188 + 259 14 Cd 4py 0.0039004275511501 -0.0003099706142751 + 260 14 Cd 4pz -0.0049953210015724 0.0093198540425669 + 261 14 Cd 4px -0.0008176535231855 0.0013451930741884 + 262 14 Cd 4d-2 0.0156925554303646 -0.0097029354120637 + 263 14 Cd 4d-1 -0.0049431652148196 0.0017318627758782 + 264 14 Cd 4d0 -0.0464117173576961 0.0180155629877373 + 265 14 Cd 4d+1 0.0014592745864177 0.0077564763537414 + 266 14 Cd 4d+2 0.0034447302816095 -0.0004923860312569 + 267 14 Cd 5d-2 0.0045715947137263 -0.0025518286830659 + 268 14 Cd 5d-1 -0.0033431363228571 0.0058795887217301 + 269 14 Cd 5d0 -0.0092512003126906 -0.0044028604821176 + 270 14 Cd 5d+1 0.0019633476908861 -0.0030479059798055 + 271 14 Cd 5d+2 0.0068260509480348 0.0072442921790108 + 272 14 Cd 5f-3 -0.0009511188299575 -0.0018497599637410 + 273 14 Cd 5f-2 -0.0006876780626526 0.0003130436126406 + 274 14 Cd 5f-1 0.0025234737541066 -0.0039153379308759 + 275 14 Cd 5f0 -0.0004773488650545 0.0028277534510131 + 276 14 Cd 5f+1 0.0001225164180180 0.0014329396899412 + 277 14 Cd 5f+2 -0.0010470282812295 0.0004890595512528 + 278 14 Cd 5f+3 0.0007668930618865 -0.0005792879935022 + + 279 15 Se 2s -0.0042876764016793 0.0373184380653638 + 280 15 Se 3s -0.0001437123538803 -0.0029033425720541 + 281 15 Se 3py 0.0367073096230716 -0.0826985081521033 + 282 15 Se 3pz 0.1364714061802261 -0.2335958175373313 + 283 15 Se 3px 0.1308301935315396 -0.0157786496194202 + 284 15 Se 4py -0.0017391364208052 0.0071671800739036 + 285 15 Se 4pz -0.0057956948452426 0.0104318075527798 + 286 15 Se 4px -0.0040464615851152 -0.0004412863463584 + 287 15 Se 4d-2 -0.0044380812628478 -0.0012902101526908 + 288 15 Se 4d-1 -0.0034048217337039 0.0018683087251832 + 289 15 Se 4d0 0.0010767290642229 -0.0086968435717289 + 290 15 Se 4d+1 0.0070201702125021 -0.0056045065016304 + 291 15 Se 4d+2 0.0003857552981829 -0.0042996571932613 + + 292 16 Se 2s -0.0307470075762042 0.0168196498698136 + 293 16 Se 3s 0.0030412503813964 -0.0018256983391722 + 294 16 Se 3py -0.1550560964988443 0.0035597640108569 + 295 16 Se 3pz -0.0615243672552135 -0.0487868941829718 + 296 16 Se 3px -0.0854080987360948 0.0120516839641298 + 297 16 Se 4py 0.0069531640683893 -0.0010546352804901 + 298 16 Se 4pz 0.0048809301118264 0.0003503136909390 + 299 16 Se 4px 0.0029455414221311 -0.0002982475582676 + 300 16 Se 4d-2 0.0074902250222589 -0.0020205134019979 + 301 16 Se 4d-1 -0.0034976566534005 -0.0004428117456686 + 302 16 Se 4d0 -0.0050919213648389 -0.0018748814288311 + 303 16 Se 4d+1 0.0020581882229532 0.0016895493888102 + 304 16 Se 4d+2 0.0000354829356637 0.0011397831388543 + + 305 17 Cd 2s -0.1184151039337286 -0.0006577112193307 + 306 17 Cd 3s 0.0081051914126025 -0.0028562783670813 + 307 17 Cd 3py -0.0046150587833790 -0.0140970510389003 + 308 17 Cd 3pz 0.0258211378088097 0.0182695272655435 + 309 17 Cd 3px -0.0198359729927313 0.0156407728656227 + 310 17 Cd 4py 0.0061002254359723 -0.0009644582768823 + 311 17 Cd 4pz -0.0028929306843571 -0.0025893173861193 + 312 17 Cd 4px 0.0063601727365565 -0.0024942647802773 + 313 17 Cd 4d-2 -0.0202590819594582 0.0033701440412266 + 314 17 Cd 4d-1 -0.0023597106669493 0.0182841863828065 + 315 17 Cd 4d0 0.0359710246508009 0.0148315608516009 + 316 17 Cd 4d+1 -0.0139536405783948 -0.0095067376564708 + 317 17 Cd 4d+2 -0.0026635303336209 -0.0288719535249179 + 318 17 Cd 5d-2 -0.0011326282289091 0.0004617461950049 + 319 17 Cd 5d-1 0.0004540596749102 -0.0009298052599253 + 320 17 Cd 5d0 0.0000672297486899 0.0018678122890212 + 321 17 Cd 5d+1 -0.0024267161380229 -0.0008716901279850 + 322 17 Cd 5d+2 0.0011860912528389 -0.0061475966418451 + 323 17 Cd 5f-3 0.0035884713765324 -0.0008166303483752 + 324 17 Cd 5f-2 -0.0024405765990675 0.0013396372074016 + 325 17 Cd 5f-1 0.0000305302486319 -0.0003284162494546 + 326 17 Cd 5f0 0.0024654912159857 0.0010672288441000 + 327 17 Cd 5f+1 -0.0011682329508306 0.0006591844222477 + 328 17 Cd 5f+2 0.0000475748731078 -0.0012322394807071 + 329 17 Cd 5f+3 -0.0002320866879712 -0.0001508103297317 + + 330 18 Cd 2s -0.0734719713187960 -0.0479279697173095 + 331 18 Cd 3s -0.0008384251147902 0.0009313188308885 + 332 18 Cd 3py 0.0236584572601627 0.0077535410983564 + 333 18 Cd 3pz -0.0088223882062382 -0.0242523848541245 + 334 18 Cd 3px -0.0005315849997748 0.0286173811014108 + 335 18 Cd 4py -0.0030037714006095 -0.0033254081605386 + 336 18 Cd 4pz 0.0020424071000314 0.0026268614320187 + 337 18 Cd 4px 0.0014067589087818 0.0003340623518076 + 338 18 Cd 4d-2 -0.0052845521920348 0.0102706272047086 + 339 18 Cd 4d-1 0.0149414303064796 0.0046859587598408 + 340 18 Cd 4d0 -0.0246090026566975 -0.0085106376474794 + 341 18 Cd 4d+1 0.0025634578318544 0.0099043204608188 + 342 18 Cd 4d+2 -0.0076161325891726 -0.0038783084198986 + 343 18 Cd 5d-2 -0.0000551845701387 0.0041683940195012 + 344 18 Cd 5d-1 0.0043827042321994 -0.0036676985256271 + 345 18 Cd 5d0 -0.0054647738593693 0.0032842996498563 + 346 18 Cd 5d+1 0.0002394805723435 0.0031406889769369 + 347 18 Cd 5d+2 0.0013100353238590 0.0000719049575804 + 348 18 Cd 5f-3 0.0017362374572165 -0.0006032670537886 + 349 18 Cd 5f-2 -0.0004109901758981 0.0012077615080436 + 350 18 Cd 5f-1 -0.0009237175263483 -0.0015155799270097 + 351 18 Cd 5f0 -0.0007062985165103 0.0013712028104847 + 352 18 Cd 5f+1 0.0000060945923441 -0.0004099482420199 + 353 18 Cd 5f+2 -0.0005108325002921 0.0002413694203846 + 354 18 Cd 5f+3 0.0001591038663550 -0.0001845747830383 + + 355 19 Se 2s -0.0052689627938534 -0.0247922502436326 + 356 19 Se 3s 0.0006434768819681 0.0034135172992123 + 357 19 Se 3py -0.0287116709664599 0.0400320441940540 + 358 19 Se 3pz -0.0622343406498820 0.0375579124823735 + 359 19 Se 3px 0.0656604655444808 -0.1042568966506448 + 360 19 Se 4py 0.0000276978586888 0.0010646456361957 + 361 19 Se 4pz 0.0030107413672898 -0.0016621827443723 + 362 19 Se 4px -0.0021734569443666 0.0042600278533996 + 363 19 Se 4d-2 0.0036062552140745 -0.0020016732824186 + 364 19 Se 4d-1 -0.0050855139256295 -0.0004989198478230 + 365 19 Se 4d0 -0.0025245011366040 0.0023169767798228 + 366 19 Se 4d+1 0.0001292712577531 -0.0048430979622829 + 367 19 Se 4d+2 0.0016408235343494 -0.0015295185538160 + + 368 20 Se 2s -0.0351783836586882 -0.0125534912688439 + 369 20 Se 3s 0.0045324727322735 0.0021045735913204 + 370 20 Se 3py 0.1959026325919829 0.0627828854922564 + 371 20 Se 3pz 0.1748796970234363 0.1362369710119115 + 372 20 Se 3px -0.0439326680039109 -0.0346859727702042 + 373 20 Se 4py 0.0001378506953713 0.0030146900051808 + 374 20 Se 4pz -0.0052316368115057 0.0013707703130382 + 375 20 Se 4px -0.0004088269425479 0.0034089360737381 + 376 20 Se 4d-2 -0.0033496835374860 0.0004383239483693 + 377 20 Se 4d-1 0.0011616904641564 0.0051038768485501 + 378 20 Se 4d0 0.0015084684490793 -0.0036101523833865 + 379 20 Se 4d+1 -0.0047756693756050 -0.0037417861279557 + 380 20 Se 4d+2 0.0039803386916862 0.0016434655612515 + + 381 21 Se 2s -0.0474643947863788 -0.0019853553018382 + 382 21 Se 3s 0.0049980525219746 0.0001057274049946 + 383 21 Se 3py -0.2699137854845298 -0.1301098591443374 + 384 21 Se 3pz -0.2161273944637697 0.1546817964915493 + 385 21 Se 3px -0.2016073468891770 0.2355808502485189 + 386 21 Se 4py 0.0087065435232307 0.0071025600337123 + 387 21 Se 4pz 0.0096242763972424 -0.0069448735880350 + 388 21 Se 4px 0.0172624275971017 -0.0124426844150747 + 389 21 Se 4d-2 0.0032294522939355 -0.0091710831171364 + 390 21 Se 4d-1 0.0073102431697834 -0.0032823726604325 + 391 21 Se 4d0 -0.0046606663189881 -0.0081582569571422 + 392 21 Se 4d+1 -0.0018875023770364 -0.0010958660166625 + 393 21 Se 4d+2 -0.0025427960137896 -0.0030030480918859 + + 394 22 Cd 2s -0.0148274238922553 0.1270847755766687 + 395 22 Cd 3s -0.0006604371173211 -0.0000616199316039 + 396 22 Cd 3py 0.0479497285166789 -0.0284547274195461 + 397 22 Cd 3pz -0.0392266338421356 -0.0363266872521860 + 398 22 Cd 3px 0.0227039636721922 -0.0379957949568245 + 399 22 Cd 4py 0.0020871152840762 0.0016698684608896 + 400 22 Cd 4pz 0.0031622176593833 0.0067674555570398 + 401 22 Cd 4px -0.0027028791858504 0.0059485047844693 + 402 22 Cd 4d-2 0.0197714720416816 -0.0320124711103237 + 403 22 Cd 4d-1 0.0427136694789324 0.0442763039317958 + 404 22 Cd 4d0 -0.0251683429624653 0.0183946476975591 + 405 22 Cd 4d+1 0.0258347590458272 -0.0089582397700320 + 406 22 Cd 4d+2 -0.0381702221993803 0.0103616556034691 + 407 22 Cd 5d-2 0.0043919595356112 -0.0092707807655862 + 408 22 Cd 5d-1 0.0138285059683801 0.0077001784546137 + 409 22 Cd 5d0 -0.0055189897516097 -0.0011905925699388 + 410 22 Cd 5d+1 0.0027361517793849 -0.0060310320739075 + 411 22 Cd 5d+2 -0.0017496472195970 0.0003769462466955 + 412 22 Cd 5f-3 0.0002322540855291 -0.0011206981285946 + 413 22 Cd 5f-2 0.0007187517654923 0.0017482363334502 + 414 22 Cd 5f-1 0.0012406871722585 -0.0001453574855704 + 415 22 Cd 5f0 -0.0013005556185618 0.0044882615631954 + 416 22 Cd 5f+1 -0.0005874361927582 0.0005004498739402 + 417 22 Cd 5f+2 0.0016808031026659 0.0006304282267850 + 418 22 Cd 5f+3 -0.0016392307184465 -0.0001314903264691 + + 419 23 Se 2s 0.0067928851182438 0.0397689531592017 + 420 23 Se 3s -0.0009148564382322 -0.0038626430966342 + 421 23 Se 3py 0.0108463471045726 -0.1116444979144867 + 422 23 Se 3pz -0.0661453343517870 -0.1832733560260163 + 423 23 Se 3px 0.0460265903952493 -0.0038664360909764 + 424 23 Se 4py 0.0005353720009926 0.0051558853816485 + 425 23 Se 4pz 0.0023945013106544 0.0050477145307285 + 426 23 Se 4px -0.0025113572224728 -0.0010979455360728 + 427 23 Se 4d-2 -0.0027362495789473 -0.0006177377159945 + 428 23 Se 4d-1 0.0028285799537500 -0.0048775399217542 + 429 23 Se 4d0 -0.0015520254857780 -0.0095974487576286 + 430 23 Se 4d+1 -0.0025039943881419 -0.0026628568097369 + 431 23 Se 4d+2 0.0059947940351065 -0.0006660222626629 + + 432 24 Se 2s 0.0499353454857780 -0.0578336335009404 + 433 24 Se 3s -0.0041348361487642 0.0064144530494489 + 434 24 Se 3py -0.3828937358523052 0.1601463282327873 + 435 24 Se 3pz -0.1952168233349299 0.0270527017234538 + 436 24 Se 3px 0.1758724450536590 0.0909224909506057 + 437 24 Se 4py 0.0116683336942430 -0.0043430366246931 + 438 24 Se 4pz 0.0073661111687792 -0.0010649309722094 + 439 24 Se 4px -0.0087772063873311 0.0008515852657756 + 440 24 Se 4d-2 0.0033929021086886 0.0029043547957861 + 441 24 Se 4d-1 -0.0095815710646999 0.0036648957675992 + 442 24 Se 4d0 0.0037995583445643 -0.0019877333667524 + 443 24 Se 4d+1 -0.0009699259067295 -0.0013171171785971 + 444 24 Se 4d+2 0.0145319549781972 -0.0015209999941173 + + 445 25 Cd 2s 0.0395829187189992 -0.0511676216595179 + 446 25 Cd 3s 0.0011538967819691 0.0039504653052600 + 447 25 Cd 3py 0.0246969877391563 0.0406413135766670 + 448 25 Cd 3pz -0.0229272190693592 0.0178700142929222 + 449 25 Cd 3px 0.0603541899068838 0.0240687309170827 + 450 25 Cd 4py 0.0005593067373085 -0.0011017713932556 + 451 25 Cd 4pz 0.0031973045641281 0.0021153293274695 + 452 25 Cd 4px 0.0005874071384666 0.0009597914239394 + 453 25 Cd 4d-2 -0.0371826870692576 0.0222745567449444 + 454 25 Cd 4d-1 0.0214798194291994 -0.0070517432935803 + 455 25 Cd 4d0 0.0016353277385798 -0.0400894046948804 + 456 25 Cd 4d+1 0.0289575064836914 0.0268174972397845 + 457 25 Cd 4d+2 0.0095123536724743 -0.0089340625070928 + 458 25 Cd 5d-2 -0.0090079632972202 0.0079481922711937 + 459 25 Cd 5d-1 0.0132111026727395 0.0010230739562991 + 460 25 Cd 5d0 -0.0020877239045879 -0.0106872119405185 + 461 25 Cd 5d+1 0.0047404128181038 0.0105172119712396 + 462 25 Cd 5d+2 0.0070850571385204 0.0011098617291424 + 463 25 Cd 5f-3 -0.0024548471350158 0.0019010400260565 + 464 25 Cd 5f-2 0.0016104996008145 -0.0002830682788478 + 465 25 Cd 5f-1 0.0002950017965699 0.0006201528426132 + 466 25 Cd 5f0 -0.0019590844487218 -0.0013768352678613 + 467 25 Cd 5f+1 0.0013918499048915 -0.0000869237961259 + 468 25 Cd 5f+2 -0.0030622140728444 0.0014145249275688 + 469 25 Cd 5f+3 0.0006340367140566 0.0001093474098040 + + 470 26 Cd 2s 0.0903067836196630 -0.0211656373449968 + 471 26 Cd 3s -0.0034641094269781 0.0042507320633230 + 472 26 Cd 3py -0.1121099033996442 0.0625346660386223 + 473 26 Cd 3pz -0.0115038054756168 -0.0095728880891315 + 474 26 Cd 3px -0.0703711415373394 -0.0146268726073045 + 475 26 Cd 4py 0.0252141017912586 -0.0063691919117772 + 476 26 Cd 4pz 0.0060611051103820 -0.0027975858840931 + 477 26 Cd 4px 0.0093770158940116 -0.0024455569004008 + 478 26 Cd 4d-2 -0.0487732726084079 0.0320543871820694 + 479 26 Cd 4d-1 0.0405868082361928 -0.0249951782515659 + 480 26 Cd 4d0 0.0070192329069301 -0.0006503870590178 + 481 26 Cd 4d+1 0.0026457541361820 -0.0080468611372594 + 482 26 Cd 4d+2 -0.0813730057568146 -0.0072106578407690 + 483 26 Cd 5d-2 -0.0044734576272151 0.0139350248619946 + 484 26 Cd 5d-1 0.0050534628793227 -0.0003442513896517 + 485 26 Cd 5d0 0.0014442069162109 -0.0005475706332584 + 486 26 Cd 5d+1 0.0005503393701472 -0.0052050181187290 + 487 26 Cd 5d+2 -0.0104342612374863 -0.0092376426237915 + 488 26 Cd 5f-3 -0.0043086217580531 0.0040601438890418 + 489 26 Cd 5f-2 0.0039785771481519 -0.0001201804487659 + 490 26 Cd 5f-1 -0.0022561030034473 0.0005287027177151 + 491 26 Cd 5f0 -0.0016412117478653 0.0024978220123714 + 492 26 Cd 5f+1 -0.0001974869157402 0.0003288390664623 + 493 26 Cd 5f+2 -0.0021796515935156 0.0001534103443194 + 494 26 Cd 5f+3 -0.0087252303611063 0.0014202930941241 + + 95 96 + -0.2416778506963234 -0.2397287561768330 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.1183576182998333 0.0214705669971312 + 2 1 Cd 3s -0.0037443095378477 -0.0017109302709257 + 3 1 Cd 3py 0.0149820707461721 -0.0238023661936984 + 4 1 Cd 3pz -0.0194976395830366 0.0012783788130252 + 5 1 Cd 3px 0.0110565318353330 0.0138714906790681 + 6 1 Cd 4py 0.0000508638520868 0.0032987512946618 + 7 1 Cd 4pz 0.0019035860450667 0.0010552276501352 + 8 1 Cd 4px -0.0016325114586685 -0.0010580390242167 + 9 1 Cd 4d-2 0.0116953264386569 0.0042233376086211 + 10 1 Cd 4d-1 0.0120954671233023 0.0046769903793554 + 11 1 Cd 4d0 -0.0052234160598592 -0.0145539537713300 + 12 1 Cd 4d+1 0.0208536042961543 0.0015516950135169 + 13 1 Cd 4d+2 -0.0249183980447482 -0.0173427868002081 + 14 1 Cd 5d-2 0.0027014874079939 0.0031329920420164 + 15 1 Cd 5d-1 0.0031781390360811 -0.0002995103926910 + 16 1 Cd 5d0 -0.0031200334279059 0.0026013304798569 + 17 1 Cd 5d+1 0.0016651258106540 0.0001231192323392 + 18 1 Cd 5d+2 -0.0025046656147438 0.0038505103199941 + 19 1 Cd 5f-3 -0.0005708310629700 -0.0007830057693500 + 20 1 Cd 5f-2 -0.0011869497958637 0.0004877841176560 + 21 1 Cd 5f-1 -0.0025431303326398 -0.0002180552654789 + 22 1 Cd 5f0 0.0005863046536424 -0.0008387338953686 + 23 1 Cd 5f+1 0.0002536969060387 0.0000991045254901 + 24 1 Cd 5f+2 -0.0009237494088481 0.0002372314472392 + 25 1 Cd 5f+3 0.0013623163964978 0.0000146470252317 + + 26 2 Cd 2s 0.0088905998043027 -0.1131235334803473 + 27 2 Cd 3s -0.0015549967195368 -0.0027943750884724 + 28 2 Cd 3py 0.0181216779927115 0.0345882713469955 + 29 2 Cd 3pz 0.0386606014987645 -0.0254257219248621 + 30 2 Cd 3px -0.0242671328679178 -0.0253743612393359 + 31 2 Cd 4py -0.0032071462342980 -0.0006025628476839 + 32 2 Cd 4pz -0.0040981085925120 -0.0019901284469423 + 33 2 Cd 4px 0.0010110144566074 0.0124100152178973 + 34 2 Cd 4d-2 -0.0194079963696807 0.0004262100130138 + 35 2 Cd 4d-1 0.0242847420926356 0.0275393902271525 + 36 2 Cd 4d0 -0.0293512154211425 -0.0277900711731096 + 37 2 Cd 4d+1 -0.0003894774008196 -0.0072689191584411 + 38 2 Cd 4d+2 -0.0092623996831978 0.0473207977297051 + 39 2 Cd 5d-2 -0.0071488240450024 -0.0077176056772642 + 40 2 Cd 5d-1 0.0039509225695169 0.0004742857322460 + 41 2 Cd 5d0 -0.0140032671540711 -0.0038958330201008 + 42 2 Cd 5d+1 0.0029101040784626 -0.0043985096799024 + 43 2 Cd 5d+2 -0.0003017721121408 0.0108165067359533 + 44 2 Cd 5f-3 0.0013763369656603 0.0022111822679483 + 45 2 Cd 5f-2 0.0016322982944559 -0.0029285837354071 + 46 2 Cd 5f-1 0.0016494691325834 0.0003382641513865 + 47 2 Cd 5f0 0.0019374601511494 0.0012421767406564 + 48 2 Cd 5f+1 -0.0009647579587055 0.0011119782347796 + 49 2 Cd 5f+2 0.0020066269898431 -0.0012999531369763 + 50 2 Cd 5f+3 -0.0007181388053789 -0.0010228224073126 + + 51 3 Cd 2s -0.0211451412439641 -0.1063550089089021 + 52 3 Cd 3s -0.0015947769377509 0.0029963797817035 + 53 3 Cd 3py -0.0232092085344390 0.0526044988912320 + 54 3 Cd 3pz -0.0104936332469384 -0.0030690695831386 + 55 3 Cd 3px -0.0365890692473377 0.0054218002367652 + 56 3 Cd 4py 0.0008658393497648 -0.0009319719963301 + 57 3 Cd 4pz -0.0033425659911774 0.0040560769533562 + 58 3 Cd 4px 0.0026066113255122 0.0037080989975870 + 59 3 Cd 4d-2 -0.0000156327910230 -0.0476997475154257 + 60 3 Cd 4d-1 -0.0106872957548474 -0.0213171814094461 + 61 3 Cd 4d0 0.0079442288409614 -0.0293789136486523 + 62 3 Cd 4d+1 -0.0019724769235371 0.0296561542457858 + 63 3 Cd 4d+2 -0.0220261235704237 0.0337300498934944 + 64 3 Cd 5d-2 -0.0042280468261779 -0.0104070054944355 + 65 3 Cd 5d-1 -0.0078392049819850 -0.0021584105575074 + 66 3 Cd 5d0 -0.0008817413959968 -0.0048805344816716 + 67 3 Cd 5d+1 0.0001952537719060 0.0019848714036496 + 68 3 Cd 5d+2 0.0017114749462289 0.0037396728816768 + 69 3 Cd 5f-3 -0.0004776462650918 0.0000194590246740 + 70 3 Cd 5f-2 0.0021646160495867 0.0037554136567838 + 71 3 Cd 5f-1 -0.0017107541238555 0.0001528309847370 + 72 3 Cd 5f0 -0.0007694148046367 0.0005628460597542 + 73 3 Cd 5f+1 -0.0000055666097070 0.0009752531960978 + 74 3 Cd 5f+2 0.0007909667035987 -0.0033061133039112 + 75 3 Cd 5f+3 0.0008047312823964 0.0019427099826417 + + 76 4 Se 2s -0.0255353570263684 -0.0295629179420140 + 77 4 Se 3s 0.0031315725597230 0.0024102801718822 + 78 4 Se 3py 0.0469718281411066 -0.0702813636587349 + 79 4 Se 3pz 0.0332024192183985 0.0490949977226400 + 80 4 Se 3px -0.1459111304246997 -0.0358345989073619 + 81 4 Se 4py -0.0007512067964557 0.0050211497080461 + 82 4 Se 4pz 0.0049964793785409 -0.0074423487398653 + 83 4 Se 4px 0.0047107910765242 -0.0004772382328164 + 84 4 Se 4d-2 0.0006716560636505 0.0045296882453235 + 85 4 Se 4d-1 -0.0057474725624299 -0.0027164487635401 + 86 4 Se 4d0 -0.0040414190319795 0.0039741712288016 + 87 4 Se 4d+1 0.0044876302783272 -0.0004539088862029 + 88 4 Se 4d+2 0.0065591897324344 -0.0017884436240165 + + 89 5 Se 2s 0.0121471923823236 -0.0096344373894698 + 90 5 Se 3s -0.0010865253336386 0.0009636475118540 + 91 5 Se 3py -0.0449481023356783 -0.0697263957157142 + 92 5 Se 3pz 0.0565694653349258 0.0481103026863914 + 93 5 Se 3px -0.0122112513548937 -0.0647512447274117 + 94 5 Se 4py 0.0007397907102583 0.0038098531245251 + 95 5 Se 4pz -0.0016905782572900 -0.0017419028471504 + 96 5 Se 4px 0.0010355036656458 0.0023509319818245 + 97 5 Se 4d-2 -0.0012553887377021 0.0003759024662328 + 98 5 Se 4d-1 0.0028258515772323 -0.0011274307229513 + 99 5 Se 4d0 0.0040502401899331 0.0024809361469872 + 100 5 Se 4d+1 -0.0011348654597526 -0.0040034322482608 + 101 5 Se 4d+2 0.0029009838813450 0.0039831003738953 + + 102 6 Se 2s 0.0235822747884619 -0.1105947677227531 + 103 6 Se 3s -0.0038062871126216 0.0126781835007908 + 104 6 Se 3py 0.0346326745716500 0.1031392924660461 + 105 6 Se 3pz -0.2198459859720805 0.0866774444394015 + 106 6 Se 3px 0.0863736090565481 -0.2732039147382365 + 107 6 Se 4py -0.0040697849386562 -0.0015986371195322 + 108 6 Se 4pz 0.0091006535899069 -0.0021690271405301 + 109 6 Se 4px -0.0019405389280604 0.0068441960031626 + 110 6 Se 4d-2 -0.0020236628277562 -0.0031743253698696 + 111 6 Se 4d-1 -0.0015669470618100 0.0009581652982782 + 112 6 Se 4d0 0.0004457113448223 -0.0041517429827832 + 113 6 Se 4d+1 0.0116381599502073 -0.0046638707720249 + 114 6 Se 4d+2 -0.0044314480089689 0.0019860973200818 + + 115 7 Se 2s 0.0848918340577369 0.0698744771532293 + 116 7 Se 3s -0.0112260028261941 -0.0089825249765597 + 117 7 Se 3py -0.3159626868213349 0.0071023828612281 + 118 7 Se 3pz 0.3641749975496444 0.2706096256064557 + 119 7 Se 3px -0.0451082792572051 0.2273577869842209 + 120 7 Se 4py 0.0127377979519517 0.0053757677775600 + 121 7 Se 4pz -0.0132099033725044 -0.0116218894908598 + 122 7 Se 4px 0.0009191440869015 -0.0094442110798230 + 123 7 Se 4d-2 0.0015948588188972 -0.0057761694923365 + 124 7 Se 4d-1 0.0113306865955075 0.0015050034944017 + 125 7 Se 4d0 -0.0110209533567007 -0.0088026069072214 + 126 7 Se 4d+1 0.0023269155837112 -0.0081844795115365 + 127 7 Se 4d+2 0.0021854869036688 0.0052127316007903 + + 128 8 Cd 2s 0.0233491197261289 0.0585369243677707 + 129 8 Cd 3s -0.0043985320045335 0.0041144689522314 + 130 8 Cd 3py -0.0139727617027059 -0.0130356527096691 + 131 8 Cd 3pz -0.0168008143457563 0.0714748265966202 + 132 8 Cd 3px -0.0182269416209379 0.1083007405388942 + 133 8 Cd 4py -0.0012645720484929 -0.0014278449933284 + 134 8 Cd 4pz -0.0016445802310333 -0.0058880856738105 + 135 8 Cd 4px -0.0030473960646936 -0.0011451264293025 + 136 8 Cd 4d-2 0.0264870857846533 0.0541949514903755 + 137 8 Cd 4d-1 0.0175029361070101 0.0449893247586205 + 138 8 Cd 4d0 -0.0412325876932178 0.0168165223433850 + 139 8 Cd 4d+1 -0.0179294214569396 -0.0161287228783727 + 140 8 Cd 4d+2 0.0002491974026014 -0.0267942933310023 + 141 8 Cd 5d-2 0.0058730762103143 -0.0048808134907127 + 142 8 Cd 5d-1 0.0050877022135244 0.0098177482213671 + 143 8 Cd 5d0 -0.0114568991185308 -0.0122261358432308 + 144 8 Cd 5d+1 -0.0046984155380181 0.0016058148756706 + 145 8 Cd 5d+2 -0.0018626501744352 0.0027512441063813 + 146 8 Cd 5f-3 -0.0010478673567313 0.0009484733915575 + 147 8 Cd 5f-2 -0.0010259325959112 0.0015504632379254 + 148 8 Cd 5f-1 0.0021651403595062 0.0000269210884011 + 149 8 Cd 5f0 0.0025005398348203 -0.0006353184222937 + 150 8 Cd 5f+1 0.0009594363797123 -0.0001331092987872 + 151 8 Cd 5f+2 0.0009310105309547 0.0034555307396948 + 152 8 Cd 5f+3 -0.0012133092950903 0.0019147303258427 + + 153 9 Cd 2s 0.0603045741498050 -0.0581906738146267 + 154 9 Cd 3s 0.0023396602665881 -0.0011026996047955 + 155 9 Cd 3py -0.0256817541863953 0.0072522868342779 + 156 9 Cd 3pz -0.0441469387844981 0.0289392532853494 + 157 9 Cd 3px 0.0600379186588266 -0.0808065877011402 + 158 9 Cd 4py -0.0007740496580746 -0.0006102020319542 + 159 9 Cd 4pz -0.0001858221269895 -0.0038540568356867 + 160 9 Cd 4px -0.0083801483381093 0.0093584397684952 + 161 9 Cd 4d-2 0.0115674907405351 -0.0399575011407582 + 162 9 Cd 4d-1 -0.0062670503891872 0.0011362395085889 + 163 9 Cd 4d0 0.0134899073145658 -0.0341264681701988 + 164 9 Cd 4d+1 -0.0209643402412751 0.0401172848178332 + 165 9 Cd 4d+2 0.0151534230233271 0.0282022804160350 + 166 9 Cd 5d-2 0.0072464978575232 -0.0123199394396860 + 167 9 Cd 5d-1 -0.0041187308322163 -0.0009800235935517 + 168 9 Cd 5d0 0.0056156841399098 -0.0063648913343811 + 169 9 Cd 5d+1 -0.0040620991933760 0.0107768275891649 + 170 9 Cd 5d+2 0.0087261192945692 0.0071133772835781 + 171 9 Cd 5f-3 0.0006360902153115 0.0005827356955679 + 172 9 Cd 5f-2 -0.0012621515166364 0.0019028407285008 + 173 9 Cd 5f-1 -0.0002059007785382 -0.0020798637498884 + 174 9 Cd 5f0 -0.0036564880070119 0.0030863372363597 + 175 9 Cd 5f+1 0.0020969263253536 -0.0028270896555386 + 176 9 Cd 5f+2 0.0007754175365137 -0.0031625028354770 + 177 9 Cd 5f+3 -0.0041420470580860 0.0020975400611819 + + 178 10 Se 2s -0.0183234680789152 0.0259260934132144 + 179 10 Se 3s 0.0016999371560502 -0.0027470990840567 + 180 10 Se 3py 0.0273094339513336 -0.1520636930830227 + 181 10 Se 3pz 0.0796138501636743 -0.0365660433470863 + 182 10 Se 3px 0.1119017317863980 -0.2264995627978586 + 183 10 Se 4py 0.0013431239999691 0.0045190464456637 + 184 10 Se 4pz -0.0070598567211921 0.0034677681165032 + 185 10 Se 4px -0.0042427271591966 0.0090601530250040 + 186 10 Se 4d-2 0.0028859266576622 -0.0060610055241685 + 187 10 Se 4d-1 0.0032260347504279 0.0061290493468945 + 188 10 Se 4d0 -0.0043454988760175 0.0053793218710371 + 189 10 Se 4d+1 0.0022514424650230 0.0062129867213308 + 190 10 Se 4d+2 0.0018478631936944 -0.0003954078290211 + + 191 11 Se 2s 0.0027699328754238 -0.0066586263522800 + 192 11 Se 3s 0.0001270263825373 0.0012460588597969 + 193 11 Se 3py 0.0300025437389688 0.0193232709048400 + 194 11 Se 3pz 0.0815735115300995 0.0664058477612921 + 195 11 Se 3px -0.1377293194363062 0.2193283315665715 + 196 11 Se 4py -0.0005668252164650 -0.0044131765981141 + 197 11 Se 4pz -0.0015782065607862 -0.0072740749107375 + 198 11 Se 4px 0.0070744585933722 -0.0087389280038124 + 199 11 Se 4d-2 -0.0068302790260559 0.0102481168469596 + 200 11 Se 4d-1 0.0008666832163116 0.0012500425101288 + 201 11 Se 4d0 -0.0042692573518936 -0.0028010534945704 + 202 11 Se 4d+1 0.0038785002672145 -0.0054133660952295 + 203 11 Se 4d+2 0.0010815258656521 0.0011645784503569 + + 204 12 Cd 2s -0.0680512546218238 -0.0135428321555052 + 205 12 Cd 3s 0.0002612030598040 -0.0039643837414882 + 206 12 Cd 3py 0.0231282352743224 -0.0325031074033452 + 207 12 Cd 3pz 0.0132145570185901 -0.0593283608827221 + 208 12 Cd 3px 0.0043542097540962 0.0422842781772473 + 209 12 Cd 4py -0.0045389142922161 0.0016908486150207 + 210 12 Cd 4pz -0.0037250969030026 -0.0015042861690470 + 211 12 Cd 4px -0.0014822328437863 -0.0001062311068496 + 212 12 Cd 4d-2 0.0357420728632409 0.0074630339929474 + 213 12 Cd 4d-1 0.0088689765614271 0.0044301481498982 + 214 12 Cd 4d0 0.0194077314558795 -0.0190537884391162 + 215 12 Cd 4d+1 -0.0092450343283835 -0.0098100384579310 + 216 12 Cd 4d+2 0.0062038749936967 -0.0144496686596137 + 217 12 Cd 5d-2 0.0093825462495714 -0.0019385360392606 + 218 12 Cd 5d-1 -0.0009475180783253 -0.0026914204232727 + 219 12 Cd 5d0 0.0072826508345667 -0.0048886128013364 + 220 12 Cd 5d+1 -0.0015703165447899 -0.0080360729551746 + 221 12 Cd 5d+2 0.0023974572952200 -0.0016557863494121 + 222 12 Cd 5f-3 0.0019669127944988 -0.0015038214624831 + 223 12 Cd 5f-2 -0.0008690809028482 -0.0018995412034416 + 224 12 Cd 5f-1 0.0011433197602911 -0.0011204949137468 + 225 12 Cd 5f0 -0.0001410728887714 0.0008037063632863 + 226 12 Cd 5f+1 0.0006450841639022 0.0003928762044525 + 227 12 Cd 5f+2 0.0010836853458186 -0.0015728335723287 + 228 12 Cd 5f+3 -0.0019912437200805 0.0018797983649587 + + 229 13 Cd 2s -0.0798381935657839 0.0018211929284914 + 230 13 Cd 3s 0.0030574543822481 0.0004676801302187 + 231 13 Cd 3py 0.0093996098270656 0.0248439654516152 + 232 13 Cd 3pz -0.0342811071806155 0.0168565769656582 + 233 13 Cd 3px 0.0003241858611082 -0.0207229205193522 + 234 13 Cd 4py 0.0051385736968643 -0.0038657201828489 + 235 13 Cd 4pz 0.0087028127347367 -0.0014530519740291 + 236 13 Cd 4px 0.0005033471030106 0.0004609249192402 + 237 13 Cd 4d-2 -0.0240150992987041 -0.0226057157301566 + 238 13 Cd 4d-1 -0.0142743079275639 -0.0010700227593955 + 239 13 Cd 4d0 -0.0422278644136170 -0.0176324111688647 + 240 13 Cd 4d+1 -0.0064496075001898 0.0084210958145920 + 241 13 Cd 4d+2 0.0034258017574218 0.0164662435059150 + 242 13 Cd 5d-2 -0.0084479028572658 -0.0010763556082434 + 243 13 Cd 5d-1 -0.0052442191613750 -0.0026505516721790 + 244 13 Cd 5d0 -0.0127514670031296 -0.0023538800974682 + 245 13 Cd 5d+1 0.0038845370258654 -0.0026138234892667 + 246 13 Cd 5d+2 0.0033257742012736 0.0051760835725486 + 247 13 Cd 5f-3 0.0008030522975586 -0.0026141911281273 + 248 13 Cd 5f-2 -0.0024084124564260 -0.0000227690285593 + 249 13 Cd 5f-1 0.0015439265157091 0.0013696276224623 + 250 13 Cd 5f0 -0.0041675385706099 -0.0007783097205506 + 251 13 Cd 5f+1 0.0005842497649083 0.0006016930799964 + 252 13 Cd 5f+2 0.0002515281731903 -0.0020947017655201 + 253 13 Cd 5f+3 0.0011975187148808 -0.0013502805818294 + + 254 14 Cd 2s 0.0914320564206612 0.0495700896845465 + 255 14 Cd 3s 0.0036838747461259 0.0008592054611052 + 256 14 Cd 3py -0.0330955419327369 -0.0536390601138997 + 257 14 Cd 3pz 0.1438651858331687 0.0463079577704081 + 258 14 Cd 3px 0.0334520573600813 -0.0023440691787878 + 259 14 Cd 4py 0.0050187142807314 0.0025925837972936 + 260 14 Cd 4pz -0.0145650600724826 -0.0103759739373084 + 261 14 Cd 4px -0.0013377153797554 -0.0010162175441478 + 262 14 Cd 4d-2 -0.0172600457090937 0.0029942773798626 + 263 14 Cd 4d-1 -0.0674547121724170 -0.0107504393869117 + 264 14 Cd 4d0 -0.0312647726168572 -0.0225969101321618 + 265 14 Cd 4d+1 0.0010709984653219 -0.0120679218477705 + 266 14 Cd 4d+2 -0.0265104263177553 -0.0198890483058716 + 267 14 Cd 5d-2 -0.0074446452068430 0.0002762833096991 + 268 14 Cd 5d-1 -0.0248177340921239 0.0028303901163295 + 269 14 Cd 5d0 0.0002569817424148 -0.0102769681401389 + 270 14 Cd 5d+1 0.0039597499003906 -0.0050134755253688 + 271 14 Cd 5d+2 -0.0082050515861831 -0.0036852641686039 + 272 14 Cd 5f-3 0.0029174884095764 0.0004709356253624 + 273 14 Cd 5f-2 0.0004684903736244 0.0010421455335402 + 274 14 Cd 5f-1 0.0059286547321070 0.0040454378313944 + 275 14 Cd 5f0 -0.0060170655650546 -0.0010555429499893 + 276 14 Cd 5f+1 -0.0004313314534745 -0.0002373789183934 + 277 14 Cd 5f+2 -0.0038400716190034 -0.0005663544568773 + 278 14 Cd 5f+3 -0.0010782925292559 -0.0000454546549062 + + 279 15 Se 2s -0.0702588568552634 0.0269989516244068 + 280 15 Se 3s 0.0060009410129101 -0.0026248435110758 + 281 15 Se 3py -0.1050268990516587 0.1795722909437877 + 282 15 Se 3pz 0.3050364123814323 0.1271028396134076 + 283 15 Se 3px 0.1363475388887653 0.0744643166112793 + 284 15 Se 4py -0.0001874842403059 -0.0092550862368796 + 285 15 Se 4pz -0.0114891630222811 -0.0042721423301770 + 286 15 Se 4px -0.0070514536073204 -0.0068381943523961 + 287 15 Se 4d-2 -0.0067103092528883 -0.0015888187032767 + 288 15 Se 4d-1 -0.0080842186735231 0.0002182431449780 + 289 15 Se 4d0 0.0016507386949496 0.0060347810367940 + 290 15 Se 4d+1 -0.0001657124385278 0.0021522481185027 + 291 15 Se 4d+2 -0.0007259869675692 0.0021400460785606 + + 292 16 Se 2s 0.0124921352549544 0.0044120008714328 + 293 16 Se 3s -0.0013422463406534 -0.0000397702248627 + 294 16 Se 3py -0.0006404726242196 0.0637435408919721 + 295 16 Se 3pz -0.0727694196308425 0.0705856023494546 + 296 16 Se 3px -0.1027615533927728 0.0392273384763477 + 297 16 Se 4py 0.0011518996881492 -0.0014566056631656 + 298 16 Se 4pz 0.0061034798295094 -0.0036129478433570 + 299 16 Se 4px 0.0087451395170455 -0.0021778561769589 + 300 16 Se 4d-2 0.0047374431924363 -0.0017126434431153 + 301 16 Se 4d-1 0.0031945686378167 0.0005602526655952 + 302 16 Se 4d0 -0.0034644503988736 0.0049532944581350 + 303 16 Se 4d+1 -0.0033611877328563 -0.0013120192884718 + 304 16 Se 4d+2 0.0025144635669894 -0.0000583585658896 + + 305 17 Cd 2s -0.0004572806434080 0.0629531611228520 + 306 17 Cd 3s 0.0030492227481470 0.0000484631358978 + 307 17 Cd 3py -0.0163172528964875 0.0073981718279998 + 308 17 Cd 3pz 0.0099098770167053 -0.0224341615772870 + 309 17 Cd 3px 0.0024565064548353 0.0054770987580601 + 310 17 Cd 4py 0.0108257845010865 -0.0005938026142900 + 311 17 Cd 4pz -0.0019416723014845 0.0029709891839694 + 312 17 Cd 4px 0.0044291899361924 -0.0020296893565077 + 313 17 Cd 4d-2 0.0048436389581153 0.0196466411466758 + 314 17 Cd 4d-1 0.0119162034231143 -0.0137962087513211 + 315 17 Cd 4d0 0.0039300133598103 -0.0187831173731562 + 316 17 Cd 4d+1 -0.0012676011575472 0.0115758050575336 + 317 17 Cd 4d+2 -0.0115345617617587 0.0088852562134776 + 318 17 Cd 5d-2 0.0047570189543679 0.0024654750861269 + 319 17 Cd 5d-1 0.0029008854133406 0.0007709457331276 + 320 17 Cd 5d0 -0.0046088640988369 -0.0014723361575143 + 321 17 Cd 5d+1 -0.0002737781004719 0.0040391328870948 + 322 17 Cd 5d+2 -0.0011360012969274 0.0043047219261872 + 323 17 Cd 5f-3 0.0018079626820755 -0.0007035361520358 + 324 17 Cd 5f-2 0.0007208822163872 0.0014209367392765 + 325 17 Cd 5f-1 -0.0019026625243864 0.0004741353448210 + 326 17 Cd 5f0 0.0004743539420300 -0.0011642434063693 + 327 17 Cd 5f+1 -0.0004769678636132 0.0009198820880976 + 328 17 Cd 5f+2 -0.0013315637558575 0.0009841290479111 + 329 17 Cd 5f+3 -0.0030023404154854 -0.0005999397040968 + + 330 18 Cd 2s 0.0061759064970555 -0.0051554644578465 + 331 18 Cd 3s -0.0000008652271069 0.0006831996723921 + 332 18 Cd 3py -0.0063769174769438 0.0000777958116578 + 333 18 Cd 3pz 0.0253938952828437 0.0224176851226827 + 334 18 Cd 3px 0.0260812690775778 -0.0268026245764066 + 335 18 Cd 4py 0.0008667417141733 0.0025431114980154 + 336 18 Cd 4pz -0.0059749841626782 -0.0031745043036339 + 337 18 Cd 4px -0.0014731615787219 0.0036217729913414 + 338 18 Cd 4d-2 0.0084404315735761 -0.0060900250777328 + 339 18 Cd 4d-1 0.0038457804359392 0.0053711976809241 + 340 18 Cd 4d0 0.0098953959185180 0.0043225550637780 + 341 18 Cd 4d+1 0.0033770565577879 -0.0340154573524510 + 342 18 Cd 4d+2 -0.0048705200900149 -0.0001520638496026 + 343 18 Cd 5d-2 0.0029086347893339 0.0021687593495731 + 344 18 Cd 5d-1 -0.0024053745424225 0.0037380042217680 + 345 18 Cd 5d0 0.0048961136021796 -0.0056578397892218 + 346 18 Cd 5d+1 0.0028047196842126 -0.0037460504067369 + 347 18 Cd 5d+2 -0.0016153300247878 0.0018655445412872 + 348 18 Cd 5f-3 -0.0008540201064615 0.0014669536361947 + 349 18 Cd 5f-2 0.0009559646613914 -0.0004864159447138 + 350 18 Cd 5f-1 0.0023178149700377 0.0006455459032940 + 351 18 Cd 5f0 -0.0008977330980931 -0.0015067504484650 + 352 18 Cd 5f+1 -0.0011967929629611 0.0011065291269096 + 353 18 Cd 5f+2 0.0000688254754728 0.0004422023537050 + 354 18 Cd 5f+3 -0.0007231347537676 -0.0001391957807513 + + 355 19 Se 2s -0.0062112514999512 0.0095163407431268 + 356 19 Se 3s 0.0010786357495263 -0.0010269894209911 + 357 19 Se 3py -0.1071089028479865 -0.0463797768457746 + 358 19 Se 3pz 0.0484425548520705 0.0169047782933790 + 359 19 Se 3px -0.0353093139801661 0.0546810822116279 + 360 19 Se 4py 0.0081567186920843 -0.0010545041598531 + 361 19 Se 4pz -0.0018243095087622 -0.0014833886246265 + 362 19 Se 4px 0.0007541007585294 -0.0029340399529872 + 363 19 Se 4d-2 -0.0030877602808476 -0.0019936787386091 + 364 19 Se 4d-1 -0.0046408802759904 0.0012408205559885 + 365 19 Se 4d0 0.0030386159815916 -0.0000202849360050 + 366 19 Se 4d+1 -0.0005696608301228 0.0044069083475870 + 367 19 Se 4d+2 0.0006794301594137 -0.0002459886316407 + + 368 20 Se 2s -0.0149578392683249 -0.0421460354021597 + 369 20 Se 3s 0.0009701297422871 0.0042142045838844 + 370 20 Se 3py 0.0407956402146514 0.1172017683762065 + 371 20 Se 3pz -0.0277608040877815 -0.1146304269013255 + 372 20 Se 3px 0.0241045637959441 -0.1005513457723088 + 373 20 Se 4py 0.0027354305926308 -0.0004270313174143 + 374 20 Se 4pz 0.0025626047001005 0.0059148136366680 + 375 20 Se 4px -0.0020479141393725 0.0053507807684478 + 376 20 Se 4d-2 0.0035834509252358 -0.0072250324366444 + 377 20 Se 4d-1 -0.0006650253710141 -0.0008617560416974 + 378 20 Se 4d0 -0.0043166520662498 -0.0025751534093441 + 379 20 Se 4d+1 0.0014155038557976 -0.0000893618526607 + 380 20 Se 4d+2 -0.0000966631509788 0.0038869746233085 + + 381 21 Se 2s 0.0251223920881949 0.0170633898062644 + 382 21 Se 3s -0.0025902916806055 -0.0010801269718714 + 383 21 Se 3py 0.1179811733187708 -0.1450662741389737 + 384 21 Se 3pz -0.0389909918019133 0.1867478707040534 + 385 21 Se 3px 0.1612533021327274 0.1947369988079483 + 386 21 Se 4py -0.0015722454939479 0.0068811194813147 + 387 21 Se 4pz 0.0027338129574327 -0.0122959136712355 + 388 21 Se 4px -0.0096021063598465 -0.0156357085518085 + 389 21 Se 4d-2 -0.0018354949073428 -0.0117285814552465 + 390 21 Se 4d-1 0.0017228836767097 -0.0040531925056624 + 391 21 Se 4d0 0.0001539308731509 -0.0043508275279368 + 392 21 Se 4d+1 -0.0033472175758614 -0.0027195658794055 + 393 21 Se 4d+2 0.0011475132149020 -0.0071186038123588 + + 394 22 Cd 2s 0.0724506690124047 -0.0142466374889291 + 395 22 Cd 3s -0.0007950185450718 -0.0007639465824423 + 396 22 Cd 3py 0.0044548300685804 0.0839045368620678 + 397 22 Cd 3pz -0.0468544362165288 0.0138340974065517 + 398 22 Cd 3px -0.0187632371648295 -0.0208566016300588 + 399 22 Cd 4py -0.0023173519907094 -0.0053301570319777 + 400 22 Cd 4pz 0.0081960911965999 -0.0023507450275592 + 401 22 Cd 4px -0.0002418948085338 -0.0025883920365261 + 402 22 Cd 4d-2 0.0205308709614416 0.0329753040611810 + 403 22 Cd 4d-1 -0.0061968509410833 0.0165598378214235 + 404 22 Cd 4d0 -0.0114461358320216 -0.0330870303207527 + 405 22 Cd 4d+1 0.0000459628055608 -0.0286881764271413 + 406 22 Cd 4d+2 -0.0241368937968007 0.0182536331242875 + 407 22 Cd 5d-2 0.0061640180849014 0.0072733139397225 + 408 22 Cd 5d-1 -0.0096754108296517 0.0043141816578034 + 409 22 Cd 5d0 -0.0100412841689664 0.0020246124967683 + 410 22 Cd 5d+1 -0.0057183280801007 -0.0035824370449511 + 411 22 Cd 5d+2 -0.0082643815876334 0.0052029290618637 + 412 22 Cd 5f-3 0.0016658351231016 0.0009972660952153 + 413 22 Cd 5f-2 0.0006022831461679 0.0005102652296864 + 414 22 Cd 5f-1 0.0025807829431277 0.0006478837825904 + 415 22 Cd 5f0 0.0013072905675677 0.0010517471245971 + 416 22 Cd 5f+1 0.0007706292350020 0.0006737393598234 + 417 22 Cd 5f+2 -0.0024051466608026 -0.0001618151360120 + 418 22 Cd 5f+3 0.0019673581699475 0.0010675266396592 + + 419 23 Se 2s 0.0321195717564907 -0.0160983868891124 + 420 23 Se 3s -0.0025263661014868 0.0025310576653567 + 421 23 Se 3py -0.0625344962051181 -0.0060588280788776 + 422 23 Se 3pz -0.1292879343680769 0.1318907297346062 + 423 23 Se 3px 0.0076328074177429 -0.0047603301437992 + 424 23 Se 4py 0.0046679748202731 0.0029575746371593 + 425 23 Se 4pz 0.0056714528130953 -0.0041336530954400 + 426 23 Se 4px -0.0015217674667112 -0.0002650741472230 + 427 23 Se 4d-2 -0.0011593963879380 0.0002094367402878 + 428 23 Se 4d-1 -0.0042995572759536 -0.0036943050473735 + 429 23 Se 4d0 -0.0058069592566808 0.0075779930621719 + 430 23 Se 4d+1 -0.0028095128181310 0.0040890240184905 + 431 23 Se 4d+2 0.0028818101587653 -0.0004363487019864 + + 432 24 Se 2s -0.0645206475107852 0.0324426371792298 + 433 24 Se 3s 0.0070827064516681 -0.0047001556172002 + 434 24 Se 3py 0.2131866481872455 -0.0918352184886902 + 435 24 Se 3pz 0.0708253563514210 0.1479458229524412 + 436 24 Se 3px 0.0824572690269790 -0.0403188866016054 + 437 24 Se 4py -0.0063495436896296 0.0038281973082671 + 438 24 Se 4pz -0.0021244337767913 -0.0094177135623304 + 439 24 Se 4px 0.0003982997328504 0.0037420719064547 + 440 24 Se 4d-2 0.0018575626807239 -0.0004709728023210 + 441 24 Se 4d-1 0.0026267472793307 0.0032881020257761 + 442 24 Se 4d0 -0.0042654619061782 0.0044774450365684 + 443 24 Se 4d+1 0.0010251721745354 0.0053019763903012 + 444 24 Se 4d+2 -0.0025394332827272 0.0022691021369880 + + 445 25 Cd 2s -0.0309231165380092 0.0249770439809816 + 446 25 Cd 3s -0.0020750707794084 0.0020103724190331 + 447 25 Cd 3py 0.0038993398635377 -0.0441078527511145 + 448 25 Cd 3pz -0.0237818950069939 0.0058282883619728 + 449 25 Cd 3px 0.0091414943412895 -0.0335292900480507 + 450 25 Cd 4py -0.0020712533951064 0.0037699946282427 + 451 25 Cd 4pz -0.0008479536218004 -0.0011839578565176 + 452 25 Cd 4px -0.0012633278322118 0.0026094523102694 + 453 25 Cd 4d-2 0.0132609775928904 -0.0187979588186901 + 454 25 Cd 4d-1 -0.0034090602397784 -0.0015130272900883 + 455 25 Cd 4d0 -0.0163748582353223 0.0124345537892674 + 456 25 Cd 4d+1 0.0066122308226721 -0.0263908045788381 + 457 25 Cd 4d+2 -0.0053802386928342 0.0268897311734492 + 458 25 Cd 5d-2 0.0046652223127244 -0.0056874330703682 + 459 25 Cd 5d-1 -0.0050672232112454 0.0009766796602779 + 460 25 Cd 5d0 -0.0107467507372664 0.0047072519212271 + 461 25 Cd 5d+1 -0.0012404679855068 -0.0042439655649797 + 462 25 Cd 5d+2 0.0033738009078874 0.0043046576261287 + 463 25 Cd 5f-3 0.0013638408171378 0.0005462424194090 + 464 25 Cd 5f-2 -0.0007384326348144 0.0002106547228285 + 465 25 Cd 5f-1 0.0014463171244755 0.0017404458898211 + 466 25 Cd 5f0 -0.0006788102164247 0.0006688119570403 + 467 25 Cd 5f+1 -0.0009697358377844 -0.0019947507227913 + 468 25 Cd 5f+2 0.0014988831689060 0.0001497742122214 + 469 25 Cd 5f+3 -0.0004167368846394 0.0005614871167823 + + 470 26 Cd 2s -0.0230184507280700 0.1004427248216311 + 471 26 Cd 3s 0.0036363712818084 -0.0039261815071761 + 472 26 Cd 3py 0.0641279174926758 0.0314799440197183 + 473 26 Cd 3pz 0.0249604293200751 -0.0365511536453213 + 474 26 Cd 3px 0.0112738318211251 -0.0217554206902213 + 475 26 Cd 4py -0.0109117383955888 -0.0035512621584656 + 476 26 Cd 4pz -0.0039385403402840 0.0025140800397626 + 477 26 Cd 4px -0.0033691063012076 -0.0003970260199565 + 478 26 Cd 4d-2 0.0425052190259728 0.0103757696184755 + 479 26 Cd 4d-1 -0.0116156732949557 0.0136932987468291 + 480 26 Cd 4d0 0.0016871611206647 0.0002028762994771 + 481 26 Cd 4d+1 0.0165643493525517 -0.0178417580988232 + 482 26 Cd 4d+2 0.0288315980614024 -0.0319954855152155 + 483 26 Cd 5d-2 0.0095899868322058 0.0018760479962914 + 484 26 Cd 5d-1 -0.0006040269671219 0.0011298563539906 + 485 26 Cd 5d0 -0.0021983618958824 -0.0001363465508832 + 486 26 Cd 5d+1 0.0040511845960375 -0.0026078676467037 + 487 26 Cd 5d+2 -0.0001391102526395 -0.0065732406817561 + 488 26 Cd 5f-3 0.0030313145182126 0.0022450233854754 + 489 26 Cd 5f-2 -0.0020073389427721 -0.0001253414257351 + 490 26 Cd 5f-1 0.0010925517157300 0.0017542464515649 + 491 26 Cd 5f0 0.0007652020818700 0.0003580459274795 + 492 26 Cd 5f+1 -0.0013832213525981 0.0018282859362540 + 493 26 Cd 5f+2 0.0017876060755957 0.0005369024054062 + 494 26 Cd 5f+3 0.0032629031957790 0.0006648194711876 + + 97 98 + -0.2364257367801863 -0.2337565044999515 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0284817635458076 -0.0795695261531380 + 2 1 Cd 3s 0.0005473567894332 0.0035076215822646 + 3 1 Cd 3py -0.0070158441679929 0.0100816249647389 + 4 1 Cd 3pz -0.0046513754417167 0.0268983297109431 + 5 1 Cd 3px -0.0020355207978048 0.0157615515585140 + 6 1 Cd 4py 0.0007761499283751 -0.0019999588472679 + 7 1 Cd 4pz 0.0023079066781973 -0.0016128816285859 + 8 1 Cd 4px 0.0002676631950191 -0.0003901770431896 + 9 1 Cd 4d-2 -0.0084241116946814 -0.0032186745291393 + 10 1 Cd 4d-1 0.0211728373049964 -0.0163791774245906 + 11 1 Cd 4d0 -0.0147302079792302 0.0153721780751855 + 12 1 Cd 4d+1 0.0017462566990153 -0.0112734451496930 + 13 1 Cd 4d+2 0.0069862828015488 0.0058268813489319 + 14 1 Cd 5d-2 0.0000188941035467 0.0001791466111964 + 15 1 Cd 5d-1 0.0031576583660763 -0.0033832924310517 + 16 1 Cd 5d0 -0.0026200907228590 0.0036126572571991 + 17 1 Cd 5d+1 -0.0014931455254303 -0.0021090071368040 + 18 1 Cd 5d+2 -0.0009215445098960 -0.0012163447130918 + 19 1 Cd 5f-3 -0.0005973524521331 -0.0002705439091312 + 20 1 Cd 5f-2 0.0010992236653511 -0.0010014962440687 + 21 1 Cd 5f-1 0.0005357346962546 0.0010833593063244 + 22 1 Cd 5f0 0.0002935166012822 -0.0001951710032080 + 23 1 Cd 5f+1 0.0009483771453568 -0.0005147051189414 + 24 1 Cd 5f+2 -0.0009787870869178 0.0007668033980991 + 25 1 Cd 5f+3 -0.0002773310302171 0.0002270800048193 + + 26 2 Cd 2s -0.0512433216628078 -0.0233469992177105 + 27 2 Cd 3s 0.0021627526969491 -0.0011854735154477 + 28 2 Cd 3py -0.0178889547385146 -0.0113495423150432 + 29 2 Cd 3pz -0.0229164057919463 -0.0382536117887658 + 30 2 Cd 3px -0.0232866984409030 0.0147810603177434 + 31 2 Cd 4py -0.0002273458185975 0.0014723672548969 + 32 2 Cd 4pz -0.0015520090545519 0.0025149499996367 + 33 2 Cd 4px 0.0030546638784463 -0.0000047063477771 + 34 2 Cd 4d-2 0.0319790369388462 0.0132937774527293 + 35 2 Cd 4d-1 -0.0041494711569165 0.0080652231342090 + 36 2 Cd 4d0 0.0012429929230552 -0.0180190196429635 + 37 2 Cd 4d+1 0.0359029745473283 -0.0067551603114138 + 38 2 Cd 4d+2 -0.0067590857466611 0.0092581438438041 + 39 2 Cd 5d-2 0.0089771906307989 -0.0017752301939184 + 40 2 Cd 5d-1 0.0005736314549180 0.0057992854613324 + 41 2 Cd 5d0 0.0008432952932642 -0.0042787275889922 + 42 2 Cd 5d+1 0.0074409274301117 0.0007236622836553 + 43 2 Cd 5d+2 -0.0039796499551275 -0.0023233611900176 + 44 2 Cd 5f-3 -0.0014320768748832 0.0006019453692666 + 45 2 Cd 5f-2 -0.0006321218416923 -0.0011560365615055 + 46 2 Cd 5f-1 0.0019474059089012 -0.0001680253873982 + 47 2 Cd 5f0 0.0017883319957857 0.0001743845437611 + 48 2 Cd 5f+1 -0.0016845740765716 -0.0000561193581011 + 49 2 Cd 5f+2 0.0006909810123014 0.0002189017354010 + 50 2 Cd 5f+3 -0.0004600150737319 0.0002037633750240 + + 51 3 Cd 2s -0.0540327860011466 -0.0172807503284157 + 52 3 Cd 3s 0.0033377454563392 -0.0018872747817676 + 53 3 Cd 3py 0.0142348789020934 0.0174419151541337 + 54 3 Cd 3pz 0.0309059732143328 0.0124901942355179 + 55 3 Cd 3px -0.0150031168645355 0.0557940684786070 + 56 3 Cd 4py -0.0045515336521966 -0.0023598175162995 + 57 3 Cd 4pz -0.0052102880101833 -0.0014350788929026 + 58 3 Cd 4px 0.0015260052843456 -0.0008907032101552 + 59 3 Cd 4d-2 -0.0298265329487251 -0.0022833729450136 + 60 3 Cd 4d-1 -0.0069435944742246 0.0354566521925850 + 61 3 Cd 4d0 0.0174374812381066 0.0059461143651824 + 62 3 Cd 4d+1 -0.0034795216106073 0.0119066736196123 + 63 3 Cd 4d+2 -0.0227747835539476 0.0208817934835744 + 64 3 Cd 5d-2 -0.0050200207492316 0.0026153102321322 + 65 3 Cd 5d-1 -0.0002971757760665 0.0055880999286248 + 66 3 Cd 5d0 0.0066512891738853 0.0032008752211690 + 67 3 Cd 5d+1 -0.0055087173793833 0.0023776107725393 + 68 3 Cd 5d+2 0.0004991038248716 -0.0031921966469580 + 69 3 Cd 5f-3 0.0004933137667957 -0.0001764066848106 + 70 3 Cd 5f-2 -0.0005931964945251 0.0003202006246421 + 71 3 Cd 5f-1 -0.0001931127885233 0.0019402204423932 + 72 3 Cd 5f0 -0.0012476885358310 0.0004752233818310 + 73 3 Cd 5f+1 -0.0006630023899220 0.0016709926424925 + 74 3 Cd 5f+2 -0.0005833637266962 -0.0018826361870793 + 75 3 Cd 5f+3 0.0018934933683787 0.0003864891004536 + + 76 4 Se 2s -0.0330558837213564 -0.0081318652220382 + 77 4 Se 3s 0.0033668342380237 0.0012564940999498 + 78 4 Se 3py -0.0451403985573887 0.0352960433957707 + 79 4 Se 3pz 0.0329859500066412 -0.0596868132676723 + 80 4 Se 3px -0.0021116987384696 -0.0364458993355631 + 81 4 Se 4py 0.0004509364894378 -0.0010951644177663 + 82 4 Se 4pz -0.0033942319112783 0.0017294318539611 + 83 4 Se 4px 0.0001021700369936 0.0018123650548332 + 84 4 Se 4d-2 -0.0013266315660581 -0.0012652343198255 + 85 4 Se 4d-1 -0.0003502891320141 0.0027456067796047 + 86 4 Se 4d0 0.0015885227600153 0.0000618185296397 + 87 4 Se 4d+1 -0.0014302274199709 0.0027255560233732 + 88 4 Se 4d+2 -0.0020982303519054 0.0021865073530017 + + 89 5 Se 2s -0.0384333639432971 -0.0209394879095700 + 90 5 Se 3s 0.0030374195203323 0.0015035250981421 + 91 5 Se 3py 0.0162159675149520 0.0606834916041676 + 92 5 Se 3pz 0.0778241023793244 -0.0641234013281881 + 93 5 Se 3px -0.0567978101616016 -0.0239420643905985 + 94 5 Se 4py -0.0008893462601571 0.0002256211345118 + 95 5 Se 4pz -0.0015786556963485 0.0020314252206706 + 96 5 Se 4px 0.0010767885062137 0.0026261457566522 + 97 5 Se 4d-2 -0.0006916333912990 -0.0015826469139081 + 98 5 Se 4d-1 0.0016224148933718 -0.0034437885231198 + 99 5 Se 4d0 0.0005170976910951 -0.0045124606169205 + 100 5 Se 4d+1 -0.0039598218130643 0.0011639001169293 + 101 5 Se 4d+2 0.0017580111859018 -0.0015714153562915 + + 102 6 Se 2s 0.0112648211393726 -0.0060828342239746 + 103 6 Se 3s -0.0004724979916158 0.0008131007776077 + 104 6 Se 3py 0.0812594754233391 0.0237946269017524 + 105 6 Se 3pz -0.1335280981667133 0.2102415015323303 + 106 6 Se 3px 0.1256816424970899 -0.0385288894497866 + 107 6 Se 4py -0.0045979137239645 -0.0013970407179894 + 108 6 Se 4pz 0.0065947617279411 -0.0070493721883889 + 109 6 Se 4px -0.0029113579459163 0.0001286668096593 + 110 6 Se 4d-2 -0.0025825457019778 -0.0013608506644992 + 111 6 Se 4d-1 0.0012433126832003 0.0017096095472618 + 112 6 Se 4d0 -0.0001326199931802 0.0003543257104248 + 113 6 Se 4d+1 0.0054441598941402 -0.0076017085302981 + 114 6 Se 4d+2 -0.0066186854125161 0.0003532033594624 + + 115 7 Se 2s -0.0450061303736404 -0.0074184489882751 + 116 7 Se 3s 0.0071703597134344 0.0008789829249340 + 117 7 Se 3py -0.0901502591419337 -0.0671011096186378 + 118 7 Se 3pz -0.0781681871077106 -0.0421697222890913 + 119 7 Se 3px -0.0018170646071304 0.0868809920133048 + 120 7 Se 4py 0.0022031425510604 0.0030610629352190 + 121 7 Se 4pz 0.0009234691939095 0.0014590795309443 + 122 7 Se 4px -0.0011395465426443 -0.0047648742136550 + 123 7 Se 4d-2 0.0000387448032122 -0.0018379322565452 + 124 7 Se 4d-1 -0.0004241246976903 0.0030657083779798 + 125 7 Se 4d0 0.0007713260743374 0.0017925773631606 + 126 7 Se 4d+1 -0.0008277080371719 -0.0036628183935096 + 127 7 Se 4d+2 0.0000979807767111 0.0023401885230958 + + 128 8 Cd 2s 0.0181497424782612 0.0271532438756641 + 129 8 Cd 3s 0.0008733465830000 0.0024797640078260 + 130 8 Cd 3py -0.0406034788186054 -0.0363055104326099 + 131 8 Cd 3pz -0.0329864187577591 -0.0015416395396139 + 132 8 Cd 3px 0.0193127279746349 0.0270680838270769 + 133 8 Cd 4py 0.0011874944657096 0.0011714475749200 + 134 8 Cd 4pz -0.0010387007671302 -0.0026248635140682 + 135 8 Cd 4px -0.0002826753747700 0.0010631502240846 + 136 8 Cd 4d-2 0.0008627345003033 -0.0000001375900683 + 137 8 Cd 4d-1 -0.0025231180081509 0.0049035059872881 + 138 8 Cd 4d0 0.0008965936481031 0.0090203596666487 + 139 8 Cd 4d+1 -0.0559956679113759 -0.0087144713598083 + 140 8 Cd 4d+2 -0.0155710565424659 -0.0114335836332829 + 141 8 Cd 5d-2 0.0005077726098715 -0.0027894046294156 + 142 8 Cd 5d-1 0.0003404094918588 0.0027290186001920 + 143 8 Cd 5d0 -0.0034668712862727 -0.0029187784363436 + 144 8 Cd 5d+1 -0.0155320858410368 -0.0045597636739854 + 145 8 Cd 5d+2 -0.0083898166735054 -0.0088400820178611 + 146 8 Cd 5f-3 -0.0003811408078278 0.0021224126753891 + 147 8 Cd 5f-2 -0.0022257592262676 -0.0000555241898402 + 148 8 Cd 5f-1 -0.0004432855229365 -0.0012846536969589 + 149 8 Cd 5f0 0.0027948538075639 0.0014978523249825 + 150 8 Cd 5f+1 0.0007117460491914 -0.0018838141233844 + 151 8 Cd 5f+2 -0.0005703823729433 0.0022079530379158 + 152 8 Cd 5f+3 0.0000526255108751 0.0018635460371659 + + 153 9 Cd 2s -0.0238959249349662 0.0137343466228116 + 154 9 Cd 3s 0.0021971712808472 -0.0028330658078803 + 155 9 Cd 3py -0.0243316401686516 -0.0045535502418062 + 156 9 Cd 3pz -0.0504660042408156 -0.0028890964902712 + 157 9 Cd 3px 0.0580252912023667 -0.0774514068116378 + 158 9 Cd 4py 0.0008982265740380 0.0022476728012019 + 159 9 Cd 4pz 0.0046631401159610 -0.0022110108375654 + 160 9 Cd 4px -0.0112907985061185 0.0073456524809903 + 161 9 Cd 4d-2 0.0088536941455617 -0.0071205055230271 + 162 9 Cd 4d-1 0.0049069775668381 0.0023839336278904 + 163 9 Cd 4d0 0.0303425569848653 -0.0085096101798553 + 164 9 Cd 4d+1 -0.0005450968962465 0.0388695115904994 + 165 9 Cd 4d+2 -0.0121686513830743 0.0177094831296852 + 166 9 Cd 5d-2 0.0042235399688761 -0.0044687409141269 + 167 9 Cd 5d-1 0.0011067657466487 -0.0003244423700795 + 168 9 Cd 5d0 0.0027751402982538 0.0006244413112127 + 169 9 Cd 5d+1 0.0012541546821146 0.0149718319554206 + 170 9 Cd 5d+2 -0.0015200237149775 -0.0037691732451011 + 171 9 Cd 5f-3 -0.0004246074296634 0.0002548370014140 + 172 9 Cd 5f-2 -0.0017448935864865 0.0008646161038489 + 173 9 Cd 5f-1 0.0006945166047903 -0.0009926508583760 + 174 9 Cd 5f0 -0.0037006787845755 0.0017808926676852 + 175 9 Cd 5f+1 0.0018868668760774 -0.0030689098629105 + 176 9 Cd 5f+2 0.0023196432588183 -0.0016447929655492 + 177 9 Cd 5f+3 -0.0023124463847955 0.0017534360721294 + + 178 10 Se 2s 0.0042308503699080 0.0660919953404650 + 179 10 Se 3s -0.0018225479718523 -0.0069287169286930 + 180 10 Se 3py 0.0854170989730616 0.0191143875175091 + 181 10 Se 3pz 0.2154613650218156 0.1312009723368787 + 182 10 Se 3px 0.1921004151897229 -0.2102143487466483 + 183 10 Se 4py -0.0038426380119105 -0.0050173435397571 + 184 10 Se 4pz -0.0107605538423902 -0.0047587939273458 + 185 10 Se 4px -0.0056082437639732 0.0081194894052680 + 186 10 Se 4d-2 0.0024105189219107 -0.0012434616777826 + 187 10 Se 4d-1 -0.0023589881419906 -0.0011082592393026 + 188 10 Se 4d0 -0.0115573321077697 -0.0021034849407801 + 189 10 Se 4d+1 0.0045423709944781 0.0048714798726962 + 190 10 Se 4d+2 0.0061742045913629 -0.0050405822149568 + + 191 11 Se 2s -0.0230670565954168 0.0238933882494737 + 192 11 Se 3s 0.0031388976612663 -0.0017232631328976 + 193 11 Se 3py 0.0036108236396616 0.0211180934842985 + 194 11 Se 3pz -0.1923226271276653 0.0541845774666684 + 195 11 Se 3px 0.0605915976236126 0.1723026136460237 + 196 11 Se 4py 0.0006337946099175 -0.0021961759006399 + 197 11 Se 4pz 0.0085547224789681 -0.0001834026919241 + 198 11 Se 4px -0.0037829318793773 -0.0095571277517259 + 199 11 Se 4d-2 0.0003929765995250 0.0072271727401368 + 200 11 Se 4d-1 -0.0074417536408293 -0.0028598249432925 + 201 11 Se 4d0 0.0001088246163410 -0.0053554197453085 + 202 11 Se 4d+1 -0.0026744739119336 -0.0035083095543875 + 203 11 Se 4d+2 0.0026101635563882 -0.0021125109340833 + + 204 12 Cd 2s -0.0561521936238386 0.0710059237780509 + 205 12 Cd 3s -0.0019749213478547 0.0029487765037119 + 206 12 Cd 3py -0.0214135137287033 -0.0313838886547589 + 207 12 Cd 3pz 0.1040410660759679 0.0233615854675346 + 208 12 Cd 3px 0.0598212568990122 -0.0148596162910487 + 209 12 Cd 4py -0.0012711591276881 0.0022240395274607 + 210 12 Cd 4pz -0.0025758193638688 -0.0072151265161891 + 211 12 Cd 4px -0.0028391860158947 -0.0043145288981335 + 212 12 Cd 4d-2 -0.0082202482947702 0.0049523757492574 + 213 12 Cd 4d-1 0.0323353138746190 0.0372294739764299 + 214 12 Cd 4d0 0.0163000790229440 -0.0217397104622150 + 215 12 Cd 4d+1 0.0020714381869982 0.0039217120277900 + 216 12 Cd 4d+2 -0.0334764732401456 -0.0110820687274115 + 217 12 Cd 5d-2 -0.0034352407456153 0.0001151316225838 + 218 12 Cd 5d-1 0.0130986321193228 0.0005610787787510 + 219 12 Cd 5d0 0.0040450444285759 -0.0110197506256706 + 220 12 Cd 5d+1 -0.0048809000744169 0.0038006362942045 + 221 12 Cd 5d+2 -0.0084118984536078 0.0075673316200739 + 222 12 Cd 5f-3 -0.0018022560890885 -0.0016572988361033 + 223 12 Cd 5f-2 -0.0002305756103695 0.0002512016546059 + 224 12 Cd 5f-1 -0.0006762387032887 -0.0005610448353540 + 225 12 Cd 5f0 -0.0005240791220844 0.0002238990132558 + 226 12 Cd 5f+1 0.0019596432589802 -0.0006002083816546 + 227 12 Cd 5f+2 0.0000326431843944 -0.0011486677622667 + 228 12 Cd 5f+3 0.0001053686892669 0.0022984281694133 + + 229 13 Cd 2s -0.0181176980651568 -0.0259487128639879 + 230 13 Cd 3s 0.0018455863240345 0.0007845385835202 + 231 13 Cd 3py -0.0276360812825776 -0.0090488714165605 + 232 13 Cd 3pz 0.0098861345882673 -0.0288062815493570 + 233 13 Cd 3px -0.0054162428128845 0.0062191581115407 + 234 13 Cd 4py -0.0030931121326006 0.0019353824440540 + 235 13 Cd 4pz -0.0036785972248389 0.0051966006690569 + 236 13 Cd 4px -0.0009612350197424 0.0006713196557128 + 237 13 Cd 4d-2 0.0160483700310702 0.0232736479298695 + 238 13 Cd 4d-1 -0.0067679579745172 -0.0104190205686344 + 239 13 Cd 4d0 -0.0016211491600501 0.0325305372759664 + 240 13 Cd 4d+1 0.0186192096288149 -0.0262490734002788 + 241 13 Cd 4d+2 -0.0072088315312598 0.0086559376776756 + 242 13 Cd 5d-2 0.0079234887527414 0.0018155209108183 + 243 13 Cd 5d-1 0.0010974745529667 -0.0013985762950658 + 244 13 Cd 5d0 -0.0016789438052342 0.0046657156059878 + 245 13 Cd 5d+1 0.0074723403770773 -0.0030773119999855 + 246 13 Cd 5d+2 -0.0074028906651528 -0.0010780453632834 + 247 13 Cd 5f-3 -0.0004248422436494 0.0006508398298253 + 248 13 Cd 5f-2 0.0002365128621959 -0.0004343103925106 + 249 13 Cd 5f-1 0.0002943889637213 0.0002316912187814 + 250 13 Cd 5f0 0.0007605732278640 0.0015062993525335 + 251 13 Cd 5f+1 0.0003613365739287 -0.0032822075955928 + 252 13 Cd 5f+2 -0.0013493785423106 0.0015817222668151 + 253 13 Cd 5f+3 -0.0003101062247429 0.0011761045888591 + + 254 14 Cd 2s -0.0378862476721588 0.0558416319040627 + 255 14 Cd 3s 0.0014586186329259 -0.0016528557417714 + 256 14 Cd 3py 0.0098009908088468 0.0236772217873286 + 257 14 Cd 3pz 0.0017936347094783 0.0065730623519255 + 258 14 Cd 3px -0.0049868227999386 -0.0049196489320115 + 259 14 Cd 4py 0.0013811808992498 -0.0000125903554363 + 260 14 Cd 4pz -0.0011852178336395 0.0009585243138002 + 261 14 Cd 4px -0.0001669019089230 0.0003754911418523 + 262 14 Cd 4d-2 0.0007382125952457 -0.0017791840508025 + 263 14 Cd 4d-1 0.0021882117235096 -0.0110425360632095 + 264 14 Cd 4d0 0.0056767523540386 0.0139302342245981 + 265 14 Cd 4d+1 0.0051754219842301 0.0033583367310107 + 266 14 Cd 4d+2 0.0036990975208125 -0.0008252096691589 + 267 14 Cd 5d-2 -0.0014637654818882 -0.0009684434383316 + 268 14 Cd 5d-1 -0.0011252491380883 -0.0034654117665770 + 269 14 Cd 5d0 0.0081191846206868 0.0041102068397776 + 270 14 Cd 5d+1 0.0039637663737614 -0.0003380986191455 + 271 14 Cd 5d+2 0.0015325736890137 0.0006784647809095 + 272 14 Cd 5f-3 0.0001526175719664 0.0003460579176409 + 273 14 Cd 5f-2 -0.0004451115407029 0.0003194486164757 + 274 14 Cd 5f-1 -0.0012396069862517 -0.0004769898682758 + 275 14 Cd 5f0 -0.0005853790856068 0.0001947304015763 + 276 14 Cd 5f+1 -0.0003143118690151 0.0001553437095536 + 277 14 Cd 5f+2 -0.0000360170684691 -0.0009425582820185 + 278 14 Cd 5f+3 -0.0007520645686291 -0.0004467966275720 + + 279 15 Se 2s -0.0154222183427973 -0.0003161517281629 + 280 15 Se 3s 0.0016675639618522 0.0001132371718312 + 281 15 Se 3py -0.0121401193934245 -0.0753360081889830 + 282 15 Se 3pz 0.0009962891787439 -0.0470020374025588 + 283 15 Se 3px 0.0475305579932181 0.0458082691356604 + 284 15 Se 4py -0.0009775755887536 0.0046561193372980 + 285 15 Se 4pz -0.0025791193681521 0.0010778657550679 + 286 15 Se 4px -0.0029656165010983 -0.0013946582163925 + 287 15 Se 4d-2 -0.0010733796678700 -0.0035495038611114 + 288 15 Se 4d-1 0.0017090788253000 -0.0020356643337728 + 289 15 Se 4d0 0.0021012771985802 -0.0049445739214612 + 290 15 Se 4d+1 0.0013672671840589 -0.0007491034255110 + 291 15 Se 4d+2 0.0005594142427314 -0.0005479718450277 + + 292 16 Se 2s 0.0234482618916443 -0.0636203748901207 + 293 16 Se 3s -0.0008703720041118 0.0056829658167744 + 294 16 Se 3py 0.1132651851446106 -0.2404075708411184 + 295 16 Se 3pz 0.0111659948028105 -0.0010290767915789 + 296 16 Se 3px 0.1334261608836807 -0.0876405793672965 + 297 16 Se 4py -0.0012872299990607 0.0134760615298019 + 298 16 Se 4pz 0.0014318620140564 0.0058813847891620 + 299 16 Se 4px -0.0043518854380406 0.0015396496715769 + 300 16 Se 4d-2 -0.0063048564922888 0.0069370731762385 + 301 16 Se 4d-1 0.0041113489881028 -0.0058182052314576 + 302 16 Se 4d0 0.0038637173364091 -0.0039089601633545 + 303 16 Se 4d+1 0.0034801320684743 0.0029409917598484 + 304 16 Se 4d+2 -0.0043200434756678 -0.0034596142598188 + + 305 17 Cd 2s 0.0519486587070432 -0.0874123346708365 + 306 17 Cd 3s -0.0056807014916905 0.0052798621224391 + 307 17 Cd 3py 0.0449424394188396 -0.0071722248863548 + 308 17 Cd 3pz 0.0127696226633130 0.0271468026996166 + 309 17 Cd 3px 0.0066825619677276 -0.0732576973935376 + 310 17 Cd 4py -0.0116848593468475 0.0028917782326671 + 311 17 Cd 4pz -0.0038069301090093 -0.0041331637152959 + 312 17 Cd 4px -0.0074529487496977 0.0098922841037549 + 313 17 Cd 4d-2 -0.0009435077456243 -0.0251653067500997 + 314 17 Cd 4d-1 -0.0340167209610246 -0.0133931666245697 + 315 17 Cd 4d0 -0.0099679430482714 0.0156708864939078 + 316 17 Cd 4d+1 -0.0153139575796851 -0.0389342697646196 + 317 17 Cd 4d+2 0.0528300806434147 0.0096778989025029 + 318 17 Cd 5d-2 -0.0049659532375992 0.0058255329123777 + 319 17 Cd 5d-1 -0.0006763160039832 -0.0074589733829073 + 320 17 Cd 5d0 -0.0047252127679163 -0.0057099109272534 + 321 17 Cd 5d+1 -0.0022572310058918 -0.0139223225762541 + 322 17 Cd 5d+2 0.0100778479454700 0.0090981864634413 + 323 17 Cd 5f-3 -0.0003017988565445 0.0046936969812231 + 324 17 Cd 5f-2 -0.0023661016167456 -0.0033506422523563 + 325 17 Cd 5f-1 0.0038583162611936 -0.0007261029605008 + 326 17 Cd 5f0 0.0003671196692110 0.0012627824409188 + 327 17 Cd 5f+1 0.0018229366129836 -0.0018678249223241 + 328 17 Cd 5f+2 0.0035692928609257 0.0015618989584318 + 329 17 Cd 5f+3 0.0038955087161878 0.0006518702148401 + + 330 18 Cd 2s 0.0852071682879448 0.0594620371235154 + 331 18 Cd 3s -0.0054445215673287 -0.0059968893545229 + 332 18 Cd 3py 0.0128296229483546 -0.0022783184988243 + 333 18 Cd 3pz -0.0757950269364409 0.0220542237467676 + 334 18 Cd 3px -0.0414465751610660 -0.0276668726353452 + 335 18 Cd 4py -0.0043994350192561 -0.0009337589244233 + 336 18 Cd 4pz 0.0124211328579928 0.0014791756416965 + 337 18 Cd 4px 0.0051405721091143 0.0041727589885721 + 338 18 Cd 4d-2 -0.0316174248978666 -0.0176698476233720 + 339 18 Cd 4d-1 -0.0440176239993613 -0.0155673600913659 + 340 18 Cd 4d0 -0.0290296253196703 -0.0107477805185019 + 341 18 Cd 4d+1 0.0318532722442724 -0.0099548448821716 + 342 18 Cd 4d+2 -0.0016549077816907 -0.0022780490004548 + 343 18 Cd 5d-2 -0.0041231557946581 0.0005486491306694 + 344 18 Cd 5d-1 -0.0053941411999918 0.0045229142943866 + 345 18 Cd 5d0 -0.0098724675301690 -0.0068968530725578 + 346 18 Cd 5d+1 0.0017613577345146 -0.0050058088395958 + 347 18 Cd 5d+2 0.0011546565414362 0.0002990313155865 + 348 18 Cd 5f-3 0.0004892442681559 -0.0002672465209631 + 349 18 Cd 5f-2 -0.0005875648934092 -0.0012599420283240 + 350 18 Cd 5f-1 -0.0036277332176637 0.0006775016153046 + 351 18 Cd 5f0 0.0031175779910332 -0.0025058131185969 + 352 18 Cd 5f+1 0.0031848858703833 -0.0001823349687838 + 353 18 Cd 5f+2 0.0007636500652985 -0.0000733469158951 + 354 18 Cd 5f+3 0.0014519520405641 0.0004714882524379 + + 355 19 Se 2s 0.0999579614175208 0.0457068790985423 + 356 19 Se 3s -0.0126770882393658 -0.0053496529254296 + 357 19 Se 3py 0.1265309009106861 -0.1420413144500975 + 358 19 Se 3pz -0.3719771542653139 -0.2127688986303309 + 359 19 Se 3px 0.1135116857758271 0.1476581686351283 + 360 19 Se 4py -0.0129005179269005 0.0030276844006090 + 361 19 Se 4pz 0.0181405402337938 0.0127848536255539 + 362 19 Se 4px -0.0050250077137487 -0.0077851176289241 + 363 19 Se 4d-2 0.0097646550124673 0.0054230851369163 + 364 19 Se 4d-1 0.0025860478698401 -0.0072210957430520 + 365 19 Se 4d0 -0.0102796695416199 -0.0060414793453803 + 366 19 Se 4d+1 0.0000093075111011 0.0014873801659258 + 367 19 Se 4d+2 -0.0003714621118475 0.0089792486664610 + + 368 20 Se 2s -0.0078554528690980 0.0042607580092153 + 369 20 Se 3s 0.0011975558800401 -0.0003152429761279 + 370 20 Se 3py -0.1371501167839149 -0.1159608495393775 + 371 20 Se 3pz -0.1407656719399940 -0.0069583690213887 + 372 20 Se 3px -0.1697396586078921 -0.0059012488698415 + 373 20 Se 4py 0.0054904283607696 0.0073483245858046 + 374 20 Se 4pz 0.0085956347629419 -0.0007229239535481 + 375 20 Se 4px 0.0088846533157784 0.0015749168209121 + 376 20 Se 4d-2 0.0020210419679634 0.0018136557427530 + 377 20 Se 4d-1 -0.0022458989301967 -0.0006068087465909 + 378 20 Se 4d0 -0.0088931762426182 -0.0056808505937364 + 379 20 Se 4d+1 0.0001444973865716 -0.0030230345677828 + 380 20 Se 4d+2 0.0023229179265484 0.0014872015221504 + + 381 21 Se 2s -0.0056968392594929 0.0218257705771177 + 382 21 Se 3s 0.0006464708269222 -0.0037625941683804 + 383 21 Se 3py -0.0455800642076809 0.0238650250839698 + 384 21 Se 3pz 0.0850377086699494 0.0528166219144818 + 385 21 Se 3px 0.0101735147204161 0.1261368951951211 + 386 21 Se 4py 0.0005405722200522 -0.0041882362756801 + 387 21 Se 4pz -0.0067974250787468 -0.0006980497383363 + 388 21 Se 4px 0.0002511272777194 -0.0084142161139040 + 389 21 Se 4d-2 0.0009991172707443 -0.0040803834563346 + 390 21 Se 4d-1 -0.0016599114525191 -0.0003081572929703 + 391 21 Se 4d0 0.0007251053131426 0.0008100334687211 + 392 21 Se 4d+1 -0.0001878546751643 0.0031906153156846 + 393 21 Se 4d+2 -0.0014988470400111 0.0003223486560866 + + 394 22 Cd 2s -0.0640084345938644 0.0684924095380311 + 395 22 Cd 3s 0.0005367751827450 0.0003845585306122 + 396 22 Cd 3py 0.0199205940727020 -0.0204969731640734 + 397 22 Cd 3pz 0.0371570059510505 0.0028540902503962 + 398 22 Cd 3px 0.0051649013508623 0.0105658905602741 + 399 22 Cd 4py -0.0005788365676687 0.0009726592630556 + 400 22 Cd 4pz -0.0029113448848306 0.0058788797956886 + 401 22 Cd 4px 0.0013471286844029 0.0028344587924507 + 402 22 Cd 4d-2 -0.0047558945397846 -0.0230392428439623 + 403 22 Cd 4d-1 0.0104688304284239 0.0146203709577531 + 404 22 Cd 4d0 -0.0133018758438545 0.0014637189076293 + 405 22 Cd 4d+1 -0.0152781926812297 -0.0016601935752714 + 406 22 Cd 4d+2 0.0101321642362790 -0.0067723332274262 + 407 22 Cd 5d-2 -0.0029798069287810 -0.0039443180304496 + 408 22 Cd 5d-1 0.0019322274038354 -0.0055088248485240 + 409 22 Cd 5d0 0.0024867646874634 -0.0101835790223872 + 410 22 Cd 5d+1 0.0030150717077796 -0.0092854930363737 + 411 22 Cd 5d+2 0.0009338708540881 0.0005594993811900 + 412 22 Cd 5f-3 0.0020087406787085 -0.0016917484306155 + 413 22 Cd 5f-2 0.0000406567981081 0.0020441129245210 + 414 22 Cd 5f-1 -0.0007887283744878 0.0020376887283465 + 415 22 Cd 5f0 -0.0025894282975408 -0.0000662832949249 + 416 22 Cd 5f+1 -0.0000040415299699 0.0005926268513030 + 417 22 Cd 5f+2 0.0000747579360556 -0.0023526587655810 + 418 22 Cd 5f+3 -0.0003606837799012 0.0016075976371635 + + 419 23 Se 2s 0.0157171372098296 0.0481714758384338 + 420 23 Se 3s -0.0015992165643830 -0.0058367003097119 + 421 23 Se 3py 0.1687722041051209 0.1083345716164711 + 422 23 Se 3pz 0.0373878699750957 -0.1398433549697351 + 423 23 Se 3px -0.0171139889719777 -0.0476906276884162 + 424 23 Se 4py -0.0083822719239611 0.0004145574716642 + 425 23 Se 4pz 0.0002895246736133 0.0069414649728468 + 426 23 Se 4px -0.0018798205258192 0.0021934044132312 + 427 23 Se 4d-2 0.0006106847774784 0.0031670575211058 + 428 23 Se 4d-1 0.0099054666226249 0.0036593727223389 + 429 23 Se 4d0 0.0066182216820850 -0.0032524300693420 + 430 23 Se 4d+1 0.0018788953329046 -0.0063396462115025 + 431 23 Se 4d+2 -0.0000143144045016 0.0063398688919019 + + 432 24 Se 2s -0.0103234622250192 -0.0612549408639505 + 433 24 Se 3s 0.0019531562332557 0.0078377570501630 + 434 24 Se 3py -0.1314232393967608 0.2311079984116506 + 435 24 Se 3pz 0.2511606712128864 -0.3381269870293754 + 436 24 Se 3px 0.2103233089795261 0.2823256266660181 + 437 24 Se 4py 0.0054476195351318 -0.0097522993389129 + 438 24 Se 4pz -0.0126594075634274 0.0156146450538885 + 439 24 Se 4px -0.0089685838863935 -0.0117176847758704 + 440 24 Se 4d-2 0.0038215477773637 0.0133339397540668 + 441 24 Se 4d-1 0.0046220370058069 -0.0094615341713955 + 442 24 Se 4d0 -0.0021407561451630 -0.0077076582604864 + 443 24 Se 4d+1 0.0114053805615780 -0.0108116756016668 + 444 24 Se 4d+2 0.0114487774359308 0.0037481039519072 + + 445 25 Cd 2s 0.1234763249877852 -0.0463661748221916 + 446 25 Cd 3s 0.0013241605124295 -0.0026443467251854 + 447 25 Cd 3py -0.0344207773768843 0.0045329087313075 + 448 25 Cd 3pz -0.0685904478417322 -0.1114872951843603 + 449 25 Cd 3px -0.0305638919238302 0.0955619157002655 + 450 25 Cd 4py 0.0018993824753423 -0.0018330811284257 + 451 25 Cd 4pz 0.0078393291645909 0.0066566321293098 + 452 25 Cd 4px 0.0009971871225465 -0.0106350519345704 + 453 25 Cd 4d-2 -0.0352249437815899 -0.0275423143568590 + 454 25 Cd 4d-1 0.0091507559739555 0.0199716743491834 + 455 25 Cd 4d0 -0.0379732947463783 -0.0060896372432777 + 456 25 Cd 4d+1 -0.0470487854781325 0.0220858497725848 + 457 25 Cd 4d+2 -0.0067361697825826 -0.0607280171099015 + 458 25 Cd 5d-2 -0.0100275866499019 -0.0048285290242350 + 459 25 Cd 5d-1 0.0058839921468659 -0.0006114971278006 + 460 25 Cd 5d0 -0.0120264205800488 -0.0143055480518599 + 461 25 Cd 5d+1 -0.0120561626208857 0.0017257286170935 + 462 25 Cd 5d+2 0.0058310504517049 -0.0096825940798532 + 463 25 Cd 5f-3 -0.0019629035917825 -0.0029595442327328 + 464 25 Cd 5f-2 -0.0007937196191047 -0.0001494489734901 + 465 25 Cd 5f-1 -0.0013021709901747 0.0017426579169227 + 466 25 Cd 5f0 -0.0000396173383171 -0.0030863041037704 + 467 25 Cd 5f+1 -0.0017195298157435 0.0030380939267522 + 468 25 Cd 5f+2 -0.0026885229374853 0.0001059952295107 + 469 25 Cd 5f+3 0.0022649640103409 -0.0025960592736105 + + 470 26 Cd 2s 0.0500163022589144 0.0433272846982876 + 471 26 Cd 3s -0.0001074899788506 0.0014704272040006 + 472 26 Cd 3py 0.0107745438778506 0.0273517993947760 + 473 26 Cd 3pz -0.0344268196770032 0.0611805956299828 + 474 26 Cd 3px -0.0321421509617977 -0.0283801650757644 + 475 26 Cd 4py 0.0026314218579707 -0.0030920373011253 + 476 26 Cd 4pz 0.0046401148806608 -0.0018945741200209 + 477 26 Cd 4px 0.0033750226372010 -0.0001497713733315 + 478 26 Cd 4d-2 0.0277711702385660 0.0533718037483097 + 479 26 Cd 4d-1 0.0269254667102777 -0.0460540842527871 + 480 26 Cd 4d0 0.0165494991025540 -0.0304623444641397 + 481 26 Cd 4d+1 0.0022953327086159 0.0171144487745919 + 482 26 Cd 4d+2 -0.0076488168298943 -0.0129173270711892 + 483 26 Cd 5d-2 0.0074072014164167 0.0120525984306966 + 484 26 Cd 5d-1 0.0033050616953348 -0.0082370235503616 + 485 26 Cd 5d0 0.0012488592889709 -0.0069189687060053 + 486 26 Cd 5d+1 0.0010554874084548 0.0097003112996744 + 487 26 Cd 5d+2 -0.0004257929988107 -0.0073246799952437 + 488 26 Cd 5f-3 0.0004776289771497 0.0013342690671531 + 489 26 Cd 5f-2 0.0020577104409763 -0.0015907215168779 + 490 26 Cd 5f-1 -0.0000961319546904 -0.0006586896642882 + 491 26 Cd 5f0 -0.0001014043119389 -0.0015612093835150 + 492 26 Cd 5f+1 0.0003298616988982 -0.0011954456437546 + 493 26 Cd 5f+2 -0.0015680085702445 0.0020024420310053 + 494 26 Cd 5f+3 -0.0013588411914837 -0.0010309710292831 + + 99 100 + -0.2312481734019195 -0.2290671535164661 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0698733627569608 -0.0346275335178808 + 2 1 Cd 3s -0.0042942718832780 -0.0014888799392809 + 3 1 Cd 3py 0.0016436784851339 0.0148395223577879 + 4 1 Cd 3pz -0.0417150825597525 -0.0033650449378299 + 5 1 Cd 3px 0.0099863733573985 0.0054040444399198 + 6 1 Cd 4py 0.0006606855925692 -0.0046850214397303 + 7 1 Cd 4pz -0.0013698866819046 -0.0050313903969555 + 8 1 Cd 4px 0.0011638692813168 0.0022662372137530 + 9 1 Cd 4d-2 -0.0030444475448520 0.0145916415786271 + 10 1 Cd 4d-1 -0.0135582523260978 -0.0151567942592886 + 11 1 Cd 4d0 0.0063434706956401 -0.0111244750683380 + 12 1 Cd 4d+1 0.0160957063748096 0.0005567698527906 + 13 1 Cd 4d+2 -0.0132323245399942 0.0039116256345678 + 14 1 Cd 5d-2 0.0010600732227976 -0.0001904364585818 + 15 1 Cd 5d-1 -0.0040601023239437 -0.0077174154274813 + 16 1 Cd 5d0 -0.0034522879325722 -0.0065959975916571 + 17 1 Cd 5d+1 0.0104420736209477 0.0039914436198525 + 18 1 Cd 5d+2 -0.0013986808947251 -0.0058551510456291 + 19 1 Cd 5f-3 -0.0011520630066206 0.0026157985513530 + 20 1 Cd 5f-2 0.0015288137809907 0.0011459036398542 + 21 1 Cd 5f-1 -0.0012975510983720 0.0013753153016463 + 22 1 Cd 5f0 0.0001227256002940 0.0007636064779250 + 23 1 Cd 5f+1 0.0015372699300735 0.0002849401720754 + 24 1 Cd 5f+2 -0.0008735028247841 0.0013637092950282 + 25 1 Cd 5f+3 0.0001852846736565 0.0001524412354189 + + 26 2 Cd 2s 0.0593731965407197 0.0254880424101357 + 27 2 Cd 3s 0.0029350626355127 0.0044045605794546 + 28 2 Cd 3py 0.0588629811040371 0.0506732493844507 + 29 2 Cd 3pz 0.0363619909344358 0.0721296478536136 + 30 2 Cd 3px -0.0187135197451726 -0.1045897145213354 + 31 2 Cd 4py -0.0044930301836962 -0.0034754175544939 + 32 2 Cd 4pz -0.0024638140524312 -0.0041412304098280 + 33 2 Cd 4px 0.0037618559835893 0.0066053545317464 + 34 2 Cd 4d-2 -0.0207213007184465 -0.0063835144363489 + 35 2 Cd 4d-1 0.0396410705830437 0.0696460788233310 + 36 2 Cd 4d0 0.0147848614636037 0.0203195477428034 + 37 2 Cd 4d+1 -0.0258693540857017 -0.0278773774420972 + 38 2 Cd 4d+2 0.0326032997500436 0.0118103900090768 + 39 2 Cd 5d-2 -0.0126847979999445 0.0042752030176106 + 40 2 Cd 5d-1 0.0106543121986080 0.0061225357652930 + 41 2 Cd 5d0 0.0052082410936041 0.0025379160000863 + 42 2 Cd 5d+1 -0.0135761442031486 -0.0239356143952979 + 43 2 Cd 5d+2 0.0113726539252526 0.0193797437807028 + 44 2 Cd 5f-3 0.0027762370047175 -0.0014795460488126 + 45 2 Cd 5f-2 0.0009913165011521 -0.0001821837591779 + 46 2 Cd 5f-1 -0.0033549213682430 -0.0019100161051044 + 47 2 Cd 5f0 -0.0020401384334246 -0.0020944183852617 + 48 2 Cd 5f+1 0.0011462641824238 0.0010979056670202 + 49 2 Cd 5f+2 -0.0003693888960063 0.0000175301043560 + 50 2 Cd 5f+3 0.0003835659569881 -0.0010175147288728 + + 51 3 Cd 2s 0.0067971965666254 0.0853913032144621 + 52 3 Cd 3s 0.0041236702919104 0.0010163871273472 + 53 3 Cd 3py -0.0323671901826138 0.0128421656869709 + 54 3 Cd 3pz -0.0022480758896953 0.0209332294607062 + 55 3 Cd 3px -0.0088411824515750 0.0625909146087201 + 56 3 Cd 4py 0.0032984521605167 0.0056695886489111 + 57 3 Cd 4pz -0.0000788928647378 -0.0003484664390014 + 58 3 Cd 4px 0.0047680115152316 -0.0100876192153070 + 59 3 Cd 4d-2 0.0407048626614494 -0.0114444810946612 + 60 3 Cd 4d-1 -0.0289166721522550 0.0050940576470108 + 61 3 Cd 4d0 -0.0234579891614298 0.0403854337686277 + 62 3 Cd 4d+1 -0.0143557764065700 0.0147074629582473 + 63 3 Cd 4d+2 0.0370089077613480 0.0145778957042733 + 64 3 Cd 5d-2 0.0085836848097175 -0.0033858035426072 + 65 3 Cd 5d-1 -0.0032250867459739 -0.0002739799252909 + 66 3 Cd 5d0 -0.0001017087706451 0.0039439352884732 + 67 3 Cd 5d+1 0.0011796205510519 0.0068864210213428 + 68 3 Cd 5d+2 0.0071787648165662 -0.0090606257013125 + 69 3 Cd 5f-3 -0.0011435797766927 0.0016225904666867 + 70 3 Cd 5f-2 -0.0021784976969570 -0.0028754459437523 + 71 3 Cd 5f-1 0.0005607183015907 0.0006195733556551 + 72 3 Cd 5f0 0.0039576385116603 0.0000079202302682 + 73 3 Cd 5f+1 0.0010467683813744 -0.0019576404268192 + 74 3 Cd 5f+2 -0.0005089663710948 -0.0011982236627860 + 75 3 Cd 5f+3 0.0002019056231211 -0.0013350214670437 + + 76 4 Se 2s 0.0291746203616618 -0.0468958892895415 + 77 4 Se 3s -0.0027942505710177 0.0048333308601115 + 78 4 Se 3py -0.0442211309286462 -0.0842482198882998 + 79 4 Se 3pz 0.0292548377729423 0.1440329473592197 + 80 4 Se 3px 0.0326005577932647 -0.0987605367984807 + 81 4 Se 4py 0.0051540143005265 0.0070562059873054 + 82 4 Se 4pz 0.0000388434669055 -0.0094633199127962 + 83 4 Se 4px -0.0028274253931596 0.0037878836726433 + 84 4 Se 4d-2 0.0046655551086153 0.0030878765925768 + 85 4 Se 4d-1 -0.0032982284621716 -0.0091385974577567 + 86 4 Se 4d0 -0.0024816716898752 -0.0028545092033815 + 87 4 Se 4d+1 0.0005315285440188 -0.0012489287669393 + 88 4 Se 4d+2 -0.0021758870613107 -0.0007535580862301 + + 89 5 Se 2s 0.0331124589296555 0.0167324198720759 + 90 5 Se 3s -0.0036110389236863 -0.0020680724378836 + 91 5 Se 3py -0.0413282242887114 0.0424829267996144 + 92 5 Se 3pz 0.0366775256780009 -0.1236178311893604 + 93 5 Se 3px 0.0101218094760559 0.0386269901870425 + 94 5 Se 4py -0.0008250912760541 -0.0023778082125913 + 95 5 Se 4pz -0.0029197417457078 0.0076352750614074 + 96 5 Se 4px -0.0012827532055007 -0.0010673298036920 + 97 5 Se 4d-2 -0.0010963068321334 0.0007165873895946 + 98 5 Se 4d-1 0.0034694108287163 -0.0033504707952579 + 99 5 Se 4d0 0.0020100630028724 -0.0067037770307539 + 100 5 Se 4d+1 -0.0029843247206496 0.0047185875674916 + 101 5 Se 4d+2 0.0002373307497990 -0.0025253264151982 + + 102 6 Se 2s -0.0780230036571757 0.0111060412036559 + 103 6 Se 3s 0.0097574844498089 -0.0006803416351125 + 104 6 Se 3py 0.0303329958988959 0.2877361273834073 + 105 6 Se 3pz 0.1167308385911334 0.0571676525297508 + 106 6 Se 3px -0.2910194012703208 0.0747445226851070 + 107 6 Se 4py 0.0001887808228918 -0.0127572979947143 + 108 6 Se 4pz -0.0038281442020097 -0.0027401803515616 + 109 6 Se 4px 0.0109440296745167 -0.0025202282180284 + 110 6 Se 4d-2 -0.0023276527866907 -0.0080460560997740 + 111 6 Se 4d-1 -0.0012639885334398 -0.0070536900610023 + 112 6 Se 4d0 0.0003123303988753 -0.0032951325085367 + 113 6 Se 4d+1 -0.0069728615335130 -0.0028821085923369 + 114 6 Se 4d+2 0.0094357276901269 -0.0050248913524639 + + 115 7 Se 2s 0.0138691039062195 0.0444794957176166 + 116 7 Se 3s -0.0032972002002859 -0.0080539313379770 + 117 7 Se 3py 0.1465531433758724 0.2446040830318587 + 118 7 Se 3pz 0.1223046745977023 0.3110750110274508 + 119 7 Se 3px -0.2114804607573587 -0.1913304298251373 + 120 7 Se 4py -0.0070403548581358 -0.0092383574391170 + 121 7 Se 4pz -0.0057975403296524 -0.0166864227544022 + 122 7 Se 4px 0.0099338700639665 0.0057684030920148 + 123 7 Se 4d-2 0.0010219128276434 0.0027728509139527 + 124 7 Se 4d-1 -0.0072352693565037 -0.0116499035687123 + 125 7 Se 4d0 -0.0062295109385403 -0.0118936029140078 + 126 7 Se 4d+1 0.0080080022391857 0.0064409917481311 + 127 7 Se 4d+2 -0.0022945737518765 -0.0014144960830205 + + 128 8 Cd 2s 0.0106927349204515 -0.0468200662330877 + 129 8 Cd 3s -0.0047427293865826 -0.0043653477030044 + 130 8 Cd 3py 0.0260602083970868 0.0432817478544321 + 131 8 Cd 3pz -0.0590589572431529 -0.0101250739386374 + 132 8 Cd 3px 0.0166294583562394 0.0280686861794241 + 133 8 Cd 4py -0.0040944659926771 -0.0068276562511571 + 134 8 Cd 4pz 0.0035833796719303 0.0024586442864880 + 135 8 Cd 4px -0.0004148195571216 -0.0075084956282380 + 136 8 Cd 4d-2 -0.0212451656491283 0.0446854693032161 + 137 8 Cd 4d-1 0.0119111148424538 0.0178258097414342 + 138 8 Cd 4d0 0.0079262101650800 -0.0112148422988824 + 139 8 Cd 4d+1 0.0394396648968456 0.0228847515188458 + 140 8 Cd 4d+2 0.0295041408529618 0.0574840688430101 + 141 8 Cd 5d-2 -0.0022260274822634 0.0186237603643052 + 142 8 Cd 5d-1 0.0010989768796154 -0.0002804677846336 + 143 8 Cd 5d0 0.0037583650830364 -0.0033159345881974 + 144 8 Cd 5d+1 0.0105839008252643 0.0022013073581855 + 145 8 Cd 5d+2 0.0147682625181337 0.0120234504145355 + 146 8 Cd 5f-3 -0.0034597201445366 0.0023447808021595 + 147 8 Cd 5f-2 -0.0002976215026297 -0.0009086644221827 + 148 8 Cd 5f-1 0.0002621527805749 -0.0014359000504468 + 149 8 Cd 5f0 0.0003285813955113 0.0001951540680017 + 150 8 Cd 5f+1 -0.0021019206223850 0.0016151304696993 + 151 8 Cd 5f+2 -0.0016277667855552 0.0008851884420200 + 152 8 Cd 5f+3 0.0012028224290902 -0.0004035114485902 + + 153 9 Cd 2s -0.0880256008204848 -0.0238355914718044 + 154 9 Cd 3s 0.0014485103051480 0.0036983000972588 + 155 9 Cd 3py -0.0140150716439878 -0.0148163892479562 + 156 9 Cd 3pz 0.0474199279403975 0.0000993149910637 + 157 9 Cd 3px -0.0704062694631637 0.0283891277927511 + 158 9 Cd 4py -0.0017973931130434 -0.0015345677589323 + 159 9 Cd 4pz -0.0039500686617207 0.0013568131254036 + 160 9 Cd 4px 0.0112049398370649 -0.0028342715011852 + 161 9 Cd 4d-2 0.0095382221455243 -0.0058120056773546 + 162 9 Cd 4d-1 0.0064767003162878 0.0079301414056892 + 163 9 Cd 4d0 -0.0330253305761022 0.0125691603041865 + 164 9 Cd 4d+1 0.0316494586330175 -0.0233628556556956 + 165 9 Cd 4d+2 -0.0012053196264004 -0.0363412822645018 + 166 9 Cd 5d-2 0.0045250519154552 -0.0003991487507941 + 167 9 Cd 5d-1 0.0037432912120000 0.0017905257541067 + 168 9 Cd 5d0 -0.0070542188530415 -0.0020026550300287 + 169 9 Cd 5d+1 0.0056656922375906 -0.0101017410241335 + 170 9 Cd 5d+2 0.0037527536150781 0.0008463477199596 + 171 9 Cd 5f-3 0.0008674599162698 0.0017926770103801 + 172 9 Cd 5f-2 0.0006538618154883 0.0002854138404317 + 173 9 Cd 5f-1 -0.0002600531282018 -0.0007254041199174 + 174 9 Cd 5f0 0.0030144905430523 -0.0004000920887145 + 175 9 Cd 5f+1 -0.0031244155194033 0.0013357308357819 + 176 9 Cd 5f+2 -0.0033999989868137 0.0003123615816012 + 177 9 Cd 5f+3 0.0010457714616210 -0.0008793091484124 + + 178 10 Se 2s -0.0183133519585595 -0.0446067599389753 + 179 10 Se 3s 0.0031468140696180 0.0058092898014135 + 180 10 Se 3py 0.1378241759366766 0.1231137140749141 + 181 10 Se 3pz -0.1304136600868170 -0.1345179929226985 + 182 10 Se 3px -0.1497334847686710 0.1431768154015563 + 183 10 Se 4py -0.0052977236852478 -0.0080469227696134 + 184 10 Se 4pz 0.0078471214869317 0.0037097445785089 + 185 10 Se 4px 0.0063343574949075 -0.0097511930813412 + 186 10 Se 4d-2 0.0030910521105426 0.0010029266891747 + 187 10 Se 4d-1 -0.0050108037066764 -0.0047591401178933 + 188 10 Se 4d0 0.0031129118472330 0.0037048175237539 + 189 10 Se 4d+1 -0.0000081221394764 -0.0059665582178913 + 190 10 Se 4d+2 -0.0030445722047400 0.0011924170235345 + + 191 11 Se 2s 0.0052823425146336 -0.0141462955522958 + 192 11 Se 3s -0.0013264518436270 0.0023793120173636 + 193 11 Se 3py -0.2188241209173450 0.0944619824716382 + 194 11 Se 3pz -0.1963600592265045 -0.1029496428688986 + 195 11 Se 3px -0.0316799396550908 0.0536712209839719 + 196 11 Se 4py 0.0147700399557731 -0.0052153077441847 + 197 11 Se 4pz 0.0094331364171508 0.0082837702846249 + 198 11 Se 4px 0.0034374310288742 -0.0045201987049263 + 199 11 Se 4d-2 -0.0002522004102566 0.0010223631593460 + 200 11 Se 4d-1 0.0021268613715920 -0.0029044758722562 + 201 11 Se 4d0 0.0080462685162202 0.0033612160172805 + 202 11 Se 4d+1 0.0017152407681680 -0.0030571138530424 + 203 11 Se 4d+2 0.0050482832123920 -0.0081675803343361 + + 204 12 Cd 2s -0.0439790444155358 0.0417211691014398 + 205 12 Cd 3s -0.0008671512505436 0.0029997682400290 + 206 12 Cd 3py -0.0199725052502064 -0.0443892018459308 + 207 12 Cd 3pz 0.0028545765447291 -0.0067301996858798 + 208 12 Cd 3px 0.0914056892769699 -0.0950644278672095 + 209 12 Cd 4py 0.0031056804912923 0.0001264114214585 + 210 12 Cd 4pz 0.0008587092188024 0.0012974962308284 + 211 12 Cd 4px -0.0022238691218149 0.0024752085832787 + 212 12 Cd 4d-2 -0.0176495698927263 -0.0272868575248583 + 213 12 Cd 4d-1 -0.0281988085308180 -0.0099185757424322 + 214 12 Cd 4d0 -0.0272669098577137 0.0037563847130530 + 215 12 Cd 4d+1 -0.0296195944668421 0.0337109904940062 + 216 12 Cd 4d+2 -0.0146559405746843 0.0184914769215475 + 217 12 Cd 5d-2 0.0043248978808982 -0.0084236551932418 + 218 12 Cd 5d-1 -0.0097953666549283 -0.0093156674168707 + 219 12 Cd 5d0 -0.0065390947452693 0.0022935411825318 + 220 12 Cd 5d+1 -0.0041043681278490 0.0117878145568218 + 221 12 Cd 5d+2 0.0056495933784505 0.0091281232790093 + 222 12 Cd 5f-3 0.0019666968670097 0.0015213288653284 + 223 12 Cd 5f-2 -0.0006398623695390 0.0017453059866747 + 224 12 Cd 5f-1 -0.0012662455329564 0.0005927671996013 + 225 12 Cd 5f0 0.0024850165278793 0.0014588131284090 + 226 12 Cd 5f+1 0.0005922926961454 -0.0020590740958051 + 227 12 Cd 5f+2 0.0010184448571594 0.0016292897104705 + 228 12 Cd 5f+3 0.0013923889231389 0.0016433643428074 + + 229 13 Cd 2s -0.0067422037717134 -0.0628366933064605 + 230 13 Cd 3s 0.0002586413625516 0.0037994352012801 + 231 13 Cd 3py 0.0270100967339976 -0.0269820542663551 + 232 13 Cd 3pz 0.0138908526206048 -0.0095614070719813 + 233 13 Cd 3px 0.0282652262043553 0.0247388063040905 + 234 13 Cd 4py -0.0023215784901388 0.0022551108630095 + 235 13 Cd 4pz -0.0020775942476236 0.0022729983105505 + 236 13 Cd 4px -0.0019864241574491 -0.0031201825267622 + 237 13 Cd 4d-2 -0.0220610461786658 0.0255134861095478 + 238 13 Cd 4d-1 0.0083207398172642 -0.0184944288371065 + 239 13 Cd 4d0 -0.0179450334138669 -0.0083930508316327 + 240 13 Cd 4d+1 0.0004055540309458 0.0112197135040103 + 241 13 Cd 4d+2 -0.0110675484275463 0.0125418473861247 + 242 13 Cd 5d-2 -0.0055663851786473 0.0019246497836279 + 243 13 Cd 5d-1 0.0034348512724408 -0.0054465659465670 + 244 13 Cd 5d0 -0.0003963359869082 -0.0016516082149614 + 245 13 Cd 5d+1 -0.0032541828850127 0.0063815110848017 + 246 13 Cd 5d+2 -0.0047449372531793 -0.0029416473245573 + 247 13 Cd 5f-3 0.0024896724893010 -0.0011889015060389 + 248 13 Cd 5f-2 -0.0005877097178429 -0.0011480847644924 + 249 13 Cd 5f-1 -0.0001887124827298 -0.0002100359049645 + 250 13 Cd 5f0 -0.0002620736229844 -0.0005096711064918 + 251 13 Cd 5f+1 0.0003964813428714 0.0011122541936990 + 252 13 Cd 5f+2 0.0008720066115233 -0.0026814011566638 + 253 13 Cd 5f+3 -0.0004394475288465 -0.0001793822903758 + + 254 14 Cd 2s -0.1031089164342034 -0.1004586818124648 + 255 14 Cd 3s -0.0000606335098933 -0.0009986065765903 + 256 14 Cd 3py -0.0196676625301693 -0.0333446172332636 + 257 14 Cd 3pz -0.0188876125299509 -0.0095012909309617 + 258 14 Cd 3px 0.0460076077886848 0.0043431729046705 + 259 14 Cd 4py 0.0007251211224426 0.0026834558478755 + 260 14 Cd 4pz -0.0020995785031374 -0.0066620317629869 + 261 14 Cd 4px 0.0012904707557212 -0.0006664905695435 + 262 14 Cd 4d-2 -0.0128296370393799 -0.0139560917960108 + 263 14 Cd 4d-1 -0.0059738085650377 -0.0202187916108774 + 264 14 Cd 4d0 -0.0223568164733395 -0.0418936122419523 + 265 14 Cd 4d+1 -0.0066611330476613 0.0198502593467896 + 266 14 Cd 4d+2 -0.0116882972620811 -0.0182079786928242 + 267 14 Cd 5d-2 -0.0052880267810642 -0.0027739043326979 + 268 14 Cd 5d-1 0.0022256887369235 0.0017009303798166 + 269 14 Cd 5d0 -0.0061811369950493 -0.0115844930272213 + 270 14 Cd 5d+1 -0.0007879602614884 0.0075457691132861 + 271 14 Cd 5d+2 -0.0024359393289315 -0.0017753898257648 + 272 14 Cd 5f-3 -0.0006073227435370 -0.0005194598326412 + 273 14 Cd 5f-2 0.0003031468497606 -0.0006580479506849 + 274 14 Cd 5f-1 0.0000395428415601 0.0003713203689594 + 275 14 Cd 5f0 0.0013196570013125 0.0005880841479643 + 276 14 Cd 5f+1 -0.0002634296303382 -0.0003061445669056 + 277 14 Cd 5f+2 0.0008285632226871 -0.0001296629252587 + 278 14 Cd 5f+3 -0.0000744969830257 0.0005013295832871 + + 279 15 Se 2s -0.0410822295056328 -0.0561310717214178 + 280 15 Se 3s 0.0043151077149028 0.0075100253623214 + 281 15 Se 3py -0.0918356965289839 -0.0975865693486188 + 282 15 Se 3pz 0.0840383375724636 0.0641513607138440 + 283 15 Se 3px -0.1282063671889455 0.1610657259988157 + 284 15 Se 4py 0.0059403748304043 0.0057280441422325 + 285 15 Se 4pz -0.0061792857020246 -0.0052550891873252 + 286 15 Se 4px 0.0085181857810651 -0.0066569033420447 + 287 15 Se 4d-2 0.0043388312715011 -0.0068297124658937 + 288 15 Se 4d-1 -0.0000375171656684 0.0017023189324971 + 289 15 Se 4d0 0.0035264406991337 0.0019157935048693 + 290 15 Se 4d+1 -0.0011493138694399 0.0022671300204918 + 291 15 Se 4d+2 -0.0041401229501046 -0.0007810649719274 + + 292 16 Se 2s 0.0060609013658555 -0.0007720327173783 + 293 16 Se 3s -0.0012250035161681 0.0011469474316793 + 294 16 Se 3py 0.0627640615504696 -0.0040875978755949 + 295 16 Se 3pz -0.0369072899254034 -0.0007220124213185 + 296 16 Se 3px -0.1380561930111593 0.0391809494682751 + 297 16 Se 4py -0.0038387258437883 -0.0002063805281096 + 298 16 Se 4pz 0.0030886444547911 -0.0011714275753233 + 299 16 Se 4px 0.0067735729737923 -0.0047746859605309 + 300 16 Se 4d-2 0.0003883641870561 -0.0023685116527323 + 301 16 Se 4d-1 0.0039950720621340 -0.0000939790845703 + 302 16 Se 4d0 -0.0013000035794160 -0.0002754376520977 + 303 16 Se 4d+1 -0.0046837844612115 0.0006403852697501 + 304 16 Se 4d+2 0.0058848955973415 -0.0030268967391117 + + 305 17 Cd 2s 0.0274190983029287 0.0004631175189684 + 306 17 Cd 3s -0.0027707702320809 0.0011130500741095 + 307 17 Cd 3py -0.0512498155049886 0.0272894540525649 + 308 17 Cd 3pz 0.0153462496017127 0.0057933924986582 + 309 17 Cd 3px 0.0063286657088203 -0.0146421963511173 + 310 17 Cd 4py 0.0080913587808783 -0.0050401751762861 + 311 17 Cd 4pz -0.0024268573512202 0.0014215240666823 + 312 17 Cd 4px -0.0005265044639565 -0.0012920753095134 + 313 17 Cd 4d-2 -0.0063617952170597 -0.0145499747119857 + 314 17 Cd 4d-1 -0.0227564691731637 -0.0167968836491140 + 315 17 Cd 4d0 -0.0022474930110359 0.0046319807185346 + 316 17 Cd 4d+1 -0.0087281021051213 0.0056493611367206 + 317 17 Cd 4d+2 -0.0099981887997759 0.0224973576078194 + 318 17 Cd 5d-2 -0.0031002186691330 -0.0043520795581598 + 319 17 Cd 5d-1 -0.0076610071702032 -0.0003250603831433 + 320 17 Cd 5d0 -0.0017826160828872 0.0047943600531779 + 321 17 Cd 5d+1 -0.0050862457174332 0.0005743839620500 + 322 17 Cd 5d+2 0.0030710951885154 0.0030138089770717 + 323 17 Cd 5f-3 -0.0019670614852427 0.0001362316650698 + 324 17 Cd 5f-2 -0.0000179117721586 -0.0015230019405469 + 325 17 Cd 5f-1 -0.0017118348815400 0.0015173284559450 + 326 17 Cd 5f0 0.0007176715895515 0.0009875452250075 + 327 17 Cd 5f+1 0.0006057850073996 -0.0007679210851740 + 328 17 Cd 5f+2 -0.0002614726647962 0.0008144890443270 + 329 17 Cd 5f+3 -0.0014204457802424 0.0024020978878913 + + 330 18 Cd 2s 0.0294424680101087 -0.0039867017196760 + 331 18 Cd 3s -0.0025847527475732 0.0021052291337068 + 332 18 Cd 3py 0.0548190625117622 -0.0054851602548872 + 333 18 Cd 3pz -0.0682418239425583 -0.0185852537395865 + 334 18 Cd 3px 0.0157565865046362 -0.0265594952156452 + 335 18 Cd 4py -0.0062610137971192 -0.0026814665329446 + 336 18 Cd 4pz 0.0130178561585133 0.0079525043277544 + 337 18 Cd 4px 0.0002489115766594 0.0011259008036494 + 338 18 Cd 4d-2 -0.0028897430415624 -0.0130471995758109 + 339 18 Cd 4d-1 -0.0127639223603186 -0.0199328782066115 + 340 18 Cd 4d0 -0.0201113334491756 -0.0231020271252618 + 341 18 Cd 4d+1 0.0099783746874430 0.0104452806312654 + 342 18 Cd 4d+2 -0.0215587004755280 0.0050634722030194 + 343 18 Cd 5d-2 -0.0004970561199047 -0.0029600236884741 + 344 18 Cd 5d-1 -0.0010405765143517 -0.0024831475447113 + 345 18 Cd 5d0 -0.0040661943170554 0.0009305583729924 + 346 18 Cd 5d+1 -0.0044764737324374 0.0008171840392812 + 347 18 Cd 5d+2 -0.0032069590142700 0.0050215900534238 + 348 18 Cd 5f-3 0.0006324322913573 0.0003123183468341 + 349 18 Cd 5f-2 -0.0003734739395320 -0.0001345114633634 + 350 18 Cd 5f-1 -0.0045832934383176 -0.0002866477985076 + 351 18 Cd 5f0 0.0025612980166213 0.0016189913104313 + 352 18 Cd 5f+1 0.0003986990191598 0.0009824525855010 + 353 18 Cd 5f+2 0.0009490954580115 0.0016588670073768 + 354 18 Cd 5f+3 0.0005746018523197 0.0002930223039922 + + 355 19 Se 2s 0.0619895539920745 0.0200170818827571 + 356 19 Se 3s -0.0054630548555365 -0.0029156438450441 + 357 19 Se 3py -0.0055320022152165 0.0595571139454470 + 358 19 Se 3pz -0.1910897085811760 -0.1158860652980411 + 359 19 Se 3px -0.2948066908871267 0.0920187483159349 + 360 19 Se 4py -0.0004261328898914 -0.0056836050766432 + 361 19 Se 4pz 0.0070826472898568 0.0067151937460452 + 362 19 Se 4px 0.0185858295536406 -0.0037853442161240 + 363 19 Se 4d-2 -0.0029152483892611 0.0033076311530939 + 364 19 Se 4d-1 0.0007883180756806 0.0010475493246084 + 365 19 Se 4d0 -0.0018365042749981 -0.0047614513467374 + 366 19 Se 4d+1 -0.0127145632161023 0.0017981425654367 + 367 19 Se 4d+2 -0.0007370887908893 0.0012360638771649 + + 368 20 Se 2s 0.0261038073896002 -0.0350012925668032 + 369 20 Se 3s -0.0037782007077991 0.0051487646497597 + 370 20 Se 3py 0.0151557099415547 -0.1286090815158162 + 371 20 Se 3pz -0.0454999078064765 0.1049719086159054 + 372 20 Se 3px 0.1541980420347635 -0.0528831875527582 + 373 20 Se 4py 0.0008571658258791 0.0083493093398265 + 374 20 Se 4pz 0.0048635043288544 -0.0053335781010090 + 375 20 Se 4px -0.0098550548541235 0.0055438209762704 + 376 20 Se 4d-2 0.0024752117417849 0.0002033085003489 + 377 20 Se 4d-1 -0.0046388607163763 -0.0075568062781422 + 378 20 Se 4d0 -0.0015875829152280 0.0009329438751344 + 379 20 Se 4d+1 0.0029140871890874 -0.0033362279663793 + 380 20 Se 4d+2 0.0025182319605491 -0.0014870757761864 + + 381 21 Se 2s -0.0139208148358255 0.0026829752279087 + 382 21 Se 3s -0.0000418384143540 0.0013101037943163 + 383 21 Se 3py 0.1290303807558561 0.0172188457882431 + 384 21 Se 3pz 0.0199076135372358 0.0585000105778923 + 385 21 Se 3px -0.1057030818151243 -0.0112324928927143 + 386 21 Se 4py -0.0077768945183761 -0.0025297888685056 + 387 21 Se 4pz -0.0039949200192784 0.0007317320456603 + 388 21 Se 4px 0.0116794634382469 0.0002932140618701 + 389 21 Se 4d-2 0.0099068445519419 -0.0024521839220516 + 390 21 Se 4d-1 -0.0033014011480694 -0.0008363071783332 + 391 21 Se 4d0 0.0006251663025316 0.0028440952688648 + 392 21 Se 4d+1 -0.0014379874057199 0.0014419340841017 + 393 21 Se 4d+2 -0.0001566530494650 -0.0021585744802959 + + 394 22 Cd 2s -0.0386324311687319 -0.0612508052250231 + 395 22 Cd 3s -0.0018977141019991 0.0053869520639334 + 396 22 Cd 3py -0.0360231126872876 0.0149501617917504 + 397 22 Cd 3pz 0.0166213930083793 0.0601557347728306 + 398 22 Cd 3px -0.0222766638814115 0.0152778529954153 + 399 22 Cd 4py 0.0026092207796932 -0.0018718240473346 + 400 22 Cd 4pz -0.0014653229873965 -0.0001539082426168 + 401 22 Cd 4px 0.0029029883908339 0.0019991534094045 + 402 22 Cd 4d-2 -0.0017230235826263 -0.0254727777505007 + 403 22 Cd 4d-1 -0.0217139914264525 -0.0233528175738344 + 404 22 Cd 4d0 0.0230868767607358 -0.0170800046173299 + 405 22 Cd 4d+1 -0.0031006060404686 -0.0157623768044387 + 406 22 Cd 4d+2 -0.0045971277004597 -0.0158646639135497 + 407 22 Cd 5d-2 0.0028042908342275 -0.0059962068690833 + 408 22 Cd 5d-1 -0.0102739548911204 -0.0076732668162651 + 409 22 Cd 5d0 0.0011064799031605 0.0030172853875657 + 410 22 Cd 5d+1 0.0021719751557119 0.0022375215689499 + 411 22 Cd 5d+2 -0.0019476138394345 -0.0047242145737037 + 412 22 Cd 5f-3 -0.0004353030426465 0.0000564957214718 + 413 22 Cd 5f-2 0.0017001467013425 -0.0017433215859471 + 414 22 Cd 5f-1 -0.0016229830068652 0.0002297366392494 + 415 22 Cd 5f0 -0.0028901733463218 -0.0007065661678523 + 416 22 Cd 5f+1 0.0003672571489787 -0.0012460878975024 + 417 22 Cd 5f+2 -0.0019714054580684 -0.0001286536612357 + 418 22 Cd 5f+3 0.0002846335768992 0.0008914681773148 + + 419 23 Se 2s -0.0200292387918786 -0.0366155603424688 + 420 23 Se 3s 0.0025080535142058 0.0042122961996808 + 421 23 Se 3py 0.0448626238804297 0.0590009743013003 + 422 23 Se 3pz -0.0273520434914844 0.1766736468098612 + 423 23 Se 3px 0.0721125457935779 -0.0340719756417670 + 424 23 Se 4py -0.0043120074324333 -0.0005050784166222 + 425 23 Se 4pz 0.0026827415890920 -0.0063261513237577 + 426 23 Se 4px -0.0028925796993416 0.0011186703642985 + 427 23 Se 4d-2 0.0026740960230353 0.0021151470134744 + 428 23 Se 4d-1 0.0047373144785332 0.0016468200399884 + 429 23 Se 4d0 -0.0032047239032151 0.0076049754971020 + 430 23 Se 4d+1 0.0011621982874316 0.0014968906859011 + 431 23 Se 4d+2 0.0016133830620500 -0.0017740978376962 + + 432 24 Se 2s -0.0588804747802756 0.0484661932972928 + 433 24 Se 3s 0.0079077482688200 -0.0065882626935602 + 434 24 Se 3py 0.0069846677855657 0.0347270788340767 + 435 24 Se 3pz 0.0892353797772680 -0.2380205644148012 + 436 24 Se 3px 0.2652275569235831 -0.2258574886586025 + 437 24 Se 4py 0.0005569876797141 -0.0041344994149303 + 438 24 Se 4pz -0.0035288769776336 0.0102047602201122 + 439 24 Se 4px -0.0128746171529669 0.0110556787933444 + 440 24 Se 4d-2 0.0054706128329805 -0.0020832041664007 + 441 24 Se 4d-1 0.0021530036273477 -0.0060254206868462 + 442 24 Se 4d0 -0.0002575932853718 0.0004088823824859 + 443 24 Se 4d+1 0.0042483156021867 -0.0077691078291401 + 444 24 Se 4d+2 0.0079911615778408 -0.0064545907722208 + + 445 25 Cd 2s -0.0274074552649095 0.0101209565681059 + 446 25 Cd 3s 0.0000772101704514 -0.0008472622263683 + 447 25 Cd 3py 0.0331990175759092 -0.0406913971859861 + 448 25 Cd 3pz -0.0031552390143072 -0.0033471970447033 + 449 25 Cd 3px 0.0266966307876066 0.0281170651028985 + 450 25 Cd 4py -0.0028379457824845 0.0014566908401896 + 451 25 Cd 4pz 0.0016789700392501 -0.0022064531562434 + 452 25 Cd 4px -0.0030697024188356 0.0013273475340333 + 453 25 Cd 4d-2 -0.0136897147601862 -0.0061887723232694 + 454 25 Cd 4d-1 -0.0069522095546944 0.0113077546056388 + 455 25 Cd 4d0 -0.0313907385009707 0.0255433799978371 + 456 25 Cd 4d+1 0.0262028094766147 -0.0113782690226038 + 457 25 Cd 4d+2 0.0084078982582197 -0.0052539850676134 + 458 25 Cd 5d-2 -0.0009652004981461 -0.0053337779416243 + 459 25 Cd 5d-1 -0.0033697468774551 -0.0043133411274512 + 460 25 Cd 5d0 -0.0136465719840600 0.0093069183850485 + 461 25 Cd 5d+1 0.0021635366943495 0.0016437819032155 + 462 25 Cd 5d+2 0.0063857349581066 -0.0029305439886883 + 463 25 Cd 5f-3 0.0002129008543578 -0.0014617244158813 + 464 25 Cd 5f-2 0.0007554318558841 -0.0000758186267139 + 465 25 Cd 5f-1 -0.0037425588735095 -0.0005974150529245 + 466 25 Cd 5f0 -0.0008716082543448 0.0012075769868969 + 467 25 Cd 5f+1 -0.0005956860480148 0.0023170042726651 + 468 25 Cd 5f+2 0.0003481005718210 0.0003194183888199 + 469 25 Cd 5f+3 0.0000164601925849 0.0003468259078317 + + 470 26 Cd 2s -0.0366791563775606 0.0279376674107780 + 471 26 Cd 3s -0.0028888813413078 -0.0039981149249486 + 472 26 Cd 3py 0.0138948676288596 -0.0205175559156565 + 473 26 Cd 3pz -0.0205600568984556 0.0178524891893444 + 474 26 Cd 3px -0.0189699657661753 0.0136246910282619 + 475 26 Cd 4py 0.0033969006685680 -0.0018758049884034 + 476 26 Cd 4pz 0.0011859741823676 -0.0047598146765001 + 477 26 Cd 4px -0.0002801107319000 -0.0044180383228200 + 478 26 Cd 4d-2 0.0401680080121002 -0.0235440659390917 + 479 26 Cd 4d-1 0.0072360601641491 -0.0237168271430081 + 480 26 Cd 4d0 0.0021178062583801 -0.0221195340548628 + 481 26 Cd 4d+1 0.0068601778685311 -0.0077960257334629 + 482 26 Cd 4d+2 0.0217148402418635 -0.0124824103719156 + 483 26 Cd 5d-2 0.0115155966493356 -0.0080719127727250 + 484 26 Cd 5d-1 0.0021315202291591 -0.0078745762460989 + 485 26 Cd 5d0 -0.0011375657492676 -0.0006551747431216 + 486 26 Cd 5d+1 -0.0007535134334794 -0.0078595720970234 + 487 26 Cd 5d+2 0.0029992009732461 -0.0067900992647203 + 488 26 Cd 5f-3 -0.0004865052916125 -0.0002924361214437 + 489 26 Cd 5f-2 0.0013344333610036 -0.0020987688478737 + 490 26 Cd 5f-1 -0.0004936916649643 -0.0000515846618802 + 491 26 Cd 5f0 -0.0004892551963410 0.0008212418086924 + 492 26 Cd 5f+1 -0.0002186619829572 0.0002628482207834 + 493 26 Cd 5f+2 -0.0015401465967128 -0.0004902566114338 + 494 26 Cd 5f+3 -0.0015250101705121 -0.0009458442802866 + + 101 102 + -0.2276141412171931 -0.2234182467076386 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.0867626276485095 -0.1184176242542391 + 2 1 Cd 3s 0.0003660761427169 0.0056884661946117 + 3 1 Cd 3py 0.0497688401488804 0.0531805734177548 + 4 1 Cd 3pz 0.0321124032121314 0.0152177485417426 + 5 1 Cd 3px 0.0102459819050618 -0.0193464502967912 + 6 1 Cd 4py -0.0119695938312759 -0.0096319851204680 + 7 1 Cd 4pz -0.0043498683150932 0.0010738965999491 + 8 1 Cd 4px 0.0039015653013653 0.0012460281748721 + 9 1 Cd 4d-2 -0.0236625712008585 -0.0138695224005620 + 10 1 Cd 4d-1 0.0203459731661724 0.0280861791810873 + 11 1 Cd 4d0 -0.0046150251245797 0.0060658507691450 + 12 1 Cd 4d+1 0.0110956481186357 -0.0020414766974937 + 13 1 Cd 4d+2 0.0149010884591350 0.0358436126918799 + 14 1 Cd 5d-2 -0.0079189644167429 -0.0068979128790667 + 15 1 Cd 5d-1 0.0011971468318222 0.0074995802424105 + 16 1 Cd 5d0 -0.0101781705797416 -0.0048913952282985 + 17 1 Cd 5d+1 0.0051936181725097 -0.0027719014968448 + 18 1 Cd 5d+2 -0.0123377647944872 -0.0014897114823642 + 19 1 Cd 5f-3 0.0021615313153686 0.0021009152460417 + 20 1 Cd 5f-2 -0.0002632651452513 -0.0018362859878387 + 21 1 Cd 5f-1 0.0027488832623938 0.0028318283349579 + 22 1 Cd 5f0 -0.0009583033228034 -0.0009198909871604 + 23 1 Cd 5f+1 -0.0004553733882010 -0.0006585969553853 + 24 1 Cd 5f+2 0.0004391668488518 0.0006540577084287 + 25 1 Cd 5f+3 0.0008681964841358 -0.0018543546389313 + + 26 2 Cd 2s 0.0588713818913253 0.0143485838256412 + 27 2 Cd 3s 0.0012010473636815 -0.0009908141812590 + 28 2 Cd 3py -0.0066547679083452 -0.0517488361619437 + 29 2 Cd 3pz 0.0289360648549033 -0.0295980500893742 + 30 2 Cd 3px 0.0059471248073209 0.0246388271042952 + 31 2 Cd 4py 0.0025400832000658 -0.0025557284628289 + 32 2 Cd 4pz -0.0019056575409480 -0.0003095028791765 + 33 2 Cd 4px -0.0006022320051388 -0.0047296467054281 + 34 2 Cd 4d-2 -0.0257329694627648 -0.0185837489256772 + 35 2 Cd 4d-1 0.0382573826092263 -0.0264491862077453 + 36 2 Cd 4d0 -0.0092271381991918 -0.0081680214820018 + 37 2 Cd 4d+1 -0.0093307910348279 0.0188743162957368 + 38 2 Cd 4d+2 0.0074493513055271 0.0214125761475629 + 39 2 Cd 5d-2 -0.0177881029367033 0.0021084203825641 + 40 2 Cd 5d-1 0.0154720784711522 -0.0056261527138513 + 41 2 Cd 5d0 -0.0057343856087695 -0.0048524378798657 + 42 2 Cd 5d+1 -0.0038364095621638 0.0134705959293332 + 43 2 Cd 5d+2 -0.0008031408481501 -0.0000656279104114 + 44 2 Cd 5f-3 0.0041441597590114 0.0003929890611924 + 45 2 Cd 5f-2 0.0002830217667165 0.0008063292679218 + 46 2 Cd 5f-1 -0.0026963129634080 0.0004117153184091 + 47 2 Cd 5f0 0.0009378796674156 0.0028148968867946 + 48 2 Cd 5f+1 -0.0001149928354079 0.0001055577070462 + 49 2 Cd 5f+2 0.0014073989524271 0.0002667403268997 + 50 2 Cd 5f+3 0.0012465389320895 -0.0004007649330957 + + 51 3 Cd 2s -0.0209725116728179 -0.0059307611559252 + 52 3 Cd 3s 0.0011438722613142 -0.0010963533554508 + 53 3 Cd 3py -0.0357351085772865 -0.0339568738643965 + 54 3 Cd 3pz 0.0061590657997763 -0.0339388310995913 + 55 3 Cd 3px 0.0268263633204902 -0.0649494797694342 + 56 3 Cd 4py 0.0010644962203964 0.0021631448024179 + 57 3 Cd 4pz -0.0025616434720689 0.0015308070384505 + 58 3 Cd 4px -0.0009152765459698 0.0052228956460503 + 59 3 Cd 4d-2 0.0057487914729377 -0.0057617651283782 + 60 3 Cd 4d-1 0.0342355608042903 -0.0063091984122032 + 61 3 Cd 4d0 -0.0222991261755990 -0.0300135614201341 + 62 3 Cd 4d+1 -0.0190059247837464 -0.0299844960099109 + 63 3 Cd 4d+2 0.0042244716801034 -0.0095065938070093 + 64 3 Cd 5d-2 0.0043455698627349 -0.0058556952496246 + 65 3 Cd 5d-1 0.0019536259704468 -0.0011154357747870 + 66 3 Cd 5d0 -0.0026633394125402 -0.0041110663231309 + 67 3 Cd 5d+1 -0.0011597218405162 -0.0108790378944542 + 68 3 Cd 5d+2 0.0005080221402698 0.0092517842129637 + 69 3 Cd 5f-3 0.0000942923864162 0.0033494964132470 + 70 3 Cd 5f-2 -0.0012827459078204 -0.0038709143992543 + 71 3 Cd 5f-1 0.0002058708743828 0.0002955041437171 + 72 3 Cd 5f0 0.0011352292900298 0.0001670584202725 + 73 3 Cd 5f+1 -0.0007747180979943 0.0010001373471523 + 74 3 Cd 5f+2 -0.0003193160839902 0.0026817448851617 + 75 3 Cd 5f+3 0.0001321418848741 0.0008838772635110 + + 76 4 Se 2s 0.0222891621697866 0.0026630320642914 + 77 4 Se 3s -0.0021295898005107 -0.0003524013950083 + 78 4 Se 3py 0.1039407053452499 0.1001982420070399 + 79 4 Se 3pz 0.0933692541266181 0.0074509471970367 + 80 4 Se 3px -0.0366351447572826 0.0091602060057603 + 81 4 Se 4py -0.0038706237211610 -0.0046845872284132 + 82 4 Se 4pz -0.0017576792300061 0.0002564032790848 + 83 4 Se 4px 0.0012117631923277 -0.0017063169438287 + 84 4 Se 4d-2 -0.0034243871071054 -0.0073039145877716 + 85 4 Se 4d-1 -0.0013408660464981 0.0019893104792067 + 86 4 Se 4d0 -0.0070371382271063 -0.0036893210342335 + 87 4 Se 4d+1 -0.0043217305971689 -0.0019321749594648 + 88 4 Se 4d+2 0.0036308613821909 0.0001845239780461 + + 89 5 Se 2s -0.0422967857601916 -0.0684655438772287 + 90 5 Se 3s 0.0020236473989890 0.0058356949258408 + 91 5 Se 3py 0.1812336657098507 0.2244782540179405 + 92 5 Se 3pz -0.0618694999294390 0.0330630329710728 + 93 5 Se 3px -0.0090322502015823 0.0323661971360825 + 94 5 Se 4py -0.0074459569587295 -0.0077143546183510 + 95 5 Se 4pz 0.0038572383069317 -0.0018282636453356 + 96 5 Se 4px -0.0025616157936998 -0.0030148883985872 + 97 5 Se 4d-2 -0.0034261971990051 -0.0018416124020928 + 98 5 Se 4d-1 -0.0025198076994721 0.0027512024458356 + 99 5 Se 4d0 -0.0053369092780215 -0.0002526068004928 + 100 5 Se 4d+1 0.0009796853876914 0.0005634304739496 + 101 5 Se 4d+2 -0.0055290265726920 -0.0098599220186024 + + 102 6 Se 2s -0.0192600856801150 -0.0141989041906015 + 103 6 Se 3s 0.0025554300487052 0.0010293059949407 + 104 6 Se 3py -0.0962676598039306 -0.1914934805530639 + 105 6 Se 3pz 0.1725349379371921 -0.1490504952188092 + 106 6 Se 3px -0.1183875499427591 -0.0718831138116780 + 107 6 Se 4py 0.0026533409643248 0.0081603882906449 + 108 6 Se 4pz -0.0078043846987209 0.0039928797250026 + 109 6 Se 4px 0.0050839647734037 0.0027866108438622 + 110 6 Se 4d-2 0.0032633383712789 0.0064008435961273 + 111 6 Se 4d-1 -0.0012531914081763 0.0018441413336724 + 112 6 Se 4d0 0.0029806782170835 0.0019888572282743 + 113 6 Se 4d+1 -0.0066081175319566 0.0034524046437908 + 114 6 Se 4d+2 0.0065792504156752 0.0047886517632674 + + 115 7 Se 2s 0.0149197631382157 0.0076422272578133 + 116 7 Se 3s -0.0031172177267455 -0.0014628387561677 + 117 7 Se 3py -0.0730146629004221 -0.0025284020954351 + 118 7 Se 3pz 0.0522702473768832 -0.0031132562189800 + 119 7 Se 3px -0.1678735122888241 0.2440770776107016 + 120 7 Se 4py 0.0027747612348525 -0.0010056579753535 + 121 7 Se 4pz -0.0021834758662494 0.0014584320294538 + 122 7 Se 4px 0.0070521058621961 -0.0118415129271465 + 123 7 Se 4d-2 0.0028273926667732 -0.0003044339125725 + 124 7 Se 4d-1 0.0016826352497936 0.0007047553360586 + 125 7 Se 4d0 -0.0002434309597087 0.0002790177998290 + 126 7 Se 4d+1 0.0059227584910375 -0.0091731731323974 + 127 7 Se 4d+2 0.0029836425986621 -0.0018540025242546 + + 128 8 Cd 2s -0.0216338904612657 0.0440501885373819 + 129 8 Cd 3s -0.0015960237686603 0.0017294851835870 + 130 8 Cd 3py -0.0503824411562467 0.0659312651375323 + 131 8 Cd 3pz -0.0388086136862593 0.0022169638870745 + 132 8 Cd 3px 0.0259085346367089 -0.0042142060633408 + 133 8 Cd 4py 0.0054322560612709 -0.0056419465194845 + 134 8 Cd 4pz -0.0012761621427654 0.0018631359932232 + 135 8 Cd 4px -0.0024398908084481 0.0041176672373750 + 136 8 Cd 4d-2 -0.0073150318255960 -0.0022199150900808 + 137 8 Cd 4d-1 0.0213468681997769 0.0090606135068936 + 138 8 Cd 4d0 -0.0019420450124953 0.0264048232408271 + 139 8 Cd 4d+1 -0.0219941953879647 0.0310635325356802 + 140 8 Cd 4d+2 -0.0264349599529338 0.0388891058026134 + 141 8 Cd 5d-2 -0.0108277551048379 0.0119965391924469 + 142 8 Cd 5d-1 0.0013688992857855 0.0065443716409874 + 143 8 Cd 5d0 -0.0058677187259804 0.0134047928801838 + 144 8 Cd 5d+1 -0.0048779317865803 0.0077710308913198 + 145 8 Cd 5d+2 -0.0044059896107272 0.0125210186249319 + 146 8 Cd 5f-3 -0.0006943443487703 -0.0004469019192379 + 147 8 Cd 5f-2 0.0019104014581852 -0.0027938264961854 + 148 8 Cd 5f-1 0.0031762504649910 -0.0038370474183126 + 149 8 Cd 5f0 0.0013642005923011 -0.0015730613505469 + 150 8 Cd 5f+1 0.0001436465177573 -0.0006822216127394 + 151 8 Cd 5f+2 -0.0021811481876439 0.0016044280119292 + 152 8 Cd 5f+3 -0.0001275700823771 0.0010673312974109 + + 153 9 Cd 2s -0.0544110312785911 -0.0042691670163621 + 154 9 Cd 3s -0.0004278143393102 0.0014361580730377 + 155 9 Cd 3py 0.0165844517738997 0.0020829635904078 + 156 9 Cd 3pz 0.0010699649931719 0.0338586681001041 + 157 9 Cd 3px -0.0626298678903567 0.0177895740137395 + 158 9 Cd 4py 0.0011309648289469 -0.0032770171638556 + 159 9 Cd 4pz -0.0036020278384983 0.0002534060999230 + 160 9 Cd 4px 0.0097839068451055 -0.0016533131493721 + 161 9 Cd 4d-2 0.0083872195228917 0.0126985387844399 + 162 9 Cd 4d-1 -0.0088832827970636 -0.0080119754851062 + 163 9 Cd 4d0 -0.0132386059258640 -0.0083009996431995 + 164 9 Cd 4d+1 0.0388928391677033 -0.0283235379530238 + 165 9 Cd 4d+2 0.0045137295696691 0.0062165651932688 + 166 9 Cd 5d-2 0.0010193308983812 0.0050700148075081 + 167 9 Cd 5d-1 -0.0053109831954079 0.0013774752364134 + 168 9 Cd 5d0 -0.0008745689827877 -0.0042902412710018 + 169 9 Cd 5d+1 0.0111286596610905 -0.0103338690424471 + 170 9 Cd 5d+2 -0.0068595818403731 0.0105425690760886 + 171 9 Cd 5f-3 0.0003866145161181 0.0003183739807716 + 172 9 Cd 5f-2 0.0015032313737706 -0.0007393418966714 + 173 9 Cd 5f-1 -0.0004276655396241 0.0001111709844536 + 174 9 Cd 5f0 0.0026607630585545 0.0013320013983911 + 175 9 Cd 5f+1 -0.0027902547710560 0.0006989714359130 + 176 9 Cd 5f+2 -0.0002975873080231 -0.0013371919828779 + 177 9 Cd 5f+3 0.0020175751910344 -0.0008869332258606 + + 178 10 Se 2s 0.0137094471885951 -0.0361039515532177 + 179 10 Se 3s -0.0008877079404470 0.0042818565134770 + 180 10 Se 3py 0.0296846543432795 -0.0115995301805130 + 181 10 Se 3pz 0.0695258729615076 -0.2412498416290446 + 182 10 Se 3px -0.1555477655196381 0.0386291388113518 + 183 10 Se 4py -0.0000632514024572 0.0023618189014712 + 184 10 Se 4pz 0.0005078276938913 0.0110796199079847 + 185 10 Se 4px 0.0096523285436664 -0.0034590520689513 + 186 10 Se 4d-2 -0.0006453364316039 0.0001145397882218 + 187 10 Se 4d-1 0.0012536186517942 -0.0020220973678551 + 188 10 Se 4d0 -0.0030096055847110 0.0079634834101227 + 189 10 Se 4d+1 0.0038301990542761 -0.0041616642927520 + 190 10 Se 4d+2 -0.0049046039477065 0.0028712610005702 + + 191 11 Se 2s -0.0164164724174645 0.0281148708870765 + 192 11 Se 3s 0.0017168604850817 -0.0032929332571924 + 193 11 Se 3py 0.0928915149343103 -0.3268639359115703 + 194 11 Se 3pz -0.0225470503899466 -0.0643063058979466 + 195 11 Se 3px -0.1199021430803121 0.0380623366040116 + 196 11 Se 4py -0.0050181750666219 0.0202776275418543 + 197 11 Se 4pz 0.0019951967531163 0.0021639876957588 + 198 11 Se 4px 0.0066082974584025 -0.0030186766567933 + 199 11 Se 4d-2 -0.0031618755350702 0.0010392041285917 + 200 11 Se 4d-1 -0.0040064186924659 0.0079558510697952 + 201 11 Se 4d0 -0.0009048251855200 0.0092405593262426 + 202 11 Se 4d+1 0.0013306951462831 0.0010136744618400 + 203 11 Se 4d+2 -0.0004583715276897 0.0050642665761069 + + 204 12 Cd 2s -0.0061559755210416 -0.0288617277931685 + 205 12 Cd 3s -0.0009999834562850 -0.0046027858246919 + 206 12 Cd 3py 0.0634616891135340 -0.0806613976637669 + 207 12 Cd 3pz -0.0027580799935715 -0.0326079325448605 + 208 12 Cd 3px 0.0262395941335294 0.0217604468829557 + 209 12 Cd 4py -0.0032052755265604 0.0043138727983210 + 210 12 Cd 4pz -0.0017883972129327 0.0045080217037297 + 211 12 Cd 4px 0.0000909628450440 -0.0024874858513457 + 212 12 Cd 4d-2 0.0405019094571086 -0.0600670872927328 + 213 12 Cd 4d-1 -0.0278201979838298 0.0079683063337826 + 214 12 Cd 4d0 0.0104880158725427 -0.0368589143894355 + 215 12 Cd 4d+1 0.0086314294632036 -0.0158589415456079 + 216 12 Cd 4d+2 -0.0113950434837136 0.0112530223149109 + 217 12 Cd 5d-2 0.0039234319826382 -0.0067301769471412 + 218 12 Cd 5d-1 -0.0077071400716008 0.0042719067995053 + 219 12 Cd 5d0 0.0025714988472196 0.0003690677341649 + 220 12 Cd 5d+1 0.0043047765567726 -0.0045574330991453 + 221 12 Cd 5d+2 -0.0080472712502958 0.0105757301693138 + 222 12 Cd 5f-3 -0.0001294094609075 0.0006951375990307 + 223 12 Cd 5f-2 -0.0003193260391168 0.0004319052134061 + 224 12 Cd 5f-1 0.0010590359732049 -0.0015781271723899 + 225 12 Cd 5f0 0.0002427239836444 0.0005237113599358 + 226 12 Cd 5f+1 -0.0006764341662612 0.0019015342534901 + 227 12 Cd 5f+2 0.0009572964991762 -0.0009759029435825 + 228 12 Cd 5f+3 -0.0000259962099971 0.0012115120201409 + + 229 13 Cd 2s 0.1042653710143304 0.0102910393656733 + 230 13 Cd 3s -0.0000991731859581 0.0002785747389201 + 231 13 Cd 3py -0.0468984077915423 -0.0652596812609772 + 232 13 Cd 3pz -0.0922555307213760 -0.0468188330371046 + 233 13 Cd 3px 0.0327626702659002 0.0196879494292485 + 234 13 Cd 4py 0.0081907548200265 0.0078725600213827 + 235 13 Cd 4pz 0.0136954268731342 0.0055109823024475 + 236 13 Cd 4px -0.0064227654320983 -0.0061941215241822 + 237 13 Cd 4d-2 0.0167371493919359 0.0231492829572357 + 238 13 Cd 4d-1 0.0238002612574053 -0.0134129758968738 + 239 13 Cd 4d0 0.0450332511052464 0.0402072749706889 + 240 13 Cd 4d+1 0.0237345589585974 -0.0051351321298752 + 241 13 Cd 4d+2 -0.0032785447388976 0.0072856178277943 + 242 13 Cd 5d-2 -0.0023922518080231 0.0017916618309221 + 243 13 Cd 5d-1 0.0031927452976030 -0.0000177722774429 + 244 13 Cd 5d0 -0.0024363778568022 -0.0044162833551589 + 245 13 Cd 5d+1 0.0114440288480184 -0.0019822725848396 + 246 13 Cd 5d+2 -0.0052792781155709 -0.0020121650045659 + 247 13 Cd 5f-3 0.0004449838056241 -0.0021626963105117 + 248 13 Cd 5f-2 -0.0010464993611447 -0.0018778008479880 + 249 13 Cd 5f-1 0.0014117315383705 0.0004058713983517 + 250 13 Cd 5f0 0.0032427019309329 0.0000964687737122 + 251 13 Cd 5f+1 -0.0001613074000574 -0.0000727455915503 + 252 13 Cd 5f+2 0.0001876140543711 -0.0000597068357905 + 253 13 Cd 5f+3 0.0007312393974282 0.0026600565699082 + + 254 14 Cd 2s 0.0460023466644484 0.0178497043723341 + 255 14 Cd 3s 0.0001101247141953 -0.0006887250270225 + 256 14 Cd 3py 0.0386510747029102 0.0024246303020536 + 257 14 Cd 3pz 0.0299990721176799 0.0142087033344789 + 258 14 Cd 3px -0.0153275046308749 -0.0374115565083871 + 259 14 Cd 4py 0.0018729435031156 -0.0022991319690934 + 260 14 Cd 4pz -0.0023958459164357 0.0031123020349650 + 261 14 Cd 4px -0.0021425504374570 0.0022965631282384 + 262 14 Cd 4d-2 -0.0118806780945980 0.0096771078022220 + 263 14 Cd 4d-1 -0.0323345432561413 -0.0142480630592506 + 264 14 Cd 4d0 -0.0109206484490597 0.0048097205231450 + 265 14 Cd 4d+1 0.0217881940060244 0.0099474852201600 + 266 14 Cd 4d+2 0.0035989325035179 -0.0093298753447127 + 267 14 Cd 5d-2 -0.0016937437937252 0.0045279940455640 + 268 14 Cd 5d-1 -0.0094535232486893 -0.0089561249265075 + 269 14 Cd 5d0 0.0010224705474072 0.0011823702048990 + 270 14 Cd 5d+1 0.0127000420472258 0.0016634842995228 + 271 14 Cd 5d+2 0.0058047528680864 -0.0077567279180834 + 272 14 Cd 5f-3 -0.0000338584972698 -0.0003199548250191 + 273 14 Cd 5f-2 -0.0019837671186058 -0.0010443465443031 + 274 14 Cd 5f-1 0.0003042140179062 -0.0002026391548519 + 275 14 Cd 5f0 -0.0004251240922996 -0.0012412476083617 + 276 14 Cd 5f+1 -0.0003453120888583 -0.0007101786568333 + 277 14 Cd 5f+2 -0.0008289811735133 -0.0012032643335226 + 278 14 Cd 5f+3 -0.0004578400113355 0.0023968018494411 + + 279 15 Se 2s -0.0211377890794244 -0.0224821462368793 + 280 15 Se 3s 0.0020740782342265 0.0028403910862391 + 281 15 Se 3py -0.2475268933836176 -0.1006699996017580 + 282 15 Se 3pz 0.0267985481052059 -0.0713098492241118 + 283 15 Se 3px 0.1203835342566639 0.2213781564895350 + 284 15 Se 4py 0.0146803890348719 0.0056403102302866 + 285 15 Se 4pz -0.0012696615180306 0.0047250059613481 + 286 15 Se 4px -0.0051211084508197 -0.0140227860859049 + 287 15 Se 4d-2 -0.0053661761725062 -0.0102226189000047 + 288 15 Se 4d-1 -0.0058160509160556 0.0011611266078689 + 289 15 Se 4d0 -0.0074216185325827 -0.0046137002253774 + 290 15 Se 4d+1 0.0046388290108456 0.0009432487713994 + 291 15 Se 4d+2 -0.0052528109045290 0.0025744773209444 + + 292 16 Se 2s 0.0904418037513045 0.0156902562309303 + 293 16 Se 3s -0.0083443389901647 -0.0010175953831567 + 294 16 Se 3py -0.1632926833865204 -0.1456478934353053 + 295 16 Se 3pz -0.2314882012827525 -0.1272676091147832 + 296 16 Se 3px 0.3039417624308448 0.0901738569325437 + 297 16 Se 4py 0.0069690220066584 0.0063746022838007 + 298 16 Se 4pz 0.0063392227546729 0.0050524962978172 + 299 16 Se 4px -0.0137338237748286 -0.0047664507851276 + 300 16 Se 4d-2 -0.0032432328161730 0.0003006023923496 + 301 16 Se 4d-1 -0.0096484421383310 -0.0056480368370832 + 302 16 Se 4d0 -0.0065073033569290 -0.0073466458649587 + 303 16 Se 4d+1 0.0117554769933367 0.0057058694106612 + 304 16 Se 4d+2 -0.0087647904242754 -0.0046160255463694 + + 305 17 Cd 2s 0.0623237517546328 0.0035998436402954 + 306 17 Cd 3s -0.0050147314947129 0.0022561297772341 + 307 17 Cd 3py 0.0626261079341739 0.0134633305186920 + 308 17 Cd 3pz 0.0055219606585734 0.0047112826286673 + 309 17 Cd 3px -0.0259989956118078 -0.0317903994485898 + 310 17 Cd 4py -0.0114890328456275 -0.0032065291644420 + 311 17 Cd 4pz 0.0002503338633914 0.0008102999906596 + 312 17 Cd 4px -0.0006437871702288 0.0011831145854722 + 313 17 Cd 4d-2 -0.0256790433396111 -0.0123381400579963 + 314 17 Cd 4d-1 0.0359152559165179 0.0032727211839988 + 315 17 Cd 4d0 -0.0160352181694225 0.0011942453544469 + 316 17 Cd 4d+1 0.0219776089478645 0.0252297876095446 + 317 17 Cd 4d+2 -0.0345166064161526 -0.0190292532425827 + 318 17 Cd 5d-2 -0.0097344281252754 -0.0034032543314124 + 319 17 Cd 5d-1 0.0110958254981756 0.0001597169582564 + 320 17 Cd 5d0 0.0001620711357094 0.0004211647392395 + 321 17 Cd 5d+1 0.0058542005438280 0.0017894493040074 + 322 17 Cd 5d+2 -0.0133791166061687 -0.0058016639714371 + 323 17 Cd 5f-3 0.0003239629892358 0.0004785058791638 + 324 17 Cd 5f-2 -0.0032314332048643 -0.0022262932738828 + 325 17 Cd 5f-1 0.0026436702265906 0.0013348479362544 + 326 17 Cd 5f0 -0.0006848221636869 0.0001108138658059 + 327 17 Cd 5f+1 0.0008883099248636 -0.0015079528044729 + 328 17 Cd 5f+2 -0.0002373154082458 -0.0002016771877343 + 329 17 Cd 5f+3 0.0041413497118799 0.0014598575736746 + + 330 18 Cd 2s 0.0176223106261960 -0.0569374366727079 + 331 18 Cd 3s 0.0013626895198103 -0.0010400268360821 + 332 18 Cd 3py -0.0284740693861316 0.0470812599115380 + 333 18 Cd 3pz -0.0133544861470448 -0.0029998205696662 + 334 18 Cd 3px 0.0116901585043413 0.0070145036386859 + 335 18 Cd 4py 0.0003879148299621 -0.0030822656603043 + 336 18 Cd 4pz 0.0021027813627448 0.0035204642843743 + 337 18 Cd 4px -0.0008433400101199 0.0007161618838172 + 338 18 Cd 4d-2 0.0016587911498185 0.0002763214182947 + 339 18 Cd 4d-1 -0.0094588635293519 0.0393711601762679 + 340 18 Cd 4d0 0.0100200414831678 -0.0185286406470879 + 341 18 Cd 4d+1 0.0199092306143492 0.0013177817854850 + 342 18 Cd 4d+2 0.0097865730303034 0.0053939058224135 + 343 18 Cd 5d-2 -0.0024195289532325 0.0005749157588297 + 344 18 Cd 5d-1 -0.0008411642000791 0.0137365623563241 + 345 18 Cd 5d0 0.0031215916017807 -0.0102956665988372 + 346 18 Cd 5d+1 0.0041347374529244 -0.0022230347555230 + 347 18 Cd 5d+2 0.0035411219407956 0.0044853674883969 + 348 18 Cd 5f-3 0.0000917209108018 0.0002603544811663 + 349 18 Cd 5f-2 0.0003269685171348 -0.0002590522196626 + 350 18 Cd 5f-1 -0.0009359113761184 -0.0025645993605304 + 351 18 Cd 5f0 0.0002959255879897 -0.0006798605289170 + 352 18 Cd 5f+1 -0.0003487067290123 0.0004016316174009 + 353 18 Cd 5f+2 0.0001674678709141 -0.0019989846220862 + 354 18 Cd 5f+3 0.0002981355305664 0.0000532011201528 + + 355 19 Se 2s -0.0200741069580307 -0.0007153220698961 + 356 19 Se 3s 0.0012209425637209 0.0008343199289735 + 357 19 Se 3py 0.1378525922050384 -0.0153537821803922 + 358 19 Se 3pz 0.0675138893151395 -0.0284510834660630 + 359 19 Se 3px 0.0091121182075620 0.0330906699276294 + 360 19 Se 4py -0.0074024579449189 -0.0021854340467035 + 361 19 Se 4pz 0.0002194386425404 0.0027565829706382 + 362 19 Se 4px -0.0022258068586621 -0.0008610823132384 + 363 19 Se 4d-2 0.0024378575859528 0.0014857242320064 + 364 19 Se 4d-1 0.0043305627679735 0.0000871848098910 + 365 19 Se 4d0 0.0014986395843749 -0.0015162452765294 + 366 19 Se 4d+1 -0.0006831530068025 -0.0008953120663904 + 367 19 Se 4d+2 0.0009603554213315 -0.0000035607766966 + + 368 20 Se 2s 0.0021696850506139 0.0112519861956992 + 369 20 Se 3s -0.0008374044432762 -0.0013274261555810 + 370 20 Se 3py 0.0059795595979929 -0.0466646903441870 + 371 20 Se 3pz -0.1322909479735234 0.0365375465782122 + 372 20 Se 3px 0.1837648315435091 -0.1422947352141082 + 373 20 Se 4py -0.0026069344900745 0.0037031328950764 + 374 20 Se 4pz 0.0094204706596254 -0.0038432489590616 + 375 20 Se 4px -0.0119699058330673 0.0108653041248076 + 376 20 Se 4d-2 -0.0060441137600655 0.0032539762041938 + 377 20 Se 4d-1 0.0024627645289731 -0.0023645591333421 + 378 20 Se 4d0 -0.0064467155314212 0.0056758331266289 + 379 20 Se 4d+1 0.0054951322712825 0.0003828210434603 + 380 20 Se 4d+2 -0.0041792919371487 0.0064349136605473 + + 381 21 Se 2s -0.0478332804020230 0.0997570219621081 + 382 21 Se 3s 0.0045028288009464 -0.0115570330549259 + 383 21 Se 3py -0.2076124982837556 0.3466376587119043 + 384 21 Se 3pz -0.0212784377972703 0.1168985198807700 + 385 21 Se 3px 0.0353877105102972 -0.0332488228429640 + 386 21 Se 4py 0.0149765956791634 -0.0205905639159284 + 387 21 Se 4pz 0.0017331172437375 -0.0080143201815062 + 388 21 Se 4px -0.0015692046187767 0.0016100506117721 + 389 21 Se 4d-2 0.0012182210489567 -0.0047552168740028 + 390 21 Se 4d-1 -0.0009584597721588 -0.0019834887038570 + 391 21 Se 4d0 0.0008853221980761 0.0050948736995011 + 392 21 Se 4d+1 -0.0014324153434094 -0.0016054059285555 + 393 21 Se 4d+2 -0.0000052273159033 0.0018956739490588 + + 394 22 Cd 2s -0.0388899064014895 0.0112409444628539 + 395 22 Cd 3s 0.0030557067964721 0.0022027570878959 + 396 22 Cd 3py -0.0000585802001383 0.0143543984662800 + 397 22 Cd 3pz -0.0259872137547179 0.0471886718989549 + 398 22 Cd 3px 0.0042257317254583 -0.0006040211425694 + 399 22 Cd 4py 0.0046704045539398 -0.0031862592795214 + 400 22 Cd 4pz 0.0037864929408454 -0.0051379961810634 + 401 22 Cd 4px 0.0009342978131204 0.0010676292793585 + 402 22 Cd 4d-2 -0.0312971871834445 -0.0085160643839811 + 403 22 Cd 4d-1 0.0005755200406398 -0.0283554325732016 + 404 22 Cd 4d0 0.0063325657945833 0.0101443538474012 + 405 22 Cd 4d+1 -0.0323473667694801 -0.0333514036842824 + 406 22 Cd 4d+2 -0.0164212133232774 0.0121402000654642 + 407 22 Cd 5d-2 -0.0094927942440533 0.0029753214538703 + 408 22 Cd 5d-1 0.0022574386654192 -0.0080115899548122 + 409 22 Cd 5d0 0.0017044297584558 0.0042806357917584 + 410 22 Cd 5d+1 -0.0125066821217274 -0.0000145780433730 + 411 22 Cd 5d+2 -0.0063362906277139 -0.0014165045440110 + 412 22 Cd 5f-3 0.0017689464709120 0.0021062787859520 + 413 22 Cd 5f-2 -0.0003398946036796 -0.0013810891418236 + 414 22 Cd 5f-1 -0.0007771740469570 0.0009527089039662 + 415 22 Cd 5f0 0.0005049717048733 0.0001227881184115 + 416 22 Cd 5f+1 -0.0017711168187189 -0.0000859217811140 + 417 22 Cd 5f+2 0.0019550710440242 0.0003711478469942 + 418 22 Cd 5f+3 -0.0013456558722479 0.0017661056987854 + + 419 23 Se 2s 0.0332725617413891 -0.0223926916477627 + 420 23 Se 3s -0.0034670998678314 0.0028720421215605 + 421 23 Se 3py -0.0214396000280859 0.0080343909265572 + 422 23 Se 3pz 0.0015200671780938 0.1663222132829813 + 423 23 Se 3px -0.2023300023002204 -0.0515447699187187 + 424 23 Se 4py -0.0009164635129949 -0.0007520324814638 + 425 23 Se 4pz 0.0007612219481673 -0.0069756142257661 + 426 23 Se 4px 0.0058062386942902 0.0001506780270474 + 427 23 Se 4d-2 0.0027311569831543 0.0018471497667099 + 428 23 Se 4d-1 -0.0008975335691447 -0.0023808831856975 + 429 23 Se 4d0 0.0033279856330189 0.0067746158419637 + 430 23 Se 4d+1 -0.0030396054272421 0.0016436122509187 + 431 23 Se 4d+2 -0.0072049990644329 -0.0022310260508126 + + 432 24 Se 2s 0.0093916353785802 -0.0087282192572189 + 433 24 Se 3s -0.0019065586650478 0.0014487413674249 + 434 24 Se 3py -0.1357581054263147 0.1217205567293088 + 435 24 Se 3pz 0.1280786022641524 0.0983439048570150 + 436 24 Se 3px -0.0194403431918536 -0.0381606448382011 + 437 24 Se 4py 0.0093252751108335 -0.0065761989545416 + 438 24 Se 4pz -0.0059594638131660 -0.0035956899153098 + 439 24 Se 4px -0.0015367252470207 0.0035357104160077 + 440 24 Se 4d-2 -0.0041225617427073 0.0018106703036931 + 441 24 Se 4d-1 0.0032588666615334 0.0012154731130354 + 442 24 Se 4d0 0.0029316750638287 0.0012909776179050 + 443 24 Se 4d+1 0.0039499662168616 0.0015136441789202 + 444 24 Se 4d+2 0.0012357538247870 -0.0005545800754664 + + 445 25 Cd 2s -0.0009428302957832 -0.0447559874600256 + 446 25 Cd 3s -0.0001261767546844 0.0001522247189075 + 447 25 Cd 3py 0.0092931134525133 -0.0543850977449247 + 448 25 Cd 3pz 0.0399858140383763 -0.0063155410754146 + 449 25 Cd 3px -0.0236997062904666 -0.0217522525362251 + 450 25 Cd 4py 0.0001139933880235 -0.0007535191114721 + 451 25 Cd 4pz -0.0022267360349334 -0.0019092239803635 + 452 25 Cd 4px 0.0007863961315204 -0.0027715915890643 + 453 25 Cd 4d-2 0.0269533586131191 -0.0018236703856937 + 454 25 Cd 4d-1 0.0044973600179150 0.0050041800032931 + 455 25 Cd 4d0 0.0030578001551820 -0.0022926589019989 + 456 25 Cd 4d+1 -0.0085464577743787 -0.0199266551131872 + 457 25 Cd 4d+2 0.0171069511213910 0.0109695762272617 + 458 25 Cd 5d-2 0.0021906056819476 -0.0009880884098493 + 459 25 Cd 5d-1 0.0078426010330085 -0.0049904906485498 + 460 25 Cd 5d0 0.0027330637771046 0.0066624561626565 + 461 25 Cd 5d+1 -0.0037056752713626 -0.0100457904501912 + 462 25 Cd 5d+2 0.0013067902765225 0.0063100060241536 + 463 25 Cd 5f-3 -0.0014712446577316 -0.0005541331098980 + 464 25 Cd 5f-2 0.0013066869974157 0.0007158992648334 + 465 25 Cd 5f-1 0.0001614182815902 -0.0007845028339084 + 466 25 Cd 5f0 -0.0009950525283708 0.0001749766781678 + 467 25 Cd 5f+1 -0.0003097319651373 -0.0005480831285600 + 468 25 Cd 5f+2 -0.0003644077600307 0.0014723963057805 + 469 25 Cd 5f+3 0.0013712675163479 0.0009824476474921 + + 470 26 Cd 2s -0.0378480615800168 0.0730480814430039 + 471 26 Cd 3s 0.0001542495126430 -0.0047009907058209 + 472 26 Cd 3py -0.0166170864813537 0.0588435988272603 + 473 26 Cd 3pz -0.0316247167640245 0.0019271354827525 + 474 26 Cd 3px -0.0143529627783181 0.0377525855025231 + 475 26 Cd 4py 0.0049714652391009 -0.0084605845118680 + 476 26 Cd 4pz 0.0022542093430114 -0.0035623841192972 + 477 26 Cd 4px 0.0025507184961819 -0.0043438874877111 + 478 26 Cd 4d-2 -0.0257674997134383 0.0406408578014378 + 479 26 Cd 4d-1 0.0235055874046373 -0.0095828172789755 + 480 26 Cd 4d0 0.0100911711420025 -0.0067898706263896 + 481 26 Cd 4d+1 -0.0099589481179689 0.0065955796457262 + 482 26 Cd 4d+2 -0.0198800380120866 0.0452815732820064 + 483 26 Cd 5d-2 -0.0042847110532102 0.0055984547870822 + 484 26 Cd 5d-1 0.0031985579976134 -0.0028989205036056 + 485 26 Cd 5d0 0.0017061019172952 0.0041486896113998 + 486 26 Cd 5d+1 -0.0028688894134779 -0.0025235298788818 + 487 26 Cd 5d+2 -0.0019883628494264 0.0136083309703723 + 488 26 Cd 5f-3 -0.0007991580352614 0.0010081966482834 + 489 26 Cd 5f-2 0.0007479242570684 -0.0014672358025072 + 490 26 Cd 5f-1 0.0003819351235135 0.0007570452057306 + 491 26 Cd 5f0 -0.0013091415840400 0.0010063714273670 + 492 26 Cd 5f+1 0.0014396474751045 0.0015755650822978 + 493 26 Cd 5f+2 -0.0011902987443088 0.0005015211556430 + 494 26 Cd 5f+3 -0.0007881462286157 0.0042373451115075 + + 103 104 + -0.2220192827555479 -0.2199137800997601 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s -0.1378777117444200 -0.0519495863633116 + 2 1 Cd 3s 0.0082669393420491 0.0035548782787874 + 3 1 Cd 3py 0.0127180935190985 -0.0051705184110032 + 4 1 Cd 3pz -0.0144628526266504 -0.0022536277410589 + 5 1 Cd 3px -0.0256538450876708 -0.0134948968947608 + 6 1 Cd 4py -0.0078561383349075 -0.0008489060329124 + 7 1 Cd 4pz 0.0008736255422713 -0.0012742168218982 + 8 1 Cd 4px 0.0027780395563347 -0.0002304862727741 + 9 1 Cd 4d-2 -0.0185490394344339 0.0008422232541948 + 10 1 Cd 4d-1 -0.0126217404856356 -0.0063917310353956 + 11 1 Cd 4d0 0.0227850428964547 -0.0103283031318696 + 12 1 Cd 4d+1 -0.0149157005331798 -0.0060973267719157 + 13 1 Cd 4d+2 0.0368731671345702 0.0090110745676919 + 14 1 Cd 5d-2 -0.0048288653656791 0.0021422240448350 + 15 1 Cd 5d-1 -0.0060389384219163 0.0001232606309256 + 16 1 Cd 5d0 0.0029633949527583 -0.0036147468114581 + 17 1 Cd 5d+1 0.0008593484085122 -0.0001165978474033 + 18 1 Cd 5d+2 -0.0058734621010258 -0.0017184075803329 + 19 1 Cd 5f-3 0.0024264965515828 -0.0002395281623163 + 20 1 Cd 5f-2 0.0001979513450731 -0.0003289530797528 + 21 1 Cd 5f-1 0.0001320518144116 0.0001159512260275 + 22 1 Cd 5f0 0.0007639490438991 0.0008567597507358 + 23 1 Cd 5f+1 -0.0012004140111605 0.0000061409284776 + 24 1 Cd 5f+2 -0.0015555969046458 0.0012708087741284 + 25 1 Cd 5f+3 -0.0017598223433026 0.0006809628655039 + + 26 2 Cd 2s 0.0165660500436993 -0.0169596609222843 + 27 2 Cd 3s -0.0028161677373806 0.0019164175885758 + 28 2 Cd 3py -0.0301502924966439 0.0041166903627409 + 29 2 Cd 3pz -0.0730569942636990 0.0000841443449879 + 30 2 Cd 3px -0.0064431278488491 -0.0531451926802363 + 31 2 Cd 4py 0.0003721996559731 -0.0004572240703231 + 32 2 Cd 4pz 0.0023609322470599 -0.0011713518860364 + 33 2 Cd 4px -0.0024633504825359 0.0030948068549922 + 34 2 Cd 4d-2 0.0199179612458590 0.0167215455887928 + 35 2 Cd 4d-1 -0.0282777053696799 0.0222232669129958 + 36 2 Cd 4d0 -0.0075725482199955 0.0094077822978486 + 37 2 Cd 4d+1 0.0128599422618641 0.0133500122335199 + 38 2 Cd 4d+2 -0.0110046232352930 0.0073348952399688 + 39 2 Cd 5d-2 0.0063911468903867 0.0067575985045272 + 40 2 Cd 5d-1 -0.0076467461456264 0.0006109006480883 + 41 2 Cd 5d0 -0.0037656344085995 0.0030924191295072 + 42 2 Cd 5d+1 0.0125156940741467 -0.0024808250857042 + 43 2 Cd 5d+2 -0.0087952670100858 0.0060675521971129 + 44 2 Cd 5f-3 -0.0014295862484564 -0.0013424455705541 + 45 2 Cd 5f-2 0.0004170932159112 0.0008969471946639 + 46 2 Cd 5f-1 0.0014912630937258 -0.0010111811786515 + 47 2 Cd 5f0 0.0022067420623248 -0.0004924822085674 + 48 2 Cd 5f+1 -0.0009103741098423 -0.0006567591193268 + 49 2 Cd 5f+2 0.0000629604812789 -0.0007685129196866 + 50 2 Cd 5f+3 -0.0000310994646874 0.0002495274198624 + + 51 3 Cd 2s -0.0308893999017087 -0.0073936400918164 + 52 3 Cd 3s 0.0025417707510730 -0.0052930166606335 + 53 3 Cd 3py 0.0147780593318973 0.0518370925524027 + 54 3 Cd 3pz 0.0074566987180029 0.0024919164436992 + 55 3 Cd 3px 0.0359426786925110 0.0187206980813886 + 56 3 Cd 4py -0.0039173717399982 0.0007099571826311 + 57 3 Cd 4pz -0.0030311401309157 0.0034817054007252 + 58 3 Cd 4px -0.0028569960807536 0.0030606077507802 + 59 3 Cd 4d-2 -0.0330260047396892 -0.0280363783558474 + 60 3 Cd 4d-1 0.0347138344296309 0.0290984922493701 + 61 3 Cd 4d0 0.0324165909206020 0.0037422993364057 + 62 3 Cd 4d+1 0.0169616909066653 0.0202226710677531 + 63 3 Cd 4d+2 -0.0234130325722702 0.0260178647139575 + 64 3 Cd 5d-2 -0.0083850628522118 -0.0079007905361334 + 65 3 Cd 5d-1 0.0111052201938087 0.0111683826302263 + 66 3 Cd 5d0 0.0085288022917161 0.0026905618619272 + 67 3 Cd 5d+1 0.0016227332291422 0.0019975943613149 + 68 3 Cd 5d+2 -0.0127831250693664 0.0008795517801529 + 69 3 Cd 5f-3 0.0011507835616491 0.0029283875255630 + 70 3 Cd 5f-2 -0.0023284242098139 0.0017861799471743 + 71 3 Cd 5f-1 0.0009571709105828 0.0019411134592490 + 72 3 Cd 5f0 0.0014500245728628 -0.0018600951791464 + 73 3 Cd 5f+1 -0.0001491237423430 -0.0005933546757809 + 74 3 Cd 5f+2 -0.0005319558002414 -0.0019476212646047 + 75 3 Cd 5f+3 0.0021195217334639 -0.0001852603600774 + + 76 4 Se 2s 0.0153660702263310 -0.0258285178706430 + 77 4 Se 3s -0.0018092034275322 0.0019822134168196 + 78 4 Se 3py -0.0404998605230133 -0.0953628771943387 + 79 4 Se 3pz -0.0245205197852023 0.0603868957613604 + 80 4 Se 3px 0.1899246984088482 0.0028258587313479 + 81 4 Se 4py 0.0000286400476488 0.0051338407693124 + 82 4 Se 4pz 0.0000299124812041 -0.0039041480513857 + 83 4 Se 4px -0.0102979329420696 0.0000165913837942 + 84 4 Se 4d-2 -0.0060349444637132 0.0003330694704637 + 85 4 Se 4d-1 0.0066989986033872 -0.0015637173517695 + 86 4 Se 4d0 0.0003082337288996 0.0001946814550021 + 87 4 Se 4d+1 -0.0014140838530199 -0.0016366493580572 + 88 4 Se 4d+2 -0.0075603264223892 -0.0030917594692412 + + 89 5 Se 2s -0.0362815150595129 -0.0127292399297842 + 90 5 Se 3s 0.0027235268622435 0.0005007305477962 + 91 5 Se 3py 0.1718262933665289 0.0264425222043044 + 92 5 Se 3pz 0.0127613740866755 -0.0125127733803713 + 93 5 Se 3px 0.0367992552023967 0.0042425708397850 + 94 5 Se 4py -0.0088231932268592 0.0001154545120526 + 95 5 Se 4pz -0.0041398471582918 0.0012248246782422 + 96 5 Se 4px -0.0050200583414675 0.0003164897308225 + 97 5 Se 4d-2 0.0004724359826452 0.0015882520196084 + 98 5 Se 4d-1 0.0006818404433844 -0.0018405920619205 + 99 5 Se 4d0 -0.0052008350515598 -0.0011808276680251 + 100 5 Se 4d+1 -0.0022726321114276 0.0009484231711198 + 101 5 Se 4d+2 -0.0076587675309387 -0.0016570895444453 + + 102 6 Se 2s 0.0101581701846877 -0.0113990395471413 + 103 6 Se 3s -0.0013453809755914 0.0008187551403827 + 104 6 Se 3py 0.0142948353749755 0.1202740278828812 + 105 6 Se 3pz 0.0700988028871746 -0.0031927634585496 + 106 6 Se 3px 0.1193104205814542 0.0186606525479512 + 107 6 Se 4py -0.0015553131794139 -0.0064888148988523 + 108 6 Se 4pz -0.0037335594428374 0.0024782300661227 + 109 6 Se 4px -0.0080070768536854 -0.0015793978737024 + 110 6 Se 4d-2 0.0015732840508712 -0.0023674689626507 + 111 6 Se 4d-1 0.0024034818838377 0.0001455066188626 + 112 6 Se 4d0 0.0019496819369855 -0.0014299060413143 + 113 6 Se 4d+1 -0.0036448261688113 -0.0013286716342448 + 114 6 Se 4d+2 -0.0032515507169124 -0.0034898834860607 + + 115 7 Se 2s -0.0093988196063700 -0.0173349249682495 + 116 7 Se 3s 0.0014855140183429 0.0016736482781991 + 117 7 Se 3py -0.1199240482263969 0.1205791883565156 + 118 7 Se 3pz -0.0161472299257766 0.0105665259501259 + 119 7 Se 3px 0.2407622025033581 -0.0294105369771000 + 120 7 Se 4py 0.0065285548242665 -0.0104124501854386 + 121 7 Se 4pz 0.0005441333675011 -0.0009727266946119 + 122 7 Se 4px -0.0116817095930387 0.0014265952222194 + 123 7 Se 4d-2 -0.0020337100665562 0.0010113057775975 + 124 7 Se 4d-1 0.0017171420678975 -0.0078889222471466 + 125 7 Se 4d0 0.0004992372652226 -0.0027415534122143 + 126 7 Se 4d+1 -0.0072012498310839 -0.0004163163403527 + 127 7 Se 4d+2 0.0009502546394309 -0.0017670587870249 + + 128 8 Cd 2s 0.0150744361940884 -0.0052482295145304 + 129 8 Cd 3s 0.0045785955275963 -0.0019148699186113 + 130 8 Cd 3py 0.0132597152545442 0.0540708895378703 + 131 8 Cd 3pz 0.0173656554716394 -0.0504974372479679 + 132 8 Cd 3px 0.0342237002456623 0.0234808362627079 + 133 8 Cd 4py 0.0018684846505825 -0.0046845793854971 + 134 8 Cd 4pz -0.0016381179296675 0.0001740664314959 + 135 8 Cd 4px 0.0001971203433588 -0.0009239625644444 + 136 8 Cd 4d-2 0.0099571806690672 -0.0276085106898615 + 137 8 Cd 4d-1 0.0159118940986728 0.0279850059389918 + 138 8 Cd 4d0 0.0044283658482244 -0.0146345599617186 + 139 8 Cd 4d+1 -0.0224627708319838 -0.0032760587233826 + 140 8 Cd 4d+2 -0.0173473253221512 0.0307585631429857 + 141 8 Cd 5d-2 0.0004569065251655 -0.0025838393790118 + 142 8 Cd 5d-1 0.0031577306767266 0.0052470860821765 + 143 8 Cd 5d0 -0.0040005002102960 -0.0007206076723748 + 144 8 Cd 5d+1 -0.0060650354204686 -0.0021455230685942 + 145 8 Cd 5d+2 -0.0091107192512872 0.0042854762288693 + 146 8 Cd 5f-3 0.0033709104048860 0.0002356878204723 + 147 8 Cd 5f-2 0.0009260322115977 -0.0022014806447200 + 148 8 Cd 5f-1 -0.0018654731511349 -0.0021461544037971 + 149 8 Cd 5f0 -0.0000315043144353 0.0016106888032958 + 150 8 Cd 5f+1 0.0002361602744857 -0.0033987442532109 + 151 8 Cd 5f+2 0.0026186245715763 0.0003342283778418 + 152 8 Cd 5f+3 0.0001193936397702 -0.0012203467312958 + + 153 9 Cd 2s -0.0009209354695485 -0.0204502135614870 + 154 9 Cd 3s -0.0053900621610293 0.0002615653373799 + 155 9 Cd 3py -0.0205542286309878 -0.0218970358309601 + 156 9 Cd 3pz -0.0138711068290712 0.0079471736076141 + 157 9 Cd 3px -0.0123850636377393 0.0077144787434531 + 158 9 Cd 4py -0.0004784938587605 0.0005073780638028 + 159 9 Cd 4pz 0.0029098986336842 0.0018516024488736 + 160 9 Cd 4px -0.0013963424303483 -0.0033193349155503 + 161 9 Cd 4d-2 -0.0015782129961138 0.0144313589550111 + 162 9 Cd 4d-1 -0.0012653474438017 0.0027501409625091 + 163 9 Cd 4d0 0.0140214406963094 0.0072018737351534 + 164 9 Cd 4d+1 -0.0023985117867462 -0.0119952268498688 + 165 9 Cd 4d+2 0.0094953849337123 -0.0088956650093303 + 166 9 Cd 5d-2 -0.0025670053999146 0.0032503091819439 + 167 9 Cd 5d-1 0.0007918133458153 0.0030426958690386 + 168 9 Cd 5d0 0.0008741053753472 -0.0014733791062096 + 169 9 Cd 5d+1 0.0022260658333898 -0.0024912104263107 + 170 9 Cd 5d+2 -0.0006344277067716 0.0053168042560333 + 171 9 Cd 5f-3 0.0008236065749982 -0.0000598816256681 + 172 9 Cd 5f-2 -0.0001811931322289 -0.0008829898228198 + 173 9 Cd 5f-1 -0.0003859937334518 -0.0018277288161331 + 174 9 Cd 5f0 -0.0002977663659088 -0.0002731834470961 + 175 9 Cd 5f+1 0.0000262147083252 0.0002803518904762 + 176 9 Cd 5f+2 0.0004498248658890 -0.0009711697473900 + 177 9 Cd 5f+3 0.0011296859720062 -0.0014162969624688 + + 178 10 Se 2s 0.0151306269447982 -0.0232369254835360 + 179 10 Se 3s -0.0017897481562650 0.0029733422441613 + 180 10 Se 3py 0.0219712643079681 0.2275622930955022 + 181 10 Se 3pz 0.0578339360996095 -0.0782339369695686 + 182 10 Se 3px -0.0234677104293182 0.0656607730265632 + 183 10 Se 4py -0.0014308587693252 -0.0121454170015592 + 184 10 Se 4pz -0.0037543726741852 0.0041458500301110 + 185 10 Se 4px 0.0002342636633540 -0.0036785990143109 + 186 10 Se 4d-2 -0.0005125872003114 0.0035889145311438 + 187 10 Se 4d-1 -0.0005682016769948 -0.0093657354918890 + 188 10 Se 4d0 -0.0001223943646926 0.0004587798114320 + 189 10 Se 4d+1 0.0017373318638495 -0.0013181445018630 + 190 10 Se 4d+2 -0.0004218179455266 0.0013356940266383 + + 191 11 Se 2s -0.0209550526204637 0.0745355773050234 + 192 11 Se 3s 0.0024084443873274 -0.0080262118383061 + 193 11 Se 3py 0.1578858464335616 -0.1605158296829153 + 194 11 Se 3pz -0.1079500000810175 0.2942067293826509 + 195 11 Se 3px 0.0922762125925251 0.3608537339474451 + 196 11 Se 4py -0.0062634596999864 0.0099981384365505 + 197 11 Se 4pz 0.0090350113670715 -0.0169928808497844 + 198 11 Se 4px -0.0031443814177783 -0.0203698204710820 + 199 11 Se 4d-2 0.0042309196041530 0.0126401572322796 + 200 11 Se 4d-1 -0.0053058261077648 0.0037942724819285 + 201 11 Se 4d0 -0.0007214717872002 -0.0061521602673175 + 202 11 Se 4d+1 -0.0006073397155683 -0.0038097544866406 + 203 11 Se 4d+2 -0.0049475955073565 0.0021508692121941 + + 204 12 Cd 2s 0.0296833474408560 0.0784583052476726 + 205 12 Cd 3s -0.0006078091077751 0.0009325854922313 + 206 12 Cd 3py -0.0172346906054096 -0.0815501081396255 + 207 12 Cd 3pz 0.0227112127397639 0.0059136194564889 + 208 12 Cd 3px -0.0472411528884308 0.0416957745834553 + 209 12 Cd 4py 0.0002287119854388 0.0058752806920390 + 210 12 Cd 4pz 0.0019280311372308 -0.0004347259362320 + 211 12 Cd 4px 0.0026852191591412 0.0007038301032287 + 212 12 Cd 4d-2 -0.0060477250558484 -0.0379765062075788 + 213 12 Cd 4d-1 -0.0001116384323296 0.0393213780416103 + 214 12 Cd 4d0 0.0098834744224115 -0.0098944390734691 + 215 12 Cd 4d+1 0.0436578671360597 -0.0224047980447238 + 216 12 Cd 4d+2 -0.0018474376739157 -0.0241285620333912 + 217 12 Cd 5d-2 -0.0079326110516650 0.0004183302136623 + 218 12 Cd 5d-1 -0.0013020235612729 0.0128201785052488 + 219 12 Cd 5d0 -0.0029693720047069 0.0133816647097854 + 220 12 Cd 5d+1 0.0098834607838447 -0.0158137263761829 + 221 12 Cd 5d+2 -0.0046702677782685 -0.0001202416627844 + 222 12 Cd 5f-3 -0.0015468144088456 -0.0019132517632148 + 223 12 Cd 5f-2 0.0013642430035991 -0.0017035894362629 + 224 12 Cd 5f-1 -0.0002859732386947 -0.0000312733836580 + 225 12 Cd 5f0 0.0000272094424464 -0.0026937012452664 + 226 12 Cd 5f+1 -0.0009355785506224 0.0021869453942126 + 227 12 Cd 5f+2 -0.0000361525435691 -0.0028701267102251 + 228 12 Cd 5f+3 0.0010123966725397 0.0018932454127265 + + 229 13 Cd 2s 0.0135346850737596 -0.0236805924750149 + 230 13 Cd 3s 0.0004200955942600 0.0010970978358594 + 231 13 Cd 3py -0.0097609793400754 -0.0074732442371983 + 232 13 Cd 3pz 0.0176899484202179 0.0045397198621691 + 233 13 Cd 3px 0.0513640246277680 0.0201861622630793 + 234 13 Cd 4py 0.0011883575542372 0.0028546690428981 + 235 13 Cd 4pz 0.0026454389809428 0.0022818935044630 + 236 13 Cd 4px -0.0060485438858165 -0.0024476679700070 + 237 13 Cd 4d-2 0.0089672351687247 0.0376019651019290 + 238 13 Cd 4d-1 -0.0354209666667656 -0.0125927744609034 + 239 13 Cd 4d0 0.0196514001204012 0.0019448563296686 + 240 13 Cd 4d+1 0.0238280133375253 0.0369517290091796 + 241 13 Cd 4d+2 0.0004651916377384 -0.0082651373254295 + 242 13 Cd 5d-2 -0.0029675329550874 0.0035061237434273 + 243 13 Cd 5d-1 -0.0125526237497970 -0.0048424089094255 + 244 13 Cd 5d0 -0.0038866524483307 -0.0005727546365040 + 245 13 Cd 5d+1 0.0004960076588237 0.0103276903555798 + 246 13 Cd 5d+2 -0.0042609168928966 -0.0028645288203109 + 247 13 Cd 5f-3 -0.0000230634478892 0.0010031310521264 + 248 13 Cd 5f-2 -0.0014025486878370 -0.0006258249141261 + 249 13 Cd 5f-1 0.0014896082764224 0.0006207397498847 + 250 13 Cd 5f0 0.0004945277427497 0.0006198635726714 + 251 13 Cd 5f+1 -0.0005509455369978 0.0000499058274294 + 252 13 Cd 5f+2 -0.0013287680289358 -0.0004010955828454 + 253 13 Cd 5f+3 0.0000510669334807 -0.0006149398338833 + + 254 14 Cd 2s -0.0478039230471709 -0.0619744759069119 + 255 14 Cd 3s 0.0026830106530713 0.0004284035765432 + 256 14 Cd 3py 0.0128159197255407 0.0161510964079902 + 257 14 Cd 3pz 0.0428344307068396 -0.0203693136535104 + 258 14 Cd 3px -0.0221177774622071 -0.0013203054922584 + 259 14 Cd 4py 0.0045415611024851 0.0002253679608171 + 260 14 Cd 4pz -0.0053108858887391 0.0027587885236235 + 261 14 Cd 4px -0.0011731324969005 0.0007066049245124 + 262 14 Cd 4d-2 0.0049339983049588 0.0000193853466897 + 263 14 Cd 4d-1 -0.0230250642096160 -0.0162163152541249 + 264 14 Cd 4d0 -0.0157436962606903 -0.0136381434303372 + 265 14 Cd 4d+1 -0.0139824539582777 -0.0065367246566693 + 266 14 Cd 4d+2 -0.0019575528445033 -0.0047192574228034 + 267 14 Cd 5d-2 0.0008199787592370 -0.0007687264735019 + 268 14 Cd 5d-1 -0.0118277474323758 -0.0066070508207998 + 269 14 Cd 5d0 0.0075668954836102 -0.0012106394636215 + 270 14 Cd 5d+1 -0.0043405663726130 -0.0030972397803250 + 271 14 Cd 5d+2 0.0028208829066421 0.0000899471522501 + 272 14 Cd 5f-3 0.0007578248230091 -0.0000071253556930 + 273 14 Cd 5f-2 0.0010275652381368 0.0005225394509320 + 274 14 Cd 5f-1 0.0006583366566911 -0.0021566119196211 + 275 14 Cd 5f0 -0.0020799316053043 0.0013057595674959 + 276 14 Cd 5f+1 -0.0000547779744943 0.0007791910821220 + 277 14 Cd 5f+2 -0.0022455075927568 -0.0005822872942668 + 278 14 Cd 5f+3 -0.0001393075634505 -0.0002084657334542 + + 279 15 Se 2s -0.0391906407389451 -0.0309399345258384 + 280 15 Se 3s 0.0037226239260343 0.0039120350747783 + 281 15 Se 3py -0.1910995194214287 -0.2509918083322758 + 282 15 Se 3pz 0.1210720433542228 0.0118815072152115 + 283 15 Se 3px 0.0748914131705481 -0.0498417621048954 + 284 15 Se 4py 0.0108185879040580 0.0190811931661383 + 285 15 Se 4pz -0.0070133631089534 -0.0040378692942700 + 286 15 Se 4px -0.0058101120345216 0.0044133557724674 + 287 15 Se 4d-2 -0.0012924356816029 0.0015343232180825 + 288 15 Se 4d-1 -0.0017415116446591 -0.0040215887219918 + 289 15 Se 4d0 0.0020300379606444 -0.0038520480020570 + 290 15 Se 4d+1 0.0049744579088284 -0.0019892046965948 + 291 15 Se 4d+2 -0.0066524436531298 -0.0060387448137685 + + 292 16 Se 2s -0.0299949837423778 0.0074494952728634 + 293 16 Se 3s 0.0032996671701441 -0.0007219083612730 + 294 16 Se 3py -0.0843696573863822 0.0339335803025882 + 295 16 Se 3pz -0.0225301309491757 0.0170595589360369 + 296 16 Se 3px -0.1562069910666745 0.0660336622692145 + 297 16 Se 4py 0.0042726675060327 -0.0007912513859518 + 298 16 Se 4pz 0.0039933232995129 -0.0012467969475066 + 299 16 Se 4px 0.0077489219694282 -0.0013236018532086 + 300 16 Se 4d-2 0.0001516492141608 -0.0032506005518026 + 301 16 Se 4d-1 -0.0048369752480085 -0.0015905688323161 + 302 16 Se 4d0 -0.0056451336297303 0.0008698696283640 + 303 16 Se 4d+1 -0.0010607189659042 0.0007334058894510 + 304 16 Se 4d+2 0.0081119337339223 0.0003218281344142 + + 305 17 Cd 2s 0.0436393367232129 0.0310871104103152 + 306 17 Cd 3s -0.0020615504024113 -0.0022120719874048 + 307 17 Cd 3py -0.0965650418202522 -0.0020657495356953 + 308 17 Cd 3pz 0.0011028712405667 -0.0103756081204173 + 309 17 Cd 3px 0.0056257179869292 0.0201346399240322 + 310 17 Cd 4py 0.0167521795363322 -0.0027448267928458 + 311 17 Cd 4pz -0.0015866734175319 0.0005995709315433 + 312 17 Cd 4px 0.0070865439288717 -0.0011582257516717 + 313 17 Cd 4d-2 0.0086141347565014 0.0253576503391670 + 314 17 Cd 4d-1 -0.0108337296215073 0.0423724861603127 + 315 17 Cd 4d0 -0.0027894741283219 -0.0098610714933821 + 316 17 Cd 4d+1 -0.0022710523878246 -0.0091117227767156 + 317 17 Cd 4d+2 -0.0630894127870940 -0.0065567465722109 + 318 17 Cd 5d-2 0.0031311105786157 0.0104380265674162 + 319 17 Cd 5d-1 -0.0099915102208392 0.0086375685367611 + 320 17 Cd 5d0 0.0000532315416587 -0.0013116365389093 + 321 17 Cd 5d+1 -0.0030768833355704 -0.0001563095912987 + 322 17 Cd 5d+2 -0.0049854833489183 -0.0082017875785716 + 323 17 Cd 5f-3 -0.0016723602480609 0.0002627895669624 + 324 17 Cd 5f-2 0.0018988457950074 0.0024227474826243 + 325 17 Cd 5f-1 -0.0051267551533903 -0.0000564542620886 + 326 17 Cd 5f0 0.0011733525325288 -0.0005023780710226 + 327 17 Cd 5f+1 -0.0019550276783052 0.0001766780071763 + 328 17 Cd 5f+2 -0.0019345603211128 -0.0017234849864433 + 329 17 Cd 5f+3 -0.0024012364203275 0.0003017601347003 + + 330 18 Cd 2s 0.0824756121680230 0.0393305439752715 + 331 18 Cd 3s 0.0023088705049841 -0.0005555902335079 + 332 18 Cd 3py 0.0046380799512851 -0.0253459530507855 + 333 18 Cd 3pz -0.0476150466301942 0.0838739928655264 + 334 18 Cd 3px 0.0268584897550766 -0.0128509874347455 + 335 18 Cd 4py -0.0017141334848613 0.0063870609613029 + 336 18 Cd 4pz 0.0084323713073817 -0.0121318170118314 + 337 18 Cd 4px -0.0022147488797646 0.0015122134517276 + 338 18 Cd 4d-2 0.0120621691986092 0.0196992328500315 + 339 18 Cd 4d-1 -0.0526527970703723 0.0462295932569557 + 340 18 Cd 4d0 -0.0068101082373993 0.0461455073876147 + 341 18 Cd 4d+1 -0.0305946610201797 -0.0604180734097157 + 342 18 Cd 4d+2 -0.0207093352413838 0.0153853512143138 + 343 18 Cd 5d-2 -0.0001525510045902 0.0059566936175651 + 344 18 Cd 5d-1 -0.0119353607391753 0.0118453405747455 + 345 18 Cd 5d0 0.0031155195644145 0.0021383070057277 + 346 18 Cd 5d+1 -0.0151445430598345 -0.0092482264141422 + 347 18 Cd 5d+2 -0.0065741222264011 0.0000918376748694 + 348 18 Cd 5f-3 -0.0016850767062185 -0.0004566124367342 + 349 18 Cd 5f-2 0.0005985599578805 -0.0011473367263125 + 350 18 Cd 5f-1 -0.0018768096231286 0.0022325950159983 + 351 18 Cd 5f0 0.0024975618159072 -0.0023191868593107 + 352 18 Cd 5f+1 -0.0005978229211253 -0.0000190125700964 + 353 18 Cd 5f+2 -0.0001798979671077 -0.0011067731128879 + 354 18 Cd 5f+3 0.0001556704247827 0.0004729967943109 + + 355 19 Se 2s 0.0612808450511997 -0.0464657563949682 + 356 19 Se 3s -0.0061395606845752 0.0060367195396682 + 357 19 Se 3py -0.1154361137291363 -0.0285653895437906 + 358 19 Se 3pz -0.0563393545525490 0.2731502464872934 + 359 19 Se 3px -0.4990083421850426 0.0500629670193358 + 360 19 Se 4py 0.0055484703473299 -0.0013332223914980 + 361 19 Se 4pz 0.0022682105949890 -0.0128812957830515 + 362 19 Se 4px 0.0282854184542709 -0.0067212641754348 + 363 19 Se 4d-2 -0.0091151637153731 -0.0028716467897156 + 364 19 Se 4d-1 0.0018210268770478 0.0026555642703381 + 365 19 Se 4d0 0.0049174843023533 0.0068157434389711 + 366 19 Se 4d+1 -0.0138631956920903 0.0045549680574478 + 367 19 Se 4d+2 -0.0007413697595641 -0.0002280041880565 + + 368 20 Se 2s -0.0142141910374199 0.0213717284538651 + 369 20 Se 3s 0.0021870333966655 -0.0025322535822294 + 370 20 Se 3py -0.1062110221910918 -0.1156545489267895 + 371 20 Se 3pz 0.0027087461251555 -0.1132606630933314 + 372 20 Se 3px -0.0943053386462150 -0.1724874212550954 + 373 20 Se 4py 0.0060877116945670 0.0110604776131838 + 374 20 Se 4pz -0.0027164230865863 0.0130895345359176 + 375 20 Se 4px 0.0080844425813820 0.0168822353678258 + 376 20 Se 4d-2 -0.0035018961913449 0.0045751145226340 + 377 20 Se 4d-1 -0.0048453922293731 0.0013763936250107 + 378 20 Se 4d0 -0.0011949686393375 -0.0011391299528911 + 379 20 Se 4d+1 -0.0046265100872876 -0.0027563196579182 + 380 20 Se 4d+2 -0.0050765816545749 0.0021781482259188 + + 381 21 Se 2s -0.0227924358525310 -0.0218135113016409 + 382 21 Se 3s 0.0039616469531438 0.0025278820325928 + 383 21 Se 3py -0.1374602947854262 0.0052776903445501 + 384 21 Se 3pz 0.0469476943476973 -0.1218676920841099 + 385 21 Se 3px 0.0031208000510405 -0.0671292488113296 + 386 21 Se 4py 0.0130010680145677 -0.0007090448486170 + 387 21 Se 4pz -0.0042292538949902 0.0063687023494300 + 388 21 Se 4px -0.0001769460050895 0.0059047094737547 + 389 21 Se 4d-2 0.0009791073589640 0.0066128056002129 + 390 21 Se 4d-1 -0.0017413871511953 -0.0013607410002658 + 391 21 Se 4d0 -0.0046652380858267 -0.0007679486331072 + 392 21 Se 4d+1 -0.0021323516756846 -0.0058827448149617 + 393 21 Se 4d+2 -0.0005433812822247 -0.0008446635342875 + + 394 22 Cd 2s -0.0262956385592871 0.0792800803515138 + 395 22 Cd 3s 0.0044221898353363 0.0012304697054359 + 396 22 Cd 3py -0.0057179723575173 -0.0537605682403154 + 397 22 Cd 3pz 0.0077099885727756 -0.0666629256380603 + 398 22 Cd 3px -0.0374885526981945 -0.0248706316749236 + 399 22 Cd 4py 0.0016360265926788 0.0071214499591756 + 400 22 Cd 4pz 0.0012804448382432 0.0093622900013808 + 401 22 Cd 4px 0.0042746539432762 0.0064518920025091 + 402 22 Cd 4d-2 -0.0123022930796874 -0.0096752087716726 + 403 22 Cd 4d-1 -0.0002420381795459 0.0239050768438085 + 404 22 Cd 4d0 -0.0072017219134961 0.0448661547798787 + 405 22 Cd 4d+1 0.0062406658173526 0.0226489650298179 + 406 22 Cd 4d+2 -0.0103226857550357 0.0010131527613416 + 407 22 Cd 5d-2 -0.0022502621990553 -0.0028161837758315 + 408 22 Cd 5d-1 -0.0035709779148286 0.0069072258772857 + 409 22 Cd 5d0 -0.0064506217818211 -0.0044313713409093 + 410 22 Cd 5d+1 0.0014813305861506 0.0039821052800920 + 411 22 Cd 5d+2 -0.0050895513732175 -0.0025559208927496 + 412 22 Cd 5f-3 -0.0003413368813991 0.0006218362723161 + 413 22 Cd 5f-2 0.0008736003162437 0.0012000276162620 + 414 22 Cd 5f-1 -0.0012349501391376 0.0013994691131986 + 415 22 Cd 5f0 -0.0002063469091440 0.0010661090249639 + 416 22 Cd 5f+1 -0.0011254672459961 -0.0004487052035593 + 417 22 Cd 5f+2 -0.0007739543839348 0.0015067867491404 + 418 22 Cd 5f+3 -0.0007888064923364 -0.0010140921147897 + + 419 23 Se 2s -0.0189168469868684 0.0766132738121684 + 420 23 Se 3s 0.0025765732609138 -0.0093471090612705 + 421 23 Se 3py 0.0173475838795821 -0.0405224582846773 + 422 23 Se 3pz -0.0248410407172729 -0.3275859607132505 + 423 23 Se 3px 0.1424020636700495 -0.0058238273237202 + 424 23 Se 4py 0.0010210979366041 0.0001846761140378 + 425 23 Se 4pz 0.0022665808183855 0.0139622068942641 + 426 23 Se 4px -0.0075793836420974 0.0020809516791157 + 427 23 Se 4d-2 0.0018535341380117 -0.0018125607860606 + 428 23 Se 4d-1 0.0013550924208944 -0.0011195032671320 + 429 23 Se 4d0 -0.0036436426636905 -0.0121673327314972 + 430 23 Se 4d+1 0.0052382167987529 -0.0021283808417508 + 431 23 Se 4d+2 0.0032166902164466 -0.0005938623289485 + + 432 24 Se 2s 0.0342137012472090 0.0080699643624612 + 433 24 Se 3s -0.0055685720310053 -0.0007848847340175 + 434 24 Se 3py -0.0721755240791774 -0.0968162574083105 + 435 24 Se 3pz 0.0033954632404929 0.1280348677872275 + 436 24 Se 3px -0.2201702541036944 0.0719882669842315 + 437 24 Se 4py 0.0040971307364907 0.0042286797721280 + 438 24 Se 4pz 0.0010564670394153 -0.0041389546690922 + 439 24 Se 4px 0.0105684129484905 -0.0048222215789652 + 440 24 Se 4d-2 -0.0066257200396911 0.0017552654659886 + 441 24 Se 4d-1 0.0033419519219071 0.0058508997242768 + 442 24 Se 4d0 0.0032274998244099 0.0008268159841533 + 443 24 Se 4d+1 -0.0020969315406026 0.0022365040887656 + 444 24 Se 4d+2 -0.0040609643965410 0.0049191906645635 + + 445 25 Cd 2s 0.0208912003668657 -0.0128234877214887 + 446 25 Cd 3s -0.0002391747611866 -0.0018696154761878 + 447 25 Cd 3py 0.0420579954747123 0.0632800373747458 + 448 25 Cd 3pz 0.0416391068906000 -0.0272488481998972 + 449 25 Cd 3px -0.0261809896296534 -0.0664518599914239 + 450 25 Cd 4py -0.0016161296433979 -0.0006579915210131 + 451 25 Cd 4pz -0.0022512158440177 -0.0014055491270449 + 452 25 Cd 4px 0.0022022516680343 -0.0012657447299223 + 453 25 Cd 4d-2 -0.0008196408219006 0.0129203243108411 + 454 25 Cd 4d-1 -0.0480617035841749 -0.0343441845238258 + 455 25 Cd 4d0 -0.0073285450846722 -0.0207891936144288 + 456 25 Cd 4d+1 -0.0324487375895019 -0.0175561313270156 + 457 25 Cd 4d+2 0.0254634446510293 -0.0326103296546197 + 458 25 Cd 5d-2 -0.0027319665717969 0.0093665633532324 + 459 25 Cd 5d-1 -0.0192300992197752 -0.0007129842364391 + 460 25 Cd 5d0 0.0033596589842898 -0.0051949666028695 + 461 25 Cd 5d+1 -0.0085522875804962 -0.0107332636816378 + 462 25 Cd 5d+2 0.0046101489868305 -0.0107166147775034 + 463 25 Cd 5f-3 0.0001361821704828 0.0011096800624593 + 464 25 Cd 5f-2 -0.0012762169067627 -0.0000451081661488 + 465 25 Cd 5f-1 -0.0047684218424458 0.0000441768137103 + 466 25 Cd 5f0 0.0013938423465446 0.0018630480321410 + 467 25 Cd 5f+1 0.0004712375918328 -0.0013334051975747 + 468 25 Cd 5f+2 0.0018214014757541 0.0004614630654283 + 469 25 Cd 5f+3 -0.0006194544395066 -0.0000461985305842 + + 470 26 Cd 2s -0.0382549551608137 -0.0061950031488873 + 471 26 Cd 3s 0.0011700048206730 0.0023745218619565 + 472 26 Cd 3py -0.0148540208493762 -0.0112484944821676 + 473 26 Cd 3pz -0.0245677033176532 -0.0362701311189042 + 474 26 Cd 3px 0.0189285236762103 -0.0125778337714081 + 475 26 Cd 4py 0.0027931833960099 0.0028120430657333 + 476 26 Cd 4pz 0.0024312079454941 -0.0000613668620005 + 477 26 Cd 4px 0.0018138344705033 0.0025722272023582 + 478 26 Cd 4d-2 -0.0394065057532873 0.0015159977248330 + 479 26 Cd 4d-1 0.0008278666200219 0.0232286456013494 + 480 26 Cd 4d0 0.0050909564301185 0.0193771811949156 + 481 26 Cd 4d+1 -0.0215156079753360 0.0000331545452965 + 482 26 Cd 4d+2 -0.0153775617540645 0.0018155319991766 + 483 26 Cd 5d-2 -0.0078637950883811 0.0003278623382692 + 484 26 Cd 5d-1 -0.0026971737251849 0.0064741410722208 + 485 26 Cd 5d0 -0.0001916942417495 0.0042312287167725 + 486 26 Cd 5d+1 -0.0043559565578492 -0.0038730822617552 + 487 26 Cd 5d+2 0.0008468181933084 0.0005052089820258 + 488 26 Cd 5f-3 -0.0006105795340859 -0.0010251029927283 + 489 26 Cd 5f-2 0.0000508853682357 0.0016723417971921 + 490 26 Cd 5f-1 0.0011594222272660 -0.0003006806556551 + 491 26 Cd 5f0 0.0005222398871058 -0.0000336581353015 + 492 26 Cd 5f+1 0.0000690196345620 -0.0002099178270093 + 493 26 Cd 5f+2 -0.0007957652151252 -0.0009471289093227 + 494 26 Cd 5f+3 0.0004947076734863 -0.0020593978120415 + + 105 106 + -0.2164218147994943 -0.2112415973175848 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0012298864108363 -0.0161885007030994 + 2 1 Cd 3s 0.0027209079805688 -0.0018208809401228 + 3 1 Cd 3py 0.0089203760613796 -0.0532161582754994 + 4 1 Cd 3pz 0.0471373998561227 -0.0403587590180679 + 5 1 Cd 3px 0.0508526129028040 -0.0358682596513211 + 6 1 Cd 4py 0.0001244066368647 0.0112530145125664 + 7 1 Cd 4pz -0.0037630602154798 0.0070866171038968 + 8 1 Cd 4px -0.0039148950793210 0.0045433541025055 + 9 1 Cd 4d-2 0.0301221512321394 -0.0306644434335798 + 10 1 Cd 4d-1 0.0096904508750276 -0.0485900798769367 + 11 1 Cd 4d0 -0.0143743245822695 -0.0285501110447228 + 12 1 Cd 4d+1 -0.0053588869870965 0.0030365793661180 + 13 1 Cd 4d+2 -0.0386189340531966 0.0033192642323520 + 14 1 Cd 5d-2 0.0054472525395973 -0.0043428388495594 + 15 1 Cd 5d-1 0.0037439748674465 -0.0025266664996822 + 16 1 Cd 5d0 -0.0030152271771056 -0.0017530748327678 + 17 1 Cd 5d+1 -0.0068685762006341 0.0031142734281000 + 18 1 Cd 5d+2 -0.0096989577498662 -0.0045240098693499 + 19 1 Cd 5f-3 0.0006745008100711 -0.0018713041741527 + 20 1 Cd 5f-2 -0.0020157101199579 0.0031345309662546 + 21 1 Cd 5f-1 0.0015863610830892 -0.0007817403418979 + 22 1 Cd 5f0 -0.0003587271312605 0.0000128747323690 + 23 1 Cd 5f+1 -0.0008442034137636 0.0003597312916891 + 24 1 Cd 5f+2 0.0019697809353749 -0.0043811566304953 + 25 1 Cd 5f+3 0.0027530438123972 -0.0008811813179051 + + 26 2 Cd 2s -0.0222254113664734 0.0089984547773461 + 27 2 Cd 3s -0.0009315875639591 -0.0032728752232800 + 28 2 Cd 3py -0.1014956109216486 0.0245072220308058 + 29 2 Cd 3pz 0.0691601018781240 -0.0278447238178771 + 30 2 Cd 3px 0.0012842768276981 0.0057533118604171 + 31 2 Cd 4py 0.0059604601944342 -0.0005604035645211 + 32 2 Cd 4pz -0.0042271061826995 0.0018566761576053 + 33 2 Cd 4px 0.0032218568472365 -0.0009321577398128 + 34 2 Cd 4d-2 -0.0589872774953614 0.0278595275157571 + 35 2 Cd 4d-1 0.0272843409728117 -0.0344246967048732 + 36 2 Cd 4d0 -0.0632294077019547 -0.0043630234365860 + 37 2 Cd 4d+1 0.0225225632651918 0.0033908410816339 + 38 2 Cd 4d+2 -0.0479669659985625 -0.0318094001045525 + 39 2 Cd 5d-2 0.0028411034633382 0.0083867450359473 + 40 2 Cd 5d-1 0.0099103248228621 -0.0129476924321760 + 41 2 Cd 5d0 -0.0205898055300296 -0.0041141583861221 + 42 2 Cd 5d+1 -0.0114327421086243 0.0114987187557694 + 43 2 Cd 5d+2 -0.0143398827159730 -0.0175770513043986 + 44 2 Cd 5f-3 0.0013613846157430 -0.0023545623356508 + 45 2 Cd 5f-2 -0.0032191303201980 0.0024503820558394 + 46 2 Cd 5f-1 0.0009095234606555 0.0000898669787586 + 47 2 Cd 5f0 0.0007507814553667 0.0009745014794316 + 48 2 Cd 5f+1 0.0033375019962726 0.0017844462387088 + 49 2 Cd 5f+2 -0.0001007016479044 -0.0010711707427469 + 50 2 Cd 5f+3 0.0017573239071580 0.0020226158776730 + + 51 3 Cd 2s 0.0047990525128173 -0.0027171324304176 + 52 3 Cd 3s -0.0059627217025976 -0.0025787053361109 + 53 3 Cd 3py 0.0578117348404790 0.0539758870201519 + 54 3 Cd 3pz 0.0232363080495836 0.0167894243238735 + 55 3 Cd 3px 0.0354608526198409 -0.0108389514489991 + 56 3 Cd 4py -0.0089138439614616 -0.0025499906980630 + 57 3 Cd 4pz -0.0048797977637180 0.0009393796247931 + 58 3 Cd 4px -0.0046722557102032 0.0005208306988326 + 59 3 Cd 4d-2 -0.0131319503543015 -0.0333828992208352 + 60 3 Cd 4d-1 0.0476376845473265 -0.0115972543427969 + 61 3 Cd 4d0 0.0186512161785480 0.0046230242790697 + 62 3 Cd 4d+1 0.0270610450820813 0.0247365178085836 + 63 3 Cd 4d+2 0.0189837674581427 0.0039716206790013 + 64 3 Cd 5d-2 0.0017158183638805 -0.0033201698072398 + 65 3 Cd 5d-1 0.0069771744175505 -0.0028412695906907 + 66 3 Cd 5d0 0.0018747400689000 0.0041866182053496 + 67 3 Cd 5d+1 -0.0038286240749892 0.0018560496635361 + 68 3 Cd 5d+2 -0.0075608712757828 -0.0060897001408863 + 69 3 Cd 5f-3 0.0010859714799125 -0.0028320253962731 + 70 3 Cd 5f-2 -0.0014470721104913 0.0018461527204726 + 71 3 Cd 5f-1 -0.0000803800980026 0.0000049292618345 + 72 3 Cd 5f0 -0.0002277894797917 -0.0013815703399744 + 73 3 Cd 5f+1 -0.0015685893671085 -0.0024371258074446 + 74 3 Cd 5f+2 0.0015382179972790 -0.0016253735088191 + 75 3 Cd 5f+3 0.0030597352679047 -0.0000571355187488 + + 76 4 Se 2s -0.0275475030810777 0.0141838317889966 + 77 4 Se 3s 0.0039719688408036 -0.0026763447252123 + 78 4 Se 3py -0.0089495462459597 -0.2514724816099030 + 79 4 Se 3pz 0.2053399111262040 -0.0934213062625340 + 80 4 Se 3px -0.2608817298512706 0.2463901508579598 + 81 4 Se 4py 0.0022515331657578 0.0143940160963774 + 82 4 Se 4pz -0.0126802961522132 0.0086520900112755 + 83 4 Se 4px 0.0158590021994799 -0.0159088929321340 + 84 4 Se 4d-2 0.0081238254024367 0.0001989904551303 + 85 4 Se 4d-1 0.0004860541506520 0.0075371166027105 + 86 4 Se 4d0 -0.0015880960992609 -0.0017748656847016 + 87 4 Se 4d+1 -0.0057258690005425 -0.0017785503990320 + 88 4 Se 4d+2 0.0101757945086643 -0.0099673199028363 + + 89 5 Se 2s -0.0096596290830059 0.0050147434951282 + 90 5 Se 3s -0.0001782340776921 -0.0001366538908469 + 91 5 Se 3py -0.0188530467622322 -0.1375304607693561 + 92 5 Se 3pz -0.0569771477476712 0.0800686678756348 + 93 5 Se 3px -0.0637376766307111 -0.0088335387078891 + 94 5 Se 4py 0.0009682205427779 0.0056361264545005 + 95 5 Se 4pz 0.0049925912969987 -0.0049870754664318 + 96 5 Se 4px 0.0038591568296684 -0.0033067574829332 + 97 5 Se 4d-2 -0.0017427441932415 0.0070272707050678 + 98 5 Se 4d-1 -0.0076299713574642 0.0027970768333809 + 99 5 Se 4d0 -0.0029965668985847 0.0020497373201961 + 100 5 Se 4d+1 0.0011553833478659 -0.0017180398263389 + 101 5 Se 4d+2 0.0016244576854665 0.0043391136950020 + + 102 6 Se 2s 0.0707270756213301 -0.0020046822296190 + 103 6 Se 3s -0.0107847129354936 -0.0006625940393894 + 104 6 Se 3py -0.1737507644726751 0.0425902797856303 + 105 6 Se 3pz 0.1766150339237579 -0.0005604273113917 + 106 6 Se 3px 0.3477961531417728 0.0839914170220520 + 107 6 Se 4py 0.0078744285537008 0.0008421142864112 + 108 6 Se 4pz -0.0133389540061191 -0.0014964221864712 + 109 6 Se 4px -0.0184336227405036 -0.0059606435299006 + 110 6 Se 4d-2 0.0087428776718461 -0.0001304490048926 + 111 6 Se 4d-1 -0.0026444718700866 0.0002220319983174 + 112 6 Se 4d0 0.0027460056147023 -0.0000310467759891 + 113 6 Se 4d+1 -0.0055063636734546 -0.0033212875874892 + 114 6 Se 4d+2 -0.0088828007889706 -0.0031319268006517 + + 115 7 Se 2s 0.0183967884794438 0.0081625063880125 + 116 7 Se 3s -0.0030518454846527 -0.0007525038952917 + 117 7 Se 3py -0.0071335290500873 -0.1019326077191123 + 118 7 Se 3pz 0.0712475315962516 -0.0433365225571382 + 119 7 Se 3px 0.0365819972951054 0.0428936937065782 + 120 7 Se 4py -0.0000663148467123 0.0034117185690041 + 121 7 Se 4pz -0.0046464752226335 0.0049246224534862 + 122 7 Se 4px 0.0001598129469158 0.0001297151187646 + 123 7 Se 4d-2 0.0030065246399988 -0.0019671498098559 + 124 7 Se 4d-1 0.0006888395935328 0.0034412785219267 + 125 7 Se 4d0 -0.0001372594197164 0.0013267953816842 + 126 7 Se 4d+1 -0.0022272667749555 0.0011811090640974 + 127 7 Se 4d+2 0.0025602401495212 0.0004407660100200 + + 128 8 Cd 2s -0.0328480313113141 0.0319325959099754 + 129 8 Cd 3s -0.0041572433578128 0.0009193264203313 + 130 8 Cd 3py 0.0306627775857769 -0.0087954939685624 + 131 8 Cd 3pz 0.0047695749280506 0.0071668868020224 + 132 8 Cd 3px -0.0032298093244919 -0.0027558070258892 + 133 8 Cd 4py 0.0005864031452329 -0.0001400003263264 + 134 8 Cd 4pz 0.0007727362545881 0.0043621501566221 + 135 8 Cd 4px -0.0029050722568559 0.0043577949532680 + 136 8 Cd 4d-2 0.0023017826864923 -0.0119851176940389 + 137 8 Cd 4d-1 0.0146584961211857 -0.0045091476508885 + 138 8 Cd 4d0 0.0118852591130822 0.0302094285795911 + 139 8 Cd 4d+1 0.0156920894064802 0.0091023009524490 + 140 8 Cd 4d+2 0.0123691795043332 -0.0043241483428566 + 141 8 Cd 5d-2 0.0119460399613680 0.0024277093163947 + 142 8 Cd 5d-1 -0.0005590949965383 -0.0067919759757928 + 143 8 Cd 5d0 0.0132867366326600 0.0140087767691811 + 144 8 Cd 5d+1 -0.0014892768883038 0.0009618421629480 + 145 8 Cd 5d+2 0.0032064240958461 0.0024750630486514 + 146 8 Cd 5f-3 0.0011360564545069 -0.0001490510068903 + 147 8 Cd 5f-2 -0.0008086476511796 0.0001864232844668 + 148 8 Cd 5f-1 -0.0016436058481099 0.0016992951604515 + 149 8 Cd 5f0 -0.0003790990351644 -0.0036430946785315 + 150 8 Cd 5f+1 0.0029754606157263 0.0030375883665812 + 151 8 Cd 5f+2 -0.0003911882519702 0.0003680347313274 + 152 8 Cd 5f+3 -0.0010310850063664 -0.0010331334718436 + + 153 9 Cd 2s -0.0402482206159212 -0.0131136750200822 + 154 9 Cd 3s 0.0013809611532212 -0.0040574272479984 + 155 9 Cd 3py 0.0433967331890626 0.0030031367575424 + 156 9 Cd 3pz -0.0384655234474869 0.0197216796216476 + 157 9 Cd 3px 0.0316067835886458 0.0172090250935305 + 158 9 Cd 4py 0.0001576673152842 -0.0019564454394876 + 159 9 Cd 4pz 0.0000330080236926 0.0017140811248986 + 160 9 Cd 4px -0.0076837452226052 -0.0006662177390737 + 161 9 Cd 4d-2 0.0116837322517126 -0.0236723859511193 + 162 9 Cd 4d-1 -0.0196915644348054 0.0028283993206299 + 163 9 Cd 4d0 0.0450833695155818 0.0118999850954320 + 164 9 Cd 4d+1 -0.0455124008607579 -0.0331749101076055 + 165 9 Cd 4d+2 -0.0334628432855408 0.0046485918679718 + 166 9 Cd 5d-2 0.0064875551446409 -0.0052860053225361 + 167 9 Cd 5d-1 -0.0095115816774559 0.0023324559329411 + 168 9 Cd 5d0 0.0105375605378595 0.0032188493386853 + 169 9 Cd 5d+1 -0.0043356757287624 -0.0098766344537465 + 170 9 Cd 5d+2 -0.0085719847937749 0.0044790016873706 + 171 9 Cd 5f-3 -0.0009629635335823 -0.0006319653813351 + 172 9 Cd 5f-2 -0.0007746616304130 -0.0002166799479150 + 173 9 Cd 5f-1 0.0009347802181437 0.0016139135016148 + 174 9 Cd 5f0 -0.0006854815964734 -0.0001321288342828 + 175 9 Cd 5f+1 -0.0010323551642409 -0.0001715242857939 + 176 9 Cd 5f+2 0.0014308932388148 -0.0005289661128568 + 177 9 Cd 5f+3 0.0000193350547862 0.0002830814355098 + + 178 10 Se 2s -0.0604322757467551 -0.0353475508532236 + 179 10 Se 3s 0.0086694120152900 0.0046593667557552 + 180 10 Se 3py -0.0556762021928362 -0.2168640769883773 + 181 10 Se 3pz -0.1753733923667045 -0.2301343680827732 + 182 10 Se 3px 0.1753099467862736 0.0317688829404986 + 183 10 Se 4py 0.0030462780490817 0.0107765596056239 + 184 10 Se 4pz 0.0110824218052528 0.0136020425736580 + 185 10 Se 4px -0.0094160202130837 -0.0037748940036047 + 186 10 Se 4d-2 -0.0013262331442850 -0.0021043831726709 + 187 10 Se 4d-1 0.0004590506597577 0.0065715465576689 + 188 10 Se 4d0 0.0039742471902978 0.0062268345517833 + 189 10 Se 4d+1 -0.0023482404612551 -0.0036381071473552 + 190 10 Se 4d+2 0.0041563105414738 0.0008974595819659 + + 191 11 Se 2s -0.0234439413151229 -0.0452643774619390 + 192 11 Se 3s 0.0024169585143653 0.0052646292476277 + 193 11 Se 3py 0.0998934467369091 0.1486667138366480 + 194 11 Se 3pz -0.0418960821056486 -0.0464101875151238 + 195 11 Se 3px 0.2407573557815486 0.0420682761153237 + 196 11 Se 4py -0.0067938458808182 -0.0124733802434608 + 197 11 Se 4pz 0.0017919832019657 -0.0000546134862123 + 198 11 Se 4px -0.0137639111529442 -0.0025618844097519 + 199 11 Se 4d-2 0.0071529900525570 -0.0006062696791308 + 200 11 Se 4d-1 -0.0023118425045512 0.0003097787449382 + 201 11 Se 4d0 -0.0000193117677207 0.0022615305533746 + 202 11 Se 4d+1 -0.0072301433295424 -0.0052517643865522 + 203 11 Se 4d+2 -0.0003085030648309 0.0000823069455203 + + 204 12 Cd 2s -0.0586796682018023 -0.0547330510188314 + 205 12 Cd 3s 0.0004306875441151 0.0034983043650137 + 206 12 Cd 3py -0.0226807901841873 0.0303213383390526 + 207 12 Cd 3pz -0.0349222830995143 -0.0767271507975689 + 208 12 Cd 3px 0.0432838802400673 -0.0038705045918560 + 209 12 Cd 4py 0.0014021711859090 -0.0017934487174483 + 210 12 Cd 4pz 0.0029525394467119 0.0006738448584626 + 211 12 Cd 4px 0.0023490972627512 0.0001682069748590 + 212 12 Cd 4d-2 0.0054969509120222 0.0334320988699051 + 213 12 Cd 4d-1 -0.0213044878534452 -0.0294575873253433 + 214 12 Cd 4d0 -0.0106675225118391 -0.0388130183936316 + 215 12 Cd 4d+1 -0.0388510701725103 -0.0291477845966554 + 216 12 Cd 4d+2 -0.0362627308706909 -0.0002042305559990 + 217 12 Cd 5d-2 0.0041600843259494 0.0009179654056871 + 218 12 Cd 5d-1 0.0003116951366186 -0.0093549343597659 + 219 12 Cd 5d0 0.0004096574532310 -0.0150779038225257 + 220 12 Cd 5d+1 -0.0192489507532877 -0.0051245678473842 + 221 12 Cd 5d+2 -0.0103162678234089 -0.0005778364245287 + 222 12 Cd 5f-3 -0.0022546736902541 -0.0014776926071617 + 223 12 Cd 5f-2 -0.0020806182527044 0.0002593694298110 + 224 12 Cd 5f-1 -0.0013412020953757 0.0004938777487172 + 225 12 Cd 5f0 0.0010384517195301 0.0008772990452226 + 226 12 Cd 5f+1 0.0014044310636978 -0.0012750087868409 + 227 12 Cd 5f+2 -0.0003232166717969 0.0002594266038255 + 228 12 Cd 5f+3 0.0010942864200885 -0.0005835952502164 + + 229 13 Cd 2s 0.0385044914859197 0.0693745286048123 + 230 13 Cd 3s 0.0001242017075058 -0.0000398461336626 + 231 13 Cd 3py 0.0724470766225485 0.0046519625540089 + 232 13 Cd 3pz -0.0345685297620311 -0.0102194690258402 + 233 13 Cd 3px -0.0009494365374352 0.0552277135289499 + 234 13 Cd 4py -0.0072158098615116 0.0000934436297236 + 235 13 Cd 4pz 0.0026062387152269 0.0038234724050583 + 236 13 Cd 4px 0.0042404762306693 -0.0090098349194061 + 237 13 Cd 4d-2 -0.0200389250321424 0.0117711502257543 + 238 13 Cd 4d-1 0.0292234624673745 0.0339312430254950 + 239 13 Cd 4d0 -0.0172308340130272 0.0373054714206086 + 240 13 Cd 4d+1 -0.0278701448730123 0.0653691750995374 + 241 13 Cd 4d+2 0.0130349493856749 -0.0238769158948081 + 242 13 Cd 5d-2 0.0019261280320190 0.0053304712331428 + 243 13 Cd 5d-1 0.0027901768262688 0.0070663508542465 + 244 13 Cd 5d0 0.0075561523059261 -0.0028148989487262 + 245 13 Cd 5d+1 -0.0078903301360698 0.0168227985154991 + 246 13 Cd 5d+2 0.0081713646862004 -0.0166439040094241 + 247 13 Cd 5f-3 0.0015627833328183 0.0001662842365613 + 248 13 Cd 5f-2 0.0024229635063941 -0.0033932291941598 + 249 13 Cd 5f-1 0.0004867644953265 0.0021563361717778 + 250 13 Cd 5f0 0.0036618846798153 0.0008987301229879 + 251 13 Cd 5f+1 0.0005103409032007 -0.0012407788057115 + 252 13 Cd 5f+2 0.0019650338278459 -0.0015500316023070 + 253 13 Cd 5f+3 -0.0021370740773847 0.0011210536980770 + + 254 14 Cd 2s 0.0792880135360274 0.0062470589656605 + 255 14 Cd 3s -0.0026933262906423 0.0063451783659949 + 256 14 Cd 3py 0.0039370670691206 0.0219612604633589 + 257 14 Cd 3pz 0.0001369684533226 0.0299580295117778 + 258 14 Cd 3px -0.0060972463047902 0.0235225952628739 + 259 14 Cd 4py -0.0006991803258358 0.0002508489704587 + 260 14 Cd 4pz -0.0012504912903819 -0.0023878646668831 + 261 14 Cd 4px -0.0027312448101036 -0.0014224275042879 + 262 14 Cd 4d-2 0.0125699716707734 -0.0070454323763649 + 263 14 Cd 4d-1 -0.0028657643012203 -0.0211995880981183 + 264 14 Cd 4d0 0.0213801271562817 -0.0149408959160186 + 265 14 Cd 4d+1 -0.0125145378328413 -0.0142449608394613 + 266 14 Cd 4d+2 -0.0067407683549332 0.0029671121255998 + 267 14 Cd 5d-2 0.0116744423795552 0.0012264391445553 + 268 14 Cd 5d-1 0.0021519111639802 -0.0146259598872179 + 269 14 Cd 5d0 0.0052240412408525 0.0062408515542591 + 270 14 Cd 5d+1 -0.0056910043917415 -0.0013450184941873 + 271 14 Cd 5d+2 -0.0050283222047101 -0.0035360089313525 + 272 14 Cd 5f-3 0.0011530812335888 0.0020829670184631 + 273 14 Cd 5f-2 0.0004898881614043 0.0004126036932698 + 274 14 Cd 5f-1 0.0001981095686626 0.0005257720547466 + 275 14 Cd 5f0 0.0000380980315616 -0.0012327185912278 + 276 14 Cd 5f+1 0.0001158219842440 -0.0007060076147643 + 277 14 Cd 5f+2 -0.0004477901317050 -0.0016011043706335 + 278 14 Cd 5f+3 0.0017690017724853 0.0007738784472093 + + 279 15 Se 2s 0.0327059773983623 -0.0090166515973588 + 280 15 Se 3s -0.0029757777660658 0.0008643638611856 + 281 15 Se 3py 0.1049831128931776 -0.2711010871908135 + 282 15 Se 3pz -0.0133266309500500 0.1108501289146513 + 283 15 Se 3px -0.2166493504466098 -0.0297315506472600 + 284 15 Se 4py -0.0076403051606220 0.0169362407714622 + 285 15 Se 4pz -0.0005252149980792 -0.0109084486073905 + 286 15 Se 4px 0.0152761259013833 -0.0006804708605919 + 287 15 Se 4d-2 0.0059813637382086 -0.0015904406807593 + 288 15 Se 4d-1 -0.0004273595224419 -0.0045914260490018 + 289 15 Se 4d0 -0.0009264094621600 0.0005352967426769 + 290 15 Se 4d+1 0.0009672934127691 0.0014609532486350 + 291 15 Se 4d+2 -0.0008980716389193 -0.0100955608042124 + + 292 16 Se 2s -0.0156157940824212 0.0595459561970547 + 293 16 Se 3s 0.0019846845718753 -0.0063229655294212 + 294 16 Se 3py -0.1916324217897310 0.0961123086933443 + 295 16 Se 3pz 0.1143877546922797 -0.1954098901174146 + 296 16 Se 3px 0.0307079660848106 0.1518519523514649 + 297 16 Se 4py 0.0080948764198947 -0.0013158003382764 + 298 16 Se 4pz -0.0089355111651866 0.0149520262758548 + 299 16 Se 4px -0.0025855315337326 -0.0059218388217648 + 300 16 Se 4d-2 0.0025094567789688 -0.0040365028204320 + 301 16 Se 4d-1 -0.0093269478999825 0.0026955739131624 + 302 16 Se 4d0 0.0065749362311951 -0.0036296811473322 + 303 16 Se 4d+1 -0.0008382947196268 0.0052649881992271 + 304 16 Se 4d+2 -0.0018836547160407 0.0013292880962041 + + 305 17 Cd 2s 0.0323192925105760 0.0338132172470005 + 306 17 Cd 3s 0.0003746824596981 -0.0039351595000363 + 307 17 Cd 3py -0.0021195774285166 0.0231633254739291 + 308 17 Cd 3pz -0.0196677181624759 0.0219522897748517 + 309 17 Cd 3px -0.0398316798016660 0.0312362181944819 + 310 17 Cd 4py 0.0036792671179133 -0.0095500506650637 + 311 17 Cd 4pz 0.0021609474663042 -0.0028759915022055 + 312 17 Cd 4px 0.0046289941215703 -0.0043338503820770 + 313 17 Cd 4d-2 -0.0310194541094117 0.0222936459820633 + 314 17 Cd 4d-1 -0.0162841235262031 0.0099628513363285 + 315 17 Cd 4d0 -0.0085401298115520 -0.0060710765993291 + 316 17 Cd 4d+1 -0.0143972924660246 0.0119670874550143 + 317 17 Cd 4d+2 -0.0402328462515773 0.0216887263774763 + 318 17 Cd 5d-2 -0.0010915422140053 0.0017836323459676 + 319 17 Cd 5d-1 -0.0015171339670470 0.0000338745984840 + 320 17 Cd 5d0 -0.0006528109753221 -0.0014224031851804 + 321 17 Cd 5d+1 -0.0049573620205799 0.0039976886031385 + 322 17 Cd 5d+2 -0.0061175054345962 0.0058605314792053 + 323 17 Cd 5f-3 -0.0012084056289925 0.0016174398744051 + 324 17 Cd 5f-2 0.0004883480140530 -0.0007525187383115 + 325 17 Cd 5f-1 -0.0004559696813104 0.0023890232311079 + 326 17 Cd 5f0 -0.0012909902221164 0.0016834912936214 + 327 17 Cd 5f+1 -0.0006434428719934 0.0001172209216767 + 328 17 Cd 5f+2 -0.0000053527797379 0.0018484636935226 + 329 17 Cd 5f+3 0.0013577843212148 0.0019151042255820 + + 330 18 Cd 2s 0.0276618669227903 -0.0702591702612818 + 331 18 Cd 3s -0.0006391007999030 -0.0014346398950560 + 332 18 Cd 3py -0.0017289576878340 -0.0091839068792642 + 333 18 Cd 3pz -0.0303942538105775 -0.0060909922748825 + 334 18 Cd 3px -0.0359469733012328 -0.0277239079966611 + 335 18 Cd 4py 0.0000055211217933 -0.0011298715438036 + 336 18 Cd 4pz 0.0032091168655459 0.0020542114611911 + 337 18 Cd 4px -0.0009436961111575 0.0022499702427634 + 338 18 Cd 4d-2 -0.0011893963164710 -0.0096392878649083 + 339 18 Cd 4d-1 -0.0241275473100310 -0.0132666971850092 + 340 18 Cd 4d0 0.0037378448653586 -0.0101369495238323 + 341 18 Cd 4d+1 -0.0315191058066393 0.0043751218103402 + 342 18 Cd 4d+2 -0.0104989120367137 -0.0013234164565550 + 343 18 Cd 5d-2 -0.0043411127450879 0.0016300008300669 + 344 18 Cd 5d-1 -0.0052802989353500 -0.0026948046160250 + 345 18 Cd 5d0 -0.0011031887008971 0.0004509645724101 + 346 18 Cd 5d+1 -0.0121790983958298 -0.0001497485820905 + 347 18 Cd 5d+2 -0.0061193821703064 -0.0012535685314773 + 348 18 Cd 5f-3 -0.0010037644497922 -0.0008059202880056 + 349 18 Cd 5f-2 -0.0009453133057439 -0.0011672078780263 + 350 18 Cd 5f-1 -0.0018115695146924 -0.0000461312990661 + 351 18 Cd 5f0 0.0006302943464926 0.0001890957640445 + 352 18 Cd 5f+1 0.0003759109787492 0.0004891999213490 + 353 18 Cd 5f+2 0.0002566860817623 0.0013339104916978 + 354 18 Cd 5f+3 0.0012299799709929 -0.0003533704697548 + + 355 19 Se 2s 0.0206158721251022 -0.0105553417972055 + 356 19 Se 3s -0.0019798466902982 0.0001149030034231 + 357 19 Se 3py 0.0118732140315614 0.0557335846437150 + 358 19 Se 3pz -0.0224329383626375 -0.0613436198900439 + 359 19 Se 3px -0.1854879132213921 0.1480718833917965 + 360 19 Se 4py -0.0007533051695783 -0.0052835538908652 + 361 19 Se 4pz 0.0001588513942394 0.0060960316720504 + 362 19 Se 4px 0.0086324578050678 -0.0101658156618049 + 363 19 Se 4d-2 -0.0027876859714585 0.0012746408870820 + 364 19 Se 4d-1 0.0046680444679891 -0.0032726398985844 + 365 19 Se 4d0 0.0003685619450029 -0.0024361885415519 + 366 19 Se 4d+1 -0.0046406732923418 0.0033271260461792 + 367 19 Se 4d+2 0.0037234915727619 0.0005533699051718 + + 368 20 Se 2s -0.0093153296061783 0.0269199011630462 + 369 20 Se 3s 0.0001527160619519 -0.0042308996899112 + 370 20 Se 3py 0.1450555540720298 0.2565459415590111 + 371 20 Se 3pz -0.0179163728061694 -0.1404381257253652 + 372 20 Se 3px 0.1327340903104829 0.0332409528648800 + 373 20 Se 4py -0.0154802544613678 -0.0277550228080513 + 374 20 Se 4pz 0.0028718140650565 0.0187928798723053 + 375 20 Se 4px -0.0108747750539775 -0.0041368904789231 + 376 20 Se 4d-2 0.0042101291911193 0.0006156027059282 + 377 20 Se 4d-1 0.0012972693648464 0.0000455900084818 + 378 20 Se 4d0 0.0014513785679848 -0.0011488134374271 + 379 20 Se 4d+1 -0.0055798088293455 0.0020350361638704 + 380 20 Se 4d+2 -0.0026906689644425 -0.0049412376078953 + + 381 21 Se 2s 0.0052777065190566 -0.0178562251066097 + 382 21 Se 3s -0.0011445482619251 0.0008898124111867 + 383 21 Se 3py 0.0779328596617782 0.0701003478557496 + 384 21 Se 3pz 0.0958574192720177 0.2315306454577265 + 385 21 Se 3px -0.0436355804242740 -0.1994752018719866 + 386 21 Se 4py -0.0066066627397994 -0.0051758553191349 + 387 21 Se 4pz -0.0058919416736550 -0.0171366655491688 + 388 21 Se 4px 0.0059949255300882 0.0234053152641917 + 389 21 Se 4d-2 0.0020003112993233 0.0099917257593409 + 390 21 Se 4d-1 -0.0054853278086243 -0.0049067752285809 + 391 21 Se 4d0 -0.0007150048366467 -0.0069093591203341 + 392 21 Se 4d+1 -0.0019114380924476 -0.0014582683204997 + 393 21 Se 4d+2 -0.0014114819426842 0.0060334618706888 + + 394 22 Cd 2s 0.0015181482624439 0.0128627803295604 + 395 22 Cd 3s -0.0037655127236435 -0.0037879682870514 + 396 22 Cd 3py -0.0153909805267060 0.0081092925116582 + 397 22 Cd 3pz 0.0150352912106655 0.0024530326741291 + 398 22 Cd 3px -0.0135234302169645 -0.0911492885660815 + 399 22 Cd 4py 0.0001260407968907 0.0024888729150765 + 400 22 Cd 4pz -0.0022982238753792 -0.0018002356219803 + 401 22 Cd 4px -0.0009751385098956 0.0047475935998658 + 402 22 Cd 4d-2 0.0079471412930589 -0.0052228621465111 + 403 22 Cd 4d-1 -0.0091435084742723 0.0150838364785102 + 404 22 Cd 4d0 0.0186563723612431 0.0682417358650160 + 405 22 Cd 4d+1 -0.0317626871281469 -0.0597640359449258 + 406 22 Cd 4d+2 0.0115159039485479 0.0064129222086656 + 407 22 Cd 5d-2 0.0034351835777080 0.0030347754143063 + 408 22 Cd 5d-1 -0.0091512079117345 -0.0048036684962276 + 409 22 Cd 5d0 0.0049764020559202 0.0055510614339596 + 410 22 Cd 5d+1 -0.0115422119615745 -0.0143751272760388 + 411 22 Cd 5d+2 0.0063401778596988 -0.0026530468654260 + 412 22 Cd 5f-3 -0.0018295871480397 -0.0004354794876312 + 413 22 Cd 5f-2 0.0008614344887624 0.0027215495947317 + 414 22 Cd 5f-1 -0.0016018776722834 -0.0016464411702307 + 415 22 Cd 5f0 -0.0014757004194366 -0.0005667928739330 + 416 22 Cd 5f+1 -0.0013542009477350 -0.0005070814621176 + 417 22 Cd 5f+2 -0.0018094119031996 -0.0010145939166021 + 418 22 Cd 5f+3 0.0003756467972011 -0.0004928173893335 + + 419 23 Se 2s 0.0017780368122283 0.0145074606182263 + 420 23 Se 3s 0.0000918860980466 -0.0020457787117446 + 421 23 Se 3py 0.0029030093585850 -0.0210079546711471 + 422 23 Se 3pz 0.0551150028031904 -0.0815611164165706 + 423 23 Se 3px -0.1109713618145429 0.0086400258961050 + 424 23 Se 4py -0.0026042965998095 0.0016020625969237 + 425 23 Se 4pz -0.0027728378931847 0.0066019141919864 + 426 23 Se 4px 0.0052546599341357 -0.0010245676042670 + 427 23 Se 4d-2 0.0043407442955178 0.0023793979970891 + 428 23 Se 4d-1 -0.0008540022674515 0.0007699458046405 + 429 23 Se 4d0 0.0014828544884490 -0.0028165581326875 + 430 23 Se 4d+1 -0.0003800678905691 0.0016720638619178 + 431 23 Se 4d+2 -0.0025267698532235 -0.0014088726709696 + + 432 24 Se 2s -0.0247442313863409 -0.0195676153532187 + 433 24 Se 3s 0.0035638279524826 0.0042233268242136 + 434 24 Se 3py 0.0012588762337244 0.0465012344949609 + 435 24 Se 3pz 0.1159253147401403 -0.2041225543862473 + 436 24 Se 3px 0.1408559011718549 0.0731516729703183 + 437 24 Se 4py -0.0005385627308418 -0.0031913558976984 + 438 24 Se 4pz -0.0031884574791966 0.0097738478497021 + 439 24 Se 4px -0.0071777860307571 -0.0056628705559330 + 440 24 Se 4d-2 0.0030340603838985 0.0023417666368244 + 441 24 Se 4d-1 0.0029147287366880 -0.0044156306561950 + 442 24 Se 4d0 0.0027856076024781 -0.0000960727651196 + 443 24 Se 4d+1 0.0020611498686497 -0.0042100110448416 + 444 24 Se 4d+2 0.0035965385194528 -0.0002496285801395 + + 445 25 Cd 2s -0.0392308051652116 -0.0080119278289795 + 446 25 Cd 3s 0.0007852086767273 0.0014845315747203 + 447 25 Cd 3py 0.0191091997550374 0.0021701900862264 + 448 25 Cd 3pz 0.0393115107910627 -0.0243991771586231 + 449 25 Cd 3px 0.0123719433652446 0.0456268370940726 + 450 25 Cd 4py 0.0003002951369654 -0.0003793002099835 + 451 25 Cd 4pz 0.0000929223352944 -0.0015807511609051 + 452 25 Cd 4px -0.0037743515496353 -0.0005727428637210 + 453 25 Cd 4d-2 0.0077942959505412 -0.0224060641976081 + 454 25 Cd 4d-1 0.0009756500375805 0.0141840308089160 + 455 25 Cd 4d0 -0.0128289458053857 0.0099817404904883 + 456 25 Cd 4d+1 0.0189838338044288 0.0233414865574000 + 457 25 Cd 4d+2 0.0214354071295101 -0.0298982908320564 + 458 25 Cd 5d-2 0.0100407524096073 -0.0041640782863084 + 459 25 Cd 5d-1 -0.0013491679935474 -0.0001512785236335 + 460 25 Cd 5d0 -0.0019596255245633 -0.0103964539398188 + 461 25 Cd 5d+1 -0.0014051755436924 0.0059480430813078 + 462 25 Cd 5d+2 0.0075757970542950 -0.0100217178260599 + 463 25 Cd 5f-3 0.0009597009698994 -0.0015966393587868 + 464 25 Cd 5f-2 0.0017761146389611 0.0008814341801669 + 465 25 Cd 5f-1 -0.0001561241203714 -0.0006730297445466 + 466 25 Cd 5f0 -0.0003856913082610 -0.0018295126636794 + 467 25 Cd 5f+1 -0.0010298180913622 0.0000192687541504 + 468 25 Cd 5f+2 0.0013035280996145 -0.0000344004368957 + 469 25 Cd 5f+3 0.0001785962055228 -0.0012516195557450 + + 470 26 Cd 2s -0.0013746013009399 -0.0651683730050658 + 471 26 Cd 3s -0.0018288380325503 -0.0002127186095898 + 472 26 Cd 3py 0.0169437532393587 -0.0276070648369225 + 473 26 Cd 3pz -0.0250758301037451 -0.0113968089531031 + 474 26 Cd 3px -0.0081200325252674 0.0160034192041228 + 475 26 Cd 4py -0.0013859384101995 0.0052320509036077 + 476 26 Cd 4pz 0.0013365963555685 0.0015474443445633 + 477 26 Cd 4px -0.0012407869604999 0.0010508781586872 + 478 26 Cd 4d-2 0.0271048114015183 0.0076938174538486 + 479 26 Cd 4d-1 0.0027738579053560 -0.0382365955837758 + 480 26 Cd 4d0 0.0016410391835006 -0.0190616835987038 + 481 26 Cd 4d+1 -0.0022624605198225 -0.0140453427714729 + 482 26 Cd 4d+2 0.0165160827979316 0.0106674265127295 + 483 26 Cd 5d-2 0.0055294603912697 0.0038982588265899 + 484 26 Cd 5d-1 0.0010458463926303 -0.0103004551047327 + 485 26 Cd 5d0 0.0004788171942719 -0.0055513228523629 + 486 26 Cd 5d+1 -0.0015910160084891 -0.0014455767810938 + 487 26 Cd 5d+2 0.0015530002343745 0.0033797119947951 + 488 26 Cd 5f-3 0.0001906113703553 -0.0012253798428006 + 489 26 Cd 5f-2 0.0003397538573547 0.0006258213367730 + 490 26 Cd 5f-1 -0.0011653001744543 -0.0018265905876997 + 491 26 Cd 5f0 0.0007423693830996 -0.0014822688965235 + 492 26 Cd 5f+1 0.0004104357851298 -0.0008879581726034 + 493 26 Cd 5f+2 -0.0012991173210317 -0.0006741064493170 + 494 26 Cd 5f+3 -0.0006317269674063 -0.0020194419611294 + + 107 108 + -0.2100829171511248 -0.2082546007127049 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0069979923954303 -0.0276860742020077 + 2 1 Cd 3s -0.0033554795994989 0.0016656511555625 + 3 1 Cd 3py -0.0076612570970773 -0.0439561352209379 + 4 1 Cd 3pz 0.0179133422985179 -0.0152475736736246 + 5 1 Cd 3px -0.0189687543181578 -0.0289687611916795 + 6 1 Cd 4py 0.0032000844028553 0.0099549518540617 + 7 1 Cd 4pz -0.0000889124101085 0.0041210498726616 + 8 1 Cd 4px 0.0013192408178469 0.0007394547521844 + 9 1 Cd 4d-2 -0.0020627388810353 0.0069486864072377 + 10 1 Cd 4d-1 -0.0119626138893460 -0.0739134170185322 + 11 1 Cd 4d0 0.0031478218609697 -0.0229766813161299 + 12 1 Cd 4d+1 -0.0079417530340169 0.0031687439157454 + 13 1 Cd 4d+2 0.0056104676613628 0.0109960952183832 + 14 1 Cd 5d-2 -0.0028390905028023 0.0063273523127936 + 15 1 Cd 5d-1 -0.0065576228295670 -0.0067258296828485 + 16 1 Cd 5d0 0.0041622067105043 -0.0009770738999953 + 17 1 Cd 5d+1 -0.0053703815420758 0.0046188384100307 + 18 1 Cd 5d+2 0.0016707499715706 0.0079874971042470 + 19 1 Cd 5f-3 -0.0003629242748786 -0.0015013994032302 + 20 1 Cd 5f-2 0.0020845134545964 0.0018014709231852 + 21 1 Cd 5f-1 0.0005675256679775 -0.0026407647417007 + 22 1 Cd 5f0 -0.0001781998424144 -0.0011438081421135 + 23 1 Cd 5f+1 -0.0011246189247266 0.0002926309865019 + 24 1 Cd 5f+2 0.0017005806149339 -0.0032755439810375 + 25 1 Cd 5f+3 -0.0005240144300862 -0.0025414940788417 + + 26 2 Cd 2s 0.0270569988104816 -0.0115079044668836 + 27 2 Cd 3s -0.0036830831978152 0.0043441315101762 + 28 2 Cd 3py 0.0309020773609169 0.0773309731491943 + 29 2 Cd 3pz -0.0125595039011442 0.0214957039232531 + 30 2 Cd 3px 0.0289352069819359 0.0159530696748438 + 31 2 Cd 4py 0.0003921348852459 0.0014835828845199 + 32 2 Cd 4pz 0.0009411977553273 -0.0019381124384630 + 33 2 Cd 4px -0.0020248848306986 -0.0012287135827037 + 34 2 Cd 4d-2 -0.0080493604657490 0.0387641975825520 + 35 2 Cd 4d-1 -0.0253563052564637 0.0074539311500806 + 36 2 Cd 4d0 0.0122685794111255 0.0102700221409822 + 37 2 Cd 4d+1 -0.0436586131330388 -0.0159996885991089 + 38 2 Cd 4d+2 -0.0106607821596747 -0.0163259075599907 + 39 2 Cd 5d-2 -0.0031195318998933 -0.0004220949271167 + 40 2 Cd 5d-1 -0.0053815964747137 0.0067366228710882 + 41 2 Cd 5d0 0.0031754830712519 0.0078878880569209 + 42 2 Cd 5d+1 -0.0056159710625953 -0.0005387179924174 + 43 2 Cd 5d+2 -0.0010697882740473 -0.0013124965276807 + 44 2 Cd 5f-3 -0.0009114791542580 -0.0022300975713389 + 45 2 Cd 5f-2 -0.0002497775923921 0.0019040539027679 + 46 2 Cd 5f-1 0.0002738860780690 -0.0015158215430702 + 47 2 Cd 5f0 0.0006464845945756 -0.0029856599702466 + 48 2 Cd 5f+1 -0.0019247669908241 0.0001146481852514 + 49 2 Cd 5f+2 0.0002074884171456 -0.0004641616098320 + 50 2 Cd 5f+3 -0.0013512499481459 0.0010565762422795 + + 51 3 Cd 2s 0.0290276668933400 0.0245124372693138 + 52 3 Cd 3s 0.0000541502996638 -0.0003690954343617 + 53 3 Cd 3py -0.0138515115194420 0.0619502918277940 + 54 3 Cd 3pz -0.0233707875345974 -0.0193101121659653 + 55 3 Cd 3px 0.0356967539538698 0.0313288778388932 + 56 3 Cd 4py 0.0019114378606935 -0.0020839911171712 + 57 3 Cd 4pz -0.0004451014712385 0.0049204281824382 + 58 3 Cd 4px -0.0056222820839164 -0.0025167115067472 + 59 3 Cd 4d-2 0.0388058477608152 -0.0446122098015691 + 60 3 Cd 4d-1 0.0054687189630261 -0.0194968842031086 + 61 3 Cd 4d0 0.0398316016784858 0.0312212082397703 + 62 3 Cd 4d+1 -0.0032659405402965 0.0183810212564636 + 63 3 Cd 4d+2 0.0298316635336876 0.0227850931419815 + 64 3 Cd 5d-2 0.0049504703004341 -0.0085648774621300 + 65 3 Cd 5d-1 0.0007143522509413 -0.0002656363346622 + 66 3 Cd 5d0 0.0036432953406932 0.0087686511744186 + 67 3 Cd 5d+1 0.0109626746053033 0.0036181924082565 + 68 3 Cd 5d+2 0.0020575103581794 -0.0019378146783293 + 69 3 Cd 5f-3 0.0007632486093833 -0.0011431015994925 + 70 3 Cd 5f-2 -0.0002330995328539 0.0011179119690080 + 71 3 Cd 5f-1 -0.0012684815160753 0.0005696171593347 + 72 3 Cd 5f0 -0.0015509911898487 -0.0001091201552393 + 73 3 Cd 5f+1 -0.0001142200607726 0.0005314076373586 + 74 3 Cd 5f+2 -0.0001280269362848 -0.0006215815849732 + 75 3 Cd 5f+3 0.0009789759687713 -0.0003178006978569 + + 76 4 Se 2s 0.0246457031445552 -0.0336463375083121 + 77 4 Se 3s -0.0024319287954858 0.0043932397670281 + 78 4 Se 3py 0.0523351943855284 -0.2127736262705175 + 79 4 Se 3pz -0.0843351624346251 -0.2075026797658318 + 80 4 Se 3px 0.1297578097293273 -0.0819003836816364 + 81 4 Se 4py -0.0023050829628840 0.0180869806809210 + 82 4 Se 4pz 0.0008440819956044 0.0204758499819142 + 83 4 Se 4px -0.0087611968433778 0.0046584327737132 + 84 4 Se 4d-2 -0.0030536271584077 0.0042817627127334 + 85 4 Se 4d-1 0.0015410515629411 0.0031468970177189 + 86 4 Se 4d0 0.0007370050414723 -0.0053523356477400 + 87 4 Se 4d+1 0.0005419801523528 0.0042811025937741 + 88 4 Se 4d+2 -0.0013561939549886 -0.0018370162983286 + + 89 5 Se 2s 0.0297611021794228 0.0331404800933411 + 90 5 Se 3s -0.0026565879932672 -0.0030208507524547 + 91 5 Se 3py -0.0414325454044781 -0.1352913448545885 + 92 5 Se 3pz -0.0954377736916751 -0.0328436126659201 + 93 5 Se 3px 0.0681597361071127 0.0659320920078922 + 94 5 Se 4py 0.0003911353955593 0.0093198713266138 + 95 5 Se 4pz 0.0052325818533266 -0.0016018172843657 + 96 5 Se 4px -0.0038786176901482 -0.0024150855923581 + 97 5 Se 4d-2 0.0025002590176685 0.0067252399219358 + 98 5 Se 4d-1 -0.0015561554543419 -0.0011155384751279 + 99 5 Se 4d0 -0.0011520380110859 0.0007146309723995 + 100 5 Se 4d+1 0.0036783411108386 0.0017248847822495 + 101 5 Se 4d+2 0.0006730082290290 0.0015259723420735 + + 102 6 Se 2s 0.0253148993729676 -0.0027471219742937 + 103 6 Se 3s -0.0028103738040696 0.0016855147687156 + 104 6 Se 3py 0.0344495447645433 0.1471393869034868 + 105 6 Se 3pz 0.0215376378476713 0.0238556496605283 + 106 6 Se 3px 0.0869870724369387 -0.0207229551162235 + 107 6 Se 4py -0.0011573910361332 -0.0050132740907777 + 108 6 Se 4pz 0.0031213863978842 0.0000665269477523 + 109 6 Se 4px -0.0064392999001008 0.0021036759981824 + 110 6 Se 4d-2 -0.0014607207214997 -0.0051185561277843 + 111 6 Se 4d-1 0.0000307958619229 -0.0017287694876986 + 112 6 Se 4d0 -0.0002264964070911 -0.0041128739803604 + 113 6 Se 4d+1 0.0026849093869241 -0.0004488069377715 + 114 6 Se 4d+2 -0.0006975366205430 -0.0014142842629044 + + 115 7 Se 2s 0.0142886023037650 0.0041604652463650 + 116 7 Se 3s -0.0027394245954317 0.0008371655926456 + 117 7 Se 3py -0.0275326811862108 -0.0075909480177832 + 118 7 Se 3pz 0.1280742289457353 -0.1027012564901219 + 119 7 Se 3px 0.1103425673819368 -0.2949525067756927 + 120 7 Se 4py 0.0038914708226316 -0.0005916794411815 + 121 7 Se 4pz -0.0105738972800860 0.0085878882867642 + 122 7 Se 4px -0.0073699234095498 0.0136116520316392 + 123 7 Se 4d-2 -0.0026364494659547 -0.0002505173142224 + 124 7 Se 4d-1 0.0001897030575370 0.0027256098182474 + 125 7 Se 4d0 -0.0017180707279195 0.0044789637540431 + 126 7 Se 4d+1 -0.0021135368489708 0.0072400943767332 + 127 7 Se 4d+2 -0.0012341567062002 -0.0024160779157526 + + 128 8 Cd 2s 0.0047556161371254 0.0295754957734467 + 129 8 Cd 3s -0.0004437693790784 -0.0044670163398662 + 130 8 Cd 3py 0.0146105570174501 -0.0349875806595342 + 131 8 Cd 3pz 0.0632634492943987 0.0100748400373608 + 132 8 Cd 3px -0.0274831494323656 -0.0789796914043781 + 133 8 Cd 4py 0.0032700320834184 -0.0015527263318601 + 134 8 Cd 4pz -0.0039883048609111 0.0014982546540224 + 135 8 Cd 4px -0.0018003896941239 0.0055564744497243 + 136 8 Cd 4d-2 0.0381634088026088 -0.0350018816728966 + 137 8 Cd 4d-1 -0.0561077787977246 -0.0873028785737163 + 138 8 Cd 4d0 -0.0063460470790839 -0.0282335866515952 + 139 8 Cd 4d+1 0.0520418372355660 0.0215850765850341 + 140 8 Cd 4d+2 -0.0332372916174801 0.0051588476708419 + 141 8 Cd 5d-2 0.0091330764752807 -0.0130887011422217 + 142 8 Cd 5d-1 -0.0127152067362359 -0.0200474741526680 + 143 8 Cd 5d0 -0.0046155301086823 -0.0064175955290891 + 144 8 Cd 5d+1 0.0145303837879456 0.0042840770159913 + 145 8 Cd 5d+2 -0.0130792409157932 -0.0034371522851136 + 146 8 Cd 5f-3 0.0013794400083799 -0.0023580950153637 + 147 8 Cd 5f-2 -0.0023186669430514 -0.0011639852884955 + 148 8 Cd 5f-1 -0.0024003176135268 0.0034998390518632 + 149 8 Cd 5f0 0.0021666356155808 -0.0000232152210236 + 150 8 Cd 5f+1 0.0018478916714877 -0.0002991995698511 + 151 8 Cd 5f+2 0.0019166047861854 -0.0006262750581976 + 152 8 Cd 5f+3 0.0005798372394173 0.0007110928613957 + + 153 9 Cd 2s 0.0365375082858367 0.0376290956744982 + 154 9 Cd 3s -0.0033123294091371 -0.0035685659155443 + 155 9 Cd 3py -0.0135760855031722 0.0044172831192635 + 156 9 Cd 3pz -0.0428530471533087 0.0060973668007243 + 157 9 Cd 3px -0.0023349987582748 0.0027710389751050 + 158 9 Cd 4py -0.0005914266402113 0.0019966564391610 + 159 9 Cd 4pz -0.0031232072792672 0.0006785772643704 + 160 9 Cd 4px -0.0020299429962813 0.0051841225125955 + 161 9 Cd 4d-2 -0.0053606133956440 -0.0186606723724996 + 162 9 Cd 4d-1 0.0029925583976323 0.0115292826474895 + 163 9 Cd 4d0 -0.0027387382253008 -0.0098435375598571 + 164 9 Cd 4d+1 0.0190163883683324 0.0176190134520592 + 165 9 Cd 4d+2 0.0090342497974452 0.0077482134584297 + 166 9 Cd 5d-2 0.0003360166622223 0.0000354167775608 + 167 9 Cd 5d-1 -0.0018442582502433 0.0034819704734419 + 168 9 Cd 5d0 0.0087666171220782 -0.0015089847626106 + 169 9 Cd 5d+1 0.0124289654400589 0.0030461789386223 + 170 9 Cd 5d+2 -0.0009761535464445 -0.0064424715271796 + 171 9 Cd 5f-3 -0.0005625107881959 -0.0021560316078761 + 172 9 Cd 5f-2 -0.0002310042029318 -0.0006833263488435 + 173 9 Cd 5f-1 0.0007033687130077 -0.0005155234619873 + 174 9 Cd 5f0 -0.0020500213977055 -0.0000097613013410 + 175 9 Cd 5f+1 -0.0009943766866578 -0.0003114528649076 + 176 9 Cd 5f+2 0.0003715701036843 -0.0000197788619753 + 177 9 Cd 5f+3 -0.0017569957796059 -0.0007067649134102 + + 178 10 Se 2s 0.0434656103604812 0.0314521112798539 + 179 10 Se 3s -0.0065410898046303 -0.0046950965674392 + 180 10 Se 3py -0.0278973185247701 -0.1176326381506636 + 181 10 Se 3pz 0.2945069476669293 0.1553925179339254 + 182 10 Se 3px -0.0429928967695517 -0.0717239535776802 + 183 10 Se 4py -0.0002221824605228 0.0069746323188701 + 184 10 Se 4pz -0.0203470070044097 -0.0088315730492677 + 185 10 Se 4px 0.0043589198909297 0.0080430177250324 + 186 10 Se 4d-2 0.0001020599825837 0.0010004092374707 + 187 10 Se 4d-1 0.0000323467417462 0.0048132032875144 + 188 10 Se 4d0 -0.0060970228651792 -0.0020950912423517 + 189 10 Se 4d+1 0.0060125221938254 0.0018929328080445 + 190 10 Se 4d+2 0.0010511400746063 -0.0016543248805921 + + 191 11 Se 2s 0.0387498606271463 -0.0140719548314804 + 192 11 Se 3s -0.0051341066697813 0.0018884753504199 + 193 11 Se 3py -0.0826501226644201 0.1374268001575824 + 194 11 Se 3pz 0.0968983450012906 0.0057618634068775 + 195 11 Se 3px 0.1155824117090133 0.2135830981269525 + 196 11 Se 4py 0.0072658627924327 -0.0106078359941740 + 197 11 Se 4pz -0.0043191047021973 -0.0000458492823606 + 198 11 Se 4px -0.0086403691446699 -0.0094600675327266 + 199 11 Se 4d-2 0.0048443615401589 0.0050159570241282 + 200 11 Se 4d-1 -0.0010523289527224 -0.0020436251383570 + 201 11 Se 4d0 -0.0025303135321017 -0.0026714116270915 + 202 11 Se 4d+1 0.0003050817474385 -0.0027599792992891 + 203 11 Se 4d+2 0.0003057986222564 -0.0014611285624306 + + 204 12 Cd 2s 0.0385292772730663 -0.0204231193703996 + 205 12 Cd 3s -0.0046647519940988 0.0000803958250146 + 206 12 Cd 3py -0.0270517030024515 -0.0134792608998943 + 207 12 Cd 3pz 0.0441808497130772 0.0165524163640413 + 208 12 Cd 3px 0.0292223297681025 0.0257279589566627 + 209 12 Cd 4py 0.0020230805698559 -0.0010595653004407 + 210 12 Cd 4pz -0.0031584966226323 -0.0017486214455979 + 211 12 Cd 4px -0.0007332117647607 0.0034396799028968 + 212 12 Cd 4d-2 -0.0277233144283421 -0.0048717104890937 + 213 12 Cd 4d-1 0.0281277633893010 0.0279565180741700 + 214 12 Cd 4d0 0.0396251924523237 0.0122565220919723 + 215 12 Cd 4d+1 -0.0076024105723099 0.0039328193167366 + 216 12 Cd 4d+2 -0.0280349668819514 -0.0338634576865519 + 217 12 Cd 5d-2 0.0033481503222650 0.0002173842153565 + 218 12 Cd 5d-1 0.0132405387876357 0.0122509302036374 + 219 12 Cd 5d0 0.0046362496489961 -0.0004931539721951 + 220 12 Cd 5d+1 -0.0061635824929840 -0.0057328905738281 + 221 12 Cd 5d+2 -0.0038878054206794 -0.0167924019451590 + 222 12 Cd 5f-3 -0.0011714385160449 -0.0015272337179712 + 223 12 Cd 5f-2 -0.0007470530782806 -0.0007058019983744 + 224 12 Cd 5f-1 -0.0013526466062598 -0.0007870263914439 + 225 12 Cd 5f0 -0.0021326427073921 0.0004295021279951 + 226 12 Cd 5f+1 0.0017261649087191 0.0010600336844728 + 227 12 Cd 5f+2 -0.0023153122394036 -0.0004639974089774 + 228 12 Cd 5f+3 -0.0006240171318991 -0.0010264799186294 + + 229 13 Cd 2s 0.0056061043200623 0.0227085870260075 + 230 13 Cd 3s -0.0019103678554937 0.0015628354942407 + 231 13 Cd 3py -0.0055553396685819 -0.0414695374911567 + 232 13 Cd 3pz 0.0070761160045809 -0.0730388801687269 + 233 13 Cd 3px 0.0131529844962690 -0.0051773311102588 + 234 13 Cd 4py -0.0009512445626525 0.0031876532849156 + 235 13 Cd 4pz -0.0015303540990899 0.0063902458234858 + 236 13 Cd 4px -0.0012649016233405 -0.0003831728788529 + 237 13 Cd 4d-2 0.0000335561995259 0.0340730264893790 + 238 13 Cd 4d-1 -0.0109411377566969 0.0277823924310805 + 239 13 Cd 4d0 -0.0001530077999014 0.0493577270691359 + 240 13 Cd 4d+1 0.0124290885822307 -0.0442946131677331 + 241 13 Cd 4d+2 -0.0351973599210246 0.0086005879952626 + 242 13 Cd 5d-2 -0.0023863041370488 0.0122747508293892 + 243 13 Cd 5d-1 -0.0002292089043664 0.0084535376541193 + 244 13 Cd 5d0 0.0008011527446808 -0.0036430954560240 + 245 13 Cd 5d+1 -0.0014935022875151 -0.0009709875688973 + 246 13 Cd 5d+2 -0.0182992340294838 0.0029560423629216 + 247 13 Cd 5f-3 0.0016097355688284 -0.0037266933247434 + 248 13 Cd 5f-2 -0.0002534399371002 -0.0028053947374014 + 249 13 Cd 5f-1 -0.0002923844686218 0.0028601239425048 + 250 13 Cd 5f0 0.0007937073152358 -0.0008787689527822 + 251 13 Cd 5f+1 -0.0003597749755455 -0.0022054890261238 + 252 13 Cd 5f+2 -0.0008239436646875 0.0012116042172950 + 253 13 Cd 5f+3 -0.0001328509524620 0.0028442605261189 + + 254 14 Cd 2s -0.0638139460165285 0.0590837135862302 + 255 14 Cd 3s -0.0020057676896030 0.0007028198540946 + 256 14 Cd 3py 0.0026255081570230 0.0169183062101042 + 257 14 Cd 3pz 0.0314066004263521 -0.0185351967561687 + 258 14 Cd 3px 0.0238994713614397 0.0111974333050306 + 259 14 Cd 4py 0.0044684058973932 -0.0017906882011309 + 260 14 Cd 4pz -0.0069208215135359 0.0046596215826067 + 261 14 Cd 4px -0.0002728872111426 0.0031779181218171 + 262 14 Cd 4d-2 -0.0025425989527837 -0.0123865879466183 + 263 14 Cd 4d-1 -0.0264115611539581 0.0179502403123490 + 264 14 Cd 4d0 -0.0123664048601966 -0.0014296237166460 + 265 14 Cd 4d+1 -0.0173461179874449 0.0360453978029092 + 266 14 Cd 4d+2 -0.0091845121186454 0.0168513092087235 + 267 14 Cd 5d-2 -0.0041809857247286 -0.0042118151366675 + 268 14 Cd 5d-1 -0.0092419337591830 0.0029414049836390 + 269 14 Cd 5d0 0.0065874466471406 -0.0025755807030809 + 270 14 Cd 5d+1 -0.0022756266652116 0.0129407678241599 + 271 14 Cd 5d+2 -0.0020518298593460 0.0040812245143659 + 272 14 Cd 5f-3 0.0010039763267385 -0.0000914925493423 + 273 14 Cd 5f-2 0.0000623832212170 -0.0014688896877632 + 274 14 Cd 5f-1 0.0004770897261014 -0.0005407514843146 + 275 14 Cd 5f0 -0.0025626387625248 0.0012276410286218 + 276 14 Cd 5f+1 -0.0019788236197177 0.0001033651765916 + 277 14 Cd 5f+2 -0.0006175430562755 -0.0005322991058712 + 278 14 Cd 5f+3 -0.0012356479809030 0.0004513821947093 + + 279 15 Se 2s -0.0463627219287373 0.0270374167926579 + 280 15 Se 3s 0.0054197853347376 -0.0031971017489541 + 281 15 Se 3py -0.1619339577212812 0.0640891970659813 + 282 15 Se 3pz 0.1331585486402261 -0.1151705752429975 + 283 15 Se 3px -0.0877723117401056 0.2414333971170846 + 284 15 Se 4py 0.0081188172690255 -0.0046863638162516 + 285 15 Se 4pz -0.0075453624040784 0.0053286055747450 + 286 15 Se 4px 0.0033500448560793 -0.0154604662415634 + 287 15 Se 4d-2 0.0023571428915281 -0.0109536497463868 + 288 15 Se 4d-1 0.0009378587365327 -0.0013558729254571 + 289 15 Se 4d0 0.0055329375491193 -0.0064745029150915 + 290 15 Se 4d+1 0.0045208781436566 -0.0012785535708431 + 291 15 Se 4d+2 -0.0032848382251163 0.0045446442535297 + + 292 16 Se 2s -0.0037685144583596 0.0062712202944426 + 293 16 Se 3s 0.0013216116164859 -0.0023538278948146 + 294 16 Se 3py 0.0143216769220020 -0.2258158387612215 + 295 16 Se 3pz 0.0079114301653483 -0.1993629552627108 + 296 16 Se 3px 0.0291421241524645 -0.0387144812102598 + 297 16 Se 4py -0.0011592766299136 0.0114162273087776 + 298 16 Se 4pz -0.0047117603926245 0.0133344679319395 + 299 16 Se 4px -0.0051943363955348 0.0040369593214098 + 300 16 Se 4d-2 -0.0017724449688053 0.0077550953179897 + 301 16 Se 4d-1 -0.0006875181803379 -0.0025931441454450 + 302 16 Se 4d0 -0.0011832244984489 -0.0085585105398902 + 303 16 Se 4d+1 -0.0006663970803288 0.0068799946444295 + 304 16 Se 4d+2 -0.0006326190455680 0.0020431036176850 + + 305 17 Cd 2s -0.0331528961644733 -0.0325265144226600 + 306 17 Cd 3s 0.0048661379928929 0.0022021876942666 + 307 17 Cd 3py 0.0139373267228633 -0.0324381927104278 + 308 17 Cd 3pz -0.0195389934428057 0.0215982886543500 + 309 17 Cd 3px -0.0053692054165735 -0.0284011256319105 + 310 17 Cd 4py -0.0086126107896932 0.0107525370754620 + 311 17 Cd 4pz 0.0001611666314816 -0.0034863506585225 + 312 17 Cd 4px -0.0047547307747147 0.0056679987742833 + 313 17 Cd 4d-2 -0.0179572089054367 -0.0092023129764285 + 314 17 Cd 4d-1 0.0121411185133362 0.0081933770211421 + 315 17 Cd 4d0 0.0247767495610535 0.0162215384277575 + 316 17 Cd 4d+1 0.0267273078332468 0.0309464292703828 + 317 17 Cd 4d+2 0.0331763992362567 -0.0578111350227938 + 318 17 Cd 5d-2 -0.0030886043422075 -0.0011015571050283 + 319 17 Cd 5d-1 0.0023629499493150 -0.0007286742994449 + 320 17 Cd 5d0 0.0024011186583393 -0.0017543385927198 + 321 17 Cd 5d+1 0.0113509041476594 0.0015324862823923 + 322 17 Cd 5d+2 0.0084254962354615 -0.0075940673847984 + 323 17 Cd 5f-3 -0.0021564427052366 0.0026529830448664 + 324 17 Cd 5f-2 -0.0002571047894112 -0.0009893583575677 + 325 17 Cd 5f-1 0.0010720117674307 -0.0012983377138656 + 326 17 Cd 5f0 -0.0017177355602371 0.0016024998407114 + 327 17 Cd 5f+1 0.0013494190247780 -0.0030646080104937 + 328 17 Cd 5f+2 0.0010805103650274 -0.0007613587003028 + 329 17 Cd 5f+3 0.0012625542876673 -0.0013083809272835 + + 330 18 Cd 2s 0.0332857871615954 -0.0157352750655675 + 331 18 Cd 3s 0.0013803867826754 0.0010458145973598 + 332 18 Cd 3py -0.0258077838273871 0.0069446674659998 + 333 18 Cd 3pz 0.0167656522587747 0.0126712664700952 + 334 18 Cd 3px -0.0084714651508666 -0.0127737791095933 + 335 18 Cd 4py 0.0016646598205175 0.0006398719016088 + 336 18 Cd 4pz -0.0059356816664992 -0.0005436534664499 + 337 18 Cd 4px -0.0024699444343186 -0.0001623574662987 + 338 18 Cd 4d-2 0.0150889107833131 0.0051799683448991 + 339 18 Cd 4d-1 0.0333689307663236 -0.0171536943253042 + 340 18 Cd 4d0 0.0251997059201017 -0.0090122188376004 + 341 18 Cd 4d+1 -0.0130921868924933 -0.0336935207679161 + 342 18 Cd 4d+2 0.0126106407040130 -0.0123392233128740 + 343 18 Cd 5d-2 -0.0011777719912417 0.0018800012869304 + 344 18 Cd 5d-1 0.0027450681298903 -0.0042213251000314 + 345 18 Cd 5d0 0.0064431789550337 -0.0017651057328029 + 346 18 Cd 5d+1 0.0023647398618830 -0.0057738689230435 + 347 18 Cd 5d+2 0.0016808287578540 -0.0045585928736266 + 348 18 Cd 5f-3 -0.0003444597611639 -0.0002748767236428 + 349 18 Cd 5f-2 -0.0005340695889760 0.0008296998937850 + 350 18 Cd 5f-1 0.0003651020220423 0.0006292642583962 + 351 18 Cd 5f0 0.0004442336021160 -0.0011752827228136 + 352 18 Cd 5f+1 0.0017018475640969 0.0010534854940915 + 353 18 Cd 5f+2 -0.0003008695085741 0.0004110346859225 + 354 18 Cd 5f+3 0.0000062166795417 0.0001840548861726 + + 355 19 Se 2s -0.0300800346279881 0.0011862374303962 + 356 19 Se 3s 0.0041610083984403 -0.0001359573575550 + 357 19 Se 3py 0.1827512280241976 -0.1398063214983030 + 358 19 Se 3pz 0.2447764231958776 -0.0138482863100886 + 359 19 Se 3px 0.0595500894411215 -0.1157381149461345 + 360 19 Se 4py -0.0111304347989759 0.0091283493752520 + 361 19 Se 4pz -0.0173778929519142 0.0031898462140189 + 362 19 Se 4px -0.0040911093479882 0.0031451223524877 + 363 19 Se 4d-2 0.0029134643970711 -0.0051176216394147 + 364 19 Se 4d-1 0.0078630142669395 -0.0036505308138816 + 365 19 Se 4d0 0.0033746880130053 0.0006808508518811 + 366 19 Se 4d+1 0.0006064165791076 -0.0023762297859764 + 367 19 Se 4d+2 -0.0007013782079541 0.0011548346910776 + + 368 20 Se 2s -0.0040439694901914 -0.0063038373228170 + 369 20 Se 3s 0.0005781729692354 0.0022606163771801 + 370 20 Se 3py -0.0247221434584692 0.0905373444753934 + 371 20 Se 3pz 0.4162679103533139 0.1232068170584357 + 372 20 Se 3px 0.1660205621323423 -0.1452182577927401 + 373 20 Se 4py 0.0068545905446856 -0.0072637182835692 + 374 20 Se 4pz -0.0430477273291463 -0.0108304994827702 + 375 20 Se 4px -0.0212903039240762 0.0108149088063074 + 376 20 Se 4d-2 0.0007569350734092 0.0048856554934094 + 377 20 Se 4d-1 0.0016364793760843 0.0004423742212987 + 378 20 Se 4d0 0.0078970378346109 0.0006789421384724 + 379 20 Se 4d+1 -0.0016155262694847 0.0054795761902051 + 380 20 Se 4d+2 -0.0026684236648463 -0.0002488519635947 + + 381 21 Se 2s -0.0261313706423516 0.0438807742621695 + 382 21 Se 3s 0.0022390164983671 -0.0066081834120731 + 383 21 Se 3py 0.0387833846950297 0.2156335334119115 + 384 21 Se 3pz 0.1916297994010558 -0.1040530421273253 + 385 21 Se 3px -0.1067149949451274 -0.0951503124297414 + 386 21 Se 4py -0.0020595415341724 -0.0158545982756179 + 387 21 Se 4pz -0.0200138738333951 0.0032046177048481 + 388 21 Se 4px 0.0125847759395117 0.0077116069553790 + 389 21 Se 4d-2 0.0068436322350936 -0.0028983480874503 + 390 21 Se 4d-1 -0.0068720128236449 0.0081498693320298 + 391 21 Se 4d0 -0.0063742719393088 0.0043153943710174 + 392 21 Se 4d+1 0.0019462893855222 0.0026756124591431 + 393 21 Se 4d+2 0.0019200805827848 0.0067897962554610 + + 394 22 Cd 2s -0.0998176317541241 0.0306512216892486 + 395 22 Cd 3s -0.0009666659509111 0.0015479945485257 + 396 22 Cd 3py -0.0450101134645453 0.0480072140334880 + 397 22 Cd 3pz 0.0962825781087199 -0.0165846840481870 + 398 22 Cd 3px 0.0015147840999664 0.0285971328415735 + 399 22 Cd 4py 0.0010094591387588 -0.0034833844899446 + 400 22 Cd 4pz -0.0119081237479370 -0.0026105420738288 + 401 22 Cd 4px 0.0026059313196162 -0.0016976458454802 + 402 22 Cd 4d-2 -0.0466682446440202 0.0148307330041027 + 403 22 Cd 4d-1 -0.0526144385975997 -0.0044975379784743 + 404 22 Cd 4d0 -0.0332034480752334 0.0038086913646663 + 405 22 Cd 4d+1 -0.0432878259198230 0.0014389758113015 + 406 22 Cd 4d+2 -0.0056664881596171 0.0001369511196872 + 407 22 Cd 5d-2 -0.0051498543943847 0.0079558834614770 + 408 22 Cd 5d-1 -0.0186045249811354 -0.0029090727163527 + 409 22 Cd 5d0 -0.0045806885497362 0.0004170426880652 + 410 22 Cd 5d+1 -0.0045314818310696 0.0062887299306593 + 411 22 Cd 5d+2 0.0022531332263899 -0.0009543343933930 + 412 22 Cd 5f-3 -0.0012118333564896 0.0035094755262630 + 413 22 Cd 5f-2 0.0011799128594418 -0.0043173675664473 + 414 22 Cd 5f-1 -0.0040732557515114 0.0015258002428824 + 415 22 Cd 5f0 -0.0038926175003766 0.0007320222079467 + 416 22 Cd 5f+1 0.0004989263407026 -0.0005737859263440 + 417 22 Cd 5f+2 -0.0022173457638209 0.0015045215251652 + 418 22 Cd 5f+3 -0.0006190564168960 0.0004719204611240 + + 419 23 Se 2s -0.0526608169523081 -0.0230905796971113 + 420 23 Se 3s 0.0066479527009789 0.0034671011928271 + 421 23 Se 3py 0.1846617123315880 -0.1473211495303822 + 422 23 Se 3pz 0.2727637039246796 0.1156434468594928 + 423 23 Se 3px 0.0917995668088463 -0.0103168903617176 + 424 23 Se 4py -0.0103177957892819 0.0078853345970629 + 425 23 Se 4pz -0.0161787841496178 -0.0059456413331123 + 426 23 Se 4px -0.0067714534679354 -0.0023957900063526 + 427 23 Se 4d-2 0.0023337255993089 -0.0020444401552365 + 428 23 Se 4d-1 0.0069677862672991 -0.0069938678427557 + 429 23 Se 4d0 0.0054364410328479 0.0044857288094186 + 430 23 Se 4d+1 0.0068999746003625 -0.0013333196873739 + 431 23 Se 4d+2 -0.0010682161189956 0.0005217834436161 + + 432 24 Se 2s -0.0238738738931372 -0.0032080268181629 + 433 24 Se 3s 0.0042704388684583 0.0008983400694408 + 434 24 Se 3py -0.0203343051359355 -0.0400862451500592 + 435 24 Se 3pz 0.0963669735323761 0.2422092012861810 + 436 24 Se 3px 0.1926528601016129 0.0053834627656483 + 437 24 Se 4py 0.0008589250415513 0.0021063913439837 + 438 24 Se 4pz -0.0069258034097377 -0.0112037162169523 + 439 24 Se 4px -0.0127481835224286 -0.0000912930518656 + 440 24 Se 4d-2 0.0026473220970778 -0.0003054824690911 + 441 24 Se 4d-1 0.0048975465233783 0.0024326759697846 + 442 24 Se 4d0 0.0000821286323217 0.0015923708146718 + 443 24 Se 4d+1 0.0013829561510217 0.0048614382872966 + 444 24 Se 4d+2 0.0049256270179490 0.0018843673889680 + + 445 25 Cd 2s -0.0292826014289495 -0.0343759323523632 + 446 25 Cd 3s 0.0051623290641686 0.0002548607810508 + 447 25 Cd 3py 0.0519463636931939 -0.0503461788422557 + 448 25 Cd 3pz 0.0204685721686095 0.0271003232899249 + 449 25 Cd 3px 0.0129967036638228 -0.0202441667399944 + 450 25 Cd 4py -0.0003013261280656 0.0007386475656861 + 451 25 Cd 4pz -0.0036683975723115 -0.0003273574287559 + 452 25 Cd 4px 0.0018793384079533 0.0000519720876784 + 453 25 Cd 4d-2 0.0320763818299428 -0.0014215948425008 + 454 25 Cd 4d-1 0.0073795358651618 0.0129040365104500 + 455 25 Cd 4d0 0.0055931459586981 -0.0184756337186593 + 456 25 Cd 4d+1 0.0709406039296779 -0.0245090840444751 + 457 25 Cd 4d+2 0.0234481626003898 0.0474172642133287 + 458 25 Cd 5d-2 0.0121740689797527 0.0000547403056921 + 459 25 Cd 5d-1 0.0002415100484308 -0.0008850000291567 + 460 25 Cd 5d0 0.0046415343939405 -0.0001743493054047 + 461 25 Cd 5d+1 0.0200236978257501 -0.0090733882716079 + 462 25 Cd 5d+2 0.0016371480977480 0.0198412835739683 + 463 25 Cd 5f-3 0.0005355958735908 -0.0001607606174920 + 464 25 Cd 5f-2 0.0005638229833201 0.0007752129294946 + 465 25 Cd 5f-1 -0.0029257986707787 0.0010635872409130 + 466 25 Cd 5f0 0.0030462044903851 -0.0001729034558038 + 467 25 Cd 5f+1 0.0017354881977278 -0.0015473592974858 + 468 25 Cd 5f+2 0.0005533592454143 0.0004886772709182 + 469 25 Cd 5f+3 0.0013244312002454 0.0012651007950479 + + 470 26 Cd 2s -0.0434255835432581 0.0304275586992395 + 471 26 Cd 3s 0.0024783607297482 -0.0000275579271200 + 472 26 Cd 3py -0.0085035292382462 0.0116037889530771 + 473 26 Cd 3pz -0.0428815365127735 0.0051260094115729 + 474 26 Cd 3px -0.0031140046018357 0.0266750531047200 + 475 26 Cd 4py -0.0006282547410508 -0.0017424715585859 + 476 26 Cd 4pz 0.0006807117050854 0.0002471182431502 + 477 26 Cd 4px 0.0010455564188772 0.0012860340426050 + 478 26 Cd 4d-2 0.0242364829417502 0.0108294514356435 + 479 26 Cd 4d-1 -0.0060327102518992 0.0256816044939789 + 480 26 Cd 4d0 -0.0003048812502366 0.0164184041353810 + 481 26 Cd 4d+1 -0.0064177004828626 0.0197285838055635 + 482 26 Cd 4d+2 0.0162116381343491 0.0334863761633500 + 483 26 Cd 5d-2 0.0044270894506585 -0.0005850862451469 + 484 26 Cd 5d-1 0.0052882820347908 0.0041107469171660 + 485 26 Cd 5d0 0.0002851935851003 0.0048933362384626 + 486 26 Cd 5d+1 -0.0038425977918786 0.0045907858163736 + 487 26 Cd 5d+2 0.0018961328032207 0.0144427696863900 + 488 26 Cd 5f-3 0.0001790723747520 -0.0001796867269676 + 489 26 Cd 5f-2 0.0035882544284002 -0.0001933700844267 + 490 26 Cd 5f-1 -0.0009325316191781 0.0013525756196566 + 491 26 Cd 5f0 -0.0012940276079594 -0.0003265952452035 + 492 26 Cd 5f+1 0.0008181343180656 0.0003372163817475 + 493 26 Cd 5f+2 -0.0016833793915150 -0.0010232074196921 + 494 26 Cd 5f+3 -0.0016269742616289 0.0018484028440202 + + 109 110 + -0.2052275499275041 -0.2011574360691182 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0529348407527434 0.1165248499609143 + 2 1 Cd 3s -0.0028667978569615 -0.0049672092535905 + 3 1 Cd 3py 0.0020712739935716 -0.0821378373255393 + 4 1 Cd 3pz -0.0039704984339051 0.0085261114848763 + 5 1 Cd 3px 0.0005957906716409 0.0348380939801710 + 6 1 Cd 4py -0.0027632321855124 0.0210148238264000 + 7 1 Cd 4pz 0.0006763202181149 0.0055757239788150 + 8 1 Cd 4px -0.0028444190764353 -0.0027544746002802 + 9 1 Cd 4d-2 -0.0491138605779279 -0.0020147298988996 + 10 1 Cd 4d-1 0.0104672305872401 -0.0327795501968117 + 11 1 Cd 4d0 0.0209646864990289 -0.0396373405218904 + 12 1 Cd 4d+1 -0.0041605276108763 0.0024605893817747 + 13 1 Cd 4d+2 -0.0143724488444171 -0.0396964495389281 + 14 1 Cd 5d-2 -0.0101627511774592 0.0081731631497868 + 15 1 Cd 5d-1 -0.0056584917728710 0.0015053180439496 + 16 1 Cd 5d0 0.0036534102943793 -0.0011621278665613 + 17 1 Cd 5d+1 -0.0064209442371555 -0.0044352878906138 + 18 1 Cd 5d+2 0.0039295182374032 0.0041783074569173 + 19 1 Cd 5f-3 -0.0008618482434334 -0.0066467067527928 + 20 1 Cd 5f-2 0.0010493782073315 0.0004685474070004 + 21 1 Cd 5f-1 -0.0005833108295914 -0.0043579606107108 + 22 1 Cd 5f0 -0.0002219977910908 -0.0028227326038825 + 23 1 Cd 5f+1 -0.0011136551745256 0.0005852970486134 + 24 1 Cd 5f+2 -0.0001465631680388 -0.0015816203567283 + 25 1 Cd 5f+3 -0.0009979313639168 0.0023345748347518 + + 26 2 Cd 2s 0.0580935633961646 -0.0127155798134030 + 27 2 Cd 3s -0.0067983496656433 -0.0024216506402282 + 28 2 Cd 3py 0.0683538124361358 0.0205587772352430 + 29 2 Cd 3pz -0.0631814191961421 -0.0350595704496450 + 30 2 Cd 3px -0.0143661320965598 0.0197643673906042 + 31 2 Cd 4py -0.0013110880341155 -0.0045260830906458 + 32 2 Cd 4pz 0.0079082160945954 0.0016390343581529 + 33 2 Cd 4px -0.0036127581422511 0.0017177173657272 + 34 2 Cd 4d-2 0.0466790266912618 0.0419499347774511 + 35 2 Cd 4d-1 -0.0292526976153561 -0.0206607046328569 + 36 2 Cd 4d0 0.0478445746874806 -0.0167469698854627 + 37 2 Cd 4d+1 -0.0511707962174303 -0.0224305648663278 + 38 2 Cd 4d+2 0.0025711724158520 0.0426587925223915 + 39 2 Cd 5d-2 0.0045216452222504 0.0179012053094443 + 40 2 Cd 5d-1 -0.0065957997715968 -0.0148564155099748 + 41 2 Cd 5d0 0.0186064932217109 -0.0042057124130791 + 42 2 Cd 5d+1 -0.0063810206687257 -0.0103018330743893 + 43 2 Cd 5d+2 0.0014064296416598 0.0108050865193453 + 44 2 Cd 5f-3 -0.0047440905105705 -0.0045871145317583 + 45 2 Cd 5f-2 0.0011139896120051 0.0030344751503508 + 46 2 Cd 5f-1 -0.0007627340561654 0.0018028966505841 + 47 2 Cd 5f0 -0.0010859603769055 -0.0035872212873756 + 48 2 Cd 5f+1 -0.0024040595647866 -0.0006841197178279 + 49 2 Cd 5f+2 0.0030234982829410 0.0002952840190113 + 50 2 Cd 5f+3 -0.0014943985066454 0.0002542411191074 + + 51 3 Cd 2s -0.0240223060662438 -0.0080754253191597 + 52 3 Cd 3s -0.0007684286377315 0.0013017642846128 + 53 3 Cd 3py -0.0283659838334035 -0.0014905272573022 + 54 3 Cd 3pz 0.0928780444877104 0.0290387899033049 + 55 3 Cd 3px 0.0418411933546728 -0.0363746411227207 + 56 3 Cd 4py 0.0048028548254888 0.0023785498831364 + 57 3 Cd 4pz -0.0032602268080378 0.0008579373373647 + 58 3 Cd 4px -0.0001219642182589 0.0027454317493469 + 59 3 Cd 4d-2 0.0606806023652800 0.0472272648627446 + 60 3 Cd 4d-1 0.0260210384113039 -0.0445076674968022 + 61 3 Cd 4d0 0.0184001745169164 -0.0119793769064063 + 62 3 Cd 4d+1 0.0361394011226813 0.0008855433109607 + 63 3 Cd 4d+2 0.0362995294045604 -0.0147787034048077 + 64 3 Cd 5d-2 -0.0036621659848617 0.0101665880973163 + 65 3 Cd 5d-1 0.0130967909397577 -0.0077772817213045 + 66 3 Cd 5d0 0.0083900945979006 -0.0045927975678394 + 67 3 Cd 5d+1 0.0066394114661056 0.0018590840386108 + 68 3 Cd 5d+2 0.0031906551093581 0.0016861839818189 + 69 3 Cd 5f-3 0.0003545346578666 -0.0030786602819569 + 70 3 Cd 5f-2 0.0025851199870687 0.0027253830259419 + 71 3 Cd 5f-1 0.0013762125685323 -0.0015963804896100 + 72 3 Cd 5f0 -0.0002108080063124 0.0002895899694868 + 73 3 Cd 5f+1 -0.0020621787179909 0.0002761674716743 + 74 3 Cd 5f+2 -0.0024283121982090 -0.0004563382115123 + 75 3 Cd 5f+3 0.0007457874436762 -0.0031584928820142 + + 76 4 Se 2s 0.0432020902505244 -0.0117343204147998 + 77 4 Se 3s -0.0061802634571053 0.0011519283881477 + 78 4 Se 3py 0.1811239054731835 -0.0610439649242464 + 79 4 Se 3pz -0.1491218624037638 -0.3070031745121432 + 80 4 Se 3px 0.2705234944201826 -0.1688105406745312 + 81 4 Se 4py -0.0158133196708643 0.0066241304294678 + 82 4 Se 4pz 0.0068714003397237 0.0157640336512698 + 83 4 Se 4px -0.0179140422324191 0.0117631696686697 + 84 4 Se 4d-2 -0.0091711017380903 0.0043175816405540 + 85 4 Se 4d-1 -0.0013576028491314 0.0056851112882694 + 86 4 Se 4d0 0.0031424286272215 0.0008701883262500 + 87 4 Se 4d+1 0.0072729570242963 0.0092828658078721 + 88 4 Se 4d+2 -0.0053088305562277 0.0052103445108739 + + 89 5 Se 2s -0.0161867643783033 0.0449234607573542 + 90 5 Se 3s 0.0028143953259886 -0.0024037318402266 + 91 5 Se 3py -0.0133993945750089 -0.3508938686191904 + 92 5 Se 3pz 0.0118150475286881 0.1011071641877763 + 93 5 Se 3px -0.1251038911668849 -0.0923861570357894 + 94 5 Se 4py 0.0009723218283028 0.0173392444900495 + 95 5 Se 4pz -0.0014061877895125 -0.0061177150911189 + 96 5 Se 4px 0.0045152891288064 0.0065863754703737 + 97 5 Se 4d-2 -0.0031544474973990 -0.0004426174528273 + 98 5 Se 4d-1 0.0021512046730720 0.0026140993773161 + 99 5 Se 4d0 -0.0029803785439343 0.0084745938459590 + 100 5 Se 4d+1 -0.0024914968016285 -0.0032378516096642 + 101 5 Se 4d+2 0.0062078300487856 0.0127343237099132 + + 102 6 Se 2s 0.0338960620868806 0.0071763815299030 + 103 6 Se 3s -0.0048117294898732 -0.0005263345271246 + 104 6 Se 3py 0.3304657189071281 0.1044624453536182 + 105 6 Se 3pz 0.0232809295729710 -0.1066643768590829 + 106 6 Se 3px 0.2017666069318364 -0.0468221704576872 + 107 6 Se 4py -0.0159740535219040 -0.0076288103019906 + 108 6 Se 4pz -0.0007415069665513 0.0072661386331603 + 109 6 Se 4px -0.0129401039932692 0.0064633572549750 + 110 6 Se 4d-2 -0.0093775937299179 -0.0062625007795336 + 111 6 Se 4d-1 0.0029238830839628 0.0039233139438865 + 112 6 Se 4d0 0.0013633807951841 -0.0014897189622065 + 113 6 Se 4d+1 0.0004659303029660 0.0046313841986188 + 114 6 Se 4d+2 -0.0042362200305365 0.0003028225216963 + + 115 7 Se 2s -0.0066276254363819 -0.0200649886077992 + 116 7 Se 3s 0.0001117967296729 0.0019962957182569 + 117 7 Se 3py 0.0426933252060959 0.1683980714817006 + 118 7 Se 3pz -0.0633002861181707 0.0016984908718795 + 119 7 Se 3px 0.0266502515027775 0.2651708279196596 + 120 7 Se 4py 0.0000657752597727 -0.0132140411068925 + 121 7 Se 4pz 0.0043544999074903 -0.0020467482952651 + 122 7 Se 4px -0.0017698220463476 -0.0131947629123788 + 123 7 Se 4d-2 -0.0017709107454652 -0.0008014693434153 + 124 7 Se 4d-1 -0.0006928326116397 -0.0063877058936569 + 125 7 Se 4d0 -0.0018492348008434 -0.0027299670251219 + 126 7 Se 4d+1 0.0018380759225269 -0.0057845747807542 + 127 7 Se 4d+2 -0.0014716344154952 -0.0017562477978220 + + 128 8 Cd 2s -0.0149958605836861 -0.0071383957069184 + 129 8 Cd 3s 0.0003109701327399 0.0020177154753787 + 130 8 Cd 3py -0.0057961562936748 0.0356907878516256 + 131 8 Cd 3pz 0.0024611144179341 -0.0081260012656684 + 132 8 Cd 3px 0.0080164698418646 0.0613926314480432 + 133 8 Cd 4py 0.0008135577469185 0.0003064100183959 + 134 8 Cd 4pz 0.0003543798235902 -0.0014627834542416 + 135 8 Cd 4px -0.0017727173726680 0.0002965619143529 + 136 8 Cd 4d-2 0.0180116047267255 0.0289908329287775 + 137 8 Cd 4d-1 0.0446000233588371 0.0597842452852376 + 138 8 Cd 4d0 0.0367503296426025 0.0171228131419606 + 139 8 Cd 4d+1 -0.0358607963867451 0.0020774538377760 + 140 8 Cd 4d+2 0.0074590350618551 -0.0058747974782271 + 141 8 Cd 5d-2 0.0031479578914295 0.0177302016398292 + 142 8 Cd 5d-1 0.0101344369269024 0.0166543191507697 + 143 8 Cd 5d0 0.0124489535507210 0.0004723462188996 + 144 8 Cd 5d+1 -0.0104086248689906 -0.0039482114602377 + 145 8 Cd 5d+2 0.0100473703324861 -0.0011371417688002 + 146 8 Cd 5f-3 -0.0014797724744346 0.0008131478008149 + 147 8 Cd 5f-2 0.0001993902569063 -0.0009433768138484 + 148 8 Cd 5f-1 0.0018227687508607 -0.0052195644347640 + 149 8 Cd 5f0 -0.0012684026146250 0.0015138205811762 + 150 8 Cd 5f+1 -0.0010991888945423 -0.0018630954040157 + 151 8 Cd 5f+2 -0.0015702811664434 0.0005478807989802 + 152 8 Cd 5f+3 -0.0007092684717329 -0.0006909630116572 + + 153 9 Cd 2s 0.0120190158404546 0.0132463128493526 + 154 9 Cd 3s 0.0035375291911654 0.0041306626776285 + 155 9 Cd 3py -0.0292025925623914 -0.0395740758258721 + 156 9 Cd 3pz -0.0084645630999172 -0.0019987481078810 + 157 9 Cd 3px 0.0404711705992637 0.0230498642714142 + 158 9 Cd 4py -0.0007854611464463 0.0009691732472873 + 159 9 Cd 4pz 0.0011901155962197 0.0011456584608321 + 160 9 Cd 4px -0.0091282991240767 -0.0025570046217806 + 161 9 Cd 4d-2 -0.0340644568854323 0.0086840847621395 + 162 9 Cd 4d-1 0.0223552131049896 0.0091048832437609 + 163 9 Cd 4d0 0.0265327635407666 0.0002202482821151 + 164 9 Cd 4d+1 -0.0433551807061625 0.0004288658639513 + 165 9 Cd 4d+2 -0.0151025172731905 -0.0059352889307638 + 166 9 Cd 5d-2 -0.0153147600420201 0.0022783654551766 + 167 9 Cd 5d-1 0.0089474899784739 0.0034158995381995 + 168 9 Cd 5d0 0.0068210261887613 -0.0026386039550118 + 169 9 Cd 5d+1 -0.0101017689178679 -0.0029443700340872 + 170 9 Cd 5d+2 0.0047014736270512 0.0046594320975499 + 171 9 Cd 5f-3 0.0004354698503891 0.0013702704291647 + 172 9 Cd 5f-2 0.0005044592190121 -0.0005405726162020 + 173 9 Cd 5f-1 0.0006056756780689 -0.0001892767054754 + 174 9 Cd 5f0 -0.0022101846926183 -0.0018595737689270 + 175 9 Cd 5f+1 0.0014285560970834 0.0004477347250792 + 176 9 Cd 5f+2 -0.0008764696703583 -0.0003300045340301 + 177 9 Cd 5f+3 -0.0008066881183401 -0.0018859798180824 + + 178 10 Se 2s -0.0385896199786257 0.0031738055851141 + 179 10 Se 3s 0.0057207088197955 -0.0006581128809202 + 180 10 Se 3py -0.1369833368388479 0.2191312407936249 + 181 10 Se 3pz -0.2075493634766027 0.0127997348369475 + 182 10 Se 3px 0.1458297308410179 0.0792631984106679 + 183 10 Se 4py 0.0062955989485162 -0.0132763961515294 + 184 10 Se 4pz 0.0129058306398415 -0.0003065230086941 + 185 10 Se 4px -0.0077191909091482 -0.0047841717536787 + 186 10 Se 4d-2 -0.0000881066676849 0.0020526167373357 + 187 10 Se 4d-1 0.0033605291038659 -0.0062235752063660 + 188 10 Se 4d0 0.0039414272685027 -0.0013145536300033 + 189 10 Se 4d+1 -0.0017539338522842 -0.0003566359797765 + 190 10 Se 4d+2 0.0045025387586818 0.0019350192500192 + + 191 11 Se 2s 0.0116292398507706 0.0118364778484139 + 192 11 Se 3s -0.0013826478819667 -0.0017342766978984 + 193 11 Se 3py -0.1543617150038179 -0.0522443713344875 + 194 11 Se 3pz 0.0682258858608919 0.0320343175035237 + 195 11 Se 3px 0.0504955567871565 -0.1949647867141251 + 196 11 Se 4py 0.0140684489288669 0.0044999170153081 + 197 11 Se 4pz -0.0042446300225288 -0.0029254833493676 + 198 11 Se 4px 0.0036150001436039 0.0132130937732722 + 199 11 Se 4d-2 0.0016612388892939 -0.0049827545362240 + 200 11 Se 4d-1 0.0030517043116390 0.0007095580770289 + 201 11 Se 4d0 0.0014445520362642 -0.0026442717472645 + 202 11 Se 4d+1 -0.0058030519657394 0.0037447351210170 + 203 11 Se 4d+2 0.0018980593252057 0.0012534289320498 + + 204 12 Cd 2s -0.0099870408988884 0.0114363091535465 + 205 12 Cd 3s 0.0006404333962009 -0.0001490648065472 + 206 12 Cd 3py 0.0065367819021410 0.0122271685476157 + 207 12 Cd 3pz -0.0694027001537940 0.0358187566960195 + 208 12 Cd 3px 0.0541112834622237 -0.0164342532935735 + 209 12 Cd 4py 0.0021425652863238 -0.0013155474628588 + 210 12 Cd 4pz 0.0020186302811910 0.0027331029368297 + 211 12 Cd 4px -0.0009564430476760 0.0009658550583332 + 212 12 Cd 4d-2 -0.0039046680640401 0.0029635682752632 + 213 12 Cd 4d-1 -0.0191287827150263 -0.0070580514601712 + 214 12 Cd 4d0 -0.0180883459884683 0.0174609920147159 + 215 12 Cd 4d+1 -0.0433058096777471 0.0161614250188124 + 216 12 Cd 4d+2 -0.0306255857429940 0.0297807411433690 + 217 12 Cd 5d-2 -0.0049941574925482 0.0048620062519428 + 218 12 Cd 5d-1 0.0000559507623171 -0.0022265822036085 + 219 12 Cd 5d0 -0.0038693766924493 0.0136521330709855 + 220 12 Cd 5d+1 -0.0205057051613279 0.0106556146775607 + 221 12 Cd 5d+2 -0.0080526476672420 0.0112524602708453 + 222 12 Cd 5f-3 -0.0016556147266898 0.0037161269585791 + 223 12 Cd 5f-2 -0.0014616428157310 0.0002739986455101 + 224 12 Cd 5f-1 -0.0017894299587361 0.0014041504626542 + 225 12 Cd 5f0 0.0021332164981787 -0.0023393781307700 + 226 12 Cd 5f+1 0.0012368985602678 -0.0007610045244213 + 227 12 Cd 5f+2 -0.0000357841071607 0.0002771633609810 + 228 12 Cd 5f+3 0.0015636086383913 -0.0003032785098391 + + 229 13 Cd 2s -0.0233737453665790 0.0391160698756320 + 230 13 Cd 3s -0.0038931359195502 0.0024665257427569 + 231 13 Cd 3py -0.0252615236358711 0.0204570949054201 + 232 13 Cd 3pz 0.0170283659349735 -0.0900517768212656 + 233 13 Cd 3px -0.0011852609042363 -0.0448393891548722 + 234 13 Cd 4py 0.0082008641000065 -0.0027458881523866 + 235 13 Cd 4pz -0.0006284117038443 0.0074999242841191 + 236 13 Cd 4px -0.0037068066644218 0.0033561015180381 + 237 13 Cd 4d-2 -0.0086174998320890 0.0184164218039389 + 238 13 Cd 4d-1 -0.0241797523394968 0.0362243709563618 + 239 13 Cd 4d0 0.0322742821534241 0.0518098373678370 + 240 13 Cd 4d+1 0.0140224657380496 -0.0640022028218528 + 241 13 Cd 4d+2 0.0236613526297346 -0.0479951901672586 + 242 13 Cd 5d-2 -0.0108375393598636 0.0075101659961958 + 243 13 Cd 5d-1 -0.0026532866227700 0.0116101583474043 + 244 13 Cd 5d0 0.0052728666011876 0.0093888093305405 + 245 13 Cd 5d+1 -0.0043088768699212 -0.0140628681885641 + 246 13 Cd 5d+2 0.0051880914723698 -0.0161966450672826 + 247 13 Cd 5f-3 -0.0008465589004382 0.0029412940427593 + 248 13 Cd 5f-2 -0.0012396312945603 -0.0000876252519558 + 249 13 Cd 5f-1 -0.0009776638301714 0.0021816800305625 + 250 13 Cd 5f0 -0.0031017781248101 0.0010361459298424 + 251 13 Cd 5f+1 -0.0009002377708330 -0.0039939969190624 + 252 13 Cd 5f+2 -0.0004508094298332 0.0047083400040909 + 253 13 Cd 5f+3 0.0002849693091737 -0.0005444532240037 + + 254 14 Cd 2s -0.0342606847879737 -0.0120077613080245 + 255 14 Cd 3s 0.0017883451194101 -0.0017922542472851 + 256 14 Cd 3py -0.0200099266615897 0.0092237245622150 + 257 14 Cd 3pz -0.0130659375788310 -0.0321653427310670 + 258 14 Cd 3px -0.0196612735308685 -0.0021033058766345 + 259 14 Cd 4py -0.0029405697534385 -0.0008130739813697 + 260 14 Cd 4pz 0.0022102909415583 0.0045167260709953 + 261 14 Cd 4px -0.0028758954955333 0.0005964183542968 + 262 14 Cd 4d-2 -0.0102367214048190 0.0080586535318801 + 263 14 Cd 4d-1 0.0111596845447729 -0.0065300308987375 + 264 14 Cd 4d0 -0.0096636322911464 -0.0008398704933007 + 265 14 Cd 4d+1 0.0111841172100052 -0.0245052358031151 + 266 14 Cd 4d+2 0.0052180314389753 -0.0069521402345789 + 267 14 Cd 5d-2 -0.0011890962326117 0.0022462491486873 + 268 14 Cd 5d-1 0.0051923098296527 -0.0040954017421471 + 269 14 Cd 5d0 -0.0102265841602580 -0.0052813664099269 + 270 14 Cd 5d+1 0.0024531359563796 -0.0101993543036747 + 271 14 Cd 5d+2 -0.0017483864993650 -0.0013094957395074 + 272 14 Cd 5f-3 0.0006925429286850 0.0000395694207719 + 273 14 Cd 5f-2 0.0001548796034362 -0.0005909835959071 + 274 14 Cd 5f-1 0.0008627801375627 -0.0013963054891969 + 275 14 Cd 5f0 0.0005156171123894 0.0021244546594098 + 276 14 Cd 5f+1 0.0015687423783173 -0.0013182388647661 + 277 14 Cd 5f+2 0.0013939154230650 -0.0011917761103808 + 278 14 Cd 5f+3 -0.0010079149050401 0.0005999411609237 + + 279 15 Se 2s -0.0073869414614677 0.0144381825218911 + 280 15 Se 3s 0.0007131370897995 -0.0007524164137744 + 281 15 Se 3py 0.0226353577604927 -0.1123023212708937 + 282 15 Se 3pz -0.0442873429689590 -0.0177922935223421 + 283 15 Se 3px 0.1931261922802361 -0.1801242805601764 + 284 15 Se 4py 0.0002927913443210 0.0123926706166304 + 285 15 Se 4pz 0.0061739918314063 -0.0006464496389311 + 286 15 Se 4px -0.0153362289138407 0.0102889695606335 + 287 15 Se 4d-2 -0.0043284086002994 0.0022542350424549 + 288 15 Se 4d-1 0.0011911962356956 -0.0043631788243713 + 289 15 Se 4d0 -0.0001087476026145 -0.0061813981432831 + 290 15 Se 4d+1 -0.0003016933524575 0.0025622168836225 + 291 15 Se 4d+2 0.0033711403194592 -0.0028767617064491 + + 292 16 Se 2s -0.0042843652076809 0.0073331347757776 + 293 16 Se 3s 0.0000318901787425 -0.0017064251727743 + 294 16 Se 3py -0.0250123339210489 -0.3248475201401909 + 295 16 Se 3pz -0.0427890020072043 -0.1226409433108813 + 296 16 Se 3px -0.1037423083295439 0.0324071023870823 + 297 16 Se 4py -0.0010733228360181 0.0191795293906660 + 298 16 Se 4pz 0.0048146813824999 0.0110481363487392 + 299 16 Se 4px 0.0071039871675726 0.0034371381285351 + 300 16 Se 4d-2 0.0029491178961910 0.0108910774265076 + 301 16 Se 4d-1 0.0015226690417889 -0.0044694072928313 + 302 16 Se 4d0 -0.0048345405093960 -0.0019248308183171 + 303 16 Se 4d+1 -0.0028822062331489 0.0050142528466778 + 304 16 Se 4d+2 -0.0007092858531166 -0.0037080473143400 + + 305 17 Cd 2s -0.0074790619481806 -0.0393392719033067 + 306 17 Cd 3s 0.0015312779001364 0.0001117095035639 + 307 17 Cd 3py 0.0019344690278413 0.0106258875863299 + 308 17 Cd 3pz -0.0123050769429122 0.0030879548990214 + 309 17 Cd 3px -0.0304144311594148 -0.0638446199087044 + 310 17 Cd 4py 0.0051595487798455 0.0015185992572395 + 311 17 Cd 4pz -0.0005609864363261 -0.0026916887900668 + 312 17 Cd 4px 0.0046637990331752 0.0109176957332830 + 313 17 Cd 4d-2 -0.0242970223387551 -0.0610197700030091 + 314 17 Cd 4d-1 -0.0000001711039799 0.0125014261239758 + 315 17 Cd 4d0 -0.0079005425768690 -0.0002824588857076 + 316 17 Cd 4d+1 0.0042096077014504 0.0139582142105377 + 317 17 Cd 4d+2 -0.0110770860303878 -0.0341563395126176 + 318 17 Cd 5d-2 -0.0032264619190754 -0.0051918847242343 + 319 17 Cd 5d-1 0.0001621738191863 -0.0038578058135062 + 320 17 Cd 5d0 -0.0054787429611932 -0.0046637350864933 + 321 17 Cd 5d+1 -0.0011403915844503 -0.0014797545308980 + 322 17 Cd 5d+2 0.0018249146210512 -0.0070016116565940 + 323 17 Cd 5f-3 -0.0000403675900855 0.0025687261585735 + 324 17 Cd 5f-2 -0.0021772643779209 -0.0031344134317465 + 325 17 Cd 5f-1 -0.0008718995301085 -0.0016994272986313 + 326 17 Cd 5f0 -0.0011664546756193 0.0007782008969847 + 327 17 Cd 5f+1 0.0000189588313450 -0.0036615326779271 + 328 17 Cd 5f+2 0.0001468493485265 0.0005394769495137 + 329 17 Cd 5f+3 -0.0024324811911270 0.0002312443410941 + + 330 18 Cd 2s -0.0033586918021123 0.0594745424298445 + 331 18 Cd 3s -0.0047159557537115 -0.0000824739126518 + 332 18 Cd 3py 0.0052709233841902 0.0011025337540404 + 333 18 Cd 3pz 0.0115919378217078 -0.0018071670204401 + 334 18 Cd 3px -0.0304088568594796 0.0062516955842042 + 335 18 Cd 4py -0.0016767511373508 0.0013936492262765 + 336 18 Cd 4pz -0.0018557721632042 0.0023972523338934 + 337 18 Cd 4px -0.0011428943257380 -0.0029528628208076 + 338 18 Cd 4d-2 -0.0103229926841664 -0.0005105505485869 + 339 18 Cd 4d-1 0.0089596711414874 -0.0034150821726526 + 340 18 Cd 4d0 0.0134312198982514 0.0202129164497866 + 341 18 Cd 4d+1 -0.0144492885511433 0.0159993141616630 + 342 18 Cd 4d+2 -0.0026450146365426 -0.0077249751173856 + 343 18 Cd 5d-2 -0.0070204025628383 -0.0022926478342246 + 344 18 Cd 5d-1 0.0018641193306036 0.0028381740663681 + 345 18 Cd 5d0 0.0010381349332673 0.0059146350985799 + 346 18 Cd 5d+1 -0.0043758978658932 0.0041107583437938 + 347 18 Cd 5d+2 0.0023834417725070 -0.0045540440717231 + 348 18 Cd 5f-3 0.0012032624634828 0.0007278807362792 + 349 18 Cd 5f-2 -0.0001541105603643 0.0004524753703628 + 350 18 Cd 5f-1 -0.0000839975777187 -0.0006852629363117 + 351 18 Cd 5f0 -0.0003992994471507 0.0002108314951756 + 352 18 Cd 5f+1 -0.0007088427128273 0.0000256607660048 + 353 18 Cd 5f+2 0.0001321319632278 0.0003849865214512 + 354 18 Cd 5f+3 0.0011834137899062 -0.0001357205480793 + + 355 19 Se 2s -0.0041800810905838 0.0063790126962477 + 356 19 Se 3s 0.0013702155327584 -0.0010241005868895 + 357 19 Se 3py -0.0562907591452655 0.0163334227479652 + 358 19 Se 3pz -0.0197409277418764 0.0006712022756262 + 359 19 Se 3px -0.0428332919826936 -0.0984554368058070 + 360 19 Se 4py 0.0060665486914479 0.0006196192821705 + 361 19 Se 4pz 0.0017172715847969 0.0016469534765314 + 362 19 Se 4px 0.0042173524659799 0.0051302263958006 + 363 19 Se 4d-2 -0.0030448051533449 0.0014209949097640 + 364 19 Se 4d-1 -0.0005769014932379 0.0026816150449166 + 365 19 Se 4d0 -0.0022310282473847 0.0008769950363595 + 366 19 Se 4d+1 -0.0003143043779862 -0.0044026966308976 + 367 19 Se 4d+2 0.0027199391582423 0.0035937412376566 + + 368 20 Se 2s 0.0094725626086514 0.0029739216649627 + 369 20 Se 3s -0.0030667447638079 -0.0004736967647406 + 370 20 Se 3py -0.0776230487680242 -0.0847867992743984 + 371 20 Se 3pz -0.0632648468135334 -0.0717092081611181 + 372 20 Se 3px 0.3501594813484336 -0.0309510127239823 + 373 20 Se 4py 0.0092558255645817 0.0104904462704188 + 374 20 Se 4pz 0.0047309718311042 0.0111543892662418 + 375 20 Se 4px -0.0369105405086371 0.0070644479877440 + 376 20 Se 4d-2 -0.0125082988845676 0.0027456377557053 + 377 20 Se 4d-1 0.0018444211504236 0.0009380602525433 + 378 20 Se 4d0 0.0004883076823298 -0.0016565496364218 + 379 20 Se 4d+1 -0.0002048940458511 -0.0026281087036353 + 380 20 Se 4d+2 -0.0006726853627355 0.0017489730771528 + + 381 21 Se 2s 0.0225985832246597 -0.0232805374488999 + 382 21 Se 3s -0.0024291233696011 0.0034760325315642 + 383 21 Se 3py -0.1401840268697135 -0.0791502021742241 + 384 21 Se 3pz -0.1368851481484599 0.1383037240345976 + 385 21 Se 3px 0.1922113636588767 0.0257159548896123 + 386 21 Se 4py 0.0126894495121161 0.0069001481550446 + 387 21 Se 4pz 0.0158866042150397 -0.0082039786253507 + 388 21 Se 4px -0.0192219628993403 0.0001675394294477 + 389 21 Se 4d-2 -0.0054869414769290 0.0017747212643625 + 390 21 Se 4d-1 0.0044608298051769 -0.0070435868920118 + 391 21 Se 4d0 0.0035266768911277 -0.0005265409738224 + 392 21 Se 4d+1 0.0001202142075760 -0.0030072244657738 + 393 21 Se 4d+2 -0.0040520530295135 -0.0044662776238876 + + 394 22 Cd 2s 0.0012726381982034 -0.0100463442216831 + 395 22 Cd 3s 0.0033104088617477 0.0027035016180003 + 396 22 Cd 3py 0.0102219167486869 -0.0212687720259075 + 397 22 Cd 3pz -0.0178673059358970 0.0167813987898183 + 398 22 Cd 3px 0.0402087862355939 0.0093856603003292 + 399 22 Cd 4py -0.0005796893669322 0.0060873327431142 + 400 22 Cd 4pz 0.0018910498500307 0.0019143893729755 + 401 22 Cd 4px -0.0054716222907063 0.0021860714269547 + 402 22 Cd 4d-2 -0.0107666910535830 -0.0276597829988951 + 403 22 Cd 4d-1 -0.0201753513906046 -0.0048961635750147 + 404 22 Cd 4d0 -0.0320703145830144 0.0154778108453297 + 405 22 Cd 4d+1 0.0265055503835339 -0.0398217483823675 + 406 22 Cd 4d+2 -0.0300134599922040 0.0243466289577159 + 407 22 Cd 5d-2 -0.0096292224693722 -0.0042035696921657 + 408 22 Cd 5d-1 0.0047463680325585 -0.0101434995032776 + 409 22 Cd 5d0 0.0001304461068886 0.0074719869117119 + 410 22 Cd 5d+1 -0.0054431485412758 -0.0248216478080465 + 411 22 Cd 5d+2 -0.0075851623785627 0.0119527898266497 + 412 22 Cd 5f-3 0.0008707833235262 -0.0004841759094777 + 413 22 Cd 5f-2 -0.0003399386822799 -0.0000820309507833 + 414 22 Cd 5f-1 0.0013077583902494 -0.0013155590363790 + 415 22 Cd 5f0 0.0030622537424849 0.0004705038633600 + 416 22 Cd 5f+1 -0.0017516570618790 -0.0014446300639775 + 417 22 Cd 5f+2 0.0007736557421260 -0.0007203170076285 + 418 22 Cd 5f+3 -0.0000688175789907 -0.0014113913207772 + + 419 23 Se 2s -0.0137322079884017 0.0087513200810384 + 420 23 Se 3s 0.0023553069655971 -0.0013577433429229 + 421 23 Se 3py -0.0993414030569379 0.0645828669073135 + 422 23 Se 3pz 0.0915409903753280 0.0262042643334302 + 423 23 Se 3px -0.1377446628542676 -0.1744319888838272 + 424 23 Se 4py 0.0068154462222624 -0.0054307624706080 + 425 23 Se 4pz -0.0051779087666389 0.0015713589153942 + 426 23 Se 4px 0.0076728801276074 0.0082441460992477 + 427 23 Se 4d-2 0.0011112628796573 0.0036995696855654 + 428 23 Se 4d-1 -0.0050175380424956 0.0014870880600990 + 429 23 Se 4d0 0.0031037673461928 0.0015780086662636 + 430 23 Se 4d+1 -0.0044360051810970 -0.0027485603216320 + 431 23 Se 4d+2 -0.0014014307693619 -0.0024792773336627 + + 432 24 Se 2s -0.0066141356797902 0.0035914713214985 + 433 24 Se 3s 0.0006398385670308 -0.0019867078402674 + 434 24 Se 3py -0.0171466559152442 -0.0269471016970655 + 435 24 Se 3pz 0.1079224481637002 -0.0031801624976215 + 436 24 Se 3px 0.1591133525155095 -0.1266073404735020 + 437 24 Se 4py 0.0006177844379467 0.0037617015919597 + 438 24 Se 4pz -0.0048487574845053 0.0010147402751803 + 439 24 Se 4px -0.0085124265089072 0.0078787512836769 + 440 24 Se 4d-2 0.0051389711745268 -0.0040602749951368 + 441 24 Se 4d-1 -0.0000424223108933 0.0014718228667467 + 442 24 Se 4d0 0.0027758458542249 0.0017031031041516 + 443 24 Se 4d+1 0.0033259937327181 -0.0020841590161638 + 444 24 Se 4d+2 0.0017281747431586 -0.0012051103184832 + + 445 25 Cd 2s -0.0283881011098671 -0.0222575214075713 + 446 25 Cd 3s -0.0012193634432045 0.0001317533785266 + 447 25 Cd 3py -0.0245786136841867 0.0224486493383577 + 448 25 Cd 3pz 0.0526582988360004 0.0094467535317328 + 449 25 Cd 3px 0.0165677345757362 -0.0093035293108241 + 450 25 Cd 4py 0.0010995432930251 0.0024596348485305 + 451 25 Cd 4pz 0.0024908985641249 -0.0016982847033315 + 452 25 Cd 4px -0.0076530185625306 0.0007377618054014 + 453 25 Cd 4d-2 0.0086395216076284 0.0130975011263744 + 454 25 Cd 4d-1 0.0292155216200966 -0.0136066757776507 + 455 25 Cd 4d0 0.0012463027345493 0.0036054122364376 + 456 25 Cd 4d+1 0.0216761986292095 -0.0305812275947134 + 457 25 Cd 4d+2 0.0201554756652536 0.0047814588369778 + 458 25 Cd 5d-2 -0.0019750107418530 0.0083833015952190 + 459 25 Cd 5d-1 0.0113443688758330 -0.0011536742234472 + 460 25 Cd 5d0 0.0043778225070552 0.0022664559506168 + 461 25 Cd 5d+1 -0.0019337640546711 -0.0105305893988757 + 462 25 Cd 5d+2 0.0054802058958588 -0.0013613332321430 + 463 25 Cd 5f-3 -0.0007930772889087 -0.0003436948040892 + 464 25 Cd 5f-2 0.0017226102292301 0.0011786588754434 + 465 25 Cd 5f-1 0.0022477344704143 -0.0015257338643069 + 466 25 Cd 5f0 -0.0000667032171399 -0.0001089614353150 + 467 25 Cd 5f+1 -0.0022814749558908 0.0003403067558181 + 468 25 Cd 5f+2 -0.0007657571452982 0.0014844636982520 + 469 25 Cd 5f+3 0.0008536652145904 -0.0008891973745246 + + 470 26 Cd 2s 0.0569775953133056 -0.0285477482059012 + 471 26 Cd 3s 0.0003598578333161 -0.0030040891819085 + 472 26 Cd 3py 0.0344562101318104 -0.0011276082397985 + 473 26 Cd 3pz 0.0091588441807906 -0.0229305820909949 + 474 26 Cd 3px -0.0512177049287618 0.0100895554360633 + 475 26 Cd 4py 0.0018073735083557 -0.0010530462472301 + 476 26 Cd 4pz -0.0002813729995768 0.0017867250949781 + 477 26 Cd 4px -0.0014100976225598 -0.0004271696742608 + 478 26 Cd 4d-2 0.0099216891296912 -0.0119883025877631 + 479 26 Cd 4d-1 0.0228217331862873 -0.0068085218896854 + 480 26 Cd 4d0 0.0080718200230552 -0.0069366768871950 + 481 26 Cd 4d+1 0.0115083312544969 -0.0178962006058541 + 482 26 Cd 4d+2 -0.0148286002594394 -0.0118266242295064 + 483 26 Cd 5d-2 0.0105740253373735 -0.0069301802370490 + 484 26 Cd 5d-1 0.0064700705997264 -0.0017007042431578 + 485 26 Cd 5d0 0.0028922465411049 -0.0011301561706068 + 486 26 Cd 5d+1 0.0024077873166319 -0.0034273530082365 + 487 26 Cd 5d+2 -0.0069154790431946 -0.0016666133265674 + 488 26 Cd 5f-3 0.0016716156737977 -0.0008882741480666 + 489 26 Cd 5f-2 -0.0007314331310528 0.0003954086478993 + 490 26 Cd 5f-1 0.0001702072691102 -0.0001340544946049 + 491 26 Cd 5f0 0.0014079271229623 -0.0001899643415683 + 492 26 Cd 5f+1 0.0009451158187218 0.0012120683521446 + 493 26 Cd 5f+2 0.0002595855367319 -0.0001774401040755 + 494 26 Cd 5f+3 0.0008611025266238 0.0001009436436975 + + 111 112 + -0.1995937096510897 -0.1971676936590232 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0397147854102703 -0.0167506019837871 + 2 1 Cd 3s -0.0019360955652669 0.0033142640554437 + 3 1 Cd 3py 0.0064582095411199 -0.0175462355900857 + 4 1 Cd 3pz 0.0275224128735401 -0.1166893395270091 + 5 1 Cd 3px 0.0257300069987328 0.0050801779512308 + 6 1 Cd 4py 0.0051953517262844 0.0078584614422449 + 7 1 Cd 4pz -0.0036200266995202 0.0078202133423220 + 8 1 Cd 4px -0.0014274267425101 0.0033678600618728 + 9 1 Cd 4d-2 0.0171920669556971 -0.0141972703290505 + 10 1 Cd 4d-1 0.0135355680075457 -0.0656176845999602 + 11 1 Cd 4d0 -0.0074513045325589 0.0023923331130971 + 12 1 Cd 4d+1 -0.0075386716422508 0.0508477066366039 + 13 1 Cd 4d+2 -0.0127367524085464 0.0269662282751811 + 14 1 Cd 5d-2 0.0039814180099428 0.0035487946511260 + 15 1 Cd 5d-1 0.0040168926169878 0.0016709039322559 + 16 1 Cd 5d0 -0.0013524344929403 -0.0038981754448190 + 17 1 Cd 5d+1 -0.0022924370030138 0.0178575535094231 + 18 1 Cd 5d+2 -0.0000436111098059 -0.0007082930749898 + 19 1 Cd 5f-3 -0.0018554430513333 -0.0015283735654912 + 20 1 Cd 5f-2 -0.0010083882813944 0.0031030323561919 + 21 1 Cd 5f-1 0.0000102242939035 -0.0002344978132911 + 22 1 Cd 5f0 -0.0000712919886524 -0.0003990225251393 + 23 1 Cd 5f+1 0.0005150384161650 0.0023406065639430 + 24 1 Cd 5f+2 0.0024024368406142 -0.0054852428210416 + 25 1 Cd 5f+3 0.0018332755311535 -0.0011732926018716 + + 26 2 Cd 2s -0.0242108011004407 0.0046875495491422 + 27 2 Cd 3s 0.0036129085724600 0.0028714331438682 + 28 2 Cd 3py 0.0229991967847276 -0.0427263761842245 + 29 2 Cd 3pz 0.0054171617584119 0.0245125737603295 + 30 2 Cd 3px -0.0046965047640767 0.0096347241883043 + 31 2 Cd 4py 0.0005976643893107 0.0093549673588762 + 32 2 Cd 4pz -0.0016176962332068 -0.0108062398111335 + 33 2 Cd 4px 0.0015344085389799 -0.0016921012779977 + 34 2 Cd 4d-2 0.0209354691731234 -0.0220482372006072 + 35 2 Cd 4d-1 0.0236599142975318 -0.0015135018656332 + 36 2 Cd 4d0 0.0113412629750227 -0.0796620064300796 + 37 2 Cd 4d+1 0.0186462631219961 0.0372794549963602 + 38 2 Cd 4d+2 0.0043828518094635 -0.0373765256481160 + 39 2 Cd 5d-2 -0.0025794280801034 0.0027253074682306 + 40 2 Cd 5d-1 0.0191406079789165 0.0000867827971676 + 41 2 Cd 5d0 0.0046999582176852 -0.0231639576083935 + 42 2 Cd 5d+1 0.0065483773308250 0.0087720578690547 + 43 2 Cd 5d+2 0.0018786749517623 -0.0127007762045890 + 44 2 Cd 5f-3 0.0003227562389684 0.0005162745482884 + 45 2 Cd 5f-2 -0.0013377502463974 -0.0000187609566129 + 46 2 Cd 5f-1 0.0001575275147837 0.0002107808799620 + 47 2 Cd 5f0 -0.0006985271323913 0.0008401282365990 + 48 2 Cd 5f+1 0.0013133748485390 0.0043170768417963 + 49 2 Cd 5f+2 0.0016208105137563 -0.0001977786984291 + 50 2 Cd 5f+3 -0.0002000878330785 0.0027709259517214 + + 51 3 Cd 2s 0.0247708108304992 0.0141761937266993 + 52 3 Cd 3s -0.0020019618932509 0.0018356187186966 + 53 3 Cd 3py -0.0153887288183044 -0.0147558117060138 + 54 3 Cd 3pz -0.0020482828024686 0.0560135686759566 + 55 3 Cd 3px -0.0048370647489884 -0.0048228379974003 + 56 3 Cd 4py 0.0030110067957986 0.0034625179413399 + 57 3 Cd 4pz 0.0007766158579848 -0.0107242696120914 + 58 3 Cd 4px 0.0013426248070148 0.0014609520544435 + 59 3 Cd 4d-2 0.0316943274772623 0.0922127672703939 + 60 3 Cd 4d-1 -0.0173132540613445 0.0432795801333626 + 61 3 Cd 4d0 -0.0103682976523613 -0.0031053965902237 + 62 3 Cd 4d+1 -0.0253439902288148 0.0404900116565606 + 63 3 Cd 4d+2 0.0041268850721136 -0.0136673483061050 + 64 3 Cd 5d-2 0.0007249173869821 0.0123706395579573 + 65 3 Cd 5d-1 -0.0063576441101964 0.0073126076238374 + 66 3 Cd 5d0 0.0011286654464297 -0.0046437641421788 + 67 3 Cd 5d+1 -0.0049183731290815 0.0018348409684336 + 68 3 Cd 5d+2 0.0100927443429376 -0.0031173289646320 + 69 3 Cd 5f-3 0.0022131025686685 -0.0016764496355833 + 70 3 Cd 5f-2 0.0007513648080659 -0.0000587092779232 + 71 3 Cd 5f-1 0.0004589762156388 -0.0014259957418898 + 72 3 Cd 5f0 0.0009091019914270 0.0043097092804442 + 73 3 Cd 5f+1 -0.0006785025266389 0.0005054407135214 + 74 3 Cd 5f+2 0.0012018680938720 -0.0010810971615947 + 75 3 Cd 5f+3 -0.0009862538083637 -0.0009174576546957 + + 76 4 Se 2s -0.0048803965742522 -0.0388112977130904 + 77 4 Se 3s 0.0012508492311944 0.0055639135735195 + 78 4 Se 3py 0.0835402903827911 -0.3999714178639145 + 79 4 Se 3pz -0.0136378508378479 -0.0382701561980757 + 80 4 Se 3px -0.1500913482220030 -0.2176682357177881 + 81 4 Se 4py -0.0038844751500046 0.0311813788209234 + 82 4 Se 4pz 0.0052112742872896 0.0091668807672161 + 83 4 Se 4px 0.0120950144649057 0.0171268492706329 + 84 4 Se 4d-2 0.0014640326859059 0.0097377788425538 + 85 4 Se 4d-1 -0.0027509730049575 0.0069716339271762 + 86 4 Se 4d0 0.0008732428032316 -0.0078501992172261 + 87 4 Se 4d+1 0.0028324005337996 -0.0007900053845305 + 88 4 Se 4d+2 0.0059408233442865 -0.0021357059831074 + + 89 5 Se 2s 0.0143859971595521 -0.0042631067033940 + 90 5 Se 3s -0.0014265029269809 0.0013828292885237 + 91 5 Se 3py -0.0569768265351895 -0.0120931337751284 + 92 5 Se 3pz -0.0383587718318977 0.1610682613278956 + 93 5 Se 3px -0.0083831575655301 -0.0745980868451048 + 94 5 Se 4py 0.0044523534401111 -0.0000068371389061 + 95 5 Se 4pz 0.0031842754216296 -0.0127910239560675 + 96 5 Se 4px 0.0027752849143598 0.0052099705635348 + 97 5 Se 4d-2 -0.0018559254663967 -0.0022139555762329 + 98 5 Se 4d-1 -0.0017796360305178 0.0112014718602051 + 99 5 Se 4d0 0.0015676360783710 -0.0020781607621564 + 100 5 Se 4d+1 0.0012350058278599 -0.0038221191966774 + 101 5 Se 4d+2 0.0014294134612249 0.0025750673470460 + + 102 6 Se 2s 0.0091685749551684 -0.0166561054222993 + 103 6 Se 3s -0.0012667157039338 0.0008413749467303 + 104 6 Se 3py 0.0772300378052350 -0.1887971730682295 + 105 6 Se 3pz -0.1018789784921854 0.3005616240945198 + 106 6 Se 3px -0.0598331141333417 0.1905354873270171 + 107 6 Se 4py -0.0014844666973371 0.0117789281434396 + 108 6 Se 4pz 0.0068739169775318 -0.0195413069347697 + 109 6 Se 4px 0.0076552259167015 -0.0179573749175092 + 110 6 Se 4d-2 -0.0026890036431603 0.0059879780221857 + 111 6 Se 4d-1 -0.0026925961073726 -0.0032579275683922 + 112 6 Se 4d0 -0.0029003801344231 0.0126814950483289 + 113 6 Se 4d+1 0.0043837043830347 -0.0112504598747427 + 114 6 Se 4d+2 0.0007353297946559 -0.0026405897212015 + + 115 7 Se 2s 0.0331172596642638 -0.0004882414815818 + 116 7 Se 3s -0.0030731195871697 0.0017459249740671 + 117 7 Se 3py -0.2215669424053415 -0.0526110469476591 + 118 7 Se 3pz -0.0670199946803076 -0.0178201732927468 + 119 7 Se 3px -0.2708411925876133 0.0353225191668527 + 120 7 Se 4py 0.0150214502319804 0.0031650665850379 + 121 7 Se 4pz 0.0098682471284694 0.0005426032054657 + 122 7 Se 4px 0.0145686776129613 0.0017447106830636 + 123 7 Se 4d-2 -0.0037933313148880 0.0029639387948308 + 124 7 Se 4d-1 0.0093260447790967 -0.0001485053349658 + 125 7 Se 4d0 0.0051871142222607 0.0029919281880764 + 126 7 Se 4d+1 0.0078272032764653 -0.0005373047755335 + 127 7 Se 4d+2 0.0036677301372664 0.0017459196446984 + + 128 8 Cd 2s 0.0272948663601097 -0.0117413945740054 + 129 8 Cd 3s 0.0042575126401633 0.0023627772885466 + 130 8 Cd 3py -0.0787965329001339 0.0076342530614042 + 131 8 Cd 3pz 0.0090122695419952 -0.0105026992188096 + 132 8 Cd 3px -0.0080563413784611 0.0076348568114685 + 133 8 Cd 4py 0.0027582006395793 0.0057405581920281 + 134 8 Cd 4pz -0.0034340342333310 -0.0025775776953078 + 135 8 Cd 4px 0.0024224708032507 -0.0041929275202494 + 136 8 Cd 4d-2 -0.0142576212453725 -0.0024692417890503 + 137 8 Cd 4d-1 -0.0821345875569518 0.0087566915826476 + 138 8 Cd 4d0 0.0431189712742514 0.0174244359072586 + 139 8 Cd 4d+1 -0.0596403554889448 -0.0215441203377188 + 140 8 Cd 4d+2 -0.0053540528897729 0.0027446347617302 + 141 8 Cd 5d-2 -0.0209772977467496 0.0022984833386265 + 142 8 Cd 5d-1 -0.0354196951909356 0.0062115408259443 + 143 8 Cd 5d0 0.0138703685770779 0.0064812900987921 + 144 8 Cd 5d+1 -0.0188721790875511 -0.0011667259159120 + 145 8 Cd 5d+2 -0.0072639939853395 0.0009503322026732 + 146 8 Cd 5f-3 0.0000972191089823 0.0030492352889755 + 147 8 Cd 5f-2 0.0001877841575523 0.0027943925616708 + 148 8 Cd 5f-1 0.0072215206775218 0.0005470904556330 + 149 8 Cd 5f0 -0.0004455429293725 0.0019233197766261 + 150 8 Cd 5f+1 0.0023362639190315 -0.0001318000893450 + 151 8 Cd 5f+2 0.0011164110621539 -0.0003049621150850 + 152 8 Cd 5f+3 0.0000791880234223 0.0010756244905425 + + 153 9 Cd 2s 0.0282401172119561 -0.0986129009507917 + 154 9 Cd 3s 0.0022766156270582 -0.0022620411032417 + 155 9 Cd 3py 0.0544167952619153 0.0397111272210257 + 156 9 Cd 3pz 0.0100972199828718 -0.0388535260541638 + 157 9 Cd 3px 0.0341535208788308 -0.0543982120659340 + 158 9 Cd 4py 0.0024557647611774 0.0042900360295707 + 159 9 Cd 4pz -0.0008270745743397 -0.0016967295640866 + 160 9 Cd 4px 0.0033802928835707 0.0019845425936059 + 161 9 Cd 4d-2 -0.0494053773127062 0.0100075403670690 + 162 9 Cd 4d-1 0.0060438838465668 -0.0103852447686711 + 163 9 Cd 4d0 -0.0052445148132915 0.0244964929266473 + 164 9 Cd 4d+1 -0.0054905063069600 -0.0031157115413971 + 165 9 Cd 4d+2 0.0098955630274281 -0.0114078569283599 + 166 9 Cd 5d-2 -0.0138183451171059 0.0022611295376628 + 167 9 Cd 5d-1 -0.0025780672067500 -0.0086959132937636 + 168 9 Cd 5d0 0.0004340876494841 0.0072878557998829 + 169 9 Cd 5d+1 -0.0090353787688217 0.0044214728724984 + 170 9 Cd 5d+2 -0.0015839042424237 -0.0132104147990500 + 171 9 Cd 5f-3 -0.0012629688451671 -0.0009633136372653 + 172 9 Cd 5f-2 0.0010371679229163 0.0008515412448906 + 173 9 Cd 5f-1 0.0007075650717867 -0.0009615145516027 + 174 9 Cd 5f0 0.0001636777372108 0.0010129545020671 + 175 9 Cd 5f+1 0.0013869359910872 -0.0013277495782881 + 176 9 Cd 5f+2 0.0017109105154564 0.0000949643688587 + 177 9 Cd 5f+3 -0.0014659679759044 0.0011577654904918 + + 178 10 Se 2s -0.0116106963832228 -0.0183077292391598 + 179 10 Se 3s 0.0004636380447695 0.0040422737797601 + 180 10 Se 3py -0.5127053016652214 -0.0232497675709585 + 181 10 Se 3pz -0.0735223709080932 -0.0267939170595219 + 182 10 Se 3px -0.0095587413496039 -0.0397085741784883 + 183 10 Se 4py 0.0273775580234137 0.0019819523495145 + 184 10 Se 4pz 0.0015776334313086 0.0029126231677356 + 185 10 Se 4px 0.0027465078139282 0.0015974867080885 + 186 10 Se 4d-2 -0.0084525671376064 -0.0021532140868875 + 187 10 Se 4d-1 0.0123170230882276 0.0000518313100372 + 188 10 Se 4d0 0.0025124650429284 0.0010451735081165 + 189 10 Se 4d+1 -0.0000033331490565 0.0022042026655335 + 190 10 Se 4d+2 0.0006081050956867 -0.0004255182319578 + + 191 11 Se 2s 0.0011912132644843 0.0163311073208820 + 192 11 Se 3s -0.0017986966440970 -0.0019661626552293 + 193 11 Se 3py -0.3060329134322031 -0.2297514956464778 + 194 11 Se 3pz -0.0199208146094708 0.0969105082486965 + 195 11 Se 3px 0.0765136928482418 -0.0679344999882347 + 196 11 Se 4py 0.0274099469024372 0.0206150926928884 + 197 11 Se 4pz -0.0056494828055012 -0.0089808826796795 + 198 11 Se 4px -0.0040862908750273 0.0061701187698560 + 199 11 Se 4d-2 0.0014312102677564 -0.0015433063708138 + 200 11 Se 4d-1 0.0082437043032052 0.0026954484812808 + 201 11 Se 4d0 0.0070303763906014 0.0001073817293093 + 202 11 Se 4d+1 -0.0014151347197196 -0.0012679160795311 + 203 11 Se 4d+2 0.0015644352026935 0.0020402044794275 + + 204 12 Cd 2s -0.0319126612882626 -0.0017888792087957 + 205 12 Cd 3s -0.0080970850180560 -0.0004468257842716 + 206 12 Cd 3py -0.0437700764529397 -0.0196685914679636 + 207 12 Cd 3pz -0.0490790387945363 -0.0061309432161477 + 208 12 Cd 3px -0.0259926245411411 0.0033826301080992 + 209 12 Cd 4py 0.0077704396159953 0.0026696347066468 + 210 12 Cd 4pz -0.0001201663566422 0.0012661061502806 + 211 12 Cd 4px -0.0038456360960849 0.0008853774749812 + 212 12 Cd 4d-2 -0.0592139456190944 -0.0298239659558239 + 213 12 Cd 4d-1 0.0428755596999840 0.0148302818013204 + 214 12 Cd 4d0 -0.0590671202521578 -0.0103690338713598 + 215 12 Cd 4d+1 0.0124822907474049 0.0090724214563908 + 216 12 Cd 4d+2 0.0023608271040732 0.0086494609436431 + 217 12 Cd 5d-2 -0.0212075463881720 -0.0028903908469659 + 218 12 Cd 5d-1 0.0043315347848050 0.0045741210877549 + 219 12 Cd 5d0 -0.0281714727084307 -0.0043971763708758 + 220 12 Cd 5d+1 -0.0053990533728223 0.0021866576014372 + 221 12 Cd 5d+2 -0.0009350334741896 0.0104764315879804 + 222 12 Cd 5f-3 -0.0011121678906575 0.0011039636042847 + 223 12 Cd 5f-2 -0.0007015404691402 0.0004576010761118 + 224 12 Cd 5f-1 -0.0010722664008461 0.0000039552007208 + 225 12 Cd 5f0 0.0023027912579048 0.0009635072841147 + 226 12 Cd 5f+1 0.0016537677753686 -0.0006367889795672 + 227 12 Cd 5f+2 0.0008113668202393 -0.0004413313230200 + 228 12 Cd 5f+3 0.0023344335481767 0.0005653007507660 + + 229 13 Cd 2s -0.0136433762050731 0.0336546013096785 + 230 13 Cd 3s 0.0029686799735401 0.0036451422463712 + 231 13 Cd 3py 0.0120190635932687 -0.0176025208163968 + 232 13 Cd 3pz -0.0079771237637161 -0.0199510752724821 + 233 13 Cd 3px -0.0284213689380589 -0.0033670671699448 + 234 13 Cd 4py -0.0018684082023625 0.0012593230800420 + 235 13 Cd 4pz 0.0011621850065334 0.0029365074389283 + 236 13 Cd 4px 0.0052551293922715 0.0019059628750149 + 237 13 Cd 4d-2 0.0075668198183391 0.0324811516896017 + 238 13 Cd 4d-1 -0.0206367036926579 0.0468363542563113 + 239 13 Cd 4d0 -0.0141854326600654 -0.0239081105715175 + 240 13 Cd 4d+1 -0.0249978328623190 -0.0419224751120924 + 241 13 Cd 4d+2 -0.0275100026122676 -0.0019266079623047 + 242 13 Cd 5d-2 0.0030830232701037 0.0025386318895456 + 243 13 Cd 5d-1 -0.0040640216172095 0.0149269027225888 + 244 13 Cd 5d0 0.0010147286259239 -0.0165172186832509 + 245 13 Cd 5d+1 -0.0021261142360892 -0.0016486234300400 + 246 13 Cd 5d+2 -0.0061423892486061 -0.0005889763482611 + 247 13 Cd 5f-3 0.0027404908192713 -0.0016629384148762 + 248 13 Cd 5f-2 0.0015911113450531 -0.0027820459180174 + 249 13 Cd 5f-1 0.0014127048178677 0.0015229548544080 + 250 13 Cd 5f0 0.0010178211693259 -0.0001998612109578 + 251 13 Cd 5f+1 0.0004515143807844 -0.0034879735178393 + 252 13 Cd 5f+2 0.0024186216135554 -0.0010746512133119 + 253 13 Cd 5f+3 -0.0008122967404520 0.0001613548558252 + + 254 14 Cd 2s 0.0786148488433267 0.0126923848945525 + 255 14 Cd 3s 0.0086233218536271 -0.0026788577983218 + 256 14 Cd 3py 0.0251299226019295 0.0235486362214715 + 257 14 Cd 3pz 0.0534284769241115 0.0150125977247221 + 258 14 Cd 3px 0.0474698675321840 -0.0238718510271006 + 259 14 Cd 4py -0.0004575825643137 0.0036851518549271 + 260 14 Cd 4pz -0.0003033469004082 -0.0008081741552113 + 261 14 Cd 4px -0.0007286844579530 -0.0018625525209428 + 262 14 Cd 4d-2 -0.0102494462291083 0.0025933694897277 + 263 14 Cd 4d-1 -0.0081481755740310 -0.0001929628577415 + 264 14 Cd 4d0 0.0015825950288090 0.0016125623000394 + 265 14 Cd 4d+1 0.0003527963250960 0.0046055344252963 + 266 14 Cd 4d+2 0.0056442019955794 0.0048403946928299 + 267 14 Cd 5d-2 -0.0057054611695958 0.0089600980856790 + 268 14 Cd 5d-1 -0.0112691396485824 0.0018553086966713 + 269 14 Cd 5d0 0.0061043304409388 0.0022137563543646 + 270 14 Cd 5d+1 0.0056551793244623 -0.0028418000828545 + 271 14 Cd 5d+2 0.0016665317045226 0.0091150517227165 + 272 14 Cd 5f-3 0.0000263070785863 0.0003307032370300 + 273 14 Cd 5f-2 0.0000986530209347 0.0010536451941386 + 274 14 Cd 5f-1 0.0013417376043624 -0.0009121554175746 + 275 14 Cd 5f0 -0.0029183985958009 0.0020834344242013 + 276 14 Cd 5f+1 0.0003206998454579 -0.0000294287180707 + 277 14 Cd 5f+2 -0.0011761600161380 -0.0000101937462564 + 278 14 Cd 5f+3 -0.0017047818224602 0.0019705668566543 + + 279 15 Se 2s -0.0004400147890555 0.0049252676784473 + 280 15 Se 3s -0.0002346384351216 -0.0018457144406766 + 281 15 Se 3py -0.1157752927727714 0.0256774578562236 + 282 15 Se 3pz 0.1108963580835640 -0.0062023752402521 + 283 15 Se 3px -0.1570246401943633 0.0893196472776128 + 284 15 Se 4py 0.0092577330923241 -0.0009949216516737 + 285 15 Se 4pz -0.0043379265170723 0.0022007160295613 + 286 15 Se 4px 0.0144066597168257 -0.0110559942926111 + 287 15 Se 4d-2 0.0030671832875550 -0.0033298359972632 + 288 15 Se 4d-1 -0.0031837741171408 -0.0005073602759691 + 289 15 Se 4d0 0.0011347935113228 -0.0018159681043985 + 290 15 Se 4d+1 0.0007091448164783 0.0023330128789204 + 291 15 Se 4d+2 -0.0021811563142421 0.0030932201650169 + + 292 16 Se 2s -0.0210034249013116 0.0464003262295537 + 293 16 Se 3s 0.0032723073522222 -0.0061748161728763 + 294 16 Se 3py -0.1001249461183331 0.2161105590208590 + 295 16 Se 3pz 0.1016469277997607 -0.2971837224967374 + 296 16 Se 3px -0.0066077912446134 -0.0776918355911328 + 297 16 Se 4py 0.0070222465306561 -0.0134606341335186 + 298 16 Se 4pz -0.0067574771369459 0.0203903554141642 + 299 16 Se 4px 0.0005993913313391 0.0050786232742029 + 300 16 Se 4d-2 0.0022923186673423 0.0000474835726027 + 301 16 Se 4d-1 -0.0028440797969340 0.0085426021243533 + 302 16 Se 4d0 0.0032895780748797 -0.0061481378495006 + 303 16 Se 4d+1 -0.0005263391631257 0.0025993778427637 + 304 16 Se 4d+2 -0.0022563172313664 0.0046657119098128 + + 305 17 Cd 2s -0.0128626820279864 -0.0038669329773260 + 306 17 Cd 3s 0.0000414566479583 -0.0025255005006439 + 307 17 Cd 3py -0.0029729888565891 -0.0163013250220820 + 308 17 Cd 3pz -0.0112268983176483 0.0169617540372714 + 309 17 Cd 3px -0.0234856642541924 0.0313558355755540 + 310 17 Cd 4py -0.0022325456958577 -0.0003321257133292 + 311 17 Cd 4pz 0.0001084648165829 -0.0040705813513622 + 312 17 Cd 4px 0.0036405829896182 -0.0053460902079256 + 313 17 Cd 4d-2 -0.0275060312726727 0.0187014880893277 + 314 17 Cd 4d-1 -0.0017674552674469 0.0260723683003577 + 315 17 Cd 4d0 -0.0019696341457708 0.0022917664711852 + 316 17 Cd 4d+1 -0.0106373062792741 0.0372435663879231 + 317 17 Cd 4d+2 -0.0007753057258095 0.0325368094888888 + 318 17 Cd 5d-2 0.0019028635609709 -0.0033971869664816 + 319 17 Cd 5d-1 -0.0050441623974199 0.0055430600323486 + 320 17 Cd 5d0 -0.0007287079626153 -0.0028400081917293 + 321 17 Cd 5d+1 -0.0043425036724674 0.0094507937145653 + 322 17 Cd 5d+2 -0.0025267753954831 0.0103534727617569 + 323 17 Cd 5f-3 0.0002466367904405 -0.0000785758878116 + 324 17 Cd 5f-2 0.0002897741935906 -0.0005829985486874 + 325 17 Cd 5f-1 -0.0010213245679665 -0.0009360541883375 + 326 17 Cd 5f0 -0.0002133337858391 0.0018314045729033 + 327 17 Cd 5f+1 -0.0013205504780118 0.0007806503802167 + 328 17 Cd 5f+2 0.0001328212190499 0.0002892624219803 + 329 17 Cd 5f+3 0.0013756650413562 -0.0021331416208822 + + 330 18 Cd 2s -0.0019480125708974 0.0006839529520591 + 331 18 Cd 3s -0.0027392087482344 -0.0057691432835410 + 332 18 Cd 3py 0.0357266614273948 0.0025435950778827 + 333 18 Cd 3pz -0.0184797643281079 0.0077555265388163 + 334 18 Cd 3px -0.0073461786934477 -0.0059658848348815 + 335 18 Cd 4py -0.0005714642813045 0.0012162575188557 + 336 18 Cd 4pz 0.0049169345390325 -0.0076481979985723 + 337 18 Cd 4px 0.0001347837081849 -0.0010628569922482 + 338 18 Cd 4d-2 0.0021537600260560 -0.0022795735507386 + 339 18 Cd 4d-1 0.0206902690801418 0.0228221766334938 + 340 18 Cd 4d0 0.0130602449883836 0.0203468867700024 + 341 18 Cd 4d+1 -0.0048624301685848 0.0013565416372740 + 342 18 Cd 4d+2 0.0027765237127998 0.0065372637869647 + 343 18 Cd 5d-2 -0.0015871631414590 -0.0021726186463235 + 344 18 Cd 5d-1 0.0114175458679645 0.0011356799451007 + 345 18 Cd 5d0 -0.0028648926830474 -0.0036918877352216 + 346 18 Cd 5d+1 -0.0020254788377276 -0.0034451245886532 + 347 18 Cd 5d+2 0.0006978512930264 0.0022533960646594 + 348 18 Cd 5f-3 0.0010103384717540 0.0006853104760222 + 349 18 Cd 5f-2 -0.0005458158973416 -0.0011479299187719 + 350 18 Cd 5f-1 -0.0028307297171577 -0.0006600552705871 + 351 18 Cd 5f0 0.0010650378839979 0.0002296003146484 + 352 18 Cd 5f+1 0.0015842235705454 -0.0007032583672720 + 353 18 Cd 5f+2 -0.0010578169887703 -0.0004147745697027 + 354 18 Cd 5f+3 0.0019012683884314 -0.0006751185527359 + + 355 19 Se 2s 0.0099883031645166 -0.0062881353016329 + 356 19 Se 3s -0.0004687116078849 0.0015797127759429 + 357 19 Se 3py 0.0600921049562812 0.0053142818467212 + 358 19 Se 3pz -0.0140189389293579 0.0357837267014832 + 359 19 Se 3px -0.0919973860291453 0.0434427028211533 + 360 19 Se 4py -0.0070526194536246 -0.0012388492199055 + 361 19 Se 4pz 0.0004352559867785 -0.0010431830669096 + 362 19 Se 4px 0.0074489310357913 -0.0013135408134604 + 363 19 Se 4d-2 0.0020245484289427 -0.0008881339889643 + 364 19 Se 4d-1 0.0051573304084156 -0.0009995928401010 + 365 19 Se 4d0 0.0006186369618649 0.0005250502448380 + 366 19 Se 4d+1 -0.0037153437714980 0.0003749985195270 + 367 19 Se 4d+2 0.0002513680475175 -0.0027730485572558 + + 368 20 Se 2s 0.0044639261297667 -0.0056216286121353 + 369 20 Se 3s 0.0000637506021041 0.0006679085412229 + 370 20 Se 3py -0.2751600573656777 -0.2591574305001869 + 371 20 Se 3pz -0.0240075767939732 0.0385948128945587 + 372 20 Se 3px -0.1426474190970787 0.0869368483387234 + 373 20 Se 4py 0.0309816915974095 0.0338898521561680 + 374 20 Se 4pz 0.0027871129425189 -0.0125992739411614 + 375 20 Se 4px 0.0143803527709953 -0.0103690184090579 + 376 20 Se 4d-2 0.0054798932409982 0.0016430144897097 + 377 20 Se 4d-1 0.0006668160757527 0.0025563280473534 + 378 20 Se 4d0 -0.0008173683812320 -0.0028825691640126 + 379 20 Se 4d+1 -0.0007588445982489 -0.0009709078584138 + 380 20 Se 4d+2 0.0018657993142867 0.0031963835913844 + + 381 21 Se 2s -0.0509540887245519 0.0166745731213054 + 382 21 Se 3s 0.0059507856532671 -0.0014243464060221 + 383 21 Se 3py -0.1324845723145281 -0.0845918363561156 + 384 21 Se 3pz 0.0512848920487785 -0.0850299878252018 + 385 21 Se 3px -0.0324533728019036 0.1180208748006704 + 386 21 Se 4py 0.0111197658569860 0.0102469936568543 + 387 21 Se 4pz -0.0018853909573834 0.0072011921265152 + 388 21 Se 4px 0.0055218271869961 -0.0129636532743420 + 389 21 Se 4d-2 0.0059387946629143 -0.0044437529832944 + 390 21 Se 4d-1 -0.0024618939354375 0.0012609885973016 + 391 21 Se 4d0 -0.0041174916924071 0.0032217454022474 + 392 21 Se 4d+1 0.0024541002885142 0.0031239590357546 + 393 21 Se 4d+2 0.0023426534249617 -0.0032623101695858 + + 394 22 Cd 2s -0.0159123265433993 -0.0307814602086848 + 395 22 Cd 3s -0.0022757455144111 0.0006585084171285 + 396 22 Cd 3py -0.0364594164782278 -0.0067483088096818 + 397 22 Cd 3pz 0.0112078227695180 0.0280363358852269 + 398 22 Cd 3px 0.0166661592995132 0.0484281817438601 + 399 22 Cd 4py 0.0033105049358391 0.0002640362128511 + 400 22 Cd 4pz -0.0053116609277451 -0.0013256412917202 + 401 22 Cd 4px 0.0017523949076722 -0.0023607925781862 + 402 22 Cd 4d-2 -0.0285337719856580 -0.0162299223529566 + 403 22 Cd 4d-1 -0.0071974811907931 -0.0291195197032746 + 404 22 Cd 4d0 -0.0014883296960669 -0.0476492737303125 + 405 22 Cd 4d+1 -0.0064128496044082 0.0306220432247214 + 406 22 Cd 4d+2 0.0131585783649740 -0.0076050985440977 + 407 22 Cd 5d-2 -0.0041035369655643 -0.0001839613805312 + 408 22 Cd 5d-1 -0.0021432341130524 -0.0044711640435861 + 409 22 Cd 5d0 -0.0145465837257703 -0.0106832038779829 + 410 22 Cd 5d+1 -0.0125502868630200 0.0089929497983822 + 411 22 Cd 5d+2 0.0009699167354276 0.0024519432729859 + 412 22 Cd 5f-3 -0.0010451040924899 0.0020623169401970 + 413 22 Cd 5f-2 0.0018351456418640 -0.0016687761449145 + 414 22 Cd 5f-1 -0.0010994791494297 0.0005485624675991 + 415 22 Cd 5f0 -0.0022879412405533 -0.0000579883023247 + 416 22 Cd 5f+1 -0.0018684430494933 -0.0002996527944656 + 417 22 Cd 5f+2 -0.0012552862771642 0.0017068620512512 + 418 22 Cd 5f+3 -0.0012899916957254 0.0009670728876074 + + 419 23 Se 2s 0.0087444501721898 -0.0288029779155336 + 420 23 Se 3s -0.0016533315861160 0.0039431897039321 + 421 23 Se 3py 0.1589521019129851 0.0502927423502638 + 422 23 Se 3pz -0.0311148417356758 0.1058443740800458 + 423 23 Se 3px -0.0232719715725021 0.1309615001190390 + 424 23 Se 4py -0.0082201225728199 0.0005070646985497 + 425 23 Se 4pz 0.0033614596337484 -0.0054372537035572 + 426 23 Se 4px 0.0025451154670297 -0.0081495355187879 + 427 23 Se 4d-2 0.0019660818054665 -0.0027102813555180 + 428 23 Se 4d-1 0.0049516491294829 0.0016794052863219 + 429 23 Se 4d0 -0.0013970672565239 0.0021853290972594 + 430 23 Se 4d+1 0.0002666751973302 0.0001318435135109 + 431 23 Se 4d+2 -0.0003312659564075 0.0007216080190185 + + 432 24 Se 2s 0.0105041788197372 0.0101602460295511 + 433 24 Se 3s -0.0019354199264802 -0.0019793310486849 + 434 24 Se 3py -0.0895280077312751 0.0059954216366226 + 435 24 Se 3pz -0.0943771068092530 -0.0247166678823878 + 436 24 Se 3px -0.1449661034294948 -0.0454275684788892 + 437 24 Se 4py 0.0062552128177492 -0.0001683184909574 + 438 24 Se 4pz 0.0054629296103100 0.0003938244972718 + 439 24 Se 4px 0.0097259147136654 0.0040192989453774 + 440 24 Se 4d-2 -0.0022324386391328 0.0002800960014878 + 441 24 Se 4d-1 0.0004426088864536 -0.0009511241696272 + 442 24 Se 4d0 0.0021971002098211 -0.0002764781030227 + 443 24 Se 4d+1 -0.0020132496912657 0.0005025261824294 + 444 24 Se 4d+2 -0.0008761571473263 -0.0006928031713775 + + 445 25 Cd 2s -0.0006423122630630 0.0026675455277761 + 446 25 Cd 3s 0.0002191016469861 0.0018387274329580 + 447 25 Cd 3py 0.0291106894896331 -0.0043464283190357 + 448 25 Cd 3pz -0.0151769920861429 -0.0085814261564399 + 449 25 Cd 3px -0.0321978264463750 -0.0137595487618457 + 450 25 Cd 4py -0.0010110776689189 0.0004680964098963 + 451 25 Cd 4pz -0.0001081150569289 -0.0003973156242929 + 452 25 Cd 4px -0.0000118999722454 0.0004184718948463 + 453 25 Cd 4d-2 0.0031685762215855 0.0034676886679528 + 454 25 Cd 4d-1 -0.0331440932660832 0.0024290554705783 + 455 25 Cd 4d0 0.0027274229207536 0.0095939973105057 + 456 25 Cd 4d+1 -0.0303494903325162 0.0036555765270449 + 457 25 Cd 4d+2 -0.0183154647601924 -0.0030509707784643 + 458 25 Cd 5d-2 0.0027601535549505 -0.0019856646537943 + 459 25 Cd 5d-1 -0.0154658434261074 -0.0006514578255067 + 460 25 Cd 5d0 0.0117271438086759 0.0074639445180638 + 461 25 Cd 5d+1 -0.0091172900699134 0.0016054710470035 + 462 25 Cd 5d+2 -0.0091440347558788 -0.0016255133441923 + 463 25 Cd 5f-3 0.0001399363743318 0.0003925778701530 + 464 25 Cd 5f-2 0.0005002288452408 -0.0002940990944421 + 465 25 Cd 5f-1 -0.0039086237025128 0.0001465051617078 + 466 25 Cd 5f0 0.0010456628853548 0.0018518801714932 + 467 25 Cd 5f+1 0.0018473079371528 -0.0004917553104915 + 468 25 Cd 5f+2 0.0007478557353766 -0.0006040152688716 + 469 25 Cd 5f+3 -0.0003776676111922 0.0012884126767874 + + 470 26 Cd 2s -0.0634940283034287 0.0411509562379962 + 471 26 Cd 3s -0.0038128722349540 0.0010804921526683 + 472 26 Cd 3py -0.0282592447343219 0.0094671905076769 + 473 26 Cd 3pz -0.0174027182014760 0.0175257507044205 + 474 26 Cd 3px 0.0025291534797359 -0.0150398765887376 + 475 26 Cd 4py 0.0087241363556635 -0.0013150006222308 + 476 26 Cd 4pz 0.0011795193663996 -0.0007418843878428 + 477 26 Cd 4px 0.0018014084719489 -0.0005384511540918 + 478 26 Cd 4d-2 -0.0279738172254173 -0.0074367809232894 + 479 26 Cd 4d-1 -0.0007690702560710 0.0068082204463426 + 480 26 Cd 4d0 -0.0037008499343491 0.0008976843029664 + 481 26 Cd 4d+1 -0.0139426210633492 0.0024153477404657 + 482 26 Cd 4d+2 -0.0230175869993583 -0.0143008824456974 + 483 26 Cd 5d-2 -0.0007070248716628 -0.0016859628863187 + 484 26 Cd 5d-1 0.0027905882046419 0.0050063021967977 + 485 26 Cd 5d0 -0.0000004959451917 0.0013059160229818 + 486 26 Cd 5d+1 -0.0045341757254299 0.0012923315615409 + 487 26 Cd 5d+2 0.0017045199094653 -0.0039774992039600 + 488 26 Cd 5f-3 -0.0011993268635044 0.0002490722489569 + 489 26 Cd 5f-2 0.0022508985720301 0.0004995706253921 + 490 26 Cd 5f-1 -0.0012355780377203 0.0008069967832582 + 491 26 Cd 5f0 0.0007692574056275 0.0002686149033189 + 492 26 Cd 5f+1 -0.0006418272798369 0.0001174514834597 + 493 26 Cd 5f+2 0.0001093063142000 0.0008645604504010 + 494 26 Cd 5f+3 0.0006026076870694 0.0013109540479351 + + 113 114 + -0.1954996396722587 -0.1901023978716437 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0087212078645463 -0.0358095634243486 + 2 1 Cd 3s 0.0019296049500595 -0.0037223030642577 + 3 1 Cd 3py 0.0139160114518908 0.0170622581175278 + 4 1 Cd 3pz -0.0107784707043551 0.0485756871099013 + 5 1 Cd 3px 0.0065862374213186 -0.0179707074427958 + 6 1 Cd 4py 0.0037699265708547 -0.0057903521439889 + 7 1 Cd 4pz -0.0036561698642220 0.0001951299683337 + 8 1 Cd 4px -0.0015466263842423 0.0001272951957882 + 9 1 Cd 4d-2 0.0019002441116686 0.0251480855953732 + 10 1 Cd 4d-1 0.0040117915594484 0.0058237419874352 + 11 1 Cd 4d0 0.0011481588368845 0.0216709583134172 + 12 1 Cd 4d+1 -0.0079528398290309 0.0333371188466415 + 13 1 Cd 4d+2 -0.0060921591569620 0.0317507699288072 + 14 1 Cd 5d-2 -0.0039817913853622 0.0068426340145916 + 15 1 Cd 5d-1 0.0005980942631567 0.0105990406320961 + 16 1 Cd 5d0 -0.0014949259370487 0.0025730696830844 + 17 1 Cd 5d+1 0.0016718402777070 0.0049169793982080 + 18 1 Cd 5d+2 -0.0024456191300403 0.0061480771098307 + 19 1 Cd 5f-3 -0.0004705647397583 0.0013178545249900 + 20 1 Cd 5f-2 -0.0005348892065678 -0.0026359424345050 + 21 1 Cd 5f-1 -0.0009236971278809 -0.0014668060048758 + 22 1 Cd 5f0 0.0009622836576645 0.0009102411196932 + 23 1 Cd 5f+1 0.0009456276632012 -0.0026904045584740 + 24 1 Cd 5f+2 0.0012355684565709 0.0019677268487092 + 25 1 Cd 5f+3 0.0017977074697985 0.0011255947912682 + + 26 2 Cd 2s 0.0032331105376762 -0.0032858329022314 + 27 2 Cd 3s 0.0008947206872096 0.0013225353701432 + 28 2 Cd 3py -0.0192041049076475 0.0109613712792595 + 29 2 Cd 3pz 0.0009084634565630 -0.0087049014982007 + 30 2 Cd 3px -0.0081762649648778 0.0239811808053833 + 31 2 Cd 4py 0.0027720035546463 -0.0022640201973853 + 32 2 Cd 4pz -0.0021474840527472 0.0001883525578798 + 33 2 Cd 4px -0.0009559355329470 -0.0002224764224385 + 34 2 Cd 4d-2 -0.0148427120468804 0.0199709258262692 + 35 2 Cd 4d-1 -0.0014865326496616 0.0026558172467525 + 36 2 Cd 4d0 -0.0057653618445568 -0.0008747124757928 + 37 2 Cd 4d+1 0.0131875538331327 -0.0269715909204803 + 38 2 Cd 4d+2 -0.0081779333473199 0.0351546869650970 + 39 2 Cd 5d-2 -0.0037426311397119 0.0066742051782802 + 40 2 Cd 5d-1 0.0003381173254084 -0.0011485856127522 + 41 2 Cd 5d0 -0.0070041998100773 0.0055076145194377 + 42 2 Cd 5d+1 0.0066740481918105 -0.0113154284127374 + 43 2 Cd 5d+2 -0.0035697851928906 0.0145007797982152 + 44 2 Cd 5f-3 0.0006118772802503 -0.0010054485336582 + 45 2 Cd 5f-2 -0.0004934102428344 0.0013905193599287 + 46 2 Cd 5f-1 -0.0001526163071223 0.0006574289464304 + 47 2 Cd 5f0 0.0013378134899462 -0.0033029688819074 + 48 2 Cd 5f+1 0.0008405360973226 -0.0026674008463985 + 49 2 Cd 5f+2 -0.0007623373223646 0.0021034986563449 + 50 2 Cd 5f+3 0.0002320258715186 -0.0011867230939276 + + 51 3 Cd 2s -0.0038919990846362 0.0222375567132285 + 52 3 Cd 3s 0.0012774534708883 0.0001159689434719 + 53 3 Cd 3py -0.0146970161556526 -0.0219038840445852 + 54 3 Cd 3pz -0.0019224385968521 -0.0257494148876843 + 55 3 Cd 3px 0.0028999261719416 0.0501630557229714 + 56 3 Cd 4py 0.0038787834085455 0.0025106840055797 + 57 3 Cd 4pz -0.0017855470713673 0.0050177129973773 + 58 3 Cd 4px -0.0003455456728745 -0.0041343975297061 + 59 3 Cd 4d-2 0.0370734608483550 -0.0177391003521292 + 60 3 Cd 4d-1 0.0053994916746816 0.0150871229649009 + 61 3 Cd 4d0 -0.0022060278171684 0.0268414604674596 + 62 3 Cd 4d+1 -0.0021901412452125 -0.0368327119639097 + 63 3 Cd 4d+2 -0.0073457847223323 0.0205036028103595 + 64 3 Cd 5d-2 0.0058181929559471 -0.0073562191735877 + 65 3 Cd 5d-1 -0.0064632619797446 0.0017013808100179 + 66 3 Cd 5d0 -0.0071895484333074 0.0058706257003987 + 67 3 Cd 5d+1 -0.0024708487252312 -0.0040670425415309 + 68 3 Cd 5d+2 0.0021383627263471 -0.0001307477490984 + 69 3 Cd 5f-3 0.0008278874582636 0.0032257369352417 + 70 3 Cd 5f-2 0.0010677053511870 0.0004551424541392 + 71 3 Cd 5f-1 -0.0000188839915612 0.0009763445923495 + 72 3 Cd 5f0 -0.0010472731617138 -0.0015381140440454 + 73 3 Cd 5f+1 0.0028228534786425 -0.0004381453751427 + 74 3 Cd 5f+2 0.0017619150745193 0.0012187278793303 + 75 3 Cd 5f+3 -0.0006066068942322 0.0010567979966944 + + 76 4 Se 2s 0.0095114075989737 -0.0137891603217889 + 77 4 Se 3s -0.0016039234040376 0.0029800275793862 + 78 4 Se 3py -0.0284266453268831 0.2162082300205301 + 79 4 Se 3pz 0.0835442741665372 -0.1749119938805157 + 80 4 Se 3px 0.0298938209480627 -0.2375478854975727 + 81 4 Se 4py 0.0001444718856561 -0.0115796014415124 + 82 4 Se 4pz -0.0043509125193501 0.0060500319154430 + 83 4 Se 4px -0.0006187546683897 0.0160588726948650 + 84 4 Se 4d-2 0.0011948414896297 -0.0020664863173127 + 85 4 Se 4d-1 0.0001053215631339 -0.0012154090139557 + 86 4 Se 4d0 0.0013820835697749 -0.0017397956055816 + 87 4 Se 4d+1 -0.0017289381587727 0.0036647326254547 + 88 4 Se 4d+2 0.0002357455597704 0.0084846277141299 + + 89 5 Se 2s -0.0033757356021202 0.0149121312974614 + 90 5 Se 3s 0.0004215464587211 -0.0019671511446919 + 91 5 Se 3py 0.0016526185925508 0.0742873562960788 + 92 5 Se 3pz -0.0168017185318761 -0.1588786921162026 + 93 5 Se 3px -0.0264125438178613 0.1347186474313214 + 94 5 Se 4py 0.0014432071378808 -0.0010766653181773 + 95 5 Se 4pz 0.0030511793847689 0.0099979904459359 + 96 5 Se 4px 0.0033391862316753 -0.0066317986478841 + 97 5 Se 4d-2 -0.0010190231499159 0.0022123888213306 + 98 5 Se 4d-1 0.0008022154831493 -0.0037772722511908 + 99 5 Se 4d0 -0.0010786180616693 -0.0024072397146032 + 100 5 Se 4d+1 0.0005641402642695 0.0043500329151903 + 101 5 Se 4d+2 0.0001558686895129 -0.0040787465188064 + + 102 6 Se 2s -0.0019695999276800 0.0348044796591304 + 103 6 Se 3s -0.0000953700597431 -0.0040222041213328 + 104 6 Se 3py -0.0769880221025696 0.1012392366456796 + 105 6 Se 3pz 0.0379476546068379 -0.0963131684478266 + 106 6 Se 3px 0.0203201373543024 0.0033717580809876 + 107 6 Se 4py 0.0039386943556318 -0.0081606119050993 + 108 6 Se 4pz -0.0020966275192992 0.0069844247213245 + 109 6 Se 4px -0.0025061622726480 0.0022244763126281 + 110 6 Se 4d-2 0.0025370348959454 -0.0041596516804789 + 111 6 Se 4d-1 -0.0006819680241876 -0.0002110775234356 + 112 6 Se 4d0 0.0021913400502339 -0.0047483362958704 + 113 6 Se 4d+1 -0.0003622311377222 0.0056340273777363 + 114 6 Se 4d+2 0.0001369704299665 0.0020279778281559 + + 115 7 Se 2s 0.0007835164252204 0.0034818218964333 + 116 7 Se 3s -0.0003944764645286 -0.0010979998511878 + 117 7 Se 3py -0.0232550430753887 0.0459169128760938 + 118 7 Se 3pz -0.0003408290116797 -0.0081119580856681 + 119 7 Se 3px 0.0173068236497937 0.0514495694923616 + 120 7 Se 4py 0.0004107814289996 -0.0030957856231740 + 121 7 Se 4pz -0.0003816267904587 0.0012024300455396 + 122 7 Se 4px 0.0007666308805575 -0.0017443686587748 + 123 7 Se 4d-2 -0.0004570294367619 -0.0005524738010321 + 124 7 Se 4d-1 -0.0010865129349257 0.0004672516900982 + 125 7 Se 4d0 0.0012951522771836 -0.0005464911414336 + 126 7 Se 4d+1 -0.0003057763024578 -0.0008621333749940 + 127 7 Se 4d+2 0.0011281511510593 0.0001805687185213 + + 128 8 Cd 2s 0.0062406960547097 0.0138318408770811 + 129 8 Cd 3s -0.0009121583032859 0.0016670754002721 + 130 8 Cd 3py 0.0015532494988040 -0.0083089044485380 + 131 8 Cd 3pz 0.0084672099171440 -0.0214115670084234 + 132 8 Cd 3px 0.0112617788451433 0.0177168455424839 + 133 8 Cd 4py 0.0015673546163162 -0.0005589398451232 + 134 8 Cd 4pz 0.0021817463045923 -0.0015295732649751 + 135 8 Cd 4px 0.0005605145595583 -0.0022995836694384 + 136 8 Cd 4d-2 0.0021146573299771 0.0152671515557676 + 137 8 Cd 4d-1 -0.0252450346191470 0.0338525151254627 + 138 8 Cd 4d0 0.0077988426069781 0.0242442811063944 + 139 8 Cd 4d+1 0.0035105674752067 -0.0150179764273691 + 140 8 Cd 4d+2 -0.0083481725092031 -0.0063061879224894 + 141 8 Cd 5d-2 0.0018089263406124 0.0006875850265634 + 142 8 Cd 5d-1 -0.0026076325865627 0.0066034168813805 + 143 8 Cd 5d0 -0.0086567269269458 0.0062421837371169 + 144 8 Cd 5d+1 0.0021008050076828 -0.0062921516615692 + 145 8 Cd 5d+2 -0.0084717001814684 -0.0025728592292130 + 146 8 Cd 5f-3 0.0007002850583566 0.0009468165895524 + 147 8 Cd 5f-2 -0.0006083630409283 -0.0008702318321806 + 148 8 Cd 5f-1 -0.0015595901467474 -0.0015678304925105 + 149 8 Cd 5f0 0.0024822836943585 0.0011362064694886 + 150 8 Cd 5f+1 0.0007321525561654 -0.0010145764281556 + 151 8 Cd 5f+2 0.0004457293360604 -0.0007046929474394 + 152 8 Cd 5f+3 -0.0004377673251193 -0.0005689597668808 + + 153 9 Cd 2s -0.0195246681085672 0.0623726259195686 + 154 9 Cd 3s -0.0014148961495438 0.0048297883354432 + 155 9 Cd 3py 0.0075188349643167 -0.0045666621440070 + 156 9 Cd 3pz -0.0247703431898757 0.0183409769476654 + 157 9 Cd 3px -0.0092067591979764 0.0366636989215782 + 158 9 Cd 4py 0.0003749288492358 0.0007701185739959 + 159 9 Cd 4pz -0.0020326430967626 0.0019063968093116 + 160 9 Cd 4px 0.0013580454026539 -0.0034037784382396 + 161 9 Cd 4d-2 0.0064196837057485 -0.0066340367745903 + 162 9 Cd 4d-1 -0.0053873384077830 0.0044173766827098 + 163 9 Cd 4d0 -0.0005831841789504 -0.0013334686962331 + 164 9 Cd 4d+1 0.0118994883359996 -0.0123600685605593 + 165 9 Cd 4d+2 0.0017963995590174 -0.0035046363485078 + 166 9 Cd 5d-2 0.0028558923349540 -0.0014228634821722 + 167 9 Cd 5d-1 -0.0029515773385354 0.0008258881942232 + 168 9 Cd 5d0 0.0041691357201774 -0.0059365900323901 + 169 9 Cd 5d+1 0.0061260156192991 -0.0066408832829436 + 170 9 Cd 5d+2 -0.0049163689984286 0.0037418504719707 + 171 9 Cd 5f-3 -0.0005140259040242 0.0004481658936851 + 172 9 Cd 5f-2 0.0003224605577690 -0.0006734105300920 + 173 9 Cd 5f-1 -0.0001145914502709 -0.0002909288151368 + 174 9 Cd 5f0 -0.0002809054758807 0.0003952834289009 + 175 9 Cd 5f+1 -0.0006534755322460 0.0013418677935452 + 176 9 Cd 5f+2 0.0005160511588806 0.0006639910456085 + 177 9 Cd 5f+3 -0.0000821674076221 -0.0016898405171350 + + 178 10 Se 2s 0.0026358394242946 0.0026781758138274 + 179 10 Se 3s -0.0008996851800157 -0.0004897839116322 + 180 10 Se 3py 0.0217347331415756 0.0059215633224248 + 181 10 Se 3pz 0.1244388984601635 -0.0680576424922485 + 182 10 Se 3px -0.0244669718064454 0.0679889475422092 + 183 10 Se 4py 0.0000644892371448 -0.0019211129737118 + 184 10 Se 4pz -0.0081905379748905 0.0040054691733006 + 185 10 Se 4px 0.0046858045806876 -0.0044615249173356 + 186 10 Se 4d-2 -0.0002401698829638 -0.0006265044526399 + 187 10 Se 4d-1 0.0000270235080954 -0.0006778985236420 + 188 10 Se 4d0 -0.0022159488407861 0.0003417866478655 + 189 10 Se 4d+1 0.0032160534346083 -0.0018746893248764 + 190 10 Se 4d+2 -0.0003146930910550 0.0008376475383174 + + 191 11 Se 2s -0.0049386122530460 -0.0022124500584953 + 192 11 Se 3s 0.0014101110525714 0.0011332765597242 + 193 11 Se 3py -0.0890912175010554 0.0408507501425487 + 194 11 Se 3pz 0.0537591000177494 0.0107079538883940 + 195 11 Se 3px -0.0543033238079376 0.0934931592370248 + 196 11 Se 4py 0.0074469339083602 -0.0021797778752598 + 197 11 Se 4pz -0.0034287283926581 0.0012192333274843 + 198 11 Se 4px 0.0043082208085666 -0.0072705348012212 + 199 11 Se 4d-2 -0.0016361205406115 0.0033596493404801 + 200 11 Se 4d-1 0.0033044115101070 0.0017475862703896 + 201 11 Se 4d0 -0.0016286212842523 0.0010102935943705 + 202 11 Se 4d+1 0.0006309238396517 0.0004075708693814 + 203 11 Se 4d+2 0.0000053705649889 -0.0032395629691934 + + 204 12 Cd 2s -0.0137961507588875 0.0304792087226111 + 205 12 Cd 3s 0.0017266904556829 0.0001622743673997 + 206 12 Cd 3py -0.0097550065743512 0.0001749011340281 + 207 12 Cd 3pz 0.0024621739144753 -0.0102785185792892 + 208 12 Cd 3px -0.0093833284116243 -0.0126074087742050 + 209 12 Cd 4py 0.0000817495299338 0.0010672516524465 + 210 12 Cd 4pz -0.0047219181594441 -0.0001030886583286 + 211 12 Cd 4px -0.0014798827659348 -0.0040755895653250 + 212 12 Cd 4d-2 -0.0216935904861478 0.0089063353788645 + 213 12 Cd 4d-1 0.0192947662216995 -0.0065765348424193 + 214 12 Cd 4d0 0.0214797024277991 -0.0080454505027961 + 215 12 Cd 4d+1 0.0150802373547850 -0.0130363936278368 + 216 12 Cd 4d+2 0.0017858314253291 -0.0206073146469930 + 217 12 Cd 5d-2 -0.0045820242884998 -0.0016641873865557 + 218 12 Cd 5d-1 0.0064410445720721 -0.0040344599102718 + 219 12 Cd 5d0 0.0182861722503664 0.0001429613360626 + 220 12 Cd 5d+1 0.0068460607052495 -0.0030094917455572 + 221 12 Cd 5d+2 -0.0009742566219761 -0.0056291697518476 + 222 12 Cd 5f-3 0.0004068104951293 -0.0005801822896610 + 223 12 Cd 5f-2 0.0006573348886614 -0.0004109749987910 + 224 12 Cd 5f-1 -0.0001117945609100 0.0007378917700655 + 225 12 Cd 5f0 -0.0010483633749893 0.0002533050641216 + 226 12 Cd 5f+1 -0.0017156919393521 -0.0016048103694739 + 227 12 Cd 5f+2 -0.0020662570153885 0.0001311211326847 + 228 12 Cd 5f+3 -0.0011049521428202 0.0014312743957698 + + 229 13 Cd 2s -0.0212345248315634 0.0585551007025986 + 230 13 Cd 3s 0.0025907976989931 -0.0011428137508588 + 231 13 Cd 3py 0.0385111450888173 -0.0087665164984863 + 232 13 Cd 3pz 0.0421873919403464 -0.0811063825637717 + 233 13 Cd 3px 0.0055938521425758 -0.0863118141961304 + 234 13 Cd 4py 0.0020662145150170 -0.0004362102070957 + 235 13 Cd 4pz -0.0003325121911150 0.0049506333167908 + 236 13 Cd 4px -0.0047129107125509 -0.0006909099866825 + 237 13 Cd 4d-2 0.0199717363936921 -0.0320930338946598 + 238 13 Cd 4d-1 -0.0271830293553730 0.0544441473705029 + 239 13 Cd 4d0 -0.0243545310512191 0.0151369801107933 + 240 13 Cd 4d+1 0.0325007326933502 -0.0614973071328402 + 241 13 Cd 4d+2 -0.0105315640188436 -0.0669551572426949 + 242 13 Cd 5d-2 0.0033727227898928 -0.0019421668417824 + 243 13 Cd 5d-1 -0.0121399126930827 0.0166847825696599 + 244 13 Cd 5d0 -0.0029724281670165 -0.0114893907082801 + 245 13 Cd 5d+1 0.0093839990673993 -0.0053739231873451 + 246 13 Cd 5d+2 0.0019194168510789 -0.0145742608799951 + 247 13 Cd 5f-3 0.0012802915542988 0.0020023069858437 + 248 13 Cd 5f-2 -0.0004604958163966 0.0006317094633273 + 249 13 Cd 5f-1 0.0006284772875849 0.0029674788821804 + 250 13 Cd 5f0 -0.0005443159765867 0.0013045057627101 + 251 13 Cd 5f+1 0.0006199911466908 0.0004129009677582 + 252 13 Cd 5f+2 0.0008324705365098 0.0029403801487049 + 253 13 Cd 5f+3 -0.0019211726652118 0.0022338808747745 + + 254 14 Cd 2s 0.0131631783526657 0.0385459458251692 + 255 14 Cd 3s 0.0021185041170508 0.0005720897696731 + 256 14 Cd 3py 0.0444647824903354 -0.0057766684924337 + 257 14 Cd 3pz -0.0018739117698130 -0.0019955382950704 + 258 14 Cd 3px 0.0244395845771163 0.0059701729718309 + 259 14 Cd 4py 0.0038632519470515 -0.0035500211344809 + 260 14 Cd 4pz -0.0048784407822268 0.0055864851826842 + 261 14 Cd 4px -0.0001156798023430 -0.0008377321718069 + 262 14 Cd 4d-2 0.0004969600340802 0.0055479265913406 + 263 14 Cd 4d-1 -0.0214732636003225 0.0029310362914844 + 264 14 Cd 4d0 -0.0045311387618405 0.0092050531790413 + 265 14 Cd 4d+1 -0.0208696125365758 -0.0116138551767817 + 266 14 Cd 4d+2 -0.0046732039395494 -0.0033202719433543 + 267 14 Cd 5d-2 -0.0006840898953989 0.0015149717530520 + 268 14 Cd 5d-1 -0.0089195138646178 -0.0015489057268791 + 269 14 Cd 5d0 0.0148289760913057 -0.0074580523932260 + 270 14 Cd 5d+1 -0.0062132194811318 -0.0028720669411909 + 271 14 Cd 5d+2 0.0019754480093216 -0.0045237861567398 + 272 14 Cd 5f-3 0.0003179217633666 -0.0003318850038348 + 273 14 Cd 5f-2 0.0006976811197491 -0.0010950804065139 + 274 14 Cd 5f-1 -0.0017352814678851 0.0009798789721210 + 275 14 Cd 5f0 -0.0020496050999812 0.0002963998798571 + 276 14 Cd 5f+1 0.0000230508518764 -0.0003830867541699 + 277 14 Cd 5f+2 -0.0008136593057537 0.0005413016968775 + 278 14 Cd 5f+3 -0.0006665900139945 -0.0009540816192979 + + 279 15 Se 2s 0.0065480073305321 0.0131065679018430 + 280 15 Se 3s 0.0011859764643328 -0.0022637273701557 + 281 15 Se 3py -0.2515475517448630 0.0405798873066789 + 282 15 Se 3pz 0.0761383208142494 -0.0029136772826098 + 283 15 Se 3px -0.2042129385221505 -0.1981762357399446 + 284 15 Se 4py 0.0194541847087202 -0.0025154447884220 + 285 15 Se 4pz -0.0099555269272737 0.0044002842964163 + 286 15 Se 4px 0.0101579836225046 0.0102930465559276 + 287 15 Se 4d-2 0.0017420347941066 0.0035340827788627 + 288 15 Se 4d-1 -0.0042772318302124 -0.0027117432552574 + 289 15 Se 4d0 0.0017430882143486 -0.0043924614160521 + 290 15 Se 4d+1 -0.0028545435579575 0.0002841876978680 + 291 15 Se 4d+2 -0.0078275376344711 0.0010283744406321 + + 292 16 Se 2s -0.0040936315785553 0.0268068693827240 + 293 16 Se 3s 0.0000575862706641 -0.0058554838298899 + 294 16 Se 3py 0.0378019623537358 0.0624021440667013 + 295 16 Se 3pz 0.1298832391123066 -0.2261391847737687 + 296 16 Se 3px -0.0958429827569422 0.3015569377977143 + 297 16 Se 4py 0.0030436963832123 -0.0045766995869844 + 298 16 Se 4pz -0.0040024695765674 0.0224330712810820 + 299 16 Se 4px 0.0096231937010188 -0.0171259994654011 + 300 16 Se 4d-2 0.0014932102691610 -0.0019112296111237 + 301 16 Se 4d-1 -0.0001859551142350 0.0010624760979505 + 302 16 Se 4d0 0.0033058217950596 -0.0033362593812487 + 303 16 Se 4d+1 -0.0045155531440414 0.0143271965610730 + 304 16 Se 4d+2 0.0031552995840144 0.0043083587487549 + + 305 17 Cd 2s 0.0103189839840430 0.0250371886859243 + 306 17 Cd 3s 0.0005975609671077 -0.0020611733970611 + 307 17 Cd 3py 0.0075032588433835 -0.0523834314280884 + 308 17 Cd 3pz -0.0105415202456699 0.0175420790318001 + 309 17 Cd 3px 0.0244010348155834 0.0833179489120444 + 310 17 Cd 4py 0.0102349221246521 0.0012362304894656 + 311 17 Cd 4pz -0.0014444723092487 -0.0043769847299131 + 312 17 Cd 4px 0.0045706409643252 -0.0152905909185413 + 313 17 Cd 4d-2 0.0315714781451292 0.1429648045157398 + 314 17 Cd 4d-1 -0.0355773443773660 0.0056696475951687 + 315 17 Cd 4d0 0.0045136442015098 -0.0048917435168120 + 316 17 Cd 4d+1 -0.0067252787270045 0.0258667193386766 + 317 17 Cd 4d+2 -0.0395917707334164 -0.0485686083943131 + 318 17 Cd 5d-2 0.0026671604362875 0.0211890689299162 + 319 17 Cd 5d-1 -0.0148670267324266 -0.0031208596001067 + 320 17 Cd 5d0 -0.0015308075437812 -0.0065627387388024 + 321 17 Cd 5d+1 -0.0012939232463115 0.0061985143243908 + 322 17 Cd 5d+2 0.0003986192636000 -0.0121713384945990 + 323 17 Cd 5f-3 0.0022816881468403 0.0021189388925072 + 324 17 Cd 5f-2 0.0011576081447276 0.0040237317936083 + 325 17 Cd 5f-1 -0.0017712864310384 -0.0010022144589206 + 326 17 Cd 5f0 0.0001325026500419 0.0014322833606798 + 327 17 Cd 5f+1 -0.0014479820213430 0.0017996940434705 + 328 17 Cd 5f+2 -0.0003273600554228 -0.0016472154224637 + 329 17 Cd 5f+3 -0.0048451223900801 0.0019827749540348 + + 330 18 Cd 2s -0.0930021498651648 -0.0683855496383752 + 331 18 Cd 3s -0.0078898669193525 -0.0038972201905085 + 332 18 Cd 3py 0.0424448431866767 0.0153545465579565 + 333 18 Cd 3pz 0.0493640327680680 0.0363860772870478 + 334 18 Cd 3px -0.0183401549616504 0.0169443239168598 + 335 18 Cd 4py -0.0021120195052063 -0.0027893251190715 + 336 18 Cd 4pz -0.0050812140109912 0.0013828306041962 + 337 18 Cd 4px 0.0004826517701239 0.0025347606749141 + 338 18 Cd 4d-2 -0.0195094125338578 -0.0005063008825769 + 339 18 Cd 4d-1 0.0023695394550290 -0.0100496561629771 + 340 18 Cd 4d0 -0.0237084871779751 -0.0179540600979449 + 341 18 Cd 4d+1 0.0062952268497835 -0.0129465193339634 + 342 18 Cd 4d+2 -0.0067067184143241 -0.0046083282207407 + 343 18 Cd 5d-2 -0.0050426998120379 0.0055469222853376 + 344 18 Cd 5d-1 0.0023558299290178 -0.0007476958030611 + 345 18 Cd 5d0 -0.0104286032173363 -0.0018761030359192 + 346 18 Cd 5d+1 0.0049665804908285 -0.0054745488667531 + 347 18 Cd 5d+2 0.0035900793731866 0.0022016210054736 + 348 18 Cd 5f-3 0.0022601624578998 0.0008137359350036 + 349 18 Cd 5f-2 0.0013370966139136 -0.0002199621951467 + 350 18 Cd 5f-1 0.0024987334584843 0.0015916252032943 + 351 18 Cd 5f0 -0.0033098191139762 -0.0008828891134160 + 352 18 Cd 5f+1 -0.0021097943889219 0.0001779205916211 + 353 18 Cd 5f+2 -0.0009008271707982 0.0007216799813909 + 354 18 Cd 5f+3 0.0008237004549202 -0.0011014071464756 + + 355 19 Se 2s -0.0250990604290502 -0.0130944664187692 + 356 19 Se 3s 0.0018618679457821 -0.0003913606929759 + 357 19 Se 3py -0.3066439121928096 -0.1981158729371021 + 358 19 Se 3pz -0.2133437222006039 -0.0890186187445884 + 359 19 Se 3px 0.1821338137343805 -0.0066909787826530 + 360 19 Se 4py 0.0303367534769988 0.0126141319145987 + 361 19 Se 4pz 0.0133016152562784 0.0139249396162161 + 362 19 Se 4px -0.0084478533045496 -0.0011338748057906 + 363 19 Se 4d-2 -0.0087965291987125 -0.0028726615242344 + 364 19 Se 4d-1 -0.0109160709416005 -0.0102395067631513 + 365 19 Se 4d0 -0.0095435337511585 -0.0026208706158730 + 366 19 Se 4d+1 0.0060052319783938 0.0001802937818145 + 367 19 Se 4d+2 0.0000777543303486 -0.0065571363114727 + + 368 20 Se 2s -0.0074597619756011 -0.0075252252407841 + 369 20 Se 3s 0.0015422674761481 0.0002996914999365 + 370 20 Se 3py -0.1540126789569636 -0.0602475805787651 + 371 20 Se 3pz 0.1141378450997431 -0.0907315597136733 + 372 20 Se 3px -0.0079400792610082 0.1221252241627231 + 373 20 Se 4py 0.0209862783934095 0.0061082505914977 + 374 20 Se 4pz -0.0168491904594953 0.0058225363682880 + 375 20 Se 4px -0.0008789955570635 -0.0143464423295494 + 376 20 Se 4d-2 0.0007518977925614 -0.0025805992945172 + 377 20 Se 4d-1 -0.0048246264291436 -0.0027136558856022 + 378 20 Se 4d0 0.0000474016681866 -0.0024041536059758 + 379 20 Se 4d+1 -0.0014612429303551 0.0070352510501029 + 380 20 Se 4d+2 0.0013504793408087 -0.0005381553168489 + + 381 21 Se 2s -0.0368444021250701 -0.0101847514918952 + 382 21 Se 3s 0.0025235534293264 0.0028902596248904 + 383 21 Se 3py -0.0477297565593669 -0.1014783307903502 + 384 21 Se 3pz 0.0920073451687722 0.0371517882146895 + 385 21 Se 3px -0.0898358279047291 0.0475254719318884 + 386 21 Se 4py 0.0048187502878709 0.0120134438825124 + 387 21 Se 4pz -0.0117023329877472 -0.0084555937197820 + 388 21 Se 4px 0.0102826441613031 -0.0035188207119789 + 389 21 Se 4d-2 0.0071082028247112 0.0017502638351016 + 390 21 Se 4d-1 -0.0046778602649814 -0.0020221873161628 + 391 21 Se 4d0 -0.0050565314354158 -0.0015012991714918 + 392 21 Se 4d+1 -0.0033133257311615 -0.0010175830223763 + 393 21 Se 4d+2 0.0021253049665403 -0.0037278364897110 + + 394 22 Cd 2s 0.0612413149390052 -0.0446807369673286 + 395 22 Cd 3s 0.0050745321574042 0.0009209256823426 + 396 22 Cd 3py -0.0334065519943222 -0.0030414877083552 + 397 22 Cd 3pz -0.0413838097888666 -0.0043528494116210 + 398 22 Cd 3px -0.0173198394431160 -0.0317864288167029 + 399 22 Cd 4py -0.0029687986768969 -0.0013599580274802 + 400 22 Cd 4pz -0.0005865545280931 -0.0049667966853888 + 401 22 Cd 4px 0.0047454034826643 -0.0044456797815445 + 402 22 Cd 4d-2 -0.0607622932994496 0.0048340110645679 + 403 22 Cd 4d-1 -0.0500605816627960 -0.0311193614286142 + 404 22 Cd 4d0 0.0739479725923649 -0.0124649592179513 + 405 22 Cd 4d+1 -0.0177642688892826 0.0258661560503706 + 406 22 Cd 4d+2 0.0320627391089360 0.0391710691678131 + 407 22 Cd 5d-2 -0.0301016688868353 0.0091031614260541 + 408 22 Cd 5d-1 -0.0164697077797978 -0.0099973658296978 + 409 22 Cd 5d0 0.0277250185416163 -0.0004652098997569 + 410 22 Cd 5d+1 -0.0105651768263159 0.0129769457594126 + 411 22 Cd 5d+2 0.0046539027769546 0.0141200843107406 + 412 22 Cd 5f-3 -0.0029952978854996 0.0002836211080054 + 413 22 Cd 5f-2 0.0011144411732202 0.0018540092385408 + 414 22 Cd 5f-1 -0.0018772773217588 -0.0016156484166120 + 415 22 Cd 5f0 0.0052738785243062 -0.0016570774355125 + 416 22 Cd 5f+1 0.0002584340478152 0.0029368312013184 + 417 22 Cd 5f+2 0.0000759603545988 0.0002009586094831 + 418 22 Cd 5f+3 -0.0002124150628304 0.0002205601407137 + + 419 23 Se 2s -0.0247482733779954 -0.0220356496423591 + 420 23 Se 3s 0.0053317734833018 0.0044183415194166 + 421 23 Se 3py -0.5539593220848000 -0.1395488098924932 + 422 23 Se 3pz 0.1690778166425634 0.0557313421070767 + 423 23 Se 3px -0.1369750736373043 0.4953334185136387 + 424 23 Se 4py 0.0338883678692318 0.0125332374658847 + 425 23 Se 4pz -0.0121196636841271 -0.0073189172590225 + 426 23 Se 4px 0.0025291962521065 -0.0365220107646368 + 427 23 Se 4d-2 -0.0021350939368384 -0.0082327699127169 + 428 23 Se 4d-1 -0.0190426017831430 -0.0016588935359973 + 429 23 Se 4d0 0.0009798324737708 -0.0006126303341354 + 430 23 Se 4d+1 -0.0016851060600714 0.0095611826155444 + 431 23 Se 4d+2 -0.0046304267346342 0.0041362902993834 + + 432 24 Se 2s 0.0025267441183448 0.0093470477259946 + 433 24 Se 3s 0.0002809779313931 -0.0003960326251801 + 434 24 Se 3py -0.1405673877317395 0.0086944920990416 + 435 24 Se 3pz 0.0520041193621079 -0.0407768010496359 + 436 24 Se 3px -0.0446142505685903 0.0875657354865069 + 437 24 Se 4py 0.0068418891858714 -0.0042584063561139 + 438 24 Se 4pz -0.0061788804996290 -0.0005908548098236 + 439 24 Se 4px 0.0051746652758988 -0.0042144205156261 + 440 24 Se 4d-2 0.0019214724956313 0.0041049832756484 + 441 24 Se 4d-1 -0.0034607167800616 -0.0005559165188311 + 442 24 Se 4d0 0.0039466840745153 -0.0015444042038336 + 443 24 Se 4d+1 0.0028391330834563 0.0002627903161569 + 444 24 Se 4d+2 0.0002992782966378 -0.0000550300695623 + + 445 25 Cd 2s -0.0605157588986411 0.0272349781732792 + 446 25 Cd 3s -0.0022442794191935 0.0049862266692471 + 447 25 Cd 3py -0.1222071715019581 -0.0111590714081331 + 448 25 Cd 3pz 0.0439990571458783 -0.0239063403629418 + 449 25 Cd 3px 0.0323774477489077 -0.0065611208718231 + 450 25 Cd 4py 0.0083943551911846 0.0035205339470363 + 451 25 Cd 4pz -0.0035600075035165 0.0016128518701175 + 452 25 Cd 4px -0.0018190614305008 -0.0010795642695925 + 453 25 Cd 4d-2 -0.0282374270672209 -0.0455739723755695 + 454 25 Cd 4d-1 0.1107484637019778 0.0273740379633917 + 455 25 Cd 4d0 -0.0194590048989665 0.0066100431988450 + 456 25 Cd 4d+1 -0.0401865848530085 0.0196717088962371 + 457 25 Cd 4d+2 0.0346049064906090 -0.0023725337166306 + 458 25 Cd 5d-2 -0.0249959391852750 -0.0206914226222450 + 459 25 Cd 5d-1 0.0359652285574014 0.0011697750415652 + 460 25 Cd 5d0 -0.0103702786348963 -0.0036201807082083 + 461 25 Cd 5d+1 -0.0133547323551466 0.0138617322784737 + 462 25 Cd 5d+2 0.0117022307994836 -0.0008051237134913 + 463 25 Cd 5f-3 -0.0013468795544742 0.0006668421276295 + 464 25 Cd 5f-2 0.0003524896616036 -0.0010503161311959 + 465 25 Cd 5f-1 0.0071266644245053 0.0023819441297409 + 466 25 Cd 5f0 0.0015325754871377 -0.0012722746390086 + 467 25 Cd 5f+1 -0.0029944983568873 -0.0007393726380727 + 468 25 Cd 5f+2 0.0008305473950051 -0.0003407926258703 + 469 25 Cd 5f+3 0.0020244011509043 0.0008662023282063 + + 470 26 Cd 2s -0.0388261769458811 0.0085739066491807 + 471 26 Cd 3s -0.0069125278819421 0.0005236580058724 + 472 26 Cd 3py -0.0225562814383183 0.0014659450003202 + 473 26 Cd 3pz -0.0225685595451359 0.0034150027318043 + 474 26 Cd 3px -0.0108109972088832 -0.0360792959962006 + 475 26 Cd 4py 0.0094018162712704 0.0008019900023416 + 476 26 Cd 4pz 0.0056338736673168 0.0041554780412604 + 477 26 Cd 4px 0.0001315130257756 -0.0029330649218914 + 478 26 Cd 4d-2 -0.0105802195335097 0.0024652279014475 + 479 26 Cd 4d-1 0.0073524862302827 -0.0079423841925980 + 480 26 Cd 4d0 -0.0038489020682351 -0.0000807801747200 + 481 26 Cd 4d+1 -0.0097633323084644 -0.0039235670762232 + 482 26 Cd 4d+2 -0.0113234879832580 -0.0095418429681785 + 483 26 Cd 5d-2 0.0043098122325796 0.0057779988519239 + 484 26 Cd 5d-1 -0.0077435368696701 0.0004411354446171 + 485 26 Cd 5d0 -0.0031253953663142 -0.0029767099402107 + 486 26 Cd 5d+1 0.0028023555332350 0.0084640098533069 + 487 26 Cd 5d+2 -0.0000796320168383 -0.0107130642009309 + 488 26 Cd 5f-3 -0.0000380696624781 0.0011932088326471 + 489 26 Cd 5f-2 -0.0009436751255510 0.0015765521101258 + 490 26 Cd 5f-1 0.0018592470253455 0.0002084700025272 + 491 26 Cd 5f0 -0.0011950542421418 -0.0010865567205416 + 492 26 Cd 5f+1 0.0004938131606595 -0.0015706845007960 + 493 26 Cd 5f+2 -0.0009134179544010 0.0004022273911342 + 494 26 Cd 5f+3 -0.0011521783498850 -0.0011743663088574 + + 115 116 + -0.1863437073460593 -0.1818192539966920 + + 2.0000000000000000 2.0000000000000000 + + 1 1 Cd 2s 0.0185942282877537 0.0097141419547049 + 2 1 Cd 3s -0.0071842739626476 -0.0039989197577894 + 3 1 Cd 3py -0.0286897785948957 -0.0878357719713677 + 4 1 Cd 3pz 0.0018642039796339 0.0776669988600082 + 5 1 Cd 3px -0.0578065939663414 0.0272778829287096 + 6 1 Cd 4py 0.0138655546160767 0.0117523868546041 + 7 1 Cd 4pz 0.0006430048596090 -0.0051311292250457 + 8 1 Cd 4px 0.0002280103186897 -0.0039833266075857 + 9 1 Cd 4d-2 0.0544571431233988 -0.0238929447905394 + 10 1 Cd 4d-1 -0.0779386650497028 0.0288627900878572 + 11 1 Cd 4d0 -0.0246488137058713 -0.0835894096738308 + 12 1 Cd 4d+1 -0.0108876166447035 -0.0424163419033685 + 13 1 Cd 4d+2 -0.0294300737243323 -0.0675990439956163 + 14 1 Cd 5d-2 0.0088344696954150 -0.0043438641618109 + 15 1 Cd 5d-1 -0.0154675529402354 0.0119135739249340 + 16 1 Cd 5d0 0.0110679369367883 -0.0179733302512190 + 17 1 Cd 5d+1 -0.0000001466032041 -0.0098480386961352 + 18 1 Cd 5d+2 0.0103483338038857 -0.0085651039407258 + 19 1 Cd 5f-3 0.0007557726144931 -0.0039345785418973 + 20 1 Cd 5f-2 0.0035710437972180 -0.0005180872172813 + 21 1 Cd 5f-1 0.0006013448046887 0.0016203342161249 + 22 1 Cd 5f0 0.0024568758841851 -0.0018325126917749 + 23 1 Cd 5f+1 -0.0016095732722810 0.0012696431167595 + 24 1 Cd 5f+2 0.0009945402249507 0.0027975814817772 + 25 1 Cd 5f+3 -0.0035263510542791 0.0038606321497075 + + 26 2 Cd 2s -0.0100782897315138 -0.0244231566482655 + 27 2 Cd 3s 0.0019023973755473 -0.0010352891901051 + 28 2 Cd 3py -0.0292170480048456 -0.0208002671612281 + 29 2 Cd 3pz 0.0348142924238548 0.0300596856750460 + 30 2 Cd 3px 0.0080103311629758 -0.0297899434245368 + 31 2 Cd 4py 0.0001228665238684 0.0027785397320289 + 32 2 Cd 4pz 0.0012166911412044 0.0024021477077049 + 33 2 Cd 4px -0.0002278060450176 0.0000263532974687 + 34 2 Cd 4d-2 -0.0148603952041346 -0.0272147079655166 + 35 2 Cd 4d-1 -0.0344942870137927 -0.0007248986767543 + 36 2 Cd 4d0 -0.0168524181165112 0.0099757062887341 + 37 2 Cd 4d+1 0.0401258888471632 0.0215869343965272 + 38 2 Cd 4d+2 -0.0019894836633014 -0.0231356447277127 + 39 2 Cd 5d-2 0.0016342146733574 -0.0049427055888489 + 40 2 Cd 5d-1 -0.0255684114968625 -0.0029250047185809 + 41 2 Cd 5d0 -0.0101346908466590 -0.0038805639164575 + 42 2 Cd 5d+1 0.0144054340013096 0.0016955939029358 + 43 2 Cd 5d+2 -0.0096564478427273 -0.0051267083301929 + 44 2 Cd 5f-3 0.0024112149124574 0.0014758667122517 + 45 2 Cd 5f-2 0.0018439796981527 -0.0010414773848544 + 46 2 Cd 5f-1 0.0006603489322882 -0.0014423004158411 + 47 2 Cd 5f0 0.0011394897839103 0.0036308057627360 + 48 2 Cd 5f+1 0.0008431080375562 0.0027671464084767 + 49 2 Cd 5f+2 -0.0022293051107784 -0.0031772955853084 + 50 2 Cd 5f+3 0.0016563957662016 0.0017012785949206 + + 51 3 Cd 2s 0.1053720560997446 -0.0442799409034968 + 52 3 Cd 3s -0.0045981430081124 -0.0013871722572448 + 53 3 Cd 3py -0.0289559068698946 0.0095441120014508 + 54 3 Cd 3pz -0.1253718204316179 0.0302055970748637 + 55 3 Cd 3px 0.0708393709768751 -0.0235174829335724 + 56 3 Cd 4py 0.0025177093214591 0.0018230736546443 + 57 3 Cd 4pz 0.0134447029361088 0.0012349002789825 + 58 3 Cd 4px -0.0105273405412670 0.0006404077633477 + 59 3 Cd 4d-2 0.0007496594001075 0.0692387987541303 + 60 3 Cd 4d-1 0.0038478790770401 -0.0258168600932554 + 61 3 Cd 4d0 0.0506683112404032 -0.0236188689400053 + 62 3 Cd 4d+1 -0.1443533357395351 0.0003232884481465 + 63 3 Cd 4d+2 0.0278587571167046 -0.0015702635561725 + 64 3 Cd 5d-2 0.0090924255591709 0.0222016571919859 + 65 3 Cd 5d-1 -0.0126232327464334 -0.0109710861799926 + 66 3 Cd 5d0 0.0104823251790276 -0.0216811296898802 + 67 3 Cd 5d+1 -0.0145525845547585 0.0058567224658726 + 68 3 Cd 5d+2 -0.0064450335326379 0.0079053420847371 + 69 3 Cd 5f-3 0.0025068415048018 0.0000304624326241 + 70 3 Cd 5f-2 0.0007081165108902 0.0041746429130641 + 71 3 Cd 5f-1 -0.0018952472996125 -0.0015666570876245 + 72 3 Cd 5f0 -0.0004712852346505 -0.0004614590452674 + 73 3 Cd 5f+1 -0.0028126571475750 0.0013512293011330 + 74 3 Cd 5f+2 0.0081783147222464 0.0013762858743812 + 75 3 Cd 5f+3 0.0012184509175913 -0.0009418878137827 + + 76 4 Se 2s -0.0090414778760902 -0.0058937055451165 + 77 4 Se 3s 0.0015461844529023 -0.0014453047781424 + 78 4 Se 3py -0.2332809410450312 -0.1214966613760980 + 79 4 Se 3pz 0.0527335598197704 0.2152058665032339 + 80 4 Se 3px 0.0700241067872837 0.1941526335747233 + 81 4 Se 4py 0.0159507936028329 0.0039183451551205 + 82 4 Se 4pz -0.0010610064396857 -0.0178855364814351 + 83 4 Se 4px -0.0052546740943597 -0.0151149019757801 + 84 4 Se 4d-2 0.0020405436618924 0.0002976570691024 + 85 4 Se 4d-1 0.0019138174050935 0.0023960221356971 + 86 4 Se 4d0 0.0002517809014009 0.0062349752390624 + 87 4 Se 4d+1 -0.0055440018691078 -0.0094733924006189 + 88 4 Se 4d+2 -0.0020403869051965 -0.0038726677536795 + + 89 5 Se 2s 0.0929957372602926 0.0077056488707280 + 90 5 Se 3s -0.0107821536458133 -0.0012849497860049 + 91 5 Se 3py -0.2374226374888669 -0.3094108011479093 + 92 5 Se 3pz -0.3321320437682198 0.0105463657163070 + 93 5 Se 3px 0.4558926883918853 -0.1833845443417257 + 94 5 Se 4py 0.0206359748369516 0.0157046951235397 + 95 5 Se 4pz 0.0196977434187912 0.0062371432492695 + 96 5 Se 4px -0.0307505254322236 0.0072489531266356 + 97 5 Se 4d-2 0.0133835095608511 -0.0009681892477838 + 98 5 Se 4d-1 -0.0060527896286710 -0.0060334086846362 + 99 5 Se 4d0 0.0028432026491224 0.0039972296165714 + 100 5 Se 4d+1 0.0142674467037139 -0.0033352894737813 + 101 5 Se 4d+2 -0.0035400625904590 0.0094401572731897 + + 102 6 Se 2s 0.0255377503106814 -0.0036102978047676 + 103 6 Se 3s -0.0028442010436432 -0.0007487906502748 + 104 6 Se 3py -0.2336378361844957 -0.1036498280881264 + 105 6 Se 3pz -0.1831087740828677 0.0321665249710929 + 106 6 Se 3px -0.0705405431383035 0.0101517414575657 + 107 6 Se 4py 0.0145844244982930 0.0100599723918589 + 108 6 Se 4pz 0.0151905492815901 -0.0035612364046903 + 109 6 Se 4px 0.0050097894371897 -0.0008272390801545 + 110 6 Se 4d-2 0.0070813421793064 0.0037722845668956 + 111 6 Se 4d-1 -0.0071565389174431 -0.0002860281809502 + 112 6 Se 4d0 -0.0092657771147144 0.0002554931406063 + 113 6 Se 4d+1 0.0054924419885905 0.0011012267676594 + 114 6 Se 4d+2 0.0055939757649334 -0.0020156116172848 + + 115 7 Se 2s 0.0097021844910442 0.0006719217138813 + 116 7 Se 3s -0.0002051886452856 0.0000090763352882 + 117 7 Se 3py -0.0501006158443543 -0.0113295415917574 + 118 7 Se 3pz -0.0342524500385594 0.0146599443916562 + 119 7 Se 3px 0.1024423208659538 -0.0525114115108244 + 120 7 Se 4py 0.0039860191723360 0.0001508839826592 + 121 7 Se 4pz 0.0045069509109778 -0.0010527170231485 + 122 7 Se 4px -0.0030033895630748 0.0017679450579358 + 123 7 Se 4d-2 0.0035403029809991 0.0019836908999971 + 124 7 Se 4d-1 0.0015077748726293 -0.0005021826898295 + 125 7 Se 4d0 0.0017592646879790 0.0007081803413915 + 126 7 Se 4d+1 -0.0019366633435677 -0.0006163878749872 + 127 7 Se 4d+2 0.0026495263453728 0.0012099980067234 + + 128 8 Cd 2s 0.0287075732214626 0.0019874279491632 + 129 8 Cd 3s 0.0037040618120097 0.0006552300327569 + 130 8 Cd 3py -0.0029971128858356 0.0098972629857405 + 131 8 Cd 3pz -0.0363837804013080 -0.0078217564155303 + 132 8 Cd 3px 0.0322069982428374 -0.0204720343271716 + 133 8 Cd 4py 0.0034751740749589 0.0015601433843430 + 134 8 Cd 4pz 0.0001582507637930 -0.0010424045774005 + 135 8 Cd 4px -0.0011599601323254 -0.0028157694120526 + 136 8 Cd 4d-2 0.0109125151815279 -0.0013649777071052 + 137 8 Cd 4d-1 0.0511673245783088 -0.0039386031938207 + 138 8 Cd 4d0 0.0314749727712624 -0.0081865861448888 + 139 8 Cd 4d+1 -0.0318386915697313 -0.0006949558807914 + 140 8 Cd 4d+2 -0.0041430311592618 0.0070926752513075 + 141 8 Cd 5d-2 0.0036813637047016 -0.0057441388632110 + 142 8 Cd 5d-1 0.0190027274532005 0.0017127466208714 + 143 8 Cd 5d0 0.0053032507660565 -0.0044167753493825 + 144 8 Cd 5d+1 -0.0049085619742272 0.0043594218487070 + 145 8 Cd 5d+2 0.0009499919151318 0.0051758118870215 + 146 8 Cd 5f-3 0.0010402917316591 -0.0008606405113837 + 147 8 Cd 5f-2 0.0010317465860082 0.0014658501703506 + 148 8 Cd 5f-1 0.0011899799847661 0.0000356890123118 + 149 8 Cd 5f0 0.0007080069501409 0.0003001393756424 + 150 8 Cd 5f+1 -0.0010247437265796 -0.0006682114092721 + 151 8 Cd 5f+2 0.0002706808465556 -0.0006429302825223 + 152 8 Cd 5f+3 -0.0007866464753569 -0.0014737340830323 + + 153 9 Cd 2s 0.0539647462366478 0.0000553862227121 + 154 9 Cd 3s -0.0002455460710602 0.0010055809421242 + 155 9 Cd 3py 0.0332141769116665 0.0073376943391040 + 156 9 Cd 3pz 0.0529706973620150 -0.0128485205263225 + 157 9 Cd 3px 0.0181070888460626 -0.0122097595551647 + 158 9 Cd 4py 0.0008581070418447 -0.0008727603001979 + 159 9 Cd 4pz 0.0053096631398946 -0.0021922873548666 + 160 9 Cd 4px -0.0080752714849723 -0.0011640010770891 + 161 9 Cd 4d-2 0.0199190062333121 0.0103997327934044 + 162 9 Cd 4d-1 -0.0163900804794241 -0.0062152086757563 + 163 9 Cd 4d0 -0.0126434385245188 0.0004174588394043 + 164 9 Cd 4d+1 -0.0111254909551227 0.0025655427843981 + 165 9 Cd 4d+2 0.0044584502391276 -0.0027754460209342 + 166 9 Cd 5d-2 0.0027207367133779 0.0003561511783785 + 167 9 Cd 5d-1 -0.0080522156841908 -0.0007613963312921 + 168 9 Cd 5d0 -0.0154787214778166 0.0047628973700770 + 169 9 Cd 5d+1 0.0012143109490759 0.0034297254461978 + 170 9 Cd 5d+2 0.0089112266843006 0.0005948908817400 + 171 9 Cd 5f-3 0.0001212162797890 -0.0003196339860485 + 172 9 Cd 5f-2 0.0004013730408963 0.0013186422858227 + 173 9 Cd 5f-1 0.0010359481597446 -0.0000304540894184 + 174 9 Cd 5f0 0.0023127324022389 -0.0007273833945099 + 175 9 Cd 5f+1 0.0013076098810347 -0.0002582077139011 + 176 9 Cd 5f+2 0.0001862221960776 -0.0007838869310200 + 177 9 Cd 5f+3 -0.0002091402109434 0.0006592060136981 + + 178 10 Se 2s 0.0062696901469541 -0.0016115224064101 + 179 10 Se 3s -0.0010845323543093 0.0004260699230347 + 180 10 Se 3py 0.0305667553869351 0.0265135366308530 + 181 10 Se 3pz -0.0889974729816921 0.0235639054552200 + 182 10 Se 3px 0.0394564208255290 -0.0062242185647057 + 183 10 Se 4py 0.0001846424772984 0.0001472921104513 + 184 10 Se 4pz 0.0057677797748791 -0.0021586261175789 + 185 10 Se 4px -0.0047827889616376 -0.0014288315642448 + 186 10 Se 4d-2 -0.0024188555258339 0.0006037268205244 + 187 10 Se 4d-1 -0.0012596277274041 0.0001818774424791 + 188 10 Se 4d0 -0.0001786925490800 -0.0001497442335586 + 189 10 Se 4d+1 -0.0024710193923168 -0.0001054863282224 + 190 10 Se 4d+2 0.0002297643810658 -0.0005986455178888 + + 191 11 Se 2s -0.0007982507583755 -0.0136318198234863 + 192 11 Se 3s -0.0003436633930397 0.0005358213174789 + 193 11 Se 3py 0.0147701005742584 -0.1273464605002178 + 194 11 Se 3pz -0.0965314385689876 0.0652975007760965 + 195 11 Se 3px 0.1046524291910419 -0.1321180240862834 + 196 11 Se 4py -0.0020803385442887 0.0154826493039510 + 197 11 Se 4pz 0.0069604569660768 -0.0076103664840075 + 198 11 Se 4px -0.0123985271409612 0.0087775070341392 + 199 11 Se 4d-2 0.0039830415220987 -0.0013986345281541 + 200 11 Se 4d-1 0.0026723468890911 0.0041515390595836 + 201 11 Se 4d0 0.0042738087602727 -0.0021543497730849 + 202 11 Se 4d+1 0.0049038568020337 0.0010671802686454 + 203 11 Se 4d+2 -0.0044453305419057 0.0028186266002201 + + 204 12 Cd 2s 0.0407353336392339 -0.0272915221405759 + 205 12 Cd 3s -0.0015563717393878 -0.0031733368039769 + 206 12 Cd 3py -0.0008330808671748 0.0169109986481436 + 207 12 Cd 3pz -0.0011399193634966 0.0100342677076699 + 208 12 Cd 3px -0.0118120892946352 -0.0145679305003924 + 209 12 Cd 4py 0.0042405577346491 0.0031033455032173 + 210 12 Cd 4pz 0.0010261411408414 0.0016300273492595 + 211 12 Cd 4px -0.0043642996321324 -0.0044669229482779 + 212 12 Cd 4d-2 -0.0009986103817706 -0.0106785171692116 + 213 12 Cd 4d-1 -0.0133134069417458 0.0067367600676579 + 214 12 Cd 4d0 -0.0139899359168978 0.0055534128560265 + 215 12 Cd 4d+1 -0.0041923385771056 -0.0015064925482468 + 216 12 Cd 4d+2 -0.0337124583666033 0.0111568445117715 + 217 12 Cd 5d-2 -0.0001813505502050 0.0026500148766711 + 218 12 Cd 5d-1 -0.0048775327076933 -0.0004688324588984 + 219 12 Cd 5d0 0.0011934986086649 0.0018812070411324 + 220 12 Cd 5d+1 -0.0042721886361312 0.0059347398336848 + 221 12 Cd 5d+2 -0.0149423507385790 0.0044516404195101 + 222 12 Cd 5f-3 -0.0004678051717258 0.0016063692824533 + 223 12 Cd 5f-2 -0.0006835899873926 0.0001893639825633 + 224 12 Cd 5f-1 -0.0020944185004258 0.0005426780493317 + 225 12 Cd 5f0 0.0006544978953921 -0.0000055451908158 + 226 12 Cd 5f+1 0.0015582988132520 -0.0001075982439502 + 227 12 Cd 5f+2 -0.0001352214329167 0.0002014734174503 + 228 12 Cd 5f+3 0.0021446470790161 -0.0016490594069031 + + 229 13 Cd 2s -0.0076513534627562 0.0579716676282779 + 230 13 Cd 3s -0.0004012278316611 -0.0007139685346765 + 231 13 Cd 3py 0.0207095502312468 -0.0196440127470075 + 232 13 Cd 3pz 0.0262677201404561 0.0092381330251869 + 233 13 Cd 3px 0.0346651223505402 0.0333679513559822 + 234 13 Cd 4py 0.0049025531255608 -0.0023387610604436 + 235 13 Cd 4pz -0.0004805344904330 -0.0005774334675011 + 236 13 Cd 4px -0.0024026076951621 -0.0080947051227099 + 237 13 Cd 4d-2 0.0201793000650179 0.0484737040339745 + 238 13 Cd 4d-1 -0.0089042891144403 -0.0389579306488422 + 239 13 Cd 4d0 -0.0034797309464764 0.0446117721945475 + 240 13 Cd 4d+1 0.0227337722518218 0.0759314733476350 + 241 13 Cd 4d+2 0.0294814722967534 0.0447899071418667 + 242 13 Cd 5d-2 0.0048331812872972 0.0304077513682771 + 243 13 Cd 5d-1 -0.0044377961959156 -0.0165539353059335 + 244 13 Cd 5d0 0.0039666772788511 0.0220614580160018 + 245 13 Cd 5d+1 0.0109166157107312 0.0320937295872228 + 246 13 Cd 5d+2 0.0103476554017699 0.0011726054705145 + 247 13 Cd 5f-3 -0.0009816873638159 -0.0024168708707990 + 248 13 Cd 5f-2 -0.0018154330594015 -0.0009386468500885 + 249 13 Cd 5f-1 -0.0026622068273525 0.0008416144248760 + 250 13 Cd 5f0 -0.0007773313239343 0.0058938722231057 + 251 13 Cd 5f+1 0.0005964869626437 0.0028423513927382 + 252 13 Cd 5f+2 -0.0012682344911912 -0.0057705777257350 + 253 13 Cd 5f+3 0.0011326663936150 0.0001203321419865 + + 254 14 Cd 2s 0.0189426881944510 0.0022107195652831 + 255 14 Cd 3s 0.0027115178573081 0.0004971897184996 + 256 14 Cd 3py 0.0122022408688727 0.0166445153549694 + 257 14 Cd 3pz 0.0219531747305920 0.0050773522754186 + 258 14 Cd 3px -0.0255067793968437 -0.0376186487550302 + 259 14 Cd 4py 0.0024694904825326 0.0030868917162704 + 260 14 Cd 4pz -0.0009339221716592 -0.0028718647438339 + 261 14 Cd 4px -0.0019224015528027 -0.0021543435845321 + 262 14 Cd 4d-2 0.0015334712906474 -0.0039968057611146 + 263 14 Cd 4d-1 -0.0004378006199352 -0.0038529776845002 + 264 14 Cd 4d0 -0.0058105021372719 -0.0098721714627247 + 265 14 Cd 4d+1 -0.0015195020316803 0.0170772021124207 + 266 14 Cd 4d+2 0.0031365697875295 0.0035108318290208 + 267 14 Cd 5d-2 0.0037981279167595 0.0004569608517476 + 268 14 Cd 5d-1 -0.0029290704704574 -0.0025301962287731 + 269 14 Cd 5d0 0.0006468049014581 0.0040453144736421 + 270 14 Cd 5d+1 -0.0012709945226461 0.0100861322379571 + 271 14 Cd 5d+2 0.0081223235216780 0.0051168815054035 + 272 14 Cd 5f-3 -0.0001058241311332 0.0002218348694431 + 273 14 Cd 5f-2 -0.0001006008849250 -0.0002687176428398 + 274 14 Cd 5f-1 0.0002737110156385 -0.0002223913813158 + 275 14 Cd 5f0 -0.0001748197992485 -0.0010424540747354 + 276 14 Cd 5f+1 -0.0001477982384835 -0.0003997227062513 + 277 14 Cd 5f+2 -0.0009776683441635 -0.0009237066356453 + 278 14 Cd 5f+3 0.0011304578694481 0.0006933466986170 + + 279 15 Se 2s 0.0052591790537060 0.0041939461873243 + 280 15 Se 3s -0.0005086765673599 0.0012278541117164 + 281 15 Se 3py -0.0192168089175262 -0.0534815047779259 + 282 15 Se 3pz 0.0198664198507883 -0.0300100197698848 + 283 15 Se 3px 0.1141858036771896 0.2468443122779760 + 284 15 Se 4py 0.0022790545319737 0.0041235778694686 + 285 15 Se 4pz -0.0000579233686069 -0.0030658472455481 + 286 15 Se 4px -0.0088792275043497 -0.0159391797098969 + 287 15 Se 4d-2 -0.0008273384402226 -0.0009942712580527 + 288 15 Se 4d-1 -0.0001524019055309 -0.0000259878990078 + 289 15 Se 4d0 0.0011287572166916 0.0006163324262328 + 290 15 Se 4d+1 0.0017004226797509 0.0045285139481840 + 291 15 Se 4d+2 -0.0005385853224415 -0.0011284620961645 + + 292 16 Se 2s -0.0060274224805748 -0.0169058294497652 + 293 16 Se 3s 0.0006938819483474 0.0038803429586844 + 294 16 Se 3py 0.0004508913761682 -0.2253220109589997 + 295 16 Se 3pz 0.0424676910040352 0.2890073965630131 + 296 16 Se 3px -0.0814229811182615 0.3919490422023589 + 297 16 Se 4py 0.0012761296842820 0.0146820341062786 + 298 16 Se 4pz -0.0019031334596324 -0.0217010056477710 + 299 16 Se 4px 0.0020948484672557 -0.0231941849298561 + 300 16 Se 4d-2 0.0005258305698484 -0.0030014558124972 + 301 16 Se 4d-1 0.0012114152684234 -0.0118140699912501 + 302 16 Se 4d0 -0.0010023806026496 0.0059946747644063 + 303 16 Se 4d+1 -0.0026569791322291 0.0063298038962442 + 304 16 Se 4d+2 0.0015469204850619 0.0004885843798437 + + 305 17 Cd 2s -0.0114823239232821 0.0263849224183093 + 306 17 Cd 3s 0.0015282102445761 0.0031013565444603 + 307 17 Cd 3py 0.0060946823913604 -0.0187118987367450 + 308 17 Cd 3pz -0.0091983140486870 -0.0283556510400288 + 309 17 Cd 3px -0.0230085444333088 0.0525628675938480 + 310 17 Cd 4py -0.0008318530533620 -0.0016744257843111 + 311 17 Cd 4pz -0.0003632413450870 0.0018175212856291 + 312 17 Cd 4px 0.0017136225657011 -0.0028651647798371 + 313 17 Cd 4d-2 -0.0336670693998373 0.0895595995730539 + 314 17 Cd 4d-1 -0.0069014773644411 -0.0261373048260682 + 315 17 Cd 4d0 -0.0064352576399170 0.0017024414173296 + 316 17 Cd 4d+1 -0.0002892773208846 -0.0246049418025006 + 317 17 Cd 4d+2 0.0155356016652255 -0.0651627211373653 + 318 17 Cd 5d-2 -0.0018867109345882 0.0166574581080095 + 319 17 Cd 5d-1 -0.0038358582063034 -0.0100732082659620 + 320 17 Cd 5d0 -0.0039890933269860 0.0015948072048351 + 321 17 Cd 5d+1 -0.0017657729959880 0.0011369048198242 + 322 17 Cd 5d+2 0.0071827973125628 -0.0161629809683180 + 323 17 Cd 5f-3 0.0016337241872681 0.0011953923744782 + 324 17 Cd 5f-2 -0.0005309156960109 0.0051812162628724 + 325 17 Cd 5f-1 -0.0001093091544374 0.0009455536252955 + 326 17 Cd 5f0 -0.0007906024438904 -0.0008309230723826 + 327 17 Cd 5f+1 0.0000650333505408 0.0016357375247721 + 328 17 Cd 5f+2 0.0007264722866772 -0.0018737833512012 + 329 17 Cd 5f+3 0.0002293074656210 0.0054756365468197 + + 330 18 Cd 2s -0.0145817480107921 -0.0227510952918818 + 331 18 Cd 3s 0.0048140602550302 -0.0068375171330040 + 332 18 Cd 3py 0.0286720924855793 0.0243151523384178 + 333 18 Cd 3pz -0.0064073357614012 0.0113155999940459 + 334 18 Cd 3px 0.0065201839376750 -0.0078647789582832 + 335 18 Cd 4py 0.0019024659093330 -0.0001300345504788 + 336 18 Cd 4pz 0.0071237747564594 -0.0018083277682472 + 337 18 Cd 4px -0.0034661248601908 -0.0014883643626363 + 338 18 Cd 4d-2 0.0105277589055772 -0.0073271163153185 + 339 18 Cd 4d-1 0.0014011200343790 0.0005041197552366 + 340 18 Cd 4d0 -0.0211893369822574 0.0198822101921687 + 341 18 Cd 4d+1 0.0049771756185352 0.0036199525658301 + 342 18 Cd 4d+2 0.0087501889998535 -0.0136532376653936 + 343 18 Cd 5d-2 0.0020963802277279 -0.0014660043553987 + 344 18 Cd 5d-1 0.0061255327273160 0.0005432221328538 + 345 18 Cd 5d0 0.0007074072070382 0.0039867201207868 + 346 18 Cd 5d+1 0.0043554609636939 0.0007693826247047 + 347 18 Cd 5d+2 -0.0047705468615815 -0.0062304264244021 + 348 18 Cd 5f-3 -0.0004068650865761 0.0012937290922165 + 349 18 Cd 5f-2 0.0005997984609578 -0.0007927474481461 + 350 18 Cd 5f-1 0.0001186354192695 -0.0002985865714184 + 351 18 Cd 5f0 0.0001270278658508 -0.0002149516472908 + 352 18 Cd 5f+1 0.0021504191430715 0.0004461896730491 + 353 18 Cd 5f+2 0.0002861694375359 -0.0003090972879702 + 354 18 Cd 5f+3 -0.0010508328621012 -0.0010027763425772 + + 355 19 Se 2s 0.0008995290667515 -0.0010533188061644 + 356 19 Se 3s 0.0005014129449087 -0.0018114599008002 + 357 19 Se 3py 0.0214945386832831 -0.0744389232220394 + 358 19 Se 3pz -0.0292313808642683 -0.0413577989012454 + 359 19 Se 3px 0.0280178441212580 -0.0975717401075376 + 360 19 Se 4py -0.0023875933246942 0.0105588188100219 + 361 19 Se 4pz 0.0018553685119485 0.0028433311838253 + 362 19 Se 4px -0.0016830183164068 0.0049881038711351 + 363 19 Se 4d-2 0.0015073299692974 0.0000077754461352 + 364 19 Se 4d-1 0.0010737243031339 -0.0022936963712194 + 365 19 Se 4d0 -0.0001059862668538 -0.0027657080485526 + 366 19 Se 4d+1 -0.0000770360778718 -0.0002205575281692 + 367 19 Se 4d+2 0.0008311060210543 -0.0038510467048397 + + 368 20 Se 2s 0.0239855124944355 -0.0021989374958140 + 369 20 Se 3s -0.0039599387921041 0.0004660599587694 + 370 20 Se 3py -0.1750042455645536 -0.0757500110989394 + 371 20 Se 3pz -0.1342071657480593 0.0664571150566792 + 372 20 Se 3px 0.2043246074381307 0.0493034673684521 + 373 20 Se 4py 0.0166160750860403 0.0121606095606832 + 374 20 Se 4pz 0.0129158740681871 -0.0115513937270594 + 375 20 Se 4px -0.0231213075024675 -0.0116178932600564 + 376 20 Se 4d-2 0.0030485959718978 -0.0014948243040283 + 377 20 Se 4d-1 -0.0052393201158945 -0.0017208362310780 + 378 20 Se 4d0 0.0014440361262734 0.0012552611812620 + 379 20 Se 4d+1 0.0069933025462016 -0.0014356327869361 + 380 20 Se 4d+2 -0.0019526266879433 -0.0007685744550899 + + 381 21 Se 2s 0.0330379024279501 0.0389099103719404 + 382 21 Se 3s -0.0037913694360274 -0.0042599185378158 + 383 21 Se 3py -0.1432226589015852 0.0078775106523771 + 384 21 Se 3pz -0.0645841970181236 -0.0959892397817639 + 385 21 Se 3px 0.1518622540138740 0.0414042533882725 + 386 21 Se 4py 0.0148291904761625 0.0045057500337674 + 387 21 Se 4pz 0.0101293635265238 0.0048883450792369 + 388 21 Se 4px -0.0191564531539669 -0.0078247887275885 + 389 21 Se 4d-2 -0.0017045183613395 -0.0043211241853958 + 390 21 Se 4d-1 0.0005250129420826 0.0039776267221252 + 391 21 Se 4d0 0.0033194370416097 0.0012144973649525 + 392 21 Se 4d+1 -0.0002419119331730 0.0022894691871095 + 393 21 Se 4d+2 -0.0039863891138315 0.0006857401052847 + + 394 22 Cd 2s 0.0158717595988660 -0.0068639937758802 + 395 22 Cd 3s 0.0038699738144541 0.0027649843940159 + 396 22 Cd 3py 0.0003130588733073 0.0237986326264750 + 397 22 Cd 3pz 0.0130954751451601 0.0153770460381618 + 398 22 Cd 3px 0.0286695362565661 -0.0172635680681109 + 399 22 Cd 4py 0.0027679217110229 0.0030219472940078 + 400 22 Cd 4pz 0.0061205345128623 0.0009605311366373 + 401 22 Cd 4px -0.0000182929077210 -0.0010728381538593 + 402 22 Cd 4d-2 -0.0109349925471713 0.0024420943483790 + 403 22 Cd 4d-1 -0.0118520145436988 -0.0165388246129182 + 404 22 Cd 4d0 -0.0187033255768982 -0.0316814075344556 + 405 22 Cd 4d+1 0.0170662216079052 0.0373253802071077 + 406 22 Cd 4d+2 -0.0236594068557262 -0.0147810586479632 + 407 22 Cd 5d-2 -0.0046969599436894 0.0139336583458044 + 408 22 Cd 5d-1 -0.0004636054378929 0.0032997994604526 + 409 22 Cd 5d0 -0.0040317273944825 -0.0129786694366665 + 410 22 Cd 5d+1 -0.0006109811159115 0.0325367755050364 + 411 22 Cd 5d+2 -0.0040591978291628 -0.0078397513557401 + 412 22 Cd 5f-3 0.0009410058294671 0.0024287301118095 + 413 22 Cd 5f-2 -0.0004143845076680 0.0010547220640968 + 414 22 Cd 5f-1 0.0008229138298307 0.0005859579221074 + 415 22 Cd 5f0 0.0013359883714886 -0.0016198395005685 + 416 22 Cd 5f+1 -0.0022558497631977 0.0001428383931371 + 417 22 Cd 5f+2 0.0007637189734416 0.0009674140043090 + 418 22 Cd 5f+3 0.0017804964424008 0.0021136117800805 + + 419 23 Se 2s -0.0009079845265881 0.0063948456970350 + 420 23 Se 3s 0.0005829896465961 0.0006709966402324 + 421 23 Se 3py 0.0227163764811046 -0.0283570818162206 + 422 23 Se 3pz 0.0118875111926408 0.0138554010729625 + 423 23 Se 3px -0.1276689967561519 0.3501212113911726 + 424 23 Se 4py 0.0006371850340278 0.0064843010604410 + 425 23 Se 4pz 0.0015096121342673 -0.0065309378355205 + 426 23 Se 4px 0.0109049537519672 -0.0248296647195027 + 427 23 Se 4d-2 0.0006692724748562 -0.0052915159276075 + 428 23 Se 4d-1 -0.0003027474707211 -0.0001200014392916 + 429 23 Se 4d0 0.0008585830816189 -0.0003148230940719 + 430 23 Se 4d+1 -0.0035798698306272 0.0083199227134041 + 431 23 Se 4d+2 -0.0007788207745980 0.0030824483416133 + + 432 24 Se 2s 0.0105848020177336 0.0049933267587104 + 433 24 Se 3s -0.0019638779577389 -0.0000949545708857 + 434 24 Se 3py 0.0014809969076890 0.0650884195243625 + 435 24 Se 3pz 0.0546121802397758 -0.0422221468944491 + 436 24 Se 3px 0.0564367973775344 0.0248012938109937 + 437 24 Se 4py -0.0002672383459489 -0.0043906466840090 + 438 24 Se 4pz -0.0024546565353705 0.0018539394105952 + 439 24 Se 4px -0.0043403580886979 -0.0024048528047078 + 440 24 Se 4d-2 0.0026396062822624 0.0004853696280284 + 441 24 Se 4d-1 0.0012532937905165 -0.0011386084105264 + 442 24 Se 4d0 0.0001105882115361 -0.0022895372782189 + 443 24 Se 4d+1 0.0000023237168125 0.0015367795318149 + 444 24 Se 4d+2 0.0002478985466520 -0.0007973701459913 + + 445 25 Cd 2s -0.0085762536960760 0.0403435657562874 + 446 25 Cd 3s -0.0026854808869465 0.0014142067563776 + 447 25 Cd 3py -0.0003324343180141 0.0190617289498699 + 448 25 Cd 3pz 0.0076140411535083 -0.0129177446102975 + 449 25 Cd 3px -0.0170435108108232 -0.0066756482021817 + 450 25 Cd 4py 0.0015884220473065 0.0033368628097712 + 451 25 Cd 4pz 0.0026281330504524 -0.0010396587441100 + 452 25 Cd 4px -0.0054111034727735 -0.0012497594841865 + 453 25 Cd 4d-2 0.0080045354837704 -0.0212608748326987 + 454 25 Cd 4d-1 0.0094438083134135 0.0029835828945486 + 455 25 Cd 4d0 0.0046199671511853 -0.0020901793856526 + 456 25 Cd 4d+1 -0.0033986896813891 0.0228261555232229 + 457 25 Cd 4d+2 -0.0052811078013031 -0.0031687577238660 + 458 25 Cd 5d-2 0.0039695397987261 -0.0059219922575888 + 459 25 Cd 5d-1 0.0046054426244765 -0.0110736691426573 + 460 25 Cd 5d0 0.0056537280252371 -0.0002505957750066 + 461 25 Cd 5d+1 -0.0041743457708996 0.0114575390765064 + 462 25 Cd 5d+2 -0.0035966731887452 -0.0040276304304076 + 463 25 Cd 5f-3 -0.0001165207577761 0.0006565069410290 + 464 25 Cd 5f-2 -0.0000827915699061 -0.0017613033851853 + 465 25 Cd 5f-1 0.0006330626114317 0.0011790164102689 + 466 25 Cd 5f0 0.0000370720913161 -0.0017662014288555 + 467 25 Cd 5f+1 -0.0003466178779922 0.0007624767029557 + 468 25 Cd 5f+2 0.0000377291124950 -0.0007356558677043 + 469 25 Cd 5f+3 0.0009676030492065 0.0001096864774061 + + 470 26 Cd 2s 0.0383354026850804 0.0399470552357412 + 471 26 Cd 3s 0.0013375844365814 0.0039439786815570 + 472 26 Cd 3py 0.0234685378638678 0.0137261822439723 + 473 26 Cd 3pz 0.0037162844985446 0.0237013667765659 + 474 26 Cd 3px -0.0375398759331954 -0.0041699734527780 + 475 26 Cd 4py 0.0001100334282188 -0.0010092369247229 + 476 26 Cd 4pz -0.0001428681816601 -0.0016298596794439 + 477 26 Cd 4px -0.0023653046470634 -0.0003706964494314 + 478 26 Cd 4d-2 -0.0035271446380928 0.0002871326578160 + 479 26 Cd 4d-1 0.0078606912021399 -0.0028673899293081 + 480 26 Cd 4d0 0.0050481596348326 0.0051546134210845 + 481 26 Cd 4d+1 0.0019138965344128 0.0062210111954547 + 482 26 Cd 4d+2 -0.0106943008032207 0.0042078339580310 + 483 26 Cd 5d-2 0.0034175841982970 0.0015919004136297 + 484 26 Cd 5d-1 0.0025682509835225 -0.0004404320147993 + 485 26 Cd 5d0 0.0030527391775568 0.0012703439015075 + 486 26 Cd 5d+1 0.0008233473044363 0.0015867540822887 + 487 26 Cd 5d+2 -0.0092134108770490 0.0003176910502251 + 488 26 Cd 5f-3 0.0010722421495335 0.0004207965796732 + 489 26 Cd 5f-2 -0.0010829446010656 0.0000524483352454 + 490 26 Cd 5f-1 0.0000474082014785 0.0015134126136831 + 491 26 Cd 5f0 0.0008326118915098 0.0000276797299978 + 492 26 Cd 5f+1 0.0013738998922640 -0.0014167612191358 + 493 26 Cd 5f+2 0.0004243772246663 0.0006676573578917 + 494 26 Cd 5f+3 0.0000193505435597 0.0012873072592609 + + 117 118 + -0.1585886027784532 -0.1367231043517993 + + 2.0000000000000000 0.0000000000000000 + + 1 1 Cd 2s -0.0296031548388478 -0.0478603729423258 + 2 1 Cd 3s -0.0036808846663212 -0.0070254409021178 + 3 1 Cd 3py 0.0184772004342078 -0.0171389461057631 + 4 1 Cd 3pz 0.0059522490878577 0.0043825975275167 + 5 1 Cd 3px 0.0590547106672272 -0.0197379272988621 + 6 1 Cd 4py 0.0000672013572885 -0.0015241659035290 + 7 1 Cd 4pz -0.0034159082662475 0.0002538938035787 + 8 1 Cd 4px 0.0012602477602095 -0.0011331101024380 + 9 1 Cd 4d-2 -0.0662216156958945 -0.0027015057446640 + 10 1 Cd 4d-1 -0.0955794640832759 -0.0107690979768785 + 11 1 Cd 4d0 0.0212348524414359 -0.0087584604096523 + 12 1 Cd 4d+1 0.0205467695046999 0.0041940203254678 + 13 1 Cd 4d+2 0.0243982946444793 -0.0089139609070975 + 14 1 Cd 5d-2 -0.0284804199315481 0.0024820657716823 + 15 1 Cd 5d-1 -0.0395075826571768 0.0005622062214334 + 16 1 Cd 5d0 0.0043065308528627 -0.0076236041438174 + 17 1 Cd 5d+1 0.0080916925670381 -0.0030057339083473 + 18 1 Cd 5d+2 0.0081887709073615 0.0016156201287531 + 19 1 Cd 5f-3 0.0008987682702807 -0.0008101152758071 + 20 1 Cd 5f-2 0.0026131500225832 -0.0003147531006369 + 21 1 Cd 5f-1 0.0008660713967572 0.0010953221393508 + 22 1 Cd 5f0 0.0052989205638767 -0.0005935306984978 + 23 1 Cd 5f+1 -0.0010589637264331 -0.0006798661247614 + 24 1 Cd 5f+2 0.0050784721350588 -0.0005248262092459 + 25 1 Cd 5f+3 0.0036401406495604 -0.0015916445510124 + + 26 2 Cd 2s 0.0372621083115446 -0.0377210972968194 + 27 2 Cd 3s 0.0052865372964985 -0.0157245752207465 + 28 2 Cd 3py 0.0064229309917759 -0.0129658246881072 + 29 2 Cd 3pz 0.0106827182775437 -0.0237466322977411 + 30 2 Cd 3px 0.0279509285344786 0.0077806077907628 + 31 2 Cd 4py 0.0010149031443709 -0.0071931959956699 + 32 2 Cd 4pz -0.0009534516764739 -0.0073669377180242 + 33 2 Cd 4px 0.0016304146414579 0.0056149487650152 + 34 2 Cd 4d-2 0.0031490674466615 -0.0141482852835411 + 35 2 Cd 4d-1 -0.0169978337667540 0.0087646670428367 + 36 2 Cd 4d0 -0.0051700084540760 -0.0125631638367590 + 37 2 Cd 4d+1 0.0169335955310769 -0.0012236288420490 + 38 2 Cd 4d+2 0.0014281001037206 -0.0004611388742346 + 39 2 Cd 5d-2 0.0092955162886541 0.0133179083497039 + 40 2 Cd 5d-1 -0.0250991237003498 0.0096775072395311 + 41 2 Cd 5d0 0.0068658340030062 0.0040238593603136 + 42 2 Cd 5d+1 0.0072060801545138 -0.0013129634115645 + 43 2 Cd 5d+2 -0.0055667052134539 0.0164783086282618 + 44 2 Cd 5f-3 0.0011889036683201 -0.0016280476078134 + 45 2 Cd 5f-2 0.0014929900894826 -0.0083443625786754 + 46 2 Cd 5f-1 0.0000473548718394 0.0105974236953179 + 47 2 Cd 5f0 -0.0012934452830744 0.0025415459976373 + 48 2 Cd 5f+1 0.0004964499718062 -0.0054881236297358 + 49 2 Cd 5f+2 -0.0018993855181058 0.0022453283478257 + 50 2 Cd 5f+3 0.0022974993228479 -0.0159771522888789 + + 51 3 Cd 2s 0.0242464175463985 -0.0417623394934887 + 52 3 Cd 3s 0.0006720018111170 -0.0119574627981883 + 53 3 Cd 3py -0.0071281342223260 0.0006890490632900 + 54 3 Cd 3pz 0.0195637548914969 -0.0118867359952223 + 55 3 Cd 3px 0.0439892453888021 0.0043562261976902 + 56 3 Cd 4py 0.0060637831262234 0.0020167537815823 + 57 3 Cd 4pz 0.0045181215245773 0.0019509864446174 + 58 3 Cd 4px -0.0009307102155249 0.0014970576582061 + 59 3 Cd 4d-2 -0.0292731067671935 0.0037677845484586 + 60 3 Cd 4d-1 -0.0178555838699346 0.0044238068608505 + 61 3 Cd 4d0 -0.0781220391269105 0.0086846384091222 + 62 3 Cd 4d+1 -0.0404468148775184 -0.0166044289615178 + 63 3 Cd 4d+2 0.0358103543212029 0.0064061863810211 + 64 3 Cd 5d-2 -0.0092153285712424 -0.0049786504682808 + 65 3 Cd 5d-1 -0.0143490829020928 -0.0030326111503391 + 66 3 Cd 5d0 -0.0494123937613104 0.0000435170484196 + 67 3 Cd 5d+1 -0.0167473317701605 -0.0037689020542178 + 68 3 Cd 5d+2 0.0246837168835970 -0.0009949466716428 + 69 3 Cd 5f-3 0.0014977173717237 0.0016410486591983 + 70 3 Cd 5f-2 0.0013425572285587 0.0024574854189297 + 71 3 Cd 5f-1 -0.0014746219734182 -0.0001516526837601 + 72 3 Cd 5f0 -0.0063063058042832 -0.0024507301563131 + 73 3 Cd 5f+1 0.0041786804241809 0.0027453731397501 + 74 3 Cd 5f+2 0.0061500264858236 0.0011024944579560 + 75 3 Cd 5f+3 -0.0054047033513648 0.0022616955919858 + + 76 4 Se 2s 0.0227835479285753 -0.0303917443077243 + 77 4 Se 3s -0.0009235702787658 0.0040436564530747 + 78 4 Se 3py -0.1088121151428882 -0.0075241585588459 + 79 4 Se 3pz -0.0318132591324728 -0.0111267402797277 + 80 4 Se 3px 0.0112054030758457 0.0194423521856393 + 81 4 Se 4py 0.0064127348087797 -0.0081141079155082 + 82 4 Se 4pz -0.0020935539350245 -0.0093096869090603 + 83 4 Se 4px 0.0115216159891191 -0.0013927046830641 + 84 4 Se 4d-2 0.0055705619161370 -0.0045716712865005 + 85 4 Se 4d-1 -0.0012164298505850 0.0028444623126670 + 86 4 Se 4d0 -0.0017472427635762 -0.0015752037035807 + 87 4 Se 4d+1 0.0019962149687974 -0.0011630740345029 + 88 4 Se 4d+2 0.0001385810993997 -0.0023346754389395 + + 89 5 Se 2s -0.0196047607931936 -0.0205378738708620 + 90 5 Se 3s 0.0028139362227426 0.0014918425296826 + 91 5 Se 3py 0.0167812468498326 -0.0492660189387919 + 92 5 Se 3pz -0.6100222566592705 -0.0683908012908934 + 93 5 Se 3px -0.5183997810001755 0.0256998634850551 + 94 5 Se 4py 0.0018483841552809 0.0073697037955727 + 95 5 Se 4pz 0.0491913229743375 0.0092927196180031 + 96 5 Se 4px 0.0448166496085521 -0.0055235400276808 + 97 5 Se 4d-2 -0.0093370933611590 0.0032307635768828 + 98 5 Se 4d-1 -0.0074827318489814 -0.0008697180277383 + 99 5 Se 4d0 -0.0099133350218115 0.0004148780533653 + 100 5 Se 4d+1 0.0065610920860698 0.0030030851468105 + 101 5 Se 4d+2 0.0060727325127474 0.0001484789673525 + + 102 6 Se 2s 0.0696277667275151 -0.0271659409950813 + 103 6 Se 3s -0.0092336637223432 0.0006455458355169 + 104 6 Se 3py -0.1066035462674350 -0.0329258066556441 + 105 6 Se 3pz -0.1157978093094087 -0.1220171076678543 + 106 6 Se 3px -0.0967780777647056 0.1008535776609511 + 107 6 Se 4py 0.0087768429499384 0.0066111943767662 + 108 6 Se 4pz 0.0132480599000579 0.0083528310557423 + 109 6 Se 4px 0.0184559926086365 -0.0165669579034135 + 110 6 Se 4d-2 0.0021000454027867 0.0028403155241062 + 111 6 Se 4d-1 -0.0066582056378918 -0.0006618963497239 + 112 6 Se 4d0 -0.0061600072586194 0.0059043307406821 + 113 6 Se 4d+1 0.0080351912136690 -0.0017954209581897 + 114 6 Se 4d+2 0.0033356042504429 -0.0014656097934297 + + 115 7 Se 2s 0.0138781559021315 -0.1351239255351668 + 116 7 Se 3s -0.0007638950906836 0.0179894967990262 + 117 7 Se 3py -0.0126958793647981 -0.3141929871155280 + 118 7 Se 3pz -0.0323288350652937 0.2864453102025508 + 119 7 Se 3px 0.0609495268077511 0.0086164478749885 + 120 7 Se 4py 0.0006913775404828 0.0245855912821809 + 121 7 Se 4pz 0.0056890068895496 -0.0493514724048559 + 122 7 Se 4px -0.0037400841368480 -0.0034407381332508 + 123 7 Se 4d-2 0.0019860186307149 -0.0049913365874827 + 124 7 Se 4d-1 0.0015692939512581 -0.0177460062152858 + 125 7 Se 4d0 0.0020644252621180 -0.0127890603467189 + 126 7 Se 4d+1 0.0001520172712527 0.0017760131387901 + 127 7 Se 4d+2 -0.0000630117171573 -0.0143501404136365 + + 128 8 Cd 2s -0.0081173764854694 -0.0250379742230980 + 129 8 Cd 3s 0.0008161910503953 -0.0103046535235485 + 130 8 Cd 3py 0.0112383467053301 -0.0131826145750198 + 131 8 Cd 3pz 0.0154972167135865 -0.0297519402458340 + 132 8 Cd 3px 0.0031574175492053 0.0320602386296809 + 133 8 Cd 4py 0.0019646092290248 -0.0022839542388461 + 134 8 Cd 4pz 0.0023886067050963 -0.0068685290697373 + 135 8 Cd 4px 0.0042470233501243 0.0023382936844407 + 136 8 Cd 4d-2 -0.0020791567083485 0.0008958528727950 + 137 8 Cd 4d-1 -0.0014119471953408 -0.0097256113878905 + 138 8 Cd 4d0 -0.0066262403586355 0.0026146852393091 + 139 8 Cd 4d+1 0.0017181940393823 -0.0035176704539760 + 140 8 Cd 4d+2 -0.0017901703419234 -0.0092951057591729 + 141 8 Cd 5d-2 0.0016163708547828 -0.0124285576980207 + 142 8 Cd 5d-1 0.0003378671498099 0.0015154570132573 + 143 8 Cd 5d0 -0.0008455054766548 0.0010181032376311 + 144 8 Cd 5d+1 0.0000129060296044 -0.0038957290694981 + 145 8 Cd 5d+2 0.0042064325214031 0.0154253747059690 + 146 8 Cd 5f-3 -0.0006793900005110 0.0044380125868280 + 147 8 Cd 5f-2 -0.0012858605790907 0.0081677310712881 + 148 8 Cd 5f-1 -0.0017597588472217 0.0067950503562910 + 149 8 Cd 5f0 -0.0011203690491177 -0.0031575178058670 + 150 8 Cd 5f+1 -0.0006194538305755 0.0042982655450647 + 151 8 Cd 5f+2 -0.0003270955483586 -0.0055871749146179 + 152 8 Cd 5f+3 0.0000369435179178 0.0066508069748881 + + 153 9 Cd 2s 0.0995094852463584 -0.1852165870062137 + 154 9 Cd 3s 0.0083346899666142 -0.0186966448171705 + 155 9 Cd 3py -0.0006338427978111 -0.0599987362818930 + 156 9 Cd 3pz 0.0122052781383279 -0.0987325856488422 + 157 9 Cd 3px 0.0387100557087608 -0.0076003581113643 + 158 9 Cd 4py -0.0039710304108599 -0.0095818613533123 + 159 9 Cd 4pz -0.0039452172023252 -0.0060735839914420 + 160 9 Cd 4px 0.0007084669347699 0.0038524041386601 + 161 9 Cd 4d-2 0.0102834577915416 0.0001265915663368 + 162 9 Cd 4d-1 -0.0071085074747958 -0.0064405447638310 + 163 9 Cd 4d0 -0.0086629519262008 -0.0084797204254738 + 164 9 Cd 4d+1 0.0083115140332266 -0.0111556206702224 + 165 9 Cd 4d+2 -0.0050137488270614 0.0480157852541954 + 166 9 Cd 5d-2 0.0037966862460416 0.0102311149014180 + 167 9 Cd 5d-1 0.0072940158913572 -0.0075589331643796 + 168 9 Cd 5d0 0.0066201449249755 0.0069453342904357 + 169 9 Cd 5d+1 -0.0007469555077025 -0.0052836360358374 + 170 9 Cd 5d+2 -0.0002901594574357 0.0341529191361839 + 171 9 Cd 5f-3 -0.0000045855944049 0.0026793752634984 + 172 9 Cd 5f-2 -0.0004668123379762 -0.0006986866291047 + 173 9 Cd 5f-1 -0.0017843170637323 0.0004413829354567 + 174 9 Cd 5f0 -0.0014833006439244 -0.0029270864610662 + 175 9 Cd 5f+1 0.0011509517361532 0.0017237818817629 + 176 9 Cd 5f+2 0.0020314487013753 -0.0036638318787452 + 177 9 Cd 5f+3 -0.0008986263228682 -0.0061767333020262 + + 178 10 Se 2s 0.0139777958493335 -0.0951265550500921 + 179 10 Se 3s -0.0021133536123086 0.0128892591479499 + 180 10 Se 3py 0.0219593299763546 -0.0523722173383977 + 181 10 Se 3pz 0.0273467837292695 0.0790747834070008 + 182 10 Se 3px 0.0489358873142953 -0.1434257227230916 + 183 10 Se 4py -0.0007089340575467 0.0107923562721099 + 184 10 Se 4pz -0.0012302668789667 -0.0224287739905656 + 185 10 Se 4px -0.0012434851888050 0.0174933704339766 + 186 10 Se 4d-2 0.0000039837342092 0.0019234318139412 + 187 10 Se 4d-1 -0.0008071532776498 0.0073059069134589 + 188 10 Se 4d0 -0.0002421469288348 -0.0016788107148405 + 189 10 Se 4d+1 -0.0020200223842421 0.0133124819876711 + 190 10 Se 4d+2 -0.0009702025602365 0.0021271983452289 + + 191 11 Se 2s -0.0043708176952047 -0.0546423924966733 + 192 11 Se 3s -0.0005681102450317 0.0068996718587305 + 193 11 Se 3py -0.0202649182819813 -0.0640611352292654 + 194 11 Se 3pz 0.0653768180684173 0.0650590105059994 + 195 11 Se 3px -0.0338581148301738 0.0562337071387203 + 196 11 Se 4py 0.0048930449307574 0.0135521518934913 + 197 11 Se 4pz -0.0044057914183023 -0.0068598333134616 + 198 11 Se 4px 0.0040812400108349 -0.0061271612077020 + 199 11 Se 4d-2 -0.0005768212078816 -0.0023424804722490 + 200 11 Se 4d-1 0.0021164743944627 0.0071104608757411 + 201 11 Se 4d0 0.0006043348374837 0.0023366997630404 + 202 11 Se 4d+1 -0.0017181014946021 -0.0030640794545944 + 203 11 Se 4d+2 -0.0017156440870748 0.0013605357793509 + + 204 12 Cd 2s -0.0107244586520210 -0.1905858280001950 + 205 12 Cd 3s -0.0059531086828660 -0.0182650886550212 + 206 12 Cd 3py 0.0151547964691872 -0.0053269154646998 + 207 12 Cd 3pz 0.0157261941220603 -0.0539387066193747 + 208 12 Cd 3px -0.0280356578819973 0.0256999268400052 + 209 12 Cd 4py 0.0032177397446932 0.0004378094035266 + 210 12 Cd 4pz 0.0027311411018121 -0.0052733165148449 + 211 12 Cd 4px -0.0072761595568144 0.0006717144062796 + 212 12 Cd 4d-2 0.0007427371928309 -0.0058777262351958 + 213 12 Cd 4d-1 0.0065208655805615 0.0065352970243360 + 214 12 Cd 4d0 0.0051535724071098 -0.0035703603680528 + 215 12 Cd 4d+1 -0.0056061794390163 0.0098043052518014 + 216 12 Cd 4d+2 0.0088089417524027 0.0026905917092077 + 217 12 Cd 5d-2 0.0034506044276844 0.0004243467096692 + 218 12 Cd 5d-1 0.0062704762879482 -0.0017705655365483 + 219 12 Cd 5d0 0.0115987617243734 -0.0025372804142962 + 220 12 Cd 5d+1 0.0016766913303001 0.0074625954910537 + 221 12 Cd 5d+2 -0.0133303760107899 0.0007367839374684 + 222 12 Cd 5f-3 -0.0006405426685167 0.0007666259652813 + 223 12 Cd 5f-2 -0.0001357671208216 0.0022187288914875 + 224 12 Cd 5f-1 0.0005520777525479 0.0011161204783368 + 225 12 Cd 5f0 -0.0000607955407902 -0.0004097024516737 + 226 12 Cd 5f+1 0.0006335768629386 0.0002494408556110 + 227 12 Cd 5f+2 0.0002972299758369 -0.0005485372103056 + 228 12 Cd 5f+3 -0.0017614710645966 -0.0007659456319994 + + 229 13 Cd 2s 0.0025891022722411 -0.0990481369257146 + 230 13 Cd 3s -0.0028912332157122 -0.0078371048287023 + 231 13 Cd 3py 0.0043077958088749 -0.0385564079107744 + 232 13 Cd 3pz 0.0210669037578452 0.0142185343395717 + 233 13 Cd 3px 0.0047200079527901 0.0498226870872977 + 234 13 Cd 4py 0.0011222910022874 -0.0015577809518061 + 235 13 Cd 4pz 0.0033432135760926 0.0006874899577404 + 236 13 Cd 4px -0.0007467280076808 0.0021901457609519 + 237 13 Cd 4d-2 -0.0004608933974642 -0.0027583826250440 + 238 13 Cd 4d-1 0.0178859894322003 0.0379021104481784 + 239 13 Cd 4d0 -0.0069968051569218 0.0313241258590747 + 240 13 Cd 4d+1 -0.0068823611103104 -0.0235641784226505 + 241 13 Cd 4d+2 -0.0046308533407195 -0.0100638800938567 + 242 13 Cd 5d-2 0.0014984494475141 0.0043352457501662 + 243 13 Cd 5d-1 0.0032582284349453 0.0266828557087056 + 244 13 Cd 5d0 -0.0081313865371683 0.0320627681255848 + 245 13 Cd 5d+1 0.0056211571731350 -0.0199902738164967 + 246 13 Cd 5d+2 -0.0026641553219664 -0.0108279417746319 + 247 13 Cd 5f-3 0.0009495838976573 0.0022209896246155 + 248 13 Cd 5f-2 -0.0019252544798402 0.0002064825034052 + 249 13 Cd 5f-1 0.0008721303853649 -0.0020542572299733 + 250 13 Cd 5f0 -0.0021655132377510 0.0004708195354838 + 251 13 Cd 5f+1 0.0005830182477266 -0.0018152169068238 + 252 13 Cd 5f+2 0.0002594350754737 0.0002281184233661 + 253 13 Cd 5f+3 0.0002295229519056 0.0014236993483866 + + 254 14 Cd 2s 0.0246558605149545 -0.6867675694924882 + 255 14 Cd 3s 0.0027012900087294 -0.0518072302183054 + 256 14 Cd 3py 0.0013080791974468 -0.2141082544640653 + 257 14 Cd 3pz 0.0153369276166392 -0.1208796388547256 + 258 14 Cd 3px 0.0085798194420074 -0.0140361565876971 + 259 14 Cd 4py -0.0005046394032402 0.0015884218415758 + 260 14 Cd 4pz 0.0018532699249059 0.0043903686338191 + 261 14 Cd 4px 0.0017567807334664 0.0042785180348046 + 262 14 Cd 4d-2 0.0009997142511824 -0.0044300375220177 + 263 14 Cd 4d-1 0.0040213426567268 -0.0374501365474666 + 264 14 Cd 4d0 -0.0036001067129019 0.0958047384381195 + 265 14 Cd 4d+1 -0.0049093471160582 0.0312932786154223 + 266 14 Cd 4d+2 0.0026166421778689 -0.0115425707542121 + 267 14 Cd 5d-2 -0.0007984517836477 -0.0113111556557014 + 268 14 Cd 5d-1 -0.0025113807674321 -0.0260423992660329 + 269 14 Cd 5d0 -0.0017979102920453 0.0271592923232555 + 270 14 Cd 5d+1 -0.0027144998350405 0.0132380419394073 + 271 14 Cd 5d+2 0.0019497103825274 -0.0094787630508923 + 272 14 Cd 5f-3 -0.0004848623276605 0.0013923536980893 + 273 14 Cd 5f-2 -0.0001809088651806 -0.0004065985752559 + 274 14 Cd 5f-1 0.0004890079089378 0.0013228217794637 + 275 14 Cd 5f0 0.0002468125930638 -0.0039686657209416 + 276 14 Cd 5f+1 -0.0008848094870692 -0.0031537088665527 + 277 14 Cd 5f+2 -0.0008387080241201 -0.0008396884694881 + 278 14 Cd 5f+3 0.0004856204995029 -0.0011438237406968 + + 279 15 Se 2s 0.0044483176494300 -0.2012292774371712 + 280 15 Se 3s -0.0010287060633689 0.0282802498378097 + 281 15 Se 3py 0.0096167896693894 0.1259628759349239 + 282 15 Se 3pz 0.0244543759201282 -0.3855910427013541 + 283 15 Se 3px 0.0159520004403161 -0.0648250804288271 + 284 15 Se 4py -0.0007593219253811 -0.0397697828569603 + 285 15 Se 4pz -0.0008254563837894 0.0159866784264641 + 286 15 Se 4px -0.0027656931090933 0.0027450559529071 + 287 15 Se 4d-2 -0.0005931447420850 0.0063924112808810 + 288 15 Se 4d-1 -0.0001960353700664 0.0244383266399663 + 289 15 Se 4d0 -0.0001848618661476 0.0150805469983173 + 290 15 Se 4d+1 -0.0007580399216065 0.0043740718310024 + 291 15 Se 4d+2 -0.0004511621090060 0.0016739982637911 + + 292 16 Se 2s -0.0103651702914725 -0.0275349695612643 + 293 16 Se 3s 0.0000880945983813 0.0006946696306420 + 294 16 Se 3py 0.1627865114755282 -0.0459549657548108 + 295 16 Se 3pz -0.1480659439203877 -0.0970393707429535 + 296 16 Se 3px -0.0889227929188729 0.0679542176539755 + 297 16 Se 4py -0.0172161562344146 -0.0048153754661556 + 298 16 Se 4pz 0.0153925851052047 0.0120410014389438 + 299 16 Se 4px 0.0044750782433895 -0.0060376700799634 + 300 16 Se 4d-2 -0.0038417821690155 -0.0025269011392246 + 301 16 Se 4d-1 0.0018609654972486 0.0048552063926721 + 302 16 Se 4d0 -0.0018950802723279 -0.0010789448808182 + 303 16 Se 4d+1 0.0023260251921999 0.0013722125569804 + 304 16 Se 4d+2 0.0013880787344944 -0.0014895849382218 + + 305 17 Cd 2s 0.0027671088468291 -0.0624418706757218 + 306 17 Cd 3s -0.0085065119026563 -0.0134912725996271 + 307 17 Cd 3py 0.0044124330744671 0.0024440293983253 + 308 17 Cd 3pz 0.0144383397528991 0.0330205156305285 + 309 17 Cd 3px -0.0034169366578107 0.0021289013497526 + 310 17 Cd 4py 0.0025234220924721 -0.0028075268613901 + 311 17 Cd 4pz 0.0022717347013106 0.0000782459987249 + 312 17 Cd 4px -0.0004059734145265 0.0006256886581553 + 313 17 Cd 4d-2 0.0077983777604953 0.0038955529351611 + 314 17 Cd 4d-1 0.0119885805428486 0.0035599742831216 + 315 17 Cd 4d0 -0.0091009012673186 -0.0073933964070394 + 316 17 Cd 4d+1 0.0003224719419895 -0.0019676874009962 + 317 17 Cd 4d+2 0.0101019562779047 -0.0132329949963437 + 318 17 Cd 5d-2 0.0056182098726307 -0.0007240085674929 + 319 17 Cd 5d-1 0.0066279459655825 -0.0000569562879647 + 320 17 Cd 5d0 0.0055573931153016 0.0003483012038020 + 321 17 Cd 5d+1 0.0010053524522730 -0.0044574508408651 + 322 17 Cd 5d+2 0.0069337446693299 -0.0159879593068352 + 323 17 Cd 5f-3 0.0002391946321670 0.0008667731688096 + 324 17 Cd 5f-2 -0.0020853718238528 -0.0009192403349670 + 325 17 Cd 5f-1 -0.0018505903809548 0.0010730104224028 + 326 17 Cd 5f0 -0.0000901796511617 -0.0015496620464804 + 327 17 Cd 5f+1 0.0019572564020717 -0.0004001493877927 + 328 17 Cd 5f+2 0.0014605713116484 -0.0003447154211970 + 329 17 Cd 5f+3 0.0011192738373144 0.0023305101848747 + + 330 18 Cd 2s -0.0318075396341016 -0.1333850475356142 + 331 18 Cd 3s -0.0027488457271069 -0.0112767897201946 + 332 18 Cd 3py 0.0040528850679172 0.0468440847200521 + 333 18 Cd 3pz 0.0295721489591368 0.0351192425222026 + 334 18 Cd 3px -0.0599883829141009 -0.0187756382592730 + 335 18 Cd 4py 0.0017379359711455 0.0002346012883593 + 336 18 Cd 4pz 0.0077354948982560 0.0045383023785549 + 337 18 Cd 4px -0.0017383960846284 -0.0002198046270982 + 338 18 Cd 4d-2 -0.0154750104105962 -0.0022704614850321 + 339 18 Cd 4d-1 -0.0120512272843977 -0.0062846346472914 + 340 18 Cd 4d0 0.0298114736186847 0.0184904687179721 + 341 18 Cd 4d+1 0.0068652281032384 -0.0015932911257396 + 342 18 Cd 4d+2 -0.0116074231822779 -0.0033708329233350 + 343 18 Cd 5d-2 -0.0050720440959377 -0.0000773095010318 + 344 18 Cd 5d-1 0.0067994433429624 0.0069114734251063 + 345 18 Cd 5d0 0.0113948904483262 0.0074591871116241 + 346 18 Cd 5d+1 0.0143346826702684 -0.0019344015608497 + 347 18 Cd 5d+2 -0.0127665813870048 -0.0038069339173014 + 348 18 Cd 5f-3 -0.0026107426421768 0.0002856360827253 + 349 18 Cd 5f-2 0.0023487754744160 0.0003440600612828 + 350 18 Cd 5f-1 0.0002476496695230 0.0006060844236752 + 351 18 Cd 5f0 -0.0015558657532423 0.0003662926792384 + 352 18 Cd 5f+1 -0.0001329602934821 -0.0004320453361341 + 353 18 Cd 5f+2 0.0020789848904079 -0.0004266585934915 + 354 18 Cd 5f+3 -0.0011977093453076 0.0010943251913267 + + 355 19 Se 2s -0.0176435020130371 -0.0472331276577636 + 356 19 Se 3s 0.0027086175937197 0.0055799294639420 + 357 19 Se 3py 0.0283285801799547 0.0055801316137631 + 358 19 Se 3pz -0.0599255896903151 -0.0504402190338025 + 359 19 Se 3px -0.1093882895621184 -0.0341923809883400 + 360 19 Se 4py -0.0013105100803454 0.0004305117730112 + 361 19 Se 4pz 0.0085206680470614 0.0091911351335412 + 362 19 Se 4px 0.0125932263250272 0.0033941532771930 + 363 19 Se 4d-2 -0.0033168925419065 -0.0024245171832986 + 364 19 Se 4d-1 0.0000060441503498 -0.0060340176056259 + 365 19 Se 4d0 -0.0011817017855097 -0.0031776702807386 + 366 19 Se 4d+1 0.0000974173056870 -0.0006390018601963 + 367 19 Se 4d+2 0.0017425749898375 -0.0010725189208660 + + 368 20 Se 2s -0.0293773383942292 -0.0142155652725059 + 369 20 Se 3s 0.0036314205411180 0.0001478856885896 + 370 20 Se 3py 0.0492251543862288 -0.0123765816588150 + 371 20 Se 3pz -0.0039797785534657 -0.0191641555931586 + 372 20 Se 3px -0.0801073748689548 0.0441734553057070 + 373 20 Se 4py -0.0069038333998410 -0.0072160106735793 + 374 20 Se 4pz 0.0023424003977435 -0.0090390232523674 + 375 20 Se 4px 0.0147075095743313 -0.0135884027146345 + 376 20 Se 4d-2 -0.0031473471745717 0.0019885506936425 + 377 20 Se 4d-1 0.0006324989213342 -0.0044744690083588 + 378 20 Se 4d0 -0.0006385016364094 -0.0019003852693163 + 379 20 Se 4d+1 0.0001532433901550 -0.0018286947512404 + 380 20 Se 4d+2 0.0009024971543772 -0.0027275472390165 + + 381 21 Se 2s -0.0060129809443740 -0.0660647724538715 + 382 21 Se 3s 0.0009819158695894 0.0064232656031619 + 383 21 Se 3py 0.0327180462328614 0.0272078053805797 + 384 21 Se 3pz 0.0221090313577780 0.0150401941696749 + 385 21 Se 3px -0.0263480267317477 0.0331317888051543 + 386 21 Se 4py -0.0038338453795905 -0.0051755450543015 + 387 21 Se 4pz -0.0021985656665679 -0.0016293833805620 + 388 21 Se 4px 0.0042876126485721 0.0044596692645351 + 389 21 Se 4d-2 -0.0008799107987550 0.0048660750098854 + 390 21 Se 4d-1 0.0005078288274429 0.0007886012599745 + 391 21 Se 4d0 -0.0007970388923699 0.0023184838246569 + 392 21 Se 4d+1 -0.0010533574497390 0.0002567503034511 + 393 21 Se 4d+2 0.0009850189916969 0.0013979265412783 + + 394 22 Cd 2s -0.0118894375502951 -0.1629290598841380 + 395 22 Cd 3s -0.0013020964335085 -0.0123218832664955 + 396 22 Cd 3py 0.0143157164194836 -0.0715404410244551 + 397 22 Cd 3pz -0.0003668378969086 -0.0021536072077808 + 398 22 Cd 3px -0.0071040186089011 -0.0238513779180765 + 399 22 Cd 4py -0.0001203501428788 -0.0018543706638634 + 400 22 Cd 4pz 0.0009149025418934 -0.0014448371526097 + 401 22 Cd 4px 0.0005177808669464 0.0000935672569528 + 402 22 Cd 4d-2 0.0056139573978328 -0.0005585770510831 + 403 22 Cd 4d-1 0.0113443965379237 0.0294095890324230 + 404 22 Cd 4d0 0.0032249370081953 0.0304045361540731 + 405 22 Cd 4d+1 -0.0068139167873740 0.0175523789337935 + 406 22 Cd 4d+2 0.0014133512510730 -0.0064346946451789 + 407 22 Cd 5d-2 0.0000608846689761 -0.0090742445560431 + 408 22 Cd 5d-1 0.0021367892780624 0.0331440755379773 + 409 22 Cd 5d0 0.0018397667874348 0.0318278071206729 + 410 22 Cd 5d+1 0.0010942545015133 0.0113085411337726 + 411 22 Cd 5d+2 -0.0009308536321972 0.0017458057977737 + 412 22 Cd 5f-3 -0.0001972394707468 0.0021383770420980 + 413 22 Cd 5f-2 -0.0002748940488574 0.0005266821248334 + 414 22 Cd 5f-1 -0.0009066380439469 0.0016414141143717 + 415 22 Cd 5f0 -0.0000244493630406 0.0005138442693987 + 416 22 Cd 5f+1 0.0001055541501608 0.0024009755523884 + 417 22 Cd 5f+2 0.0001238237083241 -0.0005421145596642 + 418 22 Cd 5f+3 -0.0017201325169027 -0.0007978663282223 + + 419 23 Se 2s -0.0105450531856065 -0.0389503118121140 + 420 23 Se 3s 0.0011960013950582 0.0033455639358727 + 421 23 Se 3py 0.0387323117606078 -0.0745914420713240 + 422 23 Se 3pz -0.0302344945258850 -0.1133735279016469 + 423 23 Se 3px -0.0188666265796602 -0.0535307419405324 + 424 23 Se 4py -0.0053141953361981 -0.0022714356156474 + 425 23 Se 4pz 0.0027721127857297 0.0117728489993618 + 426 23 Se 4px 0.0033053732919058 0.0097051815370786 + 427 23 Se 4d-2 0.0025379274384616 0.0026324182400050 + 428 23 Se 4d-1 0.0009052707134585 0.0067060020357893 + 429 23 Se 4d0 0.0000482615293239 -0.0015391863264206 + 430 23 Se 4d+1 -0.0003272992103752 -0.0015003326814125 + 431 23 Se 4d+2 -0.0011269024171179 -0.0031827598225830 + + 432 24 Se 2s -0.0045189894947797 -0.0527739890376275 + 433 24 Se 3s 0.0005942702642897 0.0067117600771444 + 434 24 Se 3py -0.0084574897896421 -0.0721271723309958 + 435 24 Se 3pz 0.0200281475440430 -0.0822979208902189 + 436 24 Se 3px -0.0156041913365838 -0.0746516858388638 + 437 24 Se 4py 0.0019258639872280 0.0082558015409395 + 438 24 Se 4pz 0.0002158612739700 0.0095691128490738 + 439 24 Se 4px 0.0011838467529988 0.0126953431966715 + 440 24 Se 4d-2 -0.0006857713762789 -0.0051515902466666 + 441 24 Se 4d-1 0.0003100492017855 -0.0000132688561080 + 442 24 Se 4d0 0.0002913364875838 0.0021604473542491 + 443 24 Se 4d+1 -0.0011131549135378 0.0013645971913667 + 444 24 Se 4d+2 0.0005429202518514 -0.0007092195731879 + + 445 25 Cd 2s -0.0264778349245076 -0.0335884816279349 + 446 25 Cd 3s -0.0023655024189106 -0.0086628619728886 + 447 25 Cd 3py 0.0045698025359510 0.0140936127619824 + 448 25 Cd 3pz 0.0029434250764034 0.0198509639553359 + 449 25 Cd 3px -0.0013515339283521 0.0206141071748091 + 450 25 Cd 4py -0.0003547547210093 -0.0004099286077351 + 451 25 Cd 4pz 0.0009135084144735 0.0012470285867350 + 452 25 Cd 4px 0.0000294872489334 -0.0003282511796551 + 453 25 Cd 4d-2 -0.0022497872414628 0.0001977557840639 + 454 25 Cd 4d-1 -0.0154379251480246 -0.0007760532127798 + 455 25 Cd 4d0 -0.0060318742501306 -0.0046792705475073 + 456 25 Cd 4d+1 -0.0075173579465555 -0.0082018622719102 + 457 25 Cd 4d+2 0.0021884399188476 -0.0015256386713669 + 458 25 Cd 5d-2 0.0014953862810606 -0.0062967988176095 + 459 25 Cd 5d-1 -0.0047963591976618 0.0141066006100634 + 460 25 Cd 5d0 -0.0060399438112655 -0.0027635431077761 + 461 25 Cd 5d+1 -0.0021849605600760 -0.0106125737113527 + 462 25 Cd 5d+2 0.0032025534036881 0.0032791365339281 + 463 25 Cd 5f-3 0.0002639038097989 0.0012967060708808 + 464 25 Cd 5f-2 0.0010182749253981 0.0028067707738234 + 465 25 Cd 5f-1 -0.0012705859224693 0.0026945135287584 + 466 25 Cd 5f0 0.0004468522798308 -0.0012196905570101 + 467 25 Cd 5f+1 -0.0000003381685675 0.0003337453790237 + 468 25 Cd 5f+2 0.0015862293471288 0.0004748644945180 + 469 25 Cd 5f+3 0.0005719284402118 0.0000416545624000 + + 470 26 Cd 2s -0.0044063172565269 -0.1263592662485827 + 471 26 Cd 3s -0.0002326397606505 -0.0124703531702262 + 472 26 Cd 3py 0.0002392269289679 -0.0144064365458530 + 473 26 Cd 3pz -0.0033188208681274 -0.0212177082208061 + 474 26 Cd 3px 0.0113283125876378 0.0402293536795412 + 475 26 Cd 4py 0.0001929281809670 0.0037010916939670 + 476 26 Cd 4pz 0.0001623227793862 -0.0010391643950663 + 477 26 Cd 4px 0.0009629379541718 0.0030225702145339 + 478 26 Cd 4d-2 0.0011526830578313 0.0056046936299472 + 479 26 Cd 4d-1 0.0002695015309598 0.0138373320606089 + 480 26 Cd 4d0 0.0001048567439160 -0.0149352966214992 + 481 26 Cd 4d+1 0.0008864627337629 -0.0024517949305360 + 482 26 Cd 4d+2 0.0019466566475105 -0.0188445678330259 + 483 26 Cd 5d-2 0.0002762540357419 0.0023814297006348 + 484 26 Cd 5d-1 -0.0010796435440185 0.0004846611033173 + 485 26 Cd 5d0 0.0001785488912012 -0.0108092959181905 + 486 26 Cd 5d+1 -0.0005954298389783 -0.0064724414262200 + 487 26 Cd 5d+2 0.0028082320982037 0.0016039740713377 + 488 26 Cd 5f-3 0.0003660315191118 -0.0004651470020714 + 489 26 Cd 5f-2 -0.0000251709138603 -0.0002330665113097 + 490 26 Cd 5f-1 -0.0003896908415499 0.0006356021633021 + 491 26 Cd 5f0 0.0006925733977401 0.0006977567172119 + 492 26 Cd 5f+1 -0.0000766028741832 -0.0013590610782733 + 493 26 Cd 5f+2 -0.0002748669020162 -0.0007286545650233 + 494 26 Cd 5f+3 -0.0000690550247270 0.0009482135035230 + + 119 120 + -0.1181850766390028 -0.1127265261109509 + + 0.0000000000000000 0.0000000000000000 + + 1 1 Cd 2s 0.0349384846950820 -0.0011664158407558 + 2 1 Cd 3s 0.0093239583661410 0.0008289199254975 + 3 1 Cd 3py -0.0215457107073802 0.0166216188060141 + 4 1 Cd 3pz -0.0016053464713425 -0.0198152695097542 + 5 1 Cd 3px 0.0014036274539450 0.0023532396729967 + 6 1 Cd 4py -0.0032062589598161 0.0028852140812889 + 7 1 Cd 4pz 0.0021998808171144 -0.0048575571632831 + 8 1 Cd 4px -0.0018852828304520 -0.0018565143250578 + 9 1 Cd 4d-2 -0.0091919504952906 0.0082280344098809 + 10 1 Cd 4d-1 -0.0082834764345371 -0.0014079244355123 + 11 1 Cd 4d0 -0.0001857673522898 -0.0024166905258263 + 12 1 Cd 4d+1 -0.0026807115954245 0.0005801193613978 + 13 1 Cd 4d+2 0.0138649175168770 -0.0030289147403261 + 14 1 Cd 5d-2 0.0006518481112167 0.0022731839129021 + 15 1 Cd 5d-1 -0.0138817343057226 0.0001183998065074 + 16 1 Cd 5d0 -0.0005460053503232 -0.0100011372295981 + 17 1 Cd 5d+1 -0.0006556019321890 0.0014370604183862 + 18 1 Cd 5d+2 0.0073201566220845 -0.0031067191774737 + 19 1 Cd 5f-3 -0.0022657173584163 0.0003847685835046 + 20 1 Cd 5f-2 0.0005417404199223 0.0000777062237839 + 21 1 Cd 5f-1 -0.0037827356505376 0.0004104399850042 + 22 1 Cd 5f0 0.0007953841140791 0.0002014880547965 + 23 1 Cd 5f+1 0.0017000396917512 -0.0003434314413727 + 24 1 Cd 5f+2 0.0029844719772811 -0.0001586635462908 + 25 1 Cd 5f+3 0.0010355973612197 -0.0005653980127241 + + 26 2 Cd 2s 0.0566322046196928 0.1328679851449799 + 27 2 Cd 3s 0.0147280335291669 0.0048932608226692 + 28 2 Cd 3py -0.0544741040723251 0.0167567044798467 + 29 2 Cd 3pz 0.0109869075128191 -0.0385483848086348 + 30 2 Cd 3px -0.0039175056461263 -0.0932822908215543 + 31 2 Cd 4py -0.0214488129585034 0.0097923058517109 + 32 2 Cd 4pz 0.0081739266398135 -0.0088470555734984 + 33 2 Cd 4px -0.0003925069132491 -0.0078577484148060 + 34 2 Cd 4d-2 -0.0093010837920182 0.0214069188808004 + 35 2 Cd 4d-1 0.0177759716824891 -0.0123120173174777 + 36 2 Cd 4d0 -0.0072654348639457 -0.0121802059856966 + 37 2 Cd 4d+1 0.0126106366197012 0.0249960659987518 + 38 2 Cd 4d+2 0.0070428912249152 0.0128840388935582 + 39 2 Cd 5d-2 0.0331787203632295 -0.0006468449289266 + 40 2 Cd 5d-1 -0.0184657939598315 0.0276165970633649 + 41 2 Cd 5d0 0.0110992288575779 -0.0148585828545652 + 42 2 Cd 5d+1 -0.0111802691863233 0.0188837768621735 + 43 2 Cd 5d+2 0.0140852957326860 0.0184855613077420 + 44 2 Cd 5f-3 -0.0008346805113213 -0.0056768217493614 + 45 2 Cd 5f-2 0.0055083214829960 -0.0089354300253618 + 46 2 Cd 5f-1 0.0009569643189211 0.0098858612355096 + 47 2 Cd 5f0 -0.0061530029896691 0.0038487660720329 + 48 2 Cd 5f+1 -0.0025298026660848 0.0029626748430216 + 49 2 Cd 5f+2 -0.0077897835747580 0.0097853735127873 + 50 2 Cd 5f+3 -0.0059555170252204 -0.0073701348988272 + + 51 3 Cd 2s 0.0520940183440663 0.0206635234830913 + 52 3 Cd 3s 0.0134344281567493 0.0011733123966647 + 53 3 Cd 3py -0.0219462929928663 0.0126982433468427 + 54 3 Cd 3pz 0.0252916526367504 -0.0179896892993734 + 55 3 Cd 3px 0.0022384714215142 -0.0351660627655200 + 56 3 Cd 4py -0.0086666515847415 0.0040771475224983 + 57 3 Cd 4pz 0.0004597283999337 0.0000585391193402 + 58 3 Cd 4px -0.0006553074860154 -0.0034300001112365 + 59 3 Cd 4d-2 -0.0012213763989575 -0.0125064954983806 + 60 3 Cd 4d-1 -0.0147036725588663 0.0006805404867966 + 61 3 Cd 4d0 -0.0084510928770970 0.0051727313933752 + 62 3 Cd 4d+1 0.0082668215407868 -0.0037153595132730 + 63 3 Cd 4d+2 -0.0173796687425464 -0.0036325988207750 + 64 3 Cd 5d-2 0.0145496554187231 -0.0112512566988882 + 65 3 Cd 5d-1 0.0059230871202462 -0.0120598544883632 + 66 3 Cd 5d0 -0.0049878850032036 -0.0035527853946838 + 67 3 Cd 5d+1 -0.0010549690190314 0.0012003784605192 + 68 3 Cd 5d+2 -0.0035564339679930 -0.0006849525449727 + 69 3 Cd 5f-3 -0.0042003880392292 -0.0002300552988046 + 70 3 Cd 5f-2 -0.0113522203664307 0.0062290966620068 + 71 3 Cd 5f-1 -0.0007763144974851 -0.0012422914215363 + 72 3 Cd 5f0 0.0042499270303410 -0.0053641203982945 + 73 3 Cd 5f+1 -0.0053897428793622 0.0050833826361723 + 74 3 Cd 5f+2 0.0003460095540303 0.0015883487521009 + 75 3 Cd 5f+3 -0.0028556549539371 -0.0010711978819173 + + 76 4 Se 2s 0.0271589645327615 0.0090069361960365 + 77 4 Se 3s -0.0034859056944108 -0.0008340025494162 + 78 4 Se 3py -0.0840343217666224 0.0138589657320104 + 79 4 Se 3pz -0.0117797482676298 0.0233780296720182 + 80 4 Se 3px -0.0490952068127990 -0.0659972569430091 + 81 4 Se 4py 0.0056625635307398 -0.0067074495069628 + 82 4 Se 4pz -0.0042994321269916 0.0005195586358267 + 83 4 Se 4px 0.0142214299274989 0.0096640655192344 + 84 4 Se 4d-2 0.0011203251589066 -0.0027959108387186 + 85 4 Se 4d-1 0.0027481672718325 0.0020453001025170 + 86 4 Se 4d0 -0.0004945491378134 -0.0011224413443222 + 87 4 Se 4d+1 -0.0013544228536087 0.0063726802519500 + 88 4 Se 4d+2 -0.0006048754228608 -0.0012490769701840 + + 89 5 Se 2s 0.0379721466230403 -0.0178010872849970 + 90 5 Se 3s -0.0039056532701036 0.0023384040839290 + 91 5 Se 3py 0.0149378057616237 -0.0010551746733973 + 92 5 Se 3pz 0.0412328979630217 -0.0432196687986519 + 93 5 Se 3px -0.0906486749579337 0.0039462174672059 + 94 5 Se 4py -0.0088257867596437 0.0027279441864086 + 95 5 Se 4pz -0.0088879119685117 0.0084852374020513 + 96 5 Se 4px 0.0143275351473381 -0.0013325365989514 + 97 5 Se 4d-2 -0.0055611981670840 0.0021122732884162 + 98 5 Se 4d-1 0.0009809881539589 0.0005174085957544 + 99 5 Se 4d0 -0.0001359616570083 -0.0002392605847463 + 100 5 Se 4d+1 -0.0040029590171022 0.0029378605333413 + 101 5 Se 4d+2 0.0010236986570405 -0.0016302397859675 + + 102 6 Se 2s 0.0700058042131165 -0.0368926630925846 + 103 6 Se 3s -0.0095102911317076 0.0047855998366660 + 104 6 Se 3py -0.0438676503836728 0.0836272991398430 + 105 6 Se 3pz 0.1460571210713996 -0.1965860997488519 + 106 6 Se 3px -0.1567712495737343 0.0549788419034786 + 107 6 Se 4py 0.0089623609078817 -0.0129319923689490 + 108 6 Se 4pz -0.0116164380495965 0.0157372597862829 + 109 6 Se 4px 0.0252548504241239 -0.0092367660271611 + 110 6 Se 4d-2 -0.0023963545203876 0.0060090694729979 + 111 6 Se 4d-1 0.0027725430953480 -0.0010907746597844 + 112 6 Se 4d0 -0.0076587893469352 0.0105273834004645 + 113 6 Se 4d+1 0.0049359469976542 -0.0082906474971387 + 114 6 Se 4d+2 0.0019142482201753 -0.0007445064748054 + + 115 7 Se 2s -0.0207231511481771 0.0544404761660957 + 116 7 Se 3s 0.0038526123745551 -0.0076819531898719 + 117 7 Se 3py -0.2384606975219993 -0.0581057518132060 + 118 7 Se 3pz 0.1050682235268851 -0.2476167670020191 + 119 7 Se 3px -0.0293013226257312 -0.0821038744549168 + 120 7 Se 4py 0.0249901185083955 0.0162603158875988 + 121 7 Se 4pz -0.0087760568007214 0.0411942492875217 + 122 7 Se 4px 0.0047716930591707 0.0113296663502816 + 123 7 Se 4d-2 -0.0013970775979631 -0.0006561535932532 + 124 7 Se 4d-1 -0.0031597952326666 -0.0111760247529688 + 125 7 Se 4d0 -0.0022998917583107 -0.0034362187562775 + 126 7 Se 4d+1 -0.0005097319233909 -0.0030571768942550 + 127 7 Se 4d+2 -0.0070876866154910 -0.0033797395403707 + + 128 8 Cd 2s 0.1122544656580113 0.1636606013165217 + 129 8 Cd 3s 0.0164914872127114 0.0104482873557610 + 130 8 Cd 3py -0.0175215456106725 0.1190904426220563 + 131 8 Cd 3pz -0.0033132118292763 -0.0466961831102793 + 132 8 Cd 3px -0.0618014230361307 0.0982483733587981 + 133 8 Cd 4py -0.0143820959426917 0.0212448929649380 + 134 8 Cd 4pz 0.0015935335515026 -0.0011905194967828 + 135 8 Cd 4px -0.0081014382014827 0.0080826142336539 + 136 8 Cd 4d-2 0.0193135485732529 -0.0218362392611364 + 137 8 Cd 4d-1 -0.0004238151818485 -0.0404358740906041 + 138 8 Cd 4d0 -0.0161720600023002 -0.0153845722348711 + 139 8 Cd 4d+1 -0.0175395841891547 -0.0265249015732767 + 140 8 Cd 4d+2 -0.0027483584761239 -0.0077315482650625 + 141 8 Cd 5d-2 0.0359932505069769 -0.0292426487979258 + 142 8 Cd 5d-1 0.0094092539159341 -0.0390131425029088 + 143 8 Cd 5d0 -0.0158976850487160 -0.0111610246043949 + 144 8 Cd 5d+1 -0.0178941544135854 -0.0128738812962753 + 145 8 Cd 5d+2 -0.0193964861838472 -0.0031130354294708 + 146 8 Cd 5f-3 0.0064901029023551 -0.0011208178903875 + 147 8 Cd 5f-2 -0.0059803288396807 0.0050657615163939 + 148 8 Cd 5f-1 0.0081213986795375 0.0025204939703330 + 149 8 Cd 5f0 0.0006658846068856 0.0048837045900947 + 150 8 Cd 5f+1 0.0026711086210297 -0.0022969883276499 + 151 8 Cd 5f+2 0.0036051917387886 -0.0085652709863783 + 152 8 Cd 5f+3 0.0079129620031721 -0.0021883991635630 + + 153 9 Cd 2s 0.3362868301435470 -0.3275313605209631 + 154 9 Cd 3s 0.0250165372731934 -0.0198767314496071 + 155 9 Cd 3py -0.0814785316602560 0.0591758300274877 + 156 9 Cd 3pz 0.1467528144168321 -0.1620566271510256 + 157 9 Cd 3px 0.0203364822177158 -0.0263536338844128 + 158 9 Cd 4py -0.0132792056772215 0.0092903364751811 + 159 9 Cd 4pz 0.0047720128088341 -0.0069725482549928 + 160 9 Cd 4px 0.0001365959388739 0.0059894643837466 + 161 9 Cd 4d-2 -0.0020526865806283 -0.0006510592472554 + 162 9 Cd 4d-1 -0.0024468157704485 -0.0047837504644944 + 163 9 Cd 4d0 0.0181894408202596 -0.0150522494234555 + 164 9 Cd 4d+1 0.0114165045982148 -0.0086077923224904 + 165 9 Cd 4d+2 -0.0416845871853186 0.0430888779889211 + 166 9 Cd 5d-2 -0.0020489745325387 0.0088266927341019 + 167 9 Cd 5d-1 0.0155052957581379 -0.0170952571251790 + 168 9 Cd 5d0 0.0116886255822014 -0.0113122861856819 + 169 9 Cd 5d+1 0.0033830496545616 -0.0107671440401382 + 170 9 Cd 5d+2 -0.0038626940253908 0.0066992235931897 + 171 9 Cd 5f-3 0.0022340027884809 -0.0016743093195360 + 172 9 Cd 5f-2 -0.0002661936662230 -0.0004621275908967 + 173 9 Cd 5f-1 -0.0014261833510672 0.0044419392870497 + 174 9 Cd 5f0 0.0019870313294148 -0.0006989048482497 + 175 9 Cd 5f+1 -0.0022453563492878 0.0010311014429672 + 176 9 Cd 5f+2 -0.0002954531467007 0.0016895446144141 + 177 9 Cd 5f+3 0.0036333531739838 -0.0025386159972093 + + 178 10 Se 2s 0.1547935104422068 -0.1117021139299591 + 179 10 Se 3s -0.0232151534387025 0.0155951919804286 + 180 10 Se 3py -0.1302590375804007 0.0970900322521429 + 181 10 Se 3pz -0.2044216738978254 0.0753126874135449 + 182 10 Se 3px 0.1316698877860503 -0.1592053568580585 + 183 10 Se 4py 0.0176831301470738 -0.0087020435823906 + 184 10 Se 4pz 0.0448887705944167 -0.0242130779978802 + 185 10 Se 4px -0.0162238274484523 0.0130254452786417 + 186 10 Se 4d-2 0.0022947505370170 -0.0022093460396494 + 187 10 Se 4d-1 -0.0033539476324990 0.0055246595403231 + 188 10 Se 4d0 0.0025419314131850 0.0009461283381269 + 189 10 Se 4d+1 -0.0201361947454753 0.0178809480018642 + 190 10 Se 4d+2 -0.0093891681339657 0.0078180069491718 + + 191 11 Se 2s 0.1470088276157289 -0.0514568414911114 + 192 11 Se 3s -0.0211735964385572 0.0088524104502469 + 193 11 Se 3py 0.1034498213025355 0.0089992539945153 + 194 11 Se 3pz -0.1719459685957273 0.0360597330674124 + 195 11 Se 3px -0.1278064390674931 0.0088424180446878 + 196 11 Se 4py -0.0254450486337829 0.0031520038723635 + 197 11 Se 4pz 0.0253992046738676 0.0010645853465313 + 198 11 Se 4px 0.0197573036484141 -0.0076769811128223 + 199 11 Se 4d-2 0.0074205401673763 -0.0035821380184930 + 200 11 Se 4d-1 -0.0168943577046271 0.0108405092869950 + 201 11 Se 4d0 -0.0057497064761533 0.0064684175899099 + 202 11 Se 4d+1 0.0060196068326686 -0.0047614948810302 + 203 11 Se 4d+2 -0.0032566567308685 -0.0007693910622640 + + 204 12 Cd 2s 0.4110902177751153 -0.1935697244352364 + 205 12 Cd 3s 0.0310481222578077 -0.0078024774071762 + 206 12 Cd 3py -0.0353578525806246 -0.0242380080310400 + 207 12 Cd 3pz 0.0464507396979103 -0.0907098027944852 + 208 12 Cd 3px -0.0949190880240154 -0.0150157975100520 + 209 12 Cd 4py -0.0054299002332909 -0.0001293314680001 + 210 12 Cd 4pz 0.0040653951907876 -0.0073809082329460 + 211 12 Cd 4px -0.0083708874682683 -0.0082119138133081 + 212 12 Cd 4d-2 0.0066514903004285 0.0083957649577437 + 213 12 Cd 4d-1 -0.0035516120443050 0.0081270973489259 + 214 12 Cd 4d0 -0.0025211242055672 0.0231547518250850 + 215 12 Cd 4d+1 -0.0091399598302728 0.0099950528235912 + 216 12 Cd 4d+2 -0.0100884460572239 0.0098519342049632 + 217 12 Cd 5d-2 -0.0038549102656561 0.0250029457310485 + 218 12 Cd 5d-1 -0.0040750881364715 0.0137960411367492 + 219 12 Cd 5d0 -0.0030718046602276 0.0162883566883949 + 220 12 Cd 5d+1 -0.0043094129433169 0.0242850962602033 + 221 12 Cd 5d+2 0.0030205280180176 -0.0019565708024023 + 222 12 Cd 5f-3 0.0000290732697660 -0.0034875484067014 + 223 12 Cd 5f-2 -0.0018516854534205 0.0016615499167575 + 224 12 Cd 5f-1 -0.0024441599040766 -0.0024703392414183 + 225 12 Cd 5f0 0.0035868069947407 -0.0045640749386756 + 226 12 Cd 5f+1 -0.0010239322848244 0.0028325862849990 + 227 12 Cd 5f+2 0.0021027818858652 -0.0010432895187710 + 228 12 Cd 5f+3 0.0007657692969669 0.0057148582750689 + + 229 13 Cd 2s 0.0293399514273358 -0.0036431167962685 + 230 13 Cd 3s 0.0090902583655568 0.0044685076056220 + 231 13 Cd 3py -0.0247706820826257 0.0283876317803311 + 232 13 Cd 3pz 0.0180625362526524 -0.0258313100301710 + 233 13 Cd 3px 0.0160068087022887 0.0033968829362708 + 234 13 Cd 4py -0.0023216294186602 -0.0012685575221216 + 235 13 Cd 4pz 0.0009391076108190 -0.0037420044005982 + 236 13 Cd 4px -0.0009650171766861 0.0005520795636401 + 237 13 Cd 4d-2 0.0189085597916791 -0.0089439685109130 + 238 13 Cd 4d-1 0.0020766350279902 -0.0007355573296698 + 239 13 Cd 4d0 0.0047396036192460 -0.0005342214462881 + 240 13 Cd 4d+1 -0.0144523948548537 -0.0077293673007042 + 241 13 Cd 4d+2 -0.0139065210712182 -0.0096339790601416 + 242 13 Cd 5d-2 0.0165707717360958 0.0047501062435464 + 243 13 Cd 5d-1 0.0055592998444309 -0.0040967147447941 + 244 13 Cd 5d0 0.0129895482089594 -0.0005414654128674 + 245 13 Cd 5d+1 -0.0046919605041957 0.0114191497590508 + 246 13 Cd 5d+2 -0.0056586179422040 0.0006749121334373 + 247 13 Cd 5f-3 0.0000244338414056 0.0008344536658506 + 248 13 Cd 5f-2 0.0017513789015190 0.0002805076893514 + 249 13 Cd 5f-1 0.0004676026957637 0.0006448784383849 + 250 13 Cd 5f0 0.0017880204071520 0.0016338319579107 + 251 13 Cd 5f+1 -0.0002153718419188 0.0002104513984472 + 252 13 Cd 5f+2 -0.0017832510494409 0.0005331434578454 + 253 13 Cd 5f+3 -0.0003609517422593 -0.0015162556221226 + + 254 14 Cd 2s -0.3434348540305406 0.0110541369206647 + 255 14 Cd 3s -0.0195136965506403 0.0068168216583550 + 256 14 Cd 3py -0.1565697784585924 -0.0387911409329250 + 257 14 Cd 3pz -0.0556280040008953 -0.0302027012457176 + 258 14 Cd 3px -0.0412854016695769 -0.0838280908784262 + 259 14 Cd 4py -0.0040841151030206 0.0003546229311211 + 260 14 Cd 4pz -0.0005388827838484 -0.0044035188165956 + 261 14 Cd 4px -0.0009165913438713 -0.0118467492896100 + 262 14 Cd 4d-2 0.0036628619675929 0.0106150401673668 + 263 14 Cd 4d-1 -0.0234119460200083 0.0189928190661449 + 264 14 Cd 4d0 0.0389213829951441 -0.0289401122283057 + 265 14 Cd 4d+1 0.0112671007013423 -0.0072854101999517 + 266 14 Cd 4d+2 -0.0032728755030541 0.0005814504612544 + 267 14 Cd 5d-2 -0.0041590383125779 0.0185153892785601 + 268 14 Cd 5d-1 -0.0185331311931930 0.0207431919357487 + 269 14 Cd 5d0 0.0051554238799444 -0.0103288772200080 + 270 14 Cd 5d+1 0.0083437754108567 0.0074902989568676 + 271 14 Cd 5d+2 0.0061145718196703 0.0164147231578684 + 272 14 Cd 5f-3 -0.0033880683142988 -0.0048637246894246 + 273 14 Cd 5f-2 -0.0018693861158715 -0.0034625953331603 + 274 14 Cd 5f-1 0.0044392439328839 0.0018582814108748 + 275 14 Cd 5f0 0.0006615576535763 0.0049781364302365 + 276 14 Cd 5f+1 -0.0003314058961256 0.0018276361788910 + 277 14 Cd 5f+2 -0.0019566468485274 0.0014584484238932 + 278 14 Cd 5f+3 -0.0015462154698724 0.0003027040189766 + + 279 15 Se 2s -0.0623175126249320 0.0393086068208283 + 280 15 Se 3s 0.0104943793221538 -0.0064602037685895 + 281 15 Se 3py -0.0762145229424910 -0.0606977430573540 + 282 15 Se 3pz -0.1531771501947433 0.1010698038229518 + 283 15 Se 3px -0.0946791435308342 -0.0735222535944750 + 284 15 Se 4py 0.0039035946376411 0.0160189282723455 + 285 15 Se 4pz 0.0016690171091506 -0.0154555409797767 + 286 15 Se 4px 0.0093639054571325 0.0151835625567596 + 287 15 Se 4d-2 0.0024900713767691 -0.0005873018850924 + 288 15 Se 4d-1 0.0134792446192696 0.0052558975227911 + 289 15 Se 4d0 0.0111353046012778 -0.0021742775028444 + 290 15 Se 4d+1 0.0073912544215110 0.0072756624515508 + 291 15 Se 4d+2 -0.0034842734727311 -0.0035399975741008 + + 292 16 Se 2s 0.0195484730195953 0.0047112416005749 + 293 16 Se 3s -0.0031885844285474 0.0006329513072133 + 294 16 Se 3py -0.0534578781765284 0.0025579976752367 + 295 16 Se 3pz 0.0122210600809782 -0.0184015552549439 + 296 16 Se 3px -0.0257553306203322 -0.0117792134537350 + 297 16 Se 4py 0.0021914872359510 -0.0028404291865100 + 298 16 Se 4pz -0.0074087618919832 0.0010140336921727 + 299 16 Se 4px 0.0008451608278441 0.0034741403140873 + 300 16 Se 4d-2 -0.0017301035590340 -0.0009771449946977 + 301 16 Se 4d-1 -0.0011176083110742 -0.0002282083493212 + 302 16 Se 4d0 0.0002256107435914 0.0020168625728944 + 303 16 Se 4d+1 -0.0018649056705070 -0.0018127713894046 + 304 16 Se 4d+2 -0.0001484073667938 0.0005713940630059 + + 305 17 Cd 2s 0.0894564695683325 0.0123630748246932 + 306 17 Cd 3s 0.0129135697803972 0.0054521899490349 + 307 17 Cd 3py -0.0314192852233683 -0.0019177832676976 + 308 17 Cd 3pz -0.0124911569524309 0.0039537792510992 + 309 17 Cd 3px -0.0298202443762671 -0.0107608831044654 + 310 17 Cd 4py -0.0024227919302603 -0.0047424562701913 + 311 17 Cd 4pz 0.0007063826877008 0.0006399719074384 + 312 17 Cd 4px -0.0056479034508130 -0.0084142644702354 + 313 17 Cd 4d-2 0.0007137449822089 -0.0179289538436008 + 314 17 Cd 4d-1 0.0111001403879675 -0.0012921162302251 + 315 17 Cd 4d0 0.0152723904210974 0.0103549021013445 + 316 17 Cd 4d+1 0.0073466763178436 0.0010857630930318 + 317 17 Cd 4d+2 -0.0063610528175721 -0.0031624875282351 + 318 17 Cd 5d-2 0.0032779734172250 -0.0026215570839965 + 319 17 Cd 5d-1 0.0025952627222090 -0.0072965812181357 + 320 17 Cd 5d0 0.0067184437578302 0.0005672219402170 + 321 17 Cd 5d+1 -0.0018032823575048 -0.0143238476127614 + 322 17 Cd 5d+2 0.0064403858832261 -0.0044676366208793 + 323 17 Cd 5f-3 -0.0043512767232690 -0.0036947510839599 + 324 17 Cd 5f-2 0.0013809366676109 0.0042196429114877 + 325 17 Cd 5f-1 -0.0003468416374094 -0.0012689887798345 + 326 17 Cd 5f0 0.0003769332834133 -0.0042124146305758 + 327 17 Cd 5f+1 -0.0021298008122362 -0.0040160027485550 + 328 17 Cd 5f+2 0.0030254935200794 0.0044308485037182 + 329 17 Cd 5f+3 -0.0028853229993463 -0.0010234142313026 + + 330 18 Cd 2s 0.3322594091640352 -0.1673050202326813 + 331 18 Cd 3s 0.0321661733406670 -0.0083484227956235 + 332 18 Cd 3py -0.1263846984638704 0.0746990181155296 + 333 18 Cd 3pz -0.0489151890416194 0.0279151783799499 + 334 18 Cd 3px 0.0401108520072165 -0.0373255252026293 + 335 18 Cd 4py -0.0017729621526166 -0.0009375845272973 + 336 18 Cd 4pz -0.0049698800398967 0.0022958009642252 + 337 18 Cd 4px -0.0010830385345408 0.0002958882767744 + 338 18 Cd 4d-2 0.0035865138903456 -0.0038310328614315 + 339 18 Cd 4d-1 0.0223993426648213 0.0031488123005010 + 340 18 Cd 4d0 -0.0517718440236787 0.0115751631813218 + 341 18 Cd 4d+1 -0.0031681829993373 -0.0058297517128667 + 342 18 Cd 4d+2 0.0058793585640741 -0.0004459919579431 + 343 18 Cd 5d-2 0.0004052007937005 0.0028223813243812 + 344 18 Cd 5d-1 -0.0023411457685617 0.0027047009834746 + 345 18 Cd 5d0 -0.0170396384386931 0.0167337859018407 + 346 18 Cd 5d+1 -0.0017673500136866 0.0012810162146579 + 347 18 Cd 5d+2 0.0008482597173697 0.0003376581639225 + 348 18 Cd 5f-3 -0.0016859993736763 -0.0024466929922779 + 349 18 Cd 5f-2 -0.0015514605617976 0.0008662534494987 + 350 18 Cd 5f-1 -0.0017844968198483 0.0002863671877642 + 351 18 Cd 5f0 -0.0027081337971047 -0.0003345146093508 + 352 18 Cd 5f+1 -0.0002897831959793 0.0030724657638427 + 353 18 Cd 5f+2 0.0006490148716522 -0.0005641917617385 + 354 18 Cd 5f+3 -0.0023118693644672 0.0010258449455385 + + 355 19 Se 2s 0.0976252632765884 0.0139986452449819 + 356 19 Se 3s -0.0130902414558803 -0.0006527547605559 + 357 19 Se 3py -0.0713172899686571 0.1399716813277161 + 358 19 Se 3pz 0.1780486769420873 0.0883878549416092 + 359 19 Se 3px 0.0701342446931719 -0.1158405679667616 + 360 19 Se 4py 0.0004822552060503 -0.0134297059553057 + 361 19 Se 4pz -0.0254869360554356 -0.0219931522600740 + 362 19 Se 4px -0.0103578934558284 0.0115845978003853 + 363 19 Se 4d-2 0.0040890109903950 -0.0008278355824223 + 364 19 Se 4d-1 0.0074458194080171 -0.0081516823976311 + 365 19 Se 4d0 0.0052518332100192 -0.0037519740170366 + 366 19 Se 4d+1 0.0019179354955895 0.0073031460082062 + 367 19 Se 4d+2 0.0037577525145948 -0.0052146881121680 + + 368 20 Se 2s 0.0662654051320367 0.0834490998281584 + 369 20 Se 3s -0.0065799817645965 -0.0119276672092229 + 370 20 Se 3py -0.0555208621887660 0.0599527084069568 + 371 20 Se 3pz 0.0898500672101200 0.0276453097760785 + 372 20 Se 3px -0.1223609869726693 -0.0116815525083249 + 373 20 Se 4py -0.0011378821552533 -0.0051394491330266 + 374 20 Se 4pz -0.0152454143990123 -0.0109887080219991 + 375 20 Se 4px 0.0204832569128546 -0.0207161752002174 + 376 20 Se 4d-2 -0.0061832962173465 -0.0009675446998602 + 377 20 Se 4d-1 0.0025938520570085 -0.0193491905710033 + 378 20 Se 4d0 0.0008876675695053 -0.0018966530175758 + 379 20 Se 4d+1 0.0031572490201720 -0.0145074581280548 + 380 20 Se 4d+2 -0.0018045028910527 0.0003548735374040 + + 381 21 Se 2s 0.0859533849502455 0.1692302931085286 + 382 21 Se 3s -0.0106235076614219 -0.0264113256269729 + 383 21 Se 3py -0.1808553613021021 -0.1838093429303294 + 384 21 Se 3pz 0.0275513651586450 -0.0191971288134732 + 385 21 Se 3px -0.1261403715869117 -0.2148888318297399 + 386 21 Se 4py 0.0157690975803877 0.0088030793517031 + 387 21 Se 4pz -0.0038629891817426 -0.0057454121797329 + 388 21 Se 4px 0.0025816819433927 -0.0148412003682259 + 389 21 Se 4d-2 -0.0021930535630626 -0.0130101515715485 + 390 21 Se 4d-1 0.0036014135091706 -0.0039815142658810 + 391 21 Se 4d0 0.0034483829562685 0.0121629284393471 + 392 21 Se 4d+1 -0.0049656280333084 -0.0080606225955722 + 393 21 Se 4d+2 -0.0105963204078322 -0.0243947219820347 + + 394 22 Cd 2s 0.0239774928381458 0.0050141626106324 + 395 22 Cd 3s 0.0106057364601507 0.0039388015348559 + 396 22 Cd 3py -0.0319220213515727 0.0146637379402934 + 397 22 Cd 3pz 0.0221678561317444 0.0131742378558526 + 398 22 Cd 3px -0.0341105605028593 -0.0409205730763249 + 399 22 Cd 4py 0.0005870833198322 0.0058729779898255 + 400 22 Cd 4pz 0.0048418646381530 -0.0032462263674648 + 401 22 Cd 4px -0.0013908860113831 -0.0063200979204701 + 402 22 Cd 4d-2 -0.0203079757776296 0.0002996020402484 + 403 22 Cd 4d-1 0.0100109806185831 -0.0028498390201128 + 404 22 Cd 4d0 0.0128192711311699 -0.0002510695519919 + 405 22 Cd 4d+1 0.0077148514695218 -0.0019866185402705 + 406 22 Cd 4d+2 0.0139061906429423 -0.0036726140374095 + 407 22 Cd 5d-2 -0.0095775371529301 0.0193703909637970 + 408 22 Cd 5d-1 0.0164849217367604 0.0128805428918824 + 409 22 Cd 5d0 0.0149287259577885 -0.0019917543684542 + 410 22 Cd 5d+1 0.0102785902437032 0.0070296246901835 + 411 22 Cd 5d+2 0.0072549395596836 -0.0088965912060097 + 412 22 Cd 5f-3 -0.0000992339375378 0.0019054184123889 + 413 22 Cd 5f-2 0.0034896978413209 0.0067545222312662 + 414 22 Cd 5f-1 0.0037127858130651 0.0029823545278429 + 415 22 Cd 5f0 0.0001602141300353 -0.0030133451577977 + 416 22 Cd 5f+1 0.0025868943520538 0.0016181734803304 + 417 22 Cd 5f+2 0.0011976261121871 0.0034051013026798 + 418 22 Cd 5f+3 0.0015073023676565 0.0031139640140255 + + 419 23 Se 2s 0.0400191835014133 0.0269641472649344 + 420 23 Se 3s -0.0068732274993305 -0.0047219544558591 + 421 23 Se 3py -0.1259478475380751 -0.0529861571438073 + 422 23 Se 3pz 0.0271863228940897 0.1068505572275698 + 423 23 Se 3px 0.0047128591211093 -0.0488343936682899 + 424 23 Se 4py 0.0169168781145917 0.0076613462734797 + 425 23 Se 4pz -0.0070629380843564 -0.0162737651065116 + 426 23 Se 4px -0.0047244769894993 0.0030545494791307 + 427 23 Se 4d-2 0.0005362954832761 -0.0010693022465961 + 428 23 Se 4d-1 -0.0016562967663238 0.0050968377399807 + 429 23 Se 4d0 0.0012315169122914 -0.0004229677604914 + 430 23 Se 4d+1 0.0037701661686181 0.0032848314330669 + 431 23 Se 4d+2 -0.0002437314794019 -0.0011953364686444 + + 432 24 Se 2s 0.1613281595358669 0.1543379272128211 + 433 24 Se 3s -0.0230672892964091 -0.0221231616400862 + 434 24 Se 3py 0.1651834172124779 0.3507402433462946 + 435 24 Se 3pz 0.1495409067273082 -0.0631348712549581 + 436 24 Se 3px 0.1871170200042993 -0.0130299585289850 + 437 24 Se 4py -0.0219068654108445 -0.0318704014262545 + 438 24 Se 4pz -0.0159447352125566 0.0198526037246874 + 439 24 Se 4px -0.0436767659610148 -0.0226579251618742 + 440 24 Se 4d-2 0.0178782864019576 0.0179544367277482 + 441 24 Se 4d-1 -0.0008424316507345 -0.0095365916784723 + 442 24 Se 4d0 -0.0019207051062478 0.0064226708167293 + 443 24 Se 4d+1 -0.0020903547648432 0.0188017841934978 + 444 24 Se 4d+2 -0.0005048524122181 0.0073958682138069 + + 445 25 Cd 2s 0.1278976501135943 0.2800646637902413 + 446 25 Cd 3s 0.0166321157328406 0.0199328843761020 + 447 25 Cd 3py -0.0544064293161150 -0.0477102991320043 + 448 25 Cd 3pz 0.0289048399974991 0.0797874199638357 + 449 25 Cd 3px -0.0432381534814356 0.0022187496635264 + 450 25 Cd 4py -0.0080331854961501 -0.0055168283893251 + 451 25 Cd 4pz 0.0077013707799290 0.0032253539783709 + 452 25 Cd 4px -0.0089203919603147 -0.0049788729819835 + 453 25 Cd 4d-2 0.0061280808452530 0.0076434784901887 + 454 25 Cd 4d-1 0.0033641917823519 -0.0082279388760346 + 455 25 Cd 4d0 -0.0082394974294716 -0.0150682836982956 + 456 25 Cd 4d+1 0.0169203527819370 0.0326644129224639 + 457 25 Cd 4d+2 -0.0017553888828286 -0.0064061347563765 + 458 25 Cd 5d-2 0.0035409514279302 0.0090757322748663 + 459 25 Cd 5d-1 -0.0111989776953747 -0.0112091229831226 + 460 25 Cd 5d0 0.0020123004455288 -0.0255222703961433 + 461 25 Cd 5d+1 0.0111522985612925 0.0077643722838888 + 462 25 Cd 5d+2 -0.0051949043359785 -0.0058894311534647 + 463 25 Cd 5f-3 0.0004043063302795 0.0016709114316668 + 464 25 Cd 5f-2 -0.0074444894009530 -0.0031931871795519 + 465 25 Cd 5f-1 0.0020869610399773 0.0068969553702506 + 466 25 Cd 5f0 0.0026315345209720 -0.0063782578487559 + 467 25 Cd 5f+1 -0.0007859307339745 -0.0054880812250840 + 468 25 Cd 5f+2 -0.0030428586229045 0.0023204498093572 + 469 25 Cd 5f+3 0.0004484819166447 0.0058623608610364 + + 470 26 Cd 2s 0.3146118053622734 0.5844946160681580 + 471 26 Cd 3s 0.0381969578123404 0.0558429986537834 + 472 26 Cd 3py 0.0366347621706038 0.0903816314434465 + 473 26 Cd 3pz 0.0250494041926708 0.0321253532083609 + 474 26 Cd 3px -0.1386289828593502 -0.2303654511811648 + 475 26 Cd 4py -0.0009418109810555 -0.0066458234929193 + 476 26 Cd 4pz 0.0004712800756820 -0.0008350081161423 + 477 26 Cd 4px -0.0037560864119930 -0.0001755454775524 + 478 26 Cd 4d-2 -0.0237008001197619 -0.0342968895688824 + 479 26 Cd 4d-1 -0.0358425534188006 -0.0514097239724896 + 480 26 Cd 4d0 0.0346957760226217 0.0400432092190922 + 481 26 Cd 4d+1 -0.0005550351873157 -0.0232477888878583 + 482 26 Cd 4d+2 0.0374301880321905 0.0416125400084654 + 483 26 Cd 5d-2 -0.0060409174249613 -0.0321013126530600 + 484 26 Cd 5d-1 -0.0135004973272431 -0.0245181542771278 + 485 26 Cd 5d0 0.0207816157787413 0.0148775145981257 + 486 26 Cd 5d+1 0.0015449948490507 -0.0151235377875584 + 487 26 Cd 5d+2 0.0064311787500074 0.0203652624671831 + 488 26 Cd 5f-3 -0.0039788575761473 -0.0044828820309834 + 489 26 Cd 5f-2 -0.0008615200494056 -0.0003964972127956 + 490 26 Cd 5f-1 -0.0031453540977276 0.0013801583238439 + 491 26 Cd 5f0 -0.0000480851348847 -0.0005883303649917 + 492 26 Cd 5f+1 0.0022600234380621 0.0033519041922152 + 493 26 Cd 5f+2 -0.0027889373572543 -0.0002991817350968 + 494 26 Cd 5f+3 -0.0017911863931230 0.0023262872301967 + + 121 122 + -0.1071011618291794 -0.0991140896285339 + + 0.0000000000000000 0.0000000000000000 + + 1 1 Cd 2s 0.0973685043061145 -0.0791892080009172 + 2 1 Cd 3s 0.0086875702049436 -0.0104673656158736 + 3 1 Cd 3py -0.0107127721340305 -0.0212472783339392 + 4 1 Cd 3pz -0.0146651314160323 0.0033912231538897 + 5 1 Cd 3px 0.0295542944703173 -0.0418234725472321 + 6 1 Cd 4py -0.0023489082133046 0.0020892856006389 + 7 1 Cd 4pz -0.0040019303232934 -0.0040666937045308 + 8 1 Cd 4px -0.0031728308384147 -0.0035241042780627 + 9 1 Cd 4d-2 -0.0118909036337402 -0.0130480924901826 + 10 1 Cd 4d-1 -0.0122933305092882 0.0063964544299819 + 11 1 Cd 4d0 -0.0043303165982997 0.0091260384909610 + 12 1 Cd 4d+1 0.0003147612454276 -0.0001327507912943 + 13 1 Cd 4d+2 -0.0020855668227240 -0.0089258499094169 + 14 1 Cd 5d-2 0.0023390050125966 -0.0179806813573625 + 15 1 Cd 5d-1 -0.0097365089419645 0.0014526041308763 + 16 1 Cd 5d0 -0.0138695486195464 -0.0023651857002181 + 17 1 Cd 5d+1 -0.0067265974253198 0.0017297489378955 + 18 1 Cd 5d+2 -0.0029168493540985 -0.0055877398564060 + 19 1 Cd 5f-3 -0.0008177905686480 0.0010812077321789 + 20 1 Cd 5f-2 0.0014175917066207 0.0023894061756539 + 21 1 Cd 5f-1 0.0006096970445059 -0.0002940136994776 + 22 1 Cd 5f0 -0.0021203415047583 -0.0020566436895023 + 23 1 Cd 5f+1 0.0001886256535542 0.0027698782310405 + 24 1 Cd 5f+2 0.0008674673633700 -0.0030978975957248 + 25 1 Cd 5f+3 0.0019506787269026 0.0019219888934938 + + 26 2 Cd 2s -0.0026803302242898 -0.4594188031265116 + 27 2 Cd 3s -0.0094976098946056 -0.0347276411028371 + 28 2 Cd 3py 0.0608463755839702 0.0320707637491325 + 29 2 Cd 3pz -0.0265439662170005 0.0302147635089077 + 30 2 Cd 3px 0.0032711217664684 0.1667746288340540 + 31 2 Cd 4py 0.0161062024798571 0.0068255663713776 + 32 2 Cd 4pz -0.0151852051922015 0.0001713931416577 + 33 2 Cd 4px -0.0032250304647709 0.0048195176613967 + 34 2 Cd 4d-2 0.0040096353420166 -0.0391949796035519 + 35 2 Cd 4d-1 -0.0117290460614547 0.0085999405462899 + 36 2 Cd 4d0 -0.0032574655163360 0.0361442472281647 + 37 2 Cd 4d+1 0.0019473445808920 -0.0574161162790183 + 38 2 Cd 4d+2 -0.0069837257114374 -0.0235115222613935 + 39 2 Cd 5d-2 -0.0175561707254729 -0.0174324948300392 + 40 2 Cd 5d-1 0.0256723812251775 0.0028022450310008 + 41 2 Cd 5d0 -0.0170782589264873 0.0199091330502362 + 42 2 Cd 5d+1 0.0269806850540785 -0.0251618673680791 + 43 2 Cd 5d+2 0.0002046720017763 -0.0045276994347366 + 44 2 Cd 5f-3 -0.0019825123441614 -0.0024652308765887 + 45 2 Cd 5f-2 -0.0090479739066081 0.0008720046000440 + 46 2 Cd 5f-1 0.0060815802414407 -0.0047265981507711 + 47 2 Cd 5f0 0.0064572815808728 0.0009155063328020 + 48 2 Cd 5f+1 0.0012589000777520 -0.0028337041122708 + 49 2 Cd 5f+2 0.0101082574589767 0.0043535452771296 + 50 2 Cd 5f+3 -0.0042561182355549 0.0018977951224501 + + 51 3 Cd 2s 0.0367133415411974 -0.0265637168023729 + 52 3 Cd 3s 0.0034688269375899 -0.0075557463111712 + 53 3 Cd 3py -0.0708492947184529 0.0045030159931392 + 54 3 Cd 3pz 0.0274220016729568 0.0011658457061580 + 55 3 Cd 3px -0.0405897265174848 -0.0143746648783512 + 56 3 Cd 4py -0.0192106932762750 0.0038743881729749 + 57 3 Cd 4pz -0.0001939948297252 -0.0014387703169896 + 58 3 Cd 4px -0.0089808310625180 -0.0079531111552906 + 59 3 Cd 4d-2 -0.0262197810133082 0.0077974874436561 + 60 3 Cd 4d-1 -0.0058473943211274 0.0009349901094960 + 61 3 Cd 4d0 0.0139791690518887 0.0020142557368871 + 62 3 Cd 4d+1 -0.0246846755322677 -0.0047835766277915 + 63 3 Cd 4d+2 0.0047932711777921 0.0077062358436599 + 64 3 Cd 5d-2 0.0121285561243374 -0.0069927164407014 + 65 3 Cd 5d-1 0.0180565286848820 0.0038132067871521 + 66 3 Cd 5d0 0.0073329019837758 -0.0047022137981409 + 67 3 Cd 5d+1 0.0019319552156456 0.0028959742102311 + 68 3 Cd 5d+2 -0.0112571828837391 -0.0023577546184500 + 69 3 Cd 5f-3 -0.0048160808694857 0.0051910673494758 + 70 3 Cd 5f-2 -0.0158402297893893 0.0031521920507227 + 71 3 Cd 5f-1 -0.0107150264481692 0.0000163612812743 + 72 3 Cd 5f0 0.0014209665698020 0.0002889782358765 + 73 3 Cd 5f+1 -0.0074470238934528 0.0017248554498973 + 74 3 Cd 5f+2 0.0020298268953158 0.0012943518120731 + 75 3 Cd 5f+3 0.0047071869285012 0.0033469390803336 + + 76 4 Se 2s 0.0170305273104477 -0.0989445997745777 + 77 4 Se 3s -0.0016093884884847 0.0138750596772813 + 78 4 Se 3py -0.0026217966879380 0.1219816215356695 + 79 4 Se 3pz -0.0348948299247589 -0.1462398722043479 + 80 4 Se 3px 0.0044723450975057 0.1691984752618032 + 81 4 Se 4py -0.0034695982446836 -0.0204787028039091 + 82 4 Se 4pz 0.0114786463127379 0.0175092383127249 + 83 4 Se 4px 0.0022442970891011 -0.0318261257386503 + 84 4 Se 4d-2 0.0015329209323727 0.0008741849197577 + 85 4 Se 4d-1 -0.0031150693360086 0.0001286988828673 + 86 4 Se 4d0 -0.0024346106010299 0.0028509149538446 + 87 4 Se 4d+1 0.0043840712834723 -0.0168159480522498 + 88 4 Se 4d+2 0.0006347712296218 0.0017406736294468 + + 89 5 Se 2s 0.0311540665862335 -0.0296150752735409 + 90 5 Se 3s -0.0035993506599847 0.0043867316779001 + 91 5 Se 3py -0.0367872832408207 -0.0538450896530820 + 92 5 Se 3pz -0.1315937056284319 -0.0273820460978389 + 93 5 Se 3px -0.0937648909400592 0.0077509778695901 + 94 5 Se 4py -0.0025065871295716 0.0066261767731906 + 95 5 Se 4pz 0.0189298144142773 0.0044631027000553 + 96 5 Se 4px 0.0122912547384884 -0.0077265332570173 + 97 5 Se 4d-2 -0.0081030772729103 0.0030041704564074 + 98 5 Se 4d-1 -0.0005985981235280 -0.0012518862560281 + 99 5 Se 4d0 0.0035307404030990 0.0005553483319444 + 100 5 Se 4d+1 0.0001564943176151 0.0020758562212549 + 101 5 Se 4d+2 0.0042912895845129 0.0015209776122826 + + 102 6 Se 2s -0.0576424803216383 -0.1031510749715996 + 103 6 Se 3s 0.0090893023272227 0.0161609870494798 + 104 6 Se 3py -0.0113215082017799 -0.1646983455605762 + 105 6 Se 3pz -0.2501104187337229 -0.0263506679978878 + 106 6 Se 3px 0.1348240653406729 0.2423263860288150 + 107 6 Se 4py 0.0027749903243686 0.0303268559871643 + 108 6 Se 4pz 0.0188805933753696 -0.0012466508427389 + 109 6 Se 4px -0.0170183117380812 -0.0486933770677931 + 110 6 Se 4d-2 0.0018366171815442 -0.0094644360367004 + 111 6 Se 4d-1 -0.0048375271891552 -0.0044867565497899 + 112 6 Se 4d0 0.0109224366576130 -0.0016472445573189 + 113 6 Se 4d+1 -0.0078532392389291 0.0003244327025819 + 114 6 Se 4d+2 0.0013005161496664 -0.0015185013410596 + + 115 7 Se 2s -0.0240041304932214 -0.1596730405011444 + 116 7 Se 3s 0.0028103398514412 0.0261829468978588 + 117 7 Se 3py 0.0623361391702274 0.2368368784431950 + 118 7 Se 3pz -0.0142817280322509 0.3608291829178748 + 119 7 Se 3px 0.0053041263960711 -0.1204085741926348 + 120 7 Se 4py -0.0098749425466230 -0.0486300757267802 + 121 7 Se 4pz -0.0053135642676607 -0.0803763849209955 + 122 7 Se 4px -0.0008136621331198 0.0218457188636250 + 123 7 Se 4d-2 -0.0032916617547722 -0.0029022615457550 + 124 7 Se 4d-1 -0.0054361341192503 0.0143474639199809 + 125 7 Se 4d0 -0.0017361626076300 0.0044439841147208 + 126 7 Se 4d+1 0.0043443655545762 -0.0071334671955739 + 127 7 Se 4d+2 -0.0038244643137335 -0.0023413486444427 + + 128 8 Cd 2s -0.0597262710056330 -0.2204579726391646 + 129 8 Cd 3s -0.0026137743769360 -0.0183208748090457 + 130 8 Cd 3py -0.0017429125950225 -0.0051633995778802 + 131 8 Cd 3pz 0.0021321784365086 0.0041149052782740 + 132 8 Cd 3px 0.0251848012862307 -0.1766496141552638 + 133 8 Cd 4py -0.0025919284365492 -0.0083340435027401 + 134 8 Cd 4pz -0.0046528870508156 -0.0098047931038859 + 135 8 Cd 4px 0.0015588793410761 -0.0220403692996310 + 136 8 Cd 4d-2 -0.0220429338398216 0.0079785685718181 + 137 8 Cd 4d-1 -0.0071526361131027 0.0142120598710967 + 138 8 Cd 4d0 0.0114330371497334 0.0327665906405798 + 139 8 Cd 4d+1 0.0070931385092494 0.0330414229963921 + 140 8 Cd 4d+2 0.0019521938072704 -0.0456954403075794 + 141 8 Cd 5d-2 -0.0211917780868537 0.0094157721381816 + 142 8 Cd 5d-1 0.0123843194938016 0.0119978200254679 + 143 8 Cd 5d0 0.0069438465897108 0.0247634202871642 + 144 8 Cd 5d+1 0.0071224582525345 0.0183526526978192 + 145 8 Cd 5d+2 -0.0027932538719952 -0.0638711725608058 + 146 8 Cd 5f-3 0.0029732410937431 -0.0015181779041912 + 147 8 Cd 5f-2 0.0072849897592717 -0.0000960356969531 + 148 8 Cd 5f-1 0.0013048142101143 -0.0009150845151778 + 149 8 Cd 5f0 0.0031852550359079 0.0011379993173599 + 150 8 Cd 5f+1 0.0012648078440568 0.0077586624444086 + 151 8 Cd 5f+2 0.0006580664925043 0.0044953574593486 + 152 8 Cd 5f+3 0.0038809285910393 -0.0085676944797381 + + 153 9 Cd 2s -0.4219454537180620 -0.1216089841076668 + 154 9 Cd 3s -0.0287596102953916 -0.0154318665301293 + 155 9 Cd 3py 0.0335126700053437 -0.0308439045027768 + 156 9 Cd 3pz -0.1881398962581004 0.0036433331164907 + 157 9 Cd 3px -0.0362255866637538 -0.0250895023396170 + 158 9 Cd 4py 0.0043398826173763 -0.0014142794492240 + 159 9 Cd 4pz -0.0067162444134744 0.0009599887201666 + 160 9 Cd 4px 0.0044499057701419 -0.0031781313657261 + 161 9 Cd 4d-2 -0.0022829911846946 0.0033745553683600 + 162 9 Cd 4d-1 0.0093049193772690 0.0195399609713486 + 163 9 Cd 4d0 -0.0171022996211661 -0.0140067964000072 + 164 9 Cd 4d+1 -0.0257664846348622 -0.0307359902069587 + 165 9 Cd 4d+2 0.0549772087062786 0.0401725920599111 + 166 9 Cd 5d-2 0.0096429949726917 -0.0037622030544133 + 167 9 Cd 5d-1 -0.0085860327586533 0.0119581224484470 + 168 9 Cd 5d0 -0.0196938214388924 -0.0058936359384553 + 169 9 Cd 5d+1 -0.0226963836354295 -0.0140480153950764 + 170 9 Cd 5d+2 0.0076050657880481 0.0185922048858199 + 171 9 Cd 5f-3 0.0027490675154140 0.0034275183137846 + 172 9 Cd 5f-2 -0.0035941729314177 0.0019916011501496 + 173 9 Cd 5f-1 0.0030134161816277 -0.0070216529077973 + 174 9 Cd 5f0 0.0002810547071487 -0.0006836884251042 + 175 9 Cd 5f+1 0.0021546754371365 0.0035696973371178 + 176 9 Cd 5f+2 0.0050142004795835 -0.0025135726774440 + 177 9 Cd 5f+3 0.0007382860996236 0.0018458107810484 + + 178 10 Se 2s -0.1146225141220988 -0.0382832884304051 + 179 10 Se 3s 0.0188520068710090 0.0040793974687672 + 180 10 Se 3py -0.0511709493911817 -0.0942142824414315 + 181 10 Se 3pz -0.0307711019876690 0.0296423831134917 + 182 10 Se 3px -0.2112759688097976 -0.1570046363102698 + 183 10 Se 4py 0.0117287693087248 0.0149614305518274 + 184 10 Se 4pz -0.0088115530180549 -0.0193405775015197 + 185 10 Se 4px 0.0190335775527472 0.0108703232924603 + 186 10 Se 4d-2 -0.0030129468608318 0.0037929489532098 + 187 10 Se 4d-1 -0.0033392475468285 -0.0062546965544974 + 188 10 Se 4d0 -0.0033627415788826 -0.0031542349288320 + 189 10 Se 4d+1 0.0178990296488101 -0.0057983920044824 + 190 10 Se 4d+2 0.0145789096548918 -0.0002612796715128 + + 191 11 Se 2s 0.1628812917068719 0.0007640869430291 + 192 11 Se 3s -0.0235124720714140 -0.0000475313672665 + 193 11 Se 3py -0.0158686586923298 0.0032900907255501 + 194 11 Se 3pz -0.3723447314571229 0.0424479277669363 + 195 11 Se 3px 0.0410607448137038 -0.0437580972258553 + 196 11 Se 4py -0.0253546803300508 0.0010452779141452 + 197 11 Se 4pz 0.0240219589673918 -0.0072070280573117 + 198 11 Se 4px -0.0023520806363689 0.0088993531276591 + 199 11 Se 4d-2 0.0013071012254198 0.0008685788478039 + 200 11 Se 4d-1 -0.0210402265763606 -0.0028898523321233 + 201 11 Se 4d0 -0.0160490609121543 0.0020152428203369 + 202 11 Se 4d+1 0.0035416011588098 0.0019508774054405 + 203 11 Se 4d+2 0.0009394998363598 -0.0009359688848009 + + 204 12 Cd 2s -0.0382209868642015 0.0854757661762242 + 205 12 Cd 3s -0.0004442244710979 -0.0022314194965959 + 206 12 Cd 3py -0.0942259204165054 -0.0311652199842789 + 207 12 Cd 3pz -0.0092284501728936 -0.0141944169900680 + 208 12 Cd 3px 0.0903122735668573 -0.0253479780258331 + 209 12 Cd 4py -0.0084522607713586 -0.0109827396822219 + 210 12 Cd 4pz 0.0008433068341063 -0.0088897769427046 + 211 12 Cd 4px 0.0069364264678607 -0.0021739098498135 + 212 12 Cd 4d-2 0.0011019630761502 0.0132977141439765 + 213 12 Cd 4d-1 -0.0225409268614570 0.0029768329735501 + 214 12 Cd 4d0 -0.0144396651574439 -0.0182122451199636 + 215 12 Cd 4d+1 0.0195085651609873 -0.0001931808462038 + 216 12 Cd 4d+2 0.0066945789682200 0.0016053579423006 + 217 12 Cd 5d-2 -0.0117860570053564 -0.0015426545709675 + 218 12 Cd 5d-1 -0.0370339522325875 -0.0013445153890256 + 219 12 Cd 5d0 -0.0207239247496514 -0.0181508924726770 + 220 12 Cd 5d+1 0.0420195919137696 0.0032844318873230 + 221 12 Cd 5d+2 0.0174137682222314 0.0207810733814910 + 222 12 Cd 5f-3 0.0008766566208287 0.0057230676302803 + 223 12 Cd 5f-2 -0.0010121960973568 -0.0029467637353485 + 224 12 Cd 5f-1 -0.0012590159176612 -0.0033998748037851 + 225 12 Cd 5f0 -0.0035363601302444 0.0087802254677158 + 226 12 Cd 5f+1 0.0030848084789034 0.0044956269698750 + 227 12 Cd 5f+2 0.0008661161326706 -0.0006836479019782 + 228 12 Cd 5f+3 0.0009454512909458 0.0033504750297683 + + 229 13 Cd 2s 0.0304289028371760 0.0520848296562996 + 230 13 Cd 3s 0.0032540467351786 -0.0077153723963478 + 231 13 Cd 3py 0.0079760934166164 0.0099871833735344 + 232 13 Cd 3pz -0.0158151788398974 0.0103780382830060 + 233 13 Cd 3px -0.0058475510096063 -0.0465255413384625 + 234 13 Cd 4py 0.0025171995065113 0.0007198980693824 + 235 13 Cd 4pz 0.0005101082776342 0.0032420755375795 + 236 13 Cd 4px -0.0008994832403256 -0.0100425118689036 + 237 13 Cd 4d-2 0.0060430658032238 -0.0028779386727984 + 238 13 Cd 4d-1 -0.0029684422604153 -0.0040988117426360 + 239 13 Cd 4d0 0.0029800625833383 -0.0076162211590716 + 240 13 Cd 4d+1 -0.0018286454939450 0.0153806012307522 + 241 13 Cd 4d+2 0.0069964541968934 -0.0020997152740176 + 242 13 Cd 5d-2 -0.0020975756724327 0.0071515550139371 + 243 13 Cd 5d-1 -0.0054206202903129 -0.0079562238270246 + 244 13 Cd 5d0 -0.0082596614729224 -0.0066132612209083 + 245 13 Cd 5d+1 0.0057908672247742 0.0111182212216424 + 246 13 Cd 5d+2 0.0195237003909029 -0.0059537556948714 + 247 13 Cd 5f-3 -0.0031852814334590 -0.0019546364920994 + 248 13 Cd 5f-2 -0.0022772415503635 0.0018186267276533 + 249 13 Cd 5f-1 0.0022127032289768 0.0015859372745476 + 250 13 Cd 5f0 -0.0022602986303716 -0.0015039119294079 + 251 13 Cd 5f+1 0.0002225651840509 0.0051883767815446 + 252 13 Cd 5f+2 0.0015076415174944 -0.0000767511912682 + 253 13 Cd 5f+3 -0.0045182215411961 0.0003425219614930 + + 254 14 Cd 2s 0.0182763876815920 0.0057958531862142 + 255 14 Cd 3s -0.0016523485046332 -0.0030987734664653 + 256 14 Cd 3py 0.0473262425102906 0.0793006354468792 + 257 14 Cd 3pz -0.0259942921311471 0.0032157227597157 + 258 14 Cd 3px 0.0303677385579048 -0.1071919138727020 + 259 14 Cd 4py 0.0039182698029792 0.0051551443233040 + 260 14 Cd 4pz 0.0006187922258638 -0.0059911129018358 + 261 14 Cd 4px 0.0019862481159796 -0.0128749357979242 + 262 14 Cd 4d-2 -0.0051795278359171 0.0078471401594974 + 263 14 Cd 4d-1 -0.0010940240031299 -0.0254429995819727 + 264 14 Cd 4d0 -0.0039856798768328 0.0033610521035400 + 265 14 Cd 4d+1 -0.0006122432926090 0.0031113739724055 + 266 14 Cd 4d+2 0.0000734233422129 0.0052896348792658 + 267 14 Cd 5d-2 0.0011156962783753 0.0191617389904225 + 268 14 Cd 5d-1 -0.0005652960953926 -0.0174268023321032 + 269 14 Cd 5d0 0.0021325027603525 -0.0057110727664054 + 270 14 Cd 5d+1 -0.0039939173685862 0.0112996614697561 + 271 14 Cd 5d+2 -0.0004428978120550 0.0107941189822586 + 272 14 Cd 5f-3 0.0009717839904006 -0.0032967014743796 + 273 14 Cd 5f-2 0.0006980502653570 -0.0041083122133105 + 274 14 Cd 5f-1 -0.0028142569206813 -0.0046776745853196 + 275 14 Cd 5f0 0.0002180963204910 -0.0004658293249099 + 276 14 Cd 5f+1 0.0008738685193265 0.0048354714065364 + 277 14 Cd 5f+2 0.0006543403269409 -0.0049137789931824 + 278 14 Cd 5f+3 0.0004673137493475 0.0030938776762339 + + 279 15 Se 2s 0.0326164650664448 0.0536037367317136 + 280 15 Se 3s -0.0049498622298667 -0.0096682502070277 + 281 15 Se 3py -0.0338166586410412 -0.0627245194817719 + 282 15 Se 3pz -0.0274183380467044 -0.0089407162544094 + 283 15 Se 3px 0.0171878245920824 -0.0845151190324804 + 284 15 Se 4py 0.0087965330380094 0.0111656704305840 + 285 15 Se 4pz 0.0051012062925323 -0.0012402000704371 + 286 15 Se 4px -0.0012712663981209 0.0124694650602026 + 287 15 Se 4d-2 -0.0029799195729735 -0.0025755204824863 + 288 15 Se 4d-1 -0.0055894851242247 -0.0084417301158411 + 289 15 Se 4d0 -0.0017635477519186 0.0012046997733977 + 290 15 Se 4d+1 -0.0055432093153874 0.0069349946259573 + 291 15 Se 4d+2 0.0002961047198626 -0.0003581433009231 + + 292 16 Se 2s 0.0400598415716483 -0.0171592424918347 + 293 16 Se 3s -0.0061602079071618 0.0022649856700072 + 294 16 Se 3py -0.0382468330661065 0.0592357606978406 + 295 16 Se 3pz 0.0000228674831866 -0.0115637312122260 + 296 16 Se 3px -0.0250710602710314 -0.0328063238791663 + 297 16 Se 4py 0.0035929436530304 -0.0028428143384396 + 298 16 Se 4pz -0.0056109405688696 0.0095645472767324 + 299 16 Se 4px -0.0001787003464916 0.0063735689448331 + 300 16 Se 4d-2 0.0002885483745412 0.0026950600181631 + 301 16 Se 4d-1 -0.0047961084049876 -0.0028514173306387 + 302 16 Se 4d0 0.0007578784168887 -0.0032656383612700 + 303 16 Se 4d+1 -0.0049525983741449 0.0041749235351100 + 304 16 Se 4d+2 -0.0002744739572618 0.0024925649951091 + + 305 17 Cd 2s 0.1681445724873714 -0.0507371517125652 + 306 17 Cd 3s 0.0202785737845184 -0.0114152146068245 + 307 17 Cd 3py -0.0312296047496549 -0.0028752743518116 + 308 17 Cd 3pz -0.0896139448240700 -0.0428613573371389 + 309 17 Cd 3px -0.0341050094506422 0.0088503253896238 + 310 17 Cd 4py 0.0063582623079757 0.0008558940595214 + 311 17 Cd 4pz -0.0067771165441993 -0.0051678253239376 + 312 17 Cd 4px -0.0025321449920643 0.0079955339500838 + 313 17 Cd 4d-2 0.0200232512197878 0.0025887506618807 + 314 17 Cd 4d-1 0.0124601061576388 0.0041280407392725 + 315 17 Cd 4d0 0.0121052639273359 -0.0248770493424276 + 316 17 Cd 4d+1 0.0109475276921695 0.0044425121682799 + 317 17 Cd 4d+2 0.0026677509301468 0.0053230298698984 + 318 17 Cd 5d-2 0.0133952211219453 0.0099506842967096 + 319 17 Cd 5d-1 0.0196597075700763 -0.0023608567299779 + 320 17 Cd 5d0 -0.0003110632591908 -0.0165895714469134 + 321 17 Cd 5d+1 0.0161789648365878 0.0107976652738559 + 322 17 Cd 5d+2 0.0138030865717655 0.0044812857919171 + 323 17 Cd 5f-3 -0.0014219543620182 0.0043509162783095 + 324 17 Cd 5f-2 -0.0012253705350875 -0.0021731981420484 + 325 17 Cd 5f-1 -0.0000050195060400 0.0002127501611924 + 326 17 Cd 5f0 0.0010719304912488 0.0034608668103864 + 327 17 Cd 5f+1 -0.0006851930755826 0.0048072280380810 + 328 17 Cd 5f+2 0.0000129430506449 -0.0051769913545501 + 329 17 Cd 5f+3 -0.0031593299209508 0.0023101208771535 + + 330 18 Cd 2s 0.6362035580774976 -0.0260107673385091 + 331 18 Cd 3s 0.0538740122788383 -0.0082170508745776 + 332 18 Cd 3py -0.2236229837859854 -0.0284708662400578 + 333 18 Cd 3pz -0.1257283083577233 -0.0139830928279243 + 334 18 Cd 3px 0.0264623377034664 -0.0127637501014125 + 335 18 Cd 4py 0.0003184853441130 -0.0028916248667178 + 336 18 Cd 4pz -0.0040498658909998 -0.0020888709084811 + 337 18 Cd 4px -0.0089695557992418 -0.0024987379867950 + 338 18 Cd 4d-2 0.0135464147810670 -0.0012418326430507 + 339 18 Cd 4d-1 0.0467540334389706 -0.0165093948699517 + 340 18 Cd 4d0 -0.0909782473289207 0.0118159995320434 + 341 18 Cd 4d+1 -0.0133588299707283 0.0097018820550605 + 342 18 Cd 4d+2 0.0094753421068897 0.0018786347126428 + 343 18 Cd 5d-2 -0.0063348999055263 -0.0013115174551785 + 344 18 Cd 5d-1 0.0241063090830383 -0.0166115634129941 + 345 18 Cd 5d0 -0.0445191851709360 0.0013404869130411 + 346 18 Cd 5d+1 -0.0186551027663384 0.0042140940013202 + 347 18 Cd 5d+2 -0.0097311714762130 0.0000037062317997 + 348 18 Cd 5f-3 -0.0038982991278870 -0.0016570073109210 + 349 18 Cd 5f-2 -0.0053358639996798 0.0005430366838637 + 350 18 Cd 5f-1 -0.0026077580038901 0.0018939974457612 + 351 18 Cd 5f0 -0.0022214682331423 0.0007766303887756 + 352 18 Cd 5f+1 -0.0018669500136298 -0.0007196597382899 + 353 18 Cd 5f+2 -0.0000522554202671 0.0026128037441289 + 354 18 Cd 5f+3 -0.0008359738754024 -0.0014435753765018 + + 355 19 Se 2s 0.1814767013107324 -0.0651510339619361 + 356 19 Se 3s -0.0274133773266705 0.0109094599634056 + 357 19 Se 3py -0.1858033520358403 -0.0983809289143799 + 358 19 Se 3pz 0.2224895664263647 -0.1689132973006124 + 359 19 Se 3px 0.1814988914072183 0.0100786057698552 + 360 19 Se 4py 0.0001246465885222 0.0207550002605917 + 361 19 Se 4pz -0.0299604026080886 0.0354452554343860 + 362 19 Se 4px -0.0176025365518610 -0.0069910092506843 + 363 19 Se 4d-2 0.0073708343881560 -0.0016068567818438 + 364 19 Se 4d-1 0.0243570152014468 0.0073436134399444 + 365 19 Se 4d0 0.0091798512946489 0.0036632970714251 + 366 19 Se 4d+1 -0.0033918998007641 -0.0028965174501520 + 367 19 Se 4d+2 0.0130067216897667 0.0005020846653387 + + 368 20 Se 2s -0.0201470178652338 -0.1808317255567287 + 369 20 Se 3s 0.0046216590690556 0.0289614633386415 + 370 20 Se 3py 0.0163770512026649 -0.0390070210891482 + 371 20 Se 3pz -0.0371664938106781 -0.1296957998005583 + 372 20 Se 3px 0.0339467911587847 0.0135759987772957 + 373 20 Se 4py -0.0174187626675854 0.0072836719405990 + 374 20 Se 4pz -0.0087938904563835 0.0262350056048662 + 375 20 Se 4px -0.0042196024472911 -0.0102226649917895 + 376 20 Se 4d-2 0.0028875320067520 0.0105094633718459 + 377 20 Se 4d-1 0.0052178946171084 0.0265912619102535 + 378 20 Se 4d0 0.0023646915272525 0.0132774799956075 + 379 20 Se 4d+1 -0.0041125448650232 0.0236204668074214 + 380 20 Se 4d+2 0.0050772172581097 0.0060592567707851 + + 381 21 Se 2s -0.0300475092637974 0.0750022538180020 + 382 21 Se 3s 0.0037105384263405 -0.0107982748996169 + 383 21 Se 3py 0.0820559696618184 -0.0851548647381441 + 384 21 Se 3pz -0.0935934152633218 -0.0260229593789399 + 385 21 Se 3px 0.0406933063349049 -0.2217421096080385 + 386 21 Se 4py -0.0091679037562320 0.0014840403582491 + 387 21 Se 4pz 0.0108348332994442 0.0075498056968387 + 388 21 Se 4px 0.0031010723203833 -0.0020024430384668 + 389 21 Se 4d-2 0.0018069249063251 -0.0150576695995197 + 390 21 Se 4d-1 -0.0009404572654860 0.0003707694288033 + 391 21 Se 4d0 -0.0072059308254258 0.0029922578946807 + 392 21 Se 4d+1 0.0046684164800049 0.0014079217759991 + 393 21 Se 4d+2 0.0031006465344445 -0.0044961603628186 + + 394 22 Cd 2s 0.1281281476773965 0.0752246684315971 + 395 22 Cd 3s 0.0077886007452321 0.0020132594955531 + 396 22 Cd 3py 0.0026735799421016 0.0371712865271848 + 397 22 Cd 3pz -0.0205977879528854 0.0302645576089337 + 398 22 Cd 3px -0.0079059828137955 0.0292437638746629 + 399 22 Cd 4py -0.0030658782849526 0.0078185880286434 + 400 22 Cd 4pz 0.0020427547583682 0.0077876003986149 + 401 22 Cd 4px -0.0001798464729712 0.0042812535747632 + 402 22 Cd 4d-2 0.0025551661149986 -0.0093153922557580 + 403 22 Cd 4d-1 -0.0194666221822540 0.0064162381513029 + 404 22 Cd 4d0 -0.0077205985045731 0.0203831693964917 + 405 22 Cd 4d+1 0.0066464485304080 0.0048041384960436 + 406 22 Cd 4d+2 0.0060232459412510 0.0178511682918728 + 407 22 Cd 5d-2 -0.0003791261656843 -0.0178590706106897 + 408 22 Cd 5d-1 -0.0234806377777414 0.0052494551934058 + 409 22 Cd 5d0 -0.0118669920716539 0.0149756800945646 + 410 22 Cd 5d+1 0.0104345671926280 -0.0057574797270412 + 411 22 Cd 5d+2 0.0013373126119053 0.0273341173893080 + 412 22 Cd 5f-3 -0.0000555226495388 -0.0111147500917251 + 413 22 Cd 5f-2 -0.0016301994667902 0.0052684097911445 + 414 22 Cd 5f-1 0.0023162026658494 -0.0042381440370284 + 415 22 Cd 5f0 0.0011259848220950 -0.0072444048658405 + 416 22 Cd 5f+1 0.0006325277638923 -0.0023943505846828 + 417 22 Cd 5f+2 -0.0012535826742619 -0.0011238630211727 + 418 22 Cd 5f+3 -0.0006858979977601 -0.0050398843258303 + + 419 23 Se 2s 0.0884923328630768 -0.0428490424964732 + 420 23 Se 3s -0.0133855487447094 0.0060576812187309 + 421 23 Se 3py -0.0897118829244306 0.1437433135919058 + 422 23 Se 3pz 0.0547563880771853 -0.1229836842430265 + 423 23 Se 3px 0.0921819922443717 -0.0189178348295980 + 424 23 Se 4py 0.0214731262333581 -0.0268729818661691 + 425 23 Se 4pz -0.0131956991801826 0.0301584184388173 + 426 23 Se 4px -0.0143081438702608 0.0003422698522590 + 427 23 Se 4d-2 0.0002826087847464 0.0006840383085577 + 428 23 Se 4d-1 -0.0110700151160851 -0.0086498728494395 + 429 23 Se 4d0 0.0009819107106509 0.0000616598549950 + 430 23 Se 4d+1 0.0041573522892469 -0.0004389333174427 + 431 23 Se 4d+2 0.0038322268273228 -0.0024845080351006 + + 432 24 Se 2s -0.0332691182061540 0.0471325086091948 + 433 24 Se 3s 0.0047526445885906 -0.0065803772974250 + 434 24 Se 3py -0.0664756826070937 0.1417830781035060 + 435 24 Se 3pz -0.0984826399086876 0.1867895178427440 + 436 24 Se 3px -0.0251767484553706 -0.1624546282431145 + 437 24 Se 4py 0.0008374137910667 -0.0058957054301025 + 438 24 Se 4pz 0.0027022012767830 -0.0244976638927029 + 439 24 Se 4px 0.0125765767694297 0.0121841703609979 + 440 24 Se 4d-2 -0.0017602622409444 0.0143641219824032 + 441 24 Se 4d-1 0.0012169024489661 -0.0097545701252305 + 442 24 Se 4d0 0.0000187595225587 0.0025240299484382 + 443 24 Se 4d+1 0.0056714485271770 -0.0069237068623055 + 444 24 Se 4d+2 0.0008099814632759 0.0128407446225799 + + 445 25 Cd 2s 0.0291178792230446 -0.3260193425619131 + 446 25 Cd 3s 0.0040328928482237 -0.0215736274431396 + 447 25 Cd 3py -0.0037972005928189 -0.0140542009037361 + 448 25 Cd 3pz -0.0584009408089788 -0.0763312624656507 + 449 25 Cd 3px -0.0121149321286321 -0.1082383554950898 + 450 25 Cd 4py 0.0017449492807779 0.0030641350825556 + 451 25 Cd 4pz -0.0144403289205403 0.0012764849051454 + 452 25 Cd 4px 0.0024501259087638 -0.0115673670391925 + 453 25 Cd 4d-2 0.0002587192940876 -0.0009923478857532 + 454 25 Cd 4d-1 0.0152580438625614 -0.0152224680419935 + 455 25 Cd 4d0 0.0114588417921322 0.0104120362967869 + 456 25 Cd 4d+1 0.0041298208184294 -0.0352590066611404 + 457 25 Cd 4d+2 0.0007955488947832 -0.0124217980188713 + 458 25 Cd 5d-2 -0.0080078955785811 0.0201207599343852 + 459 25 Cd 5d-1 0.0088199890089980 -0.0167495697566060 + 460 25 Cd 5d0 0.0123462913469677 -0.0076948753411599 + 461 25 Cd 5d+1 -0.0021479852578056 -0.0136879585598819 + 462 25 Cd 5d+2 -0.0172621686186101 -0.0175878653760711 + 463 25 Cd 5f-3 -0.0018065668775304 0.0009995675775229 + 464 25 Cd 5f-2 -0.0051666103967039 -0.0039733395759205 + 465 25 Cd 5f-1 0.0037764524201263 0.0012948259387593 + 466 25 Cd 5f0 -0.0011530094161970 -0.0033083960167739 + 467 25 Cd 5f+1 -0.0020791368476463 -0.0015399997036659 + 468 25 Cd 5f+2 -0.0053659813322970 -0.0036030905423996 + 469 25 Cd 5f+3 -0.0058884059537189 0.0037229679961337 + + 470 26 Cd 2s -0.1143490185179142 0.3631980135836640 + 471 26 Cd 3s -0.0145625876230228 0.0307711734527607 + 472 26 Cd 3py -0.0134929509304316 0.0370990050046017 + 473 26 Cd 3pz -0.0243115381923243 0.0536305350260981 + 474 26 Cd 3px 0.0214079774011665 -0.1432669709142110 + 475 26 Cd 4py 0.0028003103897832 -0.0030580783147202 + 476 26 Cd 4pz -0.0010299297701393 0.0025478083303427 + 477 26 Cd 4px -0.0025934064542155 -0.0030538747529026 + 478 26 Cd 4d-2 0.0116333514623327 -0.0366317030469227 + 479 26 Cd 4d-1 0.0148476670970853 -0.0230686851666276 + 480 26 Cd 4d0 -0.0109769494464307 0.0309878616636301 + 481 26 Cd 4d+1 -0.0014270756220821 -0.0022613166929847 + 482 26 Cd 4d+2 -0.0137750488121780 0.0329172209129484 + 483 26 Cd 5d-2 0.0126715898937755 -0.0294596435180236 + 484 26 Cd 5d-1 0.0089469169366874 -0.0088904733948080 + 485 26 Cd 5d0 0.0006043520405538 0.0237234700111104 + 486 26 Cd 5d+1 0.0029557679434449 0.0038430196941798 + 487 26 Cd 5d+2 -0.0098200792355532 0.0216097723554324 + 488 26 Cd 5f-3 0.0021750313403123 0.0009916922667254 + 489 26 Cd 5f-2 0.0004552965964724 -0.0025818906998038 + 490 26 Cd 5f-1 0.0012533695608939 0.0024392121369266 + 491 26 Cd 5f0 -0.0043346603159425 0.0001893417529959 + 492 26 Cd 5f+1 0.0027955463911943 0.0028011392513251 + 493 26 Cd 5f+2 0.0003221333549143 0.0020824122531209 + 494 26 Cd 5f+3 -0.0001502624857991 -0.0001343200192055 + + 123 124 + -0.0941371950728356 -0.0841363706111037 + + 0.0000000000000000 0.0000000000000000 + + 1 1 Cd 2s -0.0023172936977139 -0.0530347199913402 + 2 1 Cd 3s 0.0052236892837106 0.0092181702298959 + 3 1 Cd 3py 0.0267120107051379 0.0235041674668727 + 4 1 Cd 3pz -0.0032215427496054 0.0031362297621204 + 5 1 Cd 3px -0.0596501736463399 -0.0597818993317869 + 6 1 Cd 4py 0.0105106216678387 0.0094581671511784 + 7 1 Cd 4pz -0.0052823044569985 -0.0003599928782641 + 8 1 Cd 4px -0.0077240262299279 -0.0061927264019776 + 9 1 Cd 4d-2 0.0018226026587207 -0.0032759017849499 + 10 1 Cd 4d-1 0.0031308155040237 0.0000820095597294 + 11 1 Cd 4d0 -0.0107272696178208 0.0127797863161827 + 12 1 Cd 4d+1 -0.0092024744883049 -0.0065900107650669 + 13 1 Cd 4d+2 0.0128030993449105 0.0054707940461860 + 14 1 Cd 5d-2 -0.0078464764476566 -0.0293257633009824 + 15 1 Cd 5d-1 0.0081587414100785 -0.0143944978770706 + 16 1 Cd 5d0 -0.0147553732294532 0.0033457274996739 + 17 1 Cd 5d+1 -0.0068702854185827 -0.0028199633450089 + 18 1 Cd 5d+2 0.0104612198415860 0.0034522890808723 + 19 1 Cd 5f-3 0.0023630332239304 0.0030072301297387 + 20 1 Cd 5f-2 0.0002955378830703 0.0062786844108594 + 21 1 Cd 5f-1 -0.0005298355451643 -0.0055023032313617 + 22 1 Cd 5f0 -0.0038528717963525 -0.0032999351773456 + 23 1 Cd 5f+1 0.0013199562862331 0.0038464487748175 + 24 1 Cd 5f+2 -0.0006163812170203 0.0012564001292905 + 25 1 Cd 5f+3 0.0010069027186277 0.0046178442330921 + + 26 2 Cd 2s 0.0087038563885780 -0.1593117057416489 + 27 2 Cd 3s -0.0029950598026558 -0.0086739786556886 + 28 2 Cd 3py 0.0061346197815459 -0.0645081532725919 + 29 2 Cd 3pz -0.0599669214584515 -0.0068810344599490 + 30 2 Cd 3px -0.0742546250310130 0.0572552467977513 + 31 2 Cd 4py 0.0094926411180665 -0.0093230522741995 + 32 2 Cd 4pz -0.0184041275720953 0.0015238498154390 + 33 2 Cd 4px -0.0087676523650970 0.0099881887408838 + 34 2 Cd 4d-2 -0.0001066119519420 0.0071057430456122 + 35 2 Cd 4d-1 0.0016259444339839 0.0259559251399706 + 36 2 Cd 4d0 -0.0008965435175400 0.0130943798809260 + 37 2 Cd 4d+1 0.0109626385624263 -0.0184300505540909 + 38 2 Cd 4d+2 -0.0067165845914528 0.0079281642321150 + 39 2 Cd 5d-2 -0.0014276009473407 0.0091551368560909 + 40 2 Cd 5d-1 0.0259825177072466 -0.0050006030931047 + 41 2 Cd 5d0 -0.0172407458318399 0.0178464561202332 + 42 2 Cd 5d+1 0.0314069140247313 -0.0171105625592584 + 43 2 Cd 5d+2 0.0122579941936556 0.0080154528389955 + 44 2 Cd 5f-3 -0.0008121332323352 0.0034165856627788 + 45 2 Cd 5f-2 -0.0069046654688467 0.0047337517963631 + 46 2 Cd 5f-1 0.0062429311899883 0.0005813690958344 + 47 2 Cd 5f0 0.0058162477750333 -0.0020746303809058 + 48 2 Cd 5f+1 0.0013316919945174 -0.0029492939768249 + 49 2 Cd 5f+2 0.0086777521200828 0.0016192959366492 + 50 2 Cd 5f+3 -0.0047467050792404 0.0014695778953651 + + 51 3 Cd 2s -0.0028008566032556 0.2559931227092662 + 52 3 Cd 3s -0.0055067889527888 0.0225377387781497 + 53 3 Cd 3py -0.0062429983937264 0.1054410670747287 + 54 3 Cd 3pz -0.0178577016652398 0.0555074744539520 + 55 3 Cd 3px -0.0113056990320766 -0.0718621141036127 + 56 3 Cd 4py -0.0034838573955227 0.0070644661141413 + 57 3 Cd 4pz -0.0006128071374328 0.0098323893490796 + 58 3 Cd 4px 0.0004133540363338 0.0027734078544743 + 59 3 Cd 4d-2 -0.0121923170123835 -0.0312733920424446 + 60 3 Cd 4d-1 0.0010665856575691 -0.0062315509763449 + 61 3 Cd 4d0 -0.0017669784236991 -0.0133710032967315 + 62 3 Cd 4d+1 0.0037227996199524 -0.0122561673528159 + 63 3 Cd 4d+2 -0.0205920932487538 -0.0001720919611127 + 64 3 Cd 5d-2 -0.0086183211835227 -0.0086386662883044 + 65 3 Cd 5d-1 -0.0055333911457575 0.0078432448882848 + 66 3 Cd 5d0 -0.0008859757665066 0.0059661795040560 + 67 3 Cd 5d+1 -0.0240399637564875 -0.0211766896741719 + 68 3 Cd 5d+2 -0.0041266899068109 0.0049365985504865 + 69 3 Cd 5f-3 0.0032679633072881 -0.0013266810139007 + 70 3 Cd 5f-2 0.0051904956132286 0.0022708750762811 + 71 3 Cd 5f-1 0.0015091244336926 0.0060823069859346 + 72 3 Cd 5f0 -0.0131566074648631 -0.0009390066198282 + 73 3 Cd 5f+1 0.0088888143459401 0.0017073699170636 + 74 3 Cd 5f+2 0.0035494737397987 -0.0035940999738191 + 75 3 Cd 5f+3 -0.0110751500839651 0.0035611314012132 + + 76 4 Se 2s 0.0046933405839006 -0.0234548894801786 + 77 4 Se 3s -0.0003615022906169 0.0027384527457984 + 78 4 Se 3py -0.0192049148699516 0.0151141211073804 + 79 4 Se 3pz -0.0194476334999087 -0.0863343597186615 + 80 4 Se 3px -0.1285274514134647 -0.0113137854191658 + 81 4 Se 4py 0.0032267980087351 -0.0059717452085557 + 82 4 Se 4pz 0.0085585267650776 0.0113724406718026 + 83 4 Se 4px 0.0227893943976446 0.0017451919993484 + 84 4 Se 4d-2 -0.0066090823627785 -0.0027562626901135 + 85 4 Se 4d-1 -0.0029290257516760 0.0039961349127107 + 86 4 Se 4d0 0.0053929742994523 0.0062040279231890 + 87 4 Se 4d+1 -0.0005346712790865 -0.0124466947612710 + 88 4 Se 4d+2 -0.0057705579600085 -0.0033812816219977 + + 89 5 Se 2s -0.0139732278361548 -0.0065157246085222 + 90 5 Se 3s 0.0011329299311747 0.0011024812483351 + 91 5 Se 3py 0.0014736802953053 0.0199562133126448 + 92 5 Se 3pz -0.0209054420181529 0.0657614959638242 + 93 5 Se 3px -0.0377573296180588 -0.0474306976590148 + 94 5 Se 4py 0.0056746001642387 -0.0001766364723209 + 95 5 Se 4pz 0.0035046505163086 -0.0143175192812558 + 96 5 Se 4px 0.0097631502116703 0.0045388403752066 + 97 5 Se 4d-2 0.0036997409512186 0.0063610178563783 + 98 5 Se 4d-1 0.0004510529540781 -0.0024742367415030 + 99 5 Se 4d0 0.0009761300616096 -0.0025486004855983 + 100 5 Se 4d+1 0.0024196201420565 0.0032147587091942 + 101 5 Se 4d+2 0.0007370012988783 -0.0045882386796401 + + 102 6 Se 2s -0.0785970788601679 0.0753276735436233 + 103 6 Se 3s 0.0096637861259052 -0.0118509719202981 + 104 6 Se 3py 0.0338049974622324 -0.0919498104314646 + 105 6 Se 3pz -0.2096746081864452 -0.0212021606541221 + 106 6 Se 3px 0.1395269715769446 -0.1659663604058996 + 107 6 Se 4py -0.0061949976594035 0.0150777846153388 + 108 6 Se 4pz 0.0120940918841193 0.0138651030979381 + 109 6 Se 4px -0.0238900836669759 0.0336175810789988 + 110 6 Se 4d-2 0.0053202416597166 -0.0090652417341558 + 111 6 Se 4d-1 -0.0047885906992097 0.0022535752086559 + 112 6 Se 4d0 0.0101083866328146 -0.0062216733888072 + 113 6 Se 4d+1 -0.0138157509036304 -0.0039224862753143 + 114 6 Se 4d+2 0.0000978093309590 -0.0063886364070329 + + 115 7 Se 2s -0.0266474052385026 -0.1170025714857804 + 116 7 Se 3s 0.0019564269065586 0.0203660511131333 + 117 7 Se 3py 0.0098682914062694 -0.0076457979158929 + 118 7 Se 3pz 0.0326377958333242 0.2212040649876558 + 119 7 Se 3px 0.0132633241563429 -0.0489100861428849 + 120 7 Se 4py -0.0063021096194683 -0.0072292502237252 + 121 7 Se 4pz -0.0073357853175021 -0.0524165324264877 + 122 7 Se 4px -0.0019483717367250 0.0060929020496575 + 123 7 Se 4d-2 -0.0024668291280375 -0.0023665618626413 + 124 7 Se 4d-1 -0.0031358044225066 -0.0055211209328550 + 125 7 Se 4d0 -0.0008791031408016 0.0050435144325600 + 126 7 Se 4d+1 0.0069522416459047 -0.0043572701846995 + 127 7 Se 4d+2 0.0023193708516030 -0.0044979286077737 + + 128 8 Cd 2s 0.0025561072599105 -0.0582871742520985 + 129 8 Cd 3s 0.0058843729846151 -0.0069685979744936 + 130 8 Cd 3py -0.1123864510581081 0.0008075514946061 + 131 8 Cd 3pz -0.0168809949770352 0.0386547174607752 + 132 8 Cd 3px -0.0259837528159261 -0.0666601074420210 + 133 8 Cd 4py -0.0223609076331873 0.0095272276193150 + 134 8 Cd 4pz 0.0001133122228682 0.0011964944408735 + 135 8 Cd 4px -0.0108320422043608 -0.0115479488941954 + 136 8 Cd 4d-2 0.0095770541047834 -0.0124900557235121 + 137 8 Cd 4d-1 0.0192714426153320 0.0249149895944026 + 138 8 Cd 4d0 -0.0147579707962747 -0.0013252119848105 + 139 8 Cd 4d+1 0.0199793867477953 -0.0078950022001000 + 140 8 Cd 4d+2 0.0161563962632146 -0.0025252357389073 + 141 8 Cd 5d-2 0.0420116513807223 -0.0328176412116293 + 142 8 Cd 5d-1 0.0507019049275140 -0.0187977597464120 + 143 8 Cd 5d0 -0.0265776418849416 -0.0060227995086787 + 144 8 Cd 5d+1 0.0301675215664889 0.0014147793593819 + 145 8 Cd 5d+2 -0.0385315667426196 0.0229362647352930 + 146 8 Cd 5f-3 0.0174957238985421 -0.0064941026239905 + 147 8 Cd 5f-2 -0.0003998860372246 -0.0026561536093074 + 148 8 Cd 5f-1 0.0077833618963812 0.0056379908576567 + 149 8 Cd 5f0 0.0120575481991776 -0.0111942462719436 + 150 8 Cd 5f+1 -0.0022384698467816 -0.0001336310217788 + 151 8 Cd 5f+2 0.0113386199365545 -0.0037317504444344 + 152 8 Cd 5f+3 0.0118476759530763 -0.0069547771198327 + + 153 9 Cd 2s -0.3582772584413227 0.1293424258847039 + 154 9 Cd 3s -0.0223589707416384 0.0069397221469522 + 155 9 Cd 3py 0.0960084028802138 -0.1161560168842750 + 156 9 Cd 3pz -0.1249305024951548 0.0295911743098080 + 157 9 Cd 3px -0.0604515070494957 0.0253857534241277 + 158 9 Cd 4py 0.0108951401378557 -0.0123308234438245 + 159 9 Cd 4pz -0.0104542555411614 0.0024752670854665 + 160 9 Cd 4px 0.0069359856203659 -0.0015338850763121 + 161 9 Cd 4d-2 -0.0061713773976927 0.0055231182237061 + 162 9 Cd 4d-1 0.0015914342825538 0.0006135131896434 + 163 9 Cd 4d0 -0.0137787007216615 0.0111986021992992 + 164 9 Cd 4d+1 -0.0484718881034006 0.0269712666803566 + 165 9 Cd 4d+2 0.0564519559568637 -0.0187014867481982 + 166 9 Cd 5d-2 -0.0049961063760928 0.0050241739475598 + 167 9 Cd 5d-1 -0.0199331593788462 0.0067810120716256 + 168 9 Cd 5d0 0.0027661654371111 0.0027368275424379 + 169 9 Cd 5d+1 -0.0403202879385942 0.0238239566133072 + 170 9 Cd 5d+2 0.0175601928825947 0.0120489320053878 + 171 9 Cd 5f-3 0.0026399955603279 0.0011797285582794 + 172 9 Cd 5f-2 -0.0011809534692278 0.0032756065622910 + 173 9 Cd 5f-1 0.0026795102876981 -0.0039506505789215 + 174 9 Cd 5f0 -0.0003344587123846 -0.0038657354396361 + 175 9 Cd 5f+1 -0.0028518464577617 -0.0005416164090328 + 176 9 Cd 5f+2 0.0012157390114499 -0.0032589528094558 + 177 9 Cd 5f+3 0.0022755739671808 -0.0014632103684470 + + 178 10 Se 2s 0.0212313091794861 -0.0096622252541989 + 179 10 Se 3s -0.0042561091783215 0.0013307479394332 + 180 10 Se 3py -0.0297765627173357 0.0198720552108702 + 181 10 Se 3pz -0.3180346430738877 0.0808143261769063 + 182 10 Se 3px -0.2741745568545049 0.1151568323123959 + 183 10 Se 4py 0.0065652805762839 -0.0047455979977239 + 184 10 Se 4pz 0.0539382268333366 -0.0126637812605683 + 185 10 Se 4px 0.0351231940644417 -0.0144328348830952 + 186 10 Se 4d-2 -0.0100615497050690 0.0116130270563962 + 187 10 Se 4d-1 -0.0088553458776731 0.0081751237067261 + 188 10 Se 4d0 -0.0158532764445229 0.0045980397560844 + 189 10 Se 4d+1 -0.0027590253194595 0.0056036123887753 + 190 10 Se 4d+2 0.0076447220204188 -0.0038342460799960 + + 191 11 Se 2s 0.0568689533134061 -0.0127565260973904 + 192 11 Se 3s -0.0112686101665953 0.0015839034643384 + 193 11 Se 3py 0.2341257941146719 0.0839029014128045 + 194 11 Se 3pz 0.1373684636157530 0.0239892575998387 + 195 11 Se 3px -0.1918031121666733 0.1295696411504080 + 196 11 Se 4py -0.0380701701838119 -0.0150458536389689 + 197 11 Se 4pz -0.0215923876079099 0.0023059981514966 + 198 11 Se 4px 0.0238844372209463 -0.0237553784627733 + 199 11 Se 4d-2 0.0139663126575426 -0.0157850482593127 + 200 11 Se 4d-1 0.0030060841960098 0.0056321562588396 + 201 11 Se 4d0 0.0182316435521477 0.0048322248832841 + 202 11 Se 4d+1 0.0075092913788742 -0.0129710753407687 + 203 11 Se 4d+2 0.0000558222896438 0.0093985770789019 + + 204 12 Cd 2s 0.6175702907567538 -0.2677414410627665 + 205 12 Cd 3s 0.0331045234704555 -0.0173965423849956 + 206 12 Cd 3py 0.0314090318135964 0.0538251673430390 + 207 12 Cd 3pz -0.0454622031517515 -0.0617303591279766 + 208 12 Cd 3px -0.1004240408963481 0.0742324592361031 + 209 12 Cd 4py -0.0092393263561454 -0.0014467372427638 + 210 12 Cd 4pz -0.0087393507633060 -0.0055704360542392 + 211 12 Cd 4px -0.0035717105984724 -0.0032941551435747 + 212 12 Cd 4d-2 0.0260366224038599 0.0093748272544934 + 213 12 Cd 4d-1 -0.0064875012026877 0.0023175189358529 + 214 12 Cd 4d0 -0.0031807196406509 0.0027027087455287 + 215 12 Cd 4d+1 -0.0136688112139304 0.0000003193656518 + 216 12 Cd 4d+2 -0.0134029959343024 0.0132168490734308 + 217 12 Cd 5d-2 -0.0067082492539055 -0.0020405436383901 + 218 12 Cd 5d-1 -0.0168103814074106 0.0133970221745140 + 219 12 Cd 5d0 0.0006397341764024 0.0149305627177786 + 220 12 Cd 5d+1 -0.0005583121226390 0.0011933732821177 + 221 12 Cd 5d+2 0.0191798719761641 0.0054900269361280 + 222 12 Cd 5f-3 0.0024446542829066 -0.0002187616920156 + 223 12 Cd 5f-2 0.0062077266685932 0.0029029540918805 + 224 12 Cd 5f-1 0.0063994525500786 0.0060691802742915 + 225 12 Cd 5f0 0.0073260867152519 -0.0102952610295186 + 226 12 Cd 5f+1 0.0034408427853726 -0.0055891430356030 + 227 12 Cd 5f+2 0.0000374012882691 -0.0024370021196375 + 228 12 Cd 5f+3 -0.0048251831251169 0.0053417761352973 + + 229 13 Cd 2s 0.1315648698457165 0.2507599909420198 + 230 13 Cd 3s 0.0092174766874552 0.0231713129653017 + 231 13 Cd 3py -0.1056004223137857 -0.0337334865421107 + 232 13 Cd 3pz 0.0462184062401860 0.0077756840936945 + 233 13 Cd 3px -0.1107151746135903 -0.1700290145669073 + 234 13 Cd 4py -0.0054326427963339 0.0034591132677336 + 235 13 Cd 4pz 0.0031222420167483 0.0027553464781128 + 236 13 Cd 4px -0.0037066930573528 -0.0348613535021242 + 237 13 Cd 4d-2 0.0321102806372139 0.0324156302100969 + 238 13 Cd 4d-1 -0.0292555838644081 -0.0228420628630400 + 239 13 Cd 4d0 -0.0185951895882085 -0.0146195567287599 + 240 13 Cd 4d+1 -0.0007968959036324 0.0115814682133746 + 241 13 Cd 4d+2 -0.0006865376015186 0.0191254760809017 + 242 13 Cd 5d-2 0.0249126283431125 0.0518320036829195 + 243 13 Cd 5d-1 -0.0142987326860429 -0.0009109933285598 + 244 13 Cd 5d0 -0.0050719836677374 -0.0180792083410486 + 245 13 Cd 5d+1 0.0008600778479322 0.0019390023876858 + 246 13 Cd 5d+2 -0.0000968687416316 0.0477688430938969 + 247 13 Cd 5f-3 -0.0001136272177712 -0.0086747287674975 + 248 13 Cd 5f-2 0.0001761164127501 -0.0011610611868252 + 249 13 Cd 5f-1 -0.0015947315389682 -0.0003632189393767 + 250 13 Cd 5f0 -0.0031847994039395 -0.0033376918354789 + 251 13 Cd 5f+1 0.0008215342052982 0.0087252769778553 + 252 13 Cd 5f+2 0.0039888171303240 0.0068021953414739 + 253 13 Cd 5f+3 -0.0002090385515021 -0.0074669691622705 + + 254 14 Cd 2s -0.0234152031396117 -0.1459439403945868 + 255 14 Cd 3s -0.0045751777103322 -0.0133692806034493 + 256 14 Cd 3py 0.0647151496141455 0.1083683354024518 + 257 14 Cd 3pz -0.0167528102975342 -0.0298047162859965 + 258 14 Cd 3px 0.0311862995578943 -0.0265083138248701 + 259 14 Cd 4py 0.0076291288243563 0.0070213316088947 + 260 14 Cd 4pz -0.0024046612321729 0.0047538884379542 + 261 14 Cd 4px 0.0030139650355819 0.0034081930756208 + 262 14 Cd 4d-2 -0.0079266086854411 -0.0015552138274418 + 263 14 Cd 4d-1 -0.0113593577541956 -0.0394644896476534 + 264 14 Cd 4d0 0.0006781688534577 0.0293363768521057 + 265 14 Cd 4d+1 0.0030119384709346 0.0068690059797194 + 266 14 Cd 4d+2 -0.0070160275017553 -0.0043546216543371 + 267 14 Cd 5d-2 -0.0081433753242253 -0.0148693101537555 + 268 14 Cd 5d-1 -0.0021335412586849 -0.0386904182550139 + 269 14 Cd 5d0 0.0067321703417104 0.0023034980842684 + 270 14 Cd 5d+1 0.0035951415852520 -0.0084374056744567 + 271 14 Cd 5d+2 -0.0043137076700360 -0.0072522107058807 + 272 14 Cd 5f-3 0.0022363811595440 0.0028049992410853 + 273 14 Cd 5f-2 -0.0005378718246629 0.0015069961680366 + 274 14 Cd 5f-1 -0.0031582538611550 -0.0039236561478375 + 275 14 Cd 5f0 0.0033319902096454 0.0006657784473934 + 276 14 Cd 5f+1 -0.0001431145434090 0.0035040803151967 + 277 14 Cd 5f+2 0.0035534157769125 0.0008699433421154 + 278 14 Cd 5f+3 -0.0002364055610030 -0.0008993928871786 + + 279 15 Se 2s 0.0469962821620767 0.1163461362874735 + 280 15 Se 3s -0.0074746177590410 -0.0193900532561185 + 281 15 Se 3py -0.1355322720031176 -0.2501156907016153 + 282 15 Se 3pz -0.0441443693215745 -0.1962415539223469 + 283 15 Se 3px 0.0297108029168287 -0.0556343075301703 + 284 15 Se 4py 0.0306142063478909 0.0561199958369872 + 285 15 Se 4pz 0.0073567016640569 0.0326614283860407 + 286 15 Se 4px -0.0018240684363283 0.0086087788534066 + 287 15 Se 4d-2 0.0029241920831413 -0.0069205550598453 + 288 15 Se 4d-1 -0.0086887117535035 -0.0180335627350106 + 289 15 Se 4d0 0.0040564572262060 0.0118390339575008 + 290 15 Se 4d+1 -0.0029165462766086 0.0002933157885542 + 291 15 Se 4d+2 0.0092485865938800 0.0082257311471213 + + 292 16 Se 2s 0.0095703187940501 0.0359553261817043 + 293 16 Se 3s -0.0002848300519315 -0.0031642640841486 + 294 16 Se 3py 0.0272965512715754 0.0757967252629065 + 295 16 Se 3pz 0.1387392635309262 0.0574946290016530 + 296 16 Se 3px -0.0582903890696118 -0.1202535505940239 + 297 16 Se 4py -0.0005824194373471 -0.0097613035795918 + 298 16 Se 4pz -0.0216811812204553 -0.0150595305344449 + 299 16 Se 4px 0.0124601821421185 0.0126774295199356 + 300 16 Se 4d-2 0.0048552493850912 0.0041360511397304 + 301 16 Se 4d-1 0.0026409229555822 -0.0096857729181408 + 302 16 Se 4d0 -0.0048183016639823 -0.0053049131383280 + 303 16 Se 4d+1 0.0090515864802484 0.0048099490554951 + 304 16 Se 4d+2 -0.0020319045217232 0.0010804197319384 + + 305 17 Cd 2s -0.0879087596965980 0.0191280690377882 + 306 17 Cd 3s -0.0007627519184334 0.0127634551642150 + 307 17 Cd 3py 0.0133427289741242 -0.0188566076095267 + 308 17 Cd 3pz 0.0692257881777632 -0.0949556152543870 + 309 17 Cd 3px -0.0006507747085743 -0.0159360839705857 + 310 17 Cd 4py 0.0000200592784049 -0.0046956852665224 + 311 17 Cd 4pz 0.0047746586589253 -0.0084230670645677 + 312 17 Cd 4px -0.0031794367489281 -0.0054819884300673 + 313 17 Cd 4d-2 -0.0096083571365317 -0.0121382925465904 + 314 17 Cd 4d-1 -0.0012407375205714 0.0005877538353559 + 315 17 Cd 4d0 0.0090135287710991 0.0094933875682774 + 316 17 Cd 4d+1 -0.0044416316959249 0.0094476743112090 + 317 17 Cd 4d+2 -0.0055337917122134 0.0012719970030859 + 318 17 Cd 5d-2 0.0006141648003543 -0.0066232648618992 + 319 17 Cd 5d-1 -0.0098050091087048 -0.0154161284028411 + 320 17 Cd 5d0 0.0087316841599621 0.0045501303469815 + 321 17 Cd 5d+1 -0.0224933480264194 -0.0002358626000113 + 322 17 Cd 5d+2 0.0037971715374808 0.0235145086567776 + 323 17 Cd 5f-3 -0.0003575222254002 -0.0074074449153106 + 324 17 Cd 5f-2 0.0019231683437177 0.0038812626318611 + 325 17 Cd 5f-1 0.0000607321698783 -0.0016276265464242 + 326 17 Cd 5f0 -0.0012800070915548 -0.0036645921884411 + 327 17 Cd 5f+1 -0.0028213707194822 -0.0056801955509163 + 328 17 Cd 5f+2 0.0003603936999685 0.0034046106671838 + 329 17 Cd 5f+3 -0.0013355375010138 -0.0050072794232339 + + 330 18 Cd 2s -0.2276672314541272 -0.0799371909589318 + 331 18 Cd 3s -0.0163904601096511 -0.0018201627672532 + 332 18 Cd 3py 0.0630133216236557 0.0558180410632910 + 333 18 Cd 3pz 0.0425173225460717 0.0140751585328087 + 334 18 Cd 3px 0.0067869992252492 -0.0758928179616841 + 335 18 Cd 4py 0.0009480779625088 0.0032879828832520 + 336 18 Cd 4pz -0.0009438334524116 0.0050652314641295 + 337 18 Cd 4px -0.0004327675101349 -0.0014993530631692 + 338 18 Cd 4d-2 -0.0096854437585123 -0.0001346398655516 + 339 18 Cd 4d-1 -0.0276393329386992 -0.0054174080099946 + 340 18 Cd 4d0 0.0247959283509408 0.0086468187821034 + 341 18 Cd 4d+1 0.0139779747549539 -0.0096468740466949 + 342 18 Cd 4d+2 -0.0062668836455241 -0.0014720020824270 + 343 18 Cd 5d-2 -0.0122292495064797 0.0085051020904267 + 344 18 Cd 5d-1 -0.0220261524521470 0.0068368348202003 + 345 18 Cd 5d0 0.0122352912997803 0.0105393310284324 + 346 18 Cd 5d+1 0.0172816279949452 -0.0031881969803353 + 347 18 Cd 5d+2 -0.0060890336737199 -0.0015873878060162 + 348 18 Cd 5f-3 0.0000741657982557 0.0016139565549683 + 349 18 Cd 5f-2 -0.0003392493771559 0.0058327996323291 + 350 18 Cd 5f-1 0.0017195440567246 0.0002236337663699 + 351 18 Cd 5f0 -0.0032292890692244 -0.0020459026505637 + 352 18 Cd 5f+1 0.0020436651875783 0.0034091067175068 + 353 18 Cd 5f+2 -0.0004277911388174 -0.0031714028364994 + 354 18 Cd 5f+3 -0.0000888600919359 0.0014935108658987 + + 355 19 Se 2s -0.0659852613819785 0.0432086803508413 + 356 19 Se 3s 0.0094379201056255 -0.0068701520283046 + 357 19 Se 3py 0.0740815855630242 0.0877908151283334 + 358 19 Se 3pz -0.0558723251974229 0.0200109016053960 + 359 19 Se 3px -0.0967800546757296 -0.1038729817332488 + 360 19 Se 4py 0.0032861900433570 -0.0056749264647098 + 361 19 Se 4pz 0.0039143065580175 -0.0169921260118823 + 362 19 Se 4px 0.0124752309324072 0.0213500391088036 + 363 19 Se 4d-2 0.0001207825275176 0.0019260347363226 + 364 19 Se 4d-1 -0.0137727730037388 0.0020962511016649 + 365 19 Se 4d0 -0.0029604740461471 -0.0024167487933664 + 366 19 Se 4d+1 0.0028642954561712 0.0078824627220249 + 367 19 Se 4d+2 -0.0057766615548770 -0.0014585759593466 + + 368 20 Se 2s 0.2232906138532700 0.1811881433206020 + 369 20 Se 3s -0.0389773152304418 -0.0318330320078473 + 370 20 Se 3py -0.0499789158859041 0.0624627771089107 + 371 20 Se 3pz 0.0715602137375963 -0.2290265363430127 + 372 20 Se 3px -0.1709130585228094 -0.0395562504724620 + 373 20 Se 4py 0.0065193946318255 -0.0301091557207558 + 374 20 Se 4pz -0.0177143624748618 0.0738704312090294 + 375 20 Se 4px 0.0360892667802642 0.0170913274290226 + 376 20 Se 4d-2 -0.0194860602766097 0.0198682176634266 + 377 20 Se 4d-1 0.0179124032296659 0.0259949966653809 + 378 20 Se 4d0 0.0053511249891725 0.0119210345219419 + 379 20 Se 4d+1 0.0115233750684653 -0.0198600003569635 + 380 20 Se 4d+2 0.0019361003857555 0.0022486726945204 + + 381 21 Se 2s -0.0586146328064663 0.0764719395644196 + 382 21 Se 3s 0.0088670856868617 -0.0141465103853494 + 383 21 Se 3py 0.0193565862853660 -0.0428207780425957 + 384 21 Se 3pz 0.0094610074687692 -0.2266795068953798 + 385 21 Se 3px 0.0738176810026126 0.0886745358319713 + 386 21 Se 4py 0.0019305393673849 0.0275193895504261 + 387 21 Se 4pz 0.0007744073807045 0.0398020640333313 + 388 21 Se 4px 0.0104646607516333 -0.0054158784271088 + 389 21 Se 4d-2 0.0093759022076684 0.0063091293039265 + 390 21 Se 4d-1 0.0015595603720262 -0.0027365782343178 + 391 21 Se 4d0 0.0010416903729532 -0.0224954472996633 + 392 21 Se 4d+1 0.0072658579514064 0.0232802588084857 + 393 21 Se 4d+2 0.0077048159097286 0.0045108911733678 + + 394 22 Cd 2s 0.0833678968842607 0.5394342101403227 + 395 22 Cd 3s 0.0102158211306370 0.0353671146672476 + 396 22 Cd 3py -0.0217279943770306 -0.0561253713635035 + 397 22 Cd 3pz 0.0065044826132349 0.0314433154720808 + 398 22 Cd 3px 0.1200783308436899 0.0202475101391818 + 399 22 Cd 4py 0.0007631224314234 -0.0075498795764925 + 400 22 Cd 4pz 0.0005191631457118 0.0013969024283914 + 401 22 Cd 4px 0.0091547247774247 -0.0033219952006608 + 402 22 Cd 4d-2 -0.0147759280800130 -0.0052087632535987 + 403 22 Cd 4d-1 -0.0041950750089433 -0.0509742402674780 + 404 22 Cd 4d0 -0.0176940907013540 -0.0635137233661898 + 405 22 Cd 4d+1 -0.0143353823879114 -0.0122233906349605 + 406 22 Cd 4d+2 0.0251146676650300 0.0296970988289647 + 407 22 Cd 5d-2 -0.0017586028509035 0.0005636362823375 + 408 22 Cd 5d-1 0.0027395509478593 -0.0301154299860041 + 409 22 Cd 5d0 -0.0090335906470372 -0.0295279330425252 + 410 22 Cd 5d+1 -0.0060061616595778 -0.0020467861215548 + 411 22 Cd 5d+2 0.0143809721362816 -0.0041580171859987 + 412 22 Cd 5f-3 0.0012603459983096 0.0080421816004206 + 413 22 Cd 5f-2 -0.0004765694152421 0.0005344290356988 + 414 22 Cd 5f-1 -0.0006563099797142 0.0015857048204962 + 415 22 Cd 5f0 0.0015611117840909 -0.0034898027662421 + 416 22 Cd 5f+1 -0.0002816579634022 -0.0046981267938127 + 417 22 Cd 5f+2 0.0052681057779411 0.0005521998373320 + 418 22 Cd 5f+3 0.0044916543653341 0.0032723952276175 + + 419 23 Se 2s -0.0064980909582914 0.1665013806601104 + 420 23 Se 3s 0.0014683961539810 -0.0246094070402897 + 421 23 Se 3py 0.0524965818302208 0.0397181471666517 + 422 23 Se 3pz 0.0870932309556130 0.4080833897524432 + 423 23 Se 3px 0.0231337944580837 0.0252309440776830 + 424 23 Se 4py -0.0066113068648010 0.0045558042767774 + 425 23 Se 4pz -0.0195098013150492 -0.0832705373042832 + 426 23 Se 4px -0.0000739770382828 -0.0042365760102486 + 427 23 Se 4d-2 -0.0050614874511056 -0.0100670570461519 + 428 23 Se 4d-1 0.0027810813629130 -0.0106047371924030 + 429 23 Se 4d0 -0.0016933921181368 -0.0113962047227494 + 430 23 Se 4d+1 -0.0083970407888273 0.0007782670152086 + 431 23 Se 4d+2 -0.0001407992459489 0.0038988003185512 + + 432 24 Se 2s 0.0971690065206480 0.0130272619220655 + 433 24 Se 3s -0.0178538606637344 -0.0017907210142196 + 434 24 Se 3py -0.0921695857168721 0.0459257545581502 + 435 24 Se 3pz 0.1461669249653788 -0.2102237060832552 + 436 24 Se 3px 0.3325404704145498 0.0677028715566953 + 437 24 Se 4py 0.0106376491738051 -0.0126186089415765 + 438 24 Se 4pz -0.0316238088084452 0.0300461111833560 + 439 24 Se 4px -0.0662125693268401 -0.0083229918033211 + 440 24 Se 4d-2 0.0009260013227598 -0.0107474144445453 + 441 24 Se 4d-1 0.0081796246243125 0.0005157876107058 + 442 24 Se 4d0 -0.0038831158609414 -0.0044886996764012 + 443 24 Se 4d+1 -0.0165278828307370 0.0210330658137135 + 444 24 Se 4d+2 -0.0164258192207206 -0.0047566640972518 + + 445 25 Cd 2s 0.0494763364914841 0.3447197718200578 + 446 25 Cd 3s 0.0002508315998456 0.0320587885253175 + 447 25 Cd 3py -0.0136056386952538 0.0621257359725270 + 448 25 Cd 3pz 0.0476379512079083 0.0413311046541904 + 449 25 Cd 3px -0.0096384334375345 -0.0435059665352527 + 450 25 Cd 4py -0.0032909683115380 0.0188881811046929 + 451 25 Cd 4pz 0.0110408090654677 -0.0041284315011368 + 452 25 Cd 4px -0.0081102303272352 -0.0005443153242618 + 453 25 Cd 4d-2 -0.0083459482063945 -0.0118470735067867 + 454 25 Cd 4d-1 -0.0061129852092847 0.0288386229533412 + 455 25 Cd 4d0 0.0040579008291037 -0.0034510340777274 + 456 25 Cd 4d+1 0.0126217361877291 0.0176957893018777 + 457 25 Cd 4d+2 0.0023858830619066 -0.0162140929092455 + 458 25 Cd 5d-2 -0.0124354041832430 -0.0045573072671631 + 459 25 Cd 5d-1 -0.0196325586518312 0.0393723877476809 + 460 25 Cd 5d0 0.0149754984354134 -0.0144565166039525 + 461 25 Cd 5d+1 0.0256343858004249 0.0170170737718226 + 462 25 Cd 5d+2 -0.0051947417768957 -0.0447782746319066 + 463 25 Cd 5f-3 -0.0037195734392313 -0.0061780699917050 + 464 25 Cd 5f-2 -0.0008580176495098 0.0096009741658387 + 465 25 Cd 5f-1 -0.0115884124958239 0.0000384397802869 + 466 25 Cd 5f0 0.0097601892760551 -0.0073357081902297 + 467 25 Cd 5f+1 0.0072648716724262 -0.0058062678021380 + 468 25 Cd 5f+2 -0.0004722150170801 -0.0039035805605172 + 469 25 Cd 5f+3 -0.0018993745101630 -0.0077839428816548 + + 470 26 Cd 2s -0.1641120671826503 -0.0892072253051780 + 471 26 Cd 3s -0.0073982405185206 -0.0027053623330386 + 472 26 Cd 3py -0.0472877108240278 -0.0304132580645263 + 473 26 Cd 3pz 0.0154494316111635 0.0191536012226560 + 474 26 Cd 3px 0.0777142516167179 0.0318543593146787 + 475 26 Cd 4py -0.0017658766530471 0.0011958858285978 + 476 26 Cd 4pz 0.0034796152441164 0.0017744928700048 + 477 26 Cd 4px 0.0042450950459079 -0.0020287208165097 + 478 26 Cd 4d-2 0.0173251199407074 -0.0006424924265240 + 479 26 Cd 4d-1 0.0090500561127148 0.0012136565855389 + 480 26 Cd 4d0 -0.0069991828048701 0.0070688353722523 + 481 26 Cd 4d+1 0.0184572184511509 -0.0111807814455637 + 482 26 Cd 4d+2 0.0070907965977822 -0.0011168280635447 + 483 26 Cd 5d-2 0.0121214452419883 0.0092139128385133 + 484 26 Cd 5d-1 0.0095751234236639 0.0109575958198048 + 485 26 Cd 5d0 -0.0132091653691397 0.0057941723152175 + 486 26 Cd 5d+1 0.0202347196337567 -0.0118886943971578 + 487 26 Cd 5d+2 0.0065029217586532 -0.0123494199677387 + 488 26 Cd 5f-3 -0.0051946171436551 0.0005719845048917 + 489 26 Cd 5f-2 0.0007809319626198 0.0046672211098248 + 490 26 Cd 5f-1 -0.0002589794143387 0.0028452925901887 + 491 26 Cd 5f0 -0.0036126778715702 0.0012064995876428 + 492 26 Cd 5f+1 -0.0040978910479439 0.0015245124043149 + 493 26 Cd 5f+2 -0.0033950418664505 -0.0060617548013111 + 494 26 Cd 5f+3 -0.0037479439842121 0.0028994214624418 + + 125 126 + -0.0753858553175112 -0.0670156202102734 + + 0.0000000000000000 0.0000000000000000 + + 1 1 Cd 2s -0.1259468875073881 -0.4404725834141799 + 2 1 Cd 3s -0.0175413800352518 -0.0295146311103928 + 3 1 Cd 3py -0.0446800828213438 -0.0971577176271625 + 4 1 Cd 3pz 0.0249334019233509 0.0936426190486367 + 5 1 Cd 3px -0.0536174844160857 -0.2023039697129870 + 6 1 Cd 4py -0.0044674949853712 0.0045105349791198 + 7 1 Cd 4pz 0.0003774844735870 0.0084273488927167 + 8 1 Cd 4px -0.0039963756464797 -0.0193025636631148 + 9 1 Cd 4d-2 -0.0082926650118814 -0.0102023128857943 + 10 1 Cd 4d-1 -0.0031940983532120 0.0114804019133640 + 11 1 Cd 4d0 0.0078971363036036 0.0021840507304543 + 12 1 Cd 4d+1 0.0016843054184741 0.0155349216957728 + 13 1 Cd 4d+2 -0.0127546700637198 -0.0357449070144143 + 14 1 Cd 5d-2 0.0036354283514579 -0.0270178135881794 + 15 1 Cd 5d-1 0.0095528297673434 0.0103521537366559 + 16 1 Cd 5d0 0.0029766580679174 -0.0083295888449869 + 17 1 Cd 5d+1 0.0099369542128796 -0.0017956663634318 + 18 1 Cd 5d+2 -0.0050347604638204 -0.0145870934236257 + 19 1 Cd 5f-3 -0.0034072997882622 -0.0011367265252116 + 20 1 Cd 5f-2 -0.0018843348053755 -0.0013792047384412 + 21 1 Cd 5f-1 0.0017975257484590 -0.0013801039651361 + 22 1 Cd 5f0 0.0018910337217084 -0.0020375880572436 + 23 1 Cd 5f+1 -0.0001248344670805 0.0052687587088523 + 24 1 Cd 5f+2 -0.0047495914774797 0.0000051594976017 + 25 1 Cd 5f+3 0.0003080748331780 0.0044109174601264 + + 26 2 Cd 2s -0.2571780967693335 -0.2735490995521697 + 27 2 Cd 3s -0.0194667111885560 -0.0179148477264499 + 28 2 Cd 3py -0.0679620213314076 -0.1943900328539049 + 29 2 Cd 3pz -0.0525748098274785 0.0022546151877941 + 30 2 Cd 3px 0.0193072133862711 -0.1898973005041863 + 31 2 Cd 4py -0.0046149134298393 -0.0125551847090600 + 32 2 Cd 4pz -0.0022201460974755 0.0146717146126721 + 33 2 Cd 4px 0.0069348310838371 -0.0311605977716700 + 34 2 Cd 4d-2 -0.0088328280402465 0.0043356288201861 + 35 2 Cd 4d-1 0.0122307000404073 -0.0025548724474150 + 36 2 Cd 4d0 0.0243295648705348 0.0204344931216334 + 37 2 Cd 4d+1 -0.0166887579094770 -0.0350751656078271 + 38 2 Cd 4d+2 -0.0055693838986500 0.0276583499694452 + 39 2 Cd 5d-2 -0.0111103376897936 0.0297840271741397 + 40 2 Cd 5d-1 -0.0016159647934640 -0.0023348730217325 + 41 2 Cd 5d0 0.0214877667882447 -0.0088212444786609 + 42 2 Cd 5d+1 -0.0138326492828669 -0.0611716862628478 + 43 2 Cd 5d+2 -0.0213997559774121 0.0786177503344081 + 44 2 Cd 5f-3 0.0025562212464728 -0.0063083077446126 + 45 2 Cd 5f-2 -0.0001018991201520 0.0034033156442408 + 46 2 Cd 5f-1 -0.0088446405724377 0.0021765948191100 + 47 2 Cd 5f0 0.0009018551706666 0.0005066919545074 + 48 2 Cd 5f+1 -0.0026681119114753 0.0151619239865696 + 49 2 Cd 5f+2 -0.0028083860063359 0.0024041143940275 + 50 2 Cd 5f+3 0.0109108477440295 -0.0076532508272646 + + 51 3 Cd 2s -0.1039665674166394 -0.1242349917951590 + 52 3 Cd 3s -0.0085597510067362 -0.0102332038391503 + 53 3 Cd 3py 0.0075369983536821 0.0453703419109011 + 54 3 Cd 3pz -0.0003457252106556 -0.0078438533449554 + 55 3 Cd 3px 0.0256286338986920 -0.0435113874265217 + 56 3 Cd 4py -0.0011876032879199 -0.0063516919288775 + 57 3 Cd 4pz 0.0003182601161112 0.0046733418688882 + 58 3 Cd 4px -0.0031098250744491 -0.0075344778502043 + 59 3 Cd 4d-2 0.0166500054984300 0.0170028226987950 + 60 3 Cd 4d-1 -0.0025210940728764 -0.0128295400232303 + 61 3 Cd 4d0 -0.0100391866209211 0.0079446214257719 + 62 3 Cd 4d+1 -0.0152173533358833 -0.0148370272833352 + 63 3 Cd 4d+2 -0.0184320571572178 0.0141581105214942 + 64 3 Cd 5d-2 0.0114352575360087 0.0236401070919251 + 65 3 Cd 5d-1 0.0109542492706924 0.0190960078774668 + 66 3 Cd 5d0 -0.0036737992849762 0.0180103645455753 + 67 3 Cd 5d+1 0.0000851022234566 0.0232832679664454 + 68 3 Cd 5d+2 -0.0105326025233324 0.0183156897985990 + 69 3 Cd 5f-3 0.0042787021238010 -0.0012301487121997 + 70 3 Cd 5f-2 -0.0012075511567265 0.0046386352419602 + 71 3 Cd 5f-1 -0.0000956123354246 -0.0033967733852307 + 72 3 Cd 5f0 -0.0037411074204672 -0.0038545841019387 + 73 3 Cd 5f+1 -0.0034460130855983 -0.0058233063918265 + 74 3 Cd 5f+2 0.0019685201360526 -0.0008060945594919 + 75 3 Cd 5f+3 0.0038816424029117 0.0067439887205957 + + 76 4 Se 2s -0.1030247834328324 -0.2445873628000355 + 77 4 Se 3s 0.0171013438653132 0.0397420214841357 + 78 4 Se 3py 0.0388193286268206 0.1746146513896402 + 79 4 Se 3pz -0.0314695517472718 -0.0383332168517796 + 80 4 Se 3px 0.0849548499950714 0.0463971650548694 + 81 4 Se 4py -0.0020317810635269 -0.0402782788216975 + 82 4 Se 4pz 0.0006712125568792 -0.0045903094845347 + 83 4 Se 4px -0.0207108277787769 -0.0258798217807274 + 84 4 Se 4d-2 -0.0043660113858401 -0.0154881696787185 + 85 4 Se 4d-1 0.0024608040373972 0.0203344518794988 + 86 4 Se 4d0 0.0086168100098763 0.0235072109725208 + 87 4 Se 4d+1 -0.0074114220817405 -0.0244633856989698 + 88 4 Se 4d+2 0.0028200147509778 -0.0103297523050788 + + 89 5 Se 2s -0.0396213935749140 -0.1101875841841531 + 90 5 Se 3s 0.0058569100461302 0.0168107122317562 + 91 5 Se 3py -0.0639602552464867 -0.2145485397366703 + 92 5 Se 3pz -0.0189008504890495 -0.0462784386012126 + 93 5 Se 3px 0.0285399171514988 -0.0589933805085673 + 94 5 Se 4py 0.0059923488132493 0.0246159738750594 + 95 5 Se 4pz 0.0062639196685788 0.0168142229065246 + 96 5 Se 4px -0.0071193781792258 -0.0013539751680288 + 97 5 Se 4d-2 0.0027119618123271 0.0135528286008140 + 98 5 Se 4d-1 -0.0035978038466598 -0.0100660479284529 + 99 5 Se 4d0 -0.0012354959051782 -0.0016555632168555 + 100 5 Se 4d+1 -0.0009694289216471 -0.0051236666102611 + 101 5 Se 4d+2 0.0019865866774310 -0.0084152734676295 + + 102 6 Se 2s -0.0510312463457349 -0.0615494544560138 + 103 6 Se 3s 0.0093802767687006 0.0122253650723650 + 104 6 Se 3py -0.0669074736748205 -0.0491138838327990 + 105 6 Se 3pz 0.0183345153024944 0.0228456925013868 + 106 6 Se 3px 0.0626405884119291 -0.0025035118076313 + 107 6 Se 4py 0.0094124690691823 0.0156044155840307 + 108 6 Se 4pz 0.0045343832039384 0.0025102776608702 + 109 6 Se 4px -0.0164790829357626 -0.0078677397060852 + 110 6 Se 4d-2 -0.0013404096228683 0.0073163248648525 + 111 6 Se 4d-1 -0.0001149977990037 0.0056669476176649 + 112 6 Se 4d0 -0.0070397693857980 -0.0008550940508336 + 113 6 Se 4d+1 0.0033151146477082 0.0030964873729101 + 114 6 Se 4d+2 -0.0048319122864306 -0.0141234140345646 + + 115 7 Se 2s -0.0888316033078449 0.0171065760428482 + 116 7 Se 3s 0.0164529309877146 -0.0050797429028885 + 117 7 Se 3py 0.1831881790541622 -0.0608100557052808 + 118 7 Se 3pz 0.1666237404202726 -0.0005478742526224 + 119 7 Se 3px -0.0177286479644730 -0.2752419897409761 + 120 7 Se 4py -0.0363749969467945 0.0241703786450081 + 121 7 Se 4pz -0.0454834904337796 0.0005605319681226 + 122 7 Se 4px 0.0008258905825195 0.0520282994726430 + 123 7 Se 4d-2 0.0034559122797969 -0.0068139689504842 + 124 7 Se 4d-1 0.0183772376121811 -0.0091143904573678 + 125 7 Se 4d0 0.0014388826751948 0.0060320981723347 + 126 7 Se 4d+1 -0.0046387477272839 -0.0288297179569149 + 127 7 Se 4d+2 0.0140806119908137 0.0127731925564377 + + 128 8 Cd 2s -0.2942866112325120 0.4733871526715558 + 129 8 Cd 3s -0.0186463418533125 0.0263859702330650 + 130 8 Cd 3py -0.0734031603597909 -0.0178692702841698 + 131 8 Cd 3pz -0.0438516370528540 -0.0365100871083007 + 132 8 Cd 3px -0.0110594777084904 0.0119800375633102 + 133 8 Cd 4py -0.0160488431358121 0.0062053932064163 + 134 8 Cd 4pz -0.0079345617927776 -0.0025444189679831 + 135 8 Cd 4px -0.0081959070184031 -0.0155107988421854 + 136 8 Cd 4d-2 -0.0077101745462235 0.0114650169388153 + 137 8 Cd 4d-1 -0.0102127554034052 0.0194733340724325 + 138 8 Cd 4d0 0.0289582412904071 -0.0286078903565955 + 139 8 Cd 4d+1 0.0118146330346562 -0.0086657391481211 + 140 8 Cd 4d+2 -0.0008974979521994 0.0197976559705925 + 141 8 Cd 5d-2 0.0125147678828397 -0.0143217768796867 + 142 8 Cd 5d-1 -0.0004446291516882 -0.0268264615712837 + 143 8 Cd 5d0 0.0108539210629033 0.0073082309352608 + 144 8 Cd 5d+1 0.0205781607323682 0.0140035313967067 + 145 8 Cd 5d+2 -0.0271308582940816 -0.0333162366329799 + 146 8 Cd 5f-3 -0.0046834113926586 -0.0067656053551764 + 147 8 Cd 5f-2 -0.0029911256009548 0.0068352868410768 + 148 8 Cd 5f-1 -0.0014508114305227 -0.0051968057854107 + 149 8 Cd 5f0 0.0035241416876604 -0.0042947345843670 + 150 8 Cd 5f+1 0.0057422506151852 0.0077738975310722 + 151 8 Cd 5f+2 0.0051393339586450 -0.0004835229765128 + 152 8 Cd 5f+3 -0.0069810998951177 -0.0192049269675752 + + 153 9 Cd 2s 0.0122515713827300 -0.0126037345968726 + 154 9 Cd 3s -0.0079892330383557 -0.0060340223984449 + 155 9 Cd 3py 0.0256893543080644 -0.0106470312401702 + 156 9 Cd 3pz 0.0580446009660494 -0.0291918313817154 + 157 9 Cd 3px 0.0014982527531521 -0.0277566436560257 + 158 9 Cd 4py 0.0002036511707887 -0.0067754400324780 + 159 9 Cd 4pz 0.0057956651454063 0.0017767771921176 + 160 9 Cd 4px -0.0052662546336162 -0.0090824306220487 + 161 9 Cd 4d-2 -0.0046693342362848 0.0025611298119662 + 162 9 Cd 4d-1 0.0065757259411052 -0.0149531543136217 + 163 9 Cd 4d0 -0.0048765938140948 0.0127348849834342 + 164 9 Cd 4d+1 -0.0030801360683213 -0.0001608961922711 + 165 9 Cd 4d+2 0.0071954831223178 -0.0163850029626108 + 166 9 Cd 5d-2 -0.0138558608521006 0.0073545692118580 + 167 9 Cd 5d-1 0.0159354525677947 -0.0043876702086035 + 168 9 Cd 5d0 -0.0047955026955332 0.0103482036813845 + 169 9 Cd 5d+1 0.0103197525235664 0.0133864895331857 + 170 9 Cd 5d+2 -0.0005935672441692 -0.0002792523607047 + 171 9 Cd 5f-3 0.0003598896090317 0.0020869640191514 + 172 9 Cd 5f-2 -0.0007038503871736 0.0092042689302429 + 173 9 Cd 5f-1 -0.0048484745605042 0.0002380131642833 + 174 9 Cd 5f0 -0.0000960430293149 -0.0006613553050628 + 175 9 Cd 5f+1 0.0012592912393399 -0.0057434533547085 + 176 9 Cd 5f+2 -0.0023503849028245 -0.0075157923755222 + 177 9 Cd 5f+3 0.0012079426713326 0.0060008171564725 + + 178 10 Se 2s -0.0517984939673600 0.0966820078174162 + 179 10 Se 3s 0.0074672019325819 -0.0188500931365734 + 180 10 Se 3py -0.1023913671051187 0.1648940021842140 + 181 10 Se 3pz 0.1233769214428151 -0.1714305924515915 + 182 10 Se 3px -0.0072586047860499 0.0840315657167785 + 183 10 Se 4py 0.0154064595597728 -0.0418657782607872 + 184 10 Se 4pz -0.0273876960176794 0.0464330137769839 + 185 10 Se 4px 0.0032140493322380 -0.0194896165084037 + 186 10 Se 4d-2 -0.0050892471636138 0.0005947221085920 + 187 10 Se 4d-1 -0.0098884321263085 0.0189775979614813 + 188 10 Se 4d0 0.0011135282195714 -0.0020633752945421 + 189 10 Se 4d+1 -0.0046494926531133 0.0068862951140143 + 190 10 Se 4d+2 -0.0076283239612935 0.0072335333070900 + + 191 11 Se 2s -0.0171155802524730 -0.0197138017092357 + 192 11 Se 3s 0.0039003036475876 0.0021012675459799 + 193 11 Se 3py -0.0715917646643922 -0.0781006872303660 + 194 11 Se 3pz -0.0234959888020408 -0.0903535062705142 + 195 11 Se 3px -0.1029697505017026 -0.0186958141117558 + 196 11 Se 4py 0.0214852104996316 0.0159166221254311 + 197 11 Se 4pz 0.0007343438700418 0.0070093817312378 + 198 11 Se 4px 0.0150529315782009 0.0134350813938626 + 199 11 Se 4d-2 0.0088475157591570 -0.0004149862215538 + 200 11 Se 4d-1 0.0001359443413689 -0.0024842402841906 + 201 11 Se 4d0 -0.0027620800838116 -0.0142135997096650 + 202 11 Se 4d+1 0.0002868458891650 -0.0030903762242967 + 203 11 Se 4d+2 -0.0045574468172368 0.0105273723348889 + + 204 12 Cd 2s 0.0097953051859297 -0.1220685058353667 + 205 12 Cd 3s -0.0068438521162197 -0.0125433311788713 + 206 12 Cd 3py -0.0922422231641572 0.0905886422041105 + 207 12 Cd 3pz -0.0457922499538930 0.0258518607546419 + 208 12 Cd 3px -0.0961258951341042 0.0687556360600645 + 209 12 Cd 4py -0.0136315189372096 0.0126705906609477 + 210 12 Cd 4pz -0.0182246638532508 0.0129957890464273 + 211 12 Cd 4px -0.0176150787893699 0.0049711686626456 + 212 12 Cd 4d-2 -0.0075787466562989 -0.0104996087310677 + 213 12 Cd 4d-1 0.0066762701130432 0.0037226076856158 + 214 12 Cd 4d0 0.0228113662746118 -0.0114716604083542 + 215 12 Cd 4d+1 0.0032173423838033 0.0068412004471119 + 216 12 Cd 4d+2 -0.0067604496256805 -0.0014736178330402 + 217 12 Cd 5d-2 -0.0088810023673311 -0.0076304365807673 + 218 12 Cd 5d-1 -0.0248537786835516 0.0083110297087211 + 219 12 Cd 5d0 0.0485603745619937 -0.0205840564620311 + 220 12 Cd 5d+1 -0.0078640372654046 0.0096504760557294 + 221 12 Cd 5d+2 0.0262826489699098 -0.0394458921781819 + 222 12 Cd 5f-3 0.0029643898119884 -0.0080469357942958 + 223 12 Cd 5f-2 -0.0036660129659303 0.0029920509765438 + 224 12 Cd 5f-1 0.0179119666933178 -0.0113713609401317 + 225 12 Cd 5f0 -0.0097368263940859 -0.0062387128012763 + 226 12 Cd 5f+1 0.0010382646824140 -0.0024821099543888 + 227 12 Cd 5f+2 0.0098246641671565 -0.0046605777754139 + 228 12 Cd 5f+3 -0.0002249052746430 -0.0108168719727340 + + 229 13 Cd 2s -0.1593046291577455 0.0342470785662767 + 230 13 Cd 3s -0.0150884393191093 -0.0191375960328022 + 231 13 Cd 3py -0.0120627723652436 -0.0027389900641144 + 232 13 Cd 3pz -0.0039017233629008 0.0400063581704119 + 233 13 Cd 3px 0.0358956152208882 -0.1197473512016426 + 234 13 Cd 4py -0.0086505724581264 0.0048852783224718 + 235 13 Cd 4pz -0.0034516925806932 0.0101808611828435 + 236 13 Cd 4px 0.0035125069936971 -0.0177458461722808 + 237 13 Cd 4d-2 -0.0419034947645718 -0.0078775026040224 + 238 13 Cd 4d-1 0.0141708391039323 -0.0050519629285749 + 239 13 Cd 4d0 0.0142692683879463 -0.0141219441229699 + 240 13 Cd 4d+1 -0.0080959141620997 0.0111973580777078 + 241 13 Cd 4d+2 -0.0147627512474326 -0.0053512196256701 + 242 13 Cd 5d-2 -0.0108448194221662 0.0360676986233451 + 243 13 Cd 5d-1 0.0057550327441995 -0.0092699112124843 + 244 13 Cd 5d0 0.0245758223902496 0.0364655753378599 + 245 13 Cd 5d+1 -0.0043765623425288 -0.0056038328040448 + 246 13 Cd 5d+2 -0.0304065921820512 -0.0234814799887348 + 247 13 Cd 5f-3 0.0041490974395754 0.0084269244505137 + 248 13 Cd 5f-2 0.0005053511294050 -0.0015414831094916 + 249 13 Cd 5f-1 -0.0032325024762721 -0.0095879468561033 + 250 13 Cd 5f0 0.0015339091649665 0.0015281071061908 + 251 13 Cd 5f+1 -0.0089328186768716 0.0084910198109960 + 252 13 Cd 5f+2 -0.0034652819575629 0.0022324134135226 + 253 13 Cd 5f+3 0.0085872918860933 0.0210518101703580 + + 254 14 Cd 2s 0.1391882786776298 0.0483119337503189 + 255 14 Cd 3s 0.0049248144472112 0.0029629785540193 + 256 14 Cd 3py 0.0776390935313759 0.1312430155276934 + 257 14 Cd 3pz 0.0933405181705515 0.0779623026854135 + 258 14 Cd 3px -0.0350212307672434 -0.2391078360755780 + 259 14 Cd 4py 0.0033149133334489 0.0103669167346880 + 260 14 Cd 4pz 0.0007275708027216 0.0039094445125779 + 261 14 Cd 4px -0.0057865685498987 -0.0177342062571225 + 262 14 Cd 4d-2 0.0035734208550788 0.0140281397585922 + 263 14 Cd 4d-1 0.0110782726855640 0.0004691289719608 + 264 14 Cd 4d0 -0.0012476080812594 0.0057489838615885 + 265 14 Cd 4d+1 0.0003724737496286 0.0052829637915910 + 266 14 Cd 4d+2 0.0026752825978456 -0.0108840021004475 + 267 14 Cd 5d-2 0.0112834432224813 0.0030620771732136 + 268 14 Cd 5d-1 0.0133449322526257 0.0092793828599203 + 269 14 Cd 5d0 0.0028226314018213 0.0089627937135495 + 270 14 Cd 5d+1 0.0091016055440693 0.0230311351689905 + 271 14 Cd 5d+2 0.0005735465545576 -0.0169827588016813 + 272 14 Cd 5f-3 -0.0017604210487590 0.0035562183508238 + 273 14 Cd 5f-2 -0.0031917910003654 -0.0016393961489519 + 274 14 Cd 5f-1 -0.0054512088574500 0.0028861833636814 + 275 14 Cd 5f0 -0.0036373349805587 0.0001696984680641 + 276 14 Cd 5f+1 -0.0019538938813031 0.0046100290796247 + 277 14 Cd 5f+2 -0.0052148695874277 0.0017249871671710 + 278 14 Cd 5f+3 0.0020812876646664 0.0067821014002021 + + 279 15 Se 2s -0.1017819696709189 0.0060278676419702 + 280 15 Se 3s 0.0166211543951710 -0.0024435727656411 + 281 15 Se 3py 0.2293708319976520 0.0244427023286393 + 282 15 Se 3pz 0.1076256374383812 0.0129291047009445 + 283 15 Se 3px 0.0316610283787734 -0.0423495376300547 + 284 15 Se 4py -0.0458021157093426 -0.0076303793413498 + 285 15 Se 4pz -0.0075897587128285 0.0031594972904906 + 286 15 Se 4px 0.0006100501294122 0.0029417941048908 + 287 15 Se 4d-2 0.0055120095918881 0.0088388275405630 + 288 15 Se 4d-1 0.0039493638890930 -0.0110920116098686 + 289 15 Se 4d0 -0.0112023111002030 -0.0042526432745427 + 290 15 Se 4d+1 0.0033792052862044 0.0184356987156399 + 291 15 Se 4d+2 -0.0019058511860157 0.0094832776366309 + + 292 16 Se 2s -0.0838966115029836 -0.0892970121118739 + 293 16 Se 3s 0.0125855561509547 0.0143550452329329 + 294 16 Se 3py 0.0237880629260397 0.0745666218362589 + 295 16 Se 3pz -0.1520353984774184 -0.0604728067486709 + 296 16 Se 3px 0.0387453469960834 -0.1839357298602469 + 297 16 Se 4py -0.0146076245679016 -0.0184652623974908 + 298 16 Se 4pz 0.0286214718733255 0.0196239984059770 + 299 16 Se 4px -0.0051720074916065 0.0324634834728650 + 300 16 Se 4d-2 -0.0003545208273930 -0.0044058144258995 + 301 16 Se 4d-1 0.0039469443530966 0.0005969320290655 + 302 16 Se 4d0 0.0003019392864619 -0.0024894562882695 + 303 16 Se 4d+1 -0.0010071290712785 0.0257218350282658 + 304 16 Se 4d+2 0.0032458392370036 0.0095533932598467 + + 305 17 Cd 2s -0.0912495344546813 -0.0132139427790890 + 306 17 Cd 3s -0.0027511179003889 -0.0015629779172320 + 307 17 Cd 3py -0.0203319915162184 -0.0465076908125259 + 308 17 Cd 3pz -0.0022908404519476 0.1645005463411750 + 309 17 Cd 3px -0.0426423037293158 0.0023857671454862 + 310 17 Cd 4py -0.0057599922114351 0.0029478398483934 + 311 17 Cd 4pz 0.0042641645626789 0.0103462639498267 + 312 17 Cd 4px -0.0198104195617425 0.0036708771682353 + 313 17 Cd 4d-2 0.0022302699189479 -0.0057332096055056 + 314 17 Cd 4d-1 0.0088465345141655 0.0141730216094595 + 315 17 Cd 4d0 -0.0162402836862034 0.0194817241157849 + 316 17 Cd 4d+1 0.0067113552942920 -0.0004348061751958 + 317 17 Cd 4d+2 -0.0136042642655403 0.0154743988425611 + 318 17 Cd 5d-2 0.0024424467127866 0.0114579021192498 + 319 17 Cd 5d-1 -0.0006970630263278 0.0185323936044443 + 320 17 Cd 5d0 -0.0095864995671702 0.0117729235381763 + 321 17 Cd 5d+1 -0.0432211377942781 0.0019420826873151 + 322 17 Cd 5d+2 -0.0020124989917764 0.0183118998085993 + 323 17 Cd 5f-3 -0.0073861946286645 0.0050346040427781 + 324 17 Cd 5f-2 0.0077212146711301 -0.0020597322100988 + 325 17 Cd 5f-1 -0.0060282961462560 -0.0012616842319628 + 326 17 Cd 5f0 -0.0077829401621239 0.0036436132164420 + 327 17 Cd 5f+1 -0.0086127762014872 -0.0018736959701326 + 328 17 Cd 5f+2 0.0178126028844148 -0.0012217924781391 + 329 17 Cd 5f+3 -0.0097160730775996 -0.0053338719093100 + + 330 18 Cd 2s 0.0196353846843534 0.1526062526294162 + 331 18 Cd 3s 0.0004352039064618 0.0116324310693422 + 332 18 Cd 3py -0.0398161258087247 -0.0468507068118010 + 333 18 Cd 3pz -0.0152010854313593 -0.0297315313033189 + 334 18 Cd 3px -0.0159800385644674 -0.0459179008702886 + 335 18 Cd 4py -0.0072234775862363 0.0025227281988018 + 336 18 Cd 4pz -0.0076489251860590 -0.0057593096425127 + 337 18 Cd 4px -0.0049386236196393 -0.0120083864550640 + 338 18 Cd 4d-2 -0.0067954497792561 0.0064354051924167 + 339 18 Cd 4d-1 0.0159765382013223 0.0229354148509239 + 340 18 Cd 4d0 -0.0056476743706841 -0.0189216252802145 + 341 18 Cd 4d+1 -0.0120770922520173 -0.0068249903876028 + 342 18 Cd 4d+2 0.0032879821222524 -0.0067184822714630 + 343 18 Cd 5d-2 -0.0119354761101542 -0.0033569578287650 + 344 18 Cd 5d-1 -0.0045664056306540 0.0112805942393234 + 345 18 Cd 5d0 0.0072120885755733 -0.0061495893970079 + 346 18 Cd 5d+1 -0.0198911417562607 -0.0147902953281001 + 347 18 Cd 5d+2 0.0103399418003629 -0.0281995077340032 + 348 18 Cd 5f-3 0.0034393009162003 -0.0033478783943624 + 349 18 Cd 5f-2 -0.0041191362172848 -0.0059284562511403 + 350 18 Cd 5f-1 -0.0056425826567760 -0.0023013892561340 + 351 18 Cd 5f0 0.0025160080101600 0.0032647899155517 + 352 18 Cd 5f+1 0.0040912756321166 -0.0019055172241223 + 353 18 Cd 5f+2 0.0034446842164217 -0.0005404428495475 + 354 18 Cd 5f+3 0.0018141645926927 -0.0014991329355433 + + 355 19 Se 2s 0.0947546165884480 0.0515300265643244 + 356 19 Se 3s -0.0165582524070756 -0.0079372589683865 + 357 19 Se 3py 0.0420734387932002 -0.0198880781602891 + 358 19 Se 3pz 0.2133546234750512 0.1365283482548092 + 359 19 Se 3px -0.1920250305968922 0.0683722840447176 + 360 19 Se 4py -0.0171858651651933 -0.0134291137956781 + 361 19 Se 4pz -0.0468765544868175 -0.0244324965893715 + 362 19 Se 4px 0.0371648333207337 -0.0120971455689352 + 363 19 Se 4d-2 0.0143608387493538 -0.0031959839299489 + 364 19 Se 4d-1 -0.0128409883334524 -0.0035583487045471 + 365 19 Se 4d0 -0.0035214865441695 -0.0001085990232829 + 366 19 Se 4d+1 0.0184204807872332 -0.0069119032909759 + 367 19 Se 4d+2 -0.0104153298541101 0.0061039281271103 + + 368 20 Se 2s -0.0765853695543327 0.1481240697968467 + 369 20 Se 3s 0.0126773624268658 -0.0259182500502892 + 370 20 Se 3py -0.2261433978700461 0.0715316586493267 + 371 20 Se 3pz -0.1893129202426002 0.1454180678687151 + 372 20 Se 3px -0.1717962038796541 -0.0122282297631726 + 373 20 Se 4py 0.0710958971741425 -0.0159851103300784 + 374 20 Se 4pz 0.0556742622119861 -0.0279767976890017 + 375 20 Se 4px 0.0589776648040586 0.0036084189241930 + 376 20 Se 4d-2 -0.0146840244744997 -0.0020218696698569 + 377 20 Se 4d-1 -0.0134925827007749 -0.0162042109114918 + 378 20 Se 4d0 0.0057106593330041 -0.0287152591785114 + 379 20 Se 4d+1 -0.0162004259915293 0.0100025137838928 + 380 20 Se 4d+2 -0.0165280157078625 0.0036277407828620 + + 381 21 Se 2s -0.1622267201917221 0.0695813188142132 + 382 21 Se 3s 0.0287989163286720 -0.0138978255854131 + 383 21 Se 3py 0.1275026205519879 -0.0604394022190608 + 384 21 Se 3pz 0.0506526843001429 0.1925270251669221 + 385 21 Se 3px -0.0682817838214518 0.1307335170678912 + 386 21 Se 4py -0.0326858022156341 0.0229131265579991 + 387 21 Se 4pz -0.0113130915891520 -0.0417401104535047 + 388 21 Se 4px 0.0168859258913413 -0.0258711420254885 + 389 21 Se 4d-2 -0.0071592712010999 0.0069260180674012 + 390 21 Se 4d-1 -0.0088315475919193 0.0034059179653549 + 391 21 Se 4d0 0.0077493730052939 0.0153904940757728 + 392 21 Se 4d+1 0.0021466687321687 -0.0191970566367854 + 393 21 Se 4d+2 0.0121035263758946 -0.0019679058944079 + + 394 22 Cd 2s -0.3305979112176351 -0.1808254382908048 + 395 22 Cd 3s -0.0197598401492895 -0.0225582363237376 + 396 22 Cd 3py -0.0705595774699987 -0.0012558716106248 + 397 22 Cd 3pz -0.0402093859380105 -0.0510284959578846 + 398 22 Cd 3px -0.0478683856101262 0.0623178145876822 + 399 22 Cd 4py -0.0216537413554483 0.0038814607993715 + 400 22 Cd 4pz -0.0177482767923565 -0.0103682017296538 + 401 22 Cd 4px -0.0120988811187715 0.0007901742059134 + 402 22 Cd 4d-2 0.0290357175489173 -0.0107174592482804 + 403 22 Cd 4d-1 0.0060272415060135 0.0142360955836647 + 404 22 Cd 4d0 0.0292636105669376 0.0033172310089163 + 405 22 Cd 4d+1 -0.0000706362198279 -0.0124704160297457 + 406 22 Cd 4d+2 -0.0212605624137690 0.0140507969457693 + 407 22 Cd 5d-2 0.0600617460093391 -0.0035857751808691 + 408 22 Cd 5d-1 0.0145176957964073 0.0117879077540624 + 409 22 Cd 5d0 -0.0064241711739667 -0.0155304437996587 + 410 22 Cd 5d+1 0.0059394613530751 -0.0210760732263262 + 411 22 Cd 5d+2 -0.0716011876886587 0.0183708793607617 + 412 22 Cd 5f-3 0.0172339088986406 0.0013053751705143 + 413 22 Cd 5f-2 -0.0042464665423071 -0.0004812760635855 + 414 22 Cd 5f-1 0.0162810963273583 -0.0040644013404364 + 415 22 Cd 5f0 0.0051354853290280 0.0016944845375326 + 416 22 Cd 5f+1 0.0031499181970689 -0.0016924321112414 + 417 22 Cd 5f+2 0.0053397893838636 -0.0007402170945352 + 418 22 Cd 5f+3 0.0085598868796509 0.0013949034799352 + + 419 23 Se 2s -0.0044498346676390 -0.0488520379524378 + 420 23 Se 3s 0.0001077766654033 0.0074603564578694 + 421 23 Se 3py -0.2706624537136587 -0.0395984681453118 + 422 23 Se 3pz -0.0015299660173089 -0.0251123907637935 + 423 23 Se 3px -0.1775288349767840 0.0289655264121173 + 424 23 Se 4py 0.0451546955531295 0.0118668482371104 + 425 23 Se 4pz -0.0079002115489905 0.0064461610290866 + 426 23 Se 4px 0.0371716147945155 -0.0038506659812991 + 427 23 Se 4d-2 -0.0096599921208926 0.0040511846654231 + 428 23 Se 4d-1 0.0259509932004180 0.0051551983570119 + 429 23 Se 4d0 0.0061962997597068 0.0024697356025506 + 430 23 Se 4d+1 0.0079022066704936 -0.0127017668324019 + 431 23 Se 4d+2 0.0078972025775031 0.0008309347546168 + + 432 24 Se 2s 0.1792148098486147 -0.0831742269975534 + 433 24 Se 3s -0.0323804849594982 0.0132983923720975 + 434 24 Se 3py 0.0384940026595814 -0.0368399351083464 + 435 24 Se 3pz -0.2036723980746885 -0.0035171330575477 + 436 24 Se 3px 0.3103926926914401 -0.0676066359111404 + 437 24 Se 4py -0.0228577312470520 0.0080465623518855 + 438 24 Se 4pz 0.0353664820347831 0.0011487099978875 + 439 24 Se 4px -0.0688317963205666 0.0261854327507179 + 440 24 Se 4d-2 -0.0010227653412906 -0.0059834824502485 + 441 24 Se 4d-1 0.0057727693323280 -0.0035507507071687 + 442 24 Se 4d0 -0.0119895186841533 0.0058189399503484 + 443 24 Se 4d+1 0.0228754487526719 -0.0025253349778868 + 444 24 Se 4d+2 -0.0138600953588163 0.0000388927353251 + + 445 25 Cd 2s 0.6537616920176771 -0.0477414846116469 + 446 25 Cd 3s 0.0372040254764778 -0.0026783423324337 + 447 25 Cd 3py -0.1404409658401322 -0.0102803012002213 + 448 25 Cd 3pz 0.0686915565495229 0.0083114767785443 + 449 25 Cd 3px -0.0876455999002194 0.1294885228401162 + 450 25 Cd 4py -0.0264408090047056 -0.0049349786272469 + 451 25 Cd 4pz 0.0180123241273270 -0.0039855107668826 + 452 25 Cd 4px -0.0065443155480210 0.0122457378250806 + 453 25 Cd 4d-2 -0.0062699797164064 0.0127423148407843 + 454 25 Cd 4d-1 0.0008084272439556 -0.0103538688443653 + 455 25 Cd 4d0 -0.0132584564254049 -0.0041375509513707 + 456 25 Cd 4d+1 0.0311302298193113 -0.0052336956443204 + 457 25 Cd 4d+2 -0.0206422163435463 0.0210924973752053 + 458 25 Cd 5d-2 -0.0249990237737685 0.0061013517429690 + 459 25 Cd 5d-1 0.0107987652147335 -0.0110498805542626 + 460 25 Cd 5d0 0.0092035331180139 0.0020547959301046 + 461 25 Cd 5d+1 0.0376527640064086 -0.0069217741218897 + 462 25 Cd 5d+2 0.0221836303196219 0.0214171398586644 + 463 25 Cd 5f-3 0.0016164682828598 0.0008349261132057 + 464 25 Cd 5f-2 0.0058006803729369 -0.0030850283346399 + 465 25 Cd 5f-1 0.0086556191676006 0.0021349605211030 + 466 25 Cd 5f0 -0.0001557897186731 -0.0006463935535561 + 467 25 Cd 5f+1 0.0043454472217430 -0.0043568267119880 + 468 25 Cd 5f+2 0.0188142384803211 0.0033140209109431 + 469 25 Cd 5f+3 -0.0002771813346368 0.0002412046720602 + + 470 26 Cd 2s -0.0806661065250779 -0.0526922063246583 + 471 26 Cd 3s -0.0068565889018529 -0.0112079715364444 + 472 26 Cd 3py -0.0766732415768216 0.0295675370489331 + 473 26 Cd 3pz 0.0028755593330664 -0.0221679475105895 + 474 26 Cd 3px 0.0306938718460015 0.0453876293195747 + 475 26 Cd 4py -0.0076585621396276 0.0000198929675121 + 476 26 Cd 4pz -0.0026512728949539 -0.0035524256003100 + 477 26 Cd 4px -0.0005957198711835 0.0020366665338644 + 478 26 Cd 4d-2 0.0329981204769786 0.0011467785108312 + 479 26 Cd 4d-1 -0.0072133007118757 0.0005816209637867 + 480 26 Cd 4d0 -0.0117602593952538 -0.0156765917587511 + 481 26 Cd 4d+1 -0.0000373855123068 0.0022670202394765 + 482 26 Cd 4d+2 0.0119343266120376 -0.0178178356844431 + 483 26 Cd 5d-2 0.0308928525498701 -0.0073861108487627 + 484 26 Cd 5d-1 -0.0118846813002503 -0.0001396298993725 + 485 26 Cd 5d0 -0.0095362925463922 -0.0157059464430311 + 486 26 Cd 5d+1 -0.0088367608734391 -0.0029487519869022 + 487 26 Cd 5d+2 0.0113739980860614 -0.0121920981128918 + 488 26 Cd 5f-3 -0.0015921139421298 -0.0001957074001851 + 489 26 Cd 5f-2 0.0058248028152187 -0.0003382660524816 + 490 26 Cd 5f-1 -0.0042244280426902 -0.0024781126903836 + 491 26 Cd 5f0 -0.0028830869752362 0.0015784739910146 + 492 26 Cd 5f+1 0.0015382325558686 -0.0000714595180270 + 493 26 Cd 5f+2 -0.0034096055804025 0.0040058310449535 + 494 26 Cd 5f+3 -0.0027982745720522 0.0036839569419528 + + 127 128 + -0.0628639736773591 -0.0606724255405346 + + 0.0000000000000000 0.0000000000000000 + + 1 1 Cd 2s 0.0580229391412506 0.1643949691813647 + 2 1 Cd 3s -0.0004051276533044 0.0219977619870665 + 3 1 Cd 3py 0.0147992331225683 0.1173348496421357 + 4 1 Cd 3pz 0.0318676768171820 -0.0791646298563869 + 5 1 Cd 3px -0.0208790601396297 0.0071724375786047 + 6 1 Cd 4py -0.0041864409973692 0.0265815104504985 + 7 1 Cd 4pz 0.0079535751772297 -0.0189388563098993 + 8 1 Cd 4px -0.0025470018971554 0.0000272095717777 + 9 1 Cd 4d-2 0.0013424405171238 0.0161147575557699 + 10 1 Cd 4d-1 -0.0061626032069457 -0.0136444436681428 + 11 1 Cd 4d0 0.0051938672746270 -0.0022644261992968 + 12 1 Cd 4d+1 -0.0000618323242834 -0.0093428666564087 + 13 1 Cd 4d+2 0.0033618505366133 0.0248579513006440 + 14 1 Cd 5d-2 0.0120068016265202 -0.0179681061523013 + 15 1 Cd 5d-1 0.0028791426019955 -0.0014967595680790 + 16 1 Cd 5d0 0.0073548863516426 0.0009397769190621 + 17 1 Cd 5d+1 -0.0162056169658337 0.0163830914810309 + 18 1 Cd 5d+2 0.0078288220284679 0.0093973099566325 + 19 1 Cd 5f-3 -0.0055069590987968 0.0077527962383732 + 20 1 Cd 5f-2 -0.0003637875140959 -0.0089533777102553 + 21 1 Cd 5f-1 0.0116052912506549 -0.0011375199532528 + 22 1 Cd 5f0 0.0006588411475042 0.0039433468256675 + 23 1 Cd 5f+1 -0.0084973571062841 0.0071172850329372 + 24 1 Cd 5f+2 -0.0011553655449423 0.0032325998984301 + 25 1 Cd 5f+3 -0.0111084493407513 0.0001769101013556 + + 26 2 Cd 2s -0.2319267278757394 -0.0611443367269268 + 27 2 Cd 3s -0.0104795816497117 -0.0061475205510425 + 28 2 Cd 3py 0.0673300524553498 0.0761969043850302 + 29 2 Cd 3pz -0.0470658638151331 -0.0078688880179270 + 30 2 Cd 3px -0.0602890088520098 0.0991506839994444 + 31 2 Cd 4py 0.0137599509759955 0.0076208056857591 + 32 2 Cd 4pz 0.0033062878500462 0.0007060610894927 + 33 2 Cd 4px -0.0275645319590735 0.0000917829241000 + 34 2 Cd 4d-2 -0.0247261980288089 -0.0101334308561329 + 35 2 Cd 4d-1 0.0031481366007774 0.0052412350291236 + 36 2 Cd 4d0 -0.0039055743464439 -0.0119526106514211 + 37 2 Cd 4d+1 -0.0074813481251259 -0.0012543227756699 + 38 2 Cd 4d+2 -0.0233948149595276 0.0008965825852753 + 39 2 Cd 5d-2 -0.0062759667942480 -0.0023237523823721 + 40 2 Cd 5d-1 0.0139902263578549 0.0182851808257457 + 41 2 Cd 5d0 -0.0359678262878049 -0.0296894204539205 + 42 2 Cd 5d+1 0.0003180985097560 -0.0066136923659671 + 43 2 Cd 5d+2 0.0198815233842996 0.0225102466064445 + 44 2 Cd 5f-3 -0.0068513831211451 -0.0046469468476578 + 45 2 Cd 5f-2 0.0017160000227377 0.0053976253193499 + 46 2 Cd 5f-1 -0.0013295713800121 0.0001505568966239 + 47 2 Cd 5f0 -0.0014511803522717 -0.0028431793790690 + 48 2 Cd 5f+1 0.0171295035898804 0.0018415603120067 + 49 2 Cd 5f+2 0.0021334413577095 -0.0013180073575913 + 50 2 Cd 5f+3 -0.0146321041016981 -0.0089101099998169 + + 51 3 Cd 2s -0.0723055248179623 -0.2222823148455247 + 52 3 Cd 3s -0.0061825259805162 -0.0111751180152394 + 53 3 Cd 3py 0.0274485695327888 -0.0141673030398324 + 54 3 Cd 3pz -0.0553353432652993 -0.0703758700170942 + 55 3 Cd 3px -0.0144730130175151 0.0935314692983644 + 56 3 Cd 4py -0.0002652464214970 0.0069539146689680 + 57 3 Cd 4pz -0.0036568175116579 -0.0152575125555378 + 58 3 Cd 4px -0.0045558907433198 0.0095698106404897 + 59 3 Cd 4d-2 0.0139861187643905 0.0151781125178725 + 60 3 Cd 4d-1 -0.0049812611959308 0.0009290747690683 + 61 3 Cd 4d0 -0.0036546422303666 -0.0002248417135290 + 62 3 Cd 4d+1 0.0142556061180828 0.0023265797302652 + 63 3 Cd 4d+2 -0.0177055543215403 0.0096256680388592 + 64 3 Cd 5d-2 0.0128294440063932 0.0068851126794096 + 65 3 Cd 5d-1 0.0030395510223573 -0.0336339109970987 + 66 3 Cd 5d0 -0.0004687403150556 0.0075003063465136 + 67 3 Cd 5d+1 0.0058693315312682 -0.0117090025848562 + 68 3 Cd 5d+2 0.0025402645857550 0.0035385859966422 + 69 3 Cd 5f-3 0.0017639934536622 0.0007784122890874 + 70 3 Cd 5f-2 0.0038653370907978 -0.0016692253613835 + 71 3 Cd 5f-1 0.0019191241129646 0.0003723024737559 + 72 3 Cd 5f0 0.0017527054337198 0.0042138153748997 + 73 3 Cd 5f+1 0.0011874165774382 -0.0032629429931670 + 74 3 Cd 5f+2 0.0029681647162023 0.0003905629160966 + 75 3 Cd 5f+3 -0.0037139553238322 -0.0029256035317558 + + 76 4 Se 2s -0.0685657064150948 0.1375891469324549 + 77 4 Se 3s 0.0130825506088993 -0.0226169955040244 + 78 4 Se 3py 0.0076289039794887 -0.0146029532807386 + 79 4 Se 3pz -0.0012462705320392 -0.1650424118297157 + 80 4 Se 3px 0.1506618987826283 -0.0984994643477831 + 81 4 Se 4py 0.0071581769404368 0.0171160101490140 + 82 4 Se 4pz 0.0062122556056310 0.0283971786310229 + 83 4 Se 4px -0.0374434066839950 0.0248908151544297 + 84 4 Se 4d-2 0.0017133045271091 0.0081594662884637 + 85 4 Se 4d-1 -0.0124545971514471 -0.0002105104236887 + 86 4 Se 4d0 0.0034393760836303 -0.0122095042326817 + 87 4 Se 4d+1 0.0098451037611876 -0.0065044144084859 + 88 4 Se 4d+2 0.0116303811159767 0.0012085417539895 + + 89 5 Se 2s -0.0032214548877739 -0.0140995039183451 + 90 5 Se 3s 0.0011531112957945 0.0039210994712696 + 91 5 Se 3py 0.0476368287095940 0.1049812990471435 + 92 5 Se 3pz -0.0260856214551595 -0.1102558901873493 + 93 5 Se 3px -0.0258809475979570 0.0830686054861457 + 94 5 Se 4py -0.0072733231279875 -0.0058893885694055 + 95 5 Se 4pz 0.0026991919523865 0.0067528520388746 + 96 5 Se 4px 0.0031438559125791 -0.0109234046759930 + 97 5 Se 4d-2 0.0018706160578078 0.0035265048022512 + 98 5 Se 4d-1 -0.0010820210864756 0.0066535911802243 + 99 5 Se 4d0 0.0040744893503668 -0.0012730274895049 + 100 5 Se 4d+1 0.0007131508265902 -0.0063969283313501 + 101 5 Se 4d+2 0.0014551173450507 0.0042676761096756 + + 102 6 Se 2s -0.1315520946041893 -0.0708913865512568 + 103 6 Se 3s 0.0231105281906620 0.0136250705882815 + 104 6 Se 3py -0.1174107199901864 -0.0128521373572833 + 105 6 Se 3pz -0.0228146235220135 0.0521050651119189 + 106 6 Se 3px 0.1865351581731352 0.1771208966290958 + 107 6 Se 4py 0.0277816154195139 0.0029988742687703 + 108 6 Se 4pz 0.0001718885553262 -0.0124615730965019 + 109 6 Se 4px -0.0511460475430929 -0.0440824075709374 + 110 6 Se 4d-2 -0.0043859126888051 -0.0052660968096206 + 111 6 Se 4d-1 0.0043647176856749 0.0077171415021748 + 112 6 Se 4d0 -0.0067243959281420 -0.0000617250249366 + 113 6 Se 4d+1 -0.0017544067784496 0.0084006072964949 + 114 6 Se 4d+2 -0.0032072856766725 0.0087343790643865 + + 115 7 Se 2s 0.0233459998675247 -0.0546664286143997 + 116 7 Se 3s -0.0045840808026751 0.0096910710550274 + 117 7 Se 3py 0.0442794356191574 0.0341799746097608 + 118 7 Se 3pz -0.0423608643071458 0.0488901387676237 + 119 7 Se 3px -0.1833274308569190 -0.0073815633933270 + 120 7 Se 4py -0.0090003842294502 -0.0111968311337896 + 121 7 Se 4pz 0.0118608777277932 -0.0169822023355228 + 122 7 Se 4px 0.0470740310351661 0.0044013056183716 + 123 7 Se 4d-2 -0.0258972272038601 -0.0089405175133447 + 124 7 Se 4d-1 0.0044306116258056 -0.0019015543801116 + 125 7 Se 4d0 -0.0001631134448234 0.0006658648677255 + 126 7 Se 4d+1 -0.0121686356310362 -0.0000341427528818 + 127 7 Se 4d+2 -0.0079935780751683 -0.0095280355959766 + + 128 8 Cd 2s 0.4343254209073286 0.2130467117604628 + 129 8 Cd 3s 0.0277383074106705 0.0154653560925285 + 130 8 Cd 3py 0.0411706832839316 -0.0388260428684229 + 131 8 Cd 3pz 0.0821508168718073 -0.0371459867124999 + 132 8 Cd 3px -0.1919684734245545 -0.1082577325250886 + 133 8 Cd 4py 0.0007450994873260 0.0048968620578075 + 134 8 Cd 4pz 0.0063155716027670 -0.0093873925459515 + 135 8 Cd 4px -0.0255586587479590 -0.0096056311302270 + 136 8 Cd 4d-2 0.0159459631595252 0.0282840033221630 + 137 8 Cd 4d-1 0.0307896264141321 0.0295809838806255 + 138 8 Cd 4d0 -0.0131078141916104 0.0040493852635551 + 139 8 Cd 4d+1 -0.0265914599060662 -0.0048057222934994 + 140 8 Cd 4d+2 0.0049731307185119 -0.0039890690603367 + 141 8 Cd 5d-2 -0.0001533980497621 0.0058932187219891 + 142 8 Cd 5d-1 0.0275175059582374 0.0035261690008439 + 143 8 Cd 5d0 0.0174774922151117 0.0247374799871287 + 144 8 Cd 5d+1 -0.0057125115560301 0.0071486689600521 + 145 8 Cd 5d+2 -0.0212446040214643 0.0208880232067864 + 146 8 Cd 5f-3 0.0017572959817635 -0.0038912374253404 + 147 8 Cd 5f-2 0.0022707331403312 0.0076354063453645 + 148 8 Cd 5f-1 0.0007331682928844 -0.0049009224605150 + 149 8 Cd 5f0 -0.0040841460391939 -0.0036599251043145 + 150 8 Cd 5f+1 0.0091647401747887 0.0009205710636830 + 151 8 Cd 5f+2 0.0033718884769326 -0.0072376255746429 + 152 8 Cd 5f+3 -0.0086798439475744 -0.0068574596091650 + + 153 9 Cd 2s -0.0844827917457426 -0.0090412857028476 + 154 9 Cd 3s -0.0060049445510738 -0.0000502504746818 + 155 9 Cd 3py -0.0876076523417523 -0.1345683592587291 + 156 9 Cd 3pz 0.0842781418302357 0.0609451869517271 + 157 9 Cd 3px -0.0282499653008462 0.0304209691463682 + 158 9 Cd 4py -0.0039729351657398 -0.0078295482811180 + 159 9 Cd 4pz 0.0104342825080631 0.0036779427800630 + 160 9 Cd 4px -0.0063984939723679 0.0030538231944803 + 161 9 Cd 4d-2 0.0068487637893855 0.0030549973132368 + 162 9 Cd 4d-1 0.0023402786132436 0.0014149808285416 + 163 9 Cd 4d0 -0.0035329925580358 -0.0067112206102977 + 164 9 Cd 4d+1 -0.0317290772737878 -0.0174112893623229 + 165 9 Cd 4d+2 0.0250765740770364 0.0154683573416462 + 166 9 Cd 5d-2 0.0079203781339067 0.0144080177319175 + 167 9 Cd 5d-1 0.0020435476939412 -0.0080963615036253 + 168 9 Cd 5d0 -0.0031790875034284 -0.0024213682604634 + 169 9 Cd 5d+1 -0.0153592632394459 -0.0128802623905782 + 170 9 Cd 5d+2 0.0116149647030450 0.0017232884623526 + 171 9 Cd 5f-3 0.0033218864307268 -0.0011778295092621 + 172 9 Cd 5f-2 0.0055110546591574 0.0015371680268640 + 173 9 Cd 5f-1 -0.0035482648285856 -0.0014105252920144 + 174 9 Cd 5f0 0.0012546717262003 0.0042354238094790 + 175 9 Cd 5f+1 -0.0017313818585755 -0.0005696338699307 + 176 9 Cd 5f+2 -0.0078402306842090 -0.0036776987602752 + 177 9 Cd 5f+3 0.0062908912073749 -0.0023152831923923 + + 178 10 Se 2s 0.1046445615734821 0.0133016097564683 + 179 10 Se 3s -0.0187088135642082 -0.0027497770718393 + 180 10 Se 3py 0.1332153879669738 0.0946439175210418 + 181 10 Se 3pz -0.1406341645002595 -0.0094869532046290 + 182 10 Se 3px -0.1093507467082360 -0.0509578927160777 + 183 10 Se 4py -0.0333292548195897 -0.0178281626555418 + 184 10 Se 4pz 0.0370455505937549 0.0048913001006366 + 185 10 Se 4px 0.0156100100528129 0.0158493221585759 + 186 10 Se 4d-2 0.0074434472886215 0.0137183247704309 + 187 10 Se 4d-1 0.0123110357099183 0.0180594691118777 + 188 10 Se 4d0 -0.0007093072300225 -0.0010509992313983 + 189 10 Se 4d+1 -0.0121666582957709 -0.0049221342133686 + 190 10 Se 4d+2 0.0174510694415190 0.0052374770012905 + + 191 11 Se 2s -0.0591934647400434 -0.1383952451639661 + 192 11 Se 3s 0.0096749145295237 0.0251294762708545 + 193 11 Se 3py -0.0720153596258643 -0.1440244596627731 + 194 11 Se 3pz 0.0575840186441081 0.0214739609529731 + 195 11 Se 3px -0.0349683726756289 -0.0492373819601873 + 196 11 Se 4py 0.0256313881345925 0.0415478784858051 + 197 11 Se 4pz -0.0047002572340217 -0.0026117936161470 + 198 11 Se 4px 0.0025986178081680 0.0109214338326428 + 199 11 Se 4d-2 0.0024470877719676 0.0013785498448434 + 200 11 Se 4d-1 0.0018211311714003 0.0091407726291576 + 201 11 Se 4d0 -0.0026062469861371 -0.0055498514682980 + 202 11 Se 4d+1 0.0064057883662337 -0.0171025745371464 + 203 11 Se 4d+2 -0.0028079815974496 0.0000085633847790 + + 204 12 Cd 2s 0.0807786917854107 -0.1235061279211877 + 205 12 Cd 3s 0.0121063532854380 -0.0047471781164617 + 206 12 Cd 3py 0.0523431969276311 0.1581765987207232 + 207 12 Cd 3pz 0.0903055845124514 -0.0695336043698757 + 208 12 Cd 3px -0.1116321702099948 0.0158759080296738 + 209 12 Cd 4py 0.0198146436896461 0.0203177363932198 + 210 12 Cd 4pz 0.0099287382935413 -0.0083975270794863 + 211 12 Cd 4px -0.0090036597747773 0.0007302387935581 + 212 12 Cd 4d-2 -0.0175289027255816 -0.0178482360871646 + 213 12 Cd 4d-1 0.0111645196173174 0.0164169195374076 + 214 12 Cd 4d0 -0.0181475259074540 -0.0065292918500070 + 215 12 Cd 4d+1 0.0007118603879989 -0.0047048703402386 + 216 12 Cd 4d+2 -0.0105516279090297 -0.0159172112538365 + 217 12 Cd 5d-2 0.0107182458304879 -0.0075876372798064 + 218 12 Cd 5d-1 0.0000846475523812 0.0189139256547997 + 219 12 Cd 5d0 -0.0181896630945129 0.0223859860675438 + 220 12 Cd 5d+1 0.0020749405684592 -0.0049078384538542 + 221 12 Cd 5d+2 -0.0451949999504466 -0.0352123978986389 + 222 12 Cd 5f-3 -0.0119832507429786 -0.0052371256543717 + 223 12 Cd 5f-2 0.0014542449324922 0.0023510849581809 + 224 12 Cd 5f-1 -0.0089530829422193 0.0025380540009959 + 225 12 Cd 5f0 -0.0071636102680574 -0.0110426915370107 + 226 12 Cd 5f+1 0.0020313538091105 0.0023881285722331 + 227 12 Cd 5f+2 -0.0066539274400615 0.0014358078488849 + 228 12 Cd 5f+3 -0.0126035498254729 -0.0108023373373400 + + 229 13 Cd 2s -0.3859470565212670 0.3474214548540648 + 230 13 Cd 3s -0.0088812852380675 0.0331603694359086 + 231 13 Cd 3py 0.0294174889738076 0.0521071093372716 + 232 13 Cd 3pz -0.0041969040754949 -0.0811562181365931 + 233 13 Cd 3px 0.0342986543950717 0.1129512402898741 + 234 13 Cd 4py 0.0064631678022092 -0.0035273967568406 + 235 13 Cd 4pz -0.0038911965125963 -0.0075803517270307 + 236 13 Cd 4px -0.0199673269975844 0.0254103229738749 + 237 13 Cd 4d-2 -0.0410815740011487 0.0172136460704276 + 238 13 Cd 4d-1 0.0377836796812854 -0.0372053085070365 + 239 13 Cd 4d0 0.0257007780308579 -0.0213606639548237 + 240 13 Cd 4d+1 -0.0071158021877986 -0.0092098389670076 + 241 13 Cd 4d+2 -0.0259240884725774 -0.0038359406778305 + 242 13 Cd 5d-2 -0.0265097990794237 0.0102665220909889 + 243 13 Cd 5d-1 0.0285034057970690 -0.0228807829401354 + 244 13 Cd 5d0 -0.0258521296986183 0.0265744652241240 + 245 13 Cd 5d+1 -0.0103971742973817 -0.0256792708400014 + 246 13 Cd 5d+2 0.0420890706936139 -0.0315761146853997 + 247 13 Cd 5f-3 -0.0065500277488767 0.0045123768707575 + 248 13 Cd 5f-2 -0.0012166613712494 -0.0042195713871138 + 249 13 Cd 5f-1 0.0075619005980865 0.0019340738836790 + 250 13 Cd 5f0 0.0006062950955771 0.0020313574043831 + 251 13 Cd 5f+1 0.0049938260477375 -0.0025876090694509 + 252 13 Cd 5f+2 0.0018888328206150 -0.0029969004680838 + 253 13 Cd 5f+3 -0.0183146367727407 0.0075482700730181 + + 254 14 Cd 2s 0.0381202455745093 -0.0255966973351483 + 255 14 Cd 3s 0.0003817122493292 -0.0016732807560960 + 256 14 Cd 3py -0.0391248463354880 0.0474009932563986 + 257 14 Cd 3pz -0.0305405394646293 -0.0678118257216909 + 258 14 Cd 3px 0.1853311256367085 0.0370638780235075 + 259 14 Cd 4py -0.0025381612234665 0.0047295204783859 + 260 14 Cd 4pz -0.0000808175134500 -0.0068728041073234 + 261 14 Cd 4px 0.0105062204329551 0.0058314203527082 + 262 14 Cd 4d-2 0.0081316865841952 -0.0054304200919003 + 263 14 Cd 4d-1 0.0104628370843011 -0.0081314448881702 + 264 14 Cd 4d0 -0.0031712902180224 -0.0008298523800667 + 265 14 Cd 4d+1 -0.0104429458260585 0.0097106684081070 + 266 14 Cd 4d+2 0.0037729696695615 0.0018083738709411 + 267 14 Cd 5d-2 0.0302782551311817 -0.0089832520532112 + 268 14 Cd 5d-1 0.0098766959027507 -0.0113998022388104 + 269 14 Cd 5d0 0.0032924096505301 -0.0030362933081908 + 270 14 Cd 5d+1 -0.0169508007453293 0.0124655297419600 + 271 14 Cd 5d+2 0.0108744059961522 0.0065074252365666 + 272 14 Cd 5f-3 0.0026759025399174 0.0029052398793310 + 273 14 Cd 5f-2 -0.0003282713786444 0.0033015923776344 + 274 14 Cd 5f-1 -0.0002580444678651 -0.0016858844308355 + 275 14 Cd 5f0 -0.0069609808466320 0.0024583527347325 + 276 14 Cd 5f+1 0.0097726890518070 0.0014585499857339 + 277 14 Cd 5f+2 0.0023936461683456 -0.0071473646501529 + 278 14 Cd 5f+3 0.0064886497646669 0.0035925547104463 + + 279 15 Se 2s -0.0783256754616904 0.0833078808634714 + 280 15 Se 3s 0.0143292521559364 -0.0137418876242983 + 281 15 Se 3py 0.1676795482491484 -0.0362982400983673 + 282 15 Se 3pz 0.0645251484649632 -0.0819845175649693 + 283 15 Se 3px -0.1503567237837800 0.1076344024106402 + 284 15 Se 4py -0.0382442329415301 0.0101822617439697 + 285 15 Se 4pz -0.0099981920075535 0.0047757201775659 + 286 15 Se 4px 0.0230263704741140 -0.0221494703153795 + 287 15 Se 4d-2 -0.0235144098054068 0.0101681939308295 + 288 15 Se 4d-1 0.0120787907483955 -0.0092445488327221 + 289 15 Se 4d0 -0.0002903795192486 -0.0013454823438601 + 290 15 Se 4d+1 -0.0300002020918784 0.0087191848201258 + 291 15 Se 4d+2 -0.0183027956721347 -0.0123177267845308 + + 292 16 Se 2s -0.0704825424973347 0.2742299395004566 + 293 16 Se 3s 0.0129447840138759 -0.0426571441779187 + 294 16 Se 3py -0.1417114131435581 -0.1560561932589024 + 295 16 Se 3pz -0.1833019391074488 0.2007861215885024 + 296 16 Se 3px 0.0629558016948264 -0.2102193238658699 + 297 16 Se 4py 0.0225929343548052 0.0136109378447546 + 298 16 Se 4pz 0.0339266356286055 -0.0766434079315051 + 299 16 Se 4px -0.0217029067155012 0.0234164604790220 + 300 16 Se 4d-2 -0.0106271649611339 -0.0165387506065130 + 301 16 Se 4d-1 0.0131040977898084 -0.0185945313975213 + 302 16 Se 4d0 0.0067927622864211 0.0096611292410744 + 303 16 Se 4d+1 -0.0143560916461360 -0.0095246970890444 + 304 16 Se 4d+2 -0.0057594903112123 0.0092280664499019 + + 305 17 Cd 2s 0.1291279902897523 0.5433222046122713 + 306 17 Cd 3s 0.0150225360184200 0.0504334336112561 + 307 17 Cd 3py 0.0338968744053190 -0.0813997139291225 + 308 17 Cd 3pz -0.0089179834447500 -0.0953342835639644 + 309 17 Cd 3px -0.0670327550394263 0.0826302244711089 + 310 17 Cd 4py 0.0010142122295558 0.0003163503016861 + 311 17 Cd 4pz 0.0023747286044930 -0.0025994522344837 + 312 17 Cd 4px -0.0059282794104185 0.0037974951861131 + 313 17 Cd 4d-2 -0.0073553025584856 -0.0565775360093079 + 314 17 Cd 4d-1 -0.0140671098004466 -0.0014246990557062 + 315 17 Cd 4d0 0.0084397241370490 0.0640997389718806 + 316 17 Cd 4d+1 0.0203030735780193 -0.0171572471406993 + 317 17 Cd 4d+2 0.0031897674487477 0.0110457522637207 + 318 17 Cd 5d-2 -0.0077322140459492 -0.0749647167330725 + 319 17 Cd 5d-1 -0.0090690711898567 0.0055493574360777 + 320 17 Cd 5d0 0.0094788954870382 0.0545987374446787 + 321 17 Cd 5d+1 0.0278897125285053 -0.0069439756650798 + 322 17 Cd 5d+2 -0.0048242039159820 -0.0046984043791478 + 323 17 Cd 5f-3 0.0006885018016805 0.0014661731026426 + 324 17 Cd 5f-2 -0.0012939513533471 0.0015316097405322 + 325 17 Cd 5f-1 0.0003804428291558 -0.0040393236832094 + 326 17 Cd 5f0 0.0012133125628633 -0.0004562325005716 + 327 17 Cd 5f+1 -0.0029117742990256 0.0047732843058917 + 328 17 Cd 5f+2 0.0001847361574238 0.0002071179413637 + 329 17 Cd 5f+3 0.0019247022771938 0.0006805872347286 + + 330 18 Cd 2s -0.0598562386429058 -0.0644368111268014 + 331 18 Cd 3s -0.0098160765014238 0.0027295463537626 + 332 18 Cd 3py 0.0261171602286926 0.0563655384005415 + 333 18 Cd 3pz -0.0051353746000994 -0.0523943375131798 + 334 18 Cd 3px 0.0073463955762905 -0.1927823006851031 + 335 18 Cd 4py 0.0008360439762695 0.0008639428131466 + 336 18 Cd 4pz 0.0018974311931741 -0.0126796393229114 + 337 18 Cd 4px -0.0032163066981641 -0.0144513429488647 + 338 18 Cd 4d-2 0.0019073457468858 -0.0018056443506776 + 339 18 Cd 4d-1 -0.0048602762836709 0.0179376189035410 + 340 18 Cd 4d0 0.0200333792153548 0.0114740945857560 + 341 18 Cd 4d+1 0.0121210723580086 0.0014588593959523 + 342 18 Cd 4d+2 0.0004464503610624 0.0128580342982515 + 343 18 Cd 5d-2 -0.0070739213607654 -0.0066244523157839 + 344 18 Cd 5d-1 0.0055320980741830 0.0103529662809896 + 345 18 Cd 5d0 0.0124704129600927 0.0153129808805348 + 346 18 Cd 5d+1 0.0058212861581186 0.0174575286871326 + 347 18 Cd 5d+2 0.0047484303598019 0.0295982532770773 + 348 18 Cd 5f-3 0.0003639193318976 0.0014284758444504 + 349 18 Cd 5f-2 -0.0029273232169719 -0.0061384189347647 + 350 18 Cd 5f-1 -0.0015815570556783 -0.0039560185482775 + 351 18 Cd 5f0 0.0005024610302805 0.0060394539524052 + 352 18 Cd 5f+1 -0.0010681900107523 -0.0018150549724285 + 353 18 Cd 5f+2 -0.0016342853284986 -0.0056891922169605 + 354 18 Cd 5f+3 0.0004081239154176 0.0044580868904020 + + 355 19 Se 2s 0.0136234720021501 0.2096448644396335 + 356 19 Se 3s -0.0037952155093967 -0.0337586508664768 + 357 19 Se 3py 0.0844122370553908 0.2715867335494612 + 358 19 Se 3pz -0.0607839844715807 0.0759471914454346 + 359 19 Se 3px 0.0241065583167266 0.0676357225801354 + 360 19 Se 4py -0.0068962397098915 -0.0341528283541368 + 361 19 Se 4pz 0.0101118000720608 -0.0488147401500754 + 362 19 Se 4px -0.0055899938197969 -0.0149186803496994 + 363 19 Se 4d-2 -0.0015971978792299 -0.0281269367734051 + 364 19 Se 4d-1 0.0025375250885364 0.0094905837836149 + 365 19 Se 4d0 0.0045986541391925 0.0088998634216704 + 366 19 Se 4d+1 -0.0047341841726308 0.0206652391122955 + 367 19 Se 4d+2 0.0056160287909909 0.0031007031627397 + + 368 20 Se 2s -0.0334014974950236 -0.0679116476721718 + 369 20 Se 3s 0.0044495998328123 0.0145184021967789 + 370 20 Se 3py -0.0520344408133091 -0.0030407255917926 + 371 20 Se 3pz 0.0817044594528955 -0.0332430582083475 + 372 20 Se 3px -0.1689944429940810 -0.0548006001481351 + 373 20 Se 4py 0.0278204555319448 0.0077989169553976 + 374 20 Se 4pz -0.0231089036481637 0.0101824234488086 + 375 20 Se 4px 0.0548444369396602 0.0038585784197988 + 376 20 Se 4d-2 0.0172263730621089 -0.0216277613353017 + 377 20 Se 4d-1 -0.0192554654407359 -0.0166073394298157 + 378 20 Se 4d0 -0.0060219997578349 -0.0164508874001637 + 379 20 Se 4d+1 0.0079683169945050 0.0302883424386750 + 380 20 Se 4d+2 -0.0147077925470019 -0.0039474739294586 + + 381 21 Se 2s 0.2100138281006885 -0.0137871128405734 + 382 21 Se 3s -0.0369949303323971 0.0027988856937917 + 383 21 Se 3py -0.1795588555347391 -0.0297143239439140 + 384 21 Se 3pz -0.1307167645936693 0.1927645564843819 + 385 21 Se 3px 0.1661243954021115 0.0215845968890766 + 386 21 Se 4py 0.0396016734385260 0.0168247103008541 + 387 21 Se 4pz 0.0349715019915003 -0.0538404430983112 + 388 21 Se 4px -0.0427346156858056 0.0100215298328694 + 389 21 Se 4d-2 0.0262911022797565 0.0054213591775801 + 390 21 Se 4d-1 0.0136293948418691 0.0263282114790091 + 391 21 Se 4d0 -0.0394513609778898 0.0071125737368068 + 392 21 Se 4d+1 -0.0194394559155814 -0.0052833176705980 + 393 21 Se 4d+2 0.0024894584005129 0.0112108702125474 + + 394 22 Cd 2s 0.2551582881129222 -0.1828789205747398 + 395 22 Cd 3s 0.0134198217025740 -0.0082978222636551 + 396 22 Cd 3py 0.0684936772944877 0.1806835652837172 + 397 22 Cd 3pz -0.0026606157254598 -0.1287882477646154 + 398 22 Cd 3px -0.4201609582524080 0.0217422827447197 + 399 22 Cd 4py -0.0046710907349652 0.0237318461222603 + 400 22 Cd 4pz 0.0019349311155423 -0.0210391621998889 + 401 22 Cd 4px -0.0567319169475557 0.0148820331768647 + 402 22 Cd 4d-2 0.0106220262632166 -0.0149299438247727 + 403 22 Cd 4d-1 -0.0209794144743796 0.0202605639223562 + 404 22 Cd 4d0 -0.0591507335881886 0.0292297721543370 + 405 22 Cd 4d+1 0.0157688161483287 -0.0073225879040804 + 406 22 Cd 4d+2 -0.0153601587667823 0.0091827053609797 + 407 22 Cd 5d-2 -0.0212366181905983 0.0079149489027026 + 408 22 Cd 5d-1 -0.0226923066398557 0.0111805219719087 + 409 22 Cd 5d0 -0.0038506903165678 -0.0330575996852024 + 410 22 Cd 5d+1 0.0042590305638720 -0.0105778541098748 + 411 22 Cd 5d+2 -0.0488305891906179 0.0396650291462676 + 412 22 Cd 5f-3 0.0018248554881574 0.0051059603713221 + 413 22 Cd 5f-2 -0.0041043594246289 -0.0022012709832723 + 414 22 Cd 5f-1 -0.0011362190969513 0.0056386637508744 + 415 22 Cd 5f0 0.0005432118574425 0.0038697331314028 + 416 22 Cd 5f+1 0.0116704366859119 -0.0022392054422307 + 417 22 Cd 5f+2 0.0006577527220115 -0.0058584189485852 + 418 22 Cd 5f+3 -0.0139646154215832 0.0173873778590984 + + 419 23 Se 2s 0.1434445427819032 0.0474710659031334 + 420 23 Se 3s -0.0238045460720870 -0.0079807366898325 + 421 23 Se 3py 0.0234000727685548 -0.0905093628330931 + 422 23 Se 3pz 0.2080286765069964 -0.1451333150479049 + 423 23 Se 3px -0.0508831985984834 0.1429629139060698 + 424 23 Se 4py 0.0043827592890674 0.0173957233528275 + 425 23 Se 4pz -0.0454815733853691 0.0265115828336294 + 426 23 Se 4px -0.0041551615406710 -0.0319270419376028 + 427 23 Se 4d-2 0.0091261473189264 0.0079265888231232 + 428 23 Se 4d-1 -0.0125673224409707 -0.0032475231676926 + 429 23 Se 4d0 -0.0040474670892541 0.0162317863667122 + 430 23 Se 4d+1 0.0169895311091861 0.0089662377958181 + 431 23 Se 4d+2 0.0029521077103819 -0.0019854314970519 + + 432 24 Se 2s 0.0144258507514712 0.0102526361624134 + 433 24 Se 3s -0.0027154415379722 0.0000073227408372 + 434 24 Se 3py 0.0225363591522160 -0.0308048038884808 + 435 24 Se 3pz -0.0420499431186106 -0.0469735874247710 + 436 24 Se 3px 0.0629769868406900 0.0366033774399135 + 437 24 Se 4py -0.0124784412932799 0.0002350230023542 + 438 24 Se 4pz 0.0058273746155478 0.0090729067341168 + 439 24 Se 4px -0.0079960550110288 -0.0045281712380289 + 440 24 Se 4d-2 -0.0088650261350287 -0.0010465131709470 + 441 24 Se 4d-1 0.0173060865432658 -0.0146523589968733 + 442 24 Se 4d0 -0.0011016448582328 -0.0097497883480412 + 443 24 Se 4d+1 -0.0085983005237727 0.0093097227261302 + 444 24 Se 4d+2 0.0002694326853117 -0.0075683763522335 + + 445 25 Cd 2s 0.0555181305380287 0.1717212068569172 + 446 25 Cd 3s 0.0128850868717333 0.0267836791394984 + 447 25 Cd 3py 0.1204451108726671 -0.1353944922951728 + 448 25 Cd 3pz -0.0067192091767483 -0.1053851005401969 + 449 25 Cd 3px -0.0348700722211525 0.0116945812206303 + 450 25 Cd 4py 0.0173067905707633 -0.0099140235776238 + 451 25 Cd 4pz -0.0029167256154694 -0.0313154246454722 + 452 25 Cd 4px 0.0004434842149640 0.0169433161249397 + 453 25 Cd 4d-2 -0.0141028108703412 0.0030362176538221 + 454 25 Cd 4d-1 0.0292025335250978 -0.0331839566659769 + 455 25 Cd 4d0 -0.0108667955563292 -0.0067894487886835 + 456 25 Cd 4d+1 -0.0069921044261406 0.0231953772281395 + 457 25 Cd 4d+2 -0.0008856898124482 -0.0002948380962229 + 458 25 Cd 5d-2 -0.0120743906428619 0.0227750586407855 + 459 25 Cd 5d-1 0.0315824807086341 -0.0140644270461215 + 460 25 Cd 5d0 -0.0107744303800120 -0.0265531664944349 + 461 25 Cd 5d+1 -0.0066137755999398 -0.0226330164954978 + 462 25 Cd 5d+2 0.0035498513998663 0.0270574357980961 + 463 25 Cd 5f-3 -0.0021806312757505 0.0113174064722589 + 464 25 Cd 5f-2 0.0012303955710680 -0.0090896666999292 + 465 25 Cd 5f-1 -0.0079202818735713 0.0047063115631536 + 466 25 Cd 5f0 -0.0000714589068347 0.0104688142186054 + 467 25 Cd 5f+1 0.0013338598230678 0.0067598157839557 + 468 25 Cd 5f+2 -0.0070134091491469 -0.0109069131889807 + 469 25 Cd 5f+3 -0.0012363765885117 0.0179450380292005 + + 470 26 Cd 2s -0.1253761556701874 -0.0317086017777014 + 471 26 Cd 3s -0.0043231762803066 0.0010009778137767 + 472 26 Cd 3py 0.0258585223715490 -0.0713921501426939 + 473 26 Cd 3pz -0.1792894240614158 0.1375319185117659 + 474 26 Cd 3px 0.0650032626607299 0.0284473699013659 + 475 26 Cd 4py 0.0074323363613241 -0.0025514036978701 + 476 26 Cd 4pz -0.0096644684987484 0.0052806509026163 + 477 26 Cd 4px -0.0042417141140759 0.0018129349143225 + 478 26 Cd 4d-2 -0.0177523511059528 0.0048766384274323 + 479 26 Cd 4d-1 -0.0124986972247858 -0.0091533705917123 + 480 26 Cd 4d0 0.0193076053493337 -0.0098467878105070 + 481 26 Cd 4d+1 -0.0063388662064858 0.0105328196263239 + 482 26 Cd 4d+2 -0.0016701368826068 -0.0062883364216318 + 483 26 Cd 5d-2 -0.0082398652475183 0.0071867470112822 + 484 26 Cd 5d-1 -0.0135402559450851 -0.0043240011062697 + 485 26 Cd 5d0 0.0196176917534857 -0.0065452717314453 + 486 26 Cd 5d+1 0.0006349122592047 0.0054291783112342 + 487 26 Cd 5d+2 -0.0336906610001290 -0.0090675347207556 + 488 26 Cd 5f-3 -0.0035208316308197 -0.0009821785001975 + 489 26 Cd 5f-2 -0.0022685944153308 0.0058037480303800 + 490 26 Cd 5f-1 0.0032404675960875 -0.0019430633914506 + 491 26 Cd 5f0 0.0040860738016399 -0.0009683837481289 + 492 26 Cd 5f+1 0.0023078546722174 0.0011154771202330 + 493 26 Cd 5f+2 0.0011738481619988 0.0020219932323887 + 494 26 Cd 5f+3 0.0010342101368465 0.0006366464246729 + + 129 130 + -0.0560712254112538 -0.0491237325800031 + + 0.0000000000000000 0.0000000000000000 + + 1 1 Cd 2s -0.1583971923635735 -0.4036378070750295 + 2 1 Cd 3s -0.0122828015942659 -0.0353404168023253 + 3 1 Cd 3py 0.0022386727868453 0.0171081165475118 + 4 1 Cd 3pz -0.0573630119728667 0.0527540721410132 + 5 1 Cd 3px -0.0235587942379694 -0.0983385981099302 + 6 1 Cd 4py 0.0085484825558592 0.0097749006891317 + 7 1 Cd 4pz -0.0088114432274362 0.0033768697449965 + 8 1 Cd 4px 0.0039063773782148 -0.0071003148999593 + 9 1 Cd 4d-2 0.0064323067072662 0.0144689154656670 + 10 1 Cd 4d-1 0.0022266709705900 0.0111857700950883 + 11 1 Cd 4d0 -0.0020056573668771 -0.0092185970353846 + 12 1 Cd 4d+1 -0.0009304024942802 0.0187251444753071 + 13 1 Cd 4d+2 -0.0203545973171822 -0.0720717274995715 + 14 1 Cd 5d-2 -0.0120324161272004 -0.0088349811866633 + 15 1 Cd 5d-1 -0.0113804592296033 0.0064974865307933 + 16 1 Cd 5d0 -0.0059396593406923 -0.0189846520067948 + 17 1 Cd 5d+1 0.0024264751403827 0.0087073645770816 + 18 1 Cd 5d+2 -0.0308942939953618 -0.0517946108249795 + 19 1 Cd 5f-3 0.0012758696763935 0.0008441554795107 + 20 1 Cd 5f-2 -0.0001431220442048 -0.0047544891615325 + 21 1 Cd 5f-1 -0.0048145903296350 0.0034032064114449 + 22 1 Cd 5f0 -0.0018512909950026 0.0017322418885831 + 23 1 Cd 5f+1 0.0040348493279531 -0.0008374658111623 + 24 1 Cd 5f+2 0.0006083681346303 0.0004118173822560 + 25 1 Cd 5f+3 0.0023034302111627 -0.0046745869726277 + + 26 2 Cd 2s 0.2007764794602959 0.2818838579208304 + 27 2 Cd 3s 0.0111142620654327 0.0177207481321196 + 28 2 Cd 3py -0.0949210463865770 -0.0573459673579224 + 29 2 Cd 3pz 0.0832349886124614 0.0206586579194689 + 30 2 Cd 3px 0.0780360055312207 -0.0343348627303931 + 31 2 Cd 4py -0.0166372413617515 -0.0065224525563030 + 32 2 Cd 4pz 0.0015348655931938 -0.0106107920705056 + 33 2 Cd 4px 0.0100153439180476 0.0048504864530846 + 34 2 Cd 4d-2 0.0329447688613101 0.0217554471807701 + 35 2 Cd 4d-1 -0.0015294483805469 -0.0013848509861099 + 36 2 Cd 4d0 0.0233696586562665 0.0051125226104461 + 37 2 Cd 4d+1 -0.0104857643739181 -0.0030563047277299 + 38 2 Cd 4d+2 0.0202908209723363 0.0019306383059612 + 39 2 Cd 5d-2 0.0216345252289621 -0.0045164303391257 + 40 2 Cd 5d-1 0.0145957029546937 0.0088000662963489 + 41 2 Cd 5d0 0.0540401661856027 0.0354627880187326 + 42 2 Cd 5d+1 0.0006446571767417 0.0066675483320192 + 43 2 Cd 5d+2 0.0129225806441636 -0.0397566886778071 + 44 2 Cd 5f-3 0.0006549640500087 0.0005526713925573 + 45 2 Cd 5f-2 -0.0042436079088392 -0.0068943636266303 + 46 2 Cd 5f-1 0.0025149269583982 0.0021499734535129 + 47 2 Cd 5f0 0.0007118088328581 -0.0034768084431351 + 48 2 Cd 5f+1 -0.0085512454355854 -0.0090249181066834 + 49 2 Cd 5f+2 0.0011327834696207 -0.0050068957674436 + 50 2 Cd 5f+3 0.0071806495876649 0.0062934521761681 + + 51 3 Cd 2s 0.0466420501181031 -0.2396370297423717 + 52 3 Cd 3s 0.0029800554123509 -0.0356310621485009 + 53 3 Cd 3py 0.0052139796349301 0.0129673969835924 + 54 3 Cd 3pz 0.0558537411294734 0.0415523026170262 + 55 3 Cd 3px 0.0197924921899646 -0.0008384251956717 + 56 3 Cd 4py 0.0084187166828086 -0.0011289483438807 + 57 3 Cd 4pz 0.0046900677518371 0.0085842372055323 + 58 3 Cd 4px -0.0040259315616095 -0.0096187087153124 + 59 3 Cd 4d-2 -0.0032636457584191 0.0080619189526061 + 60 3 Cd 4d-1 -0.0078275761210851 -0.0090614452742178 + 61 3 Cd 4d0 -0.0081552898959345 -0.0035265032774642 + 62 3 Cd 4d+1 -0.0098267140623608 -0.0284258838976233 + 63 3 Cd 4d+2 -0.0037262870158400 0.0136452226667422 + 64 3 Cd 5d-2 -0.0275041687317032 -0.0099514224738640 + 65 3 Cd 5d-1 -0.0263679973022195 -0.0124275926998209 + 66 3 Cd 5d0 -0.0141148162774153 0.0016656466435673 + 67 3 Cd 5d+1 -0.0023469663566010 0.0045506749126795 + 68 3 Cd 5d+2 -0.0020812844900475 0.0153501888887673 + 69 3 Cd 5f-3 -0.0028032693771823 -0.0016713929009970 + 70 3 Cd 5f-2 0.0056600480063967 0.0044662777763085 + 71 3 Cd 5f-1 -0.0019546511518268 -0.0088301182637853 + 72 3 Cd 5f0 -0.0060899163449914 -0.0060651151806694 + 73 3 Cd 5f+1 0.0018203742915279 -0.0030530487847569 + 74 3 Cd 5f+2 -0.0007604431960541 -0.0002677056371558 + 75 3 Cd 5f+3 -0.0004306268927827 0.0054278420785990 + + 76 4 Se 2s -0.0194027951373049 -0.1020358924144229 + 77 4 Se 3s 0.0034844211296661 0.0162421927239854 + 78 4 Se 3py 0.0585639764900220 0.1591465607757395 + 79 4 Se 3pz -0.0176777325415411 0.2376025803265288 + 80 4 Se 3px -0.0070146287345894 0.0090270424688475 + 81 4 Se 4py -0.0201473228547280 -0.0312686253995369 + 82 4 Se 4pz 0.0047756890741336 -0.0319894455914677 + 83 4 Se 4px -0.0027440855906927 -0.0196673191791863 + 84 4 Se 4d-2 -0.0055740625843024 -0.0099141634986144 + 85 4 Se 4d-1 0.0243315534428498 0.0169148363370275 + 86 4 Se 4d0 -0.0158432849819550 -0.0036288505162947 + 87 4 Se 4d+1 -0.0101758097902703 0.0068262698021405 + 88 4 Se 4d+2 -0.0042070299555028 -0.0027111600207235 + + 89 5 Se 2s -0.0397602108908606 -0.1775873622985775 + 90 5 Se 3s 0.0057960477335845 0.0268223830611970 + 91 5 Se 3py -0.0756498893232989 -0.2379254676890597 + 92 5 Se 3pz 0.0263524133261628 -0.0248333020666893 + 93 5 Se 3px 0.0315805558092446 0.1209603337052964 + 94 5 Se 4py 0.0155551592070314 0.0478712239679768 + 95 5 Se 4pz -0.0029129437706544 0.0194896994489524 + 96 5 Se 4px -0.0119697513543062 -0.0398111552002024 + 97 5 Se 4d-2 0.0079241897604248 0.0141792247070548 + 98 5 Se 4d-1 0.0040956184139528 -0.0076503289186469 + 99 5 Se 4d0 -0.0099090545988188 -0.0095095474803101 + 100 5 Se 4d+1 0.0013490704659238 -0.0027275842516435 + 101 5 Se 4d+2 -0.0037226135795398 -0.0069335681905204 + + 102 6 Se 2s 0.0881338266415785 0.0304023112244543 + 103 6 Se 3s -0.0148778723047312 -0.0068043326004750 + 104 6 Se 3py 0.1673945013065191 0.1686749500234968 + 105 6 Se 3pz -0.0202706707133007 0.0345972339518868 + 106 6 Se 3px -0.0969938421896273 -0.0772827419072492 + 107 6 Se 4py -0.0352950415099348 -0.0362667108022082 + 108 6 Se 4pz 0.0051518626744730 -0.0037248887296550 + 109 6 Se 4px 0.0276069020955898 0.0150960117079955 + 110 6 Se 4d-2 0.0093242980505153 0.0170924633022280 + 111 6 Se 4d-1 -0.0103052372755944 -0.0017109299446982 + 112 6 Se 4d0 0.0091879128190544 0.0126110961177112 + 113 6 Se 4d+1 -0.0061961167331037 -0.0005280000296852 + 114 6 Se 4d+2 0.0109654075737704 0.0027377526191254 + + 115 7 Se 2s 0.0599690303519579 0.0238585768783694 + 116 7 Se 3s -0.0117519434865778 -0.0056532391487177 + 117 7 Se 3py -0.0479818317750686 -0.0895618461720814 + 118 7 Se 3pz 0.0070817549859046 0.0139581495580632 + 119 7 Se 3px 0.0082999392105176 0.1869928140202016 + 120 7 Se 4py 0.0139072647439440 0.0176155621103246 + 121 7 Se 4pz 0.0057649551481617 0.0003697794900832 + 122 7 Se 4px -0.0092418234260683 -0.0509432561679729 + 123 7 Se 4d-2 0.0287908711529994 0.0047312724033740 + 124 7 Se 4d-1 0.0016657105116996 -0.0086324287861231 + 125 7 Se 4d0 0.0100290171327952 0.0062949319075459 + 126 7 Se 4d+1 -0.0026918394269473 0.0226630058367003 + 127 7 Se 4d+2 0.0013047660887286 0.0071652127006766 + + 128 8 Cd 2s -0.2104836146422462 -0.2373023857123585 + 129 8 Cd 3s -0.0115774899152940 -0.0191339802105233 + 130 8 Cd 3py 0.0410745219158404 -0.0945331880348108 + 131 8 Cd 3pz 0.0046129357209819 0.0575827140275266 + 132 8 Cd 3px 0.0473626353508978 0.0305225486371412 + 133 8 Cd 4py 0.0026817674766447 -0.0174877938780636 + 134 8 Cd 4pz 0.0024249455026658 0.0071995023306817 + 135 8 Cd 4px 0.0128605386202324 0.0078234698734807 + 136 8 Cd 4d-2 -0.0270945866137584 -0.0180002059792216 + 137 8 Cd 4d-1 -0.0095738415037101 -0.0051555956550198 + 138 8 Cd 4d0 -0.0049495329122670 -0.0079366235513155 + 139 8 Cd 4d+1 0.0129314589360859 0.0153023343007340 + 140 8 Cd 4d+2 -0.0066425099152770 0.0289431354972977 + 141 8 Cd 5d-2 0.0007204002261968 -0.0167249625080255 + 142 8 Cd 5d-1 0.0302632771361689 0.0366443699076788 + 143 8 Cd 5d0 -0.0432040580128297 -0.0406033464045151 + 144 8 Cd 5d+1 0.0026357077810654 -0.0156225230538603 + 145 8 Cd 5d+2 -0.0321892335100640 0.0765771255168162 + 146 8 Cd 5f-3 0.0062783809875023 0.0041906757835470 + 147 8 Cd 5f-2 -0.0058687502654282 -0.0037588257206297 + 148 8 Cd 5f-1 0.0016724638975690 0.0025744046900357 + 149 8 Cd 5f0 0.0047986837014390 0.0019499493103593 + 150 8 Cd 5f+1 -0.0062690274394067 -0.0073224398946236 + 151 8 Cd 5f+2 0.0004913981227658 0.0046519927757141 + 152 8 Cd 5f+3 0.0159437522177961 0.0085105309484252 + + 153 9 Cd 2s -0.0227715328216838 0.0161412828675365 + 154 9 Cd 3s 0.0009636759310719 0.0017859982879424 + 155 9 Cd 3py 0.1916154775266883 0.1378877733109707 + 156 9 Cd 3pz -0.0308736710443434 -0.0649926914734309 + 157 9 Cd 3px 0.0101291083565294 -0.0711832040207842 + 158 9 Cd 4py 0.0166344154431871 0.0116907307154032 + 159 9 Cd 4pz -0.0055785983111078 -0.0085256559911911 + 160 9 Cd 4px 0.0084168256597684 -0.0060429931782190 + 161 9 Cd 4d-2 -0.0032354068350840 -0.0009377001515795 + 162 9 Cd 4d-1 0.0007615687032746 -0.0089978377310637 + 163 9 Cd 4d0 -0.0062525948101388 0.0005546668132373 + 164 9 Cd 4d+1 0.0079950671768333 0.0032736727722515 + 165 9 Cd 4d+2 -0.0069422797023137 -0.0114165500903947 + 166 9 Cd 5d-2 -0.0088049021521447 -0.0086212738414448 + 167 9 Cd 5d-1 -0.0045818674020836 -0.0236885755109405 + 168 9 Cd 5d0 -0.0010220702234131 -0.0047359684300226 + 169 9 Cd 5d+1 -0.0085777969946564 -0.0023562316169025 + 170 9 Cd 5d+2 -0.0024581573160142 0.0004038017280330 + 171 9 Cd 5f-3 -0.0022551595222244 -0.0027369023196882 + 172 9 Cd 5f-2 -0.0033061608813832 -0.0047182658327315 + 173 9 Cd 5f-1 0.0037479490170515 0.0067954413024003 + 174 9 Cd 5f0 -0.0007737565308379 0.0051213716636664 + 175 9 Cd 5f+1 0.0028788854243364 0.0012929758916769 + 176 9 Cd 5f+2 0.0056230554245155 0.0049414273613543 + 177 9 Cd 5f+3 -0.0042862715632390 -0.0014616206607545 + + 178 10 Se 2s -0.0444517114699649 0.0201775291163844 + 179 10 Se 3s 0.0093129360410154 -0.0025943995387829 + 180 10 Se 3py -0.0719395653270854 0.0023520785672431 + 181 10 Se 3pz 0.0172807751827441 -0.0133795913770436 + 182 10 Se 3px -0.0222527572412209 -0.0085273206943206 + 183 10 Se 4py 0.0238189599454918 0.0103564469209227 + 184 10 Se 4pz -0.0098469164958685 0.0024915220974010 + 185 10 Se 4px 0.0057689372211796 -0.0144373566308612 + 186 10 Se 4d-2 -0.0159454245463018 -0.0062561371958344 + 187 10 Se 4d-1 -0.0143876616569019 -0.0056192388972834 + 188 10 Se 4d0 -0.0029548435503303 0.0037509185918883 + 189 10 Se 4d+1 -0.0021723458814373 -0.0025916166281187 + 190 10 Se 4d+2 -0.0042379930241900 -0.0102790606226234 + + 191 11 Se 2s -0.0040016117566701 -0.0588663162028338 + 192 11 Se 3s 0.0016025675912711 0.0106065540057087 + 193 11 Se 3py 0.0060099467302253 -0.0806907482108974 + 194 11 Se 3pz 0.1005747133318115 0.0277624915664940 + 195 11 Se 3px -0.0865865487943583 -0.1539862727049215 + 196 11 Se 4py -0.0003343780900340 0.0206457285189426 + 197 11 Se 4pz -0.0238069062126344 -0.0160394890720581 + 198 11 Se 4px 0.0085669129475610 0.0319805299082797 + 199 11 Se 4d-2 0.0018278021508790 0.0051681805450609 + 200 11 Se 4d-1 -0.0068843907584066 -0.0033227195557303 + 201 11 Se 4d0 0.0122864113154605 -0.0036909460340679 + 202 11 Se 4d+1 -0.0020290229945254 -0.0111433934109532 + 203 11 Se 4d+2 -0.0075973443215817 -0.0003412427804198 + + 204 12 Cd 2s 0.1852467328605903 0.0813729203594963 + 205 12 Cd 3s 0.0141899270855753 0.0149643936035873 + 206 12 Cd 3py -0.0954437544625056 0.0053740944734264 + 207 12 Cd 3pz 0.0058152491573098 0.0088435388420428 + 208 12 Cd 3px -0.0872690620937794 -0.0612877707332352 + 209 12 Cd 4py -0.0160105315350273 -0.0015448978296620 + 210 12 Cd 4pz -0.0115044473664031 -0.0034956163758521 + 211 12 Cd 4px -0.0055690520344758 -0.0098976412912045 + 212 12 Cd 4d-2 0.0099120580753282 -0.0046987854912529 + 213 12 Cd 4d-1 -0.0053782385766599 0.0061950724288914 + 214 12 Cd 4d0 -0.0064728678168723 0.0033293623880282 + 215 12 Cd 4d+1 0.0006691016328041 -0.0091770268753925 + 216 12 Cd 4d+2 0.0016924375675308 0.0097861241477912 + 217 12 Cd 5d-2 0.0163006510391941 -0.0303953404198018 + 218 12 Cd 5d-1 -0.0106305500185211 0.0023885281120490 + 219 12 Cd 5d0 0.0157818938003260 0.0225135966632884 + 220 12 Cd 5d+1 -0.0002467748368910 -0.0208717816844712 + 221 12 Cd 5d+2 0.0254738798750552 0.0204641753828321 + 222 12 Cd 5f-3 0.0004260161216015 0.0073949194911759 + 223 12 Cd 5f-2 -0.0018872563969881 -0.0016976474123933 + 224 12 Cd 5f-1 0.0041740810391401 0.0040007059165929 + 225 12 Cd 5f0 0.0108606647753365 0.0030436591122622 + 226 12 Cd 5f+1 0.0030609512640980 0.0015626999359520 + 227 12 Cd 5f+2 0.0038564848158873 0.0087021424343475 + 228 12 Cd 5f+3 0.0066196473280488 -0.0007100881408617 + + 229 13 Cd 2s 0.0856230781101480 -0.2790282268512438 + 230 13 Cd 3s -0.0064333582775614 -0.0263294075894769 + 231 13 Cd 3py 0.1318212256687949 0.0620889430553062 + 232 13 Cd 3pz -0.1132071706639188 -0.0510250850228532 + 233 13 Cd 3px 0.1219359324436800 -0.0834888943956616 + 234 13 Cd 4py 0.0069928771131791 0.0212001138258374 + 235 13 Cd 4pz -0.0164904549789304 -0.0075556928200140 + 236 13 Cd 4px 0.0065033459104305 -0.0492358578500609 + 237 13 Cd 4d-2 -0.0135626542888310 -0.0218461407529063 + 238 13 Cd 4d-1 -0.0107854684138607 0.0224687265703728 + 239 13 Cd 4d0 -0.0113707552141059 0.0125197623884682 + 240 13 Cd 4d+1 -0.0139280394220619 -0.0070675901968016 + 241 13 Cd 4d+2 -0.0039819494463421 0.0101604193304049 + 242 13 Cd 5d-2 0.0112663639095266 0.0634375083657184 + 243 13 Cd 5d-1 -0.0135431066565584 0.0207808952051575 + 244 13 Cd 5d0 0.0084286535470244 -0.0245498593131594 + 245 13 Cd 5d+1 -0.0256148756124251 -0.0166580170238045 + 246 13 Cd 5d+2 -0.0025842917068714 0.0835983514753925 + 247 13 Cd 5f-3 0.0053251002948152 -0.0006129990349991 + 248 13 Cd 5f-2 -0.0030225233024702 0.0018904175690356 + 249 13 Cd 5f-1 -0.0057913127582541 -0.0083951147805460 + 250 13 Cd 5f0 0.0026505446268024 -0.0010274167124598 + 251 13 Cd 5f+1 0.0032649357590401 0.0210686423646937 + 252 13 Cd 5f+2 -0.0005669871425770 0.0032353922286820 + 253 13 Cd 5f+3 0.0119864469651032 -0.0011280048218266 + + 254 14 Cd 2s 0.0063583779055715 -0.0490469262316209 + 255 14 Cd 3s 0.0066631839002900 -0.0022978747380219 + 256 14 Cd 3py -0.0079311406751464 0.0902956654393627 + 257 14 Cd 3pz 0.1031142151705215 -0.0009909306111605 + 258 14 Cd 3px -0.3855857039825922 0.2219984266537289 + 259 14 Cd 4py -0.0022599486043433 0.0048534403393589 + 260 14 Cd 4pz 0.0071528552170548 0.0079020878635623 + 261 14 Cd 4px -0.0255495809288219 0.0128448433855756 + 262 14 Cd 4d-2 0.0045408026739263 -0.0036990760558510 + 263 14 Cd 4d-1 0.0003177269221504 -0.0090169340500397 + 264 14 Cd 4d0 0.0115987573758434 0.0248171640323859 + 265 14 Cd 4d+1 0.0027909131117341 -0.0043521780347761 + 266 14 Cd 4d+2 0.0071339270515101 -0.0000566073762698 + 267 14 Cd 5d-2 -0.0263645675324671 0.0119448187766403 + 268 14 Cd 5d-1 0.0111198147472409 -0.0173823252464895 + 269 14 Cd 5d0 0.0080312979396009 0.0206208699709500 + 270 14 Cd 5d+1 -0.0066490472515575 -0.0124478098589715 + 271 14 Cd 5d+2 0.0144783930757223 -0.0186222123901768 + 272 14 Cd 5f-3 -0.0038684861411662 -0.0012957988055449 + 273 14 Cd 5f-2 0.0001050728543142 -0.0034651791810618 + 274 14 Cd 5f-1 0.0018733356849889 0.0048413856373506 + 275 14 Cd 5f0 -0.0022908114907279 -0.0023657495890982 + 276 14 Cd 5f+1 -0.0068399797870589 0.0000713504955143 + 277 14 Cd 5f+2 0.0016617011938770 0.0034761395981041 + 278 14 Cd 5f+3 -0.0078639940593222 -0.0080760979463547 + + 279 15 Se 2s -0.0639875296874657 -0.0053748738228464 + 280 15 Se 3s 0.0112936782552769 -0.0008004914726766 + 281 15 Se 3py 0.1181483827621561 0.0186455100217634 + 282 15 Se 3pz -0.0298137842568230 -0.0659862401994392 + 283 15 Se 3px 0.0032202351406276 -0.1583940895627509 + 284 15 Se 4py -0.0351551487241873 -0.0073242012125005 + 285 15 Se 4pz 0.0053743575330069 0.0059922583840066 + 286 15 Se 4px -0.0039100881525096 0.0482788725589553 + 287 15 Se 4d-2 0.0157832624743614 -0.0291241760784635 + 288 15 Se 4d-1 0.0007255516893583 -0.0078026281292967 + 289 15 Se 4d0 -0.0108579434885794 0.0122225707130253 + 290 15 Se 4d+1 0.0337383707133703 -0.0264761838465558 + 291 15 Se 4d+2 -0.0068855307805616 -0.0066054647701371 + + 292 16 Se 2s 0.1258194373042768 -0.1042314886344178 + 293 16 Se 3s -0.0196651800511249 0.0189011903446533 + 294 16 Se 3py -0.0687992362925505 -0.0276644444569219 + 295 16 Se 3pz -0.0271399895170822 -0.2423251174496181 + 296 16 Se 3px -0.1594737846122855 -0.0750611191644184 + 297 16 Se 4py -0.0002658362695537 -0.0071633739834786 + 298 16 Se 4pz -0.0124108613757457 0.0545039339616021 + 299 16 Se 4px 0.0155037771004200 -0.0003341463274972 + 300 16 Se 4d-2 -0.0174854860998702 -0.0189811756276586 + 301 16 Se 4d-1 -0.0167469689937183 -0.0056643422326055 + 302 16 Se 4d0 0.0105469267027298 0.0062416698690642 + 303 16 Se 4d+1 -0.0079537305720743 0.0000685142684923 + 304 16 Se 4d+2 0.0109499719248465 0.0052651331222181 + + 305 17 Cd 2s 0.4031099264104010 0.1610987558684649 + 306 17 Cd 3s 0.0323049020089760 0.0054697976835289 + 307 17 Cd 3py -0.0152158331764110 -0.0714779891385197 + 308 17 Cd 3pz -0.1133674296409542 -0.0887112538629363 + 309 17 Cd 3px 0.0483156275998293 0.0003829843741438 + 310 17 Cd 4py 0.0112796622550220 -0.0049689179150221 + 311 17 Cd 4pz -0.0027637664980550 -0.0072552760516413 + 312 17 Cd 4px 0.0100047326178826 0.0048373494354208 + 313 17 Cd 4d-2 -0.0283904554860268 -0.0076985571692645 + 314 17 Cd 4d-1 -0.0101369646271444 0.0112863010999738 + 315 17 Cd 4d0 0.0282123038093891 0.0041696704555290 + 316 17 Cd 4d+1 -0.0023769243098093 0.0101335011690829 + 317 17 Cd 4d+2 0.0132235888191206 0.0112239891639543 + 318 17 Cd 5d-2 -0.0562160961822905 0.0063674008100967 + 319 17 Cd 5d-1 0.0046507699731114 0.0192813940219583 + 320 17 Cd 5d0 0.0341172157251211 0.0078882730969944 + 321 17 Cd 5d+1 0.0217733290487929 0.0324071560403439 + 322 17 Cd 5d+2 0.0040479647392254 0.0059273530473565 + 323 17 Cd 5f-3 0.0054661769703857 0.0067836822566585 + 324 17 Cd 5f-2 -0.0041795070434178 -0.0016208025032282 + 325 17 Cd 5f-1 0.0017655724656521 -0.0022656976859700 + 326 17 Cd 5f0 0.0029948223547346 0.0037070074201660 + 327 17 Cd 5f+1 0.0042732944356643 -0.0001512877871587 + 328 17 Cd 5f+2 -0.0086742029613890 -0.0034045249394368 + 329 17 Cd 5f+3 0.0048440907912130 -0.0018519049557603 + + 330 18 Cd 2s -0.0911729371292314 -0.0002265360060051 + 331 18 Cd 3s -0.0064919695889841 -0.0003727079981576 + 332 18 Cd 3py -0.0749967112094763 -0.0605562834934927 + 333 18 Cd 3pz -0.0290927779166252 -0.0544832938158596 + 334 18 Cd 3px -0.1317439516525657 -0.2262200761489523 + 335 18 Cd 4py -0.0093886083493780 -0.0030193987152792 + 336 18 Cd 4pz -0.0024402408327204 -0.0116428876399833 + 337 18 Cd 4px -0.0078535497353844 -0.0218080993236942 + 338 18 Cd 4d-2 -0.0024100888166771 -0.0033032057991966 + 339 18 Cd 4d-1 -0.0153064291108032 0.0036192090051719 + 340 18 Cd 4d0 0.0218011341137661 0.0108993962588976 + 341 18 Cd 4d+1 0.0197207495150653 0.0031207225088534 + 342 18 Cd 4d+2 0.0052699002301584 0.0033920728332869 + 343 18 Cd 5d-2 0.0096352161832891 -0.0018069618561303 + 344 18 Cd 5d-1 -0.0084062428668084 -0.0048362933629532 + 345 18 Cd 5d0 0.0151370060380445 0.0041179964607341 + 346 18 Cd 5d+1 0.0422709637899633 0.0120946100770302 + 347 18 Cd 5d+2 0.0191684052501478 0.0002252172574384 + 348 18 Cd 5f-3 0.0034288640438840 0.0008104221237267 + 349 18 Cd 5f-2 0.0018171666393990 -0.0059606735664515 + 350 18 Cd 5f-1 0.0016631849618878 -0.0038166535678686 + 351 18 Cd 5f0 0.0009337975215004 0.0044580558058843 + 352 18 Cd 5f+1 -0.0006925318941586 0.0019663547201528 + 353 18 Cd 5f+2 -0.0013476574044775 0.0007414757658654 + 354 18 Cd 5f+3 -0.0040808992961798 -0.0015119938015787 + + 355 19 Se 2s 0.0185087710763689 0.0902576899068041 + 356 19 Se 3s -0.0023490751592633 -0.0163646378118849 + 357 19 Se 3py 0.1073970525383069 0.0515744682398873 + 358 19 Se 3pz -0.1795334415432606 -0.0086941916356486 + 359 19 Se 3px 0.1423881283331002 -0.0135665462106512 + 360 19 Se 4py 0.0056774490861139 -0.0054121607726872 + 361 19 Se 4pz 0.0250408260931968 -0.0001049586794758 + 362 19 Se 4px -0.0259939052846768 -0.0077118462807093 + 363 19 Se 4d-2 -0.0301211861086539 -0.0129958290771362 + 364 19 Se 4d-1 0.0171875866365079 0.0129062521721777 + 365 19 Se 4d0 0.0135987595260020 0.0043610553666243 + 366 19 Se 4d+1 0.0032089040499759 0.0122775643896922 + 367 19 Se 4d+2 0.0156655327138103 0.0092527717338092 + + 368 20 Se 2s -0.0721446263922142 -0.1017859342565828 + 369 20 Se 3s 0.0134734055956415 0.0175583117916977 + 370 20 Se 3py -0.0514748358980936 0.0267193934593457 + 371 20 Se 3pz -0.0038957377725900 0.0269795219869513 + 372 20 Se 3px -0.0112802361450661 -0.0193943293157090 + 373 20 Se 4py 0.0194474084866534 -0.0036873171208062 + 374 20 Se 4pz -0.0007790699893589 -0.0134437479983731 + 375 20 Se 4px -0.0150141936121351 0.0023136125456679 + 376 20 Se 4d-2 0.0048534499200374 -0.0022134038902827 + 377 20 Se 4d-1 0.0080053493502230 0.0058336619670662 + 378 20 Se 4d0 0.0018914579290814 -0.0015807889055254 + 379 20 Se 4d+1 -0.0084938681971567 -0.0146304029276236 + 380 20 Se 4d+2 -0.0178624443184877 0.0006519464990802 + + 381 21 Se 2s 0.0421193765215119 -0.0551509194831489 + 382 21 Se 3s -0.0074926909976574 0.0101460627455316 + 383 21 Se 3py 0.0700313199646858 0.0250576965563092 + 384 21 Se 3pz -0.1645736474374676 -0.1020336637137349 + 385 21 Se 3px -0.0291157333400380 -0.0893086172182907 + 386 21 Se 4py 0.0086966243594686 -0.0216909340021489 + 387 21 Se 4pz 0.0352437697307945 0.0294624785686026 + 388 21 Se 4px 0.0190644133573971 0.0147097761359685 + 389 21 Se 4d-2 -0.0181363507534739 -0.0012272034258372 + 390 21 Se 4d-1 -0.0344620421824631 0.0186895699849239 + 391 21 Se 4d0 -0.0048308922887411 -0.0232409451989488 + 392 21 Se 4d+1 -0.0224156483279884 0.0427746871756577 + 393 21 Se 4d+2 0.0088313879502843 0.0049932728391429 + + 394 22 Cd 2s -0.0471395084375026 0.3334067359198142 + 395 22 Cd 3s 0.0026711084396064 0.0112486661989339 + 396 22 Cd 3py -0.1119507147050914 0.1283034873323697 + 397 22 Cd 3pz -0.0055708195460033 0.0583275923217355 + 398 22 Cd 3px -0.1580461361788751 -0.1613248277736916 + 399 22 Cd 4py 0.0002313862486012 0.0026533021542653 + 400 22 Cd 4pz 0.0035024323732543 0.0192991602088911 + 401 22 Cd 4px -0.0088693439556017 -0.0315996529286136 + 402 22 Cd 4d-2 0.0271655684205302 -0.0184857257435690 + 403 22 Cd 4d-1 -0.0114693928521500 -0.0028241779665027 + 404 22 Cd 4d0 -0.0257126886717470 -0.0053581195971123 + 405 22 Cd 4d+1 0.0100796921015622 0.0071797366494279 + 406 22 Cd 4d+2 -0.0048693802924600 -0.0046858707182636 + 407 22 Cd 5d-2 0.0355329899689632 -0.0210614443141002 + 408 22 Cd 5d-1 -0.0336487914085755 0.0021871785967517 + 409 22 Cd 5d0 -0.0245935169150874 0.0714474753530687 + 410 22 Cd 5d+1 0.0030989837742253 0.0288073418322720 + 411 22 Cd 5d+2 0.0409652618103663 -0.0627047159658540 + 412 22 Cd 5f-3 -0.0014466631541705 -0.0057205221745043 + 413 22 Cd 5f-2 0.0039222588522135 0.0031547006505109 + 414 22 Cd 5f-1 -0.0032045234948174 -0.0016947696653358 + 415 22 Cd 5f0 0.0006703082261429 -0.0021049701903002 + 416 22 Cd 5f+1 -0.0067870847671427 0.0035212402662183 + 417 22 Cd 5f+2 -0.0073918759348706 -0.0012711836673837 + 418 22 Cd 5f+3 -0.0001834361703812 -0.0152114012210845 + + 419 23 Se 2s 0.0781536416433397 0.0603658521478306 + 420 23 Se 3s -0.0127960230657370 -0.0131376620569358 + 421 23 Se 3py -0.0515283711050315 0.0892142156783322 + 422 23 Se 3pz 0.0265138954932123 0.0300431446755516 + 423 23 Se 3px 0.0498478299460882 0.0575846208608846 + 424 23 Se 4py 0.0099850235988750 -0.0291461646303183 + 425 23 Se 4pz -0.0072376026287594 -0.0093069473666893 + 426 23 Se 4px -0.0170056419931433 -0.0096483684427100 + 427 23 Se 4d-2 0.0141844448549564 0.0089175235153383 + 428 23 Se 4d-1 -0.0054373109517521 -0.0224455757032438 + 429 23 Se 4d0 -0.0043821966478049 -0.0005627872528162 + 430 23 Se 4d+1 0.0167097172995249 0.0001579387819116 + 431 23 Se 4d+2 -0.0118540420578773 0.0050409737756674 + + 432 24 Se 2s 0.0236700848416984 0.0198957839368047 + 433 24 Se 3s -0.0029660548015195 -0.0020362652316006 + 434 24 Se 3py 0.0639057270206825 -0.0693404204027334 + 435 24 Se 3pz -0.0138098820353397 0.1470513202744364 + 436 24 Se 3px 0.0709227407675183 -0.0163667902851355 + 437 24 Se 4py -0.0198778529197109 0.0130444788929685 + 438 24 Se 4pz 0.0006627010458796 -0.0283045658194679 + 439 24 Se 4px -0.0226850901382428 0.0005281346291153 + 440 24 Se 4d-2 -0.0062864967532305 0.0095539902067920 + 441 24 Se 4d-1 0.0236212445556254 -0.0228705105992667 + 442 24 Se 4d0 0.0132472879777974 -0.0154537651298336 + 443 24 Se 4d+1 -0.0189391872795100 0.0026438772566512 + 444 24 Se 4d+2 0.0127970712185333 -0.0069499113737680 + + 445 25 Cd 2s -0.1527001595870193 -0.0887506558472957 + 446 25 Cd 3s -0.0049298507304977 -0.0067109329389495 + 447 25 Cd 3py 0.1541070126830384 -0.0843953202852979 + 448 25 Cd 3pz -0.0113858313284095 -0.0477701392394267 + 449 25 Cd 3px -0.0111892763591643 -0.0057164817300353 + 450 25 Cd 4py 0.0120050089712646 0.0006245773606581 + 451 25 Cd 4pz -0.0151820743197414 -0.0124155836131742 + 452 25 Cd 4px 0.0022733164115099 0.0036555576737374 + 453 25 Cd 4d-2 -0.0213263669090812 0.0145877567159031 + 454 25 Cd 4d-1 0.0365323683512662 -0.0163575657787568 + 455 25 Cd 4d0 -0.0050261689260997 -0.0014767072625217 + 456 25 Cd 4d+1 -0.0048927298254460 0.0050009978113532 + 457 25 Cd 4d+2 -0.0184920767658067 0.0003631580805950 + 458 25 Cd 5d-2 -0.0106411536247455 0.0527704100315481 + 459 25 Cd 5d-1 0.0250550029115603 -0.0189026964626112 + 460 25 Cd 5d0 -0.0158281246080822 -0.0233088645721292 + 461 25 Cd 5d+1 -0.0427139257315986 -0.0015650557963106 + 462 25 Cd 5d+2 0.0036184831126559 -0.0139279246774029 + 463 25 Cd 5f-3 0.0122716534484978 -0.0021490547176387 + 464 25 Cd 5f-2 -0.0064551431767683 -0.0023221725983368 + 465 25 Cd 5f-1 0.0004525045384552 -0.0053726741317228 + 466 25 Cd 5f0 0.0168065681130769 0.0029529655651280 + 467 25 Cd 5f+1 0.0070077676959480 0.0019566669180843 + 468 25 Cd 5f+2 -0.0161516527893314 -0.0115350197083377 + 469 25 Cd 5f+3 0.0076324514915281 0.0004496410877689 + + 470 26 Cd 2s 0.0087142085180563 0.0089866585676665 + 471 26 Cd 3s 0.0045002458897915 0.0047080315782450 + 472 26 Cd 3py 0.0796445632857495 -0.1457501469507168 + 473 26 Cd 3pz -0.3418463251491495 0.3475351299843974 + 474 26 Cd 3px 0.1747032534191885 -0.0902563133471437 + 475 26 Cd 4py -0.0001956268051250 -0.0050626590467740 + 476 26 Cd 4pz -0.0201292421282371 0.0219807732151191 + 477 26 Cd 4px 0.0174517944969487 -0.0101831059585804 + 478 26 Cd 4d-2 0.0033833445075559 -0.0032376394731498 + 479 26 Cd 4d-1 -0.0054879263283611 0.0052469179554634 + 480 26 Cd 4d0 0.0104258316613200 0.0101494455058469 + 481 26 Cd 4d+1 -0.0093687395831746 0.0097314100369765 + 482 26 Cd 4d+2 0.0139715878043384 0.0066586090886341 + 483 26 Cd 5d-2 -0.0025859974831822 0.0034379856004843 + 484 26 Cd 5d-1 -0.0041767723866320 0.0092154929736019 + 485 26 Cd 5d0 -0.0044268392779694 0.0351569532112320 + 486 26 Cd 5d+1 0.0072388026578812 -0.0015649129986154 + 487 26 Cd 5d+2 0.0186988401614039 0.0006381662956515 + 488 26 Cd 5f-3 0.0000194663704128 0.0003280651856120 + 489 26 Cd 5f-2 -0.0011862969879590 -0.0015810933613331 + 490 26 Cd 5f-1 0.0011882389539393 0.0025912810769525 + 491 26 Cd 5f0 -0.0008279602107820 0.0008225554490734 + 492 26 Cd 5f+1 -0.0047656578019252 0.0021841576961896 + 493 26 Cd 5f+2 -0.0007605778590096 -0.0037470310833599 + 494 26 Cd 5f+3 0.0003955121718618 -0.0030473199685327 + + 131 132 + -0.0460260423987463 -0.0425039559030225 + + 0.0000000000000000 0.0000000000000000 + + 1 1 Cd 2s -0.1576097178940197 -0.1606957476533454 + 2 1 Cd 3s -0.0111657631963595 -0.0125195300827720 + 3 1 Cd 3py 0.0657793566185315 -0.0043479667432300 + 4 1 Cd 3pz 0.0247057481634851 0.0580000267447094 + 5 1 Cd 3px -0.0636130813095459 -0.0397019384998967 + 6 1 Cd 4py 0.0274336326514133 -0.0060563066531645 + 7 1 Cd 4pz -0.0065637557212363 0.0136016198095413 + 8 1 Cd 4px -0.0108361282715004 0.0042681272948387 + 9 1 Cd 4d-2 0.0077163818208861 0.0031524132638777 + 10 1 Cd 4d-1 -0.0092597054613656 0.0133440872609178 + 11 1 Cd 4d0 -0.0046096104285462 -0.0059866834070593 + 12 1 Cd 4d+1 0.0112975503573186 0.0063227612495479 + 13 1 Cd 4d+2 -0.0278109416625965 -0.0153607765077387 + 14 1 Cd 5d-2 -0.0371925736754316 0.0193522273266175 + 15 1 Cd 5d-1 0.0136337272035504 0.0015836990290788 + 16 1 Cd 5d0 -0.0193757727392983 0.0106510093794476 + 17 1 Cd 5d+1 0.0312278947262080 -0.0166814067079825 + 18 1 Cd 5d+2 -0.0035550251310347 -0.0301419532113243 + 19 1 Cd 5f-3 0.0113908054793533 -0.0041491442691968 + 20 1 Cd 5f-2 -0.0129961023293750 0.0089901113855658 + 21 1 Cd 5f-1 0.0008435893562265 -0.0002042393877977 + 22 1 Cd 5f0 0.0054696105634783 -0.0016090250850378 + 23 1 Cd 5f+1 0.0082543420992645 -0.0044944860391896 + 24 1 Cd 5f+2 0.0005503245087833 0.0015899390886648 + 25 1 Cd 5f+3 -0.0001077800524437 0.0012575263337503 + + 26 2 Cd 2s 0.0092629077165264 -0.2140587724751201 + 27 2 Cd 3s 0.0041023623072655 -0.0123139148735483 + 28 2 Cd 3py 0.0355198045925658 0.0407949174465813 + 29 2 Cd 3pz -0.1082486252515863 -0.0946202151880306 + 30 2 Cd 3px -0.1132859031408487 -0.0586205921381079 + 31 2 Cd 4py 0.0008682647285111 0.0014878445766987 + 32 2 Cd 4pz -0.0134536201716439 0.0002550090336064 + 33 2 Cd 4px -0.0090140459312519 -0.0049100073753131 + 34 2 Cd 4d-2 -0.0380380700507049 -0.0386203906051192 + 35 2 Cd 4d-1 -0.0008925903198229 0.0053339259620150 + 36 2 Cd 4d0 -0.0147052461407228 -0.0155454171743744 + 37 2 Cd 4d+1 0.0188791550180328 0.0115758393988540 + 38 2 Cd 4d+2 -0.0061865834789901 -0.0058874099767477 + 39 2 Cd 5d-2 -0.0287324172352558 -0.0486596569558099 + 40 2 Cd 5d-1 -0.0132327099306906 -0.0007924118079109 + 41 2 Cd 5d0 0.0044216908498288 -0.0533818439575500 + 42 2 Cd 5d+1 0.0124519859169870 0.0253439549960886 + 43 2 Cd 5d+2 -0.0093353860510346 -0.0070302638550878 + 44 2 Cd 5f-3 0.0009933883487694 0.0067331110618105 + 45 2 Cd 5f-2 0.0049913740315067 0.0000737458468693 + 46 2 Cd 5f-1 -0.0020456022595571 -0.0045512511938985 + 47 2 Cd 5f0 -0.0044261986713687 0.0009730340921760 + 48 2 Cd 5f+1 -0.0051211961821724 0.0057666939967772 + 49 2 Cd 5f+2 -0.0140158947247429 0.0027199925004561 + 50 2 Cd 5f+3 -0.0008534150625929 0.0094896975465801 + + 51 3 Cd 2s -0.6041474723383020 0.3462509601619194 + 52 3 Cd 3s -0.0660099029868419 0.0315993878451913 + 53 3 Cd 3py -0.0080686109357540 -0.0195436627935069 + 54 3 Cd 3pz -0.1740304552455267 0.1706075585330926 + 55 3 Cd 3px 0.0839748879594127 -0.0947153275260287 + 56 3 Cd 4py -0.0114679435002433 -0.0000864079682051 + 57 3 Cd 4pz -0.0221223653595044 0.0232015558182504 + 58 3 Cd 4px 0.0059672919220187 -0.0163759635448094 + 59 3 Cd 4d-2 0.0188967686644512 -0.0066277133210826 + 60 3 Cd 4d-1 0.0108754652195867 -0.0147107267499236 + 61 3 Cd 4d0 -0.0152823236139487 0.0145258821236388 + 62 3 Cd 4d+1 0.0084064610674972 -0.0287838688902728 + 63 3 Cd 4d+2 0.0259965902709022 -0.0066939305663258 + 64 3 Cd 5d-2 0.0529403837648966 -0.0176680741720728 + 65 3 Cd 5d-1 0.0080859223801679 -0.0227280793132117 + 66 3 Cd 5d0 -0.0167670738634190 0.0100260396771303 + 67 3 Cd 5d+1 0.0224603160241791 -0.0254773159753941 + 68 3 Cd 5d+2 0.0116373815145134 -0.0016627520399080 + 69 3 Cd 5f-3 0.0023642308996788 0.0058640620414276 + 70 3 Cd 5f-2 -0.0035282911892052 0.0085009421917109 + 71 3 Cd 5f-1 -0.0048867431664894 0.0028279260013507 + 72 3 Cd 5f0 0.0010930640780939 -0.0026622152222115 + 73 3 Cd 5f+1 -0.0056809343600504 0.0049346370177474 + 74 3 Cd 5f+2 0.0004604613557913 -0.0041342974871168 + 75 3 Cd 5f+3 -0.0039987223717701 0.0005674697076553 + + 76 4 Se 2s 0.0273341007357927 -0.0549326013484295 + 77 4 Se 3s -0.0062861063440390 0.0114818272048312 + 78 4 Se 3py 0.0509396567168183 0.0694208111602353 + 79 4 Se 3pz 0.0315225367705777 0.0630406755279518 + 80 4 Se 3px -0.1719196510444700 -0.0121180072636039 + 81 4 Se 4py -0.0025727362318157 -0.0077406510405939 + 82 4 Se 4pz -0.0050558571665034 0.0008336028650029 + 83 4 Se 4px 0.0403100926191952 -0.0036042696310700 + 84 4 Se 4d-2 -0.0011336693180788 -0.0013439276853013 + 85 4 Se 4d-1 0.0030859543174112 -0.0034412919286503 + 86 4 Se 4d0 0.0090264474776717 0.0085744949050989 + 87 4 Se 4d+1 -0.0001655861663573 0.0032956091183527 + 88 4 Se 4d+2 -0.0133106291678187 -0.0040060271655954 + + 89 5 Se 2s -0.1377044386776691 -0.0432760417288325 + 90 5 Se 3s 0.0237759429850562 0.0058261715969746 + 91 5 Se 3py -0.1293764086253745 -0.0414659714417183 + 92 5 Se 3pz -0.1275690668586879 0.0956219036662705 + 93 5 Se 3px 0.1376038161450699 -0.0179471220702962 + 94 5 Se 4py 0.0275154264662670 0.0126945757721164 + 95 5 Se 4pz 0.0248249821810242 -0.0077368637276414 + 96 5 Se 4px -0.0328488445166422 -0.0036046571161291 + 97 5 Se 4d-2 0.0015866113104781 0.0120896518116367 + 98 5 Se 4d-1 -0.0086629565829116 0.0020783889089275 + 99 5 Se 4d0 0.0057242777317369 -0.0105351816543714 + 100 5 Se 4d+1 -0.0101503480813499 0.0094922980937878 + 101 5 Se 4d+2 0.0027872172326090 -0.0069379945099194 + + 102 6 Se 2s -0.1582946274321720 0.0323826804091848 + 103 6 Se 3s 0.0276218481067852 -0.0057401198834272 + 104 6 Se 3py 0.0641072096441223 -0.2768203825785766 + 105 6 Se 3pz 0.1892205178051389 -0.0639479321675179 + 106 6 Se 3px 0.2334010141119238 -0.0989780439108559 + 107 6 Se 4py -0.0105485350449872 0.0506489291404436 + 108 6 Se 4pz -0.0331723564000757 0.0185328713286823 + 109 6 Se 4px -0.0693246500698405 0.0198657570564696 + 110 6 Se 4d-2 0.0129115928312599 -0.0287488234935980 + 111 6 Se 4d-1 0.0141337651196063 0.0001497270374153 + 112 6 Se 4d0 -0.0127315106900043 -0.0067239497931415 + 113 6 Se 4d+1 0.0217848491411608 -0.0112246824590693 + 114 6 Se 4d+2 -0.0015684478045009 -0.0123429437430838 + + 115 7 Se 2s 0.0263279927223712 -0.0399530054002595 + 116 7 Se 3s -0.0061084668915573 0.0076280970734605 + 117 7 Se 3py -0.0320728932121954 0.1464499553546839 + 118 7 Se 3pz -0.0824627274893299 -0.0594490894944588 + 119 7 Se 3px -0.0189763369503618 -0.0393027948838028 + 120 7 Se 4py -0.0139452922362185 -0.0377799419803147 + 121 7 Se 4pz 0.0300374710008465 0.0089205937203043 + 122 7 Se 4px 0.0070076587319277 0.0175059621269033 + 123 7 Se 4d-2 -0.0024531750192838 -0.0196469497060452 + 124 7 Se 4d-1 0.0014943859553687 0.0121870551933052 + 125 7 Se 4d0 -0.0184883358741732 -0.0192839820346772 + 126 7 Se 4d+1 -0.0048564634478779 -0.0032138129531577 + 127 7 Se 4d+2 -0.0036635658632425 -0.0000082642071560 + + 128 8 Cd 2s -0.1102540640324806 -0.0694124310637004 + 129 8 Cd 3s -0.0145795605128223 -0.0126863884898101 + 130 8 Cd 3py 0.1236085971909890 0.0357031532966634 + 131 8 Cd 3pz -0.0291979591862899 -0.0280205339583270 + 132 8 Cd 3px 0.0646305224452589 0.0508947145029443 + 133 8 Cd 4py 0.0015929038784732 -0.0090634813596766 + 134 8 Cd 4pz -0.0080895779799474 0.0040735630025880 + 135 8 Cd 4px 0.0094149915243948 -0.0035257210156955 + 136 8 Cd 4d-2 -0.0066423635332362 -0.0014451575936304 + 137 8 Cd 4d-1 -0.0350071754680464 -0.0227007920256902 + 138 8 Cd 4d0 -0.0090329406491521 0.0203268281316447 + 139 8 Cd 4d+1 -0.0138770463039374 -0.0139390536124506 + 140 8 Cd 4d+2 -0.0131236863460192 -0.0154244591399427 + 141 8 Cd 5d-2 0.0104060121202343 0.0085062724791318 + 142 8 Cd 5d-1 -0.0229959805088268 -0.0428459195712084 + 143 8 Cd 5d0 -0.0130218603519012 0.0255210634157523 + 144 8 Cd 5d+1 -0.0319391835741406 0.0075791954745655 + 145 8 Cd 5d+2 -0.0475459921838902 -0.0589819380009556 + 146 8 Cd 5f-3 0.0016796409361291 -0.0024132308462429 + 147 8 Cd 5f-2 -0.0028299932997788 -0.0041345700004062 + 148 8 Cd 5f-1 0.0034057057030038 0.0004181028041057 + 149 8 Cd 5f0 0.0028306067919555 0.0028111969700585 + 150 8 Cd 5f+1 0.0062420996670167 0.0025444953270394 + 151 8 Cd 5f+2 0.0030687117973856 0.0085725434402311 + 152 8 Cd 5f+3 0.0031180179069173 -0.0067263868842112 + + 153 9 Cd 2s 0.0647892800482748 0.0350696068660458 + 154 9 Cd 3s -0.0035779869966442 0.0035672522020399 + 155 9 Cd 3py 0.0319403774746040 -0.2307689168882785 + 156 9 Cd 3pz 0.1939222389360805 -0.0196020591141769 + 157 9 Cd 3px 0.0948178414999063 0.0258784794878013 + 158 9 Cd 4py 0.0022470385776984 -0.0176978226260573 + 159 9 Cd 4pz 0.0164075522261991 0.0031666372979607 + 160 9 Cd 4px 0.0042419906288637 0.0029183669259079 + 161 9 Cd 4d-2 -0.0052236347909609 -0.0031111501979722 + 162 9 Cd 4d-1 -0.0037261376943897 0.0154751447214986 + 163 9 Cd 4d0 -0.0064170562134223 0.0102878033781182 + 164 9 Cd 4d+1 -0.0105603931817913 0.0153350663966095 + 165 9 Cd 4d+2 0.0135661472584502 -0.0042498078587240 + 166 9 Cd 5d-2 -0.0121637523583005 -0.0047037181531047 + 167 9 Cd 5d-1 0.0020793642039922 0.0313339943999758 + 168 9 Cd 5d0 0.0102583251352451 0.0068216022371750 + 169 9 Cd 5d+1 -0.0005648866646056 0.0245262268607697 + 170 9 Cd 5d+2 -0.0099999290571755 -0.0177069463962982 + 171 9 Cd 5f-3 -0.0010687556294003 0.0052808623718255 + 172 9 Cd 5f-2 -0.0020482224576474 -0.0002954550750669 + 173 9 Cd 5f-1 0.0019415655917049 -0.0045845313118564 + 174 9 Cd 5f0 0.0070465955496519 -0.0085556680928514 + 175 9 Cd 5f+1 0.0062718386581902 -0.0036445445724908 + 176 9 Cd 5f+2 -0.0029140745228624 -0.0039368423496244 + 177 9 Cd 5f+3 -0.0024932839114720 0.0041338142854282 + + 178 10 Se 2s -0.0942974929137107 -0.0279822348756515 + 179 10 Se 3s 0.0164351233631818 0.0030515998929021 + 180 10 Se 3py -0.0666853802639664 -0.1285580678658937 + 181 10 Se 3pz 0.1831700160161389 0.0464606635710637 + 182 10 Se 3px 0.0057718871484138 0.0805227293443106 + 183 10 Se 4py 0.0219003103608548 0.0176495386568853 + 184 10 Se 4pz -0.0350007717882234 -0.0056398200954939 + 185 10 Se 4px 0.0264560401315525 0.0061282451734809 + 186 10 Se 4d-2 -0.0067660955519337 0.0096133142028062 + 187 10 Se 4d-1 -0.0077038332351484 -0.0100299980085013 + 188 10 Se 4d0 0.0026269068491045 0.0004840327286293 + 189 10 Se 4d+1 -0.0079549554398915 0.0106209388214753 + 190 10 Se 4d+2 -0.0005482973083152 0.0001382542120732 + + 191 11 Se 2s -0.0925548775435472 0.1913450283545950 + 192 11 Se 3s 0.0178232108131043 -0.0351848401520960 + 193 11 Se 3py -0.1075020696724999 0.2281076012758243 + 194 11 Se 3pz -0.0572457223128981 0.0176313830439311 + 195 11 Se 3px -0.2503823989599362 -0.0615024410534022 + 196 11 Se 4py 0.0335358690078991 -0.0700174828960908 + 197 11 Se 4pz 0.0047896509865381 0.0159371519020753 + 198 11 Se 4px 0.0546534395329909 0.0060545888148682 + 199 11 Se 4d-2 0.0361461845695749 -0.0101678114592785 + 200 11 Se 4d-1 0.0077996838196704 -0.0065714328163364 + 201 11 Se 4d0 -0.0099114286728858 0.0144821667928335 + 202 11 Se 4d+1 0.0089101507720481 -0.0297233411847312 + 203 11 Se 4d+2 0.0037597481376530 -0.0011369146731795 + + 204 12 Cd 2s 0.1145226193779372 0.1292254832294768 + 205 12 Cd 3s 0.0068505290189632 0.0129436314569388 + 206 12 Cd 3py -0.0525661097572624 -0.1262216271088086 + 207 12 Cd 3pz -0.1404814494034327 -0.1292406740475046 + 208 12 Cd 3px 0.0281116059455428 0.0451642361770308 + 209 12 Cd 4py -0.0003078965534735 -0.0231299254694911 + 210 12 Cd 4pz -0.0201108497103477 -0.0176477889754444 + 211 12 Cd 4px 0.0004198456298646 0.0103489965472983 + 212 12 Cd 4d-2 0.0184434879712787 0.0374694558840264 + 213 12 Cd 4d-1 -0.0075633228139514 0.0020453219600290 + 214 12 Cd 4d0 0.0307924459324161 0.0259398413182222 + 215 12 Cd 4d+1 -0.0099167193409201 0.0182930293062835 + 216 12 Cd 4d+2 0.0103952488330143 0.0197431478257851 + 217 12 Cd 5d-2 0.0106727560713713 0.0355414558363611 + 218 12 Cd 5d-1 -0.0208499813134265 0.0179569334155127 + 219 12 Cd 5d0 0.0603734977616125 0.0316118526704723 + 220 12 Cd 5d+1 -0.0021998816835823 0.0151120913597124 + 221 12 Cd 5d+2 0.0164979873504016 0.0210896538977722 + 222 12 Cd 5f-3 -0.0013576173867326 0.0031728100310993 + 223 12 Cd 5f-2 0.0001428024294287 -0.0030421459299476 + 224 12 Cd 5f-1 0.0049536890319090 0.0011195819921734 + 225 12 Cd 5f0 -0.0001670488119233 0.0099965825973560 + 226 12 Cd 5f+1 0.0115616071149935 0.0001997701003043 + 227 12 Cd 5f+2 0.0023134621492152 -0.0047539393896193 + 228 12 Cd 5f+3 -0.0102194458008107 0.0089271559674097 + + 229 13 Cd 2s 0.1895165298941831 -0.1474066289472006 + 230 13 Cd 3s 0.0045402214252593 -0.0095359123945477 + 231 13 Cd 3py -0.0283904830830057 -0.0880883914270546 + 232 13 Cd 3pz 0.0394012079886131 0.0529992610087562 + 233 13 Cd 3px -0.1386521318280298 0.0062111645333110 + 234 13 Cd 4py 0.0096483083796453 0.0003483248902587 + 235 13 Cd 4pz 0.0092794437683366 0.0078076004177268 + 236 13 Cd 4px -0.0265640686818865 0.0016627718686804 + 237 13 Cd 4d-2 0.0182710381143046 0.0010488283976257 + 238 13 Cd 4d-1 -0.0186858038806806 0.0047103747315294 + 239 13 Cd 4d0 0.0044182740178644 0.0126618566465056 + 240 13 Cd 4d+1 0.0028497874743953 -0.0149664054364694 + 241 13 Cd 4d+2 0.0032003213002918 0.0078258245555223 + 242 13 Cd 5d-2 0.0471445982067372 0.0006669518449800 + 243 13 Cd 5d-1 -0.0118213950064942 -0.0036445530497948 + 244 13 Cd 5d0 0.0186672930797353 0.0261159112296734 + 245 13 Cd 5d+1 0.0010151054094355 -0.0242614760053660 + 246 13 Cd 5d+2 0.0162224680570296 0.0079584452937259 + 247 13 Cd 5f-3 -0.0004827144037371 0.0047990377668662 + 248 13 Cd 5f-2 0.0009953303752704 -0.0018545109609815 + 249 13 Cd 5f-1 -0.0064505843624011 -0.0035296941947822 + 250 13 Cd 5f0 -0.0048857679101655 0.0017814087636280 + 251 13 Cd 5f+1 0.0056678450339282 0.0065876309441789 + 252 13 Cd 5f+2 0.0015712383246627 0.0014797591550271 + 253 13 Cd 5f+3 0.0050116266711638 0.0085438254443649 + + 254 14 Cd 2s -0.0138906787839849 0.1158017677764455 + 255 14 Cd 3s -0.0067451119055405 0.0012387385880773 + 256 14 Cd 3py -0.2123536352066184 -0.1280462946176437 + 257 14 Cd 3pz -0.1251284348125120 -0.0563922510864388 + 258 14 Cd 3px 0.0524660648482215 0.2544870868811974 + 259 14 Cd 4py -0.0160961357124542 -0.0109009256998766 + 260 14 Cd 4pz -0.0067850489978582 -0.0068477242420011 + 261 14 Cd 4px 0.0052079716575162 0.0190441289925788 + 262 14 Cd 4d-2 -0.0024121571636954 0.0034638586815322 + 263 14 Cd 4d-1 -0.0038630872093959 0.0183752829515724 + 264 14 Cd 4d0 -0.0135191745306300 -0.0271730811460647 + 265 14 Cd 4d+1 -0.0027375596585195 -0.0036572452716657 + 266 14 Cd 4d+2 -0.0102352342571611 -0.0073443470998414 + 267 14 Cd 5d-2 -0.0058285268590588 0.0230641027779908 + 268 14 Cd 5d-1 -0.0268165942801572 0.0049599791335201 + 269 14 Cd 5d0 0.0050839376678429 -0.0075117476611095 + 270 14 Cd 5d+1 -0.0008023201422758 0.0139286781212265 + 271 14 Cd 5d+2 -0.0265400574518336 -0.0151032868752602 + 272 14 Cd 5f-3 0.0018968617112796 -0.0000451394529307 + 273 14 Cd 5f-2 0.0006767164616691 -0.0030870501214144 + 274 14 Cd 5f-1 -0.0026104998234446 -0.0020800963329790 + 275 14 Cd 5f0 0.0006264265396826 -0.0054099058301072 + 276 14 Cd 5f+1 0.0003486472758447 0.0028977576271158 + 277 14 Cd 5f+2 0.0001754301194296 -0.0023648518458167 + 278 14 Cd 5f+3 -0.0008916555492616 0.0052109888975833 + + 279 15 Se 2s 0.1303344973662017 -0.0369656096004845 + 280 15 Se 3s -0.0246834878455892 0.0057295422073781 + 281 15 Se 3py -0.2221846008920658 0.0050558848261560 + 282 15 Se 3pz -0.0456490588316062 0.1273824046562555 + 283 15 Se 3px 0.0536506735692499 0.0749729703033806 + 284 15 Se 4py 0.0511844908365294 -0.0038720126686632 + 285 15 Se 4pz -0.0073841499387812 -0.0298753988381960 + 286 15 Se 4px -0.0159050487105568 -0.0065845078085345 + 287 15 Se 4d-2 0.0048677661472569 -0.0021498958210614 + 288 15 Se 4d-1 0.0017873225401774 0.0161305913482611 + 289 15 Se 4d0 -0.0009794454740836 -0.0044816289601286 + 290 15 Se 4d+1 -0.0131296868898411 -0.0234100950449728 + 291 15 Se 4d+2 0.0076254469644531 0.0082384634831395 + + 292 16 Se 2s -0.0338999220156816 -0.0059977428797959 + 293 16 Se 3s 0.0067344156099529 0.0015233620032863 + 294 16 Se 3py 0.1452368861615058 -0.1427203856783529 + 295 16 Se 3pz 0.0090762953669592 -0.0816020089279323 + 296 16 Se 3px -0.0573015145314724 -0.0938517994305258 + 297 16 Se 4py -0.0291980014965692 0.0097613781843515 + 298 16 Se 4pz 0.0027981035697711 0.0113466197254114 + 299 16 Se 4px 0.0106188325886798 0.0095112551241882 + 300 16 Se 4d-2 0.0068972447512101 -0.0190943868448628 + 301 16 Se 4d-1 -0.0108267503359149 0.0044868147717290 + 302 16 Se 4d0 -0.0106509369970415 0.0046430354220035 + 303 16 Se 4d+1 0.0107095536040861 0.0016505959950519 + 304 16 Se 4d+2 -0.0017440159817023 0.0013245634993941 + + 305 17 Cd 2s -0.1452574638800352 0.2925645502156003 + 306 17 Cd 3s -0.0142392209363324 0.0250318298702897 + 307 17 Cd 3py 0.0264922308607263 -0.0536614101163003 + 308 17 Cd 3pz -0.0847186204139681 0.0374306967404074 + 309 17 Cd 3px -0.0632846108636808 0.0365258545788362 + 310 17 Cd 4py 0.0035820657065786 0.0062473060837301 + 311 17 Cd 4pz -0.0086665040463076 0.0090033732520209 + 312 17 Cd 4px -0.0092589153864496 0.0127947076540219 + 313 17 Cd 4d-2 0.0097084095977606 -0.0179054964636492 + 314 17 Cd 4d-1 0.0054656881927328 0.0092671044447557 + 315 17 Cd 4d0 -0.0179733953044664 0.0268234658762641 + 316 17 Cd 4d+1 0.0102287136142813 -0.0052771770957196 + 317 17 Cd 4d+2 0.0060210591781644 0.0018213339932205 + 318 17 Cd 5d-2 0.0079776257419985 -0.0221045873919913 + 319 17 Cd 5d-1 0.0033831292920626 0.0345506841925065 + 320 17 Cd 5d0 -0.0015273447773893 0.0303326058224727 + 321 17 Cd 5d+1 -0.0060406253659338 0.0210299581104551 + 322 17 Cd 5d+2 0.0234160694561252 -0.0140488335936507 + 323 17 Cd 5f-3 -0.0006078937821877 0.0098321741392742 + 324 17 Cd 5f-2 -0.0020474452036239 -0.0064440760885017 + 325 17 Cd 5f-1 -0.0035135130692913 0.0000979222715406 + 326 17 Cd 5f0 0.0035907586767711 0.0017090931779541 + 327 17 Cd 5f+1 0.0002288002592322 0.0012967296909698 + 328 17 Cd 5f+2 -0.0042522530376699 -0.0042525463264445 + 329 17 Cd 5f+3 -0.0040912257950145 0.0032240918541217 + + 330 18 Cd 2s 0.0568600691105627 -0.0522060820874347 + 331 18 Cd 3s -0.0042072736653696 0.0074712186855444 + 332 18 Cd 3py 0.0156170900626507 -0.0093856391299188 + 333 18 Cd 3pz -0.0780352653228869 0.1030329381814579 + 334 18 Cd 3px 0.0215039962701155 -0.3370980855450470 + 335 18 Cd 4py 0.0018468337060602 -0.0049041529876472 + 336 18 Cd 4pz -0.0173440638101426 0.0129009312793934 + 337 18 Cd 4px -0.0065079496650475 -0.0198477305248875 + 338 18 Cd 4d-2 -0.0105278914483832 -0.0040186815409285 + 339 18 Cd 4d-1 0.0141584128645684 -0.0056004028822104 + 340 18 Cd 4d0 -0.0021338183544562 -0.0154861003129741 + 341 18 Cd 4d+1 0.0044702179877454 0.0018839418709726 + 342 18 Cd 4d+2 -0.0019571205077881 0.0023164819907092 + 343 18 Cd 5d-2 -0.0438508414291954 0.0376182769131594 + 344 18 Cd 5d-1 -0.0262571823874383 0.0062702976330725 + 345 18 Cd 5d0 -0.0017689918017235 -0.0058439671528459 + 346 18 Cd 5d+1 -0.0083547723563699 0.0250212767636415 + 347 18 Cd 5d+2 -0.0127340299769926 0.0070770689325161 + 348 18 Cd 5f-3 -0.0012186045187756 -0.0015609108624356 + 349 18 Cd 5f-2 -0.0157964478502137 0.0080513712680955 + 350 18 Cd 5f-1 -0.0071415876730640 0.0037261101361808 + 351 18 Cd 5f0 0.0103537861717515 -0.0076258249955300 + 352 18 Cd 5f+1 -0.0033709795631347 0.0000596597796299 + 353 18 Cd 5f+2 0.0051486231192206 -0.0065473820782281 + 354 18 Cd 5f+3 0.0053149603504237 -0.0072988706835090 + + 355 19 Se 2s 0.0044882706579859 0.0583080333514160 + 356 19 Se 3s -0.0025404375788123 -0.0093037471707254 + 357 19 Se 3py -0.0693429743412907 0.0985747215156443 + 358 19 Se 3pz 0.0156048898392084 0.0264356866899418 + 359 19 Se 3px -0.0279964616511464 0.0421457986921738 + 360 19 Se 4py 0.0207735448233553 -0.0163612367320615 + 361 19 Se 4pz -0.0094210474108245 -0.0063737710619071 + 362 19 Se 4px 0.0091580083110043 -0.0162958941770345 + 363 19 Se 4d-2 0.0126441841513155 -0.0355421005948818 + 364 19 Se 4d-1 0.0060616239827779 0.0073054615188487 + 365 19 Se 4d0 -0.0049220933634753 -0.0051476902152497 + 366 19 Se 4d+1 -0.0019191954012462 0.0124007039628612 + 367 19 Se 4d+2 -0.0006132064453215 0.0160537587593496 + + 368 20 Se 2s -0.0916483219598503 0.1215357828593692 + 369 20 Se 3s 0.0183149906314273 -0.0235924932430525 + 370 20 Se 3py 0.2091820499644161 -0.1277581810663327 + 371 20 Se 3pz -0.0995483924081583 -0.0085396756895634 + 372 20 Se 3px -0.0763270159362115 0.0777417975511938 + 373 20 Se 4py -0.0559152055561024 0.0370057411602095 + 374 20 Se 4pz 0.0269552592183917 0.0144941303500166 + 375 20 Se 4px 0.0203716490065536 -0.0141392531438178 + 376 20 Se 4d-2 -0.0412156823204914 0.0028243543762858 + 377 20 Se 4d-1 -0.0065529853235256 0.0035948950980557 + 378 20 Se 4d0 0.0121958065685317 0.0036704312383112 + 379 20 Se 4d+1 0.0061689685940405 -0.0071802578043252 + 380 20 Se 4d+2 0.0174583493536868 0.0177024695826622 + + 381 21 Se 2s -0.0298483152511160 -0.0957407032547951 + 382 21 Se 3s 0.0054116361422992 0.0183260816519057 + 383 21 Se 3py 0.1566223841168529 0.0853312157773689 + 384 21 Se 3pz -0.1252199085290801 -0.0491741410553943 + 385 21 Se 3px 0.0099553091718015 0.0415832430074870 + 386 21 Se 4py -0.0368506365403786 -0.0369851759266480 + 387 21 Se 4pz 0.0146883477788966 0.0044922977403419 + 388 21 Se 4px 0.0118555658230018 -0.0205207118743240 + 389 21 Se 4d-2 -0.0002823238463058 0.0144227865180997 + 390 21 Se 4d-1 -0.0055417120699379 -0.0072484613993846 + 391 21 Se 4d0 -0.0111831993984579 0.0044118350960730 + 392 21 Se 4d+1 -0.0175385026288252 -0.0082667867922890 + 393 21 Se 4d+2 -0.0209716985499750 -0.0254286851885376 + + 394 22 Cd 2s 0.1479027664377743 -0.0995682686674510 + 395 22 Cd 3s 0.0101914878793329 -0.0118199130750301 + 396 22 Cd 3py 0.1282127606124706 -0.0647941020100763 + 397 22 Cd 3pz -0.1070176207601309 0.0397760393298272 + 398 22 Cd 3px -0.0099472885525565 0.0549250542088301 + 399 22 Cd 4py 0.0152305311730851 -0.0037109285796228 + 400 22 Cd 4pz -0.0064804528911461 0.0068806961531714 + 401 22 Cd 4px 0.0019488126052546 -0.0058294242841819 + 402 22 Cd 4d-2 0.0049021967227404 -0.0057145129685535 + 403 22 Cd 4d-1 -0.0084295585641053 0.0032546061376306 + 404 22 Cd 4d0 -0.0100322818908795 0.0060714285095855 + 405 22 Cd 4d+1 -0.0081695695498069 0.0232328393902258 + 406 22 Cd 4d+2 0.0384462462963920 -0.0025790362045888 + 407 22 Cd 5d-2 -0.0054885798937067 -0.0030505305343251 + 408 22 Cd 5d-1 -0.0303594175704420 -0.0167062494534644 + 409 22 Cd 5d0 -0.0263180659338696 0.0091423779322689 + 410 22 Cd 5d+1 -0.0072063674097866 0.0230937804587895 + 411 22 Cd 5d+2 0.0544655492470047 0.0000450256033990 + 412 22 Cd 5f-3 -0.0015559187332644 -0.0042552878458347 + 413 22 Cd 5f-2 -0.0020639294562568 0.0017396456778678 + 414 22 Cd 5f-1 -0.0013162457796738 -0.0047199766238647 + 415 22 Cd 5f0 -0.0012914329818142 0.0039440427506349 + 416 22 Cd 5f+1 -0.0052683495214697 0.0023931872698896 + 417 22 Cd 5f+2 0.0022690509865673 -0.0003738766801424 + 418 22 Cd 5f+3 0.0008096729680588 -0.0120280472352941 + + 419 23 Se 2s 0.0377727237769748 -0.0433439243995740 + 420 23 Se 3s -0.0058462783121154 0.0065731518918695 + 421 23 Se 3py 0.1221715500614819 0.0014037148136409 + 422 23 Se 3pz 0.0481130854907025 -0.1014947827743191 + 423 23 Se 3px -0.0384233335050339 0.1282815533150113 + 424 23 Se 4py -0.0183225197238984 -0.0093825456167308 + 425 23 Se 4pz -0.0084553212120699 0.0222898057823230 + 426 23 Se 4px 0.0103691926491291 -0.0232197856302333 + 427 23 Se 4d-2 -0.0044431012575346 0.0184994025721118 + 428 23 Se 4d-1 -0.0164490305520018 -0.0035063587770735 + 429 23 Se 4d0 -0.0016033738302100 0.0022163311455131 + 430 23 Se 4d+1 0.0006240071298743 -0.0066265355382125 + 431 23 Se 4d+2 0.0043213774991269 -0.0110833039237201 + + 432 24 Se 2s -0.0171467247549761 -0.0281099521658127 + 433 24 Se 3s 0.0029212071314051 0.0041816357512060 + 434 24 Se 3py -0.0380529484833699 -0.1058510117934350 + 435 24 Se 3pz -0.1091795439311555 -0.0179425859253961 + 436 24 Se 3px 0.0090174438539639 -0.0182600096845642 + 437 24 Se 4py 0.0066800290948475 0.0202026325759859 + 438 24 Se 4pz 0.0129123454403562 0.0004233770933023 + 439 24 Se 4px 0.0063410150732367 0.0032190233464348 + 440 24 Se 4d-2 0.0091519019846753 0.0215807207829718 + 441 24 Se 4d-1 0.0195766722804254 0.0095021087546868 + 442 24 Se 4d0 0.0131385795364451 0.0232905589827507 + 443 24 Se 4d+1 -0.0011875201743581 -0.0053590049255517 + 444 24 Se 4d+2 -0.0037982880962538 -0.0017380203674264 + + 445 25 Cd 2s -0.0511396453383918 -0.1468467894470754 + 446 25 Cd 3s -0.0116645014503123 -0.0054357358234915 + 447 25 Cd 3py 0.0122213310061587 -0.0785729347715568 + 448 25 Cd 3pz -0.0034003543750062 0.0706632941787602 + 449 25 Cd 3px -0.0294342843483550 0.1673290715974018 + 450 25 Cd 4py 0.0140244628842718 -0.0120325157896947 + 451 25 Cd 4pz 0.0004464881284935 -0.0053467630185119 + 452 25 Cd 4px -0.0089939668888732 0.0196591344087330 + 453 25 Cd 4d-2 -0.0256295511007505 0.0012119626501360 + 454 25 Cd 4d-1 -0.0190389790294523 -0.0281665010575277 + 455 25 Cd 4d0 0.0195549084636771 -0.0061567476760996 + 456 25 Cd 4d+1 0.0072377959413960 0.0013383318684585 + 457 25 Cd 4d+2 0.0000257806812237 -0.0113666709460247 + 458 25 Cd 5d-2 -0.0323334085497483 -0.0083725096438964 + 459 25 Cd 5d-1 0.0000292685207031 -0.0449765977172013 + 460 25 Cd 5d0 0.0102762464681566 -0.0145135474956319 + 461 25 Cd 5d+1 0.0269176071780673 -0.0267597127578307 + 462 25 Cd 5d+2 -0.0246901213260724 -0.0043797043188273 + 463 25 Cd 5f-3 -0.0055613500221316 0.0106795514936694 + 464 25 Cd 5f-2 0.0037558848165641 -0.0076134733946042 + 465 25 Cd 5f-1 -0.0055440563578178 -0.0027939590021658 + 466 25 Cd 5f0 -0.0036256892490502 0.0162139694193523 + 467 25 Cd 5f+1 0.0002107817464888 0.0056728316954350 + 468 25 Cd 5f+2 0.0071234949459991 -0.0109937465249826 + 469 25 Cd 5f+3 -0.0052967884086856 0.0074201257168189 + + 470 26 Cd 2s -0.0626136249518983 -0.0565414696781503 + 471 26 Cd 3s -0.0097268220438495 -0.0125758814343034 + 472 26 Cd 3py 0.1389988724318152 0.0835935369170705 + 473 26 Cd 3pz -0.2850832436645372 -0.2170789074981374 + 474 26 Cd 3px -0.0822319296425646 -0.1700744007460444 + 475 26 Cd 4py 0.0118791505428123 0.0036875905540376 + 476 26 Cd 4pz -0.0206783930344789 -0.0143320509766379 + 477 26 Cd 4px -0.0083961292201105 -0.0106136179666630 + 478 26 Cd 4d-2 0.0163115294402405 0.0184896466101944 + 479 26 Cd 4d-1 0.0089493500735803 0.0194730129615104 + 480 26 Cd 4d0 -0.0080930630046190 -0.0164479521699113 + 481 26 Cd 4d+1 0.0007134228310982 0.0051020146391918 + 482 26 Cd 4d+2 -0.0154311161412748 -0.0195749093594495 + 483 26 Cd 5d-2 0.0209689897667180 -0.0061281697749993 + 484 26 Cd 5d-1 0.0094723404792599 0.0154811186183874 + 485 26 Cd 5d0 -0.0158206444631761 -0.0275248900034268 + 486 26 Cd 5d+1 0.0111620949038134 0.0077513174008376 + 487 26 Cd 5d+2 -0.0136014710281486 -0.0046634825144470 + 488 26 Cd 5f-3 0.0024188378327279 -0.0035620020212119 + 489 26 Cd 5f-2 0.0001035973096625 -0.0023474947205357 + 490 26 Cd 5f-1 0.0019714732978642 -0.0000529980629434 + 491 26 Cd 5f0 -0.0020032142245776 -0.0011549385508471 + 492 26 Cd 5f+1 0.0002623337683628 -0.0019648992397119 + 493 26 Cd 5f+2 0.0028445379486331 0.0008946337073555 + 494 26 Cd 5f+3 -0.0015620660145105 -0.0023753285743153 + + 133 134 + -0.0355334535390718 -0.0325208101945236 + + 0.0000000000000000 0.0000000000000000 + + 1 1 Cd 2s -0.2668870680857681 -0.0435041954627840 + 2 1 Cd 3s -0.0207081926157389 -0.0049714585804564 + 3 1 Cd 3py 0.0268581691259179 0.0040113205543027 + 4 1 Cd 3pz 0.0332333415878192 0.0683856617674131 + 5 1 Cd 3px -0.0336863559375861 -0.1023748364793723 + 6 1 Cd 4py 0.0119757209495466 -0.0006757835269112 + 7 1 Cd 4pz 0.0024194016790889 0.0019769470210945 + 8 1 Cd 4px -0.0038828627812356 -0.0057959712924052 + 9 1 Cd 4d-2 0.0053341967111240 0.0091803599213174 + 10 1 Cd 4d-1 0.0053580157094195 -0.0075510744073592 + 11 1 Cd 4d0 -0.0077973515155162 0.0034595838213997 + 12 1 Cd 4d+1 0.0097774248930911 -0.0035742422626197 + 13 1 Cd 4d+2 -0.0403254177786376 0.0129283659628981 + 14 1 Cd 5d-2 -0.0122383387932081 0.0119397577550979 + 15 1 Cd 5d-1 0.0109031096318361 -0.0100681672748576 + 16 1 Cd 5d0 -0.0410208941195341 -0.0025599538247967 + 17 1 Cd 5d+1 0.0053019214855458 -0.0028411515909659 + 18 1 Cd 5d+2 -0.0550556951722282 0.0049340107518733 + 19 1 Cd 5f-3 0.0065187623048000 -0.0014703226519428 + 20 1 Cd 5f-2 0.0077876543167204 -0.0000241934724633 + 21 1 Cd 5f-1 -0.0132924025569055 0.0037512866152660 + 22 1 Cd 5f0 -0.0018273846896428 0.0008787697163377 + 23 1 Cd 5f+1 0.0048278016716377 -0.0027313016133652 + 24 1 Cd 5f+2 0.0031970501138316 0.0008350103289379 + 25 1 Cd 5f+3 0.0108790317710621 -0.0038395549684209 + + 26 2 Cd 2s 0.2481754181810011 -0.1169023296656399 + 27 2 Cd 3s 0.0131803177952464 -0.0124947502802246 + 28 2 Cd 3py 0.1223966922217497 0.0399569093308896 + 29 2 Cd 3pz 0.0062435024082937 -0.1805283919147977 + 30 2 Cd 3px 0.1570900865902503 -0.1046612900910157 + 31 2 Cd 4py 0.0072184649863620 0.0005321747014323 + 32 2 Cd 4pz -0.0040189725695254 -0.0180305117670719 + 33 2 Cd 4px 0.0121048937053425 0.0077697222076530 + 34 2 Cd 4d-2 -0.0296857647191377 -0.0359364175875339 + 35 2 Cd 4d-1 0.0261674575990952 0.0046953229712832 + 36 2 Cd 4d0 -0.0144014701775921 -0.0128804767704481 + 37 2 Cd 4d+1 0.0408256042905238 0.0159957129637175 + 38 2 Cd 4d+2 0.0041230329904315 -0.0201840953431736 + 39 2 Cd 5d-2 -0.0551879668605078 -0.0587580274392945 + 40 2 Cd 5d-1 0.0838636404600600 -0.0243317986676964 + 41 2 Cd 5d0 -0.0215422112649829 0.0108299121080194 + 42 2 Cd 5d+1 0.0515132505635958 0.0185464421030182 + 43 2 Cd 5d+2 0.0252117694456067 -0.0665704976878780 + 44 2 Cd 5f-3 0.0001005134174675 0.0110594096915684 + 45 2 Cd 5f-2 -0.0022618344197913 -0.0042784533426580 + 46 2 Cd 5f-1 0.0048565031048377 -0.0065206063480680 + 47 2 Cd 5f0 0.0025842097132743 0.0023341653628364 + 48 2 Cd 5f+1 0.0022907380650420 -0.0052605451219707 + 49 2 Cd 5f+2 0.0017523592291961 -0.0004879703791975 + 50 2 Cd 5f+3 0.0024614383225093 0.0190232251173134 + + 51 3 Cd 2s 0.1148190875980150 0.0073161538575904 + 52 3 Cd 3s 0.0091586010254501 -0.0083728381497173 + 53 3 Cd 3py 0.0073480139992849 0.1842681206356714 + 54 3 Cd 3pz 0.1634260053047265 -0.0667888719923251 + 55 3 Cd 3px -0.0365045392224211 -0.0407569142500729 + 56 3 Cd 4py 0.0052100399346910 0.0161091037892750 + 57 3 Cd 4pz 0.0322206093515176 -0.0119863387688159 + 58 3 Cd 4px -0.0104485418921192 -0.0002999094280440 + 59 3 Cd 4d-2 -0.0029008331730484 0.0118690470217255 + 60 3 Cd 4d-1 -0.0240038567995749 -0.0022455340060172 + 61 3 Cd 4d0 0.0121374038028416 -0.0161757785642016 + 62 3 Cd 4d+1 -0.0186932904228610 -0.0077642582601304 + 63 3 Cd 4d+2 0.0028723971106869 0.0012664312425305 + 64 3 Cd 5d-2 -0.0015194632101892 0.0170413866534398 + 65 3 Cd 5d-1 -0.0221018135418322 0.0134881440042461 + 66 3 Cd 5d0 0.0331103425736176 -0.0136991358207148 + 67 3 Cd 5d+1 0.0080961260679934 -0.0225774795792237 + 68 3 Cd 5d+2 -0.0200857961469798 0.0027492848151257 + 69 3 Cd 5f-3 -0.0023710343973624 -0.0011407646773027 + 70 3 Cd 5f-2 0.0030426111345914 0.0009669802943894 + 71 3 Cd 5f-1 -0.0088315086016160 0.0003150430382986 + 72 3 Cd 5f0 -0.0045704948841550 0.0016825838513536 + 73 3 Cd 5f+1 -0.0014204200776776 -0.0018613167795083 + 74 3 Cd 5f+2 -0.0039562577714378 0.0008494342412756 + 75 3 Cd 5f+3 0.0033545618593304 0.0044676169744975 + + 76 4 Se 2s 0.1059592176586028 -0.0042512677660067 + 77 4 Se 3s -0.0173502057904956 0.0019119653057603 + 78 4 Se 3py 0.0936326731638287 -0.0271049704556654 + 79 4 Se 3pz 0.1693275709858616 0.0201993499079766 + 80 4 Se 3px -0.1891955327205782 -0.0974267588049313 + 81 4 Se 4py -0.0146042683260865 0.0101872842858352 + 82 4 Se 4pz -0.0091687124676040 -0.0080260840735275 + 83 4 Se 4px 0.0426403922844776 0.0261314686873177 + 84 4 Se 4d-2 0.0007292187798698 -0.0062094630919200 + 85 4 Se 4d-1 0.0269798218397589 -0.0084386452740841 + 86 4 Se 4d0 -0.0205494541001088 0.0150662900959585 + 87 4 Se 4d+1 -0.0004752190086190 0.0105514599895637 + 88 4 Se 4d+2 -0.0131553924135433 -0.0031253638548190 + + 89 5 Se 2s -0.1173066171267333 -0.0055728535358659 + 90 5 Se 3s 0.0188574551759049 -0.0009542106741905 + 91 5 Se 3py -0.1618564960003903 0.0497317511769555 + 92 5 Se 3pz 0.0555225173864636 -0.0184109359583815 + 93 5 Se 3px 0.0584556450008045 -0.0621123455644891 + 94 5 Se 4py 0.0274580574356456 -0.0131602229175221 + 95 5 Se 4pz 0.0165845506266830 -0.0065232171194668 + 96 5 Se 4px -0.0244881792274984 0.0106596334798012 + 97 5 Se 4d-2 0.0054196948385192 0.0117886632318132 + 98 5 Se 4d-1 -0.0043944648517253 -0.0104316423245196 + 99 5 Se 4d0 -0.0103158241466058 0.0043919533599682 + 100 5 Se 4d+1 0.0108963473909894 -0.0027544746238371 + 101 5 Se 4d+2 -0.0061053335655408 -0.0009940786857604 + + 102 6 Se 2s 0.0564976359734441 -0.0762207094857121 + 103 6 Se 3s -0.0108063248712228 0.0124214694839584 + 104 6 Se 3py -0.0410277443289110 -0.0487134250168775 + 105 6 Se 3pz -0.0792812871292273 -0.0523492800597761 + 106 6 Se 3px -0.0014697730449422 0.0558852366659031 + 107 6 Se 4py 0.0025218737231144 0.0055606976846925 + 108 6 Se 4pz 0.0292334352525125 0.0157117945660751 + 109 6 Se 4px -0.0026950156633349 -0.0190625393671664 + 110 6 Se 4d-2 -0.0210226009857539 0.0002778828771458 + 111 6 Se 4d-1 0.0106124768143327 0.0029457411030314 + 112 6 Se 4d0 0.0127798839247431 -0.0217550100491703 + 113 6 Se 4d+1 -0.0138576934993602 -0.0086174977685904 + 114 6 Se 4d+2 0.0197927547154508 -0.0173686339653719 + + 115 7 Se 2s 0.0517456537597190 -0.0317536116846245 + 116 7 Se 3s -0.0109312176820713 0.0049752879588698 + 117 7 Se 3py 0.0965269042085702 0.1474162207268486 + 118 7 Se 3pz -0.1512686774075447 -0.0683898480759329 + 119 7 Se 3px -0.0255562016807163 0.0287304675376118 + 120 7 Se 4py -0.0201958170088715 -0.0647020382201503 + 121 7 Se 4pz 0.0423954542552453 0.0225753264105184 + 122 7 Se 4px -0.0048473865586951 -0.0111181791610139 + 123 7 Se 4d-2 -0.0014979333714348 0.0130998433501533 + 124 7 Se 4d-1 -0.0006720142529983 0.0313644495461098 + 125 7 Se 4d0 -0.0092682800396354 -0.0338583569002402 + 126 7 Se 4d+1 0.0058514982038377 0.0009313940423807 + 127 7 Se 4d+2 -0.0336275610126235 0.0100284533737347 + + 128 8 Cd 2s 0.1059502247188290 -0.3702905138591598 + 129 8 Cd 3s 0.0168765491477802 -0.0321963114748521 + 130 8 Cd 3py 0.1008098058973364 -0.0501451560534790 + 131 8 Cd 3pz 0.0921020112120084 -0.1537374078095859 + 132 8 Cd 3px -0.1681722805768483 0.0436355017446527 + 133 8 Cd 4py 0.0188003892526196 -0.0011825576900976 + 134 8 Cd 4pz 0.0042476840816054 -0.0086788300136476 + 135 8 Cd 4px -0.0052439186475295 0.0001648608575135 + 136 8 Cd 4d-2 0.0475412978910691 0.0467046640920863 + 137 8 Cd 4d-1 0.0043328476550048 -0.0075748117755022 + 138 8 Cd 4d0 -0.0043543241186143 -0.0065940656618995 + 139 8 Cd 4d+1 -0.0226909181305216 0.0008776126459067 + 140 8 Cd 4d+2 -0.0109841894621432 -0.0271319164039661 + 141 8 Cd 5d-2 0.0447724299830085 0.0465308109812509 + 142 8 Cd 5d-1 0.0143693392518477 -0.0216312257993878 + 143 8 Cd 5d0 0.0040631946592447 -0.0345577846145153 + 144 8 Cd 5d+1 -0.0499852769989253 -0.0061588756209450 + 145 8 Cd 5d+2 0.0395914582996372 -0.0249195788879739 + 146 8 Cd 5f-3 0.0006699130409956 0.0012532531261827 + 147 8 Cd 5f-2 0.0015692038009817 -0.0006703506632178 + 148 8 Cd 5f-1 -0.0036667205071549 -0.0017041272178011 + 149 8 Cd 5f0 0.0015526691839223 0.0020135208426605 + 150 8 Cd 5f+1 -0.0128889790721424 -0.0043337099657501 + 151 8 Cd 5f+2 -0.0068326405231862 0.0014982918650243 + 152 8 Cd 5f+3 0.0094386936517952 -0.0104017165906918 + + 153 9 Cd 2s -0.0663245515450756 -0.0262531901540480 + 154 9 Cd 3s 0.0118137408630686 -0.0072700466423331 + 155 9 Cd 3py -0.3600535088461402 0.1124712519761208 + 156 9 Cd 3pz 0.0002157317754394 0.1468125843166291 + 157 9 Cd 3px -0.0302220457002338 0.0015039479262468 + 158 9 Cd 4py -0.0167781577432096 0.0153241548780176 + 159 9 Cd 4pz 0.0038173675235808 0.0160908790506807 + 160 9 Cd 4px 0.0025133520695726 -0.0067041644029626 + 161 9 Cd 4d-2 0.0062158080780938 0.0004225621817846 + 162 9 Cd 4d-1 0.0179553086474359 0.0102515150390880 + 163 9 Cd 4d0 -0.0075709744698263 0.0014129807225037 + 164 9 Cd 4d+1 -0.0114506676936452 -0.0092100195419781 + 165 9 Cd 4d+2 0.0124776865949284 0.0237937733187664 + 166 9 Cd 5d-2 0.0169694394375416 -0.0222749216422897 + 167 9 Cd 5d-1 -0.0189404015634858 0.0205697628142678 + 168 9 Cd 5d0 -0.0326970422715648 0.0220302885237510 + 169 9 Cd 5d+1 -0.0032597949551884 0.0088972674842560 + 170 9 Cd 5d+2 -0.0300163704919587 0.0271330130414315 + 171 9 Cd 5f-3 -0.0031545631340694 0.0000720142454432 + 172 9 Cd 5f-2 -0.0029401387811705 -0.0033860130054247 + 173 9 Cd 5f-1 0.0080602964500525 -0.0027001311228760 + 174 9 Cd 5f0 0.0032463760695151 -0.0091346943939669 + 175 9 Cd 5f+1 -0.0030220503384018 -0.0017432884704684 + 176 9 Cd 5f+2 0.0058486959954043 -0.0053661504548371 + 177 9 Cd 5f+3 -0.0037464324194266 -0.0001397638981268 + + 178 10 Se 2s 0.0115822640021963 -0.0758872129734238 + 179 10 Se 3s 0.0001976617508722 0.0123333630222283 + 180 10 Se 3py -0.0370910575898732 -0.0807318220737976 + 181 10 Se 3pz -0.0040873894587000 0.0846953143576545 + 182 10 Se 3px -0.1079551220382470 -0.0437335311362916 + 183 10 Se 4py 0.0119724823963071 0.0288117955527493 + 184 10 Se 4pz 0.0012015779726448 -0.0256442362953402 + 185 10 Se 4px 0.0292429160116430 0.0105957930254946 + 186 10 Se 4d-2 0.0347331256333227 -0.0042988268954187 + 187 10 Se 4d-1 0.0085586014110978 -0.0157458791957261 + 188 10 Se 4d0 0.0053801303476159 -0.0161454617335650 + 189 10 Se 4d+1 -0.0063358063497522 -0.0122676665389940 + 190 10 Se 4d+2 0.0123093405583157 -0.0183224852593778 + + 191 11 Se 2s 0.0590583049370065 -0.1434638587253541 + 192 11 Se 3s -0.0127798295451449 0.0256891878437056 + 193 11 Se 3py -0.0173756038903719 -0.0983701156113302 + 194 11 Se 3pz -0.0106124432208738 0.0284888323875999 + 195 11 Se 3px 0.0396162792877875 0.0700219531273251 + 196 11 Se 4py 0.0012933914109225 0.0252411744911702 + 197 11 Se 4pz 0.0081604433969032 -0.0378550117018243 + 198 11 Se 4px -0.0025055356324315 -0.0138441855559745 + 199 11 Se 4d-2 -0.0149615028286443 -0.0082842877543680 + 200 11 Se 4d-1 -0.0067216795511750 -0.0079785562846820 + 201 11 Se 4d0 -0.0102263853837632 -0.0016272275573386 + 202 11 Se 4d+1 -0.0218481263812857 0.0045068885435548 + 203 11 Se 4d+2 -0.0000444322376975 0.0220713831045702 + + 204 12 Cd 2s -0.0437215048583533 -0.0905922121315325 + 205 12 Cd 3s 0.0029233448413926 -0.0181847771257416 + 206 12 Cd 3py 0.0835451695556737 0.2125327577524838 + 207 12 Cd 3pz 0.0316355814126693 0.0116541700457236 + 208 12 Cd 3px -0.0095630496573060 0.0734054548968174 + 209 12 Cd 4py 0.0102171570065545 0.0102235427723250 + 210 12 Cd 4pz 0.0162820645034543 -0.0155340657741389 + 211 12 Cd 4px 0.0051939531881952 -0.0013475771984073 + 212 12 Cd 4d-2 -0.0283006644796828 -0.0271170450746555 + 213 12 Cd 4d-1 -0.0007941036477043 -0.0025191733482485 + 214 12 Cd 4d0 0.0008833488642826 -0.0251644678564613 + 215 12 Cd 4d+1 -0.0024659972149610 -0.0059011955206412 + 216 12 Cd 4d+2 -0.0068820876569993 -0.0037656737898266 + 217 12 Cd 5d-2 -0.0205301175146475 -0.0784019421445340 + 218 12 Cd 5d-1 0.0160579113519740 -0.0185470687117170 + 219 12 Cd 5d0 -0.0325589724127575 -0.0154272342825692 + 220 12 Cd 5d+1 0.0146537614308476 -0.0152678812900946 + 221 12 Cd 5d+2 -0.0224680816926707 0.0273718400489598 + 222 12 Cd 5f-3 -0.0055298674200036 0.0066698428792139 + 223 12 Cd 5f-2 -0.0018522021456615 0.0016940078259695 + 224 12 Cd 5f-1 -0.0034372167777318 0.0067641070136462 + 225 12 Cd 5f0 0.0006950125930090 0.0056092366096489 + 226 12 Cd 5f+1 0.0030591508881895 -0.0007007285262384 + 227 12 Cd 5f+2 -0.0008059219283341 0.0096759620477107 + 228 12 Cd 5f+3 -0.0011971769153694 0.0100508659014328 + + 229 13 Cd 2s 0.2043406379742216 -0.1119626843961652 + 230 13 Cd 3s 0.0072537102315717 -0.0046218907983505 + 231 13 Cd 3py 0.1431384578291276 -0.0696110537704379 + 232 13 Cd 3pz 0.0333009514868978 0.0172855243518651 + 233 13 Cd 3px 0.0740162452825982 -0.0450448354544481 + 234 13 Cd 4py 0.0175888419973385 -0.0032576188094946 + 235 13 Cd 4pz 0.0165709757428885 -0.0049032791033342 + 236 13 Cd 4px -0.0023894783717325 -0.0045556985285340 + 237 13 Cd 4d-2 -0.0005359605510502 0.0001589650941860 + 238 13 Cd 4d-1 -0.0087578246249539 -0.0008699218931053 + 239 13 Cd 4d0 -0.0081869790421380 0.0124854252022060 + 240 13 Cd 4d+1 -0.0103360260292783 -0.0120204329857451 + 241 13 Cd 4d+2 -0.0056075801682684 -0.0134677508375017 + 242 13 Cd 5d-2 0.0280379501802589 0.0075258680467054 + 243 13 Cd 5d-1 -0.0287361791495466 -0.0150911478302752 + 244 13 Cd 5d0 0.0269025633685081 0.0012261870710797 + 245 13 Cd 5d+1 0.0059764715516605 -0.0092758583800999 + 246 13 Cd 5d+2 -0.0245417538998965 -0.0055912235418498 + 247 13 Cd 5f-3 0.0095282420700906 0.0009349164036951 + 248 13 Cd 5f-2 0.0027523372831800 -0.0017361689576227 + 249 13 Cd 5f-1 -0.0142690014204132 0.0004463523248188 + 250 13 Cd 5f0 0.0028608519673609 0.0015646839302547 + 251 13 Cd 5f+1 -0.0017959938049065 -0.0003859000754963 + 252 13 Cd 5f+2 -0.0019957819468753 0.0044398918650634 + 253 13 Cd 5f+3 0.0176868229125574 0.0043689597503919 + + 254 14 Cd 2s 0.0894703127620140 0.1770790536277612 + 255 14 Cd 3s 0.0120320063277386 0.0142735740529188 + 256 14 Cd 3py -0.1675213903028981 -0.4548027186024936 + 257 14 Cd 3pz -0.0568784634181210 -0.1014169348822257 + 258 14 Cd 3px -0.1557402082877973 -0.0762967037500788 + 259 14 Cd 4py -0.0181178502732990 -0.0433694411763731 + 260 14 Cd 4pz -0.0005639482705241 -0.0229565797244659 + 261 14 Cd 4px -0.0164274357263138 -0.0176922740274830 + 262 14 Cd 4d-2 -0.0081909189225166 -0.0060599402438820 + 263 14 Cd 4d-1 0.0133582617243477 0.0152712175656820 + 264 14 Cd 4d0 -0.0293276100307848 -0.0354885628539462 + 265 14 Cd 4d+1 -0.0021273835245864 -0.0124223044968919 + 266 14 Cd 4d+2 0.0035989025237966 -0.0007230793217324 + 267 14 Cd 5d-2 -0.0242748427708448 0.0062341421973036 + 268 14 Cd 5d-1 0.0020196242734236 0.0108202388872945 + 269 14 Cd 5d0 -0.0427549994310613 -0.0153331051464480 + 270 14 Cd 5d+1 0.0080982384910069 -0.0031592943443636 + 271 14 Cd 5d+2 0.0138067237940316 0.0053549325166382 + 272 14 Cd 5f-3 -0.0002322302274058 -0.0007262243742107 + 273 14 Cd 5f-2 0.0016482049764530 -0.0051858401258602 + 274 14 Cd 5f-1 0.0032910112774976 -0.0087965550157688 + 275 14 Cd 5f0 -0.0014998386167746 0.0008136978360337 + 276 14 Cd 5f+1 -0.0046256201993185 0.0002497874862916 + 277 14 Cd 5f+2 0.0003734149860411 -0.0061748338713897 + 278 14 Cd 5f+3 -0.0076837343663851 -0.0046413565336185 + + 279 15 Se 2s 0.0786262729000205 0.0336682649044610 + 280 15 Se 3s -0.0130920127723234 -0.0081045021238993 + 281 15 Se 3py -0.0401834447444285 -0.1063421356775305 + 282 15 Se 3pz 0.0577687751880547 0.1892582274560766 + 283 15 Se 3px 0.0656660210238576 -0.0134431442671241 + 284 15 Se 4py 0.0133979849149950 0.0267161482766425 + 285 15 Se 4pz -0.0077435767652532 -0.0467462176691820 + 286 15 Se 4px -0.0163806470785780 0.0081669280107028 + 287 15 Se 4d-2 0.0180102639773517 0.0051889107663383 + 288 15 Se 4d-1 0.0105090866193034 0.0361271196461727 + 289 15 Se 4d0 -0.0098543536073417 -0.0141416044719046 + 290 15 Se 4d+1 0.0189322719941391 -0.0011535676079879 + 291 15 Se 4d+2 -0.0128088832316486 0.0039022100482499 + + 292 16 Se 2s -0.0877656592340883 0.0132407891222242 + 293 16 Se 3s 0.0140199272894643 -0.0023380375452031 + 294 16 Se 3py 0.2641914086133893 -0.1162265258057704 + 295 16 Se 3pz -0.0471641382137388 -0.0176684471807581 + 296 16 Se 3px 0.0701304477859959 -0.0968575506599777 + 297 16 Se 4py -0.0486227096776114 0.0192471376078574 + 298 16 Se 4pz 0.0314744739917030 0.0011527009773454 + 299 16 Se 4px -0.0026862718667579 0.0151706808989442 + 300 16 Se 4d-2 0.0104714302836933 -0.0146869568213301 + 301 16 Se 4d-1 -0.0210339834166474 0.0101258193271007 + 302 16 Se 4d0 -0.0117087405771213 0.0031343343851772 + 303 16 Se 4d+1 0.0011577761895749 0.0048547695102178 + 304 16 Se 4d+2 0.0092261826495078 0.0005313531832540 + + 305 17 Cd 2s -0.3199354958352456 0.2158418936874365 + 306 17 Cd 3s -0.0315779705864082 0.0169679336065541 + 307 17 Cd 3py 0.0114672014192504 -0.0173633824872645 + 308 17 Cd 3pz -0.1458866118425209 0.0854826918886159 + 309 17 Cd 3px -0.0270271422931615 0.0268117450193724 + 310 17 Cd 4py -0.0022265145780600 0.0085278223260421 + 311 17 Cd 4pz -0.0127550301865693 0.0059530687802728 + 312 17 Cd 4px -0.0052067866499949 0.0081164540135976 + 313 17 Cd 4d-2 0.0329702276563743 -0.0102538509628891 + 314 17 Cd 4d-1 0.0039515540281512 -0.0023085653856234 + 315 17 Cd 4d0 -0.0490703775679544 0.0276113945258946 + 316 17 Cd 4d+1 0.0020523335572036 -0.0018694185681947 + 317 17 Cd 4d+2 0.0001866983179791 0.0036863165338818 + 318 17 Cd 5d-2 0.0520639472363522 -0.0127145421347242 + 319 17 Cd 5d-1 0.0001555780359270 0.0012499825944329 + 320 17 Cd 5d0 -0.0386620549186029 0.0140154048154815 + 321 17 Cd 5d+1 -0.0160686479719210 0.0175401131408415 + 322 17 Cd 5d+2 0.0271501347380919 -0.0121961655167501 + 323 17 Cd 5f-3 -0.0044534678769831 0.0057734181863304 + 324 17 Cd 5f-2 0.0033924123168442 -0.0005614258327707 + 325 17 Cd 5f-1 -0.0012281990554759 0.0025536550791527 + 326 17 Cd 5f0 -0.0027893935352412 0.0006181351094090 + 327 17 Cd 5f+1 0.0021213323777551 0.0000881908419752 + 328 17 Cd 5f+2 0.0027372534622702 -0.0044385010967468 + 329 17 Cd 5f+3 -0.0040143753450714 0.0023933167262349 + + 330 18 Cd 2s 0.0627002652240819 -0.0200065175047605 + 331 18 Cd 3s 0.0030703670060429 -0.0071615508034897 + 332 18 Cd 3py -0.0937159922681412 -0.1441913059643538 + 333 18 Cd 3pz 0.0713304866952486 -0.1362301153664597 + 334 18 Cd 3px -0.1722318405430361 0.0388973853923497 + 335 18 Cd 4py -0.0048955902990722 -0.0082519359488036 + 336 18 Cd 4pz 0.0161689854530333 -0.0197912883751725 + 337 18 Cd 4px -0.0120877879203834 0.0006792085117655 + 338 18 Cd 4d-2 -0.0027060579584727 0.0093686306654322 + 339 18 Cd 4d-1 -0.0071083765234280 0.0007967576016030 + 340 18 Cd 4d0 -0.0059590192942822 0.0198208563560122 + 341 18 Cd 4d+1 -0.0098341950450391 0.0045549103223377 + 342 18 Cd 4d+2 -0.0037421365880521 -0.0043261006642871 + 343 18 Cd 5d-2 0.0148782764122196 0.0049283475721710 + 344 18 Cd 5d-1 0.0052366050654781 0.0126659735446759 + 345 18 Cd 5d0 -0.0039360425895520 -0.0049192159991713 + 346 18 Cd 5d+1 -0.0210814991218129 0.0135041748640687 + 347 18 Cd 5d+2 -0.0113727585586193 -0.0176301823124531 + 348 18 Cd 5f-3 0.0009114584428579 -0.0001907265326679 + 349 18 Cd 5f-2 0.0043715983653501 0.0002176411342263 + 350 18 Cd 5f-1 0.0044136916536259 -0.0029903246822027 + 351 18 Cd 5f0 -0.0021710289249185 0.0031010689876757 + 352 18 Cd 5f+1 0.0022862399421624 -0.0030016313527836 + 353 18 Cd 5f+2 0.0050040643592436 -0.0050986365126145 + 354 18 Cd 5f+3 0.0004734505259716 -0.0003198731444142 + + 355 19 Se 2s -0.0959828735042747 0.0174049450563848 + 356 19 Se 3s 0.0175503592845565 -0.0030972473828355 + 357 19 Se 3py -0.1850282310259037 0.0413742478569889 + 358 19 Se 3pz -0.0280496113834964 -0.0760575678005353 + 359 19 Se 3px -0.1311560587856181 0.1229145783540211 + 360 19 Se 4py 0.0253386123120255 -0.0071602169996088 + 361 19 Se 4pz 0.0245336043361662 0.0163368855994370 + 362 19 Se 4px 0.0331705787187981 -0.0254448066593997 + 363 19 Se 4d-2 0.0104105540549922 -0.0123082466618395 + 364 19 Se 4d-1 0.0129538444106895 0.0003598262777062 + 365 19 Se 4d0 -0.0131053166787327 0.0202181472058838 + 366 19 Se 4d+1 0.0085906006341498 -0.0088045079995760 + 367 19 Se 4d+2 -0.0004352492633840 0.0146732628059404 + + 368 20 Se 2s -0.0799140805786761 0.1617383458184610 + 369 20 Se 3s 0.0147895085847428 -0.0296405320657813 + 370 20 Se 3py -0.0213513252678720 0.0531990539728050 + 371 20 Se 3pz 0.1135897848713644 -0.0731166473763055 + 372 20 Se 3px -0.0451415686824678 0.0314796494869117 + 373 20 Se 4py -0.0018751825485975 -0.0097008388283291 + 374 20 Se 4pz -0.0385754115834886 0.0296834980308186 + 375 20 Se 4px -0.0014554067442305 -0.0058646260124370 + 376 20 Se 4d-2 -0.0023027108630422 0.0086905086542080 + 377 20 Se 4d-1 0.0011922665585120 0.0151795847447170 + 378 20 Se 4d0 0.0283758470618510 0.0092844889392905 + 379 20 Se 4d+1 -0.0055172811560034 -0.0019416787716054 + 380 20 Se 4d+2 -0.0088332290274442 -0.0172349881302570 + + 381 21 Se 2s 0.1442078570110817 0.0549488705988725 + 382 21 Se 3s -0.0270034406181005 -0.0084837961127599 + 383 21 Se 3py -0.1079036385359350 -0.1228074057644178 + 384 21 Se 3pz 0.1248698914048564 -0.0324534118862656 + 385 21 Se 3px 0.0756804403801810 -0.0060139645212860 + 386 21 Se 4py 0.0400763824752064 0.0262217922007609 + 387 21 Se 4pz -0.0160184269109853 0.0121832158295655 + 388 21 Se 4px -0.0028347096049512 -0.0185110577202352 + 389 21 Se 4d-2 -0.0079821871541734 -0.0259100807557198 + 390 21 Se 4d-1 0.0075457494624140 -0.0194363316212294 + 391 21 Se 4d0 -0.0008874793967779 0.0263086220749517 + 392 21 Se 4d+1 -0.0151419964946645 0.0219142670110321 + 393 21 Se 4d+2 0.0189845497212601 0.0090944740478159 + + 394 22 Cd 2s -0.1134029912844431 0.0145324399935329 + 395 22 Cd 3s -0.0058385028530590 0.0013902302212274 + 396 22 Cd 3py 0.0326486041809914 -0.1317127094680703 + 397 22 Cd 3pz 0.0130749153372641 0.0548357963629897 + 398 22 Cd 3px -0.0506117448418573 0.0277833337017697 + 399 22 Cd 4py 0.0155081044910965 -0.0038615895055490 + 400 22 Cd 4pz 0.0024589778936447 0.0051417754702289 + 401 22 Cd 4px 0.0113767970310711 0.0016377030106393 + 402 22 Cd 4d-2 0.0026964021031568 0.0052600521141922 + 403 22 Cd 4d-1 0.0027683155643494 -0.0078324939053093 + 404 22 Cd 4d0 0.0038306536478769 -0.0081798255589067 + 405 22 Cd 4d+1 -0.0016153191482705 0.0032309299947479 + 406 22 Cd 4d+2 -0.0071185921256077 -0.0101937085243615 + 407 22 Cd 5d-2 0.0027622101977640 0.0166613590487199 + 408 22 Cd 5d-1 0.0049638088741213 -0.0129040297746284 + 409 22 Cd 5d0 -0.0268866539211960 0.0243088475982751 + 410 22 Cd 5d+1 -0.0230051863149557 0.0141368416350376 + 411 22 Cd 5d+2 0.0067792823101282 -0.0376312186803065 + 412 22 Cd 5f-3 0.0055062671364767 -0.0061210840345847 + 413 22 Cd 5f-2 -0.0058520942400258 0.0050262227506512 + 414 22 Cd 5f-1 -0.0036841197196876 0.0003587895142924 + 415 22 Cd 5f0 -0.0016367496338352 -0.0006256465532515 + 416 22 Cd 5f+1 -0.0055765521747221 -0.0003190836076198 + 417 22 Cd 5f+2 -0.0003970382338060 0.0010011996865412 + 418 22 Cd 5f+3 0.0147423799991008 -0.0047684462570205 + + 419 23 Se 2s -0.1016224804877183 0.0657922765481229 + 420 23 Se 3s 0.0203423572281478 -0.0131044679123772 + 421 23 Se 3py 0.0368191041879440 -0.0988359938042195 + 422 23 Se 3pz -0.0695364607191233 0.0808922659547865 + 423 23 Se 3px -0.1554554037895766 0.0893389332126486 + 424 23 Se 4py 0.0001104155838484 0.0172589309315194 + 425 23 Se 4pz 0.0239982074382711 -0.0226538758368842 + 426 23 Se 4px 0.0488050631020426 -0.0266500341938128 + 427 23 Se 4d-2 -0.0063845889456655 0.0065693639399352 + 428 23 Se 4d-1 0.0009489108736371 0.0097286809786612 + 429 23 Se 4d0 -0.0068510149494858 -0.0053105559052620 + 430 23 Se 4d+1 0.0087700151589880 -0.0030330683914372 + 431 23 Se 4d+2 0.0059663043299221 -0.0046286750290301 + + 432 24 Se 2s 0.0329555809423448 -0.0256902175851211 + 433 24 Se 3s -0.0067289461818031 0.0046405530308685 + 434 24 Se 3py 0.0302122987490111 0.1314491687527119 + 435 24 Se 3pz 0.0223134008502168 0.1027912731285893 + 436 24 Se 3px 0.1070642013974197 0.0035273938334920 + 437 24 Se 4py -0.0151406329570518 -0.0195253133983460 + 438 24 Se 4pz -0.0116521761695049 -0.0184828438757325 + 439 24 Se 4px -0.0233765419310079 -0.0094506693791597 + 440 24 Se 4d-2 -0.0165306963128855 -0.0325149327831828 + 441 24 Se 4d-1 -0.0064556383225739 -0.0207141165568603 + 442 24 Se 4d0 -0.0040432317305423 -0.0088217763468367 + 443 24 Se 4d+1 -0.0015677196142019 -0.0031148071802477 + 444 24 Se 4d+2 -0.0004260190786980 0.0067012117506488 + + 445 25 Cd 2s 0.0058696117763969 -0.0460840099535531 + 446 25 Cd 3s -0.0037353408356484 -0.0083161868118840 + 447 25 Cd 3py 0.0031557620605325 0.1825489916103342 + 448 25 Cd 3pz 0.1022700985303787 -0.0307940831402638 + 449 25 Cd 3px -0.0748728615770763 0.0323941898623794 + 450 25 Cd 4py -0.0038570240409684 0.0185026248891680 + 451 25 Cd 4pz 0.0261764866990312 -0.0169381301657108 + 452 25 Cd 4px -0.0169073813342855 0.0080271464883435 + 453 25 Cd 4d-2 -0.0106645390702100 0.0079578057169640 + 454 25 Cd 4d-1 0.0084912391291506 0.0368078216374192 + 455 25 Cd 4d0 0.0077576806555585 0.0040911044914799 + 456 25 Cd 4d+1 -0.0005471283092877 -0.0122527720035946 + 457 25 Cd 4d+2 -0.0127109795949388 0.0047148898413539 + 458 25 Cd 5d-2 -0.0264651552986165 0.0470933209788833 + 459 25 Cd 5d-1 0.0053686030377868 0.0429767047683816 + 460 25 Cd 5d0 0.0153475944169952 -0.0067466389237085 + 461 25 Cd 5d+1 0.0326213216493934 -0.0474259181934072 + 462 25 Cd 5d+2 -0.0479886982008618 0.0179063744048100 + 463 25 Cd 5f-3 -0.0099415730888566 0.0042444658730095 + 464 25 Cd 5f-2 0.0039759011860228 -0.0039591736893027 + 465 25 Cd 5f-1 0.0072857860836626 0.0079640357955011 + 466 25 Cd 5f0 -0.0067655539787533 0.0046021649786549 + 467 25 Cd 5f+1 0.0007314565614117 -0.0020284563430215 + 468 25 Cd 5f+2 0.0130838239320663 -0.0112313112538488 + 469 25 Cd 5f+3 -0.0080848846622435 0.0060732639939104 + + 470 26 Cd 2s 0.0040972143852945 0.0990566572430688 + 471 26 Cd 3s 0.0072273534797390 0.0069318448768312 + 472 26 Cd 3py -0.0582579482419602 -0.0897438264014603 + 473 26 Cd 3pz 0.0831232728593311 0.2488076754554561 + 474 26 Cd 3px 0.2502843812675627 0.2527739816227708 + 475 26 Cd 4py -0.0023062138403581 -0.0106666538089144 + 476 26 Cd 4pz 0.0092690261199139 0.0132520790902848 + 477 26 Cd 4px 0.0223915472799496 0.0247793466582238 + 478 26 Cd 4d-2 -0.0064082775323115 -0.0233237443797607 + 479 26 Cd 4d-1 -0.0122994670928153 -0.0093367146850357 + 480 26 Cd 4d0 0.0052989886156442 0.0112339703074131 + 481 26 Cd 4d+1 -0.0023861299423144 -0.0105007607893051 + 482 26 Cd 4d+2 0.0051849296627843 0.0179998349416738 + 483 26 Cd 5d-2 0.0047898100826861 -0.0253744269818561 + 484 26 Cd 5d-1 -0.0162100858577048 0.0056195869134899 + 485 26 Cd 5d0 0.0043196976133134 0.0150795604814339 + 486 26 Cd 5d+1 0.0041436960531372 -0.0293141667156381 + 487 26 Cd 5d+2 -0.0033203676566314 0.0280823510294881 + 488 26 Cd 5f-3 -0.0025334156146456 0.0010127504669160 + 489 26 Cd 5f-2 -0.0003558649245706 0.0029015918728586 + 490 26 Cd 5f-1 0.0004708342681138 0.0039270188097430 + 491 26 Cd 5f0 0.0032664338682498 0.0009454803358069 + 492 26 Cd 5f+1 -0.0003813643380013 -0.0018089013023621 + 493 26 Cd 5f+2 0.0023351055931843 -0.0029211263279306 + 494 26 Cd 5f+3 0.0020841635431103 0.0045544258500924 + + 135 136 + -0.0304632220306658 -0.0241585571165074 + + 0.0000000000000000 0.0000000000000000 + + 1 1 Cd 2s -0.1295611396692079 -0.2774318393632648 + 2 1 Cd 3s -0.0046137519628796 -0.0142460073531425 + 3 1 Cd 3py -0.0698681350737255 0.0031018305174761 + 4 1 Cd 3pz -0.0876683809919110 -0.0276504747451746 + 5 1 Cd 3px 0.2167611156209764 0.0932712083404014 + 6 1 Cd 4py -0.0121820967188547 0.0134487068789258 + 7 1 Cd 4pz -0.0078108416503393 -0.0065657220314781 + 8 1 Cd 4px 0.0199335256748090 0.0053216423105284 + 9 1 Cd 4d-2 -0.0059946343218599 0.0080226394484947 + 10 1 Cd 4d-1 0.0148137554883446 0.0218740631025399 + 11 1 Cd 4d0 0.0124461229579306 -0.0054268981872797 + 12 1 Cd 4d+1 0.0098028615164368 0.0206824137826496 + 13 1 Cd 4d+2 -0.0206579002646382 -0.0520428418673729 + 14 1 Cd 5d-2 -0.0043940866303624 -0.0215847808558519 + 15 1 Cd 5d-1 -0.0202031526293087 -0.0033187705224493 + 16 1 Cd 5d0 -0.0031371973930088 -0.0120657757314749 + 17 1 Cd 5d+1 -0.0124862767948827 0.0163173450712965 + 18 1 Cd 5d+2 -0.0198508003639857 -0.0389016672734069 + 19 1 Cd 5f-3 -0.0072301887274621 -0.0001741513496960 + 20 1 Cd 5f-2 0.0098221187597307 0.0016443537532288 + 21 1 Cd 5f-1 -0.0069322198355425 -0.0099438899311831 + 22 1 Cd 5f0 -0.0026292114970869 0.0010856693312419 + 23 1 Cd 5f+1 -0.0008633852022028 0.0077584026198993 + 24 1 Cd 5f+2 0.0006571591583049 0.0002853298198065 + 25 1 Cd 5f+3 0.0067761443268180 0.0069609613281841 + + 26 2 Cd 2s -0.1131915461396096 -0.0441173035185897 + 27 2 Cd 3s -0.0143465018423851 -0.0064990305186751 + 28 2 Cd 3py -0.0034716182844924 0.1035383563344498 + 29 2 Cd 3pz -0.0524145460844110 0.0542799474465765 + 30 2 Cd 3px -0.0561591413703353 0.0345611317079789 + 31 2 Cd 4py -0.0009838705362946 0.0109511998157613 + 32 2 Cd 4pz 0.0007045419162704 0.0133664606648832 + 33 2 Cd 4px -0.0097407204590859 -0.0000807983324081 + 34 2 Cd 4d-2 -0.0204804068761656 -0.0119383779742580 + 35 2 Cd 4d-1 -0.0149962603719224 -0.0114775016512864 + 36 2 Cd 4d0 0.0007011597410503 -0.0189579917778557 + 37 2 Cd 4d+1 -0.0046750036868765 -0.0006052002548936 + 38 2 Cd 4d+2 0.0101258652143411 -0.0009464612623971 + 39 2 Cd 5d-2 -0.0284760157553654 -0.0252156114231414 + 40 2 Cd 5d-1 -0.0345131789488744 -0.0078664974282239 + 41 2 Cd 5d0 0.0193240636949445 -0.0456494839751426 + 42 2 Cd 5d+1 -0.0087627022729994 -0.0103475276401256 + 43 2 Cd 5d+2 0.0209179261002083 0.0162463512013785 + 44 2 Cd 5f-3 0.0017107846403799 -0.0013731911530797 + 45 2 Cd 5f-2 -0.0004314301113284 0.0008761551660657 + 46 2 Cd 5f-1 0.0016511978230083 0.0042544557192986 + 47 2 Cd 5f0 0.0070096276929684 0.0008101840308118 + 48 2 Cd 5f+1 0.0072970703984488 0.0053178734173320 + 49 2 Cd 5f+2 0.0043853523321188 0.0005636372127725 + 50 2 Cd 5f+3 0.0030353758304627 0.0017582324623033 + + 51 3 Cd 2s 0.3136446586343279 0.1126529788729236 + 52 3 Cd 3s 0.0364032453500994 0.0136902571848165 + 53 3 Cd 3py -0.1118987747547184 -0.0722884749926509 + 54 3 Cd 3pz -0.1065332288259433 0.0600138822612284 + 55 3 Cd 3px -0.0813661389566102 -0.0588610861843001 + 56 3 Cd 4py -0.0094147677748440 -0.0017624212770728 + 57 3 Cd 4pz -0.0057905628407552 0.0026155512253202 + 58 3 Cd 4px -0.0147442232515059 -0.0109097369877081 + 59 3 Cd 4d-2 -0.0072071385073642 -0.0153706148390008 + 60 3 Cd 4d-1 0.0182430361270724 0.0127083193854148 + 61 3 Cd 4d0 0.0126696435956374 0.0107476811885363 + 62 3 Cd 4d+1 0.0588143412329734 -0.0177363514020261 + 63 3 Cd 4d+2 -0.0043050278603610 0.0161901453053918 + 64 3 Cd 5d-2 0.0027164231578239 -0.0226328957396908 + 65 3 Cd 5d-1 0.0326491566029991 0.0236056310677192 + 66 3 Cd 5d0 -0.0030843950480811 0.0188320912032539 + 67 3 Cd 5d+1 0.0748557823459749 -0.0075373179149511 + 68 3 Cd 5d+2 0.0060602791463445 0.0214032502973885 + 69 3 Cd 5f-3 0.0014567374195533 0.0043373574821183 + 70 3 Cd 5f-2 0.0020475159209260 0.0112888665991544 + 71 3 Cd 5f-1 0.0009446023019237 0.0036558701923950 + 72 3 Cd 5f0 -0.0016271321716647 -0.0077231022794076 + 73 3 Cd 5f+1 0.0013479320140160 0.0032070294619959 + 74 3 Cd 5f+2 -0.0028545176354065 0.0020812081403771 + 75 3 Cd 5f+3 0.0044150112424263 0.0023252415693941 + + 76 4 Se 2s -0.1142586048413163 -0.0557816825526858 + 77 4 Se 3s 0.0216664527597249 0.0108975301927366 + 78 4 Se 3py 0.1282743011650407 0.2368952790688522 + 79 4 Se 3pz -0.0092337302794291 0.0901639293639224 + 80 4 Se 3px 0.1089245700829799 0.0168613812947506 + 81 4 Se 4py -0.0528326149346474 -0.0633284358935397 + 82 4 Se 4pz -0.0167699230118128 -0.0211162036705818 + 83 4 Se 4px -0.0285806224244802 -0.0145008513514914 + 84 4 Se 4d-2 0.0103160077689393 0.0150399597098987 + 85 4 Se 4d-1 0.0167254497664104 0.0170796639305295 + 86 4 Se 4d0 -0.0007603068553652 -0.0090819565309019 + 87 4 Se 4d+1 0.0088281849130861 0.0000924604560091 + 88 4 Se 4d+2 -0.0073843567095217 -0.0096395385769935 + + 89 5 Se 2s 0.0964342268914881 -0.0448262121668936 + 90 5 Se 3s -0.0142853200176973 0.0057198922459617 + 91 5 Se 3py -0.0919307805627605 -0.2108869872815660 + 92 5 Se 3pz 0.0637997073334292 -0.0195849554575992 + 93 5 Se 3px -0.1672572486503544 -0.0004533090332010 + 94 5 Se 4py 0.0143372368573307 0.0386980135615102 + 95 5 Se 4pz -0.0177643083404170 0.0021608659855459 + 96 5 Se 4px 0.0386173175904826 -0.0108730442121946 + 97 5 Se 4d-2 -0.0169289944443313 -0.0095602405468754 + 98 5 Se 4d-1 0.0067260660589246 -0.0005251062485119 + 99 5 Se 4d0 -0.0033326023330234 -0.0077619696144198 + 100 5 Se 4d+1 0.0098513644167903 -0.0016688521420816 + 101 5 Se 4d+2 -0.0230705734978570 -0.0114561595120926 + + 102 6 Se 2s -0.0487501312100110 0.0086722168591345 + 103 6 Se 3s 0.0077978246964176 -0.0048506768921386 + 104 6 Se 3py -0.0615898158283697 -0.0821724498845116 + 105 6 Se 3pz -0.0244704375819146 -0.0017317551571205 + 106 6 Se 3px 0.0773408865896168 -0.0110512840403722 + 107 6 Se 4py 0.0176519073826506 0.0191852676973627 + 108 6 Se 4pz 0.0021618249145420 -0.0064274356044316 + 109 6 Se 4px -0.0262344677899312 -0.0017141686959033 + 110 6 Se 4d-2 0.0008671921206661 -0.0153643032471324 + 111 6 Se 4d-1 -0.0077667781247633 -0.0051990550363587 + 112 6 Se 4d0 -0.0077908594727636 0.0095315685485038 + 113 6 Se 4d+1 -0.0015174797472793 0.0008256268353267 + 114 6 Se 4d+2 -0.0001481842914002 -0.0026519021633692 + + 115 7 Se 2s 0.0256321626892579 0.0218690080517752 + 116 7 Se 3s -0.0072001897877080 -0.0053926808960397 + 117 7 Se 3py -0.0074192977892990 -0.0177431436968780 + 118 7 Se 3pz -0.0466101033209117 -0.0604312514975137 + 119 7 Se 3px -0.1077572527689056 0.0274604264025632 + 120 7 Se 4py -0.0126897581665255 -0.0013538851696434 + 121 7 Se 4pz 0.0200976949170889 0.0171869010126239 + 122 7 Se 4px 0.0224801050057222 -0.0063241846488727 + 123 7 Se 4d-2 0.0079157839391360 -0.0186980006196895 + 124 7 Se 4d-1 0.0073791818493058 -0.0002903404486657 + 125 7 Se 4d0 -0.0135347138663582 -0.0100889734553798 + 126 7 Se 4d+1 -0.0192621464661383 0.0057825230552627 + 127 7 Se 4d+2 0.0002352954330100 -0.0069235513556246 + + 128 8 Cd 2s 0.0003588473411987 0.0879623166070005 + 129 8 Cd 3s 0.0041026456785107 0.0137259289999943 + 130 8 Cd 3py 0.1039973136471878 -0.0235907969649808 + 131 8 Cd 3pz -0.0864422491554713 0.0058188090299409 + 132 8 Cd 3px 0.0235081720422063 0.0119783711811629 + 133 8 Cd 4py 0.0084910536409200 -0.0160055800292289 + 134 8 Cd 4pz -0.0113643102395945 -0.0005885921150481 + 135 8 Cd 4px -0.0100132337990118 -0.0062605868562391 + 136 8 Cd 4d-2 0.0219493152997901 -0.0092325480034997 + 137 8 Cd 4d-1 -0.0221980511188353 -0.0019771466347594 + 138 8 Cd 4d0 0.0135490871646406 -0.0008983276769954 + 139 8 Cd 4d+1 -0.0231626782376617 -0.0054609223775710 + 140 8 Cd 4d+2 0.0025906312047391 -0.0036448593731058 + 141 8 Cd 5d-2 0.0352080077389197 -0.0169366447262176 + 142 8 Cd 5d-1 -0.0361077683510456 -0.0219863687113804 + 143 8 Cd 5d0 0.0031443519742822 0.0270225094863922 + 144 8 Cd 5d+1 -0.0226429848324417 0.0014027320775145 + 145 8 Cd 5d+2 -0.0195244338292878 -0.0171925620794830 + 146 8 Cd 5f-3 0.0028293197859996 0.0000875298211677 + 147 8 Cd 5f-2 -0.0014683010591724 0.0016532496671938 + 148 8 Cd 5f-1 0.0018982503745179 0.0023960555776210 + 149 8 Cd 5f0 -0.0030245030395418 0.0073286204082645 + 150 8 Cd 5f+1 0.0030201388423697 0.0004498403304989 + 151 8 Cd 5f+2 0.0049388726089173 0.0046906119261233 + 152 8 Cd 5f+3 -0.0028975081219921 -0.0013132576424905 + + 153 9 Cd 2s -0.0359144062114625 0.0214267419428394 + 154 9 Cd 3s -0.0056234849054538 0.0047653143692853 + 155 9 Cd 3py 0.0922661164405680 -0.0816334923044711 + 156 9 Cd 3pz 0.1064959848313449 -0.0675859022181451 + 157 9 Cd 3px -0.0129614443357696 -0.0559434843648706 + 158 9 Cd 4py 0.0014663781786558 -0.0041890215961863 + 159 9 Cd 4pz 0.0070204520646966 -0.0033998549652165 + 160 9 Cd 4px -0.0072653085431448 -0.0046922183308446 + 161 9 Cd 4d-2 -0.0004258687858461 -0.0045463766230636 + 162 9 Cd 4d-1 0.0029888792357091 0.0056822839229542 + 163 9 Cd 4d0 -0.0094966622608613 0.0109857886603515 + 164 9 Cd 4d+1 -0.0140533316134319 -0.0003447409275104 + 165 9 Cd 4d+2 0.0177857498349819 -0.0058387730779736 + 166 9 Cd 5d-2 -0.0078198130793833 -0.0051281530345542 + 167 9 Cd 5d-1 0.0261894991587011 0.0077185417275843 + 168 9 Cd 5d0 0.0069138911739710 0.0130621934674278 + 169 9 Cd 5d+1 0.0138684769489581 -0.0151025014740486 + 170 9 Cd 5d+2 0.0161199473597017 0.0063140625319381 + 171 9 Cd 5f-3 0.0048096304950361 0.0028197508040852 + 172 9 Cd 5f-2 0.0003398729464953 -0.0004352359266526 + 173 9 Cd 5f-1 -0.0021176146391397 -0.0010831431613120 + 174 9 Cd 5f0 -0.0045001632492295 -0.0041334522715773 + 175 9 Cd 5f+1 0.0001286569460950 -0.0017742874507088 + 176 9 Cd 5f+2 -0.0043220233804462 -0.0036231942619404 + 177 9 Cd 5f+3 0.0030444468029622 0.0004376636467813 + + 178 10 Se 2s -0.0457720271242898 0.1089077520644101 + 179 10 Se 3s 0.0078103139566692 -0.0214479174974406 + 180 10 Se 3py -0.0449439943984756 -0.0691582637995340 + 181 10 Se 3pz 0.0961987252555416 -0.1150913941633930 + 182 10 Se 3px -0.0849818884045564 0.0181988658026367 + 183 10 Se 4py 0.0042880586900861 -0.0013403005683554 + 184 10 Se 4pz -0.0321777357883564 0.0341176195677941 + 185 10 Se 4px 0.0183553892188992 -0.0171247114811117 + 186 10 Se 4d-2 -0.0133476824775938 -0.0025484331101302 + 187 10 Se 4d-1 -0.0094344957343637 -0.0152174280079184 + 188 10 Se 4d0 0.0061879254528564 -0.0021139882830065 + 189 10 Se 4d+1 -0.0128156045006278 0.0006940689558846 + 190 10 Se 4d+2 -0.0043566511694852 0.0026452952072590 + + 191 11 Se 2s 0.1361862814010106 -0.0002028490750157 + 192 11 Se 3s -0.0276710038477750 -0.0002875312550975 + 193 11 Se 3py 0.1976793020208608 0.0000500816544040 + 194 11 Se 3pz -0.1199252519332534 0.2314244133167237 + 195 11 Se 3px 0.0796866620828539 0.1253369876243125 + 196 11 Se 4py -0.0558052935503373 0.0105727999932211 + 197 11 Se 4pz 0.0464775742772487 -0.0433959856075796 + 198 11 Se 4px -0.0291334968055140 -0.0402928820636641 + 199 11 Se 4d-2 -0.0099380630214374 -0.0066669970245375 + 200 11 Se 4d-1 0.0342175728427173 -0.0266194277039150 + 201 11 Se 4d0 0.0034615571809154 0.0177141324504842 + 202 11 Se 4d+1 0.0179780538710997 0.0322321349982910 + 203 11 Se 4d+2 -0.0184869641165207 -0.0053257223976577 + + 204 12 Cd 2s 0.0130835531023272 0.0347005775327541 + 205 12 Cd 3s 0.0008029973522519 0.0001300312843706 + 206 12 Cd 3py -0.1733235399762696 -0.1468888181958897 + 207 12 Cd 3pz 0.0421987413423880 0.2830614257158031 + 208 12 Cd 3px -0.2022819197535844 -0.0392546143536492 + 209 12 Cd 4py -0.0181376709411455 -0.0096444236608569 + 210 12 Cd 4pz -0.0003551329200344 0.0242337633050133 + 211 12 Cd 4px -0.0195545329648758 -0.0097957584052180 + 212 12 Cd 4d-2 0.0069848358800417 0.0142619087084238 + 213 12 Cd 4d-1 0.0048939731465160 -0.0072400333895502 + 214 12 Cd 4d0 0.0211976790434377 -0.0395172132646548 + 215 12 Cd 4d+1 -0.0134113861575755 -0.0051385708628169 + 216 12 Cd 4d+2 -0.0029417805441430 0.0148495660160814 + 217 12 Cd 5d-2 -0.0046277345238122 0.0470756358613141 + 218 12 Cd 5d-1 -0.0221403062100423 -0.0212192003850217 + 219 12 Cd 5d0 0.0130865837309745 -0.0340006937235458 + 220 12 Cd 5d+1 -0.0439657299586048 -0.0086930700688203 + 221 12 Cd 5d+2 -0.0114797008847224 0.0332925921573101 + 222 12 Cd 5f-3 0.0043577952143739 0.0007943904118528 + 223 12 Cd 5f-2 -0.0010276608749487 -0.0002958992069343 + 224 12 Cd 5f-1 0.0020325116950711 0.0020048577267142 + 225 12 Cd 5f0 -0.0010320425848088 -0.0103309846838259 + 226 12 Cd 5f+1 -0.0020724735459375 -0.0057650442889768 + 227 12 Cd 5f+2 -0.0054441947926771 0.0017641223168116 + 228 12 Cd 5f+3 0.0038764893829546 -0.0015781828721017 + + 229 13 Cd 2s -0.0368597329848012 0.1552122121278392 + 230 13 Cd 3s -0.0019706268333131 0.0058714168581909 + 231 13 Cd 3py 0.2033094601694670 0.1439419048568723 + 232 13 Cd 3pz -0.0841687705407219 -0.1111591365037278 + 233 13 Cd 3px -0.0195703057066655 -0.0110680602190872 + 234 13 Cd 4py 0.0244631167466582 0.0149267789890618 + 235 13 Cd 4pz -0.0058751942549556 -0.0110974694414866 + 236 13 Cd 4px -0.0179603237081698 -0.0096784350778845 + 237 13 Cd 4d-2 0.0074857001600647 0.0171505840459531 + 238 13 Cd 4d-1 -0.0001063296744168 -0.0129630321735191 + 239 13 Cd 4d0 0.0284725711850776 -0.0039091983253997 + 240 13 Cd 4d+1 0.0010989571966524 0.0177728858817383 + 241 13 Cd 4d+2 0.0169048485296303 0.0294920043315500 + 242 13 Cd 5d-2 0.0185869626348984 0.0791438570027123 + 243 13 Cd 5d-1 -0.0114476618906435 -0.0052430970180552 + 244 13 Cd 5d0 0.0140902616318588 0.0548369791276700 + 245 13 Cd 5d+1 -0.0109351724948514 0.0221510161396561 + 246 13 Cd 5d+2 0.0523373622542106 0.0051914635398911 + 247 13 Cd 5f-3 -0.0058879156360606 0.0067683368241464 + 248 13 Cd 5f-2 -0.0004044039939876 -0.0019222225260577 + 249 13 Cd 5f-1 -0.0019953958988646 -0.0044263374072351 + 250 13 Cd 5f0 0.0018771655772843 0.0042538097436304 + 251 13 Cd 5f+1 0.0055738135491872 0.0034178598284826 + 252 13 Cd 5f+2 0.0068018815594723 0.0010796058174356 + 253 13 Cd 5f+3 -0.0000305359047515 0.0211191076082819 + + 254 14 Cd 2s 0.0603122931502182 0.0345998833915603 + 255 14 Cd 3s 0.0011471585789770 0.0022379007930721 + 256 14 Cd 3py -0.1866884393697108 -0.1164298934346652 + 257 14 Cd 3pz -0.0443327202719441 -0.1282061256176768 + 258 14 Cd 3px -0.2590402231754944 0.1947190427058677 + 259 14 Cd 4py -0.0153581500355972 -0.0143916041802452 + 260 14 Cd 4pz -0.0022905897037921 -0.0117594505232609 + 261 14 Cd 4px -0.0207887274673005 0.0128637102791860 + 262 14 Cd 4d-2 0.0007406558391906 -0.0035477808853588 + 263 14 Cd 4d-1 0.0027320169272275 -0.0013420386890455 + 264 14 Cd 4d0 -0.0097718550453841 -0.0096238962652638 + 265 14 Cd 4d+1 -0.0056698200392309 0.0077942920552326 + 266 14 Cd 4d+2 -0.0112997062309833 0.0007930129558132 + 267 14 Cd 5d-2 -0.0151631002475554 0.0111154983012967 + 268 14 Cd 5d-1 -0.0234972969514492 -0.0169530643500726 + 269 14 Cd 5d0 0.0110286689846356 0.0013318322178500 + 270 14 Cd 5d+1 -0.0090985150096631 0.0457723088533238 + 271 14 Cd 5d+2 -0.0210776054693736 -0.0147975031282051 + 272 14 Cd 5f-3 0.0006895434748783 0.0000836680623621 + 273 14 Cd 5f-2 0.0003187031218668 -0.0025455770914646 + 274 14 Cd 5f-1 -0.0016267024969007 -0.0005672568825604 + 275 14 Cd 5f0 -0.0028737333430895 -0.0013143474526480 + 276 14 Cd 5f+1 0.0024228401531155 -0.0000876335674307 + 277 14 Cd 5f+2 -0.0029144729327320 -0.0021704448659688 + 278 14 Cd 5f+3 0.0003500254620569 0.0014794986037030 + + 279 15 Se 2s 0.1025996710371952 0.0821498008101792 + 280 15 Se 3s -0.0195312844638916 -0.0142679113510175 + 281 15 Se 3py -0.1083455465568310 -0.0685027035512717 + 282 15 Se 3pz 0.0133406045418529 -0.0470137559323729 + 283 15 Se 3px -0.0521933331368214 0.1447686091261744 + 284 15 Se 4py 0.0272862401905202 0.0153412316907788 + 285 15 Se 4pz -0.0219507743251706 -0.0104489392020499 + 286 15 Se 4px 0.0085862732624692 -0.0209336313136792 + 287 15 Se 4d-2 -0.0028493902289333 0.0096102475639712 + 288 15 Se 4d-1 0.0065269800152746 -0.0019866483888809 + 289 15 Se 4d0 -0.0127809685155392 -0.0060663466093746 + 290 15 Se 4d+1 0.0118428852369400 -0.0017027121187660 + 291 15 Se 4d+2 -0.0011399864539520 -0.0052969252260623 + + 292 16 Se 2s -0.0098466663611186 0.0573384370313569 + 293 16 Se 3s 0.0047999945103074 -0.0088429686991434 + 294 16 Se 3py 0.0124052508572828 0.0884566673820357 + 295 16 Se 3pz -0.1654603726161611 -0.0038402930633583 + 296 16 Se 3px -0.0096884975144499 -0.1555653046574580 + 297 16 Se 4py -0.0092388222328603 -0.0265382589917968 + 298 16 Se 4pz 0.0396762422781556 0.0048004997136467 + 299 16 Se 4px 0.0015200102961350 0.0467290624641499 + 300 16 Se 4d-2 -0.0045330838414803 -0.0068242001549720 + 301 16 Se 4d-1 -0.0172440806752767 -0.0152814750352601 + 302 16 Se 4d0 0.0175447807303102 0.0146980028942168 + 303 16 Se 4d+1 -0.0084623268407200 0.0147820108139340 + 304 16 Se 4d+2 0.0045065690619857 0.0079247822212564 + + 305 17 Cd 2s 0.1145366913653995 0.1406933899301711 + 306 17 Cd 3s 0.0163233977539393 0.0192327256336357 + 307 17 Cd 3py -0.0430010473209131 0.0060258305472742 + 308 17 Cd 3pz -0.1337623146008997 0.1567811935909613 + 309 17 Cd 3px 0.0929372536823409 0.0583822045144931 + 310 17 Cd 4py -0.0118362234574000 -0.0003765717276987 + 311 17 Cd 4pz -0.0115035014981070 0.0190412577590467 + 312 17 Cd 4px 0.0114206316538285 -0.0037822396445669 + 313 17 Cd 4d-2 -0.0200326328345921 -0.0171843803548718 + 314 17 Cd 4d-1 -0.0009268013238540 -0.0049877465023810 + 315 17 Cd 4d0 0.0040192406892333 0.0127045415625427 + 316 17 Cd 4d+1 -0.0001587942719194 -0.0171302877246907 + 317 17 Cd 4d+2 0.0118195436648553 0.0030704450554368 + 318 17 Cd 5d-2 -0.0193166731607778 -0.0345423455725571 + 319 17 Cd 5d-1 0.0090919411234882 -0.0254334285946581 + 320 17 Cd 5d0 0.0064440669022586 -0.0100619413975972 + 321 17 Cd 5d+1 0.0305520590325969 -0.0459253583961365 + 322 17 Cd 5d+2 0.0041008889380846 0.0051453459440939 + 323 17 Cd 5f-3 -0.0019619386211243 -0.0039122039055800 + 324 17 Cd 5f-2 -0.0015700795475694 0.0093342270359114 + 325 17 Cd 5f-1 -0.0058206341369082 0.0015746344599288 + 326 17 Cd 5f0 0.0008373607517777 -0.0036908215002360 + 327 17 Cd 5f+1 -0.0013702555734231 -0.0031010588887813 + 328 17 Cd 5f+2 -0.0030902037451323 0.0074279018660307 + 329 17 Cd 5f+3 -0.0007316117576170 -0.0050190774623968 + + 330 18 Cd 2s 0.0613698792241240 -0.2001207058823321 + 331 18 Cd 3s 0.0070984894681939 -0.0236788095687399 + 332 18 Cd 3py 0.4321429318912288 -0.2148729633129487 + 333 18 Cd 3pz 0.0788347253516798 -0.0615597796995454 + 334 18 Cd 3px 0.1090270616341047 0.2949576865930799 + 335 18 Cd 4py 0.0358345002778165 -0.0245973770098896 + 336 18 Cd 4pz 0.0099781707061020 -0.0112569715004673 + 337 18 Cd 4px 0.0026415126716375 0.0174716204982885 + 338 18 Cd 4d-2 0.0094426222608174 0.0098473029959656 + 339 18 Cd 4d-1 0.0185040247352181 -0.0247976769649989 + 340 18 Cd 4d0 -0.0316857155425642 0.0455553301225621 + 341 18 Cd 4d+1 0.0044852565535725 0.0101215704509948 + 342 18 Cd 4d+2 0.0037733914434194 -0.0051043045107543 + 343 18 Cd 5d-2 -0.0019964049829231 0.0005263570096108 + 344 18 Cd 5d-1 0.0056777555331713 -0.0309518991472357 + 345 18 Cd 5d0 -0.0002172956557376 0.0600505228516633 + 346 18 Cd 5d+1 0.0052120326632161 0.0096587657511326 + 347 18 Cd 5d+2 0.0102967909528117 -0.0050322353008290 + 348 18 Cd 5f-3 0.0035050619231314 0.0057492476555122 + 349 18 Cd 5f-2 0.0075066870624880 0.0026483595890379 + 350 18 Cd 5f-1 0.0059969264976454 -0.0016195620745264 + 351 18 Cd 5f0 -0.0037784310640487 -0.0017638865550388 + 352 18 Cd 5f+1 0.0060084356651210 0.0070407615218960 + 353 18 Cd 5f+2 -0.0029915683809196 0.0011741961127252 + 354 18 Cd 5f+3 -0.0037733134543166 -0.0055787560419496 + + 355 19 Se 2s 0.1150338322946692 -0.0162252438485348 + 356 19 Se 3s -0.0214486505153243 0.0031495031327686 + 357 19 Se 3py 0.1014650788221627 0.1521752193156795 + 358 19 Se 3pz 0.1113084999170449 -0.1157651891250376 + 359 19 Se 3px 0.0817717584155470 -0.0297654739569156 + 360 19 Se 4py -0.0099724876128338 -0.0257517599169439 + 361 19 Se 4pz -0.0419918275245290 0.0183054239280041 + 362 19 Se 4px -0.0182855158074818 0.0037421105699757 + 363 19 Se 4d-2 -0.0017739459266254 0.0122671589669279 + 364 19 Se 4d-1 0.0039894427368593 -0.0296736311311880 + 365 19 Se 4d0 -0.0186900573420471 0.0381530374990569 + 366 19 Se 4d+1 -0.0077744831574266 0.0025815864326970 + 367 19 Se 4d+2 -0.0209764059823629 -0.0126774126415174 + + 368 20 Se 2s -0.0371438533996161 -0.1164126303789775 + 369 20 Se 3s 0.0055698224523650 0.0202608569426924 + 370 20 Se 3py -0.0654861972903646 0.0725933442501701 + 371 20 Se 3pz -0.0256180628833367 0.0171760393370741 + 372 20 Se 3px 0.0207369881429863 0.0538427557162057 + 373 20 Se 4py 0.0130737297999487 -0.0202525868321041 + 374 20 Se 4pz 0.0196249902705600 0.0062799087034772 + 375 20 Se 4px 0.0104808179578388 -0.0080450795424776 + 376 20 Se 4d-2 0.0270649076854338 0.0215835857136630 + 377 20 Se 4d-1 -0.0325960847563966 0.0096088057727371 + 378 20 Se 4d0 0.0158410686261440 -0.0339929826619494 + 379 20 Se 4d+1 -0.0124742461493693 -0.0061811465382613 + 380 20 Se 4d+2 0.0331128673872414 0.0155597205728894 + + 381 21 Se 2s 0.0772391652433015 -0.0971186822315593 + 382 21 Se 3s -0.0161393905023329 0.0209053314496264 + 383 21 Se 3py 0.0640922932170027 0.0686992145139825 + 384 21 Se 3pz 0.0448491044293901 0.0590141783728920 + 385 21 Se 3px 0.1882257985371622 -0.0125648612207248 + 386 21 Se 4py -0.0035615740015904 -0.0334660257939933 + 387 21 Se 4pz -0.0030285941412712 -0.0329584847129668 + 388 21 Se 4px -0.0406676581700672 0.0081654555614075 + 389 21 Se 4d-2 -0.0050582901726645 0.0031787857473095 + 390 21 Se 4d-1 0.0044088150205403 0.0112432439760362 + 391 21 Se 4d0 0.0025073224162712 0.0082048986561271 + 392 21 Se 4d+1 0.0101500000759881 -0.0052468530005981 + 393 21 Se 4d+2 -0.0086270421248415 -0.0137649115512384 + + 394 22 Cd 2s 0.1607825167030758 -0.0963623906826402 + 395 22 Cd 3s 0.0128980174427115 0.0027456094758387 + 396 22 Cd 3py 0.0303808333122023 0.0152112168435251 + 397 22 Cd 3pz 0.0206894507194207 -0.0907666373972321 + 398 22 Cd 3px -0.0332138161337826 0.1058572234208317 + 399 22 Cd 4py -0.0006215637996190 -0.0016481032917129 + 400 22 Cd 4pz 0.0076531133620029 -0.0221567812931158 + 401 22 Cd 4px -0.0064718784974932 0.0072106878426818 + 402 22 Cd 4d-2 -0.0150106322295829 -0.0120949887032697 + 403 22 Cd 4d-1 -0.0117845623936965 -0.0032999838688302 + 404 22 Cd 4d0 0.0144079565307651 0.0057158977584218 + 405 22 Cd 4d+1 0.0120156989015758 -0.0194487293982559 + 406 22 Cd 4d+2 0.0057618871860190 0.0002063745517058 + 407 22 Cd 5d-2 -0.0190361074361216 0.0125182934602803 + 408 22 Cd 5d-1 -0.0243389319511811 -0.0049891426854214 + 409 22 Cd 5d0 0.0388962608165048 -0.0319624326213973 + 410 22 Cd 5d+1 0.0111108205212783 -0.0160161305959424 + 411 22 Cd 5d+2 -0.0145225265950344 -0.0181159168910786 + 412 22 Cd 5f-3 -0.0000084666318105 0.0101562387671365 + 413 22 Cd 5f-2 -0.0040585768172485 -0.0052648929511617 + 414 22 Cd 5f-1 -0.0029826959636156 0.0139337427112178 + 415 22 Cd 5f0 -0.0009582440843408 0.0064066663480304 + 416 22 Cd 5f+1 0.0010202238033070 -0.0026153158086039 + 417 22 Cd 5f+2 -0.0004902375741737 0.0040666157629334 + 418 22 Cd 5f+3 0.0030488709178195 0.0117035764489971 + + 419 23 Se 2s -0.0063139171958928 0.1147413106687541 + 420 23 Se 3s 0.0023204584548738 -0.0198638798232480 + 421 23 Se 3py 0.0758759436448143 -0.1739401281270232 + 422 23 Se 3pz -0.0533942561084133 0.1298788146925250 + 423 23 Se 3px 0.0216706639203442 -0.0254105083469366 + 424 23 Se 4py -0.0295796632037011 0.0554435803497260 + 425 23 Se 4pz 0.0088158117839382 -0.0415171738731363 + 426 23 Se 4px 0.0042916725997325 -0.0122276835591392 + 427 23 Se 4d-2 -0.0012721187801603 -0.0203684430604363 + 428 23 Se 4d-1 -0.0154881464299194 0.0250978730523820 + 429 23 Se 4d0 -0.0000015080549089 0.0162245083118825 + 430 23 Se 4d+1 -0.0000345983285305 -0.0013790091284368 + 431 23 Se 4d+2 0.0034761250917478 0.0043196220818565 + + 432 24 Se 2s -0.0164013450434628 0.0097144441975853 + 433 24 Se 3s 0.0028703180599413 -0.0019389329341071 + 434 24 Se 3py -0.1702396093605450 0.0063201991940727 + 435 24 Se 3pz 0.0831593483302971 -0.1032988045498685 + 436 24 Se 3px 0.0518108358649496 -0.0949106764419974 + 437 24 Se 4py 0.0237823029966767 0.0014435835976598 + 438 24 Se 4pz -0.0245117457227890 0.0305939924395458 + 439 24 Se 4px 0.0013175966340870 0.0184545714009422 + 440 24 Se 4d-2 0.0048700364001036 -0.0001838866116285 + 441 24 Se 4d-1 -0.0038200413666990 0.0210164893256858 + 442 24 Se 4d0 -0.0180736997899784 -0.0295070075101234 + 443 24 Se 4d+1 -0.0043285476417549 0.0068040022356907 + 444 24 Se 4d+2 -0.0131257155713853 0.0106355246392422 + + 445 25 Cd 2s -0.0126261634465118 0.3040732734666769 + 446 25 Cd 3s 0.0078720827751106 0.0344162633097843 + 447 25 Cd 3py -0.1329716650127975 0.0854363427770872 + 448 25 Cd 3pz -0.0515289947295437 -0.2623177514033945 + 449 25 Cd 3px 0.0523591802293211 -0.2020607765337024 + 450 25 Cd 4py -0.0093715567090680 0.0060405052253751 + 451 25 Cd 4pz -0.0120033221164911 -0.0204845505347540 + 452 25 Cd 4px 0.0193937188068651 -0.0146533555929447 + 453 25 Cd 4d-2 -0.0014393425083953 0.0235136047594130 + 454 25 Cd 4d-1 -0.0221486712404817 0.0332577615646016 + 455 25 Cd 4d0 -0.0082188264545833 -0.0188122846971644 + 456 25 Cd 4d+1 0.0151896598694045 -0.0023195216432892 + 457 25 Cd 4d+2 -0.0052913739588266 0.0361084648529237 + 458 25 Cd 5d-2 0.0061885532908802 0.0175082028283660 + 459 25 Cd 5d-1 -0.0131866957285960 0.0283609339883946 + 460 25 Cd 5d0 -0.0134454801051283 -0.0066099444755582 + 461 25 Cd 5d+1 0.0333469581492819 -0.0028885680196455 + 462 25 Cd 5d+2 0.0057677881975336 0.0726092147072758 + 463 25 Cd 5f-3 -0.0079508752310127 0.0113684444644667 + 464 25 Cd 5f-2 -0.0025756819108425 0.0012655993863063 + 465 25 Cd 5f-1 -0.0097184068122780 -0.0036093965322785 + 466 25 Cd 5f0 0.0011760823013417 0.0054173070772333 + 467 25 Cd 5f+1 0.0011544397908660 0.0022570954422036 + 468 25 Cd 5f+2 -0.0057441788544750 -0.0002112302483118 + 469 25 Cd 5f+3 -0.0022131854742923 0.0064434345820230 + + 470 26 Cd 2s -0.1377422813932848 -0.0403343991894333 + 471 26 Cd 3s -0.0168636449633439 -0.0059141271387685 + 472 26 Cd 3py -0.0739180536008629 0.0340758440891918 + 473 26 Cd 3pz 0.2128063778616154 -0.0389331925246301 + 474 26 Cd 3px 0.0561575119199668 -0.1151743097617187 + 475 26 Cd 4py -0.0123451710378066 -0.0030976348880142 + 476 26 Cd 4pz 0.0146430817827851 -0.0022052242969013 + 477 26 Cd 4px -0.0008903786460030 -0.0162916291078888 + 478 26 Cd 4d-2 0.0251549920403066 0.0079590138721953 + 479 26 Cd 4d-1 0.0164244887239122 0.0006068367912772 + 480 26 Cd 4d0 -0.0135080969981629 -0.0006400632289529 + 481 26 Cd 4d+1 0.0092742192054074 -0.0005645604276835 + 482 26 Cd 4d+2 -0.0248876663765694 -0.0093418275360172 + 483 26 Cd 5d-2 0.0084820597599519 -0.0051230575319744 + 484 26 Cd 5d-1 0.0141271065274427 -0.0131026736011285 + 485 26 Cd 5d0 0.0039583299524718 0.0191016217531271 + 486 26 Cd 5d+1 0.0017838867877131 0.0045530031777953 + 487 26 Cd 5d+2 -0.0388987147741362 -0.0291392960162918 + 488 26 Cd 5f-3 0.0001914545024104 0.0017041848454791 + 489 26 Cd 5f-2 -0.0029873108614611 0.0039800727453235 + 490 26 Cd 5f-1 0.0019636102071823 -0.0054188010200492 + 491 26 Cd 5f0 -0.0006998340962113 -0.0063111537478439 + 492 26 Cd 5f+1 0.0015436839036126 0.0034572178814257 + 493 26 Cd 5f+2 -0.0012805029884827 -0.0000595544678494 + 494 26 Cd 5f+3 0.0004020478161122 -0.0057345687446544 + + 137 138 + -0.0182614033696324 -0.0179624949956435 + + 0.0000000000000000 0.0000000000000000 + + 1 1 Cd 2s 0.2562479064528921 0.1033558484744602 + 2 1 Cd 3s 0.0076355058323290 0.0024167410679449 + 3 1 Cd 3py 0.0449869991446275 -0.0028045918763925 + 4 1 Cd 3pz -0.1465210744055722 -0.0629858280230159 + 5 1 Cd 3px 0.1641199021325345 0.1994793161809575 + 6 1 Cd 4py 0.0007402821606441 0.0062884992667451 + 7 1 Cd 4pz -0.0086199938224541 -0.0116471375290171 + 8 1 Cd 4px 0.0144066915901100 0.0220311300954372 + 9 1 Cd 4d-2 0.0041492334314173 0.0128652995815836 + 10 1 Cd 4d-1 -0.0038690476396549 -0.0169335141304910 + 11 1 Cd 4d0 0.0027899814711761 0.0117149603910075 + 12 1 Cd 4d+1 -0.0069490228890248 -0.0006353254080328 + 13 1 Cd 4d+2 0.0148158787665669 0.0085335174295000 + 14 1 Cd 5d-2 0.0248248780004791 0.0159530244828695 + 15 1 Cd 5d-1 0.0083656174662927 -0.0216428543781932 + 16 1 Cd 5d0 0.0436880266722116 0.0247580013005720 + 17 1 Cd 5d+1 0.0016812143900806 0.0308992831705608 + 18 1 Cd 5d+2 0.0387294946283603 0.0396415235949776 + 19 1 Cd 5f-3 0.0003557816417089 0.0040953330329516 + 20 1 Cd 5f-2 0.0003128247549299 -0.0160912988338614 + 21 1 Cd 5f-1 0.0059271872988681 0.0057565508959237 + 22 1 Cd 5f0 0.0016520651276317 0.0062914623248640 + 23 1 Cd 5f+1 -0.0035545075644944 0.0011283787821084 + 24 1 Cd 5f+2 -0.0054344879930286 -0.0001343179420094 + 25 1 Cd 5f+3 -0.0015433027796391 -0.0100336945207034 + + 26 2 Cd 2s -0.2844199215689973 0.0996946304498693 + 27 2 Cd 3s -0.0227044047861825 0.0075087883736240 + 28 2 Cd 3py -0.0367242870826420 -0.1756647019618132 + 29 2 Cd 3pz 0.0438580246278528 -0.3256856110145454 + 30 2 Cd 3px -0.1538163983368400 -0.1727997845147279 + 31 2 Cd 4py -0.0074914755286166 -0.0236229059379675 + 32 2 Cd 4pz 0.0204663187257740 -0.0471758305742999 + 33 2 Cd 4px -0.0233784553923446 -0.0072411996396501 + 34 2 Cd 4d-2 0.0013652813225496 0.0011063113359248 + 35 2 Cd 4d-1 -0.0384185339581531 0.0147661893906670 + 36 2 Cd 4d0 0.0023364359020980 -0.0151308051694861 + 37 2 Cd 4d+1 -0.0215700655334584 -0.0150689958388797 + 38 2 Cd 4d+2 -0.0008378815882109 0.0146226570706878 + 39 2 Cd 5d-2 0.0207979016782904 -0.0175709252991011 + 40 2 Cd 5d-1 -0.0872724685818180 -0.0036251257463385 + 41 2 Cd 5d0 -0.0196736061401252 0.0002092755816349 + 42 2 Cd 5d+1 -0.0212025138308401 -0.0432347606598729 + 43 2 Cd 5d+2 0.0252353640688320 -0.0275561889220750 + 44 2 Cd 5f-3 -0.0019651128413212 -0.0016177809601166 + 45 2 Cd 5f-2 0.0065926734497448 0.0014657982645831 + 46 2 Cd 5f-1 -0.0009963226512432 -0.0080957391376989 + 47 2 Cd 5f0 -0.0006045460571037 -0.0054305488041511 + 48 2 Cd 5f+1 0.0089068792796635 -0.0112767909266027 + 49 2 Cd 5f+2 0.0005462053232776 -0.0151844499804602 + 50 2 Cd 5f+3 -0.0020891942406118 0.0167191899901396 + + 51 3 Cd 2s -0.0384955235044493 -0.4553953238473483 + 52 3 Cd 3s -0.0075543889735399 -0.0513494524593516 + 53 3 Cd 3py -0.0778639364386407 -0.0142312526577218 + 54 3 Cd 3pz 0.1281991996200415 -0.0526133612639633 + 55 3 Cd 3px 0.0271995419225194 0.0222686073759356 + 56 3 Cd 4py 0.0011007367925996 -0.0041791470277444 + 57 3 Cd 4pz 0.0049105507319957 -0.0035106874706124 + 58 3 Cd 4px 0.0026390202683148 0.0132735196372325 + 59 3 Cd 4d-2 -0.0231626008810423 -0.0046338715311305 + 60 3 Cd 4d-1 -0.0028067061377118 0.0270350797934291 + 61 3 Cd 4d0 -0.0022607517010855 0.0104540200003891 + 62 3 Cd 4d+1 -0.0429854653594983 -0.0366824391124274 + 63 3 Cd 4d+2 0.0123821255019227 -0.0056352457350769 + 64 3 Cd 5d-2 -0.0260548378662251 -0.0164400849748959 + 65 3 Cd 5d-1 -0.0162590857223416 0.0197700906919697 + 66 3 Cd 5d0 -0.0219548180427910 0.0385234515051989 + 67 3 Cd 5d+1 -0.0844790799371371 -0.0551091129978066 + 68 3 Cd 5d+2 -0.0001255153952581 -0.0225055796239342 + 69 3 Cd 5f-3 0.0103728845387033 0.0041698984794812 + 70 3 Cd 5f-2 0.0017476054939509 -0.0100493380316844 + 71 3 Cd 5f-1 0.0084685971507722 0.0000918455253495 + 72 3 Cd 5f0 0.0032089163546424 0.0015113045187485 + 73 3 Cd 5f+1 0.0033323950433644 -0.0005391910077463 + 74 3 Cd 5f+2 0.0075573373395001 -0.0016199786764676 + 75 3 Cd 5f+3 -0.0080936944253201 -0.0060692864944858 + + 76 4 Se 2s -0.0787096169458789 0.0180596253780467 + 77 4 Se 3s 0.0132562021882601 -0.0036728848063817 + 78 4 Se 3py -0.0533649368104597 -0.1053960520813200 + 79 4 Se 3pz -0.1821312003685216 -0.0343863339369488 + 80 4 Se 3px 0.1566124273447962 0.0463274492853094 + 81 4 Se 4py -0.0034759937622033 0.0289782287058746 + 82 4 Se 4pz 0.0212797639213076 -0.0298796557821922 + 83 4 Se 4px -0.0397844167540403 -0.0061339694446470 + 84 4 Se 4d-2 0.0100172705941853 0.0033874348246501 + 85 4 Se 4d-1 -0.0247302000000369 0.0096325898212448 + 86 4 Se 4d0 0.0106850522330304 0.0145782515234948 + 87 4 Se 4d+1 0.0034344465710029 0.0211643030663095 + 88 4 Se 4d+2 0.0006899447268222 0.0023747265923997 + + 89 5 Se 2s -0.0411187652885583 -0.0342645701720818 + 90 5 Se 3s 0.0076878948407533 0.0057438821802812 + 91 5 Se 3py 0.1212387899895964 0.0385034025447154 + 92 5 Se 3pz -0.0282918468360122 -0.1749923948259068 + 93 5 Se 3px 0.2543219923346182 0.1533955425060130 + 94 5 Se 4py -0.0012885778422679 0.0054463639021474 + 95 5 Se 4pz 0.0049467435635570 0.0290090622901179 + 96 5 Se 4px -0.0491726607088883 -0.0231200037599323 + 97 5 Se 4d-2 -0.0057100707289483 -0.0157172419457698 + 98 5 Se 4d-1 0.0161415194250750 0.0032585169933479 + 99 5 Se 4d0 -0.0028195470361631 0.0147029946293396 + 100 5 Se 4d+1 0.0066246436507671 -0.0155968826026993 + 101 5 Se 4d+2 0.0236784731368720 0.0130361594925781 + + 102 6 Se 2s -0.0525025967543138 -0.0205015612865734 + 103 6 Se 3s 0.0129532074782581 0.0052308286570281 + 104 6 Se 3py -0.1127876216564482 -0.0841728132918281 + 105 6 Se 3pz 0.0372119704242399 0.0299267827143649 + 106 6 Se 3px -0.0522855165329765 -0.0865219195888033 + 107 6 Se 4py 0.0232701202814557 -0.0030354760544753 + 108 6 Se 4pz -0.0265561851135943 -0.0154527688549557 + 109 6 Se 4px 0.0077565199277173 0.0270312657936777 + 110 6 Se 4d-2 -0.0076115106328928 -0.0007860766956912 + 111 6 Se 4d-1 -0.0189023291619571 0.0470301289859753 + 112 6 Se 4d0 0.0038770354334719 0.0163501949222614 + 113 6 Se 4d+1 0.0038606801730658 0.0186788093900562 + 114 6 Se 4d+2 -0.0217338156360401 -0.0197990042167504 + + 115 7 Se 2s 0.0819271334699856 -0.2065312089596399 + 116 7 Se 3s -0.0159178495697922 0.0433167019291375 + 117 7 Se 3py -0.0756516615603746 0.0861877254620743 + 118 7 Se 3pz -0.0814008385433875 0.0454624740285318 + 119 7 Se 3px -0.1824380104573973 -0.1042326758416771 + 120 7 Se 4py 0.0120400798052576 -0.0104310157406907 + 121 7 Se 4pz 0.0334802792143613 -0.0506667828782743 + 122 7 Se 4px 0.0523401460461467 -0.0002301548855400 + 123 7 Se 4d-2 0.0019670855153232 -0.0042099821945728 + 124 7 Se 4d-1 0.0033470481621195 -0.0209905570876410 + 125 7 Se 4d0 -0.0074492479966910 -0.0162902882262964 + 126 7 Se 4d+1 -0.0304531950615868 0.0016841890819468 + 127 7 Se 4d+2 0.0078028646693705 0.0054023223802536 + + 128 8 Cd 2s 0.1329111616719945 -0.2630352369185630 + 129 8 Cd 3s 0.0128748162183216 -0.0240652499158274 + 130 8 Cd 3py 0.0929544501311508 -0.1010632056504182 + 131 8 Cd 3pz 0.0551748635992361 -0.0258626990795993 + 132 8 Cd 3px 0.0347793374286821 0.1571324453313696 + 133 8 Cd 4py 0.0045264421045272 -0.0242330172169238 + 134 8 Cd 4pz 0.0054403788958966 -0.0061342832323782 + 135 8 Cd 4px -0.0142686774834155 0.0184675617713193 + 136 8 Cd 4d-2 -0.0048975784641471 -0.0133424365493749 + 137 8 Cd 4d-1 -0.0154999236923767 -0.0219280613412860 + 138 8 Cd 4d0 -0.0281583866899804 -0.0120205414715702 + 139 8 Cd 4d+1 -0.0055108892835658 0.0036231594171937 + 140 8 Cd 4d+2 0.0042520339034661 0.0245732497850774 + 141 8 Cd 5d-2 -0.0095565484779989 0.0039149963515797 + 142 8 Cd 5d-1 -0.0275150723362209 0.0000093021469884 + 143 8 Cd 5d0 -0.0145634384221970 -0.0554145514956807 + 144 8 Cd 5d+1 -0.0057409263607252 -0.0549960213515432 + 145 8 Cd 5d+2 -0.0536812622777713 0.0250940997413973 + 146 8 Cd 5f-3 -0.0025675284976885 -0.0015194553836408 + 147 8 Cd 5f-2 0.0021060193865754 -0.0006106250314072 + 148 8 Cd 5f-1 -0.0022316785279841 0.0033044482656961 + 149 8 Cd 5f0 -0.0042348969217855 0.0043588010880631 + 150 8 Cd 5f+1 0.0115152303057381 -0.0026887799074835 + 151 8 Cd 5f+2 0.0094940440455489 0.0072555917467419 + 152 8 Cd 5f+3 -0.0164051430674399 0.0021477904692957 + + 153 9 Cd 2s 0.0665026903424289 0.1354306856536180 + 154 9 Cd 3s 0.0005919428869667 0.0120917978905713 + 155 9 Cd 3py 0.1908621268656809 -0.5374785427761278 + 156 9 Cd 3pz -0.1418315644550589 -0.2920939279779758 + 157 9 Cd 3px -0.0944070745711985 -0.1164661431574285 + 158 9 Cd 4py 0.0124621948761666 -0.0473469593289740 + 159 9 Cd 4pz -0.0133897036407187 -0.0295696308384215 + 160 9 Cd 4px -0.0153333708053638 -0.0168673387775436 + 161 9 Cd 4d-2 0.0043968208080091 -0.0156744282182157 + 162 9 Cd 4d-1 -0.0002667536742655 -0.0131254678658115 + 163 9 Cd 4d0 0.0122905464619502 0.0130178648378243 + 164 9 Cd 4d+1 0.0081159509785908 0.0093753226419260 + 165 9 Cd 4d+2 -0.0187687069120136 -0.0216590370201432 + 166 9 Cd 5d-2 -0.0026782499252324 -0.0391641921643018 + 167 9 Cd 5d-1 0.0380552005543793 -0.0268943890718413 + 168 9 Cd 5d0 0.0145862809996358 -0.0175698143298762 + 169 9 Cd 5d+1 0.0115130054266640 0.0011406948345249 + 170 9 Cd 5d+2 0.0151484485983175 -0.0243106276005922 + 171 9 Cd 5f-3 0.0061219487913423 -0.0055939163950656 + 172 9 Cd 5f-2 0.0084190100663168 -0.0054064807871439 + 173 9 Cd 5f-1 -0.0056838396383639 0.0012690786558045 + 174 9 Cd 5f0 -0.0023503089402223 0.0052851177666105 + 175 9 Cd 5f+1 0.0013358665057046 0.0031289210938893 + 176 9 Cd 5f+2 -0.0132312424016611 -0.0008265133477991 + 177 9 Cd 5f+3 0.0053816214714054 -0.0013574055144135 + + 178 10 Se 2s 0.0894738597683513 0.0266815086990173 + 179 10 Se 3s -0.0201364131274979 -0.0052678454500917 + 180 10 Se 3py 0.0557097403480639 -0.2344777810680885 + 181 10 Se 3pz -0.0759057374359860 -0.0517953355594304 + 182 10 Se 3px 0.0853190579438958 0.1088358292904019 + 183 10 Se 4py -0.0217363713645926 0.0544161934069312 + 184 10 Se 4pz 0.0241417489997286 0.0113695165631688 + 185 10 Se 4px -0.0355575322097366 -0.0340768505938113 + 186 10 Se 4d-2 -0.0151773046220927 0.0282612603232248 + 187 10 Se 4d-1 -0.0071681649547995 -0.0067247404077794 + 188 10 Se 4d0 0.0072015980360060 0.0096005250220331 + 189 10 Se 4d+1 0.0120412844492343 0.0185740029180649 + 190 10 Se 4d+2 -0.0076851978575697 -0.0159120231353149 + + 191 11 Se 2s 0.0081644177514370 -0.0139541316360934 + 192 11 Se 3s -0.0002428878384662 0.0029544028688543 + 193 11 Se 3py -0.0487244947133589 -0.0206107788228314 + 194 11 Se 3pz 0.1121655717167750 0.0768005685878752 + 195 11 Se 3px -0.0890340299453894 -0.0746642058744757 + 196 11 Se 4py 0.0090475448289336 0.0135242676345604 + 197 11 Se 4pz -0.0327021767247836 0.0082022416660604 + 198 11 Se 4px 0.0153531894140857 0.0316469333612558 + 199 11 Se 4d-2 -0.0024326644582236 0.0213120415423131 + 200 11 Se 4d-1 -0.0296191524863000 -0.0053506968328054 + 201 11 Se 4d0 0.0171048056638241 -0.0141582675679009 + 202 11 Se 4d+1 -0.0220758269210525 0.0064842596223942 + 203 11 Se 4d+2 -0.0026117418137580 0.0004489220291716 + + 204 12 Cd 2s 0.0285868204850939 0.1269803324880362 + 205 12 Cd 3s 0.0033208168350570 0.0144791971561260 + 206 12 Cd 3py -0.0843695738886615 -0.0821024261706541 + 207 12 Cd 3pz 0.0248271149498445 -0.0629332241063971 + 208 12 Cd 3px 0.0169370847242466 -0.0221970401295778 + 209 12 Cd 4py -0.0090128415336924 -0.0124810607590324 + 210 12 Cd 4pz -0.0054851962740427 -0.0122633382275925 + 211 12 Cd 4px -0.0031717268149219 -0.0035208984801356 + 212 12 Cd 4d-2 0.0094994760045120 0.0005033730835873 + 213 12 Cd 4d-1 0.0019412947906413 -0.0020792518433405 + 214 12 Cd 4d0 -0.0004549571337338 -0.0018880473491587 + 215 12 Cd 4d+1 0.0007447720476018 0.0044293721354136 + 216 12 Cd 4d+2 0.0228058760476283 0.0038286287748798 + 217 12 Cd 5d-2 0.0033665862850025 -0.0310707847068070 + 218 12 Cd 5d-1 0.0039923007681555 -0.0330546370482787 + 219 12 Cd 5d0 0.0019579376226234 0.0170088172146996 + 220 12 Cd 5d+1 -0.0386441830699772 -0.0007896269518166 + 221 12 Cd 5d+2 0.0141086489345183 0.0411084660136112 + 222 12 Cd 5f-3 -0.0023385797379773 0.0069146795711052 + 223 12 Cd 5f-2 -0.0013786188462888 -0.0051616685513850 + 224 12 Cd 5f-1 -0.0003351587228286 0.0045780694588808 + 225 12 Cd 5f0 0.0005903198397717 0.0052549022323898 + 226 12 Cd 5f+1 -0.0060286872220073 0.0102772169505344 + 227 12 Cd 5f+2 0.0058521999453520 0.0088714577156631 + 228 12 Cd 5f+3 -0.0040529943080530 -0.0038616304658471 + + 229 13 Cd 2s -0.0492162385770338 -0.1092154825583514 + 230 13 Cd 3s 0.0080979390568252 -0.0069060722584092 + 231 13 Cd 3py -0.0699550160899806 0.1529248276655154 + 232 13 Cd 3pz 0.0058797538199728 -0.0625071489684154 + 233 13 Cd 3px -0.0780078632699293 0.0105544206548980 + 234 13 Cd 4py -0.0148429222279428 0.0106711802693468 + 235 13 Cd 4pz 0.0003392499411096 -0.0085567871376659 + 236 13 Cd 4px -0.0020371484995842 0.0059812574640841 + 237 13 Cd 4d-2 0.0023259444494176 0.0023335088417993 + 238 13 Cd 4d-1 0.0069175858309291 0.0042943355616743 + 239 13 Cd 4d0 0.0187080422022518 0.0154743325370478 + 240 13 Cd 4d+1 0.0150323178985716 0.0028370952712548 + 241 13 Cd 4d+2 -0.0006951646170651 -0.0041006545995773 + 242 13 Cd 5d-2 -0.0573057211082775 -0.0027650436878698 + 243 13 Cd 5d-1 -0.0073394951617185 -0.0199273841002587 + 244 13 Cd 5d0 -0.0201306682833754 -0.0159630135607904 + 245 13 Cd 5d+1 0.0248058489450558 0.0078960697992329 + 246 13 Cd 5d+2 0.0009123475683669 0.0190654388691151 + 247 13 Cd 5f-3 -0.0110369098629187 -0.0044987478341726 + 248 13 Cd 5f-2 0.0014184171344588 -0.0001373670357843 + 249 13 Cd 5f-1 0.0120459474374960 0.0045309107849342 + 250 13 Cd 5f0 -0.0026642115617055 0.0009963825890903 + 251 13 Cd 5f+1 -0.0064809737460057 -0.0015371099353966 + 252 13 Cd 5f+2 0.0049232386229387 -0.0025403677583706 + 253 13 Cd 5f+3 -0.0134180128248286 -0.0111378478903287 + + 254 14 Cd 2s 0.0726269731732605 0.0206767258488827 + 255 14 Cd 3s 0.0053280714589701 -0.0011322938074975 + 256 14 Cd 3py -0.2670102443412071 0.1756932920932580 + 257 14 Cd 3pz -0.0393090557164302 -0.1036995048662290 + 258 14 Cd 3px -0.2424982955768788 -0.2157367696566543 + 259 14 Cd 4py -0.0282542383147968 0.0166242110376716 + 260 14 Cd 4pz -0.0073309889807280 -0.0170830891432662 + 261 14 Cd 4px -0.0166307247586138 -0.0210118709032251 + 262 14 Cd 4d-2 0.0056473948246708 -0.0079920517994446 + 263 14 Cd 4d-1 0.0011763894311881 0.0000980910295192 + 264 14 Cd 4d0 -0.0037399563079768 -0.0111235062018935 + 265 14 Cd 4d+1 -0.0086534108912695 -0.0018242829465044 + 266 14 Cd 4d+2 -0.0036765651676997 -0.0077915598366762 + 267 14 Cd 5d-2 -0.0019131839368991 -0.0132346196068951 + 268 14 Cd 5d-1 -0.0009746743258749 0.0153029605356753 + 269 14 Cd 5d0 0.0216221760352171 -0.0166463898153181 + 270 14 Cd 5d+1 -0.0195955253141695 -0.0185734627855088 + 271 14 Cd 5d+2 -0.0141914409869674 -0.0079614433160903 + 272 14 Cd 5f-3 -0.0003939969672296 -0.0019073256663227 + 273 14 Cd 5f-2 0.0001834546356074 -0.0027900384257826 + 274 14 Cd 5f-1 -0.0038785715890901 -0.0034100680221210 + 275 14 Cd 5f0 0.0005907092980440 0.0053867252572495 + 276 14 Cd 5f+1 0.0053285360778698 0.0046825273239322 + 277 14 Cd 5f+2 -0.0002821424227717 -0.0083180905440927 + 278 14 Cd 5f+3 0.0108968077615559 -0.0064347143271434 + + 279 15 Se 2s 0.0525779068147077 0.0727577378515833 + 280 15 Se 3s -0.0102546729874944 -0.0139336262920801 + 281 15 Se 3py -0.1007122316745485 0.0460861058642822 + 282 15 Se 3pz 0.0341190024377393 0.0415315253129022 + 283 15 Se 3px -0.0894200677462529 -0.0370576893984376 + 284 15 Se 4py 0.0258542165148906 -0.0038632088317508 + 285 15 Se 4pz -0.0183446582673546 -0.0160296786326491 + 286 15 Se 4px 0.0042598957622101 0.0098228492391378 + 287 15 Se 4d-2 -0.0038914149549051 -0.0051253709601410 + 288 15 Se 4d-1 0.0105129879524685 -0.0131588513310182 + 289 15 Se 4d0 -0.0139462849317243 -0.0137788418219211 + 290 15 Se 4d+1 0.0000733121595906 0.0092321525929846 + 291 15 Se 4d+2 0.0064688511238317 -0.0056860919729234 + + 292 16 Se 2s 0.0117023214975105 0.0087256838789426 + 293 16 Se 3s -0.0033830537428847 -0.0002613225912386 + 294 16 Se 3py -0.0194483210221960 -0.0232782060526206 + 295 16 Se 3pz 0.0026672996631714 -0.0574141364799658 + 296 16 Se 3px 0.1171326096809263 0.0240173174169655 + 297 16 Se 4py 0.0122686507673086 0.0173993700296600 + 298 16 Se 4pz 0.0023121169772988 0.0215648050312812 + 299 16 Se 4px -0.0194104247099760 -0.0048145171316769 + 300 16 Se 4d-2 0.0215720457523949 -0.0030809362155628 + 301 16 Se 4d-1 0.0076016871683027 0.0009545971680991 + 302 16 Se 4d0 -0.0029178262352329 0.0165730397160214 + 303 16 Se 4d+1 -0.0149990737560399 -0.0065014572820652 + 304 16 Se 4d+2 -0.0142519735051372 -0.0041445739739356 + + 305 17 Cd 2s -0.1214855842988014 0.0807643805996115 + 306 17 Cd 3s -0.0122895632164487 0.0025976025551995 + 307 17 Cd 3py 0.0373350523719256 0.0528244759431238 + 308 17 Cd 3pz -0.1488432095070608 0.0308566952657307 + 309 17 Cd 3px -0.0834655561861652 0.0028268155135698 + 310 17 Cd 4py 0.0039713390609465 0.0065065728845993 + 311 17 Cd 4pz -0.0150353575086529 0.0010128647863938 + 312 17 Cd 4px -0.0086803509989026 0.0008462308717351 + 313 17 Cd 4d-2 0.0211715583013025 -0.0012954142585787 + 314 17 Cd 4d-1 0.0089237224633028 -0.0109521077889536 + 315 17 Cd 4d0 -0.0164900113257512 0.0079498855558666 + 316 17 Cd 4d+1 0.0004819825722482 -0.0048487130620650 + 317 17 Cd 4d+2 -0.0206149262281017 0.0089934761352185 + 318 17 Cd 5d-2 0.0342550691684617 0.0000889399082905 + 319 17 Cd 5d-1 -0.0023081083893565 -0.0050327588570402 + 320 17 Cd 5d0 -0.0211711842914212 0.0013476603340970 + 321 17 Cd 5d+1 -0.0209164887997884 0.0106091101679408 + 322 17 Cd 5d+2 -0.0177276273153517 -0.0072704824678943 + 323 17 Cd 5f-3 -0.0055780296331788 0.0042203995903895 + 324 17 Cd 5f-2 0.0044416907981918 -0.0027521633901863 + 325 17 Cd 5f-1 -0.0002811633126730 0.0000394219292478 + 326 17 Cd 5f0 -0.0019273609650745 0.0036930474364773 + 327 17 Cd 5f+1 -0.0013950864086436 -0.0003083543280907 + 328 17 Cd 5f+2 0.0087578142503615 -0.0054304702602345 + 329 17 Cd 5f+3 -0.0022946287749595 0.0057857564154918 + + 330 18 Cd 2s -0.1621560510127417 -0.0126800071590489 + 331 18 Cd 3s -0.0148039332723176 0.0019465251916292 + 332 18 Cd 3py -0.3616308034567849 0.0758583924075849 + 333 18 Cd 3pz -0.0248040432226884 0.0504023491931679 + 334 18 Cd 3px -0.3085202843102958 0.1470821006345664 + 335 18 Cd 4py -0.0387512872571535 0.0109386886944628 + 336 18 Cd 4pz -0.0029099696774878 0.0001969751358031 + 337 18 Cd 4px -0.0164872785208541 0.0089450466890600 + 338 18 Cd 4d-2 -0.0112346595592489 -0.0059279487391797 + 339 18 Cd 4d-1 -0.0199993984607030 -0.0094644002921312 + 340 18 Cd 4d0 0.0219966208974201 0.0133296289071306 + 341 18 Cd 4d+1 0.0022203945233723 0.0055458867915280 + 342 18 Cd 4d+2 0.0031063320125392 0.0021690520803059 + 343 18 Cd 5d-2 0.0241240589828531 -0.0374836102059737 + 344 18 Cd 5d-1 -0.0139923645438511 -0.0174391831428056 + 345 18 Cd 5d0 -0.0117673161135074 0.0099653242138035 + 346 18 Cd 5d+1 0.0061699667922477 0.0010039464620894 + 347 18 Cd 5d+2 0.0174701675277490 -0.0056685539410465 + 348 18 Cd 5f-3 -0.0019748558058916 -0.0023122007483602 + 349 18 Cd 5f-2 0.0012567340245415 -0.0117653847406800 + 350 18 Cd 5f-1 -0.0050963996306337 -0.0043515479563993 + 351 18 Cd 5f0 -0.0051192954627131 0.0045347926535966 + 352 18 Cd 5f+1 0.0007079153014511 -0.0100101228391299 + 353 18 Cd 5f+2 0.0017324951696164 0.0010418223748458 + 354 18 Cd 5f+3 0.0015846433083447 0.0052892779372913 + + 355 19 Se 2s -0.0516537383121659 -0.0421165737774716 + 356 19 Se 3s 0.0097195739377389 0.0069140259356448 + 357 19 Se 3py -0.0551740301794372 0.0643545943747010 + 358 19 Se 3pz -0.0982196762391733 -0.0471662019490612 + 359 19 Se 3px -0.2351935958062929 0.0883885997600848 + 360 19 Se 4py 0.0063793740488398 -0.0046044675136219 + 361 19 Se 4pz 0.0322225517290162 0.0128871024144578 + 362 19 Se 4px 0.0451702564448223 -0.0200053758470033 + 363 19 Se 4d-2 0.0052109620390695 -0.0039202150365352 + 364 19 Se 4d-1 0.0094917243209514 -0.0092796469836861 + 365 19 Se 4d0 0.0084541717934845 0.0005940633428958 + 366 19 Se 4d+1 0.0347501951633023 -0.0119246653988581 + 367 19 Se 4d+2 0.0126351373296616 0.0033452703270260 + + 368 20 Se 2s -0.1176215862304801 -0.0318342049695786 + 369 20 Se 3s 0.0211499731093350 0.0080912384548725 + 370 20 Se 3py 0.1172801730538878 0.0213140308678018 + 371 20 Se 3pz 0.1335125738872923 0.0199787778073599 + 372 20 Se 3px -0.0306502757853069 -0.0553402892108668 + 373 20 Se 4py -0.0229948149149215 -0.0053226898563521 + 374 20 Se 4pz -0.0237880388090200 -0.0117836370643455 + 375 20 Se 4px 0.0185373916959711 0.0107967126456147 + 376 20 Se 4d-2 -0.0088567671728801 -0.0237877039592421 + 377 20 Se 4d-1 0.0137961080453629 -0.0127014710202914 + 378 20 Se 4d0 -0.0110753931747888 -0.0130202147631395 + 379 20 Se 4d+1 -0.0078938243761388 -0.0287905571554011 + 380 20 Se 4d+2 0.0153240133324097 -0.0064613033591291 + + 381 21 Se 2s 0.0268104094442644 -0.0444867701484959 + 382 21 Se 3s -0.0053446757646321 0.0106216107746131 + 383 21 Se 3py 0.1016607121721807 0.0777208535216282 + 384 21 Se 3pz 0.1170428631388103 -0.1062769906717285 + 385 21 Se 3px 0.1196503643960391 -0.0996892424790982 + 386 21 Se 4py -0.0229056768511341 -0.0144835791846430 + 387 21 Se 4pz -0.0343673205098007 0.0311643937654838 + 388 21 Se 4px -0.0206143616986137 0.0354679440668457 + 389 21 Se 4d-2 -0.0120083717019850 -0.0251834408218296 + 390 21 Se 4d-1 0.0051750640890656 -0.0109888762809317 + 391 21 Se 4d0 -0.0009300442433010 0.0003685285225534 + 392 21 Se 4d+1 -0.0060772787800151 0.0155091144883942 + 393 21 Se 4d+2 -0.0131302909806543 0.0081951767950170 + + 394 22 Cd 2s 0.0707815894821967 0.0895860069015446 + 395 22 Cd 3s 0.0029080733621150 0.0070854956555548 + 396 22 Cd 3py 0.0403969611947661 0.0458379538903434 + 397 22 Cd 3pz -0.0899126944036948 -0.0219461138232308 + 398 22 Cd 3px 0.0181042717008740 -0.0830904769874948 + 399 22 Cd 4py -0.0071200498901933 0.0048184973222230 + 400 22 Cd 4pz -0.0133739613983270 0.0007253700397665 + 401 22 Cd 4px 0.0035375860294386 -0.0084859579733341 + 402 22 Cd 4d-2 -0.0105747782097104 0.0088632407249416 + 403 22 Cd 4d-1 -0.0033037408495528 -0.0037923787655878 + 404 22 Cd 4d0 0.0050020475303792 -0.0129370184780448 + 405 22 Cd 4d+1 -0.0086412327619029 -0.0036201511736060 + 406 22 Cd 4d+2 0.0167470255109650 -0.0113495050505787 + 407 22 Cd 5d-2 -0.0398258663925620 0.0099787317474118 + 408 22 Cd 5d-1 -0.0176749911704905 -0.0144054898078382 + 409 22 Cd 5d0 0.0050640761729350 0.0126752401304553 + 410 22 Cd 5d+1 -0.0038508613891778 -0.0011587319232789 + 411 22 Cd 5d+2 0.0000612311464528 -0.0131289558694840 + 412 22 Cd 5f-3 -0.0001869876081551 -0.0069982868083297 + 413 22 Cd 5f-2 -0.0033183805778627 0.0051465968921238 + 414 22 Cd 5f-1 0.0064316695018112 0.0006145552149023 + 415 22 Cd 5f0 -0.0001365041355223 0.0000837725120235 + 416 22 Cd 5f+1 0.0053052091145629 -0.0041616084292612 + 417 22 Cd 5f+2 0.0050929230492052 -0.0021695911608379 + 418 22 Cd 5f+3 -0.0010861954921472 -0.0065522015916046 + + 419 23 Se 2s 0.0509846202478860 0.0476286686334462 + 420 23 Se 3s -0.0095667507139260 -0.0101147672668793 + 421 23 Se 3py 0.0319411489106074 0.0570833304789950 + 422 23 Se 3pz 0.0100696269896330 0.0500946742811013 + 423 23 Se 3px 0.0111321839565381 0.0688988259664377 + 424 23 Se 4py -0.0055086399458658 -0.0109861931940626 + 425 23 Se 4pz -0.0134888116302818 -0.0121239328977992 + 426 23 Se 4px -0.0015175358671483 -0.0214799829348358 + 427 23 Se 4d-2 -0.0088193082331706 0.0091714023363348 + 428 23 Se 4d-1 -0.0069429619290667 -0.0053648427517389 + 429 23 Se 4d0 0.0048534317980322 -0.0037908694932498 + 430 23 Se 4d+1 0.0047659710199943 -0.0006382942863384 + 431 23 Se 4d+2 0.0063963366053828 -0.0026614912426874 + + 432 24 Se 2s -0.0160781901040863 -0.0136511672789739 + 433 24 Se 3s 0.0022258226943365 0.0038471043319674 + 434 24 Se 3py -0.1232026281362457 0.0140822913671896 + 435 24 Se 3pz -0.0343162144160559 0.1153366460311808 + 436 24 Se 3px 0.0158697509834537 0.0150796695470872 + 437 24 Se 4py 0.0190882595010997 0.0079691239776806 + 438 24 Se 4pz 0.0016398299734393 -0.0228308821592131 + 439 24 Se 4px 0.0070460174652443 -0.0096902364534011 + 440 24 Se 4d-2 0.0021074477204773 -0.0035772438393697 + 441 24 Se 4d-1 -0.0034332326916736 -0.0024328151039555 + 442 24 Se 4d0 -0.0188092072085082 0.0072454885702044 + 443 24 Se 4d+1 0.0088882932836967 -0.0114234446373848 + 444 24 Se 4d+2 -0.0062629076991155 0.0004199087703878 + + 445 25 Cd 2s 0.0953524863261993 -0.1195919365999293 + 446 25 Cd 3s 0.0101263838240880 -0.0170282157023012 + 447 25 Cd 3py -0.0832097336283478 0.1178331769550816 + 448 25 Cd 3pz -0.0692538015527638 0.0471923985695619 + 449 25 Cd 3px -0.0922188983342615 0.1345006233704227 + 450 25 Cd 4py -0.0061578460447364 0.0190154298393758 + 451 25 Cd 4pz 0.0010784928044926 -0.0015072422127449 + 452 25 Cd 4px -0.0082170633891129 0.0153263233403490 + 453 25 Cd 4d-2 0.0093789418624693 -0.0056701041068862 + 454 25 Cd 4d-1 -0.0046637376696259 0.0020738028928382 + 455 25 Cd 4d0 -0.0011364983238905 0.0040488230441807 + 456 25 Cd 4d+1 0.0050391506496703 -0.0031620149959410 + 457 25 Cd 4d+2 0.0052565063923252 0.0061383875140856 + 458 25 Cd 5d-2 0.0135556922572651 0.0245411854872631 + 459 25 Cd 5d-1 -0.0217852704073209 -0.0039640613108176 + 460 25 Cd 5d0 -0.0172711411725124 0.0004499333408685 + 461 25 Cd 5d+1 0.0336858435861554 -0.0169290921917635 + 462 25 Cd 5d+2 -0.0257948314853906 0.0226510069578722 + 463 25 Cd 5f-3 -0.0011790399652431 0.0007308271790270 + 464 25 Cd 5f-2 0.0067061969046124 -0.0018320460534893 + 465 25 Cd 5f-1 -0.0018982972421033 -0.0057205329243831 + 466 25 Cd 5f0 -0.0027649330898000 0.0033759461848106 + 467 25 Cd 5f+1 0.0043284882422697 0.0005462249556280 + 468 25 Cd 5f+2 0.0041408941449816 -0.0044158872275787 + 469 25 Cd 5f+3 -0.0022185502526181 0.0021568485156926 + + 470 26 Cd 2s -0.1126206849845002 0.0561101977862481 + 471 26 Cd 3s -0.0158735203046706 0.0061095933724448 + 472 26 Cd 3py -0.0398949207503433 -0.0020329131506106 + 473 26 Cd 3pz 0.1539859310757489 0.0727407102530035 + 474 26 Cd 3px 0.0404975171386579 0.0845651027005724 + 475 26 Cd 4py -0.0089682611155321 0.0010568893023695 + 476 26 Cd 4pz 0.0120338125814813 0.0056454123008806 + 477 26 Cd 4px 0.0004710898119297 0.0117352676692441 + 478 26 Cd 4d-2 0.0274843730348588 -0.0009545177268004 + 479 26 Cd 4d-1 0.0091885140622643 0.0043995683681953 + 480 26 Cd 4d0 -0.0138244276111345 0.0093614020741686 + 481 26 Cd 4d+1 0.0037237837127132 -0.0004713084575848 + 482 26 Cd 4d+2 -0.0276913545109853 0.0094733649551209 + 483 26 Cd 5d-2 0.0144695274717670 0.0083262753216289 + 484 26 Cd 5d-1 -0.0009320762076821 0.0060683822109587 + 485 26 Cd 5d0 0.0038404554491083 0.0172255608351085 + 486 26 Cd 5d+1 -0.0033761966611259 -0.0020339954605608 + 487 26 Cd 5d+2 -0.0344905279141451 0.0318724911715174 + 488 26 Cd 5f-3 0.0010386235166003 0.0024030665857091 + 489 26 Cd 5f-2 -0.0000743791457513 -0.0025484311103096 + 490 26 Cd 5f-1 -0.0006794106482708 0.0009248406587278 + 491 26 Cd 5f0 -0.0006515648137605 0.0014297221289746 + 492 26 Cd 5f+1 0.0030205308383453 -0.0023289488484113 + 493 26 Cd 5f+2 0.0007980115961480 -0.0021253728210092 + 494 26 Cd 5f+3 -0.0006670978274760 -0.0019335995243780 + + 139 140 + -0.0086067335441534 -0.0002882899443975 + + 0.0000000000000000 0.0000000000000000 + + 1 1 Cd 2s -0.0132465478260136 -0.1145717638531766 + 2 1 Cd 3s 0.0049860304150132 -0.0177364657503056 + 3 1 Cd 3py 0.0611840223919138 0.0468014155105591 + 4 1 Cd 3pz 0.1123542620661525 -0.1425933731792929 + 5 1 Cd 3px -0.0426546945118211 0.1945332301983079 + 6 1 Cd 4py 0.0215040639998272 -0.0018156575765971 + 7 1 Cd 4pz 0.0156824350552752 -0.0108807580672821 + 8 1 Cd 4px -0.0079033718469886 0.0199455826806705 + 9 1 Cd 4d-2 -0.0061894390266239 -0.0070193198653057 + 10 1 Cd 4d-1 -0.0135796518890394 0.0151807734895914 + 11 1 Cd 4d0 0.0101398365588306 -0.0336816105590640 + 12 1 Cd 4d+1 0.0044544408184192 0.0166162607640185 + 13 1 Cd 4d+2 0.0054924183070645 -0.0329023122870996 + 14 1 Cd 5d-2 -0.0545815558971826 0.0166836197938116 + 15 1 Cd 5d-1 0.0073337551572684 -0.0042673085789267 + 16 1 Cd 5d0 0.0147701395625578 -0.0187955791673018 + 17 1 Cd 5d+1 0.0095440972915951 0.0086464898070026 + 18 1 Cd 5d+2 0.0073026334085634 0.0106219265728076 + 19 1 Cd 5f-3 0.0071805426991325 -0.0016732589626536 + 20 1 Cd 5f-2 0.0007489207545840 -0.0112148735877119 + 21 1 Cd 5f-1 -0.0088627322986587 0.0072701638466487 + 22 1 Cd 5f0 -0.0008877314064585 0.0038341609637321 + 23 1 Cd 5f+1 0.0085612003515662 0.0038823689962527 + 24 1 Cd 5f+2 0.0077989394486161 -0.0001227583425026 + 25 1 Cd 5f+3 0.0166423435176477 -0.0049723412200015 + + 26 2 Cd 2s -0.3036542794364111 -0.0118215092154849 + 27 2 Cd 3s -0.0218493243396318 -0.0052882808328600 + 28 2 Cd 3py -0.0905765538139078 0.2027341703597623 + 29 2 Cd 3pz -0.0974454946058921 0.2257227077915947 + 30 2 Cd 3px -0.2303409096952933 0.0961601553598001 + 31 2 Cd 4py -0.0078538828879817 0.0208561374873801 + 32 2 Cd 4pz 0.0013883502344488 0.0213712065559923 + 33 2 Cd 4px -0.0224759381356046 0.0109039814154757 + 34 2 Cd 4d-2 0.0105064928357369 0.0039098198403446 + 35 2 Cd 4d-1 -0.0205666786295184 -0.0345646894809023 + 36 2 Cd 4d0 -0.0044714959097671 -0.0019099975752089 + 37 2 Cd 4d+1 -0.0312387424561192 0.0085675513131661 + 38 2 Cd 4d+2 -0.0118694402189472 -0.0132173487452657 + 39 2 Cd 5d-2 0.0346793366372858 0.0091888614160739 + 40 2 Cd 5d-1 -0.0579797797451545 -0.0587301227638486 + 41 2 Cd 5d0 -0.0658226937422587 0.0090012504503743 + 42 2 Cd 5d+1 -0.0666163342346841 -0.0005744547215393 + 43 2 Cd 5d+2 0.0023272501483492 -0.0376024591683071 + 44 2 Cd 5f-3 0.0007407840254568 0.0010306586834305 + 45 2 Cd 5f-2 0.0108971262672213 0.0053031831563405 + 46 2 Cd 5f-1 -0.0036802133263545 -0.0017152802779003 + 47 2 Cd 5f0 -0.0061519368273273 -0.0057214831385829 + 48 2 Cd 5f+1 -0.0076113446979899 -0.0064418543387554 + 49 2 Cd 5f+2 -0.0043668724904612 -0.0130124826360656 + 50 2 Cd 5f+3 0.0034691281240404 0.0104191018345451 + + 51 3 Cd 2s 0.0167686120734797 -0.2805260478413610 + 52 3 Cd 3s 0.0055913363776379 -0.0405991762668183 + 53 3 Cd 3py 0.0873508017410618 -0.1994245709035502 + 54 3 Cd 3pz -0.0980161013977636 -0.0235402701432360 + 55 3 Cd 3px -0.0794382477028299 -0.1052230448157715 + 56 3 Cd 4py 0.0101624759272767 -0.0299015104651947 + 57 3 Cd 4pz -0.0158114708057378 -0.0018746013061170 + 58 3 Cd 4px -0.0058397576678797 -0.0150677042377591 + 59 3 Cd 4d-2 0.0090547038545282 -0.0270289619796806 + 60 3 Cd 4d-1 0.0101235789056358 0.0195820672332818 + 61 3 Cd 4d0 0.0133595335398906 0.0362321103866970 + 62 3 Cd 4d+1 -0.0040022409428531 -0.0013432977674843 + 63 3 Cd 4d+2 -0.0051644458555943 0.0428940463024033 + 64 3 Cd 5d-2 0.0243286812433724 -0.0174340034436316 + 65 3 Cd 5d-1 0.0189682745589398 0.0350506328672566 + 66 3 Cd 5d0 0.0014776179030146 0.0625005861568493 + 67 3 Cd 5d+1 -0.0145235136881992 0.0254494578076662 + 68 3 Cd 5d+2 -0.0033162631066884 0.0728002291750876 + 69 3 Cd 5f-3 -0.0011200652799913 -0.0014688753213324 + 70 3 Cd 5f-2 -0.0020592004301537 -0.0086174624410174 + 71 3 Cd 5f-1 0.0022967879673659 -0.0064211941709279 + 72 3 Cd 5f0 0.0061073009232303 0.0048651346813448 + 73 3 Cd 5f+1 -0.0029011817041436 -0.0064517948381273 + 74 3 Cd 5f+2 0.0027063661673199 -0.0034624625932504 + 75 3 Cd 5f+3 0.0070521972809753 0.0086775275048201 + + 76 4 Se 2s 0.0600018955708801 -0.1058470642451953 + 77 4 Se 3s -0.0133236713105350 0.0201771953194497 + 78 4 Se 3py 0.0881240918047314 0.0799360620416921 + 79 4 Se 3pz -0.2335188452517069 0.1215849559772978 + 80 4 Se 3px -0.1159444557647255 0.1109817592533662 + 81 4 Se 4py -0.0049305920195346 -0.0430665733570220 + 82 4 Se 4pz 0.0366216259832159 -0.0287634515090350 + 83 4 Se 4px 0.0413636143330779 -0.0279473477583329 + 84 4 Se 4d-2 0.0138472288350420 0.0114566591961945 + 85 4 Se 4d-1 -0.0041858352074109 -0.0216686394913873 + 86 4 Se 4d0 0.0261053460393134 -0.0153442825260987 + 87 4 Se 4d+1 -0.0260401548634021 0.0102217132179671 + 88 4 Se 4d+2 0.0011819834090810 -0.0223088223734687 + + 89 5 Se 2s -0.0196788681694837 -0.1016336647886877 + 90 5 Se 3s 0.0054167373111276 0.0178257174676446 + 91 5 Se 3py 0.0005470903432527 -0.1340606519091790 + 92 5 Se 3pz 0.0092028495439874 -0.1284044837101308 + 93 5 Se 3px -0.0174166579856363 0.0923250002417532 + 94 5 Se 4py 0.0063144718754678 0.0584254727106951 + 95 5 Se 4pz -0.0063341097301849 0.0401958994239265 + 96 5 Se 4px 0.0105652150326137 -0.0179954577341899 + 97 5 Se 4d-2 0.0006023700160058 -0.0142562571005399 + 98 5 Se 4d-1 -0.0090325136138392 0.0114565618028950 + 99 5 Se 4d0 0.0057492806316604 0.0034647179168902 + 100 5 Se 4d+1 -0.0011648838014311 -0.0095889985172102 + 101 5 Se 4d+2 -0.0025566896333736 -0.0133302043057347 + + 102 6 Se 2s -0.0265883061249573 -0.0842703337383093 + 103 6 Se 3s 0.0039410204945022 0.0159597352828786 + 104 6 Se 3py -0.0454039649566244 -0.0087048221870947 + 105 6 Se 3pz -0.0122716547112800 0.1967375857618116 + 106 6 Se 3px -0.0928291208996565 0.0096242516556609 + 107 6 Se 4py 0.0194027262905152 0.0188460928990936 + 108 6 Se 4pz -0.0125803062165130 -0.0717725854886141 + 109 6 Se 4px 0.0289702142389845 -0.0043465063357997 + 110 6 Se 4d-2 0.0023639020673278 -0.0045813861125973 + 111 6 Se 4d-1 0.0045653647045311 -0.0113695114811311 + 112 6 Se 4d0 -0.0015605162217630 0.0315099919157234 + 113 6 Se 4d+1 0.0161490609228948 0.0326433647472223 + 114 6 Se 4d+2 -0.0423106449289291 -0.0046383673452561 + + 115 7 Se 2s -0.0260934362856109 0.0433779284587447 + 116 7 Se 3s 0.0055544096057016 -0.0067210534336111 + 117 7 Se 3py -0.0631402723879479 0.0439833631592348 + 118 7 Se 3pz 0.0213365338683543 -0.0338919092114378 + 119 7 Se 3px -0.0311404273113860 0.1192435987529260 + 120 7 Se 4py 0.0278903247439434 -0.0094095070016981 + 121 7 Se 4pz -0.0198426277657754 0.0104071738885268 + 122 7 Se 4px 0.0172657773517319 -0.0372171377680505 + 123 7 Se 4d-2 -0.0284572371390069 0.0155611071318779 + 124 7 Se 4d-1 0.0029102689565983 0.0115372292744568 + 125 7 Se 4d0 -0.0032719031796998 0.0047349492853363 + 126 7 Se 4d+1 -0.0035582799106646 0.0226424707878543 + 127 7 Se 4d+2 0.0311779050572243 -0.0042470899933410 + + 128 8 Cd 2s 0.0431661025896853 -0.1429892253319819 + 129 8 Cd 3s 0.0012750408336016 -0.0122188499772811 + 130 8 Cd 3py -0.0663725478716812 -0.1395246866950483 + 131 8 Cd 3pz 0.0245205275690231 -0.0168363918014883 + 132 8 Cd 3px 0.0103714352748276 -0.0571917790724251 + 133 8 Cd 4py -0.0149542636085756 -0.0134169970493825 + 134 8 Cd 4pz -0.0014678458485713 0.0041618368725372 + 135 8 Cd 4px -0.0191413249247289 -0.0025904720853506 + 136 8 Cd 4d-2 -0.0096631214069448 0.0023585473824250 + 137 8 Cd 4d-1 -0.0050497833997266 0.0178276254615855 + 138 8 Cd 4d0 -0.0183409586676032 -0.0088501367469881 + 139 8 Cd 4d+1 0.0238478907603839 0.0122302567630058 + 140 8 Cd 4d+2 0.0328773670262351 -0.0118169746349749 + 141 8 Cd 5d-2 -0.0309024769813202 -0.0187445522931432 + 142 8 Cd 5d-1 -0.0344824669228625 0.0263784821641604 + 143 8 Cd 5d0 0.0361809726465515 -0.0066664568921460 + 144 8 Cd 5d+1 0.0564039400086066 -0.0107133961895159 + 145 8 Cd 5d+2 0.0029638622952329 -0.0210778122760662 + 146 8 Cd 5f-3 -0.0070063573413440 -0.0071883445071819 + 147 8 Cd 5f-2 0.0015412020004116 -0.0007567057683909 + 148 8 Cd 5f-1 -0.0044878617657846 -0.0010829924756289 + 149 8 Cd 5f0 -0.0068281723407694 0.0016955958499630 + 150 8 Cd 5f+1 0.0122799470475499 -0.0052941126464886 + 151 8 Cd 5f+2 0.0048371113677046 -0.0045905522442927 + 152 8 Cd 5f+3 -0.0227779962423303 -0.0044336911804015 + + 153 9 Cd 2s 0.1693242165514301 0.1392301577379314 + 154 9 Cd 3s 0.0107816543714520 0.0127424994853481 + 155 9 Cd 3py 0.2051019802649217 0.0025203053568176 + 156 9 Cd 3pz -0.2986982622434056 -0.2742018360144856 + 157 9 Cd 3px -0.1646249654363974 -0.1572154445802656 + 158 9 Cd 4py 0.0141932809346188 0.0041393655161146 + 159 9 Cd 4pz -0.0347327394447747 -0.0329698919373439 + 160 9 Cd 4px -0.0329812518016600 -0.0229596802897574 + 161 9 Cd 4d-2 -0.0084722571543404 0.0086357016029631 + 162 9 Cd 4d-1 -0.0095649738833195 0.0039064409198406 + 163 9 Cd 4d0 0.0147530384437029 0.0108361222509658 + 164 9 Cd 4d+1 0.0054094333828363 0.0010953805233325 + 165 9 Cd 4d+2 -0.0212090405762859 -0.0294739332690565 + 166 9 Cd 5d-2 -0.0125955125917135 0.0141628393137372 + 167 9 Cd 5d-1 0.0200024881762550 0.0077621235326568 + 168 9 Cd 5d0 0.0079061357999570 0.0010505343692963 + 169 9 Cd 5d+1 0.0140469132156631 -0.0176803794147090 + 170 9 Cd 5d+2 0.0220181308195897 -0.0470858521975756 + 171 9 Cd 5f-3 0.0034149858683300 0.0000516300960305 + 172 9 Cd 5f-2 0.0038579534570761 -0.0043580406735524 + 173 9 Cd 5f-1 -0.0103701406116393 0.0024586773266972 + 174 9 Cd 5f0 -0.0038960607256291 0.0062940614561494 + 175 9 Cd 5f+1 -0.0014744091594675 0.0022813328478713 + 176 9 Cd 5f+2 -0.0096729044300805 -0.0018666683632059 + 177 9 Cd 5f+3 0.0091705475923661 0.0028986955138822 + + 178 10 Se 2s 0.1291501621104232 0.0990525974936834 + 179 10 Se 3s -0.0291849433690527 -0.0201182793376809 + 180 10 Se 3py 0.0870453566755412 -0.0025956883136300 + 181 10 Se 3pz -0.0911833230695745 -0.0982859806663752 + 182 10 Se 3px 0.1328040609200663 0.1161292960729245 + 183 10 Se 4py -0.0383731050579872 0.0058296998669240 + 184 10 Se 4pz 0.0155853130409988 0.0385994566566937 + 185 10 Se 4px -0.0706342967425079 -0.0426646879621983 + 186 10 Se 4d-2 -0.0193250424313608 0.0094086055349111 + 187 10 Se 4d-1 0.0009794431595629 -0.0007804352412377 + 188 10 Se 4d0 0.0129752199356158 0.0010421021874420 + 189 10 Se 4d+1 0.0139967278435544 0.0123859110875822 + 190 10 Se 4d+2 -0.0167997332981570 -0.0185410531575010 + + 191 11 Se 2s -0.0098989136925349 0.0319080428178944 + 192 11 Se 3s 0.0009873106664818 -0.0060732945477226 + 193 11 Se 3py 0.0050267197984620 0.0718393137946111 + 194 11 Se 3pz -0.0584835152537365 -0.1036839347733532 + 195 11 Se 3px 0.0017635351556406 0.0472384690036954 + 196 11 Se 4py 0.0064156032426155 -0.0204323445678718 + 197 11 Se 4pz 0.0169638497841245 0.0467748760935312 + 198 11 Se 4px -0.0083186237103064 0.0006122872172302 + 199 11 Se 4d-2 -0.0094151757633504 -0.0161582501456481 + 200 11 Se 4d-1 0.0123649154780984 0.0192692021986550 + 201 11 Se 4d0 -0.0148404107958643 -0.0275601959906991 + 202 11 Se 4d+1 0.0039557914242257 -0.0152789405478405 + 203 11 Se 4d+2 0.0009759577316886 0.0086506030460640 + + 204 12 Cd 2s -0.1036112066297143 -0.0779601678315255 + 205 12 Cd 3s -0.0117631049026346 -0.0029908705017799 + 206 12 Cd 3py -0.0115765201213053 0.1978654961580150 + 207 12 Cd 3pz 0.0598264009583012 0.0172307335154820 + 208 12 Cd 3px -0.1409835170034865 0.1008145713916386 + 209 12 Cd 4py -0.0072132539803993 0.0093699092892885 + 210 12 Cd 4pz 0.0058704228304686 0.0017409545321524 + 211 12 Cd 4px -0.0214489943986996 0.0090670338542671 + 212 12 Cd 4d-2 -0.0102618521211538 -0.0053296368954922 + 213 12 Cd 4d-1 -0.0062285355425673 0.0128702752176370 + 214 12 Cd 4d0 0.0003100978852007 -0.0202930872519651 + 215 12 Cd 4d+1 -0.0014011446144271 -0.0010999632840409 + 216 12 Cd 4d+2 -0.0000094141899928 0.0041964716060608 + 217 12 Cd 5d-2 -0.0018723311297568 -0.0007308341860384 + 218 12 Cd 5d-1 -0.0318074005721177 0.0039023076680973 + 219 12 Cd 5d0 -0.0248928735076950 -0.0062424408396452 + 220 12 Cd 5d+1 -0.0446980698709991 -0.0034342464238715 + 221 12 Cd 5d+2 -0.0024221556306385 0.0017836027592466 + 222 12 Cd 5f-3 -0.0012153479991185 0.0023780144792353 + 223 12 Cd 5f-2 -0.0044308228723531 -0.0049687026523720 + 224 12 Cd 5f-1 -0.0055642527676239 -0.0009357456027528 + 225 12 Cd 5f0 0.0040935531543370 -0.0000628762952329 + 226 12 Cd 5f+1 -0.0044643825978996 0.0062414293545225 + 227 12 Cd 5f+2 0.0018322531743446 0.0042311501308212 + 228 12 Cd 5f+3 -0.0004264528806454 -0.0001245569670445 + + 229 13 Cd 2s 0.3017395801660686 -0.1408306125183330 + 230 13 Cd 3s 0.0137277868898625 -0.0202876815229404 + 231 13 Cd 3py 0.1015736897840077 -0.2666533892751873 + 232 13 Cd 3pz 0.0140749603806183 0.1137813569867788 + 233 13 Cd 3px 0.1532590246493350 -0.1956778553311215 + 234 13 Cd 4py 0.0136181960583063 -0.0252846442591382 + 235 13 Cd 4pz 0.0181254004759508 0.0059033340742544 + 236 13 Cd 4px 0.0239765728231789 -0.0227614922353241 + 237 13 Cd 4d-2 0.0036666889658858 0.0033925614756208 + 238 13 Cd 4d-1 -0.0141908260486134 0.0122146140663328 + 239 13 Cd 4d0 0.0049677886322562 0.0029225491357029 + 240 13 Cd 4d+1 -0.0241098476827982 0.0146600420144366 + 241 13 Cd 4d+2 -0.0132509278483633 0.0184479162708142 + 242 13 Cd 5d-2 0.0109154851204813 -0.0131560870972889 + 243 13 Cd 5d-1 -0.0015861510593493 0.0313585319158459 + 244 13 Cd 5d0 0.0833344015514787 0.0164620998295771 + 245 13 Cd 5d+1 -0.0188614506032435 -0.0031930701598908 + 246 13 Cd 5d+2 -0.0694108673943361 0.0268029551776010 + 247 13 Cd 5f-3 0.0014421035449849 -0.0022605622005478 + 248 13 Cd 5f-2 0.0020671065654248 0.0003037488459911 + 249 13 Cd 5f-1 -0.0035602718281885 -0.0011936332786277 + 250 13 Cd 5f0 -0.0024542996514185 0.0031024780621053 + 251 13 Cd 5f+1 -0.0058824021066088 0.0032328354407329 + 252 13 Cd 5f+2 -0.0064029564945419 -0.0010146712626985 + 253 13 Cd 5f+3 0.0080858625219262 0.0126450607778706 + + 254 14 Cd 2s -0.0053348752882369 0.0261161025318514 + 255 14 Cd 3s -0.0014703878579456 0.0021078932889824 + 256 14 Cd 3py -0.0449194492555043 -0.1519195399622036 + 257 14 Cd 3pz -0.0691666722166226 0.0599564231407585 + 258 14 Cd 3px 0.3650631431997902 -0.0268132047973841 + 259 14 Cd 4py 0.0007804208900664 -0.0191005522559471 + 260 14 Cd 4pz -0.0149537088371284 0.0071338829081645 + 261 14 Cd 4px 0.0235632956889527 -0.0151709890772889 + 262 14 Cd 4d-2 0.0011050102633350 -0.0078715520600840 + 263 14 Cd 4d-1 0.0013345571175477 0.0051374843487911 + 264 14 Cd 4d0 0.0008058604077182 -0.0010060590838504 + 265 14 Cd 4d+1 0.0113075294790202 -0.0069864606162829 + 266 14 Cd 4d+2 0.0050759062926663 0.0119410791066764 + 267 14 Cd 5d-2 0.0472268030818305 -0.0002025118718483 + 268 14 Cd 5d-1 0.0114147274802643 0.0111762812590405 + 269 14 Cd 5d0 -0.0004569193871157 -0.0059548588284112 + 270 14 Cd 5d+1 0.0587909774680650 -0.0003646006406187 + 271 14 Cd 5d+2 0.0221036114613130 0.0239899026025393 + 272 14 Cd 5f-3 0.0037675933759411 -0.0064640958175910 + 273 14 Cd 5f-2 0.0007749915530869 -0.0022530833003730 + 274 14 Cd 5f-1 -0.0026000804576166 -0.0008875543724630 + 275 14 Cd 5f0 0.0056621627111421 -0.0034324073161930 + 276 14 Cd 5f+1 0.0075956511188601 -0.0029929318161746 + 277 14 Cd 5f+2 -0.0060494077208811 0.0064710265999539 + 278 14 Cd 5f+3 0.0079220711331574 -0.0071535518944941 + + 279 15 Se 2s 0.0277895892811241 -0.0771473177171718 + 280 15 Se 3s -0.0076275572016635 0.0139370053103679 + 281 15 Se 3py -0.0070748310331127 -0.0419508951943435 + 282 15 Se 3pz -0.0243431685980577 0.0665582306367531 + 283 15 Se 3px 0.2387655074567007 -0.0715202795506376 + 284 15 Se 4py 0.0014548394489238 0.0097908015429858 + 285 15 Se 4pz -0.0066833363969122 -0.0073602898600120 + 286 15 Se 4px -0.0582206710802159 0.0122963747071125 + 287 15 Se 4d-2 0.0214061010704294 0.0042456765590584 + 288 15 Se 4d-1 0.0076236864758524 0.0101559627657503 + 289 15 Se 4d0 0.0092333996523729 0.0011440041224894 + 290 15 Se 4d+1 0.0010324827253329 -0.0103771093296611 + 291 15 Se 4d+2 -0.0162315610924704 0.0187431378192801 + + 292 16 Se 2s 0.0450772518214353 -0.0307168846838316 + 293 16 Se 3s -0.0094154196268596 0.0057279778968345 + 294 16 Se 3py 0.1239140331281728 -0.0898208439397669 + 295 16 Se 3pz -0.0453763132342123 -0.0120098453269471 + 296 16 Se 3px -0.0169799192240738 -0.0310742187059331 + 297 16 Se 4py -0.0388769529838851 0.0016884032532718 + 298 16 Se 4pz 0.0059680304967464 -0.0086445571405488 + 299 16 Se 4px 0.0008911930819864 0.0126359033883953 + 300 16 Se 4d-2 0.0035269936115002 -0.0008833027968940 + 301 16 Se 4d-1 -0.0361039020785800 0.0165667770325482 + 302 16 Se 4d0 -0.0161480943156903 0.0031406239565382 + 303 16 Se 4d+1 -0.0133530728721525 0.0064253241646828 + 304 16 Se 4d+2 0.0134649239517002 -0.0266550776652805 + + 305 17 Cd 2s -0.1088110595306490 0.0644049034139191 + 306 17 Cd 3s -0.0140846272151374 0.0133988766285936 + 307 17 Cd 3py -0.0205041030282251 0.0603933604062395 + 308 17 Cd 3pz -0.4493483943639062 0.1043261425442150 + 309 17 Cd 3px 0.0526839025554408 -0.0739663985984205 + 310 17 Cd 4py -0.0041070912375123 0.0115183982766452 + 311 17 Cd 4pz -0.0464338996956839 0.0108378102569027 + 312 17 Cd 4px 0.0079192623488472 -0.0110088385810246 + 313 17 Cd 4d-2 0.0013743152805091 -0.0067745932126430 + 314 17 Cd 4d-1 0.0013798519909278 0.0106042776916827 + 315 17 Cd 4d0 -0.0143738494708263 0.0119558091175135 + 316 17 Cd 4d+1 0.0047605964135919 0.0130958892687789 + 317 17 Cd 4d+2 0.0020836230194291 -0.0213337680286740 + 318 17 Cd 5d-2 -0.0145279428793150 -0.0118845620492980 + 319 17 Cd 5d-1 -0.0045174426400600 0.0334990629369226 + 320 17 Cd 5d0 0.0223049105402467 0.0172163557131447 + 321 17 Cd 5d+1 0.0118770564089303 0.0239795887760127 + 322 17 Cd 5d+2 0.0181085824465589 -0.0326510697189852 + 323 17 Cd 5f-3 -0.0028130774455640 -0.0004014693637989 + 324 17 Cd 5f-2 -0.0041020346355957 -0.0047098095591833 + 325 17 Cd 5f-1 -0.0025954155341572 -0.0015785302540708 + 326 17 Cd 5f0 0.0019325737136335 0.0037532722646240 + 327 17 Cd 5f+1 0.0077488789301415 -0.0021728782862543 + 328 17 Cd 5f+2 -0.0063257103335761 -0.0017449839390585 + 329 17 Cd 5f+3 0.0021664965230779 0.0018602974312766 + + 330 18 Cd 2s 0.0958436795996942 0.1723966139566920 + 331 18 Cd 3s 0.0036883730503963 0.0160329515455753 + 332 18 Cd 3py 0.1875285519929189 0.3511197573859929 + 333 18 Cd 3pz 0.0235447321551010 0.0863008761857142 + 334 18 Cd 3px -0.0274756721678166 -0.1363184505679359 + 335 18 Cd 4py 0.0223830885250659 0.0379260861254021 + 336 18 Cd 4pz 0.0066336653146972 0.0075428734107630 + 337 18 Cd 4px -0.0064412025332830 -0.0245429592873190 + 338 18 Cd 4d-2 0.0018288946352147 0.0153538425532518 + 339 18 Cd 4d-1 0.0003619074623673 0.0139877840615213 + 340 18 Cd 4d0 -0.0075173006691803 -0.0223568966114074 + 341 18 Cd 4d+1 0.0086131898282138 -0.0084404868665444 + 342 18 Cd 4d+2 0.0041137429871957 0.0032161435531895 + 343 18 Cd 5d-2 -0.0070994298720241 0.0097544495006575 + 344 18 Cd 5d-1 -0.0096743120243039 -0.0126235141215582 + 345 18 Cd 5d0 -0.0086854114108905 -0.0047236565222232 + 346 18 Cd 5d+1 0.0000903147946092 -0.0270908522712121 + 347 18 Cd 5d+2 0.0057898763089006 0.0095675897706628 + 348 18 Cd 5f-3 0.0020231602073455 0.0029473469982330 + 349 18 Cd 5f-2 0.0052101036374061 -0.0062212687219933 + 350 18 Cd 5f-1 0.0068896054570969 0.0000079881736896 + 351 18 Cd 5f0 0.0046290142170446 0.0039464049904139 + 352 18 Cd 5f+1 -0.0021159372747042 -0.0036989325720926 + 353 18 Cd 5f+2 0.0005364144567503 0.0055661561898747 + 354 18 Cd 5f+3 0.0000467617817849 0.0018832220065713 + + 355 19 Se 2s -0.0585855472885235 0.0946889486667155 + 356 19 Se 3s 0.0129197952959430 -0.0188463042086213 + 357 19 Se 3py -0.1157232632661418 -0.0045717808385725 + 358 19 Se 3pz -0.0994230006084949 0.1478355803309801 + 359 19 Se 3px 0.0611422261551570 0.0013938377073715 + 360 19 Se 4py 0.0506019624888862 0.0077855553569863 + 361 19 Se 4pz 0.0199398080526189 -0.0455356094527104 + 362 19 Se 4px -0.0078918883201016 -0.0162760525884867 + 363 19 Se 4d-2 -0.0038278321470492 -0.0023962109983813 + 364 19 Se 4d-1 0.0379148204229960 0.0094747053510669 + 365 19 Se 4d0 -0.0177280520254146 -0.0171446180170162 + 366 19 Se 4d+1 -0.0007666299465447 -0.0143644628981742 + 367 19 Se 4d+2 -0.0081057251664932 -0.0111916514054440 + + 368 20 Se 2s -0.0305486584692244 -0.0499002636340904 + 369 20 Se 3s 0.0068483471496477 0.0110132702260897 + 370 20 Se 3py 0.0058330374438812 0.0048397616816543 + 371 20 Se 3pz 0.1809935026685809 -0.0768399018031146 + 372 20 Se 3px 0.0694108802487171 -0.1670927400402671 + 373 20 Se 4py 0.0047546618726273 0.0042261649234833 + 374 20 Se 4pz -0.0421759126067204 0.0181370289804922 + 375 20 Se 4px -0.0186697575859844 0.0640310961776869 + 376 20 Se 4d-2 0.0088857991051842 -0.0060329144180558 + 377 20 Se 4d-1 -0.0057133394917727 0.0243478831897751 + 378 20 Se 4d0 0.0216293698530419 -0.0171914849151465 + 379 20 Se 4d+1 -0.0132036983937756 0.0332518272728482 + 380 20 Se 4d+2 -0.0123091904957480 0.0343445153535145 + + 381 21 Se 2s -0.0420621809761992 -0.0104829090479734 + 382 21 Se 3s 0.0092182536745376 0.0048341371697680 + 383 21 Se 3py -0.1102180708851028 -0.1177467107311683 + 384 21 Se 3pz -0.0525439071662937 -0.0258653323347118 + 385 21 Se 3px -0.0729033461589117 -0.0792366692883954 + 386 21 Se 4py 0.0151917336149110 0.0242320690917514 + 387 21 Se 4pz -0.0063372963459365 0.0062408031564178 + 388 21 Se 4px 0.0016986359811195 0.0078124210897336 + 389 21 Se 4d-2 -0.0016936141577644 -0.0178190325241683 + 390 21 Se 4d-1 -0.0028022665950050 -0.0220255018891436 + 391 21 Se 4d0 0.0060274056767935 0.0106816709109911 + 392 21 Se 4d+1 0.0040467673986235 -0.0140918596951291 + 393 21 Se 4d+2 0.0138638160698456 0.0226841102739478 + + 394 22 Cd 2s -0.1651154500417616 -0.0561338394979240 + 395 22 Cd 3s -0.0062772684562519 -0.0074964645234786 + 396 22 Cd 3py -0.0641283972695363 -0.1003974076129542 + 397 22 Cd 3pz -0.0257923893323908 -0.0455221272408727 + 398 22 Cd 3px 0.0235230069790480 0.0757332951580297 + 399 22 Cd 4py 0.0083225781022042 -0.0138108382345793 + 400 22 Cd 4pz -0.0134041558678559 -0.0023756408054338 + 401 22 Cd 4px 0.0238962674813593 -0.0017256516134866 + 402 22 Cd 4d-2 0.0182841239233431 0.0065155328131262 + 403 22 Cd 4d-1 0.0051684358603078 0.0008524030035036 + 404 22 Cd 4d0 0.0088397946999555 -0.0102203356642736 + 405 22 Cd 4d+1 0.0193440549722108 -0.0113241679300555 + 406 22 Cd 4d+2 -0.0230520191906029 0.0386892210841907 + 407 22 Cd 5d-2 0.0400367499612209 0.0021469205033905 + 408 22 Cd 5d-1 0.0195137478455116 0.0096687263733845 + 409 22 Cd 5d0 -0.0480004044287719 0.0040703607204836 + 410 22 Cd 5d+1 -0.0152859986604823 0.0120835015758844 + 411 22 Cd 5d+2 0.0344183973901010 0.0272409922579335 + 412 22 Cd 5f-3 -0.0008612428394028 -0.0096066100160662 + 413 22 Cd 5f-2 -0.0041546197082751 0.0063271140818648 + 414 22 Cd 5f-1 -0.0061280238907543 0.0017445502270791 + 415 22 Cd 5f0 -0.0019626244397930 -0.0026118965195601 + 416 22 Cd 5f+1 -0.0102178203708214 0.0010703332849286 + 417 22 Cd 5f+2 -0.0054501554411440 0.0025204659386798 + 418 22 Cd 5f+3 0.0174959123666457 -0.0098409969587803 + + 419 23 Se 2s -0.0993908898911112 0.0562964496103073 + 420 23 Se 3s 0.0213183109439986 -0.0109635426928318 + 421 23 Se 3py 0.0167271057380125 -0.0325790940142719 + 422 23 Se 3pz -0.1508404744280933 0.0157963363095985 + 423 23 Se 3px -0.1060124448023007 0.0244803940796366 + 424 23 Se 4py -0.0162228754075157 -0.0071949972038781 + 425 23 Se 4pz 0.0393871083072575 -0.0078225997043265 + 426 23 Se 4px 0.0407714289158695 -0.0260654385786941 + 427 23 Se 4d-2 -0.0034160428897580 -0.0058602194191216 + 428 23 Se 4d-1 -0.0051824494359547 -0.0008877442694060 + 429 23 Se 4d0 -0.0123767467156398 0.0071680261895419 + 430 23 Se 4d+1 0.0279557774315777 -0.0024686019693590 + 431 23 Se 4d+2 -0.0049526696126540 -0.0109473284652010 + + 432 24 Se 2s 0.0851377611342780 0.0863269446736137 + 433 24 Se 3s -0.0158314154751046 -0.0164172478685706 + 434 24 Se 3py 0.1226698620772563 0.1738117372277453 + 435 24 Se 3pz 0.0440493602476062 -0.0678870767304578 + 436 24 Se 3px 0.0363816592176768 0.0244588905677868 + 437 24 Se 4py -0.0456241585097622 -0.0596914650921586 + 438 24 Se 4pz -0.0114482856004390 0.0061244069615395 + 439 24 Se 4px -0.0170413863398332 -0.0071373637629186 + 440 24 Se 4d-2 -0.0109025223098910 -0.0179781407777420 + 441 24 Se 4d-1 0.0029522756304876 -0.0076928675886293 + 442 24 Se 4d0 0.0003688176584762 0.0002141546902706 + 443 24 Se 4d+1 -0.0036523751006854 0.0006690972374794 + 444 24 Se 4d+2 0.0127114743909569 0.0263995936088477 + + 445 25 Cd 2s -0.1267985150120398 -0.0620916322377916 + 446 25 Cd 3s -0.0125463657068547 -0.0056997733702542 + 447 25 Cd 3py 0.0881436679276019 -0.0716157564180995 + 448 25 Cd 3pz 0.1416410433840513 -0.1244484726664083 + 449 25 Cd 3px -0.1198919352846377 -0.1650295262334149 + 450 25 Cd 4py 0.0047117819416767 -0.0156533322543105 + 451 25 Cd 4pz 0.0227025861251080 -0.0236885229667259 + 452 25 Cd 4px -0.0175445858459140 -0.0178826669414321 + 453 25 Cd 4d-2 -0.0215742590440930 -0.0208068208086745 + 454 25 Cd 4d-1 0.0192448968443902 -0.0016068086602897 + 455 25 Cd 4d0 -0.0011976084594847 -0.0150183624526230 + 456 25 Cd 4d+1 0.0115278555649962 0.0003367541425696 + 457 25 Cd 4d+2 -0.0263580689234344 -0.0080146080882734 + 458 25 Cd 5d-2 -0.0316418630621316 -0.0237551427051982 + 459 25 Cd 5d-1 0.0342352411087500 0.0072881663536651 + 460 25 Cd 5d0 0.0066004846829756 -0.0398094814863998 + 461 25 Cd 5d+1 0.0197173962984686 0.0221596594631409 + 462 25 Cd 5d+2 -0.0321430974419454 0.0177682578745913 + 463 25 Cd 5f-3 -0.0037783315532107 0.0018211583262226 + 464 25 Cd 5f-2 -0.0026274874790516 -0.0052948490484058 + 465 25 Cd 5f-1 0.0089770258120841 0.0103156015462425 + 466 25 Cd 5f0 -0.0029433925270660 -0.0056716006857108 + 467 25 Cd 5f+1 0.0003628119626497 -0.0072039445848548 + 468 25 Cd 5f+2 0.0020306038261895 -0.0004043507773653 + 469 25 Cd 5f+3 0.0002650326102437 0.0090096353735544 + + 470 26 Cd 2s 0.1025479175563319 0.2146452075872410 + 471 26 Cd 3s 0.0152270977508224 0.0365387665485390 + 472 26 Cd 3py -0.1101130833119337 -0.1202772831980845 + 473 26 Cd 3pz -0.0554479022575465 -0.2173313397559093 + 474 26 Cd 3px 0.0971024419851877 0.3103702413994115 + 475 26 Cd 4py -0.0186434597415034 -0.0236088399798886 + 476 26 Cd 4pz -0.0027037688890495 -0.0253318139246722 + 477 26 Cd 4px 0.0071282292925287 0.0424636317748521 + 478 26 Cd 4d-2 -0.0150230573959669 -0.0116661786960673 + 479 26 Cd 4d-1 -0.0133837132451459 -0.0269357226081753 + 480 26 Cd 4d0 0.0192747948211531 0.0163092187582327 + 481 26 Cd 4d+1 -0.0062950313217724 0.0013540574261588 + 482 26 Cd 4d+2 0.0252908960743511 0.0160352702810193 + 483 26 Cd 5d-2 -0.0180349878257574 -0.0286921867314513 + 484 26 Cd 5d-1 -0.0148752302349235 -0.0323960487397572 + 485 26 Cd 5d0 0.0207067394939752 0.0189959603539900 + 486 26 Cd 5d+1 -0.0018610365397841 0.0037478779902660 + 487 26 Cd 5d+2 0.0139343273196134 0.0256894622381636 + 488 26 Cd 5f-3 0.0006532416053636 0.0018867690893906 + 489 26 Cd 5f-2 0.0002585744559031 0.0012505456147641 + 490 26 Cd 5f-1 -0.0042884203983228 -0.0039951415930832 + 491 26 Cd 5f0 0.0001356903260783 -0.0004166377614740 + 492 26 Cd 5f+1 -0.0026771665958627 0.0006298018386294 + 493 26 Cd 5f+2 -0.0019691283774955 -0.0006226387871336 + 494 26 Cd 5f+3 0.0019103801255802 0.0016575026433350 + + 141 142 + 0.0026356678524682 0.0063506543193244 + + 0.0000000000000000 0.0000000000000000 + + 1 1 Cd 2s -0.1200093309055289 -0.0585426203870610 + 2 1 Cd 3s -0.0151738394376595 -0.0151031533735099 + 3 1 Cd 3py 0.0022467209055705 0.0490714906023460 + 4 1 Cd 3pz -0.1996983658897566 -0.0776408887831337 + 5 1 Cd 3px 0.4813483398081418 0.0826848448725305 + 6 1 Cd 4py -0.0035794367182056 -0.0002128506067647 + 7 1 Cd 4pz -0.0234533807339556 -0.0065333189393106 + 8 1 Cd 4px 0.0524639576203599 0.0134841412954187 + 9 1 Cd 4d-2 0.0144746931018195 -0.0101897319725521 + 10 1 Cd 4d-1 0.0107694344109885 -0.0222145311301139 + 11 1 Cd 4d0 0.0152008732999696 -0.0112326604045737 + 12 1 Cd 4d+1 -0.0014078971786179 -0.0078783055442076 + 13 1 Cd 4d+2 -0.0140687376184047 -0.0175058616675383 + 14 1 Cd 5d-2 0.0494750203620338 0.0210800364564351 + 15 1 Cd 5d-1 0.0076320616409526 -0.0182525987061322 + 16 1 Cd 5d0 -0.0109685411220140 -0.0189224560478254 + 17 1 Cd 5d+1 -0.0398445655693462 -0.0312183625344048 + 18 1 Cd 5d+2 0.0047989926483136 -0.0267210523680158 + 19 1 Cd 5f-3 -0.0020937864266834 -0.0007415758718699 + 20 1 Cd 5f-2 0.0060022690839570 -0.0041290827223307 + 21 1 Cd 5f-1 -0.0034893812180762 0.0046372780292027 + 22 1 Cd 5f0 -0.0023513982679916 -0.0023650697532036 + 23 1 Cd 5f+1 0.0007336918371490 -0.0082189138477280 + 24 1 Cd 5f+2 -0.0010416857284353 -0.0027183564499749 + 25 1 Cd 5f+3 0.0030252251592670 -0.0063961488166926 + + 26 2 Cd 2s 0.0556920438052147 0.1457104617411221 + 27 2 Cd 3s 0.0006780497719421 0.0105019130083447 + 28 2 Cd 3py -0.0346365453265028 0.0695618594592881 + 29 2 Cd 3pz -0.1984955416955062 -0.0513047659545799 + 30 2 Cd 3px -0.1459335987008077 -0.0802234866777734 + 31 2 Cd 4py -0.0028982301680097 0.0114658415564234 + 32 2 Cd 4pz -0.0220837115636288 -0.0062693528984506 + 33 2 Cd 4px -0.0198827554075223 -0.0190006157471991 + 34 2 Cd 4d-2 -0.0033563392262841 -0.0032592400384822 + 35 2 Cd 4d-1 0.0020468398566226 0.0070330755605090 + 36 2 Cd 4d0 -0.0022424177614075 -0.0067017332987160 + 37 2 Cd 4d+1 -0.0042083421346537 0.0082645164864915 + 38 2 Cd 4d+2 0.0052102319849784 0.0016334436468117 + 39 2 Cd 5d-2 -0.0200482286353166 0.0019577579691964 + 40 2 Cd 5d-1 -0.0171047275879180 0.0540241680731591 + 41 2 Cd 5d0 -0.0024689364034609 0.0011663855500528 + 42 2 Cd 5d+1 -0.0115099570275837 0.0063466354574322 + 43 2 Cd 5d+2 -0.0170112175467055 0.0112532814277279 + 44 2 Cd 5f-3 -0.0082523631611400 -0.0054055772876520 + 45 2 Cd 5f-2 -0.0088909977021405 -0.0034589100464808 + 46 2 Cd 5f-1 0.0057093970111045 0.0031513554266100 + 47 2 Cd 5f0 0.0111594693181695 -0.0010564768537489 + 48 2 Cd 5f+1 0.0042825898251837 0.0087013679164256 + 49 2 Cd 5f+2 0.0089254898903452 0.0019183923316344 + 50 2 Cd 5f+3 -0.0107952184298094 -0.0152387742614284 + + 51 3 Cd 2s 0.1549919054551692 -0.0897750727506871 + 52 3 Cd 3s 0.0069838309012167 -0.0154558744855561 + 53 3 Cd 3py -0.0623915241244325 0.1026592786998359 + 54 3 Cd 3pz 0.0147148589489576 -0.0758779156713332 + 55 3 Cd 3px -0.0203699957802739 -0.1253705211256153 + 56 3 Cd 4py -0.0005717930024317 0.0033088350357093 + 57 3 Cd 4pz 0.0128350948344332 0.0028818952769168 + 58 3 Cd 4px -0.0105613103534045 -0.0171754281234152 + 59 3 Cd 4d-2 -0.0172419022360069 -0.0080849486296336 + 60 3 Cd 4d-1 0.0096072214484443 0.0085312278652689 + 61 3 Cd 4d0 -0.0141875107011459 -0.0092805228325460 + 62 3 Cd 4d+1 0.0086738185087161 -0.0018955108329751 + 63 3 Cd 4d+2 -0.0036883341932110 0.0164115861077259 + 64 3 Cd 5d-2 0.0067726240102755 0.0197207978125017 + 65 3 Cd 5d-1 0.0230639804375279 0.0481048043206427 + 66 3 Cd 5d0 -0.0255132815051396 -0.0063367195885673 + 67 3 Cd 5d+1 0.0047701866442373 0.0173057117168802 + 68 3 Cd 5d+2 -0.0135242022650989 0.0287977409863828 + 69 3 Cd 5f-3 0.0003682271810882 -0.0004983029076511 + 70 3 Cd 5f-2 0.0015663907937461 0.0017464522545701 + 71 3 Cd 5f-1 -0.0064997664507210 -0.0051151109786276 + 72 3 Cd 5f0 -0.0008793562222203 -0.0035244129526372 + 73 3 Cd 5f+1 -0.0003466812415079 0.0050184839772231 + 74 3 Cd 5f+2 0.0004780967602824 -0.0005127418031906 + 75 3 Cd 5f+3 0.0031566798991027 -0.0057425980896659 + + 76 4 Se 2s -0.0615754175558282 -0.0319609285814718 + 77 4 Se 3s 0.0108689004264205 0.0068102070813186 + 78 4 Se 3py 0.0937035577584077 -0.0874082893951826 + 79 4 Se 3pz 0.0390908160996592 0.0507094044576022 + 80 4 Se 3px 0.0932961055640250 0.0167741119641634 + 81 4 Se 4py -0.0450605399088081 0.0169636669997456 + 82 4 Se 4pz -0.0402832889524857 0.0012921208885300 + 83 4 Se 4px -0.0251048125200331 -0.0101199373562547 + 84 4 Se 4d-2 0.0146100510113629 -0.0186311469812268 + 85 4 Se 4d-1 0.0113304440297181 -0.0072927876318022 + 86 4 Se 4d0 0.0042748135448613 -0.0114964276998497 + 87 4 Se 4d+1 0.0357526700150070 0.0181284542451697 + 88 4 Se 4d+2 -0.0125464869298894 -0.0164090341105930 + + 89 5 Se 2s -0.0386440091484982 -0.0714008728365276 + 90 5 Se 3s 0.0093564145660283 0.0116381935713954 + 91 5 Se 3py -0.0363041278771544 -0.0547765346744701 + 92 5 Se 3pz 0.0288373998703641 -0.0726775437816099 + 93 5 Se 3px 0.1343000095190117 0.0319675723034941 + 94 5 Se 4py 0.0329878838699198 0.0178672410980830 + 95 5 Se 4pz 0.0014196582561800 0.0146534048508518 + 96 5 Se 4px -0.0257987326153545 -0.0174402573180901 + 97 5 Se 4d-2 -0.0209214494138174 -0.0023671098638593 + 98 5 Se 4d-1 0.0132885283513535 -0.0038833869764828 + 99 5 Se 4d0 -0.0091060548665112 0.0059758759203477 + 100 5 Se 4d+1 0.0248471714656058 0.0039122967432008 + 101 5 Se 4d+2 -0.0108595902139302 -0.0041566361699602 + + 102 6 Se 2s -0.0907876728781068 -0.1227275811700128 + 103 6 Se 3s 0.0167607554474420 0.0253951414397631 + 104 6 Se 3py -0.0282003996661030 0.0174020550925035 + 105 6 Se 3pz -0.0611726413454150 0.0017169442144423 + 106 6 Se 3px 0.1062167653057241 0.0998063154817815 + 107 6 Se 4py 0.0038967008898132 0.0018387595101601 + 108 6 Se 4pz 0.0216462620739983 0.0156049810887651 + 109 6 Se 4px -0.0452284894873311 -0.0491512817111240 + 110 6 Se 4d-2 0.0103943446172458 0.0084322432913604 + 111 6 Se 4d-1 -0.0027256055508386 0.0180466155212877 + 112 6 Se 4d0 -0.0145337641153131 -0.0018564506844491 + 113 6 Se 4d+1 -0.0217685092344893 -0.0116056657342960 + 114 6 Se 4d+2 0.0085916354787543 0.0070443903384467 + + 115 7 Se 2s -0.1004136103838860 0.1002898203363996 + 116 7 Se 3s 0.0189821727585856 -0.0214150472473707 + 117 7 Se 3py -0.0581319948802610 0.0290368873958543 + 118 7 Se 3pz 0.0984786646948685 -0.0699544773185833 + 119 7 Se 3px 0.0348283938415300 -0.0764932318406683 + 120 7 Se 4py 0.0103155044717114 0.0128835773929848 + 121 7 Se 4pz -0.0323234605169664 0.0434372506652383 + 122 7 Se 4px -0.0066692527522667 0.0150114447784431 + 123 7 Se 4d-2 -0.0137355734537647 -0.0135671197953527 + 124 7 Se 4d-1 -0.0103883825824776 -0.0131172033019765 + 125 7 Se 4d0 -0.0030618639511641 0.0075127673469859 + 126 7 Se 4d+1 0.0076003268344303 -0.0024210219619732 + 127 7 Se 4d+2 0.0143152179859054 -0.0039181544638972 + + 128 8 Cd 2s 0.0980557996287906 0.1824394055268951 + 129 8 Cd 3s 0.0085522621577034 0.0215705383392454 + 130 8 Cd 3py -0.1052942780237450 0.0439941828370190 + 131 8 Cd 3pz -0.0333959669477504 0.2086476862766250 + 132 8 Cd 3px 0.0795618816187561 0.0482588604574751 + 133 8 Cd 4py -0.0027976750021752 0.0027173985542052 + 134 8 Cd 4pz -0.0068971552193590 0.0273400719997918 + 135 8 Cd 4px 0.0217980204270772 0.0079660327129358 + 136 8 Cd 4d-2 0.0186467707443704 0.0085265595243888 + 137 8 Cd 4d-1 0.0043113826159796 -0.0105305473139417 + 138 8 Cd 4d0 -0.0099613743059653 0.0009763896414238 + 139 8 Cd 4d+1 0.0014614228130866 -0.0109174350453768 + 140 8 Cd 4d+2 0.0176589220989311 -0.0014378500830893 + 141 8 Cd 5d-2 0.0079566182458381 0.0319920036519770 + 142 8 Cd 5d-1 -0.0270654348970245 -0.0002733593008165 + 143 8 Cd 5d0 -0.0023114642194821 0.0030273821080265 + 144 8 Cd 5d+1 0.0430146658910693 -0.0244965902654385 + 145 8 Cd 5d+2 0.0528263323970232 0.0010170640659658 + 146 8 Cd 5f-3 -0.0024707864014643 0.0059513125272347 + 147 8 Cd 5f-2 0.0082260562153559 0.0025764103961728 + 148 8 Cd 5f-1 -0.0034995510842992 0.0005172362487940 + 149 8 Cd 5f0 0.0034566343119110 0.0014968955153779 + 150 8 Cd 5f+1 0.0063463937027223 -0.0039665183115324 + 151 8 Cd 5f+2 -0.0121156247913294 0.0006148166071027 + 152 8 Cd 5f+3 0.0051418079236888 0.0125192616859355 + + 153 9 Cd 2s -0.1879662109610034 -0.1123060350982212 + 154 9 Cd 3s -0.0344267591608102 -0.0078119577149158 + 155 9 Cd 3py 0.0394176660802183 -0.2127519725694205 + 156 9 Cd 3pz 0.4502812959290810 0.2368921003999697 + 157 9 Cd 3px 0.0931146267790869 0.0104602254543212 + 158 9 Cd 4py -0.0091141279406336 -0.0173590259901474 + 159 9 Cd 4pz 0.0570099365235602 0.0353105756291628 + 160 9 Cd 4px 0.0158319467611857 0.0028801622123734 + 161 9 Cd 4d-2 -0.0053521175830073 -0.0039847117228325 + 162 9 Cd 4d-1 -0.0109324728256411 -0.0060436856268646 + 163 9 Cd 4d0 0.0011265472097383 0.0031482482866716 + 164 9 Cd 4d+1 -0.0111669969595800 -0.0089293406037285 + 165 9 Cd 4d+2 0.0244263930413852 0.0075750442903662 + 166 9 Cd 5d-2 0.0023947297227178 0.0004421633550475 + 167 9 Cd 5d-1 -0.0158683415038245 -0.0390523847261628 + 168 9 Cd 5d0 0.0289674540207967 0.0099970143141487 + 169 9 Cd 5d+1 -0.0233714788326230 -0.0174929000351953 + 170 9 Cd 5d+2 0.0387741346999183 -0.0159459294813169 + 171 9 Cd 5f-3 0.0007917537265430 -0.0041142967810509 + 172 9 Cd 5f-2 -0.0004382407256463 -0.0003477525961181 + 173 9 Cd 5f-1 0.0004596710876601 0.0075179841765119 + 174 9 Cd 5f0 0.0003989457259781 0.0035258544114794 + 175 9 Cd 5f+1 -0.0002204925046303 -0.0012525085583202 + 176 9 Cd 5f+2 0.0042737026846208 0.0006160927902651 + 177 9 Cd 5f+3 0.0034413665173035 0.0038587946032362 + + 178 10 Se 2s -0.0365618268949099 0.0730340442722475 + 179 10 Se 3s 0.0071612138426937 -0.0143586483401934 + 180 10 Se 3py 0.0683595346052180 0.0095319774374858 + 181 10 Se 3pz 0.0725034280283033 -0.0225793656824505 + 182 10 Se 3px -0.1011461299935268 -0.0362775458207343 + 183 10 Se 4py -0.0239754559316520 -0.0109073889981439 + 184 10 Se 4pz -0.0272641265791951 0.0263889133315859 + 185 10 Se 4px 0.0328505136180334 0.0189718864888807 + 186 10 Se 4d-2 -0.0105351331547136 0.0118111254699856 + 187 10 Se 4d-1 0.0183988497628389 0.0044465063642730 + 188 10 Se 4d0 -0.0154575361941942 -0.0069135980793587 + 189 10 Se 4d+1 -0.0308614534373754 -0.0091523128813370 + 190 10 Se 4d+2 0.0072612754896951 0.0231156237563181 + + 191 11 Se 2s -0.0283127324531833 -0.0280482993145237 + 192 11 Se 3s 0.0062491147867192 0.0039873201297328 + 193 11 Se 3py -0.0928428879693087 0.0463490131215851 + 194 11 Se 3pz -0.0971398441127047 0.0592108388608336 + 195 11 Se 3px 0.0116011241454136 -0.0232148023939747 + 196 11 Se 4py 0.0192833452735780 -0.0104122599519017 + 197 11 Se 4pz 0.0135520586491440 -0.0124220953124434 + 198 11 Se 4px -0.0144092403790182 -0.0027218704410039 + 199 11 Se 4d-2 -0.0231652752625840 0.0121147677783886 + 200 11 Se 4d-1 0.0043189946421182 -0.0010345791180022 + 201 11 Se 4d0 0.0039006953625923 0.0015534438828465 + 202 11 Se 4d+1 -0.0133564993734213 0.0190326229771173 + 203 11 Se 4d+2 -0.0109387790326788 0.0198981590650627 + + 204 12 Cd 2s -0.1342469214242926 0.0870042167452544 + 205 12 Cd 3s -0.0190601575461237 0.0113380129327918 + 206 12 Cd 3py 0.0484900425159903 0.0319731988937780 + 207 12 Cd 3pz 0.0646883924802272 0.0941761380783345 + 208 12 Cd 3px -0.1471175955026471 0.1428367538646269 + 209 12 Cd 4py -0.0010704991604010 0.0131957401581642 + 210 12 Cd 4pz 0.0081857578570526 0.0161013368172454 + 211 12 Cd 4px -0.0126150841770359 0.0186320636343823 + 212 12 Cd 4d-2 -0.0172731803587540 0.0056668951355191 + 213 12 Cd 4d-1 0.0089736013733748 -0.0060270129318219 + 214 12 Cd 4d0 -0.0033499501555674 -0.0002679101339615 + 215 12 Cd 4d+1 -0.0049001695407872 -0.0085688773911502 + 216 12 Cd 4d+2 -0.0107778139686328 0.0172123862393829 + 217 12 Cd 5d-2 0.0121281860016326 0.0167614114518817 + 218 12 Cd 5d-1 0.0478072892296218 -0.0107003042534917 + 219 12 Cd 5d0 -0.0186885249784969 0.0071076436853094 + 220 12 Cd 5d+1 -0.0075903605191137 -0.0005584330435031 + 221 12 Cd 5d+2 -0.0479490477473816 0.0279930932561438 + 222 12 Cd 5f-3 -0.0044845777827188 -0.0030617112304700 + 223 12 Cd 5f-2 0.0002953868605079 0.0027072226038161 + 224 12 Cd 5f-1 -0.0051520792250534 -0.0028899373742011 + 225 12 Cd 5f0 0.0059408093849371 -0.0103872291697426 + 226 12 Cd 5f+1 0.0009398672218335 0.0055027837846155 + 227 12 Cd 5f+2 -0.0034388539717189 -0.0058004089052811 + 228 12 Cd 5f+3 0.0081300718772722 -0.0095715230925741 + + 229 13 Cd 2s 0.0126160977414281 -0.1317876790209093 + 230 13 Cd 3s -0.0074630025192760 -0.0152926499884627 + 231 13 Cd 3py 0.1728944293117980 -0.2653709624827823 + 232 13 Cd 3pz -0.0720439460109371 0.0686641841808490 + 233 13 Cd 3px -0.0940084676501892 -0.0966445971978476 + 234 13 Cd 4py 0.0168649362259960 -0.0280267793864721 + 235 13 Cd 4pz -0.0015466162246830 0.0082641884175407 + 236 13 Cd 4px 0.0073947069716269 -0.0054821474232547 + 237 13 Cd 4d-2 0.0256183302977162 -0.0132969626388920 + 238 13 Cd 4d-1 0.0018594946516050 0.0107615714450232 + 239 13 Cd 4d0 0.0155240576226855 0.0013510908896312 + 240 13 Cd 4d+1 0.0188501207778149 -0.0259962768030125 + 241 13 Cd 4d+2 0.0331012160600047 0.0251157800327060 + 242 13 Cd 5d-2 0.0253533233380703 -0.0395768562239082 + 243 13 Cd 5d-1 0.0094602326594986 0.0267121260568084 + 244 13 Cd 5d0 0.0502423560187565 0.0012850579309473 + 245 13 Cd 5d+1 0.0310631168068745 -0.0643153592545823 + 246 13 Cd 5d+2 0.0215576042080447 0.0604744458488688 + 247 13 Cd 5f-3 -0.0001879987408394 -0.0002290632131151 + 248 13 Cd 5f-2 -0.0002340870373164 -0.0056702419403945 + 249 13 Cd 5f-1 -0.0012732405165849 -0.0079704515723984 + 250 13 Cd 5f0 0.0034628499394259 -0.0002239793927742 + 251 13 Cd 5f+1 -0.0046222860176853 0.0022360805641956 + 252 13 Cd 5f+2 -0.0024570850729111 -0.0004836518259430 + 253 13 Cd 5f+3 0.0091083014980398 0.0058028034872091 + + 254 14 Cd 2s -0.1449923084726120 -0.0982183913382194 + 255 14 Cd 3s -0.0215808356305804 -0.0164360117435145 + 256 14 Cd 3py 0.2930004496368275 0.2103317821927823 + 257 14 Cd 3pz -0.0459018083618586 0.2933239394433800 + 258 14 Cd 3px 0.1466741182804168 -0.0699691084403824 + 259 14 Cd 4py 0.0395548014344151 0.0278467347664283 + 260 14 Cd 4pz -0.0035072075831121 0.0445724297357001 + 261 14 Cd 4px 0.0041255319549412 -0.0018027582858577 + 262 14 Cd 4d-2 -0.0087342198816967 -0.0015583435385561 + 263 14 Cd 4d-1 -0.0087101627785763 0.0174565843784408 + 264 14 Cd 4d0 0.0030701558088722 -0.0001614987151635 + 265 14 Cd 4d+1 0.0101669739789415 0.0060182736932155 + 266 14 Cd 4d+2 -0.0081696082226066 -0.0099699862404847 + 267 14 Cd 5d-2 -0.0004199336766838 -0.0158934548304003 + 268 14 Cd 5d-1 -0.0184991706460604 0.0410373915161452 + 269 14 Cd 5d0 -0.0083710330352788 -0.0111727851357297 + 270 14 Cd 5d+1 0.0503929520697600 0.0057465401193250 + 271 14 Cd 5d+2 -0.0080393711105118 -0.0300865116697113 + 272 14 Cd 5f-3 0.0009284379883264 -0.0009761263932129 + 273 14 Cd 5f-2 0.0005207050243513 0.0035562229808391 + 274 14 Cd 5f-1 0.0014838637457892 0.0115210765359553 + 275 14 Cd 5f0 0.0078051431881627 -0.0025838072781219 + 276 14 Cd 5f+1 0.0030569778160786 -0.0024020371459511 + 277 14 Cd 5f+2 -0.0062415205888960 0.0110702581345513 + 278 14 Cd 5f+3 -0.0058623917244670 0.0014716470242390 + + 279 15 Se 2s 0.0405673268003027 -0.2083674618645762 + 280 15 Se 3s -0.0090624671708801 0.0407919091106232 + 281 15 Se 3py 0.0190726108514270 0.0333123081840021 + 282 15 Se 3pz -0.0765621030619732 0.0454911320116239 + 283 15 Se 3px 0.1091255061598128 -0.0548063584652370 + 284 15 Se 4py -0.0013595800365467 -0.0070293997928464 + 285 15 Se 4pz 0.0172742069898531 0.0240100558446031 + 286 15 Se 4px -0.0195158100291340 0.0335702412013403 + 287 15 Se 4d-2 0.0115311898708649 0.0007563714665743 + 288 15 Se 4d-1 -0.0276419552650098 0.0005003603606489 + 289 15 Se 4d0 0.0038829672006383 0.0131496445540789 + 290 15 Se 4d+1 0.0113203947034349 0.0128394035703335 + 291 15 Se 4d+2 0.0052308609219328 0.0427401591063663 + + 292 16 Se 2s -0.0242891427251357 0.0203353205616546 + 293 16 Se 3s 0.0028547221437654 -0.0038045408900313 + 294 16 Se 3py 0.1122079162011133 -0.1132431331131045 + 295 16 Se 3pz -0.0717174380737405 -0.1553510552840517 + 296 16 Se 3px 0.0226416871700850 -0.0185357980142092 + 297 16 Se 4py -0.0267700115175684 -0.0082477813785606 + 298 16 Se 4pz 0.0457505123681349 0.0170111431345422 + 299 16 Se 4px 0.0314414586592631 -0.0076564549602950 + 300 16 Se 4d-2 0.0159549442575592 -0.0091806109407487 + 301 16 Se 4d-1 -0.0084646479984524 -0.0124556661442371 + 302 16 Se 4d0 0.0242923186779229 -0.0054689596182286 + 303 16 Se 4d+1 0.0047307462582530 -0.0261590627689586 + 304 16 Se 4d+2 -0.0175673046616950 -0.0171753925585270 + + 305 17 Cd 2s -0.0055413653932398 0.0790760653637893 + 306 17 Cd 3s -0.0007937337769406 -0.0003282304746811 + 307 17 Cd 3py 0.0838903473767697 0.0168656443087134 + 308 17 Cd 3pz 0.0947535752018905 -0.4989447652555793 + 309 17 Cd 3px -0.0714045160760955 0.0742471230148981 + 310 17 Cd 4py 0.0145774729998644 0.0041241722039926 + 311 17 Cd 4pz 0.0098730557435806 -0.0514653261478196 + 312 17 Cd 4px -0.0027305298834964 0.0156734750265712 + 313 17 Cd 4d-2 0.0290062993627240 -0.0051825003662803 + 314 17 Cd 4d-1 0.0080324252168040 0.0103825751159191 + 315 17 Cd 4d0 -0.0049201573377566 0.0101223466702292 + 316 17 Cd 4d+1 -0.0178322399294903 -0.0013721833484761 + 317 17 Cd 4d+2 -0.0122693058798476 -0.0201203456629320 + 318 17 Cd 5d-2 0.0532856408391032 -0.0315274322192367 + 319 17 Cd 5d-1 0.0194378708546485 0.0137745559415413 + 320 17 Cd 5d0 -0.0368594320775799 0.0618513413251417 + 321 17 Cd 5d+1 -0.0081478848000797 0.0111783906509315 + 322 17 Cd 5d+2 -0.0045682515299393 -0.0471601382368506 + 323 17 Cd 5f-3 -0.0017009912752858 0.0020522491292229 + 324 17 Cd 5f-2 -0.0011541788057937 0.0004258978121885 + 325 17 Cd 5f-1 0.0002772197747712 0.0010952942587587 + 326 17 Cd 5f0 -0.0000950721399629 -0.0030918094485864 + 327 17 Cd 5f+1 -0.0039294157157788 -0.0017574312598977 + 328 17 Cd 5f+2 -0.0022176776394638 0.0017990728664792 + 329 17 Cd 5f+3 0.0053242102270628 0.0001858473359506 + + 330 18 Cd 2s 0.0134607957992673 -0.0562130727781629 + 331 18 Cd 3s -0.0017631188343941 -0.0153078849862704 + 332 18 Cd 3py -0.1559725675995429 -0.0107098952980233 + 333 18 Cd 3pz 0.0116609493194412 -0.0789367794595034 + 334 18 Cd 3px -0.2762578714201807 0.0876657345401447 + 335 18 Cd 4py -0.0172565393512025 -0.0010935072798152 + 336 18 Cd 4pz 0.0114066928896209 -0.0109475401357899 + 337 18 Cd 4px -0.0219452095500617 0.0030517325984259 + 338 18 Cd 4d-2 0.0068227309299110 -0.0021056028130163 + 339 18 Cd 4d-1 0.0096850017906004 -0.0072618891855121 + 340 18 Cd 4d0 -0.0139335989971981 0.0153156866962902 + 341 18 Cd 4d+1 0.0043503495194960 0.0148554073092402 + 342 18 Cd 4d+2 -0.0005838340857711 -0.0007171432628914 + 343 18 Cd 5d-2 0.0627646845548700 -0.0384074331173408 + 344 18 Cd 5d-1 0.0452908538971827 -0.0297267355274371 + 345 18 Cd 5d0 -0.0306992966380955 0.0295664543673678 + 346 18 Cd 5d+1 0.0102504284183652 0.0309000655215818 + 347 18 Cd 5d+2 -0.0008896247497094 -0.0099895302023284 + 348 18 Cd 5f-3 -0.0015243950801455 0.0048973035074504 + 349 18 Cd 5f-2 0.0085016223397337 -0.0002109065694535 + 350 18 Cd 5f-1 0.0004077607027723 0.0037489339856700 + 351 18 Cd 5f0 -0.0037578437560416 0.0042004346485100 + 352 18 Cd 5f+1 -0.0019384288132273 0.0000585624119515 + 353 18 Cd 5f+2 0.0025962520121906 -0.0046032544815035 + 354 18 Cd 5f+3 -0.0049691898357892 0.0038713792923323 + + 355 19 Se 2s -0.0544582645313730 -0.0230090959510089 + 356 19 Se 3s 0.0119043131246738 0.0042302264462124 + 357 19 Se 3py -0.0810641972613970 -0.0202377151553019 + 358 19 Se 3pz 0.0240879356294221 -0.1857906981817979 + 359 19 Se 3px -0.0295864952693666 0.0422280489940403 + 360 19 Se 4py -0.0018477101954157 0.0482870587677500 + 361 19 Se 4pz 0.0143887593586562 0.0366643218073620 + 362 19 Se 4px 0.0066724568584900 -0.0118991536038647 + 363 19 Se 4d-2 -0.0097389910981958 -0.0022574031071550 + 364 19 Se 4d-1 0.0063413334306581 0.0295004488876194 + 365 19 Se 4d0 -0.0066990957586965 0.0053540016381285 + 366 19 Se 4d+1 -0.0026542051226111 0.0142565014679561 + 367 19 Se 4d+2 0.0277574346134611 -0.0062497145813167 + + 368 20 Se 2s 0.0293679385412956 0.0774164842896506 + 369 20 Se 3s -0.0055089987567447 -0.0158216556304962 + 370 20 Se 3py 0.0802636489375112 0.1671592391820649 + 371 20 Se 3pz 0.0212069102460133 0.1010987506440316 + 372 20 Se 3px -0.1196389446181519 -0.0052454366795140 + 373 20 Se 4py -0.0298539976301781 -0.0400030806796963 + 374 20 Se 4pz -0.0016958757852373 -0.0374128660365856 + 375 20 Se 4px 0.0281141851837238 -0.0077618556770338 + 376 20 Se 4d-2 0.0107977705322662 0.0135615590185310 + 377 20 Se 4d-1 -0.0128527037279893 0.0347047354657668 + 378 20 Se 4d0 -0.0145883684282593 0.0299550861772052 + 379 20 Se 4d+1 -0.0313667414080689 -0.0168955974346261 + 380 20 Se 4d+2 -0.0015984886804333 0.0240971660422409 + + 381 21 Se 2s -0.0651109113307695 -0.0560642416460046 + 382 21 Se 3s 0.0131473256696224 0.0111134184636478 + 383 21 Se 3py -0.1290196502300197 -0.0015635060588050 + 384 21 Se 3pz -0.0168402333406149 0.1343116120355221 + 385 21 Se 3px -0.0944233434854349 0.0631929473455546 + 386 21 Se 4py 0.0296978878004246 -0.0164082282968603 + 387 21 Se 4pz -0.0096300003548071 0.0006224184754610 + 388 21 Se 4px 0.0245821600389843 -0.0104738701359090 + 389 21 Se 4d-2 0.0023972564457259 0.0177814727827120 + 390 21 Se 4d-1 -0.0015528846729827 -0.0138057686518472 + 391 21 Se 4d0 0.0213755408041073 0.0037625487500064 + 392 21 Se 4d+1 -0.0010452694751920 0.0086256422858404 + 393 21 Se 4d+2 0.0211638816470932 -0.0231719751399816 + + 394 22 Cd 2s -0.1008766531144813 0.0206431494896726 + 395 22 Cd 3s -0.0109831444214936 -0.0001612185602144 + 396 22 Cd 3py -0.0879521376536389 -0.4091315835529373 + 397 22 Cd 3pz -0.0517642678348734 0.1949641985348036 + 398 22 Cd 3px 0.2030901580233813 0.2083376129704572 + 399 22 Cd 4py -0.0026569572872486 -0.0549631996767657 + 400 22 Cd 4pz -0.0084282228685726 0.0243015199524292 + 401 22 Cd 4px 0.0243731440841767 0.0109319812800850 + 402 22 Cd 4d-2 0.0172570467243618 0.0144127737100275 + 403 22 Cd 4d-1 0.0046265493072178 0.0163953959530325 + 404 22 Cd 4d0 -0.0103078247275104 0.0090600806061408 + 405 22 Cd 4d+1 -0.0189501628888381 0.0102429803400244 + 406 22 Cd 4d+2 -0.0058242560848654 0.0172688463778425 + 407 22 Cd 5d-2 0.0245145565792398 0.0719526946722535 + 408 22 Cd 5d-1 0.0234872370126705 0.0760330443149937 + 409 22 Cd 5d0 -0.0379167378601150 0.0683890708741434 + 410 22 Cd 5d+1 -0.0207269073145010 0.0202975335991055 + 411 22 Cd 5d+2 0.0115379349065342 -0.0032048410337993 + 412 22 Cd 5f-3 -0.0028559020897502 0.0021747361383813 + 413 22 Cd 5f-2 0.0045087113268542 0.0005403645744550 + 414 22 Cd 5f-1 0.0009062778393726 -0.0032704336531599 + 415 22 Cd 5f0 -0.0037932144591051 0.0029333652626687 + 416 22 Cd 5f+1 -0.0073864313302100 0.0046251845218491 + 417 22 Cd 5f+2 -0.0035083651201772 0.0022529728622707 + 418 22 Cd 5f+3 0.0002698315601096 -0.0099343697077599 + + 419 23 Se 2s 0.0327865823522129 0.0059372482886690 + 420 23 Se 3s -0.0065263580105918 -0.0036929140307165 + 421 23 Se 3py -0.0325777038050064 -0.1321363974823518 + 422 23 Se 3pz 0.0525714345426773 -0.0972848504503790 + 423 23 Se 3px 0.1158234141857297 0.0397926436788783 + 424 23 Se 4py 0.0190323492656661 -0.0091550455888351 + 425 23 Se 4pz -0.0191425433861824 -0.0028220758079188 + 426 23 Se 4px -0.0381413501758535 0.0065480647609427 + 427 23 Se 4d-2 0.0022801519640136 -0.0087547905755084 + 428 23 Se 4d-1 0.0119665511621939 0.0071855702586860 + 429 23 Se 4d0 -0.0013820078240621 -0.0148531958778810 + 430 23 Se 4d+1 -0.0135495316278831 0.0175724386629067 + 431 23 Se 4d+2 -0.0114490255346756 -0.0177942156022308 + + 432 24 Se 2s 0.0678424101848344 -0.0348407406027024 + 433 24 Se 3s -0.0142957275205482 0.0066226565903915 + 434 24 Se 3py 0.1320389671077734 -0.0237340789716520 + 435 24 Se 3pz 0.0804815529063157 -0.0722731238680380 + 436 24 Se 3px 0.0103830800542240 -0.0599373960102731 + 437 24 Se 4py -0.0449818787790997 0.0141713424190167 + 438 24 Se 4pz -0.0111750651719978 0.0219810615514729 + 439 24 Se 4px -0.0065743725311521 0.0180435837630235 + 440 24 Se 4d-2 -0.0073287522612475 0.0000303103494516 + 441 24 Se 4d-1 -0.0010829777977639 0.0091502698803371 + 442 24 Se 4d0 0.0194334325288257 -0.0169377603738153 + 443 24 Se 4d+1 -0.0170000836472122 0.0165781527405777 + 444 24 Se 4d+2 0.0204448169961227 -0.0103940883155440 + + 445 25 Cd 2s -0.0323747316228785 -0.0117219542246431 + 446 25 Cd 3s 0.0037010282186845 -0.0117167328111597 + 447 25 Cd 3py 0.1452046724937051 0.0401050233313608 + 448 25 Cd 3pz 0.1220582757051425 -0.0167998523266962 + 449 25 Cd 3px 0.1542688008548071 -0.2172756813218512 + 450 25 Cd 4py 0.0067297139623821 0.0013413601060699 + 451 25 Cd 4pz 0.0152356328891985 -0.0039318578521824 + 452 25 Cd 4px 0.0129638676813830 -0.0227960993672518 + 453 25 Cd 4d-2 -0.0033119289724979 -0.0000328533303521 + 454 25 Cd 4d-1 0.0101557596053332 0.0203591572476381 + 455 25 Cd 4d0 -0.0085265787088643 -0.0126534324258042 + 456 25 Cd 4d+1 -0.0153454783295218 0.0199647193186392 + 457 25 Cd 4d+2 0.0041802691292604 -0.0234558538041785 + 458 25 Cd 5d-2 -0.0058563465948157 -0.0056413234257610 + 459 25 Cd 5d-1 -0.0072523700854352 0.0245710692201384 + 460 25 Cd 5d0 -0.0283978079733460 0.0150798663446070 + 461 25 Cd 5d+1 -0.0194270790875625 -0.0060697041171107 + 462 25 Cd 5d+2 0.0098829283811952 0.0011979350467631 + 463 25 Cd 5f-3 0.0070426040743678 0.0057106815265485 + 464 25 Cd 5f-2 0.0002714108411174 -0.0034951944691439 + 465 25 Cd 5f-1 0.0123127180640635 -0.0019315671511731 + 466 25 Cd 5f0 -0.0021333443469331 0.0074382642068922 + 467 25 Cd 5f+1 -0.0047920816721026 0.0060194053509092 + 468 25 Cd 5f+2 -0.0015321844076497 -0.0028496888848629 + 469 25 Cd 5f+3 0.0034849322580566 -0.0043826551468455 + + 470 26 Cd 2s 0.1844872710832196 -0.1114216358090938 + 471 26 Cd 3s 0.0291098583356451 -0.0177545108103356 + 472 26 Cd 3py -0.0923456068931248 0.0448716897654684 + 473 26 Cd 3pz -0.1558699930670431 0.1218068944705509 + 474 26 Cd 3px 0.1250424851599267 -0.2056691175604028 + 475 26 Cd 4py -0.0167933460532514 0.0014648287368241 + 476 26 Cd 4pz -0.0181220982742669 0.0218005597894297 + 477 26 Cd 4px 0.0196035124509464 -0.0285545727121293 + 478 26 Cd 4d-2 -0.0197524313836168 0.0060673193383312 + 479 26 Cd 4d-1 -0.0127633161863240 0.0046083357176711 + 480 26 Cd 4d0 0.0168967916174149 -0.0071885075153924 + 481 26 Cd 4d+1 0.0024828785874324 -0.0141059972780276 + 482 26 Cd 4d+2 0.0269728411432674 -0.0087327667398462 + 483 26 Cd 5d-2 -0.0269616182185186 0.0102595942334846 + 484 26 Cd 5d-1 -0.0004220889721586 0.0214775672736290 + 485 26 Cd 5d0 -0.0089149026040974 -0.0150544538524689 + 486 26 Cd 5d+1 0.0090871917292859 -0.0139529089335435 + 487 26 Cd 5d+2 0.0330412814767337 -0.0188488237491573 + 488 26 Cd 5f-3 0.0007511885949487 0.0027668933011781 + 489 26 Cd 5f-2 0.0014919386355819 0.0012223384079581 + 490 26 Cd 5f-1 -0.0042490102646398 -0.0050384748193627 + 491 26 Cd 5f0 -0.0035486594863596 -0.0013003445330741 + 492 26 Cd 5f+1 -0.0056309136329113 -0.0018498011440634 + 493 26 Cd 5f+2 0.0008727770438356 -0.0050072360628713 + 494 26 Cd 5f+3 -0.0011550420852951 -0.0015251878670897 + + 143 144 + 0.0113956736464097 0.0176278068081568 + + 0.0000000000000000 0.0000000000000000 + + 1 1 Cd 2s 0.0619722338370429 0.2113737130815087 + 2 1 Cd 3s 0.0007197521699441 0.0206844174127322 + 3 1 Cd 3py -0.1068208384217813 0.0629054670883530 + 4 1 Cd 3pz -0.0023961849656255 0.0068870109877286 + 5 1 Cd 3px -0.2392141806051015 -0.2767240041383895 + 6 1 Cd 4py -0.0316904936005486 0.0040230273284136 + 7 1 Cd 4pz -0.0020155120440423 -0.0083567292952232 + 8 1 Cd 4px -0.0222269850346230 -0.0376721757787012 + 9 1 Cd 4d-2 -0.0054627301509631 0.0154690609520609 + 10 1 Cd 4d-1 0.0039873166741866 -0.0047807341424990 + 11 1 Cd 4d0 0.0091895581473103 0.0035497927891584 + 12 1 Cd 4d+1 -0.0127988167853496 -0.0049089247951695 + 13 1 Cd 4d+2 0.0178673673352502 0.0169986277600295 + 14 1 Cd 5d-2 0.0272204473428401 0.0159694752972095 + 15 1 Cd 5d-1 -0.0042282554085874 0.0235140776393498 + 16 1 Cd 5d0 0.0253898104558246 0.0047794987590689 + 17 1 Cd 5d+1 -0.0181441618172022 0.0285299600009674 + 18 1 Cd 5d+2 -0.0029469871943392 0.0075711171321058 + 19 1 Cd 5f-3 -0.0084619615749861 0.0009174717749962 + 20 1 Cd 5f-2 0.0090041216439276 -0.0077807391115948 + 21 1 Cd 5f-1 0.0027796286852080 0.0113629618763042 + 22 1 Cd 5f0 -0.0033605841067185 0.0065923253797175 + 23 1 Cd 5f+1 -0.0136821748861221 -0.0009774599926390 + 24 1 Cd 5f+2 -0.0039926290596179 -0.0083633424824117 + 25 1 Cd 5f+3 -0.0102727040565795 -0.0047010284511651 + + 26 2 Cd 2s 0.2004888782918985 0.0298205580968135 + 27 2 Cd 3s 0.0085577937692996 0.0018009869656208 + 28 2 Cd 3py -0.1426564397594228 0.0887558488695049 + 29 2 Cd 3pz -0.1066193286182751 0.0753775698610355 + 30 2 Cd 3px -0.1515591283603077 0.0574610182470184 + 31 2 Cd 4py -0.0188567020782194 0.0104876634136493 + 32 2 Cd 4pz -0.0223787989104191 0.0129022581295371 + 33 2 Cd 4px -0.0115685653766285 0.0014737317972184 + 34 2 Cd 4d-2 -0.0116424056864857 0.0086406570611173 + 35 2 Cd 4d-1 0.0084692534121636 0.0107401871802034 + 36 2 Cd 4d0 -0.0043062876992498 -0.0168225471734920 + 37 2 Cd 4d+1 -0.0057128088058871 -0.0073236193524324 + 38 2 Cd 4d+2 0.0112905789281497 -0.0003956651598047 + 39 2 Cd 5d-2 -0.0405669096328960 0.0215193820206756 + 40 2 Cd 5d-1 -0.0076581852571686 0.0386714590126786 + 41 2 Cd 5d0 0.0055567751372662 -0.0549279488209803 + 42 2 Cd 5d+1 -0.0068260513431386 -0.0206974094563029 + 43 2 Cd 5d+2 -0.0310591998353571 -0.0236786477501623 + 44 2 Cd 5f-3 0.0032881168681469 -0.0012101461619604 + 45 2 Cd 5f-2 -0.0139393374644154 0.0027654703886165 + 46 2 Cd 5f-1 -0.0055845097163687 0.0035826734603130 + 47 2 Cd 5f0 0.0054325086910015 -0.0003174700557190 + 48 2 Cd 5f+1 0.0016764356100210 0.0063208297711471 + 49 2 Cd 5f+2 0.0057163809641864 -0.0039887097860762 + 50 2 Cd 5f+3 0.0024701405210826 -0.0101312045097840 + + 51 3 Cd 2s 0.2133906597503546 -0.2757780951625080 + 52 3 Cd 3s 0.0257940378122001 -0.0350576738512606 + 53 3 Cd 3py -0.0181125042895170 0.1660760840228808 + 54 3 Cd 3pz -0.0310227644399775 -0.1517553889852800 + 55 3 Cd 3px 0.0345919497468877 -0.1108949557941003 + 56 3 Cd 4py 0.0012090416458693 0.0111583064316264 + 57 3 Cd 4pz -0.0020386481089965 -0.0134905624426038 + 58 3 Cd 4px 0.0010953499665282 -0.0082679602651206 + 59 3 Cd 4d-2 0.0260529002914928 0.0068070871861738 + 60 3 Cd 4d-1 -0.0191849479228431 -0.0050519076276987 + 61 3 Cd 4d0 -0.0027108251932902 -0.0024773938674515 + 62 3 Cd 4d+1 0.0147844852965686 0.0084552219617023 + 63 3 Cd 4d+2 -0.0217870076579903 -0.0017760551317932 + 64 3 Cd 5d-2 0.0074188898235072 0.0445802540194196 + 65 3 Cd 5d-1 -0.0547848956275254 -0.0248578818828364 + 66 3 Cd 5d0 -0.0144529316308791 0.0073103727967977 + 67 3 Cd 5d+1 0.0349306528089680 0.0029602964256400 + 68 3 Cd 5d+2 -0.0346610778447624 -0.0062050920024753 + 69 3 Cd 5f-3 -0.0079406264791060 -0.0049194683006471 + 70 3 Cd 5f-2 0.0029872261751684 -0.0127163538380935 + 71 3 Cd 5f-1 -0.0024912042043524 -0.0024292758507688 + 72 3 Cd 5f0 0.0025259024701116 0.0054220117938147 + 73 3 Cd 5f+1 -0.0011340240442536 -0.0066454225289413 + 74 3 Cd 5f+2 -0.0032262110535351 0.0010495692657283 + 75 3 Cd 5f+3 0.0078924666357839 -0.0022812205269954 + + 76 4 Se 2s -0.0872157280125046 0.0392770616229940 + 77 4 Se 3s 0.0162734114700263 -0.0087774656577161 + 78 4 Se 3py -0.1309499827683535 -0.0435782714714705 + 79 4 Se 3pz 0.1014242374754855 -0.0169582307542747 + 80 4 Se 3px -0.0005822048806940 0.0353661039984660 + 81 4 Se 4py 0.0272617079927930 0.0324208373580064 + 82 4 Se 4pz -0.0234884061971317 0.0082587250692656 + 83 4 Se 4px -0.0176844904676120 -0.0331165089885733 + 84 4 Se 4d-2 -0.0317974784792016 -0.0068704617371102 + 85 4 Se 4d-1 -0.0060154099902314 -0.0128811368205750 + 86 4 Se 4d0 0.0146097341856463 -0.0192098835081897 + 87 4 Se 4d+1 0.0203239963172722 -0.0014973741514931 + 88 4 Se 4d+2 0.0104624467138696 0.0238625214960771 + + 89 5 Se 2s 0.0982424793947009 -0.0486761992597568 + 90 5 Se 3s -0.0179439528425280 0.0103971721636783 + 91 5 Se 3py 0.0817687448450543 0.1635832315589164 + 92 5 Se 3pz 0.0704106910131883 -0.1011835714435409 + 93 5 Se 3px -0.1478847706476646 -0.0287040330576413 + 94 5 Se 4py -0.0389799141107336 -0.0218818378539946 + 95 5 Se 4pz -0.0156814136857204 0.0395431253917057 + 96 5 Se 4px 0.0400566995877758 0.0192033146310591 + 97 5 Se 4d-2 0.0169673271071766 0.0305289715400635 + 98 5 Se 4d-1 0.0010026100319506 -0.0032105169692673 + 99 5 Se 4d0 -0.0062719082836787 0.0159407670985491 + 100 5 Se 4d+1 0.0081389611025462 -0.0090497237965857 + 101 5 Se 4d+2 -0.0007466945623762 0.0069883299086300 + + 102 6 Se 2s 0.0780926272556185 -0.1387057002884140 + 103 6 Se 3s -0.0168191409344233 0.0306459523653199 + 104 6 Se 3py -0.0419848806249051 0.0820378665728856 + 105 6 Se 3pz -0.0737749694365909 0.0204096032523734 + 106 6 Se 3px -0.0849884635936284 0.1018497648205593 + 107 6 Se 4py -0.0142971711804579 -0.0183224593018346 + 108 6 Se 4pz 0.0300850236526587 -0.0005236034365908 + 109 6 Se 4px 0.0193064609031671 -0.0484186738778539 + 110 6 Se 4d-2 0.0095384841996383 0.0091785355316353 + 111 6 Se 4d-1 0.0085992878894782 0.0210394831240732 + 112 6 Se 4d0 -0.0040324265876455 0.0022431794398243 + 113 6 Se 4d+1 -0.0182796633957801 0.0049755827013114 + 114 6 Se 4d+2 0.0049596013355021 0.0016885643135455 + + 115 7 Se 2s -0.1026891672500511 0.0669427214682502 + 116 7 Se 3s 0.0178333315501849 -0.0134624199202976 + 117 7 Se 3py -0.0504698156801852 -0.0151451628688229 + 118 7 Se 3pz -0.0151437469139776 -0.0486176071333931 + 119 7 Se 3px 0.0401256892768254 -0.0102417043907223 + 120 7 Se 4py 0.0188233583208829 0.0091521055786343 + 121 7 Se 4pz -0.0182739555878571 0.0263213445372785 + 122 7 Se 4px -0.0190080535362875 0.0014397307835471 + 123 7 Se 4d-2 0.0118569761493871 -0.0122058258291733 + 124 7 Se 4d-1 -0.0265047137024312 -0.0021906996814465 + 125 7 Se 4d0 -0.0218368029874224 -0.0018149957616066 + 126 7 Se 4d+1 0.0091109701724372 0.0039078124478424 + 127 7 Se 4d+2 0.0068931444765795 -0.0055322905201894 + + 128 8 Cd 2s -0.0193625736879210 0.0255297474662615 + 129 8 Cd 3s -0.0047069933088432 0.0074126883672018 + 130 8 Cd 3py -0.0653071878933155 0.0009863894217941 + 131 8 Cd 3pz -0.1974464347067568 0.0407907804836594 + 132 8 Cd 3px 0.1263083876152857 0.1310395705383077 + 133 8 Cd 4py -0.0005722317905727 -0.0056948772416524 + 134 8 Cd 4pz -0.0261792268581614 0.0078646829018022 + 135 8 Cd 4px 0.0271395873449927 0.0101249733283238 + 136 8 Cd 4d-2 0.0236427716094802 -0.0119323886107997 + 137 8 Cd 4d-1 -0.0114948073333756 -0.0009416725464847 + 138 8 Cd 4d0 -0.0083478781523806 0.0241794117780320 + 139 8 Cd 4d+1 0.0202374043692532 -0.0123136356519961 + 140 8 Cd 4d+2 0.0039495439922152 -0.0014935695400847 + 141 8 Cd 5d-2 0.0473532600569758 -0.0075262706742272 + 142 8 Cd 5d-1 -0.0320993828549747 0.0051080447598819 + 143 8 Cd 5d0 -0.0273432817736361 0.0532156212064996 + 144 8 Cd 5d+1 0.0619748008391675 -0.0337388732242286 + 145 8 Cd 5d+2 0.0474391361591146 0.0123105278270632 + 146 8 Cd 5f-3 -0.0024991494716524 -0.0033863862281611 + 147 8 Cd 5f-2 0.0075482522318634 -0.0008042638028524 + 148 8 Cd 5f-1 -0.0085954680159551 0.0047924102919284 + 149 8 Cd 5f0 0.0058366107473938 -0.0006143698957421 + 150 8 Cd 5f+1 -0.0036691629525207 -0.0026958083687294 + 151 8 Cd 5f+2 -0.0118889251774620 0.0015286125991778 + 152 8 Cd 5f+3 0.0097983778298396 0.0012820434085893 + + 153 9 Cd 2s -0.0501868069707881 -0.0140754456232991 + 154 9 Cd 3s -0.0105952515099794 0.0031851100355588 + 155 9 Cd 3py -0.1970186527132803 -0.0901042132166782 + 156 9 Cd 3pz 0.0460741193913551 0.0574859192026962 + 157 9 Cd 3px 0.0358222487649716 -0.1371737198046921 + 158 9 Cd 4py -0.0269269042550197 -0.0102491927341288 + 159 9 Cd 4pz 0.0017603685723001 0.0105927811888963 + 160 9 Cd 4px 0.0113855296130760 -0.0245722077631819 + 161 9 Cd 4d-2 -0.0055953026290656 -0.0126374625862832 + 162 9 Cd 4d-1 -0.0149045078884210 -0.0025343979391800 + 163 9 Cd 4d0 -0.0087976272206965 0.0022504564546594 + 164 9 Cd 4d+1 0.0010954137257930 -0.0143758314626730 + 165 9 Cd 4d+2 0.0032459065523794 0.0013263054345875 + 166 9 Cd 5d-2 -0.0154443851180939 -0.0087904845500472 + 167 9 Cd 5d-1 -0.0418457979453019 -0.0021906858074643 + 168 9 Cd 5d0 0.0011221425389176 -0.0251220252441862 + 169 9 Cd 5d+1 0.0016112249169485 -0.0132623769810393 + 170 9 Cd 5d+2 0.0066596090957323 -0.0180562382900258 + 171 9 Cd 5f-3 -0.0040376583316651 0.0017177067821249 + 172 9 Cd 5f-2 -0.0053113500142694 -0.0098487452414380 + 173 9 Cd 5f-1 0.0032299605365729 0.0083617901355256 + 174 9 Cd 5f0 -0.0016585126327242 0.0083555032582017 + 175 9 Cd 5f+1 -0.0009070025120689 -0.0007155870751777 + 176 9 Cd 5f+2 0.0105670160258948 -0.0017606481928621 + 177 9 Cd 5f+3 -0.0058502794646461 0.0087726999378004 + + 178 10 Se 2s -0.1000065113391363 0.1138863631519735 + 179 10 Se 3s 0.0225480516139411 -0.0234360453074812 + 180 10 Se 3py -0.0763218349049001 -0.1111910033089834 + 181 10 Se 3pz 0.0433010194186077 -0.0156452514948413 + 182 10 Se 3px -0.0411812870177164 -0.0191628846688089 + 183 10 Se 4py 0.0091169858995936 0.0114840246435032 + 184 10 Se 4pz -0.0362572364251500 0.0146825035987258 + 185 10 Se 4px 0.0135849481789452 -0.0290858648576415 + 186 10 Se 4d-2 0.0017739683400671 -0.0127306785661537 + 187 10 Se 4d-1 0.0101846201773247 -0.0202426436774706 + 188 10 Se 4d0 -0.0081395760967531 0.0146576123844712 + 189 10 Se 4d+1 -0.0120397326294821 -0.0110870764334415 + 190 10 Se 4d+2 -0.0112696141058304 0.0069196924767165 + + 191 11 Se 2s -0.0696456491182595 0.0424345581070441 + 192 11 Se 3s 0.0139106573736231 -0.0059486929774239 + 193 11 Se 3py -0.0691051283012004 -0.0741404705292571 + 194 11 Se 3pz -0.0082411802978575 -0.0710817212428887 + 195 11 Se 3px 0.0783262022672502 -0.2438540584773282 + 196 11 Se 4py 0.0286117108763782 0.0216876439643366 + 197 11 Se 4pz 0.0059464360243104 0.0476659712587140 + 198 11 Se 4px -0.0353990139631482 0.0403140113233606 + 199 11 Se 4d-2 -0.0237650665029630 0.0049916553720223 + 200 11 Se 4d-1 0.0137901324874330 -0.0014614424264588 + 201 11 Se 4d0 0.0010195200894446 -0.0491080062260044 + 202 11 Se 4d+1 -0.0105997258355954 -0.0000003789691563 + 203 11 Se 4d+2 -0.0173440825264722 -0.0075437184885126 + + 204 12 Cd 2s -0.1074506357777627 -0.0847934799751921 + 205 12 Cd 3s -0.0132355435511401 0.0011647758565696 + 206 12 Cd 3py 0.0930957373473741 -0.3192598334085769 + 207 12 Cd 3pz 0.0010911607194543 0.4329332150501097 + 208 12 Cd 3px -0.2353181273888875 -0.2008185717902255 + 209 12 Cd 4py 0.0025537296810516 -0.0446105333141372 + 210 12 Cd 4pz -0.0049993013454777 0.0609227258067740 + 211 12 Cd 4px -0.0265598354253754 -0.0266554843868689 + 212 12 Cd 4d-2 -0.0088946728537442 0.0224688540593966 + 213 12 Cd 4d-1 0.0043858077932048 -0.0165273676412829 + 214 12 Cd 4d0 -0.0184623855928471 -0.0077224155067817 + 215 12 Cd 4d+1 -0.0182986298360905 -0.0174174059546630 + 216 12 Cd 4d+2 -0.0197564969296502 0.0153364039435510 + 217 12 Cd 5d-2 0.0295674081982310 0.0730185624381136 + 218 12 Cd 5d-1 0.0041115044860658 -0.0456092260443314 + 219 12 Cd 5d0 -0.0669695270535045 0.0033727725936959 + 220 12 Cd 5d+1 -0.0139205586222115 -0.0424943155171324 + 221 12 Cd 5d+2 -0.0078713849712281 0.0169570941549779 + 222 12 Cd 5f-3 -0.0041888054931890 -0.0050180872141903 + 223 12 Cd 5f-2 -0.0011452566380175 -0.0091840977516563 + 224 12 Cd 5f-1 -0.0001335105331779 -0.0149843597924768 + 225 12 Cd 5f0 0.0061534998623001 -0.0085135154654080 + 226 12 Cd 5f+1 0.0004892650571219 0.0042736707209844 + 227 12 Cd 5f+2 0.0055185842043832 0.0094971548543630 + 228 12 Cd 5f+3 0.0069913057657856 -0.0059191133154745 + + 229 13 Cd 2s -0.2000829628372923 -0.0090030705340390 + 230 13 Cd 3s -0.0131637856078330 -0.0051566228618168 + 231 13 Cd 3py -0.1716745007594235 0.1278289247559440 + 232 13 Cd 3pz -0.1094665340774211 -0.2013563130795187 + 233 13 Cd 3px -0.1740511817364567 0.0486738921353384 + 234 13 Cd 4py -0.0210251807186363 0.0152545770056445 + 235 13 Cd 4pz -0.0164696025060628 -0.0232607150576868 + 236 13 Cd 4px -0.0085982136284812 0.0111002554581312 + 237 13 Cd 4d-2 -0.0212734719994296 -0.0036867509053256 + 238 13 Cd 4d-1 0.0041986565252347 -0.0050099769864544 + 239 13 Cd 4d0 -0.0021389201967499 -0.0262035406752537 + 240 13 Cd 4d+1 0.0222508203166288 0.0190687697655352 + 241 13 Cd 4d+2 0.0101056939383779 0.0062309931891706 + 242 13 Cd 5d-2 -0.0529694495800571 -0.0201026478541549 + 243 13 Cd 5d-1 -0.0113944431398821 -0.0276813294559722 + 244 13 Cd 5d0 -0.0360377362680463 -0.0576135288103184 + 245 13 Cd 5d+1 0.0522033049682502 0.0177026884611744 + 246 13 Cd 5d+2 0.0197171017163537 0.0154707818060528 + 247 13 Cd 5f-3 0.0008361247612347 -0.0063980081463037 + 248 13 Cd 5f-2 0.0026547449703096 -0.0018401279138884 + 249 13 Cd 5f-1 0.0047475679421559 0.0116947314418117 + 250 13 Cd 5f0 -0.0039646742064706 -0.0066603349445595 + 251 13 Cd 5f+1 -0.0034628326778238 0.0004110716136836 + 252 13 Cd 5f+2 0.0021069473663229 0.0067659749628832 + 253 13 Cd 5f+3 -0.0044940793296146 -0.0142716627830313 + + 254 14 Cd 2s -0.0111498042971217 -0.0011774458043810 + 255 14 Cd 3s -0.0115501801471468 0.0035989459598104 + 256 14 Cd 3py 0.1271742046356948 -0.0691167371614963 + 257 14 Cd 3pz -0.2030076856643174 0.0265761142180227 + 258 14 Cd 3px -0.0787542009689910 -0.0221452788272569 + 259 14 Cd 4py 0.0104256938234251 -0.0111578351102883 + 260 14 Cd 4pz -0.0235228547610185 0.0053777016866359 + 261 14 Cd 4px -0.0095983729558513 0.0009610388317129 + 262 14 Cd 4d-2 -0.0033774486246229 -0.0027606805420756 + 263 14 Cd 4d-1 -0.0109802286648684 -0.0033381432235009 + 264 14 Cd 4d0 -0.0014951825441399 -0.0000464214775922 + 265 14 Cd 4d+1 -0.0038808558617982 0.0128597105392557 + 266 14 Cd 4d+2 -0.0148056699944855 0.0073071242405949 + 267 14 Cd 5d-2 -0.0076552952435982 0.0059292712181297 + 268 14 Cd 5d-1 -0.0075253670901346 0.0042062609711462 + 269 14 Cd 5d0 -0.0115565666819316 -0.0149854465435683 + 270 14 Cd 5d+1 -0.0213204050294767 0.0088469173744220 + 271 14 Cd 5d+2 -0.0387690757631986 0.0176941361348914 + 272 14 Cd 5f-3 -0.0025329325394145 0.0014411183772384 + 273 14 Cd 5f-2 -0.0034125139723243 0.0019396218205873 + 274 14 Cd 5f-1 0.0044781106138848 0.0011171576564336 + 275 14 Cd 5f0 0.0037088365608964 0.0002417054129814 + 276 14 Cd 5f+1 0.0009151321228337 0.0018631555703431 + 277 14 Cd 5f+2 -0.0058913459901188 0.0040097772842410 + 278 14 Cd 5f+3 -0.0071507058893591 0.0034402784475271 + + 279 15 Se 2s 0.0378823151914987 -0.0259783100096999 + 280 15 Se 3s -0.0072755925982267 0.0059244140561431 + 281 15 Se 3py 0.0435479631693341 -0.0039569378901973 + 282 15 Se 3pz 0.0159303056948914 -0.0422741753631411 + 283 15 Se 3px -0.1142410007712828 0.0381623654089737 + 284 15 Se 4py -0.0178220858264146 -0.0022842979395041 + 285 15 Se 4pz -0.0087374911165829 0.0209407847778258 + 286 15 Se 4px 0.0223972542129145 0.0091763317580367 + 287 15 Se 4d-2 -0.0185297516376424 -0.0039972470909298 + 288 15 Se 4d-1 -0.0251898102430750 -0.0005867833499572 + 289 15 Se 4d0 -0.0291321259736276 -0.0079948776545370 + 290 15 Se 4d+1 -0.0246770648479146 0.0209204829352703 + 291 15 Se 4d+2 0.0155717443241420 0.0071063365345100 + + 292 16 Se 2s -0.0056589256394387 0.0928152188530248 + 293 16 Se 3s 0.0024279741167945 -0.0196901049049024 + 294 16 Se 3py -0.0667316665000210 0.0267061880613811 + 295 16 Se 3pz -0.0141048750478908 0.1845698024677759 + 296 16 Se 3px -0.0378885048672954 0.0377556800231160 + 297 16 Se 4py 0.0133981580707407 0.0199807022237289 + 298 16 Se 4pz -0.0150645875622700 -0.0557388949395373 + 299 16 Se 4px -0.0004253078964130 -0.0108796845791869 + 300 16 Se 4d-2 0.0163313849386598 0.0115733060290503 + 301 16 Se 4d-1 0.0149079773307067 0.0118645715851346 + 302 16 Se 4d0 -0.0055219495367882 -0.0050651147518749 + 303 16 Se 4d+1 0.0000065109857712 0.0084609081743977 + 304 16 Se 4d+2 0.0000094426328985 0.0190400433991894 + + 305 17 Cd 2s -0.0275204146000749 -0.1402768934833472 + 306 17 Cd 3s 0.0174467592782372 -0.0185755668816845 + 307 17 Cd 3py -0.0453969164224342 -0.0526235789810344 + 308 17 Cd 3pz -0.1187220560909021 0.2259946059790946 + 309 17 Cd 3px -0.0187310340513713 0.0996062756631650 + 310 17 Cd 4py -0.0008344301360762 0.0052873474368809 + 311 17 Cd 4pz -0.0136915295440821 0.0160814181905929 + 312 17 Cd 4px -0.0063714141502733 0.0046560066890248 + 313 17 Cd 4d-2 -0.0151209088853148 -0.0056604385645669 + 314 17 Cd 4d-1 0.0107692345093579 -0.0034358453698148 + 315 17 Cd 4d0 -0.0056798631043354 -0.0050155056634069 + 316 17 Cd 4d+1 0.0281681255566177 0.0044038941674787 + 317 17 Cd 4d+2 -0.0123680653627120 -0.0046456341390015 + 318 17 Cd 5d-2 -0.0206039879263258 0.0300226770998876 + 319 17 Cd 5d-1 0.0185727136623799 -0.0020700790807146 + 320 17 Cd 5d0 -0.0141787355013422 -0.0104260380624838 + 321 17 Cd 5d+1 0.0250630205414453 -0.0001025479225274 + 322 17 Cd 5d+2 -0.0175494555039853 -0.0135208887934937 + 323 17 Cd 5f-3 -0.0051771175114081 -0.0012480062785975 + 324 17 Cd 5f-2 -0.0007232896771429 -0.0005593409637572 + 325 17 Cd 5f-1 -0.0006841001365524 -0.0014928709613859 + 326 17 Cd 5f0 0.0041766441010946 0.0045298768885255 + 327 17 Cd 5f+1 0.0051675243587244 0.0038385195965397 + 328 17 Cd 5f+2 0.0003144519112008 -0.0012380834396184 + 329 17 Cd 5f+3 -0.0041301400669796 0.0077895767811527 + + 330 18 Cd 2s 0.0376389772415001 0.2025866506698077 + 331 18 Cd 3s 0.0107853406129128 0.0283259303881632 + 332 18 Cd 3py 0.0635828200388884 0.1528867622559053 + 333 18 Cd 3pz -0.0709169221804549 0.2185970650760836 + 334 18 Cd 3px -0.0934725757034229 -0.4020835215639703 + 335 18 Cd 4py 0.0087245053063599 0.0283545036271560 + 336 18 Cd 4pz -0.0019125748019879 0.0181448376834625 + 337 18 Cd 4px -0.0107254737956508 -0.0492358835717435 + 338 18 Cd 4d-2 0.0128819267347427 0.0160815088448404 + 339 18 Cd 4d-1 0.0024904569761168 0.0057378596321947 + 340 18 Cd 4d0 0.0079952213755759 -0.0173524351471694 + 341 18 Cd 4d+1 -0.0031322495731845 0.0075309631873909 + 342 18 Cd 4d+2 0.0056985561661356 -0.0029143921049936 + 343 18 Cd 5d-2 0.0435788070389444 0.0394537753086184 + 344 18 Cd 5d-1 0.0150030161692198 -0.0148510950770505 + 345 18 Cd 5d0 0.0137304209753000 -0.0411028187139893 + 346 18 Cd 5d+1 -0.0135611717208559 0.0039474221900610 + 347 18 Cd 5d+2 0.0327959493107257 -0.0029438831445045 + 348 18 Cd 5f-3 -0.0015888729651830 -0.0066692683859242 + 349 18 Cd 5f-2 0.0072965801048490 -0.0105363451382150 + 350 18 Cd 5f-1 0.0078945704408043 0.0006477258019237 + 351 18 Cd 5f0 0.0003678286614274 0.0039081792266807 + 352 18 Cd 5f+1 0.0096592335938505 -0.0077023143997452 + 353 18 Cd 5f+2 0.0005901009778490 0.0094793861341303 + 354 18 Cd 5f+3 -0.0102183890875164 0.0015258200360115 + + 355 19 Se 2s 0.0533474415547820 -0.0084994521698211 + 356 19 Se 3s -0.0078502999778195 0.0013242702434769 + 357 19 Se 3py -0.0589758983825144 -0.0795331022142512 + 358 19 Se 3pz -0.0480087253097372 0.1427737737712562 + 359 19 Se 3px -0.0805424482358863 -0.0423727312073131 + 360 19 Se 4py 0.0221113281040071 0.0148918571024455 + 361 19 Se 4pz 0.0092123422932500 -0.0274244743084599 + 362 19 Se 4px -0.0014323205417592 -0.0060458557305898 + 363 19 Se 4d-2 0.0121048590648880 -0.0213225435584935 + 364 19 Se 4d-1 0.0273655107795645 0.0012208370895691 + 365 19 Se 4d0 0.0136275776356180 -0.0199659048412147 + 366 19 Se 4d+1 0.0044253222830859 -0.0066750687429590 + 367 19 Se 4d+2 -0.0199523899226659 -0.0047244322472490 + + 368 20 Se 2s -0.0682681530294879 -0.0288241500109393 + 369 20 Se 3s 0.0141285952785334 0.0060886533505566 + 370 20 Se 3py 0.0983523109704011 0.1764779744898408 + 371 20 Se 3pz 0.2308303821060466 -0.2275303992440057 + 372 20 Se 3px 0.3197677215618904 0.1088005219220129 + 373 20 Se 4py -0.0240835733498394 -0.0640356589075712 + 374 20 Se 4pz -0.0915480205336276 0.0573379170664348 + 375 20 Se 4px -0.1076475081300554 -0.0344088043459549 + 376 20 Se 4d-2 0.0076925446852413 0.0614241403905831 + 377 20 Se 4d-1 -0.0124107746533765 -0.0126194840389726 + 378 20 Se 4d0 0.0078586344800813 -0.0158093292636329 + 379 20 Se 4d+1 0.0370069965994215 -0.0109871462549240 + 380 20 Se 4d+2 -0.0169718573184342 -0.0015750145241845 + + 381 21 Se 2s -0.1143350413299004 0.0114862468357691 + 382 21 Se 3s 0.0234400598273460 -0.0022744204742309 + 383 21 Se 3py -0.0093119318469403 -0.0061270748584590 + 384 21 Se 3pz -0.0215509097230220 -0.0256663547953070 + 385 21 Se 3px -0.0158672403115889 0.0795935253032035 + 386 21 Se 4py -0.0013654388089359 -0.0076129131775789 + 387 21 Se 4pz -0.0189639686416336 0.0441705374142139 + 388 21 Se 4px 0.0024324008886396 -0.0226550108497781 + 389 21 Se 4d-2 0.0007431420772740 -0.0011789041625324 + 390 21 Se 4d-1 -0.0029266036973461 -0.0234252530999030 + 391 21 Se 4d0 0.0306836167644855 0.0034164812210386 + 392 21 Se 4d+1 -0.0201198986884834 0.0188787712911166 + 393 21 Se 4d+2 0.0101867506158525 -0.0114817923513123 + + 394 22 Cd 2s -0.0740011859153743 0.1684517441685150 + 395 22 Cd 3s -0.0117514284766416 0.0201211410442112 + 396 22 Cd 3py 0.1730496639165087 -0.2571198384219370 + 397 22 Cd 3pz -0.2761454352676428 0.1581594535399350 + 398 22 Cd 3px 0.0933587546937813 0.1299765732557258 + 399 22 Cd 4py 0.0104738794957470 -0.0314531150624551 + 400 22 Cd 4pz -0.0293626005780127 0.0238433074140658 + 401 22 Cd 4px -0.0134109567337446 0.0153074460148735 + 402 22 Cd 4d-2 0.0012452093798305 0.0188965527345042 + 403 22 Cd 4d-1 -0.0283891578013595 -0.0011230119427573 + 404 22 Cd 4d0 0.0072572416924060 -0.0059045176346596 + 405 22 Cd 4d+1 -0.0123576247884695 -0.0121627149893696 + 406 22 Cd 4d+2 0.0152964423778440 -0.0134293597684410 + 407 22 Cd 5d-2 0.0005599505902495 0.0511042730911271 + 408 22 Cd 5d-1 -0.0542694764590404 0.0127277247021619 + 409 22 Cd 5d0 0.0495223317075895 0.0543142841965992 + 410 22 Cd 5d+1 -0.0139872559118060 -0.0641191312326305 + 411 22 Cd 5d+2 -0.0042793804086122 -0.0238576721246181 + 412 22 Cd 5f-3 -0.0059912823804359 -0.0010115334832928 + 413 22 Cd 5f-2 -0.0011474742177818 0.0025895851697111 + 414 22 Cd 5f-1 0.0025913298223176 -0.0028714410991520 + 415 22 Cd 5f0 -0.0025277604761143 -0.0053654635438571 + 416 22 Cd 5f+1 0.0104797993954116 -0.0043749022746179 + 417 22 Cd 5f+2 0.0020323212828525 0.0000895984755962 + 418 22 Cd 5f+3 -0.0113129885804429 -0.0064067584653685 + + 419 23 Se 2s 0.0430173963924316 -0.0291699826788830 + 420 23 Se 3s -0.0066592186595560 0.0053218848355645 + 421 23 Se 3py 0.0758936628189177 0.0003683774904428 + 422 23 Se 3pz -0.0746697241017137 0.1231800251567773 + 423 23 Se 3px -0.0699891356961641 -0.0327338731242268 + 424 23 Se 4py -0.0397765337032354 -0.0178335459733245 + 425 23 Se 4pz 0.0162294162928462 -0.0430462178255438 + 426 23 Se 4px 0.0013223766074826 0.0149576418432359 + 427 23 Se 4d-2 -0.0350366590402824 -0.0204268349267225 + 428 23 Se 4d-1 -0.0205029423238596 0.0188918351175333 + 429 23 Se 4d0 0.0249159147689438 -0.0177243203333481 + 430 23 Se 4d+1 0.0051903997210460 -0.0190357321787983 + 431 23 Se 4d+2 0.0116827622574499 -0.0028600310541347 + + 432 24 Se 2s 0.1558433298595461 0.0094439675258860 + 433 24 Se 3s -0.0322619306817376 -0.0033008782002083 + 434 24 Se 3py 0.0749424462641450 -0.0491803343845299 + 435 24 Se 3pz -0.0556357780362809 0.0413361734279526 + 436 24 Se 3px 0.0044364464081552 -0.0747148134086868 + 437 24 Se 4py -0.0511092666717793 -0.0230344896824662 + 438 24 Se 4pz -0.0147589229553207 -0.0002600345051304 + 439 24 Se 4px -0.0098078273242901 0.0447308133039821 + 440 24 Se 4d-2 0.0038463734887901 0.0060552570547008 + 441 24 Se 4d-1 0.0061092563990300 0.0152408731446254 + 442 24 Se 4d0 -0.0240050104504278 -0.0215969490203006 + 443 24 Se 4d+1 -0.0112982144921736 -0.0005108088643051 + 444 24 Se 4d+2 0.0209491594583621 0.0229986603291153 + + 445 25 Cd 2s -0.1243485117269592 -0.0657488918152689 + 446 25 Cd 3s -0.0056225178809961 -0.0110552236918914 + 447 25 Cd 3py -0.1587640026719999 0.1113494745300361 + 448 25 Cd 3pz -0.2877427151289847 -0.0353398080503378 + 449 25 Cd 3px -0.4230877598132703 -0.0612739420433365 + 450 25 Cd 4py -0.0287659854227867 0.0070122784110739 + 451 25 Cd 4pz -0.0340167346935450 -0.0035097208202503 + 452 25 Cd 4px -0.0584985239914624 -0.0054991909803060 + 453 25 Cd 4d-2 0.0049009944632911 -0.0007735067009496 + 454 25 Cd 4d-1 0.0097461044598440 0.0141438081640401 + 455 25 Cd 4d0 0.0140338474359702 -0.0371968027417757 + 456 25 Cd 4d+1 0.0293111888584337 -0.0076632159106429 + 457 25 Cd 4d+2 0.0117520955792108 -0.0004188105133861 + 458 25 Cd 5d-2 -0.0108718469848878 0.0290103739010428 + 459 25 Cd 5d-1 0.0257945415376810 0.0154304320038977 + 460 25 Cd 5d0 0.0034898874301250 -0.0848295825140983 + 461 25 Cd 5d+1 0.0967477321989979 0.0233009700778547 + 462 25 Cd 5d+2 0.0168102649000862 -0.0166718725554835 + 463 25 Cd 5f-3 0.0046762822629305 -0.0047824136056007 + 464 25 Cd 5f-2 -0.0019596119530116 0.0025261760324397 + 465 25 Cd 5f-1 0.0079046496941341 0.0027683621732393 + 466 25 Cd 5f0 -0.0023556889795862 -0.0133347024102300 + 467 25 Cd 5f+1 0.0005244429345279 -0.0108547562322316 + 468 25 Cd 5f+2 -0.0028248592887678 0.0009488576144980 + 469 25 Cd 5f+3 0.0088502639124581 -0.0082655500471002 + + 470 26 Cd 2s 0.0901970643038802 0.0163641619055032 + 471 26 Cd 3s 0.0151007115437473 0.0093931400519196 + 472 26 Cd 3py -0.1315052306584956 -0.1113646685019747 + 473 26 Cd 3pz -0.2643477434112773 0.0453194215495066 + 474 26 Cd 3px 0.0520375821413894 0.0236560834908489 + 475 26 Cd 4py -0.0305627407908333 -0.0309658840157462 + 476 26 Cd 4pz -0.0434384264428423 0.0132459701117455 + 477 26 Cd 4px 0.0021360136563976 0.0039311403659747 + 478 26 Cd 4d-2 0.0006105472275292 0.0150565008798115 + 479 26 Cd 4d-1 -0.0173764286387494 0.0065555781738491 + 480 26 Cd 4d0 -0.0014591693707985 0.0070885268454040 + 481 26 Cd 4d+1 0.0195176203309680 -0.0111775700718080 + 482 26 Cd 4d+2 0.0124858428551341 -0.0064730473147062 + 483 26 Cd 5d-2 -0.0159588374391814 -0.0134753760614116 + 484 26 Cd 5d-1 -0.0296216630888088 0.0273653647725881 + 485 26 Cd 5d0 -0.0163082471655753 0.0287967985336799 + 486 26 Cd 5d+1 0.0282457297949478 -0.0219138523111558 + 487 26 Cd 5d+2 -0.0151370491916804 -0.0355691752643745 + 488 26 Cd 5f-3 0.0026897327746197 0.0059746152466782 + 489 26 Cd 5f-2 0.0007936186106124 -0.0036442266795580 + 490 26 Cd 5f-1 -0.0101843455314589 -0.0101568618041979 + 491 26 Cd 5f0 -0.0130430638183836 0.0009395879855716 + 492 26 Cd 5f+1 -0.0105632288975003 0.0021039016587504 + 493 26 Cd 5f+2 0.0003790292382770 -0.0108818404349042 + 494 26 Cd 5f+3 -0.0017144964085681 0.0007982011571306 + + 145 146 + 0.0234043091301596 0.0311898431815645 + + 0.0000000000000000 0.0000000000000000 + + 1 1 Cd 2s -0.0209975033576780 0.0011370952392048 + 2 1 Cd 3s -0.0034055476211452 0.0086859909303548 + 3 1 Cd 3py -0.0292318105278159 -0.1496346939798313 + 4 1 Cd 3pz -0.1122875402568385 0.1317725232581113 + 5 1 Cd 3px -0.1338947209635282 0.1756751470084647 + 6 1 Cd 4py 0.0031536249484153 -0.0290613303827129 + 7 1 Cd 4pz -0.0038536514080224 0.0084328277953286 + 8 1 Cd 4px -0.0111334717321806 0.0255932145654329 + 9 1 Cd 4d-2 -0.0212384079233644 0.0194279219653985 + 10 1 Cd 4d-1 0.0166515283649681 0.0078777435649704 + 11 1 Cd 4d0 -0.0224804889553021 0.0208074491132551 + 12 1 Cd 4d+1 0.0029662307049669 0.0072335287827090 + 13 1 Cd 4d+2 0.0002060503067446 0.0085404799632733 + 14 1 Cd 5d-2 -0.0427513828439320 0.0284814847566205 + 15 1 Cd 5d-1 0.0301295798522218 0.0116810640920201 + 16 1 Cd 5d0 -0.0233983225222907 0.0569584453059415 + 17 1 Cd 5d+1 -0.0082069512964163 0.0328200776048354 + 18 1 Cd 5d+2 -0.0202248235877665 0.0209327106056389 + 19 1 Cd 5f-3 0.0085223337846315 -0.0087755863205977 + 20 1 Cd 5f-2 0.0015631100387396 -0.0111592619277613 + 21 1 Cd 5f-1 -0.0038968190553668 0.0026564794286337 + 22 1 Cd 5f0 -0.0032580331950211 0.0006361504923501 + 23 1 Cd 5f+1 0.0073422943075769 -0.0061331042630892 + 24 1 Cd 5f+2 -0.0032616621026516 0.0010308534314882 + 25 1 Cd 5f+3 0.0051128981576644 -0.0120545211274216 + + 26 2 Cd 2s -0.0697823039289341 -0.0187381360359099 + 27 2 Cd 3s -0.0108134622519848 0.0105798209618259 + 28 2 Cd 3py -0.0194961971309079 0.0033782998451687 + 29 2 Cd 3pz 0.0086654119783623 0.0946545369266170 + 30 2 Cd 3px -0.1276598052357912 0.0202438389015056 + 31 2 Cd 4py 0.0059946019326236 -0.0016843418721199 + 32 2 Cd 4pz 0.0047654444170309 0.0154904430978180 + 33 2 Cd 4px -0.0124898110413239 -0.0010892904284146 + 34 2 Cd 4d-2 -0.0109650396370846 0.0030317987012321 + 35 2 Cd 4d-1 -0.0093464266698668 -0.0013177742017581 + 36 2 Cd 4d0 0.0029718144421965 0.0084374453357954 + 37 2 Cd 4d+1 0.0139825166621058 -0.0052867685326746 + 38 2 Cd 4d+2 0.0126536913332743 -0.0107561678551214 + 39 2 Cd 5d-2 -0.0091981347609109 0.0251638145579848 + 40 2 Cd 5d-1 -0.0246250999972366 -0.0091072409892229 + 41 2 Cd 5d0 -0.0119477937720391 0.0053404093500199 + 42 2 Cd 5d+1 0.0307989401368057 -0.0272516928139547 + 43 2 Cd 5d+2 0.0320762918716618 -0.0255820846157434 + 44 2 Cd 5f-3 -0.0000359721048673 -0.0056513684483918 + 45 2 Cd 5f-2 0.0017881389175128 0.0066222140325075 + 46 2 Cd 5f-1 0.0026858086481043 0.0045743858442056 + 47 2 Cd 5f0 -0.0055951244331984 -0.0030493407571096 + 48 2 Cd 5f+1 -0.0051670261941366 0.0167475848268958 + 49 2 Cd 5f+2 -0.0048554871227681 -0.0027709506183761 + 50 2 Cd 5f+3 -0.0075258438588839 -0.0075057897899619 + + 51 3 Cd 2s 0.0828652009406474 -0.0779118383480086 + 52 3 Cd 3s 0.0161717572486744 0.0013022546209123 + 53 3 Cd 3py -0.2964678816891995 0.1228214976788696 + 54 3 Cd 3pz 0.0677099637617400 -0.0757920283156991 + 55 3 Cd 3px 0.0803950497499172 0.0484052684490825 + 56 3 Cd 4py -0.0245794280672283 0.0098703987024931 + 57 3 Cd 4pz 0.0110387979976095 -0.0154447636840587 + 58 3 Cd 4px 0.0063895300917864 0.0126235321156259 + 59 3 Cd 4d-2 -0.0124515094666825 -0.0013633087128420 + 60 3 Cd 4d-1 -0.0038620578019223 -0.0086287121768663 + 61 3 Cd 4d0 -0.0091943945405165 -0.0182717239095102 + 62 3 Cd 4d+1 0.0197909716211178 0.0012747191555198 + 63 3 Cd 4d+2 -0.0124393152250758 -0.0063785570087625 + 64 3 Cd 5d-2 -0.0407628846591633 -0.0170684109263913 + 65 3 Cd 5d-1 -0.0289478147060666 -0.0268719972395172 + 66 3 Cd 5d0 -0.0240144592052928 -0.0393160940866627 + 67 3 Cd 5d+1 0.0407234115027140 -0.0348286773011614 + 68 3 Cd 5d+2 -0.0466125169169389 0.0134952388142094 + 69 3 Cd 5f-3 0.0056253562017329 0.0064486319899114 + 70 3 Cd 5f-2 0.0044355776888500 0.0049164352768742 + 71 3 Cd 5f-1 0.0021353495235591 0.0098080448373788 + 72 3 Cd 5f0 -0.0005874149875993 0.0019107193879745 + 73 3 Cd 5f+1 -0.0018016012894537 -0.0009903099380666 + 74 3 Cd 5f+2 -0.0006980668945626 0.0005961598002970 + 75 3 Cd 5f+3 0.0017283511517614 -0.0052142740294331 + + 76 4 Se 2s -0.0213139664797863 -0.1174075117589994 + 77 4 Se 3s 0.0034789114492813 0.0248906270832982 + 78 4 Se 3py 0.0062149372773130 0.0084022811199736 + 79 4 Se 3pz -0.0415492501638421 0.1132351634221415 + 80 4 Se 3px -0.1511646158310082 0.1858779396406830 + 81 4 Se 4py -0.0122238927451553 -0.0007491030218854 + 82 4 Se 4pz 0.0236430673661909 -0.0474449380363134 + 83 4 Se 4px 0.0548782080922548 -0.0746158534374945 + 84 4 Se 4d-2 -0.0176538766131789 0.0163858251400745 + 85 4 Se 4d-1 -0.0104012752884849 -0.0014237659335216 + 86 4 Se 4d0 0.0145649677211603 0.0094682218465353 + 87 4 Se 4d+1 -0.0232115440736309 0.0193433646317906 + 88 4 Se 4d+2 -0.0330297603165342 0.0266429654356764 + + 89 5 Se 2s 0.0339780281482969 0.0970743875738968 + 90 5 Se 3s -0.0041206655734013 -0.0191802117624140 + 91 5 Se 3py -0.0984060110636555 0.0804266966416731 + 92 5 Se 3pz 0.0273901878169183 -0.0361459398484406 + 93 5 Se 3px -0.0636771489910442 0.0265264593695771 + 94 5 Se 4py 0.0098894553141993 -0.0457747449364595 + 95 5 Se 4pz 0.0018566309224874 -0.0259899506852007 + 96 5 Se 4px 0.0059435961719947 -0.0048448447821468 + 97 5 Se 4d-2 -0.0025993581828552 -0.0076237095718014 + 98 5 Se 4d-1 0.0233820705812868 -0.0141202184943494 + 99 5 Se 4d0 -0.0091274331325258 -0.0016324829545130 + 100 5 Se 4d+1 0.0073274051247559 -0.0227831245876930 + 101 5 Se 4d+2 0.0002132713510188 0.0042581972471751 + + 102 6 Se 2s -0.0441501051401107 0.0769844989726903 + 103 6 Se 3s 0.0108866592302820 -0.0146372804858627 + 104 6 Se 3py -0.1255645847103408 0.0198493726910968 + 105 6 Se 3pz 0.0326715434867986 0.0466947528672337 + 106 6 Se 3px 0.0177855565637856 -0.0425582541991771 + 107 6 Se 4py 0.0245749320920527 -0.0113932081696046 + 108 6 Se 4pz -0.0171378755560563 -0.0210990656649355 + 109 6 Se 4px -0.0206143004292366 0.0287534516998336 + 110 6 Se 4d-2 -0.0068740307891940 0.0018353796726225 + 111 6 Se 4d-1 -0.0135439599672315 0.0030654511670543 + 112 6 Se 4d0 0.0132699104922072 -0.0140739096959050 + 113 6 Se 4d+1 0.0044061004081773 0.0212970031524625 + 114 6 Se 4d+2 0.0088195296859893 -0.0114260727301082 + + 115 7 Se 2s 0.0743985165410110 0.0956198057516860 + 116 7 Se 3s -0.0139552851199167 -0.0206127082275906 + 117 7 Se 3py -0.0280691510823314 -0.0522171941808890 + 118 7 Se 3pz -0.0430246021310562 -0.0695119782444616 + 119 7 Se 3px -0.0859254979426581 -0.0553302437530141 + 120 7 Se 4py 0.0389726854577560 0.0407214718034520 + 121 7 Se 4pz 0.0184253925338548 0.0251641574541379 + 122 7 Se 4px 0.0337252533726318 0.0336111581281221 + 123 7 Se 4d-2 -0.0162774922928764 -0.0143202889375594 + 124 7 Se 4d-1 -0.0152289868710991 -0.0117222400943143 + 125 7 Se 4d0 0.0080251831763215 0.0102200642593329 + 126 7 Se 4d+1 -0.0106790802050693 -0.0113878650466624 + 127 7 Se 4d+2 0.0028570503830878 -0.0215729359848570 + + 128 8 Cd 2s 0.0042981615228976 0.0952818267742133 + 129 8 Cd 3s 0.0003117839548236 0.0033837453202470 + 130 8 Cd 3py 0.2735197781620657 0.2027290044833153 + 131 8 Cd 3pz 0.2120445155624465 0.2401351416658748 + 132 8 Cd 3px 0.0475575376312934 -0.0381673793107429 + 133 8 Cd 4py 0.0409376185471452 0.0271237578415565 + 134 8 Cd 4pz 0.0257288769011428 0.0221531236309950 + 135 8 Cd 4px -0.0035347996133388 -0.0025265841060722 + 136 8 Cd 4d-2 -0.0080490506863768 -0.0007402259024132 + 137 8 Cd 4d-1 -0.0024460583400866 -0.0027191926652857 + 138 8 Cd 4d0 0.0199677960994991 0.0074158759865635 + 139 8 Cd 4d+1 -0.0250253071477845 -0.0038354011235571 + 140 8 Cd 4d+2 0.0268392123808389 0.0059180689208222 + 141 8 Cd 5d-2 -0.0202488321678558 0.0114688118114209 + 142 8 Cd 5d-1 -0.0268236294913827 0.0406047634746894 + 143 8 Cd 5d0 0.0391963663214555 0.0352450804345798 + 144 8 Cd 5d+1 -0.0432417041328981 -0.0418645596729221 + 145 8 Cd 5d+2 0.0869829571524179 -0.0140446952308706 + 146 8 Cd 5f-3 -0.0079288568635473 -0.0012299093221190 + 147 8 Cd 5f-2 0.0011336691129567 -0.0053701609348429 + 148 8 Cd 5f-1 -0.0028825722569365 -0.0008103211037795 + 149 8 Cd 5f0 -0.0124344915271986 -0.0075032953284187 + 150 8 Cd 5f+1 0.0058385248095060 0.0013095298367292 + 151 8 Cd 5f+2 -0.0027067984452866 -0.0000604445105372 + 152 8 Cd 5f+3 -0.0033231180790427 -0.0009623699394304 + + 153 9 Cd 2s 0.0743764532829402 0.1095202801250057 + 154 9 Cd 3s 0.0156995677287027 0.0142678016130557 + 155 9 Cd 3py -0.0713009854722268 -0.0113906924544950 + 156 9 Cd 3pz -0.0245825386926856 -0.2187780061911154 + 157 9 Cd 3px -0.1103866137872189 0.0993179042612610 + 158 9 Cd 4py -0.0128050257959593 0.0026415691127892 + 159 9 Cd 4pz -0.0115865545726284 -0.0355626625900908 + 160 9 Cd 4px -0.0214994590789755 0.0067222169245197 + 161 9 Cd 4d-2 0.0007618112376268 0.0086194123450852 + 162 9 Cd 4d-1 -0.0079181693387763 -0.0074333627041661 + 163 9 Cd 4d0 -0.0121646844066686 -0.0140399710135080 + 164 9 Cd 4d+1 -0.0055328918011641 0.0084281256094081 + 165 9 Cd 4d+2 -0.0071571071296204 -0.0027785885149921 + 166 9 Cd 5d-2 -0.0046331301662734 0.0021272678513595 + 167 9 Cd 5d-1 0.0028697108810595 -0.0192879718871842 + 168 9 Cd 5d0 -0.0593748574315011 -0.0496538310345500 + 169 9 Cd 5d+1 0.0243657501696055 0.0453566798234080 + 170 9 Cd 5d+2 -0.0018088992164607 0.0169003798164143 + 171 9 Cd 5f-3 0.0021831820432537 -0.0001331331356861 + 172 9 Cd 5f-2 0.0048497435227162 0.0132480328940770 + 173 9 Cd 5f-1 -0.0048879106250059 -0.0042008524913144 + 174 9 Cd 5f0 0.0060477582241592 0.0014485527829462 + 175 9 Cd 5f+1 0.0123802351275053 0.0078625237597619 + 176 9 Cd 5f+2 -0.0080873915921823 -0.0052888546425623 + 177 9 Cd 5f+3 -0.0010455861215855 -0.0058960956219949 + + 178 10 Se 2s -0.0768550705803352 -0.1022497290131281 + 179 10 Se 3s 0.0171014689705703 0.0208465277029550 + 180 10 Se 3py 0.0385943444942687 0.1385280688292128 + 181 10 Se 3pz 0.2096503776746972 0.0760401041029002 + 182 10 Se 3px -0.0178908137285712 0.0100731425847543 + 183 10 Se 4py -0.0275272196698119 -0.0364817466442376 + 184 10 Se 4pz -0.1030952006041922 -0.0497017907259228 + 185 10 Se 4px -0.0350849805950013 0.0050105688362365 + 186 10 Se 4d-2 -0.0004734359248003 0.0110752948456737 + 187 10 Se 4d-1 0.0072045107980910 0.0237864080994554 + 188 10 Se 4d0 0.0563942500840319 0.0319521022363633 + 189 10 Se 4d+1 -0.0058100846293701 0.0213893233220949 + 190 10 Se 4d+2 -0.0000503581926398 0.0100634846215903 + + 191 11 Se 2s 0.0652593512989233 -0.0885343459109723 + 192 11 Se 3s -0.0133805791446247 0.0208804581447723 + 193 11 Se 3py -0.0768189937522841 -0.0507825082991044 + 194 11 Se 3pz 0.0039779367873996 0.0228365269090696 + 195 11 Se 3px 0.0608772543637327 -0.1025029386542248 + 196 11 Se 4py 0.0099640895360338 0.0070757116222685 + 197 11 Se 4pz 0.0277678921137393 -0.0254412828354770 + 198 11 Se 4px -0.0209969932805425 0.0533282614906212 + 199 11 Se 4d-2 -0.0088093038600527 0.0265328472547231 + 200 11 Se 4d-1 0.0086902706587177 0.0022173473282576 + 201 11 Se 4d0 0.0207479805682883 0.0254159074517175 + 202 11 Se 4d+1 0.0086227389101183 -0.0094070439384609 + 203 11 Se 4d+2 -0.0518497634103100 -0.0057995433224665 + + 204 12 Cd 2s -0.1965884659643159 0.0781346774986397 + 205 12 Cd 3s -0.0093267112594294 0.0163403917428538 + 206 12 Cd 3py -0.3449043431952615 -0.0892052707409526 + 207 12 Cd 3pz -0.1692384960552314 -0.4960169587175641 + 208 12 Cd 3px -0.3568476620800941 -0.0972085569132117 + 209 12 Cd 4py -0.0412331649178543 -0.0066383420951668 + 210 12 Cd 4pz -0.0120967773434777 -0.0630447342611321 + 211 12 Cd 4px -0.0529858895638141 -0.0116542588142668 + 212 12 Cd 4d-2 0.0080667239299535 -0.0066532417513041 + 213 12 Cd 4d-1 -0.0282805954351287 -0.0009064532188223 + 214 12 Cd 4d0 0.0130381759547395 0.0095727000938336 + 215 12 Cd 4d+1 -0.0242550856664374 0.0066123583177897 + 216 12 Cd 4d+2 -0.0058935308896691 0.0024736425630394 + 217 12 Cd 5d-2 0.0396974876542152 -0.0203966968823231 + 218 12 Cd 5d-1 -0.0443338039868168 0.0458734222984864 + 219 12 Cd 5d0 -0.0108255459903908 0.0012324570507081 + 220 12 Cd 5d+1 -0.1021432544195001 0.0043638819655735 + 221 12 Cd 5d+2 -0.0595561516816780 -0.0403628396617516 + 222 12 Cd 5f-3 -0.0013506881890308 -0.0090865928132112 + 223 12 Cd 5f-2 -0.0103046314619398 0.0014513248772972 + 224 12 Cd 5f-1 -0.0037853195355034 -0.0070059508910352 + 225 12 Cd 5f0 -0.0028236878741320 0.0089125609760356 + 226 12 Cd 5f+1 -0.0025682009766226 0.0021006580353493 + 227 12 Cd 5f+2 0.0091651528154198 -0.0035244445307815 + 228 12 Cd 5f+3 0.0125808917485393 0.0002528080876184 + + 229 13 Cd 2s 0.2061170363767490 -0.2043740096997465 + 230 13 Cd 3s 0.0178560573292739 -0.0193351913815708 + 231 13 Cd 3py -0.3602537831311310 0.1483304791695566 + 232 13 Cd 3pz 0.2688541201723552 -0.1622508210281371 + 233 13 Cd 3px -0.1115484108996645 -0.1169408802822996 + 234 13 Cd 4py -0.0469348154753382 0.0196975120182695 + 235 13 Cd 4pz 0.0334667715750156 -0.0122394234177429 + 236 13 Cd 4px -0.0087741359570690 -0.0103988536738977 + 237 13 Cd 4d-2 -0.0129805450323442 0.0205141229384055 + 238 13 Cd 4d-1 0.0000153744550577 0.0013690353861559 + 239 13 Cd 4d0 -0.0013920985144115 0.0154494980737149 + 240 13 Cd 4d+1 -0.0073343995007032 0.0206922239728992 + 241 13 Cd 4d+2 -0.0085917171040453 0.0312148576961949 + 242 13 Cd 5d-2 -0.0342292545221493 0.0447736397688129 + 243 13 Cd 5d-1 0.0378266021556444 -0.0218481600713603 + 244 13 Cd 5d0 0.0629027500422961 -0.0160175900701095 + 245 13 Cd 5d+1 -0.0227960037268736 -0.0102569516422811 + 246 13 Cd 5d+2 -0.0432941495610434 0.0562154189394437 + 247 13 Cd 5f-3 0.0056535783383350 -0.0094990106913945 + 248 13 Cd 5f-2 -0.0042900559160374 0.0005785142385455 + 249 13 Cd 5f-1 -0.0040350320260570 0.0109867712208420 + 250 13 Cd 5f0 -0.0004544062984357 -0.0043265530925352 + 251 13 Cd 5f+1 0.0043956224704345 0.0124106271293525 + 252 13 Cd 5f+2 -0.0026056732190971 0.0088416388156027 + 253 13 Cd 5f+3 0.0099785049644473 -0.0089634567285392 + + 254 14 Cd 2s -0.0945219945160667 -0.0120178239421180 + 255 14 Cd 3s -0.0122591366760885 -0.0008311802027560 + 256 14 Cd 3py 0.1226283144939843 -0.0671551589181162 + 257 14 Cd 3pz 0.1578399318708888 -0.0634053289699350 + 258 14 Cd 3px 0.0779204065266666 0.0969580857167042 + 259 14 Cd 4py 0.0223419487838163 -0.0066220004836936 + 260 14 Cd 4pz 0.0275809858960998 -0.0006812057165491 + 261 14 Cd 4px -0.0012197509632841 0.0103301844850474 + 262 14 Cd 4d-2 0.0015676772720541 0.0077707541487901 + 263 14 Cd 4d-1 0.0109687318380498 -0.0062585575080614 + 264 14 Cd 4d0 0.0027624530238581 -0.0030368423069970 + 265 14 Cd 4d+1 -0.0033606087839028 0.0045978976273536 + 266 14 Cd 4d+2 -0.0088009871050155 0.0059803001764027 + 267 14 Cd 5d-2 0.0304884758870811 0.0388767792662467 + 268 14 Cd 5d-1 0.0229741949293817 -0.0199624634069602 + 269 14 Cd 5d0 0.0002284499073346 -0.0349335235561966 + 270 14 Cd 5d+1 0.0141656671140022 -0.0031477498032084 + 271 14 Cd 5d+2 -0.0118138953711860 0.0349449882016634 + 272 14 Cd 5f-3 -0.0016503425282128 -0.0008405692897456 + 273 14 Cd 5f-2 0.0071135359976192 0.0031685695321849 + 274 14 Cd 5f-1 0.0049273088057153 0.0068610754011506 + 275 14 Cd 5f0 -0.0028456906784490 0.0019055034798057 + 276 14 Cd 5f+1 0.0030792813301048 0.0069119052981870 + 277 14 Cd 5f+2 0.0104713306471801 0.0065026070907650 + 278 14 Cd 5f+3 0.0045694311739576 0.0043612038610267 + + 279 15 Se 2s -0.0577682293524376 0.0380558016219091 + 280 15 Se 3s 0.0104308370239496 -0.0077014209456479 + 281 15 Se 3py -0.0439347832809127 -0.0596694775371351 + 282 15 Se 3pz 0.0072057222031133 -0.0134688273908695 + 283 15 Se 3px -0.0263909740642577 0.0148834512046501 + 284 15 Se 4py 0.0151202557468722 0.0281469262148019 + 285 15 Se 4pz 0.0197834687303767 0.0066879650964856 + 286 15 Se 4px -0.0063051598618035 0.0273389227397492 + 287 15 Se 4d-2 0.0147557320707049 -0.0170300664860342 + 288 15 Se 4d-1 0.0029711738287913 -0.0063576360839513 + 289 15 Se 4d0 0.0293990876030232 -0.0046720928029424 + 290 15 Se 4d+1 -0.0119578707936400 0.0074470612620203 + 291 15 Se 4d+2 0.0165185792576415 0.0158564517272104 + + 292 16 Se 2s 0.0720155623247847 -0.0431409605481400 + 293 16 Se 3s -0.0169361904208971 0.0119385024873740 + 294 16 Se 3py -0.1350584157125454 -0.0830013453773844 + 295 16 Se 3pz 0.1164580803341784 -0.1009242988903886 + 296 16 Se 3px -0.0703482066231396 -0.0172611444284819 + 297 16 Se 4py 0.0127679502151014 0.0208886014920680 + 298 16 Se 4pz -0.0489803542169805 0.0407186336844738 + 299 16 Se 4px 0.0155289493186509 0.0040101670263904 + 300 16 Se 4d-2 -0.0018372143717884 -0.0074061868727564 + 301 16 Se 4d-1 0.0241386984626269 -0.0053634884605433 + 302 16 Se 4d0 -0.0170805728126469 0.0354260259980714 + 303 16 Se 4d+1 0.0143027020800243 0.0201500111453778 + 304 16 Se 4d+2 -0.0143042885035825 0.0332371417092476 + + 305 17 Cd 2s 0.1661118800830447 0.0689045965442704 + 306 17 Cd 3s 0.0165470823171375 0.0111473974536719 + 307 17 Cd 3py 0.0180835237760580 -0.2893300261897578 + 308 17 Cd 3pz 0.1203071946726763 0.1450433118366755 + 309 17 Cd 3px -0.0761501196994355 0.3636374759469719 + 310 17 Cd 4py 0.0040506392431535 -0.0322370175573507 + 311 17 Cd 4pz 0.0132623731014384 0.0211145672157483 + 312 17 Cd 4px -0.0002988352029635 0.0416759634460245 + 313 17 Cd 4d-2 -0.0090653811027412 -0.0327399712851212 + 314 17 Cd 4d-1 -0.0019233848006314 0.0135927876167134 + 315 17 Cd 4d0 0.0143153136163714 -0.0196477756292879 + 316 17 Cd 4d+1 0.0022634703695451 0.0066097976471297 + 317 17 Cd 4d+2 -0.0032053122468005 0.0011399537815495 + 318 17 Cd 5d-2 -0.0211295314566712 -0.0575787279324604 + 319 17 Cd 5d-1 -0.0277928081488124 0.0354218443519346 + 320 17 Cd 5d0 -0.0088722812036067 -0.0633608975698994 + 321 17 Cd 5d+1 0.0147984171617254 -0.0012729500235845 + 322 17 Cd 5d+2 -0.0115493866507364 -0.0238382802456494 + 323 17 Cd 5f-3 0.0055635982543303 0.0121823941876570 + 324 17 Cd 5f-2 -0.0009537459630938 0.0026952999330964 + 325 17 Cd 5f-1 0.0066214152010820 -0.0005601763092200 + 326 17 Cd 5f0 -0.0040803492434513 0.0041848313972441 + 327 17 Cd 5f+1 0.0079345547813485 0.0050737915391720 + 328 17 Cd 5f+2 -0.0049519292198161 -0.0114653944630237 + 329 17 Cd 5f+3 0.0030355301703586 -0.0031812049131196 + + 330 18 Cd 2s -0.0635817756649590 -0.1333637247596728 + 331 18 Cd 3s -0.0005378150650202 -0.0016862725561581 + 332 18 Cd 3py -0.1484308113469498 -0.1998782982848576 + 333 18 Cd 3pz 0.0343385319893459 -0.1620302111488130 + 334 18 Cd 3px 0.1054300913684290 0.1510263199342162 + 335 18 Cd 4py -0.0261960526805886 -0.0279564632307356 + 336 18 Cd 4pz 0.0187341371715440 -0.0331888613768972 + 337 18 Cd 4px 0.0056654884841855 0.0205047779252901 + 338 18 Cd 4d-2 -0.0015651684592536 -0.0094849125194820 + 339 18 Cd 4d-1 -0.0005611813120545 0.0040099575140715 + 340 18 Cd 4d0 -0.0000632529155755 0.0019760994560332 + 341 18 Cd 4d+1 0.0085964400216099 -0.0096448030860545 + 342 18 Cd 4d+2 0.0023042833179781 0.0070848634887343 + 343 18 Cd 5d-2 0.0020333129175890 -0.0063832161447469 + 344 18 Cd 5d-1 0.0325418758973330 -0.0083561789652941 + 345 18 Cd 5d0 0.0208328186224347 -0.0373601137923915 + 346 18 Cd 5d+1 0.0134780096104279 -0.0352856979604598 + 347 18 Cd 5d+2 0.0278041975205565 0.0477990783372017 + 348 18 Cd 5f-3 -0.0047484381505293 -0.0063377451685200 + 349 18 Cd 5f-2 0.0034168848327818 -0.0124195909525445 + 350 18 Cd 5f-1 0.0021668562147638 0.0000487938756718 + 351 18 Cd 5f0 -0.0071542380632518 0.0045925536308798 + 352 18 Cd 5f+1 -0.0029980144273958 0.0056082304400321 + 353 18 Cd 5f+2 0.0087603160970044 -0.0085541205904972 + 354 18 Cd 5f+3 -0.0087821806330947 -0.0102127429577584 + + 355 19 Se 2s -0.0731091368060700 -0.0135013623980709 + 356 19 Se 3s 0.0174836397990734 0.0063958356581007 + 357 19 Se 3py 0.0440686178674592 -0.0592097183100653 + 358 19 Se 3pz -0.0803378446367702 -0.0845489768160383 + 359 19 Se 3px 0.0764787812169279 0.1059710967620754 + 360 19 Se 4py -0.0139623293949305 0.0074924924254645 + 361 19 Se 4pz 0.0384831293924536 0.0309524407851752 + 362 19 Se 4px -0.0224646383308522 -0.0331686087172917 + 363 19 Se 4d-2 -0.0133681966322165 -0.0243032825382083 + 364 19 Se 4d-1 -0.0067006108114633 -0.0040671806486844 + 365 19 Se 4d0 0.0192085469584245 0.0343472971220186 + 366 19 Se 4d+1 -0.0118029827294971 0.0091403286037460 + 367 19 Se 4d+2 0.0183619078624048 -0.0364989256056393 + + 368 20 Se 2s -0.1204714354709285 -0.0274334119559539 + 369 20 Se 3s 0.0254088837005664 0.0050095721211852 + 370 20 Se 3py 0.2429765108959238 0.0269490735778221 + 371 20 Se 3pz -0.3106926596131783 -0.0393104729891102 + 372 20 Se 3px 0.1388804925110843 -0.1439730433939522 + 373 20 Se 4py -0.0796765408994910 0.0068645449050272 + 374 20 Se 4pz 0.1141549276725732 0.0096628923823836 + 375 20 Se 4px -0.0501583880062043 0.0404682594923833 + 376 20 Se 4d-2 -0.0360770212223825 0.0200125924118583 + 377 20 Se 4d-1 -0.0227252159974980 0.0236982013135902 + 378 20 Se 4d0 0.0126873527962365 0.0309666260654552 + 379 20 Se 4d+1 -0.0081920232441426 -0.0036981284104006 + 380 20 Se 4d+2 -0.0013798553008478 0.0013657357215843 + + 381 21 Se 2s 0.0154898459359230 0.1202927603767648 + 382 21 Se 3s -0.0013893806050025 -0.0291984468730020 + 383 21 Se 3py -0.0747975874224889 -0.1175977579010051 + 384 21 Se 3pz 0.0558582800888863 0.0486463143838832 + 385 21 Se 3px -0.0310110276843462 0.1077464589135354 + 386 21 Se 4py 0.0148502250398452 0.0127239372855043 + 387 21 Se 4pz -0.0060136784760442 0.0199373532864772 + 388 21 Se 4px 0.0077922570746122 -0.0385358311328267 + 389 21 Se 4d-2 -0.0130223852012353 -0.0031652783035354 + 390 21 Se 4d-1 0.0044076351678748 -0.0183364175674957 + 391 21 Se 4d0 -0.0237954797876960 0.0001355891730451 + 392 21 Se 4d+1 -0.0012525428632265 -0.0034876118803495 + 393 21 Se 4d+2 0.0134694969775422 0.0050724758033138 + + 394 22 Cd 2s -0.0838403999006555 0.1338660183831854 + 395 22 Cd 3s -0.0064371421747979 0.0045375357562869 + 396 22 Cd 3py 0.0659079574002722 -0.1326147901752535 + 397 22 Cd 3pz 0.0174715392953202 0.1885788573608072 + 398 22 Cd 3px -0.0878635953144896 0.2782340311557862 + 399 22 Cd 4py 0.0103746536662640 -0.0119418983214306 + 400 22 Cd 4pz -0.0022902727616507 0.0368884159953315 + 401 22 Cd 4px 0.0025769403893121 0.0226757537889335 + 402 22 Cd 4d-2 0.0137997463751328 0.0078923762682397 + 403 22 Cd 4d-1 0.0143371546167257 -0.0029764306387718 + 404 22 Cd 4d0 -0.0036295957811369 0.0015118689541301 + 405 22 Cd 4d+1 -0.0045892530294614 -0.0145733910215954 + 406 22 Cd 4d+2 0.0196639180429323 0.0102329262876057 + 407 22 Cd 5d-2 0.0129004297195361 0.0587524248111450 + 408 22 Cd 5d-1 0.0162919799730864 0.0491057492998017 + 409 22 Cd 5d0 -0.0528845535250265 0.0798220910192174 + 410 22 Cd 5d+1 -0.0028225864877220 -0.0706172208074708 + 411 22 Cd 5d+2 0.0555813546092908 -0.0290738843974930 + 412 22 Cd 5f-3 -0.0028532008663403 -0.0146367498412135 + 413 22 Cd 5f-2 0.0047522220467351 -0.0003157089142460 + 414 22 Cd 5f-1 -0.0055617882578626 -0.0112540304893574 + 415 22 Cd 5f0 -0.0062113923512874 -0.0105420938921191 + 416 22 Cd 5f+1 -0.0113183613897734 0.0038186853775109 + 417 22 Cd 5f+2 -0.0063238283073059 0.0067514297107016 + 418 22 Cd 5f+3 0.0062095157452094 -0.0135220301310562 + + 419 23 Se 2s 0.0147031431179580 -0.2104974723998140 + 420 23 Se 3s -0.0018885942573279 0.0419197217837458 + 421 23 Se 3py -0.0354228683692449 0.0953949759426574 + 422 23 Se 3pz -0.0032695169769850 -0.0261841565858768 + 423 23 Se 3px 0.0383723513454228 -0.0403158420742793 + 424 23 Se 4py 0.0200084701670816 -0.0753251018369797 + 425 23 Se 4pz 0.0202488929443738 0.0343897578046108 + 426 23 Se 4px -0.0251878193076282 0.0301731200917396 + 427 23 Se 4d-2 0.0183440543313392 -0.0296875041719419 + 428 23 Se 4d-1 0.0059208974024483 -0.0023565016487580 + 429 23 Se 4d0 0.0032122976850771 -0.0117862535280777 + 430 23 Se 4d+1 0.0082833674278990 -0.0308643705623871 + 431 23 Se 4d+2 -0.0123421662935429 -0.0028255658608390 + + 432 24 Se 2s 0.1259831547506012 0.2011679052289957 + 433 24 Se 3s -0.0244372905816883 -0.0447242217362608 + 434 24 Se 3py 0.0340829136051313 0.0405361078485848 + 435 24 Se 3pz 0.1338303667904499 -0.0055093027506540 + 436 24 Se 3px 0.0870825316790783 0.1818190694679479 + 437 24 Se 4py -0.0453446300898535 -0.0405973563080123 + 438 24 Se 4pz -0.0062501084956647 -0.0196031231287654 + 439 24 Se 4px -0.0401396602993835 -0.0701347355108937 + 440 24 Se 4d-2 -0.0031371019560340 0.0020124277855375 + 441 24 Se 4d-1 0.0032885518527678 -0.0081176960414348 + 442 24 Se 4d0 -0.0011815755109672 0.0244383431925685 + 443 24 Se 4d+1 -0.0160835386113616 -0.0085320166340292 + 444 24 Se 4d+2 0.0123592886305592 -0.0046920146547988 + + 445 25 Cd 2s -0.0187208888804584 -0.1621131139241494 + 446 25 Cd 3s 0.0092618487002515 -0.0214975626647347 + 447 25 Cd 3py 0.1313324574563963 -0.1912329859332982 + 448 25 Cd 3pz 0.1381303055518488 0.0722496213913803 + 449 25 Cd 3px 0.0155814371417669 -0.1519113758014601 + 450 25 Cd 4py 0.0098633789681251 -0.0283928544103127 + 451 25 Cd 4pz 0.0176941102499824 0.0079016670418064 + 452 25 Cd 4px -0.0006783865743064 -0.0176180083560696 + 453 25 Cd 4d-2 -0.0125230692868873 -0.0037579559604400 + 454 25 Cd 4d-1 0.0064484727513323 -0.0024627298436772 + 455 25 Cd 4d0 0.0066102747691615 0.0242733657882670 + 456 25 Cd 4d+1 -0.0036830286923074 0.0036075180636203 + 457 25 Cd 4d+2 0.0042334975841638 -0.0329994149760870 + 458 25 Cd 5d-2 0.0080949424587733 0.0428638327952870 + 459 25 Cd 5d-1 0.0087214680844396 0.0564034483462877 + 460 25 Cd 5d0 0.0049337770424424 0.0384509008831398 + 461 25 Cd 5d+1 -0.0499335775375945 0.0285364705030136 + 462 25 Cd 5d+2 0.0507313147773288 -0.0565417212146394 + 463 25 Cd 5f-3 0.0058244348358230 0.0026790585406851 + 464 25 Cd 5f-2 -0.0029899644254300 -0.0083490892827488 + 465 25 Cd 5f-1 0.0093948977023583 0.0006567469962535 + 466 25 Cd 5f0 0.0067374001502028 0.0104054996256216 + 467 25 Cd 5f+1 0.0063846283075298 0.0013995139740068 + 468 25 Cd 5f+2 -0.0071705541447523 -0.0053697237228418 + 469 25 Cd 5f+3 0.0084966680554697 0.0109158767486774 + + 470 26 Cd 2s 0.1064862265523907 0.1196797170675098 + 471 26 Cd 3s 0.0208513716653313 0.0126981382143950 + 472 26 Cd 3py -0.2144136387366974 -0.1450440527916044 + 473 26 Cd 3pz 0.1585980448633866 -0.1305554672433488 + 474 26 Cd 3px 0.2215332899762420 0.2135714306963500 + 475 26 Cd 4py -0.0288688172421430 -0.0276189397075929 + 476 26 Cd 4pz 0.0224829314312135 -0.0113869925080027 + 477 26 Cd 4px 0.0260002902855626 0.0286090030065105 + 478 26 Cd 4d-2 0.0036604342266374 0.0052790525467045 + 479 26 Cd 4d-1 -0.0071686067674724 -0.0081317861021669 + 480 26 Cd 4d0 0.0247205406784786 -0.0020157004918388 + 481 26 Cd 4d+1 -0.0129387806393759 -0.0013828474290037 + 482 26 Cd 4d+2 0.0110892943511558 0.0088103424365358 + 483 26 Cd 5d-2 0.0194752060811187 0.0070617769667428 + 484 26 Cd 5d-1 -0.0184135922912910 0.0385476352105993 + 485 26 Cd 5d0 0.0762704292061184 -0.0239669738662041 + 486 26 Cd 5d+1 -0.0194847505718859 0.0099308889566257 + 487 26 Cd 5d+2 0.0069210666070119 0.0193112750131682 + 488 26 Cd 5f-3 0.0004812141864111 -0.0073987815415598 + 489 26 Cd 5f-2 -0.0015177109013183 -0.0060206498424979 + 490 26 Cd 5f-1 -0.0060327028135532 -0.0020380211999489 + 491 26 Cd 5f0 0.0056493077363934 0.0040837144875990 + 492 26 Cd 5f+1 -0.0011740301596355 0.0027606604425733 + 493 26 Cd 5f+2 -0.0071954334599166 -0.0031784366242937 + 494 26 Cd 5f+3 0.0003428483778101 0.0027544517606902 + + 147 148 + 0.0362470508490755 0.0387182524893596 + + 0.0000000000000000 0.0000000000000000 + + 1 1 Cd 2s 0.0406526311973820 0.0319150511045050 + 2 1 Cd 3s 0.0016106592730646 0.0167460993024491 + 3 1 Cd 3py -0.0127770657645439 -0.0762044839051259 + 4 1 Cd 3pz -0.3831759888137776 -0.3475653012616073 + 5 1 Cd 3px -0.3533066948348957 -0.1047004200087841 + 6 1 Cd 4py -0.0098129284029868 -0.0036639617442264 + 7 1 Cd 4pz -0.0388824221244623 -0.0438140139008603 + 8 1 Cd 4px -0.0481159962377797 -0.0173248971937311 + 9 1 Cd 4d-2 -0.0090893777227163 0.0047242922606952 + 10 1 Cd 4d-1 0.0274958259068627 0.0299526797345963 + 11 1 Cd 4d0 -0.0165217264336372 -0.0098597389285772 + 12 1 Cd 4d+1 -0.0094205751917729 0.0074983059755324 + 13 1 Cd 4d+2 -0.0295964449533924 0.0058023793002744 + 14 1 Cd 5d-2 -0.0094625281469197 -0.0027498155707908 + 15 1 Cd 5d-1 0.0345773672506775 0.0622565136484841 + 16 1 Cd 5d0 0.0350643609759562 -0.0401331270024714 + 17 1 Cd 5d+1 -0.0454178739964559 0.0279676049323686 + 18 1 Cd 5d+2 -0.0892007819832024 0.0225334153088888 + 19 1 Cd 5f-3 -0.0117361036055814 0.0029543559991703 + 20 1 Cd 5f-2 -0.0014092507455038 -0.0016055793692199 + 21 1 Cd 5f-1 0.0013382294482784 -0.0111168744117929 + 22 1 Cd 5f0 0.0014227266667144 -0.0006599265270773 + 23 1 Cd 5f+1 -0.0056138239346778 0.0043771307218448 + 24 1 Cd 5f+2 -0.0133719536188733 -0.0014654448550023 + 25 1 Cd 5f+3 -0.0055358460768224 -0.0041096529581742 + + 26 2 Cd 2s -0.1053182577426768 0.0953400021544988 + 27 2 Cd 3s -0.0202390969541648 0.0116261276051831 + 28 2 Cd 3py 0.0045950101702554 -0.0173309313089430 + 29 2 Cd 3pz 0.1857423955583007 -0.1578609113962648 + 30 2 Cd 3px 0.0341760397895044 -0.1626249113859340 + 31 2 Cd 4py 0.0021102828934682 0.0010565631229422 + 32 2 Cd 4pz 0.0331184159357791 -0.0246029634403633 + 33 2 Cd 4px -0.0122975142889162 -0.0171243305342501 + 34 2 Cd 4d-2 0.0111229968107907 -0.0124999235542370 + 35 2 Cd 4d-1 -0.0039424294822595 -0.0158922201772761 + 36 2 Cd 4d0 -0.0065351431823130 -0.0084097862872813 + 37 2 Cd 4d+1 -0.0140927889496615 0.0008420543037123 + 38 2 Cd 4d+2 0.0120264661168501 0.0218580412789298 + 39 2 Cd 5d-2 0.0150688555369933 -0.0729075297716325 + 40 2 Cd 5d-1 -0.0139458277474139 -0.0425808652071086 + 41 2 Cd 5d0 -0.0669414327480780 0.0052095657513933 + 42 2 Cd 5d+1 0.0411109391371795 -0.0406702735289375 + 43 2 Cd 5d+2 -0.0095150977761286 0.0232051574543830 + 44 2 Cd 5f-3 -0.0012397725433949 0.0020307452064707 + 45 2 Cd 5f-2 -0.0042379825576662 -0.0073981498812203 + 46 2 Cd 5f-1 -0.0048841347268447 -0.0007530852913468 + 47 2 Cd 5f0 0.0029439787165345 0.0016995448824865 + 48 2 Cd 5f+1 0.0149707068555603 -0.0085543444105243 + 49 2 Cd 5f+2 0.0045248207011018 -0.0007143473363446 + 50 2 Cd 5f+3 -0.0027465998656295 -0.0030870956231235 + + 51 3 Cd 2s -0.0948215773806370 -0.0384715089500080 + 52 3 Cd 3s -0.0189573691086323 0.0020949779130050 + 53 3 Cd 3py -0.1903293554678700 -0.3088299079007620 + 54 3 Cd 3pz 0.0772926096037414 -0.0590939429754670 + 55 3 Cd 3px 0.0927945642898342 -0.0267509850012351 + 56 3 Cd 4py -0.0286839722523442 -0.0375584591321380 + 57 3 Cd 4pz 0.0080458408605185 -0.0174704505903900 + 58 3 Cd 4px 0.0036374267843731 -0.0074795285573918 + 59 3 Cd 4d-2 -0.0177607331907017 -0.0209596708119948 + 60 3 Cd 4d-1 -0.0024453202031544 0.0044408151342670 + 61 3 Cd 4d0 -0.0009125837249905 0.0112439789608856 + 62 3 Cd 4d+1 0.0004881548292987 0.0072108250088099 + 63 3 Cd 4d+2 -0.0046611019421395 0.0197738362320500 + 64 3 Cd 5d-2 -0.0679357933177263 -0.0664058267472058 + 65 3 Cd 5d-1 -0.0136477285022207 -0.0324064228927215 + 66 3 Cd 5d0 -0.0008594962366414 -0.0301676715282982 + 67 3 Cd 5d+1 0.0349988520865040 0.0063519942418386 + 68 3 Cd 5d+2 -0.0140919167547184 0.0384369946877238 + 69 3 Cd 5f-3 0.0000947666121938 0.0050275251867801 + 70 3 Cd 5f-2 -0.0055312124085051 0.0041077277811247 + 71 3 Cd 5f-1 -0.0009129272136671 0.0040626360316597 + 72 3 Cd 5f0 -0.0033070636238972 -0.0052257649338331 + 73 3 Cd 5f+1 -0.0036903612658770 0.0003188004045421 + 74 3 Cd 5f+2 0.0027734999153401 -0.0003378430326045 + 75 3 Cd 5f+3 -0.0005465535813458 -0.0096984236798645 + + 76 4 Se 2s -0.2580378783146698 -0.0228415301440954 + 77 4 Se 3s 0.0509881228688865 0.0060189169882696 + 78 4 Se 3py 0.1044915936502651 0.1173491136428384 + 79 4 Se 3pz 0.0380459579281473 -0.0575537432285119 + 80 4 Se 3px 0.1306181415881651 -0.1242685235512002 + 81 4 Se 4py -0.0320515734150404 -0.0361111791019565 + 82 4 Se 4pz 0.0068601754174501 -0.0205086115537527 + 83 4 Se 4px -0.0934337904095532 0.0372506940932400 + 84 4 Se 4d-2 -0.0278859656104592 -0.0043856898743625 + 85 4 Se 4d-1 -0.0108605700586639 0.0224519019770825 + 86 4 Se 4d0 -0.0454070353017863 -0.0020345241174185 + 87 4 Se 4d+1 0.0014928507826909 -0.0071152148832544 + 88 4 Se 4d+2 0.0133694535414451 -0.0327997774004084 + + 89 5 Se 2s -0.0001185183650558 0.0638852116160268 + 90 5 Se 3s -0.0019370285435318 -0.0124567613794076 + 91 5 Se 3py -0.0959161555614060 -0.0245910135738163 + 92 5 Se 3pz -0.0839288555530874 -0.1278018264407291 + 93 5 Se 3px -0.0775836707789476 -0.0571163930080196 + 94 5 Se 4py 0.0079297714621906 0.0039820584590728 + 95 5 Se 4pz 0.0376567186777470 0.0331809741556524 + 96 5 Se 4px 0.0079681333215952 0.0191593079361110 + 97 5 Se 4d-2 0.0114475718135183 0.0022223582822925 + 98 5 Se 4d-1 0.0335453621497218 0.0438229926516923 + 99 5 Se 4d0 -0.0132591930010967 -0.0073617077258228 + 100 5 Se 4d+1 0.0040600584638509 -0.0085441151161231 + 101 5 Se 4d+2 0.0048465336440360 -0.0053472814271633 + + 102 6 Se 2s -0.0681387151592858 -0.1371149385895247 + 103 6 Se 3s 0.0164319808176093 0.0299378751561274 + 104 6 Se 3py -0.0730049127552998 -0.0640963109729345 + 105 6 Se 3pz 0.0809887131340596 0.0451468353833153 + 106 6 Se 3px 0.0070714399373717 0.0933082226145852 + 107 6 Se 4py 0.0046492940190138 -0.0030008504738883 + 108 6 Se 4pz -0.0006602482571071 -0.0270530827111618 + 109 6 Se 4px -0.0285900030838025 -0.0553452644589292 + 110 6 Se 4d-2 -0.0021581261988434 0.0076953595946486 + 111 6 Se 4d-1 -0.0271477459862165 -0.0075101864154399 + 112 6 Se 4d0 0.0178182228513314 0.0103870317547235 + 113 6 Se 4d+1 -0.0055040588012301 0.0015501438151531 + 114 6 Se 4d+2 0.0182311775632463 0.0131063804340933 + + 115 7 Se 2s 0.0272347993430687 -0.0355027123188381 + 116 7 Se 3s -0.0074993088615156 0.0063700812714290 + 117 7 Se 3py -0.0326143625637991 -0.0024201098392573 + 118 7 Se 3pz -0.0508852972480871 0.0188313879888085 + 119 7 Se 3px 0.0525647829296164 0.0078284693692735 + 120 7 Se 4py -0.0079413701373022 -0.0032663283761642 + 121 7 Se 4pz 0.0186371367395529 0.0038594244723975 + 122 7 Se 4px 0.0045391550722955 -0.0141195564576924 + 123 7 Se 4d-2 -0.0104659846925539 0.0018065010085458 + 124 7 Se 4d-1 -0.0013237802857307 -0.0069469007313865 + 125 7 Se 4d0 -0.0122979868414531 -0.0116872779114396 + 126 7 Se 4d+1 -0.0010293894341934 0.0072495386307845 + 127 7 Se 4d+2 -0.0024521340746563 0.0257061440802817 + + 128 8 Cd 2s 0.0475240906334670 -0.0498918978221741 + 129 8 Cd 3s -0.0079700829346558 -0.0028945908445268 + 130 8 Cd 3py -0.1399760160013554 -0.1352438716537615 + 131 8 Cd 3pz 0.0255435126940983 -0.0917885341351359 + 132 8 Cd 3px 0.1840356558594884 0.1655271656912823 + 133 8 Cd 4py -0.0261793793216902 -0.0247150170590335 + 134 8 Cd 4pz 0.0092929931155045 -0.0125025135296145 + 135 8 Cd 4px 0.0249441642636849 0.0239247002435814 + 136 8 Cd 4d-2 0.0003983327664878 0.0053169802366096 + 137 8 Cd 4d-1 0.0012176306754126 -0.0133208312941597 + 138 8 Cd 4d0 -0.0089849632637733 -0.0174532517866335 + 139 8 Cd 4d+1 0.0012781113325532 0.0065581170506054 + 140 8 Cd 4d+2 -0.0049658138483967 0.0047650988296589 + 141 8 Cd 5d-2 -0.0007016862187717 0.0036507037308494 + 142 8 Cd 5d-1 -0.0325116822480332 0.0137359433190938 + 143 8 Cd 5d0 -0.0117341073624574 -0.0337463610485522 + 144 8 Cd 5d+1 0.0236182017502641 -0.0209472718724435 + 145 8 Cd 5d+2 -0.0451242819648663 0.0110720100285373 + 146 8 Cd 5f-3 -0.0041114496143469 0.0129588821126995 + 147 8 Cd 5f-2 0.0083320179784948 -0.0051064450301509 + 148 8 Cd 5f-1 -0.0032278498483113 0.0025654939697050 + 149 8 Cd 5f0 0.0096988476948841 0.0001384860039858 + 150 8 Cd 5f+1 0.0045326156381197 0.0017283623598891 + 151 8 Cd 5f+2 0.0022748011961145 0.0029022840127315 + 152 8 Cd 5f+3 -0.0124692419671258 0.0093119730159165 + + 153 9 Cd 2s -0.0478817392403148 -0.0866071334099401 + 154 9 Cd 3s -0.0146560271797433 -0.0091136706979741 + 155 9 Cd 3py -0.0705500048779033 -0.0072945473024367 + 156 9 Cd 3pz 0.1007234694808681 0.2238565278809246 + 157 9 Cd 3px -0.0099326262105571 0.0484277807887070 + 158 9 Cd 4py -0.0169167220423829 -0.0111453019678021 + 159 9 Cd 4pz 0.0173385123129059 0.0311193968806344 + 160 9 Cd 4px 0.0025813291660548 0.0075852742012628 + 161 9 Cd 4d-2 -0.0000493892633236 -0.0008760309795658 + 162 9 Cd 4d-1 -0.0082407988402340 -0.0037591507419198 + 163 9 Cd 4d0 0.0053964909606355 0.0074850650675335 + 164 9 Cd 4d+1 0.0066578797658818 0.0020768438320900 + 165 9 Cd 4d+2 -0.0090486459418066 -0.0008070558275669 + 166 9 Cd 5d-2 0.0211213923451309 -0.0059040638473783 + 167 9 Cd 5d-1 0.0046112248713067 0.0087407209212153 + 168 9 Cd 5d0 0.0242901565144738 0.0723565981795978 + 169 9 Cd 5d+1 0.0186230228679171 -0.0295666893706946 + 170 9 Cd 5d+2 -0.0482753584240646 -0.0231619315264256 + 171 9 Cd 5f-3 0.0072228147151811 0.0028701779671086 + 172 9 Cd 5f-2 0.0028795797393256 -0.0077983751874646 + 173 9 Cd 5f-1 0.0003061016618797 0.0032551531370515 + 174 9 Cd 5f0 0.0023311577650586 0.0038479007378897 + 175 9 Cd 5f+1 -0.0055027307165649 0.0004230773638844 + 176 9 Cd 5f+2 -0.0004188330208356 0.0034528025270705 + 177 9 Cd 5f+3 -0.0012114588741696 0.0025564880438528 + + 178 10 Se 2s 0.0102682348963408 -0.0010432411192636 + 179 10 Se 3s -0.0028617652280819 0.0023863501808584 + 180 10 Se 3py 0.0168607544511865 -0.0482938823569645 + 181 10 Se 3pz 0.0028419454777009 -0.0210657798953115 + 182 10 Se 3px 0.0737270911402018 0.0425130153144119 + 183 10 Se 4py -0.0165612303773686 0.0248277894987137 + 184 10 Se 4pz 0.0214838855112083 0.0369615737800306 + 185 10 Se 4px -0.0021107238955109 0.0194018760098027 + 186 10 Se 4d-2 -0.0017274259106635 -0.0011654189712058 + 187 10 Se 4d-1 0.0112112467999909 -0.0100863705642307 + 188 10 Se 4d0 -0.0039291604302901 -0.0324561834615902 + 189 10 Se 4d+1 0.0083322919497705 0.0025418736188821 + 190 10 Se 4d+2 0.0021105164823390 0.0066447477879538 + + 191 11 Se 2s 0.0599189007942995 0.1674976830933651 + 192 11 Se 3s -0.0130693440544723 -0.0333700280671852 + 193 11 Se 3py -0.0110092709053286 0.0766341459859413 + 194 11 Se 3pz -0.0258226085737169 -0.0249500351103775 + 195 11 Se 3px 0.0586155156624249 0.0544241974768935 + 196 11 Se 4py 0.0065265083753812 -0.0600994835599921 + 197 11 Se 4pz 0.0114799132020645 0.0024649846687950 + 198 11 Se 4px 0.0100332878406422 -0.0008627601451769 + 199 11 Se 4d-2 0.0118913007772928 0.0007023165735791 + 200 11 Se 4d-1 0.0006636069272513 -0.0224304440779033 + 201 11 Se 4d0 -0.0005788429281177 0.0107074300748172 + 202 11 Se 4d+1 0.0020211844828423 -0.0004383494580099 + 203 11 Se 4d+2 -0.0119361150321094 0.0150956520662042 + + 204 12 Cd 2s 0.0035744802047445 0.1320943915790623 + 205 12 Cd 3s -0.0082158822156470 0.0221791808031141 + 206 12 Cd 3py 0.0132365166816604 0.0397869804916740 + 207 12 Cd 3pz -0.1082636269782328 0.0355571888691876 + 208 12 Cd 3px 0.0828326622817144 0.4482724475431092 + 209 12 Cd 4py 0.0106423635709783 -0.0055707295549304 + 210 12 Cd 4pz -0.0065785964554874 -0.0020652671899740 + 211 12 Cd 4px 0.0143803129300315 0.0554675329042322 + 212 12 Cd 4d-2 -0.0075663371522394 0.0042204335299475 + 213 12 Cd 4d-1 0.0081170212170492 -0.0010872824409351 + 214 12 Cd 4d0 0.0125612904702325 -0.0042089688187713 + 215 12 Cd 4d+1 0.0201979042713724 0.0095099299602914 + 216 12 Cd 4d+2 -0.0106292357545002 0.0032123304401733 + 217 12 Cd 5d-2 -0.0228812208946807 -0.0242754127653001 + 218 12 Cd 5d-1 -0.0035166916516720 0.0397809679021023 + 219 12 Cd 5d0 0.0113192198168366 0.0214790859762990 + 220 12 Cd 5d+1 0.0399276088674606 0.0486874267929090 + 221 12 Cd 5d+2 -0.0515396080788371 0.0149557212212456 + 222 12 Cd 5f-3 0.0036686584759952 0.0066056609485250 + 223 12 Cd 5f-2 0.0021259140551248 -0.0005578938324990 + 224 12 Cd 5f-1 0.0006564720059177 0.0024793750986222 + 225 12 Cd 5f0 -0.0003331067352806 0.0055783335039767 + 226 12 Cd 5f+1 -0.0012708758936246 0.0109742649628113 + 227 12 Cd 5f+2 -0.0011896819791825 0.0021795443793014 + 228 12 Cd 5f+3 -0.0037710421106009 0.0079800842676740 + + 229 13 Cd 2s -0.1887367933005682 0.0578688827519424 + 230 13 Cd 3s -0.0216028178894926 0.0089588287564517 + 231 13 Cd 3py -0.0932685780648396 0.0736950563928075 + 232 13 Cd 3pz -0.5186630664300436 0.0836178658560537 + 233 13 Cd 3px -0.0440279728165534 0.1209428200047356 + 234 13 Cd 4py -0.0173162031983856 0.0052955990429304 + 235 13 Cd 4pz -0.0719369009123651 0.0053063452291367 + 236 13 Cd 4px -0.0031649630904218 -0.0004415624165630 + 237 13 Cd 4d-2 -0.0309227404420411 -0.0046132292977849 + 238 13 Cd 4d-1 -0.0175661146219790 -0.0106798886086859 + 239 13 Cd 4d0 -0.0286866425419193 0.0155176099074565 + 240 13 Cd 4d+1 0.0312236415356413 -0.0266550617711268 + 241 13 Cd 4d+2 0.0137750098194700 -0.0242880951521833 + 242 13 Cd 5d-2 -0.0443016931787748 0.0458739811143553 + 243 13 Cd 5d-1 -0.0933738263421334 -0.0407662438542687 + 244 13 Cd 5d0 -0.0496041325602397 0.0321284947012766 + 245 13 Cd 5d+1 0.0952898621322951 -0.0838523997580297 + 246 13 Cd 5d+2 0.0192269364561290 -0.0286437123537637 + 247 13 Cd 5f-3 -0.0019250042978664 -0.0024268203066357 + 248 13 Cd 5f-2 0.0029442319964592 0.0010792061260784 + 249 13 Cd 5f-1 0.0146943168435739 0.0064313898304325 + 250 13 Cd 5f0 -0.0058190516027352 -0.0048326036197343 + 251 13 Cd 5f+1 -0.0039509319786872 0.0055297313621916 + 252 13 Cd 5f+2 0.0098288855128517 0.0021477514485116 + 253 13 Cd 5f+3 0.0001162880641601 -0.0110285020455427 + + 254 14 Cd 2s 0.1278055796807282 -0.0874141955828742 + 255 14 Cd 3s 0.0047875219194079 -0.0129893403806973 + 256 14 Cd 3py -0.1797169471451941 0.1865814811327809 + 257 14 Cd 3pz -0.1905436150198851 0.0966560118319060 + 258 14 Cd 3px 0.0882406275935516 0.0341701691756501 + 259 14 Cd 4py -0.0390264079383588 0.0357850288371642 + 260 14 Cd 4pz -0.0207303550679250 0.0103067385798052 + 261 14 Cd 4px 0.0080208977462867 -0.0050910393837364 + 262 14 Cd 4d-2 0.0086242149341193 -0.0050693844648294 + 263 14 Cd 4d-1 -0.0127886656326750 0.0097728487177831 + 264 14 Cd 4d0 0.0028534278469008 -0.0037476051693827 + 265 14 Cd 4d+1 0.0115549713018742 -0.0016694835007698 + 266 14 Cd 4d+2 0.0066374960842755 -0.0146752229079689 + 267 14 Cd 5d-2 0.0654552859395590 -0.0049704784248576 + 268 14 Cd 5d-1 -0.0286376259932221 0.0258115451112951 + 269 14 Cd 5d0 0.0241365494542857 0.0241436517123046 + 270 14 Cd 5d+1 0.0670209675223101 -0.0019101218440048 + 271 14 Cd 5d+2 0.0049319278790219 -0.0385879957905316 + 272 14 Cd 5f-3 -0.0085710545155776 0.0041637768216738 + 273 14 Cd 5f-2 -0.0096354217761170 -0.0016865569676190 + 274 14 Cd 5f-1 -0.0059549691685940 0.0010315734692598 + 275 14 Cd 5f0 -0.0087491093410099 0.0010167267412923 + 276 14 Cd 5f+1 0.0032141016334839 0.0046419892643229 + 277 14 Cd 5f+2 -0.0065355981555517 0.0011427871410127 + 278 14 Cd 5f+3 0.0050257730407019 -0.0137092631081864 + + 279 15 Se 2s -0.0391207304508718 -0.0005724465156212 + 280 15 Se 3s 0.0069126350516342 0.0007060517689609 + 281 15 Se 3py 0.0910731376500528 0.0027005380090202 + 282 15 Se 3pz -0.0227056525682952 0.0011640652229065 + 283 15 Se 3px -0.0742313994611940 0.0021084500991349 + 284 15 Se 4py -0.0632351069709959 0.0142616307423621 + 285 15 Se 4pz -0.0094038294556509 -0.0057897987463423 + 286 15 Se 4px 0.0622243308338258 0.0123949383956128 + 287 15 Se 4d-2 -0.0253534641573465 -0.0012793199432776 + 288 15 Se 4d-1 -0.0093610101719065 0.0113730103122037 + 289 15 Se 4d0 -0.0631303704973361 0.0298200594320079 + 290 15 Se 4d+1 -0.0080352397362747 0.0038593654035227 + 291 15 Se 4d+2 -0.0005778874650698 -0.0112523499872434 + + 292 16 Se 2s 0.2217135607613945 0.0623344377372793 + 293 16 Se 3s -0.0437919458575102 -0.0121259772832671 + 294 16 Se 3py -0.0007005262210006 -0.1353670085496483 + 295 16 Se 3pz 0.1029670251890644 0.0790149638373080 + 296 16 Se 3px 0.0106135124924651 0.1721963575333508 + 297 16 Se 4py 0.0197423574101040 0.0471463874856280 + 298 16 Se 4pz -0.0807051450583740 -0.0276212926900224 + 299 16 Se 4px -0.0016750778092578 -0.0367859686685430 + 300 16 Se 4d-2 0.0392128737220528 0.0048643349128397 + 301 16 Se 4d-1 0.0009409024240186 0.0158419002218852 + 302 16 Se 4d0 -0.0061683126024979 0.0049438672304290 + 303 16 Se 4d+1 -0.0178079041945882 -0.0077272578783795 + 304 16 Se 4d+2 0.0082565242726083 0.0459923881967884 + + 305 17 Cd 2s -0.1816537849320858 -0.1521842281054959 + 306 17 Cd 3s -0.0226380244902187 -0.0124504848884921 + 307 17 Cd 3py 0.1117760463215634 -0.2574225176235914 + 308 17 Cd 3pz -0.2510986239089519 0.1566624923386412 + 309 17 Cd 3px 0.1156599695237418 0.3605145000341594 + 310 17 Cd 4py 0.0236131755465435 -0.0282825409258731 + 311 17 Cd 4pz -0.0413409777251642 0.0190930462609395 + 312 17 Cd 4px 0.0274011508001477 0.0360664562744238 + 313 17 Cd 4d-2 -0.0039693651794465 -0.0360190178895785 + 314 17 Cd 4d-1 -0.0037346571636885 -0.0127026639025298 + 315 17 Cd 4d0 0.0063755618854268 -0.0276466645240702 + 316 17 Cd 4d+1 -0.0034422673195669 0.0221811922850269 + 317 17 Cd 4d+2 0.0007859214015660 0.0046149667432408 + 318 17 Cd 5d-2 -0.0060871016226170 -0.0458117182169482 + 319 17 Cd 5d-1 -0.0167435730259871 -0.0352666337613491 + 320 17 Cd 5d0 0.0704317107491270 -0.0456965920230317 + 321 17 Cd 5d+1 0.0101693789152265 -0.0011250167872021 + 322 17 Cd 5d+2 0.0155474415256033 -0.0039834450499999 + 323 17 Cd 5f-3 -0.0164935042451083 -0.0009592727892357 + 324 17 Cd 5f-2 0.0021130027989463 0.0101785264556155 + 325 17 Cd 5f-1 0.0044478399798282 0.0006541814408815 + 326 17 Cd 5f0 0.0106528850125642 0.0065587643551312 + 327 17 Cd 5f+1 -0.0049745356423988 0.0097953056244606 + 328 17 Cd 5f+2 0.0024893602148414 0.0008610801726697 + 329 17 Cd 5f+3 0.0073155232524238 0.0014758450896186 + + 330 18 Cd 2s 0.0693376534903660 -0.0559739912283507 + 331 18 Cd 3s 0.0056807922351925 -0.0002353684378628 + 332 18 Cd 3py 0.0350292597039981 -0.1319082233126454 + 333 18 Cd 3pz 0.0439105264956569 0.1254000646994979 + 334 18 Cd 3px 0.1370748266917306 -0.0463277971900045 + 335 18 Cd 4py 0.0090279357335468 -0.0180428459099633 + 336 18 Cd 4pz 0.0104379912742769 0.0032810111928460 + 337 18 Cd 4px 0.0149256309763829 -0.0046064347327015 + 338 18 Cd 4d-2 -0.0131861755311482 0.0055595150592092 + 339 18 Cd 4d-1 -0.0030561438463853 -0.0073265904425953 + 340 18 Cd 4d0 -0.0068121830974223 -0.0165082060821851 + 341 18 Cd 4d+1 -0.0002528105520348 -0.0013851673719864 + 342 18 Cd 4d+2 0.0003660056082008 -0.0026819834436612 + 343 18 Cd 5d-2 -0.0719808878692493 0.0383338577026340 + 344 18 Cd 5d-1 -0.0451281896021324 -0.0794884421022869 + 345 18 Cd 5d0 0.0184455372130521 -0.0700471898825081 + 346 18 Cd 5d+1 0.0052838941774554 0.0110848678600262 + 347 18 Cd 5d+2 -0.0325177398971551 -0.0189631514773396 + 348 18 Cd 5f-3 0.0012083041977075 -0.0095150445938334 + 349 18 Cd 5f-2 0.0004238665751729 -0.0045281390998355 + 350 18 Cd 5f-1 0.0048796247758842 0.0022761233676963 + 351 18 Cd 5f0 0.0022069784136278 -0.0071936268170922 + 352 18 Cd 5f+1 -0.0045223813955975 0.0063298194640515 + 353 18 Cd 5f+2 0.0117400088263337 -0.0046622499235152 + 354 18 Cd 5f+3 0.0058126584547762 -0.0070649148318096 + + 355 19 Se 2s -0.1303303414545895 -0.0784569011781115 + 356 19 Se 3s 0.0275831889505327 0.0173124871667778 + 357 19 Se 3py -0.0541514260685218 -0.0553897247740789 + 358 19 Se 3pz -0.0663111527922785 -0.0180670440817040 + 359 19 Se 3px 0.0576239040109611 -0.0058286016196828 + 360 19 Se 4py 0.0512862552037361 0.0127616103732248 + 361 19 Se 4pz 0.0156671815204616 0.0143206552215767 + 362 19 Se 4px 0.0104139096235847 -0.0051060131225338 + 363 19 Se 4d-2 0.0108292881140233 -0.0256558550333700 + 364 19 Se 4d-1 0.0102336830259012 -0.0086158564487847 + 365 19 Se 4d0 -0.0219474838508776 0.0138061836582226 + 366 19 Se 4d+1 -0.0098218843565701 0.0095473790939987 + 367 19 Se 4d+2 0.0062895446706153 -0.0464922990546167 + + 368 20 Se 2s -0.0092855639707813 0.0386728071379317 + 369 20 Se 3s 0.0012557342407309 -0.0089232480825412 + 370 20 Se 3py -0.0920877691393612 0.0271817647790590 + 371 20 Se 3pz -0.0145047666024162 0.1982140452482644 + 372 20 Se 3px -0.2595811914178478 -0.0327403506089904 + 373 20 Se 4py 0.0496525942577408 -0.0048510942449832 + 374 20 Se 4pz 0.0039124814477472 -0.0932711138355047 + 375 20 Se 4px 0.0899505511140740 -0.0014020803722643 + 376 20 Se 4d-2 -0.0122502206651508 -0.0173100689127062 + 377 20 Se 4d-1 -0.0044776748846194 -0.0021698230779183 + 378 20 Se 4d0 -0.0247740617807505 0.0024357745191242 + 379 20 Se 4d+1 -0.0062613077729511 0.0308491614867972 + 380 20 Se 4d+2 -0.0222185562869601 0.0251054746557447 + + 381 21 Se 2s -0.1013148354164910 0.0779113743252493 + 382 21 Se 3s 0.0221836925874725 -0.0188130067601552 + 383 21 Se 3py -0.0263816360784679 -0.0080447721511262 + 384 21 Se 3pz 0.0503773787769621 -0.2209456541104386 + 385 21 Se 3px -0.0448804077303349 -0.0157205439543686 + 386 21 Se 4py -0.0365165971247447 -0.0034714732624830 + 387 21 Se 4pz -0.0296768790767033 0.0968501064610859 + 388 21 Se 4px 0.0184552412073295 -0.0007173864973133 + 389 21 Se 4d-2 -0.0134468666602571 0.0018257346917174 + 390 21 Se 4d-1 -0.0055466214238408 -0.0090803296810391 + 391 21 Se 4d0 0.0287553554723875 -0.0246941929614310 + 392 21 Se 4d+1 0.0001095427853100 0.0324831320528503 + 393 21 Se 4d+2 -0.0042934433111062 0.0047257853853896 + + 394 22 Cd 2s -0.0021106266372850 0.1612192199232425 + 395 22 Cd 3s -0.0085993496278696 0.0204785138000612 + 396 22 Cd 3py -0.1019968053693577 0.1085933851909647 + 397 22 Cd 3pz -0.2745672831743249 0.2698757848666231 + 398 22 Cd 3px 0.0739014691812212 -0.2278381380744775 + 399 22 Cd 4py -0.0245763409183906 0.0260162852854474 + 400 22 Cd 4pz -0.0407364468736682 0.0416248466787151 + 401 22 Cd 4px 0.0046461651327228 -0.0120668581210851 + 402 22 Cd 4d-2 0.0200398577905345 0.0022268055476018 + 403 22 Cd 4d-1 -0.0083045166666176 0.0010018149542663 + 404 22 Cd 4d0 -0.0069885221426179 -0.0112891307630156 + 405 22 Cd 4d+1 -0.0272520801159106 0.0273237060488177 + 406 22 Cd 4d+2 -0.0090241331574791 -0.0065569936462500 + 407 22 Cd 5d-2 0.0493550983060280 0.0263506791178126 + 408 22 Cd 5d-1 0.0054363502812157 0.0404045408599565 + 409 22 Cd 5d0 0.0248316285148361 0.0280954534351661 + 410 22 Cd 5d+1 -0.0513250579204282 0.0052617209870102 + 411 22 Cd 5d+2 -0.0933575252486601 0.0076541797295940 + 412 22 Cd 5f-3 -0.0058351189678344 -0.0021009852666190 + 413 22 Cd 5f-2 -0.0003903915293335 -0.0050634793484342 + 414 22 Cd 5f-1 0.0120175424615970 -0.0077929812142323 + 415 22 Cd 5f0 -0.0000185798509290 -0.0069610684088572 + 416 22 Cd 5f+1 0.0055649674217056 -0.0009876883469074 + 417 22 Cd 5f+2 0.0114633038124197 0.0021907490415713 + 418 22 Cd 5f+3 -0.0197604568554033 0.0111282923172360 + + 419 23 Se 2s 0.0780220650087549 -0.2339652014384087 + 420 23 Se 3s -0.0192861395565827 0.0496057338431563 + 421 23 Se 3py 0.1225171917641114 0.1125497858713024 + 422 23 Se 3pz 0.0521560279438731 0.0172861000745678 + 423 23 Se 3px 0.0909319423460775 -0.2877441175521683 + 424 23 Se 4py -0.0278880963940240 -0.0595446289994231 + 425 23 Se 4pz -0.0539812256421196 0.0359005771201619 + 426 23 Se 4px 0.0005093800996506 0.1105962029203702 + 427 23 Se 4d-2 -0.0174642262346146 -0.0229236392902259 + 428 23 Se 4d-1 -0.0067512859511926 0.0023907062027705 + 429 23 Se 4d0 -0.0222599124719004 -0.0216921446523099 + 430 23 Se 4d+1 -0.0017372536482973 0.0132289765333150 + 431 23 Se 4d+2 0.0002491231120062 0.0130754315429434 + + 432 24 Se 2s -0.0132987362652627 -0.0129320457970571 + 433 24 Se 3s 0.0003352462276517 0.0027405512587178 + 434 24 Se 3py 0.0524874189315962 0.0494619536352475 + 435 24 Se 3pz 0.0579955412533004 -0.1250298618151438 + 436 24 Se 3px 0.0576602530391212 -0.0349074867861736 + 437 24 Se 4py 0.0061367519959140 -0.0161850948170938 + 438 24 Se 4pz -0.0032102370949894 0.0203419120811884 + 439 24 Se 4px -0.0190459596513209 0.0201020547845354 + 440 24 Se 4d-2 -0.0147462451062051 -0.0105099076406043 + 441 24 Se 4d-1 -0.0033306435775600 -0.0160362328602808 + 442 24 Se 4d0 0.0311577241909475 -0.0058086640325440 + 443 24 Se 4d+1 0.0046737840744067 0.0324643263118464 + 444 24 Se 4d+2 -0.0161161767368382 0.0136770052815105 + + 445 25 Cd 2s 0.0357039175723400 -0.0808849903374224 + 446 25 Cd 3s -0.0063768351366731 -0.0148570639291874 + 447 25 Cd 3py 0.1885714673237518 -0.0915937451542293 + 448 25 Cd 3pz 0.2628485732182327 -0.0322095691399155 + 449 25 Cd 3px 0.1641005042335948 -0.2516292337274620 + 450 25 Cd 4py 0.0249725118236849 -0.0138057246867997 + 451 25 Cd 4pz 0.0363145200131324 -0.0022462716038236 + 452 25 Cd 4px 0.0202373641656446 -0.0238055148092287 + 453 25 Cd 4d-2 -0.0138255850151042 -0.0077370780834462 + 454 25 Cd 4d-1 0.0003902077886629 0.0055968525063130 + 455 25 Cd 4d0 0.0028679066583707 -0.0004366188767293 + 456 25 Cd 4d+1 -0.0065149836856889 0.0050737336604386 + 457 25 Cd 4d+2 -0.0212494519785110 -0.0079680998132629 + 458 25 Cd 5d-2 -0.0500693314979395 0.0177722248498460 + 459 25 Cd 5d-1 -0.0285194260571127 0.0539517826682244 + 460 25 Cd 5d0 0.0800639501384693 -0.0380907202309949 + 461 25 Cd 5d+1 -0.0337643465899346 0.0489331183803304 + 462 25 Cd 5d+2 -0.0323138381183921 -0.0902473442360308 + 463 25 Cd 5f-3 -0.0078006530646724 -0.0131065106051892 + 464 25 Cd 5f-2 0.0081708950484319 -0.0044099370260808 + 465 25 Cd 5f-1 -0.0031605968818991 -0.0032500514351903 + 466 25 Cd 5f0 -0.0128547172856369 -0.0037730777850823 + 467 25 Cd 5f+1 -0.0054924506480675 -0.0005565814438126 + 468 25 Cd 5f+2 0.0117781809369142 0.0063527742332678 + 469 25 Cd 5f+3 -0.0132902062470794 0.0049072066852092 + + 470 26 Cd 2s 0.0186652661907282 0.0614494506987909 + 471 26 Cd 3s -0.0128503077453499 0.0135422212469720 + 472 26 Cd 3py 0.0103829839857705 -0.0584031381029657 + 473 26 Cd 3pz 0.1317430577114591 0.0135375898507179 + 474 26 Cd 3px -0.0054917222243973 0.0659865148269040 + 475 26 Cd 4py -0.0016987789630994 -0.0004067505508030 + 476 26 Cd 4pz 0.0167891312491494 -0.0028511208383580 + 477 26 Cd 4px -0.0022579629515584 0.0139670134796697 + 478 26 Cd 4d-2 -0.0034760715385267 -0.0025179258811146 + 479 26 Cd 4d-1 0.0072161312689387 -0.0017148991397346 + 480 26 Cd 4d0 -0.0022362658294673 0.0105885337975625 + 481 26 Cd 4d+1 -0.0128532350585958 -0.0089621973090921 + 482 26 Cd 4d+2 0.0113495454626405 0.0013069368913292 + 483 26 Cd 5d-2 0.0073545159247037 0.0029721471139521 + 484 26 Cd 5d-1 0.0275267979833270 0.0237915032927218 + 485 26 Cd 5d0 -0.0348383372804674 0.0108630987030120 + 486 26 Cd 5d+1 -0.0259795429891584 -0.0575117704317737 + 487 26 Cd 5d+2 0.0370115154298322 -0.0096928108590089 + 488 26 Cd 5f-3 0.0005869036246089 0.0036811944375321 + 489 26 Cd 5f-2 -0.0007976692157530 0.0035618366209287 + 490 26 Cd 5f-1 0.0005044631248091 0.0116142910790933 + 491 26 Cd 5f0 -0.0006954571809622 0.0032195067209995 + 492 26 Cd 5f+1 0.0032452645294072 0.0045132381129537 + 493 26 Cd 5f+2 0.0060500718261892 -0.0051744178321213 + 494 26 Cd 5f+3 -0.0043978771538384 -0.0010811277751633 + + 149 150 + 0.0486635970604798 0.0504217067294887 + + 0.0000000000000000 0.0000000000000000 + + 1 1 Cd 2s -0.0176256006717759 0.0456443379865331 + 2 1 Cd 3s -0.0074738408571808 0.0077291629257760 + 3 1 Cd 3py -0.1034618039102833 -0.0475624629272904 + 4 1 Cd 3pz -0.0720839170513808 0.4405204984772707 + 5 1 Cd 3px -0.0060593222858023 0.0635762309513717 + 6 1 Cd 4py -0.0164632474365766 0.0000996951454208 + 7 1 Cd 4pz -0.0222648950000961 0.0594747176270053 + 8 1 Cd 4px 0.0011902129051745 0.0071874151601803 + 9 1 Cd 4d-2 -0.0030431567080365 -0.0137122970632737 + 10 1 Cd 4d-1 0.0056672454709633 -0.0142913382180798 + 11 1 Cd 4d0 0.0149779353827877 0.0070942709138123 + 12 1 Cd 4d+1 -0.0120834572633520 0.0118197462915304 + 13 1 Cd 4d+2 0.0056330305123148 0.0057404847307730 + 14 1 Cd 5d-2 0.0422906107812453 -0.0351488454524887 + 15 1 Cd 5d-1 0.0100450435716429 -0.0049772835102745 + 16 1 Cd 5d0 0.0174082349819399 0.0404698389279611 + 17 1 Cd 5d+1 -0.0377451145406392 0.0408990490160447 + 18 1 Cd 5d+2 -0.0068338109395158 -0.0022058158780251 + 19 1 Cd 5f-3 -0.0004836361346733 0.0005631552226131 + 20 1 Cd 5f-2 -0.0020135221393214 -0.0020372679557203 + 21 1 Cd 5f-1 -0.0045429399115802 0.0062538541755250 + 22 1 Cd 5f0 -0.0060583876941204 0.0049421268304667 + 23 1 Cd 5f+1 -0.0110216737373421 -0.0002713179509262 + 24 1 Cd 5f+2 -0.0042247704482193 0.0020260307159133 + 25 1 Cd 5f+3 -0.0072171591358338 0.0025904565468779 + + 26 2 Cd 2s 0.1675035157646625 -0.0507592611137515 + 27 2 Cd 3s 0.0159496666055176 0.0049879856751624 + 28 2 Cd 3py -0.1644134391172674 -0.0414904243217484 + 29 2 Cd 3pz -0.3039708670202834 0.1016320907235444 + 30 2 Cd 3px -0.1463536832265748 0.0171331448384938 + 31 2 Cd 4py -0.0230105413542113 0.0050166963260148 + 32 2 Cd 4pz -0.0404688821861432 0.0119190521369535 + 33 2 Cd 4px -0.0132546528706357 0.0019916736790731 + 34 2 Cd 4d-2 0.0029553298975867 -0.0013795292144850 + 35 2 Cd 4d-1 0.0180569008224941 0.0076684403921978 + 36 2 Cd 4d0 0.0128640996084585 -0.0048838594304019 + 37 2 Cd 4d+1 0.0074533976960351 -0.0047882334687398 + 38 2 Cd 4d+2 -0.0331493511243977 0.0163593928342159 + 39 2 Cd 5d-2 -0.0542352230421767 -0.0168357606665289 + 40 2 Cd 5d-1 0.0510881185816253 0.0470264611026795 + 41 2 Cd 5d0 0.0859204355110364 -0.0267734764757724 + 42 2 Cd 5d+1 -0.0000429995238072 0.0455019615922364 + 43 2 Cd 5d+2 -0.1538878034571726 0.0729053969936130 + 44 2 Cd 5f-3 0.0027571388071710 -0.0087402862417146 + 45 2 Cd 5f-2 -0.0131815088026650 -0.0029141188302045 + 46 2 Cd 5f-1 -0.0019197683400143 0.0066582074233549 + 47 2 Cd 5f0 0.0013111917428814 0.0076092652617421 + 48 2 Cd 5f+1 0.0017290174021700 0.0160347227322307 + 49 2 Cd 5f+2 0.0064334213750015 0.0106528484094576 + 50 2 Cd 5f+3 0.0083978523313295 -0.0213460272044687 + + 51 3 Cd 2s 0.0595631502796980 -0.0764259562889711 + 52 3 Cd 3s 0.0131554017232695 0.0060965021954928 + 53 3 Cd 3py 0.0802292835922280 -0.1321351393171661 + 54 3 Cd 3pz 0.1498666920105469 0.0959745024505378 + 55 3 Cd 3px 0.0362437310049591 0.1543133226946626 + 56 3 Cd 4py 0.0107026430450211 -0.0213455541281441 + 57 3 Cd 4pz 0.0190223959686188 0.0104690416466666 + 58 3 Cd 4px -0.0062478111163499 0.0170695468302286 + 59 3 Cd 4d-2 0.0129125430847164 0.0090917036248058 + 60 3 Cd 4d-1 0.0229364970475627 0.0006020218254289 + 61 3 Cd 4d0 -0.0056601579864467 -0.0121261381435230 + 62 3 Cd 4d+1 -0.0283183046739149 0.0005770188167975 + 63 3 Cd 4d+2 -0.0198293921946918 0.0003092835046799 + 64 3 Cd 5d-2 -0.0188941917381293 0.0073151474168450 + 65 3 Cd 5d-1 0.0676874716324876 -0.0270124001322206 + 66 3 Cd 5d0 -0.0492580338398714 -0.0428222032461913 + 67 3 Cd 5d+1 -0.0509139951885137 0.0255902363227473 + 68 3 Cd 5d+2 -0.0321165623243654 -0.0176014817617615 + 69 3 Cd 5f-3 -0.0049603474461197 0.0092875669653616 + 70 3 Cd 5f-2 -0.0007867787956722 -0.0056531529494285 + 71 3 Cd 5f-1 -0.0055708886259358 -0.0065822447069038 + 72 3 Cd 5f0 -0.0033773482411292 -0.0032433922845071 + 73 3 Cd 5f+1 -0.0003530444739310 0.0071168378545712 + 74 3 Cd 5f+2 -0.0014381855177592 -0.0051789699081587 + 75 3 Cd 5f+3 0.0045104230125712 -0.0147456017617934 + + 76 4 Se 2s -0.0471911826372042 0.0612405316876808 + 77 4 Se 3s 0.0098925181265391 -0.0129491436490549 + 78 4 Se 3py -0.0810737119293253 -0.0948779595551445 + 79 4 Se 3pz 0.0777192328958081 0.0017774522629192 + 80 4 Se 3px -0.0809028775707465 0.0508320686625957 + 81 4 Se 4py 0.0249574094012755 0.0466127668986264 + 82 4 Se 4pz -0.0356876577480866 0.0392549112313445 + 83 4 Se 4px 0.0251990830876001 -0.0112858687900742 + 84 4 Se 4d-2 -0.0318859665885757 0.0132746893126565 + 85 4 Se 4d-1 0.0026023263511324 -0.0046199108963561 + 86 4 Se 4d0 0.0235389170236617 0.0265139927167545 + 87 4 Se 4d+1 0.0396017012224934 -0.0132137825923257 + 88 4 Se 4d+2 -0.0034453531042681 0.0293920263739027 + + 89 5 Se 2s 0.0361427938845187 0.0319533390049930 + 90 5 Se 3s -0.0080816838567086 -0.0042587829221480 + 91 5 Se 3py 0.0067769509162436 -0.0037137027220073 + 92 5 Se 3pz -0.0413096055807960 0.1544040041256660 + 93 5 Se 3px -0.0067613923826667 0.0616941518382440 + 94 5 Se 4py -0.0041477191811408 -0.0165203334670110 + 95 5 Se 4pz 0.0000188207201858 -0.0373970946221929 + 96 5 Se 4px -0.0032788994975459 -0.0232150764554809 + 97 5 Se 4d-2 -0.0029695048076169 -0.0181579865801963 + 98 5 Se 4d-1 0.0025736698997421 -0.0200562379995969 + 99 5 Se 4d0 -0.0039022624324126 0.0036232672760056 + 100 5 Se 4d+1 -0.0027750531657690 -0.0052986803954441 + 101 5 Se 4d+2 0.0103877427619713 0.0189470788720481 + + 102 6 Se 2s -0.0193212515034267 0.0968316144839248 + 103 6 Se 3s 0.0033847408199925 -0.0171404162599507 + 104 6 Se 3py 0.0249579779485785 -0.0104356514648146 + 105 6 Se 3pz -0.2020474386171179 0.0336154996721305 + 106 6 Se 3px -0.0600186416165532 0.0971864067530973 + 107 6 Se 4py -0.0315077783535229 -0.0026569679736391 + 108 6 Se 4pz 0.0848080097283810 0.0040575669545625 + 109 6 Se 4px 0.0115981246006998 -0.0039693955491071 + 110 6 Se 4d-2 0.0264200960396016 -0.0085576270056511 + 111 6 Se 4d-1 -0.0008058848874746 0.0048765663378239 + 112 6 Se 4d0 -0.0039118934847750 -0.0379471074846210 + 113 6 Se 4d+1 -0.0449959338123958 0.0115367710735522 + 114 6 Se 4d+2 -0.0113693460205999 0.0279784149166676 + + 115 7 Se 2s 0.0757014322268163 0.0469504635292043 + 116 7 Se 3s -0.0176815784800930 -0.0116558025418281 + 117 7 Se 3py 0.0195045330698683 -0.0797860598516366 + 118 7 Se 3pz 0.0396363931764206 -0.0214339057927760 + 119 7 Se 3px -0.1148864589282990 -0.0221342572825960 + 120 7 Se 4py -0.0530247789206988 0.0371097718789522 + 121 7 Se 4pz 0.0200737400412134 0.0254034096670373 + 122 7 Se 4px -0.0011492480717044 0.0459514080443597 + 123 7 Se 4d-2 -0.0138704375341652 -0.0145597494384617 + 124 7 Se 4d-1 0.0316167001724616 -0.0208771334442443 + 125 7 Se 4d0 0.0116670391146167 -0.0000100336272153 + 126 7 Se 4d+1 0.0074003774996818 -0.0178305317315621 + 127 7 Se 4d+2 -0.0052911862492311 -0.0036113586269116 + + 128 8 Cd 2s -0.1515631629835266 0.1485256886372906 + 129 8 Cd 3s -0.0011038928582982 0.0132620910015535 + 130 8 Cd 3py -0.0291124343612638 -0.0840490484453513 + 131 8 Cd 3pz 0.4906784493019715 0.1545432490539291 + 132 8 Cd 3px -0.3154519189363698 0.4300903556702716 + 133 8 Cd 4py -0.0078955284597223 -0.0156931144742472 + 134 8 Cd 4pz 0.0651250283077816 0.0262102936268562 + 135 8 Cd 4px -0.0147233567302541 0.0605024497399727 + 136 8 Cd 4d-2 -0.0137789380949876 -0.0129596097732551 + 137 8 Cd 4d-1 0.0226397611156148 0.0025737914838720 + 138 8 Cd 4d0 -0.0021869283768286 -0.0061453014596111 + 139 8 Cd 4d+1 -0.0097319626738898 -0.0025176354626818 + 140 8 Cd 4d+2 0.0050224196188637 -0.0023053885453162 + 141 8 Cd 5d-2 -0.0722991495264387 -0.0233455467261750 + 142 8 Cd 5d-1 0.0934599835270780 0.0170485904213507 + 143 8 Cd 5d0 -0.0142844632808771 -0.0240434307939220 + 144 8 Cd 5d+1 -0.1397423530622958 0.0523003858246337 + 145 8 Cd 5d+2 0.0997790445961395 -0.1036340161416551 + 146 8 Cd 5f-3 -0.0010729508825226 0.0051350778929884 + 147 8 Cd 5f-2 -0.0034245305469799 0.0105486350114211 + 148 8 Cd 5f-1 -0.0022464556652143 0.0029955936699254 + 149 8 Cd 5f0 0.0163078902377195 0.0241297122123890 + 150 8 Cd 5f+1 -0.0129334487943669 0.0102353913302481 + 151 8 Cd 5f+2 -0.0000623982597227 -0.0053616892364708 + 152 8 Cd 5f+3 0.0104204376941328 -0.0019160383134273 + + 153 9 Cd 2s -0.0803152311898640 -0.2398556113252887 + 154 9 Cd 3s 0.0005473259071298 -0.0197970521189608 + 155 9 Cd 3py 0.1263168446519342 -0.0661713010423485 + 156 9 Cd 3pz 0.2013997892234163 0.1890169195786713 + 157 9 Cd 3px -0.2668959772290194 0.4775859910585253 + 158 9 Cd 4py 0.0080808845138867 -0.0259725750118996 + 159 9 Cd 4pz 0.0389740164424463 0.0421356121765039 + 160 9 Cd 4px -0.0417370564535383 0.0616244606106942 + 161 9 Cd 4d-2 0.0137833636369677 -0.0129511518860605 + 162 9 Cd 4d-1 0.0050488212043553 -0.0032681273986074 + 163 9 Cd 4d0 0.0183071211694272 -0.0092554604052804 + 164 9 Cd 4d+1 -0.0112048597001619 0.0189122939536792 + 165 9 Cd 4d+2 -0.0016491514291601 0.0168201256803951 + 166 9 Cd 5d-2 0.0480552721122580 -0.0073993986756131 + 167 9 Cd 5d-1 0.0307864050227874 0.0207081508321229 + 168 9 Cd 5d0 0.0284436452407610 -0.0275319986381820 + 169 9 Cd 5d+1 -0.0244573198340526 0.0677137487456542 + 170 9 Cd 5d+2 -0.0024339907167450 0.0144585597587085 + 171 9 Cd 5f-3 -0.0061661117487639 0.0065407881112689 + 172 9 Cd 5f-2 -0.0133808997451376 0.0063516494772481 + 173 9 Cd 5f-1 0.0146592276148240 0.0082303686524184 + 174 9 Cd 5f0 -0.0031650095722787 0.0008359487198936 + 175 9 Cd 5f+1 -0.0031929607898762 -0.0092345645578714 + 176 9 Cd 5f+2 0.0088943666325024 0.0090121206123093 + 177 9 Cd 5f+3 0.0222882367063388 -0.0010706614853954 + + 178 10 Se 2s 0.2310612274368050 -0.0884841050638606 + 179 10 Se 3s -0.0480026397613287 0.0190870974685564 + 180 10 Se 3py 0.0574317103458838 -0.0451873673373350 + 181 10 Se 3pz -0.0100599623933129 -0.1098017445793925 + 182 10 Se 3px -0.0099586485323596 -0.0790715757194557 + 183 10 Se 4py 0.0070032532911712 -0.0004704214925805 + 184 10 Se 4pz 0.0433396231168863 0.0643239030377062 + 185 10 Se 4px -0.0360082856158144 0.0545271600129497 + 186 10 Se 4d-2 0.0201770832188975 -0.0216420401438468 + 187 10 Se 4d-1 -0.0153729893192945 -0.0118376153065110 + 188 10 Se 4d0 0.0120066553556577 -0.0384091377266708 + 189 10 Se 4d+1 -0.0174795233518502 0.0303557788356296 + 190 10 Se 4d+2 0.0311584756296849 0.0634949225887381 + + 191 11 Se 2s 0.0837672942984985 0.2183765275239893 + 192 11 Se 3s -0.0165824917616111 -0.0461910692835195 + 193 11 Se 3py 0.0366629644028351 0.0811030113264682 + 194 11 Se 3pz 0.0264256191265656 0.0344737579245746 + 195 11 Se 3px 0.0069033008594112 -0.0632383915228823 + 196 11 Se 4py -0.0089922966744639 -0.0547719788372053 + 197 11 Se 4pz 0.0011924179237597 0.0093035955101587 + 198 11 Se 4px -0.0041955745787047 0.0320214746418123 + 199 11 Se 4d-2 0.0089095062350710 0.0358118352899150 + 200 11 Se 4d-1 -0.0186573687561285 -0.0220695090275227 + 201 11 Se 4d0 -0.0267765265987856 -0.0059494539181259 + 202 11 Se 4d+1 0.0167146148225900 0.0180188484035009 + 203 11 Se 4d+2 0.0084623268199160 -0.0076395291556553 + + 204 12 Cd 2s -0.0455121375940624 0.0843598978860282 + 205 12 Cd 3s 0.0053958717722046 0.0109064178616420 + 206 12 Cd 3py -0.0595012721307381 -0.3133378851135920 + 207 12 Cd 3pz 0.2909900515660054 0.1843878436741702 + 208 12 Cd 3px 0.2775005866054492 0.5201149555713331 + 209 12 Cd 4py -0.0111118649325385 -0.0456863898692519 + 210 12 Cd 4pz 0.0468890647187354 0.0225242147101374 + 211 12 Cd 4px 0.0292458118712540 0.0758494265465412 + 212 12 Cd 4d-2 0.0006081416603668 0.0122572265331739 + 213 12 Cd 4d-1 -0.0169993812961725 -0.0092580233986387 + 214 12 Cd 4d0 0.0057321221762584 -0.0097013059795020 + 215 12 Cd 4d+1 0.0009623268139508 0.0155761553124186 + 216 12 Cd 4d+2 0.0052362174276992 -0.0015499855156968 + 217 12 Cd 5d-2 -0.0016566959221700 0.0824320388751061 + 218 12 Cd 5d-1 -0.0576267191730927 -0.0216723910531126 + 219 12 Cd 5d0 0.0720565136123222 0.0045718884636743 + 220 12 Cd 5d+1 0.0409147453959730 0.0745648111971483 + 221 12 Cd 5d+2 -0.0082897979561139 -0.0226877036732186 + 222 12 Cd 5f-3 -0.0009099828607219 0.0038272244675586 + 223 12 Cd 5f-2 -0.0108447791970010 0.0001257269094650 + 224 12 Cd 5f-1 -0.0062305087818764 -0.0172078005910022 + 225 12 Cd 5f0 -0.0009545885310814 0.0051366016928113 + 226 12 Cd 5f+1 0.0021433754684767 0.0209436753719394 + 227 12 Cd 5f+2 -0.0015491499515962 -0.0071391250563727 + 228 12 Cd 5f+3 0.0068822979644339 0.0080192066410006 + + 229 13 Cd 2s -0.0273350120366573 -0.0127181899605400 + 230 13 Cd 3s -0.0030913581031857 0.0004394262155906 + 231 13 Cd 3py -0.1135586884870618 -0.0521816411071200 + 232 13 Cd 3pz -0.1360504356083503 0.0765323572718519 + 233 13 Cd 3px -0.1472948795564309 0.0200210286190068 + 234 13 Cd 4py -0.0208258118904469 -0.0089454409794848 + 235 13 Cd 4pz -0.0124896714074055 0.0158889477763277 + 236 13 Cd 4px 0.0085987086596924 0.0055722490776830 + 237 13 Cd 4d-2 0.0037207794918097 0.0051233551215852 + 238 13 Cd 4d-1 -0.0053728218690857 0.0136611224728343 + 239 13 Cd 4d0 0.0093285094696466 -0.0060025702872795 + 240 13 Cd 4d+1 0.0161071565044911 0.0048543204252698 + 241 13 Cd 4d+2 0.0010754307246648 -0.0023477735973841 + 242 13 Cd 5d-2 -0.0299366030373543 0.0152534345906894 + 243 13 Cd 5d-1 -0.0393495620691433 0.0538278928240522 + 244 13 Cd 5d0 0.0492484522240014 -0.0324195893848989 + 245 13 Cd 5d+1 0.0324292306804898 0.0340395384219355 + 246 13 Cd 5d+2 -0.0286612440510829 -0.0188450523701660 + 247 13 Cd 5f-3 0.0113697427183153 -0.0023056384707337 + 248 13 Cd 5f-2 0.0001531903550335 0.0041097731774869 + 249 13 Cd 5f-1 -0.0032111731229413 0.0015892570262178 + 250 13 Cd 5f0 0.0002025881974131 -0.0007276877015016 + 251 13 Cd 5f+1 -0.0061942647384406 0.0033035783491677 + 252 13 Cd 5f+2 -0.0018623199752469 -0.0043994153680491 + 253 13 Cd 5f+3 0.0103252408481860 -0.0037665448985024 + + 254 14 Cd 2s 0.1018868831044443 -0.0402169645889473 + 255 14 Cd 3s 0.0191303194912590 -0.0021762747793905 + 256 14 Cd 3py -0.2250942104537377 0.0581357406794246 + 257 14 Cd 3pz 0.0471770774818812 -0.0814386704335915 + 258 14 Cd 3px -0.0257981736421259 0.0303106069844648 + 259 14 Cd 4py -0.0442312878218901 0.0137001316772604 + 260 14 Cd 4pz 0.0114070485026080 -0.0103782817221646 + 261 14 Cd 4px -0.0189875762506589 0.0063448586385843 + 262 14 Cd 4d-2 -0.0173376113833076 0.0088223365820743 + 263 14 Cd 4d-1 -0.0041433816625062 -0.0053117197854626 + 264 14 Cd 4d0 0.0129774156188508 -0.0018909581911562 + 265 14 Cd 4d+1 0.0019836756522691 -0.0025362364608535 + 266 14 Cd 4d+2 0.0186146355166252 -0.0008063101607684 + 267 14 Cd 5d-2 -0.0091628723219454 0.0400000918294708 + 268 14 Cd 5d-1 -0.0507130587107318 0.0045381859282725 + 269 14 Cd 5d0 0.0401627738282888 -0.0366177319025073 + 270 14 Cd 5d+1 0.0124442479250738 0.0100307126753875 + 271 14 Cd 5d+2 0.0306989975254122 0.0716941056673921 + 272 14 Cd 5f-3 -0.0076355450354388 -0.0046542829707079 + 273 14 Cd 5f-2 0.0027215372567449 -0.0029778361447928 + 274 14 Cd 5f-1 -0.0026816734425390 0.0043093166987716 + 275 14 Cd 5f0 -0.0090657569559832 0.0117522970182110 + 276 14 Cd 5f+1 -0.0003890486519640 0.0072251987933041 + 277 14 Cd 5f+2 -0.0033860593112587 -0.0047001305000453 + 278 14 Cd 5f+3 -0.0111186556167721 0.0070909786427227 + + 279 15 Se 2s -0.0465020529958052 0.0103825703145718 + 280 15 Se 3s 0.0110973879752558 -0.0032463043501655 + 281 15 Se 3py 0.0108292194204198 0.0340312549360537 + 282 15 Se 3pz -0.0652579801770759 0.0252069780517794 + 283 15 Se 3px -0.0327283178778307 -0.0020886744202916 + 284 15 Se 4py -0.0340528597599284 -0.0092426731019399 + 285 15 Se 4pz 0.0115170967591786 -0.0031697615218069 + 286 15 Se 4px -0.0000045912602877 0.0036929315482258 + 287 15 Se 4d-2 0.0107762751328161 -0.0022150005001415 + 288 15 Se 4d-1 -0.0128068755700568 -0.0065666394275358 + 289 15 Se 4d0 -0.0215044323718938 -0.0035310630151014 + 290 15 Se 4d+1 -0.0031580271730185 -0.0070982419040344 + 291 15 Se 4d+2 -0.0048209019545544 -0.0115057083716773 + + 292 16 Se 2s 0.0518570520850962 -0.1184339726826348 + 293 16 Se 3s -0.0093600261874660 0.0263617125433378 + 294 16 Se 3py -0.0430166051798692 0.0329368197930431 + 295 16 Se 3pz -0.0015950169351502 -0.0858026102156754 + 296 16 Se 3px -0.0540474891208057 -0.1154517637257371 + 297 16 Se 4py 0.0012654422662871 -0.0194061508955189 + 298 16 Se 4pz -0.0138763332529002 0.0320572095062363 + 299 16 Se 4px 0.0248718578222379 0.0168875933532249 + 300 16 Se 4d-2 0.0135966779013682 -0.0208741142834168 + 301 16 Se 4d-1 0.0021120729766381 -0.0132680004639980 + 302 16 Se 4d0 0.0139489354156470 -0.0069575234162232 + 303 16 Se 4d+1 0.0180144111236701 0.0119166287185032 + 304 16 Se 4d+2 0.0051576473255642 -0.0100922182484422 + + 305 17 Cd 2s 0.0111663048906366 0.0426413739885686 + 306 17 Cd 3s 0.0015534062821912 -0.0021807406711187 + 307 17 Cd 3py -0.0549420840847545 0.0514677410606716 + 308 17 Cd 3pz -0.0128580786818883 -0.1005007792151742 + 309 17 Cd 3px 0.1127153816367747 -0.0913298881444037 + 310 17 Cd 4py -0.0013432221842366 0.0004735446315016 + 311 17 Cd 4pz -0.0110995232143094 -0.0113511908815263 + 312 17 Cd 4px 0.0137977079538298 -0.0092601268583844 + 313 17 Cd 4d-2 -0.0189726562432620 0.0004576320833474 + 314 17 Cd 4d-1 0.0107124665164339 0.0107069336449466 + 315 17 Cd 4d0 0.0035016716955058 0.0133389960173290 + 316 17 Cd 4d+1 -0.0050482877572706 -0.0019567995570473 + 317 17 Cd 4d+2 -0.0005774111177295 -0.0041588825460639 + 318 17 Cd 5d-2 -0.0579717156255291 -0.0009600754842785 + 319 17 Cd 5d-1 0.0513184851408824 0.0268180911285435 + 320 17 Cd 5d0 -0.0287667194405260 0.0581610235828301 + 321 17 Cd 5d+1 -0.0211000839541747 0.0183481471987063 + 322 17 Cd 5d+2 0.0055564593677000 -0.0094812984550283 + 323 17 Cd 5f-3 0.0000601571510057 0.0054622666800772 + 324 17 Cd 5f-2 0.0040787097415870 -0.0039726788059274 + 325 17 Cd 5f-1 -0.0064535797004843 0.0009177899529201 + 326 17 Cd 5f0 -0.0003345252746699 0.0003160563827456 + 327 17 Cd 5f+1 0.0001171458862742 -0.0034213008040265 + 328 17 Cd 5f+2 0.0040005881959322 -0.0044445067432667 + 329 17 Cd 5f+3 -0.0033688849218150 -0.0005260314082127 + + 330 18 Cd 2s 0.0665666626658084 0.0060554441931566 + 331 18 Cd 3s 0.0105838741001636 0.0018226615804582 + 332 18 Cd 3py 0.1528711191477722 0.1080197558505569 + 333 18 Cd 3pz 0.1498340702643131 0.2202630801464334 + 334 18 Cd 3px 0.0677354210288171 0.0328344990523505 + 335 18 Cd 4py 0.0258026642938590 0.0093885508931451 + 336 18 Cd 4pz 0.0041583810071979 0.0250380967919542 + 337 18 Cd 4px 0.0087235415707010 0.0056862595699107 + 338 18 Cd 4d-2 -0.0098154837262862 -0.0100729260794602 + 339 18 Cd 4d-1 -0.0101899218454921 -0.0190665864012642 + 340 18 Cd 4d0 -0.0030791840500411 -0.0008296332656401 + 341 18 Cd 4d+1 0.0003825785620884 0.0100626186290039 + 342 18 Cd 4d+2 0.0096708588136642 0.0071366578141319 + 343 18 Cd 5d-2 -0.0390781508067218 -0.0523281904996358 + 344 18 Cd 5d-1 -0.0645338106188647 -0.0928077176728897 + 345 18 Cd 5d0 -0.0105226673696409 -0.0388144400280857 + 346 18 Cd 5d+1 -0.0022991975147401 0.0334325004705060 + 347 18 Cd 5d+2 0.0253446244351106 0.0648513778536554 + 348 18 Cd 5f-3 0.0031146691175507 -0.0041180170907503 + 349 18 Cd 5f-2 -0.0032740634597936 -0.0097914233542998 + 350 18 Cd 5f-1 0.0026452634217554 0.0028311635478749 + 351 18 Cd 5f0 0.0004172504953438 -0.0105651940039547 + 352 18 Cd 5f+1 0.0044504394070496 -0.0006979558836139 + 353 18 Cd 5f+2 -0.0030983939539226 0.0016232045111329 + 354 18 Cd 5f+3 -0.0010388334871646 0.0019473387037303 + + 355 19 Se 2s 0.0532621060715261 -0.0342813993586785 + 356 19 Se 3s -0.0117816052130057 0.0088918625891100 + 357 19 Se 3py 0.0653051978866209 0.0856795299148355 + 358 19 Se 3pz 0.0504386626248182 -0.0353148037269132 + 359 19 Se 3px 0.0015157133092127 -0.0566871233953423 + 360 19 Se 4py -0.0124828528577510 0.0003828859540452 + 361 19 Se 4pz -0.0290434324449883 0.0035611313630536 + 362 19 Se 4px 0.0085005080145017 0.0121616037828218 + 363 19 Se 4d-2 -0.0093109067742588 -0.0110611809325571 + 364 19 Se 4d-1 -0.0128540874521146 0.0045543762183237 + 365 19 Se 4d0 -0.0136939933404014 -0.0115981698566850 + 366 19 Se 4d+1 0.0144339803072072 0.0096650640514401 + 367 19 Se 4d+2 -0.0236011504918318 -0.0066288190713235 + + 368 20 Se 2s -0.1079968549101037 -0.0590311587878052 + 369 20 Se 3s 0.0237115732322982 0.0146767468791739 + 370 20 Se 3py -0.1468103593408508 0.0125004518429786 + 371 20 Se 3pz -0.0805745371486409 0.0815453975685850 + 372 20 Se 3px 0.2684158338120523 0.0152291573543975 + 373 20 Se 4py 0.0527418606037827 0.0137013497902217 + 374 20 Se 4pz 0.0042308268047903 -0.0367754982364206 + 375 20 Se 4px -0.1121919033038812 -0.0359030608259634 + 376 20 Se 4d-2 -0.0388338720742727 -0.0192663237130926 + 377 20 Se 4d-1 0.0376298977210580 0.0129142437114002 + 378 20 Se 4d0 0.0071405537689322 -0.0421441744225461 + 379 20 Se 4d+1 -0.0425144000665820 0.0042179459448672 + 380 20 Se 4d+2 -0.0304238838522451 0.0112184235763260 + + 381 21 Se 2s -0.0698201152858123 -0.0435360945294589 + 382 21 Se 3s 0.0178589922504157 0.0094015182491382 + 383 21 Se 3py 0.0186338842070063 -0.0665655792590148 + 384 21 Se 3pz 0.1442854543731502 -0.0172152605428457 + 385 21 Se 3px -0.1572510721931375 -0.0721282363534031 + 386 21 Se 4py -0.0188831150639785 -0.0260792122766333 + 387 21 Se 4pz -0.0351141960001310 -0.0043173255856895 + 388 21 Se 4px 0.0750714909435870 0.0319039394191738 + 389 21 Se 4d-2 -0.0276431070930712 -0.0496001184406441 + 390 21 Se 4d-1 0.0164457180834890 -0.0197590176325600 + 391 21 Se 4d0 -0.0416042218377942 0.0230678886422316 + 392 21 Se 4d+1 -0.0405639209302840 -0.0053438247850856 + 393 21 Se 4d+2 0.0352975238157180 0.0279471643601619 + + 394 22 Cd 2s -0.1637118168598460 -0.0453993819481527 + 395 22 Cd 3s -0.0197158399042055 -0.0149812624418746 + 396 22 Cd 3py 0.0649116152341445 0.0292331547723096 + 397 22 Cd 3pz -0.1728490218569372 -0.2079601359321291 + 398 22 Cd 3px 0.0214716475650603 0.0488900432068471 + 399 22 Cd 4py 0.0095830588568774 0.0095631363375156 + 400 22 Cd 4pz -0.0231468014595077 -0.0286594294100663 + 401 22 Cd 4px -0.0007123280343882 0.0172040323038961 + 402 22 Cd 4d-2 -0.0133009966705017 0.0021969151178563 + 403 22 Cd 4d-1 -0.0007601994513072 -0.0056079390029670 + 404 22 Cd 4d0 -0.0056197109623319 -0.0140663772980278 + 405 22 Cd 4d+1 -0.0302369472339519 -0.0129551228614632 + 406 22 Cd 4d+2 0.0078129272971190 0.0036633135257432 + 407 22 Cd 5d-2 -0.0472989413737315 0.0145066123800213 + 408 22 Cd 5d-1 -0.0203416389118123 0.0362424601915897 + 409 22 Cd 5d0 -0.0432364824645660 -0.0136467806150911 + 410 22 Cd 5d+1 -0.1044765501036501 0.0123710015693119 + 411 22 Cd 5d+2 0.0285646360627635 -0.0350765896224279 + 412 22 Cd 5f-3 0.0018192760969341 -0.0152242656355792 + 413 22 Cd 5f-2 0.0022861716507816 0.0098769884121250 + 414 22 Cd 5f-1 0.0045114776602220 0.0062309182818851 + 415 22 Cd 5f0 -0.0042619740557647 -0.0029229779113477 + 416 22 Cd 5f+1 -0.0039268464635360 -0.0134505718405713 + 417 22 Cd 5f+2 0.0018800987576353 0.0026860050384682 + 418 22 Cd 5f+3 -0.0005236706812515 0.0008187086651509 + + 419 23 Se 2s -0.0590615655256187 0.0878621490932799 + 420 23 Se 3s 0.0133099709961535 -0.0206949634514239 + 421 23 Se 3py 0.0840405752600645 0.0112544884666172 + 422 23 Se 3pz -0.0262623922884753 0.0264612777512782 + 423 23 Se 3px 0.0385809885592026 0.0574178005216952 + 424 23 Se 4py -0.0186496257261942 -0.0143685201726613 + 425 23 Se 4pz 0.0232224983294688 -0.0259344188805589 + 426 23 Se 4px -0.0231103787251364 -0.0299164075245529 + 427 23 Se 4d-2 -0.0057795802578555 0.0076077279567057 + 428 23 Se 4d-1 -0.0078284700536308 -0.0125289748352967 + 429 23 Se 4d0 0.0078131836488654 -0.0028560880460990 + 430 23 Se 4d+1 -0.0142502369367168 0.0021958560055161 + 431 23 Se 4d+2 0.0036194028535204 -0.0063270520823916 + + 432 24 Se 2s -0.0864201163727425 0.0527768774930535 + 433 24 Se 3s 0.0228120548168347 -0.0140895335148951 + 434 24 Se 3py 0.0384806941125299 0.1244563730895848 + 435 24 Se 3pz -0.0607741103679194 0.0015064721007408 + 436 24 Se 3px -0.0889089125857085 -0.0357746330015739 + 437 24 Se 4py -0.0027254727049258 -0.0522934781234295 + 438 24 Se 4pz 0.0234681891528900 0.0024146279310667 + 439 24 Se 4px 0.0406701590247532 0.0348059852797851 + 440 24 Se 4d-2 0.0069912322220364 -0.0154546732417306 + 441 24 Se 4d-1 -0.0170163863543428 -0.0403263269353896 + 442 24 Se 4d0 0.0140017553132262 0.0065770518590962 + 443 24 Se 4d+1 0.0223232742178229 0.0245832108349311 + 444 24 Se 4d+2 0.0282249718581722 0.0574214070435366 + + 445 25 Cd 2s 0.0182960564990595 -0.0805329965570553 + 446 25 Cd 3s 0.0029611005983787 -0.0170719647208274 + 447 25 Cd 3py -0.1896734042907914 -0.0649157621917224 + 448 25 Cd 3pz -0.0007721421011134 -0.0778098831147092 + 449 25 Cd 3px 0.1274733298242902 -0.0084787468801154 + 450 25 Cd 4py -0.0260832410607008 -0.0176811929905605 + 451 25 Cd 4pz -0.0049824101337275 -0.0194544977530332 + 452 25 Cd 4px 0.0107475445821610 0.0065498443223379 + 453 25 Cd 4d-2 0.0105675683537470 -0.0054711082386329 + 454 25 Cd 4d-1 -0.0038378078371689 0.0110974399618650 + 455 25 Cd 4d0 -0.0031958312063923 -0.0206889709128473 + 456 25 Cd 4d+1 0.0123873452257703 -0.0012452225781339 + 457 25 Cd 4d+2 -0.0058789016475681 -0.0031629187064953 + 458 25 Cd 5d-2 0.0082174305978243 0.0431731139864759 + 459 25 Cd 5d-1 0.0003086632007843 -0.0112991188697323 + 460 25 Cd 5d0 -0.0011655370108140 -0.0610213914359969 + 461 25 Cd 5d+1 -0.0135912166266909 0.0130697970621854 + 462 25 Cd 5d+2 -0.0242332159724555 -0.0186960169304312 + 463 25 Cd 5f-3 0.0043119255732931 -0.0015431144784379 + 464 25 Cd 5f-2 -0.0004053311460905 -0.0135331053110799 + 465 25 Cd 5f-1 0.0073479153135952 0.0079331481178088 + 466 25 Cd 5f0 -0.0049653835030637 -0.0070385610574096 + 467 25 Cd 5f+1 -0.0033030027851653 -0.0059567239043682 + 468 25 Cd 5f+2 0.0054460350019008 -0.0021743547811072 + 469 25 Cd 5f+3 0.0085903018653306 0.0157274023024520 + + 470 26 Cd 2s 0.1105909254551967 0.4364896321149542 + 471 26 Cd 3s 0.0150133748572199 0.0624987396861066 + 472 26 Cd 3py -0.0089386691289991 -0.3125695757994044 + 473 26 Cd 3pz -0.1291553841039143 0.0898209925914246 + 474 26 Cd 3px 0.0761982703265612 0.4943782443165041 + 475 26 Cd 4py 0.0058857206102717 -0.0523301385749233 + 476 26 Cd 4pz 0.0015164253584455 -0.0045651300880822 + 477 26 Cd 4px 0.0254595503687712 0.0970523790715037 + 478 26 Cd 4d-2 0.0052214948592823 0.0152977041424421 + 479 26 Cd 4d-1 -0.0105736619513759 -0.0045084943100111 + 480 26 Cd 4d0 0.0021096689356429 0.0152304420059335 + 481 26 Cd 4d+1 0.0014210003750001 -0.0135736265680742 + 482 26 Cd 4d+2 -0.0016580139066719 -0.0005963906104186 + 483 26 Cd 5d-2 0.0253792080033885 0.0160982809618061 + 484 26 Cd 5d-1 -0.0640505282568128 0.0002331119834264 + 485 26 Cd 5d0 0.0301423366341168 0.0006478835104617 + 486 26 Cd 5d+1 0.0458040992214153 -0.0750481391514052 + 487 26 Cd 5d+2 0.0391904363883517 0.0322601211597514 + 488 26 Cd 5f-3 0.0088851318903455 0.0149226148211771 + 489 26 Cd 5f-2 0.0048682577775474 0.0032952614401310 + 490 26 Cd 5f-1 -0.0012123857687871 0.0067018341028958 + 491 26 Cd 5f0 0.0138325135597686 -0.0149041904506074 + 492 26 Cd 5f+1 0.0079681012769246 0.0046411030251789 + 493 26 Cd 5f+2 0.0108515311248624 0.0085563797872461 + 494 26 Cd 5f+3 -0.0054937393036492 -0.0103712123372259 + + 151 152 + 0.0569045769136401 0.0610118175543294 + + 0.0000000000000000 0.0000000000000000 + + 1 1 Cd 2s -0.0757135251332984 -0.0145943323292593 + 2 1 Cd 3s -0.0042589453393103 -0.0025067715851452 + 3 1 Cd 3py 0.0053463942613801 0.0759705509205060 + 4 1 Cd 3pz -0.0071721182636183 -0.1094644264426694 + 5 1 Cd 3px 0.0376792622966346 -0.0982914728419129 + 6 1 Cd 4py 0.0100916082141324 0.0078756394115920 + 7 1 Cd 4pz 0.0006723864039619 -0.0071406760518097 + 8 1 Cd 4px 0.0120820445730001 -0.0080397103436617 + 9 1 Cd 4d-2 0.0039316137610423 0.0103115716453375 + 10 1 Cd 4d-1 -0.0016641490174295 0.0008758231282315 + 11 1 Cd 4d0 0.0054223940681757 0.0074761083601429 + 12 1 Cd 4d+1 -0.0014409119735033 -0.0060179575128037 + 13 1 Cd 4d+2 0.0025745812625137 -0.0042721032910644 + 14 1 Cd 5d-2 0.0033655699533413 0.0568602231223077 + 15 1 Cd 5d-1 -0.0497233844880677 -0.0522741489487248 + 16 1 Cd 5d0 -0.0133563930593302 0.0225286484402374 + 17 1 Cd 5d+1 -0.0510858225724397 -0.0664877957181145 + 18 1 Cd 5d+2 -0.0084622937835343 -0.0220199411524169 + 19 1 Cd 5f-3 -0.0002795560799286 -0.0137205885758105 + 20 1 Cd 5f-2 -0.0029751477007841 -0.0027590988424123 + 21 1 Cd 5f-1 0.0002039638049164 0.0121575566746157 + 22 1 Cd 5f0 0.0012247383032812 0.0084645119086742 + 23 1 Cd 5f+1 0.0081922966831327 -0.0041418413230583 + 24 1 Cd 5f+2 0.0022603410170141 -0.0024698499078496 + 25 1 Cd 5f+3 -0.0041861702437104 -0.0146709121656049 + + 26 2 Cd 2s 0.0301207134551900 0.0938223216439998 + 27 2 Cd 3s 0.0048180474314372 0.0158409619563446 + 28 2 Cd 3py -0.0440331250411915 -0.0835056237307962 + 29 2 Cd 3pz -0.1804594157202259 -0.0012995876689757 + 30 2 Cd 3px -0.0607030518651002 -0.0104602274468816 + 31 2 Cd 4py -0.0025042184624122 -0.0153043705112106 + 32 2 Cd 4pz -0.0201432774610267 0.0062599596768456 + 33 2 Cd 4px -0.0121155837977978 -0.0034725807061545 + 34 2 Cd 4d-2 0.0062557947310566 -0.0026407104062325 + 35 2 Cd 4d-1 0.0027268228622696 0.0010831999000422 + 36 2 Cd 4d0 -0.0057388332648482 0.0152065724976028 + 37 2 Cd 4d+1 -0.0177775933600107 0.0002927332834322 + 38 2 Cd 4d+2 -0.0040067415291061 0.0050524639779604 + 39 2 Cd 5d-2 -0.0577998910514310 0.0222165805151704 + 40 2 Cd 5d-1 0.0140153951452395 -0.0229578497213463 + 41 2 Cd 5d0 -0.0391665348346598 0.0807733610351043 + 42 2 Cd 5d+1 -0.0639016278915179 -0.0368737241220096 + 43 2 Cd 5d+2 -0.0263947196640914 -0.0468974894942073 + 44 2 Cd 5f-3 0.0026543157314485 -0.0006220699064581 + 45 2 Cd 5f-2 -0.0012819093790687 0.0067808821840047 + 46 2 Cd 5f-1 -0.0010684839075086 0.0009891855797322 + 47 2 Cd 5f0 0.0021294518463874 -0.0019406205058702 + 48 2 Cd 5f+1 0.0062976125521375 -0.0019415491029486 + 49 2 Cd 5f+2 0.0018582718468059 -0.0069240088399229 + 50 2 Cd 5f+3 0.0054289823898157 -0.0120857484176928 + + 51 3 Cd 2s 0.0342458937646981 -0.0057140587432408 + 52 3 Cd 3s 0.0046481949981832 -0.0083345389872241 + 53 3 Cd 3py -0.0006136225192466 0.1107618426463091 + 54 3 Cd 3pz -0.0454523996826834 -0.1629987433360564 + 55 3 Cd 3px -0.0692695734242828 -0.2352748004010546 + 56 3 Cd 4py -0.0035245780036404 0.0055275657741096 + 57 3 Cd 4pz -0.0037025636662212 -0.0196121948293701 + 58 3 Cd 4px -0.0168558272679358 -0.0424460427945032 + 59 3 Cd 4d-2 0.0090746975996192 0.0190430004289133 + 60 3 Cd 4d-1 0.0044281902461298 0.0045688900937562 + 61 3 Cd 4d0 0.0003692070168335 0.0108084060729784 + 62 3 Cd 4d+1 -0.0055668916227386 -0.0034055620087654 + 63 3 Cd 4d+2 -0.0055568332673375 0.0158178917686119 + 64 3 Cd 5d-2 0.0084662481592909 0.0108717279459716 + 65 3 Cd 5d-1 0.0097233077986721 0.0368077572053298 + 66 3 Cd 5d0 -0.0002404561443328 -0.0075395254535047 + 67 3 Cd 5d+1 0.0195638656822010 0.0238441312778694 + 68 3 Cd 5d+2 -0.0336564849005002 0.0551890120700594 + 69 3 Cd 5f-3 0.0021541856457062 -0.0014922810769906 + 70 3 Cd 5f-2 -0.0010037606345858 -0.0015849414481086 + 71 3 Cd 5f-1 -0.0063676553900540 0.0003330352389643 + 72 3 Cd 5f0 0.0008522140862543 0.0034683010494242 + 73 3 Cd 5f+1 0.0027438071944533 0.0080295473922476 + 74 3 Cd 5f+2 -0.0066026535986621 -0.0002082551416701 + 75 3 Cd 5f+3 -0.0023042286893960 -0.0100953400323651 + + 76 4 Se 2s 0.0110276065853948 -0.0522787191228743 + 77 4 Se 3s -0.0015294371708794 0.0106539828062851 + 78 4 Se 3py 0.0212004159353508 0.0292435234040609 + 79 4 Se 3pz -0.0408342680391516 0.0064359106382401 + 80 4 Se 3px -0.0038130583953208 0.0162017387454864 + 81 4 Se 4py -0.0109684490020810 0.0081126561649175 + 82 4 Se 4pz -0.0185725851506934 -0.0195736777544565 + 83 4 Se 4px 0.0022886369714411 -0.0146936717792380 + 84 4 Se 4d-2 -0.0031265659823406 -0.0134064907680099 + 85 4 Se 4d-1 0.0238572973660077 0.0057073705210380 + 86 4 Se 4d0 -0.0075616331514598 -0.0046950165955239 + 87 4 Se 4d+1 0.0082877358092324 0.0182382235937880 + 88 4 Se 4d+2 0.0047876914303012 0.0127351019003221 + + 89 5 Se 2s -0.0171250175324947 -0.0697862452167209 + 90 5 Se 3s 0.0048100840396307 0.0139951089363664 + 91 5 Se 3py -0.0277236364797107 0.0123456183184349 + 92 5 Se 3pz 0.0198199871612735 -0.0024999943493923 + 93 5 Se 3px -0.0236741185643058 -0.0338957028997957 + 94 5 Se 4py 0.0078243030164940 0.0214790423004593 + 95 5 Se 4pz 0.0044518240756188 0.0212910302821600 + 96 5 Se 4px 0.0065404418219001 0.0161652746924375 + 97 5 Se 4d-2 -0.0025592907368909 0.0179332765317668 + 98 5 Se 4d-1 -0.0021971397273827 0.0036097299662055 + 99 5 Se 4d0 0.0076863493965308 0.0130136282183615 + 100 5 Se 4d+1 0.0082884694643473 0.0125000756412660 + 101 5 Se 4d+2 -0.0069989760273668 -0.0069164607293244 + + 102 6 Se 2s -0.0197463395395366 -0.0070209072632699 + 103 6 Se 3s 0.0050742810319432 0.0019763755047415 + 104 6 Se 3py -0.0137833352164766 0.1099067830099170 + 105 6 Se 3pz -0.0313950604485401 0.0970238523526762 + 106 6 Se 3px -0.0027893724508468 -0.0609628206436408 + 107 6 Se 4py -0.0153312837522156 -0.0294469360175202 + 108 6 Se 4pz 0.0204292978479267 -0.0179171983631723 + 109 6 Se 4px -0.0055460633552338 -0.0007781659224075 + 110 6 Se 4d-2 0.0034898922422454 0.0273086915557073 + 111 6 Se 4d-1 0.0218531341566005 0.0040123688119952 + 112 6 Se 4d0 -0.0092426037193412 -0.0064281730747841 + 113 6 Se 4d+1 -0.0055967535055819 0.0072812803585444 + 114 6 Se 4d+2 -0.0054811212272206 -0.0140320093165698 + + 115 7 Se 2s 0.1342560791826573 -0.0770095783359564 + 116 7 Se 3s -0.0333216927032607 0.0194425021636244 + 117 7 Se 3py 0.1555636531549910 -0.1492496881864042 + 118 7 Se 3pz -0.1011929820852856 0.0769383563669534 + 119 7 Se 3px -0.0532367794186991 -0.0137765590800097 + 120 7 Se 4py -0.0428133565934580 0.0530752700323838 + 121 7 Se 4pz 0.0486554086554564 -0.0352562112195162 + 122 7 Se 4px 0.0094871797852983 0.0006287084821469 + 123 7 Se 4d-2 -0.0057234529955929 -0.0023169550711001 + 124 7 Se 4d-1 0.0281908421115675 -0.0249634883081554 + 125 7 Se 4d0 -0.0083252509866209 0.0112055630669263 + 126 7 Se 4d+1 -0.0079678201347710 -0.0087314282448468 + 127 7 Se 4d+2 0.0308022149889040 -0.0288224442891195 + + 128 8 Cd 2s 0.0125574916505747 -0.0350755975290728 + 129 8 Cd 3s -0.0045729253623122 0.0030899680422026 + 130 8 Cd 3py -0.1504572498814758 0.3719603134256804 + 131 8 Cd 3pz 0.1273429520474480 -0.0141027439763039 + 132 8 Cd 3px 0.0209843678764928 -0.1977977824190283 + 133 8 Cd 4py -0.0156739898652700 0.0413604742328004 + 134 8 Cd 4pz 0.0126806824143722 -0.0113420747662605 + 135 8 Cd 4px 0.0019452158148568 -0.0368454315231064 + 136 8 Cd 4d-2 -0.0073390498355632 -0.0001527052997070 + 137 8 Cd 4d-1 0.0060036520171397 -0.0129329104516075 + 138 8 Cd 4d0 -0.0031974915004357 0.0203172139551865 + 139 8 Cd 4d+1 0.0087001699762938 -0.0108834712131003 + 140 8 Cd 4d+2 0.0066768622262483 -0.0040219562866543 + 141 8 Cd 5d-2 -0.0197917346864399 0.0479443552938480 + 142 8 Cd 5d-1 0.0323415798128332 0.0296170270492686 + 143 8 Cd 5d0 -0.0361491267307149 0.0470764003390847 + 144 8 Cd 5d+1 0.0152020136157525 -0.0909665781600718 + 145 8 Cd 5d+2 0.0154369045875397 0.0620244275579391 + 146 8 Cd 5f-3 0.0024296970013238 0.0125078193815333 + 147 8 Cd 5f-2 0.0017507537634232 -0.0129472153950648 + 148 8 Cd 5f-1 -0.0124783353404189 0.0089865414975798 + 149 8 Cd 5f0 -0.0031811215741589 -0.0031630062387362 + 150 8 Cd 5f+1 -0.0046967762049765 -0.0057974690640885 + 151 8 Cd 5f+2 0.0050950136227242 0.0091615458973928 + 152 8 Cd 5f+3 -0.0014914221672325 0.0084158627974250 + + 153 9 Cd 2s -0.0511890536097370 0.1217527834006030 + 154 9 Cd 3s -0.0055103224069776 0.0137421285717461 + 155 9 Cd 3py -0.0312136382738681 0.1364170649021282 + 156 9 Cd 3pz 0.0667468796095076 -0.0936314667514321 + 157 9 Cd 3px 0.0498210516893461 0.0044085157048914 + 158 9 Cd 4py 0.0010040057827997 0.0144346343574331 + 159 9 Cd 4pz 0.0175662032579846 -0.0252790467053744 + 160 9 Cd 4px 0.0016368004573980 -0.0121296259189416 + 161 9 Cd 4d-2 -0.0046673856038663 0.0164156375153637 + 162 9 Cd 4d-1 -0.0050641740152165 0.0048586786076295 + 163 9 Cd 4d0 0.0021348980095085 -0.0031170073690718 + 164 9 Cd 4d+1 0.0047136010189065 0.0024359971318436 + 165 9 Cd 4d+2 0.0012053406534915 -0.0046733154384755 + 166 9 Cd 5d-2 -0.0337253185763051 0.0382110985331713 + 167 9 Cd 5d-1 -0.0179100127489516 0.0118693864917122 + 168 9 Cd 5d0 -0.0150699187676951 -0.0205351970832302 + 169 9 Cd 5d+1 0.0288819255380023 0.0841891208553503 + 170 9 Cd 5d+2 -0.0283230529234586 0.0434127826159493 + 171 9 Cd 5f-3 -0.0054758912177673 -0.0018641210066682 + 172 9 Cd 5f-2 0.0036026519770751 -0.0051226810008310 + 173 9 Cd 5f-1 0.0032432440458474 0.0037719135759736 + 174 9 Cd 5f0 -0.0026496551588930 0.0069897829305933 + 175 9 Cd 5f+1 0.0003289794381044 0.0130223830826669 + 176 9 Cd 5f+2 -0.0018421197138102 0.0003860340149100 + 177 9 Cd 5f+3 0.0013435264914827 -0.0011974677626301 + + 178 10 Se 2s -0.0721634706241169 -0.0890493383119076 + 179 10 Se 3s 0.0170305629925616 0.0207903010605215 + 180 10 Se 3py 0.1343404720716344 -0.0253001927822944 + 181 10 Se 3pz 0.0493076269951317 0.0616665073760475 + 182 10 Se 3px 0.0402735892964824 0.0033772984159673 + 183 10 Se 4py -0.0404174094562870 0.0451651128323849 + 184 10 Se 4pz -0.0129564051499992 -0.0500731918460351 + 185 10 Se 4px 0.0025665486038111 0.0004421376598573 + 186 10 Se 4d-2 0.0049445677483631 0.0196229229646790 + 187 10 Se 4d-1 0.0326148623406095 -0.0230412248499067 + 188 10 Se 4d0 0.0025234633235058 0.0237461392611913 + 189 10 Se 4d+1 0.0153142148069592 0.0162224088999546 + 190 10 Se 4d+2 0.0117779106641977 -0.0002516666094685 + + 191 11 Se 2s 0.0594091801691927 0.2319185823746287 + 192 11 Se 3s -0.0140889496510693 -0.0551276304037470 + 193 11 Se 3py 0.0477701242133061 0.1375222739412915 + 194 11 Se 3pz -0.1047431087176257 -0.1082695652597508 + 195 11 Se 3px -0.0299050465398858 -0.0914586723129325 + 196 11 Se 4py -0.0330103869961458 -0.0876579679893216 + 197 11 Se 4pz 0.0261364304239346 0.0413794996045336 + 198 11 Se 4px 0.0196904964944869 0.0304549286124116 + 199 11 Se 4d-2 0.0102853094079588 0.0253039883877379 + 200 11 Se 4d-1 0.0222938295450153 -0.0035110319482239 + 201 11 Se 4d0 0.0168620060963522 -0.0034509122815285 + 202 11 Se 4d+1 -0.0183677895932395 0.0074735702761059 + 203 11 Se 4d+2 -0.0017123744856527 0.0455496530955194 + + 204 12 Cd 2s 0.0954309013849775 0.1695416918560743 + 205 12 Cd 3s 0.0225487759862591 0.0258992146867964 + 206 12 Cd 3py 0.0358087146438289 -0.1190312272965075 + 207 12 Cd 3pz -0.4354906124157070 -0.2246245682433912 + 208 12 Cd 3px 0.0042206278353560 0.3148317412329037 + 209 12 Cd 4py 0.0048575104581442 -0.0080782804336853 + 210 12 Cd 4pz -0.0522627243787551 -0.0319006111174452 + 211 12 Cd 4px -0.0090675301773303 0.0404811512396359 + 212 12 Cd 4d-2 0.0195157116106276 -0.0078926541806890 + 213 12 Cd 4d-1 0.0185888376408311 -0.0170279710660698 + 214 12 Cd 4d0 0.0024107851165231 0.0148134904926877 + 215 12 Cd 4d+1 0.0063921350204524 0.0044212974976637 + 216 12 Cd 4d+2 -0.0066663214314765 0.0172995160034255 + 217 12 Cd 5d-2 0.0050545501300088 -0.0498391577478186 + 218 12 Cd 5d-1 0.0846218264795022 -0.0493803617720157 + 219 12 Cd 5d0 -0.0290745790828625 0.0242356680825190 + 220 12 Cd 5d+1 0.0523055295230839 0.0043121424228555 + 221 12 Cd 5d+2 0.0140638484365873 0.0526715150605249 + 222 12 Cd 5f-3 0.0035493417608977 -0.0028901137545866 + 223 12 Cd 5f-2 -0.0027764120706616 0.0007433057708391 + 224 12 Cd 5f-1 -0.0078396797477956 0.0019124006389434 + 225 12 Cd 5f0 0.0069044669908605 0.0045822033805079 + 226 12 Cd 5f+1 0.0021084698773481 0.0113892536592119 + 227 12 Cd 5f+2 -0.0001063053539950 -0.0054398000116988 + 228 12 Cd 5f+3 -0.0031139961822093 0.0024673116650794 + + 229 13 Cd 2s 0.0095577172542459 -0.1557916331361887 + 230 13 Cd 3s -0.0077298946348500 -0.0115292716047275 + 231 13 Cd 3py 0.1006877313483440 0.1637790708980369 + 232 13 Cd 3pz -0.2030080920317368 -0.0656988844160532 + 233 13 Cd 3px 0.1451393418110878 -0.0387615935604292 + 234 13 Cd 4py 0.0048507639521292 0.0365743870895131 + 235 13 Cd 4pz -0.0331848828555332 -0.0124184507082818 + 236 13 Cd 4px 0.0173527497144303 0.0098962038139882 + 237 13 Cd 4d-2 0.0205304433279925 -0.0010151480183453 + 238 13 Cd 4d-1 0.0073603119249055 -0.0093204338765249 + 239 13 Cd 4d0 -0.0150826780058947 -0.0073606412279822 + 240 13 Cd 4d+1 0.0142132275916378 0.0011545269828302 + 241 13 Cd 4d+2 -0.0185885867283086 0.0041405847538160 + 242 13 Cd 5d-2 0.0957269342335578 0.0216877210034759 + 243 13 Cd 5d-1 -0.0550404422800716 -0.0630943106215616 + 244 13 Cd 5d0 -0.0490678431239364 0.0015279783093525 + 245 13 Cd 5d+1 0.0159792828883963 0.0126097921398991 + 246 13 Cd 5d+2 -0.0118281594204429 -0.0354418886428998 + 247 13 Cd 5f-3 0.0099474589636001 0.0075385569287319 + 248 13 Cd 5f-2 -0.0127315699257327 0.0051644447172922 + 249 13 Cd 5f-1 0.0000823269648964 0.0035026671196866 + 250 13 Cd 5f0 0.0057917098815048 0.0059902062224820 + 251 13 Cd 5f+1 0.0099259865767062 -0.0216669520630877 + 252 13 Cd 5f+2 -0.0020721820365471 -0.0066308149370127 + 253 13 Cd 5f+3 0.0146858980709138 0.0053601443435017 + + 254 14 Cd 2s 0.1176762179606549 -0.0617937137343575 + 255 14 Cd 3s 0.0054338973695051 0.0066590848566518 + 256 14 Cd 3py -0.2927524845381024 0.2579097808496622 + 257 14 Cd 3pz 0.3148718095630266 -0.3182974258794892 + 258 14 Cd 3px 0.0078145681643505 0.0574069178560649 + 259 14 Cd 4py -0.0414608246521398 0.0328115779934355 + 260 14 Cd 4pz 0.0269329831526760 -0.0401353334947621 + 261 14 Cd 4px 0.0018213889844478 0.0045499548452452 + 262 14 Cd 4d-2 -0.0093255922361436 0.0104653287686033 + 263 14 Cd 4d-1 0.0088960968458938 -0.0090327979271996 + 264 14 Cd 4d0 0.0105951416974824 -0.0120015729185212 + 265 14 Cd 4d+1 0.0091875418709368 0.0007241233096462 + 266 14 Cd 4d+2 0.0129309158012449 -0.0103681766880551 + 267 14 Cd 5d-2 -0.0309492101977071 0.0790041732510011 + 268 14 Cd 5d-1 0.0929445189484583 -0.0552361415292265 + 269 14 Cd 5d0 0.1388748347728403 -0.0751701744654217 + 270 14 Cd 5d+1 0.0272818416700611 -0.0084167103750879 + 271 14 Cd 5d+2 0.0498170849958364 -0.0586737970362000 + 272 14 Cd 5f-3 -0.0002715747697915 0.0074574283674583 + 273 14 Cd 5f-2 0.0071731837576707 -0.0053690013204121 + 274 14 Cd 5f-1 -0.0000544862273539 -0.0007463931873985 + 275 14 Cd 5f0 -0.0163679108244326 0.0096215037274693 + 276 14 Cd 5f+1 -0.0043900556287234 0.0037458695147838 + 277 14 Cd 5f+2 -0.0066068853453222 0.0000549067820538 + 278 14 Cd 5f+3 -0.0028124490495951 0.0011938709643020 + + 279 15 Se 2s -0.2295217901883371 0.1449467591773913 + 280 15 Se 3s 0.0521488203021905 -0.0294092886830050 + 281 15 Se 3py 0.0480673982437990 0.0564666586560028 + 282 15 Se 3pz -0.1185602176614589 0.0744912740057312 + 283 15 Se 3px 0.0534287684359734 0.0063033236244735 + 284 15 Se 4py -0.0822316540565130 0.0238127922050077 + 285 15 Se 4pz 0.0181850172163690 -0.0330032219397880 + 286 15 Se 4px -0.0091067631871188 0.0033845066385937 + 287 15 Se 4d-2 0.0217556797098839 -0.0236332778314277 + 288 15 Se 4d-1 0.0208450523521705 -0.0092395152308190 + 289 15 Se 4d0 -0.0062053862470182 -0.0073244583676929 + 290 15 Se 4d+1 0.0236228242011832 0.0013677668234642 + 291 15 Se 4d+2 -0.0293826794339977 -0.0004587479014115 + + 292 16 Se 2s 0.1449002459149835 0.1330020152839306 + 293 16 Se 3s -0.0325140814935620 -0.0297765051397919 + 294 16 Se 3py 0.1108253345648298 -0.0123332412927110 + 295 16 Se 3pz 0.1007094227742176 -0.0136190393550750 + 296 16 Se 3px -0.1370352355600238 -0.1175872421121185 + 297 16 Se 4py -0.0037329902489340 0.0318620862546054 + 298 16 Se 4pz -0.0257572299716955 0.0080242886334154 + 299 16 Se 4px 0.0761593932742868 0.0584517822460502 + 300 16 Se 4d-2 -0.0122031684005446 -0.0094637221947288 + 301 16 Se 4d-1 -0.0002054135878225 0.0205699247031146 + 302 16 Se 4d0 0.0140578912686020 0.0251581115462082 + 303 16 Se 4d+1 0.0138763257466737 -0.0143809808297180 + 304 16 Se 4d+2 -0.0251745752161117 -0.0302006610308037 + + 305 17 Cd 2s 0.1671457229369135 0.3018126438142312 + 306 17 Cd 3s 0.0342578321733024 0.0507410188244579 + 307 17 Cd 3py 0.4134299866648457 0.4568952014467796 + 308 17 Cd 3pz 0.2640406027247570 0.1431907409769046 + 309 17 Cd 3px -0.1209248251958729 -0.1184794631110410 + 310 17 Cd 4py 0.0569259851487650 0.0844129490909073 + 311 17 Cd 4pz 0.0392854995898178 0.0354162183714707 + 312 17 Cd 4px -0.0035731723475126 -0.0094520544565824 + 313 17 Cd 4d-2 0.0027337036477417 0.0012575522662152 + 314 17 Cd 4d-1 0.0072977901726984 -0.0140544318379474 + 315 17 Cd 4d0 0.0027521573793890 0.0054733348238809 + 316 17 Cd 4d+1 0.0139824272148277 0.0082298898585210 + 317 17 Cd 4d+2 -0.0239415137271493 -0.0189677350937634 + 318 17 Cd 5d-2 0.0496795113496735 0.0241450970175758 + 319 17 Cd 5d-1 -0.0056102442248771 -0.0143636026975265 + 320 17 Cd 5d0 -0.0362620956652196 -0.0323433991130545 + 321 17 Cd 5d+1 0.0948707812203624 0.0228976104156793 + 322 17 Cd 5d+2 -0.0376774331897398 -0.0583897904290894 + 323 17 Cd 5f-3 -0.0004397725250803 0.0003918345010457 + 324 17 Cd 5f-2 -0.0110051635555832 -0.0064883215791914 + 325 17 Cd 5f-1 0.0155252990468228 -0.0006055839384039 + 326 17 Cd 5f0 0.0064271325364722 -0.0076450217345532 + 327 17 Cd 5f+1 0.0076306665333949 0.0113934864976181 + 328 17 Cd 5f+2 -0.0242938867882604 0.0098539891603577 + 329 17 Cd 5f+3 0.0145402270492000 0.0218188533244599 + + 330 18 Cd 2s 0.0923931326933507 0.0354163192678486 + 331 18 Cd 3s 0.0178457563157439 -0.0027158728063950 + 332 18 Cd 3py 0.0821213436501875 -0.0569818529303628 + 333 18 Cd 3pz -0.0093592363914966 0.2256044242851789 + 334 18 Cd 3px -0.0193844289073196 -0.0842686813724696 + 335 18 Cd 4py 0.0092763394536753 -0.0108417428120595 + 336 18 Cd 4pz 0.0139360390278648 0.0375444798165185 + 337 18 Cd 4px -0.0160027791089258 -0.0169355243891875 + 338 18 Cd 4d-2 0.0093715669835608 0.0059867702066516 + 339 18 Cd 4d-1 0.0030021710997141 -0.0011841052091086 + 340 18 Cd 4d0 -0.0081772550012145 -0.0110590147752909 + 341 18 Cd 4d+1 -0.0066942689796688 0.0115259247233377 + 342 18 Cd 4d+2 0.0069255835907135 -0.0151321967927503 + 343 18 Cd 5d-2 -0.0116695112831050 -0.0211335120259618 + 344 18 Cd 5d-1 -0.0139493953215921 -0.0483836049427969 + 345 18 Cd 5d0 -0.0198479858890858 -0.0344583336012660 + 346 18 Cd 5d+1 -0.0152484411555595 0.0702621885663749 + 347 18 Cd 5d+2 0.0256387645073515 -0.0810149763004607 + 348 18 Cd 5f-3 -0.0029194308804226 0.0100084071694598 + 349 18 Cd 5f-2 0.0066779759296298 0.0027416219793201 + 350 18 Cd 5f-1 0.0122802840768974 0.0033748522902453 + 351 18 Cd 5f0 -0.0056514298326321 -0.0117849193567332 + 352 18 Cd 5f+1 -0.0063406580250316 -0.0150525843713483 + 353 18 Cd 5f+2 0.0064796059772814 -0.0033029906242759 + 354 18 Cd 5f+3 -0.0100637013198479 0.0027530397347101 + + 355 19 Se 2s -0.1629214821519762 -0.1677448807461670 + 356 19 Se 3s 0.0387702868135343 0.0355180706780906 + 357 19 Se 3py -0.1272625811716492 0.0239403867856197 + 358 19 Se 3pz -0.0204979096982001 -0.0308979014016425 + 359 19 Se 3px -0.0589408986643693 -0.0597995167017749 + 360 19 Se 4py 0.0794530298629279 0.0300674886132555 + 361 19 Se 4pz 0.0518409209003799 0.0518480947406808 + 362 19 Se 4px -0.0175014731902242 0.0077220386000427 + 363 19 Se 4d-2 0.0142939232581165 -0.0062847213592949 + 364 19 Se 4d-1 0.0215017550822660 -0.0000175380744455 + 365 19 Se 4d0 0.0101197693486179 0.0013634497187506 + 366 19 Se 4d+1 -0.0320738141026024 -0.0148142862972684 + 367 19 Se 4d+2 -0.0035295066580655 0.0187782445557259 + + 368 20 Se 2s 0.0107851161843794 0.0397127226550867 + 369 20 Se 3s -0.0026029046775949 -0.0090218701092242 + 370 20 Se 3py -0.0896328186613666 -0.1980343394160056 + 371 20 Se 3pz 0.0660295156759846 0.0466032812783621 + 372 20 Se 3px 0.0657839372898528 0.1133556239920009 + 373 20 Se 4py 0.0338612345538728 0.0794107970446722 + 374 20 Se 4pz -0.0134904460362428 -0.0263824288404394 + 375 20 Se 4px -0.0282822893791580 -0.0469098009438196 + 376 20 Se 4d-2 0.0059201982757947 -0.0006352214895097 + 377 20 Se 4d-1 0.0342874986732398 0.0005147451569605 + 378 20 Se 4d0 -0.0121819872632912 0.0506180903320630 + 379 20 Se 4d+1 0.0221506343675068 0.0146728257710564 + 380 20 Se 4d+2 -0.0113400916394151 0.0274939831703958 + + 381 21 Se 2s -0.1679326368207421 0.1726716393734740 + 382 21 Se 3s 0.0360605344911510 -0.0345590426057980 + 383 21 Se 3py 0.0997627842746549 -0.0833986595029928 + 384 21 Se 3pz 0.0248352200519614 0.1048801123577445 + 385 21 Se 3px 0.0784815418901307 -0.0088600026309972 + 386 21 Se 4py -0.0396802911200584 0.0405461444650758 + 387 21 Se 4pz 0.0074123314564966 -0.0233457678908508 + 388 21 Se 4px 0.0067507926341251 -0.0268222366791189 + 389 21 Se 4d-2 0.0170677979827293 -0.0081935344795342 + 390 21 Se 4d-1 0.0042860191892126 0.0272846587027148 + 391 21 Se 4d0 -0.0368057141985589 0.0127325457835870 + 392 21 Se 4d+1 0.0123854980344416 0.0001999285937210 + 393 21 Se 4d+2 0.0192048090923458 -0.0189225680180388 + + 394 22 Cd 2s 0.0529482423094174 -0.2093935788737515 + 395 22 Cd 3s 0.0088528935021280 -0.0004138403184304 + 396 22 Cd 3py -0.2518411375777140 0.2357173493217759 + 397 22 Cd 3pz -0.1036392304485513 0.2196378990951766 + 398 22 Cd 3px -0.2544050627067735 0.0861080906352281 + 399 22 Cd 4py -0.0291682963267382 0.0400499100412793 + 400 22 Cd 4pz -0.0230998477657198 0.0232582248790819 + 401 22 Cd 4px -0.0266005114979096 -0.0077830697296788 + 402 22 Cd 4d-2 -0.0177935498520737 -0.0073019318844596 + 403 22 Cd 4d-1 0.0011503318424920 -0.0011820972090640 + 404 22 Cd 4d0 -0.0110131712408490 0.0127368470691248 + 405 22 Cd 4d+1 -0.0119637427983468 0.0099236740434550 + 406 22 Cd 4d+2 0.0014443676707893 0.0033846754993366 + 407 22 Cd 5d-2 -0.0483795310596114 0.0203657155278084 + 408 22 Cd 5d-1 0.0057434907365258 -0.0138555331057246 + 409 22 Cd 5d0 -0.0112007146969986 0.0365421719020655 + 410 22 Cd 5d+1 -0.0584604003688599 0.0426111913411246 + 411 22 Cd 5d+2 0.0632246733382036 -0.0000820685961034 + 412 22 Cd 5f-3 -0.0134564370412889 0.0008316673505542 + 413 22 Cd 5f-2 0.0020801369062296 -0.0016446912909830 + 414 22 Cd 5f-1 -0.0112374179367047 0.0070201243001675 + 415 22 Cd 5f0 0.0097017156874789 0.0055542850535752 + 416 22 Cd 5f+1 -0.0103995797936255 0.0225875884626970 + 417 22 Cd 5f+2 -0.0215335668080484 -0.0049148248942809 + 418 22 Cd 5f+3 -0.0135402609467597 -0.0023979141759786 + + 419 23 Se 2s 0.1893757250941348 0.0667757226727720 + 420 23 Se 3s -0.0414107691853548 -0.0146409450101679 + 421 23 Se 3py 0.0150782247739425 -0.0961130579864804 + 422 23 Se 3pz 0.0699788490695445 -0.1386978361549673 + 423 23 Se 3px 0.0584964654876270 0.0714921923867870 + 424 23 Se 4py -0.0087370362809578 0.0568780808549058 + 425 23 Se 4pz -0.0355047970373896 0.0613701608922021 + 426 23 Se 4px -0.0713595382049891 -0.0561358772437900 + 427 23 Se 4d-2 0.0020535220648734 -0.0035669406948669 + 428 23 Se 4d-1 -0.0217736069031920 0.0279565864190814 + 429 23 Se 4d0 0.0060191673886289 0.0557251179450474 + 430 23 Se 4d+1 0.0070034908943943 0.0284627048719650 + 431 23 Se 4d+2 -0.0469828637970816 -0.0386585033397449 + + 432 24 Se 2s 0.1484467186433903 -0.0229833737473055 + 433 24 Se 3s -0.0293055794031924 0.0047869951138037 + 434 24 Se 3py -0.0310229010398211 0.0230068552030685 + 435 24 Se 3pz -0.0383531611701962 -0.1141219380887222 + 436 24 Se 3px -0.0237227256033382 0.0869431831981627 + 437 24 Se 4py -0.0176055041856435 0.0066252443669886 + 438 24 Se 4pz -0.0111062476935980 0.0425878324362899 + 439 24 Se 4px -0.0230141549308226 -0.0451735189856858 + 440 24 Se 4d-2 0.0382770825895129 -0.0309437322536010 + 441 24 Se 4d-1 -0.0063076890287982 0.0229711297175835 + 442 24 Se 4d0 -0.0127192962625605 -0.0126231985147676 + 443 24 Se 4d+1 0.0139999367280904 0.0040344692962785 + 444 24 Se 4d+2 -0.0206527254122146 -0.0020688349849112 + + 445 25 Cd 2s -0.2596074812470556 -0.0531415009178323 + 446 25 Cd 3s -0.0228044318254977 -0.0137662316626622 + 447 25 Cd 3py 0.0647436189040763 0.1716477899391932 + 448 25 Cd 3pz -0.0218340075990457 -0.0401687849322755 + 449 25 Cd 3px -0.4746706811938614 -0.3454008382980454 + 450 25 Cd 4py 0.0227396424112996 0.0232127323922649 + 451 25 Cd 4pz -0.0131578114640439 -0.0078767610018344 + 452 25 Cd 4px -0.0685823011236259 -0.0457385492161479 + 453 25 Cd 4d-2 -0.0007486365484524 -0.0269957107434796 + 454 25 Cd 4d-1 -0.0005457175322610 -0.0026779222154881 + 455 25 Cd 4d0 -0.0004003345365402 0.0097596629965037 + 456 25 Cd 4d+1 0.0056701644836359 0.0116847697564345 + 457 25 Cd 4d+2 -0.0083434728897535 0.0141382519438675 + 458 25 Cd 5d-2 0.0676501122776893 -0.0851615791999110 + 459 25 Cd 5d-1 -0.0425377630245663 -0.0819267033558580 + 460 25 Cd 5d0 -0.0185535606559681 0.0462389713663156 + 461 25 Cd 5d+1 0.0813272841419957 0.0079943540107550 + 462 25 Cd 5d+2 0.0076668867767191 0.1029318295978158 + 463 25 Cd 5f-3 0.0125286409613442 0.0177582153581182 + 464 25 Cd 5f-2 0.0051707441382017 -0.0079792293821950 + 465 25 Cd 5f-1 -0.0108134861440516 0.0023829175276929 + 466 25 Cd 5f0 0.0138659275229131 0.0314487533417439 + 467 25 Cd 5f+1 0.0027112018229945 0.0140397719185749 + 468 25 Cd 5f+2 -0.0253596650124464 -0.0164509314116364 + 469 25 Cd 5f+3 0.0015372530658772 0.0094108254342173 + + 470 26 Cd 2s -0.1829279367364260 0.0212444294311094 + 471 26 Cd 3s -0.0161517381196328 0.0024681752127670 + 472 26 Cd 3py -0.2695606444652353 0.1655575762410741 + 473 26 Cd 3pz 0.1119168870070165 0.1208965002210660 + 474 26 Cd 3px -0.3117734179170393 0.2301747705195605 + 475 26 Cd 4py -0.0261393816498996 0.0234332785407873 + 476 26 Cd 4pz 0.0023837800600590 0.0129406744056209 + 477 26 Cd 4px -0.0524834120881306 0.0255628246889733 + 478 26 Cd 4d-2 0.0262157614527894 -0.0102915040313952 + 479 26 Cd 4d-1 -0.0063905202774192 0.0042145925132824 + 480 26 Cd 4d0 -0.0058526611059750 0.0108023532741166 + 481 26 Cd 4d+1 -0.0017848583722990 -0.0057531524746633 + 482 26 Cd 4d+2 0.0105329395036529 -0.0142735283485727 + 483 26 Cd 5d-2 0.1278834577923103 -0.0652534826827848 + 484 26 Cd 5d-1 -0.0082934854074674 0.0294229941475292 + 485 26 Cd 5d0 0.0353094395106215 0.1023103251993367 + 486 26 Cd 5d+1 -0.0161912615989362 -0.0192244768807630 + 487 26 Cd 5d+2 0.0693822116700359 -0.0599742362656595 + 488 26 Cd 5f-3 -0.0015036167515914 -0.0141519639213839 + 489 26 Cd 5f-2 0.0019494981540382 0.0049325906439633 + 490 26 Cd 5f-1 0.0046274552156668 0.0116016450457585 + 491 26 Cd 5f0 -0.0145249947120900 0.0017989158940552 + 492 26 Cd 5f+1 -0.0105267640001434 -0.0007697113439188 + 493 26 Cd 5f+2 -0.0088740354109602 0.0012536540242463 + 494 26 Cd 5f+3 0.0030089190895900 0.0071702929367483 + + 153 154 + 0.0642204301766051 0.0688561618918249 + + 0.0000000000000000 0.0000000000000000 + + 1 1 Cd 2s -0.0373766461429041 0.0681417115718791 + 2 1 Cd 3s 0.0017774449636083 0.0232866473539064 + 3 1 Cd 3py -0.2227245267761154 0.0045736320435482 + 4 1 Cd 3pz 0.1393477755574892 -0.1496186510692816 + 5 1 Cd 3px 0.1507636126433779 0.0067462198378987 + 6 1 Cd 4py -0.0280139528281645 0.0078914247822751 + 7 1 Cd 4pz 0.0133922199488433 -0.0193673291731759 + 8 1 Cd 4px 0.0275322797460303 0.0033970303166295 + 9 1 Cd 4d-2 -0.0000920630071921 -0.0049676851895985 + 10 1 Cd 4d-1 0.0119265823568117 -0.0038477767590021 + 11 1 Cd 4d0 0.0207934185036461 0.0119030078913042 + 12 1 Cd 4d+1 0.0065689577883771 -0.0123756309540479 + 13 1 Cd 4d+2 0.0242970828716225 0.0024017686277110 + 14 1 Cd 5d-2 -0.0178887443875046 -0.0072977197469068 + 15 1 Cd 5d-1 0.0480747450455442 0.0206530774849543 + 16 1 Cd 5d0 0.0501283547924160 0.0547685878883182 + 17 1 Cd 5d+1 0.0500363358428013 -0.0224541782867368 + 18 1 Cd 5d+2 0.0691742712527700 -0.0338196701924153 + 19 1 Cd 5f-3 0.0026682276732493 0.0034603963335814 + 20 1 Cd 5f-2 -0.0082416461757064 -0.0122378275226546 + 21 1 Cd 5f-1 -0.0061993888906940 -0.0025843712767927 + 22 1 Cd 5f0 -0.0024296497316662 0.0061505823267801 + 23 1 Cd 5f+1 0.0064356596051284 0.0027972923338981 + 24 1 Cd 5f+2 0.0074206999267419 -0.0021128066121625 + 25 1 Cd 5f+3 0.0001213708559711 -0.0016164866982799 + + 26 2 Cd 2s 0.0524850567895812 0.0514014868123226 + 27 2 Cd 3s 0.0105937456691495 0.0246618733943065 + 28 2 Cd 3py -0.2820944408107172 -0.4024899150086514 + 29 2 Cd 3pz 0.0068258191194534 -0.2498078063692439 + 30 2 Cd 3px 0.0598983894335533 0.1575179646308318 + 31 2 Cd 4py -0.0397432231262476 -0.0407687248162507 + 32 2 Cd 4pz -0.0075246406490071 -0.0328023414519317 + 33 2 Cd 4px 0.0180830333913301 0.0231476034045999 + 34 2 Cd 4d-2 -0.0156258480789041 0.0053567536546733 + 35 2 Cd 4d-1 -0.0053962177334468 0.0136825999770983 + 36 2 Cd 4d0 0.0246809504697851 0.0073441016540513 + 37 2 Cd 4d+1 0.0129520683811773 -0.0162183037168275 + 38 2 Cd 4d+2 -0.0043787706133616 0.0296322008442675 + 39 2 Cd 5d-2 -0.0925419956297004 -0.0078157148481024 + 40 2 Cd 5d-1 -0.0356461971032256 0.0651209851927981 + 41 2 Cd 5d0 0.0807715943138264 -0.0103610874197813 + 42 2 Cd 5d+1 -0.0020174757693678 0.0325863656816966 + 43 2 Cd 5d+2 -0.0230568392792324 -0.0028526927242264 + 44 2 Cd 5f-3 -0.0028066515751914 -0.0051969022431977 + 45 2 Cd 5f-2 -0.0059652004168975 -0.0006912633010400 + 46 2 Cd 5f-1 -0.0024845675409396 0.0024028835740621 + 47 2 Cd 5f0 0.0026530818321289 0.0003004891811235 + 48 2 Cd 5f+1 0.0059687163510799 0.0011505908296395 + 49 2 Cd 5f+2 0.0013546305827926 0.0064901783125470 + 50 2 Cd 5f+3 0.0177229370081787 -0.0045183345343302 + + 51 3 Cd 2s -0.1650252324554382 -0.1207278009886502 + 52 3 Cd 3s -0.0167950951142719 -0.0194402359148769 + 53 3 Cd 3py -0.2220041658080637 -0.0012077307060610 + 54 3 Cd 3pz 0.0295883856900665 0.2929639086640038 + 55 3 Cd 3px 0.3370862838533974 0.2435628366349147 + 56 3 Cd 4py -0.0332784281170310 -0.0006371119216364 + 57 3 Cd 4pz 0.0061511442266987 0.0466237001561994 + 58 3 Cd 4px 0.0526418804502137 0.0368238709219933 + 59 3 Cd 4d-2 -0.0088100589562233 -0.0047229561296892 + 60 3 Cd 4d-1 -0.0065767226096268 -0.0019112487183009 + 61 3 Cd 4d0 -0.0139697759806044 -0.0175762330392940 + 62 3 Cd 4d+1 0.0221918014258841 -0.0142089645652533 + 63 3 Cd 4d+2 -0.0152833675256850 0.0043574350443425 + 64 3 Cd 5d-2 -0.0467020497754402 -0.0766377836191010 + 65 3 Cd 5d-1 -0.0981774018796975 -0.0287729994702961 + 66 3 Cd 5d0 -0.0205840926080587 0.0148785113177810 + 67 3 Cd 5d+1 0.0228959358691072 0.0137099388228778 + 68 3 Cd 5d+2 -0.0381191795918884 -0.0186924765384740 + 69 3 Cd 5f-3 -0.0145597898576918 -0.0055933360568710 + 70 3 Cd 5f-2 -0.0233657247465532 -0.0172917349617806 + 71 3 Cd 5f-1 -0.0118369517577372 -0.0137615129118812 + 72 3 Cd 5f0 -0.0054391316706245 -0.0105487159460443 + 73 3 Cd 5f+1 -0.0146276707152439 -0.0007275373781682 + 74 3 Cd 5f+2 -0.0127111615806722 -0.0071188656816001 + 75 3 Cd 5f+3 0.0052234259805165 -0.0014572582582481 + + 76 4 Se 2s -0.0482358254330344 0.0196835757762568 + 77 4 Se 3s 0.0100195324208651 -0.0040263527310897 + 78 4 Se 3py -0.0752235104550314 -0.0564384459133085 + 79 4 Se 3pz 0.0916778404224205 -0.0481901677008093 + 80 4 Se 3px 0.0005698556236812 0.0306958866818625 + 81 4 Se 4py 0.0139996740998471 0.0431587393247682 + 82 4 Se 4pz -0.0346689848734038 0.0159850955177221 + 83 4 Se 4px 0.0098659785870040 -0.0080545732026983 + 84 4 Se 4d-2 0.0098899746571199 -0.0238856284359335 + 85 4 Se 4d-1 0.0184975655765304 0.0378709169376228 + 86 4 Se 4d0 0.0497571005638904 -0.0060155090108035 + 87 4 Se 4d+1 0.0037980582244746 -0.0136745376390048 + 88 4 Se 4d+2 0.0015403879210953 0.0189388906648847 + + 89 5 Se 2s 0.1249140971111479 -0.0340923457284716 + 90 5 Se 3s -0.0208922019868313 0.0100112326054421 + 91 5 Se 3py 0.0620645787015565 0.0054830219823863 + 92 5 Se 3pz 0.0868491748230391 -0.0545066444243097 + 93 5 Se 3px 0.0492061084351062 0.0819320054311011 + 94 5 Se 4py -0.0263246352466656 0.0025780678868986 + 95 5 Se 4pz -0.0235184322068888 0.0164558720271520 + 96 5 Se 4px 0.0152471121705014 -0.0327841331465080 + 97 5 Se 4d-2 -0.0136101828465503 -0.0018953991325291 + 98 5 Se 4d-1 0.0091524405908077 0.0126019502062329 + 99 5 Se 4d0 -0.0145601795728943 -0.0229149590654842 + 100 5 Se 4d+1 -0.0093640690674469 -0.0107589157627437 + 101 5 Se 4d+2 0.0064590731121356 0.0127946708251788 + + 102 6 Se 2s 0.1926216159894593 0.2006515470499789 + 103 6 Se 3s -0.0421120507432361 -0.0438683088043901 + 104 6 Se 3py 0.0150105888793517 -0.0062134944233156 + 105 6 Se 3pz 0.0217276404533056 -0.0868325292977163 + 106 6 Se 3px -0.0124086150070264 -0.0587496076902552 + 107 6 Se 4py -0.0490535379183436 -0.0275361376907546 + 108 6 Se 4pz -0.0276172951196477 0.0679308060504419 + 109 6 Se 4px 0.0485910124130713 0.0549938035062929 + 110 6 Se 4d-2 0.0108103377886466 0.0043205507276896 + 111 6 Se 4d-1 -0.0075298055077794 0.0187765163001367 + 112 6 Se 4d0 -0.0063881076434130 0.0078799991397556 + 113 6 Se 4d+1 0.0272040473127435 -0.0270582003384116 + 114 6 Se 4d+2 0.0276935900575872 0.0281899764237685 + + 115 7 Se 2s -0.0464599926799238 0.0805117694327068 + 116 7 Se 3s 0.0097832553724448 -0.0171429022932698 + 117 7 Se 3py 0.0038057978140040 0.1393921061972664 + 118 7 Se 3pz 0.0231105078204903 -0.0029914088330762 + 119 7 Se 3px 0.0053639959943619 -0.1062691655470152 + 120 7 Se 4py -0.0306872287202303 -0.0328038537619739 + 121 7 Se 4pz -0.0277309435750158 0.0200467083259206 + 122 7 Se 4px -0.0251949139495769 0.0797220041149982 + 123 7 Se 4d-2 0.0206007406184646 -0.0267952122387286 + 124 7 Se 4d-1 0.0124651580626412 0.0275885829251185 + 125 7 Se 4d0 0.0043941813939103 0.0141356075046580 + 126 7 Se 4d+1 -0.0033318485665903 -0.0414179839584773 + 127 7 Se 4d+2 -0.0005460182773866 0.0301176903173591 + + 128 8 Cd 2s 0.0102937057054803 -0.0723050494376449 + 129 8 Cd 3s 0.0064712858219080 -0.0015601993789787 + 130 8 Cd 3py -0.1423021805514745 0.2312194403852979 + 131 8 Cd 3pz -0.0259067479984356 0.0997953704702462 + 132 8 Cd 3px -0.2891135596715738 0.2217088496606412 + 133 8 Cd 4py -0.0289271204210395 0.0113813649445672 + 134 8 Cd 4pz -0.0153229450367266 0.0178781029595864 + 135 8 Cd 4px -0.0408333844889091 0.0358994958446290 + 136 8 Cd 4d-2 0.0079119066398845 -0.0105370253656789 + 137 8 Cd 4d-1 0.0085227503468013 -0.0166315412858067 + 138 8 Cd 4d0 -0.0086932060189839 0.0011742578640554 + 139 8 Cd 4d+1 0.0048210922394864 -0.0011726660944317 + 140 8 Cd 4d+2 -0.0145304777980837 -0.0156145879353754 + 141 8 Cd 5d-2 -0.0048578964727633 0.0501043009071181 + 142 8 Cd 5d-1 0.0150520597719822 0.0357604599531824 + 143 8 Cd 5d0 -0.0174618416367154 -0.0396152546038399 + 144 8 Cd 5d+1 -0.0454677064352001 -0.0122124771089827 + 145 8 Cd 5d+2 0.0267131486497538 -0.0668422363248459 + 146 8 Cd 5f-3 0.0035348590642862 0.0126177220321393 + 147 8 Cd 5f-2 0.0047117541973566 0.0030344574262984 + 148 8 Cd 5f-1 -0.0016119843776397 0.0001165101583183 + 149 8 Cd 5f0 0.0003216397682325 0.0105189662978196 + 150 8 Cd 5f+1 -0.0048057768370133 0.0039282734670878 + 151 8 Cd 5f+2 0.0144339050638151 0.0067463640478755 + 152 8 Cd 5f+3 -0.0041442950695643 0.0074757924709948 + + 153 9 Cd 2s -0.0314782701966022 -0.1041948312170822 + 154 9 Cd 3s -0.0017184727935278 -0.0021743506381945 + 155 9 Cd 3py 0.0345720987583588 -0.0127988442867332 + 156 9 Cd 3pz -0.1883108965212497 0.0424007728174895 + 157 9 Cd 3px 0.1947190557545102 0.1158243775776360 + 158 9 Cd 4py -0.0064755841024287 0.0039019350251829 + 159 9 Cd 4pz -0.0323336022135386 0.0153364951329544 + 160 9 Cd 4px 0.0267489465207552 0.0296093946180829 + 161 9 Cd 4d-2 0.0137455531474720 -0.0062545719455678 + 162 9 Cd 4d-1 -0.0003311016873138 0.0066759118040219 + 163 9 Cd 4d0 -0.0244332126756991 -0.0045572488419369 + 164 9 Cd 4d+1 -0.0041931612521315 0.0030162170115341 + 165 9 Cd 4d+2 0.0051845514002794 0.0085995583414189 + 166 9 Cd 5d-2 0.0113793934172934 -0.0883991934432452 + 167 9 Cd 5d-1 0.0150781092634666 0.0360860030787977 + 168 9 Cd 5d0 -0.1036446261160837 -0.0709467142430776 + 169 9 Cd 5d+1 -0.0073184530551511 0.0288851635503190 + 170 9 Cd 5d+2 -0.0302141098331624 -0.0424228875989213 + 171 9 Cd 5f-3 -0.0001001897310844 -0.0005753708319639 + 172 9 Cd 5f-2 0.0024920400001167 -0.0005684266269332 + 173 9 Cd 5f-1 0.0128800400656525 0.0093750692785009 + 174 9 Cd 5f0 0.0071014995517545 -0.0037094260612083 + 175 9 Cd 5f+1 -0.0025901070493812 -0.0073003178256793 + 176 9 Cd 5f+2 0.0158094612540687 0.0117361930776340 + 177 9 Cd 5f+3 -0.0031425193089846 -0.0087123388475769 + + 178 10 Se 2s -0.0208669245986240 -0.0839242042009884 + 179 10 Se 3s 0.0063610620796599 0.0196757190885230 + 180 10 Se 3py 0.0266905535011490 -0.0163909124824849 + 181 10 Se 3pz -0.1026240766726929 0.0062757046704596 + 182 10 Se 3px -0.1370832598068815 -0.0768520396998789 + 183 10 Se 4py -0.0054958904623970 0.0183054919426336 + 184 10 Se 4pz 0.0376297395283929 -0.0113198878703597 + 185 10 Se 4px 0.0490594706927906 0.0338358343193367 + 186 10 Se 4d-2 0.0105604909741212 -0.0114066939204350 + 187 10 Se 4d-1 0.0039479022165460 -0.0264302096245659 + 188 10 Se 4d0 -0.0094242740945451 -0.0040059540619432 + 189 10 Se 4d+1 -0.0041647777490726 -0.0086782377425680 + 190 10 Se 4d+2 0.0187559068750797 0.0021276636234852 + + 191 11 Se 2s 0.0306687856879671 -0.0919516222451249 + 192 11 Se 3s -0.0073630108606669 0.0195269615097489 + 193 11 Se 3py -0.0894840249439717 0.0320649785908911 + 194 11 Se 3pz -0.0709265323884675 0.0601112607812241 + 195 11 Se 3px 0.0446388127333577 0.0097553580489803 + 196 11 Se 4py 0.0488561630239560 0.0117069448126890 + 197 11 Se 4pz 0.0330391938594408 -0.0270375272120375 + 198 11 Se 4px -0.0003170748217351 0.0327915143550725 + 199 11 Se 4d-2 -0.0004867939464672 0.0063396520552975 + 200 11 Se 4d-1 0.0041612717418890 0.0118490751543349 + 201 11 Se 4d0 -0.0449594011504692 -0.0105461403939140 + 202 11 Se 4d+1 -0.0245458765427541 -0.0343246547892214 + 203 11 Se 4d+2 -0.0269775411996399 -0.0009170989922329 + + 204 12 Cd 2s 0.0677463716800808 0.1294435092361728 + 205 12 Cd 3s 0.0122700140303222 0.0112918771219765 + 206 12 Cd 3py 0.2187193525843141 0.1497257607178184 + 207 12 Cd 3pz 0.0913550845521975 0.0136058237725709 + 208 12 Cd 3px -0.0487106952764147 -0.0075608021900546 + 209 12 Cd 4py 0.0331346256999836 0.0148585633042813 + 210 12 Cd 4pz 0.0167125646673637 -0.0029996177045460 + 211 12 Cd 4px -0.0082072140244875 0.0108769482173421 + 212 12 Cd 4d-2 0.0074469224450819 -0.0012088192658734 + 213 12 Cd 4d-1 -0.0009541903067894 -0.0012761325288128 + 214 12 Cd 4d0 -0.0033270879938395 0.0013540958469015 + 215 12 Cd 4d+1 -0.0020730154768213 -0.0187990278823348 + 216 12 Cd 4d+2 -0.0185235253984927 0.0073480917597019 + 217 12 Cd 5d-2 -0.0404556410066917 -0.1025843020443426 + 218 12 Cd 5d-1 -0.0481869563023867 -0.0028361872525490 + 219 12 Cd 5d0 -0.0196980091134760 0.0174968468965212 + 220 12 Cd 5d+1 0.0293678424485493 -0.0288301299946335 + 221 12 Cd 5d+2 -0.0249453805354104 0.0898064188829213 + 222 12 Cd 5f-3 -0.0051100838471984 0.0019277509736985 + 223 12 Cd 5f-2 0.0008712643268994 0.0086174403062432 + 224 12 Cd 5f-1 0.0005373775110682 0.0009197651022637 + 225 12 Cd 5f0 -0.0162705448575463 0.0082702840671886 + 226 12 Cd 5f+1 0.0067065558604771 0.0065667602425578 + 227 12 Cd 5f+2 0.0054120765947156 -0.0001689971519744 + 228 12 Cd 5f+3 -0.0248447265459562 -0.0048373594789343 + + 229 13 Cd 2s -0.0173400346097030 -0.0117335351885593 + 230 13 Cd 3s -0.0062927640716529 -0.0009857467241595 + 231 13 Cd 3py -0.0371661684836310 -0.0401680904728894 + 232 13 Cd 3pz 0.0923520909920532 -0.1387160580978138 + 233 13 Cd 3px -0.1327599165287586 0.1386921108567163 + 234 13 Cd 4py -0.0091859321372514 -0.0043280584492424 + 235 13 Cd 4pz 0.0118624847857014 -0.0227455638930604 + 236 13 Cd 4px -0.0025879159859044 0.0167152104039595 + 237 13 Cd 4d-2 0.0092739517957505 0.0145971817641545 + 238 13 Cd 4d-1 0.0049152416420982 -0.0037619866761492 + 239 13 Cd 4d0 0.0243081069958744 -0.0052249578908314 + 240 13 Cd 4d+1 0.0116676086810210 -0.0037542350805676 + 241 13 Cd 4d+2 0.0001066327288459 0.0094417446396020 + 242 13 Cd 5d-2 0.0149741643222987 0.1038557319012135 + 243 13 Cd 5d-1 -0.0083382293764202 -0.0221742770773889 + 244 13 Cd 5d0 0.0755680664350440 -0.0468026024679308 + 245 13 Cd 5d+1 0.0454812903654980 0.0025864056263996 + 246 13 Cd 5d+2 -0.0309304418803114 0.0245874825496382 + 247 13 Cd 5f-3 0.0038986500432859 -0.0039694383668315 + 248 13 Cd 5f-2 0.0032728521385450 0.0016330260971165 + 249 13 Cd 5f-1 0.0003723937038814 -0.0027450671939904 + 250 13 Cd 5f0 0.0005507394965529 -0.0075189583917641 + 251 13 Cd 5f+1 -0.0054131716030721 -0.0044451282955351 + 252 13 Cd 5f+2 -0.0010693245346938 -0.0037056122281017 + 253 13 Cd 5f+3 0.0111486518276781 -0.0168585756424544 + + 254 14 Cd 2s 0.1814746582562434 -0.0408921107227285 + 255 14 Cd 3s 0.0232470720077489 0.0010893783416232 + 256 14 Cd 3py -0.1630442451672263 -0.1027240870523873 + 257 14 Cd 3pz -0.1225060594346430 0.3814280669746172 + 258 14 Cd 3px 0.0114090589873768 0.2598453604220045 + 259 14 Cd 4py -0.0358834722251076 -0.0055939178884944 + 260 14 Cd 4pz -0.0226560521726113 0.0349571062644339 + 261 14 Cd 4px 0.0015528434156382 0.0384154129399909 + 262 14 Cd 4d-2 -0.0005874220246818 0.0304664366314143 + 263 14 Cd 4d-1 0.0031994253252539 0.0042739960936163 + 264 14 Cd 4d0 -0.0018314306799380 0.0122338023872033 + 265 14 Cd 4d+1 -0.0067345297200464 0.0101624033299148 + 266 14 Cd 4d+2 0.0039967944455433 0.0001234156304142 + 267 14 Cd 5d-2 -0.0100732538012190 0.2288796711928882 + 268 14 Cd 5d-1 -0.0265184892956101 0.0885785561031307 + 269 14 Cd 5d0 0.0189444729878773 0.1066367615028496 + 270 14 Cd 5d+1 -0.0233340181367386 0.0886883414696367 + 271 14 Cd 5d+2 -0.0591468872671036 0.0353582341166742 + 272 14 Cd 5f-3 -0.0026387755498920 -0.0087382283902707 + 273 14 Cd 5f-2 0.0009965591488047 -0.0104902290071278 + 274 14 Cd 5f-1 -0.0080326483079773 0.0119070256636272 + 275 14 Cd 5f0 0.0007795212486932 -0.0031424328862098 + 276 14 Cd 5f+1 -0.0103494049494659 0.0092915050827109 + 277 14 Cd 5f+2 -0.0087208471115086 0.0055089731043828 + 278 14 Cd 5f+3 0.0042019331455417 0.0120142065905059 + + 279 15 Se 2s 0.0665575204030657 -0.1513598261777427 + 280 15 Se 3s -0.0160355938257335 0.0355082384715328 + 281 15 Se 3py -0.0251106053862602 -0.0967018522009436 + 282 15 Se 3pz 0.0790687703776703 -0.1345372409991424 + 283 15 Se 3px 0.0818885019970994 -0.0304612771882421 + 284 15 Se 4py 0.0045353009177120 0.0161822936907004 + 285 15 Se 4pz -0.0253645922017140 0.0213281626862018 + 286 15 Se 4px -0.0295395650468680 0.0634375171629630 + 287 15 Se 4d-2 0.0219237993364661 -0.0363481380895787 + 288 15 Se 4d-1 0.0064062157744952 0.0262650735233053 + 289 15 Se 4d0 -0.0184465261127704 0.0426424637114588 + 290 15 Se 4d+1 -0.0071568911183409 0.0109588669758167 + 291 15 Se 4d+2 0.0080782656891902 0.0043065208027393 + + 292 16 Se 2s -0.0826941645335651 0.0727208149971667 + 293 16 Se 3s 0.0187905772081157 -0.0141941692335783 + 294 16 Se 3py -0.0700256196370231 0.0350733067321550 + 295 16 Se 3pz -0.1104651905850439 0.0585031439281671 + 296 16 Se 3px -0.0927362878254888 0.0593896659894666 + 297 16 Se 4py 0.0148273420702934 0.0067199580056121 + 298 16 Se 4pz 0.0430473837988173 -0.0279868217166081 + 299 16 Se 4px 0.0276314147448176 -0.0036706899551703 + 300 16 Se 4d-2 0.0041913721211629 0.0139468511479559 + 301 16 Se 4d-1 0.0047218429211631 -0.0056370698338949 + 302 16 Se 4d0 0.0193529491682518 0.0022397760298851 + 303 16 Se 4d+1 0.0243508509429844 -0.0028161757798463 + 304 16 Se 4d+2 0.0129743596758001 -0.0020524635179789 + + 305 17 Cd 2s 0.0112366463054515 -0.0789124050343427 + 306 17 Cd 3s 0.0003587194793312 -0.0020401346672193 + 307 17 Cd 3py -0.0769624451947687 0.0577844734391695 + 308 17 Cd 3pz -0.0137455084968053 0.0213927135988565 + 309 17 Cd 3px 0.1519067212798790 -0.0156912523966210 + 310 17 Cd 4py 0.0062143739401091 0.0040484776554068 + 311 17 Cd 4pz -0.0077205052780775 -0.0073699304312196 + 312 17 Cd 4px 0.0250790756628792 -0.0026480198974207 + 313 17 Cd 4d-2 -0.0162549211946877 0.0074543317674516 + 314 17 Cd 4d-1 0.0056217433614983 0.0006923921887184 + 315 17 Cd 4d0 -0.0010194389495196 -0.0022975716301188 + 316 17 Cd 4d+1 0.0136866508666249 -0.0075985133403028 + 317 17 Cd 4d+2 -0.0062447335812463 -0.0015431591617669 + 318 17 Cd 5d-2 -0.0310667897799362 -0.0073067333399975 + 319 17 Cd 5d-1 0.0216161823357533 0.0213121121042969 + 320 17 Cd 5d0 0.0017499921217247 -0.0254028936040285 + 321 17 Cd 5d+1 0.0698502138946414 -0.0204311912532644 + 322 17 Cd 5d+2 0.0044030216741587 0.0186945444053561 + 323 17 Cd 5f-3 -0.0042781107250082 -0.0141761447761613 + 324 17 Cd 5f-2 -0.0015837042042875 -0.0046571046417548 + 325 17 Cd 5f-1 -0.0003348227529488 -0.0037589882338463 + 326 17 Cd 5f0 0.0066245914321857 0.0070247988350186 + 327 17 Cd 5f+1 -0.0071518876278137 -0.0039593185599840 + 328 17 Cd 5f+2 -0.0034293429067554 0.0012980272958497 + 329 17 Cd 5f+3 0.0050237772079975 -0.0049600118658028 + + 330 18 Cd 2s 0.2668937854546440 0.1767390801668388 + 331 18 Cd 3s 0.0400728995662591 0.0281789147643874 + 332 18 Cd 3py 0.2209288206519730 0.2695693367667619 + 333 18 Cd 3pz 0.2072157229018245 -0.1861154653250739 + 334 18 Cd 3px -0.2187908163537593 -0.0841593460157026 + 335 18 Cd 4py 0.0462341515407523 0.0475657398008644 + 336 18 Cd 4pz 0.0357511942309098 -0.0285387241135541 + 337 18 Cd 4px -0.0112268142270149 0.0006289290542437 + 338 18 Cd 4d-2 0.0126562492003454 -0.0002804277871058 + 339 18 Cd 4d-1 -0.0082949416781143 0.0057177323294149 + 340 18 Cd 4d0 -0.0053598835103848 0.0092273883899780 + 341 18 Cd 4d+1 0.0011849660858937 -0.0244133801141761 + 342 18 Cd 4d+2 0.0049890332397266 -0.0005729410547002 + 343 18 Cd 5d-2 0.0614524242184353 -0.0065991943600517 + 344 18 Cd 5d-1 -0.0409837110023242 0.0317491147082276 + 345 18 Cd 5d0 -0.0248179042996098 0.0681446372718730 + 346 18 Cd 5d+1 0.0352318759935593 -0.0634258866769896 + 347 18 Cd 5d+2 0.0413177326815480 -0.0067459980005524 + 348 18 Cd 5f-3 0.0067088950646344 0.0074873800199352 + 349 18 Cd 5f-2 -0.0061012160104173 -0.0120514881406305 + 350 18 Cd 5f-1 0.0106596259667080 -0.0034368670189944 + 351 18 Cd 5f0 0.0151539213363631 0.0067929699972765 + 352 18 Cd 5f+1 -0.0213460998761768 0.0015372121771331 + 353 18 Cd 5f+2 0.0097958176646179 0.0020403556277561 + 354 18 Cd 5f+3 0.0136900743841485 0.0107748922281841 + + 355 19 Se 2s -0.0879222222050691 0.1698396324494365 + 356 19 Se 3s 0.0199623984043043 -0.0391350995441082 + 357 19 Se 3py -0.0541328179585741 -0.0552673007516858 + 358 19 Se 3pz -0.0356306068129372 0.1212531081249597 + 359 19 Se 3px 0.1214504255642827 -0.0148299745556888 + 360 19 Se 4py 0.0470358630087823 0.0102957681226606 + 361 19 Se 4pz 0.0449137937121646 -0.0719885814132203 + 362 19 Se 4px -0.0517207373681818 -0.0001840543000080 + 363 19 Se 4d-2 -0.0351365319064666 0.0400810365847004 + 364 19 Se 4d-1 0.0384903548644457 0.0023732630044194 + 365 19 Se 4d0 -0.0115661357558279 -0.0103894645225089 + 366 19 Se 4d+1 -0.0310554176295649 -0.0137043058840222 + 367 19 Se 4d+2 0.0030627392829496 -0.0054433499120989 + + 368 20 Se 2s -0.0604618551714685 -0.0319790091388225 + 369 20 Se 3s 0.0130337978300375 0.0087441196103547 + 370 20 Se 3py 0.1414737218008125 0.0748791224258951 + 371 20 Se 3pz -0.0679262982374028 0.0045503983891274 + 372 20 Se 3px -0.1438023643226986 0.0293078321852416 + 373 20 Se 4py -0.0461290839307739 -0.0206764510484810 + 374 20 Se 4pz 0.0207303413472410 -0.0021734269788936 + 375 20 Se 4px 0.0657790078196566 -0.0327120290772855 + 376 20 Se 4d-2 -0.0344758106765886 -0.0285175842893783 + 377 20 Se 4d-1 0.0061252652796334 0.0080804715831773 + 378 20 Se 4d0 -0.0024010141189756 -0.0012809561202232 + 379 20 Se 4d+1 0.0142597444282343 -0.0185894873634433 + 380 20 Se 4d+2 -0.0275209869018229 0.0160944444378631 + + 381 21 Se 2s -0.0862657003593695 0.1332028159672231 + 382 21 Se 3s 0.0230439504941898 -0.0272201676865400 + 383 21 Se 3py 0.0853083136256923 -0.0584364703639506 + 384 21 Se 3pz 0.1451670286755176 -0.0557601514958475 + 385 21 Se 3px -0.0263985636417050 -0.1058987367811246 + 386 21 Se 4py -0.0162462135493995 -0.0535065139102924 + 387 21 Se 4pz -0.0397037935710875 0.0240025253725622 + 388 21 Se 4px 0.0195705480293904 0.0024360346122674 + 389 21 Se 4d-2 0.0257205221911479 -0.0353257523113196 + 390 21 Se 4d-1 0.0291391091134439 -0.0085101137891935 + 391 21 Se 4d0 -0.0079950224718791 0.0118450509389349 + 392 21 Se 4d+1 0.0111102553086228 -0.0066268282424799 + 393 21 Se 4d+2 -0.0269127762644000 -0.0548408043135900 + + 394 22 Cd 2s -0.0181479050140302 0.1238463700634705 + 395 22 Cd 3s 0.0103035352994615 0.0264431028831535 + 396 22 Cd 3py -0.1470798861394912 0.0523978243354903 + 397 22 Cd 3pz -0.0394537746991724 0.1157105804784305 + 398 22 Cd 3px -0.0101374202411765 0.1099342493993230 + 399 22 Cd 4py -0.0264672948047222 0.0073735006296777 + 400 22 Cd 4pz -0.0123876267996496 0.0177541869448344 + 401 22 Cd 4px -0.0001231162502346 0.0078046370664278 + 402 22 Cd 4d-2 0.0156930812003186 -0.0155545515338557 + 403 22 Cd 4d-1 0.0182019070498594 0.0084010154993386 + 404 22 Cd 4d0 -0.0000858555825138 0.0051765488784136 + 405 22 Cd 4d+1 -0.0134377058839082 0.0042215059840430 + 406 22 Cd 4d+2 -0.0041540177068119 0.0063940534429017 + 407 22 Cd 5d-2 0.0628734388711778 0.0053393404874641 + 408 22 Cd 5d-1 0.0162836980572074 0.0886678611087340 + 409 22 Cd 5d0 -0.0448872700570216 0.0808000349046949 + 410 22 Cd 5d+1 -0.0467017288741533 0.0323238998519033 + 411 22 Cd 5d+2 -0.0160965833928173 0.0465540553664696 + 412 22 Cd 5f-3 0.0109527923655458 0.0014091758607910 + 413 22 Cd 5f-2 -0.0152522917567645 0.0085987035299468 + 414 22 Cd 5f-1 0.0028304069320701 0.0066264808990100 + 415 22 Cd 5f0 0.0070263254488444 -0.0043873414532461 + 416 22 Cd 5f+1 0.0037104883126308 0.0047074149360919 + 417 22 Cd 5f+2 0.0102685272316399 0.0023517091388945 + 418 22 Cd 5f+3 -0.0009840357325799 -0.0117282468974661 + + 419 23 Se 2s 0.0606803856537546 0.0677196324202041 + 420 23 Se 3s -0.0127297035018426 -0.0177776887949942 + 421 23 Se 3py -0.0470869420641232 -0.0752570479786055 + 422 23 Se 3pz 0.1024370879996725 -0.0015700152283251 + 423 23 Se 3px -0.0933782956920623 -0.0059870622039410 + 424 23 Se 4py 0.0209818191944826 0.0124754052539183 + 425 23 Se 4pz -0.0565966875112974 -0.0134011345129920 + 426 23 Se 4px 0.0386900300533242 -0.0128262472074472 + 427 23 Se 4d-2 -0.0260111283536443 -0.0141362780125789 + 428 23 Se 4d-1 0.0242815681765169 0.0074996098276604 + 429 23 Se 4d0 -0.0246215048957024 0.0177648186846023 + 430 23 Se 4d+1 0.0165563500985602 -0.0133704346809331 + 431 23 Se 4d+2 -0.0060494555573184 0.0086336338436720 + + 432 24 Se 2s -0.1410191844833012 -0.1339167213576929 + 433 24 Se 3s 0.0320543900043045 0.0273623875391864 + 434 24 Se 3py -0.0625864163639364 -0.0211070138854191 + 435 24 Se 3pz -0.0764244193901430 0.0342881603318064 + 436 24 Se 3px -0.0364060414421392 0.0466954855543175 + 437 24 Se 4py 0.0422087781755443 0.0395155882366792 + 438 24 Se 4pz 0.0479948635188107 -0.0519026895490257 + 439 24 Se 4px -0.0002237102933075 0.0144821022785864 + 440 24 Se 4d-2 -0.0186870144294641 -0.0334136654874409 + 441 24 Se 4d-1 0.0591836218184564 -0.0015195113835885 + 442 24 Se 4d0 -0.0246980845048746 -0.0269905552607335 + 443 24 Se 4d+1 0.0107898819567791 -0.0418366678921295 + 444 24 Se 4d+2 -0.0475910477718071 0.0067961790257949 + + 445 25 Cd 2s 0.0562009328491383 -0.0813994076313927 + 446 25 Cd 3s 0.0056616696201561 -0.0196020644946924 + 447 25 Cd 3py 0.5582224692767739 -0.0007185794968808 + 448 25 Cd 3pz 0.1614001708391062 -0.3388844529421185 + 449 25 Cd 3px -0.2690749355885699 0.1268800197969716 + 450 25 Cd 4py 0.0709689893612356 0.0048239187115901 + 451 25 Cd 4pz 0.0174792566990529 -0.0468763842159913 + 452 25 Cd 4px -0.0207809992303597 0.0178536211319155 + 453 25 Cd 4d-2 -0.0141082487629028 -0.0040229276377706 + 454 25 Cd 4d-1 0.0100149075841429 -0.0059524540456834 + 455 25 Cd 4d0 -0.0094562057807419 0.0073158590427452 + 456 25 Cd 4d+1 0.0041957680295387 0.0020400816597730 + 457 25 Cd 4d+2 -0.0060858357111200 0.0181566387941942 + 458 25 Cd 5d-2 -0.0870179812076238 -0.0207370930340839 + 459 25 Cd 5d-1 -0.0021568016246864 0.0547596511317319 + 460 25 Cd 5d0 0.0182887970496387 0.0187772945711047 + 461 25 Cd 5d+1 -0.0121160805561573 0.1152224583047351 + 462 25 Cd 5d+2 0.0613450785782498 0.0466035499512678 + 463 25 Cd 5f-3 0.0011764057732233 -0.0134068563731943 + 464 25 Cd 5f-2 0.0057487757868588 -0.0022022292616193 + 465 25 Cd 5f-1 -0.0129869314536434 -0.0014434886102152 + 466 25 Cd 5f0 0.0060545904748490 -0.0052022841601363 + 467 25 Cd 5f+1 0.0009524501617748 -0.0084252328766755 + 468 25 Cd 5f+2 0.0038070223620198 -0.0021146759919094 + 469 25 Cd 5f+3 -0.0203669184222554 -0.0132775834005493 + + 470 26 Cd 2s -0.4330383219762491 0.1276842139480426 + 471 26 Cd 3s -0.0621622146300357 0.0113234592013863 + 472 26 Cd 3py 0.3085514314306059 0.2596305958492207 + 473 26 Cd 3pz 0.2473204990859353 -0.0058711592661503 + 474 26 Cd 3px -0.4984726146357615 0.3193320583842282 + 475 26 Cd 4py 0.0439013219545127 0.0215716019829469 + 476 26 Cd 4pz 0.0407426512921035 -0.0108756326859605 + 477 26 Cd 4px -0.0986627289877897 0.0476759534211489 + 478 26 Cd 4d-2 -0.0122952630604587 -0.0186484062765672 + 479 26 Cd 4d-1 0.0111244889718234 -0.0054890375330875 + 480 26 Cd 4d0 -0.0032934651423626 0.0038556456656746 + 481 26 Cd 4d+1 -0.0147209326487812 0.0052346211588238 + 482 26 Cd 4d+2 0.0051204684697144 -0.0232298501959291 + 483 26 Cd 5d-2 -0.0181018874802378 -0.1581500010315543 + 484 26 Cd 5d-1 0.0637900626243743 0.0206524092233507 + 485 26 Cd 5d0 0.0215658101727569 0.0554819785703146 + 486 26 Cd 5d+1 -0.0374681470879457 0.0028138457454229 + 487 26 Cd 5d+2 -0.0212833578826802 -0.1435187041490162 + 488 26 Cd 5f-3 -0.0020048444696105 0.0038276908662158 + 489 26 Cd 5f-2 0.0072577448569129 -0.0063986176458297 + 490 26 Cd 5f-1 -0.0015285838590666 0.0090169940893295 + 491 26 Cd 5f0 0.0003019420283570 0.0010735708603154 + 492 26 Cd 5f+1 -0.0031548235274612 0.0011821333368753 + 493 26 Cd 5f+2 -0.0044826956371740 0.0028495335684567 + 494 26 Cd 5f+3 0.0030106152557117 -0.0056380271638114 + + 155 156 + 0.0775359778215119 0.0787315536475680 + + 0.0000000000000000 0.0000000000000000 + + 1 1 Cd 2s -0.0081065950408231 0.1350226483767004 + 2 1 Cd 3s -0.0048652880149649 0.0137838415143095 + 3 1 Cd 3py 0.0925338242650224 0.0479466480369329 + 4 1 Cd 3pz -0.1546753778776180 -0.0337666517502499 + 5 1 Cd 3px 0.0204685496535893 -0.2133902925582227 + 6 1 Cd 4py 0.0047780558541667 0.0128776994731122 + 7 1 Cd 4pz -0.0194362449659886 -0.0003272871531939 + 8 1 Cd 4px 0.0017977512223972 -0.0337656901278914 + 9 1 Cd 4d-2 0.0044043803119278 -0.0081954137520312 + 10 1 Cd 4d-1 0.0029660402404085 0.0032254505513231 + 11 1 Cd 4d0 -0.0032413356724201 -0.0059005741887443 + 12 1 Cd 4d+1 0.0047115787619755 0.0020181078412831 + 13 1 Cd 4d+2 0.0020247623704294 -0.0060634696340367 + 14 1 Cd 5d-2 0.0214882686539633 -0.0028288753115724 + 15 1 Cd 5d-1 0.0198421188674835 0.0089672112191914 + 16 1 Cd 5d0 -0.0024567097309555 -0.0026356832216793 + 17 1 Cd 5d+1 0.0412421539474306 0.0530624555675537 + 18 1 Cd 5d+2 0.0138247129800705 -0.0782511149121698 + 19 1 Cd 5f-3 0.0073398577042094 0.0036141652207403 + 20 1 Cd 5f-2 0.0035206552376084 -0.0044074439375769 + 21 1 Cd 5f-1 -0.0067459159504854 0.0143926903071764 + 22 1 Cd 5f0 -0.0067459150678740 0.0085709212620023 + 23 1 Cd 5f+1 0.0062143767057202 -0.0112691187854698 + 24 1 Cd 5f+2 0.0008172663148707 -0.0071269117771379 + 25 1 Cd 5f+3 0.0126423833409244 -0.0022690731789608 + + 26 2 Cd 2s -0.1240898865256725 0.0439757216993107 + 27 2 Cd 3s -0.0155306415142546 -0.0019867932689301 + 28 2 Cd 3py 0.1913549030518490 -0.2449628078688205 + 29 2 Cd 3pz 0.1000219590251277 -0.0992562148592796 + 30 2 Cd 3px -0.1617371021096830 0.1080438524711844 + 31 2 Cd 4py 0.0185378533961579 -0.0285226540366585 + 32 2 Cd 4pz 0.0297762168315329 -0.0244187474615303 + 33 2 Cd 4px -0.0177195946742582 0.0126263905118504 + 34 2 Cd 4d-2 -0.0025059479375919 0.0098385715127926 + 35 2 Cd 4d-1 -0.0036734116676571 -0.0006052240663144 + 36 2 Cd 4d0 -0.0089313199645975 -0.0042506848210452 + 37 2 Cd 4d+1 0.0080913046098234 -0.0073736471960252 + 38 2 Cd 4d+2 -0.0042243173209961 -0.0051573533621725 + 39 2 Cd 5d-2 0.0881867383877373 -0.0701885908659517 + 40 2 Cd 5d-1 0.0449479006578769 -0.0424273938498452 + 41 2 Cd 5d0 -0.0110361542436998 -0.0127003427837237 + 42 2 Cd 5d+1 0.0920244587152866 -0.0361333057589058 + 43 2 Cd 5d+2 0.0510996023401242 -0.0319046318884067 + 44 2 Cd 5f-3 0.0035516642871707 0.0014866654136579 + 45 2 Cd 5f-2 0.0028809305952244 -0.0051922947355311 + 46 2 Cd 5f-1 0.0103432957047284 -0.0093290229622533 + 47 2 Cd 5f0 0.0056339802831780 0.0038291250293981 + 48 2 Cd 5f+1 0.0069951684877084 -0.0063289961694997 + 49 2 Cd 5f+2 0.0101634634431016 0.0063476311937358 + 50 2 Cd 5f+3 -0.0037315228522690 0.0202732068012299 + + 51 3 Cd 2s 0.0915823664999951 -0.1759778003247494 + 52 3 Cd 3s 0.0133807041203510 -0.0330653592465501 + 53 3 Cd 3py 0.2379123686201737 -0.2489705560506662 + 54 3 Cd 3pz 0.2998234086925538 0.1297712857198818 + 55 3 Cd 3px 0.0542390691351058 -0.0017622026895698 + 56 3 Cd 4py 0.0398920135634785 -0.0368181576563136 + 57 3 Cd 4pz 0.0350620495980388 0.0088777975637842 + 58 3 Cd 4px 0.0142084076587375 -0.0034202156733143 + 59 3 Cd 4d-2 -0.0006035017670291 -0.0130317173310491 + 60 3 Cd 4d-1 0.0077124439127795 0.0072989653466678 + 61 3 Cd 4d0 0.0068173205439170 -0.0090745739617309 + 62 3 Cd 4d+1 -0.0226645086969130 -0.0028377560018395 + 63 3 Cd 4d+2 0.0247143806996622 -0.0023163895201715 + 64 3 Cd 5d-2 0.0680015870944313 -0.1078720138006392 + 65 3 Cd 5d-1 0.0708901981557265 -0.0420638001422279 + 66 3 Cd 5d0 0.0427170861101926 -0.0773668311167232 + 67 3 Cd 5d+1 -0.0353349788215868 0.0191399997095086 + 68 3 Cd 5d+2 0.1042545877680561 -0.0512310656642405 + 69 3 Cd 5f-3 0.0027482415735219 -0.0016883504536055 + 70 3 Cd 5f-2 0.0037479967874952 -0.0142434411147054 + 71 3 Cd 5f-1 -0.0033855769406836 -0.0014474896177925 + 72 3 Cd 5f0 0.0024102184268525 -0.0058747233875252 + 73 3 Cd 5f+1 0.0030575514529073 0.0026664387517024 + 74 3 Cd 5f+2 0.0005519679291036 -0.0039793473285483 + 75 3 Cd 5f+3 0.0128153581076606 -0.0126641337923065 + + 76 4 Se 2s -0.0209407747330044 0.1043900438209639 + 77 4 Se 3s 0.0058928025427536 -0.0238549553433674 + 78 4 Se 3py 0.0520915732340518 0.0222814063921248 + 79 4 Se 3pz -0.0240249189798509 -0.0540192709939297 + 80 4 Se 3px -0.0221503809900928 -0.0770155212365270 + 81 4 Se 4py -0.0326673890209962 0.0409447241875287 + 82 4 Se 4pz 0.0331105290607897 0.0206808210425491 + 83 4 Se 4px 0.0212018598595573 0.0153968506994957 + 84 4 Se 4d-2 0.0089484566162427 0.0021744778595003 + 85 4 Se 4d-1 -0.0272878658759594 0.0111011324354845 + 86 4 Se 4d0 -0.0049859167851358 0.0087404447666373 + 87 4 Se 4d+1 -0.0019629399546406 -0.0110420865451406 + 88 4 Se 4d+2 -0.0268063421507238 0.0141979991183813 + + 89 5 Se 2s -0.0610552614691404 -0.0391856503379489 + 90 5 Se 3s 0.0121826986100935 0.0086311390174824 + 91 5 Se 3py 0.0455178545932718 -0.0780964166459204 + 92 5 Se 3pz -0.1167384766541482 -0.0218248704387611 + 93 5 Se 3px 0.0280666065433860 0.0066767799287312 + 94 5 Se 4py 0.0180045532374860 0.0126772809786709 + 95 5 Se 4pz 0.0164075148414839 0.0291270633842690 + 96 5 Se 4px -0.0143080159437128 -0.0278925551835959 + 97 5 Se 4d-2 0.0121262677530812 -0.0014878032674445 + 98 5 Se 4d-1 -0.0061711114374624 0.0167635797077409 + 99 5 Se 4d0 -0.0177915934910090 -0.0002024551152023 + 100 5 Se 4d+1 -0.0291455407879084 -0.0107175742741620 + 101 5 Se 4d+2 -0.0126927496311287 0.0206650516576048 + + 102 6 Se 2s 0.0241723771982679 0.0074733339488202 + 103 6 Se 3s -0.0055543392757276 -0.0018415802286002 + 104 6 Se 3py -0.1070841081262544 0.0583906436170292 + 105 6 Se 3pz 0.0318115602248818 -0.0522471513349527 + 106 6 Se 3px -0.0197537355227682 0.0064501857148134 + 107 6 Se 4py 0.0999755957120073 -0.0740325336300414 + 108 6 Se 4pz 0.0293495963875372 0.0103831122526222 + 109 6 Se 4px 0.0253564517726114 0.0028129612404766 + 110 6 Se 4d-2 -0.0263609968430990 0.0195918929796100 + 111 6 Se 4d-1 -0.0247793214297402 -0.0020610101194606 + 112 6 Se 4d0 -0.0236490097877533 0.0300986894230609 + 113 6 Se 4d+1 -0.0183390605270571 -0.0119688928649599 + 114 6 Se 4d+2 -0.0308623349249134 0.0230297319112927 + + 115 7 Se 2s 0.0363870007541220 -0.2121971980380391 + 116 7 Se 3s -0.0079445450335535 0.0525737578034019 + 117 7 Se 3py -0.1058800342832333 -0.0843414614178963 + 118 7 Se 3pz -0.0131743685375273 0.0633081120876543 + 119 7 Se 3px -0.0547328902172915 -0.0325547119731368 + 120 7 Se 4py 0.0477925236689576 -0.0234388503590867 + 121 7 Se 4pz 0.0351931634727699 -0.0772859222431805 + 122 7 Se 4px 0.0488215981784991 -0.0197541829210256 + 123 7 Se 4d-2 -0.0280647096707593 0.0076026803703781 + 124 7 Se 4d-1 -0.0434547491072705 0.0027925375520719 + 125 7 Se 4d0 0.0012478100415955 -0.0038104323361703 + 126 7 Se 4d+1 -0.0138895895197988 0.0020357905183493 + 127 7 Se 4d+2 -0.0451990838673613 -0.0046582420230121 + + 128 8 Cd 2s 0.0353243775194247 -0.0819318754022930 + 129 8 Cd 3s 0.0094205445152676 -0.0303016749618753 + 130 8 Cd 3py 0.1969132647522370 -0.4021353239280105 + 131 8 Cd 3pz 0.3064776099016890 0.2321559983179102 + 132 8 Cd 3px 0.1957847293049643 -0.1754411847947049 + 133 8 Cd 4py 0.0137225306759099 -0.0535684305307047 + 134 8 Cd 4pz 0.0364340346937882 0.0274956228061072 + 135 8 Cd 4px 0.0114069375548645 -0.0223110960882476 + 136 8 Cd 4d-2 -0.0238717260749339 0.0043198615256145 + 137 8 Cd 4d-1 -0.0078550925191391 0.0108446773081292 + 138 8 Cd 4d0 -0.0055763070788644 -0.0122556218089448 + 139 8 Cd 4d+1 -0.0150660208575699 -0.0005117296486223 + 140 8 Cd 4d+2 0.0052816623503099 -0.0023923639574821 + 141 8 Cd 5d-2 -0.0238261448150121 -0.0701597275385025 + 142 8 Cd 5d-1 0.1125392588896924 -0.0105246586843690 + 143 8 Cd 5d0 -0.0263408561024745 -0.0716073128073682 + 144 8 Cd 5d+1 -0.0284587161075471 -0.1118636334334590 + 145 8 Cd 5d+2 -0.0798196832007355 0.0471153849319018 + 146 8 Cd 5f-3 0.0120042295139163 0.0012617640188490 + 147 8 Cd 5f-2 -0.0027276110687904 -0.0034589440019861 + 148 8 Cd 5f-1 0.0033980610875584 -0.0005760697181234 + 149 8 Cd 5f0 0.0058038482049943 -0.0034203648898550 + 150 8 Cd 5f+1 0.0069194981277552 -0.0024182254084382 + 151 8 Cd 5f+2 0.0139138928968901 0.0111085043925687 + 152 8 Cd 5f+3 0.0045839487465593 -0.0055537288172039 + + 153 9 Cd 2s -0.0825005374316646 -0.0363901971873702 + 154 9 Cd 3s -0.0111921210294664 -0.0060825377083463 + 155 9 Cd 3py -0.0014674374730262 0.0639829648271183 + 156 9 Cd 3pz 0.1254769619062813 0.1192647859849590 + 157 9 Cd 3px 0.2098058997161147 -0.1119222109731170 + 158 9 Cd 4py 0.0076253836579065 -0.0001300284565029 + 159 9 Cd 4pz 0.0334766477520223 0.0111901569501342 + 160 9 Cd 4px 0.0310145238365331 -0.0053503517929973 + 161 9 Cd 4d-2 0.0002794991633989 0.0064152205800020 + 162 9 Cd 4d-1 0.0052676846922307 -0.0127443135959902 + 163 9 Cd 4d0 0.0139922000542704 0.0078349900262980 + 164 9 Cd 4d+1 0.0157300149624196 -0.0012040375963257 + 165 9 Cd 4d+2 0.0084392207201237 0.0009836055031577 + 166 9 Cd 5d-2 0.0177702924841238 -0.0014203897584436 + 167 9 Cd 5d-1 0.0020787900803313 -0.0945584739237931 + 168 9 Cd 5d0 0.0647440584506219 0.0991347572180378 + 169 9 Cd 5d+1 0.1086943893659232 -0.0548651983147839 + 170 9 Cd 5d+2 0.1326884396692451 -0.0158437004328401 + 171 9 Cd 5f-3 0.0129789531588092 -0.0089853497365778 + 172 9 Cd 5f-2 0.0119408561538955 0.0152592087393212 + 173 9 Cd 5f-1 -0.0132178587978828 0.0023763635218305 + 174 9 Cd 5f0 -0.0159964053794075 0.0086424273260217 + 175 9 Cd 5f+1 0.0017196989766352 -0.0091420738916112 + 176 9 Cd 5f+2 -0.0046262490896745 0.0097233135047087 + 177 9 Cd 5f+3 -0.0058495689990281 -0.0039663741730100 + + 178 10 Se 2s -0.0662044499221930 0.0997983489124558 + 179 10 Se 3s 0.0155415911327759 -0.0226579638628027 + 180 10 Se 3py 0.0342949391364394 0.1512964108027905 + 181 10 Se 3pz -0.0174716736707069 -0.0042367124880234 + 182 10 Se 3px -0.0547243071848279 0.0196908617526845 + 183 10 Se 4py 0.0110709282219229 -0.0713721366977678 + 184 10 Se 4pz 0.0062791189751561 0.0381987305368810 + 185 10 Se 4px 0.0131419293594744 -0.0158122880649497 + 186 10 Se 4d-2 -0.0061978968751651 0.0134194293391209 + 187 10 Se 4d-1 -0.0068557756904628 0.0514619126195551 + 188 10 Se 4d0 -0.0110277217030366 -0.0073780614682732 + 189 10 Se 4d+1 0.0192438623289064 -0.0070713912718106 + 190 10 Se 4d+2 0.0161276566057415 -0.0036536181543951 + + 191 11 Se 2s -0.1257356154541282 -0.0020365208523893 + 192 11 Se 3s 0.0274031195877389 0.0012542524489526 + 193 11 Se 3py 0.1908550025083809 0.0638006519261235 + 194 11 Se 3pz 0.1214536280227449 0.0298452859099402 + 195 11 Se 3px -0.1356932125611233 -0.0416251437880051 + 196 11 Se 4py -0.0383919986019670 -0.0350985263847265 + 197 11 Se 4pz -0.0870890094498851 -0.0161042183700098 + 198 11 Se 4px 0.0379527644956391 0.0389611194240227 + 199 11 Se 4d-2 0.0015327981669437 0.0144522656832567 + 200 11 Se 4d-1 0.0154110454048669 0.0299133322985013 + 201 11 Se 4d0 0.0298831444677136 0.0515131570173917 + 202 11 Se 4d+1 -0.0324548868390920 -0.0141976398827893 + 203 11 Se 4d+2 0.0303911169735832 -0.0367892330682490 + + 204 12 Cd 2s 0.1995880278862953 0.0200701768685539 + 205 12 Cd 3s 0.0199957296028379 0.0104427705413426 + 206 12 Cd 3py -0.0148607151013257 -0.1635394654886300 + 207 12 Cd 3pz -0.0932410820034932 -0.1761001596953755 + 208 12 Cd 3px 0.0006953471973800 0.0723976243752601 + 209 12 Cd 4py -0.0001880103476693 -0.0238792975645482 + 210 12 Cd 4pz -0.0142706739386996 -0.0171764058898539 + 211 12 Cd 4px -0.0061285541181363 0.0123093457112484 + 212 12 Cd 4d-2 0.0214617395341479 0.0284301133534327 + 213 12 Cd 4d-1 0.0000803929057612 0.0267998201599583 + 214 12 Cd 4d0 0.0121653483576046 -0.0081491510277525 + 215 12 Cd 4d+1 0.0032668748695163 -0.0046661797984638 + 216 12 Cd 4d+2 0.0239635384583798 -0.0006254281823296 + 217 12 Cd 5d-2 0.0155922765658940 0.1127385091330768 + 218 12 Cd 5d-1 0.0335272777595579 0.1688586811219460 + 219 12 Cd 5d0 -0.0211341486100250 -0.0520389137417452 + 220 12 Cd 5d+1 -0.0092890704285330 -0.0163599548468284 + 221 12 Cd 5d+2 0.1494201371530497 -0.0614562484619073 + 222 12 Cd 5f-3 0.0021139627950339 0.0031915910366970 + 223 12 Cd 5f-2 0.0071449450156050 -0.0030058121293737 + 224 12 Cd 5f-1 0.0045964428075087 -0.0022939148534848 + 225 12 Cd 5f0 0.0146272562421554 0.0055124236306868 + 226 12 Cd 5f+1 -0.0015458983406571 0.0033993771624017 + 227 12 Cd 5f+2 0.0013900159687326 -0.0054304657284834 + 228 12 Cd 5f+3 -0.0086593541340604 0.0081426590113390 + + 229 13 Cd 2s 0.0923399502753849 -0.1038701595272922 + 230 13 Cd 3s 0.0138670197795294 -0.0088348696287501 + 231 13 Cd 3py -0.0106562182469625 0.1055297429271703 + 232 13 Cd 3pz 0.1114494632666466 0.1684848007972013 + 233 13 Cd 3px 0.0195103930278083 0.1149748297983666 + 234 13 Cd 4py -0.0069419570331787 0.0200596872110073 + 235 13 Cd 4pz 0.0216955781124519 0.0178041532490425 + 236 13 Cd 4px 0.0127733911952480 0.0081733758110743 + 237 13 Cd 4d-2 -0.0109017475082370 -0.0031660670526521 + 238 13 Cd 4d-1 -0.0057551746842191 0.0078140209434498 + 239 13 Cd 4d0 -0.0016114136594911 -0.0047861074903473 + 240 13 Cd 4d+1 -0.0002693794942517 -0.0156769846280073 + 241 13 Cd 4d+2 -0.0106278992136262 -0.0057388163061569 + 242 13 Cd 5d-2 -0.1066684409963962 0.0375706180064941 + 243 13 Cd 5d-1 -0.0208307603858955 -0.0114100776789399 + 244 13 Cd 5d0 0.1098993900765983 -0.1102411173090159 + 245 13 Cd 5d+1 0.0510851996323702 -0.0493664162587333 + 246 13 Cd 5d+2 -0.0549919854036136 -0.0541453386059521 + 247 13 Cd 5f-3 0.0030015324834810 -0.0115956798934232 + 248 13 Cd 5f-2 0.0066825977744558 0.0089783026614390 + 249 13 Cd 5f-1 0.0102819502953002 0.0051315989580915 + 250 13 Cd 5f0 -0.0005757546044618 -0.0011402942453372 + 251 13 Cd 5f+1 -0.0069240953410282 -0.0079870144768939 + 252 13 Cd 5f+2 0.0002154461786766 0.0053803747845544 + 253 13 Cd 5f+3 0.0155805695871586 -0.0274852874921127 + + 254 14 Cd 2s -0.0758038187383482 0.2720969034733636 + 255 14 Cd 3s -0.0053547722501769 0.0479629909013804 + 256 14 Cd 3py 0.2197606331602306 -0.1154681539838904 + 257 14 Cd 3pz -0.1898197771773651 -0.4740928803142373 + 258 14 Cd 3px -0.0400182519882498 -0.0918859161016238 + 259 14 Cd 4py 0.0259005266540148 -0.0277120283233571 + 260 14 Cd 4pz -0.0027994698603139 -0.0848116012774959 + 261 14 Cd 4px -0.0005065272242613 -0.0188344146536331 + 262 14 Cd 4d-2 -0.0018271780422239 -0.0057790402240834 + 263 14 Cd 4d-1 -0.0013388203816921 -0.0010726252645085 + 264 14 Cd 4d0 -0.0086737443860919 -0.0250441759645609 + 265 14 Cd 4d+1 -0.0045970399873309 -0.0087672237499680 + 266 14 Cd 4d+2 -0.0049949178221724 0.0094413549886171 + 267 14 Cd 5d-2 -0.0508291374417463 0.0002976469753860 + 268 14 Cd 5d-1 -0.0171557202993607 -0.0963271446083746 + 269 14 Cd 5d0 -0.0760077460169404 -0.1084747477944893 + 270 14 Cd 5d+1 0.0226341858698271 -0.0835153955527844 + 271 14 Cd 5d+2 -0.0180876221324091 0.0214523730082660 + 272 14 Cd 5f-3 -0.0011146250059468 0.0026121837746464 + 273 14 Cd 5f-2 0.0095732693010361 -0.0145162496039308 + 274 14 Cd 5f-1 -0.0055546653460915 -0.0238383923968661 + 275 14 Cd 5f0 -0.0037336466750687 0.0114759783411803 + 276 14 Cd 5f+1 -0.0028063823081592 0.0058988169473728 + 277 14 Cd 5f+2 0.0093722378697561 -0.0120320536258600 + 278 14 Cd 5f+3 0.0070380470784942 -0.0091225440380913 + + 279 15 Se 2s -0.0133162568239284 0.2201577073609851 + 280 15 Se 3s 0.0060591862884767 -0.0517600935452211 + 281 15 Se 3py 0.1228165286947033 0.0237168076811902 + 282 15 Se 3pz 0.0381890023430630 0.3035948503162590 + 283 15 Se 3px 0.0552883146373285 0.1033181283505074 + 284 15 Se 4py -0.0430653671421811 0.0367378724422824 + 285 15 Se 4pz -0.0140239884688329 -0.0803680141098672 + 286 15 Se 4px -0.0461893545895294 -0.0122294321801753 + 287 15 Se 4d-2 0.0343701968431306 -0.0141750739795376 + 288 15 Se 4d-1 -0.0212748362436163 0.0294478135002936 + 289 15 Se 4d0 -0.0315427943797785 -0.0144860154258709 + 290 15 Se 4d+1 -0.0040948384722593 0.0029027752339226 + 291 15 Se 4d+2 -0.0109948828688459 -0.0051324523402265 + + 292 16 Se 2s -0.0252010087034065 -0.0551556115242800 + 293 16 Se 3s 0.0043682651771137 0.0136144493242201 + 294 16 Se 3py -0.0050463104284865 -0.0268283757122149 + 295 16 Se 3pz 0.0593454051551673 0.0075422887726033 + 296 16 Se 3px 0.0969025669519868 0.0690203813639631 + 297 16 Se 4py -0.0010289751274802 0.0381873842750650 + 298 16 Se 4pz -0.0253043735422220 0.0069387649643154 + 299 16 Se 4px -0.0422327720671219 -0.0458476304430947 + 300 16 Se 4d-2 0.0284847055405181 -0.0122289716156593 + 301 16 Se 4d-1 0.0172199384331574 0.0196677997178465 + 302 16 Se 4d0 -0.0038016355762646 -0.0163393479942337 + 303 16 Se 4d+1 0.0014607830508880 -0.0279856098546012 + 304 16 Se 4d+2 0.0141959803322306 -0.0054328528463897 + + 305 17 Cd 2s -0.1115547168828298 -0.0248879340029767 + 306 17 Cd 3s -0.0101814666330762 -0.0064776059541611 + 307 17 Cd 3py -0.2240125532142534 0.0695409998723657 + 308 17 Cd 3pz 0.0785993417688384 -0.0526431965716367 + 309 17 Cd 3px 0.0001443843902205 -0.1449211673816697 + 310 17 Cd 4py -0.0270212105395688 -0.0005430470517213 + 311 17 Cd 4pz -0.0022832300034586 -0.0132645632795055 + 312 17 Cd 4px -0.0012278280355458 -0.0190485983777669 + 313 17 Cd 4d-2 0.0018806585222716 0.0140659152504665 + 314 17 Cd 4d-1 -0.0045017359344265 0.0002154011492797 + 315 17 Cd 4d0 -0.0105430560926049 0.0084102484208403 + 316 17 Cd 4d+1 0.0096735786924439 -0.0043391382412709 + 317 17 Cd 4d+2 0.0128354481827333 0.0052141526125102 + 318 17 Cd 5d-2 -0.0158897166802647 0.0481377695440582 + 319 17 Cd 5d-1 -0.0182320415684423 -0.0165986688168419 + 320 17 Cd 5d0 -0.0486045197641834 0.0350953359402272 + 321 17 Cd 5d+1 0.0771737062945687 0.0128483410102836 + 322 17 Cd 5d+2 0.0405394298118862 -0.0322314218073180 + 323 17 Cd 5f-3 -0.0133247074238966 0.0052126131758426 + 324 17 Cd 5f-2 -0.0052364092948116 -0.0067535597796696 + 325 17 Cd 5f-1 -0.0009370081132830 0.0047071157601744 + 326 17 Cd 5f0 0.0164941428952021 0.0009809358606538 + 327 17 Cd 5f+1 -0.0049515235503438 -0.0066385575619777 + 328 17 Cd 5f+2 -0.0115940675572439 0.0064177768632500 + 329 17 Cd 5f+3 -0.0084079129789961 -0.0063517910178624 + + 330 18 Cd 2s 0.1619725080121178 0.0332244598342793 + 331 18 Cd 3s 0.0187080138510178 0.0119020978171205 + 332 18 Cd 3py 0.3883759134857704 0.1693326903823952 + 333 18 Cd 3pz -0.5069527077047906 -0.2606463862229411 + 334 18 Cd 3px -0.1513807429661796 0.0362818639892038 + 335 18 Cd 4py 0.0607401311130798 0.0113226867577057 + 336 18 Cd 4pz -0.0687000960885151 -0.0215770252952587 + 337 18 Cd 4px -0.0166175723615388 0.0054364681039625 + 338 18 Cd 4d-2 0.0154374155354702 -0.0063322142707067 + 339 18 Cd 4d-1 0.0114866942295039 0.0095320749974579 + 340 18 Cd 4d0 0.0175858556894759 0.0015492548428092 + 341 18 Cd 4d+1 -0.0209425559757505 -0.0125303099943799 + 342 18 Cd 4d+2 0.0000597354090011 0.0098831640800156 + 343 18 Cd 5d-2 0.1049302500124086 -0.0270135317921651 + 344 18 Cd 5d-1 0.0346488163335833 0.0552353349550538 + 345 18 Cd 5d0 0.0825541651303119 0.0469451829282699 + 346 18 Cd 5d+1 -0.0856337372546647 -0.0574816256175090 + 347 18 Cd 5d+2 -0.0137501278980030 0.0781582084821635 + 348 18 Cd 5f-3 0.0107350520994804 -0.0127069772555388 + 349 18 Cd 5f-2 -0.0072795286711746 -0.0106148222468480 + 350 18 Cd 5f-1 -0.0057515190024208 -0.0072577821061839 + 351 18 Cd 5f0 0.0162332737964750 -0.0089318084896586 + 352 18 Cd 5f+1 0.0026555535978506 0.0057551331657250 + 353 18 Cd 5f+2 -0.0021440644973571 0.0097661218457991 + 354 18 Cd 5f+3 -0.0041949779552766 -0.0047895132442425 + + 355 19 Se 2s 0.2031324261765853 0.1395569158713093 + 356 19 Se 3s -0.0471483224927832 -0.0312371831529935 + 357 19 Se 3py -0.1387702450018493 -0.0451674401532089 + 358 19 Se 3pz 0.0748350699222552 0.0615906503798257 + 359 19 Se 3px 0.1863979752592120 -0.0071779488671472 + 360 19 Se 4py 0.0353912012003868 0.0033465319626536 + 361 19 Se 4pz -0.0423261066742574 -0.0471968217744062 + 362 19 Se 4px -0.0955548757643727 -0.0096300350775487 + 363 19 Se 4d-2 0.0182544308936384 0.0371706329217221 + 364 19 Se 4d-1 0.0383210938136169 0.0082213591066472 + 365 19 Se 4d0 0.0086956709294950 0.0004981476784456 + 366 19 Se 4d+1 -0.0616113853378967 -0.0072678546641170 + 367 19 Se 4d+2 0.0043031844123788 0.0084553318349337 + + 368 20 Se 2s -0.0226563109246157 -0.0101662267705869 + 369 20 Se 3s 0.0052601627590034 0.0000631267459314 + 370 20 Se 3py -0.1885342790482380 0.0960526492574487 + 371 20 Se 3pz 0.0678405649473160 -0.0237192233635072 + 372 20 Se 3px 0.0880949790364016 -0.0191663588551613 + 373 20 Se 4py 0.0528341225976937 -0.0086208522227517 + 374 20 Se 4pz -0.0437841799908980 0.0062290775466339 + 375 20 Se 4px -0.0112708648411689 -0.0216534810736572 + 376 20 Se 4d-2 -0.0213601142105221 0.0029663412923406 + 377 20 Se 4d-1 0.0249145364161901 0.0386330514794453 + 378 20 Se 4d0 -0.0049706654811698 -0.0268376722666966 + 379 20 Se 4d+1 -0.0263302994807881 -0.0133303817581061 + 380 20 Se 4d+2 0.0054763180234789 0.0221701319947732 + + 381 21 Se 2s -0.1669261933443109 0.0807463780530477 + 382 21 Se 3s 0.0423362282724047 -0.0202315536914515 + 383 21 Se 3py 0.0911320374419685 0.0024479789788745 + 384 21 Se 3pz 0.0885938099643437 0.0221639574298229 + 385 21 Se 3px -0.0553355242167576 0.0229616084980233 + 386 21 Se 4py -0.0414934224247771 -0.0103904744308905 + 387 21 Se 4pz -0.0255950716450488 0.0222886602261146 + 388 21 Se 4px 0.0503085689981379 -0.0077767077230427 + 389 21 Se 4d-2 -0.0245668275797046 -0.0281277432579560 + 390 21 Se 4d-1 -0.0057666837328017 -0.0115304373789619 + 391 21 Se 4d0 -0.0317611014999834 -0.0111740293044771 + 392 21 Se 4d+1 -0.0209664282054866 0.0452997851970387 + 393 21 Se 4d+2 0.0048330734897045 0.0127220796784302 + + 394 22 Cd 2s -0.1395849860370818 0.1551393732766035 + 395 22 Cd 3s -0.0007147775650514 0.0254877149185061 + 396 22 Cd 3py -0.0731212570065286 -0.2501015945077239 + 397 22 Cd 3pz -0.1870096689597880 0.3456072642903968 + 398 22 Cd 3px -0.1395493395786291 0.1426648104457014 + 399 22 Cd 4py -0.0025062886377284 -0.0343208513315231 + 400 22 Cd 4pz -0.0336982792421382 0.0457067422489809 + 401 22 Cd 4px 0.0067183323424807 0.0178433284122866 + 402 22 Cd 4d-2 0.0066069446710747 -0.0021145876203629 + 403 22 Cd 4d-1 -0.0048755387858969 0.0163890710072401 + 404 22 Cd 4d0 -0.0055590076677701 -0.0039315532895186 + 405 22 Cd 4d+1 -0.0044766341108291 0.0081587627661755 + 406 22 Cd 4d+2 -0.0110184856325350 -0.0077477136178711 + 407 22 Cd 5d-2 -0.0106765568462391 0.0796450735392824 + 408 22 Cd 5d-1 -0.0635667415923153 0.0909925743015652 + 409 22 Cd 5d0 -0.0474623561303420 0.0714933751231761 + 410 22 Cd 5d+1 -0.0322403723216072 -0.0009662199655004 + 411 22 Cd 5d+2 0.0066226286837782 -0.0639848183809781 + 412 22 Cd 5f-3 -0.0101840770047509 -0.0196265429144605 + 413 22 Cd 5f-2 -0.0018024935344475 0.0046677953799381 + 414 22 Cd 5f-1 0.0119334913312657 0.0046494894152431 + 415 22 Cd 5f0 0.0001001702182007 0.0034156287588348 + 416 22 Cd 5f+1 -0.0094147439356652 0.0071591794183213 + 417 22 Cd 5f+2 0.0092315117301725 0.0042007734932919 + 418 22 Cd 5f+3 0.0081785920814171 -0.0186329223267062 + + 419 23 Se 2s 0.0440179873378224 0.0547476151484586 + 420 23 Se 3s -0.0095547547743757 -0.0156902749422538 + 421 23 Se 3py -0.0369221960634989 -0.2022930939024786 + 422 23 Se 3pz 0.0313653033624196 -0.0216709878493795 + 423 23 Se 3px -0.1218428951592448 0.0360291289402635 + 424 23 Se 4py 0.0319579285951373 0.0464564650957316 + 425 23 Se 4pz -0.0183415043248843 -0.0212645137394499 + 426 23 Se 4px 0.0350293606267469 -0.0139051418197593 + 427 23 Se 4d-2 -0.0102342103916061 0.0101177604376550 + 428 23 Se 4d-1 0.0015343506692126 0.0261704850628730 + 429 23 Se 4d0 -0.0088426918686359 -0.0047450865230838 + 430 23 Se 4d+1 0.0120519104060460 -0.0021208937050521 + 431 23 Se 4d+2 0.0332899189111025 -0.0070455467012533 + + 432 24 Se 2s 0.0233862239896665 -0.0747111730530778 + 433 24 Se 3s -0.0046656092223089 0.0179873554961337 + 434 24 Se 3py 0.0256444162827545 -0.0750672874695413 + 435 24 Se 3pz 0.1144460803739468 -0.0526601582808944 + 436 24 Se 3px -0.0332423181551266 -0.0667977194434401 + 437 24 Se 4py 0.0099371051197300 0.0070942400663306 + 438 24 Se 4pz -0.0391489856493446 0.0044166165920101 + 439 24 Se 4px -0.0146969803373813 0.0735362111183941 + 440 24 Se 4d-2 -0.0015686462890330 0.0395467344893832 + 441 24 Se 4d-1 0.0079982201487274 0.0158609033809763 + 442 24 Se 4d0 -0.0097092991747567 0.0134723014163929 + 443 24 Se 4d+1 -0.0145534146756623 -0.0195037135252527 + 444 24 Se 4d+2 0.0010151699125272 0.0313510235599236 + + 445 25 Cd 2s -0.1111897134082310 -0.0948081712369219 + 446 25 Cd 3s -0.0091987446487508 -0.0165608948066870 + 447 25 Cd 3py 0.3015454765541077 -0.0239644358223337 + 448 25 Cd 3pz -0.0311679262688262 -0.3344430474619803 + 449 25 Cd 3px -0.0473403913299348 0.0951486764224400 + 450 25 Cd 4py 0.0229218686052193 -0.0061066629292599 + 451 25 Cd 4pz -0.0043430573873225 -0.0468690653022821 + 452 25 Cd 4px -0.0088794223501506 0.0121279977587019 + 453 25 Cd 4d-2 -0.0034996732227601 0.0027168154115225 + 454 25 Cd 4d-1 0.0101574613568452 0.0034236148653431 + 455 25 Cd 4d0 0.0032216579369235 -0.0173141507176127 + 456 25 Cd 4d+1 -0.0034348693144902 -0.0027744759096165 + 457 25 Cd 4d+2 0.0046879280036249 -0.0036101483140098 + 458 25 Cd 5d-2 -0.0035351891452719 0.0269082771728645 + 459 25 Cd 5d-1 -0.0147747102824244 -0.0180705246391368 + 460 25 Cd 5d0 0.0908506289998886 -0.0509970069153091 + 461 25 Cd 5d+1 0.0379613423178465 0.0411465755269643 + 462 25 Cd 5d+2 0.0370578436709625 -0.0046659366478651 + 463 25 Cd 5f-3 -0.0065462543348344 -0.0002224569318323 + 464 25 Cd 5f-2 -0.0087187972639543 0.0007058990237713 + 465 25 Cd 5f-1 -0.0051201814099227 -0.0071003280939729 + 466 25 Cd 5f0 -0.0032195878519729 -0.0067606591976445 + 467 25 Cd 5f+1 -0.0069992337102968 -0.0058849346924549 + 468 25 Cd 5f+2 0.0055080063035533 -0.0047587769536539 + 469 25 Cd 5f+3 -0.0071986247685670 -0.0080391395751979 + + 470 26 Cd 2s 0.0015620359432555 0.0552098443761601 + 471 26 Cd 3s 0.0044536874968581 0.0129447468402880 + 472 26 Cd 3py -0.0979471835113109 0.0021991628118500 + 473 26 Cd 3pz 0.1686561137150761 -0.1195983986049716 + 474 26 Cd 3px -0.0502574663203578 0.0785510344291778 + 475 26 Cd 4py -0.0184562105315869 -0.0059950127158035 + 476 26 Cd 4pz 0.0211012257538220 -0.0089084525854457 + 477 26 Cd 4px -0.0062405931032107 0.0256887207789946 + 478 26 Cd 4d-2 0.0093826954432892 0.0158204916698564 + 479 26 Cd 4d-1 -0.0029427771959784 0.0082188878414359 + 480 26 Cd 4d0 0.0038631408563947 0.0062219608052294 + 481 26 Cd 4d+1 -0.0168781570355149 0.0123847461799791 + 482 26 Cd 4d+2 0.0020842138956432 -0.0107958825544899 + 483 26 Cd 5d-2 0.0825391457285159 0.0021350097173992 + 484 26 Cd 5d-1 -0.0207041271802565 0.1246557756351310 + 485 26 Cd 5d0 0.0635748048740769 0.0814079525808350 + 486 26 Cd 5d+1 -0.0654337464799834 0.0624470988554841 + 487 26 Cd 5d+2 0.0570502736913497 0.0048934852016460 + 488 26 Cd 5f-3 0.0078425804762162 0.0147382684903287 + 489 26 Cd 5f-2 0.0017329646688028 -0.0101712005267024 + 490 26 Cd 5f-1 0.0011119032480005 0.0055771106500621 + 491 26 Cd 5f0 -0.0025782932548232 0.0055781424709693 + 492 26 Cd 5f+1 -0.0036159714268896 0.0013032642115938 + 493 26 Cd 5f+2 0.0028544250021745 -0.0076638742858402 + 494 26 Cd 5f+3 -0.0113317489952826 -0.0044454911088978 + + 157 158 + 0.0831914852450831 0.0878205370897297 + + 0.0000000000000000 0.0000000000000000 + + 1 1 Cd 2s -0.1011192327940888 0.0955447675840269 + 2 1 Cd 3s -0.0021408175602586 0.0017514799911360 + 3 1 Cd 3py 0.1692108608781024 -0.0103997625435966 + 4 1 Cd 3pz -0.2259081282186792 0.5003829015821202 + 5 1 Cd 3px 0.0693463269580775 0.0835648424405260 + 6 1 Cd 4py 0.0277688803069802 0.0049658020044990 + 7 1 Cd 4pz -0.0199591024245498 0.0616466256983040 + 8 1 Cd 4px 0.0211025208343432 0.0082365752282136 + 9 1 Cd 4d-2 -0.0064767562128786 -0.0069100718025290 + 10 1 Cd 4d-1 -0.0142327345663319 -0.0078066676727368 + 11 1 Cd 4d0 -0.0141497552457261 -0.0079128796689930 + 12 1 Cd 4d+1 -0.0057085386847352 0.0148002962835329 + 13 1 Cd 4d+2 -0.0154880558259230 0.0084243844980434 + 14 1 Cd 5d-2 0.0539624903726882 0.0147105548125197 + 15 1 Cd 5d-1 -0.0534173592181856 -0.0097896336950366 + 16 1 Cd 5d0 -0.0386286105533678 -0.0255615440310730 + 17 1 Cd 5d+1 -0.0567101980921231 0.0396147561411405 + 18 1 Cd 5d+2 -0.0456232815828877 -0.0136915812324319 + 19 1 Cd 5f-3 0.0128641812124951 -0.0016900201658739 + 20 1 Cd 5f-2 -0.0208469154452074 0.0006813398304745 + 21 1 Cd 5f-1 -0.0006029845158411 0.0225285246527048 + 22 1 Cd 5f0 0.0085350390411238 0.0020269157988879 + 23 1 Cd 5f+1 0.0113636259095863 -0.0199288732585994 + 24 1 Cd 5f+2 0.0051829898849971 0.0018212217437119 + 25 1 Cd 5f+3 -0.0105712233614335 -0.0055510447968097 + + 26 2 Cd 2s -0.0566005762758328 -0.0541439224876508 + 27 2 Cd 3s -0.0071612083299108 -0.0149382378456900 + 28 2 Cd 3py -0.3800021033221999 0.2141887515374973 + 29 2 Cd 3pz -0.2174387970384274 0.0293671724137312 + 30 2 Cd 3px 0.3153640032948716 0.0370923146251679 + 31 2 Cd 4py -0.0606990401142359 0.0396268809408216 + 32 2 Cd 4pz -0.0238539365202468 -0.0002086658510914 + 33 2 Cd 4px 0.0395467953213511 0.0075981283063078 + 34 2 Cd 4d-2 -0.0015246484039859 0.0006018954207614 + 35 2 Cd 4d-1 0.0131456047064322 0.0040790589634534 + 36 2 Cd 4d0 -0.0008269062815431 -0.0203108302492560 + 37 2 Cd 4d+1 -0.0096478128923039 0.0017461947565781 + 38 2 Cd 4d+2 0.0070017224556132 0.0132127268636149 + 39 2 Cd 5d-2 0.0412239817301353 0.0487845957051995 + 40 2 Cd 5d-1 -0.0123373147228388 0.0512787452865021 + 41 2 Cd 5d0 0.0085907982654428 -0.0286318797144660 + 42 2 Cd 5d+1 0.0945112339442968 0.0438107496105786 + 43 2 Cd 5d+2 0.0906767578901417 0.0668946746916962 + 44 2 Cd 5f-3 -0.0040997985220145 -0.0077226807276777 + 45 2 Cd 5f-2 0.0002397768579027 0.0020578121399579 + 46 2 Cd 5f-1 -0.0004656197664369 -0.0011548183967714 + 47 2 Cd 5f0 0.0092269061039602 -0.0074871372437981 + 48 2 Cd 5f+1 0.0153774038261787 -0.0046141833715908 + 49 2 Cd 5f+2 0.0170723026837631 0.0049129619827198 + 50 2 Cd 5f+3 0.0207453903479739 -0.0184276148478774 + + 51 3 Cd 2s -0.1049059885723839 0.0060313576472577 + 52 3 Cd 3s -0.0104561735623962 -0.0032905150603130 + 53 3 Cd 3py 0.2366035471112891 -0.1781262620558069 + 54 3 Cd 3pz 0.3738766475299449 0.2863916616946984 + 55 3 Cd 3px 0.0783124997344665 0.0494528696080784 + 56 3 Cd 4py 0.0236679469965649 -0.0226291948533531 + 57 3 Cd 4pz 0.0575417765467032 0.0247220351243849 + 58 3 Cd 4px 0.0094756503694322 0.0080801945189157 + 59 3 Cd 4d-2 -0.0105475386597540 -0.0049694962600561 + 60 3 Cd 4d-1 -0.0039310876517984 -0.0108180563901101 + 61 3 Cd 4d0 -0.0018092091448746 0.0140355297218594 + 62 3 Cd 4d+1 -0.0294681265110815 -0.0117231582183994 + 63 3 Cd 4d+2 0.0043390702814003 0.0025159915351964 + 64 3 Cd 5d-2 -0.0028144086629094 0.0002806033526189 + 65 3 Cd 5d-1 0.1045773682444577 -0.0439140298554872 + 66 3 Cd 5d0 0.0602755121334370 0.0187208363132048 + 67 3 Cd 5d+1 0.0276122111470874 -0.0013073258812199 + 68 3 Cd 5d+2 -0.0031175476442671 -0.0443113798834037 + 69 3 Cd 5f-3 -0.0183682799942604 0.0048310432263427 + 70 3 Cd 5f-2 -0.0063961655359070 -0.0043713016134581 + 71 3 Cd 5f-1 -0.0145327999611641 -0.0043629305363483 + 72 3 Cd 5f0 -0.0020735300092749 0.0089746118283929 + 73 3 Cd 5f+1 -0.0137901888220306 0.0041971023909948 + 74 3 Cd 5f+2 -0.0078822438387631 0.0064036530263817 + 75 3 Cd 5f+3 0.0196941712897916 -0.0024924468963420 + + 76 4 Se 2s 0.1040497061237672 0.0824358092728974 + 77 4 Se 3s -0.0219123806617492 -0.0189532915392051 + 78 4 Se 3py -0.0021502601490433 -0.0882109121421812 + 79 4 Se 3pz -0.0745522479435116 0.0131596292515043 + 80 4 Se 3px -0.0056459405535612 0.1017669904959382 + 81 4 Se 4py 0.0089986429803091 0.0672147516049927 + 82 4 Se 4pz 0.0376613565260446 0.0182851823510470 + 83 4 Se 4px 0.0305044622035963 -0.0388248637698082 + 84 4 Se 4d-2 -0.0141383723269309 0.0064450274458968 + 85 4 Se 4d-1 0.0351302789677982 -0.0186851974749472 + 86 4 Se 4d0 -0.0315319426013243 0.0053048355095749 + 87 4 Se 4d+1 -0.0084583726688868 0.0055119291113695 + 88 4 Se 4d+2 -0.0187005790255966 0.0401761556700514 + + 89 5 Se 2s -0.1715952213586589 -0.0048563469218518 + 90 5 Se 3s 0.0376594158836729 0.0015979453115867 + 91 5 Se 3py -0.1058329032160466 -0.0052542720663287 + 92 5 Se 3pz -0.1064915226286351 0.0576798601718506 + 93 5 Se 3px 0.0729615543715807 0.0387799474091954 + 94 5 Se 4py 0.0487017336014479 -0.0138621381211815 + 95 5 Se 4pz 0.0386857375309607 -0.0076399150425244 + 96 5 Se 4px -0.0478603712742629 -0.0379346300390301 + 97 5 Se 4d-2 -0.0013743724859068 -0.0173406322191438 + 98 5 Se 4d-1 0.0028707972602306 -0.0221745024643360 + 99 5 Se 4d0 -0.0159280244606843 0.0152150898011724 + 100 5 Se 4d+1 -0.0216156744134564 -0.0142632211936001 + 101 5 Se 4d+2 -0.0029760970528579 0.0250179269608949 + + 102 6 Se 2s 0.2437985374636619 -0.1742761025673210 + 103 6 Se 3s -0.0562579699271964 0.0414734411942273 + 104 6 Se 3py 0.0842252596070120 -0.0458182363126261 + 105 6 Se 3pz 0.0054644100965016 -0.2709103196462568 + 106 6 Se 3px -0.0908345952033356 0.1144442801884347 + 107 6 Se 4py -0.0240869029739111 0.0573848650590158 + 108 6 Se 4pz 0.0523239104592311 0.0673012970673809 + 109 6 Se 4px 0.0891286737254348 -0.0566138148331637 + 110 6 Se 4d-2 -0.0031693359830850 -0.0300698686700053 + 111 6 Se 4d-1 0.0040488629466768 -0.0220063422273136 + 112 6 Se 4d0 0.0071842237360891 0.0341909294100280 + 113 6 Se 4d+1 -0.0318150988797576 -0.0399769459470530 + 114 6 Se 4d+2 0.0039800952249686 0.0204816715084608 + + 115 7 Se 2s -0.1726831096753317 0.0523316978154764 + 116 7 Se 3s 0.0400556008475571 -0.0118967613378880 + 117 7 Se 3py -0.0188069740076144 -0.1195820623996506 + 118 7 Se 3pz 0.0605276229569359 0.0028771185344654 + 119 7 Se 3px -0.0934502911984585 -0.0181145601412131 + 120 7 Se 4py -0.0587163653028595 0.0310578033359958 + 121 7 Se 4pz -0.0551057810654711 0.0517517479881293 + 122 7 Se 4px 0.0858119143063639 0.0250917316141224 + 123 7 Se 4d-2 0.0055370391118449 -0.0227157077047757 + 124 7 Se 4d-1 0.0178554390920874 -0.0232934381046249 + 125 7 Se 4d0 -0.0114811975545753 -0.0096683202579000 + 126 7 Se 4d+1 -0.0557301660097333 -0.0114749230072954 + 127 7 Se 4d+2 -0.0189326627665976 -0.0029309066728433 + + 128 8 Cd 2s 0.0915427971797150 0.0275058884333756 + 129 8 Cd 3s 0.0013464005209527 0.0168379070368625 + 130 8 Cd 3py 0.1319090867273218 0.1108334415358894 + 131 8 Cd 3pz -0.1264634044006235 0.1336919390292477 + 132 8 Cd 3px -0.1116890395679612 0.3712269163567146 + 133 8 Cd 4py 0.0117391079848687 -0.0045074695989491 + 134 8 Cd 4pz -0.0255981162859299 0.0304742934276159 + 135 8 Cd 4px -0.0126791188678498 0.0491854575914659 + 136 8 Cd 4d-2 0.0043644565949799 -0.0007184880090724 + 137 8 Cd 4d-1 0.0100407750663303 -0.0097789702966733 + 138 8 Cd 4d0 -0.0125341426813024 -0.0047375314402995 + 139 8 Cd 4d+1 -0.0093154756331023 -0.0119653584832530 + 140 8 Cd 4d+2 -0.0192284429684548 -0.0099760604119690 + 141 8 Cd 5d-2 0.0070264657903569 0.0084884477015876 + 142 8 Cd 5d-1 -0.0278406225331976 -0.0533686805621228 + 143 8 Cd 5d0 -0.0364031986390888 -0.0554493083400704 + 144 8 Cd 5d+1 0.0414692390508884 0.0057930147153684 + 145 8 Cd 5d+2 -0.0492839766577578 -0.0171854100992240 + 146 8 Cd 5f-3 -0.0181135887821923 -0.0080245431342587 + 147 8 Cd 5f-2 0.0225386518309933 0.0072336287011369 + 148 8 Cd 5f-1 -0.0117309472157100 -0.0003756842287001 + 149 8 Cd 5f0 -0.0063387881890263 -0.0093488732955581 + 150 8 Cd 5f+1 0.0058477696295127 0.0092085234574946 + 151 8 Cd 5f+2 -0.0063000302832444 0.0113133568260111 + 152 8 Cd 5f+3 -0.0167087384199211 -0.0083219737645837 + + 153 9 Cd 2s -0.0746241185254203 -0.0234883877408312 + 154 9 Cd 3s -0.0148675773677655 0.0080769873731964 + 155 9 Cd 3py 0.1073886589617159 0.0506522926662326 + 156 9 Cd 3pz 0.0023566648452688 0.3123784293864123 + 157 9 Cd 3px 0.1909168040238661 -0.6035219020928514 + 158 9 Cd 4py 0.0126775374048981 0.0016423568248195 + 159 9 Cd 4pz 0.0054939370292334 0.0459200873425612 + 160 9 Cd 4px 0.0400202047143393 -0.0654050061766424 + 161 9 Cd 4d-2 -0.0018393371855556 -0.0105329511872693 + 162 9 Cd 4d-1 0.0132768600922106 0.0065701995536157 + 163 9 Cd 4d0 0.0060750676186342 0.0184873816171968 + 164 9 Cd 4d+1 0.0072253090734943 -0.0159471203638332 + 165 9 Cd 4d+2 0.0125941805555254 -0.0063470127497948 + 166 9 Cd 5d-2 0.0044142332699120 0.0393854460559221 + 167 9 Cd 5d-1 0.0827163029997986 0.0578206877528324 + 168 9 Cd 5d0 -0.0131444654655877 0.1950438489182060 + 169 9 Cd 5d+1 0.1120530731096953 -0.1913653747224990 + 170 9 Cd 5d+2 0.0661973708996049 -0.0302222020156369 + 171 9 Cd 5f-3 -0.0003936643292440 0.0154226792587335 + 172 9 Cd 5f-2 0.0078023082746843 0.0012144657815462 + 173 9 Cd 5f-1 0.0076704259000327 -0.0062152188145231 + 174 9 Cd 5f0 -0.0075825203709663 0.0101541988170389 + 175 9 Cd 5f+1 -0.0100456083530658 -0.0143497389937500 + 176 9 Cd 5f+2 0.0103587998735971 -0.0111546184927476 + 177 9 Cd 5f+3 -0.0112142628792702 0.0032227886062384 + + 178 10 Se 2s -0.0866118239689389 0.1834582737778717 + 179 10 Se 3s 0.0193143507155552 -0.0414688746841949 + 180 10 Se 3py -0.0287054395904059 0.0049020697355631 + 181 10 Se 3pz -0.0590217123941067 0.1714551717775351 + 182 10 Se 3px -0.1186591568484940 0.1760053874833730 + 183 10 Se 4py 0.0100673112201536 -0.0024176482160085 + 184 10 Se 4pz -0.0024105139736301 -0.0234642205691165 + 185 10 Se 4px 0.0333331920679674 -0.0998437966106537 + 186 10 Se 4d-2 -0.0131660230586297 -0.0136998761414774 + 187 10 Se 4d-1 -0.0073963536186912 -0.0037282939889501 + 188 10 Se 4d0 -0.0085272129827295 0.0133411329950177 + 189 10 Se 4d+1 -0.0064249032718395 -0.0378442583653000 + 190 10 Se 4d+2 -0.0081196133662180 -0.0603301416886739 + + 191 11 Se 2s -0.1115604939251748 -0.0098253747445821 + 192 11 Se 3s 0.0288419418773358 0.0025042260426109 + 193 11 Se 3py -0.1413257309200524 0.0037947532010441 + 194 11 Se 3pz -0.0600160467962413 -0.0463815973462808 + 195 11 Se 3px 0.0111832187403895 0.1579732750010436 + 196 11 Se 4py 0.0943519925533365 -0.0057477333374685 + 197 11 Se 4pz 0.0100200223391978 0.0025767838971322 + 198 11 Se 4px 0.0082616339775117 -0.0467562692975534 + 199 11 Se 4d-2 -0.0068333368363420 -0.0179814065378918 + 200 11 Se 4d-1 -0.0265757133665121 -0.0007311244935706 + 201 11 Se 4d0 -0.0562764287282753 -0.0004510312094642 + 202 11 Se 4d+1 -0.0016995121361159 -0.0354768560147040 + 203 11 Se 4d+2 0.0017199869627087 0.0026573849698791 + + 204 12 Cd 2s -0.1828785773851178 -0.0224040984208935 + 205 12 Cd 3s -0.0223547230215382 0.0053218128363270 + 206 12 Cd 3py 0.0943277733494410 0.2690121868084323 + 207 12 Cd 3pz 0.2074762237604154 -0.0889179201073092 + 208 12 Cd 3px -0.2407391015249822 -0.0320613290654537 + 209 12 Cd 4py 0.0140720949504450 0.0385773204061690 + 210 12 Cd 4pz 0.0292781448372722 -0.0066754777223810 + 211 12 Cd 4px -0.0461926190504117 -0.0080465551330371 + 212 12 Cd 4d-2 -0.0050160751421176 -0.0045255224667709 + 213 12 Cd 4d-1 -0.0016768022159480 0.0044635347836840 + 214 12 Cd 4d0 -0.0021133936659178 0.0233033561835290 + 215 12 Cd 4d+1 -0.0010567089521887 -0.0005617957760895 + 216 12 Cd 4d+2 0.0025568194858948 0.0065535938147196 + 217 12 Cd 5d-2 -0.0060393342112101 -0.0883277327428322 + 218 12 Cd 5d-1 -0.0504552059156483 0.0249472993765842 + 219 12 Cd 5d0 -0.0401883665474514 0.0688031378203766 + 220 12 Cd 5d+1 -0.0246324061335542 -0.1204635152231228 + 221 12 Cd 5d+2 0.0332251520313314 0.1204249112974366 + 222 12 Cd 5f-3 -0.0156147326218278 0.0046012443943768 + 223 12 Cd 5f-2 0.0040199538646372 -0.0009877677349668 + 224 12 Cd 5f-1 0.0001938463021255 0.0112143309098595 + 225 12 Cd 5f0 -0.0151076230090995 -0.0089534598367923 + 226 12 Cd 5f+1 -0.0075778563452073 -0.0170463522624509 + 227 12 Cd 5f+2 0.0121277782021636 0.0238310574791455 + 228 12 Cd 5f+3 -0.0209713082194309 -0.0087148962205481 + + 229 13 Cd 2s -0.0071076455875870 -0.1264585560878553 + 230 13 Cd 3s 0.0004439139234958 -0.0192043529315677 + 231 13 Cd 3py -0.1884859557414399 0.0431428989280952 + 232 13 Cd 3pz 0.1424162735395601 -0.0416088551434992 + 233 13 Cd 3px 0.1842370550768193 0.0456912395491983 + 234 13 Cd 4py -0.0147730108881180 0.0066201600241774 + 235 13 Cd 4pz 0.0174729332138671 0.0065375520626306 + 236 13 Cd 4px 0.0232391582241396 0.0190412320551924 + 237 13 Cd 4d-2 -0.0004803503817714 0.0047441458188095 + 238 13 Cd 4d-1 0.0085981044875716 0.0044722807019475 + 239 13 Cd 4d0 -0.0125481197911701 -0.0096165658889913 + 240 13 Cd 4d+1 -0.0030417299403064 0.0072356351517275 + 241 13 Cd 4d+2 0.0046617194788850 0.0040420274270893 + 242 13 Cd 5d-2 0.0352290773904414 0.0317213104945115 + 243 13 Cd 5d-1 0.0413714107104725 -0.0266273085084403 + 244 13 Cd 5d0 -0.0624095789385000 -0.1010848468722470 + 245 13 Cd 5d+1 -0.0815419239055979 -0.0016741614207444 + 246 13 Cd 5d+2 0.0892566784653250 -0.0094659546939235 + 247 13 Cd 5f-3 0.0150879101016193 -0.0022361732668693 + 248 13 Cd 5f-2 -0.0112692242859553 -0.0022706685506182 + 249 13 Cd 5f-1 -0.0076148454662846 0.0035302846432359 + 250 13 Cd 5f0 0.0109481452492414 -0.0002999837729536 + 251 13 Cd 5f+1 0.0080850633359030 0.0080043033914410 + 252 13 Cd 5f+2 -0.0055604380689516 -0.0052947885708265 + 253 13 Cd 5f+3 0.0112611341434170 -0.0203779978647575 + + 254 14 Cd 2s 0.2185174984347688 -0.1125154761628418 + 255 14 Cd 3s 0.0338820393505860 -0.0071910446700504 + 256 14 Cd 3py -0.0706400545410784 0.1740444169748537 + 257 14 Cd 3pz -0.2588234428695531 -0.0765835531822250 + 258 14 Cd 3px 0.0569856580128952 -0.0591931732504131 + 259 14 Cd 4py -0.0339444829950989 0.0278234290862246 + 260 14 Cd 4pz -0.0413002968285925 -0.0021416953441989 + 261 14 Cd 4px 0.0206407963663232 0.0166238370833067 + 262 14 Cd 4d-2 0.0243452508805144 0.0062517356061262 + 263 14 Cd 4d-1 -0.0013095306027708 -0.0070985723300845 + 264 14 Cd 4d0 -0.0080892640241273 -0.0064268196045867 + 265 14 Cd 4d+1 -0.0162558878690655 0.0057826119711938 + 266 14 Cd 4d+2 -0.0053720142215163 -0.0073915925743639 + 267 14 Cd 5d-2 0.0502985351023443 0.0400437698525427 + 268 14 Cd 5d-1 -0.1164680315435301 -0.0590288957944178 + 269 14 Cd 5d0 -0.0937792876866031 -0.0578001849528228 + 270 14 Cd 5d+1 -0.0756300472114189 0.0077588708434041 + 271 14 Cd 5d+2 -0.1414150938993104 -0.0234546725937547 + 272 14 Cd 5f-3 0.0012599100580678 -0.0029719381075032 + 273 14 Cd 5f-2 -0.0002869872916249 -0.0104987183111886 + 274 14 Cd 5f-1 -0.0103814750566109 0.0054599136303465 + 275 14 Cd 5f0 -0.0073132889095905 0.0096100236668215 + 276 14 Cd 5f+1 0.0060844764925503 0.0056847389158016 + 277 14 Cd 5f+2 -0.0117321063976959 0.0004147541952436 + 278 14 Cd 5f+3 0.0066247302960245 0.0224131844099997 + + 279 15 Se 2s 0.0324733220954002 0.0114820173511462 + 280 15 Se 3s -0.0079336495055972 -0.0020035669357597 + 281 15 Se 3py 0.0654290039617144 0.0531697804884347 + 282 15 Se 3pz 0.1964993375607175 -0.0023781362921390 + 283 15 Se 3px 0.0323785250171722 -0.0183269059683820 + 284 15 Se 4py -0.0140474320325454 -0.0055038115673667 + 285 15 Se 4pz -0.0369989217156218 0.0025311641013569 + 286 15 Se 4px 0.0144087794296330 0.0306548079896186 + 287 15 Se 4d-2 -0.0110077577481371 -0.0277781878287666 + 288 15 Se 4d-1 0.0027360294580913 -0.0229107118683470 + 289 15 Se 4d0 -0.0094761169359169 -0.0057707354535762 + 290 15 Se 4d+1 -0.0449919483602948 0.0106335660317289 + 291 15 Se 4d+2 0.0111453768798047 0.0082422754390091 + + 292 16 Se 2s 0.1513208510923497 -0.0621792130825669 + 293 16 Se 3s -0.0332142803874853 0.0142531041854272 + 294 16 Se 3py -0.0936360263767246 0.0083739864733187 + 295 16 Se 3pz 0.0759599554514765 -0.0172146723406047 + 296 16 Se 3px 0.0438207152338237 -0.1262865097862637 + 297 16 Se 4py 0.0356550151921989 0.0086433696206731 + 298 16 Se 4pz -0.0448804866842510 0.0295595111519417 + 299 16 Se 4px 0.0246320378301695 0.0326953838553180 + 300 16 Se 4d-2 -0.0377010684394280 -0.0432154566173076 + 301 16 Se 4d-1 0.0041696540940171 -0.0080657207363546 + 302 16 Se 4d0 -0.0025790442667045 0.0092510286930051 + 303 16 Se 4d+1 -0.0173555196472710 0.0237945757118526 + 304 16 Se 4d+2 -0.0254976020500728 0.0055092454807343 + + 305 17 Cd 2s 0.0269187022465012 0.1592223455084024 + 306 17 Cd 3s 0.0016509781638448 0.0204916405423487 + 307 17 Cd 3py 0.2338133401958830 0.0862334396257543 + 308 17 Cd 3pz 0.1003305992935069 0.1468157975910012 + 309 17 Cd 3px 0.2554146356380232 0.0890102844076739 + 310 17 Cd 4py 0.0333451582414519 0.0201635520138916 + 311 17 Cd 4pz 0.0169017010278359 0.0332839232028544 + 312 17 Cd 4px 0.0368894011653991 0.0097104282775595 + 313 17 Cd 4d-2 -0.0109538922498969 -0.0108931402784913 + 314 17 Cd 4d-1 -0.0035162742270314 0.0015673678102884 + 315 17 Cd 4d0 0.0010034940314698 -0.0020563803260685 + 316 17 Cd 4d+1 -0.0035557601798197 0.0111988806537735 + 317 17 Cd 4d+2 -0.0230895071586854 -0.0050105610687301 + 318 17 Cd 5d-2 -0.0386004503604636 -0.0076252730841361 + 319 17 Cd 5d-1 0.0239983863408249 0.0684923414127234 + 320 17 Cd 5d0 0.0177307519574280 -0.0121572429873411 + 321 17 Cd 5d+1 0.0137478514996085 0.0639987243606852 + 322 17 Cd 5d+2 -0.0591506261231285 -0.0214691017009059 + 323 17 Cd 5f-3 0.0083613579613293 0.0191014484896318 + 324 17 Cd 5f-2 -0.0062311360935472 -0.0122314025382412 + 325 17 Cd 5f-1 0.0100132147147238 0.0030591575940756 + 326 17 Cd 5f0 0.0010747213688714 -0.0019215078704714 + 327 17 Cd 5f+1 0.0106493502123856 0.0037412972956055 + 328 17 Cd 5f+2 -0.0056314180856186 -0.0164506837157411 + 329 17 Cd 5f+3 0.0069349080791951 0.0059022817277923 + + 330 18 Cd 2s 0.1725665801776077 0.0795909767259494 + 331 18 Cd 3s 0.0181498413928663 0.0125610817392846 + 332 18 Cd 3py 0.0592938180647885 0.0634815145291365 + 333 18 Cd 3pz 0.1616243499529998 0.0058038562097349 + 334 18 Cd 3px 0.1087981531041621 0.0414986296964673 + 335 18 Cd 4py 0.0309237224108561 0.0132658376312194 + 336 18 Cd 4pz 0.0090572927176130 0.0026303126333722 + 337 18 Cd 4px -0.0024119913619796 0.0129639515722888 + 338 18 Cd 4d-2 -0.0054800800608433 -0.0028671392404075 + 339 18 Cd 4d-1 -0.0074215294190396 -0.0025285021985692 + 340 18 Cd 4d0 -0.0107116537518711 -0.0057779132747198 + 341 18 Cd 4d+1 -0.0104644955966836 -0.0137164248911678 + 342 18 Cd 4d+2 0.0013786017200347 0.0033276489783503 + 343 18 Cd 5d-2 -0.1023478411562299 -0.0462771046888998 + 344 18 Cd 5d-1 -0.1089441685439891 -0.0442298173000915 + 345 18 Cd 5d0 -0.0486933986906917 -0.0491905221098790 + 346 18 Cd 5d+1 -0.0666779581914927 -0.0335414791750870 + 347 18 Cd 5d+2 -0.0148208349173530 0.0209875611446683 + 348 18 Cd 5f-3 0.0072722944266494 0.0045382155549449 + 349 18 Cd 5f-2 0.0059008418177775 0.0072411687617385 + 350 18 Cd 5f-1 0.0109639073206172 0.0085534904764915 + 351 18 Cd 5f0 0.0151126426830228 0.0108387608059701 + 352 18 Cd 5f+1 -0.0033410575029727 -0.0139727217709107 + 353 18 Cd 5f+2 0.0076457801343497 -0.0012672846082026 + 354 18 Cd 5f+3 -0.0027154769787060 0.0089735646606021 + + 355 19 Se 2s -0.1690283131378422 -0.1008603287346539 + 356 19 Se 3s 0.0396218435238011 0.0230780698966763 + 357 19 Se 3py -0.0980245149598760 -0.0586022655840907 + 358 19 Se 3pz 0.0455464092067828 -0.0216476046331577 + 359 19 Se 3px 0.0431269187705520 0.0952962993129249 + 360 19 Se 4py 0.0757812635358325 0.0501394000551959 + 361 19 Se 4pz 0.0060952257819893 0.0437780828442194 + 362 19 Se 4px -0.0133334483434326 -0.0441011664991558 + 363 19 Se 4d-2 -0.0139356536404509 -0.0246692231559328 + 364 19 Se 4d-1 -0.0043530460235509 0.0233030579902167 + 365 19 Se 4d0 -0.0281904385576917 -0.0065092902146363 + 366 19 Se 4d+1 -0.0035874647941861 -0.0206823471885160 + 367 19 Se 4d+2 -0.0461295913214373 -0.0134483250389477 + + 368 20 Se 2s 0.0011831677293997 -0.0747362081862180 + 369 20 Se 3s 0.0009781187514845 0.0210649382493939 + 370 20 Se 3py 0.1681258765799766 -0.0281042241629946 + 371 20 Se 3pz 0.0074488679295645 0.0071995710409601 + 372 20 Se 3px 0.0291241521791533 -0.0139030121117580 + 373 20 Se 4py -0.0569589658940992 0.0163772278883416 + 374 20 Se 4pz 0.0019774469142421 0.0005294042267107 + 375 20 Se 4px -0.0139425716415490 -0.0040688347367657 + 376 20 Se 4d-2 0.0066237385067167 -0.0360757340527866 + 377 20 Se 4d-1 0.0046429393865458 0.0071942754817985 + 378 20 Se 4d0 -0.0192069898855391 -0.0077142497123171 + 379 20 Se 4d+1 -0.0208094721270473 -0.0006086706108780 + 380 20 Se 4d+2 -0.0163868105284320 0.0095976656233003 + + 381 21 Se 2s -0.0309698619875816 -0.0886016729967681 + 382 21 Se 3s 0.0051014332191185 0.0239285681322821 + 383 21 Se 3py 0.0159442875894638 0.1021584123401918 + 384 21 Se 3pz 0.0080790780448100 -0.0239920457990068 + 385 21 Se 3px 0.1882336797264963 -0.0301076005494821 + 386 21 Se 4py -0.0281113765473166 -0.0605245072954376 + 387 21 Se 4pz -0.0262748637109731 0.0071353162051791 + 388 21 Se 4px -0.0640657587381059 0.0302517903365049 + 389 21 Se 4d-2 0.0401705942763033 -0.0305507604352328 + 390 21 Se 4d-1 0.0075712097673999 -0.0094791563577034 + 391 21 Se 4d0 -0.0136889134954995 0.0049750694752675 + 392 21 Se 4d+1 -0.0314142612513141 -0.0100999424896075 + 393 21 Se 4d+2 -0.0082952617688500 -0.0454782299139729 + + 394 22 Cd 2s 0.0126545574695651 0.0199867152525391 + 395 22 Cd 3s -0.0171268495055909 0.0055341448999635 + 396 22 Cd 3py -0.0511739637216144 0.0763606320424798 + 397 22 Cd 3pz -0.0185142353854536 -0.0661512392287443 + 398 22 Cd 3px -0.0100142123841259 0.0403902375860160 + 399 22 Cd 4py -0.0127840402807188 0.0006419391256045 + 400 22 Cd 4pz -0.0033712776555020 -0.0040626972307560 + 401 22 Cd 4px -0.0058440608722567 -0.0003036529021676 + 402 22 Cd 4d-2 0.0011980132060508 0.0004512002197350 + 403 22 Cd 4d-1 0.0043955570046904 -0.0001429533241363 + 404 22 Cd 4d0 -0.0143619084997302 -0.0058283302299243 + 405 22 Cd 4d+1 -0.0036672455245047 -0.0073655089317598 + 406 22 Cd 4d+2 -0.0009218807935525 0.0073100809162811 + 407 22 Cd 5d-2 0.0005732132980637 0.0584021036433957 + 408 22 Cd 5d-1 0.0494975482029955 0.0649182275745417 + 409 22 Cd 5d0 -0.0797225939636139 0.0188846031461051 + 410 22 Cd 5d+1 -0.0166959218134675 0.0306615288606266 + 411 22 Cd 5d+2 -0.0198458430158701 0.0269952869557489 + 412 22 Cd 5f-3 0.0014382155185602 -0.0023260077662411 + 413 22 Cd 5f-2 -0.0084255967844935 0.0019068881598743 + 414 22 Cd 5f-1 -0.0233648784974618 -0.0026193603259300 + 415 22 Cd 5f0 0.0061429831781549 0.0073676733083647 + 416 22 Cd 5f+1 0.0035115359549522 0.0044934145253781 + 417 22 Cd 5f+2 -0.0045531076695510 -0.0058985180170742 + 418 22 Cd 5f+3 -0.0084739995949395 -0.0234387237259748 + + 419 23 Se 2s -0.1618907689137205 -0.0563643586092879 + 420 23 Se 3s 0.0396536332449576 0.0124398329389285 + 421 23 Se 3py 0.1333808996569981 0.0917894131713587 + 422 23 Se 3pz 0.0012036322281662 -0.0020048745696279 + 423 23 Se 3px 0.0311341594154923 -0.0128568564343280 + 424 23 Se 4py -0.0897179713423324 -0.0764638799187743 + 425 23 Se 4pz 0.0259577913645135 0.0242917155463711 + 426 23 Se 4px -0.0146247572601190 -0.0137420480765584 + 427 23 Se 4d-2 -0.0000914878976743 -0.0013639623038098 + 428 23 Se 4d-1 -0.0139980780252033 -0.0203253493666888 + 429 23 Se 4d0 -0.0213268914602904 0.0014318814127860 + 430 23 Se 4d+1 -0.0108999569708490 0.0030049917327932 + 431 23 Se 4d+2 -0.0432243135295435 -0.0333717149790797 + + 432 24 Se 2s 0.1874524635190853 0.0478255619390220 + 433 24 Se 3s -0.0441140047442290 -0.0108791095796590 + 434 24 Se 3py 0.0374388670144464 0.0162964832718297 + 435 24 Se 3pz 0.0356462084292184 -0.0653082876599829 + 436 24 Se 3px -0.0268185887747343 0.0904208169008100 + 437 24 Se 4py -0.0546564719573031 0.0042553074407879 + 438 24 Se 4pz -0.0074085303493176 0.0442252645265918 + 439 24 Se 4px -0.0159486875482904 -0.0658449177913641 + 440 24 Se 4d-2 0.0105465402806094 -0.0333568071419288 + 441 24 Se 4d-1 -0.0091768257385750 0.0230082238635311 + 442 24 Se 4d0 -0.0212130209025483 -0.0255453160800943 + 443 24 Se 4d+1 0.0247973364623248 0.0198195076148760 + 444 24 Se 4d+2 -0.0090918809293925 -0.0399357856368722 + + 445 25 Cd 2s -0.0687516241352804 -0.0834630866699985 + 446 25 Cd 3s -0.0082833059358845 -0.0150724910671057 + 447 25 Cd 3py -0.1664011195990530 0.0122022497718899 + 448 25 Cd 3pz 0.3466445815898242 0.3910707628320167 + 449 25 Cd 3px -0.1387832284372858 -0.3009873098945154 + 450 25 Cd 4py -0.0121336287855733 0.0102148208218693 + 451 25 Cd 4pz 0.0443984121312517 0.0483727976831444 + 452 25 Cd 4px -0.0250022889275345 -0.0369001250850112 + 453 25 Cd 4d-2 0.0040522506000983 -0.0163407368281924 + 454 25 Cd 4d-1 -0.0010105665913417 -0.0110649395994267 + 455 25 Cd 4d0 -0.0193613366675927 -0.0015902790587578 + 456 25 Cd 4d+1 0.0104189610337207 0.0104538287315448 + 457 25 Cd 4d+2 -0.0180362839556511 -0.0120261250091911 + 458 25 Cd 5d-2 0.0467907180683162 -0.0373161422720546 + 459 25 Cd 5d-1 0.0365461221902725 0.0168819670716922 + 460 25 Cd 5d0 -0.0789410786871894 0.0241826659697370 + 461 25 Cd 5d+1 -0.0014181130895492 -0.0089783738793220 + 462 25 Cd 5d+2 0.0069200869692999 0.0883782896612121 + 463 25 Cd 5f-3 0.0010629071695287 0.0108713809405804 + 464 25 Cd 5f-2 -0.0006557264008890 0.0012625341088723 + 465 25 Cd 5f-1 0.0040116678026158 -0.0019438799316733 + 466 25 Cd 5f0 -0.0008396593251010 0.0178609688680317 + 467 25 Cd 5f+1 -0.0025619136946976 -0.0030596269075404 + 468 25 Cd 5f+2 -0.0020614924302347 -0.0079432380121873 + 469 25 Cd 5f+3 -0.0027662401874925 -0.0020564345433556 + + 470 26 Cd 2s -0.1046760493923011 -0.1200425600236729 + 471 26 Cd 3s -0.0129502452643051 -0.0215514936961089 + 472 26 Cd 3py -0.2690211017147431 0.1510410690389411 + 473 26 Cd 3pz -0.0907499479836613 0.0553670094076827 + 474 26 Cd 3px -0.1976583296565701 -0.0163399912784705 + 475 26 Cd 4py -0.0397888649407957 0.0008210025971544 + 476 26 Cd 4pz -0.0100716605788163 0.0105168981342991 + 477 26 Cd 4px -0.0410938413809184 -0.0208299095828420 + 478 26 Cd 4d-2 0.0102062716101388 0.0009377155821274 + 479 26 Cd 4d-1 -0.0113985239876424 -0.0006702841731157 + 480 26 Cd 4d0 -0.0036455567401137 0.0012177832233356 + 481 26 Cd 4d+1 0.0023593376766854 -0.0074237437860966 + 482 26 Cd 4d+2 0.0086007797283301 -0.0091120968961298 + 483 26 Cd 5d-2 0.0945656922767537 0.0186886513900873 + 484 26 Cd 5d-1 -0.1218535551428111 -0.0602066517652916 + 485 26 Cd 5d0 -0.0535609089793887 0.0735796449806179 + 486 26 Cd 5d+1 0.0138463809797293 -0.0461015161609352 + 487 26 Cd 5d+2 -0.0056132081670589 -0.0639704437063152 + 488 26 Cd 5f-3 -0.0050688456669003 0.0008829975006385 + 489 26 Cd 5f-2 0.0047750998324934 0.0068723150473724 + 490 26 Cd 5f-1 -0.0179518659204193 -0.0104174027864959 + 491 26 Cd 5f0 -0.0071164140933396 0.0033764680780824 + 492 26 Cd 5f+1 -0.0036738040680101 -0.0000523197009778 + 493 26 Cd 5f+2 -0.0062898127294597 -0.0132398955153920 + 494 26 Cd 5f+3 0.0064724899268798 0.0052092006876412 + + 159 160 + 0.0910577427349979 0.0955993438694236 + + 0.0000000000000000 0.0000000000000000 + + 1 1 Cd 2s 0.0906200142413120 -0.0451070375329731 + 2 1 Cd 3s -0.0001923438454868 -0.0072788888437956 + 3 1 Cd 3py -0.2718016603120502 0.2826616835583178 + 4 1 Cd 3pz 0.0322846204098610 0.1954491933919698 + 5 1 Cd 3px -0.0983964680463028 0.0166762020668234 + 6 1 Cd 4py -0.0435379234694778 0.0329562383432170 + 7 1 Cd 4pz 0.0005468879187467 0.0171494681998789 + 8 1 Cd 4px -0.0202357961474950 -0.0007915074583907 + 9 1 Cd 4d-2 0.0059122691774967 -0.0092909096063937 + 10 1 Cd 4d-1 0.0093368611847716 -0.0183045323183291 + 11 1 Cd 4d0 0.0112515940012205 -0.0226772031524233 + 12 1 Cd 4d+1 0.0023428372080421 0.0045719889998097 + 13 1 Cd 4d+2 0.0016971434218541 -0.0199864304174723 + 14 1 Cd 5d-2 -0.0140025328165562 0.0688918713836975 + 15 1 Cd 5d-1 0.0210464934811092 -0.0999938788028400 + 16 1 Cd 5d0 0.1184095924219602 -0.0896447146128369 + 17 1 Cd 5d+1 0.0412073586589819 0.0696488535390102 + 18 1 Cd 5d+2 -0.0333875183087641 -0.0669220931250445 + 19 1 Cd 5f-3 -0.0052793047033519 0.0166700046528942 + 20 1 Cd 5f-2 0.0013089404743425 -0.0183677309370914 + 21 1 Cd 5f-1 -0.0062436927386514 -0.0081284861940244 + 22 1 Cd 5f0 -0.0093520433265617 0.0047355524598479 + 23 1 Cd 5f+1 0.0009317251335391 -0.0032120019180402 + 24 1 Cd 5f+2 -0.0146592025437884 0.0093699875043157 + 25 1 Cd 5f+3 0.0041495074065280 -0.0090761536754138 + + 26 2 Cd 2s -0.0082722692454416 -0.0115981722105701 + 27 2 Cd 3s -0.0093409454851691 -0.0013287446252699 + 28 2 Cd 3py 0.2784461589532573 0.3577664386791994 + 29 2 Cd 3pz 0.2542605831689954 -0.2787539268258130 + 30 2 Cd 3px -0.2925365981532457 -0.1816632208579443 + 31 2 Cd 4py 0.0247989768475448 0.0255198012146439 + 32 2 Cd 4pz 0.0466528859135860 -0.0311435163795563 + 33 2 Cd 4px -0.0323486934390831 -0.0220236395734902 + 34 2 Cd 4d-2 -0.0176016399525818 -0.0027714896351746 + 35 2 Cd 4d-1 0.0040356383003102 0.0030048249504216 + 36 2 Cd 4d0 -0.0078137871982119 -0.0191356434989692 + 37 2 Cd 4d+1 0.0150663868179114 0.0032314028590280 + 38 2 Cd 4d+2 -0.0040043801833963 -0.0155970963424168 + 39 2 Cd 5d-2 -0.0266583579285090 0.0596564500885151 + 40 2 Cd 5d-1 -0.0717485803343118 -0.0290440710581347 + 41 2 Cd 5d0 0.0202863980304361 -0.0070176782132230 + 42 2 Cd 5d+1 -0.0163736583355775 -0.0278247016183244 + 43 2 Cd 5d+2 -0.0578703300097449 -0.0433282962284385 + 44 2 Cd 5f-3 0.0033317265165693 -0.0021140032501795 + 45 2 Cd 5f-2 -0.0149201021462221 -0.0050542818638466 + 46 2 Cd 5f-1 -0.0002558097432599 -0.0083961055044251 + 47 2 Cd 5f0 -0.0000233950234329 -0.0067340482191639 + 48 2 Cd 5f+1 0.0050210923121663 -0.0076003673522516 + 49 2 Cd 5f+2 -0.0011286174773166 -0.0003682400393189 + 50 2 Cd 5f+3 0.0001126848483288 -0.0039938082057079 + + 51 3 Cd 2s -0.0461500222566823 -0.0205129575463598 + 52 3 Cd 3s -0.0031057053371791 0.0042236144171192 + 53 3 Cd 3py 0.0806017653358091 -0.0769865531935278 + 54 3 Cd 3pz 0.0985256335029847 0.3587083427996697 + 55 3 Cd 3px 0.2500415259014916 -0.0846392486767959 + 56 3 Cd 4py 0.0058406561523426 -0.0182542959608558 + 57 3 Cd 4pz -0.0105458660078404 0.0431621943016681 + 58 3 Cd 4px 0.0411809269285119 -0.0193832559013550 + 59 3 Cd 4d-2 -0.0034602727049255 -0.0072205061210893 + 60 3 Cd 4d-1 -0.0113945458752853 -0.0151300133181405 + 61 3 Cd 4d0 -0.0103413859106797 0.0102930448699897 + 62 3 Cd 4d+1 -0.0065188078616179 -0.0224038639179100 + 63 3 Cd 4d+2 0.0117609735028747 -0.0010853968348282 + 64 3 Cd 5d-2 -0.0272140762493956 0.1092664078020882 + 65 3 Cd 5d-1 -0.0302798154981043 0.0447513863883076 + 66 3 Cd 5d0 -0.0460879200297513 0.0070121267829716 + 67 3 Cd 5d+1 -0.0296898934884844 -0.0063656496356669 + 68 3 Cd 5d+2 -0.0051694376713415 -0.0178902669957157 + 69 3 Cd 5f-3 0.0109218501997418 0.0107539391945751 + 70 3 Cd 5f-2 -0.0018236619805623 0.0053930540888334 + 71 3 Cd 5f-1 0.0165575952659782 -0.0056356217391265 + 72 3 Cd 5f0 0.0070726580282529 0.0056702565159437 + 73 3 Cd 5f+1 -0.0080253968725082 -0.0059871327466986 + 74 3 Cd 5f+2 0.0018597158966303 -0.0072796984197193 + 75 3 Cd 5f+3 -0.0062008746814909 0.0097835053872378 + + 76 4 Se 2s -0.2290902527131820 0.1708137469574396 + 77 4 Se 3s 0.0525246766953253 -0.0402204759721100 + 78 4 Se 3py 0.0169921107612978 -0.0791797386899752 + 79 4 Se 3pz 0.0805090459868004 -0.0565838799411956 + 80 4 Se 3px 0.0310476346003644 0.0040264955898035 + 81 4 Se 4py -0.0356069825894181 0.0380004403418916 + 82 4 Se 4pz -0.0453481281846677 0.0183474949480904 + 83 4 Se 4px -0.0642389632152417 0.0215160442416508 + 84 4 Se 4d-2 0.0041774698319900 -0.0130687268681821 + 85 4 Se 4d-1 -0.0230085234563841 -0.0378755133195482 + 86 4 Se 4d0 0.0084610357441597 -0.0284853413064706 + 87 4 Se 4d+1 0.0147884857218482 0.0416531644084304 + 88 4 Se 4d+2 0.0070064906652049 -0.0091494498228510 + + 89 5 Se 2s 0.1338264440622878 -0.1951781968995504 + 90 5 Se 3s -0.0324153533718384 0.0413529573549974 + 91 5 Se 3py 0.0815534914654956 -0.1187990010690537 + 92 5 Se 3pz 0.0293785621949360 -0.0056682695045443 + 93 5 Se 3px 0.0391439117904648 0.0391498017954056 + 94 5 Se 4py -0.0843822317828464 0.0507422481256343 + 95 5 Se 4pz -0.0315895727266240 0.0122839979409852 + 96 5 Se 4px -0.0187784485776879 -0.0597331011221625 + 97 5 Se 4d-2 -0.0015842547451332 -0.0068010154622654 + 98 5 Se 4d-1 -0.0097027342409303 -0.0270601969673791 + 99 5 Se 4d0 -0.0089794915021417 -0.0094209853278282 + 100 5 Se 4d+1 -0.0133072415777984 -0.0287780424310756 + 101 5 Se 4d+2 0.0433196326936812 -0.0034786216879636 + + 102 6 Se 2s 0.0449638115666282 -0.0359797615192176 + 103 6 Se 3s -0.0119124072336472 0.0077609792738624 + 104 6 Se 3py -0.1355707177214806 -0.1529466212610814 + 105 6 Se 3pz 0.0393337162703559 0.0185325787103671 + 106 6 Se 3px -0.0348398823560376 -0.0330221836493591 + 107 6 Se 4py 0.0577641036760329 0.1077441934609217 + 108 6 Se 4pz -0.0191067425011945 0.0007376425535169 + 109 6 Se 4px 0.0147247855588215 0.0145735440606295 + 110 6 Se 4d-2 -0.0169952862557306 -0.0382042380696477 + 111 6 Se 4d-1 -0.0395234673288848 -0.0073965569520879 + 112 6 Se 4d0 -0.0368466649715194 -0.0274375809710895 + 113 6 Se 4d+1 0.0072574146167761 0.0029129313064100 + 114 6 Se 4d+2 -0.0254848153799627 -0.0441461482676483 + + 115 7 Se 2s -0.0592760886000523 -0.0886259370348533 + 116 7 Se 3s 0.0141977153642003 0.0230365297408531 + 117 7 Se 3py 0.0379987082133297 0.0776649143130962 + 118 7 Se 3pz -0.0511216615159956 0.0319384788323642 + 119 7 Se 3px 0.1657374277302018 0.0605146922105450 + 120 7 Se 4py -0.0226503155181969 -0.0354161295361942 + 121 7 Se 4pz 0.0292645866243384 -0.0177207889184658 + 122 7 Se 4px -0.0999707789095723 -0.0437313894060831 + 123 7 Se 4d-2 0.0218558476039156 0.0074474269799431 + 124 7 Se 4d-1 -0.0167410674722884 0.0176978016559477 + 125 7 Se 4d0 -0.0374266381108222 -0.0176043263871464 + 126 7 Se 4d+1 0.0428968513704667 0.0258013186808481 + 127 7 Se 4d+2 -0.0192715233136333 0.0163353499014935 + + 128 8 Cd 2s -0.0652711628515315 0.0665240896796247 + 129 8 Cd 3s -0.0098461593147893 0.0037712271896713 + 130 8 Cd 3py 0.0781846821893796 -0.0957909194110301 + 131 8 Cd 3pz -0.4901757503211090 -0.2637867351748729 + 132 8 Cd 3px -0.1762001549908596 -0.1858832271733434 + 133 8 Cd 4py 0.0052801072621304 0.0071905926949039 + 134 8 Cd 4pz -0.0781598266609453 -0.0437142088723823 + 135 8 Cd 4px -0.0379441205528089 -0.0240436052727894 + 136 8 Cd 4d-2 0.0142864694929967 0.0054822660292413 + 137 8 Cd 4d-1 -0.0158243455207674 0.0034808181319046 + 138 8 Cd 4d0 -0.0159264658386484 -0.0089228603105443 + 139 8 Cd 4d+1 -0.0066635327476740 -0.0005629365205486 + 140 8 Cd 4d+2 -0.0023362081280435 0.0075385967292151 + 141 8 Cd 5d-2 0.0256367665720725 -0.0125010209307663 + 142 8 Cd 5d-1 0.0469011050182516 -0.0314889257608937 + 143 8 Cd 5d0 -0.0364599551381714 0.0107709600808651 + 144 8 Cd 5d+1 -0.1015312875085280 0.0411221552001814 + 145 8 Cd 5d+2 0.0975942538899169 0.1349654266687700 + 146 8 Cd 5f-3 0.0083228441065226 -0.0027239453369506 + 147 8 Cd 5f-2 -0.0024087884172022 -0.0015199120531570 + 148 8 Cd 5f-1 0.0079558374118538 -0.0007558406260419 + 149 8 Cd 5f0 -0.0155499920800692 -0.0109516696734177 + 150 8 Cd 5f+1 -0.0100232200864975 0.0054705929489125 + 151 8 Cd 5f+2 0.0083351026547967 -0.0076213018999450 + 152 8 Cd 5f+3 -0.0005396700656658 -0.0035852649928587 + + 153 9 Cd 2s 0.0314525956523486 0.0200593470644119 + 154 9 Cd 3s -0.0019465315200396 -0.0066512883168835 + 155 9 Cd 3py -0.0402564038453983 0.1484494093835278 + 156 9 Cd 3pz -0.1198039845038911 -0.0001160132889643 + 157 9 Cd 3px 0.1026628825767018 0.1477097352025666 + 158 9 Cd 4py -0.0037501409064291 0.0188790924583565 + 159 9 Cd 4pz -0.0273140405332361 -0.0000451542261752 + 160 9 Cd 4px 0.0126366742710096 0.0118276672573792 + 161 9 Cd 4d-2 0.0192010524172718 -0.0016386464389822 + 162 9 Cd 4d-1 -0.0006195159118145 0.0111616129039002 + 163 9 Cd 4d0 -0.0089874634440057 0.0077211676268097 + 164 9 Cd 4d+1 -0.0028129206767841 0.0057350705991268 + 165 9 Cd 4d+2 0.0099076702799846 0.0082824055670150 + 166 9 Cd 5d-2 0.0330027085965567 0.0044892730850047 + 167 9 Cd 5d-1 0.0710628981466008 0.1352477443333256 + 168 9 Cd 5d0 0.0047464701822292 0.0453939460591221 + 169 9 Cd 5d+1 0.0490051620010626 0.0831933169711181 + 170 9 Cd 5d+2 0.1332782381685726 0.0937133655771036 + 171 9 Cd 5f-3 0.0131308472549192 0.0067829862714830 + 172 9 Cd 5f-2 -0.0084664837651400 -0.0001532784689892 + 173 9 Cd 5f-1 -0.0132725642728362 -0.0086590294088188 + 174 9 Cd 5f0 -0.0080480577588670 -0.0042636303246580 + 175 9 Cd 5f+1 -0.0008589353581205 0.0101397287104473 + 176 9 Cd 5f+2 -0.0015009326771916 -0.0025305132833302 + 177 9 Cd 5f+3 -0.0089860772734248 0.0061901009353996 + + 178 10 Se 2s -0.1035902105560001 -0.1345660271979906 + 179 10 Se 3s 0.0229078748683834 0.0312034833266600 + 180 10 Se 3py -0.0836447159878645 0.0881614959181720 + 181 10 Se 3pz -0.0395937064205658 0.0232128671636330 + 182 10 Se 3px -0.1328554838290658 -0.0153477693886607 + 183 10 Se 4py 0.0952056005553178 -0.0185145007034518 + 184 10 Se 4pz -0.0154225688556920 -0.0415998081139566 + 185 10 Se 4px 0.0285231042986298 0.0137461421879975 + 186 10 Se 4d-2 0.0267942492757956 -0.0029185528891858 + 187 10 Se 4d-1 -0.0199637266475748 0.0211594610274082 + 188 10 Se 4d0 -0.0169538031931878 0.0022243366843498 + 189 10 Se 4d+1 -0.0089457063599807 0.0098251142150637 + 190 10 Se 4d+2 -0.0368239751943125 -0.0023503413977077 + + 191 11 Se 2s -0.0734895937724499 0.1559457496767929 + 192 11 Se 3s 0.0175001565722089 -0.0364580288814948 + 193 11 Se 3py -0.0156220203815035 -0.0448762642704950 + 194 11 Se 3pz 0.0249849341963552 -0.0800504687591958 + 195 11 Se 3px 0.0033455972036312 -0.0812864318986594 + 196 11 Se 4py 0.0185095362145936 -0.0025623455398996 + 197 11 Se 4pz -0.0374069619796950 0.0295159989978315 + 198 11 Se 4px 0.0387321467775907 0.0227501819171869 + 199 11 Se 4d-2 0.0257840525363629 -0.0074255805308250 + 200 11 Se 4d-1 -0.0161254463752428 -0.0105352068320388 + 201 11 Se 4d0 0.0011420364259475 0.0028418967140383 + 202 11 Se 4d+1 -0.0136766370006326 -0.0305308314614251 + 203 11 Se 4d+2 -0.0038498590644019 -0.0277317109544706 + + 204 12 Cd 2s 0.0289135203104853 -0.1104682670089290 + 205 12 Cd 3s 0.0145705055049043 -0.0131950445477138 + 206 12 Cd 3py -0.0100232812871413 -0.2178017773660262 + 207 12 Cd 3pz 0.0934326900805073 -0.1854840436970177 + 208 12 Cd 3px 0.0147550844675615 -0.1346899265213130 + 209 12 Cd 4py 0.0043774638460609 -0.0269494354841504 + 210 12 Cd 4pz 0.0045999672197137 -0.0174846555645196 + 211 12 Cd 4px -0.0026114752642585 -0.0136861238185154 + 212 12 Cd 4d-2 0.0062042993993594 -0.0015416440151946 + 213 12 Cd 4d-1 0.0132567478903947 0.0026463814701194 + 214 12 Cd 4d0 -0.0044420151711659 -0.0032313669844276 + 215 12 Cd 4d+1 -0.0068785738100542 0.0057290154910013 + 216 12 Cd 4d+2 0.0017330398108176 -0.0019363876524449 + 217 12 Cd 5d-2 -0.0664452633311792 0.1431823641260581 + 218 12 Cd 5d-1 0.1311531827112561 0.0800384347971882 + 219 12 Cd 5d0 -0.0156446745540008 -0.0967299378493715 + 220 12 Cd 5d+1 -0.0534417740503454 0.0363646433559011 + 221 12 Cd 5d+2 0.0839622050511693 -0.1141329372346271 + 222 12 Cd 5f-3 0.0001838465614158 -0.0033138140222212 + 223 12 Cd 5f-2 0.0005787803540751 0.0001235828435945 + 224 12 Cd 5f-1 0.0151370444416863 0.0052175690447495 + 225 12 Cd 5f0 -0.0017840782727505 0.0045897589702699 + 226 12 Cd 5f+1 -0.0062122477734649 0.0053103680744663 + 227 12 Cd 5f+2 0.0145722391083834 -0.0106551486256685 + 228 12 Cd 5f+3 -0.0131689846480261 0.0083160565630423 + + 229 13 Cd 2s 0.0348179603127882 -0.0349714086501837 + 230 13 Cd 3s -0.0113933813792927 0.0077269140837807 + 231 13 Cd 3py 0.1195648848595050 -0.2251617784403611 + 232 13 Cd 3pz -0.3261402279353932 -0.1575532494370139 + 233 13 Cd 3px -0.1670921948418368 0.0394168005478408 + 234 13 Cd 4py -0.0018578770102505 -0.0303136099733888 + 235 13 Cd 4pz -0.0451118547566220 -0.0206201100690173 + 236 13 Cd 4px -0.0046795651134449 0.0010674804444789 + 237 13 Cd 4d-2 0.0091612490586906 -0.0174687571157428 + 238 13 Cd 4d-1 -0.0131368868670853 0.0056998176751093 + 239 13 Cd 4d0 0.0033276704495075 -0.0090633945398644 + 240 13 Cd 4d+1 0.0125120205095340 -0.0048977654034164 + 241 13 Cd 4d+2 0.0062120100821189 -0.0027767295342423 + 242 13 Cd 5d-2 -0.1166761869434568 -0.0288030165313403 + 243 13 Cd 5d-1 -0.0033757885599180 -0.0072727051491339 + 244 13 Cd 5d0 0.0443092564502698 -0.0676028853610733 + 245 13 Cd 5d+1 0.0230536210438144 -0.0556571399922147 + 246 13 Cd 5d+2 -0.0686591965107199 0.0583584173593758 + 247 13 Cd 5f-3 -0.0053254689090306 0.0144531313548664 + 248 13 Cd 5f-2 -0.0080943828445550 -0.0099637070090459 + 249 13 Cd 5f-1 0.0125499155403450 -0.0083155896614729 + 250 13 Cd 5f0 -0.0068604938284815 0.0011006326378679 + 251 13 Cd 5f+1 0.0050532598644203 0.0061970289502711 + 252 13 Cd 5f+2 0.0095732463403569 -0.0132406916552326 + 253 13 Cd 5f+3 -0.0027802558031732 0.0076514026331227 + + 254 14 Cd 2s -0.1176404491010558 -0.1360606247187559 + 255 14 Cd 3s -0.0226311949041942 -0.0160500454370059 + 256 14 Cd 3py 0.1857270585516187 0.0853014902285681 + 257 14 Cd 3pz 0.0547948948397189 0.2140210494206591 + 258 14 Cd 3px 0.0582354062780038 -0.1099541199910613 + 259 14 Cd 4py 0.0285284366334954 0.0151426486756699 + 260 14 Cd 4pz 0.0197410513025255 0.0291013582651041 + 261 14 Cd 4px -0.0036425874712971 -0.0181790603273849 + 262 14 Cd 4d-2 -0.0117990382335200 -0.0174920779208748 + 263 14 Cd 4d-1 0.0062094891631406 -0.0007016475155015 + 264 14 Cd 4d0 -0.0133613360457060 0.0097974022312893 + 265 14 Cd 4d+1 0.0121435420107729 0.0045355116849772 + 266 14 Cd 4d+2 -0.0092418761840613 0.0010585807038540 + 267 14 Cd 5d-2 -0.0746354529112810 -0.1456868794678925 + 268 14 Cd 5d-1 0.0134285859898491 0.0385776981601550 + 269 14 Cd 5d0 -0.0980274727296484 -0.0081703205048749 + 270 14 Cd 5d+1 0.0729426388615324 -0.0103303766088196 + 271 14 Cd 5d+2 -0.1085071591385705 0.0252459094070067 + 272 14 Cd 5f-3 0.0073750393211965 0.0050371909073494 + 273 14 Cd 5f-2 0.0107630624520285 -0.0047988521164718 + 274 14 Cd 5f-1 -0.0028224130701095 0.0048604851317783 + 275 14 Cd 5f0 -0.0037314537225888 -0.0018131480919788 + 276 14 Cd 5f+1 -0.0160138479527273 -0.0057922445215176 + 277 14 Cd 5f+2 0.0005280591673556 -0.0124009132244688 + 278 14 Cd 5f+3 -0.0072339846298126 -0.0064727125006412 + + 279 15 Se 2s -0.1219060652659057 -0.1334106912097861 + 280 15 Se 3s 0.0309398888900821 0.0316636643788179 + 281 15 Se 3py 0.0641629080694825 0.0284063259816849 + 282 15 Se 3pz -0.0063090967630093 -0.0683532423425057 + 283 15 Se 3px 0.0996925388298773 -0.2064634514182202 + 284 15 Se 4py -0.0252866066575281 -0.0342133130800697 + 285 15 Se 4pz 0.0274950591624765 0.0452575575162611 + 286 15 Se 4px -0.0540210840254328 0.0699584787694969 + 287 15 Se 4d-2 0.0351350852376120 -0.0261627656914677 + 288 15 Se 4d-1 -0.0165612890324677 -0.0128156246774545 + 289 15 Se 4d0 -0.0080878934447563 0.0098123233986333 + 290 15 Se 4d+1 0.0551450625858344 0.0084105414557245 + 291 15 Se 4d+2 0.0234041389827931 -0.0072289942798347 + + 292 16 Se 2s 0.0482204456337051 0.1071824276201646 + 293 16 Se 3s -0.0107994031375378 -0.0227700563769956 + 294 16 Se 3py 0.0598008417241763 0.0179599184490387 + 295 16 Se 3pz 0.0075553233337706 0.0318026321248844 + 296 16 Se 3px -0.0893911136600054 -0.0269553386024957 + 297 16 Se 4py -0.0359521435112293 -0.0012385439906439 + 298 16 Se 4pz -0.0397248374944732 -0.0407428792072941 + 299 16 Se 4px 0.0126462858073523 0.0163742600147180 + 300 16 Se 4d-2 0.0371709827279019 -0.0375867744903907 + 301 16 Se 4d-1 -0.0020034959735091 -0.0290254748028590 + 302 16 Se 4d0 0.0113790480851165 -0.0183398110033850 + 303 16 Se 4d+1 0.0240293693716564 -0.0071044440692980 + 304 16 Se 4d+2 0.0043209912338891 0.0025970654347246 + + 305 17 Cd 2s -0.0653983469578337 -0.1125886210955134 + 306 17 Cd 3s -0.0066672655910944 -0.0133300210354958 + 307 17 Cd 3py 0.1734320903132857 -0.0105227746671466 + 308 17 Cd 3pz -0.0450955218900998 -0.0252457408647937 + 309 17 Cd 3px -0.1687388965941294 0.3554961855169218 + 310 17 Cd 4py 0.0213186941600241 -0.0059418291227317 + 311 17 Cd 4pz -0.0113773019174525 -0.0123472315699230 + 312 17 Cd 4px -0.0157156886602737 0.0308172112833014 + 313 17 Cd 4d-2 0.0010752099728202 -0.0116730333508786 + 314 17 Cd 4d-1 0.0014733979216467 -0.0029980806775154 + 315 17 Cd 4d0 0.0048670188019446 -0.0018546303906575 + 316 17 Cd 4d+1 0.0037968094450128 -0.0113427211274190 + 317 17 Cd 4d+2 -0.0030719822100415 -0.0015926019784257 + 318 17 Cd 5d-2 -0.0811045351439120 -0.0600774523694151 + 319 17 Cd 5d-1 0.0416876816940517 -0.0015583673836079 + 320 17 Cd 5d0 0.0453166716739752 0.0627078162110671 + 321 17 Cd 5d+1 0.0019223509482055 -0.1052706312289183 + 322 17 Cd 5d+2 -0.0026999448830555 -0.0252410254385804 + 323 17 Cd 5f-3 -0.0036170777130416 -0.0074587557307672 + 324 17 Cd 5f-2 0.0076130386538349 0.0023031120687662 + 325 17 Cd 5f-1 0.0013093790925738 0.0084927722847918 + 326 17 Cd 5f0 0.0045649866472159 0.0060132510096046 + 327 17 Cd 5f+1 -0.0061607029979019 0.0060816455991616 + 328 17 Cd 5f+2 0.0002385376265706 0.0031773845971749 + 329 17 Cd 5f+3 -0.0015398421439082 -0.0040604738256220 + + 330 18 Cd 2s -0.0217890535858182 0.0952674775043970 + 331 18 Cd 3s 0.0017008571134575 0.0121132652196724 + 332 18 Cd 3py 0.0261527160741918 0.0264885604654002 + 333 18 Cd 3pz -0.0914519285349961 0.1382022517695334 + 334 18 Cd 3px 0.1206416177311175 0.0012447171508871 + 335 18 Cd 4py 0.0031616527492203 0.0094289714926788 + 336 18 Cd 4pz -0.0290656275063325 0.0170090905899391 + 337 18 Cd 4px 0.0317901346942358 -0.0064556325053733 + 338 18 Cd 4d-2 -0.0221032043665131 -0.0018209230888691 + 339 18 Cd 4d-1 0.0005969600214220 -0.0011060336844739 + 340 18 Cd 4d0 -0.0008985706959342 -0.0136749970681244 + 341 18 Cd 4d+1 -0.0137670171713531 -0.0051327653597423 + 342 18 Cd 4d+2 0.0049709371930233 -0.0002437416481344 + 343 18 Cd 5d-2 -0.1507221480624740 -0.0138992309480077 + 344 18 Cd 5d-1 -0.0293893778924655 -0.1418983485472596 + 345 18 Cd 5d0 -0.0373087085631713 -0.0436420126607265 + 346 18 Cd 5d+1 -0.0572441579457555 -0.1469920995871388 + 347 18 Cd 5d+2 0.0448522035714364 -0.0288676191735733 + 348 18 Cd 5f-3 -0.0112876076579316 0.0012145715977304 + 349 18 Cd 5f-2 -0.0076507581032812 0.0053678338301218 + 350 18 Cd 5f-1 -0.0036460379499235 0.0082303202477970 + 351 18 Cd 5f0 -0.0018475897288961 -0.0065629093166410 + 352 18 Cd 5f+1 0.0046460222485424 0.0006339215924376 + 353 18 Cd 5f+2 -0.0037294445003114 0.0072866857839905 + 354 18 Cd 5f+3 0.0069738702866975 0.0026817846522748 + + 355 19 Se 2s 0.0094662924301891 -0.0948888840898841 + 356 19 Se 3s 0.0001503822693951 0.0237900392095559 + 357 19 Se 3py -0.0245025375994315 0.0001697055634660 + 358 19 Se 3pz 0.0699460207530133 0.0033240688653388 + 359 19 Se 3px -0.0400822847034294 0.0635758004751728 + 360 19 Se 4py 0.0207758363781606 0.0251287163964000 + 361 19 Se 4pz -0.0624315643129135 -0.0127869060221537 + 362 19 Se 4px 0.0277423579257697 -0.0096846474316118 + 363 19 Se 4d-2 0.0149363588949280 0.0150320756916156 + 364 19 Se 4d-1 -0.0119740919276934 -0.0151906848680541 + 365 19 Se 4d0 -0.0284809917776716 -0.0110673400690786 + 366 19 Se 4d+1 0.0266687958774500 -0.0109653315179157 + 367 19 Se 4d+2 -0.0043681971951022 -0.0463450199137321 + + 368 20 Se 2s -0.0117682183803745 -0.0138687224315708 + 369 20 Se 3s 0.0019802090402111 0.0040053059206743 + 370 20 Se 3py 0.1166954614605909 0.0805884321873753 + 371 20 Se 3pz 0.0182528858419522 0.0391391730703746 + 372 20 Se 3px -0.0522791088682548 -0.0369008817391503 + 373 20 Se 4py -0.0476013893187246 -0.0457249945998031 + 374 20 Se 4pz -0.0111865376915330 -0.0133028724446207 + 375 20 Se 4px 0.0133459547984734 0.0423277894213865 + 376 20 Se 4d-2 0.0144024193972499 -0.0073517558669828 + 377 20 Se 4d-1 -0.0126990762498356 -0.0134618597430286 + 378 20 Se 4d0 -0.0242981718667507 -0.0306373638099211 + 379 20 Se 4d+1 -0.0023438910315712 -0.0067608405654908 + 380 20 Se 4d+2 0.0253634956629142 -0.0085442862298988 + + 381 21 Se 2s 0.1072113496139133 0.1457070390366045 + 382 21 Se 3s -0.0232194939858628 -0.0370563353530217 + 383 21 Se 3py -0.0602825417543282 -0.0733892832750719 + 384 21 Se 3pz -0.0752684747710003 0.0560237588164995 + 385 21 Se 3px -0.0110589206444348 -0.1511095739900745 + 386 21 Se 4py 0.0508774946660250 0.0761360618293225 + 387 21 Se 4pz 0.0348618249433197 -0.0204577748649716 + 388 21 Se 4px -0.0118946637291287 0.0247279777929134 + 389 21 Se 4d-2 0.0461316600872477 0.0023903923451341 + 390 21 Se 4d-1 0.0086696251753800 0.0366375656686629 + 391 21 Se 4d0 -0.0249266538507395 0.0288953461826732 + 392 21 Se 4d+1 -0.0011917249839593 0.0179612078966868 + 393 21 Se 4d+2 -0.0082897174349819 0.0207802095047978 + + 394 22 Cd 2s 0.0127197681805494 0.0466572234245463 + 395 22 Cd 3s 0.0148836379056806 0.0082629828342162 + 396 22 Cd 3py -0.3705437105328979 0.0887917657605383 + 397 22 Cd 3pz 0.2521282383047272 -0.1287748754152923 + 398 22 Cd 3px -0.2484128203156963 -0.0251576907073917 + 399 22 Cd 4py -0.0450223054717965 -0.0016933437278995 + 400 22 Cd 4pz 0.0425280569795668 -0.0214783114050939 + 401 22 Cd 4px -0.0303505539274494 -0.0199361349203835 + 402 22 Cd 4d-2 0.0088783792521046 -0.0046323027379471 + 403 22 Cd 4d-1 0.0184068431992181 0.0009117432387360 + 404 22 Cd 4d0 -0.0068586617426912 -0.0008851917882379 + 405 22 Cd 4d+1 0.0049384998804698 -0.0076036785319329 + 406 22 Cd 4d+2 0.0092405150857445 -0.0026137943235359 + 407 22 Cd 5d-2 0.0009150452914034 -0.0386822540391405 + 408 22 Cd 5d-1 0.0801712534774317 0.0687874287452774 + 409 22 Cd 5d0 -0.0728961388151427 0.0258527945828392 + 410 22 Cd 5d+1 0.0165528192843454 -0.0893312176701137 + 411 22 Cd 5d+2 0.2439550901189318 -0.0897491814892694 + 412 22 Cd 5f-3 0.0159299716670399 0.0100498738569206 + 413 22 Cd 5f-2 -0.0046319339057900 -0.0057740205805338 + 414 22 Cd 5f-1 -0.0181238761037110 0.0023757341678201 + 415 22 Cd 5f0 0.0056256939947393 -0.0098581382410222 + 416 22 Cd 5f+1 0.0022098861214567 0.0119626305596839 + 417 22 Cd 5f+2 -0.0245020269573840 -0.0031385982691225 + 418 22 Cd 5f+3 -0.0059724575426746 -0.0036454658399104 + + 419 23 Se 2s -0.0016656867969714 0.0089144936773106 + 420 23 Se 3s 0.0001009662711601 -0.0029831049863548 + 421 23 Se 3py -0.0177655979478690 0.0389858868906884 + 422 23 Se 3pz -0.0026456440456573 0.0869447173031872 + 423 23 Se 3px 0.0102239923680358 -0.0859354460404316 + 424 23 Se 4py -0.0015693608018338 -0.0141799720447488 + 425 23 Se 4pz 0.0048159643215597 -0.0591452881780290 + 426 23 Se 4px -0.0289692968461177 0.0437170678996955 + 427 23 Se 4d-2 0.0324527697810241 -0.0495412464855543 + 428 23 Se 4d-1 -0.0040849593740104 0.0202315653125158 + 429 23 Se 4d0 -0.0171384895413677 -0.0088734600296968 + 430 23 Se 4d+1 0.0200800985055575 -0.0104227018837220 + 431 23 Se 4d+2 -0.0495511398421039 0.0132715901895516 + + 432 24 Se 2s -0.0814151065966512 -0.1083606715579719 + 433 24 Se 3s 0.0229511978069541 0.0253050662818720 + 434 24 Se 3py -0.0992684232337527 -0.0935279017644737 + 435 24 Se 3pz 0.0189794377246616 -0.0176625880477438 + 436 24 Se 3px -0.0350711726518285 0.0557792764594801 + 437 24 Se 4py 0.0346264388572113 0.0259359802240760 + 438 24 Se 4pz -0.0214646065533836 0.0023461034098469 + 439 24 Se 4px 0.0473651444983579 0.0192279655543788 + 440 24 Se 4d-2 0.0276596478284783 0.0029873868900325 + 441 24 Se 4d-1 -0.0144589798262300 0.0476478540606565 + 442 24 Se 4d0 -0.0344651877080478 0.0132521345593823 + 443 24 Se 4d+1 0.0034004352360697 -0.0359906786036120 + 444 24 Se 4d+2 0.0050145402672249 0.0073528922003627 + + 445 25 Cd 2s -0.0364353196406532 0.0256782021717026 + 446 25 Cd 3s 0.0063783499768913 -0.0001412740307158 + 447 25 Cd 3py -0.2576167181892822 0.2182426097637399 + 448 25 Cd 3pz -0.0161941850647090 -0.1411023481932486 + 449 25 Cd 3px 0.1590113820592088 0.0418257721864258 + 450 25 Cd 4py -0.0198881645487367 0.0239985179915044 + 451 25 Cd 4pz -0.0001096688284527 -0.0116369565087173 + 452 25 Cd 4px 0.0151255890620849 0.0044194834649200 + 453 25 Cd 4d-2 0.0018598051363200 -0.0033762111499764 + 454 25 Cd 4d-1 -0.0118942385168752 0.0025194301156782 + 455 25 Cd 4d0 -0.0298600356144186 -0.0077077443629212 + 456 25 Cd 4d+1 0.0002836783949562 0.0042147823266416 + 457 25 Cd 4d+2 -0.0105597248573272 0.0060947686918013 + 458 25 Cd 5d-2 -0.0260866077421578 -0.1073685668224153 + 459 25 Cd 5d-1 0.0069102156386657 0.0040867655843801 + 460 25 Cd 5d0 -0.1636489805098578 0.0627034175527732 + 461 25 Cd 5d+1 0.0147107185421517 0.0976000097238182 + 462 25 Cd 5d+2 -0.0329685711044474 0.0304222386664941 + 463 25 Cd 5f-3 -0.0032234479210432 -0.0042863653181980 + 464 25 Cd 5f-2 0.0149068173345385 0.0074090220213791 + 465 25 Cd 5f-1 -0.0036994948676571 -0.0087938906426288 + 466 25 Cd 5f0 0.0055906537783192 -0.0172673127442637 + 467 25 Cd 5f+1 0.0078541632830010 -0.0080882706576745 + 468 25 Cd 5f+2 0.0013990896997239 0.0033803845535295 + 469 25 Cd 5f+3 0.0012124941305468 -0.0181500676222501 + + 470 26 Cd 2s -0.1250431970092085 0.0217325291297620 + 471 26 Cd 3s -0.0068094497962479 0.0101520709059176 + 472 26 Cd 3py 0.0371817775801368 0.2493638567125443 + 473 26 Cd 3pz 0.0395071530881922 0.0873697702411831 + 474 26 Cd 3px -0.0259871543602990 0.0968913986371825 + 475 26 Cd 4py 0.0295821439998281 0.0393288240410349 + 476 26 Cd 4pz 0.0180113737031500 0.0067212180043557 + 477 26 Cd 4px -0.0124505398000065 0.0111640863369328 + 478 26 Cd 4d-2 -0.0017170810056686 -0.0139176611260681 + 479 26 Cd 4d-1 -0.0153758708524388 0.0118400127019561 + 480 26 Cd 4d0 0.0144573598995402 0.0110382353871475 + 481 26 Cd 4d+1 0.0017392508003801 0.0071152480462660 + 482 26 Cd 4d+2 -0.0134047137388751 0.0039444321084659 + 483 26 Cd 5d-2 0.0002339083200101 -0.1450825441383477 + 484 26 Cd 5d-1 -0.1040927302258746 0.1445389572242527 + 485 26 Cd 5d0 0.1296750131973846 0.0512289105939020 + 486 26 Cd 5d+1 0.0408701837043520 0.0537441989079545 + 487 26 Cd 5d+2 -0.1366306628816058 -0.0645545055106898 + 488 26 Cd 5f-3 -0.0018420190675116 -0.0017600958366426 + 489 26 Cd 5f-2 0.0073081134607037 -0.0109697330682839 + 490 26 Cd 5f-1 0.0021937672489635 0.0009668508800265 + 491 26 Cd 5f0 0.0065864139244655 0.0039202661755800 + 492 26 Cd 5f+1 -0.0136887765818261 -0.0040229765930235 + 493 26 Cd 5f+2 -0.0065423495225426 0.0133735103468871 + 494 26 Cd 5f+3 0.0103306617071873 0.0054389090525757 + + 161 162 + 0.0962033816546756 0.1010406424679746 + + 0.0000000000000000 0.0000000000000000 + + 1 1 Cd 2s -0.2226440651601247 0.1081040943585226 + 2 1 Cd 3s -0.0350892909964329 0.0091759401224293 + 3 1 Cd 3py 0.0953450757245216 -0.0453374429628130 + 4 1 Cd 3pz 0.0129373613611155 0.1647938127196684 + 5 1 Cd 3px 0.2508262574175131 0.0381065240348241 + 6 1 Cd 4py 0.0093660670823882 -0.0062212099344141 + 7 1 Cd 4pz -0.0031852713659706 0.0126055386794728 + 8 1 Cd 4px 0.0444151890822424 -0.0058780245128356 + 9 1 Cd 4d-2 -0.0202550070806764 -0.0225331979327195 + 10 1 Cd 4d-1 -0.0008520335453846 -0.0072896793307888 + 11 1 Cd 4d0 -0.0192851543816756 -0.0109622228901277 + 12 1 Cd 4d+1 -0.0010763708910572 0.0008079784525576 + 13 1 Cd 4d+2 -0.0017756711003652 0.0017276246670476 + 14 1 Cd 5d-2 -0.0771757471025568 -0.1098841391390605 + 15 1 Cd 5d-1 0.0271301229754922 0.0255758181789152 + 16 1 Cd 5d0 -0.0903288492306215 -0.0168500061612847 + 17 1 Cd 5d+1 -0.0743834647750689 0.1334974568725542 + 18 1 Cd 5d+2 0.0384831682343448 0.0510167923462725 + 19 1 Cd 5f-3 0.0000439217317873 -0.0020925634642036 + 20 1 Cd 5f-2 0.0027977149287461 -0.0096031330109959 + 21 1 Cd 5f-1 -0.0133225831551529 0.0068684201942196 + 22 1 Cd 5f0 -0.0111370927762608 -0.0037710672823262 + 23 1 Cd 5f+1 0.0180091137530210 -0.0053118869827770 + 24 1 Cd 5f+2 0.0017706876884746 -0.0039491223600586 + 25 1 Cd 5f+3 0.0151519100846539 0.0099704472691754 + + 26 2 Cd 2s 0.0488974239315731 0.1498112416974011 + 27 2 Cd 3s -0.0067587564130886 0.0186667381981580 + 28 2 Cd 3py -0.1972177681245308 -0.3626567691712868 + 29 2 Cd 3pz 0.0572560573489289 0.0496348870404667 + 30 2 Cd 3px 0.0532118493850355 0.0934446783061674 + 31 2 Cd 4py -0.0173165754349709 -0.0504544484971382 + 32 2 Cd 4pz -0.0052897428257985 -0.0020598118751929 + 33 2 Cd 4px 0.0142570262422196 0.0100304671381762 + 34 2 Cd 4d-2 0.0222004467640874 -0.0020855845503855 + 35 2 Cd 4d-1 0.0001265362020105 -0.0013894670392629 + 36 2 Cd 4d0 -0.0024582663499107 0.0057640533538668 + 37 2 Cd 4d+1 -0.0121193264964049 0.0062546722637017 + 38 2 Cd 4d+2 -0.0046054971146084 0.0189081458850305 + 39 2 Cd 5d-2 0.0541973720560440 -0.0273499735707274 + 40 2 Cd 5d-1 0.0228865587802772 0.0147213310068107 + 41 2 Cd 5d0 -0.0636550612915603 0.0225831565423155 + 42 2 Cd 5d+1 -0.0610373678498928 -0.0547942955539922 + 43 2 Cd 5d+2 -0.0993700420546806 -0.0107566065858312 + 44 2 Cd 5f-3 0.0064987830897832 -0.0024877895255598 + 45 2 Cd 5f-2 -0.0013853841816088 0.0033234783511836 + 46 2 Cd 5f-1 -0.0062413118867354 -0.0135897730513240 + 47 2 Cd 5f0 0.0053456920412862 0.0094721745025066 + 48 2 Cd 5f+1 -0.0093218925920098 -0.0043962968281930 + 49 2 Cd 5f+2 -0.0021087776875506 -0.0115766904776575 + 50 2 Cd 5f+3 0.0045290011920102 0.0008539629593303 + + 51 3 Cd 2s 0.1270083515198718 -0.1281951700164372 + 52 3 Cd 3s 0.0153539340903809 -0.0216540348549685 + 53 3 Cd 3py -0.0545666912915709 -0.2702404442467218 + 54 3 Cd 3pz -0.2503432003274448 -0.1842824645887387 + 55 3 Cd 3px -0.1427670386042313 -0.5257796772997033 + 56 3 Cd 4py -0.0020879605256604 -0.0374252886893787 + 57 3 Cd 4pz -0.0249123626622220 -0.0357610746760826 + 58 3 Cd 4px -0.0212257359473574 -0.0637203464976148 + 59 3 Cd 4d-2 -0.0008810321534527 -0.0022176485050095 + 60 3 Cd 4d-1 0.0252395591723213 0.0237709457532912 + 61 3 Cd 4d0 -0.0041747096030932 0.0170148917080970 + 62 3 Cd 4d+1 0.0032536160328241 -0.0030223517802699 + 63 3 Cd 4d+2 -0.0135214624122933 0.0155325282697080 + 64 3 Cd 5d-2 0.0184599284149066 -0.0059613486299521 + 65 3 Cd 5d-1 0.0858353017317332 -0.0107253965303754 + 66 3 Cd 5d0 -0.0096849841282056 -0.0322639665683890 + 67 3 Cd 5d+1 -0.0168520618503173 -0.0186053451687740 + 68 3 Cd 5d+2 -0.0124247139077439 0.0518330820199428 + 69 3 Cd 5f-3 0.0014982757418517 0.0001620329843041 + 70 3 Cd 5f-2 0.0127106881088243 -0.0014130187000038 + 71 3 Cd 5f-1 -0.0014372624398541 0.0038170215966100 + 72 3 Cd 5f0 -0.0118646849424086 -0.0019036432796058 + 73 3 Cd 5f+1 0.0015234297798885 0.0122903163375465 + 74 3 Cd 5f+2 0.0011112520322052 -0.0012533895233305 + 75 3 Cd 5f+3 0.0131404971136430 -0.0181487801552779 + + 76 4 Se 2s -0.0189996313149094 0.0287562840780152 + 77 4 Se 3s 0.0029205072444194 -0.0092726483619717 + 78 4 Se 3py 0.0054054595585334 -0.1558080354326029 + 79 4 Se 3pz -0.0132475298884036 -0.0522897511092908 + 80 4 Se 3px 0.0309411381366068 0.0629373441017581 + 81 4 Se 4py -0.0036373039220993 0.0625474593268667 + 82 4 Se 4pz 0.0214159323232171 0.0375033810020573 + 83 4 Se 4px -0.0085245967573411 -0.0257713668340339 + 84 4 Se 4d-2 -0.0047202943673684 -0.0109790546895374 + 85 4 Se 4d-1 -0.0194559104764280 0.0054521083352010 + 86 4 Se 4d0 -0.0117726142274122 0.0026272960622926 + 87 4 Se 4d+1 -0.0145618069009524 -0.0253151208112706 + 88 4 Se 4d+2 -0.0036419633037231 0.0311368194820530 + + 89 5 Se 2s -0.0103822427970764 -0.0461665045730303 + 90 5 Se 3s 0.0015716260962650 0.0114777292716869 + 91 5 Se 3py -0.0996314151680360 0.0101636298512494 + 92 5 Se 3pz 0.0215880286323435 -0.0648301115844927 + 93 5 Se 3px -0.0148684945535307 0.0626024503051874 + 94 5 Se 4py 0.0566971478035074 0.0107146929092792 + 95 5 Se 4pz -0.0164157360262301 0.0473274051477483 + 96 5 Se 4px 0.0186989680971704 -0.0297251504462472 + 97 5 Se 4d-2 -0.0202428256408918 -0.0221606943016837 + 98 5 Se 4d-1 -0.0024582090673543 0.0046406182092676 + 99 5 Se 4d0 0.0020600146708827 0.0392527384386759 + 100 5 Se 4d+1 0.0211368709577680 -0.0192620313724778 + 101 5 Se 4d+2 -0.0396083648758002 0.0006718518070973 + + 102 6 Se 2s 0.0095138847863234 -0.0257072498115928 + 103 6 Se 3s -0.0064071319774856 0.0036952829449596 + 104 6 Se 3py 0.0890993289866611 0.1815960721757824 + 105 6 Se 3pz 0.0238470439685277 0.0636891227363331 + 106 6 Se 3px -0.0410963170023958 0.0267616991337537 + 107 6 Se 4py -0.0608763520963379 -0.1042689664761201 + 108 6 Se 4pz -0.0143607220192789 -0.0738369991295394 + 109 6 Se 4px 0.0237682160592241 -0.0000229620342019 + 110 6 Se 4d-2 0.0404587604508904 0.0361767324953642 + 111 6 Se 4d-1 0.0224156174974782 0.0374064422724479 + 112 6 Se 4d0 0.0138454802423001 0.0426168242072800 + 113 6 Se 4d+1 0.0020320557524186 0.0309868597599373 + 114 6 Se 4d+2 -0.0073021198498143 0.0151016122101489 + + 115 7 Se 2s -0.1199458443673409 -0.0263593255077472 + 116 7 Se 3s 0.0286919404423979 0.0052771229566707 + 117 7 Se 3py -0.0207382883353547 0.0693178397295321 + 118 7 Se 3pz -0.0353933534794342 -0.0269566592514973 + 119 7 Se 3px 0.0106783533151557 -0.0177105932987886 + 120 7 Se 4py 0.0094083414816763 -0.0536776228376689 + 121 7 Se 4pz -0.0509589714529674 0.0149957184804006 + 122 7 Se 4px -0.0106575638313829 0.0056712894920282 + 123 7 Se 4d-2 -0.0017752366841299 0.0421593135793281 + 124 7 Se 4d-1 -0.0222710279919207 0.0055997049116522 + 125 7 Se 4d0 -0.0046951699813157 -0.0142791908348976 + 126 7 Se 4d+1 0.0035088762450036 -0.0312797492157914 + 127 7 Se 4d+2 -0.0168476580382903 -0.0134222509165113 + + 128 8 Cd 2s -0.0581372699166870 -0.0825320940083675 + 129 8 Cd 3s -0.0099242330869348 -0.0280083426602467 + 130 8 Cd 3py -0.0013659245690002 0.3632944062117965 + 131 8 Cd 3pz -0.0765798922915914 -0.2539493164923379 + 132 8 Cd 3px -0.0434733685256259 -0.2151184075283662 + 133 8 Cd 4py -0.0034979818584232 0.0485570959696687 + 134 8 Cd 4pz -0.0207013276269326 -0.0368183447375562 + 135 8 Cd 4px -0.0208726010965597 -0.0252749020729759 + 136 8 Cd 4d-2 -0.0256644607856692 0.0072868013198483 + 137 8 Cd 4d-1 0.0005009447393273 0.0020197593223628 + 138 8 Cd 4d0 -0.0062736669757717 -0.0047778852872706 + 139 8 Cd 4d+1 0.0097817194349145 -0.0154339338963483 + 140 8 Cd 4d+2 -0.0193259543276301 -0.0114567391368259 + 141 8 Cd 5d-2 -0.0425877785706479 0.0956455497809826 + 142 8 Cd 5d-1 0.0103094686855782 0.0077149614982693 + 143 8 Cd 5d0 -0.0745490850905031 -0.1372706004131276 + 144 8 Cd 5d+1 0.0435133008753596 -0.1349705185902013 + 145 8 Cd 5d+2 -0.0101898860219730 0.0286245921762333 + 146 8 Cd 5f-3 0.0056551812675029 -0.0027505726904435 + 147 8 Cd 5f-2 -0.0029043956314336 0.0109469963758149 + 148 8 Cd 5f-1 -0.0044348624051387 -0.0057261234328703 + 149 8 Cd 5f0 -0.0042860840195276 0.0021540380684213 + 150 8 Cd 5f+1 -0.0070003348921574 -0.0079461864835504 + 151 8 Cd 5f+2 0.0033152800569069 -0.0022878589757590 + 152 8 Cd 5f+3 -0.0038592025049520 0.0062047371000755 + + 153 9 Cd 2s -0.0092884376339692 0.0187840872675477 + 154 9 Cd 3s -0.0141977295786187 0.0064113500511535 + 155 9 Cd 3py -0.0914196941647532 0.0156204932029458 + 156 9 Cd 3pz 0.0415704085704173 -0.0048737278006729 + 157 9 Cd 3px 0.0419727155239372 -0.0030843682218740 + 158 9 Cd 4py -0.0098908605016680 0.0132350554318743 + 159 9 Cd 4pz 0.0019434500266467 -0.0151772927148673 + 160 9 Cd 4px 0.0099624258423902 0.0146740315401793 + 161 9 Cd 4d-2 -0.0043301137909319 0.0170486658004567 + 162 9 Cd 4d-1 -0.0187841135403066 0.0014507276848277 + 163 9 Cd 4d0 0.0067130118050643 -0.0050193162303735 + 164 9 Cd 4d+1 0.0029248041075806 -0.0086648003053203 + 165 9 Cd 4d+2 0.0013739768090717 0.0070016753603045 + 166 9 Cd 5d-2 -0.0549771544689889 0.0084320662020427 + 167 9 Cd 5d-1 -0.1934349406914443 0.0003861988980157 + 168 9 Cd 5d0 0.0372192557931095 0.0647913110970384 + 169 9 Cd 5d+1 0.0052179169350337 -0.0723438174152739 + 170 9 Cd 5d+2 0.0234059841624715 -0.0040415598802636 + 171 9 Cd 5f-3 -0.0156687045235991 -0.0199480478685465 + 172 9 Cd 5f-2 -0.0034670533451128 -0.0038879769486183 + 173 9 Cd 5f-1 -0.0073689965811970 0.0043544566064660 + 174 9 Cd 5f0 0.0056659750804530 0.0140672198276497 + 175 9 Cd 5f+1 0.0028758937212504 0.0075763575117412 + 176 9 Cd 5f+2 0.0054631215988995 -0.0038149486142300 + 177 9 Cd 5f+3 -0.0097159846727642 -0.0347236461656163 + + 178 10 Se 2s -0.0804925671907863 -0.1794567867936101 + 179 10 Se 3s 0.0202066985405923 0.0448474035061052 + 180 10 Se 3py -0.0483282109154909 -0.0233820989763985 + 181 10 Se 3pz 0.0197868477211114 0.0777777269412365 + 182 10 Se 3px -0.0050867750971658 -0.0797617635303776 + 183 10 Se 4py 0.0050773163774209 0.0699093796393952 + 184 10 Se 4pz -0.0205305213072219 -0.0777775022104359 + 185 10 Se 4px 0.0097417776567192 0.0470842057362477 + 186 10 Se 4d-2 -0.0045213610117583 0.0445441507203547 + 187 10 Se 4d-1 0.0125810826238605 -0.0044084211149932 + 188 10 Se 4d0 -0.0052924392810016 -0.0056746132901455 + 189 10 Se 4d+1 -0.0015447624958755 -0.0278332734740344 + 190 10 Se 4d+2 -0.0135048681177189 -0.0498677481067852 + + 191 11 Se 2s -0.0012035298414088 0.1906169916481904 + 192 11 Se 3s -0.0001261213582353 -0.0469362578745239 + 193 11 Se 3py 0.0100566405681869 0.1041920043372495 + 194 11 Se 3pz -0.0409411777596399 -0.1019487340926096 + 195 11 Se 3px -0.0206148031526198 0.0267097136344661 + 196 11 Se 4py -0.0143692703032996 -0.1292275502606569 + 197 11 Se 4pz -0.0140476738412660 0.0199260004562988 + 198 11 Se 4px -0.0309161849491860 -0.0278054647351287 + 199 11 Se 4d-2 -0.0084535593593383 -0.0247655975479198 + 200 11 Se 4d-1 0.0183857239648205 0.0101852865202633 + 201 11 Se 4d0 0.0298105196477845 0.0522304279478540 + 202 11 Se 4d+1 0.0338404481405881 -0.0074272705000274 + 203 11 Se 4d+2 -0.0113207307610756 0.0375482773988394 + + 204 12 Cd 2s 0.0268417207139428 0.0916279308759166 + 205 12 Cd 3s -0.0068220393912487 0.0224530425773859 + 206 12 Cd 3py -0.0743447390726472 -0.0493065276772172 + 207 12 Cd 3pz -0.0459354731713364 -0.2090837314591059 + 208 12 Cd 3px -0.0517936261103292 0.1273605950441085 + 209 12 Cd 4py -0.0079222471619189 -0.0130980147716112 + 210 12 Cd 4pz -0.0127106525684281 -0.0411183405332637 + 211 12 Cd 4px -0.0025890914394740 0.0218266787402889 + 212 12 Cd 4d-2 0.0075876343214358 0.0001149194891752 + 213 12 Cd 4d-1 -0.0043288940713402 0.0059867450496547 + 214 12 Cd 4d0 -0.0033165967372973 -0.0036367848287967 + 215 12 Cd 4d+1 0.0048006813026981 -0.0062636176308109 + 216 12 Cd 4d+2 -0.0043801888412074 0.0199485683815495 + 217 12 Cd 5d-2 0.0252808403012174 -0.0180225016726335 + 218 12 Cd 5d-1 -0.0145994896163544 0.2100988018372894 + 219 12 Cd 5d0 -0.0074949200111272 -0.0955499419623118 + 220 12 Cd 5d+1 -0.0566822244522214 -0.0699453975690495 + 221 12 Cd 5d+2 -0.0523246084871130 0.0964967653517139 + 222 12 Cd 5f-3 0.0080314823957560 0.0042601282745737 + 223 12 Cd 5f-2 0.0051546717039293 -0.0121108496116000 + 224 12 Cd 5f-1 0.0082484704344525 0.0226801990999043 + 225 12 Cd 5f0 -0.0023370457076626 0.0128590650423255 + 226 12 Cd 5f+1 -0.0089571653494695 0.0111615436259940 + 227 12 Cd 5f+2 0.0014581014938503 0.0074629836028783 + 228 12 Cd 5f+3 0.0039918974700903 0.0160821529102616 + + 229 13 Cd 2s 0.1397609630381190 0.0008271414314899 + 230 13 Cd 3s -0.0062515579493789 -0.0128060999400628 + 231 13 Cd 3py -0.3822257271601007 -0.2343393169972312 + 232 13 Cd 3pz -0.1962516496189106 -0.2590966641998579 + 233 13 Cd 3px 0.0581755520808091 0.1558135022493596 + 234 13 Cd 4py -0.0521061838331940 -0.0320628249928284 + 235 13 Cd 4pz -0.0191332155350603 -0.0299863672759871 + 236 13 Cd 4px 0.0079273275792216 0.0158206205639881 + 237 13 Cd 4d-2 -0.0076267173363139 -0.0058169045876752 + 238 13 Cd 4d-1 -0.0028215588043600 -0.0052689823925661 + 239 13 Cd 4d0 -0.0268744016071150 -0.0080340574132400 + 240 13 Cd 4d+1 0.0174884545132527 -0.0031858584135868 + 241 13 Cd 4d+2 -0.0113430393282066 0.0045386597258146 + 242 13 Cd 5d-2 -0.0454822657025867 -0.0444272033541078 + 243 13 Cd 5d-1 0.0988087533210626 -0.0084078273290042 + 244 13 Cd 5d0 0.0094792839283418 -0.0221890144870128 + 245 13 Cd 5d+1 0.0631743274427767 0.0424925751736169 + 246 13 Cd 5d+2 -0.0836563278527110 0.0102647473222118 + 247 13 Cd 5f-3 0.0135675901906063 0.0032956919510786 + 248 13 Cd 5f-2 -0.0029871599339008 0.0097850128597496 + 249 13 Cd 5f-1 -0.0155593420915235 -0.0000722813673353 + 250 13 Cd 5f0 0.0108854405520081 -0.0092532573762118 + 251 13 Cd 5f+1 0.0194681708946448 -0.0115029400701297 + 252 13 Cd 5f+2 -0.0052736039526221 -0.0002033546645751 + 253 13 Cd 5f+3 0.0404279340140389 -0.0039897359534101 + + 254 14 Cd 2s 0.1396056829383624 0.0601842467625177 + 255 14 Cd 3s 0.0152381503643092 -0.0085267336971394 + 256 14 Cd 3py -0.0351924042650432 -0.0367378619781950 + 257 14 Cd 3pz -0.3037717819257630 0.0306169804569719 + 258 14 Cd 3px 0.0087172707541101 0.1122586401376379 + 259 14 Cd 4py -0.0258593879102680 -0.0235170377477783 + 260 14 Cd 4pz -0.0407886816906028 0.0089168043325270 + 261 14 Cd 4px -0.0067860801143773 0.0263552764425546 + 262 14 Cd 4d-2 0.0053052312353938 0.0194057228392897 + 263 14 Cd 4d-1 -0.0081025136520429 -0.0035771481041501 + 264 14 Cd 4d0 -0.0101055587363926 0.0061448511488275 + 265 14 Cd 4d+1 -0.0043811975250248 -0.0000255118679408 + 266 14 Cd 4d+2 0.0157370529481766 -0.0073447886344969 + 267 14 Cd 5d-2 0.1205555364035605 0.1703766766067073 + 268 14 Cd 5d-1 -0.0375209623688317 -0.0066387111859558 + 269 14 Cd 5d0 -0.0948057459057060 0.0470360893561338 + 270 14 Cd 5d+1 0.0325414095519951 -0.0598595064387293 + 271 14 Cd 5d+2 0.1062134731706243 -0.0908597756375255 + 272 14 Cd 5f-3 0.0002147903354301 -0.0098802165538822 + 273 14 Cd 5f-2 -0.0008617616725490 -0.0000500612696799 + 274 14 Cd 5f-1 -0.0115775632896425 -0.0010423453214070 + 275 14 Cd 5f0 -0.0151567369077685 -0.0110003421164523 + 276 14 Cd 5f+1 -0.0072602837430902 -0.0164087460629195 + 277 14 Cd 5f+2 -0.0069872259152124 -0.0171278152835525 + 278 14 Cd 5f+3 -0.0006507981749323 0.0078539014873670 + + 279 15 Se 2s -0.1349596509437665 -0.1920321603112478 + 280 15 Se 3s 0.0329938200058267 0.0468024706102402 + 281 15 Se 3py 0.1671572061485968 0.0930912739649208 + 282 15 Se 3pz 0.1660245744769612 -0.0284893212177994 + 283 15 Se 3px 0.0254356486256245 0.0301015048739172 + 284 15 Se 4py -0.1288919571543601 -0.0884798491706773 + 285 15 Se 4pz -0.0373247894322744 0.0117061460187110 + 286 15 Se 4px -0.0252932767306276 0.0126295262730803 + 287 15 Se 4d-2 0.0112567244019378 -0.0163789449529054 + 288 15 Se 4d-1 -0.0022232570890488 -0.0047328582989469 + 289 15 Se 4d0 -0.0543881254512296 -0.0425134355654442 + 290 15 Se 4d+1 -0.0068914778300235 -0.0317138320677230 + 291 15 Se 4d+2 -0.0292463972821782 0.0015540573573989 + + 292 16 Se 2s 0.0629570429477180 -0.0195721733065016 + 293 16 Se 3s -0.0162708495546141 0.0057430275016259 + 294 16 Se 3py 0.0439767855020545 0.0619751319729567 + 295 16 Se 3pz 0.1263570179352244 0.0268032733488788 + 296 16 Se 3px -0.0532558472475495 0.0339860950601461 + 297 16 Se 4py -0.0644386497047787 -0.0332284286415401 + 298 16 Se 4pz -0.0760748502669959 -0.0369952403943914 + 299 16 Se 4px 0.0619759372066798 -0.0426845528613917 + 300 16 Se 4d-2 0.0012584343591053 0.0168932961024861 + 301 16 Se 4d-1 -0.0270659521447149 -0.0371381984315295 + 302 16 Se 4d0 -0.0328324205978875 -0.0439997687812129 + 303 16 Se 4d+1 0.0441816323706113 0.0109839117558951 + 304 16 Se 4d+2 -0.0134481204069354 0.0364991205250557 + + 305 17 Cd 2s -0.0260173637464171 -0.2321492561048105 + 306 17 Cd 3s -0.0020443875974228 -0.0417029871798171 + 307 17 Cd 3py -0.0932119754276877 -0.3321591477164179 + 308 17 Cd 3pz 0.1125130459400060 -0.1634588238405076 + 309 17 Cd 3px 0.0403135568248949 0.0254139847520894 + 310 17 Cd 4py -0.0183870393589895 -0.0505784580798243 + 311 17 Cd 4pz 0.0206498466952733 -0.0424019087984339 + 312 17 Cd 4px 0.0128800495221316 -0.0125686141045520 + 313 17 Cd 4d-2 -0.0020535428384300 -0.0019344454222448 + 314 17 Cd 4d-1 0.0223636713689420 0.0015551284625813 + 315 17 Cd 4d0 -0.0047909289740881 0.0031356244245102 + 316 17 Cd 4d+1 0.0033631852054143 -0.0123124915721962 + 317 17 Cd 4d+2 -0.0172921976802305 0.0163002615584404 + 318 17 Cd 5d-2 -0.0382344307001896 -0.0055831676695076 + 319 17 Cd 5d-1 0.0655439690390509 -0.0480003122789768 + 320 17 Cd 5d0 0.0087204436559658 0.0744005847470619 + 321 17 Cd 5d+1 -0.0350509006676077 -0.1499523571570042 + 322 17 Cd 5d+2 -0.0086861553715501 0.0630527001328660 + 323 17 Cd 5f-3 0.0096507309563763 -0.0037508211851600 + 324 17 Cd 5f-2 0.0003446935414747 0.0080535611004561 + 325 17 Cd 5f-1 0.0113256677951589 0.0066769727687556 + 326 17 Cd 5f0 0.0020628964497980 0.0007536225695536 + 327 17 Cd 5f+1 0.0094344558309804 0.0006387403251773 + 328 17 Cd 5f+2 -0.0197682029806922 0.0030528017488390 + 329 17 Cd 5f+3 -0.0065210929817836 0.0002553838158959 + + 330 18 Cd 2s -0.1069914976103851 -0.1604440038421354 + 331 18 Cd 3s -0.0181581577230577 -0.0248448923214471 + 332 18 Cd 3py -0.0959620104951306 -0.1567417211329728 + 333 18 Cd 3pz -0.0807821885380575 0.0508837360172187 + 334 18 Cd 3px -0.0449135515838899 0.0007862504737325 + 335 18 Cd 4py -0.0225928714621610 -0.0483927282999560 + 336 18 Cd 4pz -0.0169597015802780 0.0052894357423378 + 337 18 Cd 4px -0.0179614129534560 0.0010132613047709 + 338 18 Cd 4d-2 0.0078893347545523 0.0045990847140018 + 339 18 Cd 4d-1 0.0094054750493420 0.0116563730179422 + 340 18 Cd 4d0 -0.0089866566758429 -0.0111193307774871 + 341 18 Cd 4d+1 0.0093754451229772 0.0079183325699205 + 342 18 Cd 4d+2 0.0098701461541944 -0.0084992602278899 + 343 18 Cd 5d-2 0.0700080999275964 0.1035172355419652 + 344 18 Cd 5d-1 0.0172953737195013 -0.0538013800231647 + 345 18 Cd 5d0 -0.0307454411030478 -0.1059815699589823 + 346 18 Cd 5d+1 0.0624203715439427 0.0177279447669125 + 347 18 Cd 5d+2 0.0569462501724354 -0.0508991847532696 + 348 18 Cd 5f-3 0.0014511353839759 -0.0114127771724501 + 349 18 Cd 5f-2 0.0074619252243517 0.0000094231345857 + 350 18 Cd 5f-1 0.0064615796222815 -0.0075560698196290 + 351 18 Cd 5f0 0.0041787527695363 -0.0242926186831584 + 352 18 Cd 5f+1 0.0145089616485472 -0.0030060267718870 + 353 18 Cd 5f+2 -0.0071795132941385 -0.0065832062550476 + 354 18 Cd 5f+3 -0.0118260128905866 0.0017928944409621 + + 355 19 Se 2s 0.0079612682928697 -0.0233580908120056 + 356 19 Se 3s -0.0000270895106393 0.0088225813718119 + 357 19 Se 3py -0.0762217073754994 0.1016081184474831 + 358 19 Se 3pz -0.0048254672034483 -0.0467191868465502 + 359 19 Se 3px -0.0674013520830071 0.0134336749361212 + 360 19 Se 4py 0.0176204871942278 -0.0615669659506503 + 361 19 Se 4pz 0.0062807309907160 -0.0115268386915574 + 362 19 Se 4px 0.0205924185340789 0.0036594989315587 + 363 19 Se 4d-2 -0.0183456441039328 -0.0069134421773394 + 364 19 Se 4d-1 0.0093077394682960 -0.0262750968515379 + 365 19 Se 4d0 0.0165477764114680 0.0086136655650170 + 366 19 Se 4d+1 0.0249708636644894 0.0056374874124073 + 367 19 Se 4d+2 -0.0258930536602084 0.0101502400478648 + + 368 20 Se 2s 0.0170044252766165 0.0652207112289247 + 369 20 Se 3s -0.0063428646215669 -0.0163968908284483 + 370 20 Se 3py -0.0865459619127010 -0.1479593683591470 + 371 20 Se 3pz -0.0092303342025264 -0.0652219036345609 + 372 20 Se 3px 0.0624156842188892 0.0194131834622275 + 373 20 Se 4py 0.0403313772941506 0.0889389397636740 + 374 20 Se 4pz 0.0138122379491816 0.0456159368210964 + 375 20 Se 4px -0.0043973516738804 -0.0339580163447737 + 376 20 Se 4d-2 0.0116619247862916 0.0006908549125478 + 377 20 Se 4d-1 0.0344827503833182 0.0035913277344705 + 378 20 Se 4d0 -0.0175265356866005 -0.0061313908614701 + 379 20 Se 4d+1 0.0061367739632361 -0.0170172005161010 + 380 20 Se 4d+2 -0.0309790819942467 0.0468012120391603 + + 381 21 Se 2s 0.1580169130584248 -0.1154072242646976 + 382 21 Se 3s -0.0361884583869390 0.0305252339144676 + 383 21 Se 3py 0.0247434772300963 -0.0504370399162213 + 384 21 Se 3pz -0.0073249352787764 0.1460916415749423 + 385 21 Se 3px -0.2438751193838679 0.1312217877001501 + 386 21 Se 4py 0.0140179868732227 -0.0514415536341591 + 387 21 Se 4pz 0.0016156880731843 -0.1022998277923632 + 388 21 Se 4px 0.0635534368437407 -0.0326588937306103 + 389 21 Se 4d-2 -0.0149645364320977 0.0361486289211837 + 390 21 Se 4d-1 -0.0214939144318206 0.0310321897787215 + 391 21 Se 4d0 0.0020971087079154 -0.0168928424499108 + 392 21 Se 4d+1 -0.0341629870426924 -0.0583350751581397 + 393 21 Se 4d+2 -0.0213352121022438 -0.0109230912638123 + + 394 22 Cd 2s -0.1503530209523631 -0.0874532652896298 + 395 22 Cd 3s -0.0201428941873993 -0.0159627109544501 + 396 22 Cd 3py -0.2520568674527532 -0.1641267611996957 + 397 22 Cd 3pz -0.0766752862270051 -0.2775630724105904 + 398 22 Cd 3px -0.3295374757537828 0.0429923497195331 + 399 22 Cd 4py -0.0292468797949730 -0.0241165126909812 + 400 22 Cd 4pz -0.0081108400944097 -0.0473052993092386 + 401 22 Cd 4px -0.0390507347977412 0.0092487350076716 + 402 22 Cd 4d-2 -0.0008997922865803 -0.0017119079261468 + 403 22 Cd 4d-1 0.0103302430573515 0.0021068087240258 + 404 22 Cd 4d0 -0.0054394136951018 -0.0097844926701976 + 405 22 Cd 4d+1 -0.0101139875798868 -0.0055658898540502 + 406 22 Cd 4d+2 -0.0088536037375499 -0.0106314944798959 + 407 22 Cd 5d-2 -0.0652206595413722 -0.0373362383937373 + 408 22 Cd 5d-1 -0.0490342397138767 -0.0286650729301484 + 409 22 Cd 5d0 -0.1363222504933090 -0.0641560331782463 + 410 22 Cd 5d+1 -0.0826230621083275 -0.0271954694171678 + 411 22 Cd 5d+2 0.0865458033500868 -0.0148313099147645 + 412 22 Cd 5f-3 0.0118825674975156 0.0088218643449508 + 413 22 Cd 5f-2 0.0003624099887493 -0.0073180289472731 + 414 22 Cd 5f-1 -0.0213247438266448 0.0099517811992639 + 415 22 Cd 5f0 0.0081911783792999 0.0044464402274930 + 416 22 Cd 5f+1 -0.0169166768548421 -0.0019432691695900 + 417 22 Cd 5f+2 -0.0068017970887630 0.0198757395396554 + 418 22 Cd 5f+3 0.0087321602600127 -0.0057874453288373 + + 419 23 Se 2s -0.1049386724283745 0.0814385894079805 + 420 23 Se 3s 0.0284064698983407 -0.0200455871199330 + 421 23 Se 3py 0.0434054963605966 -0.0343948795466501 + 422 23 Se 3pz 0.0451682241031143 0.1392866501582855 + 423 23 Se 3px -0.0404835844078730 -0.0928330749546043 + 424 23 Se 4py -0.0309429352782937 0.0499197815638628 + 425 23 Se 4pz 0.0049524576069219 -0.1061209643346604 + 426 23 Se 4px 0.0070088710405807 0.0521737214122339 + 427 23 Se 4d-2 0.0146722183622351 -0.0148334230929770 + 428 23 Se 4d-1 -0.0160652322937363 0.0297832180511247 + 429 23 Se 4d0 -0.0189790473565736 -0.0327171821749829 + 430 23 Se 4d+1 -0.0055221459122593 -0.0102279633542970 + 431 23 Se 4d+2 -0.0101187408273038 0.0404697504682993 + + 432 24 Se 2s -0.1708531619415005 0.0285678536373180 + 433 24 Se 3s 0.0386432334579493 -0.0057205683597339 + 434 24 Se 3py -0.2632965724353437 0.0670108526534620 + 435 24 Se 3pz -0.0669105542529543 0.1332925408328403 + 436 24 Se 3px 0.1583337729111896 -0.1320040793325464 + 437 24 Se 4py 0.0945670956298757 -0.0290686303624727 + 438 24 Se 4pz 0.0185700872982670 -0.0691761654173339 + 439 24 Se 4px -0.0270990732155826 0.0636925760795517 + 440 24 Se 4d-2 -0.0162983693412073 0.0305055205113825 + 441 24 Se 4d-1 -0.0009115250002957 -0.0100469080699234 + 442 24 Se 4d0 -0.0310104935700453 -0.0001778397999770 + 443 24 Se 4d+1 0.0168521347403383 -0.0290336183014637 + 444 24 Se 4d+2 -0.0465406970979590 0.0407921538868010 + + 445 25 Cd 2s -0.0276608303082750 0.0632846456116564 + 446 25 Cd 3s -0.0067577979791352 0.0125762593576311 + 447 25 Cd 3py -0.2609622781882178 0.2530534988471666 + 448 25 Cd 3pz 0.0657989048337331 -0.2139819926030101 + 449 25 Cd 3px -0.1125747166652422 0.2083615909986306 + 450 25 Cd 4py -0.0417245988885835 0.0171038743721869 + 451 25 Cd 4pz 0.0060154186098343 -0.0076797164663266 + 452 25 Cd 4px -0.0057279380837604 0.0118849022584550 + 453 25 Cd 4d-2 0.0152297216107951 0.0143292962562417 + 454 25 Cd 4d-1 0.0093747344412422 -0.0006881084926933 + 455 25 Cd 4d0 -0.0011083147702581 -0.0169763880198889 + 456 25 Cd 4d+1 -0.0022934052145799 -0.0098450559928274 + 457 25 Cd 4d+2 -0.0112941606872517 0.0157208278602674 + 458 25 Cd 5d-2 0.0854869605167960 -0.0288411795817413 + 459 25 Cd 5d-1 0.0659382141791905 -0.0416560032575282 + 460 25 Cd 5d0 0.0020111083766818 -0.0314623716523347 + 461 25 Cd 5d+1 0.0243779826341080 0.0167005745694553 + 462 25 Cd 5d+2 -0.1204807700386381 -0.0112473744473472 + 463 25 Cd 5f-3 -0.0038569834827687 -0.0012536995267936 + 464 25 Cd 5f-2 -0.0034375593262316 0.0045777912712323 + 465 25 Cd 5f-1 -0.0045861138941724 -0.0014296111146248 + 466 25 Cd 5f0 0.0119406887211476 -0.0063687148404603 + 467 25 Cd 5f+1 0.0060054319269129 0.0069143162397582 + 468 25 Cd 5f+2 0.0092279030972028 0.0167900140144695 + 469 25 Cd 5f+3 0.0065075702243368 -0.0013051827994867 + + 470 26 Cd 2s -0.1677166487427032 0.0154523586270379 + 471 26 Cd 3s -0.0320447105668584 0.0050501243164296 + 472 26 Cd 3py 0.5095399599935113 -0.3453765399598137 + 473 26 Cd 3pz 0.2619305746757480 -0.0751708389141187 + 474 26 Cd 3px 0.0585664185872762 -0.0837558122632459 + 475 26 Cd 4py 0.0771171608887985 -0.0453748800387443 + 476 26 Cd 4pz 0.0368340705807595 -0.0115139572524240 + 477 26 Cd 4px -0.0010668230923531 -0.0063919049208330 + 478 26 Cd 4d-2 -0.0043764410539987 0.0110982404576381 + 479 26 Cd 4d-1 0.0021171278411259 -0.0134458910696617 + 480 26 Cd 4d0 -0.0097145673969566 0.0095353436946256 + 481 26 Cd 4d+1 -0.0135787841132846 0.0080358140440465 + 482 26 Cd 4d+2 -0.0166854721157198 -0.0001607529638595 + 483 26 Cd 5d-2 -0.1393207182033122 0.0752027038213623 + 484 26 Cd 5d-1 0.0083469965611871 -0.1199466260779011 + 485 26 Cd 5d0 -0.0416441085119836 0.0634390245851279 + 486 26 Cd 5d+1 -0.1460774972602599 0.0693793964946877 + 487 26 Cd 5d+2 -0.1948087530147371 -0.0207765954677812 + 488 26 Cd 5f-3 -0.0026553163043006 -0.0040486553684011 + 489 26 Cd 5f-2 0.0028226584122453 0.0008266447840924 + 490 26 Cd 5f-1 0.0096283425048982 -0.0196210674618585 + 491 26 Cd 5f0 0.0073367897667584 0.0123685364828670 + 492 26 Cd 5f+1 0.0014327014168962 -0.0112990479306772 + 493 26 Cd 5f+2 0.0059205279936863 0.0158137903840722 + 494 26 Cd 5f+3 0.0133232798076165 -0.0175128456982376 + + 163 164 + 0.1060572225857582 0.1072385881565537 + + 0.0000000000000000 0.0000000000000000 + + 1 1 Cd 2s -0.0170813736919309 0.0378653271959193 + 2 1 Cd 3s 0.0000607814611588 0.0024435810431308 + 3 1 Cd 3py -0.0893484088790836 0.2225633797581699 + 4 1 Cd 3pz -0.1060815081991430 0.1183244595216516 + 5 1 Cd 3px 0.0782476515978229 -0.0925083810370141 + 6 1 Cd 4py -0.0212984275311865 0.0231765726605482 + 7 1 Cd 4pz -0.0239045247180923 0.0170739602163867 + 8 1 Cd 4px 0.0084076307479276 -0.0179069041654312 + 9 1 Cd 4d-2 0.0058604946687500 -0.0133033627391912 + 10 1 Cd 4d-1 -0.0021875004967326 -0.0011058356342301 + 11 1 Cd 4d0 0.0134616067555012 -0.0119246727367540 + 12 1 Cd 4d+1 -0.0033417470025331 0.0043228611560121 + 13 1 Cd 4d+2 0.0036378330141476 -0.0094886331166914 + 14 1 Cd 5d-2 -0.0243933395688071 -0.0350691706116073 + 15 1 Cd 5d-1 0.0549848226178871 0.0028527543228344 + 16 1 Cd 5d0 0.0427938169713964 -0.0106839673661637 + 17 1 Cd 5d+1 -0.0189838220719197 0.0300286245212576 + 18 1 Cd 5d+2 0.0047290382307656 -0.0681982747402735 + 19 1 Cd 5f-3 -0.0040866282543643 -0.0106046542408541 + 20 1 Cd 5f-2 0.0184151137864472 0.0106466859671485 + 21 1 Cd 5f-1 -0.0071259817377089 -0.0021754476548937 + 22 1 Cd 5f0 -0.0081960678596299 0.0071909569932427 + 23 1 Cd 5f+1 0.0095208611660486 -0.0005997319256028 + 24 1 Cd 5f+2 -0.0102285138942643 -0.0035531752713680 + 25 1 Cd 5f+3 0.0193091790737147 -0.0019818296680621 + + 26 2 Cd 2s -0.1775645979658068 -0.0560816750740371 + 27 2 Cd 3s -0.0389100127313712 -0.0043309875169847 + 28 2 Cd 3py -0.1264426418006187 0.3205322008968791 + 29 2 Cd 3pz 0.3439342400250709 0.1374177593285863 + 30 2 Cd 3px 0.1422725047164873 -0.4854029470645977 + 31 2 Cd 4py 0.0039374474920675 0.0576352499220100 + 32 2 Cd 4pz 0.0431284246696021 0.0170961638811880 + 33 2 Cd 4px 0.0270263188929565 -0.0601349412816948 + 34 2 Cd 4d-2 0.0251402152042845 0.0163258966478376 + 35 2 Cd 4d-1 -0.0050653488542841 -0.0115549321627993 + 36 2 Cd 4d0 0.0066603301229011 -0.0093117858827284 + 37 2 Cd 4d+1 -0.0136621849384806 -0.0063749653899120 + 38 2 Cd 4d+2 -0.0000585370303688 0.0035339023337163 + 39 2 Cd 5d-2 0.0415174558543648 -0.0488048724650267 + 40 2 Cd 5d-1 0.0762702190698158 -0.0408013319223198 + 41 2 Cd 5d0 -0.0875695176506371 0.0331574212346401 + 42 2 Cd 5d+1 0.0901907682568596 -0.1015637030898826 + 43 2 Cd 5d+2 0.0317048111778319 -0.0855853635918881 + 44 2 Cd 5f-3 0.0044837829662673 0.0053707212281179 + 45 2 Cd 5f-2 -0.0136497373504349 -0.0024191170545364 + 46 2 Cd 5f-1 0.0098161604302446 -0.0037130126885436 + 47 2 Cd 5f0 0.0167012809684923 0.0069970015174310 + 48 2 Cd 5f+1 0.0107320964516535 -0.0096914880946724 + 49 2 Cd 5f+2 0.0322014106725290 -0.0034492568400735 + 50 2 Cd 5f+3 0.0130953490574958 -0.0024048743879125 + + 51 3 Cd 2s 0.1951449455265504 0.1559181192983395 + 52 3 Cd 3s 0.0435071763086869 0.0171272377248959 + 53 3 Cd 3py 0.4064344095622769 -0.2702692990109939 + 54 3 Cd 3pz 0.0254283213269631 -0.0271147849371580 + 55 3 Cd 3px 0.1185172059325384 0.0898067741108402 + 56 3 Cd 4py 0.0568333113495982 -0.0235721729472262 + 57 3 Cd 4pz 0.0088075185811118 0.0056905156090163 + 58 3 Cd 4px 0.0149088000823918 0.0092543294847288 + 59 3 Cd 4d-2 0.0085047681221218 0.0012575301960838 + 60 3 Cd 4d-1 0.0097872975671818 0.0056602566577084 + 61 3 Cd 4d0 -0.0133395348291394 -0.0065951014369828 + 62 3 Cd 4d+1 -0.0104702535071078 0.0140154593585817 + 63 3 Cd 4d+2 0.0123055187562017 0.0051054312116437 + 64 3 Cd 5d-2 0.0624339669763930 0.0484668743570539 + 65 3 Cd 5d-1 0.0895309234077070 0.0324060003880589 + 66 3 Cd 5d0 0.0243437267392257 0.0007322139094464 + 67 3 Cd 5d+1 0.0033769124421421 0.0139123919758037 + 68 3 Cd 5d+2 0.0314735874431210 0.0211219342641451 + 69 3 Cd 5f-3 0.0050254080892270 0.0030025665077867 + 70 3 Cd 5f-2 0.0053277485608533 0.0023940270805424 + 71 3 Cd 5f-1 -0.0037920185464023 -0.0103389616325690 + 72 3 Cd 5f0 0.0019410927651174 0.0112532059001590 + 73 3 Cd 5f+1 -0.0000159360396220 0.0019858977930852 + 74 3 Cd 5f+2 -0.0024872422327705 0.0042426841012877 + 75 3 Cd 5f+3 0.0058151848952768 0.0191156510069367 + + 76 4 Se 2s -0.1360499810127706 -0.0124487751113231 + 77 4 Se 3s 0.0354127965024294 0.0015266364097677 + 78 4 Se 3py 0.0658346681121829 0.0571287206116649 + 79 4 Se 3pz 0.0041065258700065 -0.1858579573969291 + 80 4 Se 3px 0.0476653517295435 0.0058229289874777 + 81 4 Se 4py -0.0622253304831056 0.0221185207943935 + 82 4 Se 4pz 0.0371547624778541 0.0692388492624929 + 83 4 Se 4px -0.0349421117439619 -0.0363687893320225 + 84 4 Se 4d-2 0.0236769579008689 0.0082818683377580 + 85 4 Se 4d-1 -0.0126179272992157 -0.0496257244436929 + 86 4 Se 4d0 0.0045298102828924 -0.0003989663497808 + 87 4 Se 4d+1 -0.0394475679477754 -0.0009236399975696 + 88 4 Se 4d+2 -0.0033798957201623 0.0174242928792728 + + 89 5 Se 2s 0.0569860347184632 0.0120547763232166 + 90 5 Se 3s -0.0134544507502613 -0.0054324427299701 + 91 5 Se 3py 0.0877138599977194 -0.0740798036167231 + 92 5 Se 3pz -0.0338115718451727 0.1467483373617914 + 93 5 Se 3px 0.0140930318728782 -0.0521684389696208 + 94 5 Se 4py -0.0395563635561009 0.0492807431988858 + 95 5 Se 4pz -0.0171838837610913 -0.0322294490731799 + 96 5 Se 4px 0.0030911472187581 0.0133119167261552 + 97 5 Se 4d-2 0.0104841326787153 -0.0046383933266648 + 98 5 Se 4d-1 -0.0119356534106947 0.0011007853461678 + 99 5 Se 4d0 -0.0120481014664715 -0.0150775309446019 + 100 5 Se 4d+1 0.0075409038238527 0.0284817611819208 + 101 5 Se 4d+2 0.0018269344362663 -0.0168657291749843 + + 102 6 Se 2s 0.0676066628563358 -0.0728219592269183 + 103 6 Se 3s -0.0151386548321406 0.0171831760488009 + 104 6 Se 3py 0.0939260142932741 -0.2000434830544631 + 105 6 Se 3pz -0.0883045820473146 0.1153030954183753 + 106 6 Se 3px 0.0314627112882411 0.0022845205020929 + 107 6 Se 4py -0.0336075503371203 0.0787230406163949 + 108 6 Se 4pz 0.0935667965144791 -0.0470868698572384 + 109 6 Se 4px 0.0221106766649268 -0.0293164563951873 + 110 6 Se 4d-2 0.0131919177661971 -0.0068209667778687 + 111 6 Se 4d-1 -0.0074126601870544 -0.0208421848418626 + 112 6 Se 4d0 -0.0133068590338372 -0.0467810738171854 + 113 6 Se 4d+1 -0.0530932670043391 0.0347193775796994 + 114 6 Se 4d+2 0.0054201721927906 -0.0234500239527441 + + 115 7 Se 2s -0.0384460896065180 0.1300553536440234 + 116 7 Se 3s 0.0124268475606729 -0.0320556755679471 + 117 7 Se 3py 0.1123141195990290 -0.0622728701548964 + 118 7 Se 3pz -0.0393048728413330 -0.0832789514172251 + 119 7 Se 3px 0.0965520665489792 -0.1021745924647314 + 120 7 Se 4py -0.0372632740738764 0.0785697852450532 + 121 7 Se 4pz -0.0348788823841576 0.0595206734175324 + 122 7 Se 4px -0.0270482019790543 -0.0125235906750737 + 123 7 Se 4d-2 0.0111415877705065 0.0101729120613756 + 124 7 Se 4d-1 -0.0035584410070582 -0.0543694965491258 + 125 7 Se 4d0 0.0182020745092491 0.0014710972222298 + 126 7 Se 4d+1 0.0096939374113285 0.0139956772584151 + 127 7 Se 4d+2 0.0263561589029699 -0.0292638952517558 + + 128 8 Cd 2s 0.0032565535577250 -0.2320672092907755 + 129 8 Cd 3s 0.0077646974464341 -0.0327610154734863 + 130 8 Cd 3py -0.5363267191571284 -0.0780928199877435 + 131 8 Cd 3pz 0.1452900292024406 0.4435353096011275 + 132 8 Cd 3px 0.1360176807043067 0.3229512497648497 + 133 8 Cd 4py -0.0636278084102577 -0.0073627480028529 + 134 8 Cd 4pz 0.0193122751573670 0.0621123178082982 + 135 8 Cd 4px -0.0007229886000280 0.0431342319766464 + 136 8 Cd 4d-2 -0.0163774989045340 -0.0076936621052186 + 137 8 Cd 4d-1 -0.0002671438502843 -0.0071618552062911 + 138 8 Cd 4d0 0.0006540073670605 -0.0056573215138334 + 139 8 Cd 4d+1 0.0001626519261892 0.0119925837572890 + 140 8 Cd 4d+2 0.0130225096567786 0.0182493139624259 + 141 8 Cd 5d-2 -0.0356394889948194 -0.0887870641176747 + 142 8 Cd 5d-1 -0.1288539273344370 0.1974477022753800 + 143 8 Cd 5d0 -0.0871311871953704 -0.0893120843991683 + 144 8 Cd 5d+1 0.0230279537218337 -0.2000023705447184 + 145 8 Cd 5d+2 -0.0008321650007963 -0.0887769755765730 + 146 8 Cd 5f-3 -0.0108547375271067 0.0188001724575606 + 147 8 Cd 5f-2 0.0151179369877727 -0.0214644393148460 + 148 8 Cd 5f-1 -0.0061521799798530 0.0125006977789171 + 149 8 Cd 5f0 -0.0040206676355545 -0.0120813417276933 + 150 8 Cd 5f+1 0.0103006985731043 0.0026058055183269 + 151 8 Cd 5f+2 0.0115416181207096 0.0036175247961303 + 152 8 Cd 5f+3 -0.0224791794267081 0.0227068281132975 + + 153 9 Cd 2s -0.2476424015733343 -0.0839033463308596 + 154 9 Cd 3s -0.0286531143422718 -0.0264862418104239 + 155 9 Cd 3py -0.1676455286433371 -0.0789866657504904 + 156 9 Cd 3pz 0.2489168976555455 -0.0211638478952699 + 157 9 Cd 3px 0.0087879927866781 0.2910662176581582 + 158 9 Cd 4py -0.0236502501021522 -0.0166380520592218 + 159 9 Cd 4pz 0.0607622990637208 0.0042073093235872 + 160 9 Cd 4px 0.0156376447853687 0.0246903530591660 + 161 9 Cd 4d-2 -0.0079324481496606 0.0030117089511917 + 162 9 Cd 4d-1 -0.0168108096594846 -0.0120264814769489 + 163 9 Cd 4d0 0.0093771216930718 -0.0068983776836501 + 164 9 Cd 4d+1 0.0047254314634185 0.0024590602901097 + 165 9 Cd 4d+2 0.0083992061650422 0.0060252597033428 + 166 9 Cd 5d-2 0.0185050709482613 -0.0276431562892699 + 167 9 Cd 5d-1 -0.2444702787983260 -0.0857923367412758 + 168 9 Cd 5d0 -0.0170946874016876 -0.1127102173704597 + 169 9 Cd 5d+1 0.0634724901206957 0.0900147900952457 + 170 9 Cd 5d+2 -0.0054502892234528 0.0787475562454603 + 171 9 Cd 5f-3 -0.0049694796623948 0.0067063275924324 + 172 9 Cd 5f-2 0.0223952871623441 0.0029871053354019 + 173 9 Cd 5f-1 -0.0165541179338502 -0.0165310607359771 + 174 9 Cd 5f0 -0.0116301434646695 -0.0069272696918771 + 175 9 Cd 5f+1 -0.0194243653045111 0.0148560072268754 + 176 9 Cd 5f+2 0.0118326352961077 0.0056695711164277 + 177 9 Cd 5f+3 0.0131758333262442 0.0039669180999308 + + 178 10 Se 2s 0.0395062460009118 -0.0598677029648370 + 179 10 Se 3s -0.0115692443506974 0.0139414563063302 + 180 10 Se 3py 0.0622986595064708 0.0349559006049434 + 181 10 Se 3pz -0.0213369159885263 -0.0892676575981709 + 182 10 Se 3px -0.0402446916284593 -0.1486984516899073 + 183 10 Se 4py -0.0913978322045802 0.0071344682308658 + 184 10 Se 4pz 0.0360672618866056 0.0177918204117211 + 185 10 Se 4px -0.0370345309023236 0.0309954012621301 + 186 10 Se 4d-2 0.0056185738667368 -0.0084494156453162 + 187 10 Se 4d-1 0.0690687427234055 0.0101772854302283 + 188 10 Se 4d0 -0.0132490365662567 -0.0136194014896561 + 189 10 Se 4d+1 0.0052047479283326 0.0016162929749262 + 190 10 Se 4d+2 0.0041798318834847 0.0232688543802225 + + 191 11 Se 2s -0.0382585060782182 -0.0318493711104416 + 192 11 Se 3s 0.0107721850808579 0.0050257622987628 + 193 11 Se 3py -0.0640619542025922 -0.0637412295284223 + 194 11 Se 3pz -0.1458507076259648 -0.1372433051947528 + 195 11 Se 3px -0.0846193472313714 0.2433888774656719 + 196 11 Se 4py 0.0150809917055559 0.0305026645516630 + 197 11 Se 4pz 0.0348286334149288 0.0356576310521164 + 198 11 Se 4px 0.0272149581360667 -0.1191983673946614 + 199 11 Se 4d-2 0.0284354957239921 -0.0557665623956110 + 200 11 Se 4d-1 0.0063049452886519 0.0107995943420773 + 201 11 Se 4d0 -0.0151113784611446 -0.0358054884606804 + 202 11 Se 4d+1 0.0002380246488574 0.0086905769031210 + 203 11 Se 4d+2 0.0281729473813297 0.0056100544267053 + + 204 12 Cd 2s -0.1048421223066600 0.0283813708297607 + 205 12 Cd 3s -0.0166230899716117 -0.0108347347606959 + 206 12 Cd 3py -0.1072069598572422 0.5301310337029456 + 207 12 Cd 3pz -0.1707720622111061 0.0226426088505873 + 208 12 Cd 3px -0.0965556574034354 -0.3540403223523844 + 209 12 Cd 4py -0.0129570554552083 0.0681239935394032 + 210 12 Cd 4pz -0.0189109951598450 -0.0173048817824671 + 211 12 Cd 4px -0.0194674524283375 -0.0621106977149197 + 212 12 Cd 4d-2 0.0089199326802045 0.0010924606893651 + 213 12 Cd 4d-1 0.0272726014586222 0.0081538399848595 + 214 12 Cd 4d0 0.0049658553230487 -0.0108303729068705 + 215 12 Cd 4d+1 0.0002738704965647 -0.0103723398727079 + 216 12 Cd 4d+2 -0.0005603943836603 0.0039243165147816 + 217 12 Cd 5d-2 0.0517343540281541 -0.1746837845528801 + 218 12 Cd 5d-1 0.0256755963231011 -0.1253495629028111 + 219 12 Cd 5d0 -0.0674417791628234 0.0015346490861385 + 220 12 Cd 5d+1 -0.0706435276493496 -0.0066136726211192 + 221 12 Cd 5d+2 0.1181074977891718 0.1393236085018773 + 222 12 Cd 5f-3 -0.0097068836107520 0.0197046725301270 + 223 12 Cd 5f-2 -0.0000378549020853 0.0014845446116573 + 224 12 Cd 5f-1 0.0001099807132331 0.0097840166267501 + 225 12 Cd 5f0 -0.0159106927268349 0.0022255098445284 + 226 12 Cd 5f+1 -0.0026310517281124 -0.0010312416588117 + 227 12 Cd 5f+2 0.0035061038435259 -0.0034748536176788 + 228 12 Cd 5f+3 -0.0120989120502679 -0.0011194196704111 + + 229 13 Cd 2s 0.0645806086157010 -0.0798043152055991 + 230 13 Cd 3s 0.0073053651087345 -0.0151307420895041 + 231 13 Cd 3py -0.0618345699475153 -0.0963798911895240 + 232 13 Cd 3pz 0.1425002855766007 -0.2225705965616994 + 233 13 Cd 3px -0.0397378894019978 0.1216630800321581 + 234 13 Cd 4py -0.0093485302305858 -0.0034202009132156 + 235 13 Cd 4pz 0.0125541766632561 -0.0264616051430798 + 236 13 Cd 4px -0.0106538971611836 -0.0001021432938621 + 237 13 Cd 4d-2 0.0130009250459305 -0.0144623338953652 + 238 13 Cd 4d-1 0.0040864276705575 -0.0014773534451261 + 239 13 Cd 4d0 0.0061165503248971 -0.0036269832870531 + 240 13 Cd 4d+1 -0.0083625571191365 -0.0076767561161984 + 241 13 Cd 4d+2 0.0083549966650451 -0.0016479290533807 + 242 13 Cd 5d-2 -0.0339894768459915 0.0729250597644824 + 243 13 Cd 5d-1 0.0480987902589220 -0.0459844875501524 + 244 13 Cd 5d0 0.0945799176373252 -0.1338715509421222 + 245 13 Cd 5d+1 0.0434325535806629 -0.0772946679324895 + 246 13 Cd 5d+2 -0.0111387282886647 -0.0287369571125158 + 247 13 Cd 5f-3 -0.0167631318015389 -0.0133975686885913 + 248 13 Cd 5f-2 0.0100327448074092 0.0034433969657024 + 249 13 Cd 5f-1 0.0056313676101761 -0.0012493751053731 + 250 13 Cd 5f0 0.0034268715982964 -0.0096845480942228 + 251 13 Cd 5f+1 -0.0027245338423142 0.0134673800659076 + 252 13 Cd 5f+2 0.0116229770019422 0.0094544772387855 + 253 13 Cd 5f+3 0.0036553329863427 -0.0229329771578006 + + 254 14 Cd 2s 0.2193222586601568 -0.0981497799045046 + 255 14 Cd 3s 0.0330231872679657 -0.0237844860788782 + 256 14 Cd 3py -0.2703170673280111 0.0916362751832121 + 257 14 Cd 3pz 0.0079245481847861 -0.1029977928953589 + 258 14 Cd 3px -0.0640928311513751 -0.0869948417776958 + 259 14 Cd 4py -0.0433422204421949 0.0269221586174823 + 260 14 Cd 4pz -0.0159501660916169 -0.0019025517250722 + 261 14 Cd 4px -0.0110189071207893 -0.0126958316354379 + 262 14 Cd 4d-2 -0.0002564520264559 -0.0130973443329784 + 263 14 Cd 4d-1 0.0071609574696423 -0.0080673129205623 + 264 14 Cd 4d0 -0.0034246048173879 -0.0118189168370455 + 265 14 Cd 4d+1 -0.0094400379013870 0.0013897900580702 + 266 14 Cd 4d+2 0.0114202119950768 0.0004408862961296 + 267 14 Cd 5d-2 0.0267000220886011 0.0272180813770882 + 268 14 Cd 5d-1 0.0930901493124403 -0.0029433569574944 + 269 14 Cd 5d0 0.1359100147911111 -0.0048301124992718 + 270 14 Cd 5d+1 0.0469197309392488 -0.2135917718826403 + 271 14 Cd 5d+2 0.1009753990063496 0.1100746562436083 + 272 14 Cd 5f-3 -0.0096205073564790 -0.0086752827706654 + 273 14 Cd 5f-2 -0.0090590982384833 -0.0205388465590328 + 274 14 Cd 5f-1 -0.0115223240750129 0.0026752487632224 + 275 14 Cd 5f0 0.0106029013713712 0.0025115820440625 + 276 14 Cd 5f+1 -0.0018201502751173 -0.0105890216855599 + 277 14 Cd 5f+2 -0.0012798681792141 0.0299608456029053 + 278 14 Cd 5f+3 0.0111278432337653 -0.0056572958816487 + + 279 15 Se 2s 0.1769205670404028 0.0007138964321072 + 280 15 Se 3s -0.0485331954442673 -0.0002465907975630 + 281 15 Se 3py -0.1583013909489148 0.0180402791736178 + 282 15 Se 3pz 0.0526343047533175 0.0172307551019675 + 283 15 Se 3px -0.0667955371175689 -0.0118272538779470 + 284 15 Se 4py 0.0780813950481956 0.0005739538577238 + 285 15 Se 4pz -0.0515315624411134 0.0018648711313984 + 286 15 Se 4px -0.0028423281166498 0.0594541849325119 + 287 15 Se 4d-2 -0.0016234716480569 -0.0619013396030649 + 288 15 Se 4d-1 0.0413365767600566 -0.0033431122939182 + 289 15 Se 4d0 0.0127913751405548 -0.0003885165766747 + 290 15 Se 4d+1 -0.0073056828455841 -0.0098738386050510 + 291 15 Se 4d+2 -0.0073865091940355 -0.0057144821092022 + + 292 16 Se 2s -0.0089433357785313 0.1124333017077657 + 293 16 Se 3s 0.0039163153052679 -0.0270830170834602 + 294 16 Se 3py -0.1100677176670642 0.0320270954445531 + 295 16 Se 3pz -0.0657218834953874 0.0537725326166610 + 296 16 Se 3px 0.0081793768827469 -0.0054142809616837 + 297 16 Se 4py 0.0069500137133724 0.0175890074836771 + 298 16 Se 4pz 0.0146138740120179 -0.0324534699081395 + 299 16 Se 4px 0.0027555475922830 0.0049383182089900 + 300 16 Se 4d-2 0.0121724421840413 -0.0244256919359548 + 301 16 Se 4d-1 -0.0006927405694998 -0.0237369313187337 + 302 16 Se 4d0 0.0099572001152144 -0.0284353437893775 + 303 16 Se 4d+1 0.0005195974287728 -0.0080443958070525 + 304 16 Se 4d+2 0.0121046338723171 0.0071698481099231 + + 305 17 Cd 2s -0.0143276255775533 -0.0084960829402817 + 306 17 Cd 3s 0.0001346559091713 -0.0094902754079477 + 307 17 Cd 3py -0.0421300633033677 0.0866220335497634 + 308 17 Cd 3pz -0.0575271301403050 -0.0005207624841917 + 309 17 Cd 3px 0.1439177672424951 0.0840845513053909 + 310 17 Cd 4py -0.0006943920960902 0.0114859298400211 + 311 17 Cd 4pz -0.0084397480569562 -0.0018919126772180 + 312 17 Cd 4px 0.0197419504913414 0.0113977567052436 + 313 17 Cd 4d-2 -0.0119068934888885 0.0009440856977919 + 314 17 Cd 4d-1 -0.0040472978986950 -0.0020106406682875 + 315 17 Cd 4d0 -0.0002565994941173 0.0049855281203907 + 316 17 Cd 4d+1 -0.0001879223824832 -0.0137470120587825 + 317 17 Cd 4d+2 -0.0036953961845280 -0.0009427974665018 + 318 17 Cd 5d-2 -0.1167440033622913 0.0332021980962521 + 319 17 Cd 5d-1 0.0061693169826685 -0.0043028272761628 + 320 17 Cd 5d0 -0.0221052946131342 0.0292807561462007 + 321 17 Cd 5d+1 -0.0785543558743754 -0.1279444920700486 + 322 17 Cd 5d+2 0.0171251437660874 0.0093538993722303 + 323 17 Cd 5f-3 -0.0045125915707121 0.0066230338133615 + 324 17 Cd 5f-2 0.0063335365049648 -0.0015704214448247 + 325 17 Cd 5f-1 -0.0061183371091160 0.0041792322008544 + 326 17 Cd 5f0 -0.0004155060049528 -0.0092596164587589 + 327 17 Cd 5f+1 0.0083664150957581 0.0145693793844672 + 328 17 Cd 5f+2 0.0130872364366529 0.0124923933657550 + 329 17 Cd 5f+3 0.0081876541348194 0.0090729524683895 + + 330 18 Cd 2s 0.0027050376052823 0.0390285685964624 + 331 18 Cd 3s -0.0055907444126016 -0.0085077649142097 + 332 18 Cd 3py -0.1482032417702744 -0.0716968917763357 + 333 18 Cd 3pz 0.1977687283712766 0.2011088525428395 + 334 18 Cd 3px 0.0306649233143193 -0.0331623352689110 + 335 18 Cd 4py -0.0210952348140114 -0.0038032255036264 + 336 18 Cd 4pz 0.0259686531466602 0.0227449359742326 + 337 18 Cd 4px 0.0139134913801201 -0.0069841899778478 + 338 18 Cd 4d-2 -0.0115264350488893 0.0052306738906117 + 339 18 Cd 4d-1 0.0039385526949303 0.0036933398539992 + 340 18 Cd 4d0 -0.0216935866199413 -0.0132704528348657 + 341 18 Cd 4d+1 0.0029441451527643 0.0050087066970322 + 342 18 Cd 4d+2 -0.0102244051818473 -0.0046397724438864 + 343 18 Cd 5d-2 -0.0882218677695707 0.0507768763665198 + 344 18 Cd 5d-1 -0.0196434641568310 0.0463735858622186 + 345 18 Cd 5d0 -0.0659545945082952 -0.0224116831595504 + 346 18 Cd 5d+1 -0.0100694749587000 0.0696894679347036 + 347 18 Cd 5d+2 -0.0933599155896222 -0.0771779637095803 + 348 18 Cd 5f-3 0.0119335329605072 0.0188157969354763 + 349 18 Cd 5f-2 0.0000778660426838 0.0228137395448308 + 350 18 Cd 5f-1 0.0106260949512377 0.0073996095681097 + 351 18 Cd 5f0 0.0029268828873215 0.0018066880784657 + 352 18 Cd 5f+1 -0.0037992690596297 -0.0028338869914155 + 353 18 Cd 5f+2 -0.0086792334975797 0.0019924269889925 + 354 18 Cd 5f+3 0.0053108993090825 0.0110375619133844 + + 355 19 Se 2s -0.1454134946731153 -0.0429206329764824 + 356 19 Se 3s 0.0366197464583925 0.0084134315593051 + 357 19 Se 3py 0.0295379398010185 0.0248404723810434 + 358 19 Se 3pz -0.0037084313903650 0.0545580000218634 + 359 19 Se 3px 0.0846577813109324 -0.0646022395453288 + 360 19 Se 4py 0.0031475979040628 -0.0173089980482756 + 361 19 Se 4pz 0.0088034162344872 -0.0097541771496778 + 362 19 Se 4px -0.0046916851467704 0.0421367114281746 + 363 19 Se 4d-2 -0.0241214737255868 -0.0028755414038568 + 364 19 Se 4d-1 -0.0184306881068079 -0.0317461646380055 + 365 19 Se 4d0 -0.0228311480407573 -0.0181941494878645 + 366 19 Se 4d+1 0.0121841077469050 0.0212788652864466 + 367 19 Se 4d+2 -0.0044582523573440 0.0065242155272376 + + 368 20 Se 2s 0.0161049529093846 -0.0886465665940157 + 369 20 Se 3s -0.0023982513185154 0.0214959318575994 + 370 20 Se 3py -0.1514904445588018 -0.0795408297363673 + 371 20 Se 3pz 0.0726396060535422 -0.1108685907569332 + 372 20 Se 3px 0.1414146028943424 -0.0258637651386889 + 373 20 Se 4py 0.0637285944689511 0.0244508552593839 + 374 20 Se 4pz -0.0376585768293969 0.0297215733723392 + 375 20 Se 4px -0.0522653716380429 0.0309667912250125 + 376 20 Se 4d-2 0.0004503854558402 -0.0335671905897523 + 377 20 Se 4d-1 0.0011337021008843 0.0200522414025703 + 378 20 Se 4d0 -0.0264278970599352 -0.0119299028849993 + 379 20 Se 4d+1 -0.0239511008747187 -0.0108514586952161 + 380 20 Se 4d+2 0.0298353525904029 0.0087668043579417 + + 381 21 Se 2s -0.1089337691711224 -0.1073687414671814 + 382 21 Se 3s 0.0294173108550857 0.0274663514568086 + 383 21 Se 3py 0.1005609238749765 0.1752148763724317 + 384 21 Se 3pz -0.0510950795197635 -0.0398345901692680 + 385 21 Se 3px -0.0723504121454414 -0.0198846432963824 + 386 21 Se 4py -0.0717593625683413 -0.1028323724788080 + 387 21 Se 4pz -0.0318105988602201 0.0967904681949429 + 388 21 Se 4px 0.0459757760812742 0.0499580575510934 + 389 21 Se 4d-2 -0.0660522881098543 -0.0612873016724814 + 390 21 Se 4d-1 0.0313340655019339 -0.0442535054279080 + 391 21 Se 4d0 0.0027050790919479 -0.0761056908388136 + 392 21 Se 4d+1 0.0463033386381070 0.0216010437030835 + 393 21 Se 4d+2 -0.0032570862816649 -0.0129398110792260 + + 394 22 Cd 2s -0.0548317651313265 0.1936643723126664 + 395 22 Cd 3s 0.0036320623670298 0.0304282703374892 + 396 22 Cd 3py 0.2645887848323671 0.1094246440235512 + 397 22 Cd 3pz 0.0716108205330926 0.3013631250625081 + 398 22 Cd 3px 0.0858667067270511 0.0260678978442429 + 399 22 Cd 4py 0.0367056960966892 -0.0079450570764533 + 400 22 Cd 4pz -0.0053822523031987 0.0460145713472583 + 401 22 Cd 4px 0.0078861337417556 0.0004094289394055 + 402 22 Cd 4d-2 -0.0181250584868239 -0.0184397393676038 + 403 22 Cd 4d-1 0.0086089658980036 0.0080789703794652 + 404 22 Cd 4d0 0.0116585467211001 -0.0126846913816256 + 405 22 Cd 4d+1 0.0045393171296355 -0.0072077604165371 + 406 22 Cd 4d+2 0.0055445439213698 0.0020829154039956 + 407 22 Cd 5d-2 -0.0885565885311691 0.1019838636250129 + 408 22 Cd 5d-1 0.0006824067857965 0.0918878590539962 + 409 22 Cd 5d0 -0.0841570139446720 0.0831511696563774 + 410 22 Cd 5d+1 0.1220249735964033 -0.0628525110290139 + 411 22 Cd 5d+2 0.0235352888399511 -0.0296027305543779 + 412 22 Cd 5f-3 -0.0020937295349880 -0.0078754151897085 + 413 22 Cd 5f-2 -0.0018584606572053 0.0098617381218202 + 414 22 Cd 5f-1 0.0098140742814774 0.0137041655814820 + 415 22 Cd 5f0 0.0095798622087229 0.0025631805856500 + 416 22 Cd 5f+1 0.0016292462423525 -0.0029293381494550 + 417 22 Cd 5f+2 0.0005753609694140 0.0040259070759141 + 418 22 Cd 5f+3 0.0072694801447895 -0.0301766056530485 + + 419 23 Se 2s -0.1066623550090300 -0.1038148672117591 + 420 23 Se 3s 0.0261963286577622 0.0241893266397252 + 421 23 Se 3py 0.0732962712655381 -0.0192175830467226 + 422 23 Se 3pz -0.0140263616992132 -0.0045021008682532 + 423 23 Se 3px -0.1146992915194573 0.0240242923194205 + 424 23 Se 4py 0.0057239090697143 -0.0186727686397225 + 425 23 Se 4pz 0.0520192741066790 0.0178679387091805 + 426 23 Se 4px 0.0273452771494835 0.0003203395031694 + 427 23 Se 4d-2 -0.0060072105710504 0.0030705859918041 + 428 23 Se 4d-1 0.0170407640286543 0.0222049542960246 + 429 23 Se 4d0 0.0165470501924799 0.0086078433183213 + 430 23 Se 4d+1 0.0234907866964556 -0.0112091262430509 + 431 23 Se 4d+2 -0.0171606146895642 -0.0095623676469162 + + 432 24 Se 2s 0.0227358900294625 0.0349488103246230 + 433 24 Se 3s -0.0031554278956145 -0.0073332155644030 + 434 24 Se 3py 0.0009925186332911 0.0612859580863338 + 435 24 Se 3pz -0.0229752509557265 0.0355077521199416 + 436 24 Se 3px 0.0093446355681531 -0.0194102422899204 + 437 24 Se 4py 0.0143073602041564 0.0335769359376477 + 438 24 Se 4pz 0.0460493842411560 -0.0364152457414186 + 439 24 Se 4px -0.0096391264667868 -0.0428939462627347 + 440 24 Se 4d-2 0.0104134498867218 -0.0142528344644962 + 441 24 Se 4d-1 0.0620957478200437 -0.0039571290029972 + 442 24 Se 4d0 -0.0190296223105958 -0.0282259469539576 + 443 24 Se 4d+1 -0.0160320587682250 -0.0354299648285726 + 444 24 Se 4d+2 0.0045282168020105 -0.0295356356876050 + + 445 25 Cd 2s 0.0713259665860831 0.0118736921446720 + 446 25 Cd 3s 0.0191073356487992 -0.0181085344109920 + 447 25 Cd 3py 0.0881459490703753 -0.1471250781428097 + 448 25 Cd 3pz 0.1837834697319631 -0.0653526960694659 + 449 25 Cd 3px -0.0363251506893244 0.0921597338868683 + 450 25 Cd 4py 0.0204115183332925 -0.0167278608681812 + 451 25 Cd 4pz 0.0384026331675060 -0.0017766255012836 + 452 25 Cd 4px -0.0186214580065029 0.0068010356044174 + 453 25 Cd 4d-2 -0.0086762983345247 0.0059166481570215 + 454 25 Cd 4d-1 -0.0156279244926690 -0.0088011289966982 + 455 25 Cd 4d0 -0.0144702618492806 0.0079247654080709 + 456 25 Cd 4d+1 0.0138628762977431 -0.0030781590466882 + 457 25 Cd 4d+2 0.0075159071548521 0.0029333441109998 + 458 25 Cd 5d-2 -0.1946169267909258 0.0014768780992081 + 459 25 Cd 5d-1 -0.0700724559211264 0.0139036461859856 + 460 25 Cd 5d0 -0.0682666711078033 -0.0591265222487732 + 461 25 Cd 5d+1 -0.0214399774259685 0.0098952774282104 + 462 25 Cd 5d+2 0.1138900747760937 0.0772460108725651 + 463 25 Cd 5f-3 0.0082758401943753 -0.0049475308165572 + 464 25 Cd 5f-2 0.0165151903449175 0.0102846236499290 + 465 25 Cd 5f-1 -0.0026857766528048 -0.0016724885115764 + 466 25 Cd 5f0 0.0100217299867068 0.0136612824380424 + 467 25 Cd 5f+1 0.0098335382557409 0.0110779395660574 + 468 25 Cd 5f+2 -0.0014737492537338 -0.0043392205676639 + 469 25 Cd 5f+3 -0.0170883089705963 -0.0284754657918965 + + 470 26 Cd 2s -0.0359662570491353 -0.0824812169843046 + 471 26 Cd 3s -0.0062482698172045 -0.0212826132867372 + 472 26 Cd 3py 0.0900080111222358 0.0804766722479637 + 473 26 Cd 3pz 0.0068681248532732 -0.1160239818448617 + 474 26 Cd 3px 0.0620181795755153 -0.1080348798669219 + 475 26 Cd 4py 0.0004400962903801 -0.0059341840893366 + 476 26 Cd 4pz -0.0042364202270591 -0.0070006101321348 + 477 26 Cd 4px 0.0002658819332768 -0.0261231184598438 + 478 26 Cd 4d-2 0.0067673329883369 -0.0047848873828971 + 479 26 Cd 4d-1 0.0129393025535281 -0.0125817281620447 + 480 26 Cd 4d0 0.0175526068638644 -0.0093778194236410 + 481 26 Cd 4d+1 0.0132598135080004 0.0036049428937653 + 482 26 Cd 4d+2 -0.0069924399488013 -0.0045079973144971 + 483 26 Cd 5d-2 0.0583853860971617 0.0513618753825757 + 484 26 Cd 5d-1 -0.0151811041218414 -0.0409162823500348 + 485 26 Cd 5d0 0.2574076871404446 0.0155816694353717 + 486 26 Cd 5d+1 0.1304870325580511 0.0955503825737984 + 487 26 Cd 5d+2 -0.0393784122701267 0.0890325301005302 + 488 26 Cd 5f-3 0.0141581595942326 0.0201249358586403 + 489 26 Cd 5f-2 0.0077619931243092 -0.0062506639957585 + 490 26 Cd 5f-1 0.0010008785384222 0.0152843510858548 + 491 26 Cd 5f0 -0.0005135317342000 0.0072476741846092 + 492 26 Cd 5f+1 -0.0138793724039139 -0.0052382954756365 + 493 26 Cd 5f+2 -0.0050915903939476 -0.0266129590402568 + 494 26 Cd 5f+3 -0.0016396050831131 -0.0175696168591259 + + 165 166 + 0.1118447484333108 0.1170831758105600 + + 0.0000000000000000 0.0000000000000000 + + 1 1 Cd 2s 0.1420739061534332 -0.1109220806187005 + 2 1 Cd 3s 0.0155094379449188 -0.0226189182720019 + 3 1 Cd 3py 0.0100295311756550 0.1181676629327725 + 4 1 Cd 3pz -0.1132187607290160 0.1204785492881672 + 5 1 Cd 3px -0.0927145997668953 0.2149284851855316 + 6 1 Cd 4py 0.0151333131724589 0.0134710584854668 + 7 1 Cd 4pz -0.0200937604305991 0.0021400884715657 + 8 1 Cd 4px -0.0355884597915516 0.0398252404025138 + 9 1 Cd 4d-2 0.0083022282141634 -0.0120620070075915 + 10 1 Cd 4d-1 0.0062816248314757 -0.0129723311570634 + 11 1 Cd 4d0 0.0052825776305571 -0.0086206663357118 + 12 1 Cd 4d+1 0.0063292902289779 -0.0034956563625926 + 13 1 Cd 4d+2 0.0027455256696861 0.0070329321864515 + 14 1 Cd 5d-2 -0.0500762025095951 -0.0770256390324514 + 15 1 Cd 5d-1 0.0663597431171312 -0.0564587189508406 + 16 1 Cd 5d0 0.0118227036947411 -0.0802169812641904 + 17 1 Cd 5d+1 0.0880191327634053 -0.0461080592916463 + 18 1 Cd 5d+2 0.0143965207143470 0.0492041528709272 + 19 1 Cd 5f-3 0.0044230380947560 -0.0033036794867235 + 20 1 Cd 5f-2 0.0047680193512699 -0.0062971880471080 + 21 1 Cd 5f-1 0.0195807743680909 -0.0105701152077085 + 22 1 Cd 5f0 -0.0124730440464196 -0.0106485115515669 + 23 1 Cd 5f+1 0.0105011512317919 0.0143076979181725 + 24 1 Cd 5f+2 -0.0167788946707106 -0.0029058700741453 + 25 1 Cd 5f+3 0.0243386969287784 0.0073637113633215 + + 26 2 Cd 2s -0.0081729249346645 0.0710785692694463 + 27 2 Cd 3s -0.0020141373081191 0.0046473053663465 + 28 2 Cd 3py -0.0923343390774461 -0.0554371662439799 + 29 2 Cd 3pz 0.5950276695340760 0.2242959326355491 + 30 2 Cd 3px -0.4938651793841878 -0.1292001537772131 + 31 2 Cd 4py 0.0050982289459556 -0.0009492083651080 + 32 2 Cd 4pz 0.0800425797405819 0.0222524626047749 + 33 2 Cd 4px -0.0629261336034823 -0.0205905809062890 + 34 2 Cd 4d-2 0.0127250175002051 0.0119665973286994 + 35 2 Cd 4d-1 -0.0118430554207099 -0.0050639938782379 + 36 2 Cd 4d0 0.0112272673090203 0.0028064504245910 + 37 2 Cd 4d+1 0.0018466968090785 0.0022422648328597 + 38 2 Cd 4d+2 0.0001153275421100 0.0127142301665235 + 39 2 Cd 5d-2 -0.0141930192023959 -0.1145045715151960 + 40 2 Cd 5d-1 0.0230982038046952 -0.0571320558165205 + 41 2 Cd 5d0 0.0453286439713470 0.0576431046642332 + 42 2 Cd 5d+1 0.0109297583070379 -0.0841232419793888 + 43 2 Cd 5d+2 -0.0167864973139480 -0.0332728090662944 + 44 2 Cd 5f-3 -0.0046066210379900 -0.0029980876644610 + 45 2 Cd 5f-2 -0.0275243162964135 -0.0271695597610382 + 46 2 Cd 5f-1 0.0229621425332344 -0.0100033780873342 + 47 2 Cd 5f0 0.0214621874421591 0.0168154308667648 + 48 2 Cd 5f+1 0.0104768115326280 0.0077715360968491 + 49 2 Cd 5f+2 0.0251451844294660 0.0167989510787061 + 50 2 Cd 5f+3 -0.0052095024561387 0.0196660387067079 + + 51 3 Cd 2s -0.0179299706169138 0.0937712219248048 + 52 3 Cd 3s 0.0073648202379492 0.0226996047235442 + 53 3 Cd 3py 0.2286383711718254 0.0714886214244686 + 54 3 Cd 3pz 0.3572839772015904 0.0492003731335982 + 55 3 Cd 3px -0.1703327988760143 0.0657805738328384 + 56 3 Cd 4py 0.0299773839863425 0.0240102137430445 + 57 3 Cd 4pz 0.0444488173992216 0.0079638710840151 + 58 3 Cd 4px -0.0225245211507002 0.0028137435702356 + 59 3 Cd 4d-2 -0.0159268324027102 0.0031152308549724 + 60 3 Cd 4d-1 0.0023864842496477 -0.0001837431972426 + 61 3 Cd 4d0 0.0057503710136765 0.0054012767439325 + 62 3 Cd 4d+1 -0.0131866411189097 0.0036812372345818 + 63 3 Cd 4d+2 -0.0025829719765641 -0.0067646442581222 + 64 3 Cd 5d-2 0.0141952669092439 0.0422138293205619 + 65 3 Cd 5d-1 0.0563458599857194 -0.0275424109717650 + 66 3 Cd 5d0 0.0735618432490873 0.0255862127761472 + 67 3 Cd 5d+1 -0.0694880913502560 -0.0326809792667894 + 68 3 Cd 5d+2 -0.0408476747099709 0.0445116891041898 + 69 3 Cd 5f-3 -0.0073698079993037 -0.0019440338225467 + 70 3 Cd 5f-2 -0.0126382150900501 0.0076643718496860 + 71 3 Cd 5f-1 -0.0123370873719804 -0.0099533859553791 + 72 3 Cd 5f0 0.0062701000551024 -0.0125448783361304 + 73 3 Cd 5f+1 0.0008605594851145 -0.0014747731918476 + 74 3 Cd 5f+2 -0.0033485086038997 -0.0020107448819578 + 75 3 Cd 5f+3 0.0080872880710654 0.0245643832840729 + + 76 4 Se 2s -0.1880562279234121 -0.1287462573878017 + 77 4 Se 3s 0.0462744035172523 0.0312117336167022 + 78 4 Se 3py 0.1917178427278816 -0.0796510264265119 + 79 4 Se 3pz -0.1680046426864588 -0.1393748118517936 + 80 4 Se 3px -0.0352521649005234 0.1014088107862358 + 81 4 Se 4py -0.0894257342073791 0.0047023436107169 + 82 4 Se 4pz 0.0996274199813582 0.0316879022747612 + 83 4 Se 4px -0.0292949834286049 -0.0618547246755276 + 84 4 Se 4d-2 0.0538996821610416 -0.0119801076341575 + 85 4 Se 4d-1 -0.0359558684663237 -0.0153078009200371 + 86 4 Se 4d0 0.0568735155545523 -0.0135243939636756 + 87 4 Se 4d+1 -0.0415924511958754 -0.0033845812626654 + 88 4 Se 4d+2 0.0032101914170009 0.0131516037316345 + + 89 5 Se 2s -0.0950340044539345 -0.0194763466553420 + 90 5 Se 3s 0.0229366333136314 0.0040151514788900 + 91 5 Se 3py 0.0324714257328261 -0.0184448806935500 + 92 5 Se 3pz -0.1455187198826338 0.0535754992709978 + 93 5 Se 3px 0.0531382478621809 0.0464751809417724 + 94 5 Se 4py 0.0030139269679080 0.0220006133928706 + 95 5 Se 4pz 0.0825782926480962 -0.0513099117011260 + 96 5 Se 4px -0.0366977252737898 -0.0148213264078259 + 97 5 Se 4d-2 -0.0053015085914458 -0.0154393767450466 + 98 5 Se 4d-1 0.0033849720609882 -0.0314285234235163 + 99 5 Se 4d0 0.0230124835860906 -0.0094589497205006 + 100 5 Se 4d+1 -0.0267855338792779 -0.0003346381854148 + 101 5 Se 4d+2 0.0290025468339920 -0.0218963157116430 + + 102 6 Se 2s -0.1119907500587877 0.0291873454393139 + 103 6 Se 3s 0.0287937164244978 -0.0085399702032703 + 104 6 Se 3py 0.0215857168165294 0.0099390292627157 + 105 6 Se 3pz -0.0316371118678060 -0.0405865363186362 + 106 6 Se 3px -0.0372063785426558 -0.0082806204147963 + 107 6 Se 4py -0.0037644196269725 -0.0265228207946650 + 108 6 Se 4pz 0.0330212423509885 0.0184584894296399 + 109 6 Se 4px 0.0321826636818694 0.0068809138280508 + 110 6 Se 4d-2 0.0140530463661022 0.0114529071965676 + 111 6 Se 4d-1 -0.0409541726750449 -0.0239107283368154 + 112 6 Se 4d0 0.0307099181468009 0.0002047344624697 + 113 6 Se 4d+1 -0.0434448291919162 -0.0069366462050641 + 114 6 Se 4d+2 -0.0250430662607470 0.0003158339502661 + + 115 7 Se 2s 0.1756827318836011 0.0282833124244093 + 116 7 Se 3s -0.0459554225738053 -0.0096342916011659 + 117 7 Se 3py 0.0223836373454116 0.0763664615045190 + 118 7 Se 3pz -0.0518334036325280 -0.0322709876078742 + 119 7 Se 3px 0.0292110864345970 0.0209121692017822 + 120 7 Se 4py 0.0307251591335051 -0.0725411779522372 + 121 7 Se 4pz 0.0978379674788370 0.0440550928865940 + 122 7 Se 4px -0.0250734614711192 -0.0695448957309407 + 123 7 Se 4d-2 0.0763345291666904 0.0639641339071578 + 124 7 Se 4d-1 -0.0302952786983233 0.0095603781997793 + 125 7 Se 4d0 -0.0050377310867804 -0.0279667326272632 + 126 7 Se 4d+1 0.0035882532885102 0.0144113695536881 + 127 7 Se 4d+2 -0.0264184105171415 0.0081793512968831 + + 128 8 Cd 2s -0.0408401110450865 -0.1095682074336460 + 129 8 Cd 3s 0.0051668714665365 -0.0301108608067637 + 130 8 Cd 3py 0.3017858512480627 -0.1946129142638713 + 131 8 Cd 3pz -0.2039713439944224 -0.2724054509724814 + 132 8 Cd 3px -0.0174306435128071 -0.0844721098999727 + 133 8 Cd 4py 0.0536038231893207 -0.0308656890139521 + 134 8 Cd 4pz -0.0303151669675962 -0.0321299956597587 + 135 8 Cd 4px 0.0016282796937110 -0.0197919937694565 + 136 8 Cd 4d-2 0.0113172643592294 0.0224486705243257 + 137 8 Cd 4d-1 -0.0085059253157201 -0.0035090505687679 + 138 8 Cd 4d0 -0.0141214071051296 -0.0113182862883789 + 139 8 Cd 4d+1 -0.0063968356612641 0.0086533381854560 + 140 8 Cd 4d+2 0.0133978406823052 -0.0171148254913491 + 141 8 Cd 5d-2 0.0201701882334404 -0.0163058594305580 + 142 8 Cd 5d-1 0.0851122282319742 0.0164461022563159 + 143 8 Cd 5d0 -0.0202844354861542 -0.0031260890124025 + 144 8 Cd 5d+1 -0.0139584474086230 -0.1990442148700423 + 145 8 Cd 5d+2 -0.0313743955973177 0.0777066837957197 + 146 8 Cd 5f-3 0.0079517283887344 0.0109701594891756 + 147 8 Cd 5f-2 0.0035872218877697 -0.0109459565182953 + 148 8 Cd 5f-1 0.0093179430800152 0.0041407154122145 + 149 8 Cd 5f0 -0.0076395577226103 -0.0024830450284193 + 150 8 Cd 5f+1 -0.0083041377230691 -0.0186294843775093 + 151 8 Cd 5f+2 -0.0225166091068682 0.0064661079243516 + 152 8 Cd 5f+3 0.0156620750775654 0.0007889642651052 + + 153 9 Cd 2s -0.3310521381318386 -0.1420965172477560 + 154 9 Cd 3s -0.0511961806295834 -0.0181375888265141 + 155 9 Cd 3py -0.1840865946634623 -0.1072605283037870 + 156 9 Cd 3pz 0.3417085790894244 0.0832730275398595 + 157 9 Cd 3px -0.0160996997430256 -0.0253094333126610 + 158 9 Cd 4py -0.0311509283798850 -0.0129210849659646 + 159 9 Cd 4pz 0.0767599711633706 0.0310438135383112 + 160 9 Cd 4px 0.0194063769101283 -0.0098306331387873 + 161 9 Cd 4d-2 0.0141610506231808 0.0152749892588140 + 162 9 Cd 4d-1 -0.0056311059861765 -0.0006483045180686 + 163 9 Cd 4d0 0.0106864951393626 0.0008210192984706 + 164 9 Cd 4d+1 -0.0038150006774699 -0.0036345160570388 + 165 9 Cd 4d+2 -0.0044232496878803 -0.0048617925039560 + 166 9 Cd 5d-2 0.1931438595924310 0.0891530587099678 + 167 9 Cd 5d-1 -0.0444260566474540 -0.0055747244663243 + 168 9 Cd 5d0 0.1297704683249847 0.0289838208583026 + 169 9 Cd 5d+1 -0.0254831964361507 -0.0135374203780432 + 170 9 Cd 5d+2 -0.1209719184790384 -0.0257954182123986 + 171 9 Cd 5f-3 0.0087311350073431 -0.0032011143291221 + 172 9 Cd 5f-2 -0.0019634936011372 -0.0114237962605063 + 173 9 Cd 5f-1 0.0085777316859384 0.0109700751065826 + 174 9 Cd 5f0 -0.0104526777156612 -0.0078074060692918 + 175 9 Cd 5f+1 0.0001773980038837 -0.0122160247002847 + 176 9 Cd 5f+2 0.0019752077713961 -0.0033877252572787 + 177 9 Cd 5f+3 -0.0037359796607846 -0.0005914486098753 + + 178 10 Se 2s -0.2478550190528465 0.0226584065762048 + 179 10 Se 3s 0.0711158640975222 -0.0027556390397776 + 180 10 Se 3py -0.1712692365029684 -0.1296159601305063 + 181 10 Se 3pz 0.1254173946623777 -0.0320451868470325 + 182 10 Se 3px -0.0261469647113691 -0.0468352131090762 + 183 10 Se 4py 0.1073982756129969 0.0589016977031655 + 184 10 Se 4pz -0.0526261066716158 0.0578174543331645 + 185 10 Se 4px 0.0725130949819271 0.0273055955284070 + 186 10 Se 4d-2 0.0459675427939014 0.0340694105266479 + 187 10 Se 4d-1 -0.0100926067934115 -0.0253214167383595 + 188 10 Se 4d0 -0.0157898172441935 -0.0338353220383825 + 189 10 Se 4d+1 -0.0302887456281112 0.0051318589696225 + 190 10 Se 4d+2 0.0091368764780263 0.0196300226600097 + + 191 11 Se 2s 0.0317226393670023 -0.1246171353695001 + 192 11 Se 3s -0.0069140080016318 0.0315386113371693 + 193 11 Se 3py -0.0580983929166261 0.0721242064106243 + 194 11 Se 3pz -0.0229715239920818 0.2204747103504007 + 195 11 Se 3px -0.0320438744666538 -0.0814712254809046 + 196 11 Se 4py 0.0483592775566969 0.0263399842868844 + 197 11 Se 4pz 0.0095340224233804 -0.0699036981529017 + 198 11 Se 4px 0.0152834431677809 -0.0028730628279517 + 199 11 Se 4d-2 -0.0178013718298799 -0.0136811288483048 + 200 11 Se 4d-1 -0.0237873788231563 -0.0081418563341801 + 201 11 Se 4d0 -0.0392806699656015 0.0109650737825852 + 202 11 Se 4d+1 -0.0212270120327577 0.0104775821050123 + 203 11 Se 4d+2 -0.0108685675318546 -0.0192927434178958 + + 204 12 Cd 2s -0.0308353363261964 -0.0665518765725429 + 205 12 Cd 3s -0.0095465468540141 -0.0114146130352486 + 206 12 Cd 3py -0.0173639090236992 -0.0654453582113174 + 207 12 Cd 3pz -0.0055798628906198 0.3614424926401091 + 208 12 Cd 3px -0.2860231950662621 0.1230995375699511 + 209 12 Cd 4py -0.0073045535470503 -0.0046468904425000 + 210 12 Cd 4pz 0.0001709415507393 0.0602726147474488 + 211 12 Cd 4px -0.0314968144541140 0.0040110226392746 + 212 12 Cd 4d-2 -0.0035551790039265 0.0064330128050446 + 213 12 Cd 4d-1 -0.0074228034704848 -0.0043669551092158 + 214 12 Cd 4d0 -0.0130354795168958 0.0104482938883569 + 215 12 Cd 4d+1 -0.0066670303323214 0.0099702648729847 + 216 12 Cd 4d+2 -0.0006767614304321 -0.0010496232530211 + 217 12 Cd 5d-2 -0.0514240524840278 0.1765187400504533 + 218 12 Cd 5d-1 0.0119266202479341 -0.0569585501972854 + 219 12 Cd 5d0 -0.0139522331594378 0.0111849581343267 + 220 12 Cd 5d+1 0.2042464603404206 0.1066377713285957 + 221 12 Cd 5d+2 -0.0145483509837178 -0.1236391147748484 + 222 12 Cd 5f-3 0.0021963706466723 -0.0079204153791350 + 223 12 Cd 5f-2 -0.0093165212418606 -0.0105490775723807 + 224 12 Cd 5f-1 0.0135927295363218 0.0178983918519197 + 225 12 Cd 5f0 0.0123432032145376 -0.0078607753946480 + 226 12 Cd 5f+1 0.0240155359650459 0.0136385927131546 + 227 12 Cd 5f+2 -0.0092139385625708 0.0147982596793519 + 228 12 Cd 5f+3 0.0100742759996556 0.0211856156114962 + + 229 13 Cd 2s 0.1313042934948958 0.0341230094731876 + 230 13 Cd 3s 0.0216778649543419 -0.0127508585660906 + 231 13 Cd 3py 0.2881865005437194 -0.3741850466693111 + 232 13 Cd 3pz 0.2318116919363115 -0.5130080008636193 + 233 13 Cd 3px -0.0080864386252753 0.0395465763161173 + 234 13 Cd 4py 0.0429454968516909 -0.0457675900518130 + 235 13 Cd 4pz 0.0348419827987465 -0.0757012511771317 + 236 13 Cd 4px 0.0010779593144570 -0.0033259722696881 + 237 13 Cd 4d-2 0.0191286790717088 -0.0123492275916807 + 238 13 Cd 4d-1 0.0027821488709140 -0.0075506134437123 + 239 13 Cd 4d0 0.0036630095663523 -0.0023531291515595 + 240 13 Cd 4d+1 0.0054212239330491 -0.0008268803462352 + 241 13 Cd 4d+2 -0.0072763310971285 0.0045306798995842 + 242 13 Cd 5d-2 -0.0125289349619996 0.0670137502378849 + 243 13 Cd 5d-1 0.1803629767166816 -0.0536865662565650 + 244 13 Cd 5d0 0.0682143074623452 -0.0859100916562624 + 245 13 Cd 5d+1 0.0598675925780024 0.0429380226556047 + 246 13 Cd 5d+2 -0.1514922249975666 -0.0393566582728197 + 247 13 Cd 5f-3 -0.0225147309446159 -0.0027902805931691 + 248 13 Cd 5f-2 0.0015169049325104 -0.0047400403250150 + 249 13 Cd 5f-1 0.0178972956765655 -0.0163777285350343 + 250 13 Cd 5f0 -0.0210379853669391 -0.0012718479339373 + 251 13 Cd 5f+1 0.0021723850929571 0.0083225597048004 + 252 13 Cd 5f+2 0.0051527795050427 0.0121067691293852 + 253 13 Cd 5f+3 -0.0270625538845509 0.0148185699996224 + + 254 14 Cd 2s -0.1554804499041032 0.1097012100421095 + 255 14 Cd 3s -0.0203243694929033 0.0073503529192255 + 256 14 Cd 3py 0.0867269819929747 -0.1472013121312398 + 257 14 Cd 3pz 0.1594279533051022 0.1192002057395280 + 258 14 Cd 3px 0.1141471093509938 0.0196526051269117 + 259 14 Cd 4py 0.0445984276373509 -0.0348296426902897 + 260 14 Cd 4pz 0.0287178457730806 0.0153275426872316 + 261 14 Cd 4px 0.0018755614112493 -0.0016777018752184 + 262 14 Cd 4d-2 0.0061236833913002 -0.0011300735805374 + 263 14 Cd 4d-1 0.0031564027860811 0.0020196053761965 + 264 14 Cd 4d0 -0.0038018201290619 0.0024690734478762 + 265 14 Cd 4d+1 -0.0099897685092880 0.0063426155625061 + 266 14 Cd 4d+2 -0.0027603823909222 -0.0024335973338354 + 267 14 Cd 5d-2 0.0822621299072319 0.1538321708236339 + 268 14 Cd 5d-1 0.0333487200262053 -0.0244816459297950 + 269 14 Cd 5d0 0.0615195197994198 0.1169159680226463 + 270 14 Cd 5d+1 -0.2104481195986957 -0.1390169254107710 + 271 14 Cd 5d+2 0.1060229814773064 -0.1567182886341162 + 272 14 Cd 5f-3 0.0201575654461065 -0.0159316437906256 + 273 14 Cd 5f-2 0.0098521721630112 -0.0266951827292277 + 274 14 Cd 5f-1 0.0037362050067539 0.0066946283369383 + 275 14 Cd 5f0 0.0153564911258865 -0.0027738259749077 + 276 14 Cd 5f+1 -0.0160458536195081 -0.0223757276989865 + 277 14 Cd 5f+2 0.0001312379419819 -0.0038074750381067 + 278 14 Cd 5f+3 -0.0123478930706335 -0.0157768121117029 + + 279 15 Se 2s 0.0684249976745863 -0.0038609134173827 + 280 15 Se 3s -0.0152722057433185 -0.0014970386594731 + 281 15 Se 3py -0.0345184888229412 -0.0480654008113003 + 282 15 Se 3pz -0.0962067324863929 -0.0534722077019307 + 283 15 Se 3px 0.1491247431343263 -0.1122882784668294 + 284 15 Se 4py 0.0400618973659011 0.0003953261811334 + 285 15 Se 4pz 0.0430697456743944 0.0134744830209863 + 286 15 Se 4px -0.1103919208538169 0.1107086660137826 + 287 15 Se 4d-2 0.0181591508474259 -0.0869386362903186 + 288 15 Se 4d-1 0.0071573223739182 0.0137982000626388 + 289 15 Se 4d0 0.0628214953444577 -0.0036032351111045 + 290 15 Se 4d+1 -0.0126476416713443 -0.0191341399852061 + 291 15 Se 4d+2 -0.0537465726337797 0.0177034387094942 + + 292 16 Se 2s 0.0229206447003375 0.1333400836100768 + 293 16 Se 3s -0.0070143304720814 -0.0337503231429000 + 294 16 Se 3py -0.0786968857820764 0.1297694027404027 + 295 16 Se 3pz -0.0186814220630892 0.1064429230699291 + 296 16 Se 3px -0.0646202040678662 -0.0748721558603827 + 297 16 Se 4py 0.0274284702502875 -0.0507336250969592 + 298 16 Se 4pz -0.0149859642473026 -0.0641302693842816 + 299 16 Se 4px 0.0014997237965193 0.0736565524215374 + 300 16 Se 4d-2 0.0087238299273684 0.0010478996283840 + 301 16 Se 4d-1 0.0243956129191197 -0.0469451551518718 + 302 16 Se 4d0 0.0035559468192320 -0.0340704529844490 + 303 16 Se 4d+1 -0.0049570766280059 0.0377114819394899 + 304 16 Se 4d+2 -0.0084226108777211 -0.0117259683534792 + + 305 17 Cd 2s 0.0305275302661786 0.0478163349252567 + 306 17 Cd 3s 0.0013706900799495 0.0102685129544666 + 307 17 Cd 3py 0.1170116232788161 0.0408390755233120 + 308 17 Cd 3pz -0.0741032828529955 0.0966336684813395 + 309 17 Cd 3px -0.0968494319094539 -0.0269441283291943 + 310 17 Cd 4py 0.0141905092439974 0.0016144472602022 + 311 17 Cd 4pz -0.0249840187285955 0.0332965701641831 + 312 17 Cd 4px -0.0238551654434966 0.0143009556316154 + 313 17 Cd 4d-2 -0.0040460465244695 0.0093319912346437 + 314 17 Cd 4d-1 0.0079108394490236 0.0054881529596129 + 315 17 Cd 4d0 0.0116114228599065 -0.0050525715603668 + 316 17 Cd 4d+1 0.0058762741810598 0.0061816463783817 + 317 17 Cd 4d+2 -0.0072868522791042 -0.0040973689271706 + 318 17 Cd 5d-2 -0.0426225439486993 0.0222399083768653 + 319 17 Cd 5d-1 0.0046821952558545 0.0151994075190160 + 320 17 Cd 5d0 0.0699536515017218 -0.0244879942964516 + 321 17 Cd 5d+1 0.0204719397749822 -0.0836760641548268 + 322 17 Cd 5d+2 -0.0337016444295405 0.0224774892728693 + 323 17 Cd 5f-3 0.0017901362516524 -0.0019088456269103 + 324 17 Cd 5f-2 -0.0074767411595874 -0.0022546170088583 + 325 17 Cd 5f-1 0.0024499183342356 -0.0064605740612047 + 326 17 Cd 5f0 0.0033850116712262 -0.0053447217615711 + 327 17 Cd 5f+1 -0.0009874065375781 0.0210380487904624 + 328 17 Cd 5f+2 0.0044855325259576 -0.0096988626252050 + 329 17 Cd 5f+3 0.0035310878307787 -0.0050780077135883 + + 330 18 Cd 2s 0.1848052154161068 -0.0588054358801935 + 331 18 Cd 3s 0.0291426281351505 -0.0165658340309271 + 332 18 Cd 3py 0.1660349683002289 0.0817973474787311 + 333 18 Cd 3pz 0.1701139533785248 -0.3151475745769115 + 334 18 Cd 3px 0.0232613969748005 0.0198327520452838 + 335 18 Cd 4py 0.0437755737789742 0.0099054577917397 + 336 18 Cd 4pz 0.0270822774962073 -0.0378837971234040 + 337 18 Cd 4px -0.0103454758458161 0.0039136305208838 + 338 18 Cd 4d-2 0.0050618123218011 -0.0029264231381670 + 339 18 Cd 4d-1 -0.0129587223201441 -0.0074901046087357 + 340 18 Cd 4d0 0.0048495983390105 0.0115275503532495 + 341 18 Cd 4d+1 -0.0036669065218591 -0.0002000930125138 + 342 18 Cd 4d+2 0.0090990442234954 0.0022242850981763 + 343 18 Cd 5d-2 -0.0632526517221448 0.1094376229937555 + 344 18 Cd 5d-1 -0.1510152299717040 0.1658877147111653 + 345 18 Cd 5d0 -0.0161112583809571 0.1306723416392382 + 346 18 Cd 5d+1 -0.0731330324712687 -0.0712715028023891 + 347 18 Cd 5d+2 0.0748768751133833 0.1041489546412283 + 348 18 Cd 5f-3 0.0003075285555521 0.0017905296241963 + 349 18 Cd 5f-2 0.0116389804342219 0.0085775819573223 + 350 18 Cd 5f-1 0.0139537548566150 -0.0151022501951626 + 351 18 Cd 5f0 0.0042420285833611 0.0104576719875059 + 352 18 Cd 5f+1 -0.0069162892546976 0.0083878863478897 + 353 18 Cd 5f+2 0.0063952223338197 0.0063833644989523 + 354 18 Cd 5f+3 0.0029757608221301 -0.0035148855079958 + + 355 19 Se 2s -0.0278935312893071 0.0403748966278140 + 356 19 Se 3s 0.0064638586931672 -0.0104521036963575 + 357 19 Se 3py 0.0429501163485895 -0.1496880279858332 + 358 19 Se 3pz -0.0177320041987763 0.0495687582091188 + 359 19 Se 3px -0.0163778042159912 0.1063431484847697 + 360 19 Se 4py 0.0301585711046739 0.0175433465722780 + 361 19 Se 4pz 0.0123718038292146 -0.0099652690160323 + 362 19 Se 4px -0.0032676922058362 -0.0075099460434672 + 363 19 Se 4d-2 0.0088466173206795 0.0020238986886971 + 364 19 Se 4d-1 0.0143360542767064 0.0210952295872838 + 365 19 Se 4d0 -0.0073357626243373 0.0054916607048696 + 366 19 Se 4d+1 -0.0072490370776915 -0.0118353290834226 + 367 19 Se 4d+2 -0.0251007064797115 0.0242213130712439 + + 368 20 Se 2s -0.0329204688283584 -0.0033384297026736 + 369 20 Se 3s 0.0097858275240170 0.0004871666133770 + 370 20 Se 3py 0.0978397810364755 0.0486678051426297 + 371 20 Se 3pz 0.0194230186770181 0.1239435299178122 + 372 20 Se 3px -0.0303116120751081 0.0096686152725787 + 373 20 Se 4py -0.0827175257536345 -0.0306463524887058 + 374 20 Se 4pz -0.0062876957303280 -0.1031894506025550 + 375 20 Se 4px 0.0159987909222013 -0.0167473704820618 + 376 20 Se 4d-2 0.0299086854614670 0.0022924893575624 + 377 20 Se 4d-1 0.0151716955728821 -0.0243988815853403 + 378 20 Se 4d0 -0.0135217079175646 -0.0077801248211170 + 379 20 Se 4d+1 -0.0218137432726877 0.0310561092918919 + 380 20 Se 4d+2 -0.0345562210035936 -0.0134043083775008 + + 381 21 Se 2s 0.1025236533535252 0.0922693717616123 + 382 21 Se 3s -0.0251083810031052 -0.0230636165959741 + 383 21 Se 3py 0.0136440605885376 -0.0501860744028457 + 384 21 Se 3pz 0.0406244945348375 -0.0420562778782553 + 385 21 Se 3px -0.0059032901356066 0.1124582896154749 + 386 21 Se 4py 0.0669345665838287 -0.0185977487179306 + 387 21 Se 4pz -0.0139149353567846 0.0684241587329489 + 388 21 Se 4px -0.0153430375391255 -0.0550173817253704 + 389 21 Se 4d-2 0.0196043065329398 0.0186811620456486 + 390 21 Se 4d-1 -0.0007960649588084 0.0170703939281174 + 391 21 Se 4d0 0.0161288907439607 -0.0332130418632410 + 392 21 Se 4d+1 -0.0096051196353506 0.0642066035013180 + 393 21 Se 4d+2 0.0094435476765042 -0.0183851789250396 + + 394 22 Cd 2s 0.0255247624329321 -0.0471084580951161 + 395 22 Cd 3s 0.0222818290987636 0.0028077392308201 + 396 22 Cd 3py 0.0215812301933695 0.5016792479569993 + 397 22 Cd 3pz 0.0292809268115386 0.5074026791055114 + 398 22 Cd 3px 0.1308311230039695 -0.0030759761916190 + 399 22 Cd 4py 0.0090579239362334 0.0592689133698939 + 400 22 Cd 4pz 0.0095102776133305 0.0772986398477346 + 401 22 Cd 4px 0.0300262515546550 0.0069867827726838 + 402 22 Cd 4d-2 -0.0005929613566650 -0.0050912558015567 + 403 22 Cd 4d-1 0.0076256536042777 0.0037295016152973 + 404 22 Cd 4d0 0.0064651227486658 0.0042654462595520 + 405 22 Cd 4d+1 -0.0037783998699700 -0.0027538461439263 + 406 22 Cd 4d+2 -0.0232550664734436 0.0043408615849548 + 407 22 Cd 5d-2 -0.1033884251817341 0.0918190065867194 + 408 22 Cd 5d-1 -0.0002240952172398 0.0130465804210531 + 409 22 Cd 5d0 -0.0400217849753347 0.0679728173882553 + 410 22 Cd 5d+1 -0.0421605401268075 0.0255512512618944 + 411 22 Cd 5d+2 -0.0774275476787141 0.0013360395507802 + 412 22 Cd 5f-3 -0.0035334707271468 0.0086565134593701 + 413 22 Cd 5f-2 -0.0001071067848503 0.0017856806557786 + 414 22 Cd 5f-1 -0.0098270737983500 0.0040577091361637 + 415 22 Cd 5f0 -0.0092085578690601 0.0050618599792849 + 416 22 Cd 5f+1 -0.0006660982305905 -0.0071218254988618 + 417 22 Cd 5f+2 -0.0054183350875512 -0.0030321802875072 + 418 22 Cd 5f+3 0.0257561099542242 -0.0042581363478118 + + 419 23 Se 2s 0.0552146214235011 -0.2427988277225257 + 420 23 Se 3s -0.0119704405710389 0.0595675246630454 + 421 23 Se 3py -0.0629809516380695 0.0009568901449886 + 422 23 Se 3pz -0.0480009168883036 -0.1261430632344116 + 423 23 Se 3px 0.0882683281125856 -0.0083591061759119 + 424 23 Se 4py 0.0337706306202845 0.0006302346773793 + 425 23 Se 4pz -0.0064562078495179 0.1459590489079499 + 426 23 Se 4px -0.0402971422937665 0.0378634290137105 + 427 23 Se 4d-2 -0.0041279674895884 0.0166948445047633 + 428 23 Se 4d-1 0.0080579415149447 0.0115449058959299 + 429 23 Se 4d0 0.0051591939626970 0.0478001065720533 + 430 23 Se 4d+1 -0.0111800308628213 0.0263697252921786 + 431 23 Se 4d+2 -0.0046894364853957 -0.0148953777294727 + + 432 24 Se 2s 0.0612522940599153 0.1442754040861708 + 433 24 Se 3s -0.0173801634179655 -0.0391093019643269 + 434 24 Se 3py -0.0496538256325009 0.0810189050388758 + 435 24 Se 3pz 0.0194124758731814 -0.0994350669633051 + 436 24 Se 3px 0.0703450430870780 0.0215604661388953 + 437 24 Se 4py 0.0032388701701964 -0.1011206483963130 + 438 24 Se 4pz -0.0574313666867978 0.1104937869454479 + 439 24 Se 4px -0.0485697343933615 -0.0297335175627438 + 440 24 Se 4d-2 -0.0021345782723509 -0.0080062235264508 + 441 24 Se 4d-1 -0.0090674882362899 0.0377805954884132 + 442 24 Se 4d0 0.0110465497463503 0.0467782480624154 + 443 24 Se 4d+1 -0.0280410915768798 0.0572966539143376 + 444 24 Se 4d+2 -0.0178247791615692 0.0256158979229600 + + 445 25 Cd 2s -0.0596653006100025 0.1239976053201889 + 446 25 Cd 3s -0.0170191802745342 0.0259766338478332 + 447 25 Cd 3py 0.1259067458682918 -0.1286529104834975 + 448 25 Cd 3pz -0.1309952012182413 0.4078432236210306 + 449 25 Cd 3px -0.0576796594190518 -0.1408763369424690 + 450 25 Cd 4py 0.0236048052986704 -0.0358930167351316 + 451 25 Cd 4pz -0.0309709626479638 0.0641289507918869 + 452 25 Cd 4px -0.0107524524843034 -0.0055324091396696 + 453 25 Cd 4d-2 0.0068413948051528 -0.0017677169759621 + 454 25 Cd 4d-1 0.0087743445520470 0.0016268373730611 + 455 25 Cd 4d0 0.0044243647587246 0.0100441991250920 + 456 25 Cd 4d+1 -0.0007562293075908 -0.0023606753556412 + 457 25 Cd 4d+2 -0.0034731555313706 0.0091615203872825 + 458 25 Cd 5d-2 0.0907562185678248 -0.1632481672184062 + 459 25 Cd 5d-1 0.0308420229392026 -0.0112740227973073 + 460 25 Cd 5d0 0.0337268265171844 0.0219997776209794 + 461 25 Cd 5d+1 0.0720157221675763 -0.1769426291287043 + 462 25 Cd 5d+2 -0.0248879106726414 -0.0117304010735017 + 463 25 Cd 5f-3 -0.0025417653741585 0.0077184387844862 + 464 25 Cd 5f-2 -0.0079714344130378 0.0045183376793706 + 465 25 Cd 5f-1 0.0058142050021753 0.0211513681350606 + 466 25 Cd 5f0 0.0000211708264820 -0.0027785705763414 + 467 25 Cd 5f+1 -0.0017848882930569 0.0064222296382240 + 468 25 Cd 5f+2 -0.0099706316040901 0.0115627289878324 + 469 25 Cd 5f+3 0.0004098283977944 0.0136731828801121 + + 470 26 Cd 2s 0.0432343115010746 0.0072286920892303 + 471 26 Cd 3s 0.0145250232074388 0.0037627620367545 + 472 26 Cd 3py 0.0867121934248666 -0.1693019199371305 + 473 26 Cd 3pz 0.0059945324341095 -0.0437387133344536 + 474 26 Cd 3px 0.0374203982281617 -0.0120438179363345 + 475 26 Cd 4py 0.0202123316582676 -0.0158921814213916 + 476 26 Cd 4pz -0.0154886171558671 0.0212370307526849 + 477 26 Cd 4px 0.0069961751693797 -0.0007255592997649 + 478 26 Cd 4d-2 -0.0108213196449796 0.0015671824675368 + 479 26 Cd 4d-1 0.0001476408163304 0.0125010740842395 + 480 26 Cd 4d0 -0.0107562409840394 0.0144301988631339 + 481 26 Cd 4d+1 0.0037116622742004 -0.0098044137827841 + 482 26 Cd 4d+2 0.0016394544975974 0.0095441440474818 + 483 26 Cd 5d-2 -0.0748240653611472 0.0695668709762415 + 484 26 Cd 5d-1 0.0891556498941409 0.1560234255729713 + 485 26 Cd 5d0 -0.1684355371505382 0.1055091311555537 + 486 26 Cd 5d+1 0.0044812825302179 -0.0648160976998770 + 487 26 Cd 5d+2 0.0462615294338767 0.0372633764334984 + 488 26 Cd 5f-3 -0.0138610290044883 -0.0180199180086615 + 489 26 Cd 5f-2 -0.0129391864517800 0.0112014048840568 + 490 26 Cd 5f-1 0.0046083387950575 0.0174830680400008 + 491 26 Cd 5f0 -0.0071496339165513 0.0079302917017983 + 492 26 Cd 5f+1 -0.0005248004654924 0.0117768526195497 + 493 26 Cd 5f+2 0.0014274423013585 -0.0198588464077011 + 494 26 Cd 5f+3 0.0082060847785187 0.0040216115359124 + + 167 + 0.1199793846836515 + + 0.0000000000000000 + + 1 1 Cd 2s 0.1952545294247039 + 2 1 Cd 3s 0.0186427047993240 + 3 1 Cd 3py -0.1271636231937045 + 4 1 Cd 3pz -0.0821460283417915 + 5 1 Cd 3px -0.2110480963322325 + 6 1 Cd 4py -0.0037664712553469 + 7 1 Cd 4pz 0.0031009688269158 + 8 1 Cd 4px -0.0422364297058275 + 9 1 Cd 4d-2 0.0019364793884592 + 10 1 Cd 4d-1 0.0237534266278726 + 11 1 Cd 4d0 -0.0026215734660481 + 12 1 Cd 4d+1 0.0102076161829370 + 13 1 Cd 4d+2 -0.0004333297782111 + 14 1 Cd 5d-2 0.0114357337753377 + 15 1 Cd 5d-1 0.0498537505899671 + 16 1 Cd 5d0 0.0757632765987668 + 17 1 Cd 5d+1 0.1678494790457114 + 18 1 Cd 5d+2 -0.0146214436775654 + 19 1 Cd 5f-3 -0.0100829209868743 + 20 1 Cd 5f-2 -0.0142667966626573 + 21 1 Cd 5f-1 0.0347937277401694 + 22 1 Cd 5f0 0.0084872315842156 + 23 1 Cd 5f+1 -0.0107019461595074 + 24 1 Cd 5f+2 -0.0131444532695538 + 25 1 Cd 5f+3 -0.0096354599599336 + + 26 2 Cd 2s 0.1949750776466082 + 27 2 Cd 3s 0.0392784285393451 + 28 2 Cd 3py -0.0420602203596550 + 29 2 Cd 3pz -0.1427934304962346 + 30 2 Cd 3px 0.1457696959884286 + 31 2 Cd 4py -0.0058266620910690 + 32 2 Cd 4pz -0.0169738807478173 + 33 2 Cd 4px 0.0180524081253051 + 34 2 Cd 4d-2 0.0058301821166160 + 35 2 Cd 4d-1 0.0151691210005433 + 36 2 Cd 4d0 -0.0157881444955437 + 37 2 Cd 4d+1 0.0036508130504790 + 38 2 Cd 4d+2 -0.0022402789863470 + 39 2 Cd 5d-2 -0.0685181820446365 + 40 2 Cd 5d-1 0.0872217163810615 + 41 2 Cd 5d0 -0.0334987184889939 + 42 2 Cd 5d+1 -0.0588122349330187 + 43 2 Cd 5d+2 -0.0766514547175637 + 44 2 Cd 5f-3 -0.0062241438468754 + 45 2 Cd 5f-2 0.0006635758033360 + 46 2 Cd 5f-1 0.0028691294216439 + 47 2 Cd 5f0 0.0075354286900665 + 48 2 Cd 5f+1 0.0009978270941194 + 49 2 Cd 5f+2 -0.0244361337611880 + 50 2 Cd 5f+3 -0.0133553174227918 + + 51 3 Cd 2s -0.1671953077715323 + 52 3 Cd 3s -0.0315873112284029 + 53 3 Cd 3py -0.3760048950963288 + 54 3 Cd 3pz 0.1592550671175947 + 55 3 Cd 3px -0.6429897097729226 + 56 3 Cd 4py -0.0494965330262674 + 57 3 Cd 4pz 0.0122528700284498 + 58 3 Cd 4px -0.0778517052446052 + 59 3 Cd 4d-2 -0.0065032431015222 + 60 3 Cd 4d-1 0.0217209196400881 + 61 3 Cd 4d0 0.0182174689892253 + 62 3 Cd 4d+1 -0.0078819829355170 + 63 3 Cd 4d+2 0.0024229141768807 + 64 3 Cd 5d-2 -0.0213395469332816 + 65 3 Cd 5d-1 0.0398980624127349 + 66 3 Cd 5d0 0.0206035419912382 + 67 3 Cd 5d+1 -0.0714655107508465 + 68 3 Cd 5d+2 -0.0363833750446932 + 69 3 Cd 5f-3 -0.0162210146306886 + 70 3 Cd 5f-2 -0.0083076765758485 + 71 3 Cd 5f-1 0.0172351328740900 + 72 3 Cd 5f0 0.0039453890641230 + 73 3 Cd 5f+1 0.0129338695315500 + 74 3 Cd 5f+2 0.0116101270795133 + 75 3 Cd 5f+3 -0.0106666640571020 + + 76 4 Se 2s 0.0096525096229269 + 77 4 Se 3s -0.0039736927522918 + 78 4 Se 3py -0.0264007921545970 + 79 4 Se 3pz 0.1964596862663982 + 80 4 Se 3px -0.0029457839480365 + 81 4 Se 4py 0.0405073861003252 + 82 4 Se 4pz -0.0696498171952684 + 83 4 Se 4px -0.0365776525755235 + 84 4 Se 4d-2 0.0009274606116599 + 85 4 Se 4d-1 0.0219669812706579 + 86 4 Se 4d0 0.0164205245705349 + 87 4 Se 4d+1 0.0272498196583122 + 88 4 Se 4d+2 0.0328742944613035 + + 89 5 Se 2s -0.0978711967946652 + 90 5 Se 3s 0.0236670970175634 + 91 5 Se 3py 0.0126831003570905 + 92 5 Se 3pz -0.1672676604521550 + 93 5 Se 3px 0.0195293752708685 + 94 5 Se 4py 0.0206762485073097 + 95 5 Se 4pz 0.1353795209472021 + 96 5 Se 4px -0.0285272432748688 + 97 5 Se 4d-2 -0.0099666673635171 + 98 5 Se 4d-1 0.0444402645346547 + 99 5 Se 4d0 0.0544846840233428 + 100 5 Se 4d+1 -0.0350316802429696 + 101 5 Se 4d+2 0.0346110497490110 + + 102 6 Se 2s 0.0143062889321694 + 103 6 Se 3s -0.0040048499593603 + 104 6 Se 3py 0.0161635797323414 + 105 6 Se 3pz 0.1714202668766469 + 106 6 Se 3px -0.0321173738946587 + 107 6 Se 4py -0.0452172594143860 + 108 6 Se 4pz -0.0749594523737230 + 109 6 Se 4px 0.0355873590808891 + 110 6 Se 4d-2 -0.0058726644027774 + 111 6 Se 4d-1 0.0773674385341947 + 112 6 Se 4d0 0.0361590241462552 + 113 6 Se 4d+1 0.0292187217359231 + 114 6 Se 4d+2 -0.0063233636774497 + + 115 7 Se 2s 0.0192947773391887 + 116 7 Se 3s -0.0047104881477299 + 117 7 Se 3py 0.1292205394541846 + 118 7 Se 3pz -0.0072464597083562 + 119 7 Se 3px -0.0137129508726162 + 120 7 Se 4py -0.0590021610622041 + 121 7 Se 4pz 0.0158250643733198 + 122 7 Se 4px -0.0207204547326892 + 123 7 Se 4d-2 -0.0100778131731806 + 124 7 Se 4d-1 0.0343507248206255 + 125 7 Se 4d0 0.0050263689490701 + 126 7 Se 4d+1 0.0112384622671662 + 127 7 Se 4d+2 -0.0096503060718394 + + 128 8 Cd 2s 0.0444292376602679 + 129 8 Cd 3s 0.0115617400269073 + 130 8 Cd 3py 0.1037550231836339 + 131 8 Cd 3pz -0.1063831361633684 + 132 8 Cd 3px -0.1199178686018427 + 133 8 Cd 4py 0.0398896116746112 + 134 8 Cd 4pz -0.0239069030843504 + 135 8 Cd 4px -0.0023652107101054 + 136 8 Cd 4d-2 -0.0118005627613371 + 137 8 Cd 4d-1 0.0075522471363949 + 138 8 Cd 4d0 -0.0063748014769946 + 139 8 Cd 4d+1 0.0048473170071064 + 140 8 Cd 4d+2 -0.0156735390940686 + 141 8 Cd 5d-2 -0.0669036514888274 + 142 8 Cd 5d-1 0.0330354917655416 + 143 8 Cd 5d0 -0.0151108379795456 + 144 8 Cd 5d+1 -0.0130554707049069 + 145 8 Cd 5d+2 0.0776835851166176 + 146 8 Cd 5f-3 -0.0027663537451648 + 147 8 Cd 5f-2 -0.0007538772539500 + 148 8 Cd 5f-1 0.0053255067358240 + 149 8 Cd 5f0 0.0059968689211762 + 150 8 Cd 5f+1 -0.0053297351753703 + 151 8 Cd 5f+2 -0.0338489195193880 + 152 8 Cd 5f+3 0.0129464088302441 + + 153 9 Cd 2s -0.0286620501098876 + 154 9 Cd 3s 0.0011953517826586 + 155 9 Cd 3py 0.0536833275984865 + 156 9 Cd 3pz -0.0213312710940367 + 157 9 Cd 3px 0.3458090859756230 + 158 9 Cd 4py 0.0283698501740118 + 159 9 Cd 4pz 0.0024259327139218 + 160 9 Cd 4px 0.0534576869894088 + 161 9 Cd 4d-2 -0.0047510770131168 + 162 9 Cd 4d-1 0.0098218407697569 + 163 9 Cd 4d0 0.0083933345235167 + 164 9 Cd 4d+1 0.0092553549888027 + 165 9 Cd 4d+2 0.0087917818683070 + 166 9 Cd 5d-2 -0.2575962024556377 + 167 9 Cd 5d-1 0.0361939692115286 + 168 9 Cd 5d0 0.1151625375014828 + 169 9 Cd 5d+1 0.0770753181573487 + 170 9 Cd 5d+2 0.1252740714697431 + 171 9 Cd 5f-3 -0.0265916934826415 + 172 9 Cd 5f-2 -0.0148381450124362 + 173 9 Cd 5f-1 0.0072464283109090 + 174 9 Cd 5f0 -0.0006141505802876 + 175 9 Cd 5f+1 0.0068649230938492 + 176 9 Cd 5f+2 -0.0001880107079926 + 177 9 Cd 5f+3 -0.0326180198825327 + + 178 10 Se 2s -0.1394925978491753 + 179 10 Se 3s 0.0360192054147878 + 180 10 Se 3py 0.0973668185404611 + 181 10 Se 3pz -0.0517607366941244 + 182 10 Se 3px -0.1420619512501579 + 183 10 Se 4py -0.0237987864211369 + 184 10 Se 4pz -0.0019248779727818 + 185 10 Se 4px 0.0536131316822352 + 186 10 Se 4d-2 -0.0339023231214484 + 187 10 Se 4d-1 -0.0091385137584475 + 188 10 Se 4d0 -0.0346036162370090 + 189 10 Se 4d+1 0.0022589456197516 + 190 10 Se 4d+2 0.0009768875109468 + + 191 11 Se 2s -0.0674455421776263 + 192 11 Se 3s 0.0214393698008589 + 193 11 Se 3py 0.0584787238544814 + 194 11 Se 3pz 0.0430103134575564 + 195 11 Se 3px 0.1368028230352738 + 196 11 Se 4py -0.0475886217869994 + 197 11 Se 4pz -0.0671154792708076 + 198 11 Se 4px -0.1378057295329298 + 199 11 Se 4d-2 -0.0684120897217924 + 200 11 Se 4d-1 0.0068380105070420 + 201 11 Se 4d0 0.0679609671972088 + 202 11 Se 4d+1 0.0270666879532559 + 203 11 Se 4d+2 0.0039077894051170 + + 204 12 Cd 2s -0.1782794026310603 + 205 12 Cd 3s -0.0258546345113614 + 206 12 Cd 3py 0.0855690701146826 + 207 12 Cd 3pz 0.2516002165704043 + 208 12 Cd 3px -0.0201890598133322 + 209 12 Cd 4py 0.0148167383119500 + 210 12 Cd 4pz 0.0355229544500862 + 211 12 Cd 4px -0.0050382749770549 + 212 12 Cd 4d-2 -0.0156180814368894 + 213 12 Cd 4d-1 -0.0050150254515216 + 214 12 Cd 4d0 0.0070437832224365 + 215 12 Cd 4d+1 0.0143493416029750 + 216 12 Cd 4d+2 0.0131621726413407 + 217 12 Cd 5d-2 0.2102946375541594 + 218 12 Cd 5d-1 -0.0048046357910533 + 219 12 Cd 5d0 -0.0791341956686640 + 220 12 Cd 5d+1 -0.1454590490142257 + 221 12 Cd 5d+2 0.0046826829019039 + 222 12 Cd 5f-3 -0.0119794314963594 + 223 12 Cd 5f-2 0.0241787607861432 + 224 12 Cd 5f-1 0.0407890914412700 + 225 12 Cd 5f0 -0.0213550452415417 + 226 12 Cd 5f+1 -0.0064732095009640 + 227 12 Cd 5f+2 0.0201996568911818 + 228 12 Cd 5f+3 0.0087259016017640 + + 229 13 Cd 2s -0.1127020634422127 + 230 13 Cd 3s -0.0093822309654757 + 231 13 Cd 3py 0.2270790620463629 + 232 13 Cd 3pz 0.0720851228532605 + 233 13 Cd 3px -0.2416231276339074 + 234 13 Cd 4py 0.0355189528053254 + 235 13 Cd 4pz 0.0165474490933701 + 236 13 Cd 4px -0.0150830171579812 + 237 13 Cd 4d-2 0.0141566477939960 + 238 13 Cd 4d-1 0.0052245231678313 + 239 13 Cd 4d0 0.0002991067635841 + 240 13 Cd 4d+1 0.0097606970265254 + 241 13 Cd 4d+2 0.0047074231307550 + 242 13 Cd 5d-2 0.0178604775574608 + 243 13 Cd 5d-1 0.0096979081268700 + 244 13 Cd 5d0 -0.0630025566110643 + 245 13 Cd 5d+1 0.0440304335728544 + 246 13 Cd 5d+2 -0.0612268951225896 + 247 13 Cd 5f-3 -0.0104504222655831 + 248 13 Cd 5f-2 0.0032911318971353 + 249 13 Cd 5f-1 0.0077058572805324 + 250 13 Cd 5f0 -0.0114671996150752 + 251 13 Cd 5f+1 -0.0148564703263401 + 252 13 Cd 5f+2 0.0016268215171176 + 253 13 Cd 5f+3 -0.0411962310481947 + + 254 14 Cd 2s -0.0779510333659643 + 255 14 Cd 3s -0.0085446928112774 + 256 14 Cd 3py -0.0676479702767069 + 257 14 Cd 3pz 0.2442459393161367 + 258 14 Cd 3px 0.0046539722590319 + 259 14 Cd 4py 0.0022534273029896 + 260 14 Cd 4pz 0.0273129352616191 + 261 14 Cd 4px 0.0026511846564529 + 262 14 Cd 4d-2 -0.0034547711299273 + 263 14 Cd 4d-1 -0.0020001996915458 + 264 14 Cd 4d0 0.0041323557845236 + 265 14 Cd 4d+1 0.0052980997126216 + 266 14 Cd 4d+2 0.0083775594459923 + 267 14 Cd 5d-2 -0.0613071803485740 + 268 14 Cd 5d-1 -0.0380355246079982 + 269 14 Cd 5d0 0.0060343333156580 + 270 14 Cd 5d+1 -0.0162899643077831 + 271 14 Cd 5d+2 0.1448264540580124 + 272 14 Cd 5f-3 0.0179723460419233 + 273 14 Cd 5f-2 -0.0028363969632862 + 274 14 Cd 5f-1 0.0078660419514352 + 275 14 Cd 5f0 0.0070534597128485 + 276 14 Cd 5f+1 0.0038309822291316 + 277 14 Cd 5f+2 0.0012628018900251 + 278 14 Cd 5f+3 -0.0077239606888648 + + 279 15 Se 2s 0.0829035486012824 + 280 15 Se 3s -0.0200213267972033 + 281 15 Se 3py -0.0807364622954695 + 282 15 Se 3pz -0.1317038917003872 + 283 15 Se 3px -0.0461047877012823 + 284 15 Se 4py 0.0660099543330427 + 285 15 Se 4pz 0.0653645033000162 + 286 15 Se 4px 0.0010486205120734 + 287 15 Se 4d-2 -0.0115281455729748 + 288 15 Se 4d-1 -0.0159189092954481 + 289 15 Se 4d0 0.0447913138665215 + 290 15 Se 4d+1 0.0268348380370046 + 291 15 Se 4d+2 -0.0161035630403491 + + 292 16 Se 2s -0.0621223645260708 + 293 16 Se 3s 0.0130388780465193 + 294 16 Se 3py -0.0818181453092772 + 295 16 Se 3pz -0.0060419079583103 + 296 16 Se 3px -0.0071298515198271 + 297 16 Se 4py 0.0607048105290129 + 298 16 Se 4pz 0.0001136512767339 + 299 16 Se 4px -0.0499139824404595 + 300 16 Se 4d-2 0.0231218560156383 + 301 16 Se 4d-1 0.0462890751917206 + 302 16 Se 4d0 0.0101092395009875 + 303 16 Se 4d+1 -0.0001103758462831 + 304 16 Se 4d+2 0.0134044095077540 + + 305 17 Cd 2s -0.0235979411152152 + 306 17 Cd 3s -0.0144600187982803 + 307 17 Cd 3py -0.0518591993375424 + 308 17 Cd 3pz -0.0915475594184650 + 309 17 Cd 3px -0.1355974400776077 + 310 17 Cd 4py 0.0032652791161648 + 311 17 Cd 4pz -0.0120616585939749 + 312 17 Cd 4px -0.0231138880794909 + 313 17 Cd 4d-2 -0.0077410053829173 + 314 17 Cd 4d-1 0.0050915738216389 + 315 17 Cd 4d0 0.0035390114337171 + 316 17 Cd 4d+1 0.0208617732144705 + 317 17 Cd 4d+2 -0.0020666135359487 + 318 17 Cd 5d-2 0.0634478215091741 + 319 17 Cd 5d-1 0.0248211373623088 + 320 17 Cd 5d0 0.0530869063492716 + 321 17 Cd 5d+1 0.1219223081047646 + 322 17 Cd 5d+2 -0.0014443944124923 + 323 17 Cd 5f-3 0.0146401678833938 + 324 17 Cd 5f-2 -0.0064090397007203 + 325 17 Cd 5f-1 -0.0209179413848746 + 326 17 Cd 5f0 -0.0132210772553991 + 327 17 Cd 5f+1 -0.0031493109276481 + 328 17 Cd 5f+2 0.0092583737841495 + 329 17 Cd 5f+3 0.0050289299939470 + + 330 18 Cd 2s -0.1274038198782848 + 331 18 Cd 3s -0.0313326112430014 + 332 18 Cd 3py -0.0149655745062396 + 333 18 Cd 3pz -0.2511237844948827 + 334 18 Cd 3px 0.0515290524172198 + 335 18 Cd 4py -0.0169406206351923 + 336 18 Cd 4pz -0.0188217411848067 + 337 18 Cd 4px -0.0015073411928874 + 338 18 Cd 4d-2 -0.0008816482768616 + 339 18 Cd 4d-1 0.0036326334658355 + 340 18 Cd 4d0 0.0012825842789014 + 341 18 Cd 4d+1 0.0096224288883678 + 342 18 Cd 4d+2 0.0012980167760258 + 343 18 Cd 5d-2 0.0266715235538308 + 344 18 Cd 5d-1 0.0366123219025278 + 345 18 Cd 5d0 -0.0709645382303296 + 346 18 Cd 5d+1 0.0780790439767552 + 347 18 Cd 5d+2 -0.0016483719790191 + 348 18 Cd 5f-3 -0.0093577438517913 + 349 18 Cd 5f-2 0.0152642942491305 + 350 18 Cd 5f-1 -0.0167278480180300 + 351 18 Cd 5f0 0.0037240729779131 + 352 18 Cd 5f+1 -0.0156928732122362 + 353 18 Cd 5f+2 0.0115590157005937 + 354 18 Cd 5f+3 0.0069379729620512 + + 355 19 Se 2s -0.0019323198354103 + 356 19 Se 3s -0.0018020859651836 + 357 19 Se 3py -0.0533312521794712 + 358 19 Se 3pz -0.0195971915684159 + 359 19 Se 3px 0.0606410614478164 + 360 19 Se 4py 0.0141350409695825 + 361 19 Se 4pz 0.0121939380611957 + 362 19 Se 4px -0.0258076491726289 + 363 19 Se 4d-2 -0.0315166105469925 + 364 19 Se 4d-1 0.0404143812396044 + 365 19 Se 4d0 -0.0236602898633688 + 366 19 Se 4d+1 -0.0069160092223916 + 367 19 Se 4d+2 0.0280547705985379 + + 368 20 Se 2s 0.0100625975215756 + 369 20 Se 3s -0.0035589704973881 + 370 20 Se 3py -0.0689533906953067 + 371 20 Se 3pz 0.0682417113970870 + 372 20 Se 3px -0.0129105572997980 + 373 20 Se 4py 0.0514914180238316 + 374 20 Se 4pz -0.0735821166529542 + 375 20 Se 4px 0.0051194395699888 + 376 20 Se 4d-2 -0.0009694045354958 + 377 20 Se 4d-1 0.0064803110447453 + 378 20 Se 4d0 -0.0180061019352452 + 379 20 Se 4d+1 -0.0114340247636185 + 380 20 Se 4d+2 0.0184356617459437 + + 381 21 Se 2s 0.0914725257154951 + 382 21 Se 3s -0.0240255474194062 + 383 21 Se 3py 0.0712432711760006 + 384 21 Se 3pz 0.0576967246881535 + 385 21 Se 3px -0.0151185239599104 + 386 21 Se 4py 0.0270428900023187 + 387 21 Se 4pz -0.0285280727244238 + 388 21 Se 4px 0.0011694471947734 + 389 21 Se 4d-2 -0.0043002920749787 + 390 21 Se 4d-1 0.0344243790204165 + 391 21 Se 4d0 0.0109919631433605 + 392 21 Se 4d+1 -0.0116887484308815 + 393 21 Se 4d+2 0.0115281608391134 + + 394 22 Cd 2s -0.0407809637390846 + 395 22 Cd 3s -0.0024240167008477 + 396 22 Cd 3py 0.2389549696351059 + 397 22 Cd 3pz 0.0000840119757542 + 398 22 Cd 3px 0.1990850674422834 + 399 22 Cd 4py 0.0309076806175194 + 400 22 Cd 4pz 0.0007412246007934 + 401 22 Cd 4px 0.0115252856585304 + 402 22 Cd 4d-2 -0.0046564916378079 + 403 22 Cd 4d-1 -0.0103972725045037 + 404 22 Cd 4d0 0.0070966127126871 + 405 22 Cd 4d+1 -0.0017095217849998 + 406 22 Cd 4d+2 0.0115821551572647 + 407 22 Cd 5d-2 -0.0539669731110851 + 408 22 Cd 5d-1 0.1349945873789878 + 409 22 Cd 5d0 -0.0263930828313431 + 410 22 Cd 5d+1 0.0092574936221470 + 411 22 Cd 5d+2 -0.0430609058388237 + 412 22 Cd 5f-3 0.0156728498626237 + 413 22 Cd 5f-2 -0.0090866078726719 + 414 22 Cd 5f-1 -0.0065645038673308 + 415 22 Cd 5f0 -0.0084814875076282 + 416 22 Cd 5f+1 0.0190835269885310 + 417 22 Cd 5f+2 -0.0081656080763228 + 418 22 Cd 5f+3 0.0106000849411273 + + 419 23 Se 2s -0.1587302608624064 + 420 23 Se 3s 0.0389838132434290 + 421 23 Se 3py 0.0592692637730053 + 422 23 Se 3pz -0.1147016074704068 + 423 23 Se 3px 0.0636930407686830 + 424 23 Se 4py -0.0510532649788749 + 425 23 Se 4pz 0.0820855985887606 + 426 23 Se 4px -0.0019387730236625 + 427 23 Se 4d-2 0.0092023592251280 + 428 23 Se 4d-1 -0.0245951912904840 + 429 23 Se 4d0 0.0065592723871362 + 430 23 Se 4d+1 0.0079437105156681 + 431 23 Se 4d+2 -0.0219333145017653 + + 432 24 Se 2s 0.1257592727337950 + 433 24 Se 3s -0.0330622809402132 + 434 24 Se 3py -0.0154939500133390 + 435 24 Se 3pz -0.0730019958514233 + 436 24 Se 3px 0.0797704352531943 + 437 24 Se 4py -0.0330372608102682 + 438 24 Se 4pz 0.1179880909778328 + 439 24 Se 4px -0.0709352115323338 + 440 24 Se 4d-2 -0.0300462915706661 + 441 24 Se 4d-1 0.0489194248995393 + 442 24 Se 4d0 -0.0171198889230442 + 443 24 Se 4d+1 0.0527210057248271 + 444 24 Se 4d+2 -0.0208063241197839 + + 445 25 Cd 2s 0.1930086306770079 + 446 25 Cd 3s 0.0407709754292717 + 447 25 Cd 3py -0.1819158243205072 + 448 25 Cd 3pz 0.6281211306232050 + 449 25 Cd 3px -0.2562639956142695 + 450 25 Cd 4py -0.0282045466120141 + 451 25 Cd 4pz 0.0952887775726811 + 452 25 Cd 4px -0.0319335584077080 + 453 25 Cd 4d-2 0.0007395803713107 + 454 25 Cd 4d-1 0.0000634109348220 + 455 25 Cd 4d0 -0.0114428725120562 + 456 25 Cd 4d+1 0.0121493511792398 + 457 25 Cd 4d+2 -0.0028412830685115 + 458 25 Cd 5d-2 -0.0773560485195973 + 459 25 Cd 5d-1 -0.0295308957186592 + 460 25 Cd 5d0 -0.0168457701417346 + 461 25 Cd 5d+1 -0.1607355756850359 + 462 25 Cd 5d+2 0.0653511268761235 + 463 25 Cd 5f-3 0.0094650036200947 + 464 25 Cd 5f-2 0.0032809334383318 + 465 25 Cd 5f-1 0.0111915893495825 + 466 25 Cd 5f0 -0.0046190699253998 + 467 25 Cd 5f+1 -0.0005702584165874 + 468 25 Cd 5f+2 0.0113866809761662 + 469 25 Cd 5f+3 0.0058228787409881 + + 470 26 Cd 2s -0.0306229715074076 + 471 26 Cd 3s 0.0054171172994384 + 472 26 Cd 3py 0.1164914636211157 + 473 26 Cd 3pz 0.0102662417714101 + 474 26 Cd 3px 0.0295048281034971 + 475 26 Cd 4py 0.0005173909567793 + 476 26 Cd 4pz 0.0121960887372207 + 477 26 Cd 4px -0.0033152338910381 + 478 26 Cd 4d-2 0.0003474217013264 + 479 26 Cd 4d-1 0.0115355444822032 + 480 26 Cd 4d0 0.0081432210283069 + 481 26 Cd 4d+1 -0.0001441331271670 + 482 26 Cd 4d+2 0.0018860661854093 + 483 26 Cd 5d-2 -0.0053276986726487 + 484 26 Cd 5d-1 -0.0474167324255110 + 485 26 Cd 5d0 -0.0326445471185379 + 486 26 Cd 5d+1 -0.0009826585923364 + 487 26 Cd 5d+2 -0.0295300040858530 + 488 26 Cd 5f-3 -0.0096386254588389 + 489 26 Cd 5f-2 0.0222390077729770 + 490 26 Cd 5f-1 -0.0100280289604063 + 491 26 Cd 5f0 -0.0037935155004184 + 492 26 Cd 5f+1 0.0050813343252711 + 493 26 Cd 5f+2 -0.0045831804528471 + 494 26 Cd 5f+3 0.0217291645510845 + + + Fermi energy: -0.1585886027784532 + + HOMO-LUMO gap: 0.0218654984266540 = 0.59 eV + diff --git a/tests/test_libint2/CdSe13-CdSe13-1_0.molden b/tests/test_libint2/CdSe13-CdSe13-1_0.molden new file mode 100755 index 000000000..291b5fc02 --- /dev/null +++ b/tests/test_libint2/CdSe13-CdSe13-1_0.molden @@ -0,0 +1,83954 @@ + [Molden Format] + [Atoms] AU + Cd 1 48 24.527841 16.850458 13.876005 + Cd 2 48 21.952809 19.176769 20.546961 + Cd 3 48 21.242254 12.743632 17.737821 + Se 4 34 24.548281 20.908467 16.782889 + Se 5 34 24.523822 12.141396 14.167754 + Se 6 34 24.358806 14.726613 21.344070 + Se 7 34 19.075245 21.466527 24.417208 + Cd 8 48 16.032210 18.533643 21.097991 + Cd 9 48 20.434152 14.543737 24.550227 + Se 10 34 15.562178 14.662450 24.546251 + Se 11 34 17.651190 8.987473 18.371041 + Cd 12 48 14.544271 12.939508 19.265447 + Cd 13 48 20.663252 21.470554 13.729437 + Cd 14 48 18.556421 24.847895 20.270444 + Se 15 34 17.647177 25.027597 15.450650 + Se 16 34 22.028193 19.218927 9.516539 + Cd 17 48 18.466055 16.069815 9.464843 + Cd 18 48 17.764547 9.102704 13.529200 + Se 19 34 16.158583 11.686160 9.563039 + Se 20 34 17.635872 16.452862 16.564764 + Se 21 34 12.711530 21.374367 18.723162 + Cd 22 48 14.900031 20.688628 14.142552 + Se 23 34 14.046792 18.701374 9.587426 + Se 24 34 9.527835 13.432193 16.354541 + Cd 25 48 13.517871 14.715056 13.029125 + Cd 26 48 9.466789 17.900378 17.880050 + [GTO] + 1 0 + s 5 1.00 + 2.617301 0.056943 + 1.315618 -0.111910 + 0.573376 -0.420174 + 0.222222 0.564376 + 0.076307 0.789967 + s 5 1.00 + 2.617301 0.085229 + 1.315618 -0.202708 + 0.573376 1.542507 + 0.222222 -2.827047 + 0.076307 1.744522 + p 5 1.00 + 2.617301 0.032277 + 1.315618 -0.096635 + 0.573376 -0.083108 + 0.222222 0.419549 + 0.076307 0.795090 + p 5 1.00 + 2.617301 0.051511 + 1.315618 -0.059784 + 0.573376 0.615456 + 0.222222 -1.767303 + 0.076307 1.158998 + d 5 1.00 + 2.617301 -0.270406 + 1.315618 -0.407839 + 0.573376 -0.363233 + 0.222222 -0.168907 + 0.076307 -0.013173 + d 5 1.00 + 2.617301 -0.064920 + 1.315618 -0.152553 + 0.573376 0.032122 + 0.222222 -0.117392 + 0.076307 1.045519 + f 5 1.00 + 2.617301 -0.038771 + 1.315618 -0.110108 + 0.573376 -0.034014 + 0.222222 -0.107255 + 0.076307 1.059683 + + 2 0 + s 5 1.00 + 2.617301 0.056943 + 1.315618 -0.111910 + 0.573376 -0.420174 + 0.222222 0.564376 + 0.076307 0.789967 + s 5 1.00 + 2.617301 0.085229 + 1.315618 -0.202708 + 0.573376 1.542507 + 0.222222 -2.827047 + 0.076307 1.744522 + p 5 1.00 + 2.617301 0.032277 + 1.315618 -0.096635 + 0.573376 -0.083108 + 0.222222 0.419549 + 0.076307 0.795090 + p 5 1.00 + 2.617301 0.051511 + 1.315618 -0.059784 + 0.573376 0.615456 + 0.222222 -1.767303 + 0.076307 1.158998 + d 5 1.00 + 2.617301 -0.270406 + 1.315618 -0.407839 + 0.573376 -0.363233 + 0.222222 -0.168907 + 0.076307 -0.013173 + d 5 1.00 + 2.617301 -0.064920 + 1.315618 -0.152553 + 0.573376 0.032122 + 0.222222 -0.117392 + 0.076307 1.045519 + f 5 1.00 + 2.617301 -0.038771 + 1.315618 -0.110108 + 0.573376 -0.034014 + 0.222222 -0.107255 + 0.076307 1.059683 + + 3 0 + s 5 1.00 + 2.617301 0.056943 + 1.315618 -0.111910 + 0.573376 -0.420174 + 0.222222 0.564376 + 0.076307 0.789967 + s 5 1.00 + 2.617301 0.085229 + 1.315618 -0.202708 + 0.573376 1.542507 + 0.222222 -2.827047 + 0.076307 1.744522 + p 5 1.00 + 2.617301 0.032277 + 1.315618 -0.096635 + 0.573376 -0.083108 + 0.222222 0.419549 + 0.076307 0.795090 + p 5 1.00 + 2.617301 0.051511 + 1.315618 -0.059784 + 0.573376 0.615456 + 0.222222 -1.767303 + 0.076307 1.158998 + d 5 1.00 + 2.617301 -0.270406 + 1.315618 -0.407839 + 0.573376 -0.363233 + 0.222222 -0.168907 + 0.076307 -0.013173 + d 5 1.00 + 2.617301 -0.064920 + 1.315618 -0.152553 + 0.573376 0.032122 + 0.222222 -0.117392 + 0.076307 1.045519 + f 5 1.00 + 2.617301 -0.038771 + 1.315618 -0.110108 + 0.573376 -0.034014 + 0.222222 -0.107255 + 0.076307 1.059683 + + 4 0 + s 4 1.00 + 1.465689 0.522315 + 1.029752 -0.177617 + 0.303575 -1.057800 + 0.107173 -0.299101 + s 4 1.00 + 1.465689 0.109434 + 1.029752 0.919861 + 0.303575 -1.719934 + 0.107173 2.073037 + p 4 1.00 + 1.465689 0.302629 + 1.029752 -0.349361 + 0.303575 -0.653355 + 0.107173 -0.381187 + p 4 1.00 + 1.465689 0.397353 + 1.029752 -0.410170 + 0.303575 -0.626545 + 0.107173 2.208055 + d 4 1.00 + 1.465689 0.120897 + 1.029752 -0.291517 + 0.303575 -1.069566 + 0.107173 -0.296659 + + 5 0 + s 4 1.00 + 1.465689 0.522315 + 1.029752 -0.177617 + 0.303575 -1.057800 + 0.107173 -0.299101 + s 4 1.00 + 1.465689 0.109434 + 1.029752 0.919861 + 0.303575 -1.719934 + 0.107173 2.073037 + p 4 1.00 + 1.465689 0.302629 + 1.029752 -0.349361 + 0.303575 -0.653355 + 0.107173 -0.381187 + p 4 1.00 + 1.465689 0.397353 + 1.029752 -0.410170 + 0.303575 -0.626545 + 0.107173 2.208055 + d 4 1.00 + 1.465689 0.120897 + 1.029752 -0.291517 + 0.303575 -1.069566 + 0.107173 -0.296659 + + 6 0 + s 4 1.00 + 1.465689 0.522315 + 1.029752 -0.177617 + 0.303575 -1.057800 + 0.107173 -0.299101 + s 4 1.00 + 1.465689 0.109434 + 1.029752 0.919861 + 0.303575 -1.719934 + 0.107173 2.073037 + p 4 1.00 + 1.465689 0.302629 + 1.029752 -0.349361 + 0.303575 -0.653355 + 0.107173 -0.381187 + p 4 1.00 + 1.465689 0.397353 + 1.029752 -0.410170 + 0.303575 -0.626545 + 0.107173 2.208055 + d 4 1.00 + 1.465689 0.120897 + 1.029752 -0.291517 + 0.303575 -1.069566 + 0.107173 -0.296659 + + 7 0 + s 4 1.00 + 1.465689 0.522315 + 1.029752 -0.177617 + 0.303575 -1.057800 + 0.107173 -0.299101 + s 4 1.00 + 1.465689 0.109434 + 1.029752 0.919861 + 0.303575 -1.719934 + 0.107173 2.073037 + p 4 1.00 + 1.465689 0.302629 + 1.029752 -0.349361 + 0.303575 -0.653355 + 0.107173 -0.381187 + p 4 1.00 + 1.465689 0.397353 + 1.029752 -0.410170 + 0.303575 -0.626545 + 0.107173 2.208055 + d 4 1.00 + 1.465689 0.120897 + 1.029752 -0.291517 + 0.303575 -1.069566 + 0.107173 -0.296659 + + 8 0 + s 5 1.00 + 2.617301 0.056943 + 1.315618 -0.111910 + 0.573376 -0.420174 + 0.222222 0.564376 + 0.076307 0.789967 + s 5 1.00 + 2.617301 0.085229 + 1.315618 -0.202708 + 0.573376 1.542507 + 0.222222 -2.827047 + 0.076307 1.744522 + p 5 1.00 + 2.617301 0.032277 + 1.315618 -0.096635 + 0.573376 -0.083108 + 0.222222 0.419549 + 0.076307 0.795090 + p 5 1.00 + 2.617301 0.051511 + 1.315618 -0.059784 + 0.573376 0.615456 + 0.222222 -1.767303 + 0.076307 1.158998 + d 5 1.00 + 2.617301 -0.270406 + 1.315618 -0.407839 + 0.573376 -0.363233 + 0.222222 -0.168907 + 0.076307 -0.013173 + d 5 1.00 + 2.617301 -0.064920 + 1.315618 -0.152553 + 0.573376 0.032122 + 0.222222 -0.117392 + 0.076307 1.045519 + f 5 1.00 + 2.617301 -0.038771 + 1.315618 -0.110108 + 0.573376 -0.034014 + 0.222222 -0.107255 + 0.076307 1.059683 + + 9 0 + s 5 1.00 + 2.617301 0.056943 + 1.315618 -0.111910 + 0.573376 -0.420174 + 0.222222 0.564376 + 0.076307 0.789967 + s 5 1.00 + 2.617301 0.085229 + 1.315618 -0.202708 + 0.573376 1.542507 + 0.222222 -2.827047 + 0.076307 1.744522 + p 5 1.00 + 2.617301 0.032277 + 1.315618 -0.096635 + 0.573376 -0.083108 + 0.222222 0.419549 + 0.076307 0.795090 + p 5 1.00 + 2.617301 0.051511 + 1.315618 -0.059784 + 0.573376 0.615456 + 0.222222 -1.767303 + 0.076307 1.158998 + d 5 1.00 + 2.617301 -0.270406 + 1.315618 -0.407839 + 0.573376 -0.363233 + 0.222222 -0.168907 + 0.076307 -0.013173 + d 5 1.00 + 2.617301 -0.064920 + 1.315618 -0.152553 + 0.573376 0.032122 + 0.222222 -0.117392 + 0.076307 1.045519 + f 5 1.00 + 2.617301 -0.038771 + 1.315618 -0.110108 + 0.573376 -0.034014 + 0.222222 -0.107255 + 0.076307 1.059683 + + 10 0 + s 4 1.00 + 1.465689 0.522315 + 1.029752 -0.177617 + 0.303575 -1.057800 + 0.107173 -0.299101 + s 4 1.00 + 1.465689 0.109434 + 1.029752 0.919861 + 0.303575 -1.719934 + 0.107173 2.073037 + p 4 1.00 + 1.465689 0.302629 + 1.029752 -0.349361 + 0.303575 -0.653355 + 0.107173 -0.381187 + p 4 1.00 + 1.465689 0.397353 + 1.029752 -0.410170 + 0.303575 -0.626545 + 0.107173 2.208055 + d 4 1.00 + 1.465689 0.120897 + 1.029752 -0.291517 + 0.303575 -1.069566 + 0.107173 -0.296659 + + 11 0 + s 4 1.00 + 1.465689 0.522315 + 1.029752 -0.177617 + 0.303575 -1.057800 + 0.107173 -0.299101 + s 4 1.00 + 1.465689 0.109434 + 1.029752 0.919861 + 0.303575 -1.719934 + 0.107173 2.073037 + p 4 1.00 + 1.465689 0.302629 + 1.029752 -0.349361 + 0.303575 -0.653355 + 0.107173 -0.381187 + p 4 1.00 + 1.465689 0.397353 + 1.029752 -0.410170 + 0.303575 -0.626545 + 0.107173 2.208055 + d 4 1.00 + 1.465689 0.120897 + 1.029752 -0.291517 + 0.303575 -1.069566 + 0.107173 -0.296659 + + 12 0 + s 5 1.00 + 2.617301 0.056943 + 1.315618 -0.111910 + 0.573376 -0.420174 + 0.222222 0.564376 + 0.076307 0.789967 + s 5 1.00 + 2.617301 0.085229 + 1.315618 -0.202708 + 0.573376 1.542507 + 0.222222 -2.827047 + 0.076307 1.744522 + p 5 1.00 + 2.617301 0.032277 + 1.315618 -0.096635 + 0.573376 -0.083108 + 0.222222 0.419549 + 0.076307 0.795090 + p 5 1.00 + 2.617301 0.051511 + 1.315618 -0.059784 + 0.573376 0.615456 + 0.222222 -1.767303 + 0.076307 1.158998 + d 5 1.00 + 2.617301 -0.270406 + 1.315618 -0.407839 + 0.573376 -0.363233 + 0.222222 -0.168907 + 0.076307 -0.013173 + d 5 1.00 + 2.617301 -0.064920 + 1.315618 -0.152553 + 0.573376 0.032122 + 0.222222 -0.117392 + 0.076307 1.045519 + f 5 1.00 + 2.617301 -0.038771 + 1.315618 -0.110108 + 0.573376 -0.034014 + 0.222222 -0.107255 + 0.076307 1.059683 + + 13 0 + s 5 1.00 + 2.617301 0.056943 + 1.315618 -0.111910 + 0.573376 -0.420174 + 0.222222 0.564376 + 0.076307 0.789967 + s 5 1.00 + 2.617301 0.085229 + 1.315618 -0.202708 + 0.573376 1.542507 + 0.222222 -2.827047 + 0.076307 1.744522 + p 5 1.00 + 2.617301 0.032277 + 1.315618 -0.096635 + 0.573376 -0.083108 + 0.222222 0.419549 + 0.076307 0.795090 + p 5 1.00 + 2.617301 0.051511 + 1.315618 -0.059784 + 0.573376 0.615456 + 0.222222 -1.767303 + 0.076307 1.158998 + d 5 1.00 + 2.617301 -0.270406 + 1.315618 -0.407839 + 0.573376 -0.363233 + 0.222222 -0.168907 + 0.076307 -0.013173 + d 5 1.00 + 2.617301 -0.064920 + 1.315618 -0.152553 + 0.573376 0.032122 + 0.222222 -0.117392 + 0.076307 1.045519 + f 5 1.00 + 2.617301 -0.038771 + 1.315618 -0.110108 + 0.573376 -0.034014 + 0.222222 -0.107255 + 0.076307 1.059683 + + 14 0 + s 5 1.00 + 2.617301 0.056943 + 1.315618 -0.111910 + 0.573376 -0.420174 + 0.222222 0.564376 + 0.076307 0.789967 + s 5 1.00 + 2.617301 0.085229 + 1.315618 -0.202708 + 0.573376 1.542507 + 0.222222 -2.827047 + 0.076307 1.744522 + p 5 1.00 + 2.617301 0.032277 + 1.315618 -0.096635 + 0.573376 -0.083108 + 0.222222 0.419549 + 0.076307 0.795090 + p 5 1.00 + 2.617301 0.051511 + 1.315618 -0.059784 + 0.573376 0.615456 + 0.222222 -1.767303 + 0.076307 1.158998 + d 5 1.00 + 2.617301 -0.270406 + 1.315618 -0.407839 + 0.573376 -0.363233 + 0.222222 -0.168907 + 0.076307 -0.013173 + d 5 1.00 + 2.617301 -0.064920 + 1.315618 -0.152553 + 0.573376 0.032122 + 0.222222 -0.117392 + 0.076307 1.045519 + f 5 1.00 + 2.617301 -0.038771 + 1.315618 -0.110108 + 0.573376 -0.034014 + 0.222222 -0.107255 + 0.076307 1.059683 + + 15 0 + s 4 1.00 + 1.465689 0.522315 + 1.029752 -0.177617 + 0.303575 -1.057800 + 0.107173 -0.299101 + s 4 1.00 + 1.465689 0.109434 + 1.029752 0.919861 + 0.303575 -1.719934 + 0.107173 2.073037 + p 4 1.00 + 1.465689 0.302629 + 1.029752 -0.349361 + 0.303575 -0.653355 + 0.107173 -0.381187 + p 4 1.00 + 1.465689 0.397353 + 1.029752 -0.410170 + 0.303575 -0.626545 + 0.107173 2.208055 + d 4 1.00 + 1.465689 0.120897 + 1.029752 -0.291517 + 0.303575 -1.069566 + 0.107173 -0.296659 + + 16 0 + s 4 1.00 + 1.465689 0.522315 + 1.029752 -0.177617 + 0.303575 -1.057800 + 0.107173 -0.299101 + s 4 1.00 + 1.465689 0.109434 + 1.029752 0.919861 + 0.303575 -1.719934 + 0.107173 2.073037 + p 4 1.00 + 1.465689 0.302629 + 1.029752 -0.349361 + 0.303575 -0.653355 + 0.107173 -0.381187 + p 4 1.00 + 1.465689 0.397353 + 1.029752 -0.410170 + 0.303575 -0.626545 + 0.107173 2.208055 + d 4 1.00 + 1.465689 0.120897 + 1.029752 -0.291517 + 0.303575 -1.069566 + 0.107173 -0.296659 + + 17 0 + s 5 1.00 + 2.617301 0.056943 + 1.315618 -0.111910 + 0.573376 -0.420174 + 0.222222 0.564376 + 0.076307 0.789967 + s 5 1.00 + 2.617301 0.085229 + 1.315618 -0.202708 + 0.573376 1.542507 + 0.222222 -2.827047 + 0.076307 1.744522 + p 5 1.00 + 2.617301 0.032277 + 1.315618 -0.096635 + 0.573376 -0.083108 + 0.222222 0.419549 + 0.076307 0.795090 + p 5 1.00 + 2.617301 0.051511 + 1.315618 -0.059784 + 0.573376 0.615456 + 0.222222 -1.767303 + 0.076307 1.158998 + d 5 1.00 + 2.617301 -0.270406 + 1.315618 -0.407839 + 0.573376 -0.363233 + 0.222222 -0.168907 + 0.076307 -0.013173 + d 5 1.00 + 2.617301 -0.064920 + 1.315618 -0.152553 + 0.573376 0.032122 + 0.222222 -0.117392 + 0.076307 1.045519 + f 5 1.00 + 2.617301 -0.038771 + 1.315618 -0.110108 + 0.573376 -0.034014 + 0.222222 -0.107255 + 0.076307 1.059683 + + 18 0 + s 5 1.00 + 2.617301 0.056943 + 1.315618 -0.111910 + 0.573376 -0.420174 + 0.222222 0.564376 + 0.076307 0.789967 + s 5 1.00 + 2.617301 0.085229 + 1.315618 -0.202708 + 0.573376 1.542507 + 0.222222 -2.827047 + 0.076307 1.744522 + p 5 1.00 + 2.617301 0.032277 + 1.315618 -0.096635 + 0.573376 -0.083108 + 0.222222 0.419549 + 0.076307 0.795090 + p 5 1.00 + 2.617301 0.051511 + 1.315618 -0.059784 + 0.573376 0.615456 + 0.222222 -1.767303 + 0.076307 1.158998 + d 5 1.00 + 2.617301 -0.270406 + 1.315618 -0.407839 + 0.573376 -0.363233 + 0.222222 -0.168907 + 0.076307 -0.013173 + d 5 1.00 + 2.617301 -0.064920 + 1.315618 -0.152553 + 0.573376 0.032122 + 0.222222 -0.117392 + 0.076307 1.045519 + f 5 1.00 + 2.617301 -0.038771 + 1.315618 -0.110108 + 0.573376 -0.034014 + 0.222222 -0.107255 + 0.076307 1.059683 + + 19 0 + s 4 1.00 + 1.465689 0.522315 + 1.029752 -0.177617 + 0.303575 -1.057800 + 0.107173 -0.299101 + s 4 1.00 + 1.465689 0.109434 + 1.029752 0.919861 + 0.303575 -1.719934 + 0.107173 2.073037 + p 4 1.00 + 1.465689 0.302629 + 1.029752 -0.349361 + 0.303575 -0.653355 + 0.107173 -0.381187 + p 4 1.00 + 1.465689 0.397353 + 1.029752 -0.410170 + 0.303575 -0.626545 + 0.107173 2.208055 + d 4 1.00 + 1.465689 0.120897 + 1.029752 -0.291517 + 0.303575 -1.069566 + 0.107173 -0.296659 + + 20 0 + s 4 1.00 + 1.465689 0.522315 + 1.029752 -0.177617 + 0.303575 -1.057800 + 0.107173 -0.299101 + s 4 1.00 + 1.465689 0.109434 + 1.029752 0.919861 + 0.303575 -1.719934 + 0.107173 2.073037 + p 4 1.00 + 1.465689 0.302629 + 1.029752 -0.349361 + 0.303575 -0.653355 + 0.107173 -0.381187 + p 4 1.00 + 1.465689 0.397353 + 1.029752 -0.410170 + 0.303575 -0.626545 + 0.107173 2.208055 + d 4 1.00 + 1.465689 0.120897 + 1.029752 -0.291517 + 0.303575 -1.069566 + 0.107173 -0.296659 + + 21 0 + s 4 1.00 + 1.465689 0.522315 + 1.029752 -0.177617 + 0.303575 -1.057800 + 0.107173 -0.299101 + s 4 1.00 + 1.465689 0.109434 + 1.029752 0.919861 + 0.303575 -1.719934 + 0.107173 2.073037 + p 4 1.00 + 1.465689 0.302629 + 1.029752 -0.349361 + 0.303575 -0.653355 + 0.107173 -0.381187 + p 4 1.00 + 1.465689 0.397353 + 1.029752 -0.410170 + 0.303575 -0.626545 + 0.107173 2.208055 + d 4 1.00 + 1.465689 0.120897 + 1.029752 -0.291517 + 0.303575 -1.069566 + 0.107173 -0.296659 + + 22 0 + s 5 1.00 + 2.617301 0.056943 + 1.315618 -0.111910 + 0.573376 -0.420174 + 0.222222 0.564376 + 0.076307 0.789967 + s 5 1.00 + 2.617301 0.085229 + 1.315618 -0.202708 + 0.573376 1.542507 + 0.222222 -2.827047 + 0.076307 1.744522 + p 5 1.00 + 2.617301 0.032277 + 1.315618 -0.096635 + 0.573376 -0.083108 + 0.222222 0.419549 + 0.076307 0.795090 + p 5 1.00 + 2.617301 0.051511 + 1.315618 -0.059784 + 0.573376 0.615456 + 0.222222 -1.767303 + 0.076307 1.158998 + d 5 1.00 + 2.617301 -0.270406 + 1.315618 -0.407839 + 0.573376 -0.363233 + 0.222222 -0.168907 + 0.076307 -0.013173 + d 5 1.00 + 2.617301 -0.064920 + 1.315618 -0.152553 + 0.573376 0.032122 + 0.222222 -0.117392 + 0.076307 1.045519 + f 5 1.00 + 2.617301 -0.038771 + 1.315618 -0.110108 + 0.573376 -0.034014 + 0.222222 -0.107255 + 0.076307 1.059683 + + 23 0 + s 4 1.00 + 1.465689 0.522315 + 1.029752 -0.177617 + 0.303575 -1.057800 + 0.107173 -0.299101 + s 4 1.00 + 1.465689 0.109434 + 1.029752 0.919861 + 0.303575 -1.719934 + 0.107173 2.073037 + p 4 1.00 + 1.465689 0.302629 + 1.029752 -0.349361 + 0.303575 -0.653355 + 0.107173 -0.381187 + p 4 1.00 + 1.465689 0.397353 + 1.029752 -0.410170 + 0.303575 -0.626545 + 0.107173 2.208055 + d 4 1.00 + 1.465689 0.120897 + 1.029752 -0.291517 + 0.303575 -1.069566 + 0.107173 -0.296659 + + 24 0 + s 4 1.00 + 1.465689 0.522315 + 1.029752 -0.177617 + 0.303575 -1.057800 + 0.107173 -0.299101 + s 4 1.00 + 1.465689 0.109434 + 1.029752 0.919861 + 0.303575 -1.719934 + 0.107173 2.073037 + p 4 1.00 + 1.465689 0.302629 + 1.029752 -0.349361 + 0.303575 -0.653355 + 0.107173 -0.381187 + p 4 1.00 + 1.465689 0.397353 + 1.029752 -0.410170 + 0.303575 -0.626545 + 0.107173 2.208055 + d 4 1.00 + 1.465689 0.120897 + 1.029752 -0.291517 + 0.303575 -1.069566 + 0.107173 -0.296659 + + 25 0 + s 5 1.00 + 2.617301 0.056943 + 1.315618 -0.111910 + 0.573376 -0.420174 + 0.222222 0.564376 + 0.076307 0.789967 + s 5 1.00 + 2.617301 0.085229 + 1.315618 -0.202708 + 0.573376 1.542507 + 0.222222 -2.827047 + 0.076307 1.744522 + p 5 1.00 + 2.617301 0.032277 + 1.315618 -0.096635 + 0.573376 -0.083108 + 0.222222 0.419549 + 0.076307 0.795090 + p 5 1.00 + 2.617301 0.051511 + 1.315618 -0.059784 + 0.573376 0.615456 + 0.222222 -1.767303 + 0.076307 1.158998 + d 5 1.00 + 2.617301 -0.270406 + 1.315618 -0.407839 + 0.573376 -0.363233 + 0.222222 -0.168907 + 0.076307 -0.013173 + d 5 1.00 + 2.617301 -0.064920 + 1.315618 -0.152553 + 0.573376 0.032122 + 0.222222 -0.117392 + 0.076307 1.045519 + f 5 1.00 + 2.617301 -0.038771 + 1.315618 -0.110108 + 0.573376 -0.034014 + 0.222222 -0.107255 + 0.076307 1.059683 + + 26 0 + s 5 1.00 + 2.617301 0.056943 + 1.315618 -0.111910 + 0.573376 -0.420174 + 0.222222 0.564376 + 0.076307 0.789967 + s 5 1.00 + 2.617301 0.085229 + 1.315618 -0.202708 + 0.573376 1.542507 + 0.222222 -2.827047 + 0.076307 1.744522 + p 5 1.00 + 2.617301 0.032277 + 1.315618 -0.096635 + 0.573376 -0.083108 + 0.222222 0.419549 + 0.076307 0.795090 + p 5 1.00 + 2.617301 0.051511 + 1.315618 -0.059784 + 0.573376 0.615456 + 0.222222 -1.767303 + 0.076307 1.158998 + d 5 1.00 + 2.617301 -0.270406 + 1.315618 -0.407839 + 0.573376 -0.363233 + 0.222222 -0.168907 + 0.076307 -0.013173 + d 5 1.00 + 2.617301 -0.064920 + 1.315618 -0.152553 + 0.573376 0.032122 + 0.222222 -0.117392 + 0.076307 1.045519 + f 5 1.00 + 2.617301 -0.038771 + 1.315618 -0.110108 + 0.573376 -0.034014 + 0.222222 -0.107255 + 0.076307 1.059683 + + [5D7F] + [9G] + [MO] +Ene= -6.3367117215E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -1.0293892207721917E-03 + 2 -3.1335068612783380E-03 + 3 6.3130187082454138E-03 + 4 -4.6129227258181870E-03 + 5 2.0083425275484556E-03 + 6 2.5824096220134368E-03 + 7 -1.9835570992608000E-03 + 8 -2.2529896343071953E-04 + 9 3.4013028480830987E-04 + 10 5.0195683211122996E-06 + 11 -2.2457212675398622E-03 + 12 2.7272216350049086E-03 + 13 7.1327476529996128E-04 + 14 2.1115933896594359E-03 + 15 1.4781558165728008E-03 + 16 2.8017963500510451E-03 + 17 -2.5911636664925583E-03 + 18 3.1071185909532606E-03 + 19 1.4098186257335870E-04 + 20 -1.6595426847736391E-04 + 21 1.0482730633979370E-03 + 22 -1.1713000282088887E-03 + 23 -5.1846127142995198E-04 + 24 -9.1962930254226255E-05 + 25 -4.1775868755907224E-04 + 26 1.5945541109390539E-02 + 27 -4.2891300595807909E-04 + 28 1.1561220418844264E-03 + 29 5.2387887453551520E-03 + 30 -3.7760294578094481E-03 + 31 3.1629810551936327E-03 + 32 1.1891487339126378E-03 + 33 -1.0688859094670608E-03 + 34 -2.2873479774172785E-03 + 35 3.9920408405215114E-03 + 36 -2.4402335754832014E-03 + 37 -2.0063368875114901E-03 + 38 1.2632844179704587E-03 + 39 5.8500142118369002E-03 + 40 8.1043698225045707E-04 + 41 2.8243573610829153E-03 + 42 -4.6190286719489495E-03 + 43 -3.6274341700102495E-03 + 44 5.8760848158051471E-04 + 45 -3.6719189181756854E-03 + 46 5.2989236398674220E-05 + 47 -8.4041683814103712E-04 + 48 -1.8492841826807150E-03 + 49 1.2840189007111208E-03 + 50 6.8372854374779948E-04 + 51 1.1182001800294808E-02 + 52 -2.8695876704074581E-03 + 53 -4.8714140183441362E-03 + 54 3.0351232137913954E-03 + 55 -2.1787072348322199E-03 + 56 9.7235390086998367E-04 + 57 -7.4491893872012768E-04 + 58 -1.7523789073579625E-04 + 59 8.9107506618621123E-03 + 60 -4.3884627846338684E-03 + 61 3.0383709269996163E-03 + 62 -7.2643299539788386E-04 + 63 9.8800957317744555E-03 + 64 -1.0925349599371207E-03 + 65 1.4776695560851862E-03 + 66 3.7181413765397719E-05 + 67 -5.9474169868413917E-04 + 68 -2.0973410758586210E-03 + 69 1.5516355995285193E-05 + 70 -1.7702329667303892E-04 + 71 -4.2837528943308020E-04 + 72 -4.4444629178090123E-04 + 73 -3.7139756718456308E-04 + 74 1.2317716778128193E-03 + 75 6.5624467756256481E-04 + 76 -3.5147002285023210E-02 + 77 -7.6886910970243934E-04 + 78 3.8935960905290058E-03 + 79 1.2592061398861772E-03 + 80 1.3024722554578487E-03 + 81 8.5526388036175603E-04 + 82 3.1727795111489362E-03 + 83 -6.9242336888710300E-04 + 84 -6.2875193463134908E-04 + 85 -2.6472419977369442E-04 + 86 -2.4756204676586353E-04 + 87 2.7598124320710508E-04 + 88 8.6530154621985436E-05 + 89 -6.8341464683854859E-03 + 90 -6.3673044151604417E-04 + 91 1.1031799836483420E-03 + 92 -7.2665009126898371E-04 + 93 -9.2111664804324931E-04 + 94 -2.0353919775925410E-04 + 95 -1.0748498860154172E-03 + 96 2.5678423765618285E-04 + 97 1.6695655529009866E-04 + 98 3.1208374255171396E-04 + 99 -1.8932318965773535E-04 + 100 1.2266217734138138E-04 + 101 7.8506546909858882E-05 + 102 -2.5644405947975360E-02 + 103 -1.1524447494437248E-03 + 104 3.1049543370801811E-03 + 105 -7.0063789836674855E-04 + 106 4.9890712442593737E-04 + 107 3.1003537814682869E-04 + 108 -3.2239576636278231E-05 + 109 -6.6600018471396768E-05 + 110 2.4543012909846606E-04 + 111 1.5166923279509752E-04 + 112 -2.3383623662602120E-04 + 113 -4.5809351682932789E-04 + 114 3.6865568226373435E-04 + 115 -8.1254654113154259E-02 + 116 -1.6311863313617930E-03 + 117 3.2181959731103463E-03 + 118 1.8490507550243185E-03 + 119 7.6844940437815566E-03 + 120 -3.0132159253745141E-03 + 121 -1.5687892889482151E-03 + 122 1.1120163207425950E-03 + 123 -1.4104787303122542E-03 + 124 -8.5818498510897715E-04 + 125 -3.9891516450891735E-04 + 126 3.7421001648686893E-04 + 127 -1.0694520287800332E-04 + 128 8.6341795339881997E-02 + 129 -1.5488877264798727E-03 + 130 -6.8003161200529535E-03 + 131 -5.9042683231401384E-04 + 132 -2.3301023509796431E-02 + 133 5.6583407558258112E-03 + 134 -6.6806030856020300E-03 + 135 3.7762673835895909E-03 + 136 -1.3630444649188780E-03 + 137 -4.9453408415894295E-02 + 138 3.3817004444525102E-02 + 139 -7.2616762668608805E-03 + 140 6.2897588238611357E-02 + 141 -1.3579648039801226E-04 + 142 1.3130001246617378E-02 + 143 -6.1434423439170422E-03 + 144 6.6071543291239083E-03 + 145 -1.9258402280487859E-02 + 146 -1.5437029981196517E-03 + 147 -1.0542425272693702E-03 + 148 -6.4140279346562644E-04 + 149 6.8669913720679880E-04 + 150 -2.1460066397299576E-03 + 151 -5.7452891600277302E-04 + 152 -3.2020944908296542E-03 + 153 -5.2460893186590549E-04 + 154 -4.7122786302330371E-03 + 155 1.5231877889069594E-03 + 156 -8.9209891636343585E-03 + 157 6.2654757890732065E-03 + 158 2.0332767074335931E-03 + 159 -3.3749410540224677E-03 + 160 2.9037057128016770E-03 + 161 5.5633181892021221E-03 + 162 2.2725073464618883E-03 + 163 6.7454909535766391E-04 + 164 -1.1555151203267101E-02 + 165 8.9736689269520229E-04 + 166 -1.4706917494348606E-03 + 167 -5.3945502477220136E-03 + 168 4.7584073855945737E-03 + 169 4.3775284912323147E-03 + 170 4.4009368249353017E-03 + 171 -7.3275820562544182E-04 + 172 1.1740759537459187E-03 + 173 -6.8387112767821366E-04 + 174 -4.3604881562070376E-04 + 175 -1.4463737052843781E-03 + 176 -1.2468676320468229E-03 + 177 -6.2830728185815188E-04 + 178 -7.1784798100531122E-02 + 179 -1.9156983345760918E-03 + 180 -3.4492776324018927E-03 + 181 -3.8422056595146365E-03 + 182 6.9930688842390577E-03 + 183 -6.0491239817999651E-03 + 184 1.7572817132914800E-03 + 185 -9.7879323768660341E-04 + 186 -4.3416160130101741E-04 + 187 -4.9970156382410282E-04 + 188 1.2009973296834310E-03 + 189 -3.8889396234457926E-04 + 190 2.8230067300111792E-04 + 191 -4.8561059187954281E-02 + 192 -1.4261233209838116E-03 + 193 -1.8917120675068588E-04 + 194 -4.6909270628424891E-03 + 195 2.8794076651610877E-03 + 196 6.5284063653924624E-04 + 197 -1.4370575723487984E-03 + 198 1.4249918266406289E-04 + 199 -3.1176627201350595E-04 + 200 2.2243837860701934E-04 + 201 2.3514573913655255E-04 + 202 2.1868998001711753E-04 + 203 1.2281317541748045E-04 + 204 2.7901624063149621E-02 + 205 -1.1746525761538458E-03 + 206 6.9440891380155361E-04 + 207 4.9049726408040770E-03 + 208 -7.2969472791277095E-03 + 209 -1.0589519977343980E-03 + 210 -2.8138019667824305E-03 + 211 -6.4477858690398433E-04 + 212 4.3147615205857475E-03 + 213 1.8457518399395108E-03 + 214 9.4770217566644555E-03 + 215 -1.4431166425208323E-03 + 216 -5.9342568990902300E-03 + 217 6.0013275214576252E-04 + 218 -1.8505408050599080E-03 + 219 -5.4908620585615957E-03 + 220 5.8472236949452007E-03 + 221 -2.9367190301894208E-03 + 222 1.2256595867910982E-03 + 223 9.3259299844101638E-04 + 224 2.2095073941280088E-03 + 225 1.7744932694747587E-03 + 226 -2.1475654117394691E-03 + 227 2.5468582991059835E-04 + 228 3.0776130560456298E-03 + 229 2.3808753726318344E-02 + 230 -3.6325701369937465E-03 + 231 7.0211383816570902E-03 + 232 -2.4437573963878513E-04 + 233 5.7167481221385335E-03 + 234 7.5804115235328746E-03 + 235 -2.3748261214621195E-03 + 236 -5.1433118521790962E-04 + 237 9.0622763977409870E-03 + 238 1.3888393597535189E-02 + 239 -1.3004959543309030E-02 + 240 1.6488482193352809E-03 + 241 2.3249435160247762E-02 + 242 1.8992170597621932E-03 + 243 -8.1803421198251274E-03 + 244 3.5809337688935470E-03 + 245 -1.2505288126056722E-02 + 246 -8.6805039229490115E-03 + 247 1.7935398328975958E-04 + 248 -2.3405733064879772E-03 + 249 1.6722356712671843E-04 + 250 -1.4756857375210139E-03 + 251 1.1677859127304238E-03 + 252 2.6376976168956275E-03 + 253 2.0893993984674964E-03 + 254 3.0361678819358636E-02 + 255 -2.0543728943830542E-03 + 256 -7.2903133472618144E-03 + 257 -5.0225128081296576E-03 + 258 -1.0624562024080580E-02 + 259 -1.7554278415696830E-04 + 260 1.2042140074313911E-03 + 261 2.0212531761784926E-03 + 262 -3.7508716668728403E-02 + 263 -1.8301005047193362E-02 + 264 5.2395189422300330E-03 + 265 -5.6071355108387559E-04 + 266 -7.9835737595839642E-03 + 267 6.2669860347472029E-03 + 268 3.5457697948087312E-03 + 269 -1.8627773662362004E-03 + 270 -7.6621367288359147E-04 + 271 2.9285178890018069E-03 + 272 -5.2930983360626089E-04 + 273 -5.0605963518033335E-04 + 274 -1.4923267948661883E-03 + 275 -4.4891645449200799E-04 + 276 -1.3868708485479328E-03 + 277 5.1368042657598913E-04 + 278 -2.1234625052956129E-04 + 279 -2.5180235309543736E-01 + 280 -7.7403338816005368E-03 + 281 1.7318970269459115E-04 + 282 2.1066136364949039E-02 + 283 -9.2162895043895639E-03 + 284 -3.2474850986285672E-03 + 285 4.6875085295996636E-03 + 286 -7.2589655898630204E-03 + 287 -2.1389539349172516E-03 + 288 -6.2446784825173293E-04 + 289 -2.4775893552458393E-03 + 290 2.5886940318123612E-03 + 291 2.1902639230126264E-04 + 292 -2.6259382513805839E-02 + 293 -1.5254829094168447E-03 + 294 2.4361330995196192E-03 + 295 1.1529033599314324E-03 + 296 -2.4619502107107289E-03 + 297 3.1112346552452443E-04 + 298 -9.1652773564965159E-05 + 299 -1.7697636846552383E-03 + 300 4.6968032374357279E-05 + 301 1.6291777636142849E-04 + 302 -2.1822368008132139E-04 + 303 1.5081163400736454E-05 + 304 -4.1478968624863686E-05 + 305 7.6741553362774119E-04 + 306 -4.3084559794408176E-03 + 307 9.8503992567194507E-05 + 308 1.4419990600875469E-03 + 309 -3.7552532790062097E-03 + 310 8.8343824636358780E-04 + 311 3.8839911378693126E-04 + 312 -1.4066258048473397E-03 + 313 5.0940806087395474E-03 + 314 1.4614663596469654E-03 + 315 -7.5362683535936791E-04 + 316 -5.0802159771581477E-04 + 317 -2.9410740236963679E-03 + 318 1.5394541248669872E-04 + 319 1.9294825671362403E-03 + 320 6.1780723396917070E-04 + 321 -8.8124922226305656E-04 + 322 -2.3236804050348909E-03 + 323 1.1219848825950020E-03 + 324 3.9820588464837859E-04 + 325 2.9698149243211698E-04 + 326 -2.5017392383518713E-04 + 327 -4.9344435024461109E-04 + 328 2.9780806328194348E-04 + 329 6.9611482101382730E-04 + 330 8.3035498830579535E-03 + 331 -4.1135103479839367E-04 + 332 -3.4788877472186047E-03 + 333 2.4698559075334581E-03 + 334 1.2051555536438611E-03 + 335 -8.0664428301651682E-04 + 336 -4.0028834345415493E-04 + 337 -5.0157828123617988E-04 + 338 -9.6078370320205105E-03 + 339 -1.7609167418530605E-03 + 340 2.7181349192483746E-03 + 341 1.6954310517511353E-03 + 342 2.1902953284149520E-03 + 343 7.5656246698536922E-04 + 344 -1.3771920745113012E-03 + 345 -1.0488894040901625E-03 + 346 2.5897277208014092E-04 + 347 -1.7500309943320684E-03 + 348 6.5311069042365329E-04 + 349 -3.3600356647885886E-04 + 350 1.5930629566755463E-04 + 351 7.3381263039366731E-04 + 352 -5.9559449478177508E-04 + 353 1.0993137736584014E-04 + 354 1.7334607373070712E-04 + 355 -3.9208419945686496E-02 + 356 -1.5401909558204773E-03 + 357 -1.2802167167040414E-03 + 358 -2.3912295979821685E-03 + 359 -2.8980729851534135E-03 + 360 -2.7903418626645658E-04 + 361 -9.0429500736222688E-04 + 362 -4.7959583088205373E-04 + 363 -1.1664421064686681E-04 + 364 -2.5100709954157261E-05 + 365 9.3607298467930397E-06 + 366 5.4390267101217266E-04 + 367 -1.6700370988349534E-05 + 368 -2.4664423105308453E-01 + 369 -7.8841507740993501E-03 + 370 8.6189342163089794E-03 + 371 -3.4205222670228592E-03 + 372 -6.6971764175605191E-03 + 373 5.3127635119731799E-03 + 374 -1.4018142314786560E-03 + 375 -5.1298974846132172E-03 + 376 -2.6664948473146454E-04 + 377 -3.5630401207727348E-04 + 378 1.1832488133841409E-03 + 379 2.9720960051675383E-04 + 380 3.7256044001616849E-04 + 381 -7.4339196406072949E-01 + 382 -2.2489381881007516E-02 + 383 -3.0656452161235115E-03 + 384 4.7875802228373773E-02 + 385 1.2766671386332357E-02 + 386 -4.9109706409623454E-03 + 387 2.0520542610926635E-02 + 388 5.8796786687154920E-03 + 389 1.7365305968435256E-03 + 390 -4.0895540326355241E-03 + 391 -1.5150765122004677E-04 + 392 -2.2659891394176258E-03 + 393 -6.5886685267236601E-03 + 394 8.2944511620481623E-02 + 395 -1.1241305848533737E-03 + 396 1.9607075491690183E-03 + 397 -3.6886438199490688E-03 + 398 2.4197139361266828E-02 + 399 1.3259871557557360E-03 + 400 -2.5201473729032225E-03 + 401 -5.8900150115993519E-03 + 402 -4.8055160960622886E-02 + 403 4.1184163626203946E-02 + 404 -1.7736084734188792E-02 + 405 -7.1628938104521876E-04 + 406 -4.0303000880217267E-03 + 407 1.0859592959508339E-02 + 408 -1.0299762963967840E-02 + 409 2.6524040254776930E-03 + 410 1.5439623606805441E-03 + 411 -6.8290854254786262E-04 + 412 8.2836061584067565E-04 + 413 2.3827407967124676E-03 + 414 3.5257909278339430E-04 + 415 -2.8022150929765863E-03 + 416 2.2123527084343016E-03 + 417 -4.8421086759459984E-04 + 418 -7.5282568537462255E-04 + 419 -5.4388533152352148E-02 + 420 -2.1927071799381160E-03 + 421 -1.7174272332417331E-03 + 422 1.6034450756947957E-03 + 423 -7.2156539332553539E-03 + 424 -4.6943311469332784E-03 + 425 -1.0590080794804313E-03 + 426 -6.7165828736622944E-04 + 427 -1.4907527136914993E-03 + 428 2.9617198712820602E-04 + 429 3.2708278154797812E-05 + 430 4.4852576171254327E-04 + 431 7.5141339406671820E-04 + 432 -2.0443539155503618E-01 + 433 -5.3374119978345643E-03 + 434 -7.6502101798889338E-03 + 435 -2.0102837372269741E-02 + 436 -4.9623072710395363E-03 + 437 2.9630178261302086E-03 + 438 -7.8510075779812255E-03 + 439 -1.8876911798754300E-03 + 440 1.7392215117761653E-03 + 441 7.4724138935024383E-04 + 442 -2.4469062347226614E-03 + 443 3.2639310074961559E-03 + 444 -4.2862650739973197E-04 + 445 2.5264145880361372E-02 + 446 -1.9095849809706417E-03 + 447 6.6855134498943565E-04 + 448 8.5758984758372539E-04 + 449 2.9417010798757142E-03 + 450 2.2717646263644832E-05 + 451 -1.9367913851274030E-03 + 452 -2.3331241414148315E-03 + 453 -4.8173522875269523E-03 + 454 7.7049129779574168E-03 + 455 -7.0959601465893406E-04 + 456 -8.9263547369447249E-03 + 457 -8.7506891292421715E-03 + 458 2.2633663305184062E-03 + 459 -4.8945274554402897E-03 + 460 1.1687664413394102E-03 + 461 8.7872741831916557E-03 + 462 2.0238619032299950E-04 + 463 1.0751623228038392E-03 + 464 1.4622191066382588E-03 + 465 2.5957619956214521E-05 + 466 2.4690252241238849E-03 + 467 1.1307866034371745E-03 + 468 1.0649434676837063E-03 + 469 2.8682507161882924E-03 + 470 6.5028361796996267E-02 + 471 -1.3319068067621530E-02 + 472 1.8539685924946706E-02 + 473 1.8688687976363246E-02 + 474 4.3761956239409035E-03 + 475 -8.2397846616429835E-03 + 476 -1.4241115745234354E-03 + 477 5.7100034366528384E-04 + 478 7.6949467088434725E-02 + 479 -2.5738127136680208E-02 + 480 -5.1608182196244592E-02 + 481 3.9293435996188432E-02 + 482 -1.1133022098119087E-01 + 483 -5.2315269320224742E-03 + 484 3.9509216265837793E-03 + 485 2.7247194162579322E-03 + 486 -1.9640674314594471E-03 + 487 1.3695660000112559E-02 + 488 4.6898558884935095E-04 + 489 -8.0483034707288376E-04 + 490 5.0946711521724538E-05 + 491 9.5537930258198010E-04 + 492 -4.8539561449147784E-04 + 493 1.3939102430724070E-03 + 494 2.3819987220593535E-03 +Ene= -6.2210427087E-01 +Spin= Alpha +Occup= 2.0000000 + 1 6.6656361353069800E-03 + 2 -1.3942046026455090E-03 + 3 -1.6780994107678908E-04 + 4 3.5319113371740855E-03 + 5 -7.9363919069427042E-03 + 6 6.2250683658826426E-04 + 7 1.0924619088354399E-03 + 8 -3.3547836291641453E-03 + 9 2.1322862089441217E-03 + 10 1.8505117737327458E-04 + 11 -1.5072487516684676E-03 + 12 3.0270779371883594E-03 + 13 4.0961888017323388E-04 + 14 -4.1738749754289643E-03 + 15 5.8840229356028461E-03 + 16 4.7842816625009660E-03 + 17 -7.2095488075482519E-04 + 18 -3.7449757955465399E-03 + 19 1.4241643617259683E-03 + 20 1.4305662849325915E-03 + 21 7.3960135059957400E-04 + 22 -2.8761306628085986E-04 + 23 -2.4120125764571596E-03 + 24 -1.5783817673312123E-03 + 25 6.8218962722887456E-04 + 26 1.0253764526132038E-02 + 27 -3.1703812055861313E-03 + 28 6.2424349653368823E-03 + 29 -6.9324473421560357E-03 + 30 -1.8307701209098464E-03 + 31 2.1614481634850834E-03 + 32 5.7502758629825710E-04 + 33 -4.4110007809769296E-04 + 34 3.0779657205082414E-03 + 35 -6.3506255160410410E-03 + 36 -5.9177786633956219E-04 + 37 3.3759003457256879E-03 + 38 -6.2348397892991747E-04 + 39 -4.4783605849563646E-04 + 40 3.0379270633322918E-03 + 41 -6.4027091629468972E-04 + 42 -6.0382146329535438E-03 + 43 -1.9914628204330993E-03 + 44 3.1571517928302484E-04 + 45 -7.8501742601320252E-04 + 46 -9.3908303275479373E-04 + 47 -6.1204329527755408E-04 + 48 3.8607822553976502E-04 + 49 2.1375279492214746E-03 + 50 -5.4925579670214470E-04 + 51 5.2211518126670492E-02 + 52 -3.0494594209063649E-03 + 53 -1.5921631494602760E-02 + 54 1.0034188479695312E-02 + 55 -9.1266546822069451E-03 + 56 3.4344142709349032E-03 + 57 2.7428490635436945E-03 + 58 -2.5858709055362893E-03 + 59 3.1000693364513388E-02 + 60 -8.6816761753569036E-03 + 61 8.7580126116939792E-03 + 62 -3.3016142902456062E-03 + 63 -2.8387403456475490E-03 + 64 -8.7776642018968353E-03 + 65 1.8805647549326272E-03 + 66 -8.7407216429503734E-03 + 67 -1.3088518974650400E-03 + 68 3.8409560735885541E-03 + 69 1.0715625054108944E-03 + 70 -1.0507665786827017E-03 + 71 -3.1761593752334383E-04 + 72 -6.4191367083783865E-04 + 73 1.2967818957536916E-03 + 74 3.5589619043218908E-04 + 75 2.1571868649836951E-04 + 76 -3.0119240332758628E-02 + 77 -1.1632416986635105E-03 + 78 2.0877760419969905E-03 + 79 2.8577068393705841E-03 + 80 -4.9581473483761331E-04 + 81 1.4226077876727512E-03 + 82 8.7129405243313476E-04 + 83 5.2029200038248018E-04 + 84 -4.3078516843134286E-04 + 85 1.1497417448762392E-04 + 86 -1.1085679553075344E-04 + 87 2.0997654981785345E-04 + 88 -1.3171288469351043E-04 + 89 -2.5293865936633100E-02 + 90 -4.7351876395065922E-04 + 91 4.1317313105438255E-03 + 92 -1.5494626424915475E-03 + 93 -2.7452799789116681E-03 + 94 -2.2332620144048273E-03 + 95 -3.5766508939271630E-03 + 96 -8.5211226377901949E-04 + 97 5.5165115645989008E-04 + 98 3.4707523844882104E-04 + 99 -2.1809174306692498E-04 + 100 -1.1153411098404500E-04 + 101 -2.6526264733006119E-04 + 102 -9.4786111760952391E-02 + 103 -2.1862256620673120E-03 + 104 8.6479137087479268E-03 + 105 -4.8854272394130622E-04 + 106 1.3287707648155303E-03 + 107 1.6327006891273252E-03 + 108 -2.9426221244140674E-03 + 109 1.1415173089310152E-03 + 110 3.6835717453008254E-04 + 111 1.5695874212596586E-04 + 112 -4.8004491146981775E-04 + 113 -6.9253862404266534E-04 + 114 -2.4023386994601051E-04 + 115 -2.4584849244790197E-03 + 116 1.9487817096425136E-04 + 117 -1.1569505722260993E-03 + 118 3.4829061868267750E-03 + 119 4.5129995989543330E-05 + 120 2.5939560471455801E-03 + 121 -1.4448964501385336E-03 + 122 1.1437487325316361E-05 + 123 1.3666569300918355E-04 + 124 3.1292871496711163E-04 + 125 -1.4009594040511268E-03 + 126 5.4676021993344654E-04 + 127 3.7857526253042032E-05 + 128 1.7585630560788202E-02 + 129 -6.6812081826814987E-04 + 130 2.2868266062602883E-02 + 131 -1.2607565691719339E-02 + 132 -1.0363003155778729E-02 + 133 1.4369473719296588E-03 + 134 4.9944770075173858E-03 + 135 -8.0523852693161705E-04 + 136 -3.4470750488839810E-02 + 137 4.2244121218789357E-02 + 138 -4.0396418774496436E-02 + 139 1.0644000512106929E-02 + 140 -1.2473834902015146E-02 + 141 7.8380187034269907E-03 + 142 -1.2708974958583214E-02 + 143 5.5707637139024782E-03 + 144 4.6131377945729793E-03 + 145 -1.4745508219041084E-03 + 146 -1.1628213004594653E-03 + 147 1.6223073449058018E-03 + 148 -1.3526740071541029E-03 + 149 -3.1390203022505377E-03 + 150 3.5770791040155626E-03 + 151 -4.3686745361918543E-03 + 152 -2.7735621936419504E-03 + 153 1.9046950668155201E-02 + 154 2.9944160104682967E-04 + 155 -7.0235238327173424E-03 + 156 1.4019127614005157E-03 + 157 -4.7146285410057005E-03 + 158 -1.2178234206534399E-03 + 159 -5.3142500680546529E-05 + 160 1.3215729384187319E-03 + 161 4.1975891950113402E-03 + 162 9.7037168747619498E-03 + 163 9.9130706706575407E-04 + 164 -1.9843139129075812E-02 + 165 8.9861292486266600E-06 + 166 -1.9527726775775364E-03 + 167 -9.5741696044914773E-04 + 168 5.2570530343153967E-04 + 169 3.7966067870376275E-03 + 170 -2.2916939735469328E-03 + 171 6.5614998956546231E-04 + 172 7.4956509685218599E-04 + 173 -5.5954773438374942E-04 + 174 -2.8581183017508516E-04 + 175 3.5978327200786233E-04 + 176 -5.5379743683493343E-04 + 177 6.5015797986641495E-04 + 178 -8.5856123985167176E-02 + 179 -1.6888925135131842E-03 + 180 -3.8330463487468787E-03 + 181 -1.7307149754129046E-04 + 182 7.6649896716600840E-03 + 183 -4.4827066042366723E-03 + 184 -2.8530703679133683E-03 + 185 -1.7794445783900132E-03 + 186 -8.6081233509197497E-04 + 187 -4.7664605628361124E-04 + 188 4.1802822631326391E-05 + 189 -1.0606795689091363E-03 + 190 -1.9008977280733178E-04 + 191 -3.7067617951803455E-01 + 192 -1.0430603528274147E-02 + 193 1.0207657051845157E-03 + 194 -2.4054605167166947E-02 + 195 2.0916937365949493E-02 + 196 -7.2868126558680907E-04 + 197 -7.5724210911225385E-03 + 198 8.1607609704826643E-03 + 199 -3.4651405301906013E-03 + 200 1.9213061904816420E-03 + 201 -6.6117217339535858E-05 + 202 1.1697491448420588E-03 + 203 4.6536778747438594E-04 + 204 6.8993531684897358E-02 + 205 -2.5541612421106849E-03 + 206 8.4697871749758406E-03 + 207 8.6829530544830624E-03 + 208 -2.1088052881355825E-02 + 209 -3.4606842041472697E-03 + 210 1.7412777612483713E-03 + 211 -9.1522022601748848E-04 + 212 2.3768425692969622E-02 + 213 1.2129389603905142E-02 + 214 1.1559934674123837E-02 + 215 -1.6859937943927725E-03 + 216 1.2638376213708042E-02 + 217 -4.4271674021710275E-03 + 218 -2.9961493452594868E-03 + 219 -2.0764907812685653E-03 + 220 -8.8151162629512109E-04 + 221 -4.9466065969866625E-03 + 222 4.1564076851617165E-04 + 223 1.9990669239923747E-03 + 224 -2.4897620786316819E-03 + 225 4.7250865506113263E-04 + 226 -2.4841576943667403E-04 + 227 8.5322792859705257E-04 + 228 -1.7150471336046874E-04 + 229 -1.4395128154898714E-02 + 230 -8.6203114926970681E-04 + 231 6.1068610274248470E-03 + 232 -9.2163216437613979E-03 + 233 1.4978221206933223E-04 + 234 -2.9868573497551401E-03 + 235 1.6666803020683203E-03 + 236 2.3943176980378623E-03 + 237 -1.2641008768137389E-02 + 238 -1.3625144732582251E-02 + 239 2.0603070209432767E-02 + 240 4.4202680334326928E-04 + 241 -3.3930657307452233E-02 + 242 1.7418727126783469E-03 + 243 5.1254787695329115E-03 + 244 -7.5073772432879653E-03 + 245 -9.9241659277519664E-04 + 246 6.8796631304368369E-03 + 247 -1.2732888056404973E-03 + 248 3.1267736379919663E-04 + 249 1.8262926769168993E-04 + 250 -1.0686409359514236E-03 + 251 1.2151526242796074E-04 + 252 9.6388353374351706E-04 + 253 3.0392754446367272E-04 + 254 -1.8559062161748994E-02 + 255 3.6903148897285717E-03 + 256 1.4156984703807120E-03 + 257 -4.0322516505494172E-04 + 258 1.0716189729752332E-02 + 259 -1.0205169698401769E-03 + 260 -8.8970636258100592E-05 + 261 -2.7764123538216857E-03 + 262 4.6064902175781623E-02 + 263 1.7171221775206229E-02 + 264 -9.4471633846840810E-04 + 265 3.6594937731484569E-03 + 266 2.8289219095735348E-03 + 267 -1.4109190037722111E-03 + 268 -1.5959477551088295E-03 + 269 -1.6005884039407504E-03 + 270 -1.3414070701155429E-03 + 271 5.1998365563737773E-04 + 272 -4.6186545346774631E-04 + 273 1.8883952010282504E-04 + 274 1.9000803175706421E-04 + 275 -4.6163336461533372E-04 + 276 8.6420982452524951E-04 + 277 3.3878665320898407E-04 + 278 4.1655571427002495E-04 + 279 2.7967564493668606E-01 + 280 7.5939729853574788E-03 + 281 4.2440510709594679E-03 + 282 -1.5952135052990975E-02 + 283 1.0338140855575134E-02 + 284 6.9663308349732656E-04 + 285 -7.7603826103988605E-03 + 286 2.5631042460940987E-03 + 287 3.0907935013824929E-03 + 288 1.0976343894066841E-03 + 289 2.5848219198076889E-03 + 290 -1.7099345340369652E-03 + 291 -1.1497453235139582E-03 + 292 -3.7668654881353139E-02 + 293 -1.2323786699079333E-03 + 294 3.2810277715888854E-03 + 295 3.0813422030341506E-03 + 296 -2.7831335515181911E-03 + 297 4.9398237699260113E-03 + 298 6.4015291869893372E-04 + 299 2.4965021469399756E-03 + 300 4.1545052995398476E-04 + 301 1.0073184674010784E-05 + 302 9.0946626639482594E-07 + 303 9.0887686495038752E-05 + 304 -1.2531225163322818E-03 + 305 1.6669628597167103E-02 + 306 -7.7660564285044649E-03 + 307 3.7076138651399317E-03 + 308 -7.2107067736482990E-03 + 309 -9.2904422902135853E-03 + 310 5.1741308560688442E-03 + 311 1.4688877332339908E-03 + 312 -4.6241027969508306E-03 + 313 2.1712809989744980E-02 + 314 3.9793860345398325E-03 + 315 2.4141069883322360E-03 + 316 1.4564025806340492E-02 + 317 -3.1522780819512521E-02 + 318 -5.2755929100800287E-03 + 319 4.0255908957315600E-03 + 320 -2.1081048905919426E-03 + 321 -8.3088098985483368E-03 + 322 5.9503036937328113E-03 + 323 1.4749066480672763E-03 + 324 1.1940742246489670E-03 + 325 -1.0888298958073013E-03 + 326 -2.2338521085892623E-03 + 327 -1.3326238678118324E-04 + 328 1.1335790571664892E-04 + 329 1.6642886913018245E-03 + 330 4.5886599472963328E-02 + 331 -7.1360622076335053E-03 + 332 -4.4568747293960952E-03 + 333 3.1078729044121700E-03 + 334 9.3743644756997951E-03 + 335 4.8519624390115548E-04 + 336 -4.0254953341572171E-03 + 337 -2.2184004511697549E-03 + 338 -8.3751949433477288E-02 + 339 -1.6787352643337330E-02 + 340 2.7414621251628812E-02 + 341 8.1166129004095686E-03 + 342 1.2881754138536577E-02 + 343 9.4763711753064108E-03 + 344 -1.4237610249973620E-04 + 345 -5.1306488038804160E-03 + 346 1.0775974922021445E-03 + 347 -1.8486665784666811E-03 + 348 1.7794831562721459E-03 + 349 -6.1569153300714506E-04 + 350 7.6513275585736473E-04 + 351 1.1507030862261949E-03 + 352 -8.7133822241764500E-04 + 353 4.9584086193110147E-04 + 354 -5.7278513052461154E-04 + 355 -2.8488549664658780E-01 + 356 -7.9220303178993440E-03 + 357 -6.2329606878341378E-03 + 358 -8.3466857394090179E-03 + 359 -1.8919166317359303E-02 + 360 -5.8397254958081745E-03 + 361 -3.1791250062129669E-03 + 362 -3.6721072998504513E-03 + 363 -4.2214118637216673E-04 + 364 -6.9941030839247673E-05 + 365 1.8994918572746431E-03 + 366 3.1036401551320656E-03 + 367 1.7891764893189214E-04 + 368 -4.6907645972925210E-01 + 369 -1.5868307968321158E-02 + 370 9.9902369487483884E-03 + 371 1.1481555238134909E-02 + 372 -1.0821418198089648E-02 + 373 -3.5346099871604881E-03 + 374 -9.8289447245631338E-05 + 375 -4.0514491451879757E-03 + 376 -1.5086351212307463E-03 + 377 -7.3837210328531969E-04 + 378 1.0902513097656435E-03 + 379 -2.7171058562551654E-04 + 380 2.6101219973958178E-04 + 381 2.4296126923232533E-01 + 382 6.4937935124852802E-03 + 383 1.8148055146846261E-03 + 384 -9.7348047671935549E-03 + 385 -3.7179373236427751E-03 + 386 4.8289090312708437E-03 + 387 -3.0713387915492323E-03 + 388 -7.8639613139375912E-04 + 389 -2.2506169530849365E-04 + 390 1.0884413624160320E-03 + 391 -3.9004838943469889E-04 + 392 1.0614121392459634E-03 + 393 1.2113441949117185E-03 + 394 -8.1551992485283213E-03 + 395 5.1181563541132977E-04 + 396 8.6937337519997961E-03 + 397 -1.7884133989625881E-02 + 398 -1.0081981053293767E-02 + 399 2.2820764440182576E-03 + 400 2.8562272715223513E-03 + 401 8.5485778364900299E-04 + 402 1.1606684367632219E-02 + 403 -2.4209975310116712E-02 + 404 2.9363828735463143E-02 + 405 6.5351805170076379E-03 + 406 3.9202157304795648E-02 + 407 -8.8633212518379235E-04 + 408 1.1100842035693089E-03 + 409 -8.0125736419753603E-03 + 410 6.2273698841934996E-03 + 411 -1.2949970071023316E-02 + 412 -2.1482214274860683E-03 + 413 -2.0068421198331144E-03 + 414 -2.6450383317730506E-03 + 415 -3.0530500471342384E-04 + 416 -1.6014324999494899E-03 + 417 -3.4549382161979184E-03 + 418 -3.3884248341553690E-03 + 419 -5.3262838972804788E-02 + 420 -1.4438929665601616E-04 + 421 -3.5469109613737305E-03 + 422 6.3831206553948069E-03 + 423 -4.0856472448366722E-03 + 424 -1.7525033390156154E-03 + 425 -1.2363681541739920E-03 + 426 -6.8802947603110412E-04 + 427 5.1187222922680589E-05 + 428 7.0679819102844192E-05 + 429 9.4629738622372566E-04 + 430 1.9164511388153820E-04 + 431 6.1917023884790017E-04 + 432 -4.0569969213414181E-01 + 433 -8.9066580640046935E-03 + 434 -1.7927603133337102E-02 + 435 -2.5786138787689129E-02 + 436 -4.7267272005997903E-03 + 437 -2.1328039499498054E-03 + 438 -9.8880368811536789E-03 + 439 -5.9034065686943814E-04 + 440 2.3591423807733237E-03 + 441 1.3668091476341155E-03 + 442 -2.8537051484937106E-03 + 443 3.0421283398566522E-03 + 444 -6.9055514452553328E-04 + 445 6.5473003503574476E-02 + 446 -3.9802761531754129E-04 + 447 8.9830325484697195E-03 + 448 8.7262725221601192E-03 + 449 3.9177779585455918E-03 + 450 -3.3311947285132927E-04 + 451 4.3857438791203773E-03 + 452 -2.6850723099570884E-03 + 453 -1.0772122150979443E-02 + 454 2.7391924714787706E-02 + 455 -1.2387574503940235E-02 + 456 -2.3472929148868005E-02 + 457 -8.2439586242741524E-03 + 458 -4.8818431444776576E-03 + 459 -1.0825449684842760E-02 + 460 6.9325751717566313E-03 + 461 5.5763425946778519E-03 + 462 3.9372817899507853E-03 + 463 -2.1082464908617035E-03 + 464 -2.1946011496738996E-03 + 465 1.5047613110988132E-03 + 466 3.9579210500212992E-05 + 467 1.6059882622100929E-03 + 468 1.4279435609838517E-03 + 469 4.7220328793245856E-05 + 470 1.1749382906956179E-02 + 471 -5.2113162755950222E-03 + 472 -1.3072325365053997E-02 + 473 -2.4978329285880296E-02 + 474 -8.2819638261930027E-03 + 475 -1.5525908327040550E-03 + 476 6.7581995745709927E-03 + 477 2.0222534790512361E-03 + 478 1.1507469850653811E-02 + 479 1.1629401104228955E-02 + 480 -4.0394069324879898E-02 + 481 6.7691077899908275E-02 + 482 4.4820848279419824E-02 + 483 -1.7907744407208486E-04 + 484 1.8900994042422574E-04 + 485 4.4495828397645154E-03 + 486 -7.6150290306878825E-03 + 487 5.0346135293158094E-05 + 488 1.3516504477561174E-04 + 489 2.3414801849922518E-04 + 490 1.2697492570487519E-04 + 491 4.8532319895951023E-04 + 492 4.6323585141598865E-04 + 493 -1.0313496387756112E-03 + 494 6.4335242360612547E-04 +Ene= -6.2167767970E-01 +Spin= Alpha +Occup= 2.0000000 + 1 7.8301198498252917E-03 + 2 -4.7230845734025423E-03 + 3 3.7947053930775447E-03 + 4 -2.6122317289206240E-03 + 5 3.6833731136635510E-03 + 6 2.5264197958818203E-03 + 7 -2.6892136063921329E-03 + 8 -1.8895505520175512E-04 + 9 1.3581299425416431E-03 + 10 -1.0838756369248616E-03 + 11 -8.3718727430313663E-03 + 12 1.0474278112514187E-02 + 13 3.9140138467003193E-03 + 14 1.8169328043749775E-03 + 15 6.5866035309756414E-04 + 16 6.3433583463456339E-03 + 17 -5.5444742747707350E-04 + 18 2.4264577433120893E-03 + 19 -1.0815195084426179E-04 + 20 -1.9156773568729252E-04 + 21 1.8116174981320557E-03 + 22 -2.5509873082625643E-04 + 23 -1.8938748172297863E-03 + 24 -1.9830013936440551E-03 + 25 -3.1311248845770039E-04 + 26 3.3151007429079636E-02 + 27 -1.7698408463241778E-03 + 28 1.6781722545812846E-03 + 29 6.6355264050915025E-04 + 30 -2.2076455891089724E-03 + 31 2.2812468241349827E-03 + 32 -1.6962773978666671E-04 + 33 1.2533758831673780E-04 + 34 -6.9444830879709183E-03 + 35 1.7028478327697834E-02 + 36 9.4851299456354967E-04 + 37 -2.2575809955008953E-04 + 38 4.9403558068076793E-03 + 39 5.3154084433879598E-03 + 40 -5.3315238482936570E-03 + 41 -2.4206619421468147E-03 + 42 -9.5238176359446313E-04 + 43 1.6496312977435795E-03 + 44 -4.6460501263991330E-04 + 45 -1.3802725968126645E-03 + 46 -3.6907608154179234E-04 + 47 2.5183302581226213E-04 + 48 -8.3505200020497403E-04 + 49 -6.1775593348809953E-04 + 50 -1.2565030140911030E-03 + 51 3.7431100535801690E-02 + 52 -1.1835766632804802E-03 + 53 -1.2588578322761966E-02 + 54 1.0826370727755982E-02 + 55 -3.1085254557009991E-03 + 56 5.0473093877210086E-04 + 57 1.1876339152704929E-03 + 58 -5.9575021910295879E-04 + 59 1.7161889845911535E-02 + 60 -9.3370834960173638E-03 + 61 3.0956211618056086E-03 + 62 -2.5465593834063942E-03 + 63 4.8761436895386461E-03 + 64 -3.1020972030206925E-03 + 65 5.2445031420903857E-03 + 66 -6.4942276441679048E-04 + 67 5.2272956626780781E-04 + 68 -2.3550840587336507E-03 + 69 -7.7656514529869441E-04 + 70 -1.1859328578686600E-03 + 71 -8.5179431300219134E-04 + 72 4.5658763999458819E-05 + 73 1.1062109228793110E-03 + 74 1.4517094799113229E-03 + 75 6.3962046811471293E-04 + 76 -1.2023389733704512E-01 + 77 -3.6257387279412753E-03 + 78 1.0637230205151262E-02 + 79 4.9841919521840259E-03 + 80 3.2912327152727107E-03 + 81 2.6636402847857146E-03 + 82 5.4304741065201063E-03 + 83 -1.3874320335425356E-03 + 84 -1.0323863508873996E-03 + 85 -1.6373627973219150E-04 + 86 -6.2065854277200243E-04 + 87 -3.1940509801448740E-04 + 88 -3.9589934978873147E-04 + 89 -2.3934579398929779E-02 + 90 -4.6995438521930716E-04 + 91 2.5124715852473012E-03 + 92 -2.9948669776293994E-03 + 93 -2.2585119582503471E-03 + 94 -6.0208010744321888E-04 + 95 -2.2071631208045728E-03 + 96 3.8307150127837191E-04 + 97 3.1456142225515222E-04 + 98 3.7979393134028204E-04 + 99 -3.5944300277256325E-04 + 100 5.7592937252330580E-04 + 101 5.2620008591218063E-05 + 102 -9.6808639727253468E-02 + 103 -2.3303172130970519E-03 + 104 8.5235018138353994E-03 + 105 -2.6591763547192415E-03 + 106 7.2521780659572078E-04 + 107 1.4734466761099562E-03 + 108 -5.2224207203418116E-06 + 109 1.6557957489114026E-03 + 110 3.3824186513198491E-04 + 111 4.2387190263474487E-04 + 112 -2.5924123330369576E-04 + 113 -5.8006442669202311E-04 + 114 5.4407404819483600E-04 + 115 -1.7378001960898434E-01 + 116 -4.2823595489808004E-03 + 117 -6.9332917752589298E-04 + 118 1.4490884188762450E-03 + 119 1.2394002684838708E-02 + 120 2.5422062139265423E-03 + 121 -1.8212299050339525E-03 + 122 6.2415859708687569E-04 + 123 -2.4014992286756406E-03 + 124 9.4912927216204182E-05 + 125 1.4075488484008737E-05 + 126 1.7713634815128743E-03 + 127 5.1707797163311621E-04 + 128 2.0152254761019832E-02 + 129 -1.6416634774325672E-03 + 130 1.8617479935032131E-02 + 131 -9.8274522088270932E-03 + 132 -5.9113852034675899E-03 + 133 -1.0153622020763111E-03 + 134 2.9289610317953865E-04 + 135 -1.0877389286514142E-03 + 136 -2.6105223848333584E-02 + 137 2.4648356075348463E-02 + 138 -3.6726009580152610E-02 + 139 1.0516236221786499E-02 + 140 -2.1165258857143435E-02 + 141 5.3791502983483331E-03 + 142 -7.5847213717855442E-03 + 143 1.0928828106445312E-02 + 144 -4.6990343535440486E-03 + 145 3.8312480179840411E-03 + 146 3.1473727286320658E-04 + 147 1.6060098898772451E-03 + 148 -2.6704739163077405E-04 + 149 -1.6188905512612977E-03 + 150 1.4339779222152652E-03 + 151 -7.8539395250662816E-04 + 152 -4.2348455931635762E-04 + 153 1.6552101043758559E-02 + 154 -6.8021206063849675E-04 + 155 -6.3050851053267232E-03 + 156 -1.4822257583341149E-03 + 157 -4.7948012974553516E-03 + 158 -1.5341585753622764E-03 + 159 -1.8369404536043195E-03 + 160 9.6105542891942097E-04 + 161 4.7537985679306860E-03 + 162 1.0276893505807820E-02 + 163 1.8865824034403106E-03 + 164 -1.5922078522045670E-02 + 165 8.5311540880560763E-04 + 166 -7.7167898979290739E-04 + 167 8.6165645911490758E-04 + 168 2.1645720799747495E-03 + 169 4.1574004707780488E-03 + 170 -1.4266484298784239E-03 + 171 3.5387932136500674E-04 + 172 1.8922647468766029E-04 + 173 -5.9010991182205862E-04 + 174 -1.2102380985625923E-03 + 175 2.2896574342749833E-04 + 176 -3.7487487254065372E-05 + 177 2.1785386696191158E-04 + 178 -7.1613518858981512E-02 + 179 -1.7508105809568744E-03 + 180 -4.4029309848631782E-03 + 181 -1.9740346524982745E-03 + 182 4.5712102600095929E-03 + 183 -2.1042041780596687E-03 + 184 -2.7771473654698766E-04 + 185 -1.6431460508385730E-04 + 186 -8.3688728676712843E-05 + 187 -1.3584524997291348E-05 + 188 5.2055830380518149E-04 + 189 -7.2543917046712797E-04 + 190 -9.5079069485134676E-05 + 191 -1.7789025858894486E-01 + 192 -4.6024411489556322E-03 + 193 -1.2798889266278392E-03 + 194 -1.2014491702480765E-02 + 195 1.0155864802274527E-02 + 196 2.5797050866242831E-03 + 197 -2.4699526551442857E-03 + 198 5.1427361684466101E-03 + 199 -2.1515096446089958E-03 + 200 1.0467433029596794E-03 + 201 -7.4802051858386827E-05 + 202 7.3539825301345422E-04 + 203 -3.8705795320239544E-04 + 204 1.2335612186358301E-02 + 205 -2.6686531709929637E-03 + 206 2.4173928435885089E-02 + 207 -3.6598745125820831E-03 + 208 -7.5061254917086909E-03 + 209 -9.2182129616023682E-04 + 210 -1.2437647385273062E-03 + 211 -2.8174015477786191E-03 + 212 6.8465781123859338E-03 + 213 4.0873034489088682E-02 + 214 5.1602107021063021E-03 + 215 2.4412073723303201E-02 + 216 -9.5022275916893436E-03 + 217 2.6793029021736523E-03 + 218 -1.3767693969263384E-02 + 219 -6.3883144923226767E-04 + 220 -6.4411699596340207E-03 + 221 1.1511138335943358E-03 + 222 8.9887753115878944E-04 + 223 2.4788208032384025E-03 + 224 -8.6160864459819896E-04 + 225 2.1913821122396472E-03 + 226 -1.5322588893175860E-03 + 227 1.0712751226066648E-03 + 228 4.2474969010592871E-04 + 229 5.7801642026246471E-02 + 230 -4.0002576858749602E-03 + 231 -8.2683505757016138E-03 + 232 4.8254496742544317E-03 + 233 2.5770034410987951E-03 + 234 3.3686844363125901E-03 + 235 -2.3517975769727952E-03 + 236 -3.4737891734644569E-03 + 237 1.6979098855705865E-02 + 238 2.1504899246292088E-02 + 239 -3.1035792195124947E-02 + 240 -1.0475825907599093E-03 + 241 5.3917684473915248E-02 + 242 -1.9897232448396816E-03 + 243 -6.3100481822556450E-03 + 244 7.1330694620786823E-03 + 245 -3.7596646977282678E-03 + 246 -1.0910476891193168E-02 + 247 1.1211969805923819E-03 + 248 -2.0560608056845384E-03 + 249 1.0229571945340151E-03 + 250 -1.5272063747876984E-03 + 251 6.0653977617658970E-04 + 252 -1.9644884087188138E-04 + 253 1.0325284752310405E-03 + 254 4.0418178350752856E-02 + 255 -6.3936236389039820E-03 + 256 -3.6510833827267390E-03 + 257 -2.2713627527739420E-03 + 258 -1.4059094438763624E-02 + 259 -1.5155938864524538E-04 + 260 1.8324971306346077E-03 + 261 5.4893068931031021E-03 + 262 -9.1648904215918800E-02 + 263 -2.8494636218252174E-02 + 264 1.8809431616164510E-02 + 265 6.9640925067231910E-03 + 266 5.7777759237022967E-03 + 267 8.4585058343673164E-03 + 268 3.4042168754724548E-03 + 269 -3.1407971913677110E-03 + 270 -3.4139563538479700E-04 + 271 8.6108209349771868E-04 + 272 -3.2747181170459592E-04 + 273 -1.9786194975606342E-04 + 274 -1.9571802855197938E-03 + 275 -8.2438761045971456E-04 + 276 -1.1342095633179901E-03 + 277 5.4456188869997000E-04 + 278 2.4794107429464515E-04 + 279 -4.9102875789959149E-01 + 280 -1.3644117766586382E-02 + 281 -1.2725257712414197E-02 + 282 3.1420035784541708E-02 + 283 -1.4865213688014054E-02 + 284 -2.1814422887033798E-03 + 285 1.0259873380827008E-02 + 286 -6.3458432730710296E-03 + 287 -4.9052764576550814E-03 + 288 -2.2827476212624221E-03 + 289 -5.3606836193589528E-03 + 290 4.6638616791247400E-03 + 291 2.2630955338539976E-03 + 292 -8.1678951427706689E-02 + 293 -3.3233089003899883E-03 + 294 4.1839264960889756E-03 + 295 2.1704480634910290E-03 + 296 -7.4070301257113200E-03 + 297 2.4063168004995754E-03 + 298 5.4251884171044567E-04 + 299 -3.2014830662083172E-03 + 300 -2.4443025871828753E-04 + 301 7.8051380193483238E-05 + 302 -6.5930249923752313E-04 + 303 3.5615538737539823E-04 + 304 -7.9637756860806712E-04 + 305 2.1250112574155971E-02 + 306 -4.7714250825726040E-04 + 307 -4.8722628833524446E-03 + 308 2.6965945170937104E-03 + 309 4.8431794599090973E-03 + 310 -6.7504060934426061E-04 + 311 1.7387786342014978E-03 + 312 4.8738856613220530E-04 + 313 1.2563570958797851E-02 + 314 1.1144063180558589E-03 + 315 -1.2419679786621954E-03 + 316 4.5366552787962991E-03 + 317 -2.0500824311188097E-02 + 318 -1.2319645976616998E-03 + 319 -1.8597879257072874E-03 + 320 2.5513280116043792E-03 + 321 -2.1217439782814256E-03 + 322 2.9816082247109748E-03 + 323 -6.6897139220526092E-05 + 324 3.0399998775954029E-04 + 325 4.1971487362942106E-05 + 326 -8.4182323970111801E-04 + 327 -2.1600148988871912E-04 + 328 1.1375268527175373E-04 + 329 -9.2679390532247126E-04 + 330 1.2894124434872757E-02 + 331 -6.3600959417705032E-03 + 332 1.0446227011681245E-03 + 333 -6.1757693688010854E-03 + 334 1.0229330411992673E-03 + 335 8.6249334851699509E-04 + 336 -4.0521282688222261E-03 + 337 -2.8596961406830439E-03 + 338 -3.8964169914446373E-02 + 339 -6.7279170226661501E-03 + 340 1.0721326730934148E-02 + 341 3.7063970545298829E-03 + 342 3.8869528066284471E-03 + 343 5.9640319530773513E-03 + 344 -1.0099501587238039E-04 + 345 -6.2534150317310163E-03 + 346 2.1030198510398630E-03 + 347 1.0198952374507776E-03 + 348 1.3089471470068305E-03 + 349 -8.9820642745055024E-04 + 350 -1.0089178405126444E-05 + 351 1.6395893661129476E-03 + 352 -5.6324020990192257E-04 + 353 8.7552849425453838E-06 + 354 3.8737620240384925E-04 + 355 -1.0981889169795701E-01 + 356 -2.6481529187401378E-03 + 357 -3.5990820094616671E-03 + 358 -3.5683738896038300E-03 + 359 -7.0969377236506708E-03 + 360 -2.3384989526312544E-04 + 361 5.4724687952469346E-04 + 362 -1.7704419362808458E-03 + 363 -9.6548478939726391E-05 + 364 -7.1396150098078609E-04 + 365 7.8019377073654435E-04 + 366 1.5305885126197228E-03 + 367 -1.8125551214437325E-04 + 368 -3.3872301765598867E-01 + 369 -1.1852095299392032E-02 + 370 2.5659008015196127E-03 + 371 -1.1991991758400341E-03 + 372 -6.9902049010852662E-03 + 373 1.0259037328734523E-04 + 374 9.8831149878594263E-03 + 375 -4.7153217694641033E-03 + 376 -9.5848857390766614E-04 + 377 -1.6131424887145959E-04 + 378 1.8590653525971934E-03 + 379 8.8367961776694931E-04 + 380 4.2187143963008634E-04 + 381 2.0397999222343668E-01 + 382 6.4012869609349349E-03 + 383 -1.0675860365266821E-02 + 384 -1.6789370387442749E-02 + 385 -2.0420278109513335E-03 + 386 -6.6450846786211878E-03 + 387 -5.1140386520686226E-03 + 388 2.7184108807173151E-03 + 389 -7.6360374045902522E-04 + 390 1.1259379713476792E-03 + 391 1.4912915788611538E-04 + 392 3.9007267783482591E-04 + 393 2.4838565817455090E-03 + 394 2.9114720531879801E-02 + 395 -2.9562041507703815E-03 + 396 1.2011229132221900E-02 + 397 6.1365400698857779E-03 + 398 -3.2791294674015809E-04 + 399 -6.0870032905749006E-03 + 400 -1.2259193567037067E-03 + 401 8.8061599122136926E-04 + 402 3.8519609718595804E-02 + 403 -3.7630843950222648E-02 + 404 -5.8713881988534207E-03 + 405 2.4109154793613627E-02 + 406 -2.6126701012987870E-02 + 407 -3.5282153434765800E-03 + 408 1.0311877652703848E-02 + 409 1.1135089247673450E-02 + 410 -1.1662814133303315E-02 + 411 5.9173152094947933E-03 + 412 -1.0257355239254274E-03 + 413 2.4052478950905469E-03 + 414 3.0096998094883329E-03 + 415 1.3508204807699772E-04 + 416 1.8829497880967973E-03 + 417 -1.3053740082841071E-03 + 418 -3.3606313946117259E-04 + 419 -3.2842294647342889E-02 + 420 -5.9025563314336568E-04 + 421 -2.1704501840787323E-03 + 422 1.3969488050191378E-03 + 423 -3.0207178645617304E-03 + 424 1.2178407460686318E-03 + 425 1.0147574347506589E-03 + 426 -1.8991074414593696E-03 + 427 9.9800655043774343E-06 + 428 -2.8071846384794519E-04 + 429 -1.1164923573082695E-04 + 430 4.8724837703825264E-04 + 431 3.7428378939611265E-04 + 432 5.0363034222238801E-01 + 433 1.1561261335474044E-02 + 434 1.3684763718369800E-02 + 435 3.7673933865695793E-02 + 436 7.4382736335360036E-03 + 437 5.0823947779780731E-03 + 438 8.6625518362080187E-03 + 439 2.3794726876580317E-03 + 440 -2.6321421052412836E-03 + 441 -2.0044354347167888E-03 + 442 4.4438390079260563E-03 + 443 -6.6951987495857263E-03 + 444 8.5760112673134486E-04 + 445 -1.1529985032232700E-02 + 446 -2.2477357801902959E-03 + 447 2.0009785503961812E-02 + 448 -5.4365326429578068E-03 + 449 -4.5261805535971988E-03 + 450 -2.2467670897873336E-03 + 451 -3.1478348651025243E-03 + 452 3.6712177645491003E-03 + 453 3.2272976838893042E-03 + 454 -4.8580035395707141E-02 + 455 -2.1089301107419498E-02 + 456 1.4580880192904213E-02 + 457 9.3074726751578383E-03 + 458 -1.2707123708349144E-03 + 459 1.4132118336227045E-02 + 460 5.4456431314124981E-03 + 461 -4.7205792265898113E-04 + 462 -4.4327036305281753E-03 + 463 -1.9647143159634735E-03 + 464 -1.0361042458804661E-04 + 465 3.7858293687400230E-03 + 466 2.0905933493915573E-03 + 467 8.4003500266058577E-04 + 468 9.1234065705759289E-04 + 469 1.5387491161524083E-03 + 470 -4.9888853028957528E-02 + 471 1.1912127731244134E-02 + 472 -1.6375418124908966E-03 + 473 1.3028157655024044E-02 + 474 3.8442979012856459E-03 + 475 4.1169966843448815E-03 + 476 -4.4040925717236962E-03 + 477 -2.2795418284045662E-03 + 478 -5.8781203508798868E-02 + 479 7.3977803067940820E-03 + 480 7.2151276646361229E-02 + 481 -9.4783720543784880E-02 + 482 3.1783330516029842E-02 + 483 1.5528683037209904E-03 + 484 -8.0080776346194780E-04 + 485 -4.5307768645798819E-03 + 486 6.3180905536729028E-03 + 487 -1.0242585230573324E-03 + 488 8.5321145567251338E-04 + 489 1.8612947026459343E-04 + 490 3.0335359131589610E-05 + 491 1.3345161879174338E-03 + 492 -1.2785801555552376E-03 + 493 1.0558040192543445E-03 + 494 9.9928534627801639E-04 +Ene= -6.1954249871E-01 +Spin= Alpha +Occup= 2.0000000 + 1 3.0455033054431089E-03 + 2 -1.0799405138994795E-03 + 3 1.3729558166645725E-04 + 4 -7.4936114647720410E-03 + 5 6.8518300011789525E-03 + 6 4.1890986205716054E-04 + 7 -3.7765318782156652E-03 + 8 2.3585357754420172E-03 + 9 -1.1046351210485875E-03 + 10 -3.3773283084679645E-03 + 11 -2.7070147425884050E-03 + 12 4.9096502829230363E-03 + 13 3.5038246441636296E-03 + 14 2.0820408907661386E-03 + 15 -3.6295451029637821E-03 + 16 2.3227444836722232E-03 + 17 7.0452179098284395E-04 + 18 4.2922304228352670E-03 + 19 -1.2879620289419321E-03 + 20 -1.1457441741031273E-03 + 21 4.9142864563052628E-04 + 22 8.3232081564411196E-05 + 23 -3.9847975918983843E-05 + 24 -5.1025992188626567E-04 + 25 -4.2435205538445686E-04 + 26 4.7519366886520512E-03 + 27 1.3941070545003785E-03 + 28 7.4989743774991641E-04 + 29 4.4578284571724818E-03 + 30 -2.4268889935833613E-03 + 31 -3.7016986033010371E-04 + 32 -1.4162795382599944E-03 + 33 9.8843961113393372E-06 + 34 -7.6837199076218591E-03 + 35 1.4479791358353868E-02 + 36 3.7503914322513242E-03 + 37 -2.1881495037374700E-03 + 38 1.3328912511853099E-03 + 39 3.5579164284190333E-03 + 40 -5.6155351771213528E-03 + 41 -2.9727107850763840E-03 + 42 5.4067668341749985E-03 + 43 4.7575418071037845E-03 + 44 -9.1211542893769582E-04 + 45 1.4924470941122389E-03 + 46 2.0157613062287498E-04 + 47 -4.9456042049078929E-05 + 48 -1.7735877904127769E-04 + 49 -2.7049068049168306E-03 + 50 -6.6531485929221222E-04 + 51 -1.7860516597616619E-02 + 52 1.2009852784940411E-03 + 53 4.8796819839317012E-03 + 54 -6.6123167772431405E-03 + 55 6.6490355378464525E-03 + 56 -1.7389971074068976E-03 + 57 -5.3828930071864948E-04 + 58 1.9845535211701513E-03 + 59 -1.0582754196155810E-02 + 60 5.6298237423486894E-03 + 61 -4.2174207356082717E-03 + 62 8.8002456642218170E-04 + 63 -1.0560897326432917E-02 + 64 8.7395970430772943E-04 + 65 1.6829524654956170E-03 + 66 4.3181363206258811E-03 + 67 6.1151771668035222E-04 + 68 -7.6690022534697084E-04 + 69 -4.5013271183003481E-04 + 70 1.0485068544174461E-03 + 71 3.4204451230354161E-04 + 72 -1.1245718462004977E-03 + 73 1.6019990636508348E-03 + 74 9.4121228866781792E-04 + 75 6.9151179837273697E-04 + 76 -5.1512356300746770E-02 + 77 -1.4182287228746463E-03 + 78 5.1236016161401911E-03 + 79 2.7574399144140841E-04 + 80 3.2622194747226854E-03 + 81 3.6280926912125839E-04 + 82 3.0957445108732518E-03 + 83 -1.6286653289455510E-03 + 84 -2.0643070698365159E-04 + 85 -2.5211234691427256E-04 + 86 -2.6171731824007770E-04 + 87 -5.4768456423502166E-04 + 88 -1.1004055291235121E-04 + 89 3.9425701963477335E-03 + 90 -1.9421840862887446E-04 + 91 -4.6829080383352048E-04 + 92 -3.8739884160263622E-05 + 93 6.4046882734593248E-04 + 94 -1.2480880600573023E-03 + 95 -1.0454555522125249E-03 + 96 9.0141625083269917E-04 + 97 1.4106663946420500E-04 + 98 -3.5219490927774340E-05 + 99 -2.4891396527388477E-04 + 100 -2.3436983209870581E-04 + 101 1.2218068348874357E-06 + 102 3.6454772230331507E-02 + 103 5.5576474422409678E-04 + 104 -3.6591203027342275E-03 + 105 -3.8728841319805168E-04 + 106 -2.1747412741786445E-04 + 107 -3.0870475893982291E-04 + 108 1.5698626448180794E-03 + 109 7.2377681141694522E-05 + 110 -5.9477404282304255E-05 + 111 -2.4997815821148058E-04 + 112 2.0592204277697940E-04 + 113 4.4626115189277797E-04 + 114 1.9719955216186265E-04 + 115 -5.8846218014017716E-02 + 116 -2.5064236768393634E-03 + 117 -1.4549540984572936E-03 + 118 -2.8240818906519393E-03 + 119 3.6746436719886544E-03 + 120 3.7245667421728846E-04 + 121 -7.8242016052278260E-04 + 122 1.1377342283457342E-04 + 123 -1.0251825248189638E-03 + 124 1.6801056897874632E-04 + 125 1.2225542909354821E-03 + 126 3.3813499102165501E-04 + 127 2.6273146620101772E-04 + 128 -3.6933249721318305E-02 + 129 1.9850727450720228E-03 + 130 -2.6053426428760251E-03 + 131 1.9884605120911326E-03 + 132 1.1286055829946337E-02 + 133 -3.9660243488681040E-03 + 134 1.8603293236543408E-04 + 135 -2.0007756182051123E-03 + 136 1.0744245864550700E-02 + 137 7.1135703843091796E-03 + 138 -1.1289830617467744E-02 + 139 -9.8922226510197346E-04 + 140 -3.5834934522772005E-02 + 141 1.4699528731377926E-03 + 142 -1.9930673772237187E-03 + 143 7.1833818126189478E-03 + 144 2.0359251828007312E-03 + 145 1.0327726021701539E-02 + 146 -1.9962798737991417E-03 + 147 7.7220300610240196E-04 + 148 -1.1227749675671054E-03 + 149 -1.8408785296408433E-03 + 150 2.2452861246885121E-03 + 151 4.2261483344731765E-04 + 152 1.5556881152195598E-03 + 153 -3.8448111493649575E-03 + 154 2.3600690334092110E-03 + 155 -7.8017284883348265E-04 + 156 2.2016900944143705E-03 + 157 -1.4353584869549957E-03 + 158 -1.2315467832745167E-03 + 159 8.3787486911781467E-04 + 160 -1.2839229246726861E-03 + 161 -4.4893085229339618E-03 + 162 -3.4991881468608051E-03 + 163 -5.0577539028344323E-04 + 164 1.3999739048513347E-02 + 165 -1.5784028215897258E-04 + 166 1.5883673548062836E-03 + 167 1.5839964366745462E-03 + 168 -1.4935644257139105E-03 + 169 -3.9353084225696177E-04 + 170 -2.5958235804819049E-03 + 171 -6.2094471474083359E-04 + 172 -2.2433485341269419E-04 + 173 5.4718564308490222E-04 + 174 -1.4913491189881117E-04 + 175 9.1213423944315941E-04 + 176 1.4197894709712351E-04 + 177 8.7270883055929900E-04 + 178 6.8535300600476703E-02 + 179 1.4457818862100701E-03 + 180 4.0757230085115542E-03 + 181 2.1018435904781810E-03 + 182 -4.2531991516666593E-03 + 183 1.7515197932217038E-03 + 184 -6.2412440865735783E-04 + 185 -1.2013345880017546E-03 + 186 -1.5388013488699240E-04 + 187 1.5122056874529151E-04 + 188 -7.7513026115516440E-04 + 189 6.6567011718550136E-04 + 190 -2.9028861691651531E-04 + 191 5.9395712886694624E-02 + 192 1.0973986654907557E-03 + 193 1.2721490302902677E-03 + 194 4.7471198822062917E-03 + 195 -2.9129468017990820E-03 + 196 -2.2929597022083108E-03 + 197 1.1272677552018869E-03 + 198 -7.0672957262593269E-04 + 199 6.4581460559873997E-04 + 200 -3.1791201418099845E-04 + 201 -7.0468812290976076E-05 + 202 -5.1707300425896834E-04 + 203 1.2976130201963580E-04 + 204 -2.7846654132509794E-03 + 205 8.2057792100375900E-04 + 206 -1.3969333198913917E-02 + 207 -4.6631035457300372E-04 + 208 4.1523221986962730E-04 + 209 2.2229133167792291E-03 + 210 1.7654452631166511E-03 + 211 2.2734612820079921E-03 + 212 2.4330614517121692E-04 + 213 -3.5201144569163713E-02 + 214 -4.9256404487952243E-03 + 215 -2.4107821462541111E-02 + 216 1.5370690933980701E-02 + 217 -6.5530715425898599E-03 + 218 8.7383791548014695E-03 + 219 1.2331773654438141E-03 + 220 6.2032639409299213E-03 + 221 1.5693882007502692E-03 + 222 8.5656875419281111E-04 + 223 -1.3648431941505547E-03 + 224 -2.3107237493342737E-03 + 225 -2.4971176418148154E-03 + 226 1.1647116529588833E-03 + 227 -1.4226592409705835E-03 + 228 -8.4018792986639173E-04 + 229 5.0592309805697372E-02 + 230 -2.9686771213248975E-03 + 231 -1.4072086667393490E-02 + 232 1.7071472293201849E-02 + 233 2.5080797158185926E-03 + 234 2.7293015021871594E-03 + 235 -7.5350884990760952E-04 + 236 -2.9256700798390230E-03 + 237 1.9086138140147573E-02 + 238 2.8491115356369220E-02 + 239 -4.4836979177671529E-02 + 240 -4.7246019827648043E-04 + 241 6.9286289175408286E-02 + 242 -3.9731278593397590E-03 + 243 -1.0818766971039491E-02 + 244 1.1625047798529308E-02 + 245 1.5751337635815769E-03 + 246 -1.4950976921854108E-02 + 247 1.1231255264238815E-03 + 248 -1.5437436183285019E-03 + 249 9.0853415300861989E-04 + 250 6.7419865421612050E-04 + 251 3.6053964325172383E-05 + 252 -2.4145326907729150E-03 + 253 -1.6185892896481633E-04 + 254 3.8626592815325461E-02 + 255 -6.5341625792236574E-03 + 256 -5.3942683167762734E-04 + 257 -1.4551139666441712E-03 + 258 -1.8390990358871897E-02 + 259 1.7271547752636721E-03 + 260 5.4743834473846747E-05 + 261 6.9164719363929940E-03 + 262 -1.0280790688632931E-01 + 263 -3.1071193897775833E-02 + 264 9.9942117747304389E-03 + 265 1.3886289185133817E-03 + 266 5.7641695664763151E-03 + 267 5.5470619656028319E-03 + 268 2.0167669428034296E-03 + 269 -6.8988838720785133E-04 + 270 -1.2543955428508528E-03 + 271 -1.5701061106129280E-03 + 272 -3.2031718437051829E-04 + 273 -1.8166498385831218E-04 + 274 -8.1253864603634423E-04 + 275 5.0735167663570164E-04 + 276 -6.8956324103719327E-04 + 277 -5.4720557469426928E-05 + 278 1.0532581735343289E-03 + 279 -5.6644053818119100E-01 + 280 -1.5408434087348422E-02 + 281 -1.4145154582352226E-02 + 282 3.3474490810223793E-02 + 283 -1.8183867927174184E-02 + 284 -3.3174902195179492E-03 + 285 1.2081121996594862E-02 + 286 -3.6708809420470628E-03 + 287 -5.6248423943699522E-03 + 288 -2.3666550439810814E-03 + 289 -5.7396272143089557E-03 + 290 5.0459086194536672E-03 + 291 2.3556467513615991E-03 + 292 -6.8701895221830747E-02 + 293 -3.5485979495304657E-03 + 294 3.3190161828819155E-03 + 295 1.3380111739469849E-03 + 296 -5.7149911178579725E-03 + 297 2.2450084818788837E-03 + 298 1.4902205176587067E-03 + 299 -2.5663282000446320E-03 + 300 -4.5116836942708343E-04 + 301 2.8963581940048702E-04 + 302 -7.7252406608945630E-04 + 303 5.3063619115966028E-04 + 304 -3.9620204512557435E-04 + 305 1.0705856399374342E-02 + 306 -1.8873095588166743E-03 + 307 5.8614132949865718E-03 + 308 6.3918199892176565E-03 + 309 -1.5765544138734849E-03 + 310 1.9719682976843222E-03 + 311 3.2615950851824648E-03 + 312 -5.1913600582198191E-04 + 313 1.7441002082398589E-02 + 314 -3.2829736884791162E-05 + 315 -7.3840410371198801E-04 + 316 4.1205302953236760E-03 + 317 -1.8865771324082372E-02 + 318 -2.6854792798760596E-03 + 319 2.6248039783678318E-03 + 320 6.5511283726308470E-03 + 321 -7.5390273203756733E-03 + 322 1.1736897410816291E-03 + 323 -4.5543573739288966E-04 + 324 1.3555376164263658E-04 + 325 1.1940285472566371E-03 + 326 -1.9371553568526133E-03 + 327 -9.8312872032510512E-04 + 328 1.0705697015035340E-03 + 329 -3.6288792324663539E-04 + 330 5.3809980228848786E-03 + 331 1.9610440212177930E-03 + 332 -2.8287872094238200E-03 + 333 6.9030338266145705E-03 + 334 -2.5116082447511666E-03 + 335 -8.6208394395135594E-05 + 336 1.7731749262634216E-03 + 337 2.2807385189461192E-03 + 338 4.6191228977670411E-03 + 339 -6.0542755830082194E-03 + 340 1.0974554483769224E-02 + 341 1.3575526290995510E-03 + 342 4.9571451727401751E-03 + 343 -1.3115952756450257E-03 + 344 1.2824198133396900E-04 + 345 9.9030974523675120E-04 + 346 -3.0751549774926373E-03 + 347 -1.0311768831868743E-03 + 348 8.3013824628007317E-05 + 349 8.8459750814618636E-04 + 350 2.9495027890454897E-04 + 351 -6.6079260286506386E-04 + 352 2.6880898578668421E-04 + 353 -4.7247282585975822E-04 + 354 -1.2394668864945009E-03 + 355 -9.6422724741098004E-02 + 356 -2.7247268995622066E-03 + 357 -1.2504621981794914E-03 + 358 -4.0097205826828044E-03 + 359 -5.5173148993897950E-03 + 360 -2.6548734590108847E-03 + 361 -4.1603113881113615E-03 + 362 2.7702313224313153E-04 + 363 1.1930958188495200E-04 + 364 4.6799224821398336E-04 + 365 6.7323081007642562E-05 + 366 9.2136569075816274E-04 + 367 -8.5489881860657314E-05 + 368 2.5367719512156489E-01 + 369 7.8622792078284660E-03 + 370 -4.6394081378503321E-03 + 371 -2.8350784378233444E-03 + 372 1.1161765947701855E-02 + 373 1.1951752602806457E-03 + 374 2.3544808921048695E-03 + 375 -4.9889257080363075E-03 + 376 9.8696844430870025E-04 + 377 7.9251266980526016E-05 + 378 -3.5678250445826253E-04 + 379 2.0804866281359379E-04 + 380 -1.3269764782854686E-03 + 381 2.7295404480422675E-01 + 382 6.7667689550294247E-03 + 383 1.4243843523120904E-03 + 384 -1.9381898946353889E-02 + 385 -2.4123575657073360E-03 + 386 6.4819542437023281E-03 + 387 -7.4811126425100025E-03 + 388 1.0755203984909847E-03 + 389 6.1564772456062502E-04 + 390 9.3473369090777412E-04 + 391 -1.3815302565799590E-04 + 392 4.9376371240700777E-04 + 393 2.2152818070432883E-04 + 394 1.0665262584818711E-02 + 395 5.8066461626504772E-04 + 396 -3.3191498772667822E-03 + 397 1.4284523789752293E-02 + 398 -7.3654638230278846E-03 + 399 -8.2309910313501031E-03 + 400 -2.4108190133951416E-03 + 401 2.2601591418164582E-03 + 402 4.1158606630665152E-02 + 403 -2.9677373041928384E-02 + 404 -2.8970995495682411E-02 + 405 1.6334873462853373E-02 + 406 -6.0623950244272182E-02 + 407 -4.1711656407843571E-03 + 408 7.4888744429078679E-03 + 409 1.0823639092985669E-02 + 410 -9.7656373464356117E-03 + 411 1.3810885663562355E-02 + 412 3.6660727780101793E-05 + 413 2.0467247111526825E-03 + 414 5.5841541188508608E-04 + 415 -6.0488600192016483E-05 + 416 1.6303282807800983E-04 + 417 -2.0355597123118616E-03 + 418 -4.7456789468032967E-04 + 419 -2.9127424458117359E-02 + 420 -1.1674873934310074E-03 + 421 -6.4594823975933004E-04 + 422 2.3979470674739076E-03 + 423 -1.3497544252493144E-03 + 424 -8.8375472434759942E-04 + 425 1.3984131767062788E-03 + 426 -2.1091041031752627E-03 + 427 1.1581275584245080E-04 + 428 -1.2912786454825979E-04 + 429 3.7815687481432866E-04 + 430 5.4002515026921013E-04 + 431 -3.0262069802580873E-04 + 432 -5.3895242098639495E-01 + 433 -1.2292421415122370E-02 + 434 -1.7228891986420265E-02 + 435 -3.5816986233049623E-02 + 436 -6.3633319737104047E-03 + 437 -6.9613374585580116E-03 + 438 -8.1101580158497704E-03 + 439 -1.1098557754799679E-03 + 440 2.6299200968391721E-03 + 441 2.1541401668459526E-03 + 442 -4.0211677436041045E-03 + 443 5.8347724443081339E-03 + 444 -1.1187995691701400E-03 + 445 2.4135554486192635E-02 + 446 -1.8825051210342690E-03 + 447 -1.4253484733773931E-02 + 448 -1.2918221248467719E-02 + 449 3.2349776287645508E-03 + 450 1.0217878180523131E-03 + 451 -7.4125765219131663E-04 + 452 -1.0574179889322156E-03 + 453 -7.2207885159657611E-03 + 454 6.1999064006522386E-02 + 455 1.5027952805703376E-02 + 456 -1.4997128303535145E-02 + 457 -3.9977011864024605E-03 + 458 7.7310212905923967E-03 + 459 -1.6231139781067345E-02 + 460 -4.9131331878681170E-03 + 461 8.0360345467426330E-03 + 462 3.5684204389900545E-03 + 463 6.2180077237440721E-04 + 464 -8.1926403126384340E-04 + 465 -2.3453509206360776E-04 + 466 -1.2474060046125297E-03 + 467 -2.1988949824830380E-04 + 468 -1.3160397076428122E-03 + 469 -4.0805616825932792E-04 + 470 1.8432642084541758E-02 + 471 -5.9324153724087132E-03 + 472 -1.1286474729687234E-02 + 473 -2.8900603300438699E-02 + 474 -9.1092284342724483E-03 + 475 6.5430303629726084E-04 + 476 9.2971857150980601E-03 + 477 3.0363754376622680E-03 + 478 1.7543677969211038E-02 + 479 1.3672432262590784E-02 + 480 -5.5703125464507612E-02 + 481 9.6383232351648737E-02 + 482 5.1893932097920044E-02 + 483 -1.9159696093393394E-03 + 484 -1.2429035782490273E-03 + 485 1.6527883648417333E-03 + 486 -7.5912617288142531E-03 + 487 -3.3828295893800057E-03 + 488 8.0879036389319952E-04 + 489 -1.0651393354841265E-03 + 490 -4.6390310945004283E-04 + 491 -3.6339668195353801E-04 + 492 1.2181881310560924E-04 + 493 -2.2552354702531897E-03 + 494 -1.6373911682570047E-03 +Ene= -6.1695352622E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -4.3471942608068167E-03 + 2 8.8899904962908688E-04 + 3 -2.2068760635750740E-03 + 4 -1.0831729704447643E-03 + 5 -8.0804982711254469E-03 + 6 -1.1742452879385820E-03 + 7 3.1909403519080526E-04 + 8 -6.2985660656443663E-04 + 9 -2.2190702370608758E-03 + 10 -6.5859314890873754E-03 + 11 1.1079268887147732E-02 + 12 -5.4219483277384494E-03 + 13 1.5928454815842456E-03 + 14 -1.8995026235272348E-03 + 15 3.1237759574312004E-03 + 16 1.6523136485540029E-03 + 17 2.1465950144824099E-03 + 18 -5.2039755324036349E-04 + 19 6.7287056527915271E-06 + 20 -3.1443319715612421E-05 + 21 -6.7540798172487017E-04 + 22 -5.7939956756156358E-04 + 23 -6.6332824600492696E-04 + 24 9.6349116833173502E-05 + 25 -3.5149404081704836E-04 + 26 -3.0675390619676723E-02 + 27 4.3690071599597436E-03 + 28 1.1706990082964491E-03 + 29 -1.9707285813110758E-03 + 30 -5.7466708203660552E-03 + 31 -2.3468512411940587E-03 + 32 -1.8783775080687740E-03 + 33 -7.4844961766099428E-04 + 34 4.8250256647689319E-03 + 35 -1.9653076456900221E-02 + 36 5.9046267348215799E-03 + 37 1.9430454251876422E-04 + 38 -1.0996887843914095E-02 + 39 -3.3673077795607150E-03 + 40 5.3001184583113320E-03 + 41 4.5017487138819523E-05 + 42 2.1281349170377581E-03 + 43 2.8517200373204582E-03 + 44 -5.8424947792879323E-04 + 45 1.7687983716084229E-03 + 46 7.7979166195882787E-04 + 47 -9.1085983069232230E-04 + 48 -6.1065737849672649E-04 + 49 -5.9271051011731437E-04 + 50 -2.0638918618975198E-04 + 51 -3.0018725734898741E-03 + 52 1.0150632840322383E-03 + 53 1.6968333641041778E-03 + 54 -1.7264171046888592E-02 + 55 -1.3109346338448186E-03 + 56 3.3539534813530523E-03 + 57 3.3362877999339371E-03 + 58 1.1114717062979222E-04 + 59 6.1861588705817610E-03 + 60 1.8659139002335616E-02 + 61 3.3434713485535573E-03 + 62 6.3239096786089238E-04 + 63 -4.9923118197280722E-02 + 64 -2.0830466642926351E-03 + 65 -9.7231325192271446E-03 + 66 -6.4247769474524092E-03 + 67 3.4751464239053333E-03 + 68 1.1435215888857304E-02 + 69 -2.4453991348655922E-03 + 70 1.6064938683568234E-03 + 71 1.3334159873227330E-03 + 72 7.2617849406014638E-04 + 73 2.7510519604634917E-03 + 74 -2.8672000194255834E-03 + 75 -1.9367178130973458E-05 + 76 8.4067449110826670E-02 + 77 2.7136381339524884E-03 + 78 -6.0654683215073677E-03 + 79 -4.4664036339927046E-03 + 80 4.8751545997970986E-04 + 81 -2.3899874861773398E-03 + 82 -3.1368844575953925E-03 + 83 6.8015674181961193E-04 + 84 9.4949631976854007E-04 + 85 -3.2881540600257530E-04 + 86 3.6143190610071155E-04 + 87 4.0747603061134336E-05 + 88 2.0180631884701353E-04 + 89 6.1708839100632898E-03 + 90 -6.1009962690194866E-04 + 91 -5.0022748370731238E-04 + 92 1.7168360396409828E-03 + 93 9.8273085199699077E-04 + 94 -1.2089597431737126E-03 + 95 -2.1711313121452196E-03 + 96 -1.0501921201658893E-03 + 97 2.3098698912592038E-04 + 98 -3.8187353571666262E-04 + 99 4.3467966546299610E-05 + 100 -7.3793197952331884E-04 + 101 -5.8317315517882019E-04 + 102 1.1908159449529290E-01 + 103 2.2462752377269291E-03 + 104 -9.3502167527907670E-03 + 105 4.3119848790710881E-03 + 106 2.1815432000822226E-04 + 107 -2.8810491609953665E-03 + 108 -1.6938922423050842E-03 + 109 7.7959630784880631E-05 + 110 9.8846919964888985E-05 + 111 -1.1454932486962990E-03 + 112 9.9079806436033055E-05 + 113 6.2042970616137073E-04 + 114 -1.2235231078521840E-03 + 115 2.5187844621968664E-01 + 116 5.9075312985330383E-03 + 117 6.2165804976506379E-04 + 118 -3.3072793977129986E-03 + 119 -1.5104337767454040E-02 + 120 -2.5720766875738949E-03 + 121 -1.7286709685614427E-03 + 122 -2.3709174258720006E-03 + 123 2.1710581109530393E-03 + 124 -1.5196562276224647E-04 + 125 5.1822911027235021E-04 + 126 -2.0214686834572337E-03 + 127 -5.5001903438476306E-04 + 128 -3.7210607600185693E-02 + 129 1.0770698265800036E-03 + 130 -1.0922374001786401E-02 + 131 1.0100279694650174E-02 + 132 3.2776214415180150E-03 + 133 3.6192376890926375E-03 + 134 -1.9514803331163418E-03 + 135 1.1523224212097139E-03 + 136 2.8071203759845249E-02 + 137 -1.6553095207837196E-02 + 138 3.4036752656542713E-02 + 139 -1.1751271143101124E-02 + 140 2.3321075489910078E-02 + 141 -4.6108012313063450E-03 + 142 9.4036141056020337E-04 + 143 -8.1555019277734942E-03 + 144 5.3669040802372281E-04 + 145 -9.4658484709371354E-03 + 146 4.2228803845546515E-04 + 147 -2.3156582903745664E-03 + 148 -1.1441926623477086E-03 + 149 3.1394381181590125E-04 + 150 -8.9179296389585514E-04 + 151 1.2923544851051324E-03 + 152 8.2558562948641600E-04 + 153 -1.9676983221034349E-02 + 154 3.6182091120372717E-03 + 155 5.6658017992021383E-03 + 156 -1.1757660529053545E-03 + 157 6.5718547841458379E-04 + 158 -6.2310577821043944E-04 + 159 1.4698222388173352E-03 + 160 -2.5637528703863614E-03 + 161 -1.3725791870238230E-02 + 162 -1.3805678001503558E-02 + 163 -3.9443640053132582E-03 + 164 3.0583549499753337E-02 + 165 -2.7525012097356760E-03 + 166 2.7784058461615543E-03 + 167 2.1438332041191798E-03 + 168 -1.5045427764982698E-03 + 169 -4.0893861595613489E-03 + 170 2.2334491013365405E-03 + 171 8.0742690045251618E-06 + 172 -7.3877626362554827E-04 + 173 1.1624382758165758E-03 + 174 6.3685483708128337E-04 + 175 -3.8725427073463563E-04 + 176 -8.0663270955063076E-04 + 177 -6.4956093020553129E-04 + 178 1.5459878427205037E-01 + 179 3.3946641826304398E-03 + 180 9.4878504002467324E-03 + 181 4.2361859700197225E-03 + 182 -7.6928083357174310E-03 + 183 4.6791629370346050E-03 + 184 7.1503133360409376E-04 + 185 -7.9916469167308761E-04 + 186 -4.0271028882365344E-04 + 187 3.9650697622550346E-04 + 188 -1.2921328976180136E-03 + 189 2.1638597587179944E-03 + 190 3.3297273524137718E-04 + 191 -3.5112151511591211E-01 + 192 -1.1068469684829619E-02 + 193 4.8934203594144213E-04 + 194 -1.5661138778203756E-02 + 195 2.3200850955068568E-02 + 196 -1.6404852025562800E-03 + 197 -3.6184593511876576E-03 + 198 6.2646384418262990E-03 + 199 -4.4230869421714569E-03 + 200 1.9102456311785746E-03 + 201 1.9608140964098519E-04 + 202 1.2441413141757571E-03 + 203 6.4268211601294870E-04 + 204 -2.0429696020557741E-03 + 205 2.7359978392311845E-03 + 206 1.8537366275397386E-03 + 207 -1.3087207195808319E-02 + 208 4.2121855308335429E-04 + 209 -1.7935971581402161E-03 + 210 5.1131249262889034E-03 + 211 -5.7588048081153735E-05 + 212 2.1255138328951134E-02 + 213 6.2739676273614242E-03 + 214 -2.6433256969108320E-02 + 215 1.0611471791049175E-02 + 216 5.8799061994897373E-02 + 217 -6.5577656527261198E-03 + 218 -6.6188693564459963E-03 + 219 8.6285128295041438E-03 + 220 -8.7327414653533223E-03 + 221 -8.3834150203638113E-03 + 222 4.3593267682305191E-04 + 223 -5.9330260253667147E-04 + 224 -2.7425440689514964E-03 + 225 -3.5565579106823470E-04 + 226 1.2365783540631320E-03 + 227 -1.9107913881250781E-05 + 228 -1.5016694682558199E-03 + 229 -6.6246531066355124E-03 + 230 -1.0554883155525702E-03 + 231 -1.1801522290550959E-03 + 232 5.7956944433082630E-03 + 233 -5.2356551275084201E-03 + 234 3.8838706854770871E-04 + 235 1.6013634350094503E-03 + 236 1.0567368699826996E-03 + 237 -7.2073223148429186E-03 + 238 1.1488937815663246E-02 + 239 -1.6982980919683689E-02 + 240 5.1259003181684509E-03 + 241 6.4322500184682526E-03 + 242 -6.1558472915846231E-04 + 243 -2.6403471180074909E-03 + 244 4.3449670371251727E-03 + 245 -2.8868821792655674E-04 + 246 -1.4053449768221672E-03 + 247 1.8081429815559871E-04 + 248 2.2138608439018214E-04 + 249 9.1091161400606196E-04 + 250 1.5661958635353496E-03 + 251 -2.2667524692331219E-04 + 252 3.5712826992762188E-04 + 253 5.6030150203324953E-04 + 254 -1.0014849451454481E-02 + 255 1.8656842513561191E-03 + 256 -6.0506190820969424E-04 + 257 2.8054937283042321E-03 + 258 -5.8635726421889904E-03 + 259 5.3584211476679765E-04 + 260 -2.3258578812787208E-03 + 261 9.4275073073017386E-04 + 262 9.5984377871741015E-03 + 263 2.0277419678845052E-03 + 264 -2.4537449847463325E-02 + 265 -1.2405949492421107E-02 + 266 -5.8178475929489739E-03 + 267 -3.5938306981301823E-03 + 268 3.3207463865792984E-04 + 269 3.5652402560342293E-03 + 270 2.0111263101425618E-04 + 271 -3.4383493869722824E-04 + 272 8.8869626932996026E-04 + 273 -1.2658168221900224E-05 + 274 1.2141016060686772E-03 + 275 8.8376067008186048E-04 + 276 -4.3800360724247290E-04 + 277 -4.3171214435505829E-04 + 278 -1.8511376684603937E-04 + 279 -7.9076441550769636E-03 + 280 -2.1415119436123895E-04 + 281 1.0753934285829077E-03 + 282 5.7978643346296604E-04 + 283 4.3834390943539765E-04 + 284 3.6401742666568397E-04 + 285 7.7245478330378815E-04 + 286 -1.8357267749692489E-04 + 287 2.0886487251066917E-04 + 288 7.5741267651056190E-05 + 289 -3.1791896381207479E-04 + 290 1.2622804839046463E-04 + 291 5.9454127296744533E-05 + 292 -8.9556528722849846E-02 + 293 -4.9929870042633578E-03 + 294 7.7200406290920311E-03 + 295 5.2696016802453310E-03 + 296 -4.2517910772685236E-03 + 297 5.5375290716120611E-03 + 298 1.6079993761544096E-03 + 299 1.8269377938359261E-03 + 300 6.9182635730190745E-04 + 301 6.7056680333415152E-04 + 302 -5.2109144482628724E-04 + 303 1.5362343529817389E-04 + 304 -2.3379579680989785E-03 + 305 4.8596994499410316E-02 + 306 -5.5438590020624855E-03 + 307 -1.2257586290672542E-02 + 308 -2.0743824933750425E-02 + 309 -1.1803159847265706E-03 + 310 2.5603639787524566E-03 + 311 1.9107910244123641E-03 + 312 -2.2231337639624176E-03 + 313 5.7892276550641948E-02 + 314 4.4294375803542920E-03 + 315 5.9095326478976638E-03 + 316 3.2060245717878078E-02 + 317 -7.1603199076397256E-02 + 318 -8.0779672789888166E-03 + 319 -6.3701991319833800E-03 + 320 -4.7015926359876975E-03 + 321 -6.2010064837615493E-03 + 322 1.5903459981080944E-02 + 323 -1.2433440708201078E-03 + 324 -1.8016520119238000E-03 + 325 -7.9592999230347519E-04 + 326 -8.4543130184493013E-04 + 327 1.5622352429641719E-03 + 328 -1.7681166938931276E-03 + 329 -7.0603633093163358E-05 + 330 5.7692412697705142E-02 + 331 -1.0177711496281010E-02 + 332 -6.0162716477039652E-04 + 333 8.1920510532776623E-03 + 334 7.5030387891250388E-04 + 335 3.5867072165479044E-03 + 336 -4.4156620074574746E-03 + 337 9.5289551402337881E-04 + 338 -1.0527569802522169E-01 + 339 -3.8098078306834246E-02 + 340 6.4756434467204124E-02 + 341 1.2372086797337969E-02 + 342 2.5346069442023347E-02 + 343 9.4728936302513247E-03 + 344 4.6651208261069789E-03 + 345 -6.0718725219553703E-03 + 346 -2.9135866192566088E-03 + 347 1.2262169442959529E-03 + 348 1.2288960920202748E-03 + 349 1.1036673040372114E-03 + 350 4.0319323945359529E-04 + 351 5.9967462966393657E-04 + 352 1.1121815537619203E-03 + 353 -4.1788303287798904E-04 + 354 -1.5673798901249879E-03 + 355 -5.7912302315079911E-01 + 356 -1.5358865489384806E-02 + 357 -1.4709376885937812E-02 + 358 -1.4168943327878296E-02 + 359 -3.2155666948743424E-02 + 360 -4.4171716239331050E-03 + 361 -6.5434711139566630E-03 + 362 -8.5625696414941225E-03 + 363 -3.6153271171539443E-04 + 364 -8.0270321832487585E-04 + 365 3.9453836820496210E-03 + 366 6.4370564472358508E-03 + 367 -1.8340764920746159E-04 + 368 3.5722816110817490E-01 + 369 1.1780002002185997E-02 + 370 -5.4503926199313277E-03 + 371 -2.0898159586536102E-04 + 372 1.3418418656513902E-02 + 373 1.1951654246091200E-04 + 374 -7.5915998711367436E-04 + 375 -4.6322995910592297E-03 + 376 4.7794196032986246E-04 + 377 3.1645240805754505E-04 + 378 -1.4348183494791149E-03 + 379 2.0154905278441110E-04 + 380 -2.6258923534150255E-04 + 381 -1.5668244843407736E-01 + 382 -5.0714664292119726E-03 + 383 1.5751067407200419E-03 + 384 7.6177026561192376E-03 + 385 3.0938286199695413E-03 + 386 -1.1362997954032035E-03 + 387 6.0529247389864602E-04 + 388 -7.2470942399952692E-04 + 389 7.9838643606879871E-05 + 390 -4.2484175714494453E-04 + 391 -1.2354156750506062E-04 + 392 -2.4251652057599791E-04 + 393 -7.3482897474010924E-04 + 394 3.9884213331191354E-03 + 395 1.1475304858493869E-03 + 396 -2.4480018628583945E-03 + 397 4.9797144542997242E-03 + 398 -1.1456944938794318E-02 + 399 2.1788040442033340E-03 + 400 -6.5554097067146001E-04 + 401 -3.6009308064653810E-03 + 402 -2.5176810008130081E-02 + 403 2.0276463707178435E-02 + 404 -2.5998014044969358E-02 + 405 -7.9675717142597118E-03 + 406 -1.5410032157405778E-02 + 407 7.3468034484832087E-03 + 408 -4.7354150171444627E-03 + 409 9.4903971581973539E-03 + 410 -1.3887087985335500E-04 + 411 -9.7126167971830037E-04 + 412 1.2530790318493615E-03 + 413 -2.9919004221535780E-04 + 414 -1.4716029226859661E-03 + 415 3.8974835568957012E-04 + 416 1.2915140073146275E-03 + 417 3.8086652624724716E-04 + 418 2.0348345689900335E-04 + 419 -6.9647105733693079E-02 + 420 -1.5158304696032429E-03 + 421 -4.4916317933910788E-03 + 422 6.2899539154293773E-03 + 423 -1.7449260167334544E-03 + 424 9.2338846264669177E-05 + 425 7.2648496842370075E-05 + 426 -3.6042738397257189E-03 + 427 -3.8420881905211994E-04 + 428 -3.3029763248660054E-04 + 429 1.0042958238293297E-04 + 430 4.3588402199938180E-04 + 431 9.5052660380924657E-04 + 432 1.8792061735727580E-01 + 433 3.6778673218984151E-03 + 434 6.4149880586352208E-03 + 435 1.1943090024290042E-02 + 436 2.6282010404819109E-03 + 437 3.0203312440534869E-03 + 438 1.0732921596471950E-03 + 439 -1.3315974549375229E-03 + 440 -1.1644276883888943E-03 + 441 -3.2280431260800133E-04 + 442 1.3704130461515637E-03 + 443 -1.7980549833148691E-03 + 444 5.5124632728027496E-04 + 445 1.5629574954858332E-02 + 446 -4.7926613607477986E-04 + 447 -2.7441322807799191E-03 + 448 -1.3682990901798879E-02 + 449 -1.2565009761806040E-02 + 450 -7.4722528116142016E-03 + 451 1.1558360124100533E-04 + 452 6.5367764411538559E-03 + 453 -3.1438397146298595E-03 + 454 3.9672197791038352E-02 + 455 -2.6497382361552989E-02 + 456 2.1743186765330720E-02 + 457 4.4347614973491045E-02 + 458 2.9412590124894777E-03 + 459 -5.6926713406457701E-03 + 460 9.0398411347930689E-03 + 461 -1.0317587916788874E-02 + 462 -1.5094563763839422E-02 + 463 1.1662831154107928E-03 + 464 -7.6827690371173308E-04 + 465 -5.4341164910916187E-04 + 466 9.1275707068381822E-04 + 467 6.6309981205835546E-04 + 468 -9.4623145042764523E-04 + 469 -1.1114938999562793E-03 + 470 -8.7153775704586524E-03 + 471 -1.0073971844584962E-03 + 472 1.1717377372428540E-04 + 473 1.7058976458026193E-02 + 474 6.9897885550863036E-03 + 475 -1.6699973551695905E-03 + 476 -2.0276347764396105E-03 + 477 -2.5473820981803927E-05 + 478 -1.1731812977129950E-03 + 479 -7.4982518696411950E-03 + 480 1.6990723063992859E-02 + 481 -3.0756748112774245E-02 + 482 -3.0542672938295556E-02 + 483 -1.9323467595955038E-03 + 484 2.1704422955795099E-03 + 485 -2.1840366715639046E-03 + 486 1.3098583345320218E-03 + 487 5.5257989539411190E-03 + 488 2.5903489635225701E-04 + 489 -1.4620643307479057E-03 + 490 3.8937622221211783E-04 + 491 2.9224106969020749E-04 + 492 -6.8882501632237260E-04 + 493 1.1182327229627195E-03 + 494 9.7456347591648570E-04 +Ene= -6.1528120036E-01 +Spin= Alpha +Occup= 2.0000000 + 1 7.8114534848685692E-03 + 2 9.0594621394537924E-04 + 3 -2.0153382155601246E-03 + 4 3.5831172672602437E-03 + 5 -4.3711062441000323E-03 + 6 -5.1694057698092400E-04 + 7 3.1242448544464618E-04 + 8 -3.4740649408498024E-03 + 9 1.7506181243959984E-04 + 10 -6.2925226313555248E-04 + 11 -7.3545532544409976E-03 + 12 9.0327699155875636E-03 + 13 -1.8121591065564514E-04 + 14 -7.4688970587601803E-03 + 15 2.9012806239235860E-03 + 16 3.0191996424389638E-03 + 17 -2.8837675403292073E-03 + 18 -1.1762834031146354E-03 + 19 -5.2086919690082678E-04 + 20 1.9347961064890983E-03 + 21 4.3079455624737636E-04 + 22 -4.9391341696215449E-04 + 23 -4.0953718421261897E-04 + 24 5.4474341434247123E-04 + 25 1.7038101700778989E-04 + 26 5.2539932314572699E-02 + 27 -2.6998861426807321E-03 + 28 -6.7756339141483938E-03 + 29 5.3571568074099870E-03 + 30 1.8720320719237852E-02 + 31 2.5139237163110811E-03 + 32 2.6346142243678541E-03 + 33 -1.2292162588837371E-03 + 34 -2.9785799421125098E-03 + 35 5.6213925811303495E-02 + 36 -1.2032735547213166E-02 + 37 8.4972169988250280E-03 + 38 4.8526992688113661E-02 + 39 1.2117899394232269E-03 + 40 -1.2083591058023865E-02 + 41 7.9511021927776409E-03 + 42 -7.2525055953334293E-04 + 43 -1.2616535411457977E-02 + 44 1.9469721034060289E-03 + 45 -1.3161949304815455E-03 + 46 1.0664925469715310E-03 + 47 3.0002912922011808E-03 + 48 2.7302750319976556E-04 + 49 -1.0247829191417810E-04 + 50 1.7899284598600503E-03 + 51 1.4193808770369170E-02 + 52 1.7912923376394263E-03 + 53 9.3763699044233356E-03 + 54 -7.4297113644489401E-03 + 55 1.2279951139525245E-02 + 56 -1.4541797675078904E-04 + 57 2.0348523620464616E-03 + 58 -2.6993803443437826E-04 + 59 -1.1303277132850913E-02 + 60 -6.2564508243370528E-03 + 61 -1.9297828312066761E-02 + 62 -4.2287531062887834E-03 + 63 -5.3961735382542016E-02 + 64 4.9746915944398151E-04 + 65 3.0331948634864515E-03 + 66 5.2459713729629664E-03 + 67 8.6244972992785627E-04 + 68 1.1027133855508509E-02 + 69 -1.8352070953223569E-03 + 70 5.9513805753580830E-04 + 71 2.9177847424281811E-04 + 72 -1.1874087366708791E-03 + 73 -8.8154232932793322E-04 + 74 5.8214706027269839E-05 + 75 1.1612301856561854E-03 + 76 -6.5418607320870500E-02 + 77 -2.9535546785317292E-03 + 78 3.6311964244846446E-03 + 79 4.4697014976708320E-03 + 80 -2.9583068947552312E-03 + 81 4.0946593471172601E-04 + 82 2.7828295556523528E-03 + 83 1.2371485718913197E-03 + 84 -7.4570156666061457E-04 + 85 8.0021705123275826E-04 + 86 -1.5029064686761435E-04 + 87 -8.0114812434262198E-05 + 88 -7.6172037476834756E-04 + 89 -8.5193989623582426E-03 + 90 -8.7780150529651513E-04 + 91 3.3314990056774129E-04 + 92 1.1476926263164099E-04 + 93 -1.5524340455889511E-03 + 94 -7.5732816178665995E-04 + 95 -2.8387693840222837E-03 + 96 1.2804297199434877E-03 + 97 3.1738214273844634E-04 + 98 1.3253852559474944E-04 + 99 -9.4406338422909505E-05 + 100 2.1420459385784000E-04 + 101 -7.0101923960772691E-05 + 102 -2.4944526896076852E-01 + 103 -7.1194541878521330E-03 + 104 1.8743681538919369E-02 + 105 -5.9482752373384365E-03 + 106 -4.6342750909167275E-03 + 107 3.5234316384773552E-03 + 108 -1.0681791859581051E-03 + 109 3.5902100987273045E-03 + 110 8.9607736785974961E-04 + 111 2.3138949436909847E-03 + 112 -9.3742249755140441E-04 + 113 -1.5268044043525370E-03 + 114 1.5451440764128251E-03 + 115 -5.8723979947984639E-01 + 116 -1.2464804437931862E-02 + 117 -1.1552923879841942E-05 + 118 6.6584691784843447E-03 + 119 3.2435576801466720E-02 + 120 1.2393667395093203E-03 + 121 4.0224547525660008E-03 + 122 8.0670515633495029E-03 + 123 -3.7926776896959552E-03 + 124 1.8373780436609706E-04 + 125 -1.2683392481933596E-04 + 126 4.2658314174068204E-03 + 127 1.5359048994617874E-03 + 128 4.5358893956375802E-02 + 129 4.4404690533145224E-04 + 130 1.6514331396142920E-03 + 131 -4.2911266162336476E-03 + 132 3.3725190262395469E-02 + 133 -3.4929857398587625E-03 + 134 -2.2730627124007228E-03 + 135 -2.6079893609411483E-03 + 136 2.2246172868534794E-02 + 137 -5.6033409156699271E-02 + 138 3.7292542880092865E-02 + 139 1.7590038776366824E-02 + 140 -4.2615909415771772E-02 + 141 3.2849634218144242E-04 + 142 1.3729169322309734E-02 + 143 -4.5555271156519075E-03 + 144 -1.0241804404896663E-02 + 145 9.2492877644022899E-03 + 146 -7.7353842123432459E-04 + 147 7.8840282047459907E-04 + 148 2.1282705937303932E-03 + 149 2.0809721071868908E-03 + 150 -1.2904811916712943E-03 + 151 -2.1107002724296822E-03 + 152 6.7053721112424875E-04 + 153 4.6562782549597226E-02 + 154 -8.5340721546915878E-03 + 155 -9.9585352234155006E-03 + 156 3.0100535019950999E-03 + 157 -4.7663335354419818E-03 + 158 3.1437742568982013E-03 + 159 -1.5446580823678469E-03 + 160 3.0426042947020596E-03 + 161 3.9656851474849146E-02 + 162 3.0280753447473868E-02 + 163 5.2779074061160636E-03 + 164 -7.7535644125462183E-02 + 165 5.4355293188916697E-03 + 166 -1.9080334275764785E-03 + 167 -2.8228143551251791E-03 + 168 3.7827400881909493E-04 + 169 6.1580910932340074E-03 + 170 -9.6092174797096619E-04 + 171 -9.7686208960158895E-04 + 172 -2.6434945117653443E-04 + 173 2.7178481886242628E-04 + 174 -1.8850044728899115E-03 + 175 4.5269307209917044E-04 + 176 2.3426964561156397E-04 + 177 7.1395444628055455E-04 + 178 -4.0789825740946400E-01 + 179 -9.9946318606801560E-03 + 180 -2.5072988658439842E-02 + 181 -7.2755415896487343E-03 + 182 1.6460200229607931E-02 + 183 -9.6320472392694544E-03 + 184 -4.2363711625067711E-03 + 185 5.0024210789651061E-03 + 186 1.8653592677947070E-03 + 187 -1.0652929495635029E-03 + 188 2.1102678432115118E-03 + 189 -5.2344327355223347E-03 + 190 -1.6567276685196624E-04 + 191 -2.0769456329015437E-01 + 192 -5.2745215195497642E-03 + 193 8.2274165020728037E-04 + 194 -1.0928213588501995E-02 + 195 9.8794863757627506E-03 + 196 -3.9031249039958913E-04 + 197 -3.0225564761672862E-03 + 198 4.7918946886083835E-03 + 199 -1.6636667572543704E-03 + 200 9.0238768798370944E-04 + 201 -2.9376899919141545E-04 + 202 7.8117240796348689E-04 + 203 2.4634923312438794E-04 + 204 6.8604919758946479E-03 + 205 -1.5361716151873744E-03 + 206 -1.8129739596626170E-03 + 207 -1.7802710779778106E-02 + 208 7.9349971670313671E-03 + 209 -1.1558734915158384E-03 + 210 -1.3362010265999531E-03 + 211 -2.9775193142024801E-03 + 212 -1.5699553135586755E-02 + 213 -2.1168823645120932E-02 + 214 -4.3635174883202774E-02 + 215 3.1012219512008684E-03 + 216 4.1778974339278283E-02 + 217 9.7484315392499191E-03 + 218 5.4048897969490072E-03 + 219 4.6974184365292104E-03 + 220 4.8372311429641874E-03 + 221 -6.6666879170214034E-03 + 222 -1.4603308376555549E-03 + 223 1.5394998227545548E-03 + 224 1.5586920231648160E-03 + 225 1.2769260633117008E-03 + 226 1.6523508982451969E-03 + 227 2.0054890245409648E-03 + 228 1.6835733691881142E-03 + 229 -1.0782979447090732E-02 + 230 1.9920265657328408E-03 + 231 1.4759645803106886E-03 + 232 1.1521468962627499E-03 + 233 5.9962413569845281E-03 + 234 -3.3330403937602859E-03 + 235 1.6750141730860063E-03 + 236 3.1480363987419491E-03 + 237 -9.0011012805858090E-03 + 238 -2.0020499386506758E-02 + 239 7.2982440857531031E-03 + 240 -8.8815461411021705E-03 + 241 -8.5640020578283769E-03 + 242 5.1022128459822349E-03 + 243 3.1905617663847675E-03 + 244 -1.9807055415163393E-03 + 245 6.4137242414565856E-03 + 246 4.0747585784438696E-03 + 247 5.9634927346341709E-04 + 248 8.0606727053797250E-04 + 249 2.1329903903287233E-04 + 250 1.1558898900253121E-03 + 251 -9.6599990374255393E-04 + 252 -1.7942782398074660E-03 + 253 -1.4509890083285089E-03 + 254 1.3700318015233600E-02 + 255 -4.2582919139669542E-03 + 256 1.7788193714827916E-03 + 257 -3.0543087032111720E-03 + 258 2.0260048934466462E-02 + 259 -9.4217908213864454E-04 + 260 5.1772285401782024E-03 + 261 -2.9518678260964169E-03 + 262 5.5590677122892404E-04 + 263 -1.2546881942649361E-03 + 264 5.8252046863182513E-02 + 265 2.5161900765970139E-02 + 266 7.8997180566595035E-03 + 267 5.2909845723879065E-03 + 268 3.8913379665649983E-04 + 269 -9.9685996871169188E-03 + 270 -5.7353214034739535E-04 + 271 -4.7410842047708309E-05 + 272 -1.6623946130413063E-03 + 273 -5.2579253926225982E-04 + 274 -1.0631396986373446E-03 + 275 -7.5089066463969174E-04 + 276 5.2821894396815863E-04 + 277 6.0319532660534590E-04 + 278 1.3522846860126721E-03 + 279 1.3842900391611196E-01 + 280 2.7673252126690835E-03 + 281 2.4888063504060181E-03 + 282 -1.0097158234231881E-02 + 283 1.9908634542587459E-03 + 284 1.6727366044085926E-04 + 285 -5.3594019494846851E-03 + 286 -3.5110563061986565E-03 + 287 2.6280511435871381E-04 + 288 4.5199144309311678E-04 + 289 1.5432658028261418E-03 + 290 -1.5161475498113521E-03 + 291 -5.7886163016821022E-04 + 292 1.9211686096395640E-02 + 293 8.5760370234543503E-04 + 294 -1.4436159142298065E-03 + 295 -2.7619701189215582E-04 + 296 1.6691972579542527E-03 + 297 6.7273318061035990E-04 + 298 -9.4721084412974265E-04 + 299 1.0911424143698447E-03 + 300 2.7455740418158255E-04 + 301 -8.9530589371883754E-05 + 302 2.9669037110438567E-04 + 303 -4.8958998576131073E-05 + 304 -9.8654549665623016E-05 + 305 -1.4097313257852423E-03 + 306 7.9661847892545541E-04 + 307 1.8688042669181483E-05 + 308 -2.9400924186058879E-03 + 309 6.3186669704249092E-04 + 310 1.5245927462095773E-05 + 311 3.7481607606819025E-04 + 312 8.5186846589435617E-04 + 313 3.9357817798734941E-03 + 314 -9.7146835089851301E-04 + 315 1.6330097477394656E-03 + 316 5.2682451520323506E-03 + 317 -5.0465610148021731E-03 + 318 4.5184315267613937E-04 + 319 -1.8064937075837192E-03 + 320 -1.0961597142219697E-03 + 321 -7.0107025742311064E-04 + 322 2.3223262922566815E-03 + 323 -6.5480827304564566E-04 + 324 -7.1523918719947326E-04 + 325 -2.2412560317063273E-04 + 326 -5.5174663151311903E-05 + 327 8.2101953510465946E-04 + 328 -8.6680245997864606E-04 + 329 4.2985429372225628E-04 + 330 1.4991684317004992E-02 + 331 -3.3924935460516222E-03 + 332 -1.6872931944997298E-03 + 333 -1.9613047148446497E-03 + 334 6.8182106754716082E-03 + 335 -5.7315126646765099E-05 + 336 -9.3772200910024897E-04 + 337 -1.8328415623832381E-03 + 338 -4.3528027565679882E-02 + 339 -3.0039228262684656E-03 + 340 6.9767554211348374E-03 + 341 -4.0049047319967653E-04 + 342 1.8847542667246621E-03 + 343 5.1209745355539930E-03 + 344 4.1878132475582094E-05 + 345 -1.3552956081643263E-03 + 346 -9.1493012672271327E-04 + 347 -9.4778390686518256E-04 + 348 5.9832961585971531E-04 + 349 -2.7333966712445246E-04 + 350 3.0743755533489897E-04 + 351 -3.2149134153980276E-04 + 352 -2.1283451310589985E-04 + 353 5.7619318670295292E-04 + 354 -9.1993108277023340E-04 + 355 -4.9231916337367093E-02 + 356 -1.7980440157495173E-03 + 357 -1.7446201421623079E-03 + 358 6.0677734512922812E-04 + 359 -2.6225148369077699E-03 + 360 -8.4017200152638430E-04 + 361 1.7114853838366129E-03 + 362 -1.4454662912915016E-03 + 363 -2.7975184724157135E-04 + 364 -2.0298288960469543E-04 + 365 7.7568917699706954E-04 + 366 6.2984394899925791E-04 + 367 8.4286482697909244E-05 + 368 3.7521343731227730E-01 + 369 1.2782598836908656E-02 + 370 -8.7754079024427948E-03 + 371 -1.9694400835683461E-03 + 372 3.3269518196838376E-03 + 373 4.6541169984624349E-03 + 374 2.5734433713636281E-03 + 375 3.3270389076575520E-03 + 376 1.4169211129593944E-05 + 377 -1.3898706006337845E-04 + 378 -2.0425741939698685E-03 + 379 -5.2112830909807454E-04 + 380 -1.2567320868859943E-03 + 381 -4.0697193158125075E-02 + 382 -1.5906785655712739E-03 + 383 1.6603588445708822E-04 + 384 2.1998895523829254E-03 + 385 -4.3112312907849582E-03 + 386 8.2688525271640051E-04 + 387 2.6682510675314834E-03 + 388 2.1688840545861375E-03 + 389 -1.7190508712856315E-04 + 390 -9.5417820645995652E-04 + 391 3.4331361330080037E-04 + 392 -1.8309047334326425E-04 + 393 -2.4630547358649597E-04 + 394 -2.7382956382884786E-02 + 395 3.1470411670391738E-04 + 396 -1.3225824441865626E-02 + 397 6.2377484085523755E-03 + 398 -2.9758819471840166E-03 + 399 9.8313977516848044E-05 + 400 3.5816719258789789E-04 + 401 5.9336584671676809E-04 + 402 -1.4035694911523046E-02 + 403 1.7708059367780804E-02 + 404 -8.1293713858260636E-03 + 405 -1.3362171007152059E-02 + 406 -4.4282265030545073E-03 + 407 6.5895652313977060E-03 + 408 -3.3652106529606235E-03 + 409 2.4347293860866094E-03 + 410 2.1694407760343990E-03 + 411 -2.7077498440615066E-04 + 412 3.2316039111224937E-04 + 413 -3.0051733273920743E-04 + 414 -1.4825416356529237E-04 + 415 5.9832949613980359E-04 + 416 6.5103201157740739E-04 + 417 7.4539345640931324E-04 + 418 1.0953066618714885E-03 + 419 3.2950327122992513E-02 + 420 6.0256909951349484E-04 + 421 1.4360743933503769E-03 + 422 -2.2226359385384834E-04 + 423 3.6685507724349528E-03 + 424 6.0804885426614321E-04 + 425 -2.0755268762264923E-03 + 426 5.9754113125869992E-04 + 427 1.6012790592325517E-04 + 428 1.5167881093945638E-04 + 429 2.0175154728081885E-04 + 430 -1.0256169543404786E-04 + 431 -7.3686862213171640E-06 + 432 4.0606861651503274E-03 + 433 -1.7491346619878280E-04 + 434 9.2458958984177218E-04 + 435 3.9584764914891882E-04 + 436 -6.1086495737218275E-04 + 437 1.2085487561818994E-04 + 438 -4.4380944229127813E-04 + 439 7.9128486843144802E-04 + 440 -1.7356262780442513E-04 + 441 -2.7093664436139947E-04 + 442 -1.1806937583481391E-04 + 443 1.8104905202124180E-04 + 444 2.4346114818197534E-04 + 445 -1.3556071275951027E-02 + 446 7.2995848952767887E-04 + 447 -8.8348292759887238E-03 + 448 -6.4591422409003910E-04 + 449 -6.3260511361910412E-03 + 450 -7.8209520850509742E-04 + 451 2.2469287586905575E-03 + 452 2.6359961720219674E-04 + 453 2.1931347802852295E-03 + 454 2.0641865623456882E-02 + 455 1.8667816650143529E-03 + 456 7.2016751527007837E-03 + 457 1.3600648503118222E-02 + 458 -2.5350684837194990E-03 + 459 -3.3239524373575263E-03 + 460 4.8907362128897082E-03 + 461 -2.9739016597898835E-03 + 462 -1.7691850802613453E-03 + 463 1.9328275660998611E-04 + 464 -8.8041303482481014E-05 + 465 6.3260112969653237E-04 + 466 1.0182487901239590E-04 + 467 9.8857310079347575E-04 + 468 -4.5544810128785311E-04 + 469 -4.3137288164966697E-04 + 470 1.5495403871915710E-03 + 471 -5.8557025104207904E-04 + 472 9.4559108478808386E-04 + 473 4.3658253227595997E-03 + 474 8.4229280727047369E-04 + 475 4.7960951065533201E-05 + 476 4.0122061825674315E-04 + 477 -3.6242331552596436E-04 + 478 3.0470368985968358E-03 + 479 -3.4324971136705761E-03 + 480 -1.4462851420420919E-03 + 481 1.1141114329566719E-03 + 482 -8.0280249840148400E-03 + 483 -7.3826873517746029E-04 + 484 -3.4604233895932775E-04 + 485 1.4542514830722952E-03 + 486 5.6627944003610482E-04 + 487 2.3104323709710424E-03 + 488 7.4700346714944802E-04 + 489 -4.3033376577246874E-04 + 490 6.1700556419522093E-04 + 491 -5.3085021389032822E-04 + 492 1.1840398797591880E-03 + 493 2.4980467628164376E-04 + 494 6.6625186366943304E-04 +Ene= -6.1395841283E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -1.2711846114091110E-02 + 2 -7.3402698371303500E-04 + 3 4.9836941703389577E-03 + 4 4.2251222811154603E-03 + 5 -3.0982074209772062E-03 + 6 3.5452281334194850E-04 + 7 3.8911617778990422E-03 + 8 -9.5496146831139980E-04 + 9 3.2331060012800346E-03 + 10 4.8244953232198856E-03 + 11 1.5260861049460521E-03 + 12 -2.4903259427406055E-03 + 13 -3.0683591303394676E-03 + 14 -2.8850912525325407E-03 + 15 -7.4030580372659561E-04 + 16 4.9200476205249035E-03 + 17 -6.7529455108999385E-04 + 18 -3.2453654232833910E-03 + 19 -4.3224101515685308E-04 + 20 1.1978230632050805E-03 + 21 2.6393046846202983E-03 + 22 9.8179598008567661E-04 + 23 -1.2355534668065419E-03 + 24 -2.3922747208126335E-04 + 25 3.2561305731224126E-04 + 26 -1.9427483482194190E-02 + 27 8.6129219516327578E-04 + 28 5.7874094573722203E-03 + 29 -3.6718342710107574E-03 + 30 -1.9053917848721939E-03 + 31 -6.9864232671903157E-04 + 32 4.3121564399759926E-04 + 33 5.2021168226606843E-04 + 34 1.1576157967146746E-02 + 35 -2.3093830348951017E-02 + 36 9.2394016707632778E-03 + 37 7.6957935185052954E-03 + 38 -3.1157084221036589E-03 + 39 -5.9599037471247734E-03 + 40 6.8019067286231010E-03 + 41 -2.1953488717437841E-03 + 42 -2.0084790189666994E-03 + 43 -1.0812142032053482E-03 + 44 -5.7118384797262903E-04 + 45 7.4990297886706975E-04 + 46 1.1653904983334722E-03 + 47 -1.2708461484340543E-03 + 48 -1.3261032226188415E-03 + 49 -3.0818214710382603E-04 + 50 -6.9549151514599434E-04 + 51 3.2002079874902327E-02 + 52 -2.3150927385730260E-03 + 53 -1.0884214207118478E-02 + 54 -1.4664488292492416E-02 + 55 1.1284727167642703E-03 + 56 3.8246621169135161E-03 + 57 3.2381384217410633E-03 + 58 -1.0303434089647926E-03 + 59 2.6883976058933601E-02 + 60 9.7654404396030157E-03 + 61 4.7968698317468594E-03 + 62 -2.2679697545461819E-03 + 63 -6.3019684099197421E-02 + 64 -1.1233804516187509E-02 + 65 -6.9990466223791969E-03 + 66 -8.6946753928826420E-03 + 67 5.4088938294096672E-04 + 68 1.8834827651376868E-02 + 69 -4.8719965358805559E-04 + 70 -2.0459489108517128E-03 + 71 4.9384360882242757E-05 + 72 2.1785421112622676E-04 + 73 -2.2410537119420005E-04 + 74 -2.3520917387753232E-03 + 75 -8.8272291006724559E-04 + 76 6.1790436939090067E-02 + 77 1.7601036362787474E-03 + 78 -3.7809596900496376E-03 + 79 -3.6256971617343622E-03 + 80 -8.0995383541101920E-04 + 81 -2.0469366600865510E-03 + 82 -1.2222851437168605E-03 + 83 6.8821812870110543E-04 + 84 8.6241278162899710E-04 + 85 -1.4023154242992860E-04 + 86 3.3690949626092838E-04 + 87 7.7633998545248624E-05 + 88 2.0821029766216850E-04 + 89 -7.4993016171964492E-03 + 90 4.2769368093590932E-04 + 91 1.9647696478343499E-03 + 92 6.7622406605490732E-04 + 93 -1.8926310290835581E-03 + 94 -1.0652860128719573E-03 + 95 -2.0003843812987526E-03 + 96 2.9745270166160135E-04 + 97 2.2286992601273836E-04 + 98 3.4131330698093486E-04 + 99 2.3982020738685830E-04 + 100 -2.9441588977669787E-04 + 101 -1.0939794419661218E-04 + 102 -2.1944553582684330E-02 + 103 -9.2327870885721536E-04 + 104 2.1082712954677840E-03 + 105 3.0153778689990269E-03 + 106 1.2029269630726314E-03 + 107 -5.8692694061565740E-04 + 108 -4.3694305072549348E-03 + 109 1.1074652187966469E-04 + 110 5.5762114967018966E-04 + 111 -4.5968783961683506E-04 + 112 -1.3737497827386445E-04 + 113 -2.7717573297054353E-04 + 114 -8.6056527951670653E-04 + 115 2.3159372029017639E-01 + 116 5.0847707236815051E-03 + 117 1.1606799905924370E-04 + 118 -1.6206689794725797E-03 + 119 -1.2922838116662031E-02 + 120 -7.6512521301047001E-04 + 121 -3.5544296344728770E-03 + 122 -2.4554814632364937E-03 + 123 1.6796709966379298E-03 + 124 -1.0302358354069856E-04 + 125 1.1650296720154061E-04 + 126 -1.4052047470860007E-03 + 127 -2.5077367563993650E-04 + 128 -1.7795533372110907E-02 + 129 1.7339998478442511E-03 + 130 -1.2109505975248796E-04 + 131 1.5176942239585473E-04 + 132 4.5084753958153455E-04 + 133 3.3049941858834045E-03 + 134 8.9847751570746985E-04 + 135 5.8475577326227198E-04 + 136 7.8148632585661754E-03 + 137 7.9425422315974100E-03 + 138 1.9429578013591915E-02 + 139 5.4893942072122123E-04 + 140 1.3146387470852889E-02 + 141 -4.0963287670555001E-04 + 142 -3.6685961964978879E-03 + 143 -7.8997680906537984E-03 + 144 8.6017177716023511E-04 + 145 -1.1387105007981898E-02 + 146 -2.2888625649091450E-04 + 147 -1.3705630394143923E-03 + 148 -1.1149205531014318E-03 + 149 -2.1659352592717945E-03 + 150 1.6641128996172862E-03 + 151 -5.7865342878225454E-04 + 152 -9.5036811628025533E-05 + 153 2.0212570533900838E-03 + 154 1.3890144069945171E-03 + 155 3.0502190396854384E-03 + 156 8.5049633718151552E-04 + 157 -2.8224696558408974E-03 + 158 3.1930838796657968E-04 + 159 1.4358223086560623E-03 + 160 -5.3915607963964378E-04 + 161 -4.5329138259113701E-03 + 162 2.9969882617081950E-03 + 163 -2.0950371955173320E-03 + 164 -1.7568053370807736E-03 + 165 -2.6766509578693798E-03 + 166 8.3679405155962752E-04 + 167 -1.9389685591044029E-03 + 168 -2.0463134415553510E-03 + 169 2.5647947576185534E-05 + 170 5.7402417332989570E-04 + 171 3.3525162515483193E-04 + 172 5.1189260647837318E-04 + 173 1.3883278798521074E-03 + 174 1.7854747568255358E-04 + 175 -5.3976467207881676E-05 + 176 -1.1158776573901078E-03 + 177 4.8571569101866604E-05 + 178 1.6929244747209554E-02 + 179 4.0020116861297345E-04 + 180 1.8304814763368293E-03 + 181 3.5948413720725543E-03 + 182 5.0361153128432572E-04 + 183 -5.4609921964941766E-04 + 184 -2.5424435249306720E-03 + 185 -7.0218144301808963E-04 + 186 -2.2442411459496647E-04 + 187 -8.4321797244697283E-05 + 188 -8.6843702540793217E-04 + 189 4.4573014642343840E-04 + 190 -4.2263033539193136E-05 + 191 -6.3279103391837999E-01 + 192 -1.6320389326146677E-02 + 193 1.9377355823943093E-03 + 194 -3.3570019446418048E-02 + 195 3.0933453188045922E-02 + 196 2.1174734324209766E-03 + 197 -1.6292011136388673E-02 + 198 4.5958005459033145E-03 + 199 -4.0472480270597458E-03 + 200 2.9796262402514997E-03 + 201 -6.4761620922945847E-04 + 202 2.1276984501210593E-03 + 203 1.3847210171977398E-03 + 204 3.6856603933164256E-02 + 205 -2.4275643577686646E-03 + 206 9.8712669910747258E-03 + 207 -1.3755099658822899E-02 + 208 4.5074148043949597E-04 + 209 -3.8243628675475099E-03 + 210 5.5840984649242302E-03 + 211 1.8975490040714492E-03 + 212 3.8437019847848711E-02 + 213 1.2535565205837268E-02 + 214 -2.6318088847845738E-02 + 215 1.1599780620535204E-02 + 216 7.6534905146118576E-02 + 217 -1.1751613847049066E-02 + 218 -5.1239620561938032E-03 + 219 4.4809538722413991E-03 + 220 -8.6865076922813741E-03 + 221 -1.7520848074615302E-02 + 222 -3.5523500558060791E-03 + 223 4.8640555638898906E-04 + 224 -9.2054718813624928E-04 + 225 5.8457504839080476E-04 + 226 1.2352711612031596E-03 + 227 9.0359247469650470E-04 + 228 -2.2043725205010615E-03 + 229 -1.9467556811997432E-03 + 230 1.9112272351776770E-03 + 231 -9.5881894969319422E-03 + 232 4.4359507427144725E-03 + 233 -3.2971952303207123E-03 + 234 7.3688935288437885E-04 + 235 -2.2212064211865057E-03 + 236 -3.9656104422380852E-03 + 237 1.5844760403238133E-02 + 238 7.6654133632733084E-03 + 239 9.8202560514131410E-04 + 240 1.5411406646793011E-03 + 241 1.0012186929477362E-02 + 242 -3.4398565558702685E-03 + 243 -2.4741520467755737E-03 + 244 3.2142228109606806E-03 + 245 1.8558289997391056E-03 + 246 7.3580789689099780E-05 + 247 -6.5699424921012190E-05 + 248 7.6736097223046998E-04 + 249 -1.0890398429536127E-03 + 250 4.7049556797447043E-04 + 251 -3.3327798207590529E-04 + 252 -4.7487241756937593E-04 + 253 -7.3625841622191744E-04 + 254 -2.7117293587721348E-03 + 255 1.6106612464191635E-05 + 256 -1.2409456370948825E-03 + 257 2.3316792759345349E-03 + 258 -9.8519189063414302E-03 + 259 6.4545941549428842E-04 + 260 -2.1872182570749337E-03 + 261 2.3988082451174121E-03 + 262 -1.4569393748169972E-02 + 263 -4.4165001673434987E-03 + 264 -2.2350084945671742E-02 + 265 -1.0704954510513958E-02 + 266 -3.4315014138517207E-03 + 267 -4.3116271107422415E-04 + 268 -7.0633606027217192E-04 + 269 4.3867175724777597E-03 + 270 -2.4708272906794369E-04 + 271 1.8304849083319134E-04 + 272 9.5145973570054127E-04 + 273 2.9186481670847854E-04 + 274 -4.6260611558772300E-04 + 275 3.9692728631544243E-04 + 276 4.1778766760112443E-06 + 277 -2.7095276586690384E-04 + 278 2.3874165164545450E-04 + 279 -1.3359672074532045E-01 + 280 -3.1978546727750435E-03 + 281 -2.2553116760005345E-03 + 282 6.4354366433530021E-03 + 283 -4.5320051173017408E-03 + 284 2.0541277763092014E-04 + 285 5.1504401893735299E-03 + 286 1.9911676572045268E-03 + 287 -1.1401570078261719E-03 + 288 -4.4896290192839760E-04 + 289 -8.4896265861988485E-04 + 290 6.7357461947246326E-04 + 291 4.6433641257267663E-04 + 292 1.2576936657299354E-01 + 293 5.3765596985643101E-03 + 294 -9.0282252422435420E-03 + 295 -5.6906552498582202E-03 + 296 7.4183960842665363E-03 + 297 -7.2644364280080214E-03 + 298 -3.1638173352594437E-03 + 299 -1.7288098038687511E-03 + 300 -5.2062012793372661E-04 + 301 -4.1516285381687534E-04 + 302 6.1825727211006819E-04 + 303 -7.9913534838047391E-06 + 304 2.6968943084603116E-03 + 305 -5.3922066496995283E-02 + 306 6.1240914777488690E-03 + 307 7.4252445613412262E-03 + 308 1.2273087778183246E-02 + 309 2.7829421101430033E-03 + 310 -3.8775092628177197E-03 + 311 -3.4136350383349944E-03 + 312 3.9183067597208798E-03 + 313 -5.5855992034116883E-02 + 314 -5.1284174054535741E-03 + 315 -3.3985247317290584E-03 + 316 -2.6277728916896104E-02 + 317 7.1021265251264190E-02 + 318 9.4039844499058702E-03 + 319 1.3926060772627084E-03 + 320 -6.7059097265868806E-04 + 321 4.7282968068821816E-03 + 322 -1.6687077824159045E-02 + 323 -1.4646789884252776E-04 + 324 2.8202416348569592E-04 + 325 -1.2413931169873607E-03 + 326 6.2966540432254860E-04 + 327 -1.1875482187973026E-03 + 328 1.0424583018324484E-03 + 329 2.0709083956671579E-04 + 330 1.5317392760487627E-02 + 331 -1.7702938922138423E-03 + 332 4.5989719166431159E-03 + 333 -8.2217549648652289E-03 + 334 3.8586412471467803E-02 + 335 -2.2821103734629680E-03 + 336 2.8104704491959212E-03 + 337 -1.1838318511896779E-02 + 338 -8.5445660470540960E-02 + 339 3.7783023773332793E-02 + 340 -5.8612933055043913E-02 + 341 -1.2791367912210990E-02 + 342 -2.4949703818625713E-02 + 343 5.2899944746594499E-03 + 344 -3.2533102773562210E-03 + 345 7.4554639938501609E-03 + 346 2.3131181137758254E-03 + 347 1.7109859616755794E-03 + 348 -1.9057647604168340E-03 + 349 -2.7045308240535733E-03 + 350 1.5396975938244796E-03 + 351 -1.4879932151672336E-03 + 352 -1.0831303687138315E-03 + 353 1.8336852189486475E-04 + 354 3.8243354570907217E-04 + 355 5.2301613001359382E-01 + 356 1.2770053885193981E-02 + 357 1.0863252628616305E-02 + 358 1.9007036248735083E-02 + 359 2.5549082492718773E-02 + 360 1.2259588749400432E-03 + 361 1.2512224969666565E-02 + 362 6.7688443990373938E-03 + 363 -1.0583609206707353E-03 + 364 3.6563208214489035E-05 + 365 -1.6152786494282318E-03 + 366 -5.5216742358660054E-03 + 367 6.7107352070113911E-04 + 368 1.0359883058301998E-01 + 369 4.6020020777530826E-03 + 370 -2.3491371303478057E-03 + 371 2.6164427850804920E-03 + 372 -5.7842457414191111E-04 + 373 -2.1762305267368906E-03 + 374 4.8416790081624471E-03 + 375 1.2799735458870764E-03 + 376 1.5206611547234088E-03 + 377 4.6045556860963444E-04 + 378 9.9450905001433163E-04 + 379 6.0403558060014289E-04 + 380 2.7368714666494603E-04 + 381 -1.0258548992474583E-02 + 382 -6.7013796171364406E-04 + 383 9.4477935501495567E-04 + 384 -3.0738653180682914E-04 + 385 1.4885600123763377E-03 + 386 8.4538862806844738E-04 + 387 -7.5925104966670018E-04 + 388 -1.6828393612909609E-03 + 389 3.9583558468244252E-04 + 390 2.5326989492952863E-04 + 391 2.0605938030956937E-04 + 392 1.8639377478044213E-05 + 393 -1.7870342713640949E-04 + 394 -1.0685766514480095E-02 + 395 -2.3675782657921491E-03 + 396 -9.1638077770960277E-03 + 397 1.2906501628530777E-02 + 398 3.6776911588655530E-03 + 399 -3.9231946454301595E-03 + 400 2.9212530566328311E-04 + 401 -1.4482470173171292E-03 + 402 1.3126150055760432E-02 + 403 3.0161423697028914E-03 + 404 -3.9531608358601793E-04 + 405 -5.7322743789257891E-04 + 406 -1.6373120864007634E-02 + 407 -6.9317628743260163E-03 + 408 6.3920828557304909E-04 + 409 6.8080099078562191E-04 + 410 -2.8048670488763127E-03 + 411 1.3105738125857604E-02 + 412 5.7130757076223051E-04 + 413 3.5264602729053916E-04 + 414 1.7609709735772741E-03 + 415 -1.6346200252645455E-05 + 416 1.7868999612029801E-04 + 417 2.2745925204740712E-03 + 418 2.5189820759649591E-03 + 419 1.0465244957625781E-01 + 420 1.5912458719923909E-03 + 421 5.6035644211008288E-03 + 422 -7.5712590466921201E-03 + 423 5.2706760065152885E-03 + 424 2.1596583392119438E-03 + 425 -8.3155672175752560E-04 + 426 3.4593248441683669E-03 + 427 4.0077897531706281E-04 + 428 -5.9099248116131547E-05 + 429 -3.3733554511475956E-04 + 430 -2.9240720145115828E-04 + 431 -9.2096549437466126E-04 + 432 -4.0317623732263871E-02 + 433 -4.7461779340951331E-04 + 434 -1.3831022394576473E-03 + 435 -1.7460949556125870E-03 + 436 -3.5324889553141120E-03 + 437 1.0956710065420576E-03 + 438 -2.1046080972128164E-03 + 439 4.4205777366677313E-03 + 440 6.2295666347302698E-04 + 441 -1.1224471274800430E-03 + 442 -1.5817880128919694E-04 + 443 3.6057038574662957E-04 + 444 4.0926336722488693E-04 + 445 -3.5167654004341853E-02 + 446 2.8409052858454210E-03 + 447 -7.5662507219730647E-03 + 448 -2.0017424097224803E-03 + 449 1.2313100067963285E-02 + 450 4.8014958730943063E-03 + 451 -1.6291493358554202E-03 + 452 -3.6641297719567571E-03 + 453 7.3658414064142683E-03 + 454 -2.8271648190955970E-02 + 455 2.9210764918148363E-02 + 456 -6.1263871563223557E-03 + 457 -2.3757680525046350E-02 + 458 -4.5355867309764041E-04 + 459 3.7229979098590041E-03 + 460 -9.7900624795434557E-03 + 461 6.6203028286314688E-03 + 462 1.1195740944027069E-02 + 463 -4.2531921064070476E-05 + 464 3.7808983088898329E-04 + 465 9.7571128801855387E-04 + 466 -2.5685006522428190E-04 + 467 1.0311951921861595E-03 + 468 1.1972801110151916E-03 + 469 1.6090588373946348E-03 + 470 3.0605905490745026E-03 + 471 -8.7335183142445236E-04 + 472 -1.5608865314922927E-03 + 473 -1.5490383568144447E-04 + 474 -7.1241889246037001E-03 + 475 -5.5268872474020076E-04 + 476 8.9621184951040771E-04 + 477 -2.5902270237552110E-03 + 478 4.2415241651726186E-03 + 479 -4.9103650849363027E-04 + 480 -5.9740940269889745E-03 + 481 8.5694625257172388E-03 + 482 -1.7133077071072116E-03 + 483 1.7374430563598649E-03 + 484 -3.5963266743905000E-03 + 485 5.4178446376658826E-03 + 486 -1.7190495077835710E-04 + 487 1.2120869536229471E-03 + 488 1.3051738150211181E-03 + 489 3.7340809589246426E-04 + 490 -9.3722550526654852E-04 + 491 2.0922617929350194E-04 + 492 1.8185511214663225E-03 + 493 5.0668167282710917E-04 + 494 -2.7555272681104715E-04 +Ene= -6.1115411134E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -1.1556547780654096E-02 + 2 -1.1087702053050564E-03 + 3 4.4682830388993178E-03 + 4 1.8935776842419934E-03 + 5 -7.3647372628979618E-03 + 6 7.5994685541203955E-04 + 7 5.0284343281473674E-04 + 8 -1.7259311086969069E-03 + 9 1.5066641412313127E-03 + 10 9.7303921290192296E-04 + 11 1.1890539590302580E-03 + 12 -6.1219332073334824E-03 + 13 -1.4524036923536964E-03 + 14 -2.4497495317849752E-03 + 15 2.5277610585750852E-03 + 16 -1.9302747873083820E-03 + 17 -1.1267458839417936E-03 + 18 -4.6172020862049419E-04 + 19 -5.0591484642247366E-04 + 20 2.2912978943145668E-04 + 21 -4.1139689046121059E-04 + 22 -9.4804910727861624E-05 + 23 1.0330571368838003E-03 + 24 5.3581057502010072E-05 + 25 -1.1821980794609399E-04 + 26 -3.9394342761062207E-03 + 27 -6.7432756689981979E-04 + 28 -1.3702632675727135E-02 + 29 9.4682156244007571E-03 + 30 1.8834873965094805E-02 + 31 4.2463341333142304E-03 + 32 -8.7184321479891677E-03 + 33 2.1240973441398162E-03 + 34 -3.7304363924891705E-02 + 35 4.3126060679975972E-02 + 36 -4.8490656553846913E-02 + 37 -3.7842656151918883E-02 + 38 -1.1493110865485739E-02 + 39 1.5034942636388403E-02 + 40 -1.5054125112875402E-02 + 41 3.9614888830464146E-03 + 42 8.7902480657091053E-03 + 43 9.1807562646606770E-03 + 44 -2.7864775013980224E-03 + 45 -1.3217487584458443E-03 + 46 -1.9136841505333459E-03 + 47 -1.7630071297936494E-03 + 48 2.0317066428741743E-03 + 49 1.6905476226719809E-04 + 50 4.7573818824261921E-04 + 51 -1.8872293664870036E-02 + 52 -6.3543137516085160E-05 + 53 -5.4984450493617658E-03 + 54 1.3215726550813564E-03 + 55 -5.0071202901198868E-03 + 56 4.6267847630436032E-03 + 57 5.8285875044043634E-03 + 58 4.2300635665483794E-03 + 59 2.3116095333708876E-02 + 60 2.9502793278432381E-02 + 61 2.6297462941025907E-02 + 62 7.9389459909802677E-03 + 63 8.1805449208172832E-03 + 64 -5.2788258289898533E-03 + 65 -9.5900384435277340E-03 + 66 -6.3857842631093774E-03 + 67 -3.8570157148626405E-03 + 68 -3.1367132708066095E-03 + 69 1.6753145027554513E-04 + 70 1.1575171056181316E-04 + 71 1.9993505621143555E-03 + 72 1.0219443615330749E-03 + 73 -4.3007821685074539E-04 + 74 3.1019634730569082E-04 + 75 2.2092947958208086E-04 + 76 4.0938737199662331E-02 + 77 4.5304840400828505E-04 + 78 -1.6450444028212944E-03 + 79 -2.7343072792723579E-03 + 80 -1.0919587433822486E-03 + 81 -2.3415110208238610E-03 + 82 1.5349372594053495E-03 + 83 -1.7339846486715921E-04 + 84 1.0386880187014990E-04 + 85 6.1072772143292743E-04 + 86 -2.2449566056353907E-04 + 87 5.5902795923339214E-05 + 88 3.2767736203814432E-04 + 89 1.8238642704584290E-02 + 90 4.4734406613084480E-04 + 91 -1.5335240256609441E-04 + 92 2.2727628395756709E-03 + 93 1.9173202294975665E-03 + 94 -1.0424468640311496E-03 + 95 6.0400905827324547E-04 + 96 -9.9878880219532212E-05 + 97 6.9233009132256250E-05 + 98 -1.6553268681792458E-04 + 99 1.6596680344345966E-04 + 100 -3.7686830073832393E-04 + 101 -1.5633436549146408E-04 + 102 4.3110036743292829E-01 + 103 1.1597918210318740E-02 + 104 -3.0036341217368683E-02 + 105 5.2921258746556092E-03 + 106 3.7130056738982928E-03 + 107 -6.0724036995770678E-03 + 108 3.6697596439772330E-03 + 109 9.9798655137106314E-04 + 110 -1.3647917407686510E-04 + 111 -3.2204183267886431E-03 + 112 2.8062273725601157E-04 + 113 3.0187778936557486E-03 + 114 -1.5542305060456001E-03 + 115 -5.4871186301444141E-01 + 116 -1.0915343948510925E-02 + 117 -5.1267892922595641E-04 + 118 -2.3741511714462269E-04 + 119 2.9876852984833988E-02 + 120 -3.9514047827248660E-04 + 121 6.9487112596432763E-03 + 122 5.2728887838761444E-03 + 123 -4.2611973143405358E-03 + 124 -1.2496020192670964E-04 + 125 1.1968501187225722E-04 + 126 2.7833879213173627E-03 + 127 4.4538448631997675E-04 + 128 -3.1859868029271653E-03 + 129 -1.6575811378507963E-03 + 130 6.2366011022898030E-03 + 131 1.6436781363868395E-02 + 132 -4.6691688072904225E-03 + 133 -2.6180669164290005E-03 + 134 -6.8061007181672798E-03 + 135 1.1012888305684785E-03 + 136 3.4670575772955499E-03 + 137 -3.6403312075871878E-02 + 138 -8.8483824537985298E-02 + 139 -3.5475079400051963E-02 + 140 -2.5973029872376437E-02 + 141 -2.8479236015497216E-04 + 142 1.0173143830200813E-02 + 143 2.4815435827954098E-02 + 144 9.7846573116267700E-03 + 145 1.0075977366131059E-02 + 146 -6.1232999285931559E-04 + 147 5.0457644743207215E-04 + 148 -5.1059722209905324E-04 + 149 2.8001850561972739E-04 + 150 -2.3578770747620811E-03 + 151 -1.2513263241181744E-03 + 152 -1.2275693796216711E-03 + 153 -6.2002753309370613E-02 + 154 8.7762780440534330E-03 + 155 2.8406626640580190E-03 + 156 -5.9244880495893677E-03 + 157 1.1627157314817680E-02 + 158 -5.2070016854069813E-03 + 159 -7.3007429433143156E-04 + 160 -3.2972774516698638E-03 + 161 -3.7699562089335704E-02 + 162 -5.6425002880941703E-02 + 163 -5.8210769297735712E-03 + 164 1.2865530214188670E-01 + 165 2.7371383057688131E-03 + 166 3.1319060770702875E-03 + 167 7.9384338273189928E-03 + 168 5.4294268721777920E-03 + 169 -6.3922071142656339E-03 + 170 -2.7118205825178267E-03 + 171 -1.6164694692173405E-03 + 172 -9.6161612107813004E-04 + 173 -2.1247414747976355E-03 + 174 -5.5717896637957486E-04 + 175 6.1125787723415373E-04 + 176 7.9275865263765308E-04 + 177 -2.8679895395931806E-04 + 178 5.1566029405231861E-01 + 179 1.2809453933659877E-02 + 180 3.1653109896542728E-02 + 181 4.9755912183436259E-03 + 182 -2.0468866720479442E-02 + 183 7.0801490382091260E-03 + 184 1.6914447230976977E-03 + 185 -5.5042621575851630E-03 + 186 -2.8480749839743481E-03 + 187 9.3805201663966250E-04 + 188 -3.5034829597215293E-03 + 189 7.2408197399964069E-03 + 190 6.8708761698307592E-04 + 191 -1.5782218581629670E-01 + 192 -4.1615229177020055E-03 + 193 8.1207760694490969E-05 + 194 -7.4570945986042938E-03 + 195 8.9439955103127709E-03 + 196 1.4016228200841357E-03 + 197 -3.1026738870676136E-03 + 198 5.1865247524029328E-04 + 199 -1.2145660256144975E-03 + 200 7.6307039204562407E-04 + 201 -2.5008786350619729E-05 + 202 5.9721329342829650E-04 + 203 4.0332133231402666E-04 + 204 -1.2933956033587648E-02 + 205 -2.4117003164787400E-03 + 206 -1.5302394080380938E-04 + 207 -1.3410493354314457E-02 + 208 -1.5027827712777853E-02 + 209 -1.2756356154275388E-03 + 210 1.5400770191743610E-04 + 211 8.8145185851278680E-04 + 212 4.0272910535260491E-02 + 213 2.0105820627702473E-02 + 214 1.8780611830880166E-02 + 215 2.0402735683286402E-03 + 216 1.9033273644261266E-02 + 217 -1.0176654403551436E-02 + 218 -6.5310795804593095E-03 + 219 -3.2309128647575159E-03 + 220 1.4820340189229415E-03 + 221 -6.5158858766463249E-03 + 222 1.2941258526667275E-04 + 223 -1.2221316703042509E-03 + 224 2.7988131231700472E-04 + 225 -8.9642835139200252E-04 + 226 -1.3537728297215930E-04 + 227 -3.4076337159095975E-05 + 228 1.2465810020317104E-03 + 229 -1.0830018869595831E-02 + 230 1.6997571339876336E-03 + 231 -5.2312676794783808E-04 + 232 -1.1641319140486622E-03 + 233 1.9188593941577700E-03 + 234 -8.6782103936977107E-04 + 235 2.2606498398344423E-04 + 236 1.6717647506874411E-03 + 237 -1.4491391126014600E-03 + 238 -2.0460992471822547E-03 + 239 9.5060579659161232E-03 + 240 2.2212231204865960E-03 + 241 -1.3824629225689793E-02 + 242 4.1457344853784482E-03 + 243 -6.6145936774656311E-04 + 244 -6.2147712868918447E-04 + 245 -8.3107019195994376E-04 + 246 2.9316221518340740E-03 + 247 6.8275525778291909E-04 + 248 -2.8691053632142670E-04 + 249 -1.5221745022393937E-05 + 250 -2.1687310372338579E-05 + 251 3.7148416707791915E-04 + 252 -1.2523859293289084E-04 + 253 -3.1636693171692909E-04 + 254 3.1553570542500277E-02 + 255 1.9486083824204147E-03 + 256 7.1029649975349043E-03 + 257 -2.1049327325495807E-02 + 258 1.3045150186514981E-02 + 259 1.3007028463601440E-03 + 260 -3.8403159365815227E-04 + 261 -3.8595308049807083E-03 + 262 -7.7260334036306499E-03 + 263 -4.2084502586836447E-03 + 264 5.5764419653968847E-02 + 265 2.4861897547445361E-02 + 266 7.6854028930000368E-03 + 267 -2.9928121165580077E-03 + 268 5.3565855753929398E-04 + 269 -4.2330132937584966E-03 + 270 -5.2683782782126905E-03 + 271 -3.9210381026849803E-03 + 272 -2.4017377786058307E-04 + 273 -2.4544996814313675E-04 + 274 1.2390271359847872E-03 + 275 -6.7289221881663497E-04 + 276 -3.8351674611997725E-04 + 277 -1.9754353551899403E-04 + 278 1.0307026557074917E-03 + 279 8.4620196385165700E-02 + 280 2.0796268469696392E-03 + 281 2.0776326081709960E-03 + 282 -6.7110816594828614E-03 + 283 6.4788478332080529E-04 + 284 -6.0981463315815684E-04 + 285 -2.5980300155920501E-03 + 286 -2.3358323543919575E-03 + 287 -1.1337889822583488E-04 + 288 1.7775556259565602E-04 + 289 4.4590721932520974E-04 + 290 -1.1646335067652832E-03 + 291 -4.3708444758104229E-04 + 292 4.1115767251888355E-02 + 293 1.2668019719996100E-03 + 294 -1.9246426088321759E-03 + 295 -9.8338045153351398E-04 + 296 3.2348623857416103E-03 + 297 -1.5136052854684884E-03 + 298 -1.3102489830270024E-03 + 299 6.6800704033464473E-05 + 300 6.0868368561797469E-05 + 301 -1.5646139427781696E-04 + 302 3.8652977804348189E-04 + 303 -4.6863459001170990E-05 + 304 3.4516595392140067E-04 + 305 -8.2012675630703351E-03 + 306 9.9300594968561241E-04 + 307 -6.9907578830939537E-04 + 308 -1.2174169272460354E-03 + 309 1.2646677070815172E-03 + 310 -3.9712745665528785E-04 + 311 -7.9786682806918011E-04 + 312 9.9164633020228619E-04 + 313 -1.0066412214323880E-02 + 314 -1.0739487849997057E-04 + 315 -4.2762963854206025E-05 + 316 -2.3684599927161158E-03 + 317 1.2180647264944146E-02 + 318 2.3393794959969271E-03 + 319 1.8881533284636760E-04 + 320 -6.6535726720205995E-04 + 321 5.0352961308839695E-04 + 322 -2.5752670758985496E-03 + 323 2.4516639554799887E-04 + 324 8.3620399564193990E-05 + 325 -9.3709704326924169E-05 + 326 2.6241563515618351E-04 + 327 4.0114685920264166E-05 + 328 3.2677660381247569E-05 + 329 -2.9917781695251702E-05 + 330 1.5155024543792575E-02 + 331 1.4497600529009243E-03 + 332 4.2738968778175861E-03 + 333 4.5108064954580383E-03 + 334 1.2972033721425382E-02 + 335 7.3249880223942717E-04 + 336 1.5535491501468769E-03 + 337 -8.9523696148079352E-04 + 338 -2.6681878162504717E-02 + 339 4.8371630635087167E-03 + 340 -7.1705218809282982E-03 + 341 -9.3286172477216806E-04 + 342 -3.0785218206403659E-03 + 343 1.0940817049569413E-03 + 344 4.8451020403753595E-04 + 345 4.6924858776402102E-03 + 346 -1.5173762387692748E-04 + 347 3.2256198486702854E-03 + 348 -1.0201409708996314E-03 + 349 -5.5148913216033189E-04 + 350 5.9771345729475820E-04 + 351 -7.7240425456913246E-04 + 352 6.4036352216492861E-04 + 353 -8.3619929447514754E-04 + 354 3.4647028398173611E-04 + 355 5.8069010940876853E-02 + 356 1.8565435000315012E-03 + 357 1.0879294802376939E-03 + 358 2.8455465613104638E-03 + 359 2.1222415317775256E-03 + 360 -1.7054427155604931E-04 + 361 1.6097270751999875E-03 + 362 8.2729870919114165E-04 + 363 -2.0074707817791586E-04 + 364 3.9924368035564531E-06 + 365 1.0719805185628199E-04 + 366 -6.3678355841810378E-04 + 367 2.5891979775325357E-04 + 368 -5.4957186455306034E-02 + 369 -2.5957818115160112E-03 + 370 1.8465751192920739E-03 + 371 6.2506194092155063E-04 + 372 -1.2629112366210815E-03 + 373 2.7510662962262158E-03 + 374 -2.4081091151393401E-04 + 375 4.6328292053276687E-03 + 376 -5.1046217437474993E-04 + 377 -2.0669301832966977E-04 + 378 -7.0893238325748869E-04 + 379 6.1522552606883233E-04 + 380 -1.8989261873181819E-04 + 381 -2.0558660432862759E-02 + 382 8.8824108869018574E-04 + 383 -9.2495916447188679E-04 + 384 1.1550849319782171E-03 + 385 -1.4277520698626424E-03 + 386 4.0614922623797532E-03 + 387 3.6178261829198145E-03 + 388 1.3897847798737882E-03 + 389 7.7273590647582415E-05 + 390 -3.0390534171475804E-04 + 391 -7.2645379563716635E-04 + 392 -3.6276913160386396E-04 + 393 -9.1391166667738127E-04 + 394 1.0906289252821317E-03 + 395 1.9892653511660759E-03 + 396 2.6569208040713613E-03 + 397 -2.9578345101910378E-03 + 398 7.5958468810015320E-03 + 399 2.0754731245105963E-03 + 400 6.5994589462150730E-04 + 401 2.3697157570094600E-03 + 402 -3.8882026914933586E-03 + 403 2.3158617331387756E-03 + 404 7.3159815506099041E-03 + 405 -2.0161752027614910E-03 + 406 1.0834138671772235E-02 + 407 4.5927163985455249E-03 + 408 1.2722907553673068E-03 + 409 -1.9460946448259808E-03 + 410 3.0509850992393862E-03 + 411 -2.3994345900926520E-03 + 412 9.4662734308056777E-04 + 413 8.6218826783259872E-04 + 414 9.1855730512280123E-04 + 415 8.7794140006433954E-04 + 416 2.3131921021286665E-05 + 417 9.5378796495648147E-04 + 418 1.3889765783196240E-04 + 419 1.5495579695975537E-02 + 420 6.1277102782489182E-04 + 421 9.0894853298028060E-04 + 422 -7.3808660540387600E-04 + 423 8.2168149838634532E-04 + 424 -1.9732486010098416E-04 + 425 -7.8275994203572564E-04 + 426 3.4622575268782740E-04 + 427 2.4746471807588459E-04 + 428 2.3986362169796366E-04 + 429 -1.0591868038711620E-05 + 430 -1.7093886630519531E-04 + 431 -2.0993168221726639E-05 + 432 -2.3442468380586103E-03 + 433 -2.1842387474795715E-04 + 434 -8.6071991684720679E-05 + 435 -4.8516861102439510E-04 + 436 -3.9535478111462838E-04 + 437 1.0794240470204163E-03 + 438 -4.9655276234678361E-04 + 439 -1.8364864987273918E-05 + 440 3.2567052251081382E-04 + 441 -2.4933558765227211E-04 + 442 -2.5710221134252323E-04 + 443 1.5923598255990079E-04 + 444 -1.2253361098313794E-04 + 445 4.0170028758764369E-03 + 446 2.2839255865457521E-03 + 447 3.1978568794092748E-03 + 448 9.4475843919206506E-04 + 449 7.0190686603580042E-03 + 450 1.0060180719941704E-03 + 451 -2.0635999966137509E-04 + 452 5.0169534912832968E-04 + 453 6.2842854703690850E-04 + 454 -7.7098893016932131E-03 + 455 1.1350654765827995E-03 + 456 -2.3848303433164405E-03 + 457 -4.3940638813260982E-03 + 458 -4.0086202265304631E-04 + 459 2.3045109247123536E-03 + 460 -1.4199781643192007E-03 + 461 -1.2058859982316534E-04 + 462 1.7360845290267692E-03 + 463 -4.0285859461461484E-04 + 464 -2.7608044986023793E-04 + 465 -7.0247373334713530E-04 + 466 -4.2419865514556468E-04 + 467 3.5459484196898891E-05 + 468 6.9761386666721068E-04 + 469 5.0919158156207420E-04 + 470 -2.4447611681979483E-03 + 471 -2.2437600663621896E-03 + 472 -5.7813203252314281E-03 + 473 5.9980312392297818E-03 + 474 -4.0520276660214148E-03 + 475 -2.5741606905299304E-03 + 476 1.5171595915264391E-03 + 477 -1.3489668253700707E-03 + 478 2.4203576614113685E-03 + 479 -5.9250801153574142E-05 + 480 -1.9910097781595825E-03 + 481 1.3008193738160377E-03 + 482 -4.5852587845110438E-03 + 483 1.5892231065640380E-03 + 484 -2.1407456357093765E-03 + 485 2.2770342184402098E-03 + 486 -3.9328467066393463E-03 + 487 4.8113108090643026E-03 + 488 4.2531413319936168E-04 + 489 1.0825665836260543E-03 + 490 -4.6124368259787104E-04 + 491 7.9218864280243645E-05 + 492 5.6421907112463377E-04 + 493 -1.0506256839813847E-03 + 494 1.0682825606819863E-03 +Ene= -6.0920466043E-01 +Spin= Alpha +Occup= 2.0000000 + 1 4.2546177212664321E-02 + 2 -2.9002667604854739E-03 + 3 -6.4358196290879629E-03 + 4 1.4673923311300352E-02 + 5 1.3653618986866482E-02 + 6 4.1750382899719397E-04 + 7 -2.2830827788195111E-03 + 8 -7.6647956406362180E-04 + 9 3.0560144409687872E-03 + 10 9.9170539071268275E-04 + 11 -4.3602314589255044E-02 + 12 4.4925112449164001E-02 + 13 5.7905671882747334E-03 + 14 -2.0399951277082855E-03 + 15 -3.2984152482810215E-03 + 16 1.0311748611619190E-02 + 17 -4.0009990320315674E-03 + 18 -1.8682624022651521E-03 + 19 9.7178343373305722E-04 + 20 3.1945115544316371E-04 + 21 1.9436495159217628E-03 + 22 1.1601337222806427E-03 + 23 -2.2993381519635027E-03 + 24 -4.1009833616057971E-05 + 25 2.4312677037301476E-04 + 26 7.6540681182303658E-02 + 27 -2.7462536521573439E-03 + 28 2.6887398964614367E-03 + 29 -7.9074491405619271E-03 + 30 -2.0200312301962065E-03 + 31 -8.9838046651644528E-03 + 32 3.7242541583012065E-03 + 33 6.7561197829697139E-03 + 34 3.6177202002046984E-03 + 35 4.4556231687345529E-02 + 36 5.6142662848906212E-02 + 37 2.9603868030961177E-02 + 38 2.6690570962063533E-02 + 39 -1.0916142158180115E-02 + 40 -9.0349310586885830E-03 + 41 -1.1376825564494791E-02 + 42 -2.5567953876824332E-04 + 43 -3.8518093222582694E-03 + 44 1.4076756943463776E-04 + 45 2.5883742491844210E-03 + 46 -9.5982911942263805E-04 + 47 2.8196998424282428E-03 + 48 5.5749514539328669E-03 + 49 -5.0866101938174088E-04 + 50 -2.3388225627022385E-03 + 51 3.2067278823518029E-02 + 52 -3.0251824937659981E-03 + 53 2.2983231812586706E-02 + 54 1.3671044959642548E-03 + 55 4.9881887699727073E-03 + 56 -8.9393905049670497E-04 + 57 -4.3313181492067726E-03 + 58 -3.7056103045115577E-03 + 59 -1.9824971462157729E-02 + 60 -3.5305561647070369E-02 + 61 -3.2911506260876244E-02 + 62 -1.0146891834311013E-02 + 63 -3.1131243213748643E-02 + 64 5.7391624825926038E-03 + 65 1.6223527915168092E-02 + 66 1.3345672347061126E-02 + 67 4.2367190749063961E-03 + 68 1.2243993023862232E-02 + 69 -2.1984125473100123E-03 + 70 -2.7591863174374685E-03 + 71 1.1986902629130330E-04 + 72 6.9226205025158807E-04 + 73 -8.8203894851356362E-04 + 74 -1.2738582619849182E-03 + 75 2.0747045883135759E-03 + 76 -4.4524058697195523E-01 + 77 -1.3394712214621671E-02 + 78 2.6408624834691682E-02 + 79 2.1371926775944947E-02 + 80 3.2863310888737265E-03 + 81 1.0901595034712979E-02 + 82 7.9895892924464057E-03 + 83 5.8435630114652239E-04 + 84 -3.7334116904267352E-03 + 85 -2.8784974462274244E-04 + 86 -2.1575358608292542E-03 + 87 -5.9779123839879644E-04 + 88 -2.0876424214441832E-03 + 89 -5.8079019449536806E-02 + 90 -1.4471209368800107E-03 + 91 1.9607780975049059E-03 + 92 -7.3827822941524004E-03 + 93 -4.0130455212663164E-03 + 94 1.3929136097732045E-03 + 95 -3.5309578543610835E-03 + 96 1.6903539024307219E-03 + 97 1.0708416092927993E-03 + 98 2.9038516370998702E-04 + 99 -2.5536368002914697E-04 + 100 1.8794121458969712E-03 + 101 1.7739111941875488E-04 + 102 -5.5374432899397164E-01 + 103 -1.3281894909511137E-02 + 104 3.4631798184318302E-02 + 105 -1.2701397187826412E-02 + 106 7.4555132359760705E-04 + 107 9.7568965519177955E-03 + 108 -1.1000701332697536E-03 + 109 9.8989870520642571E-03 + 110 4.3359344607373331E-04 + 111 2.0663393277222685E-03 + 112 -6.3276022531364004E-04 + 113 -1.9873929966356513E-03 + 114 2.8280206079822840E-03 + 115 1.3340876103996681E-02 + 116 -8.7633974784316734E-05 + 117 -4.3992776493527851E-03 + 118 -1.1398496171485097E-03 + 119 1.1978714199212593E-03 + 120 3.8796258740125891E-03 + 121 -5.3507507971627349E-04 + 122 3.3539939684499242E-04 + 123 -1.7248520528732696E-04 + 124 8.8984342478535313E-04 + 125 -2.9016049564395635E-04 + 126 -3.3779186353398183E-04 + 127 5.7788886122795617E-04 + 128 -3.4199408970922787E-02 + 129 1.2520582936360646E-03 + 130 -1.3766241358808766E-02 + 131 1.0504268443860893E-02 + 132 -1.5520501859719973E-02 + 133 -4.6062887289202471E-03 + 134 -5.4052694312234128E-03 + 135 4.6441624751705459E-05 + 136 1.3468114883540506E-02 + 137 -1.2168637513417782E-02 + 138 -4.4835470402641950E-02 + 139 -3.4989026599876301E-02 + 140 1.0974665455945614E-02 + 141 3.9756682133690081E-03 + 142 3.8010141586767156E-03 + 143 1.7002773104976918E-02 + 144 -2.5690867277099127E-03 + 145 -1.3195677894380609E-03 + 146 7.9488804182117689E-05 + 147 4.1075857314749357E-03 + 148 -4.1784770395625901E-04 + 149 1.6941747214776505E-03 + 150 1.2161851023451420E-03 + 151 -4.3106693079187838E-03 + 152 7.4476371484696879E-04 + 153 -5.4774579728820534E-03 + 154 -4.0438908608971419E-04 + 155 3.5832373875514911E-02 + 156 -6.8427019013458405E-03 + 157 -1.2161910288578423E-02 + 158 -9.4655027775509947E-03 + 159 -2.8914165286652934E-03 + 160 2.7964241473026285E-03 + 161 -6.1324354477565957E-02 + 162 7.8958500961370401E-02 + 163 6.5311520874517370E-03 + 164 4.3648350761096695E-02 + 165 -1.4364602048200031E-02 + 166 6.4222406833533098E-03 + 167 -7.2397590473054297E-03 + 168 3.7561970615165702E-03 + 169 6.8239786747808530E-04 + 170 6.4729651057980999E-04 + 171 -2.2421953104695834E-03 + 172 1.7823398710762940E-03 + 173 -3.6921870579948612E-04 + 174 -5.0983611018516812E-04 + 175 9.1880343857265697E-04 + 176 -6.8506890664400048E-04 + 177 1.1187492342909463E-03 + 178 5.0975616978900318E-01 + 179 1.1029259483825878E-02 + 180 2.5443323678380821E-02 + 181 7.7770727080493434E-03 + 182 -2.2624613546081983E-02 + 183 4.2119221010171156E-03 + 184 2.6174605358454928E-03 + 185 -9.3508828855020081E-03 + 186 -1.1903387759342971E-03 + 187 8.7789766960883506E-04 + 188 -3.4694458798054618E-03 + 189 5.2676566165934706E-03 + 190 5.4889727703479052E-04 + 191 -7.0351917994428527E-04 + 192 -8.4460257331932329E-04 + 193 -3.4326477438877063E-03 + 194 9.2598976945986883E-06 + 195 1.5495870810507940E-03 + 196 4.1201516300416055E-03 + 197 1.5696435475886566E-03 + 198 1.1658369906669660E-03 + 199 3.3797252613375703E-04 + 200 -3.1167961252541438E-04 + 201 1.5483360299261921E-04 + 202 9.3990338222236703E-06 + 203 -9.6917331173875670E-04 + 204 -2.3845413059103274E-02 + 205 1.7569331329001013E-03 + 206 2.3871646030868537E-03 + 207 -1.0945630900895609E-02 + 208 -1.0851767676336296E-02 + 209 3.0746740731733657E-03 + 210 1.0738243324134897E-04 + 211 1.1535459358983716E-03 + 212 3.0015610899214132E-02 + 213 9.2627797537138679E-03 + 214 1.7829936753293075E-02 + 215 -5.4316832950821407E-03 + 216 1.0740242843538438E-02 + 217 -1.3201048283685639E-02 + 218 -4.5116608843999029E-03 + 219 -4.2819297642621200E-03 + 220 2.2125815841006922E-03 + 221 -3.5204793829144111E-03 + 222 -5.9832941242141406E-04 + 223 -7.5873297774669245E-04 + 224 -5.7654638497316169E-04 + 225 -2.2427226527272696E-04 + 226 -7.0959749328188232E-04 + 227 -2.0887295504671819E-03 + 228 -3.3124445497854525E-04 + 229 3.0396504599837122E-02 + 230 -2.8867045516757324E-03 + 231 1.0044317717858416E-02 + 232 -3.3787759480278386E-03 + 233 1.2402562280812431E-02 + 234 -5.8011168084032222E-03 + 235 3.0973598424587682E-03 + 236 3.8772723251034652E-04 + 237 -1.2375386675211748E-02 + 238 -5.6846088503015521E-02 + 239 9.8072381363879923E-03 + 240 -3.3996634639404839E-02 + 241 8.3612862707760742E-03 + 242 5.8046547413496581E-03 + 243 1.3423540690301281E-02 + 244 -4.9811006010542919E-03 + 245 1.0075433434680512E-02 + 246 4.4731599327230498E-03 + 247 8.8843652281080847E-04 + 248 2.2724498480106927E-03 + 249 -1.0309319991406106E-03 + 250 -3.3779168022228246E-04 + 251 -1.2699041106022876E-03 + 252 -3.5252059851605355E-04 + 253 -5.2480120664639225E-04 + 254 -7.9960626346545077E-03 + 255 -9.0264615826862694E-04 + 256 -7.1889939963101952E-03 + 257 4.2564439485804351E-03 + 258 1.4480692146542366E-03 + 259 -3.3119611534595554E-03 + 260 1.4639806866678915E-03 + 261 -1.1882954115238643E-03 + 262 1.6901832150882028E-02 + 263 6.2612534203607580E-03 + 264 -3.1339118517397816E-03 + 265 -1.0711997107414938E-03 + 266 1.7319996444644880E-03 + 267 1.7732453023996848E-03 + 268 2.0500236229836033E-03 + 269 5.7363058331838068E-04 + 270 7.8820335044925329E-04 + 271 6.4581956316768479E-03 + 272 2.9084914091508882E-04 + 273 7.4954710574179828E-04 + 274 -5.9715731388406074E-04 + 275 4.1121076697550856E-04 + 276 -1.1300893427946017E-03 + 277 2.3975234129694754E-03 + 278 3.8611909763585338E-04 + 279 8.1087009018050715E-02 + 280 2.0221874430642610E-03 + 281 -4.7740874692817477E-04 + 282 -3.5386405389268029E-03 + 283 3.9538578086944229E-03 + 284 2.3344464570005177E-03 + 285 -7.9736174706133045E-04 + 286 -1.7887265991624966E-03 + 287 1.0303554135708030E-03 + 288 4.1043287773474666E-04 + 289 1.2359934916043327E-04 + 290 -7.0682805666783660E-04 + 291 2.1640968265477676E-04 + 292 -5.6938054495517636E-02 + 293 -5.5663615476128192E-04 + 294 4.4407214683546334E-05 + 295 6.8242923816447362E-04 + 296 -6.6477089975547909E-03 + 297 4.2758335188853493E-03 + 298 3.0097793593291783E-04 + 299 6.0403529329659377E-04 + 300 -5.2960264018213029E-04 + 301 -3.7868064533315443E-04 + 302 9.9394026600071068E-05 + 303 -1.4534243206574110E-05 + 304 -3.8513237215072359E-04 + 305 5.2438931562698325E-03 + 306 9.8643346072258627E-04 + 307 8.1334467982985669E-03 + 308 4.5515655372494268E-03 + 309 1.4728168136405482E-03 + 310 1.2170918344733023E-03 + 311 -3.0954923728256655E-05 + 312 5.2430969031498663E-04 + 313 3.5765545104303200E-03 + 314 -1.5505862488935868E-03 + 315 -9.7594383239433169E-04 + 316 -2.3383154622652370E-03 + 317 -7.5371232462001728E-03 + 318 3.0542809843406781E-04 + 319 1.0578378665210572E-03 + 320 1.1523934036517286E-03 + 321 1.0711601319133496E-03 + 322 6.5074821018806161E-03 + 323 3.0183777952915038E-04 + 324 -1.7420168931382238E-04 + 325 3.9892339321918169E-04 + 326 8.5691529140270641E-04 + 327 9.2044074558338791E-04 + 328 -7.6643911789176628E-04 + 329 5.6610110510189546E-04 + 330 -1.0750026787380117E-02 + 331 -3.5267621635022639E-03 + 332 -7.9059401485174364E-03 + 333 -8.1796913924664233E-03 + 334 -5.3209503552335887E-03 + 335 -2.6721378197196942E-03 + 336 -2.0847779661822483E-03 + 337 -2.0928447692041127E-03 + 338 9.1250452247728937E-04 + 339 1.8239309775487898E-03 + 340 -2.2553106363100905E-03 + 341 -1.3555894553732178E-03 + 342 -1.4400463309203551E-03 + 343 1.7019069488698730E-04 + 344 -5.2401727787792958E-03 + 345 -4.7759790595264633E-03 + 346 1.5415009369655001E-03 + 347 -3.6803659307577900E-03 + 348 5.7819833397067288E-04 + 349 -1.0454424110242753E-03 + 350 -8.8705660667490920E-04 + 351 9.1915768352741076E-04 + 352 -1.6858093363880792E-03 + 353 7.3722248930650183E-04 + 354 8.8614550521934709E-05 + 355 2.4879004162960905E-02 + 356 2.7598236703834452E-04 + 357 3.1249776167728793E-04 + 358 4.9766496603767237E-04 + 359 1.1707679740160445E-03 + 360 1.0347871475635991E-04 + 361 2.1030531408670287E-04 + 362 9.4163530761488627E-04 + 363 2.8343031442361284E-05 + 364 -1.1035419800761141E-04 + 365 -1.9924369276516356E-04 + 366 -2.1156192684061964E-04 + 367 -2.0070173008803491E-04 + 368 7.1956670140180992E-02 + 369 1.5881556568922766E-03 + 370 -1.0321912983690009E-02 + 371 -1.5540941084535445E-03 + 372 3.3041181768989126E-03 + 373 9.8678029821580877E-03 + 374 8.6123716785001096E-04 + 375 1.1664010489653023E-04 + 376 9.4576176933814672E-04 + 377 -1.1997857973648528E-03 + 378 -4.0113744731037036E-04 + 379 -7.4132076479102008E-04 + 380 -6.7156907540403806E-04 + 381 -6.1464889318129511E-02 + 382 -8.0715554629879390E-04 + 383 3.5437887076806385E-03 + 384 3.5824396278305599E-03 + 385 1.5170830048074134E-03 + 386 -8.5630263782465700E-04 + 387 8.0244727656987504E-04 + 388 -5.2254619800607598E-04 + 389 -6.6116168427416045E-05 + 390 -3.5940522801583351E-04 + 391 -5.5133477129343613E-04 + 392 -2.9537129264380235E-05 + 393 -8.2146554919152804E-04 + 394 -3.5548117243563706E-03 + 395 3.5577184977197712E-05 + 396 -9.6945020724970264E-03 + 397 -5.9633939436880452E-03 + 398 5.1718758809342173E-03 + 399 -2.0396176380098842E-03 + 400 -1.5047298651352432E-03 + 401 1.2993493877875837E-03 + 402 -9.1840417763629830E-03 + 403 9.5093067233009195E-03 + 404 -1.0347978227340945E-03 + 405 -5.7565819657724986E-03 + 406 3.8538007256485201E-03 + 407 4.2078573055943291E-03 + 408 3.1003038664315277E-03 + 409 2.7047578547098601E-03 + 410 -4.9054882945515875E-03 + 411 -1.4353314889000515E-03 + 412 6.7060350142036037E-05 + 413 8.1513837478373668E-04 + 414 4.9906481477840209E-05 + 415 1.1595317009038604E-03 + 416 1.0126051789606158E-03 + 417 -9.1271291637032737E-04 + 418 -1.4769138345622487E-04 + 419 5.2280268614377347E-03 + 420 2.3269746053111048E-04 + 421 -5.8517037025673628E-04 + 422 -1.1963973844473904E-04 + 423 1.0841922074023463E-03 + 424 7.8231805787838226E-04 + 425 -8.5905489551029791E-04 + 426 -1.2551985085965218E-03 + 427 3.3319711224788333E-04 + 428 9.5512556668913320E-05 + 429 -2.3640631840101338E-05 + 430 -8.8686482607806810E-05 + 431 2.8422527820407840E-05 + 432 -5.0485823337479271E-03 + 433 -2.5864620232184278E-04 + 434 8.3078206421364630E-04 + 435 -1.1349069755678496E-03 + 436 -6.1743169294511198E-05 + 437 4.6578014625909750E-04 + 438 -1.4680208421540949E-04 + 439 -1.3862684597643715E-03 + 440 3.8308645923461652E-04 + 441 1.8816834292927014E-04 + 442 -2.5491540944265408E-04 + 443 4.4846692720088531E-04 + 444 5.5111842429882859E-05 + 445 -1.8098457334210451E-03 + 446 1.1957667051170581E-03 + 447 -1.6806838575054955E-03 + 448 -3.6938458558861036E-03 + 449 6.2099743634299607E-03 + 450 4.0057499494704082E-05 + 451 -1.4193892120329843E-03 + 452 1.9017670452501877E-03 + 453 3.0693668489288340E-04 + 454 2.3196484723258717E-03 + 455 2.8276982264127857E-03 + 456 6.7785454929259002E-04 + 457 8.3441976884448263E-04 + 458 3.4798398124793769E-03 + 459 1.5841894475405733E-03 + 460 -2.9305376115494157E-03 + 461 -1.6255105526550429E-04 + 462 -9.7356445078303721E-04 + 463 7.6713712745423747E-04 + 464 4.8138073830825183E-04 + 465 -1.3119911311028918E-03 + 466 -5.6894004296010807E-05 + 467 -3.7246708774727068E-04 + 468 5.4243105998282471E-04 + 469 1.7919518944829473E-05 + 470 5.6884923847918363E-04 + 471 -2.5413163630386916E-03 + 472 -2.0210229882142105E-03 + 473 1.2566885074241465E-03 + 474 -2.0692011075366091E-03 + 475 -1.4914807288345002E-03 + 476 -7.1855323658603378E-04 + 477 -6.7695201725214967E-04 + 478 6.7220582259043017E-03 + 479 -2.0159853367135968E-03 + 480 -4.0680397954385326E-03 + 481 2.9625366770860695E-03 + 482 -1.2159358790608575E-02 + 483 2.7239003069412054E-04 + 484 -9.1026962787947542E-04 + 485 -1.0629390815955767E-04 + 486 -8.0279547322321867E-04 + 487 9.7058840311992832E-05 + 488 -8.9681968346206684E-05 + 489 3.6484659150108048E-04 + 490 -2.6096961595141021E-04 + 491 3.0962869381814508E-04 + 492 -4.7677007463301613E-04 + 493 -1.7255370182098174E-04 + 494 -2.7376948296037405E-04 +Ene= -6.0599010973E-01 +Spin= Alpha +Occup= 2.0000000 + 1 5.2655726311020251E-02 + 2 -6.5155781347841450E-03 + 3 -6.7027613703149729E-04 + 4 1.9077956595342654E-02 + 5 1.7860141374841192E-02 + 6 3.5575020724898441E-03 + 7 -8.1354529121599808E-03 + 8 -7.5827634955812019E-04 + 9 5.9162227662694182E-03 + 10 -1.7394229668985781E-03 + 11 -7.1902806801765029E-02 + 12 6.3343040894812741E-02 + 13 1.1049098805051876E-02 + 14 5.1328944925690414E-04 + 15 -3.7999754794448728E-03 + 16 8.5906343536048483E-03 + 17 -9.1852122408737132E-03 + 18 -3.7120821848224465E-04 + 19 3.2479295548525593E-04 + 20 -1.3919841030091264E-03 + 21 2.2788758020720009E-03 + 22 1.1884825595902214E-03 + 23 4.4246660735010768E-04 + 24 4.6104120316240257E-04 + 25 3.6225844347151284E-04 + 26 2.0663968607011581E-02 + 27 -1.4341046731709186E-03 + 28 9.1830073396864421E-03 + 29 1.8620306946039344E-02 + 30 -1.8586663506541881E-02 + 31 -2.5906770842771929E-03 + 32 -6.2889794115532031E-03 + 33 9.4863024516716622E-03 + 34 -7.6591807375957027E-02 + 35 8.4634463610760977E-02 + 36 4.8951083266279789E-02 + 37 -4.4106062160881268E-02 + 38 -8.2555893019137613E-02 + 39 1.9655185418773827E-02 + 40 -1.7599890443831569E-02 + 41 -1.3882040731956712E-02 + 42 7.4011661125706896E-03 + 43 1.9771272991609856E-02 + 44 -3.1369563124810425E-04 + 45 -1.0143239445571425E-03 + 46 -9.6607990217312180E-04 + 47 1.9568483974954053E-03 + 48 1.4806492833713007E-03 + 49 1.1781753993416195E-03 + 50 -7.6624507349574782E-04 + 51 -1.8088004087575233E-02 + 52 2.9106933424992132E-03 + 53 -1.5303465602747479E-02 + 54 -2.4074371161675184E-03 + 55 -1.4682786652712396E-04 + 56 -1.5305360942003516E-03 + 57 2.4404691141144816E-03 + 58 5.9961209190622072E-03 + 59 1.2125635004503822E-02 + 60 3.9949375539309516E-02 + 61 2.3648821545798410E-02 + 62 6.0407687423748970E-03 + 63 1.1685502609430989E-02 + 64 -3.1910411732563719E-03 + 65 -7.8105522129118515E-03 + 66 -4.7409886512988159E-03 + 67 -1.4231619405296529E-03 + 68 -7.3500583840610655E-03 + 69 -2.0182444484551508E-03 + 70 1.6587161675200306E-03 + 71 5.3229896847566377E-04 + 72 -4.2647663979605431E-04 + 73 2.7481962931594273E-03 + 74 3.2226717647727220E-03 + 75 2.2738196752398307E-04 + 76 -6.9505949645712772E-01 + 77 -2.1511656540506772E-02 + 78 4.2096091924532217E-02 + 79 2.9915239090272071E-02 + 80 1.1993901469075570E-02 + 81 1.4154833995876805E-02 + 82 7.9023503949300477E-03 + 83 -6.3999093969195847E-04 + 84 -5.8228703098039281E-03 + 85 -1.4116935820039471E-04 + 86 -3.1299539197021096E-03 + 87 -6.5360138190048028E-04 + 88 -3.5707314661010047E-03 + 89 -3.1733626456743970E-02 + 90 -2.6104963139211889E-03 + 91 1.3390395551361703E-03 + 92 -6.5895922493915743E-03 + 93 5.1497708126979006E-04 + 94 -1.5115855372491282E-03 + 95 -2.6047856306714934E-03 + 96 4.9844017312778007E-03 + 97 9.7659032470080861E-04 + 98 7.2547287059045889E-04 + 99 -4.9516210644113569E-04 + 100 1.7850225928001992E-03 + 101 2.4452802222352352E-04 + 102 4.3922549178400294E-01 + 103 1.0747279579418286E-02 + 104 -2.8726071471901055E-02 + 105 4.0555451057572734E-03 + 106 2.9326538059045834E-03 + 107 -6.1806862819461404E-03 + 108 3.8623709067324608E-03 + 109 -5.8898220558692453E-03 + 110 -7.5833628471576591E-04 + 111 -1.8028624785681904E-03 + 112 8.7960374785724766E-04 + 113 1.8604685289167681E-03 + 114 -2.1138332605501273E-03 + 115 1.1532157637307666E-01 + 116 1.8779410957153941E-03 + 117 4.9527586797867048E-04 + 118 5.1582386566468056E-04 + 119 -5.7260142772177216E-03 + 120 -1.5478629799827914E-03 + 121 3.9168053085107228E-03 + 122 -2.1628176317154274E-03 + 123 2.4407917358839894E-04 + 124 6.5840884838232064E-04 + 125 6.3772283455541603E-05 + 126 -1.1935477791938862E-03 + 127 -9.3031971052926290E-04 + 128 7.3261304862067408E-03 + 129 1.4271708974309034E-04 + 130 -1.8301813661901641E-03 + 131 -3.7490558014982387E-03 + 132 1.8159329314189096E-03 + 133 1.6134353552511055E-03 + 134 2.4708336621892045E-03 + 135 -8.3230440394871071E-04 + 136 1.4045921435070329E-03 + 137 5.7467867942943805E-03 + 138 3.5596079808474880E-02 + 139 1.3842357442436417E-02 + 140 3.2780945740509730E-03 + 141 -5.5621169323398392E-04 + 142 -6.0616276390128088E-03 + 143 -1.0189895374157185E-02 + 144 -7.0176052975607405E-03 + 145 4.7173339746491201E-04 + 146 5.3476614524429976E-04 + 147 -7.7489355034318316E-04 + 148 8.6503639883690341E-05 + 149 1.2549689302124298E-04 + 150 -1.0928755549967828E-03 + 151 -7.4818561489516165E-04 + 152 -7.5355897451559158E-04 + 153 -2.3324468212117689E-02 + 154 -2.7038571444343096E-03 + 155 -1.9632828272730884E-02 + 156 -1.2166660462419583E-02 + 157 1.5556825890281296E-02 + 158 5.7837824693009673E-03 + 159 -2.3625745029859251E-03 + 160 -1.4568908040224068E-03 + 161 3.0048063940017994E-02 + 162 -6.2701566020122487E-02 + 163 -4.3298326694649935E-03 + 164 -3.6159560138705263E-03 + 165 7.4913877879538415E-03 + 166 -1.1300498789717577E-03 + 167 3.9763520763663792E-03 + 168 4.1710457543522464E-03 + 169 5.6553380394657642E-03 + 170 -1.2971622861184817E-03 + 171 9.3146439947300316E-05 + 172 -1.0900101817720611E-03 + 173 2.3041486370996248E-04 + 174 -1.8849513844508765E-03 + 175 -3.3982560858373964E-04 + 176 7.2621918825381765E-04 + 177 1.4008467235208124E-03 + 178 -2.2073545672307296E-01 + 179 -4.7939042452659333E-03 + 180 -9.7623649749059346E-03 + 181 -2.5657396369191537E-03 + 182 1.0276475863101615E-02 + 183 -1.1087816348430996E-03 + 184 -2.0614908211538789E-03 + 185 4.3277650974652684E-03 + 186 2.9358056499808769E-04 + 187 -2.3615589942389730E-04 + 188 1.3810743152508607E-03 + 189 -1.9781667173680616E-03 + 190 -3.8256683355299560E-04 + 191 -4.5850303623574423E-02 + 192 -1.1567284417430556E-03 + 193 2.4074165031022303E-03 + 194 -1.8330014948575253E-03 + 195 1.8361772878806664E-03 + 196 -2.1105989212216506E-03 + 197 -1.4058486580347627E-03 + 198 -2.0860113361427552E-03 + 199 -3.8180188089793730E-04 + 200 5.4869531531803739E-04 + 201 5.4945771382837892E-05 + 202 3.8308288382427421E-04 + 203 5.5479183573761692E-04 + 204 5.1985892121553636E-03 + 205 -2.1930325731245354E-03 + 206 -6.5993702656962231E-03 + 207 6.2115975620894535E-05 + 208 4.9078558855931648E-03 + 209 -3.2400432976242648E-03 + 210 -1.0914528975149264E-04 + 211 -1.0933380673423855E-03 + 212 -1.1802813954634497E-02 + 213 -6.6941990506328075E-03 + 214 -1.4286949029784737E-02 + 215 2.7831217745219296E-03 + 216 7.2941026213647611E-03 + 217 5.4758667275623561E-03 + 218 9.6442290161564915E-04 + 219 1.4935159971927031E-03 + 220 -3.0696473857521616E-03 + 221 -3.1294409423560702E-03 + 222 1.5883644146144814E-04 + 223 3.3633713293898293E-04 + 224 5.5251714271798715E-04 + 225 -6.2202200062068405E-05 + 226 3.0259736124686092E-04 + 227 1.1203612839206345E-03 + 228 -6.3250441303738141E-04 + 229 5.3890004073562890E-02 + 230 -6.1353294947794502E-03 + 231 1.2427904130753762E-02 + 232 -3.3332929536959740E-03 + 233 8.1392674854589876E-03 + 234 -1.0003645133946139E-02 + 235 6.3030390545282177E-03 + 236 -3.9040927530441501E-03 + 237 -1.8043873959880868E-02 + 238 -8.5115065252602637E-02 + 239 7.7407337247980710E-03 + 240 -5.3055323800312214E-02 + 241 1.9898839263178598E-02 + 242 3.3400264495650552E-03 + 243 1.7919619382578994E-02 + 244 3.5557052270775771E-04 + 245 1.3619062932946695E-02 + 246 4.7018764640167007E-03 + 247 2.0349778363481673E-03 + 248 2.8433981275144248E-03 + 249 -6.2571364981198327E-04 + 250 1.7077512675234117E-04 + 251 -1.0071492715455787E-03 + 252 -3.9986422441938933E-05 + 253 2.4798479709383433E-04 + 254 -5.0995929192817540E-03 + 255 2.7899793326247677E-03 + 256 6.2676616658813985E-03 + 257 -2.7669987515977607E-03 + 258 3.0746241859310136E-04 + 259 7.8810147051923212E-04 + 260 -1.4703309380362801E-03 + 261 -2.2891359804290432E-05 + 262 2.1981153234750202E-02 + 263 1.0099016292393671E-02 + 264 -1.5760008242747117E-02 + 265 -6.4109698162163244E-03 + 266 1.3136203872620496E-03 + 267 -4.3908987532378409E-03 + 268 8.9273121983813729E-04 + 269 1.5805805275860309E-03 + 270 2.2809192817964849E-04 + 271 -3.4059230776011039E-03 + 272 -3.2382566760007610E-04 + 273 -3.3388454068339968E-05 + 274 8.1648732910128276E-04 + 275 5.9559988009923333E-04 + 276 -5.8509084029883369E-04 + 277 -7.2486464643962089E-04 + 278 -4.7678703978287844E-04 + 279 7.8039959362727521E-02 + 280 1.9825555197860558E-03 + 281 -1.9176699611343471E-03 + 282 -2.2848267916385275E-03 + 283 4.0834012619821065E-03 + 284 2.6988686278651610E-03 + 285 2.2436082612793459E-04 + 286 1.2487567775882830E-03 + 287 1.2347258970344525E-03 + 288 6.9095954734182431E-04 + 289 1.5045833868995457E-04 + 290 -2.8906502090321766E-04 + 291 3.4786255959666815E-04 + 292 -1.2351949708893382E-01 + 293 -2.6972076427459316E-03 + 294 2.3665556325070708E-03 + 295 1.6358602995278290E-03 + 296 -1.1201544527390936E-02 + 297 5.7313762160796774E-03 + 298 1.4634922141130576E-03 + 299 -1.2413342908073196E-03 + 300 -8.7879884159729237E-04 + 301 -6.1079579934683712E-04 + 302 -1.4056882363999452E-04 + 303 1.1014921166158850E-04 + 304 -9.8700371837853827E-04 + 305 1.0411318273015857E-02 + 306 1.4618304613632036E-03 + 307 1.4741360515885498E-02 + 308 6.7074667756270032E-03 + 309 3.8979419606119956E-03 + 310 2.0538913445606499E-03 + 311 -9.1022896550175863E-04 + 312 1.3642455981420947E-03 + 313 7.0201164552603995E-03 + 314 -2.9967405699349013E-03 + 315 -2.0865801302260736E-03 + 316 -5.4802502232272369E-03 + 317 -1.5788412519070292E-02 + 318 1.2374879097345037E-03 + 319 4.2300661082164837E-03 + 320 1.6837362504050094E-03 + 321 2.2382809421126891E-03 + 322 8.0451794047195491E-03 + 323 5.2009227950433590E-04 + 324 6.5511315160470896E-04 + 325 8.8993378778483734E-04 + 326 1.4527583337802957E-03 + 327 1.1540836115671116E-03 + 328 -8.4742192542378025E-04 + 329 4.3386589349106772E-04 + 330 3.5021914884705275E-03 + 331 1.4831975266721819E-03 + 332 6.5856140027292804E-03 + 333 2.5740811453667523E-03 + 334 6.8080052885041084E-03 + 335 1.6599902007542052E-03 + 336 1.3679020279931181E-03 + 337 1.0054777688055999E-05 + 338 -4.7536841859490281E-03 + 339 4.4606969617882949E-03 + 340 -6.4013626833102685E-03 + 341 -1.7261685680161646E-03 + 342 -3.3008691699261935E-03 + 343 -4.9644294711610043E-04 + 344 1.4996837477242379E-03 + 345 3.6741045661705758E-03 + 346 -3.4651394733626310E-04 + 347 3.6030620611813618E-03 + 348 -2.7085950499134955E-04 + 349 5.4379756198107967E-04 + 350 7.0331337824946214E-04 + 351 -8.5300190107569283E-04 + 352 4.4342830715898097E-04 + 353 -8.8365590310019956E-04 + 354 2.9813159728691273E-04 + 355 5.5209943331954822E-02 + 356 9.3357407439528404E-04 + 357 4.3970340794007468E-04 + 358 9.8614785169499745E-04 + 359 2.7718263651558615E-03 + 360 8.8858953229707010E-04 + 361 -3.4543765172398005E-04 + 362 1.7167865100860616E-03 + 363 1.1564463624533743E-04 + 364 -1.6624811644671517E-04 + 365 -3.2572302309420313E-04 + 366 -4.0194636042729644E-04 + 367 -2.3614599886054042E-04 + 368 5.2889472911345964E-02 + 369 8.7235208661949929E-04 + 370 -1.9610476557089807E-03 + 371 -2.9547851877748509E-03 + 372 1.3496476648464618E-03 + 373 1.3872745903956458E-03 + 374 1.4651559365197989E-03 + 375 -5.9682206256600413E-04 + 376 4.6853206642462423E-04 + 377 8.9260704577211821E-04 + 378 1.0951469231672383E-04 + 379 -1.5711658947048209E-04 + 380 -1.5049833825277966E-03 + 381 -9.8820408084950087E-03 + 382 -9.7520126631873297E-05 + 383 1.7426746505730287E-03 + 384 1.7945643222957888E-03 + 385 -8.8592449487187076E-04 + 386 -4.6388914431518243E-03 + 387 -1.4662522495696080E-03 + 388 7.2174736925690317E-04 + 389 -3.9226459284505345E-04 + 390 -2.4791451324239575E-04 + 391 3.3299625939967362E-04 + 392 6.2685447588749557E-04 + 393 1.2321986734493249E-04 + 394 -8.6741370763334814E-03 + 395 -1.1500529609040613E-03 + 396 -1.2402147271207387E-02 + 397 -6.4407112214213786E-03 + 398 5.4502228527743930E-03 + 399 -3.9154585303638814E-03 + 400 -1.8411896455121921E-03 + 401 2.2053976916186296E-03 + 402 -3.6007542439375415E-03 + 403 4.5812537030025810E-03 + 404 1.2266534406457632E-03 + 405 -4.9657206974826973E-03 + 406 3.9893704074167452E-03 + 407 2.1239587662087219E-03 + 408 6.5982939988049180E-03 + 409 2.9951992653940670E-03 + 410 -8.1803456585522807E-03 + 411 -2.4059685715316385E-03 + 412 -1.5432272999721299E-03 + 413 1.0589387668674580E-05 + 414 -7.5342243631159884E-04 + 415 1.0330936630041062E-03 + 416 6.5135188868590654E-04 + 417 -2.5223908403511231E-03 + 418 -3.0662192266223099E-04 + 419 9.3048925873448155E-03 + 420 3.3426523678877575E-04 + 421 -1.4210268280744527E-03 + 422 -4.0551412750203751E-04 + 423 1.1294766644022387E-03 + 424 2.0305232440320778E-03 + 425 -5.6524515084134519E-04 + 426 -9.9175911501722430E-04 + 427 2.8280393347108904E-04 + 428 -1.2659908741933780E-04 + 429 1.0347036323637621E-04 + 430 -2.3215238521903910E-04 + 431 -1.2909608957253335E-04 + 432 1.5771931384365773E-03 + 433 -3.2080272376774047E-05 + 434 3.3696987475221528E-04 + 435 2.1659428714616852E-04 + 436 -5.4772217025396571E-04 + 437 -2.9156099465405547E-04 + 438 -2.3665120834303328E-04 + 439 1.0920141337926923E-03 + 440 -1.9873246575376961E-04 + 441 -1.0593672873110847E-04 + 442 5.7398828819726462E-05 + 443 7.4535445457598953E-05 + 444 1.6346449796842785E-04 + 445 -7.7541828907020018E-03 + 446 -5.1141071215726178E-04 + 447 -3.2763711786663531E-03 + 448 -3.7059060482940347E-03 + 449 -1.4569164707397583E-03 + 450 -3.5644189439218768E-04 + 451 -1.4846933706680484E-03 + 452 -5.7752921528679568E-04 + 453 8.6691387615154387E-04 + 454 -7.6445921843390854E-04 + 455 4.4635625543791597E-03 + 456 4.8529405744040963E-06 + 457 -8.1818626954611518E-04 + 458 8.9328187278660945E-05 + 459 2.4150189801210617E-04 + 460 -1.6409516495974610E-03 + 461 8.9815137108144620E-04 + 462 -2.1417506163225802E-03 + 463 2.6773866011273509E-04 + 464 4.1200973437085353E-04 + 465 6.9972426250709536E-04 + 466 9.8069981338736486E-04 + 467 7.6747514869478231E-05 + 468 -2.2578971550711707E-04 + 469 -5.5104534791333270E-04 + 470 9.9724709906731120E-05 + 471 -1.5438569683708564E-04 + 472 1.3923855068851459E-03 + 473 -1.0392909957767402E-03 + 474 -7.1270074602785671E-04 + 475 5.5765987835051521E-04 + 476 -3.4095462594149268E-04 + 477 -5.0061609061579162E-04 + 478 6.2147532126882634E-04 + 479 -8.3656516543017439E-04 + 480 -5.6248668546623647E-05 + 481 -3.8308377993419177E-04 + 482 -1.7387142824439349E-03 + 483 2.2481226612337861E-04 + 484 -8.3183443604696735E-04 + 485 -6.6123776153199291E-05 + 486 2.2703800446036903E-03 + 487 -4.3680156335173869E-04 + 488 3.1246967795602526E-04 + 489 -2.3670772092586125E-04 + 490 1.0152804558919089E-04 + 491 -1.2308457487181208E-04 + 492 2.7372927799948509E-04 + 493 7.9049209527572639E-04 + 494 2.9111245823662768E-04 +Ene= -5.9823106080E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -2.1157358913567896E-02 + 2 1.4849715584655183E-03 + 3 1.1346727609309269E-02 + 4 -7.1292859008769667E-03 + 5 2.0710817888385625E-02 + 6 -1.1082479367787719E-03 + 7 3.7682165751558233E-05 + 8 -7.1248825021859048E-04 + 9 1.7171043320526387E-02 + 10 3.5141191392481397E-02 + 11 -4.8146522606630236E-02 + 12 1.0248044735152277E-02 + 13 -2.0092841931319255E-02 + 14 -4.1420907595305801E-03 + 15 -8.7500511347031514E-03 + 16 1.0826518600947925E-02 + 17 -3.6344717352423273E-03 + 18 3.7253286721811202E-03 + 19 -3.6979314798525192E-04 + 20 1.8812495127410425E-03 + 21 9.4581001400143315E-05 + 22 2.0545346216998403E-03 + 23 -2.5469705455435834E-03 + 24 7.3697602048776911E-04 + 25 -2.8639424598606957E-05 + 26 6.3429218300857229E-03 + 27 -2.1331294239605066E-03 + 28 -1.0024310391489905E-03 + 29 1.3576668283091090E-03 + 30 5.6365155486804422E-03 + 31 -2.0181069958170373E-03 + 32 -6.3419833854565580E-04 + 33 5.3058513307075649E-03 + 34 -9.4077222345485614E-03 + 35 1.4527942756537350E-02 + 36 1.2739307128593837E-02 + 37 -4.0151028818600854E-03 + 38 -1.1505365529317987E-02 + 39 -3.0854780483966222E-03 + 40 -1.5922392404075494E-03 + 41 -3.6574886332312625E-03 + 42 -1.1707460630851895E-04 + 43 2.0277173111849099E-03 + 44 8.7183165497911304E-04 + 45 -1.0394050419536220E-03 + 46 7.3038212364426140E-04 + 47 3.5914318563901157E-04 + 48 8.9328370654945960E-04 + 49 -4.4726087299996642E-04 + 50 -5.9179604527737214E-04 + 51 -5.9238080727672484E-04 + 52 8.1973547890337381E-04 + 53 -2.9358979818245421E-03 + 54 2.4974002267986258E-03 + 55 9.6812804242041566E-04 + 56 -4.4625694689734560E-04 + 57 -1.2280172600905896E-04 + 58 7.8188805662838092E-04 + 59 9.5835258049818098E-04 + 60 -2.6528430932235324E-03 + 61 8.6780968956889936E-04 + 62 1.2166350308938990E-03 + 63 7.4798667812281654E-03 + 64 -1.8719304844814608E-03 + 65 8.8389757092550731E-04 + 66 -2.8666865346612762E-06 + 67 7.8226298376809209E-04 + 68 8.9710152244143395E-04 + 69 3.4150028092538572E-04 + 70 1.1579830411989390E-03 + 71 9.0905250008043725E-05 + 72 1.8505588438779016E-04 + 73 -1.0195234076365175E-03 + 74 -8.9787719472106688E-05 + 75 3.4328335070472595E-04 + 76 -1.3137928337311633E-01 + 77 -5.2768620380393184E-03 + 78 6.6718182130877483E-03 + 79 5.1577230489611749E-03 + 80 -3.5854698896488411E-03 + 81 1.8756156776953772E-03 + 82 2.8320057691143583E-04 + 83 1.0897145300324356E-03 + 84 -9.2731140863778268E-04 + 85 1.9574803443914057E-04 + 86 -5.8769360339775247E-04 + 87 3.9477376081768783E-05 + 88 -3.9825330618078705E-04 + 89 1.4587354563672229E-02 + 90 -7.6209565506471188E-05 + 91 -4.8051778505050276E-04 + 92 2.6235743482689537E-03 + 93 -5.0228642469000496E-04 + 94 -5.9830452607297210E-04 + 95 -1.4049779497935871E-06 + 96 2.9677347006827853E-03 + 97 5.6099665231468617E-05 + 98 -3.7500080431144954E-04 + 99 -2.0395775678769555E-04 + 100 -4.7259753910829918E-04 + 101 -1.4708157970523179E-04 + 102 1.5645761351408178E-02 + 103 -4.7423976659545660E-05 + 104 -1.0625267148598170E-03 + 105 -5.2972693249100228E-04 + 106 4.4154468183391608E-04 + 107 1.9059616612761794E-04 + 108 7.6384340947474182E-04 + 109 -1.8901779984285833E-03 + 110 -3.0901563569702279E-04 + 111 -1.5362771574548839E-04 + 112 2.5025154629094358E-04 + 113 8.1648272112109309E-05 + 114 6.7751639492652838E-05 + 115 2.8304419874996375E-02 + 116 7.3272829077800777E-04 + 117 2.3138593670379557E-05 + 118 -8.4294035169290356E-04 + 119 -2.4533305233045180E-04 + 120 -8.0944827812404457E-05 + 121 6.7247992621031929E-04 + 122 -1.2343467643407490E-03 + 123 -1.3506833008698318E-04 + 124 2.0683039165100699E-05 + 125 3.0693720111395624E-04 + 126 -1.9200637823238708E-04 + 127 -9.4083719383602466E-05 + 128 4.8578588658199076E-03 + 129 8.3760301002478387E-04 + 130 -1.5846745309580281E-03 + 131 2.7275021626336970E-03 + 132 -5.4119686753381236E-03 + 133 -7.6757262797929899E-05 + 134 1.4662458749151910E-03 + 135 -6.1771931747486896E-04 + 136 -2.5708034985029780E-03 + 137 3.3973990447301885E-03 + 138 2.9476907950822478E-05 + 139 4.0925992825116656E-04 + 140 3.9321463292402402E-03 + 141 6.1937035416807708E-04 + 142 -6.7627432520829978E-04 + 143 -1.9271566617086095E-03 + 144 -7.5532312396353466E-04 + 145 -2.0437136718857714E-04 + 146 3.4512747054996811E-04 + 147 5.5664278014187719E-04 + 148 1.4039262789525189E-03 + 149 -3.9514229576239756E-04 + 150 7.2974244073903237E-06 + 151 5.2640354956004964E-04 + 152 7.7638898587726734E-05 + 153 -2.8114566555847722E-03 + 154 -6.7253602254096784E-04 + 155 2.8843476383530692E-04 + 156 -3.3730532727599123E-03 + 157 1.4214657256977174E-03 + 158 3.7356394644374780E-04 + 159 -1.0508277007364552E-03 + 160 1.7098164787570904E-04 + 161 3.3503967885114975E-04 + 162 -2.2154018406322592E-03 + 163 8.7908133364207724E-05 + 164 1.7052280408972662E-04 + 165 -4.1392232275667368E-05 + 166 -6.7712827991589388E-06 + 167 1.7318869241382914E-04 + 168 1.9177990848493753E-03 + 169 1.5199604458158321E-03 + 170 3.5189699769997248E-04 + 171 -1.4363221365802265E-04 + 172 -2.6726270791969112E-04 + 173 -3.1597902538804641E-04 + 174 -5.8534960510208864E-04 + 175 -1.4495675621688500E-04 + 176 2.0986382499498684E-04 + 177 1.7320438776989127E-04 + 178 -3.5070144556243600E-03 + 179 -1.9857561509938493E-04 + 180 -2.9608979075020184E-04 + 181 -5.0524711702809523E-04 + 182 7.6260316714943434E-05 + 183 4.7114162994339981E-04 + 184 9.0266011121608084E-04 + 185 5.1373887610057297E-04 + 186 4.4342011175178740E-05 + 187 1.6453993170058482E-04 + 188 2.0938744261388506E-04 + 189 -4.3166429276998598E-05 + 190 -5.5218977373073186E-05 + 191 4.4968895212774050E-02 + 192 6.6881939711870703E-04 + 193 2.0586498933665700E-04 + 194 2.6621141899643816E-03 + 195 -9.5380955760208063E-04 + 196 -1.8886922947780437E-03 + 197 2.1385005697949731E-03 + 198 1.7355863441984010E-03 + 199 -3.0853543232348119E-04 + 200 -2.0529230131186710E-04 + 201 -1.0296327015852605E-04 + 202 -1.0363685580570586E-04 + 203 2.0115816882829564E-05 + 204 2.1959269431175531E-04 + 205 3.7968748539774356E-04 + 206 -5.3038318496964037E-03 + 207 6.7998174347206394E-04 + 208 -6.4849702317036880E-03 + 209 -1.3940077271572010E-03 + 210 -1.2336863476128720E-03 + 211 -2.0547845282499360E-03 + 212 -3.6667698017682146E-03 + 213 2.0747626864711072E-04 + 214 3.7710550062772324E-03 + 215 -8.7182061976331883E-04 + 216 -8.5785725777674775E-03 + 217 7.8969715969805145E-03 + 218 1.9091716035243339E-03 + 219 9.9021933132609858E-04 + 220 5.2413288543000564E-04 + 221 1.0775126056662221E-03 + 222 -1.1034622265162670E-03 + 223 3.4525893595599777E-05 + 224 -9.0725715739294218E-05 + 225 -2.4362058313529870E-04 + 226 8.3036080237706611E-05 + 227 7.6541944923980165E-04 + 228 2.1014886640237265E-04 + 229 -4.1674935713270481E-02 + 230 2.3853361694458428E-03 + 231 1.8107424339214003E-03 + 232 1.4637944074601195E-02 + 233 3.2623821338205239E-02 + 234 2.6690423662711479E-03 + 235 -5.9613594831424196E-03 + 236 -5.3986758074732605E-03 + 237 6.4476820444030900E-02 + 238 -5.6475990026724460E-02 + 239 8.0303556435255274E-02 + 240 -2.5252212120204599E-02 + 241 -1.1878402326796149E-02 + 242 -1.5512905014145447E-02 + 243 1.2552661982423019E-02 + 244 -1.9089014309217976E-02 + 245 7.7452596064793268E-03 + 246 -8.4881898182762342E-04 + 247 -6.3186895033305417E-04 + 248 3.6056750350553133E-03 + 249 -2.6643901197510431E-05 + 250 -1.0886847301456023E-03 + 251 1.8120210894155268E-04 + 252 -9.6169366875489359E-04 + 253 -1.1336648180265210E-03 + 254 8.1253116358003565E-03 + 255 4.9741294221211381E-04 + 256 2.0100295206813431E-03 + 257 -3.3039068961867243E-03 + 258 -1.0532525249331320E-02 + 259 1.1619755578991902E-03 + 260 -1.2009720132868870E-03 + 261 -1.9594102758586605E-03 + 262 -1.7923105684601585E-02 + 263 -5.3172813974912614E-03 + 264 -3.5614906972958656E-03 + 265 -2.1889581889512396E-03 + 266 3.7730623181615167E-04 + 267 2.8904762079471485E-03 + 268 -2.3498951205499015E-03 + 269 7.3596602548746393E-03 + 270 -9.3273291770433944E-05 + 271 -7.4237126072037056E-04 + 272 6.4321943424859107E-04 + 273 9.0910975666537788E-04 + 274 -2.2866143591587563E-03 + 275 9.3694691866592949E-04 + 276 4.2723248486954235E-04 + 277 -1.1266284855230549E-04 + 278 -5.1582886007444578E-05 + 279 -9.4319338369563938E-02 + 280 -1.0807608776649933E-03 + 281 -5.7795983784772996E-04 + 282 8.2469215042444788E-04 + 283 -6.0343646604333178E-03 + 284 1.1518157672312788E-03 + 285 3.5284045262150582E-03 + 286 6.0078672264368173E-03 + 287 -1.0399719833747980E-03 + 288 -4.9635749204823072E-04 + 289 5.6222477379247742E-04 + 290 -1.5853797933612756E-04 + 291 -3.3402173805727859E-04 + 292 7.1653585854331914E-01 + 293 1.8359627147790672E-02 + 294 -3.4550531744354421E-02 + 295 -1.9779872079418340E-02 + 296 3.6136711140243437E-02 + 297 -1.2305886534762658E-02 + 298 -5.6469941357363352E-03 + 299 1.1951364072227995E-02 + 300 1.1354543363819320E-03 + 301 -1.6311890092204880E-03 + 302 4.0718622085074785E-03 + 303 -3.2445866399656017E-05 + 304 7.1671503098284890E-03 + 305 -6.3960536463785828E-02 + 306 9.7941364513437733E-03 + 307 -7.0957650516029205E-05 + 308 -2.1161161707381439E-02 + 309 3.6184859316204195E-03 + 310 9.1898979803945388E-03 + 311 1.4278383709164497E-02 + 312 3.5840779146446059E-03 + 313 -8.0144752903497499E-02 + 314 1.4742094160734756E-03 + 315 1.1390228345574828E-02 + 316 5.5846015769932089E-02 + 317 5.8510757613396663E-02 + 318 9.6968089064976334E-03 + 319 3.4671126784659488E-03 + 320 1.1760182220781075E-03 + 321 -5.6355920016550095E-03 + 322 -8.3860873601991695E-03 + 323 1.0969911470472724E-03 + 324 -1.5284765580584692E-03 + 325 -1.5907057559639227E-03 + 326 -1.7564403251351828E-03 + 327 2.9682342162774789E-04 + 328 -2.2264230539293635E-03 + 329 3.7733984105624099E-03 + 330 1.6355173152495517E-02 + 331 -1.2000735381984375E-03 + 332 -6.4913389904728159E-03 + 333 3.3610089214794309E-03 + 334 -1.3009001877012561E-02 + 335 -5.9970825014645228E-04 + 336 -2.9372459425830661E-03 + 337 1.5977156656598220E-03 + 338 -1.2005488906702812E-02 + 339 -2.1636003814274878E-02 + 340 3.3302938635598932E-02 + 341 6.4275823241680156E-03 + 342 1.4363697927840367E-02 + 343 4.1277217100806072E-03 + 344 4.7991558403254874E-03 + 345 -3.8587938225800806E-03 + 346 2.1658269883530123E-03 + 347 -3.6317279373411439E-03 + 348 -2.5635766424374337E-04 + 349 -1.1237953109393541E-04 + 350 5.9285766814258132E-04 + 351 -1.6974857036490068E-04 + 352 1.5267852264797522E-03 + 353 1.2283436148764972E-03 + 354 9.4436189479641633E-04 + 355 -2.5372816236022627E-01 + 356 -3.5544941485949788E-03 + 357 -5.0441863069230989E-03 + 358 2.0532993059197346E-03 + 359 -1.3020340993216259E-02 + 360 -1.4416159872767782E-03 + 361 6.5573039919458584E-03 + 362 -7.5121727241333489E-03 + 363 -1.0431424649354904E-03 + 364 -4.1616985516163018E-04 + 365 1.7173853756995907E-03 + 366 1.5392391736273510E-03 + 367 9.1043700965319464E-04 + 368 -3.9347035813707673E-02 + 369 -9.5849237179151221E-04 + 370 1.3621808742869024E-03 + 371 2.7015852598385234E-03 + 372 -5.5706253291911223E-03 + 373 -3.2382725999667143E-03 + 374 -3.6705598396193739E-03 + 375 4.6140041414586873E-03 + 376 6.1178012298021599E-04 + 377 -6.4041689941778210E-04 + 378 -8.3567889807926435E-04 + 379 -6.6948954805418998E-05 + 380 -7.1710101336560917E-05 + 381 -1.1310382168378421E-02 + 382 4.2010461148229267E-04 + 383 -2.7814756325789315E-04 + 384 4.8640431207142615E-06 + 385 -1.2489731127179310E-04 + 386 2.7202690207113554E-03 + 387 2.1669504425440066E-03 + 388 -1.4741098935115271E-03 + 389 6.7639535997122101E-04 + 390 -2.1004022859790055E-04 + 391 2.4953584844899780E-04 + 392 4.7086026348189441E-05 + 393 -4.6170866935825536E-04 + 394 -2.3389317281085412E-02 + 395 3.0246056328546472E-03 + 396 6.3150846857034874E-03 + 397 4.5646946562365254E-03 + 398 1.9745076794055155E-02 + 399 1.7625390003532838E-03 + 400 -3.7795941634311248E-03 + 401 -3.1524922396075159E-03 + 402 5.2300868207263346E-02 + 403 1.1427284107375799E-02 + 404 4.3416811088212916E-02 + 405 -4.9230407355936321E-03 + 406 1.4100547884605171E-04 + 407 -1.8339542276471239E-02 + 408 1.1881619466992469E-04 + 409 -7.0417656243157737E-03 + 410 7.5775514703558242E-04 + 411 3.3555874003126968E-03 + 412 -3.8343236999700386E-04 + 413 -1.9257602266024765E-03 + 414 7.0122649460295809E-04 + 415 -4.6889104122285096E-04 + 416 4.4340162517221511E-04 + 417 1.4894582459019667E-03 + 418 1.9808889748652709E-04 + 419 4.2118202787471576E-01 + 420 1.1273718826026066E-02 + 421 1.6577999675064528E-02 + 422 -9.1870976559165537E-03 + 423 2.2047599005412543E-02 + 424 4.2281668882774969E-03 + 425 2.5957942270712292E-05 + 426 8.7193307030649196E-03 + 427 2.5841234753760096E-03 + 428 9.1206627176689578E-04 + 429 -5.3360261828949522E-04 + 430 -7.9335627195677193E-04 + 431 -3.1982281058748501E-03 + 432 -7.9151032207971945E-03 + 433 1.5201918479148150E-04 + 434 9.1241133827074818E-05 + 435 -8.6824971198051217E-04 + 436 -1.5345701056244308E-04 + 437 1.0211947041126942E-03 + 438 -1.6622554659535690E-03 + 439 -8.3424523546988497E-04 + 440 1.0569266062798469E-04 + 441 3.1553264460550729E-05 + 442 -5.2242076247994084E-04 + 443 2.9889166525828766E-04 + 444 1.5178270297495542E-04 + 445 -1.0398832249495775E-02 + 446 9.4741511650771988E-04 + 447 4.2196640203477657E-03 + 448 -1.7778893440598950E-02 + 449 -7.2474756177395528E-03 + 450 4.8872399872911031E-04 + 451 2.5269461731695689E-03 + 452 -4.5490161250376646E-03 + 453 1.2664842869652946E-03 + 454 6.2413255622538024E-03 + 455 -6.2780321445126047E-02 + 456 -2.5520305938130226E-02 + 457 2.5118996050654353E-02 + 458 1.4936479256701040E-03 + 459 -1.1122822379357043E-02 + 460 1.5549560246149889E-02 + 461 9.1036784765321007E-03 + 462 -6.9293132634272326E-03 + 463 -2.3104466461919419E-05 + 464 1.0990182293888421E-03 + 465 1.1425826214193897E-03 + 466 -3.2676983247939850E-03 + 467 -5.6569005195362542E-04 + 468 1.0669312587312551E-03 + 469 1.6523166920777892E-03 + 470 -2.7351292884863765E-03 + 471 -1.9947969382493953E-03 + 472 -3.6849595697851516E-03 + 473 2.0524293675726352E-03 + 474 7.4374802805075831E-03 + 475 -1.3480874908524006E-03 + 476 6.7531545819473932E-04 + 477 2.3134938477635480E-03 + 478 2.8504061411992695E-03 + 479 -1.8282088984473046E-03 + 480 -1.9859681392446131E-03 + 481 2.4246221623747781E-03 + 482 -2.2971209732605743E-03 + 483 -1.8220462475679413E-03 + 484 4.2942890575192417E-03 + 485 -9.4925772761492221E-04 + 486 -2.4969044283137953E-03 + 487 2.0706998527054779E-03 + 488 -5.8402961256889428E-04 + 489 -5.1062861387340471E-05 + 490 5.4431533834481513E-04 + 491 2.8445738512237632E-04 + 492 -3.3396857536654214E-04 + 493 -5.1227269645092637E-04 + 494 4.7770187391265364E-04 +Ene= -5.9670614950E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -1.6178557516722956E-02 + 2 2.8478064881275200E-04 + 3 8.0517715680274125E-03 + 4 -5.0915896951101575E-03 + 5 1.0929960576379686E-02 + 6 -1.0267968896018208E-03 + 7 3.4073816682424500E-04 + 8 -8.4204414912167444E-04 + 9 1.0237760157332111E-02 + 10 2.1028968189657386E-02 + 11 -2.8914748268543941E-02 + 12 5.5787531951196831E-03 + 13 -1.2816763786583613E-02 + 14 -4.2953581688083909E-03 + 15 -3.9026361983490144E-03 + 16 3.7190083866085592E-03 + 17 -1.9074833377106153E-03 + 18 1.6293883072734509E-03 + 19 3.7580303846250837E-04 + 20 2.0613244269522585E-03 + 21 6.7270035439474807E-04 + 22 3.3203966197614860E-04 + 23 2.4086794593904598E-04 + 24 4.8897137685810987E-04 + 25 5.4059389865759671E-04 + 26 1.4275484059517818E-03 + 27 -1.9861662059359668E-03 + 28 2.2134424409824510E-03 + 29 -1.1426597312562056E-03 + 30 7.6874195582313509E-03 + 31 -4.8856643712069160E-04 + 32 -1.0676589826263752E-03 + 33 4.4351797038338575E-03 + 34 -5.1766812361220861E-03 + 35 1.1211536249812063E-02 + 36 7.4943152575517183E-03 + 37 -1.5095786291432537E-03 + 38 -4.6360444746980957E-03 + 39 -4.2338903023799220E-03 + 40 -3.4275744623727990E-03 + 41 -1.8034331519382141E-03 + 42 -9.1794242279959421E-04 + 43 9.7115232416476261E-04 + 44 1.0019372406365602E-03 + 45 2.6756869612531070E-04 + 46 -4.2862004188620070E-05 + 47 5.3213902900866401E-04 + 48 5.9968592864762871E-04 + 49 -2.6192932851672808E-04 + 50 -7.1292706883586599E-05 + 51 -4.9449615267137736E-03 + 52 -6.8043587167746443E-04 + 53 1.1198483678558355E-03 + 54 1.7099496562175314E-03 + 55 5.2792116634392035E-03 + 56 4.5840532263044043E-04 + 57 1.1755438310259300E-03 + 58 1.5712091499187103E-03 + 59 7.0444473923014187E-05 + 60 -1.9001986839649364E-04 + 61 -3.1772599743769368E-04 + 62 1.3185991497175621E-03 + 63 -3.6205299430678030E-03 + 64 -2.3297743355597234E-03 + 65 -1.9633556072068571E-04 + 66 -4.9312201577428186E-04 + 67 -2.1092040200959574E-03 + 68 6.1133439579777135E-04 + 69 8.5071687666334679E-04 + 70 -1.5044359628901556E-04 + 71 1.2559115739134587E-04 + 72 2.2696488548411747E-04 + 73 1.1852214068040247E-04 + 74 3.3355564645196843E-04 + 75 7.6470628032365912E-04 + 76 -7.5016956146845296E-02 + 77 -2.7889018500775829E-03 + 78 3.6827136659046637E-03 + 79 3.4120031796861672E-03 + 80 -2.1489502224036729E-03 + 81 7.6508573938932774E-04 + 82 -7.0820642567395557E-04 + 83 -2.6432058526064243E-04 + 84 -5.8384853361677402E-04 + 85 -1.8439679482996040E-05 + 86 -4.5943750124761501E-04 + 87 1.3148759156138493E-04 + 88 -3.4783732486826259E-04 + 89 1.1247022265166013E-02 + 90 1.9340002065868793E-04 + 91 7.5125366087792483E-05 + 92 1.8840247633246797E-03 + 93 -8.3686429276432745E-05 + 94 -5.1918952992098283E-04 + 95 -2.4048873786707459E-04 + 96 2.0413282062052636E-03 + 97 -6.8158322733797966E-06 + 98 -5.0101432653320600E-05 + 99 -3.4171165726861700E-05 + 100 -3.6942650816827299E-04 + 101 -1.4055798276357641E-04 + 102 5.8197773875582380E-03 + 103 -2.0724200744952104E-04 + 104 -5.3429516536871466E-04 + 105 2.2575000514956668E-05 + 106 -3.1381239519927701E-04 + 107 1.2235517515634254E-04 + 108 -4.7198215764612621E-04 + 109 -3.8755453668079699E-04 + 110 -1.0699939835361146E-04 + 111 2.7276593321795694E-05 + 112 2.8322459838329751E-05 + 113 8.7686813971622811E-05 + 114 -7.8988669856834480E-05 + 115 4.7204018924364849E-03 + 116 -5.3377141179466610E-05 + 117 -2.6851017935268837E-04 + 118 6.0181211846889015E-05 + 119 -4.4242788099773165E-04 + 120 1.6696267548154433E-04 + 121 -1.5337177924275843E-05 + 122 3.2628601465999117E-04 + 123 1.0776563556077282E-04 + 124 2.2515295385680564E-04 + 125 4.2471678020144146E-05 + 126 -1.0621162797531270E-05 + 127 -1.1595056774879492E-04 + 128 -6.2156255216933411E-03 + 129 -8.2616592816369693E-05 + 130 2.1751461459911027E-03 + 131 -2.3496909432538525E-04 + 132 7.2561932367809761E-04 + 133 5.2555476823024105E-04 + 134 -3.6981748480091502E-05 + 135 -1.1359845182819931E-03 + 136 9.1933391914828357E-04 + 137 2.3026854706373894E-03 + 138 1.5622395653760760E-03 + 139 1.0530538004314928E-03 + 140 -5.0653355863551890E-03 + 141 1.6392518781067776E-03 + 142 -3.3729960664052633E-03 + 143 1.3951467460585169E-03 + 144 2.6965767211890027E-04 + 145 8.2566990633245246E-04 + 146 -7.0719056982900300E-04 + 147 6.0839105837525619E-06 + 148 -1.7290507082133831E-03 + 149 -7.7277604626199638E-04 + 150 4.7096538979934732E-04 + 151 -2.9477335964231047E-04 + 152 -6.0185325253728668E-05 + 153 -1.5647036803997387E-03 + 154 -6.9115439681883097E-04 + 155 -1.7250461281119573E-03 + 156 -1.3784434218883886E-03 + 157 1.9529346095145908E-03 + 158 -3.4466575252866234E-04 + 159 -3.6287828980694663E-04 + 160 4.6667932291883925E-04 + 161 1.2322996621202203E-03 + 162 -7.1573177633138475E-04 + 163 -7.9283736496628461E-05 + 164 -1.1208000611509451E-03 + 165 5.5893527955379334E-05 + 166 -5.8982898133437425E-04 + 167 4.9081962995625977E-04 + 168 7.8914187416303670E-04 + 169 1.1277845851148489E-03 + 170 -4.2623124800459587E-04 + 171 -7.8126001836732769E-05 + 172 -2.1940351149554903E-04 + 173 -1.7426619615962895E-04 + 174 -1.0500021985026140E-04 + 175 8.0424448845825512E-06 + 176 -7.2320763789256844E-06 + 177 3.6158723722803612E-04 + 178 -7.3209607192031003E-03 + 179 -4.0490718296206887E-04 + 180 -3.8711152209783050E-04 + 181 6.2582989101636673E-05 + 182 4.5274577914005180E-04 + 183 -1.4708896947971507E-04 + 184 -2.3142289404390670E-04 + 185 -8.5383297323915258E-04 + 186 -2.1327920469135922E-04 + 187 3.5266945579478505E-05 + 188 1.4892814496304406E-04 + 189 -1.2214057557047186E-04 + 190 -1.2773404593680200E-04 + 191 -7.9926970844408050E-03 + 192 -2.4067513421702555E-04 + 193 2.5447929165819374E-04 + 194 -2.8100036297759351E-04 + 195 3.8807592012242773E-04 + 196 -3.2082133927680955E-04 + 197 -4.2106319477273332E-04 + 198 -3.4556124230147325E-04 + 199 2.2207480898457922E-05 + 200 -1.4575999834527833E-04 + 201 -4.6110120674546687E-05 + 202 3.2463185980973600E-05 + 203 1.6312170327868148E-04 + 204 -6.0707818034270540E-03 + 205 -1.5511000648932092E-03 + 206 2.2444768135548047E-03 + 207 -1.3816746886325753E-03 + 208 8.2035396905434897E-03 + 209 8.6434048110412649E-04 + 210 5.1332229916753111E-04 + 211 2.0424117954943775E-03 + 212 -1.1515182797654728E-03 + 213 -9.9020373970620432E-04 + 214 -3.0353354015573123E-03 + 215 5.8404976475750841E-04 + 216 3.3671334442328307E-03 + 217 -5.4487994699610950E-03 + 218 -2.1773717306618964E-03 + 219 4.8690659813084358E-04 + 220 -1.5146519375556990E-04 + 221 -1.8706071956994366E-05 + 222 2.0956955497237625E-03 + 223 1.0995492286183853E-03 + 224 -2.7492932504357217E-05 + 225 4.1671841520980453E-04 + 226 -3.4013791308667437E-04 + 227 -4.6843420797759196E-04 + 228 -3.0472728892581586E-04 + 229 -3.0542909778707498E-02 + 230 5.6605288996339044E-05 + 231 1.7120871833005449E-02 + 232 6.9870433384172223E-03 + 233 2.2063665782360829E-02 + 234 8.9912693951455028E-03 + 235 -2.8184412158498702E-03 + 236 -6.4219515296789608E-04 + 237 3.5780089050388951E-02 + 238 -4.0877944846866729E-02 + 239 5.0556132073952334E-02 + 240 -1.6155886830746233E-02 + 241 -1.4574618640369305E-02 + 242 2.5829256647483983E-04 + 243 5.6313920351841670E-03 + 244 -1.1478657526048274E-02 + 245 -6.2230946263097274E-03 + 246 -5.2859783640171101E-03 + 247 -9.0919631685157658E-04 + 248 -4.8794639225510178E-04 + 249 -1.2323380079129280E-03 + 250 -1.1287128131548792E-03 + 251 1.1039567480645275E-03 + 252 2.1998311053580016E-03 + 253 2.2427354031232085E-03 + 254 1.5280788104728342E-03 + 255 4.3727552846033597E-04 + 256 2.0384449641721839E-03 + 257 5.4902564003686007E-04 + 258 -2.4108307638750341E-03 + 259 9.1576538995468391E-04 + 260 2.0408574174395630E-04 + 261 -2.9514148151747337E-04 + 262 -1.3471048836632199E-03 + 263 -2.1436481421254145E-04 + 264 -4.5700258643397649E-04 + 265 -2.6552202696970779E-04 + 266 8.7054217347723190E-04 + 267 1.3906974187165074E-03 + 268 -2.2998272938394679E-03 + 269 -3.6351727085258976E-04 + 270 -3.6993027374477395E-04 + 271 -1.3296944579170508E-03 + 272 -6.2369491888277949E-04 + 273 8.9680655539639629E-04 + 274 1.2927861083719013E-04 + 275 2.3331613085348794E-04 + 276 1.2531291977413259E-03 + 277 -2.7904047363189839E-04 + 278 2.0180194752487815E-04 + 279 -7.7942718763410754E-03 + 280 4.0876703844895993E-04 + 281 3.2706423540388536E-03 + 282 1.0440483472754104E-03 + 283 4.7304060654295842E-04 + 284 -1.1529216304417521E-03 + 285 -1.1095882822522746E-03 + 286 -2.1415840375017636E-03 + 287 -1.0517814624294157E-04 + 288 -9.2683380695976979E-04 + 289 -4.4225579327948373E-04 + 290 4.2321687171207933E-04 + 291 -1.0050918242569054E-03 + 292 4.3652199262269681E-01 + 293 1.2419877469173056E-02 + 294 -1.7961292395380381E-02 + 295 -1.0452785536060751E-02 + 296 2.3671217248733230E-02 + 297 -6.7655769007714112E-03 + 298 -4.3257021479301957E-03 + 299 5.0538803787689088E-03 + 300 6.4410654705138713E-04 + 301 -1.1897810044959602E-03 + 302 2.6852147050388689E-03 + 303 2.3924159331156926E-04 + 304 4.8933026119203976E-03 + 305 8.8365130612128653E-03 + 306 6.3005070922977414E-04 + 307 -4.1696755214892599E-02 + 308 9.0759008958344236E-03 + 309 5.6971444299384905E-03 + 310 7.7940284395186105E-03 + 311 4.3742761429927720E-03 + 312 1.2373292809610462E-03 + 313 8.9993708979883326E-04 + 314 1.4966648099599305E-02 + 315 -1.5481537624653142E-03 + 316 -3.8325142604461349E-02 + 317 1.5251333526237532E-01 + 318 1.7246849137717514E-03 + 319 -6.9794705316309524E-05 + 320 2.1598234864110542E-03 + 321 5.8802036555216592E-03 + 322 -2.4806910858684618E-02 + 323 2.5115922930967161E-04 + 324 1.2352287695289515E-03 + 325 -1.1896663377954297E-03 + 326 -1.8712018669351710E-04 + 327 -2.0901290213239470E-03 + 328 1.1057165845640706E-03 + 329 2.6861778597812029E-03 + 330 4.9999022078572692E-03 + 331 2.6551212219946625E-03 + 332 -2.6892187982309793E-04 + 333 7.0638462446760177E-03 + 334 -2.0856327766988481E-03 + 335 -2.1252388313544707E-04 + 336 2.8309034397051270E-03 + 337 -1.4573693392751740E-03 + 338 4.6117120794349865E-04 + 339 1.2898869873589386E-03 + 340 -2.4682045515603654E-03 + 341 -3.8456604965159523E-05 + 342 -4.0994281227563412E-04 + 343 -1.0091728249219196E-03 + 344 2.6528060555468472E-03 + 345 -1.1862607863101259E-03 + 346 -4.3995320427644572E-03 + 347 -9.1143646149540673E-04 + 348 2.3469989818622499E-04 + 349 -6.0974104067636420E-04 + 350 3.1795078542528081E-04 + 351 -1.3514218383092874E-05 + 352 1.7756842921793055E-03 + 353 9.2876466437401045E-04 + 354 -1.7776420969510703E-03 + 355 1.5742782634301133E-02 + 356 2.7116006125217657E-03 + 357 4.4703719278396973E-03 + 358 -2.6133131358850128E-03 + 359 1.1775525104658223E-03 + 360 -3.0253279835323351E-04 + 361 3.3950550452448874E-04 + 362 -2.0367386958249842E-03 + 363 -6.7083172353324123E-04 + 364 1.2450365294246199E-04 + 365 -9.6122929568059434E-05 + 366 -9.7211823316032027E-04 + 367 1.4698935775887755E-03 + 368 3.3064987883815518E-02 + 369 1.6229597054785712E-03 + 370 3.3170262889362775E-03 + 371 -1.3776219073760631E-03 + 372 6.0098196830569717E-03 + 373 -3.6402849827961710E-03 + 374 -5.9017691953655420E-04 + 375 -1.5885225940599683E-03 + 376 -1.9240147361451379E-04 + 377 -1.4248598305746953E-03 + 378 -1.4965556903568273E-04 + 379 -2.5169433348755491E-04 + 380 3.9923178923725752E-04 + 381 3.8397495896185546E-02 + 382 6.4084701331928477E-05 + 383 -2.2817310764328079E-03 + 384 -3.0728262459700723E-03 + 385 2.2242809632015094E-03 + 386 -3.4161822182469203E-03 + 387 -2.3296660198650347E-03 + 388 1.4535158967314363E-03 + 389 -1.1569456536906339E-03 + 390 5.5603529833891604E-04 + 391 -3.8746850884160592E-04 + 392 -9.6458166308335376E-06 + 393 6.7149016505354934E-04 + 394 5.5644250117624305E-02 + 395 -3.2586966211661235E-03 + 396 1.1051397063910978E-02 + 397 -3.2734302253577688E-03 + 398 -2.8426208841198387E-02 + 399 5.7903967534219808E-03 + 400 7.3575636502687166E-03 + 401 5.4514299097630364E-03 + 402 -7.9648544575156757E-02 + 403 -3.2788411014692091E-02 + 404 -8.2506970935726912E-02 + 405 1.7720214926861346E-02 + 406 -1.8092679693646418E-02 + 407 1.2404983848315723E-02 + 408 2.4285574901743096E-03 + 409 1.2317685237013820E-02 + 410 8.7296341817066324E-03 + 411 4.6948694872395847E-04 + 412 1.1961599983776100E-03 + 413 2.6611972584167007E-04 + 414 1.1232823592842447E-04 + 415 -1.5712279910301608E-03 + 416 1.3507325176525800E-03 + 417 3.8389783204730997E-03 + 418 -1.0512725343951104E-03 + 419 -7.5494204460333247E-01 + 420 -2.0272860552610888E-02 + 421 -2.1376919332960743E-02 + 422 1.5819092900732617E-02 + 423 -4.3693023247912209E-02 + 424 -1.0053072361469542E-02 + 425 4.9865556243742452E-03 + 426 -9.5032381283657822E-03 + 427 -5.2783400006831595E-03 + 428 -1.5831951417126034E-03 + 429 4.8991279784825579E-04 + 430 2.7294085921828405E-03 + 431 4.9656136649204310E-03 + 432 2.3296711279314868E-02 + 433 2.6937912845298321E-04 + 434 -5.9243001505806029E-04 + 435 1.9170497554176508E-03 + 436 1.8231468176955153E-03 + 437 -2.0512505031811483E-03 + 438 2.2894158154479617E-03 + 439 -6.8478397097261872E-04 + 440 -5.8801300904519295E-04 + 441 2.4743645118965559E-04 + 442 9.2099518194057369E-04 + 443 -6.1999705604096273E-04 + 444 -1.8662977445698612E-04 + 445 4.5666012430532234E-02 + 446 -2.4672947086462429E-03 + 447 -1.6109678582748132E-04 + 448 1.9282569755367695E-02 + 449 -1.4891917982869117E-02 + 450 -3.7901087598367165E-03 + 451 -5.2225655193833586E-03 + 452 3.2513313440691335E-03 + 453 -8.1245331503791013E-03 + 454 1.3868377902871971E-02 + 455 8.0331496043295980E-02 + 456 5.0395435876335409E-02 + 457 -1.8377611766588659E-02 + 458 8.6877462506790501E-03 + 459 -1.7182425200972630E-03 + 460 -1.7088103685005893E-02 + 461 -1.0445282134694348E-02 + 462 2.1003614550341942E-03 + 463 1.0214869246085857E-03 + 464 1.3613283073630280E-03 + 465 4.6239113476366435E-04 + 466 2.2435263984380414E-04 + 467 -1.0439699563656655E-03 + 468 6.6030621694964677E-04 + 469 -8.4772012481775156E-04 + 470 -6.8393181549397609E-04 + 471 2.6971276658559816E-03 + 472 3.7370235587984449E-03 + 473 5.0715472148780223E-04 + 474 -4.6446794791508202E-03 + 475 2.0417981625410250E-03 + 476 4.0137779370461854E-04 + 477 -1.0615594406039421E-03 + 478 -8.1763359329170421E-03 + 479 3.9664241088717316E-03 + 480 6.6600647020751812E-03 + 481 -6.9939902388063717E-03 + 482 8.3160072360667150E-03 + 483 4.7274313348067032E-05 + 484 -2.3425689957704806E-03 + 485 -1.6961712328224488E-03 + 486 2.6694769325641050E-03 + 487 -8.9857333883919916E-04 + 488 6.4177773019397446E-04 + 489 -9.9079391556608303E-04 + 490 -1.4459195863877195E-04 + 491 3.7499825588461534E-04 + 492 -4.0211292895129332E-04 + 493 4.8711155203684167E-04 + 494 -3.5695743386970268E-04 +Ene= -5.7449219406E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -7.4785402366298284E-02 + 2 8.6707615813396265E-03 + 3 1.5175500768964294E-03 + 4 3.4368320093496163E-02 + 5 -1.0377920146685015E-03 + 6 -2.0324262856090025E-03 + 7 -1.3723392535043313E-02 + 8 1.7888952161799090E-03 + 9 -1.0214249256279975E-01 + 10 -3.8926438540147767E-03 + 11 -3.6387813394059040E-02 + 12 -1.6934686924481060E-01 + 13 9.9156175744887116E-03 + 14 1.7513799855132451E-02 + 15 3.3791859374419339E-04 + 16 -1.1755792038684438E-03 + 17 1.8253064397674140E-02 + 18 2.4269909101120668E-03 + 19 3.3027729990291421E-04 + 20 -2.9744874889626256E-03 + 21 3.0539118363351720E-03 + 22 -2.0534941792328421E-04 + 23 3.6741302746480086E-03 + 24 -2.6051049839602596E-03 + 25 2.0622711748321779E-03 + 26 4.9156152385825269E-03 + 27 -3.3139275105968243E-03 + 28 1.8647446544256233E-03 + 29 1.4126532762504963E-02 + 30 3.7078662309699816E-03 + 31 -1.0305031987744343E-03 + 32 4.8420976159933762E-03 + 33 2.8794850059791987E-03 + 34 -4.3402847489683481E-03 + 35 1.1576473336756684E-02 + 36 1.5283043403803227E-02 + 37 5.4152985455949414E-04 + 38 -2.3115317852163359E-03 + 39 2.8912661184147452E-04 + 40 -2.1576032070360785E-03 + 41 -1.0668686083478865E-02 + 42 1.6354286964538763E-03 + 43 1.1892842232520174E-03 + 44 5.7291704565902728E-04 + 45 1.6852201574294774E-04 + 46 5.4246652099118880E-04 + 47 8.9559627280772262E-04 + 48 -5.4730550818690409E-05 + 49 2.3777672622782571E-05 + 50 9.0283179097672226E-04 + 51 -6.7249529330470903E-02 + 52 6.3277762945294115E-03 + 53 -3.2628788637063574E-02 + 54 1.0424936377180475E-02 + 55 3.1817484823359096E-02 + 56 3.6786374153346675E-03 + 57 2.6843451181214695E-03 + 58 -6.9773608988364048E-03 + 59 5.3334218231457016E-02 + 60 -1.4703939642259795E-01 + 61 1.6464544715572876E-02 + 62 6.2020858295933727E-02 + 63 -1.8489833735103288E-02 + 64 -1.4023766237834681E-02 + 65 2.7831642089553299E-02 + 66 -5.0379560982201426E-03 + 67 -1.3452733086322872E-02 + 68 4.0872374650939049E-03 + 69 3.9698730225169315E-03 + 70 4.1355130363556957E-03 + 71 2.6249793016091920E-03 + 72 -1.1126911074423288E-03 + 73 1.1651362601857206E-03 + 74 3.9868041371004788E-04 + 75 -1.1274517593152129E-03 + 76 -8.2353603967312894E-02 + 77 -8.1875515578009889E-04 + 78 5.9156848999502888E-03 + 79 -1.4341600636907403E-03 + 80 -4.9125096273301676E-03 + 81 7.1234368532171034E-04 + 82 1.4167119890629114E-03 + 83 -6.4906272540317354E-03 + 84 -3.2504817719342338E-04 + 85 4.1453347916586798E-04 + 86 1.7201321973409447E-03 + 87 -1.1349700319420117E-03 + 88 -6.9231370835081535E-04 + 89 8.5875052666466500E-01 + 90 2.4456025131954554E-02 + 91 -3.2406832300172515E-02 + 92 5.8971573798894839E-02 + 93 2.5640248171573298E-02 + 94 -1.3854941065474384E-02 + 95 2.0022438040224095E-02 + 96 1.1792848769675025E-02 + 97 -5.1760437593600505E-03 + 98 -1.2500178104904780E-02 + 99 1.9264862676271358E-03 + 100 -1.1083112391422380E-02 + 101 -2.0334605921037930E-03 + 102 -4.0013864217937914E-02 + 103 -1.1302142463487585E-03 + 104 2.5464051992550082E-03 + 105 -4.0956149576005432E-03 + 106 -4.5833314842909003E-03 + 107 1.5028980245472879E-03 + 108 3.8559807189082165E-04 + 109 -2.1510023660881545E-03 + 110 1.5427285261572043E-04 + 111 -1.1546751102608353E-05 + 112 -1.8641210098275021E-04 + 113 5.1911817158656840E-05 + 114 4.8418597283720818E-04 + 115 5.9283117071733081E-03 + 116 -6.1844212699362856E-05 + 117 -4.8548757437286990E-04 + 118 1.1254040371548700E-04 + 119 8.9238191502414975E-05 + 120 8.7652835130571879E-04 + 121 3.4447474117081439E-04 + 122 -3.4235656122663476E-04 + 123 -2.4544530512552935E-05 + 124 2.8021389221135891E-04 + 125 6.3374343799627324E-05 + 126 -1.3263482862000770E-04 + 127 1.7670626440377831E-05 + 128 3.0655276483431029E-03 + 129 8.7283580271250939E-04 + 130 2.4082759229236937E-03 + 131 -1.4628950998134597E-03 + 132 -1.2327361246066476E-03 + 133 7.9667611058073648E-04 + 134 -2.5931567460208619E-04 + 135 -2.2930549068544601E-04 + 136 -1.6982416811815006E-03 + 137 1.6828874607930932E-03 + 138 -2.0549568113738623E-03 + 139 -7.8720738033723388E-04 + 140 6.1288996530552381E-04 + 141 -4.2121938836726784E-04 + 142 -7.9431997726357197E-04 + 143 8.0197222677727304E-04 + 144 4.0493275478756301E-04 + 145 -3.6805736871410485E-04 + 146 4.4294982580301044E-04 + 147 3.4483258409058660E-04 + 148 4.2333999688775318E-04 + 149 -6.0663726195079580E-05 + 150 -8.2231512387800787E-05 + 151 -1.2224265338498915E-04 + 152 1.4635144948131287E-04 + 153 4.6430409625611672E-03 + 154 4.7652831975281655E-04 + 155 2.9660003699133296E-04 + 156 -4.2224477032636806E-03 + 157 -6.1130121343084967E-03 + 158 -9.3837556979496563E-04 + 159 -1.8113501667478087E-03 + 160 -1.6254488882273563E-03 + 161 -6.8479380263218126E-04 + 162 8.6211011311714096E-03 + 163 1.8772996162775845E-03 + 164 -4.4098709995071790E-03 + 165 -1.4963141762862340E-03 + 166 4.7516714155431596E-03 + 167 1.9507775579728013E-03 + 168 2.5794250352780554E-03 + 169 4.8479941695989755E-04 + 170 1.4662781933099461E-03 + 171 -1.9252002637027662E-03 + 172 -1.1928118225099614E-03 + 173 -7.1944083411925350E-04 + 174 -1.5374865695062849E-04 + 175 -1.3164150617250136E-03 + 176 1.0273452516354031E-03 + 177 2.6898098273636103E-04 + 178 2.5332156900755806E-03 + 179 4.0584062947030051E-04 + 180 -3.3362891068521849E-05 + 181 -3.0709625146273814E-04 + 182 -8.5332500779636191E-04 + 183 -4.3271340013986551E-04 + 184 6.1958769996851262E-04 + 185 7.0266685201418003E-04 + 186 3.2097230070303196E-04 + 187 -4.8231541656229500E-04 + 188 2.7993354134374506E-04 + 189 6.0999049304282652E-05 + 190 -2.1548125471571695E-04 + 191 -2.4242732108794386E-02 + 192 -1.0848209917553280E-03 + 193 4.6537316936279896E-03 + 194 1.3012369760847461E-03 + 195 3.1960629795671231E-04 + 196 -4.1859210410386477E-03 + 197 5.7082541978563167E-04 + 198 2.3807203476605937E-03 + 199 -7.4419776187673254E-04 + 200 -8.6634329218617044E-04 + 201 -7.5314650436185632E-04 + 202 1.2910869613241827E-04 + 203 8.3742768115346823E-04 + 204 -5.8867178121150947E-04 + 205 -1.2457653054413910E-03 + 206 1.1807393126444016E-04 + 207 -2.6781729839547104E-04 + 208 7.0260757097184929E-03 + 209 -5.3003281767786958E-04 + 210 1.5584928166252447E-04 + 211 2.8888918021843716E-03 + 212 2.0003615581731761E-03 + 213 7.1474049806512165E-04 + 214 1.7564050347806069E-04 + 215 2.5163973684997299E-03 + 216 2.1681435304578452E-03 + 217 -2.8043141495018328E-03 + 218 6.6436365715127881E-03 + 219 9.8701043432469662E-04 + 220 5.2745330105829612E-03 + 221 -5.1804927044545295E-04 + 222 -7.3262239370867866E-04 + 223 -2.2253422500012640E-03 + 224 -6.7991844958865705E-04 + 225 8.4265037842925074E-04 + 226 1.1831968308669621E-04 + 227 2.5682600048748017E-03 + 228 -1.4891793445107407E-04 + 229 8.0602646440174584E-03 + 230 -1.6698581095041828E-04 + 231 1.5412993051887067E-02 + 232 -8.9317654617533703E-04 + 233 3.7173230901556462E-03 + 234 4.0094091659784040E-03 + 235 1.0164358905301539E-04 + 236 5.0167834972857962E-04 + 237 -7.1337634470095080E-03 + 238 -1.0035671757005213E-02 + 239 -9.5536820241696227E-04 + 240 -5.8628844057109202E-03 + 241 -2.4006760293324259E-04 + 242 -4.7136086254196746E-03 + 243 -2.8393396336242027E-04 + 244 -2.0115132150555896E-03 + 245 5.3273739258745990E-03 + 246 -8.9270270854648510E-03 + 247 1.6243153088350052E-03 + 248 -3.0776804570588154E-03 + 249 2.0620666783419447E-03 + 250 -1.3816238571606198E-03 + 251 -2.3670771778667215E-04 + 252 -1.5376133273550009E-03 + 253 -2.4711366740084646E-03 + 254 -2.7260014419220411E-03 + 255 -1.0736353799630956E-03 + 256 -1.7833203622640999E-03 + 257 3.1179929470622433E-03 + 258 1.0376850991653203E-03 + 259 -6.8900588955247218E-04 + 260 1.0013695600343112E-03 + 261 3.1099275624120210E-04 + 262 1.1418858737902453E-03 + 263 8.5292680590810094E-04 + 264 -1.2461865244230705E-03 + 265 -6.6959460356928984E-04 + 266 4.1884184936555460E-04 + 267 1.2712089322602313E-03 + 268 8.0272154283730695E-04 + 269 -8.7427924098470490E-04 + 270 1.3045253321910212E-03 + 271 1.7767659882395152E-03 + 272 -3.6064541942616393E-04 + 273 2.9152563405935737E-04 + 274 -4.8930208916507154E-04 + 275 -5.2019436031556562E-05 + 276 -4.7261090463416477E-04 + 277 5.6078209352290720E-04 + 278 -1.7384530949760872E-04 + 279 2.1410446879529922E-03 + 280 2.3110397451227995E-04 + 281 4.8517819142364815E-05 + 282 5.9722270960657064E-05 + 283 3.0516981872598956E-04 + 284 -4.1421302601417413E-04 + 285 4.4957177500489816E-04 + 286 -3.8236548042706127E-04 + 287 -6.6821979646942726E-05 + 288 -8.9272667246022034E-05 + 289 1.5254033745546627E-04 + 290 -2.5986788173974214E-04 + 291 -1.7833412823460007E-04 + 292 -3.2119537527200683E-02 + 293 -9.6231303618473307E-04 + 294 5.0719196573925929E-03 + 295 -1.7727608564459115E-03 + 296 1.0906460663946192E-03 + 297 -3.7353055204839307E-03 + 298 4.3392263297837999E-03 + 299 -9.8525408496682727E-04 + 300 4.7666300167898551E-04 + 301 1.0189092707133332E-03 + 302 -1.1478422454269388E-03 + 303 -3.5363252207484971E-04 + 304 -7.7602972890695521E-04 + 305 3.0717088069030672E-03 + 306 5.8352166612533690E-04 + 307 2.9484559985777534E-04 + 308 -1.2161822569096887E-03 + 309 2.0867787160359255E-03 + 310 8.9503245497082813E-05 + 311 -1.5721216184487769E-03 + 312 1.0045001293962005E-03 + 313 3.6031749686024120E-03 + 314 1.9011198436695638E-03 + 315 -1.6457658679109759E-03 + 316 2.6053134693878845E-04 + 317 -8.9320722848417380E-03 + 318 3.7574033492033940E-04 + 319 2.5132131853243322E-04 + 320 -2.7967460517645576E-04 + 321 -3.2733111334520853E-04 + 322 4.5287419146026867E-04 + 323 -6.4442035064301206E-04 + 324 3.3389352894724460E-04 + 325 3.5750592951457852E-04 + 326 -2.9217363859521621E-04 + 327 5.9368765406864578E-04 + 328 5.2667194160669619E-04 + 329 4.5749394247697413E-04 + 330 -2.1884047267346990E-03 + 331 4.8004519571623821E-04 + 332 -1.8508043987007909E-03 + 333 -5.9239908864465820E-04 + 334 1.7948520239413463E-04 + 335 4.8975518999816708E-04 + 336 6.4242869924723770E-04 + 337 8.5123604134815489E-05 + 338 -1.3537837135954254E-02 + 339 3.0627838672361691E-03 + 340 1.1139837012873856E-03 + 341 6.7914733714283327E-03 + 342 8.2852301593699228E-03 + 343 2.2864108547829632E-03 + 344 2.3859484308405635E-03 + 345 8.4860600312067344E-04 + 346 -1.4740638778327931E-03 + 347 6.8315688880289942E-05 + 348 -1.0412506889433694E-03 + 349 1.2163388545720288E-03 + 350 1.7130705377358729E-03 + 351 -7.8531612132036856E-05 + 352 2.1184048364199680E-03 + 353 -7.2576816142389498E-04 + 354 -1.0011241577791473E-03 + 355 2.5543652386509591E-03 + 356 -6.5278347515053392E-04 + 357 1.0113611820601863E-03 + 358 -5.4052558863035109E-04 + 359 3.7216941635006054E-04 + 360 -7.4806212585414250E-04 + 361 9.2538950457226514E-04 + 362 2.7304205886049485E-04 + 363 -8.5183038296378425E-05 + 364 6.8188926325694310E-06 + 365 8.0822563894510601E-06 + 366 1.8852918890900587E-04 + 367 -4.4061263795584142E-05 + 368 -1.6485907243459139E-02 + 369 -1.0595253752976824E-03 + 370 4.9226459940477762E-03 + 371 -3.1597662496980791E-03 + 372 -1.5078251587490991E-03 + 373 -3.7741779935787883E-03 + 374 1.2916260364130832E-03 + 375 3.2119338700168851E-03 + 376 -4.6514232605617906E-04 + 377 -4.0405082807073582E-04 + 378 1.0314047350872274E-04 + 379 3.2051700361278762E-04 + 380 -1.2313669985490362E-03 + 381 7.7245235086499176E-04 + 382 1.2640521041236717E-04 + 383 -5.4311868053270483E-04 + 384 1.4899369412334286E-04 + 385 3.9811155901257699E-04 + 386 6.2577479823676244E-04 + 387 1.2369505342619516E-04 + 388 -3.8805565270858423E-04 + 389 -1.6913583515334564E-05 + 390 1.0794608113434172E-04 + 391 -9.0824296601578770E-05 + 392 -6.0797515244817743E-06 + 393 1.1638490788993046E-04 + 394 1.7927707555228515E-03 + 395 3.7301036155352790E-04 + 396 5.5745054980594344E-03 + 397 -2.2641522175349234E-03 + 398 -1.7426387077707818E-03 + 399 1.9601798659130160E-03 + 400 -8.2638350606410792E-04 + 401 -9.0756406301917270E-04 + 402 1.3031604498033528E-03 + 403 -4.9091746966495884E-04 + 404 1.5272960399461651E-03 + 405 -3.1191666230374958E-04 + 406 2.1881316962340451E-03 + 407 -2.6756592635639904E-03 + 408 1.7845455652391659E-04 + 409 9.4251472029336573E-04 + 410 2.3473693343472385E-03 + 411 -3.0275856860082148E-03 + 412 2.2400402735648148E-04 + 413 -5.1271948916863086E-04 + 414 4.3796969942092940E-04 + 415 1.0186739607752026E-04 + 416 2.5527990031560930E-04 + 417 6.2165735462631547E-04 + 418 -6.9246462185527447E-04 + 419 1.8532348999662023E-03 + 420 1.2700443224621569E-04 + 421 5.0788669747614968E-05 + 422 -5.6353767513590979E-05 + 423 1.4040596389204896E-04 + 424 2.0801099364277903E-05 + 425 9.4478423412502283E-05 + 426 -3.6290901439250370E-04 + 427 6.4652041317430749E-05 + 428 1.9484482198078393E-04 + 429 -3.5056255544406258E-05 + 430 1.4066482425925569E-04 + 431 -5.5090220734391934E-06 + 432 2.3265369551397585E-04 + 433 6.9310060994040573E-05 + 434 7.4225338162160737E-04 + 435 -4.6366556337359033E-04 + 436 -1.2043609500935166E-04 + 437 -1.8225738696398919E-03 + 438 1.3075088394825531E-03 + 439 2.5593546470228281E-05 + 440 -2.6069477130968383E-04 + 441 1.6258969671552064E-05 + 442 -1.1775379288947104E-05 + 443 3.4186629815073427E-04 + 444 -5.7261322457703361E-05 + 445 2.1400221437095188E-03 + 446 4.1468243793146679E-04 + 447 -7.0651957830598520E-04 + 448 -3.6170983376824671E-04 + 449 4.7298158023633737E-03 + 450 -7.1558002518476774E-04 + 451 -1.5099368121395627E-04 + 452 1.3390832610816370E-03 + 453 -7.0132286229090382E-04 + 454 -1.8382835067261615E-03 + 455 -4.4847356716337449E-04 + 456 -3.8727488402346267E-04 + 457 -7.9942245270442488E-04 + 458 1.6502363544940652E-03 + 459 1.6235951383927112E-03 + 460 -1.5102569597313100E-03 + 461 -1.3247405845046177E-03 + 462 2.8353235683844529E-05 + 463 1.2948067385334697E-04 + 464 8.4278286383705197E-05 + 465 -1.3052227834116486E-04 + 466 -3.2247026165033448E-04 + 467 -2.7935677506648845E-04 + 468 -2.3978787787476731E-04 + 469 1.2802924608602373E-04 + 470 -1.0472846001380357E-03 + 471 -3.4094186695296340E-04 + 472 7.7443450483264927E-04 + 473 3.0484637352032671E-03 + 474 1.5312510870781163E-04 + 475 3.5248435496346614E-04 + 476 1.0263382363359540E-03 + 477 5.5879481702489540E-05 + 478 -1.4460554587070391E-04 + 479 2.2121123505171777E-04 + 480 3.0925157336724254E-04 + 481 -5.7671883132046715E-04 + 482 1.8356421228850445E-04 + 483 2.4449739838452566E-04 + 484 -4.7195598342874179E-04 + 485 -5.4756395434581693E-04 + 486 1.0232291314755191E-03 + 487 7.9700226583541932E-04 + 488 -2.4354212786826916E-04 + 489 -4.6296507442273590E-05 + 490 -1.3961182527377601E-04 + 491 -3.4654405436099878E-04 + 492 1.8521559121149574E-04 + 493 -2.6081370180658387E-05 + 494 6.4750542707309731E-05 +Ene= -4.9473127518E-01 +Spin= Alpha +Occup= 2.0000000 + 1 1.0703010366045645E-03 + 2 1.7341765173363105E-04 + 3 -4.4136108227670892E-04 + 4 1.7452286713030105E-03 + 5 8.4749695559181335E-04 + 6 -1.5263888963470458E-04 + 7 4.7335690072116212E-04 + 8 4.4400970279264622E-04 + 9 6.5676363703299058E-04 + 10 -6.6846501761994991E-04 + 11 -1.4078869881798827E-03 + 12 2.0357611225802464E-03 + 13 1.1889665957786443E-04 + 14 5.8577221793130274E-05 + 15 -6.8704774146133513E-04 + 16 1.6709431552860111E-04 + 17 3.4716792131933550E-04 + 18 -5.7994548091289155E-04 + 19 -1.8367714923471552E-04 + 20 -2.2637921270286807E-05 + 21 3.1760681199510469E-05 + 22 1.8280699370720833E-04 + 23 7.2033529729587187E-05 + 24 -2.9197957521749575E-04 + 25 1.2671010227870421E-05 + 26 -3.3312120506337637E-03 + 27 1.2882842961117147E-04 + 28 -1.9937381278976180E-03 + 29 -1.8449954470554472E-03 + 30 -9.8067382836236204E-05 + 31 -1.4532414571969976E-03 + 32 -9.4128232117374146E-04 + 33 6.1359040546568459E-04 + 34 4.9309164940700093E-03 + 35 -1.9184831644959661E-02 + 36 -3.1765135429998115E-03 + 37 3.9969906254170532E-04 + 38 1.0767581291800029E-02 + 39 -1.7135610551406849E-03 + 40 1.8476673715574337E-05 + 41 -8.2810555060580356E-04 + 42 3.0868698037184155E-03 + 43 1.3807983750510227E-03 + 44 -7.4761588837772810E-05 + 45 1.1814541419291266E-03 + 46 -1.0424762242030209E-04 + 47 -6.4010095086317813E-05 + 48 4.1399610758750843E-04 + 49 -8.3310020237283380E-04 + 50 1.0461225062513576E-04 + 51 6.2039935019851092E-04 + 52 9.1708012834357288E-04 + 53 -1.3478470465285446E-03 + 54 5.1982297597022757E-04 + 55 -5.3089062908131938E-04 + 56 -2.7004567800752448E-04 + 57 2.1745266123277237E-04 + 58 6.2306931259087541E-05 + 59 8.9804402832834300E-04 + 60 2.0975772862816716E-04 + 61 1.6625946730328247E-03 + 62 1.5501066781326719E-03 + 63 1.7022200743107355E-03 + 64 -8.7670546158382672E-05 + 65 -1.1772220974642897E-04 + 66 -4.1933801699206759E-04 + 67 2.3221050511643861E-04 + 68 1.3130288796627088E-04 + 69 -2.5470673331318573E-04 + 70 -8.7350402528617774E-05 + 71 2.5998236510245014E-04 + 72 1.2436637644007737E-04 + 73 2.6564437253300205E-04 + 74 -1.6319924065127811E-04 + 75 -3.4535345246274588E-04 + 76 -4.1093677359868991E-03 + 77 1.0758903577974989E-04 + 78 2.5249946738239103E-05 + 79 -8.8243330394625473E-04 + 80 1.9391050926452422E-03 + 81 -5.0302239004461444E-04 + 82 1.2550620742886312E-04 + 83 5.3741357963995175E-04 + 84 2.2464243639973907E-04 + 85 -2.2880898101173156E-04 + 86 -2.2457970510688895E-04 + 87 -1.2707688514264893E-04 + 88 1.8261183743886413E-04 + 89 -7.4208726769786864E-04 + 90 1.7173561510872986E-04 + 91 -1.6843928415138245E-04 + 92 -3.4660893050662887E-04 + 93 3.1367785712601692E-04 + 94 1.7924458011510686E-05 + 95 1.4873821987956352E-04 + 96 3.6423294077613207E-06 + 97 -2.1563171728758828E-05 + 98 -6.0598702270008596E-05 + 99 5.2704831315127240E-05 + 100 1.1253612744071473E-04 + 101 -1.6354246870029552E-05 + 102 7.7289457505524033E-03 + 103 -9.2800041788481237E-05 + 104 9.4577975367466163E-04 + 105 -7.0935987322682723E-04 + 106 -2.4878999390401746E-03 + 107 -7.3181790270947182E-05 + 108 1.0348529481026413E-04 + 109 -5.1228669149410821E-04 + 110 -9.9437186193861575E-05 + 111 5.6251807660583379E-04 + 112 1.7096863642678259E-06 + 113 -6.4976585046620466E-05 + 114 7.1195991099456734E-05 + 115 1.6141772573504447E-02 + 116 -4.1387474690126144E-04 + 117 1.6525180384927190E-03 + 118 -7.8820971374503595E-03 + 119 4.3169738960483293E-03 + 120 1.1772511977609459E-03 + 121 -7.1264576614568555E-04 + 122 1.2588900226821853E-04 + 123 -5.6195165224749255E-04 + 124 -3.7515862892390943E-04 + 125 1.4338468866277616E-03 + 126 9.0726326562008587E-06 + 127 5.7066624803746913E-05 + 128 -2.9450461197854473E-02 + 129 1.3449251973916847E-03 + 130 4.2899689368971518E-04 + 131 -1.4214480900417705E-03 + 132 3.4828152658036926E-03 + 133 -2.0322819145709883E-03 + 134 2.7754582097237988E-03 + 135 -1.5360667393584839E-03 + 136 -2.1969484829387997E-02 + 137 1.0914716042356983E-01 + 138 -1.0223726748599170E-01 + 139 -7.3210922487412650E-03 + 140 -1.1802890156241412E-01 + 141 1.9518815069712861E-03 + 142 -3.5786978173760675E-03 + 143 2.0935288139275927E-03 + 144 -2.3847553905915848E-03 + 145 3.3627628086648495E-03 + 146 4.0045035587930281E-04 + 147 4.8379181410839546E-04 + 148 -6.4221345025022354E-05 + 149 -1.4883233369115658E-05 + 150 5.9640724862368021E-04 + 151 1.0755614933090625E-03 + 152 1.1530555320488551E-03 + 153 -5.5530211088977482E-04 + 154 7.8222744965005789E-04 + 155 -1.5625919956325547E-04 + 156 -3.3103725095877932E-04 + 157 -5.4760715704543588E-04 + 158 1.6025684554291336E-04 + 159 4.0280328607709411E-04 + 160 -7.0856841094542127E-04 + 161 9.9614364591990214E-03 + 162 2.9091342469368446E-02 + 163 -2.2477132866485488E-02 + 164 -3.4681032718406925E-02 + 165 -3.4772799632236520E-02 + 166 1.7054220143119771E-04 + 167 7.8896379155871739E-04 + 168 1.1376397859810602E-04 + 169 -2.8895137490455360E-04 + 170 -3.8683073543295510E-04 + 171 2.9973731231901544E-04 + 172 -9.0301721062428490E-05 + 173 -1.4532444333060482E-04 + 174 -4.0076172496335250E-04 + 175 -6.9212340971045670E-05 + 176 2.4690428347633105E-04 + 177 1.7450375221352243E-04 + 178 -1.6075831007057222E-02 + 179 3.3631544775097265E-04 + 180 9.9276318678471077E-04 + 181 5.4629737962856861E-03 + 182 -5.8767414162045036E-03 + 183 1.6067054101680854E-03 + 184 1.9146948506066901E-06 + 185 4.6851572341736569E-04 + 186 8.7038351235954007E-04 + 187 -1.3162453231645038E-03 + 188 -7.4933607637530189E-04 + 189 -9.1892728982940976E-04 + 190 1.2031103103439021E-03 + 191 1.0912887550952909E-03 + 192 6.7710392311316910E-05 + 193 -2.7584073572811907E-04 + 194 1.7308352827422771E-03 + 195 3.6689572138075221E-03 + 196 -3.7645649396130638E-04 + 197 8.0412472163624959E-04 + 198 7.1165701706591658E-04 + 199 -4.8836697506308307E-04 + 200 -7.7237661119727708E-05 + 201 3.5027720947517215E-04 + 202 -2.0183606940558208E-04 + 203 6.9044280629135079E-07 + 204 -1.1272134205094615E-02 + 205 1.1430705819396284E-03 + 206 3.7743225125420384E-03 + 207 -6.2549967469578870E-05 + 208 3.5136364429988998E-03 + 209 -5.5367797698913372E-04 + 210 1.0348310727841541E-03 + 211 -6.6869317047390663E-04 + 212 -7.4761312457790798E-03 + 213 6.3865334207976368E-02 + 214 -1.8240827797059586E-02 + 215 3.4854976276841254E-02 + 216 -2.7918804532279240E-02 + 217 1.9408310390345953E-03 + 218 -4.2886866005201890E-04 + 219 2.0678680031341250E-03 + 220 -2.8485201810110094E-03 + 221 2.6209023510419022E-03 + 222 -8.9724032819400994E-04 + 223 -9.3580257750838219E-05 + 224 8.3926720430303124E-05 + 225 -6.7625270720844417E-04 + 226 6.1576013555862436E-04 + 227 -8.7716632399380387E-04 + 228 -8.6999642560416741E-04 + 229 3.2503512056273362E-03 + 230 1.0643612397359193E-03 + 231 -4.6244383597347991E-03 + 232 1.8941019668123544E-04 + 233 4.9758302704175892E-04 + 234 -1.9691405674647873E-03 + 235 2.7456353993810011E-04 + 236 2.6796934299656595E-05 + 237 -1.4881542785413677E-03 + 238 -2.2069183472322217E-03 + 239 -1.1922229591596022E-03 + 240 -3.1637440576209657E-03 + 241 -5.4371699473369575E-03 + 242 -1.4744673034223653E-03 + 243 -6.8951177335509607E-04 + 244 -7.2865531961078636E-05 + 245 2.4635536123124003E-03 + 246 6.7911206706377646E-04 + 247 -1.5259360262513281E-04 + 248 2.8163268612260169E-04 + 249 -6.2000684486205847E-06 + 250 5.7754419907420768E-04 + 251 -3.0384512627951822E-04 + 252 -2.9954207356783084E-04 + 253 -2.1530801454811254E-04 + 254 -5.4080659773214522E-03 + 255 -6.8720467394641133E-04 + 256 6.4168742006626379E-03 + 257 1.6507445908376722E-03 + 258 3.0767672787162300E-03 + 259 1.8397462837021162E-03 + 260 9.1179029978456609E-05 + 261 1.2667841974421921E-03 + 262 -1.1935368700413546E-01 + 263 6.6113089186279630E-02 + 264 7.5325805778207647E-02 + 265 4.9838809520201643E-02 + 266 1.1377885654890757E-01 + 267 -5.1423129329749076E-04 + 268 -1.9281275104684559E-03 + 269 -1.6228267497782390E-03 + 270 -8.5242753134050057E-04 + 271 -3.5324113273016472E-03 + 272 -5.7602181408155056E-04 + 273 -6.2801154160592316E-05 + 274 1.7709360822695182E-04 + 275 -1.8791401766464217E-04 + 276 9.8199564737236561E-04 + 277 -5.6503300871128825E-04 + 278 9.0770824657680088E-04 + 279 6.0916802271634993E-03 + 280 2.8405423001966185E-04 + 281 -7.6931442759558353E-03 + 282 -6.1917743842815898E-03 + 283 -6.0169424549627324E-03 + 284 -7.2608843485411914E-04 + 285 -4.5685389402650703E-04 + 286 4.7899398445545274E-04 + 287 -1.5480821704822378E-03 + 288 -2.0014526877097732E-03 + 289 -9.2011874236191536E-04 + 290 -3.5367290262975406E-04 + 291 5.3965848207898528E-04 + 292 -2.8152292024185934E-03 + 293 5.2973309588117541E-05 + 294 -7.1198036340737166E-04 + 295 -9.3912739540477923E-04 + 296 -6.5416515561220667E-04 + 297 -2.2991662607678417E-06 + 298 -1.8119918877001158E-05 + 299 -1.2915512568727712E-04 + 300 -1.0037415978415329E-04 + 301 8.8001915733813458E-05 + 302 1.8798843708011867E-05 + 303 7.5492895549721053E-07 + 304 1.8223592930467712E-04 + 305 1.9691956631160885E-03 + 306 1.0355189685861751E-03 + 307 -2.6327304358451595E-04 + 308 3.0780755614932251E-04 + 309 4.9664300102745748E-04 + 310 -1.4223742192927968E-04 + 311 -2.6798525748629172E-04 + 312 4.8840636710902182E-04 + 313 3.8850668016582562E-03 + 314 -1.4246779582679489E-02 + 315 -3.9786103135818754E-03 + 316 5.0639776621287345E-03 + 317 1.3385457697921238E-02 + 318 -6.2579471982800964E-04 + 319 7.9571836838024316E-06 + 320 -5.1650895091446181E-04 + 321 9.5472281988819702E-04 + 322 9.9328665796408547E-04 + 323 -5.2401956553660282E-04 + 324 8.5804893172291479E-05 + 325 -3.4111819030364302E-04 + 326 3.6634668930381398E-04 + 327 3.5484708658618471E-04 + 328 -4.0964127773760736E-04 + 329 -6.0608176683681666E-04 + 330 -5.7267667106384015E-05 + 331 -1.0226625374800985E-03 + 332 1.2156625389470241E-03 + 333 -1.8013163733078574E-03 + 334 -1.1003973117614473E-03 + 335 4.2652938296206991E-04 + 336 -7.3586638949849482E-04 + 337 -2.1279658399948152E-04 + 338 -1.9230818746392507E-02 + 339 -8.5527212775004698E-03 + 340 1.2392740340030770E-02 + 341 1.0453350008837734E-03 + 342 4.1430785729786642E-03 + 343 4.2172363761053933E-04 + 344 8.1245161479784897E-04 + 345 -1.1072285231750831E-03 + 346 5.9896964903608332E-04 + 347 6.8084457379522336E-04 + 348 1.7419692946441187E-04 + 349 5.8981753886164680E-05 + 350 -2.2516683662955972E-04 + 351 1.6472283531575928E-04 + 352 3.4072567254305911E-04 + 353 -4.6518686213114358E-05 + 354 1.5158961671825932E-04 + 355 -7.9330362457834518E-03 + 356 2.1808294636854202E-04 + 357 -2.3090895036634680E-03 + 358 5.9629121084822804E-03 + 359 5.9359467324817999E-04 + 360 4.9401064421924850E-04 + 361 9.2817567883492582E-04 + 362 -3.0632220687168193E-04 + 363 -2.4636348125974206E-04 + 364 -4.1202395973374687E-04 + 365 1.2368476007022287E-03 + 366 -5.3402074080152750E-04 + 367 -1.8385146743890224E-04 + 368 3.7475511191053584E-03 + 369 -2.9127989830516211E-04 + 370 -1.6534165551909687E-03 + 371 1.0389345115344490E-03 + 372 -2.2832665223844395E-03 + 373 -7.3701958423295975E-04 + 374 6.2164086472451890E-04 + 375 1.0743128154233094E-03 + 376 -8.6064751655055209E-04 + 377 2.8661850145423001E-04 + 378 -7.7464489602955538E-05 + 379 3.5413332288161144E-04 + 380 -4.9702612721551516E-04 + 381 1.0465053876243016E-01 + 382 -5.5619649437474341E-04 + 383 9.8469022350727367E-02 + 384 3.2022418693146031E-02 + 385 2.0646450838909744E-02 + 386 7.7741364769867540E-03 + 387 2.6896096272398216E-03 + 388 1.6788174241044536E-03 + 389 6.4081719631217480E-03 + 390 -3.3990742573359253E-03 + 391 -5.0451538945832869E-03 + 392 -1.8529117213192060E-03 + 393 -1.5661960884969482E-02 + 394 -1.7080547124538225E-02 + 395 8.7066587309229644E-04 + 396 -1.6022393620230622E-03 + 397 -2.4983941257496092E-03 + 398 -7.6634054651364605E-03 + 399 -9.0981681065742924E-04 + 400 -6.4672450250112556E-04 + 401 1.2476839790612722E-03 + 402 8.0190606716696131E-02 + 403 -3.6151210167773867E-02 + 404 2.2276042484190791E-02 + 405 -1.3380105488220977E-02 + 406 4.3224941351832896E-03 + 407 -5.1614226511600123E-04 + 408 1.1794101537235971E-03 + 409 1.3623327984476151E-03 + 410 -3.3445427128733865E-03 + 411 -3.4883904710380896E-04 + 412 5.5114449348980387E-04 + 413 -3.5523961544662805E-04 + 414 8.0249121946785243E-04 + 415 4.6879437015192362E-04 + 416 -6.1196428716639125E-04 + 417 8.7829469139914557E-04 + 418 8.4081337954038300E-04 + 419 -2.5346538923230810E-02 + 420 2.7103388707301509E-04 + 421 1.9509804134064798E-03 + 422 1.2063791140410371E-03 + 423 5.0625045767845791E-03 + 424 1.0750429150665521E-03 + 425 4.3309591344794195E-04 + 426 -2.8287782875526462E-04 + 427 6.9311711257812904E-04 + 428 8.9767204426866650E-04 + 429 2.4593351624850471E-04 + 430 -4.1311397565589603E-04 + 431 6.9565920869457351E-05 + 432 1.1826811078674192E-01 + 433 -9.1648354412899745E-04 + 434 4.4759106543556991E-02 + 435 -5.1401197268321014E-02 + 436 -3.9420387166594698E-02 + 437 1.9603387365750213E-03 + 438 -4.0897820973957565E-03 + 439 -3.1644453714276921E-03 + 440 1.3908345971724960E-03 + 441 9.3172215091091122E-04 + 442 -1.0179241586321880E-02 + 443 9.3543396185987900E-03 + 444 8.1119959646048737E-03 + 445 -2.2682228407598537E-02 + 446 1.0013277330234193E-03 + 447 6.5030247059507948E-03 + 448 -1.9505847333951794E-03 + 449 -6.9561104424125464E-03 + 450 -1.7398853562446048E-04 + 451 -7.4198876741319371E-04 + 452 1.2006823859709293E-03 + 453 2.3543550730368481E-02 + 454 -1.0684283408295228E-01 + 455 -5.8425379546077228E-03 + 456 4.8222672905654178E-02 + 457 2.4021245209013154E-02 + 458 -1.7157212628386561E-03 + 459 5.8962597716798581E-03 + 460 -9.0562035015133294E-04 + 461 -1.9423411061152199E-03 + 462 -7.6008121288010299E-04 + 463 -1.9663569487159108E-04 + 464 3.9909780681600594E-04 + 465 -4.5952929936132579E-04 + 466 4.7067277820808179E-04 + 467 1.0649304047809639E-05 + 468 -1.0152516808943177E-03 + 469 -6.8271370935260643E-04 + 470 -2.1651236200980317E-03 + 471 -5.8051691696849664E-03 + 472 -1.9465306978922172E-03 + 473 6.4159538910283096E-03 + 474 1.4469106560945275E-03 + 475 -8.9713608992006476E-04 + 476 -7.3823409428300029E-04 + 477 -3.7178414624149580E-04 + 478 4.7053359460235705E-01 + 479 -1.4029115746173859E-01 + 480 -9.2479815491257680E-02 + 481 4.8297073488541403E-01 + 482 -5.7184351506614151E-01 + 483 5.1666653345659808E-03 + 484 -1.4328404780278425E-03 + 485 -4.6873392679513551E-03 + 486 4.8693439137722687E-03 + 487 -5.1559889559521120E-03 + 488 -4.6151516829300211E-04 + 489 4.2711275788402632E-04 + 490 -1.5954478585299395E-05 + 491 -4.9657274125351102E-06 + 492 -6.3208718590076151E-04 + 493 -3.8493574932390521E-04 + 494 -2.3129277384539929E-04 +Ene= -4.9328594676E-01 +Spin= Alpha +Occup= 2.0000000 + 1 1.1200560235057470E-03 + 2 -1.4175254614139197E-03 + 3 1.0592047246430663E-03 + 4 -1.0118646644280268E-03 + 5 3.2569298541637553E-03 + 6 1.0831043607234534E-03 + 7 -1.2329660174480858E-03 + 8 1.2210302700409487E-03 + 9 1.1212091664094153E-02 + 10 -2.1039761307342789E-03 + 11 3.8111046673668463E-03 + 12 6.8902600360857963E-03 + 13 2.0099642133928248E-02 + 14 1.7450824039582965E-03 + 15 -1.1616194366415157E-03 + 16 1.6452593864904866E-03 + 17 2.3994187387057361E-04 + 18 9.0662245974528041E-04 + 19 -6.3614402423460418E-04 + 20 -6.3202188352240376E-04 + 21 8.0408455915593666E-04 + 22 -4.5508154396978841E-04 + 23 -7.8844126320329433E-05 + 24 -6.7243740465560797E-04 + 25 8.5805428499940943E-05 + 26 1.6201207559818590E-02 + 27 -1.1202064796903553E-04 + 28 -7.2348627340291273E-03 + 29 8.2755303450740489E-03 + 30 3.5553641179587275E-03 + 31 8.0565437380206086E-04 + 32 7.9403365958072715E-04 + 33 6.7327126423455798E-04 + 34 3.1028474326038218E-02 + 35 1.5850573885160382E-02 + 36 -6.3870229946624574E-03 + 37 -9.6521791730593207E-03 + 38 7.6002135408765548E-02 + 39 -2.7709787983961980E-03 + 40 1.4716201305236938E-05 + 41 -6.7678750337616690E-05 + 42 -1.8579359280951793E-03 + 43 -5.4433999020862657E-03 + 44 -2.7009074056435172E-04 + 45 -2.1429357241770430E-04 + 46 -2.4418292768549257E-04 + 47 -3.0324207718831819E-04 + 48 7.5077962702004174E-05 + 49 2.9255584447002408E-04 + 50 3.9202066983667628E-04 + 51 -1.2351993913778999E-03 + 52 1.1769275171920539E-04 + 53 -1.0251441394489350E-03 + 54 9.8118858126584733E-04 + 55 6.2279238467731262E-04 + 56 -2.4640606654504585E-04 + 57 2.9814365040813648E-04 + 58 4.0108404575072115E-04 + 59 2.9039157222477759E-03 + 60 -2.0230429075495959E-03 + 61 1.3670899081815436E-03 + 62 1.7448312544301580E-03 + 63 1.4197089349798626E-03 + 64 -2.2241081682668296E-04 + 65 6.6971273291076153E-04 + 66 1.1259363377340273E-03 + 67 -5.5691794118680545E-04 + 68 -1.7358346748738796E-03 + 69 -1.2952421085650611E-04 + 70 -1.8690894553951526E-04 + 71 -2.5347294763922726E-04 + 72 -4.6968966291842997E-04 + 73 2.5074163833693514E-04 + 74 8.2013150888025097E-04 + 75 2.3402563747515153E-04 + 76 8.7979982889225955E-03 + 77 -1.0177439011839735E-05 + 78 -3.1196369853112842E-05 + 79 1.7021512544485190E-03 + 80 3.6260871526747848E-03 + 81 -7.7853644684683105E-04 + 82 2.0565554989230941E-03 + 83 1.7898753997492550E-03 + 84 -5.0443280621648005E-04 + 85 -6.4728852306098524E-04 + 86 -6.8596278905065937E-04 + 87 2.3517093207456633E-04 + 88 -2.2919592751802673E-04 + 89 4.4369207132453157E-03 + 90 -2.7466610810071455E-05 + 91 -8.0252564382486929E-04 + 92 -1.3496190318908179E-03 + 93 4.4207452087264090E-04 + 94 -7.3346791248904625E-04 + 95 -2.8563600053310500E-04 + 96 -1.0940457276076544E-05 + 97 1.4653188433481987E-04 + 98 -1.1263328308311410E-04 + 99 -1.5665483671953393E-05 + 100 2.5807652493746062E-04 + 101 -7.0148057287696959E-05 + 102 5.9969867146912005E-03 + 103 -4.0096932913952200E-04 + 104 -1.1050109429531771E-03 + 105 -4.8261781828305567E-03 + 106 3.2883982553536481E-03 + 107 -3.1290549157245872E-04 + 108 -9.4235395797462676E-04 + 109 4.9937205031112960E-04 + 110 4.7210191411771262E-04 + 111 -6.2363523513318006E-04 + 112 3.6682417022314084E-04 + 113 9.2210262060402114E-04 + 114 6.4357066780301611E-04 + 115 -3.3046476301668223E-02 + 116 1.5273485170264323E-05 + 117 8.4204753513154136E-04 + 118 3.4054755050310054E-02 + 119 2.3363931600341311E-04 + 120 -1.5782001382482779E-04 + 121 2.2879176120508241E-03 + 122 2.2240533058994998E-04 + 123 -3.4436796927307081E-03 + 124 -5.1194328229973020E-04 + 125 -6.4425063309200776E-03 + 126 -3.5972174488553207E-03 + 127 -3.8095535951291774E-04 + 128 1.6651226030224623E-02 + 129 -1.8769807701281404E-04 + 130 2.6352980289645238E-03 + 131 5.0845582982326715E-03 + 132 3.8574590847295301E-04 + 133 -1.2812720433711792E-03 + 134 1.9578271804326412E-04 + 135 1.6428497501113174E-05 + 136 3.5193211056672433E-02 + 137 -8.7731606703446482E-03 + 138 -1.1486242173317784E-02 + 139 2.0012850040818809E-02 + 140 -8.5994027272539977E-02 + 141 -3.3678428365388961E-03 + 142 4.9922994365783895E-04 + 143 1.4329529786239528E-03 + 144 -3.9251744635843584E-03 + 145 5.3825779327213684E-03 + 146 -3.3168061136913560E-04 + 147 -2.2840937668431482E-04 + 148 -4.3944685151140259E-04 + 149 -9.6518887894939690E-06 + 150 -3.7073122772122671E-04 + 151 -4.7426674707142403E-04 + 152 8.2521904512933809E-05 + 153 4.6162241246280623E-04 + 154 7.8956381741260859E-04 + 155 -2.3902055777356838E-03 + 156 1.6043457807227578E-03 + 157 5.4982205176758690E-04 + 158 -7.4046263265694886E-04 + 159 1.0446771650304070E-04 + 160 1.0960514565764262E-04 + 161 2.5626344909493079E-03 + 162 -1.6598042252651837E-02 + 163 4.6114325709536422E-04 + 164 4.0393602285110818E-02 + 165 3.8718167398065838E-03 + 166 -7.4137074757903154E-04 + 167 1.0211548249028997E-03 + 168 5.2217261658050031E-04 + 169 -1.6977337406125516E-04 + 170 -8.6715854575706458E-04 + 171 -3.0695714246802176E-04 + 172 -1.0486097034923466E-04 + 173 -5.1887414152381004E-04 + 174 -2.2601219600565088E-04 + 175 1.3387087358362969E-04 + 176 1.6507962220743211E-04 + 177 4.6367431996123198E-05 + 178 -1.0128301098293476E-03 + 179 -1.8913798190553041E-04 + 180 4.7696397060806878E-03 + 181 -1.7398703276077618E-03 + 182 2.9860589372362636E-03 + 183 2.6578676165010389E-04 + 184 2.6047222711716046E-04 + 185 5.4184422397886474E-04 + 186 -7.5510379270904502E-04 + 187 -1.9907707131726140E-04 + 188 3.5074989472931204E-04 + 189 7.7737991067898060E-04 + 190 6.7733841353493260E-05 + 191 1.2290883689483772E-03 + 192 6.6547555468685383E-05 + 193 5.1216144106710376E-04 + 194 1.8913956724707598E-04 + 195 4.7417669596448302E-04 + 196 2.7074381709011887E-04 + 197 3.1094226777942172E-04 + 198 4.0250825021538003E-04 + 199 -1.3658780261266788E-05 + 200 5.1775439885720011E-05 + 201 2.5216246945209970E-06 + 202 -1.2975562777679255E-04 + 203 7.2642243727851906E-05 + 204 -1.4068486649393080E-04 + 205 -8.1722175423824654E-04 + 206 1.6297423353353678E-03 + 207 -1.1050421997267133E-03 + 208 -1.3654584743617679E-03 + 209 2.4315463724519716E-04 + 210 -9.7184445380223920E-04 + 211 -7.7768539058158299E-04 + 212 2.5615362919383031E-03 + 213 7.9220281493699186E-03 + 214 -1.3437899372010328E-02 + 215 2.2270459816598243E-02 + 216 -9.1941913499013969E-03 + 217 4.8061502662820040E-04 + 218 -1.1621862807959025E-03 + 219 -1.0751191081571263E-03 + 220 8.8204933289034125E-04 + 221 7.7497685211480366E-04 + 222 5.7547486756850117E-04 + 223 2.6961141133127601E-04 + 224 -1.1504769971664343E-04 + 225 5.0735688622502060E-04 + 226 -3.1267539644831921E-04 + 227 -7.1002811967861698E-06 + 228 6.0092518411507452E-04 + 229 2.6821781426641055E-02 + 230 -2.9106784734136059E-03 + 231 -4.2212988731876377E-03 + 232 3.5471660412898938E-03 + 233 1.1700652787453411E-03 + 234 3.8149374945202893E-03 + 235 -1.3777295456759047E-03 + 236 -8.4257730686444049E-04 + 237 8.4487671771573153E-02 + 238 6.1195714175946700E-02 + 239 -4.0904509269956472E-02 + 240 -2.6918029624336776E-02 + 241 1.4697665975132154E-01 + 242 -4.5073552938504494E-03 + 243 -2.9355530990905821E-03 + 244 8.6397486026733555E-04 + 245 1.0482750412617492E-03 + 246 -6.7456058698689850E-03 + 247 -4.4135550273240452E-06 + 248 -6.9144757297902228E-04 + 249 5.8868627492427491E-04 + 250 -3.5855285442476232E-04 + 251 1.9414773424889748E-04 + 252 -7.2475142781442648E-05 + 253 1.4491861957613994E-04 + 254 -2.1721420888698288E-03 + 255 1.5526607442959805E-03 + 256 -1.6728644719705504E-03 + 257 4.3238304836495326E-03 + 258 -7.3481347504465019E-03 + 259 -1.3731845020439918E-03 + 260 1.1458019582579466E-03 + 261 -5.2353936399214722E-03 + 262 8.3509677252601611E-01 + 263 2.6836248813041658E-01 + 264 -1.7405494787510833E-01 + 265 2.0382128721188653E-01 + 266 6.9744632571149753E-03 + 267 6.6843672919142351E-03 + 268 1.7648424857797430E-03 + 269 1.2409477727619092E-03 + 270 1.4717618852284623E-05 + 271 1.0837100829481814E-03 + 272 -2.1726742133793318E-04 + 273 -2.7393764444757677E-04 + 274 6.0103232707781973E-04 + 275 5.4435895197843455E-04 + 276 -1.1094083418156038E-04 + 277 4.5205015093301870E-04 + 278 1.0559299120834931E-03 + 279 -1.1458529372252252E-01 + 280 -2.1137014711431059E-04 + 281 9.8683733292350816E-03 + 282 4.1540149646400605E-02 + 283 1.0274418390377768E-01 + 284 4.0869999576793290E-04 + 285 2.6674927014514673E-03 + 286 9.1066330215464689E-03 + 287 1.7234888846973578E-02 + 288 5.3897725058794982E-03 + 289 -6.2278524084776483E-03 + 290 5.1909297817886680E-03 + 291 1.1632515210416887E-03 + 292 1.2129416225140504E-02 + 293 -1.8296131490354843E-04 + 294 -4.7540265741300453E-03 + 295 -2.6905275017667296E-03 + 296 -6.7610849841810965E-03 + 297 -1.1525213046848491E-03 + 298 -4.7959312198620837E-05 + 299 -1.4621815821176170E-03 + 300 -1.8521675356981163E-03 + 301 -4.8903403949376498E-04 + 302 -1.4571443556790029E-04 + 303 2.6348336033462294E-04 + 304 3.4535278634500874E-04 + 305 -2.5597258224589687E-03 + 306 9.9131511523504372E-04 + 307 1.2788250032023604E-03 + 308 2.9696169826705669E-03 + 309 7.7341509613062446E-04 + 310 6.1636039563723233E-04 + 311 1.5361857826733140E-03 + 312 3.6365499288744282E-04 + 313 -1.1516319507394176E-02 + 314 -4.3744259423240178E-03 + 315 -5.9884929856110784E-04 + 316 5.5694341706640318E-04 + 317 1.5585964254723536E-02 + 318 1.5923823157924438E-04 + 319 1.2535040843055264E-03 + 320 1.7565666768891122E-03 + 321 -1.2964300464789649E-03 + 322 -1.7979467499594855E-03 + 323 7.6912718617573161E-05 + 324 1.3414229928955396E-04 + 325 -2.1341377674038810E-04 + 326 -4.2746984291980946E-04 + 327 -4.7373476767172134E-04 + 328 1.9779510794677935E-04 + 329 -4.5777602405096128E-05 + 330 6.9906366178863440E-04 + 331 -6.2227626658164337E-05 + 332 -3.6668810784295022E-04 + 333 1.0956363627048282E-04 + 334 -4.6128574250719876E-04 + 335 -3.9748482039200358E-05 + 336 -2.3333366948348313E-05 + 337 -6.7690548144615375E-05 + 338 -2.9141111917928906E-03 + 339 -3.8282158391891941E-03 + 340 5.7805369538016273E-03 + 341 1.2401467032802021E-04 + 342 4.9172712045352169E-03 + 343 5.3610861052297504E-04 + 344 1.5697853726917053E-04 + 345 -3.7713709667916260E-04 + 346 -3.5122598532726079E-04 + 347 -1.6558253129244762E-04 + 348 8.8232394540460298E-05 + 349 -6.7674805425242955E-05 + 350 8.9324616802979867E-05 + 351 1.7488423604150088E-05 + 352 5.8421480392172150E-05 + 353 6.8619169634893912E-06 + 354 -7.8697422886357573E-05 + 355 -2.8383115665589868E-03 + 356 2.3983173494690688E-04 + 357 7.2288628224985408E-04 + 358 2.4979944735556603E-03 + 359 -1.2566463437035627E-03 + 360 6.1866136251555943E-05 + 361 7.1852131766384864E-04 + 362 -1.8136314922250624E-04 + 363 -3.5987408803398645E-04 + 364 3.7256361664193003E-05 + 365 1.7209114587973581E-04 + 366 -3.2066499078147137E-04 + 367 2.1354009811872267E-04 + 368 -3.5998995496736600E-03 + 369 1.7584736691724452E-05 + 370 4.2234040907159891E-04 + 371 6.0066564640831772E-04 + 372 -1.2350415976530524E-04 + 373 1.7307046686140628E-03 + 374 2.5287478617472387E-03 + 375 -2.0256892937647688E-04 + 376 1.9028561837038680E-04 + 377 -1.6034123870021302E-05 + 378 1.5311600643360315E-04 + 379 -1.0874786952317154E-04 + 380 -4.6921434385625843E-04 + 381 7.0903814299958720E-03 + 382 2.4576720960366150E-04 + 383 7.6481769647374648E-03 + 384 5.5275256581823287E-04 + 385 -4.3712349980079583E-03 + 386 -2.7225507661462187E-04 + 387 1.2847256256766711E-03 + 388 1.7575578563405202E-04 + 389 1.6875529611052847E-03 + 390 -1.0553608817466379E-03 + 391 -4.3867478024464793E-04 + 392 -3.0333222869015017E-04 + 393 -2.3956455588532420E-03 + 394 1.9638439145098312E-02 + 395 -2.4081498772660823E-03 + 396 6.0413595944198539E-04 + 397 1.8614169237535156E-03 + 398 4.4054835122981094E-04 + 399 -4.1586817179365522E-03 + 400 -2.7950939841995693E-03 + 401 2.2114407132276857E-04 + 402 1.0510272059125264E-01 + 403 -4.0124803106306298E-02 + 404 -2.5247477603985647E-02 + 405 2.8968804940485746E-02 + 406 -1.4999621712037547E-01 + 407 -3.5199623433017969E-03 + 408 9.0387126397698913E-04 + 409 3.7751613115453119E-04 + 410 -3.8665778466517708E-03 + 411 5.3166363120489045E-03 + 412 8.0212894369783728E-05 + 413 1.0919322580859581E-03 + 414 7.1902058292388289E-04 + 415 -6.0823379618829221E-05 + 416 1.8296868360993877E-04 + 417 -4.5388949189330697E-04 + 418 2.4378959109701786E-04 + 419 1.2371156549487612E-03 + 420 -5.8458335555500156E-06 + 421 3.2178773843483687E-03 + 422 1.5793172712115298E-03 + 423 -2.2268554865282095E-03 + 424 2.3011192938250412E-05 + 425 9.6652846987027184E-04 + 426 -1.9417372981953574E-04 + 427 -8.5562792509365497E-04 + 428 7.4671070522436299E-04 + 429 5.7513713918053318E-04 + 430 -6.0907334827580344E-06 + 431 1.5880632459654511E-04 + 432 1.0808505256446440E-02 + 433 -1.5477854282204954E-04 + 434 4.7094264209230205E-03 + 435 -6.0376851213469352E-03 + 436 -2.2102229112220075E-03 + 437 4.2427493259687341E-04 + 438 -8.0776202103153465E-04 + 439 -1.2315125122453396E-04 + 440 5.3095107912568711E-04 + 441 8.6780802076023321E-05 + 442 -5.4155308283072000E-04 + 443 1.2351421898315661E-03 + 444 8.0665370250741775E-04 + 445 3.2550239383015282E-04 + 446 -8.5914027815966836E-04 + 447 1.8676884692496597E-03 + 448 -2.0155152422208261E-03 + 449 -2.0031485335213202E-03 + 450 3.6250147158147487E-04 + 451 -1.4611357492904414E-03 + 452 -5.6493918909682086E-04 + 453 1.5507619012064298E-02 + 454 -1.3671343931479061E-02 + 455 -1.2143037399201221E-02 + 456 2.8456001596610665E-02 + 457 2.7990467329001983E-03 + 458 7.9637042515032057E-04 + 459 -3.7729706538283707E-04 + 460 -5.8222399765120263E-04 + 461 2.0076077911290111E-03 + 462 7.7601602157094184E-05 + 463 -2.0464515508778469E-05 + 464 1.7324190312975507E-04 + 465 8.1872018209170445E-04 + 466 2.7775669733543304E-04 + 467 -2.3427031590480936E-04 + 468 -3.9662430703339104E-05 + 469 8.1235290445824432E-04 + 470 4.0003723030022031E-04 + 471 -8.9478781324741784E-04 + 472 2.7422931715026462E-04 + 473 7.4810374941624213E-04 + 474 1.1991078477799726E-03 + 475 -5.6602903636560332E-05 + 476 1.6126092716641283E-04 + 477 5.2002611453733083E-04 + 478 2.4343166745425852E-02 + 479 -1.1470872234366535E-02 + 480 -4.7549945254444677E-02 + 481 3.1824046861620971E-02 + 482 -5.4110573944247710E-02 + 483 -4.5231426488522350E-04 + 484 7.0360791793931785E-04 + 485 -2.8992749419245505E-05 + 486 8.1048790263049100E-04 + 487 1.6929546440546889E-04 + 488 2.1248231681841593E-04 + 489 -4.0242883380803513E-04 + 490 -1.0818331409036841E-04 + 491 3.1489231283655564E-04 + 492 2.0165834833597591E-04 + 493 1.0613416606775967E-04 + 494 2.7571791548370379E-04 +Ene= -4.9298430146E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -4.8853444685266511E-04 + 2 -2.2717037197943533E-04 + 3 6.7189407496860503E-04 + 4 -1.2650612371752951E-03 + 5 1.8827443036759870E-04 + 6 2.3625042494323625E-04 + 7 -4.7403454582288908E-04 + 8 6.0631834581776751E-05 + 9 4.2138710980422545E-04 + 10 2.4862770552175361E-04 + 11 -1.2273029312389865E-04 + 12 3.2095453998621783E-04 + 13 5.5856146306240109E-04 + 14 1.6501829426093938E-04 + 15 3.8145691870622637E-05 + 16 1.5771248669025015E-04 + 17 -3.4469024839045689E-04 + 18 8.0452782354790931E-04 + 19 3.2429894454705734E-05 + 20 -9.5516008311194992E-05 + 21 1.1847475584643869E-04 + 22 -8.2353662331431917E-05 + 23 -2.3858987877761399E-05 + 24 6.1787527502016524E-05 + 25 -1.8366419936743185E-04 + 26 -1.0368589805094986E-03 + 27 -1.1406002633989233E-04 + 28 1.1258848529669518E-03 + 29 1.3117835017515413E-03 + 30 9.8148041815135909E-04 + 31 2.2199546853081319E-04 + 32 3.4867737324931355E-04 + 33 3.1181385835140772E-04 + 34 -3.9149538658137121E-03 + 35 -2.4753627124078597E-03 + 36 -2.8335374922683065E-03 + 37 6.8959013125803248E-03 + 38 7.5543254064674107E-03 + 39 -2.7998112834495947E-05 + 40 -7.4912133991052545E-04 + 41 2.3885545892677479E-04 + 42 -2.2779725956701967E-04 + 43 -9.7842711066349250E-04 + 44 -1.2344091111897486E-04 + 45 4.6984983090320633E-05 + 46 -3.9233374459989128E-05 + 47 1.5592682533099099E-04 + 48 -1.0245594270796403E-04 + 49 -3.3889618347092247E-04 + 50 -6.0651475603075883E-05 + 51 8.6353574053107214E-04 + 52 2.8166654898067252E-04 + 53 -1.6599486977231588E-03 + 54 4.7305249678532968E-04 + 55 4.6900005379615602E-04 + 56 -5.0680934702188052E-04 + 57 7.8104995959471074E-05 + 58 6.7450060523069019E-05 + 59 -3.1851229470217984E-05 + 60 1.3441118941869619E-03 + 61 2.3354365946046476E-04 + 62 -1.8442941190130555E-03 + 63 3.3280632848871084E-04 + 64 -4.8590426646697148E-04 + 65 3.3296259269314295E-04 + 66 3.3922532440773328E-04 + 67 1.7776201226107360E-04 + 68 -4.0758601778522185E-04 + 69 6.0786604080238668E-05 + 70 -2.9312974746850435E-05 + 71 -1.3461297096474860E-06 + 72 -2.2473053001909673E-04 + 73 -1.3545070735755557E-04 + 74 1.0779919614466884E-04 + 75 -4.6560684794975149E-06 + 76 9.2710756143235616E-04 + 77 -5.7788433163610703E-05 + 78 2.5546085922777958E-04 + 79 -1.2878010443693869E-04 + 80 1.2663883130239247E-03 + 81 -1.0686335810681380E-05 + 82 3.1179389072867668E-05 + 83 2.2021885724354888E-04 + 84 1.4114527673592152E-05 + 85 -2.4372914736864974E-04 + 86 -7.4554325000228300E-05 + 87 -4.3224310795194673E-05 + 88 -1.0483488052277850E-05 + 89 1.0171608044851556E-03 + 90 -3.0933064798169980E-05 + 91 8.9827243869010901E-05 + 92 7.3441154011047517E-05 + 93 -1.6734856010199039E-04 + 94 -1.0070311356805313E-04 + 95 -1.4186539159494611E-04 + 96 1.2438221196519871E-04 + 97 5.6278267598782689E-06 + 98 4.0949293070588736E-05 + 99 -3.4967459734887962E-05 + 100 -2.9493682121392475E-05 + 101 -2.2095659015012236E-05 + 102 -7.0114979217643012E-04 + 103 -1.3612730902131627E-05 + 104 -9.5223112403979726E-05 + 105 -1.7737751758864346E-04 + 106 5.8778060179445833E-04 + 107 -1.2073277066567495E-04 + 108 -1.7428985913115811E-04 + 109 1.0975373825809336E-04 + 110 1.0297356918994044E-04 + 111 -1.1325805025742147E-04 + 112 1.6203099979450731E-05 + 113 3.7991676220009902E-05 + 114 9.0732157690235474E-05 + 115 -5.5159252272319057E-03 + 116 1.8562797240413066E-04 + 117 -5.0153913376045959E-05 + 118 1.7617287720723249E-03 + 119 -1.0662761020925728E-03 + 120 -2.0483044357224098E-04 + 121 9.9293254875578297E-05 + 122 -1.3245127664774961E-04 + 123 -3.5146408915859858E-05 + 124 -8.3094827037215893E-06 + 125 -2.8188892101867034E-04 + 126 -3.1888807295751229E-04 + 127 -1.1944106598875555E-04 + 128 -6.4312538391184245E-04 + 129 -2.9724695854678386E-04 + 130 2.7073530223154763E-03 + 131 3.1906729756110627E-03 + 132 8.3555556673231221E-04 + 133 7.9677815964180319E-04 + 134 7.4380747827470410E-04 + 135 8.8954521388338534E-04 + 136 -2.2215014944434727E-02 + 137 -2.7210604603658772E-04 + 138 1.3462499203169791E-02 + 139 3.6935275821224162E-02 + 140 -9.4448146001927386E-03 + 141 5.3442500456331158E-04 + 142 -1.8164592271612402E-03 + 143 -1.7403375479885744E-03 + 144 -5.9157509121234963E-04 + 145 -2.3553737327208068E-03 + 146 -5.3108492542117234E-04 + 147 3.6306361264337267E-04 + 148 -5.1314547456091607E-04 + 149 -3.0377993033518493E-04 + 150 1.0213838570781943E-04 + 151 -1.9554628452790048E-04 + 152 2.0051031387585634E-04 + 153 -3.7480357965619777E-04 + 154 1.5615905020844906E-04 + 155 9.2628113703826622E-05 + 156 3.3797975510058706E-05 + 157 1.1807402380004454E-04 + 158 -1.6905466872001268E-04 + 159 6.9802120490067868E-05 + 160 3.8014909512476873E-05 + 161 -3.8583867187256997E-03 + 162 -3.2991918534688229E-03 + 163 -3.6388860755827133E-03 + 164 8.6240915875171725E-03 + 165 1.7622516576301539E-05 + 166 -8.5031017774048705E-05 + 167 -1.0122433580705975E-04 + 168 -5.7495197661169988E-05 + 169 3.3797310508465201E-05 + 170 1.3055155764675141E-04 + 171 2.6111539480579076E-05 + 172 2.7006455148729341E-06 + 173 7.4505365222685461E-05 + 174 4.9431715056248657E-05 + 175 -6.0790556093101477E-05 + 176 -1.0382816374862075E-04 + 177 -2.3047732034803778E-05 + 178 3.7265359951178987E-03 + 179 -1.4762523398155939E-04 + 180 7.4333901490674227E-04 + 181 -1.2773110176282194E-03 + 182 1.5974629561730633E-03 + 183 -2.2508265450554922E-04 + 184 -5.8425679421270462E-04 + 185 -2.7720443986835417E-04 + 186 -3.0947034556726892E-04 + 187 2.0364038986120801E-04 + 188 2.6923584991285287E-04 + 189 4.2104745659804905E-04 + 190 -1.6916364667296443E-05 + 191 3.3675789904833390E-03 + 192 -1.0976886832533962E-04 + 193 8.6277574643230093E-04 + 194 -2.1993794374479186E-03 + 195 -2.6452318705360361E-03 + 196 4.2802691892588132E-05 + 197 -2.1595200858896534E-04 + 198 -5.6917080462342542E-04 + 199 4.3728379920124068E-04 + 200 1.8770803044115365E-05 + 201 -2.8470415826158942E-04 + 202 3.6883474460877840E-04 + 203 3.0147157114684633E-04 + 204 1.0762581865656578E-02 + 205 -2.2557911513343859E-04 + 206 -5.9178833288718001E-03 + 207 5.4206345290133207E-03 + 208 -1.1209431728820276E-03 + 209 -4.3379171470063433E-04 + 210 1.0547043581844062E-03 + 211 2.2815666414259512E-04 + 212 2.4045470169511429E-02 + 213 -3.4447760384856863E-02 + 214 4.2997116798376865E-03 + 215 -3.7123675899095959E-02 + 216 2.9599640611443601E-02 + 217 -2.1140013436437839E-03 + 218 1.8076696820849914E-03 + 219 -1.0073304954016096E-03 + 220 -1.0087773897465482E-03 + 221 -2.4768417884339635E-03 + 222 -1.1874098967746536E-04 + 223 -7.2486892888724657E-04 + 224 -1.8979151124691129E-04 + 225 1.7625584017355413E-05 + 226 2.4594393332278649E-05 + 227 5.8104765177507771E-04 + 228 4.5079015370287833E-05 + 229 2.0227608445491929E-03 + 230 -2.8092532925529833E-04 + 231 2.1525474243022382E-03 + 232 -1.5475625852359627E-03 + 233 3.3790830623553323E-04 + 234 1.4601481751850011E-03 + 235 -5.5947911143947558E-04 + 236 1.4212158585012093E-04 + 237 7.3601022002510131E-03 + 238 -3.1772372716598845E-03 + 239 -7.8037943881256570E-04 + 240 -7.7428023659389267E-03 + 241 2.9622344763045676E-03 + 242 5.9380624739978176E-04 + 243 -6.8488502731671572E-05 + 244 2.0053691983098581E-04 + 245 -2.2723364029087548E-03 + 246 -2.5184579179740265E-04 + 247 6.0839291855121984E-05 + 248 -4.8212486246656519E-04 + 249 -8.8119931226583788E-05 + 250 -2.2425260527070184E-04 + 251 -1.0239902072108073E-04 + 252 7.3911890868210935E-04 + 253 6.4924903790797468E-05 + 254 1.4330504957955595E-03 + 255 9.9639334551276370E-05 + 256 -1.0962245878961214E-03 + 257 -1.4452122127179401E-04 + 258 -1.3493203785427256E-03 + 259 -3.4932715993295216E-04 + 260 4.7668093872193965E-05 + 261 -6.6443618343231536E-04 + 262 5.5243954928621171E-02 + 263 -2.5565573545413358E-02 + 264 -2.1366109007522286E-02 + 265 -1.6825908978653611E-03 + 266 -3.1029659926952790E-02 + 267 5.5604635284802471E-04 + 268 8.3219313799616610E-04 + 269 5.8944094509876953E-04 + 270 9.1165249299261152E-05 + 271 4.8496186349119614E-04 + 272 2.0153970664713662E-04 + 273 -1.2038913853249326E-04 + 274 -6.2989499876534505E-06 + 275 -9.5691437170049661E-05 + 276 -5.2834729324067217E-04 + 277 -7.8745517391651209E-06 + 278 -1.6565127567032309E-06 + 279 -5.2803974059983435E-03 + 280 -1.0614787119704603E-04 + 281 2.6230546668876884E-03 + 282 2.2199090111195692E-03 + 283 3.8916286084184218E-03 + 284 -6.3278666606730535E-04 + 285 9.5919176148319876E-05 + 286 3.2434305349566070E-04 + 287 6.4877154901259919E-04 + 288 8.5216042414040934E-04 + 289 3.8640170960470338E-05 + 290 2.6098914495615146E-04 + 291 -1.1833216655497325E-04 + 292 9.4195913029301913E-04 + 293 -6.6013944364052906E-05 + 294 1.7778981133568562E-04 + 295 3.2507709142933909E-04 + 296 1.2845032499587969E-04 + 297 2.5867104463630163E-04 + 298 -1.2897473242234772E-04 + 299 -1.8771218142921134E-04 + 300 3.7066504775163570E-05 + 301 -9.4813530911594610E-05 + 302 6.9160069699458182E-05 + 303 -3.4726354044409281E-05 + 304 -5.1484757812143485E-05 + 305 -6.8862115180848608E-04 + 306 -2.9235313603282500E-04 + 307 -2.4233193658037411E-04 + 308 -4.4451766207121612E-04 + 309 -5.4404083556699491E-04 + 310 -3.0386124556260123E-04 + 311 4.8435268446018472E-05 + 312 -8.2497988068053421E-05 + 313 3.1241889646309843E-04 + 314 8.1039298403926170E-04 + 315 -2.4377215881167483E-03 + 316 3.3068256486204770E-03 + 317 -3.2251677071339605E-03 + 318 -1.5765488819695117E-04 + 319 -1.5822999389458303E-04 + 320 6.4787996183953567E-05 + 321 -1.2329969750933753E-04 + 322 -2.2294119948077458E-04 + 323 -1.2602494262703800E-04 + 324 -7.4987655201543416E-05 + 325 6.9114244398085838E-05 + 326 1.0659670950433318E-04 + 327 3.7365061776029079E-06 + 328 -1.3645510736285599E-05 + 329 8.9965502789172814E-05 + 330 -4.9460866490571675E-04 + 331 2.3636355116428632E-04 + 332 -1.9832211382092931E-04 + 333 2.0107554828007398E-04 + 334 -3.7565172982438665E-04 + 335 -2.0105190721476957E-05 + 336 6.5237937094252536E-05 + 337 2.0319332376843289E-04 + 338 1.0264945402737650E-02 + 339 1.1587652671247675E-04 + 340 -3.3070544729540898E-04 + 341 -1.0294460440102913E-03 + 342 -2.6994198152365841E-04 + 343 1.4185519905646026E-04 + 344 -3.5966653361586945E-04 + 345 -4.7155798180822291E-05 + 346 -9.4697890272507182E-05 + 347 -7.8539920728486253E-05 + 348 6.1426308878359556E-06 + 349 -1.2527455859082608E-04 + 350 9.7273813668130826E-05 + 351 1.4366192496747469E-04 + 352 -1.0726056546569414E-04 + 353 6.0095990309694986E-05 + 354 -7.9083015395611003E-05 + 355 -4.1778974940281837E-03 + 356 2.1257311874363718E-04 + 357 -3.0789958081030419E-04 + 358 -2.5533632058000395E-04 + 359 1.1885923773814488E-03 + 360 -4.2992055338639224E-04 + 361 -1.2960468512366235E-04 + 362 1.2658910720554582E-04 + 363 1.8261861065372188E-04 + 364 9.1851438191128690E-07 + 365 1.4438100928331683E-04 + 366 -3.7347780487053554E-05 + 367 -1.8033783696980979E-04 + 368 -9.3338813040875156E-04 + 369 4.5965918489050216E-05 + 370 5.5172116572314465E-04 + 371 -9.1059743497538630E-04 + 372 -5.1537844334103872E-04 + 373 7.3666424773691314E-05 + 374 4.1652247710246258E-04 + 375 1.1307745639999565E-04 + 376 9.3843527151214745E-05 + 377 1.9975700965614638E-04 + 378 -1.5033104077562072E-04 + 379 -4.3208252071146166E-05 + 380 1.9222863211940314E-04 + 381 -2.2638600536621995E-02 + 382 -5.2492119316162837E-05 + 383 -2.0159099621178695E-02 + 384 -1.9939489726685741E-02 + 385 3.8812169476637841E-02 + 386 -1.5677709456254482E-03 + 387 -8.4477024212262631E-04 + 388 2.2390757973265226E-04 + 389 -5.4853081388625330E-03 + 390 -5.4879307090883577E-03 + 391 -6.6931088972442179E-03 + 392 -1.9570092324229203E-03 + 393 4.7741088325754938E-03 + 394 1.4287206789077181E-02 + 395 -3.2083419785854296E-04 + 396 -3.7254237885001387E-03 + 397 -1.6325789880348753E-03 + 398 4.1678390890543624E-03 + 399 -6.3599942997744974E-04 + 400 -7.7979863002491023E-04 + 401 -2.7753963381266407E-04 + 402 -2.9314826816422154E-02 + 403 6.5318523478306620E-02 + 404 -8.9565679640275821E-03 + 405 -2.9528026875644736E-02 + 406 -4.3274509658917269E-03 + 407 -1.6726254299505826E-03 + 408 -3.0044322284801875E-03 + 409 -2.1218934854637449E-03 + 410 2.0249409993451936E-03 + 411 3.8420614938008248E-03 + 412 3.5021299558334209E-04 + 413 3.7192082933464315E-04 + 414 1.4973572597659212E-04 + 415 -2.9976859242366374E-05 + 416 1.1246750857367947E-03 + 417 -1.3324257890734763E-05 + 418 -2.3239999025268464E-04 + 419 8.7302987954704196E-03 + 420 -7.2511023231412749E-06 + 421 -1.2495012630753392E-03 + 422 -6.6559140288012021E-04 + 423 -1.5516535664695673E-03 + 424 -4.3525075004367515E-04 + 425 6.7694768439638170E-04 + 426 1.8106882134655226E-04 + 427 -5.0459566769433563E-05 + 428 -3.8032261087117693E-04 + 429 6.1418005291863749E-05 + 430 3.5520254300442986E-05 + 431 -2.8256878086834749E-04 + 432 -5.5914309324346823E-02 + 433 6.0528427005320396E-04 + 434 -1.4643212621967185E-02 + 435 3.7546361565306031E-02 + 436 -3.0628252948729031E-02 + 437 -1.3415166670444732E-04 + 438 2.2017421813864896E-03 + 439 -6.2364018033643400E-04 + 440 -8.0841365141623087E-03 + 441 -1.0538766298474206E-03 + 442 -7.6193224225114264E-03 + 443 -8.0343986807908073E-03 + 444 -2.1325635573709941E-03 + 445 -1.3775580574346268E-03 + 446 -5.4454853687058321E-04 + 447 2.2857308550468642E-03 + 448 -3.5510633196422334E-03 + 449 -1.6930674207701038E-03 + 450 8.4174734890005143E-04 + 451 -3.9791312072871078E-04 + 452 -1.1625025372192183E-03 + 453 -1.3944399996261037E-02 + 454 -1.4179218428210592E-03 + 455 1.7300382978786649E-02 + 456 8.2682080149841432E-03 + 457 -2.3755013124975348E-02 + 458 -1.5621808558979172E-04 + 459 1.0735693551959177E-03 + 460 -2.6502770035188822E-03 + 461 1.6732115504895864E-03 + 462 1.6820202592219592E-03 + 463 -4.4095420342140195E-05 + 464 2.9451444930087342E-04 + 465 4.3021091077493121E-04 + 466 5.6817449597675691E-04 + 467 -1.4742437931221749E-04 + 468 -4.0994662572362239E-04 + 469 5.6614034458469468E-04 + 470 3.5866630969120642E-03 + 471 1.5489754214577328E-03 + 472 5.6162864676037133E-05 + 473 -3.4568837921091326E-03 + 474 -1.6539845009482601E-03 + 475 -2.1597229040704731E-05 + 476 -6.7809801802821122E-04 + 477 1.6802490027074970E-04 + 478 3.2078648227004825E-01 + 479 2.3095691194445470E-01 + 480 8.7426355191440952E-01 + 481 1.4503866194660012E-01 + 482 1.1853174181130567E-01 + 483 -4.8198511450645785E-04 + 484 1.9454498475092771E-03 + 485 4.4225260979995108E-03 + 486 -1.5222855025170811E-03 + 487 1.1660334161364607E-03 + 488 5.6858197443184405E-05 + 489 -7.8165310029791591E-04 + 490 -5.9328592429294528E-04 + 491 4.9201913184879773E-04 + 492 -7.7401097231274280E-04 + 493 -3.8102981445304598E-04 + 494 1.2807723056283509E-04 +Ene= -4.9063617445E-01 +Spin= Alpha +Occup= 2.0000000 + 1 2.2474716361194663E-04 + 2 2.0866704713144653E-04 + 3 -1.3652239719088530E-04 + 4 -6.5829102508429920E-04 + 5 6.1493733328114159E-04 + 6 1.4179300017813952E-05 + 7 -3.3006519088692616E-04 + 8 2.2747734178381644E-04 + 9 1.8368262876835542E-03 + 10 -2.0013003359199480E-04 + 11 6.8526914582512082E-04 + 12 3.3328066389173920E-04 + 13 8.0098059533743209E-04 + 14 3.8130975747214260E-04 + 15 -1.1251031509710041E-04 + 16 4.7405678138691973E-04 + 17 2.1713512771621374E-04 + 18 7.4581065464559291E-04 + 19 -5.8953164576452172E-06 + 20 -1.8135847158230341E-04 + 21 2.1018161920571007E-04 + 22 -4.9991026330540480E-05 + 23 2.7660393745840074E-05 + 24 -2.2080576670570440E-04 + 25 -1.7059790705777417E-04 + 26 -1.3284861486279494E-03 + 27 -3.2385499414430496E-04 + 28 1.1277313210581504E-04 + 29 -9.6711141019611697E-04 + 30 -1.0740205804739310E-03 + 31 2.1836291679073498E-04 + 32 -5.5535397616702836E-04 + 33 1.5516684611058693E-04 + 34 1.6752748131567578E-02 + 35 -1.4884403160372595E-02 + 36 1.2706098826992817E-02 + 37 -4.4157260358704169E-03 + 38 8.3120414457026372E-03 + 39 -6.4131587731630873E-05 + 40 1.0645260927278136E-03 + 41 -8.9818789826068637E-04 + 42 1.9911204846910949E-04 + 43 3.8091783141642213E-04 + 44 2.9931794297342602E-04 + 45 2.0286850003463385E-04 + 46 3.0150205839719169E-04 + 47 -3.9648839223722058E-04 + 48 6.3109902039619643E-05 + 49 4.3571433604416505E-06 + 50 3.1957086896564665E-04 + 51 -1.9491754437762723E-03 + 52 -4.2495587285551429E-04 + 53 4.2767126732547482E-04 + 54 -1.0455755408119883E-03 + 55 1.5991501001666139E-04 + 56 2.1434203664458988E-04 + 57 -1.4530489443489766E-04 + 58 8.3856071512493631E-05 + 59 3.4833429994328153E-04 + 60 2.7549318625931713E-03 + 61 9.0638821730465544E-04 + 62 9.0868663078732300E-04 + 63 -2.1339891680938276E-04 + 64 -1.9000393235327011E-04 + 65 -2.1286499998572799E-04 + 66 -1.4930440799444875E-04 + 67 -1.9608687752445275E-04 + 68 3.0061236508216444E-04 + 69 1.2852134252619083E-04 + 70 -4.4586360833550413E-05 + 71 7.2516383575831682E-05 + 72 -1.3173832628779765E-04 + 73 -8.7784427289739868E-06 + 74 1.5635039968307703E-04 + 75 -5.3460927169479579E-05 + 76 9.0922388326000031E-04 + 77 -3.1024988943019408E-05 + 78 6.8133500438548929E-04 + 79 -1.7602901476210383E-03 + 80 9.6951210104396948E-04 + 81 -4.6105234621411265E-04 + 82 3.8913164607073443E-04 + 83 2.9644944677070562E-04 + 84 4.9462043781955947E-05 + 85 -1.1891344247328615E-04 + 86 -2.0562850869098020E-04 + 87 -1.9223348117387889E-04 + 88 3.9594505177048409E-04 + 89 3.2175033435850902E-04 + 90 -1.3168603182669224E-05 + 91 6.9055868563151071E-05 + 92 4.0784352596158504E-06 + 93 -6.8168527692795869E-06 + 94 -1.2591520817942725E-04 + 95 -1.5101886517287128E-04 + 96 1.8449109660548521E-05 + 97 2.1138608813490452E-05 + 98 3.2717135089269739E-05 + 99 -2.2097328540127160E-05 + 100 -1.6659525677380739E-05 + 101 -4.1311688095002314E-05 + 102 5.1898206354185220E-03 + 103 -1.5219556621700803E-04 + 104 5.4564414486562218E-04 + 105 -1.3563411407934980E-03 + 106 -1.2507668533624794E-03 + 107 1.0949543492397180E-04 + 108 -1.5320921991141326E-04 + 109 -3.2411337202909373E-04 + 110 4.4955160418696677E-05 + 111 2.4251885079790695E-04 + 112 -6.2428329077209715E-05 + 113 8.3266188296860307E-05 + 114 2.0449527508083914E-04 + 115 2.2763244411556739E-02 + 116 -5.7503579607677503E-04 + 117 6.7124499450882417E-03 + 118 -5.1130653487282502E-03 + 119 6.0460348989448973E-03 + 120 -2.1314566559143729E-05 + 121 -1.3389334554114599E-04 + 122 5.3341049311636491E-04 + 123 -7.1841570769434055E-04 + 124 -1.5236012218898278E-03 + 125 9.1365723982473083E-04 + 126 1.6741865459568578E-04 + 127 8.7571694217040432E-04 + 128 -3.1769202303911915E-03 + 129 8.6113527060378305E-04 + 130 -3.6320949552781480E-03 + 131 -1.3321265050404852E-03 + 132 -1.1464745211629966E-03 + 133 -1.2716453906475036E-03 + 134 1.3935496054076366E-03 + 135 -4.1301565662161659E-04 + 136 -2.9142989009714789E-03 + 137 4.7285032574113060E-03 + 138 -4.5758442512824515E-02 + 139 -4.6606639323879630E-02 + 140 -4.4904684446585082E-02 + 141 -5.7703512534361173E-04 + 142 1.6588221079533890E-03 + 143 2.2371737995428506E-03 + 144 4.3803869200691728E-03 + 145 2.6140578850908781E-03 + 146 -6.1611535809442757E-05 + 147 2.0114188223939453E-04 + 148 -3.0762489702187995E-04 + 149 -2.7157646100139272E-05 + 150 3.7245644628643214E-04 + 151 -1.4290266508671637E-04 + 152 3.3848444002089522E-05 + 153 -5.9940248448092398E-04 + 154 4.6869742789882311E-05 + 155 -6.4484391749264510E-04 + 156 -6.4807482919406237E-04 + 157 1.4410380105287231E-04 + 158 -9.6855793697791772E-06 + 159 -2.8669362514008384E-05 + 160 -4.4884408249798400E-05 + 161 1.2947658368445472E-03 + 162 7.2345008283369022E-03 + 163 -6.0296340370019049E-03 + 164 -1.8623208739943459E-02 + 165 -2.2372177307881200E-02 + 166 8.9670298894779546E-05 + 167 1.3059250349960666E-04 + 168 1.2992367174084372E-04 + 169 4.7792359456062306E-04 + 170 -3.7637201796759620E-04 + 171 -1.1473139169994919E-04 + 172 7.9491606658212735E-05 + 173 -1.6074019249699883E-05 + 174 -2.2160868559542178E-04 + 175 7.4894072543772426E-05 + 176 -3.6311790053096578E-05 + 177 1.8172694625110243E-04 + 178 -4.1872072859028163E-03 + 179 2.6445190615039118E-04 + 180 -2.5829085224743993E-04 + 181 3.8558796063493548E-03 + 182 -1.4621631383975274E-03 + 183 9.1524256221911675E-05 + 184 7.0263971498412336E-04 + 185 3.5911952653056947E-05 + 186 1.2001415330412958E-04 + 187 -3.1333426151704046E-04 + 188 -7.2220972815666661E-04 + 189 -4.8929895630644212E-04 + 190 5.5603659648185706E-04 + 191 -2.4133564811182257E-03 + 192 1.0497379904962096E-04 + 193 -1.0663087798224531E-03 + 194 1.4083228094191457E-03 + 195 1.3306062443328973E-03 + 196 -5.2026659214333461E-04 + 197 9.0009129643919459E-05 + 198 7.7107201792457440E-04 + 199 -4.0908707728693091E-04 + 200 -1.1346156982868079E-04 + 201 -2.1078192284303426E-05 + 202 -1.1875734290343748E-04 + 203 -4.0292755528974412E-04 + 204 4.5204998676811846E-03 + 205 -4.5592908562515247E-04 + 206 1.0532900020631638E-04 + 207 -5.4148729260456959E-04 + 208 2.3911961267604915E-04 + 209 1.0974612775747036E-03 + 210 4.2670969607008828E-04 + 211 1.0974218483293578E-03 + 212 -1.2008953988723606E-02 + 213 -4.1938122437582305E-02 + 214 -1.1594154280108218E-02 + 215 -2.4854896830157663E-02 + 216 -2.6425412351219403E-02 + 217 7.5026586290151442E-04 + 218 1.1249582467526954E-03 + 219 1.0536487327632714E-03 + 220 1.3650391895025423E-03 + 221 2.5336494023769267E-03 + 222 -7.3694123795958595E-05 + 223 1.8212587377845125E-04 + 224 -2.7719795123130024E-04 + 225 6.0702022667510026E-07 + 226 1.6720542334231606E-04 + 227 -1.2157355391023692E-04 + 228 3.7898474279095913E-04 + 229 5.1574062527184701E-03 + 230 2.2580476951216741E-04 + 231 -2.4445334931738174E-03 + 232 1.0102855594939660E-03 + 233 2.2531396940262574E-03 + 234 -2.6320163773985058E-04 + 235 3.9295895780887633E-05 + 236 3.1848585160654095E-04 + 237 6.9324682335006440E-03 + 238 -5.4225023695769187E-05 + 239 -1.0199790876944417E-02 + 240 -3.6396209064021644E-03 + 241 7.3149206567979103E-03 + 242 -9.6989947156914580E-04 + 243 -1.9040997227894887E-03 + 244 6.0743771147179376E-04 + 245 8.2651675105250330E-04 + 246 -9.1286533987037794E-04 + 247 -2.8454660625056450E-04 + 248 -1.1000249601415605E-04 + 249 1.3316699767085006E-04 + 250 5.2377286902287887E-04 + 251 -9.9855192564289992E-05 + 252 -8.3653052625234472E-05 + 253 -1.3055413593154666E-04 + 254 -2.0983486808761847E-03 + 255 4.3430921203885909E-04 + 256 1.8904680187262722E-03 + 257 -4.0025238595718459E-04 + 258 8.2368009794447027E-05 + 259 2.3765269300794430E-04 + 260 -4.9963861488470462E-04 + 261 -3.7608470927748000E-05 + 262 -1.3033598502701269E-01 + 263 3.6672045975318585E-01 + 264 9.1054039301011233E-02 + 265 1.2828322958130939E-01 + 266 1.6147355819923906E-01 + 267 -8.7828036058773225E-04 + 268 2.8097175278121923E-04 + 269 3.2660751462097574E-04 + 270 -5.5327267042072853E-04 + 271 -5.3279924317514488E-04 + 272 -2.2739619200175243E-04 + 273 -2.4508894922086274E-04 + 274 1.5164571092353828E-04 + 275 2.3227576729067394E-04 + 276 4.2945075929642240E-04 + 277 -3.5570612268674176E-05 + 278 5.1137922126917720E-04 + 279 -1.3266708999060447E-03 + 280 7.2329369302999590E-05 + 281 -1.6893681481070955E-02 + 282 -3.9340353642660772E-03 + 283 4.5417634319752142E-03 + 284 -1.6758006014723781E-03 + 285 -2.0198217302712598E-04 + 286 9.6590599210405893E-04 + 287 1.0686788275711483E-03 + 288 -4.2648423448683982E-03 + 289 -2.0085080949897782E-03 + 290 -6.2589995937984723E-04 + 291 9.8729160325952670E-04 + 292 3.5164723015776566E-03 + 293 -3.9074670556718556E-05 + 294 1.5242374699908013E-04 + 295 3.6499480381129714E-04 + 296 -2.5439567242440991E-04 + 297 6.4302090370498149E-05 + 298 4.1735542922780798E-04 + 299 9.0811917169989392E-05 + 300 -9.1158123874867365E-05 + 301 -5.0964729531496928E-05 + 302 -6.4017882226940150E-05 + 303 9.1597263982142946E-05 + 304 -1.8049722379763479E-05 + 305 8.9403208378962856E-04 + 306 -7.2874652323652361E-04 + 307 -2.8461506556008232E-04 + 308 7.1644717769018979E-05 + 309 -7.4954687528336968E-04 + 310 4.0392911613265398E-04 + 311 1.5775850642610272E-04 + 312 -5.2394943462024887E-04 + 313 2.0874780107107849E-03 + 314 1.1166956051706645E-02 + 315 2.9876335641448900E-03 + 316 -1.1133536072874522E-02 + 317 -5.7532377183846497E-04 + 318 -4.1402419988935900E-04 + 319 2.5015832921357751E-04 + 320 4.3644805439755166E-04 + 321 -8.3044427698918761E-04 + 322 -1.9846504200553945E-04 + 323 1.6553602968960059E-04 + 324 3.2764605361435005E-05 + 325 1.1216526784100256E-04 + 326 -2.8662361884073762E-04 + 327 -2.1096481907351470E-04 + 328 2.8770725963216126E-04 + 329 2.6698376839280169E-04 + 330 1.4747572780044078E-03 + 331 3.6833048179901599E-04 + 332 2.7681425015329837E-04 + 333 5.1255218811516233E-04 + 334 8.4924635599406464E-04 + 335 2.4969217937890380E-04 + 336 1.6099883812644312E-04 + 337 4.5578053673579154E-05 + 338 -1.0092211763122652E-02 + 339 3.2075645060973381E-03 + 340 4.7516211743072574E-04 + 341 -2.4592405987382141E-03 + 342 -2.4033002124405861E-03 + 343 5.6513402194306793E-04 + 344 2.3205904563205210E-04 + 345 2.7110816656958569E-05 + 346 -3.6133920668733897E-04 + 347 3.8008326513764228E-04 + 348 1.7842763482480526E-04 + 349 -9.6847651766076588E-06 + 350 2.6604496349843208E-04 + 351 -1.2400235954677661E-04 + 352 1.1942080271208359E-04 + 353 -1.5976025741494158E-04 + 354 -2.4085712694715957E-04 + 355 6.7768746656818616E-04 + 356 5.4408688654811864E-05 + 357 -4.9823384124355523E-04 + 358 -1.0686388813813319E-03 + 359 1.6860745140596426E-04 + 360 -9.8988232964049424E-04 + 361 -4.4142891803946921E-04 + 362 4.0019878133115369E-04 + 363 1.7499099322476454E-04 + 364 -1.8138273938716150E-04 + 365 -1.7354459219702951E-04 + 366 3.3045176329725185E-04 + 367 1.0586849143066733E-04 + 368 1.4491246255495835E-03 + 369 -5.5539070217645173E-05 + 370 1.8415172360615223E-04 + 371 -1.0151232784792574E-03 + 372 -6.9240728762091322E-04 + 373 6.5474545751785746E-04 + 374 -4.1343804329267453E-04 + 375 -3.7004157355945867E-05 + 376 -2.2737515129408467E-04 + 377 1.3745250439288665E-04 + 378 -5.1291819265729273E-05 + 379 -1.6986110203598553E-04 + 380 1.1828749334467670E-04 + 381 4.9010548568157557E-02 + 382 -4.6760280466944475E-05 + 383 1.7947195619435422E-02 + 384 4.2072657025086328E-02 + 385 1.3939038968032445E-02 + 386 2.1419370338203324E-03 + 387 2.7303099747699637E-03 + 388 1.4482856054652195E-03 + 389 6.4132887089395291E-04 + 390 -1.0459598756182424E-03 + 391 -4.0861511402525289E-03 + 392 1.0161816904675609E-02 + 393 -3.5809522068312007E-03 + 394 -6.1940425376258565E-04 + 395 3.8550576251473160E-04 + 396 -6.6831129122537965E-03 + 397 -3.8800697231425453E-03 + 398 1.7934516254206750E-03 + 399 -1.7740811339762997E-03 + 400 3.0074883328182288E-06 + 401 1.1495291471299309E-03 + 402 3.9553660508832182E-02 + 403 2.9157220120774759E-02 + 404 5.2061264923589312E-02 + 405 -2.9100362028397213E-02 + 406 -2.1537411763382374E-02 + 407 -8.6950522136567928E-04 + 408 -4.0006754532550997E-03 + 409 -4.1848359181505005E-03 + 410 1.5835043957046235E-03 + 411 9.2470000620839879E-04 + 412 -5.7373691303554848E-05 + 413 -2.7187641893599689E-04 + 414 -3.2545702645270214E-04 + 415 -6.3951856334369629E-04 + 416 -4.9167505547563462E-04 + 417 -1.6538186770599926E-04 + 418 -5.1735862007697131E-04 + 419 -1.2308611669312965E-03 + 420 -4.5291080171827690E-05 + 421 -7.4762218738346701E-04 + 422 5.0020502352526516E-03 + 423 2.3047144842413114E-03 + 424 -2.6901078410602970E-04 + 425 1.2150846146484076E-03 + 426 3.6681961850727523E-04 + 427 8.5785236244634885E-04 + 428 1.4520314167367548E-05 + 429 1.0775880097204688E-03 + 430 3.1054925235836676E-04 + 431 5.0588009586056656E-04 + 432 -1.6348947175894682E-01 + 433 1.7926655503990828E-03 + 434 5.7398699816699475E-03 + 435 6.7845635138938959E-02 + 436 3.2207921777165020E-02 + 437 1.8074904043589915E-03 + 438 5.1318851227678255E-03 + 439 2.3594881444152327E-03 + 440 -3.9929322123798960E-03 + 441 4.2958410428324909E-03 + 442 7.4461377050290337E-03 + 443 -1.0712079608443933E-02 + 444 6.9916125028354724E-03 + 445 1.2224912391554751E-02 + 446 -1.2218501316533490E-03 + 447 -3.5148418980270881E-04 + 448 -8.0879261248549409E-04 + 449 -9.8102584119622721E-04 + 450 1.8247690909447059E-03 + 451 1.1007351176093071E-03 + 452 -1.6483217857446598E-03 + 453 5.1919074169351270E-03 + 454 6.5010245713770148E-02 + 455 5.0610678302416556E-02 + 456 -3.2145354733199551E-02 + 457 -5.3291293838602531E-02 + 458 -4.6920777936338050E-04 + 459 -1.4931766766082724E-03 + 460 -3.9479380494529927E-03 + 461 8.6744455204871131E-04 + 462 3.1129783043600994E-03 + 463 2.0209289662916964E-04 + 464 -6.2594187608047062E-05 + 465 -2.2930592452695140E-04 + 466 -1.0869560197781272E-04 + 467 -3.2702102338328759E-04 + 468 6.6280207896835973E-05 + 469 2.7723153744085703E-04 + 470 4.9196555764228888E-03 + 471 6.6138115338818210E-04 + 472 -3.5107700007299208E-03 + 473 -1.4857368863647618E-02 + 474 -5.5443687432719510E-03 + 475 -3.2129971680111874E-03 + 476 -6.6245497460125421E-03 + 477 -1.9205894453919151E-03 + 478 -1.7911108692672797E-01 + 479 -8.1572177917164854E-02 + 480 2.6949550984324883E-01 + 481 -5.6450931096476253E-01 + 482 -5.3603564344880739E-01 + 483 -1.1904361772421574E-03 + 484 -1.8311948608150134E-03 + 485 4.2467973502760721E-03 + 486 -7.0420132752255366E-03 + 487 -5.7723849763528816E-03 + 488 9.5855100949734657E-04 + 489 5.1528625782601596E-04 + 490 5.8631039024913860E-04 + 491 5.5786586877153914E-04 + 492 -9.2201889696570574E-05 + 493 7.7012336434708934E-04 + 494 4.5544389377953203E-04 +Ene= -4.9029491676E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -2.3763041039403772E-03 + 2 8.2642538049565011E-05 + 3 3.1178995876160627E-04 + 4 -1.9809690106309188E-03 + 5 -9.6151753275954162E-04 + 6 7.5034823693084944E-05 + 7 -3.5973785557634491E-04 + 8 -3.1746262262626805E-04 + 9 -1.6200710487210732E-03 + 10 3.2138600523841257E-04 + 11 8.1800056878559898E-03 + 12 -6.7334938559787949E-03 + 13 -1.7081104974251283E-03 + 14 -8.5006044174973906E-05 + 15 4.9024669192381475E-04 + 16 -6.8427512364303204E-04 + 17 4.0871319236324171E-04 + 18 9.3831167391563949E-04 + 19 4.2465566584785071E-05 + 20 1.5831446628551913E-05 + 21 3.7207566282262908E-05 + 22 -2.3963470873523137E-05 + 23 2.9473708245817440E-04 + 24 -3.2139869515522427E-04 + 25 -2.2643905539610078E-04 + 26 1.1270415129914428E-03 + 27 -2.8717427728488647E-04 + 28 1.7317348146276396E-03 + 29 -2.2099793185734436E-03 + 30 7.5272120475290997E-04 + 31 1.0909021001996519E-03 + 32 4.7141858285906546E-04 + 33 -6.9556075011855572E-04 + 34 -5.4168158376484116E-02 + 35 2.2494300069472947E-02 + 36 3.5651113607944387E-02 + 37 -3.6885824976128460E-02 + 38 -3.5374917634860982E-02 + 39 4.0194126224495259E-03 + 40 -9.1326190375145004E-04 + 41 -1.8556044537335458E-03 + 42 6.3367855979309180E-04 + 43 1.4895524144969111E-03 + 44 -6.9498172619444202E-05 + 45 4.6077970318842249E-05 + 46 -1.5972986689897508E-04 + 47 -1.8877290100150507E-04 + 48 3.7983699840110006E-04 + 49 5.0277382562986068E-04 + 50 -3.4757472381141951E-04 + 51 7.1958164959381836E-04 + 52 3.1399697916529288E-04 + 53 9.5472758945382250E-04 + 54 6.9762280266179387E-04 + 55 1.4476590684655035E-03 + 56 1.5359608436071040E-05 + 57 3.4640550311102592E-04 + 58 4.0228971740626304E-04 + 59 -3.0750751499818009E-03 + 60 -9.6119130910952641E-04 + 61 -5.1267762666233163E-04 + 62 -2.8780742293747583E-03 + 63 -1.8630750544934545E-03 + 64 -2.3758656817887970E-05 + 65 -5.1649624875921880E-05 + 66 6.7750379489888964E-04 + 67 -2.3591761240207218E-04 + 68 2.2231376089655380E-04 + 69 -1.6819887376533632E-05 + 70 1.0688306665982322E-04 + 71 -1.3580183517470214E-04 + 72 1.2838315944258460E-04 + 73 -6.9767904780109705E-05 + 74 -2.6280422477076320E-04 + 75 5.0592187893979136E-05 + 76 1.2640888355112640E-02 + 77 -3.0647473929392701E-04 + 78 2.7145343567828795E-03 + 79 -9.5980640445251803E-05 + 80 -7.6127039549928983E-03 + 81 -3.1172747117011790E-05 + 82 6.5064052060340757E-04 + 83 -1.2046806569407872E-03 + 84 1.3361446407812535E-04 + 85 1.6103420552779611E-03 + 86 7.9411954050480056E-04 + 87 -3.2666533653317336E-04 + 88 -1.0984460197881586E-04 + 89 -2.6426366214805427E-03 + 90 3.6682633850167739E-05 + 91 1.9084040071041969E-04 + 92 5.5743901474257062E-04 + 93 -5.0659186541864183E-04 + 94 1.0657579640841159E-04 + 95 1.1560674535672354E-04 + 96 -1.1120305758909328E-04 + 97 -5.3640504829791903E-05 + 98 2.2504881287784675E-05 + 99 -7.2422435760504292E-05 + 100 -6.3373091009033376E-05 + 101 1.1848357261844156E-05 + 102 -1.0815718121461751E-02 + 103 4.3289372243577071E-04 + 104 -1.0826467044577973E-03 + 105 3.1274274209987275E-03 + 106 -1.7165874432156180E-03 + 107 1.9880713014567932E-04 + 108 5.3931832098080693E-04 + 109 -2.4381632127846138E-04 + 110 -2.8599372001539801E-04 + 111 3.1646125214211191E-04 + 112 -3.9063109171431719E-04 + 113 -2.2202905018592245E-04 + 114 -5.5392324861843238E-04 + 115 -8.3588363367247093E-02 + 116 1.6355770636992441E-03 + 117 7.3244274043077961E-03 + 118 2.4338772450916413E-02 + 119 -3.0115803602555804E-02 + 120 1.6113298100038001E-05 + 121 1.8194938866337449E-03 + 122 -1.9763637557457187E-03 + 123 5.7881964922047837E-03 + 124 -1.7908219520638626E-03 + 125 -6.1859332622350993E-03 + 126 2.1450700029544353E-04 + 127 1.7988471508915750E-03 + 128 1.1216432216583616E-02 + 129 8.3473433476911093E-04 + 130 4.5247346105893420E-03 + 131 3.5300044347827491E-03 + 132 7.8098772162078182E-04 + 133 4.4343719130536595E-04 + 134 5.5349504840210360E-04 + 135 -6.6566783534465943E-04 + 136 -2.6454434871746146E-02 + 137 -4.2612343944391784E-02 + 138 -7.5802636352480836E-03 + 139 -1.6641816152292790E-02 + 140 1.9493037515790480E-03 + 141 -3.6210984378870769E-04 + 142 1.0868814240567370E-03 + 143 1.5968579023347370E-04 + 144 1.7085256681134413E-04 + 145 1.9547270219573525E-03 + 146 -1.9001205442893245E-04 + 147 -1.1322164811273779E-04 + 148 -4.7676790149554722E-04 + 149 3.5772076474537744E-04 + 150 -6.0334906074567313E-04 + 151 6.9233684287978948E-05 + 152 -3.5156535624166461E-04 + 153 3.4242682507177736E-03 + 154 -9.2529249880390939E-04 + 155 -4.4105610544139037E-04 + 156 9.7402484106179062E-04 + 157 -1.3451252279566395E-04 + 158 -3.3232156130847079E-04 + 159 -4.0068693215485957E-04 + 160 2.2353472695281465E-04 + 161 2.3314624480807511E-02 + 162 1.4681572104870198E-02 + 163 1.9036491593917529E-02 + 164 3.5327738390722375E-02 + 165 2.4418810148279943E-02 + 166 -8.8993323478301484E-05 + 167 -5.5381514526471956E-05 + 168 -2.8970357729281868E-04 + 169 2.7099584353754644E-05 + 170 -7.7651445865152969E-04 + 171 1.6832818703787532E-04 + 172 1.8794466743260517E-04 + 173 1.7192616188987938E-04 + 174 2.3504749505193461E-04 + 175 1.8269157511128711E-04 + 176 4.0016333120411512E-04 + 177 -2.4013068057796857E-04 + 178 -1.3134736089721762E-03 + 179 7.7739643618947847E-05 + 180 -3.0203253002892828E-04 + 181 -2.4476306190143061E-03 + 182 -1.5656701580991444E-03 + 183 -4.8722770214673313E-04 + 184 -3.3204273946686616E-04 + 185 -1.4227333266055570E-04 + 186 2.9740394816093650E-04 + 187 -1.0010868856024988E-04 + 188 -8.8893873637753263E-05 + 189 2.9077546064087376E-04 + 190 -5.3196901695601404E-04 + 191 1.0708423970860327E-03 + 192 2.5291850982255338E-05 + 193 3.8850623767928071E-04 + 194 -2.4976021719320799E-04 + 195 -4.2963110098305501E-04 + 196 1.3424053340486156E-04 + 197 -1.7235959102471411E-04 + 198 -2.7337873080398071E-04 + 199 7.8384558497033519E-05 + 200 6.2821099849354588E-05 + 201 -4.9356634020568739E-05 + 202 -2.3765866430411101E-05 + 203 1.5802705598864093E-04 + 204 -7.2631968293361364E-04 + 205 1.6910418544982393E-04 + 206 2.3942489813392952E-04 + 207 -2.2138338504240775E-04 + 208 -2.4589961843664011E-04 + 209 7.2775105223372272E-05 + 210 -2.2140774772956226E-04 + 211 -2.8397524792299220E-04 + 212 6.0491397130027257E-03 + 213 5.8540492387519029E-03 + 214 5.9589541398607669E-03 + 215 6.6484357601333567E-03 + 216 1.0936099787228344E-02 + 217 1.5084408212880463E-05 + 218 1.4152580079801173E-04 + 219 -5.9886035470850063E-04 + 220 4.1963172984751560E-04 + 221 -4.2625723716858814E-04 + 222 -5.4556982785999687E-06 + 223 -1.9149045480669617E-05 + 224 2.6723869457332962E-04 + 225 1.5289832628553369E-04 + 226 -7.7998695506986389E-05 + 227 2.0658766173094838E-04 + 228 1.1204611720102359E-04 + 229 5.4196695851417937E-03 + 230 9.3538918746812459E-04 + 231 -3.6749287397049744E-03 + 232 1.7266644537712616E-03 + 233 3.5523725127991324E-03 + 234 -6.8263373426136567E-04 + 235 5.5924015136365405E-04 + 236 5.6469751877840214E-04 + 237 -3.0161816701802041E-02 + 238 3.3415441143592919E-02 + 239 -2.7039870737301332E-02 + 240 1.2357452601032824E-02 + 241 1.0560744257459378E-03 + 242 1.8299101739616039E-03 + 243 -2.7117636197163185E-03 + 244 1.3528705160445785E-03 + 245 5.8745517222383184E-04 + 246 -1.3569567900725945E-03 + 247 9.1238216693556628E-04 + 248 -4.7923469195288219E-04 + 249 2.3077351891373331E-04 + 250 2.9484987620171933E-04 + 251 1.0245360215710095E-04 + 252 -3.3422559585125132E-04 + 253 2.4985978158857360E-04 + 254 -3.7076099793655779E-03 + 255 -7.9147444903650949E-04 + 256 -6.7332571681624645E-04 + 257 2.4378453357776185E-03 + 258 3.8409933277097782E-03 + 259 -2.8366218680088293E-04 + 260 6.4570944620205464E-04 + 261 9.7939535047202085E-04 + 262 -3.1527262425312763E-01 + 263 4.8227143926191862E-01 + 264 -7.4879656314013998E-01 + 265 4.2781934819747305E-02 + 266 -2.2127111044605130E-01 + 267 -2.0525059756447387E-04 + 268 1.5118257399450656E-03 + 269 -5.9358295441025541E-04 + 270 2.0891794496629788E-03 + 271 4.2293480953062008E-04 + 272 1.1165265376833426E-03 + 273 2.3112683262506100E-04 + 274 -1.2123070222753174E-03 + 275 6.7759948702254889E-04 + 276 -1.7467176909673413E-04 + 277 2.3764897469045980E-04 + 278 -7.0781861418204694E-04 + 279 3.3579259516340401E-02 + 280 -6.1891364273389802E-04 + 281 -2.2937117608907223E-02 + 282 2.7429681982165798E-02 + 283 -6.0890117536069668E-03 + 284 -8.5531307820269770E-04 + 285 2.0773381157851642E-03 + 286 1.3503140732612078E-04 + 287 1.8161101618522880E-03 + 288 -5.9488675131680420E-03 + 289 9.2477640242861273E-03 + 290 -6.7274277197553725E-04 + 291 2.8138838391981035E-03 + 292 8.0752447830689245E-03 + 293 -1.6256565256383398E-04 + 294 -2.3989078517086361E-04 + 295 -3.2158111215235814E-03 + 296 -2.8564430150379927E-03 + 297 -5.0562774643733222E-04 + 298 -7.0768866745950850E-04 + 299 -7.8848950313714302E-04 + 300 -5.6509334040653880E-04 + 301 3.0720899014400428E-04 + 302 -4.2023114559816999E-04 + 303 9.0368508683451182E-05 + 304 4.3399533246587125E-04 + 305 -2.0928909981623102E-03 + 306 2.8500757068848957E-04 + 307 -1.0529912261792419E-03 + 308 -1.6794888110998644E-04 + 309 5.3141472270037851E-04 + 310 -2.4144532636848895E-04 + 311 1.9768594014827739E-04 + 312 3.1628584669815302E-04 + 313 -6.0161914181763483E-03 + 314 -3.6474775773848258E-03 + 315 -1.2941634949664455E-03 + 316 4.7254632943445861E-03 + 317 9.1627234817783267E-03 + 318 5.6151622322275080E-04 + 319 -3.8013353193212389E-04 + 320 4.4940444133090149E-04 + 321 -2.8200863404889649E-04 + 322 -5.4383762558674487E-04 + 323 -2.3595743305717565E-05 + 324 -1.0880058367996474E-04 + 325 1.9828235225580361E-04 + 326 -5.2170227754023630E-06 + 327 8.8893419991508806E-05 + 328 5.9114883465711763E-07 + 329 -1.4097022895360125E-04 + 330 4.3450983661426841E-05 + 331 -6.9802610581411325E-06 + 332 2.2555055847323402E-05 + 333 2.6757902679845538E-04 + 334 -2.9788757826311777E-04 + 335 1.7770198176006903E-05 + 336 6.9085713280129182E-05 + 337 3.0261821310742774E-05 + 338 1.3004521518318523E-03 + 339 -3.2827202725126308E-03 + 340 3.5309604521736406E-03 + 341 7.8009359685463493E-05 + 342 1.0149656675050131E-03 + 343 -1.7835368668384777E-04 + 344 1.2577001276715301E-05 + 345 9.9669857227389574E-05 + 346 -5.2941174650594903E-05 + 347 1.0843218662299868E-04 + 348 -2.5307299927005991E-05 + 349 -2.7435663991176611E-05 + 350 -4.7563064788377230E-05 + 351 2.4993164815437142E-05 + 352 1.9928828547789097E-05 + 353 -2.8579229367385523E-05 + 354 3.8603171396524797E-05 + 355 -1.6261783709622616E-03 + 356 1.2937647429107809E-06 + 357 1.0424333054790652E-04 + 358 1.3275035900432526E-03 + 359 -3.3882087406951521E-04 + 360 1.7889845661559848E-04 + 361 2.6048271659215191E-04 + 362 -1.3590835344831639E-04 + 363 -1.5166510330363658E-04 + 364 -1.1109949486903181E-05 + 365 1.1779472134026588E-04 + 366 -1.3949493272871768E-04 + 367 7.2130662975684296E-05 + 368 3.2558320684870630E-03 + 369 1.2251683597332726E-06 + 370 8.8165290869984239E-04 + 371 -2.0526458508141336E-03 + 372 -3.8900399235751871E-04 + 373 3.7066166247167370E-04 + 374 -3.3327611106266419E-04 + 375 -7.2147240811160193E-04 + 376 1.3601817967751591E-04 + 377 2.5649086497802682E-04 + 378 -1.1156689152118966E-04 + 379 9.4735765805637430E-05 + 380 3.6217672132400974E-05 + 381 -3.5065796938257327E-03 + 382 1.2389815612281720E-04 + 383 -2.7193027692671559E-03 + 384 -8.3209624643432265E-04 + 385 -2.4164301583774681E-03 + 386 -1.8928539206059165E-03 + 387 -1.2321766290409304E-03 + 388 -2.4380819557703561E-04 + 389 2.0784554509726655E-04 + 390 2.9514513157148593E-04 + 391 5.9175215357932219E-04 + 392 -1.3184878052272294E-03 + 393 1.3143428018135318E-03 + 394 -2.7937864674341555E-03 + 395 -3.3372534242555974E-04 + 396 -1.2112855171970084E-03 + 397 -1.0708409288062047E-03 + 398 -3.0580977498676713E-04 + 399 -3.8006386147262109E-04 + 400 9.2557030581410412E-05 + 401 -3.1191985912210155E-04 + 402 -2.1726156333877481E-02 + 403 -2.1737881528058826E-02 + 404 -2.2236198866474356E-03 + 405 -1.1656360204245698E-02 + 406 9.1979453620174689E-03 + 407 1.7831909274457151E-03 + 408 3.7258365719030620E-04 + 409 6.1828782728690535E-04 + 410 -1.6818140472221546E-03 + 411 -1.2976009408336780E-03 + 412 1.5105709330102459E-05 + 413 6.0148062513633218E-04 + 414 -1.8126656444224756E-05 + 415 -8.4001489390526853E-05 + 416 -2.1521163365773597E-04 + 417 -3.4804270428043525E-04 + 418 -5.3453984182004392E-05 + 419 5.3084925782190999E-04 + 420 -8.5030174145261366E-05 + 421 6.2065448143920100E-04 + 422 -1.5107397661986036E-03 + 423 -3.4884935966303024E-04 + 424 -1.7566409995417264E-04 + 425 -6.7798664492532148E-04 + 426 -7.2677493868620880E-05 + 427 -1.5176677977377879E-04 + 428 1.5339509329129013E-04 + 429 -3.5040967300926988E-04 + 430 2.2995524905279340E-05 + 431 -6.1063667009842495E-05 + 432 2.3690920203802604E-02 + 433 -3.1016409044857314E-04 + 434 -8.8606932284052066E-04 + 435 -9.7868614675045221E-03 + 436 -5.7464891082026860E-03 + 437 -3.5390793460799141E-04 + 438 -8.2432132767627688E-04 + 439 -4.3347909263613619E-04 + 440 4.8367344153640927E-04 + 441 -7.2463897322387302E-04 + 442 -1.3598035479101792E-03 + 443 1.4691940941654411E-03 + 444 -1.0634753593678759E-03 + 445 -3.9008339070857778E-03 + 446 -1.0886101945404837E-04 + 447 -7.4042117076171402E-04 + 448 -1.1280729676886587E-03 + 449 -3.2573177452801893E-04 + 450 -4.2182803947854951E-04 + 451 -3.9895684386182325E-04 + 452 1.4348169275122660E-04 + 453 -3.0837608916156746E-03 + 454 -1.0427365741612285E-02 + 455 -7.2765164724062038E-03 + 456 4.0476287860896527E-03 + 457 1.0557892187548028E-02 + 458 1.5119566738984767E-04 + 459 -3.5532325326218260E-05 + 460 7.1043768330234295E-04 + 461 -1.9248138496908459E-04 + 462 -9.9534678801543744E-04 + 463 -4.0595044270695854E-05 + 464 8.8581294997896890E-05 + 465 -6.0953953607434565E-05 + 466 -1.0720560158020067E-04 + 467 1.7489168664450185E-05 + 468 2.2176915461531009E-05 + 469 -1.0997413121394176E-04 + 470 -1.9829877652634319E-03 + 471 -7.1039702962038501E-04 + 472 -4.2738650097491116E-04 + 473 8.9280917672917377E-04 + 474 3.1566006854846492E-04 + 475 6.9480809310129877E-05 + 476 6.5395822348126328E-04 + 477 1.2975761482459881E-05 + 478 5.3387366935309377E-02 + 479 -4.8638799419036347E-03 + 480 -3.1319852069013526E-02 + 481 7.5249365835524468E-02 + 482 8.7322890323982758E-02 + 483 7.2428070735891742E-04 + 484 -2.4963611037958575E-04 + 485 -7.6539194798418055E-04 + 486 9.8909691922635852E-04 + 487 1.5025376441360618E-04 + 488 -8.8903170628069544E-06 + 489 8.7963411678453491E-05 + 490 3.1055911565700859E-05 + 491 -1.2711493092253264E-04 + 492 -6.0937381889532722E-05 + 493 -9.9347965341581597E-05 + 494 -1.7786576508943951E-04 +Ene= -4.8970710679E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -5.2810387829149935E-04 + 2 -4.1194382091423665E-05 + 3 9.5876851605879024E-05 + 4 -6.0122857949823139E-04 + 5 -3.7340199888756320E-04 + 6 -6.8717368561704403E-05 + 7 -2.4320264053225124E-05 + 8 -8.9133893598128627E-05 + 9 -3.1172292903691398E-03 + 10 9.0512894058968312E-04 + 11 3.5170085882145870E-04 + 12 -3.8323572554386284E-04 + 13 -2.7915621668885703E-03 + 14 -1.7836055744412127E-04 + 15 3.0395647953521305E-05 + 16 6.7496744990247734E-05 + 17 -1.2996713418964714E-04 + 18 1.4259196147261365E-04 + 19 -8.0207191433253133E-05 + 20 -3.5813763072125883E-05 + 21 3.7952622287234505E-06 + 22 -6.8755209527986651E-05 + 23 -8.5954293877527643E-05 + 24 1.3002094874182114E-04 + 25 -9.2114505268388861E-05 + 26 8.8415033832008223E-03 + 27 1.7370880216103493E-04 + 28 -4.3602159345955509E-03 + 29 3.0181063086551036E-03 + 30 2.8972948846745436E-03 + 31 -5.1217691613187786E-04 + 32 5.9140584134864985E-04 + 33 -4.5926195081241946E-05 + 34 -1.8827720479953333E-02 + 35 2.9098502850899335E-02 + 36 -1.8402647019734014E-02 + 37 -1.3053328740299637E-02 + 38 1.1467948695181036E-02 + 39 -1.3447916162197949E-03 + 40 -1.3173107136900241E-03 + 41 7.1609542856308187E-04 + 42 6.1300180688883793E-04 + 43 -1.3023492553027869E-03 + 44 -3.8736451524993653E-04 + 45 3.4771911904809129E-04 + 46 -8.5966349394362774E-04 + 47 -1.1603135938253901E-04 + 48 2.6125168608382468E-04 + 49 3.2537795239950167E-04 + 50 -9.1914097960463676E-05 + 51 3.2950857235305346E-04 + 52 1.0442847254266430E-04 + 53 9.4160857156563513E-04 + 54 4.1752336536982450E-04 + 55 8.9951268169782632E-04 + 56 1.4285154683796406E-04 + 57 1.6539012373032144E-04 + 58 3.1997030665878781E-04 + 59 1.7018634743194453E-05 + 60 -1.2364798059785848E-03 + 61 -3.0266636041807304E-04 + 62 5.7079553617848380E-04 + 63 -2.6100226911685656E-03 + 64 1.4272943631830405E-04 + 65 -2.4910226180097964E-06 + 66 5.0625533655413531E-04 + 67 -2.7565353725415040E-04 + 68 3.8933207539589633E-04 + 69 -2.6870267506342017E-05 + 70 -8.2730984519863773E-07 + 71 8.3393079309116409E-05 + 72 1.0068252326626380E-04 + 73 -5.8953686805458821E-05 + 74 -5.1292706711767018E-05 + 75 3.3443891889802984E-05 + 76 2.3494553062670029E-03 + 77 2.6042306165504448E-04 + 78 1.5971244216234250E-04 + 79 2.1265554327269906E-03 + 80 -1.6275979449420670E-03 + 81 8.8739713753690244E-05 + 82 2.4214956633935930E-04 + 83 -4.9229284327867765E-04 + 84 -4.8830328835649809E-05 + 85 1.2379992518256054E-04 + 86 5.0183907841344004E-04 + 87 1.2720947252628929E-04 + 88 -4.6181635227948351E-04 + 89 -1.0134889536759664E-03 + 90 6.8894894876880469E-06 + 91 3.1435375619058446E-05 + 92 1.3097978836318410E-04 + 93 -5.3866414297889014E-05 + 94 7.4305350303184708E-05 + 95 -9.9793282843094091E-05 + 96 9.5650612959523386E-06 + 97 -1.4110280361810028E-05 + 98 -8.1019411478610172E-06 + 99 -2.0841538847065461E-05 + 100 -1.7627323218238509E-05 + 101 1.2242011654143085E-05 + 102 -2.9516812029558828E-03 + 103 1.1753871963604957E-04 + 104 -9.0916705063120984E-04 + 105 1.8990944318750651E-04 + 106 1.0261002945060927E-03 + 107 -2.4250543526725841E-05 + 108 1.2590160198336072E-04 + 109 2.9604993414493550E-04 + 110 -8.9872804386029325E-05 + 111 -1.4749305574423242E-04 + 112 1.0111851564864418E-04 + 113 1.4648964264294057E-04 + 114 -1.5528939533338053E-04 + 115 -5.3492215718806101E-02 + 116 7.5248761895397730E-04 + 117 -1.6460006679547719E-02 + 118 2.0742941230794423E-02 + 119 -1.6264267782044810E-02 + 120 2.3217009169397624E-05 + 121 1.3783501739228197E-03 + 122 -1.3352465945443547E-03 + 123 2.1729992287746569E-03 + 124 3.8631008759230259E-03 + 125 -4.6260710425683367E-03 + 126 6.3271940760853261E-06 + 127 -2.9324975133439889E-03 + 128 -2.4753778453314012E-03 + 129 6.2416260302157142E-04 + 130 -2.0685369445535007E-03 + 131 -1.9536408668614745E-03 + 132 -4.5229046751134327E-04 + 133 -2.3732110496261830E-03 + 134 4.9434809073673901E-04 + 135 -1.2683497452211380E-03 + 136 -3.0006272371410118E-02 + 137 6.9851665807938654E-03 + 138 -1.5430863620217394E-02 + 139 -4.5787284720721452E-02 + 140 -5.2456951909967256E-02 + 141 2.4345160802295650E-03 + 142 1.0451938899113016E-03 + 143 2.1659148007231369E-04 + 144 2.1804934193504310E-03 + 145 1.5388666797643900E-03 + 146 1.6033825162349615E-04 + 147 3.9221641092610843E-04 + 148 4.1703419052064580E-04 + 149 1.8596754806114631E-05 + 150 -2.0194585746089095E-04 + 151 1.1465970757715166E-05 + 152 1.7322263624854067E-04 + 153 1.3421684582950995E-03 + 154 -9.7859737382643958E-05 + 155 -1.8115812733050725E-04 + 156 1.1767014594699346E-03 + 157 2.3260978822279638E-04 + 158 6.6468989602315469E-06 + 159 5.7454256409490641E-05 + 160 2.4740371158924826E-05 + 161 1.7040077819591937E-02 + 162 7.0978975870176972E-03 + 163 -2.6186210296293001E-03 + 164 2.9893455360091001E-02 + 165 6.6437294014779005E-03 + 166 -2.9983308335852836E-04 + 167 3.2406713742432077E-04 + 168 -1.6117340207960560E-05 + 169 -3.0597901253033452E-04 + 170 -3.4493107312260919E-04 + 171 9.6227884263807209E-05 + 172 -9.2306499628845044E-05 + 173 -2.1177929178348479E-04 + 174 -5.6082711758051026E-05 + 175 2.2828042897631080E-04 + 176 8.4769084944786340E-05 + 177 4.3945323604589089E-05 + 178 -5.6963250164504681E-03 + 179 1.5288409416956813E-04 + 180 2.2275381052133543E-03 + 181 -2.3908637190015188E-04 + 182 -1.4415202353752256E-03 + 183 3.4458182430478133E-04 + 184 -5.5955425720327645E-04 + 185 5.2767960342970163E-05 + 186 1.6238753893592611E-04 + 187 -4.7283268796593158E-04 + 188 -3.3800531003307278E-04 + 189 2.0762160361424158E-04 + 190 3.5446214457319097E-05 + 191 -2.3409681115942860E-04 + 192 6.1163377575499631E-05 + 193 -9.9025397866104193E-04 + 194 1.0148146779069339E-03 + 195 1.8448880738397432E-03 + 196 -1.7230018840252629E-04 + 197 1.6367182010553836E-04 + 198 5.5730742573811224E-04 + 199 -3.3251103229283579E-04 + 200 -6.2359964387199618E-05 + 201 1.3957736435474139E-04 + 202 -8.1691510556460120E-05 + 203 -2.6111707046153911E-04 + 204 -1.6583391951317983E-03 + 205 1.0436865868764795E-04 + 206 5.2110609862483065E-04 + 207 -1.7693125203047831E-03 + 208 6.1390686936057062E-04 + 209 4.0830807446360387E-04 + 210 9.2985451948777778E-05 + 211 3.1172403438168303E-04 + 212 -1.2505557223061623E-02 + 213 -2.4523291271154992E-03 + 214 -1.0065662280984591E-02 + 215 -8.5383294430633420E-03 + 216 -1.4465207456244775E-02 + 217 6.5628774397995856E-04 + 218 3.2796961972061315E-04 + 219 1.1233806877361016E-03 + 220 7.7157917482131085E-04 + 221 1.2153126284125270E-03 + 222 -2.2104077924866086E-04 + 223 1.6516440558213543E-04 + 224 -9.6198891286608716E-05 + 225 -1.3864247253833525E-04 + 226 1.0435819297766765E-04 + 227 -8.4060860203495014E-05 + 228 1.5167659660489597E-04 + 229 -4.5254837951206918E-03 + 230 -3.6008407478058991E-04 + 231 1.0095673485272117E-03 + 232 -1.3467763883032034E-03 + 233 -5.9797300414452447E-04 + 234 1.8877897408894819E-04 + 235 2.9697047119413983E-04 + 236 -6.2999432094966210E-05 + 237 -8.0426127759926011E-03 + 238 1.0985060206904752E-02 + 239 1.6081490540322079E-02 + 240 -2.0049807279872107E-02 + 241 -1.6107009621886995E-02 + 242 2.8497496164771129E-04 + 243 -6.2435630921344972E-04 + 244 -6.7742488249627271E-04 + 245 -1.2098732470303324E-03 + 246 5.4904853216709382E-04 + 247 -4.1736781032986368E-04 + 248 -5.3128587926688960E-04 + 249 -5.4263429935901605E-04 + 250 -2.6065893884206262E-04 + 251 -2.7186625875462900E-04 + 252 2.5470367772892859E-04 + 253 -4.2671237671445845E-04 + 254 -2.3521145347547142E-03 + 255 -5.0555661696794483E-04 + 256 1.2336119849798370E-03 + 257 1.5986786360062664E-03 + 258 1.9237017024166386E-03 + 259 3.7584700203206506E-04 + 260 1.3343816267514960E-04 + 261 7.0708215725929981E-04 + 262 1.0774376739107859E-01 + 263 -6.9706285566133785E-01 + 264 -5.4683917222158485E-01 + 265 -8.6961177996568814E-02 + 266 -2.2776378363332739E-02 + 267 1.4524939599537170E-03 + 268 -2.9033330573116274E-03 + 269 -4.7187014092519506E-04 + 270 7.6362669567765109E-05 + 271 3.8553870741120030E-04 + 272 6.3220768741363033E-04 + 273 3.5218581150037707E-04 + 274 -9.8171757660990848E-04 + 275 5.3056652495915677E-04 + 276 -3.2816080899689656E-05 + 277 4.7273351305056251E-04 + 278 5.7267742283654280E-05 + 279 2.0599145608093183E-02 + 280 -2.7975710092577116E-04 + 281 2.4883890594331895E-02 + 282 1.8590364210687268E-02 + 283 -1.1786104657112214E-02 + 284 1.4773600219298303E-04 + 285 1.0463696495491173E-03 + 286 6.3147244921641979E-05 + 287 -2.9517535331328630E-03 + 288 6.3109141569361333E-03 + 289 6.2784973822423663E-03 + 290 2.4384409958673513E-03 + 291 -1.5703114885273631E-04 + 292 -2.6799825317923051E-03 + 293 4.2865050542090540E-06 + 294 -3.8762958286358841E-04 + 295 1.4593876073286296E-04 + 296 1.1068838808340662E-03 + 297 2.7955115602379394E-04 + 298 -5.4728831218579449E-05 + 299 2.7311395304453832E-04 + 300 2.3201196764645378E-04 + 301 -2.1158535498131954E-04 + 302 -9.8686722677327726E-05 + 303 1.4329327928543935E-04 + 304 -1.0979911388186985E-04 + 305 -1.0792307621440827E-04 + 306 -1.9178176471060555E-04 + 307 7.1356212855133694E-04 + 308 1.0445628151443342E-04 + 309 -3.1785180222864795E-04 + 310 1.5552581975317406E-04 + 311 1.1044102089624587E-04 + 312 -9.7355076857611237E-05 + 313 5.2269888734834339E-04 + 314 3.5376922157062361E-03 + 315 1.8029161874028668E-03 + 316 -2.4779724729496462E-03 + 317 -3.0443925391415941E-03 + 318 -1.1629578246523588E-04 + 319 3.1351038162830613E-04 + 320 3.0107373909962575E-04 + 321 -5.2187010065224177E-04 + 322 2.3568617508337746E-04 + 323 1.4008181528100633E-05 + 324 1.1558003082446230E-04 + 325 5.0627942756403415E-05 + 326 -1.0761311226372364E-04 + 327 -7.8382286517362281E-05 + 328 4.8012217861148251E-05 + 329 3.3827658453475445E-06 + 330 1.0225494181868165E-03 + 331 1.8960508227466034E-05 + 332 1.4442603721989396E-04 + 333 2.5086913692825668E-04 + 334 -5.8004456291910244E-05 + 335 1.3715164993302931E-04 + 336 -5.8666620623583618E-06 + 337 -1.3947360622643609E-04 + 338 -1.0690684083733557E-02 + 339 -1.6237309759454255E-03 + 340 2.7820642697176301E-03 + 341 -8.9539909026734878E-04 + 342 -1.8094016190445486E-04 + 343 3.4476976917608896E-04 + 344 2.6208398859065631E-04 + 345 -2.9985606361131851E-04 + 346 -2.3472902638635532E-04 + 347 1.6594435340943589E-04 + 348 1.0581494328213635E-04 + 349 -1.4970522612285012E-05 + 350 9.9595906009562578E-05 + 351 -3.0531089890207802E-06 + 352 1.3766579541221648E-04 + 353 -1.5013285265240844E-05 + 354 -8.6733439730650395E-05 + 355 -7.3815584556359960E-04 + 356 1.0201885834851798E-04 + 357 -8.7899915902461508E-04 + 358 7.5631109366275579E-04 + 359 -4.7501836216293680E-06 + 360 -5.2274549533940786E-04 + 361 1.5599412739917266E-04 + 362 1.3671999968702383E-04 + 363 9.0990264484693476E-06 + 364 -1.7679835786129223E-04 + 365 1.6011469966456721E-04 + 366 7.9065518053916594E-05 + 367 -4.3064540926486823E-05 + 368 1.0310287443536625E-03 + 369 6.5045654322781245E-05 + 370 -7.4083192665320345E-04 + 371 -1.9110268783484059E-03 + 372 3.3404481865295156E-04 + 373 3.0143813161902884E-04 + 374 -9.9587708112747891E-04 + 375 2.0920498920187454E-04 + 376 -3.1807294238726797E-05 + 377 -7.6657720408427501E-05 + 378 -1.4709763405732282E-04 + 379 1.2974012828454763E-04 + 380 -2.0138219676336566E-05 + 381 5.3943153483679888E-02 + 382 -7.4783861685919070E-04 + 383 1.4143466583636926E-02 + 384 1.6546501002946926E-02 + 385 7.1057143542601967E-03 + 386 2.6401632908101577E-03 + 387 2.3007040232877630E-03 + 388 4.5120997812806850E-04 + 389 3.0308562212053415E-03 + 390 -1.5051824366444126E-04 + 391 -1.5822200584607905E-03 + 392 3.1584713622009614E-03 + 393 -5.4902694572214203E-03 + 394 9.7379045529300066E-04 + 395 5.5763125871984400E-04 + 396 2.3071869539909515E-03 + 397 8.8154830080925436E-04 + 398 -1.5590455145378745E-04 + 399 1.7889459439753805E-04 + 400 6.3419350061946766E-04 + 401 8.0512432919854120E-04 + 402 3.2518825318938280E-02 + 403 -3.2656682243017120E-02 + 404 -2.3731809266322071E-03 + 405 -3.7478483304295780E-03 + 406 -2.0771639036123571E-02 + 407 -1.5211818200227035E-03 + 408 6.3842705522592562E-04 + 409 -8.7853195223018955E-04 + 410 1.8826466413252080E-03 + 411 2.3107430205637153E-03 + 412 5.1465919019900660E-04 + 413 3.7620788186758382E-05 + 414 2.1863581547333871E-04 + 415 6.2898482911293247E-04 + 416 -1.1262143939544393E-04 + 417 1.1462074375993916E-04 + 418 3.5001837558650087E-04 + 419 1.7550262752220468E-03 + 420 4.9704189258179194E-05 + 421 9.9331483252887800E-04 + 422 1.3488324700384623E-03 + 423 -6.2054770434397946E-04 + 424 2.9090741371714195E-04 + 425 5.8567859397846457E-04 + 426 -3.2669976647470907E-04 + 427 -5.0958255221935439E-05 + 428 2.5494203857296820E-04 + 429 3.8292212244798887E-04 + 430 8.3733737102562058E-05 + 431 1.9704000064391650E-04 + 432 -5.5530882405644827E-02 + 433 7.5374987080250807E-04 + 434 1.1679416664845732E-02 + 435 2.1172004277629497E-02 + 436 9.7766505794547407E-03 + 437 8.3832814165824541E-04 + 438 1.7974678269136516E-03 + 439 6.3624134534414885E-04 + 440 -1.3826553829924019E-03 + 441 2.1646640768693695E-03 + 442 2.1120368855504883E-03 + 443 -2.8596489478277341E-03 + 444 4.8921378909177488E-03 + 445 2.2074708396297737E-03 + 446 -1.0620280120215884E-04 + 447 1.0993200163720534E-03 + 448 2.7694208135694399E-04 + 449 -8.5433609766864360E-04 + 450 8.4500101728635058E-04 + 451 6.4090050373408138E-04 + 452 -2.9713310422713987E-04 + 453 1.4803809911426621E-02 + 454 8.2081159091270794E-03 + 455 2.1803400452628866E-02 + 456 -3.7273688897848664E-03 + 457 -2.1022917025395101E-02 + 458 -3.8122409832468080E-04 + 459 2.8893008806237804E-04 + 460 -1.7042127960279953E-03 + 461 9.6545089796234621E-05 + 462 1.9196390721735574E-03 + 463 1.1625838196448944E-04 + 464 -4.1807043614219679E-05 + 465 1.7442373506996030E-05 + 466 -2.2564128932908694E-05 + 467 -2.8768639186010144E-04 + 468 -8.7960206618654428E-05 + 469 2.9481370006769180E-04 + 470 -5.3800744441241839E-04 + 471 1.0093970128805655E-04 + 472 -2.3438009650234891E-03 + 473 -5.1006316777996693E-03 + 474 -2.2217206129397623E-03 + 475 -9.9671458705972819E-04 + 476 -2.1175004662742029E-03 + 477 -8.1795836830817967E-04 + 478 -5.9833687072221656E-02 + 479 -9.3321748672873739E-02 + 480 7.9972318919385138E-02 + 481 -1.5951871049301622E-01 + 482 -3.4109513738204528E-01 + 483 2.5617581712192344E-05 + 484 -1.3497797461865628E-03 + 485 1.1568266064891017E-03 + 486 -2.5253315358015416E-03 + 487 -2.9064349025955775E-03 + 488 3.3841048400940968E-04 + 489 3.3644627672277589E-04 + 490 1.8942996045994930E-04 + 491 1.7493397387876745E-04 + 492 2.5824258255189446E-05 + 493 -1.3608656825793932E-04 + 494 2.0379897667699328E-04 +Ene= -4.8853740611E-01 +Spin= Alpha +Occup= 2.0000000 + 1 1.0014220494889840E-03 + 2 1.1808857442858949E-05 + 3 -1.5155999871525652E-04 + 4 2.2300418330141675E-04 + 5 4.6600517883925685E-04 + 6 -2.1444904569800456E-04 + 7 -1.6637520975597154E-04 + 8 -2.2757921653394607E-05 + 9 -1.7352399141826141E-03 + 10 6.0857486530799384E-04 + 11 -8.9242037048949639E-03 + 12 4.5485994788576345E-03 + 13 -5.2722428990467319E-03 + 14 7.0329312980831150E-05 + 15 -3.7841659105343896E-04 + 16 -1.8856359890248841E-04 + 17 -2.6193153492277689E-04 + 18 -1.3081504820688805E-04 + 19 2.1418487907847963E-04 + 20 -9.0644592009667073E-05 + 21 -1.6483501994970170E-04 + 22 5.7391101671213515E-05 + 23 -2.1746336621227149E-04 + 24 3.1730078981033894E-04 + 25 -9.4402601151980133E-05 + 26 -3.7050228030010386E-04 + 27 -1.2301344080122138E-03 + 28 -1.8424005180721218E-03 + 29 -2.3607558626276169E-03 + 30 -4.2722283042540536E-04 + 31 2.6921907301074113E-04 + 32 -9.7258924973128279E-04 + 33 1.3090550199117872E-03 + 34 4.7042605401441485E-02 + 35 -3.4839091240191924E-02 + 36 2.2603944277863456E-03 + 37 -4.0194512793524838E-02 + 38 6.5762216173311738E-02 + 39 7.1799115419779046E-04 + 40 3.5884407044557758E-04 + 41 -3.1507892706276780E-04 + 42 2.6197818858013917E-03 + 43 -6.5015216225950735E-04 + 44 -3.3463108625560954E-05 + 45 -7.2160429299161506E-04 + 46 4.0641577424911873E-04 + 47 -2.3687799214519730E-04 + 48 -9.0417962301262653E-05 + 49 -1.9717321432855128E-04 + 50 8.6934543731616949E-04 + 51 -1.3307076880944234E-03 + 52 -2.5310252088222082E-04 + 53 3.2113681930177190E-04 + 54 4.3283516741953344E-04 + 55 7.5080875151022674E-05 + 56 1.8309999815144452E-04 + 57 2.3166289723240181E-04 + 58 1.3090178882341281E-04 + 59 -5.8139705550590717E-05 + 60 5.5357719289227298E-04 + 61 1.7054253862311445E-03 + 62 4.1239268215715940E-04 + 63 3.9200339123734242E-04 + 64 -1.0474524376726943E-04 + 65 -7.9721550813813226E-04 + 66 4.0201342729951755E-04 + 67 -6.5822681792115337E-04 + 68 -2.2169073330147496E-04 + 69 -7.0142132746254832E-05 + 70 -1.0806307594487062E-04 + 71 2.3818555398020700E-04 + 72 -1.2463960135382436E-04 + 73 -4.7387857338851598E-04 + 74 1.8975075473560786E-04 + 75 3.8894374894672113E-05 + 76 -1.4410529469960822E-02 + 77 3.9193429789625099E-04 + 78 -2.3141369652526960E-03 + 79 1.1083794755816570E-03 + 80 5.1937244458749761E-03 + 81 6.4257128761783578E-04 + 82 -8.8717217115709965E-04 + 83 -2.2814121848587881E-04 + 84 2.0143623839449207E-04 + 85 -1.1218140225444278E-03 + 86 -1.5301063679121169E-04 + 87 2.8220699174326581E-04 + 88 8.1890697132212706E-05 + 89 1.2176634276370420E-03 + 90 -7.0816928001585117E-05 + 91 7.2256230300047107E-05 + 92 -1.0912680971805545E-04 + 93 3.6579005687788267E-04 + 94 4.3281225648107385E-05 + 95 -1.4811763563095604E-04 + 96 4.9613508797136205E-05 + 97 4.2883198694098056E-05 + 98 -8.2468207069191442E-06 + 99 1.0949199680620236E-04 + 100 2.5661395109784715E-06 + 101 2.9439562483086777E-05 + 102 2.2103391645474390E-03 + 103 -1.5624875325605296E-04 + 104 -1.8656363899644485E-03 + 105 -4.4179434783503391E-03 + 106 3.3108321731889880E-03 + 107 -4.8568942348109256E-04 + 108 -8.5206441870233965E-04 + 109 1.2510099163231373E-04 + 110 5.6154457024592533E-04 + 111 -5.5360906553754083E-04 + 112 2.0370414189154157E-04 + 113 9.2059578593568499E-04 + 114 4.0668293401847639E-04 + 115 6.3958159354549127E-02 + 116 -1.2331668813543126E-03 + 117 4.1589637991507888E-03 + 118 -1.5827049739142070E-02 + 119 2.4420181667288859E-02 + 120 1.2158489366625402E-04 + 121 -2.0646626816879984E-04 + 122 1.9099058172264930E-03 + 123 -5.2759052306939093E-03 + 124 -1.3237790682669942E-03 + 125 3.3029226390975811E-03 + 126 6.3542086122986134E-04 + 127 2.7328418967860610E-04 + 128 8.4988863685883168E-03 + 129 -6.9740406574719718E-04 + 130 3.0930620236533490E-03 + 131 1.0145333156324633E-03 + 132 -2.7744988398413785E-03 + 133 5.8530741996238222E-04 + 134 -1.0600555993756967E-03 + 135 9.8611107987596437E-04 + 136 5.2271573107937321E-02 + 137 4.6482230041193409E-02 + 138 5.5423226033686775E-02 + 139 3.4164545756409780E-02 + 140 -7.0372262098225780E-02 + 141 -1.5746650927590852E-03 + 142 -2.5412840922051975E-03 + 143 -1.1567262326910965E-03 + 144 -2.4487873022968626E-04 + 145 3.1894006357626845E-03 + 146 -1.3675832947940844E-04 + 147 1.4298481466925613E-04 + 148 7.5030708121800527E-04 + 149 -1.9654092391293678E-04 + 150 2.4797883291699573E-04 + 151 -3.2563136091272408E-04 + 152 9.8895578663652081E-04 + 153 -5.7978884797560710E-03 + 154 5.5659755089103779E-04 + 155 5.7891601783617119E-04 + 156 -2.8115405917489202E-03 + 157 1.0952264609050551E-03 + 158 -1.3256852416858899E-04 + 159 -5.9319669248875247E-04 + 160 9.0467298396688611E-05 + 161 -3.3368313267862465E-02 + 162 -2.5808945765425494E-02 + 163 -2.1210575463851661E-02 + 164 1.3535791191468851E-02 + 165 -1.9313299246138709E-02 + 166 2.9358551723160939E-04 + 167 -4.8334994234186318E-04 + 168 1.5090551451957673E-03 + 169 1.2936567920560813E-03 + 170 3.4309358294920544E-04 + 171 -5.9882703513551680E-04 + 172 1.1418995216664112E-04 + 173 -2.4751346296007901E-04 + 174 -5.7670084601916388E-04 + 175 -4.4213765070746632E-04 + 176 -2.3451333024241574E-04 + 177 3.7070442057477360E-04 + 178 4.3261203630618316E-03 + 179 -3.3297569266105102E-04 + 180 6.4120226825213969E-03 + 181 -1.8186161551080663E-03 + 182 6.3540963467603366E-03 + 183 1.2974868077049936E-03 + 184 4.0069533572023857E-05 + 185 4.8029858425578697E-04 + 186 -1.2663065536093465E-03 + 187 7.1737416174778309E-05 + 188 9.6212855099438806E-04 + 189 9.2717171927703785E-04 + 190 3.7487406998961298E-04 + 191 3.2684974769428798E-04 + 192 -5.7316012570378701E-06 + 193 1.3165861744424382E-03 + 194 -1.1538559882865616E-03 + 195 -1.3599233039649364E-03 + 196 1.6763013999383160E-04 + 197 3.2190240504075804E-04 + 198 4.0469994167721419E-04 + 199 3.5238711592377531E-04 + 200 -1.2423651088847286E-04 + 201 -5.1370494995342417E-06 + 202 8.6796107230345141E-05 + 203 2.4151157944495353E-04 + 204 1.1512912377602403E-03 + 205 -5.8603832861318884E-04 + 206 -1.3165198744532751E-03 + 207 7.0845857635774758E-04 + 208 -1.0093681655536924E-03 + 209 -4.1557156954881669E-04 + 210 -1.6445822748305120E-04 + 211 -5.8684561430779583E-04 + 212 -1.9372777208145945E-03 + 213 -4.7013936296147292E-03 + 214 -2.0975021606805970E-02 + 215 1.1933786563789673E-02 + 216 9.1542282480702383E-03 + 217 3.5017731310342027E-04 + 218 7.5060467686071690E-05 + 219 -8.5367771852764673E-04 + 220 -2.7185308359506860E-04 + 221 -3.9477683204636838E-04 + 222 2.4294567024907648E-04 + 223 -6.3030076043598323E-05 + 224 6.8057761658520030E-05 + 225 4.3243865685795843E-04 + 226 2.8212605738560750E-04 + 227 1.5956468889560948E-04 + 228 3.0789182304905987E-04 + 229 -3.4919286062383096E-03 + 230 1.2353076661887060E-04 + 231 1.5141197048072692E-03 + 232 -1.3997749320934052E-03 + 233 -6.9194729589514838E-04 + 234 -6.9076327754445557E-04 + 235 2.7794861728493164E-04 + 236 -6.6917466352741056E-04 + 237 -2.2371719668866717E-02 + 238 -1.3849793459456364E-02 + 239 1.6090886644200549E-02 + 240 -5.4101299812609636E-03 + 241 -3.4744410803123821E-02 + 242 4.7993835960270310E-04 + 243 1.1909055503026796E-03 + 244 -6.2319297320471436E-04 + 245 -2.0170180407750400E-04 + 246 1.3089853728567658E-03 + 247 -5.0668636713982506E-04 + 248 2.7092026635061698E-04 + 249 -4.1219907582991090E-04 + 250 1.9700040996841495E-05 + 251 -5.7066732083191864E-05 + 252 2.4671081557084748E-04 + 253 9.9836511965617887E-05 + 254 1.0025725420337757E-02 + 255 -7.5587136368961681E-04 + 256 7.4792194150804982E-04 + 257 -3.4226597639196352E-03 + 258 -1.1569048766270750E-03 + 259 4.8265373728654214E-04 + 260 -2.1363027575351757E-03 + 261 2.2152617607041833E-04 + 262 -1.4222535654085272E-01 + 263 -1.9480500325704458E-01 + 264 5.5486142782753961E-03 + 265 9.3725193778462312E-01 + 266 -9.7800544036075757E-02 + 267 -5.9169265186848367E-03 + 268 -1.5603454180460423E-03 + 269 1.7596009056752573E-03 + 270 7.9986684653392726E-04 + 271 -5.1926448687996058E-04 + 272 6.8347177759403089E-04 + 273 7.8665416357658914E-05 + 274 1.7443678928909770E-03 + 275 7.3123371055916605E-04 + 276 2.0702760438787293E-04 + 277 1.8116331137816484E-04 + 278 3.8254070149320999E-04 + 279 2.2870436205847808E-02 + 280 2.5607275718061924E-04 + 281 -3.3734575060625420E-03 + 282 -8.1454383863215317E-03 + 283 -2.3284775248718439E-02 + 284 2.3190592202606269E-05 + 285 -2.7295857853673979E-04 + 286 -2.5237289646367991E-03 + 287 -3.2277866097445073E-03 + 288 -1.7991850863898491E-03 + 289 1.5651318462544831E-03 + 290 7.8521703366737255E-04 + 291 -2.8148115511587336E-04 + 292 -2.0913533874343982E-03 + 293 -1.5517657870223613E-05 + 294 1.0391701420711637E-03 + 295 4.3842812622013247E-04 + 296 1.6698639276935801E-03 + 297 4.9261498367565682E-04 + 298 -2.0869048493160755E-04 + 299 4.7185262279725076E-04 + 300 4.2924574680063883E-04 + 301 5.2335886953809978E-05 + 302 -2.2631967414685067E-05 + 303 -6.5802348959325511E-05 + 304 -1.0580081134147902E-04 + 305 8.2524562138135420E-04 + 306 -1.2098537333775951E-04 + 307 -1.1201580418724179E-04 + 308 -2.6755036933288093E-04 + 309 2.4771932971555562E-04 + 310 -1.0625885206757107E-04 + 311 -1.2670591706063559E-04 + 312 4.2070282320096948E-06 + 313 2.2331828165453138E-03 + 314 1.7443852142175916E-03 + 315 2.6770766897797117E-04 + 316 2.0532687081651711E-03 + 317 -6.2018236263472991E-03 + 318 4.3968272888541160E-05 + 319 -3.3177053211586770E-04 + 320 -2.4406179665900993E-04 + 321 3.2195407998080367E-04 + 322 4.2108722846754729E-04 + 323 -1.4230583568329691E-04 + 324 -5.5951877896267041E-05 + 325 2.3776229572271177E-05 + 326 1.3913191966121179E-04 + 327 1.0858160353310267E-04 + 328 -1.2524693303139070E-04 + 329 4.2195702069578883E-05 + 330 7.8364736136604250E-06 + 331 3.0299322998342856E-04 + 332 1.5257039373409913E-04 + 333 1.1041954983880502E-04 + 334 9.6354057857215615E-04 + 335 2.8404294875026799E-05 + 336 4.7800140273820923E-05 + 337 3.2107490375531480E-04 + 338 9.1931853999108731E-03 + 339 6.3843284184390472E-03 + 340 -4.9736567604115912E-03 + 341 8.7486601027206572E-04 + 342 -5.9678203134988462E-04 + 343 2.6084587702868953E-04 + 344 -1.4451765893263430E-04 + 345 3.1969407658310686E-04 + 346 -1.5769675021152363E-04 + 347 8.0538883426865278E-05 + 348 8.5308764505009934E-05 + 349 -2.7196533827504762E-05 + 350 -3.0007784719508844E-05 + 351 -1.2069029961205257E-04 + 352 -5.1015944290339958E-05 + 353 2.5278637633568844E-05 + 354 1.8580854366656745E-05 + 355 3.8663543843771032E-04 + 356 -9.2224523210429222E-05 + 357 -2.7867250152178115E-05 + 358 -1.6817610187445464E-03 + 359 6.1967780245388254E-04 + 360 1.8096377903369543E-04 + 361 -2.8845848349154851E-04 + 362 -7.2247217265503170E-05 + 363 1.2882827974353996E-04 + 364 4.3472661404424651E-05 + 365 -2.3253475177263796E-04 + 366 8.4677245616676685E-05 + 367 -1.3827751133158525E-04 + 368 -3.0253740649750912E-03 + 369 1.6343934463425794E-05 + 370 -1.9820627320964509E-03 + 371 -1.7229158994485029E-03 + 372 2.5038970986334293E-03 + 373 -4.8817621142816252E-04 + 374 -2.4336725080412857E-03 + 375 -1.2759162490428245E-03 + 376 4.4810700066219919E-04 + 377 -4.8159327645736893E-04 + 378 4.5744630863385865E-05 + 379 2.2440179619054651E-04 + 380 -6.3562339802827761E-05 + 381 -1.8987629985277487E-02 + 382 6.1121831695529379E-04 + 383 -4.3588399303203075E-03 + 384 -2.5953214451812424E-03 + 385 3.9376166347179940E-03 + 386 -2.3068986999823494E-03 + 387 -1.7115631073895733E-03 + 388 7.4867986528798865E-05 + 389 -1.1331093157263849E-03 + 390 1.3017465054065793E-03 + 391 4.1729902446747220E-04 + 392 -1.4519347997938403E-03 + 393 1.5416723330612116E-03 + 394 4.6257825107370312E-04 + 395 7.3051588636477590E-04 + 396 1.1975660344412152E-03 + 397 -4.3780175786071156E-05 + 398 2.9478145235903959E-03 + 399 1.1292600630047247E-03 + 400 7.4010898678593460E-04 + 401 2.0839981994195348E-04 + 402 -4.4564158579443916E-02 + 403 9.9991468670897424E-03 + 404 -2.4988937633387215E-04 + 405 -1.8119192626431076E-02 + 406 4.2243782487386763E-02 + 407 1.4287266357101947E-03 + 408 7.3377370929977252E-04 + 409 2.2686152296644868E-04 + 410 6.3690232256217538E-04 + 411 -1.5348898002738565E-03 + 412 -3.7739259080017294E-04 + 413 -3.3942201927092462E-04 + 414 -2.6038069879297146E-04 + 415 -5.9323033688176036E-05 + 416 -3.4831054528609082E-06 + 417 1.3357862361378184E-04 + 418 3.7947701311401850E-05 + 419 2.5862788430555269E-03 + 420 -1.0018993834888619E-04 + 421 -9.9335871433049836E-04 + 422 -1.7124723475639319E-03 + 423 -2.8400285953127211E-04 + 424 7.3086461548674901E-05 + 425 -3.5480756398664857E-04 + 426 5.2537633652108278E-05 + 427 3.2990908722156172E-05 + 428 -3.2200752476224957E-04 + 429 -4.2405351960635564E-04 + 430 -6.5675490099424500E-06 + 431 -1.6259046145584692E-04 + 432 6.4586170815111848E-03 + 433 -1.3372997430575041E-04 + 434 -3.4291037510176385E-03 + 435 -2.1493861457367062E-03 + 436 2.9327371445332380E-04 + 437 -2.8379857409242836E-04 + 438 -4.3954459016747499E-04 + 439 -4.1398981165326590E-05 + 440 2.3874503160241053E-04 + 441 -2.9705807766096967E-04 + 442 1.1262068375963352E-04 + 443 2.0959822828385920E-04 + 444 -1.0121760041588207E-03 + 445 -1.3618107005961581E-03 + 446 -2.0779371761774353E-04 + 447 -1.3886772081991706E-03 + 448 -3.4802253800171574E-04 + 449 -9.3322277502093408E-04 + 450 -4.9754858182410723E-04 + 451 4.3197681930166584E-05 + 452 -4.1939485225631979E-04 + 453 -5.6522980646488532E-03 + 454 5.3784317623737296E-03 + 455 -1.7199415643349852E-03 + 456 -1.1296162631877013E-02 + 457 4.4131159117640597E-03 + 458 -4.6187134502854982E-04 + 459 -8.1225297600578592E-04 + 460 4.1672950543629884E-04 + 461 -5.3908554898040467E-04 + 462 -8.5269461326874533E-04 + 463 -2.8317491937519637E-05 + 464 -7.2124214489797901E-05 + 465 5.8936361239028666E-05 + 466 -9.9680888482211964E-05 + 467 1.1195343114736318E-04 + 468 1.1870200188710984E-05 + 469 -1.2020193197766556E-04 + 470 7.8261490336552518E-06 + 471 -2.0561135097670998E-04 + 472 3.6699076921715382E-04 + 473 -1.2917634291746935E-04 + 474 -4.1270194672747893E-04 + 475 1.0757195444704960E-04 + 476 -9.0184163347889478E-06 + 477 -2.2405784200325534E-04 + 478 -4.3211167259829064E-03 + 479 1.8924400277252115E-02 + 480 -1.8097195785797979E-02 + 481 7.2312121333427942E-03 + 482 7.5348875917498004E-02 + 483 7.9351922336008384E-05 + 484 -3.0167338756046129E-04 + 485 -3.1221452053894577E-04 + 486 7.4945869645506229E-04 + 487 6.7229173932778109E-05 + 488 -6.0021950390913483E-05 + 489 -3.0224252032560458E-05 + 490 2.2097232302303616E-04 + 491 -1.6554685278925648E-04 + 492 1.0147256560513084E-04 + 493 2.4707428016039316E-04 + 494 -1.0312275802240729E-04 +Ene= -4.8824159146E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -7.9997159261724728E-04 + 2 3.0756847404582628E-04 + 3 -7.4848852515051580E-05 + 4 -4.8839322303908443E-04 + 5 7.1850698225063602E-04 + 6 -1.0438351451786597E-04 + 7 9.5914915303493728E-05 + 8 2.9866050018656531E-04 + 9 -8.2162660151120456E-04 + 10 8.8907101954757240E-04 + 11 2.9593507693990266E-03 + 12 -3.0003223058146754E-03 + 13 -2.7430421666819124E-03 + 14 4.7380482018192572E-04 + 15 -4.9000685297908349E-04 + 16 9.8620143656777813E-05 + 17 2.4897402257806388E-04 + 18 3.5569392940134204E-04 + 19 2.9425296363304595E-05 + 20 -1.0355004330020242E-04 + 21 1.6779807630023812E-05 + 22 1.0071922886694570E-04 + 23 -7.6433297603613958E-05 + 24 -5.3322444997410992E-05 + 25 -1.6753085746834878E-04 + 26 1.9364765831560098E-02 + 27 8.0378386605017870E-04 + 28 -1.0142280683229652E-02 + 29 7.5562946156720471E-03 + 30 2.0088092211581927E-03 + 31 -1.1642348454832688E-03 + 32 -6.3385611775070678E-04 + 33 7.0181852966058080E-04 + 34 4.2962355403606739E-02 + 35 -5.0337280757806635E-04 + 36 1.3818808082520386E-02 + 37 5.7114429011067058E-02 + 38 6.6112621716695727E-02 + 39 -4.7561605499330702E-03 + 40 -1.1119394466280460E-04 + 41 -3.8508381450754744E-04 + 42 8.4996768595488347E-04 + 43 -4.3987413446087602E-03 + 44 -2.6872962694924452E-04 + 45 3.3419730380755209E-04 + 46 5.8535212691669962E-04 + 47 1.0078756094472021E-04 + 48 -1.9126175190912619E-04 + 49 -7.0714276111524300E-04 + 50 8.7115510502529237E-04 + 51 -1.3103812157296115E-03 + 52 7.4954505803667289E-05 + 53 -1.3689627681297727E-03 + 54 2.7059562120124631E-04 + 55 -7.0553644161493938E-04 + 56 -3.9551224400278455E-04 + 57 2.6024312620562951E-04 + 58 7.6831743866674417E-05 + 59 2.8799005088597134E-03 + 60 6.9647256846931561E-03 + 61 1.8874422108759565E-03 + 62 2.0483895248203784E-03 + 63 -5.7775039521009970E-04 + 64 -1.0510208016935275E-03 + 65 -1.1630192632040928E-03 + 66 -5.9266768691006535E-04 + 67 1.2153568620008870E-04 + 68 -8.9166024954270005E-04 + 69 8.4405088367770189E-05 + 70 1.1011128438651791E-04 + 71 -1.8704271441816363E-04 + 72 2.0663276343321841E-04 + 73 -2.3143785754730419E-04 + 74 -5.4799065031690653E-05 + 75 1.0980487136751687E-04 + 76 2.2129690337566931E-03 + 77 -1.1356625687371068E-05 + 78 2.0554289725844537E-03 + 79 -3.5039010068726728E-03 + 80 -1.3788918858183713E-03 + 81 3.9816879941610326E-04 + 82 -3.6080964923370398E-04 + 83 1.4569745446573539E-04 + 84 6.5123181524263062E-04 + 85 3.7280992141168338E-04 + 86 -4.6751514095950264E-04 + 87 -4.5217561940529786E-04 + 88 8.6789280389947497E-04 + 89 -1.0643996836782242E-03 + 90 5.0572719542144695E-05 + 91 2.5709608471075383E-04 + 92 2.5289722385505583E-04 + 93 -1.9866663113435646E-04 + 94 1.2170405343255207E-04 + 95 1.1271984684592183E-04 + 96 -1.6007295044634821E-04 + 97 -2.0238108473960806E-05 + 98 2.8400259439906061E-05 + 99 -2.0340544293067785E-05 + 100 -8.8425911956701962E-05 + 101 1.3791841979547423E-05 + 102 1.5370876345575936E-02 + 103 -4.8615561849410277E-04 + 104 1.3345927948230567E-03 + 105 -7.2667211506997776E-03 + 106 2.1043588855074510E-03 + 107 -3.4898118147412002E-04 + 108 -1.1676956369964689E-03 + 109 9.2813204251924152E-05 + 110 6.7181766013008992E-04 + 111 -5.0798424817578803E-04 + 112 2.9261095257310596E-04 + 113 7.2237099601271345E-04 + 114 1.4741014521238319E-03 + 115 -2.1176448849679159E-03 + 116 -9.8969308162360451E-05 + 117 -1.4911455943229356E-02 + 118 2.0649998870663228E-03 + 119 3.7109859406494485E-04 + 120 -5.9130308448411149E-04 + 121 4.3528564454375668E-04 + 122 -5.0283877371183206E-05 + 123 -6.7574572857540221E-04 + 124 4.1801945955650963E-03 + 125 -2.2251132776816477E-04 + 126 7.4822202900427196E-04 + 127 -1.9236872872524567E-03 + 128 -9.8428732525318949E-03 + 129 -1.8778369000616831E-03 + 130 -6.7393846220307170E-03 + 131 -7.4248939661725067E-03 + 132 2.4126639514574489E-04 + 133 -1.1957445166099435E-03 + 134 -1.0618784060862584E-03 + 135 3.4611662728341970E-04 + 136 -4.0383666951356686E-02 + 137 -3.0564818091390698E-02 + 138 2.6592417948635649E-02 + 139 -9.1041411966642311E-02 + 140 4.5709572375584567E-02 + 141 5.0758837570334409E-03 + 142 2.0598057938447248E-03 + 143 -2.9325183658637235E-04 + 144 1.2861184840151840E-03 + 145 -4.5726320518218585E-03 + 146 -3.2958362800401597E-04 + 147 4.9678952362293383E-04 + 148 -6.1815521840630919E-05 + 149 4.3424460192267427E-04 + 150 -4.3678767448432262E-04 + 151 -3.0169678933967170E-04 + 152 -9.6284573964853083E-04 + 153 3.5219469326827911E-04 + 154 -2.5582784239602704E-04 + 155 -1.0881966484567924E-03 + 156 3.7673830279115288E-04 + 157 5.7924144132528402E-04 + 158 2.4787646571961425E-04 + 159 -1.9248729260354347E-04 + 160 -1.8904880478371416E-05 + 161 1.4867760149731795E-02 + 162 -2.4066034923778092E-02 + 163 2.2980630938386499E-02 + 164 8.7413663280464290E-03 + 165 -1.9635209394049990E-03 + 166 -1.0116973977708053E-04 + 167 8.7680720976356075E-04 + 168 3.9848934517971454E-04 + 169 6.5422728374989593E-05 + 170 3.0615534014513028E-04 + 171 -2.5875082794430985E-05 + 172 -4.9936821520083483E-04 + 173 -2.0267657354418653E-04 + 174 -2.8445483903864180E-04 + 175 3.8035167311033577E-04 + 176 -3.1181383871692060E-04 + 177 1.0310861004088336E-04 + 178 -7.3630369246249347E-03 + 179 1.6721416649720640E-04 + 180 -1.5861027051599307E-03 + 181 7.4061556864247070E-04 + 182 -2.6083042831457339E-03 + 183 -4.9875074853690255E-04 + 184 -8.1312859076573634E-04 + 185 -6.0625339997667533E-04 + 186 7.1709753902669273E-04 + 187 2.7872160364448884E-04 + 188 -3.5797997931528400E-04 + 189 -1.4538043325112933E-04 + 190 -1.0088087904043620E-04 + 191 -9.5839664967920519E-05 + 192 -1.0442422779917513E-04 + 193 2.8763053844875041E-04 + 194 -1.5603573036389899E-03 + 195 -2.9022027428051672E-03 + 196 2.2450457178450575E-04 + 197 -4.1909420065782126E-04 + 198 -8.7521735019768668E-04 + 199 4.2008567145953234E-04 + 200 1.0253569330307725E-04 + 201 -2.6106882214519599E-04 + 202 2.5778200404513436E-04 + 203 1.8247809946521365E-04 + 204 -6.4460120318655511E-04 + 205 -1.3915710473399434E-04 + 206 -2.4220029736912447E-03 + 207 -1.3093501106402259E-03 + 208 -3.4654914077379277E-04 + 209 -4.1779902952449640E-04 + 210 -3.4231603205794886E-04 + 211 6.9099141308593635E-05 + 212 -2.0008575818637685E-03 + 213 -3.4242378466648247E-03 + 214 3.1889042468083571E-02 + 215 -1.6360019856188644E-02 + 216 4.2094027830818913E-02 + 217 -1.9832968572755044E-04 + 218 2.3841893042845078E-05 + 219 -2.8250420132574464E-04 + 220 -6.5653056381937317E-06 + 221 -2.3674965666504299E-03 + 222 -2.9738752748480680E-05 + 223 -1.2270568979174775E-04 + 224 3.6878858375103817E-04 + 225 -1.8511604834729617E-04 + 226 -8.1835222416989413E-05 + 227 1.3904726328925658E-04 + 228 -2.6225018088360953E-04 + 229 2.1787801094802343E-03 + 230 6.4943690649804284E-04 + 231 5.2046090119353076E-04 + 232 -5.6970415999317247E-05 + 233 2.0002995512679879E-03 + 234 9.0897771114004011E-05 + 235 -6.5546622677271831E-05 + 236 -6.0547578089771448E-05 + 237 -2.3384049411071719E-02 + 238 -7.7325859743470943E-04 + 239 -7.7255590045709061E-03 + 240 7.0063124691252159E-03 + 241 -9.2392216819224601E-03 + 242 5.4531244155713499E-04 + 243 2.5210284219069118E-05 + 244 -1.5493838571764801E-04 + 245 7.9257423522354601E-05 + 246 -4.2359272339662118E-04 + 247 -2.0606243369368445E-04 + 248 1.0170730830184835E-04 + 249 -4.1547261800160303E-04 + 250 3.7750919748039358E-04 + 251 -1.9383200004038760E-04 + 252 1.5202236664539547E-04 + 253 -4.9122392717548410E-06 + 254 3.0795386287927459E-03 + 255 -3.5355857611301956E-04 + 256 1.8398321033179172E-03 + 257 -7.5203532670194595E-04 + 258 -2.1780210685498402E-04 + 259 2.3424428047641950E-04 + 260 -2.8015679680562278E-05 + 261 2.0724218810284930E-04 + 262 -4.4115337455970557E-02 + 263 -5.3099883096847781E-04 + 264 -2.1468963030216337E-01 + 265 7.3177675482454602E-02 + 266 9.1568494956101254E-01 + 267 -3.1200431510446851E-04 + 268 -8.1614436735489161E-04 + 269 -1.5665122887581021E-04 + 270 5.7354803153958460E-05 + 271 6.3165843044301695E-04 + 272 2.2908519079161712E-04 + 273 -2.6268854286978256E-04 + 274 -4.5070018714531038E-04 + 275 1.1540721662795966E-04 + 276 9.9675612741627405E-04 + 277 -6.3374878123773656E-04 + 278 2.6221846300485585E-04 + 279 4.8566876910839324E-03 + 280 -4.7389187415801875E-05 + 281 -1.5271032853374814E-03 + 282 -1.1102504557456499E-03 + 283 -6.3920487928397964E-03 + 284 -3.5428487136606775E-04 + 285 -9.2128640411006265E-06 + 286 -4.3765356176300371E-04 + 287 -8.1784211724159918E-04 + 288 -1.9529026501820233E-04 + 289 7.6072741622956275E-04 + 290 -2.5113698488050582E-04 + 291 1.9792945118496433E-03 + 292 3.2776278730394905E-03 + 293 -6.2609194036770100E-05 + 294 5.9866920836933559E-04 + 295 -1.0598534115013160E-03 + 296 -6.9289729925564949E-04 + 297 7.8555037180252579E-05 + 298 -1.4478779436045869E-04 + 299 9.4536571114224344E-05 + 300 -9.6012866576245049E-05 + 301 2.2134972188430534E-04 + 302 -1.7805890380753669E-04 + 303 -1.7322003099355206E-05 + 304 1.8766341013636202E-04 + 305 5.4812158027178464E-05 + 306 1.2956751416276846E-04 + 307 -4.3249777947986580E-04 + 308 -9.3725813963581217E-05 + 309 5.1756129297230152E-04 + 310 9.7706312875359141E-06 + 311 5.4387537011097401E-05 + 312 1.8975728400757517E-04 + 313 -6.0812102382017856E-04 + 314 -5.3117680033520714E-04 + 315 -6.9674454804438863E-04 + 316 1.9257533515590806E-03 + 317 1.2667856397421279E-03 + 318 4.3910555065334016E-04 + 319 -1.9305454576523681E-04 + 320 5.7333619783230449E-05 + 321 2.1341589174020886E-04 + 322 -1.2988767537624305E-04 + 323 8.4764470099616708E-05 + 324 -5.0474147165349654E-05 + 325 1.1439885184546117E-04 + 326 3.9075502228296685E-05 + 327 -7.0756314995413731E-06 + 328 -4.2819618286692355E-06 + 329 5.2267593137026500E-05 + 330 -5.0312250147681575E-04 + 331 3.3910720621929739E-04 + 332 2.0023652096671987E-05 + 333 6.1834849220083511E-04 + 334 -2.9977538335347365E-04 + 335 -4.5899038184740623E-05 + 336 2.5801643281942615E-04 + 337 4.7650910571197943E-07 + 338 1.5839760614262070E-02 + 339 1.7153624850811439E-03 + 340 -3.4909104519892362E-03 + 341 2.7397281306871721E-04 + 342 -2.9733448780549387E-04 + 343 -6.3082245685295289E-04 + 344 -7.7040503592830489E-05 + 345 2.4887712688921457E-04 + 346 2.2906842163986572E-05 + 347 1.6526016233091629E-04 + 348 -1.3792371048374535E-04 + 349 -3.4850424934090824E-05 + 350 -8.0628574857319557E-05 + 351 3.0405338372868165E-05 + 352 5.1569007078730980E-05 + 353 -1.2677405202191834E-04 + 354 6.8584241546183506E-05 + 355 4.3813507376498267E-05 + 356 -5.9615254658586059E-05 + 357 9.6522139664316400E-04 + 358 -1.4924020039664926E-03 + 359 2.5340282895799481E-04 + 360 3.2696349354584264E-04 + 361 -1.7513672577418381E-04 + 362 2.0825034474568258E-05 + 363 2.9300196397545163E-05 + 364 2.0050418695633288E-04 + 365 -2.8114025756923312E-04 + 366 8.7257048783780108E-06 + 367 2.1955371542246068E-05 + 368 8.9709233130166543E-05 + 369 -1.7655089408231484E-04 + 370 1.0387637404278851E-03 + 371 -2.0402401801330040E-03 + 372 1.7391595192344940E-03 + 373 2.4992355931969645E-04 + 374 -7.4339293828681446E-05 + 375 2.3935275531436126E-04 + 376 4.6225712503828045E-04 + 377 -2.6567643208323931E-04 + 378 -4.0537977182426187E-04 + 379 4.0444234939486981E-05 + 380 1.9663787407085294E-04 + 381 -2.7487041116085461E-02 + 382 5.1607923513024212E-04 + 383 -5.0723365913375234E-03 + 384 2.4623647468423348E-03 + 385 1.4787911247923157E-03 + 386 -5.9919818211341127E-04 + 387 2.5325373648850418E-04 + 388 3.3643718422680783E-04 + 389 -1.1646491519948557E-03 + 390 1.5948200938710009E-03 + 391 1.4075767775294655E-03 + 392 1.2342416808798463E-03 + 393 4.1686811444930725E-03 + 394 -1.8504230722778722E-04 + 395 -6.3796663403655374E-04 + 396 -3.0775845479431900E-04 + 397 -1.8261722802595173E-04 + 398 -4.0834780607347493E-04 + 399 4.6978122084953783E-04 + 400 1.1650260527625543E-04 + 401 -7.9032470495544245E-04 + 402 -3.1712722588507547E-02 + 403 1.8031468764096122E-02 + 404 7.5096072083157221E-03 + 405 1.6395335931765503E-03 + 406 1.8721960840631765E-02 + 407 1.1116825482344024E-03 + 408 -3.3077057241802762E-04 + 409 2.4591389130887344E-04 + 410 -4.8105962292505132E-04 + 411 -1.0538085961242208E-03 + 412 6.8796616237939432E-06 + 413 3.1588703376389548E-04 + 414 -2.5903204640745900E-05 + 415 -2.0124611510588593E-04 + 416 2.5941590458931953E-05 + 417 -1.4531030038243955E-04 + 418 -1.3533326991890454E-04 + 419 5.0038889383362283E-04 + 420 -6.0730307750496783E-07 + 421 -8.1895813115651420E-04 + 422 -9.7999538146308009E-04 + 423 2.2713243544594136E-04 + 424 -3.3781518843313676E-04 + 425 -4.6419279717442661E-04 + 426 6.5140551054112893E-05 + 427 1.0041345441523161E-04 + 428 -1.8629083347877513E-04 + 429 -2.8321159574418815E-04 + 430 3.8001048812044424E-05 + 431 -1.0158217418747612E-04 + 432 2.0721739706449402E-02 + 433 -4.1330551038956388E-04 + 434 -1.0011166491794149E-02 + 435 -6.4951648872338388E-03 + 436 -3.6089334480435982E-03 + 437 -5.9614871713205438E-04 + 438 -7.1537861833496973E-04 + 439 -4.8577721594925122E-04 + 440 6.4879281709413436E-04 + 441 -1.2907249571506780E-03 + 442 -8.3357081855703601E-04 + 443 2.7972717130104205E-04 + 444 -3.2234048653228702E-03 + 445 6.3220481734355236E-04 + 446 -3.1665812672404404E-05 + 447 -3.9351177470483227E-04 + 448 1.3072132782050453E-04 + 449 1.7670632259600913E-03 + 450 -2.9870176667912075E-04 + 451 -1.8162077939505160E-04 + 452 3.1193016269366174E-04 + 453 -1.8441618651716250E-02 + 454 3.4608866662448777E-03 + 455 -1.2604863627658508E-02 + 456 -1.9283845451996589E-03 + 457 7.1089956754581667E-03 + 458 1.2006678531306615E-03 + 459 3.1513255771057506E-05 + 460 1.1334221241901846E-03 + 461 -4.9057810551049011E-05 + 462 -6.6626279444847449E-04 + 463 2.8577711801112455E-04 + 464 2.2389425018705278E-04 + 465 -5.6232886094349824E-05 + 466 1.4426809936266799E-05 + 467 1.7807833628915304E-04 + 468 5.9949394564231505E-05 + 469 -1.1661677658679397E-04 + 470 1.1261271769828659E-03 + 471 -2.4694975492687372E-04 + 472 1.5588063821970308E-03 + 473 2.2123521756418855E-03 + 474 2.9086081791396625E-04 + 475 -2.0431043140569903E-04 + 476 6.4014914683720257E-04 + 477 -6.6740144202219841E-05 + 478 1.2713808360077986E-01 + 479 3.6411736126356328E-02 + 480 -5.2143388354168319E-02 + 481 -3.1235335863001652E-02 + 482 2.1528396824057755E-01 + 483 -7.4582067782054721E-05 + 484 1.1920565315404629E-04 + 485 -5.5485800835941167E-04 + 486 4.3287339394809291E-04 + 487 1.6179469125048730E-03 + 488 -1.1443474394941193E-04 + 489 -3.6813714652421213E-04 + 490 -1.5809132040518592E-05 + 491 -6.0236424284895402E-05 + 492 -1.9976048347658992E-04 + 493 1.3179641683241401E-04 + 494 -3.3258287818129157E-04 +Ene= -4.8720069099E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -4.3084257771115980E-04 + 2 -3.8739860951998538E-04 + 3 6.9751759582795450E-04 + 4 -3.6215267797872993E-04 + 5 -6.7000808955572529E-04 + 6 2.8468361550877756E-04 + 7 -2.7219224347245437E-04 + 8 -1.2736467454724511E-04 + 9 7.4958248850839351E-04 + 10 -5.0057250625776011E-05 + 11 -1.0419126592170609E-04 + 12 2.7695893064964964E-03 + 13 5.7806988457331364E-04 + 14 3.1470754312337733E-04 + 15 3.4453470031596474E-04 + 16 -6.5559058484205475E-05 + 17 -8.2663907257272704E-05 + 18 4.2847610863048125E-04 + 19 -8.6580459828295301E-05 + 20 -1.6145856040952433E-04 + 21 2.3155023120282042E-04 + 22 1.3603341704745989E-05 + 23 7.2252034151855699E-05 + 24 -1.2530816096295309E-04 + 25 -1.4235648461121447E-04 + 26 -1.7958931924857272E-03 + 27 2.8240519804996386E-04 + 28 1.9890916728717149E-04 + 29 4.0019857436157511E-04 + 30 7.2588901775007990E-04 + 31 -3.9620318987362900E-04 + 32 -3.2549803735847994E-04 + 33 2.7179598069812126E-04 + 34 -1.1179644055590254E-02 + 35 -2.1325899705627087E-02 + 36 -5.7077055440874777E-03 + 37 3.3967990212924445E-02 + 38 1.7496341398902097E-02 + 39 -2.9303897968592995E-04 + 40 -7.7387299647099512E-04 + 41 1.0422595630135825E-04 + 42 7.1418669418048448E-04 + 43 7.1447007242337042E-05 + 44 -2.6409868093795028E-04 + 45 3.1673838760815456E-04 + 46 2.5264023057436874E-05 + 47 2.7596528128311055E-04 + 48 -4.1318180170188996E-05 + 49 -6.8689756036209961E-04 + 50 -1.5711967059711541E-04 + 51 3.7076767119531982E-05 + 52 -2.2083767519183293E-04 + 53 7.4157500979501101E-04 + 54 -1.3321520148850812E-04 + 55 2.9390185815539094E-04 + 56 4.4195057707288192E-04 + 57 7.6468065699535697E-05 + 58 9.6263461021258627E-05 + 59 2.4164556360142721E-03 + 60 -1.3117672778539828E-03 + 61 -2.2171933048211832E-03 + 62 3.3457743558243437E-03 + 63 -2.1240021547604894E-03 + 64 1.0815603265555129E-04 + 65 1.4278960912808100E-04 + 66 -2.9409563249141847E-04 + 67 -5.5641376437497864E-04 + 68 9.0864973843624388E-04 + 69 4.4528372415707733E-05 + 70 -3.4302065069447597E-05 + 71 1.1928071427049561E-04 + 72 3.4970513120113082E-05 + 73 3.8751921933112603E-04 + 74 -1.7615899707204100E-04 + 75 -4.5004591006064484E-04 + 76 3.0220211114142419E-04 + 77 -7.9144934075406161E-05 + 78 1.0500940978898968E-03 + 79 -1.3245965767279312E-03 + 80 3.8609554280282289E-03 + 81 -2.7028241624068382E-05 + 82 -1.9917554685910008E-04 + 83 6.6326568830284106E-04 + 84 2.7611838992792572E-04 + 85 -4.9860847498266712E-04 + 86 -3.5100379050222164E-04 + 87 -2.5958890140909076E-04 + 88 1.9237125587735169E-04 + 89 3.3093859990317243E-05 + 90 4.1884249790376596E-06 + 91 -2.0471632470246551E-04 + 92 -2.7432156423785143E-04 + 93 1.2933736817790089E-04 + 94 -5.4138408031287461E-06 + 95 5.7195907695850744E-05 + 96 1.1474908570826475E-04 + 97 3.2956255209750062E-06 + 98 -5.2512307070251250E-06 + 99 7.0730576236500353E-06 + 100 1.1105158994893698E-04 + 101 -2.3022314196932392E-05 + 102 3.6783412898173280E-03 + 103 -2.5226527890650997E-04 + 104 7.3529434526626929E-04 + 105 -1.4785249251444035E-03 + 106 9.4871867476220757E-04 + 107 -4.4307410572434023E-05 + 108 -9.0681670300614704E-05 + 109 1.3906660660015636E-04 + 110 3.0276463334625171E-04 + 111 -2.3053262389077320E-04 + 112 -7.0814891190042569E-05 + 113 -2.9879957825556611E-05 + 114 4.1278725663148436E-04 + 115 -1.5111523368625810E-02 + 116 5.7090609887438398E-04 + 117 -1.6610897314971434E-03 + 118 -3.4329716129028534E-03 + 119 -3.8438228743915091E-03 + 120 2.0582992425560874E-04 + 121 -3.9026982510215094E-04 + 122 -3.7409468090706212E-04 + 123 4.9337779131652026E-04 + 124 5.0872359062649182E-04 + 125 6.9848226799640442E-04 + 126 -3.9409427973487084E-04 + 127 9.0440870079163484E-05 + 128 -1.4884852041195993E-02 + 129 -8.7051472629119718E-04 + 130 3.3752195338345743E-03 + 131 1.4630527610562196E-03 + 132 2.4765916280169442E-03 + 133 2.0291478472703552E-04 + 134 -1.1701480036199598E-05 + 135 1.8752103682078688E-04 + 136 -4.4253506252055881E-02 + 137 6.2793794591860422E-02 + 138 1.1940490030984986E-03 + 139 8.1628777748318782E-02 + 140 8.5085134277978203E-03 + 141 1.5235501342114191E-03 + 142 -4.5615962356422343E-03 + 143 -7.3641828345042543E-04 + 144 -5.6133533067858161E-03 + 145 -1.3681516568587355E-03 + 146 2.8307493680811174E-04 + 147 8.0563256273267006E-04 + 148 -3.4945420152595604E-04 + 149 1.2201567899081013E-04 + 150 -2.0744381221035989E-04 + 151 1.2422385921957187E-04 + 152 3.6313510459653185E-04 + 153 -1.1171736613049316E-03 + 154 5.6341436447605875E-04 + 155 1.0067676351545739E-03 + 156 7.5630396921223721E-04 + 157 -2.7527436639903924E-05 + 158 1.5579790185562655E-04 + 159 5.3286314913643916E-04 + 160 -1.6655133735383150E-04 + 161 -1.2655678400715744E-02 + 162 2.6909916236021298E-03 + 163 -1.2962935005039297E-02 + 164 1.5607175417692153E-02 + 165 -2.5171723956887056E-02 + 166 -1.0295328006813482E-05 + 167 -5.9275515978243613E-04 + 168 -6.0632188199164427E-04 + 169 -8.7266253035081238E-04 + 170 1.5336967066519847E-05 + 171 1.0419380121170814E-04 + 172 1.8947285186461635E-04 + 173 3.5519011011396334E-05 + 174 4.1209083401368992E-04 + 175 -4.3019015708904036E-05 + 176 1.2857866207070370E-04 + 177 -1.6325127592144991E-04 + 178 1.0894008187873347E-03 + 179 -2.4961480730370761E-04 + 180 2.6053563435580736E-03 + 181 -3.3882956072304755E-04 + 182 1.8599630492749670E-03 + 183 3.6774578110131741E-04 + 184 -5.7676278787199789E-05 + 185 -2.0374877636441198E-04 + 186 -5.1214647424122062E-04 + 187 -5.6913279584914196E-05 + 188 3.7905412884228150E-04 + 189 7.1065033773862901E-04 + 190 2.4022942712567162E-04 + 191 -5.3631824232609187E-03 + 192 1.6688074303712844E-04 + 193 -4.5772382030852222E-03 + 194 4.9432222706876560E-03 + 195 7.2938003675474547E-03 + 196 -4.7355294575267390E-04 + 197 5.9274944067783792E-04 + 198 1.2290999834099826E-03 + 199 -1.4153956947219231E-03 + 200 -8.3225115631262490E-05 + 201 5.7247609966467282E-04 + 202 -3.5648415307222380E-04 + 203 -1.0973928891382201E-03 + 204 -1.0483236258071202E-02 + 205 8.7617905086206223E-06 + 206 4.8091707097433316E-03 + 207 -3.9269911434894238E-03 + 208 3.4962521734400796E-03 + 209 3.0326986408750814E-04 + 210 -9.2851211096407372E-05 + 211 8.8202405350026522E-04 + 212 -4.1865567155531649E-02 + 213 1.6342622304846777E-02 + 214 -4.3622327529674512E-03 + 215 -2.6050258938130227E-03 + 216 -7.9333530038611946E-02 + 217 1.1466871541658442E-04 + 218 -1.1922890675923462E-03 + 219 2.9790546305677795E-03 + 220 2.3198533011298893E-04 + 221 3.4055406058796072E-03 + 222 -2.3510213843285749E-04 + 223 5.0537132530522287E-04 + 224 -8.0345150798273471E-04 + 225 -3.6307108125107295E-04 + 226 -3.2609412039221928E-04 + 227 -6.9431740317414778E-04 + 228 1.7915072513020340E-04 + 229 3.1117014636884975E-03 + 230 -1.2504564658771759E-04 + 231 1.0719007472307931E-03 + 232 -6.6346153227755196E-04 + 233 1.6071289041198436E-03 + 234 8.5688929757087484E-04 + 235 2.2443573831308440E-05 + 236 6.0388713688908297E-04 + 237 4.3432884360717298E-03 + 238 -7.7896230724481576E-03 + 239 -8.1259028153569837E-04 + 240 -2.1464464445839916E-02 + 241 -2.3028967073485691E-03 + 242 4.5711477893282774E-04 + 243 -7.6172236728352710E-04 + 244 -2.4652035555001414E-05 + 245 -9.1503640556350133E-04 + 246 -4.0549723521455578E-04 + 247 -1.2741194625079619E-04 + 248 -3.0064672557079058E-04 + 249 -1.1842233620076367E-04 + 250 -2.7925897521253772E-06 + 251 -1.6890293463011689E-04 + 252 6.9457762470056194E-04 + 253 -3.4124038803519399E-05 + 254 9.7925163584709524E-04 + 255 -1.8982099204791126E-04 + 256 9.8574592192875003E-04 + 257 -7.4363866513457472E-04 + 258 1.2933858358032170E-03 + 259 2.6465147744776830E-04 + 260 -3.4369550508201412E-05 + 261 9.2840436486571034E-05 + 262 -2.5188603653220017E-02 + 263 1.1195084929714886E-02 + 264 -4.8447346377826404E-02 + 265 1.3155787210972728E-03 + 266 7.2557920676037529E-02 + 267 -5.3672774737207034E-04 + 268 3.7949099495634525E-04 + 269 -5.2653481674639073E-04 + 270 -2.8675000715129372E-04 + 271 -6.6515912482015076E-04 + 272 2.5862499195423598E-04 + 273 -6.3971789587714522E-05 + 274 2.4961730013078778E-04 + 275 -4.2783683110513113E-04 + 276 -1.9084480311414197E-04 + 277 -3.3328397250042868E-04 + 278 1.7969618057409655E-04 + 279 8.2017869484593969E-03 + 280 -8.9807415582827919E-05 + 281 -9.8039295635285296E-05 + 282 2.4227633528273308E-03 + 283 -1.2240960745413202E-03 + 284 -6.0763861477379489E-04 + 285 -1.8477037398181854E-05 + 286 2.3356390315241085E-04 + 287 -1.8314286364461816E-04 + 288 -2.1650332625485784E-04 + 289 2.8683411988399772E-04 + 290 3.4359130753813458E-04 + 291 8.4330849293696812E-05 + 292 -2.9711272213657786E-03 + 293 1.7065338753384081E-04 + 294 -4.0232634262079599E-04 + 295 -3.3035828225540579E-04 + 296 1.1409625790350202E-04 + 297 -2.8609452041846584E-04 + 298 -8.7686309243732428E-05 + 299 -2.5000496712345062E-04 + 300 1.9991424774710813E-05 + 301 -1.3620452426321998E-04 + 302 1.4225274682033895E-05 + 303 3.5803203981276358E-05 + 304 1.1520745159862426E-04 + 305 -5.6708118714605407E-04 + 306 3.8063291480111989E-04 + 307 -8.4331153666774965E-04 + 308 1.3887392561060478E-03 + 309 1.4249317258148110E-03 + 310 -4.5287454876254092E-04 + 311 3.3581147904471977E-05 + 312 5.9438880802750705E-04 + 313 -2.7722990527909589E-03 + 314 -1.7135723465907323E-04 + 315 8.4118845886574096E-04 + 316 -2.9423252806323533E-03 + 317 6.7605383891157804E-03 + 318 1.1796963354942273E-03 + 319 -7.6621599351077473E-04 + 320 6.4015769999227674E-04 + 321 5.0542881544177708E-04 + 322 -1.1035923660088671E-03 + 323 2.8753051030372910E-04 + 324 -1.9099444119334287E-04 + 325 1.5749064244437270E-04 + 326 9.2863574331125798E-05 + 327 -3.1978935817561461E-04 + 328 1.3671796580952843E-05 + 329 4.7306125294460236E-05 + 330 1.2907286767260835E-03 + 331 -4.5852971586015300E-04 + 332 6.7155191492092640E-04 + 333 -5.8489945599846604E-04 + 334 1.3191879739424591E-03 + 335 1.5457996051539512E-04 + 336 -1.8570177555057372E-04 + 337 -2.6135757377323594E-04 + 338 -3.9466581079521883E-02 + 339 -4.6119873702486535E-03 + 340 1.3173789791233884E-04 + 341 -1.2612903492627524E-03 + 342 -5.6445724453954647E-04 + 343 6.0435103422022262E-05 + 344 2.6935513044302621E-04 + 345 1.7657040383554443E-04 + 346 3.2315636247623198E-04 + 347 3.5225731008426873E-04 + 348 2.1960360818762722E-05 + 349 7.5525562673739070E-05 + 350 -9.9332170484551396E-06 + 351 -1.5978145505098938E-04 + 352 -3.0204760248978599E-05 + 353 -1.2804748075629483E-04 + 354 1.3171108333128262E-04 + 355 1.1072945528934062E-02 + 356 -2.7100725545336379E-04 + 357 1.0247033386296487E-03 + 358 1.1429137037042036E-03 + 359 -2.9614820753947352E-03 + 360 5.3554938014493568E-04 + 361 2.5936316611485769E-04 + 362 -2.6041766575678719E-04 + 363 -2.9644930334092416E-04 + 364 1.3525147883952022E-04 + 365 -1.5203993707613904E-04 + 366 1.0775764653526789E-05 + 367 5.6425245847843968E-04 + 368 2.6565377507924118E-03 + 369 5.4752396176272012E-05 + 370 -2.9613211969005236E-04 + 371 1.7844310290832926E-03 + 372 -4.9850792375092838E-03 + 373 -4.0262439575380156E-04 + 374 -2.7303293829667759E-04 + 375 1.0433481990830514E-03 + 376 -4.5110729647982530E-04 + 377 8.7470525282662068E-04 + 378 -2.6368218472889039E-04 + 379 1.9117125479482396E-04 + 380 -3.7202813568245154E-04 + 381 -1.7175255361043324E-02 + 382 1.1950640288053047E-04 + 383 3.1235498681496956E-03 + 384 -1.9694749926616292E-02 + 385 2.7544540246488503E-02 + 386 -7.2481367604134727E-05 + 387 -1.0781098390325692E-03 + 388 4.3780030135178669E-04 + 389 -4.6653358658893035E-03 + 390 -1.8188049787172455E-03 + 391 -5.4107858131050429E-03 + 392 -4.9998122078416278E-03 + 393 4.4018877319175286E-04 + 394 1.3403693360177656E-02 + 395 -1.3124607397813228E-04 + 396 -4.4137793713339485E-03 + 397 -2.5990194831846405E-03 + 398 2.2526277902054736E-03 + 399 3.0618818748745157E-05 + 400 -1.9229097316739616E-04 + 401 -2.0232222476084335E-04 + 402 -6.2347271162350735E-03 + 403 7.2549954501104977E-02 + 404 -1.3781515851666900E-03 + 405 -5.1535063462558643E-02 + 406 -3.4643398029637645E-02 + 407 -2.9490506333284703E-04 + 408 -3.2006574412551873E-03 + 409 -1.8934799957250515E-03 + 410 1.9549626134407775E-03 + 411 2.3060501312665953E-03 + 412 4.0178741619784102E-04 + 413 1.1721513821673646E-04 + 414 -2.1936818562458987E-04 + 415 -2.3388314490920258E-04 + 416 4.3935115182022565E-04 + 417 2.6036060748245546E-04 + 418 -3.5194510435121104E-04 + 419 -2.6412324659742473E-03 + 420 2.3926781218282367E-04 + 421 -5.5255042570573430E-04 + 422 -1.4296541025174872E-03 + 423 4.8048448433246079E-04 + 424 -2.0688021348039062E-04 + 425 -1.8331367310623191E-04 + 426 -4.4017357354750872E-04 + 427 2.4597577872486687E-04 + 428 -5.7335329360646360E-05 + 429 -2.4152484229739780E-04 + 430 -2.7962836066562185E-04 + 431 -1.2448747441164192E-04 + 432 2.4112498704945050E-02 + 433 -3.0115752970869155E-04 + 434 2.5014285772473853E-03 + 435 -1.4703712219975273E-02 + 436 7.3929505175108013E-03 + 437 -3.3101152657215484E-04 + 438 -5.7541523169790361E-04 + 439 1.9220838341176287E-04 + 440 1.7612611594442801E-03 + 441 2.0636751938917456E-03 + 442 2.0633137157438633E-03 + 443 3.3659927642530666E-03 + 444 -1.0364153098906005E-03 + 445 5.8230751719681841E-03 + 446 7.3879403948868519E-04 + 447 -3.0772803165259751E-03 + 448 7.8952950154590428E-04 + 449 4.8799427439518497E-03 + 450 -9.1658842117795346E-05 + 451 -1.2756131436448461E-03 + 452 8.4661226165488662E-04 + 453 7.2532171930770805E-03 + 454 2.3908069062572940E-02 + 455 -3.3598542132376945E-02 + 456 1.1223409087114807E-03 + 457 4.4251128043964742E-02 + 458 2.5668121187080143E-03 + 459 -1.3280079616434487E-03 + 460 1.4981991897011315E-03 + 461 6.1418160115497714E-04 + 462 -2.6279880067470169E-03 + 463 8.1064741104640899E-04 + 464 2.6494999749132903E-05 + 465 -8.4524557877422514E-05 + 466 1.8689059190952096E-04 + 467 9.7522649903816302E-05 + 468 5.0955399650870069E-04 + 469 -2.6679059483131467E-04 + 470 4.0589475326363181E-03 + 471 -3.7198754313090001E-04 + 472 1.5296430223554879E-03 + 473 4.1899347314346943E-03 + 474 -5.6653795403251584E-04 + 475 1.2821899982233059E-03 + 476 4.6768301678254084E-04 + 477 2.5760794232048251E-03 + 478 -3.3992052504552345E-01 + 479 8.3836594440273460E-01 + 480 -9.9943554687659739E-02 + 481 2.0302193974769825E-01 + 482 -2.6183863539420410E-01 + 483 -6.9544226081989281E-04 + 484 3.9962975714644636E-03 + 485 2.2586638034176876E-04 + 486 2.1910544676115380E-03 + 487 1.3581854650692447E-04 + 488 -1.5162457332175641E-04 + 489 9.8808516701116064E-04 + 490 1.4788322863482743E-04 + 491 -1.0541683591244694E-03 + 492 1.5785374496958676E-03 + 493 3.1118923677723065E-04 + 494 9.4735593139773421E-04 +Ene= -4.8692591629E-01 +Spin= Alpha +Occup= 2.0000000 + 1 1.7035710547874371E-04 + 2 1.6873702788403121E-04 + 3 -6.9656987637054869E-04 + 4 3.7179490518226340E-04 + 5 1.0735551828698091E-04 + 6 -2.8769189682504665E-04 + 7 2.5874102634458574E-04 + 8 -2.1739699667132126E-05 + 9 -1.2801850226965528E-03 + 10 5.1180830935439420E-04 + 11 1.9643911150130037E-03 + 12 -3.1567519166613147E-03 + 13 -1.0628707722896854E-03 + 14 -9.4483710097856421E-05 + 15 -5.1829301730053331E-05 + 16 4.9547563943858414E-05 + 17 6.1750940854166146E-04 + 18 -2.6484766272560261E-04 + 19 8.9949391693735513E-05 + 20 1.8592805931926410E-04 + 21 -1.0564009157484794E-04 + 22 9.7836661351525779E-05 + 23 -1.8769954313354486E-04 + 24 -1.6166067668167697E-04 + 25 2.8429720131123097E-05 + 26 7.6660616529345797E-03 + 27 6.1060148509788786E-06 + 28 -2.7723580365412791E-03 + 29 4.7570655621340742E-04 + 30 1.0014005176928083E-03 + 31 -9.4674341634484654E-05 + 32 7.3852680140658797E-05 + 33 2.3678074629994428E-04 + 34 1.5151534660455716E-02 + 35 3.6138535212814783E-03 + 36 7.6846421783055164E-03 + 37 1.3644415682140405E-02 + 38 2.5258455545130211E-03 + 39 -5.4045853151562281E-04 + 40 -5.1693546735868934E-04 + 41 -9.3767144187292082E-05 + 42 1.6258426911490187E-04 + 43 -2.8751162994662498E-04 + 44 -6.4284235307297447E-05 + 45 -1.1671420187314120E-04 + 46 3.3381183716248608E-04 + 47 1.3411636673965569E-04 + 48 -2.2925088484761953E-04 + 49 -1.6692423520153852E-04 + 50 -3.0809465868170757E-05 + 51 3.4315326277525424E-03 + 52 -2.6211566420739719E-04 + 53 -8.7584220981705159E-04 + 54 1.9828657572912214E-03 + 55 -8.3580321421475963E-04 + 56 -8.2188345299944758E-05 + 57 2.0607771052327733E-04 + 58 -2.7426209251738514E-04 + 59 4.2345953837578578E-03 + 60 -4.7008754316852372E-03 + 61 -3.6471904821584488E-03 + 62 -1.0730296037352877E-04 + 63 5.4961387664236323E-03 + 64 -5.5906361063481522E-04 + 65 1.8431359701271945E-04 + 66 -3.5755813254499343E-04 + 67 5.5661467298419762E-05 + 68 -8.4974828948059585E-04 + 69 7.4825815110815088E-06 + 70 2.1307241603672460E-04 + 71 -2.4327512809333091E-04 + 72 1.2779175654741392E-04 + 73 5.5238763373551466E-05 + 74 -1.6851224595841347E-05 + 75 1.4262427972242341E-04 + 76 4.6693615589744490E-04 + 77 -3.9011122231098611E-05 + 78 1.2536167613633444E-04 + 79 -6.0636856995489007E-04 + 80 -2.0711559764315965E-03 + 81 2.6226923194308207E-04 + 82 -2.4063152108125540E-04 + 83 -3.5440645022552373E-04 + 84 6.0522354406499584E-05 + 85 4.0200063026882423E-04 + 86 1.8557835554594984E-05 + 87 -5.2833067956690629E-05 + 88 1.8098765180775211E-04 + 89 -9.7653917687895409E-04 + 90 1.0142940249267872E-04 + 91 -1.5250602494606134E-05 + 92 2.1931057901061375E-04 + 93 -3.1581331800010354E-04 + 94 2.3960212294522908E-04 + 95 2.3390199450996950E-04 + 96 -1.0472181318263725E-04 + 97 -8.3801489773724730E-05 + 98 -1.2219956211200392E-05 + 99 2.2880064893245862E-05 + 100 -3.5222978020691082E-06 + 101 -7.4120622559748880E-06 + 102 -5.4527408312556739E-03 + 103 6.5947203991309993E-06 + 104 -8.5294088506427009E-04 + 105 -1.8731818211448477E-03 + 106 5.4784955458478928E-03 + 107 -1.8222852836800442E-04 + 108 -1.7185708973685589E-04 + 109 4.0033146119624469E-04 + 110 6.5396905645338224E-04 + 111 -1.1128027989858571E-03 + 112 1.7733617757993860E-07 + 113 2.2638933838106955E-04 + 114 4.3225189762543804E-04 + 115 -5.0323132416902928E-03 + 116 2.3047924474189587E-04 + 117 -3.4862437357870792E-03 + 118 -2.1658309219298936E-03 + 119 -3.4890416766320139E-04 + 120 -8.0956557464529504E-04 + 121 -2.4677724388600351E-04 + 122 8.4345781423243813E-05 + 123 -2.3455465418042404E-04 + 124 7.6865008426943752E-04 + 125 5.5627259379196353E-04 + 126 2.2644800935177960E-04 + 127 3.7160402009856256E-04 + 128 4.9117029940170852E-03 + 129 -3.4506277337556881E-04 + 130 -5.3492832406351067E-04 + 131 -3.1833175652140021E-03 + 132 1.0196751417465210E-03 + 133 2.4888883559949160E-05 + 134 -1.7048682738068693E-03 + 135 1.4233044841096209E-04 + 136 4.0473414543255475E-02 + 137 1.9966745570894510E-02 + 138 5.7772577085794412E-02 + 139 2.4556563069195007E-03 + 140 6.3836000058437217E-02 + 141 -1.3209878890993437E-03 + 142 -1.4206404963546004E-03 + 143 -1.4797961941553544E-03 + 144 -1.1335544803666104E-03 + 145 -1.7293323455463293E-03 + 146 1.0222953952345017E-04 + 147 5.9074732380878889E-04 + 148 6.1937686616683394E-04 + 149 2.4750979268633219E-04 + 150 -1.7608407896731000E-04 + 151 -6.1685058668639516E-04 + 152 -5.3926609132963694E-04 + 153 -5.3671021172874206E-05 + 154 2.6639712280625279E-05 + 155 6.8886204733268491E-04 + 156 2.3432049736750107E-04 + 157 -2.3383945803850741E-04 + 158 6.0908157008247593E-06 + 159 -2.2462250663020053E-04 + 160 3.0096756932105045E-04 + 161 -3.5583724096435725E-02 + 162 -4.0362460889273158E-02 + 163 3.1243558900350032E-02 + 164 6.6471995447204252E-02 + 165 2.1946774176826202E-02 + 166 -1.9937841773108556E-04 + 167 -5.3256205467399525E-04 + 168 3.2541577793043070E-04 + 169 5.6106489663297547E-05 + 170 2.4657816364095378E-05 + 171 -2.8292795335468067E-05 + 172 9.7512231380174485E-05 + 173 -8.4406428269848585E-05 + 174 1.4195670134123210E-04 + 175 9.6925005851673731E-05 + 176 1.2662895580503741E-04 + 177 1.3177659050876891E-06 + 178 -3.9581861647948347E-03 + 179 -1.7445085267363714E-04 + 180 6.9705774618419505E-03 + 181 -3.1733587125466335E-03 + 182 5.7499597854798277E-03 + 183 9.0494798820421856E-04 + 184 -4.1624739397855292E-04 + 185 6.5029102435713371E-04 + 186 -1.1671032784673168E-03 + 187 6.0895965086718031E-04 + 188 5.5043460405706374E-04 + 189 1.2346631614925153E-03 + 190 -5.7682088883561136E-04 + 191 4.4911729330427098E-03 + 192 4.9711622003266356E-05 + 193 -3.2296472250490861E-03 + 194 1.7792250675418718E-03 + 195 6.6878040200692235E-03 + 196 -1.8109101011695196E-04 + 197 2.8111372444168225E-04 + 198 7.8506409706946784E-04 + 199 -9.9299794942730090E-04 + 200 -1.6440919287296368E-04 + 201 5.2152886847434588E-04 + 202 8.2304928741060759E-05 + 203 -5.7021982397224033E-04 + 204 -2.8626844661872562E-03 + 205 8.2959143425294748E-04 + 206 -1.1838932178088171E-03 + 207 -2.9364957090610624E-03 + 208 8.3127178714097007E-06 + 209 -7.1256117173266000E-04 + 210 -5.3691493100064137E-04 + 211 -7.2567142688473264E-04 + 212 -2.1914840167973647E-02 + 213 2.8261273014235106E-02 + 214 -4.1609331011543189E-02 + 215 -4.4124145094199742E-02 + 216 -3.4590298598896035E-02 + 217 1.4586479682244520E-03 + 218 -8.1084405866668015E-04 + 219 1.2076679009046889E-03 + 220 2.1659733231702014E-03 + 221 -1.1404702229305546E-03 + 222 -4.2341216575900615E-04 + 223 3.6366344522231877E-04 + 224 1.1650814582324999E-04 + 225 -3.8616998213066917E-04 + 226 -2.3288590391679084E-04 + 227 3.5878289581791343E-04 + 228 8.4201181328872156E-04 + 229 3.5997166762419627E-04 + 230 1.1632251302328411E-04 + 231 -4.7443902490929978E-04 + 232 4.8095285995066035E-05 + 233 -4.3955474744578842E-05 + 234 -2.8880808194657668E-04 + 235 1.7822790191165542E-05 + 236 -1.9010680764505446E-04 + 237 -9.8572611681579797E-03 + 238 6.8645586712193984E-03 + 239 -3.1284528629107536E-03 + 240 1.0119036420254442E-02 + 241 -8.6762958870315494E-03 + 242 3.9483837600613460E-04 + 243 5.7363571441216199E-04 + 244 -1.6693304045531474E-04 + 245 4.0261948153369758E-04 + 246 4.4164832718898608E-04 + 247 1.7185179150927240E-04 + 248 2.3714648100554427E-04 + 249 5.0240411571629791E-05 + 250 -9.5211281358220705E-05 + 251 2.6817169601347249E-04 + 252 -1.5813914737780653E-04 + 253 1.1935631044411753E-04 + 254 3.6012895054026613E-03 + 255 -2.0197664709348611E-04 + 256 -1.0287955996798792E-03 + 257 -8.2396288995971261E-04 + 258 -1.2576378935298338E-04 + 259 -3.5190018341814085E-04 + 260 1.5814293198042380E-04 + 261 2.9783096729990241E-05 + 262 -1.0711440902141600E-02 + 263 5.0610679552107143E-02 + 264 -1.5486796282343047E-02 + 265 2.7797594955553433E-02 + 266 1.4552883363548308E-01 + 267 -3.5352754623200214E-04 + 268 4.4737815313987520E-04 + 269 -8.5551996659377581E-05 + 270 7.1261508903772012E-04 + 271 5.6911609190251039E-04 + 272 1.3905402170096055E-04 + 273 1.8744761204789298E-04 + 274 -8.9109860877351573E-05 + 275 -1.3001196216062881E-04 + 276 5.3480486568230934E-05 + 277 -2.9165890789342963E-04 + 278 -3.7518523161580346E-04 + 279 -5.7725904209547370E-04 + 280 5.4409044806161169E-05 + 281 -1.5878016808635695E-03 + 282 -1.2491553028276723E-03 + 283 -2.7396570893922058E-03 + 284 3.3312980502706323E-04 + 285 2.4791061223067241E-04 + 286 -7.2635347072862015E-04 + 287 2.8323013172314382E-04 + 288 -2.9169154309623916E-04 + 289 4.6610675630055201E-04 + 290 -4.6003906890811660E-04 + 291 3.7112922518035677E-04 + 292 -2.2913238668471002E-04 + 293 -5.7228789106943832E-05 + 294 -2.6490424430958168E-04 + 295 -1.2388214397356923E-03 + 296 -8.6927348030388580E-04 + 297 -3.1041635457148912E-06 + 298 -2.1005488169460759E-04 + 299 1.2398556588638372E-04 + 300 -1.8678263202878052E-04 + 301 2.1403485606860659E-04 + 302 -1.1205483541099226E-04 + 303 -9.1204828864554130E-05 + 304 2.0422369135797281E-04 + 305 -2.2720911758489330E-03 + 306 -2.7257869524480340E-04 + 307 1.3536246326778106E-03 + 308 -9.8117953206782057E-04 + 309 -8.5042072441686401E-04 + 310 5.7287897044527900E-06 + 311 -2.6983677937354467E-04 + 312 -2.9068546935599737E-04 + 313 -9.0679179313551874E-03 + 314 -9.4925905162653328E-04 + 315 -2.8156723944854083E-03 + 316 8.0791992801876929E-03 + 317 3.7713595419215807E-03 + 318 -2.4213490613640381E-04 + 319 -4.4685173146430946E-05 + 320 -4.1366515084204520E-04 + 321 2.7944795399468328E-05 + 322 1.1025777003408918E-03 + 323 -1.0350406696947320E-04 + 324 -1.2746453933557423E-04 + 325 -1.3147689186468096E-05 + 326 2.0387535616282808E-04 + 327 1.7355616154477349E-04 + 328 -2.5550539541518356E-04 + 329 -2.6062750305479447E-04 + 330 1.2946311150012486E-03 + 331 -9.3117413377843614E-04 + 332 8.2984354762748918E-04 + 333 -6.0859681430618974E-04 + 334 -1.1803073948288461E-03 + 335 3.9799615873653234E-04 + 336 -5.6644745363750785E-04 + 337 -4.6301998940921217E-04 + 338 -3.7242329625706505E-02 + 339 -1.4156576490728290E-02 + 340 1.3607118650415173E-02 + 341 3.8600350560397839E-03 + 342 3.7073265979411358E-03 + 343 1.5917259553978544E-04 + 344 4.9270969542348608E-04 + 345 -9.5929382218600033E-04 + 346 2.4744252324086563E-04 + 347 4.9944304097755557E-04 + 348 1.2647528406697979E-04 + 349 -2.8572566813111346E-05 + 350 -1.1558460531410792E-04 + 351 2.4155229886199892E-04 + 352 1.1373189858174092E-04 + 353 5.7184187901901944E-05 + 354 4.7856223637522669E-05 + 355 -3.0648435870473255E-03 + 356 1.8321340264129939E-04 + 357 -3.7286914384406160E-03 + 358 5.7209001336856564E-03 + 359 -7.4921981868041000E-04 + 360 -5.8117531459047050E-04 + 361 8.2874528421858680E-04 + 362 -2.2665157949598556E-04 + 363 -2.7653074096565530E-04 + 364 -6.9035315645347951E-04 + 365 1.0160759808174921E-03 + 366 -1.0793627415463933E-04 + 367 -1.6697805746511378E-04 + 368 -1.0922777550848981E-02 + 369 4.7756833072614194E-04 + 370 -7.3946856478242385E-03 + 371 2.5008461461927512E-03 + 372 1.6731283203404491E-03 + 373 -2.6204146307976118E-03 + 374 7.3125168760008346E-04 + 375 5.8698839604334421E-05 + 376 -3.0167214846709708E-04 + 377 -8.8934205098062163E-04 + 378 4.1639783070813324E-04 + 379 9.9636879318235928E-04 + 380 -2.8816175512003106E-04 + 381 -4.0624942682627549E-02 + 382 2.6564645353878999E-04 + 383 -7.8742032385231506E-03 + 384 -2.4551721499482475E-02 + 385 -1.8415890033979646E-02 + 386 -1.5588638577812386E-03 + 387 -2.8987306755546751E-03 + 388 -1.1111424546408279E-03 + 389 -2.2968039660656732E-03 + 390 4.8555933686636693E-04 + 391 6.0586269626224437E-03 + 392 -5.7712814255238606E-03 + 393 2.1331970138296864E-03 + 394 -2.6471791260093830E-03 + 395 4.0791548854709667E-04 + 396 1.1958816129463308E-03 + 397 1.5583587425000965E-03 + 398 -1.7430471096940275E-03 + 399 9.2761419673242855E-05 + 400 -5.9108442612880484E-04 + 401 -7.8259374540466220E-04 + 402 -1.3512624728186193E-02 + 403 -2.5407506874672851E-02 + 404 -5.0952257675996343E-02 + 405 -7.1886561930912894E-03 + 406 4.3492346156013786E-02 + 407 -1.6941705984291881E-04 + 408 1.9708087132703110E-03 + 409 2.9740840269658164E-03 + 410 3.5166075596216673E-05 + 411 -1.5736453052152437E-03 + 412 -1.3798402446053734E-04 + 413 5.7197949065927126E-04 + 414 4.4396104033415863E-04 + 415 7.0699036083377855E-04 + 416 9.6450938345745397E-05 + 417 -5.4428388293348447E-04 + 418 -2.4544967788077399E-04 + 419 8.0680601063911339E-03 + 420 -2.6228782597000126E-04 + 421 2.5223361226239517E-04 + 422 -1.7803592649058132E-03 + 423 -2.5992558384944700E-03 + 424 6.8979503304731509E-04 + 425 -4.5271886429675565E-04 + 426 -6.3124111447170322E-04 + 427 -6.1705567698197377E-04 + 428 -2.0876165938777885E-04 + 429 -2.3221263711332282E-04 + 430 -1.9232919592797998E-04 + 431 -1.8174320721226113E-04 + 432 -6.2897256044725071E-03 + 433 2.3268983370511073E-04 + 434 1.2417298037159139E-02 + 435 1.0845740410403814E-03 + 436 -2.4113814726932328E-03 + 437 4.0238710733216533E-04 + 438 1.2204746935798728E-03 + 439 1.1318114832675047E-04 + 440 -2.2142168609584783E-03 + 441 2.3146432833671480E-05 + 442 -5.7384356297413887E-05 + 443 1.9788663585301228E-03 + 444 3.4941236468750939E-03 + 445 -7.3181807597247055E-03 + 446 6.6173971043519044E-04 + 447 -4.9798489809735216E-04 + 448 -1.4455834748732473E-03 + 449 -2.8543803591817214E-03 + 450 -4.9046580055818164E-04 + 451 4.2149149442307081E-04 + 452 1.3962289458688994E-04 + 453 4.5156169061010630E-02 + 454 -3.4605075580423694E-02 + 455 3.3797369558398280E-02 + 456 -1.1747187636156849E-02 + 457 -6.9640583315591954E-03 + 458 -2.8970680320778101E-03 + 459 5.1356704370444288E-04 + 460 -1.6247589161754790E-03 + 461 6.3873741582929884E-04 + 462 -7.8986557413700904E-04 + 463 -6.1283583003862155E-04 + 464 -3.1878044593258497E-04 + 465 -4.2070800068004863E-04 + 466 4.7611195774039793E-04 + 467 -6.7204143062095313E-04 + 468 3.8920290434651559E-04 + 469 5.5597755843981797E-04 + 470 4.6640732885555600E-03 + 471 8.9076097291442696E-05 + 472 -5.6515841177680771E-04 + 473 4.4304891755151147E-03 + 474 2.7307824465576743E-03 + 475 2.2123097159996025E-03 + 476 1.6717892936206759E-03 + 477 1.2221156317083608E-04 + 478 -6.6094253852051454E-01 + 479 -3.9117333255290460E-01 + 480 2.8043713214134830E-01 + 481 5.0470943366250698E-01 + 482 -5.6096886994709994E-02 + 483 -3.1906255091194761E-03 + 484 -7.4170860225025834E-04 + 485 7.7803729481895265E-04 + 486 9.2871729479127821E-04 + 487 2.8774984432300621E-03 + 488 -2.8342912886711080E-04 + 489 1.5957150770399371E-04 + 490 -6.3358258186338521E-04 + 491 5.9257293617031139E-04 + 492 -3.5082443636691050E-04 + 493 -1.3233508909195463E-03 + 494 1.6812564344677468E-03 +Ene= -4.8437628424E-01 +Spin= Alpha +Occup= 2.0000000 + 1 1.3557151770738911E-03 + 2 -7.9338103352280629E-04 + 3 9.6860802781563947E-04 + 4 1.5464870352428532E-03 + 5 -8.3412500505628787E-04 + 6 3.4095844811043248E-04 + 7 -5.2657429615411905E-04 + 8 -4.0779149236532463E-04 + 9 8.5148255619456985E-03 + 10 -1.9922226445564676E-04 + 11 -1.5543793630117148E-02 + 12 1.4633126454001890E-02 + 13 3.6705147361755100E-03 + 14 -1.3493898327728879E-03 + 15 -1.5382721908201120E-04 + 16 4.4913460721396169E-04 + 17 -1.1859889456161488E-03 + 18 3.1058465541554452E-04 + 19 -6.8968829088318845E-04 + 20 -3.4178987450940191E-04 + 21 1.4424867921655892E-04 + 22 -3.9175768319007181E-05 + 23 3.8984941010160323E-04 + 24 -3.4381311195699474E-05 + 25 -1.4675857793955028E-04 + 26 -2.7492536289934307E-02 + 27 8.9391624521724603E-05 + 28 3.5816029947676213E-03 + 29 1.1319910240181660E-02 + 30 -9.0243258370091024E-03 + 31 3.3257215902784249E-04 + 32 -1.0448372914631163E-03 + 33 -6.7297138827150833E-04 + 34 -2.1711775192217255E-02 + 35 -5.8240093832979303E-02 + 36 -1.2289298296379651E-01 + 37 -1.1084733050102322E-01 + 38 1.9563570290902953E-02 + 39 9.7879100366673696E-04 + 40 2.0303659206654095E-03 + 41 5.5856939043802513E-03 + 42 4.2358659129108859E-03 + 43 -3.4107205280583851E-03 + 44 -1.9197247640565486E-04 + 45 3.1720738541311794E-04 + 46 -1.0757684861959819E-03 + 47 -7.8910265771750391E-04 + 48 3.3566944346454208E-04 + 49 -9.4792869056379105E-04 + 50 -1.7538434838679015E-04 + 51 -1.0429752084024036E-02 + 52 1.1931352362248078E-03 + 53 -1.5632489227266639E-03 + 54 -9.4576419183594197E-04 + 55 -9.1011702063922275E-04 + 56 2.8029096680618544E-04 + 57 1.0742776726579918E-03 + 58 1.0203519322540191E-03 + 59 1.1712723610241619E-02 + 60 2.7886648591557896E-02 + 61 3.8018542136951210E-02 + 62 -2.1102489500385460E-03 + 63 1.4899137246874377E-02 + 64 -1.7097759551582504E-03 + 65 -4.5991669160883720E-04 + 66 -8.6232978843952493E-04 + 67 -2.0109930029329276E-05 + 68 -1.1866772367341670E-04 + 69 -4.3750076954574268E-04 + 70 -6.5110362586788412E-05 + 71 6.9119405321127697E-04 + 72 3.1244548477964124E-04 + 73 2.1992187816932069E-04 + 74 1.0856598953370037E-04 + 75 -2.4328028521033236E-04 + 76 -1.5155414067488401E-02 + 77 3.5912873202789827E-04 + 78 -3.6933808531412031E-03 + 79 1.5095352685556976E-03 + 80 1.3057990315676617E-02 + 81 -1.1804281475234954E-03 + 82 9.3352511126857968E-04 + 83 2.5320849202922859E-03 + 84 2.7672927361087969E-04 + 85 -2.4136365130522164E-03 + 86 -9.3786133358729875E-04 + 87 6.7510642735653696E-04 + 88 6.0510325976347445E-05 + 89 4.2659460421704135E-03 + 90 -3.9462299555381445E-05 + 91 -2.0615149112507779E-04 + 92 -1.4430282292441730E-03 + 93 9.7941352591313481E-04 + 94 -7.3402787510882975E-04 + 95 -3.3975727767457034E-04 + 96 4.6497906567700785E-04 + 97 1.3944454862790191E-04 + 98 4.2650449900419640E-05 + 99 5.7022584026915517E-05 + 100 2.4646295821313620E-04 + 101 7.3204821110020999E-05 + 102 5.3107755723013066E-02 + 103 -4.1922519080999504E-04 + 104 4.6500203945136062E-03 + 105 1.5537365552521696E-02 + 106 -4.2807411324963532E-02 + 107 -3.0450148373906117E-04 + 108 1.7698435597297455E-03 + 109 -2.7269281160402304E-03 + 110 -5.8764549565235771E-03 + 111 8.1730275035150467E-03 + 112 2.0141658463689142E-03 + 113 -6.8976130051483220E-04 + 114 -3.7010043316124072E-03 + 115 -8.3232749278687700E-03 + 116 4.0827115325006588E-04 + 117 3.2654200020132834E-03 + 118 -1.9145026688545997E-03 + 119 1.6108860637395945E-03 + 120 -9.1885966385205601E-05 + 121 1.0404491577520355E-03 + 122 -8.5889474151694596E-04 + 123 -6.9237397060080918E-04 + 124 -1.0074457062681724E-04 + 125 -7.2229937566814972E-04 + 126 -1.3927323390325610E-03 + 127 -1.2259752599552572E-03 + 128 -1.8496722788104946E-02 + 129 1.9907783872031544E-03 + 130 2.5353225966602585E-03 + 131 5.5608415892645594E-03 + 132 -3.0433824082841832E-03 + 133 4.6961796857743248E-04 + 134 -2.7057769486056489E-03 + 135 1.2734794961242030E-03 + 136 -2.5243769735225977E-02 + 137 -2.9569551613527516E-02 + 138 -1.6466292687375345E-01 + 139 -1.1588805024725997E-01 + 140 3.0653420825897629E-02 + 141 3.2868134878825538E-04 + 142 7.3254114700964748E-04 + 143 3.7505515086010974E-03 + 144 6.4201007065839612E-03 + 145 -1.7633159074222511E-04 + 146 4.2306252004063570E-04 + 147 -5.9375706770270562E-04 + 148 -6.5361231070943152E-04 + 149 -1.0292239117003538E-04 + 150 1.3085181570614615E-04 + 151 1.3031885918091295E-03 + 152 4.5515481217053583E-04 + 153 -7.7025665002561465E-03 + 154 -3.2858825797935530E-03 + 155 7.1074571943291198E-03 + 156 -2.5124348788866445E-03 + 157 1.9564047790735302E-03 + 158 4.4984492907853141E-03 + 159 1.0947883555308367E-03 + 160 -1.3375177639117911E-03 + 161 3.1980811006335069E-01 + 162 1.7088133694499533E-01 + 163 -2.7710091065861558E-01 + 164 -7.5767571814537005E-01 + 165 8.3718138015411503E-02 + 166 2.5587309396229926E-03 + 167 1.8517956210907240E-03 + 168 6.4833506836563790E-04 + 169 -7.4148639286153737E-03 + 170 1.3364593145799315E-03 + 171 7.6567840134560855E-04 + 172 -8.2243102749161249E-04 + 173 -1.0465020617370746E-03 + 174 -1.3446444031986464E-03 + 175 -4.2679925813396283E-04 + 176 7.2022868004712013E-04 + 177 -2.4981072226836859E-04 + 178 1.2198652960902213E-01 + 179 -4.0915733509311835E-04 + 180 -8.3940995658983997E-02 + 181 1.2342928788516736E-02 + 182 -3.9789993337308094E-02 + 183 -4.6241994389516492E-03 + 184 1.3599782785682288E-03 + 185 -8.0768417611739413E-04 + 186 1.1116633100216423E-02 + 187 -3.0488408144709603E-04 + 188 -3.3025059368546766E-03 + 189 -1.3926241557171475E-02 + 190 3.3284772542183924E-04 + 191 -1.1041813699665812E-02 + 192 1.1068848702795675E-05 + 193 4.1489713817867251E-03 + 194 -3.7027327588700192E-03 + 195 -1.3698718768019268E-02 + 196 3.1757759983489496E-04 + 197 -6.8808385758294154E-04 + 198 -2.4354002964173454E-03 + 199 2.0765959538760425E-03 + 200 3.2558219685362898E-04 + 201 -1.5777708329312134E-03 + 202 5.5304131724291173E-04 + 203 8.5086391780718495E-04 + 204 -1.1788879978414079E-02 + 205 1.3712322852121052E-03 + 206 -9.5985184513679991E-04 + 207 -2.2070243731275737E-03 + 208 -2.1047898945285200E-03 + 209 -2.8366681748666638E-04 + 210 1.8098512884801154E-03 + 211 2.2983202030409039E-03 + 212 1.5856054956736590E-01 + 213 3.0508306774672502E-02 + 214 1.2772552500279213E-01 + 215 -1.7285905641548860E-02 + 216 5.6817792607773303E-02 + 217 -4.4252102790148119E-03 + 218 3.7395512449898705E-04 + 219 -9.2820575228370666E-04 + 220 -1.7374684467695757E-04 + 221 -8.8989173783828805E-04 + 222 6.9786023507081613E-04 + 223 -7.5811144622823655E-04 + 224 -4.5692192351554220E-04 + 225 -8.8466287142699635E-04 + 226 3.7018910936702882E-04 + 227 -6.0412964057469367E-04 + 228 -4.3790551853904887E-04 + 229 4.0978612486637245E-03 + 230 -2.7940051502934080E-04 + 231 1.6994343127230322E-04 + 232 2.3612645062752574E-04 + 233 -2.7199871824954997E-04 + 234 -1.4253435230255691E-04 + 235 2.3820871347735332E-04 + 236 -4.1270092201997242E-04 + 237 1.9372438736500085E-02 + 238 -1.6754739761945303E-02 + 239 2.8440627720946478E-03 + 240 -2.4653585650363727E-02 + 241 1.9162649117353471E-02 + 242 -7.4905499510871426E-04 + 243 7.7951444204314984E-04 + 244 6.3514113599383770E-04 + 245 6.0969854324882569E-04 + 246 -4.7932774201497023E-04 + 247 1.1444704883009699E-04 + 248 2.7062944000761941E-04 + 249 1.4032462528979392E-04 + 250 2.3321841034543706E-04 + 251 -2.1155491599545630E-04 + 252 2.7572881468958710E-04 + 253 4.3032805717093166E-05 + 254 -1.7481851555466406E-03 + 255 8.6421373728393905E-04 + 256 -1.0232952473016080E-03 + 257 1.4527866864280328E-04 + 258 -1.0628505401628719E-04 + 259 -2.5258195305713743E-04 + 260 -6.7408776456919341E-04 + 261 -5.1069976970366917E-04 + 262 2.6511701635018817E-02 + 263 -4.8091280326682936E-03 + 264 -3.7002156141762652E-02 + 265 4.1610512673536465E-02 + 266 5.3485567971485078E-03 + 267 -1.1926014163238245E-03 + 268 -6.1626694256140552E-04 + 269 4.1087752999267857E-04 + 270 5.8372355582153991E-04 + 271 7.2326318390831331E-04 + 272 2.1764965883192374E-04 + 273 -2.6655714972050166E-05 + 274 6.6415777039933988E-04 + 275 -2.4567157347256754E-04 + 276 1.7524429884475221E-04 + 277 1.1602421483739993E-04 + 278 -3.9364102651560560E-04 + 279 -1.4597084454525166E-03 + 280 -4.7737843867080232E-05 + 281 1.1084168546270725E-03 + 282 3.3078895959217642E-03 + 283 5.3720600338460498E-03 + 284 3.0732727030344915E-04 + 285 2.6180524319561354E-04 + 286 1.0902179979325815E-03 + 287 5.7586796692888460E-04 + 288 3.3485336007478084E-04 + 289 -2.5805554975127346E-04 + 290 5.5203273307441534E-04 + 291 1.2599797302847318E-04 + 292 1.8450645696881402E-04 + 293 -2.6490656248551268E-05 + 294 4.1772491238368511E-04 + 295 1.1512746328098289E-03 + 296 9.2520201914696751E-04 + 297 7.7350403671956128E-05 + 298 1.7205936841965439E-04 + 299 -6.2140527034697078E-05 + 300 1.9417102076108982E-04 + 301 -2.2632204718679873E-04 + 302 1.3326403165471386E-04 + 303 -8.7572543899590250E-05 + 304 -2.6150096667436806E-04 + 305 1.3491827500220919E-03 + 306 3.6020570915141359E-05 + 307 -5.6530757264956115E-04 + 308 -7.0043561234675632E-04 + 309 4.5000344934262787E-04 + 310 -4.4747415846769688E-05 + 311 -1.4571570170908958E-04 + 312 2.6647240267358731E-04 + 313 7.2053563608638965E-03 + 314 1.7756733967606124E-03 + 315 2.6230230604327343E-03 + 316 9.0631945243598141E-04 + 317 -8.1004473759812394E-03 + 318 2.4896206035115239E-04 + 319 -1.6341829376571743E-04 + 320 -1.5198680825098665E-04 + 321 5.4001704095530789E-04 + 322 4.4613659444887643E-04 + 323 1.1057995490468924E-04 + 324 -8.6584244368233653E-05 + 325 -3.4297575983543210E-05 + 326 2.4473126116515199E-04 + 327 9.6408494865301029E-05 + 328 -1.3262090764840206E-04 + 329 -1.5763875331845954E-04 + 330 -3.0456455171777798E-03 + 331 9.6414683360291395E-04 + 332 3.4809776791631838E-04 + 333 1.3608436443504220E-04 + 334 -3.8489741615050532E-04 + 335 5.8587493016995962E-05 + 336 4.6053897454883191E-04 + 337 3.9443006900584187E-04 + 338 7.6612276845789265E-02 + 339 1.6832718049407974E-02 + 340 1.2481075920187573E-02 + 341 4.4837029630494995E-03 + 342 6.6545150121288532E-03 + 343 -5.5490778295667160E-04 + 344 -2.6437178675299598E-04 + 345 5.0852706974160999E-04 + 346 1.9897612589651477E-04 + 347 3.9467144452365658E-04 + 348 -3.9768994331018182E-04 + 349 6.8212518433224385E-06 + 350 7.6171233548558869E-05 + 351 1.4519515721312116E-04 + 352 8.9096760279143964E-05 + 353 -1.8404867790366129E-04 + 354 1.3974909074646996E-04 + 355 -2.3490380656061703E-04 + 356 -3.7064983666697070E-05 + 357 1.7705203076014953E-03 + 358 -5.6150027827451213E-03 + 359 7.9963175992152648E-05 + 360 3.5024344266163025E-04 + 361 -8.2840430674543475E-04 + 362 3.2639439409085997E-04 + 363 -2.4425464045433443E-04 + 364 3.9507764089637641E-04 + 365 -9.0020648389498915E-04 + 366 -9.2246176524925967E-05 + 367 -4.3611605700225736E-04 + 368 1.0715001085086356E-02 + 369 -2.9185709698520326E-04 + 370 2.5321753359838078E-03 + 371 4.1074899043780475E-04 + 372 -6.5754198783109924E-03 + 373 -5.6871371226143699E-04 + 374 -1.1032841571751897E-03 + 375 7.4180584428997485E-04 + 376 -5.1859796129364645E-04 + 377 1.2813498989315412E-03 + 378 -3.5450941098499596E-04 + 379 -3.6451399179781251E-04 + 380 -2.8135548429107340E-04 + 381 -2.0787940240210079E-02 + 382 3.7697138796592976E-04 + 383 3.0650888475350761E-03 + 384 -3.9532067353430338E-03 + 385 1.6706562182473355E-03 + 386 1.1491581257479166E-03 + 387 -5.8334202026187143E-04 + 388 3.7374347944562096E-04 + 389 -1.4816949130247070E-03 + 390 9.4043937589872659E-04 + 391 6.2122572132370692E-04 + 392 5.6248074472611386E-04 + 393 3.5661323547806146E-04 + 394 3.8929089335859178E-03 + 395 1.3054453548876936E-04 + 396 2.1839691213557910E-04 + 397 2.3839915345562839E-04 + 398 3.6654620465288485E-04 + 399 1.0512135699365116E-04 + 400 -3.0156999100403449E-04 + 401 -1.5048624849020107E-04 + 402 -1.5446948127332538E-04 + 403 2.5019790494175437E-02 + 404 -1.1252177772492478E-02 + 405 -1.4508293464934773E-02 + 406 -2.1359636432202664E-02 + 407 -4.3365849740420161E-04 + 408 3.0943391361425263E-04 + 409 9.6317724464433849E-04 + 410 -1.8173822403363043E-04 + 411 4.5479211902806456E-04 + 412 1.5966879708118373E-04 + 413 3.6767053681431496E-04 + 414 2.7077828538310425E-04 + 415 2.4477015733632876E-04 + 416 2.1477694076800963E-04 + 417 -1.0512340250869137E-04 + 418 1.5953000070901243E-05 + 419 -2.0651306015730848E-03 + 420 1.3169077256550049E-04 + 421 -5.4092492217065768E-04 + 422 -8.2908713691269488E-04 + 423 2.8832946351322903E-04 + 424 5.0237677204244843E-05 + 425 1.6744440087456338E-04 + 426 -3.5805192744569247E-04 + 427 5.0562706049584712E-05 + 428 -9.8474141719407605E-05 + 429 -2.3844616388639682E-04 + 430 -1.2969065781153017E-04 + 431 -4.8743201240464895E-05 + 432 1.6661734323715669E-03 + 433 -1.7068113428602810E-04 + 434 -4.4008298926640632E-04 + 435 -2.1100667788545332E-03 + 436 -3.6055196697503376E-04 + 437 -1.1997237006040649E-04 + 438 4.6954366236416192E-05 + 439 -6.3779273697033294E-04 + 440 -4.5772423141376398E-04 + 441 -3.3894937222361099E-04 + 442 2.7025564581303668E-04 + 443 4.5503019494073113E-04 + 444 -9.1303436755343751E-04 + 445 -1.9301104897438703E-04 + 446 3.9905874567247612E-04 + 447 -5.4959211798574791E-04 + 448 -1.2734231565556210E-03 + 449 3.1912616478337811E-04 + 450 -2.1748866180294783E-05 + 451 -7.0551290489699419E-04 + 452 5.7050341109888929E-04 + 453 7.8216970241019815E-03 + 454 1.9582241782438520E-02 + 455 -2.0377685914859504E-02 + 456 -1.3840463176742481E-03 + 457 1.2794130852888290E-02 + 458 4.8672214616903047E-04 + 459 9.6067978053400070E-05 + 460 -3.0654590190400794E-04 + 461 -3.3986537593679072E-04 + 462 -1.5926201070231604E-03 + 463 1.6248171208831135E-04 + 464 1.1481908608592147E-04 + 465 -5.1323671749718865E-04 + 466 -1.4871422622977500E-04 + 467 -2.0101344906612250E-04 + 468 8.5444875722858572E-05 + 469 2.8299534211824667E-05 + 470 3.9388724591335415E-03 + 471 -7.6729121736217299E-04 + 472 6.4716324753370141E-04 + 473 1.9545870304016606E-03 + 474 4.0642546725261640E-04 + 475 -1.3761339416857975E-04 + 476 4.8701926846052610E-04 + 477 2.9501815518817240E-04 + 478 -1.0558720997485989E-01 + 479 -6.3213095206627124E-03 + 480 3.0596259242949640E-02 + 481 5.5007354040499987E-02 + 482 2.7150680055801138E-02 + 483 -1.0228627459670900E-03 + 484 1.3317027057309006E-04 + 485 -2.5560950374760957E-05 + 486 -4.3602508266956199E-04 + 487 1.1291468842742386E-03 + 488 -5.2947693134911107E-05 + 489 -7.6103604294719583E-05 + 490 -3.5568051706395462E-04 + 491 1.3438410375421169E-05 + 492 -1.0232771230672063E-04 + 493 -3.5996846079512488E-04 + 494 8.6606327740755410E-05 +Ene= -4.8358500431E-01 +Spin= Alpha +Occup= 2.0000000 + 1 3.4690024056938731E-03 + 2 -1.4634862324829038E-04 + 3 -1.1732935285613294E-03 + 4 1.9095913469686560E-03 + 5 -5.9646740803981141E-04 + 6 -2.8889483142525632E-04 + 7 3.0892783334876930E-04 + 8 -8.2067915110613644E-04 + 9 -4.2092928403676712E-03 + 10 -1.7310933325662553E-03 + 11 -5.6754039599649017E-03 + 12 5.9839549090292179E-03 + 13 1.2316779618838437E-03 + 14 -1.4695978277328820E-03 + 15 7.2504404453498897E-04 + 16 1.1303074914835319E-03 + 17 1.7446461790523172E-04 + 18 -6.3886676131937297E-04 + 19 -1.1962106833327517E-04 + 20 3.6556275935673038E-04 + 21 6.0777504699460329E-05 + 22 -1.9507593784358676E-04 + 23 -5.1791126107575685E-04 + 24 -2.4834107714989006E-04 + 25 1.9240749409539791E-04 + 26 -9.5882445604037348E-03 + 27 -1.5062709057017693E-03 + 28 4.1472630783019170E-03 + 29 8.0967017509518142E-03 + 30 -9.5874160363438547E-03 + 31 1.0636587999844622E-03 + 32 2.2273484899514081E-03 + 33 -1.1167118370042656E-03 + 34 7.0405505950101269E-02 + 35 3.6983992852389791E-02 + 36 -1.3180277597780257E-01 + 37 -9.2028469597683502E-02 + 38 -6.3371747509052062E-03 + 39 -7.1289657614938241E-05 + 40 1.0875940264311918E-03 + 41 6.1887372865611539E-03 + 42 2.3928687091015134E-03 + 43 -4.2276415928831695E-03 + 44 -2.9576848264571526E-05 + 45 3.0384761887919403E-04 + 46 -1.3587233869586355E-03 + 47 -5.6903682762467407E-04 + 48 -3.8137825000163754E-04 + 49 7.7129103055090394E-04 + 50 -9.0935685865020062E-07 + 51 1.3876300703953204E-02 + 52 2.6733888533546330E-04 + 53 2.5080250080552319E-03 + 54 4.1337009610691172E-03 + 55 4.7594647938887400E-03 + 56 -1.9350416082615580E-04 + 57 4.9571570752191929E-04 + 58 3.6255318251276266E-04 + 59 -8.7780841888916630E-03 + 60 -4.2901017800067880E-02 + 61 -2.1325599278874032E-02 + 62 -1.1346290397146429E-02 + 63 -1.9155896222972108E-02 + 64 1.5794048686301398E-03 + 65 2.5116743039753624E-03 + 66 4.0198381234338868E-03 + 67 -7.4405089627618346E-05 + 68 1.4875261241030864E-03 + 69 4.5548685364510904E-05 + 70 -5.4045534739424208E-04 + 71 2.7761100256505167E-04 + 72 -4.8813115056511977E-04 + 73 2.1810330131735077E-04 + 74 -4.1173465972469748E-04 + 75 3.4488554640689631E-04 + 76 -9.4132173564451613E-03 + 77 3.5968410051263975E-04 + 78 -6.4683489487753791E-03 + 79 2.9987500765148748E-03 + 80 3.5664456256661032E-03 + 81 -1.3427518164607698E-03 + 82 1.8853454342949590E-03 + 83 -2.2015346597178582E-04 + 84 -4.8369502078043799E-04 + 85 -1.4330875795019421E-03 + 86 1.4864605843136972E-05 + 87 1.4104047523042071E-03 + 88 2.9533806963935453E-04 + 89 1.5182432044708140E-03 + 90 1.4481165310865744E-04 + 91 -7.8172585252205841E-04 + 92 -7.0164603588453839E-04 + 93 1.4906710580274820E-04 + 94 1.7629399228469655E-04 + 95 3.0860457144719166E-05 + 96 2.5957066440861909E-04 + 97 5.9724016192730160E-05 + 98 -3.9189432988128261E-04 + 99 -1.3576496547479398E-05 + 100 2.4148663279230121E-04 + 101 -3.3194543208174027E-05 + 102 -7.5535003156252445E-02 + 103 1.5071547772130252E-03 + 104 -2.0102919858803039E-02 + 105 2.6160797022800050E-02 + 106 2.6891031830875201E-02 + 107 -1.7835384343800633E-03 + 108 1.3793733813192185E-03 + 109 3.6784963252262551E-03 + 110 -5.4431144490986883E-04 + 111 -5.7712628880920817E-03 + 112 5.0159337134240839E-03 + 113 2.5847356949777502E-03 + 114 -6.5512113673014804E-03 + 115 1.7866082335538241E-02 + 116 -6.0875392582830656E-04 + 117 -2.8513549469232702E-03 + 118 5.0074510775684538E-03 + 119 1.9545957077272452E-03 + 120 -4.6902252412884507E-04 + 121 -1.2666533286571623E-04 + 122 8.6560896492886199E-04 + 123 8.9168851223013253E-06 + 124 1.2792055163852788E-03 + 125 -9.4800313476759294E-05 + 126 1.4306894958826355E-03 + 127 1.4177751739567927E-04 + 128 1.8094466435525064E-02 + 129 1.8084322363986821E-03 + 130 1.5457266245422020E-02 + 131 -1.1223941896283823E-02 + 132 8.5681789134617829E-03 + 133 3.1513334103116216E-03 + 134 -2.5674066285676024E-03 + 135 1.9177191529759438E-03 + 136 1.1126529326311417E-02 + 137 -5.2014002934532115E-02 + 138 1.1225426982938730E-01 + 139 -3.9909478643913657E-02 + 140 7.9729772294529044E-02 + 141 -4.9557498225100902E-03 + 142 3.7777878875374835E-03 + 143 -2.0507638010026901E-03 + 144 3.5032978001856927E-03 + 145 -6.2960191559805426E-03 + 146 -8.0822797408090015E-04 + 147 -2.4912973561017906E-04 + 148 7.4251392268914404E-04 + 149 9.5460570795331194E-04 + 150 -6.6106572960093388E-04 + 151 4.2251390753341068E-04 + 152 -3.4462422083785866E-04 + 153 -2.1396871507831246E-03 + 154 5.4084592551621844E-04 + 155 -1.2065767201588995E-04 + 156 -1.1746459116658415E-03 + 157 7.8526716103129602E-04 + 158 6.3939615516132495E-04 + 159 -5.9409148434446757E-04 + 160 3.9644144266949257E-04 + 161 -4.1244263109897483E-02 + 162 -3.1434553891829559E-01 + 163 -1.4620614173243857E-01 + 164 4.4748157814918241E-02 + 165 8.7765952959154636E-01 + 166 -9.0024582217111226E-04 + 167 -1.2237886432608070E-03 + 168 1.5986105801217799E-05 + 169 9.1519851978985600E-04 + 170 2.3277758737129672E-03 + 171 5.5915928909250812E-05 + 172 -3.8049150917687780E-04 + 173 1.0411632663485461E-04 + 174 2.9261613536272932E-04 + 175 1.4552582356916180E-03 + 176 -4.1624698988921801E-04 + 177 -5.2437510215833929E-04 + 178 1.9528533092446218E-02 + 179 -7.7568123928617384E-04 + 180 -1.2661629709242602E-03 + 181 -3.7361218107461930E-02 + 182 1.5235755895985463E-02 + 183 -1.2558427826530869E-03 + 184 -1.0724803005131768E-03 + 185 2.7353095151742086E-04 + 186 -6.4840272897328665E-04 + 187 4.3062020198280666E-03 + 188 9.5989124882115177E-04 + 189 5.9721040194317127E-04 + 190 -1.0827597582415627E-02 + 191 7.8254469184809387E-03 + 192 -5.9194819462746740E-05 + 193 -5.6657044303672572E-03 + 194 9.4034760809593517E-04 + 195 7.9336047605682528E-03 + 196 4.6294031332262144E-04 + 197 6.5368869497668339E-05 + 198 4.8956588523027403E-04 + 199 -1.1758442908290157E-03 + 200 4.0445131275195807E-04 + 201 8.8800376631120964E-04 + 202 1.2506734096805701E-04 + 203 -9.5416199621088671E-04 + 204 -5.3970791046536581E-03 + 205 2.6624234080798158E-04 + 206 -1.0816661555102737E-03 + 207 -4.4817536345724829E-03 + 208 -4.6313455861748407E-03 + 209 -5.9997960077861506E-04 + 210 -1.4563573383968879E-03 + 211 -1.4781758297241889E-03 + 212 -1.7129237278548873E-02 + 213 6.9870802798331268E-03 + 214 -8.8520278722400200E-04 + 215 -4.1247190924071676E-02 + 216 -2.4704785401019065E-02 + 217 8.3575547382611505E-04 + 218 -1.7099095307363597E-03 + 219 -2.4993540394745782E-03 + 220 1.3921166050067152E-03 + 221 -2.4315095397024651E-03 + 222 6.4153174236474236E-04 + 223 5.3239199871637946E-04 + 224 2.3291984198038613E-04 + 225 1.2404817680769712E-04 + 226 -7.3477494891143185E-04 + 227 4.1899393818024187E-04 + 228 6.0300486662763177E-05 + 229 -1.1679088459192759E-03 + 230 -5.5217805288870943E-04 + 231 -1.8069513727006852E-03 + 232 1.0239325748498675E-03 + 233 -2.0136378843261765E-03 + 234 -7.4439887860127437E-04 + 235 3.9231855568287862E-04 + 236 -4.4975095875955353E-04 + 237 1.3399083967241918E-02 + 238 4.7381166125597179E-03 + 239 2.4478135313946213E-04 + 240 -7.4701148122330802E-03 + 241 2.5923189097510303E-03 + 242 6.4947252672229087E-05 + 243 -7.0618600984178280E-04 + 244 7.9070965078763527E-04 + 245 3.4519932470058822E-04 + 246 1.9128402519697936E-04 + 247 9.1514028469658656E-05 + 248 -3.4137182059683215E-05 + 249 4.5882112912780937E-05 + 250 -7.7066846925554654E-05 + 251 -1.0506000079533299E-05 + 252 -1.1957562838776574E-04 + 253 -1.4220099133073984E-04 + 254 -4.1130767471539561E-03 + 255 4.6861044418044076E-05 + 256 -1.1997451717165020E-03 + 257 1.5367706033392054E-03 + 258 -3.1802212249781403E-04 + 259 -1.3164050080202529E-04 + 260 1.5263534245151271E-04 + 261 -7.9921117349286121E-06 + 262 -2.0866538657262002E-02 + 263 7.3163258147228233E-03 + 264 2.4612092828495108E-02 + 265 7.8840373463662777E-03 + 266 5.5760632328623241E-03 + 267 2.7370716005487835E-04 + 268 -9.0062271857891567E-04 + 269 5.0936560887979284E-04 + 270 6.8391479891861452E-04 + 271 8.3629344416188457E-04 + 272 2.3377128254827535E-04 + 273 -1.3041611896102742E-04 + 274 -3.9435194610570483E-04 + 275 1.4324123395107053E-05 + 276 4.6068347559995003E-04 + 277 1.2164639192996437E-04 + 278 -2.9904503854498611E-04 + 279 4.0084831595291002E-03 + 280 -1.1532320635984050E-04 + 281 -9.6649925800128993E-04 + 282 -2.9371675269829060E-04 + 283 4.1955910595179124E-04 + 284 -1.1917936993078485E-04 + 285 2.4185494511862871E-04 + 286 3.5141824941293337E-05 + 287 -1.5167853329003413E-04 + 288 -3.4288509172457186E-04 + 289 -6.3473529250811310E-04 + 290 1.6946745505133136E-04 + 291 3.6598965648124517E-06 + 292 -2.9095362828759829E-03 + 293 8.9705963154751588E-05 + 294 -1.3130816025152337E-03 + 295 1.7444549481179610E-04 + 296 -1.5496082224455483E-04 + 297 3.4449099265220435E-05 + 298 -2.0877830346287970E-04 + 299 -2.1970019542991116E-04 + 300 -7.2777134224165865E-05 + 301 -1.7478706131710773E-04 + 302 3.7862027722776410E-05 + 303 8.6882827346332909E-05 + 304 1.3555924124475822E-05 + 305 -1.0226850362447110E-03 + 306 -9.2467582959458071E-05 + 307 -3.0212555303066134E-04 + 308 8.1002697167305564E-04 + 309 -1.6172284768800609E-05 + 310 -2.8240065382388612E-04 + 311 5.7536674848820847E-05 + 312 7.3507719123284154E-05 + 313 -2.9045309001160310E-03 + 314 -2.5603557706021466E-03 + 315 -3.8360226223507532E-04 + 316 -4.3553549376180809E-03 + 317 7.4916390155826268E-03 + 318 3.5650373203131034E-04 + 319 -3.9148358199777471E-04 + 320 1.3715831393977678E-04 + 321 -2.3980137883213994E-04 + 322 -4.2361570435222028E-04 + 323 1.3294247497362390E-04 + 324 -2.8656795976010698E-05 + 325 -1.2445242623909970E-04 + 326 -6.5156047987606752E-05 + 327 -2.5465004619729208E-05 + 328 2.7406756194268266E-05 + 329 -5.8526409112692422E-05 + 330 1.3226245986817912E-04 + 331 -1.1609152184687489E-03 + 332 -7.8898273574423651E-04 + 333 -6.1495724893903753E-04 + 334 -1.8259354960067015E-03 + 335 -3.9916904447528267E-04 + 336 -4.8749162361891985E-04 + 337 -9.0694077535566136E-04 + 338 -4.8025721001047017E-02 + 339 -3.4929696033030526E-02 + 340 -1.1270540563464099E-02 + 341 -2.9724334910954338E-05 + 342 -1.1823078076403690E-02 + 343 -5.5321788634015920E-04 + 344 -3.8011432238628881E-04 + 345 -1.2124042883803463E-03 + 346 2.5637653499567444E-04 + 347 -5.9095505258167642E-04 + 348 1.9995785877363991E-04 + 349 -1.8301130374670459E-04 + 350 -2.8203764735590419E-04 + 351 2.8189639391841700E-04 + 352 -1.6335254338661618E-04 + 353 2.7362615390777049E-04 + 354 7.6886150008812249E-06 + 355 1.4275640044536869E-03 + 356 -6.9122210601677990E-05 + 357 -5.9863112859225031E-04 + 358 4.4028686136336429E-03 + 359 -5.7563170814427223E-04 + 360 -1.7145582400158464E-05 + 361 5.2808966659498519E-04 + 362 -2.5661986780383620E-04 + 363 1.2614310315328206E-05 + 364 -1.7031880299610454E-04 + 365 6.8870374110718271E-04 + 366 1.0398124184553674E-04 + 367 3.0223378847613064E-04 + 368 -3.7021358765633580E-03 + 369 3.8942510450457935E-04 + 370 -2.9489323154656849E-03 + 371 1.3770181099759201E-03 + 372 3.7191511076212951E-03 + 373 -1.5063746174165870E-03 + 374 3.6431001679780020E-04 + 375 -1.0650585720799624E-03 + 376 6.6213613352371977E-04 + 377 -8.9913864880535716E-04 + 378 4.1078780927108653E-04 + 379 3.5124132790501566E-04 + 380 -6.5077451882292057E-05 + 381 3.1019123389544243E-02 + 382 -4.0971996239195260E-04 + 383 -2.3038874283252985E-03 + 384 1.1098794013062668E-02 + 385 -7.9242714995975023E-03 + 386 -3.3123601910374018E-04 + 387 5.2357579285467100E-04 + 388 -1.2667795436974729E-03 + 389 1.6182182828470091E-03 + 390 -2.0603449269793418E-03 + 391 5.7227000553808404E-04 + 392 1.1336595627201453E-04 + 393 1.0178861345988715E-03 + 394 -2.0394124707273707E-03 + 395 6.2525168874590423E-04 + 396 6.1877120454004576E-04 + 397 -1.4921356329727991E-03 + 398 9.1176869210887648E-04 + 399 -2.6001634180607749E-04 + 400 -1.5032442926967945E-04 + 401 1.3551119477560904E-03 + 402 2.9927906397857650E-02 + 403 -2.9509787141376288E-02 + 404 1.8701144441947155E-02 + 405 4.9877397345330146E-04 + 406 -9.6020358776697286E-03 + 407 2.9803617000095006E-04 + 408 1.4566284376744270E-03 + 409 -1.3799322166975164E-03 + 410 -1.8521411990979298E-04 + 411 3.1358883862088758E-04 + 412 -5.0968698481031894E-05 + 413 1.0703433498907884E-04 + 414 -9.8639932326078226E-05 + 415 9.1989428977651893E-05 + 416 -2.4129776204664016E-04 + 417 3.2509521864780669E-04 + 418 7.4918197525983786E-05 + 419 -4.5385413780388729E-03 + 420 3.8984381576381703E-05 + 421 9.8347998929601186E-04 + 422 1.1163642851396733E-03 + 423 1.1854631132515950E-03 + 424 2.7663365669669440E-04 + 425 1.0509882919117448E-04 + 426 6.0311615096159207E-05 + 427 1.5121440707212833E-04 + 428 3.3130733392533002E-04 + 429 2.6558500916086189E-04 + 430 -3.2366551746581248E-06 + 431 1.9167849079890619E-04 + 432 1.7774964615110426E-03 + 433 1.0932919165827976E-04 + 434 3.0650577527622097E-03 + 435 -9.5796182436445312E-04 + 436 -1.9262244970434188E-03 + 437 -3.7034285266370376E-04 + 438 1.7358543173883601E-04 + 439 -3.2755242233302960E-04 + 440 3.3418676054153371E-05 + 441 3.5502511364220450E-04 + 442 -3.9385301094141943E-04 + 443 3.2173741319615118E-04 + 444 8.5839580778703385E-04 + 445 -2.9173592083160064E-03 + 446 -7.5677660210417860E-04 + 447 -9.4773786032834820E-04 + 448 2.5790825102704285E-04 + 449 -2.2166502382576008E-03 + 450 -2.6600238423758342E-04 + 451 -9.2122576274474398E-05 + 452 -5.3211511525473663E-04 + 453 3.6110167514826394E-03 + 454 -1.3661057839743612E-02 + 455 3.9806162480969945E-03 + 456 6.8776599027096574E-03 + 457 -4.3214255946357871E-03 + 458 4.4979457239650403E-05 + 459 -5.1508001555477991E-04 + 460 -7.3591033366700298E-04 + 461 -5.4898223900530442E-04 + 462 4.5691636460956766E-04 + 463 3.0719898659858393E-04 + 464 1.1934407751358923E-04 + 465 -1.3859449701725298E-04 + 466 -5.0987441231809781E-05 + 467 -2.4641138446901421E-05 + 468 4.7927489441891689E-05 + 469 -5.7506470870184100E-05 + 470 -4.0670216250120782E-03 + 471 -4.8980149271363155E-05 + 472 -8.0289950324716674E-04 + 473 -9.6641145281883823E-04 + 474 -2.3312710729559279E-04 + 475 2.9106075784856688E-04 + 476 -3.4665456995717921E-05 + 477 9.9833671166622982E-06 + 478 5.0675495523604903E-02 + 479 3.6891223214014487E-02 + 480 -1.2381905404200160E-02 + 481 -2.4934619693335971E-03 + 482 -5.8762067590903522E-02 + 483 7.6309548584775069E-04 + 484 8.8942512718374352E-05 + 485 -5.0418304345974595E-04 + 486 1.0152607083909902E-03 + 487 -1.5195255618264901E-03 + 488 -1.2050079254186952E-04 + 489 1.0891062492443022E-04 + 490 6.8817312527293679E-05 + 491 3.8965066590479770E-05 + 492 -9.2174738776080312E-05 + 493 1.9012580475746458E-04 + 494 -5.0230906895221356E-04 +Ene= -4.8241860762E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -3.0678525546387336E-03 + 2 4.5898830202045505E-04 + 3 7.3699658778144197E-04 + 4 -2.7124054051525471E-03 + 5 4.6668650784238849E-04 + 6 -1.4731887469659552E-04 + 7 -5.0097189179170332E-04 + 8 -5.9103805749227483E-04 + 9 -3.6223711351877994E-04 + 10 1.2253762383334792E-02 + 11 -1.0384999147881930E-02 + 12 -9.1345483023142736E-03 + 13 -1.1623651660521473E-02 + 14 -9.8661536486180975E-04 + 15 3.2148066607973354E-04 + 16 1.9217761512065241E-03 + 17 -1.4795856853713819E-04 + 18 8.3760975498037326E-04 + 19 1.9041544012950647E-04 + 20 2.6505110954159100E-04 + 21 1.8715798397357322E-04 + 22 -8.2521124860288116E-05 + 23 -6.1700405763502727E-04 + 24 -1.2697954388841653E-04 + 25 -8.5966596838061120E-05 + 26 2.0594126088327785E-03 + 27 2.6471598076271258E-04 + 28 8.5630162194325434E-04 + 29 -1.1057668928115931E-03 + 30 -9.2972640961984539E-04 + 31 4.6608971738424764E-04 + 32 -8.0101592337880430E-05 + 33 -1.7030399443685799E-04 + 34 1.0461643770654654E-02 + 35 -4.8969517880809756E-03 + 36 -1.0832740504533384E-02 + 37 -1.4610964780473067E-02 + 38 1.6605202955524517E-02 + 39 2.0443171054997285E-05 + 40 2.5731436409668257E-04 + 41 2.7025242243846167E-04 + 42 -1.1780175309251098E-03 + 43 -2.7881296961137912E-04 + 44 4.6992826068309548E-05 + 45 -1.4505451848417818E-04 + 46 -1.0451689795909104E-04 + 47 -2.3533024399161764E-04 + 48 -2.2789616722204641E-05 + 49 3.3532524113795046E-04 + 50 2.8032681712851807E-05 + 51 1.1901744275078199E-02 + 52 -3.6041924865208341E-04 + 53 -3.5082115211116311E-03 + 54 -1.6093705259395312E-03 + 55 3.6269428319405045E-04 + 56 1.0222247527802856E-03 + 57 -5.3540453451720964E-04 + 58 -7.9125560586726601E-04 + 59 4.3096151591454062E-03 + 60 7.0280919482545428E-03 + 61 2.7725030251832494E-02 + 62 -2.9722177123602367E-02 + 63 -2.6811560385977002E-02 + 64 3.5241534153996273E-04 + 65 3.1020028832601595E-04 + 66 8.7842711058379132E-05 + 67 2.4494537842837874E-04 + 68 1.9353864103837215E-03 + 69 1.0541351077533456E-03 + 70 -6.3307363181851868E-04 + 71 7.4804509486168136E-05 + 72 -8.9886829868779760E-05 + 73 -1.1058354691611371E-03 + 74 4.0837050938350128E-04 + 75 5.4025264910795897E-04 + 76 1.4885993354915405E-03 + 77 -1.5637078960824432E-04 + 78 1.5964389999848682E-04 + 79 -2.5009556092381557E-04 + 80 1.8566967575213145E-03 + 81 -1.8977297244219133E-04 + 82 1.8756881966373160E-04 + 83 -7.6938036869439265E-05 + 84 9.8929951170906050E-05 + 85 -6.5985756387603844E-04 + 86 5.4283536440199514E-05 + 87 1.9944808978792667E-05 + 88 1.2661824188689745E-04 + 89 8.6739166103188374E-03 + 90 -2.2709182776911122E-04 + 91 2.4152108218342058E-03 + 92 1.2521603757593789E-03 + 93 -9.0287914481170862E-04 + 94 -8.7072409891711215E-04 + 95 -1.4263847311887061E-03 + 96 1.2119501877291913E-05 + 97 5.7258714563381332E-05 + 98 -8.7948825000043411E-05 + 99 -4.6826893595471373E-04 + 100 -7.6425573896922320E-04 + 101 1.0869929693296882E-05 + 102 -1.3364287035472763E-02 + 103 3.1633192127521339E-04 + 104 -3.2468617963855397E-03 + 105 1.4581852974709225E-03 + 106 7.7552303119317158E-03 + 107 -2.7578023799988509E-04 + 108 -2.6832799287699200E-04 + 109 7.2213588696424245E-04 + 110 6.5090899386192056E-04 + 111 -1.3106187919790650E-03 + 112 3.0294585111153682E-04 + 113 6.4958748984195376E-04 + 114 -5.7672795558326613E-04 + 115 8.7290064441192909E-03 + 116 -2.8079185878391216E-04 + 117 5.3300340077678577E-04 + 118 2.6157013612493262E-03 + 119 1.5114720754592949E-03 + 120 1.1247170557402507E-04 + 121 -5.3881292083435446E-04 + 122 4.5525628915587786E-04 + 123 -1.3886441191279539E-04 + 124 -1.3645663103347363E-04 + 125 -3.9819615924407872E-04 + 126 2.4686286188742946E-04 + 127 -3.9596498275231885E-05 + 128 6.9208848576163837E-03 + 129 2.1890706336704402E-04 + 130 2.3135573386735349E-03 + 131 8.1270598163004059E-05 + 132 -1.2161209312109216E-04 + 133 1.0547518980025107E-03 + 134 1.4762773611468676E-03 + 135 -2.5428898689444044E-04 + 136 -2.9306750918414062E-03 + 137 1.5380869098503497E-02 + 138 1.7198570416365886E-02 + 139 -1.8013828059051679E-03 + 140 -8.9503230629523436E-02 + 141 -1.3481499823520476E-04 + 142 -8.5324777277379711E-04 + 143 -6.4428246365661433E-04 + 144 1.4874983219551349E-03 + 145 8.9418775637627168E-04 + 146 -5.3513984643301159E-04 + 147 4.0527749637883539E-07 + 148 -4.1204409154998084E-04 + 149 -6.6166816069333941E-04 + 150 1.7549500590902889E-04 + 151 -6.6000254995825052E-04 + 152 -5.1452649640471243E-04 + 153 -2.0315776805657527E-04 + 154 6.4077604062144449E-04 + 155 -2.3458877329587450E-03 + 156 -1.0012181441206146E-03 + 157 1.2345536633761459E-03 + 158 -9.4904768206101765E-04 + 159 -1.4100921046233359E-04 + 160 3.6896943099450844E-04 + 161 -3.3886170305906391E-02 + 162 -1.8716996454464820E-02 + 163 -4.8272431374682914E-02 + 164 1.2080203751567009E-01 + 165 4.6287201437844545E-02 + 166 -1.2044208366384641E-03 + 167 5.2784338412535917E-05 + 168 3.0173763054713675E-04 + 169 1.9074493572703605E-03 + 170 2.8236934996126508E-04 + 171 7.2556236297184905E-05 + 172 8.8955190955030953E-05 + 173 -3.5067655680724142E-07 + 174 1.1870164146423884E-05 + 175 -1.9242985913523229E-04 + 176 -3.3475316194775249E-04 + 177 9.6888867679841887E-05 + 178 -2.6827208169703590E-02 + 179 2.9645715108622515E-04 + 180 1.5169458531237422E-02 + 181 -6.7516099684276892E-03 + 182 2.9743277315197256E-03 + 183 4.8805046206698089E-04 + 184 -4.9895664914772022E-04 + 185 -3.1151268993133267E-04 + 186 -1.1035116226822419E-03 + 187 -9.2706402683406753E-04 + 188 1.1967922404015469E-03 + 189 1.9203329110980588E-03 + 190 -2.1889691818416910E-04 + 191 -8.3417667502749038E-02 + 192 5.9194748461544923E-04 + 193 3.5544544308649187E-02 + 194 -4.6365007006788618E-02 + 195 -8.3081610227390759E-02 + 196 2.5843093166782074E-03 + 197 -3.5966603724266926E-03 + 198 -6.1092151332688910E-03 + 199 1.7297143893287705E-02 + 200 -3.6906333615105169E-03 + 201 3.3414422964246323E-04 + 202 2.7437730003159349E-03 + 203 5.3334890970477061E-03 + 204 2.5195363209007365E-02 + 205 -2.2175675620630794E-03 + 206 4.8645506202283327E-03 + 207 -1.6169740038960514E-03 + 208 -2.7014659809638944E-04 + 209 -1.6894482274739193E-03 + 210 2.4032197101544902E-03 + 211 -1.7146146024282202E-04 + 212 1.3532105025304803E-01 + 213 5.9505758752061350E-02 + 214 -1.0388459188816285E-01 + 215 8.6628908791871906E-02 + 216 3.0091520847180980E-01 + 217 -2.2443970524407835E-03 + 218 -2.4900621542074627E-03 + 219 9.3287924141638727E-04 + 220 -1.7516284741563976E-03 + 221 -4.1130784610538956E-03 + 222 6.1959076170060271E-05 + 223 9.2876677735703186E-04 + 224 -1.3847210847678993E-03 + 225 1.9625473917626795E-04 + 226 -8.2247514374047906E-06 + 227 5.2032306804965646E-04 + 228 -8.2777946383660319E-04 + 229 -5.1258515054510342E-03 + 230 -2.7781829496168251E-04 + 231 -3.0740539566987454E-04 + 232 4.3791975979352572E-04 + 233 1.7623467462736088E-03 + 234 7.5212753192359621E-04 + 235 -5.0379966109064163E-04 + 236 -6.1048071757287758E-04 + 237 3.0005717713878111E-02 + 238 -2.9349080225536554E-02 + 239 3.3141489425322204E-02 + 240 -9.4436105342933611E-03 + 241 -2.5765394330953494E-02 + 242 -1.3960886734533816E-03 + 243 1.1063551738418290E-03 + 244 -8.1113278874995239E-04 + 245 -1.0154292148965704E-03 + 246 1.4118381757390411E-04 + 247 -2.6611374155791491E-04 + 248 -1.5776958877826108E-04 + 249 3.5743769473236100E-04 + 250 -1.3186589841310346E-04 + 251 -1.5178452100441390E-04 + 252 2.1541734797334754E-04 + 253 -1.2556588453590231E-05 + 254 2.4015681917561229E-05 + 255 -2.0904325922528120E-04 + 256 1.5052043142761118E-04 + 257 3.5831495186416706E-04 + 258 -1.1362154023730853E-03 + 259 1.9355779969300633E-04 + 260 1.9994647842771186E-04 + 261 -7.6503176056227074E-05 + 262 -3.9301667578184379E-03 + 263 1.3127556022893325E-02 + 264 -3.8619078448101071E-04 + 265 -3.1894354574930422E-02 + 266 3.2554688560273493E-03 + 267 8.6380569020790931E-04 + 268 -7.1149358139938976E-05 + 269 4.3343038406602562E-04 + 270 -1.9343310061098774E-04 + 271 -1.8304034904992062E-04 + 272 -6.5662969485295567E-08 + 273 -2.8559862542216517E-05 + 274 -3.1705851074524975E-04 + 275 1.3813220888094299E-04 + 276 7.7478309471434880E-05 + 277 2.3006367239323029E-06 + 278 1.1958523946670673E-04 + 279 -7.0527979967364637E-03 + 280 1.0612157930002949E-04 + 281 1.6144169403822036E-03 + 282 -1.8292062481662494E-03 + 283 -3.9736726993861013E-05 + 284 -1.5964232437237742E-04 + 285 -2.5489132017373500E-04 + 286 8.2885487449120378E-06 + 287 -4.5386349773640134E-04 + 288 -1.3723143338668066E-04 + 289 -8.8646973375287915E-05 + 290 6.0270207856513201E-05 + 291 -5.5541296189094680E-04 + 292 3.5115251023070067E-02 + 293 -4.9918733369398293E-04 + 294 1.4200086449411533E-02 + 295 1.3162808769947862E-02 + 296 8.8396082622388111E-03 + 297 2.4232212018413120E-03 + 298 1.9658168786335071E-03 + 299 1.9822493675040564E-03 + 300 2.8521554467792112E-03 + 301 -2.4227016240651654E-04 + 302 7.3611772226986631E-04 + 303 -1.1221255035301916E-03 + 304 -2.9690369947904995E-03 + 305 1.8505269068660776E-02 + 306 -3.2533957270895314E-03 + 307 -7.9139518433747318E-03 + 308 -6.7996809580209219E-03 + 309 -6.6492037642318369E-04 + 310 5.7937816590796875E-04 + 311 1.2361609059826624E-03 + 312 -7.9453611984126190E-04 + 313 8.6972078633178393E-02 + 314 1.5505801006311170E-02 + 315 1.5086694307639105E-02 + 316 3.9861354186726719E-02 + 317 -1.4937004367247206E-01 + 318 -1.5972524533015905E-03 + 319 -9.3625106366278211E-04 + 320 -1.2494629376376206E-03 + 321 5.6382879317512220E-04 + 322 2.0610911706113039E-03 + 323 3.0025521821411671E-05 + 324 2.3022722229869456E-04 + 325 -3.2409292901924538E-04 + 326 -6.3067722697168803E-04 + 327 4.4974249274767379E-05 + 328 -7.7977678755746503E-04 + 329 1.2101851947336981E-04 + 330 -9.1640258887658102E-03 + 331 4.8873474111835180E-03 + 332 -2.3004933138229956E-03 + 333 -1.8811624115072608E-03 + 334 2.9978127263913241E-03 + 335 -1.0001620329008118E-03 + 336 5.4043350588504695E-04 + 337 1.3776675319023589E-03 + 338 6.9655945722424917E-01 + 339 3.0891385362179058E-01 + 340 -3.4083268814777795E-01 + 341 6.4215498559867454E-02 + 342 1.8027472860316331E-02 + 343 5.8243192535119125E-03 + 344 -1.5586045691128941E-03 + 345 -1.4549114168940938E-03 + 346 -1.5389743436077759E-03 + 347 -9.9283512048859465E-04 + 348 2.3917888604510547E-04 + 349 -2.9252685347790216E-04 + 350 3.6559194158276078E-04 + 351 -2.5861909390105834E-04 + 352 -1.0211365363264281E-03 + 353 1.6014538239311448E-04 + 354 -9.3722827614654716E-04 + 355 -6.3039990293047812E-02 + 356 3.2790005191496343E-04 + 357 2.0079583264887988E-02 + 358 -7.8263651615310847E-02 + 359 3.0942596842584123E-02 + 360 1.1757511229578503E-03 + 361 -6.7915576321434584E-03 + 362 2.9512571618688418E-03 + 363 3.4370912691342524E-03 + 364 6.3174681691073840E-03 + 365 -1.1754768571660088E-02 + 366 1.0397194795285696E-03 + 367 -6.6562210493412884E-03 + 368 -1.6462983315422973E-02 + 369 3.4645775436778085E-04 + 370 -6.2131409126787310E-03 + 371 -4.3191351414757929E-03 + 372 6.0650763545160320E-03 + 373 -2.5118963462893184E-04 + 374 -1.1533357837441409E-04 + 375 -1.6510582525435802E-03 + 376 5.8812512418482334E-04 + 377 -5.5776323327233360E-04 + 378 -1.2996301622502234E-03 + 379 5.3463817093959997E-04 + 380 1.3857845717194877E-03 + 381 1.3031263293080591E-03 + 382 -2.9498780105503593E-05 + 383 7.1965533030017986E-03 + 384 5.1155656190218833E-04 + 385 4.8765319666520925E-03 + 386 8.7899210985437602E-04 + 387 1.4293704079197140E-03 + 388 7.2540450557745005E-04 + 389 1.6379967177227191E-04 + 390 4.2050676559990207E-04 + 391 -7.7832147290136391E-04 + 392 -2.1222103809765544E-04 + 393 -1.3042280630690660E-03 + 394 3.5883730526183903E-03 + 395 -3.8563373929743721E-04 + 396 3.1951954246581793E-03 + 397 1.0239335727181282E-03 + 398 -1.9021513012044104E-04 + 399 9.6492723087906866E-04 + 400 5.3977665081303102E-04 + 401 -7.9688437865617543E-05 + 402 9.5366091739839329E-03 + 403 1.5191042699001086E-03 + 404 1.5315755699598673E-02 + 405 -2.3213575440724332E-02 + 406 -4.0650884522128485E-03 + 407 -6.6499130761207750E-04 + 408 -1.0426759025784582E-03 + 409 -5.2858882060373815E-04 + 410 2.4725664001215655E-03 + 411 -9.0309359476243136E-04 + 412 -8.8684563705241712E-05 + 413 -9.7899278204010751E-05 + 414 -4.7295187086443595E-04 + 415 -3.9722985298211173E-04 + 416 2.9109728061939912E-04 + 417 -2.9317165389941975E-04 + 418 -5.7972885230481933E-04 + 419 -1.2569095761015898E-02 + 420 2.7281641785987024E-04 + 421 2.7530202849064909E-03 + 422 1.8299162487048310E-04 + 423 1.9179777662119196E-03 + 424 1.5309913860059158E-04 + 425 1.2161345533483901E-03 + 426 4.4544720425598064E-04 + 427 1.9816341284187612E-04 + 428 9.9212692340914130E-05 + 429 -2.8857747818693600E-04 + 430 7.9423853624065622E-04 + 431 -2.5029332560704036E-04 + 432 1.4937185472444344E-02 + 433 -4.8951899988731789E-04 + 434 4.7931603478303705E-04 + 435 -7.6491143944409897E-03 + 436 6.7035763821369902E-04 + 437 1.4381082489579396E-03 + 438 -2.1256037171184525E-03 + 439 -4.2194270294497975E-04 + 440 1.2540485730668221E-04 + 441 3.5977324921222982E-04 + 442 2.1561408328173192E-04 + 443 3.2647427966592284E-04 + 444 -8.1820878671533790E-04 + 445 1.6170962500197658E-02 + 446 -1.1414154944473396E-03 + 447 3.5087749632068915E-03 + 448 -3.1895988004140459E-03 + 449 -4.1089459808756872E-03 + 450 -1.5213886754861302E-03 + 451 -1.1656047886375599E-04 + 452 8.2084543354878027E-04 + 453 -1.4991830750420088E-02 + 454 9.0712138791595329E-02 + 455 -6.4675939827219350E-02 + 456 -2.2069257176573903E-02 + 457 8.8372887423913554E-02 + 458 -2.4055529260241602E-03 + 459 -1.0323400527575061E-03 + 460 2.4861606107504635E-03 + 461 -1.7264608124666315E-03 + 462 -4.6356311829655467E-03 + 463 -5.7676182531036450E-04 + 464 -6.6186009429157933E-04 + 465 1.1415981640235649E-03 + 466 5.1212164625103883E-04 + 467 3.8373208681964351E-04 + 468 -5.8990469331893214E-04 + 469 -5.0479439946250282E-04 + 470 4.8868049142451473E-03 + 471 -1.2548198293619896E-03 + 472 4.9630899425479763E-04 + 473 -4.7102545677260522E-04 + 474 -6.7141509476461355E-04 + 475 -7.5750401028524010E-04 + 476 -8.4583052244538041E-05 + 477 -3.2113468094768701E-04 + 478 -5.3886084196121814E-02 + 479 1.1293755500981979E-02 + 480 1.9700625856480195E-03 + 481 3.8254028276608662E-02 + 482 -5.8201877624214721E-02 + 483 -1.0881778334203181E-03 + 484 -4.7072932907259087E-04 + 485 8.9094740250071245E-04 + 486 -9.5096596076423787E-05 + 487 6.7085060533962908E-04 + 488 5.7790404461032223E-04 + 489 -2.7512013949662444E-04 + 490 2.5729436395197954E-04 + 491 2.5053344864394880E-05 + 492 2.4104675176313435E-04 + 493 4.7442421130645387E-04 + 494 4.4189083650932292E-04 +Ene= -4.8076249782E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -7.4013581699093629E-03 + 2 9.6808053942460672E-04 + 3 4.6266456051593022E-04 + 4 -3.0310673325344983E-03 + 5 -9.6725452619224057E-04 + 6 -2.5521371274746089E-04 + 7 7.8504028683183550E-04 + 8 8.0793999463142109E-04 + 9 -2.3293317483620720E-03 + 10 -1.9397324078926431E-03 + 11 3.1444296455071970E-02 + 12 -2.9456175471871245E-02 + 13 -6.7891310481848462E-03 + 14 1.0331395711133337E-03 + 15 -3.7170406293693240E-04 + 16 -9.3508770272976427E-04 + 17 7.1548877219326562E-04 + 18 3.2169913364359131E-04 + 19 -8.2954454729803432E-05 + 20 -1.4689188981677163E-04 + 21 -1.0778684389892333E-04 + 22 1.0011298156466884E-04 + 23 3.4392949472198428E-04 + 24 2.4683487590995988E-04 + 25 -2.7925015675563869E-05 + 26 1.6499833887061971E-02 + 27 -5.3867373532987851E-04 + 28 -1.2245891660006973E-02 + 29 -8.9818682713019866E-03 + 30 9.0890875541130463E-03 + 31 -8.9861316785285264E-04 + 32 -1.2715057696545337E-03 + 33 7.2333612890885591E-04 + 34 -2.6363233926017655E-02 + 35 1.4554800217131925E-01 + 36 1.9484747038346714E-01 + 37 -3.1294126880103426E-02 + 38 -2.1334522098505174E-01 + 39 -3.8366742461122759E-03 + 40 -1.4414878825264599E-03 + 41 -2.5393089441906711E-03 + 42 6.5320402572453318E-04 + 43 5.3921357147405239E-03 + 44 -6.7417282785372723E-05 + 45 6.8381434419680467E-05 + 46 1.6900788533750037E-03 + 47 1.2487204850485101E-03 + 48 -4.4736985924763992E-04 + 49 8.1613976910552195E-07 + 50 -4.4331178586601706E-04 + 51 -9.8674703799539586E-03 + 52 -3.4184657159526047E-04 + 53 -1.8061533444757953E-03 + 54 -3.7684273347314270E-03 + 55 -6.2471468252147302E-03 + 56 1.4934534366443084E-04 + 57 -2.9595131680718538E-04 + 58 -4.3581107870021988E-04 + 59 8.4249515850616120E-03 + 60 2.9960241113041262E-02 + 61 2.1024171707192993E-02 + 62 1.2864318212159075E-03 + 63 2.4686308499800198E-02 + 64 -2.2287033204007409E-03 + 65 -1.8506003972152366E-03 + 66 -4.3590460862319453E-03 + 67 1.9234766597932226E-03 + 68 -1.0503984622050138E-03 + 69 3.7125044855239808E-04 + 70 8.8987600182981977E-04 + 71 -7.4317811445064920E-04 + 72 1.0819967220742450E-03 + 73 3.7604855651483511E-04 + 74 -6.0994324661799095E-04 + 75 4.7268395754369744E-04 + 76 3.0680085236770311E-02 + 77 -1.1492323841101181E-04 + 78 6.2135158210004995E-03 + 79 -2.0462194576468021E-05 + 80 -3.3759691489442099E-02 + 81 5.8315644274164091E-04 + 82 -1.2036096313699366E-03 + 83 -3.5263387190380296E-03 + 84 -2.1031288236343635E-03 + 85 5.5686905465499922E-03 + 86 2.9437190459872132E-03 + 87 -1.0867036692090838E-03 + 88 -1.0827063587170080E-03 + 89 -1.0762962346013765E-02 + 90 6.4449201585154689E-05 + 91 1.1511858550275593E-03 + 92 2.5260692200193440E-03 + 93 -1.4822925479367353E-03 + 94 4.3016086123883119E-04 + 95 5.9560326536665020E-04 + 96 -8.4808544744955792E-04 + 97 -2.4086580334335423E-04 + 98 3.9394069348176600E-04 + 99 -1.8791664191718230E-04 + 100 -5.5775118433673066E-04 + 101 1.0443903221566549E-04 + 102 6.5281062294827288E-02 + 103 -5.6437795896468166E-04 + 104 2.5567585858699865E-02 + 105 6.0191936900078633E-03 + 106 -3.4349125661058459E-02 + 107 2.2839297769455184E-03 + 108 3.9083438342050135E-04 + 109 -3.7019524191564449E-03 + 110 -5.1098000438573221E-05 + 111 7.4645991873601800E-03 + 112 -1.0114953439535890E-03 + 113 -5.1880443121544578E-03 + 114 6.1356066520479595E-04 + 115 1.3214515702630176E-02 + 116 -7.2933314243222235E-04 + 117 8.8556399947247908E-04 + 118 1.1474335313974609E-02 + 119 -8.1561458170277394E-04 + 120 -3.0280501529858213E-04 + 121 3.0832485006573253E-03 + 122 -4.1436420022513841E-04 + 123 9.7989535888431760E-04 + 124 -3.9438342581725824E-04 + 125 -1.0365806861829059E-03 + 126 2.6564815180970037E-03 + 127 -8.4725319904726511E-06 + 128 -1.4942508897077950E-03 + 129 -1.5619181197156567E-03 + 130 1.0252972454971571E-04 + 131 1.7850692524485139E-03 + 132 3.5268460119535347E-03 + 133 -1.9533502912454370E-03 + 134 -5.2143563005112293E-04 + 135 -1.0597713596425811E-04 + 136 -9.5744709910865165E-03 + 137 -1.0201724785511802E-01 + 138 3.8477997711116325E-02 + 139 -2.2873432429465596E-01 + 140 1.0230702422485767E-01 + 141 1.2654374354429518E-03 + 142 3.6171211251717628E-03 + 143 1.0456464836911649E-03 + 144 2.3861860064844785E-03 + 145 1.9208376526718338E-03 + 146 -5.0797981543181845E-05 + 147 6.5262059780512585E-04 + 148 3.3881977898078300E-04 + 149 1.2318655628322374E-03 + 150 -1.7301423107354724E-04 + 151 3.5912510533934907E-04 + 152 6.3363005313858917E-04 + 153 1.8941423259411835E-02 + 154 -1.9753069608965893E-03 + 155 -4.6970508576002403E-03 + 156 7.2108827342696998E-03 + 157 -5.2683887089086745E-03 + 158 -1.6107241679986972E-03 + 159 -5.9001136681661667E-04 + 160 -1.2505897656673050E-04 + 161 1.3324270876610084E-01 + 162 5.4165661503755214E-01 + 163 5.6939588115191386E-01 + 164 3.5336082842092595E-02 + 165 2.8685022448315944E-01 + 166 1.0606646611477388E-03 + 167 5.1396870784221624E-03 + 168 -1.2068943100717463E-03 + 169 -1.2412877280143192E-03 + 170 -2.5219089042564328E-04 + 171 5.8286171693052368E-04 + 172 -3.4294540110162429E-04 + 173 8.1197956278929531E-04 + 174 4.6700016196263175E-04 + 175 1.7134584342069614E-03 + 176 3.8519027360165581E-05 + 177 -5.7597128559965590E-04 + 178 -1.3902169033130050E-02 + 179 6.5362339667057441E-04 + 180 -1.2513762954690713E-02 + 181 -8.7256094949446465E-03 + 182 -3.2054346468788346E-02 + 183 -2.2954811705213486E-03 + 184 -1.2312989100379536E-04 + 185 -1.5851989300395568E-03 + 186 3.7383112072333423E-03 + 187 -5.8904447672566800E-03 + 188 2.9942385256065916E-04 + 189 -1.6906792728048606E-03 + 190 -3.9062471075256753E-03 + 191 -9.0365960424513714E-03 + 192 1.6032481380041182E-04 + 193 2.0861498238022723E-03 + 194 -1.5164807452044892E-03 + 195 -5.3135017322756724E-03 + 196 1.8050246811445443E-04 + 197 -1.3081906671890268E-03 + 198 -2.2379076599094577E-03 + 199 9.2728574462338760E-04 + 200 4.1734932148394148E-05 + 201 -7.0298909922392693E-04 + 202 6.9338551883864471E-04 + 203 6.7131210255861056E-04 + 204 -1.2138172327702496E-02 + 205 -1.5538328908816274E-04 + 206 -4.7582159829252296E-03 + 207 -8.9174605074726805E-03 + 208 -5.8295398627556923E-03 + 209 -1.1660148251958166E-03 + 210 -8.1133051842471405E-04 + 211 -1.0720219216578382E-03 + 212 1.1791508395621767E-02 + 213 7.2365027046662603E-02 + 214 9.2889957857709204E-02 + 215 -5.7787931099833725E-02 + 216 8.7912514707677802E-02 + 217 7.5456470548974832E-04 + 218 -2.0754166908541118E-03 + 219 -2.2657185251752894E-03 + 220 1.3883531695008610E-03 + 221 -3.9991296667133466E-03 + 222 8.5613375423531258E-04 + 223 3.2999293409533085E-04 + 224 -5.0918284957420449E-05 + 225 -7.6344270278311070E-04 + 226 -5.6178577570427770E-04 + 227 4.2291814943055250E-04 + 228 -3.7380935308068769E-04 + 229 -7.7351991638006466E-03 + 230 7.2815159499138842E-04 + 231 -1.7809475721720892E-04 + 232 -1.2273784813172579E-03 + 233 2.3982615028864652E-04 + 234 8.2108551112175553E-04 + 235 -1.1854430841418189E-03 + 236 7.9317443059909361E-04 + 237 -1.8644708329556791E-02 + 238 5.0483767893189084E-02 + 239 -1.0996112221809701E-02 + 240 5.0726357133896546E-02 + 241 -1.2169650551800176E-02 + 242 1.9316897818285600E-04 + 243 -9.2634101043256151E-04 + 244 -1.4550175180523769E-03 + 245 -1.6274417462851269E-03 + 246 5.2053973141447606E-04 + 247 -1.1654711749355157E-04 + 248 -4.8570990380057856E-04 + 249 -8.7023677033425210E-05 + 250 -7.8485351034274292E-06 + 251 2.7691160497664112E-04 + 252 -2.8858918024327301E-04 + 253 1.1056591045758901E-04 + 254 -5.2945699897609068E-03 + 255 1.3665539702352387E-03 + 256 -3.4421528594582684E-04 + 257 3.6553462593699156E-03 + 258 -4.7076741044203068E-03 + 259 -4.3465917941836818E-04 + 260 9.7891875897358172E-05 + 261 -1.4872313077829060E-03 + 262 3.3612790011213034E-02 + 263 -2.7324475041761602E-02 + 264 6.3727649814811688E-02 + 265 9.1050091273003175E-02 + 266 -9.9283773928780066E-03 + 267 1.2821947921996609E-03 + 268 5.8490443859006052E-05 + 269 2.2764074685869230E-03 + 270 2.2286432143638173E-03 + 271 3.3134694249499600E-04 + 272 -4.5355876525701369E-04 + 273 -8.6828736363956223E-05 + 274 -4.2589239386242665E-04 + 275 9.2976086273053227E-04 + 276 1.2983262707178631E-04 + 277 1.8546014426261293E-04 + 278 -8.9829613834692575E-04 + 279 -5.6070374362034246E-03 + 280 -8.2348593518178952E-06 + 281 5.4758340176427347E-04 + 282 -1.6686337333150939E-03 + 283 4.0727395554914416E-03 + 284 -2.5331143511576540E-04 + 285 -2.9259899761873576E-04 + 286 -2.7346230896004893E-04 + 287 7.2647726601189080E-04 + 288 5.7872871249899588E-05 + 289 -9.8707347431442323E-04 + 290 -2.7847410051485215E-05 + 291 -2.2649605161710203E-04 + 292 3.3408969706578365E-03 + 293 -7.0614923342929837E-05 + 294 -4.5403976488824025E-04 + 295 -1.8142425434062458E-03 + 296 -2.1638324411485275E-03 + 297 -2.9153494732468802E-05 + 298 2.1549462477235369E-04 + 299 3.7572253249169103E-04 + 300 -5.6976629112723710E-04 + 301 2.8804331233076475E-04 + 302 -2.5620234611903417E-04 + 303 1.8857853280785701E-04 + 304 3.0107520688524601E-04 + 305 -3.1240473638898019E-04 + 306 2.0870382333956398E-04 + 307 7.5173775668477293E-04 + 308 3.9302000432694218E-04 + 309 -4.4816113173329458E-05 + 310 3.6105126436416455E-04 + 311 1.8842154922798268E-04 + 312 -3.4948912408754762E-05 + 313 -5.3887497079500093E-03 + 314 -3.8462334850935180E-03 + 315 1.0438262430188946E-03 + 316 -4.7097375350338249E-06 + 317 7.6722770802002006E-03 + 318 6.4323580456247887E-05 + 319 3.4798368170091474E-04 + 320 7.5576263032630883E-05 + 321 -2.7765371483359297E-04 + 322 3.0153643675767866E-05 + 323 1.2947595221322306E-04 + 324 5.2867876225062858E-05 + 325 -6.3126195431491863E-05 + 326 -2.2857974679985589E-04 + 327 -1.6885139162616571E-04 + 328 -1.9245916541850698E-05 + 329 -1.2854767351151562E-04 + 330 -5.4687858160109291E-04 + 331 7.1142577594431435E-05 + 332 6.0593659909727565E-04 + 333 7.2032513682803931E-04 + 334 -1.9524576173009665E-03 + 335 3.0826238798775050E-04 + 336 2.4525607512822256E-04 + 337 -5.4319245077683585E-04 + 338 4.1893223211300956E-02 + 339 1.3775644991209245E-02 + 340 2.2095587465674225E-02 + 341 8.1141762777668606E-03 + 342 1.8787776219864979E-02 + 343 -9.8902319340626291E-04 + 344 7.3527938017260827E-04 + 345 -3.3278712186393178E-04 + 346 2.2634004886831925E-04 + 347 6.0009443105846954E-04 + 348 -1.8492486244904037E-04 + 349 1.2493748541652868E-04 + 350 4.2784820205027258E-05 + 351 3.0622690058430872E-04 + 352 4.6849621512659963E-04 + 353 -1.9615339651195938E-04 + 354 2.2358393039297421E-04 + 355 -6.0405931881873118E-04 + 356 -1.1584276313575166E-04 + 357 1.0014593010389621E-03 + 358 -6.6962856263802874E-04 + 359 -1.1509796152604536E-03 + 360 1.2449282718280329E-04 + 361 6.8199319005643179E-05 + 362 -4.9571126818388842E-05 + 363 -5.6246356285623452E-04 + 364 1.0062956459037729E-04 + 365 -2.3411691899992394E-04 + 366 -3.8620659805141953E-04 + 367 -3.0283043657770597E-05 + 368 -4.1324532937541177E-03 + 369 8.6003617628566166E-05 + 370 5.6429243831428806E-04 + 371 1.1242273039113631E-03 + 372 6.6400728087057980E-03 + 373 -7.2315724401737021E-04 + 374 -4.9006473567555294E-04 + 375 1.9716207942449921E-03 + 376 8.5142954356237752E-04 + 377 -1.3020416648561457E-03 + 378 2.8878801090401370E-04 + 379 2.4886135841961312E-04 + 380 2.5389247097698623E-04 + 381 2.3994558755013325E-02 + 382 -4.1253964843813816E-04 + 383 -6.7566538807578081E-04 + 384 1.4165724428370238E-02 + 385 -1.1016201085611079E-02 + 386 -3.8778747739826264E-04 + 387 7.3112370336762925E-05 + 388 -6.1722110702673333E-04 + 389 1.3355094501902921E-03 + 390 -1.8156239407093502E-03 + 391 1.8915237230382850E-03 + 392 1.4461460373314907E-03 + 393 2.0681869293892896E-03 + 394 -2.2610926980172067E-03 + 395 5.6268362875597385E-04 + 396 5.3341291335824714E-04 + 397 -1.2078259113132287E-03 + 398 -1.3093633001749565E-03 + 399 3.7523239377606712E-04 + 400 1.0107226029144458E-04 + 401 2.2250416490207783E-04 + 402 3.1949952376508765E-02 + 403 -4.7248088543892293E-02 + 404 2.0905673172561413E-02 + 405 4.0166392723022595E-02 + 406 -9.0407964123974567E-03 + 407 -5.7524152080206835E-04 + 408 1.3365687151216596E-04 + 409 -9.2865036686819039E-04 + 410 3.5425391436959692E-04 + 411 -2.5852121608338491E-04 + 412 8.2720896360059888E-05 + 413 -3.3809317024113323E-04 + 414 4.1717296199299883E-05 + 415 -1.6415449285463482E-05 + 416 -7.3515569591141728E-04 + 417 3.9265882086547227E-04 + 418 9.0979051296260084E-05 + 419 -5.6262868763183923E-03 + 420 1.6507208878990072E-04 + 421 1.4357314564396725E-03 + 422 7.2189844933303487E-04 + 423 9.6759054386138382E-04 + 424 4.1264709720849585E-04 + 425 7.8558073649019787E-05 + 426 -2.1655124059262484E-04 + 427 1.8495559076874675E-06 + 428 4.1264519404167856E-04 + 429 1.0330606502625565E-04 + 430 -2.2174041475989186E-05 + 431 2.0403951087569737E-04 + 432 5.0220068526607225E-04 + 433 -2.0180478338154622E-05 + 434 3.3043403835440709E-03 + 435 -3.1349853952453693E-03 + 436 -2.3317862728312439E-03 + 437 -3.0366159942601646E-04 + 438 4.8122034511088660E-05 + 439 -8.5334245339898035E-04 + 440 -3.3006474171944148E-04 + 441 2.1111133893497670E-04 + 442 -5.4982917148303225E-04 + 443 6.1484795109295620E-04 + 444 -5.3213496167776583E-05 + 445 2.3377543210306921E-03 + 446 -2.3393324298882765E-04 + 447 1.9732204576370866E-03 + 448 2.0264117912170698E-03 + 449 -7.9891128120596077E-04 + 450 3.7505417783794635E-04 + 451 3.1469244792906270E-04 + 452 -2.5865225233204930E-04 + 453 6.9249466922985965E-03 + 454 -1.6470943355264250E-02 + 455 -1.6956200470096827E-02 + 456 1.1361689514814716E-02 + 457 2.8055342821217584E-03 + 458 -4.4250309911775980E-04 + 459 4.7048840526047999E-04 + 460 2.9410088505066139E-04 + 461 -7.5378606036091787E-04 + 462 4.5514929144217835E-04 + 463 3.0018327994542712E-04 + 464 5.6124420483715914E-05 + 465 -2.8057620047507376E-04 + 466 -3.2846217148889379E-04 + 467 9.7431740852186438E-05 + 468 -6.9821320144918396E-05 + 469 -1.0462899665921500E-04 + 470 -9.6989105833110737E-04 + 471 -9.2153758082434885E-04 + 472 -1.1231826041032116E-03 + 473 -1.2999669784177280E-03 + 474 -9.5984242027946458E-04 + 475 -3.3358724092802383E-04 + 476 7.4475029856817723E-05 + 477 -3.5326248353538330E-04 + 478 -6.7552210972281757E-03 + 479 6.2156094884589716E-02 + 480 1.2214805081439092E-02 + 481 2.8338967397061602E-02 + 482 -4.8659140530641146E-02 + 483 3.1103898717350182E-04 + 484 -4.2564451413022985E-04 + 485 -3.5356682449094734E-04 + 486 4.1897788349504914E-05 + 487 -1.1110329263363220E-03 + 488 -1.0169529995024029E-04 + 489 -2.7230374676060887E-05 + 490 8.0821090085999699E-05 + 491 -7.8756670672003437E-05 + 492 -7.4075746043778565E-05 + 493 -1.1212472783116703E-04 + 494 -2.3755759354069942E-04 +Ene= -4.8027593195E-01 +Spin= Alpha +Occup= 2.0000000 + 1 2.0242542713059079E-03 + 2 -2.3901973262761239E-04 + 3 5.2587857538640955E-04 + 4 -5.6962682442404688E-04 + 5 7.2056192205733705E-04 + 6 4.4480101963681397E-04 + 7 -1.0150216629104707E-03 + 8 1.3516656190062614E-04 + 9 9.3726246095513742E-03 + 10 5.4843504156711455E-04 + 11 -1.5316201891343457E-02 + 12 1.1854900055643838E-02 + 13 3.8042170816220467E-03 + 14 4.0371182520716487E-05 + 15 -1.8737163280155866E-04 + 16 -6.4227862216045828E-04 + 17 -8.6452287995571219E-04 + 18 7.5935844512382594E-04 + 19 -1.7207680997689093E-04 + 20 -1.2317520298831683E-04 + 21 -1.7696869703779318E-04 + 22 -6.9490196744624255E-05 + 23 2.0644446280465844E-04 + 24 -5.2495989785042194E-05 + 25 -8.2919206155564730E-05 + 26 -2.3380737244555708E-02 + 27 5.2498673142440126E-04 + 28 7.1442546414340847E-03 + 29 6.4006402875933770E-03 + 30 -6.4113602404352443E-03 + 31 1.5592079343123312E-03 + 32 -1.1951253671963278E-03 + 33 -5.7225007328994947E-04 + 34 -6.1314040330085674E-02 + 35 -8.4437857837903252E-02 + 36 -7.4702251036705192E-02 + 37 2.9936611236522186E-02 + 38 2.4159698115699513E-02 + 39 2.2103074147804395E-03 + 40 2.2122323097412909E-03 + 41 1.6506046333273742E-03 + 42 -9.1081998888230872E-04 + 43 -1.1816022891281495E-03 + 44 -5.7451802002777999E-04 + 45 -6.6407224061097703E-04 + 46 1.8492300037666550E-04 + 47 -1.4519888960008696E-04 + 48 -5.3512796904678188E-04 + 49 -3.6202580259505815E-04 + 50 -2.3084517793098288E-04 + 51 -6.2170342205327819E-03 + 52 1.0920218622582410E-03 + 53 9.3050220214056055E-05 + 54 1.1019854158294555E-03 + 55 8.4214222873813336E-03 + 56 4.2856719950945738E-04 + 57 9.9859817481598662E-04 + 58 2.4884865908864832E-03 + 59 -4.3139234609282047E-02 + 60 1.2336143749307237E-02 + 61 8.6430053222840402E-03 + 62 1.8921027495494114E-02 + 63 2.1218724622574375E-02 + 64 5.4294733853324992E-03 + 65 -1.9992023728236598E-03 + 66 1.9135282623239890E-03 + 67 -2.2471841149778980E-03 + 68 -2.0580801596593429E-03 + 69 -4.6836545889871253E-04 + 70 -1.3200341874622916E-04 + 71 9.0729303066940591E-04 + 72 -6.1797280708401068E-04 + 73 5.9066436835246156E-04 + 74 4.0484048437315834E-04 + 75 -3.3125893269508947E-04 + 76 -1.1382055708919049E-02 + 77 2.6139520887780474E-05 + 78 3.8847759941090180E-04 + 79 -1.2944763990048183E-03 + 80 1.4033150566269784E-02 + 81 1.1033100143467699E-04 + 82 -4.6661287626326820E-04 + 83 2.2421045045758429E-03 + 84 1.0667828163607156E-03 + 85 -1.7832470503287893E-03 + 86 -1.4112299590987437E-03 + 87 -1.6139790940430498E-04 + 88 8.3421217984989203E-05 + 89 3.4665165758756031E-03 + 90 -2.9528485837949329E-04 + 91 6.1132492989375065E-04 + 92 -8.5238871006441627E-04 + 93 1.5321410849586810E-03 + 94 1.7209079718322095E-04 + 95 -9.4945190936857396E-05 + 96 1.0471607783357683E-03 + 97 1.3951675086263269E-04 + 98 2.4262421055506748E-04 + 99 2.2197337500826759E-04 + 100 7.0790882699772574E-05 + 101 1.0783041679370999E-04 + 102 7.5140129032921360E-02 + 103 -1.2154068782560187E-03 + 104 2.9588923188474683E-02 + 105 1.9802115150218447E-02 + 106 -1.7298096920129076E-02 + 107 1.7820571076227172E-03 + 108 2.5218548491981528E-04 + 109 -2.2534367832966026E-03 + 110 3.3601713801249943E-03 + 111 4.9696902622719816E-03 + 112 2.5740001511655153E-03 + 113 -5.2208124009214358E-03 + 114 -4.6311988877712033E-03 + 115 -2.0988590482676163E-03 + 116 1.3732446398634541E-04 + 117 2.3575222425555663E-03 + 118 -2.9450363277475828E-03 + 119 -2.9346670102936155E-03 + 120 4.1559303255178773E-04 + 121 -2.3595160838273425E-03 + 122 5.0304774214293246E-04 + 123 3.6673664769231964E-04 + 124 -2.5896413441821580E-04 + 125 1.2902662988505337E-03 + 126 -9.9086293268212263E-04 + 127 -5.3134372930284564E-04 + 128 -3.2447248491172280E-03 + 129 6.9607872778787108E-05 + 130 -8.0191602512280549E-03 + 131 7.2001762770830908E-03 + 132 -6.1222504325900880E-03 + 133 3.6700025565915756E-04 + 134 3.3823418778695853E-03 + 135 -1.8605325570788494E-03 + 136 -1.0254070124324766E-01 + 137 1.0119404287265772E-01 + 138 -4.0604843332577301E-03 + 139 1.4983773788290428E-01 + 140 -1.8486718901187785E-01 + 141 1.2022053205161900E-03 + 142 -2.5836000938647386E-03 + 143 6.8193098893282319E-04 + 144 -8.2300700910360996E-04 + 145 7.5949122478689837E-03 + 146 9.6609397698090696E-05 + 147 1.0959279051512828E-04 + 148 -3.8040577252880400E-04 + 149 -1.9792127317680129E-04 + 150 -4.6545190478880169E-04 + 151 1.2457247076287266E-03 + 152 3.3439237809612936E-04 + 153 -8.9634084498322261E-03 + 154 2.4897402921353930E-03 + 155 -6.1599306497475137E-03 + 156 3.6032624953717386E-04 + 157 5.4617609451160986E-03 + 158 -4.2902411608971153E-03 + 159 1.5488865478988807E-03 + 160 6.9104203611826539E-04 + 161 -2.3719174298878570E-01 + 162 6.7566777448984550E-01 + 163 -4.7204383581654252E-01 + 164 2.1033398998420327E-01 + 165 1.9817045445495882E-01 + 166 -3.5640666540025048E-03 + 167 4.0399528692174804E-03 + 168 -2.7276202004390430E-03 + 169 1.7089638856086027E-03 + 170 7.3844924872876194E-04 + 171 2.2179176799774311E-04 + 172 8.7376080437118935E-04 + 173 3.1526146964543484E-05 + 174 7.6352435420536211E-04 + 175 -4.0651610699820510E-04 + 176 -1.1824025521874281E-03 + 177 8.3654442514730976E-06 + 178 -5.6433236573912457E-02 + 179 4.7941822977034279E-04 + 180 3.8791193062765260E-02 + 181 -1.5418272886063778E-02 + 182 -1.3031499207240302E-02 + 183 3.8355656530473553E-03 + 184 2.7879638610497730E-04 + 185 -7.5856196238420221E-04 + 186 -3.5598253761775596E-03 + 187 -9.6300201559007086E-03 + 188 1.1977238825653651E-03 + 189 5.4754738285281903E-03 + 190 -1.9620850097123118E-03 + 191 1.1138533463935148E-02 + 192 8.6345130978466138E-05 + 193 5.3365813486370905E-03 + 194 7.1670855834911479E-03 + 195 9.0543777704487904E-03 + 196 7.8234537052867195E-05 + 197 9.8867010631550336E-04 + 198 9.5118868968333491E-04 + 199 -1.7522429652072594E-03 + 200 -6.9251692812645851E-04 + 201 -3.8661583528652678E-04 + 202 -1.0505561996370181E-03 + 203 9.8272992408450282E-04 + 204 3.8623352487488654E-03 + 205 1.6967908280609621E-05 + 206 -9.4512830254924666E-04 + 207 4.8714497244666567E-03 + 208 2.4735050036680901E-03 + 209 4.4706766707938944E-04 + 210 6.5822046456327996E-05 + 211 -2.5967807029271984E-04 + 212 -3.3909247427984943E-02 + 213 5.7691214469786463E-03 + 214 -6.7764630951405003E-02 + 215 1.0327396477770569E-01 + 216 -1.7818670192198200E-02 + 217 1.1294783916797697E-03 + 218 -5.9651161824289512E-04 + 219 1.6010693199958478E-03 + 220 -2.7618746765610113E-03 + 221 1.7329646255182969E-03 + 222 -6.5388143000842516E-06 + 223 2.4782614275609013E-04 + 224 -2.5267182007912510E-04 + 225 -9.3875466286328618E-05 + 226 3.4152753368085434E-04 + 227 -5.5631762062007656E-04 + 228 -1.3173068972092495E-04 + 229 4.6938122914718687E-03 + 230 -2.7014533628717233E-04 + 231 2.6769640974063993E-03 + 232 -3.4622009606059833E-04 + 233 -4.7369776194394015E-04 + 234 4.2558457660325468E-04 + 235 2.7308516334354199E-04 + 236 -4.7272726325076915E-04 + 237 -1.1234546703635022E-03 + 238 -2.7577944047467093E-02 + 239 1.8449323432812533E-03 + 240 -1.1120752242275201E-02 + 241 7.5210415498271812E-03 + 242 -2.2885759020053998E-04 + 243 1.3091645987930911E-03 + 244 7.7541750433233027E-04 + 245 -5.1968384446175362E-05 + 246 -9.9168350744092406E-04 + 247 1.6770954293391692E-04 + 248 2.3547563477856323E-04 + 249 -1.4649977922172455E-05 + 250 2.0591597225724370E-05 + 251 -1.3875092419320144E-04 + 252 2.1986532755800125E-04 + 253 2.3829407553572341E-04 + 254 3.2597622322303142E-03 + 255 -2.8263043066359682E-04 + 256 4.9310444696158511E-04 + 257 -1.1974178453579823E-03 + 258 1.2686659234812858E-03 + 259 5.1507196108110985E-04 + 260 -1.1401839567025443E-04 + 261 7.2024876354559366E-04 + 262 5.0524916641044547E-03 + 263 1.3172249530526085E-02 + 264 -1.0040979225288462E-02 + 265 -2.3551607189396299E-02 + 266 4.9748139603982736E-02 + 267 4.3642142571227563E-05 + 268 2.3400593698791084E-04 + 269 -1.1407968958653456E-03 + 270 -6.8852965872546882E-04 + 271 -8.8538455836361892E-04 + 272 1.4392301121362824E-04 + 273 -8.3404793352003697E-05 + 274 2.3930056756316106E-04 + 275 -4.0643557673190704E-04 + 276 -1.1519839277393022E-04 + 277 -5.3510368990939349E-04 + 278 2.3297814981010034E-04 + 279 -5.0621010766008796E-03 + 280 1.8849907622799680E-04 + 281 -5.8426081796882740E-04 + 282 -1.8251867102079061E-03 + 283 -2.1027592035441473E-03 + 284 7.0038438720537027E-05 + 285 -2.6067526253395105E-04 + 286 1.0550740376766460E-04 + 287 -3.0858815880305447E-04 + 288 3.0066040261634810E-04 + 289 5.0426754930140718E-04 + 290 -3.1302786736549237E-04 + 291 3.5132336683748407E-04 + 292 -4.3062091170410531E-03 + 293 4.1266413132296671E-05 + 294 -2.3120815716369536E-04 + 295 -6.8367205910321730E-04 + 296 3.1784916880797111E-04 + 297 -1.3389938261065411E-04 + 298 -1.4213374497635747E-04 + 299 -3.0044622523623559E-04 + 300 1.5421459271509946E-05 + 301 4.1223763548398860E-05 + 302 2.9963614860562486E-05 + 303 -4.9897236408495570E-05 + 304 1.6765124517659460E-04 + 305 -1.1960393910819551E-03 + 306 1.3999061642112513E-04 + 307 1.6499544438663191E-04 + 308 3.6908545572127019E-04 + 309 1.3657293308071944E-04 + 310 -3.6538290458490848E-04 + 311 -1.4436295498095915E-04 + 312 5.9544624130772395E-06 + 313 -7.2714108357824180E-03 + 314 3.7917403519176496E-03 + 315 -1.8105191059010219E-03 + 316 7.7941331335236008E-04 + 317 8.5013604620165842E-03 + 318 4.3524430375072615E-05 + 319 -3.1000309838487495E-04 + 320 1.5463220459145847E-04 + 321 3.0896147396297196E-04 + 322 -1.2637350973595537E-04 + 323 -8.6678159231782435E-05 + 324 -1.9758411857183385E-04 + 325 2.0258595008978541E-04 + 326 2.1106109733839488E-04 + 327 1.0314133214326262E-04 + 328 2.6329651439803978E-05 + 329 4.4838552732575787E-05 + 330 1.4280317538828331E-03 + 331 2.0285166422641818E-04 + 332 9.3945381640787536E-04 + 333 6.9221764431595591E-04 + 334 1.6420438737881915E-03 + 335 4.2525272523108947E-04 + 336 1.8193344184504789E-04 + 337 5.0934792893140538E-04 + 338 -7.9208857758289605E-02 + 339 3.1128986683756330E-02 + 340 6.7774391523413441E-02 + 341 -8.3056086773043002E-03 + 342 1.7794143250003623E-03 + 343 -9.9841965237506231E-06 + 344 8.3134423598775519E-04 + 345 1.1452828769909014E-03 + 346 -2.1795778066335936E-04 + 347 2.6574611521447996E-04 + 348 -1.2600504897505034E-07 + 349 3.5013592938114031E-04 + 350 1.9375071415721464E-04 + 351 -2.9650590486323357E-04 + 352 1.3123060246845834E-04 + 353 2.6360903496668531E-08 + 354 -8.8362160731425841E-05 + 355 8.1393177115087947E-03 + 356 -2.9540137869122469E-05 + 357 -4.4112919635261837E-03 + 358 6.0425334713859911E-03 + 359 -2.8731851024463078E-03 + 360 -1.2881163269652736E-04 + 361 3.8423538907235438E-04 + 362 -1.9532364200157672E-04 + 363 -1.5329234722404874E-04 + 364 -1.0886062058297497E-03 + 365 8.6779053806975424E-04 + 366 -2.5998904144147749E-04 + 367 7.1788981749388464E-04 + 368 3.2691341444762820E-03 + 369 -4.0657292328286219E-05 + 370 3.4368974981337569E-03 + 371 -6.8270694285430212E-03 + 372 -2.6150432046068918E-03 + 373 1.6222048739900974E-03 + 374 -1.1880904514611685E-03 + 375 4.8406443745858642E-04 + 376 -2.0436652315102138E-04 + 377 1.3870820923555119E-03 + 378 -1.3670427418590548E-03 + 379 -3.0550094655379856E-04 + 380 2.3998114981111881E-04 + 381 -3.1865297273579542E-02 + 382 6.5760303741866505E-04 + 383 5.3091111017296820E-04 + 384 -1.3915800567243081E-02 + 385 1.9393289580519696E-02 + 386 4.0619136299859291E-04 + 387 -5.7873402231269121E-04 + 388 1.7480893060735181E-03 + 389 -1.2962106890715671E-03 + 390 3.5292707783496509E-03 + 391 -2.4086219164708897E-03 + 392 -9.7016258034099520E-04 + 393 -1.4426974202256992E-03 + 394 5.8700602216898530E-03 + 395 -4.2330749903403034E-04 + 396 1.2835549612205080E-04 + 397 -1.6511427145586419E-04 + 398 2.5620856757895246E-03 + 399 2.9305070371279121E-04 + 400 -3.8657213509170097E-04 + 401 -6.0552754274837870E-04 + 402 -6.6526256067681283E-02 + 403 5.6121182220601092E-02 + 404 -1.5916683095258139E-02 + 405 -1.5987476377244500E-02 + 406 2.9518908301865099E-02 + 407 2.9570243427706581E-04 + 408 -7.8452184861115806E-04 + 409 2.0399487760761683E-04 + 410 -3.8846376984831430E-04 + 411 -7.8995794848198348E-04 + 412 -2.9044260358757094E-05 + 413 1.2167660000544323E-04 + 414 -1.2269690420649762E-05 + 415 -3.3364724287151143E-05 + 416 4.1135124432931645E-04 + 417 -3.6250640319350334E-04 + 418 4.7037820530321574E-06 + 419 8.6184344081825879E-03 + 420 -1.3412525042270028E-04 + 421 -2.6397488292319864E-03 + 422 -2.6869611505366034E-03 + 423 -1.8520121478456991E-03 + 424 -6.1711563453426628E-04 + 425 -2.1839416464929312E-04 + 426 5.7992629155191808E-05 + 427 -8.7436908870662481E-05 + 428 -6.9214821692069523E-04 + 429 -5.1466006198100888E-04 + 430 -8.1270939005605394E-05 + 431 -3.3277853000706253E-04 + 432 -9.4900417324586591E-03 + 433 7.0688233281887946E-05 + 434 -1.3844177591403515E-03 + 435 2.2777423245323881E-03 + 436 4.8854080369744530E-03 + 437 5.2113091341964262E-04 + 438 -9.5712714928379553E-05 + 439 7.9792013456507385E-04 + 440 5.0690495282248100E-05 + 441 2.5758139794147854E-04 + 442 5.3288083918542114E-04 + 443 -2.0307454531454141E-04 + 444 -5.3097001637425359E-04 + 445 -2.5466636907276879E-03 + 446 1.1506382983532118E-04 + 447 -1.6225282437337942E-03 + 448 -1.2239287471690992E-03 + 449 1.0793655781695958E-03 + 450 1.5703458022261920E-06 + 451 -1.7405593142256950E-04 + 452 -1.4434190123902054E-04 + 453 -1.2053545466557173E-03 + 454 7.4020851142385172E-03 + 455 1.1992532403948103E-02 + 456 -2.0789273179205068E-02 + 457 -1.3386696524900434E-02 + 458 3.8899113100979306E-04 + 459 -2.1516494338162261E-04 + 460 -2.9096332138191076E-04 + 461 1.1405688757624341E-03 + 462 4.9577429323231971E-05 + 463 -5.2691090711276456E-05 + 464 3.7842390327847648E-05 + 465 -5.6931433557781101E-05 + 466 3.3542244798795239E-04 + 467 -2.3648996712847061E-05 + 468 2.4948077612764767E-04 + 469 2.1497800033300982E-04 + 470 3.2847378718448591E-03 + 471 2.2064726456897933E-04 + 472 2.3926243801074471E-04 + 473 1.2447917498749292E-03 + 474 -3.3012506171873924E-04 + 475 -4.3293080630256458E-04 + 476 1.0471528046909539E-04 + 477 -1.0032496080798884E-04 + 478 -2.4686302528338151E-02 + 479 -4.8514303521425522E-02 + 480 -2.1316694865505201E-04 + 481 -2.5344990825818880E-02 + 482 6.0208584205892320E-02 + 483 -2.2275386119254787E-04 + 484 -5.2241912796255395E-04 + 485 7.9440622111380641E-04 + 486 -1.3945903260812239E-03 + 487 1.7586395235497578E-03 + 488 2.7498838433826840E-04 + 489 1.1711808462568901E-04 + 490 -5.4837452031726290E-06 + 491 -1.6663657927153396E-04 + 492 2.7410594938570234E-04 + 493 -3.1275418035573354E-04 + 494 4.6923826802270507E-04 +Ene= -4.7895189376E-01 +Spin= Alpha +Occup= 2.0000000 + 1 1.8090456812234436E-03 + 2 -6.8324233987328298E-04 + 3 4.4599670304713997E-04 + 4 -4.5170020379215272E-05 + 5 -1.3014175053422801E-04 + 6 2.6007483032040803E-04 + 7 1.5875788880335365E-04 + 8 2.2373407687118620E-05 + 9 -4.6391312777716064E-03 + 10 3.2582587106955429E-04 + 11 3.6866466690222669E-03 + 12 3.0359477682635524E-03 + 13 2.5931533554479367E-03 + 14 3.4594483977598999E-05 + 15 -5.6794718622697922E-04 + 16 -1.9021065178831563E-04 + 17 -6.6162698767113293E-04 + 18 -3.3989413520270714E-04 + 19 1.1671510132518206E-04 + 20 -4.1482457110272576E-04 + 21 -1.2264834485348363E-04 + 22 3.7600415480679823E-04 + 23 1.3003875137579534E-04 + 24 1.8605111636882496E-04 + 25 -1.7690230332218418E-05 + 26 5.7190001955250659E-03 + 27 1.1524112972534559E-03 + 28 -2.1923015226371087E-03 + 29 3.2299614051975499E-03 + 30 2.6620241207873040E-03 + 31 -1.9860292563265219E-03 + 32 1.3476188581290770E-03 + 33 4.5950571090322190E-04 + 34 -7.6679672886004108E-02 + 35 1.3237197550138321E-02 + 36 5.6379109099486064E-03 + 37 -1.0111309502702075E-01 + 38 1.1054367023206199E-01 + 39 3.1983475725431503E-03 + 40 -1.9532986481173094E-03 + 41 -2.0346041700989607E-03 + 42 4.0187018842753946E-03 + 43 -2.3127803651391827E-03 + 44 -6.7801360922626155E-04 + 45 9.3089498776161380E-05 + 46 -1.2899875813546457E-03 + 47 -7.1200426101344450E-04 + 48 8.8332961890464376E-04 + 49 1.5924287275877442E-05 + 50 4.0688372893229481E-04 + 51 3.9924805529985797E-03 + 52 1.8201785316455325E-03 + 53 -8.4102892039259543E-04 + 54 4.8357858592150046E-05 + 55 -7.9743254207390024E-04 + 56 -1.8992867632194180E-03 + 57 6.9554045187755905E-04 + 58 6.6870963494986284E-04 + 59 2.4268935601946436E-02 + 60 -3.2100558611092678E-02 + 61 2.7311105623333703E-02 + 62 -1.6148174202096237E-02 + 63 -3.4627700963902233E-02 + 64 -1.4360942426880951E-03 + 65 1.2104325950615473E-03 + 66 -1.6635932006526866E-03 + 67 1.3672876644881629E-03 + 68 1.8270310196391347E-03 + 69 1.0131033098501286E-03 + 70 -5.1465127843773985E-04 + 71 -4.4135323796751322E-04 + 72 2.7731984050592478E-04 + 73 -4.9934832030004234E-05 + 74 -7.3659737611201216E-04 + 75 5.9592180896142517E-06 + 76 4.2153643095487019E-03 + 77 -6.2456624510629015E-05 + 78 2.3843202505634858E-04 + 79 5.4583409746990609E-03 + 80 -1.0482650055312079E-03 + 81 1.1452668130477889E-04 + 82 1.2554892687357024E-03 + 83 -4.6798647884726559E-04 + 84 9.1939570767477679E-04 + 85 7.8330405853061543E-05 + 86 7.2230344942845375E-04 + 87 4.1305406455862379E-04 + 88 -6.8240501047593877E-04 + 89 -5.4928460601220332E-03 + 90 3.8265802399862966E-04 + 91 -2.0801857581877769E-03 + 92 -1.6465207707726127E-03 + 93 7.3000843332434665E-04 + 94 -5.0214825588376568E-04 + 95 -8.1363557897698631E-04 + 96 1.8100792300525370E-04 + 97 1.4209683406192711E-04 + 98 -6.3664309707640952E-04 + 99 -4.5622043690608380E-05 + 100 4.6825737441810836E-04 + 101 -1.1464623182833125E-05 + 102 -6.6637814434439419E-02 + 103 1.3389217863748618E-03 + 104 -3.0610567569202680E-02 + 105 -7.2488965556992727E-04 + 106 9.2506310860703527E-03 + 107 -2.2811093210982751E-03 + 108 -7.6486848254171710E-06 + 109 6.1028951468596179E-04 + 110 -3.2121489095377170E-03 + 111 -2.2583524665516254E-03 + 112 -7.6805447418946870E-05 + 113 6.8764320652181295E-03 + 114 -1.2176706792387999E-03 + 115 3.9864999849932949E-02 + 116 -1.4692563754480812E-03 + 117 -6.0454368553941118E-03 + 118 1.2784201206341638E-02 + 119 2.4443314221412652E-03 + 120 -8.6203821214811727E-06 + 121 -2.9209055939277755E-04 + 122 1.2401810220461578E-03 + 123 7.8000210374209880E-04 + 124 6.1466931283464500E-04 + 125 -3.6651080012113440E-04 + 126 2.2293368198398745E-03 + 127 1.4606261877436924E-03 + 128 -1.0888409673443240E-02 + 129 2.7219140698974647E-06 + 130 -1.6004380861006882E-03 + 131 7.7491437727018903E-03 + 132 2.0630831762064282E-03 + 133 -7.7664234735664100E-05 + 134 6.9584722585890784E-04 + 135 6.0401934824443548E-04 + 136 -8.6561196916283167E-02 + 137 -1.6823061034258489E-02 + 138 7.9406948883905620E-02 + 139 -1.2686625178947508E-01 + 140 -5.7984609038905260E-02 + 141 2.1055027544834505E-03 + 142 2.1257707989875687E-03 + 143 -2.1589353150169160E-03 + 144 2.9146547483980185E-03 + 145 2.7822180235255061E-03 + 146 -6.8311107394146192E-04 + 147 7.5940612742895336E-04 + 148 1.5312833705540923E-04 + 149 5.4069552635892823E-04 + 150 -9.1985693570490888E-04 + 151 2.6605350619071270E-04 + 152 2.4446342566829574E-04 + 153 2.4567830130606768E-03 + 154 -4.3786631908581129E-04 + 155 1.7125533565527336E-03 + 156 -1.7996870920936616E-03 + 157 2.3057350785101890E-03 + 158 5.8162771219574284E-04 + 159 -4.8609117116700702E-04 + 160 -1.0972518534614159E-03 + 161 7.6011966742523041E-01 + 162 3.0802247090948899E-03 + 163 -2.5705200454457511E-01 + 164 4.3992455166008232E-01 + 165 -5.6980504166786981E-02 + 166 -6.2653861476875386E-04 + 167 -1.7497144365073197E-03 + 168 -8.6955491161276567E-04 + 169 4.6480515889110912E-03 + 170 -3.6808998943181379E-05 + 171 1.8500312923578942E-03 + 172 9.4390382745705693E-04 + 173 -7.0671884199010668E-05 + 174 -4.1740722097562415E-04 + 175 1.5312071373386851E-05 + 176 -3.4483874989734835E-04 + 177 4.7338829512982806E-04 + 178 -7.7771475465955812E-03 + 179 1.7096459541685199E-05 + 180 1.9059577325355353E-03 + 181 -3.3543144909275942E-04 + 182 -6.0726345265848872E-03 + 183 6.9435127906329152E-05 + 184 -7.6530598493216114E-05 + 185 -1.3070743332511321E-03 + 186 3.1509572494879006E-03 + 187 -7.0573102225242031E-04 + 188 -6.1745650062885180E-04 + 189 1.5089607746998654E-03 + 190 3.3256677422494675E-04 + 191 6.1998772112339224E-04 + 192 -2.4377357129945775E-04 + 193 -9.4538918910655953E-03 + 194 -1.8811908637432180E-03 + 195 -5.9606486539561373E-03 + 196 -5.8293415639871810E-04 + 197 -1.7459657757727510E-04 + 198 -5.6224531665323223E-04 + 199 9.5842390305747832E-04 + 200 2.3624764431697401E-03 + 201 -9.4562797590767747E-04 + 202 7.0291576610674480E-04 + 203 -4.3974361644487771E-04 + 204 -7.2726666849447317E-03 + 205 6.9033636935508130E-04 + 206 -2.8478125938776596E-03 + 207 -2.1665033270706424E-03 + 208 1.1623413369738876E-04 + 209 4.0955790078175392E-05 + 210 5.2557569737245180E-04 + 211 5.2267437627857719E-04 + 212 -5.2664684272969893E-02 + 213 3.2579742667538346E-02 + 214 8.8365538926510973E-02 + 215 -6.0477115455998515E-02 + 216 1.0027636113287484E-01 + 217 -3.2230916747876329E-04 + 218 3.4664220088915978E-04 + 219 -7.5162551707973809E-04 + 220 4.5142932600850588E-04 + 221 -1.2168990154249977E-03 + 222 2.0777754613695337E-05 + 223 2.3799162758214424E-04 + 224 2.7889685799671382E-05 + 225 -1.3883284872357945E-06 + 226 -4.1725056823063933E-04 + 227 2.5527150367303866E-04 + 228 -4.1464067265116803E-04 + 229 -1.0922005478744676E-03 + 230 -5.4530354709580065E-04 + 231 2.7609786867975025E-04 + 232 -1.6301611858042880E-04 + 233 -2.4719662514934167E-03 + 234 -2.6982764356540186E-04 + 235 3.2222744662957926E-04 + 236 -7.5541721447833395E-04 + 237 -1.4329067029060057E-02 + 238 1.1172147159457298E-02 + 239 8.4546675047672006E-04 + 240 2.4901031989707230E-02 + 241 -1.5445557974899300E-03 + 242 2.2805043430433798E-04 + 243 -4.6981555005567901E-04 + 244 1.0379221893968308E-03 + 245 -1.3977875781877884E-03 + 246 6.4245260991671775E-05 + 247 -9.1973803510535568E-05 + 248 2.0006800286449520E-04 + 249 -2.1211975580176065E-05 + 250 -1.4941764128303478E-04 + 251 6.4953093004512958E-05 + 252 4.0634471875426146E-04 + 253 2.7375700151281495E-04 + 254 -5.1565349503657027E-03 + 255 -5.0320111574935745E-05 + 256 -3.6945646241405414E-04 + 257 3.7046509052250042E-03 + 258 -1.9274718565492719E-03 + 259 -9.0469933926064946E-05 + 260 6.5630646826973880E-04 + 261 3.1747277845054742E-04 + 262 -8.4099112825110119E-03 + 263 4.4331832275920262E-03 + 264 6.5060277813683495E-02 + 265 4.3767888339036514E-03 + 266 -1.8324654698690043E-02 + 267 9.5762340490216790E-04 + 268 -9.8777414650384713E-05 + 269 4.7247133816096507E-04 + 270 2.0894866867094673E-03 + 271 2.7620260672278158E-04 + 272 -5.7620839084272394E-05 + 273 -1.8602217108861481E-04 + 274 -2.6433658425925659E-04 + 275 2.4298104229733176E-04 + 276 2.0425468656670677E-04 + 277 2.6926604067251515E-04 + 278 -7.0822455310430154E-04 + 279 -3.4571108235140840E-03 + 280 1.8510970007696860E-05 + 281 -1.3522485799358044E-03 + 282 -4.2781991991280152E-03 + 283 -2.0240012093997086E-03 + 284 -2.6978224120082227E-04 + 285 -6.7172910345740012E-04 + 286 -7.1444004284987867E-05 + 287 -2.8493660610746300E-04 + 288 -1.9978848175596941E-04 + 289 -2.6694617658266294E-04 + 290 -4.4677523950359334E-04 + 291 7.8322515712252918E-05 + 292 -7.0213692680419623E-03 + 293 6.0466201780322309E-05 + 294 -3.2284333997287078E-03 + 295 -2.8336470283517397E-03 + 296 -2.0174705481159814E-03 + 297 -3.8940122015237077E-04 + 298 -7.9494027508828240E-04 + 299 -4.8472034666351425E-04 + 300 -6.5782312302856897E-04 + 301 4.4394600892321892E-05 + 302 -1.2527608330166790E-04 + 303 2.8078985757372090E-04 + 304 7.9353880745326581E-04 + 305 -3.2413771457381947E-03 + 306 5.4641852329959974E-04 + 307 1.7716767791766221E-03 + 308 8.7298848765458631E-04 + 309 6.1593954516432571E-04 + 310 1.3598251587270194E-04 + 311 -4.4856909790563039E-04 + 312 2.3927450183878717E-04 + 313 -2.5002555722228460E-02 + 314 -2.4845125166200557E-03 + 315 -1.2990631963780514E-03 + 316 -9.5733719459109041E-03 + 317 3.3427139918024686E-02 + 318 8.9199377751906280E-04 + 319 8.6526615216488037E-04 + 320 1.5316158591227179E-04 + 321 -2.2295178658006813E-04 + 322 -6.6338498624580360E-04 + 323 3.4703659970044913E-04 + 324 2.4208901854648801E-04 + 325 1.2277761921900273E-04 + 326 9.5696485520828254E-05 + 327 -2.0707065755277144E-04 + 328 1.5252441972820981E-04 + 329 -1.6495948604866726E-05 + 330 -2.0295728602308529E-04 + 331 -5.9314429455033972E-04 + 332 3.4474291490185912E-04 + 333 -1.0262427223713068E-03 + 334 -9.7012457776136918E-04 + 335 3.4236295795571684E-04 + 336 -7.0548280783646548E-04 + 337 4.7726825568597254E-04 + 338 3.9094046189291604E-02 + 339 -1.7337075573202496E-01 + 340 6.2479273044704520E-02 + 341 2.7461323904272245E-03 + 342 3.2211128424606078E-02 + 343 -6.6378111161010010E-05 + 344 -1.0720812181851625E-04 + 345 -5.9656767305569559E-04 + 346 1.0106898483410206E-03 + 347 5.1742549926274157E-04 + 348 1.3166525831440518E-04 + 349 4.0367646003517411E-05 + 350 -1.9145382910933792E-04 + 351 2.9221432990710489E-04 + 352 2.1328738788843954E-04 + 353 -1.7686359368661029E-04 + 354 3.6989884602283270E-04 + 355 1.0906788090552707E-02 + 356 -7.8952014544957401E-05 + 357 2.1232349331559847E-03 + 358 1.1949770385273591E-02 + 359 -9.7220760080505460E-03 + 360 -7.2574701568727172E-05 + 361 1.1238582710247893E-03 + 362 -5.4333573710559958E-04 + 363 -2.2511293055044301E-03 + 364 -2.1621687315911826E-04 + 365 1.7585355734472117E-03 + 366 -1.7119274605183641E-04 + 367 3.3868610146354448E-04 + 368 -9.5214542086054579E-03 + 369 4.6676848601354159E-04 + 370 3.3450133600662589E-03 + 371 -5.4714359562195343E-03 + 372 1.3166052334820794E-02 + 373 5.5705039949082878E-04 + 374 6.8813479036393160E-04 + 375 3.8839655406897253E-03 + 376 1.9456911664906718E-03 + 377 -8.2696680044157624E-04 + 378 -1.0115326480298246E-03 + 379 4.7218071117926023E-04 + 380 1.0536356242461388E-04 + 381 2.2237890752257967E-04 + 382 1.8087786702141245E-05 + 383 -3.2488794691072115E-05 + 384 3.3857227591592384E-03 + 385 4.0777662387535335E-03 + 386 -1.0912376302363805E-05 + 387 -5.4137478240420193E-05 + 388 5.8368138036108146E-04 + 389 6.8255368780640777E-04 + 390 1.0518896992279762E-03 + 391 -4.7708267808143349E-05 + 392 5.8929694087705346E-04 + 393 7.6903368265968878E-04 + 394 2.4002229882368322E-03 + 395 -4.3197083008924285E-05 + 396 -1.8760379939136518E-05 + 397 -2.0958662657227269E-03 + 398 8.7750758968731414E-05 + 399 1.7223872619193212E-04 + 400 -5.1450730604874092E-06 + 401 -3.7231577006956824E-04 + 402 -1.6317348084165240E-02 + 403 -5.2726863793823592E-03 + 404 2.0738221610842704E-02 + 405 2.5397360166620322E-02 + 406 3.4272265767795004E-02 + 407 1.4769771682832900E-04 + 408 -2.6387101897006412E-04 + 409 -3.8466689916730271E-04 + 410 -3.8917987742554744E-04 + 411 -1.1245493522868606E-03 + 412 1.5245885559533132E-07 + 413 -2.4922662089194275E-04 + 414 -6.5483879159083393E-05 + 415 -4.4121065677460256E-05 + 416 -3.2926357862385277E-04 + 417 -2.2536870728341032E-04 + 418 -3.8588477739490678E-05 + 419 -6.7092153947438389E-05 + 420 7.1192272106188661E-05 + 421 -1.0171150367214933E-03 + 422 -1.0183057147147890E-03 + 423 3.6546659293972835E-04 + 424 2.5220839097439422E-05 + 425 -4.4955268569794220E-04 + 426 -1.2190141251187233E-04 + 427 1.6303639800294660E-04 + 428 -9.1910570582769027E-05 + 429 -2.1199066440727771E-04 + 430 -1.7130880073536436E-04 + 431 2.2522316674789119E-05 + 432 -1.0102514927879344E-03 + 433 9.1946324064055677E-05 + 434 3.8908564659537442E-04 + 435 -1.4331159905819051E-03 + 436 -8.9344116073343375E-04 + 437 -2.6978864559020128E-04 + 438 1.6633527000537481E-04 + 439 -6.2798746016663211E-04 + 440 -1.1044043884056575E-04 + 441 -1.9265725007425617E-04 + 442 -2.4043536009756152E-04 + 443 1.3794071066919054E-04 + 444 -3.4456720040680774E-04 + 445 3.5193461786457553E-03 + 446 5.0254736095701265E-04 + 447 3.1438655212615600E-03 + 448 1.6195541984268839E-05 + 449 2.9080190383183372E-03 + 450 7.9275769879138603E-04 + 451 -1.1865712024034463E-04 + 452 1.6006184563444601E-04 + 453 2.2038026428570696E-03 + 454 -3.5901450511186823E-02 + 455 -8.9057986463056075E-03 + 456 -1.4097970689171573E-03 + 457 -7.6908938307592278E-03 + 458 7.3766256366984684E-04 + 459 1.8551029321022901E-03 + 460 -1.7659036135698810E-04 + 461 7.2419130998847110E-04 + 462 -1.0289235818495498E-05 + 463 3.4349541589794816E-04 + 464 5.1386059353388913E-04 + 465 -2.8559319120974395E-04 + 466 6.1753645808251755E-05 + 467 1.0321871836575260E-04 + 468 2.8550893771430585E-04 + 469 1.6295701613252170E-04 + 470 1.3961414898001540E-03 + 471 -3.5879760533999872E-04 + 472 2.2636122851263734E-04 + 473 -3.2876738756147753E-04 + 474 -6.9679395636747612E-04 + 475 -1.4654586316206216E-04 + 476 3.4727861480987845E-05 + 477 -2.6791197712116492E-04 + 478 -2.3281569898131339E-02 + 479 1.4329148096709460E-02 + 480 1.6619273447623260E-03 + 481 9.0921207460108143E-03 + 482 -4.1328142751345187E-03 + 483 -1.7614331668987736E-04 + 484 -3.6296304772330399E-04 + 485 -7.2999213800368031E-05 + 486 -1.3646920802163706E-04 + 487 -2.6779731060939949E-04 + 488 -1.4798654796140416E-04 + 489 -3.7588848255075406E-05 + 490 6.2332507467028982E-05 + 491 7.2874961901818919E-05 + 492 -2.5848597766802166E-05 + 493 -1.1708403579172582E-04 + 494 -9.6775547379895758E-05 +Ene= -4.7885807943E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -1.4619697110753569E-04 + 2 1.0089063876514565E-03 + 3 -1.1673398462106856E-03 + 4 -3.4210864919905883E-03 + 5 1.6408842705600726E-03 + 6 -8.3559703903410222E-04 + 7 -3.8169296128203720E-04 + 8 1.1199440962304704E-04 + 9 9.4765139685526224E-03 + 10 5.8091970610117975E-03 + 11 -1.3255839750336703E-02 + 12 5.6580670328827600E-03 + 13 -1.7587320429557672E-03 + 14 -7.5489735772534992E-04 + 15 -7.6723743846969072E-04 + 16 5.3668188197131760E-04 + 17 2.5725704964040821E-04 + 18 1.4021475403026052E-03 + 19 -2.5487175154169968E-05 + 20 8.6086473920725731E-05 + 21 -1.0961427773202974E-04 + 22 9.9545272949664779E-05 + 23 -1.4658241608802157E-04 + 24 1.3516639227848532E-04 + 25 -9.3221326301687053E-05 + 26 1.6810845869311611E-04 + 27 5.5378113067663806E-04 + 28 -3.5717621911784182E-03 + 29 1.0751675150078065E-03 + 30 9.7705967268825380E-04 + 31 -8.2889872445520525E-04 + 32 1.9073308738682638E-05 + 33 -6.1349629701515322E-05 + 34 -6.4524491520907218E-03 + 35 5.0260514992153150E-03 + 36 -1.2226414856629252E-02 + 37 -4.2790821067577478E-02 + 38 -3.7110272404703381E-04 + 39 1.9869961761378405E-04 + 40 -4.5879776945163993E-04 + 41 2.2811488669487724E-04 + 42 2.1571181339032049E-03 + 43 6.1909308080707525E-04 + 44 5.8942816921842793E-05 + 45 2.4415219699863927E-04 + 46 -1.9869937330720727E-04 + 47 -1.7078957700670318E-04 + 48 1.6659600466442792E-04 + 49 -1.0908448146394341E-04 + 50 -9.2823885002213822E-05 + 51 -2.6034626507096593E-03 + 52 -6.0286644173928379E-04 + 53 -1.8701054570392313E-03 + 54 -5.2090305130027595E-04 + 55 -2.2219222454346817E-04 + 56 -7.3875689031120348E-04 + 57 -6.7486340739377469E-04 + 58 1.7942890447860489E-03 + 59 -9.4042286990539743E-06 + 60 -4.5972131409341907E-02 + 61 -2.0925720698046012E-02 + 62 -2.6623307441154116E-02 + 63 3.3706858731508138E-03 + 64 -1.3196599912285256E-03 + 65 3.8654038920850503E-03 + 66 8.5761475367583813E-04 + 67 1.5101749529128912E-03 + 68 4.5048376749401968E-04 + 69 -1.0292236422308704E-04 + 70 -7.2737782867433090E-05 + 71 3.2186715514670705E-04 + 72 -2.6446624899146952E-04 + 73 3.4001369858040019E-04 + 74 -1.1038930030067242E-04 + 75 3.6610484275293625E-04 + 76 6.9021539617982854E-03 + 77 -1.3111045206250270E-04 + 78 2.0788123329450691E-04 + 79 1.0116903329655735E-03 + 80 2.2048235697117173E-03 + 81 -3.7026971404173774E-04 + 82 1.2970166372209692E-04 + 83 1.2137501224521946E-04 + 84 -2.2772900268392906E-04 + 85 -6.3494237366948131E-04 + 86 9.6217598003807501E-05 + 87 7.6067052176105317E-05 + 88 -8.8967823212483468E-05 + 89 -9.0439197705870049E-03 + 90 4.8743296336963807E-04 + 91 -1.2897347207286392E-03 + 92 -4.9327504853168588E-04 + 93 1.3686289869459572E-03 + 94 2.0175227958773562E-04 + 95 -1.5541300586448893E-04 + 96 5.7748854163788583E-04 + 97 -1.8318483494457120E-05 + 98 -2.7739449359063704E-04 + 99 2.2323229261660339E-04 + 100 2.2954451747165904E-04 + 101 -4.7468928235403181E-05 + 102 3.2713807155695372E-03 + 103 -1.0650490013705359E-04 + 104 -1.7210432152390354E-03 + 105 2.8241103277729818E-03 + 106 -1.7371080812058396E-03 + 107 -3.0688225697417286E-04 + 108 1.2567580614032715E-03 + 109 4.6536425203962876E-04 + 110 -1.0825607683622870E-03 + 111 2.7560719263854014E-04 + 112 -3.5925073124504171E-04 + 113 5.1291209449749818E-04 + 114 -6.9189083999935373E-04 + 115 -1.9218760521863545E-03 + 116 -1.1817481949444671E-06 + 117 -2.6124965820933806E-03 + 118 2.2714720650837609E-03 + 119 -9.9094740150920549E-04 + 120 -2.7396991052117088E-04 + 121 2.3243635427763184E-04 + 122 -5.5640933384895073E-05 + 123 8.6434092663171887E-05 + 124 3.8373820513994811E-04 + 125 -2.3657192140036444E-04 + 126 3.9987643615565127E-04 + 127 4.0798663891581603E-04 + 128 -8.6149452140502625E-03 + 129 -1.1101133155398214E-04 + 130 1.1884459754719606E-03 + 131 3.7897002779097330E-03 + 132 1.6904325169233580E-03 + 133 6.4773244419532043E-05 + 134 -2.8170302568700684E-04 + 135 3.4300863839078740E-04 + 136 6.9146503137651116E-03 + 137 6.1248974613891914E-03 + 138 1.5615426412703814E-02 + 139 -8.0481119580034566E-02 + 140 2.8734479339421897E-02 + 141 5.5948950951682981E-04 + 142 2.0316359718904222E-04 + 143 -5.9218486578138413E-04 + 144 1.8460406517095125E-03 + 145 -6.7175502792263025E-04 + 146 -1.5805833535003765E-04 + 147 9.5895801869981401E-05 + 148 5.5269626301947155E-05 + 149 -2.3434197752763224E-04 + 150 -8.2122446586449581E-05 + 151 4.4233365151260630E-05 + 152 -2.4590335103704379E-04 + 153 -1.9288318870709783E-03 + 154 -2.8602059151522889E-04 + 155 5.7034582290786727E-04 + 156 -1.2032699512219815E-03 + 157 6.3296810972828855E-04 + 158 6.0644644343080787E-05 + 159 -4.3314499332296500E-04 + 160 -4.2455050733496472E-04 + 161 1.3960530585127878E-01 + 162 5.2353934214726859E-02 + 163 -3.4585862267089269E-02 + 164 1.7387605531623718E-02 + 165 -2.7402454789969239E-02 + 166 5.4443131899312527E-04 + 167 6.6717336539261446E-04 + 168 7.3182954741596751E-04 + 169 -1.0466792001074924E-04 + 170 2.9122045048295548E-04 + 171 2.1447767301436158E-04 + 172 -1.6684518256184118E-04 + 173 -3.1692152745911530E-04 + 174 -1.1647456872537815E-04 + 175 -8.6712995339612738E-05 + 176 -7.0523877407785115E-05 + 177 -5.6451904488058146E-05 + 178 1.2196910147385269E-02 + 179 -1.6980241030120589E-04 + 180 -2.9195363870326728E-03 + 181 5.4606058893652745E-03 + 182 -2.7467764381990216E-03 + 183 2.9096304248220764E-05 + 184 6.8111874871924945E-04 + 185 -2.7615118070229149E-04 + 186 6.9219015079728208E-04 + 187 -1.0694218812177445E-03 + 188 -1.2412402471223950E-03 + 189 -7.1806922241984285E-04 + 190 4.2638827273949337E-05 + 191 7.4576044516178788E-02 + 192 -1.0121648270826739E-03 + 193 3.3888673649653442E-03 + 194 -1.0722962921889848E-02 + 195 5.3986649561364647E-02 + 196 -3.4315746617053178E-04 + 197 -9.6628787364906599E-04 + 198 3.1984233348638599E-03 + 199 -9.3143878901083381E-03 + 200 -5.3650354948008511E-03 + 201 1.0837363096205414E-02 + 202 6.7735857015812848E-04 + 203 -2.6209118712143655E-03 + 204 -5.8819553552007320E-03 + 205 1.4995090838833835E-03 + 206 1.5624469280655535E-03 + 207 -2.7164483510744033E-03 + 208 -4.5544787297161190E-03 + 209 2.0506555584106642E-03 + 210 -2.0228362194882428E-03 + 211 -2.5099237402103833E-04 + 212 -1.7836926647137313E-01 + 213 7.1038557813263820E-02 + 214 2.2255541790766234E-02 + 215 -9.7283909538151206E-02 + 216 -1.0204468600425196E-01 + 217 3.5067506749111303E-03 + 218 -2.5518377467726116E-03 + 219 1.7723150628177900E-03 + 220 5.0124065966370617E-04 + 221 3.8952791489097513E-04 + 222 -4.3529149260041898E-04 + 223 6.4579029442241335E-04 + 224 2.5913329709783504E-04 + 225 -7.4013855232883370E-04 + 226 1.2610162019060966E-04 + 227 -4.9337633125695515E-04 + 228 -4.9563357041186584E-04 + 229 -3.1227225629645670E-03 + 230 1.0240244365897178E-04 + 231 -2.1297584980015643E-03 + 232 3.4177128698795726E-04 + 233 5.6003800088932204E-04 + 234 3.1646117779647083E-04 + 235 -7.2421560625351641E-04 + 236 -7.2173981160140164E-04 + 237 4.1578095686134638E-02 + 238 -2.7964869094058226E-02 + 239 2.3273313688069400E-02 + 240 -1.4743221570290867E-02 + 241 -8.6710304796037245E-03 + 242 -2.3535030004562300E-03 + 243 8.4012011856525297E-04 + 244 -3.5769609534627299E-04 + 245 2.1025567261035886E-04 + 246 2.2316622495190127E-04 + 247 -1.6434110162957195E-04 + 248 1.9073288525005871E-04 + 249 5.1562530998649483E-04 + 250 8.6142135132211427E-05 + 251 -8.8515062248485475E-05 + 252 -1.2313612760483450E-04 + 253 -2.0946655524951808E-04 + 254 -5.5281676747226318E-04 + 255 4.1448521096541411E-04 + 256 2.0029047545664624E-04 + 257 5.9604921020889442E-04 + 258 -9.5887816934674000E-04 + 259 9.3912542198218633E-05 + 260 -1.1720053768677370E-04 + 261 -2.8440118874380622E-04 + 262 1.6622403283578866E-02 + 263 9.0551588153088176E-03 + 264 -1.9735374978724768E-03 + 265 7.7600512191370397E-03 + 266 -7.2496293136629260E-03 + 267 3.8779022513231817E-04 + 268 -1.5507280992719318E-04 + 269 4.7297489530573534E-04 + 270 5.4700928215199772E-04 + 271 -1.6033025778515453E-04 + 272 -2.9205325197000919E-05 + 273 5.5671909794928416E-05 + 274 -1.1270406053382923E-04 + 275 6.0385303256931379E-05 + 276 1.5418895213446785E-04 + 277 -1.7992293004374669E-05 + 278 -2.2855032153112629E-04 + 279 -1.0987712828674497E-02 + 280 2.2250868486753779E-04 + 281 7.0305700144933009E-05 + 282 -1.3161260690953366E-03 + 283 3.1798339425449925E-03 + 284 7.9594707777778576E-05 + 285 4.2541476260711930E-05 + 286 6.8801109139156292E-04 + 287 -1.5703773357608766E-04 + 288 1.6711732271132616E-04 + 289 -3.9105043686997996E-04 + 290 2.0209677366592524E-04 + 291 -6.3309455319253519E-05 + 292 3.0513167936610155E-02 + 293 -3.7842572816966616E-04 + 294 1.2834857000176791E-02 + 295 1.2371858277593434E-02 + 296 6.9109427067773213E-03 + 297 1.6851374791867556E-03 + 298 1.8390918071684739E-03 + 299 1.1691254321383134E-03 + 300 2.4824185226201517E-03 + 301 -3.3777826688291504E-05 + 302 8.7107807451769590E-04 + 303 -1.0703296261421324E-03 + 304 -2.7905788686650342E-03 + 305 1.5256037314455623E-02 + 306 -1.9840598869092143E-03 + 307 -7.7913716392873089E-03 + 308 -5.1829624521078834E-03 + 309 8.2476367486471181E-04 + 310 -3.0218797775998922E-04 + 311 1.2551215846028211E-03 + 312 5.1461685106345687E-04 + 313 9.1306450586863305E-02 + 314 -4.4915518643912170E-04 + 315 -1.4950374963406147E-02 + 316 3.3523119469010688E-02 + 317 -1.2846508637119233E-01 + 318 -5.6096673736157727E-04 + 319 -2.7363050805371590E-03 + 320 -1.1228962782394057E-03 + 321 1.4883609160761186E-03 + 322 1.4832492079313662E-03 + 323 -4.8180143276350517E-04 + 324 -5.5388261533957444E-04 + 325 -3.2156329267537349E-04 + 326 1.5158485701371788E-04 + 327 4.7554731399178222E-04 + 328 -3.7918436104827002E-04 + 329 -2.9861276866342492E-04 + 330 -1.7172844313003558E-03 + 331 -5.7308923621052286E-04 + 332 1.6908630737048919E-03 + 333 2.2986751492738043E-03 + 334 -6.8222934853313499E-03 + 335 -3.5264614773545248E-04 + 336 7.3004906238811169E-04 + 337 -5.1079513775026224E-03 + 338 -4.3499350118313773E-01 + 339 4.0201114846498431E-01 + 340 -6.2906483663258328E-01 + 341 1.4880570000194101E-03 + 342 -2.5179758214520359E-01 + 343 -3.1298296664345436E-03 + 344 2.5039488666871645E-03 + 345 -1.2564393186712171E-03 + 346 3.8373288060748479E-04 + 347 6.2398696674347139E-04 + 348 -1.5677579064608525E-03 + 349 -6.3697706793775215E-04 + 350 8.7507767130480085E-04 + 351 -1.5724127517381749E-05 + 352 5.1825964055868853E-04 + 353 -3.3961198674771611E-04 + 354 2.4062705552823122E-04 + 355 -6.6735779539961793E-02 + 356 1.0575772887186118E-03 + 357 -4.0557673306150189E-03 + 358 -3.6899374743741824E-02 + 359 5.2450057036815385E-02 + 360 3.6094401596752367E-04 + 361 -2.5631275910896418E-03 + 362 3.3733534483411593E-03 + 363 1.2572093669582871E-02 + 364 2.2489513619010676E-03 + 365 -4.7877314764480112E-03 + 366 3.3218111068387553E-03 + 367 -6.7121540477752374E-04 + 368 5.5656218183536164E-03 + 369 -4.5398458521224761E-05 + 370 -7.9328459745997183E-05 + 371 8.7914262481721631E-03 + 372 5.1081479982207809E-04 + 373 -5.1463492308693288E-04 + 374 2.3020415571886520E-04 + 375 6.1451245686252080E-04 + 376 1.1443173962868169E-03 + 377 -3.4580085355577804E-04 + 378 7.1471865109614974E-05 + 379 1.1280798836796517E-03 + 380 -1.1746925032806762E-03 + 381 1.7846743965222202E-03 + 382 -1.1645445292008534E-04 + 383 1.0458197318020089E-03 + 384 1.1950605616861969E-03 + 385 -1.7458966534983611E-03 + 386 1.4612028796723092E-04 + 387 -1.7880252947517764E-04 + 388 -6.6524081212550182E-05 + 389 -2.5143737297913209E-04 + 390 -2.6474162464928437E-04 + 391 4.7258103338140378E-04 + 392 2.3772066046420982E-04 + 393 3.5161352262319859E-04 + 394 -4.7852887341429265E-03 + 395 -5.3880609261385665E-04 + 396 1.6078069077066883E-03 + 397 4.8186115864324907E-03 + 398 7.6505623299170076E-04 + 399 9.7720933629048915E-05 + 400 5.6618106807019815E-04 + 401 3.8464661454882604E-04 + 402 8.9100785362850581E-03 + 403 1.6334293432967054E-02 + 404 1.1910062666350352E-02 + 405 -4.5272958609490807E-02 + 406 -2.4527423668576150E-03 + 407 -1.9378264618224664E-04 + 408 -3.4894630010626448E-04 + 409 -4.6975228572437091E-04 + 410 2.4993403573447160E-03 + 411 -4.2248726100417205E-05 + 412 2.7704495661973340E-04 + 413 1.8084073494252830E-05 + 414 -2.6325073510163530E-04 + 415 -2.1475799732309574E-04 + 416 -1.7158502241256888E-04 + 417 5.5845349021252544E-05 + 418 -7.4255590761934545E-04 + 419 -5.2892125997283284E-03 + 420 5.7722790676498613E-05 + 421 2.0389996459292186E-03 + 422 4.3263566169461998E-03 + 423 3.2570828007912143E-03 + 424 6.4411119132930507E-05 + 425 1.7749983304497592E-03 + 426 5.5083596931478464E-04 + 427 9.9111549567778190E-04 + 428 -3.0199465234895147E-05 + 429 1.6531987035706759E-04 + 430 1.2975118665405621E-03 + 431 -3.1292214362667385E-04 + 432 1.2675149962384172E-02 + 433 -2.9245801478026501E-04 + 434 -4.3596527182567530E-03 + 435 -1.3539213386992871E-03 + 436 1.6705307328249324E-03 + 437 -7.1650630197603847E-04 + 438 1.5992788903694370E-04 + 439 7.0159616400776469E-04 + 440 4.7706991177121007E-04 + 441 6.2048431142912341E-04 + 442 3.8348422083672585E-05 + 443 -5.8997715294319651E-04 + 444 -3.9053374886396789E-04 + 445 9.8521192229880888E-04 + 446 -5.4546436197497490E-04 + 447 -5.3115828627340938E-03 + 448 3.6296086194705255E-03 + 449 3.2541629649527142E-03 + 450 -2.0881486416707419E-03 + 451 1.0351246308206627E-03 + 452 2.1877882408769598E-03 + 453 -1.3071517634281746E-01 + 454 3.6200274315907360E-02 + 455 2.9585571993967642E-02 + 456 -5.4579107648279078E-02 + 457 -2.7395134715986775E-02 + 458 3.9798211974319160E-03 + 459 -4.6089098286258789E-05 + 460 4.1191004442679404E-04 + 461 -1.2352004440505462E-03 + 462 2.0948599504218425E-03 + 463 1.8122355983906253E-04 + 464 -1.2214462710424308E-05 + 465 2.9173088830483743E-04 + 466 8.6081966860386745E-04 + 467 -9.0471712255070321E-05 + 468 -5.0264402248733698E-04 + 469 1.3675294449648500E-04 + 470 -3.1639721017237016E-03 + 471 2.0478741996783601E-04 + 472 -9.7422010636180891E-06 + 473 1.7301373995762992E-03 + 474 1.5775814969052364E-03 + 475 4.2190527627251521E-04 + 476 5.7365516714047882E-05 + 477 5.2310575583541276E-04 + 478 2.2401833966928034E-02 + 479 -1.8101224053639588E-02 + 480 1.4379327804679460E-03 + 481 1.5943155544898287E-02 + 482 1.9494911801415268E-02 + 483 -3.1070956979903910E-05 + 484 9.1235429967087014E-04 + 485 -1.0711978836592357E-03 + 486 7.1639485673098083E-04 + 487 1.6504073998236730E-04 + 488 -5.4171872907053176E-04 + 489 -2.0791316541892725E-04 + 490 -1.9198660503061353E-04 + 491 -3.4864611845697544E-05 + 492 -5.1593490467731647E-04 + 493 -1.9109925789857864E-05 + 494 -2.6437699558505838E-05 +Ene= -4.7804762281E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -4.4086979230687001E-03 + 2 -1.6033284504414480E-03 + 3 3.8783404974700557E-03 + 4 -2.1388055727165596E-03 + 5 -3.2693720661251566E-03 + 6 1.0637751923645643E-03 + 7 -6.8629496089081554E-04 + 8 -9.4307904193057608E-04 + 9 5.8710066284502534E-03 + 10 1.9069276450210150E-03 + 11 -3.9959624906494963E-03 + 12 7.6846644760070037E-03 + 13 2.1101043628117236E-03 + 14 -2.5919480673344933E-04 + 15 1.5519650148891019E-03 + 16 -2.0654675111292107E-03 + 17 -1.6146090492823563E-03 + 18 3.9698743004150649E-04 + 19 1.8252883965640290E-05 + 20 -6.6016213499242942E-05 + 21 -2.7644979789498821E-04 + 22 -1.5392684774758090E-04 + 23 8.5780515792848204E-04 + 24 5.2522093589547989E-04 + 25 -2.5977399006798483E-04 + 26 -1.4632309214852075E-02 + 27 -7.9464716997672713E-04 + 28 1.4987707326100804E-02 + 29 4.6217266286452752E-03 + 30 -3.4166076807388862E-03 + 31 1.7681545300745386E-03 + 32 1.7844621184557566E-03 + 33 -1.3367660794995364E-03 + 34 -9.5212826397490069E-02 + 35 -4.1380988421812176E-02 + 36 6.2599776289682926E-02 + 37 1.7106209588429949E-01 + 38 8.7506866480905929E-02 + 39 4.3627527688070364E-03 + 40 -1.9291619681096049E-04 + 41 -9.1585025019206732E-04 + 42 -4.2361415481426534E-03 + 43 -3.3519752351302999E-03 + 44 -5.1271186854114439E-04 + 45 -7.7138746641789064E-04 + 46 1.0735046161362933E-04 + 47 5.4366285500289865E-04 + 48 3.1201356613496059E-05 + 49 -3.0793860498645807E-04 + 50 9.4318208812706823E-04 + 51 -2.4258277577329842E-02 + 52 5.7149998508578253E-04 + 53 1.0977933686318758E-02 + 54 5.5590989743933500E-03 + 55 1.8437524960761894E-03 + 56 1.0834479729414420E-03 + 57 4.0588729152428904E-04 + 58 -3.5420493759286278E-04 + 59 -4.0981747341890971E-03 + 60 2.4661287304988656E-02 + 61 3.8516444054761068E-02 + 62 -1.1080977799558580E-04 + 63 5.4816566241331910E-02 + 64 4.4212905464833608E-04 + 65 -2.0304986888715483E-03 + 66 -4.9286346913988152E-03 + 67 -4.0916167583835939E-03 + 68 -2.0141039061406202E-03 + 69 6.1577612569972922E-04 + 70 -5.9668943810226830E-04 + 71 1.0884440031990006E-04 + 72 -2.9890216947239269E-04 + 73 4.1942811260263897E-04 + 74 1.1742472339143449E-03 + 75 -2.8573103026469017E-04 + 76 2.9156454913593440E-03 + 77 -3.8263344434786320E-04 + 78 6.0254500129776171E-03 + 79 -1.9926104924874598E-03 + 80 6.4596925555326368E-03 + 81 1.3946500943069829E-03 + 82 -1.3270914037164419E-03 + 83 3.3195816795277535E-05 + 84 1.7257862463974385E-03 + 85 3.4563925806660943E-05 + 86 -1.1151561920676267E-03 + 87 -1.0138131527997459E-03 + 88 -9.3588436733687178E-05 + 89 -4.0547240356862751E-03 + 90 -2.1946354401343145E-04 + 91 -1.7973943365825261E-03 + 92 -1.6260222003467030E-03 + 93 1.0572365400771178E-03 + 94 -1.2736518504358194E-03 + 95 -6.4533326557933272E-04 + 96 -1.5752890288200520E-04 + 97 -2.3496621414065554E-04 + 98 7.1911945955269814E-05 + 99 3.8064868860231091E-05 + 100 2.5557062458887991E-04 + 101 2.7855748717313757E-04 + 102 -1.6592450660101375E-02 + 103 -1.7570264997083568E-05 + 104 -9.2038275243181613E-03 + 105 -8.9387216261167697E-03 + 106 -5.3486384558588751E-03 + 107 -2.5304202711996673E-04 + 108 -9.4392149283418743E-04 + 109 -4.5813564489912919E-04 + 110 -8.6155657530454248E-04 + 111 2.8792532200672859E-04 + 112 1.9760871503892002E-04 + 113 2.8318224829698554E-03 + 114 2.5144785531416285E-03 + 115 1.9680515713465543E-02 + 116 -3.8646430791562333E-04 + 117 8.3351978462198658E-03 + 118 6.8023121560115965E-04 + 119 1.6432399776167099E-03 + 120 4.0794863681761203E-04 + 121 -7.0489448585773617E-04 + 122 -1.7181515113612219E-04 + 123 9.2586567395128096E-04 + 124 -1.5678781937298412E-03 + 125 3.3073572354151259E-04 + 126 -1.1090663903080783E-03 + 127 -1.0088294265802292E-03 + 128 8.0076029374937224E-03 + 129 1.6177331382539555E-03 + 130 -7.9189055982411202E-03 + 131 -9.1523891575849992E-03 + 132 -3.9701561502128949E-03 + 133 -7.3703668231417418E-04 + 134 6.9064570575328159E-04 + 135 -5.2667860363530357E-04 + 136 -4.0131450765116546E-02 + 137 -9.0974252746334180E-02 + 138 -1.3157373427547775E-01 + 139 3.5423653105896685E-01 + 140 -4.7361618906778376E-02 + 141 7.1184892805761101E-06 + 142 2.2852743295751509E-03 + 143 1.2003291259029740E-03 + 144 -5.8713124904255709E-03 + 145 -1.5919611935821784E-06 + 146 -4.3532748955671922E-04 + 147 -1.1239677952055223E-03 + 148 -7.1746213897526585E-04 + 149 -6.8895983205808221E-04 + 150 1.6246570981161192E-04 + 151 3.3281310645138606E-04 + 152 4.9916504909565331E-04 + 153 1.9431185021044624E-03 + 154 4.9574699493516576E-04 + 155 6.5029592929122483E-03 + 156 5.5217732363207041E-03 + 157 -4.0715073189851944E-03 + 158 1.7017949756693346E-03 + 159 1.3503616192935253E-03 + 160 -1.7195124892666401E-03 + 161 3.0075402473381829E-01 + 162 -6.9505412902298710E-02 + 163 1.7217959670475139E-01 + 164 3.0633884437830362E-02 + 165 1.3393927826104773E-01 + 166 2.2948008312261388E-03 + 167 -1.5982565072107633E-03 + 168 -3.1078814375964975E-03 + 169 -3.4885413750953814E-03 + 170 3.7003751482742893E-04 + 171 2.7036912816829175E-04 + 172 5.9218875438823331E-04 + 173 9.0289985773966334E-04 + 174 5.8978891483735989E-04 + 175 -2.2225088470421569E-05 + 176 1.1062458126763659E-03 + 177 -8.5590566924760938E-04 + 178 4.6188338722175419E-02 + 179 -8.1878604896006100E-04 + 180 -1.5691568551866993E-02 + 181 -9.0500474307101623E-03 + 182 8.0911853581835894E-03 + 183 7.6304567223524150E-04 + 184 -1.0125200291674224E-03 + 185 2.2339478889583700E-03 + 186 -3.1643445514028401E-04 + 187 2.1246596275346671E-03 + 188 1.6649013018850333E-03 + 189 -1.8243393670681746E-03 + 190 -1.8373731733922925E-03 + 191 2.6166585310870615E-03 + 192 6.0196120619696156E-04 + 193 3.4485442198140891E-02 + 194 2.3974076985993104E-02 + 195 1.1469238302414003E-02 + 196 8.7471486819454562E-04 + 197 1.6788040517551799E-03 + 198 8.6586065785030340E-04 + 199 -2.6497241636651084E-03 + 200 -7.2755513024342034E-03 + 201 -3.9944146816643716E-03 + 202 -2.7235529103768544E-03 + 203 2.6262937292121937E-03 + 204 8.8757626370448359E-03 + 205 -2.7447187979854823E-04 + 206 3.8813399269405297E-03 + 207 6.4368879183506296E-03 + 208 1.2370026207927107E-04 + 209 8.2369318137465967E-04 + 210 -4.8782704716250071E-04 + 211 -1.2462424272172623E-04 + 212 1.5282223301904466E-01 + 213 -4.2939086317717187E-02 + 214 -1.0917360092749936E-01 + 215 2.8475887109126424E-01 + 216 -1.7770975726542945E-01 + 217 -2.3930644950012256E-03 + 218 -6.5246883202883636E-04 + 219 1.0736046567033162E-03 + 220 -1.4166390408911057E-03 + 221 1.9105260525908311E-03 + 222 2.0140071020351082E-04 + 223 -1.0073206438061190E-03 + 224 -8.1738016320729212E-04 + 225 2.0377546359718441E-04 + 226 1.4690235213742141E-04 + 227 5.2496382460128462E-05 + 228 8.5247272419964888E-05 + 229 -9.5615013500980413E-04 + 230 6.2370580669328618E-04 + 231 2.2537736761092096E-03 + 232 -1.5870016716638517E-03 + 233 9.5292113715491787E-04 + 234 -2.7667442563457395E-04 + 235 -7.3710690488447991E-04 + 236 3.5159600180888044E-04 + 237 -2.4889903256569298E-02 + 238 -3.4970493003192993E-02 + 239 1.5077109993694323E-04 + 240 1.5218140011922822E-02 + 241 4.1579999689009594E-03 + 242 4.9299171980008479E-04 + 243 1.2341690135539757E-03 + 244 -1.0676838723740804E-03 + 245 -1.1093675817833468E-03 + 246 1.6330263546308099E-04 + 247 1.6537115297851217E-04 + 248 7.4563208259395281E-05 + 249 -5.1032866064681763E-04 + 250 -1.1979113384502966E-04 + 251 1.9385984695055003E-04 + 252 -2.4580864505253708E-04 + 253 2.9998229743454565E-04 + 254 4.5912948403191373E-03 + 255 -1.3468296678523251E-05 + 256 -3.4095782415840441E-04 + 257 -3.4243146514092567E-03 + 258 -5.7922039110983395E-04 + 259 2.4036576524974796E-04 + 260 -1.0560055294556517E-03 + 261 4.3507412935642258E-04 + 262 -8.1645890218285059E-03 + 263 -1.1826124073965187E-02 + 264 -3.1336099466432259E-03 + 265 5.3082440729150466E-03 + 266 2.9752648879535316E-02 + 267 -1.4215337999308284E-03 + 268 3.6904518400777736E-04 + 269 3.7853542672260652E-04 + 270 -2.3010812401510262E-03 + 271 1.9399599100033656E-04 + 272 3.7013504307980796E-04 + 273 1.9293193893473896E-04 + 274 4.9021001998732835E-04 + 275 6.2148064787404799E-05 + 276 -3.7299464575043487E-04 + 277 4.4559804082779138E-05 + 278 8.7586117235058240E-04 + 279 -5.5140838686715682E-03 + 280 4.8353661531224415E-04 + 281 -6.8121953232834077E-05 + 282 -4.2807565825748609E-03 + 283 -5.0176760062825331E-03 + 284 3.3598208557891036E-04 + 285 8.9702205097741582E-05 + 286 -5.4602794713928024E-04 + 287 -7.2632874045822776E-04 + 288 1.0423066617119710E-04 + 289 4.6528259747257166E-04 + 290 -8.6915683324063843E-04 + 291 3.4391109441845069E-05 + 292 3.5075006233659888E-03 + 293 -3.0668906106508188E-04 + 294 2.9271861069543460E-03 + 295 -6.7750497994533394E-05 + 296 1.5425332835135948E-03 + 297 1.5203515448282182E-04 + 298 1.2877172362606750E-04 + 299 3.2556987994880662E-05 + 300 3.0614549210044743E-04 + 301 2.1057665946643499E-04 + 302 -3.8078105579115915E-05 + 303 -3.8861776184690838E-04 + 304 -6.8748142833824832E-05 + 305 1.9547206754251104E-03 + 306 -3.1857191529250940E-04 + 307 -5.5344201220730084E-04 + 308 -1.3161870408378185E-03 + 309 4.5115180944896034E-04 + 310 -1.0756764011831665E-04 + 311 1.4368136599389296E-04 + 312 9.3960729617789080E-05 + 313 1.0464037206266163E-02 + 314 1.0264601946260684E-02 + 315 9.5536940579190651E-03 + 316 2.5307444092394635E-02 + 317 -1.1068394031814728E-02 + 318 -3.2084939039595287E-04 + 319 -2.0704146129064995E-04 + 320 -6.1614879327637282E-04 + 321 3.9607712099553412E-04 + 322 3.7582874650534515E-04 + 323 -5.8191755074074516E-04 + 324 -1.8956497135327112E-04 + 325 -1.0516495853387814E-04 + 326 -7.1856471260641429E-05 + 327 1.9312966267558514E-04 + 328 -1.2340806804620385E-04 + 329 -2.5225269708640868E-04 + 330 -2.3927507811608382E-03 + 331 8.4072029004110440E-04 + 332 1.2060160923464600E-03 + 333 3.1786497123989358E-04 + 334 1.7860028789599487E-03 + 335 9.6147035136334399E-04 + 336 1.2319508156735950E-03 + 337 1.7534698567892330E-04 + 338 -8.3445024355776803E-02 + 339 5.7220781714546887E-01 + 340 3.2664956740886891E-01 + 341 7.6641320071521496E-02 + 342 2.3278742242466909E-02 + 343 -1.1718507238961864E-03 + 344 2.0881272167157438E-03 + 345 2.0422608306756912E-03 + 346 -3.6915933043868166E-04 + 347 5.2888808815433771E-04 + 348 -6.9077574243672064E-04 + 349 5.2187425904674691E-04 + 350 2.5597870073029369E-04 + 351 -2.4446614938724730E-04 + 352 4.0983046089368246E-04 + 353 -2.0625477701193966E-04 + 354 1.8137313694072523E-04 + 355 9.7130155074912107E-03 + 356 -8.8990340558415873E-05 + 357 -2.0020181891093215E-02 + 358 -9.2794339283840312E-03 + 359 1.6199365977425851E-04 + 360 -3.0141034832904167E-04 + 361 -8.6638345063952957E-04 + 362 -2.9026493555531994E-04 + 363 6.3256231708700588E-04 + 364 -4.2352459100169181E-03 + 365 -1.9748671331660255E-03 + 366 -3.0839807702647852E-03 + 367 1.2518869288008158E-03 + 368 1.3975158446485846E-02 + 369 -5.4227580110309407E-04 + 370 1.2792564147673716E-02 + 371 3.0337706642737205E-03 + 372 -1.2940075092193281E-02 + 373 2.1191006780564114E-03 + 374 -8.2679189868906490E-04 + 375 1.3190823379283054E-03 + 376 -1.9198868262348856E-03 + 377 3.9224435705291711E-03 + 378 1.3710775539128438E-03 + 379 -2.1362779828249965E-03 + 380 5.3020986940120719E-04 + 381 -2.4757746117765635E-03 + 382 4.2268037801732375E-05 + 383 -4.4283040589182714E-03 + 384 -8.4798638819624135E-03 + 385 1.1423425184182004E-02 + 386 -8.0455887048713249E-04 + 387 -2.3799299770738090E-04 + 388 -2.4850983776872690E-04 + 389 -4.8650981245624257E-04 + 390 1.2636596808262709E-03 + 391 -2.1829665398668844E-03 + 392 -1.6518800640941092E-03 + 393 -9.1733446274146972E-04 + 394 -1.3022558320791493E-03 + 395 1.0487990735831789E-04 + 396 2.5480031922673637E-04 + 397 1.8556227309272897E-04 + 398 -1.3037227656814270E-04 + 399 9.3202335583502478E-04 + 400 -3.4522426572414114E-04 + 401 -4.6758815081462913E-04 + 402 -6.9236186406908304E-02 + 403 3.7383349998253802E-02 + 404 -2.1331049275027891E-02 + 405 2.3264375915893039E-02 + 406 1.8082947434165449E-02 + 407 -3.5649046882078558E-04 + 408 3.1023500802472082E-04 + 409 6.1408276498889532E-04 + 410 -1.2978863749318701E-03 + 411 -3.0641104460623584E-04 + 412 -1.5452161301927276E-04 + 413 2.5592352307663921E-04 + 414 1.4674932238786928E-04 + 415 -5.0501422479875407E-05 + 416 3.1107758868654481E-04 + 417 -9.5198413630841376E-05 + 418 3.9815478342654663E-04 + 419 5.7369672479011553E-03 + 420 -5.8166518073779391E-05 + 421 -2.4517121318468008E-03 + 422 -4.0231152417600415E-03 + 423 -2.5073507189439376E-03 + 424 -5.4989261473966950E-04 + 425 -1.5999228355347077E-04 + 426 -1.9354311353883828E-04 + 427 -3.8479482231035830E-04 + 428 -7.3786699414872417E-04 + 429 -6.5848306138328525E-04 + 430 -2.2087277828363564E-04 + 431 -4.0336032351554130E-04 + 432 -1.3286443908057515E-02 + 433 2.1955816249469301E-04 + 434 4.1642861490735024E-03 + 435 2.2591269956062027E-03 + 436 5.8626016211705961E-03 + 437 7.8072157789389957E-04 + 438 -1.0600543894162888E-04 + 439 1.0624211920046030E-03 + 440 -1.6790574779756984E-04 + 441 1.1056539960003589E-03 + 442 5.1882482840677946E-04 + 443 6.0558756203852443E-04 + 444 5.8457889936973839E-04 + 445 -5.6056916881780739E-03 + 446 1.9226410613189219E-04 + 447 -7.5226049477890842E-04 + 448 -1.0128349434283829E-03 + 449 -1.5008487168983935E-03 + 450 2.4519446965212764E-04 + 451 -3.9251583796098567E-04 + 452 -3.6644265225722216E-04 + 453 3.1636642877920000E-02 + 454 2.3785087798838266E-02 + 455 5.5969166339119624E-03 + 456 -3.2329367402231683E-02 + 457 -2.0493863690044526E-02 + 458 -1.7832399494705539E-03 + 459 -2.6648544953152703E-04 + 460 -3.6834632045541359E-04 + 461 7.9780760416710381E-04 + 462 5.9715155627174273E-04 + 463 -7.4554330965235962E-04 + 464 -7.8792370751718562E-04 + 465 -3.1544761656224148E-04 + 466 8.5742331758158387E-05 + 467 -4.0736847811258939E-06 + 468 -1.9058044706924285E-04 + 469 -4.6942595457322432E-05 + 470 -1.6897047107333255E-03 + 471 1.3281523126961456E-04 + 472 -2.1971362163364706E-03 + 473 -9.5127439245059210E-04 + 474 -1.5767638589873926E-03 + 475 -6.6482102522686011E-04 + 476 -5.7568261910459116E-05 + 477 -2.6452219691067684E-04 + 478 -2.0266862988760524E-04 + 479 -3.8666737241427357E-02 + 480 4.1997495964921335E-03 + 481 -1.0890233967859715E-02 + 482 4.0329654672862005E-03 + 483 1.4388799199368555E-03 + 484 -1.2705731692693508E-03 + 485 7.1846390978860656E-04 + 486 -1.3016758600813464E-03 + 487 2.8358926195552156E-04 + 488 6.0347225860272037E-04 + 489 7.8849474756351688E-04 + 490 1.2032354268311231E-04 + 491 -4.0011390117884786E-04 + 492 3.2415436139088120E-04 + 493 -1.8036056468961155E-04 + 494 3.0392929795265006E-04 +Ene= -4.7745528849E-01 +Spin= Alpha +Occup= 2.0000000 + 1 2.3379744073710866E-03 + 2 5.3040486540999459E-04 + 3 -5.7470738058821636E-04 + 4 2.4054700071499419E-03 + 5 2.7511298665810705E-03 + 6 -1.7664114012570727E-04 + 7 7.0870945377034722E-04 + 8 1.2173701971895854E-03 + 9 -1.9763688012632290E-03 + 10 -5.1010423797261542E-03 + 11 6.3333830658911941E-03 + 12 -1.5490203906506719E-03 + 13 -4.3868518946707903E-03 + 14 8.8234381474440384E-04 + 15 -1.4613627843413706E-03 + 16 8.6505009248812558E-04 + 17 -2.0075186566638137E-04 + 18 -5.4711628051242237E-04 + 19 -2.0465445215004055E-04 + 20 -5.7685211356164813E-04 + 21 -8.6650105193458631E-05 + 22 -2.2785153433366358E-04 + 23 -2.8198348093499890E-05 + 24 1.0810620185759047E-04 + 25 -1.0748705544497359E-04 + 26 2.3226633063620536E-02 + 27 6.1715543072684187E-04 + 28 -1.7021465524492279E-02 + 29 -3.3925594585989785E-03 + 30 5.7706948218499195E-03 + 31 -1.7503116743628996E-03 + 32 -3.6604455992547344E-04 + 33 1.8947960345821308E-03 + 34 1.4446241856700490E-01 + 35 6.0975302308706854E-02 + 36 -4.0241856761379813E-02 + 37 -2.6394844055906519E-01 + 38 -4.9228606183760411E-02 + 39 -4.9183276024894656E-03 + 40 -1.6486258694437029E-03 + 41 6.0808587399225463E-05 + 42 4.7121245252448761E-03 + 43 8.2080931572852040E-04 + 44 7.2884914986664931E-04 + 45 7.7270306497140078E-04 + 46 -2.3309786941612135E-04 + 47 -3.8004712829131052E-04 + 48 5.6122846706744471E-04 + 49 4.7261538709874717E-04 + 50 -9.9762879591788008E-05 + 51 -6.5239380187928448E-03 + 52 5.9423822857675830E-04 + 53 2.2179101402739613E-03 + 54 7.0694351436900327E-03 + 55 7.6463010740796611E-03 + 56 -8.6925577812032217E-04 + 57 -2.8921283337070242E-04 + 58 8.4003985620196151E-05 + 59 -1.4779029180448143E-02 + 60 2.3477635255295944E-02 + 61 4.3880555354484957E-02 + 62 -1.7213395473800495E-02 + 63 5.9756690766002429E-02 + 64 1.1295285197253551E-03 + 65 -4.4148481731046321E-03 + 66 -2.6517896840199898E-03 + 67 1.8482434574182203E-03 + 68 -4.3991050430423218E-03 + 69 -3.2230925296053854E-04 + 70 6.3396955836817344E-05 + 71 3.1817252033117417E-04 + 72 7.9761391694525689E-04 + 73 -1.9237088548899423E-04 + 74 -1.8791831246982296E-04 + 75 1.3289030938832529E-03 + 76 -2.4244476841554247E-03 + 77 4.1100277330923240E-04 + 78 -8.7797627559266858E-03 + 79 3.5270822098789675E-03 + 80 -9.1412843754887334E-03 + 81 -1.7251576009945453E-03 + 82 1.2026312148287405E-03 + 83 -4.7543463176913440E-04 + 84 -2.1412940993657107E-03 + 85 1.2389315079962663E-07 + 86 1.5964705266003146E-03 + 87 1.6964302395299502E-03 + 88 1.8128668121499016E-04 + 89 3.5663860258620294E-04 + 90 -1.3671559528864640E-05 + 91 -8.1442149812307801E-04 + 92 -1.6998431872973694E-03 + 93 -1.0838494430797209E-03 + 94 -1.4066185385953016E-04 + 95 2.4994907369502467E-06 + 96 -6.1879639823291346E-04 + 97 -5.3157634560706800E-04 + 98 1.0222127885870953E-04 + 99 -1.7054222626123423E-04 + 100 4.1759643018994860E-05 + 101 6.1102936248413604E-04 + 102 -3.2651453018182022E-02 + 103 1.2733890241190364E-03 + 104 -7.4001297072138865E-03 + 105 3.1654803074075270E-03 + 106 2.4475005034302420E-03 + 107 -7.1410010189079274E-04 + 108 6.9403343216768016E-04 + 109 -5.8059008911484145E-04 + 110 6.6302020795730465E-04 + 111 1.7189220197242282E-04 + 112 3.1416443363923300E-04 + 113 4.1190643979448080E-04 + 114 -2.0221223520857996E-03 + 115 -1.6929594584188625E-03 + 116 -4.3835048451590521E-04 + 117 -7.4886317080530762E-03 + 118 3.4796885507640640E-03 + 119 3.5769116894448678E-03 + 120 -5.4985349465340515E-04 + 121 1.3617380102867263E-03 + 122 7.8756250732636539E-04 + 123 -1.7355179153991812E-03 + 124 1.1788260974647860E-03 + 125 -1.2150443928285329E-03 + 126 2.0072559595921123E-03 + 127 1.1356793405766868E-03 + 128 3.6401832852458031E-03 + 129 -5.3365565293471472E-04 + 130 1.2548982730554889E-02 + 131 5.6857238726112942E-03 + 132 3.2802304293984381E-03 + 133 1.0129863758526851E-03 + 134 -1.0023337904502983E-03 + 135 8.5853693086554190E-04 + 136 1.2199668259067321E-01 + 137 8.2266069354369933E-02 + 138 1.1885194170932734E-01 + 139 -4.1651103135777545E-01 + 140 -4.4778928531220971E-03 + 141 -1.7229686726567333E-03 + 142 -1.0937318736871137E-03 + 143 -4.6578948124983380E-04 + 144 6.9185055488048151E-03 + 145 1.0621774151528972E-03 + 146 1.1892479883910660E-04 + 147 7.8886715737987981E-04 + 148 5.1605582103897961E-04 + 149 6.6248288954929224E-04 + 150 -8.9941122695755911E-04 + 151 -6.5303354199355021E-04 + 152 -4.6616682735715469E-04 + 153 -2.0634611182495737E-03 + 154 -1.4597958255392288E-03 + 155 -2.4159560026492575E-03 + 156 -6.1166481716446669E-03 + 157 5.4576565778020683E-03 + 158 -8.5685221002800320E-04 + 159 -1.7094445020553379E-03 + 160 2.3961537790507543E-03 + 161 -1.3923570397029092E-01 + 162 -3.6036269902271954E-02 + 163 -1.5872663812546459E-01 + 164 2.5389237489045931E-02 + 165 -1.1833256156988663E-01 + 166 -2.5721510451126822E-03 + 167 -1.3173570743931023E-03 + 168 3.3347559479277706E-03 + 169 5.7756142363705595E-03 + 170 3.3182556117044627E-04 + 171 -6.1503601577830782E-04 + 172 8.1908955108575104E-05 + 173 -8.8317763643146381E-04 + 174 -1.4155734342998049E-03 + 175 -2.8863908218154058E-04 + 176 -9.8115972850674137E-04 + 177 8.1177139342545571E-04 + 178 -3.2824341770084600E-02 + 179 6.1591428337163005E-04 + 180 1.5325259542379793E-02 + 181 1.1415533246289198E-02 + 182 -7.5173660006436053E-04 + 183 -7.3834080558865891E-04 + 184 1.0905613820948101E-03 + 185 -2.5275980403543213E-03 + 186 -3.7307394156034561E-04 + 187 -1.1761685024923364E-03 + 188 -2.2855088320664083E-03 + 189 1.1741264176416896E-03 + 190 2.0106460351311168E-03 + 191 1.2934316782795495E-03 + 192 3.9986530892814837E-04 + 193 1.8008993782602744E-02 + 194 1.8312967164697404E-02 + 195 8.4918700059767455E-03 + 196 1.2358974583368146E-03 + 197 -3.9970257208343552E-04 + 198 -2.7807059350982213E-04 + 199 -2.9310323138493962E-03 + 200 -7.0132533878837023E-03 + 201 -5.3631084831805148E-03 + 202 1.4343689548682206E-03 + 203 1.1126716931435358E-03 + 204 -6.0347611329834910E-03 + 205 1.2553676425838870E-03 + 206 -2.4324698675801939E-03 + 207 -1.0237825373199595E-02 + 208 -4.0717869401048889E-03 + 209 4.9890594184394312E-04 + 210 -1.1702552279670123E-03 + 211 -1.3250383632564474E-03 + 212 -1.9954782534254439E-01 + 213 1.6435968811362084E-02 + 214 3.8298688983221071E-02 + 215 -1.6669949018818769E-01 + 216 1.4441755337063175E-01 + 217 2.5909105063751372E-03 + 218 -1.9253647410478545E-03 + 219 9.5870822799381551E-04 + 220 2.2945155593189718E-03 + 221 -4.5808286116551730E-03 + 222 -1.8305948056461863E-05 + 223 5.6556514106704061E-04 + 224 2.0179758577701010E-04 + 225 -9.5683629551074042E-04 + 226 3.2458242197569605E-04 + 227 5.2815385154026371E-04 + 228 -6.4316981807270677E-04 + 229 2.6543729539569780E-03 + 230 -1.5595358864062638E-04 + 231 -3.5820760858286268E-03 + 232 -8.3826675182647429E-04 + 233 -7.3092383959521092E-04 + 234 -3.0981682548274255E-05 + 235 1.2491176114026365E-04 + 236 -1.7053398721716086E-04 + 237 2.5205693482759920E-02 + 238 4.8939624457161310E-02 + 239 -4.9896206923502485E-03 + 240 -1.4221778899160369E-02 + 241 -1.5656643399760674E-02 + 242 -6.8556678517023490E-04 + 243 -1.3481059316121425E-03 + 244 7.0462837019440823E-04 + 245 2.3647047360337995E-05 + 246 7.7280484624065837E-04 + 247 -2.5799146560057812E-04 + 248 1.0877180361259213E-04 + 249 4.6100452055197299E-04 + 250 2.9257307932958079E-04 + 251 -6.7861036569856226E-06 + 252 3.4032317902673383E-04 + 253 -7.5887250143158588E-05 + 254 -6.6455880849693805E-03 + 255 -1.0970335391915012E-03 + 256 -7.6159497461592213E-04 + 257 6.1841076512448032E-03 + 258 -1.1845438876585792E-03 + 259 -4.9777490238842807E-04 + 260 2.1198887642865107E-03 + 261 -6.1346456917138427E-04 + 262 -8.7316580488263013E-04 + 263 1.0717188464101546E-02 + 264 1.0611095474255349E-02 + 265 -3.0395343161129108E-02 + 266 -2.7160530968121061E-02 + 267 2.1086946345511438E-03 + 268 -1.4671887048830224E-04 + 269 3.5550416025875877E-04 + 270 3.7998064671668783E-03 + 271 7.1408032782780534E-04 + 272 -3.8699237477738042E-04 + 273 -1.4550642623169366E-04 + 274 -6.6562118317506217E-04 + 275 1.0455215557504139E-04 + 276 2.6205084919030266E-04 + 277 2.9194414400379899E-04 + 278 -1.2780492498398236E-03 + 279 3.8972254172174869E-03 + 280 -4.6273373400734384E-04 + 281 -1.3294553880330994E-03 + 282 2.7236088891648700E-03 + 283 2.3971162063024676E-03 + 284 -4.0703305255036245E-04 + 285 -1.7404483507943544E-04 + 286 6.4486810295323507E-05 + 287 4.3640963587285108E-04 + 288 -1.3433493986250947E-04 + 289 -2.3563709080573304E-04 + 290 6.7220753589273901E-04 + 291 3.0317458377327914E-04 + 292 -6.1559381645242984E-03 + 293 1.5042171269314154E-04 + 294 -3.5763245537103446E-03 + 295 -2.4118314824688593E-03 + 296 -1.6414977692935050E-03 + 297 -6.9434672894683244E-06 + 298 -2.2918931989491487E-04 + 299 1.3210056268828237E-04 + 300 -6.4923554335771696E-04 + 301 -3.8777238634241752E-04 + 302 -1.4367172889850403E-04 + 303 1.4735879063012343E-04 + 304 3.9396270113488044E-04 + 305 9.3578224580106323E-04 + 306 3.1917295028103799E-04 + 307 4.0705607004057039E-04 + 308 2.5340953838991215E-04 + 309 7.8571132188764862E-04 + 310 -9.1630149457065530E-06 + 311 -2.2572545306861416E-07 + 312 -3.0767476645129682E-04 + 313 -1.5109831204125018E-02 + 314 7.8624406020421235E-04 + 315 1.2984847579357486E-02 + 316 7.1892195537520270E-03 + 317 2.8348763673600001E-02 + 318 -2.0106593204961015E-04 + 319 6.3467550328696900E-05 + 320 -7.0557393067740008E-04 + 321 3.4696820964366112E-04 + 322 3.2282684294047392E-06 + 323 -8.5258908723665898E-06 + 324 3.9724835078859579E-05 + 325 -2.6559028020302930E-04 + 326 8.3411665710525938E-06 + 327 -1.6319358639337573E-04 + 328 9.3728317390691726E-05 + 329 -7.7829918851487616E-05 + 330 -6.8521130926404452E-04 + 331 -6.2296638099426421E-04 + 332 4.1294838889258253E-04 + 333 5.2037105315981829E-04 + 334 -1.6185486300241839E-03 + 335 8.6352463492487055E-04 + 336 4.0667019243513736E-04 + 337 -8.9011974065575405E-04 + 338 -4.6336434611042886E-02 + 339 5.0826459209522923E-01 + 340 4.2566813453294244E-01 + 341 1.6468303829222120E-01 + 342 1.1440365029775536E-01 + 343 -2.9330610229387336E-03 + 344 2.0168590115728253E-03 + 345 -6.7129385817175870E-05 + 346 3.5375247564691436E-04 + 347 3.0217724869910790E-04 + 348 -4.6651265041318862E-04 + 349 4.9675263393787826E-04 + 350 -4.7175913735281004E-04 + 351 6.2142835422781964E-04 + 352 5.7281975007204020E-04 + 353 1.2208663606761299E-05 + 354 3.6689516119216728E-05 + 355 2.1286541935240832E-02 + 356 -4.7349633146208744E-04 + 357 -2.1375630615724891E-02 + 358 1.2526903417095980E-03 + 359 -1.0525150197655325E-02 + 360 -4.2563187463658147E-04 + 361 2.7435743487490315E-04 + 362 -9.2329474751790279E-04 + 363 -2.1235301364317853E-03 + 364 -5.4773030163990221E-03 + 365 -6.9359065302683324E-04 + 366 -3.8856385955021943E-03 + 367 1.9584007301564426E-03 + 368 -2.0571386631793975E-02 + 369 4.2641457651359756E-04 + 370 -1.6293001951402330E-02 + 371 -4.0792758054214078E-03 + 372 1.6595688794856778E-02 + 373 -1.4475046155065909E-03 + 374 -5.1382123579461455E-04 + 375 -1.1375000251176584E-03 + 376 1.9488356680654898E-03 + 377 -4.6242878081873186E-03 + 378 -1.1787280509284351E-03 + 379 1.6097842486344056E-03 + 380 -1.7991560983204286E-04 + 381 -1.6347506246586800E-03 + 382 1.1282605000820249E-04 + 383 5.7427765632703485E-03 + 384 7.3634750475751690E-03 + 385 -1.1368195246556911E-02 + 386 8.4059668381928070E-04 + 387 3.6187882614809828E-04 + 388 3.2909520493794959E-04 + 389 -2.0561893703122764E-04 + 390 -1.2391861768067834E-03 + 391 2.5709283489341629E-03 + 392 2.0684037865048690E-03 + 393 7.7829765395944904E-04 + 394 1.0098960684733814E-03 + 395 8.7636520717400120E-05 + 396 1.0927128802885888E-03 + 397 -6.1709145546656903E-04 + 398 -8.1886015632805511E-05 + 399 -6.0006420697672892E-04 + 400 2.2556567281473365E-05 + 401 1.9686079011094028E-04 + 402 7.0510159118927426E-02 + 403 -3.3289880927792725E-02 + 404 1.7822601755366825E-02 + 405 -4.6845099955578319E-02 + 406 1.1025171440925701E-02 + 407 3.6501487294709540E-04 + 408 -2.9914350769009574E-05 + 409 -4.9929834512644859E-04 + 410 9.7268705123676339E-04 + 411 -7.0708956334861357E-04 + 412 1.1377878072562345E-04 + 413 -1.7157692954679075E-04 + 414 -4.7098102466980181E-05 + 415 8.5907248006048250E-05 + 416 -3.7719130458153683E-04 + 417 -4.6485701742697954E-05 + 418 -2.5734170293529815E-04 + 419 -4.9117034414893936E-03 + 420 7.7070090974214225E-05 + 421 2.0915698250493281E-03 + 422 4.0789919755837506E-03 + 423 2.3091937147530482E-03 + 424 3.8109367385681214E-04 + 425 1.7644251297435127E-04 + 426 3.2008956229236021E-04 + 427 5.0505759476442082E-04 + 428 7.0289577625178424E-04 + 429 1.0191559995610597E-03 + 430 -1.5252231532063313E-05 + 431 1.6690496881532782E-04 + 432 1.1112294842648092E-02 + 433 -1.4210558482274379E-04 + 434 -4.3452408178000423E-03 + 435 -1.7030356590377793E-03 + 436 -2.5161374894662057E-03 + 437 -9.2286666279237616E-04 + 438 4.9458709083891775E-05 + 439 -5.3819497564514093E-04 + 440 1.5726753793615517E-04 + 441 -3.2703912779295243E-04 + 442 -4.6497861841586128E-04 + 443 -4.5118821937767194E-04 + 444 -5.8856798106659148E-04 + 445 2.1789046779440535E-03 + 446 -4.0747545255747237E-04 + 447 -2.7230363716900245E-04 + 448 1.0348156669746037E-03 + 449 4.0293142148600013E-03 + 450 -5.8336674439065761E-04 + 451 1.6312918720728963E-04 + 452 2.5707803538242067E-04 + 453 -1.0228699146616079E-02 + 454 -4.4024608428757016E-02 + 455 5.9878871944607164E-02 + 456 -1.3841915079759690E-02 + 457 1.1803249380195715E-02 + 458 1.9926528219652226E-03 + 459 1.3265250342531618E-03 + 460 -8.7254567742031043E-05 + 461 -9.2025001543830629E-05 + 462 -4.3769850273863228E-04 + 463 6.2348498944939828E-04 + 464 4.7315371858400786E-04 + 465 -2.9301899824579454E-04 + 466 4.5823025694280612E-04 + 467 -7.5512835083567785E-05 + 468 2.4275540347593752E-04 + 469 -4.7815460730971435E-04 + 470 1.9959119006040973E-03 + 471 -5.0403330806642411E-06 + 472 2.5789394776936769E-03 + 473 2.3442557851536222E-03 + 474 1.0213337282183794E-03 + 475 8.6602771807456650E-04 + 476 4.5352682300301990E-04 + 477 -1.1456903226113751E-04 + 478 3.5109603656153844E-03 + 479 6.3321402780524380E-02 + 480 -1.2296036719672224E-03 + 481 1.5660477515100701E-02 + 482 1.3420728411082550E-02 + 483 -1.3831892970677640E-03 + 484 7.6503997720841664E-04 + 485 -8.0480097648761640E-04 + 486 1.6798485425198791E-03 + 487 6.0868918167003095E-04 + 488 -6.4359212414359743E-04 + 489 -8.9995095044893933E-04 + 490 -2.5641645834971846E-04 + 491 1.0402600865559128E-04 + 492 -2.6304212426497348E-04 + 493 2.8243719037815483E-04 + 494 -1.3410205376925195E-04 +Ene= -4.7563308984E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -3.7017794057113093E-03 + 2 1.0155821183774423E-03 + 3 1.6468244266625326E-03 + 4 -2.3600452108139395E-03 + 5 2.2534310962070499E-03 + 6 -8.4849357654338451E-05 + 7 9.0190778334022219E-04 + 8 7.1156952592987181E-04 + 9 -1.6640478837594810E-02 + 10 -5.4034285316636082E-03 + 11 6.7218875019272812E-03 + 12 -3.4179837289523882E-02 + 13 -1.6886970436799095E-02 + 14 6.7552923552963455E-04 + 15 -1.3985510186662433E-03 + 16 -1.9078670837673027E-04 + 17 -1.1339642334842082E-03 + 18 7.4960730650018776E-04 + 19 3.7574936172437488E-04 + 20 -3.3400488640483213E-04 + 21 -9.1931704083275082E-04 + 22 2.3561695665241415E-04 + 23 -3.7245210575544585E-04 + 24 5.8963724338663990E-04 + 25 -2.8385966067869423E-04 + 26 2.2827266310286531E-02 + 27 -6.8988158536708981E-04 + 28 -1.3095859668312972E-02 + 29 9.0966806082346484E-05 + 30 5.4201944515757626E-03 + 31 -4.6582181306146846E-04 + 32 -1.9258230710676774E-05 + 33 2.6276011144668369E-03 + 34 1.7102828351817009E-01 + 35 1.7384233427092613E-01 + 36 5.5193192709447142E-02 + 37 -3.3886673706640996E-01 + 38 -3.2005649522891554E-02 + 39 -2.2412948009208219E-03 + 40 -2.8024099684991221E-03 + 41 -2.7458173305857010E-03 + 42 2.1510245007670338E-03 + 43 6.2362998307558069E-04 + 44 -2.8311506132669038E-04 + 45 -1.0608903124799628E-03 + 46 -1.0717514600438522E-04 + 47 -6.5766531611495115E-04 + 48 9.5662281034172695E-04 + 49 1.4570295507115702E-03 + 50 1.0353445973721946E-03 + 51 -4.0346520692701865E-03 + 52 3.5320506219569672E-04 + 53 4.9940002293444316E-03 + 54 -4.9146210794789391E-04 + 55 -3.1410490437763666E-03 + 56 1.7240957883780364E-04 + 57 -1.9447643525962797E-04 + 58 -1.3697956417196453E-04 + 59 -2.8549835809389155E-02 + 60 -1.9089762519076917E-02 + 61 -1.5750938945131285E-02 + 62 4.3427894535997174E-03 + 63 1.4140505699517358E-02 + 64 1.9688450784134293E-03 + 65 1.0869226722721352E-03 + 66 1.7590656223561499E-03 + 67 -8.6292842122982923E-04 + 68 2.4104791125960960E-05 + 69 1.2938571764400922E-04 + 70 -1.4160002825159445E-04 + 71 2.2221713015138468E-04 + 72 -6.4837878358155852E-05 + 73 -1.9422845249155764E-04 + 74 -1.6836493967542458E-04 + 75 -8.8755270324179382E-05 + 76 -3.1623744681306557E-03 + 77 3.8960970931222274E-04 + 78 -8.3512742954674132E-03 + 79 6.5308785850555651E-03 + 80 -3.4551922080344633E-02 + 81 -1.7392992063926471E-04 + 82 6.7250563743254826E-04 + 83 -4.3063265824129209E-03 + 84 -1.3009882827761875E-03 + 85 3.7296800241541661E-03 + 86 3.3540885194373038E-03 + 87 1.9803671525119759E-03 + 88 4.3952903617898580E-05 + 89 -1.3443144869575999E-02 + 90 8.9979515413588789E-05 + 91 1.5976103212214923E-03 + 92 4.5303858323971187E-03 + 93 -2.3118459221632164E-04 + 94 8.2006013999051219E-04 + 95 5.0089966546783846E-04 + 96 -2.1042126819945768E-04 + 97 -4.8074845593099712E-05 + 98 6.2847141371696904E-05 + 99 2.8730972570118944E-05 + 100 -8.7288896036048498E-04 + 101 -1.8658215046905751E-04 + 102 -2.1260404082408622E-02 + 103 2.7251987323762412E-04 + 104 -1.0072745640817504E-02 + 105 3.0951379251612306E-03 + 106 2.2072343612262145E-03 + 107 -2.0708963185677988E-04 + 108 7.9226562335288212E-04 + 109 1.6761500642928633E-04 + 110 -6.6876367625327176E-04 + 111 9.2222022539432437E-05 + 112 2.5663402311619526E-04 + 113 1.3677261539139570E-03 + 114 -2.2013871342815537E-03 + 115 7.1018370788718574E-02 + 116 -2.8618448301937186E-03 + 117 1.0766376120426495E-02 + 118 1.6854979340988899E-02 + 119 2.6125222275165276E-02 + 120 3.5512121632806274E-04 + 121 1.8955625254550592E-03 + 122 1.7060601633509997E-03 + 123 -4.5422317950236813E-03 + 124 -2.7931234850324112E-03 + 125 -5.1408608961554967E-03 + 126 1.6510635283678158E-03 + 127 -9.6377493080516822E-04 + 128 3.7911617738605102E-02 + 129 1.5860480701326760E-03 + 130 1.1096919751963521E-02 + 131 -7.8914934926825470E-03 + 132 -3.5357499281009927E-03 + 133 -4.3664318269359339E-04 + 134 1.0241399362110367E-03 + 135 -1.2447828822202133E-04 + 136 3.0738439459285782E-01 + 137 2.0246430174224919E-03 + 138 -1.8308370946057115E-01 + 139 -1.8243456610754646E-01 + 140 -3.9279758086430422E-01 + 141 -8.0434751941849281E-03 + 142 6.3651537279022224E-04 + 143 6.2506528569145547E-03 + 144 3.3776373847750488E-03 + 145 8.6713308847616733E-03 + 146 1.5752482244367326E-04 + 147 -2.1011898207940486E-04 + 148 -1.7734587027386299E-04 + 149 2.2529583822778357E-04 + 150 -6.9930410232948265E-04 + 151 -1.4367918223424170E-03 + 152 -3.8756013418017344E-04 + 153 -8.6281523206158603E-03 + 154 -2.6932167025228446E-03 + 155 2.3464525678888949E-03 + 156 -8.0819760254770869E-03 + 157 5.6608452093789268E-03 + 158 1.2086974418928291E-03 + 159 -2.7261224389503740E-03 + 160 1.7053181901381658E-03 + 161 1.1292063799402683E-02 + 162 -3.8521880089848880E-02 + 163 2.4856925476835021E-02 + 164 -1.4087738850448055E-02 + 165 1.1683804681772681E-02 + 166 -2.2771233697226712E-04 + 167 -1.8523500456752223E-03 + 168 5.8862311083314094E-03 + 169 2.5605196174736194E-03 + 170 1.5066046574859098E-03 + 171 -1.2325378820351107E-03 + 172 3.1715982952621548E-04 + 173 -1.3052367493524013E-03 + 174 -1.2216528051369059E-03 + 175 -9.6280795346597467E-04 + 176 6.7265901766680277E-05 + 177 4.9046048564441148E-04 + 178 -1.9079788753433729E-02 + 179 7.4897863312734512E-04 + 180 9.7157037572085728E-03 + 181 8.9611893371078933E-03 + 182 3.2231116376069666E-03 + 183 1.1157000816243681E-03 + 184 1.9273514775950142E-03 + 185 1.3898528011781839E-03 + 186 -1.9761975843613834E-03 + 187 -2.3317756558679276E-03 + 188 -8.0659099770003613E-04 + 189 -2.3338886155749193E-03 + 190 2.2822620921101517E-03 + 191 3.5340634827859874E-02 + 192 -2.9524655787083989E-04 + 193 1.4798718198361713E-02 + 194 -2.1116235695089660E-03 + 195 6.9236448968739445E-03 + 196 1.1946291762013226E-03 + 197 5.5194693463505847E-04 + 198 1.6084061100253477E-03 + 199 -2.2971746852641566E-04 + 200 8.2616118498171436E-04 + 201 1.3975450009192820E-03 + 202 -2.8958537007836745E-03 + 203 3.0251597420279407E-03 + 204 9.7409254758874415E-03 + 205 -7.9357288732905462E-04 + 206 -3.1929388633846504E-03 + 207 9.7235362998968865E-03 + 208 2.7878349679959090E-03 + 209 -1.0198702514458392E-03 + 210 -2.8507389887682491E-04 + 211 -1.0890551025066325E-03 + 212 9.5379113535680959E-02 + 213 -1.3150093012599338E-02 + 214 -2.1031870327543661E-01 + 215 3.5196185502377736E-01 + 216 -1.7502339881179194E-02 + 217 9.6001847494981622E-04 + 218 7.1027351569488955E-04 + 219 -7.4702422607816516E-05 + 220 -2.4972732637916885E-03 + 221 7.3764929973489624E-04 + 222 9.9053912409887779E-04 + 223 3.4476022487062472E-04 + 224 -4.4873589721124759E-05 + 225 1.2354991763024042E-03 + 226 4.7234980023150666E-04 + 227 6.3295552953272511E-04 + 228 8.6709110515676314E-04 + 229 -2.1185466728741307E-02 + 230 1.1510048651236812E-03 + 231 9.1573378657270419E-03 + 232 -4.4516058324141773E-04 + 233 -2.1673308942763807E-03 + 234 9.5004133609576054E-05 + 235 -1.0334175100493405E-03 + 236 3.3133071299837851E-04 + 237 -1.0006736323711860E-01 + 238 -9.1052627927724189E-04 + 239 -3.5989605871025003E-02 + 240 2.1128028848146829E-01 + 241 -3.8273402502456526E-02 + 242 3.6402919565423878E-03 + 243 1.6697224575740902E-03 + 244 8.6194119677357852E-04 + 245 -6.3435366297360440E-03 + 246 5.1357854699340000E-04 + 247 7.3760711243963517E-05 + 248 5.6141778896175490E-04 + 249 3.7199041954593613E-04 + 250 -1.1276574066417697E-04 + 251 3.6948203133134325E-04 + 252 -6.8590776611406892E-04 + 253 1.2223855851761147E-03 + 254 -1.3052005385615108E-03 + 255 -2.6962304756081249E-03 + 256 -3.4283085336700900E-03 + 257 6.6531108676298545E-03 + 258 -8.8911646550878694E-03 + 259 -4.1133492393536606E-04 + 260 2.3971401255559431E-03 + 261 -9.8041078690343317E-04 + 262 3.8542318302835173E-03 + 263 4.3623208269565391E-03 + 264 -6.1865073153584121E-03 + 265 -7.1976281367354220E-02 + 266 3.9280094902871002E-02 + 267 3.0640388687361679E-03 + 268 1.3245148782472943E-03 + 269 3.5714772373225158E-03 + 270 3.0035372232070619E-03 + 271 1.7948796501221702E-03 + 272 -4.1877930250344433E-05 + 273 -2.7921211616769686E-04 + 274 -1.0912678697800350E-03 + 275 1.3459496881280729E-03 + 276 -2.7782719411968904E-04 + 277 7.2124597271712475E-04 + 278 -8.7042425904419090E-04 + 279 -2.6718290495198992E-02 + 280 5.8065795259825206E-04 + 281 8.1020567042618759E-04 + 282 -1.6749522449193550E-02 + 283 -1.1044129105645117E-02 + 284 -1.5799215838217023E-04 + 285 -1.1817051772468239E-03 + 286 -2.9776321600855056E-03 + 287 -8.5383616540520057E-04 + 288 1.4854016141123966E-04 + 289 2.3945142026205214E-03 + 290 -4.8523507901823944E-03 + 291 -2.2551264377905687E-04 + 292 9.5905869663821149E-03 + 293 -5.6630659354388769E-04 + 294 3.2151288094632189E-03 + 295 -3.6473745996512034E-03 + 296 -4.5423496572012771E-03 + 297 1.1072956867219778E-03 + 298 -8.5288659604152155E-04 + 299 5.6957081417020839E-04 + 300 -8.8307695839973338E-04 + 301 1.8390928974728203E-03 + 302 -1.0963609258726302E-04 + 303 -2.9399085833815283E-04 + 304 1.1617394324410781E-03 + 305 -1.7988089375921149E-03 + 306 -7.8133781820276206E-04 + 307 2.1251687605588331E-03 + 308 -8.5793723242867054E-05 + 309 -1.3186831797593192E-03 + 310 7.1927117640857856E-04 + 311 2.4012974402825836E-04 + 312 -1.1336624549067829E-03 + 313 -2.7331260507055685E-02 + 314 1.1511248288799156E-02 + 315 -2.7466038219838788E-02 + 316 1.7248053828469743E-02 + 317 1.4295163389205452E-02 + 318 -1.0834812522782663E-03 + 319 6.2814998836977214E-04 + 320 3.2762580126559951E-04 + 321 -1.3137741218493518E-03 + 322 1.0148610915551998E-03 + 323 -6.6211808632969172E-04 + 324 1.1734678122048928E-05 + 325 3.7348508652241874E-04 + 326 -4.0313528551371591E-04 + 327 -1.3705605495197142E-04 + 328 -1.8812592137391288E-04 + 329 4.7372566771794461E-05 + 330 -1.2978543767416095E-03 + 331 4.5589852283482377E-04 + 332 -8.2405372375496551E-04 + 333 1.2470421134054292E-03 + 334 -7.6756127237284785E-04 + 335 -1.3271364466888237E-04 + 336 2.4845365497236821E-04 + 337 5.6931344378413260E-04 + 338 -8.7316439275275104E-02 + 339 -7.6640533278464873E-02 + 340 -6.6373485281536942E-02 + 341 -1.5682061721983834E-01 + 342 -9.4406323323430449E-02 + 343 3.1437199222435674E-04 + 344 9.2860810927759881E-05 + 345 8.3046326800172447E-04 + 346 -7.8534984329624367E-04 + 347 -7.0323267621136558E-04 + 348 1.5239150704662613E-04 + 349 9.3938871464188187E-05 + 350 4.0162876649867260E-04 + 351 -3.3613113342378714E-04 + 352 1.0241995180185632E-04 + 353 1.4978407730127625E-04 + 354 1.6903452382015366E-04 + 355 -1.3744970737213978E-02 + 356 1.6983520451156045E-04 + 357 2.0753490747583859E-03 + 358 7.7742244606379485E-03 + 359 5.8930683372916993E-03 + 360 -1.0860850373576378E-04 + 361 3.2217963827613216E-04 + 362 3.1301987900752691E-04 + 363 1.5415376906723688E-03 + 364 1.0083899052479360E-03 + 365 1.2424125459268589E-03 + 366 4.6885369740065462E-04 + 367 3.8865323727465700E-05 + 368 -1.1860962535098439E-02 + 369 3.0806323856444941E-04 + 370 4.6932780209288458E-03 + 371 -3.2364415178539473E-03 + 372 1.0609160747884362E-02 + 373 7.3683500914611684E-04 + 374 -8.8017257193800762E-04 + 375 -4.5951555411106963E-03 + 376 -9.2297098677058100E-04 + 377 -1.3940672717736727E-03 + 378 1.0437746982764333E-03 + 379 -2.6067071761413920E-03 + 380 4.8209221851447923E-04 + 381 -2.9182863306367202E-02 + 382 6.9584429118265962E-04 + 383 1.0935026826829475E-02 + 384 -1.3686417656370733E-02 + 385 1.9851200086109411E-02 + 386 1.9565859019214033E-03 + 387 2.4676723093582677E-05 + 388 2.7315594946836098E-03 + 389 -3.1793420848075056E-03 + 390 4.5869895380987111E-03 + 391 -9.4410790092342258E-05 + 392 1.9716271502107792E-03 + 393 -3.0730294268522785E-03 + 394 -2.9137570722839496E-04 + 395 1.3967163370322642E-03 + 396 -1.1960695238702967E-03 + 397 -1.6158671546352170E-03 + 398 1.9591753319735182E-03 + 399 3.9549382265489791E-03 + 400 5.4500597146368845E-04 + 401 -9.8265679082457829E-04 + 402 -1.3209556293799590E-01 + 403 8.6660735471153424E-02 + 404 -8.8168487964460918E-02 + 405 2.5846808218257816E-01 + 406 1.6436056253182685E-01 + 407 1.1016545655304713E-03 + 408 -1.4883912236784052E-03 + 409 9.7905779631437357E-04 + 410 -1.7659136319250163E-03 + 411 -2.4675538504892480E-03 + 412 5.5022315049419563E-04 + 413 -1.1039678779861831E-03 + 414 2.6791240371240067E-04 + 415 -3.1665214191115346E-04 + 416 2.3536019473603396E-04 + 417 1.1083510107838868E-04 + 418 1.4491916274253071E-03 + 419 2.2859970372934760E-02 + 420 -6.3025746055959920E-04 + 421 -9.9105893223516844E-03 + 422 -6.6945477497545322E-03 + 423 -8.6632930320683643E-03 + 424 -5.4431429334933859E-04 + 425 -6.4637229966201459E-04 + 426 -1.1709518453580773E-03 + 427 -1.7137074347086784E-03 + 428 -3.1964538551008015E-03 + 429 -9.5266630923743548E-04 + 430 -9.3818615609300574E-04 + 431 -2.4117434203137252E-04 + 432 -1.6426445494555974E-02 + 433 5.0316934635086968E-04 + 434 3.1686758900811222E-03 + 435 4.6908246033352770E-04 + 436 8.0322646654646182E-03 + 437 8.5129867329147781E-04 + 438 -4.6584977541784571E-04 + 439 3.7170536499460009E-04 + 440 -5.4136943329829198E-04 + 441 1.7658235702531701E-03 + 442 2.2269457533222487E-04 + 443 1.0200479658487762E-03 + 444 -5.9067076300698600E-04 + 445 -9.3573119636143338E-05 + 446 -4.7795232074495828E-04 + 447 -6.4250716114227580E-04 + 448 5.1250755643135531E-03 + 449 -4.3552415683611751E-03 + 450 -8.1051222094893590E-05 + 451 9.8826202118711560E-04 + 452 -1.8417005048013697E-03 + 453 6.9712438002560995E-02 + 454 9.2036797211021617E-03 + 455 -6.9414889311818953E-02 + 456 -7.3076834802746019E-03 + 457 -1.1955337382517621E-01 + 458 -3.6477552839164359E-03 + 459 -1.9846806428579608E-03 + 460 5.4609197809902339E-04 + 461 -1.3504703969276395E-03 + 462 2.6003276376277609E-03 + 463 -5.6275435561406115E-04 + 464 -5.1598479060906122E-04 + 465 -4.5922254776451681E-04 + 466 -5.5965714941626980E-04 + 467 4.7657724405750571E-04 + 468 -5.9564504305611326E-04 + 469 4.6862387448124869E-04 + 470 7.6104376146077738E-03 + 471 -8.0023964483291363E-04 + 472 1.2086921768840349E-03 + 473 3.4537840595041704E-03 + 474 -1.6987885565450138E-03 + 475 -7.6238651740441043E-04 + 476 1.3982050366188163E-03 + 477 -1.3357040656457424E-03 + 478 -4.5127246222676679E-02 + 479 7.8781654996449735E-02 + 480 2.2707848746468320E-02 + 481 1.0297687075895103E-02 + 482 3.1700614559084322E-02 + 483 -9.5242144061972404E-04 + 484 -1.0649896169533418E-03 + 485 3.2443935250225573E-04 + 486 -8.7547369060806887E-04 + 487 3.2073590447955352E-03 + 488 -1.1794451256180957E-04 + 489 -4.8031746477175094E-04 + 490 4.9582580289003861E-05 + 491 -2.9303048978793618E-04 + 492 3.4092502083007178E-04 + 493 6.6368602439546170E-06 + 494 6.4842084385347627E-04 +Ene= -4.7536471969E-01 +Spin= Alpha +Occup= 2.0000000 + 1 3.9938800061274093E-03 + 2 7.6111524726469066E-05 + 3 -7.9651996746245290E-04 + 4 3.0712501987679567E-03 + 5 1.3825119810394673E-04 + 6 4.0425838915480669E-05 + 7 -3.5291221273931085E-04 + 8 8.5268272731304812E-04 + 9 1.5241357613205119E-02 + 10 -1.0939667428383060E-02 + 11 4.6891512810483113E-03 + 12 4.0694031480515855E-02 + 13 3.6187896806090460E-03 + 14 1.6446479230883939E-03 + 15 1.1336465058653196E-03 + 16 1.1911958679919090E-03 + 17 4.3245650319510896E-04 + 18 -1.8025921856224041E-04 + 19 -2.5822420631613143E-04 + 20 -7.2052975198820199E-04 + 21 1.2933047546850515E-03 + 22 -1.2054992104211168E-03 + 23 6.5892423058440321E-04 + 24 -2.3208183789912509E-04 + 25 4.1684674788435858E-05 + 26 3.8897611739574611E-03 + 27 2.7998908575482416E-04 + 28 -6.9763585870399412E-03 + 29 -2.2681835203934449E-03 + 30 2.0208591368088931E-03 + 31 8.0885295651372032E-04 + 32 1.1615948992074231E-03 + 33 -4.1247335459118541E-04 + 34 1.6415691486092029E-01 + 35 -8.6464051369892214E-02 + 36 -4.8542211568147704E-02 + 37 -1.2166424861047778E-01 + 38 8.6927017392388582E-03 + 39 -1.1349303641138750E-03 + 40 7.8146988292106994E-04 + 41 -2.7331203555301429E-05 + 42 -4.9118539003782798E-04 + 43 3.2163592382543528E-05 + 44 5.4250813693482430E-04 + 45 4.4045420079774415E-05 + 46 6.5088919495673067E-05 + 47 -4.7703132762546652E-04 + 48 -2.9741252600630534E-04 + 49 1.1678739907790918E-03 + 50 8.3097896575559042E-04 + 51 -5.5071911134423578E-03 + 52 -9.5521412164211697E-04 + 53 3.6821942936570502E-03 + 54 -1.2133961257325787E-03 + 55 -1.1862706395135362E-03 + 56 1.4015022693963691E-03 + 57 -6.8809519662923059E-04 + 58 -4.7053197798310557E-06 + 59 1.4421050555349531E-02 + 60 -1.7724564090496182E-02 + 61 -4.1935344732956098E-03 + 62 2.2839025440994885E-02 + 63 1.5566406177919486E-02 + 64 6.5898217264419149E-04 + 65 3.5901475018858384E-04 + 66 2.4440540076730845E-04 + 67 -1.2931344941223258E-03 + 68 1.2224889733090897E-03 + 69 3.3098604350335762E-04 + 70 -5.8030191155261873E-04 + 71 3.1569998907150684E-04 + 72 -4.9526151342803083E-05 + 73 6.2744559470400801E-05 + 74 3.2555873058203626E-04 + 75 -5.1731152969060443E-04 + 76 8.1845445658394519E-03 + 77 -8.3943250741391679E-06 + 78 -5.9369438827212235E-03 + 79 -7.9098988909793756E-03 + 80 2.9237866595291342E-02 + 81 -3.0543921006800740E-03 + 82 3.7852616534361121E-04 + 83 3.4029874796719377E-03 + 84 -3.4718488379487052E-03 + 85 -5.9043856733751905E-03 + 86 -5.6829972443257510E-04 + 87 6.8488495375420351E-04 + 88 1.9790582058293307E-03 + 89 8.6437123503529199E-03 + 90 -1.5548279687654224E-04 + 91 -1.7907591997089077E-03 + 92 -3.1924890524348140E-03 + 93 2.4214185039652392E-03 + 94 -3.7646905061211144E-04 + 95 -1.0903565045264895E-04 + 96 -2.0053977745351279E-05 + 97 5.1175147462892846E-04 + 98 -4.1875947217622091E-04 + 99 3.3149360526715614E-04 + 100 8.8969774628077953E-04 + 101 -2.6224664405305318E-04 + 102 -2.0016505835862984E-03 + 103 -5.9581635831127655E-05 + 104 -4.1395618915603671E-03 + 105 -5.8573367756824422E-03 + 106 1.7491582847604227E-03 + 107 1.8362608016141903E-04 + 108 5.6747049132646238E-05 + 109 -9.7490698201455070E-05 + 110 1.6228789893515971E-04 + 111 -2.7581613114052299E-04 + 112 1.4570261134585927E-04 + 113 1.4044760199106682E-03 + 114 4.7535061609101635E-04 + 115 1.9829131808391423E-02 + 116 -9.1119902692280515E-04 + 117 8.1006447436847845E-03 + 118 -6.2212226896709698E-04 + 119 7.8296947996226111E-03 + 120 -1.4315087470100104E-04 + 121 4.7366138482149818E-04 + 122 1.1021595291862668E-03 + 123 -1.2194925537938892E-03 + 124 -1.7340934936885815E-03 + 125 -6.6261681227631694E-04 + 126 3.8034459121066659E-04 + 127 -1.0427632377136434E-03 + 128 2.2678695602059141E-02 + 129 5.7568224029904064E-04 + 130 5.9405891488993334E-03 + 131 -5.9098005379069497E-03 + 132 -2.3781724803501633E-03 + 133 2.2750783223037998E-05 + 134 7.9986451863333480E-04 + 135 2.4385544164673680E-04 + 136 1.5717151018404293E-01 + 137 9.6667154093425231E-02 + 138 -1.7443311784143056E-01 + 139 -7.7434822386476046E-02 + 140 -1.4952186252848806E-01 + 141 -4.2120191737856361E-03 + 142 -7.8445545006398108E-04 + 143 2.5050607649234388E-03 + 144 3.3554667613948505E-03 + 145 1.8566709052556182E-03 + 146 3.5656693809597043E-04 + 147 -2.3775758686482630E-04 + 148 -6.2261152966746832E-04 + 149 -1.0437748935196109E-04 + 150 2.0809215750208257E-05 + 151 -4.3294546745845276E-04 + 152 -1.7189568469843823E-04 + 153 -4.1758009565868006E-03 + 154 -4.4999974689710897E-04 + 155 7.1058733308988862E-04 + 156 -3.3232277832495878E-03 + 157 2.6491164957085562E-03 + 158 6.7502606700714258E-04 + 159 -7.9937070258527998E-04 + 160 3.8642772666852804E-04 + 161 9.2844819133058157E-02 + 162 2.9164379434453710E-02 + 163 1.6237294707425781E-01 + 164 7.4866456951889843E-02 + 165 5.1515315924496582E-02 + 166 -2.7601075979401951E-04 + 167 -7.9341959980912485E-04 + 168 3.0555336713933433E-03 + 169 1.1155359102725073E-03 + 170 7.8750014667042635E-04 + 171 -2.4721684802894484E-04 + 172 3.5313409566046806E-04 + 173 -6.7540968001993204E-04 + 174 -5.7496149639591301E-04 + 175 -5.4372992679590170E-04 + 176 -1.1308154795979829E-05 + 177 -1.9333428189503163E-04 + 178 -2.2836338642733850E-02 + 179 5.2122266696559951E-04 + 180 8.3365376230448793E-03 + 181 6.4781373706221572E-03 + 182 -1.0643805666704872E-03 + 183 1.3971422249274604E-03 + 184 8.3324090436055417E-04 + 185 8.8534688674826592E-04 + 186 -1.0290381719579504E-03 + 187 -1.8209236182228326E-03 + 188 -8.3076831423992928E-04 + 189 -9.4088899826793432E-04 + 190 9.3163266754663022E-04 + 191 1.3071443353899629E-03 + 192 -7.6011370461566874E-05 + 193 1.4425957579838145E-03 + 194 5.1084754124740518E-03 + 195 1.7010263556152100E-03 + 196 2.0966610316824888E-04 + 197 1.0711949420134173E-03 + 198 4.5752491453285890E-04 + 199 -2.3957947479931434E-05 + 200 1.6211379086982257E-03 + 201 -8.0436240506646025E-05 + 202 -1.8874526678108840E-03 + 203 8.1661595451303732E-04 + 204 9.7683485218259987E-03 + 205 -9.9162291867227297E-04 + 206 -2.3136052765314165E-03 + 207 8.8948107694662212E-03 + 208 2.8507712181401949E-03 + 209 -1.0522524074087194E-03 + 210 4.1776252304490466E-04 + 211 3.9676454430807258E-05 + 212 2.5727484060580699E-02 + 213 -2.7715973759815812E-02 + 214 -6.0921024062765526E-02 + 215 2.0418288895539094E-01 + 216 -6.4788789110059156E-02 + 217 2.5748064574275217E-04 + 218 1.8383122375143987E-04 + 219 -8.8691708680346305E-04 + 220 -3.1949883602952703E-03 + 221 3.0339708062177457E-07 + 222 1.1892923173415031E-04 + 223 1.6068964597519639E-04 + 224 8.3685782362751633E-04 + 225 1.0749033001352191E-03 + 226 -2.2040559875705003E-04 + 227 5.4823788759311920E-05 + 228 4.0434520660301054E-04 + 229 3.0730722203017893E-02 + 230 -2.0378259764906952E-03 + 231 -1.9879329452775395E-02 + 232 -1.0309064880389272E-03 + 233 -2.6540531861544044E-03 + 234 8.9276563816549864E-04 + 235 8.7762180007200960E-04 + 236 -1.4441563834572454E-03 + 237 2.1435716474446648E-01 + 238 2.8633477714497590E-02 + 239 1.7488345594754040E-02 + 240 -3.5787572852564287E-01 + 241 -4.0552129170657113E-02 + 242 -7.5655679523712353E-03 + 243 -5.2865286345102971E-03 + 244 1.9428860765323772E-03 + 245 7.2121953928591716E-03 + 246 4.3179627974868924E-04 + 247 -1.1189322916003090E-03 + 248 -8.7604291625121081E-04 + 249 4.1491170419124271E-04 + 250 9.1534157244389889E-04 + 251 -5.8003798107267998E-05 + 252 1.2491282644119946E-03 + 253 -1.9830627795516397E-03 + 254 -6.9504184220961808E-03 + 255 -1.4122479220545698E-03 + 256 4.5596179440441964E-04 + 257 3.2807614134393723E-05 + 258 4.8918647059902247E-03 + 259 2.2583188147999429E-04 + 260 4.6810219443136475E-04 + 261 1.0353867632294784E-03 + 262 -6.0599414942404846E-02 + 263 -1.9998319772484469E-02 + 264 -7.5035254686391445E-03 + 265 -4.9157428798175494E-02 + 266 1.0200181160199445E-02 + 267 -3.6302219220396689E-03 + 268 -1.5073413289063975E-03 + 269 1.6004829517412007E-04 + 270 1.6276328557272822E-03 + 271 8.8237812481496377E-04 + 272 8.2433607326187720E-04 + 273 1.0600028701104320E-03 + 274 5.5700364640062111E-04 + 275 -9.2190794080270909E-04 + 276 -2.3894527298880136E-04 + 277 -1.2710331511216782E-05 + 278 -6.1970098596188673E-04 + 279 2.5214058497268828E-02 + 280 -9.2448780683603460E-04 + 281 -5.7372764590089840E-03 + 282 1.3801454991343609E-02 + 283 2.7027743262704046E-03 + 284 -1.0326637759907819E-03 + 285 3.1323977907964269E-03 + 286 3.2471650460976372E-03 + 287 -1.4090440442296704E-03 + 288 -6.5659496842989794E-05 + 289 -2.6862409668716785E-03 + 290 5.8276467633495083E-03 + 291 1.7695841319423805E-03 + 292 -1.9115321232772150E-02 + 293 5.9343002356970808E-04 + 294 -6.4452101348052059E-03 + 295 8.1725492407355559E-03 + 296 8.3104312414447774E-03 + 297 -1.4715933200595789E-03 + 298 1.8086547378964152E-03 + 299 -1.7350585711595375E-04 + 300 1.3766397316299936E-03 + 301 -2.8039462108506493E-03 + 302 5.0902153830488755E-04 + 303 6.1826430746231905E-04 + 304 -1.8570152949914577E-03 + 305 8.1541818088250069E-03 + 306 1.2921194650918094E-04 + 307 -8.0092618240385875E-03 + 308 -4.6305838542839967E-04 + 309 1.3385057433385557E-03 + 310 -1.9040458216866873E-03 + 311 -2.1160784586207694E-03 + 312 2.2232929006934347E-04 + 313 4.1688705666472467E-02 + 314 1.5094467865976301E-02 + 315 2.4025717094198998E-02 + 316 -7.4535688503550926E-02 + 317 1.0061749230441121E-02 + 318 -6.6040058910773558E-04 + 319 -3.2512879265794402E-03 + 320 -2.6211769843685114E-03 + 321 4.1276389916593756E-03 + 322 -1.5884846851358400E-03 + 323 -4.0824566492440740E-05 + 324 -4.0282902234362419E-04 + 325 -9.3005655550875441E-04 + 326 1.6587763879092627E-03 + 327 1.2691592290872464E-04 + 328 2.2683639331137276E-04 + 329 4.4624482962000620E-04 + 330 -2.6935128569800814E-03 + 331 -5.3757646308876591E-04 + 332 1.4068435397915433E-03 + 333 -1.9709679273499647E-03 + 334 4.1233455499504364E-03 + 335 4.9460785429430477E-04 + 336 -6.2581000312957990E-04 + 337 1.2946093392488774E-03 + 338 -1.5119281415121167E-02 + 339 -1.2104089540383008E-01 + 340 3.5913291626376111E-02 + 341 -5.1666649274508973E-02 + 342 -7.4855624305830001E-03 + 343 7.1762767776942856E-04 + 344 -1.0736855762426469E-03 + 345 1.8073356213907424E-03 + 346 5.7285185020449771E-04 + 347 1.2327821668125969E-03 + 348 4.9880092265251882E-04 + 349 1.9055123418917490E-04 + 350 2.4033930761852197E-04 + 351 -4.7984726874321848E-04 + 352 -2.6578696181328771E-04 + 353 -5.0329224171607523E-04 + 354 3.0251137717258878E-04 + 355 2.3459308510423778E-02 + 356 -5.9366201511158474E-04 + 357 2.8823018588864297E-03 + 358 1.0518989444338893E-03 + 359 -6.8864059978392140E-03 + 360 1.0758300510494536E-03 + 361 -1.5361506200262341E-03 + 362 -4.6514678731155834E-04 + 363 -5.6943655062437811E-04 + 364 -4.2834947270211179E-04 + 365 2.9335944829088248E-04 + 366 1.6580060617476552E-03 + 367 1.0419566438978911E-03 + 368 -1.1158145765153777E-02 + 369 3.1642834133119394E-04 + 370 -1.3923162059684633E-02 + 371 3.3985848167658286E-03 + 372 -2.0535388274154510E-02 + 373 2.0335845624390118E-03 + 374 -4.2339496169860654E-03 + 375 -1.2147129017578793E-03 + 376 -1.7639428251769640E-03 + 377 2.5571094521924815E-03 + 378 -1.3723817758636359E-04 + 379 5.2548076233479061E-04 + 380 -2.3208936023568025E-03 + 381 -3.9543208029067196E-02 + 382 8.2926354186341352E-04 + 383 2.3501565028459719E-02 + 384 -6.1998578014207167E-03 + 385 1.1219822202326269E-02 + 386 1.8051768985301113E-03 + 387 1.1998640371237818E-03 + 388 -7.1723182429785190E-04 + 389 -5.1843185253670704E-03 + 390 -3.5700493233678044E-04 + 391 -1.4979499590118575E-03 + 392 2.0639810087769387E-03 + 393 -2.2310801030073408E-03 + 394 1.1993549162840046E-02 + 395 -3.0118946434356795E-03 + 396 9.0368756019515543E-03 + 397 3.8670153689914291E-03 + 398 -3.0942974494869617E-03 + 399 -2.6403015569389514E-03 + 400 -1.3315684634308204E-03 + 401 -1.1536413644877145E-03 + 402 2.0751819287075476E-01 + 403 1.7361786314602884E-01 + 404 6.9136732795200467E-02 + 405 -5.8642986625121218E-01 + 406 -1.1432274681657156E-01 + 407 -4.2064555358428670E-03 + 408 -6.4265828683165353E-04 + 409 -2.4903395406302661E-03 + 410 6.0989341686099666E-03 + 411 7.1880692461256902E-04 + 412 -9.2920789126356331E-04 + 413 1.9774197023725362E-03 + 414 1.2343100503802609E-04 + 415 -2.1880765857878697E-04 + 416 5.3195888008272926E-04 + 417 -6.1354347273088051E-04 + 418 -2.0814318466299956E-03 + 419 -4.0466570853814200E-02 + 420 8.8083837590089797E-04 + 421 8.7124966296457727E-04 + 422 1.4422183694638274E-02 + 423 2.0925434332734645E-02 + 424 -1.3431871284470644E-03 + 425 2.3347140134616275E-03 + 426 2.6902837338973937E-03 + 427 4.9210553011931526E-03 + 428 2.2058437951396372E-03 + 429 1.8253101896615500E-03 + 430 1.9677601742237717E-04 + 431 1.2392848966208143E-03 + 432 1.5834542397177805E-02 + 433 -3.4605830549909759E-04 + 434 -8.0918942407732751E-03 + 435 -6.3871019649975134E-03 + 436 5.5606978234813862E-03 + 437 -2.5579141467596214E-04 + 438 -1.3169115215671153E-03 + 439 1.0433396513419614E-03 + 440 9.4541098643625336E-04 + 441 5.9477109297980952E-04 + 442 9.4934257287566861E-04 + 443 -9.5298491680744684E-05 + 444 -2.1857274411109110E-03 + 445 -6.0669185024820518E-03 + 446 -1.4674534539917231E-04 + 447 -6.4979770120336114E-03 + 448 -7.8081184970773604E-03 + 449 -1.6219427334247275E-03 + 450 -8.6368676968269270E-04 + 451 -1.8428008841868289E-03 + 452 3.7863614025702850E-04 + 453 -1.1268690983067194E-01 + 454 1.0321433938122208E-01 + 455 9.3434379810047402E-02 + 456 -9.1668982191736928E-02 + 457 1.0998444217634355E-01 + 458 2.7077753211430414E-03 + 459 -2.4558536151483030E-03 + 460 -1.3214000803811426E-03 + 461 1.0007652228733021E-03 + 462 -4.7377354139688174E-03 + 463 2.7762203094890338E-05 + 464 5.1137269897379059E-04 + 465 3.7575299067766184E-04 + 466 3.7870560389704729E-04 + 467 -1.3248624400032997E-04 + 468 1.2165646605351971E-04 + 469 -5.0074004950370491E-04 + 470 1.0146106552444877E-02 + 471 -1.8862650202383312E-03 + 472 4.7199964663787427E-03 + 473 7.6171289436777366E-03 + 474 2.3945417864645110E-04 + 475 1.3212393924107906E-04 + 476 1.1926253423834370E-03 + 477 4.0473512995738831E-04 + 478 -2.3606499098692436E-02 + 479 -4.2727223430833801E-02 + 480 -5.0546815303250158E-03 + 481 1.3302628933656531E-02 + 482 1.1218155936235812E-01 + 483 -2.1075962629751610E-03 + 484 -1.2609679343268440E-03 + 485 1.2279348167521678E-03 + 486 1.9652172303658193E-03 + 487 5.1933938196565615E-03 + 488 5.7904631474158224E-04 + 489 -7.2554225087439171E-04 + 490 -9.9399731219335530E-04 + 491 -1.1380144304908415E-03 + 492 5.4092798910602665E-04 + 493 4.6239168493805136E-04 + 494 1.2865036536421823E-03 +Ene= -4.7422428950E-01 +Spin= Alpha +Occup= 2.0000000 + 1 2.7816334268001776E-03 + 2 -3.5644491129882387E-04 + 3 -2.9046532542857076E-04 + 4 1.5813487684348743E-03 + 5 2.3328858518758546E-04 + 6 1.1564957749093442E-04 + 7 5.3945592813639694E-04 + 8 3.0763862674733480E-04 + 9 3.6156833047451945E-03 + 10 -5.2698882378417085E-03 + 11 1.1569258855171597E-02 + 12 1.5554622459537438E-02 + 13 4.1344294648300835E-03 + 14 1.8460393392687619E-04 + 15 -4.3507175371120942E-04 + 16 -1.4613510282840075E-04 + 17 -2.5785389112974053E-04 + 18 -6.6387757801548530E-04 + 19 -6.7588097259449074E-05 + 20 -1.9670641745706742E-04 + 21 7.7454060498919009E-06 + 22 -1.1708641119337668E-05 + 23 2.1863831163681542E-04 + 24 8.4497102268987049E-05 + 25 1.3626449750546937E-04 + 26 -1.3171325401765402E-04 + 27 -3.5658398330294514E-04 + 28 -1.2474632275855148E-04 + 29 1.6838276346719800E-05 + 30 1.0345375127446602E-03 + 31 3.6389011423033110E-04 + 32 -1.4779925828254566E-04 + 33 3.6067855888223619E-04 + 34 1.4926801311640982E-02 + 35 5.3366215511816140E-03 + 36 -7.0609716119379388E-03 + 37 -3.9038074563119189E-02 + 38 -1.2881329623100861E-02 + 39 3.7393438684458721E-04 + 40 -4.9812066418297122E-04 + 41 -1.5732710548303352E-04 + 42 5.6685849283683890E-05 + 43 -3.1870920390092742E-04 + 44 -1.8464861154653402E-04 + 45 -1.9109208719066291E-04 + 46 7.2560538441037237E-05 + 47 -2.9241177693680272E-04 + 48 2.0157465746194005E-04 + 49 2.0342010503979866E-04 + 50 2.2432393226172435E-04 + 51 -3.0472514561083225E-03 + 52 -1.7684978221714420E-03 + 53 8.9616105190775091E-04 + 54 -6.2796403074143864E-04 + 55 5.8440599309425524E-04 + 56 8.6770371431209347E-04 + 57 -1.3552539671977779E-03 + 58 -6.7079442248475579E-05 + 59 4.2188194594459452E-02 + 60 1.6547680465715963E-04 + 61 2.4794595264524828E-02 + 62 -3.2039036427171416E-02 + 63 2.4988680233709700E-02 + 64 -1.4224795635288678E-03 + 65 -3.6753294944930726E-04 + 66 -8.7847378855045915E-04 + 67 3.4806326405405474E-04 + 68 8.1207944703918285E-04 + 69 6.9936396784166656E-05 + 70 1.6147994027424241E-04 + 71 -2.3887140905587848E-04 + 72 2.3901442100466663E-04 + 73 2.8992047569274012E-04 + 74 -5.7187090817314784E-07 + 75 -1.4712203892289973E-04 + 76 -8.2348559343574650E-04 + 77 -3.7745259150557715E-05 + 78 -1.5682002821792657E-03 + 79 3.7454994292847164E-04 + 80 -9.7769674310290312E-04 + 81 -3.5015096251935120E-04 + 82 3.8140172437289350E-04 + 83 1.6805078046951212E-04 + 84 -4.6104991986088017E-04 + 85 1.0343800896192115E-04 + 86 9.9219415245553952E-05 + 87 1.7883888304584758E-04 + 88 8.1045487345411186E-05 + 89 -7.9120835876381312E-03 + 90 1.9126434017784926E-04 + 91 -4.9267322006062734E-03 + 92 -4.4940493554636489E-03 + 93 -1.8868417958310892E-03 + 94 -1.4898413376604458E-04 + 95 2.5633531867574742E-04 + 96 -5.5615245299758203E-05 + 97 -6.7778864870245506E-04 + 98 4.3964949996164253E-04 + 99 -7.3001468044456410E-05 + 100 1.5390474797589962E-03 + 101 7.2677578602011947E-04 + 102 -9.9757876725632753E-04 + 103 -2.8831154074548705E-05 + 104 -2.1382759961610810E-03 + 105 1.6879864347954404E-03 + 106 -4.0854764908018438E-03 + 107 -1.3192680939091389E-04 + 108 1.8909855880403477E-04 + 109 -2.7282716772008992E-05 + 110 -7.6722349773783059E-04 + 111 1.0018314632796355E-03 + 112 6.4268369827163416E-05 + 113 3.5262144220985837E-04 + 114 -3.6375724577624097E-04 + 115 3.1396777503584807E-03 + 116 -1.3205785584944932E-04 + 117 -4.2238977222400589E-04 + 118 -3.6840782275043256E-03 + 119 2.7741576250405959E-03 + 120 -3.0712414884618373E-04 + 121 -5.2591837311789661E-04 + 122 4.7978797280712551E-04 + 123 -5.9758737612735692E-04 + 124 -2.4329912956425886E-04 + 125 2.3198208437969192E-04 + 126 9.2128753001636071E-05 + 127 4.8626866687621217E-04 + 128 5.9731825600494639E-03 + 129 3.2081992728265015E-04 + 130 1.8935006718767309E-03 + 131 -3.4308223694890635E-03 + 132 3.1918769087582473E-06 + 133 7.6353388734493077E-04 + 134 -4.8962743795240608E-04 + 135 3.1285358997289317E-04 + 136 1.7942475328985333E-01 + 137 1.5906132973350886E-02 + 138 -3.5800694670031226E-02 + 139 6.0346622377836903E-02 + 140 2.2278458882904893E-02 + 141 -2.3283634032303792E-03 + 142 -4.0954681097995685E-04 + 143 4.4791702467681180E-04 + 144 -6.2967223534856958E-04 + 145 -5.8585846643162366E-04 + 146 -2.9804481810136575E-05 + 147 -5.0262452436845417E-04 + 148 -1.7575451947662751E-04 + 149 -6.2959279621688496E-04 + 150 -2.9797310551685723E-04 + 151 -7.9398463279590202E-04 + 152 -6.7218059193727131E-04 + 153 -3.5999540890606918E-03 + 154 -5.3890850267469771E-04 + 155 3.1019780472441938E-03 + 156 -1.4975981385938176E-03 + 157 2.4403097204488578E-04 + 158 6.1276037761448239E-04 + 159 -3.6516530956848936E-04 + 160 1.2694135778175926E-04 + 161 7.0155858187845893E-02 + 162 4.8227811924693463E-02 + 163 -1.2707219834258557E-02 + 164 -1.5075990780844720E-02 + 165 5.5242605112648452E-03 + 166 9.0798893608690838E-04 + 167 -7.9601127981776467E-04 + 168 8.9358395957826590E-04 + 169 -9.1655471041487589E-04 + 170 6.7987304890506533E-04 + 171 -2.6048814423436969E-04 + 172 3.3559789164671353E-04 + 173 -7.2607308192653043E-05 + 174 4.1512739371727585E-05 + 175 -3.4988908410215193E-04 + 176 2.3553209517705175E-04 + 177 -1.0786413991159984E-04 + 178 2.2530736852799233E-02 + 179 -5.0638752277474132E-04 + 180 -9.2361603778751079E-04 + 181 3.5217559118461209E-03 + 182 6.4476155692365558E-03 + 183 4.4418746851569745E-04 + 184 2.4676439423238676E-04 + 185 8.5774881558018832E-04 + 186 -2.0497384982404456E-03 + 187 -9.5863981324215489E-04 + 188 -9.2120812426779353E-05 + 189 -1.7442809468016514E-03 + 190 6.4832872027128558E-05 + 191 2.0480940653671613E-02 + 192 -3.7704875172976269E-04 + 193 -3.0320472653614567E-03 + 194 -1.0373770450638324E-02 + 195 2.0404530457560455E-02 + 196 4.6844705471901836E-04 + 197 -7.5551782205725141E-04 + 198 1.1753944959255384E-03 + 199 -1.0276508663082890E-03 + 200 -1.2584593805345661E-03 + 201 6.3223244482690580E-03 + 202 9.9383226190968366E-04 + 203 8.2447557090138159E-04 + 204 9.8543344336605911E-03 + 205 3.5604921357440474E-04 + 206 5.8507189385200060E-03 + 207 8.4935337703588175E-04 + 208 -2.1664565805899552E-03 + 209 1.7327495254730507E-03 + 210 -1.2182398842924119E-03 + 211 -2.5324359394321373E-04 + 212 -2.8378210416579217E-02 + 213 1.3648205375792341E-01 + 214 -2.4143153303303039E-01 + 215 -5.3834362335254113E-02 + 216 -1.5460524064930820E-01 + 217 4.7486116276890700E-04 + 218 -3.7977597273847925E-03 + 219 2.9259102292258717E-03 + 220 1.7839410320297133E-04 + 221 1.4422993694992788E-03 + 222 6.0799648062719440E-06 + 223 4.3406799058511524E-04 + 224 3.7640416924832798E-05 + 225 -1.0405761528386056E-03 + 226 1.9752208510866100E-04 + 227 -3.9066298027060298E-04 + 228 6.4370880380970974E-05 + 229 -1.2619314500046867E-03 + 230 -3.7475822570565273E-04 + 231 2.7132434736720925E-04 + 232 1.6946620904646607E-03 + 233 -1.1066186072741317E-05 + 234 -5.5405832962411345E-04 + 235 1.3821620707315291E-03 + 236 8.0847581692963561E-04 + 237 -2.5425640571008989E-02 + 238 2.5904228031586669E-02 + 239 -1.4044746208941548E-02 + 240 -1.8624127680829380E-02 + 241 5.7623741391097435E-03 + 242 1.0877555426782224E-03 + 243 -1.1853741778914686E-03 + 244 1.3215989608647517E-04 + 245 9.1404826978710248E-04 + 246 -2.0011111150101732E-04 + 247 -5.0997717922782143E-05 + 248 -8.5595066363567849E-05 + 249 -1.1502776442796960E-04 + 250 1.0031724363302187E-04 + 251 5.4051580783677032E-05 + 252 2.9436771628623315E-04 + 253 -6.1907178778218306E-05 + 254 -1.7818723214695084E-03 + 255 -4.7172002227756089E-04 + 256 -2.0011613443209086E-04 + 257 -8.1843679868678920E-04 + 258 2.8142252885745853E-03 + 259 2.1432696781030762E-04 + 260 1.8761566804654918E-04 + 261 2.7616573101214690E-04 + 262 -4.1301635929994342E-02 + 263 -8.8200207689642703E-03 + 264 -2.2211620337220885E-03 + 265 -9.6355768577009344E-03 + 266 2.7727046577762298E-02 + 267 -1.4397940946896477E-03 + 268 1.6581395787471095E-04 + 269 -3.6131814098170197E-04 + 270 -1.0433286338042617E-04 + 271 3.8044397490562748E-04 + 272 3.1180091597845339E-04 + 273 8.5725886023941685E-05 + 274 2.6943231685808134E-04 + 275 -2.0599074342112988E-04 + 276 -2.7722918384997462E-04 + 277 2.4642792917088045E-04 + 278 -1.2430771157098141E-05 + 279 2.8842120224515700E-02 + 280 -6.7671374657890353E-04 + 281 4.5289977701520783E-03 + 282 7.1323467206696892E-03 + 283 -3.3134187566698811E-03 + 284 3.6182806226893889E-04 + 285 3.1625867294649386E-04 + 286 7.3645502710290242E-05 + 287 5.9043546690070218E-04 + 288 -3.6906012282055331E-04 + 289 1.6741926161184444E-04 + 290 8.2573650189923852E-04 + 291 -1.0321351323661918E-03 + 292 -1.4848041178913423E-02 + 293 -3.0136814930536902E-05 + 294 -7.3719981213327341E-03 + 295 -8.6564749171216520E-03 + 296 -4.8767964716598822E-03 + 297 -6.7518500702453516E-04 + 298 -1.1251671361452425E-03 + 299 -5.2450623343864623E-04 + 300 -1.4761928707226898E-03 + 301 -1.8564261265816684E-05 + 302 -5.8820117103949496E-04 + 303 2.9330337615184049E-04 + 304 1.5004820606322388E-03 + 305 -1.3522865103013386E-02 + 306 6.6983789326565242E-05 + 307 9.7470186932940295E-03 + 308 4.9946628804605347E-03 + 309 -3.7253083583119917E-03 + 310 1.7248920718901093E-03 + 311 9.5618217449957568E-04 + 312 -1.0210740122873888E-03 + 313 -6.3005411801013517E-02 + 314 -1.2861313240361369E-02 + 315 -4.8472557794150993E-03 + 316 1.0917738660129548E-02 + 317 5.3311499129581476E-02 + 318 -1.2430572453241107E-04 + 319 4.3415018637657623E-03 + 320 2.4238693527009452E-03 + 321 -1.8791718855043047E-03 + 322 -3.6258600638346052E-04 + 323 4.9926286623552026E-04 + 324 6.9639637561628043E-04 + 325 4.2462340564591042E-04 + 326 -5.6275570796648704E-04 + 327 -2.3637735186865863E-04 + 328 1.1634103885392083E-04 + 329 1.6394070786601771E-04 + 330 1.1363550667521935E-02 + 331 -2.1583985990039933E-03 + 332 -3.0066525663928071E-03 + 333 4.3128391639716632E-03 + 334 -2.1518314948642857E-03 + 335 -6.9428499444413886E-05 + 336 3.0219947700020671E-04 + 337 -5.2338276101843151E-04 + 338 -8.3242002200274307E-02 + 339 -3.3842869256565907E-03 + 340 -2.7385460983487836E-01 + 341 2.2194145415621008E-01 + 342 7.6435684426249184E-01 + 343 -3.4573716737067708E-03 + 344 -1.1486502484850259E-03 + 345 1.2831073141431461E-04 + 346 -5.1888477956639576E-04 + 347 -9.5208551567776468E-04 + 348 -9.1966442710208584E-04 + 349 9.2177020050978424E-05 + 350 -9.7519135154451630E-04 + 351 -2.4548805047845191E-04 + 352 -1.3244585138907324E-03 + 353 9.9061989531150254E-04 + 354 4.6642599853245189E-04 + 355 8.1797739375715443E-03 + 356 5.8266405921701472E-05 + 357 7.4900744792769352E-03 + 358 1.8175182320040971E-02 + 359 -1.9810320212238559E-02 + 360 1.3660904219161066E-04 + 361 1.9305102928181628E-03 + 362 -1.6144976504248768E-03 + 363 -6.1230975176207484E-03 + 364 1.6774724860986695E-03 + 365 1.3508581456804533E-03 + 366 -4.4519198440295222E-04 + 367 -6.2371315406974047E-05 + 368 -5.1333873043911292E-03 + 369 -8.0561405283965435E-05 + 370 -1.2410203241951466E-02 + 371 1.9758902301759383E-02 + 372 -3.9494361991726009E-03 + 373 2.3475269974959174E-03 + 374 -3.2855711082862584E-04 + 375 3.1564609079420207E-04 + 376 -7.6175171962231754E-04 + 377 -4.6824788614128630E-04 + 378 1.5018439716500162E-03 + 379 1.5417922510014411E-03 + 380 -6.8303575203186194E-04 + 381 -1.4404738287994460E-02 + 382 4.9796232040707990E-04 + 383 -3.6223083720624675E-03 + 384 -5.8715426258216666E-03 + 385 -8.6586064738622699E-03 + 386 1.2042877366244240E-04 + 387 -3.6966551707263917E-05 + 388 -1.4557595448871430E-04 + 389 -1.0326055385565479E-03 + 390 -1.2443009513725507E-03 + 391 1.3091835756365222E-03 + 392 2.0427302186312837E-05 + 393 -4.0577497193219100E-04 + 394 2.5904087164826846E-03 + 395 1.0933778928440949E-03 + 396 -2.1810501360410516E-03 + 397 -3.7851840689454544E-03 + 398 -1.1213652203829385E-03 + 399 -1.5907858396516252E-04 + 400 -1.1143876788408291E-03 + 401 1.1826781850766877E-04 + 402 3.7103725989097079E-02 + 403 -2.3208862333156596E-02 + 404 -1.0241989779224694E-01 + 405 2.3878440824516765E-02 + 406 -8.5469455316684428E-02 + 407 -5.7501067408007131E-04 + 408 1.3322334834695270E-04 + 409 4.9185072146024848E-04 + 410 -1.9649496799998812E-03 + 411 9.8656902047367448E-04 + 412 -4.1663452081866872E-04 + 413 -5.9767235859088789E-05 + 414 1.2716574796016924E-04 + 415 3.0370269913554941E-04 + 416 4.6087711439863358E-04 + 417 1.1231810284588577E-04 + 418 4.6694927422732350E-04 + 419 1.4233206111738946E-02 + 420 -1.5274884034386721E-04 + 421 4.8691320525036004E-03 + 422 -2.6641944650924411E-03 + 423 -9.9994370087602667E-03 + 424 5.0684060253218045E-04 + 425 -1.2757942118972248E-03 + 426 -1.0698598901878378E-03 + 427 -2.6789075297230522E-03 + 428 8.4236700725376953E-04 + 429 6.1669892254424786E-04 + 430 -1.0816643297479826E-03 + 431 -6.9515423771745598E-04 + 432 -3.8457908721435841E-02 + 433 9.9675785274023761E-04 + 434 8.1412379162606394E-03 + 435 9.3964294602252429E-03 + 436 -1.2534095142313908E-03 + 437 1.6249923952321519E-03 + 438 -2.6412744355881491E-04 + 439 -1.7019320452245076E-05 + 440 -9.5296221467705263E-04 + 441 -6.9036541864285928E-04 + 442 2.7207989559289498E-04 + 443 1.0198974381817789E-03 + 444 1.4056306510283288E-03 + 445 9.4048186567302992E-03 + 446 1.5615492113560218E-04 + 447 6.3770352415769690E-03 + 448 -2.1600819299571481E-03 + 449 -3.6833873730157682E-03 + 450 1.1212771881788670E-03 + 451 1.2292025809950704E-03 + 452 -2.0228877730832885E-03 + 453 1.9505449252869689E-01 + 454 -6.6135866960707571E-02 + 455 2.9306810425533712E-02 + 456 1.0393034900223089E-01 + 457 1.2195315387821480E-01 + 458 -4.5980144091384220E-03 + 459 -1.2890679172309185E-03 + 460 7.5966112542782459E-06 + 461 1.2975419461521607E-03 + 462 -8.0702006968974874E-04 + 463 -3.5041962562853073E-04 + 464 -1.9547553145166381E-04 + 465 -6.7420065405616905E-04 + 466 -8.2340770385732384E-04 + 467 -5.8064791917448824E-05 + 468 5.2440510091623254E-04 + 469 -2.8544196829837188E-05 + 470 3.5079207049475802E-03 + 471 1.1436979662503234E-03 + 472 -2.6672719218754861E-04 + 473 -2.9697246013988274E-03 + 474 -7.1846133102104065E-04 + 475 3.0769207324525695E-04 + 476 -4.8808497709964377E-04 + 477 8.2766785065826516E-05 + 478 2.7070471912644261E-02 + 479 1.1829733653441924E-02 + 480 1.5181390380640612E-02 + 481 -5.5908503627317689E-02 + 482 4.3466390714055871E-02 + 483 -1.0132418387243664E-03 + 484 2.7802243188302972E-04 + 485 1.0140078246272262E-03 + 486 -1.7569338771476002E-03 + 487 2.9302601036818466E-04 + 488 2.7763184300159824E-04 + 489 -2.1355494050513864E-04 + 490 1.3354423364926122E-05 + 491 1.8292217204770746E-04 + 492 5.4942222462628610E-05 + 493 -1.3398050143620280E-04 + 494 2.0457978699404530E-04 +Ene= -4.7409077619E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -1.9887814766278195E-03 + 2 1.3753869366715842E-04 + 3 1.3600565713090625E-03 + 4 -3.8244937462809806E-04 + 5 1.1093219240677647E-04 + 6 4.0822614673548892E-04 + 7 -2.4034794402662398E-04 + 8 2.5749991250945071E-04 + 9 -8.3958337596398216E-03 + 10 9.9935086153757975E-04 + 11 4.5094384865190009E-04 + 12 -1.0007549966942116E-02 + 13 -3.7295327738132516E-03 + 14 2.5252898616241623E-04 + 15 6.0539640627013647E-05 + 16 -5.6627086577364257E-04 + 17 -3.1019586526769976E-04 + 18 -5.8901829916031497E-04 + 19 -2.7835830112279102E-04 + 20 -3.1531739953174539E-05 + 21 3.0335126025702041E-05 + 22 -2.8263912756836218E-04 + 23 2.4562017877912686E-04 + 24 -3.4195831610975139E-04 + 25 1.5396995837562496E-04 + 26 -3.9337326908455621E-04 + 27 -5.3945336379301390E-04 + 28 1.9686604877955640E-03 + 29 -9.9545301280090279E-04 + 30 6.3285011246427727E-04 + 31 5.0173092690707403E-04 + 32 2.6081306875537134E-04 + 33 1.3498951695305368E-04 + 34 -9.4529728515051394E-03 + 35 -8.4771080334165149E-03 + 36 -7.6353455363277964E-03 + 37 1.3539407041764359E-02 + 38 -4.7295900382386451E-02 + 39 2.5845782057362676E-04 + 40 2.9223381342025192E-05 + 41 6.8113102051876799E-05 + 42 -6.9499145836236537E-04 + 43 -6.4303690106471691E-04 + 44 1.7192437682578304E-04 + 45 -2.2047577179277219E-05 + 46 -1.1139848730905803E-05 + 47 1.9212451530960370E-04 + 48 -2.4950783923252532E-04 + 49 1.0328963976781230E-04 + 50 7.2498915691672562E-05 + 51 -3.8691415612791082E-03 + 52 4.4783012575430744E-04 + 53 4.1115226814063656E-03 + 54 -6.5117595861054168E-04 + 55 1.7832274049067167E-03 + 56 2.3322603594088550E-04 + 57 -6.6277447556865182E-04 + 58 -1.0722589652237900E-03 + 59 -2.1004049940121267E-03 + 60 3.4103731017925409E-02 + 61 -1.6904888776825596E-03 + 62 2.7359597727581220E-02 + 63 2.1314825172696616E-02 + 64 2.2951769763269324E-03 + 65 -1.9888270141444004E-03 + 66 7.4646442169799604E-04 + 67 -2.2236058108081307E-03 + 68 3.8920897574833249E-04 + 69 8.5600423670830657E-05 + 70 -7.4153369153392111E-04 + 71 -2.1239388572649531E-04 + 72 -5.8872065910220188E-05 + 73 -4.4535699997094540E-04 + 74 3.5248870856179071E-04 + 75 -1.8534096177364503E-04 + 76 1.2343723202148788E-03 + 77 2.9106117851474546E-05 + 78 3.1978279623901706E-04 + 79 -6.9068046138800467E-04 + 80 -1.5693609620731489E-04 + 81 -2.0805538453061185E-04 + 82 -1.7285408151780174E-04 + 83 1.1413457216077246E-04 + 84 -3.4233790993149637E-04 + 85 -6.9621856083320610E-05 + 86 1.6013180731103081E-04 + 87 -8.4527198001813132E-05 + 88 -7.5947308350053630E-05 + 89 6.0963190711712184E-03 + 90 -3.4312122250312378E-04 + 91 2.3951097757171380E-03 + 92 4.3843676389699049E-03 + 93 -3.9410493790897736E-04 + 94 -8.0126163268858083E-04 + 95 -8.3474232092297794E-04 + 96 -7.8142167838272762E-04 + 97 5.0990923747497873E-06 + 98 3.5098463882384248E-05 + 99 -8.0912491147459305E-05 + 100 -5.5368855495858190E-04 + 101 -8.1113170678074578E-04 + 102 -1.1444733988731718E-02 + 103 3.6460248739117067E-04 + 104 -4.1412559040824210E-04 + 105 1.9094143350041227E-03 + 106 -2.2208677700893990E-03 + 107 2.8111265882316028E-04 + 108 -6.8664423197786664E-04 + 109 -5.1007332102018471E-04 + 110 1.7787763684765244E-04 + 111 3.7047132314401224E-04 + 112 1.9903692869088622E-04 + 113 -3.7816963424732651E-04 + 114 -2.5870027774977050E-04 + 115 -8.6494705374806288E-03 + 116 3.0299309599554684E-04 + 117 -2.2287351185793563E-03 + 118 -2.5206424249879173E-03 + 119 -4.4676627734948514E-03 + 120 -9.6816957198208177E-05 + 121 -4.0314032271123677E-04 + 122 9.9058556613077850E-06 + 123 9.8492661931341360E-04 + 124 4.4863872368443341E-04 + 125 8.9733515402288242E-04 + 126 3.6107065039974964E-04 + 127 4.4777296704403668E-04 + 128 4.9996241707711267E-03 + 129 -5.1010115248679251E-04 + 130 2.2302684135438100E-03 + 131 -3.0786274678728282E-03 + 132 -7.3698020095918867E-04 + 133 1.6772365210043539E-03 + 134 -1.2043256092206574E-03 + 135 5.3096069289507934E-04 + 136 2.2054422524750778E-02 + 137 -2.5121943200012698E-02 + 138 3.3915338578268820E-03 + 139 -1.5740513711272205E-02 + 140 1.5668215583735512E-01 + 141 3.4692900383004988E-04 + 142 -5.6003263383836658E-04 + 143 5.4930204866229619E-04 + 144 -4.8473253050659238E-05 + 145 -2.4388412358269428E-03 + 146 -3.2739439103950052E-05 + 147 -5.1311453970413043E-05 + 148 -1.8697485029084076E-04 + 149 2.7586534502231842E-04 + 150 -2.2661645248073443E-04 + 151 -4.7726138679616236E-04 + 152 -3.9349777604476716E-04 + 153 3.0612037588256969E-03 + 154 -9.7800649896761160E-04 + 155 3.8740146104554817E-05 + 156 9.5544317692348340E-04 + 157 2.2137776027096029E-04 + 158 -2.6488925738426981E-06 + 159 1.8709896112537337E-04 + 160 6.4613174224488988E-04 + 161 1.6636661919318441E-02 + 162 1.5889608729737228E-02 + 163 -8.0805041603403543E-02 + 164 4.3125548261542863E-02 + 165 -2.5771972244558305E-02 + 166 -5.9003371328686610E-04 + 167 -5.5357603806839204E-04 + 168 -1.1243310661816915E-03 + 169 4.6160049891571234E-04 + 170 -1.6588274602041405E-04 + 171 1.6269408179376966E-04 + 172 1.9908277451914801E-04 + 173 1.5955566317952106E-04 + 174 1.9903138323219298E-04 + 175 3.0690681037391804E-05 + 176 -5.1931794239758144E-05 + 177 2.7721709970230095E-05 + 178 -3.6515247751775842E-03 + 179 4.1303596867054141E-05 + 180 -1.7240983118422329E-03 + 181 2.6562948473862038E-03 + 182 5.2323482398388679E-04 + 183 -6.3654046000125573E-04 + 184 1.2421500067297166E-04 + 185 -2.6227897470644475E-04 + 186 -3.9318929674122307E-04 + 187 6.8644085000035555E-04 + 188 -5.8466351301106692E-04 + 189 8.0600942490822048E-05 + 190 -8.3337235270226415E-05 + 191 -4.7608483892419727E-03 + 192 1.6894225505523542E-04 + 193 9.7880744335914951E-03 + 194 1.4316399359627463E-03 + 195 -2.5791112076555241E-03 + 196 -1.3595785321919671E-04 + 197 -6.5556365286939555E-04 + 198 -8.9639583486265885E-04 + 199 -2.2876816395924222E-04 + 200 -2.5834523874421079E-03 + 201 -5.3841674265862037E-04 + 202 -2.3079404631112673E-03 + 203 1.0248218978713851E-03 + 204 3.0013163630541011E-03 + 205 6.0062112742911660E-04 + 206 1.0617964391948685E-03 + 207 -2.9742936078373059E-03 + 208 -1.3424655980593286E-03 + 209 3.4622872657231302E-04 + 210 -4.5969772176263952E-04 + 211 -2.6388463711663439E-04 + 212 6.6233983196871951E-03 + 213 -8.9139443029730397E-02 + 214 -2.3615714570164044E-02 + 215 8.9980936325793157E-03 + 216 1.2876575232736800E-02 + 217 6.9052322237323456E-05 + 218 5.8713326476271435E-04 + 219 8.4477748373110487E-04 + 220 1.0900575368858292E-03 + 221 -1.0029254542123301E-03 + 222 -2.4708039311718572E-04 + 223 -3.7348474125013331E-04 + 224 -5.3974289768405433E-04 + 225 4.3674632419090335E-04 + 226 -1.3042926853398931E-04 + 227 1.9642643817863431E-04 + 228 -1.5128602573956344E-04 + 229 -1.3817142342191890E-03 + 230 -3.5665739659503250E-04 + 231 4.3660901185064570E-07 + 232 9.9141322210378807E-04 + 233 1.5777430121545423E-03 + 234 6.0196483834237466E-04 + 235 9.3319412960612405E-04 + 236 4.5774215702773844E-04 + 237 1.4676327813842358E-02 + 238 1.7274171269760528E-02 + 239 2.8106025520089322E-02 + 240 -5.0058796165119407E-02 + 241 -1.9232908143533529E-02 + 242 2.5308932289512461E-04 + 243 -8.1674334982033403E-04 + 244 -7.2991854550370793E-04 + 245 4.2609146416203544E-04 + 246 -9.4873035253745534E-04 + 247 -1.6233371813972544E-04 + 248 -6.9193303325223478E-04 + 249 -7.7740672445880579E-05 + 250 -2.2007249292908858E-04 + 251 -1.7170971775171844E-04 + 252 2.3799604305602210E-04 + 253 -2.0788483452084909E-05 + 254 -4.9736429961397153E-03 + 255 5.8568165181711342E-04 + 256 -3.3437335747146141E-05 + 257 2.7256036903359950E-04 + 258 3.2386448166644081E-03 + 259 -4.4820063430577449E-05 + 260 -1.4110887538190941E-04 + 261 1.2956045902236450E-05 + 262 -3.5191833241909443E-02 + 263 -9.3176603330792050E-03 + 264 8.1378403503258763E-03 + 265 2.4892553940896310E-02 + 266 5.0794259887907648E-03 + 267 -8.6924852211675151E-04 + 268 -3.9152145921573423E-05 + 269 -5.4992497792894250E-04 + 270 4.4857853002585864E-04 + 271 2.7877725817878452E-04 + 272 1.8713598876287068E-04 + 273 -2.0456934199536677E-05 + 274 7.6204625476876460E-05 + 275 -2.2823583318263139E-04 + 276 -7.7605344669823932E-05 + 277 1.3561729649962841E-04 + 278 -2.3520757644177712E-04 + 279 2.7506528213528149E-02 + 280 -6.6468634644676488E-04 + 281 8.4391518186952719E-03 + 282 8.5840189996382529E-03 + 283 3.4886416173656142E-03 + 284 3.7148175703173179E-04 + 285 2.5411782769309916E-04 + 286 7.4522021730718711E-04 + 287 5.9654998341481772E-04 + 288 -1.0830273788129036E-03 + 289 -1.1056358398054732E-03 + 290 1.5896736929815671E-03 + 291 -1.9901982453720156E-03 + 292 -1.1123969259561896E-03 + 293 -1.2160641058724384E-04 + 294 -4.3434828994249545E-04 + 295 2.6946001166697855E-03 + 296 1.0766335913714267E-03 + 297 -9.6961921503036294E-05 + 298 3.0180453470091942E-04 + 299 1.5934158007547747E-04 + 300 7.5168024368924339E-04 + 301 -1.0433365338317929E-04 + 302 3.7916212772798281E-04 + 303 3.3098161841848569E-04 + 304 -7.2969953291847128E-04 + 305 -3.5131583190139010E-03 + 306 -3.7011098733447437E-04 + 307 3.9391614744028703E-03 + 308 2.0372859703381920E-03 + 309 -2.8664733764030880E-03 + 310 1.4878282348005647E-03 + 311 7.1904491676408691E-04 + 312 -5.3433372630096614E-05 + 313 2.2075972477965344E-02 + 314 -2.9985040666726841E-02 + 315 -3.5414202657345462E-02 + 316 -2.1216822113628461E-02 + 317 -1.5967526390215238E-02 + 318 -3.7918304148379356E-04 + 319 2.7485441965716183E-03 + 320 1.2848169547397083E-03 + 321 -3.1616594680251056E-04 + 322 -1.9386276032774198E-04 + 323 2.7674126269822472E-04 + 324 6.7108018354357954E-04 + 325 8.0637667067724254E-05 + 326 -1.5911531171994625E-04 + 327 -2.2516412575472621E-04 + 328 -4.5059970983809351E-04 + 329 2.3098855405869148E-04 + 330 -3.8375331650528704E-03 + 331 7.3508696661750037E-04 + 332 -3.1773642893775447E-03 + 333 2.8177361219162249E-03 + 334 -4.4000721638809102E-03 + 335 7.3112602398386491E-05 + 336 -3.1215507568823779E-04 + 337 -1.5868319362773618E-03 + 338 3.8391970265981607E-03 + 339 1.7689342131149205E-01 + 340 1.0238378150555810E-02 + 341 -8.6701928485997160E-01 + 342 2.1750077321881792E-01 + 343 1.8883332526720398E-03 + 344 1.5912177369137538E-03 + 345 -2.3045012147296386E-03 + 346 -2.5233380134006517E-03 + 347 -1.0691794827797053E-03 + 348 8.1189150491729672E-05 + 349 7.4541186523952540E-04 + 350 1.3369456963507884E-03 + 351 1.2294863173965252E-03 + 352 2.5948892139055532E-04 + 353 -1.9423301536896045E-04 + 354 -9.9412049806787143E-05 + 355 -2.3657775527346232E-02 + 356 3.2317108348192382E-04 + 357 2.0068901308141044E-02 + 358 1.4272753903258647E-03 + 359 1.2429375566284789E-02 + 360 -5.0882064376430445E-04 + 361 8.8929201240787580E-04 + 362 9.0908580663350946E-04 + 363 2.3321870767480622E-03 + 364 6.0565727420185209E-03 + 365 1.9152077728324113E-03 + 366 1.0129323865291774E-03 + 367 -3.0174694904646748E-04 + 368 -1.0533121180354689E-02 + 369 4.6725147555826482E-04 + 370 -2.0802357137337541E-03 + 371 -1.0835563571539177E-02 + 372 -3.9277995983193923E-03 + 373 1.8459803377159825E-03 + 374 -1.0144978752561625E-03 + 375 2.8004546600620707E-04 + 376 -7.0845042749717883E-04 + 377 -9.0539928190939707E-04 + 378 1.1166111491570960E-03 + 379 -1.3500095487541770E-03 + 380 1.0136862579459497E-03 + 381 -8.9244576242820724E-03 + 382 3.4608629105255945E-04 + 383 -2.1145267106966392E-05 + 384 6.1630114273040276E-03 + 385 -2.4150334174721146E-02 + 386 -8.5540102913597374E-05 + 387 5.5693771850684188E-04 + 388 -1.0514556760843384E-03 + 389 1.7859615738681533E-03 + 390 -3.7831774771795281E-03 + 391 2.2007328199213326E-03 + 392 3.6489408375286678E-04 + 393 1.0940372003711912E-03 + 394 7.3461156886927342E-03 + 395 4.3779920362847899E-04 + 396 1.8030129715314960E-03 + 397 -4.8188340417855170E-03 + 398 -2.6427842099840785E-04 + 399 -7.0855176782381026E-04 + 400 -5.1739230308391027E-04 + 401 4.6122451559143732E-04 + 402 1.7719445722741570E-01 + 403 -9.1793639737048890E-02 + 404 2.3935748253386568E-02 + 405 4.9460051470834078E-02 + 406 -1.0081392381053256E-01 + 407 -2.6175134126038445E-03 + 408 2.8452076992108345E-04 + 409 -8.9414606359730371E-04 + 410 -2.8099329740933083E-04 + 411 4.5031648658157666E-04 + 412 -2.7980611121755758E-04 + 413 -3.0740594043447266E-04 + 414 5.0070788748167536E-04 + 415 1.4830492746362812E-05 + 416 -1.3748793487103664E-04 + 417 -4.2511109315189591E-05 + 418 1.8054391868695983E-04 + 419 -9.3717732062941069E-04 + 420 -1.7624317759834469E-04 + 421 6.0861608865440319E-03 + 422 9.5066487906017797E-03 + 423 -4.6524090350887900E-04 + 424 1.0012883422055568E-03 + 425 1.1679885272678789E-03 + 426 -2.9341936049013867E-04 + 427 -5.3977181702089395E-04 + 428 1.6482954553483308E-03 + 429 2.1681091250400643E-03 + 430 3.3596397689047508E-04 + 431 9.1657207942089753E-04 + 432 -1.8015163262935334E-03 + 433 1.4357697303727637E-04 + 434 -1.1807028893562014E-03 + 435 2.7414670001761178E-03 + 436 -5.9173905312099057E-03 + 437 -9.3999865900412421E-04 + 438 7.3723369027392125E-04 + 439 1.0414984392892523E-04 + 440 5.3013310059569162E-04 + 441 -1.0944407586619995E-03 + 442 -8.7304657707473526E-04 + 443 -2.0790219249920876E-04 + 444 4.4934159040458510E-04 + 445 9.4768476687177357E-03 + 446 3.7637008101404362E-04 + 447 -1.6907988586065542E-03 + 448 3.9295923441712496E-03 + 449 1.0988057938959566E-03 + 450 -3.5795773968834877E-04 + 451 5.0661327592088743E-04 + 452 9.2450805222313445E-04 + 453 -6.5322668927617761E-03 + 454 4.1340486011228889E-03 + 455 -4.1224644707140906E-02 + 456 2.0304645477457683E-01 + 457 -2.8495046873731021E-02 + 458 2.1294350405937540E-04 + 459 -8.5504403103747718E-04 + 460 -1.2336761247183983E-03 + 461 -3.6128755159218805E-03 + 462 1.8175238002746635E-03 + 463 3.2716011376763995E-04 + 464 1.5119135972089682E-04 + 465 6.9221961217078693E-04 + 466 -7.4414262591033012E-04 + 467 -4.7496890840442220E-04 + 468 -4.1738216795309701E-04 + 469 4.6121711488695519E-04 + 470 1.3977440213954536E-03 + 471 -6.7501167877080344E-04 + 472 8.6507053657626238E-04 + 473 1.3379375651172982E-03 + 474 1.4575318784767377E-03 + 475 -1.4875110897828286E-04 + 476 3.4042902246548314E-04 + 477 4.4506816743598198E-04 + 478 -6.4831507130407333E-03 + 479 8.7162769424846843E-03 + 480 1.1620911952458159E-02 + 481 9.6396497177399839E-03 + 482 3.1116413426411976E-03 + 483 -2.2802240952352052E-04 + 484 1.1546061963828723E-03 + 485 -1.3105059007332572E-04 + 486 6.0639260794757919E-04 + 487 2.9761541844285132E-04 + 488 -2.3507411178718936E-04 + 489 -4.0432988482269464E-04 + 490 -2.2061895081346817E-04 + 491 3.0412740567544382E-04 + 492 -1.1576614229678037E-04 + 493 -2.4224996616918702E-05 + 494 2.3264863549982728E-05 +Ene= -4.7332695800E-01 +Spin= Alpha +Occup= 2.0000000 + 1 5.6664304181101854E-03 + 2 -9.0948803942308141E-04 + 3 -5.1093348083473735E-04 + 4 -3.9376040349881536E-04 + 5 1.4231985061973476E-03 + 6 3.4432496534529981E-04 + 7 -1.1692861475735184E-03 + 8 1.4488588517606684E-04 + 9 1.8952755773828163E-02 + 10 1.6700311762295436E-04 + 11 -2.4358203848392424E-02 + 12 2.6719583288200319E-02 + 13 2.2495172097014845E-02 + 14 -3.2152854988287796E-04 + 15 -1.2615120474777019E-03 + 16 -8.2186018198118381E-04 + 17 -8.9681096412969768E-04 + 18 9.6740375571982020E-04 + 19 -1.4507570409804743E-04 + 20 -2.8457020773525602E-04 + 21 -5.1200032504304706E-05 + 22 3.3637277358453506E-04 + 23 2.5620231026737573E-04 + 24 7.8954771921476056E-05 + 25 -4.6375682861317131E-04 + 26 -9.5200971245296769E-04 + 27 9.9713674822449216E-04 + 28 -1.7579215737740861E-03 + 29 4.1350202449668780E-03 + 30 -2.5156797465913736E-03 + 31 -9.0555218976933372E-04 + 32 1.0499117532215510E-03 + 33 -5.9988611655177420E-04 + 34 4.5870042528756254E-03 + 35 -1.3765850156480761E-01 + 36 -2.1566245602123321E-02 + 37 4.5295753347059868E-02 + 38 2.0635211536320255E-01 + 39 -1.7200292248324876E-03 + 40 1.0144846586104192E-03 + 41 -8.4153723872581316E-04 + 42 7.6373825478058533E-04 + 43 -7.6483987360122382E-04 + 44 4.9016910479501613E-05 + 45 3.6654214255490725E-04 + 46 1.0938841251101235E-04 + 47 -2.5441952642172059E-04 + 48 4.9704441637103485E-04 + 49 -4.6377182940392095E-04 + 50 -2.3198036785737589E-04 + 51 -1.2148092557191169E-02 + 52 1.9041636701300872E-03 + 53 -1.7044987370540934E-03 + 54 3.1675922683018420E-03 + 55 1.7261403262809490E-03 + 56 -2.1240164593781998E-03 + 57 9.4783598213410815E-04 + 58 1.0195298925487577E-03 + 59 1.6851232665134473E-02 + 60 6.4724296537840252E-03 + 61 1.6872093440166058E-02 + 62 1.2361988161872306E-02 + 63 -4.1397480108075020E-03 + 64 -3.4214196267193303E-03 + 65 -9.1798520722552660E-05 + 66 8.1602280812158410E-04 + 67 -3.4715439088675272E-04 + 68 -2.9034727662710551E-03 + 69 -4.2791134088811283E-04 + 70 -3.3991091427867931E-04 + 71 -9.0424323314681600E-05 + 72 1.7852431514185421E-04 + 73 -3.2807572903144816E-04 + 74 6.7044895257072112E-04 + 75 2.9175484639410923E-04 + 76 -1.4916402164900779E-02 + 77 -5.2744615786642274E-05 + 78 4.2783403462904701E-04 + 79 -6.9485278535878151E-04 + 80 2.2847106765658324E-02 + 81 7.4199477161305313E-04 + 82 -9.2501502995581285E-04 + 83 2.3483071671850301E-03 + 84 2.4777665395220461E-03 + 85 -3.2185610661454446E-03 + 86 -2.6409818760949667E-03 + 87 -1.5786798607662233E-04 + 88 3.9021855450434165E-04 + 89 3.9757517692830836E-05 + 90 2.0691904085342442E-04 + 91 -3.4865509277098193E-03 + 92 -3.5621970483298258E-03 + 93 2.5124483748607106E-03 + 94 -9.5771475594140748E-04 + 95 -8.9162401253647906E-04 + 96 6.1022970150434279E-04 + 97 2.7990078985312835E-04 + 98 -1.9321974521770515E-04 + 99 3.2626044279766939E-04 + 100 1.0774011802850260E-03 + 101 -1.9597007311262959E-04 + 102 1.3474394979861413E-02 + 103 1.5612536424269446E-06 + 104 -2.5151384023156514E-03 + 105 -1.7778881078508491E-02 + 106 1.0664252574612149E-03 + 107 -7.6262392832488033E-04 + 108 -6.1037585351111727E-04 + 109 2.7261316351049334E-04 + 110 6.7290483412176818E-04 + 111 -2.9813263868053294E-04 + 112 4.0884967891358087E-04 + 113 2.4079464903057871E-03 + 114 3.0231242747860714E-03 + 115 -3.6632289838939682E-03 + 116 2.3570280453334361E-04 + 117 3.1701823516645921E-03 + 118 -6.6036975950458756E-05 + 119 1.4625809238813525E-03 + 120 1.9978418906731638E-04 + 121 1.0982641403268580E-03 + 122 -8.1277148871010093E-04 + 123 -7.9649163014510816E-04 + 124 -2.2103113702008422E-05 + 125 -2.5828431376496020E-04 + 126 -1.2188603500712170E-03 + 127 -1.4822261221618957E-03 + 128 -1.7061718581092032E-02 + 129 1.0977624853375928E-03 + 130 -7.6161789057408143E-03 + 131 1.3695568682921986E-02 + 132 -2.8874594589542160E-03 + 133 -4.1768508382565789E-03 + 134 3.2977848563068750E-03 + 135 -1.3305612376146695E-03 + 136 -3.4043002978462605E-01 + 137 1.2154204119029932E-01 + 138 9.0421698747162257E-02 + 139 -5.8221416119035023E-02 + 140 -3.3918855183485230E-01 + 141 4.4067106064322207E-03 + 142 1.4075344374700717E-03 + 143 -3.8192104652585196E-03 + 144 1.9338864114331784E-03 + 145 4.1584075045652050E-03 + 146 -1.6957428797490327E-05 + 147 7.3149247258912759E-04 + 148 2.2772328847987022E-04 + 149 -2.9656886318895140E-04 + 150 2.9871762670618932E-04 + 151 1.7000721912040632E-03 + 152 1.4854766500437507E-03 + 153 -9.6402806906413160E-03 + 154 3.3368274903229937E-03 + 155 9.8859691808608481E-04 + 156 -7.0230540358535173E-04 + 157 8.2358106743324973E-04 + 158 -6.3756677607811085E-04 + 159 1.5510376578734662E-04 + 160 -1.4927128681071380E-03 + 161 -4.2755761406209944E-02 + 162 -9.6856507845691150E-02 + 163 2.3843740995846083E-01 + 164 -1.1560733970484921E-01 + 165 7.8906172435626143E-02 + 166 -9.4136031351463910E-06 + 167 5.6747822299259060E-04 + 168 1.9019625722510171E-03 + 169 -4.2978270480844069E-04 + 170 1.7001739617036730E-04 + 171 -1.2200263296850817E-05 + 172 -3.6271483632560635E-04 + 173 -5.4158341562523605E-04 + 174 -5.8828368060962150E-04 + 175 3.0656443480574642E-04 + 176 -2.2509035251129457E-04 + 177 -2.4566056606585806E-04 + 178 2.6486931527993127E-02 + 179 -2.5704303651341695E-04 + 180 6.2433701978207483E-03 + 181 -1.1446787700555235E-02 + 182 1.1091543395162706E-03 + 183 1.3237071570764761E-03 + 184 -7.6231483022004283E-04 + 185 -1.0215075857117066E-03 + 186 2.1897621500163050E-03 + 187 -1.2140906791672252E-03 + 188 1.0928838650528098E-03 + 189 1.8889878492937930E-03 + 190 -3.1155294144747888E-04 + 191 2.8575004227248478E-02 + 192 -3.6633575369496226E-04 + 193 2.7865818945496863E-03 + 194 -5.1628645437027257E-03 + 195 7.1284810653832404E-03 + 196 4.2282338729504343E-04 + 197 -1.1851244680965871E-05 + 198 -6.2389925421470956E-05 + 199 -1.4886386952170586E-03 + 200 -1.7355796444802848E-05 + 201 6.5948366013878466E-04 + 202 3.6282393601704715E-04 + 203 1.5944896163184110E-03 + 204 -7.9041346819022171E-03 + 205 6.2935279016288479E-04 + 206 -4.6915779738285184E-03 + 207 -2.0757795693508605E-03 + 208 -5.0423172042148431E-03 + 209 8.2955876806388678E-05 + 210 3.8722833418372370E-04 + 211 -2.2933057348085506E-04 + 212 -1.9618216429845500E-01 + 213 8.8061795061176326E-02 + 214 1.3949532033562589E-01 + 215 -8.3340202893887362E-03 + 216 2.3681260458946415E-01 + 217 1.3309107254190903E-03 + 218 -1.6716501033501711E-03 + 219 -6.9532044401286568E-04 + 220 -8.0689418913375754E-04 + 221 -1.7438277312100898E-03 + 222 9.5120835586136088E-05 + 223 1.5858950404829510E-04 + 224 4.8522549349722008E-04 + 225 -8.0372812595569593E-04 + 226 2.1796993810797321E-04 + 227 -6.9558132302506746E-05 + 228 -6.2037635963004369E-04 + 229 1.0222446438796724E-02 + 230 -4.7806677976568293E-04 + 231 4.4912275810741111E-03 + 232 -1.8770618183989662E-03 + 233 -1.1576205824026535E-03 + 234 1.1374215109272127E-04 + 235 -9.8946698404278480E-04 + 236 -1.0424781276352465E-03 + 237 -9.2969370213398812E-03 + 238 -7.9218000484002224E-02 + 239 -2.9804978014394135E-02 + 240 6.6724019114523497E-02 + 241 5.5440970589527662E-02 + 242 -5.7232982344140209E-04 + 243 3.3649827140700313E-03 + 244 8.0384910527221589E-04 + 245 -8.5227200869029312E-04 + 246 -6.6426637117062348E-04 + 247 3.6135894810232532E-04 + 248 1.1175283417033915E-03 + 249 8.6380157326551400E-05 + 250 2.1392357629374759E-04 + 251 -1.5220332499379680E-04 + 252 -1.6306809691618606E-05 + 253 5.6895803682688491E-04 + 254 9.4652671810118699E-03 + 255 -1.3703054442793425E-03 + 256 3.8184694724897644E-04 + 257 -4.1976761694877704E-04 + 258 -5.1070669532908035E-03 + 259 -4.1539631764656498E-04 + 260 4.8074228753638900E-04 + 261 5.9740939866134749E-05 + 262 6.7713462197026189E-02 + 263 2.5922465137639232E-02 + 264 -6.9571042625852291E-03 + 265 -5.0171621939482679E-02 + 266 -5.5460566491032044E-02 + 267 1.7992060231370602E-03 + 268 -1.4079779617053360E-04 + 269 3.6567369722493285E-04 + 270 -1.0058347716695171E-03 + 271 -6.2299809167165891E-04 + 272 -6.0145077690451360E-04 + 273 -8.7874825481361048E-05 + 274 -6.0540345318192653E-05 + 275 2.7665298680872431E-04 + 276 2.0942709608646437E-04 + 277 -4.6967720354965759E-04 + 278 6.3875449514249119E-04 + 279 -5.2504119284102355E-02 + 280 1.0631397862430828E-03 + 281 -1.6512479931995852E-02 + 282 -1.6693486015644608E-02 + 283 -3.2394738467007005E-03 + 284 -9.6520953693462509E-04 + 285 -7.5724330273784944E-04 + 286 -4.4443872919392536E-04 + 287 -1.6002702017564791E-03 + 288 1.8308063050711850E-03 + 289 1.4853014736271799E-03 + 290 -2.8503349235451786E-03 + 291 3.7693499771557747E-03 + 292 2.0552130333933534E-03 + 293 -4.4179033394430381E-06 + 294 1.0351454810236746E-03 + 295 -1.6682300235753287E-03 + 296 -3.6493101223073741E-03 + 297 -2.2779677220720194E-04 + 298 -4.1339596428086647E-04 + 299 -1.1666753793192271E-03 + 300 -7.4433931789843490E-04 + 301 7.6276957903329619E-04 + 302 3.8145638610382726E-04 + 303 -3.8791549583932746E-04 + 304 7.4558155649978705E-04 + 305 -7.7469247848577986E-04 + 306 1.3337029493126842E-03 + 307 -2.5442683576937450E-03 + 308 3.2395514144446845E-03 + 309 2.5222464441769289E-03 + 310 -1.2219117589082340E-03 + 311 7.0472297064507914E-04 + 312 1.0527398606703930E-03 + 313 -1.4483152891062475E-02 + 314 -1.1780271436469770E-02 + 315 -1.7903319898158902E-02 + 316 3.9771794877299215E-03 + 317 2.0908899714239627E-02 + 318 1.0281530370340143E-03 + 319 -1.9989422051434171E-03 + 320 1.8038674241862306E-03 + 321 1.9446805820930633E-03 + 322 -2.0422196215947441E-03 + 323 -2.6409602546641144E-04 + 324 -5.5059414478760276E-04 + 325 7.2183338452927958E-04 + 326 6.6484966283144838E-04 + 327 -1.0395996351991023E-04 + 328 -3.5742304970806195E-05 + 329 2.6806176032948920E-04 + 330 -2.6777357536063593E-03 + 331 -7.4492865343794390E-04 + 332 6.4006618603473808E-04 + 333 5.7482450064995426E-04 + 334 -3.1902222273472803E-03 + 335 7.8866948930196785E-04 + 336 -6.8733500632945103E-04 + 337 -4.4167770073231817E-04 + 338 -8.9219686740845836E-02 + 339 2.0493435605460752E-02 + 340 -2.9534653864440090E-02 + 341 -2.1040321109426358E-01 + 342 3.3159964590591801E-01 + 343 -1.3565219933380573E-03 + 344 6.2787482840140428E-04 + 345 -6.9404865357151110E-04 + 346 2.5916682770287951E-04 + 347 1.9999183142394876E-03 + 348 -1.4208657870933746E-04 + 349 2.5605423084441284E-04 + 350 8.5479957022028000E-06 + 351 4.1094800550619859E-04 + 352 3.7392297670409754E-04 + 353 -8.6760612426822824E-04 + 354 4.7885005328339838E-04 + 355 6.5743454956886356E-03 + 356 -5.4690223484832194E-06 + 357 3.1698098057019839E-03 + 358 8.6217574858124535E-03 + 359 -3.2998764541699627E-03 + 360 3.3799332440411417E-04 + 361 9.1588824731422911E-04 + 362 -6.6512187568455608E-04 + 363 -7.8077913409120407E-04 + 364 7.8266093272077314E-04 + 365 1.8684759606725997E-03 + 366 1.0645028970754729E-03 + 367 6.9311614853480438E-04 + 368 3.4027357889170971E-03 + 369 4.5613285259394229E-05 + 370 9.5962836668794724E-03 + 371 -1.5703338040633633E-02 + 372 5.8535979867745990E-03 + 373 -1.1812163722987113E-03 + 374 1.8296320689029288E-03 + 375 5.2709133552746035E-04 + 376 3.4434287163246117E-03 + 377 6.1834347995998943E-04 + 378 -4.8135425534452832E-03 + 379 6.2581519752746026E-04 + 380 2.7955798310212314E-04 + 381 1.2219252304551641E-02 + 382 -9.1418572421897773E-04 + 383 1.8160751240871105E-03 + 384 -7.8646955622497568E-03 + 385 5.6380159286331728E-02 + 386 -1.7338320121126061E-04 + 387 -1.1394072352288165E-05 + 388 1.9493096126810485E-03 + 389 -1.8718401902644791E-03 + 390 9.2209778088252013E-03 + 391 -6.0927759421760723E-03 + 392 -5.4980073498726682E-04 + 393 -1.4739415092465222E-03 + 394 -3.2410029052668417E-03 + 395 -1.8410494703092065E-03 + 396 -1.2190212561603337E-03 + 397 4.6305718981463316E-03 + 398 3.9809125050038960E-03 + 399 1.3088677231297232E-03 + 400 7.1197765025155229E-04 + 401 -9.9113249839400753E-04 + 402 -3.3284495021745758E-01 + 403 1.8532888385460999E-01 + 404 7.7418352411410554E-02 + 405 -7.4336296728750945E-02 + 406 1.9020440614931788E-01 + 407 2.7227248013560273E-03 + 408 -3.8804929898836831E-04 + 409 -1.0676578390585562E-03 + 410 -1.2172693414486073E-04 + 411 -1.5034263105894868E-03 + 412 6.5304498417288804E-06 + 413 7.3970128974691803E-04 + 414 -9.4218068445931999E-04 + 415 -2.8922064324725919E-04 + 416 3.5145954885058291E-04 + 417 -8.6146617771069053E-04 + 418 -1.7789775775166479E-04 + 419 8.4764284567627936E-03 + 420 -4.8673876712166806E-05 + 421 -8.1001201823026510E-03 + 422 -1.2008533646050730E-02 + 423 3.2237206363644770E-03 + 424 -1.3115748881880429E-03 + 425 -1.2698456900838999E-03 + 426 1.0683025295094607E-03 + 427 2.1553376310095977E-03 + 428 -2.2068777257934317E-03 + 429 -3.2575336150879142E-03 + 430 6.6193243230306981E-04 + 431 -1.9085872137778862E-03 + 432 2.2366554121308981E-03 + 433 -2.0913269044127154E-04 + 434 1.4533185261820703E-04 + 435 -6.5648727722328422E-03 + 436 3.3903821338651654E-03 + 437 -1.3524394513256710E-03 + 438 2.6013052320461919E-04 + 439 5.3357851793632953E-05 + 440 7.2604149786087175E-04 + 441 3.9035143804483851E-04 + 442 2.2337065453208302E-04 + 443 1.4536802149189365E-04 + 444 -1.1791578086023087E-03 + 445 -6.1565331545733295E-03 + 446 1.9532443970908262E-04 + 447 -1.5648810419708976E-03 + 448 -1.1616930107706700E-02 + 449 6.1682598528187043E-03 + 450 -4.4041527224417728E-04 + 451 -8.3620125121017664E-04 + 452 4.4744646028547374E-04 + 453 -1.4010042871489975E-01 + 454 -4.0465837940153480E-02 + 455 3.7254647826928000E-02 + 456 -1.3987542918516482E-01 + 457 6.6513059659246240E-02 + 458 3.6676140429653011E-03 + 459 1.5890799092475368E-03 + 460 -1.0998518328845207E-03 + 461 2.1846721753531521E-03 + 462 -3.9794242391020000E-03 + 463 4.0495452662927200E-04 + 464 8.2831298977417689E-04 + 465 -2.4501559193995225E-04 + 466 3.5289256662692143E-04 + 467 1.3866723870525067E-04 + 468 6.5686873792936942E-04 + 469 -3.0009137833443236E-04 + 470 -4.7226595225940054E-04 + 471 -6.4843922309092443E-04 + 472 -5.0405212954168584E-05 + 473 -9.4896177659351628E-04 + 474 -9.6852806147747499E-04 + 475 3.3139977238339244E-05 + 476 -1.0164184667922862E-04 + 477 1.7036345098077526E-05 + 478 -3.7096686264891800E-02 + 479 -4.5979695589158431E-02 + 480 -2.2703456055637207E-02 + 481 -3.2303743921340551E-03 + 482 -1.0631221006552595E-02 + 483 6.8851086199963707E-04 + 484 -1.2074724369284279E-03 + 485 -5.7689281410424102E-04 + 486 3.1355634128306170E-04 + 487 -1.5488161576208269E-03 + 488 -1.3898523551134241E-04 + 489 5.2568664296270427E-04 + 490 2.3660124234610151E-04 + 491 -3.6256687250937441E-04 + 492 9.9565636786751299E-05 + 493 -9.6243613270346784E-05 + 494 -3.9117619701738621E-04 +Ene= -4.7245743078E-01 +Spin= Alpha +Occup= 2.0000000 + 1 3.5234402825000885E-03 + 2 -6.2938604887707359E-05 + 3 -9.5199772274355663E-04 + 4 1.8813595610272255E-03 + 5 2.2928561477069489E-03 + 6 -1.6668913358332602E-04 + 7 -6.2866124927596183E-04 + 8 2.5124249323025925E-05 + 9 7.0227592346859616E-03 + 10 1.1325742598120392E-02 + 11 -3.6192182644045744E-02 + 12 1.3281940960129935E-02 + 13 -2.3435910033309235E-03 + 14 2.1386086273496625E-05 + 15 -8.3662763292464645E-04 + 16 1.3777559801060142E-03 + 17 2.0410253509440781E-04 + 18 6.6115801793423061E-04 + 19 2.4313524980945400E-04 + 20 -1.0432496543656648E-04 + 21 2.2130680208637448E-04 + 22 1.6172600631036117E-04 + 23 -4.9241245573273531E-04 + 24 -1.7140560507326145E-04 + 25 -3.2317158072741123E-04 + 26 1.2466529636944522E-02 + 27 6.1193683139466935E-04 + 28 -5.5640952148621175E-03 + 29 1.3253516641199462E-04 + 30 -4.1235507864875965E-03 + 31 7.2677615839028672E-04 + 32 2.2143343656655062E-04 + 33 -1.3376189329749148E-03 + 34 5.0217768587644450E-02 + 35 -2.5308806716628196E-01 + 36 -9.7295891128983250E-02 + 37 -3.1358121320990570E-02 + 38 5.8457533110704805E-02 + 39 -7.3846626135543218E-05 + 40 1.3590515174764779E-03 + 41 9.1126866917812555E-05 + 42 7.7413831735007629E-04 + 43 5.8737775289354919E-04 + 44 -8.9455097745814755E-05 + 45 -5.0604177948162524E-05 + 46 2.7728425889976766E-04 + 47 -7.5928753692521152E-04 + 48 1.1178358590996581E-04 + 49 -5.3320423080265510E-04 + 50 -8.2796652482764905E-05 + 51 5.0830537877832966E-03 + 52 -8.5638440973778295E-04 + 53 -8.0926988549136561E-03 + 54 -5.1559222082737282E-04 + 55 -2.5116288903844143E-03 + 56 -8.7361707561920126E-04 + 57 -1.3033723383041448E-03 + 58 1.0883959269862060E-04 + 59 5.0555565451447813E-02 + 60 1.2094677986009937E-02 + 61 7.9096004496487758E-03 + 62 -5.6233067579372987E-03 + 63 3.6927721065979892E-02 + 64 -2.8707155553524539E-03 + 65 -5.8847505307192628E-04 + 66 4.4087899466446724E-04 + 67 4.5749380372028950E-03 + 68 -1.0588664566953438E-03 + 69 1.6426940000585305E-04 + 70 6.3845309842865074E-04 + 71 6.4140191470695915E-04 + 72 -2.6936553018091906E-04 + 73 -8.6090785473730638E-04 + 74 -5.1103297539448894E-04 + 75 7.6614960701732490E-04 + 76 -2.4368799510358745E-02 + 77 1.1695293191434965E-04 + 78 -3.0260721551792673E-03 + 79 -5.3505433793595240E-03 + 80 2.7764967544887727E-02 + 81 2.3012979623424422E-05 + 82 -1.5891552744538032E-04 + 83 2.4878858221589186E-03 + 84 1.5642944139567854E-03 + 85 -4.6298857490869889E-03 + 86 -2.9496545484442335E-03 + 87 -1.5749100135108382E-04 + 88 1.4565303161900626E-03 + 89 1.0313496296485626E-02 + 90 -2.0202980215462210E-04 + 91 6.0328761907168669E-04 + 92 5.3709503797737300E-04 + 93 5.0449924922056286E-04 + 94 -4.8429192976157928E-04 + 95 -3.6506147250299809E-05 + 96 -1.2766181874036394E-04 + 97 6.3023757178959163E-05 + 98 -1.4168810989114580E-04 + 99 4.3804075761426532E-04 + 100 -1.4732850668047444E-04 + 101 -3.5463739478709341E-04 + 102 1.2106716991519948E-02 + 103 -1.8847060726289716E-04 + 104 -1.8307126423084876E-03 + 105 -9.5715488851921757E-03 + 106 -4.4543102325502008E-03 + 107 -2.2441580619438984E-04 + 108 -1.4358089545244145E-04 + 109 -6.0771622636418261E-04 + 110 -2.9242381247914987E-04 + 111 5.8901012743017183E-04 + 112 -5.6276708484960811E-05 + 113 1.5757692896561947E-03 + 114 1.5611244741816209E-03 + 115 -6.6205125796089087E-02 + 116 1.9944810647936108E-03 + 117 -9.8727092785277810E-03 + 118 -2.2116020128765710E-02 + 119 -1.3423468066543692E-02 + 120 -8.6584030583303792E-04 + 121 -1.1597318299328796E-03 + 122 -6.6453953559219539E-04 + 123 -1.1897927817354396E-04 + 124 1.7735242798198661E-03 + 125 4.0791236037390887E-03 + 126 -1.4362576014061022E-03 + 127 1.7807602046105982E-03 + 128 -7.2608977673809536E-04 + 129 6.4281438918916984E-04 + 130 3.8036577960576848E-03 + 131 3.6038958707072786E-03 + 132 -1.9442946234541560E-03 + 133 -1.5774520732915979E-03 + 134 1.7814885043745273E-04 + 135 -8.4209623574747891E-04 + 136 6.6776775703001362E-02 + 137 4.5806271342994720E-01 + 138 1.2368468866676179E-01 + 139 3.5748817374940969E-02 + 140 1.0669012464271019E-02 + 141 -2.4471962473909953E-03 + 142 -4.7172784388072077E-03 + 143 -1.5563871001443783E-03 + 144 -5.1503221323836723E-03 + 145 -4.2601326027355606E-04 + 146 1.2452028055975489E-03 + 147 5.3242973573834780E-04 + 148 1.0187128806006668E-03 + 149 2.9146527518008459E-04 + 150 6.3489001400686629E-05 + 151 1.8402156647995616E-04 + 152 5.9417216160878518E-04 + 153 -7.5543184871999071E-03 + 154 1.2820345447488138E-03 + 155 3.8835353981307554E-03 + 156 -1.4192238017151795E-03 + 157 1.6872851939685306E-03 + 158 6.1379382571344918E-04 + 159 2.6782860021363017E-04 + 160 3.6836574103660978E-05 + 161 1.2124702444769207E-01 + 162 4.9445239636779922E-02 + 163 1.7402365418283303E-01 + 164 -1.7506221444109026E-02 + 165 4.8509679132090235E-02 + 166 -4.3177879060183228E-04 + 167 -1.1816298953389254E-03 + 168 2.5458730752501092E-03 + 169 -1.3159031738530019E-03 + 170 4.6117213755008296E-04 + 171 1.2274788915582309E-04 + 172 4.4482163040641395E-04 + 173 -7.1315783900304495E-04 + 174 -3.0923492015735952E-04 + 175 -7.0086531650465032E-05 + 176 1.3765733017616461E-04 + 177 -1.5979853485499821E-04 + 178 3.6085078647685696E-02 + 179 -7.9165711548587875E-04 + 180 8.9276952190400164E-04 + 181 -1.3619932334051297E-02 + 182 5.2123144442141880E-03 + 183 9.8132582308328828E-04 + 184 4.2399064868346404E-05 + 185 5.5587309904977426E-04 + 186 -4.3042507073496347E-04 + 187 -9.7260577144633561E-04 + 188 3.3938074807790485E-03 + 189 -8.0743109040543734E-05 + 190 1.1452883583899964E-03 + 191 1.5649254937360323E-02 + 192 -5.3335906084779074E-04 + 193 -3.1037662175982606E-03 + 194 -9.7697991314098613E-03 + 195 4.9575101003899794E-03 + 196 -6.9665490133994444E-05 + 197 -9.2876877129625338E-04 + 198 2.3486566997363824E-04 + 199 1.8423168155658181E-03 + 200 -1.9925960233037562E-03 + 201 1.5383640798757186E-04 + 202 3.1043554323855476E-03 + 203 -6.2772076922639035E-06 + 204 -2.0054971656368163E-02 + 205 -3.8703799231125998E-04 + 206 -7.4353072799777117E-04 + 207 -9.5069733220706065E-03 + 208 5.2443950365258819E-03 + 209 -1.4976414970969197E-04 + 210 -5.2629744043886095E-04 + 211 4.3838270396310610E-05 + 212 1.5709148560653075E-01 + 213 8.8479256017883548E-02 + 214 -3.6033694814018458E-01 + 215 -4.1610354327232607E-01 + 216 1.8583956505751821E-02 + 217 5.9000528823449855E-04 + 218 -8.7247167056506288E-04 + 219 3.9658129982868768E-03 + 220 2.1345928054837295E-03 + 221 -2.3708447641211653E-04 + 222 -2.7777472709296689E-04 + 223 1.7329424536364083E-04 + 224 -4.3048709716798217E-04 + 225 -1.1119598627852827E-03 + 226 5.7656659179893812E-04 + 227 5.9578401815883007E-05 + 228 1.3959043547214680E-04 + 229 6.1014539115694637E-03 + 230 -5.0703230754041483E-04 + 231 2.0920426145317637E-03 + 232 -1.1832656748134024E-03 + 233 -2.4299652507835229E-04 + 234 -4.0086108268434979E-04 + 235 7.0263554493108578E-04 + 236 -1.3007287602243174E-03 + 237 -1.0153132674888375E-02 + 238 -7.1832790883651285E-02 + 239 3.8409914081523173E-02 + 240 -1.9364903676173158E-02 + 241 -3.4407689209238729E-02 + 242 3.8085417345568571E-04 + 243 1.6962762186169575E-03 + 244 8.9764024366765745E-04 + 245 -6.4962320989726775E-04 + 246 1.5792030777606552E-04 + 247 4.5320065615556980E-05 + 248 -4.0955108460553008E-05 + 249 1.8109573397650017E-04 + 250 -1.5640790476264323E-04 + 251 -2.8890587579932175E-06 + 252 4.6188631117673765E-04 + 253 4.2581630384906980E-04 + 254 1.1082258118152279E-02 + 255 -1.7397692242741073E-03 + 256 7.0369911609520334E-04 + 257 -3.0586163305340707E-03 + 258 2.2755960794300376E-03 + 259 3.0884475223969047E-04 + 260 7.7571558662416901E-04 + 261 -1.5370050530380092E-05 + 262 2.4112332756203440E-02 + 263 3.7914647704157090E-02 + 264 -3.5072540332879196E-02 + 265 -4.4919125998071852E-02 + 266 -1.8061827121426083E-03 + 267 5.1536320706830046E-04 + 268 5.5809117973141739E-04 + 269 -1.3856849880842506E-03 + 270 -1.2215221183327156E-03 + 271 -7.1748172870391672E-04 + 272 -2.9923834928921605E-04 + 273 -1.9458017659065103E-04 + 274 -2.9298976022706385E-05 + 275 -2.7159491875755723E-04 + 276 -2.2503341928465916E-04 + 277 -2.3975306815024054E-05 + 278 3.9059074858889618E-04 + 279 -8.0244687674598438E-03 + 280 -2.6370585804635879E-05 + 281 7.5068695144326521E-03 + 282 -7.5078838266484605E-04 + 283 -5.5839077222147862E-03 + 284 9.1775872817787614E-04 + 285 -7.0531144261389990E-05 + 286 -1.7114020971673916E-04 + 287 3.6961305072967136E-04 + 288 4.4039238920054761E-04 + 289 2.0981448398604478E-03 + 290 -5.4602536042156564E-04 + 291 -1.6067136258876165E-03 + 292 -3.0181195359138815E-03 + 293 1.1383745221870868E-04 + 294 5.3577470941848218E-03 + 295 3.2261004464280859E-03 + 296 6.9259264462216766E-03 + 297 1.1087067547251167E-03 + 298 1.5007929608847323E-05 + 299 5.7425827239638986E-04 + 300 1.5286690287250103E-03 + 301 -1.7186992804051437E-04 + 302 -3.2639377580805371E-05 + 303 -7.2416189263193361E-04 + 304 -7.1046765636242513E-04 + 305 1.8496168573283941E-03 + 306 -1.4754011441962794E-03 + 307 4.6859965212408546E-04 + 308 -1.5931596142762033E-03 + 309 1.6691185310297658E-03 + 310 -3.5679785866292376E-04 + 311 -1.1548177025152746E-04 + 312 -2.1824581522552982E-04 + 313 -1.4260755706189253E-02 + 314 6.0856280274854596E-02 + 315 -8.7162115313745969E-04 + 316 3.1879384327809207E-02 + 317 -5.0529340729886955E-02 + 318 1.3783931848223836E-03 + 319 -1.0633379742892690E-03 + 320 -8.5804149418448601E-04 + 321 -2.1275114668786963E-05 + 322 8.1717643273114429E-04 + 323 2.7567434834639850E-04 + 324 -6.3523967518241747E-04 + 325 -2.1251740907160885E-04 + 326 -1.0063446610020074E-05 + 327 1.0910196065096288E-04 + 328 -4.4271232673122107E-04 + 329 -4.0322180204791142E-04 + 330 -3.6528886438553891E-03 + 331 -4.8655532789866000E-04 + 332 -6.3714746230439116E-05 + 333 -9.4891425868951201E-04 + 334 -2.8058869456537858E-03 + 335 -4.0806459048930401E-05 + 336 -5.4309042334096318E-04 + 337 -7.0271028222286460E-04 + 338 1.1857861506946704E-02 + 339 3.2021047749163556E-04 + 340 8.2924245121758361E-02 + 341 -1.1784912785951206E-01 + 342 -1.9413345636560500E-01 + 343 -5.4955467788681879E-04 + 344 7.8390077692952129E-05 + 345 -1.5895114471112075E-03 + 346 5.7942031404368025E-04 + 347 -6.7110738032908680E-04 + 348 2.3119211515554725E-04 + 349 -1.4917505794441415E-05 + 350 -1.1724964149713162E-04 + 351 6.6160129101904604E-04 + 352 1.0956727510957853E-05 + 353 3.7500802344753365E-04 + 354 1.7861171539008535E-04 + 355 -1.1660672576874636E-03 + 356 -7.0484887119807245E-05 + 357 -8.7990025888818879E-03 + 358 -1.5227340612001151E-03 + 359 1.9964840377373681E-03 + 360 -3.4094936290550052E-04 + 361 -4.2810826726549209E-04 + 362 -2.4134963340396255E-04 + 363 6.5667650986673176E-04 + 364 -7.4322778398908486E-04 + 365 -1.6221741658964913E-04 + 366 5.2334452399690730E-04 + 367 -1.8095579882581058E-03 + 368 -1.9050599382977405E-02 + 369 3.7774253502189639E-04 + 370 -4.6902525269705619E-02 + 371 -9.9403772047592029E-03 + 372 -1.1637866441972121E-02 + 373 7.0072947137955082E-04 + 374 2.8803625131748140E-04 + 375 3.3247647402227854E-03 + 376 -4.3902673789911906E-03 + 377 -3.7614815422123723E-03 + 378 -1.4258268123662529E-03 + 379 4.7544823648103902E-03 + 380 1.8365372481772698E-03 + 381 -1.9725461942609063E-02 + 382 8.3731927312296695E-04 + 383 1.7997954470383699E-03 + 384 -2.6077341467184687E-02 + 385 1.3142087663220104E-02 + 386 -2.4166140092556101E-04 + 387 -1.5558184428997100E-03 + 388 6.5440296013687094E-04 + 389 -3.6231126102000194E-03 + 390 2.2559629756743853E-03 + 391 1.1097140811966082E-04 + 392 -2.7213803933144394E-03 + 393 -4.2859488478407693E-03 + 394 8.4831762359202853E-03 + 395 5.4490270890826889E-04 + 396 1.7432509290714335E-03 + 397 -3.1102305028807915E-03 + 398 1.4338374312382995E-03 + 399 5.2709303100422454E-04 + 400 -2.0163540943614173E-03 + 401 -6.3727677476594120E-05 + 402 -5.6545862579605137E-02 + 403 3.4212428344132600E-02 + 404 -2.5187623790153241E-01 + 405 1.4316430595543867E-02 + 406 7.2052277837030915E-02 + 407 -1.8681096617821564E-03 + 408 1.6137811541111635E-04 + 409 2.2083396517722266E-03 + 410 -3.4164095194598836E-03 + 411 -7.3787965035892404E-04 + 412 2.2884143013463817E-04 + 413 2.5838049868518142E-04 + 414 8.1954992656869366E-04 + 415 4.9193685546368286E-04 + 416 9.2316793924634944E-04 + 417 -4.1265473972467700E-04 + 418 5.0175676004981021E-04 + 419 3.7242923980260509E-02 + 420 -8.6941231173878611E-04 + 421 -5.5286664197072887E-03 + 422 -8.3358286307238221E-03 + 423 -1.9370946919702221E-02 + 424 -3.4916164576521990E-04 + 425 6.3336168753359517E-05 + 426 -2.0712519170227282E-03 + 427 -4.0102819952652991E-03 + 428 -2.6763588846705818E-03 + 429 -3.8680323211735888E-04 + 430 -1.0658741412736812E-03 + 431 -2.9492241581015397E-04 + 432 1.5189952215829436E-02 + 433 -4.2683218304840492E-04 + 434 -4.3046374711642335E-03 + 435 8.2648632174729779E-03 + 436 3.0222161688527047E-03 + 437 7.9290679169065023E-04 + 438 8.2091310792488186E-04 + 439 5.0357609923973887E-04 + 440 -2.0995204542934437E-03 + 441 -1.4386191018767378E-04 + 442 1.1495592547718365E-03 + 443 -7.1644819397257027E-04 + 444 1.0957366602534825E-03 + 445 -1.3399726355022989E-02 + 446 1.1781565609109142E-03 + 447 1.5968709122847484E-03 + 448 3.2718553969413147E-04 + 449 -7.6735518854334139E-03 + 450 1.1788146579964443E-03 + 451 -2.7734755579187563E-06 + 452 3.3738082789728016E-04 + 453 2.6057157592803853E-01 + 454 1.2379721733582565E-01 + 455 3.7218591498246488E-02 + 456 -2.0514607608422664E-02 + 457 -8.9144150443346157E-02 + 458 -2.8743102350739487E-03 + 459 4.3870748469992612E-04 + 460 -8.4314863674790012E-04 + 461 1.1456990610510648E-03 + 462 2.0158091912087675E-03 + 463 -8.2491608064239917E-05 + 464 -2.7126991681293604E-04 + 465 -4.5261301154011461E-04 + 466 7.1776072735673182E-04 + 467 7.2362664952719565E-05 + 468 -1.8089394123567567E-04 + 469 4.8190647985889041E-04 + 470 -6.8351640502878168E-03 + 471 3.0116311875577014E-03 + 472 -8.3562626078656824E-04 + 473 -4.4253523992865136E-04 + 474 1.0488903904319901E-03 + 475 1.2280568034771179E-03 + 476 -1.5698828422860583E-03 + 477 3.3773847415389457E-05 + 478 6.3390725959267036E-02 + 479 1.2127862569060719E-03 + 480 -4.6589214198367014E-02 + 481 -5.8351193720925433E-02 + 482 1.8123787864968526E-02 + 483 2.0686627268747624E-04 + 484 1.2532741786417502E-03 + 485 -1.4391687971727040E-05 + 486 -8.1357234112526588E-04 + 487 -1.0706276616082339E-03 + 488 -2.7115508861395220E-04 + 489 3.4115057873598792E-04 + 490 4.2457879457963885E-04 + 491 8.3237994497607618E-04 + 492 -1.3889428617465532E-04 + 493 -3.1213390588547625E-04 + 494 -3.3976967414300717E-04 +Ene= -4.7171467791E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -4.5287124860714121E-03 + 2 1.2119311970040505E-03 + 3 -9.4737026076105891E-04 + 4 1.7985115162182240E-03 + 5 -5.4609177179428090E-04 + 6 -7.5216892931141515E-04 + 7 1.2527753057021468E-03 + 8 -2.7857620611197454E-04 + 9 -6.2784592120678252E-03 + 10 -1.4674385545386031E-03 + 11 1.9415953955546714E-02 + 12 -2.7619116940217115E-02 + 13 7.1920356352800511E-03 + 14 -7.5475377595243559E-04 + 15 3.1692887830597554E-04 + 16 1.2880860227749923E-03 + 17 1.3714072884533197E-03 + 18 -1.6494031680311927E-03 + 19 2.1994876162318995E-04 + 20 5.9345509199570338E-04 + 21 -8.0648107737324288E-05 + 22 7.5107690268757678E-05 + 23 -8.2936379865725714E-04 + 24 -4.2217147628529879E-04 + 25 4.4311882276393863E-04 + 26 9.8035462404645682E-03 + 27 -1.2120266121807034E-03 + 28 -1.8732930082085725E-03 + 29 -3.4043686643356903E-03 + 30 1.4823458327317437E-03 + 31 5.9182109421376870E-04 + 32 4.9800237686775505E-06 + 33 8.1222179087810206E-04 + 34 9.8533843601747079E-02 + 35 6.8722382513243807E-02 + 36 5.2863015517952312E-02 + 37 -9.2265601637044489E-02 + 38 -2.1847962014098676E-01 + 39 -5.3273359965436324E-04 + 40 9.4035003753623525E-04 + 41 -7.9283702441198633E-04 + 42 -1.5058382766914547E-03 + 43 2.5931931578465654E-05 + 44 -1.2299656959867449E-04 + 45 -6.8374941092931942E-04 + 46 6.1228569798379322E-04 + 47 -3.2910443754161375E-05 + 48 -1.8379920097729354E-04 + 49 5.5187920448958793E-04 + 50 -7.1916510679270417E-05 + 51 1.3664528038584893E-02 + 52 -1.5824985124246694E-03 + 53 1.5247278161792213E-05 + 54 -2.8511956969018018E-03 + 55 9.2433425305351300E-04 + 56 1.5238909270479540E-03 + 57 5.0059791636467048E-05 + 58 -1.7620128449856349E-03 + 59 2.0451488289632280E-02 + 60 2.6972238815885487E-02 + 61 -2.5231248196055319E-02 + 62 -1.9557882051889602E-02 + 63 -2.4381437659135856E-02 + 64 1.1516454465399922E-03 + 65 -1.4849064961115358E-03 + 66 -5.1224575049317296E-04 + 67 2.3861605769477307E-04 + 68 2.4566458143540767E-03 + 69 3.1379703108292155E-04 + 70 -4.3871464245320998E-04 + 71 -2.1257900643155265E-04 + 72 -1.7648980955153125E-04 + 73 -3.4450901039399025E-04 + 74 -1.9722791069284472E-04 + 75 2.4998262143565727E-04 + 76 7.2770425174429392E-03 + 77 -1.0025525388088740E-04 + 78 -5.7999093328542860E-04 + 79 5.1933491903495034E-06 + 80 -2.4612012795611593E-02 + 81 2.5833235282127079E-04 + 82 -9.8475755546468266E-05 + 83 -1.7198072745383717E-03 + 84 -1.8445377517919549E-03 + 85 2.6259016382893384E-03 + 86 1.2343501027074666E-03 + 87 -2.8487638554872650E-04 + 88 -1.2955986001853792E-04 + 89 3.0274606762398532E-03 + 90 -7.6910382586705339E-05 + 91 1.6973801825394528E-03 + 92 3.6292406312498976E-03 + 93 -4.1629660796865635E-03 + 94 3.3258942563782300E-05 + 95 2.2995100697486328E-04 + 96 -8.9134098664393464E-04 + 97 -5.4770833701816473E-04 + 98 4.2657205778385253E-04 + 99 -5.1383049866011998E-04 + 100 -7.1518757623246154E-04 + 101 -3.0200990494991519E-04 + 102 -3.2485111898112928E-02 + 103 4.2093430743131731E-04 + 104 -4.4103420996847737E-03 + 105 1.1252577024677609E-02 + 106 7.3488657459578506E-03 + 107 -2.2150939334759131E-04 + 108 -7.3359916106879985E-05 + 109 -1.6216833600487610E-04 + 110 1.1179585103604053E-05 + 111 -1.4215196736095501E-03 + 112 -3.2308377613953892E-04 + 113 -1.0919563226139454E-03 + 114 -1.8552692101829560E-03 + 115 -1.1457703494441120E-02 + 116 2.1843908674734955E-04 + 117 6.8440636595761403E-03 + 118 3.5692949867662718E-03 + 119 -7.0837754428096696E-03 + 120 5.6278842195656479E-04 + 121 -6.7917450347315428E-04 + 122 -2.1105210915531015E-04 + 123 1.2319962234344647E-03 + 124 -1.2055619383647144E-03 + 125 1.5361312364666561E-04 + 126 7.7077513655460892E-05 + 127 -4.2180989679644970E-04 + 128 1.3059290702604098E-02 + 129 2.0028248175220093E-04 + 130 1.0789894292950304E-02 + 131 -7.6704963085069766E-03 + 132 1.7452184656229291E-04 + 133 -1.1634711959835344E-03 + 134 8.6260866904857192E-04 + 135 8.1827184322635240E-05 + 136 -5.2370054319150990E-02 + 137 2.3362756844145938E-01 + 138 -3.0994978469203360E-01 + 139 -9.1720128195239253E-02 + 140 1.5528206991216431E-01 + 141 -5.3858082077330499E-04 + 142 -1.9225131180187836E-03 + 143 1.0798680504369490E-03 + 144 2.7673905279359877E-03 + 145 -4.2199656758980719E-03 + 146 -4.1296522399143759E-04 + 147 1.4294735459280901E-04 + 148 8.3212080229444767E-04 + 149 -2.3746892222590823E-04 + 150 1.5475133954653774E-03 + 151 -4.7506837997021272E-04 + 152 -7.9628242881532292E-04 + 153 1.2839819644428322E-02 + 154 -1.6469117416680558E-03 + 155 -3.5918358560629964E-03 + 156 -4.9599150683403774E-06 + 157 -4.6456840852040587E-04 + 158 5.7012068013016207E-04 + 159 4.1643228116762177E-06 + 160 1.0336758405951327E-03 + 161 -1.3064120256613852E-02 + 162 -4.0719957220884284E-02 + 163 -7.6367682646244800E-02 + 164 1.4214260388688163E-01 + 165 9.1592825682172713E-03 + 166 -1.0349423432810024E-03 + 167 -1.0207809274983552E-03 + 168 -5.0747580526432556E-04 + 169 2.6726504057829970E-03 + 170 -4.0846800113716967E-04 + 171 9.5197071525881995E-05 + 172 9.1903218220936253E-05 + 173 2.9852478309879890E-04 + 174 -1.7391931636046205E-04 + 175 1.1380205873194203E-04 + 176 -1.9531827982599944E-04 + 177 3.3977968254040035E-04 + 178 -8.2381286724612271E-02 + 179 1.6790790324482676E-03 + 180 5.2223543047499460E-03 + 181 1.1897349678189220E-02 + 182 -1.6499050349993334E-02 + 183 -7.4738736656059933E-04 + 184 5.0656111753618401E-04 + 185 -5.8123327086593527E-04 + 186 1.9629193743941750E-03 + 187 7.4690109056518633E-04 + 188 -3.2184299195891059E-03 + 189 2.0681479801578913E-04 + 190 9.4666713015078359E-04 + 191 -7.6166699838839155E-02 + 192 1.3331608369654988E-03 + 193 -2.0252017375899493E-02 + 194 1.4217864145495947E-02 + 195 -9.6999923854189443E-03 + 196 -1.5180396813737511E-03 + 197 2.6303852893953788E-05 + 198 -9.8320044210236106E-04 + 199 -1.7398794540130044E-05 + 200 -5.1672288042303709E-05 + 201 -5.7634672421951025E-04 + 202 -5.1502408518595171E-04 + 203 -5.3269262879670929E-03 + 204 1.4727117739059334E-02 + 205 -1.5151087949962909E-04 + 206 7.0705058842766384E-03 + 207 -2.9390728874562188E-03 + 208 -2.4964101785384910E-03 + 209 2.4031397158644761E-04 + 210 -2.0985313352296048E-03 + 211 -8.1695301049609730E-04 + 212 1.0965769461348283E-01 + 213 1.6387455964022610E-03 + 214 2.5168297972591280E-01 + 215 -1.3347957584625009E-01 + 216 -3.9688857339430833E-01 + 217 2.5746687068100805E-03 + 218 9.9990535879016787E-04 + 219 -2.0284649389835183E-03 + 220 2.1890324420287500E-03 + 221 -6.6862845797296597E-04 + 222 -1.0719178606580081E-03 + 223 -3.5763696881652444E-04 + 224 1.3446317861375823E-03 + 225 8.5760254926658768E-04 + 226 -6.9828248107842649E-04 + 227 5.6947991146345410E-04 + 228 3.3914716517983350E-04 + 229 -1.3652230779687330E-02 + 230 1.7429454917256026E-03 + 231 -3.9354221987105797E-05 + 232 1.6959358565047365E-03 + 233 -3.5693168909392160E-03 + 234 -1.8824973890705558E-03 + 235 -2.2432562450648975E-03 + 236 -2.8305846981079816E-04 + 237 -5.4418948477591218E-02 + 238 -2.6518153961945717E-02 + 239 -6.7939583959086308E-02 + 240 1.2688736916117135E-01 + 241 1.1060068526272007E-01 + 242 -1.4631664227064774E-03 + 243 1.3609560302051376E-03 + 244 6.2500351317856947E-04 + 245 1.5295301260095566E-03 + 246 2.2011653806934331E-03 + 247 2.7269910156819754E-04 + 248 9.8464539485745677E-04 + 249 7.4880790676323577E-04 + 250 7.3869400390254465E-04 + 251 -3.7450523001720019E-05 + 252 -1.1234662810618683E-03 + 253 -5.2262627534439582E-04 + 254 -1.3440517796698478E-03 + 255 1.2539106975229606E-03 + 256 -5.6981016662636616E-04 + 257 2.1655264529826220E-03 + 258 -1.9280221305063988E-03 + 259 -3.5996180526539685E-04 + 260 -4.9883374657141543E-04 + 261 -4.4926639710152975E-04 + 262 5.1741786816420061E-02 + 263 -1.2549439369795048E-02 + 264 1.2155753210958617E-03 + 265 3.6568098763670662E-02 + 266 -2.3560664760764811E-04 + 267 2.1634746403676680E-03 + 268 -1.2331108532239260E-04 + 269 1.9056610848518541E-04 + 270 7.1127923477028751E-04 + 271 4.9534643281648992E-04 + 272 -3.4438171645962611E-04 + 273 1.0620145118449109E-04 + 274 -7.0251260661205884E-04 + 275 3.8629778004722567E-04 + 276 3.8513805698658481E-04 + 277 2.5360485983509076E-04 + 278 -3.8199940801891352E-04 + 279 -1.4854986884327487E-02 + 280 1.9348934639967484E-04 + 281 -1.1923127099701149E-02 + 282 -3.3836887732127036E-03 + 283 2.2125182694023690E-03 + 284 3.0484201359678461E-04 + 285 -1.1498257741153199E-04 + 286 -4.5018694354405391E-04 + 287 4.9929458063864432E-04 + 288 2.2695546044410064E-03 + 289 6.1538144861515622E-04 + 290 -1.0684152482063963E-03 + 291 2.4894588048260564E-03 + 292 2.6376082677133480E-02 + 293 -1.8044945643671783E-04 + 294 6.6307953811410225E-03 + 295 -1.1715746604146341E-03 + 296 -5.4686960805572530E-03 + 297 1.9750441266351389E-04 + 298 -2.8236659505562222E-04 + 299 -5.3713538958728973E-04 + 300 -8.0013948747360961E-04 + 301 1.0758239056599616E-03 + 302 -1.3463764641498773E-04 + 303 -1.0480044172806737E-03 + 304 1.6581224179167288E-04 + 305 -8.6945753346324914E-03 + 306 1.5933028458461113E-03 + 307 -1.5284166905304537E-03 + 308 -2.5177304558902290E-04 + 309 3.1962465506006252E-04 + 310 -1.5191147771573584E-03 + 311 9.6668673257223369E-04 + 312 1.4994665743353580E-03 + 313 1.6248613236165332E-02 + 314 -3.1721341299946741E-02 + 315 1.6199448753657385E-02 + 316 5.8175828781787731E-02 + 317 -5.3297881742045992E-02 + 318 1.2666801614217404E-03 + 319 -1.9693426974095839E-03 + 320 -1.4919187348769522E-04 + 321 5.1159608994103521E-04 + 322 -1.8495180727033118E-03 + 323 -1.6784840320009870E-04 + 324 -5.2326111364311880E-04 + 325 -1.7303827627434428E-04 + 326 -2.0816388648310768E-05 + 327 2.7300071196847991E-04 + 328 -3.0865671286831254E-04 + 329 5.8760839551989005E-05 + 330 2.0311734604061740E-03 + 331 -1.8501149202149330E-04 + 332 -1.5782920827529047E-04 + 333 -2.1708871776865068E-03 + 334 3.7475048522529098E-03 + 335 -6.6193574686335545E-04 + 336 -3.0641313841294848E-04 + 337 -1.0604021827915575E-03 + 338 1.3975567175825487E-01 + 339 4.6610909694263514E-02 + 340 1.7866953791476611E-02 + 341 -8.1562410411625513E-02 + 342 3.2355375254421809E-02 + 343 2.3051549818002763E-03 + 344 -2.0072330290335082E-04 + 345 -9.9210153669610467E-04 + 346 -1.3555723744918742E-04 + 347 -4.8388118609544230E-04 + 348 2.8946503978224042E-04 + 349 -1.7722837157915590E-04 + 350 -4.7276649251469887E-05 + 351 3.3284702647314442E-04 + 352 -3.4888234685748518E-04 + 353 1.7863520511812481E-04 + 354 -3.8395647279598907E-04 + 355 1.8988826381874546E-02 + 356 -6.9619103705556920E-04 + 357 4.3740732981972603E-03 + 358 -1.8299497947771734E-02 + 359 -1.9266219162581864E-03 + 360 4.4001925124672377E-04 + 361 1.2610473899742929E-04 + 362 -5.9983950197309722E-04 + 363 -4.6468179878708671E-04 + 364 1.6816082831328447E-03 + 365 -2.7652758079412154E-03 + 366 7.2264898582237750E-04 + 367 -1.2361289210085543E-03 + 368 5.0982051545233324E-02 + 369 -3.4113788994512067E-04 + 370 2.8240386977165365E-03 + 371 2.9356929904330309E-02 + 372 -7.6051382433338838E-02 + 373 -1.5930430846636118E-03 + 374 -1.2124794243022037E-04 + 375 -4.6346863117730544E-04 + 376 -5.1360702721212079E-03 + 377 7.3884246479820901E-03 + 378 -1.7928827825248982E-03 + 379 3.1024534243627287E-04 + 380 -3.9855882319200057E-03 + 381 2.5913579988572934E-02 + 382 -4.1226059543499440E-04 + 383 6.3328348389467466E-04 + 384 -3.9547374733675724E-03 + 385 2.6595697905540391E-02 + 386 7.4358211179962946E-04 + 387 -1.3687352186948184E-03 + 388 2.1598542986998774E-03 + 389 -4.9788648721978681E-03 + 390 5.8398193111167474E-03 + 391 -2.3297830712361600E-03 + 392 1.0770307343736262E-04 + 393 -1.7441722058078378E-03 + 394 -2.9193306573355622E-02 + 395 -1.5772303794222740E-04 + 396 -1.0895537689288847E-02 + 397 1.2308594592735650E-02 + 398 1.5458671319890512E-03 + 399 1.5999656715186936E-03 + 400 6.7541879161143873E-04 + 401 3.9048618074891996E-04 + 402 -4.2627145669431221E-01 + 403 1.2890226474711872E-01 + 404 -9.9965299062805046E-02 + 405 -5.0011745713261911E-02 + 406 -1.4766788921765450E-01 + 407 2.2198051969395840E-03 + 408 2.2125774436994311E-04 + 409 -1.7024539321412865E-04 + 410 -6.9817062613281391E-04 + 411 3.9119079706559003E-03 + 412 -4.2544132505830317E-04 + 413 2.1796671981676364E-04 + 414 -3.2348665813336166E-04 + 415 -4.0402950954239328E-04 + 416 5.5625172777777569E-05 + 417 8.8963282368999534E-04 + 418 7.2992742164117912E-04 + 419 2.7625833206668532E-02 + 420 -4.4911615328055264E-05 + 421 1.1503969841192793E-03 + 422 -2.2163347053113885E-02 + 423 -1.2185878371260016E-02 + 424 1.6601814561393379E-04 + 425 -2.3817244338843625E-03 + 426 3.6989794470246372E-04 + 427 -2.1071119148551526E-03 + 428 -1.2742984045610965E-03 + 429 -5.0079647456818437E-03 + 430 8.4833044181661704E-04 + 431 -3.4799190549713709E-03 + 432 5.2443973203604470E-03 + 433 -1.7335647226208098E-04 + 434 -8.3058317303010682E-04 + 435 -3.8587110795729689E-04 + 436 -5.5475084018594117E-03 + 437 6.5091831683187695E-05 + 438 -3.2658155295546266E-04 + 439 7.4674825611589931E-04 + 440 6.8334060189148473E-04 + 441 -1.2548960290140704E-03 + 442 1.4082270371461834E-03 + 443 2.0972353821208693E-06 + 444 1.6498958774118693E-04 + 445 -2.2563198936759413E-02 + 446 2.1949255404816244E-04 + 447 -6.6298327188102878E-03 + 448 -8.4563791723198042E-03 + 449 -3.7803195387947157E-03 + 450 -4.1666260105246956E-05 + 451 7.7652883452424730E-04 + 452 -6.5138429548075474E-04 + 453 -8.8060461151589400E-02 + 454 8.9903471573720833E-02 + 455 5.7327354364494140E-03 + 456 -4.8907355437433596E-02 + 457 2.5331120834659387E-01 + 458 -1.6033588658291265E-03 + 459 -1.8037897013807949E-03 + 460 2.8080863051073977E-03 + 461 4.9956894377607133E-04 + 462 -3.3887620725704557E-03 + 463 -7.7241944501406368E-04 + 464 -3.5897261622497073E-04 + 465 5.7253444110373544E-04 + 466 -4.1187357177478447E-04 + 467 7.4544355549670607E-04 + 468 -5.9411287335072623E-06 + 469 -5.1790132302497599E-04 + 470 -4.9305463384554113E-03 + 471 6.2786549874527784E-04 + 472 -1.5702287659146207E-03 + 473 -1.2920699867118397E-03 + 474 -1.8622345959937751E-03 + 475 4.1363933752534284E-04 + 476 -4.5679531751969025E-04 + 477 -4.8740728672118335E-05 + 478 2.4187128638401473E-02 + 479 -5.7282504291018950E-02 + 480 -3.9664225588363832E-03 + 481 -8.1816342623968145E-03 + 482 -7.9834368719309927E-03 + 483 -8.1446582669963039E-05 + 484 -1.1952744205654599E-03 + 485 8.4374817383229273E-05 + 486 -4.2491587443262255E-04 + 487 -1.1305413779081673E-03 + 488 3.2039705577251415E-04 + 489 1.3555487495554589E-04 + 490 -1.6858034500914144E-04 + 491 -1.3495475516006931E-04 + 492 1.2312959074826081E-04 + 493 -1.0502972085766014E-04 + 494 -3.4147158707296683E-04 +Ene= -4.7112157136E-01 +Spin= Alpha +Occup= 2.0000000 + 1 4.0582775058394518E-03 + 2 -1.4427688562209664E-03 + 3 1.0909070661735177E-03 + 4 3.3919044813426921E-03 + 5 1.8270765185479561E-03 + 6 6.6947502887804080E-04 + 7 -7.5724247074716779E-04 + 8 1.2334745815407750E-03 + 9 2.5812311922909260E-02 + 10 -8.3520557811815020E-03 + 11 -2.2421165142943022E-02 + 12 5.6748583321702128E-02 + 13 2.7947616814613763E-02 + 14 3.4244794534553792E-04 + 15 -1.4753478927334470E-03 + 16 1.3862927564456469E-04 + 17 -8.4472108491728609E-04 + 18 -1.0840123336653413E-03 + 19 -3.4142457442462619E-04 + 20 -5.2571835228312696E-05 + 21 1.8591638021546306E-04 + 22 3.6069906963758060E-05 + 23 2.6496773264052270E-04 + 24 -9.4655288787207656E-05 + 25 4.9256877298945953E-04 + 26 -8.1435294768542974E-03 + 27 6.5728194612625526E-04 + 28 -2.0419322013008009E-03 + 29 1.0410974779415998E-04 + 30 -1.4077968778622610E-03 + 31 1.0870735066137887E-04 + 32 2.1132377145728597E-03 + 33 -1.9157690399884437E-03 + 34 1.3542819371989093E-01 + 35 -2.1117665377173500E-01 + 36 -7.9442984966097127E-02 + 37 2.6902637385477460E-03 + 38 1.1426488670663519E-01 + 39 -3.9145518357794801E-04 + 40 2.9437247088760048E-03 + 41 1.7160120529357962E-04 + 42 -1.9459348802953699E-04 + 43 -1.1190848700657465E-03 + 44 7.1653454068249434E-04 + 45 -1.2357980951936296E-04 + 46 3.3613061273764260E-04 + 47 -4.4661689178062493E-04 + 48 7.9384749620283637E-05 + 49 7.6809683789598611E-04 + 50 5.1272442681851347E-04 + 51 -7.2918259131050690E-03 + 52 4.1047754579309477E-04 + 53 -3.2228040065160633E-04 + 54 -2.0474766638445994E-03 + 55 1.1768439908669778E-03 + 56 -2.3172305364765630E-05 + 57 -9.3424773928760967E-04 + 58 3.2732562305062092E-04 + 59 3.8740094847039505E-03 + 60 -1.4286297879765056E-02 + 61 -1.1257146653823383E-02 + 62 -3.5934962641824939E-03 + 63 4.0784875292679924E-04 + 64 5.3827853526724990E-04 + 65 1.8636571842123970E-03 + 66 1.1989428485514651E-03 + 67 8.9475323786050937E-04 + 68 6.1513972609380824E-04 + 69 -1.3400716808154611E-04 + 70 1.3037129286195352E-04 + 71 5.1484123888952257E-04 + 72 -2.2969367652003086E-04 + 73 1.9984048644338572E-04 + 74 2.9843340126978131E-04 + 75 1.0912275834811716E-04 + 76 -2.1765261940032005E-03 + 77 -3.0443864791826128E-04 + 78 4.5029167673104080E-04 + 79 -7.0275216154244901E-03 + 80 4.4740716681785565E-02 + 81 -4.1844323237745154E-04 + 82 -5.6520643272221262E-04 + 83 4.9390220668961418E-03 + 84 2.0147243349067731E-04 + 85 -8.1778528770674042E-03 + 86 -3.7387379277013777E-03 + 87 -9.0226961708300875E-04 + 88 1.8385516971261740E-03 + 89 1.2968650249798349E-02 + 90 -1.3721858414806557E-04 + 91 -3.0267630224954660E-03 + 92 -5.7020432222134034E-03 + 93 3.2476816168429934E-03 + 94 -1.0421044899994244E-03 + 95 -4.4013694523117397E-04 + 96 5.5939374891753177E-04 + 97 5.2124323045195094E-04 + 98 -4.6156129491630371E-04 + 99 5.3474211986993966E-04 + 100 1.0844520400942314E-03 + 101 -1.0385629903461596E-04 + 102 1.0020376838367949E-02 + 103 -2.8517615668738761E-04 + 104 -6.0760716016831429E-04 + 105 -1.3555737356773366E-02 + 106 8.4605261913175498E-03 + 107 -6.4612551246773350E-04 + 108 4.1922864762426031E-05 + 109 3.4667765176323723E-04 + 110 1.8198571825230278E-03 + 111 -1.8033401082984952E-03 + 112 2.3184587954722734E-04 + 113 1.5918218134370317E-03 + 114 1.9502145690700936E-03 + 115 5.8961997044409981E-03 + 116 4.7759228553224340E-06 + 117 8.3549040738453255E-03 + 118 -6.3921375573780422E-03 + 119 9.7501600039799727E-04 + 120 5.0045607516149501E-04 + 121 4.6347855610149018E-04 + 122 1.7826728312752928E-04 + 123 2.5625422116369020E-04 + 124 -1.0644717586022992E-03 + 125 1.1663296724774947E-03 + 126 2.0887564406100133E-04 + 127 -1.8032498424060109E-03 + 128 4.0431776641409855E-03 + 129 4.1928593958781384E-04 + 130 -1.7013585949556570E-03 + 131 2.2723585926793543E-03 + 132 -3.5347781109898121E-03 + 133 -4.8687167002217624E-04 + 134 1.9487198432698383E-03 + 135 -1.6737809448329388E-03 + 136 -1.4638706734893989E-01 + 137 4.3614860521728555E-02 + 138 -6.8664676793826207E-02 + 139 -1.3479019022590083E-01 + 140 -1.3770736544430495E-01 + 141 3.2308739927165275E-03 + 142 7.0109501198037253E-04 + 143 -4.5954605150243938E-04 + 144 4.9536067691782230E-03 + 145 2.2363351444157826E-03 + 146 1.4053495597442323E-04 + 147 3.0344179296199972E-04 + 148 -1.3215901520360786E-05 + 149 6.9962131055188639E-04 + 150 -5.0281863349192464E-04 + 151 6.7358330497829593E-04 + 152 2.0557826359140501E-04 + 153 -7.9641023156183763E-04 + 154 2.0165874791631486E-03 + 155 -5.0200941593974927E-03 + 156 -1.2962118542248309E-03 + 157 1.5283710371669778E-03 + 158 -3.6531955565314060E-04 + 159 2.6778717090966751E-04 + 160 -7.6079754525297928E-04 + 161 -5.2265987528224714E-02 + 162 -2.5205860535781451E-02 + 163 1.1358432889094429E-01 + 164 9.0193724490867683E-02 + 165 1.6471515404137719E-02 + 166 -1.0313399959312203E-03 + 167 6.3724237623218581E-04 + 168 8.1554583030394353E-04 + 169 2.4034182341781695E-03 + 170 -1.0392226239580980E-04 + 171 1.9367823590545242E-05 + 172 -3.1730844077373104E-05 + 173 -6.6049411997764834E-05 + 174 -3.9002179586425308E-04 + 175 1.1657864836812283E-04 + 176 -4.3216254491839175E-04 + 177 -1.5120169655518799E-05 + 178 -6.5280935081787131E-02 + 179 1.5259218095336313E-03 + 180 1.3386108316568406E-02 + 181 -2.6600238278228381E-03 + 182 -1.4418713755996144E-02 + 183 7.8870694144619522E-04 + 184 -1.2360579807183748E-04 + 185 -1.1603862439661630E-03 + 186 2.5877827072742026E-03 + 187 -1.1075452303763969E-03 + 188 2.3593946644614479E-04 + 189 1.6969335157808851E-03 + 190 4.7150829906958505E-04 + 191 2.3801932414022217E-02 + 192 -3.4263249120894623E-04 + 193 5.6362057580949263E-03 + 194 -2.4273319394375712E-03 + 195 1.4727999946832898E-03 + 196 5.2544229193581243E-04 + 197 -3.6286774717926080E-04 + 198 -2.7910821740732589E-04 + 199 -9.5219316385980869E-04 + 200 7.1188841254711684E-04 + 201 -5.7167672902394594E-04 + 202 5.0402056827852167E-04 + 203 6.5859543579815970E-04 + 204 2.6089138991509421E-03 + 205 -8.0605108303256673E-04 + 206 -3.5084174105813582E-03 + 207 -9.3042357763783640E-05 + 208 3.0269618711126008E-03 + 209 -4.6818964180323197E-04 + 210 -1.0444050160408052E-03 + 211 1.0233723429315172E-03 + 212 1.0670467200953632E-01 + 213 1.0764114840290119E-01 + 214 2.2430602284435591E-01 + 215 5.3796158988311520E-02 + 216 5.5689238768605050E-02 + 217 -4.4724722016220721E-04 + 218 5.2377789878435641E-04 + 219 1.3831110939899083E-03 + 220 8.2287139067918765E-04 + 221 -1.9044833793559017E-03 + 222 3.0837787485939828E-04 + 223 -3.9844087788937975E-04 + 224 -1.2370940746637708E-04 + 225 -3.9998427521898355E-04 + 226 -1.0361716514004998E-04 + 227 1.6747484058441623E-04 + 228 -1.8163329316234913E-04 + 229 -2.3410443455020510E-03 + 230 -8.9685829781992188E-04 + 231 8.7613093067990568E-03 + 232 2.0796430168276646E-03 + 233 -5.3257781599416838E-03 + 234 3.6752856003032858E-04 + 235 2.2726049324116797E-03 + 236 5.1932377135633009E-05 + 237 1.0636760279984897E-02 + 238 -1.7158724127815922E-01 + 239 2.6158708849356269E-02 + 240 -1.5515821254919535E-01 + 241 1.0744362583307182E-01 + 242 -4.5682527306089744E-05 + 243 1.5090031559723692E-03 + 244 1.0525635098767162E-03 + 245 2.9981572930251106E-04 + 246 -4.6496197099224097E-03 + 247 -6.2774748722372307E-04 + 248 -5.3474270972660078E-04 + 249 -8.4461946339223584E-04 + 250 -5.6128871678239988E-04 + 251 -1.5149617598371554E-03 + 252 1.0296781153982721E-03 + 253 2.6423545612805127E-04 + 254 -1.3040771835908328E-02 + 255 6.8182391334660757E-04 + 256 8.4208395631307927E-04 + 257 -3.6052841489006348E-04 + 258 8.1681170219178485E-03 + 259 -3.8865062554493561E-04 + 260 3.1174111112580982E-04 + 261 -4.4043562370264036E-05 + 262 -1.3170725999791930E-01 + 263 -1.9267084720654346E-02 + 264 1.0868972523904055E-02 + 265 -1.1621796388620851E-02 + 266 -2.8674026928729474E-02 + 267 -3.3195737693115200E-03 + 268 -8.2565508974300904E-04 + 269 -1.3270383313674821E-03 + 270 5.7790957548867097E-04 + 271 1.8699532274551095E-04 + 272 1.8056033404934493E-04 + 273 -7.4116750348007069E-05 + 274 8.3044867136102679E-04 + 275 -4.2753532883159037E-04 + 276 -6.1386201453340059E-06 + 277 -4.2232122364244556E-05 + 278 -2.6856039994133823E-04 + 279 8.4843586349270944E-02 + 280 -1.9760816172545220E-03 + 281 2.4017865519292251E-02 + 282 2.1488300507791325E-02 + 283 1.0580443306178156E-02 + 284 7.4575386302538774E-04 + 285 -6.7262805972905697E-04 + 286 1.8432355558695428E-03 + 287 3.2114248220591296E-05 + 288 -2.1662582475266896E-03 + 289 -3.6599286708472443E-03 + 290 2.5034600087209726E-03 + 291 -5.7096564063563353E-03 + 292 -2.7211058969782001E-02 + 293 1.7308908342491668E-04 + 294 -3.2530118312621807E-03 + 295 -1.9323625681655855E-03 + 296 1.5147964603297267E-03 + 297 3.9209729468048113E-04 + 298 -1.1657952860518411E-03 + 299 -8.8780091641475203E-04 + 300 5.8669888668409819E-04 + 301 -3.7195435701274567E-04 + 302 1.0636859275157749E-03 + 303 -8.7606110581787250E-04 + 304 5.7632172582198864E-04 + 305 -1.1084459481682032E-02 + 306 -2.6560159417377791E-04 + 307 1.2886855740158317E-02 + 308 2.6380595701200895E-03 + 309 -4.0083447102128821E-03 + 310 2.2780366120892159E-03 + 311 -9.1353583367859042E-05 + 312 4.2996215981195923E-04 + 313 4.0001681515880435E-03 + 314 -7.1875431064152742E-02 + 315 -3.9983845586235182E-02 + 316 6.1868067453239237E-02 + 317 3.8542660630115445E-02 + 318 7.8916740795484819E-04 + 319 6.4163505227095834E-03 + 320 1.5933852084785791E-03 + 321 -2.4681537729974662E-03 + 322 5.4684956134819099E-04 + 323 4.8022092826939435E-04 + 324 1.2510568372459592E-03 + 325 2.8748097042103612E-04 + 326 -9.9251189988225786E-04 + 327 -2.5065117694242968E-04 + 328 8.4496677174296386E-05 + 329 -4.8630521870900070E-04 + 330 -3.1501507253017504E-04 + 331 7.1622797978827769E-04 + 332 -2.8606705138949935E-03 + 333 2.4107652979091765E-03 + 334 -5.2614753612096922E-03 + 335 -7.8842922106944757E-04 + 336 1.1561231013817528E-03 + 337 -1.2783458834696075E-03 + 338 -6.9427003243784868E-02 + 339 4.3946843756394509E-02 + 340 -1.5279934994591049E-02 + 341 1.0907467094322600E-01 + 342 -8.2717120293663113E-02 + 343 -1.6360170049256168E-03 + 344 5.6216200986843263E-04 + 345 -1.1206196051820995E-03 + 346 -8.4562891266814339E-04 + 347 -2.2692649903400470E-03 + 348 -6.2107739296592536E-04 + 349 -2.7052956891162927E-04 + 350 -7.8225209766667040E-05 + 351 2.7120474276049134E-04 + 352 5.2513019947741208E-04 + 353 8.3679749936213521E-04 + 354 -5.7699105824013700E-05 + 355 -2.7803716394594748E-03 + 356 2.3221022428094278E-04 + 357 3.4187333431125802E-03 + 358 8.3710379409587463E-03 + 359 8.7297050559963631E-04 + 360 1.0935078949741065E-04 + 361 2.4599143986077632E-03 + 362 3.0811125345263038E-04 + 363 3.3378365532275351E-05 + 364 1.5540619058880068E-03 + 365 9.4364615556197728E-04 + 366 -3.1817337550964094E-03 + 367 6.4405921381459558E-04 + 368 1.8391209258696768E-02 + 369 -3.3924605407666873E-04 + 370 1.9155847298537192E-02 + 371 1.4921591439427732E-02 + 372 -1.9085218801229997E-02 + 373 2.5440743910949849E-03 + 374 -2.6879846856618225E-03 + 375 2.3063999260166204E-03 + 376 -9.3982513676040610E-05 + 377 1.2548313354784578E-03 + 378 -2.2539275339899341E-03 + 379 -4.1040808241104947E-03 + 380 -1.6941995204064239E-03 + 381 -2.9153777300203253E-02 + 382 4.7575836872789490E-04 + 383 9.2782981084020607E-03 + 384 3.3475713450563025E-04 + 385 1.4646106799135266E-02 + 386 1.6641254008713888E-03 + 387 9.2308240351372502E-04 + 388 8.4444472597303740E-04 + 389 -8.6948554633720597E-04 + 390 3.2256179566999264E-03 + 391 -1.5875837392714696E-03 + 392 2.6394432000114371E-03 + 393 -6.8725600285664008E-04 + 394 2.2861500165411251E-02 + 395 -3.4291049446430694E-04 + 396 -6.2275212902785934E-03 + 397 -1.3245878248840286E-02 + 398 -7.5314133660032440E-03 + 399 -9.9214665013748352E-04 + 400 -2.9834616610631020E-03 + 401 -1.9266935307314418E-03 + 402 1.1510524551574117E-01 + 403 2.3210873566814436E-01 + 404 -8.1299811826488669E-02 + 405 2.8051871896702024E-01 + 406 -4.3356252473215745E-01 + 407 -4.3144102644432055E-03 + 408 -2.8889717784340643E-03 + 409 2.0225703990730192E-04 + 410 -2.7729434474262149E-03 + 411 4.3289093435872729E-03 + 412 -9.0816200308942228E-04 + 413 7.3924539756661491E-05 + 414 -4.3686505619735908E-05 + 415 2.0706349832878694E-05 + 416 1.0173783173187262E-03 + 417 5.1403968134796708E-04 + 418 1.0004670127456928E-03 + 419 3.3503858665568167E-03 + 420 -5.0117845828783432E-05 + 421 -6.7122757521271659E-04 + 422 -8.0446769656468636E-04 + 423 -8.9275892691237230E-03 + 424 6.2348420975071376E-04 + 425 -1.5641607338796454E-03 + 426 -2.3666494636106626E-03 + 427 -3.5454949962796930E-03 + 428 7.1719230782396850E-05 + 429 1.7255891438301108E-03 + 430 -2.4971922639458644E-03 + 431 -9.1915539962671763E-04 + 432 -5.0263431323785412E-02 + 433 1.1402637290822896E-03 + 434 1.3785016620542363E-02 + 435 2.6470145656668537E-03 + 436 -1.1632282532896469E-02 + 437 1.1666692512162240E-03 + 438 -9.7893458244121536E-04 + 439 -1.5364396815580519E-03 + 440 -4.5354963582498021E-04 + 441 -2.8177617304138967E-03 + 442 -1.5124677999806828E-03 + 443 2.1900497158687353E-03 + 444 2.5142243804351547E-04 + 445 1.0160030298266152E-02 + 446 -6.2115901656915645E-04 + 447 -1.2554790268869886E-03 + 448 1.2674889267661417E-02 + 449 4.5287263628867782E-03 + 450 1.6460081353970675E-04 + 451 4.0450174876199293E-04 + 452 1.9176146297128548E-04 + 453 1.1830199417231169E-01 + 454 -1.4662879409484056E-01 + 455 -2.3276303340582344E-01 + 456 3.6390262476274521E-01 + 457 -4.0651062848335043E-02 + 458 -5.3977035040157545E-04 + 459 1.4356261155479991E-03 + 460 3.6035388514250436E-03 + 461 -1.9209400700386809E-03 + 462 3.1195652605837555E-03 + 463 4.3897108198511214E-04 + 464 3.2610195137934241E-04 + 465 4.9412882167580046E-04 + 466 -2.6001719876547096E-04 + 467 3.8490905827636158E-05 + 468 -2.7997280562437899E-05 + 469 1.4866929889889218E-03 + 470 1.7100487307063761E-02 + 471 -2.9252141502225577E-03 + 472 2.4841191334362984E-03 + 473 -1.5436993924311758E-03 + 474 1.0303255942360195E-03 + 475 -1.3426721823524806E-03 + 476 5.1302916001367757E-04 + 477 1.5577193860362669E-03 + 478 -7.2501669979726777E-02 + 479 -3.3806891617770826E-02 + 480 2.4855577813775336E-02 + 481 -2.2294447614420378E-02 + 482 6.0295206357343166E-02 + 483 -2.7784106705294057E-03 + 484 1.9015396810085959E-03 + 485 1.2257233640181691E-03 + 486 -1.2913796849696837E-03 + 487 1.0860069691269998E-03 + 488 -2.1100253086245955E-04 + 489 -1.3767538410480369E-03 + 490 -1.4560722994937350E-04 + 491 5.0488611238496978E-04 + 492 3.0437377501254896E-04 + 493 -1.3100175365435922E-04 + 494 -5.6072726208145018E-05 +Ene= -4.7061927407E-01 +Spin= Alpha +Occup= 2.0000000 + 1 4.1161667886502719E-04 + 2 -7.6106903922719708E-04 + 3 3.4610220453774301E-04 + 4 -7.5998214952272556E-04 + 5 -1.8245619019396880E-03 + 6 2.5154493288499275E-04 + 7 1.1905202217770649E-04 + 8 -1.2529561116094822E-03 + 9 1.4254462116811870E-02 + 10 1.6756621455896042E-02 + 11 -3.1191736941265716E-02 + 12 6.0653550294474615E-03 + 13 4.3172781195515300E-03 + 14 -1.2869404276695930E-03 + 15 7.2715223314506554E-04 + 16 1.9530148914104434E-04 + 17 -6.2832140259198822E-04 + 18 2.7130886314001991E-04 + 19 3.3133257592735598E-04 + 20 4.2146929000040048E-04 + 21 -2.2494457763172474E-04 + 22 3.9252538046065692E-04 + 23 -2.0729749428955742E-04 + 24 1.7923654156210147E-04 + 25 -9.8045052704511871E-05 + 26 2.9872605480223575E-04 + 27 6.6371781430864057E-04 + 28 -1.5932661111364081E-03 + 29 -1.5438322432016798E-04 + 30 -1.5429144736346992E-03 + 31 2.7891475572419303E-04 + 32 6.3795591344235837E-04 + 33 -1.3209072595121406E-03 + 34 2.9321399255634189E-02 + 35 -1.3827911049365363E-01 + 36 -8.5785975404860951E-02 + 37 4.9615299968396510E-02 + 38 -2.3122158133721926E-02 + 39 -5.8892645208047313E-04 + 40 9.6312700754669096E-04 + 41 -1.1070706294511195E-04 + 42 2.2807435492539844E-04 + 43 7.4776877080287238E-04 + 44 1.5376331019507179E-04 + 45 2.1039003029574085E-04 + 46 6.6338167955122616E-04 + 47 -1.0950857101011836E-04 + 48 -2.7389500307759007E-04 + 49 -4.9227808454600070E-04 + 50 -3.1676202201023360E-05 + 51 -1.5167802904675866E-04 + 52 -4.0980258862983836E-04 + 53 3.4678674772873844E-03 + 54 -1.4066793571090329E-04 + 55 -4.2343336940003484E-04 + 56 1.0504906248710955E-03 + 57 9.3978028133682567E-04 + 58 -3.1953275957001699E-04 + 59 9.9079865110012991E-03 + 60 9.0732356501249528E-03 + 61 9.6354439197081053E-03 + 62 5.0121420095830933E-02 + 63 -4.0420022394314546E-02 + 64 7.0643596634835121E-04 + 65 1.1231951122350971E-03 + 66 -1.0969164395617690E-03 + 67 -2.0422752392964035E-03 + 68 2.0076124855850706E-03 + 69 1.5319411609060750E-04 + 70 -9.0460421150886038E-04 + 71 2.3561833961869197E-04 + 72 3.5053638347027797E-04 + 73 1.5368154429043019E-04 + 74 -1.4258198410888688E-04 + 75 1.1604668926753933E-04 + 76 9.9368201036768205E-04 + 77 -4.0329840958490968E-04 + 78 3.5294462550797680E-03 + 79 -3.7243641938228258E-03 + 80 2.0565203421850246E-02 + 81 5.1251677979267799E-04 + 82 -1.6659735464538304E-03 + 83 1.6829143890947284E-03 + 84 1.4806998488763980E-03 + 85 -3.9677204477751808E-03 + 86 -2.2067850960315635E-03 + 87 -8.4152146437574578E-04 + 88 4.8641392549258073E-04 + 89 -3.4960548244258025E-03 + 90 1.5867508043394100E-04 + 91 -1.3511808852650780E-03 + 92 -1.6560278332885387E-03 + 93 2.4348637523900060E-03 + 94 1.2084403020885058E-04 + 95 -1.0081963691042277E-03 + 96 1.0369871416660787E-03 + 97 2.5360857980783309E-04 + 98 -1.2320529479590658E-04 + 99 2.7072964785383611E-04 + 100 4.8360450228239097E-04 + 101 -5.1764980136258045E-05 + 102 6.9907799907296293E-03 + 103 -2.9210269288306806E-04 + 104 2.1137236182910920E-03 + 105 -1.5349452629922200E-03 + 106 -1.7710761051638159E-03 + 107 9.2358829858536637E-05 + 108 1.0330282683316574E-04 + 109 1.7906168056488957E-04 + 110 -1.0065339561296417E-04 + 111 -9.6717194441605228E-06 + 112 4.9870078381539305E-04 + 113 -1.7016028563154905E-04 + 114 5.7254450300859249E-04 + 115 -3.6151259538069594E-02 + 116 1.1902918220479603E-03 + 117 -2.3448187613975425E-03 + 118 -9.2232364555657302E-03 + 119 -9.2746219245350633E-03 + 120 -6.7170352538485933E-06 + 121 -8.6825673724434020E-04 + 122 -6.5673227618436199E-04 + 123 6.9091131648797786E-04 + 124 3.4862779444495281E-04 + 125 1.7105730162906198E-03 + 126 -1.4791029799433755E-03 + 127 5.5624330608261508E-04 + 128 -1.3773199164777969E-02 + 129 -6.6592517162051374E-04 + 130 4.9187031809105539E-03 + 131 1.1114700305817657E-03 + 132 7.5349820510634139E-03 + 133 9.1148886739233234E-04 + 134 -4.0988542019689439E-04 + 135 2.0352037282109735E-03 + 136 1.3547188421691797E-01 + 137 1.8165585969090639E-01 + 138 -1.6087143431225875E-01 + 139 1.3672942925971269E-02 + 140 1.6213648883900914E-01 + 141 -1.7719898804997765E-03 + 142 -2.4640676785421104E-03 + 143 -1.6241072302887866E-03 + 144 -1.5214316095101721E-03 + 145 -4.6038476788243946E-03 + 146 2.5646960744153180E-05 + 147 -4.7733126155773603E-04 + 148 1.4937536979497390E-04 + 149 -7.0671479803008927E-04 + 150 1.0155948916584249E-03 + 151 -5.0574021652281364E-04 + 152 -4.5576893063558021E-04 + 153 -2.0914331584038527E-03 + 154 1.5783750332721660E-04 + 155 5.6294663582145575E-04 + 156 -1.3403821726212925E-03 + 157 9.7478393908128789E-04 + 158 -6.4871019852292590E-05 + 159 3.0910892514195105E-04 + 160 2.0012660071866095E-04 + 161 6.7136126094047635E-02 + 162 4.3890723266520312E-02 + 163 6.5022809455837424E-02 + 164 1.4115416394488250E-02 + 165 6.1257621532854599E-02 + 166 7.0580668381210951E-05 + 167 1.3725102789343666E-04 + 168 1.3249332736578617E-03 + 169 -2.3981184635526014E-04 + 170 9.1084589682076389E-04 + 171 -2.5542358947205842E-04 + 172 -2.5832889305843466E-04 + 173 -4.1046963901010129E-04 + 174 -1.8207456853621808E-04 + 175 -3.0545997793815114E-04 + 176 -3.1127093150714756E-04 + 177 -2.7716351547976345E-04 + 178 1.2961599973593519E-02 + 179 -3.2829233875194657E-04 + 180 -5.8650296147887296E-05 + 181 1.9320114496478049E-02 + 182 6.6294323591041225E-03 + 183 -4.4184935761449321E-04 + 184 1.0421192626815844E-03 + 185 -1.4718043145203573E-04 + 186 -2.4080861752527774E-03 + 187 -3.2047502855613307E-04 + 188 -4.3766552770900498E-03 + 189 -7.8518304137434162E-04 + 190 9.8028706445980697E-05 + 191 -7.0545076143521290E-02 + 192 1.1170823850837873E-03 + 193 -1.6743364568109476E-02 + 194 1.6019196782769637E-02 + 195 -1.2541423004930042E-02 + 196 -4.1580097102356052E-04 + 197 7.2257021718280512E-04 + 198 -7.0683384070785308E-05 + 199 -2.2062850083387904E-04 + 200 1.1026049320467862E-03 + 201 -1.2234309923870362E-03 + 202 -1.9473126379947877E-03 + 203 -3.5967605339397757E-03 + 204 7.6865378307272242E-03 + 205 1.2537441087162866E-03 + 206 2.4192247099577686E-03 + 207 1.3790714129760808E-03 + 208 -3.5616951670504799E-03 + 209 4.4336397966820236E-04 + 210 1.0041118864597333E-03 + 211 -2.4717271561815266E-04 + 212 -3.4921719605870866E-01 + 213 -3.4100606386983467E-01 + 214 1.1279366890488941E-01 + 215 6.4325996413400865E-02 + 216 -4.8910972089486207E-02 + 217 -1.3830212532085521E-03 + 218 1.8672752856595815E-04 + 219 -5.6684929521467543E-04 + 220 -2.7477144113919960E-03 + 221 -4.6404655001421394E-04 + 222 -2.6965484186888898E-04 + 223 1.4319843909492313E-04 + 224 -1.0969016482243034E-03 + 225 2.0446966537624174E-04 + 226 3.8272221303386626E-04 + 227 -3.8141022824051589E-04 + 228 -3.6384657500880384E-04 + 229 -8.8997844423068639E-03 + 230 3.1079695095287169E-04 + 231 5.2321996589235987E-03 + 232 9.2046065309853728E-04 + 233 -1.0943346227895989E-03 + 234 -4.0380527992641796E-04 + 235 -1.6239237759380320E-04 + 236 -8.0334236551456205E-04 + 237 4.4587051475299691E-02 + 238 -2.1616953283703608E-01 + 239 6.4000109222586532E-02 + 240 8.7913241433613482E-02 + 241 -9.7078199413923975E-03 + 242 -1.8321342021948553E-04 + 243 4.8366120162951984E-03 + 244 -3.6775436549538561E-04 + 245 -1.5457817060948503E-03 + 246 -6.1530152661397992E-04 + 247 -2.8825409501637036E-04 + 248 9.9576179124054114E-04 + 249 3.6099699285114963E-05 + 250 4.1704616539193586E-05 + 251 -2.6602073361780589E-04 + 252 -6.4009942710578833E-04 + 253 8.8168545369478367E-04 + 254 5.7691977697861534E-03 + 255 1.0907838259270669E-03 + 256 -2.5639547580275893E-04 + 257 -1.3999309056639021E-03 + 258 -7.0973416366423283E-04 + 259 -1.5935122525267725E-04 + 260 -9.9977803055238852E-04 + 261 -7.9307867597236945E-04 + 262 2.7924605008474834E-02 + 263 1.2935542797437527E-02 + 264 -5.8477828782635501E-02 + 265 1.7134229432712849E-02 + 266 -1.4140311762240901E-02 + 267 1.1940201378971146E-03 + 268 8.7239813770661817E-04 + 269 -2.5658834865682024E-04 + 270 -1.0720141609435558E-03 + 271 -1.5893651037125331E-05 + 272 -2.7412967405058343E-04 + 273 -1.8800465521160264E-04 + 274 -1.2951048160532222E-04 + 275 1.4681265505336004E-04 + 276 -1.1391139877429986E-04 + 277 2.2097188960032573E-04 + 278 1.4690993028215445E-04 + 279 -3.3909774446866256E-02 + 280 9.2443631380109031E-04 + 281 1.1489164047262133E-02 + 282 -1.4926385288506441E-02 + 283 9.4411226951994914E-03 + 284 1.1605972118553726E-03 + 285 -1.5409719391222985E-03 + 286 2.0647223599432944E-04 + 287 -1.5282815167150048E-03 + 288 -3.3505075706801509E-04 + 289 -8.9963228430413149E-04 + 290 -4.3378140172479086E-03 + 291 -2.5802794938716649E-03 + 292 7.0923475013194856E-03 + 293 7.8930610210695536E-05 + 294 1.4217802826779863E-02 + 295 2.4380285144222361E-02 + 296 1.7267859196972962E-02 + 297 1.3105108560244254E-03 + 298 3.1959894008022171E-03 + 299 1.8784145993218264E-03 + 300 4.1082715679587730E-03 + 301 -5.3494141556161439E-05 + 302 1.9070002432532691E-03 + 303 -2.6482680250735805E-04 + 304 -3.2918444806807980E-03 + 305 1.3902541844975093E-02 + 306 -3.2889817882830658E-03 + 307 -5.7152970751971075E-03 + 308 -3.6005833883855773E-03 + 309 5.9600763555475191E-04 + 310 -8.3432305596467765E-05 + 311 -1.1866059001797013E-03 + 312 -1.0681565214302586E-03 + 313 8.7660438878948713E-02 + 314 8.8243099819743140E-02 + 315 -4.5514501970776045E-03 + 316 -1.1588814145626733E-01 + 317 -1.0664796388861324E-01 + 318 -5.7507271249469956E-04 + 319 -1.3202900979687340E-03 + 320 -6.5071582366917579E-04 + 321 1.5350971133312082E-03 + 322 9.0505306621857518E-04 + 323 2.7608809009242274E-04 + 324 2.0974138688632966E-04 + 325 7.8090186835296166E-04 + 326 -6.9031887289703025E-06 + 327 -3.3050697163151512E-05 + 328 4.6495528770021686E-04 + 329 9.2682027121015727E-04 + 330 3.1667893470113083E-03 + 331 6.4161347259304095E-04 + 332 1.4235300269960490E-03 + 333 -2.0794661410533347E-03 + 334 6.9277870169752826E-03 + 335 1.3706521314247377E-04 + 336 5.0561960482876586E-04 + 337 7.1636242644441820E-04 + 338 1.3515107362470852E-01 + 339 -3.9717826379656172E-02 + 340 -1.9637563363738416E-03 + 341 1.0237295165656707E-01 + 342 1.3238205849872950E-01 + 343 2.1220397023801337E-03 + 344 -1.0130333133391782E-03 + 345 1.0933265486205695E-03 + 346 1.6840241183267509E-04 + 347 1.5087492739660675E-03 + 348 2.6800242316931105E-04 + 349 1.7833546859764937E-05 + 350 3.4258899985228436E-04 + 351 -5.6963314905901638E-04 + 352 -2.2584610933488019E-04 + 353 -8.3515123563173473E-04 + 354 -5.7313956878916264E-05 + 355 9.1174476016866509E-03 + 356 -1.0694031155160533E-04 + 357 2.0429066680938456E-03 + 358 -1.7169265009413577E-02 + 359 3.3506925334392508E-03 + 360 -1.0886787417431188E-03 + 361 -1.9605797545025599E-03 + 362 1.2857107213577943E-03 + 363 7.6280302924875722E-04 + 364 -5.4637137578919829E-04 + 365 -5.1477565383331798E-04 + 366 2.6688790802012067E-03 + 367 -5.9519536931888512E-04 + 368 9.6515695692075201E-03 + 369 -1.9035898955854842E-04 + 370 -1.1460520744397042E-03 + 371 -7.5084925789306312E-03 + 372 5.4108689322505022E-04 + 373 1.4807854752150193E-03 + 374 3.7688512258545210E-03 + 375 2.0291439062100239E-03 + 376 -3.3256714246925820E-03 + 377 -2.1528727670774390E-03 + 378 -6.8674513600989486E-04 + 379 -2.8359662924848051E-03 + 380 -3.2155327311088658E-04 + 381 -1.4193809224170770E-02 + 382 6.2496031129375681E-05 + 383 1.6026693343066282E-02 + 384 -1.5357099358097098E-02 + 385 -2.5232193526793941E-03 + 386 1.4080184323637219E-03 + 387 -9.2786661016234769E-04 + 388 2.9118618807299172E-04 + 389 -3.9789454963963765E-03 + 390 -1.5659823845554073E-03 + 391 2.1524850953593003E-03 + 392 6.2232663677438008E-05 + 393 -3.2698005617760951E-03 + 394 -1.1277396662387064E-02 + 395 2.6560975876166210E-04 + 396 2.2989409365418523E-05 + 397 4.6842273656363042E-03 + 398 -4.3932457591963191E-03 + 399 1.0791461566848402E-03 + 400 5.8146111699830332E-04 + 401 -2.2455469344091574E-03 + 402 2.2341569129677577E-01 + 403 2.9171994266546486E-01 + 404 -6.0328837089480510E-02 + 405 2.8720385690073175E-01 + 406 1.7020235578493298E-01 + 407 -1.5799010009313557E-04 + 408 -4.4809163863918835E-03 + 409 2.3498066097806867E-03 + 410 1.0393790087287935E-03 + 411 -2.8746054703828478E-03 + 412 8.8749145225014021E-05 + 413 -1.2323223325970750E-03 + 414 -6.8610021428194932E-04 + 415 -5.9460652812591119E-04 + 416 1.0950462029338730E-03 + 417 -9.2316707866451275E-04 + 418 -1.0486629611670421E-03 + 419 3.0967578517324033E-02 + 420 -1.5438222604552923E-03 + 421 -1.0703432439227984E-02 + 422 3.9759068981570632E-02 + 423 1.9037785409680530E-03 + 424 -8.6003548497574087E-04 + 425 3.1762786132167038E-03 + 426 7.4535269981722524E-04 + 427 2.3791283777771619E-03 + 428 -3.2129598022332291E-03 + 429 8.0114999661907819E-03 + 430 1.8185817150046032E-03 + 431 1.7935009233994827E-03 + 432 5.6375894251532485E-02 + 433 -1.1812631977873257E-03 + 434 -2.4879748498382787E-02 + 435 1.5830801287647252E-03 + 436 7.6225650486383585E-03 + 437 -1.3905103480450166E-03 + 438 9.0851407256307807E-04 + 439 1.2647914396857530E-03 + 440 2.8540408778829460E-03 + 441 1.8132364360913453E-03 + 442 -4.8820157841607872E-04 + 443 -4.3749813045826230E-03 + 444 -3.3225888432513720E-04 + 445 2.8007453440359233E-02 + 446 5.0380225873944786E-04 + 447 6.6006051927267719E-03 + 448 5.9795844853419433E-03 + 449 1.0990732963322543E-02 + 450 -5.6261207941660869E-04 + 451 1.3160877349721622E-03 + 452 2.6238846552930264E-03 + 453 -1.8845195457175062E-01 + 454 1.2073618063623040E-01 + 455 2.0836589466429226E-01 + 456 5.8695080181183842E-02 + 457 -2.0427667694684867E-01 + 458 3.3967797300088151E-03 + 459 1.1851549877450324E-03 + 460 -8.0182192120559876E-04 + 461 -1.4804527201496321E-03 + 462 4.7131581606087401E-03 + 463 3.3365772070532903E-04 + 464 -2.5550659028439977E-04 + 465 3.5408723535351333E-05 + 466 6.2435205007856293E-04 + 467 5.5514452711754475E-04 + 468 -1.4923133921781802E-03 + 469 -1.7049315148595607E-04 + 470 -1.0335640688569302E-02 + 471 7.1976220312386873E-04 + 472 -8.5875892008098432E-04 + 473 8.9483374713643093E-03 + 474 2.5295678877597641E-03 + 475 1.2161753368416570E-05 + 476 6.1689466318755261E-04 + 477 2.1761286453498069E-04 + 478 1.3072031441434465E-02 + 479 -1.4075625188353705E-02 + 480 -2.2524873775665734E-02 + 481 4.6776048163109735E-02 + 482 9.5596112602273605E-04 + 483 1.2602285145860927E-03 + 484 1.6005674129490500E-03 + 485 -9.4885757620073740E-04 + 486 1.9141973485066973E-03 + 487 3.3938290057537544E-03 + 488 -8.8058880594623127E-04 + 489 -1.7521274005501510E-04 + 490 -4.0443671415966401E-04 + 491 3.4875509922928079E-04 + 492 -4.7974877137678797E-04 + 493 7.7244604583404238E-04 + 494 8.7384729751457078E-04 +Ene= -4.6994694982E-01 +Spin= Alpha +Occup= 2.0000000 + 1 3.9528204207275267E-03 + 2 -8.8989607395000849E-04 + 3 1.5855966576856339E-04 + 4 2.2328511141388317E-03 + 5 1.5553065985970502E-03 + 6 4.0319021383527283E-04 + 7 -4.7214545591954565E-04 + 8 1.8577768997919751E-04 + 9 1.3027716541592179E-02 + 10 -6.4936633270287992E-03 + 11 -1.7806114025520535E-02 + 12 2.7591386011263593E-02 + 13 6.3380792977395309E-03 + 14 8.1922462125113464E-04 + 15 -2.4754610455419074E-04 + 16 -8.1795977232479108E-04 + 17 -5.1034869389228693E-04 + 18 4.2908252389655804E-04 + 19 -1.4593566709845535E-05 + 20 -7.5234414275527069E-05 + 21 -2.7279295949647126E-04 + 22 -2.4501919382867497E-04 + 23 6.2369075852337929E-04 + 24 2.9808207153367126E-04 + 25 -2.5179341939306779E-04 + 26 1.0152827938696759E-02 + 27 -1.1217991627899006E-03 + 28 -2.2606913764086734E-04 + 29 -9.6301092850798278E-04 + 30 -3.1908821074268070E-03 + 31 1.6353009036076890E-03 + 32 1.9115118110769479E-04 + 33 3.0556514812647993E-04 + 34 4.0543811722527384E-02 + 35 -1.9684645645196136E-01 + 36 1.0349494085644994E-03 + 37 -8.2780398760791005E-02 + 38 -1.0844708647977186E-01 + 39 7.8543576209577669E-04 + 40 7.8129437556790195E-04 + 41 2.4491608579409397E-04 + 42 -2.6084173676108329E-03 + 43 1.0781251121012048E-04 + 44 5.7361311490265071E-04 + 45 -7.8217379332299198E-04 + 46 4.5267312714027607E-04 + 47 1.3107867718976745E-04 + 48 -4.2301081262498323E-04 + 49 9.3944615446942047E-04 + 50 6.1655381759336437E-04 + 51 -1.2791871210513863E-02 + 52 9.6295624060401279E-04 + 53 4.3250922051825168E-03 + 54 -1.4477507746386536E-03 + 55 1.2695465945154600E-03 + 56 -1.3715167130879695E-03 + 57 -1.5063608686797323E-03 + 58 -6.9184390451024374E-06 + 59 -4.3930780184449805E-02 + 60 -8.9315362096052263E-04 + 61 -1.6365444665497910E-02 + 62 4.7158217880469852E-02 + 63 1.2493081208627329E-02 + 64 2.6362856506980102E-03 + 65 4.2138083576665072E-04 + 66 1.3624328017533187E-03 + 67 -7.9605751778572900E-05 + 68 -6.7598597142987267E-04 + 69 -3.9704977064251211E-04 + 70 -1.8553548809563714E-04 + 71 3.7796635476349682E-04 + 72 2.4750496001347476E-04 + 73 -2.1599434868452879E-04 + 74 2.7556025463789491E-04 + 75 2.4340477657827490E-04 + 76 -2.8653173797959050E-02 + 77 5.1256946978025261E-04 + 78 -8.2508343763035563E-03 + 79 8.5522772302451977E-04 + 80 2.8244177563502559E-03 + 81 -2.1666833003438542E-04 + 82 -6.8693346878540948E-05 + 83 5.8803181661262792E-04 + 84 -2.8364711416522235E-04 + 85 2.1013841734800754E-04 + 86 -2.3850319679123194E-03 + 87 6.9907528238592992E-04 + 88 7.1513900064453596E-05 + 89 2.0291101245759844E-04 + 90 2.7620816931911915E-05 + 91 -2.0037806340894582E-03 + 92 -3.5982137025257011E-03 + 93 2.9820467129717926E-03 + 94 8.8888781761996499E-04 + 95 6.4259145854262116E-04 + 96 6.0464303039886081E-04 + 97 3.9232995174783242E-04 + 98 -7.3790327380685912E-05 + 99 5.9701636659693501E-04 + 100 8.6064849379773305E-04 + 101 2.5739731260444513E-04 + 102 -1.3570806716275786E-02 + 103 6.5010665217620831E-05 + 104 -2.9447631363204042E-03 + 105 1.6263750826081855E-03 + 106 -4.0079092409120078E-03 + 107 2.8265804999533440E-04 + 108 6.1451805521998482E-04 + 109 -1.0445361106629214E-04 + 110 6.6698424183539928E-05 + 111 2.7147704111639295E-04 + 112 -7.4308081818793604E-04 + 113 8.9084791992531605E-05 + 114 -5.4242586988433397E-04 + 115 -4.1168128663268258E-02 + 116 1.1396033578423195E-03 + 117 3.3154365039089291E-03 + 118 -1.0992177989098160E-02 + 119 -1.4133667032618117E-02 + 120 -3.5308650195799775E-04 + 121 -6.8024226083997024E-04 + 122 -6.9268867647586925E-04 + 123 1.7822964933407607E-03 + 124 -3.8020303604394741E-04 + 125 2.8846281336236306E-03 + 126 -3.0432575624943117E-04 + 127 -4.0271868482259500E-04 + 128 3.0341178015852600E-02 + 129 6.0621951156409552E-04 + 130 5.2819817909989840E-03 + 131 -5.9544878765772765E-03 + 132 -1.0753862911827103E-02 + 133 -1.9486125844528688E-04 + 134 -9.8330437534663502E-04 + 135 1.0499224575051853E-04 + 136 -1.6632678467355858E-01 + 137 2.8172955093606716E-01 + 138 -4.8457225009295821E-02 + 139 -6.8380757033360023E-02 + 140 8.7260549840096888E-02 + 141 -6.7556439560650038E-04 + 142 -2.0128585541503994E-03 + 143 1.8459507681162809E-03 + 144 -1.5365694134952591E-03 + 145 -8.7759902525258893E-04 + 146 5.4207789304485169E-04 + 147 -1.2731375396920439E-04 + 148 3.6291926374425708E-04 + 149 6.5961511674406885E-04 + 150 -6.2277586532228101E-05 + 151 -3.8469229388852095E-04 + 152 4.4778019742097507E-04 + 153 -2.5368465619803174E-04 + 154 -5.3020462038048596E-04 + 155 1.4676564940303517E-03 + 156 -4.6262377380249295E-04 + 157 9.6337252060593314E-04 + 158 6.7565387624544138E-05 + 159 6.8108215389718843E-05 + 160 4.4195909095855217E-04 + 161 3.7208180306093165E-02 + 162 -1.1788498261564232E-02 + 163 4.1633249001754961E-02 + 164 2.3900580444932654E-02 + 165 1.5065934869104125E-02 + 166 -2.9745838731192961E-04 + 167 -7.3024994295345000E-04 + 168 1.0520304560536118E-03 + 169 6.2223119536500277E-05 + 170 4.1235559840082416E-04 + 171 -3.8300499161002624E-04 + 172 1.7237519511574754E-04 + 173 -6.5128295221422619E-04 + 174 -1.6219601008449046E-04 + 175 -4.2139540401850683E-04 + 176 -1.3222898343990530E-04 + 177 -2.6544068385667857E-04 + 178 7.0700418444929920E-03 + 179 -7.1531630716476893E-05 + 180 -2.5681690433031878E-03 + 181 -4.7120399319746454E-03 + 182 1.4575626351530768E-03 + 183 5.3487100279501197E-04 + 184 4.1982479826318164E-04 + 185 2.8153080116605472E-04 + 186 3.4362833250543197E-05 + 187 1.3539143085703775E-03 + 188 -2.3474004168687493E-05 + 189 1.4544450532736879E-03 + 190 1.5401597442018880E-03 + 191 5.1258774229749678E-02 + 192 -1.6361250092752731E-04 + 193 1.5359117976760922E-02 + 194 -3.3691104559971006E-03 + 195 1.0060158826257126E-03 + 196 1.1584288208890687E-03 + 197 2.7989491653282006E-04 + 198 -7.5272758379235584E-04 + 199 -2.6052559892500091E-03 + 200 1.8562407537452397E-03 + 201 -1.8789403604420152E-03 + 202 -1.6062331919286595E-03 + 203 3.3095534186290527E-03 + 204 -1.6745676190999880E-02 + 205 -2.0174063703026841E-04 + 206 -8.6659974207485158E-03 + 207 -2.5015630789848777E-03 + 208 1.0452473319918769E-03 + 209 -1.1423440092406575E-03 + 210 4.8722474315910687E-04 + 211 -7.0643924834150665E-04 + 212 1.3621726149878888E-01 + 213 -5.6921280325648038E-01 + 214 -8.0902421092796828E-02 + 215 1.8962574505095556E-01 + 216 2.4909379717090610E-01 + 217 1.5935737704862497E-03 + 218 3.2010174902128677E-03 + 219 -3.4739198408283247E-03 + 220 8.5752922377383995E-04 + 221 -2.3045222947582584E-03 + 222 1.8582875302363742E-04 + 223 -5.9477163136949891E-04 + 224 1.1608601672530592E-03 + 225 1.2355457834525147E-03 + 226 -1.7572406543037749E-04 + 227 9.4886365031689407E-04 + 228 4.2128114228135355E-04 + 229 3.9772052646472331E-03 + 230 -3.6653372012992991E-04 + 231 2.7103810488122593E-03 + 232 -1.1843856793350787E-03 + 233 3.7880862612226559E-03 + 234 -8.5067048690548575E-04 + 235 5.2888341196321122E-04 + 236 2.6905384077290511E-05 + 237 -7.5350144180310580E-02 + 238 1.3468616849924039E-01 + 239 2.2055635919775229E-02 + 240 1.2362607839809445E-02 + 241 3.9218371586556236E-02 + 242 1.0906994788523220E-03 + 243 -6.8857436029033637E-04 + 244 -6.9696425482755121E-04 + 245 9.0676260745713112E-04 + 246 2.1254488510516722E-04 + 247 4.5919850721946951E-04 + 248 -4.1715055724627330E-04 + 249 8.3475771792691601E-05 + 250 1.3156219707768116E-04 + 251 3.2405184280127658E-04 + 252 -1.1631239270805049E-04 + 253 -8.8707909702034299E-05 + 254 8.3539918625310941E-04 + 255 -4.9840158627556487E-04 + 256 -4.0960021647244845E-04 + 257 9.7084294588783884E-04 + 258 1.2995057295497228E-03 + 259 -8.6682596081632968E-05 + 260 9.4665628518761380E-04 + 261 -3.0199363399036153E-04 + 262 1.2704966689484341E-02 + 263 -2.2559412144501729E-03 + 264 2.0882198799396304E-02 + 265 1.7883363394641821E-04 + 266 8.6613176268098488E-03 + 267 1.0084469163767786E-03 + 268 3.6749997717372922E-04 + 269 -6.7328634550271275E-04 + 270 9.0494609695248370E-04 + 271 7.8894871505208962E-05 + 272 -2.8473807672285630E-04 + 273 -1.6557361111442100E-04 + 274 -2.3092674470056047E-04 + 275 6.7753182962199427E-05 + 276 -8.2668946887370313E-05 + 277 -7.1526722868840082E-06 + 278 -2.6606375051340775E-04 + 279 2.0716303447385950E-02 + 280 -7.9045386439368238E-04 + 281 -2.8304418873721033E-03 + 282 9.6717036467782701E-03 + 283 -3.1638344472618802E-03 + 284 1.4357317718754648E-04 + 285 3.7679274973176759E-04 + 286 -8.1706442607758993E-04 + 287 1.6576259296102772E-03 + 288 3.2999683701477898E-04 + 289 1.2313002361245154E-03 + 290 1.9377182362967356E-03 + 291 8.9356882811047025E-04 + 292 -7.8580874271368204E-04 + 293 -9.5915535145420374E-05 + 294 -8.1107657029749185E-03 + 295 -1.2476697486455010E-02 + 296 -8.6337471921870655E-03 + 297 -1.2222060741122766E-03 + 298 -1.3080230369219711E-03 + 299 -9.0399514599853314E-04 + 300 -1.9845731294280437E-03 + 301 -5.7364709876945204E-06 + 302 -1.4242691936807816E-03 + 303 1.0255928343590722E-03 + 304 1.3324746959158874E-03 + 305 -1.2403854017096443E-02 + 306 2.7792020708121844E-03 + 307 4.4190416062555686E-03 + 308 6.1462798017944973E-04 + 309 -1.0623475566723698E-03 + 310 2.4416969476713551E-04 + 311 4.3145993098368411E-04 + 312 5.9806053799420385E-04 + 313 -4.8354630299685952E-02 + 314 -4.4598289873666999E-02 + 315 1.3254496438621928E-02 + 316 7.3559095593387861E-03 + 317 3.2537941440762608E-02 + 318 -4.9165628186429997E-06 + 319 1.0271374289869402E-03 + 320 1.6543515204956450E-04 + 321 -1.0410560588988871E-03 + 322 4.1659125197615360E-04 + 323 6.0913987467183773E-06 + 324 -9.9890016676578271E-05 + 325 -4.1125968029915921E-04 + 326 1.0931958736498132E-04 + 327 3.2572502452043821E-04 + 328 4.3461871950073992E-04 + 329 -1.1197252473497875E-04 + 330 -6.8164680052982436E-03 + 331 3.7340770420055765E-04 + 332 -1.3248969812320664E-03 + 333 -2.2613061732310817E-05 + 334 -4.6705531985547456E-03 + 335 -3.7962698245862491E-04 + 336 7.7113822742001608E-04 + 337 -1.3864458308347969E-04 + 338 -1.8061368028486302E-01 + 339 -2.7585451856392304E-03 + 340 -1.0229725429246929E-01 + 341 1.5174234310341700E-01 + 342 5.5287524389322558E-02 + 343 -2.7716027157494287E-03 + 344 -7.0564687080262257E-05 + 345 7.3143362283353808E-04 + 346 8.8643057486876610E-04 + 347 -4.5243855521675635E-04 + 348 -5.9645431899234117E-04 + 349 -1.6265185298284078E-04 + 350 -1.9852498016669358E-04 + 351 -3.0480871577149128E-04 + 352 3.7883890474199779E-04 + 353 1.3487810466213362E-04 + 354 5.6178889973702536E-04 + 355 1.1147565185558523E-02 + 356 -1.7061852462669773E-04 + 357 5.5142204537660675E-03 + 358 7.9672636325533765E-03 + 359 -6.4258631478602835E-03 + 360 1.0399944840661097E-03 + 361 8.9375982359374750E-04 + 362 -1.8555071937142393E-04 + 363 -5.3150563034989851E-04 + 364 6.3322685157679354E-04 + 365 -2.6419025362115883E-04 + 366 -6.0079151835604823E-04 + 367 2.5946621771022467E-03 + 368 -5.2318150396064560E-03 + 369 -2.2446149812485909E-04 + 370 -1.6308563484148959E-02 + 371 -6.4058120103889102E-02 + 372 -2.2578209445284561E-02 + 373 3.7625318865585453E-03 + 374 -1.6840187349700315E-03 + 375 -1.5313862418113429E-03 + 376 -3.1147255558517778E-03 + 377 -2.0835053456132822E-04 + 378 -7.0108015366964673E-03 + 379 -5.0322447226601496E-04 + 380 5.7190034929041830E-03 + 381 -3.6397734528698385E-02 + 382 7.9510471448295168E-04 + 383 4.9939944710100598E-03 + 384 -1.5632876358293751E-03 + 385 -1.3940410549486002E-02 + 386 -1.4555974016791848E-03 + 387 1.1819905167191378E-04 + 388 8.8849149469386252E-04 + 389 3.0278590988447158E-03 + 390 3.8456604503676471E-04 + 391 -5.7694949618145985E-04 + 392 -1.2664902027020323E-03 + 393 -1.1185233599648402E-03 + 394 6.7906543175664360E-03 + 395 6.7039275620898640E-04 + 396 -1.9093730398238660E-03 + 397 -3.0115362767583701E-03 + 398 9.6248977940657874E-03 + 399 -5.4268764291825241E-04 + 400 6.2755274784106042E-04 + 401 1.7279912179057684E-03 + 402 -1.2895295700619541E-01 + 403 -3.8031538718152941E-01 + 404 9.9249803268022296E-02 + 405 -8.9665503209263135E-03 + 406 -5.5564631336858350E-02 + 407 1.3243826716755548E-03 + 408 4.0009309335472957E-03 + 409 -6.4534113242736694E-04 + 410 -1.7777243851482048E-03 + 411 1.1758387328637671E-03 + 412 -2.7297317354705940E-04 + 413 -9.4208430258657272E-07 + 414 7.2839359372774701E-04 + 415 4.3676556130988278E-04 + 416 -7.8042384601099133E-04 + 417 3.8432489100382336E-04 + 418 6.7299122023201108E-04 + 419 1.2493729241570330E-02 + 420 2.2885480666770379E-04 + 421 1.2098067810352397E-02 + 422 -1.3883410850534086E-02 + 423 -8.2017757907276376E-03 + 424 1.4693413399002326E-03 + 425 -1.1711860273096576E-03 + 426 -3.4379970199506407E-04 + 427 -2.1136580062873214E-03 + 428 2.6888355891338703E-03 + 429 -3.2461721653704867E-03 + 430 1.2879912250403226E-03 + 431 -1.3895672453078642E-04 + 432 2.5833811485922530E-02 + 433 -9.0461323839790956E-04 + 434 -1.1990665978725340E-02 + 435 -1.4276043802120253E-03 + 436 -8.9684272896843522E-03 + 437 -8.1393676790308207E-04 + 438 -1.5585601787588099E-04 + 439 -7.7057573239013727E-04 + 440 1.9537677905551065E-03 + 441 -2.1740319113544094E-03 + 442 -4.1335765590023397E-04 + 443 -1.8967222971741815E-03 + 444 -7.1649277673962769E-04 + 445 -1.2430997329517697E-02 + 446 6.8812147764160713E-04 + 447 -5.2294462214691802E-03 + 448 -7.0616523080257521E-04 + 449 -4.7108711627862841E-04 + 450 1.1892602763994104E-04 + 451 -3.4752270479610174E-05 + 452 6.1136233481318494E-04 + 453 -4.1842506495480339E-02 + 454 9.8161243070405343E-02 + 455 -7.4204288908922555E-02 + 456 1.3542152663039472E-01 + 457 1.1066152702383539E-01 + 458 3.0212062022821717E-03 + 459 -1.1640344924372804E-03 + 460 2.2393924002187446E-04 + 461 8.6770210120951791E-04 + 462 -1.9245190674052541E-03 + 463 7.1038667155648980E-04 + 464 7.3226658035308566E-04 + 465 8.7906853807477893E-05 + 466 -4.7746372007259413E-04 + 467 -8.4541924991311443E-04 + 468 6.8899656395695274E-04 + 469 -5.3058477805643608E-05 + 470 2.7111066128081723E-03 + 471 -1.4198805971172462E-03 + 472 9.3614555456579258E-04 + 473 1.0294209694512021E-03 + 474 9.1627192600847614E-04 + 475 -9.7666345959955873E-04 + 476 -5.5781458303917663E-04 + 477 -3.7244253006853698E-04 + 478 -2.8087908029422157E-02 + 479 1.2865467650853639E-02 + 480 1.4160281239395982E-02 + 481 1.7951840286386928E-02 + 482 -1.9348054274338999E-02 + 483 -7.3703287241433420E-05 + 484 2.6412004297251786E-04 + 485 -3.3391298175047536E-04 + 486 4.6667203254385683E-04 + 487 -5.0765042434429929E-04 + 488 4.8429874077215209E-04 + 489 4.0351670058310527E-05 + 490 3.1092762957292235E-04 + 491 6.2906170693491554E-04 + 492 -3.7538464498160788E-06 + 493 3.3534480321871908E-04 + 494 -2.8042741042664284E-04 +Ene= -4.6948569642E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -3.9966139299545478E-03 + 2 1.8031373409361751E-03 + 3 -2.3529527720381246E-03 + 4 -4.7196244020017162E-03 + 5 -1.7159846595109162E-03 + 6 -1.2744082940475908E-03 + 7 -2.1175812604765822E-04 + 8 1.8172200826819455E-04 + 9 -1.5371237912279878E-02 + 10 -6.2508319765648248E-03 + 11 4.0946185273265524E-02 + 12 -3.4071055516022679E-02 + 13 -7.5665790142519203E-03 + 14 6.5806921644700621E-04 + 15 9.7340556492148047E-04 + 16 -1.3963403568675026E-03 + 17 1.9550261810870832E-03 + 18 2.1919542206278765E-03 + 19 4.6591980200974363E-04 + 20 1.5081161266839038E-04 + 21 -1.8766439961003428E-04 + 22 -1.0494387245861878E-04 + 23 2.4954844200879327E-04 + 24 2.7113156935226838E-04 + 25 -2.6794430236705164E-04 + 26 -7.1655110773669939E-04 + 27 -2.4984361134624687E-04 + 28 1.1430156669097911E-03 + 29 -2.7962071433915484E-03 + 30 1.4726135131043520E-03 + 31 -6.4537584554160646E-04 + 32 7.6194518925194193E-05 + 33 6.6913851932200728E-04 + 34 -1.8793324475947792E-02 + 35 1.0139639422542623E-01 + 36 1.1886835002213847E-01 + 37 7.2053193389924886E-02 + 38 -1.7238815174344699E-01 + 39 -8.6902487623699467E-04 + 40 7.7975679490314899E-04 + 41 1.3192444828134212E-04 + 42 -1.0090511381997519E-03 + 43 -1.0173017385763008E-04 + 44 2.3954466912752439E-04 + 45 1.7541664528252158E-04 + 46 1.0767095385146872E-04 + 47 7.6126041761139223E-04 + 48 -2.6971611806943393E-04 + 49 -2.0150573379429477E-04 + 50 -2.7280664471455676E-04 + 51 -7.2988573506245556E-04 + 52 4.0876100137836275E-04 + 53 -3.0965882998562010E-03 + 54 -6.3152415719902372E-04 + 55 3.9822212280239454E-03 + 56 -2.7951127715897979E-03 + 57 -1.9052266687039541E-03 + 58 -5.4387917758652962E-04 + 59 -3.7164332129923705E-02 + 60 2.3645352426847708E-02 + 61 -2.5997322880967514E-02 + 62 -3.9725171508353155E-02 + 63 2.3212820998486237E-02 + 64 3.2719421265844126E-04 + 65 2.4714383288703578E-04 + 66 9.5390096839727810E-04 + 67 2.4965113595441821E-03 + 68 -1.4886551334564171E-03 + 69 -1.0812624244602113E-04 + 70 1.7749067295069998E-04 + 71 -6.9354492666727637E-04 + 72 -1.4671933423920266E-04 + 73 -3.5073094266045918E-05 + 74 -4.7196377161052135E-04 + 75 2.0015424705756139E-04 + 76 2.2326913811843898E-02 + 77 6.6150022263940659E-05 + 78 6.5137184392753495E-03 + 79 -5.4375172414118317E-03 + 80 -2.0426607801014449E-02 + 81 7.5487313389703743E-04 + 82 -7.4110023338058847E-04 + 83 -1.7225310729969063E-03 + 84 -1.8862334228585385E-03 + 85 2.9549561914230969E-03 + 86 2.2728254599026576E-03 + 87 -1.2931313492711212E-03 + 88 1.1892852952387525E-04 + 89 -4.8241253879082553E-03 + 90 1.3425868889610769E-04 + 91 1.1959072196177508E-03 + 92 2.6624014589458154E-03 + 93 -5.5941545784081595E-03 + 94 1.7927273102653360E-03 + 95 1.3217234808579322E-03 + 96 -1.7090453894551635E-04 + 97 -1.0511221426842208E-03 + 98 1.0687404236340930E-03 + 99 -6.4258867990881873E-04 + 100 -5.6845934658616157E-04 + 101 3.9335101080728796E-04 + 102 -2.8987194854859028E-02 + 103 4.7678461825933496E-04 + 104 -6.0506435255159240E-04 + 105 9.3258731264820472E-03 + 106 5.7307179551929245E-03 + 107 -1.1228210932479934E-04 + 108 1.8844610367736155E-04 + 109 -2.2318401529192134E-04 + 110 8.0131876789676926E-04 + 111 -1.3128919489832239E-03 + 112 -8.2754200758594274E-04 + 113 -1.6237799580159410E-03 + 114 -7.0246677858741536E-04 + 115 3.4642299945780463E-03 + 116 -4.3865037303761094E-05 + 117 8.2286226987098761E-03 + 118 1.2948327494792687E-02 + 119 -7.3510349805532031E-03 + 120 9.1681445490930246E-04 + 121 6.5049581007673948E-04 + 122 -3.1813317781546186E-04 + 123 2.4985991410694029E-03 + 124 -1.1671096181534639E-03 + 125 -9.1801304326748364E-04 + 126 7.1263537800262062E-04 + 127 -1.3923294843112876E-03 + 128 4.6814451728914249E-04 + 129 3.1001552085753751E-04 + 130 -4.1044949563668123E-03 + 131 -4.8031917198862505E-03 + 132 2.0837694731439798E-03 + 133 -1.9436673008939160E-03 + 134 3.0428859396709231E-04 + 135 -7.4424539610893627E-04 + 136 -2.7376803717684739E-01 + 137 -6.5093619141915179E-02 + 138 -1.2260200839501596E-01 + 139 -1.1967654906644115E-01 + 140 3.4987181901604374E-02 + 141 1.3787369485964553E-03 + 142 3.5050930166699800E-03 + 143 2.1317760202544385E-03 + 144 6.1449433322692201E-04 + 145 1.1147540647289580E-03 + 146 4.5492869862214446E-04 + 147 -4.1231440137756000E-05 + 148 -2.1460023557207683E-04 + 149 1.4197423347634523E-03 + 150 -1.5121068969665955E-04 + 151 1.3938869774950591E-03 + 152 6.5370788908773790E-04 + 153 1.9070646605886539E-02 + 154 -6.1845154899295473E-04 + 155 -4.4398496937435999E-03 + 156 4.3980877073146445E-03 + 157 -4.7143574199447081E-03 + 158 2.7815203706586209E-04 + 159 4.6821496905178950E-04 + 160 -3.9239560845950226E-04 + 161 -8.7252816590146526E-02 + 162 -9.8372204052880372E-02 + 163 -1.1418229187022146E-01 + 164 1.0082471082855571E-01 + 165 -2.8390936992411041E-02 + 166 -1.3186027843661087E-04 + 167 1.9094340390083801E-07 + 168 -3.4873578007447795E-03 + 169 1.3470515589838841E-03 + 170 -1.1546076857128378E-03 + 171 5.0351023532684220E-04 + 172 2.9288727405134682E-06 + 173 8.4793456362571061E-04 + 174 3.4939747787573360E-04 + 175 5.7410895586464691E-04 + 176 2.4010051015828309E-04 + 177 1.3452989450812953E-04 + 178 -8.5495046478453532E-02 + 179 1.8385924206930763E-03 + 180 -5.9877970332862995E-04 + 181 -6.7692215258072517E-03 + 182 -2.3243760448222909E-02 + 183 -1.4278853892030823E-04 + 184 -4.6095998298223699E-04 + 185 -7.0607376795208201E-04 + 186 4.5717437185815888E-03 + 187 2.0202321932353403E-03 + 188 4.7664061206452598E-04 + 189 9.4709647592300719E-04 + 190 4.8265003569245149E-04 + 191 7.5914020746188207E-02 + 192 -1.0098620799023118E-03 + 193 1.2768533128255760E-02 + 194 -1.5049814862027609E-02 + 195 5.9508488421780104E-03 + 196 1.1167914159029915E-03 + 197 -1.8319721755640363E-03 + 198 -1.7030948017631466E-03 + 199 -1.6948136868409336E-03 + 200 8.9385124664149204E-04 + 201 -1.2401605870751931E-03 + 202 2.1296525804346922E-03 + 203 3.3804085076369651E-03 + 204 -1.8834551454924225E-02 + 205 -3.6931652748044936E-04 + 206 -6.6207163237451514E-04 + 207 -5.2057847000055515E-03 + 208 8.8427945276174005E-03 + 209 -1.6186741036668169E-04 + 210 -5.8903284380269023E-04 + 211 1.0471246211323601E-03 + 212 4.4280987848276809E-01 + 213 -3.0057709893994526E-03 + 214 4.5361004417552808E-02 + 215 -1.0650282946366843E-01 + 216 1.4431672219577429E-01 + 217 -6.6413211042900568E-04 + 218 1.0420131676669288E-03 + 219 1.6645211991501014E-05 + 220 2.7741714576454734E-03 + 221 -1.4584923939564445E-03 + 222 6.0365637283848691E-04 + 223 -6.0680698880363998E-04 + 224 4.9962597923080892E-04 + 225 -1.1579099777458347E-04 + 226 -3.0823088981931415E-04 + 227 2.1277886252167103E-04 + 228 -1.9056742454361835E-04 + 229 -7.9083253051037903E-05 + 230 -1.1132984321708245E-04 + 231 -8.1683433515508837E-04 + 232 -6.0150020016618033E-04 + 233 -7.4354942256960998E-04 + 234 2.4531588175795080E-03 + 235 -1.0960992693688652E-03 + 236 4.5972552190621949E-04 + 237 6.7705823144861829E-02 + 238 -1.9755829230779582E-02 + 239 -9.1941227404786236E-03 + 240 -3.3173115271930677E-03 + 241 -5.6753646555278404E-02 + 242 -2.5730245387084309E-04 + 243 1.8433332872630804E-04 + 244 -3.0178385392428032E-04 + 245 -1.9414903113891607E-03 + 246 -1.1602060544828703E-03 + 247 -1.5527521827583707E-04 + 248 -9.1032989130796654E-04 + 249 -3.2346932614302394E-04 + 250 -3.0922398038090640E-05 + 251 -1.8048384634667375E-05 + 252 4.8140421550694894E-05 + 253 3.4133213277953321E-04 + 254 -5.8525101855184209E-03 + 255 1.6103408845908175E-03 + 256 -1.1991738875168464E-04 + 257 4.1858934003813587E-03 + 258 -3.2263237952757169E-03 + 259 -5.1678886776908956E-04 + 260 -8.3374116245966425E-04 + 261 -5.3010164114283842E-04 + 262 4.4010245399884108E-02 + 263 -7.5970435325250817E-03 + 264 6.0511295739070960E-03 + 265 5.2235529741009479E-02 + 266 -2.2946571815697665E-02 + 267 1.9166970460492267E-03 + 268 -1.2391958253616848E-04 + 269 1.0388517185357660E-03 + 270 1.4439373782485128E-03 + 271 2.5610721395256990E-04 + 272 -1.4318871358411135E-04 + 273 -8.1558730582774352E-05 + 274 -5.3263936614133839E-04 + 275 4.1519252335122221E-04 + 276 1.8609741588907202E-04 + 277 1.2696067118713850E-05 + 278 -6.5717242092263217E-04 + 279 -3.4199948320895998E-02 + 280 7.3467588783165992E-04 + 281 -1.7583182127290030E-05 + 282 -1.0387202050155045E-02 + 283 8.6896173886684101E-03 + 284 -6.5485061391297819E-04 + 285 -2.5436392638643850E-04 + 286 9.2054669695581170E-04 + 287 -7.1137961584099348E-04 + 288 -1.2503774326232112E-04 + 289 -1.5124738445777310E-03 + 290 -1.6521826254802187E-03 + 291 2.4754737082128962E-04 + 292 -1.1165311026567027E-02 + 293 3.5305182378991010E-04 + 294 -4.7684102019427384E-03 + 295 9.1622495181134314E-03 + 296 8.2656969744071690E-03 + 297 -2.7934438147658372E-04 + 298 2.2337318851362331E-03 + 299 1.3606059389110964E-03 + 300 5.7069786717232093E-04 + 301 -1.3620214257869378E-03 + 302 -2.7476913834910546E-04 + 303 1.7275147047902484E-03 + 304 -3.3568427675452500E-04 + 305 1.3828989699262396E-02 + 306 -2.2589934533587923E-03 + 307 -1.0378216264453496E-02 + 308 -1.7322457241602098E-04 + 309 2.2845722508794378E-03 + 310 -7.7890419668284641E-04 + 311 -1.8974423722840964E-03 + 312 -1.3896158135156436E-03 + 313 1.3672134436416589E-02 + 314 1.5568094346264222E-01 + 315 3.8500756015174782E-02 + 316 -1.8376277057530638E-01 + 317 5.7743576195433174E-02 + 318 -2.5676976261780762E-04 + 319 -5.0217160610539057E-03 + 320 -3.6157806721269297E-04 + 321 3.0210916811849470E-03 + 322 1.0917595599729108E-03 + 323 3.6358573361682325E-04 + 324 -1.2614149942700463E-03 + 325 4.3409788173120290E-04 + 326 1.0043150540152684E-03 + 327 -4.8141645395474996E-04 + 328 2.7244191826972789E-04 + 329 1.0888053537636793E-04 + 330 -1.3783633866989017E-02 + 331 -4.7260835768629574E-04 + 332 3.1750259762714487E-04 + 333 -7.5861367158552758E-05 + 334 -6.7225748224249886E-03 + 335 -4.4476819658202530E-04 + 336 6.8939833090335466E-04 + 337 -2.7485432661779829E-04 + 338 -2.0393103485820599E-01 + 339 3.3019288887712925E-02 + 340 -4.8296245672508085E-02 + 341 4.5005082332815381E-02 + 342 1.7610745468163980E-01 + 343 -6.2945043994233358E-03 + 344 -1.6029724743090710E-03 + 345 3.4161005308993490E-04 + 346 1.1673255613458284E-03 + 347 -4.7700490513108451E-05 + 348 -6.3448217179886540E-04 + 349 2.5539372300818351E-04 + 350 -6.6728319237933291E-04 + 351 4.8831225162523548E-04 + 352 -8.6852437364484431E-04 + 353 -8.3559124244450317E-05 + 354 8.2426477518399437E-04 + 355 1.7506803191003013E-02 + 356 -5.9026467474112318E-04 + 357 5.5103181957005540E-03 + 358 6.1513392404279168E-03 + 359 -1.2918039404348599E-02 + 360 1.4033488307835735E-03 + 361 -2.7058580156312574E-03 + 362 -1.1124628870502257E-04 + 363 -9.0237722766037904E-04 + 364 -9.1084432995619849E-04 + 365 -1.4112143096879292E-03 + 366 1.8526320585499085E-03 + 367 3.7537499425127326E-03 + 368 1.5535202033711970E-02 + 369 -2.3929709292330436E-04 + 370 4.8194295232289444E-04 + 371 -1.9616463534053490E-02 + 372 -9.0077183034853927E-03 + 373 -8.4954577581547528E-04 + 374 5.7180634590873818E-04 + 375 2.7630980811923708E-03 + 376 -4.5696117486935476E-03 + 377 2.2435917904473773E-03 + 378 6.0760613917233968E-04 + 379 2.9010468172246885E-04 + 380 3.8936102924533667E-03 + 381 1.2546075869780271E-02 + 382 -1.2305314830678385E-04 + 383 1.6668867010715762E-02 + 384 4.4860401361338613E-03 + 385 1.8589338400793586E-02 + 386 5.1046809607728765E-04 + 387 8.8058656822731388E-04 + 388 -1.2751833075074168E-04 + 389 -1.8765137062756239E-03 + 390 1.1456797864496445E-03 + 391 -4.5602316863329120E-04 + 392 1.5980146182059238E-03 + 393 -2.6488462938532311E-04 + 394 4.9278289934241819E-03 + 395 -1.2013425320889859E-03 + 396 6.3218898742530465E-03 + 397 -5.9425108485822567E-05 + 398 -4.1219595740773409E-03 + 399 7.9359314368508834E-04 + 400 -3.7054536209396490E-04 + 401 -1.7333149509836969E-03 + 402 1.8333434698120601E-01 + 403 2.9004426877319739E-01 + 404 2.9527820185176891E-02 + 405 2.9401265818501713E-03 + 406 1.6045885352172687E-01 + 407 -3.0001446029157383E-03 + 408 -3.7551201203193671E-03 + 409 -1.5517547362140370E-03 + 410 1.8953500274483631E-03 + 411 -2.3413809864122640E-03 + 412 2.7304255645164716E-04 + 413 2.6080009564178013E-05 + 414 9.5992843238814866E-06 + 415 -8.0084656447803400E-04 + 416 3.4712371057585327E-04 + 417 -4.4622576480056204E-04 + 418 -2.9575216381914183E-04 + 419 -1.6263841981453066E-02 + 420 -3.1271904109874321E-04 + 421 -2.4817917986667475E-02 + 422 1.8561499637327915E-02 + 423 1.5693352254034339E-02 + 424 -2.4794543537354241E-03 + 425 3.1344385082180352E-03 + 426 3.6871544256795649E-04 + 427 3.8183624225252189E-03 + 428 -3.7098865933551284E-03 + 429 3.1403242319601580E-03 + 430 -1.5777411005303257E-03 + 431 4.5520407996189572E-03 + 432 7.2277844665410582E-02 + 433 -1.9744120626840806E-03 + 434 -1.3474419902969784E-02 + 435 -1.2484244631108369E-02 + 436 9.8517596624533004E-03 + 437 -3.7390921048985120E-04 + 438 -6.4844509868381870E-04 + 439 3.2307972620153086E-04 + 440 -1.6030809189333075E-03 + 441 2.0974966457474589E-03 + 442 1.0314212068452313E-03 + 443 -6.0593289998722472E-04 + 444 -2.0767803469603006E-03 + 445 -3.0448455213957551E-03 + 446 -5.2551773287709135E-04 + 447 3.9384132579626842E-03 + 448 9.3033529384781450E-03 + 449 -1.3182284233494206E-02 + 450 4.6531600114602589E-04 + 451 1.4019394481271181E-03 + 452 -2.1625630836170497E-04 + 453 1.6248258814783587E-01 + 454 3.3845964525097960E-01 + 455 -6.3763808760345930E-02 + 456 -1.2612171418248053E-01 + 457 -2.0315383461486530E-01 + 458 -2.4854619222577558E-03 + 459 -1.7797478788684599E-03 + 460 -6.0087832243742561E-04 + 461 7.9123794980258757E-04 + 462 3.7261727472885663E-03 + 463 3.6204627865546793E-04 + 464 -6.9954870429845065E-05 + 465 -1.2797994864485790E-03 + 466 7.4348206981299258E-04 + 467 3.4457398323068381E-04 + 468 -6.6954103682305942E-04 + 469 7.8602109938175280E-05 + 470 1.3630464935463745E-03 + 471 5.9374698059540710E-04 + 472 4.7763204619767135E-03 + 473 1.2116046803211005E-03 + 474 -2.3338829052925968E-04 + 475 5.9056833153155565E-04 + 476 -1.3304899164832511E-03 + 477 -2.7528282626897865E-04 + 478 1.1801935303483672E-03 + 479 -1.4750474159744112E-02 + 480 -4.0731344398490132E-02 + 481 6.5576395322803210E-02 + 482 -7.1148988281670442E-03 + 483 -6.4599905878286895E-04 + 484 -1.2202963665948426E-03 + 485 -3.6285361908355873E-04 + 486 2.2751335354165621E-03 + 487 -1.8301330036497125E-03 + 488 3.1085679392673212E-04 + 489 -2.6911689985828388E-04 + 490 5.5094409530115503E-04 + 491 -4.1513778791731770E-04 + 492 6.5779993029596495E-05 + 493 1.8630353997567791E-04 + 494 -3.9624497392095980E-04 +Ene= -4.6855741169E-01 +Spin= Alpha +Occup= 2.0000000 + 1 1.4771879545849301E-02 + 2 -7.4757653507914398E-04 + 3 -6.5033802184223015E-03 + 4 7.9421171194280511E-03 + 5 -3.8148192514960203E-04 + 6 -8.7117302291655813E-04 + 7 1.0050252766817450E-04 + 8 -1.1124593279196464E-03 + 9 4.5319709454472903E-02 + 10 1.0624964399358287E-02 + 11 -7.5815403334222153E-02 + 12 6.4671311669794562E-02 + 13 7.8785314935703871E-02 + 14 -2.8020079896431526E-03 + 15 2.3341896154335725E-04 + 16 1.6679216060470526E-04 + 17 1.0983087010306947E-03 + 18 -3.9020934390070418E-03 + 19 1.5092268150960006E-04 + 20 5.9347776229493239E-04 + 21 -1.6612951217481766E-04 + 22 1.2431952822234557E-04 + 23 -1.8721771703400321E-04 + 24 -1.9339922589949718E-04 + 25 1.0203231818265847E-03 + 26 -5.6794805351495937E-04 + 27 7.9953786615087510E-04 + 28 -2.6356821967874950E-03 + 29 -1.6875023612396029E-03 + 30 -1.6795391489663896E-03 + 31 8.4448456065255373E-04 + 32 7.3526195334704570E-04 + 33 -2.0236055809409611E-03 + 34 5.7416623024287877E-02 + 35 -1.4575798294035916E-01 + 36 -2.1093173060741371E-01 + 37 -6.6298488876714523E-02 + 38 7.8915750770625570E-02 + 39 1.6897262221433982E-04 + 40 1.1892483346634360E-03 + 41 1.3415337615292910E-03 + 42 -2.6960020999339809E-05 + 43 -3.9037278623542328E-04 + 44 4.9124485936201346E-04 + 45 -2.7218862622693503E-04 + 46 -1.2058889574962646E-04 + 47 -3.3671648206865071E-04 + 48 2.6412747408398920E-04 + 49 1.0171979648254067E-03 + 50 4.3129691024834454E-04 + 51 -6.3227633558570716E-03 + 52 2.3865190531438028E-04 + 53 1.6788534309986006E-03 + 54 2.3245512960548085E-03 + 55 1.9718614341341133E-03 + 56 1.7584623781948048E-04 + 57 1.3244421761407000E-04 + 58 5.3670218310994801E-04 + 59 2.2765038673140153E-02 + 60 -3.7172902242660733E-02 + 61 -8.0789152713131307E-03 + 62 3.0059650848527141E-02 + 63 1.1175764260015063E-02 + 64 5.6427786759383349E-06 + 65 2.5531755313194892E-03 + 66 1.3272474840642504E-03 + 67 -3.1513137421604494E-04 + 68 -1.0525031151529781E-03 + 69 -4.7904348221911188E-04 + 70 -2.5299111654389676E-04 + 71 -1.4491164991396643E-04 + 72 -4.5898676793495400E-04 + 73 7.9789520568057030E-04 + 74 4.2098690795119349E-04 + 75 6.4197704265609703E-04 + 76 -2.5293394017924025E-03 + 77 -3.4763901982465170E-04 + 78 -5.0997521231477931E-03 + 79 1.3944171045358949E-02 + 80 3.8094273798264050E-02 + 81 -6.6993982912564044E-05 + 82 8.4370932709917175E-04 + 83 3.6615321771689786E-03 + 84 8.2658252122133559E-04 + 85 -6.6725795253912666E-03 + 86 -5.0466302092657392E-03 + 87 1.3806904692877397E-03 + 88 -1.9514002128267242E-03 + 89 8.5746602873907948E-03 + 90 1.7349222166041002E-04 + 91 -6.6804394337532181E-03 + 92 -6.8607228919774169E-03 + 93 7.1429034600349241E-03 + 94 -1.3709063547419251E-03 + 95 -8.6387676079426468E-04 + 96 1.4528890539810839E-03 + 97 8.0213719008539889E-04 + 98 -7.7136153497452857E-04 + 99 1.3660478376189419E-03 + 100 1.6703183123576695E-03 + 101 -9.6128220593153001E-04 + 102 6.6879451747408024E-03 + 103 -1.4030035999929881E-04 + 104 -7.3153657316985367E-04 + 105 -5.3853978806222020E-03 + 106 3.2647048555162713E-03 + 107 -1.6584457708880042E-04 + 108 4.9645464160888268E-04 + 109 5.3486981129446758E-04 + 110 2.8355352640041549E-05 + 111 -5.1288453461074805E-04 + 112 4.4887084052058052E-04 + 113 6.4083362727232701E-04 + 114 1.8455484252718926E-04 + 115 -3.9070115750560186E-03 + 116 6.9083796769604303E-05 + 117 -7.6142203241612730E-03 + 118 -4.5711756191369546E-03 + 119 1.7481984463409831E-04 + 120 -1.8011987633642702E-04 + 121 2.9858359307343834E-04 + 122 -3.2649881085052132E-05 + 123 -2.5895596666705668E-04 + 124 1.7271300227485998E-03 + 125 5.4254009940125913E-04 + 126 1.9437851226772400E-04 + 127 3.2888239631050293E-04 + 128 1.1940323936116267E-02 + 129 -9.0664434831863637E-04 + 130 2.8548523624609603E-03 + 131 -6.2642651461700767E-03 + 132 -2.5602306936883131E-03 + 133 2.1127135890615790E-03 + 134 -2.3027156374899474E-03 + 135 4.5330449419873591E-05 + 136 5.3350978134826144E-02 + 137 -7.7795376321015186E-02 + 138 1.1899289351704082E-01 + 139 -9.0165949343506316E-02 + 140 1.1676810848161363E-01 + 141 4.2169470171555211E-04 + 142 -7.8359632627626228E-05 + 143 2.6693868649078677E-03 + 144 -5.1251324223297058E-04 + 145 2.3041271179624571E-03 + 146 -5.1349323470505916E-04 + 147 -8.7338035437255530E-05 + 148 4.3545726932513423E-04 + 149 8.9659397169962387E-04 + 150 -1.3551419849136433E-03 + 151 -3.2802275835929206E-04 + 152 -2.4902670510864997E-04 + 153 -6.4795344404705666E-03 + 154 3.5013797082870262E-04 + 155 -1.5556566570755113E-03 + 156 -1.6986346661529009E-03 + 157 3.4635517547060030E-03 + 158 -1.8163425727874740E-04 + 159 -2.0212828807742694E-05 + 160 3.6517562054130560E-04 + 161 -9.4931142008686381E-03 + 162 4.9626735420036136E-02 + 163 5.8263177563003310E-02 + 164 2.7513129722943404E-02 + 165 -6.0008268663870788E-02 + 166 -1.2523300704252011E-03 + 167 5.5731053363435403E-04 + 168 1.3588807730893549E-03 + 169 3.7948591764581100E-04 + 170 -3.9001721761351422E-04 + 171 1.3789757616983514E-05 + 172 2.2386652366348791E-06 + 173 -4.8074228148016674E-04 + 174 8.0736118548221770E-05 + 175 6.3834373182716038E-05 + 176 -6.2065796842132449E-05 + 177 1.1142244800856418E-04 + 178 -6.2461238797090106E-03 + 179 1.5851394488586242E-05 + 180 4.7769113888380971E-03 + 181 -3.1874250498667108E-03 + 182 -1.6285747379438682E-03 + 183 5.5450009449301018E-04 + 184 1.7979616802342541E-04 + 185 9.5203943546710669E-06 + 186 8.9110725186358384E-05 + 187 -1.0522185698818938E-03 + 188 1.4636073440261143E-03 + 189 2.2917867480705821E-04 + 190 -4.0647946364598560E-04 + 191 2.7749179543119121E-03 + 192 -1.8801106890158452E-04 + 193 2.0561519646707022E-03 + 194 6.8901449173353699E-03 + 195 1.0334720655464638E-02 + 196 4.9167334969303373E-04 + 197 1.7243954525889181E-04 + 198 7.0485106671529609E-04 + 199 -2.7178965193545217E-04 + 200 2.9474973201966420E-04 + 201 1.0655241383361132E-03 + 202 -1.7180367539455324E-03 + 203 7.8189587381011412E-04 + 204 -1.1860389629559768E-02 + 205 -9.5086213821500814E-04 + 206 4.3504417022732908E-04 + 207 -6.2435411525659070E-03 + 208 2.9276989388386148E-03 + 209 -4.5950160670364589E-04 + 210 -2.0317856522138068E-03 + 211 1.7310208580933868E-04 + 212 -9.7264895103885991E-03 + 213 2.7098404282987948E-01 + 214 -6.3814617700210116E-02 + 215 1.7645119297568906E-01 + 216 -9.6780896895213811E-02 + 217 8.4150541064260530E-04 + 218 -2.1087324426787035E-03 + 219 1.5957086744025314E-03 + 220 1.7057088541613645E-03 + 221 -1.0603667191811407E-03 + 222 7.4990627400623009E-04 + 223 3.5148871842562835E-04 + 224 2.4618374494600096E-04 + 225 -5.2637425952115969E-04 + 226 -1.6115389409557281E-04 + 227 1.7871465607423328E-04 + 228 2.5913009280245002E-04 + 229 -1.2252777093407633E-02 + 230 -6.6874130375797774E-05 + 231 6.5848634953165029E-03 + 232 2.1766206500021118E-03 + 233 -1.8720665397104074E-03 + 234 -2.4334926733236852E-03 + 235 5.2092693825368309E-05 + 236 -2.0071442815856331E-03 + 237 7.8453762915059760E-02 + 238 -1.0125129414026927E-01 + 239 1.4639267056716135E-01 + 240 5.7783489565544639E-02 + 241 2.6591194156349462E-01 + 242 -8.7792826004695916E-04 + 243 4.0934269049220390E-03 + 244 -1.2796432268270654E-03 + 245 2.6261210300757491E-03 + 246 -1.3741647390149772E-03 + 247 -8.0376078657013622E-04 + 248 1.0713873989725215E-03 + 249 -7.4152352203164448E-04 + 250 -4.5849151217034400E-04 + 251 -4.7626056277227496E-04 + 252 -1.4464301331856241E-03 + 253 5.2439867558752719E-05 + 254 -6.5580154086153624E-03 + 255 1.0613781055645326E-03 + 256 5.2987932399372803E-04 + 257 6.2437669726498246E-04 + 258 2.2525367647765610E-03 + 259 1.1289484783351643E-04 + 260 4.6352519985865708E-04 + 261 -8.3069186932430725E-04 + 262 -5.9395398161725961E-02 + 263 -6.7258904602011688E-03 + 264 -7.7944906376999010E-03 + 265 -8.9591745574964313E-03 + 266 -3.1688403280630334E-03 + 267 -1.4727155460720077E-04 + 268 -1.3534143152642742E-04 + 269 -5.5451762398553721E-04 + 270 5.9657442329965932E-04 + 271 -4.0201369134335691E-04 + 272 -1.5302738179898858E-04 + 273 -3.3936561557100568E-04 + 274 1.8684729764865382E-04 + 275 -1.6381212673044092E-04 + 276 1.1317358339144535E-04 + 277 -1.6913764345013652E-04 + 278 -1.6811163718314748E-04 + 279 3.4430691228483974E-02 + 280 -4.7247500972228264E-04 + 281 -3.9495751976948617E-03 + 282 7.4219166765752721E-03 + 283 1.6349771931806156E-02 + 284 3.4987179743697602E-04 + 285 -9.6458466491842598E-04 + 286 -2.0353783276241122E-04 + 287 -1.1952904720254371E-03 + 288 7.4163296595371306E-04 + 289 -3.2197409425374995E-03 + 290 3.9910282441278416E-04 + 291 6.2935685015235636E-04 + 292 9.8447504572083950E-04 + 293 5.6143203062971529E-04 + 294 4.9928790891859138E-04 + 295 2.4977400952768583E-02 + 296 2.0160839649201158E-02 + 297 -6.1652416720803574E-04 + 298 2.3604422201272852E-03 + 299 1.0747626195844369E-03 + 300 2.3176441496331407E-03 + 301 -3.8236923483626170E-03 + 302 -8.9482005098802817E-05 + 303 2.3254072298680667E-03 + 304 -3.8479735188492723E-03 + 305 6.9066814720366680E-03 + 306 -5.6954289585057507E-04 + 307 -9.7165897150592439E-03 + 308 -4.3088448553172719E-03 + 309 3.3425163071047663E-03 + 310 -1.8711497800833340E-03 + 311 -1.9703292233185410E-03 + 312 1.8046761051522070E-04 + 313 4.7719811029572339E-02 + 314 1.6770052062667304E-01 + 315 1.7398414334526899E-01 + 316 -2.4323684163993689E-01 + 317 -1.1063500405875888E-01 + 318 3.1961528132913098E-04 + 319 -4.1242371818443419E-03 + 320 -2.1144302523543471E-03 + 321 3.0070791802473472E-03 + 322 -1.6715171065673387E-03 + 323 -1.2251050506597597E-06 + 324 -5.9884680327949218E-04 + 325 -1.7229022791418955E-04 + 326 1.0140665865009581E-03 + 327 -2.7509980771834431E-04 + 328 9.4209445878893456E-04 + 329 1.7324342259428076E-04 + 330 -5.8475919290008286E-03 + 331 -7.4163829150693120E-04 + 332 1.8920678492839627E-03 + 333 -2.7857225450752467E-03 + 334 5.8450758203988642E-03 + 335 2.8164211810228086E-04 + 336 -5.5574849273768399E-04 + 337 7.5452976660177749E-04 + 338 -2.8385240120229870E-02 + 339 -5.3352389490848348E-02 + 340 6.3732635027421464E-02 + 341 -2.2536944870448123E-02 + 342 4.5758610027515315E-02 + 343 -2.9866493140162794E-04 + 344 -1.0099829232360089E-03 + 345 2.9390680631246296E-03 + 346 1.2849767216536901E-03 + 347 1.2061223000734292E-03 + 348 -1.6493549440355388E-04 + 349 5.3530527594405431E-04 + 350 4.0501332500682708E-04 + 351 -7.1181051382521946E-04 + 352 -4.1391038798225968E-04 + 353 -6.7986330747983625E-04 + 354 6.8950532857837499E-04 + 355 5.7276083131169025E-02 + 356 -1.5556438040823506E-03 + 357 1.0390815991623966E-02 + 358 -1.5210791227351146E-02 + 359 -2.2605236841145172E-02 + 360 1.2006352430472690E-03 + 361 -2.8272529656035634E-03 + 362 -6.0075444745875570E-04 + 363 -1.2977074563060790E-03 + 364 -1.1546275183808175E-03 + 365 -4.6259413944629924E-03 + 366 4.3683014364182711E-03 + 367 2.9867654312167886E-03 + 368 4.4139529175986547E-03 + 369 -3.1928046482449437E-05 + 370 -1.1159257513500911E-03 + 371 2.0686588878858353E-03 + 372 -8.9404030410685422E-03 + 373 -4.8081222263361657E-04 + 374 4.8707771734132250E-04 + 375 -4.1373852194110056E-04 + 376 2.2132299492441687E-03 + 377 1.4923095984978495E-04 + 378 6.9549760156108697E-04 + 379 -1.1857706803664186E-04 + 380 8.8706029648325815E-04 + 381 1.1727138916441606E-02 + 382 6.2325128802106646E-05 + 383 -1.0253875530158761E-02 + 384 2.2224646015308065E-02 + 385 -3.3268379511620719E-02 + 386 -8.6436557183159008E-04 + 387 3.9420058202494673E-04 + 388 1.4639386535555442E-03 + 389 5.4137394627663659E-03 + 390 -3.2515401691863028E-03 + 391 8.9434519859244973E-04 + 392 -3.0711867131718391E-04 + 393 3.7472651830485503E-03 + 394 -2.3312156073401747E-02 + 395 2.5292626501762942E-04 + 396 -7.3470166398950584E-03 + 397 7.5777084786357212E-03 + 398 1.1026354702915037E-02 + 399 -1.1515961781300226E-03 + 400 2.4405022609800464E-03 + 401 4.8639281315474292E-03 + 402 -1.2747318416411407E-01 + 403 -2.1497147839620001E-01 + 404 3.0261523004668806E-01 + 405 2.1044104174933642E-01 + 406 -1.8989433280078777E-01 + 407 3.9921526414390595E-03 + 408 6.8285908293640749E-04 + 409 -5.3133135237929674E-03 + 410 2.3943472607284655E-03 + 411 1.9839091419800200E-03 + 412 -9.5419063206451677E-04 + 413 -6.3247736883351874E-04 + 414 -1.1513931549247311E-04 + 415 -1.2023068186883265E-03 + 416 -8.8330359377655808E-04 + 417 1.2739032262834796E-03 + 418 1.1804829550320892E-04 + 419 -7.1221500667934534E-03 + 420 -3.0240740726014077E-05 + 421 7.1367490519103549E-04 + 422 2.1708371972122336E-03 + 423 6.4705850638444844E-03 + 424 -1.8865619105279302E-04 + 425 1.4654256437316841E-03 + 426 1.2257155912763741E-03 + 427 1.7466020624827747E-03 + 428 4.9144245685097657E-04 + 429 -1.6060286497295178E-03 + 430 3.0727986780968658E-03 + 431 3.0648108537847415E-03 + 432 3.1477782609040959E-02 + 433 -7.9782174726257407E-04 + 434 -2.9988436294055526E-03 + 435 -1.3212601582419650E-02 + 436 2.1317218654131290E-02 + 437 -3.7063315509521633E-04 + 438 -7.5368963754761137E-04 + 439 1.0992749796246272E-03 + 440 -1.0058987430898211E-03 + 441 5.8011926162518162E-03 + 442 1.3758777892371424E-03 + 443 7.5775326032973607E-04 + 444 -2.3773387698381439E-03 + 445 1.0646093576877865E-02 + 446 2.6661031641033052E-04 + 447 5.8587338139033888E-03 + 448 6.3045896828227725E-03 + 449 -6.6750900325032525E-03 + 450 1.3523919827052079E-03 + 451 1.5218375125363376E-03 + 452 -6.0788040661770716E-04 + 453 1.4411334315497066E-02 + 454 3.6741255800805345E-01 + 455 -2.4316490914390535E-02 + 456 -2.3072705243182770E-01 + 457 -8.8912596015353778E-04 + 458 -1.1051577100185416E-03 + 459 -3.3698203342528614E-03 + 460 -3.8421656471664405E-04 + 461 4.7246981262973655E-04 + 462 1.7304095199006443E-03 + 463 7.0518296098611908E-04 + 464 5.1625050385678053E-05 + 465 -4.3311411828008903E-04 + 466 -5.8519770379940523E-04 + 467 -2.0243115217248445E-04 + 468 -5.4326490230524485E-04 + 469 -8.6094441243116365E-05 + 470 -3.0541940497009978E-03 + 471 -1.7862450370560100E-04 + 472 2.5998799957268827E-05 + 473 -6.3703822107543805E-04 + 474 -7.2389626957060891E-04 + 475 -1.3911697904068373E-04 + 476 -6.0049898849466469E-04 + 477 -2.8490573690632081E-04 + 478 3.8348192957979067E-02 + 479 7.2617426414920330E-03 + 480 4.3160082966018268E-02 + 481 6.2678240072942537E-02 + 482 -1.5519434551391723E-02 + 483 6.5682332458477622E-04 + 484 -6.2837632430985874E-04 + 485 5.7348866666550016E-05 + 486 9.2702009212662639E-04 + 487 -1.7503777300552537E-03 + 488 1.5600728494341668E-04 + 489 1.2873583135589907E-04 + 490 6.8615722315611816E-05 + 491 4.3623235708143568E-05 + 492 1.1749703414695213E-04 + 493 2.0831718390516946E-04 + 494 -5.4134121665259233E-04 +Ene= -4.6850235381E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -8.9695836373059820E-03 + 2 1.0418753845915026E-03 + 3 4.2358760862929463E-03 + 4 -4.2826399864275789E-03 + 5 1.3007771557784672E-05 + 6 -8.5785104026616450E-04 + 7 1.5146712903015192E-04 + 8 -7.8720852860779834E-04 + 9 -3.3963816383990694E-02 + 10 1.7264345464064124E-02 + 11 -2.0337000418561096E-02 + 12 3.6072640755385765E-03 + 13 -9.0175084649493545E-02 + 14 7.8728010934496484E-04 + 15 1.7352809270185956E-04 + 16 4.9313533938014314E-04 + 17 -1.0280571589021152E-03 + 18 2.4445528218956345E-03 + 19 1.2711008465221630E-04 + 20 -2.6867246860158095E-04 + 21 -2.1442516558164141E-04 + 22 2.2264628931891118E-04 + 23 -1.4934275814506044E-04 + 24 8.2629173849426199E-04 + 25 -7.2666009072271521E-04 + 26 5.0504384989717493E-03 + 27 1.5460722965600503E-04 + 28 -3.6348717334597284E-04 + 29 3.7112828789575255E-03 + 30 -8.2495576097513809E-04 + 31 1.0365711565552455E-04 + 32 5.4905516734404737E-04 + 33 3.1922283275758617E-04 + 34 3.9733474428113563E-02 + 35 2.0324022915085655E-03 + 36 5.3502001872925753E-02 + 37 -6.6916617962098759E-02 + 38 1.7494189639506211E-01 + 39 -5.3663567412349735E-05 + 40 -2.0215547011525627E-03 + 41 -1.8863630493470725E-03 + 42 9.8275185509457742E-04 + 43 4.0122827824346766E-04 + 44 -3.9332739171078169E-05 + 45 4.2243196759219584E-04 + 46 -4.5359904498833515E-05 + 47 1.3489800103238289E-04 + 48 -5.1771937951152927E-05 + 49 -2.5421509010768842E-04 + 50 3.8190490902946202E-04 + 51 -5.0372449645148540E-03 + 52 -4.4925407425908429E-04 + 53 4.1689299282581848E-03 + 54 -2.1817737225087496E-03 + 55 -8.3498611549885296E-05 + 56 1.2466350913558379E-03 + 57 6.7438431290671756E-04 + 58 3.2162466121530219E-04 + 59 -1.7817681047271178E-03 + 60 2.7731008973852660E-02 + 61 1.7429539651253052E-02 + 62 9.6605939835691448E-03 + 63 -2.1926543880573170E-02 + 64 6.9950990418014554E-04 + 65 -1.5873956844276529E-03 + 66 -1.2483935027874469E-03 + 67 -1.6862930839482476E-03 + 68 2.4380274182939131E-03 + 69 4.1405200665259524E-04 + 70 -1.4360866273098141E-04 + 71 2.3721110988488011E-04 + 72 9.2802947841759810E-04 + 73 -7.4470484219281506E-04 + 74 -4.7785262093602478E-04 + 75 -4.8248158450746759E-04 + 76 -1.9220905744044461E-02 + 77 4.7583701792490218E-04 + 78 -6.0378692734779681E-03 + 79 -2.3637742343237730E-03 + 80 -1.6986522668732372E-03 + 81 -3.0719036994798966E-04 + 82 -6.8505050757646120E-04 + 83 -2.2391685360980467E-03 + 84 9.8548297525254103E-04 + 85 7.5464672385899974E-04 + 86 1.2255067089311776E-03 + 87 9.0020003703249901E-04 + 88 1.5662251020359074E-03 + 89 -6.6596972882823381E-03 + 90 4.2556563000076242E-06 + 91 3.2105300479305095E-03 + 92 1.7273171940243774E-03 + 93 -8.8877302963998874E-04 + 94 1.5149039056634893E-03 + 95 1.4109986016926343E-04 + 96 4.1798781615324897E-04 + 97 -2.9465181625821108E-04 + 98 3.9671343918999620E-04 + 99 -1.4973539002585934E-04 + 100 -2.3459087309350842E-04 + 101 9.5707404169759051E-04 + 102 1.4096038446742402E-02 + 103 -1.0904212247180005E-04 + 104 -1.0414422179259818E-03 + 105 -1.2924153622558386E-02 + 106 1.4287942335025651E-03 + 107 -2.8463170248361016E-04 + 108 -6.4735573340699362E-04 + 109 3.8212278601298925E-05 + 110 1.3097094262689020E-03 + 111 6.8859410290132597E-05 + 112 5.5016451273930394E-04 + 113 1.7649411881391643E-03 + 114 1.2590929133083494E-03 + 115 9.9527725577271079E-03 + 116 -6.4385420820261424E-04 + 117 -8.1084171017513110E-05 + 118 -1.4230038464280513E-03 + 119 5.5372418017711859E-03 + 120 3.2358841985879008E-04 + 121 6.5714610771647750E-04 + 122 5.5091475003745467E-04 + 123 -1.5284214687943686E-03 + 124 2.6658374025694139E-04 + 125 5.3864532308410151E-05 + 126 4.3970013702395990E-04 + 127 2.4507625026976395E-04 + 128 1.0997397185123337E-04 + 129 -5.9570512698904165E-04 + 130 -1.1895640423696457E-03 + 131 6.0753594047286792E-03 + 132 -1.3398493739687290E-03 + 133 -7.4574563156490511E-04 + 134 5.5439592141316870E-04 + 135 -6.9832319064362181E-04 + 136 -6.0353383235704820E-02 + 137 3.8965240673571447E-02 + 138 1.3223378002860087E-01 + 139 -5.6567116733948174E-03 + 140 -1.2422412434534746E-01 + 141 3.9183789532526821E-04 + 142 1.1312199788748576E-03 + 143 1.1093057767752026E-03 + 144 6.7199859891997301E-04 + 145 2.9058257590156913E-03 + 146 3.8974191013190325E-04 + 147 7.5001616623851733E-05 + 148 -6.7974674909367241E-05 + 149 5.3081920676846539E-04 + 150 -3.5127478698852215E-04 + 151 3.8037417791083824E-04 + 152 5.2966048420354092E-04 + 153 -2.2407985285274753E-03 + 154 9.8186496493791607E-04 + 155 -3.3230223702520227E-03 + 156 -9.4066835713814000E-04 + 157 1.5481785760111102E-03 + 158 -6.6648814787928490E-04 + 159 -3.4237775128487518E-04 + 160 -3.3674684312435757E-04 + 161 -5.0516061914003645E-02 + 162 -3.2642319556085491E-03 + 163 2.7346077211744105E-02 + 164 4.0903556355890523E-03 + 165 6.0988649015018695E-03 + 166 -4.9543226267729275E-04 + 167 5.9217931321546677E-04 + 168 6.8322628800957397E-04 + 169 2.1133437743497507E-03 + 170 -1.3950340177099657E-04 + 171 -1.7868088986566799E-04 + 172 2.8830246295135901E-05 + 173 -1.4333448135564491E-04 + 174 -6.4065906640501866E-04 + 175 1.1834276039021905E-05 + 176 -4.3083999306332669E-04 + 177 2.6607975987065729E-04 + 178 -1.6764196928248185E-02 + 179 4.7487508328787587E-04 + 180 2.0206921866847121E-03 + 181 -9.6048770254864250E-03 + 182 -7.1998239132451281E-03 + 183 -4.1871092854352439E-04 + 184 -1.4526203662176165E-04 + 185 -9.2813125190307219E-04 + 186 2.3934216194486714E-03 + 187 3.6458381107461050E-04 + 188 1.9740985360896723E-03 + 189 2.1419464527914498E-03 + 190 -1.6971608742486795E-04 + 191 -3.1928004222734639E-02 + 192 6.1578246246094600E-04 + 193 -8.9132757079310038E-03 + 194 1.2373880701896661E-02 + 195 -6.8520247098288649E-03 + 196 -3.7869544394650843E-04 + 197 2.2793974756378269E-04 + 198 -3.1707789859374989E-04 + 199 -1.7557419675045113E-03 + 200 2.0863588829091763E-03 + 201 -1.2569714643721080E-03 + 202 -1.8468953389180938E-03 + 203 -2.4698536683005002E-03 + 204 -4.1716680736707795E-03 + 205 3.8788322533671554E-04 + 206 -5.5761972037484449E-04 + 207 -3.6427043862874075E-03 + 208 -2.0060196667548835E-03 + 209 -7.4721963948485030E-04 + 210 -8.7106023487834876E-04 + 211 1.0317712857185037E-04 + 212 3.6326621501597732E-02 + 213 3.1667537542236932E-02 + 214 4.6638887887902919E-01 + 215 1.6797094582001609E-01 + 216 -1.3663121922941907E-01 + 217 -5.6130546492902506E-05 + 218 8.4085205032777938E-04 + 219 -1.2853034753898443E-03 + 220 -5.4556090315372461E-05 + 221 -1.8582688942808514E-03 + 222 5.4137333970574579E-04 + 223 -3.1358286620769847E-04 + 224 -1.7472340499010937E-04 + 225 2.0051161992006976E-04 + 226 1.6402799369249447E-04 + 227 2.8961413810132752E-05 + 228 -2.6699814154881798E-04 + 229 -1.5711481621680876E-02 + 230 1.1676446684902563E-04 + 231 1.3551888349893200E-04 + 232 3.7503599668406340E-03 + 233 5.2154816495453256E-03 + 234 1.5023413384465643E-04 + 235 1.4032459561455846E-03 + 236 -1.2259223332153102E-04 + 237 -8.8245805558104726E-02 + 238 7.7864548866517891E-02 + 239 9.5687096056472243E-02 + 240 -1.1331592890107418E-01 + 241 -2.4360822076365632E-01 + 242 2.7853296761638580E-03 + 243 -4.6391024321866260E-04 + 244 -1.1544687808174893E-03 + 245 -2.2980187126186882E-03 + 246 2.2332369753468150E-03 + 247 -2.6280512912539193E-04 + 248 -8.2850572202305896E-04 + 249 8.0510992713421069E-05 + 250 -6.7258093754055245E-04 + 251 7.1672469615690704E-04 + 252 9.9415936363015864E-04 + 253 -1.9334080769868898E-04 + 254 6.1432067512952335E-03 + 255 -2.3642069996343391E-03 + 256 -1.3771316402354111E-03 + 257 -2.0703177666804239E-03 + 258 4.1308437388395710E-05 + 259 1.0283938058169083E-04 + 260 6.9451924530469951E-04 + 261 9.3200836824365466E-04 + 262 -1.9323279628596307E-03 + 263 4.3126864895891744E-02 + 264 2.3667957526749460E-02 + 265 -3.0094954442658167E-02 + 266 1.4215411414374626E-03 + 267 -1.2885342720972903E-03 + 268 4.8472491174165197E-04 + 269 4.1972268555861007E-04 + 270 -8.9724781354162187E-04 + 271 3.0154116213794218E-04 + 272 1.3745930110489792E-04 + 273 -2.4667472790335153E-04 + 274 1.3065294482992888E-04 + 275 1.6009887318133150E-04 + 276 -1.4045886119837961E-04 + 277 1.8448800608120337E-04 + 278 4.7195218959554633E-04 + 279 1.4343705231360236E-03 + 280 -1.5781518045311884E-04 + 281 2.7628689024244625E-02 + 282 5.4469432982728154E-03 + 283 -2.3669395957804162E-02 + 284 2.2158004884219483E-03 + 285 9.1027350904825544E-04 + 286 -2.0559749709452967E-04 + 287 2.1038788476671968E-03 + 288 -1.4669355465226192E-03 + 289 4.6402848290701230E-03 + 290 2.3773674873698090E-03 + 291 -6.4775782079990810E-03 + 292 7.9391491398742697E-03 + 293 2.2541734297080844E-04 + 294 1.1687694152286102E-02 + 295 7.6501168360919736E-03 + 296 2.0098066707191435E-02 + 297 1.2796777628765056E-03 + 298 1.4920773828949062E-03 + 299 3.0996540909590028E-03 + 300 4.5036687201808721E-03 + 301 -1.4610704711466868E-03 + 302 -2.1342632120854702E-03 + 303 1.1074280124746796E-04 + 304 -2.7953300005706763E-03 + 305 -1.1324238948531168E-03 + 306 -1.5734857124022582E-03 + 307 1.3575318971008814E-03 + 308 -2.4073048419772617E-03 + 309 8.0363563862180325E-04 + 310 -3.2212823552487394E-04 + 311 7.7320056761091447E-04 + 312 -8.3993560766380023E-04 + 313 -8.2317773611226067E-03 + 314 1.5292781731880958E-01 + 315 5.4351421413710188E-02 + 316 -9.3539047581849451E-03 + 317 -1.8539461363863868E-01 + 318 1.1493467392176134E-03 + 319 -3.2688824000762370E-04 + 320 -4.5546195268969687E-04 + 321 -4.2104197422014757E-04 + 322 1.0611506144110761E-03 + 323 8.6647316784886738E-04 + 324 -3.1819879333622113E-05 + 325 -4.6083573303366510E-05 + 326 6.5767124898468205E-05 + 327 3.6538015985641245E-04 + 328 -8.4919095565924685E-06 + 329 5.3524670883469848E-04 + 330 -1.5192421881586040E-03 + 331 4.7720867183211573E-04 + 332 1.8389249778136903E-03 + 333 -7.0665113497506648E-04 + 334 2.1836123167866014E-03 + 335 8.6256094808762277E-05 + 336 3.1160383110808180E-04 + 337 -3.0143920612112264E-04 + 338 5.3668246350405098E-03 + 339 -1.9175956006846353E-03 + 340 -3.1896108625396526E-02 + 341 -4.4962302386220461E-03 + 342 9.1206542952982653E-02 + 343 1.0534362235191140E-06 + 344 -2.5181584478668452E-04 + 345 6.8848417282749391E-04 + 346 3.5400815860196593E-04 + 347 1.1110143409755876E-03 + 348 -2.8087693294282965E-04 + 349 1.2708791150680786E-05 + 350 3.2849882881776961E-04 + 351 -1.7565695160351720E-04 + 352 3.5169757156984552E-05 + 353 -2.6092947186220146E-04 + 354 3.7802712415584545E-04 + 355 2.1407967127981511E-02 + 356 -4.8508816104498724E-04 + 357 -5.3986762661173996E-03 + 358 -1.5308577583816907E-02 + 359 -2.0826354913369353E-03 + 360 -9.6488657202636289E-04 + 361 -1.3196536537010389E-03 + 362 5.6567294554439877E-04 + 363 5.6255390847897622E-04 + 364 -7.6596405484696828E-04 + 365 -1.8832583405480486E-03 + 366 3.1366958931962727E-03 + 367 -2.0135396025652429E-03 + 368 1.6462377988518431E-02 + 369 -6.6562622521656664E-05 + 370 7.5586722023059947E-03 + 371 8.7975405474890606E-03 + 372 -4.2805214473445674E-03 + 373 1.1664184712668877E-03 + 374 -3.6372754117334890E-03 + 375 3.7467152570921035E-03 + 376 7.7228556556853281E-04 + 377 3.7455299005147240E-03 + 378 1.7216962833591361E-03 + 379 1.2180094729794982E-03 + 380 -4.6356094491437367E-03 + 381 -3.0010795926068774E-02 + 382 7.2127273206512934E-04 + 383 -1.8139447359274176E-03 + 384 -1.8696734262271076E-02 + 385 -5.3875670640874994E-03 + 386 -5.9622686241583584E-04 + 387 -5.5667120573106425E-04 + 388 6.8587106328310706E-04 + 389 2.7509590898501346E-03 + 390 3.0745340180622920E-04 + 391 3.1008970221011452E-03 + 392 -2.3548500995429185E-03 + 393 -2.5441069756538866E-03 + 394 8.9726739407523723E-03 + 395 -6.1542932810173395E-04 + 396 1.3118814735046138E-02 + 397 8.5032085993437638E-03 + 398 7.9300198832109627E-03 + 399 2.8210053783546130E-03 + 400 1.7867290212814706E-03 + 401 1.7049071207896375E-03 + 402 6.4472442586551826E-02 + 403 -3.4665377882604792E-01 + 404 -4.8444569913372548E-01 + 405 -4.0039414645790118E-02 + 406 -2.5361482531306435E-04 + 407 -2.3326787540190407E-03 + 408 4.1144924951999140E-03 + 409 2.5879882834855096E-03 + 410 5.2385554823163689E-03 + 411 -2.2538096831858437E-03 + 412 7.1392335937601873E-04 + 413 -6.6142882651668196E-04 + 414 3.0931579368404812E-04 + 415 1.3359746287517793E-03 + 416 -5.6996589705564306E-04 + 417 -4.0354996520017327E-04 + 418 -9.5796483333517870E-04 + 419 7.4772381640683394E-02 + 420 -1.7010357888209236E-03 + 421 1.0654251485747342E-02 + 422 -3.3505727461200395E-03 + 423 -4.0090839713128386E-02 + 424 1.2949752245543956E-03 + 425 1.3701727090110979E-03 + 426 -2.1718475650388557E-03 + 427 -8.3714248357091309E-03 + 428 -1.3072989660090179E-03 + 429 5.2145606858301807E-04 + 430 1.4477435713122419E-03 + 431 2.1577444215690984E-04 + 432 1.8062214177436493E-02 + 433 -4.4591416150228203E-04 + 434 -6.9038771856954192E-03 + 435 -7.8509251440305133E-04 + 436 1.6177280187679211E-02 + 437 -6.0263529136361359E-04 + 438 3.5782258298116659E-04 + 439 9.7466588130490372E-04 + 440 -6.9828366148738219E-04 + 441 3.6607267016608709E-03 + 442 5.0895352497534307E-04 + 443 -1.1480245396778366E-03 + 444 -1.0888476157359939E-03 + 445 1.4414796360286097E-02 + 446 1.0219407181047949E-03 + 447 7.5128538425849860E-03 + 448 8.5954908625251649E-03 + 449 -1.8784674908596285E-03 + 450 1.6895773368601236E-03 + 451 1.8055986394313866E-03 + 452 -1.3275524046706662E-03 + 453 1.1374876951363001E-01 + 454 1.7971218580416329E-01 + 455 1.1613992440570710E-01 + 456 -6.0728663632076976E-02 + 457 -1.2172680916427647E-01 + 458 -1.8880868196211606E-03 + 459 -1.9111642906299699E-03 + 460 -2.2552041817932303E-04 + 461 2.1828638607816688E-04 + 462 3.9202839019943187E-03 + 463 3.4798197381664242E-04 + 464 -4.4438407449077610E-04 + 465 4.4304278271071925E-04 + 466 -1.0463256115523359E-04 + 467 -6.6294341990791295E-04 + 468 -2.9999846002695039E-04 + 469 4.1633958628206218E-04 + 470 -5.6621747119722874E-03 + 471 1.0248485016602054E-03 + 472 -9.4519294658435189E-04 + 473 2.4675215446802881E-03 + 474 -5.6053753318137346E-04 + 475 2.5413217834304759E-04 + 476 -4.3521840762400738E-04 + 477 -7.1380050891795542E-04 + 478 2.5516249041057645E-02 + 479 2.5110819149296974E-02 + 480 1.3518675657447625E-02 + 481 -9.0789265095928017E-04 + 482 -1.3072046577010464E-02 + 483 6.4595692864049322E-04 + 484 -6.2061332849371249E-04 + 485 -2.5715644338744940E-04 + 486 3.0368130229676811E-04 + 487 4.4153926532230830E-04 + 488 1.0200973301013300E-04 + 489 1.4594916879303590E-04 + 490 9.1288711592563842E-06 + 491 4.8312076527651038E-05 + 492 -2.1786915283551335E-04 + 493 1.3702547895467793E-04 + 494 4.2737672640659061E-05 +Ene= -4.6814006045E-01 +Spin= Alpha +Occup= 2.0000000 + 1 5.5515206952688459E-03 + 2 -3.9821376494365054E-04 + 3 -2.0747710664194381E-03 + 4 2.8356392866138369E-03 + 5 1.2771013232519546E-03 + 6 -3.2150313056995551E-04 + 7 -2.8627701613748288E-04 + 8 6.7220671331412820E-05 + 9 -1.7380938041664409E-03 + 10 -3.9211707360642225E-03 + 11 -2.2393925123052699E-02 + 12 1.2042659053745528E-02 + 13 8.6095187069573989E-03 + 14 -1.0828022297480187E-03 + 15 -1.3730619848831441E-03 + 16 3.2772219391647258E-04 + 17 -3.1544484719410824E-05 + 18 -7.1508480117503403E-04 + 19 -7.4449037815506048E-05 + 20 -1.8862671081118450E-04 + 21 2.3084113567419945E-05 + 22 3.4687657887766437E-04 + 23 1.0309771941061109E-05 + 24 -5.0402166953318308E-06 + 25 3.9953678405744309E-05 + 26 3.8238114799168331E-03 + 27 6.5066305027024557E-05 + 28 -1.5311118053318036E-03 + 29 5.5870120108076019E-03 + 30 6.3722858348366632E-04 + 31 8.9356638086142057E-04 + 32 1.6392645450874802E-03 + 33 -1.2070014406116295E-03 + 34 9.8841250460433377E-02 + 35 5.4342128545741983E-02 + 36 -7.6872163867620261E-02 + 37 -1.4592557513348503E-01 + 38 3.1438780436313379E-01 + 39 7.4724120699061686E-04 + 40 -1.7293981297937559E-03 + 41 -1.4236270162278905E-04 + 42 1.3674593360559809E-03 + 43 -2.9466567679237768E-03 + 44 -8.0983333849466322E-05 + 45 -8.4148724223403166E-05 + 46 -2.7403009418087157E-04 + 47 -1.7723261944471917E-04 + 48 3.4702166154958495E-04 + 49 -3.8416513438508385E-04 + 50 5.0211897893582874E-04 + 51 1.3539514400499649E-03 + 52 6.6970268772594183E-04 + 53 -6.6454380462524065E-03 + 54 5.4972658334683739E-05 + 55 1.6942826612731457E-03 + 56 -7.2543826088421681E-05 + 57 1.0714031022492287E-03 + 58 3.4331800653241432E-04 + 59 3.7279304953579041E-02 + 60 5.8593596290478944E-02 + 61 3.8377482026849291E-02 + 62 -1.7120731357331147E-02 + 63 -1.2677190339242892E-02 + 64 -2.5167070528991004E-03 + 65 -4.5976932337682451E-04 + 66 -6.0056425411642077E-04 + 67 7.7690943069033138E-04 + 68 -4.2628000925017513E-04 + 69 1.6596037772123525E-04 + 70 -2.5623607566545672E-04 + 71 6.0147018914516429E-05 + 72 -7.7894036305043034E-05 + 73 -4.5549711694806654E-04 + 74 5.5557499094747737E-04 + 75 2.3306318826141464E-04 + 76 -1.1079524704616579E-02 + 77 2.6283877849969102E-06 + 78 -7.4526273979596347E-03 + 79 6.5445494518252484E-03 + 80 1.5009063287369869E-02 + 81 -2.8547771470840413E-04 + 82 7.9101673383317019E-04 + 83 7.0648982179593439E-04 + 84 9.7781501675184572E-04 + 85 -3.0823165487820843E-03 + 86 -1.1168135933374913E-06 + 87 2.0330187636830566E-03 + 88 2.3567150873796843E-04 + 89 1.1701369339468273E-02 + 90 1.6617621678340528E-06 + 91 9.7035404495070680E-05 + 92 -2.3531990146755267E-03 + 93 -1.6183990202367654E-03 + 94 -6.0207261107336567E-04 + 95 -5.6274608266537274E-04 + 96 1.8265731085269541E-04 + 97 -4.1494689065722399E-04 + 98 3.8057132048659404E-04 + 99 -1.1749203987033642E-04 + 100 2.4107431554946454E-04 + 101 3.4103365888973474E-04 + 102 3.1609163925580004E-02 + 103 -2.3747317978682893E-04 + 104 5.8861519343200903E-04 + 105 -1.9654641639074866E-02 + 106 1.0370178802996606E-04 + 107 -5.0026320310666639E-04 + 108 -1.2962492559443805E-03 + 109 -1.0330830291179022E-04 + 110 1.3580899499870504E-03 + 111 1.0890886061565787E-03 + 112 1.8155310139548976E-03 + 113 2.4843013770008407E-03 + 114 1.6896608436305096E-03 + 115 2.2316800807269693E-02 + 116 -1.1869653737368873E-03 + 117 -1.0821712850007955E-02 + 118 -1.7749206366954196E-03 + 119 1.5398571714331453E-02 + 120 -9.8398682193552101E-04 + 121 -1.6081782001688166E-04 + 122 1.1611007545312610E-03 + 123 -4.0806424440550148E-03 + 124 1.9322556782711883E-03 + 125 -1.2470154658241410E-03 + 126 6.1313047033135040E-04 + 127 1.6427875620098223E-03 + 128 4.1786696711435872E-03 + 129 -4.6954952138016835E-04 + 130 9.1048328129873478E-03 + 131 2.8047229944118800E-03 + 132 -5.5054860877442539E-04 + 133 2.5293685459564291E-03 + 134 3.7885975917731661E-04 + 135 -1.1663932385894303E-03 + 136 2.5362751362871822E-01 + 137 -2.0721699248130325E-02 + 138 2.7873210816439398E-01 + 139 1.2105001218015685E-01 + 140 -1.3039046281390246E-01 + 141 -1.7523667100961730E-03 + 142 -4.6072987218410254E-03 + 143 6.7830206325412301E-05 + 144 -5.8956082049387633E-04 + 145 2.8809522170701737E-04 + 146 -5.9320087998430558E-04 + 147 2.0396910555801838E-04 + 148 2.1467183313133553E-04 + 149 2.2286551069728913E-04 + 150 3.7019155741355614E-04 + 151 -1.1497510363514733E-03 + 152 -2.2206945008182828E-04 + 153 -5.6462529819478998E-03 + 154 3.2394407263912887E-04 + 155 -3.9520867936274334E-03 + 156 -2.7742030135279095E-03 + 157 3.2754473499690463E-03 + 158 -6.3210706854987565E-04 + 159 -5.6902057503291825E-04 + 160 6.4469505209667412E-04 + 161 -2.3620742799321401E-02 + 162 1.2154814009008587E-01 + 163 7.6681808609074864E-02 + 164 3.2473641595163368E-02 + 165 -1.4431071038438938E-02 + 166 -1.2100880145110508E-03 + 167 1.3254598535532027E-03 + 168 2.2256409900649025E-03 + 169 1.9707512531911618E-03 + 170 -1.2210902465077856E-04 + 171 -1.2090359478952933E-04 + 172 1.7705513523798839E-05 + 173 -3.0303479685456138E-04 + 174 -7.7040159003715497E-04 + 175 -9.2626727119023903E-05 + 176 -5.0043083275670068E-04 + 177 4.1507501541422469E-04 + 178 1.8997017515162353E-03 + 179 -3.1015324872916419E-04 + 180 -6.8793789027882151E-03 + 181 -1.4827831716075431E-02 + 182 8.1447725812083273E-04 + 183 -5.2012643479727513E-05 + 184 -7.2368511272900078E-04 + 185 2.0520824045198679E-04 + 186 -8.2638493708816108E-04 + 187 2.2322021173869799E-03 + 188 4.7815704870334758E-03 + 189 1.6300016663924996E-03 + 190 6.7071203855927802E-04 + 191 -3.3387549912745111E-02 + 192 8.7557208919505751E-04 + 193 -1.6881785389113176E-02 + 194 4.2782910214843369E-03 + 195 -1.1657927208721875E-02 + 196 -9.0144218950947747E-04 + 197 6.4682591362998814E-06 + 198 -1.4344153910802689E-03 + 199 -1.1596444881049623E-03 + 200 9.1789306138788482E-04 + 201 -2.3973115933352243E-03 + 202 1.1172521669420563E-03 + 203 -4.1143877674403063E-03 + 204 5.0369340055501756E-03 + 205 2.0626670974467864E-04 + 206 4.0647601920787649E-03 + 207 2.0621010765967248E-03 + 208 5.9898571859735524E-04 + 209 9.4938644550387021E-04 + 210 -2.1783603147201922E-04 + 211 6.3448304448491296E-04 + 212 3.8719460192337080E-01 + 213 -3.1240295203847990E-01 + 214 2.4052645113830004E-01 + 215 -2.7928940821692128E-01 + 216 -2.5011164866406016E-01 + 217 -2.8415575566341409E-03 + 218 7.1960495232310806E-04 + 219 -1.4205203387322840E-03 + 220 -2.1045900931024677E-04 + 221 4.6380572912896979E-04 + 222 2.0739532077786746E-04 + 223 -1.2617130921236223E-03 + 224 1.5068455351506047E-04 + 225 7.2571332127347962E-04 + 226 2.8237813021138883E-04 + 227 1.9000482530877815E-04 + 228 7.4875751569315350E-04 + 229 3.1485369178266788E-03 + 230 -2.6451501594710209E-04 + 231 -1.8183604367963133E-03 + 232 1.3026400108932421E-03 + 233 -1.4621563390628963E-03 + 234 -1.2027338580946592E-03 + 235 5.5304014913368422E-04 + 236 -7.6191390379012197E-04 + 237 3.5563712134868530E-02 + 238 -4.6500225306366820E-02 + 239 -9.5306262880717803E-03 + 240 3.1356299391015613E-02 + 241 2.0876119881992859E-02 + 242 -9.2475857357488306E-05 + 243 -2.6381431738426270E-05 + 244 1.6414225738050625E-03 + 245 6.3505820121094805E-04 + 246 4.4016475617089488E-04 + 247 -2.5857828585349271E-04 + 248 7.8339328630342613E-04 + 249 -4.7642705532159824E-05 + 250 -7.6793029706060902E-05 + 251 -3.5194132681798059E-05 + 252 -1.9480759874422181E-04 + 253 1.2045252775287934E-04 + 254 7.9983701518042440E-03 + 255 -2.1682896218442535E-03 + 256 -3.0768651020875360E-04 + 257 -2.9466195303963949E-03 + 258 -5.1914758073979661E-04 + 259 1.1515332924301890E-04 + 260 9.1302971127091249E-04 + 261 7.3282605743811016E-04 + 262 -2.2917506302410622E-02 + 263 8.3684123086040802E-03 + 264 -2.8060300418026048E-02 + 265 -7.2547461406694255E-02 + 266 -1.9099903938429540E-03 + 267 -6.1556597728042010E-04 + 268 1.8236415174593910E-04 + 269 -2.5367611253156234E-04 + 270 -1.7443495783064776E-03 + 271 2.4887306366065773E-04 + 272 1.3689812248979019E-04 + 273 8.5323941609441171E-05 + 274 2.9670746680555954E-04 + 275 -1.8027057294513739E-04 + 276 -2.0379532848277404E-04 + 277 7.5741927821488156E-05 + 278 1.0125000949403557E-03 + 279 -1.5239289409674525E-02 + 280 5.6543260723591676E-04 + 281 -9.7345707959540732E-03 + 282 -1.0193966094313263E-02 + 283 -1.9255040529090311E-03 + 284 -1.0603340204412422E-03 + 285 -3.4146710639177996E-04 + 286 -9.5443241038142791E-04 + 287 -2.3173686240687765E-03 + 288 -3.6577250631801258E-04 + 289 -1.6877012185820576E-04 + 290 -2.0102480161923028E-03 + 291 2.2111481269267595E-03 + 292 -1.5167029837257300E-03 + 293 -1.5203394038830779E-04 + 294 -1.0726467493242027E-03 + 295 4.2678800683612211E-03 + 296 -1.4047563812601982E-03 + 297 1.5285168222951368E-04 + 298 -1.7796800953267505E-04 + 299 -3.2906066356886777E-04 + 300 -1.1222440651209081E-04 + 301 4.1818165258711792E-04 + 302 1.1611765338370703E-03 + 303 3.8464031980391095E-04 + 304 -1.6594747480748149E-05 + 305 5.9585220782224632E-03 + 306 -1.1748169819073071E-05 + 307 -3.2281008003479258E-03 + 308 1.8506486689715209E-03 + 309 -8.0900868831219875E-05 + 310 1.0463297776162654E-04 + 311 -6.1074873940444602E-04 + 312 4.6490632815169636E-04 + 313 4.8360264108507724E-02 + 314 -5.5399581795878804E-02 + 315 -1.1997775421554391E-02 + 316 -5.1892659371473852E-02 + 317 4.6786985946306467E-02 + 318 -6.4398812413241394E-04 + 319 -4.4024873028865200E-04 + 320 1.0736457334853655E-04 + 321 1.6223223084467179E-03 + 322 -3.5399468034024627E-05 + 323 -3.9970866230111947E-04 + 324 1.0725895351534126E-04 + 325 -2.0411942802713430E-04 + 326 5.6973176190239954E-04 + 327 1.2651192048683012E-04 + 328 -4.2488664916563077E-05 + 329 -2.6108233388156659E-04 + 330 -4.4107561544887491E-03 + 331 7.1752396500113311E-04 + 332 1.1357373606841125E-03 + 333 -1.5362810355762447E-03 + 334 -2.1124906248778841E-03 + 335 -3.9044861513065762E-04 + 336 7.1390457827881460E-04 + 337 -1.2691651669291676E-03 + 338 1.3724319681499982E-02 + 339 5.2910912652657023E-02 + 340 -5.3533398086186006E-02 + 341 1.9153392188391419E-02 + 342 9.3034862778441377E-02 + 343 -9.3909164766727102E-04 + 344 2.2348873526065776E-04 + 345 -1.8881142551888440E-03 + 346 2.3844910531143262E-04 + 347 5.2209583130991748E-04 + 348 -2.3207455922337549E-05 + 349 -1.1099002644036860E-04 + 350 -3.7226691810464700E-04 + 351 6.4887417007736714E-04 + 352 3.9039094326713504E-05 + 353 -2.0109967578881379E-04 + 354 1.2620412989830849E-04 + 355 7.7363784632936670E-04 + 356 -2.9570395768351265E-04 + 357 1.1744841624339985E-02 + 358 -6.6970553949501459E-03 + 359 2.8331520145006253E-03 + 360 8.7947337995311961E-04 + 361 -5.4501335221763647E-04 + 362 3.4755260369179859E-04 + 363 5.4729492734342160E-04 + 364 1.7518041835154834E-03 + 365 -9.6341942282687602E-04 + 366 -5.3208727454672725E-04 + 367 1.7244764027075574E-03 + 368 9.2400581887827984E-04 + 369 -2.6107968468942506E-04 + 370 9.5760984941126066E-03 + 371 8.3708909735724542E-03 + 372 2.0279876651944185E-02 + 373 -2.6767048592743945E-03 + 374 5.4627488200493807E-04 + 375 -4.3713179536455284E-03 + 376 2.6322107252832678E-03 + 377 -2.3157018436451831E-03 + 378 6.6707057790740733E-03 + 379 -9.5357892533547028E-06 + 380 -2.0981582683180847E-04 + 381 1.4182665796964347E-02 + 382 -1.5523160773376094E-04 + 383 -3.5256980163364993E-03 + 384 5.2600069008060333E-03 + 385 -1.1602947615503362E-02 + 386 3.7705492650730261E-04 + 387 5.3587643995409552E-04 + 388 2.6842707330495782E-04 + 389 1.7179524183350736E-03 + 390 -2.8276445585233723E-03 + 391 -2.2564933896748052E-04 + 392 -1.2285704983119377E-03 + 393 4.8795199755610134E-04 + 394 -4.2163784840314033E-03 + 395 5.1724829242272838E-04 + 396 -2.9301838233688556E-03 + 397 -1.6989277127207130E-03 + 398 -1.9241618735543332E-03 + 399 -1.1506997953009900E-03 + 400 4.0095496258866966E-04 + 401 3.5972447093085476E-04 + 402 4.2375371642418544E-02 + 403 2.3456852910306542E-02 + 404 2.5460267376421758E-01 + 405 2.6648171651633416E-02 + 406 1.3979246503268195E-01 + 407 2.0332129874706647E-03 + 408 -1.6057955295157946E-03 + 409 -6.8209179694099975E-04 + 410 -9.0205931776032064E-04 + 411 -6.6197164725990097E-04 + 412 -1.1157055190790145E-04 + 413 -5.4245099728343919E-04 + 414 1.2983027741462184E-04 + 415 -5.7642787208297594E-04 + 416 -7.6220864812045710E-06 + 417 1.2555991306429786E-04 + 418 4.7118999805516857E-04 + 419 -5.6390329302363783E-02 + 420 1.1084733242764753E-03 + 421 -6.0639759118688314E-03 + 422 2.1174074087706549E-03 + 423 2.7407490064289521E-02 + 424 -7.1239871637859842E-04 + 425 -4.6485453821482224E-05 + 426 1.5858188273579034E-03 + 427 5.3089884645755531E-03 + 428 8.3960403572247704E-04 + 429 -1.2216358371788855E-03 + 430 -3.7912056425147821E-04 + 431 1.4346908858424772E-03 + 432 3.1741768690196917E-02 + 433 -9.5284841418435918E-04 + 434 -8.1798905636328179E-03 + 435 1.0062236932081401E-03 + 436 -1.9620321232884690E-02 + 437 -1.6960047848354052E-04 + 438 -6.0363029028316975E-04 + 439 -1.9119510179770624E-04 + 440 5.3574862121057555E-04 + 441 -4.6282627536300457E-03 + 442 5.1086711426570521E-04 + 443 -1.1438170206481968E-03 + 444 6.5509491416636918E-04 + 445 -7.6059951639177144E-03 + 446 -9.3339767480968467E-04 + 447 -4.8347802179246292E-03 + 448 2.1789644488156543E-04 + 449 -2.0970711147316949E-03 + 450 -2.6742798532303816E-03 + 451 -3.0697724146353276E-04 + 452 5.6564190474673183E-04 + 453 -1.5378593877899815E-01 + 454 -5.8850847376036471E-02 + 455 -1.9348289563451795E-01 + 456 -1.1740783244970018E-02 + 457 8.5474739951106240E-03 + 458 9.2102102034446142E-04 + 459 -1.2188867081338339E-03 + 460 9.1165371195134912E-04 + 461 -1.2048809311960660E-03 + 462 -1.8680053586997514E-03 + 463 -2.0143562513638036E-05 + 464 -9.3678997594367526E-05 + 465 6.4322194910041339E-05 + 466 -1.8502338210851039E-04 + 467 3.6986283878517553E-04 + 468 -2.5489293383034931E-04 + 469 -7.5171803580913849E-04 + 470 -1.9206162429164831E-03 + 471 7.0573137999073877E-04 + 472 1.3281548484989172E-03 + 473 6.0162704298325150E-05 + 474 9.0196082779224885E-04 + 475 2.5439432289638288E-04 + 476 -2.3603678190672712E-04 + 477 -1.4133460480600881E-04 + 478 -3.6192077152557177E-03 + 479 -1.1932389974765123E-02 + 480 -2.1260287409379488E-02 + 481 2.2594475700933241E-02 + 482 -3.6956004174848546E-02 + 483 -6.5363810930843124E-04 + 484 3.7350582079236316E-04 + 485 -1.0118010053140407E-04 + 486 7.3893411430187852E-04 + 487 -5.6157085685482858E-04 + 488 1.2562165302872533E-04 + 489 -3.3336114905257373E-04 + 490 2.7543024016867077E-04 + 491 1.3960508103024648E-04 + 492 -1.4655155793368846E-05 + 493 2.3552457227916885E-05 + 494 -3.4223429316090450E-05 +Ene= -4.6672886799E-01 +Spin= Alpha +Occup= 2.0000000 + 1 7.9994240698082961E-03 + 2 -1.1496446578819718E-03 + 3 -7.9787997188855383E-04 + 4 3.5779893369611822E-03 + 5 3.5950697809709003E-04 + 6 5.4614962633544087E-04 + 7 -1.6012396306014380E-03 + 8 1.4994500374664458E-04 + 9 5.4931614133278114E-02 + 10 -2.8501112509401655E-02 + 11 -2.5732665332335605E-02 + 12 6.4570890249278604E-02 + 13 4.6421909542678282E-02 + 14 -4.8787871128495397E-04 + 15 3.2629053427322535E-04 + 16 2.5309920791140024E-04 + 17 -6.1257746847347269E-04 + 18 -4.4106177329640377E-04 + 19 -8.7609249513096715E-05 + 20 1.6836408982807009E-04 + 21 2.5872052554791312E-04 + 22 -2.5714780051709179E-04 + 23 2.0245571712623712E-04 + 24 -2.4697323963773608E-04 + 25 1.6544943223001685E-04 + 26 2.1027468458760684E-03 + 27 1.0784041670055225E-03 + 28 -2.5726865923595943E-03 + 29 -2.7456457079358173E-03 + 30 -1.6505937394994169E-03 + 31 -9.4122921261600566E-05 + 32 -2.7402438051680350E-04 + 33 -1.8489687915155182E-03 + 34 3.1129001360532216E-01 + 35 -2.1187756337385541E-01 + 36 -1.2407397138587244E-01 + 37 2.0760417315393093E-01 + 38 -1.6016224072899243E-01 + 39 -1.5859222526988068E-03 + 40 1.1968475979298124E-03 + 41 8.5757464187469451E-04 + 42 -4.5836270877204575E-04 + 43 4.1297724579166164E-03 + 44 1.1262091357474627E-03 + 45 6.2154433971850541E-04 + 46 9.6634995442517163E-04 + 47 3.5522931315999754E-04 + 48 -8.9351702971739849E-04 + 49 5.3787443236155242E-05 + 50 -6.1992726727238146E-04 + 51 -8.2455923445948886E-03 + 52 7.6182517255643750E-04 + 53 8.3280561712925836E-05 + 54 1.2505827276858689E-03 + 55 2.2884856442810320E-03 + 56 -2.9273318495389144E-04 + 57 -1.1407392662780883E-03 + 58 1.6795393489602318E-04 + 59 -1.7507791488106394E-02 + 60 -2.7307047620538091E-02 + 61 -3.1800253243884399E-02 + 62 3.1562806032105907E-02 + 63 2.7929660208454905E-02 + 64 6.8709100967388845E-04 + 65 2.5679797681680940E-03 + 66 1.2992030248583299E-03 + 67 -2.1046581581279041E-03 + 68 -6.5069726559875544E-04 + 69 -4.5086635327954133E-04 + 70 2.7987900291702526E-04 + 71 3.8195496510401535E-05 + 72 -2.3029896667105411E-04 + 73 2.2470910889931084E-04 + 74 1.1007616640064109E-03 + 75 -9.4772550873958774E-05 + 76 -3.7969706319575233E-02 + 77 4.7907687556649560E-04 + 78 -1.2327377654158969E-02 + 79 -1.5743122483758847E-02 + 80 3.3379841595138980E-02 + 81 -7.9999952443670806E-04 + 82 -1.4808217290030244E-03 + 83 3.3526948505222401E-03 + 84 -2.1992246299595360E-03 + 85 -5.2314653103635606E-03 + 86 -5.7866428327052561E-03 + 87 5.5930710184227592E-04 + 88 3.6979958708503744E-03 + 89 1.5473108215949790E-02 + 90 -1.3628650680455140E-04 + 91 -3.8312402339384334E-03 + 92 -6.3157712318530918E-03 + 93 5.1250391540669238E-03 + 94 -1.0620378903446928E-03 + 95 -1.0427188181482969E-03 + 96 1.4508190999079358E-03 + 97 9.5368981862995340E-04 + 98 -5.7904626572280351E-04 + 99 9.3911890957598871E-04 + 100 1.4034814305567585E-03 + 101 -7.0090207210635029E-04 + 102 2.4002964966293543E-02 + 103 -6.9463473056796004E-04 + 104 1.0599347773446462E-02 + 105 -6.0292757561701184E-03 + 106 4.8301368409569417E-03 + 107 7.4350231300300334E-04 + 108 3.4264089139820846E-04 + 109 -7.4203368647160698E-05 + 110 1.6413913134213486E-03 + 111 -1.6215950498707557E-03 + 112 6.4127765507257322E-04 + 113 -1.1354376933251753E-03 + 114 1.9595799191892077E-03 + 115 -6.9643463582974588E-02 + 116 1.7141883309817682E-03 + 117 -4.0427921656107976E-03 + 118 -2.2893390705860186E-02 + 119 -1.7871597068554804E-02 + 120 8.0020173161158615E-04 + 121 -5.3366358065290150E-04 + 122 -8.6900845986493498E-04 + 123 3.4214085073362439E-04 + 124 6.4507092856893418E-04 + 125 4.7336018963575312E-03 + 126 -6.2733660731757485E-04 + 127 2.3235347787980585E-04 + 128 -3.8187757042171216E-03 + 129 -4.7324534243899281E-04 + 130 2.4452387720358139E-03 + 131 -4.2395247992215862E-03 + 132 5.1472977641872537E-03 + 133 1.6887804488616869E-03 + 134 -2.3665250797525513E-03 + 135 -1.1700568259879020E-04 + 136 2.8777774339141593E-01 + 137 4.4578762521626722E-02 + 138 7.6866861434786632E-02 + 139 2.0452138715970989E-02 + 140 2.9995737298371727E-01 + 141 1.1505068204769912E-03 + 142 -1.6828469133638977E-03 + 143 2.2360025435203342E-03 + 144 -1.5600454475362766E-03 + 145 -1.5305881546275001E-03 + 146 -2.9519489984391388E-04 + 147 6.1443467232834249E-04 + 148 4.6357986290084706E-04 + 149 4.6681807962301341E-05 + 150 3.3325714582886482E-04 + 151 -3.9543340169610210E-04 + 152 -2.2111084234551016E-04 + 153 5.2646399824622511E-03 + 154 -2.9036036776865020E-04 + 155 -3.6405887732334466E-03 + 156 8.9170342521933965E-04 + 157 -7.6421619618261796E-04 + 158 6.5902331403977954E-04 + 159 4.6265371258771219E-04 + 160 3.1962442036665467E-05 + 161 4.5578120124719693E-02 + 162 3.1759411668175828E-02 + 163 -4.7631753054242255E-02 + 164 8.4978772465166816E-02 + 165 -3.6027693226792432E-02 + 166 1.1426358397231720E-04 + 167 1.0100644805421004E-03 + 168 -3.3399902209671749E-04 + 169 3.3099803363726164E-04 + 170 -7.2849577468027079E-04 + 171 -9.6798660552872387E-05 + 172 -3.3675549101445164E-04 + 173 8.7847804129083702E-05 + 174 -1.8022603280575349E-04 + 175 -1.8753611886456681E-06 + 176 3.3188569478452052E-04 + 177 8.2838816250640641E-05 + 178 -3.8562553023986201E-02 + 179 6.6184974102631198E-04 + 180 -3.3803012992876143E-03 + 181 1.4439852229703963E-03 + 182 -1.1281101674866656E-02 + 183 -1.6061237428236853E-04 + 184 -4.6787717017925345E-04 + 185 9.0724938291723758E-05 + 186 1.6280054717541913E-03 + 187 6.7732172342690957E-04 + 188 1.0610826699441803E-03 + 189 -7.7445122851796258E-04 + 190 -2.1402279936343774E-04 + 191 4.1509288977490837E-02 + 192 -4.4288771651048510E-04 + 193 2.0307059611350941E-02 + 194 -1.0784850839923881E-02 + 195 -7.6334726616509654E-03 + 196 -1.0504746324068352E-04 + 197 8.9117706329092453E-04 + 198 5.1580570564273587E-05 + 199 4.1515296973916859E-04 + 200 1.6005407873335815E-03 + 201 -8.1690269223325574E-04 + 202 -5.5150591695299572E-04 + 203 4.1107977890961940E-03 + 204 -5.3250949168462316E-03 + 205 -8.1688223453508049E-04 + 206 -4.3909323325594758E-03 + 207 9.7365096914189277E-04 + 208 2.1589983195556143E-03 + 209 -2.2835290205503057E-03 + 210 1.6029203908497173E-03 + 211 3.1771091387528607E-04 + 212 1.5628618604857408E-01 + 213 1.2787201571639364E-01 + 214 2.5236959756098659E-01 + 215 2.5083682039410804E-01 + 216 2.0456259496412774E-01 + 217 1.0971038726123349E-03 + 218 1.6928933582440121E-03 + 219 -6.0364942213701701E-04 + 220 6.7103426198736945E-05 + 221 3.7054464956554447E-04 + 222 1.7640536204190433E-04 + 223 2.1733984164969233E-05 + 224 7.4117707294848838E-05 + 225 -4.1452070074707737E-04 + 226 -2.8464636978108498E-04 + 227 2.4202374314480945E-04 + 228 -7.5720941870274891E-04 + 229 1.5654105213913992E-02 + 230 -1.0788024852179561E-03 + 231 3.1745534155041429E-03 + 232 -2.2821071638149722E-03 + 233 -2.7626538383396029E-03 + 234 -1.2667363375994270E-03 + 235 -6.9965386263012974E-05 + 236 -6.3599956753285138E-04 + 237 5.5914033111860537E-02 + 238 -5.8166239602494348E-02 + 239 -1.4360797143225656E-01 + 240 -1.1206132542152065E-02 + 241 1.0637575631607367E-01 + 242 -2.1193275939352441E-03 + 243 3.1956463599930462E-05 + 244 1.2484070754913599E-03 + 245 2.2833001078772890E-03 + 246 -1.2443663555053528E-03 + 247 5.4043611557048064E-04 + 248 6.5872167083948902E-04 + 249 4.4362154254367746E-04 + 250 6.7470244334673303E-04 + 251 5.6886856876995414E-04 + 252 -7.9044099764270174E-04 + 253 -1.2911495289434741E-04 + 254 1.1477483901146536E-02 + 255 2.6462434515839713E-05 + 256 3.1426863327127770E-03 + 257 -5.5299426331548050E-03 + 258 3.8434546145920466E-03 + 259 2.6566383633021599E-04 + 260 -8.3049177882827730E-04 + 261 8.9830087360499543E-05 + 262 3.0512270213442973E-02 + 263 5.4856781802772468E-04 + 264 -4.3215526598255803E-02 + 265 2.3849914610852029E-03 + 266 -2.5962110228158520E-02 + 267 -1.0610140016048520E-03 + 268 -6.0303428689736775E-04 + 269 -1.7209020044725647E-03 + 270 -1.8897952403789256E-03 + 271 -1.3045488573937927E-03 + 272 -4.6417828291429430E-04 + 273 -4.4865263201665545E-05 + 274 3.9592537735700609E-04 + 275 -7.3221580561183962E-05 + 276 1.1545763524434282E-04 + 277 -2.0099408600220400E-04 + 278 6.9087633749623294E-05 + 279 -6.4203758962465421E-03 + 280 2.0325602945643585E-04 + 281 -1.6795200796830133E-02 + 282 -7.3406471069209565E-04 + 283 7.7348725817646621E-04 + 284 -5.1933314346577363E-04 + 285 4.4791171353105320E-04 + 286 6.5447613882685320E-04 + 287 6.1616062284506397E-04 + 288 1.7707357370554655E-03 + 289 8.7280153589938344E-04 + 290 -1.3362868521015923E-03 + 291 3.9932551136816017E-03 + 292 -3.4561234285436374E-03 + 293 -3.0630443457077924E-04 + 294 -4.3277002785387531E-03 + 295 -1.3675898318879654E-02 + 296 -1.5507339338344032E-02 + 297 -6.8528325835444305E-04 + 298 -1.8289873477790376E-03 + 299 -2.3329927856774384E-03 + 300 -3.6016268546118519E-03 + 301 1.5145077518261948E-03 + 302 3.4446471342791061E-04 + 303 -1.8042134337537029E-03 + 304 2.3774528321346723E-03 + 305 2.3821665643839209E-03 + 306 4.2662386328428119E-04 + 307 -6.5187542156432945E-04 + 308 2.0847716797269193E-03 + 309 1.1886064728602477E-03 + 310 4.0632003409028315E-05 + 311 1.1132073434682698E-03 + 312 -3.9110812366221293E-05 + 313 -5.1594534040720834E-02 + 314 -4.6616086927936874E-02 + 315 -6.6872222554577629E-02 + 316 1.3806264570164212E-01 + 317 9.9463345074102080E-02 + 318 -1.8460096934223814E-04 + 319 -7.4838720764709070E-04 + 320 1.3057357792152151E-03 + 321 -7.2919241142423543E-04 + 322 -1.6588565523719014E-04 + 323 -4.1287499078220111E-04 + 324 -6.0411108425493306E-04 + 325 3.3960988886470824E-05 + 326 -1.9899573448556556E-04 + 327 2.4989339656232052E-05 + 328 -1.8757235763577768E-04 + 329 -7.9157381234163163E-04 + 330 -2.4119001985694224E-03 + 331 6.6909282468945413E-04 + 332 -6.4888490108937148E-04 + 333 1.3310962673852781E-03 + 334 -5.2162179384473793E-03 + 335 -2.3529227012451616E-04 + 336 -3.4840147509897938E-05 + 337 6.2414864938065042E-04 + 338 -6.1229386499757822E-02 + 339 2.1961157437786174E-02 + 340 -5.6674958616521991E-02 + 341 -3.3025737514061175E-02 + 342 4.2852739646301478E-02 + 343 -4.5470942177493728E-05 + 344 7.1117602733012384E-04 + 345 -1.3592369048909694E-03 + 346 -1.0748798529848988E-03 + 347 1.1959319941783291E-05 + 348 3.5366808666590884E-04 + 349 9.1700231714337299E-05 + 350 -2.5004465010646497E-04 + 351 9.6856008398572117E-05 + 352 4.4096770672415035E-04 + 353 -1.3124405561412551E-04 + 354 -3.2525867268857486E-04 + 355 -3.8564994674530305E-02 + 356 9.9037069147697872E-04 + 357 -1.2188022758502497E-02 + 358 1.4513433091678289E-02 + 359 1.1945016751286520E-02 + 360 -3.2570176736337918E-04 + 361 1.0535530560950247E-03 + 362 2.3333381022519833E-04 + 363 7.2076690691639394E-04 + 364 -9.5436586780602353E-04 + 365 2.5587146536792931E-03 + 366 -1.7152758876189179E-03 + 367 -1.7108634788419233E-03 + 368 2.7260524278677936E-02 + 369 -8.2829990328885193E-04 + 370 4.6034348111982449E-03 + 371 1.7055459873251421E-02 + 372 1.5299904806738318E-02 + 373 -2.6629653411845101E-03 + 374 -9.3222442898036127E-04 + 375 -1.7399652499628683E-03 + 376 -1.2557176627733229E-03 + 377 -4.2682299765835555E-03 + 378 8.1651338534413718E-04 + 379 -1.9130724057961159E-03 + 380 -3.6329657803175772E-03 + 381 5.9561520691447004E-02 + 382 -7.3739318284696449E-04 + 383 -1.8129844060980137E-02 + 384 4.6282400539444570E-03 + 385 -1.6918812793995507E-02 + 386 8.4162080467705238E-04 + 387 -2.0904120212959676E-04 + 388 -1.0026467526660827E-03 + 389 -2.6213927092259156E-03 + 390 -3.6055060778570677E-03 + 391 3.4307196203623587E-03 + 392 -7.9246786227466057E-04 + 393 1.1796143376697416E-03 + 394 -1.2576677649427680E-02 + 395 2.1753176797469412E-04 + 396 6.4369181365051605E-04 + 397 1.6306368805137478E-03 + 398 -8.5021902169904653E-03 + 399 -5.0627496150098890E-06 + 400 4.9501194286580242E-04 + 401 6.0318405914646243E-05 + 402 -7.0545282404533199E-02 + 403 2.8995299776093829E-03 + 404 -1.0421492040103768E-01 + 405 -5.4610594513086315E-02 + 406 2.3007577379737715E-01 + 407 1.0218816747718479E-03 + 408 1.4521582486252736E-03 + 409 5.0521644002059999E-03 + 410 -2.0254789712946279E-03 + 411 -2.7352275650231583E-03 + 412 3.3923816798069766E-04 + 413 1.8505316420593809E-04 + 414 5.1851829332257460E-04 + 415 9.7203216663046448E-04 + 416 3.2272443515302931E-04 + 417 -1.2023660175547355E-03 + 418 -8.6186936217747524E-05 + 419 -2.5210279780002495E-02 + 420 5.3153387577971247E-04 + 421 -7.8748433151925624E-03 + 422 -1.8590582516694217E-02 + 423 5.1592969734786422E-03 + 424 -1.0613101677859761E-03 + 425 -2.1867113087162601E-03 + 426 -3.5860839946540596E-04 + 427 3.1280289588015266E-04 + 428 -1.5930840940525609E-03 + 429 -3.3671027801228637E-03 + 430 -2.6306049184951358E-03 + 431 -1.0998166175516981E-03 + 432 -4.1464258253700863E-02 + 433 1.2056401508359067E-03 + 434 1.9951075893114664E-02 + 435 -1.6224948859266980E-03 + 436 4.7749077127361740E-03 + 437 -9.3714327671192091E-05 + 438 1.1050893065340977E-03 + 439 -7.1501663919352012E-04 + 440 -2.3665578221235390E-03 + 441 1.1835630011434847E-03 + 442 -6.5855435987413917E-04 + 443 2.3693343083573746E-03 + 444 2.8339898687715679E-04 + 445 -1.2833326998069957E-02 + 446 -6.6380217106710049E-04 + 447 -1.7314635900142681E-03 + 448 -3.9351875002521077E-03 + 449 3.6402228803378116E-04 + 450 -9.8494878172301407E-05 + 451 -3.2029650351885245E-04 + 452 -3.3056145463249712E-04 + 453 8.1674470202299815E-02 + 454 -2.4952166954132493E-01 + 455 -6.9276340709138268E-02 + 456 -2.5537491434460252E-01 + 457 -9.7185633126284615E-02 + 458 8.1309330701410080E-05 + 459 2.8723116762196317E-03 + 460 1.5038675844660100E-03 + 461 3.0740003552041298E-05 + 462 -7.5700792410419776E-04 + 463 -3.8357336872035390E-04 + 464 1.6139750612371444E-04 + 465 -2.9894267826657958E-04 + 466 -1.8424031983225908E-04 + 467 4.9971107403135647E-04 + 468 3.2353381235834409E-04 + 469 -2.3180461750324925E-04 + 470 -4.0000388553329217E-03 + 471 2.1363402437549980E-03 + 472 -5.6460433051477713E-04 + 473 -5.3406765020888158E-03 + 474 -6.7672271637461871E-05 + 475 1.5699680677619720E-03 + 476 1.0658180785868289E-03 + 477 -2.5377256510074965E-04 + 478 2.4805382453891835E-02 + 479 3.5670834224577404E-02 + 480 6.1309005101951109E-03 + 481 -4.2798249704496652E-02 + 482 -7.7402835576992624E-02 + 483 1.3498373659980251E-04 + 484 4.9059865876702504E-05 + 485 9.7271092886804501E-05 + 486 1.2117885298116688E-05 + 487 -1.9567360623158007E-03 + 488 -3.4682016418533743E-04 + 489 3.1843375858686950E-04 + 490 1.1242911933139519E-05 + 491 -2.9709434305369645E-05 + 492 3.4852236667613551E-04 + 493 -3.9915017234234382E-04 + 494 -4.5728387809612880E-04 +Ene= -4.6609887504E-01 +Spin= Alpha +Occup= 2.0000000 + 1 5.6866750954985713E-03 + 2 -1.3143898691651750E-03 + 3 -5.3747484191552679E-04 + 4 4.1812849410399989E-03 + 5 1.6742308660425379E-03 + 6 5.8812719483744276E-04 + 7 -6.5702887901641834E-05 + 8 -3.0598728948049591E-04 + 9 4.2803400803761604E-02 + 10 1.6453246602204999E-02 + 11 -6.1094857113285023E-02 + 12 4.3018760842911105E-02 + 13 4.0812296307387801E-02 + 14 -9.3831605407960052E-04 + 15 -7.7953393824463130E-04 + 16 1.8979698901198964E-03 + 17 -9.9631345099945000E-04 + 18 -1.7453630400324058E-03 + 19 -3.4855068232565078E-04 + 20 1.7901743974882860E-05 + 21 2.2809740390894001E-04 + 22 2.1809293261520541E-04 + 23 -5.2009851974277549E-04 + 24 2.1918256884286474E-04 + 25 4.4885255076685158E-04 + 26 -1.0565476919755503E-02 + 27 3.0519894643771261E-04 + 28 1.6529569582469001E-03 + 29 9.0203126837254291E-04 + 30 1.6251497765340111E-03 + 31 1.0636528323073656E-03 + 32 2.5763811135422854E-03 + 33 -9.9887883357011389E-04 + 34 1.8626510178817035E-01 + 35 -9.1500386207261346E-03 + 36 -2.2219163251332993E-01 + 37 3.7938897163892760E-02 + 38 6.5395798684491149E-02 + 39 -8.4202515782842420E-04 + 40 -1.4203907773087168E-03 + 41 1.3229520229918912E-03 + 42 2.2128875538219188E-05 + 43 -1.8074128541155179E-03 + 44 2.9441554774732099E-04 + 45 3.8489565375264670E-04 + 46 -5.6671228383465731E-05 + 47 3.4205624210113382E-04 + 48 -5.2057806585316814E-04 + 49 3.9918180283791830E-04 + 50 4.8866190114141078E-04 + 51 4.0921628867260666E-03 + 52 6.3096705004478024E-04 + 53 -1.2406069854091146E-03 + 54 4.4138627899324547E-03 + 55 3.3230307346662248E-03 + 56 8.4142941115425223E-04 + 57 1.0217493577907974E-03 + 58 8.9364043538319132E-04 + 59 2.0220242169971540E-02 + 60 -8.1825635794228416E-03 + 61 -4.1505313122026976E-03 + 62 3.7027363743250184E-02 + 63 -9.7101933667439189E-03 + 64 -4.1740640690888944E-04 + 65 4.9845603559167911E-04 + 66 1.8564666354660034E-03 + 67 -2.1970257598382253E-03 + 68 -2.4486857432792991E-04 + 69 -4.5540583712168445E-04 + 70 3.3333573274091515E-05 + 71 -3.2873287501846148E-04 + 72 -1.2303828895399521E-04 + 73 9.3939013333412888E-05 + 74 3.6135120149944879E-04 + 75 -3.0700859935489834E-04 + 76 6.2288866604600062E-05 + 77 -3.1541152969180326E-04 + 78 -7.4577971853679896E-03 + 79 2.0622951544809402E-03 + 80 3.7480636542839563E-02 + 81 -1.0507731625746931E-03 + 82 4.7743251250656563E-04 + 83 2.6581116815974056E-03 + 84 -1.0378533648167439E-03 + 85 -7.2234687747463949E-03 + 86 -2.9590233044109160E-03 + 87 1.9613883428852880E-03 + 88 6.2446294559892598E-04 + 89 1.0443908404900139E-02 + 90 -6.7094144679822652E-05 + 91 -3.2802069578068459E-03 + 92 -4.8953439774532597E-03 + 93 4.5902392746697135E-03 + 94 -8.5038272582819670E-04 + 95 -6.7210971246782047E-04 + 96 1.3910577919526465E-03 + 97 6.9523212244450305E-04 + 98 -4.4664699608106651E-04 + 99 8.2472336628069325E-04 + 100 1.0176741906962727E-03 + 101 -4.8142146700344459E-04 + 102 1.8246815995412051E-02 + 103 -3.0079020082007677E-04 + 104 5.0051172077208422E-03 + 105 -8.2272301916852426E-03 + 106 8.8726366908845021E-03 + 107 1.3619805196463328E-04 + 108 -3.3248735587506088E-04 + 109 6.7276262307561479E-04 + 110 9.2331477292348309E-04 + 111 -1.3237676149877688E-03 + 112 1.6737254472576333E-03 + 113 -1.6519336127243631E-04 + 114 1.2422646531451672E-03 + 115 6.1946341272352733E-02 + 116 -1.6535449333808193E-03 + 117 1.1422294945357559E-02 + 118 2.0885384608761100E-02 + 119 1.5740648380942399E-02 + 120 5.7283260442843082E-04 + 121 8.9511931173661655E-04 + 122 4.9973403561432903E-04 + 123 -5.5997507210492662E-04 + 124 -1.1555809632282105E-03 + 125 -3.9168006700993812E-03 + 126 5.6425005754393118E-04 + 127 -3.5533116595516793E-03 + 128 4.9955517723813351E-03 + 129 9.8787780171291661E-04 + 130 1.1606334675930618E-03 + 131 -8.2248186827576855E-03 + 132 -1.7586735173774626E-03 + 133 -1.0931641217625399E-04 + 134 -1.7805618143195701E-03 + 135 -1.1301510222381778E-04 + 136 -2.0120920638472006E-01 + 137 -4.5018220093576494E-01 + 138 -1.4533203537126951E-01 + 139 -1.9413670215385612E-01 + 140 -2.6832363100538680E-02 + 141 1.7051081223753500E-03 + 142 2.9454677882823914E-03 + 143 1.6936376444322539E-03 + 144 2.7590345992226642E-03 + 145 1.7364364945933687E-05 + 146 6.8385530421983276E-05 + 147 -4.7345310723942452E-04 + 148 -6.8423076336313103E-04 + 149 1.3172596915789163E-05 + 150 -1.1676189794409904E-03 + 151 6.7947753739427150E-04 + 152 -1.9112934986806302E-04 + 153 1.1558845729430776E-03 + 154 -1.5770778818617324E-04 + 155 -6.5659982926936531E-03 + 156 -1.4599476121582814E-03 + 157 1.3933385072021365E-03 + 158 -2.3925507720029752E-04 + 159 5.2811562865002518E-05 + 160 6.0078430469825343E-05 + 161 -2.7151391492295701E-02 + 162 5.8268582749397557E-02 + 163 3.7497940672876713E-02 + 164 7.0258924775614975E-02 + 165 -4.5657118162333615E-02 + 166 -9.5298843205502283E-04 + 167 2.2846722279560362E-03 + 168 -5.4954221091475906E-05 + 169 1.7643511423630126E-03 + 170 -6.4670653347570549E-04 + 171 4.1117607925986860E-04 + 172 -3.6555856710159684E-04 + 173 2.0921131156052125E-04 + 174 -7.0885483135209773E-05 + 175 4.8010774102192765E-04 + 176 -3.4316468552151507E-04 + 177 2.4919366276498621E-04 + 178 -3.8368326304157901E-02 + 179 6.1509313091548043E-04 + 180 -3.4944309818903088E-03 + 181 1.1468625376362857E-02 + 182 -1.0243908331181125E-02 + 183 -4.6262045260446461E-04 + 184 5.2262617003449527E-04 + 185 -4.3580231870859332E-04 + 186 2.7812203482604548E-04 + 187 6.2639400000587871E-04 + 188 -3.0013163631674358E-03 + 189 -2.1894449688966827E-04 + 190 -3.1403560271023610E-04 + 191 -1.5142093099920949E-02 + 192 1.6702920212188977E-04 + 193 -8.6360838501071645E-03 + 194 3.9358153967070974E-03 + 195 -1.3975241875128289E-03 + 196 1.8981574777858067E-04 + 197 3.5007339116239063E-04 + 198 -3.8533493858931871E-04 + 199 -1.8401485165200299E-04 + 200 1.6792502618108906E-04 + 201 -4.0183869869997452E-04 + 202 -3.5693926744239616E-04 + 203 -1.6996019311526754E-03 + 204 -1.5412062020817806E-03 + 205 9.7403049781972660E-04 + 206 4.3041416449306002E-04 + 207 -3.5818343848753528E-03 + 208 -1.9803991664895299E-03 + 209 2.7356198915172962E-04 + 210 -4.7668461341925940E-04 + 211 -1.2145899906399599E-03 + 212 7.1347645098314483E-02 + 213 -3.0443470683401663E-01 + 214 -1.6424238472395075E-01 + 215 -1.2130314253225664E-01 + 216 -9.1910624091795110E-02 + 217 9.5302161772512384E-04 + 218 5.6466036063021398E-04 + 219 -1.4578519915134903E-03 + 220 6.3786245989863306E-04 + 221 -1.1720829231493016E-03 + 222 -4.0200045767396395E-04 + 223 -3.9364738473945856E-04 + 224 3.1135735838140632E-04 + 225 8.6268529738585203E-04 + 226 -3.0257356050090441E-05 + 227 1.7108971984788123E-04 + 228 3.0796802072381686E-04 + 229 1.2267135645462174E-03 + 230 -4.6833511240636390E-04 + 231 6.2020154492994884E-04 + 232 -2.9349933518075947E-03 + 233 -5.4962287527911113E-03 + 234 -1.3583171284719429E-05 + 235 -9.4344355898771969E-04 + 236 -2.7078966073300018E-03 + 237 2.0785772441985492E-01 + 238 -1.6669706180371108E-01 + 239 7.5204215292876242E-02 + 240 -2.0679012455191863E-02 + 241 4.9056122262567614E-02 + 242 -1.9911256493786119E-03 + 243 1.8256097209967995E-03 + 244 -5.0090970284452695E-04 + 245 -1.1591615411961778E-03 + 246 -1.0935543711246606E-03 + 247 -1.2623035070731404E-04 + 248 3.2173198747447926E-04 + 249 -6.9225734997853297E-04 + 250 -5.6049466641813544E-04 + 251 1.1539827638923327E-05 + 252 -6.8703251773924608E-05 + 253 6.2191832273294882E-04 + 254 -1.0115618134219828E-02 + 255 7.5922854988690655E-04 + 256 1.1340681611919580E-03 + 257 3.3820252786342488E-03 + 258 -1.2328656906202017E-03 + 259 1.7939790997695541E-05 + 260 -5.9466747002300826E-04 + 261 4.5021293960767505E-04 + 262 -1.2281290690509860E-02 + 263 9.1905667239886232E-03 + 264 8.2175038804575967E-03 + 265 1.9347174798351737E-02 + 266 -3.1939572274997850E-02 + 267 -3.5753466282556782E-04 + 268 -6.8785888658923981E-04 + 269 8.4668683581850938E-04 + 270 1.2501636856587514E-03 + 271 -7.2394289137701396E-04 + 272 3.5677455014839426E-04 + 273 3.5200680883671983E-05 + 274 -2.2621579048526157E-04 + 275 -5.2031537117287703E-05 + 276 9.3360043709987656E-05 + 277 -5.7809455531167059E-04 + 278 -3.4016101406454853E-04 + 279 -1.2513971112462696E-02 + 280 3.1098638576014173E-04 + 281 -2.7507980127495718E-03 + 282 -4.7520335312115913E-03 + 283 4.9042420832246690E-03 + 284 9.6204879775760766E-04 + 285 3.7597598987259743E-04 + 286 1.7134058068230221E-03 + 287 -1.2635937678948559E-03 + 288 1.7477663696598875E-03 + 289 -1.0398940951946726E-03 + 290 -9.5562655584503612E-05 + 291 -9.2450557271692697E-05 + 292 1.0622609090772084E-02 + 293 -2.1889691310591258E-04 + 294 2.1144131741107842E-02 + 295 2.5209362126964428E-02 + 296 1.7698077409959385E-02 + 297 1.8789765584029058E-03 + 298 1.4163379415297629E-03 + 299 2.9733545879442034E-04 + 300 4.1865033022820304E-03 + 301 -8.1016022535261773E-04 + 302 3.2600275353565017E-03 + 303 -3.7331086611498590E-03 + 304 -5.3374421071401106E-03 + 305 1.2176456401727118E-03 + 306 -2.8441424914024275E-03 + 307 2.1123178410892124E-03 + 308 7.0808401060274263E-04 + 309 9.2597657221141249E-04 + 310 -1.7383404059600459E-03 + 311 1.7649156174913906E-03 + 312 5.9521588578230760E-04 + 313 5.3231327142125209E-02 + 314 1.0688341018428905E-03 + 315 -3.0706915053894598E-02 + 316 1.6630130100922069E-01 + 317 -2.4412325731051265E-01 + 318 2.2655091035682358E-03 + 319 3.4841988569597298E-04 + 320 -4.6132281324428562E-04 + 321 7.5261645742918525E-04 + 322 -3.6079749212055705E-03 + 323 -2.1663532172468801E-05 + 324 -1.3504566218163844E-04 + 325 -7.6083937084106123E-04 + 326 -5.8491617874654187E-04 + 327 3.9864537674449665E-04 + 328 -7.1371918328395965E-04 + 329 -5.0163775713514102E-04 + 330 2.3176112987825456E-04 + 331 -5.3456252190574023E-04 + 332 7.0650665099579154E-04 + 333 -1.0708533595914481E-03 + 334 9.5094777772067578E-04 + 335 -9.2108942345740983E-05 + 336 -4.3473907434980232E-04 + 337 -1.3516895738069186E-05 + 338 2.3639396360936017E-02 + 339 -2.5007968415950287E-02 + 340 -2.1454223377972590E-03 + 341 -1.6596109370775505E-02 + 342 2.0924404992324334E-02 + 343 9.8566516613435664E-04 + 344 -1.9419384549462790E-04 + 345 -1.0873395323207280E-04 + 346 -9.1848720581876495E-05 + 347 3.2984798517562183E-04 + 348 2.0419051790741813E-05 + 349 -1.1420432860721180E-04 + 350 2.9712849399492744E-05 + 351 1.0708125295572009E-04 + 352 9.0857784403996578E-05 + 353 4.8199988174980778E-05 + 354 -9.9628364588426454E-05 + 355 9.5692053232909779E-04 + 356 3.0180434038025526E-04 + 357 -3.0698875338886600E-02 + 358 -8.6313204536046951E-03 + 359 1.6585736869099837E-02 + 360 -1.2942292160316598E-03 + 361 -2.0976706418317533E-05 + 362 -5.3341618061629968E-04 + 363 2.0716229823770664E-03 + 364 -2.4282543019971035E-03 + 365 3.4495542570720898E-03 + 366 2.1702237819146205E-03 + 367 -7.4054821467391093E-03 + 368 -1.9152062113849958E-02 + 369 3.2358367404640708E-04 + 370 -4.7215768141537582E-03 + 371 -6.1182516877424523E-03 + 372 7.9489640217105095E-03 + 373 -1.5355886142595452E-03 + 374 -9.7706414724410862E-05 + 375 -5.2510796910078142E-04 + 376 -7.4381759641851193E-04 + 377 3.8067602834099528E-04 + 378 -9.5197843783804243E-04 + 379 -6.9343655422854161E-04 + 380 2.8032848425130433E-03 + 381 3.8839521348519826E-02 + 382 -6.5593922810958094E-04 + 383 -1.1170832477153836E-02 + 384 1.7871039712993801E-02 + 385 6.8130013053722795E-03 + 386 -3.8335606301072073E-04 + 387 2.4895141437674946E-04 + 388 -1.8846230241672838E-04 + 389 2.3848983364756584E-03 + 390 2.6379087614089147E-03 + 391 1.0856608637409362E-03 + 392 1.8348643508355605E-03 + 393 4.0375893526195580E-03 + 394 7.9197165657256402E-03 + 395 3.9994410874568596E-04 + 396 4.4345503429694478E-03 + 397 -3.2546974098908031E-03 + 398 9.5452520332478768E-04 + 399 2.8445165184796354E-04 + 400 -5.4958380697198476E-04 + 401 1.5182240478431048E-03 + 402 -1.6465239453027497E-01 + 403 -8.1701077250881909E-02 + 404 -7.7636927743346906E-02 + 405 -5.5093399554529118E-02 + 406 3.7081587582268039E-02 + 407 -2.2261852675639114E-03 + 408 2.7536797840606590E-03 + 409 9.7540231115845544E-04 + 410 -2.4415367395749319E-03 + 411 9.9660287888118622E-04 + 412 2.8052906626997515E-05 + 413 3.8406663450743403E-04 + 414 7.1504261956349623E-05 + 415 5.1926790208186864E-04 + 416 5.5190198910582181E-04 + 417 1.0531579319064004E-04 + 418 3.3109451166327993E-04 + 419 2.2122707643456876E-02 + 420 -5.4304878593700772E-04 + 421 1.5419629739671311E-02 + 422 -1.5780918047066203E-02 + 423 -2.4493788437555269E-02 + 424 7.1159868597187482E-04 + 425 -4.9067792603067913E-04 + 426 -1.0482853701381295E-03 + 427 -4.6597283682792380E-03 + 428 -4.1840573740879294E-04 + 429 -4.6926102533417227E-04 + 430 1.4548433101946633E-03 + 431 -3.9932585419622506E-03 + 432 1.8916328001991091E-02 + 433 -1.6356671800042962E-04 + 434 -3.2719692802287924E-03 + 435 7.7502077296136198E-03 + 436 -6.0671008751189155E-03 + 437 1.5545631425548502E-04 + 438 2.7239111071121654E-04 + 439 -1.5596150641236409E-04 + 440 -7.4851328242911430E-04 + 441 -1.5375538340769203E-03 + 442 -6.8356649910096946E-04 + 443 -4.8900256805664165E-04 + 444 3.0272623195450000E-03 + 445 -1.4941139228853864E-02 + 446 -6.5369801314275292E-04 + 447 1.3524991797591590E-03 + 448 -9.6276073062531078E-03 + 449 -6.8316197209699258E-03 + 450 6.1225399318818349E-04 + 451 -3.4259593245034147E-03 + 452 -2.4690582733931429E-03 + 453 2.4795863680303368E-01 + 454 -2.0252627765429243E-01 + 455 2.6925069815980668E-01 + 456 -4.7086703369371867E-02 + 457 -8.1908082332631443E-02 + 458 -3.3206876211296014E-03 + 459 -3.6860445709055922E-04 + 460 -2.7753012500511013E-03 + 461 1.8555178504943502E-03 + 462 -2.1677554489641124E-03 + 463 -2.9365286278426062E-05 + 464 -6.4724129873478670E-04 + 465 -6.8586525511385172E-04 + 466 8.8332156541160963E-04 + 467 6.7690933964164590E-05 + 468 -6.8205483244189322E-05 + 469 6.1816507473400357E-05 + 470 -1.0104170001436369E-02 + 471 9.7296979769489209E-04 + 472 -2.5092403804613866E-03 + 473 1.4708058229375850E-03 + 474 1.0993821964090595E-03 + 475 1.6753796552857977E-04 + 476 7.2812707352952596E-04 + 477 -7.9270518136693308E-04 + 478 5.5017498414086071E-03 + 479 5.0875890700354115E-02 + 480 -4.4022015444633147E-02 + 481 4.7091021068522740E-02 + 482 -1.1826535174627005E-02 + 483 6.7592617186398418E-04 + 484 2.7070797968316507E-04 + 485 -4.7160236333789824E-04 + 486 -6.0982588485522242E-05 + 487 3.9347638136299042E-04 + 488 -1.7858644830447205E-04 + 489 9.8279096149345835E-05 + 490 -1.9095494497140783E-04 + 491 1.5606387291037185E-04 + 492 3.8263236881735740E-05 + 493 -2.1149591276772270E-04 + 494 -4.7201290062827711E-05 +Ene= -4.6596197666E-01 +Spin= Alpha +Occup= 2.0000000 + 1 1.6781056119986589E-02 + 2 -1.3341105646447467E-03 + 3 -5.9643440812905376E-03 + 4 7.0852214327317316E-03 + 5 9.5924726176719395E-04 + 6 4.4976707075893555E-04 + 7 1.1709895716834500E-03 + 8 -6.3155020583410219E-04 + 9 -4.7651750718572580E-03 + 10 1.2582291910554143E-02 + 11 -9.3398707703045512E-03 + 12 1.2446849844451090E-02 + 13 9.7708079782386839E-02 + 14 -2.3306595680439692E-03 + 15 -6.4022968778112803E-04 + 16 1.1820019629315099E-03 + 17 -3.4751959058051891E-04 + 18 -3.9957148950690051E-03 + 19 -7.2192243221305935E-04 + 20 -2.9504412043882157E-04 + 21 -2.5338029337488487E-04 + 22 -1.6884311675061518E-04 + 23 -4.0020820362549178E-04 + 24 -1.0011152977729176E-04 + 25 7.3640069196215696E-04 + 26 -7.8675824891550369E-04 + 27 4.3910931488150439E-05 + 28 -3.9714890532479327E-04 + 29 -1.1349220933550380E-02 + 30 5.6107764520003239E-03 + 31 -3.6672464634680107E-05 + 32 -3.7824659581554313E-03 + 33 1.3077055319929808E-04 + 34 -4.2569602455221939E-01 + 35 3.9556193628959924E-01 + 36 -5.3484692919638488E-01 + 37 -1.3699332586738258E-01 + 38 -1.5884923344876442E-02 + 39 -1.5394188445286509E-03 + 40 -6.4259039650347996E-04 + 41 4.4925284516737522E-03 + 42 2.3822052213759923E-03 + 43 -2.2356333138301415E-03 + 44 -5.3233714399120971E-04 + 45 6.6106445957523035E-04 + 46 -2.5359421016465785E-03 + 47 -4.2059362394258128E-04 + 48 9.0066559355712981E-04 + 49 -6.4832714767298677E-04 + 50 -4.1833777370362928E-04 + 51 1.0028917734633852E-02 + 52 2.4670301965602835E-04 + 53 4.1087573311250295E-03 + 54 3.6548582556133248E-03 + 55 -4.2220163655646339E-04 + 56 -3.8635874317579516E-04 + 57 -9.5655497946115940E-04 + 58 -6.8236503259624622E-04 + 59 1.0123651176804849E-02 + 60 -8.7030153391629117E-02 + 61 -1.5267618028504302E-02 + 62 1.8787532485324211E-02 + 63 -1.2964880312081302E-02 + 64 8.3488685487606215E-04 + 65 3.8667714347833974E-03 + 66 3.2871020807119927E-03 + 67 -9.9721440702518651E-04 + 68 2.1429681746633848E-03 + 69 -4.6149451192403637E-04 + 70 -6.8047494680148013E-04 + 71 -9.4443387653920388E-05 + 72 -4.9026833765008213E-04 + 73 2.6803505860682438E-04 + 74 -2.3967857113618729E-04 + 75 -1.5087959969877087E-04 + 76 4.0937670960530831E-02 + 77 -7.6253180638202961E-04 + 78 -2.1004108605666076E-03 + 79 4.1542181510671676E-02 + 80 -9.6127577211553294E-03 + 81 -1.2722170090056252E-03 + 82 3.8968414450315891E-03 + 83 1.5781027210771004E-03 + 84 8.7415279661559955E-04 + 85 1.0845796293235000E-03 + 86 3.9849428240940248E-03 + 87 4.8482818016945695E-03 + 88 -7.7432695096934564E-03 + 89 -8.4598399836208326E-03 + 90 4.1991145911282596E-04 + 91 -7.0825609304404824E-03 + 92 -2.8608237617744172E-03 + 93 4.2511118260531834E-03 + 94 -1.0720874699761966E-03 + 95 -8.8836125804258638E-04 + 96 2.4141210726326358E-04 + 97 4.1681735023403095E-04 + 98 -1.1984567046416357E-03 + 99 3.7023164785630213E-04 + 100 9.4042311185030692E-04 + 101 -1.2359055501974371E-03 + 102 -6.0891133728608840E-02 + 103 1.1304192184880761E-03 + 104 -1.2772860113561440E-02 + 105 3.2638727659689157E-02 + 106 1.4561945268188868E-02 + 107 -9.7701982201026647E-04 + 108 1.2840572621942918E-03 + 109 2.1324419575261626E-03 + 110 -5.1452444301732713E-03 + 111 -1.6513963668174801E-03 + 112 1.0430663595600886E-03 + 113 -2.9851597862339645E-03 + 114 -5.5604438313038929E-03 + 115 6.0027311462490421E-02 + 116 -1.1824857671258507E-03 + 117 -4.1466831856736004E-02 + 118 1.3171930237131715E-02 + 119 1.7429795220828680E-02 + 120 -1.4614739667297900E-03 + 121 1.9186851368384022E-04 + 122 6.8495630522911436E-04 + 123 -2.4579807022739994E-04 + 124 8.3439660426712983E-03 + 125 -3.2417898811091107E-03 + 126 -1.6236645856422002E-03 + 127 5.6746633511593264E-03 + 128 -1.7537095929377310E-02 + 129 -4.5931201175249348E-04 + 130 -2.8465964752862646E-03 + 131 -1.9990713750414331E-04 + 132 8.8820442675307826E-04 + 133 5.5339632750055407E-04 + 134 2.3105459279550628E-03 + 135 4.5067437148555616E-04 + 136 -1.9094302207436006E-02 + 137 1.6709521752388407E-01 + 138 1.2232637419890457E-01 + 139 4.6563339629971515E-02 + 140 7.9719254437862611E-02 + 141 -3.7242970039203557E-04 + 142 -5.1309754942074654E-04 + 143 -4.2427846672694495E-04 + 144 -7.0725320151089231E-04 + 145 -7.1875611635212474E-04 + 146 4.5523030048089292E-04 + 147 -4.1513489572483600E-05 + 148 7.8012390291638204E-04 + 149 6.7843725103684403E-04 + 150 3.9391841252506170E-05 + 151 -2.8393607322145211E-04 + 152 3.6029371315543231E-04 + 153 -5.8626380186261621E-03 + 154 9.5151283522985414E-05 + 155 -3.0931701333764368E-03 + 156 -4.1330139389793817E-03 + 157 3.6101191403647209E-03 + 158 -2.1641856300342556E-03 + 159 -9.3954976272280657E-05 + 160 6.0970659539625444E-04 + 161 -2.8523137298658199E-02 + 162 1.7836670231917932E-02 + 163 1.3382798419427558E-01 + 164 9.3930453183346009E-03 + 165 -6.7458793678709730E-02 + 166 -1.5932212146774563E-03 + 167 2.2613116599633871E-03 + 168 2.3608099418466807E-03 + 169 1.0965211152671329E-03 + 170 -1.0074333742351679E-03 + 171 3.6458187478270287E-04 + 172 -4.1797090484953795E-04 + 173 -6.9947835857188259E-04 + 174 4.0624573625737994E-04 + 175 2.0991408918221390E-04 + 176 -2.8677923183334947E-04 + 177 3.0502976332692598E-04 + 178 4.4379316944604466E-03 + 179 -2.7589976271617171E-04 + 180 3.8712245645177285E-03 + 181 -4.6621423234093819E-03 + 182 3.1286965191419779E-03 + 183 2.3877746747327983E-05 + 184 -5.0953747967104985E-04 + 185 -3.5335334636091411E-04 + 186 -2.4530797498280993E-04 + 187 3.3903535226982617E-04 + 188 1.9419413292337553E-03 + 189 1.6333288095086531E-03 + 190 1.1060021808576442E-03 + 191 1.1308244547183134E-02 + 192 -6.5923438500405636E-05 + 193 6.8099911899455233E-03 + 194 -1.0275731931278750E-03 + 195 -2.6987606171435660E-03 + 196 4.2475309869890657E-04 + 197 6.3081075097261156E-04 + 198 2.8073601798032010E-04 + 199 -2.0102747279800926E-04 + 200 8.4793130456737068E-04 + 201 -2.9026356860046751E-04 + 202 -1.1952750516735786E-03 + 203 9.4772972394162986E-04 + 204 -5.5643435634763110E-03 + 205 5.3912530473804892E-04 + 206 -1.2721236797056726E-03 + 207 1.6802411037350682E-04 + 208 7.2582681484250613E-04 + 209 -6.0809688788243611E-04 + 210 1.0603231752032718E-03 + 211 7.3627014076143535E-05 + 212 2.7449581153911912E-02 + 213 -1.0048561229883626E-01 + 214 8.7294792637316460E-02 + 215 1.5624912752654146E-01 + 216 7.3471031380322974E-02 + 217 -7.5805591814165232E-04 + 218 1.2134460450392674E-04 + 219 6.5709264104674636E-04 + 220 -1.2518991884885474E-03 + 221 5.0300265048300828E-04 + 222 -6.1761154015116816E-05 + 223 -1.0397005997577970E-04 + 224 -3.6114530996065583E-04 + 225 -2.1541430726523727E-04 + 226 7.1915756320480357E-05 + 227 -4.4431444082676335E-04 + 228 -3.0487246253620360E-04 + 229 2.2798676093399558E-03 + 230 -7.9721810167808201E-04 + 231 -1.3109514667217065E-03 + 232 -3.7999229784179689E-03 + 233 -3.5097396354744209E-03 + 234 1.2474105036240793E-03 + 235 2.0271616081735679E-05 + 236 9.2141119190596651E-04 + 237 1.6649577217179229E-01 + 238 1.1244003319609426E-01 + 239 -5.0914849462719853E-04 + 240 5.9511532871251424E-02 + 241 1.8154422066187328E-01 + 242 2.0132649719441158E-04 + 243 -9.3677833398567818E-04 + 244 -7.6706433586317725E-04 + 245 4.0325650690822619E-05 + 246 4.1220211512888426E-04 + 247 -3.9250247143460016E-04 + 248 5.7747003880192767E-04 + 249 -6.6319206759539310E-04 + 250 5.1158171556411479E-04 + 251 5.0737266018472424E-04 + 252 7.0469309670712478E-04 + 253 3.2746341311391212E-04 + 254 -2.3223081833902013E-02 + 255 1.8736134240857980E-03 + 256 -8.1130731567506784E-04 + 257 6.1620073464163649E-03 + 258 3.0945942580839882E-03 + 259 2.7125730812925693E-04 + 260 -2.7417504260209550E-04 + 261 -4.6402108952480115E-05 + 262 -5.3775016352619463E-02 + 263 2.5333178975078725E-03 + 264 2.1851465908537600E-02 + 265 3.2844223934671041E-02 + 266 4.6459282252190939E-02 + 267 -7.5826065675201721E-04 + 268 -6.5406761483464298E-04 + 269 -9.4241918583579150E-05 + 270 2.4831988009258303E-03 + 271 9.7208581189851004E-04 + 272 4.4712826827578015E-04 + 273 -1.6548412374730813E-05 + 274 -4.3180016572691849E-06 + 275 -4.3580598424260803E-04 + 276 -6.0136134207825979E-05 + 277 4.6292839399571408E-04 + 278 -9.1820631438778552E-04 + 279 4.7721684366609805E-02 + 280 -9.3283336935476779E-04 + 281 -1.2390960418790441E-02 + 282 1.5192697085614333E-02 + 283 1.3384255581325817E-02 + 284 1.8046016100502508E-04 + 285 3.8735243540112638E-04 + 286 2.1628142598498611E-03 + 287 1.6337957724373599E-03 + 288 2.4397206474236540E-03 + 289 -2.6280252463969137E-03 + 290 1.1731487220521179E-03 + 291 2.6734504067584112E-03 + 292 -6.9944977572724354E-03 + 293 -8.3088565590436913E-05 + 294 -1.1809490044811135E-02 + 295 -1.8595869554348416E-03 + 296 -9.2710722792208270E-03 + 297 -8.4327226120109802E-04 + 298 -1.0978988794869556E-03 + 299 -1.1322409711931739E-03 + 300 -3.2885329377240671E-03 + 301 -1.2624816657964403E-03 + 302 8.5497377884721922E-04 + 303 -7.9139561619415093E-05 + 304 4.0201012567379300E-04 + 305 -1.5366177415897999E-03 + 306 -1.0179493751581888E-04 + 307 9.1124439869499961E-04 + 308 -8.6264306790736437E-04 + 309 6.8165375879233815E-04 + 310 9.2243645369788715E-05 + 311 1.3014574657043467E-04 + 312 -2.4080768129483928E-04 + 313 -5.5583661225827932E-02 + 314 6.8721670654356319E-03 + 315 -2.2157558352994957E-02 + 316 3.4973459886972140E-02 + 317 4.8332957765399615E-02 + 318 7.9738869933477325E-04 + 319 3.2325341669868796E-05 + 320 -4.9593925726301323E-04 + 321 -6.3602380901730865E-04 + 322 -7.7200374541876507E-04 + 323 3.9416010267612314E-04 + 324 -4.4290729534370536E-04 + 325 -3.3650510414695101E-04 + 326 -1.1715121570384089E-04 + 327 -5.3139488484450867E-04 + 328 -5.8447980393334371E-05 + 329 -4.1806236849321947E-04 + 330 4.3564455061824714E-05 + 331 -7.8148296056889733E-04 + 332 -2.3583216619596820E-03 + 333 -4.5041310669978544E-04 + 334 -3.7143857776637144E-03 + 335 -7.0970229632177180E-04 + 336 -5.7262319145224921E-04 + 337 -4.6987330102006320E-04 + 338 -1.3272791958464269E-02 + 339 3.6441585423135026E-02 + 340 -2.6737695344634309E-02 + 341 -1.2030317388526012E-02 + 342 4.2254091402250012E-03 + 343 4.3082533904173975E-04 + 344 -3.4231949613678895E-05 + 345 -1.8192526164827374E-03 + 346 -1.5308022023122165E-04 + 347 -1.2328064653059176E-03 + 348 2.6961944797640751E-04 + 349 -8.4871457312322648E-05 + 350 -1.0987427322814397E-04 + 351 1.8221809770116009E-04 + 352 3.1265228715835469E-05 + 353 1.4788012193402440E-04 + 354 -2.7466715168582975E-05 + 355 -2.0088504591348540E-02 + 356 5.6511767024605816E-04 + 357 -2.1302749485379671E-03 + 358 6.8647429281275289E-03 + 359 1.8019294783356149E-03 + 360 -1.2551028015802374E-04 + 361 9.0680127656879580E-04 + 362 -1.2925880347619320E-04 + 363 -4.9923785210210625E-04 + 364 6.1491942838872444E-05 + 365 2.9338282965605405E-04 + 366 -1.0541547718409235E-03 + 367 -3.2604780707195396E-04 + 368 -1.8622578176611004E-02 + 369 5.7496510839533425E-04 + 370 -1.4231182928422499E-02 + 371 5.3841101486944518E-03 + 372 6.9187647621749004E-04 + 373 -2.5705269382314468E-04 + 374 -2.2358593698861421E-04 + 375 2.2716503724409254E-03 + 376 -1.1199950233003030E-03 + 377 -2.4770367886803982E-05 + 378 -2.0914637412438775E-03 + 379 -1.8610804894125946E-03 + 380 -1.0602777128314123E-03 + 381 1.6972800371742348E-02 + 382 3.5280238581915997E-05 + 383 -1.8814787042353447E-03 + 384 -4.1469534862285558E-03 + 385 1.5548226362047125E-02 + 386 -8.7001855997142393E-05 + 387 -9.4208688495925385E-04 + 388 -4.6672162075640604E-04 + 389 -3.1997725334501248E-03 + 390 1.2319700707517846E-03 + 391 -4.1929839974509187E-04 + 392 -1.1862246812904226E-03 + 393 -3.0134060640225289E-04 + 394 -5.3722734097115792E-04 + 395 -8.1898831149214467E-04 + 396 5.0695844997656974E-04 + 397 -1.2783521882992529E-03 + 398 -3.6109114884045053E-03 + 399 5.8137731122605751E-04 + 400 -1.7673277467162343E-04 + 401 -8.7284204085614646E-04 + 402 -2.7542252816815171E-02 + 403 1.5997284524959693E-01 + 404 -1.8317969101750420E-01 + 405 -7.5790701700813076E-02 + 406 -5.1221020890144367E-02 + 407 -1.1172166267699910E-03 + 408 -1.4542875487306943E-04 + 409 1.5706576751410581E-04 + 410 -4.2657803956199522E-04 + 411 1.6463526896679825E-05 + 412 -1.1962780398705140E-04 + 413 1.0344932758860705E-03 + 414 -4.8444428959601205E-04 + 415 1.1240514185528238E-04 + 416 3.8883764986982771E-04 + 417 -5.8192458287314151E-04 + 418 -3.2756383201925466E-04 + 419 1.3194295972879411E-02 + 420 -3.2214574278008410E-04 + 421 -5.6296687977946550E-03 + 422 -5.0346567572245402E-03 + 423 -8.3643119210874677E-03 + 424 -7.3881407798718655E-04 + 425 -5.4579890319323592E-04 + 426 -7.6849577025294466E-04 + 427 -2.0828865097104921E-03 + 428 -1.7012283664820335E-03 + 429 -2.4674656354881758E-04 + 430 -1.5678808013982377E-03 + 431 -5.4104956389027816E-04 + 432 -4.7675309697180661E-03 + 433 1.5300766855538977E-04 + 434 3.0846336808710352E-03 + 435 -3.1117764928877606E-04 + 436 4.2388776329292588E-03 + 437 1.3504718378944407E-04 + 438 1.0985255097193194E-04 + 439 -3.4909840662573802E-04 + 440 -2.9286486875135177E-04 + 441 6.1592370230794823E-04 + 442 -1.8866061757432298E-04 + 443 3.1027150114677131E-04 + 444 2.5182994068486872E-04 + 445 1.0716355898235997E-03 + 446 3.5564156566014911E-04 + 447 2.5750885688256347E-03 + 448 8.5948380977654429E-04 + 449 8.6317257653467920E-04 + 450 8.5528271756898119E-04 + 451 5.0155684673515325E-04 + 452 1.8458077144848216E-04 + 453 1.2148970389549614E-01 + 454 -2.0016297884914304E-02 + 455 -1.6992632960450827E-02 + 456 -1.5433853011926452E-02 + 457 -4.2665639768781516E-02 + 458 -2.0525459324623199E-04 + 459 1.6162543622220281E-03 + 460 1.0853208740600011E-04 + 461 3.2749979797371567E-04 + 462 1.5104267739233621E-03 + 463 1.5406786356025859E-04 + 464 1.3465098928878968E-06 + 465 -2.6737338032808072E-04 + 466 2.1866296555722237E-04 + 467 -3.7191738655475073E-05 + 468 -4.2366028572122431E-05 + 469 4.4394205802592441E-04 + 470 -2.3342216899203032E-03 + 471 5.3345258657504257E-04 + 472 -7.7356144062482003E-04 + 473 -1.5036945583414211E-03 + 474 -1.1532095807574669E-03 + 475 1.9948218683897350E-04 + 476 -1.8512742144151278E-04 + 477 1.8495371370111876E-04 + 478 1.1619874633861580E-02 + 479 -2.3649387527757981E-02 + 480 -1.2459805140191434E-02 + 481 -1.3278794455185780E-02 + 482 -1.1395493579353235E-02 + 483 2.4282066066001320E-04 + 484 -4.7469096648322136E-04 + 485 4.4218114524329719E-04 + 486 -2.4859421996280924E-04 + 487 -5.4000565118492020E-04 + 488 -5.1584600440875466E-05 + 489 1.8499298709154187E-04 + 490 -2.0494120879684863E-05 + 491 -3.5292874502107427E-05 + 492 2.0621296694570200E-04 + 493 -1.7897156338038246E-04 + 494 -6.3391880459771595E-05 +Ene= -4.6486402704E-01 +Spin= Alpha +Occup= 2.0000000 + 1 1.1001555218879806E-02 + 2 -2.6591549314192837E-03 + 3 5.8104329338816820E-04 + 4 7.1443662750251607E-03 + 5 -1.4442061392549537E-03 + 6 2.7290019822766445E-04 + 7 -1.1284577469080428E-03 + 8 -1.0044676040465402E-03 + 9 1.2750270138105506E-02 + 10 -4.9461099904391792E-02 + 11 -9.3883619959825738E-03 + 12 1.0117540683958977E-01 + 13 1.5998314514178009E-02 + 14 -1.3869416220248290E-03 + 15 7.3429461205893405E-04 + 16 4.6439887120971888E-04 + 17 -1.8067566436348072E-03 + 18 -2.1620746821450223E-03 + 19 -2.6096724694736747E-04 + 20 -2.1038831845866991E-04 + 21 1.4186908785076760E-04 + 22 -3.0342838955509072E-04 + 23 1.1689936647346820E-04 + 24 3.8033431596057234E-04 + 25 2.2149704120705811E-04 + 26 -4.2934654224286422E-03 + 27 6.7661352669373068E-04 + 28 3.3296581045978882E-03 + 29 1.0363106284660625E-03 + 30 -2.0518506414449180E-03 + 31 1.3311160526285998E-04 + 32 3.6371892664717198E-05 + 33 -6.3353229352810245E-04 + 34 2.6225421344538014E-01 + 35 4.5420226374715662E-02 + 36 -1.9627714024211285E-01 + 37 4.8774756520186785E-02 + 38 1.3604690031056738E-01 + 39 -9.6348210786074821E-04 + 40 -1.6624079533949559E-03 + 41 9.9501663961291801E-04 + 42 -8.1093532817354979E-04 + 43 1.5912339625314480E-04 + 44 6.5906580433785632E-04 + 45 7.4497271656827769E-04 + 46 -2.2817791886940508E-04 + 47 2.8710374462696499E-04 + 48 3.4756944459943728E-04 + 49 4.5973273284445637E-04 + 50 1.9087044204156264E-04 + 51 -6.1613709347515160E-03 + 52 1.7701646813893350E-03 + 53 3.0713465687719961E-03 + 54 -4.7422857904426184E-05 + 55 -2.1651880401997799E-03 + 56 1.3423027035023370E-03 + 57 3.0579125756592979E-03 + 58 -9.2314195227594824E-04 + 59 1.5138420438468140E-02 + 60 -6.4945865529992255E-03 + 61 -1.5557062256099300E-02 + 62 5.1648115798723387E-02 + 63 -1.3468369098660612E-01 + 64 -4.2194131623939980E-04 + 65 2.3270311472225426E-03 + 66 -9.1576962153829271E-04 + 67 -2.3385711562573267E-03 + 68 1.4838376501280603E-03 + 69 -2.6162557879767887E-04 + 70 3.5869712131639519E-04 + 71 2.4279611682952201E-04 + 72 1.7032155744005223E-04 + 73 9.8949135337781996E-04 + 74 4.4339421155495410E-05 + 75 2.9052570253718357E-04 + 76 -6.1304172281575947E-02 + 77 1.1313173977431578E-03 + 78 -2.9573579319708172E-02 + 79 2.5288080817146893E-03 + 80 1.7251167887727677E-02 + 81 -1.2128791060457662E-03 + 82 -3.2731243796868688E-05 + 83 1.6656494411128805E-03 + 84 -2.0181942050888344E-03 + 85 -1.5621802544178792E-03 + 86 -2.7210832868957489E-03 + 87 5.1081525951511154E-03 + 88 2.2919724404599222E-03 + 89 2.2813718919849100E-02 + 90 -4.5930037285431074E-04 + 91 -3.6020404806602598E-03 + 92 -1.0856410701284829E-02 + 93 6.6892047139320340E-03 + 94 -1.5189725316467290E-03 + 95 -2.0160609215551357E-03 + 96 9.7176875943912468E-04 + 97 1.6522925778872902E-03 + 98 -1.4537291207338417E-03 + 99 2.1066999479745513E-05 + 100 1.9142064303023986E-03 + 101 -1.5918067597811081E-04 + 102 4.0051970603178409E-02 + 103 -1.0994892484090788E-03 + 104 5.6505551183349068E-03 + 105 -1.5696580459764325E-02 + 106 1.2181596220381960E-02 + 107 -1.1832400016686807E-04 + 108 -5.0200475134855674E-04 + 109 1.4516126629148716E-03 + 110 4.0652385075306456E-04 + 111 -1.9695149215701534E-03 + 112 2.5135138135235035E-03 + 113 6.0572964680643063E-04 + 114 2.0396350105247834E-03 + 115 1.9299572841891169E-02 + 116 -3.4214368760734822E-04 + 117 2.4505075790843445E-03 + 118 9.4351987754331013E-04 + 119 6.7535399432801417E-03 + 120 -9.3985755385746550E-05 + 121 3.4669229781666045E-04 + 122 1.2598872467374346E-04 + 123 -7.6583941089019083E-04 + 124 1.2674913229434944E-03 + 125 -2.3159440659325001E-04 + 126 -6.8234509811424416E-04 + 127 -2.0012306454397365E-03 + 128 4.4062773075001651E-04 + 129 2.7137104961133616E-04 + 130 -1.8966074602291027E-03 + 131 -2.9960456074073927E-03 + 132 -2.4261810698505070E-04 + 133 -4.6161190779105534E-04 + 134 -1.5539408254200977E-03 + 135 1.4491839624244749E-03 + 136 -2.9413355340667113E-01 + 137 -3.4859172648927252E-03 + 138 -9.6890601257329775E-02 + 139 -1.0437407100790889E-01 + 140 6.5105699402437989E-02 + 141 -8.6124880115294683E-04 + 142 1.9233145607583544E-03 + 143 1.1497499522793732E-03 + 144 4.6026155088539861E-04 + 145 -2.6980359315601882E-05 + 146 7.1155229032202310E-04 + 147 -2.4315764887853551E-04 + 148 -2.7822766446004312E-04 + 149 2.8474631597467552E-04 + 150 -8.7520766405122983E-04 + 151 7.3292740929207644E-04 + 152 4.8368621227484179E-04 + 153 -1.1488171915694435E-02 + 154 1.1258358565713789E-03 + 155 -3.8239102234647092E-03 + 156 -4.2488005420708713E-03 + 157 3.6621769217063164E-03 + 158 -2.0141207811468298E-04 + 159 -1.7895738909651208E-04 + 160 -4.4387383232741924E-04 + 161 1.6441635205879285E-02 + 162 4.8500534482401679E-02 + 163 6.0594693206537292E-02 + 164 -9.2873007311301153E-04 + 165 -1.8980211372996415E-02 + 166 7.4097679309744150E-05 + 167 1.6480672396413387E-03 + 168 2.1157507525490036E-03 + 169 9.8894468508314002E-04 + 170 -3.5812659999746285E-04 + 171 -3.3504708024103787E-04 + 172 -2.0806429466911064E-04 + 173 -4.3223113832334691E-04 + 174 -3.5190175770325913E-04 + 175 2.4207723040754446E-04 + 176 -2.4181609355093564E-04 + 177 2.9015873370677263E-04 + 178 -2.9954700331701429E-03 + 179 1.8340087255563274E-04 + 180 3.3940279453626276E-03 + 181 4.8455561962201694E-03 + 182 -4.9822622064155837E-03 + 183 -4.0457397428113106E-05 + 184 3.2834483657344414E-04 + 185 -5.2098604264843153E-04 + 186 9.4858350179120594E-04 + 187 -1.4861239230781992E-03 + 188 -2.0177851021425581E-03 + 189 6.8953241994761767E-04 + 190 -3.2084927501778703E-04 + 191 -6.8195916117395089E-02 + 192 7.0377458598172473E-04 + 193 -1.6804106258893763E-02 + 194 1.3361227285722487E-02 + 195 9.0370413262285602E-05 + 196 -7.5766753065320915E-04 + 197 8.3575272373862062E-04 + 198 -3.3639844484799689E-04 + 199 1.2912828091140472E-03 + 200 -1.9808880609676720E-03 + 201 3.1149238108527317E-03 + 202 -2.0938955797734022E-03 + 203 -4.9954698496428541E-03 + 204 -1.3405890993907245E-02 + 205 2.0445973879543188E-04 + 206 4.4832780924205747E-04 + 207 -1.3072478076412597E-02 + 208 2.0673044300199847E-03 + 209 7.8635754460972755E-04 + 210 -2.7560781845340217E-03 + 211 -2.1370532683016383E-04 + 212 -1.9112732946647445E-01 + 213 6.4369974201636732E-02 + 214 -7.1590799688076315E-02 + 215 3.9845733691204289E-02 + 216 -3.0392866096303722E-01 + 217 -1.7874258054658692E-03 + 218 -1.1837230185328396E-03 + 219 2.0291928842831788E-03 + 220 1.5992336809829294E-03 + 221 -3.2371295576008258E-03 + 222 1.0839510697682279E-04 + 223 -5.1240171123756114E-04 + 224 -2.7749211716154967E-04 + 225 -2.6013712403125827E-05 + 226 -2.0417797525944717E-04 + 227 -2.4770779301523985E-04 + 228 -2.2513764909454258E-04 + 229 1.1153069083289427E-02 + 230 -2.7547207707152486E-03 + 231 5.2261563442257903E-03 + 232 1.2262104158122708E-03 + 233 -1.5256027601962740E-03 + 234 -2.5816184699308319E-05 + 235 1.7630260267397853E-03 + 236 5.2069052096266979E-04 + 237 -1.8331414004771358E-02 + 238 2.3023499318059173E-01 + 239 -2.2321151439318471E-01 + 240 -6.3669566859297297E-02 + 241 7.0789409369054854E-02 + 242 1.9129092603728209E-03 + 243 -1.4720167856075250E-03 + 244 2.6764271816091954E-03 + 245 7.3485978650439756E-04 + 246 -6.0699542660979159E-04 + 247 1.0624831821253802E-03 + 248 -8.2250731961567617E-05 + 249 6.0856297918325732E-05 + 250 5.1870879676220547E-04 + 251 1.0396227028583959E-03 + 252 6.8019760126710913E-04 + 253 3.0696156082625150E-04 + 254 -1.8900128673886925E-03 + 255 -5.1595370166536371E-04 + 256 2.1463499602719575E-03 + 257 -4.0466913964380382E-04 + 258 1.9120944128625111E-03 + 259 -4.2753393112336956E-04 + 260 -2.8944139278865255E-04 + 261 8.0168858363107234E-04 + 262 -6.3145766884815267E-03 + 263 -5.9790451775088372E-03 + 264 1.2934910806097016E-02 + 265 3.8263980630760656E-03 + 266 -4.6448262315330051E-02 + 267 -1.5558878402433787E-03 + 268 -3.3141845743915764E-05 + 269 -4.4228070547282380E-04 + 270 -3.7171851798453091E-04 + 271 -1.0776351811230436E-03 + 272 1.7285163246767962E-04 + 273 -1.9292375822338079E-04 + 274 3.3652642345161445E-04 + 275 -2.9505092873266640E-05 + 276 -2.3401372212561049E-04 + 277 -6.5158371572514198E-04 + 278 1.2311965560198729E-04 + 279 1.9880374934523964E-02 + 280 -4.9384729562408961E-04 + 281 -1.9032140377326458E-02 + 282 6.2196467721384735E-03 + 283 -5.8802395964180007E-03 + 284 -1.1883225406069196E-03 + 285 7.3235593544275892E-04 + 286 4.5000392839256685E-04 + 287 2.2603130872358057E-03 + 288 1.9566642133865729E-04 + 289 1.3082979861367304E-03 + 290 -4.3399407956603409E-04 + 291 5.3267481600685705E-03 + 292 -1.1913635482376972E-02 + 293 -4.8340654083845770E-04 + 294 -2.9369800583278469E-02 + 295 -3.5969909010094538E-02 + 296 -3.2242012980567697E-02 + 297 -2.6547848912982486E-03 + 298 -4.0726852175486756E-03 + 299 -2.7254020368058718E-03 + 300 -8.2781908002953833E-03 + 301 5.6566270852777625E-04 + 302 -3.0158226601801137E-03 + 303 1.7773840242469047E-03 + 304 6.1930849157830871E-03 + 305 -3.6143155872034550E-03 + 306 1.9676482827307449E-03 + 307 6.9421135004441178E-04 + 308 -2.0307505057885031E-03 + 309 3.0065173817267227E-04 + 310 2.7095586621762435E-03 + 311 -6.0025074320226924E-04 + 312 -5.5477821402896233E-04 + 313 -1.2111928320377485E-01 + 314 -3.5706449450737627E-03 + 315 -3.8747432927334062E-02 + 316 1.4154615340937302E-03 + 317 2.9330303040676919E-01 + 318 -2.9700240414161334E-04 + 319 6.4517126891446984E-04 + 320 -1.0549159172129068E-04 + 321 -2.5638512481472482E-03 + 322 2.3496861075470114E-03 + 323 4.5407680657401269E-04 + 324 -6.2768540513885270E-04 + 325 -1.3722543602621511E-05 + 326 -1.2182257623194129E-04 + 327 -6.6274011500588089E-04 + 328 1.7040415074265263E-04 + 329 -1.5073842100143896E-04 + 330 1.4189804267557391E-02 + 331 -3.7731375836605067E-04 + 332 -2.5220900475784909E-03 + 333 1.2083878991820272E-03 + 334 1.8560057529027601E-03 + 335 -4.8304904879763633E-04 + 336 4.7439320043902289E-04 + 337 -5.3778648226111955E-04 + 338 1.6614122366663139E-01 + 339 8.1312298142953210E-02 + 340 -6.4115480419555990E-02 + 341 1.2766649666739113E-02 + 342 -7.3603737634925934E-02 + 343 3.0006427706156798E-03 + 344 1.3700041361146631E-03 + 345 -9.9107139427132289E-04 + 346 -9.0678343883912019E-04 + 347 -1.2401151706146075E-03 + 348 2.1009829756964401E-04 + 349 5.4455444949736838E-05 + 350 5.0925535248481219E-04 + 351 -2.5512180059704019E-04 + 352 4.6002527983568915E-04 + 353 9.7462934985003845E-05 + 354 -2.2922290914200033E-04 + 355 -4.8431339005353589E-02 + 356 8.2754315854409954E-04 + 357 2.2645179291605925E-02 + 358 8.1382136397299982E-03 + 359 -5.2599694377893245E-03 + 360 8.7692526814752314E-04 + 361 1.0109644124400273E-03 + 362 5.1218319144173718E-04 + 363 -3.0301821087467128E-03 + 364 3.5416806679744155E-03 + 365 -3.4586111460863178E-03 + 366 -4.6310136828478284E-03 + 367 2.7396088686184711E-03 + 368 5.4465096466835228E-02 + 369 -9.2319919365573759E-04 + 370 2.5315561060264204E-02 + 371 -3.1174498022365296E-02 + 372 -7.4876259628066889E-03 + 373 -7.6677623827576971E-04 + 374 5.3937425833081780E-04 + 375 9.8526830093327057E-04 + 376 -2.4337493420170438E-03 + 377 2.8235952039322222E-03 + 378 6.5210851018486916E-04 + 379 1.7170910623658018E-03 + 380 1.7158850254321738E-03 + 381 -3.0006747862212139E-02 + 382 5.6045897783549845E-04 + 383 4.9412801547922911E-03 + 384 -4.1596675153236238E-03 + 385 -4.8456827224504226E-04 + 386 3.0793148259232532E-04 + 387 -2.0618138350392493E-04 + 388 2.5124514660041875E-04 + 389 7.6883505266424042E-04 + 390 -1.7610499535828167E-04 + 391 1.2301767016996597E-03 + 392 1.0910493851595587E-03 + 393 7.6004754546014658E-04 + 394 1.2266708786908272E-02 + 395 1.2886129207945675E-03 + 396 4.2415587597382596E-03 + 397 -7.0768960366303819E-03 + 398 9.3296495324491908E-04 + 399 1.1905116371082195E-03 + 400 4.6992969228421943E-04 + 401 -6.0201572278516496E-04 + 402 1.3046495833190180E-01 + 403 -9.1232197264434420E-02 + 404 2.3340100407751824E-02 + 405 9.3795177908903779E-03 + 406 3.7001803990200033E-01 + 407 1.1248863550674434E-03 + 408 1.2669786850014173E-03 + 409 2.6959976036384139E-03 + 410 -2.4174222686081047E-03 + 411 -4.4012340980779854E-03 + 412 1.9560220884576399E-04 + 413 -2.5688984748801759E-04 + 414 4.1867057253905560E-05 + 415 6.6122271587918454E-04 + 416 6.0078942121038787E-04 + 417 -1.5198643400177031E-03 + 418 1.1416688608359829E-04 + 419 -7.6001290498473048E-03 + 420 8.2664472021647985E-05 + 421 -1.5971279116890821E-02 + 422 1.9133751008079552E-03 + 423 1.0220474372393203E-02 + 424 -4.8030759124235224E-04 + 425 -3.8674051775666114E-05 + 426 -2.1989338680062189E-04 + 427 1.5342913539111364E-03 + 428 -6.8266479966391563E-04 + 429 3.1474608616609159E-04 + 430 -2.9835009796647027E-03 + 431 3.3871684230803939E-03 + 432 -1.6209916474696186E-02 + 433 4.0012247552165237E-04 + 434 2.3729127069015256E-03 + 435 4.2612126724277926E-03 + 436 7.6690017577544399E-03 + 437 3.4080227038196212E-04 + 438 1.9082756719351060E-04 + 439 3.2199784170261215E-04 + 440 -4.5462639186580881E-05 + 441 1.6146895133711823E-03 + 442 8.7014841848949691E-04 + 443 6.8579716203454250E-04 + 444 4.0116100490945867E-05 + 445 6.2948562680037777E-03 + 446 1.7540001105041612E-04 + 447 -3.0497171161664818E-03 + 448 -1.2751579096970688E-03 + 449 5.7482217700972839E-04 + 450 -1.1771911965645059E-03 + 451 1.2732161869316264E-03 + 452 1.3994325975327608E-03 + 453 1.1087429361974568E-01 + 454 1.8739325431053400E-01 + 455 -2.1017916740135983E-01 + 456 1.4538184167278673E-01 + 457 -1.1450313476014738E-02 + 458 1.6028625673808010E-03 + 459 -4.1766517987201047E-04 + 460 -1.2465520861592834E-03 + 461 -9.0887399748442713E-04 + 462 -1.1482198006740327E-03 + 463 2.2459553183061745E-04 + 464 2.3785405581209007E-04 + 465 -1.8115645042963757E-05 + 466 2.8029872234316478E-04 + 467 -5.4679743688463374E-04 + 468 7.5280892718559045E-04 + 469 2.9562290283440494E-04 + 470 1.4974164764243536E-03 + 471 2.3362019468391881E-04 + 472 -1.7884066664429355E-04 + 473 2.9528579984813494E-03 + 474 -1.7471562434569958E-03 + 475 2.1659351479277821E-04 + 476 2.1116022546925284E-04 + 477 -1.4852320563422464E-04 + 478 5.1335326671280964E-03 + 479 -7.8987525934215586E-03 + 480 3.2750244884856665E-02 + 481 -1.1257658660768173E-02 + 482 4.4295046932953636E-02 + 483 -2.9609552245321943E-04 + 484 -1.1375385583830614E-03 + 485 2.6894518369500792E-04 + 486 -5.6977207811410944E-04 + 487 1.9452645985585898E-03 + 488 4.7347202963383619E-04 + 489 -4.6016566105068619E-05 + 490 1.2940495055288386E-04 + 491 -2.9154832380674508E-05 + 492 -4.3217129442674268E-05 + 493 -1.9604420419825426E-04 + 494 2.3032680635716414E-04 +Ene= -4.6453165306E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -6.3210447297274474E-03 + 2 -1.9474918076331292E-06 + 3 2.1923194348529860E-03 + 4 -2.4584359242588861E-03 + 5 -2.6646081071413254E-04 + 6 5.6933424520670738E-04 + 7 7.0430795339347619E-05 + 8 6.1001836849354290E-04 + 9 1.6954465078613850E-02 + 10 -1.9368757902992189E-04 + 11 2.2650756171873246E-02 + 12 -2.0392974937889573E-02 + 13 6.6494274618396380E-03 + 14 2.8009399368718682E-04 + 15 9.2794732559377653E-05 + 16 1.9634331656255639E-05 + 17 -3.0684369515739519E-04 + 18 1.4130922570680308E-03 + 19 -2.5116723932192746E-04 + 20 1.0537196151308602E-04 + 21 -1.2164585576894936E-04 + 22 -1.8052065271945646E-04 + 23 4.7633221974183008E-04 + 24 1.5965634057174655E-06 + 25 -3.6692299589493921E-04 + 26 1.0836834121319759E-03 + 27 -7.5846746860635736E-04 + 28 -2.1891541741704715E-03 + 29 6.6772254276362055E-04 + 30 1.6288429590853039E-03 + 31 3.4719030973676170E-05 + 32 -6.0009649920783094E-04 + 33 4.4369116645648322E-04 + 34 -1.3861035175199454E-01 + 35 -2.0526814921848410E-01 + 36 1.7848812820157967E-01 + 37 -2.8870986749397604E-01 + 38 -1.8097167473813647E-01 + 39 1.0926773965583170E-03 + 40 2.1805959301099860E-03 + 41 9.4558708273311128E-04 + 42 -3.5249636630028616E-04 + 43 -1.6084310993876244E-03 + 44 -1.0201462521050551E-04 + 45 -1.2121132946377191E-03 + 46 2.4939818454800563E-04 + 47 -2.0538513112918191E-04 + 48 -1.0791860924116510E-04 + 49 1.9429070702551370E-04 + 50 3.5504647878029197E-04 + 51 -6.2148433386077931E-03 + 52 5.0625982634507256E-04 + 53 5.8108824048231141E-03 + 54 -5.1011209414686788E-03 + 55 5.6559198677109234E-05 + 56 1.3490430414679557E-04 + 57 8.7716955278003921E-04 + 58 -6.5698593378958083E-04 + 59 -4.9581969933211172E-02 + 60 -8.7324584178460202E-03 + 61 -6.1600133737612084E-03 + 62 -1.4729544801399268E-03 + 63 -6.1491185538552526E-02 + 64 2.4199654475570704E-03 + 65 -5.7665999082857043E-04 + 66 -7.8837826365869368E-04 + 67 6.7810280721097621E-04 + 68 9.7493925621640180E-04 + 69 -1.7423261259343572E-04 + 70 1.1913169642439443E-04 + 71 -3.3403090001296170E-04 + 72 5.9029645155743383E-04 + 73 5.6250445038161429E-04 + 74 -4.7523928944443860E-04 + 75 5.4644530621107354E-04 + 76 1.8707181206093337E-02 + 77 -1.1339114605019288E-04 + 78 8.3813820587875856E-03 + 79 -4.6775434594911180E-03 + 80 -8.7431139978928242E-03 + 81 4.4962956272841959E-05 + 82 -3.1657711704296577E-04 + 83 1.0208827003039811E-03 + 84 -7.7620870561966471E-04 + 85 6.3960904589458270E-04 + 86 1.2488614793250957E-03 + 87 -2.0553310199906590E-03 + 88 -2.9322091592311726E-04 + 89 -3.7628405261926436E-03 + 90 -1.9757215108952647E-04 + 91 2.5947714153372737E-04 + 92 3.6361692406254408E-04 + 93 5.2806130713807292E-04 + 94 4.7056532782111427E-04 + 95 -6.3371588905326461E-07 + 96 -4.4108701061947527E-05 + 97 3.7263127628872872E-04 + 98 -1.2010715230383161E-04 + 99 -4.7409414994616913E-04 + 100 -2.7358536807551513E-04 + 101 -1.0302011677185515E-05 + 102 -3.8302186733988358E-02 + 103 7.0970962064895832E-04 + 104 -9.4544518343837227E-03 + 105 1.5800500316974549E-02 + 106 -1.3560215130217183E-02 + 107 -2.3284802310968996E-04 + 108 1.5269958066487300E-03 + 109 -1.7893687486731884E-04 + 110 -1.3772035786367019E-03 + 111 1.9870926532729884E-03 + 112 -3.5443043678970347E-03 + 113 -3.0533914073219414E-04 + 114 -3.4737898376750007E-03 + 115 -7.9653903607514162E-02 + 116 2.2315602226008345E-03 + 117 -4.0134726790910270E-03 + 118 -7.0415394780262821E-03 + 119 -2.9009028766820009E-02 + 120 -4.2271728916968459E-04 + 121 6.0514332227682441E-04 + 122 -1.6966184357030017E-03 + 123 3.2693264149477159E-03 + 124 3.6801460442609311E-04 + 125 2.7322069053718851E-03 + 126 1.9847140903386734E-03 + 127 1.0562359156704086E-03 + 128 2.3376606586064417E-02 + 129 1.9656902836131225E-03 + 130 9.3700151868561510E-03 + 131 -3.1055161173262368E-03 + 132 -1.0424998777736628E-02 + 133 1.8645624177610085E-03 + 134 -3.2994236793351396E-04 + 135 -2.5566139417030217E-03 + 136 -2.3457013484820119E-01 + 137 1.3777444110040779E-01 + 138 3.8536820547097722E-01 + 139 -8.4027591259629858E-02 + 140 6.8972165351449052E-02 + 141 1.5697920235944677E-03 + 142 -2.1672012795157787E-03 + 143 4.0381471688557373E-03 + 144 -1.6164896928339432E-03 + 145 1.4115570472353516E-03 + 146 4.7212321657743946E-05 + 147 6.4896876610598105E-04 + 148 -1.3958761052675398E-04 + 149 1.0277333426821798E-03 + 150 -9.5820411695041391E-04 + 151 -2.4563767305886954E-04 + 152 3.6651157126509477E-04 + 153 3.6868661607264695E-03 + 154 1.7063222560585097E-04 + 155 4.4689218114950793E-03 + 156 5.3610796463022499E-03 + 157 -1.7088087276825911E-03 + 158 -5.6739926476608602E-04 + 159 8.3902484767187958E-04 + 160 2.6490025525974882E-04 + 161 -1.6121061189898034E-02 + 162 -3.7136882915892927E-02 + 163 -1.9149828052745007E-02 + 164 -5.4404632909763849E-02 + 165 -5.2988386523639623E-02 + 166 -5.2029621971885374E-04 + 167 -1.4001779266312748E-03 + 168 -2.2149379846453056E-03 + 169 -2.1413170822786164E-03 + 170 -5.2522261846758985E-04 + 171 1.1078139714886538E-04 + 172 4.6769928525779885E-04 + 173 -7.0115767310017935E-05 + 174 7.3453484250502377E-04 + 175 8.5610355743082943E-05 + 176 -3.8875083110740468E-05 + 177 -3.0090352916607179E-04 + 178 5.4034122435038252E-02 + 179 -8.9898020367392372E-04 + 180 -5.6850386527665291E-03 + 181 -2.9389545445060113E-02 + 182 7.9034532844608121E-03 + 183 -5.0437451397974205E-04 + 184 -9.2757237219811325E-04 + 185 7.5950811600202750E-05 + 186 1.5021088703984174E-03 + 187 1.6462507198358115E-03 + 188 5.2633629209315035E-03 + 189 3.0590309838556470E-03 + 190 -3.7882957498879119E-04 + 191 -4.3827457395306871E-02 + 192 5.9510445632834029E-04 + 193 -7.2817904392838699E-04 + 194 1.3995186279345401E-02 + 195 -2.5681455493576995E-03 + 196 -4.1247402446522143E-04 + 197 1.3817414388459334E-04 + 198 -9.2040030788874351E-04 + 199 7.4449609395183826E-04 + 200 7.7667430196253905E-05 + 201 1.5257127249269252E-03 + 202 -3.7771039208815220E-03 + 203 -1.3205093031477457E-03 + 204 -1.9659823192525468E-02 + 205 -4.7787813685888788E-04 + 206 -3.7490227795536411E-03 + 207 -1.5801397435144533E-02 + 208 5.4589293831602240E-04 + 209 -6.2082673093410761E-04 + 210 -2.1583958174875681E-03 + 211 1.2259846135101366E-03 + 212 1.1431014784848781E-01 + 213 7.8010907418511258E-02 + 214 -3.1479502630502765E-03 + 215 2.8774428706786515E-01 + 216 -3.2114077686306336E-01 + 217 5.0287469071837719E-04 + 218 1.1607472222612647E-03 + 219 1.6948872221276227E-03 + 220 4.1054488414032711E-03 + 221 -4.3459898933944485E-03 + 222 2.4305731412643867E-04 + 223 -3.7137723169023157E-06 + 224 4.3235884400819334E-04 + 225 -4.4983564349739458E-04 + 226 -2.7146814241054611E-06 + 227 7.3421962369925732E-04 + 228 1.5353005209292684E-04 + 229 8.1250114361904567E-03 + 230 1.9749843087107062E-05 + 231 -2.0623198107980437E-03 + 232 -2.0747825829499191E-03 + 233 -2.9269304963510924E-04 + 234 1.8054990455179558E-03 + 235 -9.2001110200686952E-04 + 236 -4.6114506963064803E-04 + 237 5.4734112815057516E-02 + 238 -6.4601565293859811E-02 + 239 -1.1879558823363901E-02 + 240 2.9473963349933290E-02 + 241 -1.7112209161885432E-02 + 242 -1.2046722818416760E-03 + 243 4.7552140891129232E-04 + 244 -1.1780243160592894E-04 + 245 1.8820625496244561E-04 + 246 -1.4569215342797909E-03 + 247 1.3115937464944563E-04 + 248 -3.7747222525739922E-04 + 249 1.0531670776455854E-04 + 250 3.7198230240989560E-04 + 251 -7.3947450141507648E-05 + 252 -5.0451442422894555E-04 + 253 4.0213667086513172E-04 + 254 -5.4525333812816511E-04 + 255 -5.1111857906842943E-05 + 256 -1.6272464051121504E-03 + 257 5.5100067197905254E-03 + 258 -4.8829311195513064E-03 + 259 -5.6483706504864243E-05 + 260 1.1242334647479199E-03 + 261 -2.0990070354497134E-03 + 262 5.8310437967673774E-02 + 263 -1.3246165665604028E-04 + 264 -1.1745544985909805E-03 + 265 4.7160053397335422E-03 + 266 2.7429853981528821E-02 + 267 3.5828946329678961E-03 + 268 5.9520715828415103E-04 + 269 1.8327632968686283E-03 + 270 2.4779132499591888E-03 + 271 5.7709319387479088E-04 + 272 -2.3252450496619428E-04 + 273 -2.0892697231520286E-04 + 274 -4.4067686013682405E-04 + 275 6.4682612984747227E-04 + 276 -5.5533073407708919E-05 + 277 6.7641383603270078E-05 + 278 -6.5392087203066090E-04 + 279 -3.1650709477196261E-02 + 280 2.6416941491425857E-04 + 281 -6.9819223917413865E-03 + 282 -1.0505651701478725E-02 + 283 1.0514251720913142E-02 + 284 -5.8053210541112571E-04 + 285 -6.9259368991288076E-04 + 286 -7.6357831450912556E-04 + 287 -1.3045671420358531E-03 + 288 1.8850913977824335E-04 + 289 -1.6239248849121623E-03 + 290 -1.3432940214627511E-03 + 291 1.8844614279554129E-03 + 292 1.5385414968014802E-02 + 293 -4.2873700166133882E-04 + 294 1.1570723870340260E-02 + 295 5.8798647657243635E-03 + 296 -1.1302806952501125E-03 + 297 1.2084899769508361E-03 + 298 4.3553785584256040E-04 + 299 -3.2403112134959857E-04 + 300 1.1484067399514125E-03 + 301 1.5261397798846969E-03 + 302 2.0484262441126961E-03 + 303 -2.2500481490074363E-03 + 304 -1.3158665109415200E-03 + 305 4.7181006109117173E-03 + 306 -1.6410675815765547E-03 + 307 -3.3894542250735528E-04 + 308 1.2166139482222354E-03 + 309 -3.3922483209911477E-04 + 310 1.1541594427565741E-04 + 311 1.3571077691835411E-03 + 312 6.0639068130750699E-04 + 313 8.4460008181762386E-02 + 314 -8.1280591379468040E-02 + 315 -9.0891011656740142E-02 + 316 1.2433232148447086E-01 + 317 -4.6931428142775268E-02 + 318 6.7295334116243999E-04 + 319 2.4749947715915348E-04 + 320 2.0219288066330784E-04 + 321 4.2420574760633890E-04 + 322 -1.1135475294235865E-03 + 323 -3.3205272759094214E-04 + 324 -1.8875995274992834E-04 + 325 -2.4384767797715936E-04 + 326 -5.1460562298801698E-04 + 327 3.6570296063205771E-04 + 328 -7.0761577097915886E-04 + 329 -3.7547165002170497E-04 + 330 7.4225138138718470E-03 + 331 -1.5078043708594550E-04 + 332 -3.1759043042328303E-04 + 333 3.4591579464635265E-04 + 334 1.7257252306516297E-03 + 335 -3.4544788818316771E-05 + 336 2.9711836330356987E-04 + 337 9.7913520372600122E-05 + 338 9.3965795208505315E-02 + 339 -7.1560240021916128E-03 + 340 -3.8276476175545276E-02 + 341 1.6965601561583180E-02 + 342 4.5743619088289946E-03 + 343 1.8782980441358424E-03 + 344 7.6170192569218636E-04 + 345 -1.4184739319617474E-04 + 346 -5.2055649356941216E-04 + 347 -3.0102757785218975E-04 + 348 1.4860368633697640E-04 + 349 2.6296956977684826E-04 + 350 4.1125097844604770E-04 + 351 6.8467052424837197E-07 + 352 2.5502879014171798E-04 + 353 1.1169998200610332E-04 + 354 -1.2087225689308114E-04 + 355 -3.0806641144562871E-02 + 356 7.8686279291914412E-04 + 357 -1.9779482588427787E-02 + 358 -7.7026845023271521E-04 + 359 2.0555889786720793E-02 + 360 -6.1002950556312587E-04 + 361 3.1651603405222326E-04 + 362 3.8808457635164688E-04 + 363 1.2582251259970771E-03 + 364 -8.5431581001671605E-04 + 365 3.7277625140914221E-03 + 366 -1.5013632513436817E-04 + 367 -5.5576817883882055E-03 + 368 4.9079308015544658E-02 + 369 -9.5364049216538252E-04 + 370 1.3212673612865941E-02 + 371 -2.1733508908128012E-02 + 372 -3.3882802396611057E-03 + 373 -3.8857132636136474E-04 + 374 -1.9726645886647136E-03 + 375 -1.2832511759158362E-03 + 376 6.0494992855193155E-04 + 377 5.7315504019337282E-04 + 378 -6.1059951098951055E-04 + 379 1.7706895825913515E-03 + 380 -1.3864816233075674E-03 + 381 1.6802542109851056E-02 + 382 -2.0641422983131059E-04 + 383 -1.5969858978594952E-02 + 384 8.7843020107341938E-03 + 385 -8.9718108968541257E-04 + 386 -6.6353532438465318E-04 + 387 -2.1440340545020778E-04 + 388 -8.2717356158955389E-04 + 389 1.1861086545358402E-03 + 390 -1.0695118046490047E-03 + 391 -1.0765424507583267E-03 + 392 -5.9595106697271172E-04 + 393 4.1580237536276215E-03 + 394 7.9499211322183530E-03 + 395 9.4633202857494247E-04 + 396 -8.7499619990075563E-04 + 397 -8.5902349887591479E-03 + 398 -6.1954068891755488E-03 + 399 -1.7200180037374470E-03 + 400 -2.1634264689531137E-03 + 401 -2.3848753252471997E-03 + 402 7.4877444977804908E-02 + 403 1.1130529103458110E-01 + 404 2.5709626513173189E-01 + 405 -3.5788061001055256E-02 + 406 1.0379479661049068E-01 + 407 -3.9385220053756348E-04 + 408 -1.4690390699692612E-03 + 409 1.4106940629338002E-03 + 410 -3.5877034595767983E-03 + 411 -2.6963628198547075E-04 + 412 -4.2327666666264766E-04 + 413 6.6995319082647191E-05 + 414 2.7603585907306507E-04 + 415 1.9542499790474948E-04 + 416 5.3785095414266904E-04 + 417 3.1427320896105100E-04 + 418 5.4035797183349550E-04 + 419 -2.0140302498761486E-02 + 420 2.5283329919298804E-04 + 421 4.2093091238822643E-03 + 422 1.1671732309424164E-02 + 423 8.9022223007920922E-03 + 424 -2.7480760434848170E-04 + 425 -1.3488714775227161E-04 + 426 6.8282926261555639E-04 + 427 2.4960054125793369E-03 + 428 1.1470147568448425E-03 + 429 4.1884042198597196E-03 + 430 3.9295127993175204E-04 + 431 -1.0331985097732804E-03 + 432 -4.5252006561863400E-02 + 433 1.5250939221729302E-03 + 434 1.4950117998924003E-02 + 435 1.1003934884801328E-02 + 436 6.8854568993270623E-03 + 437 -7.8847695952183265E-05 + 438 1.3381832830217429E-03 + 439 8.9086773769194639E-05 + 440 -1.1537440111082020E-03 + 441 1.8607717865627236E-03 + 442 -8.3551979636217201E-04 + 443 2.0524802778293634E-03 + 444 2.8575847800888679E-03 + 445 -1.1223432433271655E-02 + 446 -7.4421988694306387E-04 + 447 -5.1779287790291338E-03 + 448 -1.0636673732711139E-02 + 449 -5.2356501601571082E-04 + 450 2.5646872116281144E-05 + 451 -3.1812995948844441E-03 + 452 8.0037735061135344E-04 + 453 1.8037853157997250E-01 + 454 -1.4748097415118053E-01 + 455 2.5760330129682302E-01 + 456 1.0542415166935828E-01 + 457 -1.1123048032270401E-01 + 458 1.4187187444751035E-03 + 459 6.5429128457643738E-04 + 460 -1.2820086250381346E-03 + 461 -1.4694310738205590E-04 + 462 -2.1564680896866062E-03 + 463 6.1685325415558145E-04 + 464 2.8835156930391462E-04 + 465 -8.3636292880032354E-04 + 466 3.3192097791309326E-04 + 467 4.1791723152993608E-04 + 468 3.4994669873549836E-05 + 469 1.6964793068718700E-04 + 470 -6.4805819885220273E-03 + 471 6.8424566402372196E-04 + 472 -2.6620553798794425E-03 + 473 2.8323215300130552E-03 + 474 3.2043221751558676E-04 + 475 9.3565618020805398E-04 + 476 1.8618056508821811E-03 + 477 6.0631301733319188E-04 + 478 1.0908800519549795E-02 + 479 2.3637060469248274E-03 + 480 -5.1280294306273195E-03 + 481 -1.4068135177898381E-02 + 482 3.3131475298091323E-02 + 483 8.7641515840684977E-04 + 484 6.2371272950545670E-04 + 485 -1.7871208831068760E-04 + 486 3.2868072015378218E-04 + 487 2.1934103581989117E-03 + 488 -4.5610233469202974E-04 + 489 2.4282718227426370E-04 + 490 -1.2882116785736930E-04 + 491 -4.0969738766205708E-05 + 492 1.6081546107920972E-04 + 493 -3.1085313106933826E-04 + 494 2.1059073931780760E-04 +Ene= -4.6435657165E-01 +Spin= Alpha +Occup= 2.0000000 + 1 3.3476703798729201E-03 + 2 1.7114407349157968E-04 + 3 -6.8476223807109604E-04 + 4 7.0788797901212791E-04 + 5 3.3235584951130533E-03 + 6 -1.5032227337933142E-04 + 7 6.5478788873144880E-05 + 8 -3.0190688758298444E-04 + 9 -1.6892646141333501E-02 + 10 -3.2545878188439867E-03 + 11 -6.6136502446331735E-02 + 12 -1.4289445312584692E-02 + 13 -4.8692574025684101E-03 + 14 -8.3186887360017629E-04 + 15 -1.7979455010182781E-03 + 16 -1.9019873505683721E-04 + 17 -9.1553961696475494E-04 + 18 1.4880657105912961E-04 + 19 6.1324251432231586E-05 + 20 2.8495326028264749E-04 + 21 -3.1552335871464881E-04 + 22 4.7394407474569814E-04 + 23 -9.6659730000833813E-05 + 24 4.7936620469619099E-04 + 25 -2.6154886720552826E-04 + 26 3.7745146348680163E-03 + 27 3.6575024816031486E-04 + 28 4.3210018257422112E-03 + 29 -1.3591088470435086E-03 + 30 -3.4701098538705922E-03 + 31 1.3621171237954309E-03 + 32 -3.6936950452122090E-04 + 33 -1.1663080488642276E-03 + 34 9.5452509388508480E-02 + 35 1.2991835628166518E-01 + 36 -2.2879300537644634E-01 + 37 3.9439828195667791E-02 + 38 9.0022039259345529E-02 + 39 4.3372135470370573E-04 + 40 -1.4076522694383394E-03 + 41 -1.2317760291556174E-04 + 42 -1.6932985705565408E-03 + 43 8.2509645032814499E-04 + 44 -1.5395894956329003E-05 + 45 3.7185566947316872E-04 + 46 -2.9198509641554496E-04 + 47 2.1914990747572100E-04 + 48 1.0146868750103476E-04 + 49 2.1066237304567104E-04 + 50 9.7701019672774198E-05 + 51 -4.0581204691576478E-03 + 52 3.0080483156382198E-04 + 53 -2.0722367314377865E-03 + 54 1.2759003272345643E-03 + 55 3.5966278570676970E-03 + 56 -1.6014235007168491E-03 + 57 -8.6531286969054823E-04 + 58 9.4498172000497525E-04 + 59 2.1257014442747396E-03 + 60 1.3905388858098285E-02 + 61 -4.5445943665384708E-02 + 62 -2.5216943084105652E-02 + 63 2.4665830753107791E-02 + 64 -6.4531167956311235E-04 + 65 4.1297195518925141E-04 + 66 2.3208139743737697E-03 + 67 5.6670744836283856E-04 + 68 -1.9840632031532745E-03 + 69 7.8047399654173911E-05 + 70 -1.3759301488585861E-04 + 71 3.6610405225495998E-04 + 72 -6.3709389134203678E-04 + 73 -3.2551982429033989E-04 + 74 8.3181626554001530E-04 + 75 3.2878565224179232E-04 + 76 -2.4661336417960731E-02 + 77 4.5356117316873608E-04 + 78 -1.2872832148081777E-02 + 79 8.8986933258123711E-03 + 80 1.9490563794783964E-03 + 81 -4.3848006831897731E-04 + 82 2.1365582287721969E-04 + 83 -1.3962815607495645E-03 + 84 1.3445178571753799E-03 + 85 -7.5213250126316897E-04 + 86 -2.3009386765610298E-04 + 87 3.4192928965082864E-03 + 88 -3.7783502967589155E-05 + 89 -5.9624033673873877E-03 + 90 2.6829053774060299E-04 + 91 6.4571248320669167E-04 + 92 3.1705688803332311E-03 + 93 -5.2069872872490756E-04 + 94 2.6161768827503447E-04 + 95 7.7569177188785486E-04 + 96 3.5085577734034033E-04 + 97 -7.5911366024774727E-04 + 98 5.9984249346803386E-04 + 99 7.8342745327724371E-04 + 100 -5.4825170968351479E-04 + 101 -3.4648951581797068E-05 + 102 4.5516489954654099E-03 + 103 -1.3052592314073900E-04 + 104 -3.5885823596707985E-04 + 105 -5.3594107513599129E-03 + 106 1.3656912436162514E-02 + 107 -3.2966402449186965E-04 + 108 -4.4187092079396502E-04 + 109 4.9133711922467473E-04 + 110 1.8396268405404412E-04 + 111 -2.0290113193144354E-03 + 112 2.0510822553391722E-03 + 113 1.5389407378010175E-04 + 114 6.8673817391889783E-04 + 115 3.1593786980307598E-02 + 116 -9.9784071567437225E-04 + 117 -5.1933196206547282E-03 + 118 3.9201569800202283E-03 + 119 1.1085546684711411E-02 + 120 2.6394887666981759E-04 + 121 -3.0609765574840823E-04 + 122 4.6481323627862542E-04 + 123 -1.4263961549353412E-03 + 124 1.9747828087462054E-03 + 125 -1.0950786898821199E-03 + 126 -1.7038037654329141E-03 + 127 2.0563534703237069E-04 + 128 1.1638717010939797E-02 + 129 -4.5765139217018256E-04 + 130 -2.7430653825435106E-03 + 131 -6.0516468834655147E-04 + 132 -1.3227686968590897E-03 + 133 1.8414521440583118E-04 + 134 8.9124106439404768E-04 + 135 6.7375760973303422E-04 + 136 -3.6266708376985785E-02 + 137 9.5336146952540265E-02 + 138 -1.4382662377672323E-01 + 139 4.4475664996804276E-02 + 140 5.7136824047182448E-02 + 141 -1.0321623221492553E-03 + 142 1.5688985786607400E-03 + 143 -3.9137233083347630E-04 + 144 1.3876679736496043E-03 + 145 7.5556672467905488E-04 + 146 -4.5215753720289769E-04 + 147 -3.0997881892693200E-04 + 148 1.0502367546611584E-03 + 149 -2.8460590947444574E-04 + 150 4.1057766382601318E-05 + 151 4.4829790523659410E-06 + 152 -2.9117441979439001E-04 + 153 -4.5715645919465475E-03 + 154 -5.6925445554661068E-04 + 155 -3.6718232570140895E-03 + 156 -3.9321291000574670E-03 + 157 4.6816286715483622E-03 + 158 5.1016523207308713E-04 + 159 -5.1701839078266627E-04 + 160 4.3869822999964900E-04 + 161 -1.4661672295116454E-02 + 162 5.3628818273370729E-03 + 163 4.4357056796114083E-02 + 164 6.5486877113840838E-02 + 165 -2.1805738467720867E-02 + 166 -1.2703027228605846E-03 + 167 1.6093173416730270E-04 + 168 2.0847676837682113E-03 + 169 1.9883011775658379E-03 + 170 -1.3014112728590438E-04 + 171 -8.3037251969975197E-05 + 172 1.6883893231828185E-05 + 173 -2.8188772686538112E-04 + 174 -4.4002491813099740E-04 + 175 -5.2919744498828966E-05 + 176 1.3676491435511608E-04 + 177 2.7581394413664855E-04 + 178 -6.1172241048533776E-02 + 179 1.0764728144132285E-03 + 180 7.2946489650700733E-03 + 181 -2.9044890963157042E-03 + 182 -1.8010278982697619E-02 + 183 6.3524998877895840E-04 + 184 5.8647074486691225E-04 + 185 -2.2931927258126454E-04 + 186 2.7376872265989075E-03 + 187 -1.2379390372897659E-03 + 188 1.4317774878475358E-03 + 189 -3.9331036959788335E-04 + 190 6.0381937360583617E-04 + 191 6.5389871528383450E-02 + 192 -7.0137310621938207E-04 + 193 1.6269418598084926E-02 + 194 -1.5112345714228502E-02 + 195 5.3358127796899451E-03 + 196 2.3422676248784790E-04 + 197 -6.0823980999865532E-05 + 198 1.1575000256769741E-03 + 199 8.9143357232183322E-04 + 200 9.1527975581014425E-04 + 201 -6.8834336646318879E-04 + 202 1.8509146809299797E-03 + 203 4.0850338819924115E-03 + 204 1.1758993444826976E-02 + 205 -1.0496751975197535E-03 + 206 -5.1086235529925169E-03 + 207 8.0096120362044380E-03 + 208 -5.2797652291698286E-03 + 209 -1.4370937507024045E-03 + 210 1.4172158885311808E-03 + 211 -9.8257728468549707E-04 + 212 2.7160148946290685E-01 + 213 3.4527591927626539E-01 + 214 2.4070209189931233E-02 + 215 1.6702441454081465E-02 + 216 1.2194314385880763E-01 + 217 5.8339006802036195E-03 + 218 8.8578535253718211E-04 + 219 -3.1875952629418962E-03 + 220 6.6240378623239114E-04 + 221 1.6018901741209801E-03 + 222 7.9433463416555892E-06 + 223 9.4102722984106788E-05 + 224 1.3998358331318826E-03 + 225 -3.8401261114752710E-04 + 226 2.2021084283373548E-04 + 227 6.7740355064169471E-04 + 228 5.1976618422915110E-04 + 229 -7.1246263524149213E-03 + 230 1.1051553980886220E-03 + 231 -3.3174176421242839E-03 + 232 -1.1715163041217599E-03 + 233 -2.6257215869771538E-04 + 234 -2.1853477811521506E-03 + 235 -1.1057459575522799E-03 + 236 -1.4165650688782348E-03 + 237 5.3463597792444507E-02 + 238 -4.9288485383902625E-02 + 239 2.1285248980597075E-02 + 240 1.8541120804495370E-01 + 241 -8.2524373010817054E-02 + 242 -8.1630623881435722E-04 + 243 9.1572006371742518E-04 + 244 7.4206467885555756E-04 + 245 -1.5000372143489219E-03 + 246 4.2823462787230891E-03 + 247 1.0964664935925459E-04 + 248 1.0683340575238314E-03 + 249 7.8189880178293730E-04 + 250 2.6606246216127747E-04 + 251 5.5958704538414659E-04 + 252 -2.5010273768229002E-04 + 253 4.5225724524960179E-04 + 254 6.1524752169959222E-03 + 255 -1.4932002782083595E-04 + 256 -7.6806071001212558E-04 + 257 -1.1896239328706589E-03 + 258 -1.9472546730700320E-03 + 259 -1.5889808174701051E-04 + 260 -7.7361698337132716E-04 + 261 7.3283922269526131E-04 + 262 1.9709991932074490E-02 + 263 1.8382729619122018E-02 + 264 -1.9127372195423740E-02 + 265 5.3613519277910821E-03 + 266 -1.0842485253777618E-02 + 267 3.4792366007570014E-04 + 268 4.4009733732161484E-04 + 269 -9.2684355855264617E-05 + 270 -8.1674166884643663E-04 + 271 -3.9764370280930511E-05 + 272 -4.2139703976495801E-05 + 273 -1.5206903607898679E-04 + 274 -4.2723766940693398E-04 + 275 -4.3057600490966437E-06 + 276 -5.6418553004463569E-06 + 277 -5.5448686869685595E-05 + 278 1.8586008043297155E-04 + 279 -3.5560599373637189E-02 + 280 1.0451026745140549E-03 + 281 -5.5867622135024105E-03 + 282 -1.6830386455247228E-02 + 283 -5.0000677631067700E-03 + 284 5.7548759950791690E-04 + 285 6.0012258417469187E-05 + 286 -5.3087962554677556E-04 + 287 -1.1322763435869132E-03 + 288 5.6667260733367808E-04 + 289 1.6198637698292169E-03 + 290 -3.4778380705346060E-03 + 291 6.4185256570136644E-04 + 292 2.5243593469000510E-02 + 293 -4.9906656906409722E-04 + 294 1.5468594196009074E-02 + 295 2.0395300149281790E-02 + 296 1.0305897759167802E-03 + 297 1.1144492758707197E-03 + 298 1.7220121479023618E-03 + 299 1.6424998481239910E-05 + 300 2.6257794143441150E-03 + 301 2.6602532632236790E-03 + 302 3.5425689520521288E-03 + 303 -6.0363406789241936E-04 + 304 -3.2327547106148703E-03 + 305 -8.8875824662925772E-03 + 306 -3.5555706775832359E-05 + 307 4.3358736866069897E-03 + 308 1.5607897004166194E-03 + 309 -3.7460952880046614E-03 + 310 -7.2086395946080375E-04 + 311 6.4040151770788077E-04 + 312 9.1204968351746405E-04 + 313 9.9447976664916712E-02 + 314 -1.7285634044384690E-01 + 315 -1.1429790449191238E-01 + 316 -3.3842254432468820E-02 + 317 -1.3771672849057920E-01 + 318 -4.5276036327138408E-04 + 319 2.1784560556119578E-03 + 320 1.5017879776717860E-04 + 321 1.8225032717991156E-03 + 322 -9.7993482922188778E-04 + 323 -4.4556008278130867E-04 + 324 9.8872922562329266E-04 + 325 -3.1507635517113051E-05 + 326 4.6679101977852407E-04 + 327 8.2355021001028492E-04 + 328 -2.8263112219067559E-04 + 329 4.0295705027607102E-05 + 330 -8.1019502591178003E-03 + 331 9.5970102639839647E-04 + 332 -1.6685456027352183E-04 + 333 8.7555605231811457E-05 + 334 -9.1280289991534222E-04 + 335 2.9730037355649169E-04 + 336 3.2965968661742085E-04 + 337 8.5517132682851505E-04 + 338 -1.0998892546793886E-01 + 339 -4.3586204375784067E-02 + 340 7.1585672291234262E-02 + 341 5.9131475984628271E-02 + 342 5.4704259593756879E-04 + 343 -2.2353719980768680E-03 + 344 -1.0346231073573024E-03 + 345 1.0800478706868583E-03 + 346 3.3205968938331416E-04 + 347 -9.0782009854556433E-05 + 348 -9.3135803000420289E-05 + 349 -1.6035051737130305E-04 + 350 -5.8570608526713371E-04 + 351 -1.9187204574812341E-04 + 352 -2.2066954714183992E-04 + 353 2.5057888698483573E-04 + 354 1.8154185288177436E-04 + 355 2.2534264838148972E-02 + 356 -2.4880719759773318E-04 + 357 -7.8942062283069072E-03 + 358 1.7175146422813065E-03 + 359 9.1662616681878976E-03 + 360 5.4045527790970601E-04 + 361 2.0772237249321488E-04 + 362 -1.5864026445375307E-04 + 363 1.7224168136998001E-03 + 364 -5.6857484921316818E-04 + 365 5.0634865714529577E-03 + 366 1.7486270530752393E-03 + 367 2.1043913116162733E-04 + 368 3.3554948993328899E-02 + 369 -3.5747721705634982E-04 + 370 1.1405252260245481E-03 + 371 -1.1549150864692116E-02 + 372 -3.3430976818199065E-02 + 373 -3.6788659483513562E-04 + 374 9.4739913460535770E-04 + 375 -1.0343005158246455E-03 + 376 -1.1908551192517433E-04 + 377 4.7259205499837987E-03 + 378 3.4532236108455070E-03 + 379 2.5156381360978662E-03 + 380 8.3712465141333957E-04 + 381 -4.6391290663335742E-02 + 382 7.4185370349302653E-04 + 383 8.1603835211394842E-03 + 384 -9.4444774764202710E-03 + 385 -1.4936441814240344E-02 + 386 7.8276254798755605E-04 + 387 1.7997247127849619E-04 + 388 4.3283732343724854E-04 + 389 4.4021585213495601E-04 + 390 -1.7935429484681317E-03 + 391 9.9370747985885245E-04 + 392 3.6947148178567972E-04 + 393 -1.3722225168280543E-03 + 394 -1.2873095323234900E-02 + 395 2.2740283127440043E-03 + 396 -5.8300776850413686E-03 + 397 3.4254485095321684E-03 + 398 3.7172334735327225E-03 + 399 2.3215900769295108E-04 + 400 5.5040281257842053E-04 + 401 -6.5203838187131091E-04 + 402 1.0022167380798945E-01 + 403 -1.6833194052128739E-01 + 404 6.5561063521908478E-02 + 405 1.2059798629362960E-03 + 406 2.1563678980431533E-01 + 407 4.8131112902798952E-04 + 408 4.2710692973485661E-04 + 409 1.9558921930767767E-03 + 410 -2.0991255068435258E-03 + 411 1.1538729819206475E-03 + 412 4.9924150399333658E-06 + 413 -1.0987974590167800E-03 + 414 4.7503976152099287E-04 + 415 3.4688366569318382E-04 + 416 -1.6818223871390672E-04 + 417 7.9058887244455600E-05 + 418 8.5619346707554219E-04 + 419 3.7563110600835642E-02 + 420 -6.3869137373240173E-04 + 421 1.9921510371819912E-02 + 422 2.8863305736309207E-02 + 423 -5.7971029898548614E-03 + 424 2.0734609373160508E-03 + 425 1.4206915891574138E-03 + 426 8.2022665807393493E-04 + 427 7.6858183909830284E-04 + 428 3.2901284648611949E-03 + 429 5.4622568524808901E-03 + 430 4.5238311406579053E-03 + 431 -1.1058277777716444E-03 + 432 -3.6786691921801971E-02 + 433 6.6892913125571720E-04 + 434 3.6052055161447587E-03 + 435 6.3840520944843807E-03 + 436 -1.0434847699844317E-02 + 437 -4.8740968293838100E-05 + 438 7.8052008992254092E-04 + 439 8.1282562757437017E-04 + 440 1.2192737463186344E-03 + 441 -9.8181132646692356E-04 + 442 -1.4432767436292288E-03 + 443 -3.4500533033379825E-04 + 444 -2.3688487233756745E-04 + 445 -2.1951929643335200E-02 + 446 -7.1474492615642923E-04 + 447 -1.1258712991205670E-02 + 448 -3.7192404936784544E-03 + 449 -4.9914579534204879E-03 + 450 -1.9784216620588095E-04 + 451 -1.0644023267630440E-03 + 452 -5.6689547448278410E-04 + 453 -2.6898372949650723E-01 + 454 3.7709409691348360E-02 + 455 3.5923901428686328E-01 + 456 3.9580083306796632E-01 + 457 1.4313063395082212E-01 + 458 -6.5747590692027263E-04 + 459 -2.6496112471868527E-03 + 460 1.1531472118020854E-03 + 461 -1.5732008048801359E-03 + 462 -1.4007529782068349E-03 + 463 -4.5291590991446585E-04 + 464 6.5740210426797096E-04 + 465 -2.5363405373180457E-04 + 466 -4.2116520772847877E-04 + 467 4.5256962123235223E-04 + 468 -2.6089818469577340E-04 + 469 -6.3565546592224279E-04 + 470 7.8365315227220903E-03 + 471 -9.9085478179832746E-04 + 472 7.2034866591494818E-04 + 473 2.6882947213922154E-04 + 474 2.1367418760824763E-03 + 475 -4.3794581334498660E-04 + 476 3.8345160976411885E-04 + 477 -3.3317047740230707E-04 + 478 -4.0042137644293034E-02 + 479 4.3775505485638314E-02 + 480 1.3530990895507803E-02 + 481 -4.7816536743586324E-02 + 482 1.5953189991440613E-02 + 483 -5.2539745524748428E-04 + 484 9.5986523033432763E-04 + 485 -1.0236328432081233E-03 + 486 -1.1009117622668083E-03 + 487 4.6830289314951195E-04 + 488 -8.9614465408261893E-06 + 489 -6.7878500474144958E-05 + 490 3.6745063929414850E-05 + 491 -1.1353232500933272E-04 + 492 -6.5006218922692663E-04 + 493 -2.9591924132493249E-04 + 494 -3.7704919628144486E-05 +Ene= -4.6405849808E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -6.6326732626690432E-03 + 2 1.3107765837163787E-03 + 3 1.7197564527532952E-03 + 4 -2.0436461600127197E-03 + 5 -1.5489082335934804E-03 + 6 -8.6336017957815950E-04 + 7 1.3717628253901507E-03 + 8 -5.5013273016479586E-04 + 9 -2.1758567835741035E-02 + 10 -9.7201000112152516E-03 + 11 3.1704483607523225E-02 + 12 -2.7553098513255429E-02 + 13 -7.2524767560450717E-02 + 14 -8.5370260330772899E-04 + 15 1.4056673645451083E-03 + 16 1.0940118549683077E-03 + 17 -1.9790318281280535E-05 + 18 2.8586861919575743E-04 + 19 1.5364214808824645E-04 + 20 8.1518578559933185E-04 + 21 -1.2765800224636079E-04 + 22 -2.4571343290686909E-04 + 23 -3.9322835459652740E-04 + 24 4.1278849396156380E-04 + 25 1.0993273317398491E-04 + 26 -6.4594662028844062E-04 + 27 -5.9682713004832878E-05 + 28 3.2867482230456899E-03 + 29 -5.8485410937893813E-03 + 30 1.7834958473999629E-03 + 31 -1.4928355916901759E-04 + 32 -3.5893749907409049E-03 + 33 1.3862209084182652E-03 + 34 4.6241740719843588E-01 + 35 3.2324616610034973E-01 + 36 -1.5952707466496244E-01 + 37 2.1932849731362339E-01 + 38 -4.1442176179513357E-01 + 39 -1.4576348954131533E-03 + 40 -9.9814648658703596E-04 + 41 5.1801215519432949E-04 + 42 -2.4276315277917001E-03 + 43 3.0189399342738172E-03 + 44 -5.2689177096456273E-04 + 45 2.7414483926292888E-04 + 46 2.6941535021304568E-05 + 47 1.6178967412781362E-04 + 48 3.5879402707809926E-04 + 49 1.2472815551609141E-04 + 50 -7.8110047688378719E-04 + 51 5.2998686246190328E-03 + 52 -1.4437746010442123E-03 + 53 3.6688113784446924E-03 + 54 3.7669706183590698E-03 + 55 -8.2075672079508547E-04 + 56 7.5409881967698560E-04 + 57 3.7533900989454507E-04 + 58 1.7408900712766675E-04 + 59 1.0815148488651165E-02 + 60 -2.0664991194599565E-03 + 61 -2.6263429911666001E-02 + 62 3.1443307632092500E-02 + 63 -2.1073540891320460E-03 + 64 -5.6558253778500025E-04 + 65 -8.0138842060813544E-04 + 66 1.1993612126743930E-03 + 67 -2.0120205998534883E-03 + 68 3.6937627011015081E-04 + 69 8.3986832776591872E-06 + 70 -7.5015306525157645E-05 + 71 7.8493116861620582E-05 + 72 3.7376500274098189E-04 + 73 -9.0159350135364915E-04 + 74 -5.5866939687951138E-04 + 75 -4.0404911902043470E-04 + 76 -1.4922454481338972E-02 + 77 8.5366039967758986E-04 + 78 -1.7617346729218226E-02 + 79 -1.4525682016162745E-02 + 80 -2.6811400440494217E-02 + 81 -1.1011881348754083E-03 + 82 -2.0297932418356375E-04 + 83 -1.9347144222964007E-03 + 84 -6.6108516773167860E-03 + 85 2.0180702565260650E-03 + 86 1.5944458896253522E-03 + 87 2.4408908323529065E-03 + 88 4.0398350728453481E-03 + 89 -1.2751280262704832E-02 + 90 2.3294792267936122E-04 + 91 2.8507074494458656E-03 + 92 3.8370838704725840E-03 + 93 -2.2036572238796053E-03 + 94 1.3469152311668779E-03 + 95 8.3654217667178800E-04 + 96 -1.6919623315056066E-04 + 97 -2.3089425634309474E-04 + 98 1.7579462448573103E-04 + 99 -4.2877988623585722E-04 + 100 -4.6635329062220119E-04 + 101 6.0686798892011081E-04 + 102 4.8302616693566445E-03 + 103 -2.9393543480432855E-04 + 104 8.6912958188506920E-03 + 105 1.1509320612824857E-02 + 106 4.5974450080591266E-03 + 107 8.8101247015035108E-04 + 108 2.6130427111919249E-04 + 109 1.0135682921075904E-03 + 110 -2.2750411780393569E-03 + 111 -1.1647060542196519E-03 + 112 2.3444656431638278E-03 + 113 -3.8483146373723878E-03 + 114 4.7373702364915686E-04 + 115 -2.2402541926269802E-02 + 116 7.2028546290647908E-04 + 117 -3.0319748166957052E-03 + 118 -1.1368225564544809E-02 + 119 -1.3853020856323024E-03 + 120 2.6061194899822240E-05 + 121 -5.7582151866658637E-04 + 122 -4.3412280907208177E-05 + 123 -1.2933103525572514E-03 + 124 1.2798006730466334E-03 + 125 1.5995996033536398E-03 + 126 1.6106572435709441E-04 + 127 -4.1827885857399717E-04 + 128 1.9503091484303042E-03 + 129 4.4953843198413578E-04 + 130 2.5154729102701539E-03 + 131 6.0391737365217977E-03 + 132 -6.1968194111265982E-03 + 133 -6.4284682448439415E-04 + 134 1.9809002007267072E-03 + 135 -1.3725594065950939E-03 + 136 -1.3064038122525201E-01 + 137 1.0763633137376707E-01 + 138 3.3819424103408369E-01 + 139 1.7505315453865108E-01 + 140 -2.1223436687781963E-01 + 141 -2.3173972157646629E-04 + 142 -8.7551645395141185E-04 + 143 1.6131496200554455E-04 + 144 -7.7973645316887271E-04 + 145 2.8615490585237613E-04 + 146 6.0244573368268455E-04 + 147 3.6885856643730045E-04 + 148 -6.1322544053598173E-05 + 149 3.8855108212022788E-06 + 150 -7.9742448577664051E-05 + 151 9.3704901022223435E-05 + 152 6.3133452196586473E-04 + 153 -1.0289454505654605E-02 + 154 -1.9093520428366980E-04 + 155 2.7863783400094446E-03 + 156 -1.8090795151321881E-03 + 157 -1.1009574742089502E-03 + 158 -7.3728826638875589E-04 + 159 -1.9959387353493064E-04 + 160 3.6942000016267339E-04 + 161 1.6274760737141580E-01 + 162 1.4918877164839155E-02 + 163 -3.5399539365097842E-02 + 164 -9.8276810785325519E-02 + 165 -5.8878973792087876E-02 + 166 2.2537729169205263E-03 + 167 1.2920040523771649E-03 + 168 6.6681392812123702E-04 + 169 -1.5809849513364377E-03 + 170 -1.6321035149267204E-03 + 171 -5.8810732254956414E-04 + 172 -1.3657080654248081E-04 + 173 2.2359720550238385E-04 + 174 1.0356427051072119E-04 + 175 3.6403780052131232E-04 + 176 5.1273258403950514E-04 + 177 2.5736167617814153E-04 + 178 1.0750887489212620E-01 + 179 -2.0321479902663101E-03 + 180 -1.0290552563968594E-02 + 181 -2.2277927883278363E-02 + 182 2.0859216281788353E-02 + 183 -9.2456193595789643E-04 + 184 -1.2593527402703774E-03 + 185 5.8645620313450472E-04 + 186 -7.4588415709009217E-04 + 187 2.8329142221097383E-04 + 188 4.6146749364051522E-03 + 189 1.8786319476541296E-03 + 190 6.8921807539288498E-04 + 191 -1.0580281982982101E-02 + 192 5.5286737095328715E-05 + 193 -5.0403388363889044E-03 + 194 5.6015277489393205E-03 + 195 2.9538938697300033E-03 + 196 9.6459892948565999E-04 + 197 5.8790596916995859E-04 + 198 6.8277224653903875E-04 + 199 -2.3424917101420102E-04 + 200 5.6497832435943640E-05 + 201 3.4409784592219240E-05 + 202 -5.6719410279496636E-04 + 203 -8.3888937700483230E-04 + 204 -6.2638908029005926E-03 + 205 5.4845405982132218E-05 + 206 -8.1117365137377110E-04 + 207 -2.7975264281297038E-03 + 208 -2.8475717331440638E-03 + 209 -2.9388197821072139E-05 + 210 -8.9968116122648425E-04 + 211 3.0755809351426690E-04 + 212 -5.8300061862648522E-02 + 213 -3.9739732279414290E-02 + 214 -5.0909615703736644E-02 + 215 7.6513606482947801E-03 + 216 -3.6391665918839647E-02 + 217 -1.3937524650285027E-03 + 218 -1.1751704745409123E-03 + 219 2.1286597207935645E-04 + 220 -4.8382408530600385E-04 + 221 -2.0501965163801468E-03 + 222 3.2637705338811916E-04 + 223 5.4714933215526079E-04 + 224 -8.8422084981721585E-05 + 225 -2.1166940946092493E-04 + 226 -5.1749075506422304E-06 + 227 -1.6589343787067336E-04 + 228 -2.3785311875562361E-04 + 229 -1.8726345233128716E-02 + 230 5.7040718716343025E-04 + 231 5.0071536899616348E-04 + 232 5.4030191110159302E-03 + 233 -5.5442000348330678E-03 + 234 1.4302185483613962E-03 + 235 -5.1550534663623894E-05 + 236 -1.2203920646229633E-03 + 237 9.0001861974385575E-02 + 238 1.2668593825813102E-02 + 239 -1.4251794738041076E-02 + 240 -4.7709179851160910E-02 + 241 -1.4684232704941444E-01 + 242 4.0842806140403026E-04 + 243 1.5835646571623167E-03 + 244 3.1352396884934421E-03 + 245 -2.0909878632266636E-03 + 246 -9.5591940027169820E-05 + 247 1.3789046506145765E-05 + 248 -4.2979807302707040E-04 + 249 2.1401569563150269E-04 + 250 -4.0421860192295958E-04 + 251 -5.7732548967111589E-04 + 252 6.0848358472084915E-04 + 253 1.3068156588756853E-04 + 254 7.2262783996245618E-03 + 255 -3.2505786133748724E-04 + 256 1.9408787772897818E-03 + 257 -3.7717631358438032E-03 + 258 2.7226251192730743E-03 + 259 7.9714491650542240E-04 + 260 -1.2043443591679018E-04 + 261 1.0210447309751847E-04 + 262 -1.1624210258136015E-02 + 263 2.6466128407311766E-02 + 264 -2.6023769432545561E-02 + 265 -1.4312511767113165E-03 + 266 1.1482171143835932E-02 + 267 -1.2829668959410856E-03 + 268 7.3397092302737959E-04 + 269 -9.0801794967690884E-04 + 270 -8.0224267600788486E-04 + 271 -2.0791701356170592E-03 + 272 1.2240805459289776E-04 + 273 -4.0556819458496937E-04 + 274 2.4707500313709109E-04 + 275 -2.4354973872440329E-04 + 276 -1.2143082095472999E-04 + 277 -6.7179409168556178E-04 + 278 1.2797396992267384E-05 + 279 1.6749211815510257E-03 + 280 2.6216585031384015E-05 + 281 9.9718301339905540E-03 + 282 2.4374561176135649E-03 + 283 -1.2577717720922618E-03 + 284 2.2286509681422581E-04 + 285 -4.3114944833176881E-05 + 286 -2.8010502456863111E-05 + 287 -7.6933838579862427E-05 + 288 -1.1899461107258481E-03 + 289 2.3102341895532333E-04 + 290 7.8041874502571707E-04 + 291 -2.5319938163528076E-03 + 292 1.0165760989422439E-02 + 293 -5.2481487691802898E-05 + 294 7.9688969032976377E-03 + 295 1.7428044146095747E-02 + 296 1.2100493034969718E-02 + 297 1.1053046491492440E-03 + 298 1.5139005232650642E-03 + 299 1.0183772380397684E-03 + 300 2.9680747844671018E-03 + 301 -8.3851755460346287E-04 + 302 9.6630859136849511E-04 + 303 1.1416745933742963E-05 + 304 -3.0635940138506504E-03 + 305 2.2576336759349145E-04 + 306 -1.1317467584814665E-03 + 307 -2.2372535919424810E-03 + 308 -1.0519089852896108E-03 + 309 -4.3187265340835756E-04 + 310 -1.4089299435373168E-03 + 311 -5.2195450838054896E-04 + 312 -6.0067923031267514E-05 + 313 4.5955704840778912E-02 + 314 2.3781288776385742E-02 + 315 1.3756249763911921E-02 + 316 -6.2460980589798994E-02 + 317 -1.1826811652764256E-01 + 318 3.6940597588609828E-04 + 319 -6.3154266857067421E-04 + 320 -4.6334088241791892E-04 + 321 8.7990107384449605E-04 + 322 -1.1099549457837046E-03 + 323 2.1325280669524328E-04 + 324 4.8940718845762719E-04 + 325 1.4590805590898156E-04 + 326 1.7271431248179454E-04 + 327 2.2503494899649159E-04 + 328 5.7523989591971937E-05 + 329 4.3345756779709357E-04 + 330 -1.3002342972807830E-03 + 331 1.9259220718968926E-04 + 332 1.3364071881331065E-03 + 333 -1.2471895118033103E-03 + 334 2.6737537307332578E-03 + 335 -1.4179673294426355E-06 + 336 1.1159855406985412E-04 + 337 -1.7175534471613170E-04 + 338 9.5297908842179868E-03 + 339 -1.4784143319178544E-02 + 340 3.3462944246712326E-02 + 341 2.7433010763330306E-02 + 342 4.0969683712514367E-02 + 343 2.2081708903886518E-05 + 344 -7.8629130075507573E-04 + 345 3.1336806494009032E-04 + 346 4.0511221405956300E-04 + 347 8.7513978115134710E-04 + 348 6.3506785270166856E-05 + 349 -3.1314809425372377E-04 + 350 -1.4618434929267778E-04 + 351 -1.2081707680912493E-04 + 352 -1.5616829358197848E-04 + 353 -1.3437764709360803E-04 + 354 2.6568201904310585E-04 + 355 2.2706283015544317E-02 + 356 -3.3630529962350809E-04 + 357 2.6361002631085134E-03 + 358 -9.3551681206695790E-03 + 359 -9.3864434497774134E-04 + 360 -3.2838616948737336E-04 + 361 -6.3457591602848469E-04 + 362 9.8417669893500077E-05 + 363 8.4581585179907288E-04 + 364 2.7928954969768578E-05 + 365 4.8671682567961184E-06 + 366 1.3476815544510945E-03 + 367 2.3231896920409835E-04 + 368 -2.3321941495494304E-02 + 369 4.8802406902058969E-04 + 370 5.8115629869876753E-04 + 371 3.6828692208261800E-04 + 372 6.7652569831870412E-03 + 373 3.2271987327330259E-04 + 374 -1.8442143370978842E-03 + 375 -9.3308309824333472E-04 + 376 2.0653538188233011E-03 + 377 -1.4398641200880711E-03 + 378 -5.6694123271941726E-04 + 379 -5.2408745196281116E-04 + 380 1.6300952174992250E-03 + 381 2.4832791041300641E-03 + 382 -2.2016246436930924E-04 + 383 -1.0013743164045274E-02 + 384 -4.4059680720012449E-03 + 385 1.8034120821543626E-02 + 386 3.0009666644104408E-04 + 387 4.8679419762091261E-04 + 388 -4.9009418495625143E-04 + 389 2.2882574994162806E-03 + 390 2.6425173697651721E-03 + 391 -3.9499609296537504E-03 + 392 -3.2479644542279676E-03 + 393 1.3141617737292584E-04 + 394 1.4809751018041144E-02 + 395 -2.6173482138774727E-04 + 396 7.6010020283084710E-03 + 397 -1.7277112180481664E-03 + 398 7.5865976351122454E-03 + 399 1.3994435616535921E-03 + 400 -3.7985397996120682E-05 + 401 1.5578931553323857E-03 + 402 -9.1039866061161490E-02 + 403 3.5403715573887093E-02 + 404 5.9100808353968901E-02 + 405 5.0296392429566086E-02 + 406 -1.8751742980079769E-01 + 407 -2.7161720794437721E-03 + 408 1.6575745363708225E-03 + 409 -4.5445712189640846E-03 + 410 3.6702774273194494E-03 + 411 1.3073691606069939E-03 + 412 -3.5502319628690355E-04 + 413 -9.9764359300017814E-05 + 414 -1.6847345546197994E-04 + 415 3.0832543036528090E-05 + 416 -6.8742308469898930E-05 + 417 1.2896287963394533E-03 + 418 -1.6294039010507927E-04 + 419 1.4250936254718663E-02 + 420 -2.2228831165684490E-04 + 421 1.9224923790833776E-03 + 422 -7.6743648663965406E-04 + 423 -6.8766031720830165E-03 + 424 2.6399429745060905E-04 + 425 1.1150078366944849E-03 + 426 2.6733223250417196E-04 + 427 -8.9506793957471842E-04 + 428 -6.9268692831933685E-04 + 429 -3.1451360124703907E-04 + 430 1.6642828556920773E-03 + 431 -2.2020541296609308E-04 + 432 7.1268543198596797E-03 + 433 -1.6901399815559974E-04 + 434 -2.7266310478731414E-03 + 435 5.6911046792658849E-04 + 436 1.0134045280442839E-03 + 437 -3.5054322873048511E-04 + 438 1.8095181034550715E-05 + 439 4.7581776636939706E-05 + 440 8.0812295978393948E-04 + 441 3.3390996001192425E-04 + 442 -3.3941649666337031E-04 + 443 -5.1608192713815319E-04 + 444 5.5589113741365997E-04 + 445 7.0043297199357292E-03 + 446 1.7209588461939795E-04 + 447 8.5753968024650912E-04 + 448 2.2080692027277955E-03 + 449 2.4749576608715240E-03 + 450 -3.3044432305687058E-04 + 451 -2.6474992989042415E-04 + 452 1.3976453758319797E-04 + 453 -8.2431571095479869E-02 + 454 2.6105741185765995E-02 + 455 -3.9901661821311683E-02 + 456 6.9923902641996133E-02 + 457 -1.1503586104588057E-01 + 458 1.7042750633204620E-03 + 459 -8.2658912961801041E-04 + 460 -1.5209075880859343E-03 + 461 -3.9194343049282830E-04 + 462 1.0394141096322588E-03 + 463 7.2200908877976839E-04 + 464 -5.6548143246692436E-06 + 465 5.1745100072876193E-04 + 466 1.3369131552158980E-04 + 467 -6.2308740043002500E-04 + 468 -5.3264533104719905E-05 + 469 3.0408641124433835E-04 + 470 -5.1385932066756968E-03 + 471 -5.1121993802466135E-04 + 472 -2.3420342586772647E-03 + 473 1.4094865336183500E-03 + 474 7.1384796582156377E-05 + 475 -5.9790946513140549E-04 + 476 2.0631342781619506E-04 + 477 6.5677738656486160E-04 + 478 7.2669764166898238E-04 + 479 -3.7925076819261334E-02 + 480 -1.4435257691544360E-02 + 481 1.0383150535071233E-02 + 482 -3.4656310980770871E-03 + 483 7.4136284161941280E-04 + 484 1.8331965537969183E-04 + 485 1.5921062422770830E-04 + 486 -3.4229023560912664E-04 + 487 1.8224684573494475E-04 + 488 -8.4394442352251134E-05 + 489 1.5556551546570062E-04 + 490 7.4877139441037867E-05 + 491 -9.6223493824012190E-05 + 492 1.2614575630455862E-04 + 493 -1.0430095850739848E-04 + 494 -1.8950699589912503E-04 +Ene= -4.6356507873E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -1.3384859241183015E-02 + 2 1.3776259461186833E-03 + 3 6.9158301817428443E-03 + 4 -1.1575043153748896E-02 + 5 1.6196771731618845E-03 + 6 4.6154688833799448E-05 + 7 4.9810631160834384E-04 + 8 -1.7615583584308257E-04 + 9 -9.2768276686902768E-02 + 10 4.3124318657956982E-02 + 11 -2.9314024762336074E-02 + 12 -7.2097155862026779E-02 + 13 -1.7224578125133708E-01 + 14 1.5393239105861239E-03 + 15 -7.0199173656200009E-04 + 16 -1.4989025511335689E-04 + 17 -1.5978897302677823E-03 + 18 5.5744189563346064E-03 + 19 2.9216851774932972E-04 + 20 -1.1045812978266502E-04 + 21 -2.4613121856512235E-04 + 22 6.9329197847584274E-04 + 23 -4.2942583723395652E-04 + 24 3.9216591271999831E-04 + 25 -1.4265873011971970E-03 + 26 1.1659745820855400E-02 + 27 1.4756149186279830E-03 + 28 -1.0695246173109735E-03 + 29 -7.1982475541529877E-04 + 30 -5.0978885477939761E-03 + 31 1.3195068549310461E-03 + 32 -3.6226420318786416E-04 + 33 -2.4471521177461641E-03 + 34 -1.0905299926046391E-01 + 35 -5.0520532563216938E-02 + 36 -2.7585868497456545E-01 + 37 5.3694967162425597E-02 + 38 -2.9904769604416220E-02 + 39 1.3201445964350143E-03 + 40 -1.2877907937754575E-03 + 41 -7.0286770621515399E-04 + 42 1.3187519019762558E-03 + 43 3.0089311403514877E-03 + 44 -9.5434895165623043E-04 + 45 8.7140996742749279E-04 + 46 -5.1942589914973146E-04 + 47 -1.6982117408744963E-04 + 48 -9.4995290032243293E-04 + 49 -8.4792290315875729E-04 + 50 1.6812215077153706E-04 + 51 4.2896759619603609E-03 + 52 -1.1281660455791827E-03 + 53 5.8018040743000607E-03 + 54 3.0740254484721706E-03 + 55 8.4215195325438468E-04 + 56 -2.6089407869822449E-04 + 57 6.0771633623716095E-04 + 58 9.3350353470409721E-04 + 59 -2.8690827447322910E-02 + 60 2.0834941263222103E-02 + 61 -2.8762624677970645E-02 + 62 4.4316513803802436E-02 + 63 -1.5673577715479160E-02 + 64 1.1254519858181942E-03 + 65 -1.2404389228537797E-03 + 66 1.1763388242704872E-03 + 67 -2.8823158733819669E-03 + 68 -6.0272137742938892E-04 + 69 4.5094527807723660E-04 + 70 4.2717984407606525E-04 + 71 1.9600000626731750E-04 + 72 1.0013830931269723E-03 + 73 -5.8386915885392848E-04 + 74 -4.3387397960046155E-04 + 75 -1.3924486604224601E-04 + 76 -4.3228807840241471E-03 + 77 2.5192086559416469E-04 + 78 6.8731034664964675E-03 + 79 -1.3449890300951063E-02 + 80 9.0293532585141098E-03 + 81 1.5582054584708992E-04 + 82 -1.3259646907754993E-03 + 83 -2.5232769087758953E-03 + 84 5.0767256272864440E-03 + 85 -2.6331321327273476E-03 + 86 2.9243950355818181E-03 + 87 -7.9525337232477658E-04 + 88 3.1350997570460059E-03 + 89 -2.9503011255933183E-02 + 90 3.1845258240784894E-04 + 91 9.6471515850301819E-03 + 92 1.1460652405124623E-02 + 93 -2.7472816198094410E-03 + 94 2.8900788387106456E-03 + 95 1.4369082521740993E-03 + 96 1.4103415281320093E-04 + 97 -1.0301322336466771E-03 + 98 7.7300473966868859E-04 + 99 -1.5235548610565539E-04 + 100 -2.2643420259126348E-03 + 101 1.7412066173438856E-03 + 102 -1.1058924802616617E-02 + 103 3.9993264748712282E-04 + 104 1.0084356035793878E-04 + 105 5.9918121767714768E-03 + 106 5.6451945132044616E-03 + 107 4.2657628595715072E-04 + 108 6.2027613946030399E-04 + 109 3.8814497298590532E-04 + 110 -1.0172456467591102E-03 + 111 -1.0877996814634323E-03 + 112 6.9364278051512677E-04 + 113 -1.4397266477981477E-03 + 114 -7.1542625143299033E-04 + 115 9.3904879469074816E-04 + 116 -9.9355736690517711E-05 + 117 -1.5268155150741423E-02 + 118 9.5783062455121401E-03 + 119 -8.1450592562451658E-04 + 120 5.5623155283070864E-04 + 121 -2.8349945732105406E-04 + 122 -4.6282149417257551E-04 + 123 2.2468793308985755E-04 + 124 3.0874258231392629E-03 + 125 -1.4174818086394700E-03 + 126 -1.3244049501369756E-03 + 127 1.2321775143298553E-03 + 128 -1.9954697290848642E-03 + 129 3.2610054527471358E-04 + 130 -5.9148076987302462E-04 + 131 -6.3342803006438105E-03 + 132 1.1974664254898696E-03 + 133 2.2031614852726720E-04 + 134 -1.8959167539745816E-03 + 135 7.8005856068743802E-04 + 136 -2.0795667416942429E-02 + 137 -5.1449914280871881E-02 + 138 5.2075942709317320E-02 + 139 -1.6761158435577955E-01 + 140 1.1790444478139550E-01 + 141 2.2416590115771065E-04 + 142 -4.7936260894904331E-04 + 143 3.5229212254828772E-03 + 144 -1.9793585833758512E-03 + 145 1.3507799657970052E-03 + 146 -2.3908186415447715E-04 + 147 6.0844620548889804E-04 + 148 1.8996362453660336E-05 + 149 4.4650691343856122E-04 + 150 1.9030730355431858E-04 + 151 -8.0875418312290786E-05 + 152 1.4933864418146956E-04 + 153 -3.2744335929468641E-04 + 154 -1.8766032811141269E-04 + 155 -2.0155982383326045E-03 + 156 -3.6351266621687894E-04 + 157 1.2908507220678535E-03 + 158 -3.5341705152037983E-04 + 159 1.7407555478188709E-04 + 160 2.6321109495418472E-04 + 161 -2.8443732713139720E-03 + 162 1.3028612493786621E-02 + 163 3.4921263673783787E-02 + 164 1.8522917911582455E-02 + 165 -3.4356494963386913E-02 + 166 -7.4245199618280528E-04 + 167 7.8021827778792065E-04 + 168 4.1503139232394352E-04 + 169 7.4066339132357144E-04 + 170 -9.1130221684942840E-04 + 171 7.9099170156440176E-05 + 172 -4.6369910653897054E-05 + 173 -1.8306913911372605E-04 + 174 -1.8625627856106521E-04 + 175 3.4198381133666525E-04 + 176 -7.6003801982350101E-05 + 177 4.6486195006628536E-04 + 178 -6.1846565728491606E-03 + 179 4.8735859754197625E-05 + 180 2.2704726578575359E-04 + 181 2.7377916687148351E-03 + 182 -2.1815836518553058E-03 + 183 1.3730953826689973E-04 + 184 -3.1291741276573247E-04 + 185 -1.6189833667328485E-04 + 186 2.7231886339485953E-04 + 187 1.3071899044845058E-05 + 188 -6.3902240154062296E-04 + 189 9.1631665856784129E-05 + 190 -1.5780837011369837E-04 + 191 1.8859320072892173E-03 + 192 2.9369113670194550E-04 + 193 -3.2242642274131535E-03 + 194 1.1106085407741474E-02 + 195 1.2172688217377653E-02 + 196 8.8361283071478492E-04 + 197 1.2653514499618403E-04 + 198 3.6138097641137565E-04 + 199 -1.7820995052872401E-03 + 200 2.9434042790111507E-04 + 201 1.5930432039988425E-04 + 202 -2.0360572133215709E-03 + 203 -5.6376588275037587E-04 + 204 -1.7582038165914197E-02 + 205 -1.5656131069361197E-04 + 206 -2.3169018723866296E-03 + 207 -7.8792960831757710E-03 + 208 3.9691411323717132E-03 + 209 3.8792779288204207E-04 + 210 -1.2645139545390135E-03 + 211 9.9146979169945391E-05 + 212 -4.1229141617696599E-02 + 213 -1.7870681725510908E-02 + 214 -6.6717572713662146E-02 + 215 1.3133158012577389E-01 + 216 -7.4296827456069331E-02 + 217 -1.9329533758577872E-03 + 218 -8.6997306875839884E-04 + 219 3.9617970594280500E-04 + 220 7.8424486154017028E-04 + 221 -1.2579871732868193E-03 + 222 3.4349905596140905E-04 + 223 -8.3552911203349091E-05 + 224 3.2753707708628942E-04 + 225 1.9561597799569335E-05 + 226 -7.7419020101348712E-04 + 227 -6.7688476158573826E-04 + 228 -4.8339753284679646E-04 + 229 -4.1188153580828260E-03 + 230 1.5236967691587494E-03 + 231 -1.0019166453536907E-02 + 232 3.6814040497458404E-03 + 233 1.4992724032053006E-03 + 234 -1.7620088666900609E-03 + 235 -4.0355080308740888E-04 + 236 -2.8401491606283856E-04 + 237 -1.3586485085607294E-01 + 238 -2.7660588821375570E-01 + 239 1.1149101402658615E-01 + 240 1.5895623816593271E-03 + 241 -4.9155261503528191E-01 + 242 1.4810809313469970E-03 + 243 8.8526726837184614E-04 + 244 8.7712931945570021E-04 + 245 -4.0834018910322093E-03 + 246 4.5985772721356000E-03 + 247 1.5347256140243524E-04 + 248 -5.3062016496649824E-04 + 249 3.4608379136326736E-04 + 250 -8.6115964217875235E-04 + 251 -7.7741442086307511E-04 + 252 7.2179154360614854E-04 + 253 3.0985462030838818E-04 + 254 1.4383434506116352E-02 + 255 -5.6074875261182097E-04 + 256 -9.5381379434897502E-04 + 257 3.1932390115779535E-03 + 258 -9.7888054255476833E-03 + 259 1.2306524620140491E-04 + 260 -7.5636856793945002E-04 + 261 6.8216573169922398E-04 + 262 1.3181992982801677E-01 + 263 6.6469245563375190E-02 + 264 -2.8204567001178762E-02 + 265 2.5288143105292673E-02 + 266 -2.4522693094783318E-02 + 267 4.5018063453509125E-03 + 268 1.7240597813064295E-03 + 269 3.7198107535362293E-04 + 270 2.0694020877615884E-04 + 271 -8.4023275558536771E-04 + 272 -3.7443117492440644E-04 + 273 -6.9845063476059574E-04 + 274 -1.2267051657753908E-03 + 275 1.7625308830571264E-04 + 276 -2.6631114684358862E-05 + 277 -6.6680526840059255E-07 + 278 1.3604572772442817E-04 + 279 -1.4059197067096363E-01 + 280 2.9077483078948246E-03 + 281 2.9003833878588788E-02 + 282 -4.3253738763437445E-02 + 283 -1.4040229982814274E-02 + 284 1.5824639332541926E-03 + 285 -8.3859607408115640E-04 + 286 -1.9060273382962691E-03 + 287 -3.4518815787096930E-03 + 288 -3.5588800218093876E-03 + 289 3.4833017900778589E-03 + 290 -3.6788567683944712E-03 + 291 -7.1759022960937134E-03 + 292 -3.0059686338203450E-02 + 293 9.5133601407752127E-04 + 294 2.2755079038916604E-02 + 295 1.6190768005565032E-02 + 296 3.0566603057167165E-02 + 297 3.9629778436598663E-03 + 298 2.9973298295320958E-03 + 299 3.8012415287116534E-03 + 300 8.5024747189633900E-03 + 301 1.8566728800012973E-03 + 302 1.7858531636666855E-03 + 303 -1.0556340234109448E-03 + 304 -1.2920529502337456E-03 + 305 7.7192998242117698E-03 + 306 -6.5887778843590780E-04 + 307 4.4363768947546295E-03 + 308 8.1064208977516521E-03 + 309 -6.5444928104973620E-04 + 310 -4.4573430322575021E-04 + 311 -1.7133843188867830E-03 + 312 1.7040450300714608E-04 + 313 1.0003530671656952E-01 + 314 -5.3416795047891159E-02 + 315 3.5844430262632544E-02 + 316 -1.0751282221732111E-02 + 317 -6.6580657744266566E-02 + 318 -5.1954692626880804E-04 + 319 8.7372281781423794E-04 + 320 1.7831483603643809E-03 + 321 7.0419829602342860E-04 + 322 2.4141385137560908E-03 + 323 -2.5876820117616664E-04 + 324 6.7569182517938095E-04 + 325 8.9808234587645153E-04 + 326 4.6318132658649388E-06 + 327 4.5874154301647410E-04 + 328 -1.9801036877082340E-04 + 329 1.9187294262135762E-04 + 330 -2.0843558967063684E-03 + 331 2.5758835910512606E-04 + 332 8.2998683146935344E-04 + 333 2.0900123729667812E-03 + 334 3.7653676471438853E-03 + 335 -1.7225840381932328E-04 + 336 1.1315345382347844E-03 + 337 -1.2353689115427429E-03 + 338 -6.8163332656197451E-02 + 339 -2.9319965305389696E-02 + 340 4.8878886364181307E-02 + 341 6.6566489160496088E-03 + 342 -4.9977942311191393E-03 + 343 -2.9125882957908964E-03 + 344 -1.2131894063659473E-03 + 345 1.9136999498464446E-03 + 346 -6.8874241455122549E-04 + 347 9.9928938176968034E-05 + 348 -5.5633940337333234E-04 + 349 -2.1025195797431552E-04 + 350 -3.3533134762603740E-04 + 351 -2.7335530224858914E-04 + 352 -1.5187113530912925E-04 + 353 2.8562558251571390E-04 + 354 -1.4956320358737150E-05 + 355 8.6762460820433318E-02 + 356 -2.1147949132345168E-03 + 357 9.5305986224106850E-03 + 358 -1.5180801526738836E-02 + 359 -2.3472386634685354E-02 + 360 7.7946804894660465E-04 + 361 -1.2488364512272775E-03 + 362 -3.4492433101175195E-04 + 363 -2.0616217846823603E-03 + 364 2.0717195877396110E-03 + 365 -3.4443533474174861E-03 + 366 6.6153968963077994E-04 + 367 1.2957451674787870E-03 + 368 9.5328180751654383E-03 + 369 -2.1302975798546478E-04 + 370 -6.7866197030061852E-03 + 371 -1.4534591915953582E-02 + 372 4.7912054222369422E-03 + 373 -1.5720696585828902E-03 + 374 -5.5930018391416026E-04 + 375 -1.0190581153948621E-03 + 376 6.2379978699772705E-04 + 377 -1.1140516859071844E-03 + 378 -3.2865447265142171E-05 + 379 -5.1566409416873270E-04 + 380 -5.8308071872448654E-04 + 381 4.6635594100654286E-02 + 382 -9.2498586524682647E-04 + 383 -8.9602838426956054E-03 + 384 1.1043943029648371E-02 + 385 -5.5909720544153839E-04 + 386 1.3779821578448483E-03 + 387 8.5211053985678297E-04 + 388 1.3391440665019635E-03 + 389 -3.2106996295329338E-04 + 390 -8.5796767423538883E-04 + 391 1.7079675617740178E-03 + 392 1.8735620024261468E-03 + 393 1.6605780636549765E-03 + 394 1.8133864080889624E-02 + 395 8.1458468209636488E-04 + 396 2.2306331645511007E-03 + 397 -2.3396187948111861E-04 + 398 -4.3617512187317780E-03 + 399 -2.1236195712933450E-04 + 400 -8.2083255805149701E-04 + 401 2.3734787202502760E-04 + 402 3.3964827754880439E-02 + 403 8.1826005818162822E-02 + 404 1.2666353652578085E-02 + 405 2.4519375071916693E-03 + 406 9.9261465765282608E-02 + 407 -1.7278796902175705E-04 + 408 -5.7152603645531776E-04 + 409 2.0331560677748941E-03 + 410 -7.3710138976465760E-04 + 411 1.4735462980613795E-03 + 412 1.0076840698561315E-03 + 413 -3.0205514396023075E-04 + 414 3.2895940834566504E-04 + 415 4.9010539996128101E-04 + 416 -2.1263954192810033E-04 + 417 7.2134390372712053E-04 + 418 7.1356913996818803E-04 + 419 -7.1948412025272718E-02 + 420 1.6968141416146140E-03 + 421 -3.1948168146088908E-03 + 422 -2.0220940459682101E-02 + 423 2.0049889399268394E-02 + 424 -8.7262542250272888E-05 + 425 -1.0865759007163103E-03 + 426 -1.2615360120001596E-05 + 427 1.7783934769225328E-03 + 428 8.9367329093594482E-04 + 429 -4.5602603817612442E-03 + 430 -2.9770875765222993E-03 + 431 -6.5035448311387173E-04 + 432 -4.1624844218510301E-02 + 433 9.8722194971813350E-04 + 434 2.0447270199168806E-02 + 435 -7.2232971023690777E-03 + 436 -6.7161202517981482E-03 + 437 5.0395979784457405E-04 + 438 -2.7793269061505288E-04 + 439 -1.1056173248911799E-03 + 440 -5.7351736319033971E-05 + 441 -1.4530126716288548E-03 + 442 1.1238102232693930E-03 + 443 3.6285896009906333E-03 + 444 -2.6953907972260060E-04 + 445 -7.7446799895311384E-03 + 446 -8.4940476674509233E-04 + 447 -4.2722708700405915E-03 + 448 -1.2730970848026913E-03 + 449 1.5043123370813633E-03 + 450 -1.0371473275841315E-03 + 451 -6.1441757500345872E-04 + 452 1.2595581206957915E-03 + 453 9.6050694884597360E-02 + 454 -1.9046699466691935E-02 + 455 -3.5288049271549943E-01 + 456 -6.4935094302159074E-02 + 457 3.9916680156045425E-01 + 458 1.2527558476747064E-03 + 459 1.7972937164787328E-03 + 460 -5.3553006263802594E-04 + 461 9.3020849733818406E-04 + 462 -3.4474223177449804E-03 + 463 1.8659179747805988E-04 + 464 4.7694914059202950E-04 + 465 -1.0523794746060704E-05 + 466 2.2560674927694420E-04 + 467 2.3903125074989728E-04 + 468 1.3425194482119731E-03 + 469 -7.0762389221121962E-04 + 470 8.2475478338878121E-03 + 471 4.6272142514336949E-04 + 472 2.6315663371894436E-03 + 473 -5.1433214024165985E-03 + 474 -4.2700786781970134E-03 + 475 1.0949797401336768E-03 + 476 7.8073976220611942E-04 + 477 1.5330593337645760E-04 + 478 1.7720257142502485E-02 + 479 -2.9194041365595318E-02 + 480 3.6547224721619587E-02 + 481 -2.7344059716345473E-02 + 482 -2.3333732903767414E-02 + 483 -6.2080484560629232E-04 + 484 -2.0674013213970162E-03 + 485 1.0182828627153598E-03 + 486 3.3135653321374084E-04 + 487 -1.7026434652511766E-03 + 488 4.9270742923735486E-04 + 489 1.9858761293147407E-05 + 490 4.1968519652019889E-05 + 491 -2.0698977739289681E-04 + 492 6.3730743116656690E-04 + 493 -1.5881192849497483E-04 + 494 -7.3377580647347436E-04 +Ene= -4.6317393440E-01 +Spin= Alpha +Occup= 2.0000000 + 1 1.3074769773379095E-02 + 2 -2.0390123697549912E-03 + 3 -3.3540649229347160E-03 + 4 7.5413345552445893E-03 + 5 -1.3739959378583574E-03 + 6 1.6686795712751727E-03 + 7 7.5093237921409673E-05 + 8 -1.4365640946563784E-04 + 9 7.1081123524228809E-02 + 10 -1.1914238329781928E-02 + 11 -2.4555610959304544E-02 + 12 3.4058361555571140E-02 + 13 1.2453944810799539E-01 + 14 -1.0741017857673607E-03 + 15 1.3154357289198754E-03 + 16 9.1678284656633384E-04 + 17 -4.2572688509497634E-04 + 18 -2.6434213658389403E-03 + 19 2.1015859485025302E-04 + 20 3.6529222727070608E-04 + 21 5.4942831313700062E-04 + 22 -2.4787590823137194E-04 + 23 -9.8952968770261762E-05 + 24 -4.0424414494884183E-04 + 25 4.3595347984787123E-04 + 26 -3.8595230430802565E-03 + 27 -1.9044707364781910E-04 + 28 -9.0006902938044434E-05 + 29 -4.2540256581394134E-03 + 30 1.5033622953897292E-03 + 31 4.9711501493930779E-05 + 32 -6.7346119947285000E-04 + 33 8.2450719658177217E-04 + 34 -1.5169725960327216E-01 + 35 -3.5575825232886221E-01 + 36 -5.4302324147521730E-02 + 37 2.7113649194660540E-03 + 38 -4.2501023601286131E-01 + 39 -4.1052475531784267E-04 + 40 7.7315914807285740E-04 + 41 1.9289684434534789E-03 + 42 5.7092442390420438E-04 + 43 -5.4545473622017978E-04 + 44 -2.0689354056381581E-04 + 45 -2.8727370087823777E-04 + 46 5.2856586201265043E-04 + 47 9.7367163958675258E-06 + 48 -6.5763213022075086E-04 + 49 -3.3779207731207564E-04 + 50 1.2406688391783091E-05 + 51 1.2520725499719335E-02 + 52 1.9707461978486578E-04 + 53 -3.2583413343107077E-03 + 54 2.7114417243641930E-03 + 55 1.3052875093448677E-03 + 56 -2.6552388243650162E-04 + 57 -8.9467015046278402E-04 + 58 -9.3181274874261334E-04 + 59 2.7088423873220007E-02 + 60 -8.5968239171705332E-02 + 61 -6.5378670406336251E-03 + 62 5.9242516979718914E-03 + 63 3.4326226382438575E-02 + 64 -5.3737416809727088E-04 + 65 2.2415141219370603E-03 + 66 1.8135641613039090E-03 + 67 1.3945626516231146E-03 + 68 6.1539092437745560E-04 + 69 -7.2736561349506193E-04 + 70 -5.5848484621728509E-04 + 71 -3.9508087192554096E-04 + 72 -6.7344212676186707E-04 + 73 2.1491271910338474E-04 + 74 -1.5751071697641566E-04 + 75 -5.6487627660657027E-05 + 76 2.4279240744050817E-04 + 77 -4.6119771532580813E-04 + 78 2.1898158578226574E-03 + 79 1.6409159353179084E-03 + 80 1.5832846711990912E-02 + 81 -5.7083308822364852E-04 + 82 7.9765816793811721E-04 + 83 3.6451279360167703E-03 + 84 -1.2366821045595939E-03 + 85 -1.6973646162059940E-03 + 86 -5.0265117434438447E-03 + 87 -1.1537884350163461E-03 + 88 -2.2384927705713250E-03 + 89 5.6530380021140780E-03 + 90 9.4998045974131011E-05 + 91 -8.9584269263794768E-03 + 92 -6.1704242691039274E-03 + 93 6.0978252136185025E-03 + 94 -1.7069083870937987E-03 + 95 -8.0970223062640256E-04 + 96 6.6567204484843634E-04 + 97 8.6871143742888433E-04 + 98 -1.2024545017865703E-03 + 99 1.0531697951995361E-03 + 100 1.7039932843294491E-03 + 101 -1.6330405154463706E-03 + 102 -5.0949285523469820E-02 + 103 7.9621563497702156E-04 + 104 -4.8921328312040088E-03 + 105 2.8974674502598548E-02 + 106 -6.8153968746158802E-03 + 107 -1.1403362851327758E-04 + 108 1.9103174731649783E-03 + 109 5.4824290075912040E-04 + 110 -2.0552273806876188E-03 + 111 2.8578111447109811E-04 + 112 -3.6311809648683466E-03 + 113 -2.9838844157370329E-03 + 114 -3.2749102111049293E-03 + 115 -1.8417317784472299E-02 + 116 7.0745393929152274E-04 + 117 1.0498363365992944E-02 + 118 1.0820129126275465E-03 + 119 -1.0409674159605926E-02 + 120 1.0997533536223853E-03 + 121 3.6955428769176399E-04 + 122 -4.3698233933218576E-04 + 123 2.5048525520840140E-03 + 124 -3.6396548414388266E-03 + 125 4.8275074613528154E-04 + 126 6.9027663905940238E-04 + 127 -1.6390549478983961E-03 + 128 -1.3334048229413239E-03 + 129 1.0830301118144679E-03 + 130 1.5518868993949244E-03 + 131 -1.6452505580175172E-03 + 132 -1.7635492454527550E-04 + 133 3.2021207964113836E-04 + 134 -3.9501806604468043E-04 + 135 -1.8501406731965722E-03 + 136 6.8963655471570337E-02 + 137 -2.9206795649722755E-01 + 138 1.6327079983219778E-01 + 139 -1.6161379473451979E-02 + 140 -2.9308831701884142E-01 + 141 7.3073230562073987E-04 + 142 -1.4286249386383707E-03 + 143 9.6682551719152066E-04 + 144 3.4307498690465187E-04 + 145 2.2663640576454615E-05 + 146 4.1463110718680532E-04 + 147 9.8359249268341852E-04 + 148 -1.0413249664929299E-03 + 149 1.0345494207908296E-04 + 150 -2.0323685400880847E-04 + 151 -1.1501106512019537E-04 + 152 -7.6823130356218057E-04 + 153 7.2712008795181061E-03 + 154 1.5569414439726710E-04 + 155 3.2422690832142448E-03 + 156 2.5810538241231528E-03 + 157 -3.3276361018530105E-03 + 158 -4.0389987647176007E-04 + 159 7.0661153769143727E-04 + 160 5.5845179380106090E-05 + 161 1.3392709417138384E-02 + 162 -4.5840280802045427E-02 + 163 -1.7752606401185004E-03 + 164 3.9738314136019319E-03 + 165 -2.6090955351719961E-02 + 166 -2.0047531576195617E-04 + 167 -7.3252567556644289E-04 + 168 -1.3565961139820732E-03 + 169 -1.2246559684659885E-03 + 170 -1.8781654759025134E-05 + 171 5.3988646343421109E-04 + 172 5.1250697368283799E-05 + 173 1.3692614282181210E-04 + 174 6.3291939337180021E-04 + 175 -2.2858443438808201E-06 + 176 -2.9210913550366355E-04 + 177 -1.5877861069833916E-04 + 178 2.1996825667168433E-02 + 179 -4.7622778077999916E-04 + 180 -1.3889333640348901E-03 + 181 -5.2808414296028738E-03 + 182 8.8966443017092153E-03 + 183 -6.5619588008376171E-05 + 184 -1.0062671774266766E-03 + 185 1.9602770080169780E-04 + 186 -9.1933132941645528E-04 + 187 9.0754725197055182E-04 + 188 1.4065147291609397E-03 + 189 4.6690326991933554E-04 + 190 -2.2724241901856020E-04 + 191 -1.4065258679627044E-02 + 192 1.5616232197910218E-04 + 193 -5.0124315353931295E-03 + 194 6.3552578740270812E-03 + 195 3.8366372288067252E-03 + 196 3.2350526303206030E-04 + 197 2.0601183047242075E-05 + 198 1.8732799268467943E-04 + 199 -9.2568861926254969E-04 + 200 -4.5438563809519526E-05 + 201 -2.7223936644868169E-05 + 202 1.2479321877937157E-04 + 203 -1.1414565714090968E-03 + 204 7.0776511838069774E-03 + 205 3.0041305630738846E-04 + 206 -4.7549899836605197E-04 + 207 2.8172806452574726E-03 + 208 -2.2194743885179179E-03 + 209 3.8447096511408348E-05 + 210 -2.0268794221109854E-04 + 211 -1.0448066328268271E-04 + 212 1.8859966267349624E-02 + 213 -7.7971721848688336E-03 + 214 3.2035356120050283E-02 + 215 -8.0787513068777780E-02 + 216 -8.8365516666660135E-02 + 217 1.2150576410960829E-04 + 218 3.3977291619272044E-04 + 219 -6.1290291634959215E-04 + 220 -2.4882102358099647E-03 + 221 -1.3340774127963743E-03 + 222 -4.0695957993121495E-04 + 223 1.6401487388707154E-04 + 224 1.4911624748573164E-04 + 225 5.1570668157366534E-04 + 226 3.0012510999292269E-04 + 227 -8.5726352145070874E-05 + 228 -6.9874787001529971E-04 + 229 1.3016997900369018E-02 + 230 -7.1412108658175366E-04 + 231 4.7651610237488626E-03 + 232 -9.8705278075623352E-03 + 233 -1.9758967633983878E-04 + 234 1.6131548562122307E-04 + 235 -1.0480242864682819E-03 + 236 -9.1687340135615698E-04 + 237 1.5901381221425048E-01 + 238 4.5004439642672162E-03 + 239 5.0750521078816273E-02 + 240 1.0515865530042635E-01 + 241 1.7951571732270966E-01 + 242 -1.1076123964593074E-03 + 243 1.2989523747228414E-03 + 244 -2.2908400027236266E-03 + 245 -1.9875659291474331E-04 + 246 4.3791468532413382E-05 + 247 1.7086523682449340E-06 + 248 3.3634116748158609E-04 + 249 -4.8187049767775130E-04 + 250 6.2398883104647460E-04 + 251 3.8823992534787951E-04 + 252 -2.3418872277884966E-04 + 253 3.5245964910511385E-04 + 254 -8.4512085893873237E-03 + 255 1.2150005364172547E-03 + 256 2.1486634581823998E-04 + 257 1.7381719813232166E-03 + 258 1.1880050896128712E-03 + 259 9.6750531827483228E-04 + 260 -2.0282364762159468E-04 + 261 -8.5222143817574049E-04 + 262 -1.0294954749608020E-02 + 263 -1.6666622273045276E-02 + 264 8.1667766777782248E-03 + 265 1.4057108889202976E-02 + 266 5.3067900959748789E-02 + 267 -1.0328275910378179E-04 + 268 -6.6539482350869790E-04 + 269 8.3865999279248381E-04 + 270 1.0838797916454530E-03 + 271 1.8645557499596149E-04 + 272 -4.1792957351631288E-05 + 273 2.1030249118903007E-05 + 274 -2.7032089761292943E-05 + 275 2.9614641174417728E-04 + 276 -1.1249648996749929E-04 + 277 3.4198895740185283E-04 + 278 -6.2730503708782574E-04 + 279 2.8296642959287525E-02 + 280 -5.9780194251396435E-04 + 281 -1.0059850909813232E-02 + 282 6.6807250986848695E-03 + 283 6.4959492234119278E-03 + 284 5.5297514462553554E-04 + 285 4.9293708296540987E-04 + 286 1.5894257209196547E-03 + 287 1.3498494188539816E-03 + 288 3.6663063025601183E-03 + 289 -5.8649011341964570E-04 + 290 -8.1747853090569068E-04 + 291 2.1439585261818785E-03 + 292 -7.4574203760653058E-03 + 293 -5.6680820837689702E-05 + 294 -9.9860755881245548E-03 + 295 8.7543753402698262E-03 + 296 -6.1224139825777927E-03 + 297 -1.3887683793792321E-03 + 298 4.3593142097959382E-04 + 299 -1.5244566327521575E-03 + 300 -2.1156918637430058E-03 + 301 -6.0903361010077950E-04 + 302 2.1249853494844065E-03 + 303 1.3451437617464474E-03 + 304 -8.9611745291656741E-04 + 305 -6.3011555799639433E-03 + 306 6.4505940570346249E-04 + 307 1.8269774183494771E-03 + 308 -8.8832099569288421E-04 + 309 -7.4227045405176760E-04 + 310 -5.7266287669289074E-04 + 311 -1.4471084408398218E-03 + 312 -1.5358505463984359E-04 + 313 -4.8496122796890043E-02 + 314 -4.7924107813306110E-02 + 315 -3.3685002750765504E-02 + 316 -1.1728576543444336E-01 + 317 1.2354147258117175E-02 + 318 -2.3196711878005540E-04 + 319 3.0385408372755939E-04 + 320 -1.8298988108398259E-04 + 321 -1.0524201806648224E-04 + 322 -4.0690680469835538E-04 + 323 1.5897824628605418E-04 + 324 -1.1943153477218616E-06 + 325 2.1139349779771130E-04 + 326 3.5363968550255131E-04 + 327 -3.3388873952480588E-04 + 328 5.2543630817298908E-04 + 329 -1.4700619030349722E-06 + 330 -5.9270319753255952E-04 + 331 -7.2647780520685345E-04 + 332 -1.6143143263577201E-03 + 333 -1.4964527706228202E-03 + 334 1.2920100793249533E-04 + 335 -4.6030813252719873E-04 + 336 -3.0566869218903698E-04 + 337 -1.2410943503408927E-03 + 338 5.0953987705506416E-03 + 339 1.6474481766037427E-02 + 340 3.0812814357353332E-02 + 341 9.1304254375398318E-03 + 342 -1.6512288134076902E-02 + 343 2.3502273298074599E-04 + 344 -1.2242695797889892E-04 + 345 -9.1409360361383420E-04 + 346 4.3889402399146577E-04 + 347 -1.1298394923371007E-03 + 348 -1.2202249805941827E-04 + 349 -2.0638997101238820E-05 + 350 6.8173615598231420E-05 + 351 1.9115015276448919E-04 + 352 -1.3434799796697362E-04 + 353 2.0169456954760218E-04 + 354 4.9288009824313400E-05 + 355 2.3071278066333165E-02 + 356 -6.2456995408328216E-04 + 357 2.1855968673793854E-02 + 358 -3.7915807926171552E-03 + 359 -1.1802433393345767E-02 + 360 6.1640572683683225E-04 + 361 6.5622925201322077E-04 + 362 -9.5118395985554019E-05 + 363 -1.5560204128618434E-03 + 364 2.6684194994732384E-03 + 365 -1.9928423071630388E-03 + 366 -3.3664657075616050E-04 + 367 4.2750733958733930E-03 + 368 -2.5533508333623636E-02 + 369 -1.8839480923082939E-04 + 370 -2.5594552224753979E-02 + 371 1.2109538579217221E-02 + 372 9.9816416605854625E-03 + 373 1.3307752025123873E-03 + 374 9.2165433758420099E-04 + 375 -7.5921045263479744E-04 + 376 4.6029579796895955E-03 + 377 -1.0335554836663190E-03 + 378 4.4448820064534036E-03 + 379 -3.1352105081905121E-04 + 380 -1.3966397761337420E-03 + 381 1.3890448876139388E-02 + 382 -7.9315193446033899E-05 + 383 -1.4530307851270653E-03 + 384 -3.7543135791304584E-04 + 385 1.1128407757251270E-02 + 386 -7.2958909485144365E-04 + 387 -4.2446908596646122E-05 + 388 -3.9687418789548945E-04 + 389 1.2249964270705383E-03 + 390 1.1221503547074469E-03 + 391 2.4089660236683687E-03 + 392 4.2258273223401481E-04 + 393 2.7051005704925233E-06 + 394 -7.1805488359383248E-03 + 395 -8.2132431331617250E-04 + 396 -1.2561288887555893E-03 + 397 3.4736613915561931E-03 + 398 1.6771151049626927E-03 + 399 6.0872174928143811E-04 + 400 1.5908871993593752E-03 + 401 3.8977986831190722E-04 + 402 5.1962939462185345E-02 + 403 -3.7311058853148608E-02 + 404 -3.2229354736420718E-01 + 405 -4.3202125377569803E-02 + 406 2.1001528389333676E-01 + 407 1.2882113779000661E-03 + 408 6.7509915457227791E-04 + 409 1.4066727599859714E-03 + 410 -7.8646750318228187E-04 + 411 -9.7861219518178655E-04 + 412 3.0894879628288216E-04 + 413 5.6954602263658779E-04 + 414 -7.9411313614192135E-04 + 415 2.9026259139133597E-04 + 416 5.6784750335438781E-04 + 417 -1.6365229262949870E-03 + 418 -2.1113784377551769E-04 + 419 3.1817128905380292E-02 + 420 -8.4512975495639462E-04 + 421 -8.8158985512523072E-04 + 422 4.5287641283100538E-03 + 423 -9.5769000259901173E-03 + 424 7.3922191048384145E-05 + 425 3.1477943126352348E-05 + 426 -6.8277313225851709E-04 + 427 -2.0770342728869003E-03 + 428 -6.2234772053428500E-04 + 429 -3.2301722472274615E-04 + 430 1.8468438766476697E-04 + 431 5.9034549744922443E-04 + 432 1.4823728879665191E-03 + 433 -1.4173706042232436E-04 + 434 -1.9075388844417773E-03 + 435 -2.6782031108240107E-03 + 436 -1.0450398543069582E-02 + 437 -7.1361029675288048E-05 + 438 -5.1797971369073987E-04 + 439 2.3879661914734458E-04 + 440 1.9607285492131464E-03 + 441 -1.5410252883345981E-03 + 442 2.6389677303922845E-04 + 443 -2.8893768997130911E-04 + 444 -4.3148774068663343E-04 + 445 8.6607831365364152E-04 + 446 1.5747944336429943E-04 + 447 -1.9521418068834042E-03 + 448 3.8078604061834156E-03 + 449 1.3775953528500191E-03 + 450 -9.3447909009084147E-04 + 451 1.9397226074394760E-03 + 452 7.8813032170893993E-04 + 453 -1.8657083187735812E-01 + 454 1.4476766183336084E-01 + 455 -1.3057702112759861E-01 + 456 1.9110495041967648E-01 + 457 1.9472898554168502E-01 + 458 -4.1086897155524196E-04 + 459 -4.4750393805303442E-04 + 460 6.4561063087325296E-04 + 461 -1.0312090514372945E-03 + 462 5.2407703990739181E-04 + 463 -5.5659403215241592E-04 + 464 1.8607694295950494E-04 + 465 2.1795982108677506E-04 + 466 -1.8222759722470776E-04 + 467 -2.5913877705913211E-04 + 468 -3.8502689779542585E-05 + 469 -2.8329666910730054E-04 + 470 2.3450108550735071E-04 + 471 -7.2771933374902358E-04 + 472 -3.2807192462608792E-04 + 473 -2.3262989140026484E-03 + 474 -5.5526053065263297E-04 + 475 -3.4216851266235268E-04 + 476 -8.8857916274278354E-05 + 477 -1.2061899006396907E-04 + 478 -8.1265298537315988E-04 + 479 -1.3483614807952736E-03 + 480 5.5934763563080881E-03 + 481 -3.1370690122388832E-03 + 482 -3.1163405157142089E-02 + 483 1.1545971822113603E-04 + 484 -3.8494221339678623E-04 + 485 1.2341784133787612E-04 + 486 1.8491458045181641E-04 + 487 -9.4940363766945546E-04 + 488 1.1767741597877014E-04 + 489 -2.0167245005780255E-06 + 490 1.5979619336777099E-04 + 491 -9.8226630471582267E-05 + 492 -5.4264808385240252E-05 + 493 1.0538548248094020E-04 + 494 -7.5916556580240849E-05 +Ene= -4.6250776548E-01 +Spin= Alpha +Occup= 2.0000000 + 1 2.6883084176153372E-03 + 2 -6.4065668231745045E-04 + 3 -8.4212563859365603E-04 + 4 1.7480501754041367E-03 + 5 -1.0233272390464882E-03 + 6 8.7208158504048343E-04 + 7 1.0697068406739476E-04 + 8 -1.4568957372007490E-04 + 9 1.6711915687749958E-02 + 10 -2.6156661171480950E-03 + 11 1.2844710179379625E-02 + 12 -2.1314805132926062E-02 + 13 3.6992655358485893E-02 + 14 4.5982656429368701E-04 + 15 8.4416417494347280E-04 + 16 -1.4913794553710229E-04 + 17 2.6908900149917960E-04 + 18 -1.4655152798318950E-03 + 19 1.1371791661399645E-04 + 20 -1.6337807025298775E-04 + 21 7.3511553322206597E-05 + 22 -2.2124901053171376E-04 + 23 -4.2587451027601396E-04 + 24 -4.6009454309741023E-04 + 25 4.1388970131787614E-04 + 26 6.9119766730288031E-03 + 27 -5.1961805107196093E-05 + 28 -4.7589663326960104E-03 + 29 9.9795274844888000E-04 + 30 -3.3355441317546559E-04 + 31 -1.2438468011187441E-03 + 32 1.3267467330740839E-04 + 33 4.7162335232082264E-04 + 34 1.1695667840991333E-01 + 35 7.4766246692259314E-02 + 36 7.7794260514942995E-02 + 37 1.8488710419313237E-01 + 38 5.9748384379532386E-02 + 39 -9.2693980877105110E-04 + 40 -5.2740563292141379E-05 + 41 -9.2242201912502784E-04 + 42 8.1205463433889921E-04 + 43 1.2643257283744885E-03 + 44 1.1281876630602259E-05 + 45 3.3226869897597783E-04 + 46 3.1471893611306152E-05 + 47 2.5349985156359131E-04 + 48 5.0475394832544989E-04 + 49 2.4132303820194339E-04 + 50 -3.3764311539019956E-04 + 51 6.3360889444842462E-03 + 52 -6.5123259918872757E-04 + 53 -8.3257579832429675E-04 + 54 2.9561906352227351E-03 + 55 -3.8609596079270587E-03 + 56 1.6437537024817086E-03 + 57 -4.1710228977487118E-04 + 58 7.0446611573153173E-04 + 59 2.4512562593847095E-02 + 60 -2.1763086331908061E-02 + 61 1.4731769660915954E-02 + 62 3.5779746570849334E-02 + 63 8.8761318825368238E-02 + 64 1.7948437050985581E-04 + 65 -4.0575632416860321E-04 + 66 2.8065129522394998E-04 + 67 -8.0892944561101413E-04 + 68 -1.0626224624560501E-03 + 69 -4.1644392975361477E-04 + 70 6.3182196021665670E-04 + 71 1.3906017418425151E-04 + 72 4.5937516338504190E-05 + 73 5.0487094749852933E-04 + 74 -7.9977518913224561E-05 + 75 -1.7104721348410246E-04 + 76 -6.5188760166143530E-03 + 77 -4.4918746531226891E-05 + 78 2.5583663870900621E-03 + 79 -3.3047440653697011E-03 + 80 -8.0009789645993628E-03 + 81 6.4681176447510243E-04 + 82 -2.8183639061523844E-04 + 83 -1.8664183877902004E-04 + 84 3.9647071877234086E-04 + 85 1.5133781692509370E-03 + 86 -9.6962286312318627E-04 + 87 -8.2413782740291394E-04 + 88 2.5083068022062360E-04 + 89 -4.4516663770115582E-03 + 90 -3.2891453553252817E-05 + 91 -9.2231134905741187E-04 + 92 2.4632712836711759E-03 + 93 1.2521072347489784E-03 + 94 -6.7325511099091014E-04 + 95 3.8806264445043133E-04 + 96 -6.8883539393598025E-04 + 97 2.2909090219937084E-04 + 98 -3.9044352337886236E-04 + 99 4.5488952419259736E-04 + 100 -2.8428315150040302E-04 + 101 -7.6221705781643722E-04 + 102 3.5149507474468947E-02 + 103 -8.1832506681453942E-04 + 104 9.5091663241094488E-03 + 105 -1.2352705801378363E-02 + 106 -1.5181846318188684E-03 + 107 6.7325063996372364E-04 + 108 -7.4628747270463541E-04 + 109 -2.1763342669200311E-04 + 110 1.4147390723640567E-03 + 111 1.0663959900885239E-04 + 112 1.1149236172309075E-03 + 113 3.4055531277215050E-04 + 114 2.7351318027644509E-03 + 115 -1.2619751959849278E-03 + 116 -1.8056230323332525E-04 + 117 -2.8973459582663208E-03 + 118 -6.4162748694741372E-03 + 119 3.8500870831928830E-03 + 120 7.8986591320171667E-05 + 121 5.2120017314961987E-05 + 122 2.3805996601655090E-04 + 123 -1.6188960400131090E-03 + 124 3.6740669055929554E-04 + 125 5.9632791177425940E-04 + 126 6.2541209317373283E-04 + 127 1.1387819531761993E-04 + 128 -6.3220191837261809E-03 + 129 -5.8895836938123057E-04 + 130 -5.7841988296894464E-03 + 131 2.3407131428377194E-03 + 132 -3.0403072323739989E-03 + 133 -1.4567365199195663E-03 + 134 -2.6659788568502953E-05 + 135 -1.4447752672110408E-03 + 136 1.1234392237205131E-01 + 137 -2.1129942151931962E-02 + 138 1.5230711161870278E-01 + 139 1.3253302563885435E-02 + 140 -1.0791416654833420E-01 + 141 3.0607990846026403E-03 + 142 1.4719111471691829E-03 + 143 1.1819492996153500E-03 + 144 -9.3412985523006419E-04 + 145 9.1957317657117795E-04 + 146 -4.8099092963539274E-04 + 147 2.5253154914276345E-04 + 148 1.8144471929981170E-04 + 149 5.1574767666389906E-04 + 150 1.7187893740982642E-04 + 151 -2.5537414373229185E-04 + 152 4.6369761916041160E-05 + 153 -1.5849046374123764E-03 + 154 1.9699622439977010E-04 + 155 -1.8945595474247743E-04 + 156 2.2121503950710598E-04 + 157 -1.6555195997584172E-03 + 158 -1.0316765314244440E-04 + 159 -5.2110766313263207E-04 + 160 -3.3170514355851979E-04 + 161 3.1874798910364363E-02 + 162 1.4371220273281976E-02 + 163 -4.3100016821940285E-02 + 164 -3.5170258864173187E-02 + 165 1.6380322201079066E-02 + 166 9.6850874430174305E-04 + 167 1.3324578735674879E-03 + 168 1.2609187732641876E-04 + 169 -4.0472168963198084E-04 + 170 -1.6069051878431353E-04 + 171 2.7032881058041237E-05 + 172 -2.8182581682208629E-04 + 173 5.1770110097228013E-06 + 174 -3.4950238365691235E-04 + 175 9.2880956779296759E-05 + 176 2.0653820401469856E-04 + 177 6.5906779214316920E-05 + 178 2.6272978399007576E-02 + 179 -4.1870362156834056E-04 + 180 -5.3169566434717284E-03 + 181 -3.8826581302354576E-03 + 182 5.1222857250952051E-03 + 183 1.9449474995075408E-04 + 184 -1.5488912247600095E-04 + 185 8.0936963123973821E-04 + 186 -2.0451044409826617E-04 + 187 5.3711725584624538E-04 + 188 9.4864638593234016E-04 + 189 3.1836044503301712E-04 + 190 -1.7728292629487879E-05 + 191 4.9018990479956096E-03 + 192 1.0711059044253727E-05 + 193 2.9423165653492574E-03 + 194 2.1474513705114339E-03 + 195 3.3341703018891828E-04 + 196 8.4179640537390774E-04 + 197 -2.8439316568446715E-04 + 198 7.5321468904336370E-04 + 199 -1.8851477600991869E-03 + 200 5.7215337676674524E-04 + 201 -6.7150218721526850E-04 + 202 -7.2629291006404953E-04 + 203 -8.5681820830201845E-05 + 204 -3.2162104299271281E-04 + 205 5.2093813671990317E-04 + 206 1.8721101042822120E-03 + 207 -1.6523609752515001E-03 + 208 -4.8062759120733463E-04 + 209 -1.5508140994734932E-05 + 210 -4.0754007026923912E-04 + 211 4.2381930714199492E-04 + 212 -3.9090107727524130E-02 + 213 -1.4451632463489325E-01 + 214 1.7141811869328560E-01 + 215 4.0604846657983688E-02 + 216 8.1836441675406171E-02 + 217 4.1358147209999486E-05 + 218 -1.2223773933353736E-03 + 219 2.1706503087016078E-03 + 220 -3.7386034844975587E-04 + 221 3.3476090666785111E-05 + 222 2.0113946896984112E-04 + 223 3.8948873131659919E-04 + 224 -6.3112128782543677E-04 + 225 -2.2077605431764961E-04 + 226 -1.1947289416964868E-04 + 227 -3.8008651527603378E-04 + 228 -2.4927006949161312E-05 + 229 5.8825015420808126E-03 + 230 -1.9720387262650606E-04 + 231 1.3059837567856235E-03 + 232 -2.7118743012784496E-03 + 233 -5.5652214468592757E-04 + 234 -7.1328426572783655E-04 + 235 -1.3007361010211268E-04 + 236 7.8858331370727113E-04 + 237 -5.6116630111168180E-02 + 238 -1.0578792096560711E-02 + 239 -7.6127858707225729E-02 + 240 1.2912905834537433E-01 + 241 8.8847802155217023E-02 + 242 -1.2209513564967144E-03 + 243 7.5345319923026852E-04 + 244 -2.3033675228345624E-04 + 245 5.9881536814849470E-04 + 246 2.6005406145409411E-04 + 247 -2.5834221712837745E-04 + 248 6.3100987424906537E-04 + 249 5.8538912869168574E-04 + 250 1.9716217554536947E-04 + 251 5.9457180778028220E-06 + 252 -5.0619211320689626E-04 + 253 4.7267192509221671E-05 + 254 5.1105722264332912E-03 + 255 1.3626554235188546E-04 + 256 2.0430151267752687E-03 + 257 -4.7469198607035402E-03 + 258 1.6879400494722099E-03 + 259 -1.9841952607714761E-04 + 260 -3.0316357032504428E-05 + 261 -7.1497766337473280E-05 + 262 -3.6582295798380675E-02 + 263 -1.5316657899966965E-02 + 264 -8.0323495047795925E-03 + 265 -2.0291666874749887E-02 + 266 -2.4346708371711885E-02 + 267 -1.2909809769169767E-03 + 268 -3.7527710886638247E-04 + 269 -2.9603264933035701E-04 + 270 -1.6327722618887559E-03 + 271 -7.7972614884585741E-04 + 272 -7.9928373693145314E-05 + 273 3.5253036398676353E-05 + 274 3.4019537784728699E-04 + 275 -3.9047318001292312E-05 + 276 1.9894725471243806E-04 + 277 -1.6608404235547166E-04 + 278 4.4113595619739698E-04 + 279 2.5062988694667172E-02 + 280 -2.7666189285445024E-04 + 281 -9.3404389077109511E-03 + 282 2.2090587446726858E-03 + 283 3.8650435949091097E-03 + 284 -5.7577780724024457E-04 + 285 -2.2325059634992095E-04 + 286 -8.3357718505318909E-04 + 287 -2.1362534073497065E-04 + 288 -2.3485774928741211E-04 + 289 -1.0267414952903973E-03 + 290 -1.8684681871381165E-03 + 291 1.7899464234947401E-03 + 292 -9.9343372959397654E-03 + 293 1.0981389639597576E-04 + 294 -8.3341459033244077E-03 + 295 -1.6306029941210529E-02 + 296 -1.0497177648072219E-02 + 297 -9.8406904975226455E-04 + 298 -1.1676694747635753E-03 + 299 -5.7136184371328147E-04 + 300 -3.8202128836210413E-03 + 301 4.0035278491142820E-04 + 302 -1.4521927301818988E-03 + 303 -1.6766455122759055E-04 + 304 3.2894558962693614E-03 + 305 -1.8686357054419752E-03 + 306 -2.6401264565943437E-06 + 307 3.0201531642581091E-03 + 308 3.8091804230396735E-04 + 309 1.1496718801014220E-03 + 310 1.6535678512308669E-03 + 311 6.6811227328740204E-04 + 312 -9.3769601550816118E-04 + 313 -1.2110118332255297E-01 + 314 6.3597561707438036E-02 + 315 7.0929383217896325E-02 + 316 4.3796299101216393E-02 + 317 1.0353461039727070E-01 + 318 1.2504490103404629E-03 + 319 9.3145125983431262E-04 + 320 4.9405907401012911E-04 + 321 -1.5097515352976169E-03 + 322 2.3546864839363847E-04 + 323 1.0949735006970686E-03 + 324 -6.2568633188222480E-04 + 325 1.3940067874473132E-04 + 326 -7.8038390816132668E-04 + 327 -6.6454749359252973E-04 + 328 2.1334778859595505E-04 + 329 1.8365436381622216E-04 + 330 1.0692255939342615E-02 + 331 -1.4106606115679753E-03 + 332 -3.7021124553173767E-03 + 333 5.1116022054615495E-03 + 334 -2.9195359240442422E-03 + 335 8.0043837410251039E-05 + 336 -5.3937305586557226E-04 + 337 -1.0056294185395243E-03 + 338 -3.9276536644941934E-02 + 339 3.2091011500150299E-02 + 340 -6.0038246248308259E-02 + 341 -6.5501260159700023E-02 + 342 -1.4283511098930193E-01 + 343 -1.1904191176141544E-03 + 344 8.2974964021074625E-04 + 345 -5.3684083592836116E-04 + 346 -1.1282311511991159E-03 + 347 -1.8493130251847573E-03 + 348 -2.9803395193905694E-04 + 349 -7.4083344074686849E-05 + 350 -2.2621696619427838E-05 + 351 -1.1770515988448834E-05 + 352 3.6157668145241507E-04 + 353 5.4327574290671538E-04 + 354 -4.6998983658348432E-04 + 355 -9.9761790821152468E-03 + 356 -3.4544438259829114E-04 + 357 -6.0939603776419592E-03 + 358 9.3833430220047302E-03 + 359 -1.5500621072723909E-02 + 360 7.6179845229990884E-04 + 361 7.6445243819310755E-04 + 362 -9.2940337421770747E-04 + 363 -4.1449376571507752E-03 + 364 -4.5794638275818391E-04 + 365 -3.3330923659993360E-03 + 366 -2.3818600959149138E-05 + 367 -9.4802733231028990E-04 + 368 -6.7770149444377106E-02 + 369 1.3225021700673906E-03 + 370 -3.0875990797767778E-02 + 371 1.1516525559295976E-02 + 372 4.9661582097734929E-03 + 373 1.9464246657606447E-03 + 374 1.7473294339574797E-03 + 375 1.5396650640216961E-03 + 376 1.7907024600393839E-03 + 377 1.5965420603639049E-03 + 378 2.0057259558057881E-03 + 379 1.8473857777918223E-03 + 380 2.6841427586646724E-03 + 381 3.6640658706497156E-04 + 382 -2.3700560690738162E-05 + 383 5.3414775185239493E-03 + 384 3.0926572707954091E-03 + 385 -1.6968025289788883E-03 + 386 1.9472962281658163E-04 + 387 9.7747588507326360E-04 + 388 1.4675070595702731E-04 + 389 2.1544714325950911E-04 + 390 -1.6853198971470819E-03 + 391 -2.5238908025744354E-04 + 392 1.9987792233421318E-04 + 393 -2.2641751272583450E-04 + 394 -1.0005656738335471E-02 + 395 9.7379984378296160E-04 + 396 -8.7788373488232561E-03 + 397 -2.2509171274487125E-03 + 398 -5.6514280187089519E-03 + 399 -8.8026086382800815E-04 + 400 -3.0635970487456423E-04 + 401 -2.0816312512115685E-03 + 402 1.2957710869413808E-01 + 403 1.5219091162764584E-01 + 404 9.1897234685866372E-02 + 405 7.7794220243812814E-02 + 406 -1.8699789318415538E-02 + 407 2.2568252776548879E-03 + 408 -9.0239957902124883E-04 + 409 2.0796000036942416E-03 + 410 -1.1171573869538189E-03 + 411 1.0977978245993918E-03 + 412 -4.7114081143767833E-04 + 413 8.2052028203010572E-05 + 414 -4.7649634710275021E-04 + 415 3.0265163176135875E-04 + 416 -1.7729566951048662E-05 + 417 2.6932188406434792E-04 + 418 -3.7188930932400410E-04 + 419 2.2742044791307708E-03 + 420 -4.9451928013155977E-05 + 421 7.2078581312328242E-03 + 422 1.6733846698740479E-02 + 423 -1.4109029203598499E-03 + 424 4.2214032749736234E-04 + 425 -1.9281490622131763E-04 + 426 -8.8112187018077266E-05 + 427 -8.1477212780432413E-05 + 428 2.2135752275607191E-03 + 429 5.7833729324802260E-03 + 430 -1.0933732210588586E-03 + 431 -1.2694027028637778E-03 + 432 2.1009736573064090E-02 + 433 -7.0331093631228699E-04 + 434 -5.2609609140950898E-03 + 435 -6.2824596411138120E-03 + 436 2.7996427463897770E-03 + 437 1.4260846512266544E-04 + 438 -3.4672262719143528E-04 + 439 -2.4365927565713158E-04 + 440 4.4552965986512956E-04 + 441 3.2034589883283795E-04 + 442 1.0076977108144614E-03 + 443 -2.6816068580929768E-04 + 444 -8.6480937667144807E-04 + 445 1.1122740121864712E-02 + 446 -4.4789675954114177E-04 + 447 7.7651540900722437E-03 + 448 -3.1481601199385978E-03 + 449 -1.3704433194272991E-05 + 450 1.6109601405494345E-03 + 451 -9.0488701297734375E-04 + 452 6.8419713860442676E-04 + 453 4.0688047613148287E-01 + 454 2.0137150136411511E-01 + 455 3.7339950236155450E-01 + 456 4.4791087163465935E-02 + 457 5.4014192227603786E-01 + 458 -1.4191881643120044E-03 + 459 1.6373092799279285E-03 + 460 8.9385380384839270E-04 + 461 2.6816851919425682E-03 + 462 -1.1580178404082396E-03 + 463 -1.0151626076174401E-04 + 464 1.0082149520290848E-04 + 465 -8.3755686615532535E-04 + 466 2.3851943307308209E-04 + 467 6.2342378179479753E-04 + 468 5.4532924375270866E-04 + 469 -6.6163362578019769E-05 + 470 4.4181437760072587E-03 + 471 2.0258970644451501E-04 + 472 2.0235518241961880E-03 + 473 -7.2862201205758567E-04 + 474 -3.1638706553902061E-03 + 475 -8.2051393682391744E-05 + 476 -8.1842867362085046E-04 + 477 -5.9028730247786371E-04 + 478 1.6598962666878866E-02 + 479 -1.2982556116114045E-02 + 480 3.3254424826163233E-03 + 481 1.0176607677918443E-02 + 482 5.3391711041755885E-03 + 483 7.6736977777644823E-04 + 484 -1.7986949597114795E-03 + 485 8.9361570744323209E-04 + 486 1.7118807149447770E-04 + 487 -5.5267590544092306E-04 + 488 3.0380145452292876E-04 + 489 5.1162820341050966E-04 + 490 7.1145209321155838E-05 + 491 -1.4254202395404448E-04 + 492 1.5646106515948265E-04 + 493 1.5441051171529520E-04 + 494 1.0771965938898908E-04 +Ene= -4.6181220622E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -8.4225677872066460E-03 + 2 3.5558188324902079E-04 + 3 5.5155405886505582E-03 + 4 -5.5615422252073389E-03 + 5 1.0521814869549325E-04 + 6 -9.9044772678642877E-04 + 7 -9.1764590925353924E-04 + 8 -1.3599974719110386E-03 + 9 -6.8552848707914962E-02 + 10 1.8642107270120122E-02 + 11 -7.3994456005413286E-03 + 12 3.6276052898213854E-02 + 13 -1.4484013320390887E-01 + 14 1.1136971407053069E-03 + 15 6.9078961407096056E-04 + 16 3.0244375885947434E-04 + 17 -5.0112189331877078E-05 + 18 3.1684143405183119E-03 + 19 1.7538763360629939E-04 + 20 -3.4083484622424864E-04 + 21 1.1155883256184880E-04 + 22 1.2798089593408517E-04 + 23 -7.2998635723338682E-04 + 24 -1.9568950795680322E-04 + 25 -4.3600514484494783E-04 + 26 7.4048811978783425E-03 + 27 8.6529608902421562E-04 + 28 5.5810092332369207E-03 + 29 -1.5264098988145324E-03 + 30 -6.2316826490254208E-03 + 31 2.7265513701462303E-03 + 32 -6.5118691785156764E-04 + 33 -1.6952906370389822E-03 + 34 -1.2470293845933425E-01 + 35 -2.1018284837591167E-01 + 36 -3.7628770935369094E-01 + 37 -1.4834638012959072E-02 + 38 -2.1203424916583610E-01 + 39 2.5491815998018074E-03 + 40 -2.1062269222989678E-03 + 41 -5.8619051213424755E-04 + 42 -3.4904048953680671E-04 + 43 3.7678916536353302E-04 + 44 -1.2465531042034357E-03 + 45 3.3190671596288347E-04 + 46 -1.9736220783005002E-04 + 47 -5.8803007832943433E-05 + 48 -6.5032753603429575E-04 + 49 -7.8702790872804663E-04 + 50 4.1296572986281022E-04 + 51 1.4412892281398557E-02 + 52 -7.9729213752312831E-04 + 53 -1.1045148662338340E-03 + 54 4.3251590956608701E-03 + 55 1.2168472428080452E-03 + 56 -4.2243443399020013E-04 + 57 5.7603379245001170E-05 + 58 -6.0685854609781719E-04 + 59 1.9392911022983399E-02 + 60 -2.0697339189610590E-02 + 61 -2.4354094776466457E-02 + 62 -1.4335809891620123E-02 + 63 -2.3480510198047432E-02 + 64 -6.5899629007468369E-04 + 65 9.7304400858132538E-05 + 66 1.5480278280417146E-03 + 67 -7.6827018916238610E-04 + 68 3.7250958220363343E-04 + 69 6.9218078346292380E-04 + 70 3.2374278842082140E-05 + 71 4.3191504685777867E-04 + 72 1.4837793183250311E-04 + 73 -1.2759028446384330E-03 + 74 -3.1227173451294453E-04 + 75 -2.7485165803957113E-04 + 76 -3.9916396371504008E-02 + 77 4.2744014078103582E-04 + 78 -8.2500528724502777E-03 + 79 -7.9778081698909167E-03 + 80 1.1106680292062141E-02 + 81 1.3154500601117667E-04 + 82 -5.2653105928916061E-04 + 83 -7.1456356641896857E-04 + 84 3.5107547296880566E-03 + 85 -1.1495252654273353E-03 + 86 -5.1283532776904748E-04 + 87 3.1952395137148403E-04 + 88 2.9871410668413996E-03 + 89 1.0170331486628150E-03 + 90 -7.5504768721082165E-05 + 91 5.1658644175617708E-03 + 92 1.4174837373677070E-03 + 93 -1.5032993124485530E-03 + 94 9.6349187505985164E-04 + 95 7.5256075382162927E-05 + 96 -1.1410864872648884E-04 + 97 -2.5810520480726350E-04 + 98 -1.4556955262328677E-04 + 99 -2.6561987356252151E-04 + 100 -6.7132493144695646E-05 + 101 1.4014013997689879E-03 + 102 -4.0329756785939565E-02 + 103 9.2351413680034087E-04 + 104 -6.7407136711043463E-03 + 105 2.0801690633101732E-02 + 106 8.9676760026852313E-03 + 107 -1.8539434979068461E-04 + 108 1.1234400317371364E-03 + 109 8.6486662843815096E-04 + 110 -2.4396317171993930E-03 + 111 -1.6489707797638828E-03 + 112 -6.9093193802881889E-04 + 113 -2.2347688994158953E-03 + 114 -2.8197919891974096E-03 + 115 2.7407372125206837E-02 + 116 -5.6549798828763400E-04 + 117 -2.0808217259180497E-03 + 118 7.3957682698530336E-03 + 119 7.5765636118247624E-03 + 120 1.4025237774310977E-03 + 121 -5.5010285680362437E-04 + 122 3.9015105382428773E-04 + 123 9.9556006247057064E-05 + 124 -1.4100449310040889E-04 + 125 -1.3450319226886586E-03 + 126 -1.7449210650182557E-03 + 127 -4.0426205761522028E-04 + 128 5.1828019419037329E-03 + 129 1.1330043658200582E-03 + 130 1.6102081405304021E-03 + 131 -1.1856937040942484E-03 + 132 -3.3426370125007538E-03 + 133 4.8617263679041526E-04 + 134 -3.7606180522974409E-05 + 135 -1.3668942846420307E-03 + 136 7.7454693759641466E-02 + 137 -1.6117201383310403E-01 + 138 -4.4133206003306613E-02 + 139 -2.6191544155769234E-03 + 140 -1.4265820888418493E-01 + 141 1.4197669765998980E-03 + 142 -8.7203768103651916E-04 + 143 7.9418496964037361E-04 + 144 2.0967669087194063E-04 + 145 -1.4281773628877382E-03 + 146 -4.8474480620596132E-04 + 147 2.3757811638587011E-05 + 148 -6.9177396554313277E-05 + 149 -3.3854054220941834E-04 + 150 5.0824808593595084E-04 + 151 -3.3912060058468224E-04 + 152 -8.3274793534027604E-04 + 153 -5.6686625113833026E-04 + 154 1.3734441046521427E-05 + 155 -2.0387935261481941E-03 + 156 -3.6021138783331940E-03 + 157 1.7647323766695323E-03 + 158 -3.6399688896999219E-04 + 159 1.0445718757617353E-04 + 160 1.8856110729963748E-04 + 161 -2.9147913169310993E-03 + 162 1.6606899973774098E-04 + 163 7.7910422364631277E-02 + 164 6.0105606576095233E-02 + 165 -2.9724549315007110E-02 + 166 -8.1376602147319502E-04 + 167 3.8301405107561833E-04 + 168 1.6641586612110540E-03 + 169 1.5377373920943862E-03 + 170 1.6882270882122745E-05 + 171 8.7755220155337892E-05 + 172 -1.4498904177567912E-04 + 173 -1.3029845150249275E-04 + 174 -1.3086379036050501E-04 + 175 -4.8784105889868758E-05 + 176 -3.6902958086041125E-04 + 177 3.0469701366717079E-04 + 178 -2.8137295275511801E-02 + 179 3.4393652202416238E-04 + 180 4.2514713460636323E-03 + 181 4.1305137896093507E-03 + 182 -3.7789408707183513E-03 + 183 2.4753075452746843E-04 + 184 3.5005072362105747E-04 + 185 -1.3990219753498399E-04 + 186 -1.3131011621422318E-04 + 187 -4.5726895133044587E-05 + 188 1.1949832547583982E-04 + 189 -7.0873665508889097E-05 + 190 5.5050520914863294E-04 + 191 3.9082013163126306E-03 + 192 -2.7238733218868012E-04 + 193 -1.5073434037393837E-03 + 194 -8.6921958358047793E-03 + 195 -6.3804546985156028E-03 + 196 3.0236065639748736E-04 + 197 4.1790108010443636E-04 + 198 9.7224126924957391E-04 + 199 1.2688698264384812E-03 + 200 -1.5527794098144489E-04 + 201 2.6068353296403000E-04 + 202 1.3516740874623659E-03 + 203 -6.1671566261017516E-04 + 204 1.2763145291606772E-02 + 205 -2.5202144703038727E-04 + 206 2.9694297876840044E-04 + 207 3.6313691304438898E-03 + 208 -3.7652882633499338E-03 + 209 -6.5309731287600261E-04 + 210 -2.0361932324281252E-04 + 211 -7.4840468725338141E-04 + 212 1.0026546336078108E-01 + 213 1.6518461368464681E-02 + 214 5.0858107318072665E-02 + 215 -1.0206396740513714E-01 + 216 -1.2571200416600111E-02 + 217 2.9771906469847689E-03 + 218 -5.3938879137322099E-04 + 219 -7.4496725913562455E-05 + 220 -1.3801932774326277E-03 + 221 -5.0322866563002027E-04 + 222 -2.6852610177046179E-04 + 223 3.8927690275844263E-04 + 224 1.8406483605012950E-04 + 225 2.3147057466956422E-04 + 226 3.9877560930202466E-04 + 227 1.8643972428958153E-06 + 228 1.5210015499206959E-04 + 229 1.6904463637716714E-04 + 230 -5.3204958459352511E-04 + 231 -2.4293124956455262E-03 + 232 1.0761764061576534E-02 + 233 7.3232605846445236E-03 + 234 -2.3336958296580560E-03 + 235 2.9171196544829662E-03 + 236 3.8420033342579270E-03 + 237 -4.7759604302944952E-01 + 238 1.1133890714894028E-01 + 239 -1.5138477330922814E-01 + 240 -1.9288090427525198E-01 + 241 -1.3595890708965622E-01 + 242 2.4134553285940102E-03 + 243 -2.0817863519076579E-03 + 244 3.8305317906897286E-05 + 245 3.7610837708478922E-03 + 246 1.6011684826913069E-04 + 247 1.0421713944539135E-03 + 248 -5.3019714240673424E-04 + 249 4.2983775504678499E-04 + 250 -5.1113494863710561E-04 + 251 -2.6685144803672228E-04 + 252 -4.6570934373226696E-05 + 253 -1.0854592095963997E-03 + 254 4.4147249219489660E-03 + 255 -1.1280195302180680E-04 + 256 -1.7433887348284448E-03 + 257 8.7798820323880243E-04 + 258 -3.1188957114971711E-03 + 259 -5.6976357333555016E-05 + 260 -3.1308898510816669E-04 + 261 9.6616923674971934E-04 + 262 5.0394010978129261E-02 + 263 1.0054018121446051E-02 + 264 1.3089481262350103E-02 + 265 1.0270505756647964E-02 + 266 1.8919937405289852E-02 + 267 8.5852466337337646E-04 + 268 1.3594995167588351E-03 + 269 -5.0268895858849953E-04 + 270 2.4163072621495837E-04 + 271 2.7991618571678403E-04 + 272 -1.7751172416761617E-05 + 273 -4.3120581845899707E-04 + 274 -2.6718219387179945E-04 + 275 -2.7043238028782291E-05 + 276 -2.9317958105078720E-04 + 277 -1.7944351820680966E-05 + 278 -1.5760480356493268E-05 + 279 -3.2411293140898342E-02 + 280 4.4201824099031128E-04 + 281 1.2145357003441340E-02 + 282 -3.4120998063001768E-03 + 283 -1.5744051821107212E-02 + 284 1.4382443816052983E-04 + 285 -5.2712711704331685E-05 + 286 -1.4560825973458406E-03 + 287 1.0595616515561407E-03 + 288 -4.7358123424280302E-03 + 289 2.6652321709070260E-03 + 290 1.6062657523849902E-03 + 291 -1.2793444507492382E-03 + 292 -2.2851670899621170E-03 + 293 3.5644567971757145E-04 + 294 -7.8697432836368243E-03 + 295 -5.4274181680124774E-02 + 296 -1.7838345159625766E-02 + 297 -6.8109001411640344E-04 + 298 -3.4168058684629996E-03 + 299 -3.2661654874279914E-06 + 300 -3.1707332565287364E-03 + 301 2.2472336036161878E-03 + 302 -7.7181136945580105E-03 + 303 1.6761915020041361E-04 + 304 7.9256717157847323E-03 + 305 -4.0741396782742755E-04 + 306 2.8532277751431882E-03 + 307 -3.2031515169319014E-05 + 308 8.8828642263279612E-04 + 309 2.3064690930610678E-03 + 310 2.5092757830642207E-03 + 311 3.0855053860043315E-03 + 312 4.9108409347415705E-04 + 313 -9.1211052583813776E-02 + 314 9.5680771465619915E-02 + 315 1.6370313469410334E-02 + 316 1.6018137465256010E-01 + 317 2.0585833971617701E-01 + 318 -1.0233875314261363E-04 + 319 -8.1953943126584095E-04 + 320 1.6232008795228374E-03 + 321 -1.8092291588614486E-03 + 322 3.1878658050188569E-03 + 323 -4.9674680632471071E-05 + 324 -6.0289191507193623E-04 + 325 -1.6944631627290773E-05 + 326 -4.7493784389960182E-04 + 327 6.3779790979877137E-05 + 328 -2.6826437775734162E-04 + 329 6.1908596020745197E-04 + 330 3.9371664563053561E-03 + 331 -7.3803383040838076E-04 + 332 2.5682696631256451E-04 + 333 -2.6537003723241996E-04 + 334 -2.9828786414013040E-03 + 335 1.5263369558278834E-04 + 336 -7.5719969132044052E-04 + 337 7.3684245252248935E-04 + 338 4.3396758896059234E-02 + 339 4.0478619084174855E-02 + 340 -4.0887945942527981E-02 + 341 -1.9052116843677649E-02 + 342 1.3572119606197780E-02 + 343 9.7117594676186163E-04 + 344 9.7110748360760849E-05 + 345 -1.7631692630342263E-03 + 346 -1.4806111538862040E-04 + 347 7.9225156717607922E-04 + 348 7.9578285581285134E-04 + 349 -4.2296072142617016E-04 + 350 -4.6848923907387056E-04 + 351 7.2741172269337630E-05 + 352 -2.0141845704514893E-04 + 353 -9.8475663633772970E-05 + 354 -3.1334153619793563E-04 + 355 -6.1270837057145283E-02 + 356 1.2453839851769976E-03 + 357 -1.2582908033568825E-02 + 358 1.4906367276412825E-02 + 359 1.1475757611382569E-02 + 360 7.7829767226956096E-06 + 361 6.8172080931057409E-04 + 362 -7.5083919816099670E-05 + 363 7.8610956405441093E-04 + 364 -2.1179201115564608E-03 + 365 9.0768162940208983E-04 + 366 -2.0129571439256328E-03 + 367 -1.3363798538011170E-03 + 368 6.6498484946943539E-03 + 369 -6.1106217572283288E-04 + 370 -4.9419090337666366E-03 + 371 9.7156049828946243E-03 + 372 -8.2798681555131572E-03 + 373 8.6314071276824534E-04 + 374 1.3438733644094748E-03 + 375 -8.8385184266836982E-04 + 376 1.5446252685254078E-03 + 377 -1.1607941699448246E-03 + 378 7.5724197856346645E-04 + 379 -4.1339778257553337E-04 + 380 -4.9466115347258487E-04 + 381 -2.1595859481902714E-03 + 382 -1.8099409866399797E-04 + 383 3.7422769091977515E-03 + 384 6.3516324777186566E-03 + 385 -1.4977295069700763E-03 + 386 -6.7996501150902272E-04 + 387 -1.6366766325996715E-04 + 388 2.3219398217024369E-04 + 389 1.7355230761619430E-03 + 390 4.3135522289170668E-04 + 391 -1.2973538644103109E-03 + 392 6.1672998197510366E-04 + 393 3.8375750090953323E-04 + 394 -1.0977237428503530E-02 + 395 -1.6935913178484123E-04 + 396 -2.9647198111538639E-03 + 397 3.1360723523870941E-03 + 398 -6.4499448424050389E-04 + 399 -1.4950290673408999E-03 + 400 -9.7163373910373694E-04 + 401 -1.7260056170306406E-03 + 402 -3.5080316196742532E-02 + 403 2.9308476562394638E-02 + 404 1.7382827161646652E-01 + 405 8.1142216529772618E-02 + 406 -1.2035042097776627E-01 + 407 1.0097078579975850E-03 + 408 -3.8329316321711576E-04 + 409 6.9054229357558543E-04 + 410 -4.4238275778416079E-04 + 411 6.8793140858582099E-05 + 412 1.0287097603170404E-04 + 413 -3.9434406864556447E-04 + 414 2.1259882974568138E-04 + 415 1.8327845486299088E-04 + 416 -4.6408499978353062E-04 + 417 4.5061613074607920E-04 + 418 -4.1010178357399796E-06 + 419 3.3737762021973081E-02 + 420 -4.7876198908488639E-04 + 421 -4.9320630665579731E-03 + 422 1.4452140925477083E-02 + 423 -1.5231316432342207E-03 + 424 2.1038752202603723E-04 + 425 1.3975978862409380E-04 + 426 -1.0307639369972849E-04 + 427 2.0793422299410151E-03 + 428 -4.4052569079898094E-04 + 429 3.7542669124618938E-03 + 430 6.9909741940819435E-04 + 431 -2.2584015796668489E-04 + 432 4.4334657463997368E-02 + 433 -9.8436097237477324E-04 + 434 -1.6425521625203578E-02 + 435 -7.1805955088874885E-04 + 436 3.7616463310077420E-03 + 437 -5.9874225702128076E-04 + 438 -3.7020663026717269E-04 + 439 9.8405381204341312E-04 + 440 2.8348253789312061E-04 + 441 1.2212023438879940E-03 + 442 -1.4592875178838987E-04 + 443 -2.4190558462576788E-03 + 444 -2.5723170517648797E-04 + 445 -2.5508572837864268E-03 + 446 -1.3765587951290525E-04 + 447 1.1244616815414316E-03 + 448 -4.1046288880873380E-03 + 449 -2.3351320774710380E-03 + 450 4.3895758141617233E-04 + 451 -6.8704279265486168E-04 + 452 -8.7684719962203661E-04 + 453 -1.2072526691381189E-01 + 454 7.0603241682744039E-02 + 455 3.0991336169226597E-01 + 456 -5.4554412491278903E-02 + 457 -1.4278792753503830E-01 + 458 -4.0349849324125271E-04 + 459 -1.2156880254317317E-03 + 460 1.7261931953170256E-03 + 461 1.0809246474962973E-03 + 462 -1.1223070642966302E-05 + 463 -5.7350858556342958E-04 + 464 -2.5453564171979223E-04 + 465 1.2709934494130681E-04 + 466 1.2647173757321679E-04 + 467 4.9154063545336522E-04 + 468 -3.1152024106437471E-04 + 469 1.7391520069157172E-04 + 470 -4.1497251764192984E-03 + 471 9.0078199475624672E-05 + 472 1.1797964666513594E-03 + 473 3.4384058851844148E-03 + 474 2.4552177485586118E-03 + 475 -2.1069392618882478E-05 + 476 -1.1634689483658919E-04 + 477 -2.6792783611147042E-04 + 478 -6.6158139364086224E-03 + 479 1.8886808353359243E-02 + 480 -2.5122279875482621E-02 + 481 4.7197293385378751E-02 + 482 4.1343371028726037E-04 + 483 -1.5191299210862161E-04 + 484 8.1250011506394239E-04 + 485 -9.9718704536083690E-04 + 486 1.6679705945430771E-03 + 487 5.5999555041867004E-04 + 488 -1.1520800542832169E-04 + 489 -3.5171911785944536E-04 + 490 -7.2958685990168128E-05 + 491 -2.3115023795716223E-05 + 492 -3.5274940882558126E-04 + 493 5.2189117126613172E-04 + 494 1.8007370483416325E-04 +Ene= -4.6125494691E-01 +Spin= Alpha +Occup= 2.0000000 + 1 3.4903878790265865E-03 + 2 4.8871023205228218E-04 + 3 -2.0962745799968287E-03 + 4 2.5900227912254172E-03 + 5 1.2392524489519372E-03 + 6 -1.6760218208599121E-04 + 7 8.9602274766856422E-04 + 8 1.8981928655316670E-04 + 9 3.1061733209357474E-03 + 10 2.2626075728414574E-02 + 11 -7.0845045807741529E-03 + 12 1.1962852689411604E-02 + 13 3.9274038641596364E-02 + 14 -6.0838874653786588E-04 + 15 -5.0773004156741343E-04 + 16 3.4757218171503873E-04 + 17 1.0886327227078801E-04 + 18 -1.6731493196513066E-03 + 19 -3.2878080016452538E-04 + 20 3.1270050197627501E-04 + 21 7.1152774132699688E-05 + 22 5.4558744679881699E-05 + 23 3.8368627129988783E-04 + 24 1.4286722559592746E-04 + 25 3.6317750872557762E-04 + 26 3.4879187778134356E-03 + 27 1.0052081863119748E-03 + 28 -6.2616681668607056E-03 + 29 -3.9580309082634666E-03 + 30 2.7378584882743473E-03 + 31 -1.4596990736040990E-03 + 32 -1.9006368721137203E-03 + 33 1.5867587057523849E-03 + 34 -1.8587588630404520E-01 + 35 1.4236852125893892E-02 + 36 -5.9687273169211276E-02 + 37 3.0900134675451152E-01 + 38 -2.1023867893712617E-01 + 39 -3.3687959484530847E-03 + 40 1.2188573852913364E-03 + 41 1.1332013359472237E-03 + 42 1.1753178378389316E-03 + 43 9.2709161306844779E-04 + 44 1.1152873670860010E-04 + 45 8.0729681928169781E-05 + 46 -1.2696446135627800E-04 + 47 -1.5589431268814454E-04 + 48 -5.0194690980111679E-04 + 49 -2.2902740161092431E-04 + 50 -8.3475141743179703E-05 + 51 -1.2411785010972387E-03 + 52 1.7775771791029619E-04 + 53 2.8242956393532827E-03 + 54 -9.9661907684765782E-04 + 55 4.6006221855621838E-04 + 56 -8.4455365644714399E-04 + 57 1.4504782805453960E-03 + 58 -1.4872351220760816E-03 + 59 -2.9192593017214399E-02 + 60 -5.2618347970104645E-03 + 61 -5.9457753198847503E-02 + 62 1.0803380146810353E-02 + 63 -1.5088820995771593E-01 + 64 -1.1620353131226954E-03 + 65 7.8019202454821218E-04 + 66 1.0045861940431663E-03 + 67 -7.2134315079988749E-04 + 68 3.1124915704743212E-04 + 69 1.7901103142211995E-04 + 70 8.5976753084735826E-05 + 71 -5.0451064380080000E-04 + 72 -3.4274407963416674E-04 + 73 -1.4307515454630468E-04 + 74 1.6932599529800627E-04 + 75 4.9806715240313594E-04 + 76 1.7107000205016026E-02 + 77 -2.3794944003285143E-04 + 78 9.4141192691636049E-03 + 79 6.4330427928232532E-03 + 80 -3.8071739174472484E-03 + 81 -6.4209622372899577E-05 + 82 6.1709735194454311E-04 + 83 6.0766323260522429E-04 + 84 2.2498528074715334E-04 + 85 2.1684639866345729E-03 + 86 -1.8694721956209798E-03 + 87 -1.0745177106584777E-03 + 88 -3.1553800768805793E-03 + 89 2.0073259542750755E-03 + 90 4.0037905720556846E-05 + 91 -1.4022159715787832E-03 + 92 -2.8388173512026420E-03 + 93 2.2967040654368596E-03 + 94 -3.7742372940537220E-04 + 95 -5.8100532528288895E-04 + 96 3.8938718957816254E-05 + 97 6.1718188144745697E-04 + 98 -3.4887947702398132E-04 + 99 -3.1761410547650039E-04 + 100 1.7089256042235283E-04 + 101 -2.6962170347024782E-04 + 102 -1.1450979108878656E-02 + 103 -4.0260016087122398E-04 + 104 5.4675943182386361E-03 + 105 1.5915644120884694E-02 + 106 9.5274582941129188E-03 + 107 7.5396221138224155E-05 + 108 5.2401043276020115E-04 + 109 1.5933678488658145E-04 + 110 -1.5817067936817646E-03 + 111 -2.6855218076012625E-03 + 112 -3.5710316251742888E-04 + 113 -3.4545939175917128E-03 + 114 -1.9191458376750027E-04 + 115 1.5998160796460333E-02 + 116 -9.1324969738816247E-05 + 117 1.0571355562413036E-04 + 118 -9.1559502505104290E-04 + 119 4.4774345392538028E-03 + 120 -2.2518501035438364E-04 + 121 -7.0405958070346658E-04 + 122 4.8050083916516631E-04 + 123 4.1031758941233794E-04 + 124 -9.0611707266536983E-04 + 125 -1.0727681136541076E-04 + 126 -2.1040407691803134E-03 + 127 3.2749167983510538E-04 + 128 -1.0153426795627503E-02 + 129 1.8252949319885116E-04 + 130 -1.8762946365858169E-02 + 131 6.0826938840387434E-03 + 132 -5.0507060611687505E-04 + 133 -3.5985317076912588E-03 + 134 1.0702522076383339E-03 + 135 -1.4785924779185586E-03 + 136 1.0902119857722969E-01 + 137 2.6515177166531578E-01 + 138 -2.4596966097475162E-01 + 139 -1.0524006855330141E-01 + 140 -3.3678836861485828E-01 + 141 1.5078238746538736E-03 + 142 2.6179462325271225E-03 + 143 -3.2432609984194586E-03 + 144 -1.9899885088271673E-03 + 145 -2.5790374496362629E-03 + 146 6.2832826927298438E-04 + 147 -1.0830011041312139E-05 + 148 -2.3832039412259026E-04 + 149 4.0892585259930277E-04 + 150 9.5110574283691649E-04 + 151 8.7661999500400478E-04 + 152 8.3269939936289817E-05 + 153 2.7127894900532369E-03 + 154 5.5985961811943146E-05 + 155 3.1299442238567178E-03 + 156 -1.5631870477335707E-03 + 157 -1.3695474615656930E-03 + 158 1.2243140243060671E-03 + 159 1.4499552315950877E-04 + 160 -6.6630393645939303E-04 + 161 1.8238928781516239E-02 + 162 -7.8346995416900433E-02 + 163 1.0458775699046645E-02 + 164 1.0169148160046122E-02 + 165 6.7449975661012462E-02 + 166 1.2203861673876783E-03 + 167 -1.7932553254775274E-03 + 168 5.2899134871045009E-04 + 169 -2.9033623162167196E-04 + 170 1.3162163718119025E-03 + 171 -2.8543103723495622E-04 + 172 -3.5128861969477823E-05 + 173 8.4334266363248633E-05 + 174 -6.3803058219683020E-05 + 175 -4.7250186284562921E-04 + 176 1.2482653664350784E-04 + 177 -2.1575286716426988E-04 + 178 -4.5807481146300046E-02 + 179 1.4511563968413975E-03 + 180 1.1786727641681285E-02 + 181 1.2985560252125590E-02 + 182 -9.6390497806535611E-03 + 183 1.0067960788575797E-03 + 184 4.3076983902262683E-04 + 185 -6.6740416768514070E-05 + 186 1.2181082998339494E-03 + 187 -2.0674324160422138E-03 + 188 -2.5576701873211379E-03 + 189 -1.1836868479014771E-03 + 190 2.4912595025351958E-03 + 191 -1.6072690363584274E-02 + 192 9.6861840875072514E-05 + 193 -1.7084893678985927E-02 + 194 3.9888467370825832E-03 + 195 1.2298356112826220E-03 + 196 -2.0810232331392874E-04 + 197 5.5927552542966931E-04 + 198 9.9930123415874078E-05 + 199 -5.5316672293804006E-04 + 200 3.6688363078316710E-04 + 201 3.0712774349430044E-04 + 202 5.0900150743587340E-04 + 203 -3.9915027901236914E-03 + 204 1.3820950120198361E-03 + 205 1.1442316261013605E-03 + 206 1.6182005446630814E-04 + 207 2.8602232627467528E-04 + 208 8.0887389075696634E-03 + 209 1.6717387649001188E-03 + 210 -9.7412890997243616E-04 + 211 1.1547319271912220E-03 + 212 -2.3499618089147873E-02 + 213 3.5900272825271626E-02 + 214 1.7523438547942413E-01 + 215 -1.1930972166640791E-01 + 216 -1.0563472049461954E-01 + 217 -2.4104885068609171E-03 + 218 1.4095370805381871E-05 + 219 3.2161700884185255E-03 + 220 -3.4265764113123904E-04 + 221 -1.1745731772526678E-03 + 222 -2.0127142795185266E-04 + 223 3.8417697416311261E-05 + 224 7.3564345913776019E-05 + 225 -1.9884565922916535E-04 + 226 -4.5027713370079426E-05 + 227 -4.0762012200430941E-04 + 228 8.8938038442677733E-05 + 229 -5.0247421469811872E-03 + 230 1.6538184549952850E-04 + 231 2.8998454764366396E-03 + 232 1.8222859497660487E-03 + 233 5.3191214404890025E-03 + 234 1.4026131447965925E-03 + 235 4.4584604741091174E-04 + 236 5.5243037428992427E-04 + 237 7.7737168302809176E-02 + 238 6.1805144511905365E-02 + 239 1.9529894365173847E-01 + 240 1.5560965985817301E-02 + 241 6.2160611052214189E-02 + 242 2.2633845123281936E-03 + 243 -1.2675263123136061E-03 + 244 -1.9923254824567469E-03 + 245 -1.4817835324132004E-04 + 246 -1.6816978171268176E-03 + 247 -2.6567059643272729E-04 + 248 -2.0550082975920008E-04 + 249 -6.8577602998348643E-04 + 250 -8.1068601550314393E-05 + 251 1.7549651513965750E-04 + 252 4.2858317169913951E-05 + 253 3.3504523350447320E-04 + 254 8.7527433933386840E-04 + 255 1.0487444756405184E-03 + 256 -1.0697315945720218E-03 + 257 -1.2286125257176914E-03 + 258 1.7745768334174270E-03 + 259 -1.2169872056555483E-04 + 260 -8.0209249886252954E-04 + 261 4.8908226887320458E-04 + 262 -1.5498814396272343E-02 + 263 2.1558814056493510E-03 + 264 -7.2791339735110532E-03 + 265 1.5349725508232914E-02 + 266 1.3042104491733179E-02 + 267 -1.3545642779783978E-03 + 268 4.4372904852976090E-04 + 269 -1.1819906352264473E-03 + 270 1.9853214743253394E-04 + 271 5.0169777791757167E-04 + 272 1.8498627180345466E-04 + 273 1.5106834006386373E-04 + 274 3.9334258043086383E-04 + 275 -4.0875065868137029E-04 + 276 -3.2836098814176289E-04 + 277 1.4539427728412936E-04 + 278 -2.1323577885364473E-04 + 279 9.5899351368841136E-04 + 280 6.5088303027210906E-05 + 281 1.6436104399070064E-03 + 282 -1.9647946740722053E-03 + 283 5.8840546450710293E-03 + 284 -1.9707336425999465E-04 + 285 -5.7346932650134644E-06 + 286 -3.7085563991880779E-04 + 287 -1.2447387063195057E-03 + 288 2.5234062733160131E-04 + 289 -1.2821559902576900E-03 + 290 1.3242490308265151E-04 + 291 3.0418154978378139E-05 + 292 -3.4024714791332906E-03 + 293 2.6138294301921886E-04 + 294 2.9725221055110812E-03 + 295 1.4539850713659888E-02 + 296 1.5641406191122701E-02 + 297 8.0966235473185991E-05 + 298 8.9828835868960549E-04 + 299 1.0887592387666570E-03 + 300 2.8744783250603092E-03 + 301 -2.8098570581613696E-03 + 302 5.8136068802355995E-04 + 303 2.6303121792883410E-04 + 304 -3.1402146571620957E-03 + 305 2.6173964912457027E-03 + 306 -1.8149611286356255E-03 + 307 -1.6391383215461465E-04 + 308 -1.0027276966158387E-03 + 309 -2.1369534117242615E-03 + 310 9.9691258724454111E-05 + 311 -4.2006832062475939E-04 + 312 -2.7698204141868650E-05 + 313 1.0980887782957102E-01 + 314 1.2366699954219737E-03 + 315 1.0528706058057560E-01 + 316 -2.8708682650483010E-03 + 317 -7.4533232592425919E-02 + 318 -2.7156608848820728E-05 + 319 1.1374057065975556E-03 + 320 -1.4060849034310083E-03 + 321 6.4980279605543012E-04 + 322 -1.2196941328988177E-03 + 323 -2.3438586255834614E-05 + 324 2.6313310771080298E-04 + 325 -7.0314400731649978E-04 + 326 -9.0713447662137649E-05 + 327 3.0640651714612972E-05 + 328 -3.1457086387894951E-04 + 329 -6.2024553329813803E-04 + 330 3.0382206746499170E-03 + 331 -5.1515928036642545E-04 + 332 1.5321502961546273E-05 + 333 8.0659246190771115E-04 + 334 1.4253332881187730E-03 + 335 -5.8594594192949170E-04 + 336 1.3179600016809462E-04 + 337 -1.2466536126911764E-04 + 338 2.7318189756374175E-02 + 339 3.6166503550992338E-02 + 340 2.1655776887483238E-04 + 341 -1.6345684558833083E-02 + 342 1.4774893068070515E-02 + 343 6.2027379030962616E-05 + 344 1.2820038290316433E-05 + 345 5.4369054555255159E-04 + 346 -8.4788021732707308E-04 + 347 -2.7725500282307133E-04 + 348 -2.0872533534710630E-04 + 349 9.7985358081686296E-05 + 350 -1.9711670776730057E-05 + 351 -4.0926000031197912E-04 + 352 2.4156259416749734E-04 + 353 3.8658116387130539E-05 + 354 -2.6488070263199290E-04 + 355 -1.9157520493131875E-04 + 356 -1.2086054974848921E-04 + 357 -1.0859692759126596E-02 + 358 -4.4855436731144494E-03 + 359 2.5201372891437983E-03 + 360 -1.3456030649487279E-04 + 361 -6.1818255152410395E-04 + 362 1.6192754447517507E-04 + 363 3.2335944664238254E-04 + 364 -1.3422995513986287E-03 + 365 -2.9613207519984330E-05 + 366 3.4985774617555496E-04 + 367 -3.0622347802583220E-03 + 368 7.9550781529878115E-02 + 369 -1.2425572405962389E-03 + 370 2.9891371284907237E-02 + 371 -2.0494453445863585E-02 + 372 1.0052058168447167E-02 + 373 -2.0811702293727953E-03 + 374 1.8672159395910833E-03 + 375 -1.2081688275742827E-03 + 376 -6.4491305755114375E-04 + 377 -1.6660374783603858E-03 + 378 4.8735458142372558E-04 + 379 8.1972211959374002E-04 + 380 -2.5577280210081102E-03 + 381 -1.4410194599815801E-01 + 382 2.1770438674572168E-03 + 383 4.2231081388892623E-02 + 384 -2.5024586384429694E-02 + 385 -6.0631842858846329E-03 + 386 -6.7424415342695794E-04 + 387 -1.5108961400498080E-03 + 388 -6.6284452820278479E-04 + 389 1.9976661095366695E-05 + 390 9.4788926921156997E-04 + 391 -1.5375577073301757E-03 + 392 2.4739985157940275E-03 + 393 -5.2424207920651420E-03 + 394 1.5676985227558688E-02 + 395 4.2669156263251082E-04 + 396 -2.2875651189896047E-03 + 397 -9.8164173901155584E-04 + 398 -1.5692057929885678E-03 + 399 3.3908650188728488E-04 + 400 4.1404343659417141E-04 + 401 -1.3350068792691069E-03 + 402 1.4437491497410268E-01 + 403 -2.6102145206952365E-01 + 404 2.7169514312222431E-01 + 405 4.2105284447890710E-02 + 406 1.2531797630724348E-01 + 407 6.3646371547935218E-04 + 408 -1.4489481767200058E-03 + 409 3.0917443211671554E-03 + 410 1.3303127600880011E-04 + 411 1.2974025143907086E-03 + 412 4.0801183536536830E-04 + 413 -1.9861995928365891E-04 + 414 6.9167798269622195E-04 + 415 -3.9930029917306973E-04 + 416 2.1218947318855699E-04 + 417 7.2168165767496088E-04 + 418 5.7601571969139083E-04 + 419 -6.3989314752904869E-02 + 420 1.2535226916649889E-03 + 421 1.0573073182249837E-02 + 422 -4.7933788721539047E-03 + 423 1.8856499439041989E-02 + 424 1.1720686144012567E-04 + 425 1.0452159599578256E-05 + 426 7.6086688675682662E-04 + 427 1.9623970489639269E-03 + 428 3.6393992909196267E-03 + 429 -7.8236581807260470E-04 + 430 -3.2791420391074127E-04 + 431 1.3016672440757835E-03 + 432 -2.6355581024697712E-02 + 433 5.1800045881308389E-04 + 434 2.1939768581196719E-03 + 435 9.0337266774128434E-03 + 436 3.3743128767068633E-04 + 437 1.4020081801063723E-03 + 438 -3.5612754180674289E-04 + 439 -7.5806146212397925E-04 + 440 -2.5183632116722826E-03 + 441 -1.9292672588907738E-03 + 442 7.3366549834010040E-04 + 443 7.8438361305373412E-04 + 444 -8.0858398646590775E-04 + 445 5.4858381202216771E-03 + 446 -2.3963172140601272E-04 + 447 -4.2155920288643932E-04 + 448 -1.6655901184476878E-04 + 449 -6.5023325014876916E-04 + 450 -1.3361829565816387E-04 + 451 -1.2459438672501137E-03 + 452 -5.3234061084631024E-04 + 453 2.5216603629632750E-01 + 454 -2.2575376224116656E-01 + 455 -4.9405875648313745E-02 + 456 -1.1062658639717192E-01 + 457 -4.1681575741575889E-02 + 458 1.6339108101075641E-04 + 459 -5.6115371952069140E-04 + 460 -2.5525601550972164E-04 + 461 -2.7199682036971742E-05 + 462 -1.4033266656936466E-03 + 463 7.6642082244422164E-04 + 464 2.4020982833444069E-04 + 465 -7.7054560627021229E-04 + 466 -1.7946249870831891E-05 + 467 2.7499592553447669E-04 + 468 4.1943630649215552E-04 + 469 2.1406629731625344E-04 + 470 2.1463308744327794E-02 + 471 -1.7545965317664934E-03 + 472 4.1695144963662077E-03 + 473 4.2581919731655626E-03 + 474 1.3897514539879178E-03 + 475 -8.8409398702293102E-04 + 476 -1.4870993862881314E-03 + 477 -5.7048604854252432E-04 + 478 -5.7264053613669146E-02 + 479 4.7076963092809114E-02 + 480 3.6691535085312685E-02 + 481 -4.3704540153793325E-02 + 482 1.2907077445014617E-01 + 483 -1.4941365727717795E-03 + 484 1.0364427420601215E-03 + 485 9.6663578518500391E-04 + 486 -1.2368990617267336E-03 + 487 2.8912041383661160E-03 + 488 3.3091634323912386E-04 + 489 -1.5721909997415255E-04 + 490 1.6413511094486117E-04 + 491 6.4266816665564045E-04 + 492 -1.8444729923802785E-04 + 493 3.6050587882278598E-04 + 494 5.6944342184868087E-04 +Ene= -4.6069299012E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -2.3018282862889047E-04 + 2 -3.0327495242434617E-04 + 3 -8.6713979720984226E-04 + 4 -2.0294122248095269E-03 + 5 1.7571619935108592E-03 + 6 8.3565185054303452E-04 + 7 1.8152790160305134E-06 + 8 4.9069121490212281E-04 + 9 6.7666666880398024E-03 + 10 3.2520153169134390E-02 + 11 1.9639338510210595E-02 + 12 -4.5549457739920148E-02 + 13 2.7242670266362116E-02 + 14 1.1770726485626120E-03 + 15 -6.5149794373182079E-04 + 16 8.6173211744522697E-04 + 17 9.6540596864102787E-04 + 18 9.9104112999303610E-04 + 19 -8.7987687579494341E-05 + 20 -1.4425614796484239E-04 + 21 3.7850712142349673E-04 + 22 7.4555331123012290E-05 + 23 -4.2803299395691348E-04 + 24 -7.2261523969505712E-04 + 25 -3.0041223759145948E-04 + 26 2.6602433308794558E-02 + 27 1.2027765326180577E-03 + 28 -2.0420097988201040E-02 + 29 8.7662229075853484E-04 + 30 1.6762022889482552E-03 + 31 -3.2169228246999647E-03 + 32 9.7646248291501201E-04 + 33 1.7239164373674271E-05 + 34 -1.7909696027142580E-01 + 35 5.6928602117034190E-02 + 36 5.7523166413665748E-02 + 37 5.2261632531324964E-01 + 38 1.6897851372170547E-01 + 39 -3.8968620148106697E-03 + 40 7.2129775891961148E-04 + 41 -1.2960632771301405E-03 + 42 5.3755623339331350E-03 + 43 2.2687118407933326E-03 + 44 2.6430302412571805E-04 + 45 1.0141162267131448E-03 + 46 -5.0413148894205330E-04 + 47 3.9132531771225196E-05 + 48 2.8262737219286158E-04 + 49 -3.4309837006062940E-04 + 50 -3.0713010116445542E-04 + 51 7.6000594065295567E-03 + 52 -5.7379107576161739E-04 + 53 -2.1110605881089015E-03 + 54 4.3764581248468279E-03 + 55 -5.5725867529881246E-04 + 56 8.0552313307756627E-04 + 57 -3.7490123646363298E-04 + 58 1.0940547753026802E-03 + 59 4.3228447415997254E-02 + 60 3.2646805211038819E-02 + 61 1.4916116304661270E-02 + 62 7.9713991926749550E-02 + 63 7.9717840678211860E-02 + 64 -7.4965930776236904E-04 + 65 -1.2411699449454059E-03 + 66 -1.6724683039639118E-04 + 67 -1.5550193452926078E-03 + 68 -7.5412230754321233E-04 + 69 -4.2917835686813232E-04 + 70 5.4905313659269717E-05 + 71 -3.7764727263808919E-04 + 72 5.9384207249318813E-04 + 73 -5.5029222276923048E-05 + 74 -4.6786350341004615E-05 + 75 -1.3480613738923962E-04 + 76 1.6594665020059747E-02 + 77 -4.7183890670756561E-04 + 78 2.3856423505404043E-02 + 79 -6.7028608621237913E-03 + 80 1.8201865737546164E-03 + 81 9.6170698513343457E-04 + 82 -4.5737642127449815E-04 + 83 1.5222609779940593E-04 + 84 4.4711962424190061E-03 + 85 1.8287041732695005E-03 + 86 -8.7770852789675706E-04 + 87 -3.7738410141199600E-03 + 88 -1.1116012418966612E-03 + 89 -1.1722917558599794E-02 + 90 3.7949566347412204E-04 + 91 -1.7127523503423437E-04 + 92 4.3354225025514026E-03 + 93 -1.6653765770598416E-03 + 94 4.4344066990613542E-04 + 95 4.4074736065720659E-04 + 96 -2.3803177780995743E-04 + 97 -3.6411257199557464E-04 + 98 4.2284671958193304E-04 + 99 2.5728410750777144E-04 + 100 -4.3357611116624729E-04 + 101 -5.3995445838012654E-04 + 102 4.8907220262670893E-02 + 103 -1.0529386404805423E-03 + 104 1.8525379433268315E-02 + 105 -1.9908993279839953E-02 + 106 -1.4852458299464417E-03 + 107 1.1556551916432553E-03 + 108 -1.1144654231932934E-03 + 109 -9.2741748470319895E-04 + 110 2.1933771401077494E-03 + 111 -3.7073717695209132E-04 + 112 1.8148329625153857E-03 + 113 -6.6440899377780301E-04 + 114 5.5641833452446041E-03 + 115 3.6302637084340394E-05 + 116 5.1358151912913782E-06 + 117 -2.5709598128575237E-02 + 118 -1.1217730927690775E-03 + 119 2.6069389733040043E-03 + 120 -6.0959470841405504E-04 + 121 -1.2070796337460135E-04 + 122 -1.2691519010833051E-04 + 123 -1.0059986584234632E-03 + 124 4.2239771399093821E-03 + 125 1.1781674278520479E-04 + 126 7.7738405026909520E-04 + 127 2.3670423342771001E-03 + 128 -1.6697980285298585E-02 + 129 -2.5596022680200062E-03 + 130 -1.6824983704702125E-02 + 131 -9.3368617378329858E-03 + 132 1.0915685420417140E-03 + 133 -2.6224338748294445E-03 + 134 -1.4562106699944003E-03 + 135 2.4484648630558646E-04 + 136 1.9873026645653419E-01 + 137 6.3397288277181427E-02 + 138 1.6995983004364443E-01 + 139 -4.7573147219493106E-01 + 140 -3.6342335573781963E-02 + 141 5.2852154789899582E-03 + 142 7.8313664109064328E-04 + 143 1.8315954240563865E-03 + 144 -7.4788980080072280E-03 + 145 -2.0003538221886924E-05 + 146 -8.3056880598575552E-04 + 147 1.4530253492278876E-03 + 148 5.1872734629432229E-04 + 149 6.1755028226179697E-04 + 150 6.9619716138700246E-04 + 151 -6.6994745433066581E-04 + 152 -3.5267191048538553E-04 + 153 5.8868377903358513E-03 + 154 -9.0536132820104331E-04 + 155 1.2723402119449315E-03 + 156 4.1592161888253333E-03 + 157 -2.5305269657138005E-03 + 158 1.1406405808449785E-03 + 159 -4.4293798014137579E-04 + 160 -1.2357268071934996E-04 + 161 4.2758362416030812E-03 + 162 -1.7237098993783714E-02 + 163 -8.9914626742272949E-02 + 164 -3.3351901655111670E-02 + 165 4.4694985878179508E-02 + 166 5.9667116631879815E-04 + 167 -3.4788486847817024E-05 + 168 -1.6604419547635711E-03 + 169 -1.2940145793615087E-03 + 170 -4.8944771523089584E-04 + 171 2.8118834236342605E-04 + 172 -3.0427353301714478E-04 + 173 2.0482267387480856E-04 + 174 -2.6030054154281009E-04 + 175 5.3877262096255186E-04 + 176 6.9853052124181051E-04 + 177 2.2328150240650443E-04 + 178 -7.6408426714860414E-03 + 179 2.2309364075564678E-04 + 180 -2.2059720235155290E-03 + 181 9.9627838765722204E-04 + 182 -5.4191980374696915E-03 + 183 1.2856244168927468E-04 + 184 -5.0556452638267314E-04 + 185 3.7800582680949668E-04 + 186 8.4272006720641245E-04 + 187 -6.8322217598083617E-04 + 188 -3.8411228392697556E-04 + 189 -1.6268264030914446E-03 + 190 7.5654938421778771E-04 + 191 -2.1544100185618580E-02 + 192 3.8078854880487791E-04 + 193 1.1300563865347330E-03 + 194 8.5819864332029733E-03 + 195 -1.8981285130604438E-03 + 196 2.6740885334106124E-04 + 197 2.5942603658764046E-04 + 198 -9.6118375613905122E-04 + 199 3.6700656669385619E-04 + 200 -1.6339329930221399E-04 + 201 2.8003459535858570E-04 + 202 -2.3085387622785499E-03 + 203 1.6593643121379234E-04 + 204 -8.9151235427676646E-03 + 205 -7.0518557063563921E-04 + 206 -3.1734253825979738E-03 + 207 -7.8350637503200090E-03 + 208 -6.5903245110109272E-04 + 209 -9.2251510067528511E-04 + 210 -7.7682827594535903E-04 + 211 2.9258351005795292E-04 + 212 8.2209461250711949E-02 + 213 -4.0834678995135897E-02 + 214 -1.0354570247321698E-01 + 215 1.3148428016394215E-01 + 216 -1.5420007067382349E-01 + 217 1.6932171246238192E-03 + 218 1.3735263792674637E-03 + 219 5.2233197350730328E-05 + 220 5.2535839356777957E-04 + 221 -3.0589032591330501E-03 + 222 -7.1486831181054810E-04 + 223 9.3992752350041943E-05 + 224 5.4935551939689058E-04 + 225 9.4080554739751741E-05 + 226 4.0092460521386414E-04 + 227 -5.1951322835736752E-05 + 228 -1.8474061038584622E-04 + 229 1.5660192082411713E-02 + 230 -4.9284546390835856E-04 + 231 -2.5840944862547182E-03 + 232 -4.7990836688767578E-03 + 233 1.4103800400436137E-03 + 234 1.1301826516541684E-04 + 235 -7.0599383912185775E-04 + 236 -1.8195587706854157E-04 + 237 -7.4985143597212811E-02 + 238 -6.0952778557680824E-02 + 239 -5.9601390767497771E-02 + 240 5.0842723834510224E-02 + 241 3.1984514822253528E-02 + 242 -1.4515567675231207E-03 + 243 2.7451895944723159E-04 + 244 -1.0139959002503081E-03 + 245 8.4786559454994731E-04 + 246 3.8322696074410625E-04 + 247 -2.8661000848338424E-05 + 248 -2.0018670654262523E-05 + 249 1.3579668098161378E-04 + 250 1.6658489013523758E-04 + 251 2.4328244506108355E-05 + 252 -1.6062274615460617E-04 + 253 -4.9868353577138167E-05 + 254 4.7087262645011162E-03 + 255 -4.6744730506440252E-04 + 256 5.2402145041922071E-03 + 257 -1.4915022767647446E-03 + 258 -1.8080309378454564E-03 + 259 -6.9218564738205552E-04 + 260 1.6823080271497121E-04 + 261 -3.8787202741159120E-05 + 262 5.4360825715442963E-03 + 263 6.5716598175560486E-03 + 264 1.1991082958131713E-02 + 265 -2.4092261791671069E-03 + 266 -7.7037702208990450E-02 + 267 4.2528128328519788E-04 + 268 1.0465401048816453E-04 + 269 1.0092355175680692E-03 + 270 -2.0162384027839770E-04 + 271 -2.0714195952600523E-03 + 272 2.6656715117260102E-04 + 273 -7.0347051115111529E-05 + 274 -5.0149809921967660E-04 + 275 1.2882711918544591E-04 + 276 -8.0160561592843157E-05 + 277 -3.5345547240306959E-04 + 278 2.4776067574490938E-04 + 279 -4.1261372652385171E-03 + 280 -7.5128378040138164E-05 + 281 -1.4020399714161769E-02 + 282 -8.0869683897781715E-04 + 283 -3.3328476569259493E-03 + 284 3.4929785225052545E-04 + 285 4.1600343746078024E-04 + 286 -1.2272046089441691E-04 + 287 -5.1129958822462377E-05 + 288 4.3768134695240641E-04 + 289 6.3793460633431560E-04 + 290 2.9864849456270133E-04 + 291 2.1565509516445385E-03 + 292 1.3635741435805863E-02 + 293 -2.9796135215777811E-04 + 294 3.9424268224617261E-03 + 295 -8.4597617600642282E-03 + 296 -1.2965334298960199E-02 + 297 1.2336145423047973E-04 + 298 -6.0101739945452265E-04 + 299 -8.6723878222394718E-04 + 300 -1.5409003544563796E-03 + 301 2.7760093089825208E-03 + 302 4.6784408526496406E-04 + 303 -1.1223992489160909E-03 + 304 1.4355747490443680E-03 + 305 -1.6316022291581280E-03 + 306 1.0078969407548723E-03 + 307 3.9227228921468311E-04 + 308 8.6439787982732822E-04 + 309 1.8249677795470838E-03 + 310 1.3486873835079070E-04 + 311 9.3446578129105897E-04 + 312 5.9982104238844535E-04 + 313 -5.3045428036076980E-02 + 314 -5.1330615344393898E-02 + 315 -1.2918816398374677E-01 + 316 6.4172574472563443E-02 + 317 6.7587343174853114E-04 + 318 6.8946109901945522E-04 + 319 -7.5603521888086651E-04 + 320 4.8414579200536234E-04 + 321 -1.4589678142085479E-04 + 322 1.3180765355584844E-04 + 323 -6.1189941840617676E-05 + 324 -3.2746654527581040E-04 + 325 -7.9600146723551952E-05 + 326 -4.1851320168736232E-05 + 327 8.9012878705959863E-05 + 328 -1.6421009286453282E-04 + 329 1.6849791807504202E-04 + 330 -1.3910667056634977E-03 + 331 4.6385637386228392E-04 + 332 5.7688260152090744E-04 + 333 -2.2499283653261096E-03 + 334 2.2992332892007449E-04 + 335 -1.5703293277906407E-04 + 336 3.5982926074421874E-04 + 337 -2.8519867079100056E-04 + 338 3.3166277233176528E-02 + 339 -1.4230570410576980E-02 + 340 -1.2972775668467053E-02 + 341 4.4128265618251519E-02 + 342 2.7625183063585548E-02 + 343 4.3290272128467845E-04 + 344 -1.7810907334555120E-04 + 345 -7.5073801504610177E-04 + 346 9.8350835245123889E-04 + 347 6.3253659578236653E-04 + 348 2.5346311133365833E-04 + 349 -2.5390029943793998E-04 + 350 -1.4420653637901075E-04 + 351 2.4403035644771868E-04 + 352 -1.2213373407284701E-04 + 353 -3.2397404507038719E-04 + 354 4.6470995728491350E-04 + 355 -5.6051217597666361E-03 + 356 3.8115175596341799E-04 + 357 3.6537156069103771E-03 + 358 -1.5875518603916227E-03 + 359 8.5002203031352540E-03 + 360 1.6519018651577541E-04 + 361 2.7835362288015924E-04 + 362 1.5171764354513046E-04 + 363 9.6309332148445000E-04 + 364 1.5685465313985669E-03 + 365 1.6086685841476705E-03 + 366 -6.7088162559294053E-04 + 367 1.7960630381975176E-04 + 368 -5.2944863272370780E-02 + 369 1.0336225841746261E-03 + 370 -2.9078543086294067E-02 + 371 8.9945325406320699E-03 + 372 1.0665010627173585E-03 + 373 -8.4738657974758094E-05 + 374 -1.8727595257017873E-03 + 375 1.5369672858642491E-03 + 376 1.9964654250230322E-03 + 377 -1.1293018856315324E-03 + 378 2.2867690884977869E-03 + 379 -4.4501038737192742E-04 + 380 6.1320290393404326E-04 + 381 4.0901173449765578E-02 + 382 -1.0055840174902199E-03 + 383 -2.3593337996996185E-04 + 384 1.6933460152558744E-02 + 385 1.0765472253833396E-03 + 386 3.1593299945734251E-04 + 387 4.3710433356044604E-04 + 388 7.0942998333308935E-04 + 389 -1.4369270261593075E-03 + 390 1.2710580698016213E-03 + 391 1.8065034250416400E-03 + 392 2.2728243734959088E-03 + 393 1.2770292727643548E-03 + 394 -4.5934122171107997E-03 + 395 -4.5509453355272573E-04 + 396 -3.0719671950881459E-04 + 397 -3.0268026881880589E-03 + 398 -1.2617422633839019E-03 + 399 7.4239594702332781E-06 + 400 1.8332486058907489E-04 + 401 2.7875694778644830E-04 + 402 -1.6218883471776058E-01 + 403 2.0170663260975500E-02 + 404 -7.5001119009589692E-03 + 405 -1.8440403813154199E-01 + 406 -8.2627868444530628E-02 + 407 -1.2853059313961560E-03 + 408 1.5402547809173089E-03 + 409 -1.5588694769320586E-04 + 410 -3.0024460136566324E-03 + 411 -8.1891255587351267E-04 + 412 -2.8493282715420955E-04 + 413 1.0166584819742896E-03 + 414 3.1561175140951408E-04 + 415 -9.4549492569020598E-05 + 416 -9.7543167524604551E-05 + 417 -1.1962407569877710E-03 + 418 -1.6137039383181735E-04 + 419 3.3477727403151601E-02 + 420 -6.2192165458692654E-04 + 421 -2.1007304061612850E-03 + 422 -4.9461041288586536E-03 + 423 -1.3085974177524062E-02 + 424 1.5306022317935084E-04 + 425 -4.7566779480117462E-04 + 426 -9.0223971733471690E-04 + 427 -1.3669025462425515E-03 + 428 -1.5302386278337379E-03 + 429 -4.8350113659782436E-04 + 430 1.3863127950377294E-03 + 431 -3.9868475618758814E-04 + 432 1.5480451599101301E-02 + 433 -5.3175275791719599E-05 + 434 -5.7173361523893450E-03 + 435 5.7539461215753073E-04 + 436 3.1834610113470507E-03 + 437 -4.0853311722133771E-04 + 438 -3.9329609171396434E-04 + 439 7.9941307512250599E-04 + 440 1.0401391942845631E-03 + 441 1.8412225664644912E-03 + 442 -7.7903138507105915E-04 + 443 -7.4566361874501565E-04 + 444 6.9486876277333545E-04 + 445 -9.2246997442834329E-03 + 446 7.1319017329698250E-04 + 447 -4.2625719350660686E-03 + 448 -2.3683804925341339E-03 + 449 9.5220519472345331E-04 + 450 4.1017355585072757E-05 + 451 1.9804607753110391E-04 + 452 7.2508119635816609E-04 + 453 -1.0633083255325754E-01 + 454 1.7885396797406530E-01 + 455 -1.0949914246209246E-02 + 456 1.9750073447274769E-01 + 457 -2.2195810438575353E-01 + 458 1.2327415373916278E-03 + 459 -2.4281865681445843E-04 + 460 6.1828670886422265E-04 + 461 1.9196040667919938E-04 + 462 -4.9403850131506664E-04 + 463 -3.3109129479748340E-04 + 464 2.4589490783658431E-04 + 465 2.2486324286580538E-04 + 466 2.9893337308445941E-04 + 467 -3.4940805587384852E-04 + 468 -1.3780654930034715E-04 + 469 1.9596119921188068E-05 + 470 -3.3625769390862271E-03 + 471 3.0439340736975118E-04 + 472 1.7690898535409037E-03 + 473 3.7773232895995140E-03 + 474 2.8091460105928306E-03 + 475 6.5644929165016705E-04 + 476 1.4512509846885005E-03 + 477 7.3742478225445141E-04 + 478 1.4194505783595429E-02 + 479 1.0825770854054412E-02 + 480 -1.1817505045139442E-02 + 481 3.6846378929762148E-02 + 482 -8.6075043587427093E-03 + 483 -1.2375784272508278E-04 + 484 1.6778123859952784E-03 + 485 -1.0162368721422670E-03 + 486 2.2904420627212680E-03 + 487 1.5916560163562639E-03 + 488 -2.4771654386573601E-04 + 489 -7.2494416547896703E-06 + 490 -2.5359642700238850E-04 + 491 3.6008758283837043E-04 + 492 -2.2200204675033904E-04 + 493 1.9275324975377418E-04 + 494 2.9389088410699476E-05 +Ene= -4.6000110029E-01 +Spin= Alpha +Occup= 2.0000000 + 1 2.1284068717866969E-03 + 2 2.2470897870639569E-04 + 3 -1.6863930751432883E-03 + 4 2.5410574709854024E-03 + 5 -8.1032987396950390E-04 + 6 -5.6761002113804896E-04 + 7 1.6206802711125773E-04 + 8 -2.0881516785243220E-04 + 9 2.7589011602156348E-03 + 10 2.3203419661046101E-04 + 11 -9.8657823352045360E-03 + 12 3.1783247364298252E-02 + 13 2.4423514613425994E-02 + 14 -4.5912156078245508E-04 + 15 3.4248428564463018E-04 + 16 -4.2056560047155515E-04 + 17 4.8956533386119744E-04 + 18 -1.6929789110298635E-03 + 19 -5.6778532038780414E-05 + 20 9.8797505156886803E-05 + 21 -1.1981604045265007E-04 + 22 -1.5584675698250504E-04 + 23 6.3026989279813344E-05 + 24 4.2012308502234145E-05 + 25 4.2437266251047298E-04 + 26 4.1297204787663164E-03 + 27 2.8318418005910724E-04 + 28 -5.4520704785599059E-03 + 29 2.1348409462058197E-03 + 30 -8.6163941452660638E-04 + 31 -1.2401078944307921E-03 + 32 9.6585270669101984E-04 + 33 -3.4414945755008693E-04 + 34 4.1429486895849958E-02 + 35 7.1821882923557581E-02 + 36 1.4806241943034254E-02 + 37 1.3917619227827971E-01 + 38 5.4914233625573336E-02 + 39 -9.1308238414427787E-04 + 40 1.4198065355125655E-03 + 41 -5.8222090818250624E-04 + 42 1.9753355783655195E-03 + 43 -7.3582356654469834E-04 + 44 3.9757510512515771E-04 + 45 2.9756816292315842E-04 + 46 -2.9039945324207820E-04 + 47 -6.2639849962436013E-05 + 48 4.1330785385567200E-04 + 49 1.8581238805473916E-04 + 50 -2.2810767111663725E-05 + 51 -3.1610167106005129E-03 + 52 6.0070884641087534E-04 + 53 5.6070034464504993E-04 + 54 1.9039664321798592E-03 + 55 1.5676687122693125E-03 + 56 5.2871860432835403E-04 + 57 5.2851065208718269E-04 + 58 5.8020542851444580E-04 + 59 -1.2537887327019968E-03 + 60 -1.0883047239302844E-03 + 61 -1.6918390964172969E-02 + 62 1.0411914796465742E-02 + 63 1.6573994391280390E-03 + 64 -1.0705154242247724E-04 + 65 -9.1463086319866515E-04 + 66 2.4650364558598823E-04 + 67 -1.1803404798686797E-03 + 68 -1.0736331271514795E-03 + 69 -8.2134539869347953E-05 + 70 1.0707631284860882E-05 + 71 5.2850394221397426E-05 + 72 -1.1114527973361913E-05 + 73 3.3314619813034257E-04 + 74 3.4698731182880940E-04 + 75 1.8950702498292523E-04 + 76 5.9437053181782612E-03 + 77 -1.5334775519520823E-04 + 78 2.4485107893607609E-03 + 79 6.8736999990471632E-03 + 80 -2.1663552388964839E-04 + 81 3.3841423921535883E-04 + 82 4.6810391247869816E-05 + 83 7.8700826751115676E-05 + 84 2.2943873343538881E-04 + 85 5.4327048045995426E-04 + 86 -1.7959708476061758E-03 + 87 -4.9806432784069415E-04 + 88 -1.4214220468995078E-03 + 89 6.8242830617472328E-03 + 90 -7.7728797324839424E-05 + 91 -1.0827515312569365E-03 + 92 -1.9633007941987231E-03 + 93 1.9675087732866155E-03 + 94 -5.8304488917755126E-04 + 95 -2.2500387928524006E-04 + 96 -8.6566155937141235E-05 + 97 3.7211660920791260E-04 + 98 -1.9565280467989912E-04 + 99 3.6962197640521172E-04 + 100 3.3176259532662853E-04 + 101 -3.8696587668902023E-04 + 102 2.2061418382918623E-02 + 103 -4.2796947498697900E-04 + 104 6.8366961609789617E-03 + 105 -7.9886361727553225E-03 + 106 2.1842479978805159E-03 + 107 2.2211648860224131E-04 + 108 -3.4018369047897161E-04 + 109 -3.4729078787301779E-04 + 110 6.4958044615076485E-04 + 111 -5.5805635034355595E-04 + 112 8.7107166520146169E-04 + 113 -1.4671259883997605E-04 + 114 1.9168122207919866E-03 + 115 -5.5613903477900427E-03 + 116 2.1232438315044327E-04 + 117 -7.3659703325943994E-03 + 118 -2.4908934620491031E-03 + 119 -3.3215120363875544E-03 + 120 -3.3746550314268209E-04 + 121 3.3768510288603506E-05 + 122 7.2291369974246627E-06 + 123 6.3848755966553947E-04 + 124 2.1869643125853595E-03 + 125 8.4364874398354785E-04 + 126 9.6949266037482152E-04 + 127 8.8476354488818045E-05 + 128 1.8871537700951581E-03 + 129 -1.1123862916547736E-03 + 130 -5.4567968777180838E-03 + 131 -7.0460770013818707E-03 + 132 1.8757527356803355E-03 + 133 -1.6095384331207889E-04 + 134 -2.1843854623869371E-04 + 135 1.0554465625177531E-03 + 136 -2.1018930918925055E-01 + 137 1.0689543607571414E-01 + 138 1.1685387531702281E-01 + 139 -2.2140119259450666E-01 + 140 -7.8849529167385451E-03 + 141 -8.6315117164383233E-04 + 142 1.6922941980824038E-03 + 143 2.0999474206975055E-03 + 144 -1.2756246677535130E-03 + 145 2.0553403092124172E-04 + 146 -1.9896853619509952E-04 + 147 2.4833659814712606E-04 + 148 9.0874343233364810E-05 + 149 1.7767551695431881E-04 + 150 -2.1982484477876102E-05 + 151 -4.7225950274945165E-04 + 152 -4.7675782843274717E-04 + 153 -1.7502562662656169E-03 + 154 -2.6656057926506316E-04 + 155 8.7015126126580228E-04 + 156 9.8538104783405553E-04 + 157 2.2711191223467690E-04 + 158 4.0697747108518100E-04 + 159 -2.5346002313224428E-04 + 160 -8.2319522910116936E-05 + 161 7.8165174594704758E-03 + 162 -3.5589783329765508E-03 + 163 -2.0811303321607428E-02 + 164 -2.1832387290839469E-02 + 165 -6.3106765245495768E-03 + 166 1.5143135249660866E-04 + 167 -1.0387267216083412E-05 + 168 -3.2987677578168466E-04 + 169 -5.9092949978519047E-04 + 170 -2.4212373151219618E-04 + 171 6.5207441486944023E-05 + 172 -5.6660650304585331E-05 + 173 -7.9223770513600958E-05 + 174 -1.0939955280837435E-04 + 175 1.8096199560840704E-04 + 176 3.6681782585973658E-04 + 177 -5.8627678512637263E-05 + 178 7.6400027475927454E-03 + 179 -9.0054540544123543E-05 + 180 -2.3081394132037319E-03 + 181 -1.4458668386838652E-02 + 182 -4.0219866789268722E-03 + 183 3.2067645399295363E-04 + 184 9.1231597501946162E-05 + 185 2.2704498880903880E-04 + 186 1.5629971756983326E-03 + 187 -6.0911513622926119E-05 + 188 2.0744298895764824E-03 + 189 8.0243320482929314E-04 + 190 7.0941439683320086E-04 + 191 5.2045723437648232E-03 + 192 -1.3838877719162036E-04 + 193 7.5358718198981836E-03 + 194 -1.3786064968914213E-03 + 195 9.5040470234159413E-04 + 196 -2.5860111879146263E-04 + 197 -1.6584959137503740E-04 + 198 9.3213606861776993E-05 + 199 1.2289606544376042E-03 + 200 -4.6219573049706181E-04 + 201 7.8098069960471684E-04 + 202 -1.3255581212806447E-03 + 203 1.1127421735793543E-03 + 204 3.0370867228393210E-03 + 205 3.3532924770031343E-04 + 206 -2.4457882473820801E-03 + 207 -1.8354378137916991E-03 + 208 -9.4504196252547350E-03 + 209 8.3679034868050595E-05 + 210 3.2618857460489610E-04 + 211 -2.6309324139821207E-04 + 212 2.1588128647685789E-01 + 213 -4.2622125957577049E-02 + 214 -2.2745697511504967E-01 + 215 7.6903480995913237E-02 + 216 -1.3765596542378908E-01 + 217 3.7243096948966726E-03 + 218 -5.8734751549089433E-04 + 219 -2.6219869034737188E-03 + 220 1.0745523261623279E-03 + 221 -6.6186714909339378E-04 + 222 2.8516293581633528E-04 + 223 3.4803502889222500E-04 + 224 4.7875161234167994E-04 + 225 2.1339836601473000E-04 + 226 -3.1162394054625023E-04 + 227 5.4399111460444178E-04 + 228 -1.2784217162727533E-04 + 229 -1.3180848987489321E-02 + 230 -3.1375470366105430E-04 + 231 4.7366952278744484E-03 + 232 2.3036072027073445E-03 + 233 8.9580200687008036E-04 + 234 -1.0876884340749427E-03 + 235 9.2477582432669368E-04 + 236 9.4906581871091408E-04 + 237 -1.4125514869304776E-01 + 238 9.3340381126387512E-02 + 239 8.6389663770740574E-02 + 240 -5.8452980371132668E-02 + 241 1.6219883844618255E-01 + 242 -3.7730441582507025E-04 + 243 2.0024483216259909E-04 + 244 -1.0393917957058226E-03 + 245 1.3143894525149619E-03 + 246 2.1774979179692356E-04 + 247 -3.4977247505934157E-04 + 248 4.0195092579426253E-04 + 249 -3.0445082447280300E-06 + 250 -1.8652996204480982E-05 + 251 -1.4679664389606758E-04 + 252 -4.7463413699670965E-05 + 253 -8.4253606177045763E-04 + 254 -7.9816794491239119E-03 + 255 7.4208971587175340E-04 + 256 1.9376551927300582E-03 + 257 1.4988339667817334E-03 + 258 1.7226505066520008E-03 + 259 -3.0989548614410693E-04 + 260 7.2430956646666656E-04 + 261 -9.9977216876077153E-04 + 262 -4.9424678325716676E-02 + 263 1.2825614293132026E-03 + 264 2.1855627197819603E-02 + 265 9.1876076228545912E-03 + 266 -3.0191279755079008E-02 + 267 9.4706440334835405E-05 + 268 3.7540199774091439E-04 + 269 5.9502457805715511E-05 + 270 8.9734078896393427E-04 + 271 -9.9642582721446273E-04 + 272 -1.8298465980333723E-04 + 273 -2.1585276827136980E-04 + 274 2.5738862029436963E-04 + 275 1.2758075280026149E-04 + 276 -1.4627171751372000E-04 + 277 -2.6383968646906099E-04 + 278 -2.1995198653626012E-04 + 279 5.3070948472539084E-02 + 280 -8.9766423246673071E-04 + 281 1.7307044053847441E-02 + 282 1.9443640598900320E-02 + 283 5.3556413003461078E-03 + 284 -2.5727965820591974E-04 + 285 -4.8414659375513709E-04 + 286 -7.4920057767227470E-04 + 287 2.4194455544577801E-03 + 288 -1.0989685214572687E-03 + 289 -9.6914674509684874E-04 + 290 1.2943210947593260E-03 + 291 -3.0636285217659309E-03 + 292 -1.8594285960994877E-03 + 293 2.8212086115133548E-04 + 294 -1.0714972587599984E-02 + 295 -1.0237399276949622E-02 + 296 -1.9021938642567284E-03 + 297 -1.0389164587416503E-03 + 298 -4.5350303819933032E-04 + 299 4.1311669500835940E-05 + 300 -9.3839650534870904E-04 + 301 -1.7828984726571638E-03 + 302 -2.7181634743006777E-03 + 303 2.4872916361354572E-03 + 304 1.4104914317352414E-03 + 305 -6.4355670969743742E-04 + 306 5.7611714360412427E-04 + 307 -2.2203915316626869E-03 + 308 -3.4745368282594656E-03 + 309 -2.0750951631604898E-03 + 310 3.9491346284849097E-04 + 311 -2.7501178453426397E-04 + 312 -7.9816008526511091E-05 + 313 3.3196461157032911E-02 + 314 1.0323526204506267E-02 + 315 1.1071023500446146E-01 + 316 -8.2191316051538676E-02 + 317 7.9296801828863311E-02 + 318 -1.5806662587405232E-03 + 319 -7.3028254657749294E-05 + 320 -6.6203939061780439E-04 + 321 1.0156528454835610E-04 + 322 1.1809954994526969E-03 + 323 -1.7172214573625048E-04 + 324 2.9342079849915592E-04 + 325 -3.8723868245909368E-05 + 326 3.4975871222644956E-04 + 327 -1.0461009880587173E-04 + 328 2.0858816739803475E-04 + 329 -2.1473112213320043E-04 + 330 3.7286555165242834E-03 + 331 1.3553025561709373E-04 + 332 1.0766358636317497E-03 + 333 1.8760890600898442E-03 + 334 8.3860269667084160E-04 + 335 5.1899735495432710E-04 + 336 -1.1101041210593146E-04 + 337 9.6857580852353431E-04 + 338 1.6224064981833344E-02 + 339 -5.3836894065417704E-03 + 340 -1.3860476210054927E-02 + 341 -2.9550052200317332E-02 + 342 -2.1244172531800802E-03 + 343 9.0689900778451378E-04 + 344 1.2299334943269592E-04 + 345 9.5478148290876065E-04 + 346 -1.1398749926460410E-03 + 347 1.1530648971619347E-03 + 348 1.5854305407703544E-06 + 349 -3.4013624321863855E-05 + 350 1.5001950065706652E-04 + 351 -1.5359289797457483E-04 + 352 -3.5676819018259451E-05 + 353 -4.6565007084838208E-04 + 354 -5.4553321409054863E-04 + 355 -2.7989594072476847E-02 + 356 4.2812897973403148E-04 + 357 -1.2941088991701337E-03 + 358 3.7380936748217775E-03 + 359 3.8722871074999021E-03 + 360 -2.8867717654275577E-04 + 361 2.1093213536205793E-04 + 362 2.7268814672634211E-04 + 363 8.5212248925329876E-04 + 364 -2.4404382668960349E-03 + 365 -4.8197016308488877E-04 + 366 8.2024418553188394E-04 + 367 1.2845598906460406E-03 + 368 1.3728659443044581E-02 + 369 1.8436135681708440E-05 + 370 8.7670168500757796E-03 + 371 8.8941874882040584E-03 + 372 -2.4143299753003377E-03 + 373 -8.1162492313612271E-04 + 374 9.7199338154727694E-04 + 375 -1.7503019934283824E-03 + 376 -1.5170032907560851E-03 + 377 -1.3854914668182490E-03 + 378 -3.6529010622606255E-03 + 379 -3.4931882677402581E-04 + 380 -1.5283769342767282E-03 + 381 -3.7113464517269761E-02 + 382 5.6038658518557866E-04 + 383 9.4564097613522701E-03 + 384 -6.7595815626322912E-03 + 385 -7.4624226324193806E-03 + 386 -6.2751760329904569E-05 + 387 -1.0429214541310707E-03 + 388 8.4295814670354643E-04 + 389 1.2275350804690154E-03 + 390 -5.7254678143741874E-04 + 391 3.0880584727838228E-03 + 392 1.4802594297544998E-03 + 393 -8.2245468289362448E-04 + 394 -2.1919304202120089E-02 + 395 1.6160816966501979E-04 + 396 -3.4085089725253105E-03 + 397 1.4368356050263414E-02 + 398 4.8320000318964867E-03 + 399 -3.0193295774453823E-04 + 400 3.9889287951041868E-04 + 401 3.4137557614362688E-04 + 402 2.7616603878603235E-01 + 403 3.1546087943828433E-02 + 404 -2.6514877467998960E-01 + 405 2.3178880992530165E-01 + 406 -3.3716708313985377E-02 + 407 6.8395778963351098E-03 + 408 -7.2934805655902916E-04 + 409 5.1251065219702326E-04 + 410 6.0398816130947889E-03 + 411 -7.0630008015909592E-04 + 412 8.6588611017553185E-04 + 413 -2.5241779514984631E-04 + 414 -3.4839463319779658E-04 + 415 3.3306978547381036E-04 + 416 -8.1304089653519776E-04 + 417 1.1097538597145036E-03 + 418 -3.5853044925994183E-04 + 419 -4.0732665656981566E-03 + 420 1.8861284975140298E-04 + 421 1.0565657922529737E-03 + 422 2.5040163715370982E-02 + 423 1.3647715212050403E-02 + 424 -2.0796554993465603E-04 + 425 1.4680997665589637E-04 + 426 6.4871407694104522E-04 + 427 2.4031820101428486E-03 + 428 1.4395954198905818E-03 + 429 2.1319236587570831E-03 + 430 -6.3427849546616631E-04 + 431 2.6436188859933378E-04 + 432 -1.6859669589736746E-02 + 433 3.4240547725473329E-04 + 434 2.2401353725317787E-03 + 435 2.1475842608892188E-03 + 436 -6.7537941093157808E-03 + 437 2.6604273461796224E-04 + 438 1.1227854437202238E-04 + 439 -4.1770774835390859E-04 + 440 2.6242422058129388E-04 + 441 -1.9031415709208782E-03 + 442 1.3220370199320550E-03 + 443 3.9727590677193981E-04 + 444 -4.6839193065013396E-04 + 445 9.3099952096537975E-03 + 446 6.4931031392225251E-04 + 447 4.7396724347093843E-03 + 448 8.1542065108447422E-03 + 449 -9.3949955283721394E-04 + 450 1.5658764327419668E-04 + 451 1.2619698557925275E-03 + 452 -2.3572022160616587E-04 + 453 -3.5052279909711109E-01 + 454 -2.9419273926332984E-01 + 455 1.4229057217769478E-01 + 456 -3.6356433436206087E-01 + 457 2.2919501200020831E-01 + 458 -3.2525657052836672E-03 + 459 -5.7505367602647271E-04 + 460 3.1071273344995352E-03 + 461 -1.8243359655388625E-03 + 462 2.1488766863297366E-03 + 463 -6.2849663293630686E-04 + 464 -5.9442654718213804E-04 + 465 -3.0949288339399763E-04 + 466 -9.1497460499350314E-04 + 467 5.9909398947614640E-04 + 468 -6.2483070726002371E-04 + 469 -8.9436644770547936E-05 + 470 4.2145159445422025E-03 + 471 -8.0625624415158652E-04 + 472 -1.0780971153161150E-03 + 473 -4.2870681108488968E-04 + 474 6.3723079846876118E-04 + 475 -6.3896780214982133E-04 + 476 -5.1241003570489134E-04 + 477 -4.1854334580579617E-04 + 478 -1.5322833418698204E-02 + 479 2.7287312915021591E-02 + 480 1.9279711302130124E-02 + 481 -2.5122348026136814E-02 + 482 2.3539616726506753E-02 + 483 3.0353398741677035E-04 + 484 6.4048940578371831E-04 + 485 3.8835493281833672E-04 + 486 -1.3973112559319462E-03 + 487 4.9361408532791354E-04 + 488 -2.8372514065792099E-04 + 489 2.5966561450855576E-04 + 490 -1.3542449980043328E-04 + 491 2.8970728991409430E-04 + 492 -1.4800443317318238E-04 + 493 -7.1554490736060254E-05 + 494 3.0769969815981114E-04 +Ene= -4.5792110670E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -4.2666034679141249E-03 + 2 6.4372692889419774E-04 + 3 2.4574401723395332E-03 + 4 3.4215677389500248E-03 + 5 2.2165622836094109E-04 + 6 -4.5259558157955689E-04 + 7 1.1675545107216493E-03 + 8 5.4822158201455709E-04 + 9 1.0706166145457016E-03 + 10 5.6555199463846503E-02 + 11 6.9725010856113261E-03 + 12 8.8824801644413809E-02 + 13 2.5566293291460584E-03 + 14 1.4224177754766315E-03 + 15 -1.9480693909945779E-04 + 16 -2.2210987291516077E-04 + 17 -1.1868084966613884E-03 + 18 -2.1324268618273202E-03 + 19 -2.3074663349743169E-04 + 20 -3.3943060526505530E-04 + 21 4.8782907519115239E-06 + 22 -2.2924946359842668E-04 + 23 3.2938124401766627E-04 + 24 7.5972834552331286E-04 + 25 3.6751433444272611E-04 + 26 -5.0965833282495608E-05 + 27 -4.5027235893696759E-04 + 28 -4.8562814886158713E-03 + 29 -1.0135019371995517E-03 + 30 4.1726012782787930E-03 + 31 -2.7489164942706278E-04 + 32 6.3864494106849556E-06 + 33 8.3515273295419433E-04 + 34 2.5790536431490690E-02 + 35 8.0585957399820468E-02 + 36 6.4202800153409886E-02 + 37 1.8680393808593671E-02 + 38 3.6336849943957475E-03 + 39 -1.6772865086579895E-03 + 40 1.1756372358700774E-03 + 41 3.2239138095114297E-04 + 42 4.9626859014374562E-04 + 43 -6.6152133197405646E-05 + 44 1.8107102569817269E-04 + 45 -1.0974073703721249E-04 + 46 -1.1475098723313968E-04 + 47 -1.3241249960690727E-04 + 48 -3.4490075197047838E-04 + 49 -1.3616087603864668E-04 + 50 -1.2673174082799318E-04 + 51 -2.9459487545649005E-03 + 52 6.4853017759856392E-04 + 53 -1.2515652733991335E-03 + 54 8.2291690501324212E-04 + 55 -1.9690028419017619E-03 + 56 -1.3179875508777841E-04 + 57 2.5774671834017700E-05 + 58 -1.0844237376462121E-03 + 59 -1.8962523977054131E-03 + 60 -2.0085448454688164E-02 + 61 -4.7925346580691139E-04 + 62 7.7644500808295687E-03 + 63 5.8125743841111327E-03 + 64 3.1268118152183932E-04 + 65 7.4331492746486762E-04 + 66 -2.0417411590791684E-03 + 67 -4.9983470556320129E-04 + 68 -1.6411330338225253E-04 + 69 -7.8213240812767003E-05 + 70 3.1847455049498425E-04 + 71 1.3440546965562080E-04 + 72 2.3307369328300087E-04 + 73 1.9048161531405635E-04 + 74 1.4141760533439412E-04 + 75 -1.7930361658068702E-04 + 76 4.3594093118633902E-02 + 77 -1.1211671349011126E-03 + 78 7.8672209615765695E-03 + 79 1.0652622973885906E-02 + 80 5.5573355893320762E-03 + 81 -7.8518306846855416E-05 + 82 6.3218211188301925E-04 + 83 5.1507006513659627E-04 + 84 -2.2574676861052681E-03 + 85 -8.5297798649305629E-04 + 86 -1.3479692442697063E-03 + 87 -1.1790519171362506E-03 + 88 -2.9135178496112954E-03 + 89 1.3971902560900050E-02 + 90 -1.5995508140724779E-04 + 91 -2.3760764198506308E-03 + 92 -6.4879649772731753E-03 + 93 2.6132796037324152E-03 + 94 -2.4046196111600661E-04 + 95 -4.8901311552680682E-04 + 96 5.2379469178933660E-04 + 97 6.8664363179429247E-04 + 98 -3.6544418616368980E-04 + 99 2.5629628941006003E-04 + 100 1.3542403910109632E-03 + 101 -4.6159877912782899E-05 + 102 8.6330059021690764E-03 + 103 -1.7339656262787536E-04 + 104 3.7213252381584397E-03 + 105 -8.0608104285306956E-04 + 106 -7.1133799885554410E-04 + 107 2.2375207607074909E-04 + 108 -2.1012053746462421E-04 + 109 -5.6493489628030736E-04 + 110 2.7829998277295582E-04 + 111 1.7827340461568376E-05 + 112 1.0437370321745307E-04 + 113 -2.6659047599674179E-04 + 114 2.7743389754300823E-04 + 115 -9.5794154735136718E-03 + 116 -3.5600278264377040E-05 + 117 -3.6305959013411626E-03 + 118 1.7593234821626368E-03 + 119 -2.5355039461894425E-03 + 120 -3.7630230478832464E-04 + 121 -7.5820861453374064E-05 + 122 -3.6027013705355961E-05 + 123 -2.5230878338704975E-04 + 124 5.0205334278630729E-04 + 125 -3.1377128116026484E-04 + 126 5.2768872357764627E-04 + 127 8.1119043327875916E-04 + 128 -2.8028393631723812E-03 + 129 -6.6125519989820413E-04 + 130 1.0719096370097184E-03 + 131 -2.4446618768120760E-03 + 132 2.4536030037847880E-03 + 133 -6.2468914596492417E-04 + 134 -2.1074298169415347E-04 + 135 7.9925214250588684E-04 + 136 8.2734399132556161E-02 + 137 -2.2560410986372376E-02 + 138 4.9141547132642432E-02 + 139 -1.4524663381066651E-02 + 140 1.0824268141972131E-01 + 141 -2.9393422797958571E-04 + 142 5.1956235769351857E-04 + 143 4.4641578556027094E-04 + 144 -6.0632995618413845E-04 + 145 -1.7046266508239700E-04 + 146 -1.9937481065255549E-04 + 147 5.8131274976444199E-05 + 148 -1.1754982220913861E-04 + 149 -2.5111026628432600E-04 + 150 8.1879414345285858E-05 + 151 -2.0150362740922685E-04 + 152 3.4359545830157543E-04 + 153 4.5636009359524944E-03 + 154 -2.4618795571544936E-04 + 155 -7.4727154769869280E-04 + 156 1.9808338642234671E-03 + 157 -2.2888180182254634E-03 + 158 1.0086358966374740E-04 + 159 -7.7035541513905504E-05 + 160 -2.5081375703292394E-04 + 161 -1.9760553297465057E-03 + 162 6.9599368440442840E-03 + 163 -3.2561605081340803E-02 + 164 -4.8675097517290140E-03 + 165 -7.9068098635974131E-03 + 166 9.1827306709273279E-04 + 167 6.2730823984258712E-04 + 168 -1.1142932191722547E-03 + 169 -6.1851355111869843E-04 + 170 -5.5279560784148149E-04 + 171 -1.2380127340212626E-04 + 172 -2.2358486189611896E-04 + 173 3.0278101529484836E-04 + 174 1.6174721227355700E-04 + 175 2.7638919081105146E-04 + 176 3.4234744556354852E-04 + 177 -3.7430533191416880E-05 + 178 1.3230471978142968E-03 + 179 -1.3556304002552587E-04 + 180 -4.3137546434700736E-03 + 181 -3.6457591231019436E-04 + 182 -9.0365970238475714E-04 + 183 -4.6865279521597820E-04 + 184 -1.1196104591745558E-04 + 185 1.4699274117026978E-04 + 186 4.7433973785451842E-05 + 187 4.2048549736082327E-04 + 188 3.7056906015756167E-04 + 189 -6.1829540264760020E-04 + 190 -3.7618203099929837E-04 + 191 1.3512415921386892E-02 + 192 -1.7183864849095015E-04 + 193 4.6639411571318054E-03 + 194 -2.0268854412471998E-03 + 195 2.4719779770690890E-03 + 196 -3.4251186624093531E-04 + 197 -8.1764373569201789E-05 + 198 4.6724749326032430E-04 + 199 -1.7377858430276459E-04 + 200 2.3039346223867362E-04 + 201 1.7074165533806772E-04 + 202 -2.1955445595030993E-04 + 203 9.6917092589280101E-04 + 204 1.3937099575952756E-03 + 205 1.3364336474200943E-05 + 206 -1.1271073081868779E-03 + 207 5.0085293438742809E-04 + 208 -3.0104138075705287E-03 + 209 -1.7719141768548255E-04 + 210 5.2583489669977583E-04 + 211 -4.5208023361804304E-04 + 212 3.7186773802800520E-02 + 213 3.3580133181936089E-02 + 214 -6.2131511117837854E-03 + 215 4.2399074881793238E-02 + 216 2.4135749825742816E-02 + 217 1.6606146949429371E-03 + 218 9.0803082254752965E-04 + 219 -1.0419809993922782E-03 + 220 7.8045882920160889E-04 + 221 9.5127684735649002E-04 + 222 -7.6440300844816649E-05 + 223 -2.4445771176932274E-04 + 224 7.2705241169956119E-05 + 225 -3.1189636062228684E-06 + 226 4.8001379987855488E-05 + 227 3.4553666327281007E-04 + 228 1.0370846054231105E-05 + 229 -6.4810594710672910E-03 + 230 -4.5235395255996630E-04 + 231 3.7494472879210771E-03 + 232 5.7274250580207761E-03 + 233 -4.7255239891164119E-04 + 234 1.6473967224563354E-03 + 235 3.5503043505044927E-04 + 236 2.5600873386679021E-04 + 237 -7.4777425913827467E-02 + 238 1.7700696171184555E-01 + 239 3.9966268738841959E-01 + 240 -3.2375099101696597E-01 + 241 1.1812981438446188E-01 + 242 2.3998809565994612E-03 + 243 -5.1295849400362738E-04 + 244 -1.4491505167915659E-03 + 245 8.5157557430099145E-04 + 246 -3.7506359306197267E-03 + 247 1.6383937145098053E-04 + 248 -9.8515999567988424E-04 + 249 -1.1238987518277094E-03 + 250 -2.7381218383854488E-04 + 251 -7.4406621046680696E-06 + 252 -1.6332551157134613E-04 + 253 -4.2571486217557876E-04 + 254 4.9246031138378884E-03 + 255 -1.5231521723480172E-03 + 256 -4.2038554113002009E-04 + 257 7.3192760020245398E-04 + 258 -1.0577460329554320E-03 + 259 2.3674568345001426E-04 + 260 -8.5702065420569800E-05 + 261 1.2034544408895302E-03 + 262 4.5864840010771062E-02 + 263 2.9251997459269416E-02 + 264 -1.2051209005619517E-02 + 265 -4.3184216285405228E-03 + 266 -7.3601405830627130E-03 + 267 -1.8358079881900088E-04 + 268 1.2364972982673378E-04 + 269 -2.6400668644753066E-04 + 270 -2.0208515878642109E-04 + 271 3.2242928369615099E-04 + 272 3.2723911741897813E-04 + 273 9.9069055952792743E-05 + 274 3.4529135933672827E-05 + 275 -9.0290035023454085E-05 + 276 -2.9537890950611062E-04 + 277 1.8497476702189779E-04 + 278 1.2399579141453577E-04 + 279 -6.3154144840093046E-02 + 280 8.5757566271022401E-04 + 281 8.7210936447997319E-03 + 282 -1.5802759663875170E-02 + 283 -4.6969493526371319E-03 + 284 9.5217568993168783E-04 + 285 6.9195584431953048E-04 + 286 1.2209157911175820E-03 + 287 -3.3353106430782709E-03 + 288 4.6837587077440968E-05 + 289 4.5445382719659622E-04 + 290 1.8029951838279858E-03 + 291 1.3894104507767310E-04 + 292 -5.2718629421241572E-02 + 293 1.6198988939262137E-03 + 294 -1.0061565892606912E-02 + 295 -1.1421765192027714E-02 + 296 4.2009610548914458E-02 + 297 -1.1154613710592141E-03 + 298 -4.8231937821331878E-04 + 299 1.5879464663327372E-03 + 300 4.6152845028336643E-03 + 301 -1.0109042751972637E-02 + 302 -6.9835267509739700E-03 + 303 3.0755116895354840E-04 + 304 -1.0067866271507000E-03 + 305 -1.1408500945955776E-02 + 306 4.9578779355000612E-04 + 307 2.4797628137897686E-03 + 308 3.5872574697653299E-04 + 309 -2.5354680224479080E-03 + 310 -1.6363912107944364E-03 + 311 -3.8775266620262659E-05 + 312 5.6156285225070603E-04 + 313 7.3112816366368794E-02 + 314 3.3896711565886145E-01 + 315 4.0354629797924857E-01 + 316 1.5190364771608561E-01 + 317 -1.0876672270353195E-02 + 318 2.6980259836746780E-05 + 319 6.8267814548698936E-04 + 320 -6.8603780689930087E-04 + 321 3.8970422081475824E-04 + 322 -3.9625766895719384E-03 + 323 -3.0099842842847967E-04 + 324 9.6637761974763684E-05 + 325 -7.8978944322576940E-04 + 326 -1.1595605766983014E-05 + 327 -7.5762694780058266E-04 + 328 4.0752076052517417E-04 + 329 -1.6469701332535975E-04 + 330 7.8618524392402281E-04 + 331 1.1352383779010029E-05 + 332 -1.7052719499873511E-03 + 333 4.8341231427513962E-04 + 334 -1.2144378725022333E-04 + 335 -2.0012999982627373E-04 + 336 -4.2440052165528544E-04 + 337 -2.8429557468070182E-05 + 338 -2.9428441005439336E-02 + 339 -1.0688460586727840E-02 + 340 -2.6594534550832519E-03 + 341 -3.4835359716521483E-03 + 342 -1.6505688001311976E-02 + 343 4.3731185614184964E-05 + 344 6.1225491020542775E-04 + 345 8.0338619955512927E-05 + 346 9.5713617888402037E-04 + 347 -1.1069712613064199E-03 + 348 -8.8491356281279466E-05 + 349 1.4936468145522141E-04 + 350 2.5860898597806218E-04 + 351 4.8332287277550568E-05 + 352 3.7756774807203356E-04 + 353 2.2850081983908318E-04 + 354 4.8294854481056355E-04 + 355 2.7174136060742125E-02 + 356 -5.1050965119480622E-04 + 357 -4.4634871335883040E-03 + 358 -2.1693928267115781E-03 + 359 -1.8980959120959918E-02 + 360 -1.0017046579032200E-04 + 361 2.5431370503612685E-04 + 362 -9.8494442204870541E-04 + 363 8.4448463348428136E-04 + 364 -1.3224054271129637E-03 + 365 -4.0581958309436417E-03 + 366 -1.7119626091179154E-03 + 367 -1.9992689802155379E-03 + 368 -7.0372715503644410E-03 + 369 8.1662055826968406E-05 + 370 2.2085488582354309E-03 + 371 -6.3940169160490515E-03 + 372 -9.0334298070471439E-04 + 373 -2.0065533775810056E-04 + 374 1.3618584248860301E-03 + 375 7.5287522067069360E-04 + 376 1.8968485907977237E-03 + 377 -6.5550845234687931E-04 + 378 1.8624997638268554E-03 + 379 6.3604247552342269E-04 + 380 7.0739961350706703E-04 + 381 7.2844099367719586E-02 + 382 -1.1037541671764140E-03 + 383 -2.2259676030837276E-02 + 384 5.6500392795477737E-03 + 385 1.8431137086135748E-02 + 386 4.5932189690559830E-04 + 387 1.2927781942826582E-03 + 388 -8.7215105208943394E-04 + 389 -3.1969296721761882E-03 + 390 2.1652052579587953E-03 + 391 2.6562501617318808E-04 + 392 -4.1223424226055204E-04 + 393 1.9527656136282693E-03 + 394 1.5548878351094704E-02 + 395 1.4686462258837855E-04 + 396 1.0748945939273506E-02 + 397 -4.0004886656770612E-04 + 398 9.2741199210802543E-05 + 399 2.5183798261559434E-03 + 400 7.2372830377813023E-04 + 401 -7.6158499638630261E-04 + 402 -2.1999174015262341E-01 + 403 1.7211745248014459E-01 + 404 2.7665038396355177E-02 + 405 1.8173502518011878E-02 + 406 2.7853525288944719E-01 + 407 -6.7350776863009717E-03 + 408 2.6872508399721066E-03 + 409 -1.0873491168317065E-03 + 410 4.8704846943200386E-04 + 411 3.6166562142290566E-03 + 412 -1.0198922798749501E-03 + 413 4.8936046697500184E-04 + 414 -6.7212306163099203E-04 + 415 -2.0966817924341629E-04 + 416 1.5137480002253478E-03 + 417 1.6747836752835116E-04 + 418 1.9133638989767834E-04 + 419 2.5073510427807439E-02 + 420 -2.2201142947148855E-04 + 421 -2.6178795334157907E-03 + 422 -8.6494649408978014E-03 + 423 -1.3319752679114822E-02 + 424 -6.4353689649535766E-04 + 425 2.3278268496592709E-04 + 426 -1.1616003492024312E-05 + 427 -7.3949503528376935E-04 + 428 -2.1162401695019465E-03 + 429 7.4231941216036472E-04 + 430 -1.4341503515895122E-05 + 431 -3.3483086713586093E-03 + 432 -3.7393402310458214E-02 + 433 1.0345481419891478E-03 + 434 1.4565328512920236E-02 + 435 4.8528231869361541E-03 + 436 -1.4973505960847908E-02 + 437 -4.7738701579358331E-04 + 438 9.8367420192324606E-04 + 439 4.9366022781411451E-04 + 440 1.2669508197568104E-03 + 441 -2.0495572641436774E-03 + 442 -2.0515948759542730E-03 + 443 1.2543544056253166E-03 + 444 2.3937798125294855E-03 + 445 -4.4882208735896349E-03 + 446 -1.0613083075176390E-04 + 447 1.7712662434918205E-03 + 448 -5.3060369160492001E-03 + 449 -1.0855402575350921E-03 + 450 -7.2879192674074481E-04 + 451 -1.0357350391869539E-03 + 452 2.0417232367220579E-04 + 453 -5.3089070385745188E-02 + 454 -8.9982973274341974E-02 + 455 -1.2215148845154965E-02 + 456 3.5157953841609318E-01 + 457 4.8025512246531774E-02 + 458 -3.6089742421326320E-04 + 459 -1.6332691299174660E-03 + 460 -7.6312601958029413E-04 + 461 4.3009850840283071E-03 + 462 1.0092953451632395E-03 + 463 8.4174919129045861E-05 + 464 -5.3909773654955398E-04 + 465 1.2752814490157266E-04 + 466 -8.0722695824715694E-05 + 467 1.9259617856591478E-04 + 468 7.9925037869820826E-04 + 469 4.0962575527184007E-04 + 470 -8.1011058362209058E-03 + 471 5.4624866223783330E-04 + 472 -2.3171106083169474E-03 + 473 -3.0004522885446966E-03 + 474 1.3286709897773006E-03 + 475 1.0032766185378277E-03 + 476 2.0896257267072941E-03 + 477 8.7237198231551673E-04 + 478 5.3649417213918159E-03 + 479 -9.1185092266961101E-03 + 480 -1.6512474457979487E-02 + 481 -1.5074503006554376E-02 + 482 -5.0737638250888270E-02 + 483 2.8365431628842403E-05 + 484 8.9851253975748086E-04 + 485 -5.8763859504727407E-04 + 486 5.9137514602615416E-04 + 487 -8.6899964001161095E-04 + 488 -3.4305881404224440E-04 + 489 -2.3656831284770761E-04 + 490 -3.2072283963735537E-04 + 491 -2.4775645855255022E-04 + 492 8.5950510454694236E-05 + 493 -4.0099151700017223E-04 + 494 -4.2679135560444296E-04 +Ene= -4.5668941785E-01 +Spin= Alpha +Occup= 2.0000000 + 1 1.0677562310394561E-02 + 2 -2.1542655657949019E-04 + 3 -3.7136904290079090E-03 + 4 1.6299522305221379E-03 + 5 -2.4600787882337080E-03 + 6 -1.2796949884532611E-03 + 7 -2.2361403915510173E-04 + 8 -1.6200386332337669E-03 + 9 -5.9206103455892528E-02 + 10 -5.0930364187309965E-02 + 11 -1.0755854340623219E-01 + 12 1.1904521751770081E-02 + 13 -8.7078750030618754E-02 + 14 -1.7919020955451223E-03 + 15 1.2442325933355366E-03 + 16 -1.1481232183344296E-03 + 17 8.7973880406185239E-04 + 18 -1.1698285516697994E-03 + 19 8.8653392010144751E-04 + 20 5.5208489129618236E-04 + 21 -5.0307815785036322E-04 + 22 6.8416685782204598E-04 + 23 -3.5043999070424843E-04 + 24 3.4532005557934541E-04 + 25 1.2336004362962629E-04 + 26 1.1564284555649340E-02 + 27 5.5956525591255844E-04 + 28 -1.3165807407409752E-04 + 29 1.9541090293330407E-03 + 30 -5.6418721157494179E-03 + 31 -2.6410020753030297E-04 + 32 5.4501891637832856E-04 + 33 -8.7295801606723442E-04 + 34 3.7669809452886928E-02 + 35 -1.0782194477256943E-01 + 36 -3.7576735191409888E-02 + 37 4.1683067879223677E-02 + 38 3.6721978843882383E-02 + 39 1.4722107906256030E-03 + 40 -1.8267631718649599E-03 + 41 -4.6660424050841968E-04 + 42 1.1797414727786769E-03 + 43 1.7941832263944826E-03 + 44 -1.4325244104331457E-04 + 45 4.5994430395161057E-04 + 46 2.8063889867336805E-05 + 47 4.5991304414545563E-04 + 48 -1.9154033834130980E-04 + 49 -3.5073799379640541E-04 + 50 2.4866517542186941E-05 + 51 2.0426268175521012E-03 + 52 1.3363933347616152E-04 + 53 8.1531393008736706E-04 + 54 4.2506921326018504E-04 + 55 2.5248546482585353E-04 + 56 8.7163649711407187E-04 + 57 6.5014523351288804E-05 + 58 6.4074664801960443E-04 + 59 -6.4309488857202122E-03 + 60 3.6479650408681400E-03 + 61 -5.0183727599862693E-03 + 62 2.0818327477979719E-02 + 63 6.6420061735321242E-03 + 64 9.8055720909500841E-04 + 65 8.1812427236531071E-06 + 66 9.0799127449051823E-04 + 67 -5.5845543883778156E-04 + 68 -1.1889434317411086E-04 + 69 -3.2108678746805430E-04 + 70 3.0378834606667660E-04 + 71 1.3665807609302948E-04 + 72 1.3828440982296725E-04 + 73 3.5621426712723390E-04 + 74 3.0679654134844569E-04 + 75 2.6261922825978289E-04 + 76 -5.3115281340998119E-02 + 77 6.9165953690382594E-04 + 78 -2.5749720208318842E-02 + 79 1.4372182276237842E-02 + 80 -2.7496908267465136E-03 + 81 -9.5428973936509601E-05 + 82 -3.8436865911553803E-04 + 83 -1.2163675017397811E-03 + 84 1.4357665898632852E-03 + 85 3.4185099322110893E-03 + 86 -3.5091117188359748E-03 + 87 3.8837852597910063E-03 + 88 -1.5148992606254280E-04 + 89 -1.7743471630549562E-03 + 90 -2.7426186604935637E-05 + 91 4.6016300116837831E-03 + 92 2.5652349584529277E-03 + 93 4.5314639270022166E-03 + 94 4.2673014422194304E-04 + 95 -1.9384400790537171E-04 + 96 4.8666379742207908E-04 + 97 -1.8762090656994398E-04 + 98 -3.0248386821019941E-04 + 99 1.2502926790760040E-03 + 100 -8.0527835564385170E-04 + 101 8.4607504065386011E-04 + 102 1.5534995944613867E-02 + 103 -3.8236031799591659E-04 + 104 3.1431604335132616E-03 + 105 -7.8853618447464399E-03 + 106 1.2040158503962744E-03 + 107 2.2608440880700589E-04 + 108 1.6227787648550381E-04 + 109 1.8357641780769121E-04 + 110 8.6642068072049106E-04 + 111 -2.9790439241759981E-04 + 112 4.2321735141858605E-04 + 113 4.3057667882438684E-04 + 114 1.0046107284366556E-03 + 115 -6.8831160225482991E-03 + 116 9.7600084923372805E-05 + 117 -1.6150969521984356E-04 + 118 -1.7987213534595167E-03 + 119 -1.7373756284890577E-03 + 120 4.1205222764704574E-04 + 121 -2.9788780112634237E-05 + 122 -2.2676362343525353E-04 + 123 -1.9239277029835315E-04 + 124 3.2587946309812871E-05 + 125 4.6476176938936743E-04 + 126 -3.2222419428966598E-04 + 127 -3.6536551443483998E-04 + 128 -4.8546293058915795E-03 + 129 2.1018937408078642E-04 + 130 3.8929838369967191E-04 + 131 -2.2947278558798794E-03 + 132 4.3996048142760246E-04 + 133 -4.9156481902479308E-04 + 134 -8.2632161750704103E-04 + 135 -4.9908756194527024E-05 + 136 4.1105006015374222E-02 + 137 -5.5236636391726789E-02 + 138 -6.3569047668678279E-03 + 139 -3.6687106214676558E-02 + 140 5.9481582410238487E-02 + 141 1.5234059345702856E-03 + 142 -1.0292587268492315E-03 + 143 6.5464103197618957E-04 + 144 -1.8529325062132845E-03 + 145 -7.6319908476418557E-04 + 146 -1.4196095391255930E-04 + 147 3.9063963211433708E-04 + 148 -1.0670707374866381E-04 + 149 -1.3589978244072515E-04 + 150 2.5253246024258414E-04 + 151 -4.7232352464122600E-04 + 152 -3.2580229825963697E-05 + 153 4.4029488362567950E-04 + 154 1.8646871799165682E-05 + 155 -1.6864695195339928E-03 + 156 -1.9485116608363698E-04 + 157 2.4994766486785428E-04 + 158 1.4769933351705712E-04 + 159 -2.8300169207443643E-05 + 160 -8.3099564536553083E-05 + 161 -2.6366653363416714E-03 + 162 1.2243501686590334E-02 + 163 2.1800713579468466E-03 + 164 1.3667203354050972E-02 + 165 4.8322807050166623E-04 + 166 -1.4921616999440620E-04 + 167 7.4697990130225456E-04 + 168 2.2848434061914648E-04 + 169 4.7710514517392948E-04 + 170 -3.5527785472697132E-05 + 171 5.9240562877647367E-05 + 172 -3.0118553185570464E-04 + 173 -9.1170376336779376E-05 + 174 -3.7683393415479489E-04 + 175 8.8089507950960566E-05 + 176 -5.3402571218734858E-05 + 177 1.8386971965939154E-04 + 178 -1.0902190833820149E-02 + 179 1.0043369668258259E-04 + 180 -1.8273966936356262E-03 + 181 3.8104135916311324E-03 + 182 -3.6248722908514279E-03 + 183 -2.9073496273543677E-05 + 184 -8.8043262195525149E-05 + 185 -1.8717066689044925E-05 + 186 2.4975624374399657E-04 + 187 2.4962139851664303E-04 + 188 -6.5229124273150931E-04 + 189 -4.1879408816305477E-04 + 190 -3.0176929588074516E-04 + 191 -1.0655245205317654E-02 + 192 1.2746679845926365E-04 + 193 4.1843064681618969E-03 + 194 -1.7430487981638188E-03 + 195 -6.7554858257224612E-03 + 196 -3.8313058346588729E-04 + 197 1.9929041380442836E-04 + 198 5.8555657678069784E-04 + 199 8.4899126936119178E-04 + 200 -8.9544818784282958E-04 + 201 3.0875520211979309E-04 + 202 -2.7049763488266155E-04 + 203 -2.4312211990385518E-04 + 204 1.4799217322059447E-03 + 205 5.5706982650350289E-04 + 206 -2.2951524919995669E-04 + 207 -2.2644270370339257E-03 + 208 -3.1482565454402870E-03 + 209 -2.8596922998671138E-04 + 210 3.6212410385129949E-04 + 211 -1.0064198528458742E-03 + 212 5.6367064793214020E-03 + 213 -2.2536657447709673E-02 + 214 3.7979078917890666E-02 + 215 2.1917063699927724E-02 + 216 -1.1608967769126998E-02 + 217 1.5058631830757558E-03 + 218 -6.4460864612859157E-04 + 219 4.0969291061762148E-04 + 220 2.2487726372283633E-04 + 221 -1.3070756711697662E-04 + 222 -1.7208432705631259E-04 + 223 3.1011742794150943E-04 + 224 -5.2969921408542898E-04 + 225 -1.9820002667305086E-04 + 226 -5.2980580160974272E-05 + 227 1.0332167286139863E-04 + 228 -1.3885838076200854E-04 + 229 -6.7829915079193493E-03 + 230 1.2804342293397817E-04 + 231 -1.7546484610433712E-03 + 232 6.2113839772005583E-03 + 233 6.0459901409382465E-03 + 234 -9.5415212966729057E-04 + 235 8.4184461449654361E-04 + 236 1.1747089086693340E-03 + 237 -8.0695190193584149E-02 + 238 3.2151932180083098E-01 + 239 2.2879552177663590E-01 + 240 3.3779632799876079E-02 + 241 -9.9700591542310077E-02 + 242 2.3556289565927896E-03 + 243 1.9904816823019486E-03 + 244 -1.7147057132231574E-03 + 245 2.4642403345050625E-03 + 246 3.6240995980439897E-03 + 247 -3.8145814417956628E-04 + 248 3.0248701896756509E-04 + 249 -8.5508432129126517E-05 + 250 4.9040142805860062E-04 + 251 4.9019465005541868E-04 + 252 7.7698602564331800E-04 + 253 2.9882517274045281E-04 + 254 7.0763175729403787E-03 + 255 -8.9111729806370715E-04 + 256 2.5603080811437926E-04 + 257 -1.1204160025108404E-03 + 258 -9.5794545132602395E-04 + 259 -2.4456452505001449E-04 + 260 -1.7316367860376524E-04 + 261 9.2618072569259355E-04 + 262 3.3938174757218567E-02 + 263 1.4623112910668670E-02 + 264 -3.8967814626379880E-03 + 265 -4.9717105841964619E-03 + 266 -1.4638151860288249E-02 + 267 -1.5158001438795771E-04 + 268 9.5800868229017780E-04 + 269 -4.3202687720791786E-04 + 270 -6.0652900504179258E-04 + 271 -2.0937700640670992E-04 + 272 5.3835435051912405E-06 + 273 -2.4384230428189853E-04 + 274 -6.5374027697881235E-05 + 275 -1.0296268398751662E-05 + 276 -2.6013882069089630E-04 + 277 3.6113451515126711E-05 + 278 2.7971918616596242E-04 + 279 -3.4992842311165069E-02 + 280 7.5930744640564018E-04 + 281 -2.5128441844806467E-04 + 282 -8.9720727352524295E-03 + 283 -9.7181719958244154E-03 + 284 1.7995612285875808E-03 + 285 1.9030253584903961E-04 + 286 4.7553526016041709E-05 + 287 -7.0852396917083155E-04 + 288 -1.5626946873518186E-04 + 289 2.1378551378992547E-03 + 290 5.7972445122654896E-04 + 291 3.0461280662360163E-04 + 292 -7.7922638216068119E-04 + 293 1.1288964155077769E-04 + 294 -2.6473630173790647E-02 + 295 1.8388079376336200E-02 + 296 -4.8346743892939007E-03 + 297 -1.0995724311657251E-03 + 298 1.4543791174162523E-03 + 299 3.6242594993346911E-04 + 300 1.1788276534470121E-03 + 301 -9.1506191484664145E-05 + 302 6.9334010746078753E-04 + 303 1.1478885479144194E-02 + 304 -1.7966495846414524E-03 + 305 -1.3282910627533328E-03 + 306 1.2691464335391467E-03 + 307 1.7905416624337458E-03 + 308 -6.7953251910224414E-03 + 309 -4.4242887474462249E-03 + 310 1.1455767491824845E-05 + 311 -1.9356375774020999E-03 + 312 -8.1962110247004079E-04 + 313 -7.2227968542722398E-02 + 314 -1.9109730164672734E-01 + 315 -1.0578521333596132E-01 + 316 -7.0385909533333391E-01 + 317 1.9865832819254935E-02 + 318 -2.6770289839055808E-03 + 319 1.9446949472984307E-03 + 320 7.9057029987015501E-05 + 321 -1.1169182067244524E-03 + 322 4.6336985965860361E-03 + 323 1.8373584239160957E-04 + 324 7.3677448031155435E-04 + 325 7.9896512848442395E-04 + 326 1.0597220381749618E-03 + 327 1.1784903877222950E-04 + 328 -9.4517817086518064E-05 + 329 7.6725079933013499E-04 + 330 1.4416236365038243E-02 + 331 -9.1788080126714968E-04 + 332 -3.1470375506539561E-03 + 333 2.8980342510033599E-03 + 334 -2.7088899081704081E-03 + 335 5.6835207983077019E-04 + 336 -3.0362946710777556E-04 + 337 1.2908632293213314E-03 + 338 6.1262975971643992E-02 + 339 7.6478492518067001E-02 + 340 -6.3685497708823799E-02 + 341 7.9504408073240943E-03 + 342 -7.0731732523665464E-02 + 343 1.1695496871373049E-03 + 344 6.2083261387579848E-04 + 345 -5.0809477021702043E-04 + 346 -6.4131193511487766E-04 + 347 -1.0278669647717184E-03 + 348 2.1777269424453092E-04 + 349 4.8994942754428095E-04 + 350 -1.2526400783363973E-05 + 351 -2.7251121648569132E-04 + 352 -1.9213796442900079E-05 + 353 1.7004397643408385E-04 + 354 -1.1079301533255422E-04 + 355 -1.1986546390934330E-01 + 356 2.0533829305281006E-03 + 357 3.0968639938238843E-02 + 358 3.5813989799345296E-02 + 359 1.3412255814764427E-02 + 360 1.4657765520095193E-04 + 361 6.9279138142071196E-04 + 362 1.4720058465189042E-03 + 363 -3.1643571368738812E-03 + 364 5.0311813731599732E-04 + 365 3.9823446370699615E-03 + 366 5.8963434241781124E-04 + 367 7.0704623405419553E-03 + 368 8.5242793257806985E-03 + 369 -6.8112824433992744E-04 + 370 -7.6088921630481235E-03 + 371 6.0231647761239682E-03 + 372 2.5295425326699291E-03 + 373 -2.9169195571682329E-04 + 374 -1.6274499960872268E-03 + 375 -1.7369251326732236E-03 + 376 1.0667094286826177E-04 + 377 -3.3639407170579430E-04 + 378 -9.4989138391226658E-04 + 379 -3.3520634082975055E-04 + 380 -2.4264128856092159E-03 + 381 4.7428598814446422E-02 + 382 -7.3846023492003289E-04 + 383 -1.5765596510953741E-02 + 384 6.0958246649443250E-03 + 385 1.4808970931284655E-02 + 386 7.1901052735318162E-05 + 387 -1.0612171704372515E-06 + 388 9.0689284613277701E-05 + 389 -2.3058745191340949E-03 + 390 2.1599093109717356E-03 + 391 -8.9245377918292779E-04 + 392 4.8097931521261938E-05 + 393 1.6670608213578283E-03 + 394 -1.1502347754907605E-02 + 395 2.3732273626237387E-04 + 396 2.8574877903712755E-03 + 397 3.1449726759107404E-03 + 398 6.6277997570441402E-03 + 399 1.7508349081559202E-03 + 400 6.4869154078492830E-04 + 401 -5.3569946957073662E-04 + 402 -2.0012386698919205E-01 + 403 1.5600778337084237E-01 + 404 -1.2675033036456649E-03 + 405 -5.3971966928847266E-02 + 406 -3.5948809509365229E-02 + 407 -3.9872359074456173E-03 + 408 3.4461794595153430E-03 + 409 -2.6283834795357529E-03 + 410 -7.7359577954291435E-04 + 411 9.0105896536341902E-04 + 412 -1.3986305373304040E-03 + 413 3.5729144131797444E-04 + 414 -3.0674960675095467E-06 + 415 -2.7756941017182313E-04 + 416 -3.0421949191749897E-04 + 417 -3.5302821349720187E-04 + 418 -4.7838418177142250E-04 + 419 7.2052531157628746E-02 + 420 -1.1789802168582727E-03 + 421 -1.0167646583599447E-02 + 422 2.1694516925493342E-02 + 423 -3.2125247683120061E-03 + 424 3.4875526195282154E-04 + 425 1.7543534089083800E-03 + 426 4.7273848132360852E-04 + 427 8.4176566757522249E-04 + 428 -5.4808251761294163E-04 + 429 -6.4343205949726799E-04 + 430 2.6162187518835676E-03 + 431 3.5110475968359108E-03 + 432 -2.3594904435827371E-02 + 433 9.9993787551645838E-04 + 434 1.1264275796584049E-02 + 435 6.6267829190780883E-03 + 436 -4.2582459012572684E-03 + 437 -1.3739966878284905E-04 + 438 8.1702677736887792E-04 + 439 1.1917970098835614E-04 + 440 -8.8973466605813409E-04 + 441 -8.8930950599574652E-04 + 442 -1.3019363763466648E-03 + 443 1.2072240358295752E-03 + 444 2.5759798546931695E-03 + 445 4.1255702611657187E-03 + 446 -3.5713235680129900E-05 + 447 4.0068460244430800E-03 + 448 -3.8920515397208866E-03 + 449 -8.3391684022901605E-03 + 450 4.5482496826654513E-05 + 451 1.6363922823865616E-03 + 452 -1.2118031516340083E-03 + 453 1.7881143930034446E-01 + 454 -2.1070664411762641E-01 + 455 1.1281716209644090E-01 + 456 6.2059956757026864E-02 + 457 -4.9419771077831291E-02 + 458 -1.6557478703358708E-03 + 459 -3.8688496205435711E-03 + 460 -1.6658596494638206E-03 + 461 4.1363357949550546E-04 + 462 2.1868716718032536E-03 + 463 8.8692165526151035E-04 + 464 5.5756337909825790E-06 + 465 1.1533120344540097E-04 + 466 -4.4450470868292135E-04 + 467 -9.2589799173275155E-05 + 468 -2.7444734653546881E-04 + 469 1.8188979258974371E-05 + 470 -6.8845073300968082E-03 + 471 1.1670816490029848E-03 + 472 -1.3698186124071225E-03 + 473 -3.6970127672538350E-04 + 474 3.0950076166729444E-04 + 475 1.0840972433795511E-03 + 476 1.5492350125931090E-03 + 477 1.7651416381395484E-04 + 478 7.0444320729232636E-03 + 479 2.0673250426543042E-03 + 480 -2.1744675922981842E-02 + 481 -2.4222276002185922E-03 + 482 -1.4652482875552528E-02 + 483 4.1279661984243297E-04 + 484 3.2767706093032048E-04 + 485 -4.1692928815852061E-04 + 486 7.0066644930035914E-04 + 487 5.0238663742638225E-04 + 488 -5.2704136890256964E-04 + 489 3.5833284178190915E-05 + 490 -4.2677768106760263E-04 + 491 -1.4242153981218705E-04 + 492 -4.1678782312732237E-05 + 493 -1.7208819867444491E-04 + 494 6.5269519282355493E-05 +Ene= -4.5555461953E-01 +Spin= Alpha +Occup= 2.0000000 + 1 1.1286863289990914E-02 + 2 -2.8876813744402855E-04 + 3 -4.7408193860421083E-03 + 4 -8.2666626139941469E-04 + 5 3.3707289918208116E-03 + 6 -2.2958537127953262E-04 + 7 -1.5854325294671102E-03 + 8 -1.0211929724033215E-03 + 9 -3.0305450691500563E-02 + 10 4.3164159406588520E-02 + 11 -1.9859024098128378E-01 + 12 -6.2698230176829253E-02 + 13 7.1745829371634012E-02 + 14 -2.4388121053343752E-04 + 15 -1.7080627406039447E-03 + 16 -2.3759229919584441E-04 + 17 2.0023917375965386E-03 + 18 1.0827884309778680E-04 + 19 2.7431717969427917E-05 + 20 -2.8324305336027965E-04 + 21 -3.9343864845398666E-04 + 22 8.8936962092682763E-04 + 23 -8.4967738328312124E-04 + 24 -6.3917185724392494E-04 + 25 1.8374395042551297E-04 + 26 1.2514566553817406E-02 + 27 -7.6674820506400499E-04 + 28 2.4494044492348204E-03 + 29 2.3402964473659676E-03 + 30 -7.6132875454201663E-03 + 31 -1.2255193994224310E-05 + 32 6.8869959587866518E-04 + 33 -7.5841298249076960E-05 + 34 1.7969714108570534E-01 + 35 -7.6293233989682269E-02 + 36 -5.4431763318181135E-02 + 37 -1.7343785588803541E-02 + 38 1.2549702269916958E-02 + 39 2.1696184675781497E-03 + 40 -1.2795279763315643E-03 + 41 -8.6945691847905074E-04 + 42 1.1537562654129176E-04 + 43 1.9784818512758257E-03 + 44 -4.3667101716274607E-04 + 45 7.5371460085849322E-05 + 46 7.1886325215331535E-05 + 47 1.0776940610688632E-04 + 48 -2.7146370219735858E-04 + 49 3.1237875830095207E-04 + 50 8.8470176855687821E-05 + 51 1.5036219780671404E-03 + 52 -3.7035092034559966E-05 + 53 -1.9610273998808669E-03 + 54 -1.6655661598612731E-03 + 55 2.4782614009983637E-03 + 56 -4.0090937673286335E-04 + 57 -7.4674058028511420E-04 + 58 1.6823969188370978E-03 + 59 1.8167796446310138E-02 + 60 1.8015674989369131E-02 + 61 -3.4877820826864005E-02 + 62 4.6769186138292403E-02 + 63 3.7237225046760698E-02 + 64 5.9006292447435691E-04 + 65 1.0863217154069189E-04 + 66 3.6001275212501471E-03 + 67 1.3278988903624028E-03 + 68 -1.8961608084944771E-03 + 69 -4.7408692733604533E-04 + 70 2.3877370453160673E-04 + 71 1.9689853104811156E-04 + 72 -2.5606729327114577E-04 + 73 1.4905739547290417E-04 + 74 4.4488106688073690E-04 + 75 5.4459683458592343E-04 + 76 -4.6833843992003230E-02 + 77 2.7937752757347962E-04 + 78 -1.5785764040575169E-02 + 79 2.5821951430073087E-02 + 80 -1.8420094811715353E-02 + 81 1.9875061675467108E-04 + 82 7.4264613723793165E-04 + 83 -1.9258818907011688E-03 + 84 4.9879117504321039E-03 + 85 2.7734726810732619E-03 + 86 -5.3995165699685091E-03 + 87 2.9978911516328542E-03 + 88 -3.0894769230890027E-03 + 89 -2.5907880050582980E-02 + 90 5.9984398004723680E-04 + 91 -1.0742585454910632E-03 + 92 1.0309910485487192E-02 + 93 6.3790438579786855E-03 + 94 6.4057689222057180E-05 + 95 1.0131925536523429E-03 + 96 4.6300827023720544E-04 + 97 -8.4733327836257900E-04 + 98 4.1920757488826319E-04 + 99 2.6279804071344232E-03 + 100 -1.4572337936483346E-03 + 101 -1.3641172661455847E-03 + 102 1.4665339204550994E-02 + 103 -2.6658024695695460E-04 + 104 1.9226271159727495E-03 + 105 -1.1691178898299636E-02 + 106 2.1555141308856433E-03 + 107 1.6357469317206141E-04 + 108 2.0488110107794451E-04 + 109 -1.1007366752004929E-04 + 110 9.3513911457279155E-04 + 111 -4.5905052754845736E-04 + 112 1.2953050993370640E-03 + 113 6.9041518049712484E-04 + 114 1.3793982068009444E-03 + 115 -2.8734984758326757E-03 + 116 -6.7130075192463085E-05 + 117 6.5165211614199399E-03 + 118 -3.1400190107423618E-03 + 119 -1.2629887702751119E-04 + 120 6.8925331291419848E-04 + 121 -1.0985754256421406E-04 + 122 -4.8597240861807484E-05 + 123 -4.4560472625040530E-04 + 124 -6.0788531427893009E-04 + 125 5.5552485137845347E-04 + 126 -2.9591514015461800E-04 + 127 -1.5448754818969273E-03 + 128 4.7872555481563793E-04 + 129 -1.6648235061067046E-04 + 130 2.3603542862742854E-03 + 131 -8.9290888002599835E-04 + 132 2.0780574915882305E-03 + 133 6.4255752555932163E-05 + 134 -9.2909263625680588E-04 + 135 4.4856236609979572E-04 + 136 -8.4341474579306380E-02 + 137 -5.3759760113420804E-02 + 138 -3.0399260490020062E-04 + 139 5.5871236581486697E-02 + 140 9.4838763163720037E-03 + 141 -7.9386697626123250E-04 + 142 -1.3361719651907105E-03 + 143 2.3982331775471039E-04 + 144 -1.8198955082988377E-03 + 145 6.1700624896804846E-04 + 146 -1.9229416503824311E-04 + 147 7.7605370409957093E-04 + 148 1.9990254025907211E-04 + 149 5.0694281059594651E-04 + 150 -4.3798603724271593E-04 + 151 -6.7517214483526274E-04 + 152 -8.2001369398978721E-05 + 153 -5.4084793454107754E-03 + 154 -2.1901052014728844E-05 + 155 -1.0397017983023158E-03 + 156 -2.0174775582437136E-03 + 157 2.1938434925805918E-03 + 158 -2.3735541597803818E-05 + 159 -2.8815707393672581E-04 + 160 3.1277999733904583E-04 + 161 1.3722394970064965E-02 + 162 1.6350577507002348E-02 + 163 9.7997244077378202E-03 + 164 4.4177946184630864E-03 + 165 -8.3379641370556080E-03 + 166 -6.4556933240593245E-04 + 167 4.8759707679499792E-04 + 168 1.1738679896670708E-03 + 169 1.1188302198120994E-03 + 170 -4.4707578156110507E-04 + 171 2.4188587753341490E-05 + 172 -4.3587209612686876E-05 + 173 -2.1952377156391400E-04 + 174 -6.2564408480638095E-04 + 175 1.7960275242577442E-04 + 176 -3.6744053491638468E-06 + 177 3.8282740450182773E-04 + 178 5.7389751729051896E-03 + 179 -2.4499716769872329E-04 + 180 -7.8243444641419146E-04 + 181 -1.4360642163898500E-03 + 182 3.5402445178041504E-04 + 183 1.5331676615357143E-05 + 184 -5.0894920026323175E-04 + 185 1.6330893454282266E-04 + 186 1.6418480807026806E-04 + 187 8.7338254946952692E-05 + 188 -3.9593451622375983E-05 + 189 5.1863410576239160E-04 + 190 -4.5378025223286056E-04 + 191 -1.3101458826881129E-02 + 192 2.9564930959928738E-04 + 193 -1.4995975829387340E-03 + 194 2.6346059333666764E-03 + 195 -1.0197674182269411E-03 + 196 4.2527733974286421E-04 + 197 6.0938209004162899E-04 + 198 -8.4094789224555227E-05 + 199 6.5008803221421922E-05 + 200 -3.7325185634218547E-05 + 201 3.5264331239117329E-04 + 202 -3.7563239863165810E-04 + 203 -4.0853399445368956E-05 + 204 -3.6897112538979860E-03 + 205 -1.7942662179406060E-04 + 206 -3.5182724292627332E-03 + 207 -1.7309013121228276E-03 + 208 -1.0860325560728330E-03 + 209 -1.1675258727360839E-03 + 210 -1.2225971979852425E-04 + 211 -7.8593411848359421E-04 + 212 -3.1712223743289837E-02 + 213 1.0753893282947329E-02 + 214 9.9855679330084716E-03 + 215 -3.3747774584568483E-03 + 216 -1.1900766001719153E-02 + 217 -3.2655504780011442E-04 + 218 5.9531500757788883E-05 + 219 -1.0333148906961497E-03 + 220 -1.1394368475521155E-03 + 221 -2.1494952646125545E-03 + 222 -4.1919970827616563E-05 + 223 -1.6299942770030952E-05 + 224 5.5997460078720401E-05 + 225 9.5580811026856408E-05 + 226 -1.2006693802362965E-04 + 227 -3.4843172951996729E-04 + 228 -2.6085216630959549E-04 + 229 1.8602190985950975E-02 + 230 8.3652177823967790E-04 + 231 -7.2831688936231161E-03 + 232 -3.7595285103061054E-03 + 233 8.4245132690579042E-03 + 234 -1.0300291923332778E-03 + 235 -6.4414196746560392E-05 + 236 3.7480686341559996E-03 + 237 -2.0987509279109093E-01 + 238 7.6476004973829295E-02 + 239 3.5963209133956014E-01 + 240 5.9749395701091579E-01 + 241 1.2261731669679502E-02 + 242 3.4103218184174370E-05 + 243 7.9900771891258649E-04 + 244 -3.4708513739383317E-03 + 245 1.2812304966035178E-03 + 246 3.0716610560777855E-03 + 247 -1.0703184748060120E-03 + 248 7.5519608553344922E-04 + 249 5.8080506461197538E-04 + 250 9.8325321199480985E-04 + 251 -3.1672167071214121E-04 + 252 -5.8923896829955291E-04 + 253 1.4440117579674003E-03 + 254 6.4099010172589573E-03 + 255 5.7200810605565989E-05 + 256 3.1487666458832254E-04 + 257 -1.3162799685675617E-03 + 258 -1.2380819877794340E-03 + 259 -5.3573893837163497E-04 + 260 5.6002210081380342E-05 + 261 1.0946680647000979E-04 + 262 6.4387696160445231E-03 + 263 -3.7960239035608693E-03 + 264 -8.7746207842314076E-03 + 265 -7.6576199269206011E-03 + 266 -1.2500295513460886E-02 + 267 4.2705701427608731E-04 + 268 9.1775480207650743E-04 + 269 -7.8009332363783532E-04 + 270 -4.6008604532590992E-04 + 271 -1.9558058404916582E-04 + 272 -2.3038194123325319E-04 + 273 -3.1473596595194291E-04 + 274 4.1177628553901360E-05 + 275 -1.4918233279874376E-04 + 276 -1.7368101209965311E-04 + 277 1.8115171167203573E-04 + 278 3.2098978812017225E-04 + 279 -1.3228716470104726E-02 + 280 6.8849397629291249E-04 + 281 -1.2613346513340373E-02 + 282 -1.1222766706281502E-02 + 283 2.0279871140934367E-03 + 284 1.1401136304518289E-03 + 285 -7.3673968449802546E-04 + 286 -2.1449972866409901E-03 + 287 -1.5775509325868247E-03 + 288 1.8788038199392090E-03 + 289 5.7233852634248309E-04 + 290 -2.3547083459017851E-03 + 291 5.2879739785311993E-04 + 292 -4.5238881790668053E-02 + 293 1.1867828306501061E-03 + 294 1.8518688987595958E-03 + 295 -1.9658599015917811E-02 + 296 9.7726936483345187E-03 + 297 1.6531368482820927E-03 + 298 2.5470578180568533E-04 + 299 2.0995424922629260E-03 + 300 6.5313831130975179E-04 + 301 4.6566735654342143E-04 + 302 -1.8039074220157669E-03 + 303 -4.4137716403695574E-04 + 304 3.6487312811698891E-03 + 305 7.4402254349497168E-03 + 306 1.8834235320690253E-04 + 307 4.4533720004828270E-03 + 308 2.6837039314170927E-03 + 309 3.1332423780477709E-04 + 310 1.7022098506214299E-03 + 311 4.5165677670453775E-04 + 312 1.7980391012090396E-04 + 313 1.0131262275934208E-01 + 314 6.4417841382203467E-02 + 315 1.6320360308467657E-01 + 316 2.0493663267344078E-01 + 317 1.9917040626928831E-01 + 318 -4.7836869174239352E-04 + 319 -1.1311728698624546E-03 + 320 1.5404803546870859E-04 + 321 -9.8995133476443556E-04 + 322 4.7483729361682599E-03 + 323 -2.3383996547265984E-04 + 324 -8.9722960724326320E-04 + 325 -3.6913944752994267E-04 + 326 -3.2465101552720378E-04 + 327 -1.1735925076785419E-04 + 328 -2.3644165660384573E-04 + 329 -7.2873030675834900E-04 + 330 1.2700602360646454E-03 + 331 -4.6806017752905825E-04 + 332 1.3493317243142193E-03 + 333 -9.8772861444159157E-04 + 334 -2.6185673928995503E-04 + 335 6.6081993681253539E-05 + 336 4.4833654969499788E-05 + 337 -8.4585119779041426E-05 + 338 2.4011914749398906E-02 + 339 1.7891525511718341E-03 + 340 -2.2351754174895638E-02 + 341 3.1107834207682208E-03 + 342 1.9561639998673778E-02 + 343 1.9245032923321197E-04 + 344 -1.3731933742233029E-04 + 345 -8.9739043540386062E-04 + 346 9.0776481004711897E-06 + 347 1.2083757150358845E-03 + 348 3.9516245534548664E-04 + 349 -2.0259265119176471E-04 + 350 -2.7866999825936270E-04 + 351 9.3146640506089660E-05 + 352 6.1989904776720673E-05 + 353 -4.5743845953537309E-04 + 354 -3.7542797631115488E-05 + 355 -5.2642098093115845E-03 + 356 7.3132338481969982E-05 + 357 -9.5487359850115593E-03 + 358 3.7837560001748880E-03 + 359 -1.6232773388586725E-03 + 360 1.6095332628889570E-04 + 361 -3.4283074561973758E-04 + 362 1.0251346106243100E-04 + 363 1.0507788456811913E-03 + 364 -9.3309252156075590E-04 + 365 -1.2025757938931830E-03 + 366 -2.9724475191727794E-03 + 367 -2.1499444826574439E-03 + 368 1.3268228011790428E-02 + 369 -4.4476995495596041E-04 + 370 -1.6404766982998479E-02 + 371 9.3548710921870692E-04 + 372 -5.0537532217826940E-03 + 373 -2.7068739892693102E-04 + 374 1.7863046097711804E-04 + 375 8.1461754986297392E-07 + 376 2.3354539586616847E-04 + 377 1.0718602128264767E-03 + 378 -3.9811478139359504E-04 + 379 -8.4736022488831014E-04 + 380 -3.1203362026702786E-03 + 381 -9.3097127176501263E-03 + 382 2.8000944533448406E-05 + 383 8.6447518225200564E-03 + 384 2.2412458036032714E-03 + 385 -2.0383748538774461E-03 + 386 -6.5543864282276469E-04 + 387 -5.8147331133698158E-04 + 388 6.3361227417760952E-04 + 389 -4.5714665138613569E-04 + 390 -2.6822547533986167E-03 + 391 -1.0068885840714750E-03 + 392 6.1639720186643717E-04 + 393 -3.3608882263582254E-05 + 394 -2.0596287073822848E-02 + 395 9.6496560359051972E-04 + 396 -1.4387392094446720E-02 + 397 -1.6985752578396003E-03 + 398 -2.7918569270842563E-03 + 399 -3.1315081132291412E-04 + 400 -1.8118634350720912E-04 + 401 -1.4524958377594396E-03 + 402 1.9203669999265133E-01 + 403 6.9509966723060715E-02 + 404 -3.0499740525210359E-02 + 405 -3.3486484538099470E-01 + 406 -1.6897794606260161E-01 + 407 6.0730135366291191E-03 + 408 2.9841875939598040E-04 + 409 1.9314547276885364E-03 + 410 -4.8706176883872142E-03 + 411 -1.2470422871193891E-03 + 412 7.7545670771567740E-04 + 413 4.3367190743821642E-04 + 414 -2.1177500123977473E-04 + 415 -9.1730918519435177E-04 + 416 -1.0688919989184881E-03 + 417 -2.2373178528682828E-04 + 418 1.5139974155367256E-04 + 419 -2.6211984727229524E-02 + 420 6.6987052292308432E-04 + 421 -9.7774746313559931E-03 + 422 5.3848921085740452E-03 + 423 1.7990923649933179E-02 + 424 6.6261528586197599E-04 + 425 -1.1014391308350501E-03 + 426 -4.7622115694754847E-04 + 427 2.6196805491992578E-03 + 428 1.7906972257022799E-03 + 429 1.2946898205707868E-03 + 430 -3.5645728036248448E-03 + 431 1.8709894729137221E-03 + 432 1.0904455819829273E-03 + 433 1.6668290957714668E-04 + 434 -7.7339157618278118E-04 + 435 4.6534322573536172E-04 + 436 2.8222244853980624E-03 + 437 -1.2349980013509808E-04 + 438 -3.0066691778149436E-05 + 439 -3.8785592858377085E-04 + 440 -3.4116204622938409E-04 + 441 3.8421226466766565E-04 + 442 -1.6413225036425886E-04 + 443 2.9704195825444773E-05 + 444 -2.1106723290924574E-05 + 445 -5.4071724171598796E-03 + 446 4.1454505213448910E-04 + 447 -2.9847553445870568E-03 + 448 -1.3319684334134642E-03 + 449 -1.1892378728724379E-04 + 450 2.6574512119311670E-04 + 451 1.7624413619401612E-04 + 452 4.9531179329958127E-05 + 453 -3.4539350656837014E-04 + 454 -1.3547958379692766E-02 + 455 -7.2501174761077300E-02 + 456 3.6437791170276842E-03 + 457 -1.5675179232356234E-01 + 458 -8.6497371253045261E-04 + 459 1.3599485727690348E-03 + 460 -2.3188772364987736E-04 + 461 -1.6526904659190439E-03 + 462 -9.8393993938237730E-04 + 463 -4.1503922859332127E-04 + 464 -3.1967732188804013E-04 + 465 -7.7053003300960857E-04 + 466 3.2220467077042389E-04 + 467 1.0813757864997758E-04 + 468 -3.2233903285623443E-04 + 469 -4.9899362173287947E-04 + 470 5.3901736804448826E-03 + 471 2.7528306175225465E-04 + 472 3.1764617850097345E-03 + 473 3.9933136556814606E-03 + 474 -3.1976394509467577E-03 + 475 5.2677454732982494E-04 + 476 6.7928226804537812E-04 + 477 -6.0602640562181756E-04 + 478 -4.1756121156277838E-03 + 479 -1.1578501378632094E-02 + 480 -7.2559010997225795E-03 + 481 -4.5606451316875180E-04 + 482 2.4787227350216840E-02 + 483 -2.4725125424371596E-04 + 484 -2.3138505334940724E-03 + 485 -1.4070250336305908E-03 + 486 1.1043247952451072E-03 + 487 2.1649042646058113E-03 + 488 4.0972022026850474E-04 + 489 1.3154521065737090E-05 + 490 2.0433920563935144E-04 + 491 -4.2338770817736820E-04 + 492 -4.8597095429787635E-04 + 493 7.6655752444995123E-05 + 494 4.5808791126547408E-04 +Ene= -4.5505847046E-01 +Spin= Alpha +Occup= 2.0000000 + 1 7.7284802494180091E-03 + 2 -2.4459524073229357E-03 + 3 1.2853284649753032E-04 + 4 5.9644523038452505E-03 + 5 1.1348250273028962E-03 + 6 -1.5635890153472617E-03 + 7 -4.7449281030385193E-04 + 8 -2.2732211648112685E-03 + 9 6.2850787217867021E-02 + 10 -5.3456676541277885E-02 + 11 -2.2087547424745577E-01 + 12 1.8331001376818370E-01 + 13 -6.7158696065675025E-02 + 14 -1.3471813371742308E-03 + 15 -5.5408228065528516E-04 + 16 -5.4967454054347120E-04 + 17 5.3478669383140543E-05 + 18 -2.0463141844478763E-03 + 19 1.7451530889194940E-04 + 20 3.8860109753681969E-04 + 21 -7.3689983010156242E-04 + 22 7.5904161275356557E-04 + 23 1.8174153812471804E-07 + 24 1.3425258032453505E-03 + 25 1.8914914704041985E-04 + 26 4.2367933240963288E-03 + 27 -6.4243891127921442E-05 + 28 -7.8467507742048536E-06 + 29 2.3024609776882486E-04 + 30 4.3085287100347953E-04 + 31 -1.6903816680322013E-03 + 32 3.3678542853438157E-04 + 33 9.8508754130461067E-04 + 34 -5.1531170406949239E-02 + 35 -1.3579323583324732E-01 + 36 3.7179061156152507E-02 + 37 7.3964898825173361E-02 + 38 5.8354365746530662E-02 + 39 -1.8561843128102515E-03 + 40 -1.7942493079482686E-03 + 41 1.0686260977658272E-03 + 42 1.1225601234642816E-03 + 43 6.0486518292387007E-04 + 44 5.3066894271756610E-04 + 45 2.4000359958476264E-04 + 46 -8.0353997025313744E-05 + 47 6.2102557952044377E-04 + 48 1.9022695216034375E-04 + 49 4.5130341974725315E-05 + 50 1.6250577270703479E-04 + 51 -1.0505169904650898E-02 + 52 4.9394603075438449E-04 + 53 -1.1746840105378790E-03 + 54 -9.2067171075227655E-04 + 55 2.0470498764399311E-03 + 56 5.5619521166724742E-04 + 57 -3.2479791027279056E-04 + 58 -2.7659416681977052E-04 + 59 2.5369144042506939E-02 + 60 -7.9697964159614915E-02 + 61 1.4087342566497308E-02 + 62 6.9749884765672981E-02 + 63 1.8097939992554365E-02 + 64 -3.5673937027267283E-04 + 65 1.0230869911107623E-03 + 66 -3.3666177133661408E-04 + 67 -5.3289512857747909E-04 + 68 5.6322501292670592E-04 + 69 -8.8707099996133000E-05 + 70 -1.9346144002731975E-04 + 71 -8.8073609026418484E-05 + 72 1.8010671610135158E-04 + 73 -1.2467191025497399E-04 + 74 2.4174457460667283E-04 + 75 -1.3285606688549851E-04 + 76 -7.8753568339332586E-02 + 77 1.0991056079038097E-03 + 78 -5.5541192713219181E-02 + 79 2.5952893111019643E-02 + 80 8.7581263552822966E-04 + 81 -1.4409471592299887E-03 + 82 3.3969813596540206E-04 + 83 -5.2768830216419572E-05 + 84 -2.3710338304408964E-03 + 85 8.0920763571401509E-03 + 86 -5.9917629547836422E-03 + 87 1.0286288404747776E-02 + 88 5.7880446705773224E-05 + 89 1.7168373472050451E-02 + 90 7.7583160737523029E-05 + 91 -6.6762732487984540E-03 + 92 -1.6027017604665409E-02 + 93 1.9336656513115738E-02 + 94 -3.7006977419435223E-04 + 95 -1.5036387232830177E-03 + 96 2.8655122517824861E-03 + 97 2.1238268657607184E-03 + 98 -2.0138168761650826E-03 + 99 3.8276555738645918E-03 + 100 3.6321316173741681E-03 + 101 3.3582871715700754E-04 + 102 1.4983404346652971E-02 + 103 -3.6669439274648446E-04 + 104 3.7059695641253054E-03 + 105 -7.2570782170292905E-03 + 106 -1.1258044330329650E-03 + 107 6.9997699401324562E-05 + 108 -2.4812533664084018E-04 + 109 -1.4540736804924281E-04 + 110 1.1072903527439143E-03 + 111 -2.5685410481623300E-04 + 112 -4.1742341609552993E-04 + 113 6.0575837965569357E-04 + 114 1.0073244543710228E-03 + 115 -1.1241208809926123E-02 + 116 2.0915648687658736E-04 + 117 -1.6038517129627665E-04 + 118 -5.3872070016292191E-03 + 119 -4.7834847785204228E-03 + 120 -1.1518858050576313E-05 + 121 1.7360139253948890E-04 + 122 -4.0653476981377815E-05 + 123 6.0461657546575956E-04 + 124 -2.4929692023299688E-04 + 125 1.1947275547274140E-03 + 126 -4.8365028611413316E-05 + 127 -1.3119206428099372E-04 + 128 -8.2625776458644454E-03 + 129 -1.4961781805970998E-04 + 130 -4.2315846782125582E-03 + 131 -2.5506715455739146E-03 + 132 1.6155106880862320E-03 + 133 -4.4166216832336122E-04 + 134 -8.7511939542900632E-04 + 135 2.0019154979053532E-05 + 136 5.9173816898807761E-02 + 137 -2.3103763097901103E-02 + 138 -5.9220676077192393E-04 + 139 -4.6812947814176761E-02 + 140 1.7542106892920430E-02 + 141 7.0507956324601000E-04 + 142 -5.7682990016751231E-04 + 143 6.4048203267023744E-04 + 144 -2.0464534581105223E-03 + 145 2.9126610785456825E-04 + 146 2.3728817068801203E-04 + 147 5.2689798849201534E-05 + 148 -5.7723400599177569E-04 + 149 9.7728668148420621E-05 + 150 1.2896590853256629E-05 + 151 1.3829501582566169E-04 + 152 2.8705322154561552E-04 + 153 6.2362986154423981E-04 + 154 2.9386162535787992E-04 + 155 7.6796168059341783E-04 + 156 1.2746480716114633E-03 + 157 9.4193275907845600E-05 + 158 6.3907841506931318E-04 + 159 2.3754261550505460E-04 + 160 -2.9202311311495911E-04 + 161 -1.2601343472405485E-02 + 162 -2.5146192525797645E-03 + 163 -7.4298448999507672E-03 + 164 6.6500986075314281E-03 + 165 1.2205669232939819E-02 + 166 -2.3435913476936427E-04 + 167 -5.0643508179795303E-04 + 168 -4.1604533517391253E-04 + 169 -2.5043127859972149E-04 + 170 6.6948340277233839E-04 + 171 7.6124334019445544E-05 + 172 -5.2267905542004025E-05 + 173 -1.2009609144047207E-04 + 174 -3.9253560213997701E-05 + 175 -2.1225676961416254E-04 + 176 -8.0693810753165322E-05 + 177 9.7517113086719020E-05 + 178 -1.2500727737618136E-02 + 179 2.4073829326665147E-04 + 180 3.7621103615410873E-04 + 181 2.2387551267725740E-03 + 182 -3.1209599537786077E-03 + 183 6.2761939172747332E-04 + 184 -1.2709190118483129E-04 + 185 -5.5102139238398882E-05 + 186 1.8519562280149568E-04 + 187 4.5636392409335062E-05 + 188 -2.7460655069935119E-04 + 189 -5.2411703549416712E-04 + 190 -2.1891376296654923E-04 + 191 -8.7867394097863925E-04 + 192 1.0390251482335514E-04 + 193 -3.7288519605223865E-03 + 194 6.3356896602401293E-03 + 195 4.9230858472372298E-03 + 196 1.9876939529348618E-04 + 197 -9.4705334269982078E-05 + 198 -4.3243364509657644E-04 + 199 -8.6867743704125431E-04 + 200 1.0243447055700459E-03 + 201 -5.2748317974919755E-04 + 202 -6.5236992825673035E-04 + 203 2.5171133156850627E-04 + 204 -8.6509621740025518E-03 + 205 -6.6261187419478613E-04 + 206 -1.3356241689196288E-03 + 207 -1.8714399846852950E-03 + 208 4.8236865682256920E-03 + 209 5.8453334865692369E-05 + 210 -1.6381858203160885E-04 + 211 1.0183235800537249E-03 + 212 2.0158757275875575E-02 + 213 1.4298024186023503E-02 + 214 -5.5426276222876507E-03 + 215 -1.3626748059578433E-02 + 216 -5.7881035185951652E-03 + 217 -9.3924319788306809E-04 + 218 5.1200286926354017E-04 + 219 5.3101249503355828E-04 + 220 -4.2943840356681200E-05 + 221 -1.6821351217099405E-04 + 222 -1.2362003049643289E-04 + 223 -2.4143418285087461E-04 + 224 3.1691336094868977E-04 + 225 -2.3089658224001958E-05 + 226 -1.8336786695663567E-04 + 227 -2.1215535587720049E-04 + 228 -1.9512090298586128E-04 + 229 -5.7654286963705918E-03 + 230 6.6263672630964489E-04 + 231 7.3475967706457535E-03 + 232 2.6987942658285904E-04 + 233 4.1821602829729375E-03 + 234 3.4769188088084519E-03 + 235 1.4419276176058060E-05 + 236 1.9964354203722834E-03 + 237 2.9426890577186277E-01 + 238 6.0146302050071054E-01 + 239 -2.7100919450118957E-02 + 240 7.8246749691549058E-02 + 241 -2.5644693996512974E-01 + 242 3.0083007370970754E-03 + 243 4.4768463300760945E-03 + 244 -1.6882377712315160E-04 + 245 2.0082604304107964E-03 + 246 2.3929101796560069E-03 + 247 3.6473747569476880E-04 + 248 1.0308454551398007E-03 + 249 -1.8043309522606797E-04 + 250 1.3229481530189248E-03 + 251 1.2298752894773188E-04 + 252 9.9588144723923100E-04 + 253 -1.1868436232661453E-04 + 254 -4.6786729725751888E-03 + 255 5.2328087018961274E-04 + 256 6.6262801905141004E-04 + 257 -8.7260677446769690E-05 + 258 2.6498848051605801E-03 + 259 -2.7813174550938723E-04 + 260 2.8692609186967800E-04 + 261 -3.7348183424703815E-04 + 262 -2.3054685745731336E-02 + 263 -9.9409299279767677E-03 + 264 4.8178798041724506E-03 + 265 -3.2087552404386839E-03 + 266 -7.0855695822486303E-03 + 267 -4.7639996213639341E-04 + 268 3.6927631123330761E-04 + 269 -8.5564952410005664E-04 + 270 -2.4789019731347906E-05 + 271 -1.8867885155676701E-04 + 272 -2.9580416634528443E-04 + 273 -1.6000462426286031E-04 + 274 3.7062436496208357E-04 + 275 -2.2504667376874776E-04 + 276 -2.9090446376308808E-06 + 277 -1.0463802124824348E-04 + 278 8.1756569038658554E-05 + 279 3.5127268786713246E-02 + 280 -2.0975622733520303E-04 + 281 -2.4924092287056344E-03 + 282 1.4086168797286285E-02 + 283 3.7253990157134673E-03 + 284 2.8149096005731605E-04 + 285 3.9840873420150580E-04 + 286 -7.1658625689272613E-04 + 287 2.9611030448878084E-03 + 288 -5.9763238509002059E-04 + 289 -1.0994682191108657E-04 + 290 -8.2044464361850353E-06 + 291 7.5620322386952903E-04 + 292 4.3802800212138490E-02 + 293 -7.2427599607321070E-04 + 294 1.6336505520301740E-02 + 295 1.2517500196356627E-03 + 296 -5.7301916048101932E-03 + 297 1.1003263617909425E-03 + 298 5.3691216782008155E-05 + 299 -7.4462393121279527E-04 + 300 1.7274557881382516E-04 + 301 -9.2476378457470454E-05 + 302 -1.8611456102884613E-04 + 303 -2.9804917024887643E-03 + 304 -5.4232346165478725E-03 + 305 1.3621755131563455E-03 + 306 -1.3698802508956900E-03 + 307 -3.9127360573416601E-03 + 308 2.8544804971674513E-03 + 309 3.2908225341440342E-03 + 310 -4.5640236505733534E-04 + 311 1.5914364655609118E-03 + 312 1.1903442857780732E-03 + 313 1.6367919027255307E-01 + 314 -9.2394290732050771E-02 + 315 -8.4593676841736590E-02 + 316 3.0128587536500251E-01 + 317 -1.5924258822279572E-01 + 318 2.7585181868865004E-03 + 319 -3.3104005662511703E-04 + 320 -4.2379643254975859E-04 + 321 2.6497936602488232E-03 + 322 -4.5498035817624991E-03 + 323 1.1717696179857091E-04 + 324 1.5304529978030275E-04 + 325 -5.4498494723531426E-04 + 326 -7.3034270795023184E-06 + 327 4.7983850662589126E-04 + 328 -2.6725908464813312E-04 + 329 -3.0048912456719936E-04 + 330 -1.1190794345176057E-02 + 331 1.2704793323730721E-03 + 332 2.5820259972734903E-03 + 333 -1.6472641297584089E-03 + 334 3.9355188905179144E-03 + 335 -3.6823603356151802E-04 + 336 7.5408517521390896E-04 + 337 -8.3680166165761279E-04 + 338 -3.8201876398603611E-02 + 339 -5.5316123434396569E-02 + 340 5.7150206257693133E-02 + 341 1.3748439213264016E-04 + 342 4.9268735692728972E-02 + 343 -6.0538637127650744E-04 + 344 -4.8560246225694612E-04 + 345 1.5837767317366245E-03 + 346 -1.4542646225960490E-05 + 347 7.8216829020367269E-04 + 348 -5.2232941367851319E-04 + 349 -2.1564074794820054E-04 + 350 3.5129793540154369E-04 + 351 -1.7643701428994885E-04 + 352 2.5128503356627304E-04 + 353 1.8440669938632618E-05 + 354 1.1330636040824316E-04 + 355 8.7276415348211484E-02 + 356 -1.4063480641721986E-03 + 357 -2.1065804587646696E-02 + 358 -3.4090580244760145E-02 + 359 1.7114325696290956E-03 + 360 -7.5111161611196274E-05 + 361 -8.3764246232269682E-04 + 362 -4.4237889201985945E-04 + 363 2.6331046782923835E-03 + 364 1.6887292616059570E-04 + 365 -1.8128988240555708E-04 + 366 2.4018397388732922E-03 + 367 -4.9887854806378697E-03 + 368 -4.0356419510345203E-04 + 369 -2.7845684922270757E-04 + 370 -9.2748711243578110E-03 + 371 -3.3115670720106141E-03 + 372 3.8253739226110435E-03 + 373 1.6964533844367692E-03 + 374 -8.0819483688720172E-04 + 375 1.7927262801710627E-03 + 376 1.1859340922504521E-03 + 377 -1.6344005169608797E-04 + 378 1.4617162265395328E-03 + 379 -3.5181028072178152E-04 + 380 -2.4984751198557002E-04 + 381 2.0876209080667920E-02 + 382 -2.9758990542521692E-05 + 383 -1.4165707976266538E-03 + 384 6.8841255871214058E-03 + 385 5.7814628344106667E-03 + 386 -5.9220771852273369E-04 + 387 -4.4101385386694010E-05 + 388 -9.5070024568039914E-05 + 389 -1.0535478200360616E-03 + 390 6.6457164415751301E-04 + 391 -3.2711754798049191E-04 + 392 9.3011075427059991E-04 + 393 5.1925244137131785E-04 + 394 8.1729077636301349E-03 + 395 1.5716673235394673E-04 + 396 7.4800597609502991E-03 + 397 -3.4981195186764985E-03 + 398 4.2627608329883371E-04 + 399 1.3639473225230873E-03 + 400 -7.2097121824851848E-04 + 401 -7.4198517133163396E-05 + 402 -2.0189038074453734E-02 + 403 1.9254127148131236E-01 + 404 4.6485614076660874E-02 + 405 2.3571747385760708E-01 + 406 -8.0002821073355893E-02 + 407 -2.4378202974311095E-03 + 408 4.0493674817638102E-03 + 409 -2.7129909941479266E-04 + 410 1.0934427933097363E-03 + 411 -1.6857721912872593E-03 + 412 -3.7609226460671747E-04 + 413 7.6114235602277400E-04 + 414 8.1027750595490501E-04 + 415 4.3260971001281485E-04 + 416 -5.3230362193572268E-04 + 417 6.2565743990557904E-04 + 418 8.4913609860813392E-06 + 419 -4.6760344090707701E-02 + 420 9.8155391971337276E-04 + 421 1.5657539716801717E-03 + 422 -1.0258758581063400E-02 + 423 4.9294006376395917E-03 + 424 -1.4389921600905874E-04 + 425 1.3814565453266429E-04 + 426 8.2624480046398900E-04 + 427 -1.3616013688320453E-04 + 428 -1.4321335586433490E-03 + 429 -3.1194643913991449E-04 + 430 -5.5468961956262844E-04 + 431 -2.8122975298737213E-03 + 432 1.7738956281701780E-02 + 433 -3.2984695011669074E-04 + 434 -3.9157308177728408E-03 + 435 -7.0963234213210647E-03 + 436 3.7593727830618831E-03 + 437 -3.7307803896728084E-04 + 438 -5.1964869871558609E-04 + 439 -1.4705643608209834E-04 + 440 2.0834384599302344E-05 + 441 8.9330477489693507E-04 + 442 9.3942178228029389E-04 + 443 -6.4619771658906572E-05 + 444 -1.0502192109091179E-03 + 445 -7.4870850951427540E-03 + 446 -3.7616857674264116E-05 + 447 -3.9113270502066418E-03 + 448 2.0072848619388101E-03 + 449 4.5242856791591459E-03 + 450 2.0645040719267056E-04 + 451 -1.5561635005706172E-03 + 452 5.3458556659163805E-04 + 453 -4.1468938939141255E-02 + 454 1.2367328739471450E-01 + 455 -2.9462360594813695E-02 + 456 -1.0470337052789230E-01 + 457 6.4476835438455282E-02 + 458 2.6557403682586182E-03 + 459 2.5504302786867835E-03 + 460 2.7453193791054302E-04 + 461 -1.2131737850413933E-03 + 462 -1.3208687651578737E-03 + 463 1.9723541050925195E-04 + 464 6.1908322628144810E-04 + 465 2.3723795306331171E-04 + 466 4.9955388116785935E-05 + 467 -5.9863117436307145E-05 + 468 -2.7016976616023471E-04 + 469 1.0868112621906765E-04 + 470 1.2494536428990404E-03 + 471 7.2151144164073514E-04 + 472 2.8859882121730369E-03 + 473 -7.7769371612430058E-04 + 474 -1.1060084055637988E-03 + 475 6.8617714733226461E-04 + 476 -5.1821521503932273E-05 + 477 1.6928651555305065E-04 + 478 8.3618638708319575E-03 + 479 -1.3930049900612144E-02 + 480 1.4398846942315366E-03 + 481 1.7692427538179945E-02 + 482 -1.3190520846788008E-02 + 483 -5.8222054435563418E-04 + 484 -8.1975404494476071E-04 + 485 2.3074775101617547E-04 + 486 1.5750878146835320E-03 + 487 -4.1587006078509694E-04 + 488 2.9588117205896328E-04 + 489 -2.6647240341765379E-04 + 490 -1.1498150425931405E-04 + 491 -2.6944935040436210E-04 + 492 2.4216988838970108E-04 + 493 3.2351329787082104E-04 + 494 1.0765587342951240E-04 +Ene= -4.5488926220E-01 +Spin= Alpha +Occup= 2.0000000 + 1 2.0296835103835687E-03 + 2 -1.5747707048074594E-04 + 3 3.2551626095531642E-04 + 4 2.1129346762938724E-03 + 5 -3.1951403967671495E-04 + 6 -7.0133185540436911E-04 + 7 -2.7014953050977084E-04 + 8 -8.8350880288703569E-04 + 9 -1.2423518314238912E-02 + 10 -4.7237031428418626E-02 + 11 -3.6344084314991892E-02 + 12 8.6428116441539127E-03 + 13 -5.8429814202815372E-02 + 14 -8.3428700586720664E-04 + 15 4.8495005236386766E-05 + 16 -5.5903499733395048E-04 + 17 -1.9879301257533265E-04 + 18 -1.0767765723496102E-03 + 19 2.5638077892522202E-04 + 20 1.4752302269026602E-04 + 21 -6.7192403027157199E-04 + 22 3.3539624183498456E-04 + 23 -2.4113453674788127E-04 + 24 4.7078977731202691E-04 + 25 3.8665851091764604E-04 + 26 -6.3834989231553437E-04 + 27 -1.1833314191328473E-04 + 28 3.8541101788448252E-03 + 29 8.8143228407638516E-04 + 30 1.1791780344622797E-03 + 31 -9.3210298352176945E-05 + 32 -1.4179601638785914E-04 + 33 3.9518514786205701E-04 + 34 -7.6757974600278750E-02 + 35 -1.2149607703060776E-01 + 36 -2.1675041165695543E-02 + 37 2.8212055840438337E-02 + 38 4.2171612154334917E-02 + 39 -8.8897041759121442E-04 + 40 -2.7711058308982580E-03 + 41 4.2017011852292117E-04 + 42 -1.4828374604952509E-04 + 43 1.5185539276495313E-04 + 44 9.9053724330366670E-05 + 45 4.3664772071080047E-04 + 46 2.1997133763988674E-04 + 47 5.6666727612211440E-04 + 48 1.7594956131927316E-04 + 49 -1.9993922999714383E-04 + 50 4.6522888056792152E-05 + 51 -1.4185135713396890E-03 + 52 4.8308418051652371E-04 + 53 3.4866725705372329E-04 + 54 -5.3361317008629797E-04 + 55 -9.5285040739287777E-04 + 56 8.5107229645619276E-05 + 57 4.3743524366633322E-04 + 58 -1.9561197721675293E-04 + 59 -2.9166773766428900E-02 + 60 -5.0686874920764912E-03 + 61 -1.4130563845186387E-02 + 62 -1.9972461158941926E-02 + 63 -2.5645174025590703E-02 + 64 7.1866733073259136E-04 + 65 -3.1947589346719297E-04 + 66 -2.9563990485552492E-04 + 67 -8.5474826801310696E-06 + 68 -1.3645486366415220E-04 + 69 -6.8382762082021007E-05 + 70 1.2378068051718865E-04 + 71 1.5507293589090649E-04 + 72 -9.3008432378559729E-05 + 73 1.6190738193207663E-04 + 74 -4.8729085055201218E-05 + 75 1.0125733369539571E-04 + 76 -6.2628940057416232E-02 + 77 1.1820387751361088E-03 + 78 -2.4820321857693329E-02 + 79 -7.8074084527723926E-03 + 80 -1.2085645305403088E-03 + 81 -1.4410146081574230E-04 + 82 -8.5114287164754596E-04 + 83 -1.2874321683380320E-04 + 84 6.7195063988245165E-04 + 85 3.2289713352606207E-03 + 86 3.7325580225871607E-04 + 87 4.3591422484575166E-03 + 88 3.6341451572033494E-03 + 89 3.1691284241267942E-03 + 90 -1.8578383998728984E-04 + 91 3.2577144806117775E-03 + 92 1.4440297886440960E-04 + 93 1.3493777401353275E-03 + 94 3.4596088704308154E-04 + 95 -4.4241663008985833E-05 + 96 2.9048460408312268E-05 + 97 1.9030262627395663E-04 + 98 -1.4010795504209041E-04 + 99 2.5949609618208395E-04 + 100 -2.9319172556662208E-04 + 101 6.5858684131742009E-04 + 102 6.1682145385400615E-03 + 103 -2.4515635437942409E-04 + 104 6.8437866536086127E-04 + 105 -1.2324267118622679E-03 + 106 7.7064552733591531E-04 + 107 -9.1822028009292371E-05 + 108 -1.8690092460831159E-04 + 109 3.3938189150657156E-04 + 110 2.4629827815440402E-04 + 111 -2.7991996634833523E-04 + 112 -6.2307571069789426E-04 + 113 2.8809410185028436E-04 + 114 -4.4226894521434513E-06 + 115 -7.9401989505414501E-03 + 116 2.3167511401941859E-04 + 117 -2.3063191339933076E-03 + 118 -3.3573884410124828E-03 + 119 -3.9414426174553341E-03 + 120 -1.0457592569860059E-04 + 121 -3.0695210224615951E-05 + 122 -7.3281160714051867E-05 + 123 6.6124191202274684E-04 + 124 3.7196425672898867E-04 + 125 9.1755931117803102E-04 + 126 -3.7259925184113897E-04 + 127 -1.1817048949455651E-05 + 128 -3.0628320453706696E-03 + 129 -1.0330132116112044E-04 + 130 -1.1420677865693471E-03 + 131 2.0775246280331630E-04 + 132 1.3908906774433782E-03 + 133 9.7825402533294192E-04 + 134 4.0230278203182563E-04 + 135 2.6355085319829628E-04 + 136 -7.6588793039632274E-04 + 137 3.1841207392672412E-02 + 138 -1.1195042803003877E-02 + 139 -6.3493605413062579E-02 + 140 4.2021903259917056E-03 + 141 -5.9368697038610674E-05 + 142 -1.3132636499153106E-03 + 143 -9.8074219439816244E-04 + 144 -8.8279189388664798E-05 + 145 2.2080851189284771E-04 + 146 -7.0520754075793191E-05 + 147 -1.9086374958084015E-04 + 148 -9.1818698490648073E-05 + 149 -1.7733765624860967E-04 + 150 2.6483578244186623E-04 + 151 6.7632559986839430E-05 + 152 -9.6792405475780845E-05 + 153 -1.0985753861952772E-03 + 154 9.1515230670203513E-05 + 155 2.9324065722507320E-04 + 156 -4.3239160255568901E-04 + 157 1.0351903441567390E-03 + 158 3.0564681660975147E-04 + 159 1.0349240700148165E-04 + 160 -1.3124179725742182E-04 + 161 -8.2453564862978220E-03 + 162 -2.6334443623239820E-03 + 163 1.3627329515042603E-02 + 164 8.1666064761537257E-03 + 165 6.9272830828864557E-03 + 166 -2.6620828138685428E-04 + 167 -1.8389418505000910E-04 + 168 5.0381948940514181E-04 + 169 3.9389122057296418E-05 + 170 9.3599156590258776E-04 + 171 -1.6977359373643071E-05 + 172 -1.2992938153507291E-04 + 173 -2.0957328556316207E-04 + 174 -1.2105221464178441E-04 + 175 -3.5285717101235400E-04 + 176 -2.7066522819268926E-04 + 177 1.1830805821527751E-05 + 178 -1.1901049129251023E-02 + 179 2.1874385908776515E-04 + 180 1.5506830784419521E-03 + 181 -5.1913892309724979E-05 + 182 -3.5699930116124602E-03 + 183 7.4125912739875092E-04 + 184 3.1648472944967727E-04 + 185 -1.8220108356691524E-04 + 186 3.3408121565904587E-04 + 187 -1.3789986876719328E-04 + 188 8.8209733343087206E-05 + 189 -1.8030000183549523E-04 + 190 2.0680809245901281E-04 + 191 4.8663100526517896E-03 + 192 -1.4989449329203260E-04 + 193 4.2494089913485238E-03 + 194 -3.6401822243089508E-03 + 195 -2.1429479893841799E-04 + 196 -4.2339845554221865E-04 + 197 -5.0077571759370015E-05 + 198 6.6907576509984772E-04 + 199 4.0388881454354560E-04 + 200 -4.9962369043353373E-04 + 201 6.8685037902523961E-04 + 202 4.6652194434713332E-05 + 203 2.2093554004177937E-04 + 204 9.1320826976515231E-03 + 205 9.6862526643858038E-04 + 206 -1.5193745357953334E-03 + 207 2.2816636489415756E-03 + 208 -5.6781968990223608E-03 + 209 6.9020776936516763E-05 + 210 6.6033067662331921E-04 + 211 -5.6805157591965775E-04 + 212 6.1762438216107059E-02 + 213 1.8675721523191064E-03 + 214 -2.6990023687007057E-02 + 215 1.1695323805188262E-02 + 216 -3.1117386496787379E-02 + 217 2.1505536699825837E-03 + 218 -1.2157212877189238E-04 + 219 -5.6075667157342115E-04 + 220 -4.1285142721830467E-04 + 221 -4.0593172970709827E-05 + 222 2.1338722365307544E-04 + 223 1.8108513128644116E-06 + 224 -2.7089532848064134E-04 + 225 9.6404889892068638E-05 + 226 2.2638523503272932E-04 + 227 2.5356033281128326E-04 + 228 -5.1898517970313969E-05 + 229 -5.4303271832125263E-03 + 230 1.4900394664720435E-04 + 231 1.9253383519450395E-03 + 232 2.5701842581088803E-03 + 233 3.4780001395172443E-03 + 234 2.2205147359587483E-04 + 235 -8.3511981558409966E-04 + 236 5.1850383851770071E-04 + 237 2.7663139383664109E-01 + 238 -9.1862175810243467E-03 + 239 -4.4235848210736028E-01 + 240 2.6590822494926125E-01 + 241 -2.3082626187735925E-01 + 242 1.8519578730837114E-03 + 243 2.9453534636996394E-03 + 244 -2.1410211645260752E-04 + 245 1.4616146841548558E-03 + 246 2.4766658870383862E-03 + 247 1.7052862543434397E-04 + 248 4.8759953810384232E-04 + 249 4.6228213779261288E-04 + 250 7.2167192404791523E-04 + 251 -4.1249320284645740E-05 + 252 -4.1795955306590376E-04 + 253 3.2363981946553939E-04 + 254 -1.9389464086903413E-03 + 255 3.6117660535297250E-04 + 256 1.2627017311538013E-03 + 257 3.2595565387907172E-04 + 258 2.1002890214355703E-04 + 259 -2.0968008169541442E-04 + 260 -5.1479924454534048E-05 + 261 -5.3262233519719483E-04 + 262 -4.0262802528034658E-03 + 263 -1.8048775686283151E-02 + 264 1.6585978589366910E-03 + 265 4.2457016162049709E-03 + 266 -5.2451022807197233E-03 + 267 4.1301072716770220E-04 + 268 -1.1118033517249307E-05 + 269 3.1097875025469453E-04 + 270 9.5724967670456602E-05 + 271 -5.9709640404990560E-04 + 272 -1.6567137086749209E-04 + 273 -1.1993684803100289E-04 + 274 -1.2498394154515579E-04 + 275 4.0739630493403789E-06 + 276 2.1556069456722411E-04 + 277 -2.0018177303501346E-04 + 278 -2.4571750573796962E-05 + 279 2.4498148132154479E-02 + 280 -2.4834118333805200E-04 + 281 -2.2260021315364892E-02 + 282 3.0124206173110790E-03 + 283 -1.7607323617071559E-05 + 284 6.5471305398746111E-05 + 285 8.4954965811416574E-05 + 286 -2.1055413338638346E-04 + 287 2.6124717100574324E-03 + 288 1.1384819470709464E-03 + 289 7.4438705639834411E-04 + 290 -3.1720035641385623E-03 + 291 2.9389186611268928E-03 + 292 -2.1193584362823935E-03 + 293 1.1056840355683720E-04 + 294 -3.5290789972242838E-03 + 295 1.0173534973072072E-02 + 296 1.2086969529412111E-02 + 297 3.9161525737518204E-04 + 298 5.5364588652641778E-04 + 299 1.4439778498440687E-03 + 300 -4.4549702298651321E-03 + 301 -3.0543472435862100E-03 + 302 -2.9424165096015001E-03 + 303 4.8871847570957124E-05 + 304 1.2096675374812569E-04 + 305 -1.0942213355487319E-03 + 306 7.0708256314877332E-04 + 307 2.9623240859223895E-03 + 308 -9.2005494951853044E-04 + 309 1.3983607140147578E-04 + 310 1.8467102528330631E-04 + 311 -3.0110376886696428E-04 + 312 -1.6702659075648080E-03 + 313 -2.0979930259102803E-01 + 314 4.2198869165275332E-01 + 315 4.3816296714684216E-01 + 316 -1.5225283390095712E-01 + 317 -2.7003725976790835E-02 + 318 -9.8760811048601645E-04 + 319 1.9550508343371244E-03 + 320 1.7660341924323063E-03 + 321 -1.5576221853093176E-03 + 322 1.3845504193278262E-03 + 323 8.3023528755088178E-04 + 324 5.5741715289054088E-04 + 325 8.6722253378553158E-04 + 326 6.5866745850383837E-05 + 327 -3.6666037291414373E-04 + 328 4.4497291442536352E-04 + 329 8.6584213070561530E-04 + 330 8.5837341740449494E-03 + 331 -1.1550864007289518E-03 + 332 -9.3859406895150418E-04 + 333 1.8166226015612604E-03 + 334 -1.2602199145014664E-03 + 335 6.1479195125705560E-04 + 336 -7.3091987337891185E-04 + 337 7.6354361429359406E-04 + 338 1.3751437278734811E-02 + 339 3.2721691168523366E-02 + 340 -3.8052858725780382E-02 + 341 -1.7066941629205443E-02 + 342 -3.3859331571819140E-02 + 343 5.1385859465947613E-04 + 344 6.4456679798563466E-04 + 345 -9.1209651268945918E-05 + 346 -1.0663185565899238E-06 + 347 3.4487001093506589E-04 + 348 1.3578430112343279E-04 + 349 2.5199146620084417E-04 + 350 8.9441927113733481E-05 + 351 -5.8516481757075666E-05 + 352 9.3410078153822337E-05 + 353 -4.5962226206231941E-04 + 354 -1.7789068743271106E-04 + 355 -3.9691758296425392E-02 + 356 3.3570051838622964E-04 + 357 1.2418562904985414E-02 + 358 1.6415638422436134E-02 + 359 -1.7950947828181508E-02 + 360 -3.4532462880972590E-04 + 361 1.4878464976386761E-04 + 362 2.0008069192519666E-04 + 363 -1.0137901410654164E-03 + 364 -2.7488877269315373E-03 + 365 -4.5858282451208664E-03 + 366 -9.8821579901785294E-04 + 367 2.4888107577993907E-03 + 368 2.0462137380824891E-02 + 369 -7.3712832520503346E-04 + 370 1.0528665444980548E-02 + 371 6.3433126693344458E-03 + 372 6.3303282273751800E-03 + 373 6.7601350000481451E-04 + 374 7.0916234437540780E-04 + 375 1.1507434152157152E-03 + 376 -1.0154574492069967E-03 + 377 -4.2198125110953587E-04 + 378 -1.3183029101921744E-03 + 379 -9.3161560995214782E-04 + 380 -1.7106752616832944E-03 + 381 -8.7405763515101455E-03 + 382 -6.4609899513039850E-05 + 383 1.9958262534717002E-03 + 384 2.8436534251558153E-03 + 385 -2.9522786651971430E-03 + 386 1.1652949746148687E-03 + 387 1.6143135976778129E-04 + 388 4.2279367650797798E-04 + 389 -5.4980782320672936E-05 + 390 1.8798369065119809E-04 + 391 -1.9376335579233267E-04 + 392 7.3526172723283219E-04 + 393 3.1230949058537948E-04 + 394 -6.2970802731352107E-03 + 395 -3.8251277146450035E-04 + 396 -4.4888585505570133E-03 + 397 -2.2442918697096123E-03 + 398 1.2894380576106799E-03 + 399 -5.3016142114165812E-06 + 400 1.3025859974544244E-03 + 401 6.8841464995542166E-04 + 402 -1.8210667020567034E-02 + 403 -2.3977239448555319E-02 + 404 1.5890004168223042E-02 + 405 -5.3327802086875056E-02 + 406 -9.3309474905376402E-02 + 407 8.2482394996449409E-05 + 408 -6.7552049767909106E-05 + 409 -1.4039611536435885E-03 + 410 4.5566473739285228E-04 + 411 -8.1340643269559238E-04 + 412 -4.3295132188790055E-04 + 413 -4.6065177750054460E-04 + 414 -4.1883085993776442E-04 + 415 -2.3972923510039287E-04 + 416 -3.2658276497099140E-04 + 417 -2.0861856756647647E-04 + 418 -1.1088623485232514E-03 + 419 1.0841187943361506E-02 + 420 -1.1497171667300293E-04 + 421 1.3349047083541291E-02 + 422 5.9505616886777659E-03 + 423 -1.0740501471550128E-02 + 424 5.9795319588497146E-04 + 425 2.8436761728809959E-04 + 426 -8.1294081045899121E-04 + 427 -1.2566634719546601E-03 + 428 7.4227052503715552E-04 + 429 1.9368176222867594E-03 + 430 2.0063914999513778E-03 + 431 -1.2055112820153775E-03 + 432 -2.9719061221762953E-02 + 433 7.3371644459154764E-04 + 434 9.1596016946622998E-03 + 435 6.8117786054269196E-03 + 436 -1.3339868454353606E-02 + 437 8.6137181182124919E-06 + 438 3.2244809761795742E-04 + 439 4.1443605613140423E-04 + 440 3.5254632810066813E-04 + 441 -2.6285401646646222E-03 + 442 -1.4574801022833276E-03 + 443 8.2558532262652347E-04 + 444 1.5526019128778224E-03 + 445 2.3053014091516524E-02 + 446 1.5998302167144815E-04 + 447 9.6524557105444227E-03 + 448 2.3659864922922500E-03 + 449 -4.7730034979978821E-03 + 450 -9.4628035756367645E-04 + 451 -8.4051130377917134E-05 + 452 3.5553645105048465E-05 + 453 -8.6482311060973399E-02 + 454 -2.5429039024803091E-01 + 455 2.1059420450328967E-02 + 456 1.3727822298862760E-01 + 457 -1.1028614855591683E-02 + 458 -3.6004393066656850E-03 + 459 -3.8509398256539105E-03 + 460 5.6794023388334722E-04 + 461 2.7356180321954069E-03 + 462 1.6491391786025691E-03 + 463 -2.6764081230295860E-04 + 464 -9.9350429249340047E-04 + 465 -3.7592233105037109E-04 + 466 -1.3211380066377676E-04 + 467 5.8297410637288196E-04 + 468 7.5154181455028594E-05 + 469 -4.2164809050710723E-04 + 470 4.9655176239397766E-03 + 471 -7.0426036494929557E-04 + 472 1.3055417557503700E-03 + 473 1.7844468186194739E-03 + 474 1.8087058730117812E-03 + 475 2.9112064127851512E-04 + 476 1.2048822692692222E-03 + 477 3.9734584902496140E-04 + 478 -1.8774760385011080E-02 + 479 9.7963884217547731E-03 + 480 -3.1031303508203719E-05 + 481 -1.5831421991746610E-02 + 482 1.6947129115333533E-02 + 483 -3.3979813710580435E-04 + 484 1.0397073235323129E-03 + 485 -5.0641606811877753E-04 + 486 8.4151291844482084E-04 + 487 1.2242780348920266E-03 + 488 -3.7393428665297428E-04 + 489 -2.5851423416667834E-04 + 490 -3.3178454999960999E-04 + 491 -1.8746758850577547E-04 + 492 -2.1381447693867307E-04 + 493 1.6707648638863802E-04 + 494 -7.0777012922864239E-05 +Ene= -4.5277825471E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -1.6444075234379182E-02 + 2 4.5008247971188738E-04 + 3 3.9244668348418152E-03 + 4 -4.2790296118325258E-03 + 5 3.5038816708139921E-04 + 6 -1.0460578163838160E-03 + 7 4.2783613084058794E-04 + 8 -1.8437970927071016E-03 + 9 7.8803449199541437E-02 + 10 1.8563236691975956E-02 + 11 -1.7586777429931735E-01 + 12 2.5143273157441196E-02 + 13 -9.5360597045362858E-02 + 14 -1.0578905414971790E-03 + 15 5.7417081508817755E-04 + 16 3.9809041328810787E-04 + 17 6.1103076937557934E-04 + 18 -1.1196533315490423E-04 + 19 -6.9939172416653772E-05 + 20 7.4792388461289731E-04 + 21 9.7932848820426853E-05 + 22 7.9901674012062044E-05 + 23 -6.5254079979039468E-04 + 24 2.5550722349430149E-04 + 25 4.7787253712478449E-04 + 26 -1.8311161826071642E-03 + 27 -6.5358495066934253E-04 + 28 6.2421829497251371E-04 + 29 -1.6045004325811625E-03 + 30 3.1443271151129597E-03 + 31 3.7917124887088932E-04 + 32 -4.1231068194964209E-04 + 33 7.6475800392570930E-04 + 34 -2.3897812345973986E-02 + 35 2.1074388020238602E-02 + 36 -7.2846415558271305E-03 + 37 -8.2142268974764610E-03 + 38 -1.5300766584836858E-03 + 39 -1.4701517628202218E-03 + 40 -3.9149264670756707E-04 + 41 -3.7332800808598877E-04 + 42 -4.1850717068944363E-04 + 43 -2.4830837216691567E-05 + 44 8.0679731446805432E-05 + 45 -1.1157440474522514E-04 + 46 1.7352835209473566E-04 + 47 8.9858145239164926E-05 + 48 1.3812949806612989E-04 + 49 -2.6320924120702433E-04 + 50 1.1243436557688264E-05 + 51 9.0552668616834906E-04 + 52 -4.9465701595766121E-04 + 53 -9.8592507841381116E-04 + 54 2.8160689853832586E-03 + 55 2.6876531589343171E-04 + 56 7.7663363774084851E-04 + 57 2.6478055492887828E-05 + 58 1.3773193042583977E-04 + 59 1.7515422123822073E-02 + 60 -6.4248525914842244E-02 + 61 -6.1466426280403531E-03 + 62 2.1944409004232075E-02 + 63 1.4762372960674622E-01 + 64 -1.8259243954017368E-04 + 65 -5.3414851097293879E-04 + 66 -8.4889583820902791E-04 + 67 -1.6954085923233352E-03 + 68 -5.7347767727092768E-04 + 69 2.2892441480608158E-04 + 70 -4.0004483872769088E-04 + 71 2.7655242297848406E-04 + 72 3.5800936720800007E-04 + 73 -4.5550947360240929E-04 + 74 -5.4871300096927482E-05 + 75 -4.4136929422062296E-04 + 76 1.5528254821991520E-02 + 77 -4.4814254744781625E-04 + 78 -3.0906076616415662E-03 + 79 7.7797607591458167E-03 + 80 -3.4078120551495690E-03 + 81 2.6657835563811846E-04 + 82 -1.1870010397753994E-03 + 83 -8.4134216763453182E-04 + 84 1.5010260949519249E-03 + 85 2.1497907927801414E-03 + 86 -2.0667175699693578E-03 + 87 9.5741926540983044E-04 + 88 1.6001800318347032E-03 + 89 -7.4414810962291035E-03 + 90 2.4046685944529450E-04 + 91 4.7463191726193578E-04 + 92 1.9399187490279977E-03 + 93 1.0041455613466851E-02 + 94 3.2215546512585593E-04 + 95 5.9833546162695820E-04 + 96 1.1525749520506930E-03 + 97 2.0124667437462960E-04 + 98 -5.7221888078893461E-04 + 99 3.5818208575845167E-03 + 100 4.9028257066614008E-04 + 101 2.9863052490868101E-04 + 102 -7.8759581868633431E-03 + 103 2.0983098072374385E-04 + 104 -8.0074823591412580E-04 + 105 3.2975488651135537E-03 + 106 -3.7751108438781582E-03 + 107 -6.1071970392201207E-06 + 108 -3.6372084715091750E-04 + 109 -6.9983279684067781E-04 + 110 4.5102546018014624E-04 + 111 3.7778249442270830E-04 + 112 -3.2935168268676538E-04 + 113 1.1086203476834093E-04 + 114 -4.5144993524366076E-04 + 115 6.8169739847273036E-03 + 116 -1.3176634365161385E-04 + 117 -1.8269726905423759E-03 + 118 8.8203791110525029E-04 + 119 2.7327216492681922E-03 + 120 2.9843300410010211E-04 + 121 1.9591228784965063E-04 + 122 7.9619927766527474E-05 + 123 -2.1495573330139751E-04 + 124 3.0156856409468762E-04 + 125 -1.5307041144562971E-04 + 126 2.0586575719793807E-04 + 127 1.4691382276718542E-04 + 128 6.0948567129815150E-04 + 129 1.9958171448104938E-05 + 130 2.2916538941375108E-03 + 131 6.6337716478261430E-05 + 132 -5.9432791542974208E-05 + 133 5.3831518287848366E-04 + 134 1.4837365358121539E-04 + 135 3.1430719858303229E-04 + 136 -2.8581063032775997E-03 + 137 -2.6437398305457778E-02 + 138 3.1340053068007273E-02 + 139 5.5931234478414985E-03 + 140 -1.7004833746452140E-02 + 141 -9.5638882003848519E-05 + 142 -5.2786540484907384E-04 + 143 8.5003421120213698E-06 + 144 6.4893753837386267E-04 + 145 -4.9026562350679961E-04 + 146 -5.0883886828962872E-05 + 147 2.2897848288577801E-04 + 148 1.3935940421436598E-04 + 149 -2.5801468186340161E-04 + 150 2.1112176936538804E-04 + 151 1.1486923598613681E-04 + 152 -9.2252708289122242E-05 + 153 -3.2070240590737983E-04 + 154 -3.2885935870379153E-04 + 155 8.8736668566804123E-04 + 156 -3.0039359116186315E-04 + 157 6.6455664539765954E-04 + 158 -1.5633547262598280E-04 + 159 -2.3189718349374600E-04 + 160 4.5567494712005322E-04 + 161 3.1225866345055957E-03 + 162 -2.3428375649097583E-03 + 163 -2.2950469492891653E-03 + 164 -3.4527615930192712E-03 + 165 -2.4920035190072981E-03 + 166 -5.7981428796853595E-04 + 167 -3.9756890305812296E-04 + 168 4.3941532581121277E-04 + 169 3.8464363981684772E-04 + 170 1.2719505658470961E-04 + 171 6.9938104518972463E-05 + 172 1.2855527829074961E-04 + 173 -1.9149732575213929E-04 + 174 2.8244652012595359E-05 + 175 -1.2613127902261743E-04 + 176 -4.4410137090707252E-05 + 177 1.1392579849509222E-04 + 178 1.0211341712822774E-02 + 179 -2.2040450918099375E-04 + 180 -1.0238358292323845E-04 + 181 -2.9015447549950185E-04 + 182 4.1802951036321104E-03 + 183 -2.6013429569375700E-04 + 184 -3.3915979084217957E-04 + 185 -1.2958119245455631E-04 + 186 -5.1632085718147057E-04 + 187 2.0873833186525143E-04 + 188 -4.6196394988246425E-05 + 189 2.9146252596470574E-04 + 190 -1.6190773930112090E-04 + 191 -1.1643745390739512E-02 + 192 5.7575356402157665E-04 + 193 4.0116000238054330E-03 + 194 8.6259324794778578E-03 + 195 3.3321156046764375E-03 + 196 8.0823167109345595E-04 + 197 -5.4407876260480301E-04 + 198 -1.1880439096053692E-04 + 199 -1.5412584719861990E-03 + 200 6.4264819321781220E-04 + 201 -8.7882154836323807E-04 + 202 -4.0189589413883636E-04 + 203 1.6827364141806858E-03 + 204 6.8876375390767783E-04 + 205 -5.0897877774034431E-05 + 206 1.0838018474921211E-03 + 207 1.5599187152046397E-04 + 208 1.8826675441912675E-04 + 209 -1.8024552599523564E-04 + 210 1.2385305900617611E-04 + 211 -3.7231179514291907E-04 + 212 -4.5364424473820275E-02 + 213 -3.9856378031171792E-02 + 214 2.8824389552144623E-07 + 215 -2.3680200638862095E-03 + 216 3.9284492289315222E-02 + 217 -7.8087530749445459E-04 + 218 -5.6427218441110368E-04 + 219 -3.5936532430492878E-04 + 220 -2.9397857328806732E-04 + 221 -6.3567652550380101E-04 + 222 -4.7917066020713691E-04 + 223 3.1292366463628329E-04 + 224 1.2150058393493590E-04 + 225 -5.7630812431965217E-05 + 226 -8.9280017232992850E-05 + 227 6.9695329423736718E-05 + 228 -1.2500024027345600E-04 + 229 -2.4634721880139890E-02 + 230 6.1621351317249192E-04 + 231 -3.2722824899613133E-03 + 232 6.4402659457137032E-03 + 233 1.4157180014141672E-02 + 234 3.6195817514590278E-04 + 235 -1.3629295325509638E-03 + 236 2.4503283331464695E-03 + 237 -2.9824346092913406E-01 + 238 4.4362189387841644E-02 + 239 -4.1886903834178824E-01 + 240 -3.5311984722034610E-02 + 241 2.1999634110611782E-01 + 242 -1.4386139230608190E-03 + 243 2.2105863993632175E-03 + 244 -5.2632399152157698E-03 + 245 3.4794520803635115E-03 + 246 2.5842394700538191E-03 + 247 3.9440526083316991E-04 + 248 -2.6623794037911573E-04 + 249 7.8911586102323270E-04 + 250 3.9625935793446829E-04 + 251 5.0589272385030129E-04 + 252 -1.0755684833795023E-03 + 253 -1.2194603290563326E-03 + 254 -7.3975720869656617E-04 + 255 8.1189138779693586E-05 + 256 1.6155819136398309E-03 + 257 -1.5185766820923015E-03 + 258 -5.5468308077142995E-04 + 259 -2.3696697852353342E-05 + 260 5.8276582249007406E-05 + 261 -3.2757635180893024E-04 + 262 -2.9476395426109802E-03 + 263 -2.0795545770534600E-02 + 264 1.9000594640565464E-02 + 265 -2.9560816064926826E-03 + 266 -1.5866551250099531E-03 + 267 -6.3460401554941390E-05 + 268 -8.7298259259883232E-04 + 269 1.2879346062421209E-03 + 270 -3.1710117228194313E-04 + 271 -6.0321642318932414E-04 + 272 2.0737479949250368E-05 + 273 2.3662057998803136E-05 + 274 -2.8602951371619695E-04 + 275 3.4250179385619491E-04 + 276 4.0373772588707239E-04 + 277 -2.5417764775552453E-04 + 278 -6.2135997490182399E-05 + 279 3.5466444657279272E-02 + 280 -6.0634669026036288E-04 + 281 -2.4167488329733439E-02 + 282 1.5546585950474230E-02 + 283 -7.7028903715600713E-03 + 284 -7.9132951693078389E-04 + 285 7.1573407500252848E-04 + 286 6.8940699494712994E-04 + 287 3.6076273528195379E-03 + 288 -2.6924629297272768E-04 + 289 1.5333713994412446E-03 + 290 4.8135408993243040E-04 + 291 6.1941767796454871E-03 + 292 1.6998004072322123E-01 + 293 -2.1871070983387111E-03 + 294 5.1923451783551830E-02 + 295 1.1848351569764557E-02 + 296 -1.6175836753572127E-02 + 297 1.9147128314533158E-03 + 298 2.0476851721255812E-03 + 299 -3.8766122288155948E-04 + 300 1.5256159696671334E-03 + 301 4.6777736159730023E-03 + 302 -4.5882226889964670E-03 + 303 3.7476634800850896E-04 + 304 -4.9008115408744560E-03 + 305 -1.2516029832444571E-02 + 306 -1.7433484836303795E-03 + 307 -6.8418382125265244E-03 + 308 -3.3166116607917769E-03 + 309 1.1023677525752048E-03 + 310 2.3882062315907514E-04 + 311 8.0318992502238318E-04 + 312 1.7646876892984877E-03 + 313 5.4237084698760318E-01 + 314 -2.0005034079832285E-01 + 315 3.2098311187576439E-01 + 316 -1.3519135668917642E-01 + 317 -1.9518040695996638E-01 + 318 3.4756767614081544E-03 + 319 -6.3793134665721747E-04 + 320 5.4288856644514984E-04 + 321 2.0793910034024197E-03 + 322 -4.1953331799260982E-03 + 323 -4.4282305643010142E-05 + 324 -1.9423206415925367E-04 + 325 -4.5465940786905689E-04 + 326 9.5241828034050994E-04 + 327 3.1878668545857358E-04 + 328 -3.1658652530126483E-04 + 329 -3.6437039281093909E-04 + 330 -5.2691980540087316E-03 + 331 1.1654054363521727E-03 + 332 1.5466826671609772E-03 + 333 2.9726435742653069E-04 + 334 3.9235894693624854E-03 + 335 -1.9885430244079289E-04 + 336 8.5468990480259261E-04 + 337 -1.0394516338711041E-03 + 338 -3.0815206774868230E-02 + 339 -4.8047215796754077E-02 + 340 3.6299199899758203E-02 + 341 3.6853136980780029E-03 + 342 2.4889815400912039E-02 + 343 -1.4649640254726277E-03 + 344 -8.8145763592573448E-04 + 345 1.3891474965591984E-03 + 346 3.5162323188922962E-04 + 347 1.8577788778777069E-04 + 348 -6.8565332547356709E-04 + 349 8.0924097322996152E-05 + 350 1.6490882586306531E-04 + 351 3.0947945111255134E-05 + 352 -4.5160944670822275E-05 + 353 1.9646127905955602E-04 + 354 4.3197938527733600E-04 + 355 7.2212250494468666E-02 + 356 -1.4759728984867493E-03 + 357 -9.6062473735887902E-03 + 358 -3.2115785120870807E-02 + 359 -6.1160264961504576E-03 + 360 -9.2170332742315278E-04 + 361 -1.6030157314216858E-03 + 362 4.3401085701564289E-04 + 363 3.1050800735349516E-03 + 364 -1.4567978448855000E-03 + 365 -1.4609529896671171E-03 + 366 4.2977733176287501E-03 + 367 -3.2448228756521416E-03 + 368 -3.3908583591642193E-02 + 369 1.6812618327558964E-03 + 370 -6.4755328022941452E-03 + 371 1.8695959966911726E-02 + 372 -1.2808390799625178E-02 + 373 -1.7917422629729104E-03 + 374 -2.1277042160942742E-03 + 375 9.0496335967408452E-04 + 376 1.7159086513326067E-03 + 377 -2.5099841921022350E-03 + 378 -7.5695272708042785E-04 + 379 -4.8836927078773631E-04 + 380 3.0523084805243366E-03 + 381 1.8069273460429638E-04 + 382 8.0245998621607161E-05 + 383 1.2032828765040787E-03 + 384 -8.9685503905526814E-04 + 385 1.9971169385364289E-03 + 386 6.1920639503313128E-04 + 387 5.9761967781187756E-04 + 388 -5.1764705592455946E-04 + 389 -6.3229114509815061E-04 + 390 -6.5398650597428369E-04 + 391 5.1536196075143966E-04 + 392 -9.4332639230278967E-06 + 393 -3.7409784155036172E-05 + 394 -1.9459657777674957E-02 + 395 3.4564516471115086E-04 + 396 -8.1476324748382817E-03 + 397 2.4783438212380273E-03 + 398 3.4416782483129111E-03 + 399 1.1856372931415863E-03 + 400 1.6733714713910853E-03 + 401 7.9604641620130580E-05 + 402 5.2794978752601369E-02 + 403 3.2503607174146520E-02 + 404 -6.7756965829882748E-02 + 405 -1.1126422741837259E-01 + 406 6.4867784956109800E-02 + 407 -1.2917616777166293E-04 + 408 -5.6135298267756778E-04 + 409 -3.1727883636476911E-03 + 410 1.3376564730442831E-04 + 411 3.1020809650729132E-03 + 412 -4.4509771463273177E-04 + 413 -1.8114202075387301E-04 + 414 -6.1732055864843435E-04 + 415 -1.0312526767193879E-03 + 416 7.7329583906413744E-05 + 417 1.0940486679767260E-03 + 418 -1.5709981612782985E-04 + 419 3.6900839863238189E-03 + 420 -3.8675070445062298E-05 + 421 -7.3515057910312044E-03 + 422 9.8107643206186545E-03 + 423 1.5025337999180008E-02 + 424 1.9571611534072706E-05 + 425 1.0032054880917962E-03 + 426 1.4951981886585247E-03 + 427 1.5395624251379454E-03 + 428 2.6876411107330462E-03 + 429 -1.1903941558330309E-03 + 430 -3.2619141132471570E-04 + 431 2.6691721308591044E-03 + 432 -7.5361389638239299E-03 + 433 3.3183407408767830E-04 + 434 3.0269248279823813E-03 + 435 2.0772344585601272E-03 + 436 -5.9417377226588159E-04 + 437 5.2521734509886487E-04 + 438 4.8950997227610361E-05 + 439 -4.3275746584931602E-04 + 440 -4.0847973349118652E-04 + 441 -4.0819229897496743E-04 + 442 -3.6078519397239644E-04 + 443 4.6635393064026827E-04 + 444 5.5995949704563974E-04 + 445 -7.2322998249768414E-03 + 446 2.7084521824554826E-05 + 447 -3.5999640813521739E-03 + 448 1.4169199689126723E-03 + 449 -2.0197046087964124E-03 + 450 -1.9085570516454576E-04 + 451 5.5813693029094864E-04 + 452 -1.1774724232162530E-03 + 453 1.4072463692421625E-01 + 454 -1.6196465682819676E-02 + 455 -6.6262045634408948E-02 + 456 6.9513997265274879E-02 + 457 -5.1599672430644707E-02 + 458 6.7140741175093137E-04 + 459 -1.7550353889916757E-03 + 460 -4.7650157955322388E-04 + 461 -1.7176505182069873E-03 + 462 3.2940026482710375E-04 + 463 4.9935383427617138E-04 + 464 5.5203545479390824E-04 + 465 -1.7603610677193065E-04 + 466 -6.9036960755971307E-04 + 467 1.0873835177185496E-04 + 468 -2.2004139003167902E-04 + 469 -3.4075745888907731E-04 + 470 8.4998591490017096E-05 + 471 -2.5976153528177952E-04 + 472 -1.3817046947778812E-03 + 473 5.0580434516118717E-04 + 474 5.4256537307473957E-04 + 475 -4.6383938032063318E-04 + 476 3.0312962185466560E-04 + 477 2.4829383271012185E-04 + 478 -8.6112223389870235E-04 + 479 1.6154135647840145E-03 + 480 -3.1024383055934619E-03 + 481 -5.8147713204672663E-03 + 482 4.5938698371981749E-03 + 483 1.0400338141260529E-04 + 484 8.7377768483409357E-04 + 485 -6.9908922262363913E-05 + 486 -1.1533209132903927E-03 + 487 7.6300544112087179E-04 + 488 -1.8179561275151902E-04 + 489 1.4650194797967973E-04 + 490 2.2841604828216519E-04 + 491 3.4976844388117403E-04 + 492 -1.3933817156707205E-04 + 493 -2.4586992546043194E-04 + 494 1.4403820019727077E-04 +Ene= -4.5144033610E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -9.8051321302370185E-03 + 2 -1.1763308438193618E-03 + 3 5.4617176895542605E-03 + 4 3.7332982904663206E-05 + 5 4.8809724608068507E-04 + 6 2.3697497076991599E-04 + 7 3.6650636039096577E-04 + 8 -5.5486897478521265E-04 + 9 2.4718653850492246E-02 + 10 3.2628310095425606E-02 + 11 -7.5967887350666896E-02 + 12 8.8963648760775241E-02 + 13 4.3925654591113146E-02 + 14 1.6257085956816837E-03 + 15 -5.2000874445499773E-04 + 16 3.1084743633694661E-04 + 17 -8.9439958313065351E-04 + 18 -1.0920183511247704E-04 + 19 -1.0122008674131455E-05 + 20 -6.2690893497687654E-04 + 21 -1.2879892937748565E-04 + 22 3.4107558794585187E-04 + 23 -2.3592513868891219E-04 + 24 3.5607789623922763E-04 + 25 -1.4521168151397987E-04 + 26 -3.7598204723508248E-03 + 27 -8.2551871429087853E-04 + 28 -6.5514173587361934E-04 + 29 -2.9024230931984287E-04 + 30 3.6140160750547223E-03 + 31 1.7873609710806468E-04 + 32 -8.4723155731601682E-05 + 33 1.0177938871158466E-03 + 34 -7.7389181307729593E-03 + 35 1.7229382074486394E-02 + 36 1.7256771827150415E-02 + 37 3.7196650534303353E-03 + 38 -5.0407065672235640E-03 + 39 -1.0059779524096185E-03 + 40 1.2527302684319926E-04 + 41 4.0397450313537010E-04 + 42 -5.2047976135146832E-04 + 43 -3.1920564530713469E-04 + 44 8.7066179183336350E-06 + 45 -2.8500642196486976E-04 + 46 -1.4258747919237230E-05 + 47 -2.7661736681284539E-06 + 48 -1.7072477765193574E-04 + 49 1.4253716001252074E-04 + 50 9.6672628463613275E-05 + 51 -4.9900123473875539E-03 + 52 8.9268303025858041E-05 + 53 9.8687318663819631E-04 + 54 -3.9112610165077644E-04 + 55 6.6288983397339029E-04 + 56 6.2984110674820220E-04 + 57 -9.7741681705861477E-05 + 58 -2.1655593499587567E-04 + 59 3.3209666278432991E-02 + 60 -5.7213689035403505E-02 + 61 -2.9606659893234556E-02 + 62 2.2867667070625508E-03 + 63 1.6353168435423740E-02 + 64 -3.7466818792208950E-04 + 65 2.7758104842649788E-05 + 66 -4.4880450063826531E-06 + 67 -5.3811403293959584E-04 + 68 8.5105695315269934E-04 + 69 4.4569776502557479E-04 + 70 1.6896543885979899E-05 + 71 -2.7314096835299068E-04 + 72 -1.1872125414471323E-05 + 73 -5.8018667026780394E-04 + 74 -5.3133872056816876E-05 + 75 -4.5632878823826891E-04 + 76 1.7136186109077089E-02 + 77 -5.1440202033429204E-04 + 78 5.1180294248887839E-04 + 79 6.8982657460714717E-03 + 80 7.8549465769391352E-04 + 81 5.5943497033778914E-06 + 82 7.8952805649075982E-06 + 83 5.2422435292041566E-04 + 84 2.1103055751337183E-04 + 85 6.2850234779564349E-04 + 86 -1.4590160363477207E-03 + 87 9.1354451375466226E-04 + 88 -3.8428624305987763E-04 + 89 -1.1197342553089815E-03 + 90 2.8918419798779136E-04 + 91 -7.7032681128844337E-03 + 92 -5.4460682388261837E-03 + 93 7.4631038569196641E-03 + 94 -5.4651907910538661E-04 + 95 -2.7738203548950159E-04 + 96 9.4015326286503453E-04 + 97 6.6874230430672354E-04 + 98 -7.0965065514690790E-04 + 99 1.6610095739027473E-03 + 100 1.9200286141131575E-03 + 101 -1.2326124682766086E-03 + 102 3.2536603942798863E-03 + 103 -5.8598906128656351E-05 + 104 1.3729585530187622E-03 + 105 2.1286410899260563E-03 + 106 1.3682852365809702E-03 + 107 5.7821457303341741E-05 + 108 5.1214408169037152E-05 + 109 7.4139440053011435E-05 + 110 -1.5372436568937689E-04 + 111 -3.5325338048267080E-04 + 112 -3.5043353184512630E-04 + 113 -1.5337379486015735E-04 + 114 -1.6573224906470059E-04 + 115 9.9136626721358745E-04 + 116 -5.2085706641736140E-05 + 117 1.6027504363335236E-04 + 118 1.3613929700619621E-05 + 119 5.2104969600951835E-04 + 120 -2.8057689822397707E-04 + 121 1.4920969776792929E-04 + 122 2.1688393342573526E-05 + 123 -7.7296707267042594E-05 + 124 -1.1841532406797105E-04 + 125 -6.4691577391401221E-06 + 126 7.3827593407048580E-05 + 127 6.9920241334057252E-05 + 128 2.5547186807292205E-03 + 129 -2.2444973366840377E-04 + 130 -3.5644717921536881E-04 + 131 1.5597432782850297E-03 + 132 -2.2409264937910191E-04 + 133 -6.3549068494620008E-05 + 134 6.7121203338838854E-04 + 135 2.7166160262063034E-04 + 136 6.9145137565691855E-03 + 137 7.6513648548905489E-03 + 138 1.4995421316822814E-03 + 139 -1.5713445368582323E-03 + 140 -7.3187897566168413E-03 + 141 -3.3292052764292846E-05 + 142 5.0536273319759799E-04 + 143 -1.5761086821009891E-03 + 144 4.6767872867105369E-04 + 145 4.9850646084967972E-04 + 146 -1.6473524961443221E-04 + 147 -1.2736560825649958E-04 + 148 3.5528323008434840E-04 + 149 -1.5088748269101348E-04 + 150 -1.7963257623866805E-04 + 151 1.1225381839329956E-04 + 152 1.2320070203678983E-05 + 153 -9.3409647888403218E-04 + 154 -3.0607684626930810E-05 + 155 -1.4159485362513533E-05 + 156 2.8043634879823206E-04 + 157 -8.4092422107437613E-06 + 158 -7.1583991497113736E-05 + 159 -3.4383406969030530E-05 + 160 -1.5346564935794370E-04 + 161 -3.0598331353602078E-04 + 162 1.1012340579747183E-03 + 163 -4.9420854737108515E-03 + 164 -4.5138601917442591E-03 + 165 5.4010083622041188E-04 + 166 3.7970809332941291E-04 + 167 3.3907533158666838E-04 + 168 -1.7126752907384055E-04 + 169 -1.6613470889661040E-04 + 170 1.2563491906380375E-04 + 171 -1.6889962073589180E-04 + 172 -1.2913875835601809E-04 + 173 6.2382648221454215E-05 + 174 -6.8246930916214440E-06 + 175 -9.7842432160493429E-05 + 176 9.9792639264476613E-06 + 177 -6.3720702914546318E-05 + 178 2.3599820127258790E-03 + 179 -9.2224350200641655E-05 + 180 1.0103126799316267E-04 + 181 -1.1869191533238806E-04 + 182 8.0647070892489827E-04 + 183 1.2302784055622711E-04 + 184 -4.0923440528186569E-05 + 185 1.2194348636480350E-04 + 186 -2.1602784751682501E-04 + 187 -3.4271523342483056E-05 + 188 1.5366449378522016E-05 + 189 -2.8058902042355542E-05 + 190 6.3276124889296328E-05 + 191 4.0373635697867017E-04 + 192 -1.6905277303750935E-04 + 193 1.4552476343750087E-03 + 194 1.8557289379554716E-03 + 195 1.3917916464588856E-03 + 196 6.8266759481886535E-06 + 197 -4.6693637154813513E-04 + 198 6.6606441735028135E-04 + 199 -1.9637598748284963E-04 + 200 3.6558057577904673E-04 + 201 -2.9156787972615662E-04 + 202 -5.9147833110806966E-05 + 203 3.3066645302522819E-04 + 204 2.7393468163656701E-03 + 205 -3.9633150566206765E-05 + 206 -9.6266423770987312E-05 + 207 1.6214039598345239E-03 + 208 -1.3766353300645651E-03 + 209 2.3787873258468409E-04 + 210 3.0859347863559212E-04 + 211 -3.8781164775041841E-04 + 212 -1.3889640623670945E-03 + 213 -1.3696810963053559E-02 + 214 -6.1759483291343523E-03 + 215 -3.2125937331284092E-03 + 216 9.5667381279985059E-03 + 217 9.9649558405232887E-04 + 218 -7.2530271407826574E-04 + 219 -8.1925837876552221E-04 + 220 1.5939790564713563E-04 + 221 3.1136566374890547E-04 + 222 -2.0540152546689376E-04 + 223 5.2575586660755713E-04 + 224 2.8883553094880048E-04 + 225 -2.6648782179369278E-05 + 226 -2.4731291614590390E-04 + 227 4.7969676947668929E-04 + 228 4.8063446748687374E-06 + 229 -3.9918786671153169E-03 + 230 3.2338399742687824E-04 + 231 2.5776442286394529E-03 + 232 2.7945700300102249E-04 + 233 4.2158364068633552E-03 + 234 1.5396385134626902E-03 + 235 -1.1613167428335416E-04 + 236 1.4457823455162279E-03 + 237 -5.6757597045476796E-02 + 238 7.9436990055411511E-03 + 239 -7.4754938015637790E-02 + 240 3.3189250985122862E-02 + 241 1.5231724154629251E-02 + 242 9.8123814623877383E-05 + 243 1.0597560409055721E-03 + 244 -2.1366101796835126E-03 + 245 -9.5323410625231241E-05 + 246 -1.7318176602658161E-03 + 247 -2.0165187364025794E-04 + 248 -2.3421200561170655E-04 + 249 9.5242425156374889E-05 + 250 -1.9407910985728413E-04 + 251 7.5076909756799229E-05 + 252 -5.6399761538265814E-04 + 253 -2.8311309145660497E-04 + 254 5.2279347596378262E-04 + 255 -2.8778412413581145E-05 + 256 -5.9721485173850327E-05 + 257 -2.9490942636674008E-04 + 258 -1.3155642860551513E-03 + 259 -4.8962274765978209E-05 + 260 8.4291360505086546E-08 + 261 -5.0263468835630540E-04 + 262 1.0476400808669033E-03 + 263 -3.0271053929429481E-03 + 264 4.0086970054103322E-03 + 265 -1.2829549681974855E-03 + 266 1.6627226835622894E-03 + 267 4.0707695952407606E-04 + 268 3.8826742014746932E-05 + 269 1.0627452655826038E-03 + 270 -1.2539193922144506E-04 + 271 -4.9864120270823834E-05 + 272 5.4125211652900976E-05 + 273 -1.5080499959672160E-04 + 274 -2.4283992480953853E-04 + 275 2.9534911756518684E-04 + 276 -1.2564179433518245E-05 + 277 -6.4826123703168442E-05 + 278 5.4275285925888568E-05 + 279 5.7924765729756196E-03 + 280 -1.9172101939895607E-05 + 281 -4.9716345060656555E-03 + 282 3.0939805092879032E-03 + 283 -2.7328211651167964E-03 + 284 -3.9768965773286780E-04 + 285 8.1757513874894931E-05 + 286 9.7088982293346167E-05 + 287 7.7242166178792938E-04 + 288 7.7598526845933943E-05 + 289 6.9487803422517869E-04 + 290 2.4893981687976413E-04 + 291 9.5690133481012528E-04 + 292 3.0297236301146349E-02 + 293 -2.3700718154697747E-04 + 294 1.0790010520507702E-02 + 295 6.0591934324988155E-03 + 296 3.4843878847090580E-03 + 297 4.9131709548769838E-04 + 298 2.5575406530465135E-04 + 299 -3.8817704970087392E-04 + 300 1.6514975896030641E-03 + 301 1.5121554121762270E-03 + 302 -3.6030120412342903E-03 + 303 1.1984266845162417E-03 + 304 -1.2174401323783971E-03 + 305 -5.3680485563458022E-03 + 306 -6.7020818901396067E-04 + 307 1.4014840167092867E-03 + 308 1.1387097630820172E-04 + 309 1.4172681631045422E-03 + 310 1.3440330705382011E-03 + 311 -7.5422856099375537E-04 + 312 1.9744355489819810E-03 + 313 4.2572187822799790E-01 + 314 6.2358390655008056E-01 + 315 -5.5886193894964709E-01 + 316 -1.0757963325065419E-01 + 317 1.3087807154049366E-01 + 318 2.5275129143862108E-03 + 319 1.7574697144346410E-03 + 320 -1.0508975494062053E-03 + 321 -2.2993777569702313E-03 + 322 -8.5415244275871029E-04 + 323 -5.2545550151465779E-04 + 324 1.0399823990650078E-04 + 325 -3.3605448495132814E-04 + 326 -1.2451935749530386E-03 + 327 2.6855929599688328E-04 + 328 1.0304889903322741E-04 + 329 -4.5396620360351814E-04 + 330 -1.6608523238056127E-03 + 331 5.3260852645898596E-05 + 332 -1.4120085554032457E-03 + 333 -1.3678111173959786E-03 + 334 4.3024757032064870E-03 + 335 -1.5067621994560191E-04 + 336 -4.9357949523496855E-04 + 337 1.1552624872770297E-03 + 338 -2.5047164491280981E-03 + 339 -4.0812247589013606E-03 + 340 2.3675758690285088E-02 + 341 1.1149739030929634E-02 + 342 -1.0613340679400250E-02 + 343 5.1336941557698695E-04 + 344 -4.1688579017037404E-04 + 345 2.7832794148019333E-03 + 346 1.6485383121198161E-03 + 347 -1.1477547340452152E-03 + 348 -3.7087605559480791E-04 + 349 3.3600616912681739E-04 + 350 6.6194106180655573E-04 + 351 -6.5387409087304968E-04 + 352 -7.4263154303747829E-05 + 353 4.1092759297596087E-04 + 354 9.2787394908690429E-04 + 355 1.0866981191968869E-02 + 356 8.1780712920039565E-05 + 357 -6.4796638227297189E-04 + 358 -2.7355018160206955E-03 + 359 5.6993528781709582E-03 + 360 6.9127236966206056E-04 + 361 -8.5038882100101196E-04 + 362 -4.4309006468356361E-04 + 363 5.0082392182876985E-04 + 364 2.9912429840703832E-03 + 365 1.8477020913638222E-03 + 366 -3.4354727002548557E-04 + 367 -1.3547298030710134E-04 + 368 -4.0047075940284702E-03 + 369 3.5333473272729389E-04 + 370 4.5247071744726154E-03 + 371 2.4693790440150722E-03 + 372 -5.9174282771023174E-03 + 373 -1.1957199922264343E-04 + 374 -1.2216852695590770E-03 + 375 3.4584656423362753E-03 + 376 1.2234817919380798E-03 + 377 -1.0648755728309449E-03 + 378 -2.3573697111278636E-04 + 379 1.9274494083795511E-04 + 380 -7.5770710925615348E-05 + 381 -2.8526585857189157E-03 + 382 1.3804059385569171E-06 + 383 -1.8001068483521866E-03 + 384 1.2627010595734954E-03 + 385 -2.6070554482536174E-03 + 386 4.1419270918765990E-04 + 387 1.8606260633519860E-04 + 388 3.8972600692797595E-04 + 389 6.2278990521200106E-04 + 390 1.0973238121275517E-04 + 391 -1.6977047743888736E-04 + 392 6.9728383955083189E-06 + 393 2.1649015813264249E-04 + 394 -1.5836541343191811E-03 + 395 7.7985337662323331E-04 + 396 2.6326492718244244E-03 + 397 -3.3922345630704128E-03 + 398 1.7503235267808102E-03 + 399 6.0920204793660161E-04 + 400 -5.8853011151946118E-04 + 401 -6.6458332905897696E-04 + 402 -3.4334220393528278E-02 + 403 -6.1944009607729625E-02 + 404 1.0169052527840580E-02 + 405 -4.3147030718387894E-02 + 406 -3.4135944321923996E-02 + 407 -2.2660219734563771E-03 + 408 -1.6020029207514874E-03 + 409 -4.7301337868460396E-04 + 410 4.9292790457485663E-04 + 411 -2.2497299520270542E-03 + 412 1.6198543915701272E-04 + 413 -4.2099452471124895E-04 + 414 9.9707689336632615E-05 + 415 1.0396982541851597E-04 + 416 4.2194861732191407E-06 + 417 -1.5093018442737430E-04 + 418 -3.0602712074239493E-04 + 419 7.2650409758797330E-02 + 420 -1.7717563442541787E-03 + 421 -2.1696674792216767E-02 + 422 1.1929571350059270E-02 + 423 -2.0569904712068463E-02 + 424 -1.7036500951555711E-03 + 425 9.2265781880167903E-04 + 426 2.6422321171944591E-04 + 427 2.8990272896249596E-03 + 428 -5.2840049446760858E-03 + 429 2.7258917484336643E-03 + 430 -2.3679464579913490E-03 + 431 3.5968742761363012E-03 + 432 -2.0708182696454500E-02 + 433 4.0605535442959743E-04 + 434 8.8019631927506621E-03 + 435 1.4096645203303267E-03 + 436 -9.3936960699594046E-03 + 437 -1.7703655030270441E-04 + 438 7.9888254432084008E-05 + 439 4.1646870826034352E-04 + 440 1.0372560356258704E-04 + 441 -2.0459664972485784E-03 + 442 -5.0295004101485368E-04 + 443 1.1838215389637782E-03 + 444 6.8257576717295531E-04 + 445 3.3680435658344546E-03 + 446 -1.1908371986225636E-05 + 447 1.8694956357047301E-03 + 448 1.5762595262647247E-03 + 449 -3.6479886840352204E-03 + 450 -1.5579402470498969E-03 + 451 5.2160893600251661E-04 + 452 -7.6262172151943513E-04 + 453 2.3902606364742732E-02 + 454 -1.2426173291444198E-01 + 455 -3.6485908016945234E-02 + 456 4.3674363102174728E-02 + 457 1.2366968002173112E-01 + 458 2.4532146034970243E-04 + 459 -3.6057466629434154E-03 + 460 -9.0937655778872693E-04 + 461 6.4083350220100620E-04 + 462 2.6433673976703109E-03 + 463 4.6305268019970145E-04 + 464 -1.5082441146653904E-04 + 465 -1.0784123750477953E-04 + 466 3.6035667341455463E-04 + 467 1.1617600022023843E-04 + 468 -7.4869953026079330E-04 + 469 1.9325400724876709E-04 + 470 3.8368494387056289E-03 + 471 -4.2762161388318532E-04 + 472 7.2591960210500865E-04 + 473 -5.2031581172625396E-04 + 474 -1.1410331558080343E-03 + 475 2.3234979595518736E-04 + 476 5.3481934035095008E-04 + 477 -4.3954206892664403E-04 + 478 -7.3704151023238238E-03 + 479 2.8748210417040409E-03 + 480 6.0347129103054311E-03 + 481 -1.3704434580595719E-02 + 482 3.8991969029857046E-03 + 483 7.6364957680493480E-04 + 484 -8.8241108633204616E-04 + 485 6.5023163949435412E-05 + 486 4.2546789781928659E-04 + 487 -2.7072856964738739E-04 + 488 -2.2352770829894410E-04 + 489 3.5873543582396584E-04 + 490 -2.0959747233116648E-04 + 491 -3.2454182295730546E-04 + 492 7.1403252107384143E-05 + 493 -4.9718852705628838E-05 + 494 -2.7151405434987984E-04 +Ene= -4.5115110279E-01 +Spin= Alpha +Occup= 2.0000000 + 1 1.2315890029416130E-02 + 2 1.8428941439189487E-03 + 3 -4.7742275815694495E-03 + 4 3.5492344215298489E-03 + 5 -1.5135405825053405E-03 + 6 4.4552539204864497E-05 + 7 -2.8042110172801841E-04 + 8 1.4391302054425396E-03 + 9 -1.3229963814497581E-01 + 10 -6.1385313538413165E-02 + 11 1.8038430285338122E-01 + 12 -1.0355845671062176E-01 + 13 -1.9819595056808120E-03 + 14 -1.4603417266063734E-03 + 15 1.0721830649323251E-03 + 16 9.6761032529334677E-04 + 17 -1.1415382892125819E-03 + 18 -1.1930581725980867E-03 + 19 3.9892328294860126E-04 + 20 6.2035567250391202E-05 + 21 -4.1420978128667513E-04 + 22 -5.2689719773443605E-04 + 23 -3.2505275078718231E-04 + 24 1.3533936703896706E-04 + 25 1.9069395761662673E-04 + 26 5.1929697420818877E-03 + 27 5.6025716082061038E-05 + 28 8.0116463947392438E-04 + 29 1.0730996811361420E-04 + 30 -1.7229338895358903E-03 + 31 -2.8724220944610204E-05 + 32 3.1316719959854954E-04 + 33 -7.2203858631108208E-04 + 34 -3.4922537530514754E-02 + 35 -3.5166516277846518E-02 + 36 -6.3673979582148498E-03 + 37 2.2352372204396627E-02 + 38 1.9435740262687733E-02 + 39 1.1713253631941188E-03 + 40 -8.0715957223474147E-04 + 41 2.3515306284185861E-04 + 42 -1.4302073004981273E-04 + 43 -4.3474115419994908E-04 + 44 -4.4220418163038068E-04 + 45 1.6466513350683266E-05 + 46 -2.8821050302225542E-04 + 47 1.7027233532945004E-04 + 48 2.1801072659506838E-04 + 49 1.2392334579780102E-04 + 50 -1.6807243265857012E-04 + 51 9.8787032574467245E-03 + 52 -6.3130542285611143E-04 + 53 -1.0153024554969547E-03 + 54 8.8729068616303286E-04 + 55 5.8649925825943288E-05 + 56 -1.1283187129286589E-05 + 57 -3.4672116233891361E-04 + 58 1.1366694962763166E-03 + 59 3.7164610613677165E-02 + 60 1.1954899645475195E-01 + 61 1.6793775387919287E-02 + 62 -4.4231694852327946E-02 + 63 5.0791834190282228E-02 + 64 -5.8248455697349670E-04 + 65 -1.0795648455306909E-03 + 66 2.5394226311281729E-04 + 67 5.5623168442731476E-04 + 68 4.6568665104476886E-04 + 69 -1.1257551559891052E-04 + 70 2.3351055763998140E-04 + 71 2.0825746331277687E-04 + 72 -3.4735209759201130E-05 + 73 3.5638692217278934E-04 + 74 -1.8581171776552749E-04 + 75 -5.2062060817061731E-05 + 76 -3.2110712065569910E-02 + 77 6.5587378572045968E-04 + 78 -2.1070429703064701E-03 + 79 -1.7204727629852576E-02 + 80 -7.6933287191142757E-04 + 81 2.3398723007237969E-04 + 82 2.8120071661029764E-04 + 83 5.0908878595658431E-04 + 84 -1.1817980392782078E-03 + 85 -1.0489862383569976E-03 + 86 4.1223960118086447E-03 + 87 -3.4732267835474711E-04 + 88 1.1379647319381498E-03 + 89 1.8897610316865167E-03 + 90 -3.5125501245256895E-04 + 91 8.5335033216268428E-03 + 92 1.2705101557047974E-02 + 93 -1.8798415143002598E-02 + 94 1.0270621098838990E-04 + 95 1.0075554983137883E-03 + 96 -2.1852633469775671E-03 + 97 -2.4271712995791788E-03 + 98 1.6137371554078475E-03 + 99 -3.1500677363138180E-03 + 100 -2.9674440359659087E-03 + 101 4.7340027577543598E-04 + 102 -8.4438929374952756E-03 + 103 1.5972697170347924E-04 + 104 -4.3591778771004891E-03 + 105 -5.5535755170117969E-03 + 106 -4.5950642941822726E-03 + 107 -2.3486876982115950E-05 + 108 -4.6512090414445637E-04 + 109 1.4616400488179509E-04 + 110 1.8557685275056845E-06 + 111 1.4018297197281758E-03 + 112 5.2122336579520209E-04 + 113 5.9429407268309412E-04 + 114 1.0154722993515437E-03 + 115 3.0356458112479555E-03 + 116 -1.1194023122781953E-04 + 117 -8.5725812383023498E-04 + 118 8.6108027452796337E-04 + 119 9.1754328191724849E-04 + 120 2.8188414394180027E-05 + 121 -1.5856329305343259E-04 + 122 4.1891565446883119E-05 + 123 -6.4064786215349648E-05 + 124 -2.0972334110538961E-05 + 125 -2.0466362705338139E-04 + 126 1.0942688189469795E-05 + 127 9.7846507164269482E-05 + 128 3.7926682833549314E-03 + 129 -4.2025813571103695E-06 + 130 -1.8194428864218534E-04 + 131 -5.3384764741291977E-04 + 132 -2.7944410024099866E-03 + 133 -2.1208408683592229E-04 + 134 1.8146446636543615E-04 + 135 -1.6995161757408478E-04 + 136 2.4638869156596441E-02 + 137 -1.8055702357888545E-02 + 138 6.2042507562155187E-03 + 139 -2.5819351306171502E-02 + 140 -2.2085505367674903E-02 + 141 8.7434191055977520E-04 + 142 1.6870824570104607E-04 + 143 -4.2772403327153542E-04 + 144 -6.8145390161161360E-05 + 145 -2.9362315793271391E-04 + 146 4.4185739289043962E-05 + 147 -1.9907239289900628E-04 + 148 2.2375858500624633E-04 + 149 -3.7761229502362325E-04 + 150 -5.0599871734441009E-05 + 151 -4.3772631606091333E-04 + 152 -4.3851538484071317E-04 + 153 1.1409963155908764E-03 + 154 -2.1108320842366411E-04 + 155 4.3200027405784238E-04 + 156 1.7657941306461832E-04 + 157 -1.6683562999188623E-05 + 158 -1.0533380224939349E-04 + 159 -4.8282996459758602E-05 + 160 2.8493803088746309E-04 + 161 -4.1335273407665116E-04 + 162 -1.1092976365531216E-03 + 163 -1.7315745049937413E-03 + 164 2.3530981977227948E-03 + 165 6.2786764334059894E-03 + 166 -3.4967786019146938E-04 + 167 -2.1352987209556618E-04 + 168 -5.4159857574917798E-05 + 169 4.8040731528090111E-05 + 170 2.8185900590312957E-04 + 171 1.5310251899734704E-04 + 172 2.7517641212572457E-05 + 173 4.6633730767156327E-05 + 174 -3.5571769137020088E-07 + 175 -2.3781643982171237E-05 + 176 -2.2376384179026836E-04 + 177 -1.2837389995878178E-05 + 178 1.8765402752401695E-03 + 179 -1.3394627578668485E-04 + 180 6.0066602334809659E-04 + 181 1.0762322045390947E-03 + 182 1.3624916481506969E-03 + 183 -2.5808121140275702E-04 + 184 -1.5581774806400251E-05 + 185 -2.2596637867047703E-05 + 186 -2.7829677751359168E-04 + 187 -1.0704890542221097E-04 + 188 -2.3394421625033080E-04 + 189 -5.0820827768233947E-05 + 190 -1.6125302643705946E-05 + 191 -2.3308689753206821E-03 + 192 5.7825262964575892E-05 + 193 2.5432314621191554E-03 + 194 -5.1144098248120193E-03 + 195 -6.6508043556648671E-03 + 196 -3.6659486468220424E-04 + 197 -4.0334419686281005E-05 + 198 -1.5305293941856278E-04 + 199 8.9656506298547002E-04 + 200 -5.5399740514412601E-04 + 201 8.8635057310374878E-05 + 202 4.1396972350774908E-04 + 203 3.4606755927809566E-05 + 204 5.8027001067759900E-03 + 205 -1.5489583442490439E-04 + 206 2.1867605376331904E-03 + 207 -8.5964271552580666E-05 + 208 -3.3419748889567408E-03 + 209 -1.5358698663888592E-04 + 210 -1.7947054516672845E-04 + 211 -1.1059446366473264E-03 + 212 -1.5937294705953422E-02 + 213 -1.0568254773739429E-02 + 214 9.9777866397739740E-03 + 215 1.7179074226081451E-02 + 216 5.7169649259003414E-03 + 217 2.0916931080499960E-03 + 218 -5.0457722680167800E-04 + 219 3.8110045023934362E-05 + 220 4.3132301247945389E-04 + 221 5.6045234068552766E-04 + 222 -5.9614092346870265E-04 + 223 3.2155635023061027E-04 + 224 3.7938827127023646E-05 + 225 7.3087971163730462E-05 + 226 1.6888446575467976E-04 + 227 2.5812592362116382E-04 + 228 2.3471356273227961E-04 + 229 -1.4248204200666120E-03 + 230 -1.8103841231159658E-04 + 231 4.6546420483043648E-04 + 232 2.4836082927514858E-03 + 233 -8.1608932171700031E-03 + 234 -2.9667337287796977E-03 + 235 5.9305962493815868E-04 + 236 -2.8994987913535651E-03 + 237 3.3507543160503789E-01 + 238 -7.1650979211085167E-02 + 239 3.3522831658961395E-02 + 240 -3.6604190837680642E-02 + 241 -1.4985174809663185E-01 + 242 1.2703263284240176E-03 + 243 2.3500307093373194E-05 + 244 2.4517900634069153E-03 + 245 2.5295745596426128E-03 + 246 1.2040902177205888E-03 + 247 -1.3238586438754399E-05 + 248 5.7397307017411530E-04 + 249 -8.1012273985093120E-04 + 250 -3.2608453985769791E-04 + 251 -2.1046993793186273E-04 + 252 -2.5261320608115014E-04 + 253 -3.9940492883992323E-04 + 254 -1.1695459605029549E-03 + 255 -9.6454982954084076E-05 + 256 -7.6931450682426398E-04 + 257 2.5037204872033512E-04 + 258 1.0783909522543138E-03 + 259 4.7500134510845864E-05 + 260 2.7786803804975513E-05 + 261 2.1938540491597258E-04 + 262 -8.6936020511582304E-03 + 263 9.1959118759624894E-03 + 264 -4.3328871411574032E-03 + 265 1.9527250745405593E-03 + 266 3.8017879360331243E-03 + 267 -3.5232089227397626E-04 + 268 2.5077472493384526E-04 + 269 -2.8869339768345005E-04 + 270 3.8666453758367045E-04 + 271 4.8625605302101376E-04 + 272 1.1066090409726551E-04 + 273 9.3243994599714154E-05 + 274 -6.6628683469677514E-05 + 275 -3.7415761642840459E-04 + 276 -2.9668441315514846E-04 + 277 1.6753873132619883E-04 + 278 -1.5117117475940705E-04 + 279 -1.4856982461827609E-03 + 280 -2.0427357852990858E-05 + 281 9.6409587570071009E-03 + 282 -2.5455854997879870E-03 + 283 8.5393818608064487E-04 + 284 1.1390717458583226E-03 + 285 6.0697369930420300E-04 + 286 4.4985317479304392E-04 + 287 -4.8850778037013072E-04 + 288 1.1839438773350636E-03 + 289 -2.7723740157385064E-05 + 290 -6.0779774690107331E-04 + 291 -2.9625331565571681E-03 + 292 -9.0358789086965402E-02 + 293 9.8073945120237603E-04 + 294 -3.9130175651028318E-02 + 295 8.0981857867648034E-03 + 296 6.6609945027850271E-03 + 297 -3.7163342523820664E-04 + 298 -5.0527463133353233E-04 + 299 2.0426779626925634E-03 + 300 -4.9042666585675902E-04 + 301 -4.3009405914605000E-03 + 302 5.0558628293233075E-03 + 303 9.8245864419673444E-04 + 304 3.4741891537135501E-03 + 305 2.2360382125458235E-03 + 306 1.9952622649992296E-04 + 307 1.0001668358018367E-02 + 308 -3.5177776867637229E-03 + 309 5.9388817954348803E-04 + 310 1.3902840503113893E-03 + 311 -1.3339927689772833E-03 + 312 9.8195621431241176E-04 + 313 4.7927510494750886E-01 + 314 -1.6469157157032185E-01 + 315 2.0027954087175656E-01 + 316 1.0959203790308107E-04 + 317 5.7523662713562085E-01 + 318 1.4812330861100123E-03 + 319 -2.9617545415499963E-03 + 320 -2.4932798494802172E-04 + 321 -1.8150797118872918E-03 + 322 1.0258158425181678E-02 + 323 2.5521370200599572E-04 + 324 -1.5778231720058305E-03 + 325 -2.2565989149195684E-06 + 326 8.9081591964328079E-04 + 327 -1.2729960631555087E-04 + 328 -2.6834429123771911E-04 + 329 -1.9660597471876208E-03 + 330 6.6129703625081174E-03 + 331 -5.4892109471030986E-04 + 332 -7.7110851581891910E-04 + 333 1.8009131485205456E-03 + 334 -5.3921627744978589E-03 + 335 3.9280689829856909E-04 + 336 9.2389047996638347E-05 + 337 2.8887165517156035E-05 + 338 3.0182039010958003E-02 + 339 1.3833818273597000E-02 + 340 -5.3483619481314131E-02 + 341 -4.8839001122538139E-03 + 342 -1.8511712421561199E-02 + 343 -2.5847607146659750E-04 + 344 -2.1774281308401086E-04 + 345 -2.9310619468977143E-03 + 346 -9.5030974003646059E-04 + 347 -9.4903496891637627E-05 + 348 6.8622761262957248E-04 + 349 8.6264301717864275E-05 + 350 -5.0475896620850069E-04 + 351 6.7679465603501547E-04 + 352 -6.6549739225924508E-04 + 353 6.4894934917467451E-05 + 354 -3.1633812291667217E-04 + 355 -5.6086512372036643E-02 + 356 1.0825520111047682E-03 + 357 -9.0624914691797183E-03 + 358 2.6160255994929549E-02 + 359 1.5782707161212169E-03 + 360 4.0389370775826714E-04 + 361 5.5699841973346485E-04 + 362 8.1300483878822267E-04 + 363 1.5506036268966223E-04 + 364 -1.4947230712406294E-03 + 365 1.0133193993552558E-04 + 366 -4.6409909419367675E-03 + 367 -4.1173622349233765E-04 + 368 -1.5776514299720747E-02 + 369 3.5430833279558689E-04 + 370 -1.1006025407066092E-02 + 371 3.9006347290289262E-03 + 372 -1.3987739217968930E-02 + 373 1.4529890514878548E-03 + 374 2.7610380096759572E-04 + 375 1.5640071497472274E-04 + 376 1.4495622633514881E-03 + 377 7.6895777788226058E-04 + 378 8.5825184166412564E-04 + 379 6.2910943344093330E-04 + 380 -1.5489926049505013E-05 + 381 2.8769519204878743E-03 + 382 3.2599177471141574E-05 + 383 -9.1284559169719452E-03 + 384 -1.8109837532071895E-03 + 385 -2.4599307618249672E-03 + 386 -1.9575052807330263E-04 + 387 -6.3423535420965491E-04 + 388 1.3628475033838187E-04 + 389 1.4200355646358854E-03 + 390 1.8859588783548572E-03 + 391 7.5436060306292092E-04 + 392 -9.8249524785727778E-04 + 393 1.7530308508346563E-04 + 394 -1.3499979792229968E-02 + 395 1.1491058568468644E-03 + 396 4.2547036773280551E-03 + 397 4.3460916515636007E-03 + 398 7.9872658953889595E-03 + 399 -1.4802129507052637E-03 + 400 -1.2712174785527400E-03 + 401 -1.6500614412091999E-04 + 402 -1.6329032320431247E-01 + 403 -1.1679437636760794E-01 + 404 -9.4531395367976778E-02 + 405 1.1746511698885205E-01 + 406 -4.9078106790260763E-02 + 407 -1.4550107018231769E-03 + 408 1.9410754180975275E-03 + 409 1.4934164101580906E-04 + 410 -6.5939668132205859E-04 + 411 -4.5304041981337356E-04 + 412 -7.2199439937628150E-04 + 413 -9.6580671993730946E-04 + 414 4.9003503609313755E-05 + 415 1.2080606644130501E-03 + 416 -2.8625277270420875E-04 + 417 -2.2012432189346079E-04 + 418 7.1748475728765219E-04 + 419 1.5020914614071659E-01 + 420 -1.7539106938192811E-03 + 421 -5.2227650431729777E-02 + 422 1.7410636257438720E-02 + 423 -1.3345917073146318E-03 + 424 1.8164036855236219E-04 + 425 -1.1869403066828650E-04 + 426 -1.5179806485742487E-03 + 427 3.5165763591539310E-03 + 428 6.5089338285879246E-04 + 429 -1.5044259016408262E-03 + 430 -5.4649823609640670E-03 + 431 5.9764517874289057E-03 + 432 8.5024614479125970E-03 + 433 -1.2031847805095045E-04 + 434 -5.1192434956416344E-03 + 435 2.3903802331188442E-03 + 436 4.4369591444109961E-03 + 437 2.9039192296051022E-05 + 438 1.3780616544470638E-04 + 439 1.3508836542436758E-04 + 440 2.3178233722527610E-05 + 441 1.1690141268634459E-03 + 442 -8.5671800008572450E-05 + 443 -1.0267975119003210E-03 + 444 2.7275689343730908E-04 + 445 -2.3333755698252013E-02 + 446 -1.6132814318407375E-04 + 447 -8.8568963291620201E-03 + 448 -5.6818642145232351E-03 + 449 4.8928489553193514E-03 + 450 -9.3527969984345230E-04 + 451 2.0691222029752521E-03 + 452 -5.7586592273052529E-04 + 453 1.2193745835790630E-02 + 454 6.1199831871601183E-02 + 455 1.3907611079644466E-01 + 456 -1.3457782720481109E-02 + 457 -3.4820026294186401E-02 + 458 1.0823623616864272E-03 + 459 2.3676001950211625E-03 + 460 2.1149147704316645E-03 + 461 -3.1683680995448992E-03 + 462 -1.0400851334362892E-03 + 463 -6.2818772413147364E-04 + 464 -1.1995408743677449E-04 + 465 5.2185605165059267E-04 + 466 7.0092387201645167E-04 + 467 2.1824976037915377E-04 + 468 -2.4412391318722772E-04 + 469 -2.5492614777191779E-04 + 470 -8.7642166182648543E-03 + 471 2.7405762919740270E-04 + 472 -3.5196439738932554E-03 + 473 -1.2160389105808705E-03 + 474 2.4623320204611061E-03 + 475 -4.5676055464636119E-04 + 476 -4.6470603057687134E-04 + 477 -5.0198610803014449E-06 + 478 6.1738407504279020E-03 + 479 1.4948826095642128E-02 + 480 -2.4386058160882442E-03 + 481 9.0628437625176143E-03 + 482 -1.5034108892026497E-02 + 483 4.4320680383970278E-04 + 484 1.5442927186395735E-03 + 485 1.9919333109954274E-04 + 486 -9.7359674450661583E-04 + 487 -8.0841143636004975E-04 + 488 -3.9830352980355690E-04 + 489 1.5243543621292662E-04 + 490 9.8244198110323502E-06 + 491 3.4845434815133263E-04 + 492 2.0897675528677897E-05 + 493 -4.8408287634271816E-05 + 494 -7.4246424301168968E-05 +Ene= -4.4977303418E-01 +Spin= Alpha +Occup= 2.0000000 + 1 5.3232252812663826E-03 + 2 -5.6314485716999494E-03 + 3 2.1629352513105053E-03 + 4 6.3209863136540071E-03 + 5 -7.0503465642724056E-03 + 6 3.2216929462485069E-04 + 7 6.0499818717817243E-03 + 8 -1.1069150630077964E-03 + 9 3.0588035647140099E-01 + 10 -3.9384630418738797E-02 + 11 1.0140545596530165E-01 + 12 5.0037273525860326E-01 + 13 -1.3173095383100370E-02 + 14 1.2779324357235370E-03 + 15 1.2753515783916964E-03 + 16 -4.2990704703373193E-04 + 17 1.0375470247015815E-03 + 18 -2.1821066679814909E-03 + 19 1.5177217232609106E-04 + 20 -1.7522824879871162E-04 + 21 4.2602978833022811E-04 + 22 4.3067754135331170E-04 + 23 1.4510818970129358E-03 + 24 6.1399333581779248E-04 + 25 -6.6325265611334012E-04 + 26 -1.9137228786785303E-02 + 27 8.2383533298491078E-04 + 28 -4.1447795473250684E-03 + 29 -8.4768529024483236E-05 + 30 5.5680851718629548E-03 + 31 1.5261005735884512E-04 + 32 -7.7375045003825788E-04 + 33 8.0666870501717720E-04 + 34 -7.0848350154578002E-03 + 35 1.0819037922384442E-01 + 36 9.0717593050479009E-02 + 37 1.2737376564208973E-03 + 38 -1.8843557995108742E-02 + 39 -9.2878040935359750E-04 + 40 2.8091258537585894E-03 + 41 9.2074735708433592E-04 + 42 7.0790477082198564E-04 + 43 -3.6945477843170518E-04 + 44 2.9339738476928906E-04 + 45 -8.3849808579771498E-04 + 46 3.0023308612916387E-04 + 47 -9.5584035826996535E-04 + 48 -4.3815106011412002E-04 + 49 8.4683856829547785E-05 + 50 -1.4087159653277543E-05 + 51 -1.0067628687426869E-02 + 52 2.9188302125773883E-03 + 53 4.8063127942259464E-03 + 54 9.1679862230203567E-04 + 55 -1.3216066695115096E-02 + 56 3.7058386781330969E-03 + 57 -3.5994729310217632E-04 + 58 -6.8822773392994236E-03 + 59 1.4953921019536082E-01 + 60 -5.2139942290631047E-01 + 61 2.7111261755024402E-01 + 62 1.0180439271755828E-01 + 63 -2.5975143141059759E-01 + 64 -2.1579731303451514E-03 + 65 3.7054299681285193E-03 + 66 -6.0478871132810495E-03 + 67 5.8014065109876598E-04 + 68 5.4797309994843299E-03 + 69 -6.3936410001192399E-05 + 70 -2.6510845816369954E-04 + 71 -3.9449968903204049E-04 + 72 -4.7278418439146945E-04 + 73 3.0473835234823559E-04 + 74 -4.8308381319475799E-04 + 75 -5.2879041120145484E-04 + 76 7.7420784076305121E-02 + 77 -1.3233468355803944E-03 + 78 1.1498127988494599E-02 + 79 1.2717288937240431E-03 + 80 2.0948080347724187E-02 + 81 -1.1100704575099914E-03 + 82 6.5114738427881963E-04 + 83 1.5227598235572170E-03 + 84 -3.5756585750068297E-03 + 85 -8.4550740396654341E-05 + 86 -3.1216723648768395E-03 + 87 -1.9272544860422401E-03 + 88 8.3362454497525561E-04 + 89 3.1328700422437308E-02 + 90 -2.6515543835629304E-04 + 91 -4.4448460142299195E-02 + 92 -7.5175031418738492E-02 + 93 5.0283738507579508E-02 + 94 -4.2010113363471916E-03 + 95 -7.6718675666610772E-03 + 96 4.3391105230292824E-03 + 97 9.6461412790677901E-03 + 98 -1.0799305932391274E-02 + 99 8.4133789904390643E-04 + 100 1.6224065708730750E-02 + 101 6.0569940614388417E-04 + 102 2.7699034258842872E-02 + 103 -5.3852651050946099E-04 + 104 5.6860298418802049E-03 + 105 1.8339501356245187E-02 + 106 1.8780400501123659E-02 + 107 -8.9983259942101536E-04 + 108 1.1508003286730655E-03 + 109 1.4252853344496898E-03 + 110 -1.9670243451683652E-03 + 111 -3.1571633262833113E-03 + 112 -2.7388431019950707E-03 + 113 1.4591617867143976E-04 + 114 -2.2963104071401148E-03 + 115 -5.4624502450375256E-03 + 116 8.1482643042205669E-05 + 117 1.7834986458913657E-03 + 118 1.8516135969653142E-03 + 119 -1.6250346847726199E-03 + 120 -9.0139931702851823E-04 + 121 3.2417776086416565E-04 + 122 -3.5960608918000935E-04 + 123 -9.1523976292727540E-05 + 124 -3.9101643726620116E-04 + 125 -3.9859354848959888E-04 + 126 2.2041342979073225E-04 + 127 2.0954240494139452E-04 + 128 -1.6845233563644755E-03 + 129 -1.5400717060533433E-04 + 130 6.8246185183992172E-04 + 131 -3.0778578626808442E-04 + 132 2.8077968118147461E-03 + 133 7.0330969479577001E-04 + 134 -5.4771867130190197E-04 + 135 5.4060757014762380E-04 + 136 1.0865054941640782E-02 + 137 2.5364589576265840E-02 + 138 -1.2183261231043723E-02 + 139 2.4069407841463921E-03 + 140 1.8904416611590157E-02 + 141 -2.1475560925825650E-03 + 142 5.7136131076743972E-04 + 143 3.7439298940353212E-04 + 144 1.0533522335551377E-03 + 145 6.6628089856055127E-04 + 146 2.3500210198782148E-04 + 147 -6.7011621780836944E-04 + 148 1.9069346826484752E-04 + 149 1.8631615333913852E-04 + 150 -2.2697956961053778E-04 + 151 1.2276432760787844E-03 + 152 2.8713666030202726E-04 + 153 -4.2222002299629937E-03 + 154 1.8490102765568671E-03 + 155 -1.7157471482024654E-03 + 156 -3.8028085049221262E-05 + 157 -4.6241321418161288E-04 + 158 3.1622287359154086E-04 + 159 -4.4318219289859952E-04 + 160 -1.8244533684209660E-03 + 161 -3.7207629793458354E-02 + 162 1.1090063376344262E-02 + 163 -1.5311179252863254E-02 + 164 -1.7233811482146904E-02 + 165 -7.9634885477102169E-03 + 166 1.3419769767074449E-03 + 167 7.7214075266992578E-04 + 168 6.1239231720334217E-04 + 169 -1.5864889759033120E-03 + 170 -2.9147913005993025E-04 + 171 -1.0763507643370401E-04 + 172 -6.8902807889573449E-05 + 173 -3.8695306381607275E-04 + 174 5.3563511039145641E-04 + 175 -2.6604583951474400E-05 + 176 2.1388163121844844E-04 + 177 -4.8753220449549811E-04 + 178 -1.3607676573701061E-02 + 179 5.1860651423715797E-04 + 180 4.4180491822787596E-04 + 181 -1.1170528562567258E-03 + 182 -5.3416637439564875E-03 + 183 9.4113049778118756E-04 + 184 5.2072694186776846E-04 + 185 5.5385047079709168E-04 + 186 5.7541479829752303E-04 + 187 -2.3819832056817697E-04 + 188 3.6373425753796800E-04 + 189 -1.2902013944246846E-04 + 190 2.4458797473236188E-04 + 191 3.5946303629979491E-02 + 192 -1.0780966995106306E-03 + 193 -1.3851687958574242E-02 + 194 -1.0705192564329950E-02 + 195 5.7605252023342230E-03 + 196 -1.1416120527808281E-03 + 197 6.8581839627755291E-04 + 198 6.4053438200992348E-04 + 199 1.6723245948923088E-03 + 200 9.6497234450621005E-04 + 201 2.1673058475635736E-03 + 202 -7.2704888579449840E-04 + 203 -2.9013283149950937E-03 + 204 -7.6266707666050714E-03 + 205 8.2676764442333659E-04 + 206 -2.5617645760370130E-03 + 207 2.8760283455154302E-03 + 208 4.9231030634387630E-04 + 209 5.2760865931438601E-04 + 210 5.3514170101128758E-04 + 211 3.7673575846662458E-04 + 212 6.0614478473517301E-02 + 213 -1.1930966092873745E-02 + 214 -5.9776380120399927E-03 + 215 -1.8955233735684394E-02 + 216 1.9696560398205280E-02 + 217 1.6057998796236198E-03 + 218 5.6853322835531553E-04 + 219 -4.7612347918918053E-04 + 220 -6.4239867183111198E-04 + 221 2.2224778291225359E-03 + 222 2.3337623998582284E-04 + 223 -1.8432799464860024E-04 + 224 1.5591130735341565E-04 + 225 -5.3718663797106735E-05 + 226 -1.7128482811619477E-04 + 227 -9.2440296870537643E-06 + 228 5.2851227144789048E-05 + 229 4.4782986147991399E-03 + 230 6.0253987912034382E-04 + 231 -4.2010635543119346E-03 + 232 1.6420190449592670E-03 + 233 -3.0158957917056899E-03 + 234 -2.6455959489904697E-03 + 235 1.5803668932432183E-03 + 236 8.8496826347799710E-04 + 237 -7.0884564632448799E-02 + 238 -1.8131563350484220E-01 + 239 5.1171846122044069E-02 + 240 8.5464642223741685E-02 + 241 -1.6890423874976557E-01 + 242 -7.2097596337909427E-04 + 243 -1.9005086293837597E-03 + 244 1.1151230197041777E-03 + 245 4.7564662447772732E-04 + 246 -2.1035092281381294E-03 + 247 -1.0914342366586192E-04 + 248 4.9047813250159577E-04 + 249 -4.5529660113277436E-04 + 250 3.4246601536302767E-04 + 251 -2.7618388666040319E-04 + 252 -1.4106378665404521E-04 + 253 3.8383536970252826E-04 + 254 5.5023806052280338E-03 + 255 -5.8496420991603008E-04 + 256 -7.3180173116466269E-04 + 257 5.2591239283891235E-04 + 258 -2.9951787212437755E-03 + 259 4.6245525355405629E-04 + 260 -3.9823308992626859E-04 + 261 1.4737292474549841E-04 + 262 3.0349268267662353E-02 + 263 1.3937567093398367E-02 + 264 -1.0202366682986444E-02 + 265 3.3304466808367450E-03 + 266 3.5099564605956921E-03 + 267 3.2355807617366882E-04 + 268 -1.3836806510161855E-04 + 269 7.2830556701904234E-04 + 270 1.0176261312842648E-04 + 271 -1.7276600666608121E-04 + 272 1.1690427501836879E-04 + 273 8.7701376971951382E-05 + 274 -4.4323646827787738E-05 + 275 3.6480304383117001E-05 + 276 8.6121369029851298E-05 + 277 -9.9152146362665655E-05 + 278 -1.2185020276850460E-04 + 279 -4.2595825105795009E-02 + 280 8.5026690517224198E-04 + 281 1.1596702869715253E-02 + 282 -1.8457538568272400E-02 + 283 -8.5916019497132741E-03 + 284 6.5524180975301842E-04 + 285 -1.8570304902854387E-04 + 286 2.4189598813702704E-04 + 287 -1.7983621118302382E-03 + 288 -8.4694087514513021E-04 + 289 1.6419571432624307E-03 + 290 -1.7033653964290069E-03 + 291 -3.3007426263890190E-03 + 292 -3.7944415892766849E-02 + 293 1.4224922709216628E-04 + 294 -2.8175599744904669E-03 + 295 -8.1980670954974917E-03 + 296 6.0085770120619367E-03 + 297 -1.6318074413997354E-03 + 298 3.9122082001848511E-05 + 299 -3.8466524413758587E-04 + 300 7.5116138757467708E-04 + 301 6.3042444897696756E-04 + 302 -3.2851378969716378E-04 + 303 -2.4701639309674973E-04 + 304 1.0022792104870161E-03 + 305 2.8382504305782580E-03 + 306 4.6116504083782540E-04 + 307 2.0516624581983609E-03 + 308 -1.5635901226760689E-03 + 309 6.3332570193677434E-04 + 310 2.8967331016328438E-04 + 311 -1.2777913805524473E-03 + 312 1.7663705582182828E-04 + 313 2.9423920751664136E-02 + 314 -1.0272145657187826E-01 + 315 7.7072334817960358E-02 + 316 -5.8623059166922536E-02 + 317 1.2729309332203395E-01 + 318 -6.4174555188901603E-04 + 319 -6.3295362722907208E-04 + 320 5.4726153390642683E-04 + 321 -7.9393555040001697E-04 + 322 1.8660945559797119E-03 + 323 -5.0278961806617128E-04 + 324 -4.1644666204547395E-04 + 325 5.3340868951451512E-04 + 326 -5.3123556030931594E-06 + 327 -3.4299226664699829E-04 + 328 7.1562988059401401E-04 + 329 -6.9426214490013677E-04 + 330 -5.4683218608662324E-04 + 331 -1.1503804572506073E-03 + 332 -8.6018894013975306E-04 + 333 -5.0339809856584576E-04 + 334 -6.8475333146111146E-04 + 335 1.3438618061930650E-04 + 336 -1.1935438738458356E-03 + 337 1.1161496319794155E-03 + 338 7.6961870869196973E-03 + 339 3.8149410758038585E-02 + 340 1.9154513187839457E-02 + 341 -2.8932486432182720E-02 + 342 -5.3432776139909180E-04 + 343 1.6110875363826217E-03 + 344 7.0334035671023882E-05 + 345 3.2914571383729579E-04 + 346 -2.5186185923177512E-04 + 347 1.7690320537249024E-04 + 348 3.1779086775811643E-04 + 349 3.6295099919907397E-04 + 350 4.2999658742006900E-04 + 351 -4.0686006289509938E-04 + 352 1.3280641759436549E-04 + 353 -4.0799200054806781E-04 + 354 -1.3726578655774181E-04 + 355 -2.3110735252390827E-02 + 356 2.6547183441361267E-04 + 357 1.6465029774287217E-03 + 358 1.2064282171174877E-02 + 359 -9.1842282959928316E-04 + 360 3.9582755035325376E-04 + 361 3.3854149460872738E-04 + 362 5.2950515685701467E-04 + 363 -7.4637208304211802E-04 + 364 -8.1186615168709047E-04 + 365 2.9816583086080185E-04 + 366 -1.2569628917259877E-03 + 367 1.2242608205566849E-03 + 368 -1.8892956988300673E-02 + 369 8.6910757701394513E-04 + 370 -6.9099888768079628E-03 + 371 3.8785575696260182E-03 + 372 9.8722064419067661E-03 + 373 3.3576994579503813E-04 + 374 2.1507996106570604E-04 + 375 6.5794733029236614E-04 + 376 1.4052653631402027E-03 + 377 2.5044938879825009E-03 + 378 -2.1031297710568018E-03 + 379 5.6636897490768478E-04 + 380 1.1555680282093206E-03 + 381 -5.6400374832164411E-04 + 382 -4.7102380203443609E-05 + 383 -5.1659328179161617E-04 + 384 -1.4862613674151875E-03 + 385 -2.4051852567954606E-03 + 386 8.4987274880894540E-04 + 387 -4.8014170618585167E-04 + 388 4.8056997566506483E-04 + 389 2.6085577810463600E-04 + 390 -8.7924336354453303E-05 + 391 3.6035730460247332E-05 + 392 -3.6068149175488059E-04 + 393 -3.5830076950195823E-04 + 394 -3.6606832434029125E-03 + 395 1.0550373866293201E-03 + 396 -2.1413749021151497E-03 + 397 -2.7397356995154027E-03 + 398 1.0128226669115570E-03 + 399 -6.0597258522499529E-04 + 400 -1.7258090933386064E-03 + 401 -2.7182982698707194E-04 + 402 -2.0829491637299666E-02 + 403 -3.6465925914435808E-02 + 404 -1.6410725828467355E-02 + 405 -4.7687767836707487E-02 + 406 -5.6581286012970265E-02 + 407 1.4739887617925913E-03 + 408 -5.2096609229038604E-04 + 409 1.4425594552092732E-04 + 410 -2.6398764146111412E-03 + 411 -2.5641772943566844E-03 + 412 1.6817503783604301E-04 + 413 3.2262588010225550E-04 + 414 2.8555826428558039E-04 + 415 1.8478076985142206E-04 + 416 -4.1509430126566559E-04 + 417 -5.9674734648296830E-04 + 418 -1.8883749087276628E-04 + 419 3.2477293479429979E-02 + 420 -4.4404060547265350E-04 + 421 -8.5292219982159804E-03 + 422 6.3300367523331149E-03 + 423 2.1593236761196324E-03 + 424 -3.2230600583558751E-04 + 425 -5.3508998438491320E-04 + 426 -8.4526074466516061E-04 + 427 8.4079847619044192E-04 + 428 1.3439621817231922E-03 + 429 -3.8311917959540025E-04 + 430 -4.9928365270994642E-04 + 431 1.5076939662117888E-03 + 432 4.8969212180452488E-03 + 433 -7.4542185140042950E-05 + 434 -2.5238242189968563E-03 + 435 7.6710426395411541E-04 + 436 9.3279007285243222E-05 + 437 -9.0308517766116809E-05 + 438 1.4538642262231953E-04 + 439 1.0158788059827734E-04 + 440 -1.2606970226262531E-04 + 441 3.5473170096892969E-05 + 442 -1.0292279591658318E-04 + 443 -4.4091083620795296E-04 + 444 -4.5393707883224735E-06 + 445 -5.6832870550846916E-03 + 446 -3.0579485359854419E-04 + 447 -1.6889603448938932E-03 + 448 -4.4265863766724256E-03 + 449 4.1642366158340679E-04 + 450 -1.4200083754062958E-04 + 451 -4.9389754911994079E-04 + 452 1.4432259278118376E-04 + 453 -9.0688514597911801E-03 + 454 1.9744890147026767E-02 + 455 4.4274549222242950E-02 + 456 9.3139347300495879E-03 + 457 -2.5996739221351404E-02 + 458 9.7966788577489485E-05 + 459 7.2568242625414619E-04 + 460 6.5273822373629472E-04 + 461 -3.9303292433819038E-04 + 462 -2.1907343481111096E-03 + 463 -1.4332967753780739E-04 + 464 4.2180755785044082E-04 + 465 -2.3521526489666679E-04 + 466 6.5998562581089665E-05 + 467 2.2824512009865860E-06 + 468 1.1637948739620172E-04 + 469 -3.0640048467702868E-04 + 470 -3.1572618634634884E-04 + 471 5.3048054707379312E-04 + 472 1.8144098745974426E-04 + 473 7.5989047065569006E-05 + 474 6.8821965772887788E-04 + 475 -4.3840300435001008E-05 + 476 -1.3207477724345838E-04 + 477 3.7929853081126514E-05 + 478 1.4038385256445734E-03 + 479 1.8722566816838332E-03 + 480 -3.8279290034321295E-03 + 481 1.3163434210824619E-03 + 482 -2.6418123603133663E-03 + 483 -1.4022319545623100E-05 + 484 1.5910688938430235E-04 + 485 -3.7594727592021935E-04 + 486 -6.8924213834663229E-04 + 487 -1.5271716294162438E-04 + 488 1.0994050918506089E-05 + 489 1.8183493822208782E-04 + 490 4.8179160551915432E-05 + 491 -5.3617575436845795E-05 + 492 -1.6855809342823785E-04 + 493 -3.0748749797356511E-04 + 494 -2.2422522847465643E-05 +Ene= -4.4908337260E-01 +Spin= Alpha +Occup= 2.0000000 + 1 1.7943239230103564E-02 + 2 -1.7478353470036395E-03 + 3 -4.4149495253074655E-03 + 4 4.7448139493707622E-03 + 5 7.9257487530747430E-03 + 6 6.6248786941229044E-04 + 7 1.5671993753137452E-03 + 8 -2.5637504456411253E-04 + 9 -4.8400592823164583E-03 + 10 2.0749583902831553E-01 + 11 4.0764532277198295E-01 + 12 -2.7667348184821378E-02 + 13 -3.6971713409351109E-01 + 14 -1.4348938205321880E-03 + 15 -3.2066235660242444E-03 + 16 1.4971244811532586E-03 + 17 -4.6105936577147706E-04 + 18 -1.8283821753707456E-04 + 19 -4.4738402664497062E-04 + 20 1.2229686899927365E-04 + 21 -4.4266303958361362E-05 + 22 8.2552904368364067E-04 + 23 1.0725614166627606E-03 + 24 1.5056703579679687E-04 + 25 -1.4350860705827107E-04 + 26 2.0738126776228039E-02 + 27 -7.7624756163083633E-04 + 28 2.2777379279653441E-03 + 29 7.0447680589360792E-04 + 30 -4.8047735988059684E-03 + 31 -1.5128881739748981E-03 + 32 7.1969537052552716E-04 + 33 3.3540847343904696E-04 + 34 2.5082795010477155E-02 + 35 -9.0640521662276430E-02 + 36 -8.2765740061381127E-02 + 37 1.6986331886717429E-02 + 38 -6.8878664772766768E-03 + 39 7.8249343619668488E-04 + 40 -8.7260988091213815E-04 + 41 -2.3357801304481184E-03 + 42 6.2019568348624669E-04 + 43 2.0071878856708003E-04 + 44 -1.0587758598205727E-04 + 45 -1.6702855506713505E-04 + 46 -3.0484133526010123E-04 + 47 -2.9317373752839774E-05 + 48 7.5108199528252937E-04 + 49 1.2929408363123056E-04 + 50 -3.7871891406386556E-04 + 51 1.3543583289886613E-02 + 52 -2.2802508804615993E-04 + 53 6.7355057474914378E-03 + 54 1.2262747592843296E-02 + 55 -3.2756744899579467E-03 + 56 1.5095793278871636E-03 + 57 2.1701217954015689E-03 + 58 7.2478839153377339E-05 + 59 7.6394828098558978E-02 + 60 3.2978869716256309E-01 + 61 4.6633098831656167E-01 + 62 1.1516268879273323E-01 + 63 -3.4480271488811293E-01 + 64 -3.3677111738057530E-03 + 65 -1.3376663919684592E-03 + 66 -7.3665991015108073E-03 + 67 -2.4617777107947638E-03 + 68 4.5446798532087270E-03 + 69 1.6555348157800416E-03 + 70 2.0457705077885514E-04 + 71 5.4519058924599823E-05 + 72 9.8209325523443912E-04 + 73 -6.4093165214130349E-04 + 74 -7.0963216416495406E-04 + 75 -2.8191356777763395E-04 + 76 -9.5552391032621642E-02 + 77 1.3982675985069371E-03 + 78 -1.5638902860104224E-02 + 79 -1.7772762833760041E-02 + 80 -1.9808878434581331E-02 + 81 -1.1836819603408908E-04 + 82 -2.3142774042803074E-04 + 83 -9.0905258871501222E-04 + 84 -1.2276843363336874E-03 + 85 2.9184090015558178E-03 + 86 2.2239517410071303E-03 + 87 -2.2734319929184859E-03 + 88 2.7630873306026468E-04 + 89 6.0672179815460706E-02 + 90 -1.3785904830812849E-03 + 91 2.0082835720225147E-02 + 92 -2.8254659399660247E-02 + 93 -2.5599881445520271E-02 + 94 1.0932038128681257E-03 + 95 -2.5354301318637851E-03 + 96 -1.1627945536088007E-03 + 97 1.0239119235116909E-03 + 98 1.2808014545346968E-03 + 99 -1.0365789324879773E-02 + 100 1.6534554570310849E-03 + 101 1.0013808841657292E-02 + 102 -4.1862676186112904E-02 + 103 1.3149146616557867E-03 + 104 -1.7866100480740728E-02 + 105 -2.0109780659343462E-02 + 106 -1.0484028612579008E-02 + 107 -4.5418383306148751E-04 + 108 -8.1314752162412189E-04 + 109 9.9945504620966197E-04 + 110 -7.5876045928447160E-04 + 111 3.5741989102521664E-03 + 112 3.2357954531806780E-03 + 113 2.0917305264084862E-03 + 114 3.1630555542311424E-03 + 115 2.4039138526709258E-03 + 116 -7.7562925376807015E-05 + 117 -1.5692327705207915E-03 + 118 -3.4408310712393513E-03 + 119 9.4722236382133250E-04 + 120 7.2250714167612238E-04 + 121 1.4657914691541953E-04 + 122 6.8761575153014112E-06 + 123 -5.4512512672810084E-05 + 124 3.6898421529408886E-04 + 125 6.0826678801827432E-04 + 126 -3.2761395015798770E-04 + 127 -3.1110769291814834E-04 + 128 2.8931294010826137E-03 + 129 -1.6202400132469147E-04 + 130 -3.3999978126991986E-04 + 131 -3.7353758393514564E-03 + 132 -1.6348194642851197E-03 + 133 -1.7785610678286446E-05 + 134 -8.2661535017198066E-04 + 135 1.1066287556240420E-05 + 136 2.1048471448653211E-02 + 137 -3.7207060535540973E-02 + 138 1.0297626563838839E-02 + 139 2.7197252534674806E-03 + 140 1.1611887620005994E-02 + 141 1.4513854904409784E-04 + 142 -9.4798440449480876E-04 + 143 1.8929611457531666E-03 + 144 -1.4912010821526299E-03 + 145 2.9319848005680344E-04 + 146 2.8380645527764832E-04 + 147 6.7385355420052897E-04 + 148 2.7867922392306438E-04 + 149 5.3284076146116889E-04 + 150 8.6900429359056418E-05 + 151 -7.4180598250448196E-04 + 152 -3.1457232442083389E-04 + 153 1.4296248489512240E-04 + 154 -9.5389070458825316E-05 + 155 -3.5143014740128152E-04 + 156 -2.1372490896857839E-03 + 157 6.1611454431258021E-04 + 158 -8.6179697346764293E-04 + 159 -4.8883220907529183E-04 + 160 1.9297593279795955E-04 + 161 -2.0086344631311568E-02 + 162 -6.4966033590366113E-03 + 163 3.6728525954834324E-03 + 164 1.8114433734352599E-02 + 165 4.2435556338492088E-03 + 166 -7.1111075173644494E-05 + 167 -7.0072735716379585E-05 + 168 1.4690318506046245E-03 + 169 1.3286475519038244E-03 + 170 -2.6076217018968189E-04 + 171 -2.1093851478351007E-04 + 172 1.5986126712007134E-04 + 173 -5.4659923554145975E-04 + 174 -4.1719931083743293E-04 + 175 2.2856443158913588E-04 + 176 -4.0512577985504371E-04 + 177 1.2489431609222988E-04 + 178 -5.8528808940061083E-03 + 179 -5.6651840515596559E-05 + 180 3.1893946730985152E-03 + 181 -1.0653571681474641E-03 + 182 6.3184534829785878E-04 + 183 -1.6417356015793055E-04 + 184 1.5743591736973648E-05 + 185 4.1181386705281503E-05 + 186 -1.9101788183203074E-04 + 187 -1.0805462144766673E-04 + 188 3.5699878500943650E-04 + 189 1.9537878007075171E-04 + 190 -3.2463423596614091E-04 + 191 7.3358041464936519E-02 + 192 -1.4600325785717901E-03 + 193 -2.9207117388983243E-02 + 194 -2.5427615645911072E-02 + 195 -8.2820749001774260E-03 + 196 -8.4572926088390804E-04 + 197 7.6205672670951580E-05 + 198 -1.6233283604752510E-03 + 199 3.8968614690084035E-03 + 200 -1.0431718683431861E-03 + 201 -1.3463332417409241E-03 + 202 -8.7299856870499433E-05 + 203 -6.3451502371493574E-03 + 204 -6.5267756902443056E-03 + 205 4.8567101033653623E-04 + 206 -5.9765488802366771E-04 + 207 2.6245071920269329E-03 + 208 1.1737006277349016E-03 + 209 4.3431646425460125E-04 + 210 -1.0363872984650413E-03 + 211 -3.7923749016852495E-04 + 212 1.4894744552551107E-02 + 213 2.9203577759826616E-02 + 214 -2.2204707189016796E-02 + 215 3.3540272959447968E-02 + 216 3.8086514951337941E-02 + 217 -2.6536373020750613E-04 + 218 1.6873207469476645E-04 + 219 -1.0209208926506134E-03 + 220 1.1581969117816983E-03 + 221 8.3579564816416597E-04 + 222 -1.3365893630035557E-04 + 223 -1.2190359465096130E-04 + 224 4.4516628643502933E-04 + 225 -1.7211721770348263E-05 + 226 4.9909744428131944E-05 + 227 -3.5848495673351550E-04 + 228 3.6545558885114313E-04 + 229 -2.7097115186998258E-03 + 230 -1.3646325566433071E-03 + 231 -1.2325742277488920E-03 + 232 3.6150872406405512E-03 + 233 3.2410358365975718E-03 + 234 -1.5486976071850416E-04 + 235 -4.7787214490924656E-04 + 236 -1.0165599211182778E-03 + 237 1.2203935561653391E-02 + 238 1.2376744714565834E-01 + 239 -4.6459356259902496E-03 + 240 1.4386039580879717E-01 + 241 1.8942431455332126E-01 + 242 2.0831960716393228E-03 + 243 1.2123539853911255E-03 + 244 6.2835861192970239E-05 + 245 3.7879831963665068E-03 + 246 4.7804583475588277E-03 + 247 2.4916351769194888E-04 + 248 3.9151107802077093E-04 + 249 -2.3775938022246914E-04 + 250 6.9498035494537929E-04 + 251 8.3126293422564090E-04 + 252 1.0284064531705843E-03 + 253 -7.9605169160978961E-04 + 254 -4.6904656906754227E-03 + 255 3.4743595804664538E-04 + 256 7.9629551268828140E-04 + 257 -1.0201532656245410E-04 + 258 2.8710071255795017E-03 + 259 -6.7172081287175949E-04 + 260 5.9612998103208048E-04 + 261 -1.5039906648414085E-04 + 262 -2.6838246246403751E-02 + 263 -1.7668787785990441E-02 + 264 7.4209116761094788E-03 + 265 -2.2707224379503489E-03 + 266 -5.8004906775720889E-03 + 267 -2.8608542236179782E-04 + 268 2.8286083088555986E-04 + 269 -1.0252798711086468E-03 + 270 3.0553156297129496E-04 + 271 4.6090884944974893E-04 + 272 -3.0886602459661775E-04 + 273 -1.8229210339015277E-04 + 274 1.3466407103445612E-04 + 275 -1.7036241090345831E-04 + 276 -1.9135726319847811E-04 + 277 2.7061772116190110E-04 + 278 -1.2677905901541795E-04 + 279 4.0935675136441696E-02 + 280 -7.5505908713780802E-04 + 281 -1.8854654254897723E-02 + 282 1.4272335095368533E-02 + 283 9.2225819385801239E-03 + 284 1.7150680470153200E-05 + 285 -9.9565765965945171E-06 + 286 -2.2705618931651196E-04 + 287 1.5100463023011805E-03 + 288 1.8752255709203836E-03 + 289 -1.3133213561405566E-03 + 290 9.1864430698703183E-05 + 291 3.7667279291390141E-03 + 292 5.0283547120770919E-02 + 293 -8.6256093825159107E-04 + 294 2.6953560198667427E-03 + 295 4.3698259629976624E-03 + 296 -7.2676799917452623E-03 + 297 9.2332128868851684E-04 + 298 -5.6498426252946652E-04 + 299 4.2903777544855043E-04 + 300 -6.3482564137318253E-04 + 301 -1.3563700382644974E-03 + 302 -8.2495603926128298E-04 + 303 -1.3300808148959261E-03 + 304 -1.9377668296552790E-03 + 305 -5.3802657783037231E-03 + 306 -1.9708788381924964E-04 + 307 -1.8213241293229005E-03 + 308 -1.9271335383523957E-04 + 309 3.6371852046466373E-04 + 310 4.4514531151970010E-04 + 311 9.3157294637306062E-04 + 312 4.4005928820700196E-04 + 313 8.4874411608211353E-02 + 314 4.8067537760551518E-02 + 315 -3.7127182954942106E-02 + 316 2.7872247976884440E-03 + 317 -1.0889067305325222E-01 + 318 1.4439511946587433E-03 + 319 2.4943522352086821E-04 + 320 -3.8993303606090114E-04 + 321 1.3201998962322087E-03 + 322 -2.2685783094389552E-03 + 323 3.6443751739470375E-04 + 324 -1.5708836587773116E-04 + 325 -2.1826114533844674E-04 + 326 3.1299562492254251E-05 + 327 1.1881904948052993E-04 + 328 -4.5779860139805292E-04 + 329 1.2868137973498132E-04 + 330 -2.0604243967390998E-02 + 331 2.8830283031995789E-03 + 332 -2.2446627387279956E-03 + 333 -7.9298734472766741E-04 + 334 -8.1687953378223807E-03 + 335 -5.4961675749185500E-04 + 336 5.8183717874132857E-04 + 337 -2.2462717080050208E-04 + 338 -8.5019261666424414E-02 + 339 -1.9636653039451748E-02 + 340 6.5968806523816490E-03 + 341 2.6370572693029453E-03 + 342 -2.2043708245922829E-02 + 343 -2.9322475318317143E-03 + 344 -1.1211074348981315E-03 + 345 -2.2475274318204518E-03 + 346 2.8325626673097440E-04 + 347 -1.8925791333915512E-03 + 348 4.6606147360200052E-05 + 349 -3.7011810584812688E-04 + 350 -7.0419697674798222E-04 + 351 5.3087193098217745E-04 + 352 -5.5723528685292293E-04 + 353 7.7600114555820992E-04 + 354 7.2635005743456330E-07 + 355 2.4499246614020538E-02 + 356 -3.8302772567015708E-04 + 357 -3.9046590191746358E-03 + 358 -1.0773825926562477E-02 + 359 2.8640950252636814E-03 + 360 -3.1104859577983234E-04 + 361 -3.7873636629742876E-04 + 362 -4.4880373203915852E-04 + 363 1.8372732214509508E-03 + 364 2.6385219218306153E-04 + 365 1.5665597758030369E-04 + 366 1.8233052992569171E-03 + 367 -6.3587628722196730E-04 + 368 -2.9423514503538327E-02 + 369 5.2816976046724472E-04 + 370 -3.9424527839826418E-03 + 371 -1.4194487627031049E-02 + 372 5.5532289382918560E-03 + 373 -1.7947730043607545E-03 + 374 2.2481462037887488E-03 + 375 -1.7139330639700814E-03 + 376 -6.8850863663658487E-05 + 377 8.2596466501076130E-04 + 378 -1.7734141407548371E-03 + 379 -3.2088035026443537E-03 + 380 -2.5189455197704726E-03 + 381 8.4658385515754830E-03 + 382 -4.3705263865538112E-05 + 383 -4.0220734517090631E-04 + 384 4.3328805575008067E-03 + 385 3.9450965107427086E-04 + 386 -2.4944779314646666E-04 + 387 1.4601019694271446E-04 + 388 1.1421671843906977E-04 + 389 -6.7733836420089859E-04 + 390 -6.7095959670851956E-04 + 391 1.5470947956902680E-04 + 392 3.9739426389168804E-04 + 393 6.0599606576215931E-04 + 394 -8.5307525669675605E-03 + 395 -9.9649085731456553E-04 + 396 -6.4919462420765569E-03 + 397 4.5710031411658788E-04 + 398 5.3568092381833625E-04 + 399 -2.6209028297012073E-04 + 400 1.5829417139672656E-03 + 401 6.8029062896290412E-05 + 402 3.6873890545176501E-02 + 403 5.7390493992918873E-02 + 404 -3.5244809579081188E-02 + 405 -4.8349684093424800E-02 + 406 -1.4705252312006156E-02 + 407 4.0886463627837428E-04 + 408 2.0038791816113407E-04 + 409 -4.5437190596207464E-04 + 410 -6.4948563661593867E-04 + 411 2.1031436025545401E-03 + 412 1.1984985193834310E-05 + 413 -1.1503626640420191E-04 + 414 -1.3446759841679212E-04 + 415 -4.5399991339568354E-04 + 416 2.2672310381060093E-05 + 417 3.0984922826145808E-04 + 418 -1.1701155828983904E-04 + 419 -1.5140469023914277E-02 + 420 1.3412832613203811E-04 + 421 4.7739799473716640E-03 + 422 1.1706374982172908E-03 + 423 -4.8904877109219428E-04 + 424 3.9875105145984033E-04 + 425 4.8780181328812901E-04 + 426 5.5799005652601376E-04 + 427 -2.7527800527767928E-04 + 428 -3.5222475469285101E-04 + 429 6.5901298930678672E-04 + 430 2.7870127071597163E-04 + 431 -4.5477158740348119E-04 + 432 -7.6593784714116247E-03 + 433 2.1281293489846967E-04 + 434 4.5168408084015742E-03 + 435 -2.0752319978320373E-03 + 436 -9.6423899230262914E-04 + 437 1.2082239206383186E-04 + 438 -1.8188260355551982E-04 + 439 -3.1231859936229473E-04 + 440 -5.7127321516548449E-05 + 441 -1.4719855038553936E-05 + 442 -1.6036092012227824E-04 + 443 7.5015509327124085E-04 + 444 -7.8699556009680815E-05 + 445 -2.0541345162853075E-03 + 446 -6.7430412367709496E-04 + 447 -8.3993103470996454E-04 + 448 3.9216058448734489E-03 + 449 -2.0437524743825899E-03 + 450 -3.2693760800411148E-05 + 451 -1.1528547911435502E-04 + 452 -2.1935498558256359E-04 + 453 1.3654721536489046E-02 + 454 -1.1861992574306923E-02 + 455 -1.5046594235797526E-02 + 456 1.4661944454147048E-02 + 457 3.5304014765309095E-02 + 458 5.8809994460559114E-04 + 459 -5.7885550880718191E-04 + 460 -1.1016860024696540E-03 + 461 3.1151208340843203E-04 + 462 1.2239656528172185E-03 + 463 2.5354114621158020E-04 + 464 1.6565184881877845E-04 + 465 8.2620390786119605E-06 + 466 -8.7428346745889682E-05 + 467 -5.9145878933628568E-04 + 468 -1.2837524022188336E-04 + 469 -1.1008538455108205E-04 + 470 2.9352697914012578E-03 + 471 -1.3533629149862646E-04 + 472 1.1161335053521009E-03 + 473 -7.1024266423783307E-04 + 474 -6.5543420352000802E-04 + 475 1.8089243967669830E-04 + 476 3.4363258504144679E-04 + 477 3.6844312641094066E-05 + 478 -9.4073958732270090E-04 + 479 -1.8512491035963883E-03 + 480 1.1990634407158134E-03 + 481 -2.9348361601915112E-03 + 482 -3.3871180748674582E-04 + 483 -4.2334073064703584E-05 + 484 -1.0693641784274294E-04 + 485 -2.6126867851976521E-04 + 486 4.7255317968512953E-04 + 487 -1.5369395276626529E-04 + 488 -1.4657610494942734E-04 + 489 2.3068207647562424E-05 + 490 -2.8177275152399435E-05 + 491 4.9438986200869500E-05 + 492 -8.4449491814675551E-05 + 493 6.3706697732605772E-06 + 494 -1.4022168519110928E-04 +Ene= -4.4570643643E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -2.1719299739102749E-03 + 2 8.2471846066652381E-04 + 3 1.8473700863799731E-03 + 4 -7.9577969894894759E-04 + 5 2.5812531955949776E-03 + 6 -3.0488216123587814E-04 + 7 5.9331253243728320E-04 + 8 -4.8150590373100059E-04 + 9 -2.0383060797922567E-01 + 10 4.7472435371624426E-02 + 11 1.5741164803047353E-01 + 12 5.1531029187210933E-02 + 13 4.1184451101384290E-01 + 14 -1.5635892436850142E-04 + 15 -5.4286230736466114E-04 + 16 1.2700598379655894E-04 + 17 -1.8540648839272980E-03 + 18 4.0045620582705943E-04 + 19 2.3467727481143910E-04 + 20 -9.1421461523388445E-04 + 21 1.4537684749877215E-04 + 22 -4.0445263962148688E-04 + 23 1.0166724676286701E-03 + 24 2.2885739685053668E-04 + 25 5.9235467907369749E-05 + 26 1.0603443581327084E-02 + 27 1.0860762549235672E-04 + 28 1.0833132600317468E-04 + 29 -2.3354976396606419E-03 + 30 -1.2913501701553236E-03 + 31 -6.5379465014951275E-04 + 32 -1.4813412752540534E-03 + 33 1.3677783206160450E-03 + 34 2.5450534100351221E-02 + 35 -5.2683294715108402E-02 + 36 -7.8522018544589945E-03 + 37 1.5391289417779636E-02 + 38 -6.6660494944642120E-03 + 39 -2.6878134961671595E-04 + 40 -1.0708051147896823E-03 + 41 -1.1348306564859542E-03 + 42 -1.7176275035002012E-03 + 43 9.3525298408177345E-04 + 44 -4.0057252533344078E-04 + 45 -5.7314844015886072E-06 + 46 -3.8348513533668048E-04 + 47 -1.8490603841596277E-04 + 48 1.0391936009503649E-03 + 49 3.1766555383122948E-04 + 50 1.0408303211437035E-04 + 51 -5.8653255910159755E-04 + 52 2.2937389639948302E-04 + 53 -1.4989401845568744E-03 + 54 8.8438815210019805E-04 + 55 2.7172846258717025E-03 + 56 -1.6958719356083757E-05 + 57 4.9288320916500753E-04 + 58 1.1922543285810346E-03 + 59 6.8283222458297854E-01 + 60 7.2844194332638793E-02 + 61 -1.0945013743118293E-01 + 62 -3.7267423187766296E-01 + 63 -1.7848161757802655E-01 + 64 -9.3938395175894238E-03 + 65 2.0920145755506251E-03 + 66 2.9707836846051667E-03 + 67 5.7920268601955975E-03 + 68 3.1483877632794326E-03 + 69 1.5880723036111749E-03 + 70 -3.3226172320234017E-04 + 71 -7.8237198541656629E-04 + 72 -1.2324721409597407E-03 + 73 -1.1588010564064235E-03 + 74 -8.6881986127309381E-04 + 75 1.1533742866119676E-03 + 76 -3.4068995118445099E-02 + 77 2.9119037168585406E-04 + 78 8.2896568169175816E-03 + 79 -9.8377834377674448E-03 + 80 -1.6183763362573055E-02 + 81 3.3461531573356952E-04 + 82 3.5019819630281876E-06 + 83 3.6416597140087554E-04 + 84 1.3792098879815919E-03 + 85 -8.2959573687112849E-04 + 86 2.2649813859647672E-03 + 87 1.5048431014938159E-05 + 88 -1.7590716069117742E-03 + 89 -2.2935870086458077E-02 + 90 7.4142899647706821E-04 + 91 -3.6671053841187809E-02 + 92 2.6121665533474412E-03 + 93 -2.4280669787596559E-02 + 94 -3.8295849158816730E-03 + 95 -1.7033492626466844E-04 + 96 -2.6254508676893471E-03 + 97 -6.8569526873193199E-03 + 98 2.1616665498533469E-05 + 99 -3.7559926471560823E-03 + 100 4.0396201679302590E-03 + 101 -6.6041282160018734E-03 + 102 1.7608757725843371E-03 + 103 3.1090857679040909E-04 + 104 -1.5563299238322297E-02 + 105 -9.8040814114143185E-03 + 106 1.8070362021922467E-02 + 107 -1.2378426439225232E-03 + 108 4.1342473312271273E-04 + 109 2.9806870528198402E-03 + 110 -5.3488349253284504E-03 + 111 2.6621869189013132E-04 + 112 -2.7841450383102269E-04 + 113 2.2090895564688970E-03 + 114 3.2678736418626318E-03 + 115 -6.9932461868253814E-03 + 116 3.2010979672191377E-04 + 117 4.3128848562024974E-04 + 118 -3.0661252265721320E-03 + 119 -1.9387747396036881E-03 + 120 2.1492435166719994E-04 + 121 4.4942635301303986E-04 + 122 -6.4469307579812174E-05 + 123 -9.5263980332314715E-05 + 124 -1.8401974614992337E-05 + 125 6.8076352131086505E-04 + 126 -2.3194729440541601E-04 + 127 -4.4641319516910695E-04 + 128 6.4088685455045635E-04 + 129 -8.4244904717765967E-04 + 130 -2.1189054341578346E-03 + 131 1.4773641403633881E-03 + 132 -1.0833615198558264E-04 + 133 -3.0235769045013446E-04 + 134 8.0409536793374446E-04 + 135 4.0886855788598979E-04 + 136 -5.8978429356609423E-03 + 137 -1.2183407004372461E-02 + 138 1.6304718417567331E-02 + 139 -1.8522330389209821E-02 + 140 2.0765408623510097E-02 + 141 1.5802870637355088E-04 + 142 6.1547614483600532E-06 + 143 -4.7839022267050040E-04 + 144 1.5149136439316022E-04 + 145 1.2634200426470436E-03 + 146 -5.1218699348425133E-04 + 147 4.7701594765842984E-05 + 148 1.4391674382062102E-04 + 149 -6.7448792603063464E-04 + 150 -3.3713581293203795E-04 + 151 -6.9562845057961019E-04 + 152 -8.5624428404267570E-04 + 153 -1.5435781835905280E-02 + 154 9.5494341845991243E-05 + 155 -6.0217615253834967E-03 + 156 -1.1510086388574600E-03 + 157 9.3876757676786739E-03 + 158 -1.6946868684722600E-03 + 159 -8.4214722736697259E-04 + 160 1.2134619875171558E-03 + 161 -3.2274988720818007E-02 + 162 3.4431777872215283E-02 + 163 -2.4339438727416451E-02 + 164 -7.9990408491137348E-03 + 165 5.1623263620373663E-03 + 166 -4.1623842746839482E-03 + 167 2.3289079054658827E-03 + 168 1.2036086601588546E-03 + 169 8.1650304338879050E-04 + 170 -1.1201274009212143E-03 + 171 9.8679854903694123E-04 + 172 -8.3131795379741278E-05 + 173 -1.6246619025694027E-04 + 174 1.7155802501977957E-05 + 175 6.0762889801300166E-04 + 176 -6.8421337428515281E-04 + 177 -7.3301453899635185E-05 + 178 -1.1134305395180749E-03 + 179 -3.8856831515116048E-04 + 180 3.6599540710555841E-03 + 181 -9.2365808634750006E-04 + 182 6.7559358445535124E-04 + 183 -7.2135868932008879E-05 + 184 -1.2351988279919173E-04 + 185 -6.7719316502386304E-04 + 186 -7.2948973761122117E-04 + 187 -4.8851383325348356E-04 + 188 -7.4876861700307889E-05 + 189 4.0418914519567916E-04 + 190 -1.9778967497601635E-04 + 191 7.4272906241970915E-02 + 192 -2.1001999398920076E-03 + 193 -1.5280678140924235E-02 + 194 -3.1486076803652605E-02 + 195 7.8680015561235044E-03 + 196 -6.0913366239525159E-04 + 197 -1.0931423581957399E-03 + 198 1.5297225166151544E-04 + 199 3.3196610071204737E-03 + 200 2.1169439385308685E-03 + 201 2.4987199104521693E-03 + 202 3.1561918685164446E-03 + 203 -4.5612585280859165E-03 + 204 9.1363690997057578E-04 + 205 -4.4415745732077168E-04 + 206 4.1564503572903812E-03 + 207 3.0855912789525060E-03 + 208 -1.5442146625530735E-03 + 209 6.8151706318012018E-04 + 210 -6.0721518199049638E-04 + 211 -6.5876172280152079E-04 + 212 -1.3861663571761631E-02 + 213 -4.6325942227364005E-02 + 214 -7.9752064466525503E-03 + 215 8.7483618025712140E-02 + 216 3.0082545107089728E-02 + 217 -1.5163781115665048E-03 + 218 -1.8972331981750668E-03 + 219 -1.0120648478841967E-03 + 220 2.3723018377361073E-03 + 221 1.8760070026089455E-03 + 222 3.1222616492633287E-04 + 223 -3.6268653609330427E-04 + 224 -1.4192682803819593E-05 + 225 -5.8478353127440377E-04 + 226 -2.3325276883353761E-04 + 227 9.9673801905006664E-05 + 228 6.6033959338202464E-04 + 229 6.1695104942477222E-03 + 230 1.0017703294685240E-03 + 231 2.1725759959474560E-03 + 232 -3.1260869511440526E-03 + 233 5.8482283971614995E-03 + 234 -6.4600584080821543E-04 + 235 -1.0327398873237133E-04 + 236 -2.3707837615792036E-05 + 237 -8.3949605010236530E-02 + 238 8.5510853272234844E-02 + 239 -5.0601806577632219E-02 + 240 1.3831129002418957E-02 + 241 -1.0307547547190313E-01 + 242 -1.5409034910128601E-03 + 243 1.2689351956898926E-03 + 244 -1.0561435670887109E-03 + 245 -7.0907537079736751E-04 + 246 -9.0930777671070870E-04 + 247 -2.3709485206890329E-04 + 248 2.6258331654375973E-04 + 249 -1.4675388102914147E-04 + 250 4.6848511411722298E-04 + 251 -2.9967644247725874E-04 + 252 1.0247482733676578E-04 + 253 4.9074779527341400E-04 + 254 4.2319076105448144E-03 + 255 -8.3890234671381856E-04 + 256 1.6122542905910974E-03 + 257 -3.9902800010284921E-04 + 258 -1.8026246929003331E-03 + 259 2.8183822018041044E-04 + 260 4.2529829775845088E-06 + 261 -1.1388254122142307E-04 + 262 1.3544142623888224E-02 + 263 1.1417654191612052E-03 + 264 6.4177035589626163E-04 + 265 -4.9182305501996521E-04 + 266 -6.8471486411229385E-03 + 267 1.8622335577027135E-04 + 268 -5.3839854985197498E-04 + 269 8.2046813714075446E-04 + 270 -3.0954669318432137E-04 + 271 -8.4670618390972211E-04 + 272 -1.3720788309987331E-05 + 273 1.6021011085563577E-04 + 274 -1.8178463063312465E-04 + 275 1.5071206709128419E-04 + 276 2.0085341971268626E-04 + 277 -1.1293212336086694E-04 + 278 1.5979859664927448E-04 + 279 -8.7886225050313026E-03 + 280 3.0080280066671064E-05 + 281 4.7399336060563280E-05 + 282 -3.5888175618391856E-03 + 283 -8.5935807401538080E-03 + 284 -2.6056936730899150E-05 + 285 1.3048698167249077E-04 + 286 2.5055727354051288E-04 + 287 5.0872172111232877E-04 + 288 -1.2720933778125158E-03 + 289 1.5940880315188273E-03 + 290 -3.7040071614904664E-04 + 291 7.4708364758345968E-05 + 292 7.2254776429123715E-02 + 293 -1.1747684024175635E-03 + 294 2.1137650390935306E-03 + 295 4.8434146097060520E-03 + 296 -1.5221664092540520E-02 + 297 -2.0850267564881628E-04 + 298 1.4082615983821703E-04 + 299 -1.0820154857138424E-03 + 300 -1.0006484926685193E-03 + 301 -1.2536097165329301E-03 + 302 2.1925231396641016E-05 + 303 -5.1367084576356393E-04 + 304 -2.4031150364175257E-04 + 305 -1.0895314586819941E-02 + 306 8.6775386704414904E-05 + 307 -5.4415888702558785E-03 + 308 -1.2939149356393008E-03 + 309 -6.3408350451821260E-04 + 310 1.1349183006809461E-04 + 311 5.3573794423029779E-04 + 312 6.3378396103102458E-04 + 313 3.2078421810668098E-02 + 314 -2.1097448246612256E-02 + 315 4.0020097014439565E-02 + 316 -2.1920777028604222E-02 + 317 -1.2762013050461238E-01 + 318 1.2780128448212002E-03 + 319 -1.4770099289229891E-04 + 320 -6.1148036377638962E-04 + 321 6.2858543772914956E-04 + 322 -4.5774928905088028E-03 + 323 -1.0294858989502168E-05 + 324 1.2036334223268812E-04 + 325 -4.6426873539607438E-04 + 326 1.2656884003796177E-04 + 327 -5.8953407049039288E-04 + 328 -1.5952639103943776E-04 + 329 3.8703772029719517E-05 + 330 -1.5329286896917260E-02 + 331 4.1891361537781281E-04 + 332 -5.9883466351569499E-04 + 333 -1.9305375654968299E-03 + 334 -4.4124695152242214E-03 + 335 2.5563546459322114E-04 + 336 -4.0639381966914978E-04 + 337 3.9521784587264627E-05 + 338 -3.4212656944384842E-02 + 339 3.6923369281503639E-03 + 340 4.5531155581857198E-02 + 341 -6.0610920619354773E-03 + 342 -1.6911029537742085E-02 + 343 -1.9323334730414138E-03 + 344 -9.4930380389155638E-04 + 345 -5.7916625331490192E-04 + 346 9.8087624955239231E-04 + 347 2.4464193601611751E-04 + 348 -1.3285284336466628E-04 + 349 -4.8705762611431133E-04 + 350 -5.5198873155536262E-04 + 351 3.8490518841697273E-05 + 352 -4.3821485358547494E-05 + 353 -2.7993870870121547E-04 + 354 4.6014277570803792E-04 + 355 1.8059016802316166E-02 + 356 -1.3595452667223857E-04 + 357 -2.4784297349492571E-03 + 358 -9.0608081262469834E-03 + 359 -2.7241829494966736E-04 + 360 7.2671976763375202E-05 + 361 -2.0596438736569583E-04 + 362 -4.3659330178336451E-04 + 363 8.9485462027114331E-04 + 364 -4.6671537559324155E-04 + 365 -3.7007263969650554E-05 + 366 1.6538798922445697E-03 + 367 -3.8757734407715555E-04 + 368 1.0545571432707894E-02 + 369 -4.4259742811724600E-04 + 370 4.1736270343365302E-03 + 371 4.2221924582984145E-03 + 372 -1.0807763280609483E-02 + 373 -9.5034050399803464E-04 + 374 1.3902587347350685E-03 + 375 3.0940266932027641E-04 + 376 1.4016418390602501E-04 + 377 -2.1459297497521956E-03 + 378 1.9963897135476870E-03 + 379 1.8846012640822405E-03 + 380 -4.5861216329775076E-04 + 381 9.2469690835640054E-03 + 382 -1.6260360121394263E-04 + 383 -1.9525778659628009E-03 + 384 2.6976462211278081E-03 + 385 -9.1213383606713352E-05 + 386 -9.2981074474543634E-05 + 387 9.4809020371797788E-04 + 388 3.5094663650954158E-05 + 389 -2.3957440286635680E-04 + 390 -3.5324410361458605E-04 + 391 7.1541076314795600E-05 + 392 1.7965067841896315E-04 + 393 3.3567280858916857E-04 + 394 -1.9298106039550476E-03 + 395 -4.8945412184254664E-04 + 396 -2.0354751817927060E-03 + 397 3.4615929111475012E-05 + 398 -7.1709352347497889E-04 + 399 8.1663263573949755E-06 + 400 2.1606216164394722E-04 + 401 -1.2461723877129840E-04 + 402 1.6376293578607416E-02 + 403 3.8627572650021369E-02 + 404 1.3702409257678102E-02 + 405 -3.0569654626645981E-03 + 406 9.2911784543394434E-04 + 407 -5.4043790650480014E-05 + 408 6.5925247898665029E-04 + 409 2.0795337364662255E-04 + 410 -5.4379006142926472E-04 + 411 4.7366968504444990E-04 + 412 1.5431426943746797E-05 + 413 5.1413030260903051E-04 + 414 1.7473060951530021E-04 + 415 -9.8068052019357487E-05 + 416 2.3010889131494587E-05 + 417 -7.9462162141995135E-05 + 418 -5.7499740635961075E-05 + 419 -2.3490964289065500E-02 + 420 2.5836864144132457E-04 + 421 7.6708677991512491E-03 + 422 -1.6914724784171404E-03 + 423 3.2586630036301445E-03 + 424 -1.5918130501970268E-04 + 425 2.7098062463760161E-04 + 426 5.8188719164131264E-04 + 427 -3.8490355527283848E-04 + 428 4.2802617671721445E-04 + 429 -1.8519093504827869E-04 + 430 9.5600553982234167E-04 + 431 -7.3144466598164129E-04 + 432 -3.0177135441904566E-03 + 433 8.4814471112751246E-05 + 434 2.2259129708328777E-03 + 435 -1.3865567028081202E-03 + 436 9.0378051002575261E-04 + 437 3.3635756054213951E-05 + 438 -5.6991421693644600E-05 + 439 -1.8720494413178198E-04 + 440 1.0858319764989774E-04 + 441 1.1526500630157362E-04 + 442 -1.8814364245859638E-04 + 443 2.5949544154570765E-04 + 444 5.1298629143544773E-05 + 445 8.2349553632965391E-04 + 446 3.2017500397352862E-05 + 447 -1.0658874435653749E-03 + 448 -6.1635331600969260E-05 + 449 -2.0792291218704102E-03 + 450 -1.0330356719290305E-04 + 451 -5.5930065549559974E-04 + 452 -7.7521551533708594E-04 + 453 2.7782482176160500E-02 + 454 -1.4322728321855853E-02 + 455 -2.2219671679517213E-02 + 456 -1.8532564646146586E-03 + 457 -1.8194156760728340E-03 + 458 3.8085752864905651E-04 + 459 -2.8046287458994550E-03 + 460 1.2223490434944587E-04 + 461 1.9492326144176462E-04 + 462 -4.0629468033442543E-04 + 463 2.1640606864035494E-04 + 464 -2.7860233771935462E-04 + 465 2.1907932568072094E-05 + 466 -8.4569201682652942E-04 + 467 1.0074473258251576E-04 + 468 -1.2924570632028254E-04 + 469 1.2665138966705660E-04 + 470 7.4844008963693954E-04 + 471 5.5212322684707045E-05 + 472 1.1795550489289344E-03 + 473 2.0570974232348363E-05 + 474 -1.5823181191830467E-04 + 475 4.8915517744941054E-04 + 476 3.7261305345949838E-04 + 477 1.2916972933446096E-04 + 478 8.8529404055910687E-04 + 479 -1.3583609958282947E-03 + 480 6.0156920323065858E-04 + 481 1.6920269666262470E-03 + 482 -3.4206623752819562E-03 + 483 -6.6150839164726312E-04 + 484 -1.2453869556291780E-04 + 485 -1.8703967364759163E-04 + 486 1.1167620625343487E-03 + 487 1.4161296537332440E-05 + 488 -1.4417152284508442E-06 + 489 -3.4374186793268758E-04 + 490 8.7437516475449915E-05 + 491 -1.0250448271351734E-04 + 492 -5.0874601406141648E-06 + 493 3.2197534238649405E-04 + 494 -1.4267497556978839E-04 +Ene= -4.4479064536E-01 +Spin= Alpha +Occup= 2.0000000 + 1 3.3516028706358707E-03 + 2 -1.2567977305192630E-03 + 3 -6.8443321535322605E-04 + 4 4.1189362583295781E-04 + 5 -5.2586327521745452E-04 + 6 1.0153130848037642E-03 + 7 2.5843206387167802E-03 + 8 -5.1888691291318133E-04 + 9 -7.2949838987565359E-03 + 10 2.1677353724233650E-01 + 11 6.8397925237069085E-02 + 12 -3.3322046877521272E-02 + 13 2.9355144944027317E-01 + 14 -1.6593978334468459E-04 + 15 1.5131722152577536E-03 + 16 1.5038920647570963E-03 + 17 4.6141859379052836E-04 + 18 8.4251425505495859E-06 + 19 -5.2340879144915768E-04 + 20 3.7205383326196454E-04 + 21 -3.7375270976779732E-05 + 22 -3.4808963770232264E-04 + 23 -1.4066532973637917E-04 + 24 -6.6553187722526153E-04 + 25 -7.0468858292732943E-04 + 26 2.2660562576542392E-02 + 27 -1.0037111082225110E-03 + 28 -6.5714561664007593E-03 + 29 -1.4156224151495519E-02 + 30 -1.6120485634363096E-04 + 31 -1.0654737329875766E-03 + 32 -2.2561992440641465E-03 + 33 1.5662773447112329E-03 + 34 -1.7199263818777722E-02 + 35 7.3268323508477659E-03 + 36 5.1381434270580617E-02 + 37 -9.0548850290304059E-02 + 38 3.7254076144319194E-03 + 39 -3.4676127386414849E-03 + 40 1.8089319976410145E-03 + 41 3.5436563420456336E-03 + 42 -4.0999939244766147E-03 + 43 2.7843634235595817E-03 + 44 1.4353583309651343E-04 + 45 -1.4992317274297514E-04 + 46 -2.1224417929999390E-04 + 47 6.6784163675279238E-04 + 48 -5.4112138439717239E-04 + 49 1.1841004464928011E-03 + 50 2.7218352100449460E-04 + 51 4.5326399582247779E-03 + 52 4.3552823214097487E-04 + 53 1.4320280630598521E-02 + 54 8.2725566281396986E-03 + 55 -3.5210100557432140E-04 + 56 3.3877602344100899E-03 + 57 2.6105463886976358E-03 + 58 1.4537264184762895E-04 + 59 1.3199057827396274E-01 + 60 1.1771393693235138E-01 + 61 -2.6487711047225504E-01 + 62 8.1654481508906851E-01 + 63 -1.2485898639336715E-01 + 64 1.0108820212808901E-03 + 65 -4.5677516375678207E-03 + 66 3.4587851847220092E-03 + 67 -5.9577135131344931E-03 + 68 -1.3183889056604925E-03 + 69 -1.5060404767587609E-04 + 70 6.5960154229863092E-04 + 71 -1.4520614528087581E-03 + 72 2.0309487856438519E-03 + 73 -1.1947069964959090E-04 + 74 -9.5054117356186448E-04 + 75 2.7875832541862444E-04 + 76 1.4290139832247735E-02 + 77 -3.8543144496906825E-04 + 78 1.9462615220788237E-02 + 79 -4.9274308627109287E-03 + 80 -1.2971412575069695E-02 + 81 3.0073790299213363E-04 + 82 2.7148600443053430E-05 + 83 1.2408157195270284E-03 + 84 7.8621706895976303E-05 + 85 -1.3104057012646238E-03 + 86 3.2285488094966853E-03 + 87 -1.0010947271402802E-03 + 88 -2.9764072801820745E-03 + 89 -5.9859910544114728E-02 + 90 1.0644431429965508E-03 + 91 -1.6663483382260123E-02 + 92 9.8727390413088090E-03 + 93 1.8828156895862810E-02 + 94 6.7803941124729215E-04 + 95 1.3682250236600876E-03 + 96 3.5942431968428675E-04 + 97 3.8609832031298182E-03 + 98 -1.1231435615245652E-03 + 99 2.2489187359056298E-03 + 100 7.6849989306541000E-04 + 101 -6.1500518677359188E-03 + 102 -1.5780939791185560E-03 + 103 -6.9694734677378770E-04 + 104 7.8580069966809885E-03 + 105 -2.5205055923429798E-02 + 106 -6.3750246315805656E-03 + 107 1.3907682490104031E-03 + 108 -1.3007928131845137E-03 + 109 7.9860567640344560E-04 + 110 7.8523385436660782E-04 + 111 -1.0088057574121104E-03 + 112 4.4182231926401111E-03 + 113 -3.0214576554675639E-03 + 114 2.8930462664153631E-03 + 115 1.0636505958987982E-02 + 116 -5.1007694694907659E-04 + 117 2.8080775922837251E-03 + 118 4.6745687989760741E-03 + 119 3.5216754528985023E-03 + 120 4.6435535496030524E-04 + 121 -1.1916560499698539E-04 + 122 8.1717751168691949E-05 + 123 -2.6144970742642925E-04 + 124 -7.2789638526767661E-04 + 125 -9.5727072036630413E-04 + 126 5.3840722510122973E-04 + 127 1.0767574272384577E-04 + 128 7.5480948854898117E-03 + 129 -4.8783341371565284E-04 + 130 -4.5240847740983037E-04 + 131 -1.7089499007175175E-03 + 132 -2.5063198205520858E-03 + 133 -2.1583482163007287E-03 + 134 -1.2374828336696633E-03 + 135 -3.6516264194936312E-04 + 136 1.2008584409399030E-02 + 137 -2.9594959405198622E-02 + 138 -1.0327662311879033E-02 + 139 5.2959559428716788E-02 + 140 -5.6378702594436581E-03 + 141 9.4649359876802669E-05 + 142 6.6735886196096750E-04 + 143 2.3665189108081001E-03 + 144 -4.3608644495612154E-03 + 145 2.0561702572796164E-03 + 146 2.5024745040143742E-05 + 147 1.0328253037424750E-03 + 148 6.1408744450312336E-04 + 149 1.4867654166543184E-03 + 150 -1.1543146071203157E-04 + 151 -1.0014261396446957E-03 + 152 9.6220583698441932E-04 + 153 1.9607498640509761E-03 + 154 -1.9006534642210075E-03 + 155 -7.0753820571216840E-04 + 156 1.2450596860200866E-03 + 157 1.4559861768010808E-03 + 158 -3.9402923879979326E-04 + 159 -6.8852171453192971E-04 + 160 9.2287288403091936E-04 + 161 7.5450542637968635E-03 + 162 -1.2689346622521375E-02 + 163 -2.6436903501012240E-02 + 164 5.0069170570813453E-03 + 165 5.3702676859257023E-03 + 166 -8.5674946265281132E-04 + 167 1.4930341127160603E-03 + 168 5.4528099958311592E-04 + 169 -4.1187818090567246E-04 + 170 -4.7930200848008477E-04 + 171 -4.5973581998413823E-06 + 172 -5.9654566313611360E-04 + 173 -6.9347162336907161E-04 + 174 -2.4119459773877232E-04 + 175 5.0734960763235289E-04 + 176 -1.1575902506142932E-04 + 177 1.3161802595632017E-04 + 178 -2.7034233072944151E-03 + 179 -1.4770441497344983E-04 + 180 -2.3646201966864766E-03 + 181 -3.2767108900885701E-03 + 182 -2.6180766153447027E-03 + 183 8.9361873927012531E-05 + 184 5.8048717589325859E-04 + 185 8.7575607546843954E-04 + 186 7.6883607487747299E-04 + 187 3.0118980081985107E-04 + 188 7.3208202156034552E-04 + 189 -3.5487381222221561E-04 + 190 -3.7955151738610228E-04 + 191 2.1748161791428251E-02 + 192 -6.3779850051847231E-05 + 193 -2.7346072522489141E-02 + 194 3.6716441807612891E-03 + 195 6.0975270606982044E-03 + 196 1.2396273119256718E-03 + 197 2.0271046339769474E-03 + 198 1.3193372696133935E-03 + 199 1.4266154636664941E-03 + 200 1.9964354187841228E-03 + 201 7.5850114415680777E-04 + 202 -5.3545002307350750E-03 + 203 -3.0921925382422942E-03 + 204 -1.9084103237327493E-02 + 205 -3.7577473199189521E-04 + 206 -1.2790829653916397E-02 + 207 -1.9869701851161674E-03 + 208 2.6137704016328577E-03 + 209 -2.2082284228456036E-03 + 210 -1.2491569014025745E-03 + 211 1.5112558747319363E-04 + 212 3.8975868771822374E-02 + 213 6.2067626718313479E-02 + 214 4.0666339575013326E-03 + 215 -5.6308159378550375E-02 + 216 4.4568871794170663E-02 + 217 3.7736294025142864E-03 + 218 4.0013999046100632E-03 + 219 -4.9320572721045270E-04 + 220 -2.4249050115756855E-03 + 221 -1.5713589502863946E-03 + 222 -1.8634851117656809E-04 + 223 2.3849590099876526E-04 + 224 7.2818013217674756E-04 + 225 9.3733372037541952E-04 + 226 4.7066468873899043E-05 + 227 -7.3199408511223510E-04 + 228 4.1396290292280239E-05 + 229 1.0703324021633157E-02 + 230 3.5001692148759508E-04 + 231 1.3017193220403341E-03 + 232 -4.6508619863912170E-03 + 233 3.5107330214245590E-03 + 234 -3.1639986550021439E-04 + 235 7.5257064877610905E-04 + 236 4.1553828091174977E-04 + 237 -2.0134218095245408E-02 + 238 8.2902247229034217E-03 + 239 -7.8346047703123339E-02 + 240 -5.3225555727077226E-02 + 241 -9.1867550250266994E-02 + 242 -1.0003060705818473E-03 + 243 7.0923836866824237E-04 + 244 -1.2217074831618216E-03 + 245 -5.6613141281020528E-04 + 246 -1.4072225535186830E-03 + 247 -2.3638079284180668E-04 + 248 2.1585874794701769E-04 + 249 -2.3867173177943228E-04 + 250 8.2319018083312878E-05 + 251 -3.6459400424073763E-04 + 252 2.2544935694743864E-04 + 253 8.4409600063576883E-05 + 254 1.6081665840516149E-03 + 255 -2.4606964522397632E-04 + 256 -4.7218675113815551E-04 + 257 -9.1497950262996273E-04 + 258 -2.0729404567406255E-03 + 259 1.7734734808977286E-04 + 260 -4.1083819919883737E-05 + 261 -1.8767276462993164E-04 + 262 1.1907512944220708E-03 + 263 -1.1589437510654446E-03 + 264 5.4161508235531326E-03 + 265 -3.8921085349959855E-03 + 266 5.6205231956759213E-03 + 267 1.8834985861902271E-04 + 268 -1.1105200008914233E-03 + 269 1.6117466141522285E-03 + 270 -3.6794574150405006E-04 + 271 3.0951909403671094E-04 + 272 4.3226599709425567E-04 + 273 4.0008599301452001E-04 + 274 -4.1440424375194571E-04 + 275 3.1777674491056978E-04 + 276 4.3496370843710831E-04 + 277 1.3283059196933603E-04 + 278 2.1179873306825911E-04 + 279 4.3644862328831975E-05 + 280 -1.3299252466601765E-04 + 281 4.1341435718436296E-03 + 282 1.7824384599671463E-04 + 283 -6.3784168548763412E-03 + 284 -3.0836559349757916E-04 + 285 4.7064316346880319E-04 + 286 4.6545950301134945E-05 + 287 5.1142011781577217E-04 + 288 -9.8597832270980700E-04 + 289 7.3221756785756236E-04 + 290 1.6734449829614197E-04 + 291 -7.3002485163522763E-04 + 292 1.4692274999236660E-02 + 293 -9.8168266180401084E-05 + 294 9.1598597828129952E-04 + 295 -3.2523516308950078E-03 + 296 -5.2378418517294040E-03 + 297 -1.0291327077736778E-04 + 298 -3.9522685350557263E-05 + 299 -3.6083221890355387E-04 + 300 -7.7887412620872580E-04 + 301 2.8115176898251920E-04 + 302 -1.0160090669355246E-03 + 303 -1.8381485410381702E-04 + 304 -3.6915333523919279E-05 + 305 -2.8158881167117357E-03 + 306 6.6811359119698347E-06 + 307 -2.8488300632402951E-03 + 308 -1.4181424427796032E-03 + 309 -8.6132880836881467E-04 + 310 -3.7674118282432549E-04 + 311 -3.1654442321135711E-04 + 312 -1.6562534410682756E-04 + 313 1.4900396456013942E-02 + 314 -1.9965213310750726E-02 + 315 3.9508672011438394E-02 + 316 -4.5033849169445528E-02 + 317 -4.3923626874317568E-03 + 318 -3.1412548550226329E-04 + 319 -1.1737148143751166E-03 + 320 -2.2734826868810027E-04 + 321 -6.1337491295792494E-04 + 322 -7.0865558737554489E-04 + 323 9.1499503249640534E-06 + 324 -2.8335591456541824E-04 + 325 -1.0509277739484876E-04 + 326 -9.0475283106130895E-05 + 327 -4.3298697341310658E-04 + 328 2.2842783326445900E-06 + 329 -2.1951494757379485E-04 + 330 4.6297744206392896E-03 + 331 1.1436182774789414E-03 + 332 4.6256687393640226E-03 + 333 -6.1829497614617840E-05 + 334 5.9362811399314638E-03 + 335 -6.8035545183519418E-05 + 336 3.9562311591875528E-04 + 337 2.0388749451567450E-03 + 338 -2.1125052332572882E-03 + 339 5.0748819414013158E-02 + 340 -1.2997386064189416E-02 + 341 3.5896385948013254E-02 + 342 1.1242822675243291E-02 + 343 2.8459896307331226E-03 + 344 1.3719012784975616E-03 + 345 2.4735148626368760E-03 + 346 3.5803164704388004E-04 + 347 2.8944168812704268E-03 + 348 5.9068154659604243E-04 + 349 -2.4987270318046573E-04 + 350 2.5853542510561250E-04 + 351 -7.2680567232674687E-04 + 352 1.0611483625914693E-03 + 353 -7.9572220540253928E-04 + 354 5.7905167893796392E-04 + 355 -1.0668597702189819E-02 + 356 3.4992431265044692E-04 + 357 -4.9484818736963228E-04 + 358 -6.9912101001289311E-04 + 359 2.4849449338880010E-03 + 360 7.5865358443562997E-04 + 361 -6.0782930408263978E-05 + 362 3.8462944077816537E-04 + 363 2.8749595087351488E-04 + 364 -7.2461678628390504E-04 + 365 -3.5605160702996169E-04 + 366 5.0371127856470524E-06 + 367 4.7188142663406413E-04 + 368 -1.3225861213278130E-02 + 369 4.3961810905652847E-04 + 370 -1.1042380176178881E-02 + 371 -2.5029901155813924E-02 + 372 -5.7054332020841231E-03 + 373 -3.5351017567668660E-04 + 374 -2.8164354533133833E-03 + 375 3.9201224428223706E-05 + 376 -1.3015658163033359E-03 + 377 -2.0486860181542898E-03 + 378 -4.8677154954822105E-04 + 379 -5.2201077104464507E-03 + 380 -1.6718359664234224E-03 + 381 6.5119418958919919E-03 + 382 2.9757011497856452E-05 + 383 -4.6855129974795826E-03 + 384 -1.5293394551507453E-04 + 385 1.1614644574759725E-03 + 386 -8.2986356676622089E-04 + 387 -2.1544851796619739E-05 + 388 3.9726883430983958E-04 + 389 1.2216675218550068E-04 + 390 9.5686022993981534E-05 + 391 -1.7176293613296758E-04 + 392 -2.3877815341514423E-04 + 393 9.1143367563782218E-05 + 394 5.3405244912053344E-03 + 395 4.3084289154889099E-04 + 396 1.6332069701073643E-03 + 397 -3.2657178540106786E-03 + 398 2.0187892859291848E-03 + 399 -6.3739827746040248E-04 + 400 -8.9031396044415042E-04 + 401 1.0375001338398801E-04 + 402 -1.6148463958092382E-02 + 403 1.3617208286223951E-02 + 404 -1.0513895338347014E-02 + 405 2.8729511286650546E-02 + 406 -2.1087243074222200E-02 + 407 3.9131403007473326E-04 + 408 3.3487011846666624E-04 + 409 -7.2423943243145057E-04 + 410 -5.9777924603428138E-04 + 411 -1.1346490837697721E-03 + 412 -3.1056765824169995E-04 + 413 4.4256881446119533E-04 + 414 2.9150819183878443E-07 + 415 3.1413584326674034E-04 + 416 -5.8829419567183183E-05 + 417 -1.3025842100460237E-04 + 418 -3.1216584778170518E-04 + 419 9.6971890505739983E-03 + 420 -1.9648018480601740E-04 + 421 -7.3058553547157297E-04 + 422 2.7726411641705085E-03 + 423 -7.5463143500039320E-04 + 424 -4.5971669441681413E-04 + 425 -3.3565155101274033E-04 + 426 -2.0052818717744230E-04 + 427 -2.1446441764479690E-05 + 428 1.8487848877980743E-04 + 429 -3.5684135307902455E-05 + 430 3.6351492496364230E-04 + 431 3.3301564025270342E-05 + 432 -4.3889224868998442E-03 + 433 1.8734624937096506E-04 + 434 3.0724027400141473E-03 + 435 -5.7562173975418088E-04 + 436 -1.4058821918325208E-03 + 437 -6.5443076772290468E-04 + 438 4.4212207532858796E-04 + 439 -6.0861066507317534E-04 + 440 -4.9232509259353706E-04 + 441 -3.5474919074824004E-05 + 442 -2.0996886163560980E-04 + 443 5.8075061315054400E-04 + 444 -2.2533956975118695E-06 + 445 -3.7946756888557250E-03 + 446 -1.8947016364829794E-04 + 447 2.7511838456353373E-03 + 448 -3.7320518358909729E-03 + 449 -2.7888277705738164E-03 + 450 1.4018925844045587E-03 + 451 -1.6478806071667988E-03 + 452 -2.3649336893809504E-05 + 453 -1.2849114767703982E-02 + 454 -2.5378135905666906E-02 + 455 2.3636321959705438E-02 + 456 -8.5606152253308761E-03 + 457 6.2373203971086083E-03 + 458 -8.1433454018259375E-04 + 459 1.4885556779806004E-03 + 460 -1.1321723252133682E-04 + 461 1.2435784578842173E-03 + 462 -2.3899469823222561E-03 + 463 1.2773328775237032E-04 + 464 6.3965392130317840E-04 + 465 -4.2610673193182715E-04 + 466 1.4846867072593480E-04 + 467 -4.8679014348154844E-04 + 468 3.9129484167658030E-04 + 469 -1.3452976672544614E-04 + 470 -1.1227978653137120E-03 + 471 -3.8906631709483608E-05 + 472 -2.3643803507085586E-04 + 473 -1.7028481601916090E-03 + 474 -1.8445725020117536E-04 + 475 8.7133964204514375E-05 + 476 -9.0537926898684017E-05 + 477 -9.8184888661286912E-05 + 478 1.0950966769731166E-04 + 479 1.7110456840844918E-04 + 480 -2.5184411347686213E-03 + 481 -2.5435030855271781E-03 + 482 -5.3118559251267650E-03 + 483 -2.0324162372985399E-05 + 484 -4.8830378487073984E-04 + 485 -1.0652452682612064E-04 + 486 -6.6540574442671555E-05 + 487 -9.3263664859325433E-04 + 488 -7.9314186146433892E-06 + 489 1.1803822810991449E-04 + 490 -1.3329037111171926E-05 + 491 -1.8758362552172950E-04 + 492 1.1669394054214707E-04 + 493 -2.7335827178767968E-04 + 494 3.6200982681307507E-05 +Ene= -4.4346108624E-01 +Spin= Alpha +Occup= 2.0000000 + 1 3.9221093413795643E-04 + 2 6.7902057627948823E-04 + 3 -1.4302345334942449E-03 + 4 -3.0736280856469796E-03 + 5 2.7823084056496522E-03 + 6 -7.0013352480774828E-04 + 7 -1.4276273403635927E-03 + 8 5.2462914617693577E-04 + 9 -3.9794991630501521E-02 + 10 -3.6528287428428535E-02 + 11 3.9504095951931294E-02 + 12 -4.6478615317296072E-02 + 13 -4.5700235563163549E-02 + 14 1.9099326210127117E-04 + 15 -1.5093091011137152E-03 + 16 2.9461075808502981E-04 + 17 7.8791911748947647E-04 + 18 2.1761238994959901E-03 + 19 -1.8455413165538239E-04 + 20 5.0872029486337842E-06 + 21 8.9969797027428193E-05 + 22 4.3115740399088685E-04 + 23 -1.2832430558262940E-04 + 24 -3.0459158820072630E-04 + 25 -2.5088979324300953E-06 + 26 -1.1172813463350979E-03 + 27 2.0646211031073121E-05 + 28 -3.7439456092281517E-03 + 29 1.9638442351987695E-03 + 30 -3.4377240869800040E-03 + 31 8.9428482331921019E-04 + 32 -1.5120684921270304E-03 + 33 1.6558939917051197E-04 + 34 1.5343934565898342E-02 + 35 -3.3957859776164161E-02 + 36 3.9692376388884391E-02 + 37 2.4500041984705703E-02 + 38 7.4720141839841048E-02 + 39 1.9277343669373123E-03 + 40 8.5881954419742121E-04 + 41 -5.4929930350581366E-05 + 42 -1.9548311170637558E-04 + 43 2.6898525041697476E-03 + 44 -1.3975699572739577E-04 + 45 -6.3260473359232994E-04 + 46 9.3665998141200706E-05 + 47 -1.1584146116695131E-04 + 48 -2.6433826752121620E-04 + 49 3.4993939645728726E-04 + 50 -4.3756438807114186E-05 + 51 1.4624904579972748E-03 + 52 -2.6425675268698494E-04 + 53 -6.6847223843651150E-03 + 54 -1.9944781147288160E-04 + 55 -6.3898210698951421E-03 + 56 -3.9069820374232796E-03 + 57 1.0804244050887615E-03 + 58 -2.5845739654076320E-03 + 59 -3.4924986717743695E-01 + 60 -9.1368399716901749E-02 + 61 -4.8609910647638765E-01 + 62 -1.7606798906017493E-01 + 63 -6.6679823146608874E-01 + 64 -1.3313560384876865E-03 + 65 3.2009121574501300E-03 + 66 3.8807526296349608E-03 + 67 2.8255523148586101E-04 + 68 -4.0451668503625922E-03 + 69 2.1247902464633110E-04 + 70 -2.3820541893601889E-04 + 71 -2.1038347402954328E-03 + 72 -2.9992451484692824E-04 + 73 -4.0427020816828630E-04 + 74 7.4022358235260909E-04 + 75 1.6708558283983802E-03 + 76 -1.9752516576477083E-02 + 77 3.7280564894000132E-04 + 78 -8.0696401122186759E-04 + 79 -4.3698673794191605E-03 + 80 -2.0513084006404114E-03 + 81 4.7712439896037184E-04 + 82 -2.4530927992267535E-04 + 83 -3.8683244532546253E-05 + 84 1.0098361394591015E-03 + 85 5.0081353889908596E-04 + 86 1.3631613852317463E-05 + 87 -8.3466081942690511E-04 + 88 7.4654877112497072E-04 + 89 6.0251976574684585E-03 + 90 -1.6902879246332879E-04 + 91 1.5095348975094498E-02 + 92 2.8861653863647695E-04 + 93 -6.2430549460569496E-04 + 94 2.1937324689189214E-03 + 95 8.5820739198946231E-04 + 96 -1.0308077644852225E-04 + 97 1.9996436461140648E-03 + 98 6.8778135328570987E-04 + 99 -3.0284582350981830E-03 + 100 -3.0941280111682133E-03 + 101 1.4921665139359744E-03 + 102 1.2148632407817556E-01 + 103 -3.2047385357957528E-03 + 104 4.1476063246872315E-02 + 105 9.4452902814065216E-03 + 106 4.2803151742324935E-02 + 107 1.8023318572828345E-03 + 108 1.5189874414544063E-03 + 109 1.3278525851683400E-03 + 110 -1.9268541992658215E-03 + 111 -9.0060309650218384E-03 + 112 -2.1926729692401032E-03 + 113 -4.5293646057279263E-03 + 114 -2.7808087713275288E-03 + 115 -1.9586383693622274E-03 + 116 -5.4953082599715479E-05 + 117 -1.5056543520944336E-03 + 118 -3.9341467962881573E-03 + 119 2.4303699295901947E-03 + 120 2.2128339578046286E-04 + 121 1.8025529190877394E-04 + 122 -4.2711664792625655E-04 + 123 -1.0214254480572177E-03 + 124 1.3326471700493141E-04 + 125 1.6397015206977075E-04 + 126 5.8342371600650464E-04 + 127 6.2053772143145670E-05 + 128 1.0117329171004243E-02 + 129 -2.0129628914489820E-03 + 130 3.7883714960959469E-03 + 131 -2.1805434851917718E-03 + 132 -4.4172934922473489E-03 + 133 5.6677566186476053E-04 + 134 2.2426289967297604E-04 + 135 1.4568554509394082E-03 + 136 9.6714646292096959E-02 + 137 -5.0076030026543573E-02 + 138 7.1821839910635385E-02 + 139 -1.3717332243641659E-02 + 140 1.5866621369122164E-02 + 141 1.3082613978173850E-04 + 142 -1.8811226613142816E-03 + 143 1.9589008160432308E-03 + 144 1.0956580817736178E-04 + 145 2.3625615646797027E-03 + 146 2.2662826082826487E-04 + 147 3.4457912656055541E-04 + 148 1.6378004043274944E-04 + 149 -2.4256108620285898E-04 + 150 -1.0295372198040388E-04 + 151 -5.5921537944980345E-04 + 152 -3.8221550765936212E-04 + 153 -7.6550716597061598E-03 + 154 9.2398561593817687E-04 + 155 -3.6846268819375476E-03 + 156 -1.5152186844412730E-03 + 157 -2.0134868232106365E-03 + 158 1.6506363742471875E-03 + 159 -2.7207074214083855E-04 + 160 -9.7176991397855813E-04 + 161 3.8631666054289318E-02 + 162 4.9882669821030977E-02 + 163 9.6723638070033424E-03 + 164 -4.0876107710529928E-02 + 165 -9.4883683229211434E-03 + 166 2.3872922493853523E-03 + 167 2.1235920372821588E-03 + 168 1.3310482822723520E-03 + 169 -1.3875644981197882E-03 + 170 -2.1914312419592092E-04 + 171 -3.7100418221133291E-04 + 172 -5.3343638871811930E-04 + 173 -3.6423926579368473E-04 + 174 -6.3529024767770045E-04 + 175 -4.9242147331831800E-05 + 176 7.4850111202187024E-04 + 177 -2.2001613122211072E-04 + 178 1.7494081240304108E-02 + 179 -1.9601769572215506E-04 + 180 -8.1079255570904035E-03 + 181 -1.5340874668589844E-03 + 182 1.8861007510131886E-03 + 183 3.7688877451193286E-04 + 184 2.3214176918248130E-04 + 185 1.3556747807605895E-03 + 186 -4.1541564086224205E-04 + 187 -2.2045495871089312E-04 + 188 9.1776448602899510E-04 + 189 -9.4726018790640388E-04 + 190 -1.2942765930100902E-04 + 191 6.7939890873120509E-02 + 192 -1.8185996618463071E-03 + 193 -9.4842155518847608E-03 + 194 -2.3489129132776256E-02 + 195 1.9215446202338261E-02 + 196 -7.5899914284387681E-04 + 197 1.3170909565845588E-04 + 198 2.6035529125729316E-03 + 199 5.1751468980605771E-04 + 200 2.5123880333188390E-03 + 201 2.7004271038889331E-03 + 202 3.0269930484475268E-03 + 203 -3.2269604414384544E-03 + 204 1.5429388386391247E-03 + 205 -1.1677882915330921E-03 + 206 -6.9047666593743940E-04 + 207 6.1050283415856731E-03 + 208 -2.6016364484458920E-03 + 209 -3.0875333084706978E-04 + 210 -1.1263787946005418E-03 + 211 4.7307025120506101E-04 + 212 2.3218369522793846E-02 + 213 -2.7157816239650159E-02 + 214 -4.1365459858237509E-02 + 215 -1.5066377474162460E-02 + 216 5.6505593157772566E-02 + 217 1.8939094409233801E-03 + 218 -4.2719986966156717E-04 + 219 -6.6002439553642202E-04 + 220 -8.2231418756526897E-05 + 221 2.2506704687417240E-03 + 222 6.5610883363322471E-04 + 223 1.6411008764110984E-04 + 224 3.0669974091258005E-04 + 225 -1.7837702795491845E-04 + 226 -1.2029791223188933E-04 + 227 7.8423145547170349E-05 + 228 2.0556510350488736E-04 + 229 3.7269889699964114E-03 + 230 -1.2020467775515184E-03 + 231 1.8881892052206358E-03 + 232 -1.5880084748881721E-03 + 233 1.1829001913437236E-03 + 234 1.8685934193227306E-03 + 235 -1.8716664340062656E-04 + 236 -8.9793853643686903E-04 + 237 -2.3524372279973393E-02 + 238 9.8426515080316697E-03 + 239 -2.7851562888322211E-02 + 240 3.4738244450119825E-02 + 241 7.0576165032076948E-02 + 242 -8.0331088620711654E-05 + 243 1.0911039832254832E-03 + 244 -9.5299118988270161E-05 + 245 -5.0818367552243741E-04 + 246 -5.3850399261576440E-04 + 247 6.9697118937746134E-05 + 248 -4.5713871694525788E-04 + 249 1.3065711889701095E-04 + 250 -4.5267210913393039E-05 + 251 4.8443084357014440E-05 + 252 1.7457057581439663E-04 + 253 1.5822716072383896E-04 + 254 2.0529189740722425E-03 + 255 1.4898398402700858E-04 + 256 1.9980134118802941E-03 + 257 -3.5566641336907318E-03 + 258 7.8255951229902997E-04 + 259 2.8338365024888895E-05 + 260 7.9345532772655386E-05 + 261 -3.8447465785961671E-04 + 262 -1.4102576892126651E-02 + 263 -6.5598769613786599E-03 + 264 4.7046986383660529E-03 + 265 -1.0613644707931223E-02 + 266 -5.2232134782448213E-03 + 267 -9.4176547527493866E-04 + 268 -3.8702403331382590E-04 + 269 8.2785743742255487E-04 + 270 -9.9295811402871654E-04 + 271 -6.0246305082061618E-04 + 272 2.0008397155623050E-04 + 273 -6.0842055876571082E-05 + 274 3.8912400866646494E-05 + 275 1.2722299948447321E-04 + 276 7.8791027590445768E-05 + 277 -3.1592372113872388E-05 + 278 2.2609901009990448E-04 + 279 2.3666027675299718E-02 + 280 -6.5614922813455484E-04 + 281 -6.1420599603408789E-03 + 282 1.0129317303207036E-02 + 283 1.3802828369298306E-03 + 284 -1.1179642059777232E-04 + 285 5.2848064952800333E-04 + 286 3.4275112730249350E-04 + 287 9.5920977730591466E-04 + 288 6.7244160891144326E-04 + 289 -2.0976224274128641E-04 + 290 8.3087051043121590E-04 + 291 9.2498739276657008E-04 + 292 3.0111697044329613E-02 + 293 -6.0547225657151991E-04 + 294 4.4520024198917039E-03 + 295 3.6823002208198037E-03 + 296 -7.5773580930151158E-03 + 297 5.7287307427695189E-04 + 298 8.6996535144676719E-05 + 299 -1.8208713326495463E-05 + 300 -3.6145018612391693E-04 + 301 3.9998367283725306E-04 + 302 5.8973500829742295E-04 + 303 -1.5940884100820645E-04 + 304 -2.3179020574879479E-04 + 305 -2.7775362053635926E-03 + 306 -5.2989070283052456E-04 + 307 5.8748945853710028E-04 + 308 -4.3251388708965345E-04 + 309 1.6730675262773931E-03 + 310 3.5931650169102714E-04 + 311 2.8985077903098243E-04 + 312 -3.1870961444382972E-04 + 313 9.3952629396749296E-02 + 314 -3.7199743705935200E-02 + 315 1.0950371911067175E-02 + 316 7.8301193868233285E-03 + 317 -9.1798284865734631E-03 + 318 1.1121849774362407E-03 + 319 1.3048068503081656E-04 + 320 2.7695967852973209E-04 + 321 -5.1804581933550316E-04 + 322 -4.3040254938404458E-04 + 323 4.2750780565837669E-04 + 324 2.7760011776058795E-05 + 325 2.4506478257197957E-04 + 326 -1.7709000637946391E-04 + 327 2.4203367730186889E-05 + 328 2.1051248873372091E-05 + 329 2.9085523308063077E-04 + 330 5.6374789339001443E-03 + 331 -1.9927283395031765E-03 + 332 3.4648395025654827E-03 + 333 3.4054068445538784E-03 + 334 5.4623816508876074E-03 + 335 -1.1563460246697818E-03 + 336 -1.4156659628865673E-03 + 337 7.2805983190473290E-04 + 338 -2.9123569698623470E-02 + 339 5.1563125782954654E-02 + 340 7.7676499332775900E-02 + 341 -5.2542780972467127E-03 + 342 5.1554250084823852E-02 + 343 2.0994251487298614E-04 + 344 -4.1430748585351149E-04 + 345 3.2567331003663163E-03 + 346 -7.9142640061854769E-04 + 347 1.3049564779228926E-03 + 348 5.2444826283028401E-06 + 349 -1.3181594697949216E-04 + 350 9.1062288540698214E-05 + 351 -1.1964199305668263E-03 + 352 4.0845137560466876E-05 + 353 -4.6963737785338645E-04 + 354 -1.9488942153181221E-04 + 355 3.0254381885255036E-02 + 356 -4.8885315517752819E-04 + 357 -6.6465707531373512E-03 + 358 -5.4935996789876847E-03 + 359 -9.1683659291886717E-03 + 360 3.0211594730204328E-04 + 361 -4.3847134108593137E-04 + 362 -3.5473554741002628E-04 + 363 -5.4439994450675817E-04 + 364 -9.0723948280857503E-04 + 365 -2.8718018980823580E-04 + 366 2.8755484124418757E-04 + 367 2.0064623467847004E-05 + 368 -1.2408923487729745E-01 + 369 2.1010110789752650E-03 + 370 4.5935145484970720E-02 + 371 -4.0453135107446983E-02 + 372 1.7643230709554827E-02 + 373 -4.9629690525573780E-03 + 374 3.9952634506172820E-03 + 375 -3.2812367654553461E-03 + 376 -4.1718198996919557E-03 + 377 3.0786015969869233E-03 + 378 -3.1770696424977068E-03 + 379 1.2451253794836118E-03 + 380 -9.2883396088497723E-03 + 381 4.0994199112782369E-02 + 382 -7.4587568105464758E-04 + 383 -1.2426988720557648E-02 + 384 9.8494456094103244E-03 + 385 2.9511683254890568E-03 + 386 -3.5207187384618760E-04 + 387 1.2624554113215309E-03 + 388 1.0035468344811425E-03 + 389 -5.1371539378313803E-04 + 390 -4.6503076855205222E-05 + 391 5.3678469771155216E-04 + 392 -3.4164250329275992E-04 + 393 1.2914451411460105E-03 + 394 8.5743237028643258E-03 + 395 -1.1061727693237595E-03 + 396 2.7146451068565496E-03 + 397 -3.7995598087651574E-03 + 398 2.8328605541163912E-03 + 399 -6.3927382206158644E-04 + 400 1.4435786549898656E-03 + 401 -4.3884019078956440E-04 + 402 -3.6718951658452528E-02 + 403 6.3077800749671370E-02 + 404 -8.7590370750653943E-02 + 405 -4.6871307643473019E-02 + 406 -6.6695089846156227E-02 + 407 -1.0234063733027977E-03 + 408 -1.6754398575867825E-04 + 409 -1.1985551872775134E-03 + 410 8.8243373514903622E-04 + 411 1.1634732752327126E-03 + 412 -3.4174161128175634E-04 + 413 1.6018578830084379E-04 + 414 -4.1935022531527401E-04 + 415 2.4601594057733781E-05 + 416 5.7069213573228135E-04 + 417 2.1344348808260996E-04 + 418 -3.8617149711406886E-04 + 419 3.0365522374115269E-02 + 420 -6.4228327705664195E-04 + 421 -4.9155498381806681E-03 + 422 3.0280373408389429E-03 + 423 -9.4440446416335661E-03 + 424 -1.2891143880866893E-04 + 425 2.8010759499107389E-05 + 426 -3.2176553411783070E-04 + 427 -1.0741930532393682E-03 + 428 -5.8675001644464527E-04 + 429 3.7361704851668668E-04 + 430 -1.8071209727421153E-04 + 431 7.4121680741986643E-05 + 432 1.8439137461444547E-02 + 433 -6.3948243218260072E-04 + 434 -5.4414624096721757E-03 + 435 -4.5316625578630558E-03 + 436 4.5537691290390863E-07 + 437 -7.8439711079502262E-04 + 438 -3.0600427848630750E-06 + 439 2.0376918088447051E-04 + 440 5.5052770994251437E-04 + 441 3.1032229261610266E-04 + 442 -1.4234882143690690E-06 + 443 -6.5296942929121975E-04 + 444 -2.9690804623516085E-04 + 445 7.3242107256334269E-03 + 446 -1.4042929599459308E-03 + 447 2.8686944977552730E-03 + 448 -5.8252048225561728E-04 + 449 1.1470919542250371E-03 + 450 -6.5624072490924948E-04 + 451 -1.1394903784233913E-03 + 452 -1.6402376581933947E-03 + 453 1.0973774037376421E-03 + 454 8.3866276729895176E-02 + 455 3.7339215254740467E-02 + 456 2.5308435040579391E-02 + 457 3.8200481886482542E-02 + 458 -2.2963940812657603E-04 + 459 -9.7500628117886778E-04 + 460 -1.6928609524604189E-04 + 461 4.9176231718848487E-04 + 462 -5.1524571693650713E-04 + 463 5.5701088751305188E-05 + 464 8.2231348140626373E-05 + 465 6.6002208858484241E-05 + 466 -6.4665150600247637E-05 + 467 -6.5253110248159743E-05 + 468 3.0758210005318816E-04 + 469 3.4347364434994927E-04 + 470 -3.3412477870112469E-03 + 471 4.5284451325172453E-04 + 472 1.0407022206392631E-03 + 473 -1.8854301415302975E-03 + 474 1.5047577910574269E-04 + 475 1.5437399212843577E-04 + 476 1.9601828520370707E-04 + 477 4.2330515009052748E-04 + 478 1.0376205809174662E-02 + 479 -9.0102206427033846E-03 + 480 -9.8838935234816690E-03 + 481 1.8382934268930850E-02 + 482 -2.6043370246438831E-02 + 483 -6.8778813857902049E-05 + 484 2.0695425267254478E-04 + 485 -4.3634856670198734E-04 + 486 7.8650546051978751E-04 + 487 -1.1495487863879862E-03 + 488 -1.3157151635200535E-04 + 489 -1.3682841655069714E-05 + 490 -6.9495222367320939E-05 + 491 6.8253636889774289E-05 + 492 -3.6185316594227888E-06 + 493 -8.2009433096421729E-05 + 494 -5.7267010111535259E-05 +Ene= -4.4273001413E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -1.0962617613095608E-02 + 2 -6.0609462768482475E-04 + 3 6.3412902459138477E-03 + 4 1.2619512122059065E-02 + 5 -6.1092606475874559E-03 + 6 -4.6929929117087447E-04 + 7 3.2117533287179230E-03 + 8 -6.6588310407056600E-04 + 9 -3.8553493516211103E-02 + 10 -4.3228597435092608E-01 + 11 2.3651650739835339E-01 + 12 1.9133143661953178E-01 + 13 -5.1781674118893117E-01 + 14 -4.3828608823102798E-04 + 15 3.7960208296385191E-03 + 16 2.7899247154717110E-03 + 17 -1.7634704839749231E-03 + 18 -3.4432075515682856E-03 + 19 3.6998131261999247E-04 + 20 9.7988232341705492E-04 + 21 -5.1339382196112081E-04 + 22 -1.3334482599567162E-03 + 23 -1.3201685464076605E-03 + 24 1.6212241403553971E-03 + 25 4.0747871092752226E-05 + 26 4.8799426416060981E-03 + 27 3.0927742265188051E-04 + 28 -5.7664356498411489E-04 + 29 -4.3848820619852274E-03 + 30 5.1810119093756294E-04 + 31 -2.2124231307758512E-04 + 32 -8.2841492127319106E-04 + 33 3.6896523085625725E-04 + 34 -5.3682309526089420E-02 + 35 -1.8786549131297430E-03 + 36 2.3572363085009321E-02 + 37 -3.2664814228856205E-02 + 38 2.1986735941064948E-02 + 39 -2.1059257835176768E-03 + 40 1.3785186939561714E-03 + 41 -1.5211081852724484E-03 + 42 -2.3647560220876850E-03 + 43 4.3098365477270417E-04 + 44 -6.2515845194570792E-05 + 45 1.4740829057112008E-05 + 46 5.4143651319964062E-04 + 47 -1.9998757236954788E-04 + 48 4.8308791622804151E-04 + 49 4.6780123500112127E-04 + 50 9.6547236889168135E-05 + 51 6.1875653476291441E-03 + 52 1.3388103426973843E-03 + 53 3.4663725557577039E-03 + 54 9.3747667235410774E-03 + 55 -2.9076998744893131E-03 + 56 2.0576472951374129E-03 + 57 1.4983634225182053E-03 + 58 -5.3515596969348983E-04 + 59 3.4862960013060229E-01 + 60 6.1946146067242153E-03 + 61 -4.5854453381983501E-01 + 62 1.4747578696571140E-01 + 63 1.7405407136870515E-01 + 64 -2.6756791209333244E-03 + 65 -1.9209826974675959E-03 + 66 9.9366525731604859E-04 + 67 -3.9270925510849590E-03 + 68 1.2160143328997149E-04 + 69 5.8385716922963802E-04 + 70 3.0415035849174670E-04 + 71 -8.8940408424324714E-04 + 72 4.6796340186900260E-04 + 73 -4.9293324437952717E-05 + 74 -7.4515396534273590E-04 + 75 -1.8158023361698091E-04 + 76 -1.7420587775227769E-02 + 77 6.7429507166832708E-04 + 78 -2.0857418464923790E-02 + 79 -2.1819369842113363E-03 + 80 -3.9955714202770370E-03 + 81 -4.3257662594452397E-04 + 82 -2.0878118226383437E-04 + 83 6.4458209905864878E-05 + 84 -1.3709472322764428E-03 + 85 4.3919517206744531E-03 + 86 4.1977181891770469E-04 + 87 -1.2338992247126002E-03 + 88 4.5065505010577827E-03 + 89 3.0401572551553863E-02 + 90 -2.8177471796734957E-04 + 91 1.2162943623994891E-02 + 92 7.8683282453687606E-04 + 93 -1.0446927276920403E-02 + 94 1.5063748075239850E-03 + 95 1.3791568257496851E-03 + 96 -1.0327587890096004E-03 + 97 -4.1420452516529525E-04 + 98 -1.6292607757406755E-03 + 99 5.2462898121091012E-04 + 100 3.0648230562467828E-03 + 101 2.1539267265454011E-03 + 102 7.3871025817205402E-03 + 103 -4.1081548918315257E-04 + 104 1.9687114261801989E-03 + 105 -8.9328239181571869E-03 + 106 5.6868141647183233E-03 + 107 3.7583936198914080E-04 + 108 -1.2653944609995577E-03 + 109 3.6332115315817164E-04 + 110 -1.3437203646048277E-03 + 111 -1.1967279624025360E-03 + 112 8.3366450656256112E-04 + 113 -1.2732908697899272E-03 + 114 1.6650835728431578E-03 + 115 1.8768110637795586E-03 + 116 1.4435793636788079E-04 + 117 -7.1916608091584773E-04 + 118 2.5966962703549380E-03 + 119 5.8435827123380345E-05 + 120 4.2143009240500778E-04 + 121 -7.4749975769835804E-04 + 122 2.9881125382753310E-05 + 123 2.3333037090824120E-04 + 124 8.0275821539557072E-05 + 125 -4.6618224906653090E-04 + 126 1.6611543787150809E-04 + 127 2.2704133981628339E-04 + 128 -1.4530845135086873E-03 + 129 -6.2078759522588174E-04 + 130 -1.6680392339833766E-03 + 131 1.1050617055065491E-03 + 132 3.9410545800539133E-04 + 133 -4.3117143043943648E-04 + 134 2.8455108063179412E-04 + 135 -2.4347512845011586E-04 + 136 -1.5246729925088118E-02 + 137 -1.3665430326799599E-03 + 138 6.0899626578087528E-03 + 139 6.0908375300835378E-03 + 140 -1.2854155794059102E-02 + 141 4.8259193415407827E-06 + 142 4.1208332248671717E-04 + 143 4.4556339581075741E-05 + 144 -2.2943640008691625E-04 + 145 4.0478880332386446E-04 + 146 -1.4686980098439923E-05 + 147 -2.4578942092557981E-05 + 148 2.8050639415589903E-04 + 149 9.4715697936734397E-05 + 150 4.6344981281212505E-05 + 151 -4.7105893086229995E-04 + 152 -1.4354123098607465E-04 + 153 -4.0794138591431200E-03 + 154 -3.7632784204702079E-04 + 155 -1.7253542444250697E-03 + 156 1.4951864393761682E-03 + 157 2.7939784251502760E-03 + 158 -4.5906416893378658E-04 + 159 -1.0312182029234565E-04 + 160 4.3918159412048070E-04 + 161 7.9092069243333893E-04 + 162 7.2731403508266108E-03 + 163 -1.9023520291163075E-02 + 164 -4.2182148587837963E-03 + 165 5.3955698717053349E-03 + 166 -1.2977071836639661E-03 + 167 1.2508768659582259E-03 + 168 -7.3804956377963990E-04 + 169 -9.9513196450034606E-05 + 170 -1.0647000368561315E-04 + 171 2.7964496279105517E-04 + 172 -3.4334173936072856E-04 + 173 3.5445991306315802E-04 + 174 1.3378379288680201E-04 + 175 2.1222607126182661E-04 + 176 -1.8720769262351103E-04 + 177 1.4950247183203026E-05 + 178 2.7227287436377796E-03 + 179 -7.9361733343496837E-05 + 180 1.6350981347922506E-04 + 181 -1.5744782970202929E-03 + 182 4.9247312450486020E-04 + 183 -8.6425811917367472E-05 + 184 1.8363842706831945E-04 + 185 6.1403733376657710E-05 + 186 9.2174914748866280E-06 + 187 -1.4232923201217324E-04 + 188 1.1465050848234508E-04 + 189 1.6524682708901861E-04 + 190 -1.5608298494606008E-04 + 191 -4.9482933958332571E-03 + 192 5.1914270402829032E-05 + 193 1.8208280784204182E-03 + 194 5.5426987952001275E-03 + 195 9.8846908314897709E-03 + 196 2.9205112313161329E-04 + 197 1.5154845354807345E-05 + 198 7.1641358718510268E-04 + 199 -6.1380594597458895E-04 + 200 2.3708753958715328E-03 + 201 1.7366156557649367E-03 + 202 -1.0413350890259463E-03 + 203 1.1842534579422808E-03 + 204 1.4122658840903643E-03 + 205 3.0665683531410292E-04 + 206 9.2165171050536819E-04 + 207 1.2380954655221612E-03 + 208 -4.3164007482900921E-04 + 209 2.1513560756994189E-05 + 210 4.8837465552910709E-04 + 211 -1.9611487429671796E-05 + 212 -8.3410965748453598E-03 + 213 -1.0333055427937514E-02 + 214 6.2591141079848716E-03 + 215 3.2422647192663252E-03 + 216 1.6209470305071864E-02 + 217 -4.8984851420142394E-05 + 218 -1.0285664035663413E-04 + 219 -6.5627220059488267E-04 + 220 4.0626400940348194E-04 + 221 9.8402333523161059E-04 + 222 -3.0241235085879156E-05 + 223 8.3266911487061025E-05 + 224 -1.2283638496488228E-05 + 225 1.1575642095353751E-04 + 226 -4.2663664953714633E-04 + 227 -4.0302464057049062E-05 + 228 4.0187251544662527E-04 + 229 -1.9766955603622193E-02 + 230 5.0349575215655402E-04 + 231 -5.9702251388035060E-03 + 232 9.0979179963549955E-03 + 233 -2.3886831282111396E-03 + 234 -1.2037306633566601E-04 + 235 -1.7584331928437935E-03 + 236 -7.0641337910933857E-04 + 237 3.4976715570689702E-02 + 238 -5.5849314759946145E-02 + 239 9.1622374617209137E-02 + 240 8.5517411124122977E-02 + 241 1.5270063574338202E-01 + 242 1.9333116052950557E-03 + 243 -1.9757801461076805E-03 + 244 1.9831435082646284E-03 + 245 2.4747668917284296E-03 + 246 3.0001154790381462E-03 + 247 2.4923092939399565E-04 + 248 -6.8907481001165326E-04 + 249 8.3216237223706865E-04 + 250 4.0593161706579505E-04 + 251 6.6997687482708086E-04 + 252 -9.2662692442673238E-04 + 253 -6.4639416302025236E-04 + 254 -3.9963285715919096E-03 + 255 5.1744201681775315E-04 + 256 -1.3506238379234949E-03 + 257 1.1563383071095069E-03 + 258 1.1039688727805007E-03 + 259 -4.5248625058393391E-04 + 260 5.5718346223090918E-05 + 261 6.5936012784336686E-05 + 262 -9.6066416060961272E-03 + 263 -4.4520088517891283E-03 + 264 -5.2949099170822224E-04 + 265 4.6544549925347329E-04 + 266 2.7434916324798192E-03 + 267 6.6220482251906480E-04 + 268 5.4728922236537683E-04 + 269 -7.6537711538734749E-04 + 270 -1.0790055673236444E-04 + 271 8.0940472796114753E-04 + 272 -1.2258996973789994E-05 + 273 -8.8672082948057800E-05 + 274 -1.2574182227450225E-04 + 275 -3.8928432781991611E-05 + 276 -1.4290043111441631E-04 + 277 8.9846800227434237E-05 + 278 2.0615955969695396E-04 + 279 4.4198556455456338E-03 + 280 2.7582937541611400E-04 + 281 -5.9556616771640290E-03 + 282 -2.1122537041066804E-04 + 283 9.8327913201618003E-03 + 284 -3.5546629087388344E-04 + 285 1.3988747373999450E-04 + 286 -1.3978325547077291E-03 + 287 -9.8013860521553153E-04 + 288 1.6914830861832996E-03 + 289 -1.6719544040785152E-03 + 290 -6.6579297040785174E-04 + 291 6.6028036423841836E-04 + 292 6.7883132685444252E-03 + 293 -2.0917204177429689E-04 + 294 -1.0184877662277268E-02 + 295 1.1403773232372285E-02 + 296 -6.3473611148092725E-05 + 297 -5.9391079638179895E-04 + 298 5.6967566551172392E-04 + 299 4.0532015656391540E-04 + 300 5.6039629583790378E-05 + 301 -2.6981603652581135E-03 + 302 2.6458594610921744E-03 + 303 -4.5776681744646308E-04 + 304 4.4118410570156405E-04 + 305 2.1068218724195950E-04 + 306 3.0190117068850753E-04 + 307 1.1019328468298991E-03 + 308 -6.4336085162344477E-04 + 309 1.1655738644205053E-03 + 310 3.1046471446651854E-04 + 311 3.2515736882607994E-04 + 312 8.7734399971681123E-04 + 313 -3.3581761814649738E-02 + 314 3.2980000311897711E-02 + 315 -3.0472071953985123E-02 + 316 4.1443442201486512E-02 + 317 -3.1661960283127330E-02 + 318 1.4201077399135732E-03 + 319 1.5110845376921510E-03 + 320 -6.9061012405886401E-04 + 321 7.3986128326684615E-04 + 322 -5.1990332761451142E-04 + 323 3.0054865862931383E-04 + 324 6.5816698808400292E-04 + 325 -1.3255720590501425E-05 + 326 -1.0401059117848682E-05 + 327 2.2659006171147619E-04 + 328 -5.2900250826429533E-04 + 329 2.5255970367206757E-04 + 330 5.5049649007817732E-03 + 331 -4.7822056659325442E-05 + 332 2.0789513483174915E-03 + 333 -2.2951098010529081E-04 + 334 5.3606187443462428E-03 + 335 -1.1705479903831465E-04 + 336 -7.1290440193171902E-05 + 337 6.6411875250061596E-04 + 338 2.0985100323752285E-02 + 339 1.7322393533972517E-02 + 340 8.1587747143529628E-03 + 341 1.2702164546089344E-02 + 342 6.4289000356602686E-03 + 343 2.0304483551596762E-03 + 344 1.1113376106003890E-03 + 345 1.7101912202866455E-03 + 346 7.1804709967871676E-04 + 347 9.4102163246547453E-04 + 348 1.8467317320519961E-04 + 349 9.2056431973829754E-05 + 350 5.3163282374167912E-04 + 351 -1.1384496864713863E-04 + 352 6.1148716277993241E-04 + 353 -5.4208963433779526E-05 + 354 3.7853075071411904E-04 + 355 2.9777202908579680E-03 + 356 1.1986109447177002E-04 + 357 -1.9515192092089779E-03 + 358 -3.8936811119137426E-03 + 359 1.2206866631070937E-03 + 360 4.1017576985405007E-04 + 361 1.1405224880771662E-05 + 362 -2.8810475756769978E-04 + 363 7.0570102363189170E-06 + 364 2.1112897480683802E-05 + 365 -7.1116484189602557E-05 + 366 -2.3495289636725133E-04 + 367 -6.0184061825018301E-04 + 368 1.4299378645502250E-02 + 369 -2.9320222121625755E-04 + 370 -5.5994956652184137E-03 + 371 9.6259834300553085E-03 + 372 -1.6541132703827760E-02 + 373 -6.0052866380902818E-05 + 374 1.6388886391864137E-03 + 375 1.4421241222930628E-04 + 376 -7.2397964216848291E-04 + 377 -3.5136060355309712E-03 + 378 2.2927205277009678E-03 + 379 1.6477933933476435E-04 + 380 1.4114596347879118E-03 + 381 -9.0625063875052307E-03 + 382 1.4760184167147625E-04 + 383 4.2580997311200833E-03 + 384 -6.3407088729914261E-04 + 385 -2.0735317981664344E-03 + 386 1.5430682436945098E-04 + 387 -6.3177870517092935E-05 + 388 -1.0138895725628570E-04 + 389 8.2435557075237102E-05 + 390 -5.0744427358270295E-04 + 391 3.7722122459456050E-05 + 392 1.2502574122999621E-04 + 393 -1.2178595998624450E-04 + 394 -8.7679639687534890E-03 + 395 -2.9678391433863167E-04 + 396 -5.7266614729894073E-03 + 397 1.5609160511252313E-03 + 398 -2.9001741417708786E-03 + 399 3.0681865939315861E-04 + 400 2.1988979088417011E-04 + 401 -9.4195883644602316E-05 + 402 3.9060885194469402E-02 + 403 -1.1379936228939852E-02 + 404 6.6406476702888474E-03 + 405 -3.5451353413565173E-02 + 406 2.5092235122780297E-02 + 407 9.7513714441805103E-04 + 408 -1.4141367784308097E-03 + 409 3.5114883871935890E-04 + 410 -1.9155222056595141E-04 + 411 6.4822935685680285E-04 + 412 3.4393926860398235E-04 + 413 -5.5447060116076781E-04 + 414 3.0809539850081897E-05 + 415 -3.9367901296184088E-04 + 416 -2.3434901137553215E-04 + 417 4.1412484732125773E-04 + 418 1.8986098712900088E-04 + 419 -2.1990951856146038E-02 + 420 5.0617623254844328E-04 + 421 5.0621704582931573E-03 + 422 -2.6675232606388748E-03 + 423 2.4939741771627410E-03 + 424 6.2202002916124475E-04 + 425 -4.5214170009801448E-05 + 426 3.3039662568875450E-04 + 427 -4.4619489918239970E-05 + 428 5.3383149955065084E-06 + 429 2.2990327148793684E-04 + 430 -1.7112395519124290E-05 + 431 -3.6778617941705076E-04 + 432 -1.0509599181192009E-03 + 433 1.8142710501658901E-05 + 434 4.1941625634897733E-05 + 435 1.7022746849054200E-04 + 436 1.3910903129451570E-06 + 437 1.2315174931622726E-04 + 438 1.0236372970339908E-05 + 439 -3.3694591829662663E-04 + 440 -6.2991057441520325E-05 + 441 -1.1663824707944413E-04 + 442 -5.6107651944868071E-06 + 443 1.2513321457866096E-05 + 444 -1.4565146902067780E-04 + 445 1.1604529907849727E-03 + 446 8.3720064179447983E-04 + 447 1.3130266948867030E-03 + 448 -2.9897258168796895E-04 + 449 -1.4351412855085589E-03 + 450 6.1020510491246961E-04 + 451 -9.2506326117730692E-05 + 452 -1.9356801283168309E-04 + 453 5.1708300604152799E-03 + 454 -1.2045186512473582E-02 + 455 -2.2748653730812439E-02 + 456 -4.8782790343526849E-03 + 457 -1.3986746810227907E-02 + 458 -7.8483229073752028E-04 + 459 1.4838456792501265E-04 + 460 -2.0636542838163436E-04 + 461 -2.3612997555536895E-04 + 462 -3.6240254630050728E-04 + 463 2.3991629646453084E-05 + 464 -9.1774366229686747E-05 + 465 -1.6134935649443768E-04 + 466 1.3814787029971202E-04 + 467 2.1555143168070303E-04 + 468 -1.2851863779160931E-04 + 469 -2.9611997300962043E-05 + 470 2.2738864920193260E-03 + 471 -3.8818593166669632E-05 + 472 5.4477653522400115E-04 + 473 2.9054883983839160E-04 + 474 -4.9807531158756820E-04 + 475 -1.5612542971282362E-05 + 476 -1.6497044288569924E-04 + 477 -2.2725560043794515E-04 + 478 -2.8910196331913586E-03 + 479 2.1209125506506444E-03 + 480 1.6166754189635801E-03 + 481 -2.9111015592044771E-03 + 482 5.5691122167062096E-03 + 483 -1.9530034444894181E-04 + 484 -2.9973662426348410E-04 + 485 -1.9263441183600901E-05 + 486 -1.8759539507303650E-04 + 487 1.8562858217884328E-05 + 488 7.1869856581762334E-05 + 489 -3.5688487317241032E-05 + 490 2.1799471215823852E-04 + 491 3.6341677074664987E-05 + 492 7.0702341815933050E-06 + 493 -1.9310982254989094E-05 + 494 -5.3388686301641186E-05 +Ene= -4.4222432328E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -5.5191453771157618E-03 + 2 1.8983893816038684E-03 + 3 4.1848046481929363E-03 + 4 1.2443415262977542E-02 + 5 2.1380286027321833E-03 + 6 1.8031492544119949E-03 + 7 3.4879664324194990E-03 + 8 2.3906178157234582E-03 + 9 3.7650660076820874E-01 + 10 -1.3536435097335991E-01 + 11 6.4471745101643418E-01 + 12 -1.5453700933064696E-01 + 13 2.7063238202822698E-01 + 14 1.0278430368810629E-03 + 15 1.9504538342432472E-03 + 16 6.0628688850257262E-03 + 17 -2.4589524890161574E-03 + 18 9.0448779503311447E-04 + 19 -7.6327266866125837E-04 + 20 1.2475360780254467E-04 + 21 1.1789851550203648E-03 + 22 -1.9461181861345190E-03 + 23 2.6936946686730679E-04 + 24 -8.0856728618387396E-04 + 25 -1.5495480869562326E-03 + 26 1.2295837393597379E-02 + 27 -1.6443634136940049E-03 + 28 -4.7738052479202869E-06 + 29 1.0418949271092602E-02 + 30 -3.4854477957662424E-03 + 31 -1.5187824173402132E-03 + 32 -4.4320564686308763E-05 + 33 1.5086694368053551E-03 + 34 3.3815252226160122E-02 + 35 -8.3228624079080799E-02 + 36 -1.3634712100882754E-01 + 37 6.2007844151370324E-03 + 38 8.7132725527886742E-02 + 39 -5.8752912999447346E-04 + 40 5.3683427135753727E-04 + 41 -4.1556195834385841E-03 + 42 1.9467410170354864E-03 + 43 -6.7069182477167401E-05 + 44 7.5111084419601500E-04 + 45 -1.3206499824261190E-04 + 46 -1.2693382371333455E-04 + 47 6.4453893612029155E-05 + 48 1.4109778696652518E-03 + 49 -2.5223230159550662E-04 + 50 -1.1476251321161815E-03 + 51 1.7656284492950902E-04 + 52 8.8599219172273821E-04 + 53 1.3040806729001880E-03 + 54 1.2673540654978186E-03 + 55 5.0652159871912561E-04 + 56 -2.6746014350008884E-04 + 57 -1.0263638208022139E-03 + 58 1.2531691434854338E-04 + 59 -2.3958348551906522E-01 + 60 -1.4370921820980276E-01 + 61 -9.0642317650818524E-02 + 62 -4.6628504012615389E-02 + 63 2.4368525457841639E-01 + 64 7.1373226758019706E-04 + 65 -1.1884553136591843E-03 + 66 8.2046966996530675E-04 + 67 -2.0620148486668708E-03 + 68 3.8178765493882114E-04 + 69 -9.7828832753172777E-04 + 70 -7.3463384214180028E-05 + 71 3.6603290888606008E-04 + 72 -6.9263816438782863E-04 + 73 7.3443751437368763E-04 + 74 4.0461047540166797E-04 + 75 -4.9577888382569665E-04 + 76 -1.5699005309935404E-01 + 77 2.0249967917677207E-03 + 78 -2.0335729113438962E-03 + 79 -6.3403473686577547E-02 + 80 -2.6308254943339559E-02 + 81 -7.6352092470051002E-04 + 82 -6.2426025433101953E-04 + 83 1.2739419719720482E-03 + 84 -2.8674650678629844E-03 + 85 4.6491501385627137E-04 + 86 7.2849437637540109E-03 + 87 -7.6503985012332520E-03 + 88 7.8164924917854806E-04 + 89 3.1222675471067156E-02 + 90 -1.6920285692212492E-04 + 91 -6.2114410600573504E-03 + 92 -5.6727589217842531E-03 + 93 -2.2090504209083154E-02 + 94 -4.7556610319828251E-04 + 95 2.5404275719912220E-04 + 96 -1.5888617934462664E-03 + 97 3.3077777510535740E-03 + 98 1.9107197388038892E-04 + 99 -6.1027460278679667E-03 + 100 4.8011419735229610E-05 + 101 -4.3367350816007144E-03 + 102 2.6205698150669941E-02 + 103 -7.6355926952552746E-04 + 104 8.4123951212014391E-03 + 105 4.4380570363198235E-03 + 106 5.4781671976818300E-03 + 107 3.6996226646811688E-04 + 108 -1.8816869031786979E-04 + 109 -5.7915766425276365E-04 + 110 2.3445674000960380E-03 + 111 -1.6122987109850676E-03 + 112 -7.4080255972128553E-04 + 113 4.1302233384570095E-04 + 114 -1.6405791660117387E-03 + 115 9.9093066625520389E-03 + 116 -1.1314151615142049E-04 + 117 -3.3822088332755356E-03 + 118 -2.3059680178876166E-03 + 119 6.1115088403492111E-03 + 120 8.5647020868164793E-04 + 121 -2.1378733465354021E-04 + 122 2.4203869459357306E-05 + 123 -9.3017999550975726E-04 + 124 1.0729824786570199E-03 + 125 2.5633128853671665E-04 + 126 -1.0206292843450433E-03 + 127 -2.8894021542413205E-04 + 128 -7.1362171647492405E-03 + 129 -1.4844055629029365E-04 + 130 -7.3481822829900192E-04 + 131 -6.0819465763010787E-04 + 132 3.0985432345647964E-03 + 133 1.5519589607062575E-04 + 134 -1.0949496112399148E-03 + 135 6.8713981983528551E-04 + 136 -1.7921820962598468E-02 + 137 -1.3511658402020926E-02 + 138 -2.3297211646280021E-02 + 139 -3.9485298049529213E-03 + 140 1.3291354209387488E-02 + 141 2.3285885761279595E-04 + 142 -1.0658774552222043E-03 + 143 4.6949367139238448E-04 + 144 -1.6669781639450014E-03 + 145 -4.0694686747293110E-04 + 146 -1.9042590426041159E-05 + 147 6.6220675284531141E-04 + 148 6.1199490279773128E-05 + 149 -1.6870174447305023E-04 + 150 4.4595435768288329E-04 + 151 -6.8287786213853792E-05 + 152 6.1134971260898464E-05 + 153 -4.3183967783625042E-03 + 154 2.9734641224893365E-04 + 155 1.2039469925324052E-04 + 156 -4.7992524235812061E-03 + 157 -2.0972911089654807E-04 + 158 9.7391364844150305E-04 + 159 -3.4801948758269013E-04 + 160 -6.9126162757247433E-04 + 161 1.2299443549064143E-02 + 162 7.9067948735906200E-03 + 163 2.9427987721310413E-02 + 164 7.4594024382057767E-03 + 165 -6.0888917429567221E-03 + 166 1.6859363442965672E-03 + 167 -5.0240595122483993E-04 + 168 2.1034992032827908E-03 + 169 1.4564838194453475E-03 + 170 1.4099646821267735E-04 + 171 -6.4328035673996144E-04 + 172 -1.1235389163064478E-05 + 173 -3.1408113138033507E-04 + 174 -7.1783491506404872E-04 + 175 -1.4776860154758697E-04 + 176 2.0935710015978831E-04 + 177 4.3013701790663628E-04 + 178 -7.0398762366596672E-03 + 179 2.3940562413394184E-04 + 180 -1.5235403842729748E-04 + 181 3.3248231373755590E-03 + 182 -2.8990037425871474E-03 + 183 3.3921555453869114E-04 + 184 -1.0467402328501344E-04 + 185 2.1627806788021964E-05 + 186 3.4113392715765970E-04 + 187 -3.4317266240542400E-05 + 188 -4.7014519500907084E-04 + 189 -9.9543296652911741E-05 + 190 1.2024618465640545E-05 + 191 -5.5714850576963980E-02 + 192 1.2958176803447997E-03 + 193 2.0962411488828842E-02 + 194 2.2889415954189696E-02 + 195 5.6119528871775642E-04 + 196 -3.4708891824069861E-05 + 197 5.3974476978676406E-05 + 198 -2.8272153412213441E-05 + 199 -3.1977960409691093E-03 + 200 -3.2415820756674646E-04 + 201 -9.1128987431883903E-04 + 202 -2.9699205561523154E-04 + 203 4.5969980529037740E-03 + 204 3.0946682242721763E-04 + 205 -1.9572343879707885E-04 + 206 -8.8898842640808230E-04 + 207 -2.5497232114420521E-03 + 208 -4.4680358458500541E-04 + 209 -3.2697280181460503E-04 + 210 1.1254453104497593E-03 + 211 -3.3909523518757577E-04 + 212 -8.3861975987903903E-03 + 213 3.0926432223316669E-03 + 214 1.5374556294921167E-02 + 215 -2.1959268838222735E-02 + 216 -3.1358398072829863E-02 + 217 3.0588249214970109E-04 + 218 -6.4837655516096569E-04 + 219 -6.0881853842589167E-04 + 220 -7.6120298520442379E-04 + 221 -7.5952703464300349E-04 + 222 -7.6125248288592344E-05 + 223 3.8581863878802585E-04 + 224 -8.0617077574210514E-05 + 225 1.7815079395902133E-06 + 226 -2.4579717710771295E-04 + 227 8.2412766731243027E-05 + 228 -2.8711226855740929E-04 + 229 3.0162361843527014E-02 + 230 1.2248785311486036E-03 + 231 8.1153460857895862E-03 + 232 -8.9258779449820341E-03 + 233 6.6891992227825466E-03 + 234 -2.1994369919794044E-03 + 235 -4.3994968526392901E-04 + 236 -1.6759764244129805E-03 + 237 -1.0777787083757964E-01 + 238 1.6627717049155308E-01 + 239 4.4309838888484970E-02 + 240 7.2653841493762611E-02 + 241 -1.2389795596880816E-01 + 242 -5.0380895143314246E-03 + 243 7.9170550584897238E-04 + 244 4.9478633916655117E-04 + 245 -6.2828658689424201E-04 + 246 -4.7478031529397027E-03 + 247 3.4140545907777386E-05 + 248 1.3410095958897416E-05 + 249 3.2818619529416794E-04 + 250 2.8041493533932470E-04 + 251 -2.6058768973749423E-04 + 252 -5.2527661302328727E-04 + 253 2.2716736252126067E-04 + 254 6.9093674995767736E-03 + 255 -1.2320101621013609E-03 + 256 1.6225701686410992E-03 + 257 -1.8390132740020019E-03 + 258 -2.6238878817380564E-05 + 259 -1.4343671657988542E-04 + 260 -2.7742620073926805E-05 + 261 8.0086970401299640E-04 + 262 7.2180516081680399E-03 + 263 6.7316874243636556E-04 + 264 1.9695157213097535E-03 + 265 -2.5185387445711789E-03 + 266 -1.4771805169394312E-02 + 267 -2.7423215602679073E-04 + 268 -6.0499043568112987E-04 + 269 -5.2264343287854374E-05 + 270 -7.1898996710112830E-04 + 271 -2.0011895705513585E-04 + 272 1.7691333754720550E-04 + 273 3.8132927009776628E-04 + 274 -3.7700799093756644E-04 + 275 -4.5266335916814950E-05 + 276 1.2444178923913036E-04 + 277 -1.5147955864082445E-05 + 278 3.7258639190447458E-04 + 279 -5.0886500848400422E-03 + 280 -1.3250332416397568E-04 + 281 -1.0083335413507285E-03 + 282 -4.4331829128721389E-03 + 283 -1.1436997062734461E-02 + 284 -2.3011748169691072E-04 + 285 4.5069314089833966E-04 + 286 6.4195406947693508E-04 + 287 2.8390732679512922E-04 + 288 -1.4910164289475708E-03 + 289 2.1052725268961752E-03 + 290 -5.8245630534734037E-04 + 291 -2.2699561057363767E-05 + 292 9.6649577705433559E-02 + 293 -1.8786978112874512E-03 + 294 3.2574608301221765E-03 + 295 -1.5344359437062879E-04 + 296 -2.6939132953328133E-02 + 297 -1.6194371060430047E-03 + 298 6.6564339973133543E-04 + 299 -2.0456849595065778E-03 + 300 -3.7617165589939909E-03 + 301 -1.9226892492273785E-03 + 302 -3.2113929711209677E-04 + 303 -2.8175719240038181E-04 + 304 -2.1034360525127574E-03 + 305 -1.2714568489478594E-02 + 306 -6.0739153293036790E-04 + 307 -8.2244365146215501E-03 + 308 -3.3568379732105739E-03 + 309 2.6325843282612660E-04 + 310 -3.2972403547139274E-04 + 311 6.0503056960850197E-04 + 312 1.2894197785266948E-04 + 313 8.9613667750031475E-02 + 314 4.1216604323509778E-02 + 315 1.5874037195620222E-02 + 316 -1.9198765496404206E-02 + 317 -1.2151544082363121E-01 + 318 2.1434118897870730E-03 + 319 -9.8420409980455701E-04 + 320 -8.6138339280808366E-04 + 321 3.8261293471729738E-04 + 322 -5.1841636063448653E-03 + 323 4.7330473166020347E-04 + 324 5.2605311895617638E-05 + 325 -4.9246860983668769E-04 + 326 -1.5550239484376219E-04 + 327 -2.3918467724471252E-04 + 328 -1.1987325680952828E-04 + 329 3.3120145258450355E-04 + 330 5.9217461039174409E-03 + 331 -4.6993538426966582E-05 + 332 1.4742057796331086E-04 + 333 5.0724188380139911E-04 + 334 5.6178318617311970E-03 + 335 -3.2789093272939020E-04 + 336 4.2953743819669347E-04 + 337 -5.9399259153828906E-04 + 338 2.1730347257890682E-02 + 339 -2.2090052723174998E-02 + 340 2.8405264465940360E-03 + 341 -2.4743371896594544E-03 + 342 1.3733143101187704E-02 + 343 1.1782117628941859E-03 + 344 2.8020710664175438E-04 + 345 1.6586710990357035E-03 + 346 -6.7362045358624158E-04 + 347 -1.5175904945921646E-04 + 348 -4.6608016271552374E-04 + 349 4.1037128992655968E-04 + 350 6.1074310839437829E-04 + 351 -3.7816367399266001E-04 + 352 -2.5838313983487572E-05 + 353 -1.2342534529427750E-04 + 354 -1.8741093487723194E-04 + 355 2.1901268276904980E-02 + 356 -3.7642178737604738E-04 + 357 -9.6300712114737272E-04 + 358 -1.4626324695195467E-02 + 359 -3.2707333890291375E-04 + 360 -7.2957157604571236E-04 + 361 6.7850759575986862E-05 + 362 -1.2352197931723055E-04 + 363 9.0100154755558097E-04 + 364 1.9720305063330749E-04 + 365 -5.2142726371100993E-04 + 366 1.9339397849923534E-03 + 367 -1.2994091482866467E-03 + 368 3.0065579662725345E-02 + 369 -8.3783667108262990E-04 + 370 -8.5662219190910660E-03 + 371 5.0781724987104373E-03 + 372 5.0332112394296368E-04 + 373 1.2850005022718536E-03 + 374 -1.1281076467461269E-03 + 375 5.5644540420620814E-04 + 376 1.2320115359802087E-03 + 377 -7.2156863839613398E-05 + 378 2.3196505734418557E-04 + 379 6.4562616003555756E-04 + 380 5.9001480843801313E-05 + 381 -7.1455672012465401E-04 + 382 9.2094726541740117E-05 + 383 9.5415187249136668E-04 + 384 2.0908395863548468E-04 + 385 5.3385604809323055E-04 + 386 -1.5934579606269360E-04 + 387 -1.4563072858730553E-04 + 388 5.6976551418164948E-04 + 389 -1.7436881899781750E-04 + 390 -3.4457502856183981E-04 + 391 -1.7559167249401309E-04 + 392 3.9638953639986927E-04 + 393 -5.4945761647312809E-05 + 394 -3.4987008090686840E-03 + 395 1.7059570650202469E-04 + 396 -4.0538924532667981E-03 + 397 -2.5470554230093176E-03 + 398 3.2254612126171290E-03 + 399 -3.7728745031166770E-04 + 400 -5.0306835334961721E-04 + 401 8.3222981261662132E-04 + 402 1.8075103740937272E-02 + 403 3.7113524359829814E-02 + 404 2.4672495962683141E-02 + 405 6.6991392975927614E-04 + 406 -1.2869853605702785E-02 + 407 1.7195831574317005E-03 + 408 2.3391187805328327E-03 + 409 -5.3627645575350929E-04 + 410 -2.6824245458672222E-03 + 411 -1.2696046919960706E-03 + 412 -2.6528979859637435E-04 + 413 1.1060153517912430E-03 + 414 2.1584540729736548E-04 + 415 -2.4382647442161772E-06 + 416 -4.2514263938119576E-04 + 417 -7.0335311862995708E-04 + 418 -1.3190150023547251E-04 + 419 -1.9621778998689915E-02 + 420 5.3933196281591858E-05 + 421 5.8845987110694668E-03 + 422 7.3939927086776199E-04 + 423 2.9188869472831932E-03 + 424 -1.6267499997067446E-04 + 425 1.9530986919086187E-04 + 426 9.3651862939748759E-04 + 427 2.3563865730981255E-04 + 428 -6.7394313169179810E-05 + 429 2.8898092966043982E-04 + 430 8.2599288175961845E-04 + 431 -3.0630649611096416E-04 + 432 -3.5938068376686234E-03 + 433 1.9367403772457695E-04 + 434 1.7886721660420543E-03 + 435 1.0615326253172960E-03 + 436 -1.3741722690611290E-03 + 437 -7.9153286895687768E-05 + 438 -2.1868796832900418E-05 + 439 2.5454920973195535E-04 + 440 -1.9041448090788241E-04 + 441 -4.1024980053579494E-04 + 442 -1.6438915524172784E-05 + 443 3.0205638344736114E-04 + 444 3.4543714521119233E-04 + 445 -3.5599963851830216E-04 + 446 -6.1361971353445584E-04 + 447 -2.0864217055818093E-03 + 448 -8.6514089132621219E-04 + 449 -2.5461467683769680E-03 + 450 -7.4592428533353287E-04 + 451 -5.6357540797937096E-04 + 452 -2.5811619216233104E-04 + 453 9.5021003680268862E-03 + 454 -3.0715560954610137E-02 + 455 -2.8039734829327867E-02 + 456 -8.1036057640940858E-04 + 457 -1.0625323192568674E-02 + 458 8.5340700977135390E-04 + 459 -2.4222471510097461E-03 + 460 -3.5617505773539537E-04 + 461 1.2206185950300496E-04 + 462 -5.2831632555689798E-04 + 463 4.5616433329718250E-04 + 464 3.5483765849232094E-04 + 465 1.0240454898248375E-05 + 466 -5.2055153974072169E-04 + 467 -5.4697983465512148E-05 + 468 8.9721863214917505E-05 + 469 8.4001504703198543E-05 + 470 7.1572632490999645E-04 + 471 1.3267811020093486E-04 + 472 8.6796142025999585E-04 + 473 1.2636485287004702E-03 + 474 -2.8775974375873988E-04 + 475 4.1531971715694834E-04 + 476 4.2183137140565266E-04 + 477 5.2063027850956560E-05 + 478 -6.0732512251867536E-04 + 479 -1.8132264391067152E-03 + 480 -3.0190363326813629E-04 + 481 -1.8543371583755134E-03 + 482 4.2496832736924253E-03 + 483 -3.4815877972850902E-04 + 484 -3.0243020750909234E-04 + 485 -2.1508167295288913E-04 + 486 6.9467781598136092E-04 + 487 8.2322284147638388E-04 + 488 1.4299267252104812E-04 + 489 -1.2576824572418051E-04 + 490 -1.0998944814411114E-04 + 491 -1.2175657894778808E-04 + 492 -7.7151563428400500E-05 + 493 1.0934362066716453E-04 + 494 1.8088297688165502E-04 +Ene= -4.4004420883E-01 +Spin= Alpha +Occup= 2.0000000 + 1 4.6455727361586962E-03 + 2 2.9084679253953075E-06 + 3 4.6864910290620186E-04 + 4 -1.8295531699622429E-03 + 5 -2.4018117172053530E-06 + 6 9.4257561166816975E-04 + 7 -1.0755914369185699E-04 + 8 7.9160739514542438E-05 + 9 7.0862861725545045E-01 + 10 4.4565758953407496E-02 + 11 -2.3037544547141123E-01 + 12 -4.8093420290432087E-01 + 13 -1.7127482988668247E-01 + 14 1.3734588686111027E-03 + 15 7.3920281010239191E-05 + 16 1.5442984015114443E-03 + 17 -4.7400968557308144E-04 + 18 2.5783023154623236E-03 + 19 -7.2225408467978280E-04 + 20 -3.2209249249514320E-04 + 21 2.5891347704762352E-03 + 22 4.7912928058001987E-05 + 23 -3.8329663046652669E-05 + 24 -2.5713173588387929E-04 + 25 -1.2398414927507664E-03 + 26 -1.9885770697037320E-03 + 27 -1.1185164644843796E-04 + 28 -9.8368983644046533E-04 + 29 -2.9209816806589246E-03 + 30 3.5617072772694196E-03 + 31 -4.1947039062933391E-04 + 32 -9.3197577747964819E-04 + 33 1.1177204030029080E-03 + 34 -1.5214293319465277E-02 + 35 2.6365849473365583E-02 + 36 -1.9166613661249091E-03 + 37 -1.3417587804319907E-02 + 38 -4.8249509375200370E-03 + 39 -2.7675268781153775E-03 + 40 1.3436483420044922E-03 + 41 -6.5973618947400144E-04 + 42 -1.5255883484044540E-03 + 43 1.0212206560570949E-03 + 44 5.9823029337971579E-05 + 45 -1.2730100443215854E-04 + 46 -6.8272460878048791E-05 + 47 -1.5063991281097144E-04 + 48 -1.4910814859251694E-04 + 49 4.6204202892820572E-04 + 50 1.2723823244409957E-05 + 51 2.7433328517704409E-03 + 52 2.6990026579096899E-04 + 53 -2.6551442807265267E-06 + 54 3.9216798852082272E-04 + 55 -4.7153499032977575E-03 + 56 6.7218957061896734E-04 + 57 1.0898363855173870E-03 + 58 -5.0278917069533733E-04 + 59 3.3481662766250547E-01 + 60 5.1549380438133743E-02 + 61 -8.1908023300712687E-02 + 62 -6.6510289611849252E-02 + 63 -1.4339877782945296E-01 + 64 -1.0967757542725421E-03 + 65 5.8663430708522980E-04 + 66 7.9647666872173137E-04 + 67 2.1716112062427672E-03 + 68 -2.1359012488389902E-03 + 69 1.0466621026263582E-03 + 70 -7.5507797236234867E-04 + 71 -9.1990427755398222E-04 + 72 -3.8322247080350812E-04 + 73 -4.2329072268079172E-04 + 74 1.5369743261519847E-04 + 75 9.0455020047740188E-04 + 76 -1.6060188174285845E-03 + 77 1.3466154459934609E-04 + 78 -3.6570236888127435E-04 + 79 -1.3066751135136783E-02 + 80 6.6546288446422807E-03 + 81 6.0415747379688340E-05 + 82 5.0289887465627416E-04 + 83 -4.0260729457981001E-04 + 84 -2.5899790858869261E-03 + 85 3.9710167374848747E-04 + 86 1.5761383404992894E-04 + 87 -3.4954273737590161E-03 + 88 1.0664711505351111E-03 + 89 -3.1041628582118362E-02 + 90 3.7227537926237762E-04 + 91 -1.6418082987301897E-03 + 92 9.0972450105357393E-03 + 93 6.7985398213792608E-03 + 94 2.1088554186539274E-04 + 95 1.0188793383198169E-03 + 96 -4.6836725749426042E-04 + 97 -1.5099804956617581E-03 + 98 -5.6360140177760126E-04 + 99 3.0801970827832176E-03 + 100 -6.1775779778326808E-04 + 101 1.3623689959977967E-03 + 102 -1.7714156230812565E-02 + 103 9.1929328838456965E-04 + 104 -6.7658043665561529E-03 + 105 -2.9999905985924340E-03 + 106 3.2895527366733381E-03 + 107 -6.7155297260870100E-04 + 108 -3.5209281033927087E-04 + 109 8.9787051675749828E-04 + 110 -1.9017712157176317E-03 + 111 -3.6460134765417242E-04 + 112 -1.4508566840247704E-04 + 113 1.5566419351645838E-04 + 114 1.5029169535046565E-03 + 115 1.9548291627265037E-03 + 116 4.8361194297048295E-07 + 117 -8.1810093365163852E-04 + 118 1.3135962685105092E-03 + 119 4.4781010994565922E-04 + 120 2.6336271445857358E-04 + 121 -9.0445139603016192E-05 + 122 2.0151259508742703E-04 + 123 1.1291657851321478E-04 + 124 1.9543752886910486E-04 + 125 -2.2261059185157218E-04 + 126 -2.5647040724506775E-05 + 127 2.0751826993852879E-04 + 128 -9.4505595640093066E-04 + 129 -2.2265240538688072E-04 + 130 -1.7307745965437452E-03 + 131 1.9781813461605584E-03 + 132 8.5320716599022637E-04 + 133 -3.0927171925750665E-04 + 134 7.8451370965109183E-04 + 135 1.4823032263034069E-04 + 136 -4.9376735365645463E-03 + 137 6.6362470104567540E-03 + 138 -8.1014556067300070E-03 + 139 -1.6254591716460061E-04 + 140 6.3831688045960537E-03 + 141 -4.4375799321987090E-04 + 142 1.2256141909734615E-03 + 143 -4.9581905156037727E-04 + 144 4.9763514099029449E-04 + 145 1.6044288855916790E-03 + 146 -8.6636280059638077E-06 + 147 -4.7862166619072632E-04 + 148 2.4708493833847393E-04 + 149 -8.8610570973761266E-05 + 150 -2.5293762370298873E-04 + 151 2.8032944922663772E-04 + 152 1.2384971957061109E-04 + 153 -4.8360537831023303E-03 + 154 -4.2596850037308496E-04 + 155 -1.6811451987242688E-03 + 156 7.7608467041631525E-04 + 157 4.3204091428687410E-03 + 158 -7.2796378413165878E-04 + 159 1.9956336053700844E-05 + 160 6.5183290936838157E-04 + 161 -1.4865167056984612E-02 + 162 2.2714367244837858E-03 + 163 -1.1676101003627771E-02 + 164 3.0420214769989592E-03 + 165 2.5804782670157678E-03 + 166 -1.9874630906863084E-03 + 167 3.6671020487319454E-04 + 168 -5.9069051187465795E-04 + 169 3.3064535322458062E-04 + 170 -2.3786096553460363E-04 + 171 3.7287492531209586E-04 + 172 2.1544510074303453E-04 + 173 3.4502517804110752E-04 + 174 2.0836695625130904E-04 + 175 8.6002996491444571E-05 + 176 -3.4595111026172433E-04 + 177 -2.1412930514470711E-04 + 178 -4.9273405719768857E-03 + 179 -4.2034236422408673E-05 + 180 2.0057828799574864E-03 + 181 -5.9147529435330849E-04 + 182 -9.4043470972575644E-04 + 183 1.0665186817551446E-04 + 184 2.1899746569715506E-04 + 185 -4.3744323360471742E-04 + 186 -2.8055521270946328E-05 + 187 -3.4151571985636242E-05 + 188 4.3327659132765282E-05 + 189 1.0311254433819692E-04 + 190 -6.6068198279572332E-05 + 191 4.0761819381811573E-02 + 192 -1.0316912553906127E-03 + 193 -1.4239790634551277E-02 + 194 -1.7984300202324232E-02 + 195 4.7119607821580287E-03 + 196 4.5539616886121267E-04 + 197 2.8444765509819906E-04 + 198 3.3389940447646688E-04 + 199 2.2397509862492593E-03 + 200 1.2976045839592709E-03 + 201 1.9096677757693601E-03 + 202 9.3395359595618063E-04 + 203 -3.4570540787305110E-03 + 204 -1.7357856904177409E-03 + 205 4.3769733295333533E-04 + 206 1.9504656484297686E-03 + 207 -5.8170962100674560E-05 + 208 1.4684050730428920E-04 + 209 6.9283668034327537E-04 + 210 -8.7546367068201258E-04 + 211 2.6063592354770474E-05 + 212 7.6885075935230968E-03 + 213 -3.9704097020216451E-03 + 214 2.7953728686725488E-03 + 215 3.0660401838472247E-02 + 216 8.3170697927806309E-03 + 217 -5.3868227180344506E-04 + 218 -1.8254894702425807E-04 + 219 4.3149757835483134E-04 + 220 1.1283200882231744E-03 + 221 4.6508750365672000E-04 + 222 1.4099773517039585E-04 + 223 -2.7229414927312280E-04 + 224 1.3914379373100396E-04 + 225 -1.0351769968833145E-04 + 226 2.4987756961329703E-04 + 227 -1.4929183939195459E-04 + 228 2.2987754144951136E-04 + 229 2.0200619089869344E-02 + 230 6.5639589674216690E-04 + 231 1.9011692832906597E-03 + 232 -1.1458702861688047E-02 + 233 -1.8262769670091042E-03 + 234 -1.3802942515967070E-04 + 235 -8.0672357740887665E-04 + 236 6.7388741577324197E-04 + 237 3.4190600289580410E-02 + 238 1.2989750967501863E-02 + 239 2.5955378043893647E-02 + 240 -7.6518122317497564E-02 + 241 -3.1059064539575184E-02 + 242 -1.4260992498077226E-03 + 243 9.6162745898743194E-05 + 244 -7.4921395080524973E-04 + 245 -4.2945984773247676E-03 + 246 -7.3527023025071053E-04 + 247 4.5778709360216446E-04 + 248 1.4015706262362684E-04 + 249 1.9193521786539544E-04 + 250 -9.2915225132126711E-04 + 251 -4.4368556905015658E-04 + 252 3.1642852713873820E-04 + 253 4.8057279359533020E-04 + 254 -1.9609710668226123E-03 + 255 -1.9281478970654389E-04 + 256 -4.9359344106163585E-04 + 257 8.6620783891085877E-04 + 258 3.7480587953009673E-04 + 259 3.3449285093289121E-06 + 260 7.1910053161335896E-05 + 261 8.6507795576463720E-05 + 262 -1.0869641072773356E-03 + 263 1.8708782284375613E-03 + 264 1.1736830285627093E-03 + 265 1.3352179149744576E-03 + 266 1.9055101046981100E-03 + 267 -4.4503588099355046E-05 + 268 -1.7929722683135207E-04 + 269 -1.7368461986024434E-04 + 270 3.6013706323767428E-05 + 271 1.1229958658623861E-04 + 272 8.9661507478750951E-05 + 273 4.5760761891075730E-05 + 274 1.2008718276080165E-04 + 275 -4.5013973353073588E-05 + 276 3.6394085028278984E-05 + 277 -9.6824547366799205E-05 + 278 7.5075488639695013E-05 + 279 3.6803558214707199E-04 + 280 -1.9351074982445460E-04 + 281 4.8414530765610855E-03 + 282 1.5313013856678430E-03 + 283 1.1825208492163306E-04 + 284 5.1112461447844062E-05 + 285 -3.0061306153622255E-04 + 286 3.4280679873456484E-04 + 287 3.1594484985826865E-05 + 288 -2.6762928998386436E-04 + 289 -1.6512003026071387E-04 + 290 8.9405424625571713E-04 + 291 -6.3973165459377951E-04 + 292 -6.9582524447222474E-02 + 293 1.2389541355595911E-03 + 294 1.7138489109633778E-02 + 295 -1.5921579779445059E-02 + 296 1.6105201186311136E-02 + 297 -5.6848385059536850E-04 + 298 4.3528871276491803E-06 + 299 -3.9780528592742572E-04 + 300 -3.2182717512166896E-07 + 301 4.3158370471863168E-03 + 302 -2.6307764728722613E-03 + 303 1.8262581478363368E-03 + 304 -2.3269611798701585E-03 + 305 1.0918274931689627E-02 + 306 -5.3194237022160292E-04 + 307 4.3197234738903715E-03 + 308 5.8910682544104532E-04 + 309 2.3359582010158229E-03 + 310 -4.3850565867420985E-04 + 311 -1.5477395593265946E-03 + 312 2.5739319569150455E-05 + 313 -3.0856637921404428E-02 + 314 2.0100743740558417E-02 + 315 2.6879878247080629E-03 + 316 -9.5173143645710979E-03 + 317 1.0102271437035797E-01 + 318 2.3339893304869956E-04 + 319 6.2368197170645885E-04 + 320 3.0325849031735458E-04 + 321 1.1361302777456113E-04 + 322 2.7679941111593844E-03 + 323 1.2100872561940124E-05 + 324 7.4856761421770201E-05 + 325 4.3153480809858064E-04 + 326 1.5834660545409652E-04 + 327 3.9810693022900397E-04 + 328 4.7234196875846097E-04 + 329 -4.3484115101288757E-04 + 330 -2.6962785749057219E-03 + 331 -7.8964199471523791E-04 + 332 -2.2456487777634742E-04 + 333 -1.4715651112016490E-03 + 334 -2.5590734336901951E-03 + 335 -4.2282638092330025E-05 + 336 -1.0406291477140098E-03 + 337 5.7581243360325376E-04 + 338 -5.2641747757704522E-03 + 339 2.2076351982539478E-02 + 340 5.8329139377818117E-03 + 341 5.4700319347662850E-04 + 342 -6.5663503966397595E-03 + 343 3.9358579644561753E-04 + 344 -5.7410243886069176E-04 + 345 -1.1156162115700877E-03 + 346 8.8692792656280242E-04 + 347 -1.0569750502984950E-04 + 348 6.5139803251389660E-04 + 349 -2.3664281138046416E-04 + 350 -1.7076063338458049E-04 + 351 1.0040264890500994E-04 + 352 -1.3062135453509565E-04 + 353 1.5525826356065791E-04 + 354 1.8627982097530875E-04 + 355 -1.6324136011011368E-02 + 356 2.5457751045520379E-04 + 357 6.8725286452588628E-04 + 358 1.0892827123634763E-02 + 359 -1.2146843229834114E-03 + 360 6.6666988696598769E-04 + 361 -9.6020262306958332E-05 + 362 1.7660201093687208E-04 + 363 -7.3963209318036018E-04 + 364 -4.2389945634593320E-04 + 365 7.3194317838069656E-05 + 366 -1.4795344432587535E-03 + 367 9.7929997676381706E-04 + 368 1.6631859843359211E-02 + 369 -9.7923960423599221E-04 + 370 -2.1489343466271388E-03 + 371 -4.4011021668036009E-03 + 372 6.4984329218942239E-04 + 373 -6.6353319190435130E-05 + 374 1.0508500673506963E-03 + 375 2.8123228317651991E-04 + 376 -2.6753664765497443E-04 + 377 5.1698762278445118E-04 + 378 9.2629621300176093E-04 + 379 -4.3269355584007617E-04 + 380 -4.7673380180232117E-04 + 381 1.4470900461313095E-04 + 382 -7.5854654255022509E-05 + 383 -1.3160343818604892E-03 + 384 -7.2004984177585730E-04 + 385 -6.5968676287017994E-05 + 386 -3.8192623014286520E-04 + 387 -1.8641044056239096E-04 + 388 1.6422405848214323E-04 + 389 9.8499749875318219E-05 + 390 3.5730436582383864E-04 + 391 -1.2589276240794783E-05 + 392 -1.4842783934938754E-04 + 393 1.5300340931562325E-05 + 394 3.4284395661677955E-03 + 395 -3.7151076883873213E-04 + 396 1.5337356465356361E-03 + 397 2.5424016072996911E-03 + 398 8.0076804818101689E-04 + 399 -1.4706196787000558E-03 + 400 3.3235553273997588E-04 + 401 1.0954061111419340E-04 + 402 -2.5944571678127519E-02 + 403 -1.5182977577704369E-02 + 404 2.9603335200281970E-03 + 405 3.4795544470230221E-02 + 406 3.5520324347960101E-03 + 407 9.1166662533932144E-04 + 408 2.7966575297936420E-04 + 409 7.5383207764998081E-04 + 410 -2.8278442119309392E-04 + 411 1.5911845258714343E-03 + 412 -8.2919122230974200E-05 + 413 2.1860330931494212E-04 + 414 -2.2627346092631855E-04 + 415 3.4911296266288804E-04 + 416 4.8418169093255758E-05 + 417 -3.2716544705702554E-04 + 418 6.9816932981357142E-04 + 419 1.9753992109550717E-02 + 420 -3.3772873044148841E-04 + 421 -8.0459912045797825E-03 + 422 1.2718893903098159E-03 + 423 -1.6241965453425628E-03 + 424 3.1356348871178241E-04 + 425 -8.3104735232339213E-05 + 426 -5.1410226005923283E-04 + 427 4.9126315217737858E-04 + 428 -5.1764883008045891E-04 + 429 -5.8831431533844811E-05 + 430 -9.3418998560280313E-04 + 431 5.7879593877191709E-04 + 432 -2.4004402170515835E-03 + 433 -4.5574224767375462E-05 + 434 9.8789436637816610E-04 + 435 9.1558236419078101E-05 + 436 1.2175203581756670E-04 + 437 1.2334658560154093E-04 + 438 8.4413830468426984E-05 + 439 -6.1368413204574383E-05 + 440 9.4693679120085277E-05 + 441 1.1625675317931436E-04 + 442 -9.3252769111143473E-05 + 443 2.9703498080729530E-05 + 444 -3.6088806769133294E-05 + 445 -1.3293217496471582E-03 + 446 3.3471505505505673E-04 + 447 -1.5995179621238612E-04 + 448 -8.1221419187657356E-04 + 449 1.2551947221045388E-03 + 450 -2.9589851608655089E-04 + 451 1.3427823891746642E-04 + 452 4.1177814696258757E-04 + 453 -1.1414427107337411E-02 + 454 -7.2089819538758322E-03 + 455 1.3018075373287268E-02 + 456 -8.2941638822738560E-04 + 457 5.1148528835677090E-03 + 458 -1.8140418937203064E-04 + 459 1.3096329290238477E-03 + 460 1.6908436791691960E-04 + 461 -9.6163673282208132E-04 + 462 -2.3619668233602572E-05 + 463 -3.0616068758290927E-04 + 464 -2.6834290911483243E-04 + 465 -9.2418279234345819E-05 + 466 5.3578322068758590E-04 + 467 4.3102027051519738E-04 + 468 -5.2658231910224110E-04 + 469 -3.0213158699538695E-04 + 470 -6.0888255466821418E-04 + 471 1.4189795442455355E-05 + 472 -3.8684400162315572E-04 + 473 -1.2520660117485473E-03 + 474 1.1424160051848806E-04 + 475 1.4597677507443352E-05 + 476 -2.9544580827318496E-04 + 477 -2.1825153861179360E-05 + 478 -5.0241288293116648E-04 + 479 1.5410069257457463E-03 + 480 1.0948818093128294E-03 + 481 -9.6817638074380905E-04 + 482 -1.4913898829113225E-03 + 483 6.4811830685751278E-05 + 484 1.2762827853378457E-04 + 485 2.1862440001007761E-04 + 486 2.0515984448276352E-05 + 487 -7.4698822597231364E-04 + 488 -3.3693360605820897E-05 + 489 -6.1276856008108554E-05 + 490 1.1394626347671457E-05 + 491 4.0647853981986308E-05 + 492 6.8532109626203488E-05 + 493 3.3053180017189621E-05 + 494 -1.8689831483734317E-04 +Ene= -4.3921928374E-01 +Spin= Alpha +Occup= 2.0000000 + 1 1.5230774924312733E-02 + 2 -6.7776250145464397E-05 + 3 2.0906156302875063E-03 + 4 -1.5577169801809770E-03 + 5 -5.4597894565748507E-04 + 6 4.5139652684574808E-04 + 7 2.0635856521077842E-03 + 8 -3.6698828228226587E-04 + 9 -1.7461507037984364E-01 + 10 6.7124974006310634E-01 + 11 1.4895925841761740E-01 + 12 -1.5806310639190141E-01 + 13 -2.6660740617101408E-01 + 14 -7.8560116794561773E-04 + 15 2.0867535038623748E-03 + 16 5.0016246933735247E-04 + 17 -2.6401718923294627E-03 + 18 -6.8802947639706909E-04 + 19 -5.0955845405286746E-05 + 20 -2.0034060380387937E-04 + 21 -2.0997956250185602E-04 + 22 -5.4122106790816459E-04 + 23 5.3951763510613206E-04 + 24 -3.9096975268887040E-04 + 25 -2.9992396818261803E-05 + 26 2.4529001212073753E-03 + 27 1.1857060106430176E-03 + 28 1.9802219579022015E-03 + 29 4.5479736489698253E-04 + 30 -7.2585642662222763E-03 + 31 -1.9876273324559619E-04 + 32 -1.2469731869454430E-03 + 33 -3.0630403093561530E-05 + 34 5.0028678528889821E-02 + 35 -6.1549408431348575E-02 + 36 2.7252440160733530E-02 + 37 -1.9052864386740495E-03 + 38 5.4561165085721487E-02 + 39 3.2561183044364887E-03 + 40 -2.3834562375936569E-03 + 41 1.6923470464848783E-03 + 42 1.1140601077939143E-03 + 43 2.8810209196239683E-03 + 44 -1.3294821007982700E-03 + 45 2.3271886827762415E-04 + 46 -5.2836043564632811E-04 + 47 -1.4062006518656930E-04 + 48 -2.2818761269513356E-04 + 49 -3.6045149254386294E-05 + 50 -5.1145131679525529E-04 + 51 2.4418838666379589E-02 + 52 -1.3717240370772538E-03 + 53 7.7113336599097197E-03 + 54 -1.5933617585635990E-04 + 55 -1.9257456025352056E-02 + 56 -3.5455849402971920E-04 + 57 -3.4050826157676697E-03 + 58 -1.9590392738197968E-03 + 59 9.1519805568017865E-02 + 60 -5.0161995598090703E-01 + 61 -1.7256547979818138E-01 + 62 -6.9384924185796740E-02 + 63 1.7065766854142972E-01 + 64 7.8613603309671536E-04 + 65 -2.8157395986725146E-03 + 66 3.3737289595771238E-04 + 67 -4.6318391502367867E-04 + 68 1.2445366458803773E-03 + 69 -1.1464359576692882E-03 + 70 -3.3468485360949773E-04 + 71 -4.5613316251249132E-04 + 72 -2.7806022617742082E-04 + 73 6.1572312126977969E-04 + 74 -1.9066134032328942E-04 + 75 -1.1924022835501640E-03 + 76 -5.4154052261046685E-02 + 77 6.2987064191677563E-04 + 78 -4.6300667961778752E-04 + 79 -1.2651922034980964E-02 + 80 -1.3290028531232316E-02 + 81 -8.3147745948752806E-04 + 82 2.5597931846456650E-04 + 83 -8.7261103903148250E-04 + 84 5.5417171646276293E-04 + 85 -3.9683533300240536E-05 + 86 2.3302815373406486E-03 + 87 -3.9275375306722915E-04 + 88 -2.2443802262755328E-03 + 89 -1.2279464124591531E-01 + 90 1.4968333848631667E-03 + 91 -5.2404696872269101E-03 + 92 3.0461197813668003E-02 + 93 1.0303243952897032E-02 + 94 1.3541934401776303E-03 + 95 2.4933935965374991E-03 + 96 -1.4332519486195303E-03 + 97 -9.1469304584963383E-04 + 98 -2.5446023182044302E-03 + 99 7.1182567005481547E-04 + 100 -5.9223071531691758E-04 + 101 5.6482430226948929E-04 + 102 7.0813408097082337E-02 + 103 -1.4803761363384464E-03 + 104 1.6859794405291038E-02 + 105 1.3250472430568325E-02 + 106 3.1774798468007910E-02 + 107 3.5300049888776304E-04 + 108 7.2700106993883566E-05 + 109 1.9337565834431215E-03 + 110 -5.3749151629332414E-04 + 111 -5.1498077059457690E-03 + 112 -3.4511551578102167E-03 + 113 5.4655673868244390E-04 + 114 -2.2842764615442165E-03 + 115 -8.6391895746442959E-03 + 116 3.3307653610709879E-04 + 117 4.4331499133227611E-03 + 118 -5.6384530775377140E-03 + 119 -2.6978044766283360E-03 + 120 -1.0378791005602170E-04 + 121 2.1825955054118471E-05 + 122 3.6691226968599573E-05 + 123 -2.5268931218547598E-05 + 124 -5.0723299278673491E-04 + 125 9.0712314167170076E-04 + 126 -2.1414694833707759E-04 + 127 -7.9808825579907080E-04 + 128 -9.3948454756207066E-03 + 129 5.3751203389625394E-04 + 130 -3.2753510837036448E-03 + 131 2.7677431196490260E-03 + 132 2.1866945720395142E-03 + 133 -4.6858368473372508E-04 + 134 -4.7417946218308220E-04 + 135 -4.8901328660566320E-04 + 136 -3.1574479965981304E-02 + 137 1.0759893485513310E-02 + 138 -2.6557865984093543E-02 + 139 1.4446915006531490E-03 + 140 9.1870160676241052E-03 + 141 4.7029890872124801E-04 + 142 -2.3028241247307309E-04 + 143 -1.5583257969794756E-03 + 144 -1.7272532441316151E-03 + 145 8.6441540640826098E-06 + 146 -1.8312006827663079E-04 + 147 -1.3448176533338750E-04 + 148 2.1142494562192877E-05 + 149 3.8669615044481948E-04 + 150 -1.9757036671543744E-04 + 151 -3.3671063616576817E-04 + 152 1.1140839860368646E-04 + 153 -1.2545148202733376E-02 + 154 1.6025063004137894E-03 + 155 -2.2427335637917579E-03 + 156 -1.8124981042479385E-03 + 157 2.4180791755241148E-03 + 158 1.3011735844265970E-03 + 159 -1.8757303790771461E-04 + 160 -1.3248507960769409E-03 + 161 -3.7049978506822272E-03 + 162 2.5633962745592331E-02 + 163 4.8650039769839561E-03 + 164 -1.4817227401514914E-02 + 165 -4.5771956481345938E-03 + 166 5.1657931385763853E-04 + 167 6.2554055089835987E-04 + 168 1.1923399572191990E-03 + 169 -4.0162348641313106E-04 + 170 -9.9667474752390537E-05 + 171 3.1294164546680019E-04 + 172 -8.9413025126943094E-05 + 173 -2.1902019356507849E-04 + 174 -5.1563283001365343E-04 + 175 2.3749393196426916E-04 + 176 4.2769750947228178E-05 + 177 2.7388171562803466E-04 + 178 -1.1150565550175150E-02 + 179 3.2604448044697447E-04 + 180 -1.5014958516600796E-04 + 181 1.5474395326568677E-03 + 182 -6.7515390910833006E-03 + 183 1.0434694994254149E-03 + 184 -9.8777713939560648E-05 + 185 6.2230351049747507E-04 + 186 7.6210277864150703E-04 + 187 -5.1827982599648049E-04 + 188 -3.3427737885647610E-04 + 189 -1.2379631975388623E-04 + 190 1.8537218412417934E-04 + 191 -2.3170464214340488E-02 + 192 2.0776584451700749E-04 + 193 1.2255943970007474E-02 + 194 1.3879738569606660E-02 + 195 1.4975285427554495E-02 + 196 5.4292705384922769E-05 + 197 1.8839888511588260E-04 + 198 9.2534709331005085E-04 + 199 -2.4426015815119263E-03 + 200 1.9771242452177513E-03 + 201 2.5454171280786106E-03 + 202 -2.2659960836268606E-04 + 203 2.8214495968780450E-03 + 204 -3.7095322184465757E-03 + 205 7.9644215341763880E-04 + 206 -1.2931603347057779E-03 + 207 -1.1539484136719052E-03 + 208 -1.4479275870917269E-03 + 209 2.8462382462868534E-04 + 210 1.2871769411059303E-03 + 211 -3.0525102031128839E-04 + 212 1.3919958315375033E-02 + 213 -1.5396190719766291E-02 + 214 1.9935205417454412E-02 + 215 -4.5942142357719455E-03 + 216 -1.8154645700327668E-02 + 217 1.9554508437313084E-03 + 218 -2.1181446918572904E-03 + 219 1.8613017650250053E-04 + 220 -1.7257292529819464E-03 + 221 1.0223701623644544E-03 + 222 1.8728391874071354E-05 + 223 7.4647107946713531E-04 + 224 8.9681930784002767E-05 + 225 -4.8577399492069341E-04 + 226 -3.9657118730803190E-04 + 227 -8.0919728434903639E-04 + 228 -2.3235178872119068E-04 + 229 -3.4011284729078026E-03 + 230 -5.1769905511399740E-04 + 231 -2.0255938427358225E-03 + 232 1.3477775148037173E-03 + 233 3.6824145309277033E-04 + 234 1.9549660547008484E-05 + 235 -1.9729126480146947E-03 + 236 -8.3914090590624706E-05 + 237 1.1876418280272570E-01 + 238 5.7589320033858166E-02 + 239 -1.1334637108788159E-02 + 240 2.0581756187546242E-02 + 241 7.0821411344787380E-02 + 242 9.3763660530919377E-04 + 243 1.3518042772188918E-03 + 244 -1.5116914099035077E-03 + 245 1.4040983806669612E-03 + 246 3.9417925500644319E-03 + 247 1.7153491930822637E-04 + 248 -1.1533644854735878E-04 + 249 6.2810661000326071E-04 + 250 -6.5116403940359560E-04 + 251 7.2706535906008119E-05 + 252 -3.0858334648385443E-04 + 253 -8.3363039445968608E-04 + 254 1.2488767415224670E-03 + 255 1.2503309030954535E-03 + 256 1.9028188380572251E-03 + 257 -2.8187083246558353E-03 + 258 9.3992921659644319E-04 + 259 -9.1212918982146833E-06 + 260 -4.2229557932079039E-04 + 261 -5.0937470396438488E-04 + 262 -1.2479915012913970E-02 + 263 -7.7085169498483878E-03 + 264 -4.5984588919842346E-04 + 265 -1.2321929970380728E-03 + 266 -4.7383408347502261E-03 + 267 -7.7452654094342839E-04 + 268 -1.6491307051551518E-04 + 269 -3.8070557129387062E-04 + 270 -9.8252904041007871E-04 + 271 -1.1956701968580401E-03 + 272 -1.7479178827592198E-04 + 273 -2.1382020587379269E-04 + 274 5.2446358090581864E-04 + 275 -2.0172436053500918E-04 + 276 1.4083436826144635E-04 + 277 -3.1399075053140606E-04 + 278 3.0269152397139568E-04 + 279 1.8634759005732766E-02 + 280 -3.3613959965032560E-05 + 281 -8.9670952004637892E-03 + 282 7.5872175274140459E-03 + 283 8.0870668853806962E-03 + 284 1.6064142519660887E-04 + 285 -2.4132040608276949E-04 + 286 -1.0362043161943704E-03 + 287 5.9321607495202086E-04 + 288 1.2651326517010685E-03 + 289 -1.2429524643507827E-03 + 290 1.1999461531002516E-05 + 291 1.7972104498861943E-03 + 292 -4.9270012808328822E-02 + 293 1.3726075295698624E-03 + 294 -5.9869420204975094E-03 + 295 -6.5964553374976654E-03 + 296 1.5285664837349973E-02 + 297 1.2190823345980153E-03 + 298 2.7964147532979406E-05 + 299 6.9963410594247038E-04 + 300 2.2413308178865538E-03 + 301 -6.5226379493918429E-05 + 302 -2.2111002044025744E-03 + 303 -1.4471526086772568E-03 + 304 -4.0035868231085920E-04 + 305 2.8082548140755158E-03 + 306 2.6332660419887450E-04 + 307 1.6449339262234138E-03 + 308 4.1815695792173004E-04 + 309 -1.5751947566157640E-03 + 310 -2.2079057821719716E-04 + 311 -1.0383718092978101E-03 + 312 1.7307268230246878E-04 + 313 -3.3781932934176653E-02 + 314 -2.5011196060032891E-02 + 315 -2.8751763308370887E-02 + 316 -4.8537291139023400E-03 + 317 2.3934622361116452E-02 + 318 -9.8660774061049700E-04 + 319 -5.1348909948532764E-04 + 320 -1.3486398830994290E-04 + 321 -9.3993048177475904E-04 + 322 1.9524559215722053E-03 + 323 -3.3818004967016137E-04 + 324 -1.9301755986943727E-04 + 325 4.9779472482920596E-04 + 326 1.4926002310763120E-05 + 327 7.8576405921296672E-05 + 328 4.5925930532869249E-05 + 329 -2.8925243453294623E-04 + 330 1.5449749772968572E-02 + 331 -2.0825690440162497E-03 + 332 1.5686334293474116E-03 + 333 2.1461106688094107E-03 + 334 5.4060635459442204E-03 + 335 -5.3681211792556938E-04 + 336 -6.1933052780496376E-04 + 337 -2.8240408602741126E-04 + 338 3.4706667928034812E-02 + 339 1.9168963538404336E-02 + 340 1.8794811725065502E-02 + 341 -4.1030875076649622E-03 + 342 2.4971797892914562E-02 + 343 7.0586536873966019E-04 + 344 -3.5787155507575018E-04 + 345 1.4410794668975289E-03 + 346 -3.7396840194651900E-04 + 347 -2.3691258552313097E-04 + 348 2.2098964372072030E-04 + 349 -1.0510512030384793E-04 + 350 1.5507868776055620E-04 + 351 -5.2643683759363380E-04 + 352 -4.2148649315242075E-04 + 353 5.6988759278115808E-04 + 354 -2.5419073797261027E-04 + 355 -3.2080827881849770E-03 + 356 -9.4678362169167734E-05 + 357 9.5215397311945325E-04 + 358 4.7621398435869437E-03 + 359 -1.2941609598196393E-03 + 360 1.1245597979690381E-04 + 361 4.6711416431684397E-05 + 362 9.6818399961810355E-05 + 363 -9.3264888226715799E-04 + 364 -4.0358231694057619E-05 + 365 5.8858702748033312E-04 + 366 -8.2836279796590323E-04 + 367 3.4336764198420800E-04 + 368 4.8823567678049663E-02 + 369 -1.2114146794659417E-03 + 370 -2.0937738567230194E-02 + 371 2.2189517250576045E-02 + 372 1.0684913068622094E-03 + 373 4.5538113212195507E-04 + 374 -1.0544537889618684E-04 + 375 1.5197781049353681E-04 + 376 2.4763084765073847E-03 + 377 -7.5388044768907118E-05 + 378 1.8015356171386439E-04 + 379 7.1661751884901726E-04 + 380 3.7815302814338714E-03 + 381 -1.5022782850518918E-02 + 382 4.0507931870639030E-04 + 383 4.9065144698405361E-03 + 384 -2.8321119072901952E-03 + 385 -2.8967818466300596E-03 + 386 -2.4915108450229137E-04 + 387 -6.6627761184044143E-04 + 388 1.2740119402017563E-04 + 389 8.3080001632782109E-05 + 390 -1.3874300515735418E-04 + 391 1.1132569868822734E-05 + 392 1.7937590451940131E-04 + 393 -3.1601782152542498E-04 + 394 -8.8284108243148127E-03 + 395 -5.1255443478671256E-05 + 396 -4.0354077708224653E-03 + 397 4.0997453493811222E-03 + 398 -6.3768310820541685E-04 + 399 -5.6710657656235087E-04 + 400 4.3865771477476397E-04 + 401 4.2480696779994881E-04 + 402 8.1889807717523931E-03 + 403 -1.9687255973794223E-02 + 404 2.1204468583949539E-02 + 405 2.5852391822855900E-02 + 406 2.6931149272150276E-02 + 407 9.7992645359562406E-04 + 408 8.2992326015845079E-05 + 409 1.2710354766614117E-03 + 410 -5.3301975036654562E-04 + 411 1.1451542464870233E-03 + 412 4.0714203661619230E-05 + 413 -5.7016451477675005E-04 + 414 2.2633430958687175E-05 + 415 -8.9629456556992846E-05 + 416 1.6787831560914054E-04 + 417 -9.0213154115195037E-05 + 418 1.4649673010300377E-04 + 419 -8.8332608892940107E-03 + 420 3.8676279373698360E-04 + 421 -6.4180249473628234E-04 + 422 -4.1869385200013357E-04 + 423 4.4750668100808988E-03 + 424 3.9419400325422052E-04 + 425 -4.4438050186079074E-04 + 426 -4.2071605533933805E-04 + 427 4.6595400866590846E-04 + 428 1.3432843722251098E-04 + 429 -3.1147225535428169E-04 + 430 -8.7024159549399936E-05 + 431 2.3354033450021541E-04 + 432 -2.0013543077091285E-03 + 433 5.0119877154437035E-05 + 434 -5.0563585626196654E-04 + 435 1.8421105983828455E-03 + 436 -2.6977580073068876E-05 + 437 5.5683880160991542E-04 + 438 9.8626176511996846E-06 + 439 7.8196563578881813E-05 + 440 -6.8684840757447449E-05 + 441 -2.3490467097953788E-04 + 442 9.7721699892676199E-05 + 443 -2.0131569063223281E-04 + 444 -3.9131829377456722E-05 + 445 -3.7652422654585768E-03 + 446 3.2241071173198105E-04 + 447 -1.5767529658167918E-03 + 448 5.5878211334070484E-04 + 449 -2.1128556568147275E-03 + 450 1.4942955495002237E-04 + 451 9.6311065873463584E-04 + 452 -3.7651232908609541E-04 + 453 -8.8175095912472364E-03 + 454 -1.1659208625259895E-02 + 455 -1.6848058082090799E-02 + 456 -9.1638665174058279E-03 + 457 -2.1997461222516591E-02 + 458 -9.7064644005645908E-04 + 459 -5.1995857104378111E-04 + 460 3.2935559325310043E-04 + 461 -9.5678596567833226E-04 + 462 1.0871018758576573E-03 + 463 1.4002192903259705E-04 + 464 4.4596470784731740E-05 + 465 -2.7641444610596125E-04 + 466 -7.4535160601750449E-05 + 467 3.9075884058099359E-04 + 468 1.6397012515466613E-04 + 469 2.5784474016151440E-04 + 470 1.5125837932738855E-03 + 471 3.6385744935973707E-04 + 472 3.4130924346153303E-04 + 473 -6.2934097418181230E-04 + 474 1.3795294562387182E-04 + 475 1.2069978344709952E-04 + 476 -6.4823071972769288E-04 + 477 -1.8967862495542065E-04 + 478 -2.7739029519029935E-03 + 479 3.3705408026450910E-03 + 480 2.7373069147024367E-03 + 481 -4.5336554575284103E-03 + 482 7.3162130105136345E-03 + 483 -6.6779286313735592E-04 + 484 1.0973840961593603E-04 + 485 3.1917331663845928E-04 + 486 -4.0270657794521292E-04 + 487 -2.9626161501269331E-04 + 488 2.2803581897194367E-04 + 489 -2.6514233386424046E-04 + 490 8.5647643558499665E-05 + 491 1.7373804944356369E-04 + 492 -1.6701366639768064E-05 + 493 -1.8637157427526776E-05 + 494 -9.5880051866617236E-06 +Ene= -4.3754210404E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -2.7435642416490616E-02 + 2 -1.7916325568576685E-03 + 3 3.5281764962465300E-03 + 4 1.5204476995073924E-02 + 5 -3.8847371368907033E-03 + 6 9.2385401526609126E-05 + 7 -6.7759147848666485E-04 + 8 -1.1991669593177791E-03 + 9 3.0040092556698827E-01 + 10 4.5602465544051152E-01 + 11 2.2670493554615159E-02 + 12 4.9322346643841675E-01 + 13 -2.6424897612180698E-02 + 14 8.8282303354976169E-03 + 15 2.5291779212480233E-03 + 16 -3.9613709014098839E-03 + 17 5.7068556176843961E-03 + 18 9.1267292643940011E-05 + 19 4.1153993190581661E-04 + 20 -1.2564771026733780E-03 + 21 1.7170821800563778E-03 + 22 -1.5584863817747714E-05 + 23 2.0694237316089153E-03 + 24 -4.7440661333286504E-04 + 25 2.9616872062048898E-04 + 26 -8.1883302982935242E-03 + 27 -1.7474460294640169E-03 + 28 -1.9176365400059463E-03 + 29 7.4662286534876981E-04 + 30 8.4342231584969441E-03 + 31 6.1164563941983269E-04 + 32 1.7549683461711380E-03 + 33 7.2945965689505897E-04 + 34 -3.2501747382544341E-02 + 35 5.9080726040231103E-02 + 36 -1.7486922439848692E-03 + 37 -1.6353238040558035E-02 + 38 -2.6332559672207486E-02 + 39 -2.9982250813306291E-03 + 40 2.2439495921031446E-03 + 41 -1.0550223586884427E-03 + 42 -1.2788437615335332E-04 + 43 -2.1920702168560899E-03 + 44 5.8713647792223264E-04 + 45 -4.1857622353645794E-04 + 46 4.3567109821802030E-04 + 47 -2.2151246073955722E-05 + 48 -7.8835333849283076E-04 + 49 2.9815794314006145E-04 + 50 8.4848559001882650E-04 + 51 -2.1116320837558846E-02 + 52 1.1257479003989217E-03 + 53 -1.6231753675070740E-02 + 54 7.7309038456449203E-03 + 55 1.8074271105828928E-02 + 56 -1.9058381922152524E-03 + 57 9.1497202818015266E-04 + 58 1.8123161726602297E-03 + 59 -9.7367968617951245E-02 + 60 4.3306584287882899E-01 + 61 -2.9095052665944660E-01 + 62 -1.9381519632416530E-01 + 63 1.5638095157084814E-01 + 64 -3.5488610137795148E-03 + 65 3.5683064347909457E-03 + 66 -3.1662287372084125E-03 + 67 -3.4614180073790296E-03 + 68 -2.0903827888736014E-03 + 69 6.1017055128060162E-04 + 70 5.3822935236281448E-04 + 71 9.7039908026568065E-04 + 72 -2.8983200444503143E-04 + 73 1.0338176233531931E-03 + 74 1.6111353496027307E-03 + 75 -6.8635736185872318E-04 + 76 5.3894329985875712E-02 + 77 -1.2805643186236117E-03 + 78 8.4775964564296237E-03 + 79 9.9125718114783969E-03 + 80 2.8078919934911233E-02 + 81 -1.3683312960399386E-03 + 82 1.3132085491014316E-03 + 83 -2.6553715125688635E-04 + 84 -4.5440092396360557E-03 + 85 -1.1631420224033314E-03 + 86 -4.6643665882120464E-03 + 87 1.9019605700960180E-04 + 88 -3.2284294702712682E-03 + 89 2.5669901879456597E-01 + 90 -2.9825565589857773E-03 + 91 2.7544330732668140E-02 + 92 -5.1997776483624192E-02 + 93 -2.7313741549388645E-02 + 94 -7.9755471487049409E-04 + 95 -1.5095778922727060E-03 + 96 -7.6725358765885189E-04 + 97 1.6726410654546774E-03 + 98 5.9038725329516178E-03 + 99 9.3696499885560531E-04 + 100 3.6591850465988586E-03 + 101 1.8473390039612774E-03 + 102 -4.0269180861695307E-02 + 103 9.4387817023350892E-04 + 104 -3.1832840102672955E-03 + 105 -5.9538334781516879E-03 + 106 -2.3210470968981857E-02 + 107 -6.3668863036076741E-05 + 108 -1.2561404542244913E-03 + 109 -1.6638145651980000E-03 + 110 1.2098893429537863E-03 + 111 2.6978157483450453E-03 + 112 1.4052101443663154E-03 + 113 -1.5828005543715887E-03 + 114 1.1988650332141473E-03 + 115 7.1084213166771534E-03 + 116 -4.0670178507757465E-04 + 117 -2.5196376394113246E-03 + 118 5.4001363022580743E-03 + 119 1.7892886342777325E-03 + 120 9.9398656171970992E-05 + 121 -4.1369326704907396E-04 + 122 1.7544054060752415E-04 + 123 1.0629932242805442E-04 + 124 3.1252317741824767E-04 + 125 -8.8828448653753154E-04 + 126 4.2000345275975705E-04 + 127 5.8514790479878738E-04 + 128 6.1265011473745478E-03 + 129 -8.1509421496724587E-04 + 130 2.8068728718192741E-03 + 131 1.4416634773681614E-04 + 132 1.9013317238242167E-04 + 133 2.7190595559885777E-04 + 134 1.2225205900124603E-03 + 135 7.6301624276870286E-04 + 136 9.3144644510673787E-04 + 137 -1.9043409386679261E-04 + 138 2.3176951194186651E-02 + 139 -1.0566235161470359E-03 + 140 -1.7361084170981100E-02 + 141 -9.6823693281774506E-04 + 142 6.9024763290198392E-04 + 143 -4.4773104491625186E-04 + 144 2.2209071525120848E-03 + 145 -6.3622345150897951E-04 + 146 9.1657412687205596E-05 + 147 -2.0487524741159127E-04 + 148 5.4629360631984936E-05 + 149 -6.7566203438899311E-04 + 150 2.2614936948019886E-04 + 151 -1.0945507292960542E-04 + 152 -3.7803338688988125E-04 + 153 1.2854018152669745E-02 + 154 -1.0709182826534704E-03 + 155 1.7017722848583737E-03 + 156 2.4412027679451367E-03 + 157 -5.0383136281394640E-03 + 158 -8.3566303178504492E-04 + 159 5.6144100264855095E-04 + 160 7.6529210041459753E-04 + 161 2.1787294507010817E-02 + 162 -1.5572907095023548E-02 + 163 -3.6429306436159626E-03 + 164 7.2038467848542743E-03 + 165 3.8467868338200673E-03 + 166 1.2207540660485103E-03 + 167 -1.0283492484721400E-04 + 168 -2.1268197002605269E-03 + 169 1.2165140718344700E-04 + 170 4.8344916024242463E-04 + 171 -6.7935322325867332E-04 + 172 -6.8820903202941808E-05 + 173 8.8343146756239381E-04 + 174 2.1692959984585483E-04 + 175 -3.7341220123323564E-04 + 176 1.1578034364823162E-04 + 177 -1.1105410464234629E-04 + 178 1.8407827245708403E-02 + 179 -4.1481052561984154E-04 + 180 -1.6926829568813201E-03 + 181 -7.0940494512626237E-04 + 182 7.7350783062473064E-03 + 183 -1.3620684943799147E-03 + 184 -1.2546200498992605E-04 + 185 -1.6304449743088220E-04 + 186 -6.7486176597306179E-04 + 187 2.9856317575288881E-04 + 188 -2.6538921998677634E-05 + 189 2.5377965889434147E-04 + 190 -1.6326265520931739E-04 + 191 -2.8185176389673421E-02 + 192 4.5449343123238665E-04 + 193 2.0211417768542107E-02 + 194 3.5307355991433306E-03 + 195 -9.4298835875054037E-03 + 196 -1.5451230648935773E-03 + 197 -9.2283530202404563E-04 + 198 -1.5855560296836099E-03 + 199 -8.5891146619724505E-04 + 200 -1.1899321050095441E-03 + 201 -1.5834922976595881E-03 + 202 2.0185593283622303E-03 + 203 2.9636144088390545E-03 + 204 1.5987408384976479E-02 + 205 -4.5447118479638871E-04 + 206 8.3557022498109024E-03 + 207 1.5195331331425228E-03 + 208 -4.5829869802348780E-04 + 209 6.1113564238536838E-04 + 210 3.9323954489265582E-04 + 211 1.3487333962112154E-04 + 212 -4.1016761652740562E-02 + 213 -5.4706429614483172E-03 + 214 -9.3697703079034659E-04 + 215 1.0051444774656818E-02 + 216 -5.8344826792854588E-03 + 217 -2.9053918845756868E-03 + 218 4.6073990420103370E-04 + 219 -3.3200022420845740E-04 + 220 3.4218429966122363E-03 + 221 8.4350584865988155E-04 + 222 -2.8657807102047710E-04 + 223 -5.4561732641494551E-04 + 224 -6.5310386791930309E-04 + 225 1.5397570334915506E-04 + 226 -5.0350442206786207E-05 + 227 1.1840964430154992E-03 + 228 5.0466586842903578E-04 + 229 1.2590711777865740E-02 + 230 8.4198961127954881E-04 + 231 1.0209636217236528E-02 + 232 -4.3526562504409404E-03 + 233 3.3641898400240999E-04 + 234 2.4983427929087081E-03 + 235 -2.7182950669051779E-04 + 236 2.7188307198082184E-03 + 237 1.1090710560545555E-02 + 238 -3.1036875691767038E-02 + 239 -5.2261573015220377E-03 + 240 6.4213690967907383E-02 + 241 -8.0703742790001004E-02 + 242 -3.0576915904619471E-03 + 243 6.2104097162157132E-05 + 244 -2.4164470696726140E-03 + 245 2.1866673797366894E-03 + 246 -8.3258625688945771E-03 + 247 4.0210297125610624E-04 + 248 -7.9444455667387036E-04 + 249 6.9825935174029402E-04 + 250 -1.1722113960247163E-04 + 251 -5.8379617203827103E-04 + 252 -1.6789139767708250E-03 + 253 -1.1266177827470856E-03 + 254 -2.7084722594699073E-03 + 255 -5.5136188776904263E-04 + 256 -1.2930931904675362E-03 + 257 2.7231179255658242E-03 + 258 -8.7740369091316567E-04 + 259 8.1946696854248111E-05 + 260 3.8799794803166896E-04 + 261 6.7574542261538990E-05 + 262 4.6428420598519831E-03 + 263 3.2320303125905649E-03 + 264 -6.0730588254184455E-04 + 265 6.3560246041822327E-04 + 266 4.9310443288784088E-03 + 267 1.0721713799420481E-03 + 268 1.8436303080228011E-06 + 269 2.6463645599928977E-04 + 270 1.0731362559406486E-03 + 271 8.1477559172848685E-04 + 272 8.1742949762753678E-05 + 273 1.8447962616983165E-04 + 274 -4.6332346880554356E-04 + 275 -6.5913494942803529E-05 + 276 -1.3800801345530947E-04 + 277 3.0520746426351565E-04 + 278 -1.8766574531223801E-04 + 279 -9.5074770859441844E-03 + 280 2.6323164957963314E-04 + 281 1.8897611354393162E-03 + 282 -5.8430653819606009E-03 + 283 -2.1311951222068083E-03 + 284 3.9721529158725681E-04 + 285 3.7181921408943093E-04 + 286 1.4346452243031444E-04 + 287 -2.8576003325795512E-04 + 288 -1.1441519094846072E-04 + 289 5.7829097422412614E-04 + 290 -1.0573156570268380E-03 + 291 -8.4133856010718412E-04 + 292 -6.0725622202654116E-02 + 293 1.2704792922716560E-03 + 294 5.1892292952815684E-03 + 295 -2.3442275141595043E-02 + 296 1.5626753238915842E-02 + 297 -3.6490142421981100E-03 + 298 8.1382514471040588E-04 + 299 -1.9461589296826825E-03 + 300 1.6230823444504587E-03 + 301 2.0571655091782045E-03 + 302 -5.1194274911689885E-03 + 303 -1.6624235940967491E-03 + 304 -1.2845865611327690E-03 + 305 1.2149200668923924E-03 + 306 5.1796818775687835E-04 + 307 -2.9978255668116605E-03 + 308 7.5812979089144399E-04 + 309 6.7763148397585846E-04 + 310 -7.6944602992530813E-04 + 311 -1.4267745722967668E-03 + 312 1.2944832301296470E-03 + 313 -3.2908079849912814E-02 + 314 -6.6269293556433712E-02 + 315 1.0176330741616311E-02 + 316 -4.4168413575684198E-02 + 317 5.7093674725731937E-02 + 318 7.1797938501485105E-04 + 319 -1.5273106634322335E-03 + 320 1.4204356012047490E-03 + 321 -9.8830854640075691E-04 + 322 -1.1689077095269477E-03 + 323 -3.7081539751123007E-04 + 324 -1.9938378183731545E-04 + 325 3.8494859427276693E-04 + 326 -3.4998325696260441E-04 + 327 -4.0080720700818429E-04 + 328 1.4245297149939548E-03 + 329 -8.4373858580759722E-04 + 330 -1.6444049478464172E-03 + 331 5.8657457031096347E-04 + 332 -9.6545022579185458E-04 + 333 -3.6794970365242648E-04 + 334 -1.6326823648614558E-03 + 335 1.1084304362412333E-03 + 336 6.7605214260448129E-04 + 337 -2.2808413952317119E-05 + 338 1.6476899889254614E-02 + 339 -1.5502401382545113E-02 + 340 -2.3504380919217638E-02 + 341 -6.5703194783617780E-04 + 342 -2.3344725225587219E-02 + 343 -1.1325061493903689E-04 + 344 1.6653531204225021E-03 + 345 -4.7944981919419225E-04 + 346 -2.2480620482101956E-05 + 347 4.6565205120626367E-04 + 348 -3.8954111937144370E-04 + 349 7.6490710324366308E-04 + 350 6.7660470478222894E-05 + 351 7.2872064499965609E-04 + 352 2.2353622368908148E-04 + 353 -4.0318963088129353E-04 + 354 -8.1511416795614040E-06 + 355 -2.0118448893807015E-02 + 356 2.4292191126684134E-04 + 357 6.2867468524623743E-03 + 358 7.9922107099101337E-03 + 359 2.3216932764438254E-03 + 360 6.7033525098375080E-05 + 361 3.9998039783131051E-04 + 362 1.6795768714777034E-04 + 363 -5.2186401573567722E-04 + 364 4.5647834372067119E-04 + 365 3.7207643695205564E-04 + 366 -3.1063278334169758E-04 + 367 8.8752321826068034E-04 + 368 -9.0334725717844538E-03 + 369 -4.5172062073173377E-04 + 370 1.6161551465527554E-02 + 371 -6.0386303459011694E-03 + 372 -1.2747375742003944E-02 + 373 -1.8252929553024665E-03 + 374 2.9008099721678465E-03 + 375 -1.5347806340455783E-03 + 376 -2.6260125067297615E-03 + 377 -9.0367577000346111E-04 + 378 2.3428002545494409E-03 + 379 1.3623040068605557E-03 + 380 -3.0292372784133268E-03 + 381 3.1042479270005818E-03 + 382 -2.3038980100036156E-04 + 383 -1.2248204072558670E-03 + 384 7.9907379846197858E-04 + 385 7.6291018151902203E-04 + 386 -5.2362024810814933E-05 + 387 3.2519169636340613E-04 + 388 -2.2897484378638365E-04 + 389 2.8567454931356537E-04 + 390 7.3028057998073174E-05 + 391 -1.1517256448409217E-04 + 392 -1.9980985509713534E-04 + 393 1.3210161109072728E-04 + 394 -5.4402063854622294E-04 + 395 1.4870480149732849E-04 + 396 8.7215818584010616E-04 + 397 -1.7042892375164437E-03 + 398 -3.1538647353376441E-04 + 399 2.6679626956227460E-04 + 400 -5.6088554561520699E-04 + 401 -4.6119362686465208E-04 + 402 -1.2277255149003026E-03 + 403 -2.7908499679809165E-03 + 404 -1.1520728412284537E-02 + 405 -9.3101016927466806E-03 + 406 -1.9960571697210727E-02 + 407 2.3214825511266640E-04 + 408 -1.6096581856170209E-04 + 409 6.2738951162727246E-04 + 410 -2.9012259066612942E-05 + 411 -1.7120760542217637E-03 + 412 2.0369953388044441E-04 + 413 4.4342288195664331E-04 + 414 1.3852197874990600E-04 + 415 7.5878887542511783E-05 + 416 3.3462201739706423E-04 + 417 -1.0712102450744299E-05 + 418 -5.2175974564170626E-04 + 419 1.0363451769927678E-02 + 420 -2.7760825449659702E-04 + 421 -3.1832673816819283E-03 + 422 2.6209508214156511E-03 + 423 1.6588324346404231E-03 + 424 -8.2150588820231870E-04 + 425 -4.9895642464668451E-04 + 426 -3.3640358785628441E-04 + 427 9.0225283782826496E-06 + 428 7.4066915562580446E-04 + 429 -1.9361099120169620E-04 + 430 -5.0380048388739029E-05 + 431 6.5650137003519637E-04 + 432 4.0173657115987931E-03 + 433 -8.6643078451921585E-05 + 434 -1.7036909773901806E-03 + 435 -2.5640867379579484E-04 + 436 1.5889905831264698E-03 + 437 -3.8852613893131587E-04 + 438 -1.8343116709435695E-05 + 439 -5.7656341905380200E-05 + 440 7.7375832764361400E-05 + 441 2.8197706903952376E-04 + 442 6.4058087965634846E-05 + 443 -1.9528914013998403E-04 + 444 7.6450866837052443E-05 + 445 7.1631666943696196E-04 + 446 -5.0501678505375080E-04 + 447 -2.5630210899393532E-03 + 448 -2.5729504683722347E-03 + 449 2.7399466308704484E-03 + 450 -8.0637646470632727E-04 + 451 -3.6260046675933971E-04 + 452 2.1446721601388081E-04 + 453 1.4300930501303200E-02 + 454 1.0414988391716859E-02 + 455 1.1842659789181692E-02 + 456 -1.0044033138766085E-02 + 457 -2.7153829762266092E-03 + 458 1.1063880904679301E-03 + 459 -4.0959965054481931E-04 + 460 3.2527086530114650E-04 + 461 -6.4875848269297168E-04 + 462 -1.8939999026666755E-03 + 463 -2.5994308135263557E-04 + 464 -2.0287748386893148E-04 + 465 3.3189844961597955E-04 + 466 -4.1475724253979334E-04 + 467 -3.2226037375485285E-04 + 468 1.2654784432438001E-06 + 469 -2.4381571557732736E-04 + 470 -2.2483461291966547E-03 + 471 -4.7471169780286443E-04 + 472 -7.0475812627503881E-04 + 473 1.0738372809798091E-03 + 474 2.4618563409901337E-04 + 475 -1.2413824787049622E-04 + 476 2.6926528526790308E-04 + 477 1.0000864180357554E-04 + 478 1.5372074168431261E-03 + 479 -8.4365710368102833E-04 + 480 -1.0390514345750437E-03 + 481 3.8216156169065584E-03 + 482 -1.8479212489785511E-03 + 483 8.9013142916071701E-05 + 484 8.6043972442411730E-06 + 485 -3.0999418490173754E-04 + 486 3.4392794651824416E-04 + 487 3.1095115973203506E-04 + 488 -3.7634385048607791E-05 + 489 -1.0976282801551150E-05 + 490 2.1028542727482651E-05 + 491 -8.7853769298482733E-05 + 492 -6.2915067468310510E-05 + 493 1.7819384035741107E-04 + 494 -1.4142415161498220E-05 +Ene= -3.3389395465E-01 +Spin= Alpha +Occup= 2.0000000 + 1 1.0271659132610933E-02 + 2 -5.0196792063059775E-03 + 3 6.0503018954737118E-03 + 4 -1.2021197765697064E-02 + 5 -1.5239946901141684E-03 + 6 3.0076239295988494E-03 + 7 -8.9761815061284965E-03 + 8 1.7297120879962018E-04 + 9 -2.6437650473390494E-02 + 10 1.4137112639039252E-02 + 11 1.4200880688231157E-02 + 12 -6.6284017533658653E-03 + 13 -1.0992300460948774E-02 + 14 9.5362752825537463E-05 + 15 2.0784795201855735E-04 + 16 -1.1396951603748439E-03 + 17 -2.1405093288535812E-03 + 18 1.0993819878130324E-02 + 19 -1.5079269353027037E-03 + 20 -2.1698298927548061E-03 + 21 9.9657302706372707E-04 + 22 9.6322511636836471E-05 + 23 1.5845961770728297E-03 + 24 -8.8345870207597499E-04 + 25 -1.8917699853904829E-03 + 26 -2.3444477854275089E-01 + 27 9.1802752019474240E-03 + 28 4.6966334106574685E-02 + 29 8.8455341043484591E-03 + 30 -2.3157165013985908E-03 + 31 -6.1090522032519719E-03 + 32 -1.4120297328632932E-03 + 33 6.0491812155963874E-04 + 34 4.2316866447454977E-02 + 35 3.1337381274739146E-02 + 36 1.4766114949776603E-02 + 37 -2.9433345756300848E-02 + 38 -1.4599142956143986E-02 + 39 2.0967664081844458E-03 + 40 -3.3910794641907663E-04 + 41 7.4880840876925250E-03 + 42 1.1103951501800107E-02 + 43 1.6742596645300019E-04 + 44 1.1885519560262266E-03 + 45 4.9985695458859914E-03 + 46 -1.1059756418654333E-03 + 47 -1.2933319386909032E-03 + 48 -1.2614491359862532E-04 + 49 -4.2770516280580956E-03 + 50 -2.4857000488826878E-03 + 51 -6.4062161589694050E-02 + 52 5.0344065721448375E-03 + 53 1.4315904366041132E-02 + 54 -1.4405678537715768E-02 + 55 -1.4712799220899682E-03 + 56 -3.0469610600152817E-03 + 57 2.6059971974681179E-03 + 58 6.1387866670460636E-03 + 59 2.4026215886371070E-02 + 60 4.0404955092839590E-02 + 61 -3.1505525444586652E-02 + 62 1.6880772994571306E-02 + 63 3.1425773080866935E-02 + 64 1.3650570190357713E-03 + 65 7.1933159591378122E-03 + 66 4.9845888540893434E-04 + 67 2.5385771560809821E-03 + 68 2.2714196437773303E-03 + 69 -7.8293985878767798E-04 + 70 1.4420135379548523E-04 + 71 1.1117682706389337E-03 + 72 -1.0329558373607126E-03 + 73 2.9149511284855280E-03 + 74 -1.2476889156830587E-03 + 75 -1.1244370596282427E-03 + 76 -3.2616351136462031E-02 + 77 2.3752362156513147E-03 + 78 -2.5204957733165632E-02 + 79 -1.3341908700042348E-02 + 80 7.0552487186026608E-02 + 81 -3.0006857915793944E-03 + 82 -3.8630428790503626E-04 + 83 5.7291729793323759E-03 + 84 2.2584550419840589E-04 + 85 -7.4230886725989596E-03 + 86 -3.1929037109480166E-03 + 87 2.9879821412873061E-04 + 88 2.5452993755945346E-03 + 89 9.5280667731460506E-04 + 90 -4.8463107189759326E-04 + 91 9.3753211268056213E-05 + 92 6.4185046362159456E-03 + 93 -1.0943012136376915E-03 + 94 -1.0525865948138857E-03 + 95 -1.5921992821969089E-03 + 96 1.6827834789288321E-03 + 97 -4.6353725183778861E-04 + 98 -4.7776467497829899E-04 + 99 1.8121705630382947E-04 + 100 -1.2331753320606208E-04 + 101 -8.4754479786152076E-04 + 102 -1.1488099759125776E-01 + 103 8.3867292689372291E-03 + 104 -1.0602917495115791E-01 + 105 5.1699456802984226E-02 + 106 -3.9753745983268033E-03 + 107 -4.6111319405722070E-03 + 108 3.4662637587878913E-03 + 109 3.0975550760224029E-04 + 110 -4.0945612847886172E-03 + 111 6.6039382484320535E-04 + 112 3.4744402757564758E-04 + 113 3.2827597377808951E-03 + 114 -4.9203437886431193E-03 + 115 -1.7593642065374643E-01 + 116 1.5925073230464357E-02 + 117 -1.8875362024509762E-02 + 118 -9.1066446030634018E-02 + 119 -1.7052560477190049E-01 + 120 -3.3818062198095653E-04 + 121 2.1321387895153468E-03 + 122 -5.6753148575138046E-03 + 123 8.4885665732687045E-03 + 124 1.7512692035725325E-03 + 125 8.9963576780669567E-03 + 126 -1.2734284254380087E-03 + 127 1.6319916782377526E-03 + 128 -3.3506368497734101E-01 + 129 9.6880620301803503E-03 + 130 -4.0008432492086375E-02 + 131 2.9580133805823479E-02 + 132 2.6406583795649387E-02 + 133 2.8933722077019541E-03 + 134 6.0411546245691091E-03 + 135 -5.3636827176802297E-04 + 136 5.1394201710499278E-02 + 137 4.6261239946815570E-03 + 138 -5.7561939880742541E-03 + 139 -3.3127971695425906E-03 + 140 3.8143526376235713E-02 + 141 1.6396706070001207E-02 + 142 -3.1734677221585818E-03 + 143 -5.0363934804525225E-03 + 144 1.0460710700371800E-02 + 145 4.6085724950375321E-05 + 146 2.5440642412752315E-03 + 147 3.3682425399796529E-04 + 148 -3.9166615483462062E-03 + 149 1.1713745165440303E-04 + 150 1.8431723267173404E-03 + 151 8.0695146497156423E-03 + 152 3.1666948195132388E-03 + 153 -7.7559112753382703E-02 + 154 1.0964601518257884E-02 + 155 2.1379175913703334E-03 + 156 -1.1253917475147389E-02 + 157 1.9119301016889537E-02 + 158 -3.4113117080371611E-04 + 159 6.5218341348754760E-03 + 160 -6.4209603877866499E-03 + 161 -2.1736246351829296E-02 + 162 -2.2532252642777213E-02 + 163 3.6555285363814576E-02 + 164 2.0448226542051081E-02 + 165 1.1015961002387189E-02 + 166 -1.0822464742344998E-03 + 167 -8.8134391992119058E-04 + 168 -3.0906880691104620E-03 + 169 -1.4638660155314527E-04 + 170 3.1490970405224190E-04 + 171 1.9047961470057327E-03 + 172 -5.6968497149359097E-04 + 173 1.9462143517145823E-03 + 174 7.5369320444499278E-04 + 175 -2.9599487253404415E-04 + 176 -4.4976004696451220E-05 + 177 -1.0335674304138330E-03 + 178 -1.3589531918821351E-01 + 179 1.0121768152225484E-02 + 180 5.3121670178035880E-02 + 181 7.0998842197826262E-02 + 182 -1.0909465750128797E-01 + 183 7.9078771272484624E-03 + 184 -2.0025049991387165E-04 + 185 -3.4811333108859177E-03 + 186 4.7027883442235935E-03 + 187 -3.7170479945197264E-03 + 188 -5.7113302942179093E-03 + 189 -2.5513971428649074E-03 + 190 3.0624686114216265E-03 + 191 -2.5193643775850604E-02 + 192 1.2311859388521214E-03 + 193 3.5749799120842361E-03 + 194 5.1814934505846108E-02 + 195 3.4116574922932727E-02 + 196 8.4806955486981244E-05 + 197 -1.2109411008669635E-03 + 198 -2.0268445684601099E-04 + 199 -4.0848244063332916E-03 + 200 -3.9758213887207373E-04 + 201 1.0710348274789185E-03 + 202 -3.4061680243595827E-03 + 203 4.7215544717728504E-04 + 204 -8.0801228755276511E-02 + 205 8.5117258241945108E-03 + 206 -7.8671812744903098E-03 + 207 -6.3536451355898950E-03 + 208 1.8167238880015771E-02 + 209 7.5203837216352605E-03 + 210 8.4828645288530513E-03 + 211 1.3391704030142565E-02 + 212 6.3805680281214208E-02 + 213 -2.6483875770134378E-03 + 214 -3.3477788092145543E-02 + 215 8.1779278226020366E-03 + 216 -4.0723335907917053E-02 + 217 -9.1309355202174418E-03 + 218 -8.4113646843857258E-04 + 219 1.7325391144189628E-02 + 220 -1.1956710611358386E-02 + 221 6.6804196094532673E-03 + 222 -3.7053344768321091E-04 + 223 -2.2422093849621106E-03 + 224 -5.0346274790996756E-03 + 225 -4.2086207135969304E-03 + 226 1.2071608521227043E-03 + 227 -4.8153052884631620E-03 + 228 -4.4697023594885456E-03 + 229 1.1024287690064889E-01 + 230 -7.6038968804094187E-03 + 231 2.9118719057856352E-03 + 232 -1.4951781397238614E-02 + 233 1.4792402843686956E-03 + 234 1.0925850891210715E-02 + 235 -9.4878371555907448E-04 + 236 3.9758629996347501E-03 + 237 -6.4166749002636844E-02 + 238 -2.4858889531418954E-05 + 239 1.1434262990654510E-02 + 240 3.9221607654248536E-02 + 241 -7.7880174959062999E-03 + 242 -3.7197430516587560E-03 + 243 2.6229286638853274E-03 + 244 -3.5161842047950601E-03 + 245 -9.8166938762502438E-03 + 246 -1.0907871075063063E-02 + 247 2.2690208340317474E-03 + 248 -3.6898305971054600E-03 + 249 -6.5891231513469763E-04 + 250 -1.4417745543432493E-03 + 251 -9.1416030632693063E-04 + 252 3.7036852860667575E-03 + 253 2.9376652525079515E-03 + 254 -1.5124890957574288E-01 + 255 1.2646147575841914E-02 + 256 9.0295992417150899E-03 + 257 1.7746612886440114E-02 + 258 1.8264216548491318E-02 + 259 2.8944094630772816E-04 + 260 -2.1923504904205913E-03 + 261 -5.4751551201134667E-03 + 262 -3.9014049654601075E-03 + 263 -1.0699140881999801E-02 + 264 1.6178914445793183E-02 + 265 2.3949410653029954E-02 + 266 2.6778878744351207E-04 + 267 9.0438946151361011E-04 + 268 -1.8967481724573528E-03 + 269 -2.6805508486423173E-03 + 270 2.8779135251171596E-03 + 271 -3.3475569176907327E-03 + 272 -1.2991207700420130E-03 + 273 -9.7000612257184301E-04 + 274 4.3049704196487792E-03 + 275 -8.5150213240531877E-04 + 276 1.2389257024623150E-03 + 277 -1.0894082738789699E-03 + 278 -8.9353429709789053E-04 + 279 1.0972817270028084E-02 + 280 -1.5267525226111737E-03 + 281 2.4862873203881593E-02 + 282 7.7666929551824956E-02 + 283 1.3115104572967679E-01 + 284 -1.3491119340797635E-03 + 285 -3.7589349056633145E-03 + 286 6.5632969840618742E-03 + 287 1.0813826600623012E-02 + 288 2.8534282765586821E-03 + 289 -6.4759495908782837E-03 + 290 5.1994307704523414E-03 + 291 -1.9884370809901269E-03 + 292 6.1274629613895258E-02 + 293 -4.0762000921621905E-03 + 294 2.7789915797994762E-02 + 295 -1.2398582923915271E-02 + 296 -5.3107706007720586E-02 + 297 1.5565863810479924E-03 + 298 3.0164059956404496E-03 + 299 -7.0429311829758368E-04 + 300 -1.9644566413752913E-03 + 301 3.8047857940691956E-03 + 302 -1.6196565868395479E-04 + 303 -4.4977523999024997E-04 + 304 1.2569405210450459E-03 + 305 3.6486664635056169E-02 + 306 -5.7801487335701748E-03 + 307 -8.9683153703851756E-04 + 308 1.1648838487237588E-03 + 309 1.8389070095695320E-02 + 310 3.9454695384278666E-03 + 311 1.8301215272311846E-03 + 312 -5.3960212210573876E-03 + 313 3.2836277202229903E-02 + 314 -3.3684830028859608E-02 + 315 1.7355615247920862E-02 + 316 -3.4972690040555292E-03 + 317 1.1822504746476503E-02 + 318 1.9240980590384071E-03 + 319 1.4167403898682183E-03 + 320 4.2226295911361941E-03 + 321 -3.0283637275733402E-03 + 322 3.7846312840457500E-04 + 323 2.8122971234542985E-03 + 324 3.0218835254358260E-04 + 325 1.2765204870841625E-03 + 326 -1.1370011668781583E-03 + 327 -1.6021786503744211E-03 + 328 9.4169970683345391E-04 + 329 2.3595810537183331E-03 + 330 2.6037585139429477E-02 + 331 -1.6630214724996542E-03 + 332 1.1015457779234284E-03 + 333 2.2742201614285120E-03 + 334 8.3174767820007340E-03 + 335 1.8295834973504387E-03 + 336 1.2171946501720719E-04 + 337 -1.9665328097678634E-03 + 338 2.8806162316368086E-04 + 339 -6.5552379346472331E-03 + 340 -9.0158623233693308E-03 + 341 -6.9757251256460000E-03 + 342 -8.2545701298965563E-03 + 343 1.5781539934950987E-04 + 344 1.1104988537667983E-03 + 345 1.3192671005647265E-03 + 346 1.0774442286147527E-03 + 347 2.2620662353104023E-03 + 348 -1.9962434940877954E-03 + 349 1.3109817670353617E-04 + 350 2.6928159416008800E-03 + 351 3.7580082390316344E-04 + 352 6.4804451209920339E-04 + 353 -1.5516677905643671E-03 + 354 3.0898460934154358E-04 + 355 5.2289537614730090E-02 + 356 -3.7930050697497159E-03 + 357 9.5452604370084085E-03 + 358 -4.9868335022916738E-02 + 359 -4.4715689750451704E-02 + 360 -2.7885266999359282E-03 + 361 -5.1957988193741594E-04 + 362 2.4416072377478524E-03 + 363 -1.7304159351453497E-03 + 364 7.4359251167082968E-04 + 365 -5.6221708978851778E-03 + 366 2.0706553838879308E-03 + 367 2.1699731602599581E-04 + 368 -5.2975379562985155E-02 + 369 3.1901544678880644E-03 + 370 7.0908504777449727E-02 + 371 -2.6528563502355190E-02 + 372 2.8187009573437810E-01 + 373 -1.2051623609324531E-03 + 374 -3.8215542435488019E-04 + 375 1.4505448723015598E-03 + 376 8.7177142896650312E-03 + 377 -7.4278284283167025E-03 + 378 8.0458895204461919E-03 + 379 -3.9803168985412421E-04 + 380 1.3275957122206102E-03 + 381 -1.0216510725890601E-02 + 382 9.6374084192099054E-04 + 383 1.0484010384510979E-01 + 384 -5.7559865572306742E-03 + 385 1.5917846696137966E-01 + 386 8.7453678746434002E-04 + 387 -1.5400652523965878E-03 + 388 -1.0236796230871184E-03 + 389 -7.0958854871777527E-03 + 390 8.3087795119058672E-03 + 391 -8.2553677432322982E-03 + 392 1.7130657832767904E-03 + 393 -6.6344887276526838E-03 + 394 2.2468811749256903E-01 + 395 -9.5083558281815923E-03 + 396 2.4378025579644195E-02 + 397 -3.1997315785177734E-02 + 398 3.9796381784689980E-03 + 399 1.5441898298656220E-03 + 400 -1.6502269406519735E-03 + 401 1.1769585711664576E-05 + 402 -5.5395028854405629E-02 + 403 -3.6859212769256744E-02 + 404 1.4436104192598375E-02 + 405 -1.9959084072927714E-02 + 406 -2.0545194249260456E-03 + 407 -1.2382865091238829E-02 + 408 -5.6506277137676779E-03 + 409 -3.6164041970486419E-03 + 410 2.6198657089199317E-03 + 411 -3.2610272099623753E-03 + 412 1.6829378788110361E-03 + 413 4.1258745951457754E-03 + 414 -1.5271770421007328E-03 + 415 -2.9152884834185715E-04 + 416 2.5059987470688813E-03 + 417 -2.6466843977949509E-03 + 418 -3.6195866152772152E-03 + 419 1.3202536928761041E-01 + 420 -8.4653985848119322E-03 + 421 -2.8640174916038610E-02 + 422 1.6987707301662269E-02 + 423 -1.1790417230770026E-01 + 424 -5.2559384197866151E-03 + 425 3.4281481887907367E-03 + 426 -4.4605048490657219E-03 + 427 -6.2431380157690316E-03 + 428 -2.7261580894146526E-03 + 429 1.4362071371285491E-03 + 430 2.2080675682088608E-03 + 431 2.2519129624144131E-04 + 432 4.0792546685824806E-02 + 433 -3.6644552158278830E-03 + 434 -3.0750178712027561E-02 + 435 -3.7041358215787766E-02 + 436 3.0865407838039767E-02 + 437 1.2049879569598290E-04 + 438 -2.0881663964606458E-03 + 439 -8.8068973486406433E-05 + 440 1.9379250748383062E-03 + 441 2.6257692869504972E-03 + 442 1.9431060684913320E-03 + 443 3.3618257954546487E-04 + 444 -3.4160959346483670E-03 + 445 1.7579925632757654E-01 + 446 -1.2096467434996757E-03 + 447 3.6065365575318017E-02 + 448 1.7587680917025710E-02 + 449 3.4848950489387798E-02 + 450 2.2994994400204070E-04 + 451 -5.5889018676516956E-03 + 452 6.4857036845921883E-03 + 453 -3.2792654609803351E-02 + 454 5.5366703846584384E-03 + 455 3.2040883695927065E-02 + 456 6.0614028118485160E-03 + 457 3.3919846717665403E-02 + 458 9.7874615275126246E-03 + 459 2.2708147948388544E-03 + 460 -2.0092221403851798E-03 + 461 9.0165666365589290E-03 + 462 1.0440217738317290E-03 + 463 4.0802800152696704E-03 + 464 8.5012771766376143E-04 + 465 2.2647974407275801E-06 + 466 1.3943184765468789E-03 + 467 -2.6851099611822273E-03 + 468 9.4236158211744112E-04 + 469 1.8628999858265713E-03 + 470 6.7456824231738238E-02 + 471 -5.3959922297067498E-03 + 472 9.4960776531738331E-03 + 473 1.0993261015976110E-02 + 474 -1.3317891182338979E-02 + 475 -2.4672789929429404E-03 + 476 -4.0465626035412969E-03 + 477 3.1584538053759281E-03 + 478 -1.1892705945477760E-02 + 479 -3.0888613284627744E-02 + 480 2.0242226732415654E-03 + 481 -1.1600658319688919E-02 + 482 2.8259697869089492E-02 + 483 -6.1361348601612540E-04 + 484 -1.2152238670155528E-03 + 485 -7.8475952104689389E-04 + 486 -1.5375311654165654E-03 + 487 5.9226092255343496E-04 + 488 -1.5532261290180166E-04 + 489 -8.2685836521961820E-05 + 490 -3.2285078944904348E-04 + 491 5.3773244840422106E-04 + 492 -8.6007669105743825E-04 + 493 2.0375213050769021E-04 + 494 5.6627697991124969E-04 +Ene= -3.2283291388E-01 +Spin= Alpha +Occup= 2.0000000 + 1 1.0894071283967712E-02 + 2 -5.1898560355331169E-03 + 3 -4.4098173521734032E-03 + 4 -1.6740169204243677E-02 + 5 8.3665312726732572E-03 + 6 4.5029986978053086E-03 + 7 -6.7851133406032832E-03 + 8 4.0459006680505470E-03 + 9 -2.1997127144744506E-02 + 10 -1.1032302462416519E-02 + 11 -3.0427759712036125E-03 + 12 1.2422287451023785E-02 + 13 -5.0256065098127710E-02 + 14 5.3654020291459895E-03 + 15 -4.9758998054551633E-03 + 16 -6.1840631114112919E-04 + 17 1.5233700648646200E-03 + 18 9.9038334541708892E-03 + 19 -1.8176059924132583E-03 + 20 -2.6795203960880494E-03 + 21 1.3214266262041379E-03 + 22 -8.3103523962600582E-04 + 23 1.8956879971912016E-03 + 24 -1.7106088949260939E-03 + 25 -2.8244765426337424E-03 + 26 1.6957438427638810E-01 + 27 -4.3675009847252751E-03 + 28 -5.5013090452341755E-02 + 29 -5.0903299162696446E-03 + 30 6.2703586435268899E-03 + 31 -1.7794961876147605E-03 + 32 -3.4256128598015617E-03 + 33 4.0128983237636227E-03 + 34 5.7135487941419342E-03 + 35 8.2730449609211172E-03 + 36 -1.6648040472237696E-02 + 37 1.8879449779644258E-02 + 38 -2.6382128082974649E-02 + 39 -5.6444755637973139E-03 + 40 5.0456059053446761E-04 + 41 -8.9406057637297811E-04 + 42 2.0200278672072216E-03 + 43 2.3450216243344406E-03 + 44 1.5313868652272018E-03 + 45 -7.5326414482651831E-04 + 46 -4.3367336387597664E-04 + 47 1.4101881025307863E-03 + 48 -2.4022618054942726E-04 + 49 2.1416693423203658E-03 + 50 1.7458598575605003E-03 + 51 -1.0701449909179256E-01 + 52 3.6904426620461644E-03 + 53 2.5883057882851123E-02 + 54 -1.1124530936050221E-02 + 55 7.2576692074129458E-03 + 56 -4.4014180558176134E-03 + 57 -1.4849817104581880E-03 + 58 5.8464158508958843E-04 + 59 2.7414645262367705E-02 + 60 -2.2472053433131019E-02 + 61 4.0573905077485499E-03 + 62 -7.5051610652827200E-02 + 63 3.8262613955593078E-02 + 64 1.6103161154539009E-03 + 65 -6.0423838380231295E-04 + 66 -1.3861021353973114E-03 + 67 -1.7154991726282816E-03 + 68 -2.6152401402638002E-03 + 69 -1.5751228887251607E-03 + 70 9.6167145626898168E-04 + 71 -1.5263976983229321E-03 + 72 1.9740008772566437E-03 + 73 2.1011132597830661E-03 + 74 8.7689257125137573E-04 + 75 1.8605667587187871E-03 + 76 1.0670063722943819E-01 + 77 -7.1798967479588414E-03 + 78 1.0958553535741866E-01 + 79 2.0494580907197652E-02 + 80 -5.9851922647483919E-03 + 81 -3.9445356121764187E-04 + 82 6.6335582394470361E-04 + 83 2.1955326961680317E-03 + 84 2.8229705310467007E-03 + 85 -1.1844501070714072E-03 + 86 1.1733094844527054E-03 + 87 -6.6923098816780270E-03 + 88 -3.0446448818915806E-03 + 89 -1.9136786189035027E-02 + 90 9.6355059195201299E-04 + 91 -1.8587466646283708E-02 + 92 -4.8143955815664235E-03 + 93 1.4440697936494801E-02 + 94 -1.7671416305178853E-04 + 95 -1.0926859755031151E-03 + 96 9.0199296838734146E-04 + 97 -8.9534494929787497E-04 + 98 -2.0313013245668774E-03 + 99 1.0533331751873729E-03 + 100 2.8655410768184228E-03 + 101 4.0866892068144921E-04 + 102 2.6574299996342015E-02 + 103 -2.5096695812272642E-03 + 104 2.0274512096414989E-02 + 105 -4.7608638596016023E-02 + 106 -1.7872299712320086E-02 + 107 1.3014313396651153E-03 + 108 1.0234200355418992E-03 + 109 -1.6656991807387838E-03 + 110 1.9425371880835937E-03 + 111 2.5657630665703690E-03 + 112 6.4820122787703218E-04 + 113 1.2118662537660635E-03 + 114 5.2057121911089537E-03 + 115 1.1062555992114656E-01 + 116 -9.0852468830391331E-03 + 117 5.2253251575150751E-03 + 118 4.1142058255287751E-02 + 119 1.3436880057552955E-01 + 120 -1.4919770123693657E-04 + 121 5.1503096187477575E-03 + 122 2.9380756739127534E-03 + 123 -7.1270375143194778E-03 + 124 -7.9589193310300021E-04 + 125 -3.3687652586979230E-03 + 126 5.3096015192122367E-04 + 127 1.7770722676448093E-04 + 128 1.0354725497024359E-01 + 129 -8.8268920454598852E-04 + 130 2.0044296690653687E-02 + 131 1.3236282968894097E-02 + 132 -2.4352428014452310E-02 + 133 -1.2280359161110602E-02 + 134 -1.4906274054727359E-02 + 135 -8.4911244713746568E-04 + 136 3.7079625597123293E-02 + 137 -1.3741072977877558E-02 + 138 -6.3326001256003794E-02 + 139 3.4752011298782845E-02 + 140 -3.3980544157038574E-03 + 141 6.7142509392515570E-05 + 142 3.0797948261266392E-03 + 143 3.9193542362674560E-03 + 144 -1.7008780646284912E-02 + 145 7.9563698513930321E-03 + 146 3.2340680354640597E-03 + 147 2.5295275605242426E-03 + 148 9.1723502344491872E-04 + 149 4.8425413664281046E-03 + 150 -3.6371749901986110E-03 + 151 -1.1743257788978060E-03 + 152 3.9259902322994087E-03 + 153 5.1082534870122945E-02 + 154 -6.6142221354214322E-03 + 155 -2.5961254215989531E-03 + 156 1.0811143310669621E-02 + 157 1.9297185847765132E-03 + 158 2.4303207503463633E-03 + 159 -2.3878236951126986E-03 + 160 5.9420766245404661E-04 + 161 -1.6105201774512849E-02 + 162 -1.4929819690205057E-02 + 163 -2.3367148099981850E-02 + 164 1.0590558864863970E-02 + 165 -1.1148525344334069E-04 + 166 4.1551151799711468E-04 + 167 -5.4484260208336702E-04 + 168 -2.0773568842695298E-03 + 169 6.7906376538428019E-04 + 170 -2.6856976202715697E-03 + 171 -5.4190803716196525E-04 + 172 -5.9771306479641036E-04 + 173 -8.8001926706857028E-04 + 174 -1.3785359431246875E-03 + 175 1.7437505673149117E-03 + 176 1.4760573013259443E-03 + 177 5.7136167285361955E-04 + 178 -2.5008567080331896E-02 + 179 1.8165182390831747E-03 + 180 -5.1816790144554155E-02 + 181 -1.8417383717676185E-02 + 182 -6.5603932436257548E-02 + 183 -2.3801848652135651E-04 + 184 8.0781240281463645E-04 + 185 2.3983231331529294E-04 + 186 7.5357782425175806E-03 + 187 1.7041667250138823E-03 + 188 2.5693118409582960E-03 + 189 -2.9014989480710606E-03 + 190 -1.2183450217847958E-03 + 191 -1.1599807701604314E-01 + 192 8.2972238230557948E-03 + 193 -2.7298797344227282E-02 + 194 1.3461445493141838E-01 + 195 -1.3887555560333983E-02 + 196 8.8227172361400716E-04 + 197 9.0744988190653321E-04 + 198 -4.6405671649586179E-03 + 199 -5.5649152390487280E-03 + 200 -4.4535685297870687E-04 + 201 -2.6650017536874685E-03 + 202 -4.3946138653213869E-03 + 203 -2.9753355519181904E-03 + 204 -2.6452970102657219E-01 + 205 1.4086507337392614E-03 + 206 -2.9474640161203193E-02 + 207 -6.4897262826156793E-02 + 208 2.7279506153826322E-02 + 209 -4.0022270663402743E-04 + 210 -1.0776304340601428E-02 + 211 -1.4425559993992403E-03 + 212 -8.1943185697886545E-03 + 213 3.9421480123311099E-02 + 214 2.5588912842134166E-02 + 215 -1.9591491992011417E-02 + 216 -6.2523540730412951E-03 + 217 1.0544758587168774E-03 + 218 6.3003327476812898E-03 + 219 -2.7725794011786755E-04 + 220 1.0970555283641671E-02 + 221 -1.1393963210785566E-02 + 222 2.9106754190030507E-03 + 223 -1.0400043879520903E-03 + 224 2.1844666678269477E-03 + 225 6.1822451295134612E-04 + 226 -2.1629156440838701E-03 + 227 9.3777025037136707E-04 + 228 6.4185148414653301E-04 + 229 2.2225875783854310E-01 + 230 -8.0289578409134740E-03 + 231 -2.9935556217614297E-02 + 232 -4.0070056479400214E-02 + 233 2.2863640446600650E-02 + 234 1.0862001315946978E-02 + 235 -2.0175740845309264E-03 + 236 -2.7274930527839672E-04 + 237 -6.8227322229136456E-03 + 238 -3.3483398818261088E-02 + 239 -6.6481103916654861E-03 + 240 4.2699616337479054E-02 + 241 3.0921482284591568E-03 + 242 -2.3642394363891286E-03 + 243 -2.4200498311705361E-03 + 244 -5.2041869140712765E-03 + 245 -5.8323485106430038E-03 + 246 -5.4862045614783410E-03 + 247 -1.7516973769115738E-04 + 248 -4.4515488652303497E-03 + 249 -1.0726411676846207E-04 + 250 -1.7682927950062660E-03 + 251 -6.1931209881969180E-04 + 252 3.1148595849383909E-03 + 253 1.3247994886606798E-03 + 254 5.0147121445593523E-02 + 255 -3.0843679190432675E-03 + 256 -9.2448380555334119E-04 + 257 -3.9214047030519956E-02 + 258 6.3984710098667977E-03 + 259 -9.2499153326949953E-04 + 260 4.6545802410986725E-03 + 261 -3.2595814233244004E-03 + 262 -4.8437764993185736E-02 + 263 -6.5300445443877827E-03 + 264 3.2018776397075954E-02 + 265 -2.0474364190700190E-02 + 266 7.4370312089931780E-03 + 267 -8.9341668716012290E-03 + 268 -2.0735596672379099E-03 + 269 6.4404481658686440E-03 + 270 -7.7050999812362971E-04 + 271 3.9696954264241743E-03 + 272 5.5796336508677296E-04 + 273 7.4937116684333058E-04 + 274 1.3982978754383932E-03 + 275 7.2956496265052606E-04 + 276 -4.3142201796233284E-04 + 277 1.6704835475939872E-03 + 278 -7.0244211709162357E-04 + 279 1.6741789457333847E-01 + 280 -1.2903354924884737E-02 + 281 7.5642009672825137E-03 + 282 2.0927803655428703E-01 + 283 3.2142215854916292E-02 + 284 -3.1957876637609081E-03 + 285 2.6300470466672182E-03 + 286 -1.5513467630010602E-03 + 287 8.2075656325254990E-03 + 288 1.0520719518332369E-03 + 289 -1.2880779177935802E-03 + 290 8.8186899398837136E-03 + 291 -9.6978752625125183E-04 + 292 7.1101775478605037E-02 + 293 -5.5284114584055839E-03 + 294 3.5468105051580406E-02 + 295 -1.6487840298213843E-02 + 296 -6.7680563712289601E-02 + 297 2.6686431088850521E-03 + 298 -1.1473642758432101E-04 + 299 -1.1805924395268833E-03 + 300 -4.8255430278906488E-03 + 301 4.4727190554053001E-03 + 302 -7.9105125518458730E-04 + 303 -6.8556956098589816E-04 + 304 1.7910135570320127E-03 + 305 1.5461894937357093E-02 + 306 -1.1823145899546512E-03 + 307 -7.1724368001042514E-04 + 308 6.6632148357404671E-03 + 309 9.4714171920276952E-03 + 310 4.4693396677014728E-04 + 311 8.1127959361239582E-04 + 312 -6.8461901172384577E-04 + 313 6.9256432526626482E-03 + 314 1.1128671259872436E-02 + 315 4.1517160052978647E-02 + 316 -2.7665843567046745E-02 + 317 -2.2101816022605976E-03 + 318 8.2259340883052059E-04 + 319 -2.1447951579126366E-03 + 320 3.3921840147339509E-03 + 321 3.8277660272629908E-04 + 322 1.2017206167961156E-03 + 323 -3.9262512626386098E-04 + 324 -1.7961349183335221E-03 + 325 -6.9950720580210640E-04 + 326 1.7422726962339039E-03 + 327 1.0226524193097603E-05 + 328 -1.0465035636670009E-03 + 329 -2.9061368984052168E-04 + 330 -3.9587573635225956E-02 + 331 2.9272767280447004E-03 + 332 7.3396758409633358E-03 + 333 -1.8740885513425280E-02 + 334 -3.0552646909403564E-03 + 335 8.2416097755318033E-04 + 336 3.7069870257906211E-03 + 337 -1.8776216153515142E-03 + 338 1.8411853627808516E-02 + 339 -1.7471506644134876E-03 + 340 -3.0610678925554836E-02 + 341 8.1229597315805313E-03 + 342 8.9123921195581931E-03 + 343 4.3236188508324240E-03 + 344 2.1823265987720906E-03 + 345 -3.3995658358516481E-03 + 346 -1.4091172607293635E-03 + 347 4.0107667664379520E-03 + 348 -4.0526217566413936E-04 + 349 -2.2940572181770716E-04 + 350 1.7969393513568390E-03 + 351 4.2589549841421554E-06 + 352 1.4068922381088517E-03 + 353 -1.1656142837535189E-03 + 354 1.4671770792719379E-05 + 355 -4.0990735775570185E-02 + 356 3.2382786108223391E-03 + 357 -4.6663177138947798E-03 + 358 -6.3427477449344996E-03 + 359 5.0604714329806851E-02 + 360 -6.9048588165226466E-04 + 361 2.0210989918482197E-03 + 362 1.5416189404984623E-03 + 363 3.8030557870172921E-03 + 364 -3.8443479077686197E-04 + 365 -1.3648906222852509E-04 + 366 1.0678870313967604E-03 + 367 -1.4252628695169490E-03 + 368 2.3983880956752149E-02 + 369 -1.5744841887369554E-03 + 370 -6.4875395278366707E-02 + 371 -3.0851972866273669E-01 + 372 5.2925786209965270E-02 + 373 2.9347220700139129E-03 + 374 2.7071901588359352E-03 + 375 2.2096376801894559E-03 + 376 -1.8469884000953446E-03 + 377 -4.0524391079342446E-03 + 378 -3.8014001180322068E-03 + 379 4.8106915830758009E-03 + 380 5.7875564327205427E-03 + 381 3.8359025463538990E-02 + 382 -2.2467064691346706E-03 + 383 -2.0268630078139918E-01 + 384 -6.0311954686944502E-02 + 385 6.3273586652805067E-02 + 386 -1.9428276072341946E-03 + 387 -5.2856816503306110E-04 + 388 -2.3284594974130627E-03 + 389 -6.8439255937698951E-03 + 390 5.6555540696835212E-03 + 391 -1.2665073970674558E-03 + 392 -6.9716061233871373E-03 + 393 1.0443722338688640E-02 + 394 2.6988166667172286E-01 + 395 -7.4522009744720326E-03 + 396 4.8240538772890688E-02 + 397 -3.3817027048705373E-02 + 398 2.1218837966032539E-02 + 399 -9.3540788962718883E-03 + 400 -1.3097894631842586E-02 + 401 -3.6210824361461286E-03 + 402 2.1756267263899627E-02 + 403 2.7797761209403651E-02 + 404 1.3408308736021659E-02 + 405 3.7090590605155148E-02 + 406 -1.6494067820937212E-02 + 407 -3.5169124172466375E-03 + 408 5.3277668984647863E-03 + 409 5.6278422519029511E-04 + 410 -8.2353144071963501E-03 + 411 -1.3184097093401012E-03 + 412 -1.3315632016678073E-03 + 413 5.7508327410402144E-03 + 414 2.2354176753457420E-03 + 415 2.1724342088975303E-03 + 416 3.5502342370811483E-03 + 417 -1.3434658353808251E-03 + 418 8.9076175652882993E-04 + 419 5.7005301632703946E-02 + 420 -4.7405117796070345E-03 + 421 -3.3185711824206855E-02 + 422 -3.1376874861361231E-02 + 423 -5.5348897597725349E-02 + 424 -2.6694276353482903E-03 + 425 -5.5902807890961565E-04 + 426 -2.8545615245666534E-03 + 427 -3.4427437691343411E-03 + 428 -3.4934070598824697E-03 + 429 -3.8317937800982174E-03 + 430 -9.6717105661859519E-04 + 431 -1.0881693544682136E-03 + 432 -9.8418695551325444E-02 + 433 8.4097123857907255E-03 + 434 1.0474403077254542E-01 + 435 4.6346389131457874E-02 + 436 2.4134940440649174E-02 + 437 -5.3119732929425203E-03 + 438 6.4085703735361037E-03 + 439 6.6924635115322810E-04 + 440 -3.0095806218704830E-03 + 441 3.2975166793227941E-03 + 442 1.0304894302205717E-03 + 443 5.1496304214987548E-03 + 444 4.9746637400899423E-03 + 445 -1.0169022207565087E-01 + 446 -1.5384243247863190E-03 + 447 -1.2553575049517473E-02 + 448 -1.3045073234921318E-02 + 449 -1.8693072801944498E-02 + 450 -1.1110459042601706E-03 + 451 -1.2029500686829505E-02 + 452 4.8154869372598096E-03 + 453 -5.1700066368490359E-02 + 454 -2.0661293726758349E-02 + 455 2.2796636900921218E-02 + 456 -2.3793565013393646E-02 + 457 3.5335814977271722E-02 + 458 6.1645902588035950E-03 + 459 1.0242098436417195E-03 + 460 -7.2924760513985321E-03 + 461 8.1873852286991015E-03 + 462 -3.2793201128244309E-03 + 463 2.3544960035903539E-03 + 464 1.7177170165633522E-03 + 465 1.4942852588703754E-03 + 466 3.0276915754509849E-03 + 467 -1.7327387971033613E-03 + 468 2.3364580994194419E-03 + 469 2.4329572753205111E-03 + 470 -1.4746958906153443E-01 + 471 7.9173131627307478E-03 + 472 -2.2972602601820321E-02 + 473 -9.6825048399618446E-03 + 474 -1.0628217781236892E-02 + 475 5.0998343893633759E-03 + 476 6.2907378194207693E-03 + 477 3.0723159559781377E-03 + 478 2.6046014795845399E-02 + 479 -1.8477395470492517E-02 + 480 -2.2345794191430297E-02 + 481 1.6692074137654687E-02 + 482 -1.7726820654419467E-02 + 483 1.0396021078360126E-03 + 484 -1.6226027906135736E-03 + 485 -9.0446656773835105E-04 + 486 2.4743113908018864E-03 + 487 -1.4946751058832295E-03 + 488 -1.1841169942854487E-03 + 489 -3.1736859736430684E-04 + 490 -9.0268696743615634E-04 + 491 -1.1879100959852680E-03 + 492 2.2852021017317724E-03 + 493 -2.8797291104076671E-03 + 494 -2.3017717858734715E-03 +Ene= -3.1823476956E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -6.8703779685398272E-02 + 2 1.0705575516357451E-03 + 3 2.7606000784177211E-02 + 4 -2.0164248650459304E-02 + 5 -6.0517178850666466E-03 + 6 1.2212026883683341E-03 + 7 -4.2574075129124759E-03 + 8 4.2083388695969455E-03 + 9 -4.1522064242053370E-03 + 10 2.1001757186178492E-02 + 11 1.1072576292625981E-02 + 12 -1.2010785953892758E-02 + 13 -2.0766843350417254E-02 + 14 4.7693679520196220E-03 + 15 -7.6870762981342969E-04 + 16 -1.4511806216607418E-03 + 17 -6.1578621916604437E-03 + 18 1.0084137119732528E-02 + 19 -1.6229189097630434E-03 + 20 -1.7992472010377797E-03 + 21 -2.3179812876299173E-05 + 22 -1.3737240859652770E-03 + 23 2.8893326308034773E-03 + 24 1.8758012978922021E-03 + 25 -2.5271181856150551E-03 + 26 3.1539076888986890E-02 + 27 -7.0158681175186135E-03 + 28 1.1362029323832904E-02 + 29 1.4250318820721506E-02 + 30 1.8118797011017301E-02 + 31 9.7353506556350031E-03 + 32 1.0555153502754813E-03 + 33 -1.3066678163783524E-03 + 34 -2.2048103811581354E-02 + 35 -1.8212106033419204E-02 + 36 -3.7299093122010837E-02 + 37 3.6305082120676180E-02 + 38 -4.1355222296504748E-03 + 39 3.7335403700979011E-03 + 40 -4.4513643145593067E-03 + 41 -6.0289629032997481E-03 + 42 -1.2912756026934268E-02 + 43 -8.6905477988894718E-03 + 44 1.1211513773263977E-03 + 45 -2.7153972400068486E-03 + 46 -8.6129788877034152E-04 + 47 1.3948207966913647E-03 + 48 9.3234987150162061E-04 + 49 3.9216015121387050E-03 + 50 4.7902399271133444E-03 + 51 -1.9039974785313171E-01 + 52 5.9191519858459059E-03 + 53 3.3137574576262520E-02 + 54 -3.6767048257364703E-02 + 55 1.8783429998848841E-02 + 56 5.3147538350253824E-03 + 57 6.8743875530049152E-05 + 58 -1.5458634126040806E-03 + 59 3.0638932266664337E-02 + 60 -4.0781298675748125E-02 + 61 3.3901271461214182E-02 + 62 3.1348698978021818E-02 + 63 3.5675896865663650E-02 + 64 6.7012167822150725E-03 + 65 -6.0454601149548398E-03 + 66 2.0063938211745160E-03 + 67 -2.3449200756613998E-04 + 68 -2.9528616765261678E-03 + 69 1.0398164777084937E-03 + 70 4.7499180367097262E-04 + 71 7.9191020175173505E-04 + 72 -4.4223818224179329E-04 + 73 1.6747161587054775E-03 + 74 5.4554602501517202E-03 + 75 1.7800108431395053E-03 + 76 -2.6154366739696615E-02 + 77 1.2590495512471982E-03 + 78 -2.5009255027867261E-03 + 79 -4.1892932005553031E-02 + 80 -2.8992559022659650E-02 + 81 -1.3081634906965615E-03 + 82 -1.1243734288897181E-03 + 83 -1.0862615111739483E-03 + 84 -1.2237002023752781E-04 + 85 1.3725517156028921E-03 + 86 2.1573206077054609E-03 + 87 -2.5138602060482251E-03 + 88 1.6891881461665978E-03 + 89 -8.7855148641993730E-02 + 90 3.7558330097582464E-03 + 91 -5.8804230581106468E-02 + 92 3.6676409829459064E-02 + 93 5.2208604693149821E-02 + 94 -1.8104066372793789E-03 + 95 1.1904360580894937E-03 + 96 -1.8405893797326469E-05 + 97 1.5849298868114860E-04 + 98 -4.0824705666245090E-03 + 99 3.1778424215254879E-03 + 100 2.0092543612979662E-03 + 101 -3.3355968851624816E-03 + 102 -3.0119888832297589E-02 + 103 2.4337590432469271E-03 + 104 -2.4840723446997181E-02 + 105 -2.7710728709542384E-02 + 106 -7.4077761761658464E-02 + 107 9.5749548628655805E-04 + 108 -2.9539155456400988E-04 + 109 1.6975111197637751E-03 + 110 1.0534415977512712E-03 + 111 6.8478835611950374E-03 + 112 6.8822847197059719E-04 + 113 2.1973145707638226E-03 + 114 3.1208023826832880E-03 + 115 5.4663282247296129E-02 + 116 -5.7651919156017006E-03 + 117 7.1498161867839796E-03 + 118 4.8344598188405655E-02 + 119 6.0070681946479756E-02 + 120 -3.6903669545533313E-04 + 121 1.7946411954635430E-03 + 122 1.2595942505716027E-03 + 123 -2.2974534305947136E-03 + 124 -5.2801730271891242E-04 + 125 -4.7262907501514038E-03 + 126 -3.7863983399511847E-04 + 127 -1.3989731940686841E-03 + 128 2.7607441400097160E-01 + 129 -4.1597673028287811E-03 + 130 1.4560157079381443E-02 + 131 -3.4628313738049345E-02 + 132 -3.0935165857504148E-02 + 133 8.8228902562710858E-03 + 134 5.4798265044463034E-03 + 135 4.1999432467003340E-03 + 136 2.8612017961094471E-02 + 137 4.3260553143493724E-02 + 138 1.2203930626562134E-02 + 139 -1.3337477157414700E-02 + 140 4.0521133574695480E-02 + 141 -4.8825844397608021E-03 + 142 5.8547428753769545E-03 + 143 1.2662241292887551E-03 + 144 8.6473626210553847E-03 + 145 7.2493360487094960E-03 + 146 -2.1396104235409984E-03 + 147 -7.4497407942707519E-04 + 148 -5.8789411715745761E-04 + 149 -1.3746492958498801E-03 + 150 -2.6743237067532568E-03 + 151 -4.2791405716063116E-03 + 152 -1.9901040054340316E-03 + 153 -1.0864680111609180E-02 + 154 -1.7755558248414912E-03 + 155 6.3492920054032858E-03 + 156 6.6285735370333367E-03 + 157 -4.6850836460749822E-03 + 158 -6.1118121809126116E-03 + 159 -3.4449720905695737E-03 + 160 2.7930350718569962E-03 + 161 2.1747619058167856E-03 + 162 2.0347699521711126E-02 + 163 -1.4703236597806563E-02 + 164 -1.7500797084168677E-02 + 165 -8.5428862024600118E-03 + 166 7.7495621876579664E-04 + 167 2.6031654891865335E-03 + 168 -4.2725472825113817E-04 + 169 2.9394589610501755E-03 + 170 9.1125986223841563E-04 + 171 -3.8295133749345896E-03 + 172 3.1693855774567219E-04 + 173 4.3037947957612463E-04 + 174 9.5500803841098417E-04 + 175 -8.2739280649342189E-04 + 176 -2.0054301637768323E-03 + 177 -4.6123913414954733E-04 + 178 1.0382147580192785E-01 + 179 -8.7459124804380520E-03 + 180 3.6650730186670727E-02 + 181 -5.9396884514697164E-02 + 182 1.4759389061969611E-01 + 183 -5.3614030692244064E-03 + 184 -1.0841930340276260E-03 + 185 -2.6283892261621754E-03 + 186 -1.1818913938398505E-02 + 187 3.9018354823458956E-04 + 188 4.8367773963407037E-03 + 189 4.8951094141088010E-03 + 190 -1.6040105091260888E-03 + 191 -6.0930516354208691E-03 + 192 3.0520588726477631E-04 + 193 8.9055615351076256E-02 + 194 -8.5479534812157761E-03 + 195 -4.0504203778696971E-02 + 196 2.2832407606280538E-04 + 197 -1.3677081504417190E-03 + 198 1.7247260585761066E-06 + 199 2.1470362309700367E-03 + 200 -1.8478749855189748E-03 + 201 -3.2741246535310208E-03 + 202 1.1634721143258795E-03 + 203 1.0203637459483824E-02 + 204 2.4064438826435744E-01 + 205 -1.1520656236332180E-02 + 206 -5.2912949776302573E-03 + 207 4.0476196425575317E-02 + 208 -1.5508648865958537E-02 + 209 1.2578730755736047E-03 + 210 -5.4713299510202899E-03 + 211 -3.2714092159828430E-03 + 212 -6.1372226681967864E-03 + 213 2.4053243372514951E-02 + 214 -1.8874553053186182E-03 + 215 -7.1339674364616745E-02 + 216 -1.5972966539856810E-02 + 217 -5.0649955689096296E-03 + 218 -2.5545453148675787E-03 + 219 -4.7251392782182676E-03 + 220 3.2441238316230624E-04 + 221 -1.0023164027020987E-02 + 222 2.6816079755127373E-03 + 223 -3.9182359310398191E-04 + 224 -1.1138671544886239E-03 + 225 1.0781598749681626E-03 + 226 1.2829980390999269E-03 + 227 5.7884244372150605E-03 + 228 1.6382813026401585E-03 + 229 1.7794715514393277E-02 + 230 -6.0588221873035175E-03 + 231 1.2072831124652144E-02 + 232 1.1281744042626005E-02 + 233 -1.9929040596190981E-03 + 234 1.3986088909293679E-02 + 235 -2.0104090099231126E-03 + 236 2.4908893573114476E-04 + 237 4.0335192483071595E-05 + 238 -8.7527307714175186E-03 + 239 1.8762912713491758E-02 + 240 4.1518884027387092E-02 + 241 6.5292332525961902E-03 + 242 4.5430981917782510E-03 + 243 5.4835594109986128E-04 + 244 2.9392871556779606E-03 + 245 -7.0017983197952277E-03 + 246 -1.3220285214863851E-02 + 247 -5.9933024571458241E-05 + 248 -4.6586225208047399E-03 + 249 3.5008186341612653E-05 + 250 -3.1350837704722080E-04 + 251 -1.4784556865799581E-03 + 252 -4.1018360933669449E-04 + 253 1.3140265789104699E-03 + 254 -3.5254006000029897E-02 + 255 -2.8692120753402270E-03 + 256 9.1205531266761487E-03 + 257 -5.4909929882302798E-03 + 258 3.4353642802814224E-03 + 259 7.3527685771388897E-05 + 260 3.6139800582372225E-03 + 261 -1.4025252746863381E-03 + 262 -2.3468285639548857E-02 + 263 -1.0558394240672057E-02 + 264 1.0087248448871692E-02 + 265 -1.6583132669117935E-02 + 266 -3.5723639209109633E-04 + 267 -2.5757049837150833E-04 + 268 -4.4934430627716006E-04 + 269 2.3463628076513840E-03 + 270 -1.0212917285983367E-03 + 271 4.0039408339101945E-04 + 272 1.3032246692000672E-04 + 273 -6.4332796153041515E-04 + 274 -5.4841759406249846E-04 + 275 1.3696975335175962E-03 + 276 -3.1959290177103783E-04 + 277 5.0672091822247505E-04 + 278 7.4906913706939738E-04 + 279 3.4500312726022095E-02 + 280 -3.4777292955100016E-03 + 281 -5.1440756372762601E-03 + 282 6.8141378015385196E-02 + 283 4.6228958257378480E-02 + 284 -1.5506416033092157E-03 + 285 4.8231897137942575E-05 + 286 -4.0467060399743674E-04 + 287 4.1299181221609730E-03 + 288 -7.3712468157852018E-05 + 289 -2.0193000893833587E-03 + 290 4.0600552202249866E-03 + 291 -9.0295274082599674E-04 + 292 -1.6404080103428090E-02 + 293 2.8755295930004755E-04 + 294 4.7034202363755656E-03 + 295 -1.8545898413799812E-02 + 296 1.3767467909358568E-02 + 297 9.8463802293420524E-04 + 298 6.1385858045438053E-04 + 299 1.2071916944957394E-03 + 300 1.4065281386212614E-03 + 301 1.4927649603825944E-03 + 302 -1.1805416830613419E-03 + 303 -4.6914121150373766E-04 + 304 7.4448418180644610E-04 + 305 -1.1551400241264706E-02 + 306 -5.1847908456081936E-04 + 307 4.4341595006627613E-03 + 308 8.0958652896328462E-03 + 309 3.2021360033480700E-04 + 310 4.0654311590078490E-03 + 311 3.0032443980717097E-03 + 312 -2.6735355899102768E-03 + 313 3.7639635064188004E-04 + 314 -3.7813061266906554E-02 + 315 5.6694469809734551E-03 + 316 3.6752270462906520E-03 + 317 1.3944475857540897E-02 + 318 -2.2436319196945799E-03 + 319 3.5010512442096593E-03 + 320 6.4056600496790747E-03 + 321 -4.9950644390234127E-03 + 322 -2.1911629023404189E-03 + 323 2.6710616884965363E-04 + 324 1.6098820925664345E-03 + 325 1.5697493336186766E-03 + 326 -1.8353575153174820E-03 + 327 -1.7301045876262936E-03 + 328 1.6786969844586612E-03 + 329 2.9809054014217247E-03 + 330 -3.1603894864434816E-02 + 331 4.3517532107826291E-03 + 332 -1.0535800839773525E-02 + 333 3.9316751855700020E-03 + 334 2.2775735106103619E-03 + 335 3.2721513811573310E-03 + 336 2.4097195252954329E-03 + 337 3.7158158739487657E-03 + 338 -1.9824763808780798E-02 + 339 -2.1435328146427349E-02 + 340 -4.4622095577854489E-03 + 341 4.3391191225940077E-03 + 342 -1.8063202048798209E-02 + 343 -5.8994828220579744E-04 + 344 -1.6062305229058954E-03 + 345 6.9883433462184412E-03 + 346 -1.6338497761620744E-03 + 347 1.2538616026205292E-03 + 348 -1.3435176323162406E-03 + 349 4.3864384092003538E-04 + 350 1.8467241192936608E-03 + 351 -1.7622018210514075E-03 + 352 1.2698386436152541E-03 + 353 -1.4956957498757227E-03 + 354 1.2086142346200784E-04 + 355 1.5448220463398426E-02 + 356 -1.3907511462163940E-03 + 357 2.8993365706146502E-02 + 358 -1.9871908666033406E-02 + 359 -2.4104747455092067E-02 + 360 -1.0070201071794389E-03 + 361 -1.4300393889348990E-03 + 362 1.7297585600536830E-03 + 363 -1.4062701949844440E-03 + 364 2.4359248944872038E-03 + 365 -3.5515127301939619E-03 + 366 1.1867513368350343E-03 + 367 1.5180003225539970E-03 + 368 1.7104053136196407E-01 + 369 -1.4393330316719612E-02 + 370 2.9749678066619606E-01 + 371 -9.2791883557681656E-02 + 372 -7.6644757166273919E-02 + 373 7.1571776688784993E-03 + 374 -3.0393713991356736E-03 + 375 -4.6993302510337485E-04 + 376 -5.0153953570707720E-03 + 377 4.8662642222101283E-03 + 378 -1.3688873168031198E-03 + 379 -2.6233785941947954E-03 + 380 -6.6431834057298165E-03 + 381 1.8770072977379393E-01 + 382 -1.3794913463755647E-02 + 383 -6.2045583763003211E-02 + 384 2.1961316860001043E-01 + 385 5.7070722549980524E-02 + 386 -1.7723653146891434E-03 + 387 6.1328875240801101E-03 + 388 7.1012928870315599E-04 + 389 2.0980507478862518E-03 + 390 2.3726710763035530E-04 + 391 -2.2593430791436873E-03 + 392 6.4533485614974876E-03 + 393 4.9342802436057424E-03 + 394 2.0073164595992396E-01 + 395 -5.4449673576556414E-03 + 396 2.0161642862085515E-02 + 397 -4.0872920569799791E-02 + 398 1.6591136600726281E-02 + 399 4.3889566228439390E-03 + 400 2.6729314230520798E-03 + 401 6.4400116146321373E-04 + 402 2.1713836888230063E-03 + 403 6.4438464088075820E-03 + 404 -3.0656247289307506E-02 + 405 -2.9390041487081110E-02 + 406 4.2190738538015846E-02 + 407 -1.0687605557525529E-02 + 408 5.9000251466696709E-04 + 409 -1.1698346297716837E-02 + 410 7.0006018526640162E-03 + 411 3.8284105647749624E-03 + 412 -1.5021106865199612E-03 + 413 6.5351947876768996E-04 + 414 -1.2196182369354342E-03 + 415 -1.1188236535122711E-03 + 416 1.4096173291607626E-03 + 417 -1.0814485880032369E-03 + 418 -8.3776708697097275E-04 + 419 9.7595725621032137E-02 + 420 -7.2011162985053450E-03 + 421 -2.3065585276901912E-03 + 422 1.5181922421901545E-02 + 423 -1.1778070758159948E-01 + 424 -2.6932643303394723E-03 + 425 9.6578900129387732E-04 + 426 -6.4307138126685158E-04 + 427 -8.7329045509407476E-03 + 428 -1.8064453298897447E-03 + 429 3.1741435204876555E-03 + 430 1.6754273439446403E-03 + 431 -1.1212567817390790E-03 + 432 1.6530585807721618E-01 + 433 -1.3928718194423664E-02 + 434 -1.3860096038584399E-01 + 435 -1.4184595977172584E-01 + 436 -3.5056681483384020E-02 + 437 -3.9321072605393555E-03 + 438 -7.4934888900252527E-03 + 439 5.2339315681783404E-04 + 440 4.6408788347137271E-03 + 441 -2.5441986484284001E-03 + 442 -1.3603703973205112E-03 + 443 -2.2136593052929595E-03 + 444 -7.7431593715508651E-03 + 445 1.9397725717628880E-01 + 446 -6.5363646937014620E-03 + 447 1.0058829581394238E-02 + 448 2.4773446259055081E-02 + 449 2.8338466041393239E-02 + 450 1.9953876301882046E-04 + 451 -3.1859966865806582E-03 + 452 -4.6660807078446644E-03 + 453 3.3971921118121563E-02 + 454 -9.2898489370633226E-03 + 455 2.6221623874759840E-02 + 456 -3.5401995937485504E-02 + 457 1.2143064206737043E-03 + 458 4.6114866749841499E-03 + 459 -9.4738180234731541E-03 + 460 4.5089409856089368E-03 + 461 3.6169364220383049E-04 + 462 -1.0059053725919793E-03 + 463 5.3170998120943001E-04 + 464 -6.9016666842252705E-04 + 465 3.1378193020333155E-03 + 466 -1.0225996318295580E-03 + 467 -5.6244371030984798E-04 + 468 -1.6746552074916965E-03 + 469 1.1168107417975394E-03 + 470 1.6007413933577119E-01 + 471 -1.5790012088011094E-02 + 472 3.7524594824958943E-02 + 473 -1.8048096965387027E-02 + 474 -8.3760435675925143E-03 + 475 -6.0483073042939669E-03 + 476 2.4051969209449501E-03 + 477 9.5567617866182018E-04 + 478 -1.5236520178550702E-02 + 479 -1.2129284883905274E-02 + 480 3.2891355319407565E-03 + 481 3.0576171983548530E-02 + 482 -2.7809503521361953E-02 + 483 2.6401071071671992E-03 + 484 -3.5399737209948108E-03 + 485 -2.9466379541747373E-03 + 486 8.9222300987896862E-03 + 487 -6.1983431662026153E-03 + 488 6.4954179138267782E-04 + 489 -5.1238237645677735E-04 + 490 1.4140642130881084E-05 + 491 -1.1525511105179560E-03 + 492 2.0838148293009549E-04 + 493 1.5423015874137973E-03 + 494 -4.1603721080146831E-04 +Ene= -3.0893507018E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -4.7650872162565139E-02 + 2 5.7480659553013954E-03 + 3 9.3999811948836352E-03 + 4 -6.6100567700023566E-03 + 5 -1.0999053759823050E-02 + 6 -3.0442881026967097E-03 + 7 1.9224518163091832E-03 + 8 -4.7244073212546130E-05 + 9 7.8920594431707326E-03 + 10 1.6627756533709959E-02 + 11 4.9414557700132693E-03 + 12 8.1298905629810722E-03 + 13 7.4263964832648509E-03 + 14 -2.2988517220912008E-03 + 15 3.5248071299406342E-03 + 16 -3.3816686008264745E-03 + 17 -1.3381955493783049E-03 + 18 1.1757850302634889E-03 + 19 8.5469234476033592E-05 + 20 9.9905384026213414E-04 + 21 -2.2639873556090351E-03 + 22 1.9887157425668370E-04 + 23 1.9704496607680674E-03 + 24 1.8312719593980163E-03 + 25 -8.0649993593516424E-04 + 26 -8.5518525930485784E-02 + 27 2.3654514452200858E-03 + 28 3.1142718706412817E-02 + 29 3.7497092013233445E-02 + 30 -1.2442887904688739E-02 + 31 3.2092020676535798E-03 + 32 -7.9268524311358647E-03 + 33 3.8697672186285234E-03 + 34 -3.4147596430571886E-02 + 35 6.5782181528676893E-03 + 36 1.0602131343655833E-03 + 37 1.7453635956701966E-02 + 38 -3.8761202418896960E-02 + 39 -4.7436459937401200E-03 + 40 -1.2822578223097504E-03 + 41 -1.7978279245906524E-03 + 42 -6.2472532525356663E-03 + 43 -5.3377007222267592E-03 + 44 -6.5068688952344680E-04 + 45 -1.3653411134221095E-03 + 46 1.2047598258388165E-03 + 47 2.3026497333418768E-04 + 48 2.2497617815520480E-04 + 49 -1.5327074969358405E-03 + 50 2.7876672184951290E-04 + 51 -1.3194579189177488E-01 + 52 5.2991348143766395E-03 + 53 2.5075603121397332E-02 + 54 -1.6384886781990578E-02 + 55 -1.0416372141006928E-02 + 56 9.6179591073185927E-04 + 57 3.3158245344389399E-03 + 58 1.4074837457886218E-03 + 59 1.9784047286440201E-03 + 60 2.4585588376840134E-02 + 61 -1.0059784152859557E-02 + 62 2.6485287529962879E-02 + 63 9.9630682143381742E-03 + 64 -1.6597881224853653E-03 + 65 -1.1176256771710232E-03 + 66 -5.8936836773990000E-03 + 67 2.5757841113663733E-04 + 68 -1.2479917398944499E-03 + 69 1.9756533556840893E-03 + 70 5.2920623045064051E-04 + 71 1.9983267492280970E-03 + 72 -4.0771235956493481E-04 + 73 5.8074668094641171E-04 + 74 1.2666444747702844E-03 + 75 -4.0800078235286489E-04 + 76 -4.6926643294163572E-02 + 77 3.5913128500477728E-03 + 78 -3.6142396122382278E-02 + 79 -3.6033039993040618E-02 + 80 -5.8652402437874007E-02 + 81 7.1371272666193736E-04 + 82 -3.0363944730768633E-03 + 83 -9.1948694087232640E-04 + 84 -1.0473147734009597E-03 + 85 5.2504245358383191E-03 + 86 -5.1775445229374742E-04 + 87 8.7378265359358759E-04 + 88 2.0566952770414214E-03 + 89 -3.5217836640742156E-02 + 90 2.3006624605099554E-03 + 91 -2.5556385537079767E-02 + 92 1.9843787435597268E-02 + 93 2.3157816809137203E-02 + 94 -1.6269002735734781E-04 + 95 9.6915979238732745E-04 + 96 -5.9113618898662943E-04 + 97 6.9674884976172379E-05 + 98 -2.3080262076394758E-03 + 99 1.7467841662676014E-03 + 100 6.4311037829544105E-05 + 101 -2.4418261512786448E-03 + 102 -1.3183443659683852E-01 + 103 1.0165602230267882E-02 + 104 -1.6269265814359754E-01 + 105 3.7174310675032747E-02 + 106 3.7185659248187095E-03 + 107 -3.7794858053987199E-03 + 108 2.7683766360708524E-04 + 109 7.3855374224022271E-04 + 110 -3.7483586420150690E-03 + 111 -9.2874718129219778E-04 + 112 9.0144033329065407E-04 + 113 6.8464943574462799E-03 + 114 -3.1045294130117654E-03 + 115 4.2840489671804684E-02 + 116 -4.3368065344874841E-03 + 117 5.6922779682559967E-02 + 118 -1.5979990117592718E-01 + 119 9.8554522341388853E-02 + 120 -4.1430106128689478E-04 + 121 3.6608250370955356E-04 + 122 -3.6750354850552932E-05 + 123 -7.7649140894872036E-03 + 124 -4.6063175372682962E-03 + 125 1.1744770205635829E-02 + 126 -2.1240692174770773E-03 + 127 -1.2019563611618523E-03 + 128 1.4982023165183002E-02 + 129 -9.3006446799660998E-04 + 130 -1.2356825687047532E-02 + 131 4.6820376153967287E-02 + 132 -1.2508004035197588E-02 + 133 8.2865861747432584E-03 + 134 -6.0286382740454090E-03 + 135 3.3347269180933063E-03 + 136 -7.5988704731965295E-03 + 137 -9.1038279760124012E-03 + 138 -2.5931746029662941E-02 + 139 -6.2240681176409567E-02 + 140 1.2690815816945587E-02 + 141 -3.0199964485512821E-03 + 142 -7.5019770017460763E-03 + 143 -4.6930654822639273E-03 + 144 -3.3476332883010758E-03 + 145 6.4929551275810637E-03 + 146 -8.5593716863817309E-05 + 147 -2.1680265192816736E-03 + 148 1.1018051610374498E-03 + 149 -2.5248592382277097E-03 + 150 -1.7121995744462369E-03 + 151 6.8584934614241008E-04 + 152 -3.8732022937389376E-04 + 153 -2.0781713434492796E-01 + 154 1.0919655397031549E-02 + 155 9.8898995408746894E-03 + 156 -2.7026020279827388E-02 + 157 3.3572090375247297E-02 + 158 -2.6433420183648903E-03 + 159 -4.3281587675514502E-04 + 160 -3.7603394014372075E-04 + 161 1.0969261787795015E-04 + 162 5.6486756629005588E-03 + 163 1.5300474246504147E-02 + 164 -1.1328629393478940E-02 + 165 4.4974622321138991E-03 + 166 -5.8839237500848494E-03 + 167 -5.5856409117794464E-03 + 168 7.7790757034137932E-03 + 169 7.7016018802965030E-03 + 170 4.3429245105369597E-03 + 171 -2.1362039675316491E-03 + 172 1.3825062877571310E-03 + 173 -1.8113541736846878E-03 + 174 -1.7763139347290512E-04 + 175 -2.1058020524431600E-03 + 176 -1.9842311748173441E-03 + 177 -4.9592002684140080E-04 + 178 -9.6509055728627835E-02 + 179 6.9171078486342120E-03 + 180 1.4510398568333807E-01 + 181 2.8443154334162991E-02 + 182 -4.1193432343282876E-02 + 183 1.9455117158040723E-03 + 184 3.6911717544366508E-03 + 185 -4.2672211139537317E-03 + 186 -2.0558965291409435E-03 + 187 -5.4081241962098325E-03 + 188 -9.8761068744392653E-04 + 189 6.4434668200676797E-03 + 190 2.4752278958100299E-03 + 191 -2.3161062369561870E-02 + 192 2.6828431187803166E-03 + 193 4.8383777466347117E-02 + 194 4.4294269422142249E-02 + 195 2.2374989337747890E-02 + 196 -9.3091523269558311E-04 + 197 -1.1853850464505471E-03 + 198 1.3816436735832624E-03 + 199 -2.7836218914678119E-03 + 200 -7.2211303827359873E-04 + 201 -5.0106748129694122E-04 + 202 -2.0704017572701549E-03 + 203 5.1077217847770697E-03 + 204 8.1379712698533453E-03 + 205 -7.1183414899352103E-04 + 206 -1.4718377235775761E-02 + 207 -7.9730377802228782E-03 + 208 -1.1394165553069147E-02 + 209 1.9138134842577304E-03 + 210 1.1153749220305768E-03 + 211 2.3691352925309011E-03 + 212 3.9707383762506904E-02 + 213 -7.1990578211526745E-03 + 214 -1.0134794056485708E-02 + 215 -2.1656949917979312E-02 + 216 3.4807435509856778E-03 + 217 3.3530230160301565E-03 + 218 -2.5417258952058651E-03 + 219 2.1261458476205361E-03 + 220 -2.5114678017246245E-03 + 221 9.5700625574758830E-04 + 222 2.0648174326775800E-03 + 223 -8.9499833669686498E-04 + 224 -2.2558531057776600E-03 + 225 -5.0072756475778521E-04 + 226 1.1635864462173685E-03 + 227 2.0510813597139966E-03 + 228 -4.3807226652494699E-04 + 229 -1.4202802103411957E-01 + 230 8.8551091862847462E-03 + 231 2.0413218079114850E-02 + 232 -2.1213633235092851E-03 + 233 7.1803619185376146E-03 + 234 1.6757087184020997E-03 + 235 1.4115967554096669E-03 + 236 -1.8472718321904122E-03 + 237 3.6017592392273146E-02 + 238 3.2860165936577442E-03 + 239 2.5189509641562551E-03 + 240 -6.4075122251813915E-03 + 241 6.9975343009517479E-02 + 242 1.0226620782372815E-02 + 243 1.0461219002446865E-02 + 244 1.9263790373298859E-03 + 245 -6.2547522563405362E-03 + 246 5.3887332915832928E-03 + 247 2.4519769484060606E-04 + 248 2.0686617092621484E-03 + 249 -8.3654091812012190E-04 + 250 -9.3282394330498962E-04 + 251 1.3023574479386780E-03 + 252 2.9987990292308582E-04 + 253 6.8218650372843623E-04 + 254 3.3962669956110914E-01 + 255 -1.6119965484753140E-02 + 256 -2.0538416579830937E-02 + 257 -2.1055079741882175E-02 + 258 -2.4211393772341845E-03 + 259 1.8259615255905254E-03 + 260 -3.2909497832682238E-03 + 261 5.9197388080729496E-03 + 262 6.2423996217326840E-02 + 263 3.0330183311431756E-02 + 264 -3.4940631643512320E-02 + 265 -2.9795338793613692E-03 + 266 1.0151680270093080E-02 + 267 -4.5674434408263321E-03 + 268 3.6514775265338298E-03 + 269 -2.9201902381266868E-03 + 270 -7.0430894457173274E-03 + 271 1.6559052529661802E-03 + 272 -3.3168253115061966E-04 + 273 -9.4365602369368511E-04 + 274 8.4199122496235815E-04 + 275 -7.0498675466883936E-04 + 276 -1.0441271696584259E-03 + 277 -8.7166432310127067E-05 + 278 1.5044639751202189E-03 + 279 5.0679377528270515E-02 + 280 -2.9139859802197196E-03 + 281 -3.3910103462220014E-03 + 282 -6.2131049514079856E-02 + 283 -2.5732913923601958E-01 + 284 1.8930359755967765E-03 + 285 -9.2292660715866690E-04 + 286 3.5282237959452522E-04 + 287 -1.5257108372545037E-02 + 288 -3.2069844144058104E-03 + 289 1.1725017585260266E-02 + 290 -2.0746587703479816E-03 + 291 -1.3385870726500639E-03 + 292 -3.1498479072743613E-02 + 293 1.5558025264071718E-03 + 294 1.0490570432020282E-02 + 295 4.7603479752389190E-02 + 296 6.2419411311558509E-02 + 297 1.3123307128661400E-03 + 298 9.8717388185444064E-04 + 299 3.0825845093151935E-03 + 300 4.7355792438700034E-03 + 301 -1.3393127640080273E-03 + 302 2.8031536387533402E-03 + 303 -1.3685003882197271E-03 + 304 -4.4380922190408482E-03 + 305 8.5638112316072504E-02 + 306 -1.0170234366339735E-02 + 307 -1.0363862788599109E-02 + 308 -1.1685121391524498E-02 + 309 -1.8884412591473831E-03 + 310 2.5730750998445499E-03 + 311 -2.9909865466485703E-03 + 312 -2.9457284009704542E-03 + 313 -2.0829605251226044E-02 + 314 -2.9514106186589031E-02 + 315 -1.8563531566556341E-02 + 316 3.0735862269128337E-02 + 317 2.8791644790918773E-02 + 318 -2.2668046098113606E-03 + 319 -1.1816779134688144E-03 + 320 -3.8293382967343964E-03 + 321 1.4054744475389567E-03 + 322 7.1337344267382394E-03 + 323 -1.9017337759397952E-04 + 324 1.0513298626729716E-03 + 325 1.1629325621508012E-03 + 326 -3.3236285459643485E-04 + 327 6.4398726778577386E-04 + 328 8.1433692649635569E-04 + 329 -7.4675552260320451E-04 + 330 3.6917585654032128E-03 + 331 1.8034236291865706E-03 + 332 2.8983693018626479E-04 + 333 4.0770942839885756E-03 + 334 1.4527008224928190E-02 + 335 3.8698856482987068E-03 + 336 1.3827281021001479E-03 + 337 -1.9146241846950342E-03 + 338 -1.2597201198377568E-02 + 339 -2.0039644091711183E-02 + 340 -3.6969178116393240E-03 + 341 -3.9349283314433249E-03 + 342 -1.0619701464854605E-02 + 343 -1.7988462452871623E-03 + 344 1.1084437643822580E-03 + 345 2.4128444544944216E-03 + 346 4.8538063054249760E-04 + 347 4.2771605119042919E-03 + 348 -1.6563257422117855E-03 + 349 4.7768973361994935E-04 + 350 2.1548968936023014E-03 + 351 -3.7062512049265722E-04 + 352 1.6639936794841696E-03 + 353 -1.6577069916496700E-03 + 354 5.8334378607517007E-04 + 355 6.6868878570292736E-02 + 356 -5.7916906469412518E-03 + 357 2.2175226179278095E-02 + 358 -9.7415230976990577E-02 + 359 -4.2772203475624687E-02 + 360 -2.8869842319924565E-03 + 361 -2.1458588261681890E-03 + 362 1.2763884158936329E-03 + 363 -7.6546035686945535E-04 + 364 3.5659536923832520E-03 + 365 -6.0618928292094096E-03 + 366 2.3220905876373855E-03 + 367 -3.9297836812415853E-04 + 368 -3.6864509717014882E-02 + 369 3.2146964026282497E-03 + 370 1.3323484747502357E-01 + 371 -1.1750336785127383E-02 + 372 9.1699409323236017E-02 + 373 -5.6754305935556902E-03 + 374 -8.0129082841483464E-03 + 375 2.3250318316913672E-03 + 376 -7.3636765742318342E-04 + 377 2.6132273110223336E-04 + 378 -6.4403842470746788E-03 + 379 -1.9461725996669434E-03 + 380 -3.6741830046938184E-03 + 381 -1.7366792605451920E-02 + 382 1.5513780025640570E-03 + 383 -2.0805879775475652E-01 + 384 -1.0984638666759834E-01 + 385 -1.0176565177362271E-01 + 386 8.3950997909952550E-03 + 387 4.6587251039268097E-03 + 388 5.6982893182575536E-03 + 389 4.6841096977107540E-04 + 390 -2.0137727255055251E-03 + 391 3.8094188373164052E-03 + 392 -5.0993491572523262E-03 + 393 8.1194366693655168E-03 + 394 -6.1082690063867948E-02 + 395 6.6657580921805487E-03 + 396 2.1549242944260926E-02 + 397 -1.4698762439738236E-02 + 398 2.4798129160967800E-02 + 399 8.2442738175928891E-03 + 400 8.3094050736361169E-03 + 401 -1.2181906193753499E-03 + 402 1.9649207490686247E-02 + 403 2.7321979830541153E-02 + 404 1.1155432100656750E-02 + 405 -4.7228816750512589E-02 + 406 -5.0662885677473075E-02 + 407 6.1684540129526280E-03 + 408 5.5597131520903386E-03 + 409 5.3726220019584573E-04 + 410 6.3748643051888742E-03 + 411 -1.1415751879279346E-02 + 412 -2.5833091936414221E-03 + 413 -4.1726928846414699E-03 + 414 -3.7803445347132703E-03 + 415 -1.9472916970448930E-04 + 416 -3.7571651577194117E-04 + 417 -1.4080860769269000E-03 + 418 -2.8857696575095284E-03 + 419 3.7399259317704214E-02 + 420 -3.6691445887400490E-03 + 421 -2.9691438834099363E-02 + 422 9.4917842948989778E-02 + 423 4.7857495824626074E-03 + 424 2.0778732844537376E-04 + 425 -1.0682382185395369E-03 + 426 -6.4378674398925338E-04 + 427 3.0639985783966575E-03 + 428 9.1097126555471798E-04 + 429 7.4072321292815149E-03 + 430 -1.7591276792485992E-04 + 431 3.7227298977415700E-03 + 432 -2.8062471971365958E-02 + 433 2.8561576499025279E-03 + 434 -4.6593046724030224E-02 + 435 1.1447994928432138E-01 + 436 6.0214684168543059E-02 + 437 -8.5597443283842592E-04 + 438 8.3224019677895970E-04 + 439 2.4172327179379058E-03 + 440 -2.9311056052621167E-03 + 441 3.0036105591364224E-03 + 442 4.9101462785579404E-03 + 443 -9.8715085940116777E-03 + 444 2.3111190012786954E-03 + 445 1.6481791024324147E-01 + 446 -5.2127348816354783E-04 + 447 2.7320352727760802E-02 + 448 1.2418805575151352E-02 + 449 1.3838200295798138E-02 + 450 -8.1171744633336653E-04 + 451 5.9521768611255762E-03 + 452 5.2386056645260335E-03 + 453 1.0897081589910755E-02 + 454 -2.7068449406640873E-03 + 455 -1.1653955670462939E-02 + 456 1.8269829695687412E-02 + 457 2.8497233525630605E-02 + 458 -5.2842944291007438E-03 + 459 1.5172671490231171E-03 + 460 -2.2920846125302381E-03 + 461 -3.4178962513368668E-03 + 462 1.0129049789909179E-02 + 463 -5.2751898055232017E-05 + 464 -2.7923295139580086E-03 + 465 -4.4317843162216446E-04 + 466 -6.7087440077877802E-04 + 467 -9.4465699604318325E-04 + 468 -1.6893553844765758E-03 + 469 -7.8560947381004398E-04 + 470 -2.2179334865047332E-01 + 471 2.0421168288846114E-02 + 472 -9.1856188920497201E-03 + 473 -6.2604212969113917E-03 + 474 -1.0616490226329465E-03 + 475 3.3490051268928083E-03 + 476 4.7287564434399512E-03 + 477 -3.8032840996304684E-04 + 478 4.2305571092397153E-02 + 479 -9.8868215652957413E-03 + 480 -2.3962704928622045E-02 + 481 4.7939958387732323E-02 + 482 -6.2947597077838091E-02 + 483 2.2171793259410221E-03 + 484 1.0327486291220656E-03 + 485 1.1162906917319699E-03 + 486 -5.9517557521768564E-04 + 487 3.9224750570185443E-03 + 488 -1.0856197232389146E-03 + 489 -9.3037780776066912E-05 + 490 -6.6787561529832505E-04 + 491 -1.8045296181028072E-05 + 492 -1.0073714116430519E-04 + 493 -3.5911966767296501E-04 + 494 6.7787960022450686E-04 +Ene= -3.0217286134E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -4.1111473579365662E-02 + 2 5.1460236982217343E-03 + 3 -1.0591007815400526E-02 + 4 -1.4057891669194019E-02 + 5 8.3013963801158185E-04 + 6 -2.9885869815106099E-03 + 7 3.7536128936572041E-03 + 8 -2.6192547224805000E-04 + 9 1.8449944660005744E-02 + 10 -2.9419085091666785E-03 + 11 -2.9478653013133935E-03 + 12 3.2628380427239867E-02 + 13 2.0175482266395383E-02 + 14 1.1954170521882117E-03 + 15 2.3729997611855169E-04 + 16 4.5049466996154759E-03 + 17 6.3019804257082070E-03 + 18 1.8693395786640143E-03 + 19 7.7915625481908243E-04 + 20 8.6434290796260521E-04 + 21 -4.6790345331953348E-04 + 22 1.3520729220341864E-04 + 23 -2.1565881023456472E-03 + 24 -6.3939178266103985E-05 + 25 1.4952437820118205E-05 + 26 2.6311021646574795E-01 + 27 -4.9344540383807417E-03 + 28 -3.5610825907899719E-02 + 29 -4.9313659711873424E-03 + 30 3.9317447422560464E-02 + 31 -1.0313061557458815E-02 + 32 2.7356735992269880E-03 + 33 4.8467648800268765E-04 + 34 8.1389831609035550E-03 + 35 -5.9293007145144495E-02 + 36 -4.4723472366662971E-02 + 37 -3.0985126027256778E-02 + 38 1.9034535724951247E-03 + 39 -9.4217301992371803E-03 + 40 -1.0338007826997368E-02 + 41 -1.0052909805956172E-02 + 42 4.0627503111999889E-03 + 43 5.9191928415085141E-03 + 44 -6.7780280767764116E-04 + 45 2.1348324935260483E-03 + 46 6.6467964224764336E-04 + 47 4.6017442777805204E-03 + 48 2.0890736478760834E-03 + 49 -1.2283089931337916E-03 + 50 -8.4860049559985860E-04 + 51 6.0634871659615480E-02 + 52 -4.4196076364262354E-03 + 53 -1.5107211652067113E-02 + 54 1.8367699293096965E-03 + 55 -1.8216079451788419E-03 + 56 5.3553100521792543E-03 + 57 4.2607032876648394E-04 + 58 2.2523408758580404E-03 + 59 2.2345356485887150E-02 + 60 -1.8791189660403791E-03 + 61 2.5674605625991165E-02 + 62 -1.5609488777023353E-02 + 63 6.4343624805935926E-03 + 64 2.4890554959335867E-03 + 65 -4.7338414187760962E-03 + 66 2.2193365470701159E-03 + 67 -3.2868693765981567E-03 + 68 -2.9430903406478404E-05 + 69 -2.1594418559602868E-03 + 70 2.4419436652873376E-03 + 71 -1.2478682804926468E-03 + 72 3.4787858427294221E-03 + 73 7.7776004054875007E-04 + 74 -6.8926673278782826E-04 + 75 1.4527937797202712E-03 + 76 5.2160473084225173E-03 + 77 -6.6273690345625082E-04 + 78 6.3628469393820636E-03 + 79 1.2618193401427264E-02 + 80 -1.3045684407209401E-01 + 81 2.0969653470967000E-03 + 82 -2.0012528797873409E-03 + 83 -2.4226379632138551E-03 + 84 -1.8428898250416497E-03 + 85 8.3770384323776943E-03 + 86 4.7376011797601088E-03 + 87 3.7290263226883542E-04 + 88 -3.0402227392303254E-03 + 89 1.5182633314805474E-02 + 90 -7.0257812668838454E-04 + 91 2.3561765512549303E-02 + 92 1.4583954551319583E-03 + 93 -1.7812131925160788E-03 + 94 2.6476913973516353E-03 + 95 3.5467943465132746E-04 + 96 -3.8940212366106984E-04 + 97 5.5534443407157311E-04 + 98 8.7031378411358011E-04 + 99 3.0476698984386675E-04 + 100 -1.7506592443258184E-03 + 101 2.5905001586617310E-04 + 102 1.4735979536441482E-01 + 103 -1.3649565172606770E-02 + 104 1.7387222168268407E-01 + 105 -1.0767403025470604E-01 + 106 -6.6360026559022706E-02 + 107 2.3019834140698761E-03 + 108 -8.6406673544024874E-05 + 109 -1.3030750557393195E-03 + 110 6.8360009477182173E-03 + 111 6.3224708687823561E-03 + 112 4.0383652589879863E-05 + 113 -4.5040172256478840E-03 + 114 7.4898221350023168E-03 + 115 8.7327926892269092E-02 + 116 -9.3005837756187180E-03 + 117 -9.5199095497611574E-02 + 118 1.0676147511095122E-01 + 119 8.2217758316410122E-02 + 120 2.9575681741608982E-03 + 121 -3.9136259164581358E-04 + 122 2.8637032730307490E-03 + 123 -1.9025837036338231E-03 + 124 7.7180717916047427E-03 + 125 -4.2404909202988289E-03 + 126 2.2097926443202711E-03 + 127 4.8590098387970597E-03 + 128 -1.1574220818873843E-01 + 129 -9.7592701672512120E-04 + 130 1.4224872341151253E-02 + 131 1.2652870719674270E-02 + 132 2.6314914629436307E-02 + 133 -1.6435423025654431E-02 + 134 2.5166285543861172E-03 + 135 -2.3738153200846342E-03 + 136 -3.3144160142903931E-02 + 137 3.1585014759012840E-02 + 138 -1.5854541255002550E-02 + 139 3.8222057655384514E-02 + 140 3.5119230075807161E-03 + 141 4.7221828572691152E-03 + 142 6.6229560125115978E-03 + 143 -5.7165584237354721E-03 + 144 -9.7875201555475515E-03 + 145 -4.9013208578614015E-03 + 146 -4.0403398372452630E-04 + 147 4.3668123061189690E-03 + 148 8.6430309845241275E-04 + 149 1.1307872226425648E-03 + 150 4.8680521024233340E-03 + 151 -2.1445687535033998E-03 + 152 2.6125139546623569E-03 + 153 2.9035878110686858E-01 + 154 -1.7916382120141003E-02 + 155 -9.7772774314640078E-03 + 156 2.7275252174445468E-02 + 157 -2.5707561521991280E-02 + 158 5.3851548728407082E-03 + 159 -1.3130208858262793E-03 + 160 -9.5322315274628784E-04 + 161 -2.3619682570122431E-02 + 162 -3.3924565722180444E-02 + 163 -2.8015428836425601E-02 + 164 4.1203724140319198E-02 + 165 1.1861543075945604E-02 + 166 6.8772977257059494E-03 + 167 5.0542536061870900E-03 + 168 -7.5889307836145021E-03 + 169 -4.7178871838996859E-03 + 170 -8.4332497119325538E-04 + 171 1.6507371192190363E-03 + 172 -2.9675144625076096E-03 + 173 6.8863291924267786E-04 + 174 -1.3691400590035532E-03 + 175 2.6497583401529430E-03 + 176 1.7364472441347399E-03 + 177 1.7136383973600654E-03 + 178 4.7890078879023384E-02 + 179 -3.8044608025927470E-03 + 180 -2.1954388688633114E-01 + 181 6.4343205203772633E-03 + 182 -6.9684337828134546E-02 + 183 1.1868768793347488E-03 + 184 -5.4126180176000975E-04 + 185 3.6964765711512441E-03 + 186 1.0868346033701759E-02 + 187 6.2434185652357381E-03 + 188 -1.3475814053709556E-03 + 189 -1.2463658039518703E-02 + 190 -2.0576443440742690E-03 + 191 6.9167838657958738E-02 + 192 -5.6189100463259877E-03 + 193 -2.5609666319707933E-02 + 194 -4.7716672210763013E-02 + 195 9.8319858745286676E-02 + 196 2.2956804472065925E-03 + 197 -3.3700677634692158E-03 + 198 -7.8616891791983147E-04 + 199 -3.7590598920617326E-03 + 200 -2.8170164509190489E-04 + 201 5.1311917495668090E-03 + 202 1.2224835876480961E-03 + 203 -2.9915220078326845E-03 + 204 -4.4928207831122023E-02 + 205 1.7998609667881017E-03 + 206 1.2341802363680364E-02 + 207 -1.7293310448991711E-02 + 208 -3.8725695312362300E-02 + 209 9.9759152363378036E-04 + 210 -2.5528637674292144E-04 + 211 5.5040981430775262E-03 + 212 2.8502289450985301E-02 + 213 5.2054891576494584E-03 + 214 -1.8086769881388173E-02 + 215 3.0781174713830427E-02 + 216 4.8711615643856545E-04 + 217 -8.8626866702803302E-04 + 218 -2.6161457726494160E-04 + 219 -2.7975847986879245E-03 + 220 4.5694437472690646E-03 + 221 1.3009827766567503E-04 + 222 4.1505619976850384E-03 + 223 2.0308624664530095E-03 + 224 -1.4772248538553611E-03 + 225 -1.0829381424145809E-03 + 226 -1.0267209009440404E-03 + 227 -2.0596468349131794E-03 + 228 -3.2551076190619031E-04 + 229 -1.1403688888568067E-01 + 230 2.2811540207400951E-03 + 231 4.1988851885580783E-03 + 232 1.8689506442388126E-03 + 233 5.0876259148439308E-03 + 234 6.6327363515400941E-03 + 235 1.4126512536326403E-03 + 236 4.2580491934882949E-04 + 237 1.6119614338595160E-02 + 238 6.4514302111643934E-03 + 239 -1.3325156821726431E-03 + 240 -2.1496464072818831E-02 + 241 3.5291161571965983E-02 + 242 6.5386882221791578E-03 + 243 2.5327819262580551E-03 + 244 -2.7077041118920279E-04 + 245 -7.3241418918773464E-03 + 246 9.1047351239564736E-04 + 247 -2.1136713963913062E-03 + 248 -1.4705533272583084E-03 + 249 -4.9267870927985715E-04 + 250 -1.8938851318787213E-04 + 251 1.1562614220414393E-03 + 252 9.1288685372693259E-04 + 253 4.0514061166123513E-04 + 254 5.2853754671112328E-02 + 255 -4.2951587099459149E-03 + 256 3.2785373246088999E-03 + 257 -1.5192425337223758E-03 + 258 -1.7393661830726596E-02 + 259 -2.1720031933660268E-03 + 260 -5.1403685747033198E-04 + 261 2.9629413958423638E-03 + 262 -2.1792602320284977E-03 + 263 1.5013343803374039E-02 + 264 1.4604849818312163E-05 + 265 -1.4429988194001339E-03 + 266 -1.8811405860579975E-02 + 267 -2.2032623480427137E-03 + 268 4.6841809987020911E-03 + 269 4.1604655290390065E-03 + 270 -1.1149781765571250E-03 + 271 1.0328069735154905E-03 + 272 1.2413254116612944E-03 + 273 1.3299441899311247E-04 + 274 -2.4267449108041012E-03 + 275 2.2995277786139992E-03 + 276 -1.3908249394983623E-03 + 277 1.5037173451791215E-03 + 278 9.5298237889220603E-04 + 279 1.4050766012930380E-03 + 280 -1.3385649825753700E-04 + 281 1.9835634530445630E-02 + 282 -3.5311944741406608E-02 + 283 -7.7455584200286018E-02 + 284 7.0093842571192179E-04 + 285 7.4368361249229319E-04 + 286 7.8862265026640387E-04 + 287 -4.4330418171483850E-03 + 288 -2.0647149799199777E-03 + 289 2.5376462872125373E-03 + 290 -4.9401475655795103E-04 + 291 -2.7091905267516495E-03 + 292 -5.0982765423329933E-03 + 293 3.1753996584952190E-06 + 294 4.6900595342014288E-02 + 295 5.9960911678243696E-02 + 296 4.4862314605039026E-02 + 297 2.8592665456518914E-03 + 298 3.3357147011795880E-03 + 299 5.7978772392957879E-03 + 300 5.0494652854903566E-03 + 301 1.9196440057001548E-03 + 302 3.6944184352102104E-03 + 303 -1.8726455511551257E-03 + 304 -5.2310853719489698E-03 + 305 1.4093068735940870E-01 + 306 -1.5001526727820510E-02 + 307 -1.0896935809454058E-02 + 308 -8.7327999140268606E-03 + 309 1.3435324397015870E-02 + 310 3.4420182384214508E-03 + 311 -1.4822670832726516E-03 + 312 -6.3615185051320057E-03 + 313 -1.6444884355613990E-02 + 314 -4.9238258321421098E-02 + 315 -2.4341247654407358E-02 + 316 3.3975572640452430E-02 + 317 4.3067887080793545E-02 + 318 -2.0230043044496483E-03 + 319 -4.2274370504864411E-03 + 320 -1.6776821762436759E-03 + 321 -3.9182322369476927E-04 + 322 7.8294487763790627E-03 + 323 9.8851921655792544E-04 + 324 5.0495403935293351E-04 + 325 2.2679504915587858E-03 + 326 -1.5351880509292513E-03 + 327 -9.8771533583329250E-04 + 328 1.0792990391970342E-03 + 329 1.5184189073887261E-03 + 330 9.1474718004212432E-02 + 331 -4.8674525598821818E-03 + 332 -3.6179730900486851E-03 + 333 3.1060739324101725E-02 + 334 2.5583297622105150E-02 + 335 -3.1952610602948146E-04 + 336 1.4766979035236545E-03 + 337 -3.7993735396362801E-03 + 338 -1.2362879347046503E-02 + 339 -3.1866483305803910E-03 + 340 1.2710294132374936E-02 + 341 -1.4076772396082328E-02 + 342 -1.3212239824675970E-02 + 343 -8.9074080784176668E-03 + 344 -5.1909195542763527E-03 + 345 8.8797637336453118E-03 + 346 -6.6222499554483691E-03 + 347 -6.1970331953756263E-04 + 348 -2.5195465925696085E-03 + 349 -3.7565598859641954E-04 + 350 1.4109198620127245E-03 + 351 -1.6178932319781054E-03 + 352 -1.6907992442144958E-03 + 353 -9.8407697609047078E-04 + 354 -1.6298043463590338E-03 + 355 1.3932744449801926E-01 + 356 -1.2449760728613250E-02 + 357 2.0361220417127644E-02 + 358 -1.4449988070554406E-01 + 359 -1.3320084638551344E-01 + 360 -3.6851309886057346E-03 + 361 -4.1752100355184523E-03 + 362 1.5389472150691256E-03 + 363 -3.9525030497858651E-03 + 364 2.8709901325741425E-03 + 365 -9.3122035330176593E-03 + 366 2.9919080436929270E-03 + 367 5.8870315303669518E-04 + 368 8.8302995307888682E-02 + 369 -7.5475114827847495E-03 + 370 9.3175093848388898E-03 + 371 1.0092100533425019E-01 + 372 1.2337795744735580E-01 + 373 -5.5083567183971862E-05 + 374 -6.3902099890192417E-05 + 375 -2.0852359270918191E-03 + 376 9.5125525724914400E-04 + 377 -1.4433139281114974E-02 + 378 -3.7274559958652238E-03 + 379 -1.9359504587626616E-03 + 380 -1.8811581359797201E-03 + 381 -3.2149176073226482E-02 + 382 1.5870243970476353E-03 + 383 5.9816278847613751E-02 + 384 -8.2614577047175758E-02 + 385 9.5697176629866598E-02 + 386 -2.6690251042387251E-03 + 387 2.6387873716293003E-03 + 388 -2.8307613535928445E-03 + 389 -3.3209696218338379E-03 + 390 2.4880276937461481E-03 + 391 -6.6145545362080943E-03 + 392 -3.6878045356356580E-03 + 393 -5.6610978408358856E-03 + 394 3.3796505763463679E-02 + 395 -3.2108504313220743E-03 + 396 7.2214871330770614E-06 + 397 -1.6666168049115208E-04 + 398 -3.0987640489580472E-03 + 399 9.1980026487512440E-03 + 400 8.7168071891541021E-03 + 401 -3.2446460695154011E-03 + 402 -2.2315442920216887E-02 + 403 -3.2396227681840035E-02 + 404 4.3700219128780297E-02 + 405 -3.2409350592554190E-02 + 406 -4.8801109424939162E-03 + 407 -4.7552775893731844E-03 + 408 -1.0215266330955550E-02 + 409 3.2344897205136970E-03 + 410 1.0825971120942105E-02 + 411 -2.9052971511051764E-03 + 412 -1.1132138796480868E-03 + 413 -2.0490717266225152E-03 + 414 -3.8608850397993358E-03 + 415 -1.3814009595975898E-03 + 416 2.1369517635315238E-03 + 417 -1.4802576271201657E-03 + 418 -3.8971216403226767E-03 + 419 1.2625111191704760E-01 + 420 -1.0846133173754130E-02 + 421 -5.0590638782863677E-02 + 422 1.2359532712565556E-01 + 423 -9.0852955382987363E-02 + 424 -2.6753457933370384E-03 + 425 9.9689532602602305E-04 + 426 -2.4669094038859206E-03 + 427 -4.1365989344030457E-04 + 428 -1.2553230525123824E-04 + 429 9.1095853476442466E-03 + 430 2.0056451778116932E-03 + 431 4.6714333634245283E-03 + 432 3.7799423445646525E-02 + 433 -4.6220357665457783E-03 + 434 -8.2419982596295724E-02 + 435 1.0186830493841659E-02 + 436 1.1184728580555911E-01 + 437 4.8344003578328148E-05 + 438 5.7210736047466377E-04 + 439 -4.8896209109510706E-03 + 440 1.5141986531146112E-03 + 441 8.2561979305557677E-03 + 442 5.5018472030646248E-03 + 443 -5.4315647824373170E-03 + 444 -3.2590621602829896E-03 + 445 3.1409329243417972E-01 + 446 -5.3020020606125576E-03 + 447 3.7383292215859724E-02 + 448 1.9279818747903681E-02 + 449 1.4522242033739998E-02 + 450 6.4461583267651310E-04 + 451 5.5607478515842549E-03 + 452 5.7698039380784071E-03 + 453 -7.5295707371298591E-03 + 454 -3.9841037148387839E-02 + 455 -1.4631375987365218E-02 + 456 1.9333389855187910E-02 + 457 6.3142110756743246E-03 + 458 -5.7004180770936549E-03 + 459 -3.7326708441347786E-03 + 460 -8.1772751577846711E-04 + 461 -1.6751899219709936E-03 + 462 7.6083683074483661E-03 + 463 1.2623783069927155E-03 + 464 -3.2400366893036501E-03 + 465 -8.3609888476972598E-04 + 466 -3.2656218322799611E-04 + 467 -1.5922327117698957E-03 + 468 -1.3000622980524387E-03 + 469 -8.1957600899160957E-05 + 470 -3.2608006886554276E-02 + 471 1.9234608050403220E-03 + 472 2.9179241243956172E-03 + 473 1.6236714921429717E-02 + 474 -2.3190878753847434E-02 + 475 -2.9877332120028551E-04 + 476 -4.6334211733538881E-03 + 477 9.7121788773479227E-04 + 478 1.2181634011129922E-02 + 479 -2.8730588571847866E-02 + 480 2.3387411677681778E-04 + 481 6.2738369165853012E-03 + 482 -3.8936747488444307E-03 + 483 -4.0545812978947911E-04 + 484 -4.6722450262875323E-03 + 485 -8.3984172763078313E-04 + 486 1.5963994074672709E-03 + 487 -3.5688500703897149E-04 + 488 -5.1615497451051439E-04 + 489 -3.2272376572734207E-04 + 490 1.3760857871458556E-03 + 491 -3.3721156612706956E-04 + 492 -1.4197690096606388E-03 + 493 2.3887319881115963E-03 + 494 7.5619234892400475E-04 +Ene= -2.9873660941E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -2.8011468111388091E-02 + 2 4.1214790218470649E-03 + 3 -5.0828329349437290E-04 + 4 -1.4453907200171857E-02 + 5 -4.4381416071947429E-03 + 6 -2.9152890559799335E-03 + 7 4.3077215186638493E-03 + 8 -1.0254308738685465E-03 + 9 1.2165236951670357E-02 + 10 8.7306671089307941E-06 + 11 4.3338853329981724E-03 + 12 1.7432017091304642E-02 + 13 4.9255351827729695E-03 + 14 -1.0660944969351808E-03 + 15 2.2419879500182706E-03 + 16 1.8743674622387365E-04 + 17 4.5374038507737071E-04 + 18 3.4524103757110260E-03 + 19 3.3627923537584407E-04 + 20 1.0194469973500294E-03 + 21 -2.0905778569635888E-03 + 22 -9.8122464617798536E-06 + 23 9.1771132097553791E-04 + 24 2.1528706900793659E-03 + 25 -1.9351745431356484E-03 + 26 1.0101744042602716E-01 + 27 -1.2157860109439031E-03 + 28 1.7300775100390699E-04 + 29 7.2656158229760593E-03 + 30 -3.6395423731236400E-03 + 31 -6.6803314935254170E-03 + 32 -3.3317052322440407E-03 + 33 2.6135062426633042E-03 + 34 1.4351016219546124E-03 + 35 -1.1894156355850651E-02 + 36 -4.8672680572115091E-03 + 37 -3.9159307746222879E-03 + 38 -7.2807328681900709E-03 + 39 -7.1573306237377047E-03 + 40 2.0822235178837037E-04 + 41 -2.6289467362603236E-03 + 42 -1.0699163470960782E-03 + 43 8.0908351508603669E-04 + 44 -3.4506363895239712E-04 + 45 1.6444927918188659E-03 + 46 -7.1694474848825278E-04 + 47 1.0058818904223922E-03 + 48 2.1180914676397202E-03 + 49 -8.3820248013961071E-04 + 50 4.5865941872629456E-04 + 51 -9.3695509628342166E-02 + 52 2.5444104191378928E-03 + 53 1.9562772534245074E-02 + 54 4.9397941945058801E-03 + 55 1.0465926890307512E-02 + 56 -1.5636212379561312E-03 + 57 -5.7349089864944019E-04 + 58 7.1058508607610288E-05 + 59 -6.0256342328155492E-03 + 60 -1.1087616613733352E-02 + 61 -2.8639607847275619E-02 + 62 -4.2529367658098713E-02 + 63 -8.4762457746770173E-03 + 64 -1.1175224290411597E-03 + 65 -5.6912906195422221E-03 + 66 -4.8306121459497494E-03 + 67 -5.1838822796372109E-03 + 68 -1.5128370163602605E-03 + 69 7.6532748144241480E-04 + 70 -1.3350882150881466E-03 + 71 -2.8568008897254891E-04 + 72 1.6942686189801743E-03 + 73 -1.8140397078517405E-03 + 74 -6.3151156668227767E-04 + 75 4.4893373337860881E-04 + 76 -4.1575114292153881E-03 + 77 1.0920846195140903E-03 + 78 1.2092893702956831E-03 + 79 3.6841891839705467E-03 + 80 -1.1102343121087678E-01 + 81 1.5847529785409065E-03 + 82 -1.4497152731952089E-03 + 83 -1.9168094026702861E-04 + 84 -5.4388896761456667E-04 + 85 7.4898776046966120E-03 + 86 3.3421102990548622E-03 + 87 8.0812240034318697E-04 + 88 -1.4528017831663324E-03 + 89 -2.9473535774125571E-02 + 90 2.9023474359498656E-03 + 91 -3.5426575955261018E-02 + 92 -1.1529345272313833E-02 + 93 1.9373340878053966E-02 + 94 2.9758178741483622E-03 + 95 9.3451653805460633E-04 + 96 1.8959493283433307E-03 + 97 -8.1288908949304374E-04 + 98 -1.6229061627467266E-03 + 99 8.0897053101252117E-04 + 100 2.7351792826830678E-03 + 101 -2.8154948051120084E-04 + 102 -4.1675839133408013E-03 + 103 8.2914952070902717E-04 + 104 -2.2379872962420461E-02 + 105 -4.8331655415951441E-02 + 106 9.6669530214946505E-03 + 107 4.9444499355278521E-04 + 108 1.3835589298139225E-04 + 109 -1.4578450919370616E-03 + 110 9.2791921999070971E-04 + 111 -5.3090695304699770E-04 + 112 1.0301306986393321E-03 + 113 3.7344879468556823E-03 + 114 2.8444412330779819E-03 + 115 1.7228357165155878E-02 + 116 -2.2929588316151451E-03 + 117 -4.5725165379065180E-02 + 118 -3.4254101597646393E-02 + 119 3.2303741827109773E-02 + 120 1.6102865313632928E-03 + 121 -4.9459157445148243E-04 + 122 -5.4598497858757047E-04 + 123 -2.6682947667421401E-03 + 124 3.8601749053882579E-03 + 125 2.7869776231148786E-03 + 126 -1.0369017911023364E-03 + 127 1.7257074314474081E-03 + 128 -6.7770261544521981E-02 + 129 3.6818958125272071E-03 + 130 -9.8969493027294721E-03 + 131 -8.4915419362914038E-03 + 132 -1.4105849806165353E-02 + 133 -4.0317666850899691E-03 + 134 -2.7510655304769926E-03 + 135 -4.1082025913540049E-03 + 136 3.8942585373778673E-03 + 137 -1.8162972295643492E-02 + 138 1.1122812684448166E-02 + 139 5.2358126044748779E-02 + 140 2.0959035999688111E-02 + 141 5.9684126057922525E-03 + 142 -5.4452716791782074E-03 + 143 7.8339073771202354E-03 + 144 -9.7961074710050679E-05 + 145 6.3586787156851886E-03 + 146 5.8234419731859933E-04 + 147 2.3368886359761811E-03 + 148 2.0542432487432958E-03 + 149 3.2878444372929977E-03 + 150 1.1995913425264749E-03 + 151 2.5976115635889525E-03 + 152 2.1308904794734192E-03 + 153 -3.0963673959441485E-02 + 154 2.0426682224803003E-03 + 155 -4.2736989571832669E-03 + 156 9.7046126743724275E-04 + 157 1.0446597644307890E-02 + 158 -9.7822688602900343E-04 + 159 -7.6248983583781680E-04 + 160 -2.6979200936570063E-04 + 161 -4.6981349954444496E-03 + 162 -7.0242940063042084E-03 + 163 -5.7143723053663404E-03 + 164 -3.0067759340504912E-03 + 165 9.1702977185434825E-03 + 166 -3.3180174333932214E-03 + 167 1.2315259796714093E-03 + 168 8.3489537891678455E-04 + 169 4.4530343126014610E-03 + 170 -4.6209855627152443E-04 + 171 1.0648901144552490E-04 + 172 -3.6799439682993741E-04 + 173 -9.1938202433502884E-04 + 174 -2.2761462965389121E-03 + 175 8.5982743341826782E-04 + 176 -3.8029051010385226E-04 + 177 1.3003684800096445E-03 + 178 -4.7840532536210761E-02 + 179 5.1684422354319947E-03 + 180 1.7470482063581070E-02 + 181 1.0000593236661177E-02 + 182 -5.5872253469365807E-02 + 183 2.0699574737148832E-03 + 184 1.7232072190064942E-04 + 185 3.2704050352023897E-04 + 186 3.2997894296210601E-03 + 187 -6.9620464094914127E-04 + 188 1.4656957353809312E-04 + 189 -6.0249643042353145E-04 + 190 -7.7593937639358355E-05 + 191 -1.4764510667804825E-01 + 192 1.2340357790852796E-02 + 193 -4.2434992615745161E-02 + 194 1.4208061100207814E-01 + 195 -1.2310150339189660E-01 + 196 4.8433247076855581E-03 + 197 -3.2135810356693161E-03 + 198 -5.8516886619673966E-03 + 199 2.1531320270240079E-03 + 200 1.5069902230824413E-03 + 201 -6.2762904563397007E-03 + 202 -3.4629762390567032E-03 + 203 -3.5302864987091140E-03 + 204 -1.8185683682809789E-01 + 205 4.1697075368013724E-03 + 206 -1.8869921974966408E-02 + 207 -1.7492854334095368E-02 + 208 3.6036190398641733E-02 + 209 -1.2163486849079810E-04 + 210 -5.3727756339577524E-03 + 211 -7.2936103870804178E-05 + 212 -2.1043965983237694E-02 + 213 6.6278175071312695E-03 + 214 -1.9790711648656929E-02 + 215 -1.4339386804698009E-02 + 216 -2.1585961872909714E-02 + 217 -1.0722249296215177E-02 + 218 5.3057956386819941E-04 + 219 -2.2755834263704353E-03 + 220 -2.6740292743567345E-03 + 221 -1.6170164855656460E-02 + 222 6.2107208051886086E-04 + 223 -2.5948107499800276E-03 + 224 1.3418574065596564E-04 + 225 -2.2774898476522477E-04 + 226 -7.6705222953171693E-04 + 227 -1.5532557775235834E-03 + 228 -2.0980140681273038E-03 + 229 -1.2411108778738690E-01 + 230 7.8844504052859136E-03 + 231 8.1923741941422915E-04 + 232 -3.9854229679794906E-03 + 233 2.1706771463424899E-02 + 234 -8.3132538593175341E-04 + 235 -1.0828285789556734E-03 + 236 6.7645572520327163E-04 + 237 1.9045047612960185E-02 + 238 7.1306873331198417E-03 + 239 -1.3419002949185695E-02 + 240 -4.7039592235528435E-02 + 241 4.5736731436331376E-02 + 242 4.6253890303425979E-03 + 243 1.0361186038532388E-04 + 244 -3.8610723399491740E-03 + 245 -7.3043790234684431E-03 + 246 7.0384427797741539E-03 + 247 -1.5655738719331199E-03 + 248 1.1996012072796921E-03 + 249 -4.5561178314534328E-05 + 250 6.4076794352696553E-04 + 251 1.4604842962067436E-03 + 252 -3.7426705933808741E-04 + 253 2.6602560592204271E-04 + 254 1.1187441659775584E-01 + 255 -5.5967889059086642E-03 + 256 1.5999100846304813E-02 + 257 6.3656647413810972E-03 + 258 -7.8581873988855765E-03 + 259 -6.7002048477173752E-04 + 260 -1.9290136748499117E-03 + 261 4.9455467666835807E-03 + 262 3.8079394587109232E-02 + 263 7.7119012820340569E-03 + 264 -2.2344528014420953E-02 + 265 -6.9744601920025068E-03 + 266 -2.1891905307908702E-02 + 267 3.5536349674798119E-03 + 268 1.8659115917521289E-04 + 269 -4.5460494644681722E-03 + 270 -3.1553487887991810E-03 + 271 -2.8215167148124523E-03 + 272 -1.1705481835598993E-03 + 273 -2.2527657906613643E-04 + 274 -2.0899455824180380E-03 + 275 -1.3356442221932620E-04 + 276 4.6878730448094666E-04 + 277 -3.0902595003540797E-04 + 278 8.0665815001609951E-04 + 279 -4.5793837483563325E-02 + 280 5.3593036678630211E-03 + 281 -4.7695374044603354E-02 + 282 -1.1087556043795033E-01 + 283 -1.1373509133870843E-01 + 284 2.0445654822086849E-04 + 285 4.0545051889568712E-04 + 286 1.7735348653350812E-03 + 287 -8.1358831195384573E-03 + 288 -4.5604988373280191E-03 + 289 4.2901413052429255E-03 + 290 -2.6327289738826269E-03 + 291 2.5379576314202945E-03 + 292 -8.6861676929871050E-03 + 293 1.0979445669689236E-05 + 294 3.5542327614351915E-02 + 295 7.6096573422002434E-02 + 296 7.3860927286305153E-02 + 297 2.0879487519386490E-03 + 298 1.6812946987558588E-03 + 299 1.4041532990588122E-03 + 300 5.8355316038114927E-03 + 301 -1.7596254908202468E-03 + 302 2.4213531237099657E-03 + 303 -4.4030991167121259E-04 + 304 -5.6704815529514015E-03 + 305 1.9118964279341649E-01 + 306 -1.0552719590845069E-02 + 307 -2.9557198204357833E-02 + 308 -9.9222211651375063E-03 + 309 -3.2601876219252317E-03 + 310 -1.1264246864998032E-03 + 311 3.8787016146082528E-03 + 312 3.8697452405280510E-03 + 313 -5.7103922675412984E-02 + 314 3.0873605338863678E-03 + 315 1.2710467770389174E-02 + 316 2.3569084420940831E-03 + 317 5.7060665136900390E-02 + 318 -1.2907279321819345E-03 + 319 -1.0489420472953894E-02 + 320 1.0886402996075884E-03 + 321 1.0061035771123970E-02 + 322 9.7336895600308674E-03 + 323 -3.7686219597249451E-03 + 324 -1.3120763314063838E-03 + 325 -7.9972402762282084E-04 + 326 1.1602439886744995E-03 + 327 2.3905634789770261E-03 + 328 -3.2235974703584951E-03 + 329 -3.0070133218657443E-03 + 330 -2.4171428282507132E-01 + 331 1.5573545338730579E-02 + 332 2.5151785328626296E-02 + 333 -2.1800284786489665E-02 + 334 6.2105501265094067E-03 + 335 -1.7209336456211663E-03 + 336 5.6653737631949946E-03 + 337 -3.5788852655430398E-03 + 338 -3.4291376905800947E-02 + 339 -2.6643870024562231E-02 + 340 2.0347650006136576E-03 + 341 1.6501281060791520E-03 + 342 2.7725720276623123E-02 + 343 -1.5532354220026711E-03 + 344 -3.3178299465593530E-03 + 345 -2.7973396589044876E-03 + 346 9.8747890449826466E-04 + 347 7.0526244593057700E-03 + 348 -1.1627442227714847E-03 + 349 -1.6365375824041910E-03 + 350 9.6078166821433626E-04 + 351 2.4877865401396268E-04 + 352 -1.2788000963539478E-05 + 353 -3.1086086546678019E-03 + 354 1.7143857693155157E-03 + 355 -4.3457787206469985E-02 + 356 3.0482555900207199E-03 + 357 -3.0185529985011790E-02 + 358 -1.7897030304817660E-01 + 359 1.8381843506229323E-01 + 360 4.2825774946749148E-03 + 361 -1.3721957118317980E-03 + 362 -3.1107971201346902E-03 + 363 1.4188640209914146E-02 + 364 2.7667987130278945E-03 + 365 -5.0482375012607331E-03 + 366 3.9162430350645691E-03 + 367 -8.7027716670992437E-03 + 368 -1.0235101195189673E-01 + 369 8.1901785874043762E-03 + 370 -6.0176552750217854E-02 + 371 -9.4954530131619155E-02 + 372 4.9011340580816180E-02 + 373 5.3569838664629561E-03 + 374 -8.7426787942069192E-03 + 375 1.8383750192891234E-04 + 376 -4.2281750201658350E-03 + 377 -2.8774248346399561E-03 + 378 -4.6538418121489641E-03 + 379 -3.7734314948710112E-03 + 380 2.1769068255022292E-03 + 381 5.6662078287342342E-02 + 382 -5.2371006896998473E-03 + 383 1.9318244692458456E-01 + 384 1.4298672096858980E-01 + 385 2.7492782740414900E-03 + 386 1.0821659134382085E-03 + 387 -2.2110441809522190E-03 + 388 3.2222170604414698E-03 + 389 8.7801529251252883E-03 + 390 -4.4818816077653208E-03 + 391 -4.7905784836237732E-03 + 392 5.5971669667976521E-03 + 393 -1.3674037680694674E-02 + 394 -1.1247192373074145E-01 + 395 6.2368217935814211E-03 + 396 -2.8681802896235453E-03 + 397 -2.7114901504614451E-02 + 398 4.1724146052677675E-03 + 399 5.0735982920649247E-03 + 400 5.7516555247498083E-03 + 401 6.5507299465787931E-04 + 402 -3.1086755308631080E-02 + 403 -1.0384012630911913E-02 + 404 -3.7053435075647359E-02 + 405 5.1736762293953450E-03 + 406 -3.0951273530652534E-02 + 407 -6.4025175757321043E-03 + 408 -6.5566780067617429E-03 + 409 -8.6067946267093364E-03 + 410 5.0348834856022550E-03 + 411 -7.5009134093914553E-03 + 412 1.0418832847147177E-03 + 413 -3.4075122790951221E-03 + 414 4.4593142000413216E-04 + 415 -1.8753485982918065E-03 + 416 -3.9414863605542697E-03 + 417 3.6796274988906642E-04 + 418 -4.6681083447729197E-04 + 419 3.7763658816934449E-02 + 420 -1.7369890147250603E-03 + 421 -6.9420889518034309E-02 + 422 8.9322134457036698E-02 + 423 2.9683727844096938E-02 + 424 3.1176273802040744E-03 + 425 3.0234860209390770E-03 + 426 -2.9539219091749254E-03 + 427 5.1253668835696264E-03 + 428 4.5662963767308269E-04 + 429 2.5296410927690338E-03 + 430 -2.7933814244457404E-03 + 431 6.6866676728088671E-03 + 432 3.8492757792058498E-02 + 433 -3.5542686860543021E-03 + 434 1.1880697796314317E-01 + 435 -2.2859134744050133E-01 + 436 -9.7153772286607348E-02 + 437 -2.7798904923388595E-03 + 438 1.6321894763652036E-03 + 439 -3.7387359526755675E-04 + 440 3.2205863883385992E-03 + 441 -2.4044639437452832E-03 + 442 -8.2225366691127989E-03 + 443 1.9249182814959104E-02 + 444 -2.7841206189262867E-03 + 445 -8.1185870212774264E-02 + 446 2.9997710154630306E-03 + 447 2.2213627329581770E-04 + 448 4.4898840133401632E-02 + 449 -1.7221151045102003E-02 + 450 -3.0292132037139426E-03 + 451 -3.2547312995318150E-03 + 452 7.8527105747967698E-03 + 453 1.6107253472013132E-02 + 454 -2.6422758612011373E-02 + 455 2.9464983383336970E-02 + 456 2.6629624942514751E-02 + 457 7.2851797627671421E-03 + 458 1.0805006363979340E-03 + 459 6.3845702121735496E-03 + 460 8.2089370558832055E-03 + 461 -3.6225264922828703E-03 + 462 -9.2175658023885948E-04 + 463 2.6999580488168022E-04 + 464 -4.0754739362796434E-04 + 465 -2.2363830161574358E-03 + 466 3.5544405656061950E-03 + 467 4.0546383849684071E-03 + 468 -2.8828967405017209E-03 + 469 -3.2285746610554514E-03 + 470 3.4080467741363324E-01 + 471 -2.3645589918203262E-02 + 472 1.0959582634620159E-02 + 473 3.0732828957315936E-03 + 474 -3.3442762302421008E-03 + 475 -5.9910765733303976E-04 + 476 3.7694947665815096E-03 + 477 -4.4426748165443165E-04 + 478 -4.4956939826061644E-02 + 479 1.8632646213455145E-02 + 480 5.1026199235616645E-02 + 481 -6.9504603941088650E-02 + 482 6.4298942697163325E-02 + 483 2.8947477601229108E-03 + 484 -4.7502071634535998E-03 + 485 -1.6531958296761731E-03 + 486 2.5835292566769291E-03 + 487 1.1959312763986534E-04 + 488 -4.3597185913159725E-04 + 489 1.7257770308238573E-03 + 490 -3.3416372416886274E-04 + 491 -1.7863265522181523E-03 + 492 9.9464562860921400E-05 + 493 -1.5961968251606280E-03 + 494 -1.4727890118978123E-03 +Ene= -2.9580231905E-01 +Spin= Alpha +Occup= 2.0000000 + 1 6.1507902917423335E-02 + 2 -4.7469393309590427E-03 + 3 -6.7329479156875574E-03 + 4 -5.3080618216591472E-03 + 5 -3.1918264901564146E-03 + 6 -2.1481329672312912E-03 + 7 -5.3335002336413152E-03 + 8 -1.9567200791156020E-03 + 9 -2.3796614673986534E-02 + 10 9.1848392270743838E-03 + 11 1.9803180944458251E-02 + 12 -2.7246926145308797E-02 + 13 -8.7470405490064681E-03 + 14 -7.6870203467001505E-03 + 15 1.0301564770706275E-03 + 16 2.8521328915297687E-03 + 17 1.1178184316611771E-03 + 18 6.4180617113645498E-03 + 19 6.7174927981075575E-04 + 20 1.2515423281389273E-03 + 21 -1.8821404581401488E-04 + 22 2.7158928624943326E-04 + 23 2.2109999309955988E-04 + 24 8.0318550254101931E-04 + 25 -1.1998068728721830E-03 + 26 -1.0706706940691409E-01 + 27 3.8802048540323248E-03 + 28 6.4105523701926265E-03 + 29 -1.8502065680886332E-02 + 30 -4.9969615630749114E-04 + 31 6.0204908522166799E-03 + 32 4.2052246165294339E-03 + 33 -4.9190869731706652E-03 + 34 7.5414360485888208E-03 + 35 1.0828314097843380E-02 + 36 2.1260632291317007E-03 + 37 2.3103848433046531E-03 + 38 2.0519946444801884E-02 + 39 8.6174429869625944E-03 + 40 -4.4430319677537443E-04 + 41 3.3313766403944415E-03 + 42 5.9936281659824159E-04 + 43 5.1002855926465785E-04 + 44 1.4019645682401243E-03 + 45 -1.4944321047055816E-03 + 46 1.3084057047946897E-03 + 47 -5.7458329897912784E-04 + 48 -1.5568173666776291E-03 + 49 -2.3622475261631627E-04 + 50 -4.5493007843081456E-04 + 51 -9.2883587000997907E-03 + 52 -2.7961910522671628E-03 + 53 -2.3172559700490947E-03 + 54 5.3250384186131882E-03 + 55 3.4561671902462607E-02 + 56 8.4189259456083515E-04 + 57 -3.9803670802756432E-03 + 58 -2.4322209282163750E-03 + 59 4.8573640296663053E-03 + 60 -3.4207542354672431E-02 + 61 -3.6256405785590612E-02 + 62 2.4973335956894230E-02 + 63 -7.8868092986809912E-03 + 64 -7.9018853418573226E-04 + 65 -2.2474925213822896E-03 + 66 -6.5649739636007803E-04 + 67 -2.1918185763150286E-03 + 68 2.2341175094861632E-03 + 69 1.4689251123488046E-03 + 70 -3.2627892334297849E-03 + 71 -2.8666701952195198E-04 + 72 -5.2321786866720477E-04 + 73 -8.3476783801474488E-04 + 74 2.1218203574537120E-03 + 75 2.9976055672649714E-04 + 76 -1.7148242162944263E-02 + 77 9.4500331649484555E-04 + 78 -2.8733703815924608E-02 + 79 7.8591537540203121E-03 + 80 1.0400044543038603E-01 + 81 -4.2456013529333685E-04 + 82 -1.6403128430723980E-03 + 83 -1.0143546733285486E-03 + 84 1.0477114648710544E-03 + 85 -6.8689440894066168E-03 + 86 -3.5676856943374449E-03 + 87 1.5992738830386927E-03 + 88 7.1594421375177674E-04 + 89 -1.7276555782715565E-02 + 90 7.1349948545085132E-04 + 91 -3.5176969615030862E-02 + 92 -2.9550659269296418E-02 + 93 1.3959671785223133E-02 + 94 7.3039855757788767E-04 + 95 -3.9597725899017208E-04 + 96 4.1107312050150677E-03 + 97 -2.8586060041431444E-04 + 98 -3.7665990493839386E-04 + 99 -5.7987262612113288E-05 + 100 3.5579608070530279E-03 + 101 1.4030690523877281E-03 + 102 2.0772329036859820E-02 + 103 -1.2285108892197824E-03 + 104 5.1658397102235569E-02 + 105 4.4513822471208102E-02 + 106 -1.9082446646161398E-02 + 107 1.7791403817190522E-04 + 108 -8.0739893303373900E-04 + 109 -3.3655939074871068E-04 + 110 -6.6040351875305847E-04 + 111 1.5506867030310176E-03 + 112 -6.4169929553960160E-04 + 113 -5.3792830644078683E-03 + 114 -2.8647218282693752E-03 + 115 -4.8920209011538429E-02 + 116 5.8164123517032741E-03 + 117 3.5850901637764346E-02 + 118 6.7105015155663292E-02 + 119 -9.2113198472152519E-02 + 120 -1.5455247063585335E-03 + 121 -7.6007721976211482E-04 + 122 -4.4304052400708470E-04 + 123 5.8004178381449055E-03 + 124 -3.2392710712122186E-03 + 125 -4.9857079074470444E-03 + 126 6.8239754602900744E-04 + 127 -1.6430909035464146E-03 + 128 5.4054856251803646E-02 + 129 -1.8609680378073845E-05 + 130 7.8995359748422478E-03 + 131 -5.9217948424733664E-03 + 132 1.0094267549841751E-02 + 133 5.3795648146228309E-03 + 134 3.0420548161051433E-03 + 135 -3.2771994454190305E-04 + 136 -9.1638638344624275E-03 + 137 1.8333882952239065E-02 + 138 -2.5461103509234972E-03 + 139 -3.0151712935349517E-02 + 140 -3.4197075849108083E-02 + 141 -1.3402912524808472E-03 + 142 1.6375732286310835E-03 + 143 -5.5289919190524379E-03 + 144 -1.4689219004520588E-03 + 145 -5.9034971204665106E-03 + 146 -6.2498326847802200E-04 + 147 -2.0377862388973951E-03 + 148 -1.5374612441317733E-03 + 149 -1.8402675722529256E-03 + 150 -1.4202026566560095E-03 + 151 -6.8057448258784239E-04 + 152 -1.9167604838741118E-03 + 153 7.8306964165402809E-02 + 154 -2.8648957046994699E-03 + 155 2.4531656886358872E-03 + 156 2.3992717773371136E-03 + 157 -1.4074543877879193E-02 + 158 7.4379593150082418E-04 + 159 2.4691633075300109E-03 + 160 2.1693491184273522E-03 + 161 4.0840536420273885E-03 + 162 8.2238334205195079E-03 + 163 8.5472367626110764E-03 + 164 3.7204353778610270E-03 + 165 -5.2317846254014396E-03 + 166 2.3259999131008789E-04 + 167 -2.4910366550812864E-03 + 168 -3.4236730530873712E-03 + 169 -4.4471495383877208E-03 + 170 -6.5881094104817538E-04 + 171 1.9380405953620130E-05 + 172 1.3160562265442336E-03 + 173 1.6293440754909672E-03 + 174 2.1751073507289354E-03 + 175 -3.3508566830430095E-04 + 176 5.6711974710889086E-04 + 177 -6.2218786103130004E-04 + 178 7.6861530477778744E-02 + 179 -6.7201564194490932E-03 + 180 -4.0327512275101722E-02 + 181 4.4564333892285080E-03 + 182 8.8159506985336256E-02 + 183 -4.3507440621838389E-03 + 184 -2.4272771805253102E-03 + 185 -1.9256277195995866E-03 + 186 -4.1365443741789932E-03 + 187 1.5553993333784545E-03 + 188 -2.1212392215297594E-03 + 189 -1.1894359322599027E-04 + 190 1.5660153637547567E-04 + 191 -4.8715452250333378E-02 + 192 5.3070777119897097E-03 + 193 6.1585013290940183E-02 + 194 -8.6760736022999774E-02 + 195 -2.5137757069431899E-01 + 196 1.2504698369142965E-03 + 197 -2.3463337380889892E-04 + 198 1.0230396570049638E-03 + 199 1.7386557902710414E-02 + 200 1.8284777124644904E-03 + 201 -7.9010887237462545E-03 + 202 2.9781933510423454E-03 + 203 5.9099750889086795E-03 + 204 1.6781097393484176E-01 + 205 -3.2103805864391859E-03 + 206 2.9194463632781473E-02 + 207 -6.7663324069452318E-03 + 208 1.5227570727952148E-02 + 209 -9.8739757648876720E-04 + 210 6.0003112511040502E-03 + 211 -4.9112325563214815E-04 + 212 -2.6423817897471009E-02 + 213 1.6756550039513939E-02 + 214 -1.0024073555095182E-03 + 215 -2.4752207601502212E-03 + 216 -1.3341180455159514E-02 + 217 -1.1818737851969761E-02 + 218 4.0875310495918854E-03 + 219 -2.5608510104435379E-04 + 220 3.6619369814051774E-03 + 221 -1.0855727449409014E-03 + 222 -2.6814835564022941E-04 + 223 8.9199180211534004E-04 + 224 -3.5271934333403043E-03 + 225 5.9888678371426978E-04 + 226 2.2939585000133441E-03 + 227 3.5605172631515461E-03 + 228 8.3000601446298820E-04 + 229 6.4708820759748820E-02 + 230 -6.1088893414850678E-03 + 231 -9.3023707027054068E-03 + 232 -3.5392572765826497E-03 + 233 -1.2077295873649221E-02 + 234 -2.7726769686031100E-03 + 235 -1.0878173154140057E-03 + 236 -8.9557644911973048E-04 + 237 -3.6530236493509768E-02 + 238 1.6218158433816639E-02 + 239 1.0100607871057338E-02 + 240 7.5069570784071105E-03 + 241 -2.7728737841120937E-02 + 242 -9.9069552904447432E-03 + 243 6.5177941633487706E-03 + 244 -1.8138138585927831E-03 + 245 3.8311126717086729E-03 + 246 2.2265356392473191E-03 + 247 1.2319557045411204E-03 + 248 6.9357768869519052E-04 + 249 6.4261396368901888E-04 + 250 -8.0152734552711843E-04 + 251 4.1535887432746194E-04 + 252 -1.4689179145874727E-04 + 253 1.8434473361154366E-04 + 254 -1.7765932048160271E-01 + 255 8.5071679968857106E-03 + 256 -1.2610972867496868E-02 + 257 1.0931599265040766E-02 + 258 -3.4684321776928613E-03 + 259 2.5572464278006901E-04 + 260 9.9159641063470394E-04 + 261 -4.4029867718761188E-03 + 262 -2.9132914479474047E-02 + 263 -1.2379351031844742E-02 + 264 1.7537190347115102E-02 + 265 1.0766112553730183E-02 + 266 1.7402421915984810E-02 + 267 2.2738979380342562E-03 + 268 1.4529206085485421E-04 + 269 4.9610417546444687E-03 + 270 5.0111946631889214E-03 + 271 1.5377618707319467E-03 + 272 9.5499410162820837E-04 + 273 -3.9506109427758242E-04 + 274 -3.8303416092991916E-04 + 275 9.6497655802357482E-04 + 276 -1.8044089368462552E-04 + 277 -1.2925682042035452E-04 + 278 -1.1905805574732430E-03 + 279 -2.7793586378164870E-02 + 280 1.8729963261290632E-03 + 281 1.2672337925558766E-02 + 282 2.6751337989632026E-02 + 283 1.1966826491260449E-01 + 284 3.1679420232833435E-03 + 285 -7.8629711637823163E-04 + 286 2.3927682944060492E-05 + 287 7.1321059903111314E-03 + 288 4.5633690610607167E-03 + 289 -4.1344352046869077E-03 + 290 1.6835336217525816E-03 + 291 1.2518455328185552E-03 + 292 8.4376812657046524E-02 + 293 -8.1020847421598690E-03 + 294 5.4094520784895461E-02 + 295 3.0365892029138634E-02 + 296 -4.8561385425130291E-02 + 297 4.7721253543344336E-03 + 298 3.6939199867733283E-03 + 299 1.2028564390015911E-03 + 300 -5.0729069924852050E-04 + 301 1.1860398602511527E-03 + 302 5.6901726952278907E-04 + 303 -7.5444220744601167E-04 + 304 -1.7137606765395236E-03 + 305 2.3656960302533955E-01 + 306 -1.4749947546717402E-02 + 307 -4.4145783306406346E-02 + 308 -1.4830508589546204E-02 + 309 4.3529786564452458E-03 + 310 5.9769725215995237E-03 + 311 6.1313305583227534E-03 + 312 1.9614539845473800E-05 + 313 -6.0362209146671862E-02 + 314 7.5720302572043060E-03 + 315 2.2004771527784604E-02 + 316 1.4305050568483701E-03 + 317 5.3842861306772051E-02 + 318 -3.9250217045626997E-03 + 319 -9.5050913626700609E-03 + 320 3.1525531196534683E-03 + 321 7.9654658135657995E-03 + 322 1.5691077397710449E-02 + 323 -2.6037031160098469E-03 + 324 -2.6350259834347954E-03 + 325 3.1226944957392930E-04 + 326 1.2031315855960108E-03 + 327 2.3653892615905095E-03 + 328 -2.5760629860327017E-03 + 329 -8.1829897149458786E-04 + 330 -3.6738924058692823E-01 + 331 2.2705898313687349E-02 + 332 1.1412018266227212E-02 + 333 3.8597130351051365E-03 + 334 -1.7230116576797196E-05 + 335 -1.7380506202737968E-03 + 336 1.3818478385174571E-03 + 337 -1.6007618913834226E-03 + 338 -1.0786017786741112E-01 + 339 -4.8267899132957065E-02 + 340 5.1938803100907170E-02 + 341 -1.4279114618821552E-03 + 342 1.7571063834532236E-02 + 343 -5.7505647736002027E-03 + 344 -8.8572683665321481E-03 + 345 -3.2453817051392351E-03 + 346 1.7742079143671729E-04 + 347 3.7392263602514225E-03 + 348 -6.5924838826507374E-05 + 349 -1.5312616398468926E-03 + 350 -6.7641933992928778E-04 + 351 5.3465351722210570E-04 + 352 -1.9024801202798482E-03 + 353 -2.4735931762682310E-03 + 354 6.5276603962990287E-05 + 355 -1.0304238281856582E-04 + 356 7.1668068328883798E-04 + 357 1.6039106247651303E-02 + 358 -2.9778771076917188E-01 + 359 1.4472860079969826E-01 + 360 -2.2714062561916563E-04 + 361 -2.6887531932856816E-03 + 362 -1.2106444208144478E-03 + 363 1.4304219423551517E-02 + 364 7.4743057126000368E-03 + 365 -1.3893740770246020E-02 + 366 6.3526115859311684E-03 + 367 -8.1807116032544258E-03 + 368 3.8519758500521604E-02 + 369 -3.1343532300434690E-03 + 370 1.9751238919304855E-02 + 371 4.9804000478181773E-02 + 372 -1.8090105635571490E-02 + 373 -1.4038909216616631E-03 + 374 -5.4366796809817448E-03 + 375 -4.5575937785159396E-03 + 376 -4.7438858832984203E-03 + 377 3.9460002160400329E-03 + 378 4.2533907080299221E-03 + 379 7.7361495828958099E-04 + 380 -3.8272763773514692E-03 + 381 -7.5882523515273415E-02 + 382 6.6864263627229572E-03 + 383 -7.4874674676431982E-02 + 384 -8.8253017711511769E-02 + 385 -7.2669934841837924E-02 + 386 -1.0763849691616584E-03 + 387 -2.3934400675017413E-03 + 388 2.4815487998682178E-03 + 389 -2.2635427389144877E-03 + 390 1.9012113748093078E-03 + 391 5.7831813460648635E-03 + 392 -2.2007526216801777E-03 + 393 8.2969918080227755E-03 + 394 -4.7144867246340011E-02 + 395 -1.0022259948569523E-03 + 396 2.0752829503130139E-02 + 397 1.8798105009993519E-02 + 398 9.6498389763246453E-03 + 399 -4.8294367192783213E-03 + 400 -9.9479940253382549E-04 + 401 8.9872901944932618E-04 + 402 -2.7259373919145923E-02 + 403 -1.7938638529539502E-02 + 404 1.3677284875182322E-02 + 405 -1.4850298951469427E-02 + 406 -2.8936341994277516E-04 + 407 -1.3836567392650826E-03 + 408 5.3874971841683455E-05 + 409 2.0474950990202055E-03 + 410 -3.3068008916813585E-03 + 411 -1.4781224597761756E-03 + 412 -2.5309696946682566E-03 + 413 3.2463080288903744E-04 + 414 -3.7194218998367630E-04 + 415 -6.4803454857819862E-04 + 416 -1.2608756694770093E-04 + 417 -1.8235496159356899E-03 + 418 -2.4994327364353127E-03 + 419 7.8359827282070374E-02 + 420 -7.3451015123991732E-03 + 421 -1.1770968360003113E-01 + 422 1.1820543431973080E-01 + 423 2.9575867181251339E-02 + 424 1.1371794677591698E-03 + 425 4.1241648555601033E-03 + 426 -1.3699599423556915E-03 + 427 8.1012988739081401E-03 + 428 -1.5872525614594997E-03 + 429 3.0562236979708628E-03 + 430 -1.7797136826097036E-03 + 431 8.1082916345241451E-03 + 432 -5.7868298162506285E-02 + 433 3.9626065492132769E-03 + 434 -1.0661987048303774E-02 + 435 1.7085989739161361E-01 + 436 1.2871027630185794E-02 + 437 2.9373135865630056E-03 + 438 -9.7654523557083269E-04 + 439 4.3304160385363001E-03 + 440 -3.7906321383142203E-03 + 441 -2.3454257061453925E-03 + 442 3.3024520002292294E-03 + 443 -9.2329039497785204E-03 + 444 4.7154040373879299E-03 + 445 3.7723189119030325E-02 + 446 -3.2878036815138438E-03 + 447 5.8613325180392247E-03 + 448 -1.7647806016686478E-04 + 449 -1.3987729759707109E-02 + 450 -8.9794167711553137E-03 + 451 1.7792061148914271E-03 + 452 8.4855426258300878E-03 + 453 4.1308634163689850E-02 + 454 -3.7584913894703829E-02 + 455 -2.0740488350209502E-02 + 456 3.5205413541768454E-02 + 457 4.1360424011238545E-02 + 458 5.8022146496488364E-03 + 459 -4.5666547705530075E-03 + 460 -6.5852388559037361E-03 + 461 1.7860313419493599E-03 + 462 9.8107431916165909E-03 + 463 -1.0249210534275758E-03 + 464 -4.0701779083857645E-03 + 465 1.8410431100956992E-03 + 466 5.3390776844196904E-03 + 467 5.8373130239494468E-04 + 468 -4.0202791683733455E-03 + 469 -2.2648229736257582E-03 + 470 -2.2247702819874354E-01 + 471 9.7672577698725890E-03 + 472 -2.2730057365461784E-02 + 473 1.1455476270867347E-02 + 474 1.5756492889370515E-02 + 475 -2.1180513579133302E-03 + 476 9.2668003228488260E-04 + 477 -1.8755159027814413E-03 + 478 1.9415932846377593E-02 + 479 5.9812126285084376E-03 + 480 -2.5875685394691941E-02 + 481 3.1296963146377303E-02 + 482 -2.6053201909100005E-02 + 483 4.2587135005718348E-03 + 484 5.3015334715790854E-03 + 485 9.1427536409887538E-04 + 486 -2.9256396136534807E-03 + 487 8.5205902515477615E-03 + 488 -1.1741855192558721E-03 + 489 9.2698794317056291E-04 + 490 -1.3326482689891654E-03 + 491 1.0729348091072179E-03 + 492 -1.1482383072593588E-03 + 493 1.3115344826924006E-03 + 494 2.0590802899145004E-03 +Ene= -2.9402461263E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -1.8925966386100521E-01 + 2 1.0941269944706218E-02 + 3 5.1129609860140063E-02 + 4 -2.3798983906800079E-02 + 5 -1.6231441873666628E-02 + 6 -3.5171254730253254E-03 + 7 6.6041375157685211E-03 + 8 4.5457804032882369E-04 + 9 3.2230345840204191E-02 + 10 1.5341279378624560E-02 + 11 1.4026962127338916E-02 + 12 1.7490512930017490E-02 + 13 3.2391022287711041E-02 + 14 5.1245623354031281E-03 + 15 5.8817525723709463E-03 + 16 -2.6131226846422607E-03 + 17 -7.7522817262686301E-03 + 18 3.6132474965462225E-03 + 19 -9.1135409349722566E-04 + 20 9.2049362484162233E-04 + 21 -3.0022168634280602E-03 + 22 -1.3997175744802483E-03 + 23 2.2071520470635791E-03 + 24 4.1079814813627154E-03 + 25 -6.9930647304847053E-04 + 26 2.2626095651056131E-02 + 27 6.4600445813193315E-04 + 28 2.8502392626978675E-02 + 29 3.9994442031457854E-03 + 30 2.4711879576517201E-02 + 31 -6.6961253360417246E-03 + 32 6.7893123428873047E-04 + 33 -1.4647382615231802E-03 + 34 -3.9157086075515138E-03 + 35 -2.8513441909041634E-02 + 36 -3.8866404353027538E-02 + 37 1.6137474777020776E-02 + 38 3.6013983216633703E-02 + 39 -6.8049355360751097E-04 + 40 -1.0375985715192184E-02 + 41 -7.7447365155003511E-03 + 42 1.9258685842536637E-03 + 43 7.2128932348294560E-03 + 44 -1.8514953226615415E-03 + 45 1.1677622960754017E-03 + 46 -3.2462369019803350E-04 + 47 4.9351428919749253E-03 + 48 2.7512400395958252E-03 + 49 -3.2628867027715799E-04 + 50 -7.5755670150743769E-04 + 51 -1.8549686678763411E-01 + 52 1.2280261751468806E-02 + 53 2.8859301272944103E-03 + 54 -8.6006867965622586E-03 + 55 1.0235660096019589E-02 + 56 2.6006373787740801E-03 + 57 3.0946056258086925E-03 + 58 -3.8504601489546238E-03 + 59 1.8820953523996000E-03 + 60 -1.8866080942758809E-02 + 61 4.1926105845576473E-03 + 62 -5.2097128371326566E-03 + 63 -3.6881574005528363E-02 + 64 2.3241819979826130E-03 + 65 -9.7503805893162550E-03 + 66 -7.4272285418382697E-03 + 67 -9.7333987666141115E-04 + 68 -1.1300190813268565E-02 + 69 1.3858699998482490E-03 + 70 1.4606750595501700E-03 + 71 4.3124349947684860E-05 + 72 1.8872765870197304E-03 + 73 -4.7974234246005057E-04 + 74 1.5574687747786919E-03 + 75 4.4987587175230898E-04 + 76 -1.6228933897862785E-01 + 77 1.2851238255538163E-02 + 78 -1.6072736358969211E-01 + 79 -7.7624054353259794E-02 + 80 -1.8865468381593001E-01 + 81 1.9257225824891441E-03 + 82 -3.8949507042232482E-03 + 83 -4.2774572639679920E-04 + 84 -3.0854525621816097E-03 + 85 1.2397132054020299E-02 + 86 7.4749235681051129E-03 + 87 4.6150614919769845E-03 + 88 3.1264875333613384E-03 + 89 -1.2136404800889738E-01 + 90 8.8543863042977664E-03 + 91 -8.5915762132831863E-02 + 92 7.0914575905124580E-02 + 93 6.7886962147691646E-02 + 94 2.1924293010696797E-03 + 95 3.2793319792520908E-03 + 96 -2.2814006282478665E-04 + 97 -8.2750135499575362E-04 + 98 -4.2890285056898557E-03 + 99 3.2397566383358953E-03 + 100 4.2059244137903018E-04 + 101 -5.9712729359699106E-03 + 102 -1.1667903122726839E-02 + 103 2.3728430940739829E-03 + 104 -1.1053202682007764E-02 + 105 -6.5542698016127457E-02 + 106 -1.0943665328301913E-01 + 107 2.3477354921560067E-04 + 108 1.0365015004628613E-03 + 109 -2.1106277393901202E-03 + 110 3.0643191360562455E-03 + 111 8.6397296384138084E-03 + 112 1.4380202782686773E-03 + 113 2.0841951468213117E-03 + 114 3.7449971852227277E-03 + 115 -5.3337755412696017E-02 + 116 5.8833902079717133E-03 + 117 -7.4891562279475701E-02 + 118 4.9564575955177492E-02 + 119 -1.0322212088071003E-01 + 120 4.0311403630083906E-03 + 121 -1.1819536865435884E-03 + 122 2.4324973267366725E-04 + 123 5.3545490107113894E-03 + 124 5.2533281812475897E-03 + 125 -2.7743732560963296E-03 + 126 -3.1483806362494728E-04 + 127 3.4792781485069083E-03 + 128 -1.0265290005625161E-01 + 129 6.0729082188592078E-03 + 130 1.5355897181214098E-02 + 131 -1.4099462992020709E-02 + 132 -3.1601638434732168E-02 + 133 -2.3437742311286109E-03 + 134 2.2446555730583698E-03 + 135 -2.3557701062992889E-03 + 136 5.4814666209524826E-02 + 137 -1.4101440161810561E-02 + 138 2.0842944199838079E-02 + 139 -5.4559488840072974E-03 + 140 -1.7882381533831378E-02 + 141 1.5546190979045043E-02 + 142 -7.0341226450834210E-03 + 143 3.7049860919783559E-03 + 144 -1.0014567450955098E-03 + 145 -6.3675673266271856E-03 + 146 9.3485591520222873E-04 + 147 1.2664546453699660E-03 + 148 -1.8419764346034007E-03 + 149 -2.1545652153875986E-03 + 150 1.8703522619052768E-03 + 151 1.5068620546727347E-03 + 152 1.7161747142309190E-03 + 153 1.0285745746175717E-01 + 154 -5.5432145959783598E-03 + 155 6.1363092430358835E-03 + 156 9.6749339770457257E-03 + 157 1.0002342674725490E-02 + 158 2.4114474176209540E-03 + 159 8.7414663601693250E-04 + 160 9.3243828691608481E-04 + 161 -2.6394131866268211E-02 + 162 -1.7968795626730628E-02 + 163 -4.9801562907152092E-03 + 164 2.5841220687614495E-02 + 165 1.3264962507180294E-02 + 166 -4.2051952567095426E-03 + 167 -5.4178773721220283E-03 + 168 -2.2752820930120586E-03 + 169 8.3823892373563903E-04 + 170 3.0710755802516613E-03 + 171 8.1844024771626550E-04 + 172 1.1436587896129420E-03 + 173 -9.8622505584526249E-05 + 174 5.6975304653954987E-04 + 175 -6.5839613465089471E-04 + 176 5.0968593446185629E-05 + 177 4.0857909314847131E-04 + 178 -7.3993308898436016E-03 + 179 1.0924168765305985E-03 + 180 -7.2339709105282590E-02 + 181 4.3849773712867426E-02 + 182 -4.8020548665996719E-02 + 183 7.7017296523520422E-04 + 184 -1.6454845443503998E-03 + 185 -2.7546765968966941E-03 + 186 3.1720652559725274E-03 + 187 1.7046854437663612E-03 + 188 -3.4387128200777158E-03 + 189 -5.9329098116777572E-03 + 190 -4.2179810963168001E-04 + 191 -7.6026690927814722E-02 + 192 7.0965608282553203E-03 + 193 5.6532150752294175E-02 + 194 6.5285958447278927E-02 + 195 -9.5229532987985505E-02 + 196 -2.4097066669975806E-03 + 197 -9.2778948814865056E-04 + 198 3.4198485573379553E-05 + 199 1.9154247874316620E-03 + 200 -2.4001904904603190E-03 + 201 -4.8248291564546323E-03 + 202 -1.4865100442335271E-03 + 203 5.2364864768501603E-03 + 204 -3.8437776276435028E-02 + 205 9.6868192670372796E-04 + 206 4.4960399090839993E-03 + 207 -1.2706096089988449E-02 + 208 3.3818778916086425E-03 + 209 -1.3818202103082311E-03 + 210 1.4181092299461460E-03 + 211 1.3496526017874222E-03 + 212 -1.4131739710949548E-02 + 213 1.8056144607295486E-03 + 214 -2.5059993004714651E-02 + 215 -1.7894888685462684E-02 + 216 1.8756610840503354E-02 + 217 -4.1854290273484109E-03 + 218 4.9281802456002371E-03 + 219 -1.1817982254432556E-03 + 220 1.3280613612783566E-03 + 221 -3.3637056215316945E-04 + 222 -8.9459235379588543E-04 + 223 -1.4081504989534636E-03 + 224 -7.0720555336385986E-04 + 225 -1.1753528951351920E-03 + 226 4.4694173320376330E-05 + 227 2.7750240193720852E-03 + 228 -1.4998773657567625E-03 + 229 -2.9979226485345034E-01 + 230 1.1804813401082399E-02 + 231 4.9512442022865118E-03 + 232 2.9243790088137631E-02 + 233 -1.0426318743121622E-02 + 234 1.3351545989544245E-02 + 235 -4.2367820371855382E-03 + 236 1.9347672457273712E-03 + 237 2.6192135795171708E-03 + 238 -1.2423737536812201E-02 + 239 -3.3982913655575701E-02 + 240 1.7383342924780457E-02 + 241 5.8686767414801409E-02 + 242 5.5945918822666967E-03 + 243 7.8244118994442429E-03 + 244 -5.0269299689507871E-03 + 245 -5.7810590735889551E-03 + 246 2.5007085253711983E-03 + 247 -1.5705588236792367E-03 + 248 -1.8381584389009172E-03 + 249 1.5717878858162255E-03 + 250 -2.3006980852584265E-03 + 251 7.3849236820083323E-05 + 252 -3.3249672014818750E-04 + 253 -1.5574188638743435E-03 + 254 -1.5365308878897682E-01 + 255 8.8493647884213926E-03 + 256 -1.2769624910706941E-02 + 257 2.0876629409093655E-02 + 258 -4.5588178209143258E-03 + 259 -1.0235228263868654E-03 + 260 1.0336307331081979E-03 + 261 -1.5937904635425419E-03 + 262 -2.5821526295898428E-02 + 263 1.7730499241611342E-02 + 264 9.5486444417190314E-03 + 265 1.8442481683691503E-02 + 266 -2.1641785341526944E-03 + 267 4.5236894747164970E-03 + 268 7.5216659138807327E-03 + 269 -2.8270996051003379E-03 + 270 7.1363749948647245E-03 + 271 1.9984155402013337E-03 + 272 -9.6018864330162915E-04 + 273 -6.4582914981906731E-04 + 274 -4.8216756580098916E-04 + 275 -5.1465235594122885E-04 + 276 -9.5875831426750827E-04 + 277 8.4834845414431630E-04 + 278 -1.8180445170038694E-03 + 279 -6.8230374803649019E-02 + 280 7.0764106879468696E-03 + 281 1.6037785322278866E-01 + 282 -4.6707029281610121E-02 + 283 6.5125866717725370E-02 + 284 -4.4626682918704769E-03 + 285 -1.4837004072924247E-03 + 286 -4.6193246275043958E-03 + 287 2.7609727400960040E-03 + 288 1.4000980826762081E-03 + 289 -1.7501947826466056E-03 + 290 -7.5162760149456254E-04 + 291 -1.3737207258797495E-02 + 292 -1.5360214324774057E-01 + 293 1.3541336643627180E-02 + 294 -3.4305141914444191E-02 + 295 7.4933817118976878E-03 + 296 1.9644841509279692E-01 + 297 -1.6073448825414146E-03 + 298 3.9654964950015049E-04 + 299 1.0826023891012024E-03 + 300 1.0905371402719985E-02 + 301 -3.4068805751566555E-03 + 302 -1.8933410296221990E-03 + 303 1.1818695328906692E-04 + 304 -1.3280273538855882E-03 + 305 -1.1277471532570738E-01 + 306 9.0106076686341484E-03 + 307 2.5943066572863851E-02 + 308 3.8343180341737651E-03 + 309 -3.8780767050873743E-02 + 310 -4.2253138633173287E-03 + 311 -4.5176364433688289E-03 + 312 2.8276445306955325E-03 + 313 -6.4427217190625051E-04 + 314 -1.0928396955248849E-02 + 315 -1.3099943884519429E-02 + 316 -6.5735567813142706E-03 + 317 4.3292877708600687E-03 + 318 -5.5234007306194993E-03 + 319 6.4562726741160120E-03 + 320 -3.5452837643277224E-03 + 321 -1.8299750348974499E-03 + 322 5.4178895016979900E-03 + 323 -1.2959868418530441E-03 + 324 3.1779640016629455E-03 + 325 -2.0562418214660534E-04 + 326 -2.0913246004595164E-04 + 327 3.2106629068610918E-03 + 328 -4.2900950483997191E-04 + 329 -6.4863035409792977E-04 + 330 -7.8232183884303225E-02 + 331 8.3699954397515389E-03 + 332 -2.7939983501473510E-03 + 333 -1.7803827874185649E-02 + 334 -1.5227162184333502E-02 + 335 3.2950335757340006E-03 + 336 1.7247526625603904E-03 + 337 5.7556269755674331E-03 + 338 2.2589796722282366E-03 + 339 -5.6486139791164652E-03 + 340 -1.5240357379844834E-02 + 341 1.2942606949640407E-02 + 342 -4.9074590198967198E-04 + 343 6.2059783210388908E-03 + 344 3.5578281306414827E-03 + 345 2.2855288060237542E-04 + 346 3.9113045431385524E-03 + 347 3.0904020043115064E-03 + 348 5.1687556893418413E-04 + 349 4.6521820083168667E-04 + 350 7.6419486807285312E-04 + 351 -3.0494054932588878E-04 + 352 2.5587729236994559E-03 + 353 -4.5329432710636378E-04 + 354 1.2676753388100031E-03 + 355 -9.8538945047656812E-02 + 356 9.1942370078881615E-03 + 357 1.7398249431171006E-02 + 358 1.2259175343636099E-01 + 359 9.1860878048922720E-02 + 360 -1.2894334550097398E-04 + 361 9.1260023603043788E-04 + 362 -3.8102513929692144E-04 + 363 1.1616558829246498E-03 + 364 1.2398662996488095E-03 + 365 6.3861847791387644E-03 + 366 -3.6859185751050485E-03 + 367 1.6251641249090869E-03 + 368 -1.4766653258771995E-01 + 369 1.2177256185554564E-02 + 370 1.1297169294741333E-01 + 371 -5.4990112887929585E-02 + 372 -4.3542807059369693E-02 + 373 -7.8950820377524482E-03 + 374 -4.1286870168604482E-04 + 375 -3.0955115945643133E-04 + 376 -5.8163257647168463E-04 + 377 -6.3123738844812001E-04 + 378 2.3308672776275547E-04 + 379 1.2679841660251678E-03 + 380 1.2493116281483091E-03 + 381 -4.4286374779272060E-02 + 382 3.9554352699889229E-03 + 383 -4.2689313252795895E-02 + 384 -1.1620610924549665E-01 + 385 1.4078729551832325E-01 + 386 1.4283419059304866E-04 + 387 8.9412838645601400E-04 + 388 -7.8526635508912798E-03 + 389 -8.5338134570708147E-03 + 390 6.8970673936117558E-03 + 391 -2.7759726434319777E-03 + 392 -2.2941834349930533E-03 + 393 3.6900819194103638E-03 + 394 1.0168757285188271E-01 + 395 8.8942251898722327E-04 + 396 -4.3389821796477818E-03 + 397 2.4149871595442681E-02 + 398 1.5383198625747437E-02 + 399 1.0288257855782294E-02 + 400 -4.4532081525037528E-03 + 401 -5.2345755462204274E-03 + 402 4.1794990339823417E-02 + 403 -2.5612686860839953E-04 + 404 1.4963616893666576E-03 + 405 -3.9916784554511496E-02 + 406 -1.3285532575077454E-02 + 407 -7.0648206396617388E-03 + 408 1.7711703249209576E-03 + 409 2.8652774211642703E-04 + 410 5.6466131308171739E-03 + 411 7.0692300185194561E-03 + 412 3.0690519487989415E-03 + 413 -1.9298740348772448E-03 + 414 1.1141455041771475E-03 + 415 3.8885911681669594E-04 + 416 1.6422937923715191E-03 + 417 7.5925503440196773E-03 + 418 3.4383375213574677E-03 + 419 -6.4828815932278155E-02 + 420 6.5438963144508096E-03 + 421 6.4793118597241919E-02 + 422 -9.8994094587785117E-02 + 423 2.7805458810584639E-02 + 424 5.2576113062349100E-04 + 425 2.9705927264171671E-03 + 426 1.3233353902676707E-03 + 427 -3.0117269189752771E-03 + 428 3.2916846567275396E-03 + 429 -7.2154684128879626E-03 + 430 -2.7111199097002890E-04 + 431 -4.0057776520497053E-03 + 432 -7.2683347004429355E-02 + 433 7.8019799352348918E-03 + 434 4.1175547608102256E-02 + 435 1.0611864415593573E-01 + 436 3.3140228345946952E-02 + 437 5.4655355309899767E-04 + 438 1.3599534171091878E-03 + 439 -1.8602265238161718E-03 + 440 -2.1390759946873414E-03 + 441 4.4857725907495276E-04 + 442 3.6706528712592045E-03 + 443 -2.4708515993372413E-03 + 444 3.3284900499515190E-03 + 445 -1.2486971867418570E-01 + 446 5.3372283695988527E-03 + 447 -1.2090305842333969E-02 + 448 2.1578880882212096E-03 + 449 1.2229617582642974E-02 + 450 5.9092120881046612E-03 + 451 1.6047951697770828E-03 + 452 -2.8641293023983602E-03 + 453 -4.8986225616161651E-03 + 454 4.5559305156566920E-02 + 455 1.3696698220645405E-02 + 456 -1.4856367929408459E-02 + 457 1.6393086084918768E-02 + 458 7.8895783625589663E-04 + 459 1.1002160174684063E-02 + 460 -2.9724969381102846E-03 + 461 -1.9853868283070332E-03 + 462 6.1322620970762744E-03 + 463 6.4046199479713285E-04 + 464 7.0235630969517631E-04 + 465 9.5586062760490706E-04 + 466 -1.2786280291131424E-03 + 467 -1.8611861758196071E-03 + 468 9.1853674207868958E-04 + 469 2.6614845025771492E-03 + 470 -1.4619608526688713E-01 + 471 9.4451332017671721E-03 + 472 -1.7850089478777167E-02 + 473 1.0394808688325362E-02 + 474 -1.3859215132868256E-02 + 475 -4.4314859307998284E-04 + 476 -4.0700531234384431E-04 + 477 8.7547001840542100E-04 + 478 8.0944166400586850E-03 + 479 -1.9304627716886059E-02 + 480 -2.9586399593186964E-02 + 481 1.3307244934372308E-02 + 482 -1.4037844765102002E-03 + 483 1.5775015641127895E-03 + 484 -2.8366776901250470E-04 + 485 -1.4514985639757778E-03 + 486 -7.1433700340501859E-03 + 487 5.5398078196665975E-03 + 488 -8.8218667282313561E-04 + 489 1.4345705735795580E-03 + 490 1.5733562975895780E-04 + 491 8.3617767230298326E-04 + 492 1.4993815482380150E-04 + 493 -1.2627233179377392E-03 + 494 1.3785164083438036E-03 +Ene= -2.8611547277E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -3.5599497966436536E-02 + 2 1.3065704685152084E-03 + 3 1.5961030639721499E-02 + 4 -1.1314089928002227E-03 + 5 -1.2840293469424148E-02 + 6 -8.4020897684794824E-05 + 7 -4.8824903067758779E-03 + 8 5.9116866311468912E-05 + 9 -1.7360959536700873E-02 + 10 1.7572334413724879E-02 + 11 2.5614300544829716E-02 + 12 -7.2949629608907067E-03 + 13 4.1127078577237013E-03 + 14 -2.5377717139313228E-03 + 15 4.0157503173941277E-03 + 16 -4.1419867227801251E-03 + 17 -5.5276064176923573E-03 + 18 3.2860795819692852E-03 + 19 4.4836408443105234E-05 + 20 6.0742783382262977E-04 + 21 -1.0060465080773027E-03 + 22 -6.0997015512865226E-04 + 23 1.4598689938049791E-03 + 24 1.1914785480899373E-03 + 25 -1.3733483708144046E-04 + 26 -1.4568637232266599E-01 + 27 1.2911705003038265E-03 + 28 9.6086809796790667E-03 + 29 -2.2238000468392783E-03 + 30 1.0306297335817742E-02 + 31 8.4669745917954464E-03 + 32 7.6173184902215254E-03 + 33 -8.8433464927469268E-03 + 34 1.5877392914218853E-04 + 35 1.1192043840056867E-02 + 36 -2.3199310603459325E-02 + 37 4.3144000772112528E-02 + 38 1.8601721563402004E-02 + 39 1.2613454049140271E-02 + 40 1.4207819747847875E-03 + 41 -8.8720911459239660E-03 + 42 5.3359527039116951E-03 + 43 2.9948760135725273E-03 + 44 2.1396108019236535E-03 + 45 -1.5675268876243239E-03 + 46 1.1787037490740813E-03 + 47 -1.0585697973593969E-03 + 48 -1.2293742709459489E-03 + 49 9.0213821152436880E-04 + 50 1.0316315863177219E-03 + 51 -1.5827980796485225E-01 + 52 8.2909389850934490E-03 + 53 2.0228142621111941E-02 + 54 -1.7909413963302478E-02 + 55 -1.5266420813344683E-02 + 56 3.8653898236081325E-03 + 57 5.9527094887622447E-03 + 58 5.1619338201405818E-03 + 59 1.9112044060824725E-02 + 60 2.4375009834219218E-02 + 61 1.6863439519414967E-02 + 62 -3.1794278206755906E-02 + 63 -1.0432284793497193E-02 + 64 4.4975136386333006E-03 + 65 3.4986381641569546E-03 + 66 1.4029038187989652E-05 + 67 -3.6279110302412910E-03 + 68 -5.9730451885718289E-03 + 69 -3.1602033205158650E-03 + 70 2.1985037594323300E-03 + 71 -5.2390149329538274E-04 + 72 1.8919805661080638E-03 + 73 5.9999900433024113E-03 + 74 6.6438324901999039E-05 + 75 8.3792757350562507E-04 + 76 -7.6540342308291778E-02 + 77 5.8157827718313656E-03 + 78 -8.3355754800498810E-02 + 79 -5.6573102802340847E-02 + 80 9.8099877303619160E-02 + 81 1.1147345312922383E-03 + 82 -2.4803380275817701E-03 + 83 -5.4782820033149621E-03 + 84 -8.1343838741471304E-04 + 85 -6.1646821623156959E-03 + 86 -2.2932068605501042E-03 + 87 1.9174893465640011E-03 + 88 3.5855934922362880E-03 + 89 -3.8883889453665922E-02 + 90 1.9873346349571753E-03 + 91 -2.0301653870362237E-02 + 92 4.8498167580135206E-02 + 93 4.0241230866826093E-02 + 94 9.1398446460797214E-05 + 95 -3.2167000998226802E-04 + 96 3.1775211594890811E-04 + 97 5.7529262459778108E-04 + 98 -3.2335213205311438E-03 + 99 1.6467771713994596E-03 + 100 -1.0751660864882189E-03 + 101 -3.3343363792445405E-03 + 102 -5.5280112627514304E-02 + 103 4.7386512335484019E-03 + 104 -5.8556726289450842E-02 + 105 5.1227272275114278E-03 + 106 -1.3836937765499102E-01 + 107 -1.3062527743317782E-04 + 108 3.1181204089671339E-03 + 109 7.5172507995603492E-04 + 110 -1.5083163327455310E-03 + 111 1.1042905735950244E-02 + 112 -5.5303959959633522E-04 + 113 -3.3288880261759407E-04 + 114 1.8768366853410721E-03 + 115 -9.4824692459553328E-03 + 116 1.1256093634173490E-03 + 117 1.0702454583342885E-01 + 118 1.9579963955900698E-01 + 119 -8.0189295699230084E-02 + 120 -1.4101813874354318E-03 + 121 -2.6713868913960238E-03 + 122 1.3680607341850402E-03 + 123 6.9358736920981604E-03 + 124 -7.7907066099344767E-03 + 125 -1.1575950900456801E-02 + 126 -1.2511193606480756E-03 + 127 -5.2109958054416417E-03 + 128 2.4102495906719573E-01 + 129 2.6194202224910808E-04 + 130 -3.6991771940475033E-04 + 131 9.1035980244395763E-03 + 132 2.1684798026246295E-02 + 133 9.1241168616157022E-03 + 134 -3.8770786843010823E-03 + 135 -5.3064148403413986E-03 + 136 3.6281310600328062E-02 + 137 4.3723249299241478E-02 + 138 -1.9866751248748440E-02 + 139 2.5951750146123484E-02 + 140 -5.2148257929055176E-02 + 141 -7.3587731763935437E-03 + 142 1.5322006104759605E-02 + 143 1.6190211390647189E-03 + 144 9.3327806494607774E-03 + 145 3.2345297774184160E-03 + 146 -1.0102746039845234E-03 + 147 -4.7545204277585967E-03 + 148 3.0109908196347536E-03 + 149 3.8581751583189037E-03 + 150 -6.3643252447384280E-03 + 151 1.2163544792931210E-03 + 152 -1.1180145920910477E-03 + 153 8.7098373271021046E-02 + 154 -4.9085420708429158E-03 + 155 8.6755273006788331E-03 + 156 2.8973926544855651E-02 + 157 1.4523890461297156E-02 + 158 6.1492702099964674E-05 + 159 -1.6447748991362671E-03 + 160 -5.3636470958559368E-05 + 161 -3.3226139740367866E-02 + 162 -1.5381482615655780E-02 + 163 -7.2475347301648885E-03 + 164 1.9138753582580353E-02 + 165 -3.4237854208606512E-02 + 166 -3.8326661069993532E-03 + 167 -4.8009153555154446E-03 + 168 -3.3658644860834024E-03 + 169 -1.8218242177390416E-04 + 170 -3.8900115430110052E-03 + 171 9.8288698195483828E-04 + 172 1.5081884226806641E-03 + 173 -8.2610640862978770E-05 + 174 2.0871044455492574E-03 + 175 -7.3596421823624134E-04 + 176 3.4735432601947484E-04 + 177 -1.5298523713769584E-03 + 178 2.9550050335722888E-02 + 179 -2.2649133398926330E-03 + 180 -6.5407609611397730E-02 + 181 -1.7841010321258155E-01 + 182 -3.3079471105070736E-02 + 183 -6.3076751483718519E-05 + 184 6.9624855384538423E-03 + 185 1.0390990281990238E-03 + 186 7.5051643837550077E-03 + 187 1.1724136836986231E-03 + 188 1.2884824774953679E-02 + 189 1.7683929788023425E-03 + 190 -3.2761096420339916E-03 + 191 -3.4364418879609025E-02 + 192 3.3198596922113829E-03 + 193 -6.3850943991593495E-02 + 194 1.9770423597137060E-01 + 195 2.2588581521703022E-01 + 196 2.7361728234628208E-03 + 197 -5.3904414095885915E-03 + 198 -6.8095789520973187E-03 + 199 -1.8982502649446318E-02 + 200 -8.4132292235986853E-04 + 201 4.1877856519185264E-03 + 202 -4.9581722619894573E-03 + 203 -4.7306555746923825E-03 + 204 -2.3395591402160201E-01 + 205 5.3443927616964324E-03 + 206 -2.1948216631897402E-02 + 207 1.2385976157399295E-02 + 208 -1.1383040331551341E-02 + 209 4.6442560623641028E-03 + 210 -1.1301563009969666E-02 + 211 2.0716336840087479E-03 + 212 1.0011096546354922E-02 + 213 -4.8819354237576856E-03 + 214 1.2395902704915430E-02 + 215 -2.8262636909644308E-02 + 216 4.9328270591743821E-02 + 217 -1.3167988998820210E-03 + 218 -1.4243955094200038E-03 + 219 1.8609550207079764E-04 + 220 -5.2704282923417473E-04 + 221 8.0972368985843322E-04 + 222 3.5916032373064398E-03 + 223 -1.3962223124169516E-03 + 224 3.1137690651219818E-03 + 225 8.8787630512844823E-04 + 226 -3.1367792411807877E-03 + 227 -9.2068359834971477E-04 + 228 8.7407658758961726E-04 + 229 -1.6551225148736214E-02 + 230 4.8030899836541940E-04 + 231 8.4163850955413112E-03 + 232 4.4109285122457499E-03 + 233 -1.9134818719926623E-02 + 234 -4.3403230010778072E-03 + 235 -5.2363785435753226E-03 + 236 -2.5932709445204032E-03 + 237 -2.4158833265243446E-02 + 238 1.8389197408614787E-02 + 239 5.4363276804243656E-03 + 240 -1.4388201393418750E-02 + 241 1.0850298198454176E-03 + 242 -1.1379662213825048E-02 + 243 6.3791374404166771E-03 + 244 -1.0131586326902219E-04 + 245 2.7030205827572359E-04 + 246 4.5937303305353718E-04 + 247 1.1102358332475825E-03 + 248 1.1901616180859573E-03 + 249 1.7356007936673635E-03 + 250 -5.4745699850283769E-04 + 251 2.5516433782276623E-04 + 252 -4.2391039018204587E-03 + 253 2.9245974802474448E-04 + 254 -2.1442912994029240E-01 + 255 7.8536687586479061E-03 + 256 -1.6225275601020498E-02 + 257 2.2010615415761766E-02 + 258 -1.9049304506814815E-02 + 259 7.2141084733381902E-04 + 260 6.3419542025067112E-04 + 261 9.5098329537522284E-04 + 262 -2.4884808636636672E-02 + 263 -2.5241967564273222E-02 + 264 5.2908711890975024E-03 + 265 2.2721515909106256E-03 + 266 2.1208859093831058E-02 + 267 3.6589727327967616E-03 + 268 -3.7868172785515903E-03 + 269 -3.6535964719646683E-04 + 270 6.5855827077609223E-03 + 271 4.0741106431757355E-03 + 272 1.1658172914398502E-04 + 273 -5.6270452365373618E-04 + 274 -2.7507960072604485E-03 + 275 7.5233426550042450E-04 + 276 7.0324134777022902E-04 + 277 4.7905560410328458E-04 + 278 -2.6580420736743646E-03 + 279 -1.0867201136065915E-01 + 280 1.0686701962248631E-02 + 281 -5.5205323890552598E-02 + 282 -1.1442001513314951E-01 + 283 9.5516087939534242E-02 + 284 4.5858024304588621E-03 + 285 2.3643959176959319E-03 + 286 -1.3532218999858675E-03 + 287 1.6010476036982851E-03 + 288 3.1604598565074795E-03 + 289 -3.6629730507995611E-03 + 290 -2.4159694185208881E-03 + 291 5.9315078320987709E-03 + 292 2.1442372510519767E-02 + 293 -1.3291902602138182E-03 + 294 3.3450375759087762E-02 + 295 1.6102213505828997E-02 + 296 4.0172099908994388E-03 + 297 -1.8503405280019319E-04 + 298 3.1313905633242097E-03 + 299 -6.4250364826386110E-04 + 300 2.5974769303638715E-03 + 301 3.6283263023822445E-04 + 302 -7.0821545927684441E-04 + 303 -1.0029892171591163E-03 + 304 -2.5219675256277756E-03 + 305 9.6176112440086489E-02 + 306 -5.3984900778453982E-03 + 307 -1.7934012220544034E-02 + 308 1.0052894808670312E-03 + 309 6.9755554583577290E-03 + 310 6.6099444241715947E-04 + 311 -1.0919809915711815E-03 + 312 -2.8550080358923834E-04 + 313 -1.6535545139960132E-02 + 314 -6.5993260998657311E-03 + 315 -1.5600328538328960E-02 + 316 1.2996829633777102E-02 + 317 -9.5587923999061178E-04 + 318 -1.4120556876954040E-03 + 319 -4.0543921608533597E-03 + 320 -4.2988212082640669E-04 + 321 3.2031790009295655E-03 + 322 -1.3031372185331365E-04 + 323 -1.2648530840958390E-03 + 324 -2.7857967297982594E-04 + 325 4.6897345284010360E-04 + 326 3.8743475259195661E-04 + 327 -4.0928977918758936E-04 + 328 4.0825319423161644E-04 + 329 -8.4703970647323815E-04 + 330 2.0452768271329538E-01 + 331 -1.0034821058471010E-02 + 332 7.0826376933330751E-03 + 333 -9.3745551658741631E-03 + 334 3.3810141124142878E-02 + 335 1.9299590722625434E-03 + 336 4.2457011957224766E-03 + 337 -6.3545819755155102E-03 + 338 5.7244827053900112E-02 + 339 2.5120676681444666E-03 + 340 -4.0196054690774204E-02 + 341 -5.7320870156935058E-03 + 342 -5.9269461924310743E-03 + 343 8.4531987605659302E-04 + 344 4.2098648098616498E-03 + 345 4.4916340946373930E-03 + 346 -1.9703599083703014E-03 + 347 3.0243459002737365E-03 + 348 -2.5350478794975381E-03 + 349 1.1254370791953631E-03 + 350 4.3047194529980048E-03 + 351 -1.3657853027946082E-03 + 352 2.1058797984462637E-03 + 353 -1.1414910689994319E-03 + 354 2.3593919766560855E-04 + 355 7.9382384781623613E-02 + 356 -8.1910008873313025E-03 + 357 -2.5212767480312294E-02 + 358 -5.0821986123247169E-02 + 359 -8.0095541312981688E-02 + 360 -4.3207308734464648E-04 + 361 8.1923887524702163E-05 + 362 1.8011279967012064E-03 + 363 -3.0408482238081427E-03 + 364 -1.7144722473396408E-03 + 365 -1.5979277147555623E-04 + 366 2.3003725917802877E-03 + 367 -1.2973177351600709E-03 + 368 -8.3029226167994338E-02 + 369 7.0339162092010552E-03 + 370 5.5468115628744236E-02 + 371 -8.3877064610566626E-02 + 372 3.3297051982066936E-02 + 373 1.1913305465309867E-03 + 374 1.4379319456061543E-03 + 375 2.8849396687455767E-03 + 376 -9.5724811436734801E-03 + 377 4.3817137394506697E-03 + 378 -1.2535782105411552E-02 + 379 -1.4823000174339874E-03 + 380 -9.6477977780036245E-04 + 381 -2.2630160725184638E-02 + 382 2.8013066722914572E-03 + 383 -1.6797002974989129E-02 + 384 8.7814910043477273E-02 + 385 -2.5168256097297964E-01 + 386 -2.7352083221764095E-03 + 387 -4.7734095194102042E-03 + 388 9.1409651640985533E-03 + 389 5.5784635057345754E-03 + 390 -7.4621962820050772E-03 + 391 1.0174398315674273E-02 + 392 2.5708620048668150E-03 + 393 6.4996542371363042E-03 + 394 -1.9780828198890871E-01 + 395 6.7636540794363195E-03 + 396 2.4761062062416479E-02 + 397 -1.8937779597490424E-02 + 398 -4.7227723658294805E-03 + 399 -1.4181577865559258E-03 + 400 3.9905800938650612E-03 + 401 3.5577292212723194E-03 + 402 -3.6113512849335977E-02 + 403 2.3237411747073160E-02 + 404 -4.8891424345497342E-02 + 405 -2.2780492019537895E-02 + 406 -2.0423323409147789E-02 + 407 -3.8944910090177864E-03 + 408 4.7858272959188635E-03 + 409 -7.4524279338781720E-03 + 410 -5.1828298850773672E-03 + 411 -8.3680253457580327E-03 + 412 -3.8514471628660015E-03 + 413 -3.2836065614778366E-03 + 414 5.5729961638459585E-04 + 415 -1.5563957165229312E-03 + 416 -3.5673620089990725E-03 + 417 -8.5281268288270643E-04 + 418 -7.6357649904137330E-04 + 419 -5.8656126200422329E-03 + 420 1.1335373622902633E-03 + 421 -5.5378128188989496E-02 + 422 8.5288261608092567E-02 + 423 6.3093764122715515E-02 + 424 2.4237656407986863E-03 + 425 -2.1537029551677044E-03 + 426 -1.0950860912602720E-03 + 427 6.9652008968369480E-03 + 428 -1.3672249970787601E-03 + 429 4.9906140615381175E-03 + 430 -1.5592080429310397E-03 + 431 3.7567093373744287E-03 + 432 -4.2579865979443229E-02 + 433 4.1397672510871389E-03 + 434 6.3622352330767670E-02 + 435 2.5230202670110852E-02 + 436 1.8403040089692062E-02 + 437 -2.4959275779932876E-03 + 438 3.3222262350635127E-03 + 439 -8.6209495566162827E-05 + 440 -2.4016180053421962E-03 + 441 3.1798951430421349E-03 + 442 -1.9694364682333806E-03 + 443 2.2842618708105219E-03 + 444 5.1621569244111702E-04 + 445 2.2653413119018747E-02 + 446 1.4317504545251088E-03 + 447 2.5364580243904637E-02 + 448 -1.3211319932572491E-02 + 449 -1.1189436539993970E-02 + 450 -2.0382209972208182E-04 + 451 -5.5487165299332160E-04 + 452 4.2204526940472315E-03 + 453 -6.7977810011251695E-03 + 454 -6.1398563989415681E-03 + 455 1.4605698473572155E-04 + 456 2.2497082240174274E-02 + 457 4.5808451850703159E-03 + 458 -6.2660257164899140E-03 + 459 4.6590443129113758E-03 + 460 -4.9866357966649854E-03 + 461 5.8286683024472304E-04 + 462 -3.4939658039009045E-04 + 463 -3.0052766004956273E-04 + 464 1.7027688328228286E-05 + 465 -2.8035197642587596E-03 + 466 -1.5076260919509951E-04 + 467 7.6827572047760955E-04 + 468 1.9768978947744847E-04 + 469 -2.0477376229957873E-03 + 470 -2.4910456321868675E-02 + 471 1.1125816239592233E-03 + 472 -3.6653722035263430E-03 + 473 -5.0366667520434817E-03 + 474 2.4255635186711009E-02 + 475 3.6720185711364367E-04 + 476 -6.6562859048167325E-04 + 477 -2.6058644245912010E-03 + 478 7.6318761634958012E-03 + 479 3.4668621520231778E-02 + 480 2.4175981082898205E-02 + 481 1.1593796658336578E-02 + 482 7.6689710008532429E-03 + 483 3.1329431780583289E-03 + 484 3.7514021415431119E-03 + 485 2.3878746473765576E-03 + 486 1.1912942652466613E-03 + 487 -2.2625603480122261E-03 + 488 -2.8072528418334017E-04 + 489 1.0211985818207681E-03 + 490 4.6547670112557707E-04 + 491 3.4314562345983790E-04 + 492 -5.0614957679990277E-04 + 493 -7.7452937448404461E-04 + 494 -5.9225273522941200E-04 +Ene= -2.8387633080E-01 +Spin= Alpha +Occup= 2.0000000 + 1 1.4717277473497509E-01 + 2 -8.6502795662764219E-03 + 3 5.9563421195388440E-03 + 4 4.5131931408179823E-02 + 5 -1.4990830041833578E-02 + 6 2.6956495979149966E-03 + 7 -4.9240316972128462E-03 + 8 4.5196698918357082E-03 + 9 -4.1347857717317665E-02 + 10 1.5110419494496836E-02 + 11 9.9805019910883062E-03 + 12 -6.7566633832562104E-02 + 13 -4.0662815510306871E-02 + 14 -6.7290773431921223E-03 + 15 -4.6323480430787867E-03 + 16 -6.2248570247237945E-03 + 17 -1.2963375808652668E-02 + 18 -1.0637195046981943E-02 + 19 4.7980114453131614E-04 + 20 -1.7513891583481603E-04 + 21 -1.6757782016540023E-03 + 22 4.6956265726356462E-04 + 23 1.8818952495819993E-03 + 24 2.0531218640234064E-03 + 25 9.1810358835185701E-04 + 26 -1.8999365423684117E-01 + 27 4.5636304801307259E-03 + 28 -1.9186333124344375E-02 + 29 -3.2054875700783898E-03 + 30 2.4704640224580292E-02 + 31 1.1074649018852755E-02 + 32 2.4771416001162466E-03 + 33 -5.3929869923723854E-03 + 34 5.8758802084355622E-03 + 35 4.4900451830260785E-02 + 36 -4.6375004283148750E-03 + 37 -1.8344869926078432E-02 + 38 -4.7620231475844687E-03 + 39 -7.6581465483595431E-04 + 40 5.8741075866981397E-03 + 41 8.2475577303811251E-04 + 42 1.6688898135943137E-04 + 43 -5.5254731022463558E-03 + 44 3.2654552926282767E-03 + 45 -9.4068172512612566E-04 + 46 2.9151357014803327E-03 + 47 2.0158314169793320E-04 + 48 -4.1522599593959838E-03 + 49 -3.5476914915014285E-03 + 50 -3.5198975174525739E-04 + 51 -1.1920436988546045E-01 + 52 6.0484164686366313E-03 + 53 8.5898856457987928E-05 + 54 -4.4385032388880386E-03 + 55 1.8887779222540663E-02 + 56 -3.6250186838816193E-04 + 57 1.4664415601397390E-04 + 58 -4.8007346433274773E-03 + 59 3.2796091462018409E-02 + 60 -1.3129003304435715E-02 + 61 -2.8101010292914334E-02 + 62 -2.1976615114154626E-03 + 63 -1.4579590317612207E-02 + 64 6.3262877135530429E-03 + 65 -3.8493529312812534E-03 + 66 -1.1093180248219826E-02 + 67 -2.1859744888627387E-03 + 68 -8.2322350295176636E-03 + 69 -9.9417571943176235E-04 + 70 -9.6978120915147952E-04 + 71 -2.4071822113672656E-03 + 72 -2.7369591223902712E-04 + 73 3.5172922462896349E-03 + 74 2.3179379229232469E-03 + 75 -4.0558062173930479E-04 + 76 2.1761795636429233E-02 + 77 -2.5513393308914081E-03 + 78 -1.0311099738341508E-02 + 79 -6.0007187850526110E-03 + 80 2.6584356701852513E-01 + 81 1.6805671422021864E-03 + 82 -1.9025046493937187E-03 + 83 1.1584658441286023E-03 + 84 -5.1840963343060664E-04 + 85 -1.3316261594796227E-02 + 86 -1.0910464226838270E-02 + 87 1.6715951336516463E-03 + 88 3.4381879396357309E-03 + 89 -4.0446500735378012E-02 + 90 1.6197859168808788E-03 + 91 -6.3485561053060580E-02 + 92 -1.5893122416471062E-02 + 93 5.2520678844965571E-02 + 94 -2.3126702629047823E-03 + 95 -1.8473019847517868E-04 + 96 2.4660736349565648E-03 + 97 1.0296305203698222E-03 + 98 -3.1532904831102749E-03 + 99 2.3672875696618672E-03 + 100 5.6239152203814728E-03 + 101 -1.7104445828829064E-04 + 102 2.8290604072268651E-03 + 103 -1.1325974400960049E-03 + 104 6.0157265464116559E-02 + 105 1.0676294561422815E-01 + 106 -1.6722613496966135E-01 + 107 -1.9605982713841019E-03 + 108 -4.1041404542016676E-03 + 109 -1.3102674554716636E-03 + 110 -2.0528504399462688E-03 + 111 1.3556240807929025E-02 + 112 -1.3065114114368466E-03 + 113 -1.0471074436183435E-02 + 114 -5.3775637705512479E-03 + 115 1.8583814232403018E-02 + 116 -2.9383395977776589E-03 + 117 2.7773347557053990E-02 + 118 -1.9048185810325354E-02 + 119 -2.1013066409328813E-03 + 120 -1.0539127540239617E-03 + 121 -1.4164297095151256E-03 + 122 9.6978891236976141E-04 + 123 1.2759422927643589E-04 + 124 -3.4466415254024337E-03 + 125 5.2939288404707579E-03 + 126 4.6917583910258505E-03 + 127 1.3233269167106287E-03 + 128 -5.3361546464499247E-02 + 129 2.6604009077257390E-03 + 130 1.3623464026583701E-02 + 131 8.8743124625842527E-03 + 132 5.8543277451956798E-03 + 133 -2.7199640044759396E-03 + 134 -9.3097254224183321E-04 + 135 2.8600169103115353E-03 + 136 1.1830260454408643E-02 + 137 1.7886530659734844E-02 + 138 1.1973962494595796E-02 + 139 -5.6334280826670271E-03 + 140 -1.6706344991380816E-02 + 141 -3.6037331571936631E-03 + 142 7.1121954795216697E-03 + 143 -6.1815743799782262E-04 + 144 7.9318781338712284E-04 + 145 -7.7906565505052941E-03 + 146 4.5124478328888477E-04 + 147 -1.8277989773895409E-03 + 148 -6.7115861870583975E-04 + 149 5.1438275611250678E-04 + 150 2.9984740129977254E-03 + 151 3.0412853910198310E-03 + 152 1.6778885348957752E-03 + 153 3.0261604497678585E-01 + 154 -9.5925210441006274E-03 + 155 -3.3185737502092103E-03 + 156 3.3751514468955018E-03 + 157 -1.5658592762084908E-02 + 158 2.9680106037819239E-03 + 159 5.6763896272828407E-03 + 160 -2.5072907912776186E-03 + 161 -3.5289545812878437E-02 + 162 -3.4811127492668292E-02 + 163 9.9566437393673254E-03 + 164 6.9740550788667810E-02 + 165 -5.6889841138483442E-03 + 166 3.0994913686407288E-03 + 167 -2.7205203839055278E-04 + 168 -9.9703888610104246E-03 + 169 -2.2897178106964086E-03 + 170 -3.2949106411177148E-03 + 171 1.3962959005365202E-03 + 172 -3.0876302600873080E-04 + 173 2.0393772866971367E-03 + 174 6.5013566598534189E-04 + 175 4.8560591837149177E-04 + 176 1.2058533250205541E-03 + 177 1.3608974947312589E-04 + 178 4.9561929136414329E-02 + 179 -4.1149888409434112E-03 + 180 -2.1748867352302395E-01 + 181 3.4692910777728486E-02 + 182 -5.9761173264123384E-02 + 183 2.9478152056102744E-03 + 184 -2.1250936656985113E-03 + 185 1.6594510282490534E-03 + 186 9.3005746038581985E-03 + 187 4.7935433229298009E-03 + 188 -2.4599985517579069E-03 + 189 -1.1377984564214355E-02 + 190 1.0297100950483872E-03 + 191 -6.7557475968732572E-02 + 192 5.9318315469935948E-03 + 193 3.7098267427861542E-02 + 194 4.8536987241565945E-02 + 195 -1.2573309761092152E-01 + 196 -1.7430122077730424E-03 + 197 -2.1802690580482011E-03 + 198 -2.0475279525074019E-03 + 199 3.9458877728512313E-03 + 200 -2.6791642168013871E-03 + 201 -4.4160242953189413E-03 + 202 -1.0686665834194571E-03 + 203 2.7060403847594177E-03 + 204 -5.1065217111610710E-02 + 205 1.6144933673840594E-03 + 206 1.4183239538604196E-02 + 207 -1.2713966818385361E-02 + 208 -9.1145256512084188E-03 + 209 1.5361252180038601E-03 + 210 1.8491269272800587E-03 + 211 2.1596265716467169E-03 + 212 -1.1977262515891469E-02 + 213 1.8432697202927496E-02 + 214 -3.3033800870287247E-02 + 215 -1.0216351568861515E-02 + 216 -8.7773319894397760E-03 + 217 -8.5973609142779937E-03 + 218 4.4577014639555525E-03 + 219 -9.0055931405658186E-03 + 220 1.5268176334056244E-03 + 221 -2.3655286219283430E-03 + 222 1.0255269698078869E-03 + 223 -7.1785221010868408E-04 + 224 -7.4945821384470414E-04 + 225 -3.7158604105840513E-04 + 226 -8.8017074491667240E-04 + 227 3.9804707590270904E-04 + 228 -1.2568543963356316E-03 + 229 7.8836204666121068E-02 + 230 -9.3921300856677516E-04 + 231 5.3887363270349008E-02 + 232 -1.6178699792392580E-02 + 233 -2.6834933318804701E-03 + 234 -1.6141979970333335E-02 + 235 5.4465233867391797E-03 + 236 7.3117770718999424E-04 + 237 1.1068973899314185E-02 + 238 -7.2094350488546462E-03 + 239 1.2152846985006932E-02 + 240 1.7220942328992673E-02 + 241 -8.1157599627066247E-03 + 242 5.4554499743761299E-04 + 243 -2.4172618299505679E-03 + 244 5.1039664825442029E-04 + 245 7.6328229275292401E-04 + 246 -1.3924759321046493E-03 + 247 1.2422053528387436E-03 + 248 2.4801889411813754E-03 + 249 -3.8874445751437506E-03 + 250 8.6869945529024334E-04 + 251 6.5006801911023147E-05 + 252 9.6964217561199949E-04 + 253 3.0157740561928309E-03 + 254 2.0516190688432379E-01 + 255 -7.7315124234178063E-03 + 256 -1.0849113333109806E-02 + 257 9.3907601261041269E-03 + 258 -1.9317250193937843E-02 + 259 2.1002819380761895E-03 + 260 -6.2116082554483937E-03 + 261 8.8295194937472871E-03 + 262 5.8765013379874990E-02 + 263 1.2932383610881601E-02 + 264 -1.7526917257703924E-02 + 265 1.6106475620910950E-03 + 266 5.0987221378710930E-03 + 267 -2.7215710031640535E-03 + 268 -1.4767251326855788E-03 + 269 -1.1444415572870090E-03 + 270 -5.0021548468129635E-03 + 271 1.0485523415222828E-03 + 272 1.3439768466418389E-03 + 273 1.1392162074843576E-03 + 274 -6.8979314031009933E-04 + 275 -7.3610444331720837E-04 + 276 -3.9569392739910621E-04 + 277 -5.1862888985521880E-05 + 278 1.0792748089197837E-03 + 279 2.5016513293580230E-02 + 280 -2.4894493869595980E-03 + 281 -7.1635921518618931E-02 + 282 -1.1170724959611467E-01 + 283 -2.2832528887298970E-01 + 284 4.1761831245652054E-03 + 285 5.1424247372902892E-03 + 286 9.0601041405945233E-03 + 287 -1.1820677943685982E-02 + 288 -2.7878853728702103E-03 + 289 7.0652626781282793E-03 + 290 -6.5100028349706681E-03 + 291 3.9944688332476394E-03 + 292 1.0151032235184419E-03 + 293 -1.4574863580051501E-03 + 294 -1.7039608428906597E-01 + 295 -1.0119274398517321E-01 + 296 -1.3046315711117040E-01 + 297 8.5563283306181240E-04 + 298 -3.0357149797619895E-03 + 299 -2.3298189819078249E-04 + 300 -1.3008477574546470E-02 + 301 -6.0952073846548731E-03 + 302 -2.6495469333345831E-05 + 303 2.7613464286731231E-03 + 304 9.6291211887365932E-03 + 305 -2.3378907536804699E-01 + 306 1.4747336377660085E-02 + 307 1.0978000757475707E-02 + 308 -1.0710908967945488E-02 + 309 -3.6662606682451937E-03 + 310 6.6545477974533198E-03 + 311 5.4731024537603770E-03 + 312 -3.4367273899809730E-03 + 313 5.6738660463453015E-02 + 314 1.3206036644934705E-02 + 315 1.5488356780684952E-02 + 316 1.5365383157423640E-02 + 317 -4.0462265130324776E-02 + 318 -2.1952197952147408E-03 + 319 1.1201101891871120E-02 + 320 -1.6459108665390308E-03 + 321 1.5091467483599984E-03 + 322 -6.2517350457688969E-03 + 323 2.8871474844320657E-03 + 324 3.1716582467320066E-04 + 325 -2.4650507090745073E-03 + 326 5.4964037702343862E-04 + 327 -1.7751622638271592E-03 + 328 4.2670352969793819E-04 + 329 2.0467569748097610E-03 + 330 -1.2367169479258176E-01 + 331 8.4241828361749805E-03 + 332 -1.5215615398244337E-02 + 333 -1.2237670765083249E-02 + 334 -1.5724947254476727E-02 + 335 5.3369549966402450E-04 + 336 -3.0063500023916584E-04 + 337 4.2845664873022273E-03 + 338 -2.2936733561066583E-02 + 339 -5.4592144471946047E-04 + 340 -5.6395922213280745E-03 + 341 9.1190852141355503E-03 + 342 -8.4681095846244319E-03 + 343 5.4693501811460743E-03 + 344 3.1074219439444942E-03 + 345 -5.8943926592730435E-04 + 346 4.2681553180879388E-03 + 347 -3.3916058508779079E-03 + 348 -1.6783179042658699E-04 + 349 7.6454784245383897E-04 + 350 1.5703717061901915E-03 + 351 3.5916205675332990E-04 + 352 9.0055034874360665E-04 + 353 6.9448052615345493E-04 + 354 7.0563979113012949E-04 + 355 -6.7887920145934505E-02 + 356 7.0633137082767141E-03 + 357 9.8443742543421697E-02 + 358 6.2131999832217052E-02 + 359 3.4034851519838510E-02 + 360 -2.6883588618915304E-03 + 361 2.0759374638037406E-03 + 362 1.0551281575808338E-03 + 363 1.5577454791721196E-05 + 364 4.5763313066873789E-03 + 365 -1.7177862872268762E-03 + 366 -1.6713300010568744E-03 + 367 5.4598582570588930E-03 + 368 -6.5531611112121357E-02 + 369 5.4525973104823716E-03 + 370 6.9756659095276896E-02 + 371 -3.6500844533007067E-02 + 372 4.2411380301894883E-02 + 373 -3.7893345983703339E-03 + 374 1.9593082457349787E-03 + 375 -4.5376504020731099E-03 + 376 7.6150082155653854E-04 + 377 -6.4636591074085402E-04 + 378 1.6416488229410814E-04 + 379 -2.8435448041325487E-03 + 380 -4.1999649018998070E-03 + 381 2.2378696525232312E-03 + 382 -8.7136733851859982E-04 + 383 3.8875806034830235E-02 + 384 -2.1638616246240194E-02 + 385 9.5055894088682119E-03 + 386 -1.1995537462087273E-03 + 387 2.5688468520069798E-03 + 388 -2.9672536711963524E-03 + 389 2.1071761349550763E-03 + 390 -2.3606459573199041E-03 + 391 -4.4647711998255209E-03 + 392 -2.3495550004593894E-04 + 393 -5.4982768014554565E-03 + 394 -7.1300407772561608E-02 + 395 2.8593726905668227E-03 + 396 -3.0497511979196288E-02 + 397 -3.7908478097925538E-02 + 398 6.9750275638946193E-03 + 399 3.5990486285837680E-03 + 400 5.4651220668379087E-03 + 401 1.2370726941580467E-03 + 402 1.1941585342644417E-02 + 403 2.2606642630733545E-02 + 404 -1.1347849868241647E-02 + 405 3.6693418664218757E-03 + 406 -2.9273762033004688E-02 + 407 4.3983414313096131E-03 + 408 8.9126555631402794E-03 + 409 9.8586130349600445E-06 + 410 -6.9667983702151343E-03 + 411 -5.9806205773450692E-03 + 412 -4.3630750201360818E-04 + 413 2.0737716310476649E-03 + 414 -1.7986446830625955E-03 + 415 1.1766623165393000E-03 + 416 -7.4581448691393834E-04 + 417 -3.2205221327949248E-03 + 418 -1.2704873729534373E-03 + 419 -5.1589596175323535E-02 + 420 3.8971770067816355E-03 + 421 1.4409928632684721E-01 + 422 -6.0821026448146694E-03 + 423 -2.3449502810986338E-02 + 424 -3.7244841802153584E-03 + 425 -1.2022475032620005E-03 + 426 3.1812819110639233E-03 + 427 -5.8686063958674761E-03 + 428 3.6297665074953157E-03 + 429 4.1146784832819762E-03 + 430 5.9095515561516255E-03 + 431 -6.4856742869774976E-03 + 432 2.5083510306387110E-02 + 433 -1.9492016302558961E-03 + 434 -2.6679594159052716E-02 + 435 -5.2477451650820087E-02 + 436 6.4717255375003072E-02 + 437 -1.6238100184147401E-04 + 438 -1.3922939793292678E-05 + 439 -4.8593901359890628E-03 + 440 9.6608667351148043E-04 + 441 5.1058889822300025E-03 + 442 2.4646875049911462E-03 + 443 1.2552738704507799E-03 + 444 -2.6118185621927578E-03 + 445 9.1274452557596850E-02 + 446 1.7521850904336359E-03 + 447 -1.3967125903314030E-02 + 448 1.3295018944207780E-02 + 449 5.8210989895871234E-03 + 450 4.7100559585564524E-03 + 451 -2.5328509670721880E-04 + 452 -5.8976120847694725E-04 + 453 6.4347941909773231E-03 + 454 1.5039075569911240E-02 + 455 1.1881352130649140E-02 + 456 -1.4812967872402221E-02 + 457 -3.6715425022003779E-04 + 458 6.5624567730040431E-03 + 459 -4.0254092571849042E-03 + 460 3.6714880415832452E-03 + 461 -2.3416704106031935E-03 + 462 -4.5779378561867966E-03 + 463 1.9214816971556668E-03 + 464 1.7411910781398379E-03 + 465 9.7044987786336682E-05 + 466 -5.7541585833595773E-03 + 467 -4.2641063334919686E-03 + 468 1.4579999254023823E-03 + 469 6.8335718502110943E-04 + 470 3.6428230996985049E-02 + 471 -2.8787067763454150E-03 + 472 -8.2384610353447162E-04 + 473 5.1470490895400229E-03 + 474 -1.3563736924097930E-02 + 475 -1.3909323178047078E-03 + 476 -6.2370436924094597E-04 + 477 2.1013299125137472E-03 + 478 3.9809525688190893E-03 + 479 -1.0704946415744451E-02 + 480 1.4307941415373875E-02 + 481 -4.3948324522978159E-03 + 482 7.4490511327924560E-04 + 483 2.2576910641076905E-03 + 484 -4.7744373149032846E-04 + 485 2.7582972751291038E-04 + 486 -1.5659542498003688E-03 + 487 4.7212791428269683E-04 + 488 -7.8816870127391362E-04 + 489 1.5755200756610321E-03 + 490 5.0581558259989352E-04 + 491 7.2811129634348725E-05 + 492 -4.4064552536312560E-04 + 493 2.7116613442817918E-05 + 494 6.5591671760098318E-04 +Ene= -2.7819420597E-01 +Spin= Alpha +Occup= 2.0000000 + 1 5.4445492151733763E-02 + 2 -4.8749579903726078E-03 + 3 -2.1513693542401374E-04 + 4 -8.6537952957413591E-03 + 5 3.0792319766962195E-03 + 6 3.3339866674634371E-03 + 7 2.5367975472477843E-03 + 8 6.1104768675414572E-03 + 9 -1.1964488361274164E-02 + 10 -7.2342286615527749E-03 + 11 9.3515935766861637E-04 + 12 -1.0872289892894377E-02 + 13 -5.0798573702749060E-02 + 14 2.9235038086267272E-03 + 15 -7.8431101942863287E-03 + 16 -5.3449944791685768E-03 + 17 -4.3115419991103087E-03 + 18 -2.2244423432623804E-03 + 19 -3.0030526235214571E-03 + 20 -2.1861408678181819E-03 + 21 -2.0124563032625016E-03 + 22 -9.4911450448572948E-04 + 23 3.2629377910467433E-03 + 24 2.6723814519406596E-04 + 25 -2.5400660118720920E-03 + 26 2.7340763068581764E-01 + 27 -3.0263611578909759E-03 + 28 -1.0871530803589442E-02 + 29 -3.2077163061704481E-03 + 30 1.5500879567768903E-02 + 31 -1.4795166117912656E-02 + 32 -1.2308761239185611E-03 + 33 1.6435376581162054E-03 + 34 2.8590446656862563E-02 + 35 -1.0639036227037367E-02 + 36 -1.4882575550151905E-02 + 37 -1.1380665228573790E-02 + 38 -4.4213024341677086E-02 + 39 -2.5639553871215429E-03 + 40 5.4981920517326250E-04 + 41 4.9681793054945323E-04 + 42 1.1972580006531315E-03 + 43 -9.1150216663127195E-03 + 44 -6.0574483691077860E-04 + 45 2.0281231125356979E-03 + 46 -4.4108484516405576E-03 + 47 1.3190515203472021E-03 + 48 5.1169177406538788E-03 + 49 1.1137765250327722E-03 + 50 3.8064545316502519E-03 + 51 -2.7643128691305324E-01 + 52 1.2831281192009644E-02 + 53 2.5189826363421382E-04 + 54 2.8925018404588859E-02 + 55 -1.7475443738664814E-02 + 56 1.4729039976658885E-03 + 57 -7.4320632357065637E-03 + 58 2.0650568513640014E-03 + 59 -1.5566221336467569E-02 + 60 -4.1668753392778961E-03 + 61 -2.0807654322778278E-02 + 62 -2.2898835282559690E-02 + 63 -3.6446908687756456E-02 + 64 -5.3785624114111256E-03 + 65 -1.6805211141004645E-03 + 66 -8.1901204509683759E-03 + 67 9.9028856489697162E-04 + 68 -1.2311730791484900E-02 + 69 -1.0904662335666998E-03 + 70 2.8867979135537244E-03 + 71 -2.0460467527055453E-04 + 72 6.2240239287472373E-04 + 73 5.5712593245701107E-03 + 74 6.9248454463992359E-03 + 75 1.8502009517439740E-03 + 76 1.3200658300389145E-01 + 77 -1.0776902810513704E-02 + 78 1.5745203351390999E-01 + 79 5.5130330221538917E-02 + 80 -7.5575791212374788E-02 + 81 -5.3633675365495723E-04 + 82 6.4154429648594676E-04 + 83 6.2603352201991242E-03 + 84 -1.3152361658059148E-03 + 85 1.7171622152777331E-03 + 86 6.3087968687155415E-03 + 87 -4.4739633906409190E-03 + 88 -3.2708171203851620E-03 + 89 -6.3228348805496104E-02 + 90 4.9227511874179938E-03 + 91 -8.4108883263750447E-02 + 92 -4.3512067939060067E-02 + 93 1.0589815152074172E-01 + 94 -3.9454991720238664E-03 + 95 -4.4649945746259395E-04 + 96 -2.6197770286187725E-03 + 97 5.0286546038874986E-03 + 98 -7.5255189958393000E-03 + 99 2.5098932207962004E-03 + 100 6.6976948564740737E-03 + 101 8.9653632855581935E-04 + 102 -2.1589195649354291E-02 + 103 2.5031563217000415E-03 + 104 -7.3947053646317304E-02 + 105 -2.4694774055860061E-01 + 106 -5.0587314508208539E-02 + 107 1.6633349675708750E-03 + 108 7.9991735961078073E-03 + 109 -1.2554811514843325E-04 + 110 3.5410688373913048E-03 + 111 3.2700839282054361E-03 + 112 5.6311290939408502E-03 + 113 1.0060917856628318E-02 + 114 1.5516317766254605E-02 + 115 1.1994130880728711E-02 + 116 -1.5023513812514567E-03 + 117 -1.4654330200201976E-01 + 118 4.4500684681134127E-02 + 119 2.7486462962096569E-02 + 120 4.6552295739359572E-03 + 121 -1.1998096206842322E-04 + 122 -2.2992298718714838E-04 + 123 -9.0681217757367029E-04 + 124 1.0956245386710127E-02 + 125 -3.9703413003191771E-03 + 126 -2.0946760672688543E-03 + 127 3.5314265635127862E-03 + 128 -1.2139046378850459E-01 + 129 -2.7698635530989012E-05 + 130 -7.5325628761307127E-03 + 131 -1.0579389442966151E-02 + 132 9.1830539050542642E-03 + 133 -4.7946000831523145E-03 + 134 1.0806572810295382E-03 + 135 -8.2640409489397417E-04 + 136 -3.3701021535956346E-02 + 137 -2.8707550996760083E-02 + 138 1.4364495928285349E-02 + 139 4.5587905899348566E-02 + 140 1.3983928351832433E-02 + 141 1.9215479066061385E-03 + 142 -2.2714101432849791E-03 + 143 1.1861973149076461E-03 + 144 -1.6204715312236159E-03 + 145 -7.3644928835310099E-03 + 146 -3.4169320906916157E-04 + 147 2.3801921071857778E-03 + 148 2.2206681585869685E-03 + 149 2.1582656566135775E-04 + 150 2.1564651391817059E-03 + 151 -2.0800828406053475E-03 + 152 -9.8514903674803934E-04 + 153 -1.0829897050369788E-01 + 154 3.1268671144363482E-03 + 155 1.3232694089462134E-02 + 156 2.1855191259384416E-02 + 157 1.9296552006732182E-02 + 158 -4.5047512521564611E-03 + 159 -4.9472400255525959E-03 + 160 1.7947498172018485E-03 + 161 -6.0577551710198465E-03 + 162 9.0853466685861457E-04 + 163 -3.1298857831315904E-02 + 164 -2.8332862617794604E-02 + 165 3.1201934333927473E-02 + 166 -5.7007686872520601E-03 + 167 -2.0295619015439450E-03 + 168 7.0183461939015139E-04 + 169 5.7446490970203181E-03 + 170 4.8226052079626746E-03 + 171 -1.0237281830272010E-03 + 172 1.0025759412540119E-03 + 173 -1.6134715540897587E-03 + 174 -1.0770790988066943E-03 + 175 -1.7932279164115710E-04 + 176 1.3198058700578675E-04 + 177 7.8778550295296890E-05 + 178 -4.3724086792385472E-02 + 179 3.9072685238444134E-03 + 180 1.1281421831881960E-01 + 181 3.2442105874848332E-02 + 182 -9.0898399745204077E-03 + 183 -3.2889030047263631E-03 + 184 5.6546019833970658E-05 + 185 -2.5788651542196072E-03 + 186 -3.1596767858090426E-03 + 187 -3.5902955017854715E-03 + 188 -3.4723547781796171E-03 + 189 3.7173235426395590E-03 + 190 -1.7496696079364145E-03 + 191 -5.0908792047305598E-02 + 192 5.2678982684239819E-03 + 193 2.4189033873807411E-01 + 194 7.5690834788847666E-02 + 195 -3.9158178037177922E-02 + 196 -1.1457127491966935E-02 + 197 -2.8897201445954742E-03 + 198 -1.5165600252921786E-03 + 199 -2.1344391342324842E-03 + 200 -5.0002134171342012E-03 + 201 -3.2078264252967457E-03 + 202 -1.0060590113371674E-03 + 203 1.7637598783084105E-02 + 204 1.0801320382106301E-01 + 205 -2.7669679793343766E-03 + 206 -2.9538390630844534E-02 + 207 -2.9913703722049465E-02 + 208 -9.8497158716985677E-03 + 209 -6.6673895657513773E-04 + 210 6.5763985493979844E-03 + 211 9.2883500421171510E-04 + 212 1.4747684568432860E-02 + 213 8.4593335945902289E-03 + 214 1.0852748085803551E-02 + 215 -2.4194702436785960E-02 + 216 -1.5762545034758133E-02 + 217 3.8711195803305103E-03 + 218 1.9080231379466577E-04 + 219 2.7558712129434094E-03 + 220 -4.9263710262634599E-03 + 221 -5.7815335959663650E-03 + 222 -1.2568023301509274E-03 + 223 -3.1030329872399281E-04 + 224 -1.7802715792483248E-03 + 225 -7.5937016669075082E-04 + 226 2.0423170267228545E-03 + 227 4.7632779997285853E-03 + 228 -2.2984588831874032E-03 + 229 1.6725030037872449E-01 + 230 -9.1940331296243598E-04 + 231 -1.2081049765444741E-02 + 232 -8.7396652120787406E-03 + 233 1.5038490849951253E-02 + 234 -5.9446012018635275E-03 + 235 -6.0221982941864949E-03 + 236 2.9092217173751129E-03 + 237 1.9442934323110488E-02 + 238 -1.0542837639661932E-02 + 239 1.2594373790907807E-02 + 240 -4.6756494347526670E-02 + 241 -4.0819071393693729E-02 + 242 -2.8565133168700204E-03 + 243 -6.0481174511099823E-03 + 244 -4.3742221202913434E-03 + 245 -1.0893557861878119E-03 + 246 -1.1729648177818091E-03 + 247 1.1143347772864788E-04 + 248 -2.8969643053744558E-04 + 249 1.0945645463002144E-03 + 250 1.4099991909192946E-03 + 251 -4.1024485663897523E-04 + 252 -3.2500795182873630E-03 + 253 1.3822054016946101E-03 + 254 -7.5765288243632253E-02 + 255 -6.4100709033629766E-04 + 256 3.6921957114056603E-02 + 257 1.1657081708341501E-02 + 258 -1.6590894974401040E-03 + 259 -3.0440031471947230E-03 + 260 3.7128761094790343E-03 + 261 -4.7669835482765064E-05 + 262 -1.1065184990706273E-02 + 263 -1.8769021222161942E-02 + 264 7.3251593575945104E-04 + 265 -3.7229323993597939E-03 + 266 -2.6629196598457940E-02 + 267 1.7123168573616001E-03 + 268 -1.3570866112235804E-03 + 269 -2.1273776809927784E-03 + 270 6.9742741674055087E-03 + 271 -4.2595382103261109E-03 + 272 -5.2559286794481223E-04 + 273 4.6395140487338139E-04 + 274 -5.2150184879419081E-04 + 275 -4.4811296181214563E-04 + 276 2.9382360606255374E-04 + 277 -1.4601160001310456E-04 + 278 -1.6032350744205053E-03 + 279 -3.2266668054572178E-02 + 280 2.9793605538994059E-03 + 281 -1.5968681841601157E-01 + 282 -3.3737595295619538E-02 + 283 8.7508203578091581E-02 + 284 6.5414492662341219E-03 + 285 1.1806567403137159E-03 + 286 -2.3392016977489211E-03 + 287 2.1777290058116114E-03 + 288 1.4043620733372375E-04 + 289 -4.1100302226905585E-03 + 290 -2.6518774022554360E-03 + 291 1.2762300656374730E-02 + 292 2.2907571094212251E-02 + 293 -2.1489636271685188E-03 + 294 -3.1476875241508481E-02 + 295 -6.1516341023304687E-02 + 296 -8.3729460912358541E-02 + 297 6.9530476913171556E-04 + 298 2.3955919389332318E-03 + 299 2.3666343162225502E-03 + 300 -5.8928881526971056E-03 + 301 1.0188204600712065E-03 + 302 -1.2741028471998513E-03 + 303 4.6108990550397890E-04 + 304 4.9458508146425989E-03 + 305 -8.6691836000475836E-02 + 306 8.7149577025093464E-03 + 307 5.1349548890072200E-03 + 308 5.9999371619309100E-03 + 309 6.8767288554640420E-03 + 310 3.9269701108522685E-03 + 311 -6.9151513318367326E-04 + 312 -1.5458395075397206E-03 + 313 2.7606010776085470E-02 + 314 1.1615693756297943E-02 + 315 1.8340883797458023E-03 + 316 1.0812001396535754E-02 + 317 -2.8215343112545241E-02 + 318 -1.3768266624313542E-03 + 319 6.0068004241886326E-03 + 320 -1.1320995407005953E-03 + 321 1.1141856109998613E-03 + 322 -2.3788048920621403E-03 + 323 1.4144022252187654E-03 + 324 -2.3981329268309119E-04 + 325 -8.3152472492096824E-04 + 326 1.2284130076878372E-03 + 327 -2.1663374101266153E-03 + 328 1.1327467934253328E-03 + 329 1.2257189877452558E-03 + 330 -1.1027890083424183E-02 + 331 2.3902118598098771E-03 + 332 -3.4625946368661044E-02 + 333 -2.6337624551992160E-03 + 334 -8.4238452286175755E-03 + 335 5.3622429869062509E-03 + 336 1.4466086440318004E-03 + 337 3.0846331635641148E-03 + 338 -7.4683326224266669E-03 + 339 -3.0534862759643136E-02 + 340 -1.9639387514531818E-02 + 341 3.1492037969341434E-03 + 342 -2.1091728105389534E-02 + 343 -1.2885986035975103E-03 + 344 -2.5582747336368508E-04 + 345 1.8478116960442617E-03 + 346 1.6438399103460308E-04 + 347 9.4666710957420810E-04 + 348 -9.3608536398885318E-04 + 349 2.5513042838373823E-03 + 350 1.2240933923112654E-03 + 351 -7.0704108609970240E-04 + 352 1.8540584422882527E-03 + 353 -1.3041247275919945E-03 + 354 -1.4794314772796776E-05 + 355 1.3503575810875365E-04 + 356 6.8601224785857758E-04 + 357 7.6996699640856633E-02 + 358 4.6610146146085760E-02 + 359 -5.6136070521258491E-02 + 360 -4.7566253871831835E-03 + 361 -2.1881398308464567E-03 + 362 3.2755748472565291E-03 + 363 -4.0772483254406747E-03 + 364 3.9002908293644307E-03 + 365 -4.5472700378164827E-04 + 366 -1.2249356555549002E-04 + 367 3.8118219971936436E-03 + 368 -6.2089914694595766E-02 + 369 5.3444393493181763E-03 + 370 -2.9508880088509968E-02 + 371 -1.3325565149058477E-02 + 372 4.8774637134073824E-02 + 373 -2.5434181131299360E-03 + 374 1.4449501355214916E-03 + 375 1.5681058510857641E-03 + 376 -1.0659716206306955E-03 + 377 -7.1334795735652749E-05 + 378 -2.1009591305960057E-03 + 379 -2.4784571854651440E-03 + 380 -1.7636355466613171E-02 + 381 -1.0178897397700351E-01 + 382 1.0387822259887240E-02 + 383 2.2681181072660891E-01 + 384 -2.7132379818749924E-02 + 385 -1.2542088583764494E-01 + 386 -8.9145786750808951E-03 + 387 -1.3838578971657885E-03 + 388 5.7524603525472510E-03 + 389 4.8362366735933571E-03 + 390 -3.4730738092499298E-03 + 391 2.7936179386899682E-03 + 392 -1.1659536385455547E-03 + 393 -6.3095333502778935E-03 + 394 -1.9322741951592368E-01 + 395 3.3823689567119594E-03 + 396 2.8286009161458464E-03 + 397 -7.3912350960453795E-03 + 398 -3.5059770830068920E-02 + 399 -7.0381964294821981E-03 + 400 2.5478128930350868E-03 + 401 2.7292169210292824E-03 + 402 -4.9954286371380455E-02 + 403 1.1247523182496123E-02 + 404 -2.8571099564655263E-02 + 405 2.9169637791044607E-02 + 406 -9.5647468460365783E-03 + 407 -1.3569802145561188E-04 + 408 -5.5567252572735239E-03 + 409 -1.2717082208122807E-03 + 410 -4.8138902001963130E-03 + 411 -5.9231862883453029E-03 + 412 -1.6677167984615308E-04 + 413 3.2966710054136149E-04 + 414 7.8251360374750065E-04 + 415 -1.7370698049117312E-03 + 416 -2.2075278639965995E-03 + 417 -3.3098042837014416E-03 + 418 -1.9639915395208347E-03 + 419 -4.8889472958916790E-02 + 420 4.3951052301267387E-03 + 421 3.6709397687998718E-02 + 422 1.5145787956701083E-03 + 423 5.3063779190395136E-02 + 424 -1.4235070227743014E-03 + 425 -6.9904945499213770E-04 + 426 8.3001215766560137E-04 + 427 2.4604473918855680E-03 + 428 2.8672213305840701E-04 + 429 1.8762016990120027E-03 + 430 1.3819348926047603E-03 + 431 -3.0453635218815364E-03 + 432 -5.3750912829979573E-04 + 433 -1.4837178589067303E-03 + 434 -1.1524261283981682E-01 + 435 1.7240385755251730E-01 + 436 4.1070220591097356E-02 + 437 8.8344522521846668E-03 + 438 -6.4825153300805249E-03 + 439 1.7493651718826842E-04 + 440 -2.6635767696883842E-03 + 441 -1.0773033845639466E-03 + 442 3.8938389940529681E-03 + 443 -1.1726273178251560E-02 + 444 2.5753044634446422E-04 + 445 6.3003130126138798E-02 + 446 1.5472960634307915E-03 + 447 -1.0300585001994531E-04 + 448 -3.0991696632505065E-02 + 449 7.4152712074340432E-03 + 450 1.2083776741883697E-03 + 451 4.9251213493997489E-03 + 452 7.3415945764935826E-04 + 453 1.1084273603118880E-02 + 454 1.8862511272852152E-03 + 455 -1.7343075344010920E-02 + 456 1.2783376114576116E-03 + 457 5.7561159136952792E-03 + 458 4.1896976632941089E-03 + 459 -1.0747167577964067E-03 + 460 -3.6962120614902317E-03 + 461 -3.5433272097875625E-04 + 462 -4.0841680266218361E-04 + 463 6.7630725410297132E-04 + 464 7.2124121619698595E-04 + 465 5.1863520357943731E-04 + 466 -2.1767740691405976E-03 + 467 -2.5844718147436984E-03 + 468 7.7784991847611257E-05 + 469 -5.2390099693801066E-04 + 470 -6.3941732552725172E-02 + 471 2.0028973369749159E-03 + 472 -5.6295902646591100E-03 + 473 4.0466509965698685E-02 + 474 2.7452942525673478E-02 + 475 -8.0557933344179069E-03 + 476 -1.3472453341949910E-02 + 477 -5.4471029938000497E-03 + 478 6.5167865508691206E-04 + 479 1.6932593854512810E-02 + 480 -2.1860666789388066E-03 + 481 9.5582276879581096E-03 + 482 1.2073598253729206E-02 + 483 -1.1200602720343347E-03 + 484 3.6941846038754372E-03 + 485 5.1837537900438369E-03 + 486 -1.1453210247180790E-02 + 487 6.5377479302632067E-03 + 488 1.3422069230320543E-03 + 489 -5.4952276232766897E-04 + 490 2.5030037982205690E-04 + 491 1.9684272764566332E-03 + 492 -2.1873046593115729E-03 + 493 2.9303133737831832E-03 + 494 4.8180185326936178E-03 +Ene= -2.7541928883E-01 +Spin= Alpha +Occup= 2.0000000 + 1 3.3197628760106623E-01 + 2 -1.6848739260558947E-02 + 3 -1.9218604678906480E-02 + 4 3.5862846468070399E-02 + 5 1.8245122068376075E-02 + 6 -3.3727790354636266E-03 + 7 5.7670758143471548E-03 + 8 -4.7211707406522108E-03 + 9 2.4105622209865840E-02 + 10 7.8496220397402498E-03 + 11 2.2817239060016745E-02 + 12 -6.5225736019297931E-02 + 13 1.3048492630369028E-02 + 14 -4.5538837076672606E-03 + 15 -3.9604710502896467E-03 + 16 -5.0068251479360648E-03 + 17 2.4315660822420747E-03 + 18 -1.2630800758312005E-02 + 19 1.6980354694884666E-03 + 20 2.3846623084486032E-04 + 21 -5.2039945588586685E-03 + 22 2.0674579668022558E-03 + 23 -2.7614843418165546E-04 + 24 5.0123046425660156E-03 + 25 6.1222557599322229E-04 + 26 8.0062305710380421E-02 + 27 -2.7630717223764891E-03 + 28 8.2668828583043370E-03 + 29 -5.6171884897107206E-02 + 30 -8.2092399462035878E-03 + 31 -4.7524121289052243E-03 + 32 4.5825663573971619E-03 + 33 2.7446973667712578E-03 + 34 -2.1564424014847636E-03 + 35 -2.4356336489276115E-02 + 36 4.6050171482897341E-02 + 37 3.3479172338430077E-02 + 38 -2.1896382530774451E-02 + 39 1.9824165634499190E-03 + 40 -6.1047905827753719E-03 + 41 1.1258205102393658E-02 + 42 2.6377501959062291E-03 + 43 -2.3985905585351187E-03 + 44 -3.7919227724943281E-04 + 45 -4.3473418344723439E-04 + 46 -3.4507369135375462E-04 + 47 7.1305433151607866E-04 + 48 6.3045395082562698E-05 + 49 1.8267102271988188E-03 + 50 1.5840397923054844E-03 + 51 8.9318485450515690E-03 + 52 1.3577367976410912E-03 + 53 2.6771167699578421E-02 + 54 4.5968773171617822E-02 + 55 -7.7565529233831589E-03 + 56 -3.8948410403714063E-03 + 57 -4.0656191522617235E-03 + 58 1.7841112593251520E-03 + 59 -2.0217956951959399E-02 + 60 -2.3210585484661269E-04 + 61 -1.7960544751669638E-02 + 62 -2.6493177800206210E-02 + 63 3.7806203984609571E-02 + 64 -6.2051052165236304E-03 + 65 1.5621959352024645E-03 + 66 -4.5209745941423504E-03 + 67 -7.6583471244451272E-03 + 68 8.6355564267134033E-03 + 69 -1.3187973400797556E-03 + 70 -3.8199143143158993E-04 + 71 -5.3771678753715456E-04 + 72 -4.0040714949407492E-04 + 73 3.1912154583215190E-03 + 74 6.7202041575696375E-04 + 75 -1.1324002431445715E-03 + 76 5.8421845318078661E-02 + 77 -5.0895070332141329E-03 + 78 -9.6173291890428433E-02 + 79 2.8621101521634279E-01 + 80 2.6233784826449547E-02 + 81 5.1209520989880962E-03 + 82 -8.6375486081736782E-03 + 83 1.6131975544498396E-03 + 84 9.4566366893639490E-04 + 85 5.5743160874538811E-03 + 86 -8.4250345473491899E-03 + 87 1.6461975830106609E-02 + 88 -9.1928369590969228E-03 + 89 1.0485643278435480E-01 + 90 -7.1492518812771560E-03 + 91 -2.4463442647791813E-03 + 92 -1.8835437674070440E-01 + 93 -2.4220071351240099E-02 + 94 1.3421045058220923E-03 + 95 -2.5136053142870205E-04 + 96 6.8720925844111816E-04 + 97 4.9325929681900207E-03 + 98 -3.2299447568911370E-04 + 99 -4.0565205365568988E-03 + 100 1.0233953201814383E-02 + 101 3.8430108045434215E-03 + 102 2.6246010025255017E-02 + 103 -2.3026092826423012E-03 + 104 -2.4649515425575242E-02 + 105 -1.3033284135625622E-01 + 106 1.7877143861010297E-01 + 107 2.0222104266125361E-03 + 108 2.9267568330582291E-03 + 109 -9.1096042309617999E-04 + 110 -3.4800539616993337E-04 + 111 -9.4658819411260146E-03 + 112 2.6765695189488177E-03 + 113 5.7456340435768976E-03 + 114 7.2578375701551701E-03 + 115 -1.7974152411689787E-02 + 116 9.3681175831607515E-04 + 117 5.5157872520565289E-02 + 118 1.2419520953578976E-01 + 119 -6.1532253994000724E-02 + 120 -5.0000596622814886E-03 + 121 -1.9315725190090917E-03 + 122 6.2122880606085916E-04 + 123 4.0271576808806738E-03 + 124 -4.2402690796186047E-03 + 125 -9.1683675138086694E-03 + 126 -1.6680742616253256E-03 + 127 -2.0341208554408583E-03 + 128 1.0582641060161073E-01 + 129 -9.1031611044722904E-04 + 130 1.1020798383398698E-02 + 131 -8.3356466360507281E-03 + 132 5.7421882698342258E-03 + 133 8.3735128405757907E-04 + 134 -1.3310398496634921E-03 + 135 -3.7878075810572611E-03 + 136 3.1303935267175717E-02 + 137 4.4684079163576666E-03 + 138 -1.3794254166214416E-02 + 139 7.9198819011413752E-03 + 140 4.5009443112355961E-03 + 141 2.4296639458185068E-04 + 142 -2.0274854262244844E-03 + 143 -2.1576617602395345E-03 + 144 -1.4908108184280688E-03 + 145 4.0747860368027192E-03 + 146 -5.5855310113714753E-04 + 147 1.1014059156899678E-03 + 148 1.5886020290521504E-05 + 149 1.7340474664422809E-03 + 150 -3.9428786723336232E-03 + 151 -1.6022558839059366E-03 + 152 2.1198561437404110E-04 + 153 -1.6081046385895598E-01 + 154 5.7043022757244750E-03 + 155 -1.5115822314559633E-02 + 156 2.7745707698640716E-02 + 157 6.2393352407073884E-03 + 158 9.3907171284546493E-04 + 159 -2.9927855601691975E-03 + 160 -5.9072447081112288E-04 + 161 1.4353408450545165E-02 + 162 2.5079620354629715E-02 + 163 -1.7520865990388015E-02 + 164 -4.6227332094813271E-02 + 165 -7.2373357668098076E-03 + 166 9.5238372650322174E-04 + 167 4.3351270648650997E-03 + 168 -7.6631809867610330E-04 + 169 -3.8719961968781175E-03 + 170 -7.3605729463770088E-04 + 171 -2.6199438776016202E-04 + 172 -1.7568350915028897E-03 + 173 -2.6794479170334247E-04 + 174 -5.3104487952242618E-04 + 175 1.0221757841402221E-03 + 176 7.7676992399620590E-04 + 177 -6.1053741932775771E-04 + 178 -1.7703730293813644E-02 + 179 1.6826955096898265E-03 + 180 7.6367930244559012E-02 + 181 -9.7606685394191636E-02 + 182 5.5643629434943553E-03 + 183 -1.1613493344150721E-03 + 184 3.8469938063040443E-03 + 185 2.8429859330539988E-03 + 186 -1.0036399996292457E-03 + 187 -2.1091586704829399E-03 + 188 5.7571840983701135E-03 + 189 6.4786536732702737E-03 + 190 -3.3005620548294794E-03 + 191 -5.9334602247969555E-02 + 192 5.1967706283518903E-03 + 193 1.6453236027281527E-02 + 194 1.0988490898226294E-01 + 195 -1.9124305645449119E-04 + 196 -1.3680870287462138E-03 + 197 -3.3576635044149940E-03 + 198 -3.9785757869567904E-03 + 199 -3.0532389428124624E-03 + 200 -8.8193772359961269E-04 + 201 -1.5501903713573760E-03 + 202 -1.7106590307690171E-03 + 203 5.9402145163608944E-04 + 204 -8.2865199568620804E-02 + 205 2.0805162078830694E-04 + 206 -1.2890405498145737E-02 + 207 -1.7289331156103039E-04 + 208 5.1584688721154478E-03 + 209 7.4634228311413130E-04 + 210 -3.9148307278958905E-03 + 211 5.5464299808663986E-04 + 212 6.9983122958583053E-03 + 213 9.0554998165407567E-03 + 214 7.9944005789988060E-03 + 215 -2.2486727312696339E-02 + 216 6.6892361200617092E-03 + 217 1.9975886722779779E-03 + 218 -1.7559091145083810E-03 + 219 2.4264328977599502E-03 + 220 -2.6310366712513750E-03 + 221 -2.4814874654263360E-03 + 222 1.5426680143093992E-03 + 223 5.5067661017096068E-04 + 224 5.7171671374460216E-04 + 225 -3.1362029253776530E-04 + 226 -1.0458894778809270E-03 + 227 -2.2700671410430748E-04 + 228 5.7382990963875515E-04 + 229 -2.3097243600430381E-01 + 230 4.6368066015713902E-03 + 231 1.0994776470890115E-02 + 232 -3.3754245210722948E-02 + 233 -2.0746383247432429E-02 + 234 -8.7941464070836264E-03 + 235 1.6499873436424291E-02 + 236 3.1931393311039401E-03 + 237 -3.1659239538621833E-02 + 238 -2.1253261919258703E-02 + 239 -5.6434777351715669E-02 + 240 -1.3984795932785477E-02 + 241 -1.2770836600839230E-02 + 242 1.9612961316006544E-03 + 243 9.9735020617131411E-04 + 244 -4.5622664142570719E-03 + 245 -6.4243392708171875E-03 + 246 6.8340603520153425E-03 + 247 -4.8067436686709281E-03 + 248 4.9868902020672292E-03 + 249 -5.8338242555300594E-03 + 250 1.2107646320360108E-03 + 251 8.7952317624280486E-04 + 252 8.4218578732423652E-03 + 253 3.7908306439755290E-03 + 254 -1.3246413315356215E-01 + 255 -1.5752453398439493E-04 + 256 -3.5765498197937506E-02 + 257 2.8597245710813079E-02 + 258 -1.8165101580970434E-02 + 259 3.0897520525952470E-03 + 260 4.6206248493408985E-04 + 261 2.5692554807503730E-03 + 262 -1.0984039105208902E-02 + 263 2.6536717349458266E-02 + 264 -7.3587786943142813E-03 + 265 4.0111361310946102E-03 + 266 1.0940937241109049E-02 + 267 1.2390379360129415E-03 + 268 3.1976214637749129E-03 + 269 -4.0786471730046845E-04 + 270 5.2311748133792796E-03 + 271 1.7180139387328321E-03 + 272 7.0653011247657777E-04 + 273 6.7515349406238611E-04 + 274 -2.0129519588262231E-03 + 275 4.3857089584851082E-04 + 276 -1.9136888840680277E-04 + 277 1.0836839967808796E-03 + 278 -2.4624328165874366E-03 + 279 -9.4884256512568113E-02 + 280 7.4622836725305010E-03 + 281 2.2536537492911535E-01 + 282 -1.6737588365387737E-01 + 283 -4.5305813638717239E-02 + 284 -6.2271991313873534E-03 + 285 3.3698757022128157E-03 + 286 4.5643724129553085E-03 + 287 -3.5306213003759171E-03 + 288 -4.6546774641108312E-04 + 289 2.4078369097942903E-03 + 290 -1.4132274775530106E-03 + 291 -1.5737027059544981E-02 + 292 2.0575035574934208E-03 + 293 -1.4384255566852536E-03 + 294 -1.3645477913608678E-01 + 295 6.5224926143857900E-02 + 296 -6.1292931031891248E-02 + 297 5.6674086925469136E-03 + 298 -5.0477340720486994E-03 + 299 5.0251862138915113E-03 + 300 -6.9692523549681890E-03 + 301 -8.1187768450200256E-03 + 302 1.1019614145305751E-02 + 303 1.6200716314351321E-03 + 304 3.8166883014278722E-03 + 305 -7.6780621349320538E-02 + 306 2.3804387332181966E-03 + 307 1.8526474450902247E-02 + 308 -1.2465093312090168E-02 + 309 2.7827753988433589E-03 + 310 4.2202826167348981E-03 + 311 6.0514724745410007E-03 + 312 -3.4822080832059743E-03 + 313 1.9455914895443491E-02 + 314 1.1894974085929998E-03 + 315 3.1256759931326174E-03 + 316 3.4690293392847120E-02 + 317 4.3476910657335053E-03 + 318 -2.7658009969960297E-04 + 319 7.2159229078966663E-03 + 320 -2.5082158587316052E-03 + 321 2.8641296745078194E-03 + 322 8.8831667826551775E-04 + 323 2.9137266563454842E-03 + 324 1.1517301758215313E-03 + 325 -2.5712056271872783E-03 + 326 -1.7606229150214910E-04 + 327 -5.8587494636662320E-04 + 328 -1.3646609150057758E-03 + 329 1.4166048560270506E-03 + 330 -4.2735728953365880E-02 + 331 1.1682643070314151E-03 + 332 -1.1797468614325094E-02 + 333 -8.1266985106232918E-03 + 334 -1.8221084979817273E-04 + 335 -1.0985677545120284E-04 + 336 2.2951372823486280E-03 + 337 -4.5086558478740846E-03 + 338 -1.8302957901523960E-03 + 339 -4.1312859599219728E-03 + 340 -1.1001966938320937E-02 + 341 -1.3811310343649774E-05 + 342 -4.6006818241326316E-03 + 343 -3.5731601678622189E-05 + 344 1.8177692886400928E-03 + 345 -4.8866756507556126E-03 + 346 -2.7751889332805909E-03 + 347 -9.5274690194480907E-04 + 348 -5.1149621561505907E-04 + 349 1.3927501756432248E-04 + 350 1.1065691805404836E-03 + 351 3.5630382965166901E-04 + 352 4.4128763486629124E-06 + 353 -2.0083978747688491E-04 + 354 -5.4873121477615682E-04 + 355 -2.7605065568267291E-03 + 356 1.3077183886962067E-04 + 357 6.8637046274235364E-02 + 358 -3.3751648254694740E-02 + 359 -6.3234390577623393E-03 + 360 -3.4593613808666605E-03 + 361 2.4343138547250824E-03 + 362 5.1770727656757149E-05 + 363 2.9205158266624494E-04 + 364 4.7403212674477528E-03 + 365 -4.3873013682106587E-03 + 366 -3.1017910711701377E-04 + 367 1.8640129597291132E-03 + 368 3.6479821392600642E-02 + 369 -3.0486074020230399E-03 + 370 -2.9279354191435937E-02 + 371 -4.6298652787366106E-02 + 372 -2.2879869228394252E-02 + 373 -3.4940216892810831E-03 + 374 3.2561835908234839E-04 + 375 1.1445461204116689E-04 + 376 -1.5588636880088476E-03 + 377 -3.8795212488865966E-03 + 378 -5.2006714068700130E-03 + 379 -7.5970069430223962E-03 + 380 4.3731815929593902E-03 + 381 4.1915087653067666E-02 + 382 -3.4226244352468797E-03 + 383 -9.7237830446128909E-02 + 384 8.7695814545477278E-03 + 385 8.6118717099425826E-02 + 386 3.0595616876103360E-03 + 387 5.7680333648076803E-04 + 388 -4.1271294026335630E-03 + 389 -4.6715349218349085E-03 + 390 9.5344208033195678E-04 + 391 -8.1163253347916748E-04 + 392 1.2765080657283203E-03 + 393 4.5819457446105039E-03 + 394 7.5069518455553957E-02 + 395 -8.0742452369345975E-04 + 396 -3.7115225850523070E-02 + 397 1.4267676480035107E-03 + 398 1.2098902310665514E-02 + 399 6.6213591886232371E-03 + 400 1.4568029901441553E-03 + 401 -3.7603806259967885E-03 + 402 2.3587435574883703E-02 + 403 1.8097621102191393E-03 + 404 2.0335257284788910E-02 + 405 -4.4325417759186365E-02 + 406 -2.0468235932745607E-03 + 407 3.1127557188510163E-04 + 408 -3.0231713791982142E-04 + 409 3.6454064975784259E-03 + 410 -6.1753838788204535E-03 + 411 4.0826594187067878E-03 + 412 -1.7714751806147030E-04 + 413 -6.2287362895345971E-05 + 414 -1.0262520024742780E-03 + 415 1.2933781962034811E-04 + 416 1.3905816479406108E-03 + 417 1.0714033102106400E-03 + 418 2.6675996390454746E-03 + 419 1.9927871113714874E-02 + 420 -2.7853401082336086E-03 + 421 9.1759508413827282E-02 + 422 2.8898535982950647E-02 + 423 -7.6049503187310227E-02 + 424 -3.5006518097149995E-03 + 425 -3.5814728647092492E-05 + 426 2.6577175334640407E-03 + 427 -5.2457306983370458E-03 + 428 2.9981201979586559E-03 + 429 3.7563169171336728E-03 + 430 4.9696713679019669E-03 + 431 -2.6170883233082977E-03 + 432 1.9718659529723185E-02 + 433 -1.4452229528935955E-03 + 434 -3.5456984355040869E-02 + 435 -3.6677349956343364E-02 + 436 9.0603644668959982E-02 + 437 -1.4673689227148522E-03 + 438 7.3377579009973389E-04 + 439 -4.0123853147112157E-03 + 440 2.4493068928690217E-05 + 441 5.6428421797870328E-03 + 442 3.7060874935182799E-03 + 443 -3.0498651485541339E-04 + 444 -2.7066919814225767E-03 + 445 1.3232981057521340E-01 + 446 -2.6546416700992249E-03 + 447 -1.7605557171572750E-02 + 448 1.0155638264319517E-02 + 449 -1.2185421249358824E-02 + 450 2.8762430686517302E-03 + 451 1.4958629161926601E-05 + 452 5.6093971890486759E-04 + 453 -3.7431552997966703E-03 + 454 -2.2214347015698046E-02 + 455 1.7233017383721529E-03 + 456 -1.5447213531107264E-02 + 457 -5.3609490890047093E-03 + 458 1.4699754949072381E-04 + 459 -8.8660720021418015E-03 + 460 -1.6369204355599239E-03 + 461 -2.1340639438138646E-03 + 462 -1.5413294100786863E-04 + 463 2.0506930152309807E-03 + 464 -5.8728827071427776E-04 + 465 -6.5566119880244790E-04 + 466 -2.4906230560107542E-03 + 467 -2.4240790926005010E-03 + 468 -1.0634547649025114E-04 + 469 5.3622167218221302E-04 + 470 -2.8875034935848309E-02 + 471 2.1077711564581889E-03 + 472 8.2659084220182994E-03 + 473 -4.0566746618524441E-03 + 474 -2.5508500577034986E-02 + 475 3.5072266911163278E-04 + 476 2.4049890712083727E-03 + 477 1.7224279028854798E-03 + 478 1.4778783573191021E-02 + 479 -1.7701227205998395E-02 + 480 -3.0970143704687051E-03 + 481 1.9093516277720931E-02 + 482 -1.4800833736625864E-02 + 483 2.4916858121214877E-03 + 484 -4.0009564636564422E-03 + 485 -2.2405692322750663E-03 + 486 3.0644390495653366E-03 + 487 -7.3124946408042882E-04 + 488 -4.8881811343088320E-04 + 489 2.0849607473748494E-04 + 490 8.1506817849961457E-04 + 491 -9.2941166778692883E-04 + 492 4.9181725570530195E-04 + 493 -3.2101350411134570E-04 + 494 -2.9434682882073602E-04 +Ene= -2.6803324758E-01 +Spin= Alpha +Occup= 2.0000000 + 1 2.2170483631838167E-01 + 2 -7.5093676679495753E-03 + 3 -2.2915630831408233E-02 + 4 1.1416206865080089E-02 + 5 -3.5777907020798127E-03 + 6 -2.8535894365443446E-03 + 7 7.5484927176770018E-04 + 8 2.0205460339689633E-03 + 9 -2.3924020144183527E-02 + 10 2.6515257876796199E-02 + 11 5.1458558583477483E-02 + 12 -3.7471680804610309E-02 + 13 -5.9398230571500055E-03 + 14 -5.6557798526056299E-03 + 15 -2.2710858263467028E-03 + 16 4.5943213631044439E-04 + 17 3.7174381493840750E-03 + 18 -4.4419747570673702E-03 + 19 5.3276629094711585E-04 + 20 -3.9241389183214935E-04 + 21 -3.4128878646572441E-03 + 22 2.9859488910058277E-04 + 23 1.4759144048895460E-03 + 24 1.9311927463970793E-03 + 25 -4.4775251471678627E-04 + 26 -3.5763377104646915E-02 + 27 2.3358756169934106E-03 + 28 9.1979890426746973E-03 + 29 -1.3568423172894696E-02 + 30 2.0128323020062195E-02 + 31 7.8916449417465136E-04 + 32 3.1481676181401787E-03 + 33 -2.6277523394248031E-03 + 34 9.0606862799342408E-03 + 35 1.3427874315345463E-02 + 36 -7.0947794786465537E-03 + 37 -3.1805853615537094E-03 + 38 -1.7958537226707344E-02 + 39 3.6455145789840685E-03 + 40 -8.2013699123560007E-04 + 41 -4.8131143766254119E-04 + 42 -2.6602158990558122E-04 + 43 -5.0743776762730121E-03 + 44 2.0579127355911950E-03 + 45 -1.3149994165403149E-03 + 46 9.5935966503011693E-04 + 47 1.5714549128214371E-03 + 48 1.6256061983302563E-04 + 49 -1.4573476461959244E-03 + 50 1.6809959557118213E-03 + 51 -1.7614621846670944E-01 + 52 7.3594247753072679E-03 + 53 -1.0787562847076139E-02 + 54 9.7847029017355553E-03 + 55 -2.2462352373088801E-02 + 56 5.9999499395609890E-03 + 57 -5.9734165850145824E-03 + 58 9.8684337213950980E-04 + 59 2.0517097431224266E-02 + 60 3.5808571422162160E-03 + 61 -1.7923456351190893E-02 + 62 -2.4308390702515854E-04 + 63 -7.7512900241585077E-03 + 64 2.5697023958988086E-03 + 65 3.1423397828197796E-03 + 66 -4.1909400841533759E-03 + 67 2.7547971611654402E-03 + 68 -3.6820573496980438E-03 + 69 -2.1920095606850990E-03 + 70 2.5657379307966071E-03 + 71 -9.3269564069765442E-04 + 72 -1.4470583621292792E-03 + 73 6.8537751044279302E-03 + 74 4.8160941609387995E-03 + 75 1.4269565937752163E-03 + 76 1.5501675758598069E-02 + 77 -1.8908700451209307E-03 + 78 -5.7913516752849475E-02 + 79 1.1615397622910015E-01 + 80 9.1901822794132351E-02 + 81 3.1295485897759575E-03 + 82 -6.1854034147856857E-03 + 83 -7.2537588821250474E-04 + 84 3.5698569410814817E-04 + 85 -2.3720992381243413E-03 + 86 -8.3900162638581664E-03 + 87 7.0981919700392219E-03 + 88 -3.0058479934007704E-03 + 89 2.0117186390993747E-02 + 90 -2.3011001176542938E-03 + 91 -3.7565941904449666E-02 + 92 -1.0451842735724140E-01 + 93 1.0158797867764487E-01 + 94 -1.7669410312300159E-03 + 95 -1.1101965487444446E-03 + 96 -1.5989515951348628E-03 + 97 7.9281485387628168E-03 + 98 -7.2664966703108172E-03 + 99 1.4123784783319909E-03 + 100 7.4707502220624422E-03 + 101 6.9478587559856464E-04 + 102 -2.1990292620667532E-03 + 103 -8.4281406995759625E-04 + 104 -8.0279309125479668E-04 + 105 -7.1386973898584061E-02 + 106 -1.6851223897177869E-01 + 107 4.3286917659642694E-04 + 108 2.0133294157827710E-03 + 109 4.0686060523756002E-03 + 110 -7.9038887288806624E-04 + 111 1.2874097461948907E-02 + 112 3.4450688953772033E-03 + 113 -1.7655174450520615E-03 + 114 3.9466243022627237E-03 + 115 -6.5713176904775199E-03 + 116 6.0405751817679929E-04 + 117 -2.9069900095579936E-02 + 118 -2.7197437421655701E-02 + 119 -3.4152227815085430E-02 + 120 -1.1296925035468000E-03 + 121 6.5685112193518663E-04 + 122 1.0241096977330116E-03 + 123 1.9136613806590348E-03 + 124 4.0177454378808680E-04 + 125 3.5114596752219415E-03 + 126 1.9806755369604057E-03 + 127 2.7416311960496245E-03 + 128 -6.4941057898555504E-02 + 129 -6.3194222100709427E-04 + 130 1.1254112276335520E-03 + 131 -1.4829237723850652E-02 + 132 1.3031973620678933E-03 + 133 1.0254075063814781E-04 + 134 1.0504901180246103E-03 + 135 4.3474619085002320E-03 + 136 -6.4790300314230553E-03 + 137 6.4086876602028634E-03 + 138 -4.2291597590760733E-04 + 139 -2.0797238515898556E-02 + 140 7.8727756191775879E-03 + 141 -2.6356360227247949E-03 + 142 -1.2184009399063521E-03 + 143 -2.2304594756450977E-03 + 144 -5.9846865758349547E-03 + 145 -3.9716236365711357E-03 + 146 3.3173212949832434E-04 + 147 -2.7411464023202663E-04 + 148 -1.6736131235772253E-03 + 149 -1.4130960351933944E-03 + 150 9.0767791169229302E-04 + 151 -1.2875099125751557E-03 + 152 1.8177203379707925E-03 + 153 1.4033374545198660E-01 + 154 -2.2259029501198058E-03 + 155 1.2048674601207567E-02 + 156 9.5049101722672492E-03 + 157 -9.2818593128563606E-03 + 158 -3.4723452252172493E-03 + 159 2.0367053640173824E-03 + 160 -1.0671675850547585E-03 + 161 -1.8458281813909506E-02 + 162 -1.0225931576130365E-02 + 163 -7.9729173725258638E-03 + 164 2.6255359722417330E-02 + 165 1.6928068415095879E-02 + 166 1.8687553346911534E-03 + 167 2.2358499953479658E-03 + 168 -6.0523294067597348E-03 + 169 9.9681567791810801E-04 + 170 2.2425589921424146E-03 + 171 -8.3370674728276912E-04 + 172 -9.4899404983971137E-05 + 173 9.1173810276828340E-04 + 174 8.5359167239384439E-04 + 175 -6.4990097787505992E-04 + 176 -4.2586914875943711E-04 + 177 -3.9622047022628941E-04 + 178 4.7071471902372715E-02 + 179 -5.3438682210745119E-03 + 180 -5.1172391237749151E-02 + 181 6.9332245363263031E-02 + 182 5.8653062197335105E-02 + 183 -4.7400833294539710E-04 + 184 -4.9766349509826682E-03 + 185 -2.7966879734810635E-03 + 186 -2.8130285237685198E-03 + 187 4.3932248683600279E-04 + 188 -6.0563144281586268E-03 + 189 -4.4608534885739494E-03 + 190 2.0690075825596392E-04 + 191 5.0248817262394559E-02 + 192 -5.7174152214784632E-03 + 193 1.9649448371771333E-01 + 194 -2.9270798765079199E-02 + 195 8.4695283649809203E-02 + 196 -1.1083787286466005E-02 + 197 1.2965467928963451E-03 + 198 -3.9415687759168615E-03 + 199 -6.4662576422097580E-03 + 200 -2.2597318331331897E-03 + 201 2.0749514648770442E-03 + 202 1.5621013613300650E-03 + 203 1.4120539749479756E-02 + 204 1.8937718453451016E-01 + 205 -2.7689128156683949E-03 + 206 -1.7614714571339472E-02 + 207 -9.4721925417554000E-03 + 208 -2.5414366899109493E-03 + 209 -1.1118248850267064E-03 + 210 4.8089298560515005E-03 + 211 -2.2162519518804163E-03 + 212 -1.2430543531709191E-02 + 213 -4.7701901024779312E-03 + 214 1.8379362178716864E-02 + 215 -5.9744935058371057E-03 + 216 -1.9773190120908529E-02 + 217 -2.9780662186240543E-03 + 218 3.1935782961225660E-03 + 219 2.2081288434778155E-03 + 220 2.7371695331596993E-03 + 221 -3.0801008336924026E-03 + 222 -3.0057309092789896E-03 + 223 -2.7004000889542436E-03 + 224 -2.5729980938500895E-03 + 225 -1.0489787794250389E-03 + 226 1.5584556508573674E-03 + 227 4.1596405389896967E-03 + 228 -1.8160167911266995E-03 + 229 -5.5041710195526304E-02 + 230 1.4095632430808571E-03 + 231 -6.3794413670391088E-03 + 232 -4.0784657017176824E-02 + 233 -2.7558422328958681E-03 + 234 -3.0784003819818401E-03 + 235 9.7345353082653116E-03 + 236 -1.8211144675662125E-03 + 237 -3.4205626827053054E-02 + 238 1.6467930544438576E-02 + 239 -6.5974593870844166E-03 + 240 2.1051712250993258E-03 + 241 1.0973170102169453E-02 + 242 -3.7428755675829946E-03 + 243 3.9371152064192763E-03 + 244 2.2773498395585413E-03 + 245 -4.7553762731639892E-03 + 246 3.7137159966941263E-03 + 247 -2.6176980729450188E-03 + 248 4.4653977244445567E-03 + 249 -3.3100118555826875E-03 + 250 -1.2443983720639395E-04 + 251 1.4479346870182356E-03 + 252 4.6803772592133317E-03 + 253 1.6198954579256450E-03 + 254 8.4592763321655717E-02 + 255 -2.5123248560280165E-03 + 256 -2.0679924887395812E-02 + 257 9.7565708588971730E-03 + 258 -1.1682335921507494E-02 + 259 1.4240175890470187E-03 + 260 -2.9619030446770994E-03 + 261 2.1491889677282805E-03 + 262 2.1114459667751013E-02 + 263 2.7062119157531102E-02 + 264 -2.6066947455390647E-04 + 265 7.8989373306772182E-03 + 266 3.3009121134042769E-03 + 267 5.1284019003016215E-04 + 268 6.5899288456655021E-03 + 269 3.5086469922755181E-03 + 270 -5.0512218698319086E-04 + 271 8.1534300453679190E-04 + 272 4.2775290823118643E-04 + 273 1.3982130765166853E-04 + 274 -7.7133086230325428E-04 + 275 1.3892039975944624E-03 + 276 -1.7900607215865793E-03 + 277 4.6166964112927001E-04 + 278 1.5182484946312579E-04 + 279 2.3201676737151383E-02 + 280 -2.3770196145162488E-03 + 281 1.2147720279290956E-01 + 282 -3.2554712178043651E-03 + 283 -1.3362603117551763E-01 + 284 -6.3040043312546055E-03 + 285 -7.7292530181892970E-04 + 286 6.4012572429949189E-03 + 287 -3.9762868738550073E-03 + 288 -2.6103349135083304E-03 + 289 4.2030669018790854E-03 + 290 2.4700838145209894E-03 + 291 -8.4503334971409386E-03 + 292 1.2535974976927200E-01 + 293 -1.0881589252628186E-02 + 294 9.6818982194344386E-02 + 295 2.0472510862412391E-01 + 296 -8.2090529581858557E-02 + 297 2.7108836264559560E-03 + 298 -8.2288135496796904E-03 + 299 -1.4824670017298575E-03 + 300 5.9941793199593137E-04 + 301 -1.3344834294751963E-03 + 302 1.0711999106154339E-02 + 303 -5.3790451416456766E-04 + 304 -7.6553395351978025E-03 + 305 2.1640126996349399E-01 + 306 -9.6578907170605469E-03 + 307 1.7049989000575048E-02 + 308 3.6658558269421280E-03 + 309 2.4583544135462071E-02 + 310 -8.2477802302497530E-03 + 311 -3.9820523162690385E-03 + 312 3.2797254186741295E-03 + 313 -2.9050165245742450E-02 + 314 2.9809035455555518E-02 + 315 4.6379596780788445E-03 + 316 -1.9485392707120987E-02 + 317 -3.1058066858420438E-03 + 318 6.9037930195390267E-03 + 319 -2.1721128237267517E-03 + 320 3.6767213441319829E-03 + 321 -1.9015514931008649E-03 + 322 -2.1637226564852454E-03 + 323 -1.9048063987699519E-03 + 324 -3.3442225708600219E-04 + 325 1.7377161184780783E-03 + 326 5.0994682558464985E-04 + 327 8.1689412076267739E-04 + 328 -9.1529870390272923E-04 + 329 -5.2912169209744907E-03 + 330 1.8382276585772259E-01 + 331 -7.9620470818409939E-03 + 332 -9.7318737371587215E-03 + 333 8.7278715677629112E-03 + 334 -7.6044758160673590E-03 + 335 2.5123664077217763E-03 + 336 9.2454758020543313E-05 + 337 6.0008061678127663E-03 + 338 4.1347728946911418E-02 + 339 -2.9687660805814513E-02 + 340 -2.5466767464894784E-02 + 341 -1.4820147682027931E-02 + 342 6.2907368395311166E-04 + 343 5.7957450357031752E-04 + 344 -6.2088205490837805E-03 + 345 4.7843034312456227E-03 + 346 -5.2085993096757394E-03 + 347 1.6807452781059729E-03 + 348 7.7309422434189423E-04 + 349 2.3038980359417183E-03 + 350 -5.5715370296110915E-04 + 351 -3.3897729588817032E-04 + 352 -4.6129018184679272E-04 + 353 -5.4841145210619461E-05 + 354 -7.9708713518613760E-04 + 355 4.3637185010268052E-02 + 356 -3.6162288543121744E-03 + 357 -2.3553737147894854E-01 + 358 8.1679544564379813E-02 + 359 -4.6528147147940589E-02 + 360 1.0084869627330099E-02 + 361 -5.5873217079472895E-03 + 362 1.4657313857913716E-03 + 363 -1.2774107443364808E-03 + 364 -1.2893717564757554E-02 + 365 9.5821899583341391E-03 + 366 7.7244911665301193E-04 + 367 -9.2836122405674116E-03 + 368 1.3616601868332173E-02 + 369 -2.2138286322845317E-03 + 370 3.0433839095885953E-02 + 371 -3.6923775817554166E-03 + 372 4.1541723001107818E-02 + 373 -3.2290746135765019E-03 + 374 1.9129225457952413E-03 + 375 2.6741427122989503E-03 + 376 -9.0646033259139680E-04 + 377 9.2176426399338297E-03 + 378 4.0957269364915042E-03 + 379 2.0087716950501814E-03 + 380 -4.3534460571473090E-03 + 381 1.8089328960130966E-02 + 382 -2.9904307153318247E-03 + 383 -3.8344465455856631E-02 + 384 -5.5227703920622262E-02 + 385 7.3560362974228410E-02 + 386 9.3369202326206899E-04 + 387 7.3854113636801508E-04 + 388 -4.1579047092339644E-04 + 389 1.4058769744922480E-04 + 390 4.3406154595757133E-03 + 391 -9.4930547389454742E-04 + 392 5.5042528033189540E-04 + 393 -3.1721437526675755E-03 + 394 5.7390241929087434E-02 + 395 6.6100909690668011E-04 + 396 6.6624756405986359E-03 + 397 1.2910579115621559E-02 + 398 1.5902877947576059E-02 + 399 -2.0122309197669686E-03 + 400 -4.6171761431423580E-03 + 401 -3.7500180632320343E-04 + 402 2.7061851411509213E-02 + 403 -1.9464833403429058E-02 + 404 1.1778186759720042E-02 + 405 5.7591933014475652E-04 + 406 -3.1242628248219870E-02 + 407 1.1869328454616962E-02 + 408 -1.1609422496203425E-03 + 409 4.4675527593062824E-03 + 410 -1.3413012645400546E-03 + 411 -5.7689007492591820E-03 + 412 2.8402272783262196E-03 + 413 5.7228540669924336E-04 + 414 -3.2992173784381312E-04 + 415 2.3732576886018562E-03 + 416 4.7007335655684584E-04 + 417 1.1753774157098359E-03 + 418 1.4562810089201400E-03 + 419 -1.9937869384874091E-02 + 420 2.1423162923165772E-03 + 421 -1.3628698804189426E-01 + 422 -8.7997021323233768E-02 + 423 7.8881561347648191E-02 + 424 6.3158288361390598E-03 + 425 1.3397605974609340E-03 + 426 -3.6827106609140957E-03 + 427 4.8227690795708492E-03 + 428 -3.9234624444511642E-03 + 429 -8.1873942127493153E-03 + 430 -9.6001197810989692E-03 + 431 7.2966153739077166E-03 + 432 3.1701400430441881E-03 + 433 -1.4909164086782199E-04 + 434 4.6370086393601115E-02 + 435 -2.3297959332942795E-02 + 436 -2.5418336083639914E-01 + 437 -3.1770335863652056E-03 + 438 6.9618339606282301E-05 + 439 1.1206567778830150E-02 + 440 2.3036471595312713E-03 + 441 -1.4212241865218606E-02 + 442 -8.4976541502607330E-03 + 443 2.5505758273134519E-03 + 444 4.8496997785863775E-03 + 445 -2.6030255273134056E-01 + 446 1.6881932955253424E-03 + 447 3.7373753956256271E-02 + 448 -3.9498603404399136E-03 + 449 2.7790561524911890E-02 + 450 -6.0548371086493304E-03 + 451 -3.6123816725927359E-03 + 452 -4.4048310393428949E-03 + 453 -9.0094983335779217E-03 + 454 3.4928259242564527E-02 + 455 -2.2076560769688420E-03 + 456 9.0632980728717547E-03 + 457 -4.1060922432152184E-03 + 458 -5.3619936706052135E-03 + 459 1.3663955371244367E-02 + 460 1.2747779551068686E-04 + 461 1.7797791038825699E-03 + 462 -3.2239855698679432E-03 + 463 -2.8793072280166878E-03 + 464 1.2902066120829775E-03 + 465 -1.0766643335496174E-03 + 466 5.6006809312937568E-03 + 467 5.6299744699740738E-03 + 468 -9.9152031977734097E-04 + 469 -2.0587824861347083E-03 + 470 5.8046464780669139E-02 + 471 -5.7746405018475227E-04 + 472 -1.4750743638224408E-03 + 473 -3.0586356784206431E-02 + 474 9.7871942840522148E-03 + 475 4.6962372980364955E-03 + 476 5.4625065902286392E-03 + 477 -1.7452948009609363E-03 + 478 -2.6973813419706991E-02 + 479 7.1756471720853992E-04 + 480 -2.3315012842327485E-02 + 481 -3.2457075148377382E-02 + 482 -6.9215043794766881E-03 + 483 -2.9259213021614631E-03 + 484 -4.3349703314798996E-03 + 485 -5.8737862363155502E-03 + 486 1.8394802181680805E-03 + 487 -5.5803953228808767E-03 + 488 5.3335389396297914E-04 + 489 -1.4007707608236099E-04 + 490 -7.8902530263383125E-04 + 491 -1.3362069548730764E-03 + 492 1.2001369763041081E-04 + 493 -1.6135355143697540E-03 + 494 -2.5235434700934941E-03 +Ene= -2.4990105852E-01 +Spin= Alpha +Occup= 2.0000000 + 1 1.0155519898875984E-02 + 2 -7.9340958690278811E-04 + 3 -4.3049545851953893E-03 + 4 -2.6785274867794726E-02 + 5 2.1333573862613722E-02 + 6 -1.8527484475968354E-03 + 7 7.0489134991812558E-03 + 8 -2.1812985762467304E-03 + 9 7.2496067114945278E-03 + 10 1.6567434812792309E-03 + 11 5.6561805788551307E-03 + 12 1.2870441698288779E-02 + 13 2.1545714312915226E-02 + 14 4.5823147253002596E-03 + 15 -9.1374263605685600E-04 + 16 4.2742732723449247E-03 + 17 6.4382991759494865E-03 + 18 2.4889729373419205E-03 + 19 9.9269625127639067E-05 + 20 -1.5625649220470327E-03 + 21 -8.8499940746850937E-04 + 22 1.8355109425888970E-03 + 23 -5.3172418809845307E-04 + 24 1.0800421732982566E-03 + 25 -1.1285686882623091E-03 + 26 -4.6452059857775681E-02 + 27 -1.9756984995021494E-03 + 28 2.6764734818661970E-02 + 29 -1.8898084141146399E-03 + 30 -3.9494592314452133E-02 + 31 -6.9956296299914064E-04 + 32 -2.8464502083435598E-04 + 33 2.0375478290683359E-03 + 34 -1.6363705554459294E-02 + 35 -2.9436356171369867E-02 + 36 -6.7832007831376282E-03 + 37 7.1149724766902227E-03 + 38 1.0185080396198828E-02 + 39 -3.7603122587410815E-03 + 40 3.3241759232017766E-04 + 41 -1.0243974155621418E-03 + 42 -1.2320805464955413E-03 + 43 2.8985527695469145E-03 + 44 1.7279375396668047E-05 + 45 -3.5749600114506495E-04 + 46 1.7560076438967373E-03 + 47 1.2898632264577982E-04 + 48 -6.1983340068679188E-04 + 49 -1.5684356178981057E-03 + 50 -9.1861155562720544E-04 + 51 4.8203561777790095E-02 + 52 1.8696066365792448E-03 + 53 2.5058688705344372E-02 + 54 1.8661227596356019E-02 + 55 1.6423257817859072E-02 + 56 -5.4779414937272935E-03 + 57 -3.9457156570424350E-03 + 58 -4.0982720021695536E-03 + 59 2.2932431626692566E-02 + 60 -5.0918925691204031E-04 + 61 -2.9120804776353187E-02 + 62 1.3320101978374672E-02 + 63 1.6585562133603099E-02 + 64 5.7451940266569270E-03 + 65 2.4597543118629257E-04 + 66 -6.1567862976091639E-03 + 67 3.1469935754819829E-04 + 68 6.7308793769163310E-03 + 69 1.6520314395625764E-03 + 70 -8.7738197786882345E-04 + 71 -1.9780080621609408E-04 + 72 -1.2003113247426010E-03 + 73 -2.3256121647992063E-03 + 74 -1.0074312343520185E-03 + 75 -1.1787414140330514E-04 + 76 -3.8264549666835491E-02 + 77 3.6405789525916260E-03 + 78 -7.7278686059135321E-02 + 79 4.7485763341856065E-02 + 80 -1.3095048351928251E-01 + 81 3.0142581024937445E-03 + 82 -3.0954903936418580E-03 + 83 5.5018018712663748E-04 + 84 3.2412092751922614E-03 + 85 6.3443841023375419E-03 + 86 1.1662325049243689E-03 + 87 4.7200573965973111E-03 + 88 -1.8913918177781829E-03 + 89 3.0597058030246590E-02 + 90 -1.8474243387326353E-03 + 91 -6.7746630131261150E-03 + 92 -7.8125066217713188E-02 + 93 -3.7369211253542478E-02 + 94 2.0566030728112025E-03 + 95 -3.6754882553553297E-05 + 96 2.4916373320689623E-03 + 97 -1.4156496270158641E-03 + 98 2.3723181054773640E-04 + 99 -2.7186807744335787E-03 + 100 3.2814634438778573E-03 + 101 1.2764008244503901E-03 + 102 2.6353803770599735E-02 + 103 -2.8425387576596979E-03 + 104 3.9379516336104085E-02 + 105 6.1678531058638610E-02 + 106 1.2574817497350421E-01 + 107 -2.3348690183848863E-03 + 108 -1.6760737844450817E-03 + 109 -5.7336619122468633E-03 + 110 -1.1575161201878605E-03 + 111 -4.9936508269126196E-03 + 112 1.0000441532738429E-03 + 113 -2.9931862713193785E-03 + 114 -4.0010636237855328E-03 + 115 3.1852927855704413E-02 + 116 -4.1414797878521576E-03 + 117 2.0223276984019103E-01 + 118 -3.2498577782589903E-02 + 119 5.3118185943955440E-02 + 120 -6.6031453050086801E-03 + 121 6.1190821062839307E-04 + 122 -1.0897575967133321E-04 + 123 2.9662355466179987E-04 + 124 -9.4007727804238054E-03 + 125 3.2981326926262503E-03 + 126 -7.9310733689857624E-04 + 127 -4.5078122439887059E-03 + 128 7.6067042383751962E-02 + 129 1.2362651371216964E-03 + 130 -3.2631939629535797E-02 + 131 6.0525196173132005E-02 + 132 4.9652508791893778E-02 + 133 3.4962504160084202E-03 + 134 -3.1986694597432985E-03 + 135 -4.7490002424507537E-03 + 136 -2.9554821722041234E-02 + 137 4.1055957874307027E-02 + 138 -1.2927225429350110E-02 + 139 1.0736387886541254E-02 + 140 -2.4669586270829044E-02 + 141 -7.5313973212438358E-03 + 142 9.4703596620098439E-03 + 143 -2.1294176570843489E-03 + 144 -8.3547440518036431E-04 + 145 9.7156804081579944E-04 + 146 -1.0024467345107722E-03 + 147 -3.0559064711084146E-03 + 148 2.6863515988653623E-04 + 149 2.6653076035804374E-03 + 150 -1.3294892931166597E-03 + 151 5.2029356184398183E-04 + 152 -8.2468386190355438E-04 + 153 7.1929001051147037E-02 + 154 -3.5576648875498859E-03 + 155 -3.7000374921175604E-02 + 156 -1.7189948120400256E-02 + 157 5.6670555090875844E-03 + 158 6.1053545369277925E-03 + 159 1.0910515964005294E-03 + 160 -1.2657764343323124E-03 + 161 -5.4595932517826152E-03 + 162 2.6054263586356213E-03 + 163 1.1610201697216896E-02 + 164 1.8805590468482236E-02 + 165 -1.3834596264086084E-02 + 166 4.6006374884519037E-04 + 167 2.0354165182672000E-03 + 168 1.2420187575509277E-03 + 169 -2.1202041884464947E-04 + 170 -2.5055607964441485E-03 + 171 9.5166371277310828E-04 + 172 -1.3181899351480538E-03 + 173 -2.2267721710806710E-06 + 174 -2.2181727139970026E-03 + 175 4.9665187885247059E-04 + 176 1.5795868904363095E-03 + 177 7.7361270878226554E-04 + 178 4.1006649123299758E-02 + 179 -3.5909391383288501E-03 + 180 -1.5066345679894907E-01 + 181 -4.6085984287697772E-02 + 182 -4.0654788955096929E-02 + 183 3.8173548849188489E-03 + 184 3.6762614603306483E-03 + 185 3.4321135905969673E-03 + 186 7.9041561022091082E-03 + 187 1.0343666558016607E-03 + 188 1.7677158298426794E-03 + 189 -1.9776001342023818E-03 + 190 9.5836487819847375E-04 + 191 -4.8454363047844187E-02 + 192 3.7820024204153796E-03 + 193 7.5825117406408932E-02 + 194 -1.9446516784953197E-02 + 195 -2.8892402230703240E-01 + 196 -4.4329957577173397E-03 + 197 2.5677015857937385E-03 + 198 1.0937244792344454E-02 + 199 1.1152149101837759E-02 + 200 -4.2105719263115220E-03 + 201 -5.1853913987449868E-03 + 202 -1.2133524554775697E-03 + 203 2.7637693809066870E-03 + 204 -2.0070439800808169E-02 + 205 -6.7057456798391506E-04 + 206 -7.2055491306239729E-03 + 207 -5.2346691568187595E-02 + 208 -1.9134899599385501E-03 + 209 -8.8372812496176844E-04 + 210 1.7314707677644088E-03 + 211 2.2915038664831884E-03 + 212 -1.5447642216721250E-02 + 213 2.7928275122053987E-02 + 214 -1.0588055375116574E-02 + 215 -3.3905895686278040E-03 + 216 -4.4726254681123331E-02 + 217 -4.8076677930677450E-03 + 218 8.0909040534519663E-03 + 219 -2.2567724173092820E-03 + 220 3.8348641423343352E-03 + 221 -1.0773932383467168E-02 + 222 3.1366797957933634E-03 + 223 1.0726127565133983E-03 + 224 -2.1498341197488655E-03 + 225 4.0344040319442715E-04 + 226 1.7369299722060675E-03 + 227 1.2110269383576327E-03 + 228 1.6325880184790099E-04 + 229 -7.7941930563304285E-02 + 230 3.0695205554063317E-03 + 231 -5.6930339277679098E-02 + 232 -5.6908332697891695E-03 + 233 -6.5039395943126211E-03 + 234 6.5976202688792914E-03 + 235 1.0806610498505567E-03 + 236 9.3686494744489720E-04 + 237 -2.3372887021920159E-02 + 238 1.5139416859581820E-02 + 239 -3.2587008698773375E-03 + 240 -3.1702430290969023E-02 + 241 2.8115179341773166E-02 + 242 2.5105601925969691E-04 + 243 4.9713184468231104E-03 + 244 1.0786394164215196E-03 + 245 -5.9940237103601026E-03 + 246 4.8625788374911418E-03 + 247 -1.4345346460163857E-03 + 248 6.3128295165542747E-04 + 249 -1.7587732732989099E-04 + 250 1.1347661324395430E-03 + 251 8.6664940074248232E-04 + 252 1.1217777084498491E-03 + 253 1.8726588120086683E-03 + 254 4.4860661043481624E-02 + 255 5.5141954446228921E-04 + 256 -7.6109201302313589E-03 + 257 -5.8114788502787364E-03 + 258 3.1170844038071594E-02 + 259 2.2808413694265395E-04 + 260 -7.8603771098570809E-04 + 261 -2.9353189177303468E-04 + 262 -2.5054900599014627E-03 + 263 -1.9994641882203318E-02 + 264 -2.1531707089833051E-02 + 265 -8.2382941119253303E-03 + 266 1.0615882992506870E-02 + 267 -1.1705601902560433E-03 + 268 -7.6092050152076944E-03 + 269 -7.3078742925010926E-03 + 270 -4.9852594131373964E-03 + 271 7.2743772478300504E-04 + 272 -1.2406200639539320E-03 + 273 -3.7541584997468215E-04 + 274 7.8035540051285492E-04 + 275 -8.1012365212989899E-05 + 276 1.6804347661429084E-03 + 277 -8.0140923238794938E-04 + 278 1.6246240241078584E-03 + 279 -3.2375444877049520E-02 + 280 3.9223573577846895E-03 + 281 -3.8106683393155427E-02 + 282 -6.2357218162522196E-02 + 283 5.9093131603109736E-02 + 284 -3.9527672030662756E-04 + 285 1.8179114251456758E-03 + 286 -7.6920952531409190E-04 + 287 -4.3652642400878496E-03 + 288 -2.9369680407964139E-03 + 289 -5.4652862572291700E-03 + 290 2.7346628679746857E-03 + 291 2.6233045556997617E-03 + 292 1.7062727776828750E-02 + 293 1.6544129422034891E-04 + 294 1.6768352026482380E-01 + 295 1.3547174948095933E-01 + 296 6.3012332254374026E-02 + 297 -2.6798973591073733E-03 + 298 -4.0404073463741128E-03 + 299 -1.5921564661634075E-03 + 300 8.2059359835902953E-03 + 301 5.2122961633028807E-03 + 302 5.1433300357791433E-03 + 303 -2.5916147131047670E-03 + 304 -6.6014581671113466E-03 + 305 -3.8205541109042314E-03 + 306 -2.0003715277972334E-03 + 307 5.9327829144826282E-02 + 308 5.5061857882426055E-02 + 309 2.7930015034223342E-02 + 310 -1.1939428282865721E-02 + 311 -1.2083017606285981E-02 + 312 -1.3636571041318979E-03 + 313 2.1072876399873521E-02 + 314 -2.4489406892221035E-02 + 315 6.3084169969765298E-03 + 316 -4.6157330256878142E-03 + 317 -6.7258404993544001E-03 + 318 5.2867151214155686E-03 + 319 4.8339369010815518E-04 + 320 8.9174989230869466E-03 + 321 -1.5051199709648192E-02 + 322 -4.6185348088551821E-03 + 323 6.9377609243541046E-04 + 324 2.5110169785567031E-03 + 325 3.9156793612259129E-03 + 326 -1.3102269684832639E-03 + 327 -5.3107093911922577E-04 + 328 3.7953479705862760E-03 + 329 -1.2294486047283813E-03 + 330 -6.6858409847971673E-02 + 331 2.3331185183858971E-03 + 332 -3.2417473431482560E-02 + 333 1.0591526644602819E-02 + 334 -8.8960911942864526E-02 + 335 2.4084264978430992E-03 + 336 -5.3187860692013632E-03 + 337 1.5003029051764450E-02 + 338 -2.8331328311045390E-02 + 339 2.1745127218942006E-02 + 340 -2.4470351646193152E-02 + 341 9.6370514715961861E-04 + 342 -1.4735832371582202E-02 + 343 1.3799762773033662E-03 + 344 1.0611043714588494E-03 + 345 -8.6100990073222899E-03 + 346 4.1293268646562802E-04 + 347 -3.4527253008909782E-03 + 348 4.2987953335887610E-03 + 349 1.7387155681812423E-03 + 350 -4.4883103997059356E-03 + 351 2.1436708132524717E-03 + 352 -6.1031508214178551E-04 + 353 1.1367002691097233E-03 + 354 -1.0011438147988706E-03 + 355 -2.6401208051046114E-02 + 356 3.1582759920303896E-03 + 357 -1.6710866195972948E-02 + 358 2.9637844382206163E-01 + 359 -1.0212558353835122E-01 + 360 -2.0252721353544458E-03 + 361 -1.1505959034775212E-02 + 362 4.7244917021373040E-03 + 363 -6.0272591625923719E-03 + 364 -2.5558304184677468E-03 + 365 5.6780238715848806E-03 + 366 -5.3234764243137046E-03 + 367 4.5902162308941955E-03 + 368 9.2812684188899887E-04 + 369 1.2189626221370091E-03 + 370 -3.0005471559576224E-02 + 371 -2.7724582879835317E-02 + 372 2.0993241461894910E-01 + 373 6.7221334261554711E-04 + 374 3.2252619120872695E-03 + 375 -1.5032317907906218E-03 + 376 1.2126378934238305E-03 + 377 -5.7315272735215467E-03 + 378 1.7036788851367451E-03 + 379 -1.8267207824912888E-03 + 380 1.3704331337005863E-03 + 381 1.0494458695921572E-02 + 382 -1.0114030432161279E-03 + 383 7.9733250326969832E-02 + 384 1.0356124660376428E-01 + 385 -3.0351200116571270E-01 + 386 -8.4245237950219282E-03 + 387 -4.7231496094930891E-03 + 388 1.6114118295781132E-02 + 389 3.2325892096453659E-03 + 390 -7.2243028748966978E-03 + 391 6.4932638322657520E-03 + 392 2.2799848388146268E-03 + 393 -2.3045860977785842E-03 + 394 4.7712314970480424E-02 + 395 -1.0285501478391692E-04 + 396 3.7298695500748089E-02 + 397 -4.9290846142934504E-02 + 398 -9.5130103631412444E-02 + 399 -9.7044840329802654E-04 + 400 4.0124579186815758E-03 + 401 8.7591006826976524E-03 + 402 -1.0434167675918440E-02 + 403 4.2746508411516330E-02 + 404 -5.4631812724446512E-03 + 405 -1.3579246682996718E-02 + 406 -3.3741894434715842E-03 + 407 -7.6193056666009557E-03 + 408 1.8215055976643559E-03 + 409 4.0645448356652113E-03 + 410 -3.6977766637846564E-03 + 411 -3.9052535584561572E-03 + 412 2.8131870810325062E-03 + 413 -1.6116442478859932E-03 + 414 2.5791695480335240E-03 + 415 1.5958940398085198E-03 + 416 -2.5192592700671256E-03 + 417 2.2242359468563949E-04 + 418 1.4521654273682277E-03 + 419 3.5180184502249461E-02 + 420 -3.0207310018014041E-03 + 421 -6.5325979262163048E-02 + 422 -1.7209025848831025E-01 + 423 -1.8275179590060586E-01 + 424 2.7553685876948492E-03 + 425 2.0227737722277538E-03 + 426 2.0027725013509095E-03 + 427 -9.1656684830108397E-03 + 428 -7.6448742480412120E-03 + 429 -4.2207095782001349E-03 + 430 -6.2988588732197084E-03 + 431 -5.5356221411773706E-03 + 432 2.0020526857721524E-03 + 433 -4.7321215272755590E-04 + 434 -6.8250475726167201E-02 + 435 5.7508516136018845E-02 + 436 4.3055669738059216E-02 + 437 4.2208566135811748E-03 + 438 -1.7959746867397596E-03 + 439 2.1365335933598727E-04 + 440 3.6538438718957837E-04 + 441 2.7213904184230607E-03 + 442 1.7889995506022527E-03 + 443 -4.1477002684412673E-03 + 444 -2.2687385997008707E-03 + 445 2.4781806326053538E-02 + 446 1.6736561413700859E-03 + 447 1.0342859304557271E-02 + 448 9.5639315176317997E-03 + 449 5.7243909834315349E-02 + 450 4.4717484558922460E-03 + 451 7.4332580998704085E-04 + 452 1.8906164229139382E-06 + 453 -4.9568147257430806E-02 + 454 2.0824082182862406E-02 + 455 1.4411810623544458E-03 + 456 -1.3770163889412027E-02 + 457 2.9222348722817919E-02 + 458 -6.5271350490578636E-03 + 459 1.0516724026966255E-02 + 460 -1.8807551087783884E-04 + 461 1.3912546950946097E-03 + 462 8.1152010111360529E-03 + 463 -1.5324162620930339E-03 + 464 2.1685624785353590E-05 + 465 -6.4016710651739806E-04 + 466 -6.9435989186997205E-04 + 467 -1.9965082594221605E-03 + 468 1.9018063227556087E-03 + 469 1.0317994462026310E-03 + 470 5.7140722977525897E-03 + 471 4.4872238512326514E-05 + 472 9.4128210443934403E-03 + 473 2.1411990297442663E-02 + 474 2.5067454348170929E-02 + 475 -2.4571513921495128E-03 + 476 -3.8740130947827562E-03 + 477 -3.9670950040212307E-03 + 478 1.2269364249101203E-02 + 479 2.1486178315378034E-02 + 480 2.2131525892930291E-02 + 481 1.4607693646691438E-02 + 482 5.3714527364527120E-04 + 483 5.1675406913278526E-03 + 484 2.1908443212905263E-03 + 485 5.8429747227168429E-03 + 486 1.9662115450790494E-03 + 487 2.6926842454744896E-03 + 488 1.0426376367698130E-03 + 489 7.4550659576529783E-04 + 490 4.1571098821541614E-04 + 491 1.9112116513322710E-03 + 492 -1.0371484977541444E-03 + 493 2.1512605553971435E-03 + 494 1.6798940781001170E-03 +Ene= -2.4671303214E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -4.3467777698265056E-02 + 2 8.3834778687059378E-04 + 3 8.5986034461475076E-03 + 4 3.9612510749610546E-03 + 5 -1.0524001601690302E-02 + 6 4.1812131206610096E-04 + 7 -6.3451848366115479E-04 + 8 1.6664039030733129E-03 + 9 -3.3600461349326581E-03 + 10 2.4598215321518960E-03 + 11 -5.3688189373255982E-03 + 12 4.9103685502261164E-03 + 13 -1.6033901448471589E-03 + 14 -8.9375709240459679E-04 + 15 5.9064608996593391E-04 + 16 1.8590499740954615E-04 + 17 -1.1099999892074876E-03 + 18 6.8641502510161188E-04 + 19 -1.0885508185887083E-03 + 20 -1.1606219914611640E-04 + 21 -6.4464059425035230E-04 + 22 -1.0679090391920822E-03 + 23 -4.7171878173264768E-04 + 24 -4.1949555847591556E-04 + 25 1.9398716917386753E-04 + 26 6.3331204342584352E-02 + 27 -4.3284661950751714E-04 + 28 1.3072816221679927E-02 + 29 -7.6856122743708191E-03 + 30 3.2678912367144347E-02 + 31 -3.8706289755665499E-03 + 32 -8.9241344525925047E-04 + 33 -2.2303988638763049E-03 + 34 -1.1427445329671429E-02 + 35 -1.7694629373115306E-02 + 36 -1.6109290516935097E-02 + 37 3.2745929274034516E-03 + 38 -2.4739530934337093E-02 + 39 -2.5294695378957001E-03 + 40 -4.4452366587555163E-03 + 41 -3.7800421764067971E-03 + 42 1.9145518979354216E-03 + 43 -1.2996423876543250E-03 + 44 -2.0301490665121282E-04 + 45 3.1790912750009105E-05 + 46 4.8476876830035840E-04 + 47 1.3815294959779597E-03 + 48 1.7195764073570628E-03 + 49 -2.4071346644979503E-04 + 50 -3.8302983177820763E-04 + 51 -3.8148938368099676E-02 + 52 1.7413047348177322E-03 + 53 -5.0300627693343605E-02 + 54 3.4638971102050596E-03 + 55 -2.6740719677351969E-02 + 56 3.9651606199526367E-03 + 57 5.3256963917605073E-04 + 58 -4.4015782390821384E-04 + 59 -1.5232773034113838E-02 + 60 -1.9812528709962627E-03 + 61 -2.7107281310701895E-02 + 62 4.2016769108758423E-03 + 63 -2.5340674170726656E-02 + 64 -3.8477139313784058E-03 + 65 -9.1283033224062748E-04 + 66 -7.3022354104492404E-03 + 67 3.9591662177772989E-03 + 68 -8.1161804705109190E-03 + 69 -3.8954466930230856E-05 + 70 1.3511756608331317E-03 + 71 -1.0302775861264807E-03 + 72 2.2983297049893416E-03 + 73 -6.3005175673072015E-04 + 74 1.4792591345551267E-03 + 75 8.2208149542902756E-04 + 76 -1.4401121630228973E-02 + 77 1.1485534460075051E-03 + 78 -5.2592452668998556E-02 + 79 -1.5444655393089916E-02 + 80 -4.8433504503603945E-02 + 81 1.3566132559475628E-03 + 82 6.7134839940556894E-04 + 83 4.8856546408405132E-03 + 84 -4.1950697647582299E-03 + 85 1.8465751185639751E-03 + 86 3.0017688836282900E-03 + 87 7.9305271423937037E-04 + 88 5.9383634330474762E-04 + 89 -4.0353640211632187E-02 + 90 3.6750547038242013E-03 + 91 -1.7508406638993515E-02 + 92 3.8548799476678157E-02 + 93 5.4194129654741116E-02 + 94 4.6430832248393889E-04 + 95 1.5954630431638334E-04 + 96 -2.0187356944029703E-03 + 97 2.2714917696135682E-03 + 98 -9.6471266865609875E-04 + 99 2.7263776616040856E-03 + 100 -1.6965147140406420E-03 + 101 -5.7646472397910686E-04 + 102 -2.4460991516280137E-03 + 103 3.9330835870399254E-04 + 104 -7.1399093526082324E-03 + 105 -1.3291461277500149E-01 + 106 -1.2304177533036761E-01 + 107 -1.5104450076560571E-04 + 108 5.5508521241520560E-03 + 109 3.1630975972013432E-03 + 110 2.0087023946370273E-03 + 111 4.8392133806497758E-03 + 112 4.2003050671111681E-04 + 113 2.2069527718280410E-03 + 114 6.1685131072063745E-03 + 115 4.7228409679956201E-02 + 116 -5.3184355595040332E-03 + 117 6.8703933321784150E-02 + 118 6.0809156070108006E-02 + 119 1.3015791559914738E-01 + 120 -2.9303802363671787E-03 + 121 -1.4303234616227550E-03 + 122 -2.2490001056040018E-03 + 123 -1.3242400748703957E-03 + 124 -2.8247917248093719E-03 + 125 -2.7511655365887963E-03 + 126 -2.1899339276972175E-03 + 127 4.1496012767526530E-04 + 128 -1.1995259651849693E-02 + 129 -1.8013843369159063E-03 + 130 -1.6314366641179742E-02 + 131 7.0253565856967570E-02 + 132 6.9067673769840007E-02 + 133 -1.5831935805342475E-03 + 134 -2.2727403734570891E-03 + 135 -8.7889938711693729E-04 + 136 -5.3187284126492818E-02 + 137 2.1738351057882375E-02 + 138 -1.9257954716260996E-02 + 139 -2.3282696594740637E-02 + 140 -2.6223490195066254E-03 + 141 -1.2552131338056334E-02 + 142 4.7869655335632142E-03 + 143 -9.0964958560939401E-03 + 144 -3.4187217425588928E-03 + 145 1.2360338534466370E-03 + 146 -4.4960119984592274E-04 + 147 -7.5398704677982536E-04 + 148 -2.6342781086941106E-04 + 149 -1.5902440790681773E-03 + 150 -1.3019237444390178E-03 + 151 -3.7504041735516250E-03 + 152 1.0950103587338923E-04 + 153 -1.8266407648631976E-02 + 154 2.4333022031119015E-03 + 155 3.0551097338456044E-02 + 156 1.0503878270495355E-02 + 157 -3.6668105431167278E-05 + 158 -5.2894768745458129E-03 + 159 -2.9689634876833965E-03 + 160 5.6955195272457388E-04 + 161 -3.8543242639959099E-04 + 162 -1.4188802999651392E-02 + 163 -1.1425880487003817E-02 + 164 -1.1365530695951274E-02 + 165 1.1493514795764015E-02 + 166 -2.4937704342858579E-03 + 167 -5.5668454671733919E-03 + 168 -3.5166282724830365E-05 + 169 4.6403558661933988E-03 + 170 6.0722796617192877E-03 + 171 -4.5882604286819404E-04 + 172 1.8705975534072114E-03 + 173 -3.1393235573532206E-04 + 174 8.3494846770912194E-04 + 175 -1.6157932187168132E-03 + 176 -9.8716433763686531E-04 + 177 -2.7450702779546927E-04 + 178 -1.8241497478171560E-02 + 179 1.5314660376555505E-03 + 180 1.0012690642552854E-01 + 181 -1.8656439239698796E-02 + 182 -2.7669144378672589E-02 + 183 -5.8224678830155474E-03 + 184 2.9860558057616224E-03 + 185 -1.3698084575682146E-03 + 186 1.0292159009738617E-03 + 187 -2.1779032731154085E-03 + 188 -1.9975666623429857E-03 + 189 5.3010753550927509E-03 + 190 -3.2437855133908171E-04 + 191 -3.4637725349035528E-03 + 192 2.0880824838362641E-04 + 193 3.5891474852876595E-02 + 194 -1.0152515113704691E-01 + 195 -7.9529763974569914E-02 + 196 -2.4093162453552065E-03 + 197 2.2992816807010526E-03 + 198 1.5580148450295957E-03 + 199 5.0443854535442466E-03 + 200 5.7202703220202112E-04 + 201 1.8977744772054738E-03 + 202 3.2877509377538540E-03 + 203 1.4733644059726060E-03 + 204 1.3906248728719794E-02 + 205 1.5972272740672991E-03 + 206 3.2807780871177278E-02 + 207 -1.1668008196032621E-02 + 208 -2.5573995501606416E-03 + 209 1.2224173754842639E-03 + 210 4.9233972809504308E-03 + 211 -1.6163546431444816E-03 + 212 -3.3950170819301738E-03 + 213 -3.9959378582268452E-02 + 214 -1.2021732386915424E-02 + 215 1.2782500138649126E-02 + 216 -4.1406061810636649E-02 + 217 -2.6151456490797879E-03 + 218 -1.7284419149968505E-02 + 219 -4.6303920520682530E-03 + 220 5.1710957546794801E-04 + 221 -6.5339200357873942E-03 + 222 8.1962346096653210E-04 + 223 7.1961076661830299E-04 + 224 -2.1089464359561991E-03 + 225 -6.2817338802025546E-04 + 226 -1.2498494902606818E-03 + 227 4.0959161923424309E-04 + 228 -1.9882122846827987E-03 + 229 1.6730092397329151E-02 + 230 -7.1347834876879361E-04 + 231 1.3768044331828324E-03 + 232 1.9195066055954966E-03 + 233 -4.3243962385478361E-02 + 234 2.7065235748498476E-03 + 235 5.3871242850293260E-05 + 236 4.9932456186763110E-03 + 237 2.5641432676566920E-03 + 238 -2.1614696847598591E-02 + 239 2.5474821608341813E-03 + 240 1.3989028438496634E-02 + 241 -1.0935221169877527E-02 + 242 -5.2111289231593560E-03 + 243 4.1220670405397366E-03 + 244 -1.8961061767828473E-03 + 245 3.5434719723334198E-03 + 246 -2.6063009029640063E-03 + 247 -3.3910681390692535E-04 + 248 -1.6451072327300579E-03 + 249 1.7041858934975767E-03 + 250 -1.2812935510040757E-03 + 251 -1.3091233665967358E-03 + 252 4.3906229223486748E-04 + 253 -9.2850631864279678E-04 + 254 -5.0322669183561833E-02 + 255 2.0596371769029905E-03 + 256 -4.0805828647675998E-02 + 257 -2.2660785359364763E-02 + 258 3.4294469194024943E-02 + 259 -8.1765352318621169E-04 + 260 3.9004275511503339E-03 + 261 -4.9953210015718586E-03 + 262 -4.6411717357695968E-02 + 263 1.4592745864160036E-03 + 264 -4.9431652148183344E-03 + 265 3.4447302816096601E-03 + 266 1.5692555430364619E-02 + 267 -9.2512003126912334E-03 + 268 1.9633476908856983E-03 + 269 -3.3431363228574704E-03 + 270 6.8260509480352685E-03 + 271 4.5715947137273238E-03 + 272 -4.7734886505433946E-04 + 273 1.2251641801775499E-04 + 274 2.5234737541069956E-03 + 275 -1.0470282812294026E-03 + 276 -6.8767806265245663E-04 + 277 7.6689306188669547E-04 + 278 -9.5111882995758685E-04 + 279 -4.2876764016796338E-03 + 280 -1.4371235388000613E-04 + 281 1.3083019353152867E-01 + 282 3.6707309623075189E-02 + 283 1.3647140618022996E-01 + 284 -4.0464615851140756E-03 + 285 -1.7391364208052579E-03 + 286 -5.7956948452434556E-03 + 287 1.0767290642228278E-03 + 288 7.0201702125023665E-03 + 289 -3.4048217337039680E-03 + 290 3.8575529818278992E-04 + 291 -4.4380812628470713E-03 + 292 -3.0747007576204393E-02 + 293 3.0412503813961227E-03 + 294 -8.5408098736085486E-02 + 295 -1.5505609649883781E-01 + 296 -6.1524367255208746E-02 + 297 2.9455414221316906E-03 + 298 6.9531640683904647E-03 + 299 4.8809301118279344E-03 + 300 -5.0919213648388008E-03 + 301 2.0581882229533553E-03 + 302 -3.4976566534004137E-03 + 303 3.5482935663520116E-05 + 304 7.4902250222588975E-03 + 305 -1.1841510393372430E-01 + 306 8.1051914126048542E-03 + 307 -1.9835972992727706E-02 + 308 -4.6150587833754661E-03 + 309 2.5821137808808965E-02 + 310 6.3601727365562143E-03 + 311 6.1002254359715166E-03 + 312 -2.8929306843568734E-03 + 313 3.5971024650801528E-02 + 314 -1.3953640578394197E-02 + 315 -2.3597106669501081E-03 + 316 -2.6635303336189570E-03 + 317 -2.0259081959459253E-02 + 318 6.7229748688494139E-05 + 319 -2.4267161380233109E-03 + 320 4.5405967491029566E-04 + 321 1.1860912528389416E-03 + 322 -1.1326282289064184E-03 + 323 2.4654912159859411E-03 + 324 -1.1682329508306492E-03 + 325 3.0530248632027517E-05 + 326 4.7574873107890263E-05 + 327 -2.4405765990677020E-03 + 328 -2.3208668797122022E-04 + 329 3.5884713765329096E-03 + 330 -7.3471971318798762E-02 + 331 -8.3842511479119224E-04 + 332 -5.3158499977804625E-04 + 333 2.3658457260161223E-02 + 334 -8.8223882062414029E-03 + 335 1.4067589087820515E-03 + 336 -3.0037714006098228E-03 + 337 2.0424071000321887E-03 + 338 -2.4609002656697968E-02 + 339 2.5634578318544658E-03 + 340 1.4941430306478194E-02 + 341 -7.6161325891720326E-03 + 342 -5.2845521920360369E-03 + 343 -5.4647738593701419E-03 + 344 2.3948057234270118E-04 + 345 4.3827042321998109E-03 + 346 1.3100353238599651E-03 + 347 -5.5184570139316908E-05 + 348 -7.0629851651032491E-04 + 349 6.0945923445717483E-06 + 350 -9.2371752634831693E-04 + 351 -5.1083250029197334E-04 + 352 -4.1099017589864842E-04 + 353 1.5910386635524897E-04 + 354 1.7362374572167476E-03 + 355 -5.2689627938548320E-03 + 356 6.4347688196840275E-04 + 357 6.5660465544489441E-02 + 358 -2.8711670966445443E-02 + 359 -6.2234340649888198E-02 + 360 -2.1734569443678233E-03 + 361 2.7697858686442107E-05 + 362 3.0107413672912217E-03 + 363 -2.5245011366047134E-03 + 364 1.2927125775341402E-04 + 365 -5.0855139256290949E-03 + 366 1.6408235343490323E-03 + 367 3.6062552140749640E-03 + 368 -3.5178383658690082E-02 + 369 4.5324727322737486E-03 + 370 -4.3932668003911275E-02 + 371 1.9590263259197915E-01 + 372 1.7487969702343295E-01 + 373 -4.0882694254803126E-04 + 374 1.3785069537146561E-04 + 375 -5.2316368115041560E-03 + 376 1.5084684490793870E-03 + 377 -4.7756693756052402E-03 + 378 1.1616904641565174E-03 + 379 3.9803386916859290E-03 + 380 -3.3496835374868085E-03 + 381 -4.7464394786380849E-02 + 382 4.9980525219746981E-03 + 383 -2.0160734688918375E-01 + 384 -2.6991378548453426E-01 + 385 -2.1612739446378171E-01 + 386 1.7262427597102874E-02 + 387 8.7065435232308811E-03 + 388 9.6242763972465371E-03 + 389 -4.6606663189877962E-03 + 390 -1.8875023770369291E-03 + 391 7.3102431697834539E-03 + 392 -2.5427960137897874E-03 + 393 3.2294522939358750E-03 + 394 -1.4827423892267232E-02 + 395 -6.6043711732152721E-04 + 396 2.2703963672194460E-02 + 397 4.7949728516680265E-02 + 398 -3.9226633842135733E-02 + 399 -2.7028791858502168E-03 + 400 2.0871152840769599E-03 + 401 3.1622176593828475E-03 + 402 -2.5168342962467186E-02 + 403 2.5834759045828926E-02 + 404 4.2713669478930232E-02 + 405 -3.8170222199378864E-02 + 406 1.9771472041683124E-02 + 407 -5.5189897516082099E-03 + 408 2.7361517793841896E-03 + 409 1.3828505968381168E-02 + 410 -1.7496472195973071E-03 + 411 4.3919595356097458E-03 + 412 -1.3005556185623208E-03 + 413 -5.8743619275853308E-04 + 414 1.2406871722583355E-03 + 415 1.6808031026652984E-03 + 416 7.1875176549220847E-04 + 417 -1.6392307184468098E-03 + 418 2.3225408552874271E-04 + 419 6.7928851182405912E-03 + 420 -9.1485643823170811E-04 + 421 4.6026590395251477E-02 + 422 1.0846347104572659E-02 + 423 -6.6145334351778579E-02 + 424 -2.5113572224734907E-03 + 425 5.3537200099214755E-04 + 426 2.3945013106540236E-03 + 427 -1.5520254857778668E-03 + 428 -2.5039943881416315E-03 + 429 2.8285799537501465E-03 + 430 5.9947940351064190E-03 + 431 -2.7362495789477236E-03 + 432 4.9935345485782746E-02 + 433 -4.1348361487642303E-03 + 434 1.7587244505365296E-01 + 435 -3.8289373585232567E-01 + 436 -1.9521682333491852E-01 + 437 -8.7772063873318134E-03 + 438 1.1668333694245579E-02 + 439 7.3661111687791485E-03 + 440 3.7995583445647055E-03 + 441 -9.6992590672906060E-04 + 442 -9.5815710646999109E-03 + 443 1.4531954978197842E-02 + 444 3.3929021086882435E-03 + 445 3.9582918719008223E-02 + 446 1.1538967819700425E-03 + 447 6.0354189906877971E-02 + 448 2.4696987739155705E-02 + 449 -2.2927219069352859E-02 + 450 5.8740713846621492E-04 + 451 5.5930673730915609E-04 + 452 3.1973045641296360E-03 + 453 1.6353277385797677E-03 + 454 2.8957506483689527E-02 + 455 2.1479819429200547E-02 + 456 9.5123536724758245E-03 + 457 -3.7182687069258376E-02 + 458 -2.0877239045874207E-03 + 459 4.7404128181039035E-03 + 460 1.3211102672739507E-02 + 461 7.0850571385208411E-03 + 462 -9.0079632972203984E-03 + 463 -1.9590844487224384E-03 + 464 1.3918499048915054E-03 + 465 2.9500179656951735E-04 + 466 -3.0622140728450548E-03 + 467 1.6104996008134550E-03 + 468 6.3403671405696280E-04 + 469 -2.4548471350161242E-03 + 470 9.0306783619668915E-02 + 471 -3.4641094269791555E-03 + 472 -7.0371141537340809E-02 + 473 -1.1210990339964164E-01 + 474 -1.1503805475618479E-02 + 475 9.3770158940119502E-03 + 476 2.5214101791260862E-02 + 477 6.0611051103823792E-03 + 478 7.0192329069309360E-03 + 479 2.6457541361810748E-03 + 480 4.0586808236197126E-02 + 481 -8.1373005756815317E-02 + 482 -4.8773272608410120E-02 + 483 1.4442069162109441E-03 + 484 5.5033937014649923E-04 + 485 5.0534628793207290E-03 + 486 -1.0434261237484217E-02 + 487 -4.4734576272126110E-03 + 488 -1.6412117478648630E-03 + 489 -1.9748691574023643E-04 + 490 -2.2561030034471204E-03 + 491 -2.1796515935160617E-03 + 492 3.9785771481519322E-03 + 493 -8.7252303611070683E-03 + 494 -4.3086217580520954E-03 +Ene= -2.4480339288E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -7.5389876798152261E-02 + 2 4.2976842797868443E-03 + 3 -8.0853416392953209E-03 + 4 1.0295589265550315E-02 + 5 -2.8981555194655808E-02 + 6 1.8409000699782720E-03 + 7 -5.6036611088153936E-03 + 8 -6.6162452657670973E-04 + 9 -1.3028215678380587E-02 + 10 7.3536575207872341E-03 + 11 -8.1788747075895400E-03 + 12 1.9858848240528457E-02 + 13 -3.1932161308309572E-03 + 14 -7.3372468935965583E-03 + 15 7.1217592115681433E-03 + 16 6.2767408628546569E-04 + 17 -3.8321303919189699E-03 + 18 -8.9184444058698319E-05 + 19 2.5538393480893141E-04 + 20 8.2285364784348580E-04 + 21 1.1726675341245387E-03 + 22 -7.5203705364809866E-04 + 23 -2.1742302113308710E-04 + 24 -9.9146105408366150E-04 + 25 1.3810234828797192E-03 + 26 -3.4032112894482915E-03 + 27 3.8742966139483946E-04 + 28 -3.3133730734210741E-02 + 29 1.9280976430994533E-02 + 30 4.9192666696202848E-02 + 31 4.9841137157548739E-03 + 32 3.4775882469811632E-03 + 33 -4.6342054920129440E-03 + 34 6.9035413319848528E-03 + 35 -1.4060659044866784E-02 + 36 -3.9663851116652554E-03 + 37 1.4765250748167079E-02 + 38 -4.8502603057575889E-03 + 39 -3.0665032073665340E-03 + 40 -7.6108871339114108E-03 + 41 -5.8354102461202536E-03 + 42 8.1885759936350215E-03 + 43 -4.8373025740567023E-03 + 44 3.9598517668497948E-04 + 45 3.2754514129514391E-03 + 46 -1.7850709963154077E-03 + 47 -3.6357629947150175E-04 + 48 -8.6022191866178986E-04 + 49 -8.0677329562282472E-04 + 50 5.4355585029167229E-04 + 51 2.9443188327750294E-02 + 52 4.0647883364114731E-03 + 53 -2.6844865874291333E-02 + 54 -1.4385639887839039E-02 + 55 -1.4317951072194066E-02 + 56 8.6877274029368019E-05 + 57 6.6267937277809013E-03 + 58 -3.8811672381852702E-05 + 59 -4.6122781502264025E-03 + 60 -6.3384691692984661E-03 + 61 -1.4466532005639555E-02 + 62 1.3994075820502460E-03 + 63 -1.1547133402505494E-02 + 64 -6.1892827224084568E-03 + 65 3.8683837966815272E-03 + 66 -1.6227043632606345E-03 + 67 1.5868872924794022E-03 + 68 -2.0216473590542517E-03 + 69 1.3400324827226870E-03 + 70 -4.3394713715621305E-04 + 71 -9.0392366567813018E-04 + 72 1.9078180293627435E-03 + 73 -2.3145467766919250E-03 + 74 -1.0664388761903940E-03 + 75 3.5243924955136722E-04 + 76 -2.5339774724904125E-02 + 77 1.7477785926851058E-03 + 78 -2.7833983917235688E-03 + 79 -1.2515520191577617E-01 + 80 9.1262997848716332E-02 + 81 -1.2919375172144693E-03 + 82 4.7706387854255135E-03 + 83 -3.7088172433575365E-03 + 84 -2.6163195757373811E-03 + 85 -4.7141625701177491E-03 + 86 -3.0901905395777978E-03 + 87 -4.3441582951896235E-03 + 88 3.3327761420841200E-03 + 89 -2.3208805361515740E-02 + 90 1.7949407958322606E-03 + 91 3.2176942438769875E-02 + 92 9.2995966080570827E-02 + 93 9.9369491248796869E-03 + 94 -2.6690461183717690E-03 + 95 -3.3759147377229429E-03 + 96 -1.9817874427590493E-04 + 97 -1.1823145589591466E-03 + 98 5.7159366725979843E-04 + 99 2.6926738169320932E-03 + 100 -5.7746621204906633E-03 + 101 -5.1179151980094474E-04 + 102 -4.0586155262888446E-02 + 103 6.1273768223418608E-03 + 104 -4.9333145293855060E-02 + 105 1.1121670923814031E-02 + 106 -8.0662356430569113E-02 + 107 2.5223582137376068E-03 + 108 5.0983871626970509E-04 + 109 5.2488815535656104E-03 + 110 -3.1622585205908979E-04 + 111 1.3585390892145658E-03 + 112 -4.6183617698882552E-03 + 113 1.4816350069140765E-03 + 114 1.7221755914903379E-03 + 115 3.8890354607318593E-02 + 116 -5.5374910892067317E-03 + 117 2.4182201798763233E-02 + 118 3.2936304124461624E-01 + 119 7.1488268212407460E-02 + 120 -1.6742940542248566E-03 + 121 -1.0310806905796133E-02 + 122 -3.8462383943360795E-03 + 123 7.5739259552373207E-05 + 124 5.5279543577731736E-04 + 125 -1.3873534825057850E-02 + 126 3.7111268091732837E-04 + 127 -3.1838578670169374E-03 + 128 5.4039959004283336E-02 + 129 6.1491183034796941E-04 + 130 3.8208514358418454E-02 + 131 -5.0079410282527693E-02 + 132 1.3193666287026781E-01 + 133 -4.8519872535965104E-03 + 134 6.0827008214983519E-03 + 135 -5.3488415595702270E-03 + 136 7.5178936985485240E-03 + 137 -1.0908779450203189E-02 + 138 -1.5200043452004158E-02 + 139 -9.0820668076537613E-03 + 140 8.5295388741680314E-02 + 141 -1.5403435597643940E-02 + 142 7.2928028391350255E-03 + 143 -3.8179734015655075E-03 + 144 6.7537220632736539E-04 + 145 1.5327886549660897E-02 + 146 -1.4654447575031078E-03 + 147 2.1148496817112042E-03 + 148 -9.3924630129519715E-04 + 149 2.5298175394394755E-03 + 150 -3.4298020578869474E-03 + 151 1.3373887795781697E-03 + 152 6.5217931431341331E-04 + 153 -1.5221792476123985E-01 + 154 7.2255526909408346E-03 + 155 3.5331767955729017E-02 + 156 5.4312624060642203E-02 + 157 -2.4062122661196072E-02 + 158 -1.0921140630356348E-02 + 159 -3.2241992969278144E-03 + 160 2.4256790657435075E-03 + 161 1.1258025753773068E-02 + 162 2.2965513468296766E-02 + 163 -7.8222996050291305E-03 + 164 -5.4149742675242911E-02 + 165 -3.6210201758769163E-02 + 166 -3.7503430963553371E-03 + 167 2.6614254238192690E-03 + 168 -2.2026949842743823E-03 + 169 -4.0014117231123294E-03 + 170 -8.2532798967343574E-03 + 171 -1.3152089086062415E-03 + 172 2.1966962848606751E-03 + 173 2.8547487107476025E-04 + 174 4.1251959682583675E-03 + 175 9.3838336470411629E-04 + 176 -1.4492902078127243E-03 + 177 -4.8147408897501612E-04 + 178 2.0344475544103669E-02 + 179 -3.7766825873986431E-03 + 180 2.2023194581685612E-01 + 181 -2.6722660781970886E-01 + 182 1.9867588131687330E-01 + 183 -1.0812407966690101E-02 + 184 7.9253210520300616E-03 + 185 -9.8742061619006578E-03 + 186 -9.3692949453021267E-03 + 187 2.0016266364760705E-03 + 188 9.4279100361914815E-03 + 189 1.5459855157709850E-02 + 190 -9.4545674032168511E-03 + 191 -1.0682828244243159E-02 + 192 1.2498184933644239E-03 + 193 -7.6840575179513732E-02 + 194 -6.0686958683686267E-02 + 195 -8.8590375515344683E-02 + 196 3.3804364114311549E-03 + 197 4.7343047694694568E-03 + 198 5.8069911023098733E-03 + 199 6.0443256951927806E-03 + 200 4.1120329157709580E-03 + 201 -1.6690704827436521E-04 + 202 1.2666099228112817E-03 + 203 -3.5621853731338214E-03 + 204 -5.0683720629192694E-03 + 205 -1.9789771255077642E-03 + 206 3.3851233083319722E-03 + 207 1.5527600504479822E-03 + 208 2.2771139401706560E-02 + 209 -3.4476232029229431E-03 + 210 3.6383001585775802E-04 + 211 -4.9380985218923316E-03 + 212 1.1472441336816236E-02 + 213 -1.0267889919817761E-02 + 214 2.9205860800888380E-02 + 215 5.2238379453262403E-03 + 216 2.2212300737759275E-03 + 217 -3.4400894342875173E-03 + 218 -3.8808287390093487E-03 + 219 5.9222776723186887E-03 + 220 1.5324335456566086E-03 + 221 1.0452487967204734E-03 + 222 -5.1811553054858530E-04 + 223 1.8791419867882815E-03 + 224 -2.4021768952323642E-03 + 225 1.4004299329720812E-03 + 226 -3.5680708879776580E-04 + 227 6.4277115434539247E-04 + 228 6.3716357661958525E-04 + 229 1.8059404489107825E-02 + 230 2.5106237628771816E-03 + 231 3.1008467042403953E-02 + 232 -1.8832559557662477E-02 + 233 3.8986445744378607E-03 + 234 -3.7518742336890144E-03 + 235 2.7880137519658748E-03 + 236 1.3385936364316631E-03 + 237 1.5161249660240527E-02 + 238 2.1493780416879771E-02 + 239 1.7087611437678164E-02 + 240 1.4441719568784575E-02 + 241 4.4325382951520616E-02 + 242 -4.3989937401618597E-04 + 243 5.6606383909934145E-04 + 244 1.3254577544134147E-03 + 245 -2.1509512875977311E-03 + 246 -4.0528373754459602E-04 + 247 5.1764592473240757E-04 + 248 -1.7306599747263153E-04 + 249 -1.0543090470793899E-03 + 250 -2.3295400095574496E-05 + 251 -1.4980762279567523E-04 + 252 1.3696791705571924E-03 + 253 8.1711501446764972E-04 + 254 3.9968277386127821E-02 + 255 -1.0971824130074546E-02 + 256 -6.2592337902171095E-04 + 257 4.1291750226464793E-02 + 258 -7.6214803710893259E-02 + 259 1.3451930741882917E-03 + 260 -3.0997061427373254E-04 + 261 9.3198540425647614E-03 + 262 1.8015562987734962E-02 + 263 7.7564763537405655E-03 + 264 1.7318627758783119E-03 + 265 -4.9238603125757827E-04 + 266 -9.7029354120615353E-03 + 267 -4.4028604821178645E-03 + 268 -3.0479059798059118E-03 + 269 5.8795887217319327E-03 + 270 7.2442921790116816E-03 + 271 -2.5518286830653074E-03 + 272 2.8277534510127377E-03 + 273 1.4329396899411448E-03 + 274 -3.9153379308753157E-03 + 275 4.8905955125304735E-04 + 276 3.1304361264076943E-04 + 277 -5.7928799350191078E-04 + 278 -1.8497599637407299E-03 + 279 3.7318438065369178E-02 + 280 -2.9033425720548706E-03 + 281 -1.5778649619412978E-02 + 282 -8.2698508152086014E-02 + 283 -2.3359581753732636E-01 + 284 -4.4128634635910501E-04 + 285 7.1671800739022988E-03 + 286 1.0431807552779879E-02 + 287 -8.6968435717286168E-03 + 288 -5.6045065016303462E-03 + 289 1.8683087251831958E-03 + 290 -4.2996571932605865E-03 + 291 -1.2902101526908194E-03 + 292 1.6819649869812478E-02 + 293 -1.8256983391720702E-03 + 294 1.2051683964135623E-02 + 295 3.5597640108583017E-03 + 296 -4.8786894182963919E-02 + 297 -2.9824755826840754E-04 + 298 -1.0546352804907163E-03 + 299 3.5031369093813363E-04 + 300 -1.8748814288305409E-03 + 301 1.6895493888104567E-03 + 302 -4.4281174566821260E-04 + 303 1.1397831388540937E-03 + 304 -2.0205134019981069E-03 + 305 -6.5771121933526919E-04 + 306 -2.8562783670821276E-03 + 307 1.5640772865624188E-02 + 308 -1.4097051038897185E-02 + 309 1.8269527265542571E-02 + 310 -2.4942647802771887E-03 + 311 -9.6445827688305442E-04 + 312 -2.5893173861195095E-03 + 313 1.4831560851601935E-02 + 314 -9.5067376564715502E-03 + 315 1.8284186382804556E-02 + 316 -2.8871953524916057E-02 + 317 3.3701440412261994E-03 + 318 1.8678122890213565E-03 + 319 -8.7169012798446704E-04 + 320 -9.2980525992473161E-04 + 321 -6.1475966418454682E-03 + 322 4.6174619500438544E-04 + 323 1.0672288440997095E-03 + 324 6.5918442224801742E-04 + 325 -3.2841624945414776E-04 + 326 -1.2322394807071776E-03 + 327 1.3396372074013074E-03 + 328 -1.5081032973120030E-04 + 329 -8.1663034837558678E-04 + 330 -4.7927969717315402E-02 + 331 9.3131883088775345E-04 + 332 2.8617381101408802E-02 + 333 7.7535410983566224E-03 + 334 -2.4252384854125633E-02 + 335 3.3406235180849812E-04 + 336 -3.3254081605391147E-03 + 337 2.6268614320192757E-03 + 338 -8.5106376474809262E-03 + 339 9.9043204608181609E-03 + 340 4.6859587598400169E-03 + 341 -3.8783084198988362E-03 + 342 1.0270627204706792E-02 + 343 3.2842996498547825E-03 + 344 3.1406889769368348E-03 + 345 -3.6676985256264404E-03 + 346 7.1904957581183951E-05 + 347 4.1683940195020239E-03 + 348 1.3712028104850120E-03 + 349 -4.0994824201950723E-04 + 350 -1.5155799270100453E-03 + 351 2.4136942038472008E-04 + 352 1.2077615080436687E-03 + 353 -1.8457478303856496E-04 + 354 -6.0326705378831484E-04 + 355 -2.4792250243632376E-02 + 356 3.4135172992121603E-03 + 357 -1.0425689665063384E-01 + 358 4.0032044194062262E-02 + 359 3.7557912482364043E-02 + 360 4.2600278534001461E-03 + 361 1.0646456361942315E-03 + 362 -1.6621827443715502E-03 + 363 2.3169767798223518E-03 + 364 -4.8430979622827936E-03 + 365 -4.9891984782249506E-04 + 366 -1.5295185538162410E-03 + 367 -2.0016732824182999E-03 + 368 -1.2553491268848145E-02 + 369 2.1045735913209256E-03 + 370 -3.4685972770214867E-02 + 371 6.2782885492263796E-02 + 372 1.3623697101191962E-01 + 373 3.4089360737396286E-03 + 374 3.0146900051823428E-03 + 375 1.3707703130392439E-03 + 376 -3.6101523833864729E-03 + 377 -3.7417861279557484E-03 + 378 5.1038768485498999E-03 + 379 1.6434655612519030E-03 + 380 4.3832394836851725E-04 + 381 -1.9853553018373471E-03 + 382 1.0572740499422763E-04 + 383 2.3558085024852579E-01 + 384 -1.3010985914435710E-01 + 385 1.5468179649154645E-01 + 386 -1.2442684415076035E-02 + 387 7.1025600337127903E-03 + 388 -6.9448735880360303E-03 + 389 -8.1582569571421928E-03 + 390 -1.0958660166628558E-03 + 391 -3.2823726604324808E-03 + 392 -3.0030480918864398E-03 + 393 -9.1710831171373033E-03 + 394 1.2708477557667802E-01 + 395 -6.1619931600455680E-05 + 396 -3.7995794956820025E-02 + 397 -2.8454727419543337E-02 + 398 -3.6326687252187823E-02 + 399 5.9485047844694584E-03 + 400 1.6698684608882908E-03 + 401 6.7674555570396058E-03 + 402 1.8394647697555350E-02 + 403 -8.9582397700315730E-03 + 404 4.4276303931798031E-02 + 405 1.0361655603469574E-02 + 406 -3.2012471110322772E-02 + 407 -1.1905925699373533E-03 + 408 -6.0310320739065471E-03 + 409 7.7001784546164211E-03 + 410 3.7694624669577282E-04 + 411 -9.2707807655853531E-03 + 412 4.4882615631959295E-03 + 413 5.0044987393961266E-04 + 414 -1.4535748557077492E-04 + 415 6.3042822678579375E-04 + 416 1.7482363334500497E-03 + 417 -1.3149032646915862E-04 + 418 -1.1206981285942338E-03 + 419 3.9768953159201259E-02 + 420 -3.8626430966341710E-03 + 421 -3.8664360909808231E-03 + 422 -1.1164449791448955E-01 + 423 -1.8327335602600806E-01 + 424 -1.0979455360727933E-03 + 425 5.1558853816470324E-03 + 426 5.0477145307265478E-03 + 427 -9.5974487576277519E-03 + 428 -2.6628568097370724E-03 + 429 -4.8775399217542027E-03 + 430 -6.6602226266327291E-04 + 431 -6.1773771599458029E-04 + 432 -5.7833633500934151E-02 + 433 6.4144530494478812E-03 + 434 9.0922490950602050E-02 + 435 1.6014632823276864E-01 + 436 2.7052701723445375E-02 + 437 8.5158526577597455E-04 + 438 -4.3430366246939136E-03 + 439 -1.0649309722086480E-03 + 440 -1.9877333667520630E-03 + 441 -1.3171171785972340E-03 + 442 3.6648957675987398E-03 + 443 -1.5209999941168033E-03 + 444 2.9043547957861493E-03 + 445 -5.1167621659514308E-02 + 446 3.9504653052606824E-03 + 447 2.4068730917085304E-02 + 448 4.0641313576660690E-02 + 449 1.7870014292923272E-02 + 450 9.5979142394040837E-04 + 451 -1.1017713932563523E-03 + 452 2.1153293274693576E-03 + 453 -4.0089404694880940E-02 + 454 2.6817497239785555E-02 + 455 -7.0517432935789121E-03 + 456 -8.9340625070920433E-03 + 457 2.2274556744942456E-02 + 458 -1.0687211940517614E-02 + 459 1.0517211971238507E-02 + 460 1.0230739563019892E-03 + 461 1.1098617291450852E-03 + 462 7.9481922711913955E-03 + 463 -1.3768352678615644E-03 + 464 -8.6923796125922830E-05 + 465 6.2015284261335507E-04 + 466 1.4145249275684150E-03 + 467 -2.8306827884751093E-04 + 468 1.0934740980413711E-04 + 469 1.9010400260565604E-03 + 470 -2.1165637344985312E-02 + 471 4.2507320633223423E-03 + 472 -1.4626872607309889E-02 + 473 6.2534666038617820E-02 + 474 -9.5728880891310722E-03 + 475 -2.4455569004009541E-03 + 476 -6.3691919117765377E-03 + 477 -2.7975858840927231E-03 + 478 -6.5038705901836256E-04 + 479 -8.0468611372604033E-03 + 480 -2.4995178251563943E-02 + 481 -7.2106578407753292E-03 + 482 3.2054387182067115E-02 + 483 -5.4757063325841905E-04 + 484 -5.2050181187281415E-03 + 485 -3.4425138965118540E-04 + 486 -9.2376426237928966E-03 + 487 1.3935024861993456E-02 + 488 2.4978220123710267E-03 + 489 3.2883906646232798E-04 + 490 5.2870271771526681E-04 + 491 1.5341034431974184E-04 + 492 -1.2018044876586345E-04 + 493 1.4202930941237995E-03 + 494 4.0601438890416871E-03 +Ene= -2.4167785070E-01 +Spin= Alpha +Occup= 2.0000000 + 1 1.1835761829983316E-01 + 2 -3.7443095378470437E-03 + 3 1.1056531835333150E-02 + 4 1.4982070746175052E-02 + 5 -1.9497639583033990E-02 + 6 -1.6325114586686828E-03 + 7 5.0863852086925992E-05 + 8 1.9035860450676897E-03 + 9 -5.2234160598595702E-03 + 10 2.0853604296154918E-02 + 11 1.2095467123302091E-02 + 12 -2.4918398044748259E-02 + 13 1.1695326438656719E-02 + 14 -3.1200334279075431E-03 + 15 1.6651258106528011E-03 + 16 3.1781390360817808E-03 + 17 -2.5046656147443211E-03 + 18 2.7014874079933941E-03 + 19 5.8630465364202023E-04 + 20 2.5369690603928389E-04 + 21 -2.5431303326399475E-03 + 22 -9.2374940884862094E-04 + 23 -1.1869497958638538E-03 + 24 1.3623163964981845E-03 + 25 -5.7083106297000394E-04 + 26 8.8905998043031613E-03 + 27 -1.5549967195366877E-03 + 28 -2.4267132867923008E-02 + 29 1.8121677992716297E-02 + 30 3.8660601498766774E-02 + 31 1.0110144566067654E-03 + 32 -3.2071462342967900E-03 + 33 -4.0981085925124025E-03 + 34 -2.9351215421142142E-02 + 35 -3.8947740082136254E-04 + 36 2.4284742092637479E-02 + 37 -9.2623996831949981E-03 + 38 -1.9407996369681779E-02 + 39 -1.4003267154073903E-02 + 40 2.9101040784633913E-03 + 41 3.9509225695179145E-03 + 42 -3.0177211213970465E-04 + 43 -7.1488240450036300E-03 + 44 1.9374601511499890E-03 + 45 -9.6475795870540457E-04 + 46 1.6494691325833846E-03 + 47 2.0066269898436212E-03 + 48 1.6322982944558342E-03 + 49 -7.1813880537902899E-04 + 50 1.3763369656599230E-03 + 51 -2.1145141243972161E-02 + 52 -1.5947769377516712E-03 + 53 -3.6589069247334689E-02 + 54 -2.3209208534437639E-02 + 55 -1.0493633246937877E-02 + 56 2.6066113255135892E-03 + 57 8.6583934976548619E-04 + 58 -3.3425659911767258E-03 + 59 7.9442288409599972E-03 + 60 -1.9724769235368593E-03 + 61 -1.0687295754848529E-02 + 62 -2.2026123570421940E-02 + 63 -1.5632791024913403E-05 + 64 -8.8174139599646545E-04 + 65 1.9525377190691040E-04 + 66 -7.8392049819850408E-03 + 67 1.7114749462291210E-03 + 68 -4.2280468261794574E-03 + 69 -7.6941480463662583E-04 + 70 -5.5666097068449108E-06 + 71 -1.7107541238555060E-03 + 72 7.9096670359893415E-04 + 73 2.1646160495871329E-03 + 74 8.0473128239647951E-04 + 75 -4.7764626509116985E-04 + 76 -2.5535357026370668E-02 + 77 3.1315725597230800E-03 + 78 -1.4591113042470621E-01 + 79 4.6971828141105586E-02 + 80 3.3202419218404389E-02 + 81 4.7107910765239874E-03 + 82 -7.5120679645588587E-04 + 83 4.9964793785408539E-03 + 84 -4.0414190319798468E-03 + 85 4.4876302783271073E-03 + 86 -5.7474725624304494E-03 + 87 6.5591897324344031E-03 + 88 6.7165606365050671E-04 + 89 1.2147192382320616E-02 + 90 -1.0865253336383423E-03 + 91 -1.2211251354896278E-02 + 92 -4.4948102335672716E-02 + 93 5.6569465334925399E-02 + 94 1.0355036656462748E-03 + 95 7.3979071025806974E-04 + 96 -1.6905782572904408E-03 + 97 4.0502401899330277E-03 + 98 -1.1348654597526692E-03 + 99 2.8258515772325403E-03 + 100 2.9009838813447864E-03 + 101 -1.2553887377022917E-03 + 102 2.3582274788457463E-02 + 103 -3.8062871126212129E-03 + 104 8.6373609056535863E-02 + 105 3.4632674571651478E-02 + 106 -2.1984598597208335E-01 + 107 -1.9405389280600063E-03 + 108 -4.0697849386559784E-03 + 109 9.1006535899074859E-03 + 110 4.4571134482204814E-04 + 111 1.1638159950207394E-02 + 112 -1.5669470618099271E-03 + 113 -4.4314480089685205E-03 + 114 -2.0236628277559387E-03 + 115 8.4891834057743143E-02 + 116 -1.1226002826195066E-02 + 117 -4.5108279257201775E-02 + 118 -3.1596268682132050E-01 + 119 3.6417499754966043E-01 + 120 9.1914408690125767E-04 + 121 1.2737797951949620E-02 + 122 -1.3209903372505013E-02 + 123 -1.1020953356701156E-02 + 124 2.3269155837110284E-03 + 125 1.1330686595506628E-02 + 126 2.1854869036691403E-03 + 127 1.5948588188969420E-03 + 128 2.3349119726127507E-02 + 129 -4.3985320045343418E-03 + 130 -1.8226941620936511E-02 + 131 -1.3972761702706853E-02 + 132 -1.6800814345746817E-02 + 133 -3.0473960646952808E-03 + 134 -1.2645720484926238E-03 + 135 -1.6445802310325035E-03 + 136 -4.1232587693217658E-02 + 137 -1.7929421456940837E-02 + 138 1.7502936107010838E-02 + 139 2.4919740260034991E-04 + 140 2.6487085784658127E-02 + 141 -1.1456899118533046E-02 + 142 -4.6984155380170346E-03 + 143 5.0877022135229748E-03 + 144 -1.8626501744358889E-03 + 145 5.8730762103160576E-03 + 146 2.5005398348202893E-03 + 147 9.5943637971188437E-04 + 148 2.1651403595054032E-03 + 149 9.3101053095436860E-04 + 150 -1.0259325959111663E-03 + 151 -1.2133092950903910E-03 + 152 -1.0478673567313876E-03 + 153 6.0304574149799513E-02 + 154 2.3396602665888703E-03 + 155 6.0037918658826482E-02 + 156 -2.5681754186390845E-02 + 157 -4.4146938784499747E-02 + 158 -8.3801483381091280E-03 + 159 -7.7404965807441263E-04 + 160 -1.8582212699014982E-04 + 161 1.3489907314564471E-02 + 162 -2.0964340241273343E-02 + 163 -6.2670503891876844E-03 + 164 1.5153423023326458E-02 + 165 1.1567490740533067E-02 + 166 5.6156841399098772E-03 + 167 -4.0620991933753379E-03 + 168 -4.1187308322174531E-03 + 169 8.7261192945680046E-03 + 170 7.2464978575229651E-03 + 171 -3.6564880070119729E-03 + 172 2.0969263253536683E-03 + 173 -2.0590077853808425E-04 + 174 7.7541753651400643E-04 + 175 -1.2621515166363780E-03 + 176 -4.1420470580861724E-03 + 177 6.3609021531162461E-04 + 178 -1.8323468078913600E-02 + 179 1.6999371560498793E-03 + 180 1.1190173178639801E-01 + 181 2.7309433951321797E-02 + 182 7.9613850163680291E-02 + 183 -4.2427271591956479E-03 + 184 1.3431239999683229E-03 + 185 -7.0598567211917519E-03 + 186 -4.3454988760175126E-03 + 187 2.2514424650231894E-03 + 188 3.2260347504282205E-03 + 189 1.8478631936946969E-03 + 190 2.8859266576616643E-03 + 191 2.7699328754236378E-03 + 192 1.2702638253712345E-04 + 193 -1.3772931943630212E-01 + 194 3.0002543738965080E-02 + 195 8.1573511530097315E-02 + 196 7.0744585933737421E-03 + 197 -5.6682521646471450E-04 + 198 -1.5782065607859211E-03 + 199 -4.2692573518934877E-03 + 200 3.8785002672144736E-03 + 201 8.6668321631164712E-04 + 202 1.0815258656522821E-03 + 203 -6.8302790260557546E-03 + 204 -6.8051254621819199E-02 + 205 2.6120305980509154E-04 + 206 4.3542097541020251E-03 + 207 2.3128235274319075E-02 + 208 1.3214557018585985E-02 + 209 -1.4822328437842755E-03 + 210 -4.5389142922163872E-03 + 211 -3.7250969030041894E-03 + 212 1.9407731455879026E-02 + 213 -9.2450343283844803E-03 + 214 8.8689765614281772E-03 + 215 6.2038749936975928E-03 + 216 3.5742072863240291E-02 + 217 7.2826508345674628E-03 + 218 -1.5703165447928263E-03 + 219 -9.4751807832490771E-04 + 220 2.3974572952193880E-03 + 221 9.3825462495710724E-03 + 222 -1.4107288877151914E-04 + 223 6.4508416390201629E-04 + 224 1.1433197602914384E-03 + 225 1.0836853458193049E-03 + 226 -8.6908090284774323E-04 + 227 -1.9912437200805149E-03 + 228 1.9669127944984739E-03 + 229 -7.9838193565791749E-02 + 230 3.0574543822458763E-03 + 231 3.2418586111430172E-04 + 232 9.3996098270639136E-03 + 233 -3.4281107180618213E-02 + 234 5.0334710301189265E-04 + 235 5.1385736968649429E-03 + 236 8.7028127347371868E-03 + 237 -4.2227864413617006E-02 + 238 -6.4496075001902508E-03 + 239 -1.4274307927564961E-02 + 240 3.4258017574238780E-03 + 241 -2.4015099298702929E-02 + 242 -1.2751467003126401E-02 + 243 3.8845370258653441E-03 + 244 -5.2442191613757240E-03 + 245 3.3257742012732794E-03 + 246 -8.4479028572646241E-03 + 247 -4.1675385706102424E-03 + 248 5.8424976490815939E-04 + 249 1.5439265157094495E-03 + 250 2.5152817319007008E-04 + 251 -2.4084124564255635E-03 + 252 1.1975187148810156E-03 + 253 8.0305229755857333E-04 + 254 9.1432056420660462E-02 + 255 3.6838747461251254E-03 + 256 3.3452057360077385E-02 + 257 -3.3095541932734951E-02 + 258 1.4386518583317104E-01 + 259 -1.3377153797559692E-03 + 260 5.0187142807324560E-03 + 261 -1.4565060072481539E-02 + 262 -3.1264772616859664E-02 + 263 1.0709984653235370E-03 + 264 -6.7454712172417969E-02 + 265 -2.6510426317755648E-02 + 266 -1.7260045709094039E-02 + 267 2.5698174241624332E-04 + 268 3.9597499003924015E-03 + 269 -2.4817734092124948E-02 + 270 -8.2050515861821667E-03 + 271 -7.4446452068421057E-03 + 272 -6.0170655650542753E-03 + 273 -4.3133145347432826E-04 + 274 5.9286547321064599E-03 + 275 -3.8400716190037211E-03 + 276 4.6849037362421588E-04 + 277 -1.0782925292557720E-03 + 278 2.9174884095765998E-03 + 279 -7.0258856855265242E-02 + 280 6.0009410129105867E-03 + 281 1.3634753888878412E-01 + 282 -1.0502689905166165E-01 + 283 3.0503641238143242E-01 + 284 -7.0514536073198247E-03 + 285 -1.8748424030600786E-04 + 286 -1.1489163022283696E-02 + 287 1.6507386949495381E-03 + 288 -1.6571243852753450E-04 + 289 -8.0842186735230921E-03 + 290 -7.2598696756925320E-04 + 291 -6.7103092528887935E-03 + 292 1.2492135254954512E-02 + 293 -1.3422463406535723E-03 + 294 -1.0276155339277357E-01 + 295 -6.4047262422930519E-04 + 296 -7.2769419630847057E-02 + 297 8.7451395170463544E-03 + 298 1.1518996881492711E-03 + 299 6.1034798295108196E-03 + 300 -3.4644503988742353E-03 + 301 -3.3611877328561289E-03 + 302 3.1945686378165813E-03 + 303 2.5144635669890969E-03 + 304 4.7374431924365572E-03 + 305 -4.5728064341379475E-04 + 306 3.0492227481464561E-03 + 307 2.4565064548369925E-03 + 308 -1.6317252896485102E-02 + 309 9.9098770167047844E-03 + 310 4.4291899361941370E-03 + 311 1.0825784501087430E-02 + 312 -1.9416723014850526E-03 + 313 3.9300133598116063E-03 + 314 -1.2676011575478389E-03 + 315 1.1916203423113550E-02 + 316 -1.1534561761758657E-02 + 317 4.8436389581141123E-03 + 318 -4.6088640988374771E-03 + 319 -2.7377810047097135E-04 + 320 2.9008854133412308E-03 + 321 -1.1360012969267544E-03 + 322 4.7570189543691029E-03 + 323 4.7435394203034121E-04 + 324 -4.7696786361315897E-04 + 325 -1.9026625243861663E-03 + 326 -1.3315637558572752E-03 + 327 7.2088221638719652E-04 + 328 -3.0023404154857864E-03 + 329 1.8079626820753723E-03 + 330 6.1759064970551957E-03 + 331 -8.6522710635012018E-07 + 332 2.6081269077577168E-02 + 333 -6.3769174769408082E-03 + 334 2.5393895282843075E-02 + 335 -1.4731615787215127E-03 + 336 8.6674171417353929E-04 + 337 -5.9749841626782901E-03 + 338 9.8953959185171820E-03 + 339 3.3770565577876696E-03 + 340 3.8457804359390475E-03 + 341 -4.8705200900152259E-03 + 342 8.4404315735752168E-03 + 343 4.8961136021790849E-03 + 344 2.8047196842137987E-03 + 345 -2.4053745424231221E-03 + 346 -1.6153300247878943E-03 + 347 2.9086347893344093E-03 + 348 -8.9773309809286549E-04 + 349 -1.1967929629611237E-03 + 350 2.3178149700373539E-03 + 351 6.8825475473061930E-05 + 352 9.5596466139237469E-04 + 353 -7.2313475376793702E-04 + 354 -8.5402010646152692E-04 + 355 -6.2112514999494656E-03 + 356 1.0786357495259653E-03 + 357 -3.5309313980161780E-02 + 358 -1.0710890284799035E-01 + 359 4.8442554852061899E-02 + 360 7.5410075853000775E-04 + 361 8.1567186920849938E-03 + 362 -1.8243095087623028E-03 + 363 3.0386159815913266E-03 + 364 -5.6966083012271833E-04 + 365 -4.6408802759906262E-03 + 366 6.7943015941393785E-04 + 367 -3.0877602808475173E-03 + 368 -1.4957839268329507E-02 + 369 9.7012974228774420E-04 + 370 2.4104563795941208E-02 + 371 4.0795640214653608E-02 + 372 -2.7760804087775939E-02 + 373 -2.0479141393718175E-03 + 374 2.7354305926319184E-03 + 375 2.5626047001013376E-03 + 376 -4.3166520662500669E-03 + 377 1.4155038557974796E-03 + 378 -6.6502537101437718E-04 + 379 -9.6663150978761874E-05 + 380 3.5834509252355533E-03 + 381 2.5122392088194580E-02 + 382 -2.5902916806053136E-03 + 383 1.6125330213273639E-01 + 384 1.1798117331875067E-01 + 385 -3.8990991801906176E-02 + 386 -9.6021063598483673E-03 + 387 -1.5722454939488012E-03 + 388 2.7338129574340985E-03 + 389 1.5393087315048747E-04 + 390 -3.3472175758613139E-03 + 391 1.7228836767095937E-03 + 392 1.1475132149015115E-03 + 393 -1.8354949073432693E-03 + 394 7.2450669012413302E-02 + 395 -7.9501854506891186E-04 + 396 -1.8763237164826588E-02 + 397 4.4548300685859372E-03 + 398 -4.6854436216525186E-02 + 399 -2.4189480853280707E-04 + 400 -2.3173519907092031E-03 + 401 8.1960911966007834E-03 + 402 -1.1446135832024191E-02 + 403 4.5962805560253138E-05 + 404 -6.1968509410807431E-03 + 405 -2.4136893796803005E-02 + 406 2.0530870961440496E-02 + 407 -1.0041284168965636E-02 + 408 -5.7183280801017845E-03 + 409 -9.6754108296487722E-03 + 410 -8.2643815876318819E-03 + 411 6.1640180849003258E-03 + 412 1.3072905675682765E-03 + 413 7.7062923500202532E-04 + 414 2.5807829431282311E-03 + 415 -2.4051466608024977E-03 + 416 6.0228314616809315E-04 + 417 1.9673581699473216E-03 + 418 1.6658351231012077E-03 + 419 3.2119571756490592E-02 + 420 -2.5263661014866701E-03 + 421 7.6328074177425169E-03 + 422 -6.2534496205115087E-02 + 423 -1.2928793436807270E-01 + 424 -1.5217674667109117E-03 + 425 4.6679748202735913E-03 + 426 5.6714528130945583E-03 + 427 -5.8069592566804395E-03 + 428 -2.8095128181306350E-03 + 429 -4.2995572759536157E-03 + 430 2.8818101587655778E-03 + 431 -1.1593963879379893E-03 + 432 -6.4520647510784165E-02 + 433 7.0827064516678639E-03 + 434 8.2457269026987218E-02 + 435 2.1318664818723684E-01 + 436 7.0825356351407423E-02 + 437 3.9829973285146448E-04 + 438 -6.3495436896309765E-03 + 439 -2.1244337767904044E-03 + 440 -4.2654619061782729E-03 + 441 1.0251721745349694E-03 + 442 2.6267472793304789E-03 + 443 -2.5394332827272576E-03 + 444 1.8575626807243852E-03 + 445 -3.0923116538007753E-02 + 446 -2.0750707794078196E-03 + 447 9.1414943412945395E-03 + 448 3.8993398635398797E-03 + 449 -2.3781895006999249E-02 + 450 -1.2633278322111928E-03 + 451 -2.0712533951052514E-03 + 452 -8.4795362180099950E-04 + 453 -1.6374858235321924E-02 + 454 6.6122308226735458E-03 + 455 -3.4090602397771719E-03 + 456 -5.3802386928337442E-03 + 457 1.3260977592887739E-02 + 458 -1.0746750737267226E-02 + 459 -1.2404679855072610E-03 + 460 -5.0672232112436103E-03 + 461 3.3738009078874637E-03 + 462 4.6652223127242277E-03 + 463 -6.7881021642432059E-04 + 464 -9.6973583778440814E-04 + 465 1.4463171244759327E-03 + 466 1.4988831689056099E-03 + 467 -7.3843263481379064E-04 + 468 -4.1673688463916624E-04 + 469 1.3638408171379088E-03 + 470 -2.3018450728063980E-02 + 471 3.6363712818083711E-03 + 472 1.1273831821119115E-02 + 473 6.4127917492669800E-02 + 474 2.4960429320073287E-02 + 475 -3.3691063012078813E-03 + 476 -1.0911738395589501E-02 + 477 -3.9385403402843432E-03 + 478 1.6871611206632151E-03 + 479 1.6564349352551071E-02 + 480 -1.1615673294956228E-02 + 481 2.8831598061397106E-02 + 482 4.2505219025971944E-02 + 483 -2.1983618958828894E-03 + 484 4.0511845960369084E-03 + 485 -6.0402696712146464E-04 + 486 -1.3911025264259477E-04 + 487 9.5899868322041788E-03 + 488 7.6520208187029720E-04 + 489 -1.3832213525984025E-03 + 490 1.0925517157300306E-03 + 491 1.7876060755956816E-03 + 492 -2.0073389427726252E-03 + 493 3.2629031957788716E-03 + 494 3.0313145182123513E-03 +Ene= -2.3972875618E-01 +Spin= Alpha +Occup= 2.0000000 + 1 2.1470566997128033E-02 + 2 -1.7109302709249481E-03 + 3 1.3871490679067247E-02 + 4 -2.3802366193698878E-02 + 5 1.2783788130269378E-03 + 6 -1.0580390242170513E-03 + 7 3.2987512946625066E-03 + 8 1.0552276501348014E-03 + 9 -1.4553953771328501E-02 + 10 1.5516950135149995E-03 + 11 4.6769903793556838E-03 + 12 -1.7342786800207680E-02 + 13 4.2233376086206779E-03 + 14 2.6013304798568103E-03 + 15 1.2311923233951523E-04 + 16 -2.9951039269081607E-04 + 17 3.8505103199939134E-03 + 18 3.1329920420159253E-03 + 19 -8.3873389536844067E-04 + 20 9.9104525490233852E-05 + 21 -2.1805526547837023E-04 + 22 2.3723144723906969E-04 + 23 4.8778411765589360E-04 + 24 1.4647025231638841E-05 + 25 -7.8300576935018667E-04 + 26 -1.1312353348035452E-01 + 27 -2.7943750884735609E-03 + 28 -2.5374361239333301E-02 + 29 3.4588271346999495E-02 + 30 -2.5425721924873350E-02 + 31 1.2410015217897355E-02 + 32 -6.0256284768127344E-04 + 33 -1.9901284469432592E-03 + 34 -2.7790071173109936E-02 + 35 -7.2689191584391945E-03 + 36 2.7539390227151562E-02 + 37 4.7320797729704461E-02 + 38 4.2621001301794555E-04 + 39 -3.8958330200997162E-03 + 40 -4.3985096798998032E-03 + 41 4.7428573224598115E-04 + 42 1.0816506735952820E-02 + 43 -7.7176056772659193E-03 + 44 1.2421767406560207E-03 + 45 1.1119782347795686E-03 + 46 3.3826415138605735E-04 + 47 -1.2999531369765692E-03 + 48 -2.9285837354071495E-03 + 49 -1.0228224073121567E-03 + 50 2.2111822679480968E-03 + 51 -1.0635500890890029E-01 + 52 2.9963797817056524E-03 + 53 5.4218002367662646E-03 + 54 5.2604498891238326E-02 + 55 -3.0690695831316972E-03 + 56 3.7080989975857071E-03 + 57 -9.3197199632969005E-04 + 58 4.0560769533576893E-03 + 59 -2.9378913648650324E-02 + 60 2.9656154245786645E-02 + 61 -2.1317181409443491E-02 + 62 3.3730049893494159E-02 + 63 -4.7699747515427403E-02 + 64 -4.8805344816724369E-03 + 65 1.9848714036482984E-03 + 66 -2.1584105575057715E-03 + 67 3.7396728816767168E-03 + 68 -1.0407005494435182E-02 + 69 5.6284605975433677E-04 + 70 9.7525319609776079E-04 + 71 1.5283098473714178E-04 + 72 -3.3061133039116461E-03 + 73 3.7554136567837307E-03 + 74 1.9427099826410136E-03 + 75 1.9459024674016388E-05 + 76 -2.9562917942014204E-02 + 77 2.4102801718824153E-03 + 78 -3.5834598907357906E-02 + 79 -7.0281363658729459E-02 + 80 4.9094997722631241E-02 + 81 -4.7723823281663023E-04 + 82 5.0211497080456351E-03 + 83 -7.4423487398652564E-03 + 84 3.9741712288019889E-03 + 85 -4.5390888620255512E-04 + 86 -2.7164487635395369E-03 + 87 -1.7884436240165615E-03 + 88 4.5296882453230262E-03 + 89 -9.6344373894718689E-03 + 90 9.6364751185429407E-04 + 91 -6.4751244727414239E-02 + 92 -6.9726395715714068E-02 + 93 4.8110302686389161E-02 + 94 2.3509319818243507E-03 + 95 3.8098531245246894E-03 + 96 -1.7419028471501391E-03 + 97 2.4809361469869656E-03 + 98 -4.0034322482609859E-03 + 99 -1.1274307229516794E-03 + 100 3.9831003738952913E-03 + 101 3.7590246623287810E-04 + 102 -1.1059476772275044E-01 + 103 1.2678183500790891E-02 + 104 -2.7320391473822708E-01 + 105 1.0313929246605073E-01 + 106 8.6677444439411444E-02 + 107 6.8441960031628401E-03 + 108 -1.5986371195335378E-03 + 109 -2.1690271405307047E-03 + 110 -4.1517429827831265E-03 + 111 -4.6638707720250685E-03 + 112 9.5816529827878565E-04 + 113 1.9860973200814510E-03 + 114 -3.1743253698695664E-03 + 115 6.9874477153221662E-02 + 116 -8.9825249765584387E-03 + 117 2.2735778698422701E-01 + 118 7.1023828612102793E-03 + 119 2.7060962560643309E-01 + 120 -9.4442110798233763E-03 + 121 5.3757677775603061E-03 + 122 -1.1621889490859226E-02 + 123 -8.8026069072210927E-03 + 124 -8.1844795115368109E-03 + 125 1.5050034944022396E-03 + 126 5.2127316007901546E-03 + 127 -5.7761694923365069E-03 + 128 5.8536924367773552E-02 + 129 4.1144689522328260E-03 + 130 1.0830074053889434E-01 + 131 -1.3035652709671934E-02 + 132 7.1474826596610641E-02 + 133 -1.1451264293018031E-03 + 134 -1.4278449933297843E-03 + 135 -5.8880856738103681E-03 + 136 1.6816522343387080E-02 + 137 -1.6128722878375433E-02 + 138 4.4989324758621545E-02 + 139 -2.6794293331002653E-02 + 140 5.4194951490371131E-02 + 141 -1.2226135843230635E-02 + 142 1.6058148756698781E-03 + 143 9.8177482213663049E-03 + 144 2.7512441063807782E-03 + 145 -4.8808134907163186E-03 + 146 -6.3531842229331420E-04 + 147 -1.3310929878753309E-04 + 148 2.6921088401079515E-05 + 149 3.4555307396949113E-03 + 150 1.5504632379256915E-03 + 151 1.9147303258431273E-03 + 152 9.4847339155763378E-04 + 153 -5.8190673814619259E-02 + 154 -1.1026996047959828E-03 + 155 -8.0806587701141269E-02 + 156 7.2522868342769203E-03 + 157 2.8939253285349555E-02 + 158 9.3584397684961084E-03 + 159 -6.1020203195280359E-04 + 160 -3.8540568356863884E-03 + 161 -3.4126468170197620E-02 + 162 4.0117284817833158E-02 + 163 1.1362395085907197E-03 + 164 2.8202280416038047E-02 + 165 -3.9957501140756850E-02 + 166 -6.3648913343814480E-03 + 167 1.0776827589164492E-02 + 168 -9.8002359355326752E-04 + 169 7.1133772835761458E-03 + 170 -1.2319939439685422E-02 + 171 3.0863372363598113E-03 + 172 -2.8270896555391543E-03 + 173 -2.0798637498880045E-03 + 174 -3.1625028354767219E-03 + 175 1.9028407285002972E-03 + 176 2.0975400611822344E-03 + 177 5.8273569556770144E-04 + 178 2.5926093413215570E-02 + 179 -2.7470990840567163E-03 + 180 -2.2649956279786915E-01 + 181 -1.5206369308300677E-01 + 182 -3.6566043347087705E-02 + 183 9.0601530250045449E-03 + 184 4.5190464456629654E-03 + 185 3.4677681165033933E-03 + 186 5.3793218710372539E-03 + 187 6.2129867213307540E-03 + 188 6.1290493468938419E-03 + 189 -3.9540782902182928E-04 + 190 -6.0610055241678085E-03 + 191 -6.6586263522806829E-03 + 192 1.2460588597968639E-03 + 193 2.1932833156658837E-01 + 194 1.9323270904847829E-02 + 195 6.6405847761287717E-02 + 196 -8.7389280038144088E-03 + 197 -4.4131765981144464E-03 + 198 -7.2740749107367171E-03 + 199 -2.8010534945706340E-03 + 200 -5.4133660952299595E-03 + 201 1.2500425101282507E-03 + 202 1.1645784503568073E-03 + 203 1.0248116846960472E-02 + 204 -1.3542832155507906E-02 + 205 -3.9643837414898688E-03 + 206 4.2284278177245484E-02 + 207 -3.2503107403347914E-02 + 208 -5.9328360882717653E-02 + 209 -1.0623110685039410E-04 + 210 1.6908486150204521E-03 + 211 -1.5042861690465498E-03 + 212 -1.9053788439117692E-02 + 213 -9.8100384579288824E-03 + 214 4.4301481498993074E-03 + 215 -1.4449668659616234E-02 + 216 7.4630339929463874E-03 + 217 -4.8886128013351524E-03 + 218 -8.0360729551737752E-03 + 219 -2.6914204232720397E-03 + 220 -1.6557863494139774E-03 + 221 -1.9385360392608871E-03 + 222 8.0370636328617399E-04 + 223 3.9287620445298336E-04 + 224 -1.1204949137468430E-03 + 225 -1.5728335723287328E-03 + 226 -1.8995412034416689E-03 + 227 1.8797983649583236E-03 + 228 -1.5038214624836302E-03 + 229 1.8211929284906781E-03 + 230 4.6768013021931260E-04 + 231 -2.0722920519356997E-02 + 232 2.4843965451616164E-02 + 233 1.6856576965657250E-02 + 234 4.6092491923946176E-04 + 235 -3.8657201828487539E-03 + 236 -1.4530519740296761E-03 + 237 -1.7632411168862751E-02 + 238 8.4210958145910161E-03 + 239 -1.0700227593971564E-03 + 240 1.6466243505913573E-02 + 241 -2.2605715730157402E-02 + 242 -2.3538800974681629E-03 + 243 -2.6138234892678380E-03 + 244 -2.6505516721773313E-03 + 245 5.1760835725487139E-03 + 246 -1.0763556082424772E-03 + 247 -7.7830972055075419E-04 + 248 6.0169307999635984E-04 + 249 1.3696276224626927E-03 + 250 -2.0947017655198333E-03 + 251 -2.2769028559842037E-05 + 252 -1.3502805818292919E-03 + 253 -2.6141911281274428E-03 + 254 4.9570089684539922E-02 + 255 8.5920546110451279E-04 + 256 -2.3440691787906059E-03 + 257 -5.3639060113899156E-02 + 258 4.6307957770411703E-02 + 259 -1.0162175441485054E-03 + 260 2.5925837972937192E-03 + 261 -1.0375973937307513E-02 + 262 -2.2596910132160287E-02 + 263 -1.2067921847770793E-02 + 264 -1.0750439386909623E-02 + 265 -1.9889048305870627E-02 + 266 2.9942773798632741E-03 + 267 -1.0276968140137892E-02 + 268 -5.0134755253683260E-03 + 269 2.8303901163294776E-03 + 270 -3.6852641686038637E-03 + 271 2.7628330970045728E-04 + 272 -1.0555429499891345E-03 + 273 -2.3737891839371945E-04 + 274 4.0454378313939344E-03 + 275 -5.6635445687776027E-04 + 276 1.0421455335402239E-03 + 277 -4.5454654906004314E-05 + 278 4.7093562536245731E-04 + 279 2.6998951624405212E-02 + 280 -2.6248435110760456E-03 + 281 7.4464316611280029E-02 + 282 1.7957229094379426E-01 + 283 1.2710283961340885E-01 + 284 -6.8381943523959108E-03 + 285 -9.2550862368798066E-03 + 286 -4.2721423301764466E-03 + 287 6.0347810367942156E-03 + 288 2.1522481185030154E-03 + 289 2.1824314497826238E-04 + 290 2.1400460785609568E-03 + 291 -1.5888187032765295E-03 + 292 4.4120008714288866E-03 + 293 -3.9770224861897793E-05 + 294 3.9227338476353985E-02 + 295 6.3743540891970388E-02 + 296 7.0585602349461138E-02 + 297 -2.1778561769598549E-03 + 298 -1.4566056631661827E-03 + 299 -3.6129478433574573E-03 + 300 4.9532944581355178E-03 + 301 -1.3120192884716702E-03 + 302 5.6025266559514000E-04 + 303 -5.8358565890004953E-05 + 304 -1.7126434431155547E-03 + 305 6.2953161122852833E-02 + 306 4.8463135897070032E-05 + 307 5.4770987580539110E-03 + 308 7.3981718280000013E-03 + 309 -2.2434161577287469E-02 + 310 -2.0296893565089880E-03 + 311 -5.9380261429116724E-04 + 312 2.9709891839694988E-03 + 313 -1.8783117373158388E-02 + 314 1.1575805057533365E-02 + 315 -1.3796208751324490E-02 + 316 8.8852562134810100E-03 + 317 1.9646641146675397E-02 + 318 -1.4723361575143417E-03 + 319 4.0391328870935887E-03 + 320 7.7094573312681976E-04 + 321 4.3047219261884663E-03 + 322 2.4654750861255832E-03 + 323 -1.1642434063696568E-03 + 324 9.1988208809760377E-04 + 325 4.7413534482122186E-04 + 326 9.8412904791134724E-04 + 327 1.4209367392760339E-03 + 328 -5.9993970409651348E-04 + 329 -7.0353615203560366E-04 + 330 -5.1554644578359603E-03 + 331 6.8319967239272548E-04 + 332 -2.6802624576410184E-02 + 333 7.7795811659186215E-05 + 334 2.2417685122679821E-02 + 335 3.6217729913415710E-03 + 336 2.5431114980160258E-03 + 337 -3.1745043036337096E-03 + 338 4.3225550637771577E-03 + 339 -3.4015457352451400E-02 + 340 5.3711976809213014E-03 + 341 -1.5206384960253529E-04 + 342 -6.0900250777347177E-03 + 343 -5.6578397892221126E-03 + 344 -3.7460504067363507E-03 + 345 3.7380042217672665E-03 + 346 1.8655445412867901E-03 + 347 2.1687593495724475E-03 + 348 -1.5067504484651149E-03 + 349 1.1065291269100434E-03 + 350 6.4554590329402191E-04 + 351 4.4220235370500993E-04 + 352 -4.8641594471369564E-04 + 353 -1.3919578075112556E-04 + 354 1.4669536361944814E-03 + 355 9.5163407431338911E-03 + 356 -1.0269894209921871E-03 + 357 5.4681082211636277E-02 + 358 -4.6379776845775829E-02 + 359 1.6904778293357348E-02 + 360 -2.9340399529882012E-03 + 361 -1.0545041598526911E-03 + 362 -1.4833886246255782E-03 + 363 -2.0284936005622884E-05 + 364 4.4069083475875032E-03 + 365 1.2408205559886689E-03 + 366 -2.4598863164008858E-04 + 367 -1.9936787386084821E-03 + 368 -4.2146035402160165E-02 + 369 4.2142045838845076E-03 + 370 -1.0055134577231621E-01 + 371 1.1720176837618894E-01 + 372 -1.1463042690134065E-01 + 373 5.3507807684482845E-03 + 374 -4.2703131741239094E-04 + 375 5.9148136366663764E-03 + 376 -2.5751534093442865E-03 + 377 -8.9361852660422222E-05 + 378 -8.6175604169789252E-04 + 379 3.8869746233085316E-03 + 380 -7.2250324366446485E-03 + 381 1.7063389806265823E-02 + 382 -1.0801269718716622E-03 + 383 1.9473699880793832E-01 + 384 -1.4506627413896900E-01 + 385 1.8674787070405258E-01 + 386 -1.5635708551808087E-02 + 387 6.8811194813151099E-03 + 388 -1.2295913671237359E-02 + 389 -4.3508275279361512E-03 + 390 -2.7195658794053547E-03 + 391 -4.0531925056624552E-03 + 392 -7.1186038123590778E-03 + 393 -1.1728581455246119E-02 + 394 -1.4246637488945878E-02 + 395 -7.6394658244363840E-04 + 396 -2.0856601630059330E-02 + 397 8.3904536862071208E-02 + 398 1.3834097406557775E-02 + 399 -2.5883920365273646E-03 + 400 -5.3301570319772016E-03 + 401 -2.3507450275597822E-03 + 402 -3.3087030320754579E-02 + 403 -2.8688176427140968E-02 + 404 1.6559837821421657E-02 + 405 1.8253633124288102E-02 + 406 3.2975304061181022E-02 + 407 2.0246124967681412E-03 + 408 -3.5824370449509865E-03 + 409 4.3141816578019798E-03 + 410 5.2029290618641980E-03 + 411 7.2733139397246896E-03 + 412 1.0517471245964588E-03 + 413 6.7373935982391212E-04 + 414 6.4788378259045330E-04 + 415 -1.6181513601218832E-04 + 416 5.1026522968672210E-04 + 417 1.0675266396592260E-03 + 418 9.9726609521486953E-04 + 419 -1.6098386889114379E-02 + 420 2.5310576653565144E-03 + 421 -4.7603301438009105E-03 + 422 -6.0588280788590361E-03 + 423 1.3189072973462207E-01 + 424 -2.6507414722271049E-04 + 425 2.9575746371592322E-03 + 426 -4.1336530954405133E-03 + 427 7.5779930621729854E-03 + 428 4.0890240184908106E-03 + 429 -3.6943050473729794E-03 + 430 -4.3634870198622889E-04 + 431 2.0943674028808928E-04 + 432 3.2442637179233409E-02 + 433 -4.7001556172009702E-03 + 434 -4.0318886601606006E-02 + 435 -9.1835218488700313E-02 + 436 1.4794582295244374E-01 + 437 3.7420719064541548E-03 + 438 3.8281973082679140E-03 + 439 -9.4177135623312556E-03 + 440 4.4774450365684965E-03 + 441 5.3019763903016355E-03 + 442 3.2881020257760755E-03 + 443 2.2691021369881902E-03 + 444 -4.7097280232078772E-04 + 445 2.4977043980988194E-02 + 446 2.0103724190323625E-03 + 447 -3.3529290048053835E-02 + 448 -4.4107852751116818E-02 + 449 5.8282883619694180E-03 + 450 2.6094523102688253E-03 + 451 3.7699946282434239E-03 + 452 -1.1839578565166146E-03 + 453 1.2434553789269422E-02 + 454 -2.6390804578842835E-02 + 455 -1.5130272900879932E-03 + 456 2.6889731173449474E-02 + 457 -1.8797958818693377E-02 + 458 4.7072519212277997E-03 + 459 -4.2439655649799280E-03 + 460 9.7667966027614392E-04 + 461 4.3046576261275542E-03 + 462 -5.6874330703676496E-03 + 463 6.6881195704039740E-04 + 464 -1.9947507227914239E-03 + 465 1.7404458898205295E-03 + 466 1.4977421222152741E-04 + 467 2.1065472282846484E-04 + 468 5.6148711678196241E-04 + 469 5.4624241940906927E-04 + 470 1.0044272482163488E-01 + 471 -3.9261815071764371E-03 + 472 -2.1755420690221645E-02 + 473 3.1479944019714476E-02 + 474 -3.6551153645319925E-02 + 475 -3.9702601995631685E-04 + 476 -3.5512621584657552E-03 + 477 2.5140800397636842E-03 + 478 2.0287629947735478E-04 + 479 -1.7841758098823029E-02 + 480 1.3693298746830158E-02 + 481 -3.1995485515215347E-02 + 482 1.0375769618474740E-02 + 483 -1.3634655088408292E-04 + 484 -2.6078676467023395E-03 + 485 1.1298563539914642E-03 + 486 -6.5732406817564076E-03 + 487 1.8760479962896953E-03 + 488 3.5804592747940722E-04 + 489 1.8282859362537204E-03 + 490 1.7542464515653291E-03 + 491 5.3690240540641061E-04 + 492 -1.2534142573429933E-04 + 493 6.6481947118718289E-04 + 494 2.2450233854755535E-03 +Ene= -2.3642573678E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -2.8481763545800072E-02 + 2 5.4735678943320753E-04 + 3 -2.0355207978103723E-03 + 4 -7.0158441679918655E-03 + 5 -4.6513754417209984E-03 + 6 2.6766319501890290E-04 + 7 7.7614992837580848E-04 + 8 2.3079066781968331E-03 + 9 -1.4730207979231219E-02 + 10 1.7462566990155577E-03 + 11 2.1172837304999081E-02 + 12 6.9862828015500511E-03 + 13 -8.4241116946814753E-03 + 14 -2.6200907228595550E-03 + 15 -1.4931455254294493E-03 + 16 3.1576583660763370E-03 + 17 -9.2154450989442372E-04 + 18 1.8894103546304664E-05 + 19 2.9351660128214632E-04 + 20 9.4837714535673319E-04 + 21 5.3573469625416679E-04 + 22 -9.7878708691797396E-04 + 23 1.0992236653514481E-03 + 24 -2.7733103021764649E-04 + 25 -5.9735245213353276E-04 + 26 -5.1243321662803896E-02 + 27 2.1627526969476146E-03 + 28 -2.3286698440898583E-02 + 29 -1.7888954738518925E-02 + 30 -2.2916405791943192E-02 + 31 3.0546638784466600E-03 + 32 -2.2734581859856014E-04 + 33 -1.5520090545519279E-03 + 34 1.2429929230588722E-03 + 35 3.5902974547330678E-02 + 36 -4.1494711569213753E-03 + 37 -6.7590857466650230E-03 + 38 3.1979036938845087E-02 + 39 8.4329529326487320E-04 + 40 7.4409274301110665E-03 + 41 5.7363145491820197E-04 + 42 -3.9796499551281875E-03 + 43 8.9771906308004929E-03 + 44 1.7883319957855790E-03 + 45 -1.6845740765717397E-03 + 46 1.9474059089012196E-03 + 47 6.9098101230152158E-04 + 48 -6.3212184169168946E-04 + 49 -4.6001507373196929E-04 + 50 -1.4320768748831566E-03 + 51 -5.4032786001136777E-02 + 52 3.3377454563406905E-03 + 53 -1.5003116864546358E-02 + 54 1.4234878902086233E-02 + 55 3.0905973214330737E-02 + 56 1.5260052843444078E-03 + 57 -4.5515336521978452E-03 + 58 -5.2102880101829296E-03 + 59 1.7437481238107958E-02 + 60 -3.4795216106092955E-03 + 61 -6.9435944742267776E-03 + 62 -2.2774783553953685E-02 + 63 -2.9826532948724484E-02 + 64 6.6512891738850690E-03 + 65 -5.5087173793845244E-03 + 66 -2.9717577606586706E-04 + 67 4.9910382487324868E-04 + 68 -5.0200207492302751E-03 + 69 -1.2476885358314127E-03 + 70 -6.6300238992234950E-04 + 71 -1.9311278852369412E-04 + 72 -5.8336372669583062E-04 + 73 -5.9319649452516424E-04 + 74 1.8934933683782582E-03 + 75 4.9331376679606230E-04 + 76 -3.3055883721352472E-02 + 77 3.3668342380233571E-03 + 78 -2.1116987384568659E-03 + 79 -4.5140398557386947E-02 + 80 3.2985950006643741E-02 + 81 1.0217003699238769E-04 + 82 4.5093648943726592E-04 + 83 -3.3942319112788876E-03 + 84 1.5885227600153180E-03 + 85 -1.4302274199712482E-03 + 86 -3.5028913201409556E-04 + 87 -2.0982303519059302E-03 + 88 -1.3266315660584898E-03 + 89 -3.8433363943295239E-02 + 90 3.0374195203327192E-03 + 91 -5.6797810161593201E-02 + 92 1.6215967514950747E-02 + 93 7.7824102379330906E-02 + 94 1.0767885062127858E-03 + 95 -8.8934626015734321E-04 + 96 -1.5786556963491491E-03 + 97 5.1709769109560045E-04 + 98 -3.9598218130645606E-03 + 99 1.6224148933721965E-03 + 100 1.7580111859015763E-03 + 101 -6.9163339129879966E-04 + 102 1.1264821139379917E-02 + 103 -4.7249799161669864E-04 + 104 1.2568164249711167E-01 + 105 8.1259475423329064E-02 + 106 -1.3352809816674746E-01 + 107 -2.9113579459169995E-03 + 108 -4.5979137239645397E-03 + 109 6.5947617279429414E-03 + 110 -1.3261999318000880E-04 + 111 5.4441598941416909E-03 + 112 1.2433126832002124E-03 + 113 -6.6186854125162616E-03 + 114 -2.5825457019773867E-03 + 115 -4.5006130373642823E-02 + 116 7.1703597134348228E-03 + 117 -1.8170646071439789E-03 + 118 -9.0150259141932781E-02 + 119 -7.8168187107724413E-02 + 120 -1.1395465426435622E-03 + 121 2.2031425510597655E-03 + 122 9.2346919391062237E-04 + 123 7.7132607433782856E-04 + 124 -8.2770803717136074E-04 + 125 -4.2412469769070621E-04 + 126 9.7980776710407248E-05 + 127 3.8744803212735500E-05 + 128 1.8149742478259401E-02 + 129 8.7334658300061241E-04 + 130 1.9312727974626066E-02 + 131 -4.0603478818600450E-02 + 132 -3.2986418757763411E-02 + 133 -2.8267537476987168E-04 + 134 1.1874944657097131E-03 + 135 -1.0387007671305995E-03 + 136 8.9659364810104278E-04 + 137 -5.5995667911375599E-02 + 138 -2.5231180081548075E-03 + 139 -1.5571056542465442E-02 + 140 8.6273450030089813E-04 + 141 -3.4668712862719526E-03 + 142 -1.5532085841036191E-02 + 143 3.4040949185841127E-04 + 144 -8.3898166735036778E-03 + 145 5.0777260987128561E-04 + 146 2.7948538075637653E-03 + 147 7.1174604919165148E-04 + 148 -4.4328552293627384E-04 + 149 -5.7038237294369971E-04 + 150 -2.2257592262674895E-03 + 151 5.2625510874965716E-05 + 152 -3.8114080782790946E-04 + 153 -2.3895924934964941E-02 + 154 2.1971712808467295E-03 + 155 5.8025291202382763E-02 + 156 -2.4331640168650848E-02 + 157 -5.0466004240817229E-02 + 158 -1.1290798506119588E-02 + 159 8.9822657403797895E-04 + 160 4.6631401159614970E-03 + 161 3.0342556984868502E-02 + 162 -5.4509689625334380E-04 + 163 4.9069775668373530E-03 + 164 -1.2168651383076965E-02 + 165 8.8536941455637109E-03 + 166 2.7751402982534117E-03 + 167 1.2541546821118951E-03 + 168 1.1067657466481888E-03 + 169 -1.5200237149782115E-03 + 170 4.2235399688778531E-03 + 171 -3.7006787845754660E-03 + 172 1.8868668760781472E-03 + 173 6.9451660479072288E-04 + 174 2.3196432588183636E-03 + 175 -1.7448935864868478E-03 + 176 -2.3124463847964409E-03 + 177 -4.2460742966350033E-04 + 178 4.2308503698999089E-03 + 179 -1.8225479718516225E-03 + 180 1.9210041518976040E-01 + 181 8.5417098973060435E-02 + 182 2.1546136502180743E-01 + 183 -5.6082437639733019E-03 + 184 -3.8426380119087169E-03 + 185 -1.0760553842388890E-02 + 186 -1.1557332107769679E-02 + 187 4.5423709944772059E-03 + 188 -2.3589881419903962E-03 + 189 6.1742045913636065E-03 + 190 2.4105189219110323E-03 + 191 -2.3067056595418772E-02 + 192 3.1388976612667517E-03 + 193 6.0591597623582585E-02 + 194 3.6108236396649551E-03 + 195 -1.9232262712766682E-01 + 196 -3.7829318793768363E-03 + 197 6.3379460991811192E-04 + 198 8.5547224789679546E-03 + 199 1.0882461634136439E-04 + 200 -2.6744739119327716E-03 + 201 -7.4417536408288533E-03 + 202 2.6101635563886070E-03 + 203 3.9297659952401389E-04 + 204 -5.6152193623850072E-02 + 205 -1.9749213478564864E-03 + 206 5.9821256899011702E-02 + 207 -2.1413513728695412E-02 + 208 1.0404106607597069E-01 + 209 -2.8391860158940860E-03 + 210 -1.2711591276882153E-03 + 211 -2.5758193638660189E-03 + 212 1.6300079022949776E-02 + 213 2.0714381869990856E-03 + 214 3.2335313874615253E-02 + 215 -3.3476473240144897E-02 + 216 -8.2202482947704991E-03 + 217 4.0450444285815828E-03 + 218 -4.8809000744162870E-03 + 219 1.3098632119323276E-02 + 220 -8.4118984536108721E-03 + 221 -3.4352407456127334E-03 + 222 -5.2407912208466095E-04 + 223 1.9596432589805255E-03 + 224 -6.7623870328857626E-04 + 225 3.2643184394683048E-05 + 226 -2.3057561037016165E-04 + 227 1.0536868926639812E-04 + 228 -1.8022560890880446E-03 + 229 -1.8117698065151167E-02 + 230 1.8455863240334567E-03 + 231 -5.4162428128852087E-03 + 232 -2.7636081282579019E-02 + 233 9.8861345882718075E-03 + 234 -9.6123501974258990E-04 + 235 -3.0931121326008846E-03 + 236 -3.6785972248391755E-03 + 237 -1.6211491600527283E-03 + 238 1.8619209628819421E-02 + 239 -6.7679579745156693E-03 + 240 -7.2088315312626846E-03 + 241 1.6048370031068782E-02 + 242 -1.6789438052336883E-03 + 243 7.4723403770787025E-03 + 244 1.0974745529658302E-03 + 245 -7.4028906651527676E-03 + 246 7.9234887527421388E-03 + 247 7.6057322786430854E-04 + 248 3.6133657392916431E-04 + 249 2.9438896372071703E-04 + 250 -1.3493785423105856E-03 + 251 2.3651286219564710E-04 + 252 -3.1010622474349236E-04 + 253 -4.2484224364948967E-04 + 254 -3.7886247672159618E-02 + 255 1.4586186329274406E-03 + 256 -4.9868227999384776E-03 + 257 9.8009908088441330E-03 + 258 1.7936347094747096E-03 + 259 -1.6690190892267457E-04 + 260 1.3811808992486006E-03 + 261 -1.1852178336394801E-03 + 262 5.6767523540388696E-03 + 263 5.1754219842298872E-03 + 264 2.1882117235117143E-03 + 265 3.6990975208143649E-03 + 266 7.3821259524593536E-04 + 267 8.1191846206873190E-03 + 268 3.9637663737615882E-03 + 269 -1.1252491380878340E-03 + 270 1.5325736890132323E-03 + 271 -1.4637654818895546E-03 + 272 -5.8537908560686125E-04 + 273 -3.1431186901546290E-04 + 274 -1.2396069862518366E-03 + 275 -3.6017068468735521E-05 + 276 -4.4511154070288865E-04 + 277 -7.5206456862949331E-04 + 278 1.5261757196640763E-04 + 279 -1.5422218342796621E-02 + 280 1.6675639618522870E-03 + 281 4.7530557993207212E-02 + 282 -1.2140119393423340E-02 + 283 9.9628917874135920E-04 + 284 -2.9656165010981577E-03 + 285 -9.7757558875398811E-04 + 286 -2.5791193681525613E-03 + 287 2.1012771985808782E-03 + 288 1.3672671840590971E-03 + 289 1.7090788253002272E-03 + 290 5.5941424273118275E-04 + 291 -1.0733796678694598E-03 + 292 2.3448261891654634E-02 + 293 -8.7037200411267494E-04 + 294 1.3342616088369691E-01 + 295 1.1326518514463993E-01 + 296 1.1165994802806903E-02 + 297 -4.3518854380412125E-03 + 298 -1.2872299990618176E-03 + 299 1.4318620140559330E-03 + 300 3.8637173364096645E-03 + 301 3.4801320684742410E-03 + 302 4.1113489881033204E-03 + 303 -4.3200434756673275E-03 + 304 -6.3048564922899564E-03 + 305 5.1948658707057012E-02 + 306 -5.6807014916905856E-03 + 307 6.6825619677355697E-03 + 308 4.4942439418838277E-02 + 309 1.2769622663310155E-02 + 310 -7.4529487496998162E-03 + 311 -1.1684859346848941E-02 + 312 -3.8069301090084243E-03 + 313 -9.9679430482730712E-03 + 314 -1.5313957579679164E-02 + 315 -3.4016720961020021E-02 + 316 5.2830080643411437E-02 + 317 -9.4350774562222998E-04 + 318 -4.7252127679156160E-03 + 319 -2.2572310058913037E-03 + 320 -6.7631600398295594E-04 + 321 1.0077847945467880E-02 + 322 -4.9659532375999696E-03 + 323 3.6711966921063196E-04 + 324 1.8229366129838968E-03 + 325 3.8583162611938839E-03 + 326 3.5692928609249342E-03 + 327 -2.3661016167446677E-03 + 328 3.8955087161875617E-03 + 329 -3.0179885654497686E-04 + 330 8.5207168287943419E-02 + 331 -5.4445215673277064E-03 + 332 -4.1446575161062184E-02 + 333 1.2829622948352812E-02 + 334 -7.5795026936446075E-02 + 335 5.1405721091127227E-03 + 336 -4.3994350192559711E-03 + 337 1.2421132857991037E-02 + 338 -2.9029625319667306E-02 + 339 3.1853272244274006E-02 + 340 -4.4017623999358442E-02 + 341 -1.6549077816898883E-03 + 342 -3.1617424897862637E-02 + 343 -9.8724675301667033E-03 + 344 1.7613577345158787E-03 + 345 -5.3941411999939770E-03 + 346 1.1546565414354219E-03 + 347 -4.1231557946586252E-03 + 348 3.1175779910332648E-03 + 349 3.1848858703830184E-03 + 350 -3.6277332176633610E-03 + 351 7.6365006529826608E-04 + 352 -5.8756489340895429E-04 + 353 1.4519520405638575E-03 + 354 4.8924426815574057E-04 + 355 9.9957961417513619E-02 + 356 -1.2677088239365248E-02 + 357 1.1351168577580152E-01 + 358 1.2653090091071093E-01 + 359 -3.7197715426527167E-01 + 360 -5.0250077137500952E-03 + 361 -1.2900517926899542E-02 + 362 1.8140540233790487E-02 + 363 -1.0279669541618843E-02 + 364 9.3075111006873726E-06 + 365 2.5860478698413345E-03 + 366 -3.7146211184881361E-04 + 367 9.7646550124667365E-03 + 368 -7.8554528690945296E-03 + 369 1.1975558800396181E-03 + 370 -1.6973965860789181E-01 + 371 -1.3715011678390365E-01 + 372 -1.4076567193998846E-01 + 373 8.8846533157791660E-03 + 374 5.4904283607691631E-03 + 375 8.5956347629417493E-03 + 376 -8.8931762426170298E-03 + 377 1.4449738657205613E-04 + 378 -2.2458989301960539E-03 + 379 2.3229179265478943E-03 + 380 2.0210419679632693E-03 + 381 -5.6968392594970666E-03 + 382 6.4647082692318109E-04 + 383 1.0173514720391791E-02 + 384 -4.5580064207681507E-02 + 385 8.5037708669933029E-02 + 386 2.5112727772076150E-04 + 387 5.4057222005324669E-04 + 388 -6.7974250787477810E-03 + 389 7.2510531314249683E-04 + 390 -1.8785467516472791E-04 + 391 -1.6599114525189093E-03 + 392 -1.4988470400111422E-03 + 393 9.9911727074502004E-04 + 394 -6.4008434593876395E-02 + 395 5.3677518274336089E-04 + 396 5.1649013508614852E-03 + 397 1.9920594072701813E-02 + 398 3.7157005951045978E-02 + 399 1.3471286844025485E-03 + 400 -5.7883656766804820E-04 + 401 -2.9113448848318646E-03 + 402 -1.3301875843852781E-02 + 403 -1.5278192681228122E-02 + 404 1.0468830428421838E-02 + 405 1.0132164236279379E-02 + 406 -4.7558945397833136E-03 + 407 2.4867646874638391E-03 + 408 3.0150717077812913E-03 + 409 1.9322274038348303E-03 + 410 9.3387085408930585E-04 + 411 -2.9798069287806737E-03 + 412 -2.5894282975407897E-03 + 413 -4.0415299699640395E-06 + 414 -7.8872837448825067E-04 + 415 7.4757936055697624E-05 + 416 4.0656798107542442E-05 + 417 -3.6068377990162656E-04 + 418 2.0087406787085049E-03 + 419 1.5717137209824674E-02 + 420 -1.5992165643823701E-03 + 421 -1.7113988971975108E-02 + 422 1.6877220410510219E-01 + 423 3.7387869975106416E-02 + 424 -1.8798205258193173E-03 + 425 -8.3822719239615828E-03 + 426 2.8952467361254464E-04 + 427 6.6182216820849264E-03 + 428 1.8788953329051412E-03 + 429 9.9054666226243756E-03 + 430 -1.4314404502730663E-05 + 431 6.1068477747773325E-04 + 432 -1.0323462225010807E-02 + 433 1.9531562332546510E-03 + 434 2.1032330897948087E-01 + 435 -1.3142323939679196E-01 + 436 2.5116067121294466E-01 + 437 -8.9685838863921511E-03 + 438 5.4476195351335936E-03 + 439 -1.2659407563429741E-02 + 440 -2.1407561451616455E-03 + 441 1.1405380561579458E-02 + 442 4.6220370058087691E-03 + 443 1.1448777435929935E-02 + 444 3.8215477773615924E-03 + 445 1.2347632498779015E-01 + 446 1.3241605124292980E-03 + 447 -3.0563891923846450E-02 + 448 -3.4420777376879923E-02 + 449 -6.8590447841707855E-02 + 450 9.9718712254797076E-04 + 451 1.8993824753433309E-03 + 452 7.8393291645917924E-03 + 453 -3.7973294746378963E-02 + 454 -4.7048785478137366E-02 + 455 9.1507559739511437E-03 + 456 -6.7361697825738340E-03 + 457 -3.5224943781583896E-02 + 458 -1.2026420580047806E-02 + 459 -1.2056162620884813E-02 + 460 5.8839921468638876E-03 + 461 5.8310504517053051E-03 + 462 -1.0027586649898295E-02 + 463 -3.9617338316854698E-05 + 464 -1.7195298157449365E-03 + 465 -1.3021709901749974E-03 + 466 -2.6885229374853346E-03 + 467 -7.9371961910477864E-04 + 468 2.2649640103408267E-03 + 469 -1.9629035917821656E-03 + 470 5.0016302258903376E-02 + 471 -1.0748997885022329E-04 + 472 -3.2142150961791148E-02 + 473 1.0774543877845740E-02 + 474 -3.4426819677011479E-02 + 475 3.3750226372015026E-03 + 476 2.6314218579709652E-03 + 477 4.6401148806613788E-03 + 478 1.6549499102559758E-02 + 479 2.2953327086134728E-03 + 480 2.6925466710284441E-02 + 481 -7.6488168298898236E-03 + 482 2.7771170238556728E-02 + 483 1.2488592889720535E-03 + 484 1.0554874084536218E-03 + 485 3.3050616953358984E-03 + 486 -4.2579299880884252E-04 + 487 7.4072014164129948E-03 + 488 -1.0140431193924107E-04 + 489 3.2986169889836180E-04 + 490 -9.6131954690338616E-05 + 491 -1.5680085702451296E-03 + 492 2.0577104409767125E-03 + 493 -1.3588411914841280E-03 + 494 4.7762897714942151E-04 +Ene= -2.3375650450E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -7.9569526153148634E-02 + 2 3.5076215822645203E-03 + 3 1.5761551558514487E-02 + 4 1.0081624964735154E-02 + 5 2.6898329710943591E-02 + 6 -3.9017704318892863E-04 + 7 -1.9999588472687040E-03 + 8 -1.6128816285851642E-03 + 9 1.5372178075183643E-02 + 10 -1.1273445149694210E-02 + 11 -1.6379177424588564E-02 + 12 5.8268813489346545E-03 + 13 -3.2186745291414259E-03 + 14 3.6126572571998847E-03 + 15 -2.1090071368051458E-03 + 16 -3.3832924310505117E-03 + 17 -1.2163447130921054E-03 + 18 1.7914661119720725E-04 + 19 -1.9517100320795509E-04 + 20 -5.1470511894125177E-04 + 21 1.0833593063246292E-03 + 22 7.6680339809901787E-04 + 23 -1.0014962440686862E-03 + 24 2.2708000481919490E-04 + 25 -2.7054390913097334E-04 + 26 -2.3346999217715502E-02 + 27 -1.1854735154474859E-03 + 28 1.4781060317741864E-02 + 29 -1.1349542315046321E-02 + 30 -3.8253611788771472E-02 + 31 -4.7063477772255430E-06 + 32 1.4723672548984847E-03 + 33 2.5149499996365695E-03 + 34 -1.8019019642963392E-02 + 35 -6.7551603114071072E-03 + 36 8.0652231342045726E-03 + 37 9.2581438437999691E-03 + 38 1.3293777452734891E-02 + 39 -4.2787275889926658E-03 + 40 7.2366228365852952E-04 + 41 5.7992854613307379E-03 + 42 -2.3233611900200916E-03 + 43 -1.7752301939184278E-03 + 44 1.7438454376145977E-04 + 45 -5.6119358101663566E-05 + 46 -1.6802538739759659E-04 + 47 2.1890173540115791E-04 + 48 -1.1560365615056610E-03 + 49 2.0376337502413252E-04 + 50 6.0194536926627413E-04 + 51 -1.7280750328420007E-02 + 52 -1.8872747817672471E-03 + 53 5.5794068478602882E-02 + 54 1.7441915154135922E-02 + 55 1.2490194235522611E-02 + 56 -8.9070321015566930E-04 + 57 -2.3598175163009037E-03 + 58 -1.4350788929032368E-03 + 59 5.9461143651864624E-03 + 60 1.1906673619613183E-02 + 61 3.5456652192586466E-02 + 62 2.0881793483569187E-02 + 63 -2.2833729450188831E-03 + 64 3.2008752211698625E-03 + 65 2.3776107725384361E-03 + 66 5.5880999286251542E-03 + 67 -3.1921966469596044E-03 + 68 2.6153102321323806E-03 + 69 4.7522338183057653E-04 + 70 1.6709926424926050E-03 + 71 1.9402204423931355E-03 + 72 -1.8826361870791317E-03 + 73 3.2020062464194535E-04 + 74 3.8648910045402444E-04 + 75 -1.7640668481103998E-04 + 76 -8.1318652220412502E-03 + 77 1.2564940999502622E-03 + 78 -3.6445899335555448E-02 + 79 3.5296043395762582E-02 + 80 -5.9686813267671057E-02 + 81 1.8123650548331582E-03 + 82 -1.0951644177663404E-03 + 83 1.7294318539613808E-03 + 84 6.1818529639986582E-05 + 85 2.7255560233729300E-03 + 86 2.7456067796054486E-03 + 87 2.1865073530010627E-03 + 88 -1.2652343198260897E-03 + 89 -2.0939487909576813E-02 + 90 1.5035250981427107E-03 + 91 -2.3942064390605172E-02 + 92 6.0683491604172718E-02 + 93 -6.4123401328177301E-02 + 94 2.6261457566522785E-03 + 95 2.2562113451112090E-04 + 96 2.0314252206705802E-03 + 97 -4.5124606169205869E-03 + 98 1.1639001169288616E-03 + 99 -3.4437885231196159E-03 + 100 -1.5714153562914768E-03 + 101 -1.5826469139081998E-03 + 102 -6.0828342239668464E-03 + 103 8.1310077760668551E-04 + 104 -3.8528889449749248E-02 + 105 2.3794626901756523E-02 + 106 2.1024150153230858E-01 + 107 1.2866680965841092E-04 + 108 -1.3970407179904321E-03 + 109 -7.0493721883885209E-03 + 110 3.5432571042489822E-04 + 111 -7.6017085302972163E-03 + 112 1.7096095472622515E-03 + 113 3.5320335946115199E-04 + 114 -1.3608506644992113E-03 + 115 -7.4184489882844823E-03 + 116 8.7898292493545987E-04 + 117 8.6880992013310801E-02 + 118 -6.7101109618654203E-02 + 119 -4.2169722289120672E-02 + 120 -4.7648742136557395E-03 + 121 3.0610629352188674E-03 + 122 1.4590795309455792E-03 + 123 1.7925773631614320E-03 + 124 -3.6628183935097924E-03 + 125 3.0657083779799484E-03 + 126 2.3401885230958149E-03 + 127 -1.8379322565450342E-03 + 128 2.7153243875667553E-02 + 129 2.4797640078270651E-03 + 130 2.7068083827077042E-02 + 131 -3.6305510432616733E-02 + 132 -1.5416395396155476E-03 + 133 1.0631502240847459E-03 + 134 1.1714475749200037E-03 + 135 -2.6248635140674629E-03 + 136 9.0203596666487817E-03 + 137 -8.7144713598169259E-03 + 138 4.9035059872848188E-03 + 139 -1.1433583633286847E-02 + 140 -1.3759006996981589E-07 + 141 -2.9187784363455338E-03 + 142 -4.5597636739880829E-03 + 143 2.7290186001909960E-03 + 144 -8.8400820178645076E-03 + 145 -2.7894046294150258E-03 + 146 1.4978523249831956E-03 + 147 -1.8838141233847325E-03 + 148 -1.2846536969597605E-03 + 149 2.2079530379150074E-03 + 150 -5.5524189840075930E-05 + 151 1.8635460371656466E-03 + 152 2.1224126753893249E-03 + 153 1.3734346622812508E-02 + 154 -2.8330658078791877E-03 + 155 -7.7451406811625226E-02 + 156 -4.5535502418080336E-03 + 157 -2.8890964902817799E-03 + 158 7.3456524809880170E-03 + 159 2.2476728012023853E-03 + 160 -2.2110108375648046E-03 + 161 -8.5096101798485813E-03 + 162 3.8869511590497528E-02 + 163 2.3839336278907324E-03 + 164 1.7709483129682638E-02 + 165 -7.1205055230250782E-03 + 166 6.2444131121393244E-04 + 167 1.4971831955420583E-02 + 168 -3.2444237007988431E-04 + 169 -3.7691732451018674E-03 + 170 -4.4687409141258346E-03 + 171 1.7808926676845390E-03 + 172 -3.0689098629099140E-03 + 173 -9.9265085837561807E-04 + 174 -1.6447929655486770E-03 + 175 8.6461610384861213E-04 + 176 1.7534360721290722E-03 + 177 2.5483700141374109E-04 + 178 6.6091995340466572E-02 + 179 -6.9287169286940354E-03 + 180 -2.1021434874660944E-01 + 181 1.9114387517520839E-02 + 182 1.3120097233691608E-01 + 183 8.1194894052669751E-03 + 184 -5.0173435397582984E-03 + 185 -4.7587939273474695E-03 + 186 -2.1034849407822144E-03 + 187 4.8714798726965155E-03 + 188 -1.1082592393031881E-03 + 189 -5.0405822149556358E-03 + 190 -1.2434616777821724E-03 + 191 2.3893388249472184E-02 + 192 -1.7232631328975621E-03 + 193 1.7230261364603230E-01 + 194 2.1118093484307512E-02 + 195 5.4184577466650709E-02 + 196 -9.5571277517281471E-03 + 197 -2.1961759006399258E-03 + 198 -1.8340269192202420E-04 + 199 -5.3554197453088244E-03 + 200 -3.5083095543877682E-03 + 201 -2.8598249432938813E-03 + 202 -2.1125109340828989E-03 + 203 7.2271727401367752E-03 + 204 7.1005923778039950E-02 + 205 2.9487765037108657E-03 + 206 -1.4859616291043987E-02 + 207 -3.1383888654759641E-02 + 208 2.3361585467550558E-02 + 209 -4.3145288981343843E-03 + 210 2.2240395274603776E-03 + 211 -7.2151265161899212E-03 + 212 -2.1739710462211237E-02 + 213 3.9217120277902301E-03 + 214 3.7229473976436063E-02 + 215 -1.1082068727416598E-02 + 216 4.9523757492572129E-03 + 217 -1.1019750625669065E-02 + 218 3.8006362942026423E-03 + 219 5.6107877875309696E-04 + 220 7.5673316200730503E-03 + 221 1.1513162258420413E-04 + 222 2.2389901325587823E-04 + 223 -6.0020838165393596E-04 + 224 -5.6104483535364164E-04 + 225 -1.1486677622667759E-03 + 226 2.5120165460577724E-04 + 227 2.2984281694131245E-03 + 228 -1.6572988361041921E-03 + 229 -2.5948712863985826E-02 + 230 7.8453858351939685E-04 + 231 6.2191581115435407E-03 + 232 -9.0488714165665035E-03 + 233 -2.8806281549353878E-02 + 234 6.7131965571374586E-04 + 235 1.9353824440528197E-03 + 236 5.1966006690557153E-03 + 237 3.2530537275967664E-02 + 238 -2.6249073400276761E-02 + 239 -1.0419020568635005E-02 + 240 8.6559376776750140E-03 + 241 2.3273647929872125E-02 + 242 4.6657156059867451E-03 + 243 -3.0773119999839855E-03 + 244 -1.3985762950662396E-03 + 245 -1.0780453632853887E-03 + 246 1.8155209108190688E-03 + 247 1.5062993525339853E-03 + 248 -3.2822075955932202E-03 + 249 2.3169121878191491E-04 + 250 1.5817222668147951E-03 + 251 -4.3431039251017463E-04 + 252 1.1761045888588660E-03 + 253 6.5083982982517630E-04 + 254 5.5841631904054320E-02 + 255 -1.6528557417722542E-03 + 256 -4.9196489320147557E-03 + 257 2.3677221787335046E-02 + 258 6.5730623519245739E-03 + 259 3.7549114185213566E-04 + 260 -1.2590355434969995E-05 + 261 9.5852431380060116E-04 + 262 1.3930234224600211E-02 + 263 3.3583367310110633E-03 + 264 -1.1042536063206432E-02 + 265 -8.2520966915701737E-04 + 266 -1.7791840508015512E-03 + 267 4.1102068397809435E-03 + 268 -3.3809861914540129E-04 + 269 -3.4654117665771653E-03 + 270 6.7846478091081631E-04 + 271 -9.6844343833059983E-04 + 272 1.9473040157604241E-04 + 273 1.5534370955396130E-04 + 274 -4.7698986827609922E-04 + 275 -9.4255828201838371E-04 + 276 3.1944861647559118E-04 + 277 -4.4679662757190342E-04 + 278 3.4605791764101410E-04 + 279 -3.1615172816069079E-04 + 280 1.1323717183077898E-04 + 281 4.5808269135663680E-02 + 282 -7.5336008188976497E-02 + 283 -4.7002037402565429E-02 + 284 -1.3946582163921906E-03 + 285 4.6561193372973639E-03 + 286 1.0778657550676971E-03 + 287 -4.9445739214608563E-03 + 288 -7.4910342551075867E-04 + 289 -2.0356643337721674E-03 + 290 -5.4797184502747732E-04 + 291 -3.5495038611109506E-03 + 292 -6.3620374890118792E-02 + 293 5.6829658167737397E-03 + 294 -8.7640579367278856E-02 + 295 -2.4040757084110162E-01 + 296 -1.0290767915748557E-03 + 297 1.5396496715769500E-03 + 298 1.3476061529802555E-02 + 299 5.8813847891628556E-03 + 300 -3.9089601633541266E-03 + 301 2.9409917598488878E-03 + 302 -5.8182052314572717E-03 + 303 -3.4596142598196430E-03 + 304 6.9370731762377459E-03 + 305 -8.7412334670836020E-02 + 306 5.2798621224391679E-03 + 307 -7.3257697393532550E-02 + 308 -7.1722248863444757E-03 + 309 2.7146802699617122E-02 + 310 9.8922841037549798E-03 + 311 2.8917782326658070E-03 + 312 -4.1331637152966947E-03 + 313 1.5670886493907760E-02 + 314 -3.8934269764621741E-02 + 315 -1.3393166624574045E-02 + 316 9.6778989025137312E-03 + 317 -2.5165306750098617E-02 + 318 -5.7099109272548323E-03 + 319 -1.3922322576253943E-02 + 320 -7.4589733829072413E-03 + 321 9.0981864634427489E-03 + 322 5.8255329123782854E-03 + 323 1.2627824409189383E-03 + 324 -1.8678249223238227E-03 + 325 -7.2610296050033146E-04 + 326 1.5618989584322048E-03 + 327 -3.3506422523567540E-03 + 328 6.5187021484001289E-04 + 329 4.6936969812235519E-03 + 330 5.9462037123527954E-02 + 331 -5.9968893545229874E-03 + 332 -2.7666872635353147E-02 + 333 -2.2783184988249680E-03 + 334 2.2054223746760221E-02 + 335 4.1727589885722088E-03 + 336 -9.3375892442382549E-04 + 337 1.4791756416971192E-03 + 338 -1.0747780518505572E-02 + 339 -9.9548448821669480E-03 + 340 -1.5567360091370790E-02 + 341 -2.2780490004540473E-03 + 342 -1.7669847623376804E-02 + 343 -6.8968530725574285E-03 + 344 -5.0058088395947631E-03 + 345 4.5229142943845838E-03 + 346 2.9903131558695252E-04 + 347 5.4864913066861028E-04 + 348 -2.5058131185962860E-03 + 349 -1.8233496878358675E-04 + 350 6.7750161530477681E-04 + 351 -7.3346915895119497E-05 + 352 -1.2599420283233413E-03 + 353 4.7148825243772746E-04 + 354 -2.6724652096300896E-04 + 355 4.5706879098554955E-02 + 356 -5.3496529254315655E-03 + 357 1.4765816863516490E-01 + 358 -1.4204131445007973E-01 + 359 -2.1276889863037754E-01 + 360 -7.7851176289259645E-03 + 361 3.0276844006084445E-03 + 362 1.2784853625555131E-02 + 363 -6.0414793453818999E-03 + 364 1.4873801659267218E-03 + 365 -7.2210957430516639E-03 + 366 8.9792486664611194E-03 + 367 5.4230851369181888E-03 + 368 4.2607580092154790E-03 + 369 -3.1524297612797855E-04 + 370 -5.9012488698678605E-03 + 371 -1.1596084953939331E-01 + 372 -6.9583690214031586E-03 + 373 1.5749168209136825E-03 + 374 7.3483245858050683E-03 + 375 -7.2292395354662457E-04 + 376 -5.6808505937371622E-03 + 377 -3.0230345677828125E-03 + 378 -6.0680874659090370E-04 + 379 1.4872015221506698E-03 + 380 1.8136557427531484E-03 + 381 2.1825770577116967E-02 + 382 -3.7625941683805931E-03 + 383 1.2613689519511057E-01 + 384 2.3865025083956871E-02 + 385 5.2816621914490866E-02 + 386 -8.4142161139033611E-03 + 387 -4.1882362756801043E-03 + 388 -6.9804973833734716E-04 + 389 8.1003346872100736E-04 + 390 3.1906153156848107E-03 + 391 -3.0815729297044162E-04 + 392 3.2234865608641032E-04 + 393 -4.0803834563342316E-03 + 394 6.8492409538023685E-02 + 395 3.8455853061336771E-04 + 396 1.0565890560278568E-02 + 397 -2.0496973164067067E-02 + 398 2.8540902504054924E-03 + 399 2.8344587924514120E-03 + 400 9.7265926305687312E-04 + 401 5.8788797956883633E-03 + 402 1.4637189076264264E-03 + 403 -1.6601935752725921E-03 + 404 1.4620370957755424E-02 + 405 -6.7723332274248309E-03 + 406 -2.3039242843962301E-02 + 407 -1.0183579022385406E-02 + 408 -9.2854930363719234E-03 + 409 -5.5088248485220138E-03 + 410 5.5949938119179360E-04 + 411 -3.9443180304493909E-03 + 412 -6.6283294924939263E-05 + 413 5.9262685130294737E-04 + 414 2.0376887283460247E-03 + 415 -2.3526587655807204E-03 + 416 2.0441129245208655E-03 + 417 1.6075976371633122E-03 + 418 -1.6917484306152131E-03 + 419 4.8171475838435944E-02 + 420 -5.8367003097121633E-03 + 421 -4.7690627688409329E-02 + 422 1.0833457161650265E-01 + 423 -1.3984335496972700E-01 + 424 2.1934044132309815E-03 + 425 4.1455747166233437E-04 + 426 6.9414649728457298E-03 + 427 -3.2524300693408401E-03 + 428 -6.3396462115018308E-03 + 429 3.6593727223407828E-03 + 430 6.3398688919025278E-03 + 431 3.1670575211056157E-03 + 432 -6.1254940863949024E-02 + 433 7.8377570501630776E-03 + 434 2.8232562666605171E-01 + 435 2.3110799841162352E-01 + 436 -3.3812698702934668E-01 + 437 -1.1717684775873101E-02 + 438 -9.7522993389122636E-03 + 439 1.5614645053888300E-02 + 440 -7.7076582604869498E-03 + 441 -1.0811675601664936E-02 + 442 -9.4615341713950481E-03 + 443 3.7481039519088855E-03 + 444 1.3333939754067246E-02 + 445 -4.6366174822160301E-02 + 446 -2.6443467251830530E-03 + 447 9.5561915700261874E-02 + 448 4.5329087313047437E-03 + 449 -1.1148729518436903E-01 + 450 -1.0635051934569872E-02 + 451 -1.8330811284249246E-03 + 452 6.6566321293122883E-03 + 453 -6.0896372432818688E-03 + 454 2.2085849772579488E-02 + 455 1.9971674349186026E-02 + 456 -6.0728017109904206E-02 + 457 -2.7542314356866077E-02 + 458 -1.4305548051861624E-02 + 459 1.7257286170924921E-03 + 460 -6.1149712779866815E-04 + 461 -9.6825940798519264E-03 + 462 -4.8285290242354034E-03 + 463 -3.0863041037704078E-03 + 464 3.0380939267518263E-03 + 465 1.7426579169228544E-03 + 466 1.0599522951051086E-04 + 467 -1.4944897348987313E-04 + 468 -2.5960592736100330E-03 + 469 -2.9595442327331506E-03 + 470 4.3327284698293840E-02 + 471 1.4704272040005327E-03 + 472 -2.8380165075770132E-02 + 473 2.7351799394774258E-02 + 474 6.1180595629979614E-02 + 475 -1.4977137333063137E-04 + 476 -3.0920373011239077E-03 + 477 -1.8945741200196821E-03 + 478 -3.0462344464136839E-02 + 479 1.7114448774591860E-02 + 480 -4.6054084252782963E-02 + 481 -1.2917327071191391E-02 + 482 5.3371803748310971E-02 + 483 -6.9189687060048763E-03 + 484 9.7003112996751246E-03 + 485 -8.2370235503620628E-03 + 486 -7.3246799952426788E-03 + 487 1.2052598430696858E-02 + 488 -1.5612093835158946E-03 + 489 -1.1954456437545300E-03 + 490 -6.5868966428825945E-04 + 491 2.0024420310049526E-03 + 492 -1.5907215168775696E-03 + 493 -1.0309710292836709E-03 + 494 1.3342690671528476E-03 +Ene= -2.3124817340E-01 +Spin= Alpha +Occup= 2.0000000 + 1 6.9873362756955770E-02 + 2 -4.2942718832782480E-03 + 3 9.9863733573988707E-03 + 4 1.6436784851363907E-03 + 5 -4.1715082559748269E-02 + 6 1.1638692813172246E-03 + 7 6.6068559256860610E-04 + 8 -1.3698866819040758E-03 + 9 6.3434706956388073E-03 + 10 1.6095706374809882E-02 + 11 -1.3558252326096185E-02 + 12 -1.3232324539993187E-02 + 13 -3.0444475448531917E-03 + 14 -3.4522879325726108E-03 + 15 1.0442073620947149E-02 + 16 -4.0601023239436413E-03 + 17 -1.3986808947257538E-03 + 18 1.0600732227972465E-03 + 19 1.2272560029410502E-04 + 20 1.5372699300735498E-03 + 21 -1.2975510983718214E-03 + 22 -8.7350282478409970E-04 + 23 1.5288137809906714E-03 + 24 1.8528467365672548E-04 + 25 -1.1520630066205082E-03 + 26 5.9373196540725787E-02 + 27 2.9350626355156375E-03 + 28 -1.8713519745174694E-02 + 29 5.8862981104035109E-02 + 30 3.6361990934434950E-02 + 31 3.7618559835884114E-03 + 32 -4.4930301836963319E-03 + 33 -2.4638140524315603E-03 + 34 1.4784861463602588E-02 + 35 -2.5869354085701596E-02 + 36 3.9641070583045730E-02 + 37 3.2603299750045840E-02 + 38 -2.0721300718447726E-02 + 39 5.2082410936020356E-03 + 40 -1.3576144203148557E-02 + 41 1.0654312198607706E-02 + 42 1.1372653925252196E-02 + 43 -1.2684797999945154E-02 + 44 -2.0401384334252279E-03 + 45 1.1462641824236976E-03 + 46 -3.3549213682430648E-03 + 47 -3.6938889600636471E-04 + 48 9.9131650115201063E-04 + 49 3.8356595698827540E-04 + 50 2.7762370047176828E-03 + 51 6.7971965666231877E-03 + 52 4.1236702919104813E-03 + 53 -8.8411824515741370E-03 + 54 -3.2367190182616752E-02 + 55 -2.2480758896961110E-03 + 56 4.7680115152322631E-03 + 57 3.2984521605158744E-03 + 58 -7.8892864737864718E-05 + 59 -2.3457989161432328E-02 + 60 -1.4355776406571668E-02 + 61 -2.8916672152254078E-02 + 62 3.7008907761349394E-02 + 63 4.0704862661449154E-02 + 64 -1.0170877064352913E-04 + 65 1.1796205510515151E-03 + 66 -3.2250867459722356E-03 + 67 7.1787648165658573E-03 + 68 8.5836848097184896E-03 + 69 3.9576385116606595E-03 + 70 1.0467683813740862E-03 + 71 5.6071830159090696E-04 + 72 -5.0896637109492998E-04 + 73 -2.1784976969570625E-03 + 74 2.0190562312132965E-04 + 75 -1.1435797766924326E-03 + 76 2.9174620361662046E-02 + 77 -2.7942505710178817E-03 + 78 3.2600557793257573E-02 + 79 -4.4221130928640537E-02 + 80 2.9254837772945377E-02 + 81 -2.8274253931587223E-03 + 82 5.1540143005265032E-03 + 83 3.8843466904837168E-05 + 84 -2.4816716898754267E-03 + 85 5.3152854401845970E-04 + 86 -3.2982284621716732E-03 + 87 -2.1758870613104173E-03 + 88 4.6655551086152670E-03 + 89 3.3112458929652581E-02 + 90 -3.6110389236861905E-03 + 91 1.0121809476053950E-02 + 92 -4.1328224288703107E-02 + 93 3.6677525677999041E-02 + 94 -1.2827532055002010E-03 + 95 -8.2509127605359927E-04 + 96 -2.9197417457077122E-03 + 97 2.0100630028723858E-03 + 98 -2.9843247206497179E-03 + 99 3.4694108287161331E-03 + 100 2.3733074979903810E-04 + 101 -1.0963068321334216E-03 + 102 -7.8023003657178569E-02 + 103 9.7574844498092284E-03 + 104 -2.9101940127033310E-01 + 105 3.0332995898888548E-02 + 106 1.1673083859113861E-01 + 107 1.0944029674517748E-02 + 108 1.8878082289081735E-04 + 109 -3.8281442020089919E-03 + 110 3.1233039887534496E-04 + 111 -6.9728615335129503E-03 + 112 -1.2639885334397791E-03 + 113 9.4357276901269934E-03 + 114 -2.3276527866906930E-03 + 115 1.3869103906220712E-02 + 116 -3.2972002002860678E-03 + 117 -2.1148046075735608E-01 + 118 1.4655314337586847E-01 + 119 1.2230467459770453E-01 + 120 9.9338700639665239E-03 + 121 -7.0403548581363141E-03 + 122 -5.7975403296518357E-03 + 123 -6.2295109385401767E-03 + 124 8.0080022391852430E-03 + 125 -7.2352693565035965E-03 + 126 -2.2945737518761770E-03 + 127 1.0219128276431244E-03 + 128 1.0692734920454914E-02 + 129 -4.7427293865826411E-03 + 130 1.6629458356238896E-02 + 131 2.6060208397082577E-02 + 132 -5.9058957243154422E-02 + 133 -4.1481955712254512E-04 + 134 -4.0944659926773199E-03 + 135 3.5833796719297170E-03 + 136 7.9262101650811514E-03 + 137 3.9439664896844605E-02 + 138 1.1911114842454567E-02 + 139 2.9504140852960672E-02 + 140 -2.1245165649127633E-02 + 141 3.7583650830377811E-03 + 142 1.0583900825265917E-02 + 143 1.0989768796140424E-03 + 144 1.4768262518132293E-02 + 145 -2.2260274822658581E-03 + 146 3.2858139551128723E-04 + 147 -2.1019206223848309E-03 + 148 2.6215278057506317E-04 + 149 -1.6277667855548019E-03 + 150 -2.9762150262995028E-04 + 151 1.2028224290903753E-03 + 152 -3.4597201445365497E-03 + 153 -8.8025600820494987E-02 + 154 1.4485103051455849E-03 + 155 -7.0406269463166804E-02 + 156 -1.4015071643987924E-02 + 157 4.7419927940401521E-02 + 158 1.1204939837065777E-02 + 159 -1.7973931130438998E-03 + 160 -3.9500686617196185E-03 + 161 -3.3025330576103511E-02 + 162 3.1649458633020704E-02 + 163 6.4767003162872466E-03 + 164 -1.2053196263997592E-03 + 165 9.5382221455239859E-03 + 166 -7.0542188530422836E-03 + 167 5.6656922375919747E-03 + 168 3.7432912120002244E-03 + 169 3.7527536150770641E-03 + 170 4.5250519154567724E-03 + 171 3.0144905430525637E-03 + 172 -3.1244155194039831E-03 + 173 -2.6005312820157484E-04 + 174 -3.3999989868134595E-03 + 175 6.5386181548804715E-04 + 176 1.0457714616207020E-03 + 177 8.6745991626967765E-04 + 178 -1.8313351958556268E-02 + 179 3.1468140696175638E-03 + 180 -1.4973348476868203E-01 + 181 1.3782417593667426E-01 + 182 -1.3041366008681063E-01 + 183 6.3343574949086138E-03 + 184 -5.2977236852468470E-03 + 185 7.8471214869319586E-03 + 186 3.1129118472326654E-03 + 187 -8.1221394758146507E-06 + 188 -5.0108037066764095E-03 + 189 -3.0445722047399526E-03 + 190 3.0910521105423582E-03 + 191 5.2823425146348198E-03 + 192 -1.3264518436268621E-03 + 193 -3.1679939655083568E-02 + 194 -2.1882412091735598E-01 + 195 -1.9636005922650207E-01 + 196 3.4374310288731889E-03 + 197 1.4770039955774524E-02 + 198 9.4331364171505033E-03 + 199 8.0462685162200603E-03 + 200 1.7152407681680906E-03 + 201 2.1268613715922230E-03 + 202 5.0482832123923092E-03 + 203 -2.5220041025619144E-04 + 204 -4.3979044415535413E-02 + 205 -8.6715125054414493E-04 + 206 9.1405689276977245E-02 + 207 -1.9972505250205542E-02 + 208 2.8545765447329247E-03 + 209 -2.2238691218143002E-03 + 210 3.1056804912932344E-03 + 211 8.5870921880312214E-04 + 212 -2.7266909857715425E-02 + 213 -2.9619594466844000E-02 + 214 -2.8198808530816216E-02 + 215 -1.4655940574686718E-02 + 216 -1.7649569892726286E-02 + 217 -6.5390947452681342E-03 + 218 -4.1043681278499951E-03 + 219 -9.7953666549280196E-03 + 220 5.6495933784511138E-03 + 221 4.3248978809006409E-03 + 222 2.4850165278792915E-03 + 223 5.9229269614596673E-04 + 224 -1.2662455329561107E-03 + 225 1.0184448571595071E-03 + 226 -6.3986236953931001E-04 + 227 1.3923889231398469E-03 + 228 1.9666968670094711E-03 + 229 -6.7422037717083478E-03 + 230 2.5864136255198235E-04 + 231 2.8265226204356109E-02 + 232 2.7010096733992801E-02 + 233 1.3890852620597216E-02 + 234 -1.9864241574495110E-03 + 235 -2.3215784901380707E-03 + 236 -2.0775942476230613E-03 + 237 -1.7945033413863463E-02 + 238 4.0555403094748305E-04 + 239 8.3207398172659083E-03 + 240 -1.1067548427547957E-02 + 241 -2.2061046178662516E-02 + 242 -3.9633598690807636E-04 + 243 -3.2541828850126985E-03 + 244 3.4348512724421071E-03 + 245 -4.7449372531802600E-03 + 246 -5.5663851786472767E-03 + 247 -2.6207362298474824E-04 + 248 3.9648134287091467E-04 + 249 -1.8871248272922200E-04 + 250 8.7200661152338319E-04 + 251 -5.8770971784293349E-04 + 252 -4.3944752884635563E-04 + 253 2.4896724893010472E-03 + 254 -1.0310891643419530E-01 + 255 -6.0633509893310233E-05 + 256 4.6007607788683201E-02 + 257 -1.9667662530166295E-02 + 258 -1.8887612529949974E-02 + 259 1.2904707557208268E-03 + 260 7.2512112244239835E-04 + 261 -2.0995785031371898E-03 + 262 -2.2356816473338613E-02 + 263 -6.6611330476601697E-03 + 264 -5.9738085650404170E-03 + 265 -1.1688297262081374E-02 + 266 -1.2829637039380332E-02 + 267 -6.1811369950481344E-03 + 268 -7.8796026148817181E-04 + 269 2.2256887369209864E-03 + 270 -2.4359393289317029E-03 + 271 -5.2880267810629673E-03 + 272 1.3196570013121905E-03 + 273 -2.6342963033794089E-04 + 274 3.9542841560364285E-05 + 275 8.2856322268663935E-04 + 276 3.0314684976052010E-04 + 277 -7.4496983025395283E-05 + 278 -6.0732274353689881E-04 + 279 -4.1082229505632971E-02 + 280 4.3151077149029419E-03 + 281 -1.2820636718894066E-01 + 282 -9.1835696529005639E-02 + 283 8.4038337572458072E-02 + 284 8.5181857810641345E-03 + 285 5.9403748304046912E-03 + 286 -6.1792857020254860E-03 + 287 3.5264406991330705E-03 + 288 -1.1493138694400810E-03 + 289 -3.7517165668586068E-05 + 290 -4.1401229501047973E-03 + 291 4.3388312715004597E-03 + 292 6.0609013658616323E-03 + 293 -1.2250035161686806E-03 + 294 -1.3805619301113159E-01 + 295 6.2764061550460326E-02 + 296 -3.6907289925418162E-02 + 297 6.7735729737908564E-03 + 298 -3.8387258437886439E-03 + 299 3.0886444547920866E-03 + 300 -1.3000035794160341E-03 + 301 -4.6837844612103476E-03 + 302 3.9950720621338897E-03 + 303 5.8848955973405410E-03 + 304 3.8836418705586324E-04 + 305 2.7419098302927554E-02 + 306 -2.7707702320819674E-03 + 307 6.3286657088191187E-03 + 308 -5.1249815504981644E-02 + 309 1.5346249601714242E-02 + 310 -5.2650446395624312E-04 + 311 8.0913587808762923E-03 + 312 -2.4268573512203433E-03 + 313 -2.2474930110360359E-03 + 314 -8.7281021051213437E-03 + 315 -2.2756469173161663E-02 + 316 -9.9981887997744375E-03 + 317 -6.3617952170606706E-03 + 318 -1.7826160828868631E-03 + 319 -5.0862457174324976E-03 + 320 -7.6610071702031823E-03 + 321 3.0710951885149140E-03 + 322 -3.1002186691334649E-03 + 323 7.1767158955221490E-04 + 324 6.0578500739973497E-04 + 325 -1.7118348815394217E-03 + 326 -2.6147266479616409E-04 + 327 -1.7911772159325275E-05 + 328 -1.4204457802420895E-03 + 329 -1.9670614852424803E-03 + 330 2.9442468010110519E-02 + 331 -2.5847527475740145E-03 + 332 1.5756586504632120E-02 + 333 5.4819062511761191E-02 + 334 -6.8241823942557706E-02 + 335 2.4891157665924926E-04 + 336 -6.2610137971194314E-03 + 337 1.3017856158513497E-02 + 338 -2.0111333449175654E-02 + 339 9.9783746874446255E-03 + 340 -1.2763922360316957E-02 + 341 -2.1558700475526500E-02 + 342 -2.8897430415637756E-03 + 343 -4.0661943170547049E-03 + 344 -4.4764737324382645E-03 + 345 -1.0405765143507429E-03 + 346 -3.2069590142694200E-03 + 347 -4.9705611990504396E-04 + 348 2.5612980166216043E-03 + 349 3.9869901915928128E-04 + 350 -4.5832934383174626E-03 + 351 9.4909545801137910E-04 + 352 -3.7347393953241235E-04 + 353 5.7460185231978322E-04 + 354 6.3243229135715665E-04 + 355 6.1989553992074724E-02 + 356 -5.4630548555366651E-03 + 357 -2.9480669088709921E-01 + 358 -5.5320022152059826E-03 + 359 -1.9108970858118232E-01 + 360 1.8585829553638303E-02 + 361 -4.2613288989151976E-04 + 362 7.0826472898570698E-03 + 363 -1.8365042749984551E-03 + 364 -1.2714563216101565E-02 + 365 7.8831807568081696E-04 + 366 -7.3708879088928755E-04 + 367 -2.9152483892601858E-03 + 368 2.6103807389602936E-02 + 369 -3.7782007077995236E-03 + 370 1.5419804203476470E-01 + 371 1.5155709941552938E-02 + 372 -4.5499907806483844E-02 + 373 -9.8550548541225871E-03 + 374 8.5716582587785689E-04 + 375 4.8635043288554431E-03 + 376 -1.5875829152284923E-03 + 377 2.9140871890876476E-03 + 378 -4.6388607163756731E-03 + 379 2.5182319605493650E-03 + 380 2.4752117417850203E-03 + 381 -1.3920814835825844E-02 + 382 -4.1838414353688840E-05 + 383 -1.0570308181511949E-01 + 384 1.2903038075585932E-01 + 385 1.9907613537248306E-02 + 386 1.1679463438245130E-02 + 387 -7.7768945183770083E-03 + 388 -3.9949200192811955E-03 + 389 6.2516630253156449E-04 + 390 -1.4379874057199652E-03 + 391 -3.3014011480697347E-03 + 392 -1.5665304946491389E-04 + 393 9.9068445519418184E-03 + 394 -3.8632431168729428E-02 + 395 -1.8977141019996964E-03 + 396 -2.2276663881409892E-02 + 397 -3.6023112687290859E-02 + 398 1.6621393008375705E-02 + 399 2.9029883908350635E-03 + 400 2.6092207796928513E-03 + 401 -1.4653229873974297E-03 + 402 2.3086876760738596E-02 + 403 -3.1006060404734320E-03 + 404 -2.1713991426452289E-02 + 405 -4.5971277004586801E-03 + 406 -1.7230235826298718E-03 + 407 1.1064799031607227E-03 + 408 2.1719751557111181E-03 + 409 -1.0273954891120847E-02 + 410 -1.9476138394342458E-03 + 411 2.8042908342247289E-03 + 412 -2.8901733463217809E-03 + 413 3.6725714897930644E-04 + 414 -1.6229830068653242E-03 + 415 -1.9714054580683925E-03 + 416 1.7001467013427365E-03 + 417 2.8463357689919525E-04 + 418 -4.3530304264651821E-04 + 419 -2.0029238791873651E-02 + 420 2.5080535142052640E-03 + 421 7.2112545793561467E-02 + 422 4.4862623880432294E-02 + 423 -2.7352043491489179E-02 + 424 -2.8925796993411693E-03 + 425 -4.3120074324338349E-03 + 426 2.6827415890918684E-03 + 427 -3.2047239032149842E-03 + 428 1.1621982874311400E-03 + 429 4.7373144785333643E-03 + 430 1.6133830620494948E-03 + 431 2.6740960230356974E-03 + 432 -5.8880474780280377E-02 + 433 7.9077482688206333E-03 + 434 2.6522755692360883E-01 + 435 6.9846677855716762E-03 + 436 8.9235379777273971E-02 + 437 -1.2874617152968837E-02 + 438 5.5698767971425873E-04 + 439 -3.5288769776332289E-03 + 440 -2.5759328537207013E-04 + 441 4.2483156021866702E-03 + 442 2.1530036273476856E-03 + 443 7.9911615778413998E-03 + 444 5.4706128329811698E-03 + 445 -2.7407455264909019E-02 + 446 7.7210170452745940E-05 + 447 2.6696630787607149E-02 + 448 3.3199017575907326E-02 + 449 -3.1552390143109411E-03 + 450 -3.0697024188360103E-03 + 451 -2.8379457824847239E-03 + 452 1.6789700392508603E-03 + 453 -3.1390738500972758E-02 + 454 2.6202809476616261E-02 + 455 -6.9522095546916294E-03 + 456 8.4078982582168407E-03 + 457 -1.3689714760186588E-02 + 458 -1.3646571984060800E-02 + 459 2.1635366943473745E-03 + 460 -3.3697468774543339E-03 + 461 6.3857349581063969E-03 + 462 -9.6520049814566538E-04 + 463 -8.7160825434475972E-04 + 464 -5.9568604801545229E-04 + 465 -3.7425588735095160E-03 + 466 3.4810057182098456E-04 + 467 7.5543185588508469E-04 + 468 1.6460192585014395E-05 + 469 2.1290085435736027E-04 + 470 -3.6679156377560439E-02 + 471 -2.8888813413080077E-03 + 472 -1.8969965766177571E-02 + 473 1.3894867628861477E-02 + 474 -2.0560056898457118E-02 + 475 -2.8011073189977508E-04 + 476 3.3969006685675971E-03 + 477 1.1859741823676815E-03 + 478 2.1178062583800559E-03 + 479 6.8601778685313244E-03 + 480 7.2360601641485020E-03 + 481 2.1714840241863688E-02 + 482 4.0168008012105259E-02 + 483 -1.1375657492670099E-03 + 484 -7.5351343347962365E-04 + 485 2.1315202291575523E-03 + 486 2.9992009732466339E-03 + 487 1.1515596649335508E-02 + 488 -4.8925519634116443E-04 + 489 -2.1866198295683793E-04 + 490 -4.9369166496419253E-04 + 491 -1.5401465967131611E-03 + 492 1.3344333610029995E-03 + 493 -1.5250101705123894E-03 + 494 -4.8650529161249037E-04 +Ene= -2.2906715352E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -3.4627533517869680E-02 + 2 -1.4888799392804254E-03 + 3 5.4040444399176711E-03 + 4 1.4839522357780787E-02 + 5 -3.3650449378354293E-03 + 6 2.2662372137520911E-03 + 7 -4.6850214397280363E-03 + 8 -5.0313903969556734E-03 + 9 -1.1124475068338035E-02 + 10 5.5676985278850998E-04 + 11 -1.5156794259292710E-02 + 12 3.9116256345658202E-03 + 13 1.4591641578630016E-02 + 14 -6.5959975916562432E-03 + 15 3.9914436198528712E-03 + 16 -7.7174154274808155E-03 + 17 -5.8551510456276504E-03 + 18 -1.9043645858154618E-04 + 19 7.6360647792508179E-04 + 20 2.8494017207537963E-04 + 21 1.3753153016460645E-03 + 22 1.3637092950282714E-03 + 23 1.1459036398539979E-03 + 24 1.5244123541885351E-04 + 25 2.6157985513528309E-03 + 26 2.5488042410127233E-02 + 27 4.4045605794548904E-03 + 28 -1.0458971452134015E-01 + 29 5.0673249384449705E-02 + 30 7.2129647853611603E-02 + 31 6.6053545317458131E-03 + 32 -3.4754175544951427E-03 + 33 -4.1412304098268462E-03 + 34 2.0319547742805130E-02 + 35 -2.7877377442096146E-02 + 36 6.9646078823327184E-02 + 37 1.1810390009075501E-02 + 38 -6.3835144363443789E-03 + 39 2.5379160000871819E-03 + 40 -2.3935614395297511E-02 + 41 6.1225357652908066E-03 + 42 1.9379743780704214E-02 + 43 4.2752030176146051E-03 + 44 -2.0944183852623244E-03 + 45 1.0979056670198265E-03 + 46 -1.9100161051035952E-03 + 47 1.7530104355712097E-05 + 48 -1.8218375917753162E-04 + 49 -1.0175147288727471E-03 + 50 -1.4795460488137276E-03 + 51 8.5391303214466030E-02 + 52 1.0163871273472763E-03 + 53 6.2590914608720030E-02 + 54 1.2842165686979269E-02 + 55 2.0933229460706769E-02 + 56 -1.0087619215306268E-02 + 57 5.6695886489111216E-03 + 58 -3.4846643900114736E-04 + 59 4.0385433768631414E-02 + 60 1.4707462958250895E-02 + 61 5.0940576470074640E-03 + 62 1.4577895704274651E-02 + 63 -1.1444481094663169E-02 + 64 3.9439352884732192E-03 + 65 6.8864210213440353E-03 + 66 -2.7397992529152595E-04 + 67 -9.0606257013133469E-03 + 68 -3.3858035426054941E-03 + 69 7.9202302678628358E-06 + 70 -1.9576404268190658E-03 + 71 6.1957335565492923E-04 + 72 -1.1982236627858351E-03 + 73 -2.8754459437520170E-03 + 74 -1.3350214670439788E-03 + 75 1.6225904666865808E-03 + 76 -4.6895889289544274E-02 + 77 4.8333308601116202E-03 + 78 -9.8760536798474380E-02 + 79 -8.4248219888320236E-02 + 80 1.4403294735920591E-01 + 81 3.7878836726429146E-03 + 82 7.0562059873060185E-03 + 83 -9.4633199127953996E-03 + 84 -2.8545092033805826E-03 + 85 -1.2489287669388244E-03 + 86 -9.1385974577563416E-03 + 87 -7.5355808623091746E-04 + 88 3.0878765925771647E-03 + 89 1.6732419872081759E-02 + 90 -2.0680724378837373E-03 + 91 3.8626990187040938E-02 + 92 4.2482926799585687E-02 + 93 -1.2361783118935188E-01 + 94 -1.0673298036916175E-03 + 95 -2.3778082125903250E-03 + 96 7.6352750614075340E-03 + 97 -6.7037770307534130E-03 + 98 4.7185875674913662E-03 + 99 -3.3504707952578651E-03 + 100 -2.5253264151973908E-03 + 101 7.1658738959532765E-04 + 102 1.1106041203657463E-02 + 103 -6.8034163511245167E-04 + 104 7.4744522685121439E-02 + 105 2.8773612738342652E-01 + 106 5.7167652529736858E-02 + 107 -2.5202282180294051E-03 + 108 -1.2757297994715444E-02 + 109 -2.7401803515601838E-03 + 110 -3.2951325085370923E-03 + 111 -2.8821085923362759E-03 + 112 -7.0536900610019583E-03 + 113 -5.0248913524646903E-03 + 114 -8.0460560997749134E-03 + 115 4.4479495717611395E-02 + 116 -8.0539313379762011E-03 + 117 -1.9133042982512125E-01 + 118 2.4460408303187445E-01 + 119 3.1107501102743806E-01 + 120 5.7684030920142288E-03 + 121 -9.2383574391182895E-03 + 122 -1.6686422754402259E-02 + 123 -1.1893602914007630E-02 + 124 6.4409917481302696E-03 + 125 -1.1649903568712761E-02 + 126 -1.4144960830211229E-03 + 127 2.7728509139522640E-03 + 128 -4.6820066233085336E-02 + 129 -4.3653477030045828E-03 + 130 2.8068686179417390E-02 + 131 4.3281747854439862E-02 + 132 -1.0125073938635794E-02 + 133 -7.5084956282391140E-03 + 134 -6.8276562511577722E-03 + 135 2.4586442864883529E-03 + 136 -1.1214842298882687E-02 + 137 2.2884751518848501E-02 + 138 1.7825809741432160E-02 + 139 5.7484068843013665E-02 + 140 4.4685469303215174E-02 + 141 -3.3159345881952859E-03 + 142 2.2013073581868014E-03 + 143 -2.8046778463628597E-04 + 144 1.2023450414534885E-02 + 145 1.8623760364305044E-02 + 146 1.9515406800132881E-04 + 147 1.6151304696993521E-03 + 148 -1.4359000504467301E-03 + 149 8.8518844201983054E-04 + 150 -9.0866442218304633E-04 + 151 -4.0351144859033519E-04 + 152 2.3447808021598484E-03 + 153 -2.3835591471799162E-02 + 154 3.6983000972582816E-03 + 155 2.8389127792755604E-02 + 156 -1.4816389247960358E-02 + 157 9.9314991064433230E-05 + 158 -2.8342715011867715E-03 + 159 -1.5345677589328382E-03 + 160 1.3568131254040382E-03 + 161 1.2569160304188453E-02 + 162 -2.3362855655699996E-02 + 163 7.9301414056908038E-03 + 164 -3.6341282264502922E-02 + 165 -5.8120056773552095E-03 + 166 -2.0026550300283803E-03 + 167 -1.0101741024133583E-02 + 168 1.7905257541083099E-03 + 169 8.4634771996063864E-04 + 170 -3.9914875079377556E-04 + 171 -4.0009208871476996E-04 + 172 1.3357308357817576E-03 + 173 -7.2540411991752472E-04 + 174 3.1236158160122810E-04 + 175 2.8541384043139357E-04 + 176 -8.7930914841271462E-04 + 177 1.7926770103801309E-03 + 178 -4.4606759938975366E-02 + 179 5.8092898014131238E-03 + 180 1.4317681540157409E-01 + 181 1.2311371407491967E-01 + 182 -1.3451799292270697E-01 + 183 -9.7511930813431319E-03 + 184 -8.0469227696149340E-03 + 185 3.7097445785092102E-03 + 186 3.7048175237540987E-03 + 187 -5.9665582178917561E-03 + 188 -4.7591401178938095E-03 + 189 1.1924170235350911E-03 + 190 1.0029266891750414E-03 + 191 -1.4146295552290499E-02 + 192 2.3793120173629515E-03 + 193 5.3671220984002607E-02 + 194 9.4461982471625225E-02 + 195 -1.0294964286889176E-01 + 196 -4.5201987049278301E-03 + 197 -5.2153077441855766E-03 + 198 8.2837702846231178E-03 + 199 3.3612160172803193E-03 + 200 -3.0571138530429177E-03 + 201 -2.9044758722557148E-03 + 202 -8.1675803343359468E-03 + 203 1.0223631593470526E-03 + 204 4.1721169101445160E-02 + 205 2.9997682400299389E-03 + 206 -9.5064427867208645E-02 + 207 -4.4389201845941410E-02 + 208 -6.7301996858774651E-03 + 209 2.4752085832784121E-03 + 210 1.2641142145873084E-04 + 211 1.2974962308285186E-03 + 212 3.7563847130517372E-03 + 213 3.3710990494004237E-02 + 214 -9.9185757424278733E-03 + 215 1.8491476921547231E-02 + 216 -2.7286857524864112E-02 + 217 2.2935411825284677E-03 + 218 1.1787814556820335E-02 + 219 -9.3156674168691760E-03 + 220 9.1281232790105023E-03 + 221 -8.4236551932431233E-03 + 222 1.4588131284093404E-03 + 223 -2.0590740958054267E-03 + 224 5.9276719960111158E-04 + 225 1.6292897104697051E-03 + 226 1.7453059866747139E-03 + 227 1.6433643428074168E-03 + 228 1.5213288653284072E-03 + 229 -6.2836693306475094E-02 + 230 3.7994352012781017E-03 + 231 2.4738806304088104E-02 + 232 -2.6982054266348997E-02 + 233 -9.5614070719691833E-03 + 234 -3.1201825267606603E-03 + 235 2.2551108630080798E-03 + 236 2.2729983105487105E-03 + 237 -8.3930508316373310E-03 + 238 1.1219713504008542E-02 + 239 -1.8494428837108189E-02 + 240 1.2541847386123656E-02 + 241 2.5513486109547245E-02 + 242 -1.6516082149598951E-03 + 243 6.3815110848030937E-03 + 244 -5.4465659465681533E-03 + 245 -2.9416473245557264E-03 + 246 1.9246497836308621E-03 + 247 -5.0967110649166743E-04 + 248 1.1122541936987710E-03 + 249 -2.1003590496439830E-04 + 250 -2.6814011566636321E-03 + 251 -1.1480847644922312E-03 + 252 -1.7938229037638929E-04 + 253 -1.1889015060393649E-03 + 254 -1.0045868181247346E-01 + 255 -9.9860657658959419E-04 + 256 4.3431729046741986E-03 + 257 -3.3344617233270396E-02 + 258 -9.5012909309694568E-03 + 259 -6.6649056954284425E-04 + 260 2.6834558478745357E-03 + 261 -6.6620317629866709E-03 + 262 -4.1893612241950894E-02 + 263 1.9850259346786789E-02 + 264 -2.0218791610872647E-02 + 265 -1.8207978692824249E-02 + 266 -1.3956091796008881E-02 + 267 -1.1584493027221594E-02 + 268 7.5457691132851459E-03 + 269 1.7009303798180065E-03 + 270 -1.7753898257656829E-03 + 271 -2.7739043326989398E-03 + 272 5.8808414796444192E-04 + 273 -3.0614456690605715E-04 + 274 3.7132036895897992E-04 + 275 -1.2966292525881974E-04 + 276 -6.5804795068480858E-04 + 277 5.0132958328679019E-04 + 278 -5.1945983264118961E-04 + 279 -5.6131071721415474E-02 + 280 7.5100253623215088E-03 + 281 1.6106572599879249E-01 + 282 -9.7586569348592639E-02 + 283 6.4151360713837230E-02 + 284 -6.6569033420422570E-03 + 285 5.7280441422313828E-03 + 286 -5.2550891873259535E-03 + 287 1.9157935048704855E-03 + 288 2.2671300204914029E-03 + 289 1.7023189324977504E-03 + 290 -7.8106497192680568E-04 + 291 -6.8297124658925788E-03 + 292 -7.7203271738857603E-04 + 293 1.1469474316805292E-03 + 294 3.9180949468245518E-02 + 295 -4.0875978755726084E-03 + 296 -7.2201242128917256E-04 + 297 -4.7746859605294076E-03 + 298 -2.0638052810957391E-04 + 299 -1.1714275753237765E-03 + 300 -2.7543765209682734E-04 + 301 6.4038526974910005E-04 + 302 -9.3979084569238686E-05 + 303 -3.0268967391105573E-03 + 304 -2.3685116527323606E-03 + 305 4.6311751896613941E-04 + 306 1.1130500741112345E-03 + 307 -1.4642196351115829E-02 + 308 2.7289454052560114E-02 + 309 5.7933924986601198E-03 + 310 -1.2920753095141816E-03 + 311 -5.0401751762847707E-03 + 312 1.4215240666826817E-03 + 313 4.6319807185355088E-03 + 314 5.6493611367170469E-03 + 315 -1.6796883649118730E-02 + 316 2.2497357607825487E-02 + 317 -1.4549974711982036E-02 + 318 4.7943600531783377E-03 + 319 5.7438396204775595E-04 + 320 -3.2506038314414945E-04 + 321 3.0138089770738253E-03 + 322 -4.3520795581588724E-03 + 323 9.8754522500771129E-04 + 324 -7.6792108517434270E-04 + 325 1.5173284559451279E-03 + 326 8.1448904432679121E-04 + 327 -1.5230019405466700E-03 + 328 2.4020978878908925E-03 + 329 1.3623166506993156E-04 + 330 -3.9867017196741177E-03 + 331 2.1052291337058772E-03 + 332 -2.6559495215648952E-02 + 333 -5.4851602548831174E-03 + 334 -1.8585253739586603E-02 + 335 1.1259008036500293E-03 + 336 -2.6814665329444615E-03 + 337 7.9525043277537660E-03 + 338 -2.3102027125262176E-02 + 339 1.0445280631262342E-02 + 340 -1.9932878206610511E-02 + 341 5.0634722030183125E-03 + 342 -1.3047199575811635E-02 + 343 9.3055837299039850E-04 + 344 8.1718403928025222E-04 + 345 -2.4831475447108643E-03 + 346 5.0215900534230449E-03 + 347 -2.9600236884735260E-03 + 348 1.6189913104310441E-03 + 349 9.8245258550133207E-04 + 350 -2.8664779850718768E-04 + 351 1.6588670073772089E-03 + 352 -1.3451146336348454E-04 + 353 2.9302230399260430E-04 + 354 3.1231834683403357E-04 + 355 2.0017081882761738E-02 + 356 -2.9156438450443035E-03 + 357 9.2018748315941229E-02 + 358 5.9557113945435072E-02 + 359 -1.1588606529805573E-01 + 360 -3.7853442161241064E-03 + 361 -5.6836050766425113E-03 + 362 6.7151937460449970E-03 + 363 -4.7614513467376558E-03 + 364 1.7981425654367892E-03 + 365 1.0475493246078639E-03 + 366 1.2360638771648860E-03 + 367 3.3076311530936741E-03 + 368 -3.5001292566801706E-02 + 369 5.1487646497599604E-03 + 370 -5.2883187552783609E-02 + 371 -1.2860908151581982E-01 + 372 1.0497190861591488E-01 + 373 5.5438209762719622E-03 + 374 8.3493093398269401E-03 + 375 -5.3335781010094181E-03 + 376 9.3294387513509101E-04 + 377 -3.3362279663799125E-03 + 378 -7.5568062781425057E-03 + 379 -1.4870757761857745E-03 + 380 2.0330850035001427E-04 + 381 2.6829752279126785E-03 + 382 1.3101037943158672E-03 + 383 -1.1232492892727588E-02 + 384 1.7218845788264926E-02 + 385 5.8500010577893474E-02 + 386 2.9321406187068964E-04 + 387 -2.5297888685066445E-03 + 388 7.3173204565814005E-04 + 389 2.8440952688643297E-03 + 390 1.4419340841020061E-03 + 391 -8.3630717833344762E-04 + 392 -2.1585744802961552E-03 + 393 -2.4521839220512666E-03 + 394 -6.1250805225024275E-02 + 395 5.3869520639314048E-03 + 396 1.5277852995416133E-02 + 397 1.4950161791751281E-02 + 398 6.0155734772834889E-02 + 399 1.9991534094047853E-03 + 400 -1.8718240473340837E-03 + 401 -1.5390824261666633E-04 + 402 -1.7080004617328785E-02 + 403 -1.5762376804434600E-02 + 404 -2.3352817573832771E-02 + 405 -1.5864663913547364E-02 + 406 -2.5472777750497524E-02 + 407 3.0172853875612259E-03 + 408 2.2375215689530853E-03 + 409 -7.6732668162663295E-03 + 410 -4.7242145737026470E-03 + 411 -5.9962068690809205E-03 + 412 -7.0656616785253889E-04 + 413 -1.2460878975021990E-03 + 414 2.2973663925010963E-04 + 415 -1.2865366123613025E-04 + 416 -1.7433215859466837E-03 + 417 8.9146817731475150E-04 + 418 5.6495721471499954E-05 + 419 -3.6615560342471001E-02 + 420 4.2122961996811648E-03 + 421 -3.4071975641742670E-02 + 422 5.9000974301308885E-02 + 423 1.7667364680985220E-01 + 424 1.1186703642978777E-03 + 425 -5.0507841662057686E-04 + 426 -6.3261513237566442E-03 + 427 7.6049754971014103E-03 + 428 1.4968906859014904E-03 + 429 1.6468200399887634E-03 + 430 -1.7740978376952314E-03 + 431 2.1151470134738678E-03 + 432 4.8466193297291967E-02 + 433 -6.5882626935600593E-03 + 434 -2.2585748865858571E-01 + 435 3.4727078834085073E-02 + 436 -2.3802056441481487E-01 + 437 1.1055678793343765E-02 + 438 -4.1344994149310086E-03 + 439 1.0204760220112245E-02 + 440 4.0888238248538343E-04 + 441 -7.7691078291405556E-03 + 442 -6.0254206868465424E-03 + 443 -6.4545907722200549E-03 + 444 -2.0832041663998708E-03 + 445 1.0120956568108975E-02 + 446 -8.4726222636843766E-04 + 447 2.8117065102900664E-02 + 448 -4.0691397185985252E-02 + 449 -3.3471970447111633E-03 + 450 1.3273475340328544E-03 + 451 1.4566908401897271E-03 + 452 -2.2064531562426830E-03 + 453 2.5543379997835496E-02 + 454 -1.1378269022603912E-02 + 455 1.1307754605637871E-02 + 456 -5.2539850676168592E-03 + 457 -6.1887723232744770E-03 + 458 9.3069183850483361E-03 + 459 1.6437819032179999E-03 + 460 -4.3133411274524852E-03 + 461 -2.9305439886910373E-03 + 462 -5.3337779416251715E-03 + 463 1.2075769868968708E-03 + 464 2.3170042726656419E-03 + 465 -5.9741505292381931E-04 + 466 3.1941838882025721E-04 + 467 -7.5818626714302875E-05 + 468 3.4682590783117117E-04 + 469 -1.4617244158814679E-03 + 470 2.7937667410782567E-02 + 471 -3.9981149249486000E-03 + 472 1.3624691028261495E-02 + 473 -2.0517555915656873E-02 + 474 1.7852489189347020E-02 + 475 -4.4180383228202835E-03 + 476 -1.8758049884036088E-03 + 477 -4.7598146764998781E-03 + 478 -2.2119534054863315E-02 + 479 -7.7960257334615118E-03 + 480 -2.3716827143010235E-02 + 481 -1.2482410371913501E-02 + 482 -2.3544065939087953E-02 + 483 -6.5517474312146867E-04 + 484 -7.8595720970226941E-03 + 485 -7.8745762460981413E-03 + 486 -6.7900992647206282E-03 + 487 -8.0719127727233025E-03 + 488 8.2124180869232676E-04 + 489 2.6284822078329333E-04 + 490 -5.1584661880594955E-05 + 491 -4.9025661143323304E-04 + 492 -2.0987688478730127E-03 + 493 -9.4584428028646585E-04 + 494 -2.9243612144340381E-04 +Ene= -2.2761414122E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -8.6762627648517041E-02 + 2 3.6607614271851773E-04 + 3 1.0245981905058883E-02 + 4 4.9768840148884184E-02 + 5 3.2112403212129007E-02 + 6 3.9015653013650489E-03 + 7 -1.1969593831275062E-02 + 8 -4.3498683150948536E-03 + 9 -4.6150251245799826E-03 + 10 1.1095648118633564E-02 + 11 2.0345973166168520E-02 + 12 1.4901088459136560E-02 + 13 -2.3662571200857099E-02 + 14 -1.0178170579741127E-02 + 15 5.1936181725117372E-03 + 16 1.1971468318211357E-03 + 17 -1.2337764794487397E-02 + 18 -7.9189644167442282E-03 + 19 -9.5830332280275607E-04 + 20 -4.5537338820129611E-04 + 21 2.7488832623942939E-03 + 22 4.3916684885209490E-04 + 23 -2.6326514525099699E-04 + 24 8.6819648413561051E-04 + 25 2.1615313153684093E-03 + 26 5.8871381891328019E-02 + 27 1.2010473636837819E-03 + 28 5.9471248073009620E-03 + 29 -6.6547679083375968E-03 + 30 2.8936064854908797E-02 + 31 -6.0223200513977984E-04 + 32 2.5400832000661362E-03 + 33 -1.9056575409475930E-03 + 34 -9.2271381991877732E-03 + 35 -9.3307910348308012E-03 + 36 3.8257382609233635E-02 + 37 7.4493513055265527E-03 + 38 -2.5732969462761730E-02 + 39 -5.7343856087696925E-03 + 40 -3.8364095621648011E-03 + 41 1.5472078471151516E-02 + 42 -8.0314084814795436E-04 + 43 -1.7788102936703049E-02 + 44 9.3787966741516575E-04 + 45 -1.1499283540816108E-04 + 46 -2.6963129634081716E-03 + 47 1.4073989524266142E-03 + 48 2.8302176671632774E-04 + 49 1.2465389320893004E-03 + 50 4.1441597590115078E-03 + 51 -2.0972511672805717E-02 + 52 1.1438722613151813E-03 + 53 2.6826363320505146E-02 + 54 -3.5735108577279871E-02 + 55 6.1590657997810418E-03 + 56 -9.1527654597190627E-04 + 57 1.0644962203978606E-03 + 58 -2.5616434720693334E-03 + 59 -2.2299126175589691E-02 + 60 -1.9005924783742127E-02 + 61 3.4235560804294907E-02 + 62 4.2244716801038426E-03 + 63 5.7487914729355246E-03 + 64 -2.6633394125405727E-03 + 65 -1.1597218405140380E-03 + 66 1.9536259704476758E-03 + 67 5.0802214026685803E-04 + 68 4.3455698627341008E-03 + 69 1.1352292900295576E-03 + 70 -7.7471809799447785E-04 + 71 2.0587087438289438E-04 + 72 -3.1931608399061214E-04 + 73 -1.2827459078207295E-03 + 74 1.3214188487395927E-04 + 75 9.4292386416486019E-05 + 76 2.2289162169781253E-02 + 77 -2.1295898005102118E-03 + 78 -3.6635144757279289E-02 + 79 1.0394070534523391E-01 + 80 9.3369254126635617E-02 + 81 1.2117631923276655E-03 + 82 -3.8706237211606669E-03 + 83 -1.7576792300068459E-03 + 84 -7.0371382271060840E-03 + 85 -4.3217305971691537E-03 + 86 -1.3408660464986272E-03 + 87 3.6308613821902421E-03 + 88 -3.4243871071052544E-03 + 89 -4.2296785760190463E-02 + 90 2.0236473989894261E-03 + 91 -9.0322502015763133E-03 + 92 1.8123366570985838E-01 + 93 -6.1869499929460524E-02 + 94 -2.5616157937002003E-03 + 95 -7.4459569587296626E-03 + 96 3.8572383069333162E-03 + 97 -5.3369092780229284E-03 + 98 9.7968538769218618E-04 + 99 -2.5198076994728943E-03 + 100 -5.5290265726924458E-03 + 101 -3.4261971990048128E-03 + 102 -1.9260085680111883E-02 + 103 2.5554300487050006E-03 + 104 -1.1838754994273729E-01 + 105 -9.6267659803880593E-02 + 106 1.7253493793721233E-01 + 107 5.0839647734032363E-03 + 108 2.6533409643232811E-03 + 109 -7.8043846987216692E-03 + 110 2.9806782170829407E-03 + 111 -6.6081175319572137E-03 + 112 -1.2531914081772302E-03 + 113 6.5792504156739909E-03 + 114 3.2633383712774204E-03 + 115 1.4919763138219822E-02 + 116 -3.1172177267463916E-03 + 117 -1.6787351228884154E-01 + 118 -7.3014662900398833E-02 + 119 5.2270247376911688E-02 + 120 7.0521058621968481E-03 + 121 2.7747612348515646E-03 + 122 -2.1834758662507619E-03 + 123 -2.4343095970969165E-04 + 124 5.9227584910380420E-03 + 125 1.6826352497925176E-03 + 126 2.9836425986622481E-03 + 127 2.8273926667732006E-03 + 128 -2.1633890461271805E-02 + 129 -1.5960237686608672E-03 + 130 2.5908534636713734E-02 + 131 -5.0382441156248466E-02 + 132 -3.8808613686253851E-02 + 133 -2.4398908084493137E-03 + 134 5.4322560612700081E-03 + 135 -1.2761621427644287E-03 + 136 -1.9420450124977740E-03 + 137 -2.1994195387966715E-02 + 138 2.1346868199778952E-02 + 139 -2.6434959952930409E-02 + 140 -7.3150318255887845E-03 + 141 -5.8677187259822241E-03 + 142 -4.8779317865816343E-03 + 143 1.3688992857833599E-03 + 144 -4.4059896107308755E-03 + 145 -1.0827755104836408E-02 + 146 1.3642005923009781E-03 + 147 1.4364651775769922E-04 + 148 3.1762504649907003E-03 + 149 -2.1811481876429510E-03 + 150 1.9104014581852223E-03 + 151 -1.2757008237747734E-04 + 152 -6.9434434876996924E-04 + 153 -5.4411031278592668E-02 + 154 -4.2781433931142449E-04 + 155 -6.2629867890354685E-02 + 156 1.6584451773895694E-02 + 157 1.0699649931700634E-03 + 158 9.7839068451055951E-03 + 159 1.1309648289466318E-03 + 160 -3.6020278384977498E-03 + 161 -1.3238605925861111E-02 + 162 3.8892839167702649E-02 + 163 -8.8832827970626721E-03 + 164 4.5137295696658693E-03 + 165 8.3872195228888325E-03 + 166 -8.7456898278720171E-04 + 167 1.1128659661091051E-02 + 168 -5.3109831954066596E-03 + 169 -6.8595818403742450E-03 + 170 1.0193308983798752E-03 + 171 2.6607630585543567E-03 + 172 -2.7902547710562504E-03 + 173 -4.2766553962427932E-04 + 174 -2.9758730802281064E-04 + 175 1.5032313737709170E-03 + 176 2.0175751910346392E-03 + 177 3.8661451611853969E-04 + 178 1.3709447188597139E-02 + 179 -8.8770794044727914E-04 + 180 -1.5554776551962871E-01 + 181 2.9684654343290259E-02 + 182 6.9525872961517118E-02 + 183 9.6523285436666533E-03 + 184 -6.3251402458631357E-05 + 185 5.0782769389137977E-04 + 186 -3.0096055847112454E-03 + 187 3.8301990542756515E-03 + 188 1.2536186517939109E-03 + 189 -4.9046039477065083E-03 + 190 -6.4533643160417302E-04 + 191 -1.6416472417466115E-02 + 192 1.7168604850821348E-03 + 193 -1.1990214308030234E-01 + 194 9.2891514934348773E-02 + 195 -2.2547050389945006E-02 + 196 6.6082974584022866E-03 + 197 -5.0181750666239561E-03 + 198 1.9951967531171323E-03 + 199 -9.0482518552031390E-04 + 200 1.3306951462826108E-03 + 201 -4.0064186924669903E-03 + 202 -4.5837152769129681E-04 + 203 -3.1618755350697942E-03 + 204 -6.1559755210233861E-03 + 205 -9.9998345628417914E-04 + 206 2.6239594133507498E-02 + 207 6.3461689113532158E-02 + 208 -2.7580799935717783E-03 + 209 9.0962845044716440E-05 + 210 -3.2052755265603357E-03 + 211 -1.7883972129333092E-03 + 212 1.0488015872546384E-02 + 213 8.6314294632142755E-03 + 214 -2.7820197983828249E-02 + 215 -1.1395043483710331E-02 + 216 4.0501909457107708E-02 + 217 2.5714988472208596E-03 + 218 4.3047765567754033E-03 + 219 -7.7071400716028898E-03 + 220 -8.0472712502959263E-03 + 221 3.9234319826362647E-03 + 222 2.4272398364423551E-04 + 223 -6.7643416626200141E-04 + 224 1.0590359732051383E-03 + 225 9.5729649917698247E-04 + 226 -3.1932603911632339E-04 + 227 -2.5996209996849970E-05 + 228 -1.2940946090774129E-04 + 229 1.0426537101432502E-01 + 230 -9.9173185958039353E-05 + 231 3.2762670265903723E-02 + 232 -4.6898407791545922E-02 + 233 -9.2255530721371631E-02 + 234 -6.4227654320982890E-03 + 235 8.1907548200262793E-03 + 236 1.3695426873133640E-02 + 237 4.5033251105243685E-02 + 238 2.3734558958602343E-02 + 239 2.3800261257399528E-02 + 240 -3.2785447388948580E-03 + 241 1.6737149391940535E-02 + 242 -2.4363778568002210E-03 + 243 1.1444028848020073E-02 + 244 3.1927452976025883E-03 + 245 -5.2792781155715559E-03 + 246 -2.3922518080214932E-03 + 247 3.2427019309336632E-03 + 248 -1.6130740005708495E-04 + 249 1.4117315383704329E-03 + 250 1.8761405437086714E-04 + 251 -1.0464993611445266E-03 + 252 7.3123939742815935E-04 + 253 4.4498380562390941E-04 + 254 4.6002346664433896E-02 + 255 1.1012471419460503E-04 + 256 -1.5327504630874959E-02 + 257 3.8651074702912507E-02 + 258 2.9999072117679909E-02 + 259 -2.1425504374570762E-03 + 260 1.8729435031176731E-03 + 261 -2.3958459164361212E-03 + 262 -1.0920648449065613E-02 + 263 2.1788194006025531E-02 + 264 -3.2334543256143072E-02 + 265 3.5989325035167869E-03 + 266 -1.1880678094599497E-02 + 267 1.0224705474078950E-03 + 268 1.2700042047226821E-02 + 269 -9.4535232486906342E-03 + 270 5.8047528680878965E-03 + 271 -1.6937437937257465E-03 + 272 -4.2512409229967580E-04 + 273 -3.4531208885842969E-04 + 274 3.0421401790590839E-04 + 275 -8.2898117351345448E-04 + 276 -1.9837671186055668E-03 + 277 -4.5784001133528004E-04 + 278 -3.3858497269734958E-05 + 279 -2.1137789079428489E-02 + 280 2.0740782342274239E-03 + 281 1.2038353425668114E-01 + 282 -2.4752689338363187E-01 + 283 2.6798548105217757E-02 + 284 -5.1211084508207575E-03 + 285 1.4680389034871497E-02 + 286 -1.2696615180323228E-03 + 287 -7.4216185325818801E-03 + 288 4.6388290108460885E-03 + 289 -5.8160509160555410E-03 + 290 -5.2528109045293491E-03 + 291 -5.3661761725064296E-03 + 292 9.0441803751302452E-02 + 293 -8.3443389901641900E-03 + 294 3.0394176243084164E-01 + 295 -1.6329268338651176E-01 + 296 -2.3148820128273787E-01 + 297 -1.3733823774830232E-02 + 298 6.9690220066574238E-03 + 299 6.3392227546706335E-03 + 300 -6.5073033569285899E-03 + 301 1.1755476993336754E-02 + 302 -9.6484421383307480E-03 + 303 -8.7647904242755658E-03 + 304 -3.2432328161737783E-03 + 305 6.2323751754628620E-02 + 306 -5.0147314947150152E-03 + 307 -2.5998995611808368E-02 + 308 6.2626107934172393E-02 + 309 5.5219606585718726E-03 + 310 -6.4378717022901670E-04 + 311 -1.1489032845628600E-02 + 312 2.5033386339124526E-04 + 313 -1.6035218169422574E-02 + 314 2.1977608947863256E-02 + 315 3.5915255916517334E-02 + 316 -3.4516606416149856E-02 + 317 -2.5679043339610162E-02 + 318 1.6207113571133286E-04 + 319 5.8542005438271885E-03 + 320 1.1095825498174243E-02 + 321 -1.3379116606169259E-02 + 322 -9.7344281252777567E-03 + 323 -6.8482216368679608E-04 + 324 8.8830992486300096E-04 + 325 2.6436702265903670E-03 + 326 -2.3731540824633107E-04 + 327 -3.2314332048641609E-03 + 328 4.1413497118806151E-03 + 329 3.2396298923571218E-04 + 330 1.7622310626201315E-02 + 331 1.3626895198110202E-03 + 332 1.1690158504337696E-02 + 333 -2.8474069386137505E-02 + 334 -1.3354486147043043E-02 + 335 -8.4334001012005468E-04 + 336 3.8791482996222395E-04 + 337 2.1027813627452216E-03 + 338 1.0020041483167293E-02 + 339 1.9909230614348256E-02 + 340 -9.4588635293567543E-03 + 341 9.7865730303047464E-03 + 342 1.6587911498177860E-03 + 343 3.1215916017812953E-03 + 344 4.1347374529238758E-03 + 345 -8.4116420007975673E-04 + 346 3.5411219407963878E-03 + 347 -2.4195289532335917E-03 + 348 2.9592558798963305E-04 + 349 -3.4870672901268893E-04 + 350 -9.3591137611845994E-04 + 351 1.6746787091419894E-04 + 352 3.2696851713471387E-04 + 353 2.9813553056659542E-04 + 354 9.1720910801865714E-05 + 355 -2.0074106958029914E-02 + 356 1.2209425637208021E-03 + 357 9.1121182075694258E-03 + 358 1.3785259220503812E-01 + 359 6.7513889315137035E-02 + 360 -2.2258068586625272E-03 + 361 -7.4024579449184598E-03 + 362 2.1943864254003376E-04 + 363 1.4986395843748341E-03 + 364 -6.8315300680202068E-04 + 365 4.3305627679734917E-03 + 366 9.6035542133175939E-04 + 367 2.4378575859528772E-03 + 368 2.1696850506095124E-03 + 369 -8.3740444327560712E-04 + 370 1.8376483154349710E-01 + 371 5.9795595979606131E-03 + 372 -1.3229094797350710E-01 + 373 -1.1969905833067075E-02 + 374 -2.6069344900723958E-03 + 375 9.4204706596231046E-03 + 376 -6.4467155314211540E-03 + 377 5.4951322712819290E-03 + 378 2.4627645289722259E-03 + 379 -4.1792919371495185E-03 + 380 -6.0441137600661995E-03 + 381 -4.7833280402027646E-02 + 382 4.5028288009472716E-03 + 383 3.5387710510309374E-02 + 384 -2.0761249828379044E-01 + 385 -2.1278437797275222E-02 + 386 -1.5692046187767376E-03 + 387 1.4976595679167329E-02 + 388 1.7331172437389873E-03 + 389 8.8532219807602652E-04 + 390 -1.4324153434089300E-03 + 391 -9.5845977215840519E-04 + 392 -5.2273159037755346E-06 + 393 1.2182210489561584E-03 + 394 -3.8889906401490648E-02 + 395 3.0557067964737629E-03 + 396 4.2257317254623993E-03 + 397 -5.8580200139767259E-05 + 398 -2.5987213754715500E-02 + 399 9.3429781312100526E-04 + 400 4.6704045539388344E-03 + 401 3.7864929408460393E-03 + 402 6.3325657945784508E-03 + 403 -3.2347366769477588E-02 + 404 5.7552004063918596E-04 + 405 -1.6421213323279640E-02 + 406 -3.1297187183449426E-02 + 407 1.7044297584543051E-03 + 408 -1.2506682121726355E-02 + 409 2.2574386654186317E-03 + 410 -6.3362906277154019E-03 + 411 -9.4927942440550181E-03 + 412 5.0497170487342352E-04 + 413 -1.7711168187191373E-03 + 414 -7.7717404695702664E-04 + 415 1.9550710440242756E-03 + 416 -3.3989460367954920E-04 + 417 -1.3456558722482229E-03 + 418 1.7689464709121710E-03 + 419 3.3272561741387249E-02 + 420 -3.4670998678310652E-03 + 421 -2.0233000230022022E-01 + 422 -2.1439600028084392E-02 + 423 1.5200671781014886E-03 + 424 5.8062386942898878E-03 + 425 -9.1646351299459468E-04 + 426 7.6122194816710437E-04 + 427 3.3279856330194250E-03 + 428 -3.0396054272421673E-03 + 429 -8.9753356914509070E-04 + 430 -7.2049990644331508E-03 + 431 2.7311569831545176E-03 + 432 9.3916353785914140E-03 + 433 -1.9065586650493223E-03 + 434 -1.9440343191906531E-02 + 435 -1.3575810542631700E-01 + 436 1.2807860226410425E-01 + 437 -1.5367252470181328E-03 + 438 9.3252751108333157E-03 + 439 -5.9594638131640681E-03 + 440 2.9316750638288544E-03 + 441 3.9499662168598626E-03 + 442 3.2588666615323597E-03 + 443 1.2357538247854888E-03 + 444 -4.1225617427080551E-03 + 445 -9.4283029578248409E-04 + 446 -1.2617675468578935E-04 + 447 -2.3699706290465812E-02 + 448 9.2931134525101461E-03 + 449 3.9985814038373708E-02 + 450 7.8639613151996665E-04 + 451 1.1399338802336466E-04 + 452 -2.2267360349348506E-03 + 453 3.0578001551867847E-03 + 454 -8.5464577743810353E-03 + 455 4.4973600179149115E-03 + 456 1.7106951121388790E-02 + 457 2.6953358613119656E-02 + 458 2.7330637771059191E-03 + 459 -3.7056752713648471E-03 + 460 7.8426010330074920E-03 + 461 1.3067902765220420E-03 + 462 2.1906056819460491E-03 + 463 -9.9505252837072712E-04 + 464 -3.0973196513692404E-04 + 465 1.6141828158990252E-04 + 466 -3.6440776003069205E-04 + 467 1.3066869974153006E-03 + 468 1.3712675163477942E-03 + 469 -1.4712446577313399E-03 + 470 -3.7848061580014011E-02 + 471 1.5424951264417176E-04 + 472 -1.4352962778314823E-02 + 473 -1.6617086481359070E-02 + 474 -3.1624716764020025E-02 + 475 2.5507184961827199E-03 + 476 4.9714652391017917E-03 + 477 2.2542093430111998E-03 + 478 1.0091171141999620E-02 + 479 -9.9589481179712669E-03 + 480 2.3505587404633977E-02 + 481 -1.9880038012093364E-02 + 482 -2.5767499713448661E-02 + 483 1.7061019172934348E-03 + 484 -2.8688894134781735E-03 + 485 3.1985579976117262E-03 + 486 -1.9883628494269954E-03 + 487 -4.2847110532112263E-03 + 488 -1.3091415840398683E-03 + 489 1.4396474751040683E-03 + 490 3.8193512351380630E-04 + 491 -1.1902987443090209E-03 + 492 7.4792425706795770E-04 + 493 -7.8814622861588261E-04 + 494 -7.9915803526111890E-04 +Ene= -2.2341824671E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -1.1841762425423626E-01 + 2 5.6884661946116633E-03 + 3 -1.9346450296789039E-02 + 4 5.3180573417758135E-02 + 5 1.5217748541744427E-02 + 6 1.2460281748714452E-03 + 7 -9.6319851204671996E-03 + 8 1.0738965999481753E-03 + 9 6.0658507691419006E-03 + 10 -2.0414766974923308E-03 + 11 2.8086179181089178E-02 + 12 3.5843612691877476E-02 + 13 -1.3869522400560873E-02 + 14 -4.8913952282992517E-03 + 15 -2.7719014968441633E-03 + 16 7.4995802424117292E-03 + 17 -1.4897114823628156E-03 + 18 -6.8979128790668358E-03 + 19 -9.1989098716055298E-04 + 20 -6.5859695538537423E-04 + 21 2.8318283349582636E-03 + 22 6.5405770842881007E-04 + 23 -1.8362859878390640E-03 + 24 -1.8543546389315469E-03 + 25 2.1009152460411359E-03 + 26 1.4348583825644299E-02 + 27 -9.9081418125682185E-04 + 28 2.4638827104291626E-02 + 29 -5.1748836161940370E-02 + 30 -2.9598050089361474E-02 + 31 -4.7296467054287221E-03 + 32 -2.5557284628280478E-03 + 33 -3.0950287917596127E-04 + 34 -8.1680214820012680E-03 + 35 1.8874316295737419E-02 + 36 -2.6449186207739592E-02 + 37 2.1412576147563193E-02 + 38 -1.8583748925680103E-02 + 39 -4.8524378798667726E-03 + 40 1.3470595929330252E-02 + 41 -5.6261527138498106E-03 + 42 -6.5627910410353307E-05 + 43 2.1084203825619272E-03 + 44 2.8148968867947434E-03 + 45 1.0555770704644912E-04 + 46 4.1171531840826655E-04 + 47 2.6674032690031911E-04 + 48 8.0632926792175731E-04 + 49 -4.0076493309505246E-04 + 50 3.9298906119284203E-04 + 51 -5.9307611559212495E-03 + 52 -1.0963533554509011E-03 + 53 -6.4949479769438559E-02 + 54 -3.3956873864398197E-02 + 55 -3.3938831099591393E-02 + 56 5.2228956460494370E-03 + 57 2.1631448024186616E-03 + 58 1.5308070384505953E-03 + 59 -3.0013561420138161E-02 + 60 -2.9984496009912303E-02 + 61 -6.3091984122029300E-03 + 62 -9.5065938070074997E-03 + 63 -5.7617651283764504E-03 + 64 -4.1110663231340629E-03 + 65 -1.0879037894454303E-02 + 66 -1.1154357747885932E-03 + 67 9.2517842129671898E-03 + 68 -5.8556952496239233E-03 + 69 1.6705842027201466E-04 + 70 1.0001373471516177E-03 + 71 2.9550414371680455E-04 + 72 2.6817448851618789E-03 + 73 -3.8709143992533730E-03 + 74 8.8387726350989254E-04 + 75 3.3494964132473599E-03 + 76 2.6630320642888933E-03 + 77 -3.5240139500775319E-04 + 78 9.1602060057374389E-03 + 79 1.0019824200704372E-01 + 80 7.4509471970509791E-03 + 81 -1.7063169438279340E-03 + 82 -4.6845872284132636E-03 + 83 2.5640327908402818E-04 + 84 -3.6893210342338030E-03 + 85 -1.9321749594651536E-03 + 86 1.9893104792060162E-03 + 87 1.8452397804693811E-04 + 88 -7.3039145877709967E-03 + 89 -6.8465543877230819E-02 + 90 5.8356949258416861E-03 + 91 3.2366197136078578E-02 + 92 2.2447825401793786E-01 + 93 3.3063032971064533E-02 + 94 -3.0148883985875400E-03 + 95 -7.7143546183503246E-03 + 96 -1.8282636453348115E-03 + 97 -2.5260680049275368E-04 + 98 5.6343047395023807E-04 + 99 2.7512024458353577E-03 + 100 -9.8599220186024166E-03 + 101 -1.8416124020929903E-03 + 102 -1.4198904190603233E-02 + 103 1.0293059949410288E-03 + 104 -7.1883113811692878E-02 + 105 -1.9149348055306792E-01 + 106 -1.4905049521880689E-01 + 107 2.7866108438632086E-03 + 108 8.1603882906452364E-03 + 109 3.9928797250028715E-03 + 110 1.9888572282744303E-03 + 111 3.4524046437906589E-03 + 112 1.8441413336719318E-03 + 113 4.7886517632679173E-03 + 114 6.4008435961273513E-03 + 115 7.6422272578134101E-03 + 116 -1.4628387561676588E-03 + 117 2.4407707761066580E-01 + 118 -2.5284020954273148E-03 + 119 -3.1132562189794466E-03 + 120 -1.1841512927145728E-02 + 121 -1.0056579753533927E-03 + 122 1.4584320294538412E-03 + 123 2.7901779982915658E-04 + 124 -9.1731731323966611E-03 + 125 7.0475533605868646E-04 + 126 -1.8540025242544515E-03 + 127 -3.0443391257202457E-04 + 128 4.4050188537377660E-02 + 129 1.7294851835869113E-03 + 130 -4.2142060633468467E-03 + 131 6.5931265137531142E-02 + 132 2.2169638870676357E-03 + 133 4.1176672373736348E-03 + 134 -5.6419465194838050E-03 + 135 1.8631359932223736E-03 + 136 2.6404823240825825E-02 + 137 3.1063532535679346E-02 + 138 9.0606135068935778E-03 + 139 3.8889105802613365E-02 + 140 -2.2199150900817214E-03 + 141 1.3404792880183173E-02 + 142 7.7710308913214975E-03 + 143 6.5443716409858757E-03 + 144 1.2521018624932337E-02 + 145 1.1996539192443775E-02 + 146 -1.5730613505465407E-03 + 147 -6.8222161274027182E-04 + 148 -3.8370474183118679E-03 + 149 1.6044280119284467E-03 + 150 -2.7938264961851625E-03 + 151 1.0673312974111223E-03 + 152 -4.4690191923784078E-04 + 153 -4.2691670163670830E-03 + 154 1.4361580730379527E-03 + 155 1.7789574013740345E-02 + 156 2.0829635904088895E-03 + 157 3.3858668100105641E-02 + 158 -1.6533131493712439E-03 + 159 -3.2770171638560040E-03 + 160 2.5340609992279326E-04 + 161 -8.3009996432009975E-03 + 162 -2.8323537953022046E-02 + 163 -8.0119754851065445E-03 + 164 6.2165651932670875E-03 + 165 1.2698538784440661E-02 + 166 -4.2902412710017429E-03 + 167 -1.0333869042448771E-02 + 168 1.3774752364139535E-03 + 169 1.0542569076088082E-02 + 170 5.0700148075078092E-03 + 171 1.3320013983908548E-03 + 172 6.9897143591358946E-04 + 173 1.1117098445354607E-04 + 174 -1.3371919828776338E-03 + 175 -7.3934189667097566E-04 + 176 -8.8693322586051488E-04 + 177 3.1837398077147830E-04 + 178 -3.6103951553220111E-02 + 179 4.2818565134777626E-03 + 180 3.8629138811352992E-02 + 181 -1.1599530180512057E-02 + 182 -2.4124984162904484E-01 + 183 -3.4590520689510872E-03 + 184 2.3618189014719712E-03 + 185 1.1079619907984038E-02 + 186 7.9634834101225786E-03 + 187 -4.1616642927519935E-03 + 188 -2.0220973678549046E-03 + 189 2.8712610005700951E-03 + 190 1.1453978822188598E-04 + 191 2.8114870887076742E-02 + 192 -3.2929332571921058E-03 + 193 3.8062336604001691E-02 + 194 -3.2686393591157881E-01 + 195 -6.4306305897926075E-02 + 196 -3.0186766567935285E-03 + 197 2.0277627541854727E-02 + 198 2.1639876957569269E-03 + 199 9.2405593262422387E-03 + 200 1.0136744618400280E-03 + 201 7.9558510697956188E-03 + 202 5.0642665761070071E-03 + 203 1.0392041285913376E-03 + 204 -2.8861727793173652E-02 + 205 -4.6027858246934141E-03 + 206 2.1760446882957047E-02 + 207 -8.0661397663762568E-02 + 208 -3.2607932544858935E-02 + 209 -2.4874858513465256E-03 + 210 4.3138727983210185E-03 + 211 4.5080217037306476E-03 + 212 -3.6858914389436212E-02 + 213 -1.5858941545612269E-02 + 214 7.9683063337821561E-03 + 215 1.1253022314911959E-02 + 216 -6.0067087292730616E-02 + 217 3.6906773416609526E-04 + 218 -4.5574330991445143E-03 + 219 4.2719067995061677E-03 + 220 1.0575730169312302E-02 + 221 -6.7301769471386254E-03 + 222 5.2371135993543720E-04 + 223 1.9015342534901419E-03 + 224 -1.5781271723900115E-03 + 225 -9.7590294358183339E-04 + 226 4.3190521340585338E-04 + 227 1.2115120201407433E-03 + 228 6.9513759903072560E-04 + 229 1.0291039365676390E-02 + 230 2.7857473891934224E-04 + 231 1.9687949429247297E-02 + 232 -6.5259681260980654E-02 + 233 -4.6818833037113573E-02 + 234 -6.1941215241815570E-03 + 235 7.8725600213827625E-03 + 236 5.5109823024477710E-03 + 237 4.0207274970690536E-02 + 238 -5.1351321298753099E-03 + 239 -1.3412975896869574E-02 + 240 7.2856178277957533E-03 + 241 2.3149282957237650E-02 + 242 -4.4162833551581564E-03 + 243 -1.9822725848380597E-03 + 244 -1.7772277442783810E-05 + 245 -2.0121650045644233E-03 + 246 1.7916618309241751E-03 + 247 9.6468773712595252E-05 + 248 -7.2745591549760045E-05 + 249 4.0587139835140284E-04 + 250 -5.9706835790263801E-05 + 251 -1.8778008479876996E-03 + 252 2.6600565699077994E-03 + 253 -2.1626963105123983E-03 + 254 1.7849704372342196E-02 + 255 -6.8872502702300293E-04 + 256 -3.7411556508390044E-02 + 257 2.4246303020580627E-03 + 258 1.4208703334473707E-02 + 259 2.2965631282376962E-03 + 260 -2.2991319690928631E-03 + 261 3.1123020349644826E-03 + 262 4.8097205231457047E-03 + 263 9.9474852201635600E-03 + 264 -1.4248063059250212E-02 + 265 -9.3298753447120797E-03 + 266 9.6771078022205147E-03 + 267 1.1823702048993122E-03 + 268 1.6634842995247600E-03 + 269 -8.9561249265058245E-03 + 270 -7.7567279180826990E-03 + 271 4.5279940455646610E-03 + 272 -1.2412476083615526E-03 + 273 -7.1017865683331040E-04 + 274 -2.0263915485193676E-04 + 275 -1.2032643335221304E-03 + 276 -1.0443465443033112E-03 + 277 2.3968018494412440E-03 + 278 -3.1995482501927876E-04 + 279 -2.2482146236875611E-02 + 280 2.8403910862391086E-03 + 281 2.2137815648954484E-01 + 282 -1.0066999960175382E-01 + 283 -7.1309849224124797E-02 + 284 -1.4022786085904416E-02 + 285 5.6403102302859222E-03 + 286 4.7250059613477714E-03 + 287 -4.6137002253781381E-03 + 288 9.4324877139951939E-04 + 289 1.1611266078685623E-03 + 290 2.5744773209449381E-03 + 291 -1.0222618900005009E-02 + 292 1.5690256230936662E-02 + 293 -1.0175953831576333E-03 + 294 9.0173856932578234E-02 + 295 -1.4564789343531176E-01 + 296 -1.2726760911479160E-01 + 297 -4.7664507851290878E-03 + 298 6.3746022838005361E-03 + 299 5.0524962978167271E-03 + 300 -7.3466458649587129E-03 + 301 5.7058694106619720E-03 + 302 -5.6480368370835634E-03 + 303 -4.6160255463711334E-03 + 304 3.0060239234933652E-04 + 305 3.5998436402933979E-03 + 306 2.2561297772347140E-03 + 307 -3.1790399448594804E-02 + 308 1.3463330518705921E-02 + 309 4.7112826286678094E-03 + 310 1.1831145854712044E-03 + 311 -3.2065291644452301E-03 + 312 8.1029999066017412E-04 + 313 1.1942453544467719E-03 + 314 2.5229787609545980E-02 + 315 3.2727211840030668E-03 + 316 -1.9029253242576916E-02 + 317 -1.2338140058000047E-02 + 318 4.2116473923930543E-04 + 319 1.7894493040074883E-03 + 320 1.5971695825833131E-04 + 321 -5.8016639714395593E-03 + 322 -3.4032543314126301E-03 + 323 1.1081386580534834E-04 + 324 -1.5079528044728875E-03 + 325 1.3348479362552204E-03 + 326 -2.0167718773488139E-04 + 327 -2.2262932738831512E-03 + 328 1.4598575736754185E-03 + 329 4.7850587916431980E-04 + 330 -5.6937436672717189E-02 + 331 -1.0400268360827095E-03 + 332 7.0145036386838168E-03 + 333 4.7081259911532836E-02 + 334 -2.9998205696591678E-03 + 335 7.1616188381789928E-04 + 336 -3.0822656603041723E-03 + 337 3.5204642843730252E-03 + 338 -1.8528640647085107E-02 + 339 1.3177817854882774E-03 + 340 3.9371160176273921E-02 + 341 5.3939058224173530E-03 + 342 2.7632141829377413E-04 + 343 -1.0295666598836753E-02 + 344 -2.2230347555202198E-03 + 345 1.3736562356325976E-02 + 346 4.4853674883986163E-03 + 347 5.7491575882971581E-04 + 348 -6.7986052891755864E-04 + 349 4.0163161740103698E-04 + 350 -2.5645993605296642E-03 + 351 -1.9989846220864293E-03 + 352 -2.5905221966253004E-04 + 353 5.3201120152778502E-05 + 354 2.6035448116689205E-04 + 355 -7.1532206990524208E-04 + 356 8.3431992897419101E-04 + 357 3.3090669927694175E-02 + 358 -1.5353782180372188E-02 + 359 -2.8451083466046290E-02 + 360 -8.6108231324350459E-04 + 361 -2.1854340467046540E-03 + 362 2.7565829706380019E-03 + 363 -1.5162452765299095E-03 + 364 -8.9531206638840811E-04 + 365 8.7184809890824690E-05 + 366 -3.5607766962232851E-06 + 367 1.4857242320076927E-03 + 368 1.1251986195697837E-02 + 369 -1.3274261555807970E-03 + 370 -1.4229473521409641E-01 + 371 -4.6664690344177612E-02 + 372 3.6537546578202171E-02 + 373 1.0865304124807105E-02 + 374 3.7031328950772472E-03 + 375 -3.8432489590588077E-03 + 376 5.6758331266283830E-03 + 377 3.8282104346097325E-04 + 378 -2.3645591333412885E-03 + 379 6.4349136605477445E-03 + 380 3.2539762041937505E-03 + 381 9.9757021962106868E-02 + 382 -1.1557033054926166E-02 + 383 -3.3248822842961899E-02 + 384 3.4663765871190216E-01 + 385 1.1689851988075900E-01 + 386 1.6100506117705572E-03 + 387 -2.0590563915929526E-02 + 388 -8.0143201815071688E-03 + 389 5.0948736995019284E-03 + 390 -1.6054059285550788E-03 + 391 -1.9834887038566846E-03 + 392 1.8956739490586497E-03 + 393 -4.7552168740035098E-03 + 394 1.1240944462849588E-02 + 395 2.2027570878943126E-03 + 396 -6.0402114256432639E-04 + 397 1.4354398466285402E-02 + 398 4.7188671898950221E-02 + 399 1.0676292793579897E-03 + 400 -3.1862592795203577E-03 + 401 -5.1379961810635580E-03 + 402 1.0144353847402346E-02 + 403 -3.3351403684284485E-02 + 404 -2.8355432573200230E-02 + 405 1.2140200065462885E-02 + 406 -8.5160643839813921E-03 + 407 4.2806357917579618E-03 + 408 -1.4578043372638446E-05 + 409 -8.0115899548102790E-03 + 410 -1.4165045440106081E-03 + 411 2.9753214538709868E-03 + 412 1.2278811841128724E-04 + 413 -8.5921781113863348E-05 + 414 9.5270890396721545E-04 + 415 3.7114784699489138E-04 + 416 -1.3810891418237691E-03 + 417 1.7661056987858220E-03 + 418 2.1062787859522009E-03 + 419 -2.2392691647757399E-02 + 420 2.8720421215602384E-03 + 421 -5.1544769918749143E-02 + 422 8.0343909265567417E-03 + 423 1.6632221328298041E-01 + 424 1.5067802704911963E-04 + 425 -7.5203248146426323E-04 + 426 -6.9756142257664574E-03 + 427 6.7746158419646086E-03 + 428 1.6436122509180390E-03 + 429 -2.3808831856978077E-03 + 430 -2.2310260508134733E-03 + 431 1.8471497667098755E-03 + 432 -8.7282192572191580E-03 + 433 1.4487413674251258E-03 + 434 -3.8160644838187013E-02 + 435 1.2172055672930603E-01 + 436 9.8343904857010958E-02 + 437 3.5357104160073254E-03 + 438 -6.5761989545419074E-03 + 439 -3.5956899153096406E-03 + 440 1.2909776179047864E-03 + 441 1.5136441789200174E-03 + 442 1.2154731130350808E-03 + 443 -5.5458007546605760E-04 + 444 1.8106703036939785E-03 + 445 -4.4755987460024425E-02 + 446 1.5222471890811724E-04 + 447 -2.1752252536221067E-02 + 448 -5.4385097744926926E-02 + 449 -6.3155410754153199E-03 + 450 -2.7715915890633839E-03 + 451 -7.5351911147128860E-04 + 452 -1.9092239803619683E-03 + 453 -2.2926589019970135E-03 + 454 -1.9926655113186163E-02 + 455 5.0041800032977904E-03 + 456 1.0969576227259274E-02 + 457 -1.8236703856920841E-03 + 458 6.6624561626568947E-03 + 459 -1.0045790450188092E-02 + 460 -4.9904906485478493E-03 + 461 6.3100060241525783E-03 + 462 -9.8808840984740648E-04 + 463 1.7497667816757589E-04 + 464 -5.4808312855971603E-04 + 465 -7.8450283390749435E-04 + 466 1.4723963057803021E-03 + 467 7.1589926483342644E-04 + 468 9.8244764749174708E-04 + 469 -5.5413310989831598E-04 + 470 7.3048081443010421E-02 + 471 -4.7009907058212872E-03 + 472 3.7752585502516638E-02 + 473 5.8843598827256448E-02 + 474 1.9271354827538883E-03 + 475 -4.3438874877115737E-03 + 476 -8.4605845118688097E-03 + 477 -3.5623841192977189E-03 + 478 -6.7898706263898921E-03 + 479 6.5955796457284194E-03 + 480 -9.5828172789743822E-03 + 481 4.5281573282005202E-02 + 482 4.0640857801439542E-02 + 483 4.1486896114014188E-03 + 484 -2.5235298788820744E-03 + 485 -2.8989205036046559E-03 + 486 1.3608330970370531E-02 + 487 5.5984547870801607E-03 + 488 1.0063714273667345E-03 + 489 1.5755650822982760E-03 + 490 7.5704520573063698E-04 + 491 5.0152115564278956E-04 + 492 -1.4672358025071294E-03 + 493 4.2373451115072670E-03 + 494 1.0081966482828613E-03 +Ene= -2.2201928276E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -1.3787771174443114E-01 + 2 8.2669393420495840E-03 + 3 -2.5653845087675549E-02 + 4 1.2718093519104884E-02 + 5 -1.4462852626654935E-02 + 6 2.7780395563343665E-03 + 7 -7.8561383349069931E-03 + 8 8.7362554227101243E-04 + 9 2.2785042896455523E-02 + 10 -1.4915700533180035E-02 + 11 -1.2621740485635755E-02 + 12 3.6873167134573774E-02 + 13 -1.8549039434435519E-02 + 14 2.9633949527575389E-03 + 15 8.5934840851275478E-04 + 16 -6.0389384219154850E-03 + 17 -5.8734621010245657E-03 + 18 -4.8288653656802724E-03 + 19 7.6394904389909897E-04 + 20 -1.2004140111605036E-03 + 21 1.3205181441158182E-04 + 22 -1.5555969046456221E-03 + 23 1.9795134507292865E-04 + 24 -1.7598223433032180E-03 + 25 2.4264965515823481E-03 + 26 1.6566050043702707E-02 + 27 -2.8161677373806106E-03 + 28 -6.4431278488514083E-03 + 29 -3.0150292496647378E-02 + 30 -7.3056994263703115E-02 + 31 -2.4633504825360602E-03 + 32 3.7219965597178430E-04 + 33 2.3609322470593015E-03 + 34 -7.5725482199944672E-03 + 35 1.2859942261865598E-02 + 36 -2.8277705369683329E-02 + 37 -1.1004623235291071E-02 + 38 1.9917961245857898E-02 + 39 -3.7656344085998691E-03 + 40 1.2515694074148197E-02 + 41 -7.6467461456274045E-03 + 42 -8.7952670100850221E-03 + 43 6.3911468903881394E-03 + 44 2.2067420623250863E-03 + 45 -9.1037410984256412E-04 + 46 1.4912630937261233E-03 + 47 6.2960481278804414E-05 + 48 4.1709321591125562E-04 + 49 -3.1099464687425998E-05 + 50 -1.4295862484563595E-03 + 51 -3.0889399901703463E-02 + 52 2.5417707510734687E-03 + 53 3.5942678692503519E-02 + 54 1.4778059331894113E-02 + 55 7.4566987180003496E-03 + 56 -2.8569960807531885E-03 + 57 -3.9173717399981194E-03 + 58 -3.0311401309144484E-03 + 59 3.2416590920600542E-02 + 60 1.6961690906664887E-02 + 61 3.4713834429631017E-02 + 62 -2.3413032572268452E-02 + 63 -3.3026004739689439E-02 + 64 8.5288022917155235E-03 + 65 1.6227332291401889E-03 + 66 1.1105220193808572E-02 + 67 -1.2783125069364824E-02 + 68 -8.3850628522104502E-03 + 69 1.4500245728628293E-03 + 70 -1.4912374234257695E-04 + 71 9.5717091058291986E-04 + 72 -5.3195580024062254E-04 + 73 -2.3284242098144722E-03 + 74 2.1195217334635291E-03 + 75 1.1507835616494540E-03 + 76 1.5366070226330344E-02 + 77 -1.8092034275317590E-03 + 78 1.8992469840886472E-01 + 79 -4.0499860523019501E-02 + 80 -2.4520519785198702E-02 + 81 -1.0297932942070920E-02 + 82 2.8640047649054285E-05 + 83 2.9912481203212650E-05 + 84 3.0823372889921419E-04 + 85 -1.4140838530202944E-03 + 86 6.6989986033875425E-03 + 87 -7.5603264223899529E-03 + 88 -6.0349444637138074E-03 + 89 -3.6281515059518571E-02 + 90 2.7235268622447426E-03 + 91 3.6799255202403652E-02 + 92 1.7182629336654565E-01 + 93 1.2761374086681654E-02 + 94 -5.0200583414681949E-03 + 95 -8.8231932268597983E-03 + 96 -4.1398471582923379E-03 + 97 -5.2008350515597374E-03 + 98 -2.2726321114274195E-03 + 99 6.8184044338499784E-04 + 100 -7.6587675309397456E-03 + 101 4.7243598264530622E-04 + 102 1.0158170184685122E-02 + 103 -1.3453809755915027E-03 + 104 1.1931042058144926E-01 + 105 1.4294835374967618E-02 + 106 7.0098802887157280E-02 + 107 -8.0070768536856865E-03 + 108 -1.5553131794138009E-03 + 109 -3.7335594428369759E-03 + 110 1.9496819369855640E-03 + 111 -3.6448261688110748E-03 + 112 2.4034818838377147E-03 + 113 -3.2515507169122073E-03 + 114 1.5732840508713897E-03 + 115 -9.3988196063697939E-03 + 116 1.4855140183426734E-03 + 117 2.4076220250338357E-01 + 118 -1.1992404822638061E-01 + 119 -1.6147229925773568E-02 + 120 -1.1681709593040126E-02 + 121 6.5285548242648402E-03 + 122 5.4413336750117861E-04 + 123 4.9923726522244658E-04 + 124 -7.2012498310846688E-03 + 125 1.7171420678964392E-03 + 126 9.5025463943053336E-04 + 127 -2.0337100665560352E-03 + 128 1.5074436194094574E-02 + 129 4.5785955275966317E-03 + 130 3.4223700245662077E-02 + 131 1.3259715254555051E-02 + 132 1.7365655471636293E-02 + 133 1.9712034335924583E-04 + 134 1.8684846505802935E-03 + 135 -1.6381179296668040E-03 + 136 4.4283658482276523E-03 + 137 -2.2462770831976803E-02 + 138 1.5911894098675480E-02 + 139 -1.7347325322142587E-02 + 140 9.9571806690658161E-03 + 141 -4.0005002102947726E-03 + 142 -6.0650354204686979E-03 + 143 3.1577306767275816E-03 + 144 -9.1107192512872668E-03 + 145 4.5690652516879829E-04 + 146 -3.1504314435290402E-05 + 147 2.3616027448549758E-04 + 148 -1.8654731511354200E-03 + 149 2.6186245715764259E-03 + 150 9.2603221159730069E-04 + 151 1.1939363977021245E-04 + 152 3.3709104048858505E-03 + 153 -9.2093546955132643E-04 + 154 -5.3900621610286211E-03 + 155 -1.2385063637735644E-02 + 156 -2.0554228630987617E-02 + 157 -1.3871106829066004E-02 + 158 -1.3963424303486804E-03 + 159 -4.7849385876029760E-04 + 160 2.9098986336843343E-03 + 161 1.4021440696309563E-02 + 162 -2.3985117867515748E-03 + 163 -1.2653474438016098E-03 + 164 9.4953849337114961E-03 + 165 -1.5782129961115640E-03 + 166 8.7410537534625258E-04 + 167 2.2260658333877414E-03 + 168 7.9181334581478115E-04 + 169 -6.3442770676985023E-04 + 170 -2.5670053999138341E-03 + 171 -2.9776636590841108E-04 + 172 2.6214708325652388E-05 + 173 -3.8599373345175625E-04 + 174 4.4982486588884406E-04 + 175 -1.8119313222911208E-04 + 176 1.1296859720058988E-03 + 177 8.2360657499859101E-04 + 178 1.5130626944790761E-02 + 179 -1.7897481562643225E-03 + 180 -2.3467710429304258E-02 + 181 2.1971264307982904E-02 + 182 5.7833936099566517E-02 + 183 2.3426366335305905E-04 + 184 -1.4308587693265102E-03 + 185 -3.7543726741828443E-03 + 186 -1.2239436469130283E-04 + 187 1.7373318638484940E-03 + 188 -5.6820167699584323E-04 + 189 -4.2181794552601925E-04 + 190 -5.1258720031105388E-04 + 191 -2.0955052620454166E-02 + 192 2.4084443873263707E-03 + 193 9.2276212592551116E-02 + 194 1.5788584643350614E-01 + 195 -1.0795000008100818E-01 + 196 -3.1443814177814695E-03 + 197 -6.2634596999835554E-03 + 198 9.0350113670710601E-03 + 199 -7.2147178719906169E-04 + 200 -6.0733971556831384E-04 + 201 -5.3058261077633213E-03 + 202 -4.9475955073555551E-03 + 203 4.2309196041538759E-03 + 204 2.9683347440854560E-02 + 205 -6.0780910777664780E-04 + 206 -4.7241152888429734E-02 + 207 -1.7234690605424239E-02 + 208 2.2711212739756213E-02 + 209 2.6852191591394152E-03 + 210 2.2871198543996014E-04 + 211 1.9280311372306639E-03 + 212 9.8834744224051072E-03 + 213 4.3657867136053963E-02 + 214 -1.1163843232650630E-04 + 215 -1.8474376739155566E-03 + 216 -6.0477250558588188E-03 + 217 -2.9693720047049613E-03 + 218 9.8834607838442536E-03 + 219 -1.3020235612744978E-03 + 220 -4.6702677782661916E-03 + 221 -7.9326110516647549E-03 + 222 2.7209442446043761E-05 + 223 -9.3557855062213291E-04 + 224 -2.8597323869495358E-04 + 225 -3.6152543569315998E-05 + 226 1.3642430035984534E-03 + 227 1.0123966725399387E-03 + 228 -1.5468144088451666E-03 + 229 1.3534685073755732E-02 + 230 4.2009559426005631E-04 + 231 5.1364024627773119E-02 + 232 -9.7609793400787962E-03 + 233 1.7689948420216962E-02 + 234 -6.0485438858178409E-03 + 235 1.1883575542381960E-03 + 236 2.6454389809422003E-03 + 237 1.9651400120402802E-02 + 238 2.3828013337529673E-02 + 239 -3.5420966666769117E-02 + 240 4.6519163773862721E-04 + 241 8.9672351687288890E-03 + 242 -3.8866524483291594E-03 + 243 4.9600765882303955E-04 + 244 -1.2552623749795405E-02 + 245 -4.2609168928984297E-03 + 246 -2.9675329550871966E-03 + 247 4.9452774275010191E-04 + 248 -5.5094553699764584E-04 + 249 1.4896082764225224E-03 + 250 -1.3287680289362077E-03 + 251 -1.4025486878371557E-03 + 252 5.1066933480561630E-05 + 253 -2.3063447889067545E-05 + 254 -4.7803923047180757E-02 + 255 2.6830106530712347E-03 + 256 -2.2117777462208017E-02 + 257 1.2815919725540270E-02 + 258 4.2834430706840371E-02 + 259 -1.1731324968999458E-03 + 260 4.5415611024848031E-03 + 261 -5.3108858887376733E-03 + 262 -1.5743696260691959E-02 + 263 -1.3982453958278677E-02 + 264 -2.3025064209618033E-02 + 265 -1.9575528445052136E-03 + 266 4.9339983049595587E-03 + 267 7.5668954836094005E-03 + 268 -4.3405663726136549E-03 + 269 -1.1827747432378896E-02 + 270 2.8208829066408208E-03 + 271 8.1997875923654111E-04 + 272 -2.0799316053042509E-03 + 273 -5.4777974494697428E-05 + 274 6.5833665669129860E-04 + 275 -2.2455075927570460E-03 + 276 1.0275652381369646E-03 + 277 -1.3930756345005425E-04 + 278 7.5782482300910373E-04 + 279 -3.9190640738951524E-02 + 280 3.7226239260352541E-03 + 281 7.4891413170557461E-02 + 282 -1.9109951942146111E-01 + 283 1.2107204335422063E-01 + 284 -5.8101120345223035E-03 + 285 1.0818587904059887E-02 + 286 -7.0133631089540471E-03 + 287 2.0300379606443503E-03 + 288 4.9744579088281385E-03 + 289 -1.7415116446590764E-03 + 290 -6.6524436531301507E-03 + 291 -1.2924356816033549E-03 + 292 -2.9994983742378856E-02 + 293 3.2996671701441198E-03 + 294 -1.5620699106667968E-01 + 295 -8.4369657386379929E-02 + 296 -2.2530130949183772E-02 + 297 7.7489219694283247E-03 + 298 4.2726675060314303E-03 + 299 3.9933232995122726E-03 + 300 -5.6451336297311224E-03 + 301 -1.0607189659045313E-03 + 302 -4.8369752480086348E-03 + 303 8.1119337339223292E-03 + 304 1.5164921416069890E-04 + 305 4.3639336723208258E-02 + 306 -2.0615504024121254E-03 + 307 5.6257179869279080E-03 + 308 -9.6565041820254910E-02 + 309 1.1028712405664947E-03 + 310 7.0865439288711847E-03 + 311 1.6752179536332464E-02 + 312 -1.5866734175318687E-03 + 313 -2.7894741283216473E-03 + 314 -2.2710523878225041E-03 + 315 -1.0833729621506976E-02 + 316 -6.3089412787093721E-02 + 317 8.6141347565039609E-03 + 318 5.3231541659296726E-05 + 319 -3.0768833355701965E-03 + 320 -9.9915102208399543E-03 + 321 -4.9854833489187322E-03 + 322 3.1311105786135333E-03 + 323 1.1733525325289657E-03 + 324 -1.9550276783049853E-03 + 325 -5.1267551533905045E-03 + 326 -1.9345603211133279E-03 + 327 1.8988457950073045E-03 + 328 -2.4012364203276470E-03 + 329 -1.6723602480607897E-03 + 330 8.2475612168019186E-02 + 331 2.3088705049839273E-03 + 332 2.6858489755077264E-02 + 333 4.6380799512916720E-03 + 334 -4.7615046630188576E-02 + 335 -2.2147488797645714E-03 + 336 -1.7141334848613345E-03 + 337 8.4323713073817860E-03 + 338 -6.8101082374000376E-03 + 339 -3.0594661020183225E-02 + 340 -5.2652797070364084E-02 + 341 -2.0709335241383301E-02 + 342 1.2062169198610249E-02 + 343 3.1155195644138834E-03 + 344 -1.5144543059835272E-02 + 345 -1.1935360739171856E-02 + 346 -6.5741222264011434E-03 + 347 -1.5255100458971835E-04 + 348 2.4975618159067416E-03 + 349 -5.9782292112576217E-04 + 350 -1.8768096231284413E-03 + 351 -1.7989796710810415E-04 + 352 5.9855995788050931E-04 + 353 1.5567042478256831E-04 + 354 -1.6850767062185131E-03 + 355 6.1280845051198338E-02 + 356 -6.1395606845750942E-03 + 357 -4.9900834218503753E-01 + 358 -1.1543611372914887E-01 + 359 -5.6339354552541229E-02 + 360 2.8285418454271030E-02 + 361 5.5484703473312616E-03 + 362 2.2682105949881296E-03 + 363 4.9174843023535707E-03 + 364 -1.3863195692090569E-02 + 365 1.8210268770477941E-03 + 366 -7.4136975956427494E-04 + 367 -9.1151637153733915E-03 + 368 -1.4214191037414741E-02 + 369 2.1870333966648001E-03 + 370 -9.4305338646231696E-02 + 371 -1.0621102219109939E-01 + 372 2.7087461251612014E-03 + 373 8.0844425813825210E-03 + 374 6.0877116945660678E-03 + 375 -2.7164230865872638E-03 + 376 -1.1949686393365698E-03 + 377 -4.6265100872880755E-03 + 378 -4.8453922293737938E-03 + 379 -5.0765816545740149E-03 + 380 -3.5018961913440621E-03 + 381 -2.2792435852520838E-02 + 382 3.9616469531429735E-03 + 383 3.1208000510213338E-03 + 384 -1.3746029478537597E-01 + 385 4.6947694347712399E-02 + 386 -1.7694600508734080E-04 + 387 1.3001068014565074E-02 + 388 -4.2292538949910063E-03 + 389 -4.6652380858263681E-03 + 390 -2.1323516756851981E-03 + 391 -1.7413871511959848E-03 + 392 -5.4338128222413925E-04 + 393 9.7910735896489720E-04 + 394 -2.6295638559278297E-02 + 395 4.4221898353371397E-03 + 396 -3.7488552698197487E-02 + 397 -5.7179723575237797E-03 + 398 7.7099885727830390E-03 + 399 4.2746539432775661E-03 + 400 1.6360265926779142E-03 + 401 1.2804448382438118E-03 + 402 -7.2017219134892100E-03 + 403 6.2406658173497836E-03 + 404 -2.4203817954913858E-04 + 405 -1.0322685755034396E-02 + 406 -1.2302293079689252E-02 + 407 -6.4506217818219216E-03 + 408 1.4813305861520951E-03 + 409 -3.5709779148314089E-03 + 410 -5.0895513732184400E-03 + 411 -2.2502621990560696E-03 + 412 -2.0634690914457212E-04 + 413 -1.1254672459956171E-03 + 414 -1.2349501391373807E-03 + 415 -7.7395438393471300E-04 + 416 8.7360031624361364E-04 + 417 -7.8880649233623458E-04 + 418 -3.4133688139904384E-04 + 419 -1.8916846986870052E-02 + 420 2.5765732609138157E-03 + 421 1.4240206367005673E-01 + 422 1.7347583879579413E-02 + 423 -2.4841040717274988E-02 + 424 -7.5793836420984285E-03 + 425 1.0210979366046897E-03 + 426 2.2665808183866820E-03 + 427 -3.6436426636908353E-03 + 428 5.2382167987531196E-03 + 429 1.3550924208942405E-03 + 430 3.2166902164467905E-03 + 431 1.8535341380117017E-03 + 432 3.4213701247205297E-02 + 433 -5.5685720310047681E-03 + 434 -2.2017025410368191E-01 + 435 -7.2175524079161377E-02 + 436 3.3954632404918825E-03 + 437 1.0568412948490096E-02 + 438 4.0971307364894424E-03 + 439 1.0564670394147837E-03 + 440 3.2274998244100567E-03 + 441 -2.0969315406026939E-03 + 442 3.3419519219069498E-03 + 443 -4.0609643965406747E-03 + 444 -6.6257200396901547E-03 + 445 2.0891200366852061E-02 + 446 -2.3917476118793870E-04 + 447 -2.6180989629653033E-02 + 448 4.2057995474708974E-02 + 449 4.1639106890589438E-02 + 450 2.2022516680339547E-03 + 451 -1.6161296433988546E-03 + 452 -2.2512158440202096E-03 + 453 -7.3285450846728422E-03 + 454 -3.2448737589501661E-02 + 455 -4.8061703584175448E-02 + 456 2.5463444651026970E-02 + 457 -8.1964082190167850E-04 + 458 3.3596589842882279E-03 + 459 -8.5522875804980008E-03 + 460 -1.9230099219775417E-02 + 461 4.6101489868291181E-03 + 462 -2.7319665717979156E-03 + 463 1.3938423465446599E-03 + 464 4.7123759183298578E-04 + 465 -4.7684218424457088E-03 + 466 1.8214014757543108E-03 + 467 -1.2762169067628627E-03 + 468 -6.1945443950701473E-04 + 469 1.3618217048308356E-04 + 470 -3.8254955160806209E-02 + 471 1.1700048206731760E-03 + 472 1.8928523676215666E-02 + 473 -1.4854020849371588E-02 + 474 -2.4567703317653913E-02 + 475 1.8138344705031907E-03 + 476 2.7931833960093203E-03 + 477 2.4312079454936607E-03 + 478 5.0909564301168950E-03 + 479 -2.1515607975334989E-02 + 480 8.2786662001912319E-04 + 481 -1.5377561754058347E-02 + 482 -3.9406505753280238E-02 + 483 -1.9169424174965736E-04 + 484 -4.3559565578495957E-03 + 485 -2.6971737251845372E-03 + 486 8.4681819330968959E-04 + 487 -7.8637950883791146E-03 + 488 5.2223988710570549E-04 + 489 6.9019634562277708E-05 + 490 1.1594222272659751E-03 + 491 -7.9576521512503349E-04 + 492 5.0885368235954822E-05 + 493 4.9470767348661223E-04 + 494 -6.1057953408565080E-04 +Ene= -2.1991378010E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -5.1949586363300077E-02 + 2 3.5548782787868812E-03 + 3 -1.3494896894758187E-02 + 4 -5.1705184110053008E-03 + 5 -2.2536277410590941E-03 + 6 -2.3048627277430378E-04 + 7 -8.4890603291154607E-04 + 8 -1.2742168218987050E-03 + 9 -1.0328303131870931E-02 + 10 -6.0973267719158265E-03 + 11 -6.3917310353957301E-03 + 12 9.0110745676889471E-03 + 13 8.4222325419714946E-04 + 14 -3.6147468114591276E-03 + 15 -1.1659784740343537E-04 + 16 1.2326063092585053E-04 + 17 -1.7184075803331092E-03 + 18 2.1422240448358059E-03 + 19 8.5675975073548323E-04 + 20 6.1409284777024578E-06 + 21 1.1595122602753481E-04 + 22 1.2708087741287041E-03 + 23 -3.2895307975272628E-04 + 24 6.8096286550384797E-04 + 25 -2.3952816231648466E-04 + 26 -1.6959660922290072E-02 + 27 1.9164175885742053E-03 + 28 -5.3145192680231435E-02 + 29 4.1166903627392745E-03 + 30 8.4144344992670824E-05 + 31 3.0948068549931252E-03 + 32 -4.5722407032400091E-04 + 33 -1.1713518860357658E-03 + 34 9.4077822978480118E-03 + 35 1.3350012233518791E-02 + 36 2.2223266912995830E-02 + 37 7.3348952399689216E-03 + 38 1.6721545588791815E-02 + 39 3.0924191295069476E-03 + 40 -2.4808250857051859E-03 + 41 6.1090064808939513E-04 + 42 6.0675521971122895E-03 + 43 6.7575985045270348E-03 + 44 -4.9248220856755204E-04 + 45 -6.5675911932663758E-04 + 46 -1.0111811786513807E-03 + 47 -7.6851291968641508E-04 + 48 8.9694719466365709E-04 + 49 2.4952741986225411E-04 + 50 -1.3424455705542276E-03 + 51 -7.3936400918122669E-03 + 52 -5.2930166606332540E-03 + 53 1.8720698081383391E-02 + 54 5.1837092552400876E-02 + 55 2.4919164437002743E-03 + 56 3.0606077507792477E-03 + 57 7.0995718263085715E-04 + 58 3.4817054007264241E-03 + 59 3.7422993364047020E-03 + 60 2.0222671067752485E-02 + 61 2.9098492249369362E-02 + 62 2.6017864713958994E-02 + 63 -2.8036378355845566E-02 + 64 2.6905618619246902E-03 + 65 1.9975943613134671E-03 + 66 1.1168382630223819E-02 + 67 8.7955178015539234E-04 + 68 -7.9007905361301416E-03 + 69 -1.8600951791462401E-03 + 70 -5.9335467578048109E-04 + 71 1.9411134592492612E-03 + 72 -1.9476212646042756E-03 + 73 1.7861799471742611E-03 + 74 -1.8526036007794351E-04 + 75 2.9283875255630078E-03 + 76 -2.5828517870643403E-02 + 77 1.9822134168197155E-03 + 78 2.8258587313354823E-03 + 79 -9.5362877194334728E-02 + 80 6.0386895761356023E-02 + 81 1.6591383795067515E-05 + 82 5.1338407693121632E-03 + 83 -3.9041480513842880E-03 + 84 1.9468145500202208E-04 + 85 -1.6366493580567568E-03 + 86 -1.5637173517697191E-03 + 87 -3.0917594692404008E-03 + 88 3.3306947046411018E-04 + 89 -1.2729239929780747E-02 + 90 5.0073054779585773E-04 + 91 4.2425708397860655E-03 + 92 2.6442522204288870E-02 + 93 -1.2512773380373220E-02 + 94 3.1648973082223811E-04 + 95 1.1545451205234184E-04 + 96 1.2248246782429566E-03 + 97 -1.1808276680245495E-03 + 98 9.4842317112016014E-04 + 99 -1.8405920619204157E-03 + 100 -1.6570895444447851E-03 + 101 1.5882520196084159E-03 + 102 -1.1399039547140492E-02 + 103 8.1875514038272791E-04 + 104 1.8660652547950386E-02 + 105 1.2027402788287705E-01 + 106 -3.1927634585548759E-03 + 107 -1.5793978737026018E-03 + 108 -6.4888148988526163E-03 + 109 2.4782300661230412E-03 + 110 -1.4299060413144147E-03 + 111 -1.3286716342443858E-03 + 112 1.4550661886252855E-04 + 113 -3.4898834860606419E-03 + 114 -2.3674689626509114E-03 + 115 -1.7334924968248462E-02 + 116 1.6736482781988379E-03 + 117 -2.9410536977108829E-02 + 118 1.2057918835651983E-01 + 119 1.0566525950122127E-02 + 120 1.4265952222204011E-03 + 121 -1.0412450185438082E-02 + 122 -9.7272669461192119E-04 + 123 -2.7415534122141134E-03 + 124 -4.1631634035232414E-04 + 125 -7.8889222471464279E-03 + 126 -1.7670587870247390E-03 + 127 1.0113057775975405E-03 + 128 -5.2482295145311374E-03 + 129 -1.9148699186115295E-03 + 130 2.3480836262708017E-02 + 131 5.4070889537863140E-02 + 132 -5.0497437247965377E-02 + 133 -9.2396256444356975E-04 + 134 -4.6845793854982283E-03 + 135 1.7406643149608101E-04 + 136 -1.4634559961719409E-02 + 137 -3.2760587233817886E-03 + 138 2.7985005938989296E-02 + 139 3.0758563142984589E-02 + 140 -2.7608510689861837E-02 + 141 -7.2060767237514315E-04 + 142 -2.1455230685948614E-03 + 143 5.2470860821797801E-03 + 144 4.2854762288702143E-03 + 145 -2.5838393790094784E-03 + 146 1.6106888032962491E-03 + 147 -3.3987442532107072E-03 + 148 -2.1461544037968028E-03 + 149 3.3422837784182114E-04 + 150 -2.2014806447203622E-03 + 151 -1.2203467312961423E-03 + 152 2.3568782047210857E-04 + 153 -2.0450213561485808E-02 + 154 2.6156533738000334E-04 + 155 7.7144787434539012E-03 + 156 -2.1897035830957780E-02 + 157 7.9471736076127484E-03 + 158 -3.3193349155507630E-03 + 159 5.0737806380288394E-04 + 160 1.8516024488734310E-03 + 161 7.2018737351531624E-03 + 162 -1.1995226849867801E-02 + 163 2.7501409625089695E-03 + 164 -8.8956650093307190E-03 + 165 1.4431358955011067E-02 + 166 -1.4733791062097267E-03 + 167 -2.4912104263097468E-03 + 168 3.0426958690377287E-03 + 169 5.3168042560330902E-03 + 170 3.2503091819440048E-03 + 171 -2.7318344709610496E-04 + 172 2.8035189047594106E-04 + 173 -1.8277288161329685E-03 + 174 -9.7116974738997968E-04 + 175 -8.8298982281988941E-04 + 176 -1.4162969624691147E-03 + 177 -5.9881625668593017E-05 + 178 -2.3236925483534270E-02 + 179 2.9733422441609583E-03 + 180 6.5660773026564867E-02 + 181 2.2756229309549619E-01 + 182 -7.8233936969558146E-02 + 183 -3.6785990143106333E-03 + 184 -1.2145417001558374E-02 + 185 4.1458500301107598E-03 + 186 4.5877981143141217E-04 + 187 -1.3181445018626526E-03 + 188 -9.3657354918885785E-03 + 189 1.3356940266384663E-03 + 190 3.5889145311434533E-03 + 191 7.4535577305024622E-02 + 192 -8.0262118383066412E-03 + 193 3.6085373394744141E-01 + 194 -1.6051582968291939E-01 + 195 2.9420672938266673E-01 + 196 -2.0369820471084380E-02 + 197 9.9981384365518244E-03 + 198 -1.6992880849784221E-02 + 199 -6.1521602673175911E-03 + 200 -3.8097544866401195E-03 + 201 3.7942724819284564E-03 + 202 2.1508692121942063E-03 + 203 1.2640157232279441E-02 + 204 7.8458305247664742E-02 + 205 9.3258549222904918E-04 + 206 4.1695774583453221E-02 + 207 -8.1550108139621491E-02 + 208 5.9136194564889518E-03 + 209 7.0383010322654939E-04 + 210 5.8752806920392532E-03 + 211 -4.3472593623236476E-04 + 212 -9.8944390734684307E-03 + 213 -2.2404798044727031E-02 + 214 3.9321378041612093E-02 + 215 -2.4128562033392420E-02 + 216 -3.7976506207577969E-02 + 217 1.3381664709790278E-02 + 218 -1.5813726376182162E-02 + 219 1.2820178505248751E-02 + 220 -1.2024166278576087E-04 + 221 4.1833021366503821E-04 + 222 -2.6937012452669536E-03 + 223 2.1869453942134111E-03 + 224 -3.1273383658317034E-05 + 225 -2.8701267102249242E-03 + 226 -1.7035894362634413E-03 + 227 1.8932454127265786E-03 + 228 -1.9132517632145390E-03 + 229 -2.3680592475018573E-02 + 230 1.0970978358579519E-03 + 231 2.0186162263079475E-02 + 232 -7.4732442371966785E-03 + 233 4.5397198621707751E-03 + 234 -2.4476679700045664E-03 + 235 2.8546690428974766E-03 + 236 2.2818935044628644E-03 + 237 1.9448563296662047E-03 + 238 3.6951729009176280E-02 + 239 -1.2592774460901563E-02 + 240 -8.2651373254285492E-03 + 241 3.7601965101927835E-02 + 242 -5.7275463650078098E-04 + 243 1.0327690355579823E-02 + 244 -4.8424089094261128E-03 + 245 -2.8645288203110924E-03 + 246 3.5061237434272511E-03 + 247 6.1986357267127218E-04 + 248 4.9905827429206956E-05 + 249 6.2073974988439734E-04 + 250 -4.0109558284557440E-04 + 251 -6.2582491412554433E-04 + 252 -6.1493983388348191E-04 + 253 1.0031310521263111E-03 + 254 -6.1974475906900008E-02 + 255 4.2840357654429196E-04 + 256 -1.3203054922575836E-03 + 257 1.6151096407987592E-02 + 258 -2.0369313653516949E-02 + 259 7.0660492451223131E-04 + 260 2.2536796081624419E-04 + 261 2.7587885236229140E-03 + 262 -1.3638143430335170E-02 + 263 -6.5367246566692093E-03 + 264 -1.6216315254122555E-02 + 265 -4.7192574228029334E-03 + 266 1.9385346689771189E-05 + 267 -1.2106394636214345E-03 + 268 -3.0972397803251720E-03 + 269 -6.6070508207993163E-03 + 270 8.9947152249766882E-05 + 271 -7.6872647350222903E-04 + 272 1.3057595674953882E-03 + 273 7.7919108212166183E-04 + 274 -2.1566119196207117E-03 + 275 -5.8228729426657250E-04 + 276 5.2253945093218182E-04 + 277 -2.0846573345396159E-04 + 278 -7.1253556927988311E-06 + 279 -3.0939934525831599E-02 + 280 3.9120350747774988E-03 + 281 -4.9841762104907955E-02 + 282 -2.5099180833225371E-01 + 283 1.1881507215201358E-02 + 284 4.4133557724683444E-03 + 285 1.9081193166136094E-02 + 286 -4.0378692942715736E-03 + 287 -3.8520480020571091E-03 + 288 -1.9892046965954277E-03 + 289 -4.0215887219919701E-03 + 290 -6.0387448137678157E-03 + 291 1.5343232180829085E-03 + 292 7.4494952728637502E-03 + 293 -7.2190836127332284E-04 + 294 6.6033662269212492E-02 + 295 3.3933580302589354E-02 + 296 1.7059558936044515E-02 + 297 -1.3236018532088755E-03 + 298 -7.9125138595220713E-04 + 299 -1.2467969475068441E-03 + 300 8.6986962836429549E-04 + 301 7.3340588945084264E-04 + 302 -1.5905688323159177E-03 + 303 3.2182813441384835E-04 + 304 -3.2506005518022833E-03 + 305 3.1087110410306994E-02 + 306 -2.2120719874059789E-03 + 307 2.0134639924033866E-02 + 308 -2.0657495356934830E-03 + 309 -1.0375608120420220E-02 + 310 -1.1582257516706150E-03 + 311 -2.7448267928467996E-03 + 312 5.9957093154259318E-04 + 313 -9.8610714933816627E-03 + 314 -9.1117227767157222E-03 + 315 4.2372486160313569E-02 + 316 -6.5567465722089760E-03 + 317 2.5357650339166014E-02 + 318 -1.3116365389089942E-03 + 319 -1.5630959129689159E-04 + 320 8.6375685367610210E-03 + 321 -8.2017875785715226E-03 + 322 1.0438026567417182E-02 + 323 -5.0237807102224044E-04 + 324 1.7667800717657549E-04 + 325 -5.6454262088793158E-05 + 326 -1.7234849864429670E-03 + 327 2.4227474826241770E-03 + 328 3.0176013469974445E-04 + 329 2.6278956696229225E-04 + 330 3.9330543975267446E-02 + 331 -5.5559023350618261E-04 + 332 -1.2850987434745059E-02 + 333 -2.5345953050785297E-02 + 334 8.3873992865534319E-02 + 335 1.5122134517278735E-03 + 336 6.3870609613038472E-03 + 337 -1.2131817011831997E-02 + 338 4.6145507387616178E-02 + 339 -6.0418073409715903E-02 + 340 4.6229593256959849E-02 + 341 1.5385351214314461E-02 + 342 1.9699232850032219E-02 + 343 2.1383070057283101E-03 + 344 -9.2482264141402516E-03 + 345 1.1845340574745445E-02 + 346 9.1837674869270204E-05 + 347 5.9566936175650537E-03 + 348 -2.3191868593104336E-03 + 349 -1.9012570095814838E-05 + 350 2.2325950159982210E-03 + 351 -1.1067731128879014E-03 + 352 -1.1473367263125694E-03 + 353 4.7299679431109384E-04 + 354 -4.5661243673425169E-04 + 355 -4.6465756394975105E-02 + 356 6.0367195396688455E-03 + 357 5.0062967019363289E-02 + 358 -2.8565389543794728E-02 + 359 2.7315024648730751E-01 + 360 -6.7212641754366741E-03 + 361 -1.3332223914973664E-03 + 362 -1.2881295783051347E-02 + 363 6.8157434389714902E-03 + 364 4.5549680574487857E-03 + 365 2.6555642703377071E-03 + 366 -2.2800418805631371E-04 + 367 -2.8716467897156252E-03 + 368 2.1371728453867180E-02 + 369 -2.5322535822297431E-03 + 370 -1.7248742125508792E-01 + 371 -1.1565454892677979E-01 + 372 -1.1326066309332748E-01 + 373 1.6882235367826202E-02 + 374 1.1060477613183035E-02 + 375 1.3089534535918147E-02 + 376 -1.1391299528909211E-03 + 377 -2.7563196579179819E-03 + 378 1.3763936250111995E-03 + 379 2.1781482259192303E-03 + 380 4.5751145226343758E-03 + 381 -2.1813511301639252E-02 + 382 2.5278820325926408E-03 + 383 -6.7129248811322081E-02 + 384 5.2776903445554474E-03 + 385 -1.2186769208411445E-01 + 386 5.9047094737536736E-03 + 387 -7.0904484861840963E-04 + 388 6.3687023494337540E-03 + 389 -7.6794863310679275E-04 + 390 -5.8827448149618858E-03 + 391 -1.3607410002657186E-03 + 392 -8.4466353428736939E-04 + 393 6.6128056002126550E-03 + 394 7.9280080351532264E-02 + 395 1.2304697054390365E-03 + 396 -2.4870631674916589E-02 + 397 -5.3760568240316359E-02 + 398 -6.6662925638063211E-02 + 399 6.4518920025100398E-03 + 400 7.1214499591750365E-03 + 401 9.3622900013809272E-03 + 402 4.4866154779878230E-02 + 403 2.2648965029818679E-02 + 404 2.3905076843808448E-02 + 405 1.0131527613432515E-03 + 406 -9.6752087716707198E-03 + 407 -4.4313713409062138E-03 + 408 3.9821052800899110E-03 + 409 6.9072258772885243E-03 + 410 -2.5559208927479035E-03 + 411 -2.8161837758341125E-03 + 412 1.0661090249646068E-03 + 413 -4.4870520355960508E-04 + 414 1.3994691131985536E-03 + 415 1.5067867491406022E-03 + 416 1.2000276162621726E-03 + 417 -1.0140921147899983E-03 + 418 6.2183627231589104E-04 + 419 7.6613273812170715E-02 + 420 -9.3471090612710812E-03 + 421 -5.8238273237316536E-03 + 422 -4.0522458284689547E-02 + 423 -3.2758596071325174E-01 + 424 2.0809516791161138E-03 + 425 1.8467611403780274E-04 + 426 1.3962206894262849E-02 + 427 -1.2167332731497171E-02 + 428 -2.1283808417512876E-03 + 429 -1.1195032671324657E-03 + 430 -5.9386232894869393E-04 + 431 -1.8125607860606764E-03 + 432 8.0699643624573825E-03 + 433 -7.8488473401707012E-04 + 434 7.1988266984249885E-02 + 435 -9.6816257408305295E-02 + 436 1.2803486778723938E-01 + 437 -4.8222215789672966E-03 + 438 4.2286797721289727E-03 + 439 -4.1389546690923425E-03 + 440 8.2681598415319845E-04 + 441 2.2365040887659350E-03 + 442 5.8508997242765716E-03 + 443 4.9191906645639537E-03 + 444 1.7552654659889592E-03 + 445 -1.2823487721492412E-02 + 446 -1.8696154761874116E-03 + 447 -6.6451859991423237E-02 + 448 6.3280037374745357E-02 + 449 -2.7248848199897653E-02 + 450 -1.2657447299227373E-03 + 451 -6.5799152101214578E-04 + 452 -1.4055491270448480E-03 + 453 -2.0789193614429515E-02 + 454 -1.7556131327013808E-02 + 455 -3.4344184523822166E-02 + 456 -3.2610329654620636E-02 + 457 1.2920324310842293E-02 + 458 -5.1949666028694831E-03 + 459 -1.0733263681638560E-02 + 460 -7.1298423643712720E-04 + 461 -1.0716614777502038E-02 + 462 9.3665633532346824E-03 + 463 1.8630480321409374E-03 + 464 -1.3334051975744216E-03 + 465 4.4176813710715425E-05 + 466 4.6146306542807838E-04 + 467 -4.5108166148324966E-05 + 468 -4.6198530583446239E-05 + 469 1.1096800624595402E-03 + 470 -6.1950031488872568E-03 + 471 2.3745218619560917E-03 + 472 -1.2577833771408952E-02 + 473 -1.1248494482164079E-02 + 474 -3.6270131118904356E-02 + 475 2.5722272023584324E-03 + 476 2.8120430657330195E-03 + 477 -6.1366862000951787E-05 + 478 1.9377181194915664E-02 + 479 3.3154545297876943E-05 + 480 2.3228645601350129E-02 + 481 1.8155319991773882E-03 + 482 1.5159977248360387E-03 + 483 4.2312287167724939E-03 + 484 -3.8730822617558912E-03 + 485 6.4741410722200035E-03 + 486 5.0520898202650248E-04 + 487 3.2786233826977693E-04 + 488 -3.3658135301359108E-05 + 489 -2.0991782700943172E-04 + 490 -3.0068065565498706E-04 + 491 -9.4712890932295991E-04 + 492 1.6723417971918049E-03 + 493 -2.0593978120418042E-03 + 494 -1.0251029927280681E-03 +Ene= -2.1642181480E-01 +Spin= Alpha +Occup= 2.0000000 + 1 1.2298864108293581E-03 + 2 2.7209079805690056E-03 + 3 5.0852612902801970E-02 + 4 8.9203760613846030E-03 + 5 4.7137399856120366E-02 + 6 -3.9148950793206315E-03 + 7 1.2440663686549247E-04 + 8 -3.7630602154796796E-03 + 9 -1.4374324582269091E-02 + 10 -5.3588869870955158E-03 + 11 9.6904508750265596E-03 + 12 -3.8618934053194068E-02 + 13 3.0122151232138128E-02 + 14 -3.0152271771038248E-03 + 15 -6.8685762006326862E-03 + 16 3.7439748674474873E-03 + 17 -9.6989577498660228E-03 + 18 5.4472525395957046E-03 + 19 -3.5872713126028024E-04 + 20 -8.4420341376400003E-04 + 21 1.5863610830895544E-03 + 22 1.9697809353746210E-03 + 23 -2.0157101199580097E-03 + 24 2.7530438123968730E-03 + 25 6.7450081007136965E-04 + 26 -2.2225411366468367E-02 + 27 -9.3158756395810406E-04 + 28 1.2842768276998579E-03 + 29 -1.0149561092165352E-01 + 30 6.9160101878128183E-02 + 31 3.2218568472365768E-03 + 32 5.9604601944328013E-03 + 33 -4.2271061826979301E-03 + 34 -6.3229407701955689E-02 + 35 2.2522563265191552E-02 + 36 2.7284340972811606E-02 + 37 -4.7966965998563982E-02 + 38 -5.8987277495362839E-02 + 39 -2.0589805530030397E-02 + 40 -1.1432742108624066E-02 + 41 9.9103248228603127E-03 + 42 -1.4339882715975864E-02 + 43 2.8411034633387625E-03 + 44 7.5078145536692890E-04 + 45 3.3375019962719847E-03 + 46 9.0952346065579473E-04 + 47 -1.0070164790431953E-04 + 48 -3.2191303201981568E-03 + 49 1.7573239071576748E-03 + 50 1.3613846157429237E-03 + 51 4.7990525128211343E-03 + 52 -5.9627217025960732E-03 + 53 3.5460852619837682E-02 + 54 5.7811734840475235E-02 + 55 2.3236308049575952E-02 + 56 -4.6722557102041994E-03 + 57 -8.9138439614630128E-03 + 58 -4.8797977637207108E-03 + 59 1.8651216178547994E-02 + 60 2.7061045082082558E-02 + 61 4.7637684547328883E-02 + 62 1.8983767458142353E-02 + 63 -1.3131950354303566E-02 + 64 1.8747400688999142E-03 + 65 -3.8286240749898851E-03 + 66 6.9771744175491325E-03 + 67 -7.5608712757826210E-03 + 68 1.7158183638806470E-03 + 69 -2.2778947979147754E-04 + 70 -1.5685893671084010E-03 + 71 -8.0380098002725848E-05 + 72 1.5382179972794785E-03 + 73 -1.4470721104917316E-03 + 74 3.0597352679054258E-03 + 75 1.0859714799122218E-03 + 76 -2.7547503081076705E-02 + 77 3.9719688408035485E-03 + 78 -2.6088172985126318E-01 + 79 -8.9495462459644147E-03 + 80 2.0533991112620453E-01 + 81 1.5859002199478930E-02 + 82 2.2515331657584439E-03 + 83 -1.2680296152213529E-02 + 84 -1.5880960992613476E-03 + 85 -5.7258690005427522E-03 + 86 4.8605415065246878E-04 + 87 1.0175794508663931E-02 + 88 8.1238254024365870E-03 + 89 -9.6596290830079038E-03 + 90 -1.7823407769191975E-04 + 91 -6.3737676630708465E-02 + 92 -1.8853046762221354E-02 + 93 -5.6977147747667808E-02 + 94 3.8591568296688001E-03 + 95 9.6822054277770461E-04 + 96 4.9925912969976212E-03 + 97 -2.9965668985849274E-03 + 98 1.1553833478658098E-03 + 99 -7.6299713574640316E-03 + 100 1.6244576854663139E-03 + 101 -1.7427441932414789E-03 + 102 7.0727075621329905E-02 + 103 -1.0784712935494276E-02 + 104 3.4779615314177514E-01 + 105 -1.7375076447268131E-01 + 106 1.7661503392376460E-01 + 107 -1.8433622740504356E-02 + 108 7.8744285537012387E-03 + 109 -1.3338954006121449E-02 + 110 2.7460056147023668E-03 + 111 -5.5063636734550402E-03 + 112 -2.6444718700867507E-03 + 113 -8.8828007889706039E-03 + 114 8.7428776718461339E-03 + 115 1.8396788479445331E-02 + 116 -3.0518454846528487E-03 + 117 3.6581997295103121E-02 + 118 -7.1335290500993210E-03 + 119 7.1247531596255256E-02 + 120 1.5981294691606702E-04 + 121 -6.6314846711881817E-05 + 122 -4.6464752226335285E-03 + 123 -1.3725941971632149E-04 + 124 -2.2272667749552231E-03 + 125 6.8883959353342988E-04 + 126 2.5602401495214032E-03 + 127 3.0065246399987445E-03 + 128 -3.2848031311314051E-02 + 129 -4.1572433578127800E-03 + 130 -3.2298093244934522E-03 + 131 3.0662777585776974E-02 + 132 4.7695749280503167E-03 + 133 -2.9050722568563017E-03 + 134 5.8640314523381314E-04 + 135 7.7273625458781675E-04 + 136 1.1885259113083179E-02 + 137 1.5692089406480859E-02 + 138 1.4658496121184163E-02 + 139 1.2369179504331206E-02 + 140 2.3017826864920850E-03 + 141 1.3286736632658993E-02 + 142 -1.4892768883033817E-03 + 143 -5.5909499653909029E-04 + 144 3.2064240958459504E-03 + 145 1.1946039961367859E-02 + 146 -3.7909903516400028E-04 + 147 2.9754606157269595E-03 + 148 -1.6436058481095999E-03 + 149 -3.9118825196977702E-04 + 150 -8.0864765117973655E-04 + 151 -1.0310850063663848E-03 + 152 1.1360564545070610E-03 + 153 -4.0248220615923133E-02 + 154 1.3809611532204962E-03 + 155 3.1606783588644667E-02 + 156 4.3396733189061322E-02 + 157 -3.8465523447486390E-02 + 158 -7.6837452226048569E-03 + 159 1.5766731528316495E-04 + 160 3.3008023692726349E-05 + 161 4.5083369515582193E-02 + 162 -4.5512400860757869E-02 + 163 -1.9691564434806675E-02 + 164 -3.3462843285540882E-02 + 165 1.1683732251712403E-02 + 166 1.0537560537860098E-02 + 167 -4.3356757287639396E-03 + 168 -9.5115816774543459E-03 + 169 -8.5719847937727901E-03 + 170 6.4875551446402346E-03 + 171 -6.8548159647377363E-04 + 172 -1.0323551642406248E-03 + 173 9.3478021814357565E-04 + 174 1.4308932388149818E-03 + 175 -7.7466163041294629E-04 + 176 1.9335054786448375E-05 + 177 -9.6296353358191417E-04 + 178 -6.0432275746755700E-02 + 179 8.6694120152901732E-03 + 180 1.7530994678627010E-01 + 181 -5.5676202192848044E-02 + 182 -1.7537339236670529E-01 + 183 -9.4160202130839574E-03 + 184 3.0462780490827881E-03 + 185 1.1082421805251068E-02 + 186 3.9742471902976580E-03 + 187 -2.3482404612548192E-03 + 188 4.5905065975828172E-04 + 189 4.1563105414735655E-03 + 190 -1.3262331442852712E-03 + 191 -2.3443941315123427E-02 + 192 2.4169585143654845E-03 + 193 2.4075735578154656E-01 + 194 9.9893446736918162E-02 + 195 -4.1896082105652252E-02 + 196 -1.3763911152945533E-02 + 197 -6.7938458808195958E-03 + 198 1.7919832019654858E-03 + 199 -1.9311767720819743E-05 + 200 -7.2301433295423696E-03 + 201 -2.3118425045512408E-03 + 202 -3.0850306483082355E-04 + 203 7.1529900525569776E-03 + 204 -5.8679668201808241E-02 + 205 4.3068754411340599E-04 + 206 4.3283880240068649E-02 + 207 -2.2680790184185434E-02 + 208 -3.4922283099513896E-02 + 209 2.3490972627516604E-03 + 210 1.4021711859084109E-03 + 211 2.9525394467124432E-03 + 212 -1.0667522511839920E-02 + 213 -3.8851070172511860E-02 + 214 -2.1304487853446779E-02 + 215 -3.6262730870691491E-02 + 216 5.4969509120246680E-03 + 217 4.0965745322958435E-04 + 218 -1.9248950753287357E-02 + 219 3.1169513661868215E-04 + 220 -1.0316267823408328E-02 + 221 4.1600843259503644E-03 + 222 1.0384517195298753E-03 + 223 1.4044310636975479E-03 + 224 -1.3412020953761329E-03 + 225 -3.2321667179638336E-04 + 226 -2.0806182527044383E-03 + 227 1.0942864200885992E-03 + 228 -2.2546736902540093E-03 + 229 3.8504491485926259E-02 + 230 1.2420170750660395E-04 + 231 -9.4943653743456658E-04 + 232 7.2447076622549136E-02 + 233 -3.4568529762031140E-02 + 234 4.2404762306678884E-03 + 235 -7.2158098615111256E-03 + 236 2.6062387152278391E-03 + 237 -1.7230834013026570E-02 + 238 -2.7870144873009327E-02 + 239 2.9223462467377483E-02 + 240 1.3034949385673020E-02 + 241 -2.0038925032143030E-02 + 242 7.5561523059243709E-03 + 243 -7.8903301360704371E-03 + 244 2.7901768262695329E-03 + 245 8.1713646861989696E-03 + 246 1.9261280320176234E-03 + 247 3.6618846798148791E-03 + 248 5.1034090320059696E-04 + 249 4.8676449532660042E-04 + 250 1.9650338278457574E-03 + 251 2.4229635063935649E-03 + 252 -2.1370740773840450E-03 + 253 1.5627833328187922E-03 + 254 7.9288013536028712E-02 + 255 -2.6933262906421525E-03 + 256 -6.0972463047883367E-03 + 257 3.9370670691218886E-03 + 258 1.3696845332888987E-04 + 259 -2.7312448101035436E-03 + 260 -6.9918032583592908E-04 + 261 -1.2504912903817385E-03 + 262 2.1380127156281108E-02 + 263 -1.2514537832841672E-02 + 264 -2.8657643012226148E-03 + 265 -6.7407683549332263E-03 + 266 1.2569971670772584E-02 + 267 5.2240412408521590E-03 + 268 -5.6910043917422068E-03 + 269 2.1519111639788212E-03 + 270 -5.0283222047111551E-03 + 271 1.1674442379554940E-02 + 272 3.8098031561453565E-05 + 273 1.1582198424430922E-04 + 274 1.9810956866276092E-04 + 275 -4.4779013170509317E-04 + 276 4.8988816140427272E-04 + 277 1.7690017724849810E-03 + 278 1.1530812335892122E-03 + 279 3.2705977398360495E-02 + 280 -2.9757777660659283E-03 + 281 -2.1664935044661301E-01 + 282 1.0498311289316015E-01 + 283 -1.3326630950039702E-02 + 284 1.5276125901382234E-02 + 285 -7.6403051606203773E-03 + 286 -5.2521499807885392E-04 + 287 -9.2640946216025787E-04 + 288 9.6729341276927648E-04 + 289 -4.2735952244217815E-04 + 290 -8.9807163892001982E-04 + 291 5.9813637382080623E-03 + 292 -1.5615794082416971E-02 + 293 1.9846845718748613E-03 + 294 3.0707966084822243E-02 + 295 -1.9163242178972278E-01 + 296 1.1438775469226213E-01 + 297 -2.5855315337339644E-03 + 298 8.0948764198944603E-03 + 299 -8.9355111651858686E-03 + 300 6.5749362311947925E-03 + 301 -8.3829471962617382E-04 + 302 -9.3269478999826981E-03 + 303 -1.8836547160409091E-03 + 304 2.5094567789682725E-03 + 305 3.2319292510575068E-02 + 306 3.7468245969656542E-04 + 307 -3.9831679801661475E-02 + 308 -2.1195774285160149E-03 + 309 -1.9667718162475437E-02 + 310 4.6289941215706910E-03 + 311 3.6792671179122919E-03 + 312 2.1609474663038006E-03 + 313 -8.5401298115526467E-03 + 314 -1.4397292466023478E-02 + 315 -1.6284123526201833E-02 + 316 -4.0232846251576103E-02 + 317 -3.1019454109409431E-02 + 318 -6.5281097532129387E-04 + 319 -4.9573620205788710E-03 + 320 -1.5171339670464793E-03 + 321 -6.1175054345973751E-03 + 322 -1.0915422140055553E-03 + 323 -1.2909902221162840E-03 + 324 -6.4344287199322441E-04 + 325 -4.5596968131006725E-04 + 326 -5.3527797382156806E-06 + 327 4.8834801405300853E-04 + 328 1.3577843212149428E-03 + 329 -1.2084056289924103E-03 + 330 2.7661866922787503E-02 + 331 -6.3910079990381547E-04 + 332 -3.5946973301233615E-02 + 333 -1.7289576878361289E-03 + 334 -3.0394253810581032E-02 + 335 -9.4369611115795898E-04 + 336 5.5211217929751304E-06 + 337 3.2091168655449887E-03 + 338 3.7378448653572292E-03 + 339 -3.1519105806638317E-02 + 340 -2.4127547310031239E-02 + 341 -1.0498912036713225E-02 + 342 -1.1893963164704756E-03 + 343 -1.1031887008973599E-03 + 344 -1.2179098395830453E-02 + 345 -5.2802989353512150E-03 + 346 -6.1193821703060588E-03 + 347 -4.3411127450890428E-03 + 348 6.3029434649269878E-04 + 349 3.7591097874925826E-04 + 350 -1.8115695146924406E-03 + 351 2.5668608176220736E-04 + 352 -9.4531330574434654E-04 + 353 1.2299799709928254E-03 + 354 -1.0037644497922266E-03 + 355 2.0615872125101631E-02 + 356 -1.9798466902982699E-03 + 357 -1.8548791322138328E-01 + 358 1.1873214031564683E-02 + 359 -2.2432938362637191E-02 + 360 8.6324578050663032E-03 + 361 -7.5330516957813377E-04 + 362 1.5885139423947535E-04 + 363 3.6856194500273464E-04 + 364 -4.6406732923417807E-03 + 365 4.6680444679889025E-03 + 366 3.7234915727617549E-03 + 367 -2.7876859714586200E-03 + 368 -9.3153296061778811E-03 + 369 1.5271606195194570E-04 + 370 1.3273409031048938E-01 + 371 1.4505555407204210E-01 + 372 -1.7916372806170849E-02 + 373 -1.0874775053979423E-02 + 374 -1.5480254461368768E-02 + 375 2.8718140650584273E-03 + 376 1.4513785679847368E-03 + 377 -5.5798088293449889E-03 + 378 1.2972693648463896E-03 + 379 -2.6906689644427373E-03 + 380 4.2101291911190875E-03 + 381 5.2777065190526924E-03 + 382 -1.1445482619245777E-03 + 383 -4.3635580424284282E-02 + 384 7.7932859661778223E-02 + 385 9.5857419272032937E-02 + 386 5.9949255300887246E-03 + 387 -6.6066627397995542E-03 + 388 -5.8919416736577931E-03 + 389 -7.1500483664705078E-04 + 390 -1.9114380924476549E-03 + 391 -5.4853278086248059E-03 + 392 -1.4114819426839626E-03 + 393 2.0003112993237475E-03 + 394 1.5181482624422090E-03 + 395 -3.7655127236434415E-03 + 396 -1.3523430216970262E-02 + 397 -1.5390980526708680E-02 + 398 1.5035291210662769E-02 + 399 -9.7513850989557028E-04 + 400 1.2604079688962339E-04 + 401 -2.2982238753810388E-03 + 402 1.8656372361245958E-02 + 403 -3.1762687128151175E-02 + 404 -9.1435084742725881E-03 + 405 1.1515903948548364E-02 + 406 7.9471412930572968E-03 + 407 4.9764020559210651E-03 + 408 -1.1542211961575146E-02 + 409 -9.1512079117343874E-03 + 410 6.3401778596977373E-03 + 411 3.4351835777083365E-03 + 412 -1.4757004194364616E-03 + 413 -1.3542009477347191E-03 + 414 -1.6018776722837298E-03 + 415 -1.8094119031997272E-03 + 416 8.6143448876266717E-04 + 417 3.7564679720104128E-04 + 418 -1.8295871480399932E-03 + 419 1.7780368122275862E-03 + 420 9.1886098046693751E-05 + 421 -1.1097136181454058E-01 + 422 2.9030093585831925E-03 + 423 5.5115002803192516E-02 + 424 5.2546599341361088E-03 + 425 -2.6042965998104009E-03 + 426 -2.7728378931856589E-03 + 427 1.4828544884493008E-03 + 428 -3.8006789056880863E-04 + 429 -8.5400226745137330E-04 + 430 -2.5267698532236765E-03 + 431 4.3407442955180958E-03 + 432 -2.4744231386342908E-02 + 433 3.5638279524831304E-03 + 434 1.4085590117185956E-01 + 435 1.2588762337234481E-03 + 436 1.1592531474013378E-01 + 437 -7.1777860307572746E-03 + 438 -5.3856273084163073E-04 + 439 -3.1884574791959186E-03 + 440 2.7856076024783930E-03 + 441 2.0611498686495160E-03 + 442 2.9147287366879733E-03 + 443 3.5965385194527914E-03 + 444 3.0340603838984628E-03 + 445 -3.9230805165211359E-02 + 446 7.8520867672814609E-04 + 447 1.2371943365248309E-02 + 448 1.9109199755036461E-02 + 449 3.9311510791063084E-02 + 450 -3.7743515496348108E-03 + 451 3.0029513696513700E-04 + 452 9.2922335294839964E-05 + 453 -1.2828945805385156E-02 + 454 1.8983833804430562E-02 + 455 9.7565003758209618E-04 + 456 2.1435407129509063E-02 + 457 7.7942959505406320E-03 + 458 -1.9596255245631806E-03 + 459 -1.4051755436919459E-03 + 460 -1.3491679935483043E-03 + 461 7.5757970542969641E-03 + 462 1.0040752409607391E-02 + 463 -3.8569130826134203E-04 + 464 -1.0298180913623945E-03 + 465 -1.5612412037211332E-04 + 466 1.3035280996145967E-03 + 467 1.7761146389612158E-03 + 468 1.7859620552291249E-04 + 469 9.5970096989949564E-04 + 470 -1.3746013009469256E-03 + 471 -1.8288380325505726E-03 + 472 -8.1200325252664077E-03 + 473 1.6943753239356402E-02 + 474 -2.5075830103747133E-02 + 475 -1.2407869604994860E-03 + 476 -1.3859384101992545E-03 + 477 1.3365963555688337E-03 + 478 1.6410391834994693E-03 + 479 -2.2624605198230839E-03 + 480 2.7738579053544401E-03 + 481 1.6516082797931778E-02 + 482 2.7104811401518374E-02 + 483 4.7881719427105951E-04 + 484 -1.5910160084890088E-03 + 485 1.0458463926296972E-03 + 486 1.5530002343757086E-03 + 487 5.5294603912687569E-03 + 488 7.4236938309951369E-04 + 489 4.1043578512934089E-04 + 490 -1.1653001744540443E-03 + 491 -1.2991173210318413E-03 + 492 3.3975385735479408E-04 + 493 -6.3172696740648032E-04 + 494 1.9061137035484299E-04 +Ene= -2.1124159732E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -1.6188500703096326E-02 + 2 -1.8208809401241827E-03 + 3 -3.5868259651325930E-02 + 4 -5.3216158275501059E-02 + 5 -4.0358759018067597E-02 + 6 4.5433541025052980E-03 + 7 1.1253014512565938E-02 + 8 7.0866171038945925E-03 + 9 -2.8550111044723239E-02 + 10 3.0365793661147156E-03 + 11 -4.8590079876935727E-02 + 12 3.3192642323532921E-03 + 13 -3.0664443433580022E-02 + 14 -1.7530748327670169E-03 + 15 3.1142734281004334E-03 + 16 -2.5266664996859453E-03 + 17 -4.5240098693487595E-03 + 18 -4.3428388495597176E-03 + 19 1.2874732369013488E-05 + 20 3.5973129168868028E-04 + 21 -7.8174034189771994E-04 + 22 -4.3811566304942677E-03 + 23 3.1345309662551700E-03 + 24 -8.8118131790483492E-04 + 25 -1.8713041741529220E-03 + 26 8.9984547773517814E-03 + 27 -3.2728752232797252E-03 + 28 5.7533118604223598E-03 + 29 2.4507222030815977E-02 + 30 -2.7844723817883749E-02 + 31 -9.3215773981273297E-04 + 32 -5.6040356452112181E-04 + 33 1.8566761576038890E-03 + 34 -4.3630234365803879E-03 + 35 3.3908410816270904E-03 + 36 -3.4424696704877106E-02 + 37 -3.1809400104552542E-02 + 38 2.7859527515757293E-02 + 39 -4.1141583861204886E-03 + 40 1.1498718755769298E-02 + 41 -1.2947692432174153E-02 + 42 -1.7577051304398517E-02 + 43 8.3867450359456190E-03 + 44 9.7450147943162733E-04 + 45 1.7844462387090656E-03 + 46 8.9866978758281030E-05 + 47 -1.0711707427469176E-03 + 48 2.4503820558387699E-03 + 49 2.0226158776727012E-03 + 50 -2.3545623356507313E-03 + 51 -2.7171324304143250E-03 + 52 -2.5787053361115320E-03 + 53 -1.0838951448996926E-02 + 54 5.3975887020145767E-02 + 55 1.6789424323864537E-02 + 56 5.2083069883234259E-04 + 57 -2.5499906980629922E-03 + 58 9.3937962479344718E-04 + 59 4.6230242790738091E-03 + 60 2.4736517808579599E-02 + 61 -1.1597254342799570E-02 + 62 3.9716206790057816E-03 + 63 -3.3382899220830722E-02 + 64 4.1866182053491114E-03 + 65 1.8560496635375797E-03 + 66 -2.8412695906921107E-03 + 67 -6.0897001408848558E-03 + 68 -3.3201698072383764E-03 + 69 -1.3815703399743036E-03 + 70 -2.4371258074445731E-03 + 71 4.9292618344772876E-06 + 72 -1.6253735088190985E-03 + 73 1.8461527204724063E-03 + 74 -5.7135518748797140E-05 + 75 -2.8320253962732340E-03 + 76 1.4183831789002416E-02 + 77 -2.6763447252129611E-03 + 78 2.4639015085798555E-01 + 79 -2.5147248160988445E-01 + 80 -9.3421306262545634E-02 + 81 -1.5908892932133677E-02 + 82 1.4394016096375325E-02 + 83 8.6520900112746629E-03 + 84 -1.7748656847014989E-03 + 85 -1.7785503990316723E-03 + 86 7.5371166027099470E-03 + 87 -9.9673199028362143E-03 + 88 1.9899045512933287E-04 + 89 5.0147434951338943E-03 + 90 -1.3665389084747267E-04 + 91 -8.8335387078733989E-03 + 92 -1.3753046076936243E-01 + 93 8.0068667875617713E-02 + 94 -3.3067574829335946E-03 + 95 5.6361264545008363E-03 + 96 -4.9870754664309534E-03 + 97 2.0497373201965223E-03 + 98 -1.7180398263381279E-03 + 99 2.7970768333806491E-03 + 100 4.3391136950022080E-03 + 101 7.0272707050684025E-03 + 102 -2.0046822296172235E-03 + 103 -6.6259403938938018E-04 + 104 8.3991417022043033E-02 + 105 4.2590279785638181E-02 + 106 -5.6042731140700604E-04 + 107 -5.9606435298999189E-03 + 108 8.4211428641102113E-04 + 109 -1.4964221864696757E-03 + 110 -3.1046775989572858E-05 + 111 -3.3212875874881779E-03 + 112 2.2203199831733914E-04 + 113 -3.1319268006509888E-03 + 114 -1.3044900489303561E-04 + 115 8.1625063880156855E-03 + 116 -7.5250389529198157E-04 + 117 4.2893693706581824E-02 + 118 -1.0193260771912520E-01 + 119 -4.3336522557118277E-02 + 120 1.2971511876308368E-04 + 121 3.4117185690040646E-03 + 122 4.9246224534850750E-03 + 123 1.3267953816842053E-03 + 124 1.1811090640974587E-03 + 125 3.4412785219270592E-03 + 126 4.4076601001984443E-04 + 127 -1.9671498098563695E-03 + 128 3.1932595909983312E-02 + 129 9.1932642033333849E-04 + 130 -2.7558070258991273E-03 + 131 -8.7954939685624643E-03 + 132 7.1668868020290421E-03 + 133 4.3577949532667111E-03 + 134 -1.4000032632536038E-04 + 135 4.3621501566198425E-03 + 136 3.0209428579588648E-02 + 137 9.1023009524564356E-03 + 138 -4.5091476509032885E-03 + 139 -4.3241483428635673E-03 + 140 -1.1985117694032739E-02 + 141 1.4008776769178588E-02 + 142 9.6184216295234831E-04 + 143 -6.7919759757973774E-03 + 144 2.4750630486496008E-03 + 145 2.4277093163911352E-03 + 146 -3.6430946785306825E-03 + 147 3.0375883665815407E-03 + 148 1.6992951604515960E-03 + 149 3.6803473132858791E-04 + 150 1.8642328446628412E-04 + 151 -1.0331334718433408E-03 + 152 -1.4905100689031089E-04 + 153 -1.3113675020069266E-02 + 154 -4.0574272479985364E-03 + 155 1.7209025093532625E-02 + 156 3.0031367575411973E-03 + 157 1.9721679621641834E-02 + 158 -6.6621773907296546E-04 + 159 -1.9564454394877381E-03 + 160 1.7140811248978287E-03 + 161 1.1899985095428969E-02 + 162 -3.3174910107599265E-02 + 163 2.8283993206305686E-03 + 164 4.6485918679754872E-03 + 165 -2.3672385951121609E-02 + 166 3.2188493386868470E-03 + 167 -9.8766344537456370E-03 + 168 2.3324559329406789E-03 + 169 4.4790016873700860E-03 + 170 -5.2860053225355762E-03 + 171 -1.3212883428315820E-04 + 172 -1.7152428579371540E-04 + 173 1.6139135016148836E-03 + 174 -5.2896611285623832E-04 + 175 -2.1667994791514997E-04 + 176 2.8308143550915182E-04 + 177 -6.3196538133516642E-04 + 178 -3.5347550853213471E-02 + 179 4.6593667557541145E-03 + 180 3.1768882940482954E-02 + 181 -2.1686407698839338E-01 + 182 -2.3013436808270957E-01 + 183 -3.7748940036033372E-03 + 184 1.0776559605625157E-02 + 185 1.3602042573653108E-02 + 186 6.2268345517818985E-03 + 187 -3.6381071473538988E-03 + 188 6.5715465576690604E-03 + 189 8.9745958196571756E-04 + 190 -2.1043831726710489E-03 + 191 -4.5264377461928275E-02 + 192 5.2646292476264366E-03 + 193 4.2068276115335569E-02 + 194 1.4866671383662422E-01 + 195 -4.6410187515099482E-02 + 196 -2.5618844097530630E-03 + 197 -1.2473380243460199E-02 + 198 -5.4613486214507797E-05 + 199 2.2615305533741337E-03 + 200 -5.2517643865517983E-03 + 201 3.0977874493843161E-04 + 202 8.2306945520898347E-05 + 203 -6.0626967913024064E-04 + 204 -5.4733051018823232E-02 + 205 3.4983043650120278E-03 + 206 -3.8705045918513204E-03 + 207 3.0321338339045410E-02 + 208 -7.6727150797555821E-02 + 209 1.6820697485879225E-04 + 210 -1.7934487174489776E-03 + 211 6.7384485846292157E-04 + 212 -3.8813018393625179E-02 + 213 -2.9147784596655714E-02 + 214 -2.9457587325335894E-02 + 215 -2.0423055600263037E-04 + 216 3.3432098869900340E-02 + 217 -1.5077903822526507E-02 + 218 -5.1245678473848671E-03 + 219 -9.3549343597606281E-03 + 220 -5.7783642452798663E-04 + 221 9.1796540568541546E-04 + 222 8.7729904522244201E-04 + 223 -1.2750087868404548E-03 + 224 4.9387774871710783E-04 + 225 2.5942660382458695E-04 + 226 2.5936942981103579E-04 + 227 -5.8359525021649803E-04 + 228 -1.4776926071614397E-03 + 229 6.9374528604815702E-02 + 230 -3.9846133661601763E-05 + 231 5.5227713528951783E-02 + 232 4.6519625540029971E-03 + 233 -1.0219469025834507E-02 + 234 -9.0098349194062417E-03 + 235 9.3443629722506555E-05 + 236 3.8234724050588628E-03 + 237 3.7305471420607333E-02 + 238 6.5369175099543070E-02 + 239 3.3931243025491060E-02 + 240 -2.3876915894815842E-02 + 241 1.1771150225755351E-02 + 242 -2.8148989487246766E-03 + 243 1.6822798515501485E-02 + 244 7.0663508542460965E-03 + 245 -1.6643904009428601E-02 + 246 5.3304712331448617E-03 + 247 8.9873012298855937E-04 + 248 -1.2407788057113255E-03 + 249 2.1563361717788845E-03 + 250 -1.5500316023074722E-03 + 251 -3.3932291941595701E-03 + 252 1.1210536980769262E-03 + 253 1.6628423656197365E-04 + 254 6.2470589656519193E-03 + 255 6.3451783659949426E-03 + 256 2.3522595262880190E-02 + 257 2.1961260463361328E-02 + 258 2.9958029511786180E-02 + 259 -1.4224275042879974E-03 + 260 2.5084897046000264E-04 + 261 -2.3878646668838931E-03 + 262 -1.4940895916021355E-02 + 263 -1.4244960839464044E-02 + 264 -2.1199588098123511E-02 + 265 2.9671121255986812E-03 + 266 -7.0454323763665377E-03 + 267 6.2408515542613707E-03 + 268 -1.3450184941864454E-03 + 269 -1.4625959887221743E-02 + 270 -3.5360089313526866E-03 + 271 1.2264391445538174E-03 + 272 -1.2327185912283736E-03 + 273 -7.0600761476516654E-04 + 274 5.2577205474700856E-04 + 275 -1.6011043706335704E-03 + 276 4.1260369326978424E-04 + 277 7.7387844720907379E-04 + 278 2.0829670184631969E-03 + 279 -9.0166515973669585E-03 + 280 8.6436386118632466E-04 + 281 -2.9731550647278341E-02 + 282 -2.7110108719085046E-01 + 283 1.1085012891467938E-01 + 284 -6.8047086059035296E-04 + 285 1.6936240771463253E-02 + 286 -1.0908448607393456E-02 + 287 5.3529674267824236E-04 + 288 1.4609532486356278E-03 + 289 -4.5914260490019145E-03 + 290 -1.0095560804213045E-02 + 291 -1.5904406807589623E-03 + 292 5.9545956197056327E-02 + 293 -6.3229655294212176E-03 + 294 1.5185195235148230E-01 + 295 9.6112308693352730E-02 + 296 -1.9540989011740281E-01 + 297 -5.9218388217677602E-03 + 298 -1.3158003382762915E-03 + 299 1.4952026275851895E-02 + 300 -3.6296811473319110E-03 + 301 5.2649881992272015E-03 + 302 2.6955739131622396E-03 + 303 1.3292880962034632E-03 + 304 -4.0365028204329767E-03 + 305 3.3813217246992010E-02 + 306 -3.9351595000367470E-03 + 307 3.1236218194481684E-02 + 308 2.3163325473932603E-02 + 309 2.1952289774846052E-02 + 310 -4.3338503820784507E-03 + 311 -9.5500506650674413E-03 + 312 -2.8759915022058854E-03 + 313 -6.0710765993247408E-03 + 314 1.1967087455018300E-02 + 315 9.9628513363318964E-03 + 316 2.1688726377484837E-02 + 317 2.2293645982061371E-02 + 318 -1.4224031851799927E-03 + 319 3.9976886031412749E-03 + 320 3.3874598483957720E-05 + 321 5.8605314792060399E-03 + 322 1.7836323459676320E-03 + 323 1.6834912936215015E-03 + 324 1.1722092167738859E-04 + 325 2.3890232311083569E-03 + 326 1.8484636935227872E-03 + 327 -7.5251873831162243E-04 + 328 1.9151042255828908E-03 + 329 1.6174398744050863E-03 + 330 -7.0259170261281687E-02 + 331 -1.4346398950566019E-03 + 332 -2.7723907996660149E-02 + 333 -9.1839068792705092E-03 + 334 -6.0909922748759830E-03 + 335 2.2499702427632010E-03 + 336 -1.1298715438033322E-03 + 337 2.0542114611894601E-03 + 338 -1.0136949523827529E-02 + 339 4.3751218103394466E-03 + 340 -1.3266697184999909E-02 + 341 -1.3234164565512807E-03 + 342 -9.6392878649054301E-03 + 343 4.5096457240895215E-04 + 344 -1.4974858208951361E-04 + 345 -2.6948046160230172E-03 + 346 -1.2535685314754822E-03 + 347 1.6300008300675509E-03 + 348 1.8909576404412860E-04 + 349 4.8919992134952017E-04 + 350 -4.6131299066137350E-05 + 351 1.3339104916975024E-03 + 352 -1.1672078780265802E-03 + 353 -3.5337046975475618E-04 + 354 -8.0592028800535937E-04 + 355 -1.0555341797214377E-02 + 356 1.1490300342397555E-04 + 357 1.4807188339183205E-01 + 358 5.5733584643752707E-02 + 359 -6.1343619889991471E-02 + 360 -1.0165815661806667E-02 + 361 -5.2835538908690199E-03 + 362 6.0960316720475418E-03 + 363 -2.4361885415514965E-03 + 364 3.3271260461800083E-03 + 365 -3.2726398985829402E-03 + 366 5.5336990517140892E-04 + 367 1.2746408870830605E-03 + 368 2.6919901163046073E-02 + 369 -4.2308996899107811E-03 + 370 3.3240952864888589E-02 + 371 2.5654594155900451E-01 + 372 -1.4043812572529241E-01 + 373 -4.1368904789264799E-03 + 374 -2.7755022808051633E-02 + 375 1.8792879872298052E-02 + 376 -1.1488134374257667E-03 + 377 2.0350361638705300E-03 + 378 4.5590008482201733E-05 + 379 -4.9412376078957583E-03 + 380 6.1560270592827756E-04 + 381 -1.7856225106618499E-02 + 382 8.8981241118792249E-04 + 383 -1.9947520187201115E-01 + 384 7.0100347855753933E-02 + 385 2.3153064545776128E-01 + 386 2.3405315264193888E-02 + 387 -5.1758553191341879E-03 + 388 -1.7136665549177896E-02 + 389 -6.9093591203357495E-03 + 390 -1.4582683204993608E-03 + 391 -4.9067752285820538E-03 + 392 6.0334618706895946E-03 + 393 9.9917257593423042E-03 + 394 1.2862780329544226E-02 + 395 -3.7879682870515367E-03 + 396 -9.1149288566077624E-02 + 397 8.1092925116457455E-03 + 398 2.4530326741347488E-03 + 399 4.7475935998679761E-03 + 400 2.4888729150754586E-03 + 401 -1.8002356219847908E-03 + 402 6.8241735865012698E-02 + 403 -5.9764035944935033E-02 + 404 1.5083836478502323E-02 + 405 6.4129222086667815E-03 + 406 -5.2228621465202326E-03 + 407 5.5510614339549158E-03 + 408 -1.4375127276035345E-02 + 409 -4.8036684962280895E-03 + 410 -2.6530468654284390E-03 + 411 3.0347754143052446E-03 + 412 -5.6679287393407885E-04 + 413 -5.0708146211612569E-04 + 414 -1.6464411702314667E-03 + 415 -1.0145939166022870E-03 + 416 2.7215495947322419E-03 + 417 -4.9281738933419845E-04 + 418 -4.3547948763114955E-04 + 419 1.4507460618221647E-02 + 420 -2.0457787117444354E-03 + 421 8.6400258961169731E-03 + 422 -2.1007954671116796E-02 + 423 -8.1561116416533103E-02 + 424 -1.0245676042677403E-03 + 425 1.6020625969219188E-03 + 426 6.6019141919830115E-03 + 427 -2.8165581326867919E-03 + 428 1.6720638619189658E-03 + 429 7.6994580464168744E-04 + 430 -1.4088726709699545E-03 + 431 2.3793979970893101E-03 + 432 -1.9567615353220782E-02 + 433 4.2233268242138486E-03 + 434 7.3151672970344889E-02 + 435 4.6501234494952318E-02 + 436 -2.0412255438623048E-01 + 437 -5.6628705559354630E-03 + 438 -3.1913558976980386E-03 + 439 9.7738478497009472E-03 + 440 -9.6072765119802650E-05 + 441 -4.2100110448412545E-03 + 442 -4.4156306561940169E-03 + 443 -2.4962858013852761E-04 + 444 2.3417666368247794E-03 + 445 -8.0119278289809154E-03 + 446 1.4845315747216122E-03 + 447 4.5626837094070886E-02 + 448 2.1701900862305607E-03 + 449 -2.4399177158621346E-02 + 450 -5.7274286372080050E-04 + 451 -3.7930020998448000E-04 + 452 -1.5807511609054687E-03 + 453 9.9817404904888798E-03 + 454 2.3341486557411278E-02 + 455 1.4184030808917237E-02 + 456 -2.9898290832054666E-02 + 457 -2.2406064197602462E-02 + 458 -1.0396453939815857E-02 + 459 5.9480430813091114E-03 + 460 -1.5127852363417584E-04 + 461 -1.0021717826058265E-02 + 462 -4.1640782863079781E-03 + 463 -1.8295126636779671E-03 + 464 1.9268754150745215E-05 + 465 -6.7302974454661675E-04 + 466 -3.4400436896005230E-05 + 467 8.8143418016638046E-04 + 468 -1.2516195557442655E-03 + 469 -1.5966393587869680E-03 + 470 -6.5168373005076136E-02 + 471 -2.1271860958955449E-04 + 472 1.6003419204123102E-02 + 473 -2.7607064836925228E-02 + 474 -1.1396808953110881E-02 + 475 1.0508781586878193E-03 + 476 5.2320509036081868E-03 + 477 1.5474443445632124E-03 + 478 -1.9061683598703878E-02 + 479 -1.4045342771473887E-02 + 480 -3.8236595583776234E-02 + 481 1.0667426512731554E-02 + 482 7.6938174538510725E-03 + 483 -5.5513228523633744E-03 + 484 -1.4455767810951272E-03 + 485 -1.0300455104732140E-02 + 486 3.3797119947966861E-03 + 487 3.8982588265910677E-03 + 488 -1.4822688965236874E-03 + 489 -8.8795817260377047E-04 + 490 -1.8265905876996185E-03 + 491 -6.7410644931777445E-04 + 492 6.2582133677355981E-04 + 493 -2.0194419611296445E-03 + 494 -1.2253798428004451E-03 +Ene= -2.1008291715E-01 +Spin= Alpha +Occup= 2.0000000 + 1 6.9979923954358982E-03 + 2 -3.3554795994986016E-03 + 3 -1.8968754318150090E-02 + 4 -7.6612570970657117E-03 + 5 1.7913342298525908E-02 + 6 1.3192408178462145E-03 + 7 3.2000844028528012E-03 + 8 -8.8912410109953449E-05 + 9 3.1478218609753876E-03 + 10 -7.9417530340183864E-03 + 11 -1.1962613889333463E-02 + 12 5.6104676613620910E-03 + 13 -2.0627388810304154E-03 + 14 4.1622067105046897E-03 + 15 -5.3703815420767806E-03 + 16 -6.5576228295649583E-03 + 17 1.6707499715702661E-03 + 18 -2.8390905028032876E-03 + 19 -1.7819984241439221E-04 + 20 -1.1246189247270614E-03 + 21 5.6752566797785124E-04 + 22 1.7005806149352769E-03 + 23 2.0845134545953554E-03 + 24 -5.2401443008608052E-04 + 25 -3.6292427487750301E-04 + 26 2.7056998810478742E-02 + 27 -3.6830831978153958E-03 + 28 2.8935206981935978E-02 + 29 3.0902077360911939E-02 + 30 -1.2559503901141045E-02 + 31 -2.0248848306978848E-03 + 32 3.9213488524638383E-04 + 33 9.4119775532681635E-04 + 34 1.2268579411126770E-02 + 35 -4.3658613133038940E-02 + 36 -2.5356305256458295E-02 + 37 -1.0660782159668017E-02 + 38 -8.0493604657551673E-03 + 39 3.1754830712531499E-03 + 40 -5.6159710625952354E-03 + 41 -5.3815964747133604E-03 + 42 -1.0697882740442091E-03 + 43 -3.1195318998963801E-03 + 44 6.4648459457550776E-04 + 45 -1.9247669908248949E-03 + 46 2.7388607806933126E-04 + 47 2.0748841714560235E-04 + 48 -2.4977759239274788E-04 + 49 -1.3512499481466264E-03 + 50 -9.1147915425763637E-04 + 51 2.9027666893339511E-02 + 52 5.4150299664486803E-05 + 53 3.5696753953868531E-02 + 54 -1.3851511519454388E-02 + 55 -2.3370787534604642E-02 + 56 -5.6222820839162317E-03 + 57 1.9114378606951256E-03 + 58 -4.4510147124020158E-04 + 59 3.9831601678482410E-02 + 60 -3.2659405403028161E-03 + 61 5.4687189630275987E-03 + 62 2.9831663533685399E-02 + 63 3.8805847760823388E-02 + 64 3.6432953406912712E-03 + 65 1.0962674605304572E-02 + 66 7.1435225093974470E-04 + 67 2.0575103581799772E-03 + 68 4.9504703004354363E-03 + 69 -1.5509911898485868E-03 + 70 -1.1422006077214757E-04 + 71 -1.2684815160757153E-03 + 72 -1.2802693628414437E-04 + 73 -2.3309953285442379E-04 + 74 9.7897596877105490E-04 + 75 7.6324860938385914E-04 + 76 2.4645703144555352E-02 + 77 -2.4319287954856685E-03 + 78 1.2975780972928991E-01 + 79 5.2335194385584850E-02 + 80 -8.4335162434600375E-02 + 81 -8.7611968433743675E-03 + 82 -2.3050829628877539E-03 + 83 8.4408199560305876E-04 + 84 7.3700504147269507E-04 + 85 5.4198015235293968E-04 + 86 1.5410515629396286E-03 + 87 -1.3561939549865680E-03 + 88 -3.0536271584081561E-03 + 89 2.9761102179420251E-02 + 90 -2.6565879932670955E-03 + 91 6.8159736107110722E-02 + 92 -4.1432545404447164E-02 + 93 -9.5437773691686739E-02 + 94 -3.8786176901479340E-03 + 95 3.9113539555697208E-04 + 96 5.2325818533283377E-03 + 97 -1.1520380110861181E-03 + 98 3.6783411108389026E-03 + 99 -1.5561554543423930E-03 + 100 6.7300822902810475E-04 + 101 2.5002590176670630E-03 + 102 2.5314899372967919E-02 + 103 -2.8103738040697783E-03 + 104 8.6987072436919666E-02 + 105 3.4449544764528710E-02 + 106 2.1537637847662383E-02 + 107 -6.4392999000999571E-03 + 108 -1.1573910361331499E-03 + 109 3.1213863978842272E-03 + 110 -2.2649640709105010E-04 + 111 2.6849093869249310E-03 + 112 3.0795861922876095E-05 + 113 -6.9753662054215337E-04 + 114 -1.4607207214994771E-03 + 115 1.4288602303763737E-02 + 116 -2.7394245954315789E-03 + 117 1.1034256738194123E-01 + 118 -2.7532681186192613E-02 + 119 1.2807422894574638E-01 + 120 -7.3699234095505051E-03 + 121 3.8914708226297848E-03 + 122 -1.0573897280087051E-02 + 123 -1.7180707279199042E-03 + 124 -2.1135368489713815E-03 + 125 1.8970305753619797E-04 + 126 -1.2341567062002031E-03 + 127 -2.6364494659541814E-03 + 128 4.7556161371155228E-03 + 129 -4.4376937907907472E-04 + 130 -2.7483149432365277E-02 + 131 1.4610557017456395E-02 + 132 6.3263449294400184E-02 + 133 -1.8003896941261035E-03 + 134 3.2700320834199723E-03 + 135 -3.9883048609114010E-03 + 136 -6.3460470790876978E-03 + 137 5.2041837235563569E-02 + 138 -5.6107778797721115E-02 + 139 -3.3237291617479896E-02 + 140 3.8163408802613076E-02 + 141 -4.6155301086858455E-03 + 142 1.4530383787945285E-02 + 143 -1.2715206736236249E-02 + 144 -1.3079240915793475E-02 + 145 9.1330764752801021E-03 + 146 2.1666356155819158E-03 + 147 1.8478916714875257E-03 + 148 -2.4003176135273955E-03 + 149 1.9166047861849029E-03 + 150 -2.3186669430511698E-03 + 151 5.7983723941802494E-04 + 152 1.3794400083803561E-03 + 153 3.6537508285841888E-02 + 154 -3.3123294091348602E-03 + 155 -2.3349987582775484E-03 + 156 -1.3576085503172080E-02 + 157 -4.2853047153315900E-02 + 158 -2.0299429962816144E-03 + 159 -5.9142664021079273E-04 + 160 -3.1232072792690660E-03 + 161 -2.7387382253037215E-03 + 162 1.9016388368337481E-02 + 163 2.9925583976317667E-03 + 164 9.0342497974446774E-03 + 165 -5.3606133956394537E-03 + 166 8.7666171220791567E-03 + 167 1.2428965440061423E-02 + 168 -1.8442582502445886E-03 + 169 -9.7615354644469288E-04 + 170 3.3601666222219382E-04 + 171 -2.0500213977053760E-03 + 172 -9.9437668665785812E-04 + 173 7.0336871300755209E-04 + 174 3.7157010368418900E-04 + 175 -2.3100420293142450E-04 + 176 -1.7569957796060140E-03 + 177 -5.6251078819540999E-04 + 178 4.3465610360485768E-02 + 179 -6.5410898046311229E-03 + 180 -4.2992896769555040E-02 + 181 -2.7897318524730833E-02 + 182 2.9450694766696645E-01 + 183 4.3589198909301944E-03 + 184 -2.2218246052535485E-04 + 185 -2.0347007004410656E-02 + 186 -6.0970228651801217E-03 + 187 6.0125221938255816E-03 + 188 3.2346741744721191E-05 + 189 1.0511400746062360E-03 + 190 1.0205998258398688E-04 + 191 3.8749860627154027E-02 + 192 -5.1341066697822534E-03 + 193 1.1558241170898728E-01 + 194 -8.2650122664455095E-02 + 195 9.6898345001300790E-02 + 196 -8.6403691446697885E-03 + 197 7.2658627924369959E-03 + 198 -4.3191047021954561E-03 + 199 -2.5303135321019850E-03 + 200 3.0508174743984359E-04 + 201 -1.0523289527224237E-03 + 202 3.0579862225636766E-04 + 203 4.8443615401584060E-03 + 204 3.8529277273072239E-02 + 205 -4.6647519941006915E-03 + 206 2.9222329768099957E-02 + 207 -2.7051703002453874E-02 + 208 4.4180849713091074E-02 + 209 -7.3321176476075960E-04 + 210 2.0230805698563913E-03 + 211 -3.1584966226319258E-03 + 212 3.9625192452331738E-02 + 213 -7.6024105723045904E-03 + 214 2.8127763389305289E-02 + 215 -2.8034966881948870E-02 + 216 -2.7723314428348987E-02 + 217 4.6362496489979780E-03 + 218 -6.1635824929823302E-03 + 219 1.3240538787637621E-02 + 220 -3.8878054206769961E-03 + 221 3.3481503222667162E-03 + 222 -2.1326427073920916E-03 + 223 1.7261649087190480E-03 + 224 -1.3526466062601776E-03 + 225 -2.3153122394039805E-03 + 226 -7.4705307828105819E-04 + 227 -6.2401713189853478E-04 + 228 -1.1714385160451020E-03 + 229 5.6061043200504659E-03 + 230 -1.9103678554930946E-03 + 231 1.3152984496257417E-02 + 232 -5.5553396685793389E-03 + 233 7.0761160045858650E-03 + 234 -1.2649016233395472E-03 + 235 -9.5124456265152516E-04 + 236 -1.5303540990911403E-03 + 237 -1.5300779990937852E-04 + 238 1.2429088582221685E-02 + 239 -1.0941137756705103E-02 + 240 -3.5197359921021909E-02 + 241 3.3556199522833865E-05 + 242 8.0115274468094111E-04 + 243 -1.4935022875174134E-03 + 244 -2.2920890436575614E-04 + 245 -1.8299234029479087E-02 + 246 -2.3863041370512329E-03 + 247 7.9370731523562108E-04 + 248 -3.5977497554547344E-04 + 249 -2.9238446862127132E-04 + 250 -8.2394366468756491E-04 + 251 -2.5343993709965417E-04 + 252 -1.3285095246291366E-04 + 253 1.6097355688282128E-03 + 254 -6.3813946016530801E-02 + 255 -2.0057676896044615E-03 + 256 2.3899471361435151E-02 + 257 2.6255081570179971E-03 + 258 3.1406600426349976E-02 + 259 -2.7288721114253643E-04 + 260 4.4684058973931597E-03 + 261 -6.9208215135344170E-03 + 262 -1.2366404860193411E-02 + 263 -1.7346117987444194E-02 + 264 -2.6411561153954825E-02 + 265 -9.1845121186465151E-03 + 266 -2.5425989527818058E-03 + 267 6.5874466471394387E-03 + 268 -2.2756266652112695E-03 + 269 -9.2419337591828927E-03 + 270 -2.0518298593457289E-03 + 271 -4.1809857247285245E-03 + 272 -2.5626387625243500E-03 + 273 -1.9788236197176090E-03 + 274 4.7708972610181841E-04 + 275 -6.1754305627545350E-04 + 276 6.2383221216475777E-05 + 277 -1.2356479809033536E-03 + 278 1.0039763267381068E-03 + 279 -4.6362721928736514E-02 + 280 5.4197853347378805E-03 + 281 -8.7772311740112588E-02 + 282 -1.6193395772123670E-01 + 283 1.3315854864020821E-01 + 284 3.3500448560797340E-03 + 285 8.1188172690220585E-03 + 286 -7.5453624040772854E-03 + 287 5.5329375491197106E-03 + 288 4.5208781436564486E-03 + 289 9.3785873653382586E-04 + 290 -3.2848382251146157E-03 + 291 2.3571428915283399E-03 + 292 -3.7685144583698743E-03 + 293 1.3216116164871210E-03 + 294 2.9142124152442331E-02 + 295 1.4321676921996464E-02 + 296 7.9114301653940722E-03 + 297 -5.1943363955340403E-03 + 298 -1.1592766299136587E-03 + 299 -4.7117603926283714E-03 + 300 -1.1832244984476251E-03 + 301 -6.6639708033006671E-04 + 302 -6.8751818033828329E-04 + 303 -6.3261904556829215E-04 + 304 -1.7724449688049004E-03 + 305 -3.3152896164471785E-02 + 306 4.8661379928957955E-03 + 307 -5.3692054165808550E-03 + 308 1.3937326722860575E-02 + 309 -1.9538993442808097E-02 + 310 -4.7547307747153452E-03 + 311 -8.6126107896924639E-03 + 312 1.6116663148347540E-04 + 313 2.4776749561053746E-02 + 314 2.6727307833244385E-02 + 315 1.2141118513334461E-02 + 316 3.3176399236254706E-02 + 317 -1.7957208905438993E-02 + 318 2.4011186583403998E-03 + 319 1.1350904147658443E-02 + 320 2.3629499493155637E-03 + 321 8.4254962354613702E-03 + 322 -3.0886043422071467E-03 + 323 -1.7177355602377117E-03 + 324 1.3494190247780847E-03 + 325 1.0720117674306111E-03 + 326 1.0805103650274748E-03 + 327 -2.5710478941124825E-04 + 328 1.2625542876672244E-03 + 329 -2.1564427052367203E-03 + 330 3.3285787161601688E-02 + 331 1.3803867826757282E-03 + 332 -8.4714651508601482E-03 + 333 -2.5807783827387642E-02 + 334 1.6765652258781218E-02 + 335 -2.4699444343192199E-03 + 336 1.6646598205171019E-03 + 337 -5.9356816664988630E-03 + 338 2.5199705920103239E-02 + 339 -1.3092186892491312E-02 + 340 3.3368930766328131E-02 + 341 1.2610640704014287E-02 + 342 1.5088910783314782E-02 + 343 6.4431789550349113E-03 + 344 2.3647398618828947E-03 + 345 2.7450681298916732E-03 + 346 1.6808287578553515E-03 + 347 -1.1777719912429393E-03 + 348 4.4423360211636321E-04 + 349 1.7018475640970248E-03 + 350 3.6510202204213056E-04 + 351 -3.0086950857428815E-04 + 352 -5.3406958897641828E-04 + 353 6.2166795421474225E-06 + 354 -3.4445976116399254E-04 + 355 -3.0080034627989843E-02 + 356 4.1610083984406536E-03 + 357 5.9550089441112099E-02 + 358 1.8275122802419033E-01 + 359 2.4477642319589313E-01 + 360 -4.0911093479872682E-03 + 361 -1.1130434798976598E-02 + 362 -1.7377892951914151E-02 + 363 3.3746880130053830E-03 + 364 6.0641657910778433E-04 + 365 7.8630142669399213E-03 + 366 -7.0137820795450627E-04 + 367 2.9134643970711682E-03 + 368 -4.0439694901970979E-03 + 369 5.7817296923627572E-04 + 370 1.6602056213233859E-01 + 371 -2.4722143458518409E-02 + 372 4.1626791035333699E-01 + 373 -2.1290303924075861E-02 + 374 6.8545905446916943E-03 + 375 -4.3047727329146371E-02 + 376 7.8970378346111397E-03 + 377 -1.6155262694852221E-03 + 378 1.6364793760843665E-03 + 379 -2.6684236648456768E-03 + 380 7.5693507340808368E-04 + 381 -2.6131370642352193E-02 + 382 2.2390164983677515E-03 + 383 -1.0671499494509017E-01 + 384 3.8783384695009041E-02 + 385 1.9162979940102459E-01 + 386 1.2584775939507515E-02 + 387 -2.0595415341699555E-03 + 388 -2.0013873833396416E-02 + 389 -6.3742719393078510E-03 + 390 1.9462893855225207E-03 + 391 -6.8720128236444281E-03 + 392 1.9200805827832611E-03 + 393 6.8436322350918545E-03 + 394 -9.9817631754134134E-02 + 395 -9.6666595091271154E-04 + 396 1.5147840999820521E-03 + 397 -4.5010113464551853E-02 + 398 9.6282578108718833E-02 + 399 2.6059313196162403E-03 + 400 1.0094591387569297E-03 + 401 -1.1908123747936771E-02 + 402 -3.3203448075243100E-02 + 403 -4.3287825919814039E-02 + 404 -5.2614438597602640E-02 + 405 -5.6664881596164970E-03 + 406 -4.6668244644020147E-02 + 407 -4.5806885497403169E-03 + 408 -4.5314818310636593E-03 + 409 -1.8604524981136589E-02 + 410 2.2531332263900808E-03 + 411 -5.1498543943875310E-03 + 412 -3.8926175003766660E-03 + 413 4.9892634070392711E-04 + 414 -4.0732557515106857E-03 + 415 -2.2173457638206173E-03 + 416 1.1799128594413640E-03 + 417 -6.1905641689615463E-04 + 418 -1.2118333564899544E-03 + 419 -5.2660816952311888E-02 + 420 6.6479527009797174E-03 + 421 9.1799566808840286E-02 + 422 1.8466171233158268E-01 + 423 2.7276370392469362E-01 + 424 -6.7714534679345689E-03 + 425 -1.0317795789279950E-02 + 426 -1.6178784149617632E-02 + 427 5.4364410328482720E-03 + 428 6.8999746003622535E-03 + 429 6.9677862672988707E-03 + 430 -1.0682161189954958E-03 + 431 2.3337255993084315E-03 + 432 -2.3873873893132509E-02 + 433 4.2704388684574246E-03 + 434 1.9265286010159186E-01 + 435 -2.0334305135944575E-02 + 436 9.6366973532403144E-02 + 437 -1.2748183522428713E-02 + 438 8.5892504155347092E-04 + 439 -6.9258034097388456E-03 + 440 8.2128632321678034E-05 + 441 1.3829561510220426E-03 + 442 4.8975465233787336E-03 + 443 4.9256270179490963E-03 + 444 2.6473220970771446E-03 + 445 -2.9282601428946228E-02 + 446 5.1623290641685509E-03 + 447 1.2996703663811896E-02 + 448 5.1946363693189501E-02 + 449 2.0468572168618495E-02 + 450 1.8793384079525900E-03 + 451 -3.0132612806601345E-04 + 452 -3.6683975723103357E-03 + 453 5.5931459586974746E-03 + 454 7.0940603929673884E-02 + 455 7.3795358651614334E-03 + 456 2.3448162600394448E-02 + 457 3.2076381829947404E-02 + 458 4.6415343939451258E-03 + 459 2.0023697825749944E-02 + 460 2.4151004843103529E-04 + 461 1.6371480977492863E-03 + 462 1.2174068979751339E-02 + 463 3.0462044903851646E-03 + 464 1.7354881977282089E-03 + 465 -2.9257986707784556E-03 + 466 5.5335924541482639E-04 + 467 5.6382298332015724E-04 + 468 1.3244312002460173E-03 + 469 5.3559587359033412E-04 + 470 -4.3425583543249074E-02 + 471 2.4783607297478413E-03 + 472 -3.1140046018369879E-03 + 473 -8.5035292382411500E-03 + 474 -4.2881536512769387E-02 + 475 1.0455564188776071E-03 + 476 -6.2825474105114446E-04 + 477 6.8071170508596040E-04 + 478 -3.0488125023412922E-04 + 479 -6.4177004828616111E-03 + 480 -6.0327102518932096E-03 + 481 1.6211638134345265E-02 + 482 2.4236482941747468E-02 + 483 2.8519358510034664E-04 + 484 -3.8425977918774591E-03 + 485 5.2882820347910546E-03 + 486 1.8961328032215011E-03 + 487 4.4270894506571552E-03 + 488 -1.2940276079596537E-03 + 489 8.1813431806538207E-04 + 490 -9.3253161917764081E-04 + 491 -1.6833793915150535E-03 + 492 3.5882544284001386E-03 + 493 -1.6269742616286382E-03 + 494 1.7907237475227073E-04 +Ene= -2.0825460071E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -2.7686074202021717E-02 + 2 1.6656511555622235E-03 + 3 -2.8968761191682291E-02 + 4 -4.3956135220933903E-02 + 5 -1.5247573673624398E-02 + 6 7.3945475218490839E-04 + 7 9.9549518540591620E-03 + 8 4.1210498726605028E-03 + 9 -2.2976681316127991E-02 + 10 3.1687439157434081E-03 + 11 -7.3913417018529479E-02 + 12 1.0996095218386886E-02 + 13 6.9486864072406153E-03 + 14 -9.7707389999631962E-04 + 15 4.6188384100307308E-03 + 16 -6.7258296828507985E-03 + 17 7.9874971042465763E-03 + 18 6.3273523127935225E-03 + 19 -1.1438081421134305E-03 + 20 2.9263098650197597E-04 + 21 -2.6407647417003095E-03 + 22 -3.2755439810365590E-03 + 23 1.8014709231857263E-03 + 24 -2.5414940788417431E-03 + 25 -1.5013994032294802E-03 + 26 -1.1507904466887046E-02 + 27 4.3441315101754073E-03 + 28 1.5953069674847328E-02 + 29 7.7330973149191920E-02 + 30 2.1495703923255456E-02 + 31 -1.2287135827031264E-03 + 32 1.4835828845208218E-03 + 33 -1.9381124384648177E-03 + 34 1.0270022140981503E-02 + 35 -1.5999688599105888E-02 + 36 7.4539311500830740E-03 + 37 -1.6325907559995086E-02 + 38 3.8764197582545491E-02 + 39 7.8878880569214493E-03 + 40 -5.3871799241537576E-04 + 41 6.7366228710916895E-03 + 42 -1.3124965276817865E-03 + 43 -4.2209492711952213E-04 + 44 -2.9856599702458280E-03 + 45 1.1464818525189579E-04 + 46 -1.5158215430705179E-03 + 47 -4.6416160983241898E-04 + 48 1.9040539027678734E-03 + 49 1.0565762422793631E-03 + 50 -2.2300975713378818E-03 + 51 2.4512437269319537E-02 + 52 -3.6909543436096809E-04 + 53 3.1328877838891357E-02 + 54 6.1950291827793422E-02 + 55 -1.9310112165973538E-02 + 56 -2.5167115067481660E-03 + 57 -2.0839911171727488E-03 + 58 4.9204281824387656E-03 + 59 3.1221208239771224E-02 + 60 1.8381021256461398E-02 + 61 -1.9496884203107630E-02 + 62 2.2785093141979941E-02 + 63 -4.4612209801576909E-02 + 64 8.7686511744187318E-03 + 65 3.6181924082556026E-03 + 66 -2.6563633466176692E-04 + 67 -1.9378146783283396E-03 + 68 -8.5648774621300966E-03 + 69 -1.0912015523943333E-04 + 70 5.3140763735882730E-04 + 71 5.6961715933486054E-04 + 72 -6.2158158497285440E-04 + 73 1.1179119690075436E-03 + 74 -3.1780069785700214E-04 + 75 -1.1431015994921101E-03 + 76 -3.3646337508310357E-02 + 77 4.3932397670280116E-03 + 78 -8.1900383681631841E-02 + 79 -2.1277362627051774E-01 + 80 -2.0750267976580025E-01 + 81 4.6584327737140257E-03 + 82 1.8086980680920559E-02 + 83 2.0475849981913548E-02 + 84 -5.3523356477403724E-03 + 85 4.2811025937726822E-03 + 86 3.1468970177183095E-03 + 87 -1.8370162983287431E-03 + 88 4.2817627127333894E-03 + 89 3.3140480093340877E-02 + 90 -3.0208507524551332E-03 + 91 6.5932092007909213E-02 + 92 -1.3529134485456093E-01 + 93 -3.2843612665930784E-02 + 94 -2.4150855923591621E-03 + 95 9.3198713266120486E-03 + 96 -1.6018172843654266E-03 + 97 7.1463097239890733E-04 + 98 1.7248847822499557E-03 + 99 -1.1155384751284703E-03 + 100 1.5259723420718561E-03 + 101 6.7252399219360510E-03 + 102 -2.7471219742951549E-03 + 103 1.6855147687156961E-03 + 104 -2.0722955116233982E-02 + 105 1.4713938690345696E-01 + 106 2.3855649660535459E-02 + 107 2.1036759981836440E-03 + 108 -5.0132740907758485E-03 + 109 6.6526947752177146E-05 + 110 -4.1128739803603835E-03 + 111 -4.4880693777181116E-04 + 112 -1.7287694876990821E-03 + 113 -1.4142842629039864E-03 + 114 -5.1185561277833887E-03 + 115 4.1604652463674658E-03 + 116 8.3716559264553666E-04 + 117 -2.9495250677571416E-01 + 118 -7.5909480178046069E-03 + 119 -1.0270125649011261E-01 + 120 1.3611652031640196E-02 + 121 -5.9167944117987444E-04 + 122 8.5878882867637119E-03 + 123 4.4789637540434179E-03 + 124 7.2400943767337890E-03 + 125 2.7256098182481983E-03 + 126 -2.4160779157523546E-03 + 127 -2.5051731422232775E-04 + 128 2.9575495773449197E-02 + 129 -4.4670163398651029E-03 + 130 -7.8979691404385863E-02 + 131 -3.4987580659537117E-02 + 132 1.0074840037365300E-02 + 133 5.5564744497237631E-03 + 134 -1.5527263318597913E-03 + 135 1.4982546540222043E-03 + 136 -2.8233586651598967E-02 + 137 2.1585076585038138E-02 + 138 -8.7302878573727941E-02 + 139 5.1588476708396142E-03 + 140 -3.5001881672899277E-02 + 141 -6.4175955290911727E-03 + 142 4.2840770159947774E-03 + 143 -2.0047474152670622E-02 + 144 -3.4371522851140298E-03 + 145 -1.3088701142222620E-02 + 146 -2.3215221023328726E-05 + 147 -2.9919956985107273E-04 + 148 3.4998390518633086E-03 + 149 -6.2627505819764367E-04 + 150 -1.1639852884957171E-03 + 151 7.1109286139586488E-04 + 152 -2.3580950153632508E-03 + 153 3.7629095674500582E-02 + 154 -3.5685659155438769E-03 + 155 2.7710389751012762E-03 + 156 4.4172831192699664E-03 + 157 6.0973668007214986E-03 + 158 5.1841225125971342E-03 + 159 1.9966564391614831E-03 + 160 6.7857726436954837E-04 + 161 -9.8435375598595384E-03 + 162 1.7619013452063598E-02 + 163 1.1529282647487857E-02 + 164 7.7482134584325848E-03 + 165 -1.8660672372499066E-02 + 166 -1.5089847626101440E-03 + 167 3.0461789386229325E-03 + 168 3.4819704734393325E-03 + 169 -6.4424715271811780E-03 + 170 3.5416777561722279E-05 + 171 -9.7613013404780360E-06 + 172 -3.1145286490781262E-04 + 173 -5.1552346198655713E-04 + 174 -1.9778861975100214E-05 + 175 -6.8332634884354275E-04 + 176 -7.0676491340999610E-04 + 177 -2.1560316078768509E-03 + 178 3.1452111279858010E-02 + 179 -4.6950965674395556E-03 + 180 -7.1723953577700963E-02 + 181 -1.1763263815068094E-01 + 182 1.5539251793395087E-01 + 183 8.0430177250332812E-03 + 184 6.9746323188716701E-03 + 185 -8.8315730492691553E-03 + 186 -2.0950912423521387E-03 + 187 1.8929328080449761E-03 + 188 4.8132032875148186E-03 + 189 -1.6543248805926539E-03 + 190 1.0004092374705773E-03 + 191 -1.4071954831480863E-02 + 192 1.8884753504198033E-03 + 193 2.1358309812696644E-01 + 194 1.3742680015759989E-01 + 195 5.7618634068675647E-03 + 196 -9.4600675327287352E-03 + 197 -1.0607835994175320E-02 + 198 -4.5849282358854601E-05 + 199 -2.6714116270913327E-03 + 200 -2.7599792992890480E-03 + 201 -2.0436251383575766E-03 + 202 -1.4611285624306697E-03 + 203 5.0159570241285131E-03 + 204 -2.0423119370403656E-02 + 205 8.0395825012582615E-05 + 206 2.5727958956660552E-02 + 207 -1.3479260899896458E-02 + 208 1.6552416364045145E-02 + 209 3.4396799028966994E-03 + 210 -1.0595653004410765E-03 + 211 -1.7486214455980009E-03 + 212 1.2256522091972854E-02 + 213 3.9328193167385232E-03 + 214 2.7956518074172352E-02 + 215 -3.3863457686552384E-02 + 216 -4.8717104890935664E-03 + 217 -4.9315397219503170E-04 + 218 -5.7328905738276321E-03 + 219 1.2250930203638617E-02 + 220 -1.6792401945160202E-02 + 221 2.1738421535705502E-04 + 222 4.2950212799477337E-04 + 223 1.0600336844735359E-03 + 224 -7.8702639144392287E-04 + 225 -4.6399740897693214E-04 + 226 -7.0580199837383265E-04 + 227 -1.0264799186298465E-03 + 228 -1.5272337179711589E-03 + 229 2.2708587026009173E-02 + 230 1.5628354942399461E-03 + 231 -5.1773311102515027E-03 + 232 -4.1469537491155686E-02 + 233 -7.3038880168719289E-02 + 234 -3.8317287885255739E-04 + 235 3.1876532849152380E-03 + 236 6.3902458234860104E-03 + 237 4.9357727069131684E-02 + 238 -4.4294613167729362E-02 + 239 2.7782392431078030E-02 + 240 8.6005879952640585E-03 + 241 3.4073026489377413E-02 + 242 -3.6430954560262119E-03 + 243 -9.7098756889341337E-04 + 244 8.4535376541158402E-03 + 245 2.9560423629231532E-03 + 246 1.2274750829389509E-02 + 247 -8.7876895278249845E-04 + 248 -2.2054890261229880E-03 + 249 2.8601239425048901E-03 + 250 1.2116042172950724E-03 + 251 -2.8053947374013129E-03 + 252 2.8442605261191078E-03 + 253 -3.7266933247436969E-03 + 254 5.9083713586232871E-02 + 255 7.0281985409481704E-04 + 256 1.1197433305034272E-02 + 257 1.6918306210106395E-02 + 258 -1.8535196756164250E-02 + 259 3.1779181218172586E-03 + 260 -1.7906882011305856E-03 + 261 4.6596215826053894E-03 + 262 -1.4296237166460857E-03 + 263 3.6045397802910162E-02 + 264 1.7950240312347213E-02 + 265 1.6851309208723381E-02 + 266 -1.2386587946618914E-02 + 267 -2.5755807030791379E-03 + 268 1.2940767824161217E-02 + 269 2.9414049836389683E-03 + 270 4.0812245143667077E-03 + 271 -4.2118151366686667E-03 + 272 1.2276410286214000E-03 + 273 1.0336517659113542E-04 + 274 -5.4075148431474186E-04 + 275 -5.3229910587120044E-04 + 276 -1.4688896877630196E-03 + 277 4.5138219470928224E-04 + 278 -9.1492549342320586E-05 + 279 2.7037416792656106E-02 + 280 -3.1971017489538099E-03 + 281 2.4143339711708334E-01 + 282 6.4089197065980527E-02 + 283 -1.1517057524298592E-01 + 284 -1.5460466241562264E-02 + 285 -4.6863638162521395E-03 + 286 5.3286055747444492E-03 + 287 -6.4745029150907159E-03 + 288 -1.2785535708428170E-03 + 289 -1.3558729254571948E-03 + 290 4.5446442535292866E-03 + 291 -1.0953649746386242E-02 + 292 6.2712202944413264E-03 + 293 -2.3538278948140655E-03 + 294 -3.8714481210258729E-02 + 295 -2.2581583876120914E-01 + 296 -1.9936295526269504E-01 + 297 4.0369593214098949E-03 + 298 1.1416227308778067E-02 + 299 1.3334467931938822E-02 + 300 -8.5585105398902905E-03 + 301 6.8799946444290314E-03 + 302 -2.5931441454453779E-03 + 303 2.0431036176849025E-03 + 304 7.7550953179893146E-03 + 305 -3.2526514422657408E-02 + 306 2.2021876942677704E-03 + 307 -2.8401125631903942E-02 + 308 -3.2438192710426611E-02 + 309 2.1598288654349877E-02 + 310 5.6679987742838554E-03 + 311 1.0752537075462030E-02 + 312 -3.4863506585221184E-03 + 313 1.6221538427759346E-02 + 314 3.0946429270381329E-02 + 315 8.1933770211418244E-03 + 316 -5.7811135022789194E-02 + 317 -9.2023129764283434E-03 + 318 -1.7543385927192786E-03 + 319 1.5324862823931965E-03 + 320 -7.2867429944303743E-04 + 321 -7.5940673847980870E-03 + 322 -1.1015571050269624E-03 + 323 1.6024998407115146E-03 + 324 -3.0646080104934710E-03 + 325 -1.2983377138647040E-03 + 326 -7.6135870030297572E-04 + 327 -9.8935835756794170E-04 + 328 -1.3083809272830343E-03 + 329 2.6529830448662516E-03 + 330 -1.5735275065564953E-02 + 331 1.0458145973607762E-03 + 332 -1.2773779109591422E-02 + 333 6.9446674659985105E-03 + 334 1.2671266470091123E-02 + 335 -1.6235746629879200E-04 + 336 6.3987190160900650E-04 + 337 -5.4365346645004185E-04 + 338 -9.0122188376012720E-03 + 339 -3.3693520767916596E-02 + 340 -1.7153694325303937E-02 + 341 -1.2339223312873225E-02 + 342 5.1799683449012179E-03 + 343 -1.7651057328025074E-03 + 344 -5.7738689230436898E-03 + 345 -4.2213251000326234E-03 + 346 -4.5585928736269410E-03 + 347 1.8800012869308444E-03 + 348 -1.1752827228133545E-03 + 349 1.0534854940919512E-03 + 350 6.2926425839580338E-04 + 351 4.1103468592215811E-04 + 352 8.2969989378525939E-04 + 353 1.8405488617226625E-04 + 354 -2.7487672364344575E-04 + 355 1.1862374303964621E-03 + 356 -1.3595735755504468E-04 + 357 -1.1573811494613558E-01 + 358 -1.3980632149828345E-01 + 359 -1.3848286310073838E-02 + 360 3.1451223524868537E-03 + 361 9.1283493752505225E-03 + 362 3.1898462140178799E-03 + 363 6.8085085188175523E-04 + 364 -2.3762297859762941E-03 + 365 -3.6505308138810059E-03 + 366 1.1548346910772961E-03 + 367 -5.1176216394141615E-03 + 368 -6.3038373228185311E-03 + 369 2.2606163771807172E-03 + 370 -1.4521825779275715E-01 + 371 9.0537344475412659E-02 + 372 1.2320681705846066E-01 + 373 1.0814908806309045E-02 + 374 -7.2637182835710128E-03 + 375 -1.0830499482770806E-02 + 376 6.7894213847284959E-04 + 377 5.4795761902051579E-03 + 378 4.4237422129879400E-04 + 379 -2.4885196359512721E-04 + 380 4.8856554934101791E-03 + 381 4.3880774262166154E-02 + 382 -6.6081834120727120E-03 + 383 -9.5150312429761741E-02 + 384 2.1563353341192962E-01 + 385 -1.0405304212731493E-01 + 386 7.7116069553800530E-03 + 387 -1.5854598275620382E-02 + 388 3.2046177048475782E-03 + 389 4.3153943710166733E-03 + 390 2.6756124591433132E-03 + 391 8.1498693320296075E-03 + 392 6.7897962554620524E-03 + 393 -2.8983480874501056E-03 + 394 3.0651221689242461E-02 + 395 1.5479945485243126E-03 + 396 2.8597132841568899E-02 + 397 4.8007214033490696E-02 + 398 -1.6584684048179359E-02 + 399 -1.6976458454800794E-03 + 400 -3.4833844899434369E-03 + 401 -2.6105420738287170E-03 + 402 3.8086913646654080E-03 + 403 1.4389758112990435E-03 + 404 -4.4975379784724734E-03 + 405 1.3695111968649974E-04 + 406 1.4830733004104408E-02 + 407 4.1704268806486242E-04 + 408 6.2887299306607211E-03 + 409 -2.9090727163530307E-03 + 410 -9.5433439339244529E-04 + 411 7.9558834614782033E-03 + 412 7.3202220794606502E-04 + 413 -5.7378592634399538E-04 + 414 1.5258002428823493E-03 + 415 1.5045215251650488E-03 + 416 -4.3173675664477090E-03 + 417 4.7192046112437064E-04 + 418 3.5094755262629314E-03 + 419 -2.3090579697112899E-02 + 420 3.4671011928273758E-03 + 421 -1.0316890361698061E-02 + 422 -1.4732114953035616E-01 + 423 1.1564344685949127E-01 + 424 -2.3957900063525765E-03 + 425 7.8853345970612398E-03 + 426 -5.9456413331127481E-03 + 427 4.4857288094184303E-03 + 428 -1.3333196873730887E-03 + 429 -6.9938678427548190E-03 + 430 5.2178344361650990E-04 + 431 -2.0444401552362880E-03 + 432 -3.2080268181659691E-03 + 433 8.9834006944175646E-04 + 434 5.3834627656503299E-03 + 435 -4.0086245150053823E-02 + 436 2.4220920128617149E-01 + 437 -9.1293051865356094E-05 + 438 2.1063913439835070E-03 + 439 -1.1203716216951813E-02 + 440 1.5923708146716861E-03 + 441 4.8614382872963083E-03 + 442 2.4326759697846164E-03 + 443 1.8843673889681791E-03 + 444 -3.0548246909127216E-04 + 445 -3.4375932352359632E-02 + 446 2.5486078105206713E-04 + 447 -2.0244166739990323E-02 + 448 -5.0346178842245140E-02 + 449 2.7100323289921655E-02 + 450 5.1972087679661352E-05 + 451 7.3864756568691663E-04 + 452 -3.2735742875565020E-04 + 453 -1.8475633718659141E-02 + 454 -2.4509084044471382E-02 + 455 1.2904036510445457E-02 + 456 4.7417264213327814E-02 + 457 -1.4215948424999444E-03 + 458 -1.7434930540441863E-04 + 459 -9.0733882716048913E-03 + 460 -8.8500002915954136E-04 + 461 1.9841283573967756E-02 + 462 5.4740305695045186E-05 + 463 -1.7290345580373885E-04 + 464 -1.5473592974858189E-03 + 465 1.0635872409122515E-03 + 466 4.8867727091815919E-04 + 467 7.7521292949490493E-04 + 468 1.2651007950479230E-03 + 469 -1.6076061749189323E-04 + 470 3.0427558699230823E-02 + 471 -2.7557927120479313E-05 + 472 2.6675053104722152E-02 + 473 1.1603788953072075E-02 + 474 5.1260094115693818E-03 + 475 1.2860340426045565E-03 + 476 -1.7424715585867359E-03 + 477 2.4711824314939672E-04 + 478 1.6418404135380520E-02 + 479 1.9728583805563474E-02 + 480 2.5681604493976891E-02 + 481 3.3486376163352573E-02 + 482 1.0829451435644257E-02 + 483 4.8933362384639498E-03 + 484 4.5907858163721574E-03 + 485 4.1107469171660837E-03 + 486 1.4442769686390073E-02 + 487 -5.8508624514872420E-04 + 488 -3.2659524520327657E-04 + 489 3.3721638174772945E-04 + 490 1.3525756196564015E-03 + 491 -1.0232074196926872E-03 + 492 -1.9337008442695458E-04 + 493 1.8484028440198749E-03 + 494 -1.7968672696811326E-04 +Ene= -2.0522754993E-01 +Spin= Alpha +Occup= 2.0000000 + 1 5.2934840752733608E-02 + 2 -2.8667978569619106E-03 + 3 5.9579067163713275E-04 + 4 2.0712739935698585E-03 + 5 -3.9704984339068361E-03 + 6 -2.8444190764346008E-03 + 7 -2.7632321855119582E-03 + 8 6.7632021811648137E-04 + 9 2.0964686499027808E-02 + 10 -4.1605276108746076E-03 + 11 1.0467230587232196E-02 + 12 -1.4372448844414540E-02 + 13 -4.9113860577927729E-02 + 14 3.6534102943803189E-03 + 15 -6.4209442371550608E-03 + 16 -5.6584917728701696E-03 + 17 3.9295182374036158E-03 + 18 -1.0162751177458495E-02 + 19 -2.2199779109081605E-04 + 20 -1.1136551745252572E-03 + 21 -5.8331082959105229E-04 + 22 -1.4656316803974247E-04 + 23 1.0493782073314614E-03 + 24 -9.9793136391693659E-04 + 25 -8.6184824343325437E-04 + 26 5.8093563396164616E-02 + 27 -6.7983496656431816E-03 + 28 -1.4366132096559637E-02 + 29 6.8353812436137446E-02 + 30 -6.3181419196137414E-02 + 31 -3.6127581422521018E-03 + 32 -1.3110880341156133E-03 + 33 7.9082160945948676E-03 + 34 4.7844574687479692E-02 + 35 -5.1170796217430634E-02 + 36 -2.9252697615356052E-02 + 37 2.5711724158472104E-03 + 38 4.6679026691261297E-02 + 39 1.8606493221710790E-02 + 40 -6.3810206687233053E-03 + 41 -6.5957997715985353E-03 + 42 1.4064296416579410E-03 + 43 4.5216452222509237E-03 + 44 -1.0859603769056735E-03 + 45 -2.4040595647868476E-03 + 46 -7.6273405616590910E-04 + 47 3.0234982829407454E-03 + 48 1.1139896120054703E-03 + 49 -1.4943985066450576E-03 + 50 -4.7440905105697890E-03 + 51 -2.4022306066239459E-02 + 52 -7.6842863773108434E-04 + 53 4.1841193354677890E-02 + 54 -2.8365983833396734E-02 + 55 9.2878044487706590E-02 + 56 -1.2196421825946181E-04 + 57 4.8028548254887898E-03 + 58 -3.2602268080381236E-03 + 59 1.8400174516920678E-02 + 60 3.6139401122682491E-02 + 61 2.6021038411305986E-02 + 62 3.6299529404563276E-02 + 63 6.0680602365275255E-02 + 64 8.3900945979024817E-03 + 65 6.6394114661079487E-03 + 66 1.3096790939758015E-02 + 67 3.1906551093561423E-03 + 68 -3.6621659848622896E-03 + 69 -2.1080800631197161E-04 + 70 -2.0621787179909918E-03 + 71 1.3762125685320258E-03 + 72 -2.4283121982090787E-03 + 73 2.5851199870687452E-03 + 74 7.4578744367652275E-04 + 75 3.5453465786662353E-04 + 76 4.3202090250521873E-02 + 77 -6.1802634571051672E-03 + 78 2.7052349442018664E-01 + 79 1.8112390547315338E-01 + 80 -1.4912186240376751E-01 + 81 -1.7914042232419530E-02 + 82 -1.5813319670861671E-02 + 83 6.8714003397255053E-03 + 84 3.1424286272204744E-03 + 85 7.2729570242960166E-03 + 86 -1.3576028491311118E-03 + 87 -5.3088305562283208E-03 + 88 -9.1711017380896945E-03 + 89 -1.6186764378302441E-02 + 90 2.8143953259888309E-03 + 91 -1.2510389116687032E-01 + 92 -1.3399394575010378E-02 + 93 1.1815047528682870E-02 + 94 4.5152891288058918E-03 + 95 9.7232182830333527E-04 + 96 -1.4061877895123346E-03 + 97 -2.9803785439345394E-03 + 98 -2.4914968016283502E-03 + 99 2.1512046730719149E-03 + 100 6.2078300487854272E-03 + 101 -3.1544474973981842E-03 + 102 3.3896062086880722E-02 + 103 -4.8117294898733197E-03 + 104 2.0176660693184464E-01 + 105 3.3046571890712517E-01 + 106 2.3280929572985866E-02 + 107 -1.2940103993270006E-02 + 108 -1.5974053521903227E-02 + 109 -7.4150696655256375E-04 + 110 1.3633807951842025E-03 + 111 4.6593030296551951E-04 + 112 2.9238830839624784E-03 + 113 -4.2362200305365036E-03 + 114 -9.3775937299175622E-03 + 115 -6.6276254363810050E-03 + 116 1.1179672967288253E-04 + 117 2.6650251502751441E-02 + 118 4.2693325206091280E-02 + 119 -6.3300286118178659E-02 + 120 -1.7698220463452246E-03 + 121 6.5775259772145539E-05 + 122 4.3544999074911824E-03 + 123 -1.8492348008429952E-03 + 124 1.8380759225276248E-03 + 125 -6.9283261163959845E-04 + 126 -1.4716344154955471E-03 + 127 -1.7709107454649186E-03 + 128 -1.4995860583682229E-02 + 129 3.1097013274026500E-04 + 130 8.0164698418592924E-03 + 131 -5.7961562936799434E-03 + 132 2.4611144179328983E-03 + 133 -1.7727173726663993E-03 + 134 8.1355774691724780E-04 + 135 3.5437982359044469E-04 + 136 3.6750329642600256E-02 + 137 -3.5860796386742042E-02 + 138 4.4600023358831786E-02 + 139 7.4590350618564194E-03 + 140 1.8011604726721659E-02 + 141 1.2448953550722340E-02 + 142 -1.0408624868991136E-02 + 143 1.0134436926902812E-02 + 144 1.0047370332485199E-02 + 145 3.1479578914294093E-03 + 146 -1.2684026146255164E-03 + 147 -1.0991888945422101E-03 + 148 1.8227687508612876E-03 + 149 -1.5702811664432736E-03 + 150 1.9939025690629311E-04 + 151 -7.0926847173308639E-04 + 152 -1.4797724744347279E-03 + 153 1.2019015840453923E-02 + 154 3.5375291911642296E-03 + 155 4.0471170599262286E-02 + 156 -2.9202592562390176E-02 + 157 -8.4645630999136672E-03 + 158 -9.1282991240763216E-03 + 159 -7.8546114644622851E-04 + 160 1.1901155962205255E-03 + 161 2.6532763540766842E-02 + 162 -4.3355180706162504E-02 + 163 2.2355213104989856E-02 + 164 -1.5102517273190690E-02 + 165 -3.4064456885432796E-02 + 166 6.8210261887608099E-03 + 167 -1.0101768917867999E-02 + 168 8.9474899784743253E-03 + 169 4.7014736270511136E-03 + 170 -1.5314760042020065E-02 + 171 -2.2101846926184405E-03 + 172 1.4285560970831732E-03 + 173 6.0567567806884485E-04 + 174 -8.7646967035828641E-04 + 175 5.0445921901214020E-04 + 176 -8.0668811834014092E-04 + 177 4.3546985038886644E-04 + 178 -3.8589619978624978E-02 + 179 5.7207088197958021E-03 + 180 1.4582973084101208E-01 + 181 -1.3698333683885699E-01 + 182 -2.0754936347660288E-01 + 183 -7.7191909091481586E-03 + 184 6.2955989485163266E-03 + 185 1.2905830639840432E-02 + 186 3.9414272685027287E-03 + 187 -1.7539338522841389E-03 + 188 3.3605291038660951E-03 + 189 4.5025387586815459E-03 + 190 -8.8106667684775049E-05 + 191 1.1629239850767026E-02 + 192 -1.3826478819660877E-03 + 193 5.0495556787182240E-02 + 194 -1.5436171500379722E-01 + 195 6.8225885860888347E-02 + 196 3.6150001436017604E-03 + 197 1.4068448928866245E-02 + 198 -4.2446300225284410E-03 + 199 1.4445520362641009E-03 + 200 -5.8030519657395422E-03 + 201 3.0517043116386239E-03 + 202 1.8980593252052164E-03 + 203 1.6612388892946516E-03 + 204 -9.9870408988938734E-03 + 205 6.4043339619951096E-04 + 206 5.4111283462227600E-02 + 207 6.5367819021396011E-03 + 208 -6.9402700153794711E-02 + 209 -9.5644304767560789E-04 + 210 2.1425652863232350E-03 + 211 2.0186302811910492E-03 + 212 -1.8088345988468955E-02 + 213 -4.3305809677750134E-02 + 214 -1.9128782715026996E-02 + 215 -3.0625585742999360E-02 + 216 -3.9046680640383554E-03 + 217 -3.8693766924515235E-03 + 218 -2.0505705161328124E-02 + 219 5.5950762317464685E-05 + 220 -8.0526476672418707E-03 + 221 -4.9941574925480344E-03 + 222 2.1332164981784797E-03 + 223 1.2368985602674869E-03 + 224 -1.7894299587367043E-03 + 225 -3.5784107160217381E-05 + 226 -1.4616428157310296E-03 + 227 1.5636086383917502E-03 + 228 -1.6556147266902461E-03 + 229 -2.3373745366570078E-02 + 230 -3.8931359195487052E-03 + 231 -1.1852609042345187E-03 + 232 -2.5261523635877411E-02 + 233 1.7028365934969692E-02 + 234 -3.7068066644226666E-03 + 235 8.2008641000061219E-03 + 236 -6.2841170384436305E-04 + 237 3.2274282153427675E-02 + 238 1.4022465738049805E-02 + 239 -2.4179752339493057E-02 + 240 2.3661352629738397E-02 + 241 -8.6174998320870198E-03 + 242 5.2728666011841348E-03 + 243 -4.3088768699211383E-03 + 244 -2.6532866227691851E-03 + 245 5.1880914723717309E-03 + 246 -1.0837539359862628E-02 + 247 -3.1017781248103057E-03 + 248 -9.0023777083293591E-04 + 249 -9.7766383017161367E-04 + 250 -4.5080942983340719E-04 + 251 -1.2396312945605467E-03 + 252 2.8496930917446515E-04 + 253 -8.4655890043857393E-04 + 254 -3.4260684787968919E-02 + 255 1.7883451194103379E-03 + 256 -1.9661273530868609E-02 + 257 -2.0009926661590915E-02 + 258 -1.3065937578831226E-02 + 259 -2.8758954955329491E-03 + 260 -2.9405697534388522E-03 + 261 2.2102909415588870E-03 + 262 -9.6636322911465636E-03 + 263 1.1184117210009238E-02 + 264 1.1159684544775067E-02 + 265 5.2180314389770593E-03 + 266 -1.0236721404819732E-02 + 267 -1.0226584160258154E-02 + 268 2.4531359563808924E-03 + 269 5.1923098296521369E-03 + 270 -1.7483864993644393E-03 + 271 -1.1890962326115589E-03 + 272 5.1561711238927996E-04 + 273 1.5687423783174266E-03 + 274 8.6278013756234363E-04 + 275 1.3939154230646089E-03 + 276 1.5487960343614108E-04 + 277 -1.0079149050398210E-03 + 278 6.9254292868487638E-04 + 279 -7.3869414614652820E-03 + 280 7.1313708979917827E-04 + 281 1.9312619228026898E-01 + 282 2.2635357760508752E-02 + 283 -4.4287342968971737E-02 + 284 -1.5336228913843180E-02 + 285 2.9279134431950556E-04 + 286 6.1739918314072662E-03 + 287 -1.0874760261476875E-04 + 288 -3.0169335245743749E-04 + 289 1.1911962356959628E-03 + 290 3.3711403194596904E-03 + 291 -4.3284086003002493E-03 + 292 -4.2843652076776399E-03 + 293 3.1890178741595162E-05 + 294 -1.0374230832954155E-01 + 295 -2.5012333921046088E-02 + 296 -4.2789002007226504E-02 + 297 7.1039871675724073E-03 + 298 -1.0733228360178073E-03 + 299 4.8146813825016383E-03 + 300 -4.8345405093970003E-03 + 301 -2.8822062331484845E-03 + 302 1.5226690417892317E-03 + 303 -7.0928585311611034E-04 + 304 2.9491178961912564E-03 + 305 -7.4790619481797374E-03 + 306 1.5312779001370031E-03 + 307 -3.0414431159411739E-02 + 308 1.9344690278393082E-03 + 309 -1.2305076942909807E-02 + 310 4.6637990331750917E-03 + 311 5.1595487798461884E-03 + 312 -5.6098643632678338E-04 + 313 -7.9005425768678018E-03 + 314 4.2096077014534871E-03 + 315 -1.7110397961002529E-07 + 316 -1.1077086030389193E-02 + 317 -2.4297022338751455E-02 + 318 -5.4787429611942353E-03 + 319 -1.1403915844495605E-03 + 320 1.6217381918654531E-04 + 321 1.8249146210520854E-03 + 322 -3.2264619190743920E-03 + 323 -1.1664546756194097E-03 + 324 1.8958831344717995E-05 + 325 -8.7189953010840811E-04 + 326 1.4684934852689436E-04 + 327 -2.1772643779208842E-03 + 328 -2.4324811911270302E-03 + 329 -4.0367590084773743E-05 + 330 -3.3586918021160372E-03 + 331 -4.7159557537113980E-03 + 332 -3.0408856859481352E-02 + 333 5.2709233841895346E-03 + 334 1.1591937821706916E-02 + 335 -1.1428943257382192E-03 + 336 -1.6767511373508460E-03 + 337 -1.8557721632042258E-03 + 338 1.3431219898249771E-02 + 339 -1.4449288551146324E-02 + 340 8.9596711414857283E-03 + 341 -2.6450146365429479E-03 + 342 -1.0322992684165687E-02 + 343 1.0381349332672660E-03 + 344 -4.3758978658944934E-03 + 345 1.8641193306018831E-03 + 346 2.3834417725064152E-03 + 347 -7.0204025628385113E-03 + 348 -3.9929944715060445E-04 + 349 -7.0884271282718129E-04 + 350 -8.3997577718808179E-05 + 351 1.3213196322814786E-04 + 352 -1.5411056036482198E-04 + 353 1.1834137899065442E-03 + 354 1.2032624634826215E-03 + 355 -4.1800810905839505E-03 + 356 1.3702155327584315E-03 + 357 -4.2833291982695788E-02 + 358 -5.6290759145270930E-02 + 359 -1.9740927741876239E-02 + 360 4.2173524659789262E-03 + 361 6.0665486914484555E-03 + 362 1.7172715847969010E-03 + 363 -2.2310282473843460E-03 + 364 -3.1430437798639349E-04 + 365 -5.7690149323842580E-04 + 366 2.7199391582422247E-03 + 367 -3.0448051533451940E-03 + 368 9.4725626086521325E-03 + 369 -3.0667447638081011E-03 + 370 3.5015948134844105E-01 + 371 -7.7623048768002467E-02 + 372 -6.3264846813525941E-02 + 373 -3.6910540508639858E-02 + 374 9.2558255645773784E-03 + 375 4.7309718311015067E-03 + 376 4.8830768233021913E-04 + 377 -2.0489404585026147E-04 + 378 1.8444211504238899E-03 + 379 -6.7268536273567571E-04 + 380 -1.2508298884567630E-02 + 381 2.2598583224668563E-02 + 382 -2.4291233696026883E-03 + 383 1.9221136365886993E-01 + 384 -1.4018402686968837E-01 + 385 -1.3688514814847266E-01 + 386 -1.9221962899339820E-02 + 387 1.2689449512114228E-02 + 388 1.5886604215043187E-02 + 389 3.5266768911282570E-03 + 390 1.2021420757633263E-04 + 391 4.4608298051781042E-03 + 392 -4.0520530295130490E-03 + 393 -5.4869414769296247E-03 + 394 1.2726381982025887E-03 + 395 3.3104088617466380E-03 + 396 4.0208786235589558E-02 + 397 1.0221916748695284E-02 + 398 -1.7867305935892527E-02 + 399 -5.4716222907079115E-03 + 400 -5.7968936693189588E-04 + 401 1.8910498500310604E-03 + 402 -3.2070314583016735E-02 + 403 2.6505550383536424E-02 + 404 -2.0175351390604859E-02 + 405 -3.0013459992206049E-02 + 406 -1.0766691053579042E-02 + 407 1.3044610689107931E-04 + 408 -5.4431485412758168E-03 + 409 4.7463680325584819E-03 + 410 -7.5851623785632679E-03 + 411 -9.6292224693708788E-03 + 412 3.0622537424849394E-03 + 413 -1.7516570618792710E-03 + 414 1.3077583902494614E-03 + 415 7.7365574212637863E-04 + 416 -3.3993868228041351E-04 + 417 -6.8817578990577056E-05 + 418 8.7078332352641733E-04 + 419 -1.3732207988404735E-02 + 420 2.3553069655977759E-03 + 421 -1.3774466285425094E-01 + 422 -9.9341403056941280E-02 + 423 9.1540990375337236E-02 + 424 7.6728801276059770E-03 + 425 6.8154462222624786E-03 + 426 -5.1779087666387839E-03 + 427 3.1037673461931071E-03 + 428 -4.4360051810967598E-03 + 429 -5.0175380424958248E-03 + 430 -1.4014307693617817E-03 + 431 1.1112628796569651E-03 + 432 -6.6141356797926442E-03 + 433 6.3983856703134863E-04 + 434 1.5911335251552730E-01 + 435 -1.7146655915236581E-02 + 436 1.0792244816371481E-01 + 437 -8.5124265089085265E-03 + 438 6.1778443794639759E-04 + 439 -4.8487574845054570E-03 + 440 2.7758458542248726E-03 + 441 3.3259937327184690E-03 + 442 -4.2422310893366147E-05 + 443 1.7281747431587295E-03 + 444 5.1389711745273101E-03 + 445 -2.8388101109868148E-02 + 446 -1.2193634432040581E-03 + 447 1.6567734575734176E-02 + 448 -2.4578613684188080E-02 + 449 5.2658298836001531E-02 + 450 -7.6530185625316438E-03 + 451 1.0995432930250293E-03 + 452 2.4908985641253750E-03 + 453 1.2463027345490792E-03 + 454 2.1676198629212572E-02 + 455 2.9215521620098255E-02 + 456 2.0155475665256238E-02 + 457 8.6395216076277769E-03 + 458 4.3778225070545788E-03 + 459 -1.9337640546711072E-03 + 460 1.1344368875832653E-02 + 461 5.4802058958600261E-03 + 462 -1.9750107418531663E-03 + 463 -6.6703217140001077E-05 + 464 -2.2814749558913968E-03 + 465 2.2477344704137179E-03 + 466 -7.6575714529834708E-04 + 467 1.7226102292302982E-03 + 468 8.5366521459032411E-04 + 469 -7.9307728890843558E-04 + 470 5.6977595313310689E-02 + 471 3.5985783331616205E-04 + 472 -5.1217704928760682E-02 + 473 3.4456210131814297E-02 + 474 9.1588441807936728E-03 + 475 -1.4100976225594499E-03 + 476 1.8073735083556498E-03 + 477 -2.8137299957665946E-04 + 478 8.0718200230567028E-03 + 479 1.1508331254498860E-02 + 480 2.2821733186288155E-02 + 481 -1.4828600259435549E-02 + 482 9.9216891296939683E-03 + 483 2.8922465411050724E-03 + 484 2.4077873166331214E-03 + 485 6.4700705997257262E-03 + 486 -6.9154790431927050E-03 + 487 1.0574025337373300E-02 + 488 1.4079271229621225E-03 + 489 9.4511581872175712E-04 + 490 1.7020726911030687E-04 + 491 2.5958553673205767E-04 + 492 -7.3143313105289410E-04 + 493 8.6110252662394940E-04 + 494 1.6716156737975689E-03 +Ene= -2.0115743607E-01 +Spin= Alpha +Occup= 2.0000000 + 1 1.1652484996090939E-01 + 2 -4.9672092535909262E-03 + 3 3.4838093980168489E-02 + 4 -8.2137837325540905E-02 + 5 8.5261114848747752E-03 + 6 -2.7544746002797780E-03 + 7 2.1014823826399728E-02 + 8 5.5757239788147891E-03 + 9 -3.9637340521889497E-02 + 10 2.4605893817743734E-03 + 11 -3.2779550196816727E-02 + 12 -3.9696449538926940E-02 + 13 -2.0147298989021461E-03 + 14 -1.1621278665622592E-03 + 15 -4.4352878906130802E-03 + 16 1.5053180439479005E-03 + 17 4.1783074569164708E-03 + 18 8.1731631497859863E-03 + 19 -2.8227326038827889E-03 + 20 5.8529704861365643E-04 + 21 -4.3579606107111424E-03 + 22 -1.5816203567287075E-03 + 23 4.6854740700091586E-04 + 24 2.3345748347515321E-03 + 25 -6.6467067527922969E-03 + 26 -1.2715579813394665E-02 + 27 -2.4216506402273972E-03 + 28 1.9764367390603686E-02 + 29 2.0558777235250240E-02 + 30 -3.5059570449650322E-02 + 31 1.7177173657261389E-03 + 32 -4.5260830906448824E-03 + 33 1.6390343581516107E-03 + 34 -1.6746969885461770E-02 + 35 -2.2430564866332030E-02 + 36 -2.0660704632859590E-02 + 37 4.2658792522389730E-02 + 38 4.1949934777453658E-02 + 39 -4.2057124130766566E-03 + 40 -1.0301833074390495E-02 + 41 -1.4856415509974824E-02 + 42 1.0805086519345477E-02 + 43 1.7901205309444869E-02 + 44 -3.5872212873757051E-03 + 45 -6.8411971782774501E-04 + 46 1.8028966505837826E-03 + 47 2.9528401901160364E-04 + 48 3.0344751503514154E-03 + 49 2.5424111910779870E-04 + 50 -4.5871145317585389E-03 + 51 -8.0754253191652504E-03 + 52 1.3017642846116322E-03 + 53 -3.6374641122709390E-02 + 54 -1.4905272572952872E-03 + 55 2.9038789903308968E-02 + 56 2.7454317493483269E-03 + 57 2.3785498831369605E-03 + 58 8.5793733736564261E-04 + 59 -1.1979376906402408E-02 + 60 8.8554331096362847E-04 + 61 -4.4507667496799984E-02 + 62 -1.4778703404804404E-02 + 63 4.7227264862741002E-02 + 64 -4.5927975678366553E-03 + 65 1.8590840386117178E-03 + 66 -7.7772817213032520E-03 + 67 1.6861839818183805E-03 + 68 1.0166588097315342E-02 + 69 2.8958996948603299E-04 + 70 2.7616747167446469E-04 + 71 -1.5963804896096719E-03 + 72 -4.5633821151259193E-04 + 73 2.7253830259423286E-03 + 74 -3.1584928820143519E-03 + 75 -3.0786602819569161E-03 + 76 -1.1734320414796868E-02 + 77 1.1519283881470934E-03 + 78 -1.6881054067451545E-01 + 79 -6.1043964924252347E-02 + 80 -3.0700317451216030E-01 + 81 1.1763169668668401E-02 + 82 6.6241304294683279E-03 + 83 1.5764033651271981E-02 + 84 8.7018832624967055E-04 + 85 9.2828658078719685E-03 + 86 5.6851112882698356E-03 + 87 5.2103445108733866E-03 + 88 4.3175816405536102E-03 + 89 4.4923460757354650E-02 + 90 -2.4037318402268873E-03 + 91 -9.2386157035786995E-02 + 92 -3.5089386861919192E-01 + 93 1.0110716418776892E-01 + 94 6.5863754703730185E-03 + 95 1.7339244490049449E-02 + 96 -6.1177150911178842E-03 + 97 8.4745938459587188E-03 + 98 -3.2378516096640739E-03 + 99 2.6140993773157511E-03 + 100 1.2734323709913413E-02 + 101 -4.4261745282665255E-04 + 102 7.1763815299053660E-03 + 103 -5.2633452712467122E-04 + 104 -4.6822170457672493E-02 + 105 1.0446244535363171E-01 + 106 -1.0666437685907426E-01 + 107 6.4633572549743839E-03 + 108 -7.6288103019901687E-03 + 109 7.2661386331607201E-03 + 110 -1.4897189622064743E-03 + 111 4.6313841986187574E-03 + 112 3.9233139438867113E-03 + 113 3.0282252169604878E-04 + 114 -6.2625007795339771E-03 + 115 -2.0064988607801409E-02 + 116 1.9962957182574088E-03 + 117 2.6517082791966112E-01 + 118 1.6839807148170904E-01 + 119 1.6984908718733172E-03 + 120 -1.3194762912379608E-02 + 121 -1.3214041106892433E-02 + 122 -2.0467482952656259E-03 + 123 -2.7299670251219816E-03 + 124 -5.7845747807540523E-03 + 125 -6.3877058936568885E-03 + 126 -1.7562477978223024E-03 + 127 -8.0146934341511716E-04 + 128 -7.1383957069171252E-03 + 129 2.0177154753782487E-03 + 130 6.1392631448039622E-02 + 131 3.5690787851627839E-02 + 132 -8.1260012656669232E-03 + 133 2.9656191435338791E-04 + 134 3.0641001839600891E-04 + 135 -1.4627834542406480E-03 + 136 1.7122813141958439E-02 + 137 2.0774538377797205E-03 + 138 5.9784245285238478E-02 + 139 -5.8747974782268047E-03 + 140 2.8990832928777192E-02 + 141 4.7234621889853835E-04 + 142 -3.9482114602376250E-03 + 143 1.6654319150768256E-02 + 144 -1.1371417688014385E-03 + 145 1.7730201639828608E-02 + 146 1.5138205811761776E-03 + 147 -1.8630954040153266E-03 + 148 -5.2195644347640168E-03 + 149 5.4788079897988230E-04 + 150 -9.4337681384860776E-04 + 151 -6.9096301165787112E-04 + 152 8.1314780081472775E-04 + 153 1.3246312849354456E-02 + 154 4.1306626776279540E-03 + 155 2.3049864271414935E-02 + 156 -3.9574075825875653E-02 + 157 -1.9987481078819259E-03 + 158 -2.5570046217812193E-03 + 159 9.6917324728730536E-04 + 160 1.1456584608322501E-03 + 161 2.2024828211615125E-04 + 162 4.2886586395102119E-04 + 163 9.1048832437615572E-03 + 164 -5.9352889307642777E-03 + 165 8.6840847621398876E-03 + 166 -2.6386039550116568E-03 + 167 -2.9443700340859918E-03 + 168 3.4158995382005575E-03 + 169 4.6594320975485298E-03 + 170 2.2783654551774180E-03 + 171 -1.8595737689270937E-03 + 172 4.4773472507930002E-04 + 173 -1.8927670547562464E-04 + 174 -3.3000453403021123E-04 + 175 -5.4057261620213610E-04 + 176 -1.8859798180824181E-03 + 177 1.3702704291642844E-03 + 178 3.1738055851161218E-03 + 179 -6.5811288092069509E-04 + 180 7.9263198410670421E-02 + 181 2.1913124079363958E-01 + 182 1.2799734836955399E-02 + 183 -4.7841717536782694E-03 + 184 -1.3276396151530354E-02 + 185 -3.0652300869355559E-04 + 186 -1.3145536300034262E-03 + 187 -3.5663597977644948E-04 + 188 -6.2235752063659966E-03 + 189 1.9350192500192120E-03 + 190 2.0526167373363345E-03 + 191 1.1836477848411055E-02 + 192 -1.7342766978977685E-03 + 193 -1.9496478671410886E-01 + 194 -5.2244371334461498E-02 + 195 3.2034317503526540E-02 + 196 1.3213093773273378E-02 + 197 4.4999170153063647E-03 + 198 -2.9254833493663900E-03 + 199 -2.6442717472649141E-03 + 200 3.7447351210164485E-03 + 201 7.0955807702802404E-04 + 202 1.2534289320494951E-03 + 203 -4.9827545362234075E-03 + 204 1.1436309153550766E-02 + 205 -1.4906480654453967E-04 + 206 -1.6434253293567468E-02 + 207 1.2227168547620496E-02 + 208 3.5818756696017008E-02 + 209 9.6585505833360569E-04 + 210 -1.3155474628584640E-03 + 211 2.7331029368284953E-03 + 212 1.7460992014720306E-02 + 213 1.6161425018810131E-02 + 214 -7.0580514601726492E-03 + 215 2.9780741143364240E-02 + 216 2.9635682752665897E-03 + 217 1.3652133070988006E-02 + 218 1.0655614677558397E-02 + 219 -2.2265822036093836E-03 + 220 1.1252460270842412E-02 + 221 4.8620062519437101E-03 + 222 -2.3393781307694808E-03 + 223 -7.6100452442139945E-04 + 224 1.4041504626540954E-03 + 225 2.7716336098090573E-04 + 226 2.7399864550996310E-04 + 227 -3.0327850983913828E-04 + 228 3.7161269585789581E-03 + 229 3.9116069875632327E-02 + 230 2.4665257427550300E-03 + 231 -4.4839389154869694E-02 + 232 2.0457094905417531E-02 + 233 -9.0051776821270205E-02 + 234 3.3561015180371316E-03 + 235 -2.7458881523855908E-03 + 236 7.4999242841191690E-03 + 237 5.1809837367843295E-02 + 238 -6.4002202821853704E-02 + 239 3.6224370956363175E-02 + 240 -4.7995190167256833E-02 + 241 1.8416421803940493E-02 + 242 9.3888093305381261E-03 + 243 -1.4062868188562576E-02 + 244 1.1610158347404155E-02 + 245 -1.6196645067282606E-02 + 246 7.5101659961957275E-03 + 247 1.0361459298419747E-03 + 248 -3.9939969190630692E-03 + 249 2.1816800305632729E-03 + 250 4.7083400040907756E-03 + 251 -8.7625251956391205E-05 + 252 -5.4445322400344478E-04 + 253 2.9412940427590525E-03 + 254 -1.2007761308025184E-02 + 255 -1.7922542472858581E-03 + 256 -2.1033058766356757E-03 + 257 9.2237245622188782E-03 + 258 -3.2165342731073118E-02 + 259 5.9641835429703847E-04 + 260 -8.1307398136882918E-04 + 261 4.5167260709947392E-03 + 262 -8.3987049330146602E-04 + 263 -2.4505235803113208E-02 + 264 -6.5300308987372262E-03 + 265 -6.9521402345785969E-03 + 266 8.0586535318797111E-03 + 267 -5.2813664099265901E-03 + 268 -1.0199354303675478E-02 + 269 -4.0954017421463524E-03 + 270 -1.3094957395069265E-03 + 271 2.2462491486873707E-03 + 272 2.1244546594095656E-03 + 273 -1.3182388647660502E-03 + 274 -1.3963054891968742E-03 + 275 -1.1917761103809239E-03 + 276 -5.9098359590693025E-04 + 277 5.9994116092397976E-04 + 278 3.9569420771892399E-05 + 279 1.4438182521893527E-02 + 280 -7.5241641377467923E-04 + 281 -1.8012428056015503E-01 + 282 -1.1230232127089690E-01 + 283 -1.7792293522353730E-02 + 284 1.0288969560630922E-02 + 285 1.2392670616629893E-02 + 286 -6.4644963893069622E-04 + 287 -6.1813981432835242E-03 + 288 2.5622168836223146E-03 + 289 -4.3631788243716921E-03 + 290 -2.8767617064490150E-03 + 291 2.2542350424536129E-03 + 292 7.3331347757795385E-03 + 293 -1.7064251727751684E-03 + 294 3.2407102387074789E-02 + 295 -3.2484752014020907E-01 + 296 -1.2264094331090036E-01 + 297 3.4371381285370115E-03 + 298 1.9179529390668321E-02 + 299 1.1048136348741581E-02 + 300 -1.9248308183186795E-03 + 301 5.0142528466783484E-03 + 302 -4.4694072928318628E-03 + 303 -3.7080473143399138E-03 + 304 1.0891077426508132E-02 + 305 -3.9339271903308465E-02 + 306 1.1170950356399402E-04 + 307 -6.3844619908702452E-02 + 308 1.0625887586329815E-02 + 309 3.0879548990215971E-03 + 310 1.0917695733285252E-02 + 311 1.5185992572415187E-03 + 312 -2.6916887900678946E-03 + 313 -2.8245888570679125E-04 + 314 1.3958214210540115E-02 + 315 1.2501426123974462E-02 + 316 -3.4156339512625776E-02 + 317 -6.1019770003007866E-02 + 318 -4.6637350864947337E-03 + 319 -1.4797545308972832E-03 + 320 -3.8578058135072240E-03 + 321 -7.0016116565946298E-03 + 322 -5.1918847242328463E-03 + 323 7.7820089698456903E-04 + 324 -3.6615326779274602E-03 + 325 -1.6994272986312509E-03 + 326 5.3947694951368989E-04 + 327 -3.1344134317463877E-03 + 328 2.3124434109335378E-04 + 329 2.5687261585736593E-03 + 330 5.9474542429840564E-02 + 331 -8.2473912651099992E-05 + 332 6.2516955842011196E-03 + 333 1.1025337540414807E-03 + 334 -1.8071670204337341E-03 + 335 -2.9528628208073736E-03 + 336 1.3936492262767068E-03 + 337 2.3972523338936791E-03 + 338 2.0212916449783146E-02 + 339 1.5999314161660397E-02 + 340 -3.4150821726563925E-03 + 341 -7.7249751173872946E-03 + 342 -5.1055054858848749E-04 + 343 5.9146350985804039E-03 + 344 4.1107583437935170E-03 + 345 2.8381740663681429E-03 + 346 -4.5540440717233436E-03 + 347 -2.2926478342245567E-03 + 348 2.1083149517539559E-04 + 349 2.5660766004406530E-05 + 350 -6.8526293631087005E-04 + 351 3.8498652145146667E-04 + 352 4.5247537036295242E-04 + 353 -1.3572054807951705E-04 + 354 7.2788073627941599E-04 + 355 6.3790126962467450E-03 + 356 -1.0241005868897889E-03 + 357 -9.8455436805804680E-02 + 358 1.6333422747931470E-02 + 359 6.7120227561055432E-04 + 360 5.1302263958001824E-03 + 361 6.1961928217399800E-04 + 362 1.6469534765327512E-03 + 363 8.7699503635882805E-04 + 364 -4.4026966308974586E-03 + 365 2.6816150449149702E-03 + 366 3.5937412376569129E-03 + 367 1.4209949097626253E-03 + 368 2.9739216649622455E-03 + 369 -4.7369676474043169E-04 + 370 -3.0951012723965651E-02 + 371 -8.4786799274378363E-02 + 372 -7.1709208161109581E-02 + 373 7.0644479877427484E-03 + 374 1.0490446270416133E-02 + 375 1.1154389266240431E-02 + 376 -1.6565496364218009E-03 + 377 -2.6281087036349924E-03 + 378 9.3806025254314503E-04 + 379 1.7489730771523199E-03 + 380 2.7456377557047227E-03 + 381 -2.3280537448894641E-02 + 382 3.4760325315633537E-03 + 383 2.5715954889608358E-02 + 384 -7.9150202174209677E-02 + 385 1.3830372403459146E-01 + 386 1.6753942944898971E-04 + 387 6.9001481550446204E-03 + 388 -8.2039786253523313E-03 + 389 -5.2654097382208366E-04 + 390 -3.0072244657741885E-03 + 391 -7.0435868920112809E-03 + 392 -4.4662776238872312E-03 + 393 1.7747212643623963E-03 + 394 -1.0046344221676278E-02 + 395 2.7035016180008828E-03 + 396 9.3856603003320219E-03 + 397 -2.1268772025904981E-02 + 398 1.6781398789810720E-02 + 399 2.1860714269550932E-03 + 400 6.0873327431126487E-03 + 401 1.9143893729748633E-03 + 402 1.5477810845334427E-02 + 403 -3.9821748382368384E-02 + 404 -4.8961635750173508E-03 + 405 2.4346628957715825E-02 + 406 -2.7659782998895696E-02 + 407 7.4719869117126983E-03 + 408 -2.4821647808045310E-02 + 409 -1.0143499503279259E-02 + 410 1.1952789826649759E-02 + 411 -4.2035696921665089E-03 + 412 4.7050386336062089E-04 + 413 -1.4446300639772217E-03 + 414 -1.3155590363789090E-03 + 415 -7.2031700762845131E-04 + 416 -8.2030950783338602E-05 + 417 -1.4113913207767961E-03 + 418 -4.8417590947735990E-04 + 419 8.7513200810342019E-03 + 420 -1.3577433429217112E-03 + 421 -1.7443198888384356E-01 + 422 6.4582866907258382E-02 + 423 2.6204264333451268E-02 + 424 8.2441460992481799E-03 + 425 -5.4307624706050129E-03 + 426 1.5713589153928550E-03 + 427 1.5780086662642466E-03 + 428 -2.7485603216324617E-03 + 429 1.4870880600971748E-03 + 430 -2.4792773336631629E-03 + 431 3.6995696855652376E-03 + 432 3.5914713214972439E-03 + 433 -1.9867078402673218E-03 + 434 -1.2660734047348163E-01 + 435 -2.6947101697070191E-02 + 436 -3.1801624975913833E-03 + 437 7.8787512836759627E-03 + 438 3.7617015919590483E-03 + 439 1.0147402751776854E-03 + 440 1.7031031041518673E-03 + 441 -2.0841590161627724E-03 + 442 1.4718228667464795E-03 + 443 -1.2051103184828546E-03 + 444 -4.0602749951362347E-03 + 445 -2.2257521407580139E-02 + 446 1.3175337852590376E-04 + 447 -9.3035293108188529E-03 + 448 2.2448649338344732E-02 + 449 9.4467535317372779E-03 + 450 7.3776180540077632E-04 + 451 2.4596348485310189E-03 + 452 -1.6982847033324936E-03 + 453 3.6054122364353532E-03 + 454 -3.0581227594713482E-02 + 455 -1.3606675777640473E-02 + 456 4.7814588369852213E-03 + 457 1.3097501126372821E-02 + 458 2.2664559506144644E-03 + 459 -1.0530589398878118E-02 + 460 -1.1536742234432510E-03 + 461 -1.3613332321392427E-03 + 462 8.3833015952170485E-03 + 463 -1.0896143531488546E-04 + 464 3.4030675581732590E-04 + 465 -1.5257338643059066E-03 + 466 1.4844636982520195E-03 + 467 1.1786588754439462E-03 + 468 -8.8919737452423030E-04 + 469 -3.4369480408920279E-04 + 470 -2.8547748205891996E-02 + 471 -3.0040891819077273E-03 + 472 1.0089555436063038E-02 + 473 -1.1276082397944857E-03 + 474 -2.2930582090994120E-02 + 475 -4.2716967426072275E-04 + 476 -1.0530462472295964E-03 + 477 1.7867250949788601E-03 + 478 -6.9366768871937353E-03 + 479 -1.7896200605851890E-02 + 480 -6.8085218896827985E-03 + 481 -1.1826624229503296E-02 + 482 -1.1988302587760307E-02 + 483 -1.1301561706074990E-03 + 484 -3.4273530082352443E-03 + 485 -1.7007042431575964E-03 + 486 -1.6666133265667172E-03 + 487 -6.9301802370466004E-03 + 488 -1.8996434156847870E-04 + 489 1.2120683521444999E-03 + 490 -1.3405449460473921E-04 + 491 -1.7744010407554000E-04 + 492 3.9540864789935361E-04 + 493 1.0094364369764977E-04 + 494 -8.8827414806595965E-04 +Ene= -1.9959370965E-01 +Spin= Alpha +Occup= 2.0000000 + 1 3.9714785410279743E-02 + 2 -1.9360955652663256E-03 + 3 2.5730006998734057E-02 + 4 6.4582095411162164E-03 + 5 2.7522412873547161E-02 + 6 -1.4274267425109454E-03 + 7 5.1953517262845351E-03 + 8 -3.6200266995197825E-03 + 9 -7.4513045325583782E-03 + 10 -7.5386716422515794E-03 + 11 1.3535568007547060E-02 + 12 -1.2736752408549032E-02 + 13 1.7192066955697277E-02 + 14 -1.3524344929405796E-03 + 15 -2.2924370030160601E-03 + 16 4.0168926169884111E-03 + 17 -4.3611109805746106E-05 + 18 3.9814180099430191E-03 + 19 -7.1291988652799648E-05 + 20 5.1503841616493487E-04 + 21 1.0224293903079476E-05 + 22 2.4024368406145437E-03 + 23 -1.0083882813948478E-03 + 24 1.8332755311535548E-03 + 25 -1.8554430513335065E-03 + 26 -2.4210801100439151E-02 + 27 3.6129085724598588E-03 + 28 -4.6965047640793326E-03 + 29 2.2999196784732622E-02 + 30 5.4171617584040412E-03 + 31 1.5344085389791548E-03 + 32 5.9766438931181090E-04 + 33 -1.6176962332070835E-03 + 34 1.1341262975024455E-02 + 35 1.8646263121992926E-02 + 36 2.3659914297530067E-02 + 37 4.3828518094680396E-03 + 38 2.0935469173127101E-02 + 39 4.6999582176854111E-03 + 40 6.5483773308239387E-03 + 41 1.9140607978915699E-02 + 42 1.8786749517660073E-03 + 43 -2.5794280801025630E-03 + 44 -6.9852713239120488E-04 + 45 1.3133748485389591E-03 + 46 1.5752751478390265E-04 + 47 1.6208105137568173E-03 + 48 -1.3377502463966060E-03 + 49 -2.0008783307858945E-04 + 50 3.2275623896808788E-04 + 51 2.4770810830498383E-02 + 52 -2.0019618932509121E-03 + 53 -4.8370647489893214E-03 + 54 -1.5388728818308703E-02 + 55 -2.0482828024625675E-03 + 56 1.3426248070137264E-03 + 57 3.0110067957985691E-03 + 58 7.7661585798655022E-04 + 59 -1.0368297652360407E-02 + 60 -2.5343990228816528E-02 + 61 -1.7313254061345925E-02 + 62 4.1268850721135385E-03 + 63 3.1694327477266970E-02 + 64 1.1286654464298575E-03 + 65 -4.9183731290815217E-03 + 66 -6.3576441101957544E-03 + 67 1.0092744342938642E-02 + 68 7.2491738698294195E-04 + 69 9.0910199142645238E-04 + 70 -6.7850252663929141E-04 + 71 4.5897621563883913E-04 + 72 1.2018680938721280E-03 + 73 7.5136480806606634E-04 + 74 -9.8625380836395377E-04 + 75 2.2131025686684780E-03 + 76 -4.8803965742513465E-03 + 77 1.2508492311945124E-03 + 78 -1.5009134822200967E-01 + 79 8.3540290382813354E-02 + 80 -1.3637850837865902E-02 + 81 1.2095014464906153E-02 + 82 -3.8844751500061317E-03 + 83 5.2112742872893209E-03 + 84 8.7324280323207871E-04 + 85 2.8324005338001938E-03 + 86 -2.7509730049573278E-03 + 87 5.9408233442869128E-03 + 88 1.4640326859056494E-03 + 89 1.4385997159554095E-02 + 90 -1.4265029269810141E-03 + 91 -8.3831575655346404E-03 + 92 -5.6976826535202536E-02 + 93 -3.8358771831903400E-02 + 94 2.7752849143599569E-03 + 95 4.4523534401115176E-03 + 96 3.1842754216304930E-03 + 97 1.5676360783709663E-03 + 98 1.2350058278600621E-03 + 99 -1.7796360305180302E-03 + 100 1.4294134612253895E-03 + 101 -1.8559254663969426E-03 + 102 9.1685749551720201E-03 + 103 -1.2667157039341825E-03 + 104 -5.9833114133342455E-02 + 105 7.7230037805251284E-02 + 106 -1.0187897849219739E-01 + 107 7.6552259167023372E-03 + 108 -1.4844666973383054E-03 + 109 6.8739169775324368E-03 + 110 -2.9003801344234404E-03 + 111 4.3837043830354276E-03 + 112 -2.6925961073721583E-03 + 113 7.3532979465581170E-04 + 114 -2.6890036431610445E-03 + 115 3.3117259664262148E-02 + 116 -3.0731195871697183E-03 + 117 -2.7084119258758882E-01 + 118 -2.2156694240532523E-01 + 119 -6.7019994680308809E-02 + 120 1.4568677612960339E-02 + 121 1.5021450231978890E-02 + 122 9.8682471284691972E-03 + 123 5.1871142222603720E-03 + 124 7.8272032764646338E-03 + 125 9.3260447790959339E-03 + 126 3.6677301372663655E-03 + 127 -3.7933313148880948E-03 + 128 2.7294866360109117E-02 + 129 4.2575126401635582E-03 + 130 -8.0563413784555393E-03 + 131 -7.8796532900130375E-02 + 132 9.0122695419910959E-03 + 133 2.4224708032504799E-03 + 134 2.7582006395794247E-03 + 135 -3.4340342333318216E-03 + 136 4.3118971274253751E-02 + 137 -5.9640355488946445E-02 + 138 -8.2134587556946359E-02 + 139 -5.3540528897728246E-03 + 140 -1.4257621245369256E-02 + 141 1.3870368577078847E-02 + 142 -1.8872179087551469E-02 + 143 -3.5419695190932105E-02 + 144 -7.2639939853410135E-03 + 145 -2.0977297746748509E-02 + 146 -4.4554292937202335E-04 + 147 2.3362639190309376E-03 + 148 7.2215206775210969E-03 + 149 1.1164110621547734E-03 + 150 1.8778415755183971E-04 + 151 7.9188023421823781E-05 + 152 9.7219108981762314E-05 + 153 2.8240117211961849E-02 + 154 2.2766156270588407E-03 + 155 3.4153520878837627E-02 + 156 5.4416795261912683E-02 + 157 1.0097219982870319E-02 + 158 3.3802928835715471E-03 + 159 2.4557647611782528E-03 + 160 -8.2707457433989836E-04 + 161 -5.2445148132911415E-03 + 162 -5.4905063069603530E-03 + 163 6.0438838465682147E-03 + 164 9.8955630274276136E-03 + 165 -4.9405377312705771E-02 + 166 4.3408764948458443E-04 + 167 -9.0353787688227574E-03 + 168 -2.5780672067508741E-03 + 169 -1.5839042424240421E-03 + 170 -1.3818345117105816E-02 + 171 1.6367773721081584E-04 + 172 1.3869359910871639E-03 + 173 7.0756507178668842E-04 + 174 1.7109105154563093E-03 + 175 1.0371679229157960E-03 + 176 -1.4659679759045235E-03 + 177 -1.2629688451664348E-03 + 178 -1.1610696383224036E-02 + 179 4.6363804477039653E-04 + 180 -9.5587413495942172E-03 + 181 -5.1270530166519968E-01 + 182 -7.3522370908090537E-02 + 183 2.7465078139285908E-03 + 184 2.7377558023412400E-02 + 185 1.5776334313079680E-03 + 186 2.5124650429281161E-03 + 187 -3.3331490563203220E-06 + 188 1.2317023088226790E-02 + 189 6.0810509568662904E-04 + 190 -8.4525671376061550E-03 + 191 1.1912132644844712E-03 + 192 -1.7986966440967035E-03 + 193 7.6513692848235032E-02 + 194 -3.0603291343221450E-01 + 195 -1.9920814609465327E-02 + 196 -4.0862908750285689E-03 + 197 2.7409946902439621E-02 + 198 -5.6494828055004623E-03 + 199 7.0303763906013348E-03 + 200 -1.4151347197192770E-03 + 201 8.2437043032051946E-03 + 202 1.5644352026931705E-03 + 203 1.4312102677564128E-03 + 204 -3.1912661288264033E-02 + 205 -8.0970850180579895E-03 + 206 -2.5992624541146619E-02 + 207 -4.3770076452937512E-02 + 208 -4.9079038794531911E-02 + 209 -3.8456360960868446E-03 + 210 7.7704396159965433E-03 + 211 -1.2016635664167232E-04 + 212 -5.9067120252156609E-02 + 213 1.2482290747405743E-02 + 214 4.2875559699984661E-02 + 215 2.3608271040737780E-03 + 216 -5.9213945619097021E-02 + 217 -2.8171472708425953E-02 + 218 -5.3990533728200197E-03 + 219 4.3315347848042265E-03 + 220 -9.3503347418942941E-04 + 221 -2.1207546388169452E-02 + 222 2.3027912579042490E-03 + 223 1.6537677753686994E-03 + 224 -1.0722664008456144E-03 + 225 8.1136682023901072E-04 + 226 -7.0154046914075257E-04 + 227 2.3344335481771000E-03 + 228 -1.1121678906573071E-03 + 229 -1.3643376205080231E-02 + 230 2.9686799735379114E-03 + 231 -2.8421368938062030E-02 + 232 1.2019063593273538E-02 + 233 -7.9771237637213423E-03 + 234 5.2551293922720593E-03 + 235 -1.8684082023617881E-03 + 236 1.1621850065329474E-03 + 237 -1.4185432660063151E-02 + 238 -2.4997832862323429E-02 + 239 -2.0636703692659235E-02 + 240 -2.7510002612271229E-02 + 241 7.5668198183393778E-03 + 242 1.0147286259259746E-03 + 243 -2.1261142360907777E-03 + 244 -4.0640216172081996E-03 + 245 -6.1423892486081886E-03 + 246 3.0830232701027482E-03 + 247 1.0178211693260752E-03 + 248 4.5151438078371866E-04 + 249 1.4127048178676981E-03 + 250 2.4186216135555177E-03 + 251 1.5911113450530331E-03 + 252 -8.1229674045211011E-04 + 253 2.7404908192718009E-03 + 254 7.8614848843320706E-02 + 255 8.6233218536260568E-03 + 256 4.7469867532184358E-02 + 257 2.5129922601933575E-02 + 258 5.3428476924110409E-02 + 259 -7.2868445795251332E-04 + 260 -4.5758256431277039E-04 + 261 -3.0334690040692775E-04 + 262 1.5825950288092493E-03 + 263 3.5279632509327820E-04 + 264 -8.1481755740309639E-03 + 265 5.6442019955780494E-03 + 266 -1.0249446229107530E-02 + 267 6.1043304409398574E-03 + 268 5.6551793244618304E-03 + 269 -1.1269139648583407E-02 + 270 1.6665317045232511E-03 + 271 -5.7054611695968914E-03 + 272 -2.9183985958008423E-03 + 273 3.2069984545788136E-04 + 274 1.3417376043619678E-03 + 275 -1.1761600161378262E-03 + 276 9.8653020934214586E-05 + 277 -1.7047818224606166E-03 + 278 2.6307078586204886E-05 + 279 -4.4001478905491865E-04 + 280 -2.3463843512140661E-04 + 281 -1.5702464019438719E-01 + 282 -1.1577529277278158E-01 + 283 1.1089635808356137E-01 + 284 1.4406659716827034E-02 + 285 9.2577330923247873E-03 + 286 -4.3379265170722710E-03 + 287 1.1347935113223020E-03 + 288 7.0914481647818951E-04 + 289 -3.1837741171409331E-03 + 290 -2.1811563142423254E-03 + 291 3.0671832875555872E-03 + 292 -2.1003424901314609E-02 + 293 3.2723073522223731E-03 + 294 -6.6077912446164417E-03 + 295 -1.0012494611835596E-01 + 296 1.0164692779976747E-01 + 297 5.9939133133982874E-04 + 298 7.0222465306576760E-03 + 299 -6.7574771369453262E-03 + 300 3.2895780748798315E-03 + 301 -5.2633916312564257E-04 + 302 -2.8440797969347133E-03 + 303 -2.2563172313666800E-03 + 304 2.2923186673431493E-03 + 305 -1.2862682027987028E-02 + 306 4.1456647959038419E-05 + 307 -2.3485664254195897E-02 + 308 -2.9729888565911424E-03 + 309 -1.1226898317648759E-02 + 310 3.6405829896192315E-03 + 311 -2.2325456958571812E-03 + 312 1.0846481658278945E-04 + 313 -1.9696341457711686E-03 + 314 -1.0637306279274741E-02 + 315 -1.7674552674485052E-03 + 316 -7.7530572581520493E-04 + 317 -2.7506031272673353E-02 + 318 -7.2870796261603342E-04 + 319 -4.3425036724681525E-03 + 320 -5.0441623974218494E-03 + 321 -2.5267753954838000E-03 + 322 1.9028635609722024E-03 + 323 -2.1333378583934906E-04 + 324 -1.3205504780118065E-03 + 325 -1.0213245679669147E-03 + 326 1.3282121904938977E-04 + 327 2.8977419359067791E-04 + 328 1.3756650413558238E-03 + 329 2.4663679044082683E-04 + 330 -1.9480125708964365E-03 + 331 -2.7392087482345558E-03 + 332 -7.3461786934473023E-03 + 333 3.5726661427396070E-02 + 334 -1.8479764328101729E-02 + 335 1.3478370818516310E-04 + 336 -5.7146428130485163E-04 + 337 4.9169345390336159E-03 + 338 1.3060244988383346E-02 + 339 -4.8624301685845760E-03 + 340 2.0690269080141377E-02 + 341 2.7765237127989361E-03 + 342 2.1537600260552927E-03 + 343 -2.8648926830457783E-03 + 344 -2.0254788377278370E-03 + 345 1.1417545867965858E-02 + 346 6.9785129302680539E-04 + 347 -1.5871631414589133E-03 + 348 1.0650378839976852E-03 + 349 1.5842235705454417E-03 + 350 -2.8307297171573501E-03 + 351 -1.0578169887704052E-03 + 352 -5.4581589734200577E-04 + 353 1.9012683884315168E-03 + 354 1.0103384717543057E-03 + 355 9.9883031645166508E-03 + 356 -4.6871160788497556E-04 + 357 -9.1997386029148878E-02 + 358 6.0092104956261876E-02 + 359 -1.4018938929369890E-02 + 360 7.4489310357918502E-03 + 361 -7.0526194536225774E-03 + 362 4.3525598677968737E-04 + 363 6.1863696186432906E-04 + 364 -3.7153437714981335E-03 + 365 5.1573304084152304E-03 + 366 2.5136804751764961E-04 + 367 2.0245484289424399E-03 + 368 4.4639261297678224E-03 + 369 6.3750602103822385E-05 + 370 -1.4264741909707185E-01 + 371 -2.7516005736569904E-01 + 372 -2.4007576793976384E-02 + 373 1.4380352770996070E-02 + 374 3.0981691597410169E-02 + 375 2.7871129425185688E-03 + 376 -8.1736838123223454E-04 + 377 -7.5884459824916272E-04 + 378 6.6681607575243035E-04 + 379 1.8657993142869160E-03 + 380 5.4798932409975479E-03 + 381 -5.0954088724555792E-02 + 382 5.9507856532680188E-03 + 383 -3.2453372801896460E-02 + 384 -1.3248457231454519E-01 + 385 5.1284892048784989E-02 + 386 5.5218271869966551E-03 + 387 1.1119765856988645E-02 + 388 -1.8853909573841084E-03 + 389 -4.1174916924072583E-03 + 390 2.4541002885139231E-03 + 391 -2.4618939354379391E-03 + 392 2.3426534249610899E-03 + 393 5.9387946629145625E-03 + 394 -1.5912326543394566E-02 + 395 -2.2757455144092878E-03 + 396 1.6666159299519877E-02 + 397 -3.6459416478233579E-02 + 398 1.1207822769516941E-02 + 399 1.7523949076738926E-03 + 400 3.3105049358384763E-03 + 401 -5.3116609277447579E-03 + 402 -1.4883296960638138E-03 + 403 -6.4128496044084079E-03 + 404 -7.1974811907961631E-03 + 405 1.3158578364976872E-02 + 406 -2.8533771985662395E-02 + 407 -1.4546583725771800E-02 + 408 -1.2550286863020791E-02 + 409 -2.1432341130546931E-03 + 410 9.6991673543023475E-04 + 411 -4.1035369655669351E-03 + 412 -2.2879412405533484E-03 + 413 -1.8684430494928872E-03 + 414 -1.0994791494296028E-03 + 415 -1.2552862771641764E-03 + 416 1.8351456418645193E-03 + 417 -1.2899916957253923E-03 + 418 -1.0451040924900922E-03 + 419 8.7444501721885021E-03 + 420 -1.6533315861152658E-03 + 421 -2.3271971572513216E-02 + 422 1.5895210191296241E-01 + 423 -3.1114841735668114E-02 + 424 2.5451154670296330E-03 + 425 -8.2201225728177341E-03 + 426 3.3614596337480560E-03 + 427 -1.3970672565236585E-03 + 428 2.6667519733010784E-04 + 429 4.9516491294821826E-03 + 430 -3.3126595640770886E-04 + 431 1.9660818054668258E-03 + 432 1.0504178819738818E-02 + 433 -1.9354199264806891E-03 + 434 -1.4496610342949881E-01 + 435 -8.9528007731284123E-02 + 436 -9.4377106809248587E-02 + 437 9.7259147136661700E-03 + 438 6.2552128177495274E-03 + 439 5.4629296103083161E-03 + 440 2.1971002098213673E-03 + 441 -2.0132496912655088E-03 + 442 4.4260888645346688E-04 + 443 -8.7615714732637107E-04 + 444 -2.2324386391326979E-03 + 445 -6.4231226306911144E-04 + 446 2.1910164698491158E-04 + 447 -3.2197826446372736E-02 + 448 2.9110689489627990E-02 + 449 -1.5176992086141953E-02 + 450 -1.1899972245507648E-05 + 451 -1.0110776689188253E-03 + 452 -1.0811505692968597E-04 + 453 2.7274229207528244E-03 + 454 -3.0349490332520077E-02 + 455 -3.3144093266078707E-02 + 456 -1.8315464760190192E-02 + 457 3.1685762215848934E-03 + 458 1.1727143808675546E-02 + 459 -9.1172900699134033E-03 + 460 -1.5465843426106010E-02 + 461 -9.1440347558803693E-03 + 462 2.7601535549489232E-03 + 463 1.0456628853548347E-03 + 464 1.8473079371527940E-03 + 465 -3.9086237025125524E-03 + 466 7.4785573537682710E-04 + 467 5.0022884524074959E-04 + 468 -3.7766761119265935E-04 + 469 1.3993637433148916E-04 + 470 -6.3494028303425057E-02 + 471 -3.8128722349529986E-03 + 472 2.5291534797344897E-03 + 473 -2.8259244734323560E-02 + 474 -1.7402718201476854E-02 + 475 1.8014084719491538E-03 + 476 8.7241363556633256E-03 + 477 1.1795193664001626E-03 + 478 -3.7008499343487359E-03 + 479 -1.3942621063350443E-02 + 480 -7.6907025607061605E-04 + 481 -2.3017586999360618E-02 + 482 -2.7973817225418481E-02 + 483 -4.9594519170301534E-07 + 484 -4.5341757254296396E-03 + 485 2.7905882046422637E-03 + 486 1.7045199094636726E-03 + 487 -7.0702487166270935E-04 + 488 7.6925740562721397E-04 + 489 -6.4182727983653749E-04 + 490 -1.2355780377200181E-03 + 491 1.0930631419965471E-04 + 492 2.2508985720301015E-03 + 493 6.0260768706923810E-04 + 494 -1.1993268635042439E-03 +Ene= -1.9716769366E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -1.6750601983785338E-02 + 2 3.3142640554421443E-03 + 3 5.0801779512296740E-03 + 4 -1.7546235590091955E-02 + 5 -1.1668933952701013E-01 + 6 3.3678600618725261E-03 + 7 7.8584614422460061E-03 + 8 7.8202133423211518E-03 + 9 2.3923331130925075E-03 + 10 5.0847706636602104E-02 + 11 -6.5617684599962908E-02 + 12 2.6966228275177771E-02 + 13 -1.4197270329048776E-02 + 14 -3.8981754448197225E-03 + 15 1.7857553509423463E-02 + 16 1.6709039322551703E-03 + 17 -7.0829307498834499E-04 + 18 3.5487946511260251E-03 + 19 -3.9902252513864862E-04 + 20 2.3406065639433181E-03 + 21 -2.3449781329163826E-04 + 22 -5.4852428210406959E-03 + 23 3.1030323561920276E-03 + 24 -1.1732926018710676E-03 + 25 -1.5283735654912063E-03 + 26 4.6875495491442432E-03 + 27 2.8714331438697734E-03 + 28 9.6347241883082118E-03 + 29 -4.2726376184232730E-02 + 30 2.4512573760332376E-02 + 31 -1.6921012779961273E-03 + 32 9.3549673588739050E-03 + 33 -1.0806239811133366E-02 + 34 -7.9662006430081034E-02 + 35 3.7279454996363863E-02 + 36 -1.5135018656336997E-03 + 37 -3.7376525648115951E-02 + 38 -2.2048237200607956E-02 + 39 -2.3163957608392998E-02 + 40 8.7720578690540056E-03 + 41 8.6782797164854902E-05 + 42 -1.2700776204592205E-02 + 43 2.7253074682319993E-03 + 44 8.4012823659889888E-04 + 45 4.3170768417966892E-03 + 46 2.1078087996194054E-04 + 47 -1.9777869842930489E-04 + 48 -1.8760956612698567E-05 + 49 2.7709259517211871E-03 + 50 5.1627454828921432E-04 + 51 1.4176193726697083E-02 + 52 1.8356187186961126E-03 + 53 -4.8228379974014721E-03 + 54 -1.4755811706017440E-02 + 55 5.6013568675948255E-02 + 56 1.4609520544429317E-03 + 57 3.4625179413392618E-03 + 58 -1.0724269612092613E-02 + 59 -3.1053965902233137E-03 + 60 4.0490011656556954E-02 + 61 4.3279580133360127E-02 + 62 -1.3667348306106483E-02 + 63 9.2212767270398857E-02 + 64 -4.6437641421779204E-03 + 65 1.8348409684321399E-03 + 66 7.3126076238345158E-03 + 67 -3.1173289646299943E-03 + 68 1.2370639557958104E-02 + 69 4.3097092804443692E-03 + 70 5.0544071352165139E-04 + 71 -1.4259957418900069E-03 + 72 -1.0810971615943833E-03 + 73 -5.8709277923495940E-05 + 74 -9.1745765469578987E-04 + 75 -1.6764496355824111E-03 + 76 -3.8811297713089984E-02 + 77 5.5639135735195784E-03 + 78 -2.1766823571778782E-01 + 79 -3.9997141786393337E-01 + 80 -3.8270156198070358E-02 + 81 1.7126849270634049E-02 + 82 3.1181378820924494E-02 + 83 9.1668807672148616E-03 + 84 -7.8501992172257899E-03 + 85 -7.9000538453093843E-04 + 86 6.9716339271762209E-03 + 87 -2.1357059831074608E-03 + 88 9.7377788425540793E-03 + 89 -4.2631067033890380E-03 + 90 1.3828292885228188E-03 + 91 -7.4598086845100275E-02 + 92 -1.2093133775153744E-02 + 93 1.6106826132788879E-01 + 94 5.2099705635356690E-03 + 95 -6.8371389043523825E-06 + 96 -1.2791023956066060E-02 + 97 -2.0781607621559854E-03 + 98 -3.8221191966773074E-03 + 99 1.1201471860204990E-02 + 100 2.5750673470467935E-03 + 101 -2.2139555762325340E-03 + 102 -1.6656105422300033E-02 + 103 8.4137494673052653E-04 + 104 1.9053548732701181E-01 + 105 -1.8879717306824034E-01 + 106 3.0056162409451342E-01 + 107 -1.7957374917509730E-02 + 108 1.1778928143440275E-02 + 109 -1.9541306934770533E-02 + 110 1.2681495048328459E-02 + 111 -1.1250459874742189E-02 + 112 -3.2579275683926111E-03 + 113 -2.6405897212014823E-03 + 114 5.9879780221858674E-03 + 115 -4.8824148158081287E-04 + 116 1.7459249740669612E-03 + 117 3.5322519166847387E-02 + 118 -5.2611046947668244E-02 + 119 -1.7820173292749687E-02 + 120 1.7447106830649245E-03 + 121 3.1650665850389424E-03 + 122 5.4260320546576962E-04 + 123 2.9919281880766710E-03 + 124 -5.3730477553321995E-04 + 125 -1.4850533496563436E-04 + 126 1.7459196446983486E-03 + 127 2.9639387948308810E-03 + 128 -1.1741394574002121E-02 + 129 2.3627772885459475E-03 + 130 7.6348568114732252E-03 + 131 7.6342530614052443E-03 + 132 -1.0502699218807901E-02 + 133 -4.1929275202476895E-03 + 134 5.7405581920289628E-03 + 135 -2.5775776953071445E-03 + 136 1.7424435907260345E-02 + 137 -2.1544120337718950E-02 + 138 8.7566915826426533E-03 + 139 2.7446347617282370E-03 + 140 -2.4692417890510997E-03 + 141 6.4812900987916908E-03 + 142 -1.1667259159134993E-03 + 143 6.2115408259435356E-03 + 144 9.5033220267425750E-04 + 145 2.2984833386272292E-03 + 146 1.9233197766261967E-03 + 147 -1.3180008934428512E-04 + 148 5.4709045563329061E-04 + 149 -3.0496211508519868E-04 + 150 2.7943925616707092E-03 + 151 1.0756244905426244E-03 + 152 3.0492352889759430E-03 + 153 -9.8612900950790686E-02 + 154 -2.2620411032427310E-03 + 155 -5.4398212065936376E-02 + 156 3.9711127221025003E-02 + 157 -3.8853526054161751E-02 + 158 1.9845425936049570E-03 + 159 4.2900360295697049E-03 + 160 -1.6967295640860952E-03 + 161 2.4496492926646171E-02 + 162 -3.1157115413962657E-03 + 163 -1.0385244768672560E-02 + 164 -1.1407856928359541E-02 + 165 1.0007540367069497E-02 + 166 7.2878557998823134E-03 + 167 4.4214728724999751E-03 + 168 -8.6959132937621652E-03 + 169 -1.3210414799047904E-02 + 170 2.2611295376620583E-03 + 171 1.0129545020668674E-03 + 172 -1.3277495782883985E-03 + 173 -9.6151455160289119E-04 + 174 9.4964368858375695E-05 + 175 8.5154124489121802E-04 + 176 1.1577654904923313E-03 + 177 -9.6331363726491720E-04 + 178 -1.8307729239157241E-02 + 179 4.0422737797594834E-03 + 180 -3.9708574178489900E-02 + 181 -2.3249767570964506E-02 + 182 -2.6793917059509446E-02 + 183 1.5974867080874450E-03 + 184 1.9819523495146194E-03 + 185 2.9126231677344019E-03 + 186 1.0451735081161441E-03 + 187 2.2042026655337823E-03 + 188 5.1831310037571807E-05 + 189 -4.2551823195777173E-04 + 190 -2.1532140868875923E-03 + 191 1.6331107320878942E-02 + 192 -1.9661626552289909E-03 + 193 -6.7934499988238958E-02 + 194 -2.2975149564649142E-01 + 195 9.6910508248701815E-02 + 196 6.1701187698558323E-03 + 197 2.0615092692890642E-02 + 198 -8.9808826796797560E-03 + 199 1.0738172930906100E-04 + 200 -1.2679160795309105E-03 + 201 2.6954484812809843E-03 + 202 2.0402044794271736E-03 + 203 -1.5433063708136501E-03 + 204 -1.7888792087973296E-03 + 205 -4.4682578427142480E-04 + 206 3.3826301080960974E-03 + 207 -1.9668591467959809E-02 + 208 -6.1309432161472787E-03 + 209 8.8537747498078009E-04 + 210 2.6696347066485528E-03 + 211 1.2661061502800240E-03 + 212 -1.0369033871358730E-02 + 213 9.0724214563928374E-03 + 214 1.4830281801323985E-02 + 215 8.6494609436433088E-03 + 216 -2.9823965955828265E-02 + 217 -4.3971763708751483E-03 + 218 2.1866576014385013E-03 + 219 4.5741210877543919E-03 + 220 1.0476431587979309E-02 + 221 -2.8903908469641330E-03 + 222 9.6350728411442757E-04 + 223 -6.3678897956720621E-04 + 224 3.9552007206555289E-06 + 225 -4.4133132302042903E-04 + 226 4.5760107611192500E-04 + 227 5.6530075076541091E-04 + 228 1.1039636042844180E-03 + 229 3.3654601309681086E-02 + 230 3.6451422463713631E-03 + 231 -3.3670671699417691E-03 + 232 -1.7602520816393505E-02 + 233 -1.9951075272481220E-02 + 234 1.9059628750149795E-03 + 235 1.2593230800419567E-03 + 236 2.9365074389278967E-03 + 237 -2.3908110571517802E-02 + 238 -4.1922475112089068E-02 + 239 4.6836354256310039E-02 + 240 -1.9266079623077139E-03 + 241 3.2481151689605837E-02 + 242 -1.6517218683250453E-02 + 243 -1.6486234300370477E-03 + 244 1.4926902722587416E-02 + 245 -5.8897634826146389E-04 + 246 2.5386318895465887E-03 + 247 -1.9986121095803234E-04 + 248 -3.4879735178391406E-03 + 249 1.5229548544078697E-03 + 250 -1.0746512133118960E-03 + 251 -2.7820459180179853E-03 + 252 1.6135485582481228E-04 + 253 -1.6629384148767030E-03 + 254 1.2692384894555995E-02 + 255 -2.6788577983203467E-03 + 256 -2.3871851027096214E-02 + 257 2.3548636221475471E-02 + 258 1.5012597724722580E-02 + 259 -1.8625525209426572E-03 + 260 3.6851518549270877E-03 + 261 -8.0817415521180472E-04 + 262 1.6125623000385434E-03 + 263 4.6055344252941138E-03 + 264 -1.9296285774412036E-04 + 265 4.8403946928299883E-03 + 266 2.5933694897278554E-03 + 267 2.2137563543660715E-03 + 268 -2.8418000828554098E-03 + 269 1.8553086966702618E-03 + 270 9.1150517227164048E-03 + 271 8.9600980856783165E-03 + 272 2.0834344242011541E-03 + 273 -2.9428718070886281E-05 + 274 -9.1215541757495530E-04 + 275 -1.0193746256334734E-05 + 276 1.0536451941389460E-03 + 277 1.9705668566543564E-03 + 278 3.3070323703002317E-04 + 279 4.9252676784474186E-03 + 280 -1.8457144406759576E-03 + 281 8.9319647277589120E-02 + 282 2.5677457856189287E-02 + 283 -6.2023752402407288E-03 + 284 -1.1055994292610406E-02 + 285 -9.9492165167153874E-04 + 286 2.2007160295598027E-03 + 287 -1.8159681043982284E-03 + 288 2.3330128789205099E-03 + 289 -5.0736027596990079E-04 + 290 3.0932201650156112E-03 + 291 -3.3298359972629104E-03 + 292 4.6400326229555193E-02 + 293 -6.1748161728765009E-03 + 294 -7.7691835591124234E-02 + 295 2.1611055902085330E-01 + 296 -2.9718372249672409E-01 + 297 5.0786232742029780E-03 + 298 -1.3460634133517535E-02 + 299 2.0390355414163407E-02 + 300 -6.1481378495002884E-03 + 301 2.5993778427636028E-03 + 302 8.5426021243533209E-03 + 303 4.6657119098133491E-03 + 304 4.7483572603056752E-05 + 305 -3.8669329773225987E-03 + 306 -2.5255005006427182E-03 + 307 3.1355835575555352E-02 + 308 -1.6301325022079812E-02 + 309 1.6961754037272174E-02 + 310 -5.3460902079265895E-03 + 311 -3.3212571332747918E-04 + 312 -4.0705813513622043E-03 + 313 2.2917664711851970E-03 + 314 3.7243566387923574E-02 + 315 2.6072368300353581E-02 + 316 3.2536809488883170E-02 + 317 1.8701488089334601E-02 + 318 -2.8400081917297022E-03 + 319 9.4507937145648282E-03 + 320 5.5430600323476556E-03 + 321 1.0353472761757819E-02 + 322 -3.3971869664820458E-03 + 323 1.8314045729028818E-03 + 324 7.8065038021693121E-04 + 325 -9.3605418833757131E-04 + 326 2.8926242198038145E-04 + 327 -5.8299854868720780E-04 + 328 -2.1331416208823640E-03 + 329 -7.8575887811132308E-05 + 330 6.8395295204760854E-04 + 331 -5.7691432835416390E-03 + 332 -5.9658848348844596E-03 + 333 2.5435950778878390E-03 + 334 7.7555265388220135E-03 + 335 -1.0628569922485128E-03 + 336 1.2162575188554119E-03 + 337 -7.6481979985726896E-03 + 338 2.0346886769999874E-02 + 339 1.3565416372746616E-03 + 340 2.2822176633494413E-02 + 341 6.5372637869638333E-03 + 342 -2.2795735507403847E-03 + 343 -3.6918877352213218E-03 + 344 -3.4451245886538873E-03 + 345 1.1356799451001207E-03 + 346 2.2533960646594904E-03 + 347 -2.1726186463245215E-03 + 348 2.2960031464855344E-04 + 349 -7.0325836727219834E-04 + 350 -6.6005527058649168E-04 + 351 -4.1477456970235920E-04 + 352 -1.1479299187723128E-03 + 353 -6.7511855273567542E-04 + 354 6.8531047602218300E-04 + 355 -6.2881353016358294E-03 + 356 1.5797127759429794E-03 + 357 4.3442702821173032E-02 + 358 5.3142818466871914E-03 + 359 3.5783726701459448E-02 + 360 -1.3135408134611235E-03 + 361 -1.2388492199021945E-03 + 362 -1.0431830669082498E-03 + 363 5.2505024483710078E-04 + 364 3.7499851952753517E-04 + 365 -9.9959284010262559E-04 + 366 -2.7730485572557209E-03 + 367 -8.8813398896499815E-04 + 368 -5.6216286121338419E-03 + 369 6.6790854122253742E-04 + 370 8.6936848338714443E-02 + 371 -2.5915743050020890E-01 + 372 3.8594812894568488E-02 + 373 -1.0369018409055776E-02 + 374 3.3889852156170963E-02 + 375 -1.2599273941162966E-02 + 376 -2.8825691640126075E-03 + 377 -9.7090785841360638E-04 + 378 2.5563280473525443E-03 + 379 3.1963835913843904E-03 + 380 1.6430144897100502E-03 + 381 1.6674573121301835E-02 + 382 -1.4243464060218066E-03 + 383 1.1802087480065258E-01 + 384 -8.4591836356122191E-02 + 385 -8.5029987825185532E-02 + 386 -1.2963653274339106E-02 + 387 1.0246993656855592E-02 + 388 7.2011921265149655E-03 + 389 3.2217454022467327E-03 + 390 3.1239590357543157E-03 + 391 1.2609885973010454E-03 + 392 -3.2623101695855817E-03 + 393 -4.4437529832931045E-03 + 394 -3.0781460208681791E-02 + 395 6.5850841712835630E-04 + 396 4.8428181743855457E-02 + 397 -6.7483088096841398E-03 + 398 2.8036335885231529E-02 + 399 -2.3607925781855541E-03 + 400 2.6403621285133496E-04 + 401 -1.3256412917179504E-03 + 402 -4.7649273730304344E-02 + 403 3.0622043224719082E-02 + 404 -2.9119519703279834E-02 + 405 -7.6050985440933522E-03 + 406 -1.6229922352963454E-02 + 407 -1.0683203877981169E-02 + 408 8.9929497983802058E-03 + 409 -4.4711640435916977E-03 + 410 2.4519432729874307E-03 + 411 -1.8396138053423101E-04 + 412 -5.7988302324293375E-05 + 413 -2.9965279446560032E-04 + 414 5.4856246759898703E-04 + 415 1.7068620512512751E-03 + 416 -1.6687761449144473E-03 + 417 9.6707288760711457E-04 + 418 2.0623169401970676E-03 + 419 -2.8802977915537140E-02 + 420 3.9431897039330331E-03 + 421 1.3096150011904240E-01 + 422 5.0292742350210147E-02 + 423 1.0584437408006413E-01 + 424 -8.1495355187890580E-03 + 425 5.0706469855465108E-04 + 426 -5.4372537035569466E-03 + 427 2.1853290972592278E-03 + 428 1.3184351351147065E-04 + 429 1.6794052863202547E-03 + 430 7.2160801901845174E-04 + 431 -2.7102813555184174E-03 + 432 1.0160246029552273E-02 + 433 -1.9793310486849892E-03 + 434 -4.5427568478894710E-02 + 435 5.9954216366053924E-03 + 436 -2.4716667882386380E-02 + 437 4.0192989453777771E-03 + 438 -1.6831849095651894E-04 + 439 3.9382449727063388E-04 + 440 -2.7647810302214597E-04 + 441 5.0252618242982363E-04 + 442 -9.5112416962757503E-04 + 443 -6.9280317137725644E-04 + 444 2.8009600148785950E-04 + 445 2.6675455277724784E-03 + 446 1.8387274329576041E-03 + 447 -1.3759548761842941E-02 + 448 -4.3464283190469280E-03 + 449 -8.5814261564380687E-03 + 450 4.1847189484592903E-04 + 451 4.6809640989749186E-04 + 452 -3.9731562429325438E-04 + 453 9.5939973105039801E-03 + 454 3.6555765270394739E-03 + 455 2.4290554705894583E-03 + 456 -3.0509707784615830E-03 + 457 3.4676886679479292E-03 + 458 7.4639445180624030E-03 + 459 1.6054710470034994E-03 + 460 -6.5145782550466759E-04 + 461 -1.6255133441931810E-03 + 462 -1.9856646537973533E-03 + 463 1.8518801714934258E-03 + 464 -4.9175531049168583E-04 + 465 1.4650516170792728E-04 + 466 -6.0401526887119642E-04 + 467 -2.9409909444187796E-04 + 468 1.2884126767878496E-03 + 469 3.9257787015252997E-04 + 470 4.1150956237990970E-02 + 471 1.0804921526680522E-03 + 472 -1.5039876588737585E-02 + 473 9.4671905076723229E-03 + 474 1.7525750704416986E-02 + 475 -5.3845115409188282E-04 + 476 -1.3150006222297271E-03 + 477 -7.4188438784209855E-04 + 478 8.9768430296652442E-04 + 479 2.4153477404636110E-03 + 480 6.8082204463420903E-03 + 481 -1.4300882445698118E-02 + 482 -7.4367809232922660E-03 + 483 1.3059160229809182E-03 + 484 1.2923315615414131E-03 + 485 5.0063021967963620E-03 + 486 -3.9774992039600483E-03 + 487 -1.6859628863188951E-03 + 488 2.6861490331859671E-04 + 489 1.1745148346001961E-04 + 490 8.0699678325803811E-04 + 491 8.6456045040094300E-04 + 492 4.9957062539221671E-04 + 493 1.3109540479350128E-03 + 494 2.4907224895678013E-04 +Ene= -1.9549963967E-01 +Spin= Alpha +Occup= 2.0000000 + 1 8.7212078645445678E-03 + 2 1.9296049500601702E-03 + 3 6.5862374213158589E-03 + 4 1.3916011451897158E-02 + 5 -1.0778470704347535E-02 + 6 -1.5466263842425867E-03 + 7 3.7699265708527577E-03 + 8 -3.6561698642229544E-03 + 9 1.1481588368882449E-03 + 10 -7.9528398290350018E-03 + 11 4.0117915594557220E-03 + 12 -6.0921591569617316E-03 + 13 1.9002441116679166E-03 + 14 -1.4949259370478779E-03 + 15 1.6718402777054593E-03 + 16 5.9809426315623256E-04 + 17 -2.4456191300397225E-03 + 18 -3.9817913853634375E-03 + 19 9.6228365766472170E-04 + 20 9.4562766320069650E-04 + 21 -9.2369712788062104E-04 + 22 1.2355684565711178E-03 + 23 -5.3488920656843833E-04 + 24 1.7977074697975493E-03 + 25 -4.7056473975771432E-04 + 26 3.2331105376776732E-03 + 27 8.9472068720998109E-04 + 28 -8.1762649648824473E-03 + 29 -1.9204104907641868E-02 + 30 9.0846345656384487E-04 + 31 -9.5593553294803964E-04 + 32 2.7720035546454302E-03 + 33 -2.1474840527446345E-03 + 34 -5.7653618445463019E-03 + 35 1.3187553833128215E-02 + 36 -1.4865326496613486E-03 + 37 -8.1779333473182975E-03 + 38 -1.4842712046878478E-02 + 39 -7.0041998100764859E-03 + 40 6.6740481918106621E-03 + 41 3.3811732540897800E-04 + 42 -3.5697851928914921E-03 + 43 -3.7426311397151133E-03 + 44 1.3378134899462537E-03 + 45 8.4053609732195065E-04 + 46 -1.5261630712264920E-04 + 47 -7.6233732236461913E-04 + 48 -4.9341024283401625E-04 + 49 2.3202587151863164E-04 + 50 6.1187728025039758E-04 + 51 -3.8919990846396305E-03 + 52 1.2774534708885061E-03 + 53 2.8999261719406220E-03 + 54 -1.4697016155651348E-02 + 55 -1.9224385968581979E-03 + 56 -3.4554567287542427E-04 + 57 3.8787834085444932E-03 + 58 -1.7855470713672682E-03 + 59 -2.2060278171679732E-03 + 60 -2.1901412452129763E-03 + 61 5.3994916746792580E-03 + 62 -7.3457847223297595E-03 + 63 3.7073460848341400E-02 + 64 -7.1895484333072647E-03 + 65 -2.4708487252291956E-03 + 66 -6.4632619797443383E-03 + 67 2.1383627263480494E-03 + 68 5.8181929559452698E-03 + 69 -1.0472731617142891E-03 + 70 2.8228534786422991E-03 + 71 -1.8883991561141770E-05 + 72 1.7619150745190970E-03 + 73 1.0677053511870475E-03 + 74 -6.0660689423178431E-04 + 75 8.2788745826389875E-04 + 76 9.5114075989775025E-03 + 77 -1.6039234040378305E-03 + 78 2.9893820948099791E-02 + 79 -2.8426645326841461E-02 + 80 8.3544274166548804E-02 + 81 -6.1875466839239482E-04 + 82 1.4447188565216895E-04 + 83 -4.3509125193501976E-03 + 84 1.3820835697757560E-03 + 85 -1.7289381587725144E-03 + 86 1.0532156313287750E-04 + 87 2.3574555977002378E-04 + 88 1.1948414896284269E-03 + 89 -3.3757356021250546E-03 + 90 4.2154645872164885E-04 + 91 -2.6412543817858129E-02 + 92 1.6526185925743826E-03 + 93 -1.6801718531888370E-02 + 94 3.3391862316743451E-03 + 95 1.4432071378793880E-03 + 96 3.0511793847698798E-03 + 97 -1.0786180616697222E-03 + 98 5.6414026426974484E-04 + 99 8.0221548314842427E-04 + 100 1.5586868951202965E-04 + 101 -1.0190231499158065E-03 + 102 -1.9695999276805156E-03 + 103 -9.5370059742977238E-05 + 104 2.0320137354288396E-02 + 105 -7.6988022102545559E-02 + 106 3.7947654606819356E-02 + 107 -2.5061622726470128E-03 + 108 3.9386943556303311E-03 + 109 -2.0966275192972950E-03 + 110 2.1913400502327797E-03 + 111 -3.6223113772144180E-04 + 112 -6.8196802418744428E-04 + 113 1.3697042996661500E-04 + 114 2.5370348959446536E-03 + 115 7.8351642521967853E-04 + 116 -3.9447646452855402E-04 + 117 1.7306823649780399E-02 + 118 -2.3255043075379907E-02 + 119 -3.4082901168309602E-04 + 120 7.6663088055715857E-04 + 121 4.1078142899973161E-04 + 122 -3.8162679045827840E-04 + 123 1.2951522771833968E-03 + 124 -3.0577630245764910E-04 + 125 -1.0865129349255486E-03 + 126 1.1281511510590134E-03 + 127 -4.5702943676211949E-04 + 128 6.2406960547084500E-03 + 129 -9.1215830328696254E-04 + 130 1.1261778845135142E-02 + 131 1.5532494988064059E-03 + 132 8.4672099171481108E-03 + 133 5.6051455955819635E-04 + 134 1.5673546163162736E-03 + 135 2.1817463045932656E-03 + 136 7.7988426069732454E-03 + 137 3.5105674752107076E-03 + 138 -2.5245034619148569E-02 + 139 -8.3481725092018171E-03 + 140 2.1146573299754101E-03 + 141 -8.6567269269476783E-03 + 142 2.1008050076850040E-03 + 143 -2.6076325865650161E-03 + 144 -8.4717001814684049E-03 + 145 1.8089263406119377E-03 + 146 2.4822836943581188E-03 + 147 7.3215255616537679E-04 + 148 -1.5595901467476646E-03 + 149 4.4572933606027652E-04 + 150 -6.0836304092891217E-04 + 151 -4.3776732511909233E-04 + 152 7.0028505835610752E-04 + 153 -1.9524668108559927E-02 + 154 -1.4148961495439030E-03 + 155 -9.2067591979742378E-03 + 156 7.5188349643107904E-03 + 157 -2.4770343189872996E-02 + 158 1.3580454026536535E-03 + 159 3.7492884923497218E-04 + 160 -2.0326430967630821E-03 + 161 -5.8318417895273917E-04 + 162 1.1899488335999419E-02 + 163 -5.3873384077814876E-03 + 164 1.7963995590187338E-03 + 165 6.4196837057476624E-03 + 166 4.1691357201773986E-03 + 167 6.1260156193000204E-03 + 168 -2.9515773385332209E-03 + 169 -4.9163689984283963E-03 + 170 2.8558923349534839E-03 + 171 -2.8090547588105480E-04 + 172 -6.5347553224624831E-04 + 173 -1.1459145027121754E-04 + 174 5.1605115888056616E-04 + 175 3.2246055776891851E-04 + 176 -8.2167407621967174E-05 + 177 -5.1402590402449338E-04 + 178 2.6358394242963008E-03 + 179 -8.9968518001607887E-04 + 180 -2.4466971806445581E-02 + 181 2.1734733141582734E-02 + 182 1.2443889846016715E-01 + 183 4.6858045806874920E-03 + 184 6.4489237144496530E-05 + 185 -8.1905379748902652E-03 + 186 -2.2159488407860360E-03 + 187 3.2160534346078145E-03 + 188 2.7023508095384663E-05 + 189 -3.1469309105509939E-04 + 190 -2.4016988296329917E-04 + 191 -4.9386122530505130E-03 + 192 1.4101110525722819E-03 + 193 -5.4303323807925630E-02 + 194 -8.9091217501017381E-02 + 195 5.3759100017739488E-02 + 196 4.3082208085653282E-03 + 197 7.4469339083575890E-03 + 198 -3.4287283926571141E-03 + 199 -1.6286212842524805E-03 + 200 6.3092383965114779E-04 + 201 3.3044115101064277E-03 + 202 5.3705649884814132E-06 + 203 -1.6361205406110824E-03 + 204 -1.3796150758886681E-02 + 205 1.7266904556837344E-03 + 206 -9.3833284116224824E-03 + 207 -9.7550065743457273E-03 + 208 2.4621739144738610E-03 + 209 -1.4798827659345949E-03 + 210 8.1749529933767745E-05 + 211 -4.7219181594447442E-03 + 212 2.1479702427801780E-02 + 213 1.5080237354782958E-02 + 214 1.9294766221697266E-02 + 215 1.7858314253272674E-03 + 216 -2.1693590486143031E-02 + 217 1.8286172250367268E-02 + 218 6.8460607052483269E-03 + 219 6.4410445720712636E-03 + 220 -9.7425662197824555E-04 + 221 -4.5820242884978624E-03 + 222 -1.0483633749893836E-03 + 223 -1.7156919393517772E-03 + 224 -1.1179456091041198E-04 + 225 -2.0662570153887842E-03 + 226 6.5733488866097259E-04 + 227 -1.1049521428205832E-03 + 228 4.0681049512946631E-04 + 229 -2.1234524831576011E-02 + 230 2.5907976989914443E-03 + 231 5.5938521425822531E-03 + 232 3.8511145088818477E-02 + 233 4.2187391940355909E-02 + 234 -4.7129107125496034E-03 + 235 2.0662145150181881E-03 + 236 -3.3251219111526920E-04 + 237 -2.4354531051219923E-02 + 238 3.2500732693356585E-02 + 239 -2.7183029355379858E-02 + 240 -1.0531564018837937E-02 + 241 1.9971736393688322E-02 + 242 -2.9724281670134478E-03 + 243 9.3839990674006359E-03 + 244 -1.2139912693084230E-02 + 245 1.9194168510809342E-03 + 246 3.3727227898899424E-03 + 247 -5.4431597658684684E-04 + 248 6.1999114669129276E-04 + 249 6.2847728758471852E-04 + 250 8.3247053650964615E-04 + 251 -4.6049581639678942E-04 + 252 -1.9211726652119318E-03 + 253 1.2802915542984592E-03 + 254 1.3163178352665303E-02 + 255 2.1185041170504984E-03 + 256 2.4439584577115803E-02 + 257 4.4464782490335690E-02 + 258 -1.8739117698181899E-03 + 259 -1.1567980234317920E-04 + 260 3.8632519470521310E-03 + 261 -4.8784407822271636E-03 + 262 -4.5311387618412165E-03 + 263 -2.0869612536573944E-02 + 264 -2.1473263600319686E-02 + 265 -4.6732039395492638E-03 + 266 4.9696003407930357E-04 + 267 1.4828976091306607E-02 + 268 -6.2132194811305701E-03 + 269 -8.9195138646166461E-03 + 270 1.9754480093212012E-03 + 271 -6.8408989539935105E-04 + 272 -2.0496050999815811E-03 + 273 2.3050851876586393E-05 + 274 -1.7352814678847021E-03 + 275 -8.1365930575338192E-04 + 276 6.9768111974880627E-04 + 277 -6.6659001399455562E-04 + 278 3.1792176336639964E-04 + 279 6.5480073305344000E-03 + 280 1.1859764643324369E-03 + 281 -2.0421293852213068E-01 + 282 -2.5154755174484056E-01 + 283 7.6138320814241586E-02 + 284 1.0157983622502354E-02 + 285 1.9454184708717230E-02 + 286 -9.9555269272746365E-03 + 287 1.7430882143490858E-03 + 288 -2.8545435579583919E-03 + 289 -4.2772318302121536E-03 + 290 -7.8275376344703728E-03 + 291 1.7420347941058448E-03 + 292 -4.0936315785620615E-03 + 293 5.7586270664878931E-05 + 294 -9.5842982756953535E-02 + 295 3.7801962353735591E-02 + 296 1.2988323911233765E-01 + 297 9.6231937010188371E-03 + 298 3.0436963832118232E-03 + 299 -4.0024695765693676E-03 + 300 3.3058217950601766E-03 + 301 -4.5155531440424779E-03 + 302 -1.8595511423514027E-04 + 303 3.1552995840139486E-03 + 304 1.4932102691607167E-03 + 305 1.0318983984039666E-02 + 306 5.9756096710694890E-04 + 307 2.4401034815582184E-02 + 308 7.5032588433858304E-03 + 309 -1.0541520245670807E-02 + 310 4.5706409643260296E-03 + 311 1.0234922124652136E-02 + 312 -1.4444723092479094E-03 + 313 4.5136442015091347E-03 + 314 -6.7252787270084104E-03 + 315 -3.5577344377369383E-02 + 316 -3.9591770733416784E-02 + 317 3.1571478145126203E-02 + 318 -1.5308075437792752E-03 + 319 -1.2939232463126395E-03 + 320 -1.4867026732427112E-02 + 321 3.9861926359913120E-04 + 322 2.6671604362873214E-03 + 323 1.3250265004198088E-04 + 324 -1.4479820213433713E-03 + 325 -1.7712864310380910E-03 + 326 -3.2736005542283175E-04 + 327 1.1576081447276579E-03 + 328 -4.8451223900803078E-03 + 329 2.2816881468399140E-03 + 330 -9.3002149865169192E-02 + 331 -7.8898669193522685E-03 + 332 -1.8340154961652762E-02 + 333 4.2444843186675407E-02 + 334 4.9364032768062283E-02 + 335 4.8265177012389284E-04 + 336 -2.1120195052067056E-03 + 337 -5.0812140109923959E-03 + 338 -2.3708487177978518E-02 + 339 6.2952268497828119E-03 + 340 2.3695394550262592E-03 + 341 -6.7067184143245603E-03 + 342 -1.9509412533858028E-02 + 343 -1.0428603217335209E-02 + 344 4.9665804908301647E-03 + 345 2.3558299290135829E-03 + 346 3.5900793731869413E-03 + 347 -5.0426998120393848E-03 + 348 -3.3098191139763014E-03 + 349 -2.1097943889223322E-03 + 350 2.4987334584847254E-03 + 351 -9.0082717079745126E-04 + 352 1.3370966139143003E-03 + 353 8.2370045492039694E-04 + 354 2.2601624578997793E-03 + 355 -2.5099060429050340E-02 + 356 1.8618679457819858E-03 + 357 1.8213381373438650E-01 + 358 -3.0664391219281589E-01 + 359 -2.1334372220061276E-01 + 360 -8.4478533045509625E-03 + 361 3.0336753477001523E-02 + 362 1.3301615256278303E-02 + 363 -9.5435337511584634E-03 + 364 6.0052319783944147E-03 + 365 -1.0916070941601212E-02 + 366 7.7754330348983142E-05 + 367 -8.7965291987128717E-03 + 368 -7.4597619756013528E-03 + 369 1.5422674761479981E-03 + 370 -7.9400792610167283E-03 + 371 -1.5401267895691909E-01 + 372 1.1413784509974237E-01 + 373 -8.7899555706128592E-04 + 374 2.0986278393405298E-02 + 375 -1.6849190459491972E-02 + 376 4.7401668186934577E-05 + 377 -1.4612429303547593E-03 + 378 -4.8246264291438310E-03 + 379 1.3504793408081626E-03 + 380 7.5189779256091096E-04 + 381 -3.6844402125065248E-02 + 382 2.5235534293257390E-03 + 383 -8.9835827904736626E-02 + 384 -4.7729756559340399E-02 + 385 9.2007345168763188E-02 + 386 1.0282644161304222E-02 + 387 4.8187502878675945E-03 + 388 -1.1702332987747586E-02 + 389 -5.0565314354155729E-03 + 390 -3.3133257311615573E-03 + 391 -4.6778602649807958E-03 + 392 2.1253049665411641E-03 + 393 7.1082028247108362E-03 + 394 6.1241314939014635E-02 + 395 5.0745321574041302E-03 + 396 -1.7319839443112686E-02 + 397 -3.3406551994314922E-02 + 398 -4.1383809788875292E-02 + 399 4.7454034826654350E-03 + 400 -2.9687986768982258E-03 + 401 -5.8655452809349502E-04 + 402 7.3947972592368821E-02 + 403 -1.7764268889283265E-02 + 404 -5.0060581662791370E-02 + 405 3.2062739108933265E-02 + 406 -6.0762293299443472E-02 + 407 2.7725018541616634E-02 + 408 -1.0565176826315565E-02 + 409 -1.6469707779797074E-02 + 410 4.6539027769568354E-03 + 411 -3.0101668886836894E-02 + 412 5.2738785243059885E-03 + 413 2.5843404781535431E-04 + 414 -1.8772773217580090E-03 + 415 7.5960354598943834E-05 + 416 1.1144411732199012E-03 + 417 -2.1241506282976272E-04 + 418 -2.9952978855003333E-03 + 419 -2.4748273377993953E-02 + 420 5.3317734833012850E-03 + 421 -1.3697507363733052E-01 + 422 -5.5395932208481935E-01 + 423 1.6907781664255817E-01 + 424 2.5291962521095330E-03 + 425 3.3888367869232036E-02 + 426 -1.2119663684127809E-02 + 427 9.7983247377116220E-04 + 428 -1.6851060600719190E-03 + 429 -1.9042601783144045E-02 + 430 -4.6304267346345910E-03 + 431 -2.1350939368384222E-03 + 432 2.5267441183428841E-03 + 433 2.8097793139350888E-04 + 434 -4.4614250568578685E-02 + 435 -1.4056738773173216E-01 + 436 5.2004119362118080E-02 + 437 5.1746652758981543E-03 + 438 6.8418891858718911E-03 + 439 -6.1788804996299211E-03 + 440 3.9466840745153546E-03 + 441 2.8391330834563536E-03 + 442 -3.4607167800618532E-03 + 443 2.9927829663796250E-04 + 444 1.9214724956317197E-03 + 445 -6.0515758898641629E-02 + 446 -2.2442794191930310E-03 + 447 3.2377447748911686E-02 + 448 -1.2220717150195851E-01 + 449 4.3999057145882252E-02 + 450 -1.8190614305008011E-03 + 451 8.3943551911865137E-03 + 452 -3.5600075035156983E-03 + 453 -1.9459004898968041E-02 + 454 -4.0186584853008564E-02 + 455 1.1074846370198110E-01 + 456 3.4604906490611369E-02 + 457 -2.8237427067222123E-02 + 458 -1.0370278634898455E-02 + 459 -1.3354732355143837E-02 + 460 3.5965228557400135E-02 + 461 1.1702230799482733E-02 + 462 -2.4995939185273520E-02 + 463 1.5325754871369165E-03 + 464 -2.9944983568873816E-03 + 465 7.1266644245055718E-03 + 466 8.3054739500483424E-04 + 467 3.5248966160332203E-04 + 468 2.0244011509043848E-03 + 469 -1.3468795544742881E-03 + 470 -3.8826176945876568E-02 + 471 -6.9125278819420263E-03 + 472 -1.0810997208881673E-02 + 473 -2.2556281438316426E-02 + 474 -2.2568559545132875E-02 + 475 1.3151302577567466E-04 + 476 9.4018162712698663E-03 + 477 5.6338736673164783E-03 + 478 -3.8489020682352841E-03 + 479 -9.7633323084613827E-03 + 480 7.3524862302832266E-03 + 481 -1.1323487983254379E-02 + 482 -1.0580219533506664E-02 + 483 -3.1253953663143100E-03 + 484 2.8023555332355910E-03 + 485 -7.7435368696697959E-03 + 486 -7.9632016837798990E-05 + 487 4.3098122325808882E-03 + 488 -1.1950542421415263E-03 + 489 4.9381316065937129E-04 + 490 1.8592470253454548E-03 + 491 -9.1341795440100140E-04 + 492 -9.4367512555125802E-04 + 493 -1.1521783498850771E-03 + 494 -3.8069662477779805E-05 +Ene= -1.9010239787E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -3.5809563424348136E-02 + 2 -3.7223030642559579E-03 + 3 -1.7970707442800778E-02 + 4 1.7062258117529143E-02 + 5 4.8575687109900539E-02 + 6 1.2729519578851803E-04 + 7 -5.7903521439892835E-03 + 8 1.9512996833419117E-04 + 9 2.1670958313418968E-02 + 10 3.3337118846641138E-02 + 11 5.8237419874312647E-03 + 12 3.1750769928810540E-02 + 13 2.5148085595374129E-02 + 14 2.5730696830851669E-03 + 15 4.9169793982081775E-03 + 16 1.0599040632095496E-02 + 17 6.1480771098293679E-03 + 18 6.8426340145915747E-03 + 19 9.1024111969305582E-04 + 20 -2.6904045584743605E-03 + 21 -1.4668060048747501E-03 + 22 1.9677268487087586E-03 + 23 -2.6359424345048948E-03 + 24 1.1255947912681813E-03 + 25 1.3178545249905506E-03 + 26 -3.2858329022310770E-03 + 27 1.3225353701431240E-03 + 28 2.3981180805383220E-02 + 29 1.0961371279264142E-02 + 30 -8.7049014982022565E-03 + 31 -2.2247642243958908E-04 + 32 -2.2640201973839562E-03 + 33 1.8835255787943666E-04 + 34 -8.7471247579265141E-04 + 35 -2.6971590920479190E-02 + 36 2.6558172467513602E-03 + 37 3.5154686965096396E-02 + 38 1.9970925826269425E-02 + 39 5.5076145194393970E-03 + 40 -1.1315428412736335E-02 + 41 -1.1485856127537327E-03 + 42 1.4500779798217182E-02 + 43 6.6742051782793963E-03 + 44 -3.3029688819076644E-03 + 45 -2.6674008463984655E-03 + 46 6.5742894643039320E-04 + 47 2.1034986563447178E-03 + 48 1.3905193599288760E-03 + 49 -1.1867230939272336E-03 + 50 -1.0054485336575209E-03 + 51 2.2237556713237447E-02 + 52 1.1596894347339531E-04 + 53 5.0163055722970175E-02 + 54 -2.1903884044584397E-02 + 55 -2.5749414887688966E-02 + 56 -4.1343975297080445E-03 + 57 2.5106840055801501E-03 + 58 5.0177129973785137E-03 + 59 2.6841460467461820E-02 + 60 -3.6832711963915125E-02 + 61 1.5087122964900933E-02 + 62 2.0503602810360937E-02 + 63 -1.7739100352135308E-02 + 64 5.8706257003968247E-03 + 65 -4.0670425415276507E-03 + 66 1.7013808100194666E-03 + 67 -1.3074774909965697E-04 + 68 -7.3562191735885027E-03 + 69 -1.5381140440458940E-03 + 70 -4.3814537514236772E-04 + 71 9.7634459234916980E-04 + 72 1.2187278793305029E-03 + 73 4.5514245413938079E-04 + 74 1.0567979966949271E-03 + 75 3.2257369352415933E-03 + 76 -1.3789160321786951E-02 + 77 2.9800275793860831E-03 + 78 -2.3754788549756573E-01 + 79 2.1620823002052475E-01 + 80 -1.7491199388051590E-01 + 81 1.6058872694863637E-02 + 82 -1.1579601441510471E-02 + 83 6.0500319154441649E-03 + 84 -1.7397956055817685E-03 + 85 3.6647326254544907E-03 + 86 -1.2154090139557538E-03 + 87 8.4846277141293995E-03 + 88 -2.0664863173125055E-03 + 89 1.4912131297462598E-02 + 90 -1.9671511446920581E-03 + 91 1.3471864743133863E-01 + 92 7.4287356296085905E-02 + 93 -1.5887869211621924E-01 + 94 -6.6317986478858434E-03 + 95 -1.0766653181782779E-03 + 96 9.9979904459372385E-03 + 97 -2.4072397146033589E-03 + 98 4.3500329151909172E-03 + 99 -3.7772722511909564E-03 + 100 -4.0787465188071364E-03 + 101 2.2123888213312435E-03 + 102 3.4804479659130638E-02 + 103 -4.0222041213326789E-03 + 104 3.3717580809805260E-03 + 105 1.0123923664567287E-01 + 106 -9.6313168447835676E-02 + 107 2.2244763126289856E-03 + 108 -8.1606119050979184E-03 + 109 6.9844247213258015E-03 + 110 -4.7483362958708510E-03 + 111 5.6340273777366482E-03 + 112 -2.1107752343566948E-04 + 113 2.0279778281565141E-03 + 114 -4.1596516804786434E-03 + 115 3.4818218964321941E-03 + 116 -1.0979998511875999E-03 + 117 5.1449569492366225E-02 + 118 4.5916912876094812E-02 + 119 -8.1119580856722270E-03 + 120 -1.7443686587752434E-03 + 121 -3.0957856231738049E-03 + 122 1.2024300455393945E-03 + 123 -5.4649114143356090E-04 + 124 -8.6213337499402407E-04 + 125 4.6725169009821833E-04 + 126 1.8056871852128748E-04 + 127 -5.5247380103206430E-04 + 128 1.3831840877084466E-02 + 129 1.6670754002728082E-03 + 130 1.7716845542485236E-02 + 131 -8.3089044485413384E-03 + 132 -2.1411567008424233E-02 + 133 -2.2995836694373419E-03 + 134 -5.5893984512434371E-04 + 135 -1.5295732649747817E-03 + 136 2.4244281106394209E-02 + 137 -1.5017976427367708E-02 + 138 3.3852515125463112E-02 + 139 -6.3061879224896129E-03 + 140 1.5267151555768037E-02 + 141 6.2421837371164895E-03 + 142 -6.2921516615701218E-03 + 143 6.6034168813810263E-03 + 144 -2.5728592292158354E-03 + 145 6.8758502656269811E-04 + 146 1.1362064694883326E-03 + 147 -1.0145764281552329E-03 + 148 -1.5678304925110641E-03 + 149 -7.0469294743895957E-04 + 150 -8.7023183218049840E-04 + 151 -5.6895976688067958E-04 + 152 9.4681658955220811E-04 + 153 6.2372625919569859E-02 + 154 4.8297883354433118E-03 + 155 3.6663698921580529E-02 + 156 -4.5666621440077770E-03 + 157 1.8340976947666305E-02 + 158 -3.4037784382392458E-03 + 159 7.7011857399598028E-04 + 160 1.9063968093115389E-03 + 161 -1.3334686962345992E-03 + 162 -1.2360068560558607E-02 + 163 4.4173766827094504E-03 + 164 -3.5046363485070667E-03 + 165 -6.6340367745891188E-03 + 166 -5.9365900323895731E-03 + 167 -6.6408832829442394E-03 + 168 8.2588819422296268E-04 + 169 3.7418504719694376E-03 + 170 -1.4228634821714084E-03 + 171 3.9528342890088645E-04 + 172 1.3418677935450860E-03 + 173 -2.9092881513671217E-04 + 174 6.6399104560907474E-04 + 175 -6.7341053009225280E-04 + 176 -1.6898405171348700E-03 + 177 4.4816589368459274E-04 + 178 2.6781758138288204E-03 + 179 -4.8978391163244839E-04 + 180 6.7988947542208286E-02 + 181 5.9215633224343842E-03 + 182 -6.8057642492242429E-02 + 183 -4.4615249173344034E-03 + 184 -1.9211129737123839E-03 + 185 4.0054691733002381E-03 + 186 3.4178664786530427E-04 + 187 -1.8746893248764115E-03 + 188 -6.7789852364235844E-04 + 189 8.3764753831699890E-04 + 190 -6.2650445263986651E-04 + 191 -2.2124500584956236E-03 + 192 1.1332765597243195E-03 + 193 9.3493159237031470E-02 + 194 4.0850750142563834E-02 + 195 1.0707953888390617E-02 + 196 -7.2705348012228966E-03 + 197 -2.1797778752611608E-03 + 198 1.2192333274841640E-03 + 199 1.0102935943703591E-03 + 200 4.0757086938151464E-04 + 201 1.7475862703895092E-03 + 202 -3.2395629691937028E-03 + 203 3.3596493404800818E-03 + 204 3.0479208722610531E-02 + 205 1.6227436739866177E-04 + 206 -1.2607408774205735E-02 + 207 1.7490113402652256E-04 + 208 -1.0278518579285240E-02 + 209 -4.0755895653252347E-03 + 210 1.0672516524455602E-03 + 211 -1.0308865832778148E-04 + 212 -8.0454505027943973E-03 + 213 -1.3036393627836894E-02 + 214 -6.5765348424199023E-03 + 215 -2.0607314646994914E-02 + 216 8.9063353788666703E-03 + 217 1.4296133606300066E-04 + 218 -3.0094917455575744E-03 + 219 -4.0344599102710346E-03 + 220 -5.6291697518486812E-03 + 221 -1.6641873865567568E-03 + 222 2.5330506412171347E-04 + 223 -1.6048103694736168E-03 + 224 7.3789177006532776E-04 + 225 1.3112113268503616E-04 + 226 -4.1097499879111919E-04 + 227 1.4312743957698277E-03 + 228 -5.8018228966125521E-04 + 229 5.8555100702598666E-02 + 230 -1.1428137508582565E-03 + 231 -8.6311814196130945E-02 + 232 -8.7665164984885666E-03 + 233 -8.1106382563774698E-02 + 234 -6.9090998668428502E-04 + 235 -4.3621020709596264E-04 + 236 4.9506333167892965E-03 + 237 1.5136980110793306E-02 + 238 -6.1497307132839171E-02 + 239 5.4444147370502960E-02 + 240 -6.6955157242695434E-02 + 241 -3.2093033894659964E-02 + 242 -1.1489390708283425E-02 + 243 -5.3739231873462601E-03 + 244 1.6684782569661192E-02 + 245 -1.4574260879994987E-02 + 246 -1.9421668417822424E-03 + 247 1.3045057627099610E-03 + 248 4.1290096775795858E-04 + 249 2.9674788821803860E-03 + 250 2.9403801487047033E-03 + 251 6.3170946332702425E-04 + 252 2.2338808747744670E-03 + 253 2.0023069858430610E-03 + 254 3.8545945825168494E-02 + 255 5.7208976967239973E-04 + 256 5.9701729718326041E-03 + 257 -5.7766684924311284E-03 + 258 -1.9955382950705108E-03 + 259 -8.3773217180623818E-04 + 260 -3.5500211344805430E-03 + 261 5.5864851826843386E-03 + 262 9.2050531790417115E-03 + 263 -1.1613855176781634E-02 + 264 2.9310362914838069E-03 + 265 -3.3202719433546128E-03 + 266 5.5479265913406630E-03 + 267 -7.4580523932260495E-03 + 268 -2.8720669411913874E-03 + 269 -1.5489057268785733E-03 + 270 -4.5237861567389830E-03 + 271 1.5149717530516613E-03 + 272 2.9639987985695816E-04 + 273 -3.8308675416976639E-04 + 274 9.7987897212049500E-04 + 275 5.4130169687772512E-04 + 276 -1.0950804065141522E-03 + 277 -9.5408161929801572E-04 + 278 -3.3188500383526676E-04 + 279 1.3106567901842897E-02 + 280 -2.2637273701556124E-03 + 281 -1.9817623573994150E-01 + 282 4.0579887306673001E-02 + 283 -2.9136772826123744E-03 + 284 1.0293046555926996E-02 + 285 -2.5154447884215311E-03 + 286 4.4002842964175198E-03 + 287 -4.3924614160522511E-03 + 288 2.8418769786767818E-04 + 289 -2.7117432552573816E-03 + 290 1.0283744406318954E-03 + 291 3.5340827788620907E-03 + 292 2.6806869382724738E-02 + 293 -5.8554838298899136E-03 + 294 3.0155693779770493E-01 + 295 6.2402144066708597E-02 + 296 -2.2613918477377551E-01 + 297 -1.7125999465401678E-02 + 298 -4.5766995869843934E-03 + 299 2.2433071281081504E-02 + 300 -3.3362593812488019E-03 + 301 1.4327196561073027E-02 + 302 1.0624760979507488E-03 + 303 4.3083587487549339E-03 + 304 -1.9112296111236603E-03 + 305 2.5037188685924604E-02 + 306 -2.0611733970612974E-03 + 307 8.3317948912041598E-02 + 308 -5.2383431428085450E-02 + 309 1.7542079031802296E-02 + 310 -1.5290590918542424E-02 + 311 1.2362304894665682E-03 + 312 -4.3769847299130636E-03 + 313 -4.8917435168116946E-03 + 314 2.5866719338677749E-02 + 315 5.6696475951687857E-03 + 316 -4.8568608394313192E-02 + 317 1.4296480451573948E-01 + 318 -6.5627387388014135E-03 + 319 6.1985143243907005E-03 + 320 -3.1208596001056506E-03 + 321 -1.2171338494598047E-02 + 322 2.1189068929911566E-02 + 323 1.4322833606801449E-03 + 324 1.7996940434704815E-03 + 325 -1.0022144589203097E-03 + 326 -1.6472154224639022E-03 + 327 4.0237317936072910E-03 + 328 1.9827749540353209E-03 + 329 2.1189388925082638E-03 + 330 -6.8385549638382503E-02 + 331 -3.8972201905093456E-03 + 332 1.6944323916859776E-02 + 333 1.5354546557955850E-02 + 334 3.6386077287045550E-02 + 335 2.5347606749140574E-03 + 336 -2.7893251190716753E-03 + 337 1.3828306041953719E-03 + 338 -1.7954060097946974E-02 + 339 -1.2946519333963029E-02 + 340 -1.0049656162977236E-02 + 341 -4.6083282207403358E-03 + 342 -5.0630088257686034E-04 + 343 -1.8761030359200951E-03 + 344 -5.4745488667523488E-03 + 345 -7.4769580306315584E-04 + 346 2.2016210054725868E-03 + 347 5.5469222853371586E-03 + 348 -8.8288911341594871E-04 + 349 1.7792059162139972E-04 + 350 1.5916252032940848E-03 + 351 7.2167998139107824E-04 + 352 -2.1996219514654945E-04 + 353 -1.1014071464754834E-03 + 354 8.1373593500278841E-04 + 355 -1.3094466418770616E-02 + 356 -3.9136069297578975E-04 + 357 -6.6909787826426696E-03 + 358 -1.9811587293710897E-01 + 359 -8.9018618744592479E-02 + 360 -1.1338748057919950E-03 + 361 1.2614131914599312E-02 + 362 1.3924939616216317E-02 + 363 -2.6208706158733614E-03 + 364 1.8029378181482955E-04 + 365 -1.0239506763151746E-02 + 366 -6.5571363114725299E-03 + 367 -2.8726615242346040E-03 + 368 -7.5252252407818337E-03 + 369 2.9969149993570139E-04 + 370 1.2212522416272278E-01 + 371 -6.0247580578758307E-02 + 372 -9.0731559713673193E-02 + 373 -1.4346442329551071E-02 + 374 6.1082505914969729E-03 + 375 5.8225363682863083E-03 + 376 -2.4041536059756004E-03 + 377 7.0352510501034537E-03 + 378 -2.7136558856024197E-03 + 379 -5.3815531684877867E-04 + 380 -2.5805992945172850E-03 + 381 -1.0184751491893481E-02 + 382 2.8902596248901215E-03 + 383 4.7525471931883542E-02 + 384 -1.0147833079034302E-01 + 385 3.7151788214695718E-02 + 386 -3.5188207119777478E-03 + 387 1.2013443882511455E-02 + 388 -8.4555937197825833E-03 + 389 -1.5012991714917407E-03 + 390 -1.0175830223761572E-03 + 391 -2.0221873161630362E-03 + 392 -3.7278364897110187E-03 + 393 1.7502638351020209E-03 + 394 -4.4680736967331290E-02 + 395 9.2092568234012425E-04 + 396 -3.1786428816706770E-02 + 397 -3.0414877083503097E-03 + 398 -4.3528494116194952E-03 + 399 -4.4456797815447622E-03 + 400 -1.3599580274791627E-03 + 401 -4.9667966853876718E-03 + 402 -1.2464959217947458E-02 + 403 2.5866156050368135E-02 + 404 -3.1119361428613882E-02 + 405 3.9171069167813571E-02 + 406 4.8340110645668094E-03 + 407 -4.6520989975568414E-04 + 408 1.2976945759412105E-02 + 409 -9.9973658297003720E-03 + 410 1.4120084310740503E-02 + 411 9.1031614260549329E-03 + 412 -1.6570774355129153E-03 + 413 2.9368312013186037E-03 + 414 -1.6156484166116819E-03 + 415 2.0095860948288075E-04 + 416 1.8540092385403537E-03 + 417 2.2056014071388669E-04 + 418 2.8362110800564920E-04 + 419 -2.2035649642359066E-02 + 420 4.4183415194160441E-03 + 421 4.9533341851362545E-01 + 422 -1.3954880989251406E-01 + 423 5.5731342107080993E-02 + 424 -3.6522010764637028E-02 + 425 1.2533237465886207E-02 + 426 -7.3189172590216170E-03 + 427 -6.1263033413544606E-04 + 428 9.5611826155443357E-03 + 429 -1.6588935359983198E-03 + 430 4.1362902993831909E-03 + 431 -8.2327699127171076E-03 + 432 9.3470477259942168E-03 + 433 -3.9603262517998975E-04 + 434 8.7565735486509602E-02 + 435 8.6944920990378975E-03 + 436 -4.0776801049625125E-02 + 437 -4.2144205156268702E-03 + 438 -4.2584063561132294E-03 + 439 -5.9085480982310975E-04 + 440 -1.5444042038333472E-03 + 441 2.6279031615697977E-04 + 442 -5.5591651883113186E-04 + 443 -5.5030069562167367E-05 + 444 4.1049832756486744E-03 + 445 2.7234978173280175E-02 + 446 4.9862266692488203E-03 + 447 -6.5611208718226663E-03 + 448 -1.1159071408138292E-02 + 449 -2.3906340362938601E-02 + 450 -1.0795642695928455E-03 + 451 3.5205339470366021E-03 + 452 1.6128518701175444E-03 + 453 6.6100431988440293E-03 + 454 1.9671708896236116E-02 + 455 2.7374037963395728E-02 + 456 -2.3725337166283743E-03 + 457 -4.5573972375570281E-02 + 458 -3.6201807082082279E-03 + 459 1.3861732278470656E-02 + 460 1.1697750415648057E-03 + 461 -8.0512371349184756E-04 + 462 -2.0691422622244989E-02 + 463 -1.2722746390086347E-03 + 464 -7.3937263807250951E-04 + 465 2.3819441297412789E-03 + 466 -3.4079262587041487E-04 + 467 -1.0503161311960871E-03 + 468 8.6620232820581533E-04 + 469 6.6684212762903154E-04 + 470 8.5739066491820250E-03 + 471 5.2365800587207722E-04 + 472 -3.6079295996200238E-02 + 473 1.4659450003230224E-03 + 474 3.4150027318065050E-03 + 475 -2.9330649218911025E-03 + 476 8.0199000234225978E-04 + 477 4.1554780412609580E-03 + 478 -8.0780174720372267E-05 + 479 -3.9235670762234384E-03 + 480 -7.9423841925975579E-03 + 481 -9.5418429681778660E-03 + 482 2.4652279014486054E-03 + 483 -2.9767099402111712E-03 + 484 8.4640098533075685E-03 + 485 4.4113544461729865E-04 + 486 -1.0713064200929299E-02 + 487 5.7779988519242997E-03 + 488 -1.0865567205416279E-03 + 489 -1.5706845007960474E-03 + 490 2.0847000252725335E-04 + 491 4.0222739113419042E-04 + 492 1.5765521101257414E-03 + 493 -1.1743663088575301E-03 + 494 1.1932088326470033E-03 +Ene= -1.8634370735E-01 +Spin= Alpha +Occup= 2.0000000 + 1 1.8594228287754741E-02 + 2 -7.1842739626475490E-03 + 3 -5.7806593966339720E-02 + 4 -2.8689778594899944E-02 + 5 1.8642039796360524E-03 + 6 2.2801031868985633E-04 + 7 1.3865554616075635E-02 + 8 6.4300485960843486E-04 + 9 -2.4648813705872980E-02 + 10 -1.0887616644705977E-02 + 11 -7.7938665049701761E-02 + 12 -2.9430073724334326E-02 + 13 5.4457143123398728E-02 + 14 1.1067936936785348E-02 + 15 -1.4660320523189158E-07 + 16 -1.5467552940236785E-02 + 17 1.0348333803883700E-02 + 18 8.8344696954139167E-03 + 19 2.4568758841847934E-03 + 20 -1.6095732722804651E-03 + 21 6.0134480468897980E-04 + 22 9.9454022495137928E-04 + 23 3.5710437972181477E-03 + 24 -3.5263510542786368E-03 + 25 7.5577261449412555E-04 + 26 -1.0078289731516031E-02 + 27 1.9023973755471105E-03 + 28 8.0103311629767474E-03 + 29 -2.9217048004847711E-02 + 30 3.4814292423857467E-02 + 31 -2.2780604501688512E-04 + 32 1.2286652386805116E-04 + 33 1.2166911412046010E-03 + 34 -1.6852418116510635E-02 + 35 4.0125888847164476E-02 + 36 -3.4494287013792445E-02 + 37 -1.9894836633022489E-03 + 38 -1.4860395204135974E-02 + 39 -1.0134690846659336E-02 + 40 1.4405434001310278E-02 + 41 -2.5568411496861870E-02 + 42 -9.6564478427291853E-03 + 43 1.6342146733557034E-03 + 44 1.1394897839102629E-03 + 45 8.4310803755655885E-04 + 46 6.6034893228728356E-04 + 47 -2.2293051107782837E-03 + 48 1.8439796981530832E-03 + 49 1.6563957662015659E-03 + 50 2.4112149124574187E-03 + 51 1.0537205609975164E-01 + 52 -4.5981430081112780E-03 + 53 7.0839370976870514E-02 + 54 -2.8955906869895343E-02 + 55 -1.2537182043162085E-01 + 56 -1.0527340541268545E-02 + 57 2.5177093214583143E-03 + 58 1.3444702936107927E-02 + 59 5.0668311240402740E-02 + 60 -1.4435333573953521E-01 + 61 3.8478790770388725E-03 + 62 2.7858757116703711E-02 + 63 7.4965940010699621E-04 + 64 1.0482325179022785E-02 + 65 -1.4552584554755710E-02 + 66 -1.2623232746433921E-02 + 67 -6.4450335326371030E-03 + 68 9.0924255591730771E-03 + 69 -4.7128523465090195E-04 + 70 -2.8126571475745907E-03 + 71 -1.8952472996126028E-03 + 72 8.1783147222465689E-03 + 73 7.0811651089026310E-04 + 74 1.2184509175915124E-03 + 75 2.5068415048015514E-03 + 76 -9.0414778760903626E-03 + 77 1.5461844529025949E-03 + 78 7.0024106787294246E-02 + 79 -2.3328094104503608E-01 + 80 5.2733559819782935E-02 + 81 -5.2546740943597353E-03 + 82 1.5950793602832108E-02 + 83 -1.0610064396855785E-03 + 84 2.5178090140127199E-04 + 85 -5.5440018691079850E-03 + 86 1.9138174050935034E-03 + 87 -2.0403869051963007E-03 + 88 2.0405436618923418E-03 + 89 9.2995737260295974E-02 + 90 -1.0782153645814257E-02 + 91 4.5589268839188046E-01 + 92 -2.3742263748887338E-01 + 93 -3.3213204376822053E-01 + 94 -3.0750525432224261E-02 + 95 2.0635974836951246E-02 + 96 1.9697743418790537E-02 + 97 2.8432026491225712E-03 + 98 1.4267446703714068E-02 + 99 -6.0527896286713912E-03 + 100 -3.5400625904587740E-03 + 101 1.3383509560851199E-02 + 102 2.5537750310681905E-02 + 103 -2.8442010436431921E-03 + 104 -7.0540543138306391E-02 + 105 -2.3363783618450190E-01 + 106 -1.8310877408286672E-01 + 107 5.0097894371904112E-03 + 108 1.4584424498294429E-02 + 109 1.5190549281591432E-02 + 110 -9.2657771147144352E-03 + 111 5.4924419885902893E-03 + 112 -7.1565389174431168E-03 + 113 5.5939757649332515E-03 + 114 7.0813421793065210E-03 + 115 9.7021844910449902E-03 + 116 -2.0518864528575165E-04 + 117 1.0244232086594908E-01 + 118 -5.0100615844355441E-02 + 119 -3.4252450038558764E-02 + 120 -3.0033895630742283E-03 + 121 3.9860191723363947E-03 + 122 4.5069509109779207E-03 + 123 1.7592646879789409E-03 + 124 -1.9366633435675721E-03 + 125 1.5077748726293409E-03 + 126 2.6495263453727752E-03 + 127 3.5403029809991746E-03 + 128 2.8707573221467084E-02 + 129 3.7040618120106994E-03 + 130 3.2206998242840373E-02 + 131 -2.9971128858393161E-03 + 132 -3.6383780401306867E-02 + 133 -1.1599601323234194E-03 + 134 3.4751740749573703E-03 + 135 1.5825076379352937E-04 + 136 3.1474972771261031E-02 + 137 -3.1838691569728954E-02 + 138 5.1167324578305952E-02 + 139 -4.1430311592617177E-03 + 140 1.0912515181527324E-02 + 141 5.3032507660557187E-03 + 142 -4.9085619742288726E-03 + 143 1.9002727453200793E-02 + 144 9.4999191513058402E-04 + 145 3.6813637047027545E-03 + 146 7.0800695014051971E-04 + 147 -1.0247437265792222E-03 + 148 1.1899799847661424E-03 + 149 2.7068084655565888E-04 + 150 1.0317465860084944E-03 + 151 -7.8664647535708248E-04 + 152 1.0402917316586842E-03 + 153 5.3964746236648119E-02 + 154 -2.4554607105997157E-04 + 155 1.8107088846061346E-02 + 156 3.3214176911665651E-02 + 157 5.2970697362013625E-02 + 158 -8.0752714849723958E-03 + 159 8.5810704184419954E-04 + 160 5.3096631398943132E-03 + 161 -1.2643438524519341E-02 + 162 -1.1125490955121326E-02 + 163 -1.6390080479424765E-02 + 164 4.4584502391276058E-03 + 165 1.9919006233312629E-02 + 166 -1.5478721477814870E-02 + 167 1.2143109490771057E-03 + 168 -8.0522156841894826E-03 + 169 8.9112266842990805E-03 + 170 2.7207367133774518E-03 + 171 2.3127324022383846E-03 + 172 1.3076098810346241E-03 + 173 1.0359481597440367E-03 + 174 1.8622219607812674E-04 + 175 4.0137304089655151E-04 + 176 -2.0914021094315058E-04 + 177 1.2121627978897504E-04 + 178 6.2696901469547544E-03 + 179 -1.0845323543092146E-03 + 180 3.9456420825527229E-02 + 181 3.0566755386937310E-02 + 182 -8.8997472981684575E-02 + 183 -4.7827889616370006E-03 + 184 1.8464247729766474E-04 + 185 5.7677797748788137E-03 + 186 -1.7869254908015094E-04 + 187 -2.4710193923167330E-03 + 188 -1.2596277274041000E-03 + 189 2.2976438106577630E-04 + 190 -2.4188555258338280E-03 + 191 -7.9825075837532122E-04 + 192 -3.4366339303984396E-04 + 193 1.0465242919103980E-01 + 194 1.4770100574263752E-02 + 195 -9.6531438568989172E-02 + 196 -1.2398527140963036E-02 + 197 -2.0803385442898343E-03 + 198 6.9604569660764760E-03 + 199 4.2738087602723100E-03 + 200 4.9038568020338315E-03 + 201 2.6723468890912558E-03 + 202 -4.4453305419056566E-03 + 203 3.9830415220986973E-03 + 204 4.0735333639227100E-02 + 205 -1.5563717393895483E-03 + 206 -1.1812089294638409E-02 + 207 -8.3308086717413885E-04 + 208 -1.1399193634938618E-03 + 209 -4.3642996321332662E-03 + 210 4.2405577346490125E-03 + 211 1.0261411408417705E-03 + 212 -1.3989935916896469E-02 + 213 -4.1923385771051045E-03 + 214 -1.3313406941745102E-02 + 215 -3.3712458366603075E-02 + 216 -9.9861038177012401E-04 + 217 1.1934986086644961E-03 + 218 -4.2721886361296087E-03 + 219 -4.8775327076945995E-03 + 220 -1.4942350738578906E-02 + 221 -1.8135055020543082E-04 + 222 6.5449789539181753E-04 + 223 1.5582988132516011E-03 + 224 -2.0944185004261031E-03 + 225 -1.3522143291622355E-04 + 226 -6.8358998739308815E-04 + 227 2.1446470790163564E-03 + 228 -4.6780517172586840E-04 + 229 -7.6513534627551559E-03 + 230 -4.0122783166037028E-04 + 231 3.4665122350543018E-02 + 232 2.0709550231248066E-02 + 233 2.6267720140460447E-02 + 234 -2.4026076951620345E-03 + 235 4.9025531255605078E-03 + 236 -4.8053449043274397E-04 + 237 -3.4797309464766764E-03 + 238 2.2733772251825719E-02 + 239 -8.9042891144430220E-03 + 240 2.9481472296755861E-02 + 241 2.0179300065019071E-02 + 242 3.9666772788529781E-03 + 243 1.0916615710733294E-02 + 244 -4.4377961959171167E-03 + 245 1.0347655401771225E-02 + 246 4.8331812872987991E-03 + 247 -7.7733132393410136E-04 + 248 5.9648696264378144E-04 + 249 -2.6622068273526567E-03 + 250 -1.2682344911913316E-03 + 251 -1.8154330594016355E-03 + 252 1.1326663936146967E-03 + 253 -9.8168736381615555E-04 + 254 1.8942688194451648E-02 + 255 2.7115178573079322E-03 + 256 -2.5506779396843756E-02 + 257 1.2202240868875051E-02 + 258 2.1953174730592186E-02 + 259 -1.9224015528028161E-03 + 260 2.4694904825330352E-03 + 261 -9.3392217165924878E-04 + 262 -5.8105021372724403E-03 + 263 -1.5195020316800269E-03 + 264 -4.3780061993534467E-04 + 265 3.1365697875293760E-03 + 266 1.5334712906475948E-03 + 267 6.4680490145906371E-04 + 268 -1.2709945226461647E-03 + 269 -2.9290704704576344E-03 + 270 8.1223235216782777E-03 + 271 3.7981279167595343E-03 + 272 -1.7481979924847052E-04 + 273 -1.4779823848365997E-04 + 274 2.7371101563826536E-04 + 275 -9.7766834416374623E-04 + 276 -1.0060088492477554E-04 + 277 1.1304578694481394E-03 + 278 -1.0582413113304768E-04 + 279 5.2591790537068073E-03 + 280 -5.0867656736002084E-04 + 281 1.1418580367719190E-01 + 282 -1.9216808917529665E-02 + 283 1.9866419850790063E-02 + 284 -8.8792275043491336E-03 + 285 2.2790545319741622E-03 + 286 -5.7923368607676623E-05 + 287 1.1287572166918955E-03 + 288 1.7004226797510417E-03 + 289 -1.5240190553081700E-04 + 290 -5.3858532244174817E-04 + 291 -8.2733844022249046E-04 + 292 -6.0274224805765249E-03 + 293 6.9388194834764134E-04 + 294 -8.1422981118261836E-02 + 295 4.5089137615973431E-04 + 296 4.2467691004054904E-02 + 297 2.0948484672562743E-03 + 298 1.2761296842827361E-03 + 299 -1.9031334596334422E-03 + 300 -1.0023806026490886E-03 + 301 -2.6569791322295705E-03 + 302 1.2114152684231955E-03 + 303 1.5469204850618583E-03 + 304 5.2583056984836167E-04 + 305 -1.1482323923280245E-02 + 306 1.5282102445765846E-03 + 307 -2.3008544433308045E-02 + 308 6.0946823913614993E-03 + 309 -9.1983140486887830E-03 + 310 1.7136225657021133E-03 + 311 -8.3185305336179341E-04 + 312 -3.6324134508709832E-04 + 313 -6.4352576399165622E-03 + 314 -2.8927732088635888E-04 + 315 -6.9014773644424567E-03 + 316 1.5535601665224621E-02 + 317 -3.3667069399838961E-02 + 318 -3.9890933269861734E-03 + 319 -1.7657729959873962E-03 + 320 -3.8358582063042542E-03 + 321 7.1827973125633332E-03 + 322 -1.8867109345879801E-03 + 323 -7.9060244389057008E-04 + 324 6.5033350541149031E-05 + 325 -1.0930915443757337E-04 + 326 7.2647228667747530E-04 + 327 -5.3091569601062681E-04 + 328 2.2930746562152028E-04 + 329 1.6337241872680724E-03 + 330 -1.4581748010792520E-02 + 331 4.8140602550296877E-03 + 332 6.5201839376732842E-03 + 333 2.8672092485579389E-02 + 334 -6.4073357614041542E-03 + 335 -3.4661248601911398E-03 + 336 1.9024659093328925E-03 + 337 7.1237747564588663E-03 + 338 -2.1189336982257542E-02 + 339 4.9771756185357291E-03 + 340 1.4011200343788713E-03 + 341 8.7501889998534057E-03 + 342 1.0527758905577392E-02 + 343 7.0740720703766648E-04 + 344 4.3554609636935106E-03 + 345 6.1255327273151928E-03 + 346 -4.7705468615813979E-03 + 347 2.0963802277268696E-03 + 348 1.2702786585049668E-04 + 349 2.1504191430712122E-03 + 350 1.1863541926960046E-04 + 351 2.8616943753592179E-04 + 352 5.9979846095701650E-04 + 353 -1.0508328621009954E-03 + 354 -4.0686508657589680E-04 + 355 8.9952906675235607E-04 + 356 5.0141294490855214E-04 + 357 2.8017844121260103E-02 + 358 2.1494538683283181E-02 + 359 -2.9231380864269678E-02 + 360 -1.6830183164071770E-03 + 361 -2.3875933246935216E-03 + 362 1.8553685119478023E-03 + 363 -1.0598626685399554E-04 + 364 -7.7036077871772818E-05 + 365 1.0737243031340444E-03 + 366 8.3110602105451780E-04 + 367 1.5073299692975402E-03 + 368 2.3985512494437245E-02 + 369 -3.9599387921044798E-03 + 370 2.0432460743812572E-01 + 371 -1.7500424556454738E-01 + 372 -1.3420716574805233E-01 + 373 -2.3121307502467967E-02 + 374 1.6616075086039624E-02 + 375 1.2915874068184376E-02 + 376 1.4440361262735544E-03 + 377 6.9933025462012135E-03 + 378 -5.2393201158945973E-03 + 379 -1.9526266879435440E-03 + 380 3.0485959718979500E-03 + 381 3.3037902427952168E-02 + 382 -3.7913694360280931E-03 + 383 1.5186225401386605E-01 + 384 -1.4322265890157662E-01 + 385 -6.4584197018121209E-02 + 386 -1.9156453153965965E-02 + 387 1.4829190476161708E-02 + 388 1.0129363526526229E-02 + 389 3.3194370416096074E-03 + 390 -2.4191193317256028E-04 + 391 5.2501294208266139E-04 + 392 -3.9863891138312403E-03 + 393 -1.7045183613391740E-03 + 394 1.5871759598871008E-02 + 395 3.8699738144548613E-03 + 396 2.8669536256561750E-02 + 397 3.1305887330927235E-04 + 398 1.3095475145164067E-02 + 399 -1.8292907721777576E-05 + 400 2.7679217110232598E-03 + 401 6.1205345128634630E-03 + 402 -1.8703325576896419E-02 + 403 1.7066221607904275E-02 + 404 -1.1852014543698719E-02 + 405 -2.3659406855726851E-02 + 406 -1.0934992547171587E-02 + 407 -4.0317273944803717E-03 + 408 -6.1098111591292381E-04 + 409 -4.6360543789245745E-04 + 410 -4.0591978291631735E-03 + 411 -4.6969599436885029E-03 + 412 1.3359883714892512E-03 + 413 -2.2558497631983204E-03 + 414 8.2291382983059333E-04 + 415 7.6371897344165111E-04 + 416 -4.1438450766761715E-04 + 417 1.7804964424005068E-03 + 418 9.4100582946697879E-04 + 419 -9.0798452658734331E-04 + 420 5.8298964659612539E-04 + 421 -1.2766899675615981E-01 + 422 2.2716376481101311E-02 + 423 1.1887511192642490E-02 + 424 1.0904953751967634E-02 + 425 6.3718503402745400E-04 + 426 1.5096121342677619E-03 + 427 8.5858308161907728E-04 + 428 -3.5798698306273150E-03 + 429 -3.0274747072113044E-04 + 430 -7.7882077459819944E-04 + 431 6.6927247485650866E-04 + 432 1.0584802017733050E-02 + 433 -1.9638779577388836E-03 + 434 5.6436797377534244E-02 + 435 1.4809969076899784E-03 + 436 5.4612180239775911E-02 + 437 -4.3403580886980046E-03 + 438 -2.6723834594893849E-04 + 439 -2.4546565353696296E-03 + 440 1.1058821153616027E-04 + 441 2.3237168126613314E-06 + 442 1.2532937905163682E-03 + 443 2.4789854665209038E-04 + 444 2.6396062822623325E-03 + 445 -8.5762536960756336E-03 + 446 -2.6854808869462943E-03 + 447 -1.7043510810822404E-02 + 448 -3.3243431801572909E-04 + 449 7.6140411535098734E-03 + 450 -5.4111034727737451E-03 + 451 1.5884220473066418E-03 + 452 2.6281330504526602E-03 + 453 4.6199671511846152E-03 + 454 -3.3986896813892231E-03 + 455 9.4438083134144122E-03 + 456 -5.2811078013027448E-03 + 457 8.0045354837706487E-03 + 458 5.6537280252366238E-03 + 459 -4.1743457708997376E-03 + 460 4.6054426244758785E-03 + 461 -3.5966731887446647E-03 + 462 3.9695397987266606E-03 + 463 3.7072091316390417E-05 + 464 -3.4661787799229477E-04 + 465 6.3306261143177131E-04 + 466 3.7729112495260724E-05 + 467 -8.2791569906324824E-05 + 468 9.6760304920630888E-04 + 469 -1.1652075777562883E-04 + 470 3.8335402685078547E-02 + 471 1.3375844365811234E-03 + 472 -3.7539875933193551E-02 + 473 2.3468537863868488E-02 + 474 3.7162844985445171E-03 + 475 -2.3653046470633004E-03 + 476 1.1003342821917760E-04 + 477 -1.4286818166023638E-04 + 478 5.0481596348326040E-03 + 479 1.9138965344126463E-03 + 480 7.8606912021394748E-03 + 481 -1.0694300803219484E-02 + 482 -3.5271446380927252E-03 + 483 3.0527391775562632E-03 + 484 8.2334730443671541E-04 + 485 2.5682509835221979E-03 + 486 -9.2134108770478892E-03 + 487 3.4175841982973438E-03 + 488 8.3261189151004301E-04 + 489 1.3738998922636983E-03 + 490 4.7408201478103235E-05 + 491 4.2437722466664318E-04 + 492 -1.0829446010652804E-03 + 493 1.9350543559755819E-05 + 494 1.0722421495336781E-03 +Ene= -1.8181925400E-01 +Spin= Alpha +Occup= 2.0000000 + 1 9.7141419547035930E-03 + 2 -3.9989197577900253E-03 + 3 2.7277882928712537E-02 + 4 -8.7835771971365870E-02 + 5 7.7666998860009856E-02 + 6 -3.9833266075855822E-03 + 7 1.1752386854604403E-02 + 8 -5.1311292250472741E-03 + 9 -8.3589409673830384E-02 + 10 -4.2416341903369341E-02 + 11 2.8862790087859039E-02 + 12 -6.7599043995615921E-02 + 13 -2.3892944790539276E-02 + 14 -1.7973330251218479E-02 + 15 -9.8480386961339369E-03 + 16 1.1913573924933456E-02 + 17 -8.5651039407264439E-03 + 18 -4.3438641618130562E-03 + 19 -1.8325126917750414E-03 + 20 1.2696431167591941E-03 + 21 1.6203342161250707E-03 + 22 2.7975814817775726E-03 + 23 -5.1808721728144249E-04 + 24 3.8606321497079241E-03 + 25 -3.9345785418968158E-03 + 26 -2.4423156648267816E-02 + 27 -1.0352891901062027E-03 + 28 -2.9789943424536097E-02 + 29 -2.0800267161228923E-02 + 30 3.0059685675048443E-02 + 31 2.6353297468946614E-05 + 32 2.7785397320282523E-03 + 33 2.4021477077063114E-03 + 34 9.9757062887357237E-03 + 35 2.1586934396525131E-02 + 36 -7.2489867675388944E-04 + 37 -2.3135644727710458E-02 + 38 -2.7214707965515766E-02 + 39 -3.8805639164566372E-03 + 40 1.6955939029357323E-03 + 41 -2.9250047185807714E-03 + 42 -5.1267083301939943E-03 + 43 -4.9427055888501270E-03 + 44 3.6308057627359716E-03 + 45 2.7671464084759552E-03 + 46 -1.4423004158417841E-03 + 47 -3.1772955853077009E-03 + 48 -1.0414773848543626E-03 + 49 1.7012785949203340E-03 + 50 1.4758667122515511E-03 + 51 -4.4279940903500153E-02 + 52 -1.3871722572448343E-03 + 53 -2.3517482933568697E-02 + 54 9.5441120014571647E-03 + 55 3.0205597074860938E-02 + 56 6.4040776334879678E-04 + 57 1.8230736546458650E-03 + 58 1.2349002789816389E-03 + 59 -2.3618868940006085E-02 + 60 3.2328844814702418E-04 + 61 -2.5816860093256001E-02 + 62 -1.5702635561721772E-03 + 63 6.9238798754127584E-02 + 64 -2.1681129689880507E-02 + 65 5.8567224658719452E-03 + 66 -1.0971086179994934E-02 + 67 7.9053420847357662E-03 + 68 2.2201657191984341E-02 + 69 -4.6145904526736549E-04 + 70 1.3512293011327938E-03 + 71 -1.5666570876245044E-03 + 72 1.3762858743810434E-03 + 73 4.1746429130635719E-03 + 74 -9.4188781378247855E-04 + 75 3.0462432624255404E-05 + 76 -5.8937055451156791E-03 + 77 -1.4453047781420483E-03 + 78 1.9415263357471879E-01 + 79 -1.2149666137608096E-01 + 80 2.1520586650322937E-01 + 81 -1.5114901975778612E-02 + 82 3.9183451551179022E-03 + 83 -1.7885536481434958E-02 + 84 6.2349752390625434E-03 + 85 -9.4733924006184331E-03 + 86 2.3960221356969474E-03 + 87 -3.8726677536786384E-03 + 88 2.9765706910208229E-04 + 89 7.7056488707278551E-03 + 90 -1.2849497860050094E-03 + 91 -1.8338454434173515E-01 + 92 -3.0941080114790492E-01 + 93 1.0546365716298432E-02 + 94 7.2489531266361745E-03 + 95 1.5704695123538105E-02 + 96 6.2371432492702187E-03 + 97 3.9972296165714178E-03 + 98 -3.3352894737814351E-03 + 99 -6.0334086846366786E-03 + 100 9.4401572731899492E-03 + 101 -9.6818924778430734E-04 + 102 -3.6102978047651436E-03 + 103 -7.4879065027521404E-04 + 104 1.0151741457563529E-02 + 105 -1.0364982808811901E-01 + 106 3.2166524971085984E-02 + 107 -8.2723908015391401E-04 + 108 1.0059972391858477E-02 + 109 -3.5612364046900191E-03 + 110 2.5549314060577960E-04 + 111 1.1012267676596692E-03 + 112 -2.8602818094990146E-04 + 113 -2.0156116172847121E-03 + 114 3.7722845668954502E-03 + 115 6.7192171388280977E-04 + 116 9.0763352875656347E-06 + 117 -5.2511411510824675E-02 + 118 -1.1329541591750356E-02 + 119 1.4659944391655560E-02 + 120 1.7679450579359771E-03 + 121 1.5088398265881176E-04 + 122 -1.0527170231480305E-03 + 123 7.0818034139157266E-04 + 124 -6.1638787498717953E-04 + 125 -5.0218268982932105E-04 + 126 1.2099980067233655E-03 + 127 1.9836908999971521E-03 + 128 1.9874279491619959E-03 + 129 6.5523003275651292E-04 + 130 -2.0472034327168567E-02 + 131 9.8972629857417022E-03 + 132 -7.8217564155296567E-03 + 133 -2.8157694120516949E-03 + 134 1.5601433843432579E-03 + 135 -1.0424045774004363E-03 + 136 -8.1865861448892699E-03 + 137 -6.9495588079002970E-04 + 138 -3.9386031938217544E-03 + 139 7.0926752513070304E-03 + 140 -1.3649777071057937E-03 + 141 -4.4167753493830385E-03 + 142 4.3594218487058379E-03 + 143 1.7127466208728701E-03 + 144 5.1758118870225698E-03 + 145 -5.7441388632092465E-03 + 146 3.0013937564281123E-04 + 147 -6.6821140927192976E-04 + 148 3.5689012311683001E-05 + 149 -6.4293028252249466E-04 + 150 1.4658501703506794E-03 + 151 -1.4737340830330342E-03 + 152 -8.6064051138360633E-04 + 153 5.5386222717357335E-05 + 154 1.0055809421247355E-03 + 155 -1.2209759555163581E-02 + 156 7.3376943391028748E-03 + 157 -1.2848520526322732E-02 + 158 -1.1640010770898031E-03 + 159 -8.7276030019825773E-04 + 160 -2.1922873548670231E-03 + 161 4.1745883940398995E-04 + 162 2.5655427843984994E-03 + 163 -6.2152086757561132E-03 + 164 -2.7754460209347439E-03 + 165 1.0399732793404457E-02 + 166 4.7628973700775436E-03 + 167 3.4297254461981164E-03 + 168 -7.6139633129155952E-04 + 169 5.9489088174077191E-04 + 170 3.5615117837770152E-04 + 171 -7.2738339451030730E-04 + 172 -2.5820771390100216E-04 + 173 -3.0454089418364081E-05 + 174 -7.8388693101999517E-04 + 175 1.3186422858230940E-03 + 176 6.5920601369843373E-04 + 177 -3.1963398604844260E-04 + 178 -1.6115224064098619E-03 + 179 4.2606992303480229E-04 + 180 -6.2242185647027725E-03 + 181 2.6513536630857072E-02 + 182 2.3563905455224202E-02 + 183 -1.4288315642453817E-03 + 184 1.4729211045113124E-04 + 185 -2.1586261175791121E-03 + 186 -1.4974423355861710E-04 + 187 -1.0548632822238718E-04 + 188 1.8187744247898557E-04 + 189 -5.9864551788863353E-04 + 190 6.0372682052448588E-04 + 191 -1.3631819823487790E-02 + 192 5.3582131747913013E-04 + 193 -1.3211802408627829E-01 + 194 -1.2734646050021350E-01 + 195 6.5297500776096334E-02 + 196 8.7775070341391797E-03 + 197 1.5482649303951908E-02 + 198 -7.6103664840069321E-03 + 199 -2.1543497730850719E-03 + 200 1.0671802686451565E-03 + 201 4.1515390595835006E-03 + 202 2.8186266002200150E-03 + 203 -1.3986345281538726E-03 + 204 -2.7291522140575886E-02 + 205 -3.1733368039768683E-03 + 206 -1.4567930500390678E-02 + 207 1.6910998648144965E-02 + 208 1.0034267707671437E-02 + 209 -4.4669229482778164E-03 + 210 3.1033455032174946E-03 + 211 1.6300273492594727E-03 + 212 5.5534128560273390E-03 + 213 -1.5064925482468159E-03 + 214 6.7367600676583135E-03 + 215 1.1156844511770909E-02 + 216 -1.0678517169211985E-02 + 217 1.8812070411324559E-03 + 218 5.9347398336847832E-03 + 219 -4.6883245889735189E-04 + 220 4.4516404195105858E-03 + 221 2.6500148766709182E-03 + 222 -5.5451908157067712E-06 + 223 -1.0759824395021875E-04 + 224 5.4267804933166679E-04 + 225 2.0147341744971447E-04 + 226 1.8936398256352355E-04 + 227 -1.6490594069027253E-03 + 228 1.6063692824534498E-03 + 229 5.7971667628285650E-02 + 230 -7.1396853467439443E-04 + 231 3.3367951355976463E-02 + 232 -1.9644012747006230E-02 + 233 9.2381330251887356E-03 + 234 -8.0947051227099019E-03 + 235 -2.3387610604442854E-03 + 236 -5.7743346749977503E-04 + 237 4.4611772194548455E-02 + 238 7.5931473347634365E-02 + 239 -3.8957930648841885E-02 + 240 4.4789907141864184E-02 + 241 4.8473704033972519E-02 + 242 2.2061458016001116E-02 + 243 3.2093729587225714E-02 + 244 -1.6553935305934787E-02 + 245 1.1726054705152769E-03 + 246 3.0407751368278012E-02 + 247 5.8938722231066309E-03 + 248 2.8423513927386514E-03 + 249 8.4161442487652900E-04 + 250 -5.7705777257349234E-03 + 251 -9.3864685008838284E-04 + 252 1.2033214198623137E-04 + 253 -2.4168708707987241E-03 + 254 2.2107195652869170E-03 + 255 4.9718971849949199E-04 + 256 -3.7618648755030258E-02 + 257 1.6644515354971360E-02 + 258 5.0773522754192302E-03 + 259 -2.1543435845326115E-03 + 260 3.0868917162705060E-03 + 261 -2.8718647438332827E-03 + 262 -9.8721714627250084E-03 + 263 1.7077202112419115E-02 + 264 -3.8529776844997256E-03 + 265 3.5108318290203483E-03 + 266 -3.9968057611144952E-03 + 267 4.0453144736412004E-03 + 268 1.0086132237957290E-02 + 269 -2.5301962287736183E-03 + 270 5.1168815054036627E-03 + 271 4.5696085174797701E-04 + 272 -1.0424540747356957E-03 + 273 -3.9972270625134547E-04 + 274 -2.2239138131544762E-04 + 275 -9.2370663564558114E-04 + 276 -2.6871764284008381E-04 + 277 6.9334669861681692E-04 + 278 2.2183486944290425E-04 + 279 4.1939461873270953E-03 + 280 1.2278541117163801E-03 + 281 2.4684431227795664E-01 + 282 -5.3481504777927701E-02 + 283 -3.0010019769881768E-02 + 284 -1.5939179709894950E-02 + 285 4.1235778694694181E-03 + 286 -3.0658472455479366E-03 + 287 6.1633242623234253E-04 + 288 4.5285139481839529E-03 + 289 -2.5987899007926151E-05 + 290 -1.1284620961648059E-03 + 291 -9.9427125805197987E-04 + 292 -1.6905829449766593E-02 + 293 3.8803429586853665E-03 + 294 3.9194904220236926E-01 + 295 -2.2532201095900503E-01 + 296 2.8900739656301710E-01 + 297 -2.3194184929857670E-02 + 298 1.4682034106279839E-02 + 299 -2.1701005647771599E-02 + 300 5.9946747644065426E-03 + 301 6.3298038962446602E-03 + 302 -1.1814069991250731E-02 + 303 4.8858437984376584E-04 + 304 -3.0014558124972705E-03 + 305 2.6384922418311415E-02 + 306 3.1013565444601610E-03 + 307 5.2562867593848137E-02 + 308 -1.8711898736744607E-02 + 309 -2.8355651040027741E-02 + 310 -2.8651647798377052E-03 + 311 -1.6744257843106551E-03 + 312 1.8175212856294766E-03 + 313 1.7024414173287886E-03 + 314 -2.4604941802501095E-02 + 315 -2.6137304826069470E-02 + 316 -6.5162721137367693E-02 + 317 8.9559599573058327E-02 + 318 1.5948072048357217E-03 + 319 1.1369048198242148E-03 + 320 -1.0073208265961588E-02 + 321 -1.6162980968318766E-02 + 322 1.6657458108007617E-02 + 323 -8.3092307238301301E-04 + 324 1.6357375247722189E-03 + 325 9.4555362529559516E-04 + 326 -1.8737833512013308E-03 + 327 5.1812162628720824E-03 + 328 5.4756365468205219E-03 + 329 1.1953923744786185E-03 + 330 -2.2751095291883027E-02 + 331 -6.8375171330037378E-03 + 332 -7.8647789582839758E-03 + 333 2.4315152338418019E-02 + 334 1.1315599994048851E-02 + 335 -1.4883643626362620E-03 + 336 -1.3003455047898912E-04 + 337 -1.8083277682461778E-03 + 338 1.9882210192167658E-02 + 339 3.6199525658290621E-03 + 340 5.0411975523563556E-04 + 341 -1.3653237665394611E-02 + 342 -7.3271163153194423E-03 + 343 3.9867201207876559E-03 + 344 7.6938262470482670E-04 + 345 5.4322213285420582E-04 + 346 -6.2304264244018902E-03 + 347 -1.4660043553982641E-03 + 348 -2.1495164729090508E-04 + 349 4.4618967304920474E-04 + 350 -2.9858657141802384E-04 + 351 -3.0909728797014798E-04 + 352 -7.9274744814603472E-04 + 353 -1.0027763425774928E-03 + 354 1.2937290922166494E-03 + 355 -1.0533188061651068E-03 + 356 -1.8114599008000191E-03 + 357 -9.7571740107539606E-02 + 358 -7.4438923222049383E-02 + 359 -4.1357798901253129E-02 + 360 4.9881038711354466E-03 + 361 1.0558818810022914E-02 + 362 2.8433311838265349E-03 + 363 -2.7657080485528826E-03 + 364 -2.2055752816932836E-04 + 365 -2.2936963712197720E-03 + 366 -3.8510467048396609E-03 + 367 7.7754461350674004E-06 + 368 -2.1989374958138646E-03 + 369 4.6605995876939846E-04 + 370 4.9303467368445084E-02 + 371 -7.5750011098932840E-02 + 372 6.6457115056679422E-02 + 373 -1.1617893260057525E-02 + 374 1.2160609560682319E-02 + 375 -1.1551393727059786E-02 + 376 1.2552611812617616E-03 + 377 -1.4356327869363660E-03 + 378 -1.7208362310779880E-03 + 379 -7.6857445508993964E-04 + 380 -1.4948243040284013E-03 + 381 3.8909910371938299E-02 + 382 -4.2599185378156337E-03 + 383 4.1404253388264325E-02 + 384 7.8775106523783951E-03 + 385 -9.5989239781756205E-02 + 386 -7.8247887275880966E-03 + 387 4.5057500337664464E-03 + 388 4.8883450792375363E-03 + 389 1.2144973649522428E-03 + 390 2.2894691871089916E-03 + 391 3.9776267221247261E-03 + 392 6.8574010528499947E-04 + 393 -4.3211241853953605E-03 + 394 -6.8639937758799450E-03 + 395 2.7649843940152894E-03 + 396 -1.7263568068118414E-02 + 397 2.3798632626475767E-02 + 398 1.5377046038167324E-02 + 399 -1.0728381538605706E-03 + 400 3.0219472940084318E-03 + 401 9.6053113663939948E-04 + 402 -3.1681407534453511E-02 + 403 3.7325380207106351E-02 + 404 -1.6538824612917953E-02 + 405 -1.4781058647960038E-02 + 406 2.4420943483782704E-03 + 407 -1.2978669436664014E-02 + 408 3.2536775505036038E-02 + 409 3.2997994604508692E-03 + 410 -7.8397513557406442E-03 + 411 1.3933658345804900E-02 + 412 -1.6198395005691927E-03 + 413 1.4283839313767590E-04 + 414 5.8595792210743426E-04 + 415 9.6741400430954501E-04 + 416 1.0547220640973745E-03 + 417 2.1136117800802092E-03 + 418 2.4287301118094667E-03 + 419 6.3948456970352547E-03 + 420 6.7099664023247422E-04 + 421 3.5012121139118119E-01 + 422 -2.8357081816232484E-02 + 423 1.3855401072962625E-02 + 424 -2.4829664719504714E-02 + 425 6.4843010604419228E-03 + 426 -6.5309378355197902E-03 + 427 -3.1482309407208610E-04 + 428 8.3199227134046934E-03 + 429 -1.2000143929191292E-04 + 430 3.0824483416137787E-03 + 431 -5.2915159276074666E-03 + 432 4.9933267587106683E-03 + 433 -9.4954570886057786E-05 + 434 2.4801293810996172E-02 + 435 6.5088419524358621E-02 + 436 -4.2222146894445998E-02 + 437 -2.4048528047074563E-03 + 438 -4.3906466840092622E-03 + 439 1.8539394105951143E-03 + 440 -2.2895372782189998E-03 + 441 1.5367795318149021E-03 + 442 -1.1386084105264986E-03 + 443 -7.9737014599131956E-04 + 444 4.8536962802829770E-04 + 445 4.0343565756287385E-02 + 446 1.4142067563779131E-03 + 447 -6.6756482021800827E-03 + 448 1.9061728949868281E-02 + 449 -1.2917744610298688E-02 + 450 -1.2497594841862161E-03 + 451 3.3368628097711090E-03 + 452 -1.0396587441104705E-03 + 453 -2.0901793856535106E-03 + 454 2.2826155523221703E-02 + 455 2.9835828945504812E-03 + 456 -3.1687577238651322E-03 + 457 -2.1260874832700720E-02 + 458 -2.5059577500660115E-04 + 459 1.1457539076505770E-02 + 460 -1.1073669142657746E-02 + 461 -4.0276304304068290E-03 + 462 -5.9219922575895608E-03 + 463 -1.7662014288552090E-03 + 464 7.6247670295595776E-04 + 465 1.1790164102688848E-03 + 466 -7.3565586770411612E-04 + 467 -1.7613033851854440E-03 + 468 1.0968647740601726E-04 + 469 6.5650694102875216E-04 + 470 3.9947055235736773E-02 + 471 3.9439786815564952E-03 + 472 -4.1699734527779779E-03 + 473 1.3726182243968788E-02 + 474 2.3701366776563756E-02 + 475 -3.7069644943174302E-04 + 476 -1.0092369247233820E-03 + 477 -1.6298596794439857E-03 + 478 5.1546134210852714E-03 + 479 6.2210111954544619E-03 + 480 -2.8673899293079749E-03 + 481 4.2078339580311607E-03 + 482 2.8713265781590835E-04 + 483 1.2703439015075378E-03 + 484 1.5867540822889711E-03 + 485 -4.4043201479903238E-04 + 486 3.1769105022444569E-04 + 487 1.5919004136287452E-03 + 488 2.7679729997765951E-05 + 489 -1.4167612191358266E-03 + 490 1.5134126136831193E-03 + 491 6.6765735789147795E-04 + 492 5.2448335245949121E-05 + 493 1.2873072592609288E-03 + 494 4.2079657967317521E-04 +Ene= -1.5858860278E-01 +Spin= Alpha +Occup= 2.0000000 + 1 -2.9603154838848789E-02 + 2 -3.6808846663219184E-03 + 3 5.9054710667227839E-02 + 4 1.8477200434208658E-02 + 5 5.9522490878554414E-03 + 6 1.2602477602094578E-03 + 7 6.7201357288164057E-05 + 8 -3.4159082662475722E-03 + 9 2.1234852441436837E-02 + 10 2.0546769504699573E-02 + 11 -9.5579464083276264E-02 + 12 2.4398294644480078E-02 + 13 -6.6221615695894812E-02 + 14 4.3065308528627833E-03 + 15 8.0916925670383739E-03 + 16 -3.9507582657178728E-02 + 17 8.1887709073628825E-03 + 18 -2.8480419931547069E-02 + 19 5.2989205638768041E-03 + 20 -1.0589637264325734E-03 + 21 8.6607139675674524E-04 + 22 5.0784721350587416E-03 + 23 2.6131500225836115E-03 + 24 3.6401406495606779E-03 + 25 8.9876827028058100E-04 + 26 3.7262108311547269E-02 + 27 5.2865372964996608E-03 + 28 2.7950928534479381E-02 + 29 6.4229309917783108E-03 + 30 1.0682718277544851E-02 + 31 1.6304146414580418E-03 + 32 1.0149031443716467E-03 + 33 -9.5345167647358387E-04 + 34 -5.1700084540760947E-03 + 35 1.6933595531077667E-02 + 36 -1.6997833766753675E-02 + 37 1.4281001037204488E-03 + 38 3.1490674466616467E-03 + 39 6.8658340030063776E-03 + 40 7.2060801545115643E-03 + 41 -2.5099123700350459E-02 + 42 -5.5667052134533339E-03 + 43 9.2955162886553134E-03 + 44 -1.2934452830742035E-03 + 45 4.9644997180663575E-04 + 46 4.7354871839343599E-05 + 47 -1.8993855181060838E-03 + 48 1.4929900894825761E-03 + 49 2.2974993228478775E-03 + 50 1.1889036683198505E-03 + 51 2.4246417546402475E-02 + 52 6.7200181111815710E-04 + 53 4.3989245388807746E-02 + 54 -7.1281342223256938E-03 + 55 1.9563754891500217E-02 + 56 -9.3071021552305607E-04 + 57 6.0637831262233682E-03 + 58 4.5181215245780892E-03 + 59 -7.8122039126910112E-02 + 60 -4.0446814877517036E-02 + 61 -1.7855583869934123E-02 + 62 3.5810354321202414E-02 + 63 -2.9273106767194995E-02 + 64 -4.9412393761311846E-02 + 65 -1.6747331770162265E-02 + 66 -1.4349082902091219E-02 + 67 2.4683716883597041E-02 + 68 -9.2153285712417588E-03 + 69 -6.3063058042833438E-03 + 70 4.1786804241804370E-03 + 71 -1.4746219734181223E-03 + 72 6.1500264858238944E-03 + 73 1.3425572285587558E-03 + 74 -5.4047033513647700E-03 + 75 1.4977173717234966E-03 + 76 2.2783547928576762E-02 + 77 -9.2357027876618426E-04 + 78 1.1205403075845791E-02 + 79 -1.0881211514288962E-01 + 80 -3.1813259132472731E-02 + 81 1.1521615989119048E-02 + 82 6.4127348087802058E-03 + 83 -2.0935539350254943E-03 + 84 -1.7472427635762378E-03 + 85 1.9962149687972990E-03 + 86 -1.2164298505852344E-03 + 87 1.3858109939977604E-04 + 88 5.5705619161368703E-03 + 89 -1.9604760793192316E-02 + 90 2.8139362227423341E-03 + 91 -5.1839978100017492E-01 + 92 1.6781246849836975E-02 + 93 -6.1002225665926801E-01 + 94 4.4816649608553576E-02 + 95 1.8483841552812098E-03 + 96 4.9191322974334151E-02 + 97 -9.9133350218114438E-03 + 98 6.5610920860694217E-03 + 99 -7.4827318489812094E-03 + 100 6.0727325127474538E-03 + 101 -9.3370933611592478E-03 + 102 6.9627766727515861E-02 + 103 -9.2336637223434104E-03 + 104 -9.6778077764705289E-02 + 105 -1.0660354626743342E-01 + 106 -1.1579780930940696E-01 + 107 1.8455992608636795E-02 + 108 8.7768429499391152E-03 + 109 1.3248059900059976E-02 + 110 -6.1600072586190241E-03 + 111 8.0351912136691038E-03 + 112 -6.6582056378919419E-03 + 113 3.3356042504428386E-03 + 114 2.1000454027865602E-03 + 115 1.3878155902130944E-02 + 116 -7.6389509068336794E-04 + 117 6.0949526807751203E-02 + 118 -1.2695879364798051E-02 + 119 -3.2328835065293958E-02 + 120 -3.7400841368483606E-03 + 121 6.9137754048289885E-04 + 122 5.6890068895495910E-03 + 123 2.0644252621182272E-03 + 124 1.5201727125279372E-04 + 125 1.5692939512582213E-03 + 126 -6.3011717157217424E-05 + 127 1.9860186307149247E-03 + 128 -8.1173764854700747E-03 + 129 8.1619105039536135E-04 + 130 3.1574175492042724E-03 + 131 1.1238346705329237E-02 + 132 1.5497216713584306E-02 + 133 4.2470233501243695E-03 + 134 1.9646092290248052E-03 + 135 2.3886067050953390E-03 + 136 -6.6262403586353005E-03 + 137 1.7181940393827468E-03 + 138 -1.4119471953409248E-03 + 139 -1.7901703419234782E-03 + 140 -2.0791567083486137E-03 + 141 -8.4550547665402189E-04 + 142 1.2906029602227070E-05 + 143 3.3786714981142097E-04 + 144 4.2064325214024425E-03 + 145 1.6163708547834777E-03 + 146 -1.1203690491176082E-03 + 147 -6.1945383057531659E-04 + 148 -1.7597588472220683E-03 + 149 -3.2709554835844634E-04 + 150 -1.2858605790906845E-03 + 151 3.6943517917680973E-05 + 152 -6.7939000051096951E-04 + 153 9.9509485246358831E-02 + 154 8.3346899666143798E-03 + 155 3.8710055708759315E-02 + 156 -6.3384279781133947E-04 + 157 1.2205278138328696E-02 + 158 7.0846693476933642E-04 + 159 -3.9710304108598890E-03 + 160 -3.9452172023250387E-03 + 161 -8.6629519262007900E-03 + 162 8.3115140332266062E-03 + 163 -7.1085074747954825E-03 + 164 -5.0137488270615782E-03 + 165 1.0283457791541536E-02 + 166 6.6201449249754223E-03 + 167 -7.4695550770169340E-04 + 168 7.2940158913574497E-03 + 169 -2.9015945743594433E-04 + 170 3.7966862460409949E-03 + 171 -1.4833006439243129E-03 + 172 1.1509517361535813E-03 + 173 -1.7843170637321570E-03 + 174 2.0314487013752378E-03 + 175 -4.6681233797597375E-04 + 176 -8.9862632286846073E-04 + 177 -4.5855944048684047E-06 + 178 1.3977795849333861E-02 + 179 -2.1133536123086718E-03 + 180 4.8935887314296295E-02 + 181 2.1959329976353376E-02 + 182 2.7346783729268909E-02 + 183 -1.2434851888048336E-03 + 184 -7.0893405754643391E-04 + 185 -1.2302668789666363E-03 + 186 -2.4214692883475834E-04 + 187 -2.0200223842419848E-03 + 188 -8.0715327764985007E-04 + 189 -9.7020256023640000E-04 + 190 3.9837342091325136E-06 + 191 -4.3708176952036264E-03 + 192 -5.6811024503187243E-04 + 193 -3.3858114830171357E-02 + 194 -2.0264918281978149E-02 + 195 6.5376818068416984E-02 + 196 4.0812400108343125E-03 + 197 4.8930449307569108E-03 + 198 -4.4057914183018932E-03 + 199 6.0433483748367918E-04 + 200 -1.7181014946021161E-03 + 201 2.1164743944624004E-03 + 202 -1.7156440870748579E-03 + 203 -5.7682120788136451E-04 + 204 -1.0724458652018766E-02 + 205 -5.9531086828654234E-03 + 206 -2.8035657881997529E-02 + 207 1.5154796469185767E-02 + 208 1.5726194122057967E-02 + 209 -7.2761595568145163E-03 + 210 3.2177397446926117E-03 + 211 2.7311411018112793E-03 + 212 5.1535724071094325E-03 + 213 -5.6061794390164137E-03 + 214 6.5208655805615006E-03 + 215 8.8089417524023668E-03 + 216 7.4273719283123832E-04 + 217 1.1598761724375045E-02 + 218 1.6766913302993559E-03 + 219 6.2704762879481693E-03 + 220 -1.3330376010790174E-02 + 221 3.4506044276836094E-03 + 222 -6.0795540790062752E-05 + 223 6.3357686293844917E-04 + 224 5.5207775254801923E-04 + 225 2.9722997583710213E-04 + 226 -1.3576712082110910E-04 + 227 -1.7614710645964420E-03 + 228 -6.4054266851674567E-04 + 229 2.5891022722419172E-03 + 230 -2.8912332157117649E-03 + 231 4.7200079527928663E-03 + 232 4.3077958088739961E-03 + 233 2.1066903757845867E-02 + 234 -7.4672800767986510E-04 + 235 1.1222910022869390E-03 + 236 3.3432135760926773E-03 + 237 -6.9968051569225314E-03 + 238 -6.8823611103105160E-03 + 239 1.7885989432200600E-02 + 240 -4.6308533407193875E-03 + 241 -4.6089339746406799E-04 + 242 -8.1313865371668136E-03 + 243 5.6211571731341467E-03 + 244 3.2582284349453581E-03 + 245 -2.6641553219671232E-03 + 246 1.4984494475132248E-03 + 247 -2.1655132377513711E-03 + 248 5.8301824772693535E-04 + 249 8.7213038536482614E-04 + 250 2.5943507547370424E-04 + 251 -1.9252544798404729E-03 + 252 2.2952295190492521E-04 + 253 9.4958389765714116E-04 + 254 2.4655860514952620E-02 + 255 2.7012900087291861E-03 + 256 8.5798194420069508E-03 + 257 1.3080791974485648E-03 + 258 1.5336927616638737E-02 + 259 1.7567807334658578E-03 + 260 -5.0463940323987842E-04 + 261 1.8532699249060316E-03 + 262 -3.6001067129013092E-03 + 263 -4.9093471160580491E-03 + 264 4.0213426567266616E-03 + 265 2.6166421778689758E-03 + 266 9.9971425118219144E-04 + 267 -1.7979102920451075E-03 + 268 -2.7144998350403403E-03 + 269 -2.5113807674318925E-03 + 270 1.9497103825276160E-03 + 271 -7.9845178364684223E-04 + 272 2.4681259306380196E-04 + 273 -8.8480948706920188E-04 + 274 4.8900790893789074E-04 + 275 -8.3870802411984964E-04 + 276 -1.8090886518065243E-04 + 277 4.8562049950310200E-04 + 278 -4.8486232766041212E-04 + 279 4.4483176494295746E-03 + 280 -1.0287060633687778E-03 + 281 1.5952000440315993E-02 + 282 9.6167896693896467E-03 + 283 2.4454375920127409E-02 + 284 -2.7656931090935259E-03 + 285 -7.5932192538098178E-04 + 286 -8.2545638378981332E-04 + 287 -1.8486186614763964E-04 + 288 -7.5803992160621036E-04 + 289 -1.9603537006646773E-04 + 290 -4.5116210900612890E-04 + 291 -5.9314474208495207E-04 + 292 -1.0365170291471073E-02 + 293 8.8094598380970276E-05 + 294 -8.8922792918879057E-02 + 295 1.6278651147553103E-01 + 296 -1.4806594392038885E-01 + 297 4.4750782433897194E-03 + 298 -1.7216156234415803E-02 + 299 1.5392585105203966E-02 + 300 -1.8950802723277048E-03 + 301 2.3260251921996917E-03 + 302 1.8609654972489410E-03 + 303 1.3880787344943573E-03 + 304 -3.8417821690155136E-03 + 305 2.7671088468273534E-03 + 306 -8.5065119026570962E-03 + 307 -3.4169366578110419E-03 + 308 4.4124330744676581E-03 + 309 1.4438339752898557E-02 + 310 -4.0597341452604127E-04 + 311 2.5234220924725084E-03 + 312 2.2717347013107183E-03 + 313 -9.1009012673189914E-03 + 314 3.2247194198958677E-04 + 315 1.1988580542848700E-02 + 316 1.0101956277906011E-02 + 317 7.7983777604938550E-03 + 318 5.5573931153016917E-03 + 319 1.0053524522733782E-03 + 320 6.6279459655826422E-03 + 321 6.9337446693297873E-03 + 322 5.6182098726300072E-03 + 323 -9.0179651161997795E-05 + 324 1.9572564020718742E-03 + 325 -1.8505903809550408E-03 + 326 1.4605713116485125E-03 + 327 -2.0853718238530044E-03 + 328 1.1192738373143986E-03 + 329 2.3919463216672446E-04 + 330 -3.1807539634100081E-02 + 331 -2.7488457271067977E-03 + 332 -5.9988382914099220E-02 + 333 4.0528850679174347E-03 + 334 2.9572148959137141E-02 + 335 -1.7383960846276744E-03 + 336 1.7379359711457776E-03 + 337 7.7354948982562930E-03 + 338 2.9811473618684550E-02 + 339 6.8652281032377405E-03 + 340 -1.2051227284397814E-02 + 341 -1.1607423182277733E-02 + 342 -1.5475010410596199E-02 + 343 1.1394890448325418E-02 + 344 1.4334682670268283E-02 + 345 6.7994433429631506E-03 + 346 -1.2766581387005118E-02 + 347 -5.0720440959366904E-03 + 348 -1.5558657532426018E-03 + 349 -1.3296029348167860E-04 + 350 2.4764966952282229E-04 + 351 2.0789848904075557E-03 + 352 2.3487754744160295E-03 + 353 -1.1977093453081171E-03 + 354 -2.6107426421770052E-03 + 355 -1.7643502013036692E-02 + 356 2.7086175937199278E-03 + 357 -1.0938828956211881E-01 + 358 2.8328580179956292E-02 + 359 -5.9925589690312704E-02 + 360 1.2593226325027252E-02 + 361 -1.3105100803460969E-03 + 362 8.5206680470609648E-03 + 363 -1.1817017855096363E-03 + 364 9.7417305687095407E-05 + 365 6.0441503500853811E-06 + 366 1.7425749898373787E-03 + 367 -3.3168925419063168E-03 + 368 -2.9377338394229940E-02 + 369 3.6314205411183127E-03 + 370 -8.0107374868955750E-02 + 371 4.9225154386229965E-02 + 372 -3.9797785534669856E-03 + 373 1.4707509574332223E-02 + 374 -6.9038333998415243E-03 + 375 2.3424003977422390E-03 + 376 -6.3850163640939174E-04 + 377 1.5324339015498832E-04 + 378 6.3249892133433511E-04 + 379 9.0249715437745520E-04 + 380 -3.1473471745717524E-03 + 381 -6.0129809443755650E-03 + 382 9.8191586958993270E-04 + 383 -2.6348026731748655E-02 + 384 3.2718046232862175E-02 + 385 2.2109031357779724E-02 + 386 4.2876126485723301E-03 + 387 -3.8338453795907761E-03 + 388 -2.1985656665681886E-03 + 389 -7.9703889236998858E-04 + 390 -1.0533574497388642E-03 + 391 5.0782882744320823E-04 + 392 9.8501899169710491E-04 + 393 -8.7991079875480798E-04 + 394 -1.1889437550293848E-02 + 395 -1.3020964335081274E-03 + 396 -7.1040186088996366E-03 + 397 1.4315716419482693E-02 + 398 -3.6683789690900064E-04 + 399 5.1778086694653162E-04 + 400 -1.2035014287899803E-04 + 401 9.1490254189306220E-04 + 402 3.2249370081957199E-03 + 403 -6.8139167873748447E-03 + 404 1.1344396537924063E-02 + 405 1.4133512510729493E-03 + 406 5.6139573978326307E-03 + 407 1.8397667874341828E-03 + 408 1.0942545015123581E-03 + 409 2.1367892780622287E-03 + 410 -9.3085363219720912E-04 + 411 6.0884668976566886E-05 + 412 -2.4449363040272041E-05 + 413 1.0555415016106213E-04 + 414 -9.0663804394702232E-04 + 415 1.2382370832381514E-04 + 416 -2.7489404885712877E-04 + 417 -1.7201325169027037E-03 + 418 -1.9723947074657035E-04 + 419 -1.0545053185606036E-02 + 420 1.1960013950582035E-03 + 421 -1.8866626579666430E-02 + 422 3.8732311760611121E-02 + 423 -3.0234494525884986E-02 + 424 3.3053732919061827E-03 + 425 -5.3141953361982852E-03 + 426 2.7721127857292770E-03 + 427 4.8261529323813626E-05 + 428 -3.2729921037518540E-04 + 429 9.0527071345843188E-04 + 430 -1.1269024171178432E-03 + 431 2.5379274384616304E-03 + 432 -4.5189894947795821E-03 + 433 5.9427026428976318E-04 + 434 -1.5604191336582340E-02 + 435 -8.4574897896421818E-03 + 436 2.0028147544043820E-02 + 437 1.1838467529985942E-03 + 438 1.9258639872278850E-03 + 439 2.1586127397068441E-04 + 440 2.9133648758388088E-04 + 441 -1.1131549135377562E-03 + 442 3.1004920178561210E-04 + 443 5.4292025185163873E-04 + 444 -6.8577137627877762E-04 + 445 -2.6477834924507483E-02 + 446 -2.3655024189106403E-03 + 447 -1.3515339283514684E-03 + 448 4.5698025359502594E-03 + 449 2.9434250764002997E-03 + 450 2.9487248933649634E-05 + 451 -3.5475472100961414E-04 + 452 9.1350841447228846E-04 + 453 -6.0318742501302598E-03 + 454 -7.5173579465555177E-03 + 455 -1.5437925148024749E-02 + 456 2.1884399188473952E-03 + 457 -2.2497872414624109E-03 + 458 -6.0399438112663005E-03 + 459 -2.1849605600777386E-03 + 460 -4.7963591976615885E-03 + 461 3.2025534036885031E-03 + 462 1.4953862810605759E-03 + 463 4.4685227983106215E-04 + 464 -3.3816856719388484E-07 + 465 -1.2705859224691847E-03 + 466 1.5862293471287205E-03 + 467 1.0182749253981318E-03 + 468 5.7192844021136766E-04 + 469 2.6390380979869740E-04 + 470 -4.4063172565274901E-03 + 471 -2.3263976065051749E-04 + 472 1.1328312587637397E-02 + 473 2.3922692896784242E-04 + 474 -3.3188208681276402E-03 + 475 9.6293795417188883E-04 + 476 1.9292818096697787E-04 + 477 1.6232277938610427E-04 + 478 1.0485674391619667E-04 + 479 8.8646273376281328E-04 + 480 2.6950153095991526E-04 + 481 1.9466566475107097E-03 + 482 1.1526830578312945E-03 + 483 1.7854889120112451E-04 + 484 -5.9542983897849472E-04 + 485 -1.0796435440184487E-03 + 486 2.8082320982039948E-03 + 487 2.7625403574192030E-04 + 488 6.9257339774028215E-04 + 489 -7.6602874182947313E-05 + 490 -3.8969084154996989E-04 + 491 -2.7486690201622850E-04 + 492 -2.5170913860570023E-05 + 493 -6.9055024726910849E-05 + 494 3.6603151911174123E-04 +Ene= -1.3672310435E-01 +Spin= Alpha +Occup= 0.0000000 + 1 -4.7860372942324612E-02 + 2 -7.0254409021184416E-03 + 3 -1.9737927298860883E-02 + 4 -1.7138946105764715E-02 + 5 4.3825975275152487E-03 + 6 -1.1331101024377825E-03 + 7 -1.5241659035295887E-03 + 8 2.5389380357798214E-04 + 9 -8.7584604096524136E-03 + 10 4.1940203254668251E-03 + 11 -1.0769097976878828E-02 + 12 -8.9139609070969759E-03 + 13 -2.7015057446648089E-03 + 14 -7.6236041438179931E-03 + 15 -3.0057339083470118E-03 + 16 5.6220622143220893E-04 + 17 1.6156201287541123E-03 + 18 2.4820657716843279E-03 + 19 -5.9353069849822572E-04 + 20 -6.7986612476106736E-04 + 21 1.0953221393507396E-03 + 22 -5.2482620924564299E-04 + 23 -3.1475310063601745E-04 + 24 -1.5916445510119827E-03 + 25 -8.1011527580714289E-04 + 26 -3.7721097296819044E-02 + 27 -1.5724575220747796E-02 + 28 7.7806077907681898E-03 + 29 -1.2965824688121319E-02 + 30 -2.3746632297746591E-02 + 31 5.6149487650173800E-03 + 32 -7.1931959956755970E-03 + 33 -7.3669377180262882E-03 + 34 -1.2563163836760675E-02 + 35 -1.2236288420478835E-03 + 36 8.7646670428363511E-03 + 37 -4.6113887423546087E-04 + 38 -1.4148285283543368E-02 + 39 4.0238593603193606E-03 + 40 -1.3129634115641314E-03 + 41 9.6775072395320731E-03 + 42 1.6478308628266526E-02 + 43 1.3317908349711149E-02 + 44 2.5415459976366943E-03 + 45 -5.4881236297366987E-03 + 46 1.0597423695319295E-02 + 47 2.2453283478244901E-03 + 48 -8.3443625786759276E-03 + 49 -1.5977152288880928E-02 + 50 -1.6280476078138510E-03 + 51 -4.1762339493489016E-02 + 52 -1.1957462798189000E-02 + 53 4.3562261976903809E-03 + 54 6.8904906328446649E-04 + 55 -1.1886735995223338E-02 + 56 1.4970576582058910E-03 + 57 2.0167537815803404E-03 + 58 1.9509864446171144E-03 + 59 8.6846384091216703E-03 + 60 -1.6604428961517991E-02 + 61 4.4238068608507411E-03 + 62 6.4061863810198566E-03 + 63 3.7677845484581952E-03 + 64 4.3517048418419824E-05 + 65 -3.7689020542184290E-03 + 66 -3.0326111503399451E-03 + 67 -9.9494667164205602E-04 + 68 -4.9786504682771170E-03 + 69 -2.4507301563137930E-03 + 70 2.7453731397488901E-03 + 71 -1.5165268376021143E-04 + 72 1.1024944579565835E-03 + 73 2.4574854189296073E-03 + 74 2.2616955919857848E-03 + 75 1.6410486591984940E-03 + 76 -3.0391744307719716E-02 + 77 4.0436564530736937E-03 + 78 1.9442352185638362E-02 + 79 -7.5241585588514369E-03 + 80 -1.1126740279726793E-02 + 81 -1.3927046830647263E-03 + 82 -8.1141079155062027E-03 + 83 -9.3096869090609023E-03 + 84 -1.5752037035805830E-03 + 85 -1.1630740345025530E-03 + 86 2.8444623126667227E-03 + 87 -2.3346754389397201E-03 + 88 -4.5716712865002465E-03 + 89 -2.0537873870861076E-02 + 90 1.4918425296826694E-03 + 91 2.5699863485052796E-02 + 92 -4.9266018938790804E-02 + 93 -6.8390801290894990E-02 + 94 -5.5235400276798094E-03 + 95 7.3697037955722210E-03 + 96 9.2927196180025290E-03 + 97 4.1487805336527756E-04 + 98 3.0030851468105264E-03 + 99 -8.6971802773802174E-04 + 100 1.4847896735286002E-04 + 101 3.2307635768827198E-03 + 102 -2.7165940995079064E-02 + 103 6.4554583551621088E-04 + 104 1.0085357766094741E-01 + 105 -3.2925806655645720E-02 + 106 -1.2201710766785179E-01 + 107 -1.6566957903413924E-02 + 108 6.6111943767651667E-03 + 109 8.3528310557418276E-03 + 110 5.9043307406819387E-03 + 111 -1.7954209581899402E-03 + 112 -6.6189634972376658E-04 + 113 -1.4656097934294830E-03 + 114 2.8403155241063151E-03 + 115 -1.3512392553516420E-01 + 116 1.7989496799025329E-02 + 117 8.6164478749893737E-03 + 118 -3.1419298711553229E-01 + 119 2.8644531020255004E-01 + 120 -3.4407381332511415E-03 + 121 2.4585591282179312E-02 + 122 -4.9351472404854463E-02 + 123 -1.2789060346718907E-02 + 124 1.7760131387900644E-03 + 125 -1.7746006215286620E-02 + 126 -1.4350140413636926E-02 + 127 -4.9913365874823864E-03 + 128 -2.5037974223106343E-02 + 129 -1.0304653523551883E-02 + 130 3.2060238629673929E-02 + 131 -1.3182614575025920E-02 + 132 -2.9751940245835922E-02 + 133 2.3382936844385960E-03 + 134 -2.2839542388487753E-03 + 135 -6.8685290697375065E-03 + 136 2.6146852393074799E-03 + 137 -3.5176704539769195E-03 + 138 -9.7256113878909523E-03 + 139 -9.2951057591744712E-03 + 140 8.9585287279615104E-04 + 141 1.0181032376357663E-03 + 142 -3.8957290694963879E-03 + 143 1.5154570132583747E-03 + 144 1.5425374705974191E-02 + 145 -1.2428557698023170E-02 + 146 -3.1575178058683762E-03 + 147 4.2982655450650737E-03 + 148 6.7950503562921863E-03 + 149 -5.5871749146185904E-03 + 150 8.1677310712881968E-03 + 151 6.6508069748898594E-03 + 152 4.4380125868286333E-03 + 153 -1.8521658700620805E-01 + 154 -1.8696644817170597E-02 + 155 -7.6003581113607563E-03 + 156 -5.9998736281893200E-02 + 157 -9.8732585648837995E-02 + 158 3.8524041386611631E-03 + 159 -9.5818613533124389E-03 + 160 -6.0735839914425266E-03 + 161 -8.4797204254740462E-03 + 162 -1.1155620670222067E-02 + 163 -6.4405447638310482E-03 + 164 4.8015785254194691E-02 + 165 1.2659156633699275E-04 + 166 6.9453342904365464E-03 + 167 -5.2836360358389581E-03 + 168 -7.5589331643796829E-03 + 169 3.4152919136185095E-02 + 170 1.0231114901418318E-02 + 171 -2.9270864610665809E-03 + 172 1.7237818817629322E-03 + 173 4.4138293545703235E-04 + 174 -3.6638318787453840E-03 + 175 -6.9868662910496746E-04 + 176 -6.1767333020262176E-03 + 177 2.6793752634989921E-03 + 178 -9.5126555050091224E-02 + 179 1.2889259147950074E-02 + 180 -1.4342572272308968E-01 + 181 -5.2372217338400272E-02 + 182 7.9074783406998722E-02 + 183 1.7493370433976623E-02 + 184 1.0792356272110603E-02 + 185 -2.2428773990565740E-02 + 186 -1.6788107148407046E-03 + 187 1.3312481987670648E-02 + 188 7.3059069134590437E-03 + 189 2.1271983452286389E-03 + 190 1.9234318139408682E-03 + 191 -5.4642392496672562E-02 + 192 6.8996718587307718E-03 + 193 5.6233707138718669E-02 + 194 -6.4061135229263516E-02 + 195 6.5059010505994996E-02 + 196 -6.1271612077040769E-03 + 197 1.3552151893491040E-02 + 198 -6.8598333134607132E-03 + 199 2.3366997630404726E-03 + 200 -3.0640794545941925E-03 + 201 7.1104608757408148E-03 + 202 1.3605357793510210E-03 + 203 -2.3424804722487411E-03 + 204 -1.9058582800018870E-01 + 205 -1.8265088655021477E-02 + 206 2.5699926840000917E-02 + 207 -5.3269154646945968E-03 + 208 -5.3938706619372674E-02 + 209 6.7171440627864811E-04 + 210 4.3780940352812091E-04 + 211 -5.2733165148444927E-03 + 212 -3.5703603680526962E-03 + 213 9.8043052518010966E-03 + 214 6.5352970243357979E-03 + 215 2.6905917092067480E-03 + 216 -5.8777262351963891E-03 + 217 -2.5372804142953019E-03 + 218 7.4625954910559639E-03 + 219 -1.7705655365484953E-03 + 220 7.3678393746971901E-04 + 221 4.2434670967124297E-04 + 222 -4.0970245167409262E-04 + 223 2.4944085561133609E-04 + 224 1.1161204783365095E-03 + 225 -5.4853721030594517E-04 + 226 2.2187288914876425E-03 + 227 -7.6594563199860338E-04 + 228 7.6662596528206364E-04 + 229 -9.9048136925708699E-02 + 230 -7.8371048287007462E-03 + 231 4.9822687087295904E-02 + 232 -3.8556407910776982E-02 + 233 1.4218534339568260E-02 + 234 2.1901457609514881E-03 + 235 -1.5577809518069882E-03 + 236 6.8748995773911892E-04 + 237 3.1324125859076277E-02 + 238 -2.3564178422650479E-02 + 239 3.7902110448178199E-02 + 240 -1.0063880093856975E-02 + 241 -2.7583826250429013E-03 + 242 3.2062768125580475E-02 + 243 -1.9990273816495860E-02 + 244 2.6682855708704812E-02 + 245 -1.0827941774631072E-02 + 246 4.3352457501649004E-03 + 247 4.7081953548334487E-04 + 248 -1.8152169068233368E-03 + 249 -2.0542572299741498E-03 + 250 2.2811842336651714E-04 + 251 2.0648250340543726E-04 + 252 1.4236993483862060E-03 + 253 2.2209896246154779E-03 + 254 -6.8676756949246764E-01 + 255 -5.1807230218296467E-02 + 256 -1.4036156587696464E-02 + 257 -2.1410825446410015E-01 + 258 -1.2087963885472854E-01 + 259 4.2785180348057774E-03 + 260 1.5884218415666909E-03 + 261 4.3903686338179785E-03 + 262 9.5804738438120568E-02 + 263 3.1293278615422186E-02 + 264 -3.7450136547467303E-02 + 265 -1.1542570754210365E-02 + 266 -4.4300375220173924E-03 + 267 2.7159292323251556E-02 + 268 1.3238041939406616E-02 + 269 -2.6042399266034785E-02 + 270 -9.4787630508983162E-03 + 271 -1.1311155655703805E-02 + 272 -3.9686657209414790E-03 + 273 -3.1537088665521637E-03 + 274 1.3228217794639709E-03 + 275 -8.3968846948842210E-04 + 276 -4.0659857525647916E-04 + 277 -1.1438237406970152E-03 + 278 1.3923536980895591E-03 + 279 -2.0122927743717220E-01 + 280 2.8280249837811144E-02 + 281 -6.4825080428827370E-02 + 282 1.2596287593491845E-01 + 283 -3.8559104270135564E-01 + 284 2.7450559529057098E-03 + 285 -3.9769782856959937E-02 + 286 1.5986678426464059E-02 + 287 1.5080546998317649E-02 + 288 4.3740718310026662E-03 + 289 2.4438326639966274E-02 + 290 1.6739982637910095E-03 + 291 6.3924112808807559E-03 + 292 -2.7534969561260832E-02 + 293 6.9466963064128461E-04 + 294 6.7954217653976287E-02 + 295 -4.5954965754815440E-02 + 296 -9.7039370742951755E-02 + 297 -6.0376700799636262E-03 + 298 -4.8153754661548840E-03 + 299 1.2041001438944040E-02 + 300 -1.0789448808184814E-03 + 301 1.3722125569804260E-03 + 302 4.8552063926717631E-03 + 303 -1.4895849382217568E-03 + 304 -2.5269011392245475E-03 + 305 -6.2441870675722475E-02 + 306 -1.3491272599627851E-02 + 307 2.1289013497554554E-03 + 308 2.4440293983221013E-03 + 309 3.3020515630524001E-02 + 310 6.2568865815621291E-04 + 311 -2.8075268613913119E-03 + 312 7.8245998723922147E-05 + 313 -7.3933964070389026E-03 + 314 -1.9676874009966778E-03 + 315 3.5599742831219040E-03 + 316 -1.3232994996344158E-02 + 317 3.8955529351611543E-03 + 318 3.4830120380146434E-04 + 319 -4.4574508408646799E-03 + 320 -5.6956287967176819E-05 + 321 -1.5987959306835602E-02 + 322 -7.2400856749056783E-04 + 323 -1.5496620464794312E-03 + 324 -4.0014938779306142E-04 + 325 1.0730104224020720E-03 + 326 -3.4471542119676708E-04 + 327 -9.1924033496703131E-04 + 328 2.3305101848746924E-03 + 329 8.6677316880939858E-04 + 330 -1.3338504753561292E-01 + 331 -1.1276789720195659E-02 + 332 -1.8775638259271560E-02 + 333 4.6844084720047439E-02 + 334 3.5119242522203352E-02 + 335 -2.1980462709754632E-04 + 336 2.3460128835860601E-04 + 337 4.5383023785561943E-03 + 338 1.8490468717970991E-02 + 339 -1.5932911257391018E-03 + 340 -6.2846346472914746E-03 + 341 -3.3708329233351070E-03 + 342 -2.2704614850323330E-03 + 343 7.4591871116241855E-03 + 344 -1.9344015608503866E-03 + 345 6.9114734251080915E-03 + 346 -3.8069339173003027E-03 + 347 -7.7309501030468756E-05 + 348 3.6629267923821255E-04 + 349 -4.3204533613426359E-04 + 350 6.0608442367545941E-04 + 351 -4.2665859349172962E-04 + 352 3.4406006128259270E-04 + 353 1.0943251913267317E-03 + 354 2.8563608272512582E-04 + 355 -4.7233127657762018E-02 + 356 5.5799294639424860E-03 + 357 -3.4192380988337753E-02 + 358 5.5801316137599633E-03 + 359 -5.0440219033802726E-02 + 360 3.3941532771932454E-03 + 361 4.3051177301043557E-04 + 362 9.1911351335423903E-03 + 363 -3.1776702807385050E-03 + 364 -6.3900186019630811E-04 + 365 -6.0340176056254205E-03 + 366 -1.0725189208660136E-03 + 367 -2.4245171832986564E-03 + 368 -1.4215565272503412E-02 + 369 1.4788568858916998E-04 + 370 4.4173455305704566E-02 + 371 -1.2376581658814266E-02 + 372 -1.9164155593156977E-02 + 373 -1.3588402714634568E-02 + 374 -7.2160106735822882E-03 + 375 -9.0390232523667111E-03 + 376 -1.9003852693156042E-03 + 377 -1.8286947512403213E-03 + 378 -4.4744690083585552E-03 + 379 -2.7275472390167988E-03 + 380 1.9885506936422378E-03 + 381 -6.6064772453871004E-02 + 382 6.4232656031621383E-03 + 383 3.3131788805151108E-02 + 384 2.7207805380574910E-02 + 385 1.5040194169675204E-02 + 386 4.4596692645354928E-03 + 387 -5.1755450543013838E-03 + 388 -1.6293833805620685E-03 + 389 2.3184838246570511E-03 + 390 2.5675030345113871E-04 + 391 7.8860125997466158E-04 + 392 1.3979265412778343E-03 + 393 4.8660750098851414E-03 + 394 -1.6292905988414455E-01 + 395 -1.2321883266497483E-02 + 396 -2.3851377918077711E-02 + 397 -7.1540441024460721E-02 + 398 -2.1536072077866239E-03 + 399 9.3567256952750453E-05 + 400 -1.8543706638656904E-03 + 401 -1.4448371526119953E-03 + 402 3.0404536154074006E-02 + 403 1.7552378933793387E-02 + 404 2.9409589032423123E-02 + 405 -6.4346946451782142E-03 + 406 -5.5857705108291902E-04 + 407 3.1827807120673096E-02 + 408 1.1308541133770934E-02 + 409 3.3144075537977630E-02 + 410 1.7458057977725182E-03 + 411 -9.0742445560487665E-03 + 412 5.1384426939876074E-04 + 413 2.4009755523884220E-03 + 414 1.6414141143720588E-03 + 415 -5.4211455966418458E-04 + 416 5.2668212483244418E-04 + 417 -7.9786632822238432E-04 + 418 2.1383770420974856E-03 + 419 -3.8950311812112837E-02 + 420 3.3455639358725281E-03 + 421 -5.3530741940532763E-02 + 422 -7.4591442071330505E-02 + 423 -1.1337352790164666E-01 + 424 9.7051815370792650E-03 + 425 -2.2714356156463768E-03 + 426 1.1772848999361743E-02 + 427 -1.5391863264207308E-03 + 428 -1.5003326814126820E-03 + 429 6.7060020357892838E-03 + 430 -3.1827598225833546E-03 + 431 2.6324182400047145E-03 + 432 -5.2773989037623883E-02 + 433 6.7117600771439811E-03 + 434 -7.4651685838858284E-02 + 435 -7.2127172330990641E-02 + 436 -8.2297920890214399E-02 + 437 1.2695343196670860E-02 + 438 8.2558015409390159E-03 + 439 9.5691128490715260E-03 + 440 2.1604473542488076E-03 + 441 1.3645971913665701E-03 + 442 -1.3268856107999000E-05 + 443 -7.0921957318805613E-04 + 444 -5.1515902466660072E-03 + 445 -3.3588481627931439E-02 + 446 -8.6628619728884425E-03 + 447 2.0614107174811058E-02 + 448 1.4093612761980371E-02 + 449 1.9850963955331612E-02 + 450 -3.2825117965414616E-04 + 451 -4.0992860773554185E-04 + 452 1.2470285867333369E-03 + 453 -4.6792705475073365E-03 + 454 -8.2018622719104341E-03 + 455 -7.7605321277845985E-04 + 456 -1.5256386713669496E-03 + 457 1.9775578406366621E-04 + 458 -2.7635431077762283E-03 + 459 -1.0612573711350683E-02 + 460 1.4106600610061993E-02 + 461 3.2791365339260949E-03 + 462 -6.2967988176103572E-03 + 463 -1.2196905570095002E-03 + 464 3.3374537902392719E-04 + 465 2.6945135287586405E-03 + 466 4.7486449451704838E-04 + 467 2.8067707738225998E-03 + 468 4.1654562399394624E-05 + 469 1.2967060708807931E-03 + 470 -1.2635926624857330E-01 + 471 -1.2470353170224253E-02 + 472 4.0229353679539864E-02 + 473 -1.4406436545855267E-02 + 474 -2.1217708220807950E-02 + 475 3.0225702145343751E-03 + 476 3.7010916939658558E-03 + 477 -1.0391643950676793E-03 + 478 -1.4935296621498669E-02 + 479 -2.4517949305353911E-03 + 480 1.3837332060607966E-02 + 481 -1.8844567833024659E-02 + 482 5.6046936299470034E-03 + 483 -1.0809295918189613E-02 + 484 -6.4724414262219889E-03 + 485 4.8466110331671413E-04 + 486 1.6039740713369637E-03 + 487 2.3814297006346996E-03 + 488 6.9775671721214309E-04 + 489 -1.3590610782731926E-03 + 490 6.3560216330224345E-04 + 491 -7.2865456502410771E-04 + 492 -2.3306651130988352E-04 + 493 9.4821350352316028E-04 + 494 -4.6514700207161866E-04 +Ene= -1.1818507664E-01 +Spin= Alpha +Occup= 0.0000000 + 1 3.4938484695076780E-02 + 2 9.3239583661398201E-03 + 3 1.4036274539469236E-03 + 4 -2.1545710707377916E-02 + 5 -1.6053464713457325E-03 + 6 -1.8852828304516108E-03 + 7 -3.2062589598160721E-03 + 8 2.1998808171132343E-03 + 9 -1.8576735228978815E-04 + 10 -2.6807115954245158E-03 + 11 -8.2834764345358532E-03 + 12 1.3864917516875644E-02 + 13 -9.1919504952888888E-03 + 14 -5.4600535032369325E-04 + 15 -6.5560193218823493E-04 + 16 -1.3881734305723351E-02 + 17 7.3201566220841363E-03 + 18 6.5184811121741420E-04 + 19 7.9538411407917319E-04 + 20 1.7000396917512804E-03 + 21 -3.7827356505378599E-03 + 22 2.9844719772809817E-03 + 23 5.4174041992241680E-04 + 24 1.0355973612200320E-03 + 25 -2.2657173584161145E-03 + 26 5.6632204619703690E-02 + 27 1.4728033529166268E-02 + 28 -3.9175056461327488E-03 + 29 -5.4474104072326890E-02 + 30 1.0986907512815331E-02 + 31 -3.9250691324848073E-04 + 32 -2.1448812958503691E-02 + 33 8.1739266398127390E-03 + 34 -7.2654348639476949E-03 + 35 1.2610636619704959E-02 + 36 1.7775971682487263E-02 + 37 7.0428912249167674E-03 + 38 -9.3010837920160568E-03 + 39 1.1099228857579427E-02 + 40 -1.1180269186323260E-02 + 41 -1.8465793959827968E-02 + 42 1.4085295732689332E-02 + 43 3.3178720363231842E-02 + 44 -6.1530029896690276E-03 + 45 -2.5298026660844205E-03 + 46 9.5696431892261546E-04 + 47 -7.7897835747567168E-03 + 48 5.5083214829949826E-03 + 49 -5.9555170252218650E-03 + 50 -8.3468051132260879E-04 + 51 5.2094018344064741E-02 + 52 1.3434428156747598E-02 + 53 2.2384714215124054E-03 + 54 -2.1946292992862302E-02 + 55 2.5291652636747802E-02 + 56 -6.5530748601484842E-04 + 57 -8.6666515847398668E-03 + 58 4.5972839993337457E-04 + 59 -8.4510928770965589E-03 + 60 8.2668215407866903E-03 + 61 -1.4703672558865876E-02 + 62 -1.7379668742546570E-02 + 63 -1.2213763989582043E-03 + 64 -4.9878850032038652E-03 + 65 -1.0549690190340020E-03 + 66 5.9230871202437833E-03 + 67 -3.5564339679922253E-03 + 68 1.4549655418717103E-02 + 69 4.2499270303409855E-03 + 70 -5.3897428793601258E-03 + 71 -7.7631449748558144E-04 + 72 3.4600955402947235E-04 + 73 -1.1352220366429404E-02 + 74 -2.8556549539370301E-03 + 75 -4.2003880392289961E-03 + 76 2.7158964532761638E-02 + 77 -3.4859056944112803E-03 + 78 -4.9095206812806727E-02 + 79 -8.4034321766616196E-02 + 80 -1.1779748267623423E-02 + 81 1.4221429927499890E-02 + 82 5.6625635307383550E-03 + 83 -4.2994321269922689E-03 + 84 -4.9454913781357159E-04 + 85 -1.3544228536076133E-03 + 86 2.7481672718326394E-03 + 87 -6.0487542286099096E-04 + 88 1.1203251589066688E-03 + 89 3.7972146623038425E-02 + 90 -3.9056532701038232E-03 + 91 -9.0648674957930775E-02 + 92 1.4937805761622980E-02 + 93 4.1232897963019384E-02 + 94 1.4327535147337487E-02 + 95 -8.8257867596419556E-03 + 96 -8.8879119685118507E-03 + 97 -1.3596165700809822E-04 + 98 -4.0029590171018646E-03 + 99 9.8098815395877706E-04 + 100 1.0236986570400330E-03 + 101 -5.5611981670838527E-03 + 102 7.0005804213111186E-02 + 103 -9.5102911317066757E-03 + 104 -1.5677124957372884E-01 + 105 -4.3867650383661645E-02 + 106 1.4605712107137686E-01 + 107 2.5254850424123676E-02 + 108 8.9623609078805823E-03 + 109 -1.1616438049595477E-02 + 110 -7.6587893469340926E-03 + 111 4.9359469976530358E-03 + 112 2.7725430953477563E-03 + 113 1.9142482201751074E-03 + 114 -2.3963545203867565E-03 + 115 -2.0723151148165957E-02 + 116 3.8526123745534452E-03 + 117 -2.9301322625745391E-02 + 118 -2.3846069752200161E-01 + 119 1.0506822352684418E-01 + 120 4.7716930591732336E-03 + 121 2.4990118508396938E-02 + 122 -8.7760568007136438E-03 + 123 -2.2998917583108435E-03 + 124 -5.0973192339148277E-04 + 125 -3.1597952326678403E-03 + 126 -7.0876866154909119E-03 + 127 -1.3970775979630088E-03 + 128 1.1225446565804430E-01 + 129 1.6491487212715376E-02 + 130 -6.1801423036120504E-02 + 131 -1.7521545610657868E-02 + 132 -3.3132118292866666E-03 + 133 -8.1014382014820210E-03 + 134 -1.4382095942689752E-02 + 135 1.5935335515009994E-03 + 136 -1.6172060002303163E-02 + 137 -1.7539584189158703E-02 + 138 -4.2381518185449719E-04 + 139 -2.7483584761259588E-03 + 140 1.9313548573249899E-02 + 141 -1.5897685048713684E-02 + 142 -1.7894154413586199E-02 + 143 9.4092539159289848E-03 + 144 -1.9396486183846259E-02 + 145 3.5993250506972996E-02 + 146 6.6588460688511329E-04 + 147 2.6711086210290157E-03 + 148 8.1213986795378914E-03 + 149 3.6051917387861154E-03 + 150 -5.9803288396798743E-03 + 151 7.9129620031712210E-03 + 152 6.4901029023553825E-03 + 153 3.3628683014350857E-01 + 154 2.5016537273192172E-02 + 155 2.0336482217711827E-02 + 156 -8.1478531660250306E-02 + 157 1.4675281441681140E-01 + 158 1.3659593887440952E-04 + 159 -1.3279205677221054E-02 + 160 4.7720128088335340E-03 + 161 1.8189440820257474E-02 + 162 1.1416504598214239E-02 + 163 -2.4468157704489960E-03 + 164 -4.1684587185313961E-02 + 165 -2.0526865806284166E-03 + 166 1.1688625582201238E-02 + 167 3.3830496545593862E-03 + 168 1.5505295758136165E-02 + 169 -3.8626940253896052E-03 + 170 -2.0489745325383605E-03 + 171 1.9870313294148667E-03 + 172 -2.2453563492867822E-03 + 173 -1.4261833510665236E-03 + 174 -2.9545314670045175E-04 + 175 -2.6619366622278090E-04 + 176 3.6333531739833331E-03 + 177 2.2340027884813064E-03 + 178 1.5479351044219614E-01 + 179 -2.3215153438701831E-02 + 180 1.3166988778603161E-01 + 181 -1.3025903758038493E-01 + 182 -2.0442167389781316E-01 + 183 -1.6223827448451369E-02 + 184 1.7683130147070951E-02 + 185 4.4888770594414248E-02 + 186 2.5419314131855200E-03 + 187 -2.0136194745473006E-02 + 188 -3.3539476324986046E-03 + 189 -9.3891681339649553E-03 + 190 2.2947505370170627E-03 + 191 1.4700882761572348E-01 + 192 -2.1173596438556770E-02 + 193 -1.2780643906749420E-01 + 194 1.0344982130253662E-01 + 195 -1.7194596859571898E-01 + 196 1.9757303648415152E-02 + 197 -2.5445048633782746E-02 + 198 2.5399204673867297E-02 + 199 -5.7497064761518083E-03 + 200 6.0196068326679964E-03 + 201 -1.6894357704625416E-02 + 202 -3.2566567308683616E-03 + 203 7.4205401673755013E-03 + 204 4.1109021777508714E-01 + 205 3.1048122257806912E-02 + 206 -9.4919088024017939E-02 + 207 -3.5357852580633335E-02 + 208 4.6450739697905793E-02 + 209 -8.3708874682700170E-03 + 210 -5.4299002332923868E-03 + 211 4.0653951907887540E-03 + 212 -2.5211242055628341E-03 + 213 -9.1399598302713252E-03 + 214 -3.5516120443040908E-03 + 215 -1.0088446057222590E-02 + 216 6.6514903004309218E-03 + 217 -3.0718046602299372E-03 + 218 -4.3094129433131362E-03 + 219 -4.0750881364667200E-03 + 220 3.0205280180176505E-03 + 221 -3.8549102656555340E-03 + 222 3.5868069947410063E-03 + 223 -1.0239322848246280E-03 + 224 -2.4441599040769500E-03 + 225 2.1027818858649770E-03 + 226 -1.8516854534200440E-03 + 227 7.6576929696769395E-04 + 228 2.9073269765508262E-05 + 229 2.9339951427335805E-02 + 230 9.0902583655574683E-03 + 231 1.6006808702284814E-02 + 232 -2.4770682082617401E-02 + 233 1.8062536252649510E-02 + 234 -9.6501717668683235E-04 + 235 -2.3216294186595605E-03 + 236 9.3910761081850245E-04 + 237 4.7396036192456012E-03 + 238 -1.4452394854853882E-02 + 239 2.0766350279895498E-03 + 240 -1.3906521071219110E-02 + 241 1.8908559791678624E-02 + 242 1.2989548208957312E-02 + 243 -4.6919605041925438E-03 + 244 5.5592998444286236E-03 + 245 -5.6586179422014023E-03 + 246 1.6570771736095939E-02 + 247 1.7880204071524348E-03 + 248 -2.1537184191835779E-04 + 249 4.6760269576316980E-04 + 250 -1.7832510494410667E-03 + 251 1.7513789015191146E-03 + 252 -3.6095174225984873E-04 + 253 2.4433841405410750E-05 + 254 -3.4343485403051438E-01 + 255 -1.9513696550634774E-02 + 256 -4.1285401669587170E-02 + 257 -1.5656977845860492E-01 + 258 -5.5628004000899116E-02 + 259 -9.1659134387259502E-04 + 260 -4.0841151030237268E-03 + 261 -5.3888278385015803E-04 + 262 3.8921382995138608E-02 + 263 1.1267100701340989E-02 + 264 -2.3411946020005091E-02 + 265 -3.2728755030525421E-03 + 266 3.6628619675950600E-03 + 267 5.1554238799399700E-03 + 268 8.3437754108576408E-03 + 269 -1.8533131193190153E-02 + 270 6.1145718196711088E-03 + 271 -4.1590383125756662E-03 + 272 6.6155765357686213E-04 + 273 -3.3140589612488057E-04 + 274 4.4392439328851084E-03 + 275 -1.9566468485269334E-03 + 276 -1.8693861158720312E-03 + 277 -1.5462154698728644E-03 + 278 -3.3880683143000150E-03 + 279 -6.2317512624920551E-02 + 280 1.0494379322152015E-02 + 281 -9.4679143530843751E-02 + 282 -7.6214522942504484E-02 + 283 -1.5317715019472133E-01 + 284 9.3639054571336335E-03 + 285 3.9035946376442436E-03 + 286 1.6690171091482151E-03 + 287 1.1135304601277431E-02 + 288 7.3912544215116553E-03 + 289 1.3479244619269522E-02 + 290 -3.4842734727315340E-03 + 291 2.4900713767685044E-03 + 292 1.9548473019595072E-02 + 293 -3.1885844285471218E-03 + 294 -2.5755330620334957E-02 + 295 -5.3457878176526856E-02 + 296 1.2221060080979444E-02 + 297 8.4516082784516348E-04 + 298 2.1914872359514313E-03 + 299 -7.4087618919823680E-03 + 300 2.2561074359203279E-04 + 301 -1.8649056705069044E-03 + 302 -1.1176083110745149E-03 + 303 -1.4840736679388216E-04 + 304 -1.7301035590341568E-03 + 305 8.9456469568333946E-02 + 306 1.2913569780398336E-02 + 307 -2.9820244376265636E-02 + 308 -3.1419285223366511E-02 + 309 -1.2491156952428386E-02 + 310 -5.6479034508129652E-03 + 311 -2.4227919302599156E-03 + 312 7.0638268770131362E-04 + 313 1.5272390421098226E-02 + 314 7.3466763178436758E-03 + 315 1.1100140387967077E-02 + 316 -6.3610528175727828E-03 + 317 7.1374498220676686E-04 + 318 6.7184437578304678E-03 + 319 -1.8032823575069546E-03 + 320 2.5952627222082785E-03 + 321 6.4403858832263097E-03 + 322 3.2779734172247929E-03 + 323 3.7693328341251918E-04 + 324 -2.1298008122366497E-03 + 325 -3.4684163740984910E-04 + 326 3.0254935200799784E-03 + 327 1.3809366676117310E-03 + 328 -2.8853229993471936E-03 + 329 -4.3512767232690812E-03 + 330 3.3225940916401808E-01 + 331 3.2166173340670241E-02 + 332 4.0110852007208021E-02 + 333 -1.2638469846385381E-01 + 334 -4.8915189041615299E-02 + 335 -1.0830385345415713E-03 + 336 -1.7729621526150680E-03 + 337 -4.9698800398973002E-03 + 338 -5.1771844023677023E-02 + 339 -3.1681829993382717E-03 + 340 2.2399342664821607E-02 + 341 5.8793585640741558E-03 + 342 3.5865138903456474E-03 + 343 -1.7039638438689102E-02 + 344 -1.7673500136840862E-03 + 345 -2.3411457685626794E-03 + 346 8.4825971736790062E-04 + 347 4.0520079369902966E-04 + 348 -2.7081337971044507E-03 + 349 -2.8978319597880556E-04 + 350 -1.7844968198472363E-03 + 351 6.4901487165260237E-04 + 352 -1.5514605617963887E-03 + 353 -2.3118693644670991E-03 + 354 -1.6859993736765943E-03 + 355 9.7625263276586910E-02 + 356 -1.3090241455880289E-02 + 357 7.0134244693155809E-02 + 358 -7.1317289968641312E-02 + 359 1.7804867694209686E-01 + 360 -1.0357893455828514E-02 + 361 4.8225520605231021E-04 + 362 -2.5486936055439609E-02 + 363 5.2518332100188218E-03 + 364 1.9179354955911109E-03 + 365 7.4458194080151913E-03 + 366 3.7577525145940593E-03 + 367 4.0890109903945170E-03 + 368 6.6265405132046359E-02 + 369 -6.5799817645983468E-03 + 370 -1.2236098697266994E-01 + 371 -5.5520862188753690E-02 + 372 8.9850067210126963E-02 + 373 2.0483256912852511E-02 + 374 -1.1378821552563366E-03 + 375 -1.5245414399014712E-02 + 376 8.8766756950491314E-04 + 377 3.1572490201704040E-03 + 378 2.5938520570061136E-03 + 379 -1.8045028910519990E-03 + 380 -6.1832962173463723E-03 + 381 8.5953384950275435E-02 + 382 -1.0623507661426709E-02 + 383 -1.2614037158694710E-01 + 384 -1.8085536130213029E-01 + 385 2.7551365158642139E-02 + 386 2.5816819433885402E-03 + 387 1.5769097580388979E-02 + 388 -3.8629891817431382E-03 + 389 3.4483829562704927E-03 + 390 -4.9656280333094634E-03 + 391 3.6014135091700901E-03 + 392 -1.0596320407836332E-02 + 393 -2.1930535630648612E-03 + 394 2.3977492838152058E-02 + 395 1.0605736460151017E-02 + 396 -3.4110560502867406E-02 + 397 -3.1922021351569130E-02 + 398 2.2167856131744601E-02 + 399 -1.3908860113850661E-03 + 400 5.8708331983262758E-04 + 401 4.8418646381522606E-03 + 402 1.2819271131169502E-02 + 403 7.7148514695219664E-03 + 404 1.0010980618581850E-02 + 405 1.3906190642942384E-02 + 406 -2.0307975777629512E-02 + 407 1.4928725957788432E-02 + 408 1.0278590243702710E-02 + 409 1.6484921736762491E-02 + 410 7.2549395596832435E-03 + 411 -9.5775371529292740E-03 + 412 1.6021413003415648E-04 + 413 2.5868943520532981E-03 + 414 3.7127858130653921E-03 + 415 1.1976261121880833E-03 + 416 3.4896978413224197E-03 + 417 1.5073023676571444E-03 + 418 -9.9233937537676362E-05 + 419 4.0019183501417026E-02 + 420 -6.8732274993312768E-03 + 421 4.7128591211033199E-03 + 422 -1.2594784753807886E-01 + 423 2.7186322894104803E-02 + 424 -4.7244769894995448E-03 + 425 1.6916878114591513E-02 + 426 -7.0629380843588822E-03 + 427 1.2315169122913325E-03 + 428 3.7701661686185385E-03 + 429 -1.6562967663238256E-03 + 430 -2.4373147940210153E-04 + 431 5.3629548327576945E-04 + 432 1.6132815953588880E-01 + 433 -2.3067289296411986E-02 + 434 1.8711702000429067E-01 + 435 1.6518341721253130E-01 + 436 1.4954090672730447E-01 + 437 -4.3676765961019194E-02 + 438 -2.1906865410847663E-02 + 439 -1.5944735212552411E-02 + 440 -1.9207051062466033E-03 + 441 -2.0903547648410069E-03 + 442 -8.4243165073599692E-04 + 443 -5.0485241221614064E-04 + 444 1.7878286401960354E-02 + 445 1.2789765011362758E-01 + 446 1.6632115732844108E-02 + 447 -4.3238153481442936E-02 + 448 -5.4406429316120469E-02 + 449 2.8904839997520731E-02 + 450 -8.9203919603181806E-03 + 451 -8.0331854961493039E-03 + 452 7.7013707799337356E-03 + 453 -8.2394974294740259E-03 + 454 1.6920352781941043E-02 + 455 3.3641917823507739E-03 + 456 -1.7553888828288054E-03 + 457 6.1280808452541906E-03 + 458 2.0123004455286759E-03 + 459 1.1152298561291877E-02 + 460 -1.1198977695378561E-02 + 461 -5.1949043359779340E-03 + 462 3.5409514279345238E-03 + 463 2.6315345209708681E-03 + 464 -7.8593073397540715E-04 + 465 2.0869610399779880E-03 + 466 -3.0428586229034184E-03 + 467 -7.4444894009532744E-03 + 468 4.4848191664705370E-04 + 469 4.0430633027992971E-04 + 470 3.1461180536236005E-01 + 471 3.8196957812345389E-02 + 472 -1.3862898285939609E-01 + 473 3.6634762170624773E-02 + 474 2.5049404192679682E-02 + 475 -3.7560864119953372E-03 + 476 -9.4181098105453694E-04 + 477 4.7128007568266990E-04 + 478 3.4695776022628605E-02 + 479 -5.5503518731878315E-04 + 480 -3.5842553418808279E-02 + 481 3.7430188032196755E-02 + 482 -2.3700800119768616E-02 + 483 2.0781615778745835E-02 + 484 1.5449948490485748E-03 + 485 -1.3500497327247691E-02 + 486 6.4311787500116527E-03 + 487 -6.0409174249665167E-03 + 488 -4.8085134884695933E-05 + 489 2.2600234380632453E-03 + 490 -3.1453540977279416E-03 + 491 -2.7889373572547050E-03 + 492 -8.6152004940501584E-04 + 493 -1.7911863931237111E-03 + 494 -3.9788575761478435E-03 +Ene= -1.1272652611E-01 +Spin= Alpha +Occup= 0.0000000 + 1 -1.1664158407638885E-03 + 2 8.2891992549473945E-04 + 3 2.3532396729941396E-03 + 4 1.6621618806015318E-02 + 5 -1.9815269509753812E-02 + 6 -1.8565143250577794E-03 + 7 2.8852140812890884E-03 + 8 -4.8575571632837027E-03 + 9 -2.4166905258263560E-03 + 10 5.8011936139826085E-04 + 11 -1.4079244355110542E-03 + 12 -3.0289147403279901E-03 + 13 8.2280344098815909E-03 + 14 -1.0001137229597602E-02 + 15 1.4370604183865335E-03 + 16 1.1839980650993391E-04 + 17 -3.1067191774734851E-03 + 18 2.2731839129012288E-03 + 19 2.0148805479650215E-04 + 20 -3.4343144137270748E-04 + 21 4.1043998500487320E-04 + 22 -1.5866354629100711E-04 + 23 7.7706223783335928E-05 + 24 -5.6539801272407835E-04 + 25 3.8476858350500718E-04 + 26 1.3286798514496614E-01 + 27 4.8932608226683032E-03 + 28 -9.3282290821547889E-02 + 29 1.6756704479857294E-02 + 30 -3.8548384808633172E-02 + 31 -7.8577484148057673E-03 + 32 9.7923058517147017E-03 + 33 -8.8470555734992649E-03 + 34 -1.2180205985694638E-02 + 35 2.4996065998748249E-02 + 36 -1.2312017317479555E-02 + 37 1.2884038893556509E-02 + 38 2.1406918880800228E-02 + 39 -1.4858582854563830E-02 + 40 1.8883776862173175E-02 + 41 2.7616597063365889E-02 + 42 1.8485561307737413E-02 + 43 -6.4684492893310062E-04 + 44 3.8487660720341178E-03 + 45 2.9626748430209900E-03 + 46 9.8858612355088964E-03 + 47 9.7853735127880811E-03 + 48 -8.9354300253626801E-03 + 49 -7.3701348988255864E-03 + 50 -5.6768217493610891E-03 + 51 2.0663523483081588E-02 + 52 1.1733123966624071E-03 + 53 -3.5166062765518369E-02 + 54 1.2698243346851230E-02 + 55 -1.7989689299377207E-02 + 56 -3.4300001112365750E-03 + 57 4.0771475225012234E-03 + 58 5.8539119340352348E-05 + 59 5.1727313933762949E-03 + 60 -3.7153595132729590E-03 + 61 6.8054048679887171E-04 + 62 -3.6325988207721823E-03 + 63 -1.2506495498378983E-02 + 64 -3.5527853946839580E-03 + 65 1.2003784605196721E-03 + 66 -1.2059854488364954E-02 + 67 -6.8495254497243465E-04 + 68 -1.1251256698892969E-02 + 69 -5.3641203982949448E-03 + 70 5.0833826361732929E-03 + 71 -1.2422914215358888E-03 + 72 1.5883487521007361E-03 + 73 6.2290966620086761E-03 + 74 -1.0711978819165145E-03 + 75 -2.3005529880350934E-04 + 76 9.0069361960313198E-03 + 77 -8.3400254941512269E-04 + 78 -6.5997256942997087E-02 + 79 1.3858965732025124E-02 + 80 2.3378029672017391E-02 + 81 9.6640655192322591E-03 + 82 -6.7074495069638076E-03 + 83 5.1955863582610969E-04 + 84 -1.1224413443221644E-03 + 85 6.3726802519491798E-03 + 86 2.0453001025163699E-03 + 87 -1.2490769701836572E-03 + 88 -2.7959108387185963E-03 + 89 -1.7801087285003733E-02 + 90 2.3384040839298610E-03 + 91 3.9462174672190899E-03 + 92 -1.0551746734009772E-03 + 93 -4.3219668798658226E-02 + 94 -1.3325365989532946E-03 + 95 2.7279441864103437E-03 + 96 8.4852374020520840E-03 + 97 -2.3926058474653980E-04 + 98 2.9378605333417380E-03 + 99 5.1740859575422874E-04 + 100 -1.6302397859675451E-03 + 101 2.1122732884173274E-03 + 102 -3.6892663092597394E-02 + 103 4.7855998366680029E-03 + 104 5.4978841903510031E-02 + 105 8.3627299139845720E-02 + 106 -1.9658609974886948E-01 + 107 -9.2367660271665437E-03 + 108 -1.2931992368950089E-02 + 109 1.5737259786283785E-02 + 110 1.0527383400465624E-02 + 111 -8.2906474971393713E-03 + 112 -1.0907746597852450E-03 + 113 -7.4450647480589114E-04 + 114 6.0090694729981404E-03 + 115 5.4440476166096187E-02 + 116 -7.6819531898720391E-03 + 117 -8.2103874454916528E-02 + 118 -5.8105751813164415E-02 + 119 -2.4761676700202390E-01 + 120 1.1329666350280399E-02 + 121 1.6260315887595141E-02 + 122 4.1194249287521807E-02 + 123 -3.4362187562769551E-03 + 124 -3.0571768942547158E-03 + 125 -1.1176024752967379E-02 + 126 -3.3797395403696814E-03 + 127 -6.5615359325295493E-04 + 128 1.6366060131651006E-01 + 129 1.0448287355763300E-02 + 130 9.8248373358800239E-02 + 131 1.1909044262206275E-01 + 132 -4.6696183110283826E-02 + 133 8.0826142336540459E-03 + 134 2.1244892964941527E-02 + 135 -1.1905194967846906E-03 + 136 -1.5384572234867566E-02 + 137 -2.6524901573273366E-02 + 138 -4.0435874090603514E-02 + 139 -7.7315482650640336E-03 + 140 -2.1836239261137685E-02 + 141 -1.1161024604394691E-02 + 142 -1.2873881296269240E-02 + 143 -3.9013142502910519E-02 + 144 -3.1130354294707026E-03 + 145 -2.9242648797931568E-02 + 146 4.8837045900955939E-03 + 147 -2.2969883276508568E-03 + 148 2.5204939703306821E-03 + 149 -8.5652709863785308E-03 + 150 5.0657615163947753E-03 + 151 -2.1883991635646628E-03 + 152 -1.1208178903888402E-03 + 153 -3.2753136052101500E-01 + 154 -1.9876731449613046E-02 + 155 -2.6353633884418005E-02 + 156 5.9175830027498190E-02 + 157 -1.6205662715104227E-01 + 158 5.9894643837461155E-03 + 159 9.2903364751822926E-03 + 160 -6.9725482549929255E-03 + 161 -1.5052249423458272E-02 + 162 -8.6077923224931116E-03 + 163 -4.7837504644938954E-03 + 164 4.3088877988927042E-02 + 165 -6.5105924725480870E-04 + 166 -1.1312286185684976E-02 + 167 -1.0767144040138931E-02 + 168 -1.7095257125178547E-02 + 169 6.6992235931919346E-03 + 170 8.8266927341018146E-03 + 171 -6.9890484825095361E-04 + 172 1.0311014429673318E-03 + 173 4.4419392870492652E-03 + 174 1.6895446144139818E-03 + 175 -4.6212759089654264E-04 + 176 -2.5386159972097268E-03 + 177 -1.6743093195367108E-03 + 178 -1.1170211392998204E-01 + 179 1.5595191980432098E-02 + 180 -1.5920535685808079E-01 + 181 9.7090032252161340E-02 + 182 7.5312687413573332E-02 + 183 1.3025445278643369E-02 + 184 -8.7020435823930205E-03 + 185 -2.4213077997887949E-02 + 186 9.4612833812574070E-04 + 187 1.7880948001866417E-02 + 188 5.5246595403234140E-03 + 189 7.8180069491730984E-03 + 190 -2.2093460396495840E-03 + 191 -5.1456841491135649E-02 + 192 8.8524104502503854E-03 + 193 8.8424180447051696E-03 + 194 8.9992539945029509E-03 + 195 3.6059733067444776E-02 + 196 -7.6769811128240125E-03 + 197 3.1520038723666386E-03 + 198 1.0645853465258317E-03 + 199 6.4684175899108187E-03 + 200 -4.7614948810315106E-03 + 201 1.0840509286997797E-02 + 202 -7.6939106226365183E-04 + 203 -3.5821380184941549E-03 + 204 -1.9356972443529283E-01 + 205 -7.8024774071819890E-03 + 206 -1.5015797510040819E-02 + 207 -2.4238008031034784E-02 + 208 -9.0709802794489064E-02 + 209 -8.2119138133079396E-03 + 210 -1.2933146800070362E-04 + 211 -7.3809082329460802E-03 + 212 2.3154751825085571E-02 + 213 9.9950528235921241E-03 + 214 8.1270973489268074E-03 + 215 9.8519342049636326E-03 + 216 8.3957649577438200E-03 + 217 1.6288356688389044E-02 + 218 2.4285096260204853E-02 + 219 1.3796041136752349E-02 + 220 -1.9565708023999697E-03 + 221 2.5002945731045115E-02 + 222 -4.5640749386744702E-03 + 223 2.8325862849990814E-03 + 224 -2.4703392414188422E-03 + 225 -1.0432895187724781E-03 + 226 1.6615499167587451E-03 + 227 5.7148582750675839E-03 + 228 -3.4875484067011255E-03 + 229 -3.6431167962689970E-03 + 230 4.4685076056209276E-03 + 231 3.3968829362660265E-03 + 232 2.8387631780330942E-02 + 233 -2.5831310030173072E-02 + 234 5.5207956363961732E-04 + 235 -1.2685575221221795E-03 + 236 -3.7420044005985228E-03 + 237 -5.3422144628927190E-04 + 238 -7.7293673007012721E-03 + 239 -7.3555732966991113E-04 + 240 -9.6339790601403675E-03 + 241 -8.9439685109165678E-03 + 242 -5.4146541286973610E-04 + 243 1.1419149759051846E-02 + 244 -4.0967147447953959E-03 + 245 6.7491213343769541E-04 + 246 4.7501062435456026E-03 + 247 1.6338319579103308E-03 + 248 2.1045139844690062E-04 + 249 6.4487843838524107E-04 + 250 5.3314345784533416E-04 + 251 2.8050768935162026E-04 + 252 -1.5162556221224503E-03 + 253 8.3445366585000933E-04 + 254 1.1054136920711907E-02 + 255 6.8168216583558939E-03 + 256 -8.3828090878425188E-02 + 257 -3.8791140932897351E-02 + 258 -3.0202701245710416E-02 + 259 -1.1846749289610629E-02 + 260 3.5462293112330462E-04 + 261 -4.4035188165964098E-03 + 262 -2.8940112228311814E-02 + 263 -7.2854101999537541E-03 + 264 1.8992819066147595E-02 + 265 5.8145046125487041E-04 + 266 1.0615040167366514E-02 + 267 -1.0328877220007604E-02 + 268 7.4902989568671613E-03 + 269 2.0743191935751273E-02 + 270 1.6414723157870344E-02 + 271 1.8515389278560588E-02 + 272 4.9781364302360995E-03 + 273 1.8276361788906481E-03 + 274 1.8582814108740948E-03 + 275 1.4584484238934642E-03 + 276 -3.4625953331600822E-03 + 277 3.0270401897668480E-04 + 278 -4.8637246894239934E-03 + 279 3.9308606820838851E-02 + 280 -6.4602037685916039E-03 + 281 -7.3522253594466319E-02 + 282 -6.0697743057343365E-02 + 283 1.0106980382297751E-01 + 284 1.5183562556760077E-02 + 285 1.6018928272344347E-02 + 286 -1.5455540979778555E-02 + 287 -2.1742775028459438E-03 + 288 7.2756624515497815E-03 + 289 5.2558975227890480E-03 + 290 -3.5399975741003810E-03 + 291 -5.8730188509250919E-04 + 292 4.7112416005711671E-03 + 293 6.3295130721350288E-04 + 294 -1.1779213453730628E-02 + 295 2.5579976752468526E-03 + 296 -1.8401555254943851E-02 + 297 3.4741403140873834E-03 + 298 -2.8404291865104583E-03 + 299 1.0140336921742551E-03 + 300 2.0168625728941517E-03 + 301 -1.8127713894042444E-03 + 302 -2.2820834932074999E-04 + 303 5.7139406300626928E-04 + 304 -9.7714499469723896E-04 + 305 1.2363074824678064E-02 + 306 5.4521899490336213E-03 + 307 -1.0760883104462752E-02 + 308 -1.9177832676969201E-03 + 309 3.9537792511021887E-03 + 310 -8.4142644702345955E-03 + 311 -4.7424562701921368E-03 + 312 6.3997190743791987E-04 + 313 1.0354902101341176E-02 + 314 1.0857630930310516E-03 + 315 -1.2921162302265169E-03 + 316 -3.1624875282335418E-03 + 317 -1.7928953843601575E-02 + 318 5.6722194021307289E-04 + 319 -1.4323847612761797E-02 + 320 -7.2965812181369832E-03 + 321 -4.4676366208808264E-03 + 322 -2.6215570839937560E-03 + 323 -4.2124146305758843E-03 + 324 -4.0160027485539318E-03 + 325 -1.2689887798339543E-03 + 326 4.4308485037175827E-03 + 327 4.2196429114875911E-03 + 328 -1.0234142313014216E-03 + 329 -3.6947510839583832E-03 + 330 -1.6730502023274019E-01 + 331 -8.3484227956300890E-03 + 332 -3.7325525202632520E-02 + 333 7.4699018115552102E-02 + 334 2.7915178379957665E-02 + 335 2.9588827677547500E-04 + 336 -9.3758452729696443E-04 + 337 2.2958009642261071E-03 + 338 1.1575163181331252E-02 + 339 -5.8297517128658109E-03 + 340 3.1488123004961288E-03 + 341 -4.4599195794405998E-04 + 342 -3.8310328614322370E-03 + 343 1.6733785901842980E-02 + 344 1.2810162146587893E-03 + 345 2.7047009834743831E-03 + 346 3.3765816392326945E-04 + 347 2.8223813243831702E-03 + 348 -3.3451460935124259E-04 + 349 3.0724657638433951E-03 + 350 2.8636718776468720E-04 + 351 -5.6419176173861459E-04 + 352 8.6625344949893871E-04 + 353 1.0258449455388453E-03 + 354 -2.4466929922775963E-03 + 355 1.3998645244960391E-02 + 356 -6.5275476055243295E-04 + 357 -1.1584056796676989E-01 + 358 1.3997168132772375E-01 + 359 8.8387854941569838E-02 + 360 1.1584597800383270E-02 + 361 -1.3429705955305774E-02 + 362 -2.1993152260066789E-02 + 363 -3.7519740170378554E-03 + 364 7.3031460082055412E-03 + 365 -8.1516823976320162E-03 + 366 -5.2146881121685673E-03 + 367 -8.2783558242285026E-04 + 368 8.3449099828142081E-02 + 369 -1.1927667209220345E-02 + 370 -1.1681552508303869E-02 + 371 5.9952708406964469E-02 + 372 2.7645309776067620E-02 + 373 -2.0716175200224764E-02 + 374 -5.1394491330264205E-03 + 375 -1.0988708021998863E-02 + 376 -1.8966530175752580E-03 + 377 -1.4507458128053508E-02 + 378 -1.9349190571002456E-02 + 379 3.5487353740449830E-04 + 380 -9.6754469985936868E-04 + 381 1.6923029310852186E-01 + 382 -2.6411325626972917E-02 + 383 -2.1488883182972929E-01 + 384 -1.8380934293031051E-01 + 385 -1.9197128813474858E-02 + 386 -1.4841200368231909E-02 + 387 8.8030793517014008E-03 + 388 -5.7454121797341218E-03 + 389 1.2162928439347440E-02 + 390 -8.0606225955716631E-03 + 391 -3.9815142658819556E-03 + 392 -2.4394721982033182E-02 + 393 -1.3010151571549092E-02 + 394 5.0141626106276656E-03 + 395 3.9388015348542152E-03 + 396 -4.0920573076322450E-02 + 397 1.4663737940301076E-02 + 398 1.3174237855851508E-02 + 399 -6.3200979204709627E-03 + 400 5.8729779898272850E-03 + 401 -3.2462263674646174E-03 + 402 -2.5106955199298185E-04 + 403 -1.9866185402712669E-03 + 404 -2.8498390201134307E-03 + 405 -3.6726140374106478E-03 + 406 2.9960204025038559E-04 + 407 -1.9917543684526257E-03 + 408 7.0296246901820920E-03 + 409 1.2880542891882656E-02 + 410 -8.8965912060107490E-03 + 411 1.9370390963799521E-02 + 412 -3.0133451577979372E-03 + 413 1.6181734803293875E-03 + 414 2.9823545278418405E-03 + 415 3.4051013026796472E-03 + 416 6.7545222312667460E-03 + 417 3.1139640140246594E-03 + 418 1.9054184123877306E-03 + 419 2.6964147264923445E-02 + 420 -4.7219544558575076E-03 + 421 -4.8834393668291752E-02 + 422 -5.2986157143778405E-02 + 423 1.0685055722755470E-01 + 424 3.0545494791320376E-03 + 425 7.6613462734740068E-03 + 426 -1.6273765106508117E-02 + 427 -4.2296776049157038E-04 + 428 3.2848314330659180E-03 + 429 5.0968377399806955E-03 + 430 -1.1953364686445669E-03 + 431 -1.0693022465960488E-03 + 432 1.5433792721279729E-01 + 433 -2.2123161640082659E-02 + 434 -1.3029958529021449E-02 + 435 3.5074024334627724E-01 + 436 -6.3134871254963199E-02 + 437 -2.2657925161869392E-02 + 438 -3.1870401426251138E-02 + 439 1.9852603724688108E-02 + 440 6.4226708167296068E-03 + 441 1.8801784193497505E-02 + 442 -9.5365916784728583E-03 + 443 7.3958682138078611E-03 + 444 1.7954436727745826E-02 + 445 2.8006466379019768E-01 + 446 1.9932884376097589E-02 + 447 2.2187496635275210E-03 + 448 -4.7710299131996439E-02 + 449 7.9787419963838563E-02 + 450 -4.9788729819837891E-03 + 451 -5.5168283893240258E-03 + 452 3.2253539783736493E-03 + 453 -1.5068283698294499E-02 + 454 3.2664412922459099E-02 + 455 -8.2279388760359319E-03 + 456 -6.4061347563766314E-03 + 457 7.6434784901885690E-03 + 458 -2.5522270396142476E-02 + 459 7.7643722838883766E-03 + 460 -1.1209122983125196E-02 + 461 -5.8894311534629252E-03 + 462 9.0757322748662491E-03 + 463 -6.3782578487570803E-03 + 464 -5.4880812250846451E-03 + 465 6.8969553702502200E-03 + 466 2.3204498093570740E-03 + 467 -3.1931871795520296E-03 + 468 5.8623608610363399E-03 + 469 1.6709114316668973E-03 + 470 5.8449461606812025E-01 + 471 5.5842998653775476E-02 + 472 -2.3036545118115442E-01 + 473 9.0381631443444119E-02 + 474 3.2125353208361331E-02 + 475 -1.7554547755395573E-04 + 476 -6.6458234929186767E-03 + 477 -8.3500811614162468E-04 + 478 4.0043209219087696E-02 + 479 -2.3247788887858518E-02 + 480 -5.1409723972484750E-02 + 481 4.1612540008461769E-02 + 482 -3.4296889568880988E-02 + 483 1.4877514598124556E-02 + 484 -1.5123537787559642E-02 + 485 -2.4518154277128178E-02 + 486 2.0365262467186909E-02 + 487 -3.2101312653064373E-02 + 488 -5.8833036499059176E-04 + 489 3.3519041922155440E-03 + 490 1.3801583238440033E-03 + 491 -2.9918173509625013E-04 + 492 -3.9649721279379435E-04 + 493 2.3262872301958145E-03 + 494 -4.4828820309828644E-03 +Ene= -1.0710116183E-01 +Spin= Alpha +Occup= 0.0000000 + 1 9.7368504306113185E-02 + 2 8.6875702049431843E-03 + 3 2.9554294470315670E-02 + 4 -1.0712772134028629E-02 + 5 -1.4665131416031062E-02 + 6 -3.1728308384152450E-03 + 7 -2.3489082133045852E-03 + 8 -4.0019303232928950E-03 + 9 -4.3303165983003822E-03 + 10 3.1476124542755728E-04 + 11 -1.2293330509287805E-02 + 12 -2.0855668227241072E-03 + 13 -1.1890903633739828E-02 + 14 -1.3869548619544921E-02 + 15 -6.7265974253208089E-03 + 16 -9.7365089419660430E-03 + 17 -2.9168493540967489E-03 + 18 2.3390050125972799E-03 + 19 -2.1203415047587890E-03 + 20 1.8862565355382352E-04 + 21 6.0969704450592095E-04 + 22 8.6746736336985896E-04 + 23 1.4175917066206487E-03 + 24 1.9506787269024768E-03 + 25 -8.1779056864799728E-04 + 26 -2.6803302242772889E-03 + 27 -9.4976098946039384E-03 + 28 3.2711217664601016E-03 + 29 6.0846375583968035E-02 + 30 -2.6543966217003053E-02 + 31 -3.2250304647718619E-03 + 32 1.6106202479856741E-02 + 33 -1.5185205192201751E-02 + 34 -3.2574655163366000E-03 + 35 1.9473445808934199E-03 + 36 -1.1729046061454878E-02 + 37 -6.9837257114366150E-03 + 38 4.0096353420178473E-03 + 39 -1.7078258926490123E-02 + 40 2.6980685054080394E-02 + 41 2.5672381225178016E-02 + 42 2.0467200177690646E-04 + 43 -1.7556170725471873E-02 + 44 6.4572815808732571E-03 + 45 1.2589000777526200E-03 + 46 6.0815802414411844E-03 + 47 1.0108257458976675E-02 + 48 -9.0479739066081696E-03 + 49 -4.2561182355548280E-03 + 50 -1.9825123441610413E-03 + 51 3.6713341541195668E-02 + 52 3.4688269375880414E-03 + 53 -4.0589726517478782E-02 + 54 -7.0849294718455066E-02 + 55 2.7422001672957635E-02 + 56 -8.9808310625152966E-03 + 57 -1.9210693276275437E-02 + 58 -1.9399482972473904E-04 + 59 1.3979169051888151E-02 + 60 -2.4684675532266980E-02 + 61 -5.8473943211276771E-03 + 62 4.7932711777913086E-03 + 63 -2.6219781013308265E-02 + 64 7.3329019837774104E-03 + 65 1.9319552156397044E-03 + 66 1.8056528684882219E-02 + 67 -1.1257182883737877E-02 + 68 1.2128556124334777E-02 + 69 1.4209665698013210E-03 + 70 -7.4470238934522329E-03 + 71 -1.0715026448169206E-02 + 72 2.0298268953158186E-03 + 73 -1.5840229789388278E-02 + 74 4.7071869285008729E-03 + 75 -4.8160808694858110E-03 + 76 1.7030527310448341E-02 + 77 -1.6093884884847193E-03 + 78 4.4723450975000661E-03 + 79 -2.6217966879409529E-03 + 80 -3.4894829924755080E-02 + 81 2.2442970891023662E-03 + 82 -3.4695982446836344E-03 + 83 1.1478646312737409E-02 + 84 -2.4346106010298850E-03 + 85 4.3840712834725811E-03 + 86 -3.1150693360086461E-03 + 87 6.3477122962174654E-04 + 88 1.5329209323724675E-03 + 89 3.1154066586234572E-02 + 90 -3.5993506599852629E-03 + 91 -9.3764890940061379E-02 + 92 -3.6787283240819861E-02 + 93 -1.3159370562842945E-01 + 94 1.2291254738489008E-02 + 95 -2.5065871295699392E-03 + 96 1.8929814414273903E-02 + 97 3.5307404030993574E-03 + 98 1.5649431761495430E-04 + 99 -5.9859812352817910E-04 + 100 4.2912895845128186E-03 + 101 -8.1030772729101617E-03 + 102 -5.7642480321636186E-02 + 103 9.0893023272224285E-03 + 104 1.3482406534066618E-01 + 105 -1.1321508201775635E-02 + 106 -2.5011041873372564E-01 + 107 -1.7018311738080598E-02 + 108 2.7749903243684372E-03 + 109 1.8880593375369362E-02 + 110 1.0922436657613282E-02 + 111 -7.8532392389294124E-03 + 112 -4.8375271891552074E-03 + 113 1.3005161496662905E-03 + 114 1.8366171815444525E-03 + 115 -2.4004130493218194E-02 + 116 2.8103398514407059E-03 + 117 5.3041263960718664E-03 + 118 6.2336139170218727E-02 + 119 -1.4281728032259761E-02 + 120 -8.1366213311910237E-04 + 121 -9.8749425466213431E-03 + 122 -5.3135642676590258E-03 + 123 -1.7361626076302539E-03 + 124 4.3443655545761526E-03 + 125 -5.4361341192509464E-03 + 126 -3.8244643137333033E-03 + 127 -3.2916617547721853E-03 + 128 -5.9726271005629265E-02 + 129 -2.6137743769369380E-03 + 130 2.5184801286236173E-02 + 131 -1.7429125950212082E-03 + 132 2.1321784365115155E-03 + 133 1.5588793410766235E-03 + 134 -2.5919284365488065E-03 + 135 -4.6528870508139161E-03 + 136 1.1433037149732383E-02 + 137 7.0931385092477123E-03 + 138 -7.1526361131036120E-03 + 139 1.9521938072715155E-03 + 140 -2.2042933839822275E-02 + 141 6.9438465897090325E-03 + 142 7.1224582525359313E-03 + 143 1.2384319493801119E-02 + 144 -2.7932538719944058E-03 + 145 -2.1191778086853585E-02 + 146 3.1852550359076845E-03 + 147 1.2648078440568361E-03 + 148 1.3048142101150743E-03 + 149 6.5806649250423326E-04 + 150 7.2849897592717127E-03 + 151 3.8809285910394692E-03 + 152 2.9732410937428093E-03 + 153 -4.2194545371806541E-01 + 154 -2.8759610295393274E-02 + 155 -3.6225586663751419E-02 + 156 3.3512670005346003E-02 + 157 -1.8813989625810254E-01 + 158 4.4499057701430532E-03 + 159 4.3398826173764544E-03 + 160 -6.7162444134747923E-03 + 161 -1.7102299621165874E-02 + 162 -2.5766484634861697E-02 + 163 9.3049193772687441E-03 + 164 5.4977208706278417E-02 + 165 -2.2829911846947628E-03 + 166 -1.9693821438893110E-02 + 167 -2.2696383635431028E-02 + 168 -8.5860327586534044E-03 + 169 7.6050657880474097E-03 + 170 9.6429949726916132E-03 + 171 2.8105470714795796E-04 + 172 2.1546754371366927E-03 + 173 3.0134161816276826E-03 + 174 5.0142004795836262E-03 + 175 -3.5941729314173548E-03 + 176 7.3828609962391350E-04 + 177 2.7490675154138791E-03 + 178 -1.1462251412210037E-01 + 179 1.8852006871009786E-02 + 180 -2.1127596880979607E-01 + 181 -5.1170949391180318E-02 + 182 -3.0771101987672401E-02 + 183 1.9033577552747698E-02 + 184 1.1728769308725243E-02 + 185 -8.8115530180549097E-03 + 186 -3.3627415788827228E-03 + 187 1.7899029648810336E-02 + 188 -3.3392475468282589E-03 + 189 1.4578909654891961E-02 + 190 -3.0129468608320010E-03 + 191 1.6288129170687629E-01 + 192 -2.3512472071415387E-02 + 193 4.1060744813700686E-02 + 194 -1.5868658692328123E-02 + 195 -3.7234473145712454E-01 + 196 -2.3520806363680983E-03 + 197 -2.5354680330052250E-02 + 198 2.4021958967393838E-02 + 199 -1.6049060912153561E-02 + 200 3.5416011588099003E-03 + 201 -2.1040226576360267E-02 + 202 9.3949983635986613E-04 + 203 1.3071012254197655E-03 + 204 -3.8220986864196435E-02 + 205 -4.4422447109705054E-04 + 206 9.0312273566857601E-02 + 207 -9.4225920416506542E-02 + 208 -9.2284501728971142E-03 + 209 6.9364264678613433E-03 + 210 -8.4522607713591429E-03 + 211 8.4330683410564788E-04 + 212 -1.4439665157443556E-02 + 213 1.9508565160987465E-02 + 214 -2.2540926861457131E-02 + 215 6.6945789682204592E-03 + 216 1.1019630761500408E-03 + 217 -2.0723924749649618E-02 + 218 4.2019591913770381E-02 + 219 -3.7033952232588464E-02 + 220 1.7413768222230265E-02 + 221 -1.1786057005354664E-02 + 222 -3.5363601302453190E-03 + 223 3.0848084789031529E-03 + 224 -1.2590159176608436E-03 + 225 8.6611613267092177E-04 + 226 -1.0121960973571095E-03 + 227 9.4545129094614254E-04 + 228 8.7665662082830388E-04 + 229 3.0428902837173453E-02 + 230 3.2540467351787629E-03 + 231 -5.8475510096038762E-03 + 232 7.9760934166148278E-03 + 233 -1.5815178839897307E-02 + 234 -8.9948324032480343E-04 + 235 2.5171995065114100E-03 + 236 5.1010827763424914E-04 + 237 2.9800625833384434E-03 + 238 -1.8286454939458110E-03 + 239 -2.9684422604153229E-03 + 240 6.9964541968933550E-03 + 241 6.0430658032243007E-03 + 242 -8.2596614729222081E-03 + 243 5.7908672247748184E-03 + 244 -5.4206202903135103E-03 + 245 1.9523700390903370E-02 + 246 -2.0975756724326438E-03 + 247 -2.2602986303714590E-03 + 248 2.2256518405102169E-04 + 249 2.2127032289767433E-03 + 250 1.5076415174934852E-03 + 251 -2.2772415503634069E-03 + 252 -4.5182215411960344E-03 + 253 -3.1852814334590979E-03 + 254 1.8276387681586528E-02 + 255 -1.6523485046336991E-03 + 256 3.0367738557905061E-02 + 257 4.7326242510289787E-02 + 258 -2.5994292131148691E-02 + 259 1.9862481159793051E-03 + 260 3.9182698029796709E-03 + 261 6.1879222586348932E-04 + 262 -3.9856798768330070E-03 + 263 -6.1224329260921404E-04 + 264 -1.0940240031297504E-03 + 265 7.3423342212391459E-05 + 266 -5.1795278359170376E-03 + 267 2.1325027603530224E-03 + 268 -3.9939173685861404E-03 + 269 -5.6529609539170535E-04 + 270 -4.4289781205467241E-04 + 271 1.1156962783758703E-03 + 272 2.1809632049112830E-04 + 273 8.7386851932641063E-04 + 274 -2.8142569206811349E-03 + 275 6.5434032694100899E-04 + 276 6.9805026535740562E-04 + 277 4.6731374934767540E-04 + 278 9.7178399040051815E-04 + 279 3.2616465066443709E-02 + 280 -4.9498622298666684E-03 + 281 1.7187824592081308E-02 + 282 -3.3816658641042725E-02 + 283 -2.7418338046704408E-02 + 284 -1.2712663981202365E-03 + 285 8.7965330380096549E-03 + 286 5.1012062925320407E-03 + 287 -1.7635477519188064E-03 + 288 -5.5432093153874413E-03 + 289 -5.5894851242243547E-03 + 290 2.9610471986267446E-04 + 291 -2.9799195729734839E-03 + 292 4.0059841571646451E-02 + 293 -6.1602079071609740E-03 + 294 -2.5071060271030513E-02 + 295 -3.8246833066107072E-02 + 296 2.2867483186021152E-05 + 297 -1.7870034649267042E-04 + 298 3.5929436530299365E-03 + 299 -5.6109405688700102E-03 + 300 7.5787841688854075E-04 + 301 -4.9525983741448521E-03 + 302 -4.7961084049874076E-03 + 303 -2.7447395726208526E-04 + 304 2.8854837454101486E-04 + 305 1.6814457248736772E-01 + 306 2.0278573784517993E-02 + 307 -3.4105009450643368E-02 + 308 -3.1229604749649070E-02 + 309 -8.9613944824065317E-02 + 310 -2.5321449920648075E-03 + 311 6.3582623079776225E-03 + 312 -6.7771165441984239E-03 + 313 1.2105263927335798E-02 + 314 1.0947527692169948E-02 + 315 1.2460106157638798E-02 + 316 2.6677509301458141E-03 + 317 2.0023251219788939E-02 + 318 -3.1106325918796578E-04 + 319 1.6178964836585690E-02 + 320 1.9659707570077345E-02 + 321 1.3803086571766612E-02 + 322 1.3395221121939671E-02 + 323 1.0719304912482107E-03 + 324 -6.8519307558329468E-04 + 325 -5.0195060403573927E-06 + 326 1.2943050645582989E-05 + 327 -1.2253705350876527E-03 + 328 -3.1593299209518046E-03 + 329 -1.4219543620173488E-03 + 330 6.3620355807751361E-01 + 331 5.3874012278846375E-02 + 332 2.6462337703458017E-02 + 333 -2.2362298378597392E-01 + 334 -1.2572830835772134E-01 + 335 -8.9695557992440847E-03 + 336 3.1848534411601885E-04 + 337 -4.0498658910005838E-03 + 338 -9.0978247328922512E-02 + 339 -1.3358829970729499E-02 + 340 4.6754033438971450E-02 + 341 9.4753421068900466E-03 + 342 1.3546414781067828E-02 + 343 -4.4519185170932188E-02 + 344 -1.8655102766333170E-02 + 345 2.4106309083037371E-02 + 346 -9.7311714762175223E-03 + 347 -6.3348999055303267E-03 + 348 -2.2214682331412870E-03 + 349 -1.8669500136298913E-03 + 350 -2.6077580038885084E-03 + 351 -5.2255420266413311E-05 + 352 -5.3358639996777596E-03 + 353 -8.3597387540227308E-04 + 354 -3.8982991278873886E-03 + 355 1.8147670131073351E-01 + 356 -2.7413377326671203E-02 + 357 1.8149889140721651E-01 + 358 -1.8580335203584036E-01 + 359 2.2248956642637269E-01 + 360 -1.7602536551861472E-02 + 361 1.2464658852910445E-04 + 362 -2.9960402608093680E-02 + 363 9.1798512946490440E-03 + 364 -3.3918998007627169E-03 + 365 2.4357015201445321E-02 + 366 1.3006721689766689E-02 + 367 7.3708343881556766E-03 + 368 -2.0147017865226019E-02 + 369 4.6216590690544230E-03 + 370 3.3946791158780701E-02 + 371 1.6377051202665440E-02 + 372 -3.7166493810674689E-02 + 373 -4.2196024472891851E-03 + 374 -1.7418762667588059E-02 + 375 -8.7938904563830619E-03 + 376 2.3646915272523680E-03 + 377 -4.1125448650241592E-03 + 378 5.2178946171074977E-03 + 379 5.0772172581098002E-03 + 380 2.8875320067519045E-03 + 381 -3.0047509263795267E-02 + 382 3.7105384263398139E-03 + 383 4.0693306334905366E-02 + 384 8.2055969661815581E-02 + 385 -9.3593415263322974E-02 + 386 3.1010723203824158E-03 + 387 -9.1679037562322364E-03 + 388 1.0834833299446095E-02 + 389 -7.2059308254258667E-03 + 390 4.6684164800045542E-03 + 391 -9.4045726548597013E-04 + 392 3.1006465344441594E-03 + 393 1.8069249063251875E-03 + 394 1.2812814767739866E-01 + 395 7.7886007452328638E-03 + 396 -7.9059828137943797E-03 + 397 2.6735799421022505E-03 + 398 -2.0597787952876877E-02 + 399 -1.7984647297073720E-04 + 400 -3.0658782849518436E-03 + 401 2.0427547583706817E-03 + 402 -7.7205985045738518E-03 + 403 6.6464485304077335E-03 + 404 -1.9466622182254027E-02 + 405 6.0232459412507527E-03 + 406 2.5551661149983956E-03 + 407 -1.1866992071652862E-02 + 408 1.0434567192628415E-02 + 409 -2.3480637777743552E-02 + 410 1.3373126119060629E-03 + 411 -3.7912616568413831E-04 + 412 1.1259848220950253E-03 + 413 6.3252776389220245E-04 + 414 2.3162026658491677E-03 + 415 -1.2535826742616815E-03 + 416 -1.6301994667907065E-03 + 417 -6.8589799775965754E-04 + 418 -5.5522649538617914E-05 + 419 8.8492332863078879E-02 + 420 -1.3385548744710037E-02 + 421 9.2181992244371389E-02 + 422 -8.9711882924436007E-02 + 423 5.4756388077191846E-02 + 424 -1.4308143870261511E-02 + 425 2.1473126233359677E-02 + 426 -1.3195699180183686E-02 + 427 9.8191071065074128E-04 + 428 4.1573522892467563E-03 + 429 -1.1070015116085224E-02 + 430 3.8322268273229391E-03 + 431 2.8260878474621891E-04 + 432 -3.3269118206149133E-02 + 433 4.7526445885895637E-03 + 434 -2.5176748455362184E-02 + 435 -6.6475682607090372E-02 + 436 -9.8482639908692285E-02 + 437 1.2576576769426917E-02 + 438 8.3741379106717505E-04 + 439 2.7022012767856794E-03 + 440 1.8759522558790765E-05 + 441 5.6714485271774596E-03 + 442 1.2169024489662842E-03 + 443 8.0998146327569914E-04 + 444 -1.7602622409442635E-03 + 445 2.9117879223055657E-02 + 446 4.0328928482236221E-03 + 447 -1.2114932128637162E-02 + 448 -3.7972005928131819E-03 + 449 -5.8400940808971992E-02 + 450 2.4501259087608466E-03 + 451 1.7449492807804006E-03 + 452 -1.4440328920538967E-02 + 453 1.1458841792131741E-02 + 454 4.1298208184309933E-03 + 455 1.5258043862562088E-02 + 456 7.9554889478305026E-04 + 457 2.5871929408651927E-04 + 458 1.2346291346969067E-02 + 459 -2.1479852578061938E-03 + 460 8.8199890089975235E-03 + 461 -1.7262168618609759E-02 + 462 -8.0078955785757716E-03 + 463 -1.1530094161969900E-03 + 464 -2.0791368476462571E-03 + 465 3.7764524201262277E-03 + 466 -5.3659813322957913E-03 + 467 -5.1666103967030258E-03 + 468 -5.8884059537176415E-03 + 469 -1.8065668775305431E-03 + 470 -1.1434901851791270E-01 + 471 -1.4562587623023140E-02 + 472 2.1407977401163639E-02 + 473 -1.3492950930429898E-02 + 474 -2.4311538192324438E-02 + 475 -2.5934064542153675E-03 + 476 2.8003103897833899E-03 + 477 -1.0299297701392533E-03 + 478 -1.0976949446430810E-02 + 479 -1.4270756220823271E-03 + 480 1.4847667097084669E-02 + 481 -1.3775048812177781E-02 + 482 1.1633351462333111E-02 + 483 6.0435204055491647E-04 + 484 2.9557679434452995E-03 + 485 8.9469169366862538E-03 + 486 -9.8200792355532130E-03 + 487 1.2671589893775578E-02 + 488 -4.3346603159428627E-03 + 489 2.7955463911940670E-03 + 490 1.2533695608935153E-03 + 491 3.2213335491443698E-04 + 492 4.5529659647197489E-04 + 493 -1.5026248579893422E-04 + 494 2.1750313403118946E-03 +Ene= -9.9114089629E-02 +Spin= Alpha +Occup= 0.0000000 + 1 -7.9189208000915404E-02 + 2 -1.0467365615873025E-02 + 3 -4.1823472547228666E-02 + 4 -2.1247278333940339E-02 + 5 3.3912231538926205E-03 + 6 -3.5241042780619842E-03 + 7 2.0892856006390530E-03 + 8 -4.0666937045300243E-03 + 9 9.1260384909617742E-03 + 10 -1.3275079129380921E-04 + 11 6.3964544299808471E-03 + 12 -8.9258499094165035E-03 + 13 -1.3048092490183134E-02 + 14 -2.3651857002163442E-03 + 15 1.7297489378947839E-03 + 16 1.4526041308773338E-03 + 17 -5.5877398564085669E-03 + 18 -1.7980681357362367E-02 + 19 -2.0566436895023904E-03 + 20 2.7698782310395524E-03 + 21 -2.9401369947740929E-04 + 22 -3.0978975957243896E-03 + 23 2.3894061756536277E-03 + 24 1.9219888934935993E-03 + 25 1.0812077321781870E-03 + 26 -4.5941880312654365E-01 + 27 -3.4727641102845319E-02 + 28 1.6677462883406524E-01 + 29 3.2070763749134069E-02 + 30 3.0214763508906853E-02 + 31 4.8195176613987792E-03 + 32 6.8255663713781781E-03 + 33 1.7139314165788753E-04 + 34 3.6144247228165886E-02 + 35 -5.7416116279021691E-02 + 36 8.5999405462896372E-03 + 37 -2.3511522261394389E-02 + 38 -3.9194979603552130E-02 + 39 1.9909133050235603E-02 + 40 -2.5161867368076126E-02 + 41 2.8022450310002615E-03 + 42 -4.5276994347350739E-03 + 43 -1.7432494830040696E-02 + 44 9.1550633280237438E-04 + 45 -2.8337041122705716E-03 + 46 -4.7265981507710409E-03 + 47 4.3535452771285323E-03 + 48 8.7200460004416400E-04 + 49 1.8977951224501360E-03 + 50 -2.4652308765878168E-03 + 51 -2.6563716802372760E-02 + 52 -7.5557463111712055E-03 + 53 -1.4374664878352086E-02 + 54 4.5030159931378358E-03 + 55 1.1658457061582005E-03 + 56 -7.9531111552912006E-03 + 57 3.8743881729739367E-03 + 58 -1.4387703169901353E-03 + 59 2.0142557368873124E-03 + 60 -4.7835766277928788E-03 + 61 9.3499010949613039E-04 + 62 7.7062358436606757E-03 + 63 7.7974874436557750E-03 + 64 -4.7022137981412929E-03 + 65 2.8959742102327574E-03 + 66 3.8132067871526152E-03 + 67 -2.3577546184508206E-03 + 68 -6.9927164406971155E-03 + 69 2.8897823587627436E-04 + 70 1.7248554498962073E-03 + 71 1.6361281274255635E-05 + 72 1.2943518120730445E-03 + 73 3.1521920507217240E-03 + 74 3.3469390803340603E-03 + 75 5.1910673494750589E-03 + 76 -9.8944599774580158E-02 + 77 1.3875059677281790E-02 + 78 1.6919847526181406E-01 + 79 1.2198162153566981E-01 + 80 -1.4623987220435350E-01 + 81 -3.1826125738653115E-02 + 82 -2.0478702803909180E-02 + 83 1.7509238312728111E-02 + 84 2.8509149538448199E-03 + 85 -1.6815948052249716E-02 + 86 1.2869888286785666E-04 + 87 1.7406736294470486E-03 + 88 8.7418491975791790E-04 + 89 -2.9615075273540438E-02 + 90 4.3867316779003952E-03 + 91 7.7509778695909713E-03 + 92 -5.3845089653082913E-02 + 93 -2.7382046097840222E-02 + 94 -7.7265332570181861E-03 + 95 6.6261767731887154E-03 + 96 4.4631027000566238E-03 + 97 5.5534833194413613E-04 + 98 2.0758562212548435E-03 + 99 -1.2518862560281286E-03 + 100 1.5209776122827308E-03 + 101 3.0041704564070979E-03 + 102 -1.0315107497159826E-01 + 103 1.6160987049479852E-02 + 104 2.4232638602881149E-01 + 105 -1.6469834556058299E-01 + 106 -2.6350667997879152E-02 + 107 -4.8693377067793378E-02 + 108 3.0326855987166074E-02 + 109 -1.2466508427397627E-03 + 110 -1.6472445573194874E-03 + 111 3.2443270258218263E-04 + 112 -4.4867565497897048E-03 + 113 -1.5185013410593938E-03 + 114 -9.4644360367007133E-03 + 115 -1.5967304050115136E-01 + 116 2.6182946897859920E-02 + 117 -1.2040857419263279E-01 + 118 2.3683687844320253E-01 + 119 3.6082918291788885E-01 + 120 2.1845718863626434E-02 + 121 -4.8630075726781685E-02 + 122 -8.0376384920999730E-02 + 123 4.4439841147211837E-03 + 124 -7.1334671955740918E-03 + 125 1.4347463919981453E-02 + 126 -2.3413486444425493E-03 + 127 -2.9022615457547298E-03 + 128 -2.2045797263918765E-01 + 129 -1.8320874809051164E-02 + 130 -1.7664961415526456E-01 + 131 -5.1633995778803260E-03 + 132 4.1149052782812464E-03 + 133 -2.2040369299631570E-02 + 134 -8.3340435027395975E-03 + 135 -9.8047931038845321E-03 + 136 3.2766590640582037E-02 + 137 3.3041422996392456E-02 + 138 1.4212059871097502E-02 + 139 -4.5695440307581381E-02 + 140 7.9785685718178918E-03 + 141 2.4763420287165251E-02 + 142 1.8352652697823133E-02 + 143 1.1997820025468706E-02 + 144 -6.3871172560796358E-02 + 145 9.4157721381782997E-03 + 146 1.1379993173600801E-03 + 147 7.7586624444092155E-03 + 148 -9.1508451517756959E-04 + 149 4.4953574593483824E-03 + 150 -9.6035696952708339E-05 + 151 -8.5676944797386002E-03 + 152 -1.5181779041918175E-03 + 153 -1.2160898410764430E-01 + 154 -1.5431866530125415E-02 + 155 -2.5089502339615186E-02 + 156 -3.0843904502777405E-02 + 157 3.6433331164894586E-03 + 158 -3.1781313657263453E-03 + 159 -1.4142794492233816E-03 + 160 9.5998872016482182E-04 + 161 -1.4006796400006854E-02 + 162 -3.0735990206957026E-02 + 163 1.9539960971349385E-02 + 164 4.0172592059909383E-02 + 165 3.3745553683602425E-03 + 166 -5.8936359384542053E-03 + 167 -1.4048015395075041E-02 + 168 1.1958122448445189E-02 + 169 1.8592204885818548E-02 + 170 -3.7622030544120343E-03 + 171 -6.8368842510434897E-04 + 172 3.5696973371174621E-03 + 173 -7.0216529077966683E-03 + 174 -2.5135726774433644E-03 + 175 1.9916011501494857E-03 + 176 1.8458107810480954E-03 + 177 3.4275183137842343E-03 + 178 -3.8283288430408229E-02 + 179 4.0793974687680272E-03 + 180 -1.5700463631025827E-01 + 181 -9.4214282441435246E-02 + 182 2.9642383113503850E-02 + 183 1.0870323292457806E-02 + 184 1.4961430551828473E-02 + 185 -1.9340577501522977E-02 + 186 -3.1542349288316714E-03 + 187 -5.7983920044821086E-03 + 188 -6.2546965544969879E-03 + 189 -2.6127967151273870E-04 + 190 3.7929489532102338E-03 + 191 7.6408694303012662E-04 + 192 -4.7531367266894085E-05 + 193 -4.3758097225845179E-02 + 194 3.2900907255391295E-03 + 195 4.2447927766924728E-02 + 196 8.8993531276572811E-03 + 197 1.0452779141465350E-03 + 198 -7.2070280573108686E-03 + 199 2.0152428203357269E-03 + 200 1.9508774054403260E-03 + 201 -2.8898523321240349E-03 + 202 -9.3596888480055912E-04 + 203 8.6857884780384661E-04 + 204 8.5475766176207613E-02 + 205 -2.2314194965949801E-03 + 206 -2.5347978025827510E-02 + 207 -3.1165219984273410E-02 + 208 -1.4194416990065913E-02 + 209 -2.1739098498141343E-03 + 210 -1.0982739682219715E-02 + 211 -8.8897769427047010E-03 + 212 -1.8212245119964086E-02 + 213 -1.9318084620337632E-04 + 214 2.9768329735498935E-03 + 215 1.6053579423015588E-03 + 216 1.3297714143975055E-02 + 217 -1.8150892472678176E-02 + 218 3.2844318873231720E-03 + 219 -1.3445153890263510E-03 + 220 2.0781073381489504E-02 + 221 -1.5426545709678254E-03 + 222 8.7802254677151921E-03 + 223 4.4956269698752738E-03 + 224 -3.3998748037849255E-03 + 225 -6.8364790197851999E-04 + 226 -2.9467637353483428E-03 + 227 3.3504750297678426E-03 + 228 5.7230676302797720E-03 + 229 5.2084829656298237E-02 + 230 -7.7153723963460730E-03 + 231 -4.6525541338460902E-02 + 232 9.9871833735334752E-03 + 233 1.0378038283003535E-02 + 234 -1.0042511868903523E-02 + 235 7.1989806938160318E-04 + 236 3.2420755375787741E-03 + 237 -7.6162211590709884E-03 + 238 1.5380601230751974E-02 + 239 -4.0988117426348572E-03 + 240 -2.0997152740173364E-03 + 241 -2.8779386727999538E-03 + 242 -6.6132612209080805E-03 + 243 1.1118221221644110E-02 + 244 -7.9562238270218452E-03 + 245 -5.9537556948710182E-03 + 246 7.1515550139357184E-03 + 247 -1.5039119294077709E-03 + 248 5.1883767815449787E-03 + 249 1.5859372745475016E-03 + 250 -7.6751191268229537E-05 + 251 1.8186267276527437E-03 + 252 3.4252196149341406E-04 + 253 -1.9546364920995690E-03 + 254 5.7958531862234266E-03 + 255 -3.0987734664631741E-03 + 256 -1.0719191387270013E-01 + 257 7.9300635446880041E-02 + 258 3.2157227597182673E-03 + 259 -1.2874935797923806E-02 + 260 5.1551443233024876E-03 + 261 -5.9911129018351238E-03 + 262 3.3610521035414283E-03 + 263 3.1113739724055629E-03 + 264 -2.5442999581972933E-02 + 265 5.2896348792663382E-03 + 266 7.8471401594972269E-03 + 267 -5.7110727664074308E-03 + 268 1.1299661469755114E-02 + 269 -1.7426802332105154E-02 + 270 1.0794118982256524E-02 + 271 1.9161738990421808E-02 + 272 -4.6582932491073901E-04 + 273 4.8354714065360219E-03 + 274 -4.6776745853192789E-03 + 275 -4.9137789931828196E-03 + 276 -4.1083122133100730E-03 + 277 3.0938776762336126E-03 + 278 -3.2967014743798557E-03 + 279 5.3603736731710871E-02 + 280 -9.6682502070274366E-03 + 281 -8.4515119032477076E-02 + 282 -6.2724519481761928E-02 + 283 -8.9407162544094185E-03 + 284 1.2469465060202620E-02 + 285 1.1165670430582492E-02 + 286 -1.2402000704372768E-03 + 287 1.2046997733977660E-03 + 288 6.9349946259569259E-03 + 289 -8.4417301158413362E-03 + 290 -3.5814330092302614E-04 + 291 -2.5755204824862263E-03 + 292 -1.7159242491836344E-02 + 293 2.2649856700071910E-03 + 294 -3.2806323879164365E-02 + 295 5.9235760697840943E-02 + 296 -1.1563731212233098E-02 + 297 6.3735689448322606E-03 + 298 -2.8428143384406452E-03 + 299 9.5645472767328429E-03 + 300 -3.2656383612697680E-03 + 301 4.1749235351091537E-03 + 302 -2.8514173306382999E-03 + 303 2.4925649951092177E-03 + 304 2.6950600181627361E-03 + 305 -5.0737151712566590E-02 + 306 -1.1415214606826261E-02 + 307 8.8503253896236103E-03 + 308 -2.8752743518141149E-03 + 309 -4.2861357337144732E-02 + 310 7.9955339500840869E-03 + 311 8.5589405952122546E-04 + 312 -5.1678253239381784E-03 + 313 -2.4877049342428900E-02 + 314 4.4425121682800557E-03 + 315 4.1280407392730693E-03 + 316 5.3230298698989861E-03 + 317 2.5887506618818656E-03 + 318 -1.6589571446913025E-02 + 319 1.0797665273858958E-02 + 320 -2.3608567299772984E-03 + 321 4.4812857919175348E-03 + 322 9.9506842967102740E-03 + 323 3.4608668103866870E-03 + 324 4.8072280380815971E-03 + 325 2.1275016119251210E-04 + 326 -5.1769913545499733E-03 + 327 -2.1731981420486028E-03 + 328 2.3101208771533041E-03 + 329 4.3509162783086528E-03 + 330 -2.6010767338489778E-02 + 331 -8.2170508745773169E-03 + 332 -1.2763750101411600E-02 + 333 -2.8470866240067078E-02 + 334 -1.3983092827928961E-02 + 335 -2.4987379867951556E-03 + 336 -2.8916248667189568E-03 + 337 -2.0888709084811688E-03 + 338 1.1815999532040822E-02 + 339 9.7018820550595335E-03 + 340 -1.6509394869949789E-02 + 341 1.8786347126430625E-03 + 342 -1.2418326430501333E-03 + 343 1.3404869130391713E-03 + 344 4.2140940013175596E-03 + 345 -1.6611563412993236E-02 + 346 3.7062318003863727E-06 + 347 -1.3115174551791735E-03 + 348 7.7663038877593662E-04 + 349 -7.1965973829010233E-04 + 350 1.8939974457608420E-03 + 351 2.6128037441288756E-03 + 352 5.4303668386268284E-04 + 353 -1.4435753765020404E-03 + 354 -1.6570073109207419E-03 + 355 -6.5151033961930463E-02 + 356 1.0909459963404757E-02 + 357 1.0078605769860317E-02 + 358 -9.8380928914388974E-02 + 359 -1.6891329730060725E-01 + 360 -6.9910092506833199E-03 + 361 2.0755000260590684E-02 + 362 3.5445255434385273E-02 + 363 3.6632970714253876E-03 + 364 -2.8965174501525736E-03 + 365 7.3436134399452327E-03 + 366 5.0208466533913706E-04 + 367 -1.6068567818435088E-03 + 368 -1.8083172555673915E-01 + 369 2.8961463338643672E-02 + 370 1.3575998777299817E-02 + 371 -3.9007021089151890E-02 + 372 -1.2969579980057114E-01 + 373 -1.0222664991784617E-02 + 374 7.2836719406014416E-03 + 375 2.6235005604872606E-02 + 376 1.3277479995607315E-02 + 377 2.3620466807421081E-02 + 378 2.6591261910253190E-02 + 379 6.0592567707850910E-03 + 380 1.0509463371846701E-02 + 381 7.5002253817994163E-02 + 382 -1.0798274899615960E-02 + 383 -2.2174210960803009E-01 + 384 -8.5154864738131414E-02 + 385 -2.6022959378942483E-02 + 386 -2.0024430384674025E-03 + 387 1.4840403582470146E-03 + 388 7.5498056968406144E-03 + 389 2.9922578946804399E-03 + 390 1.4079217759993819E-03 + 391 3.7076942880322563E-04 + 392 -4.4961603628175893E-03 + 393 -1.5057669599519439E-02 + 394 7.5224668431598321E-02 + 395 2.0132594955536223E-03 + 396 2.9243763874659073E-02 + 397 3.7171286527184592E-02 + 398 3.0264557608936628E-02 + 399 4.2812535747621810E-03 + 400 7.8185880286424387E-03 + 401 7.7876003986163374E-03 + 402 2.0383169396490895E-02 + 403 4.8041384960436128E-03 + 404 6.4162381513024648E-03 + 405 1.7851168291871632E-02 + 406 -9.3153922557564842E-03 + 407 1.4975680094569295E-02 + 408 -5.7574797270380541E-03 + 409 5.2494551934043248E-03 + 410 2.7334117389305745E-02 + 411 -1.7859070610690055E-02 + 412 -7.2444048658405055E-03 + 413 -2.3943505846827128E-03 + 414 -4.2381440370285826E-03 + 415 -1.1238630211728555E-03 + 416 5.2684097911440200E-03 + 417 -5.0398843258303988E-03 + 418 -1.1114750091724383E-02 + 419 -4.2849042496471756E-02 + 420 6.0576812187303182E-03 + 421 -1.8917834829597746E-02 + 422 1.4374331359190329E-01 + 423 -1.2298368424302826E-01 + 424 3.4226985226069352E-04 + 425 -2.6872981866169654E-02 + 426 3.0158418438817020E-02 + 427 6.1659854994938361E-05 + 428 -4.3893331744238815E-04 + 429 -8.6498728494396968E-03 + 430 -2.4845080351008804E-03 + 431 6.8403830855771604E-04 + 432 4.7132508609181757E-02 + 433 -6.5803772974223629E-03 + 434 -1.6245462824312279E-01 + 435 1.4178307810349286E-01 + 436 1.8678951784273168E-01 + 437 1.2184170361000843E-02 + 438 -5.8957054301015223E-03 + 439 -2.4497663892702651E-02 + 440 2.5240299484379012E-03 + 441 -6.9237068623050008E-03 + 442 -9.7545701252303493E-03 + 443 1.2840744622579931E-02 + 444 1.4364121982401832E-02 + 445 -3.2601934256190673E-01 + 446 -2.1573627443137337E-02 + 447 -1.0823835549508376E-01 + 448 -1.4054200903731575E-02 + 449 -7.6331262465654234E-02 + 450 -1.1567367039190224E-02 + 451 3.0641350825569929E-03 + 452 1.2764849051449521E-03 + 453 1.0412036296787894E-02 + 454 -3.5259006661142255E-02 + 455 -1.5222468041993592E-02 + 456 -1.2421798018871923E-02 + 457 -9.9234788575363968E-04 + 458 -7.6948753411608638E-03 + 459 -1.3687958559881204E-02 + 460 -1.6749569756601024E-02 + 461 -1.7587865376069888E-02 + 462 2.0120759934384610E-02 + 463 -3.3083960167742702E-03 + 464 -1.5399997036662412E-03 + 465 1.2948259387594785E-03 + 466 -3.6030905423987667E-03 + 467 -3.9733395759202509E-03 + 468 3.7229679961339034E-03 + 469 9.9956757752365588E-04 + 470 3.6319801358363207E-01 + 471 3.0771173452755447E-02 + 472 -1.4326697091420754E-01 + 473 3.7099005004600262E-02 + 474 5.3630535026097943E-02 + 475 -3.0538747529047284E-03 + 476 -3.0580783147190504E-03 + 477 2.5478083303427262E-03 + 478 3.0987861663627839E-02 + 479 -2.2613166929839044E-03 + 480 -2.3068685166625032E-02 + 481 3.2917220912945883E-02 + 482 -3.6631703046921510E-02 + 483 2.3723470011110349E-02 + 484 3.8430196941782969E-03 + 485 -8.8904733948085950E-03 + 486 2.1609772355431579E-02 + 487 -2.9459643518021817E-02 + 488 1.8934175299616747E-04 + 489 2.8011392513256766E-03 + 490 2.4392121369264520E-03 + 491 2.0824122531205693E-03 + 492 -2.5818906998035952E-03 + 493 -1.3432001920628058E-04 + 494 9.9169226672590760E-04 +Ene= -9.4137195073E-02 +Spin= Alpha +Occup= 0.0000000 + 1 -2.3172936977179895E-03 + 2 5.2236892837095811E-03 + 3 -5.9650173646338046E-02 + 4 2.6712010705134681E-02 + 5 -3.2215427496043092E-03 + 6 -7.7240262299270680E-03 + 7 1.0510621667837786E-02 + 8 -5.2823044569980070E-03 + 9 -1.0727269617821120E-02 + 10 -9.2024744883044823E-03 + 11 3.1308155040239839E-03 + 12 1.2803099344909443E-02 + 13 1.8226026587203218E-03 + 14 -1.4755373229452470E-02 + 15 -6.8702854185842379E-03 + 16 8.1587414100777779E-03 + 17 1.0461219841585849E-02 + 18 -7.8464764476557716E-03 + 19 -3.8528717963523407E-03 + 20 1.3199562862332306E-03 + 21 -5.2983554516447616E-04 + 22 -6.1638121702022226E-04 + 23 2.9553788307034977E-04 + 24 1.0069027186272743E-03 + 25 2.3630332239307022E-03 + 26 8.7038563885646087E-03 + 27 -2.9950598026567453E-03 + 28 -7.4254625031002525E-02 + 29 6.1346197815434385E-03 + 30 -5.9966921458451033E-02 + 31 -8.7676523650955206E-03 + 32 9.4926411180654060E-03 + 33 -1.8404127572095256E-02 + 34 -8.9654351753850215E-04 + 35 1.0962638562424170E-02 + 36 1.6259444339836715E-03 + 37 -6.7165845914531654E-03 + 38 -1.0661195194301283E-04 + 39 -1.7240745831838503E-02 + 40 3.1406914024732231E-02 + 41 2.5982517707246518E-02 + 42 1.2257994193651098E-02 + 43 -1.4276009473439470E-03 + 44 5.8162477750331029E-03 + 45 1.3316919945162156E-03 + 46 6.2429311899884436E-03 + 47 8.6777521200825120E-03 + 48 -6.9046654688471052E-03 + 49 -4.7467050792404106E-03 + 50 -8.1213323233427295E-04 + 51 -2.8008566032571344E-03 + 52 -5.5067889527889193E-03 + 53 -1.1305699032086071E-02 + 54 -6.2429983937316146E-03 + 55 -1.7857701665244138E-02 + 56 4.1335403633005631E-04 + 57 -3.4838573955238753E-03 + 58 -6.1280713743439550E-04 + 59 -1.7669784236986818E-03 + 60 3.7227996199521193E-03 + 61 1.0665856575693981E-03 + 62 -2.0592093248754526E-02 + 63 -1.2192317012382553E-02 + 64 -8.8597576650930167E-04 + 65 -2.4039963756486461E-02 + 66 -5.5333911457587240E-03 + 67 -4.1266899068080143E-03 + 68 -8.6183211835260207E-03 + 69 -1.3156607464862892E-02 + 70 8.8888143459390917E-03 + 71 1.5091244336927912E-03 + 72 3.5494737397990025E-03 + 73 5.1904956132287957E-03 + 74 -1.1075150083964253E-02 + 75 3.2679633072882591E-03 + 76 4.6933405838958421E-03 + 77 -3.6150229061615986E-04 + 78 -1.2852745141345634E-01 + 79 -1.9204914869946996E-02 + 80 -1.9447633499911729E-02 + 81 2.2789394397642777E-02 + 82 3.2267980087341383E-03 + 83 8.5585267650781886E-03 + 84 5.3929742994521471E-03 + 85 -5.3467127908671610E-04 + 86 -2.9290257516759706E-03 + 87 -5.7705579600087001E-03 + 88 -6.6090823627783036E-03 + 89 -1.3973227836155693E-02 + 90 1.1329299311749238E-03 + 91 -3.7757329618056536E-02 + 92 1.4736802953025914E-03 + 93 -2.0905442018152448E-02 + 94 9.7631502116692723E-03 + 95 5.6746001642397565E-03 + 96 3.5046505163083548E-03 + 97 9.7613006160984881E-04 + 98 2.4196201420568064E-03 + 99 4.5105295407813693E-04 + 100 7.3700129887845480E-04 + 101 3.6997409512187275E-03 + 102 -7.8597078860171518E-02 + 103 9.6637861259055713E-03 + 104 1.3952697157695171E-01 + 105 3.3804997462227183E-02 + 106 -2.0967460818644257E-01 + 107 -2.3890083666979017E-02 + 108 -6.1949976594036938E-03 + 109 1.2094091884118419E-02 + 110 1.0108386632814359E-02 + 111 -1.3815750903630247E-02 + 112 -4.7885906992099214E-03 + 113 9.7809330959037965E-05 + 114 5.3202416597163335E-03 + 115 -2.6647405238508604E-02 + 116 1.9564269065591648E-03 + 117 1.3263324156343322E-02 + 118 9.8682914062761199E-03 + 119 3.2637795833338139E-02 + 120 -1.9483717367250236E-03 + 121 -6.3021096194687647E-03 + 122 -7.3357853175053597E-03 + 123 -8.7910314080173247E-04 + 124 6.9522416459048952E-03 + 125 -3.1358044225059676E-03 + 126 2.3193708516031906E-03 + 127 -2.4668291280372321E-03 + 128 2.5561072598963078E-03 + 129 5.8843729846138459E-03 + 130 -2.5983752815927082E-02 + 131 -1.1238645105811337E-01 + 132 -1.6880994977028687E-02 + 133 -1.0832042204360019E-02 + 134 -2.2360907633189944E-02 + 135 1.1331222286991850E-04 + 136 -1.4757970796273194E-02 + 137 1.9979386747796455E-02 + 138 1.9271442615332774E-02 + 139 1.6156396263212369E-02 + 140 9.5770541047843320E-03 + 141 -2.6577641884941782E-02 + 142 3.0167521566490864E-02 + 143 5.0701904927511900E-02 + 144 -3.8531566742619767E-02 + 145 4.2011651380721819E-02 + 146 1.2057548199177327E-02 + 147 -2.2384698467816746E-03 + 148 7.7833618963821811E-03 + 149 1.1338619936554497E-02 + 150 -3.9988603722505080E-04 + 151 1.1847675953075874E-02 + 152 1.7495723898542592E-02 + 153 -3.5827725844132285E-01 + 154 -2.2358970741640539E-02 + 155 -6.0451507049494785E-02 + 156 9.6008402880213464E-02 + 157 -1.2493050249515192E-01 + 158 6.9359856203666656E-03 + 159 1.0895140137855627E-02 + 160 -1.0454255541161406E-02 + 161 -1.3778700721662179E-02 + 162 -4.8471888103401715E-02 + 163 1.5914342825542223E-03 + 164 5.6451955956864683E-02 + 165 -6.1713773976928444E-03 + 166 2.7661654371115376E-03 + 167 -4.0320287938596017E-02 + 168 -1.9933159378843882E-02 + 169 1.7560192882593698E-02 + 170 -4.9961063760935219E-03 + 171 -3.3445871238527625E-04 + 172 -2.8518464577616371E-03 + 173 2.6795102876971885E-03 + 174 1.2157390114501722E-03 + 175 -1.1809534692279835E-03 + 176 2.2755739671815019E-03 + 177 2.6399955603277621E-03 + 178 2.1231309179486822E-02 + 179 -4.2561091783218331E-03 + 180 -2.7417455685450859E-01 + 181 -2.9776562717343653E-02 + 182 -3.1803464307388857E-01 + 183 3.5123194064441920E-02 + 184 6.5652805762836386E-03 + 185 5.3938226833336690E-02 + 186 -1.5853276444522762E-02 + 187 -2.7590253194603341E-03 + 188 -8.8553458776742273E-03 + 189 7.6447220204182310E-03 + 190 -1.0061549705068770E-02 + 191 5.6868953313408986E-02 + 192 -1.1268610166595952E-02 + 193 -1.9180311216667786E-01 + 194 2.3412579411467269E-01 + 195 1.3736846361575752E-01 + 196 2.3884437220946818E-02 + 197 -3.8070170183812348E-02 + 198 -2.1592387607911302E-02 + 199 1.8231643552147975E-02 + 200 7.5092913788746378E-03 + 201 3.0060841960094656E-03 + 202 5.5822289643595805E-05 + 203 1.3966312657543329E-02 + 204 6.1757029075677128E-01 + 205 3.3104523470457885E-02 + 206 -1.0042404089635119E-01 + 207 3.1409031813595348E-02 + 208 -4.5462203151749252E-02 + 209 -3.5717105984715970E-03 + 210 -9.2393263561443839E-03 + 211 -8.7393507633063174E-03 + 212 -3.1807196406508690E-03 + 213 -1.3668811213929984E-02 + 214 -6.4875012026873163E-03 + 215 -1.3402995934301370E-02 + 216 2.6036622403860350E-02 + 217 6.3973417639934694E-04 + 218 -5.5831212264330896E-04 + 219 -1.6810381407410431E-02 + 220 1.9179871976159255E-02 + 221 -6.7082492539055748E-03 + 222 7.3260867152523000E-03 + 223 3.4408427853737764E-03 + 224 6.3994525500784350E-03 + 225 3.7401288270370068E-05 + 226 6.2077266685928974E-03 + 227 -4.8251831251171625E-03 + 228 2.4446542829064388E-03 + 229 1.3156486984570637E-01 + 230 9.2174766874530464E-03 + 231 -1.1071517461358270E-01 + 232 -1.0560042231378083E-01 + 233 4.6218406240182662E-02 + 234 -3.7066930573510077E-03 + 235 -5.4326427963330443E-03 + 236 3.1222420167471617E-03 + 237 -1.8595189588208216E-02 + 238 -7.9689590363256227E-04 + 239 -2.9255583864407957E-02 + 240 -6.8653760151876891E-04 + 241 3.2110280637213502E-02 + 242 -5.0719836677362408E-03 + 243 8.6007784793377322E-04 + 244 -1.4298732686042223E-02 + 245 -9.6868741630636048E-05 + 246 2.4912628343109904E-02 + 247 -3.1847994039390978E-03 + 248 8.2153420529796099E-04 + 249 -1.5947315389680616E-03 + 250 3.9888171303242960E-03 + 251 1.7611641275013990E-04 + 252 -2.0903855150244670E-04 + 253 -1.1362721777131651E-04 + 254 -2.3415203139609358E-02 + 255 -4.5751777103313950E-03 + 256 3.1186299557890786E-02 + 257 6.4715149614146011E-02 + 258 -1.6752810297535958E-02 + 259 3.0139650355810663E-03 + 260 7.6291288243562272E-03 + 261 -2.4046612321738975E-03 + 262 6.7816885345827502E-04 + 263 3.0119384709348025E-03 + 264 -1.1359357754196147E-02 + 265 -7.0160275017547499E-03 + 266 -7.9266086854409366E-03 + 267 6.7321703417099581E-03 + 268 3.5951415852532075E-03 + 269 -2.1335412586856138E-03 + 270 -4.3137076700372054E-03 + 271 -8.1433753242231045E-03 + 272 3.3319902096448839E-03 + 273 -1.4311454340924860E-04 + 274 -3.1582538611544574E-03 + 275 3.5534157769124444E-03 + 276 -5.3787182466252803E-04 + 277 -2.3640556100247846E-04 + 278 2.2363811595438104E-03 + 279 4.6996282162076949E-02 + 280 -7.4746177590411826E-03 + 281 2.9710802916827699E-02 + 282 -1.3553227200311185E-01 + 283 -4.4144369321573187E-02 + 284 -1.8240684363272468E-03 + 285 3.0614206347889562E-02 + 286 7.3567016640551115E-03 + 287 4.0564572262061123E-03 + 288 -2.9165462766083958E-03 + 289 -8.6887117535037594E-03 + 290 9.2485865938800975E-03 + 291 2.9241920831412681E-03 + 292 9.5703187940498861E-03 + 293 -2.8483005193192254E-04 + 294 -5.8290389069611627E-02 + 295 2.7296551271575095E-02 + 296 1.3873926353092234E-01 + 297 1.2460182142119159E-02 + 298 -5.8241943734686265E-04 + 299 -2.1681181220453313E-02 + 300 -4.8183016639820782E-03 + 301 9.0515864802480969E-03 + 302 2.6409229555822019E-03 + 303 -2.0319045217232221E-03 + 304 4.8552493850913432E-03 + 305 -8.7908759696592079E-02 + 306 -7.6275191843143517E-04 + 307 -6.5077470857507807E-04 + 308 1.3342728974123783E-02 + 309 6.9225788177760511E-02 + 310 -3.1794367489278671E-03 + 311 2.0059278404553435E-05 + 312 4.7746586589248801E-03 + 313 9.0135287710982337E-03 + 314 -4.4416316959247880E-03 + 315 -1.2407375205718062E-03 + 316 -5.5337917122133045E-03 + 317 -9.6083571365326564E-03 + 318 8.7316841599591761E-03 + 319 -2.2493348026418222E-02 + 320 -9.8050091087049131E-03 + 321 3.7971715374800672E-03 + 322 6.1416480035725112E-04 + 323 -1.2800070915545711E-03 + 324 -2.8213707194816905E-03 + 325 6.0732169878531300E-05 + 326 3.6039369996832010E-04 + 327 1.9231683437181538E-03 + 328 -1.3355375010133102E-03 + 329 -3.5752222539976318E-04 + 330 -2.2766723145413859E-01 + 331 -1.6390460109654753E-02 + 332 6.7869992252523456E-03 + 333 6.3013321623649657E-02 + 334 4.2517322546070782E-02 + 335 -4.3276751013434630E-04 + 336 9.4807796250727242E-04 + 337 -9.4383345241202629E-04 + 338 2.4795928350942461E-02 + 339 1.3977974754954964E-02 + 340 -2.7639332938700256E-02 + 341 -6.2668836455243935E-03 + 342 -9.6854437585127198E-03 + 343 1.2235291299779565E-02 + 344 1.7281627994944957E-02 + 345 -2.2026152452148604E-02 + 346 -6.0890336737180299E-03 + 347 -1.2229249506479386E-02 + 348 -3.2292890692246939E-03 + 349 2.0436651875785144E-03 + 350 1.7195440567239642E-03 + 351 -4.2779113881768593E-04 + 352 -3.3924937715678591E-04 + 353 -8.8860091935960594E-05 + 354 7.4165798256125892E-05 + 355 -6.5985261381980478E-02 + 356 9.4379201056261509E-03 + 357 -9.6780054675731406E-02 + 358 7.4081585563024105E-02 + 359 -5.5872325197430808E-02 + 360 1.2475230932406116E-02 + 361 3.2861900433548163E-03 + 362 3.9143065580206299E-03 + 363 -2.9604740461468969E-03 + 364 2.8642954561713084E-03 + 365 -1.3772773003738643E-02 + 366 -5.7766615548772177E-03 + 367 1.2078252751802019E-04 + 368 2.2329061385325999E-01 + 369 -3.8977315230441061E-02 + 370 -1.7091305852281202E-01 + 371 -4.9978915885911766E-02 + 372 7.1560213737594150E-02 + 373 3.6089266780265486E-02 + 374 6.5193946318327879E-03 + 375 -1.7714362474861751E-02 + 376 5.3511249891730331E-03 + 377 1.1523375068465758E-02 + 378 1.7912403229666422E-02 + 379 1.9361003857553652E-03 + 380 -1.9486060276609582E-02 + 381 -5.8614632806467455E-02 + 382 8.8670856868625116E-03 + 383 7.3817681002600485E-02 + 384 1.9356586285364949E-02 + 385 9.4610074687689859E-03 + 386 1.0464660751636616E-02 + 387 1.9305393673841103E-03 + 388 7.7440738070503733E-04 + 389 1.0416903729535637E-03 + 390 7.2658579514067413E-03 + 391 1.5595603720259311E-03 + 392 7.7048159097285835E-03 + 393 9.3759022076676697E-03 + 394 8.3367896884258524E-02 + 395 1.0215821130637792E-02 + 396 1.2007833084369240E-01 + 397 -2.1727994377032430E-02 + 398 6.5044826132340241E-03 + 399 9.1547247774255731E-03 + 400 7.6312243142211687E-04 + 401 5.1916314571116482E-04 + 402 -1.7694090701352461E-02 + 403 -1.4335382387910624E-02 + 404 -4.1950750089427714E-03 + 405 2.5114667665029407E-02 + 406 -1.4775928080012941E-02 + 407 -9.0335906470389062E-03 + 408 -6.0061616595772152E-03 + 409 2.7395509478610790E-03 + 410 1.4380972136280819E-02 + 411 -1.7586028509028763E-03 + 412 1.5611117840898720E-03 + 413 -2.8165796340175252E-04 + 414 -6.5630997971399981E-04 + 415 5.2681057779410357E-03 + 416 -4.7656941524136721E-04 + 417 4.4916543653340264E-03 + 418 1.2603459983101368E-03 + 419 -6.4980909582932032E-03 + 420 1.4683961539816413E-03 + 421 2.3133794458080309E-02 + 422 5.2496581830222225E-02 + 423 8.7093230955606254E-02 + 424 -7.3977038283458001E-05 + 425 -6.6113068648011144E-03 + 426 -1.9509801315047069E-02 + 427 -1.6933921181363691E-03 + 428 -8.3970407888267120E-03 + 429 2.7810813629133668E-03 + 430 -1.4079924594901391E-04 + 431 -5.0614874511060370E-03 + 432 9.7169006520654369E-02 + 433 -1.7853860663735639E-02 + 434 3.3254047041454726E-01 + 435 -9.2169585716866689E-02 + 436 1.4616692496538611E-01 + 437 -6.6212569326839651E-02 + 438 1.0637649173803712E-02 + 439 -3.1623808808443558E-02 + 440 -3.8831158609414751E-03 + 441 -1.6527882830737885E-02 + 442 8.1796246243124402E-03 + 443 -1.6425819220720336E-02 + 444 9.2600132276063048E-04 + 445 4.9476336491477889E-02 + 446 2.5083159984549383E-04 + 447 -9.6384334375440028E-03 + 448 -1.3605638695259723E-02 + 449 4.7637951207909417E-02 + 450 -8.1102303272365013E-03 + 451 -3.2909683115395650E-03 + 452 1.1040809065469439E-02 + 453 4.0579008291038573E-03 + 454 1.2621736187727982E-02 + 455 -6.1129852092852936E-03 + 456 2.3858830619059722E-03 + 457 -8.3459482063942374E-03 + 458 1.4975498435413051E-02 + 459 2.5634385800423414E-02 + 460 -1.9632558651833418E-02 + 461 -5.1947417768939156E-03 + 462 -1.2435404183243168E-02 + 463 9.7601892760548776E-03 + 464 7.2648716724259777E-03 + 465 -1.1588412495823307E-02 + 466 -4.7221501707991220E-04 + 467 -8.5801764950922059E-04 + 468 -1.8993745101632291E-03 + 469 -3.7195734392319458E-03 + 470 -1.6411206718263380E-01 + 471 -7.3982405185187622E-03 + 472 7.7714251616709348E-02 + 473 -4.7287710824024755E-02 + 474 1.5449431611164672E-02 + 475 4.2450950459074037E-03 + 476 -1.7658766530467822E-03 + 477 3.4796152441156623E-03 + 478 -6.9991828048681396E-03 + 479 1.8457218451151149E-02 + 480 9.0500561127131243E-03 + 481 7.0907965977835526E-03 + 482 1.7325119940705781E-02 + 483 -1.3209165369138487E-02 + 484 2.0234719633756816E-02 + 485 9.5751234236642734E-03 + 486 6.5029217586525358E-03 + 487 1.2121445241990754E-02 + 488 -3.6126778715702924E-03 + 489 -4.0978910479437759E-03 + 490 -2.5897941433900359E-04 + 491 -3.3950418664505169E-03 + 492 7.8093196261936921E-04 + 493 -3.7479439842124942E-03 + 494 -5.1946171436549416E-03 +Ene= -8.4136370611E-02 +Spin= Alpha +Occup= 0.0000000 + 1 -5.3034719991336125E-02 + 2 9.2181702298961849E-03 + 3 -5.9781899331782573E-02 + 4 2.3504167466866704E-02 + 5 3.1362297621214735E-03 + 6 -6.1927264019770011E-03 + 7 9.4581671511765383E-03 + 8 -3.5999287826346359E-04 + 9 1.2779786316182158E-02 + 10 -6.5900107650667863E-03 + 11 8.2009559729824427E-05 + 12 5.4707940461871385E-03 + 13 -3.2759017849500341E-03 + 14 3.3457274996747943E-03 + 15 -2.8199633450103493E-03 + 16 -1.4394497877070880E-02 + 17 3.4522890808728205E-03 + 18 -2.9325763300979506E-02 + 19 -3.2999351773459079E-03 + 20 3.8464487748169707E-03 + 21 -5.5023032313612124E-03 + 22 1.2564001292906871E-03 + 23 6.2786844108597886E-03 + 24 4.6178442330918100E-03 + 25 3.0072301297386049E-03 + 26 -1.5931170574164388E-01 + 27 -8.6739786556919701E-03 + 28 5.7255246797750341E-02 + 29 -6.4508153272594751E-02 + 30 -6.8810344599528617E-03 + 31 9.9881887408843177E-03 + 32 -9.3230522742010977E-03 + 33 1.5238498154377877E-03 + 34 1.3094379880924075E-02 + 35 -1.8430050554090392E-02 + 36 2.5955925139969575E-02 + 37 7.9281642321153561E-03 + 38 7.1057430456125557E-03 + 39 1.7846456120233715E-02 + 40 -1.7110562559252269E-02 + 41 -5.0006030931023394E-03 + 42 8.0154528389991628E-03 + 43 9.1551368560936520E-03 + 44 -2.0746303809052449E-03 + 45 -2.9492939768251090E-03 + 46 5.8136909583532805E-04 + 47 1.6192959366488268E-03 + 48 4.7337517963628537E-03 + 49 1.4695778953635824E-03 + 50 3.4165856627782249E-03 + 51 2.5599312270926433E-01 + 52 2.2537738778146677E-02 + 53 -7.1862114103613053E-02 + 54 1.0544106707473042E-01 + 55 5.5507474453954236E-02 + 56 2.7734078544754868E-03 + 57 7.0644661141416416E-03 + 58 9.8323893490802061E-03 + 59 -1.3371003296731266E-02 + 60 -1.2256167352815272E-02 + 61 -6.2315509763445805E-03 + 62 -1.7209196111277517E-04 + 63 -3.1273392042445239E-02 + 64 5.9661795040568850E-03 + 65 -2.1176689674169746E-02 + 66 7.8432448882847870E-03 + 67 4.9365985504852767E-03 + 68 -8.6386662883064652E-03 + 69 -9.3900661982857035E-04 + 70 1.7073699170641540E-03 + 71 6.0823069859344773E-03 + 72 -3.5940999738192105E-03 + 73 2.2708750762815938E-03 + 74 3.5611314012129881E-03 + 75 -1.3266810139010246E-03 + 76 -2.3454889480174702E-02 + 77 2.7384527457979197E-03 + 78 -1.1313785419170946E-02 + 79 1.5114121107378057E-02 + 80 -8.6334359718659812E-02 + 81 1.7451919993501253E-03 + 82 -5.9717452085550175E-03 + 83 1.1372440671803491E-02 + 84 6.2040279231888864E-03 + 85 -1.2446694761270031E-02 + 86 3.9961349127104941E-03 + 87 -3.3812816219975913E-03 + 88 -2.7562626901134249E-03 + 89 -6.5157246085203319E-03 + 90 1.1024812483348986E-03 + 91 -4.7430697659017758E-02 + 92 1.9956213312648428E-02 + 93 6.5761495963826674E-02 + 94 4.5388403752066727E-03 + 95 -1.7663647232244719E-04 + 96 -1.4317519281254461E-02 + 97 -2.5486004855983118E-03 + 98 3.2147587091946174E-03 + 99 -2.4742367415029952E-03 + 100 -4.5882386796403090E-03 + 101 6.3610178563781698E-03 + 102 7.5327673543626780E-02 + 103 -1.1850971920298959E-02 + 104 -1.6596636040590168E-01 + 105 -9.1949810431460041E-02 + 106 -2.1202160654126296E-02 + 107 3.3617581079000036E-02 + 108 1.5077784615337828E-02 + 109 1.3865103097938038E-02 + 110 -6.2216733888068292E-03 + 111 -3.9224862753151242E-03 + 112 2.2535752086560233E-03 + 113 -6.3886364070328341E-03 + 114 -9.0652417341553423E-03 + 115 -1.1700257148577502E-01 + 116 2.0366051113132375E-02 + 117 -4.8910086142887173E-02 + 118 -7.6457979159032848E-03 + 119 2.2120406498764336E-01 + 120 6.0929020496597128E-03 + 121 -7.2292502237238845E-03 + 122 -5.2416532426484863E-02 + 123 5.0435144325597257E-03 + 124 -4.3572701846994657E-03 + 125 -5.5211209328562315E-03 + 126 -4.4979286077745512E-03 + 127 -2.3665618626412389E-03 + 128 -5.8287174252087043E-02 + 129 -6.9685979744948702E-03 + 130 -6.6660107442014713E-02 + 131 8.0755149461205747E-04 + 132 3.8654717460787517E-02 + 133 -1.1547948894194351E-02 + 134 9.5272276193163526E-03 + 135 1.1964944408780016E-03 + 136 -1.3252119848114713E-03 + 137 -7.8950022001012029E-03 + 138 2.4914989594402744E-02 + 139 -2.5252357389070816E-03 + 140 -1.2490055723512526E-02 + 141 -6.0227995086855638E-03 + 142 1.4147793593806920E-03 + 143 -1.8797759746409716E-02 + 144 2.2936264735296436E-02 + 145 -3.2817641211625316E-02 + 146 -1.1194246271942480E-02 + 147 -1.3363102177863287E-04 + 148 5.6379908576569254E-03 + 149 -3.7317504444357632E-03 + 150 -2.6561536093072471E-03 + 151 -6.9547771198328785E-03 + 152 -6.4941026239895587E-03 + 153 1.2934242588470199E-01 + 154 6.9397221469544804E-03 + 155 2.5385753424126797E-02 + 156 -1.1615601688427256E-01 + 157 2.9591174309799427E-02 + 158 -1.5338850763119759E-03 + 159 -1.2330823443823781E-02 + 160 2.4752670854646186E-03 + 161 1.1198602199299185E-02 + 162 2.6971266680356248E-02 + 163 6.1351318964315892E-04 + 164 -1.8701486748197674E-02 + 165 5.5231182237061461E-03 + 166 2.7368275424395905E-03 + 167 2.3823956613306434E-02 + 168 6.7810120716225329E-03 + 169 1.2048932005387840E-02 + 170 5.0241739475602471E-03 + 171 -3.8657354396361217E-03 + 172 -5.4161640903288403E-04 + 173 -3.9506505789207750E-03 + 174 -3.2589528094554513E-03 + 175 3.2756065622911662E-03 + 176 -1.4632103684468567E-03 + 177 1.1797285582796472E-03 + 178 -9.6622252541986951E-03 + 179 1.3307479394340084E-03 + 180 1.1515683231239254E-01 + 181 1.9872055210876233E-02 + 182 8.0814326176897225E-02 + 183 -1.4432834883095536E-02 + 184 -4.7455979977250448E-03 + 185 -1.2663781260567299E-02 + 186 4.5980397560840772E-03 + 187 5.6036123887757841E-03 + 188 8.1751237067269680E-03 + 189 -3.8342460799953163E-03 + 190 1.1613027056396255E-02 + 191 -1.2756526097388421E-02 + 192 1.5839034643374340E-03 + 193 1.2956964115041034E-01 + 194 8.3902901412811384E-02 + 195 2.3989257599840944E-02 + 196 -2.3755378462772651E-02 + 197 -1.5045853638970694E-02 + 198 2.3059981514967675E-03 + 199 4.8322248832847461E-03 + 200 -1.2971075340768589E-02 + 201 5.6321562588404440E-03 + 202 9.3985770789022996E-03 + 203 -1.5785048259313719E-02 + 204 -2.6774144106275677E-01 + 205 -1.7396542384993340E-02 + 206 7.4232459236108148E-02 + 207 5.3825167343045724E-02 + 208 -6.1730359127980354E-02 + 209 -3.2941551435729682E-03 + 210 -1.4467372427626425E-03 + 211 -5.5704360542404175E-03 + 212 2.7027087455287571E-03 + 213 3.1936565160582595E-07 + 214 2.3175189358531760E-03 + 215 1.3216849073430988E-02 + 216 9.3748272544938969E-03 + 217 1.4930562717773196E-02 + 218 1.1933732821179574E-03 + 219 1.3397022174512658E-02 + 220 5.4900269361245323E-03 + 221 -2.0405436383917883E-03 + 222 -1.0295261029517288E-02 + 223 -5.5891430356040791E-03 + 224 6.0691802742899315E-03 + 225 -2.4370021196371966E-03 + 226 2.9029540918809570E-03 + 227 5.3417761352969398E-03 + 228 -2.1876169201625164E-04 + 229 2.5075999094202445E-01 + 230 2.3171312965304620E-02 + 231 -1.7002901456689928E-01 + 232 -3.3733486542116345E-02 + 233 7.7756840936919992E-03 + 234 -3.4861353502121786E-02 + 235 3.4591132677311469E-03 + 236 2.7553464781112703E-03 + 237 -1.4619556728760467E-02 + 238 1.1581468213373695E-02 + 239 -2.2842062863040358E-02 + 240 1.9125476080901684E-02 + 241 3.2415630210098557E-02 + 242 -1.8079208341049702E-02 + 243 1.9390023876880720E-03 + 244 -9.1099332856002231E-04 + 245 4.7768843093897610E-02 + 246 5.1832003682919077E-02 + 247 -3.3376918354780568E-03 + 248 8.7252769778558871E-03 + 249 -3.6321893937649440E-04 + 250 6.8021953414739876E-03 + 251 -1.1610611868244746E-03 + 252 -7.4669691622712983E-03 + 253 -8.6747287674982937E-03 + 254 -1.4594394039458664E-01 + 255 -1.3369280603446641E-02 + 256 -2.6508313824871607E-02 + 257 1.0836833540244281E-01 + 258 -2.9804716286004802E-02 + 259 3.4081930756210050E-03 + 260 7.0213316088938160E-03 + 261 4.7538884379525045E-03 + 262 2.9336376852105110E-02 + 263 6.8690059797185139E-03 + 264 -3.9464489647653332E-02 + 265 -4.3546216543374743E-03 + 266 -1.5552138274411472E-03 + 267 2.3034980842692857E-03 + 268 -8.4374056744569905E-03 + 269 -3.8690418255014340E-02 + 270 -7.2522107058814317E-03 + 271 -1.4869310153758976E-02 + 272 6.6577844739291428E-04 + 273 3.5040803151959602E-03 + 274 -3.9236561478369052E-03 + 275 8.6994334211598450E-04 + 276 1.5069961680371506E-03 + 277 -8.9939288717942178E-04 + 278 2.8049992410854527E-03 + 279 1.1634613628747853E-01 + 280 -1.9390053256119758E-02 + 281 -5.5634307530176841E-02 + 282 -2.5011569070162309E-01 + 283 -1.9624155392234602E-01 + 284 8.6087788534089157E-03 + 285 5.6119995836988408E-02 + 286 3.2661428386038929E-02 + 287 1.1839033957501674E-02 + 288 2.9331578855443902E-04 + 289 -1.8033562735010018E-02 + 290 8.2257311471212249E-03 + 291 -6.9205550598451654E-03 + 292 3.5955326181706028E-02 + 293 -3.1642640841490570E-03 + 294 -1.2025355059402286E-01 + 295 7.5796725262906442E-02 + 296 5.7494629001658443E-02 + 297 1.2677429519934849E-02 + 298 -9.7613035795919983E-03 + 299 -1.5059530534447313E-02 + 300 -5.3049131383273475E-03 + 301 4.8099490554949585E-03 + 302 -9.6857729181401026E-03 + 303 1.0804197319384974E-03 + 304 4.1360511397304624E-03 + 305 1.9128069037793224E-02 + 306 1.2763455164216699E-02 + 307 -1.5936083970591295E-02 + 308 -1.8856607609523127E-02 + 309 -9.4955615254380621E-02 + 310 -5.4819884300687854E-03 + 311 -4.6956852665211227E-03 + 312 -8.4230670645669848E-03 + 313 9.4933875682785239E-03 + 314 9.4476743112092507E-03 + 315 5.8775383535462444E-04 + 316 1.2719970030864289E-03 + 317 -1.2138292546589647E-02 + 318 4.5501303469799078E-03 + 319 -2.3586260001024102E-04 + 320 -1.5416128402839731E-02 + 321 2.3514508656778833E-02 + 322 -6.6232648619026190E-03 + 323 -3.6645921884426295E-03 + 324 -5.6801955509157972E-03 + 325 -1.6276265464245806E-03 + 326 3.4046106671835859E-03 + 327 3.8812626318605967E-03 + 328 -5.0072794232339894E-03 + 329 -7.4074449153099433E-03 + 330 -7.9937190958936116E-02 + 331 -1.8201627672532236E-03 + 332 -7.5892817961678988E-02 + 333 5.5818041063296617E-02 + 334 1.4075158532811480E-02 + 335 -1.4993530631680443E-03 + 336 3.2879828832527180E-03 + 337 5.0652314641299098E-03 + 338 8.6468187821035648E-03 + 339 -9.6468740466947762E-03 + 340 -5.4174080099954579E-03 + 341 -1.4720020824273367E-03 + 342 -1.3463986555152649E-04 + 343 1.0539331028434599E-02 + 344 -3.1881969803331687E-03 + 345 6.8368348202004154E-03 + 346 -1.5873878060163567E-03 + 347 8.5051020904279885E-03 + 348 -2.0459026505644400E-03 + 349 3.4091067175068719E-03 + 350 2.2363376637088265E-04 + 351 -3.1714028364996541E-03 + 352 5.8327996323293196E-03 + 353 1.4935108658984994E-03 + 354 1.6139565549682371E-03 + 355 4.3208680350836581E-02 + 356 -6.8701520283040024E-03 + 357 -1.0387298173324137E-01 + 358 8.7790815128335517E-02 + 359 2.0010901605390048E-02 + 360 2.1350039108800328E-02 + 361 -5.6749264647093737E-03 + 362 -1.6992126011881215E-02 + 363 -2.4167487933666326E-03 + 364 7.8824627220241347E-03 + 365 2.0962511016647443E-03 + 366 -1.4585759593464948E-03 + 367 1.9260347363223558E-03 + 368 1.8118814332061109E-01 + 369 -3.1833032007848490E-02 + 370 -3.9556250472459822E-02 + 371 6.2462777108918968E-02 + 372 -2.2902653634300149E-01 + 373 1.7091327429019587E-02 + 374 -3.0109155720760991E-02 + 375 7.3870431209025686E-02 + 376 1.1921034521941341E-02 + 377 -1.9860000356962910E-02 + 378 2.5994996665380167E-02 + 379 2.2486726945207839E-03 + 380 1.9868217663426845E-02 + 381 7.6471939564434807E-02 + 382 -1.4146510385352891E-02 + 383 8.8674535831977569E-02 + 384 -4.2820778042605111E-02 + 385 -2.2667950689538616E-01 + 386 -5.4158784271098733E-03 + 387 2.7519389550428975E-02 + 388 3.9802064033338497E-02 + 389 -2.2495447299663403E-02 + 390 2.3280258808484975E-02 + 391 -2.7365782343176451E-03 + 392 4.5108911733679090E-03 + 393 6.3091293039266834E-03 + 394 5.3943421014035264E-01 + 395 3.5367114667254257E-02 + 396 2.0247510139176000E-02 + 397 -5.6125371363504158E-02 + 398 3.1443315472108192E-02 + 399 -3.3219952006617549E-03 + 400 -7.5498795764920518E-03 + 401 1.3969024284002380E-03 + 402 -6.3513723366192681E-02 + 403 -1.2223390634960495E-02 + 404 -5.0974240267477371E-02 + 405 2.9697098828965818E-02 + 406 -5.2087632536000818E-03 + 407 -2.9527933042523314E-02 + 408 -2.0467861215553440E-03 + 409 -3.0115429986010460E-02 + 410 -4.1580171859980693E-03 + 411 5.6363628233811985E-04 + 412 -3.4898027662420032E-03 + 413 -4.6981267938141459E-03 + 414 1.5857048204957972E-03 + 415 5.5219983733181702E-04 + 416 5.3442903569840853E-04 + 417 3.2723952276175455E-03 + 418 8.0421816004208335E-03 + 419 1.6650138066010955E-01 + 420 -2.4609407040289067E-02 + 421 2.5230944077689749E-02 + 422 3.9718147166661881E-02 + 423 4.0808338975244801E-01 + 424 -4.2365760102506369E-03 + 425 4.5558042767777111E-03 + 426 -8.3270537304282327E-02 + 427 -1.1396204722749470E-02 + 428 7.7826701520829374E-04 + 429 -1.0604737192403475E-02 + 430 3.8988003185514188E-03 + 431 -1.0067057046151103E-02 + 432 1.3027261922063783E-02 + 433 -1.7907210142197438E-03 + 434 6.7702871556689942E-02 + 435 4.5925754558150886E-02 + 436 -2.1022370608324606E-01 + 437 -8.3229918033206306E-03 + 438 -1.2618608941576610E-02 + 439 3.0046111183355036E-02 + 440 -4.4886996764008915E-03 + 441 2.1033065813712809E-02 + 442 5.1578761070610361E-04 + 443 -4.7566640972514880E-03 + 444 -1.0747414444545576E-02 + 445 3.4471977182003216E-01 + 446 3.2058788525314207E-02 + 447 -4.3505966535248700E-02 + 448 6.2125735972527449E-02 + 449 4.1331104654189356E-02 + 450 -5.4431532426168605E-04 + 451 1.8888181104691527E-02 + 452 -4.1284315011376835E-03 + 453 -3.4510340777263158E-03 + 454 1.7695789301877429E-02 + 455 2.8838622953342496E-02 + 456 -1.6214092909244915E-02 + 457 -1.1847073506786588E-02 + 458 -1.4456516603955392E-02 + 459 1.7017073771819765E-02 + 460 3.9372387747676416E-02 + 461 -4.4778274631904945E-02 + 462 -4.5573072671646116E-03 + 463 -7.3357081902298612E-03 + 464 -5.8062678021398792E-03 + 465 3.8439780285290525E-05 + 466 -3.9035805605177666E-03 + 467 9.6009741658380030E-03 + 468 -7.7839428816549100E-03 + 469 -6.1780699917056373E-03 + 470 -8.9207225305175594E-02 + 471 -2.7053623330386750E-03 + 472 3.1854359314680579E-02 + 473 -3.0413258064524103E-02 + 474 1.9153601222652562E-02 + 475 -2.0287208165103653E-03 + 476 1.1958858285974678E-03 + 477 1.7744928700046381E-03 + 478 7.0688353722531145E-03 + 479 -1.1180781445564208E-02 + 480 1.2136565855385205E-03 + 481 -1.1168280635438048E-03 + 482 -6.4249242652540911E-04 + 483 5.7941723152188660E-03 + 484 -1.1888694397158225E-02 + 485 1.0957595819805353E-02 + 486 -1.2349419967740938E-02 + 487 9.2139128385120700E-03 + 488 1.2064995876431923E-03 + 489 1.5245124043145100E-03 + 490 2.8452925901885076E-03 + 491 -6.0617548013103123E-03 + 492 4.6672211098250241E-03 + 493 2.8994214624420548E-03 + 494 5.7198450489114841E-04 +Ene= -7.5385855318E-02 +Spin= Alpha +Occup= 0.0000000 + 1 -1.2594688750740116E-01 + 2 -1.7541380035251315E-02 + 3 -5.3617484416089344E-02 + 4 -4.4680082821346209E-02 + 5 2.4933401923354609E-02 + 6 -3.9963756464791262E-03 + 7 -4.4674949853709747E-03 + 8 3.7748447358785722E-04 + 9 7.8971363036047237E-03 + 10 1.6843054184744876E-03 + 11 -3.1940983532123789E-03 + 12 -1.2754670063720251E-02 + 13 -8.2926650118813894E-03 + 14 2.9766580679155947E-03 + 15 9.9369542128788721E-03 + 16 9.5528297673439753E-03 + 17 -5.0347604638245605E-03 + 18 3.6354283514567292E-03 + 19 1.8910337217077954E-03 + 20 -1.2483446708004556E-04 + 21 1.7975257484588868E-03 + 22 -4.7495914774789497E-03 + 23 -1.8843348053751295E-03 + 24 3.0807483317847741E-04 + 25 -3.4072997882628421E-03 + 26 -2.5717809676933945E-01 + 27 -1.9466711188558260E-02 + 28 1.9307213386261471E-02 + 29 -6.7962021331414407E-02 + 30 -5.2574809827482527E-02 + 31 6.9348310838358140E-03 + 32 -4.6149134298392111E-03 + 33 -2.2201460974759272E-03 + 34 2.4329564870535652E-02 + 35 -1.6688757909477627E-02 + 36 1.2230700040407176E-02 + 37 -5.5693838986486544E-03 + 38 -8.8328280402444389E-03 + 39 2.1487766788243070E-02 + 40 -1.3832649282869446E-02 + 41 -1.6159647934603201E-03 + 42 -2.1399755977405933E-02 + 43 -1.1110337689790617E-02 + 44 9.0185517066720109E-04 + 45 -2.6681119114746426E-03 + 46 -8.8446405724375166E-03 + 47 -2.8083860063356225E-03 + 48 -1.0189912015191370E-04 + 49 1.0910847744030006E-02 + 50 2.5562212464725893E-03 + 51 -1.0396656741663153E-01 + 52 -8.5597510067349451E-03 + 53 2.5628633898687112E-02 + 54 7.5369983536898947E-03 + 55 -3.4572521064798805E-04 + 56 -3.1098250744497247E-03 + 57 -1.1876032879189714E-03 + 58 3.1826011611272063E-04 + 59 -1.0039186620921023E-02 + 60 -1.5217353335885281E-02 + 61 -2.5210940728770653E-03 + 62 -1.8432057157217019E-02 + 63 1.6650005498429047E-02 + 64 -3.6737992849786407E-03 + 65 8.5102223456828602E-05 + 66 1.0954249270691505E-02 + 67 -1.0532602523331502E-02 + 68 1.1435257536009050E-02 + 69 -3.7411074204674729E-03 + 70 -3.4460130855983352E-03 + 71 -9.5612335424856339E-05 + 72 1.9685201360523275E-03 + 73 -1.2075511567255343E-03 + 74 3.8816424029117871E-03 + 75 4.2787021238009839E-03 + 76 -1.0302478343283716E-01 + 77 1.7101343865313898E-02 + 78 8.4954849995068416E-02 + 79 3.8819328626822698E-02 + 80 -3.1469551747274484E-02 + 81 -2.0710827778777835E-02 + 82 -2.0317810635266326E-03 + 83 6.7121255687968020E-04 + 84 8.6168100098767391E-03 + 85 -7.4114220817415198E-03 + 86 2.4608040373983843E-03 + 87 2.8200147509770124E-03 + 88 -4.3660113858407339E-03 + 89 -3.9621393574917181E-02 + 90 5.8569100461308551E-03 + 91 2.8539917151498839E-02 + 92 -6.3960255246490655E-02 + 93 -1.8900850489047594E-02 + 94 -7.1193781792282711E-03 + 95 5.9923488132489419E-03 + 96 6.2639196685787078E-03 + 97 -1.2354959051785047E-03 + 98 -9.6942892164729249E-04 + 99 -3.5978038466602876E-03 + 100 1.9865866774300741E-03 + 101 2.7119618123278588E-03 + 102 -5.1031246345728108E-02 + 103 9.3802767686998259E-03 + 104 6.2640588411910919E-02 + 105 -6.6907473674820236E-02 + 106 1.8334515302497599E-02 + 107 -1.6479082935758615E-02 + 108 9.4124690691834226E-03 + 109 4.5343832039394811E-03 + 110 -7.0397693857981256E-03 + 111 3.3151146477083818E-03 + 112 -1.1499779900330840E-04 + 113 -4.8319122864308936E-03 + 114 -1.3404096228680587E-03 + 115 -8.8831603307847895E-02 + 116 1.6452930987715469E-02 + 117 -1.7728647964477894E-02 + 118 1.8318817905415286E-01 + 119 1.6662374042027470E-01 + 120 8.2589058252017242E-04 + 121 -3.6374996946793844E-02 + 122 -4.5483490433781117E-02 + 123 1.4388826751950195E-03 + 124 -4.6387477272846686E-03 + 125 1.8377237612180072E-02 + 126 1.4080611990813766E-02 + 127 3.4559122797968981E-03 + 128 -2.9428661123251709E-01 + 129 -1.8646341853317022E-02 + 130 -1.1059477708484516E-02 + 131 -7.3403160359782241E-02 + 132 -4.3851637052864191E-02 + 133 -8.1959070184031962E-03 + 134 -1.6048843135809024E-02 + 135 -7.9345617927810575E-03 + 136 2.8958241290404464E-02 + 137 1.1814633034655670E-02 + 138 -1.0212755403405887E-02 + 139 -8.9749795219941592E-04 + 140 -7.7101745462249778E-03 + 141 1.0853921062909078E-02 + 142 2.0578160732364608E-02 + 143 -4.4462915168940479E-04 + 144 -2.7130858294076670E-02 + 145 1.2514767882834779E-02 + 146 3.5241416876596503E-03 + 147 5.7422506151859568E-03 + 148 -1.4508114305226843E-03 + 149 5.1393339586457984E-03 + 150 -2.9911256009548296E-03 + 151 -6.9810998951182288E-03 + 152 -4.6834113926598605E-03 + 153 1.2251571382752806E-02 + 154 -7.9892330383511852E-03 + 155 1.4982527531543900E-03 + 156 2.5689354308067420E-02 + 157 5.8044600966043365E-02 + 158 -5.2662546336161341E-03 + 159 2.0365117078997424E-04 + 160 5.7956651454047787E-03 + 161 -4.8765938140934066E-03 + 162 -3.0801360683181300E-03 + 163 6.5757259411049537E-03 + 164 7.1954831223145638E-03 + 165 -4.6693342362849610E-03 + 166 -4.7955026955324720E-03 + 167 1.0319752523567942E-02 + 168 1.5935452567791331E-02 + 169 -5.9356724417010929E-04 + 170 -1.3855860852100129E-02 + 171 -9.6043029314558852E-05 + 172 1.2592912393403352E-03 + 173 -4.8484745605040435E-03 + 174 -2.3503849028243973E-03 + 175 -7.0385038717324150E-04 + 176 1.2079426713315288E-03 + 177 3.5988960903224056E-04 + 178 -5.1798493967362302E-02 + 179 7.4672019325826029E-03 + 180 -7.2586047860341207E-03 + 181 -1.0239136710511722E-01 + 182 1.2337692144282002E-01 + 183 3.2140493322356700E-03 + 184 1.5406459559773098E-02 + 185 -2.7387696017680978E-02 + 186 1.1135282195718942E-03 + 187 -4.6494926531125622E-03 + 188 -9.8884321263071149E-03 + 189 -7.6283239612937644E-03 + 190 -5.0892471636135514E-03 + 191 -1.7115580252474224E-02 + 192 3.9003036475877208E-03 + 193 -1.0296975050169971E-01 + 194 -7.1591764664390448E-02 + 195 -2.3495988802044319E-02 + 196 1.5052931578199962E-02 + 197 2.1485210499630796E-02 + 198 7.3434387004248731E-04 + 199 -2.7620800838114960E-03 + 200 2.8684588916340315E-04 + 201 1.3594434136875627E-04 + 202 -4.5574468172364137E-03 + 203 8.8475157591568019E-03 + 204 9.7953051859180611E-03 + 205 -6.8438521162187413E-03 + 206 -9.6125895134096612E-02 + 207 -9.2242223164150525E-02 + 208 -4.5792249953895935E-02 + 209 -1.7615078789369652E-02 + 210 -1.3631518937208020E-02 + 211 -1.8224663853250340E-02 + 212 2.2811366274612950E-02 + 213 3.2173423838036961E-03 + 214 6.6762701130428049E-03 + 215 -6.7604496256790407E-03 + 216 -7.5787466562990177E-03 + 217 4.8560374561995585E-02 + 218 -7.8640372654029556E-03 + 219 -2.4853778683549491E-02 + 220 2.6282648969908024E-02 + 221 -8.8810023673264026E-03 + 222 -9.7368263940867568E-03 + 223 1.0382646824139482E-03 + 224 1.7911966693317977E-02 + 225 9.8246641671560359E-03 + 226 -3.6660129659308815E-03 + 227 -2.2490527464390892E-04 + 228 2.9643898119889852E-03 + 229 -1.5930462915773133E-01 + 230 -1.5088439319108381E-02 + 231 3.5895615220874831E-02 + 232 -1.2062772365244520E-02 + 233 -3.9017233628968508E-03 + 234 3.5125069936938146E-03 + 235 -8.6505724581256837E-03 + 236 -3.4516925806912274E-03 + 237 1.4269268387946316E-02 + 238 -8.0959141620994667E-03 + 239 1.4170839103931344E-02 + 240 -1.4762751247431361E-02 + 241 -4.1903494764570781E-02 + 242 2.4575822390249451E-02 + 243 -4.3765623425299207E-03 + 244 5.7550327441975779E-03 + 245 -3.0406592182050482E-02 + 246 -1.0844819422164559E-02 + 247 1.5339091649664406E-03 + 248 -8.9328186768711845E-03 + 249 -3.2325024762727955E-03 + 250 -3.4652819575626409E-03 + 251 5.0535112940378079E-04 + 252 8.5872918860934021E-03 + 253 4.1490974395761958E-03 + 254 1.3918827867761818E-01 + 255 4.9248144472100420E-03 + 256 -3.5021230767251478E-02 + 257 7.7639093531381292E-02 + 258 9.3340518170557232E-02 + 259 -5.7865685498986168E-03 + 260 3.3149133334494599E-03 + 261 7.2757080272361965E-04 + 262 -1.2476080812574460E-03 + 263 3.7247374962971010E-04 + 264 1.1078272685563382E-02 + 265 2.6752825978453940E-03 + 266 3.5734208550790921E-03 + 267 2.8226314018198980E-03 + 268 9.1016055440679526E-03 + 269 1.3344932252624522E-02 + 270 5.7354655455671964E-04 + 271 1.1283443222479827E-02 + 272 -3.6373349805584993E-03 + 273 -1.9538938813028553E-03 + 274 -5.4512088574507215E-03 + 275 -5.2148695874277918E-03 + 276 -3.1917910003652133E-03 + 277 2.0812876646659085E-03 + 278 -1.7604210487593642E-03 + 279 -1.0178196967091864E-01 + 280 1.6621154395171315E-02 + 281 3.1661028378773992E-02 + 282 2.2937083199764355E-01 + 283 1.0762563743837082E-01 + 284 6.1005012941185103E-04 + 285 -4.5802115709340500E-02 + 286 -7.5897587128249686E-03 + 287 -1.1202311100202578E-02 + 288 3.3792052862053113E-03 + 289 3.9493638890924247E-03 + 290 -1.9058511860151589E-03 + 291 5.5120095918882242E-03 + 292 -8.3896611502979890E-02 + 293 1.2585556150954058E-02 + 294 3.8745346996067652E-02 + 295 2.3788062926038106E-02 + 296 -1.5203539847741951E-01 + 297 -5.1720074916020431E-03 + 298 -1.4607624567900357E-02 + 299 2.8621471873328010E-02 + 300 3.0193928646191738E-04 + 301 -1.0071290712776505E-03 + 302 3.9469443530961955E-03 + 303 3.2458392370039203E-03 + 304 -3.5452082739334084E-04 + 305 -9.1249534454659942E-02 + 306 -2.7511179003844271E-03 + 307 -4.2642303729311978E-02 + 308 -2.0331991516222489E-02 + 309 -2.2908404519456989E-03 + 310 -1.9810419561740986E-02 + 311 -5.7599922114350789E-03 + 312 4.2641645626790734E-03 + 313 -1.6240283686200226E-02 + 314 6.7113552942923626E-03 + 315 8.8465345141663671E-03 + 316 -1.3604264265540024E-02 + 317 2.2302699189449735E-03 + 318 -9.5864995671699794E-03 + 319 -4.3221137794279899E-02 + 320 -6.9706302632930055E-04 + 321 -2.0124989917749800E-03 + 322 2.4424467127894169E-03 + 323 -7.7829401621234626E-03 + 324 -8.6127762014880406E-03 + 325 -6.0282961462566108E-03 + 326 1.7812602884415014E-02 + 327 7.7212146711305345E-03 + 328 -9.7160730776008168E-03 + 329 -7.3861946286642175E-03 + 330 1.9635384684359835E-02 + 331 4.3520390646508621E-04 + 332 -1.5980038564479417E-02 + 333 -3.9816125808720682E-02 + 334 -1.5201085431361413E-02 + 335 -4.9386236196403586E-03 + 336 -7.2234775862350881E-03 + 337 -7.6489251860597718E-03 + 338 -5.6476743706852135E-03 + 339 -1.2077092252018327E-02 + 340 1.5976538201323210E-02 + 341 3.2879821222527605E-03 + 342 -6.7954497792558815E-03 + 343 7.2120885755746220E-03 + 344 -1.9891141756259681E-02 + 345 -4.5664056306534296E-03 + 346 1.0339941800361133E-02 + 347 -1.1935476110154769E-02 + 348 2.5160080101598059E-03 + 349 4.0912756321178686E-03 + 350 -5.6425826567758474E-03 + 351 3.4446842164213730E-03 + 352 -4.1191362172845105E-03 + 353 1.8141645926931153E-03 + 354 3.4393009162001433E-03 + 355 9.4754616588455270E-02 + 356 -1.6558252407076673E-02 + 357 -1.9202503059688927E-01 + 358 4.2073438793207206E-02 + 359 2.1335462347505824E-01 + 360 3.7164833320729389E-02 + 361 -1.7185865165192302E-02 + 362 -4.6876554486818434E-02 + 363 -3.5214865441696871E-03 + 364 1.8420480787234562E-02 + 365 -1.2840988333452786E-02 + 366 -1.0415329854109871E-02 + 367 1.4360838749353204E-02 + 368 -7.6585369554317301E-02 + 369 1.2677362426862574E-02 + 370 -1.7179620387965153E-01 + 371 -2.2614339787004098E-01 + 372 -1.8931292024260335E-01 + 373 5.8977664804054315E-02 + 374 7.1095897174139930E-02 + 375 5.5674262211982739E-02 + 376 5.7106593330032525E-03 + 377 -1.6200425991531490E-02 + 378 -1.3492582700775030E-02 + 379 -1.6528015707862699E-02 + 380 -1.4684024474499445E-02 + 381 -1.6222672019172260E-01 + 382 2.8798916328673218E-02 + 383 -6.8281783821452113E-02 + 384 1.2750262055198602E-01 + 385 5.0652684300133782E-02 + 386 1.6885925891345480E-02 + 387 -3.2685802215631554E-02 + 388 -1.1313091589153897E-02 + 389 7.7493730052936114E-03 + 390 2.1466687321685762E-03 + 391 -8.8315475919203846E-03 + 392 1.2103526375893837E-02 + 393 -7.1592712010995268E-03 + 394 -3.3059791121762760E-01 + 395 -1.9759840149290667E-02 + 396 -4.7868385610124818E-02 + 397 -7.0559577470010057E-02 + 398 -4.0209385938027233E-02 + 399 -1.2098881118771736E-02 + 400 -2.1653741355450017E-02 + 401 -1.7748276792361670E-02 + 402 2.9263610566935747E-02 + 403 -7.0636219828516534E-05 + 404 6.0272415060111505E-03 + 405 -2.1260562413766990E-02 + 406 2.9035717548917438E-02 + 407 -6.4241711739724044E-03 + 408 5.9394613530766791E-03 + 409 1.4517695796410946E-02 + 410 -7.1601187688661069E-02 + 411 6.0061746009341103E-02 + 412 5.1354853290282625E-03 + 413 3.1499181970697913E-03 + 414 1.6281096327358604E-02 + 415 5.3397893838636684E-03 + 416 -4.2464665423069979E-03 + 417 8.5598868796518367E-03 + 418 1.7233908898641775E-02 + 419 -4.4498346676316814E-03 + 420 1.0777666540238898E-04 + 421 -1.7752883497677827E-01 + 422 -2.7066245371366227E-01 + 423 -1.5299660172929761E-03 + 424 3.7171614794513141E-02 + 425 4.5154695553129121E-02 + 426 -7.9002115489943160E-03 + 427 6.1962997597068562E-03 + 428 7.9022066704939175E-03 + 429 2.5950993200418177E-02 + 430 7.8972025775028692E-03 + 431 -9.6599921208924185E-03 + 432 1.7921480984861710E-01 + 433 -3.2380484959498856E-02 + 434 3.1039269269144193E-01 + 435 3.8494002659585927E-02 + 436 -2.0367239807470097E-01 + 437 -6.8831796320569863E-02 + 438 -2.2857731247052405E-02 + 439 3.5366482034787920E-02 + 440 -1.1989518684152498E-02 + 441 2.2875448752672969E-02 + 442 5.7727693323282037E-03 + 443 -1.3860095358816315E-02 + 444 -1.0227653412906549E-03 + 445 6.5376169201767720E-01 + 446 3.7204025476472322E-02 + 447 -8.7645599900228105E-02 + 448 -1.4044096584013657E-01 + 449 6.8691556549532629E-02 + 450 -6.5443155480247733E-03 + 451 -2.6440809004706751E-02 + 452 1.8012324127328141E-02 + 453 -1.3258456425406361E-02 + 454 3.1130229819312724E-02 + 455 8.0842724395712633E-04 + 456 -2.0642216343546935E-02 + 457 -6.2699797164071933E-03 + 458 9.2035331180142909E-03 + 459 3.7652764006404868E-02 + 460 1.0798765214730959E-02 + 461 2.2183630319622019E-02 + 462 -2.4999023773765526E-02 + 463 -1.5578971867274323E-04 + 464 4.3454472217418659E-03 + 465 8.6556191676006033E-03 + 466 1.8814238480319153E-02 + 467 5.8006803729375280E-03 + 468 -2.7718133463676414E-04 + 469 1.6164682828596942E-03 + 470 -8.0666106525069475E-02 + 471 -6.8565889018502657E-03 + 472 3.0693871846007061E-02 + 473 -7.6673241576813655E-02 + 474 2.8755593330561662E-03 + 475 -5.9571987118079654E-04 + 476 -7.6585621396259599E-03 + 477 -2.6512728949551743E-03 + 478 -1.1760259395253683E-02 + 479 -3.7385512307388083E-05 + 480 -7.2133007118759980E-03 + 481 1.1934326612036875E-02 + 482 3.2998120476977963E-02 + 483 -9.5362925463919022E-03 + 484 -8.8367608734421007E-03 + 485 -1.1884681300249930E-02 + 486 1.1373998086064274E-02 + 487 3.0892852549871144E-02 + 488 -2.8830869752360863E-03 + 489 1.5382325558694512E-03 + 490 -4.2244280426910431E-03 + 491 -3.4096055804035768E-03 + 492 5.8248028152188000E-03 + 493 -2.7982745720521677E-03 + 494 -1.5921139421304327E-03 +Ene= -6.7015620210E-02 +Spin= Alpha +Occup= 0.0000000 + 1 -4.4047258341415818E-01 + 2 -2.9514631110390849E-02 + 3 -2.0230396971297790E-01 + 4 -9.7157717627159496E-02 + 5 9.3642619048628958E-02 + 6 -1.9302563663112757E-02 + 7 4.5105349791197827E-03 + 8 8.4273488927158191E-03 + 9 2.1840507304546715E-03 + 10 1.5534921695771220E-02 + 11 1.1480401913361906E-02 + 12 -3.5744907014410458E-02 + 13 -1.0202312885794314E-02 + 14 -8.3295888449870983E-03 + 15 -1.7956663634315590E-03 + 16 1.0352153736657514E-02 + 17 -1.4587093423627033E-02 + 18 -2.7017813588176936E-02 + 19 -2.0375880572445640E-03 + 20 5.2687587088520449E-03 + 21 -1.3801039651356181E-03 + 22 5.1594976018531921E-06 + 23 -1.3792047384412409E-03 + 24 4.4109174601249211E-03 + 25 -1.1367265252130801E-03 + 26 -2.7354909955218187E-01 + 27 -1.7914847726454797E-02 + 28 -1.8989730050417419E-01 + 29 -1.9439003285389619E-01 + 30 2.2546151877934619E-03 + 31 -3.1160597771668200E-02 + 32 -1.2555184709058354E-02 + 33 1.4671714612672290E-02 + 34 2.0434493121631914E-02 + 35 -3.5075165607827377E-02 + 36 -2.5548724474150040E-03 + 37 2.7658349969446272E-02 + 38 4.3356288201864502E-03 + 39 -8.8212444786589100E-03 + 40 -6.1171686262848107E-02 + 41 -2.3348730217319946E-03 + 42 7.8617750334406739E-02 + 43 2.9784027174137247E-02 + 44 5.0669195450720275E-04 + 45 1.5161923986568902E-02 + 46 2.1765948191103447E-03 + 47 2.4041143940277732E-03 + 48 3.4033156442411908E-03 + 49 -7.6532508272645038E-03 + 50 -6.3083077446120187E-03 + 51 -1.2423499179515923E-01 + 52 -1.0233203839150098E-02 + 53 -4.3511387426518451E-02 + 54 4.5370341910911431E-02 + 55 -7.8438533449554839E-03 + 56 -7.5344778502035043E-03 + 57 -6.3516919288731577E-03 + 58 4.6733418688894518E-03 + 59 7.9446214257721890E-03 + 60 -1.4837027283333469E-02 + 61 -1.2829540023230158E-02 + 62 1.4158110521494455E-02 + 63 1.7002822698795411E-02 + 64 1.8010364545572217E-02 + 65 2.3283267966443647E-02 + 66 1.9096007877464325E-02 + 67 1.8315689798597580E-02 + 68 2.3640107091923379E-02 + 69 -3.8545841019389038E-03 + 70 -5.8233063918255714E-03 + 71 -3.3967733852303460E-03 + 72 -8.0609455949136506E-04 + 73 4.6386352419595690E-03 + 74 6.7439887205953198E-03 + 75 -1.2301487121995649E-03 + 76 -2.4458736280002705E-01 + 77 3.9742021484134200E-02 + 78 4.6397165054869981E-02 + 79 1.7461465138963184E-01 + 80 -3.8333216851792508E-02 + 81 -2.5879821780728042E-02 + 82 -4.0278278821694574E-02 + 83 -4.5903094845316655E-03 + 84 2.3507210972520329E-02 + 85 -2.4463385698969244E-02 + 86 2.0334451879498373E-02 + 87 -1.0329752305078262E-02 + 88 -1.5488169678718215E-02 + 89 -1.1018758418414769E-01 + 90 1.6810712231755356E-02 + 91 -5.8993380508567964E-02 + 92 -2.1454853973665575E-01 + 93 -4.6278438601218649E-02 + 94 -1.3539751680293672E-03 + 95 2.4615973875054736E-02 + 96 1.6814222906524935E-02 + 97 -1.6555632168552548E-03 + 98 -5.1236666102607983E-03 + 99 -1.0066047928452036E-02 + 100 -8.4152734676293042E-03 + 101 1.3552828600814016E-02 + 102 -6.1549454456017394E-02 + 103 1.2225365072364996E-02 + 104 -2.5035118076207875E-03 + 105 -4.9113883832800048E-02 + 106 2.2845692501381191E-02 + 107 -7.8677397060874319E-03 + 108 1.5604415584031441E-02 + 109 2.5102776608700917E-03 + 110 -8.5509405083366446E-04 + 111 3.0964873729097822E-03 + 112 5.6669476176652925E-03 + 113 -1.4123414034563853E-02 + 114 7.3163248648524942E-03 + 115 1.7106576042849223E-02 + 116 -5.0797429028885096E-03 + 117 -2.7524198974098602E-01 + 118 -6.0810055705284402E-02 + 119 -5.4787425262431888E-04 + 120 5.2028299472644930E-02 + 121 2.4170378645009125E-02 + 122 5.6053196812307841E-04 + 123 6.0320981723345247E-03 + 124 -2.8829717956915236E-02 + 125 -9.1143904573681919E-03 + 126 1.2773192556436755E-02 + 127 -6.8139689504846026E-03 + 128 4.7338715267161940E-01 + 129 2.6385970233080321E-02 + 130 1.1980037563307466E-02 + 131 -1.7869270284163238E-02 + 132 -3.6510087108307429E-02 + 133 -1.5510798842184438E-02 + 134 6.2053932064187224E-03 + 135 -2.5444189679856982E-03 + 136 -2.8607890356596031E-02 + 137 -8.6657391481225303E-03 + 138 1.9473334072436184E-02 + 139 1.9797655970592121E-02 + 140 1.1465016938818037E-02 + 141 7.3082309352579342E-03 + 142 1.4003531396708926E-02 + 143 -2.6826461571287600E-02 + 144 -3.3316236632978523E-02 + 145 -1.4321776879686119E-02 + 146 -4.2947345843670033E-03 + 147 7.7738975310711247E-03 + 148 -5.1968057854117379E-03 + 149 -4.8352297651426686E-04 + 150 6.8352868410767285E-03 + 151 -1.9204926967575083E-02 + 152 -6.7656053551761394E-03 + 153 -1.2603734596885272E-02 + 154 -6.0340223984465344E-03 + 155 -2.7756643656020832E-02 + 156 -1.0647031240178509E-02 + 157 -2.9191831381710141E-02 + 158 -9.0824306220469563E-03 + 159 -6.7754400324789472E-03 + 160 1.7767771921186975E-03 + 161 1.2734884983433541E-02 + 162 -1.6089619227275590E-04 + 163 -1.4953154313621750E-02 + 164 -1.6385002962608603E-02 + 165 2.5611298119664538E-03 + 166 1.0348203681384527E-02 + 167 1.3386489533181133E-02 + 168 -4.3876702086040704E-03 + 169 -2.7925236070462601E-04 + 170 7.3545692118607087E-03 + 171 -6.6135530506262758E-04 + 172 -5.7434533547081066E-03 + 173 2.3801316428360774E-04 + 174 -7.5157923755221536E-03 + 175 9.2042689302423986E-03 + 176 6.0008171564724135E-03 + 177 2.0869640191507940E-03 + 178 9.6682007817423199E-02 + 179 -1.8850093136575114E-02 + 180 8.4031565716768120E-02 + 181 1.6489400218422548E-01 + 182 -1.7143059245160341E-01 + 183 -1.9489616508402360E-02 + 184 -4.1865778260789584E-02 + 185 4.6433013776987928E-02 + 186 -2.0633752945421126E-03 + 187 6.8862951140135258E-03 + 188 1.8977597961482066E-02 + 189 7.2335333070904081E-03 + 190 5.9472210859279697E-04 + 191 -1.9713801709242786E-02 + 192 2.1012675459813517E-03 + 193 -1.8695814111752002E-02 + 194 -7.8100687230370350E-02 + 195 -9.0353506270507977E-02 + 196 1.3435081393861173E-02 + 197 1.5916622125433967E-02 + 198 7.0093817312382647E-03 + 199 -1.4213599709664597E-02 + 200 -3.0903762242964067E-03 + 201 -2.4842402841899263E-03 + 202 1.0527372334889030E-02 + 203 -4.1498622155425612E-04 + 204 -1.2206850583537218E-01 + 205 -1.2543331178873775E-02 + 206 6.8755636060061118E-02 + 207 9.0588642204118719E-02 + 208 2.5851860754650478E-02 + 209 4.9711686626456508E-03 + 210 1.2670590660948847E-02 + 211 1.2995789046429370E-02 + 212 -1.1471660408356675E-02 + 213 6.8412004471117395E-03 + 214 3.7226076856161430E-03 + 215 -1.4736178330424330E-03 + 216 -1.0499608731069242E-02 + 217 -2.0584056462031371E-02 + 218 9.6504760557300263E-03 + 219 8.3110297087238168E-03 + 220 -3.9445892178183194E-02 + 221 -7.6304365807673196E-03 + 222 -6.2387128012766808E-03 + 223 -2.4821099543875921E-03 + 224 -1.1371360940132086E-02 + 225 -4.6605777754139830E-03 + 226 2.9920509765442131E-03 + 227 -1.0816871972733946E-02 + 228 -8.0469357942960229E-03 + 229 3.4247078566297343E-02 + 230 -1.9137596032794500E-02 + 231 -1.1974735120164542E-01 + 232 -2.7389900641181736E-03 + 233 4.0006358170410726E-02 + 234 -1.7745846172282535E-02 + 235 4.8852783224696012E-03 + 236 1.0180861182844506E-02 + 237 -1.4121944122969816E-02 + 238 1.1197358077707827E-02 + 239 -5.0519629285758066E-03 + 240 -5.3512196256713549E-03 + 241 -7.8775026040224603E-03 + 242 3.6465575337856722E-02 + 243 -5.6038328040474679E-03 + 244 -9.2699112124849554E-03 + 245 -2.3481479988735173E-02 + 246 3.6067698623344052E-02 + 247 1.5281071061906714E-03 + 248 8.4910198109955301E-03 + 249 -9.5879468561021822E-03 + 250 2.2324134135231896E-03 + 251 -1.5414831094922037E-03 + 252 2.1051810170356643E-02 + 253 8.4269244505134587E-03 + 254 4.8311933750306763E-02 + 255 2.9629785540170634E-03 + 256 -2.3910783607558647E-01 + 257 1.3124301552770135E-01 + 258 7.7962302685410573E-02 + 259 -1.7734206257122177E-02 + 260 1.0366916734691627E-02 + 261 3.9094445125777647E-03 + 262 5.7489838615880275E-03 + 263 5.2829637915909108E-03 + 264 4.6912897196069853E-04 + 265 -1.0884002100448100E-02 + 266 1.4028139758592567E-02 + 267 8.9627937135512946E-03 + 268 2.3031135168990136E-02 + 269 9.2793828599200059E-03 + 270 -1.6982758801679151E-02 + 271 3.0620771732091257E-03 + 272 1.6969846806393868E-04 + 273 4.6100290796244831E-03 + 274 2.8861833636815368E-03 + 275 1.7249871671710284E-03 + 276 -1.6393961489519580E-03 + 277 6.7821014002010082E-03 + 278 3.5562183508238664E-03 + 279 6.0278676419717033E-03 + 280 -2.4435727656413561E-03 + 281 -4.2349537630055799E-02 + 282 2.4442702328641468E-02 + 283 1.2929104700940651E-02 + 284 2.9417941048886791E-03 + 285 -7.6303793413515951E-03 + 286 3.1594972904907190E-03 + 287 -4.2526432745427214E-03 + 288 1.8435698715641061E-02 + 289 -1.1092011609868224E-02 + 290 9.4832776366302989E-03 + 291 8.8388275405626195E-03 + 292 -8.9297012111860127E-02 + 293 1.4355045232930555E-02 + 294 -1.8393572986025178E-01 + 295 7.4566621836248764E-02 + 296 -6.0472806748663233E-02 + 297 3.2463483472866518E-02 + 298 -1.8465262397488542E-02 + 299 1.9623998405974775E-02 + 300 -2.4894562882688234E-03 + 301 2.5721835028264022E-02 + 302 5.9693202906562490E-04 + 303 9.5533932598467156E-03 + 304 -4.4058144258997071E-03 + 305 -1.3213942779067780E-02 + 306 -1.5629779172300622E-03 + 307 2.3857671454896707E-03 + 308 -4.6507690812524476E-02 + 309 1.6450054634116759E-01 + 310 3.6708771682363232E-03 + 311 2.9478398483935289E-03 + 312 1.0346263949826318E-02 + 313 1.9481724115787573E-02 + 314 -4.3480617519593939E-04 + 315 1.4173021609458693E-02 + 316 1.5474398842561611E-02 + 317 -5.7332096055079532E-03 + 318 1.1772923538179349E-02 + 319 1.9420826873144902E-03 + 320 1.8532393604441134E-02 + 321 1.8311899808597123E-02 + 322 1.1457902119248489E-02 + 323 3.6436132164432487E-03 + 324 -1.8736959701325291E-03 + 325 -1.2616842319634462E-03 + 326 -1.2217924781389635E-03 + 327 -2.0597322100993935E-03 + 328 -5.3338719093102283E-03 + 329 5.0346040427782911E-03 + 330 1.5260625262941274E-01 + 331 1.1632431069344267E-02 + 332 -4.5917900870288096E-02 + 333 -4.6850706811794575E-02 + 334 -2.9731531303318244E-02 + 335 -1.2008386455063554E-02 + 336 2.5227281988027825E-03 + 337 -5.7593096425119306E-03 + 338 -1.8921625280212850E-02 + 339 -6.8249903876022640E-03 + 340 2.2935414850923111E-02 + 341 -6.7184822714626419E-03 + 342 6.4354051924165262E-03 + 343 -6.1495893970046076E-03 + 344 -1.4790295328095312E-02 + 345 1.1280594239324412E-02 + 346 -2.8199507734004078E-02 + 347 -3.3569578287644007E-03 + 348 3.2647899155520852E-03 + 349 -1.9055172241228097E-03 + 350 -2.3013892561333854E-03 + 351 -5.4044284954721548E-04 + 352 -5.9284562511391654E-03 + 353 -1.4991329355432616E-03 + 354 -3.3478783943625243E-03 + 355 5.1530026564326301E-02 + 356 -7.9372589683871109E-03 + 357 6.8372284044725978E-02 + 358 -1.9888078160280109E-02 + 359 1.3652834825479973E-01 + 360 -1.2097145568936723E-02 + 361 -1.3429113795676241E-02 + 362 -2.4432496589371164E-02 + 363 -1.0859902328227816E-04 + 364 -6.9119032909755757E-03 + 365 -3.5583487045467445E-03 + 366 6.1039281271109292E-03 + 367 -3.1959839299500292E-03 + 368 1.4812406979684711E-01 + 369 -2.5918250050288902E-02 + 370 -1.2228229763173941E-02 + 371 7.1531658649329949E-02 + 372 1.4541806786872716E-01 + 373 3.6084189241899008E-03 + 374 -1.5985110330080019E-02 + 375 -2.7976797689006065E-02 + 376 -2.8715259178511646E-02 + 377 1.0002513783894261E-02 + 378 -1.6204210911492042E-02 + 379 3.6277407828614783E-03 + 380 -2.0218696698566835E-03 + 381 6.9581318814225412E-02 + 382 -1.3897825585415228E-02 + 383 1.3073351706790240E-01 + 384 -6.0439402219072083E-02 + 385 1.9252702516693210E-01 + 386 -2.5871142025488937E-02 + 387 2.2913126558005738E-02 + 388 -4.1740110453512030E-02 + 389 1.5390494075771873E-02 + 390 -1.9197056636786572E-02 + 391 3.4059179653555816E-03 + 392 -1.9679058944076979E-03 + 393 6.9260180674014897E-03 + 394 -1.8082543829081957E-01 + 395 -2.2558236323743302E-02 + 396 6.2317814587664874E-02 + 397 -1.2558716106228828E-03 + 398 -5.1028495957900523E-02 + 399 7.9017420591060783E-04 + 400 3.8814607993712461E-03 + 401 -1.0368201729658277E-02 + 402 3.3172310089150166E-03 + 403 -1.2470416029745723E-02 + 404 1.4236095583664805E-02 + 405 1.4050796945770005E-02 + 406 -1.0717459248281038E-02 + 407 -1.5530443799662071E-02 + 408 -2.1076073226325459E-02 + 409 1.1787907754061515E-02 + 410 1.8370879360760518E-02 + 411 -3.5857751808680500E-03 + 412 1.6944845375322915E-03 + 413 -1.6924321112406445E-03 + 414 -4.0644013404367175E-03 + 415 -7.4021709453538618E-04 + 416 -4.8127606358507361E-04 + 417 1.3949034799349053E-03 + 418 1.3053751705143102E-03 + 419 -4.8852037952430538E-02 + 420 7.4603564578678639E-03 + 421 2.8965526412122168E-02 + 422 -3.9598468145311393E-02 + 423 -2.5112390763793541E-02 + 424 -3.8506659812985503E-03 + 425 1.1866848237110110E-02 + 426 6.4461610290853988E-03 + 427 2.4697356025507127E-03 + 428 -1.2701766832401110E-02 + 429 5.1551983570109986E-03 + 430 8.3093475461635917E-04 + 431 4.0511846654236886E-03 + 432 -8.3174226997556167E-02 + 433 1.3298392372097855E-02 + 434 -6.7606635911140953E-02 + 435 -3.6839935108345503E-02 + 436 -3.5171330575453725E-03 + 437 2.6185432750718857E-02 + 438 8.0465623518851982E-03 + 439 1.1487099978849257E-03 + 440 5.8189399503480064E-03 + 441 -2.5253349778877692E-03 + 442 -3.5507507071681566E-03 + 443 3.8892735324910295E-05 + 444 -5.9834824502495989E-03 + 445 -4.7741484611657885E-02 + 446 -2.6783423324347332E-03 + 447 1.2948852284011306E-01 + 448 -1.0280301200213771E-02 + 449 8.3114767785393891E-03 + 450 1.2245737825080465E-02 + 451 -4.9349786272459032E-03 + 452 -3.9855107668838917E-03 + 453 -4.1375509513712650E-03 + 454 -5.2336956443209673E-03 + 455 -1.0353868844363885E-02 + 456 2.1092497375206090E-02 + 457 1.2742314840783928E-02 + 458 2.0547959301071869E-03 + 459 -6.9217741218887425E-03 + 460 -1.1049880554263557E-02 + 461 2.1417139858662018E-02 + 462 6.1013517429691494E-03 + 463 -6.4639355355408060E-04 + 464 -4.3568267119872143E-03 + 465 2.1349605211025734E-03 + 466 3.3140209109420054E-03 + 467 -3.0850283346403446E-03 + 468 2.4120467206096619E-04 + 469 8.3492611320583961E-04 + 470 -5.2692206324662580E-02 + 471 -1.1207971536443909E-02 + 472 4.5387629319584483E-02 + 473 2.9567537048931024E-02 + 474 -2.2167947510593245E-02 + 475 2.0366665338641485E-03 + 476 1.9892967511268633E-05 + 477 -3.5524256003103601E-03 + 478 -1.5676591758750545E-02 + 479 2.2670202394767113E-03 + 480 5.8162096378556528E-04 + 481 -1.7817835684442736E-02 + 482 1.1467785108305898E-03 + 483 -1.5705946443031461E-02 + 484 -2.9487519869026099E-03 + 485 -1.3962989937157976E-04 + 486 -1.2192098112896434E-02 + 487 -7.3861108487631895E-03 + 488 1.5784739910145364E-03 + 489 -7.1459518026800758E-05 + 490 -2.4781126903825790E-03 + 491 4.0058310449536455E-03 + 492 -3.3826605248151164E-04 + 493 3.6839569419524825E-03 + 494 -1.9570740018498339E-04 +Ene= -6.2863973677E-02 +Spin= Alpha +Occup= 0.0000000 + 1 5.8022939141273454E-02 + 2 -4.0512765330214261E-04 + 3 -2.0879060139624615E-02 + 4 1.4799233122578099E-02 + 5 3.1867676817177566E-02 + 6 -2.5470018971556706E-03 + 7 -4.1864409973676759E-03 + 8 7.9535751772286025E-03 + 9 5.1938672746270655E-03 + 10 -6.1832324284278860E-05 + 11 -6.1626032069467089E-03 + 12 3.3618505366151633E-03 + 13 1.3424405171245800E-03 + 14 7.3548863516433791E-03 + 15 -1.6205616965832666E-02 + 16 2.8791426019944963E-03 + 17 7.8288220284702167E-03 + 18 1.2006801626519986E-02 + 19 6.5884114750417615E-04 + 20 -8.4973571062842927E-03 + 21 1.1605291250655085E-02 + 22 -1.1553655449423560E-03 + 23 -3.6378751409581542E-04 + 24 -1.1108449340751026E-02 + 25 -5.5069590987964047E-03 + 26 -2.3192672787575264E-01 + 27 -1.0479581649716465E-02 + 28 -6.0289008851994390E-02 + 29 6.7330052455364414E-02 + 30 -4.7065863815139594E-02 + 31 -2.7564531959070406E-02 + 32 1.3759950975997996E-02 + 33 3.3062878500448680E-03 + 34 -3.9055743464460660E-03 + 35 -7.4813481251251148E-03 + 36 3.1481366007770793E-03 + 37 -2.3394814959527981E-02 + 38 -2.4726198028809730E-02 + 39 -3.5967826287807043E-02 + 40 3.1809850976019868E-04 + 41 1.3990226357857290E-02 + 42 1.9881523384291638E-02 + 43 -6.2759667942550090E-03 + 44 -1.4511803522716429E-03 + 45 1.7129503589879531E-02 + 46 -1.3295713800128791E-03 + 47 2.1334413577092370E-03 + 48 1.7160000227387166E-03 + 49 -1.4632104101698230E-02 + 50 -6.8513831211445327E-03 + 51 -7.2305524817975850E-02 + 52 -6.1825259805170629E-03 + 53 -1.4473013017509286E-02 + 54 2.7448569532782012E-02 + 55 -5.5335343265302310E-02 + 56 -4.5558907433193036E-03 + 57 -2.6524642149848007E-04 + 58 -3.6568175116579635E-03 + 59 -3.6546422303670354E-03 + 60 1.4255606118084158E-02 + 61 -4.9812611959303525E-03 + 62 -1.7705554321540889E-02 + 63 1.3986118764390746E-02 + 64 -4.6874031505467434E-04 + 65 5.8693315312644424E-03 + 66 3.0395510223570864E-03 + 67 2.5402645857574456E-03 + 68 1.2829444006396623E-02 + 69 1.7527054337199107E-03 + 70 1.1874165774379442E-03 + 71 1.9191241129654652E-03 + 72 2.9681647162022834E-03 + 73 3.8653370907972880E-03 + 74 -3.7139553238331392E-03 + 75 1.7639934536622665E-03 + 76 -6.8565706415081348E-02 + 77 1.3082550608896838E-02 + 78 1.5066189878262098E-01 + 79 7.6289039794831840E-03 + 80 -1.2462705320459599E-03 + 81 -3.7443406683991640E-02 + 82 7.1581769404383440E-03 + 83 6.2122556056338520E-03 + 84 3.4393760836290799E-03 + 85 9.8451037611884465E-03 + 86 -1.2454597151448371E-02 + 87 1.1630381115977308E-02 + 88 1.7133045271099112E-03 + 89 -3.2214548877714045E-03 + 90 1.1531112957942162E-03 + 91 -2.5880947597951148E-02 + 92 4.7636828709604367E-02 + 93 -2.6085621455165287E-02 + 94 3.1438559125790320E-03 + 95 -7.2733231279881782E-03 + 96 2.6991919523855989E-03 + 97 4.0744893503671300E-03 + 98 7.1315082658999986E-04 + 99 -1.0820210864750681E-03 + 100 1.4551173450513845E-03 + 101 1.8706160578070166E-03 + 102 -1.3155209460419473E-01 + 103 2.3110528190662564E-02 + 104 1.8653515817314811E-01 + 105 -1.1741071999018923E-01 + 106 -2.2814623522011971E-02 + 107 -5.1146047543097171E-02 + 108 2.7781615419514211E-02 + 109 1.7188855532674439E-04 + 110 -6.7243959281423505E-03 + 111 -1.7544067784488794E-03 + 112 4.3647176856752099E-03 + 113 -3.2072856766719809E-03 + 114 -4.3859126888052954E-03 + 115 2.3345999867521207E-02 + 116 -4.5840808026742187E-03 + 117 -1.8332743085691255E-01 + 118 4.4279435619162137E-02 + 119 -4.2360864307145515E-02 + 120 4.7074031035165664E-02 + 121 -9.0003842294515933E-03 + 122 1.1860877727792750E-02 + 123 -1.6311344482402139E-04 + 124 -1.2168635631035209E-02 + 125 4.4306116258062645E-03 + 126 -7.9935780751687804E-03 + 127 -2.5897227203860899E-02 + 128 4.3432542090734477E-01 + 129 2.7738307410678384E-02 + 130 -1.9196847342454929E-01 + 131 4.1170683283930254E-02 + 132 8.2150816871812457E-02 + 133 -2.5558658747956368E-02 + 134 7.4509948732530938E-04 + 135 6.3155716027690385E-03 + 136 -1.3107814191608200E-02 + 137 -2.6591459906066581E-02 + 138 3.0789626414132538E-02 + 139 4.9731307185112983E-03 + 140 1.5945963159526049E-02 + 141 1.7477492215108872E-02 + 142 -5.7125115560321613E-03 + 143 2.7517505958235450E-02 + 144 -2.1244604021462291E-02 + 145 -1.5339804975851343E-04 + 146 -4.0841460391933329E-03 + 147 9.1647401747881434E-03 + 148 7.3316829288335903E-04 + 149 3.3718884769311677E-03 + 150 2.2707331403311001E-03 + 151 -8.6798439475745497E-03 + 152 1.7572959817629529E-03 + 153 -8.4482791745745869E-02 + 154 -6.0049445510748315E-03 + 155 -2.8249965300840750E-02 + 156 -8.7607652341757172E-02 + 157 8.4278141830240683E-02 + 158 -6.3984939723666923E-03 + 159 -3.9729351657394850E-03 + 160 1.0434282508063853E-02 + 161 -3.5329925580365406E-03 + 162 -3.1729077273788923E-02 + 163 2.3402786132440314E-03 + 164 2.5076574077039004E-02 + 165 6.8487637893853608E-03 + 166 -3.1790875034277909E-03 + 167 -1.5359263239446643E-02 + 168 2.0435476939391181E-03 + 169 1.1614964703041018E-02 + 170 7.9203781339083831E-03 + 171 1.2546717262007648E-03 + 172 -1.7313818585754804E-03 + 173 -3.5482648285852418E-03 + 174 -7.8402306842087800E-03 + 175 5.5110546591569960E-03 + 176 6.2908912073751187E-03 + 177 3.3218864307257450E-03 + 178 1.0464456157348137E-01 + 179 -1.8708813564208542E-02 + 180 -1.0935074670824181E-01 + 181 1.3321538796697460E-01 + 182 -1.4063416450025282E-01 + 183 1.5610010052815475E-02 + 184 -3.3329254819590627E-02 + 185 3.7045550593756242E-02 + 186 -7.0930723002188625E-04 + 187 -1.2166658295771505E-02 + 188 1.2311035709917938E-02 + 189 1.7451069441518710E-02 + 190 7.4434472886223757E-03 + 191 -5.9193464740049717E-02 + 192 9.6749145295251440E-03 + 193 -3.4968372675630632E-02 + 194 -7.2015359625870023E-02 + 195 5.7584018644104958E-02 + 196 2.5986178081672169E-03 + 197 2.5631388134594826E-02 + 198 -4.7002572340210597E-03 + 199 -2.6062469861375171E-03 + 200 6.4057883662335738E-03 + 201 1.8211311714007097E-03 + 202 -2.8079815974499638E-03 + 203 2.4470877719683431E-03 + 204 8.0778691785401729E-02 + 205 1.2106353285436518E-02 + 206 -1.1163217020999823E-01 + 207 5.2343196927638232E-02 + 208 9.0305584512446482E-02 + 209 -9.0036597747787505E-03 + 210 1.9814643689648609E-02 + 211 9.9287382935408994E-03 + 212 -1.8147525907453263E-02 + 213 7.1186038799872747E-04 + 214 1.1164519617318517E-02 + 215 -1.0551627909030102E-02 + 216 -1.7528902725582881E-02 + 217 -1.8189663094508202E-02 + 218 2.0749405684590233E-03 + 219 8.4647552379366333E-05 + 220 -4.5194999950449941E-02 + 221 1.0718245830488013E-02 + 222 -7.1636102680573801E-03 + 223 2.0313538091118509E-03 + 224 -8.9530829422186757E-03 + 225 -6.6539274400599880E-03 + 226 1.4542449324919664E-03 + 227 -1.2603549825472888E-02 + 228 -1.1983250742978794E-02 + 229 -3.8594705652126804E-01 + 230 -8.8812852380707828E-03 + 231 3.4298654395084845E-02 + 232 2.9417488973807516E-02 + 233 -4.1969040754939119E-03 + 234 -1.9967326997580692E-02 + 235 6.4631678022094028E-03 + 236 -3.8911965125949565E-03 + 237 2.5700778030858653E-02 + 238 -7.1158021878004627E-03 + 239 3.7783679681285522E-02 + 240 -2.5924088472578322E-02 + 241 -4.1081574001148452E-02 + 242 -2.5852129698616718E-02 + 243 -1.0397174297376180E-02 + 244 2.8503405797066016E-02 + 245 4.2089070693614505E-02 + 246 -2.6509799079422768E-02 + 247 6.0629509557790678E-04 + 248 4.9938260477369817E-03 + 249 7.5619005980867302E-03 + 250 1.8888328206144716E-03 + 251 -1.2166613712495725E-03 + 252 -1.8314636772741266E-02 + 253 -6.5500277488767956E-03 + 254 3.8120245574501749E-02 + 255 3.8171224932638992E-04 + 256 1.8533112563673254E-01 + 257 -3.9124846335486650E-02 + 258 -3.0540539464637122E-02 + 259 1.0506220432957198E-02 + 260 -2.5381612234644866E-03 + 261 -8.0817513450834376E-05 + 262 -3.1712902180235226E-03 + 263 -1.0442945826058194E-02 + 264 1.0462837084300961E-02 + 265 3.7729696695612829E-03 + 266 8.1316865841950838E-03 + 267 3.2924096505312197E-03 + 268 -1.6950800745329005E-02 + 269 9.8766959027517167E-03 + 270 1.0874405996155080E-02 + 271 3.0278255131182066E-02 + 272 -6.9609808466322360E-03 + 273 9.7726890518072956E-03 + 274 -2.5804446786603132E-04 + 275 2.3936461683454055E-03 + 276 -3.2827137864394621E-04 + 277 6.4886497646662825E-03 + 278 2.6759025399174562E-03 + 279 -7.8325675461690433E-02 + 280 1.4329252155936894E-02 + 281 -1.5035672378377268E-01 + 282 1.6767954824914486E-01 + 283 6.4525148464961588E-02 + 284 2.3026370474115095E-02 + 285 -3.8244232941528809E-02 + 286 -9.9981920075544496E-03 + 287 -2.9037951924865759E-04 + 288 -3.0000202091879827E-02 + 289 1.2078790748395801E-02 + 290 -1.8302795672135753E-02 + 291 -2.3514409805406561E-02 + 292 -7.0482542497328562E-02 + 293 1.2944784013875079E-02 + 294 6.2955801694832891E-02 + 295 -1.4171141314356148E-01 + 296 -1.8330193910744150E-01 + 297 -2.1702906715502283E-02 + 298 2.2592934354808018E-02 + 299 3.3926635628605546E-02 + 300 6.7927622864206987E-03 + 301 -1.4356091646136418E-02 + 302 1.3104097789807411E-02 + 303 -5.7594903112125990E-03 + 304 -1.0627164961133488E-02 + 305 1.2912799028975472E-01 + 306 1.5022536018421320E-02 + 307 -6.7032755039424380E-02 + 308 3.3896874405321006E-02 + 309 -8.9179834447558580E-03 + 310 -5.9282794104181490E-03 + 311 1.0142122295563622E-03 + 312 2.3747286044930355E-03 + 313 8.4397241370488818E-03 + 314 2.0303073578019106E-02 + 315 -1.4067109800446589E-02 + 316 3.1897674487469745E-03 + 317 -7.3553025584858003E-03 + 318 9.4788954870374635E-03 + 319 2.7889712528502343E-02 + 320 -9.0690711898562312E-03 + 321 -4.8242039159819214E-03 + 322 -7.7322140459501658E-03 + 323 1.2133125628626714E-03 + 324 -2.9117742990255819E-03 + 325 3.8044282915587367E-04 + 326 1.8473615742385576E-04 + 327 -1.2939513533469840E-03 + 328 1.9247022771933975E-03 + 329 6.8850180168085842E-04 + 330 -5.9856238642905568E-02 + 331 -9.8160765014233958E-03 + 332 7.3463955762899293E-03 + 333 2.6117160228698505E-02 + 334 -5.1353746001014978E-03 + 335 -3.2163066981636991E-03 + 336 8.3604397627006291E-04 + 337 1.8974311931735260E-03 + 338 2.0033379215354228E-02 + 339 1.2121072358007712E-02 + 340 -4.8602762836700399E-03 + 341 4.4645036106283722E-04 + 342 1.9073457468849354E-03 + 343 1.2470412960093470E-02 + 344 5.8212861581186728E-03 + 345 5.5320980741832438E-03 + 346 4.7484303598027524E-03 + 347 -7.0739213607656061E-03 + 348 5.0246103028059980E-04 + 349 -1.0681900107525994E-03 + 350 -1.5815570556779919E-03 + 351 -1.6342853284984130E-03 + 352 -2.9273232169720023E-03 + 353 4.0812391541780464E-04 + 354 3.6391933189729251E-04 + 355 1.3623472002156101E-02 + 356 -3.7952155093978509E-03 + 357 2.4106558316720251E-02 + 358 8.4412237055393066E-02 + 359 -6.0783984471573946E-02 + 360 -5.5899938197956347E-03 + 361 -6.8962397098911278E-03 + 362 1.0111800072057246E-02 + 363 4.5986541391918488E-03 + 364 -4.7341841726294851E-03 + 365 2.5375250885364469E-03 + 366 5.6160287909902788E-03 + 367 -1.5971978792294452E-03 + 368 -3.3401497495034745E-02 + 369 4.4495998328150472E-03 + 370 -1.6899444299408756E-01 + 371 -5.2034440813311440E-02 + 372 8.1704459452889816E-02 + 373 5.4844436939667333E-02 + 374 2.7820455531945086E-02 + 375 -2.3108903648161330E-02 + 376 -6.0219997578336475E-03 + 377 7.9683169945059980E-03 + 378 -1.9255465440736471E-02 + 379 -1.4707792547001792E-02 + 380 1.7226373062106896E-02 + 381 2.1001382810068991E-01 + 382 -3.6994930332398798E-02 + 383 1.6612439540210772E-01 + 384 -1.7955885553473830E-01 + 385 -1.3071676459366147E-01 + 386 -4.2734615685804826E-02 + 387 3.9601673438524596E-02 + 388 3.4971501991502937E-02 + 389 -3.9451360977889462E-02 + 390 -1.9439455915581091E-02 + 391 1.3629394841870394E-02 + 392 2.4894584005137120E-03 + 393 2.6291102279756753E-02 + 394 2.5515828811292462E-01 + 395 1.3419821702578582E-02 + 396 -4.2016095825240540E-01 + 397 6.8493677294499775E-02 + 398 -2.6606157254478614E-03 + 399 -5.6731916947555014E-02 + 400 -4.6710907349636023E-03 + 401 1.9349311155457175E-03 + 402 -5.9150733588185955E-02 + 403 1.5768816148328431E-02 + 404 -2.0979414474377889E-02 + 405 -1.5360158766783231E-02 + 406 1.0622026263215732E-02 + 407 -3.8506903165660073E-03 + 408 4.2590305638682121E-03 + 409 -2.2692306639854529E-02 + 410 -4.8830589190615253E-02 + 411 -2.1236618190596340E-02 + 412 5.4321185744291196E-04 + 413 1.1670436685909646E-02 + 414 -1.1362190969504864E-03 + 415 6.5775272201173442E-04 + 416 -4.1043594246286822E-03 + 417 -1.3964615421581736E-02 + 418 1.8248554881578789E-03 + 419 1.4344454278189742E-01 + 420 -2.3804546072085413E-02 + 421 -5.0883198598484565E-02 + 422 2.3400072768552684E-02 + 423 2.0802867650698340E-01 + 424 -4.1551615406706923E-03 + 425 4.3827592890670975E-03 + 426 -4.5481573385366403E-02 + 427 -4.0474670892532349E-03 + 428 1.6989531109186450E-02 + 429 -1.2567322440970365E-02 + 430 2.9521077103824424E-03 + 431 9.1261473189260880E-03 + 432 1.4425850751477095E-02 + 433 -2.7154415379735241E-03 + 434 6.2976986840694776E-02 + 435 2.2536359152214355E-02 + 436 -4.2049943118613584E-02 + 437 -7.9960550110292263E-03 + 438 -1.2478441293281158E-02 + 439 5.8273746155488729E-03 + 440 -1.1016448582332956E-03 + 441 -8.5983005237713246E-03 + 442 1.7306086543264536E-02 + 443 2.6943268531102175E-04 + 444 -8.8650261350284917E-03 + 445 5.5518130538047251E-02 + 446 1.2885086871735712E-02 + 447 -3.4870072221153875E-02 + 448 1.2044511087265282E-01 + 449 -6.7192091767442038E-03 + 450 4.4348421496435985E-04 + 451 1.7306790570761659E-02 + 452 -2.9167256154675639E-03 + 453 -1.0866795556328870E-02 + 454 -6.9921044261394977E-03 + 455 2.9202533525094988E-02 + 456 -8.8568981244876381E-04 + 457 -1.4102810870341560E-02 + 458 -1.0774430380011078E-02 + 459 -6.6137755999388474E-03 + 460 3.1582480708634009E-02 + 461 3.5498513998671131E-03 + 462 -1.2074390642862760E-02 + 463 -7.1458906835016563E-05 + 464 1.3338598230679549E-03 + 465 -7.9202818735703770E-03 + 466 -7.0134091491459499E-03 + 467 1.2303955710678371E-03 + 468 -1.2363765885113765E-03 + 469 -2.1806312757502357E-03 + 470 -1.2537615567018892E-01 + 471 -4.3231762803078782E-03 + 472 6.5003262660720873E-02 + 473 2.5858522371543596E-02 + 474 -1.7928942406140347E-01 + 475 -4.2417141140783455E-03 + 476 7.4323363613238297E-03 + 477 -9.6644684987472248E-03 + 478 1.9307605349332933E-02 + 479 -6.3388662064854783E-03 + 480 -1.2498697224786205E-02 + 481 -1.6701368826062988E-03 + 482 -1.7752351105952528E-02 + 483 1.9617691753486207E-02 + 484 6.3491225920658183E-04 + 485 -1.3540255945085525E-02 + 486 -3.3690661000133425E-02 + 487 -8.2398652475159755E-03 + 488 4.0860738016404458E-03 + 489 2.3078546722172426E-03 + 490 3.2404675960869089E-03 + 491 1.1738481619991323E-03 + 492 -2.2685944153302707E-03 + 493 1.0342101368464073E-03 + 494 -3.5208316308193155E-03 +Ene= -6.0672425541E-02 +Spin= Alpha +Occup= 0.0000000 + 1 1.6439496918140362E-01 + 2 2.1997761987072248E-02 + 3 7.1724375786093308E-03 + 4 1.1733484964214388E-01 + 5 -7.9164629856387808E-02 + 6 2.7209571776401006E-05 + 7 2.6581510450499141E-02 + 8 -1.8938856309900019E-02 + 9 -2.2644261992965601E-03 + 10 -9.3428666564100409E-03 + 11 -1.3644443668143234E-02 + 12 2.4857951300647010E-02 + 13 1.6114757555770253E-02 + 14 9.3977691906411032E-04 + 15 1.6383091481034045E-02 + 16 -1.4967595680793731E-03 + 17 9.3973099566382508E-03 + 18 -1.7968106152302422E-02 + 19 3.9433468256680421E-03 + 20 7.1172850329367810E-03 + 21 -1.1375199532521719E-03 + 22 3.2325998984286232E-03 + 23 -8.9533777102553964E-03 + 24 1.7691010135510832E-04 + 25 7.7527962383739614E-03 + 26 -6.1144336726925999E-02 + 27 -6.1475205510435355E-03 + 28 9.9150683999451705E-02 + 29 7.6196904385038025E-02 + 30 -7.8688880179356921E-03 + 31 9.1782924102488538E-05 + 32 7.6208056857596839E-03 + 33 7.0606108949041314E-04 + 34 -1.1952610651424063E-02 + 35 -1.2543227756681334E-03 + 36 5.2412350291243812E-03 + 37 8.9658258527351015E-04 + 38 -1.0133430856134308E-02 + 39 -2.9689420453919542E-02 + 40 -6.6136923659628781E-03 + 41 1.8285180825744349E-02 + 42 2.2510246606439903E-02 + 43 -2.3237523823721796E-03 + 44 -2.8431793790692169E-03 + 45 1.8415603120052629E-03 + 46 1.5055689662435407E-04 + 47 -1.3180073575916273E-03 + 48 5.3976253193493261E-03 + 49 -8.9101099998163662E-03 + 50 -4.6469468476570798E-03 + 51 -2.2228231484550606E-01 + 52 -1.1175118015234601E-02 + 53 9.3531469298358441E-02 + 54 -1.4167303039832295E-02 + 55 -7.0375870017097109E-02 + 56 9.5698106404883358E-03 + 57 6.9539146689675604E-03 + 58 -1.5257512555538297E-02 + 59 -2.2484171352831744E-04 + 60 2.3265797302659025E-03 + 61 9.2907476906932613E-04 + 62 9.6256680388589460E-03 + 63 1.5178112517871153E-02 + 64 7.5003063465137014E-03 + 65 -1.1709002584857403E-02 + 66 -3.3633910997097741E-02 + 67 3.5385859966433984E-03 + 68 6.8851126794097113E-03 + 69 4.2138153748999142E-03 + 70 -3.2629429931666548E-03 + 71 3.7230247375610387E-04 + 72 3.9056291609668371E-04 + 73 -1.6692253613841341E-03 + 74 -2.9256035317564441E-03 + 75 7.7841228908736237E-04 + 76 1.3758914693246829E-01 + 77 -2.2616995504026304E-02 + 78 -9.8499464347788376E-02 + 79 -1.4602953280752272E-02 + 80 -1.6504241182971238E-01 + 81 2.4890815154432061E-02 + 82 1.7116010149019065E-02 + 83 2.8397178631022594E-02 + 84 -1.2209504232681983E-02 + 85 -6.5044144084846489E-03 + 86 -2.1051042369080563E-04 + 87 1.2085417539899393E-03 + 88 8.1594662884648481E-03 + 89 -1.4099503918336316E-02 + 90 3.9210994712685979E-03 + 91 8.3068605486144295E-02 + 92 1.0498129904715908E-01 + 93 -1.1025589018734709E-01 + 94 -1.0923404675991519E-02 + 95 -5.8893885694076701E-03 + 96 6.7528520388722302E-03 + 97 -1.2730274895040733E-03 + 98 -6.3969283313500113E-03 + 99 6.6535911802243965E-03 + 100 4.2676761096762652E-03 + 101 3.5265048022497009E-03 + 102 -7.0891386551254099E-02 + 103 1.3625070588280884E-02 + 104 1.7712089662909333E-01 + 105 -1.2852137357289829E-02 + 106 5.2105065111916142E-02 + 107 -4.4082407570937128E-02 + 108 2.9988742687717708E-03 + 109 -1.2461573096502575E-02 + 110 -6.1725024936605931E-05 + 111 8.4006072964950152E-03 + 112 7.7171415021756321E-03 + 113 8.7343790643864081E-03 + 114 -5.2660968096213566E-03 + 115 -5.4666428614408034E-02 + 116 9.6910710550291192E-03 + 117 -7.3815633933109965E-03 + 118 3.4179974609764643E-02 + 119 4.8890138767628447E-02 + 120 4.4013056183688053E-03 + 121 -1.1196831133790214E-02 + 122 -1.6982202335525356E-02 + 123 6.6586486772505181E-04 + 124 -3.4142752879924297E-05 + 125 -1.9015543801119438E-03 + 126 -9.5280355959771138E-03 + 127 -8.9405175133456423E-03 + 128 2.1304671176046858E-01 + 129 1.5465356092535573E-02 + 130 -1.0825773252508811E-01 + 131 -3.8826042868432109E-02 + 132 -3.7145986712504901E-02 + 133 -9.6056311302266488E-03 + 134 4.8968620578059589E-03 + 135 -9.3873925459531660E-03 + 136 4.0493852635562740E-03 + 137 -4.8057222934997940E-03 + 138 2.9580983880625741E-02 + 139 -3.9890690603361601E-03 + 140 2.8284003322165217E-02 + 141 2.4737479987132223E-02 + 142 7.1486689600551625E-03 + 143 3.5261690008418106E-03 + 144 2.0888023206791281E-02 + 145 5.8932187219851058E-03 + 146 -3.6599251043150007E-03 + 147 9.2057106368289990E-04 + 148 -4.9009224605150092E-03 + 149 -7.2376255746423868E-03 + 150 7.6354063453649510E-03 + 151 -6.8574596091650255E-03 + 152 -3.8912374253407254E-03 + 153 -9.0412857028512646E-03 + 154 -5.0250474683587035E-05 + 155 3.0420969146374224E-02 + 156 -1.3456835925874489E-01 + 157 6.0945186951726169E-02 + 158 3.0538231944824703E-03 + 159 -7.8295482811199246E-03 + 160 3.6779427800638182E-03 + 161 -6.7112206102976505E-03 + 162 -1.7411289362322103E-02 + 163 1.4149808285419084E-03 + 164 1.5468357341646892E-02 + 165 3.0549973132366613E-03 + 166 -2.4213682604641916E-03 + 167 -1.2880262390579858E-02 + 168 -8.0963615036252715E-03 + 169 1.7232884623508281E-03 + 170 1.4408017731919355E-02 + 171 4.2354238094790293E-03 + 172 -5.6963386993118714E-04 + 173 -1.4105252920142870E-03 + 174 -3.6776987602748323E-03 + 175 1.5371680268632059E-03 + 176 -2.3152831923922458E-03 + 177 -1.1778295092627579E-03 + 178 1.3301609756466739E-02 + 179 -2.7497770718388987E-03 + 180 -5.0957892716077639E-02 + 181 9.4643917521040122E-02 + 182 -9.4869532046252866E-03 + 183 1.5849322158576942E-02 + 184 -1.7828162655541015E-02 + 185 4.8913001006372307E-03 + 186 -1.0509992313979611E-03 + 187 -4.9221342133682691E-03 + 188 1.8059469111878047E-02 + 189 5.2374770012898007E-03 + 190 1.3718324770432310E-02 + 191 -1.3839524516396498E-01 + 192 2.5129476270854809E-02 + 193 -4.9237381960173097E-02 + 194 -1.4402445966276703E-01 + 195 2.1473960952963944E-02 + 196 1.0921433832639648E-02 + 197 4.1547878485802908E-02 + 198 -2.6117936161453043E-03 + 199 -5.5498514682987441E-03 + 200 -1.7102574537146580E-02 + 201 9.1407726291577850E-03 + 202 8.5633847795219002E-06 + 203 1.3785498448430859E-03 + 204 -1.2350612792120895E-01 + 205 -4.7471781164652935E-03 + 206 1.5875908029678764E-02 + 207 1.5817659872072762E-01 + 208 -6.9533604369875351E-02 + 209 7.3023879355762133E-04 + 210 2.0317736393219734E-02 + 211 -8.3975270794846672E-03 + 212 -6.5292918500069871E-03 + 213 -4.7048703402391596E-03 + 214 1.6416919537407381E-02 + 215 -1.5917211253837021E-02 + 216 -1.7848236087165344E-02 + 217 2.2385986067547849E-02 + 218 -4.9078384538521888E-03 + 219 1.8913925654803432E-02 + 220 -3.5212397898636651E-02 + 221 -7.5876372798097764E-03 + 222 -1.1042691537011833E-02 + 223 2.3881285722337671E-03 + 224 2.5380540009959317E-03 + 225 1.4358078488848330E-03 + 226 2.3510849581807516E-03 + 227 -1.0802337337338841E-02 + 228 -5.2371256543704307E-03 + 229 3.4742145485406878E-01 + 230 3.3160369435909783E-02 + 231 1.1295124028986243E-01 + 232 5.2107109337270231E-02 + 233 -8.1156218136585162E-02 + 234 2.5410322973873800E-02 + 235 -3.5273967568396564E-03 + 236 -7.5803517270301391E-03 + 237 -2.1360663954824177E-02 + 238 -9.2098389670053106E-03 + 239 -3.7205308507037307E-02 + 240 -3.8359406778294813E-03 + 241 1.7213646070430050E-02 + 242 2.6574465224122625E-02 + 243 -2.5679270840003723E-02 + 244 -2.2880782940132800E-02 + 245 -3.1576114685399656E-02 + 246 1.0266522090988724E-02 + 247 2.0313574043835884E-03 + 248 -2.5876090694518521E-03 + 249 1.9340738836795932E-03 + 250 -2.9969004680846833E-03 + 251 -4.2195713871135652E-03 + 252 7.5482700730184881E-03 + 253 4.5123768707566059E-03 + 254 -2.5596697335153382E-02 + 255 -1.6732807560965667E-03 + 256 3.7063878023541143E-02 + 257 4.7400993256402360E-02 + 258 -6.7811825721698041E-02 + 259 5.8314203527113822E-03 + 260 4.7295204783863965E-03 + 261 -6.8728041073238448E-03 + 262 -8.2985238006677900E-04 + 263 9.7106684081068751E-03 + 264 -8.1314448881708700E-03 + 265 1.8083738709409752E-03 + 266 -5.4304200919010007E-03 + 267 -3.0362933081943427E-03 + 268 1.2465529741961936E-02 + 269 -1.1399802238813064E-02 + 270 6.5074252365664251E-03 + 271 -8.9832520532129277E-03 + 272 2.4583527347333887E-03 + 273 1.4585499857332717E-03 + 274 -1.6858844308353517E-03 + 275 -7.1473646501536495E-03 + 276 3.3015923776335524E-03 + 277 3.5925547104456250E-03 + 278 2.9052398793309848E-03 + 279 8.3307880863482245E-02 + 280 -1.3741887624300411E-02 + 281 1.0763440241064508E-01 + 282 -3.6298240098382062E-02 + 283 -8.1984517564970327E-02 + 284 -2.2149470315380723E-02 + 285 1.0182261743974163E-02 + 286 4.7757201775680833E-03 + 287 -1.3454823438590030E-03 + 288 8.7191848201239146E-03 + 289 -9.2445488327225749E-03 + 290 -1.2317726784530350E-02 + 291 1.0168193930828693E-02 + 292 2.7422993950044922E-01 + 293 -4.2657144177917328E-02 + 294 -2.1021932386584852E-01 + 295 -1.5605619325889156E-01 + 296 2.0078612158851544E-01 + 297 2.3416460479016184E-02 + 298 1.3610937844753116E-02 + 299 -7.6643407931508881E-02 + 300 9.6611292410735492E-03 + 301 -9.5246970890444649E-03 + 302 -1.8594531397520576E-02 + 303 9.2280664499008562E-03 + 304 -1.6538750606511301E-02 + 305 5.4332220461222414E-01 + 306 5.0433433611250696E-02 + 307 8.2630224471102201E-02 + 308 -8.1399713929129466E-02 + 309 -9.5334283563963215E-02 + 310 3.7974951861109532E-03 + 311 3.1635030168229489E-04 + 312 -2.5994522344846955E-03 + 313 6.4099738971876458E-02 + 314 -1.7157247140699893E-02 + 315 -1.4246990557053546E-03 + 316 1.1045752263719276E-02 + 317 -5.6577536009303923E-02 + 318 5.4598737444676151E-02 + 319 -6.9439756650835089E-03 + 320 5.5493574360748798E-03 + 321 -4.6984043791529831E-03 + 322 -7.4964716733068287E-02 + 323 -4.5623250057368032E-04 + 324 4.7732843058908994E-03 + 325 -4.0393236832095532E-03 + 326 2.0711794136354060E-04 + 327 1.5316097405335169E-03 + 328 6.8058723472949373E-04 + 329 1.4661731026414755E-03 + 330 -6.4436811126792073E-02 + 331 2.7295463537640938E-03 + 332 -1.9278230068509505E-01 + 333 5.6365538400547928E-02 + 334 -5.2394337513182600E-02 + 335 -1.4451342948864843E-02 + 336 8.6394281314778427E-04 + 337 -1.2679639322913333E-02 + 338 1.1474094585753453E-02 + 339 1.4588593959502468E-03 + 340 1.7937618903542184E-02 + 341 1.2858034298251024E-02 + 342 -1.8056443506768278E-03 + 343 1.5312980880533941E-02 + 344 1.7457528687130998E-02 + 345 1.0352966280988318E-02 + 346 2.9598253277076644E-02 + 347 -6.6244523157853990E-03 + 348 6.0394539524037776E-03 + 349 -1.8150549724284455E-03 + 350 -3.9560185482758539E-03 + 351 -5.6891922169604063E-03 + 352 -6.1384189347646447E-03 + 353 4.4580868904036033E-03 + 354 1.4284758444499763E-03 + 355 2.0964486443963362E-01 + 356 -3.3758650866478002E-02 + 357 6.7635722580120849E-02 + 358 2.7158673354944579E-01 + 359 7.5947191445448162E-02 + 360 -1.4918680349699823E-02 + 361 -3.4152828354132997E-02 + 362 -4.8814740150077439E-02 + 363 8.8998634216690999E-03 + 364 2.0665239112296074E-02 + 365 9.4905837836133742E-03 + 366 3.1007031627385689E-03 + 367 -2.8126936773402417E-02 + 368 -6.7911647672166411E-02 + 369 1.4518402196778021E-02 + 370 -5.4800600148128008E-02 + 371 -3.0407255917919980E-03 + 372 -3.3243058208352244E-02 + 373 3.8585784197946353E-03 + 374 7.7989169553977257E-03 + 375 1.0182423448807522E-02 + 376 -1.6450887400162453E-02 + 377 3.0288342438674339E-02 + 378 -1.6607339429814322E-02 + 379 -3.9474739294577512E-03 + 380 -2.1627761335301914E-02 + 381 -1.3787112840585036E-02 + 382 2.7988856937943445E-03 + 383 2.1584596889067068E-02 + 384 -2.9714323943917799E-02 + 385 1.9276455648439517E-01 + 386 1.0021529832871672E-02 + 387 1.6824710300853842E-02 + 388 -5.3840443098319590E-02 + 389 7.1125737368073708E-03 + 390 -5.2833176705938591E-03 + 391 2.6328211479011564E-02 + 392 1.1210870212547779E-02 + 393 5.4213591775801595E-03 + 394 -1.8287892057474764E-01 + 395 -8.2978222636598247E-03 + 396 2.1742282744745840E-02 + 397 1.8068356528372723E-01 + 398 -1.2878824776462680E-01 + 399 1.4882033176867943E-02 + 400 2.3731846122261962E-02 + 401 -2.1039162199893782E-02 + 402 2.9229772154340538E-02 + 403 -7.3225879040818590E-03 + 404 2.0260563922356919E-02 + 405 9.1827053609792927E-03 + 406 -1.4929943824775258E-02 + 407 -3.3057599685202409E-02 + 408 -1.0577854109873015E-02 + 409 1.1180521971914865E-02 + 410 3.9665029146264311E-02 + 411 7.9149489027019911E-03 + 412 3.8697331314018896E-03 + 413 -2.2392054422301099E-03 + 414 5.6386637508747109E-03 + 415 -5.8584189485849552E-03 + 416 -2.2012709832719504E-03 + 417 1.7387377859099138E-02 + 418 5.1059603713220891E-03 + 419 4.7471065903125553E-02 + 420 -7.9807366898314320E-03 + 421 1.4296291390606597E-01 + 422 -9.0509362833089052E-02 + 423 -1.4513331504790844E-01 + 424 -3.1927041937599689E-02 + 425 1.7395723352823897E-02 + 426 2.6511582833629022E-02 + 427 1.6231786366712211E-02 + 428 8.9662377958163678E-03 + 429 -3.2475231676916370E-03 + 430 -1.9854314970507302E-03 + 431 7.9265888231217670E-03 + 432 1.0252636162414779E-02 + 433 7.3227408370030976E-06 + 434 3.6603377439908991E-02 + 435 -3.0804803888482685E-02 + 436 -4.6973587424765068E-02 + 437 -4.5281712380275405E-03 + 438 2.3502300235568778E-04 + 439 9.0729067341158327E-03 + 440 -9.7497883480424669E-03 + 441 9.3097227261325181E-03 + 442 -1.4652358996876638E-02 + 443 -7.5683763522345539E-03 + 444 -1.0465131709462272E-03 + 445 1.7172120685692777E-01 + 446 2.6783679139497040E-02 + 447 1.1694581220628534E-02 + 448 -1.3539449229517922E-01 + 449 -1.0538510054019225E-01 + 450 1.6943316124938847E-02 + 451 -9.9140235776227752E-03 + 452 -3.1315424645469964E-02 + 453 -6.7894487886826539E-03 + 454 2.3195377228139455E-02 + 455 -3.3183956665979814E-02 + 456 -2.9483809622205518E-04 + 457 3.0362176538237988E-03 + 458 -2.6553166494434829E-02 + 459 -2.2633016495493270E-02 + 460 -1.4064427046123254E-02 + 461 2.7057435798091743E-02 + 462 2.2775058640791383E-02 + 463 1.0468814218604241E-02 + 464 6.7598157839551662E-03 + 465 4.7063115631541044E-03 + 466 -1.0906913188978823E-02 + 467 -9.0896666999282175E-03 + 468 1.7945038029199008E-02 + 469 1.1317406472257060E-02 + 470 -3.1708601777688972E-02 + 471 1.0009778137789352E-03 + 472 2.8447369901353967E-02 + 473 -7.1392150142704641E-02 + 474 1.3753191851180829E-01 + 475 1.8129349143224613E-03 + 476 -2.5514036978703603E-03 + 477 5.2806509026181898E-03 + 478 -9.8467878105070912E-03 + 479 1.0532819626325138E-02 + 480 -9.1533705917120935E-03 + 481 -6.2883364216317090E-03 + 482 4.8766384274315962E-03 + 483 -6.5452717314437320E-03 + 484 5.4291783112313356E-03 + 485 -4.3240011062683102E-03 + 486 -9.0675347207550706E-03 + 487 7.1867470112829089E-03 + 488 -9.6838374812873698E-04 + 489 1.1154771202335908E-03 + 490 -1.9430633914504284E-03 + 491 2.0219932323881367E-03 + 492 5.8037480303800622E-03 + 493 6.3664642467265949E-04 + 494 -9.8217850019765955E-04 +Ene= -5.6071225411E-02 +Spin= Alpha +Occup= 0.0000000 + 1 -1.5839719236351146E-01 + 2 -1.2282801594258517E-02 + 3 -2.3558794237961860E-02 + 4 2.2386727868580992E-03 + 5 -5.7363011972884154E-02 + 6 3.9063773782143495E-03 + 7 8.5484825558612976E-03 + 8 -8.8114432274400290E-03 + 9 -2.0056573668762070E-03 + 10 -9.3040249428302845E-04 + 11 2.2266709705866749E-03 + 12 -2.0354597317174018E-02 + 13 6.4323067072672158E-03 + 14 -5.9396593406933831E-03 + 15 2.4264751403872045E-03 + 16 -1.1380459229602919E-02 + 17 -3.0894293995356755E-02 + 18 -1.2032416127203110E-02 + 19 -1.8512909950019066E-03 + 20 4.0348493279539323E-03 + 21 -4.8145903296339778E-03 + 22 6.0836813462950099E-04 + 23 -1.4312204420584895E-04 + 24 2.3034302111623636E-03 + 25 1.2758696763944136E-03 + 26 2.0077647946028743E-01 + 27 1.1114262065434415E-02 + 28 7.8036005531230232E-02 + 29 -9.4921046386560542E-02 + 30 8.3234988612461036E-02 + 31 1.0015343918045755E-02 + 32 -1.6637241361749822E-02 + 33 1.5348655931942119E-03 + 34 2.3369658656264725E-02 + 35 -1.0485764373916720E-02 + 36 -1.5294483805463586E-03 + 37 2.0290820972334787E-02 + 38 3.2944768861306616E-02 + 39 5.4040166185600445E-02 + 40 6.4465717673902422E-04 + 41 1.4595702954694666E-02 + 42 1.2922580644172095E-02 + 43 2.1634525228965622E-02 + 44 7.1180883285773902E-04 + 45 -8.5512454355833288E-03 + 46 2.5149269583983622E-03 + 47 1.1327834696207122E-03 + 48 -4.2436079088383673E-03 + 49 7.1806495876628436E-03 + 50 6.5496405000761823E-04 + 51 4.6642050118080147E-02 + 52 2.9800554123510432E-03 + 53 1.9792492189979864E-02 + 54 5.2139796349298740E-03 + 55 5.5853741129456715E-02 + 56 -4.0259315616068270E-03 + 57 8.4187166828098188E-03 + 58 4.6900677518349303E-03 + 59 -8.1552898959352301E-03 + 60 -9.8267140623569879E-03 + 61 -7.8275761210843744E-03 + 62 -3.7262870158396156E-03 + 63 -3.2636457584183471E-03 + 64 -1.4114816277413515E-02 + 65 -2.3469663565981211E-03 + 66 -2.6367997302220315E-02 + 67 -2.0812844900487681E-03 + 68 -2.7504168731696921E-02 + 69 -6.0899163449898343E-03 + 70 1.8203742915267958E-03 + 71 -1.9546511518259346E-03 + 72 -7.6044319605373528E-04 + 73 5.6600480063950095E-03 + 74 -4.3062689278403342E-04 + 75 -2.8032693771818211E-03 + 76 -1.9402795137281804E-02 + 77 3.4844211296626432E-03 + 78 -7.0146287345955512E-03 + 79 5.8563976490002688E-02 + 80 -1.7677732541569100E-02 + 81 -2.7440855906902964E-03 + 82 -2.0147322854721705E-02 + 83 4.7756890741367857E-03 + 84 -1.5843284981956158E-02 + 85 -1.0175809790270751E-02 + 86 2.4331553442848288E-02 + 87 -4.2070299555023319E-03 + 88 -5.5740625843009100E-03 + 89 -3.9760210890848080E-02 + 90 5.7960477335828008E-03 + 91 3.1580555809247006E-02 + 92 -7.5649889323267369E-02 + 93 2.6352413326149439E-02 + 94 -1.1969751354305926E-02 + 95 1.5555159207024277E-02 + 96 -2.9129437706532052E-03 + 97 -9.9090545988177389E-03 + 98 1.3490704659231427E-03 + 99 4.0956184139541579E-03 + 100 -3.7226135795386901E-03 + 101 7.9241897604235938E-03 + 102 8.8133826641563440E-02 + 103 -1.4877872304728038E-02 + 104 -9.6993842189593546E-02 + 105 1.6739450130651395E-01 + 106 -2.0270670713292707E-02 + 107 2.7606902095581677E-02 + 108 -3.5295041509933185E-02 + 109 5.1518626744713816E-03 + 110 9.1879128190535484E-03 + 111 -6.1961167331018741E-03 + 112 -1.0305237275593031E-02 + 113 1.0965407573771544E-02 + 114 9.3242980505145422E-03 + 115 5.9969030351957914E-02 + 116 -1.1751943486577918E-02 + 117 8.2999392105013430E-03 + 118 -4.7981831775063946E-02 + 119 7.0817549859025497E-03 + 120 -9.2418234260640050E-03 + 121 1.3907264743942261E-02 + 122 5.7649551481627100E-03 + 123 1.0029017132795078E-02 + 124 -2.6918394269492656E-03 + 125 1.6657105116992905E-03 + 126 1.3047660887261017E-03 + 127 2.8790871152998491E-02 + 128 -2.1048361464221435E-01 + 129 -1.1577489915296989E-02 + 130 4.7362635350877279E-02 + 131 4.1074521915848462E-02 + 132 4.6129357209826480E-03 + 133 1.2860538620230485E-02 + 134 2.6817674766471239E-03 + 135 2.4249455026655272E-03 + 136 -4.9495329122678624E-03 + 137 1.2931458936083927E-02 + 138 -9.5738415037063835E-03 + 139 -6.6425099152794169E-03 + 140 -2.7094586613754267E-02 + 141 -4.3204058012823690E-02 + 142 2.6357077810623022E-03 + 143 3.0263277136168668E-02 + 144 -3.2189233510068069E-02 + 145 7.2040022620122491E-04 + 146 4.7986837014381738E-03 + 147 -6.2690274394060982E-03 + 148 1.6724638975688082E-03 + 149 4.9139812276536101E-04 + 150 -5.8687502654274767E-03 + 151 1.5943752217796120E-02 + 152 6.2783809875026058E-03 + 153 -2.2771532821687337E-02 + 154 9.6367593107144248E-04 + 155 1.0129108356534184E-02 + 156 1.9161547752667038E-01 + 157 -3.0873671044324869E-02 + 158 8.4168256597678126E-03 + 159 1.6634415443185994E-02 + 160 -5.5785983111063097E-03 + 161 -6.2525948101400811E-03 + 162 7.9950671768296757E-03 + 163 7.6156870327560963E-04 + 164 -6.9422797023108388E-03 + 165 -3.2354068350830402E-03 + 166 -1.0220702234141933E-03 + 167 -8.5777969946570515E-03 + 168 -4.5818674020836683E-03 + 169 -2.4581573160120532E-03 + 170 -8.8049021521443560E-03 + 171 -7.7375653083692564E-04 + 172 2.8788854243360028E-03 + 173 3.7479490170515867E-03 + 174 5.6230554245149146E-03 + 175 -3.3061608813826043E-03 + 176 -4.2862715632391536E-03 + 177 -2.2551595222234980E-03 + 178 -4.4451711469963642E-02 + 179 9.3129360410150862E-03 + 180 -2.2252757241231474E-02 + 181 -7.1939565327071797E-02 + 182 1.7280775182744623E-02 + 183 5.7689372211835455E-03 + 184 2.3818959945487585E-02 + 185 -9.8469164958691034E-03 + 186 -2.9548435503306573E-03 + 187 -2.1723458814385107E-03 + 188 -1.4387661656899265E-02 + 189 -4.2379930241882528E-03 + 190 -1.5945424546300054E-02 + 191 -4.0016117566854222E-03 + 192 1.6025675912736976E-03 + 193 -8.6586548794356843E-02 + 194 6.0099467302102997E-03 + 195 1.0057471333180976E-01 + 196 8.5669129475617611E-03 + 197 -3.3437809002935721E-04 + 198 -2.3806906212633899E-02 + 199 1.2286411315459406E-02 + 200 -2.0290229945252899E-03 + 201 -6.8843907584049541E-03 + 202 -7.5973443215822146E-03 + 203 1.8278021508793645E-03 + 204 1.8524673286057874E-01 + 205 1.4189927085575637E-02 + 206 -8.7269062093773248E-02 + 207 -9.5443754462488373E-02 + 208 5.8152491573036560E-03 + 209 -5.5690520344737473E-03 + 210 -1.6010531535024065E-02 + 211 -1.1504447366403931E-02 + 212 -6.4728678168729592E-03 + 213 6.6910163280396555E-04 + 214 -5.3782385766587342E-03 + 215 1.6924375675286790E-03 + 216 9.9120580753256655E-03 + 217 1.5781893800322987E-02 + 218 -2.4677483689340360E-04 + 219 -1.0630550018520417E-02 + 220 2.5473879875047144E-02 + 221 1.6300651039197152E-02 + 222 1.0860664775335730E-02 + 223 3.0609512640980339E-03 + 224 4.1740810391395896E-03 + 225 3.8564848158868965E-03 + 226 -1.8872563969881816E-03 + 227 6.6196473280466066E-03 + 228 4.2601612159939801E-04 + 229 8.5623078110194401E-02 + 230 -6.4333582775538333E-03 + 231 1.2193593244368096E-01 + 232 1.3182122566880028E-01 + 233 -1.1320717066392258E-01 + 234 6.5033459104310021E-03 + 235 6.9928771131787916E-03 + 236 -1.6490454978931701E-02 + 237 -1.1370755214107655E-02 + 238 -1.3928039422060782E-02 + 239 -1.0785468413864973E-02 + 240 -3.9819494463443472E-03 + 241 -1.3562654288828843E-02 + 242 8.4286535470232075E-03 + 243 -2.5614875612430647E-02 + 244 -1.3543106656557101E-02 + 245 -2.5842917068763082E-03 + 246 1.1266363909521760E-02 + 247 2.6505446268029302E-03 + 248 3.2649357590385621E-03 + 249 -5.7913127582529533E-03 + 250 -5.6698714257722110E-04 + 251 -3.0225233024712152E-03 + 252 1.1986446965102621E-02 + 253 5.3251002948151334E-03 + 254 6.3583779055673183E-03 + 255 6.6631839002900869E-03 + 256 -3.8558570398261305E-01 + 257 -7.9311406751577922E-03 + 258 1.0311421517052029E-01 + 259 -2.5549580928823229E-02 + 260 -2.2599486043450466E-03 + 261 7.1528552170566769E-03 + 262 1.1598757375842908E-02 + 263 2.7909131117344840E-03 + 264 3.1772692215031715E-04 + 265 7.1339270515105337E-03 + 266 4.5408026739257191E-03 + 267 8.0312979395963085E-03 + 268 -6.6490472515605518E-03 + 269 1.1119814747239430E-02 + 270 1.4478393075724015E-02 + 271 -2.6364567532469886E-02 + 272 -2.2908114907267763E-03 + 273 -6.8399797870575645E-03 + 274 1.8733356849885668E-03 + 275 1.6617011938761552E-03 + 276 1.0507285431539656E-04 + 277 -7.8639940593213421E-03 + 278 -3.8684861411665983E-03 + 279 -6.3987529687456010E-02 + 280 1.1293678255275644E-02 + 281 3.2202351406348220E-03 + 282 1.1814838276214668E-01 + 283 -2.9813784256829685E-02 + 284 -3.9100881525138496E-03 + 285 -3.5155148724183176E-02 + 286 5.3743575330101462E-03 + 287 -1.0857943488580424E-02 + 288 3.3738370713372101E-02 + 289 7.2555168935805898E-04 + 290 -6.8855307805629727E-03 + 291 1.5783262474363007E-02 + 292 1.2581943730430323E-01 + 293 -1.9665180051128640E-02 + 294 -1.5947378461228714E-01 + 295 -6.8799236292560725E-02 + 296 -2.7139989517049722E-02 + 297 1.5503777100418231E-02 + 298 -2.6583626955238051E-04 + 299 -1.2410861375757618E-02 + 300 1.0546926702730277E-02 + 301 -7.9537305720761425E-03 + 302 -1.6746968993718827E-02 + 303 1.0949971924846263E-02 + 304 -1.7485486099870298E-02 + 305 4.0310992641041943E-01 + 306 3.2304902008976552E-02 + 307 4.8315627599827042E-02 + 308 -1.5215833176413660E-02 + 309 -1.1336742964096509E-01 + 310 1.0004732617880296E-02 + 311 1.1279662255020834E-02 + 312 -2.7637664980563231E-03 + 313 2.8212303809392315E-02 + 314 -2.3769243098100070E-03 + 315 -1.0136964627145969E-02 + 316 1.3223588819121087E-02 + 317 -2.8390455486029292E-02 + 318 3.4117215725124952E-02 + 319 2.1773329048790552E-02 + 320 4.6507699731086899E-03 + 321 4.0479647392228568E-03 + 322 -5.6216096182298288E-02 + 323 2.9948223547333844E-03 + 324 4.2732944356641848E-03 + 325 1.7655724656520876E-03 + 326 -8.6742029613895537E-03 + 327 -4.1795070434181326E-03 + 328 4.8440907912136238E-03 + 329 5.4661769703849492E-03 + 330 -9.1172937129236339E-02 + 331 -6.4919695889850033E-03 + 332 -1.3174395165256209E-01 + 333 -7.4996711209463163E-02 + 334 -2.9092777916631809E-02 + 335 -7.8535497353843190E-03 + 336 -9.3886083493776550E-03 + 337 -2.4402408327215690E-03 + 338 2.1801134113766819E-02 + 339 1.9720749515065587E-02 + 340 -1.5306429110801713E-02 + 341 5.2699002301591566E-03 + 342 -2.4100888166768935E-03 + 343 1.5137006038044680E-02 + 344 4.2270963789962902E-02 + 345 -8.4062428668081196E-03 + 346 1.9168405250150015E-02 + 347 9.6352161832868512E-03 + 348 9.3379752150124355E-04 + 349 -6.9253189415923193E-04 + 350 1.6631849618879012E-03 + 351 -1.3476574044777288E-03 + 352 1.8171666393980523E-03 + 353 -4.0808992961784704E-03 + 354 3.4288640438834032E-03 + 355 1.8508771076380621E-02 + 356 -2.3490751592657091E-03 + 357 1.4238812833310638E-01 + 358 1.0739705253832099E-01 + 359 -1.7953344154325690E-01 + 360 -2.5993905284677501E-02 + 361 5.6774490861125756E-03 + 362 2.5040826093191696E-02 + 363 1.3598759526002386E-02 + 364 3.2089040499758727E-03 + 365 1.7187586636508760E-02 + 366 1.5665532713809827E-02 + 367 -3.0121186108654382E-02 + 368 -7.2144626392223077E-02 + 369 1.3473405595643691E-02 + 370 -1.1280236145076087E-02 + 371 -5.1474835898087927E-02 + 372 -3.8957377725925518E-03 + 373 -1.5014193612130385E-02 + 374 1.9447408486653533E-02 + 375 -7.7906998935854893E-04 + 376 1.8914579290806835E-03 + 377 -8.4938681971513906E-03 + 378 8.0053493502206131E-03 + 379 -1.7862444318488015E-02 + 380 4.8534499200359790E-03 + 381 4.2119376521530534E-02 + 382 -7.4926909976610473E-03 + 383 -2.9115733340024291E-02 + 384 7.0031319964675112E-02 + 385 -1.6457364743745218E-01 + 386 1.9064413357394082E-02 + 387 8.6966243594723703E-03 + 388 3.5243769730795044E-02 + 389 -4.8308922887406536E-03 + 390 -2.2415648327992924E-02 + 391 -3.4462042182461780E-02 + 392 8.8313879502853899E-03 + 393 -1.8136350753472887E-02 + 394 -4.7139508437516825E-02 + 395 2.6711084396058809E-03 + 396 -1.5804613617889035E-01 + 397 -1.1195071470507091E-01 + 398 -5.5708195460112487E-03 + 399 -8.8693439556027653E-03 + 400 2.3138624860449532E-04 + 401 3.5024323732546435E-03 + 402 -2.5712688671747447E-02 + 403 1.0079692101562008E-02 + 404 -1.1469392852149554E-02 + 405 -4.8693802924576661E-03 + 406 2.7165568420530015E-02 + 407 -2.4593516915088334E-02 + 408 3.0989837742183795E-03 + 409 -3.3648791408576538E-02 + 410 4.0965261810373403E-02 + 411 3.5532989968961821E-02 + 412 6.7030822614359646E-04 + 413 -6.7870847671436573E-03 + 414 -3.2045234948173801E-03 + 415 -7.3918759348709038E-03 + 416 3.9222588522132770E-03 + 417 -1.8343617037994597E-04 + 418 -1.4466631541703503E-03 + 419 7.8153641643344596E-02 + 420 -1.2796023065737305E-02 + 421 4.9847829946093040E-02 + 422 -5.1528371105033811E-02 + 423 2.6513895493205045E-02 + 424 -1.7005641993145051E-02 + 425 9.9850235988766939E-03 + 426 -7.2376026287581611E-03 + 427 -4.3821966478035856E-03 + 428 1.6709717299526104E-02 + 429 -5.4373109517529411E-03 + 430 -1.1854042057877420E-02 + 431 1.4184444854956766E-02 + 432 2.3670084841697501E-02 + 433 -2.9660548015195934E-03 + 434 7.0922740767520073E-02 + 435 6.3905727020686115E-02 + 436 -1.3809882035350359E-02 + 437 -2.2685090138242554E-02 + 438 -1.9877852919712270E-02 + 439 6.6270104588232487E-04 + 440 1.3247287977797428E-02 + 441 -1.8939187279510338E-02 + 442 2.3621244555625857E-02 + 443 1.2797071218533742E-02 + 444 -6.2864967532315335E-03 + 445 -1.5270015958700034E-01 + 446 -4.9298507304914099E-03 + 447 -1.1189276359167622E-02 + 448 1.5410701268303789E-01 + 449 -1.1385831328416482E-02 + 450 2.2733164115107903E-03 + 451 1.2005008971265912E-02 + 452 -1.5182074319742580E-02 + 453 -5.0261689260994273E-03 + 454 -4.8927298254445549E-03 + 455 3.6532368351264943E-02 + 456 -1.8492076765806699E-02 + 457 -2.1326366909082860E-02 + 458 -1.5828124608084145E-02 + 459 -4.2713925731601564E-02 + 460 2.5055002911562905E-02 + 461 3.6184831126581172E-03 + 462 -1.0641153624746871E-02 + 463 1.6806568113076757E-02 + 464 7.0077676959476734E-03 + 465 4.5250453845584876E-04 + 466 -1.6151652789330954E-02 + 467 -6.4551431767688400E-03 + 468 7.6324514915287701E-03 + 469 1.2271653448498836E-02 + 470 8.7142085180529454E-03 + 471 4.5002458897903776E-03 + 472 1.7470325341920201E-01 + 473 7.9644563285752507E-02 + 474 -3.4184632514916108E-01 + 475 1.7451794496949655E-02 + 476 -1.9562680512520502E-04 + 477 -2.0129242128236788E-02 + 478 1.0425831661319688E-02 + 479 -9.3687395831751324E-03 + 480 -5.4879263283626675E-03 + 481 1.3971587804337124E-02 + 482 3.3833445075553523E-03 + 483 -4.4268392779723137E-03 + 484 7.2388026578863634E-03 + 485 -4.1767723866359529E-03 + 486 1.8698840161401505E-02 + 487 -2.5859974831826862E-03 + 488 -8.2796021078217642E-04 + 489 -4.7656578019262281E-03 + 490 1.1882389539398400E-03 + 491 -7.6057785900831665E-04 + 492 -1.1862969879597794E-03 + 493 3.9551217186319733E-04 + 494 1.9466370412724469E-05 +Ene= -4.9123732580E-02 +Spin= Alpha +Occup= 0.0000000 + 1 -4.0363780707503766E-01 + 2 -3.5340416802325636E-02 + 3 -9.8338598109936032E-02 + 4 1.7108116547509877E-02 + 5 5.2754072141004034E-02 + 6 -7.1003148999599702E-03 + 7 9.7749006891328094E-03 + 8 3.3768697449933962E-03 + 9 -9.2185970353842999E-03 + 10 1.8725144475306273E-02 + 11 1.1185770095087633E-02 + 12 -7.2071727499571636E-02 + 13 1.4468915465666855E-02 + 14 -1.8984652006796516E-02 + 15 8.7073645770865214E-03 + 16 6.4974865307929168E-03 + 17 -5.1794610824981609E-02 + 18 -8.8349811866661968E-03 + 19 1.7322418885825025E-03 + 20 -8.3746581116193202E-04 + 21 3.4032064114444234E-03 + 22 4.1181738225575502E-04 + 23 -4.7544891615327054E-03 + 24 -4.6745869726280862E-03 + 25 8.4415547951009425E-04 + 26 2.8188385792084791E-01 + 27 1.7720748132123227E-02 + 28 -3.4334862730399159E-02 + 29 -5.7345967357940252E-02 + 30 2.0658657919486949E-02 + 31 4.8504864530820591E-03 + 32 -6.5224525563052924E-03 + 33 -1.0610792070502018E-02 + 34 5.1125226104488056E-03 + 35 -3.0563047277325948E-03 + 36 -1.3848509861098055E-03 + 37 1.9306383059626074E-03 + 38 2.1755447180774899E-02 + 39 3.5462788018737035E-02 + 40 6.6675483320141398E-03 + 41 8.8000662963469943E-03 + 42 -3.9756688677802215E-02 + 43 -4.5164303391215270E-03 + 44 -3.4768084431354681E-03 + 45 -9.0249181066841960E-03 + 46 2.1499734535128062E-03 + 47 -5.0068957674441698E-03 + 48 -6.8943636266297764E-03 + 49 6.2934521761673070E-03 + 50 5.5267139255662048E-04 + 51 -2.3963702974237977E-01 + 52 -3.5631062148500155E-02 + 53 -8.3842519566366882E-04 + 54 1.2967396983605625E-02 + 55 4.1552302617031231E-02 + 56 -9.6187087153107136E-03 + 57 -1.1289483438772752E-03 + 58 8.5842372055342717E-03 + 59 -3.5265032774652594E-03 + 60 -2.8425883897623950E-02 + 61 -9.0614452742176794E-03 + 62 1.3645222666743076E-02 + 63 8.0619189526057507E-03 + 64 1.6656466435667914E-03 + 65 4.5506749126796673E-03 + 66 -1.2427592699821920E-02 + 67 1.5350188888765756E-02 + 68 -9.9514224738628480E-03 + 69 -6.0651151806695907E-03 + 70 -3.0530487847580342E-03 + 71 -8.8301182637848113E-03 + 72 -2.6770563715494976E-04 + 73 4.4662777763085637E-03 + 74 5.4278420785990530E-03 + 75 -1.6713929009970899E-03 + 76 -1.0203589241442804E-01 + 77 1.6242192723985863E-02 + 78 9.0270424688516145E-03 + 79 1.5914656077574241E-01 + 80 2.3760258032651824E-01 + 81 -1.9667319179187952E-02 + 82 -3.1268625399538987E-02 + 83 -3.1989445591464744E-02 + 84 -3.6288505162952915E-03 + 85 6.8262698021388686E-03 + 86 1.6914836337029306E-02 + 87 -2.7111600207234414E-03 + 88 -9.9141634986151164E-03 + 89 -1.7758736229858038E-01 + 90 2.6822383061197535E-02 + 91 1.2096033370529791E-01 + 92 -2.3792546768906372E-01 + 93 -2.4833302066695279E-02 + 94 -3.9811155200204285E-02 + 95 4.7871223967974531E-02 + 96 1.9489699448953117E-02 + 97 -9.5095474803102171E-03 + 98 -2.7275842516440597E-03 + 99 -7.6503289186466896E-03 + 100 -6.9335681905203445E-03 + 101 1.4179224707055257E-02 + 102 3.0402311224459709E-02 + 103 -6.8043326004757531E-03 + 104 -7.7282741907255842E-02 + 105 1.6867495002351540E-01 + 106 3.4597233951886311E-02 + 107 1.5096011707997703E-02 + 108 -3.6266710802212249E-02 + 109 -3.7248887296530641E-03 + 110 1.2611096117712300E-02 + 111 -5.2800002968471165E-04 + 112 -1.7109299446987300E-03 + 113 2.7377526191254553E-03 + 114 1.7092463302229959E-02 + 115 2.3858576878374581E-02 + 116 -5.6532391487190145E-03 + 117 1.8699281402019929E-01 + 118 -8.9561846172091966E-02 + 119 1.3958149558070138E-02 + 120 -5.0943256167974883E-02 + 121 1.7615562110328189E-02 + 122 3.6977949008277572E-04 + 123 6.2949319075478816E-03 + 124 2.2663005836699390E-02 + 125 -8.6324287861233966E-03 + 126 7.1652127006777058E-03 + 127 4.7312724033760365E-03 + 128 -2.3730238571238241E-01 + 129 -1.9133980210532232E-02 + 130 3.0522548637141909E-02 + 131 -9.4533188034814128E-02 + 132 5.7582714027536598E-02 + 133 7.8234698734810457E-03 + 134 -1.7487793878063800E-02 + 135 7.1995023306852413E-03 + 136 -7.9366235513167634E-03 + 137 1.5302334300736110E-02 + 138 -5.1555956550189104E-03 + 139 2.8943135497298780E-02 + 140 -1.8000205979224998E-02 + 141 -4.0603346404521838E-02 + 142 -1.5622523053861092E-02 + 143 3.6644369907682842E-02 + 144 7.6577125516814851E-02 + 145 -1.6724962508025659E-02 + 146 1.9499493103591903E-03 + 147 -7.3224398946234014E-03 + 148 2.5744046900361478E-03 + 149 4.6519927757136658E-03 + 150 -3.7588257206302429E-03 + 151 8.5105309484249311E-03 + 152 4.1906757835473941E-03 + 153 1.6141282867532823E-02 + 154 1.7859982879409203E-03 + 155 -7.1183204020796642E-02 + 156 1.3788777331099261E-01 + 157 -6.4992691473433048E-02 + 158 -6.0429931782224524E-03 + 159 1.1690730715404418E-02 + 160 -8.5256559911904475E-03 + 161 5.5466681323790138E-04 + 162 3.2736727722514859E-03 + 163 -8.9978377310651995E-03 + 164 -1.1416550090396708E-02 + 165 -9.3770015157900659E-04 + 166 -4.7359684300249090E-03 + 167 -2.3562316168997347E-03 + 168 -2.3688575510940387E-02 + 169 4.0380172803712453E-04 + 170 -8.6212738414477262E-03 + 171 5.1213716636662595E-03 + 172 1.2929758916770452E-03 + 173 6.7954413024008146E-03 + 174 4.9414273613542789E-03 + 175 -4.7182658327305678E-03 + 176 -1.4616206607549367E-03 + 177 -2.7369023196877843E-03 + 178 2.0177529116388836E-02 + 179 -2.5943995387843052E-03 + 180 -8.5273206943170723E-03 + 181 2.3520785672487480E-03 + 182 -1.3379591377049306E-02 + 183 -1.4437356630865173E-02 + 184 1.0356446920922621E-02 + 185 2.4915220974015525E-03 + 186 3.7509185918880106E-03 + 187 -2.5916166281183968E-03 + 188 -5.6192388972831049E-03 + 189 -1.0279060622623412E-02 + 190 -6.2561371958361114E-03 + 191 -5.8866316202844958E-02 + 192 1.0606554005710686E-02 + 193 -1.5398627270492235E-01 + 194 -8.0690748210908103E-02 + 195 2.7762491566503025E-02 + 196 3.1980529908280438E-02 + 197 2.0645728518945066E-02 + 198 -1.6039489072061743E-02 + 199 -3.6909460340679230E-03 + 200 -1.1143393410952678E-02 + 201 -3.3227195557311417E-03 + 202 -3.4124278041980523E-04 + 203 5.1681805450614123E-03 + 204 8.1372920359502873E-02 + 205 1.4964393603589983E-02 + 206 -6.1287770733236990E-02 + 207 5.3740944734310628E-03 + 208 8.8435388420436377E-03 + 209 -9.8976412912051143E-03 + 210 -1.5448978296607070E-03 + 211 -3.4956163758541434E-03 + 212 3.3293623880256782E-03 + 213 -9.1770268753927509E-03 + 214 6.1950724288914842E-03 + 215 9.7861241477914356E-03 + 216 -4.6987854912535930E-03 + 217 2.2513596663287224E-02 + 218 -2.0871781684472786E-02 + 219 2.3885281120463032E-03 + 220 2.0464175382830171E-02 + 221 -3.0395340419802405E-02 + 222 3.0436591122621867E-03 + 223 1.5626999359519831E-03 + 224 4.0007059165918686E-03 + 225 8.7021424343482305E-03 + 226 -1.6976474123931828E-03 + 227 -7.1008814086236994E-04 + 228 7.3949194911759469E-03 + 229 -2.7902822685123763E-01 + 230 -2.6329407589479058E-02 + 231 -8.3488894395645788E-02 + 232 6.2088943055307370E-02 + 233 -5.1025085022867213E-02 + 234 -4.9235857850057532E-02 + 235 2.1200113825834793E-02 + 236 -7.5556928200167465E-03 + 237 1.2519762388466070E-02 + 238 -7.0675901968031921E-03 + 239 2.2468726570372650E-02 + 240 1.0160419330404348E-02 + 241 -2.1846140752908111E-02 + 242 -2.4549859313158812E-02 + 243 -1.6658017023797690E-02 + 244 2.0780895205155921E-02 + 245 8.3598351475388591E-02 + 246 6.3437508365722567E-02 + 247 -1.0274167124588525E-03 + 248 2.1068642364693819E-02 + 249 -8.3951147805464785E-03 + 250 3.2353922286816206E-03 + 251 1.8904175690346939E-03 + 252 -1.1280048218258551E-03 + 253 -6.1299903499875208E-04 + 254 -4.9046926231625335E-02 + 255 -2.2978747380207210E-03 + 256 2.2199842665369890E-01 + 257 9.0295665439374617E-02 + 258 -9.9093061114890763E-04 + 259 1.2844843385573611E-02 + 260 4.8534403393594829E-03 + 261 7.9020878635625760E-03 + 262 2.4817164032388237E-02 + 263 -4.3521780347754602E-03 + 264 -9.0169340500406894E-03 + 265 -5.6607376268981645E-05 + 266 -3.6990760558500402E-03 + 267 2.0620869970952142E-02 + 268 -1.2447809858970883E-02 + 269 -1.7382325246487119E-02 + 270 -1.8622212390176075E-02 + 271 1.1944818776640682E-02 + 272 -2.3657495890980025E-03 + 273 7.1350495514337271E-05 + 274 4.8413856373507513E-03 + 275 3.4761395981047286E-03 + 276 -3.4651791810618288E-03 + 277 -8.0760979463544245E-03 + 278 -1.2957988055445693E-03 + 279 -5.3748738228573270E-03 + 280 -8.0049147267379590E-04 + 281 -1.5839408956275344E-01 + 282 1.8645510021776949E-02 + 283 -6.5986240199446641E-02 + 284 4.8278872558958574E-02 + 285 -7.3242012125047566E-03 + 286 5.9922583840069940E-03 + 287 1.2222570713024964E-02 + 288 -2.6476183846552585E-02 + 289 -7.8026281292977243E-03 + 290 -6.6054647701377272E-03 + 291 -2.9124176078462190E-02 + 292 -1.0423148863440790E-01 + 293 1.8901190344652107E-02 + 294 -7.5061119164430451E-02 + 295 -2.7664444456923894E-02 + 296 -2.4232511744961538E-01 + 297 -3.3414632749520767E-04 + 298 -7.1633739834775249E-03 + 299 5.4503933961599881E-02 + 300 6.2416698690643917E-03 + 301 6.8514268492311624E-05 + 302 -5.6643422326065982E-03 + 303 5.2651331222194472E-03 + 304 -1.8981175627659365E-02 + 305 1.6109875586848071E-01 + 306 5.4697976835286072E-03 + 307 3.8298437414430609E-04 + 308 -7.1477989138518730E-02 + 309 -8.8711253862939529E-02 + 310 4.8373494354202228E-03 + 311 -4.9689179150213363E-03 + 312 -7.2552760516421304E-03 + 313 4.1696704555314774E-03 + 314 1.0133501169082855E-02 + 315 1.1286301099973096E-02 + 316 1.1223989163955247E-02 + 317 -7.6985571692660092E-03 + 318 7.8882730969968406E-03 + 319 3.2407156040343686E-02 + 320 1.9281394021956218E-02 + 321 5.9273530473576766E-03 + 322 6.3674008100911752E-03 + 323 3.7070074201663739E-03 + 324 -1.5128778715786767E-04 + 325 -2.2656976859700704E-03 + 326 -3.4045249394376322E-03 + 327 -1.6208025032287475E-03 + 328 -1.8519049557605097E-03 + 329 6.7836822566591255E-03 + 330 -2.2653600600864180E-04 + 331 -3.7270799815752181E-04 + 332 -2.2622007614894712E-01 + 333 -6.0556283493498272E-02 + 334 -5.4483293815868410E-02 + 335 -2.1808099323694062E-02 + 336 -3.0193987152793461E-03 + 337 -1.1642887639984840E-02 + 338 1.0899396258900422E-02 + 339 3.1207225088541093E-03 + 340 3.6192090051705449E-03 + 341 3.3920728332868951E-03 + 342 -3.3032057991964877E-03 + 343 4.1179964607361719E-03 + 344 1.2094610077033566E-02 + 345 -4.8362933629529439E-03 + 346 2.2521725743860859E-04 + 347 -1.8069618561296007E-03 + 348 4.4580558058844233E-03 + 349 1.9663547201527278E-03 + 350 -3.8166535678679967E-03 + 351 7.4147576586523637E-04 + 352 -5.9606735664519293E-03 + 353 -1.5119938015788553E-03 + 354 8.1042212372707772E-04 + 355 9.0257689906804300E-02 + 356 -1.6364637811885317E-02 + 357 -1.3566546210639973E-02 + 358 5.1574468239893541E-02 + 359 -8.6941916356608317E-03 + 360 -7.7118462807108041E-03 + 361 -5.4121607726859066E-03 + 362 -1.0495867947508841E-04 + 363 4.3610553666259743E-03 + 364 1.2277564389691492E-02 + 365 1.2906252172177824E-02 + 366 9.2527717338103145E-03 + 367 -1.2995829077137455E-02 + 368 -1.0178593425658668E-01 + 369 1.7558311791698509E-02 + 370 -1.9394329315710050E-02 + 371 2.6719393459347804E-02 + 372 2.6979521986951211E-02 + 373 2.3136125456674132E-03 + 374 -3.6873171208049835E-03 + 375 -1.3443747998370451E-02 + 376 -1.5807889055275582E-03 + 377 -1.4630402927623451E-02 + 378 5.8336619670660266E-03 + 379 6.5194649907814462E-04 + 380 -2.2134038902822308E-03 + 381 -5.5150919483141714E-02 + 382 1.0146062745529654E-02 + 383 -8.9308617218296374E-02 + 384 2.5057696556307803E-02 + 385 -1.0203366371374598E-01 + 386 1.4709776135971540E-02 + 387 -2.1690934002147801E-02 + 388 2.9462478568609323E-02 + 389 -2.3240945198948676E-02 + 390 4.2774687175656169E-02 + 391 1.8689569984922036E-02 + 392 4.9932728391446773E-03 + 393 -1.2272034258382564E-03 + 394 3.3340673591982234E-01 + 395 1.1248666198938934E-02 + 396 -1.6132482777370211E-01 + 397 1.2830348733236158E-01 + 398 5.8327592321747272E-02 + 399 -3.1599652928613706E-02 + 400 2.6533021542656725E-03 + 401 1.9299160208894699E-02 + 402 -5.3581195971151739E-03 + 403 7.1797366494267935E-03 + 404 -2.8241779665030020E-03 + 405 -4.6858707182641200E-03 + 406 -1.8485725743567029E-02 + 407 7.1447475353069917E-02 + 408 2.8807341832273452E-02 + 409 2.1871785967507726E-03 + 410 -6.2704715965852212E-02 + 411 -2.1061444314096102E-02 + 412 -2.1049701902999584E-03 + 413 3.5212402662175334E-03 + 414 -1.6947696653360109E-03 + 415 -1.2711836673841657E-03 + 416 3.1547006505105711E-03 + 417 -1.5211401221083458E-02 + 418 -5.7205221745041078E-03 + 419 6.0365852147838094E-02 + 420 -1.3137662056937286E-02 + 421 5.7584620860885678E-02 + 422 8.9214215678324008E-02 + 423 3.0043144675560095E-02 + 424 -9.6483684427105705E-03 + 425 -2.9146164630316513E-02 + 426 -9.3069473666916227E-03 + 427 -5.6278725281636206E-04 + 428 1.5793878191274529E-04 + 429 -2.2445575703242897E-02 + 430 5.0409737756670304E-03 + 431 8.9175235153385931E-03 + 432 1.9895783936802726E-02 + 433 -2.0362652315999582E-03 + 434 -1.6366790285136826E-02 + 435 -6.9340420402722008E-02 + 436 1.4705132027443477E-01 + 437 5.2813462911642246E-04 + 438 1.3044478892966074E-02 + 439 -2.8304565819466797E-02 + 440 -1.5453765129833206E-02 + 441 2.6438772566503357E-03 + 442 -2.2870510599265544E-02 + 443 -6.9499113737667107E-03 + 444 9.5539902067905275E-03 + 445 -8.8750655847303003E-02 + 446 -6.7109329389505824E-03 + 447 -5.7164817300342239E-03 + 448 -8.4395320285279629E-02 + 449 -4.7770139239436356E-02 + 450 3.6555576737384021E-03 + 451 6.2457736065911528E-04 + 452 -1.2415583613176814E-02 + 453 -1.4767072625220888E-03 + 454 5.0009978113526032E-03 + 455 -1.6357565778753160E-02 + 456 3.6315808059454344E-04 + 457 1.4587756715902003E-02 + 458 -2.3308864572132260E-02 + 459 -1.5650557963148746E-03 + 460 -1.8902696462605381E-02 + 461 -1.3927924677397013E-02 + 462 5.2770410031548733E-02 + 463 2.9529655651286983E-03 + 464 1.9566669180840824E-03 + 465 -5.3726741317227170E-03 + 466 -1.1535019708337662E-02 + 467 -2.3221725983365825E-03 + 468 4.4964108776990926E-04 + 469 -2.1490547176374534E-03 + 470 8.9866585676716074E-03 + 471 4.7080315782465094E-03 + 472 -9.0256313347127332E-02 + 473 -1.4575014695070934E-01 + 474 3.4753512998437858E-01 + 475 -1.0183105958578275E-02 + 476 -5.0626590467732317E-03 + 477 2.1980773215117721E-02 + 478 1.0149445505848497E-02 + 479 9.7314100369752434E-03 + 480 5.2469179554618687E-03 + 481 6.6586090886360796E-03 + 482 -3.2376394731512244E-03 + 483 3.5156953211233674E-02 + 484 -1.5649129986165761E-03 + 485 9.2154929736007630E-03 + 486 6.3816629565324051E-04 + 487 3.4379856004859680E-03 + 488 8.2255544907314563E-04 + 489 2.1841576961899706E-03 + 490 2.5912810769514283E-03 + 491 -3.7470310833591799E-03 + 492 -1.5810933613331342E-03 + 493 -3.0473199685327706E-03 + 494 3.2806518561209345E-04 +Ene= -4.6026042399E-02 +Spin= Alpha +Occup= 0.0000000 + 1 -1.5760971789402337E-01 + 2 -1.1165763196359105E-02 + 3 -6.3613081309552760E-02 + 4 6.5779356618535303E-02 + 5 2.4705748163488125E-02 + 6 -1.0836128271500821E-02 + 7 2.7433632651414640E-02 + 8 -6.5637557212366096E-03 + 9 -4.6096104285461180E-03 + 10 1.1297550357318638E-02 + 11 -9.2597054613655170E-03 + 12 -2.7810941662596251E-02 + 13 7.7163818208869656E-03 + 14 -1.9375772739296963E-02 + 15 3.1227894726209494E-02 + 16 1.3633727203549500E-02 + 17 -3.5550251310348842E-03 + 18 -3.7192573675432251E-02 + 19 5.4696105634781484E-03 + 20 8.2543420992640618E-03 + 21 8.4358935622716219E-04 + 22 5.5032450878334329E-04 + 23 -1.2996102329374815E-02 + 24 -1.0778005244410689E-04 + 25 1.1390805479352837E-02 + 26 9.2629077165149384E-03 + 27 4.1023623072653529E-03 + 28 -1.1328590314086058E-01 + 29 3.5519804592564694E-02 + 30 -1.0824862525159276E-01 + 31 -9.0140459312541468E-03 + 32 8.6826472851106559E-04 + 33 -1.3453620171644167E-02 + 34 -1.4705246140723280E-02 + 35 1.8879155018032646E-02 + 36 -8.9259031982327514E-04 + 37 -6.1865834789906950E-03 + 38 -3.8038070050706224E-02 + 39 4.4216908498246610E-03 + 40 1.2451985916988170E-02 + 41 -1.3232709930690298E-02 + 42 -9.3353860510363811E-03 + 43 -2.8732417235259596E-02 + 44 -4.4261986713695694E-03 + 45 -5.1211961821723030E-03 + 46 -2.0456022595576164E-03 + 47 -1.4015894724742739E-02 + 48 4.9913740315063217E-03 + 49 -8.5341506259219320E-04 + 50 9.9338834876918540E-04 + 51 -6.0414747233829191E-01 + 52 -6.6009902986837898E-02 + 53 8.3974887959408079E-02 + 54 -8.0686109357502554E-03 + 55 -1.7403045524552646E-01 + 56 5.9672919220173969E-03 + 57 -1.1467943500243404E-02 + 58 -2.2122365359504310E-02 + 59 -1.5282323613948557E-02 + 60 8.4064610674958636E-03 + 61 1.0875465219586300E-02 + 62 2.5996590270902301E-02 + 63 1.8896768664451221E-02 + 64 -1.6767073863419208E-02 + 65 2.2460316024176169E-02 + 66 8.0859223801684130E-03 + 67 1.1637381514515859E-02 + 68 5.2940383764897216E-02 + 69 1.0930640780944601E-03 + 70 -5.6809343600510596E-03 + 71 -4.8867431664888208E-03 + 72 4.6046135579212586E-04 + 73 -3.5282911892055729E-03 + 74 -3.9987223717700563E-03 + 75 2.3642308996795701E-03 + 76 2.7334100735790047E-02 + 77 -6.2861063440384345E-03 + 78 -1.7191965104447343E-01 + 79 5.0939656716821387E-02 + 80 3.1522536770576037E-02 + 81 4.0310092619195999E-02 + 82 -2.5727362318153741E-03 + 83 -5.0558571665006817E-03 + 84 9.0264474776727433E-03 + 85 -1.6558616635706358E-04 + 86 3.0859543174110893E-03 + 87 -1.3310629167818798E-02 + 88 -1.1336693180789765E-03 + 89 -1.3770443867767079E-01 + 90 2.3775942985056451E-02 + 91 1.3760381614506961E-01 + 92 -1.2937640862537439E-01 + 93 -1.2756906685869090E-01 + 94 -3.2848844516641967E-02 + 95 2.7515426466266597E-02 + 96 2.4824982181021679E-02 + 97 5.7242777317370154E-03 + 98 -1.0150348081350116E-02 + 99 -8.6629565829116125E-03 + 100 2.7872172326088552E-03 + 101 1.5866113104790133E-03 + 102 -1.5829462743217410E-01 + 103 2.7621848106785477E-02 + 104 2.3340101411192377E-01 + 105 6.4107209644113469E-02 + 106 1.8922051780513588E-01 + 107 -6.9324650069841551E-02 + 108 -1.0548535044985824E-02 + 109 -3.3172356400075133E-02 + 110 -1.2731510690004926E-02 + 111 2.1784849141160863E-02 + 112 1.4133765119606699E-02 + 113 -1.5684478045018314E-03 + 114 1.2911592831259432E-02 + 115 2.6327992722366720E-02 + 116 -6.1084668915564631E-03 + 117 -1.8976336950362705E-02 + 118 -3.2072893212189854E-02 + 119 -8.2462727489330784E-02 + 120 7.0076587319279253E-03 + 121 -1.3945292236220139E-02 + 122 3.0037471000846517E-02 + 123 -1.8488335874174169E-02 + 124 -4.8564634478779093E-03 + 125 1.4943859553693422E-03 + 126 -3.6635658632418575E-03 + 127 -2.4531750192847215E-03 + 128 -1.1025406403249073E-01 + 129 -1.4579560512825749E-02 + 130 6.4630522445259964E-02 + 131 1.2360859719098168E-01 + 132 -2.9197959186299256E-02 + 133 9.4149915243938228E-03 + 134 1.5929038784719095E-03 + 135 -8.0895779799489524E-03 + 136 -9.0329406491522143E-03 + 137 -1.3877046303937442E-02 + 138 -3.5007175468047498E-02 + 139 -1.3123686346019632E-02 + 140 -6.6423635332354290E-03 + 141 -1.3021860351899402E-02 + 142 -3.1939183574140585E-02 + 143 -2.2995980508822979E-02 + 144 -4.7545992183892466E-02 + 145 1.0406012120234995E-02 + 146 2.8306067919553614E-03 + 147 6.2420996670166798E-03 + 148 3.4057057030040748E-03 + 149 3.0687117973866871E-03 + 150 -2.8299932997786137E-03 + 151 3.1180179069168123E-03 + 152 1.6796409361282915E-03 + 153 6.4789280048275916E-02 + 154 -3.5779869966438538E-03 + 155 9.4817841499906186E-02 + 156 3.1940377474602079E-02 + 157 1.9392223893608357E-01 + 158 4.2419906288632689E-03 + 159 2.2470385776989588E-03 + 160 1.6407552226201001E-02 + 161 -6.4170562134212607E-03 + 162 -1.0560393181791283E-02 + 163 -3.7261376943891803E-03 + 164 1.3566147258450564E-02 + 165 -5.2236347909605553E-03 + 166 1.0258325135243584E-02 + 167 -5.6488666460420979E-04 + 168 2.0793642039915500E-03 + 169 -9.9999290571754669E-03 + 170 -1.2163752358301850E-02 + 171 7.0465955496524521E-03 + 172 6.2718386581899575E-03 + 173 1.9415655917048970E-03 + 174 -2.9140745228624582E-03 + 175 -2.0482224576469539E-03 + 176 -2.4932839114717672E-03 + 177 -1.0687556293998803E-03 + 178 -9.4297492913713490E-02 + 179 1.6435123363182855E-02 + 180 5.7718871484163693E-03 + 181 -6.6685380263968475E-02 + 182 1.8317001601613889E-01 + 183 2.6456040131552352E-02 + 184 2.1900310360856688E-02 + 185 -3.5000771788224840E-02 + 186 2.6269068491042010E-03 + 187 -7.9549554398910712E-03 + 188 -7.7038332351483212E-03 + 189 -5.4829730831531447E-04 + 190 -6.7660955519336097E-03 + 191 -9.2554877543550407E-02 + 192 1.7823210813105159E-02 + 193 -2.5038239895993541E-01 + 194 -1.0750206967249920E-01 + 195 -5.7245722312897866E-02 + 196 5.4653439532990684E-02 + 197 3.3535869007897588E-02 + 198 4.7896509865372680E-03 + 199 -9.9114286728858789E-03 + 200 8.9101507720470291E-03 + 201 7.7996838196700358E-03 + 202 3.7597481376533534E-03 + 203 3.6146184569575218E-02 + 204 1.1452261937793047E-01 + 205 6.8505290189617334E-03 + 206 2.8111605945547655E-02 + 207 -5.2566109757258436E-02 + 208 -1.4048144940343807E-01 + 209 4.1984562986453723E-04 + 210 -3.0789655347363443E-04 + 211 -2.0110849710349179E-02 + 212 3.0792445932415181E-02 + 213 -9.9167193409199703E-03 + 214 -7.5633228139509239E-03 + 215 1.0395248833014745E-02 + 216 1.8443487971279128E-02 + 217 6.0373497761616005E-02 + 218 -2.1998816835821305E-03 + 219 -2.0849981313426760E-02 + 220 1.6497987350401536E-02 + 221 1.0672756071371749E-02 + 222 -1.6704881192368959E-04 + 223 1.1561607114993848E-02 + 224 4.9536890319093656E-03 + 225 2.3134621492153602E-03 + 226 1.4280242942856373E-04 + 227 -1.0219445800810375E-02 + 228 -1.3576173867325190E-03 + 229 1.8951652989418280E-01 + 230 4.5402214252593665E-03 + 231 -1.3865213182802771E-01 + 232 -2.8390483083014142E-02 + 233 3.9401207988611561E-02 + 234 -2.6564068681884882E-02 + 235 9.6483083796440466E-03 + 236 9.2794437683356313E-03 + 237 4.4182740178633547E-03 + 238 2.8497874743950379E-03 + 239 -1.8685803880681605E-02 + 240 3.2003213002920450E-03 + 241 1.8271038114305190E-02 + 242 1.8667293079739744E-02 + 243 1.0151054094356289E-03 + 244 -1.1821395006494555E-02 + 245 1.6222468057029728E-02 + 246 4.7144598206741113E-02 + 247 -4.8857679101657406E-03 + 248 5.6678450339290327E-03 + 249 -6.4505843624014254E-03 + 250 1.5712383246635124E-03 + 251 9.9533037527072270E-04 + 252 5.0116266711639655E-03 + 253 -4.8271440373773376E-04 + 254 -1.3890678783974162E-02 + 255 -6.7451119055396223E-03 + 256 5.2466064848229965E-02 + 257 -2.1235363520662631E-01 + 258 -1.2512843481252550E-01 + 259 5.2079716575155789E-03 + 260 -1.6096135712455491E-02 + 261 -6.7850489978617144E-03 + 262 -1.3519174530631825E-02 + 263 -2.7375596585200359E-03 + 264 -3.8630872093957870E-03 + 265 -1.0235234257161488E-02 + 266 -2.4121571636958120E-03 + 267 5.0839376678444240E-03 + 268 -8.0232014227355809E-04 + 269 -2.6816594280158597E-02 + 270 -2.6540057451834596E-02 + 271 -5.8285268590559502E-03 + 272 6.2642653968194586E-04 + 273 3.4864727584463169E-04 + 274 -2.6104998234438423E-03 + 275 1.7543011942952925E-04 + 276 6.7671646166873520E-04 + 277 -8.9165554926066406E-04 + 278 1.8968617112801629E-03 + 279 1.3033449736620970E-01 + 280 -2.4683487845591160E-02 + 281 5.3650673569251392E-02 + 282 -2.2218460089207354E-01 + 283 -4.5649058831598477E-02 + 284 -1.5905048710555026E-02 + 285 5.1184490836530080E-02 + 286 -7.3841499387858134E-03 + 287 -9.7944547408367164E-04 + 288 -1.3129686889842269E-02 + 289 1.7873225401775796E-03 + 290 7.6254469644536317E-03 + 291 4.8677661472570381E-03 + 292 -3.3899922015678638E-02 + 293 6.7344156099524337E-03 + 294 -5.7301514531481350E-02 + 295 1.4523688616149980E-01 + 296 9.0762953669632999E-03 + 297 1.0618832588679071E-02 + 298 -2.9198001496570564E-02 + 299 2.7981035697670657E-03 + 300 -1.0650936997041255E-02 + 301 1.0709553604086661E-02 + 302 -1.0826750335913991E-02 + 303 -1.7440159817019645E-03 + 304 6.8972447512088645E-03 + 305 -1.4525746388001878E-01 + 306 -1.4239220936331487E-02 + 307 -6.3284610863684462E-02 + 308 2.6492230860718897E-02 + 309 -8.4718620413955295E-02 + 310 -9.2589153864513340E-03 + 311 3.5820657065780406E-03 + 312 -8.6665040463055464E-03 + 313 -1.7973395304464158E-02 + 314 1.0228713614281095E-02 + 315 5.4656881927335251E-03 + 316 6.0210591781645088E-03 + 317 9.7084095977595358E-03 + 318 -1.5273447773862258E-03 + 319 -6.0406253659347348E-03 + 320 3.3831292920636713E-03 + 321 2.3416069456126589E-02 + 322 7.9776257419937602E-03 + 323 3.5907586767708693E-03 + 324 2.2880025923231176E-04 + 325 -3.5135130692914461E-03 + 326 -4.2522530376696488E-03 + 327 -2.0474452036239928E-03 + 328 -4.0912257950149189E-03 + 329 -6.0789378218730752E-04 + 330 5.6860069110561337E-02 + 331 -4.2072736653691739E-03 + 332 2.1503996270101463E-02 + 333 1.5617090062649107E-02 + 334 -7.8035265322893149E-02 + 335 -6.5079496650496593E-03 + 336 1.8468337060603449E-03 + 337 -1.7344063810144597E-02 + 338 -2.1338183544560374E-03 + 339 4.4702179877450085E-03 + 340 1.4158412864568754E-02 + 341 -1.9571205077878995E-03 + 342 -1.0527891448382457E-02 + 343 -1.7689918017246573E-03 + 344 -8.3547723563692014E-03 + 345 -2.6257182387437704E-02 + 346 -1.2734029976992812E-02 + 347 -4.3850841429196270E-02 + 348 1.0353786171751301E-02 + 349 -3.3709795631352226E-03 + 350 -7.1415876730641491E-03 + 351 5.1486231192200728E-03 + 352 -1.5796447850213297E-02 + 353 5.3149603504233601E-03 + 354 -1.2186045187756421E-03 + 355 4.4882706579924261E-03 + 356 -2.5404375788132989E-03 + 357 -2.7996461651143091E-02 + 358 -6.9342974341282962E-02 + 359 1.5604889839213315E-02 + 360 9.1580083110028819E-03 + 361 2.0773544823354952E-02 + 362 -9.4210474108265569E-03 + 363 -4.9220933634747761E-03 + 364 -1.9191954012457173E-03 + 365 6.0616239827776808E-03 + 366 -6.1320644532075568E-04 + 367 1.2644184151314160E-02 + 368 -9.1648321959840087E-02 + 369 1.8314990631425134E-02 + 370 -7.6327015936206027E-02 + 371 2.0918204996441719E-01 + 372 -9.9548392408159811E-02 + 373 2.0371649006552056E-02 + 374 -5.5915205556100460E-02 + 375 2.6955259218390683E-02 + 376 1.2195806568530662E-02 + 377 6.1689685940405359E-03 + 378 -6.5529853235249749E-03 + 379 1.7458349353687098E-02 + 380 -4.1215682320491415E-02 + 381 -2.9848315251121828E-02 + 382 5.4116361423004172E-03 + 383 9.9553091718025156E-03 + 384 1.5662238411685331E-01 + 385 -1.2521990852907722E-01 + 386 1.1855565822999976E-02 + 387 -3.6850636540381385E-02 + 388 1.4688347778897611E-02 + 389 -1.1183199398456457E-02 + 390 -1.7538502628824004E-02 + 391 -5.5417120699370907E-03 + 392 -2.0971698549975781E-02 + 393 -2.8232384630544251E-04 + 394 1.4790276643777309E-01 + 395 1.0191487879331926E-02 + 396 -9.9472885525456363E-03 + 397 1.2821276061248216E-01 + 398 -1.0701762076012648E-01 + 399 1.9488126052550573E-03 + 400 1.5230531173088877E-02 + 401 -6.4804528911450738E-03 + 402 -1.0032281890879001E-02 + 403 -8.1695695498065369E-03 + 404 -8.4295585641049938E-03 + 405 3.8446246296391838E-02 + 406 4.9021967227385298E-03 + 407 -2.6318065933867402E-02 + 408 -7.2063674097876586E-03 + 409 -3.0359417570442131E-02 + 410 5.4465549247006202E-02 + 411 -5.4885798937053254E-03 + 412 -1.2914329818145471E-03 + 413 -5.2683495214702475E-03 + 414 -1.3162457796737309E-03 + 415 2.2690509865669144E-03 + 416 -2.0639294562564210E-03 + 417 8.0967296805852190E-04 + 418 -1.5559187332637679E-03 + 419 3.7772723776975256E-02 + 420 -5.8462783121158738E-03 + 421 -3.8423333505022229E-02 + 422 1.2217155006148060E-01 + 423 4.8113085490700092E-02 + 424 1.0369192649126445E-02 + 425 -1.8322519723897743E-02 + 426 -8.4553212120692129E-03 + 427 -1.6033738302094070E-03 + 428 6.2400712987326263E-04 + 429 -1.6449030552001503E-02 + 430 4.3213774991267264E-03 + 431 -4.4431012575337952E-03 + 432 -1.7146724754978061E-02 + 433 2.9212071314050733E-03 + 434 9.0174438539589764E-03 + 435 -3.8052948483372623E-02 + 436 -1.0917954393115288E-01 + 437 6.3410150732372897E-03 + 438 6.6800290948485878E-03 + 439 1.2912345440356673E-02 + 440 1.3138579536445169E-02 + 441 -1.1875201743576035E-03 + 442 1.9576672280424309E-02 + 443 -3.7982880962540841E-03 + 444 9.1519019846757546E-03 + 445 -5.1139645338395129E-02 + 446 -1.1664501450313154E-02 + 447 -2.9434284348354049E-02 + 448 1.2221331006160036E-02 + 449 -3.4003543750088122E-03 + 450 -8.9939668888741105E-03 + 451 1.4024462884272979E-02 + 452 4.4648812849245521E-04 + 453 1.9554908463677859E-02 + 454 7.2377959413967670E-03 + 455 -1.9038979029454381E-02 + 456 2.5780681224901430E-05 + 457 -2.5629551100749163E-02 + 458 1.0276246468153715E-02 + 459 2.6917607178064459E-02 + 460 2.9268520702631029E-05 + 461 -2.4690121326072414E-02 + 462 -3.2333408549744126E-02 + 463 -3.6256892490501898E-03 + 464 2.1078174648849352E-04 + 465 -5.5440563578184627E-03 + 466 7.1234949459988402E-03 + 467 3.7558848165638935E-03 + 468 -5.2967884086849194E-03 + 469 -5.5613500221315939E-03 + 470 -6.2613624951898622E-02 + 471 -9.7268220438504732E-03 + 472 -8.2231929642572685E-02 + 473 1.3899887243181097E-01 + 474 -2.8508324366452426E-01 + 475 -8.3961292201113775E-03 + 476 1.1879150542811513E-02 + 477 -2.0678393034477969E-02 + 478 -8.0930630046201421E-03 + 479 7.1342283109845927E-04 + 480 8.9493500735808758E-03 + 481 -1.5431116141275328E-02 + 482 1.6311529440240710E-02 + 483 -1.5820644463177866E-02 + 484 1.1162094903813915E-02 + 485 9.4723404792593901E-03 + 486 -1.3601471028148309E-02 + 487 2.0968989766715698E-02 + 488 -2.0032142245770073E-03 + 489 2.6233376836219528E-04 + 490 1.9714732978647286E-03 + 491 2.8445379486323765E-03 + 492 1.0359730966233685E-04 + 493 -1.5620660145106999E-03 + 494 2.4188378327280892E-03 +Ene= -4.2503955903E-02 +Spin= Alpha +Occup= 0.0000000 + 1 -1.6069574765336614E-01 + 2 -1.2519530082772925E-02 + 3 -3.9701938499900835E-02 + 4 -4.3479667432358739E-03 + 5 5.8000026744709665E-02 + 6 4.2681272948388660E-03 + 7 -6.0563066531652294E-03 + 8 1.3601619809542175E-02 + 9 -5.9866834070596208E-03 + 10 6.3227612495489844E-03 + 11 1.3344087260918878E-02 + 12 -1.5360776507741689E-02 + 13 3.1524132638772553E-03 + 14 1.0651009379446113E-02 + 15 -1.6681406707983581E-02 + 16 1.5836990290815627E-03 + 17 -3.0141953211330556E-02 + 18 1.9352227326617299E-02 + 19 -1.6090250850383867E-03 + 20 -4.4944860391899289E-03 + 21 -2.0423938779773684E-04 + 22 1.5899390886648761E-03 + 23 8.9901113855656387E-03 + 24 1.2575263337500575E-03 + 25 -4.1491442691975362E-03 + 26 -2.1405877247510810E-01 + 27 -1.2313914873547802E-02 + 28 -5.8620592138105498E-02 + 29 4.0794917446581612E-02 + 30 -9.4620215188013931E-02 + 31 -4.9100073753143743E-03 + 32 1.4878445767006075E-03 + 33 2.5500903360820465E-04 + 34 -1.5545417174373037E-02 + 35 1.1575839398852155E-02 + 36 5.3339259620139240E-03 + 37 -5.8874099767466381E-03 + 38 -3.8620390605115157E-02 + 39 -5.3381843957550169E-02 + 40 2.5343954996086167E-02 + 41 -7.9241180790879133E-04 + 42 -7.0302638550836976E-03 + 43 -4.8659656955809726E-02 + 44 9.7303409217580226E-04 + 45 5.7666939967770713E-03 + 46 -4.5512511938980505E-03 + 47 2.7199925004571029E-03 + 48 7.3745846869798971E-05 + 49 9.4896975465801354E-03 + 50 6.7331110618093432E-03 + 51 3.4625096016192514E-01 + 52 3.1599387845190306E-02 + 53 -9.4715327526034523E-02 + 54 -1.9543662793506226E-02 + 55 1.7060755853310716E-01 + 56 -1.6375963544811245E-02 + 57 -8.6407968203527810E-05 + 58 2.3201555818253145E-02 + 59 1.4525882123639618E-02 + 60 -2.8783868890274410E-02 + 61 -1.4710726749924288E-02 + 62 -6.6939305663249789E-03 + 63 -6.6277133210826226E-03 + 64 1.0026039677128548E-02 + 65 -2.5477315975392094E-02 + 66 -2.2728079313215948E-02 + 67 -1.6627520399083557E-03 + 68 -1.7668074172076567E-02 + 69 -2.6622152222125382E-03 + 70 4.9346370177467550E-03 + 71 2.8279260013502447E-03 + 72 -4.1342974871177900E-03 + 73 8.5009421917119337E-03 + 74 5.6746970765652737E-04 + 75 5.8640620414271045E-03 + 76 -5.4932601348437776E-02 + 77 1.1481827204832559E-02 + 78 -1.2118007263597613E-02 + 79 6.9420811160248660E-02 + 80 6.3040675527956211E-02 + 81 -3.6042696310735153E-03 + 82 -7.7406510405967936E-03 + 83 8.3360286500328430E-04 + 84 8.5744949050979499E-03 + 85 3.2956091183513406E-03 + 86 -3.4412919286484467E-03 + 87 -4.0060271655957356E-03 + 88 -1.3439276853019204E-03 + 89 -4.3276041728839337E-02 + 90 5.8261715969756067E-03 + 91 -1.7947122070295883E-02 + 92 -4.1465971441731302E-02 + 93 9.5621903666272046E-02 + 94 -3.6046571161323913E-03 + 95 1.2694575772116624E-02 + 96 -7.7368637276382926E-03 + 97 -1.0535181654372764E-02 + 98 9.4922980937880430E-03 + 99 2.0783889089276437E-03 + 100 -6.9379945099204898E-03 + 101 1.2089651811637681E-02 + 102 3.2382680409192309E-02 + 103 -5.7401198834279195E-03 + 104 -9.8978043910867328E-02 + 105 -2.7682038257856689E-01 + 106 -6.3947932167519664E-02 + 107 1.9865757056472894E-02 + 108 5.0648929140442202E-02 + 109 1.8532871328682140E-02 + 110 -6.7239497931399338E-03 + 111 -1.1224682459069988E-02 + 112 1.4972703741405482E-04 + 113 -1.2342943743083300E-02 + 114 -2.8748823493597416E-02 + 115 -3.9953005400254815E-02 + 116 7.6280970734596901E-03 + 117 -3.9302794883797149E-02 + 118 1.4644995535467209E-01 + 119 -5.9449089494456320E-02 + 120 1.7505962126901458E-02 + 121 -3.7779941980310726E-02 + 122 8.9205937203035001E-03 + 123 -1.9283982034675348E-02 + 124 -3.2138129531573928E-03 + 125 1.2187055193303993E-02 + 126 -8.2642071556933890E-06 + 127 -1.9646949706045025E-02 + 128 -6.9412431063691105E-02 + 129 -1.2686388489810520E-02 + 130 5.0894714502941939E-02 + 131 3.5703153296659899E-02 + 132 -2.8020533958326609E-02 + 133 -3.5257210156958286E-03 + 134 -9.0634813596763477E-03 + 135 4.0735630025868930E-03 + 136 2.0326828131643684E-02 + 137 -1.3939053612448862E-02 + 138 -2.2700792025689066E-02 + 139 -1.5424459139940555E-02 + 140 -1.4451575936329612E-03 + 141 2.5521063415754667E-02 + 142 7.5791954745650552E-03 + 143 -4.2845919571204275E-02 + 144 -5.8981938000955310E-02 + 145 8.5062724791304285E-03 + 146 2.8111969700585684E-03 + 147 2.5444953270384466E-03 + 148 4.1810280410590464E-04 + 149 8.5725434402306351E-03 + 150 -4.1345700004061549E-03 + 151 -6.7263868842106292E-03 + 152 -2.4132308462433746E-03 + 153 3.5069606866049166E-02 + 154 3.5672522020429110E-03 + 155 2.5878479487794905E-02 + 156 -2.3076891688826467E-01 + 157 -1.9602059114193399E-02 + 158 2.9183669259073468E-03 + 159 -1.7697822626055498E-02 + 160 3.1666372979581906E-03 + 161 1.0287803378118453E-02 + 162 1.5335066396609975E-02 + 163 1.5475144721498472E-02 + 164 -4.2498078587256873E-03 + 165 -3.1111501979718620E-03 + 166 6.8216022371745304E-03 + 167 2.4526226860769565E-02 + 168 3.1333994399971705E-02 + 169 -1.7706946396299654E-02 + 170 -4.7037181531048630E-03 + 171 -8.5556680928510313E-03 + 172 -3.6445445724907211E-03 + 173 -4.5845313118559215E-03 + 174 -3.9368423496239308E-03 + 175 -2.9545507506676332E-04 + 176 4.1338142854281980E-03 + 177 5.2808623718258330E-03 + 178 -2.7982234875645606E-02 + 179 3.0515998929017503E-03 + 180 8.0522729344311691E-02 + 181 -1.2855806786588550E-01 + 182 4.6460663571051844E-02 + 183 6.1282451734787184E-03 + 184 1.7649538656883190E-02 + 185 -5.6398200954919661E-03 + 186 4.8403272862902708E-04 + 187 1.0620938821475750E-02 + 188 -1.0029998008501073E-02 + 189 1.3825421207354293E-04 + 190 9.6133142028052617E-03 + 191 1.9134502835459821E-01 + 192 -3.5184840152097628E-02 + 193 -6.1502441053401212E-02 + 194 2.2810760127582402E-01 + 195 1.7631383043942735E-02 + 196 6.0545888148679184E-03 + 197 -7.0017482896091915E-02 + 198 1.5937151902072604E-02 + 199 1.4482166792834435E-02 + 200 -2.9723341184732372E-02 + 201 -6.5714328163363409E-03 + 202 -1.1369146731797426E-03 + 203 -1.0167811459279879E-02 + 204 1.2922548322947949E-01 + 205 1.2943631456940358E-02 + 206 4.5164236177028964E-02 + 207 -1.2622162710881574E-01 + 208 -1.2924067404749601E-01 + 209 1.0348996547298964E-02 + 210 -2.3129925469493298E-02 + 211 -1.7647788975443945E-02 + 212 2.5939841318220580E-02 + 213 1.8293029306283685E-02 + 214 2.0453219600292186E-03 + 215 1.9743147825785720E-02 + 216 3.7469455884027475E-02 + 217 3.1611852670467601E-02 + 218 1.5112091359710830E-02 + 219 1.7956933415515308E-02 + 220 2.1089653897771652E-02 + 221 3.5541455836361327E-02 + 222 9.9965825973562187E-03 + 223 1.9977010030289432E-04 + 224 1.1195819921727722E-03 + 225 -4.7539393896200094E-03 + 226 -3.0421459299472308E-03 + 227 8.9271559674090530E-03 + 228 3.1728100310992719E-03 + 229 -1.4740662894720188E-01 + 230 -9.5359123945493451E-03 + 231 6.2111645333194987E-03 + 232 -8.8088391427054616E-02 + 233 5.2999261008742186E-02 + 234 1.6627718686802520E-03 + 235 3.4832489025672306E-04 + 236 7.8076004177240910E-03 + 237 1.2661856646504580E-02 + 238 -1.4966405436469770E-02 + 239 4.7103747315293933E-03 + 240 7.8258245555237211E-03 + 241 1.0488283976246469E-03 + 242 2.6115911229672280E-02 + 243 -2.4261476005366291E-02 + 244 -3.6445530497940509E-03 + 245 7.9584452937252314E-03 + 246 6.6695184498585282E-04 + 247 1.7814087636282838E-03 + 248 6.5876309441799917E-03 + 249 -3.5296941947822779E-03 + 250 1.4797591550271545E-03 + 251 -1.8545109609812613E-03 + 252 8.5438254443653949E-03 + 253 4.7990377668667254E-03 + 254 1.1580176777643875E-01 + 255 1.2387385880762334E-03 + 256 2.5448708688119892E-01 + 257 -1.2804629461762487E-01 + 258 -5.6392251086437029E-02 + 259 1.9044128992578988E-02 + 260 -1.0900925699874636E-02 + 261 -6.8477242420018894E-03 + 262 -2.7173081146062480E-02 + 263 -3.6572452716650281E-03 + 264 1.8375282951570985E-02 + 265 -7.3443470998412544E-03 + 266 3.4638586815324899E-03 + 267 -7.5117476611058030E-03 + 268 1.3928678121227753E-02 + 269 4.9599791335219910E-03 + 270 -1.5103286875258444E-02 + 271 2.3064102777992722E-02 + 272 -5.4099058301075448E-03 + 273 2.8977576271156185E-03 + 274 -2.0800963329788637E-03 + 275 -2.3648518458158183E-03 + 276 -3.0870501214143283E-03 + 277 5.2109888975831525E-03 + 278 -4.5139452930652039E-05 + 279 -3.6965609600489648E-02 + 280 5.7295422073792394E-03 + 281 7.4972970303376574E-02 + 282 5.0558848261648814E-03 + 283 1.2738240465624662E-01 + 284 -6.5845078085324873E-03 + 285 -3.8720126686670798E-03 + 286 -2.9875398838196152E-02 + 287 -4.4816289601283116E-03 + 288 -2.3410095044972337E-02 + 289 1.6130591348259865E-02 + 290 8.2384634831389122E-03 + 291 -2.1498958210618394E-03 + 292 -5.9977428797907901E-03 + 293 1.5233620032857468E-03 + 294 -9.3851799430539465E-02 + 295 -1.4272038567835679E-01 + 296 -8.1602008927937300E-02 + 297 9.5112551241903435E-03 + 298 9.7613781843507545E-03 + 299 1.1346619725412559E-02 + 300 4.6430354220041428E-03 + 301 1.6505959950515192E-03 + 302 4.4868147717280040E-03 + 303 1.3245634993952929E-03 + 304 -1.9094386844864201E-02 + 305 2.9256455021562128E-01 + 306 2.5031829870290713E-02 + 307 3.6525854578844351E-02 + 308 -5.3661410116310662E-02 + 309 3.7430696740400018E-02 + 310 1.2794707654023740E-02 + 311 6.2473060837283647E-03 + 312 9.0033732520190084E-03 + 313 2.6823465876266751E-02 + 314 -5.2771770957199451E-03 + 315 9.2671044447561295E-03 + 316 1.8213339932215372E-03 + 317 -1.7905496463652006E-02 + 318 3.0332605822473713E-02 + 319 2.1029958110456565E-02 + 320 3.4550684192504733E-02 + 321 -1.4048833593652671E-02 + 322 -2.2104587391991819E-02 + 323 1.7090931779547825E-03 + 324 1.2967296909698915E-03 + 325 9.7922271540428071E-05 + 326 -4.2525463264444768E-03 + 327 -6.4440760885025638E-03 + 328 3.2240918541221967E-03 + 329 9.8321741392746222E-03 + 330 -5.2206082087443026E-02 + 331 7.4712186855442411E-03 + 332 -3.3709808554505588E-01 + 333 -9.3856391299200655E-03 + 334 1.0303293818145713E-01 + 335 -1.9847730524887554E-02 + 336 -4.9041529876474492E-03 + 337 1.2900931279393546E-02 + 338 -1.5486100312971858E-02 + 339 1.8839418709728211E-03 + 340 -5.6004028822115798E-03 + 341 2.3164819907094025E-03 + 342 -4.0186815409283131E-03 + 343 -5.8439671528438628E-03 + 344 2.5021276763644504E-02 + 345 6.2702976330710914E-03 + 346 7.0770689325175733E-03 + 347 3.7618276913163724E-02 + 348 -7.6258249955302466E-03 + 349 5.9659779630910170E-05 + 350 3.7261101361810750E-03 + 351 -6.5473820782280655E-03 + 352 8.0513712680953791E-03 + 353 -7.2988706835084858E-03 + 354 -1.5609108624361023E-03 + 355 5.8308033351421727E-02 + 356 -9.3037471707265069E-03 + 357 4.2145798692178854E-02 + 358 9.8574721515655814E-02 + 359 2.6435686689933444E-02 + 360 -1.6295894177037362E-02 + 361 -1.6361236732062669E-02 + 362 -6.3737710619051801E-03 + 363 -5.1476902152484171E-03 + 364 1.2400703962861507E-02 + 365 7.3054615188494218E-03 + 366 1.6053758759350091E-02 + 367 -3.5542100594883635E-02 + 368 1.2153578285936600E-01 + 369 -2.3592493243052730E-02 + 370 7.7741797551199490E-02 + 371 -1.2775818106633438E-01 + 372 -8.5396756895536260E-03 + 373 -1.4139253143820420E-02 + 374 3.7005741160210624E-02 + 375 1.4494130350013828E-02 + 376 3.6704312383092699E-03 + 377 -7.1802578043255304E-03 + 378 3.5948950980566234E-03 + 379 1.7702469582661879E-02 + 380 2.8243543762873583E-03 + 381 -9.5740703254798984E-02 + 382 1.8326081651906891E-02 + 383 4.1583243007484193E-02 + 384 8.5331215777367062E-02 + 385 -4.9174141055394548E-02 + 386 -2.0520711874322504E-02 + 387 -3.6985175926648302E-02 + 388 4.4922977403412867E-03 + 389 4.4118350960722199E-03 + 390 -8.2667867922885194E-03 + 391 -7.2484613993839767E-03 + 392 -2.5428685188537446E-02 + 393 1.4422786518100604E-02 + 394 -9.9568268667450027E-02 + 395 -1.1819913075030830E-02 + 396 5.4925054208827373E-02 + 397 -6.4794102010072366E-02 + 398 3.9776039329820226E-02 + 399 -5.8294242841814949E-03 + 400 -3.7109285796220605E-03 + 401 6.8806961531692476E-03 + 402 6.0714285095852466E-03 + 403 2.3232839390226048E-02 + 404 3.2546061376298929E-03 + 405 -2.5790362045894368E-03 + 406 -5.7145129685544048E-03 + 407 9.1423779322673988E-03 + 408 2.3093780458790177E-02 + 409 -1.6706249453463495E-02 + 410 4.5025603398720790E-05 + 411 -3.0505305343254885E-03 + 412 3.9440427506342952E-03 + 413 2.3931872698895141E-03 + 414 -4.7199766238645909E-03 + 415 -3.7387668014288481E-04 + 416 1.7396456778684089E-03 + 417 -1.2028047235294976E-02 + 418 -4.2552878458341397E-03 + 419 -4.3343924399568780E-02 + 420 6.5731518918685288E-03 + 421 1.2828155331501528E-01 + 422 1.4037148136380473E-03 + 423 -1.0149478277431727E-01 + 424 -2.3219785630232973E-02 + 425 -9.3825456167304921E-03 + 426 2.2289805782321447E-02 + 427 2.2163311455137120E-03 + 428 -6.6265355382118963E-03 + 429 -3.5063587770740754E-03 + 430 -1.1083303923720559E-02 + 431 1.8499402572112231E-02 + 432 -2.8109952165812861E-02 + 433 4.1816357512060951E-03 + 434 -1.8260009684570731E-02 + 435 -1.0585101179343569E-01 + 436 -1.7942585925394487E-02 + 437 3.2190233464349776E-03 + 438 2.0202632575986722E-02 + 439 4.2337709330251747E-04 + 440 2.3290558982749853E-02 + 441 -5.3590049255523705E-03 + 442 9.5021087546866886E-03 + 443 -1.7380203674253645E-03 + 444 2.1580720782972275E-02 + 445 -1.4684678944707577E-01 + 446 -5.4357358234885860E-03 + 447 1.6732907159739444E-01 + 448 -7.8572934771551292E-02 + 449 7.0663294178749309E-02 + 450 1.9659134408732241E-02 + 451 -1.2032515789693249E-02 + 452 -5.3467630185135666E-03 + 453 -6.1567476761007047E-03 + 454 1.3383318684594353E-03 + 455 -2.8166501057526203E-02 + 456 -1.1366670946024400E-02 + 457 1.2119626501368157E-03 + 458 -1.4513547495634242E-02 + 459 -2.6759712757833405E-02 + 460 -4.4976597717203200E-02 + 461 -4.3797043188260392E-03 + 462 -8.3725096438930380E-03 + 463 1.6213969419352325E-02 + 464 5.6728316954350625E-03 + 465 -2.7939590021661504E-03 + 466 -1.0993746524982645E-02 + 467 -7.6134733946048722E-03 + 468 7.4201257168199737E-03 + 469 1.0679551493670614E-02 + 470 -5.6541469678149527E-02 + 471 -1.2575881434302862E-02 + 472 -1.7007440074604777E-01 + 473 8.3593536917069611E-02 + 474 -2.1707890749813430E-01 + 475 -1.0613617966662960E-02 + 476 3.6875905540379719E-03 + 477 -1.4332050976637294E-02 + 478 -1.6447952169910827E-02 + 479 5.1020146391919019E-03 + 480 1.9473012961510067E-02 + 481 -1.9574909359449374E-02 + 482 1.8489646610194022E-02 + 483 -2.7524890003428032E-02 + 484 7.7513174008384741E-03 + 485 1.5481118618385411E-02 + 486 -4.6634825144452746E-03 + 487 -6.1281697750004190E-03 + 488 -1.1549385508468288E-03 + 489 -1.9648992397118922E-03 + 490 -5.2998062943127127E-05 + 491 8.9463370735469417E-04 + 492 -2.3474947205357347E-03 + 493 -2.3753285743160972E-03 + 494 -3.5620020212115901E-03 +Ene= -3.5533453539E-02 +Spin= Alpha +Occup= 0.0000000 + 1 -2.6688706808578755E-01 + 2 -2.0708192615741083E-02 + 3 -3.3686355937580563E-02 + 4 2.6858169125913871E-02 + 5 3.3233341587818467E-02 + 6 -3.8828627812337105E-03 + 7 1.1975720949545889E-02 + 8 2.4194016790877564E-03 + 9 -7.7973515155158289E-03 + 10 9.7774248930918156E-03 + 11 5.3580157094195264E-03 + 12 -4.0325417778639419E-02 + 13 5.3341967111252336E-03 + 14 -4.1020894119537653E-02 + 15 5.3019214855476301E-03 + 16 1.0903109631836281E-02 + 17 -5.5055695172233771E-02 + 18 -1.2238338793208911E-02 + 19 -1.8273846896426924E-03 + 20 4.8278016716377320E-03 + 21 -1.3292402556904937E-02 + 22 3.1970501138328120E-03 + 23 7.7876543167206078E-03 + 24 1.0879031771060803E-02 + 25 6.5187623047996456E-03 + 26 2.4817541818100305E-01 + 27 1.3180317795249516E-02 + 28 1.5709008659023938E-01 + 29 1.2239669222175348E-01 + 30 6.2435024082886917E-03 + 31 1.2104893705342765E-02 + 32 7.2184649863626486E-03 + 33 -4.0189725695240616E-03 + 34 -1.4401470177593235E-02 + 35 4.0825604290526341E-02 + 36 2.6167457599094959E-02 + 37 4.1230329904300370E-03 + 38 -2.9685764719140882E-02 + 39 -2.1542211264979412E-02 + 40 5.1513250563593557E-02 + 41 8.3863640460056579E-02 + 42 2.5211769445601516E-02 + 43 -5.5187966860516260E-02 + 44 2.5842097132747184E-03 + 45 2.2907380650417850E-03 + 46 4.8565031048368595E-03 + 47 1.7523592291949425E-03 + 48 -2.2618344197920933E-03 + 49 2.4614383225114640E-03 + 50 1.0051341746823161E-04 + 51 1.1481908759800957E-01 + 52 9.1586010254478267E-03 + 53 -3.6504539222426302E-02 + 54 7.3480139992972496E-03 + 55 1.6342600530472265E-01 + 56 -1.0448541892120418E-02 + 57 5.2100399346937378E-03 + 58 3.2220609351517764E-02 + 59 1.2137403802842048E-02 + 60 -1.8693290422861133E-02 + 61 -2.4003856799572874E-02 + 62 2.8723971106878418E-03 + 63 -2.9008331730479612E-03 + 64 3.3110342573613429E-02 + 65 8.0961260679955818E-03 + 66 -2.2101813541835783E-02 + 67 -2.0085796146979900E-02 + 68 -1.5194632101885180E-03 + 69 -4.5704948841551341E-03 + 70 -1.4204200776777799E-03 + 71 -8.8315086016159949E-03 + 72 -3.9562577714372590E-03 + 73 3.0426111345907112E-03 + 74 3.3545618593305375E-03 + 75 -2.3710343973618515E-03 + 76 1.0595921765859231E-01 + 77 -1.7350205790493140E-02 + 78 -1.8919553272057826E-01 + 79 9.3632673163835681E-02 + 80 1.6932757098587323E-01 + 81 4.2640392284476129E-02 + 82 -1.4604268326087364E-02 + 83 -9.1687124676077952E-03 + 84 -2.0549454100107941E-02 + 85 -4.7521900861803828E-04 + 86 2.6979821839758961E-02 + 87 -1.3155392413543942E-02 + 88 7.2921877986972090E-04 + 89 -1.1730661712673553E-01 + 90 1.8857455175905424E-02 + 91 5.8455645000801006E-02 + 92 -1.6185649600039875E-01 + 93 5.5522517386459476E-02 + 94 -2.4488179227501281E-02 + 95 2.7458057435644057E-02 + 96 1.6584550626685735E-02 + 97 -1.0315824146605691E-02 + 98 1.0896347390989214E-02 + 99 -4.3944648517258130E-03 + 100 -6.1053335655418669E-03 + 101 5.4196948385195577E-03 + 102 5.6497635973436162E-02 + 103 -1.0806324871221179E-02 + 104 -1.4697730449353150E-03 + 105 -4.1027744328916912E-02 + 106 -7.9281287129226996E-02 + 107 -2.6950156633374291E-03 + 108 2.5218737231149538E-03 + 109 2.9233435252513321E-02 + 110 1.2779883924742174E-02 + 111 -1.3857693499360084E-02 + 112 1.0612476814332588E-02 + 113 1.9792754715449584E-02 + 114 -2.1022600985754113E-02 + 115 5.1745653759717888E-02 + 116 -1.0931217682071273E-02 + 117 -2.5556201680713573E-02 + 118 9.6526904208580316E-02 + 119 -1.5126867740755204E-01 + 120 -4.8473865586978323E-03 + 121 -2.0195817008873563E-02 + 122 4.2395454255247926E-02 + 123 -9.2682800396383571E-03 + 124 5.8514982038372215E-03 + 125 -6.7201425299519139E-04 + 126 -3.3627561012623125E-02 + 127 -1.4979333714336825E-03 + 128 1.0595022471879353E-01 + 129 1.6876549147779741E-02 + 130 -1.6817228057684133E-01 + 131 1.0080980589733413E-01 + 132 9.2102011212004870E-02 + 133 -5.2439186475296048E-03 + 134 1.8800389252618080E-02 + 135 4.2476840816072590E-03 + 136 -4.3543241186127339E-03 + 137 -2.2690918130522739E-02 + 138 4.3328476550030665E-03 + 139 -1.0984189462143449E-02 + 140 4.7541297891072441E-02 + 141 4.0631946592376098E-03 + 142 -4.9985276998928491E-02 + 143 1.4369339251843119E-02 + 144 3.9591458299627937E-02 + 145 4.4772429983008358E-02 + 146 1.5526691839227074E-03 + 147 -1.2888979072142521E-02 + 148 -3.6667205071557892E-03 + 149 -6.8326405231850891E-03 + 150 1.5692038009816364E-03 + 151 9.4386936517943526E-03 + 152 6.6991304099552735E-04 + 153 -6.6324551545083349E-02 + 154 1.1813740863065320E-02 + 155 -3.0222045700233430E-02 + 156 -3.6005350884614051E-01 + 157 2.1573177544850257E-04 + 158 2.5133520695723235E-03 + 159 -1.6778157743211022E-02 + 160 3.8173675235817182E-03 + 161 -7.5709744698272295E-03 + 162 -1.1450667693646133E-02 + 163 1.7955308647436070E-02 + 164 1.2477686594929979E-02 + 165 6.2158080780939460E-03 + 166 -3.2697042271562005E-02 + 167 -3.2597949551867330E-03 + 168 -1.8940401563480095E-02 + 169 -3.0016370491959588E-02 + 170 1.6969439437538564E-02 + 171 3.2463760695129892E-03 + 172 -3.0220503384019290E-03 + 173 8.0602964500520735E-03 + 174 5.8486959954034074E-03 + 175 -2.9401387811712251E-03 + 176 -3.7464324194257958E-03 + 177 -3.1545631340692639E-03 + 178 1.1582264002187847E-02 + 179 1.9766175087359325E-04 + 180 -1.0795512203825200E-01 + 181 -3.7091057589887767E-02 + 182 -4.0873894586896655E-03 + 183 2.9242916011645508E-02 + 184 1.1972482396309516E-02 + 185 1.2015779726431827E-03 + 186 5.3801303476158011E-03 + 187 -6.3358063497533559E-03 + 188 8.5586014110951812E-03 + 189 1.2309340558313724E-02 + 190 3.4733125633322343E-02 + 191 5.9058304937005743E-02 + 192 -1.2779829545145064E-02 + 193 3.9616279287787763E-02 + 194 -1.7375603890370250E-02 + 195 -1.0612443220873383E-02 + 196 -2.5055356324321133E-03 + 197 1.2933914109214367E-03 + 198 8.1604433969024656E-03 + 199 -1.0226385383763456E-02 + 200 -2.1848126381284701E-02 + 201 -6.7216795511748475E-03 + 202 -4.4432237697330735E-05 + 203 -1.4961502828644380E-02 + 204 -4.3721504858351551E-02 + 205 2.9233448413913446E-03 + 206 -9.5630496573113673E-03 + 207 8.3545169555669638E-02 + 208 3.1635581412667042E-02 + 209 5.1939531881935157E-03 + 210 1.0217157006552565E-02 + 211 1.6282064503451776E-02 + 212 8.8334886428179083E-04 + 213 -2.4659972149617630E-03 + 214 -7.9410364770449127E-04 + 215 -6.8820876569987760E-03 + 216 -2.8300664479682616E-02 + 217 -3.2558972412755322E-02 + 218 1.4653761430843591E-02 + 219 1.6057911351970069E-02 + 220 -2.2468081692666998E-02 + 221 -2.0530117514656131E-02 + 222 6.9501259300952783E-04 + 223 3.0591508881895411E-03 + 224 -3.4372167777308249E-03 + 225 -8.0592192833311602E-04 + 226 -1.8522021456616944E-03 + 227 -1.1971769153676301E-03 + 228 -5.5298674200031667E-03 + 229 2.0434063797420762E-01 + 230 7.2537102315722067E-03 + 231 7.4016245282582646E-02 + 232 1.4313845782912674E-01 + 233 3.3300951486895221E-02 + 234 -2.3894783717363609E-03 + 235 1.7588841997339077E-02 + 236 1.6570975742887104E-02 + 237 -8.1869790421364285E-03 + 238 -1.0336026029277579E-02 + 239 -8.7578246249538760E-03 + 240 -5.6075801682673020E-03 + 241 -5.3596055105006120E-04 + 242 2.6902563368510567E-02 + 243 5.9764715516555326E-03 + 244 -2.8736179149546487E-02 + 245 -2.4541753899895147E-02 + 246 2.8037950180261059E-02 + 247 2.8608519673609762E-03 + 248 -1.7959938049059204E-03 + 249 -1.4269001420413787E-02 + 250 -1.9957819468751320E-03 + 251 2.7523372831800832E-03 + 252 1.7686822912556931E-02 + 253 9.5282420700906149E-03 + 254 8.9470312762026161E-02 + 255 1.2032006327737117E-02 + 256 -1.5574020828780974E-01 + 257 -1.6752139030293131E-01 + 258 -5.6878463418136349E-02 + 259 -1.6427435726315890E-02 + 260 -1.8117850273301091E-02 + 261 -5.6394827052723092E-04 + 262 -2.9327610030787994E-02 + 263 -2.1273835245879764E-03 + 264 1.3358261724348298E-02 + 265 3.5989025237960757E-03 + 266 -8.1909189225170837E-03 + 267 -4.2754999431063562E-02 + 268 8.0982384910055771E-03 + 269 2.0196242734250363E-03 + 270 1.3806723794032281E-02 + 271 -2.4274842770846086E-02 + 272 -1.4998386167742557E-03 + 273 -4.6256201993187451E-03 + 274 3.2910112774977977E-03 + 275 3.7341498604078469E-04 + 276 1.6482049764524566E-03 + 277 -7.6837343663858698E-03 + 278 -2.3223022740580018E-04 + 279 7.8626272900030367E-02 + 280 -1.3092012772325847E-02 + 281 6.5666021023850926E-02 + 282 -4.0183444744442250E-02 + 283 5.7768775188070443E-02 + 284 -1.6380647078576019E-02 + 285 1.3397984914999519E-02 + 286 -7.7435767652579250E-03 + 287 -9.8543536073433073E-03 + 288 1.8932271994138401E-02 + 289 1.0509086619306071E-02 + 290 -1.2808883231648084E-02 + 291 1.8010263977351271E-02 + 292 -8.7765659234090951E-02 + 293 1.4019927289464523E-02 + 294 7.0130447785987038E-02 + 295 2.6419140861338303E-01 + 296 -4.7164138213749651E-02 + 297 -2.6862718667555120E-03 + 298 -4.8622709677613271E-02 + 299 3.1474473991703410E-02 + 300 -1.1708740577119828E-02 + 301 1.1577761895753332E-03 + 302 -2.1033983416646033E-02 + 303 9.2261826495076815E-03 + 304 1.0471430283691715E-02 + 305 -3.1993549583522418E-01 + 306 -3.1577970586405948E-02 + 307 -2.7027142293160840E-02 + 308 1.1467201419249021E-02 + 309 -1.4588661184250681E-01 + 310 -5.2067866499960376E-03 + 311 -2.2265145780594360E-03 + 312 -1.2755030186566835E-02 + 313 -4.9070377567953044E-02 + 314 2.0523335572037692E-03 + 315 3.9515540281510443E-03 + 316 1.8669831797967388E-04 + 317 3.2970227656372558E-02 + 318 -3.8662054918600967E-02 + 319 -1.6068647971919224E-02 + 320 1.5557803592946984E-04 + 321 2.7150134738091278E-02 + 322 5.2063947236349953E-02 + 323 -2.7893935352410700E-03 + 324 2.1213323777550847E-03 + 325 -1.2281990554754536E-03 + 326 2.7372534622705520E-03 + 327 3.3924123168439517E-03 + 328 -4.0143753450718475E-03 + 329 -4.4534678769838545E-03 + 330 6.2700265224081828E-02 + 331 3.0703670060429713E-03 + 332 -1.7223184054302382E-01 + 333 -9.3715992268137094E-02 + 334 7.1330486695249357E-02 + 335 -1.2087787920381914E-02 + 336 -4.8955902990717656E-03 + 337 1.6168985453034097E-02 + 338 -5.9590192942812637E-03 + 339 -9.8341950450389730E-03 + 340 -7.1083765234280392E-03 + 341 -3.7421365880524866E-03 + 342 -2.7060579584723982E-03 + 343 -3.9360425895529670E-03 + 344 -2.1081499121812002E-02 + 345 5.2366050654800919E-03 + 346 -1.1372758558620254E-02 + 347 1.4878276412221380E-02 + 348 -2.1710289249184159E-03 + 349 2.2862399421636108E-03 + 350 4.4136916536249319E-03 + 351 5.0040643592436590E-03 + 352 4.3715983653498441E-03 + 353 4.7345052597108341E-04 + 354 9.1145844285829320E-04 + 355 -9.5982873504271288E-02 + 356 1.7550359284556769E-02 + 357 -1.3115605878561265E-01 + 358 -1.8502823102589344E-01 + 359 -2.8049611383495640E-02 + 360 3.3170578718797021E-02 + 361 2.5338612312021662E-02 + 362 2.4533604336166633E-02 + 363 -1.3105316678731709E-02 + 364 8.5906006341487824E-03 + 365 1.2953844410688685E-02 + 366 -4.3524926338467791E-04 + 367 1.0410554054991583E-02 + 368 -7.9914080578674843E-02 + 369 1.4789508584742856E-02 + 370 -4.5141568682464397E-02 + 371 -2.1351325267870858E-02 + 372 1.1358978487135021E-01 + 373 -1.4554067442328850E-03 + 374 -1.8751825485949967E-03 + 375 -3.8575411583483092E-02 + 376 2.8375847061852050E-02 + 377 -5.5172811560038918E-03 + 378 1.1922665585126055E-03 + 379 -8.8332290274429192E-03 + 380 -2.3027108630411853E-03 + 381 1.4420785701108582E-01 + 382 -2.7003440618101539E-02 + 383 7.5680440380184316E-02 + 384 -1.0790363853593134E-01 + 385 1.2486989140485455E-01 + 386 -2.8347096049536340E-03 + 387 4.0076382475204737E-02 + 388 -1.6018426910985706E-02 + 389 -8.8747939677625946E-04 + 390 -1.5141996494661841E-02 + 391 7.5457494624127522E-03 + 392 1.8984549721260090E-02 + 393 -7.9821871541760885E-03 + 394 -1.1340299128443514E-01 + 395 -5.8385028530599159E-03 + 396 -5.0611744841859305E-02 + 397 3.2648604180993315E-02 + 398 1.3074915337271566E-02 + 399 1.1376797031069013E-02 + 400 1.5508104491097586E-02 + 401 2.4589778936468065E-03 + 402 3.8306536478767304E-03 + 403 -1.6153191482706655E-03 + 404 2.7683155643484945E-03 + 405 -7.1185921256076805E-03 + 406 2.6964021031557627E-03 + 407 -2.6886653921188868E-02 + 408 -2.3005186314953633E-02 + 409 4.9638088741185155E-03 + 410 6.7792823101252928E-03 + 411 2.7622101977658399E-03 + 412 -1.6367496338346879E-03 + 413 -5.5765521747222343E-03 + 414 -3.6841197196880158E-03 + 415 -3.9703823380579488E-04 + 416 -5.8520942400261435E-03 + 417 1.4742379999100368E-02 + 418 5.5062671364760601E-03 + 419 -1.0162248048771166E-01 + 420 2.0342357228146656E-02 + 421 -1.5545540378957010E-01 + 422 3.6819104187940314E-02 + 423 -6.9536460719117898E-02 + 424 4.8805063102041052E-02 + 425 1.1041558384913544E-04 + 426 2.3998207438269394E-02 + 427 -6.8510149494858414E-03 + 428 8.7700151589869772E-03 + 429 9.4891087363719933E-04 + 430 5.9663043299220129E-03 + 431 -6.3845889456652510E-03 + 432 3.2955580942344562E-02 + 433 -6.7289461818030071E-03 + 434 1.0706420139742265E-01 + 435 3.0212298749009370E-02 + 436 2.2313400850226185E-02 + 437 -2.3376541931007671E-02 + 438 -1.5140632957052076E-02 + 439 -1.1652176169506831E-02 + 440 -4.0432317305439469E-03 + 441 -1.5677196142018560E-03 + 442 -6.4556383225752162E-03 + 443 -4.2601907869812850E-04 + 444 -1.6530696312886898E-02 + 445 5.8696117763978907E-03 + 446 -3.7353408356480110E-03 + 447 -7.4872861577073999E-02 + 448 3.1557620605357144E-03 + 449 1.0227009853036717E-01 + 450 -1.6907381334283763E-02 + 451 -3.8570240409676240E-03 + 452 2.6176486699028355E-02 + 453 7.7576806555590743E-03 + 454 -5.4712830928827091E-04 + 455 8.4912391291508457E-03 + 456 -1.2710979594937570E-02 + 457 -1.0664539070209452E-02 + 458 1.5347594416993350E-02 + 459 3.2621321649394672E-02 + 460 5.3686030377895193E-03 + 461 -4.7988698200860741E-02 + 462 -2.6465155298611050E-02 + 463 -6.7655539787529187E-03 + 464 7.3145656141163171E-04 + 465 7.2857860836622037E-03 + 466 1.3083823932064616E-02 + 467 3.9759011860225702E-03 + 468 -8.0848846622430248E-03 + 469 -9.9415730888565024E-03 + 470 4.0972143852978215E-03 + 471 7.2273534797390225E-03 + 472 2.5028438126757924E-01 + 473 -5.8257948241970885E-02 + 474 8.3123272859358027E-02 + 475 2.2391547279951643E-02 + 476 -2.3062138403600455E-03 + 477 9.2690261199153100E-03 + 478 5.2989886156442657E-03 + 479 -2.3861299423145505E-03 + 480 -1.2299467092815073E-02 + 481 5.1849296627837320E-03 + 482 -6.4082775323108443E-03 + 483 4.3196976133165286E-03 + 484 4.1436960531365781E-03 + 485 -1.6210085857701780E-02 + 486 -3.3203676566328651E-03 + 487 4.7898100826864135E-03 + 488 3.2664338682492260E-03 + 489 -3.8136433800158183E-04 + 490 4.7083426811435255E-04 + 491 2.3351055931848134E-03 + 492 -3.5586492457069811E-04 + 493 2.0841635431118003E-03 + 494 -2.5334156146456246E-03 +Ene= -3.2520810195E-02 +Spin= Alpha +Occup= 0.0000000 + 1 -4.3504195462777166E-02 + 2 -4.9714585804537456E-03 + 3 -1.0237483647933736E-01 + 4 4.0113205542906677E-03 + 5 6.8385661767399381E-02 + 6 -5.7959712924022539E-03 + 7 -6.7578352691450476E-04 + 8 1.9769470210944146E-03 + 9 3.4595838214019092E-03 + 10 -3.5742422626187276E-03 + 11 -7.5510744073565544E-03 + 12 1.2928365962898302E-02 + 13 9.1803599213161197E-03 + 14 -2.5599538247929555E-03 + 15 -2.8411515909696474E-03 + 16 -1.0068167274863244E-02 + 17 4.9340107518732121E-03 + 18 1.1939757755099969E-02 + 19 8.7876971633653366E-04 + 20 -2.7313016133659125E-03 + 21 3.7512866152651621E-03 + 22 8.3501032893749439E-04 + 23 -2.4193472461235550E-05 + 24 -3.8395549684206911E-03 + 25 -1.4703226519450397E-03 + 26 -1.1690232966568670E-01 + 27 -1.2494750280228525E-02 + 28 -1.0466129009103814E-01 + 29 3.9956909330893992E-02 + 30 -1.8052839191480460E-01 + 31 7.7697222076484294E-03 + 32 5.3217470143595148E-04 + 33 -1.8030511767071870E-02 + 34 -1.2880476770446958E-02 + 35 1.5995712963712733E-02 + 36 4.6953229712777926E-03 + 37 -2.0184095343173891E-02 + 38 -3.5936417587533645E-02 + 39 1.0829912108018282E-02 + 40 1.8546442103015617E-02 + 41 -2.4331798667707478E-02 + 42 -6.6570497687874125E-02 + 43 -5.8758027439297145E-02 + 44 2.3341653628376684E-03 + 45 -5.2605451219686654E-03 + 46 -6.5206063480686347E-03 + 47 -4.8797037919679799E-04 + 48 -4.2784533426576598E-03 + 49 1.9023225117314687E-02 + 50 1.1059409691568184E-02 + 51 7.3161538576411497E-03 + 52 -8.3728381497122292E-03 + 53 -4.0756914250084222E-02 + 54 1.8426812063564865E-01 + 55 -6.6788871992339766E-02 + 56 -2.9990942804546502E-04 + 57 1.6109103789272227E-02 + 58 -1.1986338768817908E-02 + 59 -1.6175778564199619E-02 + 60 -7.7642582601239532E-03 + 61 -2.2455340060141028E-03 + 62 1.2664312425296042E-03 + 63 1.1869047021723526E-02 + 64 -1.3699135820715419E-02 + 65 -2.2577479579215229E-02 + 66 1.3488144004255244E-02 + 67 2.7492848151263113E-03 + 68 1.7041386653437861E-02 + 69 1.6825838513534102E-03 + 70 -1.8613167795076717E-03 + 71 3.1504303829962176E-04 + 72 8.4943424127580753E-04 + 73 9.6698029438955905E-04 + 74 4.4676169744984435E-03 + 75 -1.1407646773021094E-03 + 76 -4.2512677660323690E-03 + 77 1.9119653057649243E-03 + 78 -9.7426758804898234E-02 + 79 -2.7104970455650190E-02 + 80 2.0199349907960202E-02 + 81 2.6131468687308736E-02 + 82 1.0187284285827202E-02 + 83 -8.0260840735277682E-03 + 84 1.5066290095959466E-02 + 85 1.0551459989564626E-02 + 86 -8.4386452740843835E-03 + 87 -3.1253638548186208E-03 + 88 -6.2094630919179881E-03 + 89 -5.5728535358433003E-03 + 90 -9.5421067419388262E-04 + 91 -6.2112345564514150E-02 + 92 4.9731751176957370E-02 + 93 -1.8410935958374078E-02 + 94 1.0659633479808008E-02 + 95 -1.3160222917521600E-02 + 96 -6.5232171194711652E-03 + 97 4.3919533599679327E-03 + 98 -2.7544746238361440E-03 + 99 -1.0431642324518028E-02 + 100 -9.9407868576290373E-04 + 101 1.1788663231810466E-02 + 102 -7.6220709485719212E-02 + 103 1.2421469483959722E-02 + 104 5.5885236665902678E-02 + 105 -4.8713425016894671E-02 + 106 -5.2349280059776224E-02 + 107 -1.9062539367167081E-02 + 108 5.5606976846978729E-03 + 109 1.5711794566072988E-02 + 110 -2.1755010049171682E-02 + 111 -8.6174977685901134E-03 + 112 2.9457411030288129E-03 + 113 -1.7368633965374376E-02 + 114 2.7788287714579368E-04 + 115 -3.1753611684625802E-02 + 116 4.9752879588698951E-03 + 117 2.8730467537598562E-02 + 118 1.4741622072684610E-01 + 119 -6.8389848075932319E-02 + 120 -1.1118179161010442E-02 + 121 -6.4702038220151109E-02 + 122 2.2575326410517540E-02 + 123 -3.3858356900241485E-02 + 124 9.3139404237748162E-04 + 125 3.1364449546111631E-02 + 126 1.0028453373737246E-02 + 127 1.3099843350154114E-02 + 128 -3.7029051385918621E-01 + 129 -3.2196311474861385E-02 + 130 4.3635501744660271E-02 + 131 -5.0145156053478294E-02 + 132 -1.5373740780959658E-01 + 133 1.6486085751021501E-04 + 134 -1.1825576900986992E-03 + 135 -8.6788300136469414E-03 + 136 -6.5940656618977194E-03 + 137 8.7761264590588601E-04 + 138 -7.5748117755055017E-03 + 139 -2.7131916403965638E-02 + 140 4.6704664092086054E-02 + 141 -3.4557784614517043E-02 + 142 -6.1588756209428400E-03 + 143 -2.1631225799390797E-02 + 144 -2.4919578887976308E-02 + 145 4.6530810981251662E-02 + 146 2.0135208426609562E-03 + 147 -4.3337099657483995E-03 + 148 -1.7041272177999423E-03 + 149 1.4982918650262894E-03 + 150 -6.7035066321809427E-04 + 151 -1.0401716590694072E-02 + 152 1.2532531261822879E-03 + 153 -2.6253190154031079E-02 + 154 -7.2700466423298669E-03 + 155 1.5039479262354623E-03 + 156 1.1247125197616198E-01 + 157 1.4681258431662100E-01 + 158 -6.7041644029658311E-03 + 159 1.5324154878020971E-02 + 160 1.6090879050678106E-02 + 161 1.4129807225040289E-03 + 162 -9.2100195419784672E-03 + 163 1.0251515039088530E-02 + 164 2.3793773318766330E-02 + 165 4.2256218178419823E-04 + 166 2.2030288523754570E-02 + 167 8.8972674842591418E-03 + 168 2.0569762814271763E-02 + 169 2.7133013041436539E-02 + 170 -2.2274921642291931E-02 + 171 -9.1346943939677010E-03 + 172 -1.7432884704683923E-03 + 173 -2.7001311228771131E-03 + 174 -5.3661504548383112E-03 + 175 -3.3860130054238313E-03 + 176 -1.3976389812600439E-04 + 177 7.2014245444407547E-05 + 178 -7.5887212973424503E-02 + 179 1.2333363022228514E-02 + 180 -4.3733531136287938E-02 + 181 -8.0731822073802417E-02 + 182 8.4695314357657980E-02 + 183 1.0595793025490323E-02 + 184 2.8811795552749198E-02 + 185 -2.5644236295343816E-02 + 186 -1.6145461733565184E-02 + 187 -1.2267666538994417E-02 + 188 -1.5745879195727969E-02 + 189 -1.8322485259379268E-02 + 190 -4.2988268954228291E-03 + 191 -1.4346385872533438E-01 + 192 2.5689187843702346E-02 + 193 7.0021953127335904E-02 + 194 -9.8370115611296147E-02 + 195 2.8488832387588141E-02 + 196 -1.3844185555979197E-02 + 197 2.5241174491162189E-02 + 198 -3.7855011701818528E-02 + 199 -1.6272275573371250E-03 + 200 4.5068885435576213E-03 + 201 -7.9785562846782961E-03 + 202 2.2071383104567747E-02 + 203 -8.2842877543694762E-03 + 204 -9.0592212131514180E-02 + 205 -1.8184777125737985E-02 + 206 7.3405454896789485E-02 + 207 2.1253275775246130E-01 + 208 1.1654170045721789E-02 + 209 -1.3475771984103242E-03 + 210 1.0223542772324515E-02 + 211 -1.5534065774143029E-02 + 212 -2.5164467856459368E-02 + 213 -5.9011955206419910E-03 + 214 -2.5191733482468229E-03 + 215 -3.7656737898255103E-03 + 216 -2.7117045074652672E-02 + 217 -1.5427234282567053E-02 + 218 -1.5267881290100592E-02 + 219 -1.8547068711723701E-02 + 220 2.7371840048958002E-02 + 221 -7.8401942144532888E-02 + 222 5.6092366096485323E-03 + 223 -7.0072852623954138E-04 + 224 6.7641070136459248E-03 + 225 9.6759620477102366E-03 + 226 1.6940078259702967E-03 + 227 1.0050865901433908E-02 + 228 6.6698428792139617E-03 + 229 -1.1196268439619297E-01 + 230 -4.6218907983535213E-03 + 231 -4.5044835454449719E-02 + 232 -6.9611053770418860E-02 + 233 1.7285524351845358E-02 + 234 -4.5556985285349514E-03 + 235 -3.2576188094927761E-03 + 236 -4.9032791033377064E-03 + 237 1.2485425202210857E-02 + 238 -1.2020432985744898E-02 + 239 -8.6992189310477835E-04 + 240 -1.3467750837499015E-02 + 241 1.5896509418682485E-04 + 242 1.2261870710796095E-03 + 243 -9.2758583800975781E-03 + 244 -1.5091147830274404E-02 + 245 -5.5912235418430689E-03 + 246 7.5258680467062663E-03 + 247 1.5646839302549443E-03 + 248 -3.8590007549605911E-04 + 249 4.4635232481986774E-04 + 250 4.4398918650640730E-03 + 251 -1.7361689576236665E-03 + 252 4.3689597503911307E-03 + 253 9.3491640369480929E-04 + 254 1.7707905362777759E-01 + 255 1.4273574052918859E-02 + 256 -7.6296703750101003E-02 + 257 -4.5480271860251487E-01 + 258 -1.0141693488223549E-01 + 259 -1.7692274027486087E-02 + 260 -4.3369441176375589E-02 + 261 -2.2956579724468434E-02 + 262 -3.5488562853947136E-02 + 263 -1.2422304496892734E-02 + 264 1.5271217565682334E-02 + 265 -7.2307932173332949E-04 + 266 -6.0599402438819994E-03 + 267 -1.5333105146441981E-02 + 268 -3.1592943443654992E-03 + 269 1.0820238887291871E-02 + 270 5.3549325166363506E-03 + 271 6.2341421973073387E-03 + 272 8.1369783603254500E-04 + 273 2.4978748629255436E-04 + 274 -8.7965550157693643E-03 + 275 -6.1748338713909718E-03 + 276 -5.1858401258599229E-03 + 277 -4.6413565336169459E-03 + 278 -7.2622437421032530E-04 + 279 3.3668264904469426E-02 + 280 -8.1045021239012568E-03 + 281 -1.3443144267130658E-02 + 282 -1.0634213567753863E-01 + 283 1.8925822745608289E-01 + 284 8.1669280107043909E-03 + 285 2.6716148276643738E-02 + 286 -4.6746217669189301E-02 + 287 -1.4141604471906452E-02 + 288 -1.1535676079880250E-03 + 289 3.6127119646173211E-02 + 290 3.9022100482500152E-03 + 291 5.1889107663370751E-03 + 292 1.3240789122229937E-02 + 293 -2.3380375452034265E-03 + 294 -9.6857550659984512E-02 + 295 -1.1622652580578902E-01 + 296 -1.7668447180777470E-02 + 297 1.5170680898945466E-02 + 298 1.9247137607860600E-02 + 299 1.1527009773492623E-03 + 300 3.1343343851808728E-03 + 301 4.8547695102165930E-03 + 302 1.0125819327099762E-02 + 303 5.3135318325414356E-04 + 304 -1.4686956821331794E-02 + 305 2.1584189368747603E-01 + 306 1.6967933606557899E-02 + 307 2.6811745019388336E-02 + 308 -1.7363382487266432E-02 + 309 8.5482691888608617E-02 + 310 8.1164540136001214E-03 + 311 8.5278223260421473E-03 + 312 5.9530687802716257E-03 + 313 2.7611394525898950E-02 + 314 -1.8694185681956649E-03 + 315 -2.3085653856239094E-03 + 316 3.6863165338827447E-03 + 317 -1.0253850962893812E-02 + 318 1.4015404815484812E-02 + 319 1.7540113140847188E-02 + 320 1.2499825944342696E-03 + 321 -1.2196165516750575E-02 + 322 -1.2714542134733733E-02 + 323 6.1813510940943422E-04 + 324 8.8190841975346250E-05 + 325 2.5536550791519781E-03 + 326 -4.4385010967473160E-03 + 327 -5.6142583277127712E-04 + 328 2.3933167262345360E-03 + 329 5.7734181863304595E-03 + 330 -2.0006517504763559E-02 + 331 -7.1615508034899560E-03 + 332 3.8897385392365258E-02 + 333 -1.4419130596430116E-01 + 334 -1.3623011536645238E-01 + 335 6.7920851176607737E-04 + 336 -8.2519359488007031E-03 + 337 -1.9791288375172831E-02 + 338 1.9820856356007697E-02 + 339 4.5549103223390180E-03 + 340 7.9675760160515365E-04 + 341 -4.3261006642862703E-03 + 342 9.3686306654332634E-03 + 343 -4.9192159991714194E-03 + 344 1.3504174864070085E-02 + 345 1.2665973544675333E-02 + 346 -1.7630182312451025E-02 + 347 4.9283475721719249E-03 + 348 3.1010689876756663E-03 + 349 -3.0016313527832213E-03 + 350 -2.9903246822022009E-03 + 351 -5.0986365126143721E-03 + 352 2.1764113422717438E-04 + 353 -3.1987314441572025E-04 + 354 -1.9072653266806360E-04 + 355 1.7404945056406468E-02 + 356 -3.0972473828393735E-03 + 357 1.2291457835403743E-01 + 358 4.1374247857016336E-02 + 359 -7.6057567800518963E-02 + 360 -2.5444806659401940E-02 + 361 -7.1602169996109015E-03 + 362 1.6336885599427281E-02 + 363 2.0218147205882737E-02 + 364 -8.8045079995768532E-03 + 365 3.5982627770570711E-04 + 366 1.4673262805938071E-02 + 367 -1.2308246661841448E-02 + 368 1.6173834581846039E-01 + 369 -2.9640532065781149E-02 + 370 3.1479649486915638E-02 + 371 5.3199053972788485E-02 + 372 -7.3116647376311086E-02 + 373 -5.8646260124329960E-03 + 374 -9.7008388283254948E-03 + 375 2.9683498030824748E-02 + 376 9.2844889392888520E-03 + 377 -1.9416787716061016E-03 + 378 1.5179584744712413E-02 + 379 -1.7234988130251899E-02 + 380 8.6905086542127061E-03 + 381 5.4948870598874280E-02 + 382 -8.4837961127605614E-03 + 383 -6.0139645212669872E-03 + 384 -1.2280740576440255E-01 + 385 -3.2453411886267429E-02 + 386 -1.8511057720238745E-02 + 387 2.6221792200757085E-02 + 388 1.2183215829568370E-02 + 389 2.6308622074952645E-02 + 390 2.1914267011033928E-02 + 391 -1.9436331621229281E-02 + 392 9.0944740478143670E-03 + 393 -2.5910080755719482E-02 + 394 1.4532439993559406E-02 + 395 1.3902302212315326E-03 + 396 2.7783333701771492E-02 + 397 -1.3171270946807337E-01 + 398 5.4835796363002821E-02 + 399 1.6377030106391180E-03 + 400 -3.8615895055519236E-03 + 401 5.1417754702343579E-03 + 402 -8.1798255589052501E-03 + 403 3.2309299947493189E-03 + 404 -7.8324939053105724E-03 + 405 -1.0193708524361198E-02 + 406 5.2600521141903086E-03 + 407 2.4308847598282689E-02 + 408 1.4136841635041206E-02 + 409 -1.2904029774635110E-02 + 410 -3.7631218680308560E-02 + 411 1.6661359048712885E-02 + 412 -6.2564655325123204E-04 + 413 -3.1908360761860122E-04 + 414 3.5878951429263678E-04 + 415 1.0011996865414597E-03 + 416 5.0262227506511414E-03 + 417 -4.7684462570203208E-03 + 418 -6.1210840345848937E-03 + 419 6.5792276548126014E-02 + 420 -1.3104467912377259E-02 + 421 8.9338933212662536E-02 + 422 -9.8835993804215164E-02 + 423 8.0892265954781828E-02 + 424 -2.6650034193817507E-02 + 425 1.7258930931516758E-02 + 426 -2.2653875836882321E-02 + 427 -5.3105559052612425E-03 + 428 -3.0330683914374843E-03 + 429 9.7286809786594295E-03 + 430 -4.6286750290303194E-03 + 431 6.5693639399354367E-03 + 432 -2.5690217585124808E-02 + 433 4.6405530308696926E-03 + 434 3.5273938334933930E-03 + 435 1.3144916875268586E-01 + 436 1.0279127312860104E-01 + 437 -9.4506693791562187E-03 + 438 -1.9525313398343333E-02 + 439 -1.8482843875736902E-02 + 440 -8.8217763468388111E-03 + 441 -3.1148071802485858E-03 + 442 -2.0714116556860129E-02 + 443 6.7012117506474881E-03 + 444 -3.2514932783181072E-02 + 445 -4.6084009953555771E-02 + 446 -8.3161868118819086E-03 + 447 3.2394189862399475E-02 + 448 1.8254899161030999E-01 + 449 -3.0794083140287629E-02 + 450 8.0271464883497051E-03 + 451 1.8502624889165244E-02 + 452 -1.6938130165716568E-02 + 453 4.0911044914786181E-03 + 454 -1.2252772003593275E-02 + 455 3.6807821637415347E-02 + 456 4.7148898413541512E-03 + 457 7.9578057169652720E-03 + 458 -6.7466389237183380E-03 + 459 -4.7425918193405400E-02 + 460 4.2976704768380718E-02 + 461 1.7906374404813314E-02 + 462 4.7093320978881595E-02 + 463 4.6021649786556953E-03 + 464 -2.0284563430213124E-03 + 465 7.9640357954992962E-03 + 466 -1.1231311253851118E-02 + 467 -3.9591736893035854E-03 + 468 6.0732639939108241E-03 + 469 4.2444658730098070E-03 + 470 9.9056657243051294E-02 + 471 6.9318448768284609E-03 + 472 2.5277398162276532E-01 + 473 -8.9743826401466789E-02 + 474 2.4880767545547389E-01 + 475 2.4779346658221936E-02 + 476 -1.0666653808915781E-02 + 477 1.3252079090285267E-02 + 478 1.1233970307411403E-02 + 479 -1.0500760789303093E-02 + 480 -9.3367146850329898E-03 + 481 1.7999834941670644E-02 + 482 -2.3323744379757511E-02 + 483 1.5079560481435836E-02 + 484 -2.9314166715638312E-02 + 485 5.6195869134931702E-03 + 486 2.8082351029479664E-02 + 487 -2.5374426981852893E-02 + 488 9.4548033580568627E-04 + 489 -1.8089013023621131E-03 + 490 3.9270188097423045E-03 + 491 -2.9211263279300612E-03 + 492 2.9015918728574528E-03 + 493 4.5544258500930012E-03 + 494 1.0127504669161264E-03 +Ene= -3.0463222031E-02 +Spin= Alpha +Occup= 0.0000000 + 1 -1.2956113966918456E-01 + 2 -4.6137519628788887E-03 + 3 2.1676111562099001E-01 + 4 -6.9868135073731186E-02 + 5 -8.7668380991922909E-02 + 6 1.9933525674809442E-02 + 7 -1.2182096718856722E-02 + 8 -7.8108416503396899E-03 + 9 1.2446122957929800E-02 + 10 9.8028615164368373E-03 + 11 1.4813755488344727E-02 + 12 -2.0657900264637846E-02 + 13 -5.9946343218620132E-03 + 14 -3.1371973930070362E-03 + 15 -1.2486276794881774E-02 + 16 -2.0203152629307022E-02 + 17 -1.9850800363983526E-02 + 18 -4.3940866303589744E-03 + 19 -2.6292114970858523E-03 + 20 -8.6338520220285314E-04 + 21 -6.9322198355415334E-03 + 22 6.5715915830318234E-04 + 23 9.8221187597299572E-03 + 24 6.7761443268180097E-03 + 25 -7.2301887274623111E-03 + 26 -1.1319154613960865E-01 + 27 -1.4346501842385116E-02 + 28 -5.6159141370328881E-02 + 29 -3.4716182844990724E-03 + 30 -5.2414546084389974E-02 + 31 -9.7407204590875523E-03 + 32 -9.8387053629370408E-04 + 33 7.0454191627192979E-04 + 34 7.0115974105256136E-04 + 35 -4.6750036868807724E-03 + 36 -1.4996260371924992E-02 + 37 1.0125865214343355E-02 + 38 -2.0480406876159121E-02 + 39 1.9324063694943425E-02 + 40 -8.7627022730013410E-03 + 41 -3.4513178948875102E-02 + 42 2.0917926100214691E-02 + 43 -2.8476015755359158E-02 + 44 7.0096276929684101E-03 + 45 7.2970703984492433E-03 + 46 1.6511978230089406E-03 + 47 4.3853523321188545E-03 + 48 -4.3143011132771588E-04 + 49 3.0353758304599789E-03 + 50 1.7107846403790971E-03 + 51 3.1364465863430563E-01 + 52 3.6403245350096057E-02 + 53 -8.1366138956600637E-02 + 54 -1.1189877475474620E-01 + 55 -1.0653322882593470E-01 + 56 -1.4744223251504478E-02 + 57 -9.4147677748461431E-03 + 58 -5.7905628407538406E-03 + 59 1.2669643595638835E-02 + 60 5.8814341232974202E-02 + 61 1.8243036127073144E-02 + 62 -4.3050278603610718E-03 + 63 -7.2071385073655672E-03 + 64 -3.0843950480817042E-03 + 65 7.4855782345974606E-02 + 66 3.2649156602996374E-02 + 67 6.0602791463444791E-03 + 68 2.7164231578231902E-03 + 69 -1.6271321716645822E-03 + 70 1.3479320140163805E-03 + 71 9.4460230192421177E-04 + 72 -2.8545176354066951E-03 + 73 2.0475159209259403E-03 + 74 4.4150112424253844E-03 + 75 1.4567374195537037E-03 + 76 -1.1425860484132064E-01 + 77 2.1666452759725282E-02 + 78 1.0892457008300263E-01 + 79 1.2827430116503505E-01 + 80 -9.2337302794408931E-03 + 81 -2.8580622424485457E-02 + 82 -5.2832614934647089E-02 + 83 -1.6769923011810298E-02 + 84 -7.6030685536638306E-04 + 85 8.8281849130854122E-03 + 86 1.6725449766409481E-02 + 87 -7.3843567095204128E-03 + 88 1.0316007768940070E-02 + 89 9.6434226891490685E-02 + 90 -1.4285320017697833E-02 + 91 -1.6725724865034058E-01 + 92 -9.1930780562756290E-02 + 93 6.3799707333428254E-02 + 94 3.8617317590480725E-02 + 95 1.4337236857329903E-02 + 96 -1.7764308340415005E-02 + 97 -3.3326023330235099E-03 + 98 9.8513644167901558E-03 + 99 6.7260660589264828E-03 + 100 -2.3070573497855691E-02 + 101 -1.6928994444333056E-02 + 102 -4.8750131210006979E-02 + 103 7.7978246964171861E-03 + 104 7.7340886589609761E-02 + 105 -6.1589815828361441E-02 + 106 -2.4470437581901993E-02 + 107 -2.6234467789930015E-02 + 108 1.7651907382648570E-02 + 109 2.1618249145391936E-03 + 110 -7.7908594727609352E-03 + 111 -1.5174797472772387E-03 + 112 -7.7667781247646901E-03 + 113 -1.4818429139897818E-04 + 114 8.6719212066682118E-04 + 115 2.5632162689261429E-02 + 116 -7.2001897877083864E-03 + 117 -1.0775725276891078E-01 + 118 -7.4192977893215457E-03 + 119 -4.6610103320899779E-02 + 120 2.2480105005724001E-02 + 121 -1.2689758166515200E-02 + 122 2.0097694917084637E-02 + 123 -1.3534713866353746E-02 + 124 -1.9262146466139100E-02 + 125 7.3791818493021064E-03 + 126 2.3529543301009127E-04 + 127 7.9157839391348888E-03 + 128 3.5884734123634032E-04 + 129 4.1026456785129804E-03 + 130 2.3508172042210288E-02 + 131 1.0399731364718963E-01 + 132 -8.6442249155447182E-02 + 133 -1.0013233799010729E-02 + 134 8.4910536409190263E-03 + 135 -1.1364310239590688E-02 + 136 1.3549087164641973E-02 + 137 -2.3162678237661022E-02 + 138 -2.2198051118835330E-02 + 139 2.5906312047434248E-03 + 140 2.1949315299781804E-02 + 141 3.1443519742816008E-03 + 142 -2.2642984832440382E-02 + 143 -3.6107768351041875E-02 + 144 -1.9524433829285655E-02 + 145 3.5208007738913444E-02 + 146 -3.0245030395418993E-03 + 147 3.0201388423711272E-03 + 148 1.8982503745173919E-03 + 149 4.9388726089172903E-03 + 150 -1.4683010591718434E-03 + 151 -2.8975081219919986E-03 + 152 2.8293197859991476E-03 + 153 -3.5914406211452671E-02 + 154 -5.6234849054526935E-03 + 155 -1.2961444335772867E-02 + 156 9.2266116440574406E-02 + 157 1.0649598483132028E-01 + 158 -7.2653085431446246E-03 + 159 1.4663781786560504E-03 + 160 7.0204520646933461E-03 + 161 -9.4966622608613233E-03 + 162 -1.4053331613430579E-02 + 163 2.9888792357073333E-03 + 164 1.7785749834978423E-02 + 165 -4.2586878584636474E-04 + 166 6.9138911739707746E-03 + 167 1.3868476948960096E-02 + 168 2.6189499158697910E-02 + 169 1.6119947359696331E-02 + 170 -7.8198130793808891E-03 + 171 -4.5001632492275637E-03 + 172 1.2865694609471906E-04 + 173 -2.1176146391399552E-03 + 174 -4.3220233804461688E-03 + 175 3.3987294649563926E-04 + 176 3.0444468029623712E-03 + 177 4.8096304950363076E-03 + 178 -4.5772027124281918E-02 + 179 7.8103139566680626E-03 + 180 -8.4981888404544709E-02 + 181 -4.4943994398462396E-02 + 182 9.6198725255532372E-02 + 183 1.8355389218897553E-02 + 184 4.2880586900813393E-03 + 185 -3.2177735788352410E-02 + 186 6.1879254528586954E-03 + 187 -1.2815604500625822E-02 + 188 -9.4344957343619838E-03 + 189 -4.3566511694837712E-03 + 190 -1.3347682477594519E-02 + 191 1.3618628140103084E-01 + 192 -2.7671003847778920E-02 + 193 7.9686662082832829E-02 + 194 1.9767930202087106E-01 + 195 -1.1992525193325879E-01 + 196 -2.9133496805509397E-02 + 197 -5.5805293550341951E-02 + 198 4.6477574277253561E-02 + 199 3.4615571809157352E-03 + 200 1.7978053871098139E-02 + 201 3.4217572842718542E-02 + 202 -1.8486964116523147E-02 + 203 -9.9380630214359524E-03 + 204 1.3083553102342219E-02 + 205 8.0299735225493438E-04 + 206 -2.0228191975359264E-01 + 207 -1.7332353997630529E-01 + 208 4.2198741342376889E-02 + 209 -1.9554532964876942E-02 + 210 -1.8137670941149431E-02 + 211 -3.5513292003414503E-04 + 212 2.1197679043442181E-02 + 213 -1.3411386157574597E-02 + 214 4.8939731465165223E-03 + 215 -2.9417805441414539E-03 + 216 6.9848358800473605E-03 + 217 1.3086583730979115E-02 + 218 -4.3965729958605607E-02 + 219 -2.2140306210038877E-02 + 220 -1.1479700884726140E-02 + 221 -4.6277345238050147E-03 + 222 -1.0320425848097700E-03 + 223 -2.0724735459381302E-03 + 224 2.0325116950702798E-03 + 225 -5.4441947926776573E-03 + 226 -1.0276608749495357E-03 + 227 3.8764893829528980E-03 + 228 4.3577952143732590E-03 + 229 -3.6859732984804133E-02 + 230 -1.9706268333118480E-03 + 231 -1.9570305706657767E-02 + 232 2.0330946016945439E-01 + 233 -8.4168770540729618E-02 + 234 -1.7960323708167407E-02 + 235 2.4463116746653701E-02 + 236 -5.8751942549575562E-03 + 237 2.8472571185077407E-02 + 238 1.0989571966533442E-03 + 239 -1.0632967441522231E-04 + 240 1.6904848529631752E-02 + 241 7.4857001600634257E-03 + 242 1.4090261631852246E-02 + 243 -1.0935172494846254E-02 + 244 -1.1447661890640150E-02 + 245 5.2337362254209714E-02 + 246 1.8586962634894292E-02 + 247 1.8771655772842775E-03 + 248 5.5738135491878050E-03 + 249 -1.9953958988635128E-03 + 250 6.8018815594717962E-03 + 251 -4.0440399398758632E-04 + 252 -3.0535904753267367E-05 + 253 -5.8879156360620213E-03 + 254 6.0312293150197253E-02 + 255 1.1471585789745839E-03 + 256 -2.5904022317548664E-01 + 257 -1.8668843936964830E-01 + 258 -4.4332720271935841E-02 + 259 -2.0788727467298228E-02 + 260 -1.5358150035591154E-02 + 261 -2.2905897037914587E-03 + 262 -9.7718550453792553E-03 + 263 -5.6698200392301173E-03 + 264 2.7320169272249230E-03 + 265 -1.1299706230983626E-02 + 266 7.4065583919172436E-04 + 267 1.1028668984642656E-02 + 268 -9.0985150096656014E-03 + 269 -2.3497296951449739E-02 + 270 -2.1077605469374032E-02 + 271 -1.5163100247557753E-02 + 272 -2.8737333430904084E-03 + 273 2.4228401531153610E-03 + 274 -1.6267024968996046E-03 + 275 -2.9144729327315083E-03 + 276 3.1870312186786231E-04 + 277 3.5002546205733793E-04 + 278 6.8954347487832908E-04 + 279 1.0259967103718884E-01 + 280 -1.9531284463890488E-02 + 281 -5.2193333136831402E-02 + 282 -1.0834554655681479E-01 + 283 1.3340604541832926E-02 + 284 8.5862732624717060E-03 + 285 2.7286240190514652E-02 + 286 -2.1950774325167306E-02 + 287 -1.2780968515537238E-02 + 288 1.1842885236938340E-02 + 289 6.5269800152701904E-03 + 290 -1.1399864539522538E-03 + 291 -2.8493902289352824E-03 + 292 -9.8466663611198775E-03 + 293 4.7999945103078326E-03 + 294 -9.6884975144332676E-03 + 295 1.2405250857283785E-02 + 296 -1.6546037261615898E-01 + 297 1.5200102961323734E-03 + 298 -9.2388222328599542E-03 + 299 3.9676242278153938E-02 + 300 1.7544780730309746E-02 + 301 -8.4623268407215350E-03 + 302 -1.7244080675275605E-02 + 303 4.5065690619846537E-03 + 304 -4.5330838414785017E-03 + 305 1.1453669136537918E-01 + 306 1.6323397753937603E-02 + 307 9.2937253682330551E-02 + 308 -4.3001047320916377E-02 + 309 -1.3376231460090832E-01 + 310 1.1420631653825813E-02 + 311 -1.1836223457403049E-02 + 312 -1.1503501498107999E-02 + 313 4.0192406892312496E-03 + 314 -1.5879427191790833E-04 + 315 -9.2680132385251880E-04 + 316 1.1819543664854831E-02 + 317 -2.0032632834591189E-02 + 318 6.4440669022577017E-03 + 319 3.0552059032593899E-02 + 320 9.0919411234862777E-03 + 321 4.1008889380824915E-03 + 322 -1.9316673160774841E-02 + 323 8.3736075177716937E-04 + 324 -1.3702555734240057E-03 + 325 -5.8206341369092581E-03 + 326 -3.0902037451317589E-03 + 327 -1.5700795475690442E-03 + 328 -7.3161175761702886E-04 + 329 -1.9619386211249417E-03 + 330 6.1369879224132930E-02 + 331 7.0984894681969165E-03 + 332 1.0902706163408579E-01 + 333 4.3214293189125125E-01 + 334 7.8834725351694390E-02 + 335 2.6415126716361347E-03 + 336 3.5834500277819939E-02 + 337 9.9781707061032728E-03 + 338 -3.1685715542566981E-02 + 339 4.4852565535715150E-03 + 340 1.8504024735218873E-02 + 341 3.7733914434206380E-03 + 342 9.4426222608160245E-03 + 343 -2.1729565573717756E-04 + 344 5.2120326632170656E-03 + 345 5.6777555331682340E-03 + 346 1.0296790952815570E-02 + 347 -1.9964049829246555E-03 + 348 -3.7784310640505583E-03 + 349 6.0084356651217610E-03 + 350 5.9969264976461201E-03 + 351 -2.9915683809200312E-03 + 352 7.5066870624881351E-03 + 353 -3.7733134543157993E-03 + 354 3.5050619231320802E-03 + 355 1.1503383229467484E-01 + 356 -2.1448650515325941E-02 + 357 8.1771758415530124E-02 + 358 1.0146507882216081E-01 + 359 1.1130849991706075E-01 + 360 -1.8285515807481684E-02 + 361 -9.9724876128324882E-03 + 362 -4.1991827524532274E-02 + 363 -1.8690057342049756E-02 + 364 -7.7744831574241635E-03 + 365 3.9894427368593905E-03 + 366 -2.0976405982364072E-02 + 367 -1.7739459266242371E-03 + 368 -3.7143853399638348E-02 + 369 5.5698224523691000E-03 + 370 2.0736988142980580E-02 + 371 -6.5486197290370390E-02 + 372 -2.5618062883333327E-02 + 373 1.0480817957842370E-02 + 374 1.3073729799948535E-02 + 375 1.9624990270561075E-02 + 376 1.5841068626141836E-02 + 377 -1.2474246149368132E-02 + 378 -3.2596084756398767E-02 + 379 3.3112867387244359E-02 + 380 2.7064907685431582E-02 + 381 7.7239165243292315E-02 + 382 -1.6139390502332204E-02 + 383 1.8822579853716082E-01 + 384 6.4092293217026419E-02 + 385 4.4849104429390690E-02 + 386 -4.0667658170062702E-02 + 387 -3.5615740015962289E-03 + 388 -3.0285941412696517E-03 + 389 2.5073224162671273E-03 + 390 1.0150000075985946E-02 + 391 4.4088150205435859E-03 + 392 -8.6270421248434981E-03 + 393 -5.0582901726611345E-03 + 394 1.6078251670308866E-01 + 395 1.2898017442713385E-02 + 396 -3.3213816133789424E-02 + 397 3.0380833312228021E-02 + 398 2.0689450719422752E-02 + 399 -6.4718784974941799E-03 + 400 -6.2156379961807683E-04 + 401 7.6531133620060801E-03 + 402 1.4407956530765929E-02 + 403 1.2015698901574761E-02 + 404 -1.1784562393695026E-02 + 405 5.7618871860200928E-03 + 406 -1.5010632229584644E-02 + 407 3.8896260816508495E-02 + 408 1.1110820521280861E-02 + 409 -2.4338931951182124E-02 + 410 -1.4522526595029846E-02 + 411 -1.9036107436125480E-02 + 412 -9.5824408434109576E-04 + 413 1.0202238033072924E-03 + 414 -2.9826959636158694E-03 + 415 -4.9023757417340720E-04 + 416 -4.0585768172498055E-03 + 417 3.0488709178191600E-03 + 418 -8.4666318103294792E-06 + 419 -6.3139171958971211E-03 + 420 2.3204584548742247E-03 + 421 2.1670663920339304E-02 + 422 7.5875943644829760E-02 + 423 -5.3394256108423570E-02 + 424 4.2916725997348016E-03 + 425 -2.9579663203704778E-02 + 426 8.8158117839399197E-03 + 427 -1.5080549079701232E-06 + 428 -3.4598328530534628E-05 + 429 -1.5488146429921528E-02 + 430 3.4761250917484253E-03 + 431 -1.2721187801604896E-03 + 432 -1.6401345043460431E-02 + 433 2.8703180599410545E-03 + 434 5.1810835864946683E-02 + 435 -1.7023960936056934E-01 + 436 8.3159348330284710E-02 + 437 1.3175966340904773E-03 + 438 2.3782302996681506E-02 + 439 -2.4511745722786488E-02 + 440 -1.8073699789977010E-02 + 441 -4.3285476417537832E-03 + 442 -3.8200413666972925E-03 + 443 -1.3125715571387132E-02 + 444 4.8700364001090894E-03 + 445 -1.2626163446508742E-02 + 446 7.8720827751108790E-03 + 447 5.2359180229323843E-02 + 448 -1.3297166501281937E-01 + 449 -5.1528994729538827E-02 + 450 1.9393718806865412E-02 + 451 -9.3715567090674069E-03 + 452 -1.2003322116489155E-02 + 453 -8.2188264545836019E-03 + 454 1.5189659869405564E-02 + 455 -2.2148671240488343E-02 + 456 -5.2913739588269105E-03 + 457 -1.4393425083973966E-03 + 458 -1.3445480105128286E-02 + 459 3.3346958149290437E-02 + 460 -1.3186695728605303E-02 + 461 5.7677881975304853E-03 + 462 6.1885532908840099E-03 + 463 1.1760823013412520E-03 + 464 1.1544397908662073E-03 + 465 -9.7184068122788611E-03 + 466 -5.7441788544731476E-03 + 467 -2.5756819108414767E-03 + 468 -2.2131854742927998E-03 + 469 -7.9508752310132151E-03 + 470 -1.3774228139329725E-01 + 471 -1.6863644963344113E-02 + 472 5.6157511919924900E-02 + 473 -7.3918053600850839E-02 + 474 2.1280637786159012E-01 + 475 -8.9037864600608027E-04 + 476 -1.2345171037805035E-02 + 477 1.4643081782782950E-02 + 478 -1.3508096998164867E-02 + 479 9.2742192054093165E-03 + 480 1.6424488723913996E-02 + 481 -2.4887666376572287E-02 + 482 2.5154992040310527E-02 + 483 3.9583299524712789E-03 + 484 1.7838867877163467E-03 + 485 1.4127106527444684E-02 + 486 -3.8898714774141516E-02 + 487 8.4820597599593265E-03 + 488 -6.9983409621245118E-04 + 489 1.5436839036127266E-03 + 490 1.9636102071814094E-03 + 491 -1.2805029884812619E-03 + 492 -2.9873108614618901E-03 + 493 4.0204781611227259E-04 + 494 1.9145450240952829E-04 +Ene= -2.4158557117E-02 +Spin= Alpha +Occup= 0.0000000 + 1 -2.7743183936326354E-01 + 2 -1.4246007353140945E-02 + 3 9.3271208340405296E-02 + 4 3.1018305174695879E-03 + 5 -2.7650474745179100E-02 + 6 5.3216423105286207E-03 + 7 1.3448706878925076E-02 + 8 -6.5657220314790307E-03 + 9 -5.4268981872787215E-03 + 10 2.0682413782649164E-02 + 11 2.1874063102539632E-02 + 12 -5.2042841867372562E-02 + 13 8.0226394484939796E-03 + 14 -1.2065775731477699E-02 + 15 1.6317345071298502E-02 + 16 -3.3187705224470283E-03 + 17 -3.8901667273408699E-02 + 18 -2.1584780855854298E-02 + 19 1.0856693312421201E-03 + 20 7.7584026198998738E-03 + 21 -9.9438899311827134E-03 + 22 2.8532981980558541E-04 + 23 1.6443537532286772E-03 + 24 6.9609613281838255E-03 + 25 -1.7415134969600828E-04 + 26 -4.4117303518592478E-02 + 27 -6.4990305186745003E-03 + 28 3.4561131707982487E-02 + 29 1.0353835633444719E-01 + 30 5.4279947446587117E-02 + 31 -8.0798332407911534E-05 + 32 1.0951199815761675E-02 + 33 1.3366460664885643E-02 + 34 -1.8957991777854913E-02 + 35 -6.0520025489464485E-04 + 36 -1.1477501651287008E-02 + 37 -9.4646126239689003E-04 + 38 -1.1938377974255869E-02 + 39 -4.5649483975139224E-02 + 40 -1.0347527640130919E-02 + 41 -7.8664974282252158E-03 + 42 1.6246351201380325E-02 + 43 -2.5215611423141545E-02 + 44 8.1018403081135936E-04 + 45 5.3178734173312770E-03 + 46 4.2544557192986760E-03 + 47 5.6363721277305370E-04 + 48 8.7615516606599406E-04 + 49 1.7582324623027928E-03 + 50 -1.3731911530802327E-03 + 51 1.1265297887293477E-01 + 52 1.3690257184819055E-02 + 53 -5.8861086184304648E-02 + 54 -7.2288474992649218E-02 + 55 6.0013882261220106E-02 + 56 -1.0909736987709633E-02 + 57 -1.7624212770721555E-03 + 58 2.6155512253192284E-03 + 59 1.0747681188536759E-02 + 60 -1.7736351402023402E-02 + 61 1.2708319385415681E-02 + 62 1.6190145305392194E-02 + 63 -1.5370614839000920E-02 + 64 1.8832091203251012E-02 + 65 -7.5373179149449826E-03 + 66 2.3605631067721084E-02 + 67 2.1403250297386205E-02 + 68 -2.2632895739688155E-02 + 69 -7.7231022794079420E-03 + 70 3.2070294619947403E-03 + 71 3.6558701923949904E-03 + 72 2.0812081403776697E-03 + 73 1.1288866599153059E-02 + 74 2.3252415693951166E-03 + 75 4.3373574821176739E-03 + 76 -5.5781682552689484E-02 + 77 1.0897530192737672E-02 + 78 1.6861381294756308E-02 + 79 2.3689527906885821E-01 + 80 9.0163929363915651E-02 + 81 -1.4500851351493441E-02 + 82 -6.3328435893540230E-02 + 83 -2.1116203670581889E-02 + 84 -9.0819565309019409E-03 + 85 9.2460456008232211E-05 + 86 1.7079663930530557E-02 + 87 -9.6395385769930831E-03 + 88 1.5039959709899440E-02 + 89 -4.4826212166888389E-02 + 90 5.7198922459607629E-03 + 91 -4.5330903320912403E-04 + 92 -2.1088698728156835E-01 + 93 -1.9584955457598942E-02 + 94 -1.0873044212194212E-02 + 95 3.8698013561506463E-02 + 96 2.1608659855468413E-03 + 97 -7.7619696144200258E-03 + 98 -1.6688521420812953E-03 + 99 -5.2510624851157700E-04 + 100 -1.1456159512093705E-02 + 101 -9.5602405468761514E-03 + 102 8.6722168591344545E-03 + 103 -4.8506768921387127E-03 + 104 -1.1051284040367737E-02 + 105 -8.2172449884504242E-02 + 106 -1.7317551571205598E-03 + 107 -1.7141686959038628E-03 + 108 1.9185267697361046E-02 + 109 -6.4274356044311714E-03 + 110 9.5315685485037188E-03 + 111 8.2562683532730005E-04 + 112 -5.1990550363597470E-03 + 113 -2.6519021633689909E-03 + 114 -1.5364303247131330E-02 + 115 2.1869008051776117E-02 + 116 -5.3926808960401080E-03 + 117 2.7460426402563548E-02 + 118 -1.7743143696885809E-02 + 119 -6.0431251497507318E-02 + 120 -6.3241846488739980E-03 + 121 -1.3538851696402075E-03 + 122 1.7186901012621943E-02 + 123 -1.0088973455378942E-02 + 124 5.7825230552624451E-03 + 125 -2.9034044866551440E-04 + 126 -6.9235513556238490E-03 + 127 -1.8698000619689539E-02 + 128 8.7962316607017629E-02 + 129 1.3725928999998735E-02 + 130 1.1978371181159072E-02 + 131 -2.3590796964982282E-02 + 132 5.8188090299334623E-03 + 133 -6.2605868562399768E-03 + 134 -1.6005580029228333E-02 + 135 -5.8859211505034000E-04 + 136 -8.9832767699544883E-04 + 137 -5.4609223775710404E-03 + 138 -1.9771466347582121E-03 + 139 -3.6448593731047414E-03 + 140 -9.2325480035007745E-03 + 141 2.7022509486397596E-02 + 142 1.4027320775169398E-03 + 143 -2.1986368711383267E-02 + 144 -1.7192562079485902E-02 + 145 -1.6936644726220810E-02 + 146 7.3286204082635541E-03 + 147 4.4984033049859709E-04 + 148 2.3960555776206620E-03 + 149 4.6906119261225362E-03 + 150 1.6532496671939224E-03 + 151 -1.3132576424905737E-03 + 152 8.7529821167003097E-05 + 153 2.1426741942833030E-02 + 154 4.7653143692834195E-03 + 155 -5.5943484364869130E-02 + 156 -8.1633492304454464E-02 + 157 -6.7585902218142244E-02 + 158 -4.6922183308441339E-03 + 159 -4.1890215961854762E-03 + 160 -3.3998549652164657E-03 + 161 1.0985788660350824E-02 + 162 -3.4474092751074926E-04 + 163 5.6822839229535519E-03 + 164 -5.8387730779728662E-03 + 165 -4.5463766230635265E-03 + 166 1.3062193467428823E-02 + 167 -1.5102501474049205E-02 + 168 7.7185417275851473E-03 + 169 6.3140625319382622E-03 + 170 -5.1281530345539282E-03 + 171 -4.1334522715774820E-03 + 172 -1.7742874507086989E-03 + 173 -1.0831431613118243E-03 + 174 -3.6231942619404382E-03 + 175 -4.3523592665251797E-04 + 176 4.3766364678174305E-04 + 177 2.8197508040853675E-03 + 178 1.0890775206441315E-01 + 179 -2.1447917497442015E-02 + 180 1.8198865802632802E-02 + 181 -6.9158263799525277E-02 + 182 -1.1509139416339106E-01 + 183 -1.7124711481111464E-02 + 184 -1.3403005683571842E-03 + 185 3.4117619567795909E-02 + 186 -2.1139882830061431E-03 + 187 6.9406895588451818E-04 + 188 -1.5217428007917930E-02 + 189 2.6452952072587087E-03 + 190 -2.5484331101313785E-03 + 191 -2.0284907501796258E-04 + 192 -2.8753125509739335E-04 + 193 1.2533698762432033E-01 + 194 5.0081654403329442E-05 + 195 2.3142441331671734E-01 + 196 -4.0292882063667469E-02 + 197 1.0572799993221553E-02 + 198 -4.3395985607577882E-02 + 199 1.7714132450483769E-02 + 200 3.2232134998292500E-02 + 201 -2.6619427703913304E-02 + 202 -5.3257223976583973E-03 + 203 -6.6669970245379203E-03 + 204 3.4700577532735276E-02 + 205 1.3003128436787478E-04 + 206 -3.9254614353660497E-02 + 207 -1.4688881819589528E-01 + 208 2.8306142571581933E-01 + 209 -9.7957584052203138E-03 + 210 -9.6444236608582059E-03 + 211 2.4233763305017697E-02 + 212 -3.9517213264655043E-02 + 213 -5.1385708628177091E-03 + 214 -7.2400333895503571E-03 + 215 1.4849566016080139E-02 + 216 1.4261908708423209E-02 + 217 -3.4000693723544480E-02 + 218 -8.6930700688195237E-03 + 219 -2.1219200385019683E-02 + 220 3.3292592157312319E-02 + 221 4.7075635861315170E-02 + 222 -1.0330984683824875E-02 + 223 -5.7650442889766755E-03 + 224 2.0048577267145254E-03 + 225 1.7641223168103806E-03 + 226 -2.9589920693398820E-04 + 227 -1.5781828721018495E-03 + 228 7.9439041185295708E-04 + 229 1.5521221212785263E-01 + 230 5.8714168581926957E-03 + 231 -1.1068060219086786E-02 + 232 1.4394190485687877E-01 + 233 -1.1115913650373806E-01 + 234 -9.6784350778855773E-03 + 235 1.4926778989060719E-02 + 236 -1.1097469441488280E-02 + 237 -3.9091983253999041E-03 + 238 1.7772885881738972E-02 + 239 -1.2963032173519958E-02 + 240 2.9492004331550633E-02 + 241 1.7150584045952270E-02 + 242 5.4836979127671680E-02 + 243 2.2151016139655626E-02 + 244 -5.2430970180561975E-03 + 245 5.1914635398899473E-03 + 246 7.9143857002715645E-02 + 247 4.2538097436313422E-03 + 248 3.4178598284821094E-03 + 249 -4.4263374072343745E-03 + 250 1.0796058174351434E-03 + 251 -1.9222225260574616E-03 + 252 2.1119107608281805E-02 + 253 6.7683368241458330E-03 + 254 3.4599883391555987E-02 + 255 2.2379007930709823E-03 + 256 1.9471904270586549E-01 + 257 -1.1642989343465605E-01 + 258 -1.2820612561767927E-01 + 259 1.2863710279185397E-02 + 260 -1.4391604180243515E-02 + 261 -1.1759450523262386E-02 + 262 -9.6238962652629104E-03 + 263 7.7942920552329957E-03 + 264 -1.3420386890465692E-03 + 265 7.9301295581346348E-04 + 266 -3.5477808853582394E-03 + 267 1.3318322178522217E-03 + 268 4.5772308853327719E-02 + 269 -1.6953064350073092E-02 + 270 -1.4797503128202247E-02 + 271 1.1115498301296977E-02 + 272 -1.3143474526480865E-03 + 273 -8.7633567431226659E-05 + 274 -5.6725688255985845E-04 + 275 -2.1704448659686367E-03 + 276 -2.5455770914651205E-03 + 277 1.4794986037028831E-03 + 278 8.3668062362241618E-05 + 279 8.2149800810183013E-02 + 280 -1.4267911351018939E-02 + 281 1.4476860912617626E-01 + 282 -6.8502703551268196E-02 + 283 -4.7013755932379150E-02 + 284 -2.0933631313678654E-02 + 285 1.5341231690777375E-02 + 286 -1.0448939202048976E-02 + 287 -6.0663466093748676E-03 + 288 -1.7027121187643429E-03 + 289 -1.9866483888816410E-03 + 290 -5.2969252260629488E-03 + 291 9.6102475639721317E-03 + 292 5.7338437031361197E-02 + 293 -8.8429686991439872E-03 + 294 -1.5556530465746152E-01 + 295 8.8456667382039625E-02 + 296 -3.8402930633590431E-03 + 297 4.6729062464151046E-02 + 298 -2.6538258991798534E-02 + 299 4.8004997136462529E-03 + 300 1.4698002894217478E-02 + 301 1.4782010813933252E-02 + 302 -1.5281475035261059E-02 + 303 7.9247822212570058E-03 + 304 -6.8242001549715719E-03 + 305 1.4069338993017844E-01 + 306 1.9232725633636968E-02 + 307 5.8382204514489118E-02 + 308 6.0258305472734473E-03 + 309 1.5678119359094972E-01 + 310 -3.7822396445685354E-03 + 311 -3.7657172769886690E-04 + 312 1.9041257759044951E-02 + 313 1.2704541562544006E-02 + 314 -1.7130287724690441E-02 + 315 -4.9877465023814771E-03 + 316 3.0704450554378186E-03 + 317 -1.7184380354872152E-02 + 318 -1.0061941397598941E-02 + 319 -4.5925358396137678E-02 + 320 -2.5433428594659788E-02 + 321 5.1453459440956965E-03 + 322 -3.4542345572560890E-02 + 323 -3.6908215002356953E-03 + 324 -3.1010588887806344E-03 + 325 1.5746344599278264E-03 + 326 7.4279018660306055E-03 + 327 9.3342270359106170E-03 + 328 -5.0190774623967141E-03 + 329 -3.9122039055796967E-03 + 330 -2.0012070588233194E-01 + 331 -2.3678809568741650E-02 + 332 2.9495768659309013E-01 + 333 -2.1487296331293140E-01 + 334 -6.1559779699545548E-02 + 335 1.7471620498289479E-02 + 336 -2.4597377009888989E-02 + 337 -1.1256971500466352E-02 + 338 4.5555330122561216E-02 + 339 1.0121570450995454E-02 + 340 -2.4797676964997732E-02 + 341 -5.1043045107542770E-03 + 342 9.8473029959658537E-03 + 343 6.0050522851663950E-02 + 344 9.6587657511312368E-03 + 345 -3.0951899147233487E-02 + 346 -5.0322353008301910E-03 + 347 5.2635700960868015E-04 + 348 -1.7638865550377049E-03 + 349 7.0407615218960537E-03 + 350 -1.6195620745274109E-03 + 351 1.1741961127253139E-03 + 352 2.6483595890377512E-03 + 353 -5.5787560419504429E-03 + 354 5.7492476555123144E-03 + 355 -1.6225243848530021E-02 + 356 3.1495031327678875E-03 + 357 -2.9765473956907089E-02 + 358 1.5217521931568539E-01 + 359 -1.1576518912503375E-01 + 360 3.7421105699749378E-03 + 361 -2.5751759916945120E-02 + 362 1.8305423928001704E-02 + 363 3.8153037499055541E-02 + 364 2.5815864326960195E-03 + 365 -2.9673631131187209E-02 + 366 -1.2677412641517427E-02 + 367 1.2267158966927963E-02 + 368 -1.1641263037898089E-01 + 369 2.0260856942692817E-02 + 370 5.3842755716204435E-02 + 371 7.2593344250164685E-02 + 372 1.7176039337068988E-02 + 373 -8.0450795424791208E-03 + 374 -2.0252586832103160E-02 + 375 6.2799087034802453E-03 + 376 -3.3992982661949347E-02 + 377 -6.1811465382620844E-03 + 378 9.6088057727358699E-03 + 379 1.5559720572888852E-02 + 380 2.1583585713664241E-02 + 381 -9.7118682231560297E-02 + 382 2.0905331449627047E-02 + 383 -1.2564861220724663E-02 + 384 6.8699214513977397E-02 + 385 5.9014178372890025E-02 + 386 8.1654555614059151E-03 + 387 -3.3466025793991869E-02 + 388 -3.2958484712969228E-02 + 389 8.2048986561266100E-03 + 390 -5.2468530005984728E-03 + 391 1.1243243976036248E-02 + 392 -1.3764911551237659E-02 + 393 3.1787857473092439E-03 + 394 -9.6362390682643240E-02 + 395 2.7456094758381306E-03 + 396 1.0585722342082569E-01 + 397 1.5211216843522083E-02 + 398 -9.0766637397242875E-02 + 399 7.2106878426811257E-03 + 400 -1.6481032917128756E-03 + 401 -2.2156781293119193E-02 + 402 5.7158977584229453E-03 + 403 -1.9448729398255881E-02 + 404 -3.2999838688310031E-03 + 405 2.0637455170632009E-04 + 406 -1.2094988703269988E-02 + 407 -3.1962432621407549E-02 + 408 -1.6016130595942247E-02 + 409 -4.9891426854201497E-03 + 410 -1.8115916891082259E-02 + 411 1.2518293460285230E-02 + 412 6.4066663480295254E-03 + 413 -2.6153158086036996E-03 + 414 1.3933742711218514E-02 + 415 4.0666157629337066E-03 + 416 -5.2648929511610477E-03 + 417 1.1703576448997392E-02 + 418 1.0156238767136994E-02 + 419 1.1474131066875538E-01 + 420 -1.9863879823247946E-02 + 421 -2.5410508346934757E-02 + 422 -1.7394012812702275E-01 + 423 1.2987881469252444E-01 + 424 -1.2227683559141195E-02 + 425 5.5443580349726268E-02 + 426 -4.1517173873134250E-02 + 427 1.6224508311882112E-02 + 428 -1.3790091284364193E-03 + 429 2.5097873052381967E-02 + 430 4.3196220818571742E-03 + 431 -2.0368443060436153E-02 + 432 9.7144441975868228E-03 + 433 -1.9389329341079446E-03 + 434 -9.4910676441998215E-02 + 435 6.3201991940775876E-03 + 436 -1.0329880454986799E-01 + 437 1.8454571400940298E-02 + 438 1.4435835976587715E-03 + 439 3.0593992439544821E-02 + 440 -2.9507007510123948E-02 + 441 6.8040022356910587E-03 + 442 2.1016489325686009E-02 + 443 1.0635524639242519E-02 + 444 -1.8388661162861862E-04 + 445 3.0407327346667745E-01 + 446 3.4416263309782959E-02 + 447 -2.0206077653369509E-01 + 448 8.5436342777077928E-02 + 449 -2.6231775140338554E-01 + 450 -1.4653355592943066E-02 + 451 6.0405052253717194E-03 + 452 -2.0484550534752403E-02 + 453 -1.8812284697166188E-02 + 454 -2.3195216432897194E-03 + 455 3.3257761564602320E-02 + 456 3.6108464852922094E-02 + 457 2.3513604759412825E-02 + 458 -6.6099444755554869E-03 + 459 -2.8885680196446407E-03 + 460 2.8360933988394992E-02 + 461 7.2609214707280711E-02 + 462 1.7508202828361515E-02 + 463 5.4173070772335881E-03 + 464 2.2570954422033336E-03 + 465 -3.6093965322782947E-03 + 466 -2.1123024831139390E-04 + 467 1.2655993863059118E-03 + 468 6.4434345820225088E-03 + 469 1.1368444464467022E-02 + 470 -4.0334399189430492E-02 + 471 -5.9141271387674939E-03 + 472 -1.1517430976171392E-01 + 473 3.4075844089187839E-02 + 474 -3.8933192524635167E-02 + 475 -1.6291629107887430E-02 + 476 -3.0976348880154677E-03 + 477 -2.2052242969014197E-03 + 478 -6.4006322895232136E-04 + 479 -5.6456042768387516E-04 + 480 6.0683679127682502E-04 + 481 -9.3418275360164279E-03 + 482 7.9590138721951781E-03 + 483 1.9101621753128732E-02 + 484 4.5530031777944700E-03 + 485 -1.3102673601130287E-02 + 486 -2.9139296016289232E-02 + 487 -5.1230575319767858E-03 + 488 -6.3111537478434477E-03 + 489 3.4572178814259802E-03 + 490 -5.4188010200491524E-03 + 491 -5.9554467850047175E-05 + 492 3.9800727453243000E-03 + 493 -5.7345687446542859E-03 + 494 1.7041848454793257E-03 +Ene= -1.8261403370E-02 +Spin= Alpha +Occup= 0.0000000 + 1 2.5624790645291312E-01 + 2 7.6355058323277049E-03 + 3 1.6411990213257477E-01 + 4 4.4986999144628198E-02 + 5 -1.4652107440558443E-01 + 6 1.4406691590114758E-02 + 7 7.4028216064590238E-04 + 8 -8.6199938224568486E-03 + 9 2.7899814711776815E-03 + 10 -6.9490228890246447E-03 + 11 -3.8690476396582105E-03 + 12 1.4815878766567999E-02 + 13 4.1492334314204328E-03 + 14 4.3688026672219271E-02 + 15 1.6812143900877320E-03 + 16 8.3656174662866227E-03 + 17 3.8729494628371886E-02 + 18 2.4824878000482071E-02 + 19 1.6520651276344118E-03 + 20 -3.5545075644943741E-03 + 21 5.9271872988691816E-03 + 22 -5.4344879930295570E-03 + 23 3.1282475492570508E-04 + 24 -1.5433027796409103E-03 + 25 3.5578164171071424E-04 + 26 -2.8441992156898005E-01 + 27 -2.2704404786184042E-02 + 28 -1.5381639833686650E-01 + 29 -3.6724287082668845E-02 + 30 4.3858024627784972E-02 + 31 -2.3378455392344500E-02 + 32 -7.4914755286185552E-03 + 33 2.0466318725763242E-02 + 34 2.3364359020941654E-03 + 35 -2.1570065533462149E-02 + 36 -3.8418533958149918E-02 + 37 -8.3788158820753006E-04 + 38 1.3652813225514017E-03 + 39 -1.9673606140126327E-02 + 40 -2.1202513830847709E-02 + 41 -8.7272468581817197E-02 + 42 2.5235364068823603E-02 + 43 2.0797901678284870E-02 + 44 -6.0454605710499908E-04 + 45 8.9068792796613075E-03 + 46 -9.9632265124496443E-04 + 47 5.4620532327475367E-04 + 48 6.5926734497455631E-03 + 49 -2.0891942406080161E-03 + 50 -1.9651128413219294E-03 + 51 -3.8495523504556817E-02 + 52 -7.5543889735513363E-03 + 53 2.7199541922526146E-02 + 54 -7.7863936438645295E-02 + 55 1.2819919962003146E-01 + 56 2.6390202683171326E-03 + 57 1.1007367925984718E-03 + 58 4.9105507319940015E-03 + 59 -2.2607517010830858E-03 + 60 -4.2985465359508389E-02 + 61 -2.8067061377060024E-03 + 62 1.2382125501921666E-02 + 63 -2.3162600881043476E-02 + 64 -2.1954818042782188E-02 + 65 -8.4479079937149787E-02 + 66 -1.6259085722339507E-02 + 67 -1.2551539526271672E-04 + 68 -2.6054837866231164E-02 + 69 3.2089163546423828E-03 + 70 3.3323950433637554E-03 + 71 8.4685971507724341E-03 + 72 7.5573373394993990E-03 + 73 1.7476054939492976E-03 + 74 -8.0936944253213496E-03 + 75 1.0372884538704066E-02 + 76 -7.8709616945870642E-02 + 77 1.3256202188258459E-02 + 78 1.5661242734480416E-01 + 79 -5.3364936810482343E-02 + 80 -1.8213120036852801E-01 + 81 -3.9784416754039549E-02 + 82 -3.4759937621982305E-03 + 83 2.1279763921302784E-02 + 84 1.0685052233032805E-02 + 85 3.4344465710073407E-03 + 86 -2.4730200000035302E-02 + 87 6.8994472682350465E-04 + 88 1.0017270594186391E-02 + 89 -4.1118765288569468E-02 + 90 7.6878948407556151E-03 + 91 2.5432199233465741E-01 + 92 1.2123878998960415E-01 + 93 -2.8291846836052684E-02 + 94 -4.9172660708893839E-02 + 95 -1.2885778422652933E-03 + 96 4.9467435635630616E-03 + 97 -2.8195470361599235E-03 + 98 6.6246436507634730E-03 + 99 1.6141519425075714E-02 + 100 2.3678473136875489E-02 + 101 -5.7100707289516432E-03 + 102 -5.2502596754316747E-02 + 103 1.2953207478259199E-02 + 104 -5.2285516532997900E-02 + 105 -1.1278762165646596E-01 + 106 3.7211970424248376E-02 + 107 7.7565199277240451E-03 + 108 2.3270120281455479E-02 + 109 -2.6556185113597919E-02 + 110 3.8770354334763217E-03 + 111 3.8606801730702890E-03 + 112 -1.8902329161946629E-02 + 113 -2.1733815636043888E-02 + 114 -7.6115106328933620E-03 + 115 8.1927133469941502E-02 + 116 -1.5917849569782514E-02 + 117 -1.8243801045741698E-01 + 118 -7.5651661560354605E-02 + 119 -8.1400838543377735E-02 + 120 5.2340146046145689E-02 + 121 1.2040079805256560E-02 + 122 3.3480279214349679E-02 + 123 -7.4492479966939591E-03 + 124 -3.0453195061585434E-02 + 125 3.3470481621143081E-03 + 126 7.8028646693713861E-03 + 127 1.9670855153216251E-03 + 128 1.3291116167194661E-01 + 129 1.2874816218318963E-02 + 130 3.4779337428713406E-02 + 131 9.2954450131129129E-02 + 132 5.5174863599236540E-02 + 133 -1.4268677483412552E-02 + 134 4.5264421045225012E-03 + 135 5.4403788958953042E-03 + 136 -2.8158386689981850E-02 + 137 -5.5108892835651077E-03 + 138 -1.5499923692381141E-02 + 139 4.2520339034709982E-03 + 140 -4.8975784641528920E-03 + 141 -1.4563438422210457E-02 + 142 -5.7409263607367915E-03 + 143 -2.7515072336219221E-02 + 144 -5.3681262277762182E-02 + 145 -9.5565484779964027E-03 + 146 -4.2348969217842264E-03 + 147 1.1515230305737286E-02 + 148 -2.2316785279836867E-03 + 149 9.4940440455501662E-03 + 150 2.1060193865744870E-03 + 151 -1.6405143067438753E-02 + 152 -2.5675284976894299E-03 + 153 6.6502690342469528E-02 + 154 5.9194288697304431E-04 + 155 -9.4407074571227989E-02 + 156 1.9086212686556056E-01 + 157 -1.4183156445513687E-01 + 158 -1.5333370805368642E-02 + 159 1.2462194876157611E-02 + 160 -1.3389703640728069E-02 + 161 1.2290546461953197E-02 + 162 8.1159509785932449E-03 + 163 -2.6675367426776418E-04 + 164 -1.8768706912019234E-02 + 165 4.3968208080056824E-03 + 166 1.4586280999631671E-02 + 167 1.1513005426664067E-02 + 168 3.8055200554371213E-02 + 169 1.5148448598310252E-02 + 170 -2.6782499252401139E-03 + 171 -2.3503089402210449E-03 + 172 1.3358665057052617E-03 + 173 -5.6838396383633400E-03 + 174 -1.3231242401660686E-02 + 175 8.4190100663161672E-03 + 176 5.3816214714042330E-03 + 177 6.1219487913404666E-03 + 178 8.9473859768363639E-02 + 179 -2.0136413127500981E-02 + 180 8.5319057943923998E-02 + 181 5.5709740348012869E-02 + 182 -7.5905737436001638E-02 + 183 -3.5557532209745772E-02 + 184 -2.1736371364580450E-02 + 185 2.4141748999733797E-02 + 186 7.2015980360085087E-03 + 187 1.2041284449239130E-02 + 188 -7.1681649548008212E-03 + 189 -7.6851978575725108E-03 + 190 -1.5177304622085785E-02 + 191 8.1644177514335822E-03 + 192 -2.4288783846566163E-04 + 193 -8.9034029945407531E-02 + 194 -4.8724494713365742E-02 + 195 1.1216557171679964E-01 + 196 1.5353189414094396E-02 + 197 9.0475448289375031E-03 + 198 -3.2702176724783601E-02 + 199 1.7104805663821165E-02 + 200 -2.2075826921051176E-02 + 201 -2.9619152486302390E-02 + 202 -2.6117418137577954E-03 + 203 -2.4326644582182378E-03 + 204 2.8586820485126192E-02 + 205 3.3208168350619734E-03 + 206 1.6937084724247976E-02 + 207 -8.4369573888687863E-02 + 208 2.4827114949830007E-02 + 209 -3.1717268149216737E-03 + 210 -9.0128415336964314E-03 + 211 -5.4851962740453909E-03 + 212 -4.5495713373493873E-04 + 213 7.4477204760320544E-04 + 214 1.9412947906405364E-03 + 215 2.2805876047629407E-02 + 216 9.4994760045132489E-03 + 217 1.9579376226307164E-03 + 218 -3.8644183069975628E-02 + 219 3.9923007681503930E-03 + 220 1.4108648934529126E-02 + 221 3.3665862849972528E-03 + 222 5.9031983977290547E-04 + 223 -6.0286872220050884E-03 + 224 -3.3515872282754495E-04 + 225 5.8521999453539060E-03 + 226 -1.3786188462891532E-03 + 227 -4.0529943080546988E-03 + 228 -2.3385797379755651E-03 + 229 -4.9216238577053366E-02 + 230 8.0979390568242555E-03 + 231 -7.8007863269917099E-02 + 232 -6.9955016089950126E-02 + 233 5.8797538199570586E-03 + 234 -2.0371484995806060E-03 + 235 -1.4842922227941088E-02 + 236 3.3924994110744796E-04 + 237 1.8708042202254294E-02 + 238 1.5032317898572097E-02 + 239 6.9175858309301107E-03 + 240 -6.9516461706618164E-04 + 241 2.3259444494182716E-03 + 242 -2.0130668283381163E-02 + 243 2.4805848945061659E-02 + 244 -7.3394951617231936E-03 + 245 9.1234756837211075E-04 + 246 -5.7305721108278709E-02 + 247 -2.6642115617049639E-03 + 248 -6.4809737460053956E-03 + 249 1.2045947437497793E-02 + 250 4.9232386229375270E-03 + 251 1.4184171344588602E-03 + 252 -1.3418012824830461E-02 + 253 -1.1036909862920264E-02 + 254 7.2626973173262985E-02 + 255 5.3280714589685379E-03 + 256 -2.4249829557691402E-01 + 257 -2.6701024434115717E-01 + 258 -3.9309055716453364E-02 + 259 -1.6630724758617384E-02 + 260 -2.8254238314791898E-02 + 261 -7.3309889807320044E-03 + 262 -3.7399563079792576E-03 + 263 -8.6534108912698759E-03 + 264 1.1763894311880158E-03 + 265 -3.6765651677009934E-03 + 266 5.6473948246686494E-03 + 267 2.1622176035216701E-02 + 268 -1.9595525314173631E-02 + 269 -9.7467432587209409E-04 + 270 -1.4191440986967624E-02 + 271 -1.9131839369034708E-03 + 272 5.9070929804458210E-04 + 273 5.3285360778705920E-03 + 274 -3.8785715890909621E-03 + 275 -2.8214242277353134E-04 + 276 1.8345463560662394E-04 + 277 1.0896807761553785E-02 + 278 -3.9399696722988047E-04 + 279 5.2577906814722505E-02 + 280 -1.0254672987497352E-02 + 281 -8.9420067746257839E-02 + 282 -1.0071223167453476E-01 + 283 3.4119002437745599E-02 + 284 4.2598957622118619E-03 + 285 2.5854216514887632E-02 + 286 -1.8344658267357827E-02 + 287 -1.3946284931726855E-02 + 288 7.3312159591563345E-05 + 289 1.0512987952465115E-02 + 290 6.4688511238305407E-03 + 291 -3.8914149549066340E-03 + 292 1.1702321497514665E-02 + 293 -3.3830537428854016E-03 + 294 1.1713260968093203E-01 + 295 -1.9448321022200007E-02 + 296 2.6672996631659598E-03 + 297 -1.9410424709977024E-02 + 298 1.2268650767312868E-02 + 299 2.3121169773017859E-03 + 300 -2.9178262352295135E-03 + 301 -1.4999073756040761E-02 + 302 7.6016871683033411E-03 + 303 -1.4251973505137860E-02 + 304 2.1572045752394031E-02 + 305 -1.2148558429878649E-01 + 306 -1.2289563216448311E-02 + 307 -8.3465556186165066E-02 + 308 3.7335052371941339E-02 + 309 -1.4884320950704558E-01 + 310 -8.6803509989026931E-03 + 311 3.9713390609486619E-03 + 312 -1.5035357508652029E-02 + 313 -1.6490011325749274E-02 + 314 4.8198257224650056E-04 + 315 8.9237224632998779E-03 + 316 -2.0614926228100083E-02 + 317 2.1171558301302136E-02 + 318 -2.1171184291421515E-02 + 319 -2.0916488799786696E-02 + 320 -2.3081083893573967E-03 + 321 -1.7727627315350946E-02 + 322 3.4255069168462257E-02 + 323 -1.9273609650739757E-03 + 324 -1.3950864086432269E-03 + 325 -2.8116331267230240E-04 + 326 8.7578142503609239E-03 + 327 4.4416907981912239E-03 + 328 -2.2946287749585508E-03 + 329 -5.5780296331784879E-03 + 330 -1.6215605101276043E-01 + 331 -1.4803933272320786E-02 + 332 -3.0852028431025513E-01 + 333 -3.6163080345678678E-01 + 334 -2.4804043222675893E-02 + 335 -1.6487278520850270E-02 + 336 -3.8751287257155605E-02 + 337 -2.9099696774871776E-03 + 338 2.1996620897424497E-02 + 339 2.2203945233732710E-03 + 340 -1.9999398460706187E-02 + 341 3.1063320125391172E-03 + 342 -1.1234659559251403E-02 + 343 -1.1767316113505358E-02 + 344 6.1699667922465321E-03 + 345 -1.3992364543855785E-02 + 346 1.7470167527749825E-02 + 347 2.4124058982847977E-02 + 348 -5.1192954627111301E-03 + 349 7.0791530144903038E-04 + 350 -5.0963996306356832E-03 + 351 1.7324951696173910E-03 + 352 1.2567340245377362E-03 + 353 1.5846433083452917E-03 + 354 -1.9748558058924519E-03 + 355 -5.1653738312181383E-02 + 356 9.7195739377421726E-03 + 357 -2.3519359580628049E-01 + 358 -5.5174030179419783E-02 + 359 -9.8219676239185941E-02 + 360 4.5170256444821172E-02 + 361 6.3793740488358773E-03 + 362 3.2222551729020887E-02 + 363 8.4541717934852687E-03 + 364 3.4750195163299920E-02 + 365 9.4917243209482628E-03 + 366 1.2635137329662141E-02 + 367 5.2109620390692613E-03 + 368 -1.1762158623049102E-01 + 369 2.1149973109337597E-02 + 370 -3.0650275785320480E-02 + 371 1.1728017305389170E-01 + 372 1.3351257388729068E-01 + 373 1.8537391695975538E-02 + 374 -2.2994814914919569E-02 + 375 -2.3788038809016848E-02 + 376 -1.1075393174792992E-02 + 377 -7.8938243761453135E-03 + 378 1.3796108045361192E-02 + 379 1.5324013332407850E-02 + 380 -8.8567671728859328E-03 + 381 2.6810409444249117E-02 + 382 -5.3446757646286366E-03 + 383 1.1965036439601158E-01 + 384 1.0166071217220143E-01 + 385 1.1704286313878727E-01 + 386 -2.0614361698602215E-02 + 387 -2.2905676851139537E-02 + 388 -3.4367320509794803E-02 + 389 -9.3004424330206078E-04 + 390 -6.0772787800115989E-03 + 391 5.1750640890640444E-03 + 392 -1.3130290980653077E-02 + 393 -1.2008371701989986E-02 + 394 7.0781589482218785E-02 + 395 2.9080733621175046E-03 + 396 1.8104271700855840E-02 + 397 4.0396961194775795E-02 + 398 -8.9912694403700977E-02 + 399 3.5375860294367318E-03 + 400 -7.1200498901931898E-03 + 401 -1.3373961398327387E-02 + 402 5.0020475303763235E-03 + 403 -8.6412327619045763E-03 + 404 -3.3037408495534657E-03 + 405 1.6747025510962295E-02 + 406 -1.0574778209708920E-02 + 407 5.0640761729349552E-03 + 408 -3.8508613891775813E-03 + 409 -1.7674991170491903E-02 + 410 6.1231146449298500E-05 + 411 -3.9825866392558973E-02 + 412 -1.3650413552244219E-04 + 413 5.3052091145618522E-03 + 414 6.4316695018119914E-03 + 415 5.0929230492055581E-03 + 416 -3.3183805778614506E-03 + 417 -1.0861954921481960E-03 + 418 -1.8698760815608561E-04 + 419 5.0984620247897613E-02 + 420 -9.5667507139282574E-03 + 421 1.1132183956551231E-02 + 422 3.1941148910618215E-02 + 423 1.0069626989649633E-02 + 424 -1.5175358671536015E-03 + 425 -5.5086399458668910E-03 + 426 -1.3488811630285735E-02 + 427 4.8534317980312158E-03 + 428 4.7659710199938711E-03 + 429 -6.9429619290668669E-03 + 430 6.3963366053825478E-03 + 431 -8.8193082331687791E-03 + 432 -1.6078190104089576E-02 + 433 2.2258226943374084E-03 + 434 1.5869750983452766E-02 + 435 -1.2320262813624307E-01 + 436 -3.4316214416035939E-02 + 437 7.0460174652435519E-03 + 438 1.9088259501102246E-02 + 439 1.6398299734343032E-03 + 440 -1.8809207208506751E-02 + 441 8.8882932836953105E-03 + 442 -3.4332326916735041E-03 + 443 -6.2629076991158258E-03 + 444 2.1074477204773533E-03 + 445 9.5352486326184552E-02 + 446 1.0126383824084895E-02 + 447 -9.2218898334224086E-02 + 448 -8.3209733628326635E-02 + 449 -6.9253801552756039E-02 + 450 -8.2170633891065995E-03 + 451 -6.1578460447343185E-03 + 452 1.0784928044919302E-03 + 453 -1.1364983238895589E-03 + 454 5.0391506496684831E-03 + 455 -4.6637376696259990E-03 + 456 5.2565063923268353E-03 + 457 9.3789418624690406E-03 + 458 -1.7271141172514336E-02 + 459 3.3685843586154778E-02 + 460 -2.1785270407319632E-02 + 461 -2.5794831485383609E-02 + 462 1.3555692257267602E-02 + 463 -2.7649330897996267E-03 + 464 4.3284882422695891E-03 + 465 -1.8982972421043996E-03 + 466 4.1408941449810775E-03 + 467 6.7061969046124633E-03 + 468 -2.2185502526176396E-03 + 469 -1.1790399652428932E-03 + 470 -1.1262068498448752E-01 + 471 -1.5873520304668591E-02 + 472 4.0497517138661628E-02 + 473 -3.9894920750340353E-02 + 474 1.5398593107575950E-01 + 475 4.7108981193112325E-04 + 476 -8.9682611155320023E-03 + 477 1.2033812581481874E-02 + 478 -1.3824427611132208E-02 + 479 3.7237837127131576E-03 + 480 9.1885140622651532E-03 + 481 -2.7691354510982914E-02 + 482 2.7484373034858921E-02 + 483 3.8404554491132622E-03 + 484 -3.3761966611280561E-03 + 485 -9.3207620767883821E-04 + 486 -3.4490527914141700E-02 + 487 1.4469527471769553E-02 + 488 -6.5156481376048487E-04 + 489 3.0205308383450297E-03 + 490 -6.7941064827093886E-04 + 491 7.9801159614766091E-04 + 492 -7.4379145751601720E-05 + 493 -6.6709782747666538E-04 + 494 1.0386235166005130E-03 +Ene= -1.7962494996E-02 +Spin= Alpha +Occup= 0.0000000 + 1 1.0335584847440403E-01 + 2 2.4167410679422378E-03 + 3 1.9947931618091375E-01 + 4 -2.8045918763979771E-03 + 5 -6.2985828022984455E-02 + 6 2.2031130095432627E-02 + 7 6.2884992667455002E-03 + 8 -1.1647137529016324E-02 + 9 1.1714960391006566E-02 + 10 -6.3532540803191821E-04 + 11 -1.6933514130489994E-02 + 12 8.5335174294962068E-03 + 13 1.2865299581582822E-02 + 14 2.4758001300563281E-02 + 15 3.0899283170562328E-02 + 16 -2.1642854378197997E-02 + 17 3.9641523594971736E-02 + 18 1.5953024482863367E-02 + 19 6.2914623248644620E-03 + 20 1.1283787821091964E-03 + 21 5.7565508959217266E-03 + 22 -1.3431794201016620E-04 + 23 -1.6091298833861189E-02 + 24 -1.0033694520703157E-02 + 25 4.0953330329520895E-03 + 26 9.9694630449939439E-02 + 27 7.5087883736301257E-03 + 28 -1.7279978451469064E-01 + 29 -1.7566470196181536E-01 + 30 -3.2568561101456045E-01 + 31 -7.2411996396439006E-03 + 32 -2.3622905937969348E-02 + 33 -4.7175830574307263E-02 + 34 -1.5130805169487118E-02 + 35 -1.5068995838874805E-02 + 36 1.4766189390675930E-02 + 37 1.4622657070688721E-02 + 38 1.1063113359232530E-03 + 39 2.0927558163915481E-04 + 40 -4.3234760659866978E-02 + 41 -3.6251257463195078E-03 + 42 -2.7556188922082371E-02 + 43 -1.7570925299102796E-02 + 44 -5.4305488041515868E-03 + 45 -1.1276790926603480E-02 + 46 -8.0957391376987459E-03 + 47 -1.5184449980461468E-02 + 48 1.4657982645818037E-03 + 49 1.6719189990140590E-02 + 50 -1.6177809601162962E-03 + 51 -4.5539532384732645E-01 + 52 -5.1349452459345669E-02 + 53 2.2268607375930938E-02 + 54 -1.4231252657711422E-02 + 55 -5.2613361263993783E-02 + 56 1.3273519637231711E-02 + 57 -4.1791470277467236E-03 + 58 -3.5106874706144673E-03 + 59 1.0454020000389343E-02 + 60 -3.6682439112417607E-02 + 61 2.7035079793429694E-02 + 62 -5.6352457350804259E-03 + 63 -4.6338715311253706E-03 + 64 3.8523451505202831E-02 + 65 -5.5109112997790727E-02 + 66 1.9770090691970860E-02 + 67 -2.2505579623931002E-02 + 68 -1.6440084974890915E-02 + 69 1.5113045187483368E-03 + 70 -5.3919100774706802E-04 + 71 9.1845525348024942E-05 + 72 -1.6199786764688211E-03 + 73 -1.0049338031684108E-02 + 74 -6.0692864944843954E-03 + 75 4.1698984794793373E-03 + 76 1.8059625378065144E-02 + 77 -3.6728848063852797E-03 + 78 4.6327449285275733E-02 + 79 -1.0539605208131271E-01 + 80 -3.4386333936904580E-02 + 81 -6.1339694446386657E-03 + 82 2.8978228705877077E-02 + 83 -2.9879655782197218E-02 + 84 1.4578251523492151E-02 + 85 2.1164303066309124E-02 + 86 9.6325898212497162E-03 + 87 2.3747265924002124E-03 + 88 3.3874348246475824E-03 + 89 -3.4264570172070082E-02 + 90 5.7438821802791211E-03 + 91 1.5339554250595300E-01 + 92 3.8503402544689494E-02 + 93 -1.7499239482589848E-01 + 94 -2.3120003759920123E-02 + 95 5.4463639021496554E-03 + 96 2.9009062290112176E-02 + 97 1.4702994629340172E-02 + 98 -1.5596882602700892E-02 + 99 3.2585169933445554E-03 + 100 1.3036159492573373E-02 + 101 -1.5717241945768103E-02 + 102 -2.0501561286560464E-02 + 103 5.2308286570251503E-03 + 104 -8.6521919588791810E-02 + 105 -8.4172813291804913E-02 + 106 2.9926782714354366E-02 + 107 2.7031265793675728E-02 + 108 -3.0354760544809485E-03 + 109 -1.5452768854948614E-02 + 110 1.6350194922260634E-02 + 111 1.8678809390054719E-02 + 112 4.7030128985979400E-02 + 113 -1.9799004216744968E-02 + 114 -7.8607669568958908E-04 + 115 -2.0653120895965776E-01 + 116 4.3316701929140645E-02 + 117 -1.0423267584163803E-01 + 118 8.6187725462089623E-02 + 119 4.5462474028547924E-02 + 120 -2.3015488554965514E-04 + 121 -1.0431015740694577E-02 + 122 -5.0666782878280955E-02 + 123 -1.6290288226294941E-02 + 124 1.6841890819539519E-03 + 125 -2.0990557087642629E-02 + 126 5.4023223802514876E-03 + 127 -4.2099821945729889E-03 + 128 -2.6303523691859948E-01 + 129 -2.4065249915834211E-02 + 130 1.5713244533136927E-01 + 131 -1.0106320565043242E-01 + 132 -2.5862699079609953E-02 + 133 1.8467561771323828E-02 + 134 -2.4233017216922954E-02 + 135 -6.1342832323783040E-03 + 136 -1.2020541471563371E-02 + 137 3.6231594171948207E-03 + 138 -2.1928061341283549E-02 + 139 2.4573249785075850E-02 + 140 -1.3342436549375268E-02 + 141 -5.5414551495680170E-02 + 142 -5.4996021351543724E-02 + 143 9.3021469969864352E-06 + 144 2.5094099741409168E-02 + 145 3.9149963515870802E-03 + 146 4.3588010880648027E-03 + 147 -2.6887799074858027E-03 + 148 3.3044482656973931E-03 + 149 7.2555917467401147E-03 + 150 -6.1062503140749797E-04 + 151 2.1477904692992025E-03 + 152 -1.5194553836392307E-03 + 153 1.3543068565360167E-01 + 154 1.2091797890571798E-02 + 155 -1.1646614315741158E-01 + 156 -5.3747854277617468E-01 + 157 -2.9209392797793793E-01 + 158 -1.6867338777541870E-02 + 159 -4.7346959328976986E-02 + 160 -2.9569630838417359E-02 + 161 1.3017864837822257E-02 + 162 9.3753226419240453E-03 + 163 -1.3125467865811369E-02 + 164 -2.1659037020139296E-02 + 165 -1.5674428218216529E-02 + 166 -1.7569814329885247E-02 + 167 1.1406948345221905E-03 + 168 -2.6894389071850010E-02 + 169 -2.4310627600594891E-02 + 170 -3.9164192164304057E-02 + 171 5.2851177666098405E-03 + 172 3.1289210938887937E-03 + 173 1.2690786558050050E-03 + 174 -8.2651334779563080E-04 + 175 -5.4064807871453046E-03 + 176 -1.3574055144151714E-03 + 177 -5.5939163950661057E-03 + 178 2.6681508698997620E-02 + 179 -5.2678454500875689E-03 + 180 1.0883582929038313E-01 + 181 -2.3447778106810549E-01 + 182 -5.1795335559412702E-02 + 183 -3.4076850593805351E-02 + 184 5.4416193406936160E-02 + 185 1.1369516563161543E-02 + 186 9.6005250220311950E-03 + 187 1.8574002918062535E-02 + 188 -6.7247404077780352E-03 + 189 -1.5912023135312755E-02 + 190 2.8261260323228208E-02 + 191 -1.3954131636092656E-02 + 192 2.9544028688537833E-03 + 193 -7.4664205874454256E-02 + 194 -2.0610778822818209E-02 + 195 7.6800568587855444E-02 + 196 3.1646933361251135E-02 + 197 1.3524267634557561E-02 + 198 8.2022416660670460E-03 + 199 -1.4158267567904058E-02 + 200 6.4842596223997047E-03 + 201 -5.3506968327997314E-03 + 202 4.4892202917195270E-04 + 203 2.1312041542314197E-02 + 204 1.2698033248803389E-01 + 205 1.4479197156125761E-02 + 206 -2.2197040129579307E-02 + 207 -8.2102426170635776E-02 + 208 -6.2933224106401564E-02 + 209 -3.5208984801348518E-03 + 210 -1.2481060759028960E-02 + 211 -1.2263338227591757E-02 + 212 -1.8880473491591960E-03 + 213 4.4293721354131191E-03 + 214 -2.0792518433409169E-03 + 215 3.8286287748758988E-03 + 216 5.0337308358583746E-04 + 217 1.7008817214700024E-02 + 218 -7.8962695180522131E-04 + 219 -3.3054637048280891E-02 + 220 4.1108466013605280E-02 + 221 -3.1070784706802527E-02 + 222 5.2549022323884597E-03 + 223 1.0277216950535779E-02 + 224 4.5780694588810475E-03 + 225 8.8714577156623273E-03 + 226 -5.1616685513848582E-03 + 227 -3.8616304658469075E-03 + 228 6.9146795711052559E-03 + 229 -1.0921548255835475E-01 + 230 -6.9060722584135831E-03 + 231 1.0554420654918753E-02 + 232 1.5292482766552487E-01 + 233 -6.2507148968421397E-02 + 234 5.9812574640856582E-03 + 235 1.0671180269349248E-02 + 236 -8.5567871376675420E-03 + 237 1.5474332537043537E-02 + 238 2.8370952712512090E-03 + 239 4.2943355616733179E-03 + 240 -4.1006545995770916E-03 + 241 2.3335088417975967E-03 + 242 -1.5963013560787175E-02 + 243 7.8960697992303489E-03 + 244 -1.9927384100255331E-02 + 245 1.9065438869115516E-02 + 246 -2.7650436878576307E-03 + 247 9.9638258909141787E-04 + 248 -1.5371099353949456E-03 + 249 4.5309107849321097E-03 + 250 -2.5403677583714260E-03 + 251 -1.3736703578514229E-04 + 252 -1.1137847890325363E-02 + 253 -4.4987478341704506E-03 + 254 2.0676725848869995E-02 + 255 -1.1322938074977923E-03 + 256 -2.1573676965660146E-01 + 257 1.7569329209331602E-01 + 258 -1.0369950486622362E-01 + 259 -2.1011870903221010E-02 + 260 1.6624211037677531E-02 + 261 -1.7083089143264812E-02 + 262 -1.1123506201893091E-02 + 263 -1.8242829465030764E-03 + 264 9.8091029519503683E-05 + 265 -7.7915598366756419E-03 + 266 -7.9920517994456208E-03 + 267 -1.6646389815322168E-02 + 268 -1.8573462785506378E-02 + 269 1.5302960535673531E-02 + 270 -7.9614433160885914E-03 + 271 -1.3234619606897789E-02 + 272 5.3867252572490417E-03 + 273 4.6825273239306398E-03 + 274 -3.4100680221198585E-03 + 275 -8.3180905440934597E-03 + 276 -2.7900384257823225E-03 + 277 -6.4347143271464551E-03 + 278 -1.9073256663226946E-03 + 279 7.2757737851569915E-02 + 280 -1.3933626292077683E-02 + 281 -3.7057689398422897E-02 + 282 4.6086105864307128E-02 + 283 4.1531525312898041E-02 + 284 9.8228492391393869E-03 + 285 -3.8632088317581527E-03 + 286 -1.6029678632647919E-02 + 287 -1.3778841821918372E-02 + 288 9.2321525929836539E-03 + 289 -1.3158851331020195E-02 + 290 -5.6860919729249263E-03 + 291 -5.1253709601405848E-03 + 292 8.7256838789400229E-03 + 293 -2.6132259123756404E-04 + 294 2.4017317416938726E-02 + 295 -2.3278206052622458E-02 + 296 -5.7414136479965058E-02 + 297 -4.8145171316737890E-03 + 298 1.7399370029658121E-02 + 299 2.1564805031278840E-02 + 300 1.6573039716021962E-02 + 301 -6.5014572820617112E-03 + 302 9.5459716809787173E-04 + 303 -4.1445739739323761E-03 + 304 -3.0809362155679019E-03 + 305 8.0764380599642166E-02 + 306 2.5976025552019982E-03 + 307 2.8268155135848421E-03 + 308 5.2824475943114374E-02 + 309 3.0856695265769469E-02 + 310 8.4623087173611993E-04 + 311 6.5065728845982457E-03 + 312 1.0128647863971343E-03 + 313 7.9498855558711532E-03 + 314 -4.8487130620650772E-03 + 315 -1.0952107788955419E-02 + 316 8.9934761352231836E-03 + 317 -1.2954142585835261E-03 + 318 1.3476603341017216E-03 + 319 1.0609110167944568E-02 + 320 -5.0327588570412106E-03 + 321 -7.2704824678914877E-03 + 322 8.8939908277690388E-05 + 323 3.6930474364774359E-03 + 324 -3.0835432809034531E-04 + 325 3.9421929248221090E-05 + 326 -5.4304702602372438E-03 + 327 -2.7521633901873991E-03 + 328 5.7857564154925765E-03 + 329 4.2203995903911861E-03 + 330 -1.2680007159018724E-02 + 331 1.9465251916321541E-03 + 332 1.4708210063463653E-01 + 333 7.5858392407658293E-02 + 334 5.0402349193173206E-02 + 335 8.9450466890635006E-03 + 336 1.0938688694470761E-02 + 337 1.9697513580422033E-04 + 338 1.3329628907126599E-02 + 339 5.5458867915281337E-03 + 340 -9.4644002921274104E-03 + 341 2.1690520803049657E-03 + 342 -5.9279487391768063E-03 + 343 9.9653242138087374E-03 + 344 1.0039464620877690E-03 + 345 -1.7439183142802139E-02 + 346 -5.6685539410492166E-03 + 347 -3.7483610205980566E-02 + 348 4.5347926535972520E-03 + 349 -1.0010122839130707E-02 + 350 -4.3515479563979737E-03 + 351 1.0418223748445018E-03 + 352 -1.1765384740680368E-02 + 353 5.2892779372911052E-03 + 354 -2.3122007483595700E-03 + 355 -4.2116573777457617E-02 + 356 6.9140259356420906E-03 + 357 8.8388599760135231E-02 + 358 6.4354594374718938E-02 + 359 -4.7166201949040795E-02 + 360 -2.0005375847012528E-02 + 361 -4.6044675136234338E-03 + 362 1.2887102414449347E-02 + 363 5.9406334289498252E-04 + 364 -1.1924665398865697E-02 + 365 -9.2796469836890806E-03 + 366 3.3452703270234916E-03 + 367 -3.9202150365361382E-03 + 368 -3.1834204969552360E-02 + 369 8.0912384548677135E-03 + 370 -5.5340289210852545E-02 + 371 2.1314030867776692E-02 + 372 1.9978777807331202E-02 + 373 1.0796712645609616E-02 + 374 -5.3226898563461271E-03 + 375 -1.1783637064340590E-02 + 376 -1.3020214763138083E-02 + 377 -2.8790557155398730E-02 + 378 -1.2701471020294605E-02 + 379 -6.4613033591323149E-03 + 380 -2.3787703959239900E-02 + 381 -4.4486770148504030E-02 + 382 1.0621610774614581E-02 + 383 -9.9689242479121934E-02 + 384 7.7720853521611705E-02 + 385 -1.0627699067175710E-01 + 386 3.5467944066850214E-02 + 387 -1.4483579184640646E-02 + 388 3.1164393765494701E-02 + 389 3.6852852255355112E-04 + 390 1.5509114488394768E-02 + 391 -1.0988876280932793E-02 + 392 8.1951767950190508E-03 + 393 -2.5183440821826365E-02 + 394 8.9586006901537146E-02 + 395 7.0854956555567823E-03 + 396 -8.3090476987499468E-02 + 397 4.5837953890339247E-02 + 398 -2.1946113823200122E-02 + 399 -8.4859579733353122E-03 + 400 4.8184973222255472E-03 + 401 7.2537003977329059E-04 + 402 -1.2937018478046052E-02 + 403 -3.6201511736039093E-03 + 404 -3.7923787655871335E-03 + 405 -1.1349505050582763E-02 + 406 8.8632407249430618E-03 + 407 1.2675240130457562E-02 + 408 -1.1587319232771187E-03 + 409 -1.4405489807836088E-02 + 410 -1.3128955869484255E-02 + 411 9.9787317474199343E-03 + 412 8.3772512023581395E-05 + 413 -4.1616084292615601E-03 + 414 6.1455521490148270E-04 + 415 -2.1695911608383411E-03 + 416 5.1465968921249640E-03 + 417 -6.5522015916046538E-03 + 418 -6.9982868083294375E-03 + 419 4.7628668633437260E-02 + 420 -1.0114767266877496E-02 + 421 6.8898825966437774E-02 + 422 5.7083330478985346E-02 + 423 5.0094674281099760E-02 + 424 -2.1479982934837164E-02 + 425 -1.0986193194060434E-02 + 426 -1.2123932897795286E-02 + 427 -3.7908694932505382E-03 + 428 -6.3829428633993177E-04 + 429 -5.3648427517372860E-03 + 430 -2.6614912426882135E-03 + 431 9.1714023363365770E-03 + 432 -1.3651167278974292E-02 + 433 3.8471043319676526E-03 + 434 1.5079669547077347E-02 + 435 1.4082291367212049E-02 + 436 1.1533664603118453E-01 + 437 -9.6902364534000810E-03 + 438 7.9691239776773053E-03 + 439 -2.2830882159211644E-02 + 440 7.2454885702081095E-03 + 441 -1.1423444637386889E-02 + 442 -2.4328151039541192E-03 + 443 4.1990877038921404E-04 + 444 -3.5772438393689159E-03 + 445 -1.1959193659994886E-01 + 446 -1.7028215702303107E-02 + 447 1.3450062337044305E-01 + 448 1.1783317695509779E-01 + 449 4.7192398569564080E-02 + 450 1.5326323340351149E-02 + 451 1.9015429839376530E-02 + 452 -1.5072422127473284E-03 + 453 4.0488230441811822E-03 + 454 -3.1620149959415370E-03 + 455 2.0738028928387010E-03 + 456 6.1383875140853380E-03 + 457 -5.6701041068874412E-03 + 458 4.4993334087068662E-04 + 459 -1.6929092191771966E-02 + 460 -3.9640613108116113E-03 + 461 2.2651006957881345E-02 + 462 2.4541185487260846E-02 + 463 3.3759461848114842E-03 + 464 5.4622495562690779E-04 + 465 -5.7205329243829794E-03 + 466 -4.4158872275789117E-03 + 467 -1.8320460534903609E-03 + 468 2.1568485156927574E-03 + 469 7.3082717902742936E-04 + 470 5.6110197786268266E-02 + 471 6.1095933724476317E-03 + 472 8.4565102700552314E-02 + 473 -2.0329131505968435E-03 + 474 7.2740710252965607E-02 + 475 1.1735267669243293E-02 + 476 1.0568893023716894E-03 + 477 5.6454123008779630E-03 + 478 9.3614020741709970E-03 + 479 -4.7130845758562058E-04 + 480 4.3995683681940729E-03 + 481 9.4733649551257803E-03 + 482 -9.5451772680564052E-04 + 483 1.7225560835107172E-02 + 484 -2.0339954605589120E-03 + 485 6.0683822109588257E-03 + 486 3.1872491171523465E-02 + 487 8.3262753216264886E-03 + 488 1.4297221289742638E-03 + 489 -2.3289488484117323E-03 + 490 9.2484065872781385E-04 + 491 -2.1253728210089964E-03 + 492 -2.5484311103099819E-03 + 493 -1.9335995243778441E-03 + 494 2.4030665857089546E-03 +Ene= -8.6067335442E-03 +Spin= Alpha +Occup= 0.0000000 + 1 -1.3246547826010747E-02 + 2 4.9860304150134748E-03 + 3 -4.2654694511808644E-02 + 4 6.1184022391913347E-02 + 5 1.1235426206614696E-01 + 6 -7.9033718469876165E-03 + 7 2.1504063999827166E-02 + 8 1.5682435055274967E-02 + 9 1.0139836558831364E-02 + 10 4.4544408184194560E-03 + 11 -1.3579651889038835E-02 + 12 5.4924183070649999E-03 + 13 -6.1894390266230420E-03 + 14 1.4770139562560604E-02 + 15 9.5440972915940749E-03 + 16 7.3337551572667742E-03 + 17 7.3026334085666599E-03 + 18 -5.4581555897183651E-02 + 19 -8.8773140645809255E-04 + 20 8.5612003515659098E-03 + 21 -8.8627322986586394E-03 + 22 7.7989394486174691E-03 + 23 7.4892075458400501E-04 + 24 1.6642343517647495E-02 + 25 7.1805426991323230E-03 + 26 -3.0365427943641848E-01 + 27 -2.1849324339636621E-02 + 28 -2.3034090969528484E-01 + 29 -9.0576553813908431E-02 + 30 -9.7445494605907096E-02 + 31 -2.2475938135601704E-02 + 32 -7.8538828879803832E-03 + 33 1.3883502344447581E-03 + 34 -4.4714959097671191E-03 + 35 -3.1238742456119628E-02 + 36 -2.0566678629518019E-02 + 37 -1.1869440218946562E-02 + 38 1.0506492835736935E-02 + 39 -6.5822693742254565E-02 + 40 -6.6616334234684091E-02 + 41 -5.7979779745157986E-02 + 42 2.3272501483498661E-03 + 43 3.4679336637287339E-02 + 44 -6.1519368273271688E-03 + 45 -7.6113446979900997E-03 + 46 -3.6802133263537915E-03 + 47 -4.3668724904616339E-03 + 48 1.0897126267220525E-02 + 49 3.4691281240413789E-03 + 50 7.4078402545662810E-04 + 51 1.6768612073481057E-02 + 52 5.5913363776384922E-03 + 53 -7.9438247702823872E-02 + 54 8.7350801741059844E-02 + 55 -9.8016101397761943E-02 + 56 -5.8397576678778425E-03 + 57 1.0162475927277976E-02 + 58 -1.5811470805737197E-02 + 59 1.3359533539890684E-02 + 60 -4.0022409428531556E-03 + 61 1.0123578905635795E-02 + 62 -5.1644458555948729E-03 + 63 9.0547038545281365E-03 + 64 1.4776179030153225E-03 + 65 -1.4523513688199520E-02 + 66 1.8968274558940866E-02 + 67 -3.3162631066911605E-03 + 68 2.4328681243371630E-02 + 69 6.1073009232304690E-03 + 70 -2.9011817041426666E-03 + 71 2.2967879673658066E-03 + 72 2.7063661673191347E-03 + 73 -2.0592004301543477E-03 + 74 7.0521972809756946E-03 + 75 -1.1200652799916574E-03 + 76 6.0001895570880488E-02 + 77 -1.3323671310534933E-02 + 78 -1.1594445576472412E-01 + 79 8.8124091804730006E-02 + 80 -2.3351884525170669E-01 + 81 4.1363614333079231E-02 + 82 -4.9305920195347646E-03 + 83 3.6621625983211295E-02 + 84 2.6105346039313686E-02 + 85 -2.6040154863401901E-02 + 86 -4.1858352074101756E-03 + 87 1.1819834090807078E-03 + 88 1.3847228835042663E-02 + 89 -1.9678868169482593E-02 + 90 5.4167373111276909E-03 + 91 -1.7416657985630753E-02 + 92 5.4709034325529189E-04 + 93 9.2028495439888808E-03 + 94 1.0565215032613115E-02 + 95 6.3144718754684628E-03 + 96 -6.3341097301851087E-03 + 97 5.7492806316602734E-03 + 98 -1.1648838014304502E-03 + 99 -9.0325136138384634E-03 + 100 -2.5566896333733789E-03 + 101 6.0237001600522587E-04 + 102 -2.6588306124953869E-02 + 103 3.9410204945016123E-03 + 104 -9.2829120899661471E-02 + 105 -4.5403964956624514E-02 + 106 -1.2271654711280066E-02 + 107 2.8970214238986929E-02 + 108 1.9402726290515555E-02 + 109 -1.2580306216513237E-02 + 110 -1.5605162217626413E-03 + 111 1.6149060922895028E-02 + 112 4.5653647045315170E-03 + 113 -4.2310644928928866E-02 + 114 2.3639020673283137E-03 + 115 -2.6093436285616382E-02 + 116 5.5544096057028505E-03 + 117 -3.1140427311388948E-02 + 118 -6.3140272387949711E-02 + 119 2.1336533868357724E-02 + 120 1.7265777351733121E-02 + 121 2.7890324743944549E-02 + 122 -1.9842627765777734E-02 + 123 -3.2719031796999585E-03 + 124 -3.5582799106646510E-03 + 125 2.9102689565971575E-03 + 126 3.1177905057224255E-02 + 127 -2.8457237139005602E-02 + 128 4.3166102589677041E-02 + 129 1.2750408336002638E-03 + 130 1.0371435274829028E-02 + 131 -6.6372547871668477E-02 + 132 2.4520527569017861E-02 + 133 -1.9141324924728000E-02 + 134 -1.4954263608571786E-02 + 135 -1.4678458485734252E-03 + 136 -1.8340958667603702E-02 + 137 2.3847890760383805E-02 + 138 -5.0497833997269143E-03 + 139 3.2877367026234644E-02 + 140 -9.6631214069450213E-03 + 141 3.6180972646552810E-02 + 142 5.6403940008605706E-02 + 143 -3.4482466922861874E-02 + 144 2.9638622952419991E-03 + 145 -3.0902476981317491E-02 + 146 -6.8281723407699543E-03 + 147 1.2279947047549039E-02 + 148 -4.4878617657846736E-03 + 149 4.8371113677037805E-03 + 150 1.5412020004113855E-03 + 151 -2.2777996242329610E-02 + 152 -7.0063573413438494E-03 + 153 1.6932421655144322E-01 + 154 1.0781654371455320E-02 + 155 -1.6462496543640093E-01 + 156 2.0510198026492421E-01 + 157 -2.9869826224341745E-01 + 158 -3.2981251801661213E-02 + 159 1.4193280934620509E-02 + 160 -3.4732739444778130E-02 + 161 1.4753038443702798E-02 + 162 5.4094333828365480E-03 + 163 -9.5649738833189397E-03 + 164 -2.1209040576286239E-02 + 165 -8.4722571543404939E-03 + 166 7.9061357999541792E-03 + 167 1.4046913215662935E-02 + 168 2.0002488176251082E-02 + 169 2.2018130819587454E-02 + 170 -1.2595512591712940E-02 + 171 -3.8960607256290488E-03 + 172 -1.4744091594668413E-03 + 173 -1.0370140611639008E-02 + 174 -9.6729044300795704E-03 + 175 3.8579534570758363E-03 + 176 9.1705475923656160E-03 + 177 3.4149858683296982E-03 + 178 1.2915016211042074E-01 + 179 -2.9184943369052488E-02 + 180 1.3280406092006747E-01 + 181 8.7045356675538213E-02 + 182 -9.1183323069569777E-02 + 183 -7.0634296742509012E-02 + 184 -3.8373105057985642E-02 + 185 1.5585313040996657E-02 + 186 1.2975219935616965E-02 + 187 1.3996727843554645E-02 + 188 9.7944315956360428E-04 + 189 -1.6799733298157878E-02 + 190 -1.9325042431360222E-02 + 191 -9.8989136925330436E-03 + 192 9.8731066648168660E-04 + 193 1.7635351556384844E-03 + 194 5.0267197984597556E-03 + 195 -5.8483515253743824E-02 + 196 -8.3186237103057559E-03 + 197 6.4156032426170217E-03 + 198 1.6963849784128029E-02 + 199 -1.4840410795864565E-02 + 200 3.9557914242243147E-03 + 201 1.2364915478098940E-02 + 202 9.7595773168759718E-04 + 203 -9.4151757633510087E-03 + 204 -1.0361120662971553E-01 + 205 -1.1763104902633744E-02 + 206 -1.4098351700349654E-01 + 207 -1.1576520121305195E-02 + 208 5.9826400958300399E-02 + 209 -2.1448994398701089E-02 + 210 -7.2132539803989471E-03 + 211 5.8704228304708658E-03 + 212 3.1009788520174817E-04 + 213 -1.4011446144279167E-03 + 214 -6.2285355425683482E-03 + 215 -9.4141899936653808E-06 + 216 -1.0261852121155050E-02 + 217 -2.4892873507696475E-02 + 218 -4.4698069870996636E-02 + 219 -3.1807400572112114E-02 + 220 -2.4221556306399101E-03 + 221 -1.8723311297561586E-03 + 222 4.0935531543379632E-03 + 223 -4.4643825978991870E-03 + 224 -5.5642527676234314E-03 + 225 1.8322531743439519E-03 + 226 -4.4308228723531039E-03 + 227 -4.2645288064499320E-04 + 228 -1.2153479991180399E-03 + 229 3.0173958016607927E-01 + 230 1.3727786889864311E-02 + 231 1.5325902464932600E-01 + 232 1.0157368978402545E-01 + 233 1.4074960380619552E-02 + 234 2.3976572823176424E-02 + 235 1.3618196058309233E-02 + 236 1.8125400475951563E-02 + 237 4.9677886322564988E-03 + 238 -2.4109847682796177E-02 + 239 -1.4190826048614215E-02 + 240 -1.3250927848363604E-02 + 241 3.6666889658870721E-03 + 242 8.3334401551480822E-02 + 243 -1.8861450603247228E-02 + 244 -1.5861510593475059E-03 + 245 -6.9410867394338188E-02 + 246 1.0915485120479941E-02 + 247 -2.4542996514191518E-03 + 248 -5.8824021066091244E-03 + 249 -3.5602718281883706E-03 + 250 -6.4029564945421152E-03 + 251 2.0671065654249087E-03 + 252 8.0858625219263434E-03 + 253 1.4421035449841636E-03 + 254 -5.3348752882380959E-03 + 255 -1.4703878579452557E-03 + 256 3.6506314319977418E-01 + 257 -4.4919449255501835E-02 + 258 -6.9166672216625646E-02 + 259 2.3563295688951040E-02 + 260 7.8042089006667324E-04 + 261 -1.4953708837128269E-02 + 262 8.0586040771859807E-04 + 263 1.1307529479019959E-02 + 264 1.3345571175477247E-03 + 265 5.0759062926663415E-03 + 266 1.1050102633348800E-03 + 267 -4.5691938711798672E-04 + 268 5.8790977468067440E-02 + 269 1.1414727480261105E-02 + 270 2.2103611461314208E-02 + 271 4.7226803081830734E-02 + 272 5.6621627111421496E-03 + 273 7.5956511188594060E-03 + 274 -2.6000804576159454E-03 + 275 -6.0494077208816249E-03 + 276 7.7499155308616871E-04 + 277 7.9220711331568459E-03 + 278 3.7675933759412695E-03 + 279 2.7789589281135084E-02 + 280 -7.6275572016662029E-03 + 281 2.3876550745670203E-01 + 282 -7.0748310331149120E-03 + 283 -2.4343168598061925E-02 + 284 -5.8220671080219492E-02 + 285 1.4548394489249505E-03 + 286 -6.6833363969119259E-03 + 287 9.2333996523724388E-03 + 288 1.0324827253343012E-03 + 289 7.6236864758513160E-03 + 290 -1.6231561092470960E-02 + 291 2.1406101070430082E-02 + 292 4.5077251821430908E-02 + 293 -9.4154196268584536E-03 + 294 -1.6979919224067747E-02 + 295 1.2391403312818171E-01 + 296 -4.5376313234210798E-02 + 297 8.9119308198434269E-04 + 298 -3.8876952983887998E-02 + 299 5.9680304967440114E-03 + 300 -1.6148094315689396E-02 + 301 -1.3353072872152143E-02 + 302 -3.6103902078579483E-02 + 303 1.3464923951699893E-02 + 304 3.5269936115010724E-03 + 305 -1.0881105953065584E-01 + 306 -1.4084627215137917E-02 + 307 5.2683902555430651E-02 + 308 -2.0504103028227156E-02 + 309 -4.4934839436389312E-01 + 310 7.9192623488448660E-03 + 311 -4.1070912375132185E-03 + 312 -4.6433899695680965E-02 + 313 -1.4373849470828424E-02 + 314 4.7605964135918480E-03 + 315 1.3798519909278691E-03 + 316 2.0836230194289751E-03 + 317 1.3743152805112456E-03 + 318 2.2304910540248260E-02 + 319 1.1877056408932147E-02 + 320 -4.5174426400588479E-03 + 321 1.8108582446559697E-02 + 322 -1.4527942879314170E-02 + 323 1.9325737136324198E-03 + 324 7.7488789301410231E-03 + 325 -2.5954155341569667E-03 + 326 -6.3257103335755708E-03 + 327 -4.1020346355954782E-03 + 328 2.1664965230783545E-03 + 329 -2.8130774455647472E-03 + 330 9.5843679599702927E-02 + 331 3.6883730503984064E-03 + 332 -2.7475672167829771E-02 + 333 1.8752855199292429E-01 + 334 2.3544732155108862E-02 + 335 -6.4412025332843377E-03 + 336 2.2383088525067391E-02 + 337 6.6336653146993095E-03 + 338 -7.5173006691819219E-03 + 339 8.6131898282132795E-03 + 340 3.6190746236777017E-04 + 341 4.1137429871961747E-03 + 342 1.8288946352147597E-03 + 343 -8.6854114108918089E-03 + 344 9.0314794608780538E-05 + 345 -9.6743120243012043E-03 + 346 5.7898763089016701E-03 + 347 -7.0994298720233415E-03 + 348 4.6290142170435982E-03 + 349 -2.1159372747039467E-03 + 350 6.8896054570968734E-03 + 351 5.3641445674987613E-04 + 352 5.2101036374058466E-03 + 353 4.6761781785261197E-05 + 354 2.0231602073457629E-03 + 355 -5.8585547288525740E-02 + 356 1.2919795295943773E-02 + 357 6.1142226155154807E-02 + 358 -1.1572326326614676E-01 + 359 -9.9423000608490367E-02 + 360 -7.8918883201008361E-03 + 361 5.0601962488885564E-02 + 362 1.9939808052618285E-02 + 363 -1.7728052025415407E-02 + 364 -7.6662994654486745E-04 + 365 3.7914820422996195E-02 + 366 -8.1057251664931034E-03 + 367 -3.8278321470493724E-03 + 368 -3.0548658469229720E-02 + 369 6.8483471496492291E-03 + 370 6.9410880248715959E-02 + 371 5.8330374438796640E-03 + 372 1.8099350266857853E-01 + 373 -1.8669757585985415E-02 + 374 4.7546618726269389E-03 + 375 -4.2175912606717637E-02 + 376 2.1629369853041886E-02 + 377 -1.3203698393775913E-02 + 378 -5.7133394917740386E-03 + 379 -1.2309190495748469E-02 + 380 8.8857991051834694E-03 + 381 -4.2062180976195039E-02 + 382 9.2182536745369550E-03 + 383 -7.2903346158914806E-02 + 384 -1.1021807088510475E-01 + 385 -5.2543907166296012E-02 + 386 1.6986359811211164E-03 + 387 1.5191733614913661E-02 + 388 -6.3372963459371722E-03 + 389 6.0274056767934767E-03 + 390 4.0467673986225713E-03 + 391 -2.8022665950054679E-03 + 392 1.3863816069847285E-02 + 393 -1.6936141577658895E-03 + 394 -1.6511545004177375E-01 + 395 -6.2772684562561248E-03 + 396 2.3523006979043339E-02 + 397 -6.4128397269522283E-02 + 398 -2.5792389332402039E-02 + 399 2.3896267481359337E-02 + 400 8.3225781022070247E-03 + 401 -1.3404155867857802E-02 + 402 8.8397946999549063E-03 + 403 1.9344054972210686E-02 + 404 5.1684358603073044E-03 + 405 -2.3052019190603162E-02 + 406 1.8284123923343849E-02 + 407 -4.8000404428773909E-02 + 408 -1.5285998660486142E-02 + 409 1.9513747845508356E-02 + 410 3.4418397390105840E-02 + 411 4.0036749961218428E-02 + 412 -1.9626244397933398E-03 + 413 -1.0217820370821371E-02 + 414 -6.1280238907549765E-03 + 415 -5.4501554411451264E-03 + 416 -4.1546197082748719E-03 + 417 1.7495912366646049E-02 + 418 -8.6124283940375453E-04 + 419 -9.9390889891112097E-02 + 420 2.1318310943998654E-02 + 421 -1.0601244480230010E-01 + 422 1.6727105738019325E-02 + 423 -1.5084047442809365E-01 + 424 4.0771428915868331E-02 + 425 -1.6222875407515276E-02 + 426 3.9387108307258355E-02 + 427 -1.2376746715639934E-02 + 428 2.7955777431577036E-02 + 429 -5.1824494359555941E-03 + 430 -4.9526696126541390E-03 + 431 -3.4160428897574029E-03 + 432 8.5137761134281648E-02 + 433 -1.5831415475105144E-02 + 434 3.6381659217684312E-02 + 435 1.2266986207725801E-01 + 436 4.4049360247611621E-02 + 437 -1.7041386339835055E-02 + 438 -4.5624158509762668E-02 + 439 -1.1448285600440146E-02 + 440 3.6881765847764574E-04 + 441 -3.6523751006868146E-03 + 442 2.9522756304871224E-03 + 443 1.2711474390957900E-02 + 444 -1.0902522309891242E-02 + 445 -1.2679851501204378E-01 + 446 -1.2546365706852962E-02 + 447 -1.1989193528462937E-01 + 448 8.8143667927607222E-02 + 449 1.4164104338406081E-01 + 450 -1.7544585845913663E-02 + 451 4.7117819416788043E-03 + 452 2.2702586125109839E-02 + 453 -1.1976084594841443E-03 + 454 1.1527855564995127E-02 + 455 1.9244896844389528E-02 + 456 -2.6358068923434140E-02 + 457 -2.1574259044094615E-02 + 458 6.6004846829777648E-03 + 459 1.9717396298471860E-02 + 460 3.4235241108749058E-02 + 461 -3.2143097441948848E-02 + 462 -3.1641863062129710E-02 + 463 -2.9433925270666472E-03 + 464 3.6281196265003032E-04 + 465 8.9770258120842068E-03 + 466 2.0306038261895492E-03 + 467 -2.6274874790518685E-03 + 468 2.6503261024378699E-04 + 469 -3.7783315532114005E-03 + 470 1.0254791755633810E-01 + 471 1.5227097750822706E-02 + 472 9.7102441985206109E-02 + 473 -1.1011308331193560E-01 + 474 -5.5447902257556109E-02 + 475 7.1282292925305604E-03 + 476 -1.8643459741503873E-02 + 477 -2.7037688890506101E-03 + 478 1.9274794821153369E-02 + 479 -6.2950313217714302E-03 + 480 -1.3383713245146308E-02 + 481 2.5290896074351480E-02 + 482 -1.5023057395967227E-02 + 483 2.0706739493976771E-02 + 484 -1.8610365397825610E-03 + 485 -1.4875230234922940E-02 + 486 1.3934327319615289E-02 + 487 -1.8034987825757010E-02 + 488 1.3569032607878832E-04 + 489 -2.6771665958629839E-03 + 490 -4.2884203983226607E-03 + 491 -1.9691283774949404E-03 + 492 2.5857445590256095E-04 + 493 1.9103801255807163E-03 + 494 6.5324160536328060E-04 +Ene= -2.8828994440E-04 +Spin= Alpha +Occup= 0.0000000 + 1 -1.1457176385317901E-01 + 2 -1.7736465750308187E-02 + 3 1.9453323019831104E-01 + 4 4.6801415510560676E-02 + 5 -1.4259337317929827E-01 + 6 1.9945582680671009E-02 + 7 -1.8156575765963692E-03 + 8 -1.0880758067283091E-02 + 9 -3.3681610559064164E-02 + 10 1.6616260764018217E-02 + 11 1.5180773489590875E-02 + 12 -3.2902312287099993E-02 + 13 -7.0193198653057589E-03 + 14 -1.8795579167300076E-02 + 15 8.6464898070041443E-03 + 16 -4.2673085789264329E-03 + 17 1.0621926572810659E-02 + 18 1.6683619793813609E-02 + 19 3.8341609637335735E-03 + 20 3.8823689962529254E-03 + 21 7.2701638466487559E-03 + 22 -1.2275834250403964E-04 + 23 -1.1214873587713397E-02 + 24 -4.9723412200011752E-03 + 25 -1.6732589626538394E-03 + 26 -1.1821509215485861E-02 + 27 -5.2882808328604154E-03 + 28 9.6160155359796648E-02 + 29 2.0273417035977120E-01 + 30 2.2572270779160783E-01 + 31 1.0903981415473937E-02 + 32 2.0856137487383377E-02 + 33 2.1371206555997096E-02 + 34 -1.9099975752084821E-03 + 35 8.5675513131662738E-03 + 36 -3.4564689480901828E-02 + 37 -1.3217348745265903E-02 + 38 3.9098198403456031E-03 + 39 9.0012504503726599E-03 + 40 -5.7445472154395876E-04 + 41 -5.8730122763851797E-02 + 42 -3.7602459168303778E-02 + 43 9.1888614160723688E-03 + 44 -5.7214831385839727E-03 + 45 -6.4418543387547269E-03 + 46 -1.7152802779009850E-03 + 47 -1.3012482636066457E-02 + 48 5.3031831563402900E-03 + 49 1.0419101834544361E-02 + 50 1.0306586834299494E-03 + 51 -2.8052604784136209E-01 + 52 -4.0599176266815265E-02 + 53 -1.0522304481576694E-01 + 54 -1.9942457090354268E-01 + 55 -2.3540270143236720E-02 + 56 -1.5067704237757495E-02 + 57 -2.9901510465191860E-02 + 58 -1.8746013061160017E-03 + 59 3.6232110386697242E-02 + 60 -1.3432977674839282E-03 + 61 1.9582067233282079E-02 + 62 4.2894046302404398E-02 + 63 -2.7028961979681170E-02 + 64 6.2500586156848226E-02 + 65 2.5449457807662994E-02 + 66 3.5050632867257112E-02 + 67 7.2800229175086023E-02 + 68 -1.7434003443628356E-02 + 69 4.8651346813447438E-03 + 70 -6.4517948381270828E-03 + 71 -6.4211941709274656E-03 + 72 -3.4624625932506174E-03 + 73 -8.6174624410177130E-03 + 74 8.6775275048194492E-03 + 75 -1.4688753213332785E-03 + 76 -1.0584706424519767E-01 + 77 2.0177195319450208E-02 + 78 1.1098175925337031E-01 + 79 7.9936062041690889E-02 + 80 1.2158495597729614E-01 + 81 -2.7947347758334521E-02 + 82 -4.3066573357023082E-02 + 83 -2.8763451509036010E-02 + 84 -1.5344282526098728E-02 + 85 1.0221713217967660E-02 + 86 -2.1668639491387452E-02 + 87 -2.2308822373468078E-02 + 88 1.1456659196194435E-02 + 89 -1.0163366478868924E-01 + 90 1.7825717467645139E-02 + 91 9.2325000241755800E-02 + 92 -1.3406065190917851E-01 + 93 -1.2840448371013485E-01 + 94 -1.7995457734189056E-02 + 95 5.8425472710694509E-02 + 96 4.0195899423924382E-02 + 97 3.4647179168908362E-03 + 98 -9.5889985172105743E-03 + 99 1.1456561802895541E-02 + 100 -1.3330204305734304E-02 + 101 -1.4256257100539942E-02 + 102 -8.4270333738310832E-02 + 103 1.5959735282878817E-02 + 104 9.6242516556623980E-03 + 105 -8.7048221870941224E-03 + 106 1.9673758576181402E-01 + 107 -4.3465063358002305E-03 + 108 1.8846092899093992E-02 + 109 -7.1772585488614413E-02 + 110 3.1509991915723734E-02 + 111 3.2643364747223250E-02 + 112 -1.1369511481130381E-02 + 113 -4.6383673452557719E-03 + 114 -4.5813861125969862E-03 + 115 4.3377928458745066E-02 + 116 -6.7210534336112184E-03 + 117 1.1924359875292535E-01 + 118 4.3983363159232888E-02 + 119 -3.3891909211436519E-02 + 120 -3.7217137768052008E-02 + 121 -9.4095070016958302E-03 + 122 1.0407173888526520E-02 + 123 4.7349492853368848E-03 + 124 2.2642470787854016E-02 + 125 1.1537229274456393E-02 + 126 -4.2470899933409675E-03 + 127 1.5561107131877677E-02 + 128 -1.4298922533198696E-01 + 129 -1.2218849977284984E-02 + 130 -5.7191779072425737E-02 + 131 -1.3952468669505744E-01 + 132 -1.6836391801488489E-02 + 133 -2.5904720853513218E-03 + 134 -1.3416997049385589E-02 + 135 4.1618368725362884E-03 + 136 -8.8501367469885576E-03 + 137 1.2230256763005595E-02 + 138 1.7827625461584787E-02 + 139 -1.1816974634975537E-02 + 140 2.3585473824250590E-03 + 141 -6.6664568921437212E-03 + 142 -1.0713396189515615E-02 + 143 2.6378482164164180E-02 + 144 -2.1077812276062455E-02 + 145 -1.8744552293147070E-02 + 146 1.6955958499628842E-03 + 147 -5.2941126464884610E-03 + 148 -1.0829924756287496E-03 + 149 -4.5905522442925110E-03 + 150 -7.5670576839198739E-04 + 151 -4.4336911804010526E-03 + 152 -7.1883445071817612E-03 + 153 1.3923015773792941E-01 + 154 1.2742499485346748E-02 + 155 -1.5721544458026693E-01 + 156 2.5203053568111471E-03 + 157 -2.7420183601448345E-01 + 158 -2.2959680289758425E-02 + 159 4.1393655161133525E-03 + 160 -3.2969891937343482E-02 + 161 1.0836122250966185E-02 + 162 1.0953805233326725E-03 + 163 3.9064409198402280E-03 + 164 -2.9473933269057308E-02 + 165 8.6357016029630709E-03 + 166 1.0505343692941490E-03 + 167 -1.7680379414711376E-02 + 168 7.7621235326571850E-03 + 169 -4.7085852197575745E-02 + 170 1.4162839313736993E-02 + 171 6.2940614561488549E-03 + 172 2.2813328478723440E-03 + 173 2.4586773266977598E-03 + 174 -1.8666683632055229E-03 + 175 -4.3580406735523897E-03 + 176 2.8986955138819407E-03 + 177 5.1630096030651474E-05 + 178 9.9052597493687861E-02 + 179 -2.0118279337682142E-02 + 180 1.1612929607292703E-01 + 181 -2.5956883136313124E-03 + 182 -9.8285980666377878E-02 + 183 -4.2664687962199056E-02 + 184 5.8296998669256370E-03 + 185 3.8599456656694904E-02 + 186 1.0421021874421248E-03 + 187 1.2385911087582885E-02 + 188 -7.8043524123706353E-04 + 189 -1.8541053157500910E-02 + 190 9.4086055349112546E-03 + 191 3.1908042817893986E-02 + 192 -6.0732945477222529E-03 + 193 4.7238469003692565E-02 + 194 7.1839313794610504E-02 + 195 -1.0368393477335286E-01 + 196 6.1228721722878811E-04 + 197 -2.0432344567871373E-02 + 198 4.6774876093533077E-02 + 199 -2.7560195990699306E-02 + 200 -1.5278940547840320E-02 + 201 1.9269202198655074E-02 + 202 8.6506030460647074E-03 + 203 -1.6158250145647389E-02 + 204 -7.7960167831520891E-02 + 205 -2.9908705017796782E-03 + 206 1.0081457139164376E-01 + 207 1.9786549615801743E-01 + 208 1.7230733515484754E-02 + 209 9.0670338542674766E-03 + 210 9.3699092892898031E-03 + 211 1.7409545321536123E-03 + 212 -2.0293087251965523E-02 + 213 -1.0999632840408855E-03 + 214 1.2870275217636899E-02 + 215 4.1964716060611269E-03 + 216 -5.3296368954921592E-03 + 217 -6.2424408396395976E-03 + 218 -3.4342464238689896E-03 + 219 3.9023076680988174E-03 + 220 1.7836027592467135E-03 + 221 -7.3083418603566862E-04 + 222 -6.2876295233614180E-05 + 223 6.2414293545232560E-03 + 224 -9.3574560275240331E-04 + 225 4.2311501308202352E-03 + 226 -4.9687026523720047E-03 + 227 -1.2455696704446889E-04 + 228 2.3780144792353063E-03 + 229 -1.4083061251833015E-01 + 230 -2.0287681522938118E-02 + 231 -1.9567785533112517E-01 + 232 -2.6665338927518928E-01 + 233 1.1378135698678005E-01 + 234 -2.2761492235324476E-02 + 235 -2.5284644259139098E-02 + 236 5.9033340742555883E-03 + 237 2.9225491357033118E-03 + 238 1.4660042014436544E-02 + 239 1.2214614066333306E-02 + 240 1.8447916270814557E-02 + 241 3.3925614756209546E-03 + 242 1.6462099829575142E-02 + 243 -3.1930701598894226E-03 + 244 3.1358531915844097E-02 + 245 2.6802955177603376E-02 + 246 -1.3156087097289918E-02 + 247 3.1024780621050113E-03 + 248 3.2328354407330350E-03 + 249 -1.1936332786277452E-03 + 250 -1.0146712626987670E-03 + 251 3.0374884599092462E-04 + 252 1.2645060777869714E-02 + 253 -2.2605622005487588E-03 + 254 2.6116102531851176E-02 + 255 2.1078932889829873E-03 + 256 -2.6813204797390775E-02 + 257 -1.5191953996220012E-01 + 258 5.9956423140759538E-02 + 259 -1.5170989077290295E-02 + 260 -1.9100552255947541E-02 + 261 7.1338829081646358E-03 + 262 -1.0060590838496157E-03 + 263 -6.9864606162823644E-03 + 264 5.1374843487905428E-03 + 265 1.1941079106676562E-02 + 266 -7.8715520600848663E-03 + 267 -5.9548588284118100E-03 + 268 -3.6460064062016767E-04 + 269 1.1176281259041809E-02 + 270 2.3989902602538409E-02 + 271 -2.0251187184383882E-04 + 272 -3.4324073161927870E-03 + 273 -2.9929318161738164E-03 + 274 -8.8755437246258728E-04 + 275 6.4710265999542394E-03 + 276 -2.2530833003728329E-03 + 277 -7.1535518944934266E-03 + 278 -6.4640958175915574E-03 + 279 -7.7147317717173369E-02 + 280 1.3937005310368658E-02 + 281 -7.1520279550639693E-02 + 282 -4.1950895194342877E-02 + 283 6.6558230636749594E-02 + 284 1.2296374707111575E-02 + 285 9.7908015429864961E-03 + 286 -7.3602898600120771E-03 + 287 1.1440041224898972E-03 + 288 -1.0377109329661150E-02 + 289 1.0155962765749474E-02 + 290 1.8743137819280626E-02 + 291 4.2456765590572227E-03 + 292 -3.0716884683831328E-02 + 293 5.7279778968345853E-03 + 294 -3.1074218705931456E-02 + 295 -8.9820843939767955E-02 + 296 -1.2009845326946919E-02 + 297 1.2635903388396262E-02 + 298 1.6884032532729879E-03 + 299 -8.6445571405473175E-03 + 300 3.1406239565378181E-03 + 301 6.4253241646823776E-03 + 302 1.6566777032548618E-02 + 303 -2.6655077665280798E-02 + 304 -8.8330279689371647E-04 + 305 6.4404903413919273E-02 + 306 1.3398876628593992E-02 + 307 -7.3966398598422328E-02 + 308 6.0393360406242179E-02 + 309 1.0432614254421439E-01 + 310 -1.1008838581025042E-02 + 311 1.1518398276645659E-02 + 312 1.0837810256902811E-02 + 313 1.1955809117514054E-02 + 314 1.3095889268778914E-02 + 315 1.0604277691682873E-02 + 316 -2.1333768028673643E-02 + 317 -6.7745932126427062E-03 + 318 1.7216355713144317E-02 + 319 2.3979588776010051E-02 + 320 3.3499062936922293E-02 + 321 -3.2651069718985147E-02 + 322 -1.1884562049296729E-02 + 323 3.7532722646236969E-03 + 324 -2.1728782862548489E-03 + 325 -1.5785302540713420E-03 + 326 -1.7449839390582627E-03 + 327 -4.7098095591832758E-03 + 328 1.8602974312766697E-03 + 329 -4.0146936379881508E-04 + 330 1.7239661395670258E-01 + 331 1.6032951545579197E-02 + 332 -1.3631845056793615E-01 + 333 3.5111975738600065E-01 + 334 8.6300876185712347E-02 + 335 -2.4542959287319834E-02 + 336 3.7926086125405684E-02 + 337 7.5428734107618389E-03 + 338 -2.2356896611407450E-02 + 339 -8.4404868665445398E-03 + 340 1.3987784061522181E-02 + 341 3.2161435531898653E-03 + 342 1.5353842553252343E-02 + 343 -4.7236565222197602E-03 + 344 -2.7090852271208433E-02 + 345 -1.2623514121561841E-02 + 346 9.5675897706613243E-03 + 347 9.7544495006542803E-03 + 348 3.9464049904124046E-03 + 349 -3.6989325720925797E-03 + 350 7.9881736904384684E-06 + 351 5.5661561898739742E-03 + 352 -6.2212687219930524E-03 + 353 1.8832220065728494E-03 + 354 2.9473469982334555E-03 + 355 9.4688948666717926E-02 + 356 -1.8846304208622520E-02 + 357 1.3938377073726908E-03 + 358 -4.5717808385723280E-03 + 359 1.4783558033098196E-01 + 360 -1.6276052588488524E-02 + 361 7.7855553569896596E-03 + 362 -4.5535609452711227E-02 + 363 -1.7144618017016337E-02 + 364 -1.4364462898173417E-02 + 365 9.4747053510663790E-03 + 366 -1.1191651405443663E-02 + 367 -2.3962109983808643E-03 + 368 -4.9900263634090010E-02 + 369 1.1013270226089441E-02 + 370 -1.6709274004027228E-01 + 371 4.8397616816536560E-03 + 372 -7.6839901803115368E-02 + 373 6.4031096177691760E-02 + 374 4.2261649234845182E-03 + 375 1.8137028980493269E-02 + 376 -1.7191484915147149E-02 + 377 3.3251827272848110E-02 + 378 2.4347883189774877E-02 + 379 3.4344515353515154E-02 + 380 -6.0329144180564197E-03 + 381 -1.0482909047976248E-02 + 382 4.8341371697689286E-03 + 383 -7.9236669288395664E-02 + 384 -1.1774671073116397E-01 + 385 -2.5865332334710951E-02 + 386 7.8124210897336345E-03 + 387 2.4232069091749589E-02 + 388 6.2408031564170014E-03 + 389 1.0681670910990981E-02 + 390 -1.4091859695129156E-02 + 391 -2.2025501889143734E-02 + 392 2.2684110273947216E-02 + 393 -1.7819032524168454E-02 + 394 -5.6133839497929917E-02 + 395 -7.4964645234824392E-03 + 396 7.5733295158027875E-02 + 397 -1.0039740761294701E-01 + 398 -4.5522127240870056E-02 + 399 -1.7256516134880550E-03 + 400 -1.3810838234578897E-02 + 401 -2.3756408054326677E-03 + 402 -1.0220335664274438E-02 + 403 -1.1324167930055492E-02 + 404 8.5240300350392898E-04 + 405 3.8689221084190498E-02 + 406 6.5155328131259963E-03 + 407 4.0703607204885242E-03 + 408 1.2083501575885199E-02 + 409 9.6687263733824420E-03 + 410 2.7240992257935873E-02 + 411 2.1469205033896946E-03 + 412 -2.6118965195594691E-03 + 413 1.0703332849292967E-03 + 414 1.7445502270791947E-03 + 415 2.5204659386802346E-03 + 416 6.3271140818650590E-03 + 417 -9.8409969587804156E-03 + 418 -9.6066100160659609E-03 + 419 5.6296449610309836E-02 + 420 -1.0963542692832600E-02 + 421 2.4480394079640064E-02 + 422 -3.2579094014271996E-02 + 423 1.5796336309599014E-02 + 424 -2.6065438578695577E-02 + 425 -7.1949972038781434E-03 + 426 -7.8225997043275593E-03 + 427 7.1680261895420497E-03 + 428 -2.4686019693593367E-03 + 429 -8.8774426940656161E-04 + 430 -1.0947328465200596E-02 + 431 -5.8602194191213824E-03 + 432 8.6326944673610601E-02 + 433 -1.6417247868570232E-02 + 434 2.4458890567784549E-02 + 435 1.7381173722774174E-01 + 436 -6.7887076730459447E-02 + 437 -7.1373637629182632E-03 + 438 -5.9691465092155505E-02 + 439 6.1244069615414070E-03 + 440 2.1415469027088630E-04 + 441 6.6909723747969629E-04 + 442 -7.6928675886291055E-03 + 443 2.6399593608847357E-02 + 444 -1.7978140777741864E-02 + 445 -6.2091632237786624E-02 + 446 -5.6997733702531467E-03 + 447 -1.6502952623341283E-01 + 448 -7.1615756418085777E-02 + 449 -1.2444847266640095E-01 + 450 -1.7882666941432371E-02 + 451 -1.5653332254304906E-02 + 452 -2.3688522966723271E-02 + 453 -1.5018362452623051E-02 + 454 3.3675414256914609E-04 + 455 -1.6068086602908239E-03 + 456 -8.0146080882727878E-03 + 457 -2.0806820808675758E-02 + 458 -3.9809481486398207E-02 + 459 2.2159659463140309E-02 + 460 7.2881663536645408E-03 + 461 1.7768257874590306E-02 + 462 -2.3755142705190344E-02 + 463 -5.6716006857109105E-03 + 464 -7.2039445848550805E-03 + 465 1.0315601546241815E-02 + 466 -4.0435077736493587E-04 + 467 -5.2948490484058678E-03 + 468 9.0096353735545226E-03 + 469 1.8211583262228597E-03 + 470 2.1464520758723421E-01 + 471 3.6538766548535925E-02 + 472 3.1037024139940073E-01 + 473 -1.2027728319807804E-01 + 474 -2.1733133975590743E-01 + 475 4.2463631774850290E-02 + 476 -2.3608839979888146E-02 + 477 -2.5331813924671303E-02 + 478 1.6309218758231808E-02 + 479 1.3540574261587638E-03 + 480 -2.6935722608174652E-02 + 481 1.6035270281018633E-02 + 482 -1.1666178696066672E-02 + 483 1.8995960353991762E-02 + 484 3.7478779902686576E-03 + 485 -3.2396048739757502E-02 + 486 2.5689462238161227E-02 + 487 -2.8692186731450176E-02 + 488 -4.1663776147383974E-04 + 489 6.2980183862886799E-04 + 490 -3.9951415930830382E-03 + 491 -6.2263878713370892E-04 + 492 1.2505456147633260E-03 + 493 1.6575026433356700E-03 + 494 1.8867690893907992E-03 +Ene= 2.6356678525E-03 +Spin= Alpha +Occup= 0.0000000 + 1 -1.2000933090553359E-01 + 2 -1.5173839437661730E-02 + 3 4.8134833980814573E-01 + 4 2.2467209055549026E-03 + 5 -1.9969836588976186E-01 + 6 5.2463957620361282E-02 + 7 -3.5794367182095288E-03 + 8 -2.3453380733956208E-02 + 9 1.5200873299969494E-02 + 10 -1.4078971786182428E-03 + 11 1.0769434410988765E-02 + 12 -1.4068737618404834E-02 + 13 1.4474693101818550E-02 + 14 -1.0968541122015663E-02 + 15 -3.9844565569347110E-02 + 16 7.6320616409517733E-03 + 17 4.7989926483143156E-03 + 18 4.9475020362039428E-02 + 19 -2.3513982679900488E-03 + 20 7.3369183714944879E-04 + 21 -3.4893812180760994E-03 + 22 -1.0416857284378698E-03 + 23 6.0022690839565979E-03 + 24 3.0252251592671952E-03 + 25 -2.0937864266829397E-03 + 26 5.5692043805234875E-02 + 27 6.7804977194520460E-04 + 28 -1.4593359870080708E-01 + 29 -3.4636545326516194E-02 + 30 -1.9849554169551378E-01 + 31 -1.9882755407521029E-02 + 32 -2.8982301680134147E-03 + 33 -2.2083711563630960E-02 + 34 -2.2424177614084641E-03 + 35 -4.2083421346525846E-03 + 36 2.0468398566233312E-03 + 37 5.2102319849800698E-03 + 38 -3.3563392262851354E-03 + 39 -2.4689364034553526E-03 + 40 -1.1509957027586077E-02 + 41 -1.7104727587919616E-02 + 42 -1.7011217546707692E-02 + 43 -2.0048228635318514E-02 + 44 1.1159469318169395E-02 + 45 4.2825898251830823E-03 + 46 5.7093970111049457E-03 + 47 8.9254898903458058E-03 + 48 -8.8909977021411589E-03 + 49 -1.0795218429808838E-02 + 50 -8.2523631611386306E-03 + 51 1.5499190545517752E-01 + 52 6.9838309012171199E-03 + 53 -2.0369995780277220E-02 + 54 -6.2391524124437360E-02 + 55 1.4714858948966472E-02 + 56 -1.0561310353406461E-02 + 57 -5.7179300243160756E-04 + 58 1.2835094834435224E-02 + 59 -1.4187510701145701E-02 + 60 8.6738185087156666E-03 + 61 9.6072214484443884E-03 + 62 -3.6883341932114825E-03 + 63 -1.7241902236006693E-02 + 64 -2.5513281505140907E-02 + 65 4.7701866442390762E-03 + 66 2.3063980437523595E-02 + 67 -1.3524202265099514E-02 + 68 6.7726240102748293E-03 + 69 -8.7935622222052201E-04 + 70 -3.4668124150837070E-04 + 71 -6.4997664507204971E-03 + 72 4.7809676028252700E-04 + 73 1.5663907937466949E-03 + 74 3.1566798991022518E-03 + 75 3.6822718108830407E-04 + 76 -6.1575417555834157E-02 + 77 1.0868900426421937E-02 + 78 9.3296105564026163E-02 + 79 9.3703557758400405E-02 + 80 3.9090816099668621E-02 + 81 -2.5104812520034183E-02 + 82 -4.5060539908805992E-02 + 83 -4.0283288952490441E-02 + 84 4.2748135448615419E-03 + 85 3.5752670015008821E-02 + 86 1.1330444029717963E-02 + 87 -1.2546486929889812E-02 + 88 1.4610051011361872E-02 + 89 -3.8644009148495390E-02 + 90 9.3564145660278049E-03 + 91 1.3430000951901067E-01 + 92 -3.6304127877153980E-02 + 93 2.8837399870364811E-02 + 94 -2.5798732615354671E-02 + 95 3.2987883869916718E-02 + 96 1.4196582561812425E-03 + 97 -9.1060548665116946E-03 + 98 2.4847171465606381E-02 + 99 1.3288528351354231E-02 + 100 -1.0859590213930197E-02 + 101 -2.0921449413817648E-02 + 102 -9.0787672878102674E-02 + 103 1.6760755447441187E-02 + 104 1.0621676530572086E-01 + 105 -2.8200399666105741E-02 + 106 -6.1172641345419020E-02 + 107 -4.5228489487331408E-02 + 108 3.8967008898113872E-03 + 109 2.1646262074001110E-02 + 110 -1.4533764115312863E-02 + 111 -2.1768509234490297E-02 + 112 -2.7256055508384507E-03 + 113 8.5916354787546299E-03 + 114 1.0394344617245565E-02 + 115 -1.0041361038389052E-01 + 116 1.8982172758586158E-02 + 117 3.4828393841529103E-02 + 118 -5.8131994880261655E-02 + 119 9.8478664694866339E-02 + 120 -6.6692527522670539E-03 + 121 1.0315504471709720E-02 + 122 -3.2323460516966350E-02 + 123 -3.0618639511650844E-03 + 124 7.6003268344303427E-03 + 125 -1.0388382582478943E-02 + 126 1.4315217985904943E-02 + 127 -1.3735573453763696E-02 + 128 9.8055799628796611E-02 + 129 8.5522621577076071E-03 + 130 7.9561881618766525E-02 + 131 -1.0529427802374924E-01 + 132 -3.3395966947763221E-02 + 133 2.1798020427080188E-02 + 134 -2.7976750021771082E-03 + 135 -6.8971552193623741E-03 + 136 -9.9613743059662162E-03 + 137 1.4614228130868832E-03 + 138 4.3113826159783897E-03 + 139 1.7658922098930913E-02 + 140 1.8646770744372435E-02 + 141 -2.3114642194835217E-03 + 142 4.3014665891067609E-02 + 143 -2.7065434897025356E-02 + 144 5.2826332397025708E-02 + 145 7.9566182458370924E-03 + 146 3.4566343119106476E-03 + 147 6.3463937027216401E-03 + 148 -3.4995510842983986E-03 + 149 -1.2115624791329787E-02 + 150 8.2260562153561277E-03 + 151 5.1418079236894140E-03 + 152 -2.4707864014635599E-03 + 153 -1.8796621096101510E-01 + 154 -3.4426759160813024E-02 + 155 9.3114626779088633E-02 + 156 3.9417666080198262E-02 + 157 4.5028129592909388E-01 + 158 1.5831946761186589E-02 + 159 -9.1141279406367921E-03 + 160 5.7009936523564245E-02 + 161 1.1265472097384418E-03 + 162 -1.1166996959579706E-02 + 163 -1.0932472825642036E-02 + 164 2.4426393041385237E-02 + 165 -5.3521175830073993E-03 + 166 2.8967454020798061E-02 + 167 -2.3371478832621039E-02 + 168 -1.5868341503824428E-02 + 169 3.8774134699920797E-02 + 170 2.3947297227174102E-03 + 171 3.9894572597901518E-04 + 172 -2.2049250463023414E-04 + 173 4.5967108766036062E-04 + 174 4.2737026846210655E-03 + 175 -4.3824072564672002E-04 + 176 3.4413665173028862E-03 + 177 7.9175372654289114E-04 + 178 -3.6561826894917646E-02 + 179 7.1612138426954746E-03 + 180 -1.0114612999352905E-01 + 181 6.8359534605212366E-02 + 182 7.2503428028308586E-02 + 183 3.2850513618033747E-02 + 184 -2.3975455931649976E-02 + 185 -2.7264126579197728E-02 + 186 -1.5457536194194783E-02 + 187 -3.0861453437375667E-02 + 188 1.8398849762839117E-02 + 189 7.2612754896949159E-03 + 190 -1.0535133154712564E-02 + 191 -2.8312732453181690E-02 + 192 6.2491147867185437E-03 + 193 1.1601124145417868E-02 + 194 -9.2842887969306676E-02 + 195 -9.7139844112701879E-02 + 196 -1.4409240379019672E-02 + 197 1.9283345273575919E-02 + 198 1.3552058649142001E-02 + 199 3.9006953625933846E-03 + 200 -1.3356499373422065E-02 + 201 4.3189946421185324E-03 + 202 -1.0938779032679313E-02 + 203 -2.3165275262584571E-02 + 204 -1.3424692142429581E-01 + 205 -1.9060157546125195E-02 + 206 -1.4711759550264883E-01 + 207 4.8490042515989470E-02 + 208 6.4688392480216933E-02 + 209 -1.2615084177036927E-02 + 210 -1.0704991604021882E-03 + 211 8.1857578570507655E-03 + 212 -3.3499501555675644E-03 + 213 -4.9001695407872988E-03 + 214 8.9736013733752850E-03 + 215 -1.0777813968633646E-02 + 216 -1.7273180358753810E-02 + 217 -1.8688524978499602E-02 + 218 -7.5903605191147997E-03 + 219 4.7807289229622713E-02 + 220 -4.7949047747379847E-02 + 221 1.2128186001629937E-02 + 222 5.9408093849381491E-03 + 223 9.3986722183429349E-04 + 224 -5.1520792250535985E-03 + 225 -3.4388539717194301E-03 + 226 2.9538686050795506E-04 + 227 8.1300718772730259E-03 + 228 -4.4845777827187032E-03 + 229 1.2616097741423292E-02 + 230 -7.4630025192725302E-03 + 231 -9.4008467650202557E-02 + 232 1.7289442931177726E-01 + 233 -7.2043946010940774E-02 + 234 7.3947069716250521E-03 + 235 1.6864936225991459E-02 + 236 -1.5466162246851620E-03 + 237 1.5524057622686889E-02 + 238 1.8850120777815883E-02 + 239 1.8594946516054794E-03 + 240 3.3101216060005219E-02 + 241 2.5618330297715156E-02 + 242 5.0242356018751690E-02 + 243 3.1063116806872806E-02 + 244 9.4602326595001861E-03 + 245 2.1557604208046675E-02 + 246 2.5353323338066867E-02 + 247 3.4628499394263215E-03 + 248 -4.6222860176849592E-03 + 249 -1.2732405165846845E-03 + 250 -2.4570850729106666E-03 + 251 -2.3408703731586840E-04 + 252 9.1083014980388351E-03 + 253 -1.8799874084016917E-04 + 254 -1.4499230847260627E-01 + 255 -2.1580835630577791E-02 + 256 1.4667411828040061E-01 + 257 2.9300044963683025E-01 + 258 -4.5901808361865588E-02 + 259 4.1255319549400064E-03 + 260 3.9554801434415109E-02 + 261 -3.5072075831131394E-03 + 262 3.0701558088714696E-03 + 263 1.0166973978940673E-02 + 264 -8.7101627785758258E-03 + 265 -8.1696082226075106E-03 + 266 -8.7342198816965887E-03 + 267 -8.3710330352796975E-03 + 268 5.0392952069759252E-02 + 269 -1.8499170646062046E-02 + 270 -8.0393711105159350E-03 + 271 -4.1993367668602654E-04 + 272 7.8051431881624939E-03 + 273 3.0569778160774324E-03 + 274 1.4838637457898034E-03 + 275 -6.2415205888963175E-03 + 276 5.2070502435073529E-04 + 277 -5.8623917244678744E-03 + 278 9.2843798832628588E-04 + 279 4.0567326800305496E-02 + 280 -9.0624671708809390E-03 + 281 1.0912550615980046E-01 + 282 1.9072610851428549E-02 + 283 -7.6562103061967313E-02 + 284 -1.9515810029131282E-02 + 285 -1.3595800365475833E-03 + 286 1.7274206989851357E-02 + 287 3.8829672006376603E-03 + 288 1.1320394703434614E-02 + 289 -2.7641955265010551E-02 + 290 5.2308609219336678E-03 + 291 1.1531189870863821E-02 + 292 -2.4289142725139767E-02 + 293 2.8547221437663873E-03 + 294 2.2641687170085922E-02 + 295 1.1220791620110809E-01 + 296 -7.1717438073745809E-02 + 297 3.1441458659263039E-02 + 298 -2.6770011517568446E-02 + 299 4.5750512368134780E-02 + 300 2.4292318677923169E-02 + 301 4.7307462582525314E-03 + 302 -8.4646479984508225E-03 + 303 -1.7567304661695368E-02 + 304 1.5954944257559545E-02 + 305 -5.5413653932412923E-03 + 306 -7.9373377694092503E-04 + 307 -7.1404516076101029E-02 + 308 8.3890347376770341E-02 + 309 9.4753575201880949E-02 + 310 -2.7305298834980241E-03 + 311 1.4577472999865143E-02 + 312 9.8730557435784284E-03 + 313 -4.9201573377566296E-03 + 314 -1.7832239929488816E-02 + 315 8.0324252168045059E-03 + 316 -1.2269305879848097E-02 + 317 2.9006299362724478E-02 + 318 -3.6859432077582716E-02 + 319 -8.1478848000794378E-03 + 320 1.9437870854650010E-02 + 321 -4.5682515299381478E-03 + 322 5.3285640839097245E-02 + 323 -9.5072139962447760E-05 + 324 -3.9294157157787508E-03 + 325 2.7721977477077709E-04 + 326 -2.2176776394636170E-03 + 327 -1.1541788057944373E-03 + 328 5.3242102270632998E-03 + 329 -1.7009912752848767E-03 + 330 1.3460795799258489E-02 + 331 -1.7631188343956586E-03 + 332 -2.7625787142017721E-01 + 333 -1.5597256759954894E-01 + 334 1.1660949319437942E-02 + 335 -2.1945209550060137E-02 + 336 -1.7256539351204820E-02 + 337 1.1406692889620502E-02 + 338 -1.3933598997197661E-02 + 339 4.3503495194956209E-03 + 340 9.6850017905996261E-03 + 341 -5.8383408577132676E-04 + 342 6.8227309299103327E-03 + 343 -3.0699296638095966E-02 + 344 1.0250428418363745E-02 + 345 4.5290853897182244E-02 + 346 -8.8962474970730046E-04 + 347 6.2764684554874273E-02 + 348 -3.7578437560413722E-03 + 349 -1.9384288132266729E-03 + 350 4.0776070277262179E-04 + 351 2.5962520121911056E-03 + 352 8.5016223397333234E-03 + 353 -4.9691898357894634E-03 + 354 -1.5243950801462961E-03 + 355 -5.4458264531372168E-02 + 356 1.1904313124674012E-02 + 357 -2.9586495269371248E-02 + 358 -8.1064197261396492E-02 + 359 2.4087935629417526E-02 + 360 6.6724568584915975E-03 + 361 -1.8477101954161785E-03 + 362 1.4388759358656930E-02 + 363 -6.6990957586955139E-03 + 364 -2.6542051226108362E-03 + 365 6.3413334306587667E-03 + 366 2.7757434613460204E-02 + 367 -9.7389910981955340E-03 + 368 2.9367938541293073E-02 + 369 -5.5089987567440574E-03 + 370 -1.1963894461814116E-01 + 371 8.0263648937514309E-02 + 372 2.1206910246026677E-02 + 373 2.8114185183718297E-02 + 374 -2.9853997630178816E-02 + 375 -1.6958757852449198E-03 + 376 -1.4588368428258426E-02 + 377 -3.1366741408068097E-02 + 378 -1.2852703727988911E-02 + 379 -1.5984886804328786E-03 + 380 1.0797770532265315E-02 + 381 -6.5110911330771071E-02 + 382 1.3147325669623325E-02 + 383 -9.4423343485434880E-02 + 384 -1.2901965023001968E-01 + 385 -1.6840233340615865E-02 + 386 2.4582160038985577E-02 + 387 2.9697887800426204E-02 + 388 -9.6300003548088174E-03 + 389 2.1375540804108164E-02 + 390 -1.0452694751925823E-03 + 391 -1.5528846729834344E-03 + 392 2.1163881647093326E-02 + 393 2.3972564457248797E-03 + 394 -1.0087665311448742E-01 + 395 -1.0983144421497542E-02 + 396 2.0309015802337252E-01 + 397 -8.7952137653631565E-02 + 398 -5.1764267834885733E-02 + 399 2.4373144084173366E-02 + 400 -2.6569572872482570E-03 + 401 -8.4282228685745274E-03 + 402 -1.0307824727509851E-02 + 403 -1.8950162888838332E-02 + 404 4.6265493072165549E-03 + 405 -5.8242560848632812E-03 + 406 1.7257046724360774E-02 + 407 -3.7916737860115603E-02 + 408 -2.0726907314499349E-02 + 409 2.3487237012667965E-02 + 410 1.1537934906531292E-02 + 411 2.4514556579242175E-02 + 412 -3.7932144591060445E-03 + 413 -7.3864313302082095E-03 + 414 9.0627783937272880E-04 + 415 -3.5083651201768054E-03 + 416 4.5087113268547519E-03 + 417 2.6983156010861807E-04 + 418 -2.8559020897502298E-03 + 419 3.2786582352214724E-02 + 420 -6.5263580105922453E-03 + 421 1.1582341418572920E-01 + 422 -3.2577703805000725E-02 + 423 5.2571434542673288E-02 + 424 -3.8141350175855925E-02 + 425 1.9032349265664508E-02 + 426 -1.9142543386178913E-02 + 427 -1.3820078240615544E-03 + 428 -1.3549531627882817E-02 + 429 1.1966551162192045E-02 + 430 -1.1449025534674995E-02 + 431 2.2801519640127674E-03 + 432 6.7842410184837443E-02 + 433 -1.4295727520548626E-02 + 434 1.0383080054226850E-02 + 435 1.3203896710777369E-01 + 436 8.0481552906314285E-02 + 437 -6.5743725311530722E-03 + 438 -4.4981878779099566E-02 + 439 -1.1175065171997851E-02 + 440 1.9433432528825508E-02 + 441 -1.7000083647212512E-02 + 442 -1.0829777977644259E-03 + 443 2.0444816996123903E-02 + 444 -7.3287522612473449E-03 + 445 -3.2374731622884685E-02 + 446 3.7010282186849229E-03 + 447 1.5426880085479533E-01 + 448 1.4520467249368357E-01 + 449 1.2205827570513107E-01 + 450 1.2963867681381396E-02 + 451 6.7297139623771606E-03 + 452 1.5235632889197537E-02 + 453 -8.5265787088634332E-03 + 454 -1.5345478329519945E-02 + 455 1.0155759605333027E-02 + 456 4.1802691292603597E-03 + 457 -3.3119289724970651E-03 + 458 -2.8397807973344711E-02 + 459 -1.9427079087562634E-02 + 460 -7.2523700854332804E-03 + 461 9.8829283811958102E-03 + 462 -5.8563465948186250E-03 + 463 -2.1333443469331885E-03 + 464 -4.7920816721030062E-03 + 465 1.2312718064063241E-02 + 466 -1.5321844076508261E-03 + 467 2.7141084111663173E-04 + 468 3.4849322580563840E-03 + 469 7.0426040743679910E-03 + 470 1.8448727108322166E-01 + 471 2.9109858335643689E-02 + 472 1.2504248515993502E-01 + 473 -9.2345606893124668E-02 + 474 -1.5586999306704627E-01 + 475 1.9603512450947064E-02 + 476 -1.6793346053250717E-02 + 477 -1.8122098274267345E-02 + 478 1.6896791617414874E-02 + 479 2.4828785874328372E-03 + 480 -1.2763316186324423E-02 + 481 2.6972841143267097E-02 + 482 -1.9752431383616865E-02 + 483 -8.9149026040976458E-03 + 484 9.0871917292884331E-03 + 485 -4.2208897215955201E-04 + 486 3.3041281476734248E-02 + 487 -2.6961618218519112E-02 + 488 -3.5486594863595039E-03 + 489 -5.6309136329120799E-03 + 490 -4.2490102646393739E-03 + 491 8.7277704383523723E-04 + 492 1.4919386355816625E-03 + 493 -1.1550420852947988E-03 + 494 7.5118859494898306E-04 +Ene= 6.3506543193E-03 +Spin= Alpha +Occup= 0.0000000 + 1 -5.8542620387069387E-02 + 2 -1.5103153373512345E-02 + 3 8.2684844872540159E-02 + 4 4.9071490602352240E-02 + 5 -7.7640888783131523E-02 + 6 1.3484141295419919E-02 + 7 -2.1285060676266249E-04 + 8 -6.5333189393114747E-03 + 9 -1.1232660404574333E-02 + 10 -7.8783055442069143E-03 + 11 -2.2214531130114210E-02 + 12 -1.7505861667539379E-02 + 13 -1.0189731972551666E-02 + 14 -1.8922456047825654E-02 + 15 -3.1218362534401828E-02 + 16 -1.8252598706134680E-02 + 17 -2.6721052368013896E-02 + 18 2.1080036456431254E-02 + 19 -2.3650697532034077E-03 + 20 -8.2189138477267738E-03 + 21 4.6372780292024901E-03 + 22 -2.7183564499748485E-03 + 23 -4.1290827223311186E-03 + 24 -6.3961488166909362E-03 + 25 -7.4157587186893790E-04 + 26 1.4571046174111013E-01 + 27 1.0501913008346318E-02 + 28 -8.0223486677763772E-02 + 29 6.9561859459292941E-02 + 30 -5.1304765954577232E-02 + 31 -1.9000615747195936E-02 + 32 1.1465841556422461E-02 + 33 -6.2693528984487526E-03 + 34 -6.7017332987167636E-03 + 35 8.2645164864923806E-03 + 36 7.0330755605093487E-03 + 37 1.6334436468112075E-03 + 38 -3.2592400384821589E-03 + 39 1.1663855500520844E-03 + 40 6.3466354574275045E-03 + 41 5.4024168073154681E-02 + 42 1.1253281427724445E-02 + 43 1.9577579691974533E-03 + 44 -1.0564768537503059E-03 + 45 8.7013679164249236E-03 + 46 3.1513554266105206E-03 + 47 1.9183923316343290E-03 + 48 -3.4589100464792991E-03 + 49 -1.5238774261428412E-02 + 50 -5.4055772876511849E-03 + 51 -8.9775072750691770E-02 + 52 -1.5455874485555205E-02 + 53 -1.2537052112561994E-01 + 54 1.0265927869984204E-01 + 55 -7.5877915671337240E-02 + 56 -1.7175428123415416E-02 + 57 3.3088350357091054E-03 + 58 2.8818952769155025E-03 + 59 -9.2805228325460367E-03 + 60 -1.8955108329758177E-03 + 61 8.5312278652701270E-03 + 62 1.6411586107726719E-02 + 63 -8.0849486296347781E-03 + 64 -6.3367195885658213E-03 + 65 1.7305711716875328E-02 + 66 4.8104804320645900E-02 + 67 2.8797740986385410E-02 + 68 1.9720797812504701E-02 + 69 -3.5244129526367626E-03 + 70 5.0184839772220019E-03 + 71 -5.1151109786272313E-03 + 72 -5.1274180319004978E-04 + 73 1.7464522545694221E-03 + 74 -5.7425980896656861E-03 + 75 -4.9830290765050819E-04 + 76 -3.1960928581462350E-02 + 77 6.8102070813168721E-03 + 78 1.6774111964155704E-02 + 79 -8.7408289395174102E-02 + 80 5.0709404457592019E-02 + 81 -1.0119937356249940E-02 + 82 1.6963666999744810E-02 + 83 1.2921208885299485E-03 + 84 -1.1496427699850131E-02 + 85 1.8128454245167840E-02 + 86 -7.2927876318024821E-03 + 87 -1.6409034110593690E-02 + 88 -1.8631146981224780E-02 + 89 -7.1400872836532084E-02 + 90 1.1638193571396156E-02 + 91 3.1967572303500114E-02 + 92 -5.4776534674472903E-02 + 93 -7.2677543781613119E-02 + 94 -1.7440257318090589E-02 + 95 1.7867241098084262E-02 + 96 1.4653404850850392E-02 + 97 5.9758759203481825E-03 + 98 3.9122967432003303E-03 + 99 -3.8833869764834622E-03 + 100 -4.1566361699601432E-03 + 101 -2.3671098638598409E-03 + 102 -1.2272758117001926E-01 + 103 2.5395141439764082E-02 + 104 9.9806315481786284E-02 + 105 1.7402055092504625E-02 + 106 1.7169442144426357E-03 + 107 -4.9151281711126128E-02 + 108 1.8387595101587275E-03 + 109 1.5604981088765115E-02 + 110 -1.8564506844492704E-03 + 111 -1.1605665734294744E-02 + 112 1.8046615521287303E-02 + 113 7.0443903384448687E-03 + 114 8.4322432913593089E-03 + 115 1.0028982033640697E-01 + 116 -2.1415047247371991E-02 + 117 -7.6493231840671375E-02 + 118 2.9036887395860057E-02 + 119 -6.9954477318585340E-02 + 120 1.5011444778444263E-02 + 121 1.2883577392980183E-02 + 122 4.3437250665241407E-02 + 123 7.5127673469861777E-03 + 124 -2.4210219619735652E-03 + 125 -1.3117203301974625E-02 + 126 -3.9181544638972237E-03 + 127 -1.3567119795354101E-02 + 128 1.8243940552689883E-01 + 129 2.1570538339249781E-02 + 130 4.8258860457469431E-02 + 131 4.3994182837019398E-02 + 132 2.0864768627663616E-01 + 133 7.9660327129337707E-03 + 134 2.7173985542037647E-03 + 135 2.7340071999793509E-02 + 136 9.7638964142508268E-04 + 137 -1.0917435045377793E-02 + 138 -1.0530547313940956E-02 + 139 -1.4378500830888542E-03 + 140 8.5265595243876561E-03 + 141 3.0273821080273326E-03 + 142 -2.4496590265441411E-02 + 143 -2.7335930082116337E-04 + 144 1.0170640659592821E-03 + 145 3.1992003651972557E-02 + 146 1.4968955153781328E-03 + 147 -3.9665183115328130E-03 + 148 5.1723624879449371E-04 + 149 6.1481660710288046E-04 + 150 2.5764103961717732E-03 + 151 1.2519261685935014E-02 + 152 5.9513125272348090E-03 + 153 -1.1230603509822486E-01 + 154 -7.8119577149184790E-03 + 155 1.0460225454312055E-02 + 156 -2.1275197256940964E-01 + 157 2.3689210039996961E-01 + 158 2.8801622123713426E-03 + 159 -1.7359025990147242E-02 + 160 3.5310575629165383E-02 + 161 3.1482482866726710E-03 + 162 -8.9293406037292116E-03 + 163 -6.0436856268638664E-03 + 164 7.5750442903658125E-03 + 165 -3.9847117228325188E-03 + 166 9.9970143141488912E-03 + 167 -1.7492900035194252E-02 + 168 -3.9052384726158657E-02 + 169 -1.5945929481316092E-02 + 170 4.4216335504797813E-04 + 171 3.5258544114793837E-03 + 172 -1.2525085583206122E-03 + 173 7.5179841765120881E-03 + 174 6.1609279026429242E-04 + 175 -3.4775259611810811E-04 + 176 3.8587946032368576E-03 + 177 -4.1142967810502869E-03 + 178 7.3034044272259277E-02 + 179 -1.4358648340196775E-02 + 180 -3.6277545820730527E-02 + 181 9.5319774374872986E-03 + 182 -2.2579365682452852E-02 + 183 1.8971886488878223E-02 + 184 -1.0907388998145875E-02 + 185 2.6388913331589488E-02 + 186 -6.9135980793577972E-03 + 187 -9.1523128813363937E-03 + 188 4.4465063642712766E-03 + 189 2.3115623756318253E-02 + 190 1.1811125469984821E-02 + 191 -2.8048299314522941E-02 + 192 3.9873201297326247E-03 + 193 -2.3214802393978679E-02 + 194 4.6349013121587498E-02 + 195 5.9210838860836001E-02 + 196 -2.7218704410028245E-03 + 197 -1.0412259951902663E-02 + 198 -1.2422095312445324E-02 + 199 1.5534438828453455E-03 + 200 1.9032622977118403E-02 + 201 -1.0345791180028901E-03 + 202 1.9898159065063606E-02 + 203 1.2114767778389565E-02 + 204 8.7004216745254409E-02 + 205 1.1338012932792260E-02 + 206 1.4283675386462918E-01 + 207 3.1973198893768519E-02 + 208 9.4176138078342353E-02 + 209 1.8632063634381395E-02 + 210 1.3195740158163015E-02 + 211 1.6101336817245713E-02 + 212 -2.6791013396112372E-04 + 213 -8.5688773911499899E-03 + 214 -6.0270129318221611E-03 + 215 1.7212386239384359E-02 + 216 5.6668951355200630E-03 + 217 7.1076436853148347E-03 + 218 -5.5843304350319432E-04 + 219 -1.0700304253497338E-02 + 220 2.7993093256146687E-02 + 221 1.6761411451877425E-02 + 222 -1.0387229169742751E-02 + 223 5.5027837846154714E-03 + 224 -2.8899373742010191E-03 + 225 -5.8004089052806100E-03 + 226 2.7072226038163789E-03 + 227 -9.5715230925747970E-03 + 228 -3.0617112304698289E-03 + 229 -1.3178767902088309E-01 + 230 -1.5292649988459559E-02 + 231 -9.6644597197832624E-02 + 232 -2.6537096248276909E-01 + 233 6.8664184180854210E-02 + 234 -5.4821474232538215E-03 + 235 -2.8026779386470520E-02 + 236 8.2641884175419823E-03 + 237 1.3510908896321114E-03 + 238 -2.5996276803014636E-02 + 239 1.0761571445022494E-02 + 240 2.5115780032704992E-02 + 241 -1.3296962638890006E-02 + 242 1.2850579309493248E-03 + 243 -6.4315359254586327E-02 + 244 2.6712126056808567E-02 + 245 6.0474445848866853E-02 + 246 -3.9576856223907532E-02 + 247 -2.2397939277426550E-04 + 248 2.2360805641950679E-03 + 249 -7.9704515723989042E-03 + 250 -4.8365182594374036E-04 + 251 -5.6702419403951952E-03 + 252 5.8028034872086897E-03 + 253 -2.2906321311520029E-04 + 254 -9.8218391338218247E-02 + 255 -1.6436011743512901E-02 + 256 -6.9969108440369160E-02 + 257 2.1033178219275975E-01 + 258 2.9332393944339585E-01 + 259 -1.8027582858557605E-03 + 260 2.7846734766426500E-02 + 261 4.4572429735703648E-02 + 262 -1.6149871516395406E-04 + 263 6.0182736932160915E-03 + 264 1.7456584378442202E-02 + 265 -9.9699862404833764E-03 + 266 -1.5583435385559282E-03 + 267 -1.1172785135728098E-02 + 268 5.7465401193271017E-03 + 269 4.1037391516146118E-02 + 270 -3.0086511669710554E-02 + 271 -1.5893454830401495E-02 + 272 -2.5838072781209477E-03 + 273 -2.4020371459506011E-03 + 274 1.1521076535954206E-02 + 275 1.1070258134552065E-02 + 276 3.5562229808390865E-03 + 277 1.4716470242394555E-03 + 278 -9.7612639321203348E-04 + 279 -2.0836746186457966E-01 + 280 4.0791909110624781E-02 + 281 -5.4806358465223692E-02 + 282 3.3312308183994443E-02 + 283 4.5491132011619730E-02 + 284 3.3570241201336094E-02 + 285 -7.0293997928453584E-03 + 286 2.4010055844604503E-02 + 287 1.3149644554081038E-02 + 288 1.2839403570335165E-02 + 289 5.0036036065161668E-04 + 290 4.2740159106365042E-02 + 291 7.5637146657611654E-04 + 292 2.0335320561656382E-02 + 293 -3.8045408900314356E-03 + 294 -1.8535798014207017E-02 + 295 -1.1324313311309679E-01 + 296 -1.5535105528404877E-01 + 297 -7.6564549602964405E-03 + 298 -8.2477813785628139E-03 + 299 1.7011143134540552E-02 + 300 -5.4689596182290676E-03 + 301 -2.6159062768958703E-02 + 302 -1.2455666144239014E-02 + 303 -1.7175392558526362E-02 + 304 -9.1806109407494459E-03 + 305 7.9076065363781936E-02 + 306 -3.2823047468504295E-04 + 307 7.4247123014904923E-02 + 308 1.6865644308715691E-02 + 309 -4.9894476525558323E-01 + 310 1.5673475026573024E-02 + 311 4.1241722039929377E-03 + 312 -5.1465326147819894E-02 + 313 1.0122346670228368E-02 + 314 -1.3721833484779912E-03 + 315 1.0382575115918020E-02 + 316 -2.0120345662930920E-02 + 317 -5.1825003662787136E-03 + 318 6.1851341325146865E-02 + 319 1.1178390650934303E-02 + 320 1.3774555941540293E-02 + 321 -4.7160138236848066E-02 + 322 -3.1527432219239176E-02 + 323 -3.0918094485887092E-03 + 324 -1.7574312598976907E-03 + 325 1.0952942587587750E-03 + 326 1.7990728664781961E-03 + 327 4.2589781218915334E-04 + 328 1.8584733595112477E-04 + 329 2.0522491292224707E-03 + 330 -5.6213072778167922E-02 + 331 -1.5307884986272858E-02 + 332 8.7665734540145326E-02 + 333 -1.0709895298025615E-02 + 334 -7.8936779459501477E-02 + 335 3.0517325984253225E-03 + 336 -1.0935072798162015E-03 + 337 -1.0947540135790490E-02 + 338 1.5315686696290343E-02 + 339 1.4855407309240795E-02 + 340 -7.2618891855126396E-03 + 341 -7.1714326289179498E-04 + 342 -2.1056028130164986E-03 + 343 2.9566454367365713E-02 + 344 3.0900065521581678E-02 + 345 -2.9726735527438954E-02 + 346 -9.9895302023276684E-03 + 347 -3.8407433117343938E-02 + 348 4.2004346485100463E-03 + 349 5.8562411950806393E-05 + 350 3.7489339856697102E-03 + 351 -4.6032544815038422E-03 + 352 -2.1090656945416572E-04 + 353 3.8713792923328115E-03 + 354 4.8973035074508396E-03 + 355 -2.3009095951012234E-02 + 356 4.2302264462130632E-03 + 357 4.2228048994043248E-02 + 358 -2.0237715155299554E-02 + 359 -1.8579069818179667E-01 + 360 -1.1899153603861894E-02 + 361 4.8287058767749455E-02 + 362 3.6664321807359762E-02 + 363 5.3540016381280657E-03 + 364 1.4256501467955603E-02 + 365 2.9500448887619091E-02 + 366 -6.2497145813161636E-03 + 367 -2.2574031071561397E-03 + 368 7.7416484289651519E-02 + 369 -1.5821655630496732E-02 + 370 -5.2454366795246406E-03 + 371 1.6715923918206324E-01 + 372 1.0109875064401734E-01 + 373 -7.7618556770258536E-03 + 374 -4.0003080679695317E-02 + 375 -3.7412866036575051E-02 + 376 2.9955086177205489E-02 + 377 -1.6895597434628574E-02 + 378 3.4704735465767460E-02 + 379 2.4097166042241484E-02 + 380 1.3561559018531726E-02 + 381 -5.6064241645999484E-02 + 382 1.1113418463646730E-02 + 383 6.3192947345554584E-02 + 384 -1.5635060588056427E-03 + 385 1.3431161203552108E-01 + 386 -1.0473870135908505E-02 + 387 -1.6408228296858431E-02 + 388 6.2241847545979037E-04 + 389 3.7625487500048756E-03 + 390 8.6256422858423300E-03 + 391 -1.3805768651847357E-02 + 392 -2.3171975139983040E-02 + 393 1.7781472782711239E-02 + 394 2.0643149489681139E-02 + 395 -1.6121856021206307E-04 + 396 2.0833761297044834E-01 + 397 -4.0913158355296014E-01 + 398 1.9496419853481173E-01 + 399 1.0931981280085679E-02 + 400 -5.4963199676770401E-02 + 401 2.4301519952428800E-02 + 402 9.0600806061412083E-03 + 403 1.0242980340025314E-02 + 404 1.6395395953033812E-02 + 405 1.7268846377841703E-02 + 406 1.4412773710027962E-02 + 407 6.8389070874137897E-02 + 408 2.0297533599108630E-02 + 409 7.6033044314993858E-02 + 410 -3.2048410338003067E-03 + 411 7.1952694672253292E-02 + 412 2.9333652626681514E-03 + 413 4.6251845218485601E-03 + 414 -3.2704336531599026E-03 + 415 2.2529728622702216E-03 + 416 5.4036457445413833E-04 + 417 -9.9343697077596566E-03 + 418 2.1747361383815376E-03 + 419 5.9372482886656999E-03 + 420 -3.6929140307155740E-03 + 421 3.9792643678877762E-02 + 422 -1.3213639748235453E-01 + 423 -9.7284850450374202E-02 + 424 6.5480647609442340E-03 + 425 -9.1550455888349848E-03 + 426 -2.8220758079195306E-03 + 427 -1.4853195877883130E-02 + 428 1.7572438662907343E-02 + 429 7.1855702586868554E-03 + 430 -1.7794215602230944E-02 + 431 -8.7547905755064985E-03 + 432 -3.4840740602709766E-02 + 433 6.6226565903931079E-03 + 434 -5.9937396010275215E-02 + 435 -2.3734078971654325E-02 + 436 -7.2273123868033140E-02 + 437 1.8043583763024354E-02 + 438 1.4171342419017807E-02 + 439 2.1981061551472291E-02 + 440 -1.6937760373815329E-02 + 441 1.6578152740578743E-02 + 442 9.1502698803368442E-03 + 443 -1.0394088315544687E-02 + 444 3.0310349451051530E-05 + 445 -1.1721954224636061E-02 + 446 -1.1716732811159385E-02 + 447 -2.1727568132182501E-01 + 448 4.0105023331365820E-02 + 449 -1.6799852326687306E-02 + 450 -2.2796099367245855E-02 + 451 1.3413601060697819E-03 + 452 -3.9318578521823138E-03 + 453 -1.2653432425805560E-02 + 454 1.9964719318637941E-02 + 455 2.0359157247637833E-02 + 456 -2.3455853804180707E-02 + 457 -3.2853330352124649E-05 + 458 1.5079866344605224E-02 + 459 -6.0697041171150204E-03 + 460 2.4571069220142003E-02 + 461 1.1979350467662393E-03 + 462 -5.6413234257622529E-03 + 463 7.4382642068916262E-03 + 464 6.0194053509105170E-03 + 465 -1.9315671511726388E-03 + 466 -2.8496888848625738E-03 + 467 -3.4951944691436671E-03 + 468 -4.3826551468454317E-03 + 469 5.7106815265478630E-03 + 470 -1.1142163580909675E-01 + 471 -1.7754510810335116E-02 + 472 -2.0566911756040299E-01 + 473 4.4871689765471789E-02 + 474 1.2180689447056973E-01 + 475 -2.8554572712129415E-02 + 476 1.4648287368251606E-03 + 477 2.1800559789432804E-02 + 478 -7.1885075153917772E-03 + 479 -1.4105997278029424E-02 + 480 4.6083357176715904E-03 + 481 -8.7327667398464631E-03 + 482 6.0673193383306004E-03 + 483 -1.5054453852466997E-02 + 484 -1.3952908933545066E-02 + 485 2.1477567273631353E-02 + 486 -1.8848823749157605E-02 + 487 1.0259594233485636E-02 + 488 -1.3003445330738012E-03 + 489 -1.8498011440620319E-03 + 490 -5.0384748193629467E-03 + 491 -5.0072360628713218E-03 + 492 1.2223384079587201E-03 + 493 -1.5251878670905408E-03 + 494 2.7668933011781708E-03 +Ene= 1.1395673646E-02 +Spin= Alpha +Occup= 0.0000000 + 1 6.1972233837044637E-02 + 2 7.1975216994348717E-04 + 3 -2.3921418060511088E-01 + 4 -1.0682083842177899E-01 + 5 -2.3961849656201424E-03 + 6 -2.2226985034623479E-02 + 7 -3.1690493600548972E-02 + 8 -2.0155120440411198E-03 + 9 9.1895581473083847E-03 + 10 -1.2798816785350109E-02 + 11 3.9873166741848575E-03 + 12 1.7867367335249518E-02 + 13 -5.4627301509648524E-03 + 14 2.5389810455821761E-02 + 15 -1.8144161817202457E-02 + 16 -4.2282554085881462E-03 + 17 -2.9469871943432332E-03 + 18 2.7220447342839106E-02 + 19 -3.3605841067197348E-03 + 20 -1.3682174886122282E-02 + 21 2.7796286852084886E-03 + 22 -3.9926290596171291E-03 + 23 9.0041216439279825E-03 + 24 -1.0272704056579676E-02 + 25 -8.4619615749862744E-03 + 26 2.0048887829190665E-01 + 27 8.5577937693021300E-03 + 28 -1.5155912836029953E-01 + 29 -1.4265643975941869E-01 + 30 -1.0661932861826239E-01 + 31 -1.1568565376627952E-02 + 32 -1.8856702078220176E-02 + 33 -2.2378798910417951E-02 + 34 -4.3062876992500448E-03 + 35 -5.7128088058863132E-03 + 36 8.4692534121638321E-03 + 37 1.1290578928150359E-02 + 38 -1.1642405686485762E-02 + 39 5.5567751372649849E-03 + 40 -6.8260513431362829E-03 + 41 -7.6581852571669662E-03 + 42 -3.1059199835357727E-02 + 43 -4.0566909632894207E-02 + 44 5.4325086910011937E-03 + 45 1.6764356100215049E-03 + 46 -5.5845097163690766E-03 + 47 5.7163809641869821E-03 + 48 -1.3939337464414949E-02 + 49 2.4701405210825057E-03 + 50 3.2881168681470922E-03 + 51 2.1339065975034027E-01 + 52 2.5794037812196264E-02 + 53 3.4591949746887535E-02 + 54 -1.8112504289517835E-02 + 55 -3.1022764439979460E-02 + 56 1.0953499665291985E-03 + 57 1.2090416458672372E-03 + 58 -2.0386481089976257E-03 + 59 -2.7108251932906691E-03 + 60 1.4784485296568083E-02 + 61 -1.9184947922842671E-02 + 62 -2.1787007657989018E-02 + 63 2.6052900291492213E-02 + 64 -1.4452931630876088E-02 + 65 3.4930652808969821E-02 + 66 -5.4784895627525650E-02 + 67 -3.4661077844760475E-02 + 68 7.4188898235095120E-03 + 69 2.5259024701123375E-03 + 70 -1.1340240442533635E-03 + 71 -2.4912042043522742E-03 + 72 -3.2262110535353772E-03 + 73 2.9872261751686508E-03 + 74 7.8924666357835585E-03 + 75 -7.9406264791058306E-03 + 76 -8.7215728012502006E-02 + 77 1.6273411470025170E-02 + 78 -5.8220488069416767E-04 + 79 -1.3094998276836151E-01 + 80 1.0142423747548601E-01 + 81 -1.7684490467613119E-02 + 82 2.7261707992794846E-02 + 83 -2.3488406197128563E-02 + 84 1.4609734185645125E-02 + 85 2.0323996317271449E-02 + 86 -6.0154099902331630E-03 + 87 1.0462446713869028E-02 + 88 -3.1797478479203327E-02 + 89 9.8242479394699420E-02 + 90 -1.7943952842528185E-02 + 91 -1.4788477064766617E-01 + 92 8.1768744845052699E-02 + 93 7.0410691013185228E-02 + 94 4.0056699587774885E-02 + 95 -3.8979914110733684E-02 + 96 -1.5681413685719275E-02 + 97 -6.2719082836785092E-03 + 98 8.1389611025455208E-03 + 99 1.0026100319495785E-03 + 100 -7.4669456237589607E-04 + 101 1.6967327107176872E-02 + 102 7.8092627255614458E-02 + 103 -1.6819140934422289E-02 + 104 -8.4988463593623401E-02 + 105 -4.1984880624902930E-02 + 106 -7.3774969436587901E-02 + 107 1.9306460903165765E-02 + 108 -1.4297171180458377E-02 + 109 3.0085023652657698E-02 + 110 -4.0324265876451326E-03 + 111 -1.8279663395780035E-02 + 112 8.5992878894782122E-03 + 113 4.9596013355022745E-03 + 114 9.5384841996373898E-03 + 115 -1.0268916725003976E-01 + 116 1.7833331550182383E-02 + 117 4.0125689276821343E-02 + 118 -5.0469815680185076E-02 + 119 -1.5143746913985581E-02 + 120 -1.9008053536283917E-02 + 121 1.8823358320884116E-02 + 122 -1.8273955587852445E-02 + 123 -2.1836802987421817E-02 + 124 9.1109701724367501E-03 + 125 -2.6504713702431001E-02 + 126 6.8931444765786094E-03 + 127 1.1856976149387083E-02 + 128 -1.9362573687908100E-02 + 129 -4.7069933088407503E-03 + 130 1.2630838761528940E-01 + 131 -6.5307187893309235E-02 + 132 -1.9744643470674680E-01 + 133 2.7139587344993884E-02 + 134 -5.7223179057193569E-04 + 135 -2.6179226858160948E-02 + 136 -8.3478781523813900E-03 + 137 2.0237404369252091E-02 + 138 -1.1494807333376329E-02 + 139 3.9495439922140486E-03 + 140 2.3642771609479300E-02 + 141 -2.7343281773630615E-02 + 142 6.1974800839166171E-02 + 143 -3.2099382854972540E-02 + 144 4.7439136159110731E-02 + 145 4.7353260056980616E-02 + 146 5.8366107473925722E-03 + 147 -3.6691629525216719E-03 + 148 -8.5954680159542034E-03 + 149 -1.1888925177461030E-02 + 150 7.5482522318629057E-03 + 151 9.7983778298392950E-03 + 152 -2.4991494716518009E-03 + 153 -5.0186806970792371E-02 + 154 -1.0595251509979713E-02 + 155 3.5822248764966182E-02 + 156 -1.9701865271328953E-01 + 157 4.6074119391358519E-02 + 158 1.1385529613074971E-02 + 159 -2.6926904255020551E-02 + 160 1.7603685723015302E-03 + 161 -8.7976272206960783E-03 + 162 1.0954137257923112E-03 + 163 -1.4904507888420808E-02 + 164 3.2459065523788785E-03 + 165 -5.5953026290652174E-03 + 166 1.1221425389171724E-03 + 167 1.6112249169500674E-03 + 168 -4.1845797945301834E-02 + 169 6.6596090957316539E-03 + 170 -1.5444385118094681E-02 + 171 -1.6585126327248044E-03 + 172 -9.0700251206964479E-04 + 173 3.2299605365725351E-03 + 174 1.0567016025893817E-02 + 175 -5.3113500142688589E-03 + 176 -5.8502794646454349E-03 + 177 -4.0376583316647811E-03 + 178 -1.0000651133912843E-01 + 179 2.2548051613939753E-02 + 180 -4.1181287017716256E-02 + 181 -7.6321834904900424E-02 + 182 4.3301019418600858E-02 + 183 1.3584948178944704E-02 + 184 9.1169858995928110E-03 + 185 -3.6257236425146541E-02 + 186 -8.1395760967536597E-03 + 187 -1.2039732629481955E-02 + 188 1.0184620177324313E-02 + 189 -1.1269614105828944E-02 + 190 1.7739683400676129E-03 + 191 -6.9645649118265179E-02 + 192 1.3910657373624683E-02 + 193 7.8326202267252440E-02 + 194 -6.9105128301196347E-02 + 195 -8.2411802978474696E-03 + 196 -3.5399013963151107E-02 + 197 2.8611710876378694E-02 + 198 5.9464360243082865E-03 + 199 1.0195200894447987E-03 + 200 -1.0599725835593928E-02 + 201 1.3790132487432414E-02 + 202 -1.7344082526471329E-02 + 203 -2.3765066502962069E-02 + 204 -1.0745063577776223E-01 + 205 -1.3235543551141201E-02 + 206 -2.3531812738887598E-01 + 207 9.3095737347373878E-02 + 208 1.0911607194742361E-03 + 209 -2.6559835425374725E-02 + 210 2.5537296810519122E-03 + 211 -4.9993013454744063E-03 + 212 -1.8462385592847099E-02 + 213 -1.8298629836091252E-02 + 214 4.3858077932038119E-03 + 215 -1.9756496929650053E-02 + 216 -8.8946728537434676E-03 + 217 -6.6969527053507269E-02 + 218 -1.3920558622211742E-02 + 219 4.1115044860660878E-03 + 220 -7.8713849712185868E-03 + 221 2.9567408198233863E-02 + 222 6.1534998622981320E-03 + 223 4.8926505712117250E-04 + 224 -1.3351053317789180E-04 + 225 5.5185842043823288E-03 + 226 -1.1452566380168437E-03 + 227 6.9913057657858962E-03 + 228 -4.1888054931885728E-03 + 229 -2.0008296283730587E-01 + 230 -1.3163785607835344E-02 + 231 -1.7405118173645809E-01 + 232 -1.7167450075945381E-01 + 233 -1.0946653407741065E-01 + 234 -8.5982136284814600E-03 + 235 -2.1025180718639794E-02 + 236 -1.6469602506061290E-02 + 237 -2.1389201967501712E-03 + 238 2.2250820316626781E-02 + 239 4.1986565252361153E-03 + 240 1.0105693938378521E-02 + 241 -2.1273471999432549E-02 + 242 -3.6037736268052852E-02 + 243 5.2203304968248106E-02 + 244 -1.1394443139882027E-02 + 245 1.9717101716358619E-02 + 246 -5.2969449580058989E-02 + 247 -3.9646742064718306E-03 + 248 -3.4628326778232748E-03 + 249 4.7475679421562699E-03 + 250 2.1069473663236958E-03 + 251 2.6547449703096409E-03 + 252 -4.4940793296140971E-03 + 253 8.3612476123383838E-04 + 254 -1.1149804297116740E-02 + 255 -1.1550180147145509E-02 + 256 -7.8754200969002541E-02 + 257 1.2717420463569212E-01 + 258 -2.0300768566431054E-01 + 259 -9.5983729558522472E-03 + 260 1.0425693823424956E-02 + 261 -2.3522854761018799E-02 + 262 -1.4951825441410006E-03 + 263 -3.8808558617985608E-03 + 264 -1.0980228664867342E-02 + 265 -1.4805669994485900E-02 + 266 -3.3774486246227271E-03 + 267 -1.1556566681930164E-02 + 268 -2.1320405029478934E-02 + 269 -7.5253670901335393E-03 + 270 -3.8769075763200087E-02 + 271 -7.6552952435995931E-03 + 272 3.7088365608950384E-03 + 273 9.1513212283256381E-04 + 274 4.4781106138854151E-03 + 275 -5.8913459901184769E-03 + 276 -3.4125139723243459E-03 + 277 -7.1507058893586530E-03 + 278 -2.5329325394144926E-03 + 279 3.7882315191488249E-02 + 280 -7.2755925982249947E-03 + 281 -1.1424100077129253E-01 + 282 4.3547963169334888E-02 + 283 1.5930305694901694E-02 + 284 2.2397254212916627E-02 + 285 -1.7822085826416718E-02 + 286 -8.7374911165852102E-03 + 287 -2.9132125973627531E-02 + 288 -2.4677064847915257E-02 + 289 -2.5189810243073801E-02 + 290 1.5571744324144623E-02 + 291 -1.8529751637643352E-02 + 292 -5.6589256394391236E-03 + 293 2.4279741167949620E-03 + 294 -3.7888504867295877E-02 + 295 -6.6731666500032427E-02 + 296 -1.4104875047897987E-02 + 297 -4.2530789641351090E-04 + 298 1.3398158070742358E-02 + 299 -1.5064587562269031E-02 + 300 -5.5219495367905443E-03 + 301 6.5109857692831499E-06 + 302 1.4907977330706113E-02 + 303 9.4426328977178666E-06 + 304 1.6331384938658957E-02 + 305 -2.7520414600062024E-02 + 306 1.7446759278241512E-02 + 307 -1.8731034051370089E-02 + 308 -4.5396916422437067E-02 + 309 -1.1872205609093288E-01 + 310 -6.3714141502739588E-03 + 311 -8.3443013607713355E-04 + 312 -1.3691529544084306E-02 + 313 -5.6798631043340113E-03 + 314 2.8168125556618656E-02 + 315 1.0769234509358377E-02 + 316 -1.2368065362712889E-02 + 317 -1.5120908885316491E-02 + 318 -1.4178735501336907E-02 + 319 2.5063020541443416E-02 + 320 1.8572713662379493E-02 + 321 -1.7549455503986313E-02 + 322 -2.0603987926324171E-02 + 323 4.1766441010937941E-03 + 324 5.1675243587241170E-03 + 325 -6.8410013655156637E-04 + 326 3.1445191120265314E-04 + 327 -7.2328967714206400E-04 + 328 -4.1301400669795244E-03 + 329 -5.1771175114083186E-03 + 330 3.7638977241497826E-02 + 331 1.0785340612912945E-02 + 332 -9.3472575703409014E-02 + 333 6.3582820038895232E-02 + 334 -7.0916922180463512E-02 + 335 -1.0725473795650163E-02 + 336 8.7245053063613829E-03 + 337 -1.9125748019900627E-03 + 338 7.9952213755780221E-03 + 339 -3.1322495731838673E-03 + 340 2.4904569761159262E-03 + 341 5.6985561661359787E-03 + 342 1.2881926734742326E-02 + 343 1.3730420975302646E-02 + 344 -1.3561171720855808E-02 + 345 1.5003016169215998E-02 + 346 3.2795949310725402E-02 + 347 4.3578807038940660E-02 + 348 3.6782866142700854E-04 + 349 9.6592335938515995E-03 + 350 7.8945704408046897E-03 + 351 5.9010097784851926E-04 + 352 7.2965801048485660E-03 + 353 -1.0218389087515314E-02 + 354 -1.5888729651827847E-03 + 355 5.3347441554784693E-02 + 356 -7.8502999778198596E-03 + 357 -8.0542448235884204E-02 + 358 -5.8975898382511438E-02 + 359 -4.8008725309748070E-02 + 360 -1.4323205417620336E-03 + 361 2.2111328104008756E-02 + 362 9.2123422932526428E-03 + 363 1.3627577635618573E-02 + 364 4.4253222830874751E-03 + 365 2.7365510779565547E-02 + 366 -1.9952389922667485E-02 + 367 1.2104859064888526E-02 + 368 -6.8268153029488202E-02 + 369 1.4128595278533584E-02 + 370 3.1976772156189076E-01 + 371 9.8352310970410500E-02 + 372 2.3083038210604787E-01 + 373 -1.0764750813005425E-01 + 374 -2.4083573349841497E-02 + 375 -9.1548020533624014E-02 + 376 7.8586344800824423E-03 + 377 3.7006996599421561E-02 + 378 -1.2410774653373102E-02 + 379 -1.6971857318432114E-02 + 380 7.6925446852417418E-03 + 381 -1.1433504132990574E-01 + 382 2.3440059827348137E-02 + 383 -1.5867240311582643E-02 + 384 -9.3119318469367732E-03 + 385 -2.1550909723013066E-02 + 386 2.4324008886401844E-03 + 387 -1.3654388089391655E-03 + 388 -1.8963968641634903E-02 + 389 3.0683616764484809E-02 + 390 -2.0119898688482997E-02 + 391 -2.9266036973465632E-03 + 392 1.0186750615850270E-02 + 393 7.4314207727409296E-04 + 394 -7.4001185915379478E-02 + 395 -1.1751428476646873E-02 + 396 9.3358754693786558E-02 + 397 1.7304966391650270E-01 + 398 -2.7614543526764668E-01 + 399 -1.3410956733745564E-02 + 400 1.0473879495747657E-02 + 401 -2.9362600578015138E-02 + 402 7.2572416924059011E-03 + 403 -1.2357624788468732E-02 + 404 -2.8389157801359137E-02 + 405 1.5296442377844185E-02 + 406 1.2452093798307547E-03 + 407 4.9522331707595270E-02 + 408 -1.3987255911801715E-02 + 409 -5.4269476459035786E-02 + 410 -4.2793804086066348E-03 + 411 5.5995059025076713E-04 + 412 -2.5277604761148268E-03 + 413 1.0479799395412281E-02 + 414 2.5913298223172966E-03 + 415 2.0323212828531959E-03 + 416 -1.1474742177826937E-03 + 417 -1.1312988580443823E-02 + 418 -5.9912823804354736E-03 + 419 4.3017396392435105E-02 + 420 -6.6592186595569930E-03 + 421 -6.9989135696163565E-02 + 422 7.5893662818912494E-02 + 423 -7.4669724101715920E-02 + 424 1.3223766074833543E-03 + 425 -3.9776533703239490E-02 + 426 1.6229416292844023E-02 + 427 2.4915914768942338E-02 + 428 5.1903997210472246E-03 + 429 -2.0502942323859970E-02 + 430 1.1682762257450012E-02 + 431 -3.5036659040282248E-02 + 432 1.5584332985954230E-01 + 433 -3.2261930681737251E-02 + 434 4.4364464081513150E-03 + 435 7.4942446264137361E-02 + 436 -5.5635778036286714E-02 + 437 -9.8078273242912274E-03 + 438 -5.1109266671775670E-02 + 439 -1.4758922955317683E-02 + 440 -2.4005010450431009E-02 + 441 -1.1298214492171653E-02 + 442 6.1092563990301609E-03 + 443 2.0949159458361996E-02 + 444 3.8463734887899674E-03 + 445 -1.2434851172694152E-01 + 446 -5.6225178809927012E-03 + 447 -4.2308775981328778E-01 + 448 -1.5876400267199378E-01 + 449 -2.8774271512897082E-01 + 450 -5.8498523991464386E-02 + 451 -2.8765985422783098E-02 + 452 -3.4016734693538921E-02 + 453 1.4033847435968867E-02 + 454 2.9311188858434020E-02 + 455 9.7461044598443347E-03 + 456 1.1752095579210418E-02 + 457 4.9009944632908030E-03 + 458 3.4898874301255490E-03 + 459 9.6747732199001554E-02 + 460 2.5794541537686216E-02 + 461 1.6810264900081671E-02 + 462 -1.0871846984880680E-02 + 463 -2.3556889795875685E-03 + 464 5.2444293452864508E-04 + 465 7.9046496941333252E-03 + 466 -2.8248592887672804E-03 + 467 -1.9596119530112840E-03 + 468 8.8502639124580732E-03 + 469 4.6762822629301364E-03 + 470 9.0197064303867536E-02 + 471 1.5100711543744294E-02 + 472 5.2037582141377291E-02 + 473 -1.3150523065848732E-01 + 474 -2.6434774341125838E-01 + 475 2.1360136563959285E-03 + 476 -3.0562740790831381E-02 + 477 -4.3438426442839330E-02 + 478 -1.4591693707992689E-03 + 479 1.9517620330966830E-02 + 480 -1.7376428638748550E-02 + 481 1.2485842855131877E-02 + 482 6.1054722753007488E-04 + 483 -1.6308247165575156E-02 + 484 2.8245729794948861E-02 + 485 -2.9621663088809907E-02 + 486 -1.5137049191682600E-02 + 487 -1.5958837439180164E-02 + 488 -1.3043063818382741E-02 + 489 -1.0563228897500986E-02 + 490 -1.0184345531459308E-02 + 491 3.7902923827663531E-04 + 492 7.9361861061198649E-04 + 493 -1.7144964085676615E-03 + 494 2.6897327746206842E-03 +Ene= 1.7627806808E-02 +Spin= Alpha +Occup= 0.0000000 + 1 2.1137371308151123E-01 + 2 2.0684417412734069E-02 + 3 -2.7672400413839310E-01 + 4 6.2905467088363906E-02 + 5 6.8870109877313419E-03 + 6 -3.7672175778702313E-02 + 7 4.0230273284165728E-03 + 8 -8.3567292952218073E-03 + 9 3.5497927891579035E-03 + 10 -4.9089247951689492E-03 + 11 -4.7807341424984306E-03 + 12 1.6998627760029691E-02 + 13 1.5469060952060781E-02 + 14 4.7794987590693951E-03 + 15 2.8529960000963774E-02 + 16 2.3514077639349686E-02 + 17 7.5711171321073724E-03 + 18 1.5969475297206447E-02 + 19 6.5923253797164384E-03 + 20 -9.7745999263877691E-04 + 21 1.1362961876304206E-02 + 22 -8.3633424824103974E-03 + 23 -7.7807391115936562E-03 + 24 -4.7010284511649182E-03 + 25 9.1747177499580342E-04 + 26 2.9820558096811722E-02 + 27 1.8009869656216658E-03 + 28 5.7461018247012406E-02 + 29 8.8755848869499707E-02 + 30 7.5377569861034860E-02 + 31 1.4737317972178293E-03 + 32 1.0487663413648917E-02 + 33 1.2902258129537271E-02 + 34 -1.6822547173491121E-02 + 35 -7.3236193524326768E-03 + 36 1.0740187180203260E-02 + 37 -3.9566515980357837E-04 + 38 8.6406570611172843E-03 + 39 -5.4927948820983480E-02 + 40 -2.0697409456298891E-02 + 41 3.8671459012677753E-02 + 42 -2.3678647750166544E-02 + 43 2.1519382020674119E-02 + 44 -3.1747005571883903E-04 + 45 6.3208297711464974E-03 + 46 3.5826734603128557E-03 + 47 -3.9887097860761330E-03 + 48 2.7654703886159228E-03 + 49 -1.0131204509784178E-02 + 50 -1.2101461619604234E-03 + 51 -2.7577809516249879E-01 + 52 -3.5057673851259165E-02 + 53 -1.1089495579409187E-01 + 54 1.6607608402286672E-01 + 55 -1.5175538898527405E-01 + 56 -8.2679602651185256E-03 + 57 1.1158306431623721E-02 + 58 -1.3490562442601330E-02 + 59 -2.4773938674528709E-03 + 60 8.4552219617047529E-03 + 61 -5.0519076276994328E-03 + 62 -1.7760551317949180E-03 + 63 6.8070871861737065E-03 + 64 7.3103727968011458E-03 + 65 2.9602964256360319E-03 + 66 -2.4857881882834710E-02 + 67 -6.2050920024735636E-03 + 68 4.4580254019419563E-02 + 69 5.4220117938151065E-03 + 70 -6.6454225289413367E-03 + 71 -2.4292758507680925E-03 + 72 1.0495692657280758E-03 + 73 -1.2716353838092224E-02 + 74 -2.2812205269954473E-03 + 75 -4.9194683006472941E-03 + 76 3.9277061622995220E-02 + 77 -8.7774656577164142E-03 + 78 3.5366103998460977E-02 + 79 -4.3578271471470517E-02 + 80 -1.6958230754278037E-02 + 81 -3.3116508988570638E-02 + 82 3.2420837358005966E-02 + 83 8.2587250692681621E-03 + 84 -1.9209883508188683E-02 + 85 -1.4973741514936539E-03 + 86 -1.2881136820575446E-02 + 87 2.3862521496076018E-02 + 88 -6.8704617371101078E-03 + 89 -4.8676199259755262E-02 + 90 1.0397172163678085E-02 + 91 -2.8704033057643196E-02 + 92 1.6358323155891277E-01 + 93 -1.0118357144353561E-01 + 94 1.9203314631061206E-02 + 95 -2.1881837853991004E-02 + 96 3.9543125391702259E-02 + 97 1.5940767098548646E-02 + 98 -9.0497237965847938E-03 + 99 -3.2105169692665482E-03 + 100 6.9883299086294978E-03 + 101 3.0528971540063302E-02 + 102 -1.3870570028841483E-01 + 103 3.0645952365319969E-02 + 104 1.0184976482056074E-01 + 105 8.2037866572881910E-02 + 106 2.0409603252371230E-02 + 107 -4.8418673877855152E-02 + 108 -1.8322459301834640E-02 + 109 -5.2360343658981940E-04 + 110 2.2431794398241837E-03 + 111 4.9755827013112262E-03 + 112 2.1039483124072490E-02 + 113 1.6885643135460045E-03 + 114 9.1785355316354317E-03 + 115 6.6942721468249339E-02 + 116 -1.3462419920297067E-02 + 117 -1.0241704390723803E-02 + 118 -1.5145162868823912E-02 + 119 -4.8617607133390424E-02 + 120 1.4397307835477733E-03 + 121 9.1521055786356973E-03 + 122 2.6321344537277386E-02 + 123 -1.8149957616062672E-03 + 124 3.9078124478421055E-03 + 125 -2.1906996814470914E-03 + 126 -5.5322905201888968E-03 + 127 -1.2205825829173978E-02 + 128 2.5529747466265330E-02 + 129 7.4126883672033022E-03 + 130 1.3103957053831231E-01 + 131 9.8638942180192027E-04 + 132 4.0790780483663303E-02 + 133 1.0124973328324701E-02 + 134 -5.6948772416505686E-03 + 135 7.8646829018028559E-03 + 136 2.4179411778033563E-02 + 137 -1.2313635651996762E-02 + 138 -9.4167254648420192E-04 + 139 -1.4935695400833482E-03 + 140 -1.1932388610799474E-02 + 141 5.3215621206499711E-02 + 142 -3.3738873224225661E-02 + 143 5.1080447598777692E-03 + 144 1.2310527827065390E-02 + 145 -7.5262706742299209E-03 + 146 -6.1436989574291227E-04 + 147 -2.6958083687294611E-03 + 148 4.7924102919273204E-03 + 149 1.5286125991770970E-03 + 150 -8.0426380285224936E-04 + 151 1.2820434085884440E-03 + 152 -3.3863862281615013E-03 + 153 -1.4075445623303812E-02 + 154 3.1851100355568531E-03 + 155 -1.3717371980470061E-01 + 156 -9.0104213216677859E-02 + 157 5.7485919202705293E-02 + 158 -2.4572207763184094E-02 + 159 -1.0249192734129251E-02 + 160 1.0592781188898948E-02 + 161 2.2504564546597283E-03 + 162 -1.4375831462673948E-02 + 163 -2.5343979391804156E-03 + 164 1.3263054345875158E-03 + 165 -1.2637462586283277E-02 + 166 -2.5122025244193651E-02 + 167 -1.3262376981036607E-02 + 168 -2.1906858074649586E-03 + 169 -1.8056238290024663E-02 + 170 -8.7904845500471011E-03 + 171 8.3555032582024423E-03 + 172 -7.1558707517741416E-04 + 173 8.3617901355256662E-03 + 174 -1.7606481928627354E-03 + 175 -9.8487452414375461E-03 + 176 8.7726999377997737E-03 + 177 1.7177067821250319E-03 + 178 1.1388636315197430E-01 + 179 -2.3436045307482511E-02 + 180 -1.9162884668809478E-02 + 181 -1.1119100330898166E-01 + 182 -1.5645251494832927E-02 + 183 -2.9085864857644146E-02 + 184 1.1484024643502361E-02 + 185 1.4682503598722960E-02 + 186 1.4657612384473318E-02 + 187 -1.1087076433442178E-02 + 188 -2.0242643677469856E-02 + 189 6.9196924767163910E-03 + 190 -1.2730678566154136E-02 + 191 4.2434558107045738E-02 + 192 -5.9486929774245322E-03 + 193 -2.4385405847732503E-01 + 194 -7.4140470529262051E-02 + 195 -7.1081721242888668E-02 + 196 4.0314011323361237E-02 + 197 2.1687643964336620E-02 + 198 4.7665971258713496E-02 + 199 -4.9108006226004260E-02 + 200 -3.7896915648637984E-07 + 201 -1.4614424264581458E-03 + 202 -7.5437184885145973E-03 + 203 4.9916553720209048E-03 + 204 -8.4793479975207600E-02 + 205 1.1647758565683150E-03 + 206 -2.0081857179024634E-01 + 207 -3.1925983340859193E-01 + 208 4.3293321505010862E-01 + 209 -2.6655484386872930E-02 + 210 -4.4610533314140430E-02 + 211 6.0922725806776212E-02 + 212 -7.7224155067814595E-03 + 213 -1.7417405954664379E-02 + 214 -1.6527367641284377E-02 + 215 1.5336403943550585E-02 + 216 2.2468854059397303E-02 + 217 3.3727725936965004E-03 + 218 -4.2494315517135089E-02 + 219 -4.5609226044332575E-02 + 220 1.6957094154971354E-02 + 221 7.3018562438112528E-02 + 222 -8.5135154654077828E-03 + 223 4.2736707209849690E-03 + 224 -1.4984359792476873E-02 + 225 9.4971548543628746E-03 + 226 -9.1840977516571085E-03 + 227 -5.9191133154746127E-03 + 228 -5.0180872141897606E-03 + 229 -9.0030705340299003E-03 + 230 -5.1566228618168466E-03 + 231 4.8673892135326802E-02 + 232 1.2782892475594071E-01 + 233 -2.0135631307950269E-01 + 234 1.1100255458129222E-02 + 235 1.5254577005645484E-02 + 236 -2.3260715057684789E-02 + 237 -2.6203540675253965E-02 + 238 1.9068769765535142E-02 + 239 -5.0099769864541425E-03 + 240 6.2309931891697508E-03 + 241 -3.6867509053258602E-03 + 242 -5.7613528810314979E-02 + 243 1.7702688461175269E-02 + 244 -2.7681329455971255E-02 + 245 1.5470781806053270E-02 + 246 -2.0102647854154269E-02 + 247 -6.6603349445589991E-03 + 248 4.1107161368394231E-04 + 249 1.1694731441811069E-02 + 250 6.7659749628830807E-03 + 251 -1.8401279138887314E-03 + 252 -1.4271662783029810E-02 + 253 -6.3980081463033463E-03 + 254 -1.1774458043901197E-03 + 255 3.5989459598085947E-03 + 256 -2.2145278827252420E-02 + 257 -6.9116737161483630E-02 + 258 2.6576114218025398E-02 + 259 9.6103883171243167E-04 + 260 -1.1157835110285537E-02 + 261 5.3777016866361788E-03 + 262 -4.6421477592292362E-05 + 263 1.2859710539255685E-02 + 264 -3.3381432235008840E-03 + 265 7.3071242405944176E-03 + 266 -2.7606805420757083E-03 + 267 -1.4985446543566311E-02 + 268 8.8469173744242392E-03 + 269 4.2062609711465537E-03 + 270 1.7694136134892971E-02 + 271 5.9292712181317746E-03 + 272 2.4170541298160008E-04 + 273 1.8631555703429580E-03 + 274 1.1171576564329468E-03 + 275 4.0097772842409103E-03 + 276 1.9396218205876448E-03 + 277 3.4402784475270382E-03 + 278 1.4411183772384760E-03 + 279 -2.5978310009698417E-02 + 280 5.9244140561425344E-03 + 281 3.8162365408975940E-02 + 282 -3.9569378901998659E-03 + 283 -4.2274175363141882E-02 + 284 9.1763317580353526E-03 + 285 -2.2842979395024691E-03 + 286 2.0940784777827227E-02 + 287 -7.9948776545352880E-03 + 288 2.0920482935270008E-02 + 289 -5.8678334995763428E-04 + 290 7.1063365345104580E-03 + 291 -3.9972470909288372E-03 + 292 9.2815218853024184E-02 + 293 -1.9690104904902379E-02 + 294 3.7755680023112949E-02 + 295 2.6706188061379362E-02 + 296 1.8456980246778062E-01 + 297 -1.0879684579186640E-02 + 298 1.9980702223729351E-02 + 299 -5.5738894939538070E-02 + 300 -5.0651147518756615E-03 + 301 8.4609081743989515E-03 + 302 1.1864571585135415E-02 + 303 1.9040043399187807E-02 + 304 1.1573306029050151E-02 + 305 -1.4027689348334113E-01 + 306 -1.8575566881684522E-02 + 307 9.9606275663158397E-02 + 308 -5.2623578981028166E-02 + 309 2.2599460597910848E-01 + 310 4.6560066890251441E-03 + 311 5.2873474368819416E-03 + 312 1.6081418190595193E-02 + 313 -5.0155056634065094E-03 + 314 4.4038941674780594E-03 + 315 -3.4358453698150790E-03 + 316 -4.6456341390017468E-03 + 317 -5.6604385645659993E-03 + 318 -1.0426038062484072E-02 + 319 -1.0254792252537599E-04 + 320 -2.0700790807154064E-03 + 321 -1.3520888793492071E-02 + 322 3.0022677099887950E-02 + 323 4.5298768885264672E-03 + 324 3.8385195965397749E-03 + 325 -1.4928709613860117E-03 + 326 -1.2380834396179725E-03 + 327 -5.5934096375680415E-04 + 328 7.7895767811528207E-03 + 329 -1.2480062785977164E-03 + 330 2.0258665066981008E-01 + 331 2.8325930388165221E-02 + 332 -4.0208352156397248E-01 + 333 1.5288676225590511E-01 + 334 2.1859706507608456E-01 + 335 -4.9235883571744181E-02 + 336 2.8354503627157645E-02 + 337 1.8144837683463699E-02 + 338 -1.7352435147169054E-02 + 339 7.5309631873911155E-03 + 340 5.7378596321946687E-03 + 341 -2.9143921049933500E-03 + 342 1.6081508844840938E-02 + 343 -4.1102818713987771E-02 + 344 3.9474221900625342E-03 + 345 -1.4851095077047120E-02 + 346 -2.9438831445050885E-03 + 347 3.9453775308621368E-02 + 348 3.9081792266799347E-03 + 349 -7.7023143997450036E-03 + 350 6.4772580192429372E-04 + 351 9.4793861341294274E-03 + 352 -1.0536345138215619E-02 + 353 1.5258200360124482E-03 + 354 -6.6692683859245717E-03 + 355 -8.4994521698232208E-03 + 356 1.3242702434772811E-03 + 357 -4.2372731207312019E-02 + 358 -7.9533102214249168E-02 + 359 1.4277377377125672E-01 + 360 -6.0458557305903505E-03 + 361 1.4891857102444594E-02 + 362 -2.7424474308459183E-02 + 363 -1.9965904841214084E-02 + 364 -6.6750687429593747E-03 + 365 1.2208370895682515E-03 + 366 -4.7244322472472424E-03 + 367 -2.1322543558493716E-02 + 368 -2.8824150010945043E-02 + 369 6.0886533505588461E-03 + 370 1.0880052192201922E-01 + 371 1.7647797448985164E-01 + 372 -2.2753039924401905E-01 + 373 -3.4408804345955092E-02 + 374 -6.4035658907580020E-02 + 375 5.7337917066441701E-02 + 376 -1.5809329263632488E-02 + 377 -1.0987146254923851E-02 + 378 -1.2619484038974211E-02 + 379 -1.5750145241852143E-03 + 380 6.1424140390581840E-02 + 381 1.1486246835771638E-02 + 382 -2.2744204742317932E-03 + 383 7.9593525303199908E-02 + 384 -6.1270748584653315E-03 + 385 -2.5666354795305615E-02 + 386 -2.2655010849778882E-02 + 387 -7.6129131775766988E-03 + 388 4.4170537414214374E-02 + 389 3.4164812210384071E-03 + 390 1.8878771291116588E-02 + 391 -2.3425253099903100E-02 + 392 -1.1481792351311625E-02 + 393 -1.1789041625333066E-03 + 394 1.6845174416851200E-01 + 395 2.0121141044212899E-02 + 396 1.2997657325572104E-01 + 397 -2.5711983842193703E-01 + 398 1.5815945353993954E-01 + 399 1.5307446014872999E-02 + 400 -3.1453115062456981E-02 + 401 2.3843307414066914E-02 + 402 -5.9045176346592624E-03 + 403 -1.2162714989369725E-02 + 404 -1.1230119427564046E-03 + 405 -1.3429359768439996E-02 + 406 1.8896552734505054E-02 + 407 5.4314284196596029E-02 + 408 -6.4119131232630203E-02 + 409 1.2727724702158293E-02 + 410 -2.3857672124615318E-02 + 411 5.1104273091125654E-02 + 412 -5.3654635438571650E-03 + 413 -4.3749022746182187E-03 + 414 -2.8714410991519776E-03 + 415 8.9598475595630198E-05 + 416 2.5895851697115796E-03 + 417 -6.4067584653677272E-03 + 418 -1.0115334832936579E-03 + 419 -2.9169982678880664E-02 + 420 5.3218848355641524E-03 + 421 -3.2733873124223108E-02 + 422 3.6837749043901310E-04 + 423 1.2318002515677784E-01 + 424 1.4957641843232887E-02 + 425 -1.7833545973320635E-02 + 426 -4.3046217825542181E-02 + 427 -1.7724320333347150E-02 + 428 -1.9035732178798115E-02 + 429 1.8891835117534079E-02 + 430 -2.8600310541348952E-03 + 431 -2.0426834926721385E-02 + 432 9.4439675258918814E-03 + 433 -3.3008782002094503E-03 + 434 -7.4714813408684189E-02 + 435 -4.9180334384525216E-02 + 436 4.1336173427958006E-02 + 437 4.4730813303979891E-02 + 438 -2.3034489682468226E-02 + 439 -2.6003450512953398E-04 + 440 -2.1596949020300467E-02 + 441 -5.1080886430647174E-04 + 442 1.5240873144625548E-02 + 443 2.2998660329116506E-02 + 444 6.0552570547004556E-03 + 445 -6.5748891815267468E-02 + 446 -1.1055223691890959E-02 + 447 -6.1273942043333654E-02 + 448 1.1134947453004343E-01 + 449 -3.5339808050333675E-02 + 450 -5.4991909803069157E-03 + 451 7.0122784110744569E-03 + 452 -3.5097208202498286E-03 + 453 -3.7196802741776183E-02 + 454 -7.6632159106431105E-03 + 455 1.4143808164040778E-02 + 456 -4.1881051338561509E-04 + 457 -7.7350670095034202E-04 + 458 -8.4829582514094143E-02 + 459 2.3300970077847316E-02 + 460 1.5430432003896098E-02 + 461 -1.6671872555478470E-02 + 462 2.9010373901045241E-02 + 463 -1.3334702410228601E-02 + 464 -1.0854756232230981E-02 + 465 2.7683621732404063E-03 + 466 9.4885761449757750E-04 + 467 2.5261760324396471E-03 + 468 -8.2655500470991163E-03 + 469 -4.7824136055995177E-03 + 470 1.6364161905508445E-02 + 471 9.3931400519191386E-03 + 472 2.3656083490857623E-02 + 473 -1.1136466850198186E-01 + 474 4.5319421549510179E-02 + 475 3.9311403659757493E-03 + 476 -3.0965884015747031E-02 + 477 1.3245970111746115E-02 + 478 7.0885268454050415E-03 + 479 -1.1177570071808826E-02 + 480 6.5555781738484298E-03 + 481 -6.4730473147053330E-03 + 482 1.5056500879810978E-02 + 483 2.8796798533685025E-02 + 484 -2.1913852311154357E-02 + 485 2.7365364772587473E-02 + 486 -3.5569175264373469E-02 + 487 -1.3475376061411111E-02 + 488 9.3958798557078468E-04 + 489 2.1039016587499912E-03 + 490 -1.0156861804198794E-02 + 491 -1.0881840434903457E-02 + 492 -3.6442266795582582E-03 + 493 7.9820115713171195E-04 + 494 5.9746152466770503E-03 +Ene= 2.3404309130E-02 +Spin= Alpha +Occup= 0.0000000 + 1 -2.0997503357683110E-02 + 2 -3.4055476211452074E-03 + 3 -1.3389472096351371E-01 + 4 -2.9231810527817682E-02 + 5 -1.1228754025683697E-01 + 6 -1.1133471732178817E-02 + 7 3.1536249484155018E-03 + 8 -3.8536514080223390E-03 + 9 -2.2480488955302195E-02 + 10 2.9662307049669076E-03 + 11 1.6651528364968152E-02 + 12 2.0605030674451444E-04 + 13 -2.1238407923364382E-02 + 14 -2.3398322522291699E-02 + 15 -8.2069512964154535E-03 + 16 3.0129579852220409E-02 + 17 -2.0224823587764888E-02 + 18 -4.2751382843932158E-02 + 19 -3.2580331950217609E-03 + 20 7.3422943075770698E-03 + 21 -3.8968190553667842E-03 + 22 -3.2616621026507657E-03 + 23 1.5631100387394827E-03 + 24 5.1128981576638371E-03 + 25 8.5223337846312749E-03 + 26 -6.9782303928931921E-02 + 27 -1.0813462251983610E-02 + 28 -1.2765980523579323E-01 + 29 -1.9496197130923435E-02 + 30 8.6654119783583609E-03 + 31 -1.2489811041323341E-02 + 32 5.9946019326186676E-03 + 33 4.7654444170309009E-03 + 34 2.9718144421971788E-03 + 35 1.3982516662106521E-02 + 36 -9.3464266698674772E-03 + 37 1.2653691333274191E-02 + 38 -1.0965039637086265E-02 + 39 -1.1947793772036005E-02 + 40 3.0798940136804717E-02 + 41 -2.4625099997238289E-02 + 42 3.2076291871663179E-02 + 43 -9.1981347609075836E-03 + 44 -5.5951244331994710E-03 + 45 -5.1670261941377102E-03 + 46 2.6858086481050584E-03 + 47 -4.8554871227688336E-03 + 48 1.7881389175121612E-03 + 49 -7.5258438588842944E-03 + 50 -3.5972104866469207E-05 + 51 8.2865200940654679E-02 + 52 1.6171757248675912E-02 + 53 8.0395049749917027E-02 + 54 -2.9646788168920313E-01 + 55 6.7709963761740322E-02 + 56 6.3895300917863728E-03 + 57 -2.4579428067228692E-02 + 58 1.1038797997609049E-02 + 59 -9.1943945405167059E-03 + 60 1.9790971621117832E-02 + 61 -3.8620578019217520E-03 + 62 -1.2439315225075128E-02 + 63 -1.2451509466682654E-02 + 64 -2.4014459205293246E-02 + 65 4.0723411502710513E-02 + 66 -2.8947814706067197E-02 + 67 -4.6612516916936811E-02 + 68 -4.0762884659164243E-02 + 69 -5.8741498759890692E-04 + 70 -1.8016012894527123E-03 + 71 2.1353495235598261E-03 + 72 -6.9806689456211493E-04 + 73 4.4355776888496904E-03 + 74 1.7283511517608341E-03 + 75 5.6253562017330172E-03 + 76 -2.1313966479785871E-02 + 77 3.4789114492816764E-03 + 78 -1.5116461583100965E-01 + 79 6.2149372773132811E-03 + 80 -4.1549250163841027E-02 + 81 5.4878208092256936E-02 + 82 -1.2223892745155823E-02 + 83 2.3643067366189343E-02 + 84 1.4564967721161315E-02 + 85 -2.3211544073630429E-02 + 86 -1.0401275288484115E-02 + 87 -3.3029760316535380E-02 + 88 -1.7653876613178264E-02 + 89 3.3978028148300039E-02 + 90 -4.1206655734022969E-03 + 91 -6.3677148991042001E-02 + 92 -9.8406011063658663E-02 + 93 2.7390187816920156E-02 + 94 5.9435961719946058E-03 + 95 9.8894553141990020E-03 + 96 1.8566309224859747E-03 + 97 -9.1274331325258817E-03 + 98 7.3274051247553410E-03 + 99 2.3382070581286617E-02 + 100 2.1327135101868378E-04 + 101 -2.5993581828566395E-03 + 102 -4.4150105140106331E-02 + 103 1.0886659230281056E-02 + 104 1.7785556563783132E-02 + 105 -1.2556458471034174E-01 + 106 3.2671543486800007E-02 + 107 -2.0614300429235132E-02 + 108 2.4574932092052113E-02 + 109 -1.7137875556058633E-02 + 110 1.3269910492206613E-02 + 111 4.4061004081778531E-03 + 112 -1.3543959967231451E-02 + 113 8.8195296859889163E-03 + 114 -6.8740307891941212E-03 + 115 7.4398516541008736E-02 + 116 -1.3955285119916196E-02 + 117 -8.5925497942658302E-02 + 118 -2.8069151082328943E-02 + 119 -4.3024602131053670E-02 + 120 3.3725253372631374E-02 + 121 3.8972685457753620E-02 + 122 1.8425392533854463E-02 + 123 8.0251831763217228E-03 + 124 -1.0679080205069455E-02 + 125 -1.5228986871099580E-02 + 126 2.8570503830877506E-03 + 127 -1.6277492292875888E-02 + 128 4.2981615229023221E-03 + 129 3.1178395482694531E-04 + 130 4.7557537631283071E-02 + 131 2.7351977816206641E-01 + 132 2.1204451556243514E-01 + 133 -3.5347996133402843E-03 + 134 4.0937618547145338E-02 + 135 2.5728876901139053E-02 + 136 1.9967796099498645E-02 + 137 -2.5025307147784125E-02 + 138 -2.4460583400876955E-03 + 139 2.6839212380839930E-02 + 140 -8.0490506863761749E-03 + 141 3.9196366321452243E-02 + 142 -4.3241704132900259E-02 + 143 -2.6823629491376726E-02 + 144 8.6982957152414192E-02 + 145 -2.0248832167857275E-02 + 146 -1.2434491527198577E-02 + 147 5.8385248095068377E-03 + 148 -2.8825722569370007E-03 + 149 -2.7067984452855652E-03 + 150 1.1336691129567224E-03 + 151 -3.3231180790423203E-03 + 152 -7.9288568635469750E-03 + 153 7.4376453282942318E-02 + 154 1.5699567728702735E-02 + 155 -1.1038661378721668E-01 + 156 -7.1300985472222939E-02 + 157 -2.4582538692684855E-02 + 158 -2.1499459078976321E-02 + 159 -1.2805025795959428E-02 + 160 -1.1586554572627712E-02 + 161 -1.2164684406668149E-02 + 162 -5.5328918011637212E-03 + 163 -7.9181693387764540E-03 + 164 -7.1571071296210667E-03 + 165 7.6181123762768135E-04 + 166 -5.9374857431504995E-02 + 167 2.4365750169606220E-02 + 168 2.8697108810615021E-03 + 169 -1.8088992164550564E-03 + 170 -4.6331301662744058E-03 + 171 6.0477582241587578E-03 + 172 1.2380235127505459E-02 + 173 -4.8879106250070293E-03 + 174 -8.0873915921821915E-03 + 175 4.8497435227164544E-03 + 176 -1.0455861215870313E-03 + 177 2.1831820432542080E-03 + 178 -7.6855070580344007E-02 + 179 1.7101468970572582E-02 + 180 -1.7890813728570126E-02 + 181 3.8594344494272889E-02 + 182 2.0965037767469927E-01 + 183 -3.5084980595002618E-02 + 184 -2.7527219669811701E-02 + 185 -1.0309520060419992E-01 + 186 5.6394250084030859E-02 + 187 -5.8100846293697812E-03 + 188 7.2045107980915381E-03 + 189 -5.0358192639678889E-05 + 190 -4.7343592479972299E-04 + 191 6.5259351298924004E-02 + 192 -1.3380579144625836E-02 + 193 6.0877254363737539E-02 + 194 -7.6818993752277728E-02 + 195 3.9779367874057600E-03 + 196 -2.0996993280540905E-02 + 197 9.9640895360273291E-03 + 198 2.7767892113733199E-02 + 199 2.0747980568290608E-02 + 200 8.6227389101181020E-03 + 201 8.6902706587176533E-03 + 202 -5.1849763410308808E-02 + 203 -8.8093038600525111E-03 + 204 -1.9658846596431395E-01 + 205 -9.3267112594309261E-03 + 206 -3.5684766208008567E-01 + 207 -3.4490434319526891E-01 + 208 -1.6923849605526226E-01 + 209 -5.2985889563815322E-02 + 210 -4.1233164917860270E-02 + 211 -1.2096777343484577E-02 + 212 1.3038175954739590E-02 + 213 -2.4255085666437429E-02 + 214 -2.8280595435128255E-02 + 215 -5.8935308896705700E-03 + 216 8.0667239299558723E-03 + 217 -1.0825545990394300E-02 + 218 -1.0214325441949869E-01 + 219 -4.4333803986812768E-02 + 220 -5.9556151681671068E-02 + 221 3.9697487654200780E-02 + 222 -2.8236878741313186E-03 + 223 -2.5682009766230421E-03 + 224 -3.7853195355026402E-03 + 225 9.1651528154195003E-03 + 226 -1.0304631461939058E-02 + 227 1.2580891748539358E-02 + 228 -1.3506881890299580E-03 + 229 2.0611703637675588E-01 + 230 1.7856057329277690E-02 + 231 -1.1154841089967703E-01 + 232 -3.6025378313113288E-01 + 233 2.6885412017237753E-01 + 234 -8.7741359570725815E-03 + 235 -4.6934815475338468E-02 + 236 3.3466771575020260E-02 + 237 -1.3920985144095419E-03 + 238 -7.3343995007040886E-03 + 239 1.5374455058702365E-05 + 240 -8.5917171040459806E-03 + 241 -1.2980545032343679E-02 + 242 6.2902750042298214E-02 + 243 -2.2796003726880440E-02 + 244 3.7826602155643298E-02 + 245 -4.3294149561040593E-02 + 246 -3.4229254522144335E-02 + 247 -4.5440629843545720E-04 + 248 4.3956224704344380E-03 + 249 -4.0350320260581626E-03 + 250 -2.6056732190982684E-03 + 251 -4.2900559160364794E-03 + 252 9.9785049644474360E-03 + 253 5.6535783383355794E-03 + 254 -9.4521994516066937E-02 + 255 -1.2259136676086593E-02 + 256 7.7920406526673786E-02 + 257 1.2262831449398413E-01 + 258 1.5783993187089615E-01 + 259 -1.2197509632823776E-03 + 260 2.2341948783816006E-02 + 261 2.7580985896102073E-02 + 262 2.7624530238583209E-03 + 263 -3.3606087839032888E-03 + 264 1.0968731838050496E-02 + 265 -8.8009871050156088E-03 + 266 1.5676772720552901E-03 + 267 2.2844990733260779E-04 + 268 1.4165667114001851E-02 + 269 2.2974194929382290E-02 + 270 -1.1813895371189403E-02 + 271 3.0488475887076608E-02 + 272 -2.8456906784479138E-03 + 273 3.0792813301047757E-03 + 274 4.9273088057158214E-03 + 275 1.0471330647180194E-02 + 276 7.1135359976187340E-03 + 277 4.5694311739563672E-03 + 278 -1.6503425282124314E-03 + 279 -5.7768229352439304E-02 + 280 1.0430837023950567E-02 + 281 -2.6390974064259061E-02 + 282 -4.3934783280915421E-02 + 283 7.2057222031143954E-03 + 284 -6.3051598618048465E-03 + 285 1.5120255746873671E-02 + 286 1.9783468730376775E-02 + 287 2.9399087603025311E-02 + 288 -1.1957870793640442E-02 + 289 2.9711738287916292E-03 + 290 1.6518579257641615E-02 + 291 1.4755732070704575E-02 + 292 7.2015562324778570E-02 + 293 -1.6936190420895638E-02 + 294 -7.0348206623140827E-02 + 295 -1.3505841571255167E-01 + 296 1.1645808033417132E-01 + 297 1.5528949318650391E-02 + 298 1.2767950215102958E-02 + 299 -4.8980354216977655E-02 + 300 -1.7080572812646019E-02 + 301 1.4302702080024298E-02 + 302 2.4138698462626437E-02 + 303 -1.4304288503582761E-02 + 304 -1.8372143717900816E-03 + 305 1.6611188008305200E-01 + 306 1.6547082317137186E-02 + 307 -7.6150119699430613E-02 + 308 1.8083523776058839E-02 + 309 1.2030719467267484E-01 + 310 -2.9883520296257351E-04 + 311 4.0506392431540177E-03 + 312 1.3262373101437994E-02 + 313 1.4315313616371887E-02 + 314 2.2634703695442156E-03 + 315 -1.9233848006314053E-03 + 316 -3.2053122468005423E-03 + 317 -9.0653811027414967E-03 + 318 -8.8722812036077688E-03 + 319 1.4798417161727218E-02 + 320 -2.7792808148808495E-02 + 321 -1.1549386650734605E-02 + 322 -2.1129531456675271E-02 + 323 -4.0803492434503003E-03 + 324 7.9345547813490843E-03 + 325 6.6214152010824799E-03 + 326 -4.9519292198163681E-03 + 327 -9.5374596309384229E-04 + 328 3.0355301703579394E-03 + 329 5.5635982543310635E-03 + 330 -6.3581775664977885E-02 + 331 -5.3781506502392643E-04 + 332 1.0543009136844665E-01 + 333 -1.4843081134695899E-01 + 334 3.4338531989328958E-02 + 335 5.6654884841885736E-03 + 336 -2.6196052680590977E-02 + 337 1.8734137171540811E-02 + 338 -6.3252915574043864E-05 + 339 8.5964400216093223E-03 + 340 -5.6118131205449434E-04 + 341 2.3042833179782707E-03 + 342 -1.5651684592544093E-03 + 343 2.0832818622430617E-02 + 344 1.3478009610427570E-02 + 345 3.2541875897332491E-02 + 346 2.7804197520555667E-02 + 347 2.0333129175886312E-03 + 348 -7.1542380632516169E-03 + 349 -2.9980144273951907E-03 + 350 2.1668562147629518E-03 + 351 8.7603160970045092E-03 + 352 3.4168848327818953E-03 + 353 -8.7821806330958246E-03 + 354 -4.7484381505297681E-03 + 355 -7.3109136806064984E-02 + 356 1.7483639799072442E-02 + 357 7.6478781216928013E-02 + 358 4.4068617867465937E-02 + 359 -8.0337844636773251E-02 + 360 -2.2464638330849798E-02 + 361 -1.3962329394933248E-02 + 362 3.8483129392451881E-02 + 363 1.9208546958426144E-02 + 364 -1.1802982729496658E-02 + 365 -6.7006108114639603E-03 + 366 1.8361907862404193E-02 + 367 -1.3368196632216212E-02 + 368 -1.2047143547092670E-01 + 369 2.5408883700566702E-02 + 370 1.3888049251108589E-01 + 371 2.4297651089592118E-01 + 372 -3.1069265961316977E-01 + 373 -5.0158388006212126E-02 + 374 -7.9676540899494525E-02 + 375 1.1415492767257084E-01 + 376 1.2687352796237731E-02 + 377 -8.1920232441413561E-03 + 378 -2.2725215997496558E-02 + 379 -1.3798553008470202E-03 + 380 -3.6077021222384993E-02 + 381 1.5489845935929459E-02 + 382 -1.3893806050040301E-03 + 383 -3.1011027684349195E-02 + 384 -7.4797587422492748E-02 + 385 5.5858280088886540E-02 + 386 7.7922570746124607E-03 + 387 1.4850225039848272E-02 + 388 -6.0136784760455161E-03 + 389 -2.3795479787696545E-02 + 390 -1.2525428632268777E-03 + 391 4.4076351678754080E-03 + 392 1.3469496977542949E-02 + 393 -1.3022385201235484E-02 + 394 -8.3840399900664719E-02 + 395 -6.4371421748005524E-03 + 396 -8.7863595314498846E-02 + 397 6.5907957400276121E-02 + 398 1.7471539295316422E-02 + 399 2.5769403893098498E-03 + 400 1.0374653666263752E-02 + 401 -2.2902727616523587E-03 + 402 -3.6295957811367861E-03 + 403 -4.5892530294605743E-03 + 404 1.4337154616725510E-02 + 405 1.9663918042934592E-02 + 406 1.3799746375131879E-02 + 407 -5.2884553525026079E-02 + 408 -2.8225864877198430E-03 + 409 1.6291979973088889E-02 + 410 5.5581354609287162E-02 + 411 1.2900429719530431E-02 + 412 -6.2113923512869124E-03 + 413 -1.1318361389772540E-02 + 414 -5.5617882578624985E-03 + 415 -6.3238283073066386E-03 + 416 4.7522220467355759E-03 + 417 6.2095157452100652E-03 + 418 -2.8532008663400520E-03 + 419 1.4703143117956466E-02 + 420 -1.8885942573277728E-03 + 421 3.8372351345422911E-02 + 422 -3.5422868369246512E-02 + 423 -3.2695169769901642E-03 + 424 -2.5187819307629637E-02 + 425 2.0008470167081051E-02 + 426 2.0248892944377078E-02 + 427 3.2122976850781147E-03 + 428 8.2833674278989869E-03 + 429 5.9208974024480554E-03 + 430 -1.2342166293542015E-02 + 431 1.8344054331339336E-02 + 432 1.2598315475060162E-01 + 433 -2.4437290581688247E-02 + 434 8.7082531679080644E-02 + 435 3.4082913605134053E-02 + 436 1.3383036679044669E-01 + 437 -4.0139660299385052E-02 + 438 -4.5344630089851942E-02 + 439 -6.2501084956642604E-03 + 440 -1.1815755109666200E-03 + 441 -1.6083538611361477E-02 + 442 3.2885518527668266E-03 + 443 1.2359288630559895E-02 + 444 -3.1371019560337879E-03 + 445 -1.8720888880461251E-02 + 446 9.2618487002509922E-03 + 447 1.5581437141768533E-02 + 448 1.3133245745637381E-01 + 449 1.3813030555183031E-01 + 450 -6.7838657430577189E-04 + 451 9.8633789681204665E-03 + 452 1.7694110249978485E-02 + 453 6.6102747691630572E-03 + 454 -3.6830286923060672E-03 + 455 6.4484727513315658E-03 + 456 4.2334975841637991E-03 + 457 -1.2523069286886649E-02 + 458 4.9337770424413658E-03 + 459 -4.9933577537599055E-02 + 460 8.7214680844411759E-03 + 461 5.0731314777332316E-02 + 462 8.0949424587705831E-03 + 463 6.7374001502045130E-03 + 464 6.3846283075291149E-03 + 465 9.3948977023578049E-03 + 466 -7.1705541447534601E-03 + 467 -2.9899644254312236E-03 + 468 8.4966680554701100E-03 + 469 5.8244348358234633E-03 + 470 1.0648622655239710E-01 + 471 2.0851371665331481E-02 + 472 2.2153328997625304E-01 + 473 -2.1441363873668806E-01 + 474 1.5859804486337742E-01 + 475 2.6000290285565834E-02 + 476 -2.8868817242140493E-02 + 477 2.2482931431211828E-02 + 478 2.4720540678478699E-02 + 479 -1.2938780639374719E-02 + 480 -7.1686067674731060E-03 + 481 1.1089294351154773E-02 + 482 3.6604342266364919E-03 + 483 7.6270429206121815E-02 + 484 -1.9484750571886329E-02 + 485 -1.8413592291290824E-02 + 486 6.9210666070155724E-03 + 487 1.9475206081121715E-02 + 488 5.6493077363933336E-03 + 489 -1.1740301596361875E-03 + 490 -6.0327028135528397E-03 + 491 -7.1954334599155225E-03 + 492 -1.5177109013185149E-03 + 493 3.4284837781255997E-04 + 494 4.8121418640950154E-04 +Ene= 3.1189843182E-02 +Spin= Alpha +Occup= 0.0000000 + 1 1.1370952392053665E-03 + 2 8.6859909303558143E-03 + 3 1.7567514700848075E-01 + 4 -1.4963469397982362E-01 + 5 1.3177252325813718E-01 + 6 2.5593214565434924E-02 + 7 -2.9061330382711154E-02 + 8 8.4328277953317210E-03 + 9 2.0807449113256493E-02 + 10 7.2335287827089475E-03 + 11 7.8777435649677787E-03 + 12 8.5404799632744100E-03 + 13 1.9427921965398921E-02 + 14 5.6958445305940318E-02 + 15 3.2820077604837440E-02 + 16 1.1681064092018106E-02 + 17 2.0932710605639750E-02 + 18 2.8481484756623286E-02 + 19 6.3615049235096960E-04 + 20 -6.1331042630890283E-03 + 21 2.6564794286342342E-03 + 22 1.0308534314873677E-03 + 23 -1.1159261927761026E-02 + 24 -1.2054521127421690E-02 + 25 -8.7755863205976215E-03 + 26 -1.8738136035909143E-02 + 27 1.0579820961824485E-02 + 28 2.0243838901509791E-02 + 29 3.3782998451711344E-03 + 30 9.4654536926616711E-02 + 31 -1.0892904284138512E-03 + 32 -1.6843418721185985E-03 + 33 1.5490443097817995E-02 + 34 8.4374453357959310E-03 + 35 -5.2867685326750766E-03 + 36 -1.3177742017580138E-03 + 37 -1.0756167855121781E-02 + 38 3.0317987012327741E-03 + 39 5.3404093500219914E-03 + 40 -2.7251692813956004E-02 + 41 -9.1072409892194468E-03 + 42 -2.5582084615742098E-02 + 43 2.5163814557984613E-02 + 44 -3.0493407571095354E-03 + 45 1.6747584826895374E-02 + 46 4.5743858442060066E-03 + 47 -2.7709506183767468E-03 + 48 6.6222140325080236E-03 + 49 -7.5057897899624033E-03 + 50 -5.6513684483922456E-03 + 51 -7.7911838348006579E-02 + 52 1.3022546209131040E-03 + 53 4.8405268449070241E-02 + 54 1.2282149767888781E-01 + 55 -7.5792028315718254E-02 + 56 1.2623532115624010E-02 + 57 9.8703987024948790E-03 + 58 -1.5444763684062304E-02 + 59 -1.8271723909509908E-02 + 60 1.2747191555194275E-03 + 61 -8.6287121768664297E-03 + 62 -6.3785570087613276E-03 + 63 -1.3633087128402711E-03 + 64 -3.9316094086662368E-02 + 65 -3.4828677301157664E-02 + 66 -2.6871997239515159E-02 + 67 1.3495238814209734E-02 + 68 -1.7068410926386626E-02 + 69 1.9107193879741610E-03 + 70 -9.9030993806629411E-04 + 71 9.8080448373784688E-03 + 72 5.9615980029660294E-04 + 73 4.9164352768737299E-03 + 74 -5.2142740294330277E-03 + 75 6.4486319899113281E-03 + 76 -1.1740751175898774E-01 + 77 2.4890627083295497E-02 + 78 1.8587793964068608E-01 + 79 8.4022811199656461E-03 + 80 1.1323516342213927E-01 + 81 -7.4615853437495341E-02 + 82 -7.4910302188266797E-04 + 83 -4.7444938036311626E-02 + 84 9.4682218465370008E-03 + 85 1.9343364631791399E-02 + 86 -1.4237659335213770E-03 + 87 2.6642965435677634E-02 + 88 1.6385825140075978E-02 + 89 9.7074387573893042E-02 + 90 -1.9180211762413631E-02 + 91 2.6526459369580657E-02 + 92 8.0426696641678425E-02 + 93 -3.6145939848433659E-02 + 94 -4.8448447821467728E-03 + 95 -4.5774744936459916E-02 + 96 -2.5989950685202177E-02 + 97 -1.6324829545119020E-03 + 98 -2.2783124587692757E-02 + 99 -1.4120218494351980E-02 + 100 4.2581972471744467E-03 + 101 -7.6237095718014103E-03 + 102 7.6984498972698448E-02 + 103 -1.4637280485864889E-02 + 104 -4.2558254199180461E-02 + 105 1.9849372691104879E-02 + 106 4.6694752867234950E-02 + 107 2.8753451699836490E-02 + 108 -1.1393208169605458E-02 + 109 -2.1099065664937740E-02 + 110 -1.4073909695906028E-02 + 111 2.1297003152463231E-02 + 112 3.0654511670564081E-03 + 113 -1.1426072730108559E-02 + 114 1.8353796726228377E-03 + 115 9.5619805751682510E-02 + 116 -2.0612708227589403E-02 + 117 -5.5330243753015547E-02 + 118 -5.2217194180889673E-02 + 119 -6.9511978244459802E-02 + 120 3.3611158128121932E-02 + 121 4.0721471803454458E-02 + 122 2.5164157454136124E-02 + 123 1.0220064259333625E-02 + 124 -1.1387865046662476E-02 + 125 -1.1722240094315170E-02 + 126 -2.1572935984857405E-02 + 127 -1.4320288937558807E-02 + 128 9.5281826774209322E-02 + 129 3.3837453202455645E-03 + 130 -3.8167379310747880E-02 + 131 2.0272900448332432E-01 + 132 2.4013514166587741E-01 + 133 -2.5265841060736678E-03 + 134 2.7123757841557950E-02 + 135 2.2153123630997522E-02 + 136 7.4158759865662902E-03 + 137 -3.8354011235569355E-03 + 138 -2.7191926652861140E-03 + 139 5.9180689208222833E-03 + 140 -7.4022590241353968E-04 + 141 3.5245080434573195E-02 + 142 -4.1864559672921374E-02 + 143 4.0604763474692197E-02 + 144 -1.4044695230873101E-02 + 145 1.1468811811424142E-02 + 146 -7.5032953284181114E-03 + 147 1.3095298367285146E-03 + 148 -8.1032110377984271E-04 + 149 -6.0444510538275412E-05 + 150 -5.3701609348440690E-03 + 151 -9.6236993942939585E-04 + 152 -1.2299093221192548E-03 + 153 1.0952028012502056E-01 + 154 1.4267801613059626E-02 + 155 9.9317904261266299E-02 + 156 -1.1390692454495841E-02 + 157 -2.1877800619113522E-01 + 158 6.7222169245200730E-03 + 159 2.6415691127902319E-03 + 160 -3.5562662590095807E-02 + 161 -1.4039971013508797E-02 + 162 8.4281256094084663E-03 + 163 -7.4333627041658626E-03 + 164 -2.7785885149920514E-03 + 165 8.6194123450847801E-03 + 166 -4.9653831034554355E-02 + 167 4.5356679823405459E-02 + 168 -1.9287971887186086E-02 + 169 1.6900379816417496E-02 + 170 2.1272678513557541E-03 + 171 1.4485527829445799E-03 + 172 7.8625237597622858E-03 + 173 -4.2008524913148982E-03 + 174 -5.2888546425617520E-03 + 175 1.3248032894076809E-02 + 176 -5.8960956219951469E-03 + 177 -1.3313313568631514E-04 + 178 -1.0224972901313453E-01 + 179 2.0846527702956967E-02 + 180 1.0073142584752032E-02 + 181 1.3852806882921029E-01 + 182 7.6040104102898465E-02 + 183 5.0105688362353335E-03 + 184 -3.6481746644237950E-02 + 185 -4.9701790725929243E-02 + 186 3.1952102236362800E-02 + 187 2.1389323322094457E-02 + 188 2.3786408099454499E-02 + 189 1.0063484621589815E-02 + 190 1.1075294845673581E-02 + 191 -8.8534345910977433E-02 + 192 2.0880458144773090E-02 + 193 -1.0250293865423227E-01 + 194 -5.0782508299100734E-02 + 195 2.2836526909071567E-02 + 196 5.3328261490622926E-02 + 197 7.0757116222661259E-03 + 198 -2.5441282835479195E-02 + 199 2.5415907451717224E-02 + 200 -9.4070439384608007E-03 + 201 2.2173473282591960E-03 + 202 -5.7995433224652723E-03 + 203 2.6532847254723015E-02 + 204 7.8134677498648844E-02 + 205 1.6340391742855915E-02 + 206 -9.7208556913219585E-02 + 207 -8.9205270740956688E-02 + 208 -4.9601695871757417E-01 + 209 -1.1654258814267777E-02 + 210 -6.6383420951682754E-03 + 211 -6.3044734261138061E-02 + 212 9.5727000938336509E-03 + 213 6.6123583177886934E-03 + 214 -9.0645321882097782E-04 + 215 2.4736425630397661E-03 + 216 -6.6532417513028592E-03 + 217 1.2324570506995558E-03 + 218 4.3638819655687274E-03 + 219 4.5873422298481563E-02 + 220 -4.0362839661745746E-02 + 221 -2.0396696882325080E-02 + 222 8.9125609760357244E-03 + 223 2.1006580353486446E-03 + 224 -7.0059508910358184E-03 + 225 -3.5244445307809308E-03 + 226 1.4513248772975570E-03 + 227 2.5280808761786341E-04 + 228 -9.0865928132121392E-03 + 229 -2.0437400969974648E-01 + 230 -1.9335191381570371E-02 + 231 -1.1694088028230318E-01 + 232 1.4833047916956235E-01 + 233 -1.6225082102812308E-01 + 234 -1.0398853673897949E-02 + 235 1.9697512018270445E-02 + 236 -1.2239423417741207E-02 + 237 1.5449498073715958E-02 + 238 2.0692223972897793E-02 + 239 1.3690353861569070E-03 + 240 3.1214857696195798E-02 + 241 2.0514122938406459E-02 + 242 -1.6017590070115339E-02 + 243 -1.0256951642279331E-02 + 244 -2.1848160071354678E-02 + 245 5.6215418939444727E-02 + 246 4.4773639768816681E-02 + 247 -4.3265530925341127E-03 + 248 1.2410627129352791E-02 + 249 1.0986771220841554E-02 + 250 8.8416388156025288E-03 + 251 5.7851423854457594E-04 + 252 -8.9634567285385991E-03 + 253 -9.4990106913941733E-03 + 254 -1.2017823942125373E-02 + 255 -8.3118020275686007E-04 + 256 9.6958085716697270E-02 + 257 -6.7155158918103988E-02 + 258 -6.3405328969937502E-02 + 259 1.0330184485047534E-02 + 260 -6.6220004836912653E-03 + 261 -6.8120571655085841E-04 + 262 -3.0368423069974848E-03 + 263 4.5978976273535668E-03 + 264 -6.2585575080620175E-03 + 265 5.9803001764022019E-03 + 266 7.7707541487903251E-03 + 267 -3.4933523556199400E-02 + 268 -3.1477498032117888E-03 + 269 -1.9962463406957454E-02 + 270 3.4944988201664993E-02 + 271 3.8876779266246358E-02 + 272 1.9055034798068512E-03 + 273 6.9119052981871671E-03 + 274 6.8610754011511630E-03 + 275 6.5026070907662006E-03 + 276 3.1685695321851215E-03 + 277 4.3612038610265184E-03 + 278 -8.4056928974486156E-04 + 279 3.8055801621914111E-02 + 280 -7.7014209456492313E-03 + 281 1.4883451204651656E-02 + 282 -5.9669477537138298E-02 + 283 -1.3468827390867076E-02 + 284 2.7338922739748327E-02 + 285 2.8146926214806283E-02 + 286 6.6879650964852154E-03 + 287 -4.6720928029406862E-03 + 288 7.4470612620205776E-03 + 289 -6.3576360839516927E-03 + 290 1.5856451727211493E-02 + 291 -1.7030066486034962E-02 + 292 -4.3140960548150566E-02 + 293 1.1938502487376181E-02 + 294 -1.7261144428487828E-02 + 295 -8.3001345377381380E-02 + 296 -1.0092429889039704E-01 + 297 4.0101670263931995E-03 + 298 2.0888601492067515E-02 + 299 4.0718633684481281E-02 + 300 3.5426025998071486E-02 + 301 2.0150011145377809E-02 + 302 -5.3634884605442638E-03 + 303 3.3237141709245452E-02 + 304 -7.4061868727584327E-03 + 305 6.8904596544286975E-02 + 306 1.1147397453674190E-02 + 307 3.6363747594695389E-01 + 308 -2.8933002618976278E-01 + 309 1.4504331183667535E-01 + 310 4.1675963446021050E-02 + 311 -3.2237017557353989E-02 + 312 2.1114567215748607E-02 + 313 -1.9647775629286292E-02 + 314 6.6097976471293915E-03 + 315 1.3592787616713916E-02 + 316 1.1399537815495568E-03 + 317 -3.2739971285121731E-02 + 318 -6.3360897569904262E-02 + 319 -1.2729500235860267E-03 + 320 3.5421844351933643E-02 + 321 -2.3838280245653022E-02 + 322 -5.7578727932446519E-02 + 323 4.1848313972445506E-03 + 324 5.0737915391724881E-03 + 325 -5.6017630922015958E-04 + 326 -1.1465394463023708E-02 + 327 2.6952999330955140E-03 + 328 -3.1812049131196771E-03 + 329 1.2182394187656393E-02 + 330 -1.3336372475968611E-01 + 331 -1.6862725561629978E-03 + 332 1.5102631993420662E-01 + 333 -1.9987829828486003E-01 + 334 -1.6203021114882146E-01 + 335 2.0504777925288906E-02 + 336 -2.7956463230737961E-02 + 337 -3.3188861376898693E-02 + 338 1.9760994560348651E-03 + 339 -9.6448030860538086E-03 + 340 4.0099575140719124E-03 + 341 7.0848634887335912E-03 + 342 -9.4849125194815202E-03 + 343 -3.7360113792394810E-02 + 344 -3.5285697960461035E-02 + 345 -8.3561789652886378E-03 + 346 4.7799078337200637E-02 + 347 -6.3832161447448452E-03 + 348 4.5925536308803151E-03 + 349 5.6082304400321978E-03 + 350 4.8793875670746836E-05 + 351 -8.5541205904967454E-03 + 352 -1.2419590952544322E-02 + 353 -1.0212742957759577E-02 + 354 -6.3377451685196727E-03 + 355 -1.3501362398060962E-02 + 356 6.3958356580983569E-03 + 357 1.0597109676207250E-01 + 358 -5.9209718310057731E-02 + 359 -8.4548976816035931E-02 + 360 -3.3168608717292686E-02 + 361 7.4924924254561442E-03 + 362 3.0952440785177025E-02 + 363 3.4347297122018360E-02 + 364 9.1403286037457614E-03 + 365 -4.0671806486838715E-03 + 366 -3.6498925605637847E-02 + 367 -2.4303282538207370E-02 + 368 -2.7433411955951607E-02 + 369 5.0095721211848559E-03 + 370 -1.4397304339393921E-01 + 371 2.6949073577821895E-02 + 372 -3.9310472989109654E-02 + 373 4.0468259492380587E-02 + 374 6.8645449050339551E-03 + 375 9.6628923823866529E-03 + 376 3.0966626065456009E-02 + 377 -3.6981284103996910E-03 + 378 2.3698201313589778E-02 + 379 1.3657357215860347E-03 + 380 2.0012592411860868E-02 + 381 1.2029276037677172E-01 + 382 -2.9198446873004179E-02 + 383 1.0774645891354200E-01 + 384 -1.1759775790100213E-01 + 385 4.8646314383886599E-02 + 386 -3.8535831132828532E-02 + 387 1.2723937285505376E-02 + 388 1.9937353286478669E-02 + 389 1.3558917304583404E-04 + 390 -3.4876118803497023E-03 + 391 -1.8336417567496224E-02 + 392 5.0724758033128927E-03 + 393 -3.1652783035348905E-03 + 394 1.3386601838318385E-01 + 395 4.5375357562873996E-03 + 396 2.7823403115579370E-01 + 397 -1.3261479017524477E-01 + 398 1.8857885736082464E-01 + 399 2.2675753788932142E-02 + 400 -1.1941898321429627E-02 + 401 3.6888415995335176E-02 + 402 1.5118689541295670E-03 + 403 -1.4573391021594424E-02 + 404 -2.9764306387719667E-03 + 405 1.0232926287606151E-02 + 406 7.8923762682383287E-03 + 407 7.9822091019228839E-02 + 408 -7.0617220807465353E-02 + 409 4.9105749299800702E-02 + 410 -2.9073884397489355E-02 + 411 5.8752424811145260E-02 + 412 -1.0542093892118550E-02 + 413 3.8186853775105671E-03 + 414 -1.1254030489359421E-02 + 415 6.7514297107008937E-03 + 416 -3.1570891424522195E-04 + 417 -1.3522030131055999E-02 + 418 -1.4636749841213560E-02 + 419 -2.1049747239980762E-01 + 420 4.1919721783743855E-02 + 421 -4.0315842074275854E-02 + 422 9.5394975942645899E-02 + 423 -2.6184156585881489E-02 + 424 3.0173120091739801E-02 + 425 -7.5325101836976147E-02 + 426 3.4389757804609386E-02 + 427 -1.1786253528074711E-02 + 428 -3.0864370562387090E-02 + 429 -2.3565016487573261E-03 + 430 -2.8255658608403776E-03 + 431 -2.9687504171941236E-02 + 432 2.0116790522899730E-01 + 433 -4.4724221736261068E-02 + 434 1.8181906946794346E-01 + 435 4.0536107848581325E-02 + 436 -5.5093027506543874E-03 + 437 -7.0134735510893387E-02 + 438 -4.0597356308011437E-02 + 439 -1.9603123128765547E-02 + 440 2.4438343192566249E-02 + 441 -8.5320166340304010E-03 + 442 -8.1176960414336679E-03 + 443 -4.6920146547981788E-03 + 444 2.0124277855386469E-03 + 445 -1.6211311392414424E-01 + 446 -2.1497562664731237E-02 + 447 -1.5191137580146555E-01 + 448 -1.9123298593329272E-01 + 449 7.2249621391360264E-02 + 450 -1.7618008356069845E-02 + 451 -2.8392854410309462E-02 + 452 7.9016670418038740E-03 + 453 2.4273365788267980E-02 + 454 3.6075180636204293E-03 + 455 -2.4627298436775249E-03 + 456 -3.2999414976084843E-02 + 457 -3.7579559604399670E-03 + 458 3.8450900883130378E-02 + 459 2.8536470503017660E-02 + 460 5.6403448346282664E-02 + 461 -5.6541721214633155E-02 + 462 4.2863832795289963E-02 + 463 1.0405499625621475E-02 + 464 1.3995139740064324E-03 + 465 6.5674699625427487E-04 + 466 -5.3697237228418279E-03 + 467 -8.3490892827501138E-03 + 468 1.0915876748678237E-02 + 469 2.6790585406872968E-03 + 470 1.1967971706750678E-01 + 471 1.2698138214393650E-02 + 472 2.1357143069634676E-01 + 473 -1.4504405279160004E-01 + 474 -1.3055546724335471E-01 + 475 2.8609003006509932E-02 + 476 -2.7618939707592490E-02 + 477 -1.1386992508003181E-02 + 478 -2.0157004918392126E-03 + 479 -1.3828474290028313E-03 + 480 -8.1317861021672089E-03 + 481 8.8103424365347030E-03 + 482 5.2790525467049801E-03 + 483 -2.3966973866203358E-02 + 484 9.9308889566293457E-03 + 485 3.8547635210598681E-02 + 486 1.9311275013165843E-02 + 487 7.0617769667463181E-03 + 488 4.0837144875984256E-03 + 489 2.7606604425719477E-03 + 490 -2.0380211999492504E-03 + 491 -3.1784366242932145E-03 + 492 -6.0206498424987143E-03 + 493 2.7544517606911210E-03 + 494 -7.3987815415604962E-03 +Ene= 3.6247050849E-02 +Spin= Alpha +Occup= 0.0000000 + 1 4.0652631197389190E-02 + 2 1.6106592730664865E-03 + 3 -3.5330669483488780E-01 + 4 -1.2777065764547627E-02 + 5 -3.8317598881375220E-01 + 6 -4.8115996237778326E-02 + 7 -9.8129284029867172E-03 + 8 -3.8882422124459436E-02 + 9 -1.6521726433635656E-02 + 10 -9.4205751917731725E-03 + 11 2.7495825906861865E-02 + 12 -2.9596444953391608E-02 + 13 -9.0893777227159956E-03 + 14 3.5064360975958428E-02 + 15 -4.5417873996454305E-02 + 16 3.4577367250675041E-02 + 17 -8.9200781983202776E-02 + 18 -9.4625281469233099E-03 + 19 1.4227266667134490E-03 + 20 -5.6138239346775485E-03 + 21 1.3382294482795593E-03 + 22 -1.3371953618871987E-02 + 23 -1.4092507455030006E-03 + 24 -5.5358460768226633E-03 + 25 -1.1736103605582264E-02 + 26 -1.0531825774267943E-01 + 27 -2.0239096954162927E-02 + 28 3.4176039789503294E-02 + 29 4.5950101702547028E-03 + 30 1.8574239555831595E-01 + 31 -1.2297514288918262E-02 + 32 2.1102828934696453E-03 + 33 3.3118415935782658E-02 + 34 -6.5351431823125238E-03 + 35 -1.4092788949661723E-02 + 36 -3.9424294822587129E-03 + 37 1.2026466116849922E-02 + 38 1.1122996810791787E-02 + 39 -6.6941432748077984E-02 + 40 4.1110939137178927E-02 + 41 -1.3945827747409760E-02 + 42 -9.5150977761283596E-03 + 43 1.5068855536997175E-02 + 44 2.9439787165340759E-03 + 45 1.4970706855561924E-02 + 46 -4.8841347268457147E-03 + 47 4.5248207011035326E-03 + 48 -4.2379825576648123E-03 + 49 -2.7465998656290382E-03 + 50 -1.2397725433951582E-03 + 51 -9.4821577380643493E-02 + 52 -1.8957369108632102E-02 + 53 9.2794564289849030E-02 + 54 -1.9032935546786325E-01 + 55 7.7292609603749493E-02 + 56 3.6374267843757449E-03 + 57 -2.8683972252345383E-02 + 58 8.0458408605212969E-03 + 59 -9.1258372499273524E-04 + 60 4.8815482929903198E-04 + 61 -2.4453202031559495E-03 + 62 -4.6611019421419165E-03 + 63 -1.7760733190702212E-02 + 64 -8.5949623664262050E-04 + 65 3.4998852086505397E-02 + 66 -1.3647728502219460E-02 + 67 -1.4091916754720369E-02 + 68 -6.7935793317719817E-02 + 69 -3.3070636238977115E-03 + 70 -3.6903612658776837E-03 + 71 -9.1292721366651754E-04 + 72 2.7734999153401184E-03 + 73 -5.5312124085053404E-03 + 74 -5.4655358134697780E-04 + 75 9.4766612193800516E-05 + 76 -2.5803787831466862E-01 + 77 5.0988122868885662E-02 + 78 1.3061814158817456E-01 + 79 1.0449159365025741E-01 + 80 3.8045957928149132E-02 + 81 -9.3433790409555226E-02 + 82 -3.2051573415036907E-02 + 83 6.8601754174542912E-03 + 84 -4.5407035301785019E-02 + 85 1.4928507826907603E-03 + 86 -1.0860570058664630E-02 + 87 1.3369453541447257E-02 + 88 -2.7885965610458949E-02 + 89 -1.1851836505245611E-04 + 90 -1.9370285435319668E-03 + 91 -7.7583670778942168E-02 + 92 -9.5916155561400873E-02 + 93 -8.3928855553080925E-02 + 94 7.9681333215931415E-03 + 95 7.9297714621872455E-03 + 96 3.7656718677743978E-02 + 97 -1.3259193001096512E-02 + 98 4.0600584638500877E-03 + 99 3.3545362149719100E-02 + 100 4.8465336440370321E-03 + 101 1.1447571813517354E-02 + 102 -6.8138715159277122E-02 + 103 1.6431980817607560E-02 + 104 7.0714399373700788E-03 + 105 -7.3004912755298065E-02 + 106 8.0988713134058227E-02 + 107 -2.8590003083798606E-02 + 108 4.6492940190158939E-03 + 109 -6.6024825710469604E-04 + 110 1.7818222851330234E-02 + 111 -5.5040588012292019E-03 + 112 -2.7147745986215947E-02 + 113 1.8231177563246402E-02 + 114 -2.1581261988433669E-03 + 115 2.7234799343077064E-02 + 116 -7.4993088615170666E-03 + 117 5.2564782929611031E-02 + 118 -3.2614362563804011E-02 + 119 -5.0885297248091120E-02 + 120 4.5391550722986016E-03 + 121 -7.9413701372978932E-03 + 122 1.8637136739554260E-02 + 123 -1.2297986841451638E-02 + 124 -1.0293894341956297E-03 + 125 -1.3237802857313705E-03 + 126 -2.4521340746578050E-03 + 127 -1.0465984692555936E-02 + 128 4.7524090633480835E-02 + 129 -7.9700829346537640E-03 + 130 1.8403565585948869E-01 + 131 -1.3997601600134058E-01 + 132 2.5543512694117858E-02 + 133 2.4944164263684301E-02 + 134 -2.6179379321688147E-02 + 135 9.2929931155051465E-03 + 136 -8.9849632637719959E-03 + 137 1.2781113325529884E-03 + 138 1.2176306754130663E-03 + 139 -4.9658138483955651E-03 + 140 3.9833276648684838E-04 + 141 -1.1734107362453245E-02 + 142 2.3618201750261539E-02 + 143 -3.2511682248032900E-02 + 144 -4.5124281964870012E-02 + 145 -7.0168621877197968E-04 + 146 9.6988476948853715E-03 + 147 4.5326156381195583E-03 + 148 -3.2278498483109259E-03 + 149 2.2748011961140169E-03 + 150 8.3320179784948170E-03 + 151 -1.2469241967126957E-02 + 152 -4.1114496143482933E-03 + 153 -4.7881739240312422E-02 + 154 -1.4656027179742520E-02 + 155 -9.9326262105520428E-03 + 156 -7.0550004877908815E-02 + 157 1.0072346948085878E-01 + 158 2.5813291660548516E-03 + 159 -1.6916722042384008E-02 + 160 1.7338512312905802E-02 + 161 5.3964909606344577E-03 + 162 6.6578797658823630E-03 + 163 -8.2407988402346775E-03 + 164 -9.0486459418068869E-03 + 165 -4.9389263323435442E-05 + 166 2.4290156514466588E-02 + 167 1.8623022867921581E-02 + 168 4.6112248713055066E-03 + 169 -4.8275358424063330E-02 + 170 2.1121392345129712E-02 + 171 2.3311577650590941E-03 + 172 -5.5027307165640520E-03 + 173 3.0610166188010257E-04 + 174 -4.1883302083624865E-04 + 175 2.8795797393276496E-03 + 176 -1.2114588741697740E-03 + 177 7.2228147151813683E-03 + 178 1.0268234896336862E-02 + 179 -2.8617652280814032E-03 + 180 7.3727091140199472E-02 + 181 1.6860754451194563E-02 + 182 2.8419454777074580E-03 + 183 -2.1107238955117335E-03 + 184 -1.6561230377372112E-02 + 185 2.1483885511205246E-02 + 186 -3.9291604302869893E-03 + 187 8.3322919497719489E-03 + 188 1.1211246799992591E-02 + 189 2.1105164823409183E-03 + 190 -1.7274259106634900E-03 + 191 5.9918900794293663E-02 + 192 -1.3069344054471244E-02 + 193 5.8615515662415942E-02 + 194 -1.1009270905336155E-02 + 195 -2.5822608573715437E-02 + 196 1.0033287840645954E-02 + 197 6.5265083753834347E-03 + 198 1.1479913202065106E-02 + 199 -5.7884292811729026E-04 + 200 2.0211844828424024E-03 + 201 6.6360692725195595E-04 + 202 -1.1936115032112346E-02 + 203 1.1891300777295390E-02 + 204 3.5744802047370044E-03 + 205 -8.2158822156482483E-03 + 206 8.2832662281694322E-02 + 207 1.3236516681644165E-02 + 208 -1.0826362697825195E-01 + 209 1.4380312930029887E-02 + 210 1.0642363570978149E-02 + 211 -6.5785964554892426E-03 + 212 1.2561290470232897E-02 + 213 2.0197904271372056E-02 + 214 8.1170212170492227E-03 + 215 -1.0629235754500491E-02 + 216 -7.5663371522400802E-03 + 217 1.1319219816837950E-02 + 218 3.9927608867458532E-02 + 219 -3.5166916516780203E-03 + 220 -5.1539608078843779E-02 + 221 -2.2881220894675126E-02 + 222 -3.3310673528024972E-04 + 223 -1.2708758936245197E-03 + 224 6.5647200591682992E-04 + 225 -1.1896819791817042E-03 + 226 2.1259140551240152E-03 + 227 -3.7710421106010431E-03 + 228 3.6686584759949717E-03 + 229 -1.8873679330057558E-01 + 230 -2.1602817889494880E-02 + 231 -4.4027972816562157E-02 + 232 -9.3268578064835295E-02 + 233 -5.1866306643004301E-01 + 234 -3.1649630904219015E-03 + 235 -1.7316203198383572E-02 + 236 -7.1936900912364585E-02 + 237 -2.8686642541919750E-02 + 238 3.1223641535641809E-02 + 239 -1.7566114621977998E-02 + 240 1.3775009819470874E-02 + 241 -3.0922740442040367E-02 + 242 -4.9604132560242924E-02 + 243 9.5289862132305364E-02 + 244 -9.3373826342137173E-02 + 245 1.9226936456137836E-02 + 246 -4.4301693178776594E-02 + 247 -5.8190516027348581E-03 + 248 -3.9509319786858246E-03 + 249 1.4694316843573646E-02 + 250 9.8288855128511616E-03 + 251 2.9442319964584915E-03 + 252 1.1628806415923779E-04 + 253 -1.9250042978676484E-03 + 254 1.2780557968072723E-01 + 255 4.7875219194066041E-03 + 256 8.8240627593553667E-02 + 257 -1.7971694714519437E-01 + 258 -1.9054361501989245E-01 + 259 8.0208977462870989E-03 + 260 -3.9026407938358314E-02 + 261 -2.0730355067926726E-02 + 262 2.8534278469002591E-03 + 263 1.1554971301874852E-02 + 264 -1.2788665632675939E-02 + 265 6.6374960842761170E-03 + 266 8.6242149341198941E-03 + 267 2.4136549454286463E-02 + 268 6.7020967522312583E-02 + 269 -2.8637625993223042E-02 + 270 4.9319278790290856E-03 + 271 6.5455285939563568E-02 + 272 -8.7491093410113404E-03 + 273 3.2141016334840430E-03 + 274 -5.9549691685941014E-03 + 275 -6.5355981555505708E-03 + 276 -9.6354217761173231E-03 + 277 5.0257730407029843E-03 + 278 -8.5710545155771381E-03 + 279 -3.9120730450869876E-02 + 280 6.9126350516334036E-03 + 281 -7.4231399461190797E-02 + 282 9.1073137650050748E-02 + 283 -2.2705652568293884E-02 + 284 6.2224330833826842E-02 + 285 -6.3235106970996352E-02 + 286 -9.4038294556492499E-03 + 287 -6.3130370497337787E-02 + 288 -8.0352397362741766E-03 + 289 -9.3610101719071807E-03 + 290 -5.7788746506874254E-04 + 291 -2.5353464157346763E-02 + 292 2.2171356076138363E-01 + 293 -4.3791945857506863E-02 + 294 1.0613512492456909E-02 + 295 -7.0052622099942463E-04 + 296 1.0296702518905834E-01 + 297 -1.6750778092587488E-03 + 298 1.9742357410104029E-02 + 299 -8.0705145058370023E-02 + 300 -6.1683126024972782E-03 + 301 -1.7807904194586218E-02 + 302 9.4090242401744840E-04 + 303 8.2565242726079773E-03 + 304 3.9212873722051775E-02 + 305 -1.8165378493207449E-01 + 306 -2.2638024490218157E-02 + 307 1.1565996952374087E-01 + 308 1.1177604632156431E-01 + 309 -2.5109862390895360E-01 + 310 2.7401150800148232E-02 + 311 2.3613175546543741E-02 + 312 -4.1340977725163902E-02 + 313 6.3755618854268049E-03 + 314 -3.4422673195680167E-03 + 315 -3.7346571636879436E-03 + 316 7.8592140156594139E-04 + 317 -3.9693651794457281E-03 + 318 7.0431710749129725E-02 + 319 1.0169378915231144E-02 + 320 -1.6743573025983012E-02 + 321 1.5547441525602470E-02 + 322 -6.0871016226216974E-03 + 323 1.0652885012563583E-02 + 324 -4.9745356423987093E-03 + 325 4.4478399798288989E-03 + 326 2.4893602148390549E-03 + 327 2.1130027989452972E-03 + 328 7.3155232524249551E-03 + 329 -1.6493504245106618E-02 + 330 6.9337653490361001E-02 + 331 5.6807922351914224E-03 + 332 1.3707482669173843E-01 + 333 3.5029259703995064E-02 + 334 4.3910526495655966E-02 + 335 1.4925630976384104E-02 + 336 9.0279357335457666E-03 + 337 1.0437991274278200E-02 + 338 -6.8121830974217030E-03 + 339 -2.5281055203440323E-04 + 340 -3.0561438463857699E-03 + 341 3.6600560820129399E-04 + 342 -1.3186175531149546E-02 + 343 1.8445537213053559E-02 + 344 5.2838941774503252E-03 + 345 -4.5128189602127611E-02 + 346 -3.2517739897147971E-02 + 347 -7.1980887869252719E-02 + 348 2.2069784136283686E-03 + 349 -4.5223813955978867E-03 + 350 4.8796247758847028E-03 + 351 1.1740008826333080E-02 + 352 4.2386657517194068E-04 + 353 5.8126584547750779E-03 + 354 1.2083041977075013E-03 + 355 -1.3033034145458927E-01 + 356 2.7583188950533039E-02 + 357 5.7623904010965309E-02 + 358 -5.4151426068520865E-02 + 359 -6.6311152792283945E-02 + 360 1.0413909623586088E-02 + 361 5.1286255203733123E-02 + 362 1.5667181520463064E-02 + 363 -2.1947483850876682E-02 + 364 -9.8218843565705035E-03 + 365 1.0233683025902216E-02 + 366 6.2895446706152779E-03 + 367 1.0829288114022296E-02 + 368 -9.2855639707867393E-03 + 369 1.2557342407321340E-03 + 370 -2.5958119141785319E-01 + 371 -9.2087769139350073E-02 + 372 -1.4504766602430476E-02 + 373 8.9950551114079014E-02 + 374 4.9652594257736202E-02 + 375 3.9124814477523055E-03 + 376 -2.4774061780749708E-02 + 377 -6.2613077729534589E-03 + 378 -4.4776748846187282E-03 + 379 -2.2218556286961628E-02 + 380 -1.2250220665149806E-02 + 381 -1.0131483541649081E-01 + 382 2.2183692587472829E-02 + 383 -4.4880407730331889E-02 + 384 -2.6381636078476350E-02 + 385 5.0377378776971155E-02 + 386 1.8455241207329234E-02 + 387 -3.6516597124743720E-02 + 388 -2.9676879076706731E-02 + 389 2.8755355472388611E-02 + 390 1.0954278530866783E-04 + 391 -5.5466214238425963E-03 + 392 -4.2934433111053690E-03 + 393 -1.3446866660258771E-02 + 394 -2.1106266372837839E-03 + 395 -8.5993496278706661E-03 + 396 7.3901469181239521E-02 + 397 -1.0199680536938537E-01 + 398 -2.7456728317432333E-01 + 399 4.6461651327249663E-03 + 400 -2.4576340918396201E-02 + 401 -4.0736446873666482E-02 + 402 -6.9885221426167409E-03 + 403 -2.7252080115913478E-02 + 404 -8.3045166666172419E-03 + 405 -9.0241331574773959E-03 + 406 2.0039857790536044E-02 + 407 2.4831628514829698E-02 + 408 -5.1325057920426014E-02 + 409 5.4363502812149762E-03 + 410 -9.3357525248665085E-02 + 411 4.9355098306031207E-02 + 412 -1.8579850929569967E-05 + 413 5.5649674217050455E-03 + 414 1.2017542461596940E-02 + 415 1.1463303812420734E-02 + 416 -3.9039152933277853E-04 + 417 -1.9760456855403959E-02 + 418 -5.8351189678352402E-03 + 419 7.8022065008753888E-02 + 420 -1.9286139556582038E-02 + 421 9.0931942346088132E-02 + 422 1.2251719176411091E-01 + 423 5.2156027943871176E-02 + 424 5.0938009964648196E-04 + 425 -2.7888096394022885E-02 + 426 -5.3981225642117311E-02 + 427 -2.2259912471901538E-02 + 428 -1.7372536482987780E-03 + 429 -6.7512859511934756E-03 + 430 2.4912311200546574E-04 + 431 -1.7464226234613897E-02 + 432 -1.3298736265250346E-02 + 433 3.3524622764903903E-04 + 434 5.7660253039131443E-02 + 435 5.2487418931598834E-02 + 436 5.7995541253308275E-02 + 437 -1.9045959651323063E-02 + 438 6.1367519959085780E-03 + 439 -3.2102370949898553E-03 + 440 3.1157724190949133E-02 + 441 4.6737840744052097E-03 + 442 -3.3306435775604026E-03 + 443 -1.6116176736837892E-02 + 444 -1.4746245106205320E-02 + 445 3.5703917572326341E-02 + 446 -6.3768351366755606E-03 + 447 1.6410050423360376E-01 + 448 1.8857146732373631E-01 + 449 2.6284857321822896E-01 + 450 2.0237364165646480E-02 + 451 2.4972511823680297E-02 + 452 3.6314520013129001E-02 + 453 2.8679066583708942E-03 + 454 -6.5149836856886051E-03 + 455 3.9020778866350782E-04 + 456 -2.1249451978513540E-02 + 457 -1.3825585015104181E-02 + 458 8.0063950138472700E-02 + 459 -3.3764346589937676E-02 + 460 -2.8519426057111198E-02 + 461 -3.2313838118388442E-02 + 462 -5.0069331497938609E-02 + 463 -1.2854717285636988E-02 + 464 -5.4924506480664697E-03 + 465 -3.1605968818986751E-03 + 466 1.1778180936912625E-02 + 467 8.1708950484315358E-03 + 468 -1.3290206247079160E-02 + 469 -7.8006530646723147E-03 + 470 1.8665266190744462E-02 + 471 -1.2850307745347237E-02 + 472 -5.4917222243754333E-03 + 473 1.0382983985753363E-02 + 474 1.3174305771145597E-01 + 475 -2.2579629515553706E-03 + 476 -1.6987789631030398E-03 + 477 1.6789131249148964E-02 + 478 -2.2362658294667499E-03 + 479 -1.2853235058596047E-02 + 480 7.2161312689379975E-03 + 481 1.1349545462641813E-02 + 482 -3.4760715385258154E-03 + 483 -3.4838337280469610E-02 + 484 -2.5979542989160932E-02 + 485 2.7526797983330929E-02 + 486 3.7011515429832262E-02 + 487 7.3545159247028410E-03 + 488 -6.9545718096263476E-04 + 489 3.2452645294085494E-03 + 490 5.0446312480786773E-04 + 491 6.0500718261893857E-03 + 492 -7.9766921575331775E-04 + 493 -4.3978771538395389E-03 + 494 5.8690362460844261E-04 +Ene= 3.8718252489E-02 +Spin= Alpha +Occup= 0.0000000 + 1 3.1915051104516194E-02 + 2 1.6746099302451974E-02 + 3 -1.0470042000880680E-01 + 4 -7.6204483905123729E-02 + 5 -3.4756530126160917E-01 + 6 -1.7324897193735464E-02 + 7 -3.6639617442257699E-03 + 8 -4.3814013900861266E-02 + 9 -9.8597389285772982E-03 + 10 7.4983059755323565E-03 + 11 2.9952679734596872E-02 + 12 5.8023793002726356E-03 + 13 4.7242922606960678E-03 + 14 -4.0133127002469036E-02 + 15 2.7967604932370348E-02 + 16 6.2256513648484987E-02 + 17 2.2533415308888926E-02 + 18 -2.7498155707933324E-03 + 19 -6.5992652707742535E-04 + 20 4.3771307218448833E-03 + 21 -1.1116874411792814E-02 + 22 -1.4654448550029610E-03 + 23 -1.6055793692203450E-03 + 24 -4.1096529581747879E-03 + 25 2.9543559991699287E-03 + 26 9.5340002154501377E-02 + 27 1.1626127605185920E-02 + 28 -1.6262491138592636E-01 + 29 -1.7330931308955334E-02 + 30 -1.5786091139624900E-01 + 31 -1.7124330534249225E-02 + 32 1.0565631229375344E-03 + 33 -2.4602963440360937E-02 + 34 -8.4097862872822022E-03 + 35 8.4205430371105344E-04 + 36 -1.5892220177275884E-02 + 37 2.1858041278931036E-02 + 38 -1.2499923554236741E-02 + 39 5.2095657513907588E-03 + 40 -4.0670273528938664E-02 + 41 -4.2580865207113162E-02 + 42 2.3205157454381054E-02 + 43 -7.2907529771631688E-02 + 44 1.6995448824860505E-03 + 45 -8.5543444105235702E-03 + 46 -7.5308529134600723E-04 + 47 -7.1434733634414800E-04 + 48 -7.3981498812195753E-03 + 49 -3.0870956231244377E-03 + 50 2.0307452064714133E-03 + 51 -3.8471508950014735E-02 + 52 2.0949779130059734E-03 + 53 -2.6750985001234885E-02 + 54 -3.0882990790077725E-01 + 55 -5.9093942975476321E-02 + 56 -7.4795285573924560E-03 + 57 -3.7558459132142848E-02 + 58 -1.7470450590393077E-02 + 59 1.1243978960884816E-02 + 60 7.2108250088106698E-03 + 61 4.4408151342659472E-03 + 62 1.9773836232048647E-02 + 63 -2.0959670811995283E-02 + 64 -3.0167671528297919E-02 + 65 6.3519942418360327E-03 + 66 -3.2406422892725079E-02 + 67 3.8436994687730264E-02 + 68 -6.6405826747207450E-02 + 69 -5.2257649338324410E-03 + 70 3.1880040454110981E-04 + 71 4.0626360316600449E-03 + 72 -3.3784303260494397E-04 + 73 4.1077277811245828E-03 + 74 -9.6984236798648583E-03 + 75 5.0275251867802819E-03 + 76 -2.2841530144106625E-02 + 77 6.0189169882717952E-03 + 78 -1.2426852355118707E-01 + 79 1.1734911364284142E-01 + 80 -5.7553743228508779E-02 + 81 3.7250694093232915E-02 + 82 -3.6111179101955285E-02 + 83 -2.0508611553752162E-02 + 84 -2.0345241174203679E-03 + 85 -7.1152148832545658E-03 + 86 2.2451901977081728E-02 + 87 -3.2799777400406363E-02 + 88 -4.3856898743627375E-03 + 89 6.3885211616031362E-02 + 90 -1.2456761379409188E-02 + 91 -5.7116393008023437E-02 + 92 -2.4591013573817627E-02 + 93 -1.2780182644073040E-01 + 94 1.9159307936112563E-02 + 95 3.9820584590722716E-03 + 96 3.3180974155650557E-02 + 97 -7.3617077258227876E-03 + 98 -8.5441151161239088E-03 + 99 4.3822992651692434E-02 + 100 -5.3472814271624527E-03 + 101 2.2223582822930034E-03 + 102 -1.3711493858952598E-01 + 103 2.9937875156127985E-02 + 104 9.3308222614586184E-02 + 105 -6.4096310972934847E-02 + 106 4.5146835383321031E-02 + 107 -5.5345264458931627E-02 + 108 -3.0008504738910048E-03 + 109 -2.7053082711163190E-02 + 110 1.0387031754723755E-02 + 111 1.5501438151545707E-03 + 112 -7.5101864154406926E-03 + 113 1.3106380434093769E-02 + 114 7.6953595946477943E-03 + 115 -3.5502712318833639E-02 + 116 6.3700812714277697E-03 + 117 7.8284693692758818E-03 + 118 -2.4201098392595448E-03 + 119 1.8831387988802160E-02 + 120 -1.4119556457691241E-02 + 121 -3.2663283761649236E-03 + 122 3.8594244724004644E-03 + 123 -1.1687277911440317E-02 + 124 7.2495386307841175E-03 + 125 -6.9469007313873888E-03 + 126 2.5706144080281289E-02 + 127 1.8065010085451876E-03 + 128 -4.9891897822171315E-02 + 129 -2.8945908445287406E-03 + 130 1.6552716569129275E-01 + 131 -1.3524387165377769E-01 + 132 -9.1788534135129024E-02 + 133 2.3924700243582137E-02 + 134 -2.4715017059038377E-02 + 135 -1.2502513529611809E-02 + 136 -1.7453251786633546E-02 + 137 6.5581170506053789E-03 + 138 -1.3320831294160354E-02 + 139 4.7650988296586115E-03 + 140 5.3169802366097984E-03 + 141 -3.3746361048554649E-02 + 142 -2.0947271872438611E-02 + 143 1.3735943319093204E-02 + 144 1.1072010028533362E-02 + 145 3.6507037308497292E-03 + 146 1.3848600398592273E-04 + 147 1.7283623598889914E-03 + 148 2.5654939697054941E-03 + 149 2.9022840127310816E-03 + 150 -5.1064450301507025E-03 + 151 9.3119730159158982E-03 + 152 1.2958882112700016E-02 + 153 -8.6607133409949980E-02 + 154 -9.1136706979782541E-03 + 155 4.8427780788712092E-02 + 156 -7.2945473024486314E-03 + 157 2.2385652788092619E-01 + 158 7.5852742012634681E-03 + 159 -1.1145301967804859E-02 + 160 3.1119396880637057E-02 + 161 7.4850650675332203E-03 + 162 2.0768438320903880E-03 + 163 -3.7591507419210126E-03 + 164 -8.0705582756750497E-04 + 165 -8.7603097956575184E-04 + 166 7.2356598179599024E-02 + 167 -2.9566689370690281E-02 + 168 8.7407209212177692E-03 + 169 -2.3161931526426708E-02 + 170 -5.9040638473788825E-03 + 171 3.8479007378907411E-03 + 172 4.2307736388433651E-04 + 173 3.2551531370513692E-03 + 174 3.4528025270704464E-03 + 175 -7.7983751874633085E-03 + 176 2.5564880438528276E-03 + 177 2.8701779671091998E-03 + 178 -1.0432411192667823E-03 + 179 2.3863501808589235E-03 + 180 4.2513015314415939E-02 + 181 -4.8293882356962081E-02 + 182 -2.1065779895312650E-02 + 183 1.9401876009802779E-02 + 184 2.4827789498711866E-02 + 185 3.6961573780032654E-02 + 186 -3.2456183461590446E-02 + 187 2.5418736188835994E-03 + 188 -1.0086370564229835E-02 + 189 6.6447477879541979E-03 + 190 -1.1654189712056230E-03 + 191 1.6749768309336857E-01 + 192 -3.3370028067186058E-02 + 193 5.4424197476892491E-02 + 194 7.6634145985938373E-02 + 195 -2.4950035110377609E-02 + 196 -8.6276014517528343E-04 + 197 -6.0099483559993942E-02 + 198 2.4649846687938054E-03 + 199 1.0707430074817469E-02 + 200 -4.3834945800995027E-04 + 201 -2.2430444077903480E-02 + 202 1.5095652066203677E-02 + 203 7.0231657358079986E-04 + 204 1.3209439157906203E-01 + 205 2.2179180803112944E-02 + 206 4.4827244754311185E-01 + 207 3.9786980491667415E-02 + 208 3.5557188869169948E-02 + 209 5.5467532904233653E-02 + 210 -5.5707295549310603E-03 + 211 -2.0652671899765575E-03 + 212 -4.2089688187712092E-03 + 213 9.5099299602926929E-03 + 214 -1.0872824409339042E-03 + 215 3.2123304401729257E-03 + 216 4.2204335299469752E-03 + 217 2.1479085976298749E-02 + 218 4.8687426792912283E-02 + 219 3.9780967902102095E-02 + 220 1.4955721221243055E-02 + 221 -2.4275412765300458E-02 + 222 5.5783335039768893E-03 + 223 1.0974264962811606E-02 + 224 2.4793750986213071E-03 + 225 2.1795443793006654E-03 + 226 -5.5789383249836577E-04 + 227 7.9800842676735657E-03 + 228 6.6056609485251770E-03 + 229 5.7868882751919717E-02 + 230 8.9588287564465741E-03 + 231 1.2094282000473094E-01 + 232 7.3695056392825517E-02 + 233 8.3617865856027082E-02 + 234 -4.4156241656397141E-04 + 235 5.2955990429356418E-03 + 236 5.3063452291338643E-03 + 237 1.5517609907455304E-02 + 238 -2.6655061771124745E-02 + 239 -1.0679888608686938E-02 + 240 -2.4288095152182443E-02 + 241 -4.6132292977851420E-03 + 242 3.2128494701271097E-02 + 243 -8.3852399758027232E-02 + 244 -4.0766243854269198E-02 + 245 -2.8643712353757806E-02 + 246 4.5873981114352626E-02 + 247 -4.8326036197342175E-03 + 248 5.5297313621912704E-03 + 249 6.4313898304342899E-03 + 250 2.1477514485127615E-03 + 251 1.0792061260774847E-03 + 252 -1.1028502045542725E-02 + 253 -2.4268203066358774E-03 + 254 -8.7414195582865090E-02 + 255 -1.2989340380694906E-02 + 256 3.4170169175657746E-02 + 257 1.8658148113276021E-01 + 258 9.6656011831902949E-02 + 259 -5.0910393837350180E-03 + 260 3.5785028837159866E-02 + 261 1.0306738579806659E-02 + 262 -3.7476051693818924E-03 + 263 -1.6694835007690220E-03 + 264 9.7728487177828546E-03 + 265 -1.4675222907967682E-02 + 266 -5.0693844648286067E-03 + 267 2.4143651712298635E-02 + 268 -1.9101218440011798E-03 + 269 2.5811545111292244E-02 + 270 -3.8587995790533722E-02 + 271 -4.9704784248528755E-03 + 272 1.0167267412931355E-03 + 273 4.6419892643233124E-03 + 274 1.0315734692605625E-03 + 275 1.1427871410122120E-03 + 276 -1.6865569676196726E-03 + 277 -1.3709263108185668E-02 + 278 4.1637768216739876E-03 + 279 -5.7244651562164781E-04 + 280 7.0605176896108531E-04 + 281 2.1084500991330156E-03 + 282 2.7005380090211061E-03 + 283 1.1640652229037158E-03 + 284 1.2394938395616192E-02 + 285 1.4261630742362417E-02 + 286 -5.7897987463413460E-03 + 287 2.9820059432005126E-02 + 288 3.8593654035227222E-03 + 289 1.1373010312203530E-02 + 290 -1.1252349987243058E-02 + 291 -1.2793199432793946E-03 + 292 6.2334437737286703E-02 + 293 -1.2125977283268394E-02 + 294 1.7219635753334872E-01 + 295 -1.3536700854964862E-01 + 296 7.9014963837308563E-02 + 297 -3.6785968668543202E-02 + 298 4.7146387485630631E-02 + 299 -2.7621292690024911E-02 + 300 4.9438672304293295E-03 + 301 -7.7272578783791545E-03 + 302 1.5841900221884159E-02 + 303 4.5992388196789101E-02 + 304 4.8643349128406370E-03 + 305 -1.5218422810549287E-01 + 306 -1.2450484888489419E-02 + 307 3.6051450003416513E-01 + 308 -2.5742251762360008E-01 + 309 1.5666249233863286E-01 + 310 3.6066456274423134E-02 + 311 -2.8282540925875000E-02 + 312 1.9093046260939453E-02 + 313 -2.7646664524069827E-02 + 314 2.2181192285027681E-02 + 315 -1.2702663902529530E-02 + 316 4.6149667432409331E-03 + 317 -3.6019017889580930E-02 + 318 -4.5696592023031411E-02 + 319 -1.1250167872047822E-03 + 320 -3.5266633761347317E-02 + 321 -3.9834450500014010E-03 + 322 -4.5811718216940502E-02 + 323 6.5587643551326480E-03 + 324 9.7953056244608865E-03 + 325 6.5418144088330891E-04 + 326 8.6108017266874526E-04 + 327 1.0178526455615476E-02 + 328 1.4758450896194591E-03 + 329 -9.5927278923708893E-04 + 330 -5.5973991228360311E-02 + 331 -2.3536843786610716E-04 + 332 -4.6327797189993324E-02 + 333 -1.3190822331265292E-01 + 334 1.2540006469950152E-01 + 335 -4.6064347327003348E-03 + 336 -1.8042845909965521E-02 + 337 3.2810111928471631E-03 + 338 -1.6508206082184371E-02 + 339 -1.3851673719859118E-03 + 340 -7.3265904425955019E-03 + 341 -2.6819834436610508E-03 + 342 5.5595150592084837E-03 + 343 -7.0047189882512129E-02 + 344 1.1084867860021920E-02 + 345 -7.9488442102292084E-02 + 346 -1.8963151477337421E-02 + 347 3.8333857702629884E-02 + 348 -7.1936268170914109E-03 + 349 6.3298194640519145E-03 + 350 2.2761233676960465E-03 + 351 -4.6622499235150884E-03 + 352 -4.5281390998378936E-03 + 353 -7.0649148318101089E-03 + 354 -9.5150445938338383E-03 + 355 -7.8456901178117752E-02 + 356 1.7312487166779057E-02 + 357 -5.8286016196799940E-03 + 358 -5.5389724774078872E-02 + 359 -1.8067044081711947E-02 + 360 -5.1060131225346660E-03 + 361 1.2761610373220053E-02 + 362 1.4320655221582511E-02 + 363 1.3806183658222145E-02 + 364 9.5473790939983767E-03 + 365 -8.6158564487838762E-03 + 366 -4.6492299054618443E-02 + 367 -2.5655855033369545E-02 + 368 3.8672807137927534E-02 + 369 -8.9232480825404224E-03 + 370 -3.2740350609007152E-02 + 371 2.7181764779056504E-02 + 372 1.9821404524826677E-01 + 373 -1.4020803722536597E-03 + 374 -4.8510942449742226E-03 + 375 -9.3271113835502018E-02 + 376 2.4357745191229542E-03 + 377 3.0849161486798411E-02 + 378 -2.1698230779179078E-03 + 379 2.5105474655744395E-02 + 380 -1.7310068912704785E-02 + 381 7.7911374325254065E-02 + 382 -1.8813006760157371E-02 + 383 -1.5720543954365365E-02 + 384 -8.0447721511308912E-03 + 385 -2.2094565411043807E-01 + 386 -7.1738649731515594E-04 + 387 -3.4714732624850776E-03 + 388 9.6850106461090768E-02 + 389 -2.4694192961428375E-02 + 390 3.2483132052850625E-02 + 391 -9.0803296810405779E-03 + 392 4.7257853853894033E-03 + 393 1.8257346917169418E-03 + 394 1.6121921992324997E-01 + 395 2.0478513800062284E-02 + 396 -2.2783813807446332E-01 + 397 1.0859338519096072E-01 + 398 2.6987578486662689E-01 + 399 -1.2066858121083828E-02 + 400 2.6016285285447679E-02 + 401 4.1624846678717423E-02 + 402 -1.1289130763016630E-02 + 403 2.7323706048816798E-02 + 404 1.0018149542657079E-03 + 405 -6.5569936462509396E-03 + 406 2.2268055476034280E-03 + 407 2.8095453435178261E-02 + 408 5.2617209870027245E-03 + 409 4.0404540859960446E-02 + 410 7.6541797295931573E-03 + 411 2.6350679117814940E-02 + 412 -6.9610684088560184E-03 + 413 -9.8768834690803184E-04 + 414 -7.7929812142324270E-03 + 415 2.1907490415706940E-03 + 416 -5.0634793484344645E-03 + 417 1.1128292317234651E-02 + 418 -2.1009852666207395E-03 + 419 -2.3396520143840999E-01 + 420 4.9605733843156183E-02 + 421 -2.8774411755216683E-01 + 422 1.1254978587130691E-01 + 423 1.7286100074567139E-02 + 424 1.1059620292037305E-01 + 425 -5.9544628999425281E-02 + 426 3.5900577120158497E-02 + 427 -2.1692144652310792E-02 + 428 1.3228976533314214E-02 + 429 2.3907062027702236E-03 + 430 1.3075431542942707E-02 + 431 -2.2923639290227615E-02 + 432 -1.2932045797049048E-02 + 433 2.7405512587157684E-03 + 434 -3.4907486786167771E-02 + 435 4.9461953635252576E-02 + 436 -1.2502986181514286E-01 + 437 2.0102054784535011E-02 + 438 -1.6185094817095892E-02 + 439 2.0341912081186544E-02 + 440 -5.8086640325427912E-03 + 441 3.2464326311846758E-02 + 442 -1.6036232860281243E-02 + 443 1.3677005281510139E-02 + 444 -1.0509907640604745E-02 + 445 -8.0884990337421525E-02 + 446 -1.4857063929186325E-02 + 447 -2.5162923372746393E-01 + 448 -9.1593745154219183E-02 + 449 -3.2209569139903874E-02 + 450 -2.3805514809227806E-02 + 451 -1.3805724686796394E-02 + 452 -2.2462716038207944E-03 + 453 -4.3661887672900032E-04 + 454 5.0737336604366875E-03 + 455 5.5968525063128001E-03 + 456 -7.9680998132636918E-03 + 457 -7.7370780834472661E-03 + 458 -3.8090720230991137E-02 + 459 4.8933118380340146E-02 + 460 5.3951782668225860E-02 + 461 -9.0247344236035323E-02 + 462 1.7772224849846890E-02 + 463 -3.7730777850834463E-03 + 464 -5.5658144381207303E-04 + 465 -3.2500514351889121E-03 + 466 6.3527742332684049E-03 + 467 -4.4099370260807175E-03 + 468 4.9072066852103892E-03 + 469 -1.3106510605189364E-02 + 470 6.1449450698799271E-02 + 471 1.3542221246972403E-02 + 472 6.5986514826911605E-02 + 473 -5.8403138102975538E-02 + 474 1.3537589850715605E-02 + 475 1.3967013479670368E-02 + 476 -4.0675055080557486E-04 + 477 -2.8511208383584768E-03 + 478 1.0588533797562420E-02 + 479 -8.9621973090923610E-03 + 480 -1.7148991397347444E-03 + 481 1.3069368913305069E-03 + 482 -2.5179258811144837E-03 + 483 1.0863098703009708E-02 + 484 -5.7511770431774266E-02 + 485 2.3791503292724819E-02 + 486 -9.6928108590120070E-03 + 487 2.9721471139535142E-03 + 488 3.2195067209986202E-03 + 489 4.5132381129539207E-03 + 490 1.1614291079092799E-02 + 491 -5.1744178321195796E-03 + 492 3.5618366209279129E-03 + 493 -1.0811277751636681E-03 + 494 3.6811944375319599E-03 +Ene= 4.8663597060E-02 +Spin= Alpha +Occup= 0.0000000 + 1 -1.7625600671784994E-02 + 2 -7.4738408571837205E-03 + 3 -6.0593222857976831E-03 + 4 -1.0346180391028877E-01 + 5 -7.2083917051389265E-02 + 6 1.1902129051762156E-03 + 7 -1.6463247436578107E-02 + 8 -2.2264895000097741E-02 + 9 1.4977935382787745E-02 + 10 -1.2083457263352108E-02 + 11 5.6672454709637840E-03 + 12 5.6330305123152777E-03 + 13 -3.0431567080362334E-03 + 14 1.7408234981936655E-02 + 15 -3.7745114540637982E-02 + 16 1.0045043571644088E-02 + 17 -6.8338109395142165E-03 + 18 4.2290610781248746E-02 + 19 -6.0583876941206370E-03 + 20 -1.1021673737341574E-02 + 21 -4.5429399115806653E-03 + 22 -4.2247704482202908E-03 + 23 -2.0135221393219609E-03 + 24 -7.2171591358344877E-03 + 25 -4.8363613467301847E-04 + 26 1.6750351576467690E-01 + 27 1.5949666605522439E-02 + 28 -1.4635368322658882E-01 + 29 -1.6441343911726500E-01 + 30 -3.0397086702028803E-01 + 31 -1.3254652870639977E-02 + 32 -2.3010541354211198E-02 + 33 -4.0468882186144903E-02 + 34 1.2864099608458463E-02 + 35 7.4533976960349611E-03 + 36 1.8056900822493793E-02 + 37 -3.3149351124399234E-02 + 38 2.9553298975871284E-03 + 39 8.5920435511036036E-02 + 40 -4.2999523813750092E-05 + 41 5.1088118581622682E-02 + 42 -1.5388780345717326E-01 + 43 -5.4235223042179169E-02 + 44 1.3111917428808926E-03 + 45 1.7290174021697381E-03 + 46 -1.9197683400146749E-03 + 47 6.4334213750012132E-03 + 48 -1.3181508802664287E-02 + 49 8.3978523313310311E-03 + 50 2.7571388071712683E-03 + 51 5.9563150279705386E-02 + 52 1.3155401723271455E-02 + 53 3.6243731004956224E-02 + 54 8.0229283592231734E-02 + 55 1.4986669201054220E-01 + 56 -6.2478111163498645E-03 + 57 1.0702643045022872E-02 + 58 1.9022395968618846E-02 + 59 -5.6601579864466109E-03 + 60 -2.8318304673914881E-02 + 61 2.2936497047562385E-02 + 62 -1.9829392194692486E-02 + 63 1.2912543084716153E-02 + 64 -4.9258033839872137E-02 + 65 -5.0913995188512307E-02 + 66 6.7687471632486090E-02 + 67 -3.2116562324367028E-02 + 68 -1.8894191738129434E-02 + 69 -3.3773482411288765E-03 + 70 -3.5304447393099016E-04 + 71 -5.5708886259353977E-03 + 72 -1.4381855177589664E-03 + 73 -7.8677879567125698E-04 + 74 4.5104230125709776E-03 + 75 -4.9603474461187985E-03 + 76 -4.7191182637205495E-02 + 77 9.8925181265390634E-03 + 78 -8.0902877570746642E-02 + 79 -8.1073711929321279E-02 + 80 7.7719232895805568E-02 + 81 2.5199083087598644E-02 + 82 2.4957409401273636E-02 + 83 -3.5687657748087936E-02 + 84 2.3538917023661277E-02 + 85 3.9601701222494068E-02 + 86 2.6023263511329568E-03 + 87 -3.4453531042685924E-03 + 88 -3.1885966588575371E-02 + 89 3.6142793884520220E-02 + 90 -8.0816838567085957E-03 + 91 -6.7613923826706172E-03 + 92 6.7769509162447896E-03 + 93 -4.1309605580799345E-02 + 94 -3.2788994975454407E-03 + 95 -4.1477191811410919E-03 + 96 1.8820720185928586E-05 + 97 -3.9022624324124228E-03 + 98 -2.7750531657689389E-03 + 99 2.5736698997425784E-03 + 100 1.0387742761970185E-02 + 101 -2.9695048076166203E-03 + 102 -1.9321251503434309E-02 + 103 3.3847408199944272E-03 + 104 -6.0018641616553327E-02 + 105 2.4957977948577490E-02 + 106 -2.0204743861712196E-01 + 107 1.1598124600698414E-02 + 108 -3.1507778353523759E-02 + 109 8.4808009728384495E-02 + 110 -3.9118934847741597E-03 + 111 -4.4995933812395451E-02 + 112 -8.0588488747426431E-04 + 113 -1.1369346020600883E-02 + 114 2.6420096039601888E-02 + 115 7.5701432226820325E-02 + 116 -1.7681578480093916E-02 + 117 -1.1488645892829950E-01 + 118 1.9504533069875454E-02 + 119 3.9636393176417248E-02 + 120 -1.1492480717073511E-03 + 121 -5.3024778920701253E-02 + 122 2.0073740041215211E-02 + 123 1.1667039114616517E-02 + 124 7.4003774996823091E-03 + 125 3.1616700172462903E-02 + 126 -5.2911862492299464E-03 + 127 -1.3870437534164705E-02 + 128 -1.5156316298353484E-01 + 129 -1.1038928583003524E-03 + 130 -3.1545191893638719E-01 + 131 -2.9112434361274628E-02 + 132 4.9067844930197163E-01 + 133 -1.4723356730258255E-02 + 134 -7.8955284597231300E-03 + 135 6.5125028307779609E-02 + 136 -2.1869283768296464E-03 + 137 -9.7319626738893768E-03 + 138 2.2639761115615383E-02 + 139 5.0224196188650115E-03 + 140 -1.3778938094986095E-02 + 141 -1.4284463280870746E-02 + 142 -1.3974235306229810E-01 + 143 9.3459983527076018E-02 + 144 9.9779044596140801E-02 + 145 -7.2299149526446699E-02 + 146 1.6307890237718500E-02 + 147 -1.2933448794365881E-02 + 148 -2.2464556652157771E-03 + 149 -6.2398259723164980E-05 + 150 -3.4245305469796680E-03 + 151 1.0420437694133082E-02 + 152 -1.0729508825221422E-03 + 153 -8.0315231189864347E-02 + 154 5.4732590712806470E-04 + 155 -2.6689597722903713E-01 + 156 1.2631684465193171E-01 + 157 2.0139978922341897E-01 + 158 -4.1737056453542802E-02 + 159 8.0808845138866433E-03 + 160 3.8974016442448287E-02 + 161 1.8307121169427686E-02 + 162 -1.1204859700162804E-02 + 163 5.0488212043546081E-03 + 164 -1.6491514291608969E-03 + 165 1.3783363636967888E-02 + 166 2.8443645240762504E-02 + 167 -2.4457319834051718E-02 + 168 3.0786405022785256E-02 + 169 -2.4339907167466018E-03 + 170 4.8055272112259441E-02 + 171 -3.1650095722776652E-03 + 172 -3.1929607898754063E-03 + 173 1.4659227614824834E-02 + 174 8.8943666325025216E-03 + 175 -1.3380899745136923E-02 + 176 2.2288236706337838E-02 + 177 -6.1661117487641038E-03 + 178 2.3106122743681079E-01 + 179 -4.8002639761331428E-02 + 180 -9.9586485323532176E-03 + 181 5.7431710345891014E-02 + 182 -1.0059962393306390E-02 + 183 -3.6008285615817440E-02 + 184 7.0032532911683707E-03 + 185 4.3339623116886411E-02 + 186 1.2006655355659385E-02 + 187 -1.7479523351849734E-02 + 188 -1.5372989319291926E-02 + 189 3.1158475629684122E-02 + 190 2.0177083218898526E-02 + 191 8.3767294298495665E-02 + 192 -1.6582491761610585E-02 + 193 6.9033008594109810E-03 + 194 3.6662964402833467E-02 + 195 2.6425619126561335E-02 + 196 -4.1955745787045718E-03 + 197 -8.9922966744638410E-03 + 198 1.1924179237615166E-03 + 199 -2.6776526598783584E-02 + 200 1.6714614822588715E-02 + 201 -1.8657368756127394E-02 + 202 8.4623268199154698E-03 + 203 8.9095062350707851E-03 + 204 -4.5512137594065624E-02 + 205 5.3958717722033039E-03 + 206 2.7750058660543869E-01 + 207 -5.9501272130734341E-02 + 208 2.9099005156598473E-01 + 209 2.9245811871253018E-02 + 210 -1.1111864932539179E-02 + 211 4.6889064718736204E-02 + 212 5.7321221762591350E-03 + 213 9.6232681395108503E-04 + 214 -1.6999381296172823E-02 + 215 5.2362174276984509E-03 + 216 6.0814166036698395E-04 + 217 7.2056513612322584E-02 + 218 4.0914745395976178E-02 + 219 -5.7626719173083103E-02 + 220 -8.2897979561130583E-03 + 221 -1.6566959221702684E-03 + 222 -9.5458853108078647E-04 + 223 2.1433754684764845E-03 + 224 -6.2305087818764074E-03 + 225 -1.5491499515977469E-03 + 226 -1.0844779197001284E-02 + 227 6.8822979644340169E-03 + 228 -9.0998286072172733E-04 + 229 -2.7335012036653165E-02 + 230 -3.0913581031837695E-03 + 231 -1.4729487955642662E-01 + 232 -1.1355868848705605E-01 + 233 -1.3605043560836091E-01 + 234 8.5987086596928924E-03 + 235 -2.0825811890447053E-02 + 236 -1.2489671407408705E-02 + 237 9.3285094696478037E-03 + 238 1.6107156504491432E-02 + 239 -5.3728218690862681E-03 + 240 1.0754307246640022E-03 + 241 3.7207794918107809E-03 + 242 4.9248452223991331E-02 + 243 3.2429230680488377E-02 + 244 -3.9349562069146762E-02 + 245 -2.8661244051080850E-02 + 246 -2.9936603037354844E-02 + 247 2.0258819741271437E-04 + 248 -6.1942647384394377E-03 + 249 -3.2111731229405951E-03 + 250 -1.8623199752466298E-03 + 251 1.5319035503336026E-04 + 252 1.0325240848186201E-02 + 253 1.1369742718315147E-02 + 254 1.0188688310445165E-01 + 255 1.9130319491259075E-02 + 256 -2.5798173642130825E-02 + 257 -2.2509421045375391E-01 + 258 4.7177077481895972E-02 + 259 -1.8987576250659843E-02 + 260 -4.4231287821893908E-02 + 261 1.1407048502610245E-02 + 262 1.2977415618851842E-02 + 263 1.9836756522697173E-03 + 264 -4.1433816625059882E-03 + 265 1.8614635516625917E-02 + 266 -1.7337611383309009E-02 + 267 4.0162773828291851E-02 + 268 1.2444247925070545E-02 + 269 -5.0713058710730112E-02 + 270 3.0698997525413586E-02 + 271 -9.1628723219491452E-03 + 272 -9.0657569559837448E-03 + 273 -3.8904865196300346E-04 + 274 -2.6816734425395452E-03 + 275 -3.3860593112586806E-03 + 276 2.7215372567451976E-03 + 277 -1.1118655616772487E-02 + 278 -7.6355450354388356E-03 + 279 -4.6502052995809999E-02 + 280 1.1097387975257233E-02 + 281 -3.2728317877829170E-02 + 282 1.0829219420418056E-02 + 283 -6.5257980177081260E-02 + 284 -4.5912602886763341E-06 + 285 -3.4052859759928361E-02 + 286 1.1517096759184293E-02 + 287 -2.1504432371894040E-02 + 288 -3.1580271730179111E-03 + 289 -1.2806875570056565E-02 + 290 -4.8209019545550659E-03 + 291 1.0776275132816215E-02 + 292 5.1857052085099879E-02 + 293 -9.3600261874670718E-03 + 294 -5.4047489120805224E-02 + 295 -4.3016605179869473E-02 + 296 -1.5950169351454872E-03 + 297 2.4871857822239146E-02 + 298 1.2654422662892247E-03 + 299 -1.3876333252900153E-02 + 300 1.3948935415647427E-02 + 301 1.8014411123670110E-02 + 302 2.1120729766389034E-03 + 303 5.1576473255653789E-03 + 304 1.3596677901367786E-02 + 305 1.1166304890644537E-02 + 306 1.5534062821942528E-03 + 307 1.1271538163678009E-01 + 308 -5.4942084084759160E-02 + 309 -1.2858078681870801E-02 + 310 1.3797707953829386E-02 + 311 -1.3432221842374762E-03 + 312 -1.1099523214306758E-02 + 313 3.5016716955052494E-03 + 314 -5.0482877572690221E-03 + 315 1.0712466516434272E-02 + 316 -5.7741111772958357E-04 + 317 -1.8972656243263403E-02 + 318 -2.8766719440531011E-02 + 319 -2.1100083954173624E-02 + 320 5.1318485140879375E-02 + 321 5.5564593676980575E-03 + 322 -5.7971715625524743E-02 + 323 -3.3452527466976243E-04 + 324 1.1714588627468245E-04 + 325 -6.4535797004839305E-03 + 326 4.0005881959317979E-03 + 327 4.0787097415861178E-03 + 328 -3.3688849218142252E-03 + 329 6.0157151006685997E-05 + 330 6.6566662665814791E-02 + 331 1.0583874100166819E-02 + 332 6.7735421028813539E-02 + 333 1.5287111914777182E-01 + 334 1.4983407026430515E-01 + 335 8.7235415706994595E-03 + 336 2.5802664293860494E-02 + 337 4.1583810071976497E-03 + 338 -3.0791840500417381E-03 + 339 3.8257856208786026E-04 + 340 -1.0189921845491260E-02 + 341 9.6708588136646366E-03 + 342 -9.8154837262849418E-03 + 343 -1.0522667369639988E-02 + 344 -2.2991975147414758E-03 + 345 -6.4533810618864970E-02 + 346 2.5344624435111138E-02 + 347 -3.9078150806722209E-02 + 348 4.1725049534270292E-04 + 349 4.4504394070496878E-03 + 350 2.6452634217562793E-03 + 351 -3.0983939539236689E-03 + 352 -3.2740634597932701E-03 + 353 -1.0388334871649319E-03 + 354 3.1146691175505917E-03 + 355 5.3262106071523818E-02 + 356 -1.1781605213005695E-02 + 357 1.5157133092171596E-03 + 358 6.5305197886612848E-02 + 359 5.0438662624816333E-02 + 360 8.5005080144968138E-03 + 361 -1.2482852857748760E-02 + 362 -2.9043432444983936E-02 + 363 -1.3693993340399833E-02 + 364 1.4433980307206025E-02 + 365 -1.2854087452114131E-02 + 366 -2.3601150491832482E-02 + 367 -9.3109067742586458E-03 + 368 -1.0799685491009968E-01 + 369 2.3711573232296959E-02 + 370 2.6841583381205103E-01 + 371 -1.4681035934085349E-01 + 372 -8.0574537148641087E-02 + 373 -1.1219190330388260E-01 + 374 5.2741860603781596E-02 + 375 4.2308268047890896E-03 + 376 7.1405537689337006E-03 + 377 -4.2514400066580145E-02 + 378 3.7629897721059291E-02 + 379 -3.0423883852245814E-02 + 380 -3.8833872074271747E-02 + 381 -6.9820115285820564E-02 + 382 1.7858992250417847E-02 + 383 -1.5725107219312948E-01 + 384 1.8633884207012077E-02 + 385 1.4428545437315171E-01 + 386 7.5071490943583008E-02 + 387 -1.8883115063978113E-02 + 388 -3.5114196000135732E-02 + 389 -4.1604221837796995E-02 + 390 -4.0563920930282986E-02 + 391 1.6445718083488669E-02 + 392 3.5297523815719017E-02 + 393 -2.7643107093069941E-02 + 394 -1.6371181685984637E-01 + 395 -1.9715839904208884E-02 + 396 2.1471647565056498E-02 + 397 6.4911615234139061E-02 + 398 -1.7284902185693654E-01 + 399 -7.1232803438863552E-04 + 400 9.5830588568771840E-03 + 401 -2.3146801459507857E-02 + 402 -5.6197109623314116E-03 + 403 -3.0236947233952958E-02 + 404 -7.6019945130705675E-04 + 405 7.8129272971188216E-03 + 406 -1.3300996670502168E-02 + 407 -4.3236482464567148E-02 + 408 -1.0447655010364930E-01 + 409 -2.0341638911814629E-02 + 410 2.8564636062766258E-02 + 411 -4.7298941373731057E-02 + 412 -4.2619740557646576E-03 + 413 -3.9268464635351646E-03 + 414 4.5114776602216194E-03 + 415 1.8800987576353895E-03 + 416 2.2861716507810697E-03 + 417 -5.2367068125190792E-04 + 418 1.8192760969329032E-03 + 419 -5.9061565525621230E-02 + 420 1.3309970996153740E-02 + 421 3.8580988559198323E-02 + 422 8.4040575260067307E-02 + 423 -2.6262392288472863E-02 + 424 -2.3110378725133818E-02 + 425 -1.8649625726194986E-02 + 426 2.3222498329468599E-02 + 427 7.8131836488644166E-03 + 428 -1.4250236936716959E-02 + 429 -7.8284700536319762E-03 + 430 3.6194028535198389E-03 + 431 -5.7795802578563165E-03 + 432 -8.6420116372735251E-02 + 433 2.2812054816833575E-02 + 434 -8.8908912585705491E-02 + 435 3.8480694112527442E-02 + 436 -6.0774110367921644E-02 + 437 4.0670159024749630E-02 + 438 -2.7254727049247137E-03 + 439 2.3468189152889524E-02 + 440 1.4001755313227053E-02 + 441 2.2323274217822715E-02 + 442 -1.7016386354342453E-02 + 443 2.8224971858170165E-02 + 444 6.9912322220387112E-03 + 445 1.8296056499049161E-02 + 446 2.9611005983776507E-03 + 447 1.2747332982426418E-01 + 448 -1.8967340429078119E-01 + 449 -7.7214210110191066E-04 + 450 1.0747544582155698E-02 + 451 -2.6083241060697107E-02 + 452 -4.9824101337248971E-03 + 453 -3.1958312063920936E-03 + 454 1.2387345225770164E-02 + 455 -3.8378078371686039E-03 + 456 -5.8789016475690476E-03 + 457 1.0567568353746570E-02 + 458 -1.1655370108077853E-03 + 459 -1.3591216626685968E-02 + 460 3.0866320078181629E-04 + 461 -2.4233215972457044E-02 + 462 8.2174305978306873E-03 + 463 -4.9653835030629605E-03 + 464 -3.3030027851645434E-03 + 465 7.3479153135943684E-03 + 466 5.4460350018999213E-03 + 467 -4.0533114609050784E-04 + 468 8.5903018653307583E-03 + 469 4.3119255732935752E-03 + 470 1.1059092545518054E-01 + 471 1.5013374857217588E-02 + 472 7.6198270326539655E-02 + 473 -8.9386691290081789E-03 + 474 -1.2915538410391367E-01 + 475 2.5459550368768478E-02 + 476 5.8857206102703435E-03 + 477 1.5164253584465496E-03 + 478 2.1096689356420698E-03 + 479 1.4210003750000212E-03 + 480 -1.0573661951375385E-02 + 481 -1.6580139066716523E-03 + 482 5.2214948592840902E-03 + 483 3.0142336634114277E-02 + 484 4.5804099221419321E-02 + 485 -6.4050528256813594E-02 + 486 3.9190436388360964E-02 + 487 2.5379208003389341E-02 + 488 1.3832513559768628E-02 + 489 7.9681012769241034E-03 + 490 -1.2123857687856303E-03 + 491 1.0851531124860633E-02 + 492 4.8682577775468489E-03 + 493 -5.4937393036480157E-03 + 494 8.8851318903450764E-03 +Ene= 5.0421706729E-02 +Spin= Alpha +Occup= 0.0000000 + 1 4.5644337986537852E-02 + 2 7.7291629257776728E-03 + 3 6.3576230951374102E-02 + 4 -4.7562462927285082E-02 + 5 4.4052049847727720E-01 + 6 7.1874151601803819E-03 + 7 9.9695145421486891E-05 + 8 5.9474717627005971E-02 + 9 7.0942709138136746E-03 + 10 1.1819746291530297E-02 + 11 -1.4291338218080464E-02 + 12 5.7404847307738092E-03 + 13 -1.3712297063273052E-02 + 14 4.0469838927962798E-02 + 15 4.0899049016043125E-02 + 16 -4.9772835102754043E-03 + 17 -2.2058158780277983E-03 + 18 -3.5148845452486782E-02 + 19 4.9421268304661202E-03 + 20 -2.7131795092756600E-04 + 21 6.2538541755251097E-03 + 22 2.0260307159145350E-03 + 23 -2.0372679557196694E-03 + 24 2.5904565468771509E-03 + 25 5.6315522261324313E-04 + 26 -5.0759261113744708E-02 + 27 4.9879856751642287E-03 + 28 1.7133144838491120E-02 + 29 -4.1490424321755814E-02 + 30 1.0163209072353990E-01 + 31 1.9916736790730194E-03 + 32 5.0166963260136928E-03 + 33 1.1919052136953451E-02 + 34 -4.8838594304010073E-03 + 35 -4.7882334687389455E-03 + 36 7.6684403921980157E-03 + 37 1.6359392834215284E-02 + 38 -1.3795292144846948E-03 + 39 -2.6773476475766333E-02 + 40 4.5501961592235338E-02 + 41 4.7026461102683145E-02 + 42 7.2905396993604904E-02 + 43 -1.6835760666527880E-02 + 44 7.6092652617422100E-03 + 45 1.6034722732231318E-02 + 46 6.6582074233540733E-03 + 47 1.0652848409458000E-02 + 48 -2.9141188302039536E-03 + 49 -2.1346027204467190E-02 + 50 -8.7402862417136334E-03 + 51 -7.6425956288976249E-02 + 52 6.0965021954904972E-03 + 53 1.5431332269465076E-01 + 54 -1.3213513931715232E-01 + 55 9.5974502450537083E-02 + 56 1.7069546830226143E-02 + 57 -2.1345554128142902E-02 + 58 1.0469041646665865E-02 + 59 -1.2126138143523339E-02 + 60 5.7701881679560001E-04 + 61 6.0202182542987669E-04 + 62 3.0928350467966312E-04 + 63 9.0917036248075941E-03 + 64 -4.2822203246189273E-02 + 65 2.5590236322749323E-02 + 66 -2.7012400132217264E-02 + 67 -1.7601481761758509E-02 + 68 7.3151474168446839E-03 + 69 -3.2433922845065263E-03 + 70 7.1168378545714154E-03 + 71 -6.5822447069032045E-03 + 72 -5.1789699081590240E-03 + 73 -5.6531529494285747E-03 + 74 -1.4745601761792359E-02 + 75 9.2875669653615777E-03 + 76 6.1240531687684077E-02 + 77 -1.2949143649055682E-02 + 78 5.0832068662592440E-02 + 79 -9.4877959555149535E-02 + 80 1.7774522629195346E-03 + 81 -1.1285868790073476E-02 + 82 4.6612766898628415E-02 + 83 3.9254911231345134E-02 + 84 2.6513992716755815E-02 + 85 -1.3213782592324563E-02 + 86 -4.6199108963564366E-03 + 87 2.9392026373902886E-02 + 88 1.3274689312656129E-02 + 89 3.1953339004988750E-02 + 90 -4.2587829221466499E-03 + 91 6.1694151838247099E-02 + 92 -3.7137027220036831E-03 + 93 1.5440400412566446E-01 + 94 -2.3215076455482483E-02 + 95 -1.6520333467010515E-02 + 96 -3.7397094622190791E-02 + 97 3.6232672760057542E-03 + 98 -5.2986803954441792E-03 + 99 -2.0056237999597597E-02 + 100 1.8947078872048096E-02 + 101 -1.8157986580195962E-02 + 102 9.6831614483928657E-02 + 103 -1.7140416259951847E-02 + 104 9.7186406753091703E-02 + 105 -1.0435651464809204E-02 + 106 3.3615499672128651E-02 + 107 -3.9693955491033918E-03 + 108 -2.6569679736382795E-03 + 109 4.0575669545627382E-03 + 110 -3.7947107484621101E-02 + 111 1.1536771073551102E-02 + 112 4.8765663378245363E-03 + 113 2.7978414916666392E-02 + 114 -8.5576270056496109E-03 + 115 4.6950463529202013E-02 + 116 -1.1655802541826819E-02 + 117 -2.2134257282599504E-02 + 118 -7.9786059851640154E-02 + 119 -2.1433905792769499E-02 + 120 4.5951408044359508E-02 + 121 3.7109771878952112E-02 + 122 2.5403409667035547E-02 + 123 -1.0033627214004448E-05 + 124 -1.7830531731562568E-02 + 125 -2.0877133444243082E-02 + 126 -3.6113586269129277E-03 + 127 -1.4559749438461949E-02 + 128 1.4852568863730764E-01 + 129 1.3262091001563387E-02 + 130 4.3009035567024784E-01 + 131 -8.4049048445343125E-02 + 132 1.5454324905392616E-01 + 133 6.0502449739968919E-02 + 134 -1.5693114474247507E-02 + 135 2.6210293626852569E-02 + 136 -6.1453014596103720E-03 + 137 -2.5176354626836703E-03 + 138 2.5737914838723972E-03 + 139 -2.3053885453158916E-03 + 140 -1.2959609773254924E-02 + 141 -2.4043430793919063E-02 + 142 5.2300385824633734E-02 + 143 1.7048590421355876E-02 + 144 -1.0363401614165398E-01 + 145 -2.3345546726180801E-02 + 146 2.4129712212388455E-02 + 147 1.0235391330246478E-02 + 148 2.9955936699263600E-03 + 149 -5.3616892364705170E-03 + 150 1.0548635011420341E-02 + 151 -1.9160383134276518E-03 + 152 5.1350778929885174E-03 + 153 -2.3985561132529323E-01 + 154 -1.9797052118963571E-02 + 155 4.7758599105853095E-01 + 156 -6.6171301042340466E-02 + 157 1.8901691957866978E-01 + 158 6.1624460610697145E-02 + 159 -2.5972575011899569E-02 + 160 4.2135612176504841E-02 + 161 -9.2554604052801377E-03 + 162 1.8912293953679667E-02 + 163 -3.2681273986074500E-03 + 164 1.6820125680395454E-02 + 165 -1.2951151886059865E-02 + 166 -2.7531998638180993E-02 + 167 6.7713748745652336E-02 + 168 2.0708150832126966E-02 + 169 1.4458559758709693E-02 + 170 -7.3993986756116384E-03 + 171 8.3594871989381805E-04 + 172 -9.2345645578701882E-03 + 173 8.2303686524190043E-03 + 174 9.0121206123095227E-03 + 175 6.3516494772476832E-03 + 176 -1.0706614853950864E-03 + 177 6.5407881112674957E-03 + 178 -8.8484105063859647E-02 + 179 1.9087097468557319E-02 + 180 -7.9071575719460413E-02 + 181 -4.5187367337336581E-02 + 182 -1.0980174457939455E-01 + 183 5.4527160012952623E-02 + 184 -4.7042149257783638E-04 + 185 6.4323903037708616E-02 + 186 -3.8409137726669838E-02 + 187 3.0355778835628785E-02 + 188 -1.1837615306512684E-02 + 189 6.3494922588738401E-02 + 190 -2.1642040143846273E-02 + 191 2.1837652752399522E-01 + 192 -4.6191069283521888E-02 + 193 -6.3238391522887613E-02 + 194 8.1103011326471935E-02 + 195 3.4473757924578304E-02 + 196 3.2021474641815796E-02 + 197 -5.4771978837209613E-02 + 198 9.3035955101570655E-03 + 199 -5.9494539181273393E-03 + 200 1.8018848403501937E-02 + 201 -2.2069509027523304E-02 + 202 -7.6395291556532463E-03 + 203 3.5811835289914974E-02 + 204 8.4359897886022953E-02 + 205 1.0906417861640401E-02 + 206 5.2011495557134235E-01 + 207 -3.1333788511361410E-01 + 208 1.8438784367419442E-01 + 209 7.5849426546543336E-02 + 210 -4.5686389869258541E-02 + 211 2.2524214710142695E-02 + 212 -9.7013059795015739E-03 + 213 1.5576155312418356E-02 + 214 -9.2580233986408154E-03 + 215 -1.5499855156969422E-03 + 216 1.2257226533175555E-02 + 217 4.5718884636734404E-03 + 218 7.4564811197147973E-02 + 219 -2.1672391053112468E-02 + 220 -2.2687703673211154E-02 + 221 8.2432038875096730E-02 + 222 5.1366016928117066E-03 + 223 2.0943675371938860E-02 + 224 -1.7207800591001660E-02 + 225 -7.1391250563738419E-03 + 226 1.2572690946592043E-04 + 227 8.0192066410011299E-03 + 228 3.8272244675584544E-03 + 229 -1.2718189960538756E-02 + 230 4.3942621559140186E-04 + 231 2.0021028618993155E-02 + 232 -5.2181641107118995E-02 + 233 7.6532357271864707E-02 + 234 5.5722490776810765E-03 + 235 -8.9454409794839807E-03 + 236 1.5888947776330341E-02 + 237 -6.0025702872788661E-03 + 238 4.8543204252696507E-03 + 239 1.3661122472834528E-02 + 240 -2.3477735973840047E-03 + 241 5.1233551215850107E-03 + 242 -3.2419589384893949E-02 + 243 3.4039538421932546E-02 + 244 5.3827892824054598E-02 + 245 -1.8845052370165531E-02 + 246 1.5253434590690595E-02 + 247 -7.2768770150190602E-04 + 248 3.3035783491665357E-03 + 249 1.5892570262174993E-03 + 250 -4.3994153680497654E-03 + 251 4.1097731774876710E-03 + 252 -3.7665448985025264E-03 + 253 -2.3056384707340659E-03 + 254 -4.0216964588952513E-02 + 255 -2.1762747793905883E-03 + 256 3.0310606984462966E-02 + 257 5.8135740679430843E-02 + 258 -8.1438670433596733E-02 + 259 6.3448586385833885E-03 + 260 1.3700131677262492E-02 + 261 -1.0378281722165594E-02 + 262 -1.8909581911562400E-03 + 263 -2.5362364608538862E-03 + 264 -5.3117197854629502E-03 + 265 -8.0631016076855523E-04 + 266 8.8223365820743506E-03 + 267 -3.6617731902510837E-02 + 268 1.0030712675385731E-02 + 269 4.5381859282703522E-03 + 270 7.1694105667395064E-02 + 271 4.0000091829473075E-02 + 272 1.1752297018211500E-02 + 273 7.2251987933042369E-03 + 274 4.3093166987716886E-03 + 275 -4.7001305000443873E-03 + 276 -2.9778361447928693E-03 + 277 7.0909786427221467E-03 + 278 -4.6542829707074728E-03 + 279 1.0382570314578289E-02 + 280 -3.2463043501670340E-03 + 281 -2.0886744202919657E-03 + 282 3.4031254936050311E-02 + 283 2.5206978051781275E-02 + 284 3.6929315482249082E-03 + 285 -9.2426731019370559E-03 + 286 -3.1697615218084681E-03 + 287 -3.5310630151001027E-03 + 288 -7.0982419040345026E-03 + 289 -6.5666394275361445E-03 + 290 -1.1505708371676759E-02 + 291 -2.2150005001418237E-03 + 292 -1.1843397268263763E-01 + 293 2.6361712543337981E-02 + 294 -1.1545176372573837E-01 + 295 3.2936819793040507E-02 + 296 -8.5802610215680628E-02 + 297 1.6887593353225896E-02 + 298 -1.9406150895519496E-02 + 299 3.2057209506237985E-02 + 300 -6.9575234162224655E-03 + 301 1.1916628718503153E-02 + 302 -1.3268000463997502E-02 + 303 -1.0092218248442820E-02 + 304 -2.0874114283417251E-02 + 305 4.2641373988578174E-02 + 306 -2.1807406711169619E-03 + 307 -9.1329888144409108E-02 + 308 5.1467741060674005E-02 + 309 -1.0050077921517518E-01 + 310 -9.2601268583853112E-03 + 311 4.7354463150230862E-04 + 312 -1.1351190881526339E-02 + 313 1.3338996017329571E-02 + 314 -1.9567995570481875E-03 + 315 1.0706933644946456E-02 + 316 -4.1588825460637663E-03 + 317 4.5763208334767991E-04 + 318 5.8161023582828431E-02 + 319 1.8348147198705610E-02 + 320 2.6818091128545777E-02 + 321 -9.4812984550285331E-03 + 322 -9.6007548428046958E-04 + 323 3.1605638274427670E-04 + 324 -3.4213008040257665E-03 + 325 9.1778995291974953E-04 + 326 -4.4445067432653520E-03 + 327 -3.9726788059276704E-03 + 328 -5.2603140821302430E-04 + 329 5.4622666800781513E-03 + 330 6.0554441931553850E-03 + 331 1.8226615804570470E-03 + 332 3.2834499052347373E-02 + 333 1.0801975585055947E-01 + 334 2.2026308014643362E-01 + 335 5.6862595699100054E-03 + 336 9.3885508931462452E-03 + 337 2.5038096791953998E-02 + 338 -8.2963326563961607E-04 + 339 1.0062618629004084E-02 + 340 -1.9066586401264008E-02 + 341 7.1366578141312358E-03 + 342 -1.0072926079460134E-02 + 343 -3.8814440028084013E-02 + 344 3.3432500470506804E-02 + 345 -9.2807717672892351E-02 + 346 6.4851377853655218E-02 + 347 -5.2328190499638126E-02 + 348 -1.0565194003956313E-02 + 349 -6.9795588361402125E-04 + 350 2.8311635478752645E-03 + 351 1.6232045111308528E-03 + 352 -9.7914233543001401E-03 + 353 1.9473387037305262E-03 + 354 -4.1180170907493758E-03 + 355 -3.4281399358672950E-02 + 356 8.8918625891087084E-03 + 357 -5.6687123395342778E-02 + 358 8.5679529914841096E-02 + 359 -3.5314803726910628E-02 + 360 1.2161603782821471E-02 + 361 3.8288595404363778E-04 + 362 3.5611313630525706E-03 + 363 -1.1598169856685226E-02 + 364 9.6650640514410972E-03 + 365 4.5543762183224883E-03 + 366 -6.6288190713233112E-03 + 367 -1.1061180932556848E-02 + 368 -5.9031158787804620E-02 + 369 1.4676746879173645E-02 + 370 1.5229157354411424E-02 + 371 1.2500451842972308E-02 + 372 8.1545397568581285E-02 + 373 -3.5903060825968051E-02 + 374 1.3701349790224792E-02 + 375 -3.6775498236418847E-02 + 376 -4.2144174422543333E-02 + 377 4.2179459448655450E-03 + 378 1.2914243711401846E-02 + 379 1.1218423576326405E-02 + 380 -1.9266323713093076E-02 + 381 -4.3536094529450522E-02 + 382 9.4015182491367227E-03 + 383 -7.2128236353405956E-02 + 384 -6.6565579259018168E-02 + 385 -1.7215260542838520E-02 + 386 3.1903939419171204E-02 + 387 -2.6079212276632922E-02 + 388 -4.3173255856948393E-03 + 389 2.3067888642230538E-02 + 390 -5.3438247850876230E-03 + 391 -1.9759017632559408E-02 + 392 2.7947164360162438E-02 + 393 -4.9600118440645810E-02 + 394 -4.5399381948175971E-02 + 395 -1.4981262441880507E-02 + 396 4.8890043206850725E-02 + 397 2.9233154772328622E-02 + 398 -2.0796013593212712E-01 + 399 1.7204032303895510E-02 + 400 9.5631363375196284E-03 + 401 -2.8659429410067504E-02 + 402 -1.4066377298026693E-02 + 403 -1.2955122861462857E-02 + 404 -5.6079390029674450E-03 + 405 3.6633135257440655E-03 + 406 2.1969151178548112E-03 + 407 -1.3646780615096082E-02 + 408 1.2371001569312791E-02 + 409 3.6242460191591358E-02 + 410 -3.5076589622425471E-02 + 411 1.4506612380020559E-02 + 412 -2.9229779113475250E-03 + 413 -1.3450571840570021E-02 + 414 6.2309182818864450E-03 + 415 2.6860050384685053E-03 + 416 9.8769884121257707E-03 + 417 8.1870866515231574E-04 + 418 -1.5224265635579270E-02 + 419 8.7862149093275610E-02 + 420 -2.0694963451422570E-02 + 421 5.7417800521698842E-02 + 422 1.1254488466610557E-02 + 423 2.6461277751271189E-02 + 424 -2.9916407524555207E-02 + 425 -1.4368520172657677E-02 + 426 -2.5934418880553530E-02 + 427 -2.8560880460972802E-03 + 428 2.1958560055159583E-03 + 429 -1.2528974835295878E-02 + 430 -6.3270520823910884E-03 + 431 7.6077279567065715E-03 + 432 5.2776877493047873E-02 + 433 -1.4089533514893796E-02 + 434 -3.5774633001576350E-02 + 435 1.2445637308958614E-01 + 436 1.5064721007402920E-03 + 437 3.4805985279788891E-02 + 438 -5.2293478123428015E-02 + 439 2.4146279310682094E-03 + 440 6.5770518590956449E-03 + 441 2.4583210834930657E-02 + 442 -4.0326326935389414E-02 + 443 5.7421407043538188E-02 + 444 -1.5454673241730795E-02 + 445 -8.0532996557044767E-02 + 446 -1.7071964720824635E-02 + 447 -8.4787468800974850E-03 + 448 -6.4915762191726026E-02 + 449 -7.7809883114706616E-02 + 450 6.5498443223411910E-03 + 451 -1.7681192990560427E-02 + 452 -1.9454497753030701E-02 + 453 -2.0688970912848648E-02 + 454 -1.2452225781347298E-03 + 455 1.1097439961864679E-02 + 456 -3.1629187064942618E-03 + 457 -5.4711082386336802E-03 + 458 -6.1021391435991466E-02 + 459 1.3069797062191038E-02 + 460 -1.1299118869732266E-02 + 461 -1.8696016930426405E-02 + 462 4.3173113986479217E-02 + 463 -7.0385610574090311E-03 + 464 -5.9567239043679760E-03 + 465 7.9331481178104828E-03 + 466 -2.1743547811080258E-03 + 467 -1.3533105311080052E-02 + 468 1.5727402302452610E-02 + 469 -1.5431144784375569E-03 + 470 4.3648963211495773E-01 + 471 6.2498739686104587E-02 + 472 4.9437824431651123E-01 + 473 -3.1256957579939809E-01 + 474 8.9820992591415488E-02 + 475 9.7052379071505240E-02 + 476 -5.2330138574923579E-02 + 477 -4.5651300880835688E-03 + 478 1.5230442005933502E-02 + 479 -1.3573626568073165E-02 + 480 -4.5084943100115781E-03 + 481 -5.9639061041924751E-04 + 482 1.5297704142441694E-02 + 483 6.4788351047010513E-04 + 484 -7.5048139151406207E-02 + 485 2.3311198342614405E-04 + 486 3.2260121159743367E-02 + 487 1.6098280961804289E-02 + 488 -1.4904190450607875E-02 + 489 4.6411030251788145E-03 + 490 6.7018341028960817E-03 + 491 8.5563797872484394E-03 + 492 3.2952614401292163E-03 + 493 -1.0371212337224133E-02 + 494 1.4922614821176067E-02 +Ene= 5.6904576914E-02 +Spin= Alpha +Occup= 0.0000000 + 1 -7.5713525133295989E-02 + 2 -4.2589453393095450E-03 + 3 3.7679262296652138E-02 + 4 5.3463942613689898E-03 + 5 -7.1721182635860834E-03 + 6 1.2082044573000826E-02 + 7 1.0091608214131537E-02 + 8 6.7238640396519568E-04 + 9 5.4223940681746158E-03 + 10 -1.4409119735016411E-03 + 11 -1.6641490174306522E-03 + 12 2.5745812625143252E-03 + 13 3.9316137610406329E-03 + 14 -1.3356393059335059E-02 + 15 -5.1085822572427809E-02 + 16 -4.9723384488056216E-02 + 17 -8.4622937835279414E-03 + 18 3.3655699533291293E-03 + 19 1.2247383032809734E-03 + 20 8.1922966831346217E-03 + 21 2.0396380491446297E-04 + 22 2.2603410170139973E-03 + 23 -2.9751477007843906E-03 + 24 -4.1861702437075892E-03 + 25 -2.7955607992669751E-04 + 26 3.0120713455177705E-02 + 27 4.8180474314376900E-03 + 28 -6.0703051865101075E-02 + 29 -4.4033125041166681E-02 + 30 -1.8045941572021221E-01 + 31 -1.2115583797798726E-02 + 32 -2.5042184624074707E-03 + 33 -2.0143277461026572E-02 + 34 -5.7388332648514329E-03 + 35 -1.7777593360010276E-02 + 36 2.7268228622696440E-03 + 37 -4.0067415291060414E-03 + 38 6.2557947310563824E-03 + 39 -3.9166534834675207E-02 + 40 -6.3901627891515225E-02 + 41 1.4015395145239517E-02 + 42 -2.6394719664076808E-02 + 43 -5.7799891051432795E-02 + 44 2.1294518463877208E-03 + 45 6.2976125521378625E-03 + 46 -1.0684839075076748E-03 + 47 1.8582718468072906E-03 + 48 -1.2819093790687301E-03 + 49 5.4289823898171063E-03 + 50 2.6543157314488134E-03 + 51 3.4245893764697825E-02 + 52 4.6481949981844349E-03 + 53 -6.9269573424237493E-02 + 54 -6.1362251927376491E-04 + 55 -4.5452399682665609E-02 + 56 -1.6855827267926480E-02 + 57 -3.5245780036431674E-03 + 58 -3.7025636662183455E-03 + 59 3.6920701683129035E-04 + 60 -5.5668916227362454E-03 + 61 4.4281902461277946E-03 + 62 -5.5568332673400916E-03 + 63 9.0746975996149025E-03 + 64 -2.4045614432989087E-04 + 65 1.9563865682198832E-02 + 66 9.7233077986625220E-03 + 67 -3.3656484900507058E-02 + 68 8.4662481592975153E-03 + 69 8.5221408625357753E-04 + 70 2.7438071944516323E-03 + 71 -6.3676553900530270E-03 + 72 -6.6026535986617452E-03 + 73 -1.0037606345852980E-03 + 74 -2.3042286893945850E-03 + 75 2.1541856457065836E-03 + 76 1.1027606585403967E-02 + 77 -1.5294371708814642E-03 + 78 -3.8130583953191683E-03 + 79 2.1200415935345059E-02 + 80 -4.0834268039151619E-02 + 81 2.2886369714417245E-03 + 82 -1.0968449002080813E-02 + 83 -1.8572585150690848E-02 + 84 -7.5616331514590518E-03 + 85 8.2877358092280379E-03 + 86 2.3857297366005944E-02 + 87 4.7876914302999642E-03 + 88 -3.1265659823367384E-03 + 89 -1.7125017532481128E-02 + 90 4.8100840396279728E-03 + 91 -2.3674118564300455E-02 + 92 -2.7723636479711170E-02 + 93 1.9819987161279768E-02 + 94 6.5404418218986743E-03 + 95 7.8243030164892036E-03 + 96 4.4518240756137271E-03 + 97 7.6863493965287875E-03 + 98 8.2884694643459485E-03 + 99 -2.1971397273837534E-03 + 100 -6.9989760273659269E-03 + 101 -2.5592907368942029E-03 + 102 -1.9746339539533572E-02 + 103 5.0742810319426238E-03 + 104 -2.7893724508323042E-03 + 105 -1.3783335216498334E-02 + 106 -3.1395060448547549E-02 + 107 -5.5460633552347474E-03 + 108 -1.5331283752208671E-02 + 109 2.0429297847927144E-02 + 110 -9.2426037193407886E-03 + 111 -5.5967535055804268E-03 + 112 2.1853134156600434E-02 + 113 -5.4811212272176920E-03 + 114 3.4898922422397938E-03 + 115 1.3425607918267349E-01 + 116 -3.3321692703264856E-02 + 117 -5.3236779418690282E-02 + 118 1.5556365315502191E-01 + 119 -1.0119298208530311E-01 + 120 9.4871797852968728E-03 + 121 -4.2813356593467480E-02 + 122 4.8655408655463160E-02 + 123 -8.3252509866232963E-03 + 124 -7.9678201347695345E-03 + 125 2.8190842111569733E-02 + 126 3.0802214988909216E-02 + 127 -5.7234529955922410E-03 + 128 1.2557491650583714E-02 + 129 -4.5729253623146152E-03 + 130 2.0984367876538776E-02 + 131 -1.5045724988154607E-01 + 132 1.2734295204742740E-01 + 133 1.9452158148628043E-03 + 134 -1.5673989865278432E-02 + 135 1.2680682414370675E-02 + 136 -3.1974915004395863E-03 + 137 8.7001699762970734E-03 + 138 6.0036520171424879E-03 + 139 6.6768622262499792E-03 + 140 -7.3390498355626272E-03 + 141 -3.6149126730717317E-02 + 142 1.5202013615771764E-02 + 143 3.2341579812820848E-02 + 144 1.5436904587521314E-02 + 145 -1.9791734686445284E-02 + 146 -3.1811215741578617E-03 + 147 -4.6967762049748476E-03 + 148 -1.2478335340419259E-02 + 149 5.0950136227220092E-03 + 150 1.7507537634252764E-03 + 151 -1.4914221672334064E-03 + 152 2.4296970013218864E-03 + 153 -5.1189053609759935E-02 + 154 -5.5103224069807701E-03 + 155 4.9821051689365362E-02 + 156 -3.1213638273903374E-02 + 157 6.6746879609516890E-02 + 158 1.6368004574022579E-03 + 159 1.0040057827954180E-03 + 160 1.7566203257988511E-02 + 161 2.1348980095080403E-03 + 162 4.7136010189066883E-03 + 163 -5.0641740152179504E-03 + 164 1.2053406534921415E-03 + 165 -4.6673856038695937E-03 + 166 -1.5069918767696120E-02 + 167 2.8881925537991588E-02 + 168 -1.7910012748955078E-02 + 169 -2.8323052923464549E-02 + 170 -3.3725318576314431E-02 + 171 -2.6496551588941889E-03 + 172 3.2897943810248839E-04 + 173 3.2432440458467437E-03 + 174 -1.8421197138101264E-03 + 175 3.6026519770765877E-03 + 176 1.3435264914822566E-03 + 177 -5.4758912177663250E-03 + 178 -7.2163470624113948E-02 + 179 1.7030562992560772E-02 + 180 4.0273589296480304E-02 + 181 1.3434047207163563E-01 + 182 4.9307626995118384E-02 + 183 2.5665486038127993E-03 + 184 -4.0417409456296557E-02 + 185 -1.2956405149994299E-02 + 186 2.5234633235001122E-03 + 187 1.5314214806957896E-02 + 188 3.2614862340613483E-02 + 189 1.1777910664198263E-02 + 190 4.9445677483587617E-03 + 191 5.9409180169155661E-02 + 192 -1.4088949651060678E-02 + 193 -2.9905046539869952E-02 + 194 4.7770124213279176E-02 + 195 -1.0474310871760860E-01 + 196 1.9690496494479556E-02 + 197 -3.3010386996129827E-02 + 198 2.6136430423929786E-02 + 199 1.6862006096353122E-02 + 200 -1.8367789593240560E-02 + 201 2.2293829545016273E-02 + 202 -1.7123744856608056E-03 + 203 1.0285309407954548E-02 + 204 9.5430901384950348E-02 + 205 2.2548775986254571E-02 + 206 4.2206278352932072E-03 + 207 3.5808714643849084E-02 + 208 -4.3549061241568221E-01 + 209 -9.0675301773387607E-03 + 210 4.8575104581461510E-03 + 211 -5.2262724378755558E-02 + 212 2.4107851165192954E-03 + 213 6.3921350204517178E-03 + 214 1.8588837640835652E-02 + 215 -6.6663214314804549E-03 + 216 1.9515711610628251E-02 + 217 -2.9074579082871851E-02 + 218 5.2305529523086515E-02 + 219 8.4621826479504877E-02 + 220 1.4063848436578178E-02 + 221 5.0545501300222929E-03 + 222 6.9044669908584402E-03 + 223 2.1084698773455508E-03 + 224 -7.8396797477962767E-03 + 225 -1.0630535399364660E-04 + 226 -2.7764120706617163E-03 + 227 -3.1139961822086908E-03 + 228 3.5493417608984225E-03 + 229 9.5577172542757518E-03 + 230 -7.7298946348476685E-03 + 231 1.4513934181108726E-01 + 232 1.0068773134832126E-01 + 233 -2.0300809203173359E-01 + 234 1.7352749714425564E-02 + 235 4.8507639521239545E-03 + 236 -3.3184882855534802E-02 + 237 -1.5082678005893460E-02 + 238 1.4213227591638128E-02 + 239 7.3603119249065763E-03 + 240 -1.8588586728308761E-02 + 241 2.0530443327993659E-02 + 242 -4.9067843123938429E-02 + 243 1.5979282888394189E-02 + 244 -5.5040442280055744E-02 + 245 -1.1828159420435861E-02 + 246 9.5726934233552080E-02 + 247 5.7917098815040858E-03 + 248 9.9259865767101132E-03 + 249 8.2326964895180625E-05 + 250 -2.0721820365456421E-03 + 251 -1.2731569925733941E-02 + 252 1.4685898070911977E-02 + 253 9.9474589635993229E-03 + 254 1.1767621796065535E-01 + 255 5.4338973695014685E-03 + 256 7.8145681643450489E-03 + 257 -2.9275248453814307E-01 + 258 3.1487180956310284E-01 + 259 1.8213889844483340E-03 + 260 -4.1460824652145949E-02 + 261 2.6932983152689407E-02 + 262 1.0595141697485610E-02 + 263 9.1875418709372186E-03 + 264 8.8960968458961683E-03 + 265 1.2930915801246562E-02 + 266 -9.3255922361451266E-03 + 267 1.3887483477285370E-01 + 268 2.7281841670061417E-02 + 269 9.2944518948470653E-02 + 270 4.9817084995847936E-02 + 271 -3.0949210197721160E-02 + 272 -1.6367910824432841E-02 + 273 -4.3900556287226932E-03 + 274 -5.4486227354678242E-05 + 275 -6.6068853453223209E-03 + 276 7.1731837576716698E-03 + 277 -2.8124490495941732E-03 + 278 -2.7157476979214562E-04 + 279 -2.2952179018836705E-01 + 280 5.2148820302198369E-02 + 281 5.3428768435970296E-02 + 282 4.8067398243785059E-02 + 283 -1.1856021766148113E-01 + 284 -9.1067631871190619E-03 + 285 -8.2231654056515432E-02 + 286 1.8185017216383031E-02 + 287 -6.2053862470163564E-03 + 288 2.3622824201182755E-02 + 289 2.0845052352171798E-02 + 290 -2.9382679433997829E-02 + 291 2.1755679709887867E-02 + 292 1.4490024591495401E-01 + 293 -3.2514081493555093E-02 + 294 -1.3703523556000635E-01 + 295 1.1082533456483609E-01 + 296 1.0070942277421650E-01 + 297 7.6159393274277162E-02 + 298 -3.7329902489433514E-03 + 299 -2.5757229971694589E-02 + 300 1.4057891268597127E-02 + 301 1.3876325746675694E-02 + 302 -2.0541358782662469E-04 + 303 -2.5174575216106214E-02 + 304 -1.2203168400542530E-02 + 305 1.6714572293685723E-01 + 306 3.4257832173292549E-02 + 307 -1.2092482519586442E-01 + 308 4.1342998666476677E-01 + 309 2.6404060272472013E-01 + 310 -3.5731723475138097E-03 + 311 5.6925985148750552E-02 + 312 3.9285499589809716E-02 + 313 2.7521573793889260E-03 + 314 1.3982427214826284E-02 + 315 7.2977901727009032E-03 + 316 -2.3941513727146070E-02 + 317 2.7337036477428065E-03 + 318 -3.6262095665214267E-02 + 319 9.4870781220356221E-02 + 320 -5.6102442248784096E-03 + 321 -3.7677433189726710E-02 + 322 4.9679511349665820E-02 + 323 6.4271325364748536E-03 + 324 7.6306665333935658E-03 + 325 1.5525299046822132E-02 + 326 -2.4293886788261675E-02 + 327 -1.1005163555581817E-02 + 328 1.4540227049196249E-02 + 329 -4.3977252508138923E-04 + 330 9.2393132693336516E-02 + 331 1.7845756315742464E-02 + 332 -1.9384428907305178E-02 + 333 8.2121343650185849E-02 + 334 -9.3592363915223804E-03 + 335 -1.6002779108922685E-02 + 336 9.2763394536747468E-03 + 337 1.3936039027862420E-02 + 338 -8.1772550012122729E-03 + 339 -6.6942689796694408E-03 + 340 3.0021710997138436E-03 + 341 6.9255835907157332E-03 + 342 9.3715669835599969E-03 + 343 -1.9847985889081338E-02 + 344 -1.5248441155571869E-02 + 345 -1.3949395321581444E-02 + 346 2.5638764507365318E-02 + 347 -1.1669511283096849E-02 + 348 -5.6514298326305638E-03 + 349 -6.3406580250289614E-03 + 350 1.2280284076896169E-02 + 351 6.4796059772813299E-03 + 352 6.6779759296285868E-03 + 353 -1.0063701319848933E-02 + 354 -2.9194308804251523E-03 + 355 -1.6292148215194943E-01 + 356 3.8770286813528995E-02 + 357 -5.8940898664363681E-02 + 358 -1.2726258117164616E-01 + 359 -2.0497909698199077E-02 + 360 -1.7501473190219354E-02 + 361 7.9453029862917385E-02 + 362 5.1840920900372484E-02 + 363 1.0119769348618718E-02 + 364 -3.2073814102599837E-02 + 365 2.1501755082266281E-02 + 366 -3.5295066580675613E-03 + 367 1.4293923258117475E-02 + 368 1.0785116184377053E-02 + 369 -2.6029046775946966E-03 + 370 6.5783937289823305E-02 + 371 -8.9632818661325678E-02 + 372 6.6029515675980879E-02 + 373 -2.8282289379140846E-02 + 374 3.3861234553853502E-02 + 375 -1.3490446036235049E-02 + 376 -1.2181987263300839E-02 + 377 2.2150634367506694E-02 + 378 3.4287498673236903E-02 + 379 -1.1340091639418759E-02 + 380 5.9201982757959206E-03 + 381 -1.6793263682077339E-01 + 382 3.6060534491157689E-02 + 383 7.8481541890134898E-02 + 384 9.9762784274664673E-02 + 385 2.4835220051937276E-02 + 386 6.7507926341308904E-03 + 387 -3.9680291120062279E-02 + 388 7.4123314565021315E-03 + 389 -3.6805714198559228E-02 + 390 1.2385498034442362E-02 + 391 4.2860191892072942E-03 + 392 1.9204809092349711E-02 + 393 1.7067797982731246E-02 + 394 5.2948242309458320E-02 + 395 8.8528935021289553E-03 + 396 -2.5440506270678132E-01 + 397 -2.5184113757775928E-01 + 398 -1.0363923044859347E-01 + 399 -2.6600511497906185E-02 + 400 -2.9168296326748805E-02 + 401 -2.3099847765724445E-02 + 402 -1.1013171240849494E-02 + 403 -1.1963742798348760E-02 + 404 1.1503318424919298E-03 + 405 1.4443676707899425E-03 + 406 -1.7793549852070954E-02 + 407 -1.1200714697011708E-02 + 408 -5.8460400368863193E-02 + 409 5.7434907365228960E-03 + 410 6.3224673338197257E-02 + 411 -4.8379531059620541E-02 + 412 9.7017156874776161E-03 + 413 -1.0399579793629843E-02 + 414 -1.1237417936705185E-02 + 415 -2.1533566808046998E-02 + 416 2.0801369062289172E-03 + 417 -1.3540260946759988E-02 + 418 -1.3456437041289749E-02 + 419 1.8937572509412823E-01 + 420 -4.1410769185353080E-02 + 421 5.8496465487616715E-02 + 422 1.5078224773956667E-02 + 423 6.9978849069569041E-02 + 424 -7.1359538204981449E-02 + 425 -8.7370362809637628E-03 + 426 -3.5504797037398811E-02 + 427 6.0191673886194740E-03 + 428 7.0034908943899668E-03 + 429 -2.1773606903196109E-02 + 430 -4.6982863797073324E-02 + 431 2.0535220648737712E-03 + 432 1.4844671864339884E-01 + 433 -2.9305579403194400E-02 + 434 -2.3722725603353582E-02 + 435 -3.1022901039820788E-02 + 436 -3.8353161170171637E-02 + 437 -2.3014154930817963E-02 + 438 -1.7605504185645715E-02 + 439 -1.1106247693606281E-02 + 440 -1.2719296262558143E-02 + 441 1.3999936728088802E-02 + 442 -6.3076890288023659E-03 + 443 -2.0652725412212285E-02 + 444 3.8277082589517154E-02 + 445 -2.5960748124704858E-01 + 446 -2.2804431825496716E-02 + 447 -4.7467068119379752E-01 + 448 6.4743618904042677E-02 + 449 -2.1834007599058434E-02 + 450 -6.8582301123615796E-02 + 451 2.2739642411292393E-02 + 452 -1.3157811464046558E-02 + 453 -4.0033453654138876E-04 + 454 5.6701644836338527E-03 + 455 -5.4571753226089143E-04 + 456 -8.3434728897558205E-03 + 457 -7.4863654844746182E-04 + 458 -1.8553560655977731E-02 + 459 8.1327284141990058E-02 + 460 -4.2537763024547315E-02 + 461 7.6668867767044164E-03 + 462 6.7650112277701652E-02 + 463 1.3865927522906336E-02 + 464 2.7112018229929879E-03 + 465 -1.0813486144051133E-02 + 466 -2.5359665012442249E-02 + 467 5.1707441382040148E-03 + 468 1.5372530658761751E-03 + 469 1.2528640961340787E-02 + 470 -1.8292793673641758E-01 + 471 -1.6151738119630416E-02 + 472 -3.1177341791706736E-01 + 473 -2.6956064446526967E-01 + 474 1.1191688700699493E-01 + 475 -5.2483412088133181E-02 + 476 -2.6139381649904217E-02 + 477 2.3837800600555589E-03 + 478 -5.8526611059766497E-03 + 479 -1.7848583722978359E-03 + 480 -6.3905202774197688E-03 + 481 1.0532939503655704E-02 + 482 2.6215761452790341E-02 + 483 3.5309439510602621E-02 + 484 -1.6191261598935778E-02 + 485 -8.2934854074718997E-03 + 486 6.9382211670050931E-02 + 487 1.2788345779232224E-01 + 488 -1.4524994712091581E-02 + 489 -1.0526764000142227E-02 + 490 4.6274552156646311E-03 + 491 -8.8740354109598067E-03 + 492 1.9494981540369041E-03 + 493 3.0089190895868376E-03 + 494 -1.5036167515897765E-03 +Ene= 6.1011817554E-02 +Spin= Alpha +Occup= 0.0000000 + 1 -1.4594332329274210E-02 + 2 -2.5067715851471431E-03 + 3 -9.8291472841919469E-02 + 4 7.5970550920530761E-02 + 5 -1.0946442644270339E-01 + 6 -8.0397103436614156E-03 + 7 7.8756394115973884E-03 + 8 -7.1406760518138686E-03 + 9 7.4761083601414882E-03 + 10 -6.0179575128059097E-03 + 11 8.7582312823030882E-04 + 12 -4.2721032910662616E-03 + 13 1.0311571645337608E-02 + 14 2.2528648440228661E-02 + 15 -6.6487795718130238E-02 + 16 -5.2274148948738594E-02 + 17 -2.2019941152425462E-02 + 18 5.6860223122309018E-02 + 19 8.4645119086747232E-03 + 20 -4.1418413230565479E-03 + 21 1.2157556674615173E-02 + 22 -2.4698499078509230E-03 + 23 -2.7590988424124703E-03 + 24 -1.4670912165605921E-02 + 25 -1.3720588575811061E-02 + 26 9.3822321644002477E-02 + 27 1.5840961956342624E-02 + 28 -1.0460227446889462E-02 + 29 -8.3505623730796258E-02 + 30 -1.2995876690214336E-03 + 31 -3.4725807061557761E-03 + 32 -1.5304370511210369E-02 + 33 6.2599596768405435E-03 + 34 1.5206572497599553E-02 + 35 2.9273328342749116E-04 + 36 1.0831999000437871E-03 + 37 5.0524639779601930E-03 + 38 -2.6407104062299114E-03 + 39 8.0773361035090932E-02 + 40 -3.6873724122020758E-02 + 41 -2.2957849721342679E-02 + 42 -4.6897489494213920E-02 + 43 2.2216580515168796E-02 + 44 -1.9406205058699667E-03 + 45 -1.9415491029481375E-03 + 46 9.8918557973161803E-04 + 47 -6.9240088399236668E-03 + 48 6.7808821840042409E-03 + 49 -1.2085748417692790E-02 + 50 -6.2206990645719408E-04 + 51 -5.7140587432140452E-03 + 52 -8.3345389872197962E-03 + 53 -2.3527480040109094E-01 + 54 1.1076184264633562E-01 + 55 -1.6299874333606612E-01 + 56 -4.2446042794510704E-02 + 57 5.5275657741149110E-03 + 58 -1.9612194829371772E-02 + 59 1.0808406072979542E-02 + 60 -3.4055620087696786E-03 + 61 4.5688900937585633E-03 + 62 1.5817891768612338E-02 + 63 1.9043000428916018E-02 + 64 -7.5395254535040252E-03 + 65 2.3844131277871966E-02 + 66 3.6807757205341178E-02 + 67 5.5189012070056345E-02 + 68 1.0871727945972312E-02 + 69 3.4683010494242889E-03 + 70 8.0295473922490940E-03 + 71 3.3303523896347474E-04 + 72 -2.0825514167050236E-04 + 73 -1.5849414481061345E-03 + 74 -1.0095340032364801E-02 + 75 -1.4922810769889140E-03 + 76 -5.2278719122868661E-02 + 77 1.0653982806283695E-02 + 78 1.6201738745483175E-02 + 79 2.9243523404069945E-02 + 80 6.4359106382241311E-03 + 81 -1.4693671779238304E-02 + 82 8.1126561649153082E-03 + 83 -1.9573677754456901E-02 + 84 -4.6950165955311979E-03 + 85 1.8238223593789564E-02 + 86 5.7073705210415795E-03 + 87 1.2735101900321507E-02 + 88 -1.3406490768013599E-02 + 89 -6.9786245216735973E-02 + 90 1.3995108936369214E-02 + 91 -3.3895702899804800E-02 + 92 1.2345618318421967E-02 + 93 -2.4999943494009246E-03 + 94 1.6165274692437625E-02 + 95 2.1479042300464858E-02 + 96 2.1291030282162244E-02 + 97 1.3013628218363040E-02 + 98 1.2500075641268081E-02 + 99 3.6097299662056727E-03 + 100 -6.9164607293267745E-03 + 101 1.7933276531767444E-02 + 102 -7.0209072632857515E-03 + 103 1.9763755047447385E-03 + 104 -6.0962820643645312E-02 + 105 1.0990678300991411E-01 + 106 9.7023852352664280E-02 + 107 -7.7816592241020262E-04 + 108 -2.9446936017520565E-02 + 109 -1.7917198363163689E-02 + 110 -6.4281730747843234E-03 + 111 7.2812803585394648E-03 + 112 4.0123688119997440E-03 + 113 -1.4032009316573113E-02 + 114 2.7308691555707750E-02 + 115 -7.7009578335934900E-02 + 116 1.9442502163618685E-02 + 117 -1.3776559080021573E-02 + 118 -1.4924968818637677E-01 + 119 7.6938356366936203E-02 + 120 6.2870848215260220E-04 + 121 5.3075270032377268E-02 + 122 -3.5256211219506270E-02 + 123 1.1205563066924095E-02 + 124 -8.7314282448478133E-03 + 125 -2.4963488308150084E-02 + 126 -2.8822444289113576E-02 + 127 -2.3169550711022772E-03 + 128 -3.5075597529086129E-02 + 129 3.0899680421979021E-03 + 130 -1.9779778241900361E-01 + 131 3.7196031342567459E-01 + 132 -1.4102743976266154E-02 + 133 -3.6845431523101962E-02 + 134 4.1360474232803972E-02 + 135 -1.1342074766251443E-02 + 136 2.0317213955187638E-02 + 137 -1.0883471213099447E-02 + 138 -1.2932910451607941E-02 + 139 -4.0219562866533219E-03 + 140 -1.5270529971052018E-04 + 141 4.7076400339068007E-02 + 142 -9.0966578160067327E-02 + 143 2.9617027049278054E-02 + 144 6.2024427557940923E-02 + 145 4.7944355293849224E-02 + 146 -3.1630062387363531E-03 + 147 -5.7974690640885786E-03 + 148 8.9865414975765501E-03 + 149 9.1615458973928806E-03 + 150 -1.2947215395063780E-02 + 151 8.4158627974248654E-03 + 152 1.2507819381533804E-02 + 153 1.2175278340060179E-01 + 154 1.3742128571746538E-02 + 155 4.4085157048718640E-03 + 156 1.3641706490212069E-01 + 157 -9.3631466751403089E-02 + 158 -1.2129625918945560E-02 + 159 1.4434634357433987E-02 + 160 -2.5279046705368992E-02 + 161 -3.1170073690687129E-03 + 162 2.4359971318442890E-03 + 163 4.8586786076284787E-03 + 164 -4.6733154384760809E-03 + 165 1.6415637515362010E-02 + 166 -2.0535197083222611E-02 + 167 8.4189120855358374E-02 + 168 1.1869386491707027E-02 + 169 4.3412782615949636E-02 + 170 3.8211098533163193E-02 + 171 6.9897829305912325E-03 + 172 1.3022383082667266E-02 + 173 3.7719135759727795E-03 + 174 3.8603401490909690E-04 + 175 -5.1226810008304724E-03 + 176 -1.1974677626302053E-03 + 177 -1.8641210066697822E-03 + 178 -8.9049338311917733E-02 + 179 2.0790301060524017E-02 + 180 3.3772984159857774E-03 + 181 -2.5300192782273551E-02 + 182 6.1666507376064973E-02 + 183 4.4213765985154764E-04 + 184 4.5165112832379270E-02 + 185 -5.0073191846043717E-02 + 186 2.3746139261191665E-02 + 187 1.6222408899956586E-02 + 188 -2.3041224849900954E-02 + 189 -2.5166660946893170E-04 + 190 1.9622922964679840E-02 + 191 2.3191858237463195E-01 + 192 -5.5127630403748337E-02 + 193 -9.1458672312941303E-02 + 194 1.3752227394130612E-01 + 195 -1.0826956525976100E-01 + 196 3.0454928612417016E-02 + 197 -8.7657967989329025E-02 + 198 4.1379499604533854E-02 + 199 -3.4509122815217287E-03 + 200 7.4735702761036622E-03 + 201 -3.5110319482190258E-03 + 202 4.5549653095521225E-02 + 203 2.5303988387739108E-02 + 204 1.6954169185609524E-01 + 205 2.5899214686802011E-02 + 206 3.1483174123289653E-01 + 207 -1.1903122729650567E-01 + 208 -2.2462456824348132E-01 + 209 4.0481151239633931E-02 + 210 -8.0782804336857732E-03 + 211 -3.1900611117458975E-02 + 212 1.4813490492688392E-02 + 213 4.4212974976640838E-03 + 214 -1.7027971066064872E-02 + 215 1.7299516003426885E-02 + 216 -7.8926541806851099E-03 + 217 2.4235668082511420E-02 + 218 4.3121424228635997E-03 + 219 -4.9380361771998255E-02 + 220 5.2671515060528355E-02 + 221 -4.9839157747818282E-02 + 222 4.5822033805102491E-03 + 223 1.1389253659209248E-02 + 224 1.9124006389431914E-03 + 225 -5.4398000116987243E-03 + 226 7.4330577083863130E-04 + 227 2.4673116650795841E-03 + 228 -2.8901137545859546E-03 + 229 -1.5579163313619240E-01 + 230 -1.1529271604731616E-02 + 231 -3.8761593560384860E-02 + 232 1.6377907089803576E-01 + 233 -6.5698884416111158E-02 + 234 9.8962038139935177E-03 + 235 3.6574387089509830E-02 + 236 -1.2418450708292098E-02 + 237 -7.3606412279875856E-03 + 238 1.1545269828305807E-03 + 239 -9.3204338765237541E-03 + 240 4.1405847538123000E-03 + 241 -1.0151480183443252E-03 + 242 1.5279783093346011E-03 + 243 1.2609792139903977E-02 + 244 -6.3094310621576291E-02 + 245 -3.5441888642900189E-02 + 246 2.1687721003495655E-02 + 247 5.9902062224844992E-03 + 248 -2.1666952063085294E-02 + 249 3.5026671196861504E-03 + 250 -6.6308149370128029E-03 + 251 5.1644447172890223E-03 + 252 5.3601443435042024E-03 + 253 7.5385569287341522E-03 + 254 -6.1793713734341151E-02 + 255 6.6590848566528017E-03 + 256 5.7406917856067906E-02 + 257 2.5790978084962274E-01 + 258 -3.1829742587944132E-01 + 259 4.5499548452464277E-03 + 260 3.2811577993430791E-02 + 261 -4.0135333494761505E-02 + 262 -1.2001572918520434E-02 + 263 7.2412330964801515E-04 + 264 -9.0327979271989951E-03 + 265 -1.0368176688053430E-02 + 266 1.0465328768602919E-02 + 267 -7.5170174465395395E-02 + 268 -8.4167103750761897E-03 + 269 -5.5236141529204398E-02 + 270 -5.8673797036190210E-02 + 271 7.9004173250996970E-02 + 272 9.6215037274647395E-03 + 273 3.7458695147824092E-03 + 274 -7.4639318739881427E-04 + 275 5.4906782053157841E-05 + 276 -5.3690013204117327E-03 + 277 1.1938709643000223E-03 + 278 7.4574283674584806E-03 + 279 1.4494675917734073E-01 + 280 -2.9409288682994337E-02 + 281 6.3033236244732001E-03 + 282 5.6466658656020102E-02 + 283 7.4491274005712330E-02 + 284 3.3845066385997419E-03 + 285 2.3812792204989823E-02 + 286 -3.3003221939789162E-02 + 287 -7.3244583676941545E-03 + 288 1.3677668234697712E-03 + 289 -9.2395152308147304E-03 + 290 -4.5874790141770878E-04 + 291 -2.3633277831425315E-02 + 292 1.3300201528396971E-01 + 293 -2.9776505139800027E-02 + 294 -1.1758724211213301E-01 + 295 -1.2333241292686667E-02 + 296 -1.3619039355042138E-02 + 297 5.8451782246062442E-02 + 298 3.1862086254603753E-02 + 299 8.0242886334034626E-03 + 300 2.5158111546207843E-02 + 301 -1.4380980829718146E-02 + 302 2.0569924703114636E-02 + 303 -3.0200661030809872E-02 + 304 -9.4637221947305155E-03 + 305 3.0181264381425338E-01 + 306 5.0741018824463482E-02 + 307 -1.1847946311107618E-01 + 308 4.5689520144687057E-01 + 309 1.4319074097694659E-01 + 310 -9.4520544565845355E-03 + 311 8.4412949090919356E-02 + 312 3.5416218371476682E-02 + 313 5.4733348238820900E-03 + 314 8.2298898585217509E-03 + 315 -1.4054431837946513E-02 + 316 -1.8967735093767292E-02 + 317 1.2575522662178432E-03 + 318 -3.2343399113062575E-02 + 319 2.2897610415690873E-02 + 320 -1.4363602697528401E-02 + 321 -5.8389790429097074E-02 + 322 2.4145097017582072E-02 + 323 -7.6450217345516019E-03 + 324 1.1393486497620248E-02 + 325 -6.0558393840049385E-04 + 326 9.8539891603530612E-03 + 327 -6.4883215791938266E-03 + 328 2.1818853324462210E-02 + 329 3.9183450104478425E-04 + 330 3.5416319267844602E-02 + 331 -2.7158728063958505E-03 + 332 -8.4268681372454454E-02 + 333 -5.6981852930359490E-02 + 334 2.2560442428515184E-01 + 335 -1.6935524389189018E-02 + 336 -1.0841742812061664E-02 + 337 3.7544479816517984E-02 + 338 -1.1059014775291316E-02 + 339 1.1525924723336158E-02 + 340 -1.1841052091070565E-03 + 341 -1.5132196792749160E-02 + 342 5.9867702066521483E-03 + 343 -3.4458333601262298E-02 + 344 7.0262188566361877E-02 + 345 -4.8383604942794416E-02 + 346 -8.1014976300457855E-02 + 347 -2.1133512025964560E-02 + 348 -1.1784919356734560E-02 + 349 -1.5052584371347521E-02 + 350 3.3748522902464204E-03 + 351 -3.3029906242755557E-03 + 352 2.7416219793201884E-03 + 353 2.7530397347070306E-03 + 354 1.0008407169458567E-02 + 355 -1.6774488074618166E-01 + 356 3.5518070678094864E-02 + 357 -5.9799516701798443E-02 + 358 2.3940386785598865E-02 + 359 -3.0897901401638537E-02 + 360 7.7220386000454253E-03 + 361 3.0067488613266764E-02 + 362 5.1848094740682492E-02 + 363 1.3634497187535934E-03 + 364 -1.4814286297272054E-02 + 365 -1.7538074443900741E-05 + 366 1.8778244555724452E-02 + 367 -6.2847213592870706E-03 + 368 3.9712722655093381E-02 + 369 -9.0218701092258952E-03 + 370 1.1335562399203224E-01 + 371 -1.9803433941603454E-01 + 372 4.6603281278377796E-02 + 373 -4.6909800943834332E-02 + 374 7.9410797044687648E-02 + 375 -2.6382428840439984E-02 + 376 5.0618090332059162E-02 + 377 1.4672825771058761E-02 + 378 5.1474515696757126E-04 + 379 2.7493983170395368E-02 + 380 -6.3522148950658983E-04 + 381 1.7267163937345292E-01 + 382 -3.4559042605794163E-02 + 383 -8.8600026309897054E-03 + 384 -8.3398659502978242E-02 + 385 1.0488011235773834E-01 + 386 -2.6822236679115579E-02 + 387 4.0546144465066380E-02 + 388 -2.3345767890845744E-02 + 389 1.2732545783580710E-02 + 390 1.9992859372171108E-04 + 391 2.7284658702713734E-02 + 392 -1.8922568018036105E-02 + 393 -8.1935344795326052E-03 + 394 -2.0939357887373908E-01 + 395 -4.1384031842718345E-04 + 396 8.6108090635172677E-02 + 397 2.3571734932173785E-01 + 398 2.1963789909517123E-01 + 399 -7.7830697296856826E-03 + 400 4.0049910041277531E-02 + 401 2.3258224879082599E-02 + 402 1.2736847069122290E-02 + 403 9.9236740434535935E-03 + 404 -1.1820972090642885E-03 + 405 3.3846754993368294E-03 + 406 -7.3019318844656936E-03 + 407 3.6542171902070986E-02 + 408 4.2611191341119695E-02 + 409 -1.3855533105723933E-02 + 410 -8.2068596087930509E-05 + 411 2.0365715527799141E-02 + 412 5.5542850535762510E-03 + 413 2.2587588462694406E-02 + 414 7.0201243001651271E-03 + 415 -4.9148248942852690E-03 + 416 -1.6446912909814781E-03 + 417 -2.3979141759812683E-03 + 418 8.3166735055199012E-04 + 419 6.6775722672805835E-02 + 420 -1.4640945010174983E-02 + 421 7.1492192386806569E-02 + 422 -9.6113057986477637E-02 + 423 -1.3869783615496362E-01 + 424 -5.6135877243808079E-02 + 425 5.6878080854901460E-02 + 426 6.1370160892199169E-02 + 427 5.5725117945049953E-02 + 428 2.8462704871965706E-02 + 429 2.7956586419076269E-02 + 430 -3.8658503339752237E-02 + 431 -3.5669406948640632E-03 + 432 -2.2983373747272034E-02 + 433 4.7869951137957398E-03 + 434 8.6943183198158538E-02 + 435 2.3006855203059128E-02 + 436 -1.1412193808872358E-01 + 437 -4.5173518985686431E-02 + 438 6.6252443669827295E-03 + 439 4.2587832436280733E-02 + 440 -1.2623198514769212E-02 + 441 4.0344692962788926E-03 + 442 2.2971129717578552E-02 + 443 -2.0688349849122037E-03 + 444 -3.0943732253592000E-02 + 445 -5.3141500917881050E-02 + 446 -1.3766231662665806E-02 + 447 -3.4540083829808882E-01 + 448 1.7164778993915181E-01 + 449 -4.0168784932314711E-02 + 450 -4.5738549216152946E-02 + 451 2.3212732392260498E-02 + 452 -7.8767610018426939E-03 + 453 9.7596629965056129E-03 + 454 1.1684769756435129E-02 + 455 -2.6779222154900547E-03 + 456 1.4138251943866826E-02 + 457 -2.6995710743477858E-02 + 458 4.6238971366303380E-02 + 459 7.9943540107738267E-03 + 460 -8.1926703355858665E-02 + 461 1.0293182959781091E-01 + 462 -8.5161579199890869E-02 + 463 3.1448753341744989E-02 + 464 1.4039771918575420E-02 + 465 2.3829175276912206E-03 + 466 -1.6450931411640276E-02 + 467 -7.9792293821934323E-03 + 468 9.4108254342180689E-03 + 469 1.7758215358120649E-02 + 470 2.1244429431108169E-02 + 471 2.4681752127702038E-03 + 472 2.3017477051953483E-01 + 473 1.6555757624101627E-01 + 474 1.2089650022106123E-01 + 475 2.5562824688971586E-02 + 476 2.3433278540780297E-02 + 477 1.2940674405617086E-02 + 478 1.0802353274115880E-02 + 479 -5.7531524746618082E-03 + 480 4.2145925132795409E-03 + 481 -1.4273528348571554E-02 + 482 -1.0291504031390022E-02 + 483 1.0231032519934416E-01 + 484 -1.9224476880761232E-02 + 485 2.9422994147528393E-02 + 486 -5.9974236265660071E-02 + 487 -6.5253482682763125E-02 + 488 1.7989158940526907E-03 + 489 -7.6971134392113058E-04 + 490 1.1601645045759458E-02 + 491 1.2536540242463077E-03 + 492 4.9325906439640216E-03 + 493 7.1702929367505807E-03 + 494 -1.4151963921383385E-02 +Ene= 6.4220430177E-02 +Spin= Alpha +Occup= 0.0000000 + 1 -3.7376646142911717E-02 + 2 1.7774449636065112E-03 + 3 1.5076361264336971E-01 + 4 -2.2272452677610619E-01 + 5 1.3934777555747660E-01 + 6 2.7532279746029238E-02 + 7 -2.8013952828162797E-02 + 8 1.3392219948842191E-02 + 9 2.0793418503646490E-02 + 10 6.5689577883764668E-03 + 11 1.1926582356811502E-02 + 12 2.4297082871621536E-02 + 13 -9.2063007190968798E-05 + 14 5.0128354792415862E-02 + 15 5.0036335842796688E-02 + 16 4.8074745045538658E-02 + 17 6.9174271252766692E-02 + 18 -1.7888744387498826E-02 + 19 -2.4296497316647079E-03 + 20 6.4356596051283275E-03 + 21 -6.1993888906923065E-03 + 22 7.4206999267410634E-03 + 23 -8.2416461757064286E-03 + 24 1.2137085596947988E-04 + 25 2.6682276732476764E-03 + 26 5.2485056789590007E-02 + 27 1.0593745669151050E-02 + 28 5.9898389433534448E-02 + 29 -2.8209444081071128E-01 + 30 6.8258191194562126E-03 + 31 1.8083033391325293E-02 + 32 -3.9743223126246188E-02 + 33 -7.5246406490060052E-03 + 34 2.4680950469787390E-02 + 35 1.2952068381177002E-02 + 36 -5.3962177334479083E-03 + 37 -4.3787706133624317E-03 + 38 -1.5625848078904010E-02 + 39 8.0771594313830214E-02 + 40 -2.0174757693706656E-03 + 41 -3.5646197103227986E-02 + 42 -2.3056839279233177E-02 + 43 -9.2541995629704235E-02 + 44 2.6530818321290079E-03 + 45 5.9687163510804128E-03 + 46 -2.4845675409407865E-03 + 47 1.3546305827927762E-03 + 48 -5.9652004168971795E-03 + 49 1.7722937008178511E-02 + 50 -2.8066515751916832E-03 + 51 -1.6502523245544612E-01 + 52 -1.6795095114275075E-02 + 53 3.3708628385338130E-01 + 54 -2.2200416580805066E-01 + 55 2.9588385690051084E-02 + 56 5.2641880450211918E-02 + 57 -3.3278428117029163E-02 + 58 6.1511442266980812E-03 + 59 -1.3969775980603441E-02 + 60 2.2191801425886129E-02 + 61 -6.5767226096258014E-03 + 62 -1.5283367525684120E-02 + 63 -8.8100589562217120E-03 + 64 -2.0584092608061846E-02 + 65 2.2895935869103025E-02 + 66 -9.8177401879699394E-02 + 67 -3.8119179591884614E-02 + 68 -4.6702049775440777E-02 + 69 -5.4391316706244560E-03 + 70 -1.4627670715242151E-02 + 71 -1.1836951757736882E-02 + 72 -1.2711161580672939E-02 + 73 -2.3365724746552709E-02 + 74 5.2234259805141727E-03 + 75 -1.4559789857692993E-02 + 76 -4.8235825433040426E-02 + 77 1.0019532420866426E-02 + 78 5.6985562368051270E-04 + 79 -7.5223510455025677E-02 + 80 9.1677840422418486E-02 + 81 9.8659785870030027E-03 + 82 1.3999674099844825E-02 + 83 -3.4668984873403592E-02 + 84 4.9757100563890044E-02 + 85 3.7980582244766942E-03 + 86 1.8497565576530720E-02 + 87 1.5403879210957067E-03 + 88 9.8899746571190147E-03 + 89 1.2491409711114324E-01 + 90 -2.0892201986830960E-02 + 91 4.9206108435101106E-02 + 92 6.2064578701554733E-02 + 93 8.6849174823042385E-02 + 94 1.5247112170503370E-02 + 95 -2.6324635246662866E-02 + 96 -2.3518432206886691E-02 + 97 -1.4560179572892693E-02 + 98 -9.3640690674454529E-03 + 99 9.1524405908078484E-03 + 100 6.4590731121343314E-03 + 101 -1.3610182846548902E-02 + 102 1.9262161598945682E-01 + 103 -4.2112050743235374E-02 + 104 -1.2408615007031531E-02 + 105 1.5010588879360146E-02 + 106 2.1727640453320964E-02 + 107 4.8591012413070976E-02 + 108 -4.9053537918345436E-02 + 109 -2.7617295119654287E-02 + 110 -6.3881076434146736E-03 + 111 2.7204047312745085E-02 + 112 -7.5298055077796331E-03 + 113 2.7693590057585867E-02 + 114 1.0810337788648870E-02 + 115 -4.6459992679931651E-02 + 116 9.7832553724465626E-03 + 117 5.3639959943620344E-03 + 118 3.8057978139863923E-03 + 119 2.3110507820496159E-02 + 120 -2.5194913949578315E-02 + 121 -3.0687228720222972E-02 + 122 -2.7730943575020046E-02 + 123 4.3941813939106069E-03 + 124 -3.3318485665905723E-03 + 125 1.2465158062639299E-02 + 126 -5.4601827738933763E-04 + 127 2.0600740618465160E-02 + 128 1.0293705705476571E-02 + 129 6.4712858219069386E-03 + 130 -2.8911355967160046E-01 + 131 -1.4230218055144223E-01 + 132 -2.5906747998438045E-02 + 133 -4.0833384488913549E-02 + 134 -2.8927120421034236E-02 + 135 -1.5322945036727712E-02 + 136 -8.6932060189827097E-03 + 137 4.8210922394854054E-03 + 138 8.5227503468014928E-03 + 139 -1.4530477798082756E-02 + 140 7.9119066398851898E-03 + 141 -1.7461841636707436E-02 + 142 -4.5467706435206416E-02 + 143 1.5052059771981426E-02 + 144 2.6713148649758454E-02 + 145 -4.8578964727606262E-03 + 146 3.2163976823187322E-04 + 147 -4.8057768370132255E-03 + 148 -1.6119843776393064E-03 + 149 1.4433905063815982E-02 + 150 4.7117541973555497E-03 + 151 -4.1442950695635547E-03 + 152 3.5348590642864039E-03 + 153 -3.1478270196588276E-02 + 154 -1.7184727935265504E-03 + 155 1.9471905575452744E-01 + 156 3.4572098758374865E-02 + 157 -1.8831089652126604E-01 + 158 2.6748946520758141E-02 + 159 -6.4755841024274610E-03 + 160 -3.2333602213544303E-02 + 161 -2.4433212675700516E-02 + 162 -4.1931612521305768E-03 + 163 -3.3110168731315608E-04 + 164 5.1845514002794961E-03 + 165 1.3745553147472981E-02 + 166 -1.0364462611608841E-01 + 167 -7.3184530551460066E-03 + 168 1.5078109263467320E-02 + 169 -3.0214109833161525E-02 + 170 1.1379393417300680E-02 + 171 7.1014995517535871E-03 + 172 -2.5901070493797372E-03 + 173 1.2880040065653214E-02 + 174 1.5809461254068350E-02 + 175 2.4920400001161697E-03 + 176 -3.1425193089834966E-03 + 177 -1.0018973108544470E-04 + 178 -2.0866924598633325E-02 + 179 6.3610620796620190E-03 + 180 -1.3708325980688424E-01 + 181 2.6690553501147306E-02 + 182 -1.0262407667268948E-01 + 183 4.9059470692795801E-02 + 184 -5.4958904623918815E-03 + 185 3.7629739528391833E-02 + 186 -9.4242740945421535E-03 + 187 -4.1647777490710358E-03 + 188 3.9479022165447974E-03 + 189 1.8755906875080594E-02 + 190 1.0560490974122974E-02 + 191 3.0668785687990797E-02 + 192 -7.3630108606726570E-03 + 193 4.4638812733352164E-02 + 194 -8.9484024943967802E-02 + 195 -7.0926532388479846E-02 + 196 -3.1707482173335858E-04 + 197 4.8856163023952209E-02 + 198 3.3039193859450006E-02 + 199 -4.4959401150470264E-02 + 200 -2.4545876542752046E-02 + 201 4.1612717418877147E-03 + 202 -2.6977541199637540E-02 + 203 -4.8679394646494441E-04 + 204 6.7746371680089415E-02 + 205 1.2270014030323868E-02 + 206 -4.8710695276394697E-02 + 207 2.1871935258430886E-01 + 208 9.1355084552187438E-02 + 209 -8.2072140244842540E-03 + 210 3.3134625699986001E-02 + 211 1.6712564667364295E-02 + 212 -3.3270879938403176E-03 + 213 -2.0730154768213069E-03 + 214 -9.5419030679119515E-04 + 215 -1.8523525398491284E-02 + 216 7.4469224450796345E-03 + 217 -1.9698009113469948E-02 + 218 2.9367842448554792E-02 + 219 -4.8186956302393551E-02 + 220 -2.4945380535415458E-02 + 221 -4.0455641006689122E-02 + 222 -1.6270544857545900E-02 + 223 6.7065558604780875E-03 + 224 5.3737751106927047E-04 + 225 5.4120765947162225E-03 + 226 8.7126432689853771E-04 + 227 -2.4844726545956371E-02 + 228 -5.1100838471980579E-03 + 229 -1.7340034609716472E-02 + 230 -6.2927640716538835E-03 + 231 -1.3275991652875757E-01 + 232 -3.7166168483616646E-02 + 233 9.2352090992052840E-02 + 234 -2.5879159859017124E-03 + 235 -9.1859321372486664E-03 + 236 1.1862484785701207E-02 + 237 2.4308106995873491E-02 + 238 1.1667608681020373E-02 + 239 4.9152416420976050E-03 + 240 1.0663272884664184E-04 + 241 9.2739517957503310E-03 + 242 7.5568066435046488E-02 + 243 4.5481290365499021E-02 + 244 -8.3382293764218476E-03 + 245 -3.0930441880313901E-02 + 246 1.4974164322297345E-02 + 247 5.5073949655359670E-04 + 248 -5.4131716030734241E-03 + 249 3.7239370388171577E-04 + 250 -1.0693245346940850E-03 + 251 3.2728521385449057E-03 + 252 1.1148651827679530E-02 + 253 3.8986500432870220E-03 + 254 1.8147465825623493E-01 + 255 2.3247072007746308E-02 + 256 1.1409058987375556E-02 + 257 -1.6304424516719229E-01 + 258 -1.2250605943468411E-01 + 259 1.5528434156369983E-03 + 260 -3.5883472225101930E-02 + 261 -2.2656052172618065E-02 + 262 -1.8314306799402092E-03 + 263 -6.7345297200468923E-03 + 264 3.1994253252530811E-03 + 265 3.9967944455415374E-03 + 266 -5.8742202468198333E-04 + 267 1.8944472987872482E-02 + 268 -2.3334018136741918E-02 + 269 -2.6518489295617610E-02 + 270 -5.9146887267107942E-02 + 271 -1.0073253801218171E-02 + 272 7.7952124869325483E-04 + 273 -1.0349404949466394E-02 + 274 -8.0326483079776450E-03 + 275 -8.7208471115087192E-03 + 276 9.9655914880487895E-04 + 277 4.2019331455415464E-03 + 278 -2.6387755498907678E-03 + 279 6.6557520403083950E-02 + 280 -1.6035593825738121E-02 + 281 8.1888501997103055E-02 + 282 -2.5110605386252163E-02 + 283 7.9068770377683562E-02 + 284 -2.9539565046870254E-02 + 285 4.5353009177126853E-03 + 286 -2.5364592201718300E-02 + 287 -1.8446526112771783E-02 + 288 -7.1568911183410586E-03 + 289 6.4062157744940763E-03 + 290 8.0782656891903656E-03 + 291 2.1923799336465509E-02 + 292 -8.2694164533552619E-02 + 293 1.8790577208112690E-02 + 294 -9.2736287825499392E-02 + 295 -7.0025619637025818E-02 + 296 -1.1046519058504617E-01 + 297 2.7631414744822520E-02 + 298 1.4827342070296354E-02 + 299 4.3047383798817639E-02 + 300 1.9352949168253687E-02 + 301 2.4350850942982390E-02 + 302 4.7218429211653926E-03 + 303 1.2974359675796505E-02 + 304 4.1913721211610340E-03 + 305 1.1236646305476650E-02 + 306 3.5871947933365352E-04 + 307 1.5190672127987048E-01 + 308 -7.6962445194722159E-02 + 309 -1.3745508496793022E-02 + 310 2.5079075662878779E-02 + 311 6.2143739401179605E-03 + 312 -7.7205052780744184E-03 + 313 -1.0194389495194272E-03 + 314 1.3686650866625424E-02 + 315 5.6217433614971293E-03 + 316 -6.2447335812483703E-03 + 317 -1.6254921194686637E-02 + 318 1.7499921217249605E-03 + 319 6.9850213894644048E-02 + 320 2.1616182335749880E-02 + 321 4.4030216741537320E-03 + 322 -3.1066789779937792E-02 + 323 6.6245914321851947E-03 + 324 -7.1518876278129735E-03 + 325 -3.3482275294930097E-04 + 326 -3.4293429067549131E-03 + 327 -1.5837042042882153E-03 + 328 5.0237772079994424E-03 + 329 -4.2781107250065365E-03 + 330 2.6689378545465681E-01 + 331 4.0072899566264225E-02 + 332 -2.1879081635375622E-01 + 333 2.2092882065196445E-01 + 334 2.0721572290187029E-01 + 335 -1.1226814227015604E-02 + 336 4.6234151540752826E-02 + 337 3.5751194230919700E-02 + 338 -5.3598835103867096E-03 + 339 1.1849660858946752E-03 + 340 -8.2949416781159229E-03 + 341 4.9890332397256815E-03 + 342 1.2656249200345426E-02 + 343 -2.4817904299609318E-02 + 344 3.5231875993569035E-02 + 345 -4.0983711002326825E-02 + 346 4.1317732681544060E-02 + 347 6.1452424218436094E-02 + 348 1.5153921336361115E-02 + 349 -2.1346099876177835E-02 + 350 1.0659625966709862E-02 + 351 9.7958176646161989E-03 + 352 -6.1012160104178658E-03 + 353 1.3690074384149946E-02 + 354 6.7088950646346018E-03 + 355 -8.7922222205086373E-02 + 356 1.9962398404307587E-02 + 357 1.2145042556427238E-01 + 358 -5.4132817958569099E-02 + 359 -3.5630606812943021E-02 + 360 -5.1720737368176298E-02 + 361 4.7035863008783672E-02 + 362 4.4913793712168075E-02 + 363 -1.1566135755826708E-02 + 364 -3.1055417629564718E-02 + 365 3.8490354864444853E-02 + 366 3.0627392829505390E-03 + 367 -3.5136531906468371E-02 + 368 -6.0461855171464005E-02 + 369 1.3033797830036010E-02 + 370 -1.4380236432269358E-01 + 371 1.4147372180080534E-01 + 372 -6.7926298237402302E-02 + 373 6.5779007819655469E-02 + 374 -4.6129083930776790E-02 + 375 2.0730341347238883E-02 + 376 -2.4010141189713180E-03 + 377 1.4259744428235297E-02 + 378 6.1252652796329032E-03 + 379 -2.7520986901821715E-02 + 380 -3.4475810676587060E-02 + 381 -8.6265700359358322E-02 + 382 2.3043950494188128E-02 + 383 -2.6398563641700738E-02 + 384 8.5308313625682766E-02 + 385 1.4516702867552586E-01 + 386 1.9570548029386840E-02 + 387 -1.6246213549390712E-02 + 388 -3.9703793571090405E-02 + 389 -7.9950224718785077E-03 + 390 1.1110255308622734E-02 + 391 2.9139109113445891E-02 + 392 -2.6912776264399314E-02 + 393 2.5720522191149123E-02 + 394 -1.8147905014033430E-02 + 395 1.0303535299466078E-02 + 396 -1.0137420241165486E-02 + 397 -1.4707988613949635E-01 + 398 -3.9453774699151165E-02 + 399 -1.2311625023340411E-04 + 400 -2.6467294804724519E-02 + 401 -1.2387626799646650E-02 + 402 -8.5855582511976762E-05 + 403 -1.3437705883907953E-02 + 404 1.8201907049859828E-02 + 405 -4.1540177068110041E-03 + 406 1.5693081200319148E-02 + 407 -4.4887270057030332E-02 + 408 -4.6701728874147551E-02 + 409 1.6283698057200341E-02 + 410 -1.6096583392821270E-02 + 411 6.2873438871178772E-02 + 412 7.0263254488440088E-03 + 413 3.7104883126334938E-03 + 414 2.8304069320707233E-03 + 415 1.0268527231638592E-02 + 416 -1.5252291756765970E-02 + 417 -9.8403573258059197E-04 + 418 1.0952792365546736E-02 + 419 6.0680385653756073E-02 + 420 -1.2729703501842141E-02 + 421 -9.3378295692052110E-02 + 422 -4.7086942064130000E-02 + 423 1.0243708799966159E-01 + 424 3.8690030053317677E-02 + 425 2.0981819194487283E-02 + 426 -5.6596687511289656E-02 + 427 -2.4621504895698542E-02 + 428 1.6556350098562305E-02 + 429 2.4281568176519042E-02 + 430 -6.0494555573222253E-03 + 431 -2.6011128353643557E-02 + 432 -1.4101918448329701E-01 + 433 3.2054390004302921E-02 + 434 -3.6406041442132393E-02 + 435 -6.2586416363933778E-02 + 436 -7.6424419390153278E-02 + 437 -2.2371029331271473E-04 + 438 4.2208778175540106E-02 + 439 4.7994863518814705E-02 + 440 -2.4698084504875012E-02 + 441 1.0789881956779688E-02 + 442 5.9183621818457814E-02 + 443 -4.7591047771807483E-02 + 444 -1.8687014429466013E-02 + 445 5.6200932849122837E-02 + 446 5.6616696201508467E-03 + 447 -2.6907493558860096E-01 + 448 5.5822246927676322E-01 + 449 1.6140017083909042E-01 + 450 -2.0780999230364298E-02 + 451 7.0968989361230944E-02 + 452 1.7479256699046781E-02 + 453 -9.4562057807415865E-03 + 454 4.1957680295409529E-03 + 455 1.0014907584143671E-02 + 456 -6.0858357111200989E-03 + 457 -1.4108248762903858E-02 + 458 1.8288797049642893E-02 + 459 -1.2116080556167252E-02 + 460 -2.1568016246897638E-03 + 461 6.1345078578256537E-02 + 462 -8.7017981207629047E-02 + 463 6.0545904748526575E-03 + 464 9.5245016177775024E-04 + 465 -1.2986931453643701E-02 + 466 3.8070223620175242E-03 + 467 5.7487757868591883E-03 + 468 -2.0366918422253740E-02 + 469 1.1764057732248101E-03 + 470 -4.3303832197624187E-01 + 471 -6.2162214630031361E-02 + 472 -4.9847261463574127E-01 + 473 3.0855143143060326E-01 + 474 2.4732049908594009E-01 + 475 -9.8662728987787426E-02 + 476 4.3901321954512469E-02 + 477 4.0742651292103846E-02 + 478 -3.2934651423618113E-03 + 479 -1.4720932648781705E-02 + 480 1.1124488971823165E-02 + 481 5.1204684697143607E-03 + 482 -1.2295263060459199E-02 + 483 2.1565810172759527E-02 + 484 -3.7468147087947143E-02 + 485 6.3790062624377725E-02 + 486 -2.1283357882677892E-02 + 487 -1.8101887480244609E-02 + 488 3.0194202835730986E-04 + 489 -3.1548235274591169E-03 + 490 -1.5285838590665367E-03 + 491 -4.4826956371743151E-03 + 492 7.2577448569154396E-03 + 493 3.0106152557101405E-03 + 494 -2.0048444696109551E-03 +Ene= 6.8856161892E-02 +Spin= Alpha +Occup= 0.0000000 + 1 6.8141711571873070E-02 + 2 2.3286647353905000E-02 + 3 6.7462198379098226E-03 + 4 4.5736320435331192E-03 + 5 -1.4961865106927127E-01 + 6 3.3970303166309958E-03 + 7 7.8914247822717328E-03 + 8 -1.9367329173176087E-02 + 9 1.1903007891305366E-02 + 10 -1.2375630954048235E-02 + 11 -3.8477767590014136E-03 + 12 2.4017686277121434E-03 + 13 -4.9676851895985507E-03 + 14 5.4768587888315248E-02 + 15 -2.2454178286735457E-02 + 16 2.0653077484954208E-02 + 17 -3.3819670192405830E-02 + 18 -7.2977197469088068E-03 + 19 6.1505823267799129E-03 + 20 2.7972923338992766E-03 + 21 -2.5843712767941352E-03 + 22 -2.1128066121623994E-03 + 23 -1.2237827522654190E-02 + 24 -1.6164866982791275E-03 + 25 3.4603963335816559E-03 + 26 5.1401486812339914E-02 + 27 2.4661873394311858E-02 + 28 1.5751796463083007E-01 + 29 -4.0248991500864689E-01 + 30 -2.4980780636926322E-01 + 31 2.3147603404600137E-02 + 32 -4.0768724816249026E-02 + 33 -3.2802341451939471E-02 + 34 7.3441016540510377E-03 + 35 -1.6218303716826712E-02 + 36 1.3682599977099082E-02 + 37 2.9632200844266432E-02 + 38 5.3567536546725641E-03 + 39 -1.0361087419771915E-02 + 40 3.2586365681693284E-02 + 41 6.5120985192794467E-02 + 42 -2.8526927242283522E-03 + 43 -7.8157148481037188E-03 + 44 3.0048918112398666E-04 + 45 1.1505908296392097E-03 + 46 2.4028835740637485E-03 + 47 6.4901783125469025E-03 + 48 -6.9126330103927067E-04 + 49 -4.5183345343300183E-03 + 50 -5.1969022431971497E-03 + 51 -1.2072780098865044E-01 + 52 -1.9440235914877965E-02 + 53 2.4356283663492417E-01 + 54 -1.2077307060720094E-03 + 55 2.9296390866399313E-01 + 56 3.6823870921996335E-02 + 57 -6.3711192163753115E-04 + 58 4.6623700156199564E-02 + 59 -1.7576233039294488E-02 + 60 -1.4208964565251342E-02 + 61 -1.9112487183007907E-03 + 62 4.3574350443405137E-03 + 63 -4.7229561296891036E-03 + 64 1.4878511317782341E-02 + 65 1.3709938822875172E-02 + 66 -2.8772999470299095E-02 + 67 -1.8692476538477113E-02 + 68 -7.6637783619099259E-02 + 69 -1.0548715946044149E-02 + 70 -7.2753737816831827E-04 + 71 -1.3761512911879907E-02 + 72 -7.1188656815989139E-03 + 73 -1.7291734961780918E-02 + 74 -1.4572582582483985E-03 + 75 -5.5933360568706323E-03 + 76 1.9683575776254743E-02 + 77 -4.0263527310898262E-03 + 78 3.0695886681863585E-02 + 79 -5.6438445913315372E-02 + 80 -4.8190167700800340E-02 + 81 -8.0545732026980395E-03 + 82 4.3158739324767943E-02 + 83 1.5985095517714140E-02 + 84 -6.0155090108013438E-03 + 85 -1.3674537639004494E-02 + 86 3.7870916937622519E-02 + 87 1.8938890664884727E-02 + 88 -2.3885628435933288E-02 + 89 -3.4092345728461468E-02 + 90 1.0011232605440543E-02 + 91 8.1932005431099159E-02 + 92 5.4830219823905103E-03 + 93 -5.4506644424301878E-02 + 94 -3.2784133146504989E-02 + 95 2.5780678868974035E-03 + 96 1.6455872027148967E-02 + 97 -2.2914959065483624E-02 + 98 -1.0758915762742054E-02 + 99 1.2601950206232882E-02 + 100 1.2794670825178189E-02 + 101 -1.8953991325303498E-03 + 102 2.0065154704997673E-01 + 103 -4.3868308804389342E-02 + 104 -5.8749607690252982E-02 + 105 -6.2134944233165155E-03 + 106 -8.6832529297719979E-02 + 107 5.4993803506292266E-02 + 108 -2.7536137690755462E-02 + 109 6.7930806050440370E-02 + 110 7.8799991397557854E-03 + 111 -2.7058200338410301E-02 + 112 1.8776516300137401E-02 + 113 2.8189976423769133E-02 + 114 4.3205507276903301E-03 + 115 8.0511769432711211E-02 + 116 -1.7142902293270586E-02 + 117 -1.0626916554701163E-01 + 118 1.3939210619728146E-01 + 119 -2.9914088330782783E-03 + 120 7.9722004114992931E-02 + 121 -3.2803853761979550E-02 + 122 2.0046708325919614E-02 + 123 1.4135607504658211E-02 + 124 -4.1417983958475769E-02 + 125 2.7588582925120293E-02 + 126 3.0117690317360963E-02 + 127 -2.6795212238727256E-02 + 128 -7.2305049437653451E-02 + 129 -1.5601993789804065E-03 + 130 2.2170884966062920E-01 + 131 2.3121944038528644E-01 + 132 9.9795370470237579E-02 + 133 3.5899495844627767E-02 + 134 1.1381364944566378E-02 + 135 1.7878102959586497E-02 + 136 1.1742578640562289E-03 + 137 -1.1726660944307253E-03 + 138 -1.6631541285805698E-02 + 139 -1.5614587935375755E-02 + 140 -1.0537025365677931E-02 + 141 -3.9615254603845032E-02 + 142 -1.2212477108980472E-02 + 143 3.5760459953177129E-02 + 144 -6.6842236324847551E-02 + 145 5.0104300907115644E-02 + 146 1.0518966297820728E-02 + 147 3.9282734670864185E-03 + 148 1.1651015831761410E-04 + 149 6.7463640478753429E-03 + 150 3.0344574262982696E-03 + 151 7.4757924709947842E-03 + 152 1.2617722032138151E-02 + 153 -1.0419483121708205E-01 + 154 -2.1743506381947798E-03 + 155 1.1582437757763030E-01 + 156 -1.2798844286736281E-02 + 157 4.2400772817484243E-02 + 158 2.9609394618081764E-02 + 159 3.9019350251824595E-03 + 160 1.5336495132953456E-02 + 161 -4.5572488419372966E-03 + 162 3.0162170115331441E-03 + 163 6.6759118040219103E-03 + 164 8.5995583414184805E-03 + 165 -6.2545719455682587E-03 + 166 -7.0946714243083686E-02 + 167 2.8885163550312610E-02 + 168 3.6086003078795635E-02 + 169 -4.2422887598925985E-02 + 170 -8.8399193443245233E-02 + 171 -3.7094260612077525E-03 + 172 -7.3003178256793762E-03 + 173 9.3750692785011160E-03 + 174 1.1736193077633850E-02 + 175 -5.6842662693461958E-04 + 176 -8.7123388475767709E-03 + 177 -5.7537083196482924E-04 + 178 -8.3924204200983246E-02 + 179 1.9675719088521722E-02 + 180 -7.6852039699878416E-02 + 181 -1.6390912482488276E-02 + 182 6.2757046704556641E-03 + 183 3.3835834319337267E-02 + 184 1.8305491942634467E-02 + 185 -1.1319887870358800E-02 + 186 -4.0059540619440679E-03 + 187 -8.6782377425691851E-03 + 188 -2.6430209624566398E-02 + 189 2.1276636234854145E-03 + 190 -1.1406693920435043E-02 + 191 -9.1951622245123654E-02 + 192 1.9526961509748943E-02 + 193 9.7553580489898161E-03 + 194 3.2064978590884509E-02 + 195 6.0111260781220699E-02 + 196 3.2791514355068420E-02 + 197 1.1706944812690826E-02 + 198 -2.7037527212035690E-02 + 199 -1.0546140393915675E-02 + 200 -3.4324654789219804E-02 + 201 1.1849075154333684E-02 + 202 -9.1709899223400555E-04 + 203 6.3396520552956278E-03 + 204 1.2944350923616960E-01 + 205 1.1291877121976879E-02 + 206 -7.5608021900547256E-03 + 207 1.4972576071783159E-01 + 208 1.3605823772582756E-02 + 209 1.0876948217342650E-02 + 210 1.4858563304283715E-02 + 211 -2.9996177045454563E-03 + 212 1.3540958469011959E-03 + 213 -1.8799027882334136E-02 + 214 -1.2761325288130191E-03 + 215 7.3480917597014009E-03 + 216 -1.2088192658739963E-03 + 217 1.7496846896522252E-02 + 218 -2.8830129994635214E-02 + 219 -2.8361872525553776E-03 + 220 8.9806418882912825E-02 + 221 -1.0258430204434532E-01 + 222 8.2702840671867277E-03 + 223 6.5667602425569594E-03 + 224 9.1976510226447739E-04 + 225 -1.6899715197336951E-04 + 226 8.6174403062434478E-03 + 227 -4.8373594789334912E-03 + 228 1.9277509736968311E-03 + 229 -1.1733535188560150E-02 + 230 -9.8574672416237939E-04 + 231 1.3869211085670147E-01 + 232 -4.0168090472892139E-02 + 233 -1.3871605809783663E-01 + 234 1.6715210403957265E-02 + 235 -4.3280584492428982E-03 + 236 -2.2745563893066343E-02 + 237 -5.2249578908294351E-03 + 238 -3.7542350805663894E-03 + 239 -3.7619866761500831E-03 + 240 9.4417446396023244E-03 + 241 1.4597181764155616E-02 + 242 -4.6802602467932553E-02 + 243 2.5864056264052982E-03 + 244 -2.2174277077386562E-02 + 245 2.4587482549636587E-02 + 246 1.0385573190121516E-01 + 247 -7.5189583917640917E-03 + 248 -4.4451282955339493E-03 + 249 -2.7450671939899594E-03 + 250 -3.7056122281016756E-03 + 251 1.6330260971170081E-03 + 252 -1.6858575642452616E-02 + 253 -3.9694383668306401E-03 + 254 -4.0892110722733188E-02 + 255 1.0893783416210338E-03 + 256 2.5984536042200435E-01 + 257 -1.0272408705240658E-01 + 258 3.8142806697465498E-01 + 259 3.8415412939992198E-02 + 260 -5.5939178884967357E-03 + 261 3.4957106264441276E-02 + 262 1.2233802387205700E-02 + 263 1.0162403329915189E-02 + 264 4.2739960936168803E-03 + 265 1.2341563041494806E-04 + 266 3.0466436631414105E-02 + 267 1.0663676150285997E-01 + 268 8.8688341469640927E-02 + 269 8.8578556103137987E-02 + 270 3.5358234116679779E-02 + 271 2.2887967119288960E-01 + 272 -3.1424328862094003E-03 + 273 9.2915050827121533E-03 + 274 1.1907025663625897E-02 + 275 5.5089731043834068E-03 + 276 -1.0490229007128661E-02 + 277 1.2014206590506844E-02 + 278 -8.7382283902706862E-03 + 279 -1.5135982617775171E-01 + 280 3.5508238471535440E-02 + 281 -3.0461277188247083E-02 + 282 -9.6701852200954466E-02 + 283 -1.3453724099916065E-01 + 284 6.3437517162967028E-02 + 285 1.6182293690702811E-02 + 286 2.1328162686210690E-02 + 287 4.2642463711458585E-02 + 288 1.0958866975817749E-02 + 289 2.6265073523305357E-02 + 290 4.3065208027395670E-03 + 291 -3.6348138089577944E-02 + 292 7.2720814997161376E-02 + 293 -1.4194169233577027E-02 + 294 5.9389665989460237E-02 + 295 3.5073306732158950E-02 + 296 5.8503143928164476E-02 + 297 -3.6706899551673072E-03 + 298 6.7199580056085048E-03 + 299 -2.7986821716606380E-02 + 300 2.2397760298851575E-03 + 301 -2.8161757798435736E-03 + 302 -5.6370698338963163E-03 + 303 -2.0524635179772570E-03 + 304 1.3946851147957068E-02 + 305 -7.8912405034346239E-02 + 306 -2.0401346672199818E-03 + 307 -1.5691252396618817E-02 + 308 5.7784473439156443E-02 + 309 2.1392713598852888E-02 + 310 -2.6480198974214680E-03 + 311 4.0484776554055397E-03 + 312 -7.3699304312189705E-03 + 313 -2.2975716301188863E-03 + 314 -7.5985133403019709E-03 + 315 6.9239218871954618E-04 + 316 -1.5431591617663903E-03 + 317 7.4543317674513020E-03 + 318 -2.5402893604028403E-02 + 319 -2.0431191253269455E-02 + 320 2.1312112104298637E-02 + 321 1.8694544405356311E-02 + 322 -7.3067333400002928E-03 + 323 7.0247988350178635E-03 + 324 -3.9593185599850651E-03 + 325 -3.7589882338473365E-03 + 326 1.2980272958496106E-03 + 327 -4.6571046417541893E-03 + 328 -4.9600118658028785E-03 + 329 -1.4176144776160849E-02 + 330 1.7673908016684525E-01 + 331 2.8178914764391265E-02 + 332 -8.4159346015706418E-02 + 333 2.6956933676676131E-01 + 334 -1.8611546532506071E-01 + 335 6.2892905424276530E-04 + 336 4.7565739800867382E-02 + 337 -2.8538724113553713E-02 + 338 9.2273883899774162E-03 + 339 -2.4413380114175730E-02 + 340 5.7177323294144277E-03 + 341 -5.7294105469947443E-04 + 342 -2.8042778710493183E-04 + 343 6.8144637271869674E-02 + 344 -6.3425886676977947E-02 + 345 3.1749114708227520E-02 + 346 -6.7459980005520372E-03 + 347 -6.5991943600497678E-03 + 348 6.7929699972752808E-03 + 349 1.5372121771324606E-03 + 350 -3.4368670189934155E-03 + 351 2.0403556277560427E-03 + 352 -1.2051488140628218E-02 + 353 1.0774892228185954E-02 + 354 7.4873800199362671E-03 + 355 1.6983963244943293E-01 + 356 -3.9135099544108022E-02 + 357 -1.4829974555689178E-02 + 358 -5.5267300751683499E-02 + 359 1.2125310812495642E-01 + 360 -1.8405430000876469E-04 + 361 1.0295768122663538E-02 + 362 -7.1988581413219399E-02 + 363 -1.0389464522508794E-02 + 364 -1.3704305884019708E-02 + 365 2.3732630044184604E-03 + 366 -5.4433499120987161E-03 + 367 4.0081036584697402E-02 + 368 -3.1979009138826023E-02 + 369 8.7441196103559757E-03 + 370 2.9307832185237845E-02 + 371 7.4879122425895825E-02 + 372 4.5503983891249681E-03 + 373 -3.2712029077280276E-02 + 374 -2.0676451048483108E-02 + 375 -2.1734269788901374E-03 + 376 -1.2809561202228590E-03 + 377 -1.8589487363441334E-02 + 378 8.0804715831761589E-03 + 379 1.6094444437861448E-02 + 380 -2.8517584289378974E-02 + 381 1.3320281596722300E-01 + 382 -2.7220167686541143E-02 + 383 -1.0589873678112860E-01 + 384 -5.8436470363946447E-02 + 385 -5.5760151495845199E-02 + 386 2.4360346122637424E-03 + 387 -5.3506513910296039E-02 + 388 2.4002525372562884E-02 + 389 1.1845050938936244E-02 + 390 -6.6268282424806896E-03 + 391 -8.5101137891927612E-03 + 392 -5.4840804313591569E-02 + 393 -3.5325752311318744E-02 + 394 1.2384637006347249E-01 + 395 2.6443102883154698E-02 + 396 1.0993424939932010E-01 + 397 5.2397824335508839E-02 + 398 1.1571058047843032E-01 + 399 7.8046370664266920E-03 + 400 7.3735006296815212E-03 + 401 1.7754186944838508E-02 + 402 5.1765488784134093E-03 + 403 4.2215059840418614E-03 + 404 8.4010154993390384E-03 + 405 6.3940534429015004E-03 + 406 -1.5554551533856672E-02 + 407 8.0800034904699530E-02 + 408 3.2323899851902323E-02 + 409 8.8667861108728943E-02 + 410 4.6554055366473182E-02 + 411 5.3393404874652502E-03 + 412 -4.3873414532455161E-03 + 413 4.7074149360907189E-03 + 414 6.6264808990105532E-03 + 415 2.3517091388952369E-03 + 416 8.5987035299458902E-03 + 417 -1.1728246897465353E-02 + 418 1.4091758607915224E-03 + 419 6.7719632420201750E-02 + 420 -1.7777688794993685E-02 + 421 -5.9870622039432490E-03 + 422 -7.5257047978598196E-02 + 423 -1.5700152283219092E-03 + 424 -1.2826247207445636E-02 + 425 1.2475405253915368E-02 + 426 -1.3401134512994859E-02 + 427 1.7764818684601297E-02 + 428 -1.3370434680933517E-02 + 429 7.4996098276597783E-03 + 430 8.6336338436734869E-03 + 431 -1.4136278012579896E-02 + 432 -1.3391672135769409E-01 + 433 2.7362387539185819E-02 + 434 4.6695485554317850E-02 + 435 -2.1107013885420845E-02 + 436 3.4288160331801286E-02 + 437 1.4482102278589152E-02 + 438 3.9515588236678709E-02 + 439 -5.1902689549023419E-02 + 440 -2.6990555260733271E-02 + 441 -4.1836667892127893E-02 + 442 -1.5195113835868887E-03 + 443 6.7961790257923789E-03 + 444 -3.3413665487441520E-02 + 445 -8.1399407631380219E-02 + 446 -1.9602064494691110E-02 + 447 1.2688001979696695E-01 + 448 -7.1857949686466671E-04 + 449 -3.3888445294209762E-01 + 450 1.7853621131915482E-02 + 451 4.8239187115957597E-03 + 452 -4.6876384215986860E-02 + 453 7.3158590427457714E-03 + 454 2.0400816597728262E-03 + 455 -5.9524540456842422E-03 + 456 1.8156638794195094E-02 + 457 -4.0229276377715525E-03 + 458 1.8777294571103040E-02 + 459 1.1522245830473217E-01 + 460 5.4759651131734824E-02 + 461 4.6603549951263208E-02 + 462 -2.0737093034079498E-02 + 463 -5.2022841601361228E-03 + 464 -8.4252328766755390E-03 + 465 -1.4434886102151188E-03 + 466 -2.1146759919077360E-03 + 467 -2.2022292616189587E-03 + 468 -1.3277583400548784E-02 + 469 -1.3406856373193500E-02 + 470 1.2768421394802568E-01 + 471 1.1323459201382021E-02 + 472 3.1933205838420398E-01 + 473 2.5963059584922876E-01 + 474 -5.8711592661485172E-03 + 475 4.7675953421144300E-02 + 476 2.1571601982946453E-02 + 477 -1.0875632685959790E-02 + 478 3.8556456656737691E-03 + 479 5.2346211588232012E-03 + 480 -5.4890375330870810E-03 + 481 -2.3229850195927687E-02 + 482 -1.8648406276567442E-02 + 483 5.5481978570312354E-02 + 484 2.8138457454250530E-03 + 485 2.0652409223352160E-02 + 486 -1.4351870414902795E-01 + 487 -1.5815000103155727E-01 + 488 1.0735708603147049E-03 + 489 1.1821333368742764E-03 + 490 9.0169940893292319E-03 + 491 2.8495335684577939E-03 + 492 -6.3986176458294929E-03 + 493 -5.6380271638083778E-03 + 494 3.8276908662166266E-03 +Ene= 7.7535977822E-02 +Spin= Alpha +Occup= 0.0000000 + 1 -8.1065950408277868E-03 + 2 -4.8652880149650116E-03 + 3 2.0468549653593734E-02 + 4 9.2533824265016759E-02 + 5 -1.5467537787763402E-01 + 6 1.7977512223979835E-03 + 7 4.7780558541657492E-03 + 8 -1.9436244965991403E-02 + 9 -3.2413356724195624E-03 + 10 4.7115787619747629E-03 + 11 2.9660402404084948E-03 + 12 2.0247623704291464E-03 + 13 4.4043803119274841E-03 + 14 -2.4567097309562335E-03 + 15 4.1242153947425801E-02 + 16 1.9842118867485034E-02 + 17 1.3824712980074892E-02 + 18 2.1488268653965817E-02 + 19 -6.7459150678737837E-03 + 20 6.2143767057215599E-03 + 21 -6.7459159504853396E-03 + 22 8.1726631487101108E-04 + 23 3.5206552376071160E-03 + 24 1.2642383340924275E-02 + 25 7.3398577042102214E-03 + 26 -1.2408988652567671E-01 + 27 -1.5530641514255440E-02 + 28 -1.6173710210966458E-01 + 29 1.9135490305183597E-01 + 30 1.0002195902511606E-01 + 31 -1.7719594674253981E-02 + 32 1.8537853396157735E-02 + 33 2.9776216831532570E-02 + 34 -8.9313199645979901E-03 + 35 8.0913046098243738E-03 + 36 -3.6734116676563297E-03 + 37 -4.2243173209959260E-03 + 38 -2.5059479375924253E-03 + 39 -1.1036154243697791E-02 + 40 9.2024458715282365E-02 + 41 4.4947900657878424E-02 + 42 5.1099602340127698E-02 + 43 8.8186738387739272E-02 + 44 5.6339802831775415E-03 + 45 6.9951684877095155E-03 + 46 1.0343295704728835E-02 + 47 1.0163463443101761E-02 + 48 2.8809305952243605E-03 + 49 -3.7315228522682947E-03 + 50 3.5516642871697788E-03 + 51 9.1582366499981319E-02 + 52 1.3380704120347333E-02 + 53 5.4239069135139942E-02 + 54 2.3791236862018517E-01 + 55 2.9982340869257396E-01 + 56 1.4208407658745752E-02 + 57 3.9892013563480919E-02 + 58 3.5062049598043224E-02 + 59 6.8173205439162532E-03 + 60 -2.2664508696914248E-02 + 61 7.7124439127787365E-03 + 62 2.4714380699662662E-02 + 63 -6.0350176703022145E-04 + 64 4.2717086110196270E-02 + 65 -3.5334978821583610E-02 + 66 7.0890198155732123E-02 + 67 1.0425458776804875E-01 + 68 6.8001587094430563E-02 + 69 2.4102184268525134E-03 + 70 3.0575514529065486E-03 + 71 -3.3855769406842748E-03 + 72 5.5196792910358237E-04 + 73 3.7479967874948033E-03 + 74 1.2815358107661113E-02 + 75 2.7482415735219112E-03 + 76 -2.0940774733004014E-02 + 77 5.8928025427534749E-03 + 78 -2.2150380990092058E-02 + 79 5.2091573234049920E-02 + 80 -2.4024918979849003E-02 + 81 2.1201859859558150E-02 + 82 -3.2667389020995127E-02 + 83 3.3110529060784225E-02 + 84 -4.9859167851361401E-03 + 85 -1.9629399546409769E-03 + 86 -2.7287865875957079E-02 + 87 -2.6806342150723965E-02 + 88 8.9484566162414438E-03 + 89 -6.1055261469141343E-02 + 90 1.2182698610094512E-02 + 91 2.8066606543389789E-02 + 92 4.5517854593271227E-02 + 93 -1.1673847665415250E-01 + 94 -1.4308015943713715E-02 + 95 1.8004553237486363E-02 + 96 1.6407514841484019E-02 + 97 -1.7791593491009991E-02 + 98 -2.9145540787908274E-02 + 99 -6.1711114374610708E-03 + 100 -1.2692749631128432E-02 + 101 1.2126267753081116E-02 + 102 2.4172377198284301E-02 + 103 -5.5543392757318654E-03 + 104 -1.9753735522774089E-02 + 105 -1.0708410812625523E-01 + 106 3.1811560224879708E-02 + 107 2.5356451772617146E-02 + 108 9.9975595712008355E-02 + 109 2.9349596387542941E-02 + 110 -2.3649009787752862E-02 + 111 -1.8339060527057693E-02 + 112 -2.4779321429739189E-02 + 113 -3.0862334924913019E-02 + 114 -2.6360996843099355E-02 + 115 3.6387000754122045E-02 + 116 -7.9445450335529771E-03 + 117 -5.4732890217294765E-02 + 118 -1.0588003428322694E-01 + 119 -1.3174368537528305E-02 + 120 4.8821598178501339E-02 + 121 4.7792523668954021E-02 + 122 3.5193163472769809E-02 + 123 1.2478100415954116E-03 + 124 -1.3889589519801208E-02 + 125 -4.3454749107268723E-02 + 126 -4.5199083867360372E-02 + 127 -2.8064709670760864E-02 + 128 3.5324377519432765E-02 + 129 9.4205445152714690E-03 + 130 1.9578472930496563E-01 + 131 1.9691326475225215E-01 + 132 3.0647760990167594E-01 + 133 1.1406937554863958E-02 + 134 1.3722530675912777E-02 + 135 3.6434034693783916E-02 + 136 -5.5763070788653890E-03 + 137 -1.5066020857569105E-02 + 138 -7.8550925191379264E-03 + 139 5.2816623503087788E-03 + 140 -2.3871726074933857E-02 + 141 -2.6340856102472533E-02 + 142 -2.8458716107545374E-02 + 143 1.1253925888968763E-01 + 144 -7.9819683200743383E-02 + 145 -2.3826144815012724E-02 + 146 5.8038482049950447E-03 + 147 6.9194981277550414E-03 + 148 3.3980610875576282E-03 + 149 1.3913892896889048E-02 + 150 -2.7276110687895830E-03 + 151 4.5839487465601601E-03 + 152 1.2004229513916642E-02 + 153 -8.2500537431667714E-02 + 154 -1.1192121029466699E-02 + 155 2.0980589971612695E-01 + 156 -1.4674374730246089E-03 + 157 1.2547696190627455E-01 + 158 3.1014523836535402E-02 + 159 7.6253836579079273E-03 + 160 3.3476647752021575E-02 + 161 1.3992200054269845E-02 + 162 1.5730014962419867E-02 + 163 5.2676846922317076E-03 + 164 8.4392207201245267E-03 + 165 2.7949916339846170E-04 + 166 6.4744058450621214E-02 + 167 1.0869438936592712E-01 + 168 2.0787900803325141E-03 + 169 1.3268843966924393E-01 + 170 1.7770292484118256E-02 + 171 -1.5996405379406969E-02 + 172 1.7196989766349825E-03 + 173 -1.3217858797882226E-02 + 174 -4.6262490896736260E-03 + 175 1.1940856153894766E-02 + 176 -5.8495689990283465E-03 + 177 1.2978953158809765E-02 + 178 -6.6204449922200037E-02 + 179 1.5541591132777893E-02 + 180 -5.4724307184832566E-02 + 181 3.4294939136437906E-02 + 182 -1.7471673670710963E-02 + 183 1.3141929359477750E-02 + 184 1.1070928221921844E-02 + 185 6.2791189751559041E-03 + 186 -1.1027721703037670E-02 + 187 1.9243862328906045E-02 + 188 -6.8557756904647302E-03 + 189 1.6127656605741558E-02 + 190 -6.1978968751664858E-03 + 191 -1.2573561545413667E-01 + 192 2.7403119587741158E-02 + 193 -1.3569321256112052E-01 + 194 1.9085500250837595E-01 + 195 1.2145362802274275E-01 + 196 3.7952764495639287E-02 + 197 -3.8391998601960596E-02 + 198 -8.7089009449883417E-02 + 199 2.9883144467711432E-02 + 200 -3.2454886839092568E-02 + 201 1.5411045404866194E-02 + 202 3.0391116973583269E-02 + 203 1.5327981669438053E-03 + 204 1.9958802788630317E-01 + 205 1.9995729602840406E-02 + 206 6.9534719738020758E-04 + 207 -1.4860715101309733E-02 + 208 -9.3241082003486755E-02 + 209 -6.1285541181354541E-03 + 210 -1.8801034766633096E-04 + 211 -1.4270673938700481E-02 + 212 1.2165348357605448E-02 + 213 3.2668748695166270E-03 + 214 8.0392905760993795E-05 + 215 2.3963538458378834E-02 + 216 2.1461739534147130E-02 + 217 -2.1134148610031132E-02 + 218 -9.2890704285373809E-03 + 219 3.3527277759550979E-02 + 220 1.4942013715305733E-01 + 221 1.5592276565891268E-02 + 222 1.4627256242155341E-02 + 223 -1.5458983406581434E-03 + 224 4.5964428075094699E-03 + 225 1.3900159687342095E-03 + 226 7.1449450156057118E-03 + 227 -8.6593541340612180E-03 + 228 2.1139627950328382E-03 + 229 9.2339950275391422E-02 + 230 1.3867019779531291E-02 + 231 1.9510393027811389E-02 + 232 -1.0656218246966541E-02 + 233 1.1144946326664482E-01 + 234 1.2773391195248285E-02 + 235 -6.9419570331780414E-03 + 236 2.1695578112452533E-02 + 237 -1.6114136594919306E-03 + 238 -2.6937949425032696E-04 + 239 -5.7551746842199325E-03 + 240 -1.0627899213626283E-02 + 241 -1.0901747508235924E-02 + 242 1.0989939007660254E-01 + 243 5.1085199632364624E-02 + 244 -2.0830760385890427E-02 + 245 -5.4991985403609923E-02 + 246 -1.0666844099639539E-01 + 247 -5.7575460446143787E-04 + 248 -6.9240953410273313E-03 + 249 1.0281950295298881E-02 + 250 2.1544617867632571E-04 + 251 6.6825977744540488E-03 + 252 1.5580569587158585E-02 + 253 3.0015324834810949E-03 + 254 -7.5803818738346435E-02 + 255 -5.3547722501768253E-03 + 256 -4.0018251988238419E-02 + 257 2.1976063316022323E-01 + 258 -1.8981977717735116E-01 + 259 -5.0652722425899006E-04 + 260 2.5900526654014714E-02 + 261 -2.7994698603126924E-03 + 262 -8.6737443860913158E-03 + 263 -4.5970399873310423E-03 + 264 -1.3388203816915311E-03 + 265 -4.9949178221725381E-03 + 266 -1.8271780422219757E-03 + 267 -7.6007746016939673E-02 + 268 2.2634185869834088E-02 + 269 -1.7155720299360189E-02 + 270 -1.8087622132411611E-02 + 271 -5.0829137441741029E-02 + 272 -3.7336466750694836E-03 + 273 -2.8063823081598046E-03 + 274 -5.5546653460903771E-03 + 275 9.3722378697561840E-03 + 276 9.5732693010359953E-03 + 277 7.0380470784938256E-03 + 278 -1.1146250059466348E-03 + 279 -1.3316256823936537E-02 + 280 6.0591862884781297E-03 + 281 5.5288314637329250E-02 + 282 1.2281652869470265E-01 + 283 3.8189002343060337E-02 + 284 -4.6189354589530190E-02 + 285 -4.3065367142182724E-02 + 286 -1.4023988468832963E-02 + 287 -3.1542794379777236E-02 + 288 -4.0948384722594190E-03 + 289 -2.1274836243615158E-02 + 290 -1.0994882868845068E-02 + 291 3.4370196843130099E-02 + 292 -2.5201008703400304E-02 + 293 4.3682651771125396E-03 + 294 9.6902566951989844E-02 + 295 -5.0463104284875875E-03 + 296 5.9345405155172087E-02 + 297 -4.2232772067120318E-02 + 298 -1.0289751274824412E-03 + 299 -2.5304373542224513E-02 + 300 -3.8016355762640506E-03 + 301 1.4607830508886787E-03 + 302 1.7219938433157164E-02 + 303 1.4195980332230330E-02 + 304 2.8484705540517893E-02 + 305 -1.1155471688283214E-01 + 306 -1.0181466633075988E-02 + 307 1.4438439022399307E-04 + 308 -2.2401255321424801E-01 + 309 7.8599341768848252E-02 + 310 -1.2278280355466178E-03 + 311 -2.7021210539568203E-02 + 312 -2.2832300034567759E-03 + 313 -1.0543056092605788E-02 + 314 9.6735786924449455E-03 + 315 -4.5017359344257588E-03 + 316 1.2835448182731945E-02 + 317 1.8806585222721404E-03 + 318 -4.8604519764185096E-02 + 319 7.7173706294566616E-02 + 320 -1.8232041568442447E-02 + 321 4.0539429811885803E-02 + 322 -1.5889716680271698E-02 + 323 1.6494142895203217E-02 + 324 -4.9515235503436493E-03 + 325 -9.3700811328285990E-04 + 326 -1.1594067557244505E-02 + 327 -5.2364092948115996E-03 + 328 -8.4079129789964256E-03 + 329 -1.3324707423895729E-02 + 330 1.6197250801214491E-01 + 331 1.8708013851025326E-02 + 332 -1.5138074296618556E-01 + 333 3.8837591348578981E-01 + 334 -5.0695270770479095E-01 + 335 -1.6617572361541016E-02 + 336 6.0740131113086633E-02 + 337 -6.8700096088516752E-02 + 338 1.7585855689474770E-02 + 339 -2.0942555975752081E-02 + 340 1.1486694229504017E-02 + 341 5.9735409001865304E-05 + 342 1.5437415535470723E-02 + 343 8.2554165130315105E-02 + 344 -8.5633737254659933E-02 + 345 3.4648816333581120E-02 + 346 -1.3750127898005430E-02 + 347 1.0493025001240391E-01 + 348 1.6233273796474674E-02 + 349 2.6555535978499663E-03 + 350 -5.7515190024198543E-03 + 351 -2.1440644973562475E-03 + 352 -7.2795286711735121E-03 + 353 -4.1949779552737185E-03 + 354 1.0735052099481049E-02 + 355 2.0313242617658758E-01 + 356 -4.7148322492784923E-02 + 357 1.8639797525921495E-01 + 358 -1.3877024500186058E-01 + 359 7.4835069922260147E-02 + 360 -9.5554875764374284E-02 + 361 3.5391201200395406E-02 + 362 -4.2326106674262898E-02 + 363 8.6956709294940173E-03 + 364 -6.1611385337896146E-02 + 365 3.8321093813616293E-02 + 366 4.3031844123771010E-03 + 367 1.8254430893637926E-02 + 368 -2.2656310924615689E-02 + 369 5.2601627590034387E-03 + 370 8.8094979036397528E-02 + 371 -1.8853427904822886E-01 + 372 6.7840564947318327E-02 + 373 -1.1270864841162385E-02 + 374 5.2834122597691574E-02 + 375 -4.3784179990900285E-02 + 376 -4.9706654811693396E-03 + 377 -2.6330299480788487E-02 + 378 2.4914536416190548E-02 + 379 5.4763180234777128E-03 + 380 -2.1360114210522786E-02 + 381 -1.6692619334430903E-01 + 382 4.2336228272404713E-02 + 383 -5.5335524216757116E-02 + 384 9.1132037441967809E-02 + 385 8.8593809964341838E-02 + 386 5.0308568998134941E-02 + 387 -4.1493422424778680E-02 + 388 -2.5595071645051353E-02 + 389 -3.1761101499984158E-02 + 390 -2.0966428205488063E-02 + 391 -5.7666837328026015E-03 + 392 4.8330734897025166E-03 + 393 -2.4566827579704232E-02 + 394 -1.3958498603708949E-01 + 395 -7.1477756505648065E-04 + 396 -1.3954933957863530E-01 + 397 -7.3121257006531701E-02 + 398 -1.8700966895979701E-01 + 399 6.7183323424801298E-03 + 400 -2.5062886377292906E-03 + 401 -3.3698279242141152E-02 + 402 -5.5590076677701885E-03 + 403 -4.4766341108292704E-03 + 404 -4.8755387858960926E-03 + 405 -1.1018485632534745E-02 + 406 6.6069446710753732E-03 + 407 -4.7462356130347570E-02 + 408 -3.2240372321608569E-02 + 409 -6.3566741592314596E-02 + 410 6.6226286837845873E-03 + 411 -1.0676556846241572E-02 + 412 1.0017021820083812E-04 + 413 -9.4147439356643374E-03 + 414 1.1933491331265136E-02 + 415 9.2315117301712442E-03 + 416 -1.8024935344476036E-03 + 417 8.1785920814167398E-03 + 418 -1.0184077004750599E-02 + 419 4.4017987337816915E-02 + 420 -9.5547547743745371E-03 + 421 -1.2184289515924680E-01 + 422 -3.6922196063491473E-02 + 423 3.1365303362421958E-02 + 424 3.5029360626744693E-02 + 425 3.1957928595132752E-02 + 426 -1.8341504324881356E-02 + 427 -8.8426918686374169E-03 + 428 1.2051910406045049E-02 + 429 1.5343506692114045E-03 + 430 3.3289918911101661E-02 + 431 -1.0234210391606697E-02 + 432 2.3386223989664626E-02 + 433 -4.6656092223085460E-03 + 434 -3.3242318155123865E-02 + 435 2.5644416282752675E-02 + 436 1.1444608037394728E-01 + 437 -1.4696980337382818E-02 + 438 9.9371051197315197E-03 + 439 -3.9148985649345443E-02 + 440 -9.7092991747588803E-03 + 441 -1.4553414675661996E-02 + 442 7.9982201487276642E-03 + 443 1.0151699125255566E-03 + 444 -1.5686462890344458E-03 + 445 -1.1118971340824452E-01 + 446 -9.1987446487546524E-03 + 447 -4.7340391329946913E-02 + 448 3.0154547655410430E-01 + 449 -3.1167926268811812E-02 + 450 -8.8794223501531839E-03 + 451 2.2921868605220323E-02 + 452 -4.3430573873191203E-03 + 453 3.2216579369231109E-03 + 454 -3.4348693144906702E-03 + 455 1.0157461356845135E-02 + 456 4.6879280036250187E-03 + 457 -3.4996732227612903E-03 + 458 9.0850628999888008E-02 + 459 3.7961342317853516E-02 + 460 -1.4774710282416023E-02 + 461 3.7057843670959149E-02 + 462 -3.5351891452655520E-03 + 463 -3.2195878519724872E-03 + 464 -6.9992337102963587E-03 + 465 -5.1201814099233285E-03 + 466 5.5080063035532418E-03 + 467 -8.7187972639530490E-03 + 468 -7.1986247685682766E-03 + 469 -6.5462543348357091E-03 + 470 1.5620359432480585E-03 + 471 4.4536874968570152E-03 + 472 -5.0257466320359920E-02 + 473 -9.7947183511304603E-02 + 474 1.6865611371508110E-01 + 475 -6.2405931032115045E-03 + 476 -1.8456210531586879E-02 + 477 2.1101225753823019E-02 + 478 3.8631408563936927E-03 + 479 -1.6878157035515158E-02 + 480 -2.9427771959789984E-03 + 481 2.0842138956428317E-03 + 482 9.3826954432887598E-03 + 483 6.3574804874078295E-02 + 484 -6.5433746479991353E-02 + 485 -2.0704127180258637E-02 + 486 5.7050273691346229E-02 + 487 8.2539145728512314E-02 + 488 -2.5782932548243528E-03 + 489 -3.6159714268879182E-03 + 490 1.1119032480001575E-03 + 491 2.8544250021751748E-03 + 492 1.7329646688022205E-03 + 493 -1.1331748995282432E-02 + 494 7.8425804762156329E-03 +Ene= 7.8731553648E-02 +Spin= Alpha +Occup= 0.0000000 + 1 1.3502264837670810E-01 + 2 1.3783841514312310E-02 + 3 -2.1339029255822062E-01 + 4 4.7946648036945656E-02 + 5 -3.3766651750238040E-02 + 6 -3.3765690127891615E-02 + 7 1.2877699473115152E-02 + 8 -3.2728715319242473E-04 + 9 -5.9005741887442429E-03 + 10 2.0181078412834573E-03 + 11 3.2254505513228445E-03 + 12 -6.0634696340361475E-03 + 13 -8.1954137520309535E-03 + 14 -2.6356832216797832E-03 + 15 5.3062455567553346E-02 + 16 8.9672112191890758E-03 + 17 -7.8251114912171113E-02 + 18 -2.8288753115764723E-03 + 19 8.5709212620011278E-03 + 20 -1.1269118785469422E-02 + 21 1.4392690307176404E-02 + 22 -7.1269117771353020E-03 + 23 -4.4074439375759679E-03 + 24 -2.2690731789602983E-03 + 25 3.6141652207405104E-03 + 26 4.3975721699312478E-02 + 27 -1.9867932689278255E-03 + 28 1.0804385247118380E-01 + 29 -2.4496280786881156E-01 + 30 -9.9256214859284278E-02 + 31 1.2626390511849578E-02 + 32 -2.8522654036654556E-02 + 33 -2.4418747461531009E-02 + 34 -4.2506848210443352E-03 + 35 -7.3736471960266182E-03 + 36 -6.0522406631424274E-04 + 37 -5.1573533621703657E-03 + 38 9.8385715127947606E-03 + 39 -1.2700342783736491E-02 + 40 -3.6133305758899857E-02 + 41 -4.2427393849838888E-02 + 42 -3.1904631888410091E-02 + 43 -7.0188590865955344E-02 + 44 3.8291250293996425E-03 + 45 -6.3289961694986945E-03 + 46 -9.3290229622542756E-03 + 47 6.3476311937361515E-03 + 48 -5.1922947355308629E-03 + 49 2.0273206801231000E-02 + 50 1.4866654136573895E-03 + 51 -1.7597780032474528E-01 + 52 -3.3065359246549554E-02 + 53 -1.7622026895575136E-03 + 54 -2.4897055605067636E-01 + 55 1.2977128571990396E-01 + 56 -3.4202156733122036E-03 + 57 -3.6818157656316547E-02 + 58 8.8777975637884341E-03 + 59 -9.0745739617314539E-03 + 60 -2.8377560018402600E-03 + 61 7.2989653466673937E-03 + 62 -2.3163895201717462E-03 + 63 -1.3031717331049875E-02 + 64 -7.7366831116718493E-02 + 65 1.9139999709508481E-02 + 66 -4.2063800142227312E-02 + 67 -5.1231065664237692E-02 + 68 -1.0787201380063360E-01 + 69 -5.8747233875245932E-03 + 70 2.6664387517019131E-03 + 71 -1.4474896177929023E-03 + 72 -3.9793473285470830E-03 + 73 -1.4243441114705605E-02 + 74 -1.2664133792305242E-02 + 75 -1.6883504536059891E-03 + 76 1.0439004382096873E-01 + 77 -2.3854955343368161E-02 + 78 -7.7015521236523304E-02 + 79 2.2281406392121103E-02 + 80 -5.4019270993933097E-02 + 81 1.5396850699495061E-02 + 82 4.0944724187529605E-02 + 83 2.0680821042552963E-02 + 84 8.7404447666368477E-03 + 85 -1.1042086545141782E-02 + 86 1.1101132435484221E-02 + 87 1.4197999118382347E-02 + 88 2.1744778595005824E-03 + 89 -3.9185650337951794E-02 + 90 8.6311390174834100E-03 + 91 6.6767799287342300E-03 + 92 -7.8096416645920277E-02 + 93 -2.1824870438759855E-02 + 94 -2.7892555183597682E-02 + 95 1.2677280978673138E-02 + 96 2.9127063384266891E-02 + 97 -2.0245511520347961E-04 + 98 -1.0717574274162334E-02 + 99 1.6763579707739791E-02 + 100 2.0665051657604599E-02 + 101 -1.4878032674445760E-03 + 102 7.4733339488220760E-03 + 103 -1.8415802286006621E-03 + 104 6.4501857148162745E-03 + 105 5.8390643617023674E-02 + 106 -5.2247151334964131E-02 + 107 2.8129612404766829E-03 + 108 -7.4032533630037964E-02 + 109 1.0383112252628271E-02 + 110 3.0098689423060699E-02 + 111 -1.1968892864961530E-02 + 112 -2.0610101194601083E-03 + 113 2.3029731911293344E-02 + 114 1.9591892979608276E-02 + 115 -2.1219719803803030E-01 + 116 5.2573757803400060E-02 + 117 -3.2554711973143011E-02 + 118 -8.4341461417894920E-02 + 119 6.3308112087649457E-02 + 120 -1.9754182921019561E-02 + 121 -2.3438850359082681E-02 + 122 -7.7285922243178193E-02 + 123 -3.8104323361692100E-03 + 124 2.0357905183480637E-03 + 125 2.7925375520729788E-03 + 126 -4.6582420230103262E-03 + 127 7.6026803703758998E-03 + 128 -8.1931875402298612E-02 + 129 -3.0301674961877533E-02 + 130 -1.7544118479467086E-01 + 131 -4.0213532392801832E-01 + 132 2.3215599831795444E-01 + 133 -2.2311096088242499E-02 + 134 -5.3568430530707541E-02 + 135 2.7495622806119401E-02 + 136 -1.2255621808943755E-02 + 137 -5.1172964862302567E-04 + 138 1.0844677308128384E-02 + 139 -2.3923639574821645E-03 + 140 4.3198615256117108E-03 + 141 -7.1607312807378837E-02 + 142 -1.1186363343345375E-01 + 143 -1.0524658684364013E-02 + 144 4.7115384931895578E-02 + 145 -7.0159727538498251E-02 + 146 -3.4203648898536651E-03 + 147 -2.4182254084371530E-03 + 148 -5.7606971812565358E-04 + 149 1.1108504392568167E-02 + 150 -3.4589440019858796E-03 + 151 -5.5537288172050944E-03 + 152 1.2617640188499605E-03 + 153 -3.6390197187380714E-02 + 154 -6.0825377083471117E-03 + 155 -1.1192221097312427E-01 + 156 6.3982964827118044E-02 + 157 1.1926478598497595E-01 + 158 -5.3503517929987402E-03 + 159 -1.3002845650239437E-04 + 160 1.1190156950139488E-02 + 161 7.8349900262989804E-03 + 162 -1.2040375963257590E-03 + 163 -1.2744313595989947E-02 + 164 9.8360550315843031E-04 + 165 6.4152205800008435E-03 + 166 9.9134757218039965E-02 + 167 -5.4865198314784300E-02 + 168 -9.4558473923794975E-02 + 169 -1.5843700432842195E-02 + 170 -1.4203897584494597E-03 + 171 8.6424273260223370E-03 + 172 -9.1420738916124494E-03 + 173 2.3763635218297611E-03 + 174 9.7233135047088727E-03 + 175 1.5259208739321965E-02 + 176 -3.9663741730107159E-03 + 177 -8.9853497365777399E-03 + 178 9.9798348912461352E-02 + 179 -2.2657963862804314E-02 + 180 1.9690861752686847E-02 + 181 1.5129641080279682E-01 + 182 -4.2367124880228063E-03 + 183 -1.5812288064953779E-02 + 184 -7.1372136697773439E-02 + 185 3.8198730536880832E-02 + 186 -7.3780614682739474E-03 + 187 -7.0713912718109676E-03 + 188 5.1461912619555412E-02 + 189 -3.6536181543954487E-03 + 190 1.3419429339118799E-02 + 191 -2.0365208524000923E-03 + 192 1.2542524489554301E-03 + 193 -4.1625143788000640E-02 + 194 6.3800651926125884E-02 + 195 2.9845285909942162E-02 + 196 3.8961119424020495E-02 + 197 -3.5098526384726429E-02 + 198 -1.6104218370012004E-02 + 199 5.1513157017391641E-02 + 200 -1.4197639882791392E-02 + 201 2.9913332298502519E-02 + 202 -3.6789233068248772E-02 + 203 1.4452265683256218E-02 + 204 2.0070176868559615E-02 + 205 1.0442770541343415E-02 + 206 7.2397624375254085E-02 + 207 -1.6353946548861067E-01 + 208 -1.7610015969539033E-01 + 209 1.2309345711247973E-02 + 210 -2.3879297564545224E-02 + 211 -1.7176405889859008E-02 + 212 -8.1491510277522643E-03 + 213 -4.6661797984636662E-03 + 214 2.6799820159960078E-02 + 215 -6.2542818232910085E-04 + 216 2.8430113353432686E-02 + 217 -5.2038913741742500E-02 + 218 -1.6359954846834383E-02 + 219 1.6885868112194174E-01 + 220 -6.1456248461900724E-02 + 221 1.1273850913308135E-01 + 222 5.5124236306862409E-03 + 223 3.3993771624016345E-03 + 224 -2.2939148534843255E-03 + 225 -5.4304657284820462E-03 + 226 -3.0058121293735263E-03 + 227 8.1426590113378092E-03 + 228 3.1915910366971329E-03 + 229 -1.0387015952730815E-01 + 230 -8.8348696287574129E-03 + 231 1.1497482979838269E-01 + 232 1.0552974292716844E-01 + 233 1.6848480079719935E-01 + 234 8.1733758110774015E-03 + 235 2.0059687211008502E-02 + 236 1.7804153249043601E-02 + 237 -4.7861074903494394E-03 + 238 -1.5676984628008490E-02 + 239 7.8140209434507373E-03 + 240 -5.7388163061574274E-03 + 241 -3.1660670526525540E-03 + 242 -1.1024111730901241E-01 + 243 -4.9366416258728264E-02 + 244 -1.1410077678943170E-02 + 245 -5.4145338605951013E-02 + 246 3.7570618006501265E-02 + 247 -1.1402942453375673E-03 + 248 -7.9870144768937265E-03 + 249 5.1315989580923401E-03 + 250 5.3803747845534954E-03 + 251 8.9783026614378737E-03 + 252 -2.7485287492112185E-02 + 253 -1.1595679893422726E-02 + 254 2.7209690347335347E-01 + 255 4.7962990901375978E-02 + 256 -9.1885916101631673E-02 + 257 -1.1546815398387866E-01 + 258 -4.7409288031423058E-01 + 259 -1.8834414653635608E-02 + 260 -2.7712028323352525E-02 + 261 -8.4811601277498996E-02 + 262 -2.5044175964561748E-02 + 263 -8.7672237499679621E-03 + 264 -1.0726252645089644E-03 + 265 9.4413549886166268E-03 + 266 -5.7790402240841393E-03 + 267 -1.0847474779447894E-01 + 268 -8.3515395552778579E-02 + 269 -9.6327144608368095E-02 + 270 2.1452373008275329E-02 + 271 2.9764697539764578E-04 + 272 1.1475978341177891E-02 + 273 5.8988169473723475E-03 + 274 -2.3838392396864326E-02 + 275 -1.2032053625860189E-02 + 276 -1.4516249603930349E-02 + 277 -9.1225440380901870E-03 + 278 2.6121837746455453E-03 + 279 2.2015770736097851E-01 + 280 -5.1760093545221195E-02 + 281 1.0331812835050361E-01 + 282 2.3716807681190506E-02 + 283 3.0359485031625721E-01 + 284 -1.2229432180169517E-02 + 285 3.6737872442281078E-02 + 286 -8.0368014109875818E-02 + 287 -1.4486015425870219E-02 + 288 2.9027752339238003E-03 + 289 2.9447813500294198E-02 + 290 -5.1324523402268485E-03 + 291 -1.4175073979537926E-02 + 292 -5.5155611524278149E-02 + 293 1.3614449324219555E-02 + 294 6.9020381363962699E-02 + 295 -2.6828375712211718E-02 + 296 7.5422887726073681E-03 + 297 -4.5847630443093014E-02 + 298 3.8187384275064587E-02 + 299 6.9387649643142197E-03 + 300 -1.6339347994234071E-02 + 301 -2.7985609854599719E-02 + 302 1.9667799717844998E-02 + 303 -5.4328528463898464E-03 + 304 -1.2228971615660006E-02 + 305 -2.4887934002978951E-02 + 306 -6.4776059541611294E-03 + 307 -1.4492116738165983E-01 + 308 6.9540999872377038E-02 + 309 -5.2643196571624327E-02 + 310 -1.9048598377763418E-02 + 311 -5.4304705171868072E-04 + 312 -1.3264563279502827E-02 + 313 8.4102484208393551E-03 + 314 -4.3391382412711205E-03 + 315 2.1540114927941930E-04 + 316 5.2141526125098064E-03 + 317 1.4065915250467227E-02 + 318 3.5095335940228484E-02 + 319 1.2848341010287315E-02 + 320 -1.6598668816835905E-02 + 321 -3.2231421807316633E-02 + 322 4.8137769544055770E-02 + 323 9.8093586065393359E-04 + 324 -6.6385575619781973E-03 + 325 4.7071157601746051E-03 + 326 6.4177768632482299E-03 + 327 -6.7535597796698037E-03 + 328 -6.3517910178639168E-03 + 329 5.2126131758423811E-03 + 330 3.3224459834293917E-02 + 331 1.1902097817123092E-02 + 332 3.6281863989196382E-02 + 333 1.6933269038241441E-01 + 334 -2.6064638622296749E-01 + 335 5.4364681039613056E-03 + 336 1.1322686757709853E-02 + 337 -2.1577025295264434E-02 + 338 1.5492548428095586E-03 + 339 -1.2530309994381759E-02 + 340 9.5320749974592191E-03 + 341 9.8831640800162122E-03 + 342 -6.3322142707056186E-03 + 343 4.6945182928274008E-02 + 344 -5.7481625617512057E-02 + 345 5.5235334955054775E-02 + 346 7.8158208482161415E-02 + 347 -2.7013531792162492E-02 + 348 -8.9318084896584226E-03 + 349 5.7551331657246111E-03 + 350 -7.2577821061836417E-03 + 351 9.7661218457990809E-03 + 352 -1.0614822246846145E-02 + 353 -4.7895132442421278E-03 + 354 -1.2706977255537735E-02 + 355 1.3955691587131341E-01 + 356 -3.1237183152994116E-02 + 357 -7.1779488671422764E-03 + 358 -4.5167440153220599E-02 + 359 6.1590650379831989E-02 + 360 -9.6300350775516685E-03 + 361 3.3465319626619708E-03 + 362 -4.7196821774410140E-02 + 363 4.9814767844564938E-04 + 364 -7.2678546641188274E-03 + 365 8.2213591066484706E-03 + 366 8.4553318349336604E-03 + 367 3.7170632921723422E-02 + 368 -1.0166226770591130E-02 + 369 6.3126745932559527E-05 + 370 -1.9166358855160357E-02 + 371 9.6052649257443529E-02 + 372 -2.3719223363505917E-02 + 373 -2.1653481073650185E-02 + 374 -8.6208522227453257E-03 + 375 6.2290775466373261E-03 + 376 -2.6837672266698368E-02 + 377 -1.3330381758105471E-02 + 378 3.8633051479446005E-02 + 379 2.2170131994773277E-02 + 380 2.9663412923384633E-03 + 381 8.0746378053044091E-02 + 382 -2.0231553691450906E-02 + 383 2.2961608498016751E-02 + 384 2.4479789788834842E-03 + 385 2.2163957429818755E-02 + 386 -7.7767077230414877E-03 + 387 -1.0390474430899922E-02 + 388 2.2288660226121713E-02 + 389 -1.1174029304477981E-02 + 390 4.5299785197038665E-02 + 391 -1.1530437378963494E-02 + 392 1.2722079678427823E-02 + 393 -2.8127743257958932E-02 + 394 1.5513937327662380E-01 + 395 2.5487714918514530E-02 + 396 1.4266481044570128E-01 + 397 -2.5010159450771768E-01 + 398 3.4560726429041472E-01 + 399 1.7843328412288108E-02 + 400 -3.4320851331521983E-02 + 401 4.5706742248987721E-02 + 402 -3.9315532895206383E-03 + 403 8.1587627661749203E-03 + 404 1.6389071007240696E-02 + 405 -7.7477136178722462E-03 + 406 -2.1145876203639597E-03 + 407 7.1493375123191025E-02 + 408 -9.6621996549687151E-04 + 409 9.0992574301570178E-02 + 410 -6.3984818380969172E-02 + 411 7.9645073539284766E-02 + 412 3.4156287588350256E-03 + 413 7.1591794183211918E-03 + 414 4.6494894152433013E-03 + 415 4.2007734932914213E-03 + 416 4.6677953799385326E-03 + 417 -1.8632922326705891E-02 + 418 -1.9626542914460515E-02 + 419 5.4747615148460202E-02 + 420 -1.5690274942254254E-02 + 421 3.6029128940259274E-02 + 422 -2.0229309390247788E-01 + 423 -2.1670987849379042E-02 + 424 -1.3905141819761348E-02 + 425 4.6456465095728254E-02 + 426 -2.1264513739451665E-02 + 427 -4.7450865230831323E-03 + 428 -2.1208937050522215E-03 + 429 2.6170485062872031E-02 + 430 -7.0455467012533928E-03 + 431 1.0117760437654539E-02 + 432 -7.4711173053078367E-02 + 433 1.7987355496134047E-02 + 434 -6.6797719443437251E-02 + 435 -7.5067287469542457E-02 + 436 -5.2660158280895937E-02 + 437 7.3536211118392689E-02 + 438 7.0942400663328896E-03 + 439 4.4166165920095308E-03 + 440 1.3472301416391042E-02 + 441 -1.9503713525253485E-02 + 442 1.5860903380977287E-02 + 443 3.1351023559921851E-02 + 444 3.9546734489382382E-02 + 445 -9.4808171236921146E-02 + 446 -1.6560894806685763E-02 + 447 9.5148676422434686E-02 + 448 -2.3964435822324166E-02 + 449 -3.3444304746197673E-01 + 450 1.2127997758702018E-02 + 451 -6.1066629292567667E-03 + 452 -4.6869065302281555E-02 + 453 -1.7314150717611949E-02 + 454 -2.7744759096163286E-03 + 455 3.4236148653422373E-03 + 456 -3.6101483140100281E-03 + 457 2.7168154115212962E-03 + 458 -5.0997006915308743E-02 + 459 4.1146575526969438E-02 + 460 -1.8070524639132026E-02 + 461 -4.6659366478586477E-03 + 462 2.6908277172867520E-02 + 463 -6.7606591976448636E-03 + 464 -5.8849346924548379E-03 + 465 -7.1003280939727778E-03 + 466 -4.7587769536534602E-03 + 467 7.0589902377216117E-04 + 468 -8.0391395751986047E-03 + 469 -2.2245693183195657E-04 + 470 5.5209844376155705E-02 + 471 1.2944746840286389E-02 + 472 7.8551034429176034E-02 + 473 2.1991628118590875E-03 + 474 -1.1959839860496631E-01 + 475 2.5688720778994690E-02 + 476 -5.9950127158035944E-03 + 477 -8.9084525854442927E-03 + 478 6.2219608052289013E-03 + 479 1.2384746179978718E-02 + 480 8.2188878414362794E-03 + 481 -1.0795882554490486E-02 + 482 1.5820491669856700E-02 + 483 8.1407952580839868E-02 + 484 6.2447098855486403E-02 + 485 1.2465577563513119E-01 + 486 4.8934852016425182E-03 + 487 2.1350097173978189E-03 + 488 5.5781424709684139E-03 + 489 1.3032642115933979E-03 + 490 5.5771106500628245E-03 + 491 -7.6638742858413430E-03 + 492 -1.0171200526702831E-02 + 493 -4.4454911088977140E-03 + 494 1.4738268490329068E-02 +Ene= 8.3191485245E-02 +Spin= Alpha +Occup= 0.0000000 + 1 -1.0111923279409091E-01 + 2 -2.1408175602604090E-03 + 3 6.9346326958068555E-02 + 4 1.6921086087809364E-01 + 5 -2.2590812821869760E-01 + 6 2.1102520834342126E-02 + 7 2.7768880306978213E-02 + 8 -1.9959102424553305E-02 + 9 -1.4149755245725794E-02 + 10 -5.7085386847362573E-03 + 11 -1.4232734566330984E-02 + 12 -1.5488055825924151E-02 + 13 -6.4767562128781736E-03 + 14 -3.8628610553365236E-02 + 15 -5.6710198092122410E-02 + 16 -5.3417359218187251E-02 + 17 -4.5623281582882182E-02 + 18 5.3962490372688750E-02 + 19 8.5350390411253925E-03 + 20 1.1363625909586771E-02 + 21 -6.0298451584107915E-04 + 22 5.1829898849962775E-03 + 23 -2.0846915445210158E-02 + 24 -1.0571223361433667E-02 + 25 1.2864181212496353E-02 + 26 -5.6600576275822025E-02 + 27 -7.1612083299070432E-03 + 28 3.1536400329487613E-01 + 29 -3.8000210332218604E-01 + 30 -2.1743879703845589E-01 + 31 3.9546795321351032E-02 + 32 -6.0699040114228352E-02 + 33 -2.3853936520253111E-02 + 34 -8.2690628154341052E-04 + 35 -9.6478128923043333E-03 + 36 1.3145604706433186E-02 + 37 7.0017224556137986E-03 + 38 -1.5246484039851574E-03 + 39 8.5907982654472130E-03 + 40 9.4511233944294726E-02 + 41 -1.2337314722843161E-02 + 42 9.0676757890139723E-02 + 43 4.1223981730126501E-02 + 44 9.2269061039602761E-03 + 45 1.5377403826179428E-02 + 46 -4.6561976643754815E-04 + 47 1.7072302683762249E-02 + 48 2.3977685790262606E-04 + 49 2.0745390347975869E-02 + 50 -4.0997985220159166E-03 + 51 -1.0490598857239077E-01 + 52 -1.0456173562395804E-02 + 53 7.8312499734471297E-02 + 54 2.3660354711129480E-01 + 55 3.7387664752994620E-01 + 56 9.4756503694333836E-03 + 57 2.3667946996567935E-02 + 58 5.7541776546704906E-02 + 59 -1.8092091448740609E-03 + 60 -2.9468126511081289E-02 + 61 -3.9310876517984709E-03 + 62 4.3390702814010149E-03 + 63 -1.0547538659754158E-02 + 64 6.0275512133431873E-02 + 65 2.7612211147089335E-02 + 66 1.0457736824445485E-01 + 67 -3.1175476442734584E-03 + 68 -2.8144086629167254E-03 + 69 -2.0735300092751627E-03 + 70 -1.3790188822029377E-02 + 71 -1.4532799961164211E-02 + 72 -7.8822438387626780E-03 + 73 -6.3961655359068047E-03 + 74 1.9694171289789331E-02 + 75 -1.8368279994260928E-02 + 76 1.0404970612376614E-01 + 77 -2.1912380661748446E-02 + 78 -5.6459405535641497E-03 + 79 -2.1502601490416451E-03 + 80 -7.4552247943508607E-02 + 81 3.0504462203600594E-02 + 82 8.9986429803081049E-03 + 83 3.7661356526036846E-02 + 84 -3.1531942601324574E-02 + 85 -8.4583726688873227E-03 + 86 3.5130278967800063E-02 + 87 -1.8700579025595437E-02 + 88 -1.4138372326931751E-02 + 89 -1.7159522135866187E-01 + 90 3.7659415883674448E-02 + 91 7.2961554371582624E-02 + 92 -1.0583290321604776E-01 + 93 -1.0649152262863774E-01 + 94 -4.7860371274262917E-02 + 95 4.8701733601448360E-02 + 96 3.8685737530960967E-02 + 97 -1.5928024460683671E-02 + 98 -2.1615674413455771E-02 + 99 2.8707972602322008E-03 + 100 -2.9760970528567060E-03 + 101 -1.3743724859064347E-03 + 102 2.4379853746366531E-01 + 103 -5.6257969927197275E-02 + 104 -9.0834595203337670E-02 + 105 8.4225259607011937E-02 + 106 5.4644100965029908E-03 + 107 8.9128673725437091E-02 + 108 -2.4086902973912201E-02 + 109 5.2323910459230794E-02 + 110 7.1842237360907829E-03 + 111 -3.1815098879757413E-02 + 112 4.0488629466785657E-03 + 113 3.9800952249696387E-03 + 114 -3.1693359830843801E-03 + 115 -1.7268310967532866E-01 + 116 4.0055600847556570E-02 + 117 -9.3450291198463750E-02 + 118 -1.8806974007607533E-02 + 119 6.0527622956934410E-02 + 120 8.5811914306365908E-02 + 121 -5.8716365302858738E-02 + 122 -5.5105781065472155E-02 + 123 -1.1481197554575015E-02 + 124 -5.5730166009734378E-02 + 125 1.7855439092091821E-02 + 126 -1.8932662766595245E-02 + 127 5.5370391118455368E-03 + 128 9.1542797179718013E-02 + 129 1.3464005209546655E-03 + 130 -1.1168903956795408E-01 + 131 1.3190908672734677E-01 + 132 -1.2646340440062817E-01 + 133 -1.2679118867845307E-02 + 134 1.1739107984876651E-02 + 135 -2.5598116285930859E-02 + 136 -1.2534142681301808E-02 + 137 -9.3154756331017032E-03 + 138 1.0040775066330573E-02 + 139 -1.9228442968454124E-02 + 140 4.3644565949799803E-03 + 141 -3.6403198639091437E-02 + 142 4.1469239050883795E-02 + 143 -2.7840622533195438E-02 + 144 -4.9283976657762484E-02 + 145 7.0264657903613675E-03 + 146 -6.3387881890262622E-03 + 147 5.8477696295117666E-03 + 148 -1.1730947215710823E-02 + 149 -6.3000302832431848E-03 + 150 2.2538651830993409E-02 + 151 -1.6708738419922438E-02 + 152 -1.8113588782193248E-02 + 153 -7.4624118525408720E-02 + 154 -1.4867577367761942E-02 + 155 1.9091680402387007E-01 + 156 1.0738865896172399E-01 + 157 2.3566648452524571E-03 + 158 4.0020204714341187E-02 + 159 1.2677537404900534E-02 + 160 5.4939370292293567E-03 + 161 6.0750676186333953E-03 + 162 7.2253090734946054E-03 + 163 1.3276860092211705E-02 + 164 1.2594180555525815E-02 + 165 -1.8393371855558286E-03 + 166 -1.3144465465590569E-02 + 167 1.1205307310969327E-01 + 168 8.2716302999799762E-02 + 169 6.6197370899596583E-02 + 170 4.4142332699084550E-03 + 171 -7.5825203709659035E-03 + 172 -1.0045608353064856E-02 + 173 7.6704259000343203E-03 + 174 1.0358799873596419E-02 + 175 7.8023082746838815E-03 + 176 -1.1214262879270447E-02 + 177 -3.9366432924545274E-04 + 178 -8.6611823968941890E-02 + 179 1.9314350715556497E-02 + 180 -1.1865915684849403E-01 + 181 -2.8705439590405508E-02 + 182 -5.9021712394108236E-02 + 183 3.3333192067971709E-02 + 184 1.0067311220157282E-02 + 185 -2.4105139736279070E-03 + 186 -8.5272129827288802E-03 + 187 -6.4249032718396368E-03 + 188 -7.3963536186915394E-03 + 189 -8.1196133662178645E-03 + 190 -1.3166023058629349E-02 + 191 -1.1156049392517395E-01 + 192 2.8841941877335894E-02 + 193 1.1183218740391972E-02 + 194 -1.4132573092005438E-01 + 195 -6.0016046796243859E-02 + 196 8.2616339775132552E-03 + 197 9.4351992553338176E-02 + 198 1.0020022339201715E-02 + 199 -5.6276428728276068E-02 + 200 -1.6995121361159141E-03 + 201 -2.6575713366512113E-02 + 202 1.7199869627080599E-03 + 203 -6.8333368363412373E-03 + 204 -1.8287857738511659E-01 + 205 -2.2354723021537286E-02 + 206 -2.4073910152498568E-01 + 207 9.4327773349448779E-02 + 208 2.0747622376042649E-01 + 209 -4.6192619050414080E-02 + 210 1.4072094950447350E-02 + 211 2.9278144837276296E-02 + 212 -2.1133936659187271E-03 + 213 -1.0567089521901485E-03 + 214 -1.6768022159487708E-03 + 215 2.5568194858951159E-03 + 216 -5.0160751421178896E-03 + 217 -4.0188366547450415E-02 + 218 -2.4632406133548973E-02 + 219 -5.0455205915641732E-02 + 220 3.3225152031328115E-02 + 221 -6.0393342112140640E-03 + 222 -1.5107623009099621E-02 + 223 -7.5778563452061657E-03 + 224 1.9384630212482753E-04 + 225 1.2127778202162508E-02 + 226 4.0199538646358913E-03 + 227 -2.0971308219429309E-02 + 228 -1.5614732621827066E-02 + 229 -7.1076455875923195E-03 + 230 4.4391392349431232E-04 + 231 1.8423705507682236E-01 + 232 -1.8848595574143284E-01 + 233 1.4241627353955202E-01 + 234 2.3239158224137840E-02 + 235 -1.4773010888117178E-02 + 236 1.7472933213866081E-02 + 237 -1.2548119791169226E-02 + 238 -3.0417299403062590E-03 + 239 8.5981044875715895E-03 + 240 4.6617194788856403E-03 + 241 -4.8035038177073443E-04 + 242 -6.2409578938507439E-02 + 243 -8.1541923905604816E-02 + 244 4.1371410710469750E-02 + 245 8.9256678465326547E-02 + 246 3.5229077390450385E-02 + 247 1.0948145249239722E-02 + 248 8.0850633359016745E-03 + 249 -7.6148454662832319E-03 + 250 -5.5604380689519796E-03 + 251 -1.1269224285955434E-02 + 252 1.1261134143415728E-02 + 253 1.5087910101619629E-02 + 254 2.1851749843474830E-01 + 255 3.3882039350576515E-02 + 256 5.6985658012902327E-02 + 257 -7.0640054541067060E-02 + 258 -2.5882344286953535E-01 + 259 2.0640796366322996E-02 + 260 -3.3944482995091521E-02 + 261 -4.1300296828593604E-02 + 262 -8.0892640241278825E-03 + 263 -1.6255887869064886E-02 + 264 -1.3095306027710457E-03 + 265 -5.3720142215180318E-03 + 266 2.4345250880514695E-02 + 267 -9.3779287686591134E-02 + 268 -7.5630047211421234E-02 + 269 -1.1646803154352404E-01 + 270 -1.4141509389930096E-01 + 271 5.0298535102351591E-02 + 272 -7.3132889095927451E-03 + 273 6.0844764925498552E-03 + 274 -1.0381475056610384E-02 + 275 -1.1732106397695485E-02 + 276 -2.8698729162514032E-04 + 277 6.6247302960236393E-03 + 278 1.2599100580674080E-03 + 279 3.2473322095394511E-02 + 280 -7.9336495055964875E-03 + 281 3.2378525017175426E-02 + 282 6.5429003961708893E-02 + 283 1.9649933756070914E-01 + 284 1.4408779429634613E-02 + 285 -1.4047432032545449E-02 + 286 -3.6998921715620477E-02 + 287 -9.4761169359146840E-03 + 288 -4.4991948360293743E-02 + 289 2.7360294580932418E-03 + 290 1.1145376879805458E-02 + 291 -1.1007757748138560E-02 + 292 1.5132085109234863E-01 + 293 -3.3214280387484710E-02 + 294 4.3820715233828522E-02 + 295 -9.3636026376722692E-02 + 296 7.5959955451476852E-02 + 297 2.4632037830166351E-02 + 298 3.5655015192200025E-02 + 299 -4.4880486684250126E-02 + 300 -2.5790442667049931E-03 + 301 -1.7355519647271715E-02 + 302 4.1696540940168256E-03 + 303 -2.5497602050072173E-02 + 304 -3.7701068439426451E-02 + 305 2.6918702246495944E-02 + 306 1.6509781638430186E-03 + 307 2.5541463563801259E-01 + 308 2.3381334019587832E-01 + 309 1.0033059929349759E-01 + 310 3.6889401165396789E-02 + 311 3.3345158241450193E-02 + 312 1.6901701027833956E-02 + 313 1.0034940314706106E-03 + 314 -3.5557601798202995E-03 + 315 -3.5162742270309060E-03 + 316 -2.3089507158684332E-02 + 317 -1.0953892249896860E-02 + 318 1.7730751957429302E-02 + 319 1.3747851499603522E-02 + 320 2.3998386340822297E-02 + 321 -5.9150626123126479E-02 + 322 -3.8600450360456090E-02 + 323 1.0747213688720248E-03 + 324 1.0649350212385457E-02 + 325 1.0013214714723686E-02 + 326 -5.6314180856182642E-03 + 327 -6.2311360935471205E-03 + 328 6.9349080791961783E-03 + 329 8.3613579613280361E-03 + 330 1.7256658017761611E-01 + 331 1.8149841392870514E-02 + 332 1.0879815310416467E-01 + 333 5.9293818064795521E-02 + 334 1.6162434995301755E-01 + 335 -2.4119913619790145E-03 + 336 3.0923722410859066E-02 + 337 9.0572927176178503E-03 + 338 -1.0711653751870432E-02 + 339 -1.0464495596683448E-02 + 340 -7.4215294190403810E-03 + 341 1.3786017200350176E-03 + 342 -5.4800800608436478E-03 + 343 -4.8693398690691357E-02 + 344 -6.6677958191491901E-02 + 345 -1.0894416854398481E-01 + 346 -1.4820834917355545E-02 + 347 -1.0234784115623792E-01 + 348 1.5112642683021378E-02 + 349 -3.3410575029721012E-03 + 350 1.0963907320617208E-02 + 351 7.6457801343494036E-03 + 352 5.9008418177776264E-03 + 353 -2.7154769787068266E-03 + 354 7.2722944266491391E-03 + 355 -1.6902831313783603E-01 + 356 3.9621843523799195E-02 + 357 4.3126918770544816E-02 + 358 -9.8024514959866860E-02 + 359 4.5546409206783774E-02 + 360 -1.3333448343428683E-02 + 361 7.5781263535824039E-02 + 362 6.0952257819891220E-03 + 363 -2.8190438557691516E-02 + 364 -3.5874647941846359E-03 + 365 -4.3530460235525516E-03 + 366 -4.6129591321436070E-02 + 367 -1.3935653640449056E-02 + 368 1.1831677294005551E-03 + 369 9.7811875148440968E-04 + 370 2.9124152179153730E-02 + 371 1.6812587657998587E-01 + 372 7.4488679295605662E-03 + 373 -1.3942571641556337E-02 + 374 -5.6958965894106928E-02 + 375 1.9774469142427699E-03 + 376 -1.9206989885538702E-02 + 377 -2.0809472127047819E-02 + 378 4.6429393865450438E-03 + 379 -1.6386810528430374E-02 + 380 6.6237385067166752E-03 + 381 -3.0969861987577070E-02 + 382 5.1014332191171912E-03 + 383 1.8823367972650720E-01 + 384 1.5944287589457980E-02 + 385 8.0790780448073054E-03 + 386 -6.4065758738108158E-02 + 387 -2.8111376547316654E-02 + 388 -2.6274863710971902E-02 + 389 -1.3688913495500636E-02 + 390 -3.1414261251314184E-02 + 391 7.5712097673995915E-03 + 392 -8.2952617688487294E-03 + 393 4.0170594276304816E-02 + 394 1.2654557469576945E-02 + 395 -1.7126849505590000E-02 + 396 -1.0014212384114455E-02 + 397 -5.1173963721625582E-02 + 398 -1.8514235385447997E-02 + 399 -5.8440608722552965E-03 + 400 -1.2784040280720983E-02 + 401 -3.3712776555026498E-03 + 402 -1.4361908499729931E-02 + 403 -3.6672455245043332E-03 + 404 4.3955570046905965E-03 + 405 -9.2188079355151067E-04 + 406 1.1980132060506331E-03 + 407 -7.9722593963610783E-02 + 408 -1.6695921813468323E-02 + 409 4.9497548202998960E-02 + 410 -1.9845843015870206E-02 + 411 5.7321329806332385E-04 + 412 6.1429831781540491E-03 + 413 3.5115359549524588E-03 + 414 -2.3364878497462226E-02 + 415 -4.5531076695520889E-03 + 416 -8.4255967844933579E-03 + 417 -8.4739995949401747E-03 + 418 1.4382155185607719E-03 + 419 -1.6189076891371357E-01 + 420 3.9653633244955140E-02 + 421 3.1134159415497412E-02 + 422 1.3338089965699010E-01 + 423 1.2036322281670344E-03 + 424 -1.4624757260119322E-02 + 425 -8.9717971342328562E-02 + 426 2.5957791364510943E-02 + 427 -2.1326891460290105E-02 + 428 -1.0899956970850042E-02 + 429 -1.3998078025202608E-02 + 430 -4.3224313529542806E-02 + 431 -9.1487897673642207E-05 + 432 1.8745246351908526E-01 + 433 -4.4114004744228774E-02 + 434 -2.6818588774740873E-02 + 435 3.7438867014450400E-02 + 436 3.5646208429222302E-02 + 437 -1.5948687548288810E-02 + 438 -5.4656471957301951E-02 + 439 -7.4085303493171073E-03 + 440 -2.1213020902547581E-02 + 441 2.4797336462324009E-02 + 442 -9.1768257385775858E-03 + 443 -9.0918809293892792E-03 + 444 1.0546540280610570E-02 + 445 -6.8751624135284781E-02 + 446 -8.2833059358860001E-03 + 447 -1.3878322843728200E-01 + 448 -1.6640111959905832E-01 + 449 3.4664458158979616E-01 + 450 -2.5002288927536503E-02 + 451 -1.2133628785572904E-02 + 452 4.4398412131247345E-02 + 453 -1.9361336667593900E-02 + 454 1.0418961033721886E-02 + 455 -1.0105665913411955E-03 + 456 -1.8036283955650795E-02 + 457 4.0522506000986308E-03 + 458 -7.8941078687187138E-02 + 459 -1.4181130895554229E-03 + 460 3.6546122190267649E-02 + 461 6.9200869693012935E-03 + 462 4.6790718068323529E-02 + 463 -8.3965932510175767E-04 + 464 -2.5619136946970745E-03 + 465 4.0116678026155903E-03 + 466 -2.0614924302349035E-03 + 467 -6.5572640088890956E-04 + 468 -2.7662401874916000E-03 + 469 1.0629071695285811E-03 + 470 -1.0467604939229375E-01 + 471 -1.2950245264304980E-02 + 472 -1.9765832965656188E-01 + 473 -2.6902110171475208E-01 + 474 -9.0749947983673446E-02 + 475 -4.1093841380916388E-02 + 476 -3.9788864940794713E-02 + 477 -1.0071660578817688E-02 + 478 -3.6455567401137683E-03 + 479 2.3593376766863012E-03 + 480 -1.1398523987642784E-02 + 481 8.6007797283287543E-03 + 482 1.0206271610138458E-02 + 483 -5.3560908979390982E-02 + 484 1.3846380979733029E-02 + 485 -1.2185355514281594E-01 + 486 -5.6132081670492474E-03 + 487 9.4565692276759913E-02 + 488 -7.1164140933387817E-03 + 489 -3.6738040680104585E-03 + 490 -1.7951865920419720E-02 + 491 -6.2898127294598550E-03 + 492 4.7750998324930802E-03 + 493 6.4724899268794843E-03 + 494 -5.0688456669007861E-03 +Ene= 8.7820537090E-02 +Spin= Alpha +Occup= 0.0000000 + 1 9.5544767584033047E-02 + 2 1.7514799911390513E-03 + 3 8.3564842440528836E-02 + 4 -1.0399762543606136E-02 + 5 5.0038290158212695E-01 + 6 8.2365752282134042E-03 + 7 4.9658020044974814E-03 + 8 6.1646625698305341E-02 + 9 -7.9128796689916271E-03 + 10 1.4800296283533262E-02 + 11 -7.8066676727371245E-03 + 12 8.4243844980443003E-03 + 13 -6.9100718025282958E-03 + 14 -2.5561544031068917E-02 + 15 3.9614756141141329E-02 + 16 -9.7896336950357397E-03 + 17 -1.3691581232432489E-02 + 18 1.4710554812519381E-02 + 19 2.0269157988870518E-03 + 20 -1.9928873258599281E-02 + 21 2.2528524652704138E-02 + 22 1.8212217437136515E-03 + 23 6.8133983047392020E-04 + 24 -5.5510447968104594E-03 + 25 -1.6900201658737548E-03 + 26 -5.4143922487643971E-02 + 27 -1.4938237845685869E-02 + 28 3.7092314625170812E-02 + 29 2.1418875153748143E-01 + 30 2.9367172413749709E-02 + 31 7.5981283063096651E-03 + 32 3.9626880940815803E-02 + 33 -2.0866585108595613E-04 + 34 -2.0310830249255365E-02 + 35 1.7461947565794703E-03 + 36 4.0790589634544456E-03 + 37 1.3212726863616747E-02 + 38 6.0189542076030038E-04 + 39 -2.8631879714467446E-02 + 40 4.3810749610578271E-02 + 41 5.1278745286498624E-02 + 42 6.6894674691693051E-02 + 43 4.8784595705199628E-02 + 44 -7.4871372437971158E-03 + 45 -4.6141833715895994E-03 + 46 -1.1548183967715745E-03 + 47 4.9129619827187835E-03 + 48 2.0578121399573114E-03 + 49 -1.8427614847878068E-02 + 50 -7.7226807276781113E-03 + 51 6.0313576472505737E-03 + 52 -3.2905150603137479E-03 + 53 4.9452869608090505E-02 + 54 -1.7812626205579560E-01 + 55 2.8639166169471331E-01 + 56 8.0801945189183551E-03 + 57 -2.2629194853353036E-02 + 58 2.4722035124388368E-02 + 59 1.4035529721858706E-02 + 60 -1.1723158218400120E-02 + 61 -1.0818056390110947E-02 + 62 2.5159915351969393E-03 + 63 -4.9694962600561800E-03 + 64 1.8720836313209029E-02 + 65 -1.3073258812204059E-03 + 66 -4.3914029855487528E-02 + 67 -4.4311379883399969E-02 + 68 2.8060335262146641E-04 + 69 8.9746118283934827E-03 + 70 4.1971023909939910E-03 + 71 -4.3629305363476548E-03 + 72 6.4036530263822267E-03 + 73 -4.3713016134574317E-03 + 74 -2.4924468963421478E-03 + 75 4.8310432263435213E-03 + 76 8.2435809272891750E-02 + 77 -1.8953291539203741E-02 + 78 1.0176699049594133E-01 + 79 -8.8210912142184184E-02 + 80 1.3159629251506318E-02 + 81 -3.8824863769810584E-02 + 82 6.7214751604991491E-02 + 83 1.8285182351045329E-02 + 84 5.3048355095755813E-03 + 85 5.5119291113694202E-03 + 86 -1.8685197474946284E-02 + 87 4.0176155670050985E-02 + 88 6.4450274458974352E-03 + 89 -4.8563469218490208E-03 + 90 1.5979453115859833E-03 + 91 3.8779947409200793E-02 + 92 -5.2542720663219930E-03 + 93 5.7679860171850499E-02 + 94 -3.7934630039032413E-02 + 95 -1.3862138121184527E-02 + 96 -7.6399150425241064E-03 + 97 1.5215089801172196E-02 + 98 -1.4263221193600604E-02 + 99 -2.2174502464336700E-02 + 100 2.5017926960895776E-02 + 101 -1.7340632219143736E-02 + 102 -1.7427610256731429E-01 + 103 4.1473441194225871E-02 + 104 1.1444428018843479E-01 + 105 -4.5818236312625271E-02 + 106 -2.7091031964625634E-01 + 107 -5.6613814833164230E-02 + 108 5.7384865059014606E-02 + 109 6.7301297067386898E-02 + 110 3.4190929410025855E-02 + 111 -3.9976945947051555E-02 + 112 -2.2006342227314329E-02 + 113 2.0481671508460107E-02 + 114 -3.0069868670006609E-02 + 115 5.2331697815477800E-02 + 116 -1.1896761337887833E-02 + 117 -1.8114560141210184E-02 + 118 -1.1958206239964549E-01 + 119 2.8771185344623387E-03 + 120 2.5091731614120618E-02 + 121 3.1057803335992281E-02 + 122 5.1751747988132230E-02 + 123 -9.6683202579008250E-03 + 124 -1.1474923007296196E-02 + 125 -2.3293438104624205E-02 + 126 -2.9309066728437387E-03 + 127 -2.2715707704774990E-02 + 128 2.7505888433385528E-02 + 129 1.6837907036865388E-02 + 130 3.7122691635670912E-01 + 131 1.1083344153588988E-01 + 132 1.3369193902922474E-01 + 133 4.9185457591465129E-02 + 134 -4.5074695989521353E-03 + 135 3.0474293427611186E-02 + 136 -4.7375314403002231E-03 + 137 -1.1965358483252976E-02 + 138 -9.7789702966740791E-03 + 139 -9.9760604119685705E-03 + 140 -7.1848800907256592E-04 + 141 -5.5449308340068483E-02 + 142 5.7930147153634100E-03 + 143 -5.3368680562122142E-02 + 144 -1.7185410099227028E-02 + 145 8.4884477015919838E-03 + 146 -9.3488732955583683E-03 + 147 9.2085234574938394E-03 + 148 -3.7568422870059567E-04 + 149 1.1313356826010739E-02 + 150 7.2336287011376035E-03 + 151 -8.3219737645837746E-03 + 152 -8.0245431342582576E-03 + 153 -2.3488387740845277E-02 + 154 8.0769873731916918E-03 + 155 -6.0352190209285683E-01 + 156 5.0652292666227838E-02 + 157 3.1237842938641780E-01 + 158 -6.5405006176647768E-02 + 159 1.6423568248187064E-03 + 160 4.5920087342566758E-02 + 161 1.8487381617196860E-02 + 162 -1.5947120363834728E-02 + 163 6.5701995536156070E-03 + 164 -6.3470127497946473E-03 + 165 -1.0532951187267962E-02 + 166 1.9504384891819859E-01 + 167 -1.9136537472248277E-01 + 168 5.7820687752843922E-02 + 169 -3.0222202015629654E-02 + 170 3.9385446055922792E-02 + 171 1.0154198817041523E-02 + 172 -1.4349738993750336E-02 + 173 -6.2152188145229810E-03 + 174 -1.1154618492746914E-02 + 175 1.2144657815467827E-03 + 176 3.2227886062366627E-03 + 177 1.5422679258734988E-02 + 178 1.8345827377786691E-01 + 179 -4.1468874684195529E-02 + 180 1.7600538748336580E-01 + 181 4.9020697355615234E-03 + 182 1.7145517177753422E-01 + 183 -9.9843796610656649E-02 + 184 -2.4176482160072088E-03 + 185 -2.3464220569118673E-02 + 186 1.3341132995017864E-02 + 187 -3.7844258365299116E-02 + 188 -3.7282939889513771E-03 + 189 -6.0330141688674163E-02 + 190 -1.3699876141476566E-02 + 191 -9.8253747445793960E-03 + 192 2.5042260426103207E-03 + 193 1.5797327500104463E-01 + 194 3.7947532010390366E-03 + 195 -4.6381597346289077E-02 + 196 -4.6756269297551972E-02 + 197 -5.7477333374665448E-03 + 198 2.5767838971358162E-03 + 199 -4.5103120946710475E-04 + 200 -3.5476856014705578E-02 + 201 -7.3112449357212663E-04 + 202 2.6573849698808714E-03 + 203 -1.7981406537889908E-02 + 204 -2.2404098420897526E-02 + 205 5.3218128363258259E-03 + 206 -3.2061329065466417E-02 + 207 2.6901218680843486E-01 + 208 -8.8917920107328921E-02 + 209 -8.0465551330410751E-03 + 210 3.8577320406170290E-02 + 211 -6.6754777223859991E-03 + 212 2.3303356183528322E-02 + 213 -5.6179577608952026E-04 + 214 4.4635347836855460E-03 + 215 6.5535938147191376E-03 + 216 -4.5255224667711492E-03 + 217 6.8803137820377891E-02 + 218 -1.2046351522312267E-01 + 219 2.4947299376580512E-02 + 220 1.2042491129744989E-01 + 221 -8.8327732742839268E-02 + 222 -8.9534598367931300E-03 + 223 -1.7046352262451256E-02 + 224 1.1214330909859809E-02 + 225 2.3831057479145906E-02 + 226 -9.8776773496661021E-04 + 227 -8.7148962205486988E-03 + 228 4.6012443943767170E-03 + 229 -1.2645855608785889E-01 + 230 -1.9204352931571154E-02 + 231 4.5691239549200777E-02 + 232 4.3142898928094635E-02 + 233 -4.1608855143504785E-02 + 234 1.9041232055193934E-02 + 235 6.6201600241761263E-03 + 236 6.5375520626302381E-03 + 237 -9.6165658889921096E-03 + 238 7.2356351517278922E-03 + 239 4.4722807019475447E-03 + 240 4.0420274270906017E-03 + 241 4.7441458188097725E-03 + 242 -1.0108484687223637E-01 + 243 -1.6741614207437471E-03 + 244 -2.6627308508440990E-02 + 245 -9.4659546939243402E-03 + 246 3.1721310494513107E-02 + 247 -2.9998377295373420E-04 + 248 8.0043033914411529E-03 + 249 3.5302846432356387E-03 + 250 -5.2947885708264138E-03 + 251 -2.2706685506179913E-03 + 252 -2.0377997864756612E-02 + 253 -2.2361732668683488E-03 + 254 -1.1251547616284055E-01 + 255 -7.1910446700497177E-03 + 256 -5.9193173250407807E-02 + 257 1.7404441697484876E-01 + 258 -7.6583553182211161E-02 + 259 1.6623837083307731E-02 + 260 2.7823429086223629E-02 + 261 -2.1416953441974009E-03 + 262 -6.4268196045862095E-03 + 263 5.7826119711937617E-03 + 264 -7.0985723300837841E-03 + 265 -7.3915925743641498E-03 + 266 6.2517356061267976E-03 + 267 -5.7800184952821312E-02 + 268 7.7588708434072669E-03 + 269 -5.9028895794415406E-02 + 270 -2.3454672593766396E-02 + 271 4.0043769852541454E-02 + 272 9.6100236668208178E-03 + 273 5.6847389158004441E-03 + 274 5.4599136303474802E-03 + 275 4.1475419524330008E-04 + 276 -1.0498718311187765E-02 + 277 2.2413184410000099E-02 + 278 -2.9719381075032094E-03 + 279 1.1482017351137562E-02 + 280 -2.0035669357577235E-03 + 281 -1.8326905968379242E-02 + 282 5.3169780488434501E-02 + 283 -2.3781362921445992E-03 + 284 3.0654807989619677E-02 + 285 -5.5038115673675626E-03 + 286 2.5311641013577224E-03 + 287 -5.7707354535758712E-03 + 288 1.0633566031729548E-02 + 289 -2.2910711868347571E-02 + 290 8.2422754390102382E-03 + 291 -2.7778187828764563E-02 + 292 -6.2179213082562391E-02 + 293 1.4253104185426274E-02 + 294 -1.2628650978626918E-01 + 295 8.3739864733185648E-03 + 296 -1.7214672340607470E-02 + 297 3.2695383855320344E-02 + 298 8.6433696206710004E-03 + 299 2.9559511151942799E-02 + 300 9.2510286930065373E-03 + 301 2.3794575711853422E-02 + 302 -8.0657207363553987E-03 + 303 5.5092454807345306E-03 + 304 -4.3215456617306768E-02 + 305 1.5922234550840267E-01 + 306 2.0491640542348546E-02 + 307 8.9010284407678289E-02 + 308 8.6233439625758301E-02 + 309 1.4681579759099958E-01 + 310 9.7104282775602475E-03 + 311 2.0163552013892000E-02 + 312 3.3283923202853699E-02 + 313 -2.0563803260680229E-03 + 314 1.1198880653772990E-02 + 315 1.5673678102879449E-03 + 316 -5.0105610687303090E-03 + 317 -1.0893140278492473E-02 + 318 -1.2157242987339575E-02 + 319 6.3998724360685780E-02 + 320 6.8492341412721758E-02 + 321 -2.1469101700904512E-02 + 322 -7.6252730841373274E-03 + 323 -1.9215078704696515E-03 + 324 3.7412972956057007E-03 + 325 3.0591575940756657E-03 + 326 -1.6450683715742192E-02 + 327 -1.2231402538241152E-02 + 328 5.9022817277928465E-03 + 329 1.9101448489631329E-02 + 330 7.9590976725959439E-02 + 331 1.2561081739287118E-02 + 332 4.1498629696470120E-02 + 333 6.3481514529137278E-02 + 334 5.8038562097623442E-03 + 335 1.2963951572289665E-02 + 336 1.3265837631220976E-02 + 337 2.6303126333770935E-03 + 338 -5.7779132747204981E-03 + 339 -1.3716424891167887E-02 + 340 -2.5285021985700872E-03 + 341 3.3276489783500077E-03 + 342 -2.8671392404079812E-03 + 343 -4.9190522109885067E-02 + 344 -3.3541479175088540E-02 + 345 -4.4229817300098284E-02 + 346 2.0987561144664074E-02 + 347 -4.6277104688906986E-02 + 348 1.0838760805970515E-02 + 349 -1.3972721770911752E-02 + 350 8.5534904764921361E-03 + 351 -1.2672846082028982E-03 + 352 7.2411687617384181E-03 + 353 8.9735646606018335E-03 + 354 4.5382155549446119E-03 + 355 -1.0086032873466330E-01 + 356 2.3078069896678148E-02 + 357 9.5296299312926200E-02 + 358 -5.8602265584085919E-02 + 359 -2.1647604633159918E-02 + 360 -4.4101166499154375E-02 + 361 5.0139400055192809E-02 + 362 4.3778082844220814E-02 + 363 -6.5092902146372776E-03 + 364 -2.0682347188516140E-02 + 365 2.3303057990215915E-02 + 366 -1.3448325038947844E-02 + 367 -2.4669223155934165E-02 + 368 -7.4736208186217387E-02 + 369 2.1064938249394104E-02 + 370 -1.3903012111760722E-02 + 371 -2.8104224162991222E-02 + 372 7.1995710409598771E-03 + 373 -4.0688347367646444E-03 + 374 1.6377227888340350E-02 + 375 5.2940422670937992E-04 + 376 -7.7142497123170364E-03 + 377 -6.0867061087841584E-04 + 378 7.1942754817971672E-03 + 379 9.5976656233012041E-03 + 380 -3.6075734052786794E-02 + 381 -8.8601672996777903E-02 + 382 2.3928568132284611E-02 + 383 -3.0107600549474270E-02 + 384 1.0215841234019138E-01 + 385 -2.3992045799007176E-02 + 386 3.0251790336501733E-02 + 387 -6.0524507295439532E-02 + 388 7.1353162051804794E-03 + 389 4.9750694752663293E-03 + 390 -1.0099942489609229E-02 + 391 -9.4791563577018255E-03 + 392 -4.5478229913974003E-02 + 393 -3.0550760435229675E-02 + 394 1.9986715252545237E-02 + 395 5.5341448999670154E-03 + 396 4.0390237586013088E-02 + 397 7.6360632042475729E-02 + 398 -6.6151239228750366E-02 + 399 -3.0365290216710753E-04 + 400 6.4193912560498291E-04 + 401 -4.0626972307568430E-03 + 402 -5.8283302299242971E-03 + 403 -7.3655089317589441E-03 + 404 -1.4295332413612639E-04 + 405 7.3100809162811309E-03 + 406 4.5120021973460580E-04 + 407 1.8884603146097145E-02 + 408 3.0661528860623965E-02 + 409 6.4918227574544268E-02 + 410 2.6995286955757581E-02 + 411 5.8402103643398082E-02 + 412 7.3676733083656246E-03 + 413 4.4934145253779506E-03 + 414 -2.6193603259309218E-03 + 415 -5.8985180170754636E-03 + 416 1.9068881598739915E-03 + 417 -2.3438723725974605E-02 + 418 -2.3260077662402012E-03 + 419 -5.6364358609285202E-02 + 420 1.2439832938928100E-02 + 421 -1.2856856434329350E-02 + 422 9.1789413171361231E-02 + 423 -2.0048745696237551E-03 + 424 -1.3742048076558351E-02 + 425 -7.6463879918772973E-02 + 426 2.4291715546369282E-02 + 427 1.4318814127848160E-03 + 428 3.0049917327935743E-03 + 429 -2.0325349366688460E-02 + 430 -3.3371714979081188E-02 + 431 -1.3639623038095140E-03 + 432 4.7825561939034367E-02 + 433 -1.0879109579662661E-02 + 434 9.0420816900804640E-02 + 435 1.6296483271834757E-02 + 436 -6.5308287659974928E-02 + 437 -6.5844917791364546E-02 + 438 4.2553074407842180E-03 + 439 4.4225264526586539E-02 + 440 -2.5545316080096119E-02 + 441 1.9819507614875380E-02 + 442 2.3008223863530582E-02 + 443 -3.9935785636872667E-02 + 444 -3.3356807141928214E-02 + 445 -8.3463086670008416E-02 + 446 -1.5072491067107679E-02 + 447 -3.0098730989451639E-01 + 448 1.2202249771904350E-02 + 449 3.9107076283200998E-01 + 450 -3.6900125085011851E-02 + 451 1.0214820821871695E-02 + 452 4.8372797683140983E-02 + 453 -1.5902790587586043E-03 + 454 1.0453828731545088E-02 + 455 -1.1064939599427569E-02 + 456 -1.2026125009190777E-02 + 457 -1.6340736828193272E-02 + 458 2.4182665969731371E-02 + 459 -8.9783738793234955E-03 + 460 1.6881967071693531E-02 + 461 8.8378289661215095E-02 + 462 -3.7316142272054716E-02 + 463 1.7860968868031808E-02 + 464 -3.0596269075396027E-03 + 465 -1.9438799316735657E-03 + 466 -7.9432380121883146E-03 + 467 1.2625341088727891E-03 + 468 -2.0564345433559512E-03 + 469 1.0871380940580117E-02 + 470 -1.2004256002367884E-01 + 471 -2.1551493696108388E-02 + 472 -1.6339991278485934E-02 + 473 1.5104106903891693E-01 + 474 5.5367009407683375E-02 + 475 -2.0829909582845224E-02 + 476 8.2100259715058531E-04 + 477 1.0516898134298701E-02 + 478 1.2177832233362237E-03 + 479 -7.4237437860966782E-03 + 480 -6.7028417311701242E-04 + 481 -9.1120968961288414E-03 + 482 9.3771558212744140E-04 + 483 7.3579644980622208E-02 + 484 -4.6101516160933151E-02 + 485 -6.0206651765299955E-02 + 486 -6.3970443706320199E-02 + 487 1.8688651390092990E-02 + 488 3.3764680780822196E-03 + 489 -5.2319700979454182E-05 + 490 -1.0417402786497205E-02 + 491 -1.3239895515390709E-02 + 492 6.8723150473728040E-03 + 493 5.2092006876426284E-03 + 494 8.8299750063805646E-04 +Ene= 9.1057742735E-02 +Spin= Alpha +Occup= 0.0000000 + 1 9.0620014241306376E-02 + 2 -1.9234384548735088E-04 + 3 -9.8396468046297592E-02 + 4 -2.7180166031203096E-01 + 5 3.2284620409869048E-02 + 6 -2.0235796147493549E-02 + 7 -4.3537923469475714E-02 + 8 5.4688791874814866E-04 + 9 1.1251594001218789E-02 + 10 2.3428372080421989E-03 + 11 9.3368611847704109E-03 + 12 1.6971434218533608E-03 + 13 5.9122691774951526E-03 + 14 1.1840959242195265E-01 + 15 4.1207358658986774E-02 + 16 2.1046493481102962E-02 + 17 -3.3387518308773109E-02 + 18 -1.4002532816551557E-02 + 19 -9.3520433265619936E-03 + 20 9.3172513353884817E-04 + 21 -6.2436927386518865E-03 + 22 -1.4659202543786732E-02 + 23 1.3089404743427525E-03 + 24 4.1495074065267274E-03 + 25 -5.2793047033515735E-03 + 26 -8.2722692454530820E-03 + 27 -9.3409454851748740E-03 + 28 -2.9253659815324456E-01 + 29 2.7844615895326214E-01 + 30 2.5426058316897077E-01 + 31 -3.2348693439081956E-02 + 32 2.4798976847542179E-02 + 33 4.6652885913583596E-02 + 34 -7.8137871982131100E-03 + 35 1.5066386817911408E-02 + 36 4.0356383003102179E-03 + 37 -4.0043801833977858E-03 + 38 -1.7601639952582702E-02 + 39 2.0286398030435287E-02 + 40 -1.6373658335583893E-02 + 41 -7.1748580334312320E-02 + 42 -5.7870330009751093E-02 + 43 -2.6658357928502553E-02 + 44 -2.3395023433583381E-05 + 45 5.0210923121664182E-03 + 46 -2.5580974326170432E-04 + 47 -1.1286174773167624E-03 + 48 -1.4920102146222332E-02 + 49 1.1268484832849521E-04 + 50 3.3317265165699939E-03 + 51 -4.6150022256693291E-02 + 52 -3.1057053371817979E-03 + 53 2.5004152590147805E-01 + 54 8.0601765335796202E-02 + 55 9.8525633502991108E-02 + 56 4.1180926928509713E-02 + 57 5.8406561523388027E-03 + 58 -1.0545866007841392E-02 + 59 -1.0341385910679133E-02 + 60 -6.5188078616198741E-03 + 61 -1.1394545875285215E-02 + 62 1.1760973502874958E-02 + 63 -3.4602727049260909E-03 + 64 -4.6087920029751553E-02 + 65 -2.9689893488483592E-02 + 66 -3.0279815498099417E-02 + 67 -5.1694376713459301E-03 + 68 -2.7214076249390286E-02 + 69 7.0726580282533908E-03 + 70 -8.0253968725081462E-03 + 71 1.6557595265977408E-02 + 72 1.8597158966290534E-03 + 73 -1.8236619805611974E-03 + 74 -6.2008746814908953E-03 + 75 1.0921850199741696E-02 + 76 -2.2909025271316358E-01 + 77 5.2524676695319850E-02 + 78 3.1047634600363808E-02 + 79 1.6992110761289543E-02 + 80 8.0509045986793301E-02 + 81 -6.4238963215240683E-02 + 82 -3.5606982589416358E-02 + 83 -4.5348128184664348E-02 + 84 8.4610357441574115E-03 + 85 1.4788485721851487E-02 + 86 -2.3008523456385398E-02 + 87 7.0064906652036471E-03 + 88 4.1774698319881690E-03 + 89 1.3382644406227556E-01 + 90 -3.2415353371836444E-02 + 91 3.9143911790467278E-02 + 92 8.1553491465487016E-02 + 93 2.9378562194933525E-02 + 94 -1.8778448577692057E-02 + 95 -8.4382231782841016E-02 + 96 -3.1589572726621551E-02 + 97 -8.9794915021423980E-03 + 98 -1.3307241577799602E-02 + 99 -9.7027342409315188E-03 + 100 4.3319632693679978E-02 + 101 -1.5842547451332201E-03 + 102 4.4963811566629132E-02 + 103 -1.1912407233647566E-02 + 104 -3.4839882356043281E-02 + 105 -1.3557071772148652E-01 + 106 3.9333716270363382E-02 + 107 1.4724785558824971E-02 + 108 5.7764103676036883E-02 + 109 -1.9106742501198645E-02 + 110 -3.6846664971521288E-02 + 111 7.2574146167767705E-03 + 112 -3.9523467328883108E-02 + 113 -2.5484815379965185E-02 + 114 -1.6995286255731764E-02 + 115 -5.9276088600059347E-02 + 116 1.4197715364201084E-02 + 117 1.6573742773020511E-01 + 118 3.7998708213341365E-02 + 119 -5.1121661515993795E-02 + 120 -9.9970778909574898E-02 + 121 -2.2650315518204834E-02 + 122 2.9264586624337705E-02 + 123 -3.7426638110823390E-02 + 124 4.2896851370468884E-02 + 125 -1.6741067472285535E-02 + 126 -1.9271523313631855E-02 + 127 2.1855847603917188E-02 + 128 -6.5271162851537834E-02 + 129 -9.8461593147943401E-03 + 130 -1.7620015499088321E-01 + 131 7.8184682189373952E-02 + 132 -4.9017575032113025E-01 + 133 -3.7944120552810670E-02 + 134 5.2801072621322777E-03 + 135 -7.8159826660947909E-02 + 136 -1.5926465838649158E-02 + 137 -6.6635327476740830E-03 + 138 -1.5824345520766937E-02 + 139 -2.3362081280447564E-03 + 140 1.4286469492997105E-02 + 141 -3.6459955138174509E-02 + 142 -1.0153128750852565E-01 + 143 4.6901105018251669E-02 + 144 9.7594253889937310E-02 + 145 2.5636766572067444E-02 + 146 -1.5549992080069283E-02 + 147 -1.0023220086496367E-02 + 148 7.9558374118551545E-03 + 149 8.3351026547964797E-03 + 150 -2.4087884172019946E-03 + 151 -5.3967006566607296E-04 + 152 8.3228441065224257E-03 + 153 3.1452595652353511E-02 + 154 -1.9465315200398313E-03 + 155 1.0266288257672668E-01 + 156 -4.0256403845390906E-02 + 157 -1.1980398450390210E-01 + 158 1.2636674271013519E-02 + 159 -3.7501409064279296E-03 + 160 -2.7314040533239378E-02 + 161 -8.9874634440058228E-03 + 162 -2.8129206767827973E-03 + 163 -6.1951591181413186E-04 + 164 9.9076702799853044E-03 + 165 1.9201052417271765E-02 + 166 4.7464701822314765E-03 + 167 4.9005162001068400E-02 + 168 7.1062898146610709E-02 + 169 1.3327823816857939E-01 + 170 3.3002708596555602E-02 + 171 -8.0480577588680682E-03 + 172 -8.5893535811840149E-04 + 173 -1.3272564272836802E-02 + 174 -1.5009326771919277E-03 + 175 -8.4664837651408156E-03 + 176 -8.9860772734248247E-03 + 177 1.3130847254918828E-02 + 178 -1.0359021055601647E-01 + 179 2.2907874868387461E-02 + 180 -1.3285548382907084E-01 + 181 -8.3644715987855722E-02 + 182 -3.9593706420567004E-02 + 183 2.8523104298632713E-02 + 184 9.5205600555320624E-02 + 185 -1.5422568855694473E-02 + 186 -1.6953803193187525E-02 + 187 -8.9457063599793062E-03 + 188 -1.9963726647572601E-02 + 189 -3.6823975194312054E-02 + 190 2.6794249275796756E-02 + 191 -7.3489593772438022E-02 + 192 1.7500156572206684E-02 + 193 3.3455972036212167E-03 + 194 -1.5622020381503751E-02 + 195 2.4984934196347546E-02 + 196 3.8732146777594866E-02 + 197 1.8509536214592615E-02 + 198 -3.7406961979692975E-02 + 199 1.1420364259494269E-03 + 200 -1.3676637000633879E-02 + 201 -1.6125446375243255E-02 + 202 -3.8498590644045934E-03 + 203 2.5784052536363858E-02 + 204 2.8913520310487273E-02 + 205 1.4570505504906264E-02 + 206 1.4755084467565457E-02 + 207 -1.0023281287163581E-02 + 208 9.3432690080494485E-02 + 209 -2.6114752642558236E-03 + 210 4.3774638460595270E-03 + 211 4.5999672197136491E-03 + 212 -4.4420151711671210E-03 + 213 -6.8785738100538346E-03 + 214 1.3256747890394830E-02 + 215 1.7330398108178695E-03 + 216 6.2042993993593198E-03 + 217 -1.5644674554006914E-02 + 218 -5.3441774050342318E-02 + 219 1.3115318271127069E-01 + 220 8.3962205051157687E-02 + 221 -6.6445263331160562E-02 + 222 -1.7840782727509906E-03 + 223 -6.2122477734626192E-03 + 224 1.5137044441686880E-02 + 225 1.4572239108381705E-02 + 226 5.7878035407552149E-04 + 227 -1.3168984648023839E-02 + 228 1.8384656141550668E-04 + 229 3.4817960312811133E-02 + 230 -1.1393381379282037E-02 + 231 -1.6709219484184379E-01 + 232 1.1956488485947901E-01 + 233 -3.2614022793540143E-01 + 234 -4.6795651134478094E-03 + 235 -1.8578770102551016E-03 + 236 -4.5111854756621939E-02 + 237 3.3276704495073680E-03 + 238 1.2512020509533419E-02 + 239 -1.3136886867085029E-02 + 240 6.2120100821176222E-03 + 241 9.1612490586891835E-03 + 242 4.4309256450261666E-02 + 243 2.3053621043815208E-02 + 244 -3.3757885599170491E-03 + 245 -6.8659196510709106E-02 + 246 -1.1667618694346119E-01 + 247 -6.8604938284806266E-03 + 248 5.0532598644208353E-03 + 249 1.2549915540343811E-02 + 250 9.5732463403567503E-03 + 251 -8.0943828445554662E-03 + 252 -2.7802558031720793E-03 + 253 -5.3254689090283429E-03 + 254 -1.1764044910105056E-01 + 255 -2.2631194904191160E-02 + 256 5.8235406278002042E-02 + 257 1.8572705855160032E-01 + 258 5.4794894839744861E-02 + 259 -3.6425874712976039E-03 + 260 2.8528436633489997E-02 + 261 1.9741051302529952E-02 + 262 -1.3361336045703847E-02 + 263 1.2143542010773575E-02 + 264 6.2094891631411641E-03 + 265 -9.2418761840596369E-03 + 266 -1.1799038233520787E-02 + 267 -9.8027472729650886E-02 + 268 7.2942638861533377E-02 + 269 1.3428585989850054E-02 + 270 -1.0850715913857464E-01 + 271 -7.4635452911293490E-02 + 272 -3.7314537225899011E-03 + 273 -1.6013847952728519E-02 + 274 -2.8224130701087211E-03 + 275 5.2805916735340554E-04 + 276 1.0763062452028155E-02 + 277 -7.2339846298134659E-03 + 278 7.3750393211978894E-03 + 279 -1.2190606526592518E-01 + 280 3.0939888890087228E-02 + 281 9.9692538829862953E-02 + 282 6.4162908069485672E-02 + 283 -6.3090967630167047E-03 + 284 -5.4021084025430023E-02 + 285 -2.5286606657533753E-02 + 286 2.7495059162483088E-02 + 287 -8.0878934447567961E-03 + 288 5.5145062585834737E-02 + 289 -1.6561289032468209E-02 + 290 2.3404138982791908E-02 + 291 3.5135085237610539E-02 + 292 4.8220445633711695E-02 + 293 -1.0799403137539184E-02 + 294 -8.9391113660001062E-02 + 295 5.9800841724177815E-02 + 296 7.5553233337755047E-03 + 297 1.2646285807352178E-02 + 298 -3.5952143511229440E-02 + 299 -3.9724837494477368E-02 + 300 1.1379048085113962E-02 + 301 2.4029369371655108E-02 + 302 -2.0034959735119010E-03 + 303 4.3209912338903200E-03 + 304 3.7170982727900100E-02 + 305 -6.5398346957853834E-02 + 306 -6.6672655910971499E-03 + 307 -1.6873889659409722E-01 + 308 1.7343209031326523E-01 + 309 -4.5095521890107106E-02 + 310 -1.5715688660270469E-02 + 311 2.1318694160020066E-02 + 312 -1.1377301917454357E-02 + 313 4.8670188019442288E-03 + 314 3.7968094450109274E-03 + 315 1.4733979216474730E-03 + 316 -3.0719822100414140E-03 + 317 1.0752099728192758E-03 + 318 4.5316671673984052E-02 + 319 1.9223509481947104E-03 + 320 4.1687681694049829E-02 + 321 -2.6999448830527903E-03 + 322 -8.1104535143912901E-02 + 323 4.5649866472157827E-03 + 324 -6.1607029979024053E-03 + 325 1.3093790925737731E-03 + 326 2.3853762657162990E-04 + 327 7.6130386538356401E-03 + 328 -1.5398421439084347E-03 + 329 -3.6170777130423489E-03 + 330 -2.1789053585815104E-02 + 331 1.7008571134578990E-03 + 332 1.2064161773111226E-01 + 333 2.6152716074194126E-02 + 334 -9.1451928534991705E-02 + 335 3.1790134694233661E-02 + 336 3.1616527492207827E-03 + 337 -2.9065627506332761E-02 + 338 -8.9857069593546866E-04 + 339 -1.3767017171352916E-02 + 340 5.9696002142287834E-04 + 341 4.9709371930238069E-03 + 342 -2.2103204366512658E-02 + 343 -3.7308708563175141E-02 + 344 -5.7244157945764942E-02 + 345 -2.9389377892477073E-02 + 346 4.4852203571433352E-02 + 347 -1.5072214806247736E-01 + 348 -1.8475897288973467E-03 + 349 4.6460222485422845E-03 + 350 -3.6460379499231800E-03 + 351 -3.7294445003112821E-03 + 352 -7.6507581032805912E-03 + 353 6.9738702866956751E-03 + 354 -1.1287607657932545E-02 + 355 9.4662924301877390E-03 + 356 1.5038226939563304E-04 + 357 -4.0082284703427444E-02 + 358 -2.4502537599429299E-02 + 359 6.9946020753014690E-02 + 360 2.7742357925769564E-02 + 361 2.0775836378161359E-02 + 362 -6.2431564312914974E-02 + 363 -2.8480991777672101E-02 + 364 2.6668795877450652E-02 + 365 -1.1974091927694970E-02 + 366 -4.3681971951051004E-03 + 367 1.4936358894929676E-02 + 368 -1.1768218380373122E-02 + 369 1.9802090402108005E-03 + 370 -5.2279108868256596E-02 + 371 1.1669546146059252E-01 + 372 1.8252885841950842E-02 + 373 1.3345954798476627E-02 + 374 -4.7601389318723798E-02 + 375 -1.1186537691528640E-02 + 376 -2.4298171866754231E-02 + 377 -2.3438910315722356E-03 + 378 -1.2699076249836022E-02 + 379 2.5363495662914150E-02 + 380 1.4402419397250716E-02 + 381 1.0721134961392821E-01 + 382 -2.3219493985867076E-02 + 383 -1.1058920644450193E-02 + 384 -6.0282541754337587E-02 + 385 -7.5268474770992994E-02 + 386 -1.1894663729122953E-02 + 387 5.0877494666032828E-02 + 388 3.4861824943316043E-02 + 389 -2.4926653850737786E-02 + 390 -1.1917249839590923E-03 + 391 8.6696251753837911E-03 + 392 -8.2897174349800644E-03 + 393 4.6131660087249698E-02 + 394 1.2719768180534748E-02 + 395 1.4883637905673368E-02 + 396 -2.4841282031571033E-01 + 397 -3.7054371053290536E-01 + 398 2.5212823830470971E-01 + 399 -3.0350553927455025E-02 + 400 -4.5022305471799813E-02 + 401 4.2528056979563918E-02 + 402 -6.8586617426925622E-03 + 403 4.9384998804686579E-03 + 404 1.8406843199218821E-02 + 405 9.2405150857448378E-03 + 406 8.8783792521051723E-03 + 407 -7.2896138815135403E-02 + 408 1.6552819284331034E-02 + 409 8.0171253477433493E-02 + 410 2.4395509011891914E-01 + 411 9.1504529139257507E-04 + 412 5.6256939947375174E-03 + 413 2.2098861214574117E-03 + 414 -1.8123876103711623E-02 + 415 -2.4502026957383148E-02 + 416 -4.6319339057906625E-03 + 417 -5.9724575426756792E-03 + 418 1.5929971667041257E-02 + 419 -1.6656867969659765E-03 + 420 1.0096627115823410E-04 + 421 1.0223992368028241E-02 + 422 -1.7765597947869308E-02 + 423 -2.6456440456463543E-03 + 424 -2.8969296846110583E-02 + 425 -1.5693608018320297E-03 + 426 4.8159643215486573E-03 + 427 -1.7138489541369428E-02 + 428 2.0080098505554190E-02 + 429 -4.0849593740085359E-03 + 430 -4.9551139842100543E-02 + 431 3.2452769781019471E-02 + 432 -8.1415106596661971E-02 + 433 2.2951197806956262E-02 + 434 -3.5071172651830955E-02 + 435 -9.9268423233760519E-02 + 436 1.8979437724664639E-02 + 437 4.7365144498367748E-02 + 438 3.4626438857211617E-02 + 439 -2.1464606553388037E-02 + 440 -3.4465187708046414E-02 + 441 3.4004352360660485E-03 + 442 -1.4458979826227319E-02 + 443 5.0145402672274577E-03 + 444 2.7659647828481244E-02 + 445 -3.6435319640648292E-02 + 446 6.3783499768922712E-03 + 447 1.5901138205922652E-01 + 448 -2.5761671818925030E-01 + 449 -1.6194185064735463E-02 + 450 1.5125589062086400E-02 + 451 -1.9888164548730703E-02 + 452 -1.0966882845562514E-04 + 453 -2.9860035614420372E-02 + 454 2.8367839495566056E-04 + 455 -1.1894238516875204E-02 + 456 -1.0559724857325491E-02 + 457 1.8598051363205349E-03 + 458 -1.6364898050985094E-01 + 459 1.4710718542163988E-02 + 460 6.9102156386650444E-03 + 461 -3.2968571104455592E-02 + 462 -2.6086607742158888E-02 + 463 5.5906537783173334E-03 + 464 7.8541632830006584E-03 + 465 -3.6994948676579383E-03 + 466 1.3990896997254814E-03 + 467 1.4906817334538634E-02 + 468 1.2124941305456205E-03 + 469 -3.2234479210436753E-03 + 470 -1.2504319700919392E-01 + 471 -6.8094497962435723E-03 + 472 -2.5987154360290411E-02 + 473 3.7181777580147471E-02 + 474 3.9507153088191305E-02 + 475 -1.2450539800003381E-02 + 476 2.9582143999829915E-02 + 477 1.8011373703149841E-02 + 478 1.4457359899541446E-02 + 479 1.7392508003811046E-03 + 480 -1.5375870852438345E-02 + 481 -1.3404713738873754E-02 + 482 -1.7170810056699459E-03 + 483 1.2967501319738903E-01 + 484 4.0870183704363100E-02 + 485 -1.0409273022586576E-01 + 486 -1.3663066288162143E-01 + 487 2.3390832000347905E-04 + 488 6.5864139244663196E-03 + 489 -1.3688776581828621E-02 + 490 2.1937672489631761E-03 + 491 -6.5423495225401850E-03 + 492 7.3081134607028645E-03 + 493 1.0330661707189222E-02 + 494 -1.8420190675108319E-03 +Ene= 9.5599343869E-02 +Spin= Alpha +Occup= 0.0000000 + 1 -4.5107037532933117E-02 + 2 -7.2788888437887861E-03 + 3 1.6676202066773411E-02 + 4 2.8266168355831034E-01 + 5 1.9544919339194911E-01 + 6 -7.9150745839936219E-04 + 7 3.2956238343216336E-02 + 8 1.7149468199876713E-02 + 9 -2.2677203152419861E-02 + 10 4.5719889998092492E-03 + 11 -1.8304532318328733E-02 + 12 -1.9986430417472209E-02 + 13 -9.2909096063893710E-03 + 14 -8.9644714612825929E-02 + 15 6.9648853539027236E-02 + 16 -9.9993878802846534E-02 + 17 -6.6922093125049806E-02 + 18 6.8891871383716261E-02 + 19 4.7355524598510657E-03 + 20 -3.2120019180451797E-03 + 21 -8.1284861940198478E-03 + 22 9.3699875043183282E-03 + 23 -1.8367730937093322E-02 + 24 -9.0761536754182977E-03 + 25 1.6670004652896656E-02 + 26 -1.1598172210595149E-02 + 27 -1.3287446252742683E-03 + 28 -1.8166322085791153E-01 + 29 3.5776643867922014E-01 + 30 -2.7875392682586492E-01 + 31 -2.2023639573485947E-02 + 32 2.5519801214645615E-02 + 33 -3.1143516379565011E-02 + 34 -1.9135643498970165E-02 + 35 3.2314028590290250E-03 + 36 3.0048249504217870E-03 + 37 -1.5597096342416867E-02 + 38 -2.7714896351799193E-03 + 39 -7.0176782132065187E-03 + 40 -2.7824701618306625E-02 + 41 -2.9044071058131931E-02 + 42 -4.3328296228405512E-02 + 43 5.9656450088515611E-02 + 44 -6.7340482191648602E-03 + 45 -7.6003673522503090E-03 + 46 -8.3961055044229176E-03 + 47 -3.6824003931923465E-04 + 48 -5.0542818638444672E-03 + 49 -3.9938082057100520E-03 + 50 -2.1140032501814642E-03 + 51 -2.0512957546390116E-02 + 52 4.2236144171154417E-03 + 53 -8.4639248676794135E-02 + 54 -7.6986553193511303E-02 + 55 3.5870834279973096E-01 + 56 -1.9383255901355607E-02 + 57 -1.8254295960852939E-02 + 58 4.3162194301677871E-02 + 59 1.0293044869992263E-02 + 60 -2.2403863917910875E-02 + 61 -1.5130013318144002E-02 + 62 -1.0853968348266947E-03 + 63 -7.2205061210892738E-03 + 64 7.0121267829770717E-03 + 65 -6.3656496356630388E-03 + 66 4.4751386388291223E-02 + 67 -1.7890266995712049E-02 + 68 1.0926640780208735E-01 + 69 5.6702565159459303E-03 + 70 -5.9871327466996518E-03 + 71 -5.6356217391273118E-03 + 72 -7.2796984197175474E-03 + 73 5.3930540888306368E-03 + 74 9.7835053872349989E-03 + 75 1.0753939194574130E-02 + 76 1.7081374695746110E-01 + 77 -4.0220475972114436E-02 + 78 4.0264955897941230E-03 + 79 -7.9179738689974341E-02 + 80 -5.6583879941189262E-02 + 81 2.1516044241657793E-02 + 82 3.8000440341895307E-02 + 83 1.8347494948083170E-02 + 84 -2.8485341306469330E-02 + 85 4.1653164408432052E-02 + 86 -3.7875513319541233E-02 + 87 -9.1494498228510256E-03 + 88 -1.3068726868180917E-02 + 89 -1.9517819689956240E-01 + 90 4.1352957355000941E-02 + 91 3.9149801795408314E-02 + 92 -1.1879900106903790E-01 + 93 -5.6682695045605228E-03 + 94 -5.9733101122166905E-02 + 95 5.0742248125627526E-02 + 96 1.2283997940995314E-02 + 97 -9.4209853278273172E-03 + 98 -2.8778042431079738E-02 + 99 -2.7060196967376771E-02 + 100 -3.4786216879581248E-03 + 101 -6.8010154622609106E-03 + 102 -3.5979761519220825E-02 + 103 7.7609792738641730E-03 + 104 -3.3022183649349640E-02 + 105 -1.5294662126108949E-01 + 106 1.8532578710362482E-02 + 107 1.4573544060625110E-02 + 108 1.0774419346093346E-01 + 109 7.3764255352173989E-04 + 110 -2.7437580971088841E-02 + 111 2.9129313064088485E-03 + 112 -7.3965569520883971E-03 + 113 -4.4146148267645069E-02 + 114 -3.8204238069655366E-02 + 115 -8.8625937034821980E-02 + 116 2.3036529740845021E-02 + 117 6.0514692210529186E-02 + 118 7.7664914313099617E-02 + 119 3.1938478832375626E-02 + 120 -4.3731389406069125E-02 + 121 -3.5416129536198500E-02 + 122 -1.7720788918455868E-02 + 123 -1.7604326387142537E-02 + 124 2.5801318680843607E-02 + 125 1.7697801655953558E-02 + 126 1.6335349901498052E-02 + 127 7.4474269799409019E-03 + 128 6.6524089679643877E-02 + 129 3.7712271896724494E-03 + 130 -1.8588322717332023E-01 + 131 -9.5790919411029560E-02 + 132 -2.6378673517481627E-01 + 133 -2.4043605272781102E-02 + 134 7.1905926949053277E-03 + 135 -4.3714208872370527E-02 + 136 -8.9228603105415416E-03 + 137 -5.6293652055098772E-04 + 138 3.4808181319058123E-03 + 139 7.5385967292169358E-03 + 140 5.4822660292453583E-03 + 141 1.0770960080882002E-02 + 142 4.1122155200189886E-02 + 143 -3.1488925760898248E-02 + 144 1.3496542666877540E-01 + 145 -1.2501020930757813E-02 + 146 -1.0951669673415265E-02 + 147 5.4705929489159127E-03 + 148 -7.5584062604039403E-04 + 149 -7.6213018999462595E-03 + 150 -1.5199120531558486E-03 + 151 -3.5852649928580422E-03 + 152 -2.7239453369528386E-03 + 153 2.0059347064414396E-02 + 154 -6.6512883168794489E-03 + 155 1.4770973520256367E-01 + 156 1.4844940938355342E-01 + 157 -1.1601328897063493E-04 + 158 1.1827667257380133E-02 + 159 1.8879092458360794E-02 + 160 -4.5154226175169741E-05 + 161 7.7211676268088914E-03 + 162 5.7350705991273260E-03 + 163 1.1161612903905278E-02 + 164 8.2824055670142616E-03 + 165 -1.6386464389837126E-03 + 166 4.5393946059119651E-02 + 167 8.3193316971113151E-02 + 168 1.3524774433336287E-01 + 169 9.3713365577090091E-02 + 170 4.4892730850153899E-03 + 171 -4.2636303246583167E-03 + 172 1.0139728710447686E-02 + 173 -8.6590294088145399E-03 + 174 -2.5305132833317746E-03 + 175 -1.5327846898779737E-04 + 176 6.1901009354018511E-03 + 177 6.7829862714852019E-03 + 178 -1.3456602719797189E-01 + 179 3.1203483326656515E-02 + 180 -1.5347769388650045E-02 + 181 8.8161495918189323E-02 + 182 2.3212867163628779E-02 + 183 1.3746142187996626E-02 + 184 -1.8514500703458628E-02 + 185 -4.1599808113952162E-02 + 186 2.2243366843521721E-03 + 187 9.8251142150652809E-03 + 188 2.1159461027407164E-02 + 189 -2.3503413977016955E-03 + 190 -2.9185528891873484E-03 + 191 1.5594574967679853E-01 + 192 -3.6458028881496823E-02 + 193 -8.1286431898655906E-02 + 194 -4.4876264270498060E-02 + 195 -8.0050468759188059E-02 + 196 2.2750181917189440E-02 + 197 -2.5623455398959111E-03 + 198 2.9515998997838848E-02 + 199 2.8418967140317664E-03 + 200 -3.0530831461430586E-02 + 201 -1.0535206832041552E-02 + 202 -2.7731710954468327E-02 + 203 -7.4255805308258045E-03 + 204 -1.1046826700894416E-01 + 205 -1.3195044547715747E-02 + 206 -1.3468992652130846E-01 + 207 -2.1780177736600820E-01 + 208 -1.8548404369700594E-01 + 209 -1.3686123818516043E-02 + 210 -2.6949435484149128E-02 + 211 -1.7484655564516137E-02 + 212 -3.2313669844275016E-03 + 213 5.7290154910009071E-03 + 214 2.6463814701187093E-03 + 215 -1.9363876524434121E-03 + 216 -1.5416440151974108E-03 + 217 -9.6729937849367925E-02 + 218 3.6364643355918110E-02 + 219 8.0038434797181382E-02 + 220 -1.1413293723462872E-01 + 221 1.4318236412606652E-01 + 222 4.5897589702702749E-03 + 223 5.3103680744690006E-03 + 224 5.2175690447484923E-03 + 225 -1.0655148625669230E-02 + 226 1.2358284359385066E-04 + 227 8.3160565630408315E-03 + 228 -3.3138140222239289E-03 + 229 -3.4971408650222552E-02 + 230 7.7269140837797727E-03 + 231 3.9416800547838450E-02 + 232 -2.2516177844027724E-01 + 233 -1.5755324943694490E-01 + 234 1.0674804444766521E-03 + 235 -3.0313609973375177E-02 + 236 -2.0620110069011582E-02 + 237 -9.0633945398589360E-03 + 238 -4.8977654034199711E-03 + 239 5.6998176751102423E-03 + 240 -2.7767295342394477E-03 + 241 -1.7468757115741116E-02 + 242 -6.7602885361079446E-02 + 243 -5.5657139992231375E-02 + 244 -7.2727051491520128E-03 + 245 5.8358417359397209E-02 + 246 -2.8803016531322653E-02 + 247 1.1006326378655926E-03 + 248 6.1970289502667327E-03 + 249 -8.3155896614703021E-03 + 250 -1.3240691655233101E-02 + 251 -9.9637070090443126E-03 + 252 7.6514026331133030E-03 + 253 1.4453131354864238E-02 + 254 -1.3606062471876640E-01 + 255 -1.6050045437002534E-02 + 256 -1.0995411999106033E-01 + 257 8.5301490228544372E-02 + 258 2.1402104942073202E-01 + 259 -1.8179060327381466E-02 + 260 1.5142648675667602E-02 + 261 2.9101358265115194E-02 + 262 9.7974022312940483E-03 + 263 4.5355116849774202E-03 + 264 -7.0164751549967996E-04 + 265 1.0585807038526389E-03 + 266 -1.7492077920874417E-02 + 267 -8.1703205048568560E-03 + 268 -1.0330376608832263E-02 + 269 3.8577698160156812E-02 + 270 2.5245909406986965E-02 + 271 -1.4568687946791842E-01 + 272 -1.8131480919737466E-03 + 273 -5.7922445215136432E-03 + 274 4.8604851317813899E-03 + 275 -1.2400913224468778E-02 + 276 -4.7988521164720561E-03 + 277 -6.4727125006402370E-03 + 278 5.0371909073482065E-03 + 279 -1.3341069120975116E-01 + 280 3.1663664378810477E-02 + 281 -2.0646345141823191E-01 + 282 2.8406325981642364E-02 + 283 -6.8353242342544168E-02 + 284 6.9958478769504465E-02 + 285 -3.4213313080039554E-02 + 286 4.5257557516272813E-02 + 287 9.8123233986465788E-03 + 288 8.4105414557217404E-03 + 289 -1.2815624677454032E-02 + 290 -7.2289942798305917E-03 + 291 -2.6162765691472002E-02 + 292 1.0718242762014331E-01 + 293 -2.2770056376990377E-02 + 294 -2.6955338602473865E-02 + 295 1.7959918449022148E-02 + 296 3.1802632124858232E-02 + 297 1.6374260014699406E-02 + 298 -1.2385439906280344E-03 + 299 -4.0742879207275096E-02 + 300 -1.8339811003378000E-02 + 301 -7.1044440693095118E-03 + 302 -2.9025474802851690E-02 + 303 2.5970654347278652E-03 + 304 -3.7586774490392785E-02 + 305 -1.1258862109550463E-01 + 306 -1.3330021035496634E-02 + 307 3.5549618551691969E-01 + 308 -1.0522774667152278E-02 + 309 -2.5245740864814344E-02 + 310 3.0817211283298073E-02 + 311 -5.9418291227317111E-03 + 312 -1.2347231569925090E-02 + 313 -1.8546303906573581E-03 + 314 -1.1342721127419389E-02 + 315 -2.9980806775201400E-03 + 316 -1.5926019784209525E-03 + 317 -1.1673033350878452E-02 + 318 6.2707816211064207E-02 + 319 -1.0527063122890480E-01 + 320 -1.5583673836243486E-03 + 321 -2.5241025438580263E-02 + 322 -6.0077452369399105E-02 + 323 6.0132510096040084E-03 + 324 6.0816455991601175E-03 + 325 8.4927722847895227E-03 + 326 3.1773845971786174E-03 + 327 2.3031120687650344E-03 + 328 -4.0604738256201662E-03 + 329 -7.4587557307690669E-03 + 330 9.5267477504426643E-02 + 331 1.2113265219677236E-02 + 332 1.2447171508952624E-03 + 333 2.6488560465423978E-02 + 334 1.3820225176956591E-01 + 335 -6.4556325053709033E-03 + 336 9.4289714926846444E-03 + 337 1.7009090589949150E-02 + 338 -1.3674997068122077E-02 + 339 -5.1327653597433472E-03 + 340 -1.1060336844770067E-03 + 341 -2.4374164813669995E-04 + 342 -1.8209230888694744E-03 + 343 -4.3642012660712937E-02 + 344 -1.4699209958714576E-01 + 345 -1.4189834854725888E-01 + 346 -2.8867619173584359E-02 + 347 -1.3899230948009877E-02 + 348 -6.5629093166413256E-03 + 349 6.3392159243418566E-04 + 350 8.2303202477955160E-03 + 351 7.2866857839922750E-03 + 352 5.3678338301215841E-03 + 353 2.6817846522760288E-03 + 354 1.2145715977310851E-03 + 355 -9.4888884089884981E-02 + 356 2.3790039209555375E-02 + 357 6.3575800475192984E-02 + 358 1.6970556348525341E-04 + 359 3.3240688653316578E-03 + 360 -9.6846474316190298E-03 + 361 2.5128716396392400E-02 + 362 -1.2786906022146905E-02 + 363 -1.1067340069079600E-02 + 364 -1.0965331517923721E-02 + 365 -1.5190684868053236E-02 + 366 -4.6345019913726054E-02 + 367 1.5032075691617807E-02 + 368 -1.3868722431573399E-02 + 369 4.0053059206754844E-03 + 370 -3.6900881739160514E-02 + 371 8.0588432187388148E-02 + 372 3.9139173070376683E-02 + 373 4.2327789421384904E-02 + 374 -4.5724994599810671E-02 + 375 -1.3302872444619966E-02 + 376 -3.0637363809916090E-02 + 377 -6.7608405654920800E-03 + 378 -1.3461859743033646E-02 + 379 -8.5442862298953873E-03 + 380 -7.3517558669865804E-03 + 381 1.4570703903656171E-01 + 382 -3.7056335353012108E-02 + 383 -1.5110957399002561E-01 + 384 -7.3389283275073255E-02 + 385 5.6023758816509908E-02 + 386 2.4727977792901881E-02 + 387 7.6136061829317425E-02 + 388 -2.0457774864978288E-02 + 389 2.8895346182676414E-02 + 390 1.7961207896692671E-02 + 391 3.6637565668667965E-02 + 392 2.0780209504802551E-02 + 393 2.3903923451346568E-03 + 394 4.6657223424586072E-02 + 395 8.2629828342226722E-03 + 396 -2.5157690707293092E-02 + 397 8.8791765760612762E-02 + 398 -1.2877487541530444E-01 + 399 -1.9936134920371697E-02 + 400 -1.6933437278917477E-03 + 401 -2.1478311405095828E-02 + 402 -8.8519178823529704E-04 + 403 -7.6036785319317859E-03 + 404 9.1174323873205270E-04 + 405 -2.6137943235350967E-03 + 406 -4.6323027379475846E-03 + 407 2.5852794582867385E-02 + 408 -8.9331217670096316E-02 + 409 6.8787428745281556E-02 + 410 -8.9749181489306440E-02 + 411 -3.8682254039127770E-02 + 412 -9.8581382410246783E-03 + 413 1.1962630559687156E-02 + 414 2.3757341678262455E-03 + 415 -3.1385982691187015E-03 + 416 -5.7740205805347370E-03 + 417 -3.6454658399110939E-03 + 418 1.0049873856916743E-02 + 419 8.9144936773310635E-03 + 420 -2.9831049863602230E-03 + 421 -8.5935446040421998E-02 + 422 3.8985886890683150E-02 + 423 8.6944717303177904E-02 + 424 4.3717067899696933E-02 + 425 -1.4179972044742207E-02 + 426 -5.9145288178030733E-02 + 427 -8.8734600296920124E-03 + 428 -1.0422701883723150E-02 + 429 2.0231565312518063E-02 + 430 1.3271590189557802E-02 + 431 -4.9541246485558937E-02 + 432 -1.0836067155792219E-01 + 433 2.5305066281859492E-02 + 434 5.5779276459452701E-02 + 435 -9.3527901764412003E-02 + 436 -1.7662588047734150E-02 + 437 1.9227965554379455E-02 + 438 2.5935980224050980E-02 + 439 2.3461034098462637E-03 + 440 1.3252134559391419E-02 + 441 -3.5990678603614747E-02 + 442 4.7647854060659169E-02 + 443 7.3528922003713434E-03 + 444 2.9873868900328277E-03 + 445 2.5678202171712457E-02 + 446 -1.4127403071530109E-04 + 447 4.1825772186428987E-02 + 448 2.1824260976381024E-01 + 449 -1.4110234819325101E-01 + 450 4.4194834649192230E-03 + 451 2.3998517991514312E-02 + 452 -1.1636956508718776E-02 + 453 -7.7077443629192440E-03 + 454 4.2147823266427730E-03 + 455 2.5194301156776268E-03 + 456 6.0947686918040511E-03 + 457 -3.3762111499795627E-03 + 458 6.2703417552787952E-02 + 459 9.7600009723807238E-02 + 460 4.0867655843656401E-03 + 461 3.0422238666522963E-02 + 462 -1.0736856682242883E-01 + 463 -1.7267312744266863E-02 + 464 -8.0882706576758581E-03 + 465 -8.7938906426268827E-03 + 466 3.3803845535275807E-03 + 467 7.4090220213776673E-03 + 468 -1.8150067622251354E-02 + 469 -4.2863653181964929E-03 + 470 2.1732529129807894E-02 + 471 1.0152070905925665E-02 + 472 9.6891398637169709E-02 + 473 2.4936385671243355E-01 + 474 8.7369770241124703E-02 + 475 1.1164086336933944E-02 + 476 3.9328824041015363E-02 + 477 6.7212180043461989E-03 + 478 1.1038235387148741E-02 + 479 7.1152480462687382E-03 + 480 1.1840012701956681E-02 + 481 3.9444321084714943E-03 + 482 -1.3917661126067083E-02 + 483 5.1228910593895623E-02 + 484 5.3744198907984063E-02 + 485 1.4453895722426094E-01 + 486 -6.4554505510644802E-02 + 487 -1.4508254413832192E-01 + 488 3.9202661755776283E-03 + 489 -4.0229765930233910E-03 + 490 9.6685088002311135E-04 + 491 1.3373510346886663E-02 + 492 -1.0969733068283279E-02 + 493 5.4389090525732839E-03 + 494 -1.7600958366416099E-03 +Ene= 9.6203381655E-02 +Spin= Alpha +Occup= 0.0000000 + 1 -2.2264406516013885E-01 + 2 -3.5089290996437102E-02 + 3 2.5082625741752562E-01 + 4 9.5345075724570238E-02 + 5 1.2937361361168468E-02 + 6 4.4415189082243581E-02 + 7 9.3660670823933530E-03 + 8 -3.1852713659663691E-03 + 9 -1.9285154381681022E-02 + 10 -1.0763708910558199E-03 + 11 -8.5203354538956433E-04 + 12 -1.7756711003698747E-03 + 13 -2.0255007080679514E-02 + 14 -9.0328849230641828E-02 + 15 -7.4383464775050243E-02 + 16 2.7130122975475523E-02 + 17 3.8483168234335736E-02 + 18 -7.7175747102541645E-02 + 19 -1.1137092776258203E-02 + 20 1.8009113753019768E-02 + 21 -1.3322583155154350E-02 + 22 1.7706876884745243E-03 + 23 2.7977149287400573E-03 + 24 1.5151910084653183E-02 + 25 4.3921731791576279E-05 + 26 4.8897423931581571E-02 + 27 -6.7587564130865523E-03 + 28 5.3211849385023643E-02 + 29 -1.9721776812447922E-01 + 30 5.7256057348862077E-02 + 31 1.4257026242218562E-02 + 32 -1.7316575434968076E-02 + 33 -5.2897428258079915E-03 + 34 -2.4582663499144739E-03 + 35 -1.2119326496404173E-02 + 36 1.2653620201202105E-04 + 37 -4.6054971146107480E-03 + 38 2.2200446764087282E-02 + 39 -6.3655061291563050E-02 + 40 -6.1037367849897564E-02 + 41 2.2886558780272084E-02 + 42 -9.9370042054689772E-02 + 43 5.4197372056058055E-02 + 44 5.3456920412854299E-03 + 45 -9.3218925920103626E-03 + 46 -6.2413118867386368E-03 + 47 -2.1087776875505157E-03 + 48 -1.3853841816101318E-03 + 49 4.5290011920098017E-03 + 50 6.4987830897817516E-03 + 51 1.2700835151986303E-01 + 52 1.5353934090382907E-02 + 53 -1.4276703860427761E-01 + 54 -5.4566691291594339E-02 + 55 -2.5034320032736712E-01 + 56 -2.1225735947365244E-02 + 57 -2.0879605256651367E-03 + 58 -2.4912362662214256E-02 + 59 -4.1747096030899187E-03 + 60 3.2536160328181488E-03 + 61 2.5239559172319393E-02 + 62 -1.3521462412293666E-02 + 63 -8.8103215345515279E-04 + 64 -9.6849841282082016E-03 + 65 -1.6852061850320340E-02 + 66 8.5835301731740171E-02 + 67 -1.2424713907744236E-02 + 68 1.8459928414930601E-02 + 69 -1.1864684942408284E-02 + 70 1.5234297798873652E-03 + 71 -1.4372624398549440E-03 + 72 1.1112520322038863E-03 + 73 1.2710688108824439E-02 + 74 1.3140497113644713E-02 + 75 1.4982757418531829E-03 + 76 -1.8999631314866046E-02 + 77 2.9205072444094529E-03 + 78 3.0941138136610057E-02 + 79 5.4054595585096878E-03 + 80 -1.3247529888412053E-02 + 81 -8.5245967573349592E-03 + 82 -3.6373039220881191E-03 + 83 2.1415932323219401E-02 + 84 -1.1772614227417584E-02 + 85 -1.4561806900944923E-02 + 86 -1.9455910476434725E-02 + 87 -3.6419633037237521E-03 + 88 -4.7202943673711542E-03 + 89 -1.0382242797122423E-02 + 90 1.5716260962750459E-03 + 91 -1.4868494553518312E-02 + 92 -9.9631415168062662E-02 + 93 2.1588028632334819E-02 + 94 1.8698968097154919E-02 + 95 5.6697147803516153E-02 + 96 -1.6415736026223777E-02 + 97 2.0600146708828751E-03 + 98 2.1136870957759492E-02 + 99 -2.4582090673600488E-03 + 100 -3.9608364875799197E-02 + 101 -2.0242825640894833E-02 + 102 9.5138847863154817E-03 + 103 -6.4071319774834665E-03 + 104 -4.1096317002400892E-02 + 105 8.9099328986642856E-02 + 106 2.3847043968524849E-02 + 107 2.3768216059226868E-02 + 108 -6.0876352096322632E-02 + 109 -1.4360722019276314E-02 + 110 1.3845480242298770E-02 + 111 2.0320557524177367E-03 + 112 2.2415617497478665E-02 + 113 -7.3021198498211702E-03 + 114 4.0458760450884312E-02 + 115 -1.1994584436736400E-01 + 116 2.8691940442403550E-02 + 117 1.0678353315168424E-02 + 118 -2.0738288335330868E-02 + 119 -3.5393353479428319E-02 + 120 -1.0657563831389523E-02 + 121 9.4083414816645283E-03 + 122 -5.0958971452972041E-02 + 123 -4.6951699813192723E-03 + 124 3.5088762450065339E-03 + 125 -2.2271027991913845E-02 + 126 -1.6847658038286022E-02 + 127 -1.7752366841257312E-03 + 128 -5.8137269916666102E-02 + 129 -9.9242330869341536E-03 + 130 -4.3473368525681233E-02 + 131 -1.3659245689936245E-03 + 132 -7.6579892291671947E-02 + 133 -2.0872601096566881E-02 + 134 -3.4979818584138446E-03 + 135 -2.0701327626946691E-02 + 136 -6.2736669757738938E-03 + 137 9.7817194349126210E-03 + 138 5.0094473932927957E-04 + 139 -1.9325954327630138E-02 + 140 -2.5664460785668322E-02 + 141 -7.4549085090511363E-02 + 142 4.3513300875377720E-02 + 143 1.0309468685563252E-02 + 144 -1.0189886021943402E-02 + 145 -4.2587778570646294E-02 + 146 -4.2860840195289669E-03 + 147 -7.0003348921563700E-03 + 148 -4.4348624051396652E-03 + 149 3.3152800569052000E-03 + 150 -2.9043956314313709E-03 + 151 -3.8592025049542233E-03 + 152 5.6551812675007668E-03 + 153 -9.2884376339636334E-03 + 154 -1.4197729578618080E-02 + 155 4.1972715523947164E-02 + 156 -9.1419694164719331E-02 + 157 4.1570408570422449E-02 + 158 9.9624258423911590E-03 + 159 -9.8908605016635072E-03 + 160 1.9434500266465120E-03 + 161 6.7130118050663483E-03 + 162 2.9248041075807790E-03 + 163 -1.8784113540304011E-02 + 164 1.3739768090736367E-03 + 165 -4.3301137909316110E-03 + 166 3.7219255793128361E-02 + 167 5.2179169350454772E-03 + 168 -1.9343494069141967E-01 + 169 2.3405984162485977E-02 + 170 -5.4977154468990527E-02 + 171 5.6659750804527540E-03 + 172 2.8758937212512727E-03 + 173 -7.3689965811992173E-03 + 174 5.4631215988985276E-03 + 175 -3.4670533451129572E-03 + 176 -9.7159846727644262E-03 + 177 -1.5668704523599010E-02 + 178 -8.0492567190821415E-02 + 179 2.0206698540600958E-02 + 180 -5.0867750971656991E-03 + 181 -4.8328210915472979E-02 + 182 1.9786847721122738E-02 + 183 9.7417776567202963E-03 + 184 5.0773163774188671E-03 + 185 -2.0530521307235865E-02 + 186 -5.2924392810013822E-03 + 187 -1.5447624958756349E-03 + 188 1.2581082623866854E-02 + 189 -1.3504868117723097E-02 + 190 -4.5213610117578245E-03 + 191 -1.2035298413685526E-03 + 192 -1.2612135824468257E-04 + 193 -2.0614803152635402E-02 + 194 1.0056640568176491E-02 + 195 -4.0941177759663758E-02 + 196 -3.0916184949182975E-02 + 197 -1.4369270303304531E-02 + 198 -1.4047673841258275E-02 + 199 2.9810519647786901E-02 + 200 3.3840448140580681E-02 + 201 1.8385723964818055E-02 + 202 -1.1320730761079997E-02 + 203 -8.4535593593406295E-03 + 204 2.6841720713917102E-02 + 205 -6.8220393912498296E-03 + 206 -5.1793626110354998E-02 + 207 -7.4344739072696231E-02 + 208 -4.5935473171387270E-02 + 209 -2.5890914394768650E-03 + 210 -7.9222471619250188E-03 + 211 -1.2710652568433045E-02 + 212 -3.3165967372983545E-03 + 213 4.8006813026989816E-03 + 214 -4.3288940713389814E-03 + 215 -4.3801888412062038E-03 + 216 7.5876343214353248E-03 + 217 -7.4949200111518212E-03 + 218 -5.6682224452222235E-02 + 219 -1.4599489616324882E-02 + 220 -5.2324608487138560E-02 + 221 2.5280840301253299E-02 + 222 -2.3370457076623244E-03 + 223 -8.9571653494679732E-03 + 224 8.2484704344542581E-03 + 225 1.4581014938491151E-03 + 226 5.1546717039288072E-03 + 227 3.9918974700912250E-03 + 228 8.0314823957545189E-03 + 229 1.3976096303813559E-01 + 230 -6.2515579493681922E-03 + 231 5.8175552080810149E-02 + 232 -3.8222572716015890E-01 + 233 -1.9625164961893721E-01 + 234 7.9273275792189641E-03 + 235 -5.2106183833202389E-02 + 236 -1.9133215535064366E-02 + 237 -2.6874401607116568E-02 + 238 1.7488454513252892E-02 + 239 -2.8215588043593548E-03 + 240 -1.1343039328207412E-02 + 241 -7.6267173363160209E-03 + 242 9.4792839283242402E-03 + 243 6.3174327442758277E-02 + 244 9.8808753321068574E-02 + 245 -8.3656327852690060E-02 + 246 -4.5482265702596988E-02 + 247 1.0885440552007747E-02 + 248 1.9468170894645899E-02 + 249 -1.5559342091524261E-02 + 250 -5.2736039526261515E-03 + 251 -2.9871599339029134E-03 + 252 4.0427934014039352E-02 + 253 1.3567590190610292E-02 + 254 1.3960568293833539E-01 + 255 1.5238150364302833E-02 + 256 8.7172707540890907E-03 + 257 -3.5192404265030328E-02 + 258 -3.0377178192570747E-01 + 259 -6.7860801143797625E-03 + 260 -2.5859387910265583E-02 + 261 -4.0788681690595838E-02 + 262 -1.0105558736389728E-02 + 263 -4.3811975250242956E-03 + 264 -8.1025136520430051E-03 + 265 1.5737052948176514E-02 + 266 5.3052312353912721E-03 + 267 -9.4805745905705813E-02 + 268 3.2541409551992098E-02 + 269 -3.7520962368827245E-02 + 270 1.0621347317063354E-01 + 271 1.2055553640353719E-01 + 272 -1.5156736907771175E-02 + 273 -7.2602837430909162E-03 + 274 -1.1577563289641097E-02 + 275 -6.9872259152165810E-03 + 276 -8.6176167254986644E-04 + 277 -6.5079817493262629E-04 + 278 2.1479033543100661E-04 + 279 -1.3495965094380410E-01 + 280 3.2993820005835763E-02 + 281 2.5435648625584027E-02 + 282 1.6715720614860249E-01 + 283 1.6602457447694352E-01 + 284 -2.5293276730618375E-02 + 285 -1.2889195715437290E-01 + 286 -3.7324789432264381E-02 + 287 -5.4388125451228501E-02 + 288 -6.8914778300244450E-03 + 289 -2.2232570890524418E-03 + 290 -2.9246397282179516E-02 + 291 1.1256724401932910E-02 + 292 6.2957042947734382E-02 + 293 -1.6270849554617200E-02 + 294 -5.3255847247554333E-02 + 295 4.3976785502055679E-02 + 296 1.2635701793522935E-01 + 297 6.1975937206683082E-02 + 298 -6.4438649704781845E-02 + 299 -7.6074850267004251E-02 + 300 -3.2832420597891279E-02 + 301 4.4181632370609077E-02 + 302 -2.7065952144721805E-02 + 303 -1.3448120406932199E-02 + 304 1.2584343590965243E-03 + 305 -2.6017363746451284E-02 + 306 -2.0443875974278567E-03 + 307 4.0313556824980272E-02 + 308 -9.3211975427714311E-02 + 309 1.1251304593999052E-01 + 310 1.2880049522136210E-02 + 311 -1.8387039358994904E-02 + 312 2.0649846695268835E-02 + 313 -4.7909289740881329E-03 + 314 3.3631852054116450E-03 + 315 2.2363671368941317E-02 + 316 -1.7292197680230211E-02 + 317 -2.0535428384344068E-03 + 318 8.7204436559812099E-03 + 319 -3.5050900667634194E-02 + 320 6.5543969039049882E-02 + 321 -8.6861553715546595E-03 + 322 -3.8234430700202639E-02 + 323 2.0628964497997888E-03 + 324 9.4344558309816390E-03 + 325 1.1325667795161211E-02 + 326 -1.9768202980691051E-02 + 327 3.4469354147543624E-04 + 328 -6.5210929817839701E-03 + 329 9.6507309563734107E-03 + 330 -1.0699149761037849E-01 + 331 -1.8158157723058652E-02 + 332 -4.4913551583876381E-02 + 333 -9.5962010495140651E-02 + 334 -8.0782188538019439E-02 + 335 -1.7961412953455189E-02 + 336 -2.2592871462163412E-02 + 337 -1.6959701580274572E-02 + 338 -8.9866566758465497E-03 + 339 9.3754451229762729E-03 + 340 9.4054750493419766E-03 + 341 9.8701461541940115E-03 + 342 7.8893347545508259E-03 + 343 -3.0745441103069003E-02 + 344 6.2420371543910079E-02 + 345 1.7295373719462010E-02 + 346 5.6946250172426910E-02 + 347 7.0008099927594422E-02 + 348 4.1787527695347397E-03 + 349 1.4508961648547697E-02 + 350 6.4615796222824750E-03 + 351 -7.1795132941370214E-03 + 352 7.4619252243514501E-03 + 353 -1.1826012890585751E-02 + 354 1.4511353839747043E-03 + 355 7.9612682928389081E-03 + 356 -2.7089510631744988E-05 + 357 -6.7401352082985963E-02 + 358 -7.6221707375494011E-02 + 359 -4.8254672034531631E-03 + 360 2.0592418534074945E-02 + 361 1.7620487194229172E-02 + 362 6.2807309907173172E-03 + 363 1.6547776411464772E-02 + 364 2.4970863664487156E-02 + 365 9.3077394682917498E-03 + 366 -2.5893053660219260E-02 + 367 -1.8345644103932430E-02 + 368 1.7004425276619429E-02 + 369 -6.3428646215678269E-03 + 370 6.2415684218881856E-02 + 371 -8.6545961912687416E-02 + 372 -9.2303342025201757E-03 + 373 -4.3973516738726910E-03 + 374 4.0331377294145244E-02 + 375 1.3812237949183705E-02 + 376 -1.7526535686608873E-02 + 377 6.1367739632335909E-03 + 378 3.4482750383315657E-02 + 379 -3.0979081994246691E-02 + 380 1.1661924786289917E-02 + 381 1.5801691305844720E-01 + 382 -3.6188458386945406E-02 + 383 -2.4387511938388920E-01 + 384 2.4743477230083927E-02 + 385 -7.3249352787554799E-03 + 386 6.3553436843738487E-02 + 387 1.4017986873237612E-02 + 388 1.6156880731686518E-03 + 389 2.0971087079218942E-03 + 390 -3.4162987042693015E-02 + 391 -2.1493914431810694E-02 + 392 -2.1335212102239334E-02 + 393 -1.4964536432093726E-02 + 394 -1.5035302095237779E-01 + 395 -2.0142894187408261E-02 + 396 -3.2953747575379239E-01 + 397 -2.5205686745275024E-01 + 398 -7.6675286227062531E-02 + 399 -3.9050734797747545E-02 + 400 -2.9246879794977934E-02 + 401 -8.1108400944194543E-03 + 402 -5.4394136951038553E-03 + 403 -1.0113987579889181E-02 + 404 1.0330243057352253E-02 + 405 -8.8536037375494866E-03 + 406 -8.9979228657992554E-04 + 407 -1.3632225049330896E-01 + 408 -8.2623062108347828E-02 + 409 -4.9034239713866237E-02 + 410 8.6545803350062553E-02 + 411 -6.5220659541393874E-02 + 412 8.1911783792977845E-03 + 413 -1.6916676854838112E-02 + 414 -2.1324743826645103E-02 + 415 -6.8017970887628799E-03 + 416 3.6240998874685729E-04 + 417 8.7321602600124084E-03 + 418 1.1882567497518469E-02 + 419 -1.0493867242837378E-01 + 420 2.8406469898340090E-02 + 421 -4.0483584407897823E-02 + 422 4.3405496360612209E-02 + 423 4.5168224103143126E-02 + 424 7.0088710405950272E-03 + 425 -3.0942935278297876E-02 + 426 4.9524576069042720E-03 + 427 -1.8979047356579102E-02 + 428 -5.5221459122626283E-03 + 429 -1.6065232293732471E-02 + 430 -1.0118740827300554E-02 + 431 1.4672218362222874E-02 + 432 -1.7085316194151240E-01 + 433 3.8643233457951391E-02 + 434 1.5833377291119130E-01 + 435 -2.6329657243535870E-01 + 436 -6.6910554252950630E-02 + 437 -2.7099073215571902E-02 + 438 9.4567095629875433E-02 + 439 1.8570087298262629E-02 + 440 -3.1010493570043745E-02 + 441 1.6852134740331880E-02 + 442 -9.1152500028513297E-04 + 443 -4.6540697097956149E-02 + 444 -1.6298369341204409E-02 + 445 -2.7660830308269345E-02 + 446 -6.7577979791349045E-03 + 447 -1.1257471666522562E-01 + 448 -2.6096227818815498E-01 + 449 6.5798904833711591E-02 + 450 -5.7279380837574750E-03 + 451 -4.1724598888575257E-02 + 452 6.0154186098318636E-03 + 453 -1.1083147702612023E-03 + 454 -2.2934052145798553E-03 + 455 9.3747344412425087E-03 + 456 -1.1294160687249363E-02 + 457 1.5229721610795286E-02 + 458 2.0111083766846372E-03 + 459 2.4377982634133825E-02 + 460 6.5938214179187313E-02 + 461 -1.2048077003863564E-01 + 462 8.5486960516769003E-02 + 463 1.1940688721143339E-02 + 464 6.0054319269111922E-03 + 465 -4.5861138941737404E-03 + 466 9.2279030972040044E-03 + 467 -3.4375593262296346E-03 + 468 6.5075702243325411E-03 + 469 -3.8569834827697799E-03 + 470 -1.6771664874269757E-01 + 471 -3.2044710566854019E-02 + 472 5.8566418587280462E-02 + 473 5.0953995999352686E-01 + 474 2.6193057467575698E-01 + 475 -1.0668230923529171E-03 + 476 7.7117160888799302E-02 + 477 3.6834070580757765E-02 + 478 -9.7145673969537098E-03 + 479 -1.3578784113282085E-02 + 480 2.1171278411271539E-03 + 481 -1.6685472115717182E-02 + 482 -4.3764410539998575E-03 + 483 -4.1644108511968821E-02 + 484 -1.4607749726024880E-01 + 485 8.3469965612051333E-03 + 486 -1.9480875301476447E-01 + 487 -1.3932071820333472E-01 + 488 7.3367897667574889E-03 + 489 1.4327014168951048E-03 + 490 9.6283425048951515E-03 + 491 5.9205279936935390E-03 + 492 2.8226584122443485E-03 + 493 1.3323279807619926E-02 + 494 -2.6553163042993613E-03 +Ene= 1.0104064247E-01 +Spin= Alpha +Occup= 0.0000000 + 1 1.0810409435853144E-01 + 2 9.1759401224298341E-03 + 3 3.8106524034806410E-02 + 4 -4.5337442962797417E-02 + 5 1.6479381271966037E-01 + 6 -5.8780245128387011E-03 + 7 -6.2212099344102229E-03 + 8 1.2605538679471668E-02 + 9 -1.0962222890127396E-02 + 10 8.0797845255726488E-04 + 11 -7.2896793307892340E-03 + 12 1.7276246670470195E-03 + 13 -2.2533197932717564E-02 + 14 -1.6850006161276420E-02 + 15 1.3349745687256179E-01 + 16 2.5575818178914408E-02 + 17 5.1016792346270538E-02 + 18 -1.0988413913905851E-01 + 19 -3.7710672823259034E-03 + 20 -5.3118869827793814E-03 + 21 6.8684201942194323E-03 + 22 -3.9491223600583514E-03 + 23 -9.6031330109944048E-03 + 24 9.9704472691743238E-03 + 25 -2.0925634642044197E-03 + 26 1.4981124169740362E-01 + 27 1.8666738198160022E-02 + 28 9.3444678306163306E-02 + 29 -3.6265676917128137E-01 + 30 4.9634887040463219E-02 + 31 1.0030467138174969E-02 + 32 -5.0454448497138565E-02 + 33 -2.0598118751938193E-03 + 34 5.7640533538679418E-03 + 35 6.2546722637016857E-03 + 36 -1.3894670392639629E-03 + 37 1.8908145885031185E-02 + 38 -2.0855845503853594E-03 + 39 2.2583156542316053E-02 + 40 -5.4794295553988744E-02 + 41 1.4721331006812902E-02 + 42 -1.0756606585830131E-02 + 43 -2.7349973570732870E-02 + 44 9.4721745025061650E-03 + 45 -4.3962968281920358E-03 + 46 -1.3589773051323887E-02 + 47 -1.1576690477655893E-02 + 48 3.3234783511826710E-03 + 49 8.5396295933162509E-04 + 50 -2.4877895255595289E-03 + 51 -1.2819517001643185E-01 + 52 -2.1654034854965063E-02 + 53 -5.2577967729970820E-01 + 54 -2.7024044424673099E-01 + 55 -1.8428246458875461E-01 + 56 -6.3720346497617195E-02 + 57 -3.7425288689381206E-02 + 58 -3.5761074676087738E-02 + 59 1.7014891708096957E-02 + 60 -3.0223517802695750E-03 + 61 2.3770945753290869E-02 + 62 1.5532528269707349E-02 + 63 -2.2176485050092050E-03 + 64 -3.2263966568387245E-02 + 65 -1.8605345168774080E-02 + 66 -1.0725396530381492E-02 + 67 5.1833082019951966E-02 + 68 -5.9613486299484953E-03 + 69 -1.9036432796042805E-03 + 70 1.2290316337546648E-02 + 71 3.8170215966092471E-03 + 72 -1.2533895233305568E-03 + 73 -1.4130187000051006E-03 + 74 -1.8148780155277197E-02 + 75 1.6203298430341796E-04 + 76 2.8756284078019393E-02 + 77 -9.2726483619727379E-03 + 78 6.2937344101755305E-02 + 79 -1.5580803543260099E-01 + 80 -5.2289751109293459E-02 + 81 -2.5771366834034144E-02 + 82 6.2547459326867769E-02 + 83 3.7503381002060431E-02 + 84 2.6272960622929437E-03 + 85 -2.5315120811269951E-02 + 86 5.4521083352015269E-03 + 87 3.1136819482053216E-02 + 88 -1.0979054689536466E-02 + 89 -4.6166504573030211E-02 + 90 1.1477729271687016E-02 + 91 6.2602450305182314E-02 + 92 1.0163629851252878E-02 + 93 -6.4830111584494490E-02 + 94 -2.9725150446244009E-02 + 95 1.0714692909281617E-02 + 96 4.7327405147746034E-02 + 97 3.9252738438675432E-02 + 98 -1.9262031372478929E-02 + 99 4.6406182092674948E-03 + 100 6.7185180709819893E-04 + 101 -2.2160694301681400E-02 + 102 -2.5707249811597704E-02 + 103 3.6952829449613126E-03 + 104 2.6761699133757137E-02 + 105 1.8159607217578139E-01 + 106 6.3689122736335896E-02 + 107 -2.2962034204647169E-05 + 108 -1.0426896647611976E-01 + 109 -7.3836999129541753E-02 + 110 4.2616824207278907E-02 + 111 3.0986859759938399E-02 + 112 3.7406442272447639E-02 + 113 1.5101612210149117E-02 + 114 3.6176732495362518E-02 + 115 -2.6359325507743843E-02 + 116 5.2771229566701220E-03 + 117 -1.7710593298792390E-02 + 118 6.9317839729536299E-02 + 119 -2.6956659251495069E-02 + 120 5.6712894920288581E-03 + 121 -5.3677622837671767E-02 + 122 1.4995718480401545E-02 + 123 -1.4279190834896482E-02 + 124 -3.1279749215791602E-02 + 125 5.5997049116534763E-03 + 126 -1.3422250916510756E-02 + 127 4.2159313579330303E-02 + 128 -8.2532094008373288E-02 + 129 -2.8008342660248969E-02 + 130 -2.1511840752836262E-01 + 131 3.6329440621178832E-01 + 132 -2.5394931649232605E-01 + 133 -2.5274902072973979E-02 + 134 4.8557095969669908E-02 + 135 -3.6818344737554597E-02 + 136 -4.7778852872707150E-03 + 137 -1.5433933896347568E-02 + 138 2.0197593223632735E-03 + 139 -1.1456739136824665E-02 + 140 7.2868013198490230E-03 + 141 -1.3727060041312564E-01 + 142 -1.3497051859021345E-01 + 143 7.7149614982719794E-03 + 144 2.8624592176230021E-02 + 145 9.5645549780982358E-02 + 146 2.1540380684211503E-03 + 147 -7.9461864835493924E-03 + 148 -5.7261234328694656E-03 + 149 -2.2878589757574391E-03 + 150 1.0946996375813789E-02 + 151 6.2047371000758678E-03 + 152 -2.7505726904448174E-03 + 153 1.8784087267553009E-02 + 154 6.4113500511563132E-03 + 155 -3.0843682218732273E-03 + 156 1.5620493202949717E-02 + 157 -4.8737278006784953E-03 + 158 1.4674031540177730E-02 + 159 1.3235055431875040E-02 + 160 -1.5177292714867683E-02 + 161 -5.0193162303737732E-03 + 162 -8.6648003053203110E-03 + 163 1.4507276848283760E-03 + 164 7.0016753603043226E-03 + 165 1.7048665800457212E-02 + 166 6.4791311097037521E-02 + 167 -7.2343817415269976E-02 + 168 3.8619889802058436E-04 + 169 -4.0415598802647406E-03 + 170 8.4320662020454483E-03 + 171 1.4067219827649895E-02 + 172 7.5763575117401725E-03 + 173 4.3544566064660731E-03 + 174 -3.8149486142296722E-03 + 175 -3.8879769486175673E-03 + 176 -3.4723646165616087E-02 + 177 -1.9948047868546166E-02 + 178 -1.7945678679360708E-01 + 179 4.4847403506105270E-02 + 180 -7.9761763530377922E-02 + 181 -2.3382098976394088E-02 + 182 7.7777726941230335E-02 + 183 4.7084205736246172E-02 + 184 6.9909379639394240E-02 + 185 -7.7777502210435168E-02 + 186 -5.6746132901473101E-03 + 187 -2.7833273474033079E-02 + 188 -4.4084211149928937E-03 + 189 -4.9867748106782434E-02 + 190 4.4544150720355676E-02 + 191 1.9061699164819132E-01 + 192 -4.6936257874524094E-02 + 193 2.6709713634461608E-02 + 194 1.0419200433725014E-01 + 195 -1.0194873409260521E-01 + 196 -2.7805464735129560E-02 + 197 -1.2922755026065744E-01 + 198 1.9926000456296878E-02 + 199 5.2230427947852882E-02 + 200 -7.4272705000279736E-03 + 201 1.0185286520263634E-02 + 202 3.7548277398839723E-02 + 203 -2.4765597547920813E-02 + 204 9.1627930875918806E-02 + 205 2.2453042577387009E-02 + 206 1.2736059504410738E-01 + 207 -4.9306527677210901E-02 + 208 -2.0908373145910480E-01 + 209 2.1826678740287278E-02 + 210 -1.3098014771610022E-02 + 211 -4.1118340533266268E-02 + 212 -3.6367848287964253E-03 + 213 -6.2636176308109130E-03 + 214 5.9867450496560656E-03 + 215 1.9948568381550357E-02 + 216 1.1491948917528726E-04 + 217 -9.5549941962316073E-02 + 218 -6.9945397569041251E-02 + 219 2.1009880183728349E-01 + 220 9.6496765351709271E-02 + 221 -1.8022501672627124E-02 + 222 1.2859065042324811E-02 + 223 1.1161543625995146E-02 + 224 2.2680199099905190E-02 + 225 7.4629836028781088E-03 + 226 -1.2110849611599783E-02 + 227 1.6082152910262007E-02 + 228 4.2601282745736461E-03 + 229 8.2714143148903915E-04 + 230 -1.2806099940059124E-02 + 231 1.5581350224934565E-01 + 232 -2.3433931699720051E-01 + 233 -2.5909666419983962E-01 + 234 1.5820620563985130E-02 + 235 -3.2062824992821815E-02 + 236 -2.9986367275985880E-02 + 237 -8.0340574132378717E-03 + 238 -3.1858584135874431E-03 + 239 -5.2689823925662601E-03 + 240 4.5386597258145287E-03 + 241 -5.8169045876738327E-03 + 242 -2.2189014487015303E-02 + 243 4.2492575173612247E-02 + 244 -8.4078273290059888E-03 + 245 1.0264747322221175E-02 + 246 -4.4427203354110191E-02 + 247 -9.2532573762131327E-03 + 248 -1.1502940070131463E-02 + 249 -7.2281367335120229E-05 + 250 -2.0335466457444679E-04 + 251 9.7850128597498764E-03 + 252 -3.9897359534119400E-03 + 253 3.2956919510786567E-03 + 254 6.0184246762506624E-02 + 255 -8.5267336971430966E-03 + 256 1.1225864013763567E-01 + 257 -3.6737861978196215E-02 + 258 3.0616980456990982E-02 + 259 2.6355276442554962E-02 + 260 -2.3517037747776873E-02 + 261 8.9168043325297073E-03 + 262 6.1448511488282863E-03 + 263 -2.5511867940291216E-05 + 264 -3.5771481041497553E-03 + 265 -7.3447886344971845E-03 + 266 1.9405722839289145E-02 + 267 4.7036089356142681E-02 + 268 -5.9859506438742875E-02 + 269 -6.6387111859511159E-03 + 270 -9.0859775637526966E-02 + 271 1.7037667660670194E-01 + 272 -1.1000342116451563E-02 + 273 -1.6408746062919404E-02 + 274 -1.0423453214076324E-03 + 275 -1.7127815283551139E-02 + 276 -5.0061269680653054E-05 + 277 7.8539014873668395E-03 + 278 -9.8802165538814258E-03 + 279 -1.9203216031123727E-01 + 280 4.6802470610238449E-02 + 281 3.0101504873918841E-02 + 282 9.3091273964908211E-02 + 283 -2.8489321217810153E-02 + 284 1.2629526273076057E-02 + 285 -8.8479849170669408E-02 + 286 1.1706146018718248E-02 + 287 -4.2513435565441467E-02 + 288 -3.1713832067724330E-02 + 289 -4.7328582989461217E-03 + 290 1.5540573573996305E-03 + 291 -1.6378944952906718E-02 + 292 -1.9572173306503245E-02 + 293 5.7430275016257474E-03 + 294 3.3986095060153383E-02 + 295 6.1975131972953595E-02 + 296 2.6803273348873675E-02 + 297 -4.2684552861397294E-02 + 298 -3.3228428641534566E-02 + 299 -3.6995240394387181E-02 + 300 -4.3999768781210834E-02 + 301 1.0983911755891524E-02 + 302 -3.7138198431527700E-02 + 303 3.6499120525056036E-02 + 304 1.6893296102486053E-02 + 305 -2.3214925610481688E-01 + 306 -4.1702987179817991E-02 + 307 2.5413984752093565E-02 + 308 -3.3215914771642074E-01 + 309 -1.6345882384051857E-01 + 310 -1.2568614104551507E-02 + 311 -5.0578458079825646E-02 + 312 -4.2401908798436153E-02 + 313 3.1356244245100006E-03 + 314 -1.2312491572196526E-02 + 315 1.5551284625803334E-03 + 316 1.6300261558441300E-02 + 317 -1.9344454222444277E-03 + 318 7.4400584747064888E-02 + 319 -1.4995235715700117E-01 + 320 -4.8000312278984818E-02 + 321 6.3052700132865916E-02 + 322 -5.5831676695036764E-03 + 323 7.5362256955206514E-04 + 324 6.3874032517734615E-04 + 325 6.6769727687544817E-03 + 326 3.0528017488409363E-03 + 327 8.0535611004564269E-03 + 328 2.5538381589526078E-04 + 329 -3.7508211851611318E-03 + 330 -1.6044400384214866E-01 + 331 -2.4844892321453579E-02 + 332 7.8625047373156597E-04 + 333 -1.5674172113298232E-01 + 334 5.0883736017212765E-02 + 335 1.0132613047717479E-03 + 336 -4.8392728299961503E-02 + 337 5.2894357423370715E-03 + 338 -1.1119330777486858E-02 + 339 7.9183325699211504E-03 + 340 1.1656373017942256E-02 + 341 -8.4992602278913219E-03 + 342 4.5990847140015114E-03 + 343 -1.0598156995897552E-01 + 344 1.7727944766905038E-02 + 345 -5.3801380023163779E-02 + 346 -5.0899184753268149E-02 + 347 1.0351723554197512E-01 + 348 -2.4292618683157005E-02 + 349 -3.0060267718871811E-03 + 350 -7.5560698196299094E-03 + 351 -6.5832062550463082E-03 + 352 9.4231345837844629E-06 + 353 1.7928944409637433E-03 + 354 -1.1412777172450471E-02 + 355 -2.3358090812005079E-02 + 356 8.8225813718123842E-03 + 357 1.3433674936126358E-02 + 358 1.0160811844748419E-01 + 359 -4.6719186846550124E-02 + 360 3.6594989315583081E-03 + 361 -6.1566965950652912E-02 + 362 -1.1526838691557698E-02 + 363 8.6136655650156883E-03 + 364 5.6374874124047189E-03 + 365 -2.6275096851537550E-02 + 366 1.0150240047865943E-02 + 367 -6.9134421773369382E-03 + 368 6.5220711228925837E-02 + 369 -1.6396890828449348E-02 + 370 1.9413183462224440E-02 + 371 -1.4795936835915019E-01 + 372 -6.5221903634561013E-02 + 373 -3.3958016344772281E-02 + 374 8.8938939763677366E-02 + 375 4.5615936821091524E-02 + 376 -6.1313908614703408E-03 + 377 -1.7017200516101571E-02 + 378 3.5913277344689770E-03 + 379 4.6801212039160663E-02 + 380 6.9085491254610213E-04 + 381 -1.1540722426471103E-01 + 382 3.0525233914471640E-02 + 383 1.3122178770015291E-01 + 384 -5.0437039916223225E-02 + 385 1.4609164157494922E-01 + 386 -3.2658893730603406E-02 + 387 -5.1441553634161988E-02 + 388 -1.0229982779236790E-01 + 389 -1.6892842449911731E-02 + 390 -5.8335075158136872E-02 + 391 3.1032189778723296E-02 + 392 -1.0923091263811148E-02 + 393 3.6148628921182438E-02 + 394 -8.7453265289631127E-02 + 395 -1.5962710954452067E-02 + 396 4.2992349719553576E-02 + 397 -1.6412676119969155E-01 + 398 -2.7756307241060418E-01 + 399 9.2487350076732120E-03 + 400 -2.4116512690984450E-02 + 401 -4.7305299309243383E-02 + 402 -9.7844926701966262E-03 + 403 -5.5658898540500287E-03 + 404 2.1068087240250968E-03 + 405 -1.0631494479894778E-02 + 406 -1.7119079261454101E-03 + 407 -6.4156033178242755E-02 + 408 -2.7195469417168189E-02 + 409 -2.8665072930146494E-02 + 410 -1.4831309914778136E-02 + 411 -3.7336238393741471E-02 + 412 4.4464402274923291E-03 + 413 -1.9432691695888819E-03 + 414 9.9517811992659022E-03 + 415 1.9875739539657288E-02 + 416 -7.3180289472731348E-03 + 417 -5.7874453288375123E-03 + 418 8.8218643449496214E-03 + 419 8.1438589407984971E-02 + 420 -2.0045587119934056E-02 + 421 -9.2833074954603981E-02 + 422 -3.4394879546653025E-02 + 423 1.3928665015828420E-01 + 424 5.2173721412236723E-02 + 425 4.9919781563865950E-02 + 426 -1.0612096433466101E-01 + 427 -3.2717182174981978E-02 + 428 -1.0227963354296227E-02 + 429 2.9783218051127058E-02 + 430 4.0469750468301306E-02 + 431 -1.4833423092979438E-02 + 432 2.8567853637320076E-02 + 433 -5.7205683597337520E-03 + 434 -1.3200407933255373E-01 + 435 6.7010852653474562E-02 + 436 1.3329254083284309E-01 + 437 6.3692576079552962E-02 + 438 -2.9068630362477092E-02 + 439 -6.9176165417334373E-02 + 440 -1.7783979997318278E-04 + 441 -2.9033618301464878E-02 + 442 -1.0046908069921253E-02 + 443 4.0792153886804905E-02 + 444 3.0505520511382955E-02 + 445 6.3284645611663359E-02 + 446 1.2576259357630732E-02 + 447 2.0836159099864329E-01 + 448 2.5305349884717515E-01 + 449 -2.1398199260301928E-01 + 450 1.1884902258457630E-02 + 451 1.7103874372184448E-02 + 452 -7.6797164663276194E-03 + 453 -1.6976388019887982E-02 + 454 -9.8450559928272251E-03 + 455 -6.8810849269297289E-04 + 456 1.5720827860268200E-02 + 457 1.4329296256243068E-02 + 458 -3.1462371652332934E-02 + 459 1.6700574569453557E-02 + 460 -4.1656003257533936E-02 + 461 -1.1247374447343481E-02 + 462 -2.8841179581762435E-02 + 463 -6.3687148404632877E-03 + 464 6.9143162397572828E-03 + 465 -1.4296111146237347E-03 + 466 1.6790014014469647E-02 + 467 4.5777912712316581E-03 + 468 -1.3051827994878483E-03 + 469 -1.2536995267937916E-03 + 470 1.5452358627053936E-02 + 471 5.0501243164324016E-03 + 472 -8.3755812263241705E-02 + 473 -3.4537653995982343E-01 + 474 -7.5170838914125224E-02 + 475 -6.3919049208297262E-03 + 476 -4.5374880038744680E-02 + 477 -1.1513957252423362E-02 + 478 9.5353436946267241E-03 + 479 8.0358140440469367E-03 + 480 -1.3445891069661004E-02 + 481 -1.6075296385841255E-04 + 482 1.1098240457637243E-02 + 483 6.3439024585132134E-02 + 484 6.9379396494696571E-02 + 485 -1.1994662607789200E-01 + 486 -2.0776595467768631E-02 + 487 7.5202703821370731E-02 + 488 1.2368536482867055E-02 + 489 -1.1299047930676799E-02 + 490 -1.9621067461858339E-02 + 491 1.5813790384071134E-02 + 492 8.2664478409226569E-04 + 493 -1.7512845698238442E-02 + 494 -4.0486553684007049E-03 +Ene= 1.0605722259E-01 +Spin= Alpha +Occup= 0.0000000 + 1 -1.7081373691932092E-02 + 2 6.0781461157715536E-05 + 3 7.8247651597811968E-02 + 4 -8.9348408879069641E-02 + 5 -1.0608150819914160E-01 + 6 8.4076307479257466E-03 + 7 -2.1298427531185229E-02 + 8 -2.3904524718090871E-02 + 9 1.3461606755500236E-02 + 10 -3.3417470025323215E-03 + 11 -2.1875004967326097E-03 + 12 3.6378330141462628E-03 + 13 5.8604946687493232E-03 + 14 4.2793816971396281E-02 + 15 -1.8983822071918930E-02 + 16 5.4984822617885780E-02 + 17 4.7290382307663362E-03 + 18 -2.4393339568802498E-02 + 19 -8.1960678596281790E-03 + 20 9.5208611660479881E-03 + 21 -7.1259817377085869E-03 + 22 -1.0228513894264445E-02 + 23 1.8415113786447283E-02 + 24 1.9309179073713524E-02 + 25 -4.0866282543652642E-03 + 26 -1.7756459796581070E-01 + 27 -3.8910012731369625E-02 + 28 1.4227250471644601E-01 + 29 -1.2644264180058479E-01 + 30 3.4393424002508621E-01 + 31 2.7026318892950242E-02 + 32 3.9374474920753893E-03 + 33 4.3128424669606424E-02 + 34 6.6603301229016748E-03 + 35 -1.3662184938480777E-02 + 36 -5.0653488542843905E-03 + 37 -5.8537030367997456E-05 + 38 2.5140215204285617E-02 + 39 -8.7569517650629286E-02 + 40 9.0190768256860565E-02 + 41 7.6270219069805939E-02 + 42 3.1704811177825865E-02 + 43 4.1517455854360168E-02 + 44 1.6701280968493146E-02 + 45 1.0732096451653494E-02 + 46 9.8161604302440808E-03 + 47 3.2201410672529240E-02 + 48 -1.3649737350434598E-02 + 49 1.3095349057496788E-02 + 50 4.4837829662657544E-03 + 51 1.9514494552656408E-01 + 52 4.3507176308690575E-02 + 53 1.1851720593255344E-01 + 54 4.0643440956226889E-01 + 55 2.5428321326974909E-02 + 56 1.4908800082394104E-02 + 57 5.6833311349598473E-02 + 58 8.8075185811146567E-03 + 59 -1.3339534829139812E-02 + 60 -1.0470253507107547E-02 + 61 9.7872975671801764E-03 + 62 1.2305518756202616E-02 + 63 8.5047681221213905E-03 + 64 2.4343726739227800E-02 + 65 3.3769124421469906E-03 + 66 8.9530923407716345E-02 + 67 3.1473587443120080E-02 + 68 6.2433966976398927E-02 + 69 1.9410927651172017E-03 + 70 -1.5936039622970467E-05 + 71 -3.7920185464040070E-03 + 72 -2.4872422327706892E-03 + 73 5.3277485608536259E-03 + 74 5.8151848952783048E-03 + 75 5.0254080892267556E-03 + 76 -1.3604998101277063E-01 + 77 3.5412796502429213E-02 + 78 4.7665351729540319E-02 + 79 6.5834668112189715E-02 + 80 4.1065258699919472E-03 + 81 -3.4942111743958754E-02 + 82 -6.2225330483108923E-02 + 83 3.7154762477860231E-02 + 84 4.5298102828928910E-03 + 85 -3.9447567947774223E-02 + 86 -1.2617927299218878E-02 + 87 -3.3798957201625741E-03 + 88 2.3676957900869194E-02 + 89 5.6986034718458534E-02 + 90 -1.3454450750259908E-02 + 91 1.4093031872873141E-02 + 92 8.7713859997714458E-02 + 93 -3.3811571845164479E-02 + 94 3.0911472187590697E-03 + 95 -3.9556363556095937E-02 + 96 -1.7183883761091846E-02 + 97 -1.2048101466472281E-02 + 98 7.5409038238537221E-03 + 99 -1.1935653410694349E-02 + 100 1.8269344362655975E-03 + 101 1.0484132678716191E-02 + 102 6.7606662856333877E-02 + 103 -1.5138654832140001E-02 + 104 3.1462711288239541E-02 + 105 9.3926014293258420E-02 + 106 -8.8304582047303182E-02 + 107 2.2110676664925076E-02 + 108 -3.3607550337111047E-02 + 109 9.3566796514478009E-02 + 110 -1.3306859033840570E-02 + 111 -5.3093267004336656E-02 + 112 -7.4126601870574058E-03 + 113 5.4201721927885482E-03 + 114 1.3191917766196000E-02 + 115 -3.8446089606510032E-02 + 116 1.2426847560671054E-02 + 117 9.6552066548974150E-02 + 118 1.1231411959902377E-01 + 119 -3.9304872841335256E-02 + 120 -2.7048201979054450E-02 + 121 -3.7263274073867349E-02 + 122 -3.4878882384156609E-02 + 123 1.8202074509250519E-02 + 124 9.6939374113285334E-03 + 125 -3.5584410070615305E-03 + 126 2.6356158902968409E-02 + 127 1.1141587770507205E-02 + 128 3.2565535577136701E-03 + 129 7.7646974464325239E-03 + 130 1.3601768070432618E-01 + 131 -5.3632671915713459E-01 + 132 1.4529002920247830E-01 + 133 -7.2298860002427911E-04 + 134 -6.3627808410260014E-02 + 135 1.9312275157373816E-02 + 136 6.5400736706075729E-04 + 137 1.6265192619023991E-04 + 138 -2.6714385028442416E-04 + 139 1.3022509656779915E-02 + 140 -1.6377498904534493E-02 + 141 -8.7131187195373924E-02 + 142 2.3027953721820465E-02 + 143 -1.2885392733442635E-01 + 144 -8.3216500079911820E-04 + 145 -3.5639488994820591E-02 + 146 -4.0206676355554090E-03 + 147 1.0300698573105062E-02 + 148 -6.1521799798529148E-03 + 149 1.1541618120708981E-02 + 150 1.5117936987772721E-02 + 151 -2.2479179426707203E-02 + 152 -1.0854737527105902E-02 + 153 -2.4764240157334816E-01 + 154 -2.8653114342276388E-02 + 155 8.7879927867048173E-03 + 156 -1.6764552864334331E-01 + 157 2.4891689765554406E-01 + 158 1.5637644785371080E-02 + 159 -2.3650250102155223E-02 + 160 6.0762299063723352E-02 + 161 9.3771216930711009E-03 + 162 4.7254314634187240E-03 + 163 -1.6810809659485320E-02 + 164 8.3992061650427184E-03 + 165 -7.9324481496597498E-03 + 166 -1.7094687401702738E-02 + 167 6.3472490120706854E-02 + 168 -2.4447027879832628E-01 + 169 -5.4502892234479039E-03 + 170 1.8505070948261107E-02 + 171 -1.1630143464670397E-02 + 172 -1.9424365304509143E-02 + 173 -1.6554117933853141E-02 + 174 1.1832635296108755E-02 + 175 2.2395287162344894E-02 + 176 1.3175833326244670E-02 + 177 -4.9694796623940309E-03 + 178 3.9506246000908317E-02 + 179 -1.1569244350696986E-02 + 180 -4.0244691628473842E-02 + 181 6.2298659506474625E-02 + 182 -2.1336915988536778E-02 + 183 -3.7034530902320242E-02 + 184 -9.1397832204582363E-02 + 185 3.6067261886605841E-02 + 186 -1.3249036566256849E-02 + 187 5.2047479283333781E-03 + 188 6.9068742723406074E-02 + 189 4.1798318834871829E-03 + 190 5.6185738667365436E-03 + 191 -3.8258506078220698E-02 + 192 1.0772185080858360E-02 + 193 -8.4619347231356418E-02 + 194 -6.4061954202601537E-02 + 195 -1.4585070762597646E-01 + 196 2.7214958136060147E-02 + 197 1.5080991705560116E-02 + 198 3.4828633414931566E-02 + 199 -1.5111378461149875E-02 + 200 2.3802464885683242E-04 + 201 6.3049452886511561E-03 + 202 2.8172947381330225E-02 + 203 2.8435495723988596E-02 + 204 -1.0484212230665681E-01 + 205 -1.6623089971611358E-02 + 206 -9.6555657403458464E-02 + 207 -1.0720695985719943E-01 + 208 -1.7077206221110414E-01 + 209 -1.9467452428340502E-02 + 210 -1.2957055455201875E-02 + 211 -1.8910995159846501E-02 + 212 4.9658553230482643E-03 + 213 2.7387049656413059E-04 + 214 2.7272601458623077E-02 + 215 -5.6039438366038371E-04 + 216 8.9199326802036193E-03 + 217 -6.7441779162825718E-02 + 218 -7.0643527649347462E-02 + 219 2.5675596323087649E-02 + 220 1.1810749778918152E-01 + 221 5.1734354028146114E-02 + 222 -1.5910692726834957E-02 + 223 -2.6310517281129646E-03 + 224 1.0998071323384438E-04 + 225 3.5061038435257878E-03 + 226 -3.7854902086126914E-05 + 227 -1.2098912050269615E-02 + 228 -9.7068836107514715E-03 + 229 6.4580608615694521E-02 + 230 7.3053651087353205E-03 + 231 -3.9737889401980496E-02 + 232 -6.1834569947512991E-02 + 233 1.4250028557659905E-01 + 234 -1.0653897161179666E-02 + 235 -9.3485302305856867E-03 + 236 1.2554176663256679E-02 + 237 6.1165503248979168E-03 + 238 -8.3625571191383585E-03 + 239 4.0864276705575853E-03 + 240 8.3549966650452254E-03 + 241 1.3000925045930006E-02 + 242 9.4579917637320515E-02 + 243 4.3432553580662184E-02 + 244 4.8098790258914156E-02 + 245 -1.1138728288666770E-02 + 246 -3.3989476845990033E-02 + 247 3.4268715982958601E-03 + 248 -2.7245338423137135E-03 + 249 5.6313676101772603E-03 + 250 1.1622977001942531E-02 + 251 1.0032744807409703E-02 + 252 3.6553329863424000E-03 + 253 -1.6763131801539728E-02 + 254 2.1932225866014360E-01 + 255 3.3023187267960843E-02 + 256 -6.4092831151388543E-02 + 257 -2.7031706732799465E-01 + 258 7.9245481847747632E-03 + 259 -1.1018907120792306E-02 + 260 -4.3342220442190563E-02 + 261 -1.5950166091617653E-02 + 262 -3.4246048173887348E-03 + 263 -9.4400379013871317E-03 + 264 7.1609574696415374E-03 + 265 1.1420211995075947E-02 + 266 -2.5645202645803341E-04 + 267 1.3591001479111992E-01 + 268 4.6919730939235675E-02 + 269 9.3090149312448037E-02 + 270 1.0097539900635605E-01 + 271 2.6700022088605970E-02 + 272 1.0602901371371409E-02 + 273 -1.8201502751176255E-03 + 274 -1.1522324075013123E-02 + 275 -1.2798681792118394E-03 + 276 -9.0590982384840708E-03 + 277 1.1127843233766999E-02 + 278 -9.6205073564792788E-03 + 279 1.7692056704041439E-01 + 280 -4.8533195444271551E-02 + 281 -6.6795537117568415E-02 + 282 -1.5830139094891751E-01 + 283 5.2634304753317096E-02 + 284 -2.8423281166471124E-03 + 285 7.8081395048200511E-02 + 286 -5.1531562441115376E-02 + 287 1.2791375140553566E-02 + 288 -7.3056828455853621E-03 + 289 4.1336576760057059E-02 + 290 -7.3865091940357062E-03 + 291 -1.6234716480593844E-03 + 292 -8.9433357785247396E-03 + 293 3.9163153052664806E-03 + 294 8.1793768827468812E-03 + 295 -1.1006771766706497E-01 + 296 -6.5721883495388517E-02 + 297 2.7555475922828180E-03 + 298 6.9500137133765173E-03 + 299 1.4613874012018441E-02 + 300 9.9572001152138240E-03 + 301 5.1959742877002134E-04 + 302 -6.9274056949915623E-04 + 303 1.2104633872317451E-02 + 304 1.2172442184039008E-02 + 305 -1.4327625577549252E-02 + 306 1.3465590917182587E-04 + 307 1.4391776724250496E-01 + 308 -4.2130063303364614E-02 + 309 -5.7527130140309038E-02 + 310 1.9741950491341424E-02 + 311 -6.9439209608992860E-04 + 312 -8.4397480569573333E-03 + 313 -2.5659949411623262E-04 + 314 -1.8792238248423337E-04 + 315 -4.0472978986958730E-03 + 316 -3.6953961845275648E-03 + 317 -1.1906893488890104E-02 + 318 -2.2105294613131973E-02 + 319 -7.8554355874376827E-02 + 320 6.1693169826632348E-03 + 321 1.7125143766085194E-02 + 322 -1.1674400336228256E-01 + 323 -4.1550600495384842E-04 + 324 8.3664150957581604E-03 + 325 -6.1183371091154924E-03 + 326 1.3087236436654855E-02 + 327 6.3335365049638484E-03 + 328 8.1876541348203206E-03 + 329 -4.5125915707111986E-03 + 330 2.7050376052855825E-03 + 331 -5.5907444126038382E-03 + 332 3.0664923314316632E-02 + 333 -1.4820324177027766E-01 + 334 1.9776872837130752E-01 + 335 1.3913491380119679E-02 + 336 -2.1095234814011512E-02 + 337 2.5968653146666004E-02 + 338 -2.1693586619941543E-02 + 339 2.9441451527654149E-03 + 340 3.9385526949291105E-03 + 341 -1.0224405181847801E-02 + 342 -1.1526435048888589E-02 + 343 -6.5954594508301906E-02 + 344 -1.0069474958702624E-02 + 345 -1.9643464156832192E-02 + 346 -9.3359915589629389E-02 + 347 -8.8221867769571069E-02 + 348 2.9268828873232370E-03 + 349 -3.7992690596307605E-03 + 350 1.0626094951238570E-02 + 351 -8.6792334975780774E-03 + 352 7.7866042684966486E-05 + 353 5.3108993090821236E-03 + 354 1.1933532960508390E-02 + 355 -1.4541349467312131E-01 + 356 3.6619746458393838E-02 + 357 8.4657781310928493E-02 + 358 2.9537939801026824E-02 + 359 -3.7084313903642898E-03 + 360 -4.6916851467684994E-03 + 361 3.1475979040559219E-03 + 362 8.8034162344899913E-03 + 363 -2.2831148040759235E-02 + 364 1.2184107746904997E-02 + 365 -1.8430688106809364E-02 + 366 -4.4582523573452283E-03 + 367 -2.4121473725586994E-02 + 368 1.6104952909379622E-02 + 369 -2.3982513185141240E-03 + 370 1.4141460289433794E-01 + 371 -1.5149044455880287E-01 + 372 7.2639606053533479E-02 + 373 -5.2265371638041853E-02 + 374 6.3728594468950683E-02 + 375 -3.7658576829397550E-02 + 376 -2.6427897059935503E-02 + 377 -2.3951100874720469E-02 + 378 1.1337021008843366E-03 + 379 2.9835352590401897E-02 + 380 4.5038545583733780E-04 + 381 -1.0893376917113969E-01 + 382 2.9417310855090844E-02 + 383 -7.2350412145440385E-02 + 384 1.0056092387498905E-01 + 385 -5.1095079519765052E-02 + 386 4.5975776081276100E-02 + 387 -7.1759362568350957E-02 + 388 -3.1810598860215838E-02 + 389 2.7050790919431701E-03 + 390 4.6303338638107656E-02 + 391 3.1334065501933100E-02 + 392 -3.2570862816663731E-03 + 393 -6.6052288109856819E-02 + 394 -5.4831765131297790E-02 + 395 3.6320623670381578E-03 + 396 8.5866706727063244E-02 + 397 2.6458878483237142E-01 + 398 7.1610820533105302E-02 + 399 7.8861337417583891E-03 + 400 3.6705696096689409E-02 + 401 -5.3822523031958249E-03 + 402 1.1658546721100270E-02 + 403 4.5393171296352298E-03 + 404 8.6089658980036919E-03 + 405 5.5445439213694355E-03 + 406 -1.8125058486825291E-02 + 407 -8.4157013944670248E-02 + 408 1.2202497359640153E-01 + 409 6.8240678580592260E-04 + 410 2.3535288839944907E-02 + 411 -8.8556588531157693E-02 + 412 9.5798622087236562E-03 + 413 1.6292462423540197E-03 + 414 9.8140742814795817E-03 + 415 5.7536096941462769E-04 + 416 -1.8584606572047387E-03 + 417 7.2694801447871719E-03 + 418 -2.0937295349873503E-03 + 419 -1.0666235500903515E-01 + 420 2.6196328657763703E-02 + 421 -1.1469929151945378E-01 + 422 7.3296271265538407E-02 + 423 -1.4026361699213554E-02 + 424 2.7345277149485186E-02 + 425 5.7239090697135814E-03 + 426 5.2019274106677789E-02 + 427 1.6547050192479089E-02 + 428 2.3490786696454786E-02 + 429 1.7040764028655512E-02 + 430 -1.7160614689564337E-02 + 431 -6.0072105710509633E-03 + 432 2.2735890029470431E-02 + 433 -3.1554278956172203E-03 + 434 9.3446355681497048E-03 + 435 9.9251863329559149E-04 + 436 -2.2975250955721602E-02 + 437 -9.6391264667883211E-03 + 438 1.4307360204156048E-02 + 439 4.6049384241151889E-02 + 440 -1.9029622310597721E-02 + 441 -1.6032058768227060E-02 + 442 6.2095747820043255E-02 + 443 4.5282168020083806E-03 + 444 1.0413449886721512E-02 + 445 7.1325966586078079E-02 + 446 1.9107335648795326E-02 + 447 -3.6325150689320337E-02 + 448 8.8145949070369767E-02 + 449 1.8378346973195617E-01 + 450 -1.8621458006503354E-02 + 451 2.0411518333291134E-02 + 452 3.8402633167503065E-02 + 453 -1.4470261849281015E-02 + 454 1.3862876297743994E-02 + 455 -1.5627924492669407E-02 + 456 7.5159071548519347E-03 + 457 -8.6762983345240116E-03 + 458 -6.8266671107803031E-02 + 459 -2.1439977425969387E-02 + 460 -7.0072455921125987E-02 + 461 1.1389007477609869E-01 + 462 -1.9461692679092241E-01 + 463 1.0021729986706663E-02 + 464 9.8335382557409971E-03 + 465 -2.6857766528052478E-03 + 466 -1.4737492537340948E-03 + 467 1.6515190344917247E-02 + 468 -1.7088308970598137E-02 + 469 8.2758401943741535E-03 + 470 -3.5966257049141401E-02 + 471 -6.2482698172051489E-03 + 472 6.2018179575497587E-02 + 473 9.0008011122232542E-02 + 474 6.8681248532611941E-03 + 475 2.6588193327488965E-04 + 476 4.4009629037751734E-04 + 477 -4.2364202270601184E-03 + 478 1.7552606863863649E-02 + 479 1.3259813508000906E-02 + 480 1.2939302553527269E-02 + 481 -6.9924399488009454E-03 + 482 6.7673329883371309E-03 + 483 2.5740768714044332E-01 + 484 1.3048703255806274E-01 + 485 -1.5181104121845378E-02 + 486 -3.9378412270124070E-02 + 487 5.8385386097163261E-02 + 488 -5.1353173419826795E-04 + 489 -1.3879372403915985E-02 + 490 1.0008785384231923E-03 + 491 -5.0915903939499785E-03 + 492 7.7619931243091689E-03 + 493 -1.6396050831107500E-03 + 494 1.4158159594233458E-02 +Ene= 1.0723858816E-01 +Spin= Alpha +Occup= 0.0000000 + 1 3.7865327195919646E-02 + 2 2.4435810431313208E-03 + 3 -9.2508381037012491E-02 + 4 2.2256337975817483E-01 + 5 1.1832445952165355E-01 + 6 -1.7906904165430722E-02 + 7 2.3176572660549559E-02 + 8 1.7073960216386855E-02 + 9 -1.1924672736754965E-02 + 10 4.3228611560116549E-03 + 11 -1.1058356342302210E-03 + 12 -9.4886331166906500E-03 + 13 -1.3303362739191447E-02 + 14 -1.0683967366170567E-02 + 15 3.0028624521260445E-02 + 16 2.8527543228345329E-03 + 17 -6.8198274740279771E-02 + 18 -3.5069170611612181E-02 + 19 7.1909569932413243E-03 + 20 -5.9973192560289917E-04 + 21 -2.1754476548929498E-03 + 22 -3.5531752713661305E-03 + 23 1.0646685967148446E-02 + 24 -1.9818296680630949E-03 + 25 -1.0604654240853465E-02 + 26 -5.6081675074034720E-02 + 27 -4.3309875169854420E-03 + 28 -4.8540294706460607E-01 + 29 3.2053220089688689E-01 + 30 1.3741775932855751E-01 + 31 -6.0134941281695241E-02 + 32 5.7635249922006929E-02 + 33 1.7096163881184123E-02 + 34 -9.3117858827299494E-03 + 35 -6.3749653899109445E-03 + 36 -1.1554932162798893E-02 + 37 3.5339023337146182E-03 + 38 1.6325896647834581E-02 + 39 3.3157421234641729E-02 + 40 -1.0156370308988850E-01 + 41 -4.0801331922318287E-02 + 42 -8.5585363591886038E-02 + 43 -4.8804872465014290E-02 + 44 6.9970015174288915E-03 + 45 -9.6914880946735640E-03 + 46 -3.7130126885430784E-03 + 47 -3.4492568400761089E-03 + 48 -2.4191170545353243E-03 + 49 -2.4048743879139852E-03 + 50 5.3707212281179639E-03 + 51 1.5591811929833005E-01 + 52 1.7127237724892143E-02 + 53 8.9806774110826340E-02 + 54 -2.7026929901102065E-01 + 55 -2.7114784937161889E-02 + 56 9.2543294847275415E-03 + 57 -2.3572172947230057E-02 + 58 5.6905156090149671E-03 + 59 -6.5951014369814249E-03 + 60 1.4015459358581384E-02 + 61 5.6602566577091352E-03 + 62 5.1054312116430899E-03 + 63 1.2575301960823443E-03 + 64 7.3221390944704556E-04 + 65 1.3912391975803236E-02 + 66 3.2406000388055030E-02 + 67 2.1121934264138199E-02 + 68 4.8466874357058862E-02 + 69 1.1253205900159362E-02 + 70 1.9858977930848213E-03 + 71 -1.0338961632567648E-02 + 72 4.2426841012873440E-03 + 73 2.3940270805431715E-03 + 74 1.9115651006935915E-02 + 75 3.0025665077861147E-03 + 76 -1.2448775111313353E-02 + 77 1.5266364097644570E-03 + 78 5.8229289874750538E-03 + 79 5.7128720611661209E-02 + 80 -1.8585795739692473E-01 + 81 -3.6368789332021589E-02 + 82 2.2118520794400028E-02 + 83 6.9238849262489729E-02 + 84 -3.9896634978232247E-04 + 85 -9.2363999756778703E-04 + 86 -4.9625724443692926E-02 + 87 1.7424292879271653E-02 + 88 8.2818683377558072E-03 + 89 1.2054776323214920E-02 + 90 -5.4324427299703142E-03 + 91 -5.2168438969621866E-02 + 92 -7.4079803616728571E-02 + 93 1.4674833736179116E-01 + 94 1.3311916726152676E-02 + 95 4.9280743198886916E-02 + 96 -3.2229449073174377E-02 + 97 -1.5077530944600426E-02 + 98 2.8481761181920279E-02 + 99 1.1007853461681945E-03 + 100 -1.6865729174985109E-02 + 101 -4.6383933266664215E-03 + 102 -7.2821959226926955E-02 + 103 1.7183176048802925E-02 + 104 2.2845205020894706E-03 + 105 -2.0004348305447250E-01 + 106 1.1530309541838381E-01 + 107 -2.9316456395187724E-02 + 108 7.8723040616399453E-02 + 109 -4.7086869857246479E-02 + 110 -4.6781073817185208E-02 + 111 3.4719377579702532E-02 + 112 -2.0842184841861715E-02 + 113 -2.3450023952746528E-02 + 114 -6.8209667778704472E-03 + 115 1.3005535364402526E-01 + 116 -3.2055675567947084E-02 + 117 -1.0217459246473623E-01 + 118 -6.2272870154901142E-02 + 119 -8.3278951417221761E-02 + 120 -1.2523590675072386E-02 + 121 7.8569785245051982E-02 + 122 5.9520673417537640E-02 + 123 1.4710972222283583E-03 + 124 1.3995677258415192E-02 + 125 -5.4369496549126449E-02 + 126 -2.9263895251758647E-02 + 127 1.0172912061373685E-02 + 128 -2.3206720929078617E-01 + 129 -3.2761015473490675E-02 + 130 3.2295124976483847E-01 + 131 -7.8092819987716541E-02 + 132 4.4353530960111520E-01 + 133 4.3134231976643317E-02 + 134 -7.3627480028512363E-03 + 135 6.2112317808297311E-02 + 136 -5.6573215138339171E-03 + 137 1.1992583757289252E-02 + 138 -7.1618552062906486E-03 + 139 1.8249313962424362E-02 + 140 -7.6936621052174610E-03 + 141 -8.9312084399162911E-02 + 142 -2.0000237054471798E-01 + 143 1.9744770227538769E-01 + 144 -8.8776975576569536E-02 + 145 -8.8787064117678435E-02 + 146 -1.2081341727692544E-02 + 147 2.6058055183267315E-03 + 148 1.2500697778917174E-02 + 149 3.6175247961272635E-03 + 150 -2.1464439314845891E-02 + 151 2.2706828113299510E-02 + 152 1.8800172457561059E-02 + 153 -8.3903346330839873E-02 + 154 -2.6486241810421373E-02 + 155 2.9106621765816593E-01 + 156 -7.8986665750476207E-02 + 157 -2.1163847895283968E-02 + 158 2.4690353059166975E-02 + 159 -1.6638052059219421E-02 + 160 4.2073093235833418E-03 + 161 -6.8983776836497130E-03 + 162 2.4590602901100535E-03 + 163 -1.2026481476947903E-02 + 164 6.0252597033422775E-03 + 165 3.0117089511914959E-03 + 166 -1.1271021737045793E-01 + 167 9.0014790095243991E-02 + 168 -8.5792336741259231E-02 + 169 7.8747556245466532E-02 + 170 -2.7643156289275102E-02 + 171 -6.9272696918778820E-03 + 172 1.4856007226877476E-02 + 173 -1.6531060735978324E-02 + 174 5.6695711164273044E-03 + 175 2.9871053353996064E-03 + 176 3.9669180999295645E-03 + 177 6.7063275924332316E-03 + 178 -5.9867702964842708E-02 + 179 1.3941456306331796E-02 + 180 -1.4869845168990378E-01 + 181 3.4955900604940117E-02 + 182 -8.9267657598168806E-02 + 183 3.0995401262132599E-02 + 184 7.1344682308693624E-03 + 185 1.7791820411716369E-02 + 186 -1.3619401489655519E-02 + 187 1.6162929749263526E-03 + 188 1.0177285430223242E-02 + 189 2.3268854380222175E-02 + 190 -8.4494156453181132E-03 + 191 -3.1849371110440484E-02 + 192 5.0257622987631163E-03 + 193 2.4338887746567711E-01 + 194 -6.3741229528418597E-02 + 195 -1.3724330519474556E-01 + 196 -1.1919836739466787E-01 + 197 3.0502664551663304E-02 + 198 3.5657631052113635E-02 + 199 -3.5805488460679109E-02 + 200 8.6905769031216488E-03 + 201 1.0799594342076266E-02 + 202 5.6100544267026842E-03 + 203 -5.5766562395614130E-02 + 204 2.8381370829776032E-02 + 205 -1.0834734760691163E-02 + 206 -3.5404032235237776E-01 + 207 5.3013103370295789E-01 + 208 2.2642608850584164E-02 + 209 -6.2110697714916840E-02 + 210 6.8123993539406499E-02 + 211 -1.7304881782470759E-02 + 212 -1.0830372906871548E-02 + 213 -1.0372339872707317E-02 + 214 8.1538399848583298E-03 + 215 3.9243165147818410E-03 + 216 1.0924606893628604E-03 + 217 1.5346490861450929E-03 + 218 -6.6136726211168829E-03 + 219 -1.2534956290281885E-01 + 220 1.3932360850186762E-01 + 221 -1.7468378455287578E-01 + 222 2.2255098445282339E-03 + 223 -1.0312416588128101E-03 + 224 9.7840166267492978E-03 + 225 -3.4748536176784374E-03 + 226 1.4845446116578741E-03 + 227 -1.1194196704094478E-03 + 228 1.9704672530128121E-02 + 229 -7.9804315205611376E-02 + 230 -1.5130742089510835E-02 + 231 1.2166308003216368E-01 + 232 -9.6379891189526876E-02 + 233 -2.2257059656171729E-01 + 234 -1.0214329386030087E-04 + 235 -3.4202009132159304E-03 + 236 -2.6461605143082444E-02 + 237 -3.6269832870554413E-03 + 238 -7.6767561161975358E-03 + 239 -1.4773534451263453E-03 + 240 -1.6479290533806645E-03 + 241 -1.4462333895366622E-02 + 242 -1.3387155094212286E-01 + 243 -7.7294667932487696E-02 + 244 -4.5984487550157480E-02 + 245 -2.8736957112518880E-02 + 246 7.2925059764481076E-02 + 247 -9.6845480942225250E-03 + 248 1.3467380065908176E-02 + 249 -1.2493751053747153E-03 + 250 9.4544772387839277E-03 + 251 3.4433969657016185E-03 + 252 -2.2932977157800179E-02 + 253 -1.3397568688589354E-02 + 254 -9.8149779904508086E-02 + 255 -2.3784486078874411E-02 + 256 -8.6994841777686890E-02 + 257 9.1636275183216820E-02 + 258 -1.0299779289534866E-01 + 259 -1.2695831635435690E-02 + 260 2.6922158617479160E-02 + 261 -1.9025517250683582E-03 + 262 -1.1818916837043891E-02 + 263 1.3897900580714388E-03 + 264 -8.0673129205624354E-03 + 265 4.4088629613058233E-04 + 266 -1.3097344332977866E-02 + 267 -4.8301124992929578E-03 + 268 -2.1359177188263809E-01 + 269 -2.9433569575071342E-03 + 270 1.1007465624359802E-01 + 271 2.7218081377082832E-02 + 272 2.5115820440622686E-03 + 273 -1.0589021685559410E-02 + 274 2.6752487632238225E-03 + 275 2.9960845602904233E-02 + 276 -2.0538846559030016E-02 + 277 -5.6572958816505136E-03 + 278 -8.6752827706650139E-03 + 279 7.1389643208821340E-04 + 280 -2.4659079755743788E-04 + 281 -1.1827253877948122E-02 + 282 1.8040279173631234E-02 + 283 1.7230755101962401E-02 + 284 5.9454184932518230E-02 + 285 5.7395385771800316E-04 + 286 1.8648711314031823E-03 + 287 -3.8851657667559209E-04 + 288 -9.8738386050480492E-03 + 289 -3.3431122939225730E-03 + 290 -5.7144821092021464E-03 + 291 -6.1901339603064424E-02 + 292 1.1243330170776702E-01 + 293 -2.7083017083460750E-02 + 294 -5.4142809616863378E-03 + 295 3.2027095444563718E-02 + 296 5.3772532616669616E-02 + 297 4.9383182089910108E-03 + 298 1.7589007483672696E-02 + 299 -3.2453469908142053E-02 + 300 -2.8435343789378564E-02 + 301 -8.0443958070506999E-03 + 302 -2.3736931318734125E-02 + 303 7.1698481099219296E-03 + 304 -2.4425691935954515E-02 + 305 -8.4960829402875217E-03 + 306 -9.4902754079493855E-03 + 307 8.4084551305385322E-02 + 308 8.6622033549760849E-02 + 309 -5.2076248418667342E-04 + 310 1.1397756705243994E-02 + 311 1.1485929840019957E-02 + 312 -1.8919126772170398E-03 + 313 4.9855281203901591E-03 + 314 -1.3747012058782905E-02 + 315 -2.0106406682873592E-03 + 316 -9.4279746650109328E-04 + 317 9.4408569779189306E-04 + 318 2.9280756146208228E-02 + 319 -1.2794449207004063E-01 + 320 -4.3028272761621517E-03 + 321 9.3538993722235547E-03 + 322 3.3202198096261570E-02 + 323 -9.2596164587589909E-03 + 324 1.4569379384466962E-02 + 325 4.1792322008550979E-03 + 326 1.2492393365753455E-02 + 327 -1.5704214448240498E-03 + 328 9.0729524683882002E-03 + 329 6.6230338133604037E-03 + 330 3.9028568596455745E-02 + 331 -8.5077649142106682E-03 + 332 -3.3162335268912643E-02 + 333 -7.1696891776331442E-02 + 334 2.0110885254282820E-01 + 335 -6.9841899778484732E-03 + 336 -3.8032255036266026E-03 + 337 2.2744935974230829E-02 + 338 -1.3270452834864369E-02 + 339 5.0087066970324863E-03 + 340 3.6933398539988980E-03 + 341 -4.6397724438856178E-03 + 342 5.2306738906125021E-03 + 343 -2.2411683159552390E-02 + 344 6.9689467934704194E-02 + 345 4.6373585862216953E-02 + 346 -7.7177963709572611E-02 + 347 5.0776876366528258E-02 + 348 1.8066880784663622E-03 + 349 -2.8338869914133350E-03 + 350 7.3996095681087282E-03 + 351 1.9924269889929382E-03 + 352 2.2813739544829879E-02 + 353 1.1037561913384297E-02 + 354 1.8815796935475689E-02 + 355 -4.2920632976473562E-02 + 356 8.4134315593032295E-03 + 357 -6.4602239545336254E-02 + 358 2.4840472381043470E-02 + 359 5.4558000021863812E-02 + 360 4.2136711428173823E-02 + 361 -1.7308998048278013E-02 + 362 -9.7541771496782344E-03 + 363 -1.8194149487863142E-02 + 364 2.1278865286446479E-02 + 365 -3.1746164638003636E-02 + 366 6.5242155272363603E-03 + 367 -2.8755414038561058E-03 + 368 -8.8646566594018386E-02 + 369 2.1495931857600376E-02 + 370 -2.5863765138694508E-02 + 371 -7.9540829736361590E-02 + 372 -1.1086859075693402E-01 + 373 3.0966791225015087E-02 + 374 2.4450855259382617E-02 + 375 2.9721573372334647E-02 + 376 -1.1929902884999453E-02 + 377 -1.0851458695215165E-02 + 378 2.0052241402568383E-02 + 379 8.7668043579386939E-03 + 380 -3.3567190589752827E-02 + 381 -1.0736874146716670E-01 + 382 2.7466351456804417E-02 + 383 -1.9884643296385136E-02 + 384 1.7521487637242772E-01 + 385 -3.9834590169265903E-02 + 386 4.9958057551086323E-02 + 387 -1.0283237247880471E-01 + 388 9.6790468194949034E-02 + 389 -7.6105690838812551E-02 + 390 2.1601043703079414E-02 + 391 -4.4253505427909769E-02 + 392 -1.2939811079226439E-02 + 393 -6.1287301672478707E-02 + 394 1.9366437231268510E-01 + 395 3.0428270337497159E-02 + 396 2.6067897844232062E-02 + 397 1.0942464402354239E-01 + 398 3.0136312506250879E-01 + 399 4.0942893940582828E-04 + 400 -7.9450570764527436E-03 + 401 4.6014571347262570E-02 + 402 -1.2684691381627231E-02 + 403 -7.2077604165373113E-03 + 404 8.0789703794635695E-03 + 405 2.0829154039947234E-03 + 406 -1.8439739367603392E-02 + 407 8.3151169656386137E-02 + 408 -6.2852511029023186E-02 + 409 9.1887859054008286E-02 + 410 -2.9602730554372365E-02 + 411 1.0198386362502126E-01 + 412 2.5631805856494000E-03 + 413 -2.9293381494555704E-03 + 414 1.3704165581480366E-02 + 415 4.0259070759128164E-03 + 416 9.8617381218204566E-03 + 417 -3.0176605653048232E-02 + 418 -7.8754151897075658E-03 + 419 -1.0381486721175268E-01 + 420 2.4189326639723178E-02 + 421 2.4024292319425499E-02 + 422 -1.9217583046725040E-02 + 423 -4.5021008682514406E-03 + 424 3.2033950316919316E-04 + 425 -1.8672768639724537E-02 + 426 1.7867938709172363E-02 + 427 8.6078433183194650E-03 + 428 -1.1209126243051164E-02 + 429 2.2204954296023146E-02 + 430 -9.5623676469158113E-03 + 431 3.0705859918048698E-03 + 432 3.4948810324617274E-02 + 433 -7.3332155644021766E-03 + 434 -1.9410242289914354E-02 + 435 6.1285958086326177E-02 + 436 3.5507752119941567E-02 + 437 -4.2893946262738299E-02 + 438 3.3576935937648385E-02 + 439 -3.6415245741420389E-02 + 440 -2.8225946953957002E-02 + 441 -3.5429964828572261E-02 + 442 -3.9571290030008992E-03 + 443 -2.9535635687606976E-02 + 444 -1.4252834464498198E-02 + 445 1.1873692144667419E-02 + 446 -1.8108534410993828E-02 + 447 9.2159733886866782E-02 + 448 -1.4712507814281525E-01 + 449 -6.5352696069486543E-02 + 450 6.8010356044172085E-03 + 451 -1.6727860868182325E-02 + 452 -1.7766255012894433E-03 + 453 7.9247654080729386E-03 + 454 -3.0781590466871503E-03 + 455 -8.8011289966973046E-03 + 456 2.9333441109991509E-03 + 457 5.9166481570219042E-03 + 458 -5.9126522248774294E-02 + 459 9.8952774282047868E-03 + 460 1.3903646185990911E-02 + 461 7.7246010872557128E-02 + 462 1.4768780992209551E-03 + 463 1.3661282438042179E-02 + 464 1.1077939566057517E-02 + 465 -1.6724885115760580E-03 + 466 -4.3392205676625901E-03 + 467 1.0284623649927688E-02 + 468 -2.8475465791894815E-02 + 469 -4.9475308165576803E-03 + 470 -8.2481216984310726E-02 + 471 -2.1282613286739142E-02 + 472 -1.0803487986692331E-01 + 473 8.0476672247968659E-02 + 474 -1.1602398184485183E-01 + 475 -2.6123118459845107E-02 + 476 -5.9341840893358628E-03 + 477 -7.0006101321339869E-03 + 478 -9.3778194236420927E-03 + 479 3.6049428937644525E-03 + 480 -1.2581728162044460E-02 + 481 -4.5079973144973142E-03 + 482 -4.7848873828966933E-03 + 483 1.5581669435352536E-02 + 484 9.5550382573789699E-02 + 485 -4.0916282350034743E-02 + 486 8.9032530100530791E-02 + 487 5.1361875382557556E-02 + 488 7.2476741846104389E-03 + 489 -5.2382954756347057E-03 + 490 1.5284351085855439E-02 + 491 -2.6612959040257900E-02 + 492 -6.2506639957593110E-03 + 493 -1.7569616859126901E-02 + 494 2.0124935858639469E-02 +Ene= 1.1184474843E-01 +Spin= Alpha +Occup= 0.0000000 + 1 1.4207390615343235E-01 + 2 1.5509437944918120E-02 + 3 -9.2714599766896277E-02 + 4 1.0029531175667933E-02 + 5 -1.1321876072901302E-01 + 6 -3.5588459791551265E-02 + 7 1.5133313172461752E-02 + 8 -2.0093760430598608E-02 + 9 5.2825776305571413E-03 + 10 6.3292902289782422E-03 + 11 6.2816248314756535E-03 + 12 2.7455256696857838E-03 + 13 8.3022282141638811E-03 + 14 1.1822703694743341E-02 + 15 8.8019132763402202E-02 + 16 6.6359743117131997E-02 + 17 1.4396520714349735E-02 + 18 -5.0076202509595664E-02 + 19 -1.2473044046420903E-02 + 20 1.0501151231792046E-02 + 21 1.9580774368090987E-02 + 22 -1.6778894670709300E-02 + 23 4.7680193512705466E-03 + 24 2.4338696928777163E-02 + 25 4.4230380947537168E-03 + 26 -8.1729249346615823E-03 + 27 -2.0141373081190629E-03 + 28 -4.9386517938419844E-01 + 29 -9.2334339077449659E-02 + 30 5.9502766953409847E-01 + 31 -6.2926133603485507E-02 + 32 5.0982289459539937E-03 + 33 8.0042579740589662E-02 + 34 1.1227267309020121E-02 + 35 1.8466968090795439E-03 + 36 -1.1843055420710319E-02 + 37 1.1532754210938089E-04 + 38 1.2725017500205297E-02 + 39 4.5328643971350641E-02 + 40 1.0929758307026277E-02 + 41 2.3098203804693310E-02 + 42 -1.6786497313942852E-02 + 43 -1.4193019202400674E-02 + 44 2.1462187442158758E-02 + 45 1.0476811532627427E-02 + 46 2.2962142533234278E-02 + 47 2.5145184429465711E-02 + 48 -2.7524316296414556E-02 + 49 -5.2095024561392049E-03 + 50 -4.6066210379900529E-03 + 51 -1.7929970616912212E-02 + 52 7.3648202379497920E-03 + 53 -1.7033279887600430E-01 + 54 2.2863837117182564E-01 + 55 3.5728397720159694E-01 + 56 -2.2524521150697713E-02 + 57 2.9977383986343139E-02 + 58 4.4448817399223926E-02 + 59 5.7503710136768294E-03 + 60 -1.3186641118908261E-02 + 61 2.3864842496470603E-03 + 62 -2.5829719765640032E-03 + 63 -1.5926832402710416E-02 + 64 7.3561843249083644E-02 + 65 -6.9488091350264736E-02 + 66 5.6345859985720406E-02 + 67 -4.0847674709966870E-02 + 68 1.4195266909245297E-02 + 69 6.2701000551006487E-03 + 70 8.6055948511395660E-04 + 71 -1.2337087371980054E-02 + 72 -3.3485086038992831E-03 + 73 -1.2638215090049518E-02 + 74 8.0872880710648517E-03 + 75 -7.3698079993037144E-03 + 76 -1.8805622792341378E-01 + 77 4.6274403517252580E-02 + 78 -3.5252164900520334E-02 + 79 1.9171784272787967E-01 + 80 -1.6800464268646306E-01 + 81 -2.9294983428609023E-02 + 82 -8.9425734207377122E-02 + 83 9.9627419981359891E-02 + 84 5.6873515554552070E-02 + 85 -4.1592451195874167E-02 + 86 -3.5955868466324203E-02 + 87 3.2101914170023227E-03 + 88 5.3899682161041518E-02 + 89 -9.5034004453937143E-02 + 90 2.2936633313632642E-02 + 91 5.3138247862182748E-02 + 92 3.2471425732825070E-02 + 93 -1.4551871988263290E-01 + 94 -3.6697725273789734E-02 + 95 3.0139269679111949E-03 + 96 8.2578292648091009E-02 + 97 2.3012483586089278E-02 + 98 -2.6785533879277384E-02 + 99 3.3849720609882938E-03 + 100 2.9002546833991571E-02 + 101 -5.3015085914453926E-03 + 102 -1.1199075005878614E-01 + 103 2.8793716424497049E-02 + 104 -3.7206378542655891E-02 + 105 2.1585716816528371E-02 + 106 -3.1637111867807259E-02 + 107 3.2182663681868430E-02 + 108 -3.7644196269736225E-03 + 109 3.3021242350988807E-02 + 110 3.0709918146801213E-02 + 111 -4.3444829191915564E-02 + 112 -4.0954172675045107E-02 + 113 -2.5043066260747780E-02 + 114 1.4053046366102388E-02 + 115 1.7568273188360078E-01 + 116 -4.5955422573805353E-02 + 117 2.9211086434597227E-02 + 118 2.2383637345414927E-02 + 119 -5.1833403632528412E-02 + 120 -2.5073461471125619E-02 + 121 3.0725159133503391E-02 + 122 9.7837967478840299E-02 + 123 -5.0377310867813496E-03 + 124 3.5882532885105518E-03 + 125 -3.0295278698324067E-02 + 126 -2.6418410517142065E-02 + 127 7.6334529166692575E-02 + 128 -4.0840111045085406E-02 + 129 5.1668714665373304E-03 + 130 -1.7430643512825271E-02 + 131 3.0178585124805746E-01 + 132 -2.0397134399444408E-01 + 133 1.6282796937069008E-03 + 134 5.3603823189318833E-02 + 135 -3.0315166967600234E-02 + 136 -1.4121407105130056E-02 + 137 -6.3968356612643835E-03 + 138 -8.5059253157193562E-03 + 139 1.3397840682304502E-02 + 140 1.1317264359231497E-02 + 141 -2.0284435486157087E-02 + 142 -1.3958447408626812E-02 + 143 8.5112228231970899E-02 + 144 -3.1374395597311693E-02 + 145 2.0170188233431533E-02 + 146 -7.6395577226108617E-03 + 147 -8.3041377230703324E-03 + 148 9.3179430800166951E-03 + 149 -2.2516609106869062E-02 + 150 3.5872218877688166E-03 + 151 1.5662075077566628E-02 + 152 7.9517283887347752E-03 + 153 -3.3105213813184692E-01 + 154 -5.1196180629586308E-02 + 155 -1.6099699743026205E-02 + 156 -1.8408659466347371E-01 + 157 3.4170857908942615E-01 + 158 1.9406376910128330E-02 + 159 -3.1150928379888108E-02 + 160 7.6759971163373825E-02 + 161 1.0686495139362246E-02 + 162 -3.8150006774700781E-03 + 163 -5.6311059861776135E-03 + 164 -4.4232496878809585E-03 + 165 1.4161050623181225E-02 + 166 1.2977046832499026E-01 + 167 -2.5483196436149876E-02 + 168 -4.4426056647450224E-02 + 169 -1.2097191847903321E-01 + 170 1.9314385959243308E-01 + 171 -1.0452677715658809E-02 + 172 1.7739800388352292E-04 + 173 8.5777316859388560E-03 + 174 1.9752077713955027E-03 + 175 -1.9634936011379499E-03 + 176 -3.7359796607840147E-03 + 177 8.7311350073434359E-03 + 178 -2.4785501905285170E-01 + 179 7.1115864097523920E-02 + 180 -2.6146964711372202E-02 + 181 -1.7126923650297346E-01 + 182 1.2541739466237642E-01 + 183 7.2513094981927331E-02 + 184 1.0739827561299979E-01 + 185 -5.2626106671617150E-02 + 186 -1.5789817244194967E-02 + 187 -3.0288745628110590E-02 + 188 -1.0092606793412439E-02 + 189 9.1368764780255848E-03 + 190 4.5967542793902208E-02 + 191 3.1722639366999400E-02 + 192 -6.9140080016314789E-03 + 193 -3.2043874466655450E-02 + 194 -5.8098392916621430E-02 + 195 -2.2971523992074201E-02 + 196 1.5283443167779201E-02 + 197 4.8359277556697555E-02 + 198 9.5340224233786651E-03 + 199 -3.9280669965599382E-02 + 200 -2.1227012032756391E-02 + 201 -2.3787378823156451E-02 + 202 -1.0868567531854487E-02 + 203 -1.7801371829879245E-02 + 204 -3.0835336326198910E-02 + 205 -9.5465468540151845E-03 + 206 -2.8602319506625923E-01 + 207 -1.7363909023702311E-02 + 208 -5.5798628906212145E-03 + 209 -3.1496814454116243E-02 + 210 -7.3045535470495204E-03 + 211 1.7094155073694799E-04 + 212 -1.3035479516896467E-02 + 213 -6.6670303323202642E-03 + 214 -7.4228034704837209E-03 + 215 -6.7676143043166558E-04 + 216 -3.5551790039268501E-03 + 217 -1.3952233159434587E-02 + 218 2.0424646034041297E-01 + 219 1.1926620247925481E-02 + 220 -1.4548350983720570E-02 + 221 -5.1424052484020225E-02 + 222 1.2343203214535588E-02 + 223 2.4015535965045860E-02 + 224 1.3592729536323208E-02 + 225 -9.2139385625695080E-03 + 226 -9.3165212418603316E-03 + 227 1.0074275999655848E-02 + 228 2.1963706466718779E-03 + 229 1.3130429349489406E-01 + 230 2.1677864954342232E-02 + 231 -8.0864386252802664E-03 + 232 2.8818650054371592E-01 + 233 2.3181169193630463E-01 + 234 1.0779593144562619E-03 + 235 4.2945496851690676E-02 + 236 3.4841982798748401E-02 + 237 3.6630095663522048E-03 + 238 5.4212239330494781E-03 + 239 2.7821488709147556E-03 + 240 -7.2763310971291602E-03 + 241 1.9128679071708541E-02 + 242 6.8214307462344165E-02 + 243 5.9867592578003802E-02 + 244 1.8036297671667506E-01 + 245 -1.5149222499756465E-01 + 246 -1.2528934961994712E-02 + 247 -2.1037985366938988E-02 + 248 2.1723850929566886E-03 + 249 1.7897295676564732E-02 + 250 5.1527795050427200E-03 + 251 1.5169049325111145E-03 + 252 -2.7062553884550550E-02 + 253 -2.2514730944617409E-02 + 254 -1.5548044990410034E-01 + 255 -2.0324369492900594E-02 + 256 1.1414710935099967E-01 + 257 8.6726981992967522E-02 + 258 1.5942795330511048E-01 + 259 1.8755614112501097E-03 + 260 4.4598427637348378E-02 + 261 2.8717845773083832E-02 + 262 -3.8018201290609690E-03 + 263 -9.9897685092873705E-03 + 264 3.1564027860812444E-03 + 265 -2.7603823909220890E-03 + 266 6.1236833913005436E-03 + 267 6.1519519799415313E-02 + 268 -2.1044811959870677E-01 + 269 3.3348720026205821E-02 + 270 1.0602298147730496E-01 + 271 8.2262129907235401E-02 + 272 1.5356491125887779E-02 + 273 -1.6045853619508301E-02 + 274 3.7362050067536864E-03 + 275 1.3123794198142266E-04 + 276 9.8521721630118429E-03 + 277 -1.2347893070634986E-02 + 278 2.0157565446106623E-02 + 279 6.8424997674582488E-02 + 280 -1.5272205743317179E-02 + 281 1.4912474313432569E-01 + 282 -3.4518488822942339E-02 + 283 -9.6206732486397092E-02 + 284 -1.1039192085381240E-01 + 285 4.0061897365904889E-02 + 286 4.3069745674397059E-02 + 287 6.2821495344458467E-02 + 288 -1.2647641671344179E-02 + 289 7.1573223739184247E-03 + 290 -5.3746572633780007E-02 + 291 1.8159150847423790E-02 + 292 2.2920644700341067E-02 + 293 -7.0143304720818997E-03 + 294 -6.4620204067866838E-02 + 295 -7.8696885782074524E-02 + 296 -1.8681422063085647E-02 + 297 1.4997237965203032E-03 + 298 2.7428470250289723E-02 + 299 -1.4985964247303798E-02 + 300 3.5559468192317336E-03 + 301 -4.9570766280049982E-03 + 302 2.4395612919118966E-02 + 303 -8.4226108777209225E-03 + 304 8.7238299273688542E-03 + 305 3.0527530266173823E-02 + 306 1.3706900799469587E-03 + 307 -9.6849431909444436E-02 + 308 1.1701162327882814E-01 + 309 -7.4103282852990587E-02 + 310 -2.3855165443492417E-02 + 311 1.4190509244000182E-02 + 312 -2.4984018728594203E-02 + 313 1.1611422859905792E-02 + 314 5.8762741810593593E-03 + 315 7.9108394490234966E-03 + 316 -7.2868522791046091E-03 + 317 -4.0460465244682936E-03 + 318 6.9953651501722919E-02 + 319 2.0471939774986948E-02 + 320 4.6821952558580857E-03 + 321 -3.3701644429535757E-02 + 322 -4.2622543948700853E-02 + 323 3.3850116712254934E-03 + 324 -9.8740653757820496E-04 + 325 2.4499183342344311E-03 + 326 4.4855325259570205E-03 + 327 -7.4767411595872508E-03 + 328 3.5310878307782570E-03 + 329 1.7901362516523532E-03 + 330 1.8480521541612130E-01 + 331 2.9142628135155692E-02 + 332 2.3261396974797392E-02 + 333 1.6603496830024253E-01 + 334 1.7011395337850541E-01 + 335 -1.0345475845817026E-02 + 336 4.3775573778980066E-02 + 337 2.7082277496206068E-02 + 338 4.8495983390104188E-03 + 339 -3.6669065218600349E-03 + 340 -1.2958722320143470E-02 + 341 9.0990442234958162E-03 + 342 5.0618123218012252E-03 + 343 -1.6111258380944522E-02 + 344 -7.3133032471264819E-02 + 345 -1.5101522997170000E-01 + 346 7.4876875113384173E-02 + 347 -6.3252651722145850E-02 + 348 4.2420285833590201E-03 + 349 -6.9162892546977385E-03 + 350 1.3953754856614708E-02 + 351 6.3952223338176947E-03 + 352 1.1638980434223525E-02 + 353 2.9757608221304480E-03 + 354 3.0752855555186444E-04 + 355 -2.7893531289300551E-02 + 356 6.4638586931653752E-03 + 357 -1.6377804215988955E-02 + 358 4.2950116348579245E-02 + 359 -1.7732004198772192E-02 + 360 -3.2676922058360639E-03 + 361 3.0158571104681578E-02 + 362 1.2371803829210229E-02 + 363 -7.3357626243367819E-03 + 364 -7.2490370776913836E-03 + 365 1.4336054276707413E-02 + 366 -2.5100706479709259E-02 + 367 8.8466173206811390E-03 + 368 -3.2920468828361270E-02 + 369 9.7858275240184350E-03 + 370 -3.0311612075109941E-02 + 371 9.7839781036478210E-02 + 372 1.9423018677023021E-02 + 373 1.5998790922202456E-02 + 374 -8.2717525753634835E-02 + 375 -6.2876957303321691E-03 + 376 -1.3521707917564274E-02 + 377 -2.1813743272686502E-02 + 378 1.5171695572881424E-02 + 379 -3.4556221003592250E-02 + 380 2.9908685461467077E-02 + 381 1.0252365335353497E-01 + 382 -2.5108381003108138E-02 + 383 -5.9032901356000480E-03 + 384 1.3644060588534788E-02 + 385 4.0624494534840030E-02 + 386 -1.5343037539130923E-02 + 387 6.6934566583831734E-02 + 388 -1.3914935356784890E-02 + 389 1.6128890743960157E-02 + 390 -9.6051196353500855E-03 + 391 -7.9606495880891808E-04 + 392 9.4435476765045972E-03 + 393 1.9604306532940489E-02 + 394 2.5524762432929657E-02 + 395 2.2281829098762921E-02 + 396 1.3083112300397204E-01 + 397 2.1581230193382792E-02 + 398 2.9280926811547824E-02 + 399 3.0026251554655038E-02 + 400 9.0579239362362264E-03 + 401 9.5102776133310363E-03 + 402 6.4651227486657607E-03 + 403 -3.7783998699702859E-03 + 404 7.6256536042770386E-03 + 405 -2.3255066473442498E-02 + 406 -5.9296135666593217E-04 + 407 -4.0021784975330280E-02 + 408 -4.2160540126806770E-02 + 409 -2.2409521723280003E-04 + 410 -7.7427547678715292E-02 + 411 -1.0338842518172642E-01 + 412 -9.2085578690609664E-03 + 413 -6.6609823059023067E-04 + 414 -9.8270737983507418E-03 + 415 -5.4183350875520522E-03 + 416 -1.0710678485001376E-04 + 417 2.5756109954222929E-02 + 418 -3.5334707271475435E-03 + 419 5.5214621423496937E-02 + 420 -1.1970440571038323E-02 + 421 8.8268328112587974E-02 + 422 -6.2980951638070437E-02 + 423 -4.8000916888306884E-02 + 424 -4.0297142293767678E-02 + 425 3.3770630620282724E-02 + 426 -6.4562078495147132E-03 + 427 5.1591939626987405E-03 + 428 -1.1180030862820881E-02 + 429 8.0579415149441853E-03 + 430 -4.6894364853959612E-03 + 431 -4.1279674895874831E-03 + 432 6.1252294059919749E-02 + 433 -1.7380163417966846E-02 + 434 7.0345043087079451E-02 + 435 -4.9653825632499163E-02 + 436 1.9412475873177910E-02 + 437 -4.8569734393364740E-02 + 438 3.2388701701945933E-03 + 439 -5.7431366686791246E-02 + 440 1.1046549746350217E-02 + 441 -2.8041091576877408E-02 + 442 -9.0674882362888776E-03 + 443 -1.7824779161568299E-02 + 444 -2.1345782723514789E-03 + 445 -5.9665300609999826E-02 + 446 -1.7019180274533981E-02 + 447 -5.7679659419061842E-02 + 448 1.2590674586828601E-01 + 449 -1.3099520121823513E-01 + 450 -1.0752452484305085E-02 + 451 2.3604805298670900E-02 + 452 -3.0970962647963157E-02 + 453 4.4243647587254905E-03 + 454 -7.5622930758904275E-04 + 455 8.7743445520466860E-03 + 456 -3.4731555313710764E-03 + 457 6.8413948051516838E-03 + 458 3.3726826517183617E-02 + 459 7.2015722167559901E-02 + 460 3.0842022939203819E-02 + 461 -2.4887910672636623E-02 + 462 9.0756218567826785E-02 + 463 2.1170826481310699E-05 + 464 -1.7848882930575497E-03 + 465 5.8142050021756427E-03 + 466 -9.9706316040898274E-03 + 467 -7.9714344130369548E-03 + 468 4.0982839779490768E-04 + 469 -2.5417653741583207E-03 + 470 4.3234311501069336E-02 + 471 1.4525023207436892E-02 + 472 3.7420398228162219E-02 + 473 8.6712193424863290E-02 + 474 5.9945324341072019E-03 + 475 6.9961751693780275E-03 + 476 2.0212331658267298E-02 + 477 -1.5488617155866732E-02 + 478 -1.0756240984039236E-02 + 479 3.7116622742003401E-03 + 480 1.4764081633076404E-04 + 481 1.6394544975971870E-03 + 482 -1.0821319644979321E-02 + 483 -1.6843553715053525E-01 + 484 4.4812825302136582E-03 + 485 8.9155649894139169E-02 + 486 4.6261529433880226E-02 + 487 -7.4824065361145997E-02 + 488 -7.1496339165508125E-03 + 489 -5.2480046549102091E-04 + 490 4.6083387950575615E-03 + 491 1.4274423013567853E-03 + 492 -1.2939186451780065E-02 + 493 8.2060847785174560E-03 + 494 -1.3861029004488558E-02 +Ene= 1.1708317581E-01 +Spin= Alpha +Occup= 0.0000000 + 1 -1.1092208061872670E-01 + 2 -2.2618918272007592E-02 + 3 2.1492848518555319E-01 + 4 1.1816766293277323E-01 + 5 1.2047854928817710E-01 + 6 3.9825240402519481E-02 + 7 1.3471058485464513E-02 + 8 2.1400884715661451E-03 + 9 -8.6206663357120909E-03 + 10 -3.4956563625932555E-03 + 11 -1.2972331157065031E-02 + 12 7.0329321864517425E-03 + 13 -1.2062007007592291E-02 + 14 -8.0216981264194201E-02 + 15 -4.6108059291659877E-02 + 16 -5.6458718950838920E-02 + 17 4.9204152870927505E-02 + 18 -7.7025639032446136E-02 + 19 -1.0648511551565404E-02 + 20 1.4307697918173308E-02 + 21 -1.0570115207711299E-02 + 22 -2.9058700741458406E-03 + 23 -6.2971880471076637E-03 + 24 7.3637113633221790E-03 + 25 -3.3036794867222731E-03 + 26 7.1078569269436148E-02 + 27 4.6473053663449813E-03 + 28 -1.2920015377720315E-01 + 29 -5.5437166243951931E-02 + 30 2.2429593263554012E-01 + 31 -2.0590580906287296E-02 + 32 -9.4920836510262402E-04 + 33 2.2252462604772733E-02 + 34 2.8064504245899715E-03 + 35 2.2422648328599532E-03 + 36 -5.0639938782369104E-03 + 37 1.2714230166522476E-02 + 38 1.1966597328698914E-02 + 39 5.7643104664238269E-02 + 40 -8.4123241979388086E-02 + 41 -5.7132055816528866E-02 + 42 -3.3272809066285991E-02 + 43 -1.1450457151519154E-01 + 44 1.6815430866763393E-02 + 45 7.7715360968483140E-03 + 46 -1.0003378087334570E-02 + 47 1.6798951078707273E-02 + 48 -2.7169559761037590E-02 + 49 1.9666038706708987E-02 + 50 -2.9980876644601752E-03 + 51 9.3771221924815171E-02 + 52 2.2699604723544826E-02 + 53 6.5780573832884090E-02 + 54 7.1488621424495094E-02 + 55 4.9200373133580728E-02 + 56 2.8137435702421201E-03 + 57 2.4010213743050915E-02 + 58 7.9638710840121245E-03 + 59 5.4012767439322500E-03 + 60 3.6812372345814319E-03 + 61 -1.8374319724278438E-04 + 62 -6.7646442581214897E-03 + 63 3.1152308549738067E-03 + 64 2.5586212776142148E-02 + 65 -3.2680979266780749E-02 + 66 -2.7542410971768450E-02 + 67 4.4511689104184321E-02 + 68 4.2213829320562592E-02 + 69 -1.2544878336129529E-02 + 70 -1.4747731918477865E-03 + 71 -9.9533859553798034E-03 + 72 -2.0107448819587028E-03 + 73 7.6643718496872491E-03 + 74 2.4564383284073420E-02 + 75 -1.9440338225442883E-03 + 76 -1.2874625738779427E-01 + 77 3.1211733616700439E-02 + 78 1.0140881078623597E-01 + 79 -7.9651026426514476E-02 + 80 -1.3937481185179307E-01 + 81 -6.1854724675524018E-02 + 82 4.7023436107187745E-03 + 83 3.1687902274757686E-02 + 84 -1.3524393963677295E-02 + 85 -3.3845812626653606E-03 + 86 -1.5307800920038391E-02 + 87 1.3151603731632457E-02 + 88 -1.1980107634158530E-02 + 89 -1.9476346655336155E-02 + 90 4.0151514788886664E-03 + 91 4.6475180941767974E-02 + 92 -1.8444880693552289E-02 + 93 5.3575499271011059E-02 + 94 -1.4821326407824220E-02 + 95 2.2000613392869194E-02 + 96 -5.1309911701133679E-02 + 97 -9.4589497205040656E-03 + 98 -3.3463818541135684E-04 + 99 -3.1428523423518075E-02 + 100 -2.1896315711645270E-02 + 101 -1.5439376745046555E-02 + 102 2.9187345439312763E-02 + 103 -8.5399702032696589E-03 + 104 -8.2806204147940002E-03 + 105 9.9390292627109991E-03 + 106 -4.0586536318643271E-02 + 107 6.8809138280463197E-03 + 108 -2.6522820794659462E-02 + 109 1.8458489429644710E-02 + 110 2.0473446246631834E-04 + 111 -6.9366462050651605E-03 + 112 -2.3910728336817903E-02 + 113 3.1583395026604230E-04 + 114 1.1452907196566060E-02 + 115 2.8283312424402691E-02 + 116 -9.6342916011646212E-03 + 117 2.0912169201782054E-02 + 118 7.6366461504514926E-02 + 119 -3.2270987607873731E-02 + 120 -6.9544895730941081E-02 + 121 -7.2541177952235331E-02 + 122 4.4055092886592546E-02 + 123 -2.7966732627263926E-02 + 124 1.4411369553688007E-02 + 125 9.5603781997773626E-03 + 126 8.1793512968829155E-03 + 127 6.3964133907157175E-02 + 128 -1.0956820743365701E-01 + 129 -3.0110860806768988E-02 + 130 -8.4472109899961803E-02 + 131 -1.9461291426390193E-01 + 132 -2.7240545097246005E-01 + 133 -1.9791993769455594E-02 + 134 -3.0865689013959714E-02 + 135 -3.2129995659751429E-02 + 136 -1.1318286288377714E-02 + 137 8.6533381854559509E-03 + 138 -3.5090505687682141E-03 + 139 -1.7114825491349312E-02 + 140 2.2448670524325209E-02 + 141 -3.1260890124120071E-03 + 142 -1.9904421487003973E-01 + 143 1.6446102256312944E-02 + 144 7.7706683795718212E-02 + 145 -1.6305859430561103E-02 + 146 -2.4830450284200759E-03 + 147 -1.8629484377508162E-02 + 148 4.1407154122131947E-03 + 149 6.4661079243527380E-03 + 150 -1.0945956518294886E-02 + 151 7.8896426510357415E-04 + 152 1.0970159489174791E-02 + 153 -1.4209651724774819E-01 + 154 -1.8137588826514020E-02 + 155 -2.5309433312673758E-02 + 156 -1.0726052830378988E-01 + 157 8.3273027539848776E-02 + 158 -9.8306331387892232E-03 + 159 -1.2921084965966190E-02 + 160 3.1043813538308491E-02 + 161 8.2101929846962139E-04 + 162 -3.6345160570388831E-03 + 163 -6.4830451806933910E-04 + 164 -4.8617925039558928E-03 + 165 1.5274989258813343E-02 + 166 2.8983820858300698E-02 + 167 -1.3537420378038956E-02 + 168 -5.5747244663239834E-03 + 169 -2.5795418212395629E-02 + 170 8.9153058709974378E-02 + 171 -7.8074060692917531E-03 + 172 -1.2216024700284668E-02 + 173 1.0970075106581280E-02 + 174 -3.3877252572787329E-03 + 175 -1.1423796260505147E-02 + 176 -5.9144860987369186E-04 + 177 -3.2011143291208340E-03 + 178 2.2658406576218412E-02 + 179 -2.7556390397818478E-03 + 180 -4.6835213109070420E-02 + 181 -1.2961596013050608E-01 + 182 -3.2045186847035452E-02 + 183 2.7305595528401162E-02 + 184 5.8901697703163738E-02 + 185 5.7817454333170426E-02 + 186 -3.3835322038380487E-02 + 187 5.1318589696243335E-03 + 188 -2.5321416738357326E-02 + 189 1.9630022660007840E-02 + 190 3.4069410526647782E-02 + 191 -1.2461713536950204E-01 + 192 3.1538611337169696E-02 + 193 -8.1471225480906725E-02 + 194 7.2124206410619077E-02 + 195 2.2047471035039420E-01 + 196 -2.8730628279485899E-03 + 197 2.6339984286889970E-02 + 198 -6.9903698152895946E-02 + 199 1.0965073782583313E-02 + 200 1.0477582105012496E-02 + 201 -8.1418563341799956E-03 + 202 -1.9292743417896163E-02 + 203 -1.3681128848301860E-02 + 204 -6.6551876572546034E-02 + 205 -1.1414613035250550E-02 + 206 1.2309953756995214E-01 + 207 -6.5445358211321566E-02 + 208 3.6144249264010903E-01 + 209 4.0110226392744480E-03 + 210 -4.6468904425016021E-03 + 211 6.0272614747452213E-02 + 212 1.0448293888358513E-02 + 213 9.9702648729848679E-03 + 214 -4.3669551092161314E-03 + 215 -1.0496232530230296E-03 + 216 6.4330128050458079E-03 + 217 1.1184958134322555E-02 + 218 1.0663777132859391E-01 + 219 -5.6958550197283547E-02 + 220 -1.2363911477484218E-01 + 221 1.7651874005044776E-01 + 222 -7.8607753946457158E-03 + 223 1.3638592713153465E-02 + 224 1.7898391851916527E-02 + 225 1.4798259679351075E-02 + 226 -1.0549077572380999E-02 + 227 2.1185615611494995E-02 + 228 -7.9204153791342935E-03 + 229 3.4123009473197206E-02 + 230 -1.2750858566088522E-02 + 231 3.9546576316123461E-02 + 232 -3.7418504666933572E-01 + 233 -5.1300800086363973E-01 + 234 -3.3259722696876940E-03 + 235 -4.5767590051817554E-02 + 236 -7.5701251177138607E-02 + 237 -2.3531291515587007E-03 + 238 -8.2688034623545415E-04 + 239 -7.5506134437132253E-03 + 240 4.5306798995848616E-03 + 241 -1.2349227591680296E-02 + 242 -8.5910091656265439E-02 + 243 4.2938022655604847E-02 + 244 -5.3686566256566648E-02 + 245 -3.9356658272819645E-02 + 246 6.7013750237880462E-02 + 247 -1.2718479339356669E-03 + 248 8.3225597048024093E-03 + 249 -1.6377728535035319E-02 + 250 1.2106769129383296E-02 + 251 -4.7400403250153827E-03 + 252 1.4818569999625445E-02 + 253 -2.7902805931669886E-03 + 254 1.0970121004211407E-01 + 255 7.3503529192258041E-03 + 256 1.9652605126909185E-02 + 257 -1.4720131213124210E-01 + 258 1.1920020573951913E-01 + 259 -1.6777018752178099E-03 + 260 -3.4829642690293039E-02 + 261 1.5327542687232097E-02 + 262 2.4690734478766590E-03 + 263 6.3426155625067914E-03 + 264 2.0196053761964176E-03 + 265 -2.4335973338347585E-03 + 266 -1.1300735805376508E-03 + 267 1.1691596802263987E-01 + 268 -1.3901692541077387E-01 + 269 -2.4481645929792149E-02 + 270 -1.5671828863413023E-01 + 271 1.5383217082363507E-01 + 272 -2.7738259749084762E-03 + 273 -2.2375727698985260E-02 + 274 6.6946283369372812E-03 + 275 -3.8074750381070560E-03 + 276 -2.6695182729227794E-02 + 277 -1.5776812111701639E-02 + 278 -1.5931643790625723E-02 + 279 -3.8609134173882460E-03 + 280 -1.4970386594718907E-03 + 281 -1.1228827846682848E-01 + 282 -4.8065400811296691E-02 + 283 -5.3472207701924096E-02 + 284 1.1070866601378555E-01 + 285 3.9532618113302746E-04 + 286 1.3474483020988607E-02 + 287 -3.6032351111085913E-03 + 288 -1.9134139985206151E-02 + 289 1.3798200062639768E-02 + 290 1.7703438709495919E-02 + 291 -8.6938636290318269E-02 + 292 1.3334008361007862E-01 + 293 -3.3750323142900128E-02 + 294 -7.4872155860385606E-02 + 295 1.2976940274040805E-01 + 296 1.0644292306993046E-01 + 297 7.3656552421544924E-02 + 298 -5.0733625096964011E-02 + 299 -6.4130269384280902E-02 + 300 -3.4070452984448739E-02 + 301 3.7711481939490962E-02 + 302 -4.6945155151874307E-02 + 303 -1.1725968353478954E-02 + 304 1.0478996283824196E-03 + 305 4.7816334925256984E-02 + 306 1.0268512954467120E-02 + 307 -2.6944128329177783E-02 + 308 4.0839075523311133E-02 + 309 9.6633668481344165E-02 + 310 1.4300955631617688E-02 + 311 1.6144472602023570E-03 + 312 3.3296570164185135E-02 + 313 -5.0525715603670562E-03 + 314 6.1816463783810460E-03 + 315 5.4881529596129477E-03 + 316 -4.0973689271702075E-03 + 317 9.3319912346435021E-03 + 318 -2.4487994296453253E-02 + 319 -8.3676064154832530E-02 + 320 1.5199407519019919E-02 + 321 2.2477489272867236E-02 + 322 2.2239908376862395E-02 + 323 -5.3447217615696062E-03 + 324 2.1038048790463230E-02 + 325 -6.4605740612033663E-03 + 326 -9.6988626252053362E-03 + 327 -2.2546170088582652E-03 + 328 -5.0780077135881519E-03 + 329 -1.9088456269115391E-03 + 330 -5.8805435880181417E-02 + 331 -1.6565834030922814E-02 + 332 1.9832752045281146E-02 + 333 8.1797347478730645E-02 + 334 -3.1514757457689652E-01 + 335 3.9136305208838287E-03 + 336 9.9054577917409049E-03 + 337 -3.7883797123402931E-02 + 338 1.1527550353248480E-02 + 339 -2.0009301251406659E-04 + 340 -7.4901046087357077E-03 + 341 2.2242850981764786E-03 + 342 -2.9264231381671045E-03 + 343 1.3067234163924088E-01 + 344 -7.1271502802384049E-02 + 345 1.6588771471116831E-01 + 346 1.0414895464122358E-01 + 347 1.0943762299375230E-01 + 348 1.0457671987505352E-02 + 349 8.3878863478916623E-03 + 350 -1.5102250195161921E-02 + 351 6.3833644989526143E-03 + 352 8.5775819573219829E-03 + 353 -3.5148855079952402E-03 + 354 1.7905296241977611E-03 + 355 4.0374896627809347E-02 + 356 -1.0452103696356159E-02 + 357 1.0634314848477025E-01 + 358 -1.4968802798583358E-01 + 359 4.9568758209118026E-02 + 360 -7.5099460434671335E-03 + 361 1.7543346572280145E-02 + 362 -9.9652690160315725E-03 + 363 5.4916607048694716E-03 + 364 -1.1835329083421853E-02 + 365 2.1095229587282389E-02 + 366 2.4221313071243093E-02 + 367 2.0238986886969589E-03 + 368 -3.3384297026751680E-03 + 369 4.8716661337742408E-04 + 370 9.6686152725842817E-03 + 371 4.8667805142626912E-02 + 372 1.2394352991780704E-01 + 373 -1.6747370482066721E-02 + 374 -3.0646352488701924E-02 + 375 -1.0318945060254810E-01 + 376 -7.7801248211183732E-03 + 377 3.1056109291894122E-02 + 378 -2.4398881585340870E-02 + 379 -1.3404308377501161E-02 + 380 2.2924893575606920E-03 + 381 9.2269371761612373E-02 + 382 -2.3063616595975122E-02 + 383 1.1245828961546565E-01 + 384 -5.0186074402847343E-02 + 385 -4.2056277878259177E-02 + 386 -5.5017381725362857E-02 + 387 -1.8597748717934095E-02 + 388 6.8424158732954543E-02 + 389 -3.3213041863241893E-02 + 390 6.4206603501317946E-02 + 391 1.7070393928116625E-02 + 392 -1.8385178925041049E-02 + 393 1.8681162045647650E-02 + 394 -4.7108458095113930E-02 + 395 2.8077392308224324E-03 + 396 -3.0759761916344924E-03 + 397 5.0167924795699859E-01 + 398 5.0740267910551962E-01 + 399 6.9867827726825685E-03 + 400 5.9268913369897064E-02 + 401 7.7298639847739645E-02 + 402 4.2654462595505824E-03 + 403 -2.7538461439280217E-03 + 404 3.7295016152979928E-03 + 405 4.3408615849545957E-03 + 406 -5.0912558015573104E-03 + 407 6.7972817388260609E-02 + 408 2.5551251261899291E-02 + 409 1.3046580421054228E-02 + 410 1.3360395507887345E-03 + 411 9.1819006586725815E-02 + 412 5.0618599792854359E-03 + 413 -7.1218254988635104E-03 + 414 4.0577091361634881E-03 + 415 -3.0321802875062660E-03 + 416 1.7856806557783446E-03 + 417 -4.2581363478134578E-03 + 418 8.6565134593692260E-03 + 419 -2.4279882772252409E-01 + 420 5.9567524663044900E-02 + 421 -8.3591061759187863E-03 + 422 9.5689014499048171E-04 + 423 -1.2614306323440699E-01 + 424 3.7863429013713680E-02 + 425 6.3023467737773379E-04 + 426 1.4595904890794578E-01 + 427 4.7800106572051998E-02 + 428 2.6369725292178202E-02 + 429 1.1544905895929549E-02 + 430 -1.4895377729472949E-02 + 431 1.6694844504762912E-02 + 432 1.4427540408616543E-01 + 433 -3.9109301964325424E-02 + 434 2.1560466138893272E-02 + 435 8.1018905038874434E-02 + 436 -9.9435066963304203E-02 + 437 -2.9733517562742562E-02 + 438 -1.0112064839630952E-01 + 439 1.1049378694544845E-01 + 440 4.6778248062415033E-02 + 441 5.7296653914336977E-02 + 442 3.7780595488412963E-02 + 443 2.5615897922959725E-02 + 444 -8.0062235264501767E-03 + 445 1.2399760532019503E-01 + 446 2.5976633847837348E-02 + 447 -1.4087633694245849E-01 + 448 -1.2865291048349134E-01 + 449 4.0784322362103287E-01 + 450 -5.5324091396681376E-03 + 451 -3.5893016735130200E-02 + 452 6.4128950791889114E-02 + 453 1.0044199125090632E-02 + 454 -2.3606753556424487E-03 + 455 1.6268373730616455E-03 + 456 9.1615203872822439E-03 + 457 -1.7677169759637804E-03 + 458 2.1999777620986535E-02 + 459 -1.7694262912869538E-01 + 460 -1.1274022797311552E-02 + 461 -1.1730401073499097E-02 + 462 -1.6324816721840082E-01 + 463 -2.7785705763399369E-03 + 464 6.4222296382233117E-03 + 465 2.1151368135059606E-02 + 466 1.1562728987833197E-02 + 467 4.5183376793711278E-03 + 468 1.3673182880110725E-02 + 469 7.7184387844861100E-03 + 470 7.2286920892315545E-03 + 471 3.7627620367546737E-03 + 472 -1.2043817936331349E-02 + 473 -1.6930191993711816E-01 + 474 -4.3738713334451486E-02 + 475 -7.2555929976245582E-04 + 476 -1.5892181421388221E-02 + 477 2.1237030752686209E-02 + 478 1.4430198863134219E-02 + 479 -9.8044137827843839E-03 + 480 1.2501074084238549E-02 + 481 9.5441440474810686E-03 + 482 1.5671824675359328E-03 + 483 1.0550913115556074E-01 + 484 -6.4816097699882017E-02 + 485 1.5602342557297350E-01 + 486 3.7263376433496621E-02 + 487 6.9566870976251430E-02 + 488 7.9302917017979348E-03 + 489 1.1776852619549857E-02 + 490 1.7483068039999383E-02 + 491 -1.9858846407699988E-02 + 492 1.1201404884056970E-02 + 493 4.0216115359118084E-03 + 494 -1.8019918008662181E-02 +Ene= 1.1997938468E-01 +Spin= Alpha +Occup= 0.0000000 + 1 1.9525452942470278E-01 + 2 1.8642704799325189E-02 + 3 -2.1104809633222205E-01 + 4 -1.2716362319369079E-01 + 5 -8.2146028341791549E-02 + 6 -4.2236429705826049E-02 + 7 -3.7664712553422321E-03 + 8 3.1009688269146348E-03 + 9 -2.6215734660480650E-03 + 10 1.0207616182935916E-02 + 11 2.3753426627872311E-02 + 12 -4.3332977821008880E-04 + 13 1.9364793884605459E-03 + 14 7.5763276598769247E-02 + 15 1.6784947904571085E-01 + 16 4.9853750589966515E-02 + 17 -1.4621443677566128E-02 + 18 1.1435733775326761E-02 + 19 8.4872315842128600E-03 + 20 -1.0701946159507448E-02 + 21 3.4793727740168506E-02 + 22 -1.3144453269552219E-02 + 23 -1.4266796662655488E-02 + 24 -9.6354599599345354E-03 + 25 -1.0082920986875963E-02 + 26 1.9497507764661176E-01 + 27 3.9278428539346079E-02 + 28 1.4576969598842893E-01 + 29 -4.2060220359680094E-02 + 30 -1.4279343049622420E-01 + 31 1.8052408125303347E-02 + 32 -5.8266620910736242E-03 + 33 -1.6973880747815945E-02 + 34 -1.5788144495542566E-02 + 35 3.6508130504784367E-03 + 36 1.5169121000542051E-02 + 37 -2.2402789863472635E-03 + 38 5.8301821166165243E-03 + 39 -3.3498718488998963E-02 + 40 -5.8812234933014226E-02 + 41 8.7221716381071165E-02 + 42 -7.6651454717564377E-02 + 43 -6.8518182044641204E-02 + 44 7.5354286900675936E-03 + 45 9.9782709411921585E-04 + 46 2.8691294216432101E-03 + 47 -2.4436133761187896E-02 + 48 6.6357580333619153E-04 + 49 -1.3355317422790718E-02 + 50 -6.2241438468749882E-03 + 51 -1.6719530777152997E-01 + 52 -3.1587311228400666E-02 + 53 -6.4298970977291092E-01 + 54 -3.7600489509632690E-01 + 55 1.5925506711757559E-01 + 56 -7.7851705244604774E-02 + 57 -4.9496533026268691E-02 + 58 1.2252870028445485E-02 + 59 1.8217468989225959E-02 + 60 -7.8819829355162609E-03 + 61 2.1720919640088852E-02 + 62 2.4229141768787070E-03 + 63 -6.5032431015215860E-03 + 64 2.0603541991242747E-02 + 65 -7.1465510750846173E-02 + 66 3.9898062412724179E-02 + 67 -3.6383375044688443E-02 + 68 -2.1339546933287847E-02 + 69 3.9453890641227875E-03 + 70 1.2933869531550408E-02 + 71 1.7235132874088725E-02 + 72 1.1610127079513885E-02 + 73 -8.3076765758483325E-03 + 74 -1.0666664057101583E-02 + 75 -1.6221014630688490E-02 + 76 9.6525096229173827E-03 + 77 -3.9736927522897973E-03 + 78 -2.9457839480307286E-03 + 79 -2.6400792154603024E-02 + 80 1.9645968626639893E-01 + 81 -3.6577652575529612E-02 + 82 4.0507386100326302E-02 + 83 -6.9649817195264335E-02 + 84 1.6420524570535177E-02 + 85 2.7249819658312285E-02 + 86 2.1966981270657767E-02 + 87 3.2874294461304694E-02 + 88 9.2746061165962428E-04 + 89 -9.7871196794661566E-02 + 90 2.3667097017563074E-02 + 91 1.9529375270871507E-02 + 92 1.2683100357091368E-02 + 93 -1.6726766045215263E-01 + 94 -2.8527243274867168E-02 + 95 2.0676248507310507E-02 + 96 1.3537952094719607E-01 + 97 5.4484684023341660E-02 + 98 -3.5031680242968780E-02 + 99 4.4440264534654057E-02 + 100 3.4611049749009325E-02 + 101 -9.9666673635171888E-03 + 102 1.4306288932174324E-02 + 103 -4.0048499593614865E-03 + 104 -3.2117373894657908E-02 + 105 1.6163579732343343E-02 + 106 1.7142026687663903E-01 + 107 3.5587359080893034E-02 + 108 -4.5217259414387999E-02 + 109 -7.4959452373722146E-02 + 110 3.6159024146256831E-02 + 111 2.9218721735921608E-02 + 112 7.7367438534195060E-02 + 113 -6.3233636774484084E-03 + 114 -5.8726644027765600E-03 + 115 1.9294777339186976E-02 + 116 -4.7104881477294715E-03 + 117 -1.3712950872617745E-02 + 118 1.2922053945418660E-01 + 119 -7.2464597083535896E-03 + 120 -2.0720454732692000E-02 + 121 -5.9002161062209249E-02 + 122 1.5825064373319826E-02 + 123 5.0263689490700446E-03 + 124 1.1238462267166972E-02 + 125 3.4350724820627718E-02 + 126 -9.6503060718396583E-03 + 127 -1.0077813173179965E-02 + 128 4.4429237660259975E-02 + 129 1.1561740026904490E-02 + 130 -1.1991786860184994E-01 + 131 1.0375502318363182E-01 + 132 -1.0638313616338214E-01 + 133 -2.3652107101090510E-03 + 134 3.9889611674612281E-02 + 135 -2.3906903084351259E-02 + 136 -6.3748014769949117E-03 + 137 4.8473170071059654E-03 + 138 7.5522471363948110E-03 + 139 -1.5673539094069756E-02 + 140 -1.1800562761335901E-02 + 141 -1.5110837979536419E-02 + 142 -1.3055470704911741E-02 + 143 3.3035491765545183E-02 + 144 7.7683585116620921E-02 + 145 -6.6903651488832191E-02 + 146 5.9968689211754378E-03 + 147 -5.3297351753706290E-03 + 148 5.3255067358238756E-03 + 149 -3.3848919519386157E-02 + 150 -7.5387725395156802E-04 + 151 1.2946408830243476E-02 + 152 -2.7663537451648036E-03 + 153 -2.8662050109887031E-02 + 154 1.1953517826601803E-03 + 155 3.4580908597561444E-01 + 156 5.3683327598484230E-02 + 157 -2.1331271094041721E-02 + 158 5.3457686989409829E-02 + 159 2.8369850174012466E-02 + 160 2.4259327139216037E-03 + 161 8.3933345235159464E-03 + 162 9.2553549888021378E-03 + 163 9.8218407697571435E-03 + 164 8.7917818683068381E-03 + 165 -4.7510770131163130E-03 + 166 1.1516253750149653E-01 + 167 7.7075318157344960E-02 + 168 3.6193969211531930E-02 + 169 1.2527407146973793E-01 + 170 -2.5759620245564202E-01 + 171 -6.1415058028691134E-04 + 172 6.8649230938467674E-03 + 173 7.2464283109109698E-03 + 174 -1.8801070799299554E-04 + 175 -1.4838145012436511E-02 + 176 -3.2618019882533003E-02 + 177 -2.6591693482641718E-02 + 178 -1.3949259784916981E-01 + 179 3.6019205414787384E-02 + 180 -1.4206195125015522E-01 + 181 9.7366818540457353E-02 + 182 -5.1760736694125266E-02 + 183 5.3613131682237671E-02 + 184 -2.3798786421131955E-02 + 185 -1.9248779727754585E-03 + 186 -3.4603616237010415E-02 + 187 2.2589456197519161E-03 + 188 -9.1385137584498906E-03 + 189 9.7688751094660822E-04 + 190 -3.3902323121448190E-02 + 191 -6.7445542177636278E-02 + 192 2.1439369800861700E-02 + 193 1.3680282303526975E-01 + 194 5.8478723854481038E-02 + 195 4.3010313457563711E-02 + 196 -1.3780572953292849E-01 + 197 -4.7588621786996230E-02 + 198 -6.7115479270810741E-02 + 199 6.7960967197207844E-02 + 200 2.7066687953255356E-02 + 201 6.8380105070403718E-03 + 202 3.9077894051172133E-03 + 203 -6.8412089721790498E-02 + 204 -1.7827940263105982E-01 + 205 -2.5854634511361312E-02 + 206 -2.0189059813328789E-02 + 207 8.5569070114685786E-02 + 208 2.5160021657043757E-01 + 209 -5.0382749770570591E-03 + 210 1.4816738311951648E-02 + 211 3.5522954450094311E-02 + 212 7.0437832224378976E-03 + 213 1.4349341602974868E-02 + 214 -5.0150254515233458E-03 + 215 1.3162172641340281E-02 + 216 -1.5618081436888948E-02 + 217 -7.9134195668659313E-02 + 218 -1.4545904901421655E-01 + 219 -4.8046357910473143E-03 + 220 4.6826829019020249E-03 + 221 2.1029463755416083E-01 + 222 -2.1355045241539094E-02 + 223 -6.4732095009628647E-03 + 224 4.0789091441268993E-02 + 225 2.0199656891182416E-02 + 226 2.4178760786141961E-02 + 227 8.7259016017623425E-03 + 228 -1.1979431496358517E-02 + 229 -1.1270206344222104E-01 + 230 -9.3822309654815143E-03 + 231 -2.4162312763391666E-01 + 232 2.2707906204635231E-01 + 233 7.2085122853242339E-02 + 234 -1.5083017157981124E-02 + 235 3.5518952805324279E-02 + 236 1.6547449093368086E-02 + 237 2.9910676358386405E-04 + 238 9.7606970265244238E-03 + 239 5.2245231678312073E-03 + 240 4.7074231307560298E-03 + 241 1.4156647793994261E-02 + 242 -6.3002556611058191E-02 + 243 4.4030433572867782E-02 + 244 9.6979081268686994E-03 + 245 -6.1226895122590094E-02 + 246 1.7860477557461708E-02 + 247 -1.1467199615074785E-02 + 248 -1.4856470326339910E-02 + 249 7.7058572805314600E-03 + 250 1.6268215171182537E-03 + 251 3.2911318971357122E-03 + 252 -4.1196231048192797E-02 + 253 -1.0450422265583969E-02 + 254 -7.7951033365955907E-02 + 255 -8.5446928112757423E-03 + 256 4.6539722590337920E-03 + 257 -6.7647970276718289E-02 + 258 2.4424593931613692E-01 + 259 2.6511846564529870E-03 + 260 2.2534273029862603E-03 + 261 2.7312935261619122E-02 + 262 4.1323557845241799E-03 + 263 5.2980997126219325E-03 + 264 -2.0001996915462172E-03 + 265 8.3775594459921839E-03 + 266 -3.4547711299268832E-03 + 267 6.0343333156571179E-03 + 268 -1.6289964307786186E-02 + 269 -3.8035524608003655E-02 + 270 1.4482645405801359E-01 + 271 -6.1307180348573083E-02 + 272 7.0534597128487017E-03 + 273 3.8309822291311079E-03 + 274 7.8660419514345256E-03 + 275 1.2628018900266928E-03 + 276 -2.8363969632855647E-03 + 277 -7.7239606888656566E-03 + 278 1.7972346041923066E-02 + 279 8.2903548601289304E-02 + 280 -2.0021326797205481E-02 + 281 -4.6104787701288348E-02 + 282 -8.0736462295473835E-02 + 283 -1.3170389170038788E-01 + 284 1.0486205120791817E-03 + 285 6.6009954333048210E-02 + 286 6.5364503300019292E-02 + 287 4.4791313866521097E-02 + 288 2.6834838037004489E-02 + 289 -1.5918909295448452E-02 + 290 -1.6103563040347161E-02 + 291 -1.1528145572976536E-02 + 292 -6.2122364526064157E-02 + 293 1.3038878046517485E-02 + 294 -7.1298515198333608E-03 + 295 -8.1818145309274462E-02 + 296 -6.0419079583114779E-03 + 297 -4.9913982440457527E-02 + 298 6.0704810529012040E-02 + 299 1.1365127673288520E-04 + 300 1.0109239500986678E-02 + 301 -1.1037584628089757E-04 + 302 4.6289075191718126E-02 + 303 1.3404409507752022E-02 + 304 2.3121856015640208E-02 + 305 -2.3597941115207108E-02 + 306 -1.4460018798278483E-02 + 307 -1.3559744007761218E-01 + 308 -5.1859199337535439E-02 + 309 -9.1547559418459074E-02 + 310 -2.3113888079488731E-02 + 311 3.2652791161658589E-03 + 312 -1.2061658593973160E-02 + 313 3.5390114337164567E-03 + 314 2.0861773214471066E-02 + 315 5.0915738216382048E-03 + 316 -2.0666135359493996E-03 + 317 -7.7410053829172149E-03 + 318 5.3086906349272031E-02 + 319 1.2192230810476042E-01 + 320 2.4821137362304329E-02 + 321 -1.4443944124918351E-03 + 322 6.3447821509173621E-02 + 323 -1.3221077255399370E-02 + 324 -3.1493109276466429E-03 + 325 -2.0917941384874780E-02 + 326 9.2583737841486179E-03 + 327 -6.4090397007206439E-03 + 328 5.0289299939479167E-03 + 329 1.4640167883393675E-02 + 330 -1.2740381987828922E-01 + 331 -3.1332611243002420E-02 + 332 5.1529052417218661E-02 + 333 -1.4965574506241702E-02 + 334 -2.5112378449489065E-01 + 335 -1.5073411928865396E-03 + 336 -1.6940620635194231E-02 + 337 -1.8821741184808619E-02 + 338 1.2825842789013482E-03 + 339 9.6224288883676526E-03 + 340 3.6326334658351844E-03 + 341 1.2980167760254381E-03 + 342 -8.8164827686160554E-04 + 343 -7.0964538230325988E-02 + 344 7.8079043976754678E-02 + 345 3.6612321902534613E-02 + 346 -1.6483719790204888E-03 + 347 2.6671523553832267E-02 + 348 3.7240729779143204E-03 + 349 -1.5692873212235798E-02 + 350 -1.6727848018030581E-02 + 351 1.1559015700594290E-02 + 352 1.5264294249129052E-02 + 353 6.9379729620508354E-03 + 354 -9.3577438517912573E-03 + 355 -1.9323198354133106E-03 + 356 -1.8020859651827618E-03 + 357 6.0641061447820964E-02 + 358 -5.3331252179475368E-02 + 359 -1.9597191568413219E-02 + 360 -2.5807649172630096E-02 + 361 1.4135040969581788E-02 + 362 1.2193938061195257E-02 + 363 -2.3660289863369002E-02 + 364 -6.9160092223931793E-03 + 365 4.0414381239603954E-02 + 366 2.8054770598539721E-02 + 367 -3.1516610546993840E-02 + 368 1.0062597521577935E-02 + 369 -3.5589704973886705E-03 + 370 -1.2910557299796902E-02 + 371 -6.8953390695303513E-02 + 372 6.8241711397095908E-02 + 373 5.1194395699867843E-03 + 374 5.1491418023832572E-02 + 375 -7.3582116652961715E-02 + 376 -1.8006101935244583E-02 + 377 -1.1434024763616150E-02 + 378 6.4803110447413425E-03 + 379 1.8435661745942931E-02 + 380 -9.6940453549505801E-04 + 381 9.1472525715500158E-02 + 382 -2.4025547419407482E-02 + 383 -1.5118523959894525E-02 + 384 7.1243271176000725E-02 + 385 5.7696724688150292E-02 + 386 1.1694471947652657E-03 + 387 2.7042890002320803E-02 + 388 -2.8528072724416747E-02 + 389 1.0991963143357722E-02 + 390 -1.1688748430877033E-02 + 391 3.4424379020415334E-02 + 392 1.1528160839113072E-02 + 393 -4.3002920749761883E-03 + 394 -4.0780963739082285E-02 + 395 -2.4240167008443207E-03 + 396 1.9908506744228285E-01 + 397 2.3895496963514098E-01 + 398 8.4011975797277093E-05 + 399 1.1525285658531299E-02 + 400 3.0907680617526488E-02 + 401 7.4122460079957574E-04 + 402 7.0966127126879724E-03 + 403 -1.7095217850001310E-03 + 404 -1.0397272504504469E-02 + 405 1.1582155157264859E-02 + 406 -4.6564916378088895E-03 + 407 -2.6393082831339766E-02 + 408 9.2574936221535772E-03 + 409 1.3499458737898262E-01 + 410 -4.3060905838816006E-02 + 411 -5.3966973111069121E-02 + 412 -8.4814875076275106E-03 + 413 1.9083526988530046E-02 + 414 -6.5645038673321793E-03 + 415 -8.1656080763235737E-03 + 416 -9.0866078726719625E-03 + 417 1.0600084941127616E-02 + 418 1.5672849862623166E-02 + 419 -1.5873026086241893E-01 + 420 3.8983813243432343E-02 + 421 6.3693040768682083E-02 + 422 5.9269263773005725E-02 + 423 -1.1470160747041862E-01 + 424 -1.9387730236592735E-03 + 425 -5.1053264978871617E-02 + 426 8.2085598588771069E-02 + 427 6.5592723871406942E-03 + 428 7.9437105156714496E-03 + 429 -2.4595191290482668E-02 + 430 -2.1933314501767633E-02 + 431 9.2023592251290268E-03 + 432 1.2575927273380347E-01 + 433 -3.3062280940215814E-02 + 434 7.9770435253190927E-02 + 435 -1.5493950013332985E-02 + 436 -7.3001995851425111E-02 + 437 -7.0935211532337603E-02 + 438 -3.3037260810271883E-02 + 439 1.1798809097783906E-01 + 440 -1.7119888923042191E-02 + 441 5.2721005724831245E-02 + 442 4.8919424899539987E-02 + 443 -2.0806324119782650E-02 + 444 -3.0046291570665878E-02 + 445 1.9300863067701846E-01 + 446 4.0770975429276421E-02 + 447 -2.5626399561427349E-01 + 448 -1.8191582432051243E-01 + 449 6.2812113062322883E-01 + 450 -3.1933558407707854E-02 + 451 -2.8204546612016743E-02 + 452 9.5288777572684835E-02 + 453 -1.1442872512056713E-02 + 454 1.2149351179238949E-02 + 455 6.3410934822544248E-05 + 456 -2.8412830685108571E-03 + 457 7.3958037130937983E-04 + 458 -1.6845770141729232E-02 + 459 -1.6073557568504149E-01 + 460 -2.9530895718666621E-02 + 461 6.5351126876127583E-02 + 462 -7.7356048519604939E-02 + 463 -4.6190699253991505E-03 + 464 -5.7025841658704484E-04 + 465 1.1191589349583636E-02 + 466 1.1386680976166342E-02 + 467 3.2809334383316177E-03 + 468 5.8228787409890133E-03 + 469 9.4650036200947217E-03 + 470 -3.0622971507416843E-02 + 471 5.4171172994362778E-03 + 472 2.9504828103486369E-02 + 473 1.1649146362109922E-01 + 474 1.0266241771407114E-02 + 475 -3.3152338910405216E-03 + 476 5.1739095677789677E-04 + 477 1.2196088737221545E-02 + 478 8.1432210283069895E-03 + 479 -1.4413312716763505E-04 + 480 1.1535544482203361E-02 + 481 1.8860661854094914E-03 + 482 3.4742170132729728E-04 + 483 -3.2644547118532451E-02 + 484 -9.8265859234766633E-04 + 485 -4.7416732425504350E-02 + 486 -2.9530004085843300E-02 + 487 -5.3276986726398775E-03 + 488 -3.7935155004166338E-03 + 489 5.0813343252708613E-03 + 490 -1.0028028960405146E-02 + 491 -4.5831804528486128E-03 + 492 2.2239007772978839E-02 + 493 2.1729164551086720E-02 + 494 -9.6386254588404930E-03 diff --git a/tests/test_libint2/Readme.md b/tests/test_libint2/Readme.md new file mode 100755 index 000000000..35d6aab42 --- /dev/null +++ b/tests/test_libint2/Readme.md @@ -0,0 +1,13 @@ +# Computing the molecular overlaps using Libint2 and CP2K + +Here are 3 python test files for computing both the atomic and molecular orbitals (MOs) overlap matrices. In computing the MOs overlap, we need to make sure that the +diagonal elements of the MO overlap matrix are all `1`. All the details are explicitly explained in the files. + +`test.py` +This file tests the Libint2 library in Libra for computing the atomic orbital overlap matrix. + +`test_molden.py` +This file computes the MO overlaps from a `molden` file format printed out by CP2K. + +`test_molog.py` +This file computes the MO overlaps from a `MOLog` file printed out by CP2K. diff --git a/tests/test_libint2/cdse13-1.xyz b/tests/test_libint2/cdse13-1.xyz new file mode 100755 index 000000000..c4c3417be --- /dev/null +++ b/tests/test_libint2/cdse13-1.xyz @@ -0,0 +1,57 @@ + 26 + i = 62, E = -722.2430614844 + Cd 11.5935930412 8.2257058837 6.6720971260 + Cd 10.2309447030 9.4567368320 10.2022149107 + Cd 9.8549351329 6.0524670000 8.7156820596 + Se 11.6044094696 10.3731116605 8.2103540404 + Se 11.5914664892 5.7337774821 6.8264842015 + Se 11.5041436668 7.1018152856 10.6240268019 + Se 8.7082037314 10.6684241197 12.2502616671 + Cd 7.0978986291 9.1164090330 10.4938076713 + Cd 9.4273062458 7.0050419100 12.3206523100 + Se 6.8491686495 7.0678617872 12.3185478622 + Se 7.9546262468 4.0647935675 9.0507678366 + Cd 6.3105151476 6.1561201698 9.5240671111 + Cd 9.5485406562 10.6705553865 6.5945367824 + Cd 8.4336536704 12.4577673088 10.0558883036 + Se 7.9525025081 12.5528614747 7.5053634899 + Se 10.2708364824 9.4790456604 4.3651668428 + Cd 8.3858341564 7.8126071574 4.3378107678 + Cd 8.0146119327 4.1257712293 6.4885759044 + Se 7.1647724697 5.4928772080 4.3897738130 + Se 7.9465200465 8.0153073606 8.0949273308 + Se 5.3406707686 10.6196551455 9.2371023142 + Cd 6.4987756221 10.2567780683 6.8131479916 + Se 6.0472610036 9.2051686229 4.4026786093 + Se 3.6559319467 6.4168377049 7.9836819123 + Cd 5.7673677523 7.0956995435 6.2239475966 + Cd 3.6236277907 8.7812996028 8.7909462574 + 26 + i = 62, E = -722.2430614844 + Cd 11.5935930412 8.2257058837 6.6720971260 + Cd 10.2309447030 9.4567368320 10.2022149107 + Cd 9.8549351329 6.0524670000 8.7156820596 + Se 11.6044094696 10.3731116605 8.2103540404 + Se 11.5914664892 5.7337774821 6.8264842015 + Se 11.5041436668 7.1018152856 10.6240268019 + Se 8.7082037314 10.6684241197 12.2502616671 + Cd 7.0978986291 9.1164090330 10.4938076713 + Cd 9.4273062458 7.0050419100 12.3206523100 + Se 6.8491686495 7.0678617872 12.3185478622 + Se 7.9546262468 4.0647935675 9.0507678366 + Cd 6.3105151476 6.1561201698 9.5240671111 + Cd 9.5485406562 10.6705553865 6.5945367824 + Cd 8.4336536704 12.4577673088 10.0558883036 + Se 7.9525025081 12.5528614747 7.5053634899 + Se 10.2708364824 9.4790456604 4.3651668428 + Cd 8.3858341564 7.8126071574 4.3378107678 + Cd 8.0146119327 4.1257712293 6.4885759044 + Se 7.1647724697 5.4928772080 4.3897738130 + Se 7.9465200465 8.0153073606 8.0949273308 + Se 5.3406707686 10.6196551455 9.2371023142 + Cd 6.4987756221 10.2567780683 6.8131479916 + Se 6.0472610036 9.2051686229 4.4026786093 + Se 3.6559319467 6.4168377049 7.9836819123 + Cd 5.7673677523 7.0956995435 6.2239475966 + Cd 3.6236277907 8.7812996028 8.7909462574 + diff --git a/tests/test_libint2/test.py b/tests/test_libint2/test.py new file mode 100755 index 000000000..a284f5b99 --- /dev/null +++ b/tests/test_libint2/test.py @@ -0,0 +1,127 @@ +from liblibra_core import * +from libra_py import data_outs +import math + +x = libint2_Shell() + + + +expts = Py2Cpp_double([1.0, 0.5, 0.02]) +coeff = Py2Cpp_double([1.0, -0.5, 1.2]) +r = VECTOR(0.0, 0.0, 0.0) + +expts1 = Py2Cpp_double([10.0, 0.15, 0.2]) +coeff1 = Py2Cpp_double([0.1, -0.5, 0.2]) +r1 = VECTOR(0.1, 0.0, 0.0) + + + +print( type(expts)) +print( type(coeff)) + +my_shells = initialize_shell( 0, True, expts, coeff, r ) +print( type(my_shells)) + +print_shell(my_shells) + +add_to_shell( my_shells, 0, True, expts1, coeff1, r1 ) + +print_shell(my_shells) + +nthreads = 4 +S = compute_overlaps(my_shells, my_shells, nthreads) + +data_outs.print_matrix(S) + + +ao1 = AO() +ao2 = AO() +for i in range(3): + ao1.add_primitive(coeff[i], PrimitiveG(0,0,0, expts[i], r) ) + ao2.add_primitive(coeff1[i], PrimitiveG(0,0,0, expts1[i], r1) ) + +print ( gaussian_overlap(ao1, ao1)) +print ( gaussian_overlap(ao1, ao2)) +print ( gaussian_overlap(ao2, ao1)) +print ( gaussian_overlap(ao2, ao2)) + + +print("==================== L = 1 =====================\n") + +my_shells = initialize_shell( 1, True, expts, coeff, r ) +add_to_shell( my_shells, 1, True, expts1, coeff1, r1 ) + +nthreads = 4 +S = compute_overlaps(my_shells, my_shells, nthreads) +print( "AO overlaps computed with the wrapped Libint2 codes\n") +data_outs.print_matrix(S) + + + +ao = AOList() +for i in range(6): + ao.append( AO() ) + +for i in range(3): + ao[0].add_primitive(coeff[i], PrimitiveG(1,0,0, expts[i], r) ) + ao[1].add_primitive(coeff[i], PrimitiveG(0,1,0, expts[i], r) ) + ao[2].add_primitive(coeff[i], PrimitiveG(0,0,1, expts[i], r) ) + ao[3].add_primitive(coeff1[i], PrimitiveG(1,0,0, expts1[i], r1) ) + ao[4].add_primitive(coeff1[i], PrimitiveG(0,1,0, expts1[i], r1) ) + ao[5].add_primitive(coeff1[i], PrimitiveG(0,0,1, expts1[i], r1) ) + +S = MATRIX(6,6) +for i in range(6): + for j in range(6): + S.set(i,j, gaussian_overlap(ao[i], ao[j]) ) +print( "AO overlaps computed with internal Libra codes\n") +data_outs.print_matrix(S) + + + +print("==================== L = 2 =====================\n") + +my_shells = initialize_shell( 2, True, expts, coeff, r ) +add_to_shell( my_shells, 2, True, expts1, coeff1, r1 ) + +nthreads = 4 +S = compute_overlaps(my_shells, my_shells, nthreads) +print( "AO overlaps computed with the wrapped Libint2 codes\n") +data_outs.print_matrix(S) + + + + +ao = AOList() +for i in range(10): + ao.append( AO() ) + +sq = math.sqrt(2.0) +for i in range(3): + ao[0].add_primitive(2.0*coeff[i], PrimitiveG(0,0,2, expts[i], r) ) # 2*z^2 + ao[0].add_primitive(-coeff[i], PrimitiveG(2,0,0, expts[i], r) ) # -x^2 + ao[0].add_primitive(-coeff[i], PrimitiveG(0,2,0, expts[i], r) ) # -y^2 + ao[1].add_primitive( coeff[i], PrimitiveG(1,1,0, expts[i], r) ) # xy + ao[2].add_primitive( coeff[i], PrimitiveG(1,0,1, expts[i], r) ) # xz + ao[3].add_primitive( coeff[i], PrimitiveG(2,0,0, expts[i], r) ) # x^2 + ao[3].add_primitive(-coeff[i], PrimitiveG(0,2,0, expts[i], r) ) # -y^2 + ao[4].add_primitive( coeff[i], PrimitiveG(0,1,1, expts[i], r) ) # yz + + ao[5].add_primitive(2.0*coeff1[i], PrimitiveG(0,0,2, expts1[i], r1) ) # 2*z^2 + ao[5].add_primitive(-coeff1[i], PrimitiveG(2,0,0, expts1[i], r1) ) # -x^2 + ao[5].add_primitive(-coeff1[i], PrimitiveG(0,2,0, expts1[i], r1) ) # -y^2 + ao[6].add_primitive( coeff1[i], PrimitiveG(1,1,0, expts1[i], r1) ) # xy + ao[7].add_primitive( coeff1[i], PrimitiveG(1,0,1, expts1[i], r1) ) # xz + ao[8].add_primitive( coeff1[i], PrimitiveG(2,0,0, expts1[i], r1) ) # x^2 + ao[8].add_primitive(-coeff1[i], PrimitiveG(0,2,0, expts1[i], r1) ) # -y^2 + ao[9].add_primitive( coeff1[i], PrimitiveG(0,1,1, expts1[i], r1) ) # yz + + + +S = MATRIX(10,10) +for i in range(10): + for j in range(10): + S.set(i,j, gaussian_overlap(ao[i], ao[j]) ) +print( "AO overlaps computed with internal Libra codes\n") +data_outs.print_matrix(S) + diff --git a/tests/test_libint2/test_molden_final.py b/tests/test_libint2/test_molden_final.py new file mode 100755 index 000000000..8ad60cf95 --- /dev/null +++ b/tests/test_libint2/test_molden_final.py @@ -0,0 +1,37 @@ +import numpy as np +import time +from liblibra_core import * +from libra_py import CP2K_methods +from libra_py import molden_methods +from libra_py import data_conv + +# number of processors +nprocs = 4 +# set up the timer +t1 = time.time() +# creating the shell for the molden file +shells_1, l_vals = molden_methods.molden_file_to_libint_shell('CdSe13-CdSe13-1_0.molden',True) +# extracting the eigenvectors and energies from molden file +eig1, ener1 = molden_methods.eigenvectors_molden('CdSe13-CdSe13-1_0.molden',nbasis(shells_1),l_vals) +# compute the AO overlap matrix +AO = compute_overlaps(shells_1,shells_1,nprocs) +# turn it into a numpy array +AO = data_conv.MATRIX2nparray(AO) +# new indices for the the MOLog eigenvectors +new_indices = CP2K_methods.resort_molog_eigenvectors(l_vals) +# making all the reindexed eigenvectors +eigenvectors = [] +for i in range(len(eig1)): + # the new and sorted eigenvector + eigenvector = eig1[i] + eigenvector = eigenvector[new_indices] + # append it to the eigenvectors list + eigenvectors.append(eigenvector) +# make it a numpy array to be able to work with +eigs = np.array(eigenvectors) +# compute the MO overlap +S = np.linalg.multi_dot([eigs, AO ,eigs.T]) +# print out the diagonal element of the MO overlap matrix +# to make sure you get 1 on the diagonal +print(np.diag(S)) +print('Elapsed time:',time.time()-t1) diff --git a/tests/test_libint2/test_molog_final.py b/tests/test_libint2/test_molog_final.py new file mode 100755 index 000000000..efdd6dbd5 --- /dev/null +++ b/tests/test_libint2/test_molog_final.py @@ -0,0 +1,54 @@ +import numpy as np +import time +from liblibra_core import * +from libra_py import CP2K_methods +from libra_py import data_conv + +# number of processors +nprocs = 4 +# setting up a timer +t1 = time.time() +# extract the coordinates from the trajectory file with the time step +time_step = 1 +coord = CP2K_methods.extract_coordinates('cdse13-1.xyz',time_step) +# the full path to different BASIS set files +# since it is in this folder we just put the name +basis_set_files_path = ['BASIS_MOLOPT'] +# the unique atoms present in the trajectory +unique_atoms = ['Cd','Se'] +# the unique atoms respective basis set names +basis_set_names = ['DZVP-MOLOPT-SR-GTH','DZVP-MOLOPT-SR-GTH'] +# the basis set data for the unique atoms +data = CP2K_methods.find_basis_set(basis_set_files_path,unique_atoms,basis_set_names) +# create the libint2 shell based on the coordinates and the basis set data +# in spherical coordinates (the spherical flag is set to True) +shell_1 = CP2K_methods.make_shell(coord, data, True) +# You can print the number of basis in the shell to make sure +# it is the same as in the MOLog files +print('The number of atomic orbital basis set is:', nbasis(shell_1)) +# compute the AO overlap matrix +AO = compute_overlaps(shell_1,shell_1,nprocs) +# turn it into a numpy array for easier dot product multiplication +AO = data_conv.MATRIX2nparray(AO) +# extract the eigenvectors and their energies +ener, eig = CP2K_methods.read_molog_file('CdSe13-CdSe13-1_0.MOLog') +# all the angular momentum values in the MOLog file +l_vals = CP2K_methods.molog_lvals('CdSe13-CdSe13-1_0.MOLog') +# new indicies based on l_vals +new_indices = CP2K_methods.resort_molog_eigenvectors(l_vals) +# reindexing the eigenvectors +eigenvectors = [] +for i in range(len(eig[0])): + # the new and sorted eigenvector + eigenvector = eig[0][i] + eigenvector = eigenvector[new_indices] + # append it to the eigenvectors list + eigenvectors.append(eigenvector) +# make it a numoy array +eigs = np.array(eigenvectors) +# compute the MO overlap +S = np.linalg.multi_dot([eigs, AO ,eigs.T]) +# print the diagonal elements of the MO overlap matrix +# to make sure that you get 1 on the diagonal +print(np.diag(S)) +print('Elapsed time:',time.time()-t1) diff --git a/tests/test_libra_py/test_16_pdos/.gitignore b/tests/test_libra_py/test_16_pdos/.gitignore deleted file mode 100755 index 901f1397a..000000000 --- a/tests/test_libra_py/test_16_pdos/.gitignore +++ /dev/null @@ -1 +0,0 @@ -pdos* diff --git a/tests/test_libra_py/test_16_pdos/compute_pdos.py b/tests/test_libra_py/test_16_pdos/compute_pdos.py deleted file mode 100755 index 43785db98..000000000 --- a/tests/test_libra_py/test_16_pdos/compute_pdos.py +++ /dev/null @@ -1,45 +0,0 @@ -import sys -import cmath -import math -import os - -if sys.platform=="cygwin": - from cyglibra_core import * -elif sys.platform=="linux" or sys.platform=="linux2": - from liblibra_core import * - -from libra_py import pdos as pdos - - -#Example of usage: -spd = ["s","p","d"] -PT = ["Cs", "Sn", "Br"] -E_f = 6.5084 # Fermi energy - -""" -Cs = [spd, range(1,25), PT] -Sn = [spd, range(25,31), PT] -Br = [spd, range(31,67), PT] -projections = [ Cs, Sn, Br ] -""" - -""" -Cs = [spd, range(1,100), ["Cs"] ] -Sn = [spd, range(1,100), ["Sn"] ] -Br = [spd, range(1,100), ["Br"] ] -projections = [ Cs, Sn, Br ] -""" - -#pdos.QE_pdos("pdos/Cs4SnBr6_T100.pdos.pdos_atm#", -10.0, 10.0, 0.1, projections, E_f, "pdos.txt", 1, 0.01, 0.1) - - - -Sns = [["s"], range(1,100), ["Sn"] ] -Snp = [["p"], range(1,100), ["Sn"] ] -Snd = [["d"], range(1,100), ["Sn"] ] -projections = [ Sns, Snp, Snd ] - -pdos.QE_pdos("pdos/Cs4SnBr6_T100.pdos.pdos_atm#", -10.0, 10.0, 0.1, projections, E_f, "pdos.txt", 1, 0.01, 0.1) - - - diff --git a/tests/test_libra_py/test_16_pdos/plt_pdos b/tests/test_libra_py/test_16_pdos/plt_pdos deleted file mode 100755 index 641e58f66..000000000 --- a/tests/test_libra_py/test_16_pdos/plt_pdos +++ /dev/null @@ -1,43 +0,0 @@ -# -set terminal pngcairo font "arial,24" size 800, 600 enhanced rounded truecolor -#set terminal png font "arial,24" size 800, 600 enhanced rounded truecolor - -set lmargin at screen 0.17 -set rmargin at screen 0.95 -set bmargin at screen 0.15 -set tmargin at screen 0.95 - - -set xlabel "E-E_F, eV" offset 0.0, 0.5 -set ylabel "Density of states, States/eV" -set xtics 1.0 -set xrange [-5.0:5.0] -#set xrange [-1.5:1.5] -#set yrange [0.0:25] -#set yrange [0.0:25] -set key left top -#set key at -0.6, 22 - -# color definitions -set style line 11 lc rgb '#8b1a0e' pt 1 ps 1 lt 1 lw 5 # --- red -set style line 12 lc rgb '#FF4500' pt 6 ps 1 lt 1 lw 5 # --- orangered -set style line 13 lc rgb '#B22222' pt 6 ps 1 lt 1 lw 5 # --- firebrick -set style line 14 lc rgb '#DC143C' pt 6 ps 1 lt 1 lw 5 # --- crimson - -set style line 21 lc rgb '#5e9c36' pt 6 ps 1 lt 1 lw 5 # --- green -set style line 22 lc rgb '#006400' pt 6 ps 1 lt 1 lw 5 # --- darkgreen -set style line 23 lc rgb '#228B22' pt 6 ps 1 lt 1 lw 5 # --- forestgreen -set style line 24 lc rgb '#808000' pt 6 ps 1 lt 1 lw 5 # --- olive - -set style line 31 lc rgb '#8A2BE2' pt 6 ps 1 lt 1 lw 5 # --- blueviolet -set style line 32 lc rgb '#00008B' pt 6 ps 1 lt 1 lw 5 # --- darkblue - -set style line 41 lc rgb '#2F4F4F' pt 6 ps 1 lt 1 lw 5 # --- darkslategray - - -set output "pdos.png" -plot "pdos.txt" using 1:2 w l ls 11 t "Cs",\ - "pdos.txt" using 1:3 w l ls 21 t "Sn",\ - "pdos.txt" using 1:4 w l ls 31 t "Br" - - diff --git a/tests/test_md/example_1_SubPc-C60/case1/run_aa_md.py b/tests/test_md/example_1_SubPc-C60/case1/run_aa_md.py index ee3785aa8..6db48e93f 100755 --- a/tests/test_md/example_1_SubPc-C60/case1/run_aa_md.py +++ b/tests/test_md/example_1_SubPc-C60/case1/run_aa_md.py @@ -1,8 +1,8 @@ #********************************************************************************* -#* Copyright (C) 2016 Alexey V. Akimov +#* Copyright (C) 2016-2021 Alexey V. Akimov #* #* This file is distributed under the terms of the GNU General Public License -#* as published by the Free Software Foundation, either version 2 of +#* as published by the Free Software Foundation, either version 3 of #* the License, or (at your option) any later version. #* See the file LICENSE in the root directory of this distribution #* or . @@ -45,8 +45,8 @@ def main(): LoadMolecule.Load_Molecule(U, syst, "Pc-C60.ent", "pdb") syst.determine_functional_groups(0) # do not assign rings syst.init_fragments() - print "Number of atoms in the system = ", syst.Number_of_atoms - atlst1 = range(1,syst.Number_of_atoms+1) + print("Number of atoms in the system = ", syst.Number_of_atoms) + atlst1 = list(range(1,syst.Number_of_atoms+1)) # Creating Hamiltonian and initialize it ham = Hamiltonian_Atomistic(1, 3*syst.Number_of_atoms) @@ -55,7 +55,7 @@ def main(): ham.show_interactions_statistics() # Bind Hamiltonian and the system - ham.set_system(syst); ham.compute(); print "Energy = ", ham.H(0,0), " a.u." + ham.set_system(syst); ham.compute(); print("Energy = ", ham.H(0,0), " a.u.") # Electronic DOFs el = Electronic(1,0) @@ -73,14 +73,15 @@ def main(): f = open("_en_cooling.txt","w") f.close() - dt = 20.0 - for i in xrange(1): + params = { "dt":20.0, "integrator": "DLML"} + + for i in range(1): syst.set_atomic_q(mol.q) syst.print_xyz("_mol_cooling.xyz",i) - for j in xrange(1): - ekin, epot, etot = nve_md.nve_md_step(syst, mol, el, ham, dt, integrator) + for j in range(1): + ekin, epot, etot = nve_md.nve_md_step(syst, mol, el, ham, params) syst.cool() @@ -91,18 +92,21 @@ def main(): ########################## Production MD ################################# - syst.init_atom_velocities(300.0) + rnd = Random() + + syst.init_atom_velocities(300.0, rnd) f = open("_en_md.txt","w") f.close() - dt = 40.0 - for i in xrange(1000): + params["dt"] = 40.0 + + for i in range(1000): syst.set_atomic_q(mol.q) syst.print_xyz("_mol_md.xyz",i) - for j in xrange(10): - ekin, epot, etot = nve_md.nve_md_step(syst, mol, el, ham, dt, integrator) + for j in range(10): + ekin, epot, etot = nve_md.nve_md_step(syst, mol, el, ham, params) f = open("_en_md.txt","a") f.write("i= %3i ekin= %8.5f epot= %8.5f etot= %8.5f\n" % (i, ekin, epot, etot)) diff --git a/tests/test_md/example_1_SubPc-C60/case1/run_aa_md_state.py b/tests/test_md/example_1_SubPc-C60/case1/run_aa_md_state.py index a2a5818a5..b07b035fd 100755 --- a/tests/test_md/example_1_SubPc-C60/case1/run_aa_md_state.py +++ b/tests/test_md/example_1_SubPc-C60/case1/run_aa_md_state.py @@ -1,15 +1,15 @@ #********************************************************************************* -#* Copyright (C) 2016 Alexey V. Akimov +#* Copyright (C) 2016-2021 Alexey V. Akimov #* #* This file is distributed under the terms of the GNU General Public License -#* as published by the Free Software Foundation, either version 2 of +#* as published by the Free Software Foundation, either version 3 of #* the License, or (at your option) any later version. #* See the file LICENSE in the root directory of this distribution #* or . #* #*********************************************************************************/ ################################################################### -# This is a classical all-atomic MD followed by the EHT calculations on each fragment +# This is a classical all-atomic MD ################################################################### import sys @@ -49,12 +49,12 @@ def main(): syst.determine_functional_groups(0) # do not assign rings syst.init_fragments() - print "Number of atoms in the system = ", syst.Number_of_atoms - print "Number of bonds in the system = ", syst.Number_of_bonds - print "Number of angles in the system = ", syst.Number_of_angles - print "Number of dihedrals in the system = ", syst.Number_of_dihedrals - print "Number of impropers in the system = ", syst.Number_of_impropers - atlst1 = range(1,syst.Number_of_atoms+1) + print("Number of atoms in the system = ", syst.Number_of_atoms) + print("Number of bonds in the system = ", syst.Number_of_bonds) + print("Number of angles in the system = ", syst.Number_of_angles) + print("Number of dihedrals in the system = ", syst.Number_of_dihedrals) + print("Number of impropers in the system = ", syst.Number_of_impropers) + atlst1 = list(range(1,syst.Number_of_atoms+1)) # Creating Hamiltonian and initialize it ham = Hamiltonian_Atomistic(1, 3*syst.Number_of_atoms) @@ -64,7 +64,7 @@ def main(): # Bind Hamiltonian and the system - ham.set_system(syst); ham.compute(); print "Energy = ", ham.H(0,0), " a.u." + ham.set_system(syst); ham.compute(); print("Energy = ", ham.H(0,0), " a.u.") # Electronic DOFs el = Electronic(1,0) @@ -101,7 +101,7 @@ def main(): f.close() - for i in xrange(1): + for i in range(1): syst.set_atomic_q(mol.q) syst.print_xyz("_mol_cooling.xyz",i) @@ -124,7 +124,7 @@ def main(): md.dt = 40.0 md.max_step = 10 - for i in xrange(1000): + for i in range(1000): syst.set_atomic_q(mol.q) syst.print_xyz("_mol_md.xyz",i) diff --git a/tests/test_md/example_1_SubPc-C60/case2/run_aa_md_state.py b/tests/test_md/example_1_SubPc-C60/case2/run_aa_md_state.py index 5cc66ecaf..8c7b46a16 100755 --- a/tests/test_md/example_1_SubPc-C60/case2/run_aa_md_state.py +++ b/tests/test_md/example_1_SubPc-C60/case2/run_aa_md_state.py @@ -1,15 +1,15 @@ #********************************************************************************* -#* Copyright (C) 2016 Alexey V. Akimov +#* Copyright (C) 2016-2021 Alexey V. Akimov #* #* This file is distributed under the terms of the GNU General Public License -#* as published by the Free Software Foundation, either version 2 of +#* as published by the Free Software Foundation, either version 3 of #* the License, or (at your option) any later version. #* See the file LICENSE in the root directory of this distribution #* or . #* #*********************************************************************************/ ################################################################### -# This is a classical all-atomic MD followed by the EHT calculations on each fragment +# This is a classical all-atomic MD ################################################################### import sys @@ -49,12 +49,12 @@ def main(): syst.determine_functional_groups(0) # do not assign rings syst.init_fragments() - print "Number of atoms in the system = ", syst.Number_of_atoms - print "Number of bonds in the system = ", syst.Number_of_bonds - print "Number of angles in the system = ", syst.Number_of_angles - print "Number of dihedrals in the system = ", syst.Number_of_dihedrals - print "Number of impropers in the system = ", syst.Number_of_impropers - atlst1 = range(1,syst.Number_of_atoms+1) + print("Number of atoms in the system = ", syst.Number_of_atoms) + print("Number of bonds in the system = ", syst.Number_of_bonds) + print("Number of angles in the system = ", syst.Number_of_angles) + print("Number of dihedrals in the system = ", syst.Number_of_dihedrals) + print("Number of impropers in the system = ", syst.Number_of_impropers) + atlst1 = list(range(1,syst.Number_of_atoms+1)) # Creating Hamiltonian and initialize it ham = Hamiltonian_Atomistic(1, 3*syst.Number_of_atoms) @@ -64,7 +64,7 @@ def main(): # Bind Hamiltonian and the system - ham.set_system(syst); ham.compute(); print "Energy = ", ham.H(0,0), " a.u." + ham.set_system(syst); ham.compute(); print("Energy = ", ham.H(0,0), " a.u.") # Electronic DOFs el = Electronic(1,0) @@ -103,7 +103,7 @@ def main(): f.close() - for i in xrange(100): + for i in range(100): syst.set_atomic_q(mol.q) syst.print_xyz("_mol_cooling.xyz",i) @@ -126,7 +126,7 @@ def main(): md.dt = 40.0 md.max_step = 10 - for i in xrange(1000): + for i in range(1000): syst.set_atomic_q(mol.q) syst.print_xyz("_mol_md.xyz",i) diff --git a/tests/test_md/example_1_SubPc-C60/case3/run_aa_md_state.py b/tests/test_md/example_1_SubPc-C60/case3/run_aa_md_state.py index e3526f9e5..5e8adaa26 100755 --- a/tests/test_md/example_1_SubPc-C60/case3/run_aa_md_state.py +++ b/tests/test_md/example_1_SubPc-C60/case3/run_aa_md_state.py @@ -1,15 +1,15 @@ #********************************************************************************* -#* Copyright (C) 2016 Alexey V. Akimov +#* Copyright (C) 2016-2021 Alexey V. Akimov #* #* This file is distributed under the terms of the GNU General Public License -#* as published by the Free Software Foundation, either version 2 of +#* as published by the Free Software Foundation, either version 3 of #* the License, or (at your option) any later version. #* See the file LICENSE in the root directory of this distribution #* or . #* #*********************************************************************************/ ################################################################### -# This is a classical all-atomic MD followed by the EHT calculations on each fragment +# This is a classical all-atomic MD ################################################################### import sys @@ -49,12 +49,12 @@ def main(): syst.determine_functional_groups(0) # do not assign rings syst.init_fragments() - print "Number of atoms in the system = ", syst.Number_of_atoms - print "Number of bonds in the system = ", syst.Number_of_bonds - print "Number of angles in the system = ", syst.Number_of_angles - print "Number of dihedrals in the system = ", syst.Number_of_dihedrals - print "Number of impropers in the system = ", syst.Number_of_impropers - atlst1 = range(1,syst.Number_of_atoms+1) + print("Number of atoms in the system = ", syst.Number_of_atoms) + print("Number of bonds in the system = ", syst.Number_of_bonds) + print("Number of angles in the system = ", syst.Number_of_angles) + print("Number of dihedrals in the system = ", syst.Number_of_dihedrals) + print("Number of impropers in the system = ", syst.Number_of_impropers) + atlst1 = list(range(1,syst.Number_of_atoms+1)) # Creating Hamiltonian and initialize it ham = Hamiltonian_Atomistic(1, 3*syst.Number_of_atoms) @@ -64,7 +64,7 @@ def main(): # Bind Hamiltonian and the system - ham.set_system(syst); ham.compute(); print "Energy = ", ham.H(0,0), " a.u." + ham.set_system(syst); ham.compute(); print("Energy = ", ham.H(0,0), " a.u.") # Electronic DOFs el = Electronic(1,0) @@ -103,7 +103,7 @@ def main(): f.close() - for i in xrange(100): + for i in range(100): syst.set_atomic_q(mol.q) syst.print_xyz("_mol_cooling.xyz",i) @@ -126,7 +126,7 @@ def main(): md.dt = 40.0 md.max_step = 10 - for i in xrange(1000): + for i in range(1000): syst.set_atomic_q(mol.q) syst.print_xyz("_mol_md.xyz",i) diff --git a/tests/test_md/example_2_Au/case1/run_aa_md_state.py b/tests/test_md/example_2_Au/case1/run_aa_md_state.py index f037c4973..160774268 100755 --- a/tests/test_md/example_2_Au/case1/run_aa_md_state.py +++ b/tests/test_md/example_2_Au/case1/run_aa_md_state.py @@ -1,15 +1,15 @@ #********************************************************************************* -#* Copyright (C) 2016 Alexey V. Akimov +#* Copyright (C) 2016-2021 Alexey V. Akimov #* #* This file is distributed under the terms of the GNU General Public License -#* as published by the Free Software Foundation, either version 2 of +#* as published by the Free Software Foundation, either version 3 of #* the License, or (at your option) any later version. #* See the file LICENSE in the root directory of this distribution #* or . #* #*********************************************************************************/ ################################################################### -# This is a classical all-atomic MD followed by the EHT calculations on each fragment +# This is a classical all-atomic MD ################################################################### import sys @@ -49,12 +49,12 @@ def main(): syst.determine_functional_groups(0) # do not assign rings syst.init_fragments() - print "Number of atoms in the system = ", syst.Number_of_atoms - print "Number of bonds in the system = ", syst.Number_of_bonds - print "Number of angles in the system = ", syst.Number_of_angles - print "Number of dihedrals in the system = ", syst.Number_of_dihedrals - print "Number of impropers in the system = ", syst.Number_of_impropers - atlst1 = range(1,syst.Number_of_atoms+1) + print("Number of atoms in the system = ", syst.Number_of_atoms) + print("Number of bonds in the system = ", syst.Number_of_bonds) + print("Number of angles in the system = ", syst.Number_of_angles) + print("Number of dihedrals in the system = ", syst.Number_of_dihedrals) + print("Number of impropers in the system = ", syst.Number_of_impropers) + atlst1 = list(range(1,syst.Number_of_atoms+1)) # Creating Hamiltonian and initialize it ham = Hamiltonian_Atomistic(1, 3*syst.Number_of_atoms) @@ -64,7 +64,7 @@ def main(): # Bind Hamiltonian and the system - ham.set_system(syst); ham.compute(); print "Energy = ", ham.H(0,0), " a.u." + ham.set_system(syst); ham.compute(); print("Energy = ", ham.H(0,0), " a.u.") # Electronic DOFs el = Electronic(1,0) @@ -103,7 +103,7 @@ def main(): f.close() - for i in xrange(10): + for i in range(10): syst.set_atomic_q(mol.q) syst.print_xyz("_mol_cooling.xyz",i) @@ -126,7 +126,7 @@ def main(): md.dt = 40.0 md.max_step = 10 - for i in xrange(1000): + for i in range(1000): syst.set_atomic_q(mol.q) syst.print_xyz("_mol_md.xyz",i) diff --git a/tests/test_md/example_2_Au/case2/run_aa_md_state.py b/tests/test_md/example_2_Au/case2/run_aa_md_state.py index f037c4973..160774268 100755 --- a/tests/test_md/example_2_Au/case2/run_aa_md_state.py +++ b/tests/test_md/example_2_Au/case2/run_aa_md_state.py @@ -1,15 +1,15 @@ #********************************************************************************* -#* Copyright (C) 2016 Alexey V. Akimov +#* Copyright (C) 2016-2021 Alexey V. Akimov #* #* This file is distributed under the terms of the GNU General Public License -#* as published by the Free Software Foundation, either version 2 of +#* as published by the Free Software Foundation, either version 3 of #* the License, or (at your option) any later version. #* See the file LICENSE in the root directory of this distribution #* or . #* #*********************************************************************************/ ################################################################### -# This is a classical all-atomic MD followed by the EHT calculations on each fragment +# This is a classical all-atomic MD ################################################################### import sys @@ -49,12 +49,12 @@ def main(): syst.determine_functional_groups(0) # do not assign rings syst.init_fragments() - print "Number of atoms in the system = ", syst.Number_of_atoms - print "Number of bonds in the system = ", syst.Number_of_bonds - print "Number of angles in the system = ", syst.Number_of_angles - print "Number of dihedrals in the system = ", syst.Number_of_dihedrals - print "Number of impropers in the system = ", syst.Number_of_impropers - atlst1 = range(1,syst.Number_of_atoms+1) + print("Number of atoms in the system = ", syst.Number_of_atoms) + print("Number of bonds in the system = ", syst.Number_of_bonds) + print("Number of angles in the system = ", syst.Number_of_angles) + print("Number of dihedrals in the system = ", syst.Number_of_dihedrals) + print("Number of impropers in the system = ", syst.Number_of_impropers) + atlst1 = list(range(1,syst.Number_of_atoms+1)) # Creating Hamiltonian and initialize it ham = Hamiltonian_Atomistic(1, 3*syst.Number_of_atoms) @@ -64,7 +64,7 @@ def main(): # Bind Hamiltonian and the system - ham.set_system(syst); ham.compute(); print "Energy = ", ham.H(0,0), " a.u." + ham.set_system(syst); ham.compute(); print("Energy = ", ham.H(0,0), " a.u.") # Electronic DOFs el = Electronic(1,0) @@ -103,7 +103,7 @@ def main(): f.close() - for i in xrange(10): + for i in range(10): syst.set_atomic_q(mol.q) syst.print_xyz("_mol_cooling.xyz",i) @@ -126,7 +126,7 @@ def main(): md.dt = 40.0 md.max_step = 10 - for i in xrange(1000): + for i in range(1000): syst.set_atomic_q(mol.q) syst.print_xyz("_mol_md.xyz",i) diff --git a/tests/test_md/example_2_Au/case3/run_aa_md_state.py b/tests/test_md/example_2_Au/case3/run_aa_md_state.py index f037c4973..160774268 100755 --- a/tests/test_md/example_2_Au/case3/run_aa_md_state.py +++ b/tests/test_md/example_2_Au/case3/run_aa_md_state.py @@ -1,15 +1,15 @@ #********************************************************************************* -#* Copyright (C) 2016 Alexey V. Akimov +#* Copyright (C) 2016-2021 Alexey V. Akimov #* #* This file is distributed under the terms of the GNU General Public License -#* as published by the Free Software Foundation, either version 2 of +#* as published by the Free Software Foundation, either version 3 of #* the License, or (at your option) any later version. #* See the file LICENSE in the root directory of this distribution #* or . #* #*********************************************************************************/ ################################################################### -# This is a classical all-atomic MD followed by the EHT calculations on each fragment +# This is a classical all-atomic MD ################################################################### import sys @@ -49,12 +49,12 @@ def main(): syst.determine_functional_groups(0) # do not assign rings syst.init_fragments() - print "Number of atoms in the system = ", syst.Number_of_atoms - print "Number of bonds in the system = ", syst.Number_of_bonds - print "Number of angles in the system = ", syst.Number_of_angles - print "Number of dihedrals in the system = ", syst.Number_of_dihedrals - print "Number of impropers in the system = ", syst.Number_of_impropers - atlst1 = range(1,syst.Number_of_atoms+1) + print("Number of atoms in the system = ", syst.Number_of_atoms) + print("Number of bonds in the system = ", syst.Number_of_bonds) + print("Number of angles in the system = ", syst.Number_of_angles) + print("Number of dihedrals in the system = ", syst.Number_of_dihedrals) + print("Number of impropers in the system = ", syst.Number_of_impropers) + atlst1 = list(range(1,syst.Number_of_atoms+1)) # Creating Hamiltonian and initialize it ham = Hamiltonian_Atomistic(1, 3*syst.Number_of_atoms) @@ -64,7 +64,7 @@ def main(): # Bind Hamiltonian and the system - ham.set_system(syst); ham.compute(); print "Energy = ", ham.H(0,0), " a.u." + ham.set_system(syst); ham.compute(); print("Energy = ", ham.H(0,0), " a.u.") # Electronic DOFs el = Electronic(1,0) @@ -103,7 +103,7 @@ def main(): f.close() - for i in xrange(10): + for i in range(10): syst.set_atomic_q(mol.q) syst.print_xyz("_mol_cooling.xyz",i) @@ -126,7 +126,7 @@ def main(): md.dt = 40.0 md.max_step = 10 - for i in xrange(1000): + for i in range(1000): syst.set_atomic_q(mol.q) syst.print_xyz("_mol_md.xyz",i) diff --git a/tests/test_md/example_2_Au/case4/run_aa_md_state.py b/tests/test_md/example_2_Au/case4/run_aa_md_state.py index 50566388e..0c11ec3f8 100755 --- a/tests/test_md/example_2_Au/case4/run_aa_md_state.py +++ b/tests/test_md/example_2_Au/case4/run_aa_md_state.py @@ -1,15 +1,15 @@ #********************************************************************************* -#* Copyright (C) 2016 Alexey V. Akimov +#* Copyright (C) 2016-2021 Alexey V. Akimov #* #* This file is distributed under the terms of the GNU General Public License -#* as published by the Free Software Foundation, either version 2 of +#* as published by the Free Software Foundation, either version 3 of #* the License, or (at your option) any later version. #* See the file LICENSE in the root directory of this distribution #* or . #* #*********************************************************************************/ ################################################################### -# This is a classical all-atomic MD followed by the EHT calculations on each fragment +# This is a classical all-atomic MD ################################################################### import sys @@ -51,12 +51,12 @@ def main(): syst.determine_functional_groups(0) # do not assign rings syst.init_fragments() - print "Number of atoms in the system = ", syst.Number_of_atoms - print "Number of bonds in the system = ", syst.Number_of_bonds - print "Number of angles in the system = ", syst.Number_of_angles - print "Number of dihedrals in the system = ", syst.Number_of_dihedrals - print "Number of impropers in the system = ", syst.Number_of_impropers - atlst1 = range(1,syst.Number_of_atoms+1) + print("Number of atoms in the system = ", syst.Number_of_atoms) + print("Number of bonds in the system = ", syst.Number_of_bonds) + print("Number of angles in the system = ", syst.Number_of_angles) + print("Number of dihedrals in the system = ", syst.Number_of_dihedrals) + print("Number of impropers in the system = ", syst.Number_of_impropers) + atlst1 = list(range(1,syst.Number_of_atoms+1)) T1 = VECTOR(32.6970772436, 0.0, 0.0) T2 = VECTOR(16.3485386218, 28.3164995224, 0.0) @@ -71,7 +71,7 @@ def main(): # Bind Hamiltonian and the system - ham.set_system(syst); ham.compute(); print "Energy = ", ham.H(0,0), " a.u." + ham.set_system(syst); ham.compute(); print("Energy = ", ham.H(0,0), " a.u.") # Electronic DOFs el = Electronic(1,0) @@ -110,7 +110,7 @@ def main(): f.close() - for i in xrange(10): + for i in range(10): syst.set_atomic_q(mol.q) syst.print_xyz("_mol_cooling.xyz",i) @@ -133,7 +133,7 @@ def main(): md.dt = 40.0 md.max_step = 10 - for i in xrange(1000): + for i in range(1000): syst.set_atomic_q(mol.q) syst.print_xyz("_mol_md.xyz",i) diff --git a/tests/test_md/example_2_Au/case5/run_aa_md_state.py b/tests/test_md/example_2_Au/case5/run_aa_md_state.py index 321e9dd99..fd1565ef2 100755 --- a/tests/test_md/example_2_Au/case5/run_aa_md_state.py +++ b/tests/test_md/example_2_Au/case5/run_aa_md_state.py @@ -1,15 +1,15 @@ #********************************************************************************* -#* Copyright (C) 2016 Alexey V. Akimov +#* Copyright (C) 2016-2021 Alexey V. Akimov #* #* This file is distributed under the terms of the GNU General Public License -#* as published by the Free Software Foundation, either version 2 of +#* as published by the Free Software Foundation, either version 3 of #* the License, or (at your option) any later version. #* See the file LICENSE in the root directory of this distribution #* or . #* #*********************************************************************************/ ################################################################### -# This is a classical all-atomic MD followed by the EHT calculations on each fragment +# This is a classical all-atomic MD ################################################################### import sys @@ -51,12 +51,12 @@ def main(): syst.determine_functional_groups(0) # do not assign rings syst.init_fragments() - print "Number of atoms in the system = ", syst.Number_of_atoms - print "Number of bonds in the system = ", syst.Number_of_bonds - print "Number of angles in the system = ", syst.Number_of_angles - print "Number of dihedrals in the system = ", syst.Number_of_dihedrals - print "Number of impropers in the system = ", syst.Number_of_impropers - atlst1 = range(1,syst.Number_of_atoms+1) + print("Number of atoms in the system = ", syst.Number_of_atoms) + print("Number of bonds in the system = ", syst.Number_of_bonds) + print("Number of angles in the system = ", syst.Number_of_angles) + print("Number of dihedrals in the system = ", syst.Number_of_dihedrals) + print("Number of impropers in the system = ", syst.Number_of_impropers) + atlst1 = list(range(1,syst.Number_of_atoms+1)) T1 = VECTOR(32.6970772436, 0.0, 0.0) T2 = VECTOR(16.3485386218, 28.3164995224, 0.0) @@ -71,7 +71,7 @@ def main(): # Bind Hamiltonian and the system - ham.set_system(syst); ham.compute(); print "Energy = ", ham.H(0,0), " a.u." + ham.set_system(syst); ham.compute(); print("Energy = ", ham.H(0,0), " a.u.") # Electronic DOFs el = Electronic(1,0) @@ -101,7 +101,6 @@ def main(): baro.show_info() - ST = State() ST.set_system(syst) ST.set_thermostat(therm) @@ -116,7 +115,7 @@ def main(): f.close() - for i in xrange(10): + for i in range(10): syst.set_atomic_q(mol.q) syst.print_xyz("_mol_cooling.xyz",i) @@ -139,7 +138,7 @@ def main(): md.dt = 40.0 md.max_step = 10 - for i in xrange(1000): + for i in range(1000): syst.set_atomic_q(mol.q) syst.print_xyz("_mol_md.xyz",i) diff --git a/unittests/test_make_active_space.py b/unittests/test_make_active_space.py new file mode 100755 index 000000000..8e8006d4e --- /dev/null +++ b/unittests/test_make_active_space.py @@ -0,0 +1,13 @@ +from liblibra_core import * +from libra_py.workflows.nbra.step3 import make_active_space + +print('You are in testing the make_active_space function test.') +num_of_occ_orbital = input('number of occupied orbitals in the new active space:') +num_of_unocc_orbital = input('number of unoccupied orbitals in the new active space:') +ks_homo_index = input('the Kohn-Sham HOMO index in the raw data files:') +data_dim = input('data dimension of the raw data files:') +# The new active space and the KS HOMO index in that active space which again starts from 1 +new_active_space, new_ks_homo_index = make_active_space(int(num_of_occ_orbital), int(num_of_unocc_orbital), int(data_dim), int(ks_homo_index)) +print('The new active space is:', new_active_space) +print('The new KS HOMO index is:', new_ks_homo_index) + diff --git a/unittests/test_nbra_mapping.py b/unittests/test_nbra_mapping.py new file mode 100755 index 000000000..18316dd3a --- /dev/null +++ b/unittests/test_nbra_mapping.py @@ -0,0 +1,79 @@ +#********************************************************************************* +#* Copyright (C) 2021 Alexey V. Akimov +#* +#* This file is distributed under the terms of the GNU General Public License +#* as published by the Free Software Foundation, either version 3 of +#* the License, or (at your option) any later version. +#* See the file LICENSE in the root directory of this distribution +#* or . +#* +#*********************************************************************************/ + +import os +import sys +import math +import time + +from liblibra_core import * +import libra_py.workflows.nbra.mapping as mapping + + +S = CMATRIX(6,6) +# 1 2 3 4 5 6 +# H-1, a H,a L, a H-1, b H, b L, b +S.set(0,0, 1.0+0.0j); S.set(0, 1, 2.0+0.0j); S.set(0,2, 3.0+0.0j); S.set(0,3, 4.0+0.0j); S.set(0,4, 5.0+0.0j); S.set(0,5, 6.0+0.0j); # 1 +S.set(1,0, 2.0+0.0j); S.set(1, 1,12.0+0.0j); S.set(1,2,13.0+0.0j); S.set(1,3,14.0+0.0j); S.set(1,4,15.0+0.0j); S.set(1,5,16.0+0.0j); # 2 +S.set(2,0, 3.0+0.0j); S.set(2, 1,13.0+0.0j); S.set(2,2,23.0+0.0j); S.set(2,3,24.0+0.0j); S.set(2,4,25.0+0.0j); S.set(2,5,26.0+0.0j); # 3 +S.set(3,0, 4.0+0.0j); S.set(3, 1,14.0+0.0j); S.set(3,2,24.0+0.0j); S.set(3,3,34.0+0.0j); S.set(3,4,35.0+0.0j); S.set(3,5,36.0+0.0j); # 4 +S.set(4,0, 5.0+0.0j); S.set(4, 1,15.0+0.0j); S.set(4,2,25.0+0.0j); S.set(4,3,35.0+0.0j); S.set(4,4,45.0+0.0j); S.set(4,5,46.0+0.0j); # 5 +S.set(5,0, 6.0+0.0j); S.set(5, 1,16.0+0.0j); S.set(5,2,26.0+0.0j); S.set(5,3,36.0+0.0j); S.set(5,4,46.0+0.0j); S.set(5,5,56.0+0.0j); # 6 + +#==================== Test 1 =========================== +print("Test 1") +# Simple case of single excitation of the same spin +GS = [1, -1, 2, -2] +S1 = [1, -1, 3, -2] +print(mapping.ovlp_arb_mo(GS, S1, S) ) # ok - pyxaid style + +GSa = [1, -4, 2, -5] +S1a = [1, -4, 3, -5] +print(mapping.ovlp_arb_mo(GSa, S1a, S) ) + + +#==================== Test 2 =========================== +print("Test 2") +# Simple case of single excitation of the same spin, alpha for now +GS = [1, -1, 2, -2] +S1 = [1, -1, 2, -3] +print(mapping.ovlp_arb_mo(GS, S1, S) ) # ok - pyxaid style + +# Simple case of single excitation of the same spin, analogously, but in the beta channel +GSa = [1, -4, 2, -5] +S1a = [1, -4, 2, -6] +print(mapping.ovlp_arb_mo(GSa, S1a, S) ) + + +#==================== Test 3 =========================== +print("Test 3") +# Coupling of the spin-flipped configurations +S1 = [1, -1, 2, -3] +S2 = [1, -1, 2, 3] +print(mapping.ovlp_arb_mo(S1, S2, S) ) # ok - pyxaid style + +S1 = [1, -4, 2, -6] +S2 = [1, -4, 2, 3] +print(mapping.ovlp_arb_mo(S1, S2, S) ) # ok - pyxaid style + + +#==================== Test 4 =========================== +print("Test 4") +# Double excitation +GS = [1, -1, 2, -2] +D1 = [3, -1, 2, -3] +print(mapping.ovlp_arb_mo(GS, D1, S) ) # ok - pyxaid style + + + + + + diff --git a/unittests/test_pickling.py b/unittests/test_pickling.py new file mode 100755 index 000000000..94cd8cece --- /dev/null +++ b/unittests/test_pickling.py @@ -0,0 +1,122 @@ +#********************************************************************************* +#* Copyright (C) 2021 Alexey V. Akimov +#* +#* This file is distributed under the terms of the GNU General Public License +#* as published by the Free Software Foundation, either version 3 of +#* the License, or (at your option) any later version. +#* See the file LICENSE in the root directory of this distribution +#* or . +#* +#*********************************************************************************/ +""" + This file tests the correctness of the Pickling support for some Libra datatypes + Pickling is used in the multiprocessing library +""" + +import os +import sys +import math +import time +import unittest +import multiprocessing as mp + +from liblibra_core import * + + + +""" + +This is a Python implementation of the pickling support - one would only need to +add the .enable_pickling() line + + +def matrix_getinitargs(self): + return (self.num_of_rows, self.num_of_cols ) + +def matrix_getstate(self): + res = [] + for i in range(self.num_of_elems): + res.append( self.get(i) ) + return tuple(res) + +def matrix_setstate(self, res): + sz = len(res) + for i in range(sz): + self.set(i, res[i]) + +MATRIX.__getinitargs__ = matrix_getinitargs +MATRIX.__getstate__ = matrix_getstate +MATRIX.__setstate__ = matrix_setstate +""" + + + + +def summ(ilist, pw): + print("Starting summ") + sz = len(ilist) + res = 0 + for i in range(sz): + res += ilist[i]**pw + + print("RES = ", res) + print("Done with summ") + return res + + +def run_the_job(func, _var_pool, nthreads): + t1 = time.time() + pool = mp.Pool( nthreads ) + res = pool.starmap( func, _var_pool ) + pool.close() + pool.join() + t2 = time.time() + print(F"Total time {t2 - t1}") + return res + + +def test_intList(): + # Pickling of inList type + + x1 = Py2Cpp_int([1,2,3,4]) + x2 = Py2Cpp_int([1,2,3,4]) + var_pool = [ ( x1, 1), ( x2, 2) ] + + res = run_the_job(summ, var_pool, 2) + + print(res) + + +def summ_matrix(mtx, pw): + print("Starting summ_matrix") + + res = 0 + for i in range(mtx.num_of_rows): + for j in range(mtx.num_of_cols): + + res += mtx.get(i,j)**pw + + print("RES = ", res) + print("Done with summ_matrix") + return res + + + +def test_MATRIX(): + # Pickling of inList type + + y1 = MATRIX(2,2) + y1.set(0,0, 1.0); y1.set(0, 1, 2.0); + y1.set(1,0, 3.0); y1.set(1, 1, 4.0); + y2 = MATRIX(y1) + + var_pool = [ ( y1, 1), ( y2, 2) ] + + # Pickling of MATRIX type + res = run_the_job(summ_matrix, var_pool, 2) + + print(res) + + +test_intList() +test_MATRIX()